
Institut für Visualisierung und Interaktive Systeme
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Germany

Diplomarbeit Nr. 3303

Tabletop-Computer-basierte Steuerung für
Powerwall-Visualisierungen

Edwin Püttmann

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Prof. Dr. Albrecht Schmidt

Dipl.-Phys. Michael Raschke
Dipl.-Inf. Bastian Pfleging

begonnen am: 20.02.2012

beendet am: 21.08.2012

CR-Klassifikation: H.5.2 H.5.3 I.3.6

3 Kurzfassung

Kurzfassung

Bei der Analyse von Daten aus komplexen Themengebieten werden trotz moderner visueller
Werkzeuge oft interessante Muster und Details nach wie vor leicht übersehen. Aus diesem
Grund werden komplexe Daten meist von mehreren Personen analysiert. Dazu können
großflächige Displays zur Anzeige der Daten genutzt werden, die jedoch mit herkömmlichen
Eingabegeräten, wie Maus und Tastatur, sich nur sehr eingeschränkt bedienen lassen. Seit
einigen Jahren stehen Geräte zur kollaborativen Arbeit zur Verfügung beispielsweise in Form
von Tabletops. Diese Arbeit stellt ein Interaktionskonzept für die kollaborative Arbeit von
Benutzern mit einer Powerwall basierend auf einer Tabletop-Steuerung vor. Es wurde auf
Basis des Konzepts ein Framework entwickelt, das die Steuerung einer Powerwall durch
einen Tabletop sowie die Einbindung von weiteren Geräten zur Interaktion ermöglicht. Das
Interaktionskonzept der Tabletop-Steuerung wurde anhand einer Studie evaluiert und
daraufhin ein Prototyp entwickelt.

Abstract

While analyzing data belonging to complex subjects, interesting details or patterns are still
easily overlooked, even with modern visualization tools. Therefore, those analyses are mostly
performed by several persons. For this, large-scaled screens are used to display the data, but
those screens are only limited operable with common input devices, like keyboard and mouse.
For a couple of years devices for collaborative work are available, for example in the form of
tabletops. This thesis introduces a concept for the interaction of users with a powerwall and a
tabletop-based control for collaborative work. Based on this concept, a framework was
developed which allows the control of a powerwall through a tabletop and the integration of
additional devices. The interaction concept of the tabletop control was evaluated by a study
and subsequently a prototype was developed.

4 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

5 Inhalt

Inhalt

Inhalt als Mind-Map ... 9

Abbildungsverzeichnis ... 11

Tabellenverzeichnis .. 15

1 Einleitung ... 17

1.1 Motivation ... 17

1.2 Aufbau ... 18

2 Grundlagen ... 19

2.1 Visual Analytics und Visualisierung ... 19

2.1.1 Visual Analytics ... 19

2.1.2 Visualisierung ... 20

2.1.3 „Visual Analytics“-Prozess .. 22

2.2 Interaktion .. 24

2.2.1 Entwicklung der Benutzerschnittstellen und der Computerinteraktion 24

2.2.2 Windows, Icons, Menus and Pointers (WIMP) .. 26

2.2.3 Natural User Interfaces ... 27

2.2.4 Tangible User Interfaces .. 28

2.3 Tabletops ... 30

2.3.1 Eingabetechniken für Tabletops ... 31

2.3.2 Technologiebeispiele .. 36

2.4 Powerwalls ... 37

2.4.1 Hardwarekonfigurationen ... 37

2.4.2 Anwendungsgebiete ... 38

3 Verwandte Arbeiten ... 41

3.1 Multimodale Interaktionsframeworks ... 41

3.2 Multimodale Interaktionsumgebung .. 42

3.3 Tabletop-Anwendungen .. 43

4 Aufgabenbeschreibung ... 45

4.1 Hintergrund .. 45

4.2 Aufgabenstellung ... 45

4.3 Lösungsüberblick ... 46

5 Anforderungsanalyse .. 49

5.1 Beobachtungen aus der Auswertungssitzung der Eyetracking-Studie 49

5.1.1 „Visual Elements“-Studie .. 49

5.1.2 Auswertungswerkzeuge ... 51

5.1.3 Beobachtungen bei der Auswertung .. 53

5.2 Eyetracking-Szenario ... 54

6 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

5.3 MegaMol-Szenario .. 60

5.4 Anforderungen ... 64

5.4.1 Anforderungen an die Analyseumgebung .. 64

5.4.2 Anforderungen an Tabletop-Oberfläche und Interaktionen 65

6 Konzept .. 67

6.1 System ... 67

6.2 Tabletop-Oberfläche .. 69

6.3 Tabletop-Interaktionsmodalitäten .. 72

6.4 Tabletop-Datenmanagement .. 75

7 Lösungsansatz .. 77

7.1 Vorüberlegungen ... 77

7.1.1 Überblick über die Benutzeroberfläche .. 77

7.1.2 Powerwallansicht ... 78

7.1.3 Visualisierungscontainer .. 79

7.1.4 Drag&Drop-Interaktionselement ... 81

7.1.5 Gesteninteraktion ... 82

7.1.6 Tangibleinteraktion .. 82

7.1.7 Filtern mit Tangibles .. 83

7.1.8 Persönliche Ablage ... 84

7.2 Vorstudie ... 85

7.2.1 Beschreibung .. 85

7.2.2 Proband 1 .. 94

7.2.3 Proband 2 .. 95

7.2.4 Proband 3 .. 96

7.2.5 Proband 4 .. 98

7.2.6 Proband 5 .. 99

7.2.7 Fazit .. 101

7.3 Lösungsansatz-Erweiterung ... 105

8 Framework der Analyseumgebung .. 109

8.1 Architekturmuster .. 109

8.2 Architektur ... 109

8.3 Komponentenstruktur .. 111

8.3.1 Abstraction ... 112

8.3.2 Server ... 113

8.3.3 DataProvider ... 115

8.3.4 VisualizationClient ... 116

8.4 Abläufe .. 121

8.4.1 Visualisierungsclient registrieren ... 121

7 Inhalt

8.4.2 Nachricht verteilen ... 121

8.4.3 Daten nachladen ... 123

9 Prototyp .. 125

9.1 Datenkomponente der Analyseumgebung ... 125

9.1.1 Eyetracking-Datenmodell ... 125

9.1.2 Dataprovider ... 128

9.2 Visualisierungen .. 128

9.3 Tabletop-Client .. 129

9.3.1 Nutzung des Frameworks ... 130

9.3.2 Benutzeroberfläche ... 130

9.3.3 Gesteninteraktion ... 135

9.3.4 Tangibleinteraktion .. 135

9.3.5 Lokale Datenhaltung .. 138

9.4 Kinect-Powerwall-Client ... 139

10 Zusammenfassung und Ausblick ... 141

10.1 Zusammenfassung und Bewertung .. 141

10.1.1 Zusammenfassung .. 141

10.1.2 Bewertung .. 143

10.2 Ausblick ... 144

10.2.1 Benutzerstudie .. 144

10.2.2 Technische Lösungen ... 144

10.2.3 Implementierung .. 146

Literaturverzeichnis .. 149

Anhang A: Fragebogen .. 154

8 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

9 Inhalt als Mind-Map

Inhalt als Mind-Map

10 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

11 Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 1: Visualisierungspipeline [16] .. 21
Abbildung 2: Visual Analytics Prozess [14] .. 23
Abbildung 3: Skizze des Memex [20] .. 24
Abbildung 4: Sutherland bei der Arbeit mit dem Lichtgriffel ... 25
Abbildung 5: Ein Beispiel eines Tangible User Interface, die Marbel Answering Machine .. 26

Abbildung 6: Windows 7 hat eine typische WIMP-Benutzerschnittstelle 27

Abbildung 7: TUIs führen weg von der Bedienung des Computers mit Maus und Tastatur.
Alle Elemente des Raums dienen zur Interaktion. [24] ... 29
Abbildung 8: Oben: Ein Slot eines MediaBlocks auf den Bilder übertragen werden. Unten:
Ein MediaSequenzer, um Medien zu bearbeiten. [25] ... 30
Abbildung 9: Benutzer beim Musikmachen mit dem ReacTable. (Interaktion mit Tangibles)
[26] ... 30

Abbildung 10: Skizze zum Oberflächenkapazitätsverfahren [28] ... 32

Abbildung 11: Skizze zum Verfahren der „Projizierte Kapazität“ [28] 32

Abbildung 12: Darstellung von FTIR [28] ... 33
Abbildung 13: Darstellung zu DI [28] ... 34
Abbildung 14: Darstellung zu DSI [28] ... 35
Abbildung 15: Darstellung der Pixelsense Hardware [8] ... 35
Abbildung 16: Beispiel für Tiled LCD Panels [34] Links: Die lambdaVision Rechts: Der
lambdaTable ... 37

Abbildung 17: Aufbau der Powerwall im VISUS-Labor mit einem Projektor Array [35] 38

Abbildung 18: Beispiel eines autostereoskopischen Displays(The Varrier) [36] 38

Abbildung 19: Eine Pipeline im Squidy-Tool .. 41
Abbildung 20: Links ist ein Auschnitt der ZOIL-Oberfläche zu sehen. Rechts sieht man die
multimodale Interaktionsumgebung von Roomware. .. 43
Abbildung 21: Das linke Bild zeigt zwei Personen beim Arbeiten mit G-Nome Surfer. Auf
dem rechten Bild sieht man eine Ansicht von Phylo-Genie. .. 44
Abbildung 22: Stimulus für das Auslesen von 2D-Koordinatensystemen. Die Punkte P1, P2
und P3 mussten abgelesen werden. .. 50
Abbildung 23: Stimuli für das Bestimmen der größten Fläche. Für beide Stimuli sollte die
Farbe der größten Fläche bestimmt werden. .. 50
Abbildung 24: Stimuli für den Vergleich von Dreiecken. Für beide Dreiecke sollte geprüft
werden ob sie geometrisch ähnlich sind. .. 51
Abbildung 25: Heatmap-Visualisierung eines Stimulus aus Aufgabe 1. Die Farbskala reicht
von Rot nach Grün. Rote Bereiche wurden häufig fixiert, grüne Bereiche dagegen selten. 51

Abbildung 26: Scan-Path-Visualisierung eines Stimulus aus Aufgabe 3. Die Abfolge der
Fixationen wird durch die blaue Linie dargestellt. ... 52
Abbildung 27: Parallel-Scan-Paths zweier Probanden für einen Stimulus mit drei AOIs oben:
Gaze Duration Sequenz Diagramm mitte: Fixation Point Diagramm unten: Gaze Duration
Distribution Diagramm .. 53

Abbildung 28: Zeigt einen mögliches Bild einer Eyetracking-Auswertung an Desktop-
Monitoren. .. 54

Abbildung 29: Offline-Vorbereitung Der Moderator importiert Aufgaben in das System. 55

Abbildung 30: Vorbereitung der Auswertungssitzung Der Moderator fügt die Aufgaben zur
Analyseumgebung hinzu. ... 55
Abbildung 31: Start der Sitzung Der Moderator erzeugt die erste Visualisierung. 56

Abbildung 32: Duplikation einer Visualisierung ... 56

12 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 33: Ändern des Visualisierungstyps Ein Nutzer wechselt die Visualisierung mit
einer Wischbewegung. ... 57

Abbildung 34: AOIs erstellen .. 57
Abbildung 35: Verändern des Inhalts einer Visualisierung Ein Nutzer ändert die Reihenfolge
der Achsen in einer Parallel-Scan-Path-Visualisierung. .. 58
Abbildung 36: Entfernen eines Probanden aus einer Visualisierung 58

Abbildung 37: Filtern der Daten Ein Nutzer teilt die Probanden auf zwei Visualisierungen auf.
 .. 59

Abbildung 38: Erzeugen eines Screenshots von einer Visualisierung 59

Abbildung 39: Wechseln der Aufgabe in den Visualisierungen .. 59

Abbildung 40: Offline Vorbereitung Der wissenschaftliche Mitarbeiter importiert
Proteindaten ins System. .. 60

Abbildung 41: Vorbereitung der Präsentation Der wissenschaftliche Mitarbeiter fügt Proteine
zur Analyseumgebung hinzu. ... 61
Abbildung 42: Start der Sitzung Der wissenschaftliche Mitarbeiter erzeugt die MegaMol-
Visualisierung. .. 61

Abbildung 43: Duplizierung der Visualisierung .. 62
Abbildung 44: Änderung des Mappings der Visualisierung. ... 62
Abbildung 45: Ändern des Visualisierungstyps Der Vortragende wechselt die Visualisierung
mit einer Wischbewegung. ... 63
Abbildung 46: Manipulation der 3D-Ansicht mit einer Pan-Geste links und einer Pinch-Geste
rechts .. 63

Abbildung 47: Erzeugen eines Screenshots ... 64
Abbildung 48: Zeigt einige Ausrichtung anhand von Vektorfeldern a) Vektoren als
Pfeildarstellung, b) Vektorrichtung als Farbe [49] ... 70
Abbildung 49: Skizze der Benutzeroberfläche ... 78
Abbildung 50: Skizze der Powerwallansicht mit drei Visualisierungscontainern 79

Abbildung 51: Visualisierungscontainer 1) Interaktionsmodus, 2) Löschenknopf, 3)
Drag&Drop-Interaktionselement ... 80
Abbildung 52: Zeigt die beiden Modi des Knopf für den Interaktionsmodus. Beim Drücken
wird zwischen diesen umgeschaltet. Der linke Teil zeigt den Knopf im Verschiebemodus, der
rechte zeigt ihn im Bearbeitungsmodus. .. 81
Abbildung 53: Interaktionen mit dem Drag&Drop-Interaktionselement oben: Koppeln zweier
Visualisierungscontainer unten: Duplizierung eines Visualisierungscontainers...................... 81

Abbildung 54: Gesteninteraktion mit dem Visualisierungscontainer oben: Duplizieren mit
Geste unten: Koppeln mit Geste ... 82
Abbildung 55: Filterkonzept mit Tangibles Die Zylinder sind die Tangibles. Das graue
Tangible stellt den Filterbereich her. .. 84
Abbildung 56: Links: Studienszenario mit Position der Kamera Rechts: Sicht der Kamera zur
Dokumentation der Studie .. 85

Abbildung 57: Ausgangssituation bei Aufgabe 1 .. 87
Abbildung 58: Ausgangssituation von Aufgabe 2 Oben ist die Powerwall und unten der
Tabletop zu sehen. .. 87

Abbildung 59: Ausgangssituation von Aufgabe 3, falls der Proband das Fenster kopiert. 88

Abbildung 60: Ausgangssituation von Aufgabe 3, falls der Proband das Fenster verschiebt. 88

Abbildung 61: Tabletop mit Powerwallansicht und einem Fenster auf der Powerwall 89

Abbildung 62: Fenster mit Miniaturansicht(Drag&Drop-Interaktionselement) auf dem
Tabletop .. 90

Abbildung 63: Fenster mit Löschenknopf .. 90
Abbildung 64: Zwei Fenster mit Drag&Drop-Interaktionselementen 91

Abbildung 65: Gekoppelte Fenster mit Linie und Knöpfen ... 91

13 Abbildungsverzeichnis

Abbildung 66: Id-Karte erzeugt private Ablage für Fenster(rechts) .. 92
Abbildung 67: Kreis als Filterbereich .. 92
Abbildung 68: Fenster mit den beiden Modi des Knopfs .. 93
Abbildung 69: Entkoppeln zweier Fenster durch Durchstreichen der Linie 94

Abbildung 70: Schieben eines Fensters auf die Powerwallansicht .. 95

Abbildung 71: Erklärung von Koppeln mit Konnektorpunkten ... 97

Abbildung 72: Proband beim Ausprobieren des vorgeschlagenen Filterkonzepts 99

Abbildung 73: Die Probandin schiebt ein Fenster vom Tisch ... 100
Abbildung 74: Das Koppeln mit einem Tangiblepaar wird angedeutet 101

Abbildung 75: Änderung beim Verschieben auf die Powerwallansicht 106

Abbildung 76: Architektur des Systems ... 110
Abbildung 77: Komponentenstruktur des Systems und deren Zusammenhänge 111

Abbildung 78: Klassenstruktur der Abstraction-Komponente ... 112
Abbildung 79: Klassenstruktur des Servers ... 113
Abbildung 80: Klassenstruktur der DataProvider-Komponente .. 115

Abbildung 81: Klassenstruktur des VisualisierungsClient-Backends 117

Abbildung 82: Klassenstruktur des Plugin-Systems für Visualisierungen 119

Abbildung 83: Ablauf beim Registrieren eines Visualisierungsclients 121

Abbildung 84: Ablauf beim Verteilen von Nachrichten im System 122

Abbildung 85: Zustände des message brokers beim Verteilen der Nachrichten 123

Abbildung 86: Ablauf beim Nachladen von Daten aus einem DataProvider 123

Abbildung 87: Eyetracking Datenmodell für den Daten-Provider des Prototyps Die Pfeile
zwischen den Klassen stellen 1:N-Beziehungen dar. ... 127
Abbildung 88: Visualisierungen für Eyetracking-Daten 1) Stimulus-Visualisierung, 2)
Heatmap-Visualisierung, 3) Gaze-Duration-Sequenz-Visualisierung 129

Abbildung 89: Der Microsoft Pixelsense des VIS ... 129
Abbildung 90: Benutzeroberfläche des Clients 1) privater Visualisierungscontainer, 2)
Powerwallansicht 3) Datenexplorer, 4) Administrationsdialog ... 131
Abbildung 91: Powerwallansicht 1) öffentlicher Visualisierungscontainer, 2) Minimap 132

Abbildung 92: Datenexplorer mit Stimuli .. 133
Abbildung 93: AbstractVisWindow Stellt die grundlegenden Funktionen eines
Visualisierungscontainer bereit. ... 133
Abbildung 94: Privater Visualisierungscontainer (SurfaceVisWindow) 1:
Duplizierenknopf, 2: Koppelnknopf, 3: Interaktionsmodus, 4: Löschenknopf, 5:
Visualisierung ... 134

Abbildung 95: Öffentlicher Visualisierungscontainer(PowerwallVisWindow) mit
ausgeblendeten Steuerelementen .. 134
Abbildung 96: Tangible mit Byte-Tag ... 136
Abbildung 97: Verschiedene Tangibles des Client 1) Datenrepräsentationstangibles, 2)
Kopplungstangiblepaar, 3) Duplizierungstangible ... 136
Abbildung 98: Kopplung von zwei Visualisierungscontainer mit Tangibles Die
Kreisanimation zeigt den Fortschritt an. .. 137
Abbildung 99: LocalDataManager -Klasse ... 138

Abbildung 100: Aufbau für den Powerwall-Client .. 139
Abbildung 101: Eine Auswahl an SLAP Widgets a) Radiobuttons, b) Drehknopf, c) Regler, d)
Tastatur ... 146

14 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

15 Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 1: Teilnehmer der Studie ... 86
Tabelle 2: Vorschläge bezüglich der Powerwallsteuerung (X: der Proband erwähnt die
Funktionalität) .. 103

Tabelle 3: Vorschläge für Gesten (-- : keine Aussage oder wurde nicht gefragt) 104

Tabelle 4: Vorschläge für Tangibleinteraktion (-- : keine Aussage) 105

16 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

17 Einleitung

1 Einleitung

1.1 Motivation

Wissenschaft und Industrie erzeugen heutzutage eine unglaubliche Menge an Daten. Laut der
„Digital Universe“ Studie des IT-Dienstleisters EMC wurden für das Jahr 2011 1.8 Zetabyte
digitale Daten vorhergesagt [1]. Das entspricht 1.8 Milliarden 1TB-Festplatten. Davon sind
große Mengen privater Natur, in Form von Videos, Bilder, Zeitschriften und Büchern. Der
andere Teil sind jedoch Daten mit denen ein Mensch zuerst nichts anfangen kann. Dazu
gehören die meisten Daten aus der Wissenschaft, Medizin und statistische Daten von
Unternehmen. Um diese Daten sinnvoll anzuzeigen und verstehen zu können, müssen
Visualisierungen genutzt werden. Darum betreiben Universitäten und Unternehmen großen
Aufwand neue Visualisierungen zu entwickeln, um solche Daten besser zu verstehen. [2]

Die entwickelten Visualisierungen können jedoch bei großen Datenmengen oft nicht sinnvoll
auf normalen Displays angezeigt werden. Beispiele dafür sind Daten aus der Biologie [3] oder
Astrophysik [4]. Des Weiteren müssen z.B. bei statistischen Daten Charakteristiken mehrerer
Datenmengen miteinander verglichen werden. Dies kann zusätzlich zu Platzproblemen auf
herkömmliche Desktop-Displays führen. Zudem spielt Teamwork eine immer größere Rolle
und unter dem Grundsatz „Vier Augen sehen mehr als zwei“ wird auch die Analyse von
Daten in Gruppen durchgeführt [5]. Diese Gruppen benötigen großflächige Displays, um sich
im Team über die visualisierten Daten auszutauschen. Darum werden inzwischen für solche
Szenarien große, hochauflösende Displays entwickelt [6]. Am Ende einer Analyse können die
Displays zur Präsentation der Ergebnisse vor einem Plenum genutzt werden.

Die Bedienung solcher Displays bzw. die Interaktion mit ihnen ist jedoch aufwendig.
Normalerweise werden Desktop-PCs genutzt deren Displays erweitert werden. Jedoch eignet
sich die Bedienung mit Maus nicht für größere Displays. In Besprechungsräumen finden sich
jedoch oft auch Tische, um Unterlagen oder Laptops abzulegen. Statt Tischen könnten
Tabletop-PCs eingesetzt werden. Diese interaktiven, horizontalen Displays sind speziell für
kollaborative Arbeit an Computern ausgelegt. Universitäten und wissenschaftliche
Einrichtungen experimentieren schon länger mit dieser Art von Computer [7]. In der Industrie
nimmt Microsoft hier die Vorreiterrolle ein. In ihrem Microsoft Pixelsense Projekt(früher
Microsoft Surface) wurden zwei Generationen von Tabletop-PCs entwickelt [8]. Auf Basis
der Pixelsense-Tabletops wurden schon Anwendungen implementiert. Kommerziell werden
sie in Casinos [9] und Läden eines Mobilfunkanbieters [10] in den USA eingesetzt. Auch in
der Wissenschaft sind schon Interaktionskonzepte für den Pixelsense-Tabletop oder ähnliche
Tabletops entworfen worden.

In Film und Fernsehen werden Powerwalls und Tabletops und ähnliche Geräte oft als
Interaktionsmittel der Zukunft dargestellt. Ein Beispiel findet sich in der Krimiserie CSI
Miami, in der ein Tabletop in Kombination mit einem großen Display genutzt wird. Das geht
auch in die Richtung der Vision von Mark Weiser für den Computer des 21. Jahrhunderts
[11]. Weiser sieht den Computer in seiner Vision als unsichtbare Unterstützung für anfallende
Arbeit, wobei die Computer im Prinzip mit der Arbeitsumgebung verschmelzen.

In Anlehnung an diese Vision, soll in dieser Arbeit der Tabletop-PC in einer
Analyseumgebung mit einer Powerwall genutzt werden. Zugrunde liegt, als tatsächliches
Szenario, die Eyetracking-Analyse. Aktuelle Forschungsarbeiten in dieser Richtung
beschränken sich meist auf reine Fernsteuerung von großen Displays oder reine
Mehrbenutzeranalyse auf dem Tabletop. Diese Arbeit versucht beides zu verbinden.

18 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

1.2 Aufbau

Kapitel 1 ist die Einleitung und Übersicht.

In Kapitel 2 führt in die Grundlagen des „Visual Analytics“ und die Visualisierung ein, um
einen groben Überblick über die Prinzipien von visueller Analyse zu geben. Im Weiteren
werden einige Interaktionsparadigmen vorgestellt, die sich inzwischen durchgesetzt haben
oder Themen der Forschung sind, darunter Natural User Interfaces(NUI) und Tangible User
Interfaces(TUI). Danach wird das Prinzip der Tabletop-PCs und verschiedene existierende
Hardware dazu vorgestellt. Zum Schluss wird in das Thema der großflächigen,
hochauflösenden Displays eingeführt.

Das Kapitel 3 stellt verwandte Arbeiten im Bereich der multimodalen Interaktionssysteme
und Anwendungen auf Tabletops vor.

Kapitel 4 führt in die Aufgabenstellung ein und erklärt die Vorgehensweise der Arbeit.

Das 5. Kapitel beschreibt die Ergebnisse der durchgeführten Anforderungsanalyse auf Basis
einer im Vorfeld vom Institut durchgeführten Eyetracking-Studie. Bei der Ergebnisanalyse
der Eyetracking-Studie wurde versucht eine Powerwall und verschiedene Software-Tools zu
verwenden. Diese Analysesitzung der Studie wurde beobachtet und anschließend mit den
Analysten diskutiert. Auf Grundlage dieser Beobachtungen wurde daraufhin ein Szenario für
eine Analyseumgebung, zur Analyse von Eyetracking-Studien, entwickelt und mit den
Analysten verfeinert. Die Analyseumgebung soll dabei durch einen Tabletop-PC gesteuert
werden und Visualisierungen auf einer Powerwall anzeigen können. Zusätzlich wurde noch
ein Szenario für eine Analyseumgebung für wissenschaftliche Visualisierungen speziell für
Moleküle [3] erstellt. Mit Hilfe der Beobachtungen und Szenarien werden die Anforderungen
an die Analyseumgebung und die Tabletop-Steuerung identifiziert.

Im 6. Kapitel wird anhand der Anforderungen ein abstraktes Konzept für
Analyseumgebungen mit Powerwalls und Tabletop-Steuerung entworfen. Das Konzept
beschreibt dabei den grundlegenden Aufbau des Systems der Analyseumgebung. Außerdem
erläutert es den Einsatz eines Tabletops innerhalb des Systems.

Kapitel 7 beinhaltet den Lösungsansatz. Er baut auf dem Konzept auf und konkretisiert es mit
Interaktionen und Oberflächenentwurf. Zuerst werden einige Entwurfsvorüberlegungen
vorgestellt. Mit den Vorüberlegungen wurde eine Vorstudie entworfen, bei der das
Lösungskonzept mit Probanden anhand von Paperprototyping erprobt werden soll. In einem
zweiten Teil wird der Lösungsansatz anhand der Ergebnisse der Vorstudie erweitert.

In Kapitel 8 werden die Architektur und ausgewählte Implementierungsdetails des
Kommunikationsframeworks beschrieben, das für die multimodale Analyseumgebung
entwickelt wurde. Dabei wird gezeigt, wie das im Konzept entworfene System umgesetzt
wurde. Der Prototyp für die Tabletop-Anwendung zur Steuerung von Powerwall-
Visualisierungen basiert auf diesem Framework.

Kapitel 9 beschreibt die Implementierung des Prototyps der Tabletop-Anwendung zur
Steuerung von Powerwall-Visualisierungen. Dabei wird beschrieben welche Teile des
Lösungsansatzes im Prototyp umgesetzt wurden.

Zum Schluss werden in Kapitel 10 die Ergebnisse der Arbeit zusammengefasst. Zusätzlich
wird ein Ausblick auf mögliche Weiterentwicklungen des Konzepts und der Implementierung
gegeben.

19 Grundlagen

2 Grundlagen

Das Grundlagenkapitel gibt einen Überblick über die Themen, die in dieser Arbeit
angesprochen werden.

2.1 Visual Analytics und Visualisierung

Dieses Kapitel gibt eine kurze Einführung in Visual Analytics und geht innerhalb von diesen
auf Visualisierung etwas näher ein. Visual Analytics wird angesprochen, da es unter anderem
Visualisierung und Interaktion miteinander vereinigt. Außerdem werden Daten exploriert, was
eine Grundlage dieser Arbeit darstellt.

2.1.1 Visual Analytics
Visual Analytics ist eine interdisziplinäre Fachrichtung, um mit großen und komplizierten
Daten umzugehen. Es beinhaltet mehrere Prozesse und hat eine große Bandbreite an
Anwendungsgebieten. Die Grundidee bei Visual Analytics ist es, die Daten visuell zu
repräsentieren und damit zu interagieren. Dadurch wird dem Benutzer ein Einblick gewährt,
um schlussendlich Aussagen zu treffen und bessere Entscheidungen zu fällen. Da eine
fundierte Entscheidungsfindung unweigerlich menschliche Einwirkung bedingt, um
Flexibilität und Kreativität zu gewährleisten. Deshalb müssen die Daten von den Involvierten
überschaut und verstanden werden können. Visual Analytics soll es den Analysten
ermöglichen, sich auf die wesentliche Entscheidungsfindung zu konzentrieren und dabei
leistungsstarke Rechenfähigkeiten und interaktive Visualisierung bereitzustellen. [12]

Eine Definition für Visual Analytics ist:
„…the science of analytical reasoning facilitated by interactive visual interfaces”
(…die Wissenschaft der analytischen Beweisführung unterstützt durch interaktive visuelle
Schnittstellen) [13].

Daher verbindet Visual Analytics die wissenschaftliche Analyse mit der Visualisierung. Das
beinhaltet eine Vorverarbeitung der Daten, die anschließende Visualisierung und Interaktion
und zum Schluss die Entscheidungsfindung anhand der gewonnenen Erkenntnisse. Um mit
den großen komplexen und uneinheitlichen Daten zurechtzukommen, verbindet Visual
Analytics die Fähigkeiten von Menschen mit denen von Computern. Dies geschieht durch die
Verbindung von automatischen statistischen und mathematischen Methoden mit interaktiven
Visualisierungen, die dem Menschen erlauben, Umstände zu erkennen und Schlüsse zu
ziehen.

Eine etwas modernere Definition ist daher:
„Visual analytics combines automated analysis techniques with interactive visualizations for
an effective understanding, reasoning and decision making on the basis of very large and
complex datasets.” (Visual Analytics kombiniert automatische Analysetechniken mit
interaktiven Visualisierungen, um ein effektives Verständnis, eine effektive Schlussfolgerung
und Entscheidungsfindung auf der Basis von sehr großen und komplexen Datensätzen zu
erlangen.) [14].

Laut Keim et al. [14] sind die zentralen Ziele von Visual Analytics folgende:

• Informationen über massive, dynamische, mehrdeutige und oft widersprechende Daten
aufzubauen und einen Einblick in diese gewähren

• Erwartete Tatsachen zu entdecken

20 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

• Unerwartete Umstände aufzudecken
• Zeitnahe, vertretbare und verständliche Beurteilungen zu liefern
• Handlungsoptionen anzubieten

Entwickelt hat sich die Visual Analytics aus der klassischen Visualisierung. Allerdings ist
Visual Analytics mehr als Visualisierung. Wie schon angedeutet, wird versucht den Menschen
in den Analyseprozess miteinzubinden und mit automatischen Datenanalyse zu unterstützen.
Der Teil der automatischen Datenanalyse spielt in dieser Arbeit allerdings keine Rolle, daher
wird darauf nicht weiter eingegangen. Jedoch wird die Anwendung solcher Verfahren auch
nicht ausgeschlossen.

2.1.2 Visualisierung
Die Visualisierung besteht grundsätzlich aus zwei Gebieten [15] [12]:

Die Erstere, ist die wissenschaftliche Visualisierung. Sie beschäftigt sich, wie der Name schon
sagt, mit wissenschaftlichen Daten, die über Sensoren, Simulationen und Laborversuche
gewonnen werden. Diese Daten spannen oft zwei, drei oder mehr Dimensionen auf und
bestehen aus enormen Datensätzen. Um solche große und komplexe Datenmengen überhaupt
zu verstehen, benötigt man Darstellungsformen, die es erlauben die Daten in ihrer Bedeutung
so detailgetreu wie möglich zu erfassen. Die wichtigsten wissenschaftlichen Visualisierungen
sind Strömungsvisualisierung und Volumenrendering. Diese haben wiederum viele
Anwendungen zum Beispiel in der Medizin, der Geographie, der Meteorologie, der
Weltraumforschung und in industriellen Anwendungen. Formal kann man sagen, dass die
wissenschaftliche Visualisierung hauptsächlich bei kontinuierlichen Daten angewandt wird.

Die Zweite, ist die Informationsvisualisierung, sie beschäftigt sich mit diskreten Daten. Sie
versucht im Gegensatz zur wissenschaftlichen Visualisierung abstrakte Daten darzustellen,
die auch teilweise keinen Bezug zur physischen Welt haben. Beispiele sind virtuelle Daten
wie Aktien. Bei abstrakten Daten fehlt die Anlehnung an die reale Welt, vor allem räumliche
Informationen, daher müssen intuitive Wege gefunden werden die Daten verständlich zu
visualisieren.

Die Ziele der Visualisierung sind im Allgemeinen [16]:

• Explorative Analyse
Es existieren noch keine Hypothesen sondern nur die reinen Daten. Dabei wird durch
Interaktion mit der Visualisierung nach Mustern oder Begebenheiten gesucht. Diese
Informationen werden verwendet um eine Hypothese zu finden.

• Konfirmative Analyse
Hier existiert eine Hypothese bereits. Daher wird mit der Visualisierung zielgerichtet
versucht die Hypothese zu überprüfen. Hierbei kann das Ergebnis sein, dass die
Hypothese bestätigt oder verworfen wird.

• Präsentation
Die Aussagen und die Hypothesen liegen vor und sind bereits bestätigt. Die
Visualisierung soll hier die Fakten klar darstellen, so dass Außenstehende sie erkennen
können.

 Um die verschiedenen Ziele einer Visualisierung zu erfüllen, muss diese einigen
Qualitätsanforderungen gerecht werden [16]:

21 Grundlagen

• Expressivität
Die Datenmenge sollte möglichst unverfälscht dargestellt werden. Es soll kein falscher
Eindruck entstehen.

• Effektivität
Bei verschiedenen Möglichkeiten die Datenmenge darzustellen, unter Einhaltung des
Expressivitätskriterium, sollte die Wahl auf die Visualisierung fallen, die der
Zielgruppe und der Problemstellung am besten gerecht wird.

• Angemessenheit
Nicht nur die Technologiekosten sondern auch die Belastung des Benutzers muss
beachtet werden. Der Aufwand sollte dem Nutzen gerecht werden.

Der Prozess der aus Daten eine Visualisierung erstellt wird meist als eine Pipeline angegeben,
der sogenannten Visualisierungspipeline. [16]

Abbildung 1: Visualisierungspipeline [16]

 Die Visualisierungspipeline transformiert die Daten zu einem Bild. Die Rohdaten können aus
der realen Welt stammen und werden dann meist von Sensoren gewonnen. Im Gegensatz dazu
gibt es Simulationsdaten die auf mathematischen Modellen basieren. Diese bilden zwar meist
die reale Welt ab beziehen sich jedoch nicht auf reale Ereignisse. Eine weitere Datenquelle
sind Daten aus der digitalen Welt, dabei kann es sich um statistische Daten aus Datenbanken
oder Softwaresystemen handeln, aber auch realitätsnahe Daten aus sozialen Netzwerken [17].
Eyetracking für Bedienungsoberflächen kann hierbei als Hybridform zwischen Daten aus
Sensoren und Daten aus der digitalen Welt angesehen werden.

Rohdaten

Filtering

Visualisierungsdaten

Mapping

Renderbare Daten

Rendering

Daten

Prozess

Bild

Sensordaten, Simulationsdaten,
generierte Daten

Datenkonversion

Entfernung unerwünschter Werte

Interpolation fehlender Werte

Aufbereitete Daten

Abbildung in Geometrie

Abbildung in Farbe, Textur,
Form

Graphen, Volumen, Isoflächen

Shading, Beleuchtung

Geometrie, Bilder, Graphen

Interaktion

Interaktion

Interaktion

22 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Im Schritt Filtering werden die Daten vorverarbeitet. Das kann wie der Name schon sagt
bedeuten, dass Daten entfernt werden. Diese können entweder Werte sein, die durch schlechte
Umgebungsumstände verfälscht wurden oder Daten die für die weitere Untersuchung
irrelevant sind. Außerdem können Fehler auch korrigiert oder Werte geglättet werden.
Weiterhin werden die Daten bei diesem Schritt auch aufbereitet. Das heißt, es werden bei
kontinuierlichen Daten fehlende Werte interpoliert. Das Errechnen von markanten Stellen in
den Daten findet ebenfalls in der Aufbereitungsphase statt. Das können zum Beispiel
mathematische Extrema bei kontinuierlichen Daten sein oder Cluster bei diskreten Daten. In
diesem Schritt kann der Benutzer durch Interaktion die angewendeten Operationen
parametrisieren. Wichtig ist vor allem die Möglichkeit, die Daten nach gewissen Merkmalen
einzuschränken.

Das Mapping ist der entscheidende Schritt, bei dem die Visualisierung größtenteils entsteht.
Bei diesem Schritt werden die Visualisierungsdaten in visuell darstellbare Form gebracht. Das
sind meist geometrische Daten und ihre Attribute wie Farbe oder Textur. Die interaktive
Anpassung dieser Stufe erlaubt es, das Aussehen der Visualisierung grundlegend zu ändern.

Am Ende der Pipeline steht das Rendering. Hier entsteht aus den anzeigbaren Daten das
eigentliche Bild. Der Aufwand kann sehr unterschiedlich sein. So kann es zum Beispiel ein
tatsächliches Rendering von Dreiecken mit Shading und weiteren Effekten sein oder nur das
Plotten eines 2D-Graphen. Auch hier ist es dem Benutzer möglich den Prozess anzupassen.

Die verschiedenen Stufen mit Interaktion plus die Datenakquise erlauben verschiedene
Szenarien der interaktiven Visualisierung. Der Visualisierungsprozess kann keinerlei
Interaktion erlauben wodurch am Ende ein statisches Video oder Bild entsteht. Auf der
anderen Seite kann vollständige Interaktion über alle Schritte möglich sein und sogar die
Datenakquise zum Beispiel bei einer Simulation parametrisiert werden.

Die allgemeine Vorgehensweise von interaktiver Visualisierung bei Exploration von Daten
wird von Shneiderman folgendermaßen zusammengefasst: „Overview first, zoom and filter,
details on demand“ [18]. Daher sollte die Visualisierung als erstes eine gute Übersicht liefern.
Die Interaktion sollte Zoomen und Filtern der Daten ermöglichen und ein optionales
Anzeigen der Details. „Visual Analytics“ erweitert diese Idee noch.

2.1.3 „Visual Analytics“-Prozess
Der „Visual Analytics“-Prozess kombiniert visuelle mit automatischen Analysemethoden.
Abbildung 2 zeigt eine grobe Übersicht.

23 Grundlagen

Abbildung 2: Visual Analytics Prozess [14]

Wie auch bei der Visualisierungspipeline im Filtering-Schritt vorgesehen, müssen die Daten
oft transformiert werden bevor sie für visuelle oder andere Analyse verwendet werden
können. Dies geschieht im „Visual Analytics“-Prozess als erstes.

Nachdem die Daten vorbereitet wurden, muss beim „Visual Analytics“-Prozess entschieden
werden ob eine automatische Exploration oder eine manuelle stattfinden soll.

Im Falle einer automatischen Analyse werden Methoden aus dem Datamining angewendet,
um geeignete Modelle für die Daten zu finden. Die Modelle können dann selbst visualisiert
werden, um für bessere Ergebnisse angepasst und verfeinert zu werden. Dabei werden die
Modelle meist auf die Daten angewandt und visualisiert, so dass der Analyst ein besseres
Verständnis für die Modelle bekommt und sie auch gleich bewerten kann. In diesem Sinne
werden die Daten durch abwechselnde Anwendung von visuellen und automatischen
Methoden exploriert. So können auch irreführende Ergebnisse früh erkannt werden. Im
günstigsten Fall erhält der Analyst zum Schluss der Analyse die Ergebnisse der Analyse selbst
und ein Modell, um solche Daten zu analysieren.

Wenn der Analyst mit einer visuellen Analyse beginnt, wird er zuerst eine Hypothese
erstellen, die er später mit automatischen Methoden auf dem gesamten Datensatz bestätigen
kann. Hierfür werden Hilfsmittel benötigt, um die Daten interaktiv zu explorieren. Der
Analyst sollte dabei zumindest in der Lage sein die Daten zu filtern und innerhalb dieser zu
zoomen. Während der Exploration kann der Analyst ein Modell für die automatische Analyse
entwickeln.

Das „visual seeking mantra“ von Shneiderman kann somit folgendermaßen erweitert werden.
Bei sehr großen Datenmengen ist es schwierig bis unmöglich einen Überblick der Daten
anzuzeigen. Das führt dazu, dass der Analyst nicht weiß welche Daten er filtern soll oder auf
welche er zoomen könnte. Darum wurde folgende Änderung vorgeschlagen „Analyse first,
show the important, zoom/filter, analyse further, details on demand“ [12]. Das bedeutet,
zuerst müssen die Daten vorverarbeitet werden, dann erhält der Analyst einen Überblick mit
den wichtigsten Aspekten bevor er weiterarbeitet. Danach kann der Analyst die wichtigen
Daten entsprechend der oben genannten Vorgehensweise weiter explorieren.

24 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

2.2 Interaktion

Das folgende Kapitel gibt einen kurzen Einblick in die verschiedenen Entwicklungsabschnitte
der Benutzerschnittstellen und Computerinteraktion. Als erstes wird ein Überblick über
frühere Prinzipien der Benutzerschnittstellen und deren Entwicklung zu heutigen Prinzipien
gegeben. Danach folgt ein Abschnitt über die momentan aktuellen Benutzerschnittstellen, die
dem sogenannten WIMP-Paradigma folgen. Im Anschluss werden noch zwei sogenannte
post-WIMP Prinzipien angesprochen.

2.2.1 Entwicklung der Benutzerschnittstellen und der Computerinteraktion
Die Entwicklung der Mensch-Computer-Interaktion ist ausführlich in dem Buch „Mensch-
Computer-Interface: Zur Geschichte und Zukunft der Computerbedienung“ [19] beschrieben.
Einige Abschnitte der Entwicklung werden kurz beschrieben.

Der Anfang des Computerbooms wurde von großen Mainframes dominiert. Die Größe der
Hardware und der Preis für die Herstellung von Computern waren so enorm, dass eine
Nutzung von persönlichen Geräten undenkbar war. Anfangs wurden die Eingabe der Geräte
als bloße Einfuhr und Abfuhr von Daten und den zugehörigen Programmcode gesehen. Dies
resultierte direkt aus der Hardwarearchitektur von Neumanns, die eine Eingabe- und
Ausgabeschnittstelle besitzt und ein Speicher für den Instruktionscode.

Schon zu Anfang der Computerentwicklung hatte Vannevar Bush in seiner Arbeit „As We
May Think“ [20] die Vision einer Maschine (siehe Abbildung 3), die einen Wissenschaftler
bei der Wissensfindung und Verwaltung seiner Dokumente unterstützt. Die Maschine hieß
Memex (Memory Extender) und kann als eine der ersten Visionen der Personal Computer
(PC) gesehen werden.

Abbildung 3: Skizze des Memex [20]

Im späteren Verlauf dieser Mainframe-Ära entwickelten sich Terminal-Systeme. Diese
Terminals dienten der Eingabe an den Mainframes. Doch ersetzten sie nicht komplett die
Lochkarten, mit denen die Eingabe an den Großrechnern gemacht wurde. Die Rechenzeit der
Mainframes war nämlich teuer und die Nachfrage groß. Daher gab es einen Operator, der den
Mainframe bediente und andere Nutzer mussten diesem per Lochkarten die Eingabe und den
Programmcode geben. Nachdem der Ablauf des Programms beendet war, erhielten die Nutzer
die Ausgaben des Programms wieder. Gleichzeitig entwickelten sich verteilte Terminals, die
es dem Benutzer erlaubten einen Teil der Rechenzeit eines Großrechners zu nutzen. Aber
auch hier war die Rechenzeit an dem Großrechner sehr teuer. In diesem Sinne entwickelten
sich kleinere Computer, die ähnlich wie die Großrechner bedient werden konnten aber über
weit weniger Rechenzeit verfügten. Alle diese Terminals hatten die später als Character User
Interfaces (CUI) klassifizierten Benutzerschnittstellen. Mit diesen konnte ein Kommando über

25 Grundlagen

eine Tastatur, die ähnlich wie Schreibmaschinen ein QWERTY-Layout hatten, eingegeben
werden. Diese Kommandos werden ausgewertet und über ein Textdisplay ausgegeben.

Ein großer Durchbruch in Richtung der grafischen Benutzerschnittstellen gelang Ivan E.
Sutherland. Er führte das Zeichnen und Zeigen in die Benutzerschnittstelle von Computern
mit ein. Das Ergebnis seiner Arbeit ist das Sketchpad [21]. Es nutzte einen sogenannten
Lichtgriffel um Linien auf einen damals sehr neuen vektorbasierten Röhrenbildschirm zu
zeichnen.

Abbildung 4: Sutherland bei der Arbeit mit dem Lichtgriffel

Aus der Arbeit von Sutherland entwickelten sich daraus folgend Zeigegeräte. Das wichtigste
unter diesen ist die Maus. Sie ermöglicht es recht genau Punkte auf dem Bildschirm indirekt
anzufahren. Mit der Entwicklung der Maus, der Entwicklung von Rastergrafikdisplays und
einer stetig steigenden Rechenleistung der Computer entstanden allmählich, die später als
Graphical User Interface (GUI) bezeichneten, grafischen Benutzerschnittstellen. Die ersten
kommerziellen Systeme wurden von Xerox PARC eingeführt und der kommerzielle Erfolg
gelang Apple. Bei den grafischen Benutzeroberflächen haben sich mit der Zeit vier Konzepte
durchgesetzt. Die Eingabe des Systems wird durch den Zeiger (Pointer) der Maus realisiert.
Die Benutzeroberfläche wird durch Fenster (Windows) strukturiert. Es gibt Bilder (Icons), die
als Stellvertreter von Daten angezeigt werden. Die Auswahl einer Funktion ergibt sich durch
Menüs (Menus). Zusammengefasst wird das im WIMP-Prinzip. Die WIMP-
Benutzerschnittstellen haben sich inzwischen in den wichtigsten Betriebssystemen wie
Windows und Mac OS X vollständig durchgesetzt. Sie sind daher fester Bestandteil heutiger
Desktop-PCs.

Nebenbei entstand die Vision von Mark Weiser. In seiner Arbeit „The Computer for the 21st
Century“ [11] führt er in das „ubiquitous computing“ ein. Er argumentiert, dass Computer
unsichtbar sein sollten und Interaktionen mit ihnen natürlich aus der momentanen
Beschäftigung heraus geschehen sollten. Er beschreibt die nötigen Computer als günstige,
energiesparende Hardware, die vernetzt werden kann und praktische Displays besitzen.
Tatsächlich sind mit dem heutigen Stand der Technik einige seiner Vorschläge umsetzbar.

Mit dem Aufkommen von berührungsempfindlichen Smartphones und Tablet-PCs wurden
neue Arten von Benutzeroberflächen nötig. Mit diesen sollen alltägliche Arbeiten auf den
Geräten intuitiv und von unerfahrenen Benutzern durchgeführt werden können. Diese
Benutzerschnittstellen werden als Natural User Interface (NUI) bezeichnet. Die ersten
kommerziellen Erfolge wurden von Apple mit dem IPhone und dem IPad gemacht. Aber auch
Google und Microsoft versuchen mit ihren Systemen Apple zu folgen.

26 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

In der Wissenschaft und der Fiktion, z.B in dem Film Minority Report, tut sich eine weitere
neue Art von Benutzerinterface auf. Diese Benutzerinterfaces entfernen sich von der
Interaktion mit virtuellen Objekten wie es bei WIMP-Interfaces und NUIs der Fall ist. Hier
werden Objekte aus der realen Welt verwendet, um mit den Computern zu interagieren.
Theoretisch werden diese Benutzerschnittstellen schon einige Zeit behandelt, wie z.B. in der
Marbel Answering Machine von Durrel Bishop. Zum Einsatz kommen sie heutzutage in den
Tabletop-PCs, die solche Objekte beim Stellen auf die Oberfläche erkennen. Diese
Benutzerschnittstellen nennt man Tangible User Interface(TUI).

Abbildung 5: Ein Beispiel eines Tangible User Interface,
die Marbel Answering Machine

NUIs und TUIs werden oft als post-WIMP bezeichnet, da sie neue Interaktionstechniken
nutzen [22].

2.2.2 Windows, Icons, Menus and Pointers (WIMP)
Die WIMP-Benutzerschnittstellen sind vorherrschend bei heutigen Desktop-PCs. Ihr Prinzip
wird auch „Direct Manipulation“ genannt [22]. Die Benutzerschnittstellen werden wie ihr
Name sagt von den Komponenten Windows, Icons und Menus beherrscht. Ihre Eingabe ist
der Mauszeiger (Pointer), daher auch die Bezeichnung Direct Manipulation.

• Windows (Fenster)
Die Fenster der Benutzerschnittstelle organisieren die angezeigte Oberfläche. Ihr
Inhalt ist wie die Symbolik des Namens ausdrückt ein Fenster auf eine bestimmte
Anwendung oder Daten. Sie können sich meist überlagern und die meisten können frei
verschoben und skaliert werden.

• Icons
Die Icons sind grafische Darstellungen statt Text. Sie sind meist eine Repräsentation
von Daten oder Objekten. Manchmal sind sie mit Beschreibungstexten versehen. Sie
sind meist die Grundlage für Drag&Drop-Interaktionen in WIMP-
Benutzeroberflächen.

• Menus(Menüs)
Die Menüs sind meist aufklappbare Auswahlmenüs. Sie repräsentieren meist
Funktionen und führen diese beim Auswählen aus.

27 Grundlagen

• Pointer(Mauszeiger)
Der Mauszeiger ist das primäre Interaktionsmittel der Benutzerschnittstelle. Er wird
als Bild dargestellt und kann mit der Maus frei bewegt werden. Je nach Funktion die
der Zeiger hat oder dem Systemstatus, kann er unterschiedlich aussehen.

Viele der heutigen Anforderungen an die Benutzbarkeit einer Benutzerschnittstelle haben sich
aus den WIMP-Schnittstellen entwickelt. Ein Beispiel ist Fitts’s Law welches die benötigte
Zeit für eine Interaktion auf Basis der Geschwindigkeit des Zeigers, dem Abstand zum Ziel
und die Größe des Ziels abschätzt.

Abbildung 6: Windows 7 hat eine typische WIMP-Benutzerschnittstelle

2.2.3 Natural User Interfaces
Die Natural User Interfaces (NUIs) sollen es dem Benutzer ermöglichen Computer jeglicher
Art intuitiver zu bedienen. Das trifft vor allem auf Geräte zu, die im täglichen Leben
verwendet werden. Solche Geräte sollten schnell zu erlernen sein und ohne großes
Nachdenken eingesetzt werden können. Solche Geräte werden meist sehr häufig genutzt und
hin und wieder auch während eine andere Tätigkeit ausgeführt wird. Ein Beispiel sind
berührungsempfindliche Smartphones, diese sollen mindestens genauso schnell und einfach
bedient werden können wie es bei klassischen Mobiltelefonen der Fall ist. Weiterhin bieten
sie dem Anwender viele neue Möglichkeiten. Diese Möglichkeiten werden aber nur genutzt
wenn die Bedienung dort ebenfalls einfach und intuitiv ist.

In dem Buch „Brave NUI World“ [23] wird die Imitation der Realität nur als ein Teil des
Wortes natürlich gesehen. Hier wird der Begriff natürlich als Grundlage des Designs von
Benutzerschnittstellen gesehen. Der Benutzer soll bei diesen Benutzerschnittstellen das
Gefühl haben sie natürlich zu bedienen. Experten sollten das Gerät als Erweiterung ihres
eigenen Körpers sehen können und Laien sollten das Gefühl haben selbst Experten zu sein.
Das bedeutet, ein Experte sollte nicht durch aufdringliche Hilfen oder enge Benutzerführung
gestört werden. Der Laie sollte aber soweit unterstützt werden, dass er das Gerät ohne
Probleme bedienen kann. Weiter sollte sich die Bedienung für das Gerät natürlich anfühlen.
Es sollte nicht unnötig versucht werden die reale Welt nachzuahmen. Alle Bedienelemente
sollten den jeweiligen Kontext beachten und die richtigen Metaphern einsetzen. Zum Schluss
sollte nicht versucht werden vorhandene Paradigmen für Benutzerschnittstellen zu kopieren.
Denn diese sind meistens speziell für bestimmte Eingabegeräte, z.B. die Maus, optimiert.
Insgesamt soll keine natürliche Benutzerschnittstelle (natural user interface) entworfen

28 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

werden, sondern eine Benutzerschnittstelle, die dem Benutzer das Gefühl gibt ein Naturtalent
zu sein (natural user interface).

Ein Prinzip das beim Erstellen eines Natural User Interface beachtet werden sollte ist, dass der
Entwurf einfach aufgebaut werden sollte. Es sollen Möglichkeiten gesucht werden mit
einfachen Interaktionen schwierige Aufgaben zu unterstützen. Eine NUI sollte keine WIMP-
GUI mit neuen Interaktionsmöglichkeiten sein. Der Entwurf sollte auf dem Prinzip aufbauen,
wie ein erfahrener Anwender auf dem entsprechenden Gebiet vorgeht.

Um eine angenehme und natürliche Erfahrung aufzubauen, sollten die Interaktionen in einer
NUI immer dem aktuellen Kontext entsprechen. Wenn Funktionen oder Interaktionen nicht
dem Kontext entsprechen, verwirrt das den Benutzer und schmälert die positive Erfahrung mit
der Anwendung.

Die Natural User Interfaces können auch von mehreren Benutzern verwendet werden. Das
stimmt zwar nicht für Smartphones aber für Tabletop-PCs ist es durchaus denkbar. Für dieses
gemeinsame Nutzen gibt es verschiedene Ebenen der Zusammenarbeit.

• Starke Zusammenarbeit („highly coupled tasks“)
Mehrere Benutzer arbeiten gleichzeitig an derselben Aufgabe und helfen sich dabei
Gegenseitig.

• Leichte Zusammenarbeit („lightly coupled tasks“)
Mehrere Benutzer arbeiten an der gleichen Aufgabe. Es gibt aber keine Interaktion der
zwischen ihnen. „Divide and Conquer“ könnte hier eingeordnet werden.

• Getrennte Aufgaben („uncoupled tasks“)
Mehrere Benutzer arbeiten auf der gleichen Arbeitsfläche, aber sie bearbeiten
unterschiedliche Aufgaben.

Das nahtlosen Feedback ist eine wichtige Eigenschaft für NUIs. Wenn die
Benutzerschnittstelle offensichtliche Diskontinuitäten hat, irritiert es den Benutzer im besten
Fall. Das führt dazu, dass der Benutzer die Lust verliert, das System zu verwenden. Im
schlimmeren Fall führt es zur Unterbrechung des Interaktionsablaufs und zur Fehlbedienung
des Systems.

Eine Erwartung an NUIs ist meist, dass sich die Bedienung wie Magie anfühlen sollte. Damit
ist meist gemeint, dass komplexe Funktionen mit einfachen und intuitiven Interaktionen
umgesetzt werden können. Dadurch wird der Benutzer positiv überrascht und denkt sich „Das
geht so einfach?!“.

Der Begriff der NUIs wird häufig auf berührungsempfindliche Systeme angewandt, da diese
sich momentan großer Beliebtheit erfreuen und im Vergleich zur Maus und Tastatur eine
grundsätzlich verschiedene Art der Interaktion darstellen. Doch „Brave NUI World“ [23]
behauptet, dass ihre Entwurfsideen genauso auf andere Eingabegeräte angewendet werden
können.

2.2.4 Tangible User Interfaces
Die Tangible User Interfaces(TUI) sind Benutzerschnittstellen, die es dem Benutzer
ermöglichen mit Objekten aus der realen Welt mit dem Computer zu interagieren. Diese
Objekte werden meist Tangible genannt. Der Begriff kommt von dem lateinischen Wort
„tangere“ und bedeutet berühren oder anfassen. Die Tangibles repräsentieren digitale Daten
oder Funktionen. Die Manipulation der Tangibles bewirkt daher eine Manipulation der
digitalen Daten.

29 Grundlagen

Ishii et al. [24] beschreiben einige Prinzipien für TUIs.

Abbildung 7: TUIs führen weg von der Bedienung des Computers mit Maus und Tastatur.
Alle Elemente des Raums dienen zur Interaktion. [24]

Die Arbeit definiert TUIs folgendermaßen: “TUIs will augment the real physical world by
coupling digital information to everyday physical objects and environments.” [24]. Das heißt:
die reale Welt wird erweitert, in dem digitale Informationen mit physikalischen Objekten und
Umgebungen gekoppelt werden (siehe Abbildung 7). Die grundsätzlichen Ideen um das
umzusetzen sind dabei:

• „Interactive Surfaces“
Jede Oberfläche in der realen Welt soll zu einer aktiven Schnittstelle zwischen der
realen und der virtuellen Welt werden.

• „Coupling of Bits and Atoms“
Jedes reale Objekt soll mit digitalen Objekten gekoppelt werden können.

• „Ambient Media“
Schall, Licht, Luftströmungen und Wasserbewegung sollen als
Hintergrundschnittstellen dienen.

Das Ziel wird folgendermaßen zusammengefasst: Jede Art von Materie, flüssige oder feste,
soll zu Schnittstellen zwischen der virtuellen und der physikalischen Welt werden.

Eine der ersten Visionen zu den Tangible User Interfaces ist die Marble Answering Machine.
Hier wird jeder Anruf symbolisch in einer Murmel gespeichert. Wenn ein Anruf ankommt
rollt die Murmel aus dem Gerät. Wird die Murmel in eine bestimmte Kuhle gelegt wird der
Anruf abgespielt. Wird die Murmel in das Gerät zurückgelegt wird der Anruf gelöscht.

Neben der Marble Answering Machine haben auch Ullmer et al. [25] eine Vision für ein
Tangible User Interface. Dabei können mit Tangibles Daten physikalisch zwischen Geräten
ausgetauscht werden. Jedes Gerät besitzt einen Slot, in den ein sogenannter MediaBlock
eingelegt werden kann. Dann kann über das Display Daten an den MediaBlock übertragen
werden. Dieser MediaBlock kann die Daten dann an einem anderen Gerät wieder ausgeben.
Weiterhin existieren Geräte, die Daten von mehreren MediaBlocks manipulieren können. Die
Daten des Systems sind digitale Medien wie z.B. Bilder und Videos. (siehe Abbildung 8)

30 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 8: Oben: Ein Slot eines MediaBlocks auf den Bilder übertragen werden.
Unten: Ein MediaSequenzer, um Medien zu bearbeiten. [25]

Eine kommerziell genutztes TUI ist der ReacTable [26]. Er ist ein digitales Musikinstrument.
Er basiert auf einem Tabletop-PC, der hauptsächlich mit tangibles bedient wird. Jedes
tangible ist entweder eine Datenquelle für Geräusche oder eine Operation, die eine
Geräuschquelle verändert. Die tangibles interagieren, indem sie in der Nähe voneinander auf
dem Tabletop-PC platziert werden.

Abbildung 9: Benutzer beim Musikmachen mit dem ReacTable.
(Interaktion mit Tangibles) [26]

2.3 Tabletops

Ein „Tabletop-Computer“ ist, wie der Name sagt, ein Computer, der in einen Tisch
eingebettet wurde. Die Tischfläche ist größtenteils eine Anzeige, kann aber auch eine
Ablagefläche am Rand haben. Die Anzeige kann, entweder durch ein Display, durch
Rückprojektion oder über ein „overhead“-Projektor umgesetzt sein. Die Eingabe erfolgt fast
immer über ein „multitouch-panel“. Das ermöglicht dem Benutzer die Eingabe durch

31 Grundlagen

Berührung und taktile Gesten. Bei manchen Techniken ist es außerdem möglich mit Tags
versehene Objekte also tangibles zu erkennen.

Das Kapitel beschreibt als erstes einige Techniken für Eingabehardware, die bei Tabletops
eingesetzt wird. Danach werden einige existierende Hardwarekonfigurationen und ihre
Software aufgezählt.

2.3.1 Eingabetechniken für Tabletops
Für multitouch-Eingabe gibt es viele verschiedene Verfahren. Unterteilt werden können sie in
resistive, kapazitive, auditive und optische Verfahren. Einen Überblick über die Verfahren
geben Chang et al. [27] und Brandl et al. [28].

Resistiv
Ein resistiver Touchscreen nutzt zwei elektrisch leitende Schichten, zwischen denen bei einer
Berührung ein leitender Kontakt hergestellt wird. Die Schichten bestehen aus
Indiumzinnoxid, einem lichtdurchlässigen Halbleiter. Zwischen den beiden Schichten ist ein
Abstandshalter, der eine Berührung ohne Nutzereinwirkung verhindert. Bei diesen handelt es
sich oft um kleine Silikonpunkte. An der Oberfläche muss sich eine flexible Schicht befinden
damit eine Krafteinwirkung auf die leitenden Schichten möglich ist. Die Oberflächenschicht
besteht oft aus Polyester, was zwar flexibel ist, aber auch anfällig für Beschädigungen.

Der Berührungspunkt wird durch Messen der Spannung an den Rändern ermittelt. Wenn an
die obere Schicht eine Spannung angelegt wird und durch Berührung mit der unteren
verbunden wird, lässt sich an deren Rändern zwei Spannungen messen. Diese geben durch
den Spannungsverlust Aufschluss wo sich der Berührungspunkt befindet.

Resistive Touchscreens lassen sich recht günstig herstellen und kommen daher in vielen
einfachen Anwendungen zum Einsatz. Allerdings benötigt man industrielle
Fertigungsmethoden und sie sind daher nicht für den Eigenbau geeignet. Ihre Genauigkeit ist
gut, nur benötigt Multitouch-Erkennung komplexere Hardware.

Kapazitiv
Bei kapazitiven Touchscreens gibt es zwei grundsätzliche Techniken. Die Techniken nutzen
entweder Oberflächenkapazität oder projizierte Kapazität.

Beim Oberflächenkapazitätsverfahren wird eine gleichmäßige elektrische Ladung auf einer
durchsichtigen leitenden Fläche, zum Beispiel Indiumzinnoxid, erzeugt (siehe Abbildung 10).
Da menschliche Finger kapazitive Eigenschaften besitzen, daher eine Ladung speichern
können, bewirkt das berühren des Displays mit den Fingern einen schwachen elektrischen
Fluss. Der Strom wird dabei aus den Ecken der Fläche abgezogen. Dies wird von Sensoren,
die in den Ecken positioniert sind gemessen. Die Stärke des Stroms gibt Auskunft wie weit
der Berührpunkt von den Ecken entfernt ist. Mit Hilfe eines Mikrocontrollers wird zum
Schluss ausgerechnet wo sich der Berührpunkt genau befindet. Auf diese Weise lässt sich eine
sehr hohe Genauigkeit beim Erkennen der Position erreichen.

32 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 10: Skizze zum
Oberflächenkapazitätsverfahren [28]

Das „projizierte Kapazität“-Verfahren funktioniert mit sehr dünnen Kabeln, die als Netz in
einer Schicht des Displays verlegt werden.(siehe Abbildung 11) Die Kabel in eine Richtung
dienen als Sender eines Signals. Die anderen Kabel dienen als Empfänger. Wenn ein Finger
nun das Display berührt verändert das die elektrischen Eigenschaften des empfangenen
Signals. Dies geschieht durch die Kapazität die durch den Finger erzeugt wird, wenn er das
Display berührt. Durch die Art des Signals und Position im Netz in der es empfangen wurde,
kann die Position des Berührpunkts ermittelt werden. Dieses Verfahren hat eine ähnliche
Genauigkeit wie das Oberflächenkapazitätsverfahren. Das Netz der Kabel kann so gebaut
werden, dass es beinahe unsichtbar ist. Daher bietet das „projizierte Kapazität“-Verfahren
eine höhere Transparenz als die bisher vorgestellten Verfahren. Außerdem kann bei diesem
Verfahren eine dickere Schutzschicht eingesetzt werden ohne dass die Genauigkeit
beeinträchtigt wird. Ein erheblicher Nachteil des Verfahrens sind die hohen
Produktionskosten.

Abbildung 11: Skizze zum
Verfahren der „Projizierte Kapazität“ [28]

33 Grundlagen

Allgemein sind kapazitive Verfahren teurer und benötigen industrielle Herstellungsmethoden.
Ihre Genauigkeit ist akzeptabel vor allem bei Fingereingabe und sie können sehr resistent
gebaut werden. Multitouch-Erkennung ist zudem sehr einfach möglich.

Oberflächenwellen
Das Oberflächenwellen-Verfahren oder Surface Wave (SAW) in Englisch basiert auf
Schallwellen. Auf einer Oberfläche werden vertikal und horizontal Ultraschallwellen erzeugt
und an den Rändern wieder gemessen. Wenn ein Finger oder Objekt auf die Oberfläche
kommt, verändert sich die Wellenstruktur und lässt Rückschlüsse auf die Position des
Berührpunkts zu.

Das Verfahren ist sehr nützlich für öffentliche Nutzung, da es günstige und recht resistente
Hardware nutzt. Die meisten Verfahren unterstützen Dualtouch. Die Genauigkeit ist eher
schlecht.

Frustrated Total Internal Reflection (FTIR)
FTIR ist ein optisches Verfahren. Es basiert auf einem Konzept, das von Han [29] [30]
vorgestellt wurde. Es basiert, wie der Name schon sagt, auf dem physikalischen Prinzip der
inneren totalen Reflexion. Es besagt, dass elektromagnetische Wellen innerhalb eines
Materials total reflektiert werden, wenn das Material einen höheren Brechungsindex hat als
die Umgebung und die Auftreffwinkel genügend klein sind. Der übliche Aufbau einer FTIR-
Umgebung ist daher eine Plexiglasscheibe an deren Seiten Infrarot-LEDs angeordnet sind. Da
Plexiglas einen höheren Index hat und das Infrarotlicht sehr flach auf die Flächen der Scheibe
treffen, werden sie total reflektiert. Wenn ein Benutzer die Scheibe berührt, ändert sich der
Brechungsindex der Umgebung und das Infrarotlicht verlässt die Scheibe und wird stattdessen
an dem Finger reflektiert. Unter der Scheibe befindet sich eine Kamera, die das vom Finger
reflektierte Licht detektiert. Die Kamera kann so alle Berührpunkte auf der Scheibe sehen.
Um störendes Umgebungslicht auszublenden, hat die Kamera in der Regel noch einen Filter,
der nur Infrarotlicht durchlässt. So hat die Kamera ein Bild auf dem nur die Berührpunkte zu
sehen sind. Dieses Bild wird mit Bilderkennungsmethoden analysiert und die Position der
Berührpunkte berechnet. Um ein Bild auf der Scheibe anzuzeigen hat sie an der Oberfläche
noch eine Projektionsfläche auf die ein Beamer von unter der Scheibe ein Bild projizieren
kann.

Abbildung 12: Darstellung von FTIR [28]

34 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Mit dieser Technik lässt sich mit einfachen Methoden eine rückprojizierte interaktive
Oberfläche erstellen. Wenn das System gut kalibriert ist, hat das Verfahren eine hohe
Genauigkeit. Das Verfahren unterstützt zudem beliebiges Multitouch und wird grundsätzlich
nur durch die Bilderkennung begrenzt. Das Erkennen von „tagged objects“ ist leider nicht
möglich, da die Oberfläche und Farbe eines Objekts nicht erkannt wird. Starkes infrarotes
Umgebungslicht kann die Erkennung stören.

Diffuse Illumination (DI)
Der Aufbau des Systems ist bei diesem Verfahren ähnlich wie bei FTIR. Hier wird die
Plexiglasscheibe jedoch von unten mit Infrarotlicht angestrahlt. Daher ist nicht nur die
Scheibe mit Infrarotlicht durchsetzt, sondern das Licht geht über die Scheibe hinaus. Die
Kamera nimmt wieder das reflektierte Infrarotlicht auf. Im Gegensatz zu FTIR kann man so
schon Objekte detektieren, die noch gar nicht die Scheibe berühren. Außerdem wird auch die
Oberfläche der Objekte sichtbar. So können zum Beispiel Markierungstags auf flachen
Oberflächen erkannt werden.

Abbildung 13: Darstellung zu DI [28]

Zum Schutz kann über das Display zusätzlich noch eine transparente Schutzschicht montiert
werden. Die Detektion wird dadurch nicht gestört. Wie FTIR unterstützt DI eine mehr oder
weniger unbegrenzte Anzahl an Berührungspunkten. Die Erkennung ist je nach Kalibrierung
und Bilderkennungsalgorithmus sehr genau. Starkes Infrarotlicht in der Umgebung kann auch
hier die Erkennung beeinträchtigen.

Diffused Surface Illumination (DSI)
DSI ist eine Erweiterung von FTIR. Bei dem Verfahren wird die Ausstrahlung des Lichts aus
der Scheibe hinaus verbessert. Dadurch wird es möglich Objekte, die nicht die Scheibe
berühren, zu erkennen. Der Aufbau ist prinzipiell der gleiche wie bei FTIR nur wird bei dieser
Technik eine spezielle Plexiglasscheibe verwendet. Die Scheibe enthält kleine Teilchen, die
wie kleine Spiegel wirken und einfallendes Licht gleichmäßig über die Oberfläche der
Scheibe verteilen. Der Markenname einer solchen Scheibe ist „Plexiglass Endlighten“.

35 Grundlagen

Abbildung 14: Darstellung zu DSI [28]

Damit ist es möglich „tagged objects“ zu erkennen. FTIR Aufbauten lassen sich relativ leicht
zu DSI umbauen. Ein Nachteil ist, dass DSI weniger Kontrast liefert als DI, da Licht auch in
Richtung der Kamera reflektiert wird. Aus diesem Grund stellt infrarotes Umgebungslicht
auch ein größeres Problem dar, als bei den anderen Verfahren.

Microsoft PixelSense
Microsoft PixelSense gehört zu den in LCDs integrierten Berührungserkennungssystemen.
Die Tatsache, die bei diesen Verfahren ausgenutzt wird ist, dass das infrarote Licht beinahe
ungehindert die LCD-Schichten durchdringen kann. (siehe Abbildung 15)

Abbildung 15: Darstellung der Pixelsense Hardware [8]

Unter der LCD-Schicht befindet sich zusätzlich zu der Hintergrundbeleuchtung eine Matrix
aus Infrarot-LEDs. Diese strahlen Infrarotlicht durch die LCD-Schicht nach außen. Das
Infrarotlicht wird durch Finger oder andere Gegenstände auf oder über der Oberfläche
reflektiert. Das zurückgeworfene Infrarotlicht wird innerhalb der LCD-Schicht bei jeder
Pixeleinheit detektiert. Dadurch kann wiederum ein Bild von den reflektierenden Objekten

36 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

auf der Oberfläche erstellt werden. Ähnlich wie bei den anderen optischen Verfahren dient
dieses Bild über „Visual Computing“-Verfahren zur Erkennung der Berührpunkte oder
anderer Objekte.

2.3.2 Technologiebeispiele
Dieses Kapitel beschäftigt sich mit existierender Tabletop-Hardwarekonfigurationen, die
einige der im vorherigen Kapitel genannten Techniken nutzten.

Microsoft Surface 1 (Codename Milan)
Die Entwicklung des Microsoft Surface 1 begann 2001 in der Konzeptphase. Im Jahr 2003
wurde die Idee dem Vorstand vorgestellt und das Entwicklerteam vergrößert. Daraufhin
wurden einige Prototypen und Softwareprojekte entwickelt. Die Veröffentlichung des fertigen
Surface 1 ist im Jahr 2007.

Der Surface 1 [8] basiert auf der DI-Technik und kann daher beliebig viele Berührpunkte und
tangibles mit Hilfe von „Tags“ erkennen. Microsoft hat dafür zwei Arten von Tags entwickelt.
Die Byte-Tags sind 256 Tags deren Position und Ausrichtung erkannt werden kann. Die
zweite Art von Tags sind die Identity-Tags, die QR-Codes ähneln und 128 Bits an Daten
enthalten. Sie können ebenfalls in der Ausrichtung erkannt werden. Die Tags basieren auf
dem Prinzip der „fiducials“, also Markierungen, die von optischen Systemen erkannt werden
können.

Der Surface 1 nutzt das Microsoft Surface SDK 1 [31] als Framework. Es bietet die
Erkennung von einfachen Gesten und hat Interaktionselemente für
Mehrbenutzerunterstützung. Die Benutzerschnittstelle ist nach Entwurfskonzepten für NUIs
entwickelt worden. Daher können mit dem SDK vornehmlich NUI-Anwendungen umgesetzt
werden.

Microsoft Pixelsense (vorher Microsoft Surface 2)
Als Nachfolger des Microsoft Surface 1 wurde der Samsung SUR40 entwickelt. Der mit dem
Microsoft Surface SDK 2 betrieben wird.

Der Samsung SUR40 [8] ist im Gegensatz zum Surface 1 ein etwas dickeres LCD-Display
mit Rahmen. Dies ist mit der „Microsoft Pixelsense“-Technik möglich. Dadurch kann der
SUR40 mit den entsprechenden Beinen als Tisch verwendet werden, aber auch senkrecht an
einer Wand befestigt werden. Das macht seine Verwendung sehr viel flexibler als es bei dem
Vorgänger der Fall war.

Das Surface SDK 2 [32] wurde mit dem .NET Framework 4 kompatibel gemacht und
unterstützt somit auch die Einbindung des Touch-Frameworks von Windows 7. Das
erleichtert eine gemeinsame Entwicklung mit Tablets erheblich. In der Funktionalität ist die
Version 2 des Surface SDKs dem Vorgänger ebenbürtig. In der aktuellen Version fehlt leider
eine Umsetzung der Identity-Tags.

RaecTable Tisch [33]
Der ReacTable ist ein digitales Musikinstrument. In diesem Projekt wurde ebenfalls ein
Tabletop entwickelt um mit Tangibles Musik zu generieren. Die Hardware des reactable
basiert auf DI. Zur Erkennung der Tangibles und Berührpunkten wurde ein eigenes
Framework mit dem Namen „reacTIVision“ entwickelt. Die Tangibles funktionieren hier
ebenfalls mit „fiducials“, die ebenfalls speziell für das Projekt entwickelt wurden. Sie haben
den Namen „amoeba“ und sind hierarchisch aufgebaute Punktkarten.

37 Grundlagen

2.4 Powerwalls

Mit Powerwalls sind meist hochauflösende große Displays gemeint. In diesem Kapitel werden
einige Hardwarekonfigurationen und Anwendungsbereiche für diese Displays vorgestellt [6].

2.4.1 Hardwarekonfigurationen
Es gibt verschieden Arten von Hardware mit denen großflächige Displays aufgebaut werden
können. Im Folgenden werden die Aufbauten „Tiled LCD Panels“, „Projector Arrays“ und
„Stereoscopic Displays“ vorgestellt [6].

Tiled LCD Panels
Die Tiled LCD Panels sind mehrere LCDs, die zu in einer Matrix nebeneinander angeordnet
werden. Sie können entweder senkrecht an einer Wand angeordnet werden, was der Idee einer
Powerwall entspricht. Oder die LCDs werden waagerecht angeordnet und ähnlich einem
Tisch aufgestellt. Diese Methode hat verschiedene Vorteile. Sie können einfacher ausgerichtet
werden als z.B. Projektoren. Sie sind günstig zu beschaffen. Die LCDs brauchen nicht viel
Platz im Gegensatz zu einem Aufbau mit Rückprojektion. Der hauptsächliche Nachteil der
Technik sind die Ränder der LCDs. Das wird bei Textdarstellung problematisch, da der Text
an den Rändern geteilt wird.

Abbildung 16: Beispiel für Tiled LCD Panels [34]
Links: Die lambdaVision
Rechts: Der lambdaTable

Projector Arrays
Die Projektor Arrays sind Anordnungen von LCD oder CRT Projektoren. Sie sind meist sehr
teuer in der Anschaffung und auch die Instandhaltung ist teuer, da die Lampen der
Projektoren nach einiger Zeit ausgetauscht werden müssen. Sie sind aber dennoch beliebt, da
sie keine Ränder im Bild haben wie die LCDs. Die Projektoren können so angeordnet werden,
dass eine leichte Überlappung der Bilder entsteht. Wenn dann an den Rändern der Bilder die
Helligkeit nach außen hin abfällt, kann ein beinahe nahtloses Bild entstehen. Weiterhin ist bei
der Abbildung der Projektoren die Größe des Bildes nicht an die Größe des Geräts gebunden.
Die Größe des Bildes kann durch den Abstand des Projektors zur Projektionsfläche eingestellt
werden. So können einfach sehr große Bilder erzeugt werden. Der Nachteil dabei ist jedoch,
dass dieser Abstand Platz benötigt.

38 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 17: Aufbau der Powerwall im VISUS-Labor mit einem Projektor Array [35]

Stereoscopic Displays
Stereoskopische Displays zeigen dem Betrachter ein 3D-Bild an. Das 3D-Bild wird durch
zwei Pixel an der gleichen Position generiert. Dabei ist ein Pixel für das linke Auge und ein
Pixel für das rechte Auge. Meistens benötigen diese Displays spezielle Brillen für den
Benutzer, die die beiden Pixel für das linke und rechte Auge trennen. Inzwischen gibt es aber
auch Entwicklungen zu autostereoskopischen Displays, die keine Brillen benötigen.
Stereoskopische Ansätze gibt es sowohl für LCDs als auch für Projektoren.

Abbildung 18: Beispiel eines autostereoskopischen Displays(The Varrier) [36]

2.4.2 Anwendungsgebiete
Für die großen hochaufgelösten Displays gibt es einige Anwendungen. Schmidt et al. [6]
stellen einige dieser Anwendungsgebiete vor.

• Command and Control
In einigen Kommandozentralen und Koordinationsstellen von Militär, Flugsicherheit
oder Telekommunikation sind heutzutage Powerwalls eingebaut. Das Air Force
Research Laboratory entwickelte die „Interactive DataWall“. Sie ist ein großes
hochauflösendes Display mit drahtlosen Interaktionsgeräten. Damit sollte die
Entscheidungsfindung in Gefechtssituationen unterstützt werden.

39 Grundlagen

• Vehicle Design
Um Modelle von Fahrzeugen im 1:1 Maßstab darzustellen kann bei dem Entwurf von
Fahrzeugen auf die Größe von Powerwalls zurückgegriffen werden. Gleichzeitig kann
im Team an den Modellen gearbeitet werden. Nach dem Entwurf können in VR-
Umgebungen Konstruktionen simuliert und die Fahreigenschaften getestet werden.

• Geospatial Imagery and Video
Große hochauflösende Displays bieten ein Gefühl für den Maßstab, der bei
geographischen Darstellungen und Videos benötigt wird. Große Displays ermöglichen
das Entdecken von kritischen Informationen unter anderem bei dynamischen
Systemen, wie z.B. subtile Wirbel bei Ozeanzirkulationsmodellen.

• Scientific Visualization
Powerwalls sind eine der beliebtesten Möglichkeiten für wissenschaftliche
Visualisierungen, denn sie bieten eine Anzeige von Daten in Lebensgröße oder
menschenähnlicher Größenmaßstäbe. Außerdem können mit der größeren Menge an
Pixeln viele Daten gleichzeitig betrachtet werden.

• Collaboration
Für das Arbeiten in Gruppen oder Teams eignen sich große Displays ebenfalls sehr.
Sie können für die Präsentation oder bei einem gegenseitigen Austausch wie einer
Diskussion eingesetzt werden. An der Universität Konstanz wurde hierzu
beispielsweise eine Powerwall entwickelt, die mit Laserpointer bedient werden kann.

• Public Information Displays
Wo einst gedruckte Bilder und oder einfache digitale Bilder zu sehen waren, werden
heutzutage Tiled Displays eingesetzt. Dies wird durch die Entwicklungen bei den
Flachbildschirmen und Projektoren ermöglicht, welche sehr viel günstiger geworden
sind. Ebenfalls sind die Displays nicht mehr auf flache Werbetafeln beschränkt,
beinahe jede Oberfläche kann für die Darstellung von Bildern und Informationen
verwendet werden.

40 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

41 Verwandte Arbeiten

3 Verwandte Arbeiten

In diesem Kapitel werden verwandte Arbeiten beschrieben. Das schließt Arbeiten zu
multimodalen Interaktionsframeworks ein, sowie fertige multimodale
Interaktionsumgebungen und Anwendungen auf Tabletops.

3.1 Multimodale Interaktionsframeworks

Das Squidy-Framework [37] ist eine Sammlung von Frameworks und Toolkits für die
Erstellung von multimodalen Umgebungen nach der Idee von NUIs. Dabei wird das
Augenmerk hauptsächlich auf neuere Eingabegeräte gelegt, wie Multitouch-Displays, Wii-
Controller und ähnliche. Im Gegensatz zu klassischen Oberflächen gibt es aktuell in den
Entwicklungswerkzeugen keine Unterstützung für die Erstellung von NUIs. Darum ist der
wichtigste Bestandteil von Squidy ein grafisches Tool zur Erstellung von solchen Systemen.
Das grafische Tool baut eine Architektur nach dem Prinzip von Pipes&Filters auf.
Grundsätzlich stellt es den Datenfluss zwischen Eingabe und Ausgabe dar. Dazwischen
können Filter eingesetzt werden um z.B. die Eingabe zu verbessern. Die Ausgabe kann alle
möglichen Formen annehmen. Es können Aktoren wie Elektromotoren oder LEDs angesteuert
werden. Außerdem können Signale oder Nachrichten in verschiedenen Protokollen und
Standards als Ausgabe versendet werden. Dadurch lassen sich andere Anwendungen
anbinden. Zusammengesetzt werden die entsprechend Pipes&Filters in einem Graph, wobei
Eingabeknoten Startknoten bzw. Quellen sind und Ausgabeknoten Endknoten bzw. Senken
sind. Die Filterknoten können dazwischen angeordnet werden. Squidy besitzt bereits zu
Beginn einige Eingabe-, Filter- und Ausgabeknoten in seiner Knowledgebase. Diese kann um
weiter Knoten erweitert werden. Die Knoten können entweder als Plugin eingebunden werden
oder über das grafische Tool aus bestehenden Knoten erstellt werden. Squidy hat keine
Unterstützung für den Datenaustausch zwischen den Geräten oder Darstellung auf den
Geräten, das Framework ist allein für die Interaktion zuständig.

Abbildung 19: Eine Pipeline im Squidy-Tool

Shared Substance [38] geht in eine andere Richtung. Hier wird versucht ein datenorientiertes
Framework zu bauen, das seine Ressourcen über mehrere Geräte freigeben kann. Bei den
Ressourcen, die in der Umgebung freigegeben werden können, handelt es sich um
Interaktionselement, wie z.B den Mauszeiger, oder ganze Displays. Weiterhin können Daten,
wie Benutzerinhalte, freigegeben werden. Außerdem bietet das Framework auch die
Möglichkeit ganze Anwendungen und deren Funktionalität zwischen den verschiedenen

42 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Geräten zu teilen. Das Framework ist nach dem Paradigma der Datenorientierung entworfen
und nützt beim Prototyp die Programmiersprache Python, da sie Meta-Programmierung
unterstützt. Shared Substance hat ein sehr umfangreiches Konzept für das Teilen von
Anwendungen und Daten. Die Möglichkeit private und öffentliche Bereiche zu nutzen wird
aber nicht angesprochen.

3.2 Multimodale Interaktionsumgebung

Das Projekt ZOIL [39] ist ein Prototyp für eine multimodale Interaktionsumgebung für
Powerwalls, Tabletops und anderen Geräten. Das Projekt baut auf einer objektorientierten
Benutzeroberfläche auf. Die Objekte sind sowohl für die Daten zuständig, als auch für die
Elemente, die diese anzeigen. ZOIL verfolgt dabei das Ziel einen breiten Bereich des Personal
Information Management umzusetzen. Dabei versucht das Projekt neue Paradigmen für
Benutzerschnittstellen im Bereich des Personal Information Managements zu finden. ZOIL
unterstützt zwar Mehrbenutzerbetrieb, legt aber keinen gesonderten Blickpunkt auf ein
Mehrbenutzersystem. In ZOIL wird in diesem Hinblick hauptsächlich auf Mehrgerätesysteme
gesetzt. Bei der Bedienung sticht ZOIL vor allem bei der großen desktopartigen Fläche
heraus. Diese hat nämlich die Fähigkeit semantisch gezoomt zu werden. Dadurch können im
Überblick unnötige Details ausgeblendet werden und bei der Detailansicht ist alles zu sehen.
Auch Tangibles finden in dem Projekt eine Anwendung. Es wird eine Art virtuelle Linse mit
einem durchsichtigen Rahmen als Tangible verwendet. Diese erlaubt es Teile der Ansicht zu
zoomen. Die gezeigten Anwendungen des Prototyps sind hauptsächlich für Medien wie
Videos und Musik.

Im Projekt Code Space [40] von Microsoft Research wird eine Powerwall mit
Gestenerkennung für die Besprechung von Codeanalysen verwendet. Mithilfe von
Mobilgeräten und Presentern können die Entwickler dargestellte Elemente auf der Powerwall
mit einer Zeigegeste markieren und verändern. Ebenfalls können mit Berührungen Elemente
auf der Powerwall manipuliert werden. Das Projekt zeigt die Anwendung einer Kombination
von Berührungs- und Freihandgesten. Die Arbeit zeigt, dass die Anwendung des Projekts
sowohl hilfreich für die Entwickler ist, als auch akzeptabel in ihrem sozialen Charakter.

Das Fraunhofer Institut für Optronik, Systemtechnik und Bildauswertung ist mit dem
SmartControlRoom [41] dabei, einen „aufmerksamen und mitdenkenden“ Raum zu
entwickeln. Dieser soll als Krisenzentrum bei Großschadenslagen eingesetzt werden können.
Der Raum hat eine Powerwall und ist rundherum mit Videokameras und Mikrofonen
ausgestattet. Er soll auf die Menschen im Raum reagieren. Die Powerwall zeigt Informationen
zur Lage und kann mit Gesten oder Sprache gesteuert werden. Der Raum kann ebenso bei der
Planung von Großveranstaltungen, bei terroristischer Bedrohung oder dem Schutz kritischer
Infrastrukturen eingesetzt werden. Dieses Projekt setzt auf freie Interaktion ohne
Eingabegeräte oder anderen Objekten wie Tangibles.

In dem Projekt Roomware [42] wird versucht ein Raum nach dem Prinzip des „ubiquitous
computing“ [11] aufzubauen. Dabei wird Informationstechnologie in Komponenten des
Raums integriert, wie z.B. Tische, Stühle, Wände. Die Ausprägungen sind die bekannten
Powerwalls und Tabletops. Das Ziel ist, dass die „Welt um uns“ zur Schnittstelle mit der
virtuellen Welt wird.

43 Verwandte Arbeiten

Abbildung 20: Links ist ein Auschnitt der ZOIL-Ober fläche zu sehen.
Rechts sieht man die multimodale Interaktionsumgebung von Roomware.

3.3 Tabletop-Anwendungen

Der ReacTable [26] ist ein elektronisches Musikinstrument mit einem Tangible User
Interface. Die einzelnen Tangibles sind physisch Acrylscheiben oder -würfel. Die Tangibles
repräsentieren entweder Steuerelemente oder Datenelemente. Jedes Tangible, das auf den
Tisch gelegt wird, bekommt ein Interaktionsfeld und baut eine Verbindung zu anliegenden
Tangibles auf. Das Interaktionsfeld kann per Berührung manipuliert werden. Der Reactable
kann dabei von mehreren Personen gleichzeitig bedient werden. Ein Tangible repräsentiert
eine Datenquelle, in diesem Fall eine Geräuschquelle oder ein Steuerelement. Steuerelemente
sind in diesem Fall Filter, die die Daten manipulieren. Außerdem können die
Interaktionselemente, die von den Tangibles generiert werden, ebenfalls per Berührung
manipuliert oder gesteuert werden. Auch eine Interaktion zwischen mehreren ReacTables ist
in dem Projekt miteinbezogen.

Abgesehen von Spielen und Musikinstrumenten kann ein Tabletop auch für wissenschaftliche
Analysen eingesetzt werden. Das Projekt „G-Nome Surfer“ [43] ist eine Tabletop-
Anwendung zur kollaborativen Exploration von Gen-Daten in der Genetik. Es ist ein
Mehrbenutzersystem und ermöglicht es gemeinsam Gen-Daten zu analysieren. Das Ziel ist es,
eine kreative und attraktive Lernmethode im Bereich der Genforschung anzubieten. Das
System hat ein Natural User Interface auf Basis des Microsoft Surface SDKs. Es bietet
verschiedene Repräsentationen der Daten an und es können verschiedene Ansichten auf die
Daten verglichen werden. Die Studie über die Software hat ergeben, dass die Studenten im
Gegensatz zu alternativer Software entlastet werden und mehr Spaß beim Lernen hätten.
(siehe Abbildung 21)

Die Software Phylo-Genie [44] ist ebenfalls eine Lernsoftware, die es Studenten ermöglichen
soll das Verfahren der „Tree-Thinking“ zu erlernen. Es wurde entwickelt, da Studenten
Schwierigkeiten haben Phylogenetik zu verstehen. Am Ende wurde eine Studie durchgeführt,
die den Einsatz von einem Tabletop mit dem Einsatz von einfachem Schreibmaterial
vergleicht. Auch hier wurde entdeckt, dass kollaborative Arbeit das Lernverhalten verbessert.

44 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 21: Das linke Bild zeigt zwei Personen beim Arbeiten mit G-Nome Surfer.
Auf dem rechten Bild sieht man eine Ansicht von Phylo-Genie.

45 Aufgabenbeschreibung

4 Aufgabenbeschreibung

Das Ziel dieser Arbeit ist es, ein Interaktionskonzept zur Steuerung von Powerwall-
Visualisierungen mit Tabletop-PCs zu entwickeln. In diesem Kapitel wird die
Aufgabenbeschreibung wiedergegeben und mit der Vorgehensweise des Lösungsansatzes
erweitert.

4.1 Hintergrund

Der Hintergrund dieser Arbeit begründet sich auf der Auswertung von Eyetracking-Studien.
Solche werden unter anderem am Institut für Visualisierung und Interaktive Systeme (VIS)
der Universität Stuttgart durchgeführt.

Für Studien dieser Art wurde an diesem Institut eine Diplomarbeit durchgeführt, um neue
Visualisierung für die Analyse von Eyetracking-Ergebnissen zu entwickeln. Diese
Diplomarbeit heißt „Visuelle Analyse von Eye-Tracking-Daten“ [45] und brachte eine neue
Art von Visualisierungen mit drei Ausprägungen hervor.

Diese neuen Visualisierungen wurden bei der Analyse der Eyetracking-Studie „Visual
Elements“ eingesetzt, die ebenfalls am Institut VIS der Universität Stuttgart durchgeführt
wurde. Bei der Auswertung der Studie mit den neuen Visualisierungen wurde schnell erkannt,
dass normale Desktopdisplays zu klein sind, vor allem bei einer Auswertung in der Gruppe.
Darum wurde als nächstes eine Powerwall eingesetzt. Allerdings stellte sich dort die
Bedienung der entsprechenden Software als schwierig bzw. aufwendig heraus. Denn Maus
und Tastatur konnten nur auf dem angeschlossenen Steuerrechner genutzt werden. Aus
diesem Grund musste sich für jede Änderung eine Person zu dem Steuerrechner begeben. Die
Nutzung der Powerwall hat sich jedoch sonst als sehr vorteilhaft herausgestellt, das motivierte
die Idee, die dieser Arbeit zugrunde liegt.

4.2 Aufgabenstellung

Im Rahmen dieser Arbeit soll ein Interaktionskonzept für Tabletop-Computer innerhalb einer
multimodalen Analyseumgebung für Powerwalls entwickelt werden. Die Analyseumgebung
soll verschiedenste Visualisierungen in den Gebieten der Informations-Visualisierung und der
wissenschaftlichen Visualisierung unterstützen. Das Interaktionskonzept soll sinnvolle
Interaktion mit der Powerwall ermöglichen. Dabei soll sowohl eine Interaktion von einzelnen
Benutzern als auch die Interaktion in einer Gruppe möglich sein. Das wird unter anderem per
Interaktion mit Realweltobjekt ermöglicht, die durch entsprechende Tabletops erkannt werden
können. Im Rahmen dessen soll ein Natural User Interface und Tangible User Interface
entwickelt werden, das eine möglichst schnelle und intuitive Bedienung der Visualisierung
und der Analyseumgebung zulässt.

Die Analyseumgebung entsteht in Kooperation mit der Diplomarbeit „Gestensteuerung für
Powerwall-basierte Visualisierungen“ [46], die ein Interaktionskonzept für Freihandgesten
innerhalb der gleichen Analyseumgebung entwickelt.

Der Prototyp der Analyseumgebung soll übliche Visualisierungen im Rahmen von
Eyetrackingdaten anzeigen. Außerdem sollen Szenarien wie interaktive Analysen von
Eyetrackingdaten als Einzelner oder in Gruppen möglich sein. Dafür sollte eine
Anforderungsanalyse für Eyetrackingstudien mit interaktiven Tools durchgeführt werden und
auf den Ergebnissen Interaktions- und Visualisierungskonzept entworfen werden. Basierend

46 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

auf den Konzepten sollte der Prototyp mit „Microsoft Pixelsense“-Steuerung der
Analyseumgebung und den entsprechenden Visualisierungen entwickelt werden.

Weiterhin soll ein zweites Szenario für die Analyse wissenschaftlicher Visualisierungen mit
einer multimodalen Analyseumgebung entwickelt werden.

Zur Evaluierung des Interaktionskonzepts sollte eine Studie durchgeführt werden.

4.3 Lösungsüberblick

Ausgehend von der Aufgabenstellung wird in diesem Kapitel ein Überblick über die
Vorgehensweise zur Lösung gegeben.

1. Beobachtung der Auswertung der Eyetracking-Studie
Um einen Eindruck für eine Auswertung einer Eyetracking-Studie zu bekommen wird
eine Analysesitzung beobachtet. Dabei werden im Gespräch mit den Analysten
Probleme und Anforderungen an unterstützende Tools ermittelt.
Die Beobachtungen werden in Kapitel 5.1 wiedergegeben.

2. Entwurf der Szenarien
Anhand der Beobachtung und den Gesprächen mit den Verantwortlichen der
Eyetrackingstudie wird ein Szenario für die Analyse von Eytracking-Studien
entworfen. Nach der Fertigstellung des Szenarios wird es mit den Analysten
besprochen und angepasst. Das zweite Szenario wird anhand einer Anwendung für die
Visualisierung von Molekülen entwickelt.
Die Szenarien werden in Kapitel 5.2 und 5.3 vorgestellt.

3. Anforderungsanalyse
Basierend auf den Beobachtungen und den Szenarien werden Anforderungen sowohl
für die Analyseumgebung, als auch die Tabletop-Steuerung erhoben.
Die Anforderungen sind in Kapitel 5.4 beschrieben.

4. Entwicklung des System- und Interaktionskonzepts
Auf Basis der Anforderungen wird ein abstraktes Konzept für das System der
multimodalen Analyseumgebung erstellt. Danach wird aufbauend auf dieses Konzept
ein abstraktes Interaktions- und Oberflächenkonzept für den Tabletop innerhalb der
Analyseumgebung aufgestellt.
Das abstrakte Konzept wird in Kapitel 6 aufgeführt.

5. Durchführung der Vorstudie und Entwicklung des Lösungsansatzes
Das abstrakte Konzept des Tabletops wird in diesem Kapitel um konkrete
Interaktionen und Oberflächenentwürfe erweitert. Dies wird darauf in einer Vorstudie
evaluiert. Der Vorstudie liegt das Prinzip des „Paperprototyping“ [47] zu Grunde,
wobei es durch Komponenten des „User Defined Design“ [48] erweitert wurde.
Anhand der Ergebnisse der Vorstudie werden die Entwürfe erweitert. Daraus entsteht
der schlussendliche Lösungsansatz.
Die Vorüberlegungen und Entwürfe, die vor der Studie entstanden sind, sind in
Kapitel 7.1 beschrieben. Die Vorstudie und ihre Ergebnisse sind in Kapitel 7.2 zu
finden. Eine Erweiterung des Lösungsansatzes anhand der Ergebnisse befindet sich in
Kapitel 7.3.

47 Aufgabenbeschreibung

6. Entwurf und Implementierung der multimodalen Analyseumgebung
In Zusammenarbeit mit der Diplomarbeit „Gestensteuerung für Powerwall-basierte
Visualisierungen“ [46] wird das Konzept für die multimodale Analyseumgebung
abgestimmt. Anschließend wird ein Kommunikationsframework anhand des Konzepts
entwickelt, das den Einsatz mehrerer Geräte ermöglicht, um Visualisierungen an der
Powerwall anzuzeigen und zu steuern. Dieses Framework bildet die Grundlage der
multimodalen Analyseumgebung.
Die Architektur und Implementierungsentscheidungen des Frameworks werden in
Kapitel 8 beschrieben.

7. Implementierung des Prototyps
Der Prototyp für die Tabletop-Steuerung der Powerwallvisualisierungen wird auf
Grundlage des Kommunikationsframeworks für multimodale Analyseumgebungen
implementiert. Das Framework wird benötigt, um mit einem zweiten Client auf der
Powerwall zu kommunizieren. Ein solche Client entsteht in der Arbeit
„Gestensteuerung für Powerwall-basierte Visualisierungen“. Der Prototyp wird für
einen Surface 2 auf Basis des Surface SDK 2.0 entwickelt. Als Vorlage für die
Implementierung wird der Lösungsansatz verwendet, der unter Punkt 5 entstanden ist.
Um eine tatsächliche Funktion zu erfüllen, müssen ein Datenmodell für Eyetracking
und zugehörige Visualisierungen entstehen. Diese werden ebenfalls in
Zusammenarbeit mit der Arbeit für Gestensteuerung entwickelt.
Die Implementierung des Prototyps wird in Kapitel 9 vorgestellt.

48 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

49 Anforderungsanalyse

5 Anforderungsanalyse

Das folgende Kapitel untersucht die Anforderungen, die an eine multimodale
Analyseumgebung und eine zugehörige Tabletop-Steuerung gestellt werden. Dies wird im
speziellen anhand der Anwendung auf Eyetracking-Studien erforscht. Dafür wird die
Auswertung einer Eyetracking-Studie beobachtet. Auf Basis der Beobachtungen wird ein
Szenario für die Auswertung von Studien, in Zusammenarbeit mit den Verantwortlichen der
Eyetracking-Studie, entwickelt. Ein zweites Szenario für wissenschaftliche Visualisierungen
wird anhand einer Anwendung zur Visualisierung von Molekülen entworfen. Die
Beobachtungen und Szenarien sind Grundlage für die dann folgende Untersuchung der
Anforderungen.

Die Anforderungen und Szenarien wurden in Zusammenarbeit mit der Diplomarbeit
„Gestensteuerung für Powerwall-basierte Visualisierungen“ [46] erarbeitet.

5.1 Beobachtungen aus der Auswertungssitzung der Eyetracking-Studie

Dieses Kapitel stellt die Beobachtungen der Auswertungssitzung der Eyetracking-Studie vor.
Vorher wird aber die Studie „Visual Elements“ vorgestellt und die Visualisierungen und
Tools, die bei der Auswertung genutzt wurden.

5.1.1 „Visual Elements“-Studie
Beim Eyetracking werden die Augenbewegungen einer Person aufgenommen während sie
Bilder oder Videos, genannt Stimuli, anschaut. Dies geschieht mit einem Eyetracker. In den
meisten Fällen werden dabei die Augen mit Kameras überwacht.

Die Eyetrackingstudie, die zur Beobachtung genutzt wurde, heißt „Visual Elements“. Die
Studie wurde beim Institut für Visualisierung und Interaktive Systeme der Universität
Stuttgart durchgeführt. In der Studie sollte herausgefunden werden, ob es allgemeine
Strategien für die Augenbewegung beim Erkennen von Informationen aus Visualisierungen
gibt. Die Studie wurde mit 30 Probanden durchgeführt. Die Probanden mussten drei
Aufgabentypen lösen: Die Koordinaten eines Punktes in einem 1, 2 oder 3D-
Koordinatensystem auslesen, die größte Fläche in einem Bild bestimmen und Dreiecke auf
Ähnlichkeit überprüfen. Für alle Aufgaben haben die Probanden eine Einführung bekommen.

Aufgabe 1: Koordinaten auslesen
Bei dieser Aufgabe bekommt der Proband ein Koordinatensystem mit entweder ein, zwei oder
drei Dimensionen. Innerhalb der Koordinatensysteme sind Punkte, deren Koordinaten der
Proband auslesen soll.

50 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 22: Stimulus für das Auslesen von 2D-Koordinatensystemen.
Die Punkte P1, P2 und P3 mussten abgelesen werden.

Aufgabe 2: Größte Fläche bestimmen
Bei dieser Aufgabe bekommen die Probanden verschiedene Bilder mit bunten Flächen. Dabei
kann eine Farbe auch mehrmals vorkommen. Der Proband soll nun die Farbe mit der größten
Fläche bestimmen.

Abbildung 23: Stimuli für das Bestimmen der größten Fläche.
Für beide Stimuli sollte die Farbe der größten Fläche bestimmt werden.

Aufgabe 3: Ähnlichkeit von Dreiecken bestimmen
Der Proband erhält bei dieser Aufgabe Bilder mit zwei Dreiecken, die er auf geometrische
Ähnlichkeit prüfen soll. Welche Kriterien dabei eine Rolle spielen wird dem Proband vorher
mitgeteilt.

51 Anforderungsanalyse

Abbildung 24: Stimuli für den Vergleich von Dreiecken.
Für beide Dreiecke sollte geprüft werden ob sie geometrisch ähnlich sind.

5.1.2 Auswertungswerkzeuge
Bei der Auswertung wurden wiederum verschiedenste Visualisierungstechniken genutzt.
Dazu gehören die klassischen Methoden wie Heatmap- und Scanpath-Visualisierung als auch
neu entwickelte Visualisierungen.

Heatmap-Visualisierung
Bei einer Heatmap werden die Punkte, die der Proband mit seinen Augen anvisiert hat,
genannt Fixationen auf dem Bild aufsummiert. Danach werden den Werten Farben
zugeordnet. Der Name Heatmap kommt dabei davon, dass normalerweise für kleine Werte
kalte Farben und für höhere Werte wärmere Farben eingesetzt werden.

Abbildung 25: Heatmap-Visualisierung eines Stimulus aus Aufgabe 1. Die Farbskala reicht von
Rot nach Grün. Rote Bereiche wurden häufig fixiert, grüne Bereiche dagegen selten.

Scan-Path-Visualisierung
Die Scan-Path-Visualisierung zeigt den Verlauf der Augenbewegungen auf dem Bild. Dabei
werden alle Fixationen mit Linien verbunden, wie sie vom Probanden nacheinander
angeschaut worden sind. Damit lässt sich Reihenfolge von Punkten bestimmen die ein
Proband angeschaut hat.

52 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 26: Scan-Path-Visualisierung eines Stimulus aus Aufgabe 3.
Die Abfolge der Fixationen wird durch die blaue Linie dargestellt.

Parallel Scan-Path Visualisierungen
In einer vor dieser Arbeit durchgeführten Diplomarbeit, mit dem Namen „Visuelle Analyse
von Eye-Tracking-Daten“ [45], sind die sogenannten Parallel Scan-Path Visualisierungen
entstanden. Von diesen Visualisierungen gibt es drei verschiedenen Arten, Gaze Duration
Sequence Diagramme, Fixation Point Diagramme und Gaze Duration Distribution
Diagramme. Alle Diagramme beziehen sich auf sogenannte Areas of Interest (AOIs). Diese
Areas of Interest sind bestimmte Bereiche auf dem Stimulus. Die AOIs müssen erst definiert
werden, bevor eine solche Visualisierung generiert werden kann. In den Diagrammen wird für
jede AOI ein Koordinatenkreuz angelegt. Die vertikale Koordinatenachse beschreibt die Zeit
und zeigt somit an, dass nach oben die Zeit innerhalb der Eyetracking-Messung zunimmt. Die
horizontale Koordinatenachse gibt an, dass nach rechts alle AOI-Achsen eingetragen sind. Die
Diagramtypen unterscheiden sich dann folgendermaßen:

• Gaze Duration Sequenz Diagramm
Dieses Diagramm zeigt die Dauer von Blicken in die jeweiligen AOIs. Außerdem ist
die Reihenfolge in der zwischen den AOIs gewechselt wurde zu erkennen. Eine Linie
beschreibt das Verhalten eines Probanden. Die Linie fängt unten in einer AOI an.
Vertikale Linien auf einer AOI-Achse beschreibt die Dauer, in der der Proband in eine
AOI geschaut hat. Eine horizontale Linie zeigt einen Wechsel zwischen zwei AOIs an.

• Fixation Point Diagramm
Auch hier werden die Wechsel zwischen den verschiedenen AOIs dargestellt.
Allerdings wird hier nicht das Ende und der Anfang als Verbindungspunkte zwischen
den Koordinatenachse verwendet, sondern der Mittelpunkt zwischen den beiden. Um
diesen Mittelpunkt herum werden die einzelnen Fixationen innerhalb der AOI im
zeitlichen Verlauf durch Punkte auf der Koordinatenachse markiert.

• Gaze Duration Distribution Diagramm
Bei diesem Diagrammtyp werden ebenfalls die Wechsel der Blicke zwischen den
AOIs dargestellt. Zusätzlich wird die Summe der Verweildauer aller Blicke als Balken
dargestellt.

53 Anforderungsanalyse

Abbildung 27: Parallel-Scan-Paths zweier Probanden für einen Stimulus mit drei AOIs
oben: Gaze Duration Sequenz Diagramm

mitte: Fixation Point Diagramm
unten: Gaze Duration Distribution Diagramm

5.1.3 Beobachtungen bei der Auswertung
Bevor die Auswertung der Studie begonnen werden konnte, mussten die Daten in die
verschieden Programme eingelesen werden, die die Werkzeuge zur Auswertung der Studie
bereitstellen. Dazu mussten die Daten teilweise aufwendig von Hand konvertiert werden. Die
ursprünglichen Daten liegen in dem Format des Eyetrackers Tobii vor. Daraus mussten die
Daten in die Datenbank des Parallel-Scan-Path-Tools eingelesen werden. Zusätzlich wurde
auch eine statistische Analyse durchgeführt, bei der die Daten noch einmal extra eingelesen
werden mussten.

Als erstes wurde versucht, die Auswertung mit Desktop-Bildschirmen und Ausdrucken
durchzuführen. Dabei wurden für einen Probanden mehrere Visualisierungen geöffnet. Dazu
gehören ein Bild des Stimulus und Visualisierungen wie Heatmaps um die interessanten
Stellen im Bild zu finden. Danach werden für die Visualisierungen, die das benötigen AOIs
definiert und im Anschluss werden diese Visualisierungen auch geöffnet. Um nun die
Ergebnisse bei mehreren Probanden zu vergleichen werden für diese ebenfalls weitere
Visualisierungen geöffnet.

54 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 28: Zeigt einen mögliches Bild einer Eyetracking-Auswertung an Desktop-
Monitoren.

Um die Visualisierungen alle darzustellen und für verschiedene Probanden zu vergleichen,
reichen normale Bildschirme schnell nicht mehr aus. Des Weiteren findet eine solche
Auswertung oft in Gruppen statt, was ein Arbeiten an einzelnen Bildschirmen weiter
erschwert. Im Fall der genannten Studie wurde entschieden die Analyse an einer Powerwall
durchzuführen.

Diese spezielle Powerwall besteht aus einer Projektionsfläche auf die über Projektion von
hinten das Bild über vier Beamer erzeugt wird. Diese Beamer haben eine Full-HD Auflösung
und um Stereoskopie zu ermöglichen, projizieren jeweils zwei Beamer eine Fläche. Die
Trennung der Bilder geschieht über Polarisationsfilter. Zusammen ergibt sich dadurch eine
Fläche mit Full HD Auflösung. Die Rückprojektion wird daher verwendet, weil dadurch
Personen vor der Projektionsfläche stehen können ohne das Bild zu verdecken. Die Beamer
werden von einem einzelnen PC angesteuert. Mit diesem kann man eine normale
Bildschirmausgabe auf der Powerwall anzeigen.

Mit der Powerwall und einigen Tools, die die genannten Visualisierungen erzeugen, wurde
erneut versucht die Eyetracking-Daten zu analysieren. Die große Fläche der Powerwall
ermöglichte es viele Visualisierungen gleichzeitig anzuzeigen. Daher ist das Problem der
kleinen Anzeigefläche behoben. Jedoch bleibt das Problem der geringen Auflösung, wenn
sonst Full-HD-Bildschirme eingesetzt wurden. Die Interaktion mit der Powerwall ist dagegen
schwieriger. Im Laufe der Analyse wurde es oft nötig, einzelne Visualisierungen zu
verschieben oder die Datenmenge zu ändern. Normalerweise sind die Analysten jedoch vor
der Powerwall und diskutieren über die Ergebnisse. Eine Interaktion über den Steuer-PC
durchzuführen führt immer zu einer Unterbrechung des Analyseflusses. Zusätzlich gibt es für
die bedienende Person einen Aufmerksamkeitssprung zwischen dem Bildschirm des PCs und
der Powerwall.

5.2 Eyetracking-Szenario

Das erste Szenario bezieht sich auf die Auswertung von Eyetracking-Studien und ist damit
eine Anwendung im Bereich der Informationsvisualisierung. Es wird auf Grundlage der
Beobachtungen entworfen. Der Entwurf wurde daraufhin in Zusammenarbeit mit
Verantwortlichen der „Visual Elements“-Studie besprochen und weiter verbessert. Im

55 Anforderungsanalyse

Szenario wird eine mögliche Auswertungssitzung skizziert, in der Analysten Eyetracking-
Studien mit einer Analyseumgebung auswerten können. Alle Interaktionen beziehen sich
dabei auf den Tabletop. Die Ansicht der Powerwall entspricht in dem Szenario immer der des
Tabletops. Alle Skizzen zeigen links die Powerwall und rechts den Tabletop.

Offline-Vorbereitung der Eyetracking-Analyse
Der Moderator einer Eyetracking-Studie bereitet die Daten für die Auswertung einer Studie
an seinem Laptop vor. Bevor er weiterarbeiten kann, müssen die Daten in die
Analyseumgebung importiert werden. Nach dem Import wählt der Moderator drei Aufgaben
aus, die als Grundlage der Besprechung dienen sollen.

Abbildung 29: Offline-Vorbereitung
Der Moderator importiert Aufgaben in das System.

Kurz vor Beginn der Auswertungssitzung
Der Moderator begibt sich vor Beginn der Sitzung in den Besprechungsraum um die Sitzung
vorzubereiten.

Abbildung 30: Vorbereitung der Auswertungssitzung
Der Moderator fügt die Aufgaben zur Analyseumgebung hinzu.

Er stellt seinen Laptop oder legt eine Id-Karte auf den Tabletop. Der Laptop zu der Id-Karte
muss sich im gleichen Netz befinden wie die Analyseumgebung. Über ein Tag an der
Unterseite, in dem IP-Adresse, Port und Identifikation kodiert sind, wird der Laptop erkannt
und in die Analyseumgebung eingebunden. Ein Feld wird auf dem Tabletop angezeigt. In dem
Feld befinden sich die drei vorher ausgewählten Aufgaben. Mit einer Drag&Drop-Interaktion
schiebt der Moderator die Aufgaben auf eine freie Fläche des Tabletops. Daraufhin werden
die Aufgaben im Datenexplorer aller Geräte innerhalb der Analyseumgebung angezeigt.

56 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Durchführung der Besprechung
Nachdem sich alle Teilnehmer der Besprechung im Besprechungsraum eingefunden haben,
beginnt der Moderator die Analysesitzung. Er zieht mit einer weiteren Drag&Drop-
Interaktion die erste Aufgabe aus dem Datenexplorer auf eine freie Fläche des Tabletops.
Anschließend wird an dieser Stelle das Bild der Aufgabenstellung angezeigt. Gleichzeitig
wird es an der entsprechenden Stelle der Powerwall angezeigt. Mit einer Geste justiert ein
Teilnehmer die Größe des Bildes, so dass alle anderen Teilnehmer eine einwandfreie Sicht auf
das Bild haben. Anhand dieses Bildes erklärt der Moderator den Teilnehmern die
Aufgabenstellung für die Probanden und seine These für die Auswertung.

Abbildung 31: Start der Sitzung
Der Moderator erzeugt die erste Visualisierung.

Damit während der gesamten Analyse das Bild der Aufgabenstellung sichtbar bleibt,
dupliziert der Moderator mit einer Interaktion diese Ansicht. Nun werden zwei identische
Aufgabenbilder dargestellt.

Abbildung 32: Duplikation einer Visualisierung

Auf der neu erstellten Ansicht führt der Versuchsleiter eine Wischbewegung nach links aus.
Dadurch ändert sich die Bild-Visualisierung in eine HeatMap-Visualisierung.

57 Anforderungsanalyse

Abbildung 33: Ändern des Visualisierungstyps
Ein Nutzer wechselt die Visualisierung mit einer Wischbewegung.

Auf Basis der HeatMap-Visualisierung diskutieren die Teilnehmer, welche Bereiche des
Bildes wahrscheinlich für die Probanden interessant waren und nun näher untersucht werden
sollen. Ist ein Proband ausgewählt, werden dessen Blickpunkte in der HeatMap
hervorgehoben. So können die Bereiche betrachtet werden, die von einzelnen Probanden
angesehen wurden. Darauf werden von den Teilnehmern mehrere AOIs durch eine
Interaktion, die eine Form bildet, definiert. Die AOIs werden sowohl in der HeatMap-
Visualisierung, als auch in der Ansicht mit dem Bild der Aufgabenstellung angezeigt.

Abbildung 34: AOIs erstellen

Mit einer Wischbewegung nach links über die HeatMap-Ansicht wechselt diese zu einer
Gaze-Duration-Visualisierung, in dem alle Probanden angezeigt werden. Der Moderator
arrangiert daraufhin die Reihenfolge der vertikalen Koordinatenachsen wie er sie benötigt.

58 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 35: Verändern des Inhalts einer Visualisierung
Ein Nutzer ändert die Reihenfolge der Achsen in einer Parallel-Scan-Path-Visualisierung.

Nach einiger Diskussion der Teilnehmer fällt auf dem Gaze-Duration-Diagramm ein Proband
auf, der offensichtlich nicht dem Verhalten der anderen Teilnehmer entspricht. Mit einer
Interaktion markiert ein Teilnehmer diesen Probanden und entfernt ihn mit einer Geste aus der
Visualisierung. Alternativ öffnet ein Teilnehmer die Filterdarstellung auf dem Tabletop und
entfernt das dem Probanden zugeordnete Objekt.

Abbildung 36: Entfernen eines Probanden aus einer Visualisierung

Im weiteren Verlauf fällt auf, dass sich die Probanden auf der Gaze-Duration-Visualisierung
in zwei verschiedene Gruppen aufteilen. Der Moderator wählt einen der Probanden der ersten
Gruppe aus und zieht ihn mit einer Drag&Drop-Interaktion auf eine freie Fläche des
Tabletops. Dabei wird eine neue Gaze-Duration-Visualisierung an dieser Stelle erstellt, die
ausschließlich die Darstellung des Probanden, der soeben aus dem ersten Diagramm
herausgezogen wurde enthält. Daraufhin öffnet ein Teilnehmer die Filterdarstellung beider
Visualisierungen und verschiebt alle zu der Gruppe zugehörigen Probanden mit ihren
Tangibles in die Filterdarstellung der neuen Visualisierung.

59 Anforderungsanalyse

Abbildung 37: Filtern der Daten
Ein Nutzer teilt die Probanden auf zwei Visualisierungen auf.

Der Moderator möchte dieses Ergebnis in Form eines Screenshots festhalten, um es später
weiterverwenden zu können. Mit einer Geste erstellt er, aus den beiden Gaze-Duration-
Visualisierungen, ein Screenshot und überträgt diesen mit der Id-Karte auf sein Notebook.

Abbildung 38: Erzeugen eines Screenshots von einer Visualisierung

Zuletzt soll überprüft werden, ob sich die Probanden der beiden Gruppen in einer anderen
Aufgabe vergleichbar verhalten haben. Der Moderator führt auf eine der beiden Gaze-
Duration-Visualisierungen eine Wischgeste nach unten aus. Dabei wechseln sich die
Aufgaben der Visualisierungen und damit ihre zugrundeliegenden Daten.

Abbildung 39: Wechseln der Aufgabe in den Visualisierungen

60 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Beendigung oder Unterbrechung der Auswertungssitzung
Die Besprechung ist beendet oder soll unterbrochen werden. Um die Analyse zu einem
späteren Zeitpunkt fortzusetzen, oder die abschließenden Ergebnisse bei Beendigung der
Analyse festzuhalten, speichert der Moderator den Zustand der Analyseumgebung.

5.3 MegaMol-Szenario

Das zweite Szenario bezieht sich auf die Visualisierung von Simulationsdaten aus
Molekülmodellen und ist damit aus dem Bereich der wissenschaftlichen Visualisierung. Das
Szenario baut auf dem Programm MegaMol [3] auf und wurde auf Grundlage der Funktionen
des Programms erstellt.

Mit der Visualisierungssoftware MegaMol [3] können Moleküle aus punktbasierte Datensets
visualisiert werden. Bei dem Szenario möchte ein Wissenschaftler seine Erkenntnisse bei der
Erforschung von Proteinen seinen Kollegen weitergeben. Dazu verwendet er die
Analyseumgebung um Visualisierungen von MegaMol zu präsentieren.

Alle Interaktionen in dem Szenario beziehen sich auf den Tabletop. Die Ansicht der
Powerwall entspricht in dem Szenario immer der des Tabletops. Alle Skizzen zeigen links die
Powerwall und rechts den Tabletop.

Offline-Vorbereitung
Um seine Präsentation vorzubereiten, wählt der wissenschaftliche Mitarbeiter drei Proteine
aus, mit denen er seine Erkenntnisse vorstellen möchte. Mit seinem Laptop importiert der
Mitarbeiter die Simulationsdaten für die Proteine in die Analyseumgebung. Für die
importierten Proteine werden Vorschaubilder einer Visualisierung im Datenexplorer des
Laptops angezeigt.

Abbildung 40: Offline Vorbereitung
Der wissenschaftliche Mitarbeiter importiert Proteindaten ins System.

Kurz vor Beginn der Präsentation
Der wissenschaftliche Mitarbeiter begibt sich in den Raum mit der Powerwall und dem
Tabletop. Daraufhin legt er eine ID-Karte für den Laptop oder den Laptop auf den Tabletop.
Der Laptop wird von der Analyseumgebung erkannt und in der Analyseumgebung registriert.
Auf dem Tabletop erscheint ein Dialog, der den privaten Bereich des Laptops anzeigt.
Innerhalb des Dialogs werden die Proteine mit ihren Vorschaubildern angezeigt. Der
wissenschaftliche Mitarbeiter zieht die Proteine mit einer Drag&Drop-Interaktion auf einen
Bereich des Tabletops.

61 Anforderungsanalyse

Abbildung 41: Vorbereitung der Präsentation
Der wissenschaftliche Mitarbeiter fügt Proteine zur Analyseumgebung hinzu.

Anschließend werden die Protein-Daten auf die Geräte der multimodalen Analyseumgebung
kopiert und in den Daten-Explorern der Geräte angezeigt.

Während der Präsentation
Während seiner Präsentation möchte der Mitarbeiter nun seine Forschungsergebnisse anhand
eines Proteins seinen Kollegen präsentieren. Mit einer Drag&Drop-Interaktion zieht der
Mitarbeiter das Vorschaubild des entsprechenden Proteins aus dem Daten-Explorer eine freie
Fläche des Tabletops. Daraufhin wird dort eine Visualisierung von MegaMol angezeigt, die
das Protein darstellt. Gleichzeitig wird diese Visualisierung auch auf der Powerwall
angezeigt.

Abbildung 42: Start der Sitzung
Der wissenschaftliche Mitarbeiter erzeugt die MegaMol-Visualisierung.

Der wissenschaftliche Mitarbeiter möchte während seiner Präsentation die Visualisierung des
Proteins öfter ändern. Daher benötigt er eine Ausgangsdarstellung, die es seinen Kollegen
erlaubt den Überblick zu behalten. Dazu dupliziert er die Visualisierung des Proteins mit einer
Interaktion. Daraufhin werden zwei gleiche Visualisierungen des Proteins angezeigt.

Wenn die Powerwall nicht groß genug ist oder nur der Tabletop genutzt wird, verbraucht die
Ausgangsdarstellung des Proteins zu viel Platz. Daher schiebt der Vortragende diese
Darstellung auf die linke obere Ecke und verkleinert sie mit einer Interaktion. Die andere
Darstellung, mit der weitergearbeitet wird, schiebt er in die Mitte und vergrößert sie mit einer
Interaktion auf die restliche Fläche der Powerwall bzw. des Tabletops. Auf diese Weise

62 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

können die Zuschauer alle Details sehen. Die vergrößerte Visualisierung kann der
wissenschaftliche Mitarbeiter nun nutzen, um seine Erkenntnisse vorzustellen.

Abbildung 43: Duplizierung der Visualisierung

Um bestimmte Strukturen des Proteins hervorzuheben, markiert der wissenschaftliche
Mitarbeiter mit einer Auswahlgeste diese Strukturen und ändert mit einer Interaktion das
Mapping dieser Atome auf eine andere Farbe. Auf eine ähnliche Weise ändert er das Mapping
der Form für einige Atome.

Abbildung 44: Änderung des Mappings der Visualisierung.

Um Ergebnisse zu präsentieren, die in der aktuellen Darstellung nicht sichtbar sind ändert der
Vortragende die Art der Darstellung. Dafür ändert er die MegaMol-Visualisierung in der
Hauptansicht mit einer Wischgeste. Nun kann er seine Erkenntnisse in der Darstellung der
neuen Visualisierung vorstellen.

63 Anforderungsanalyse

Abbildung 45: Ändern des Visualisierungstyps
Der Vortragende wechselt die Visualisierung mit einer Wischbewegung.

Nun möchte der vortragende Mitarbeiter die Ansicht auf das Molekül innerhalb der
MegaMol-Visualisierung ändern. Dazu führt er eine Pan-Geste auf der Visualisierung aus, die
die Kamera in der 3D-Ansicht um das Molekül bewegt. Außerdem bewegt er mit einer Geste
aus zwei Fingern die Kamera an das Molekül heran. Damit kann er den Zuschauern
bestimmte Details besser erläutern.

Abbildung 46: Manipulation der 3D-Ansicht mit einer Pan-Geste links und einer Pinch-Geste
rechts

Nachdem der wissenschaftliche Mitarbeiter seinen Vortrag beendet hat, entsteht eine
Diskussion zwischen ihm und seinen Kollegen. Dabei wird die Ansicht des Proteins noch
einige Male geändert. Bei einer Ansicht entdecken die wissenschaftlichen Mitarbeiter etwas,
das ihre These unterstützt. Einer der Mitarbeiter markiert darauf einen Bereich der MegaMol-
Visualisierung mit einer Interaktion und erstellt dadurch einen Screenshot. Den Screenshot
zieht der Mitarbeiter mit einer Drag&Drop-Interaktion wieder auf den Dialog für seinen
Laptop. Dieser befindet sich nun auf dem Laptop und kann von dem Mitarbeiter zu einem
späteren Zeitpunkt verwendet werden.

64 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 47: Erzeugen eines Screenshots

5.4 Anforderungen

Dieser Abschnitt beschreibt, welche Anforderungen von der Analyseumgebung und einer
Tabletop-Steuerung umgesetzt werden müssen. Die Anforderungen ergeben sich zum einen
aus den Problemen, die bei der Analyse der Auswertungssitzung (Kapitel 5.1) identifiziert
wurden und mit einer solchen Umgebung nicht mehr auftreten sollen. Außerdem wird
beschrieben welche Anforderungen sich aus den Szenarien (Kapitel 5.2 und 5.3) für die
Analyseumgebung ergeben.

5.4.1 Anforderungen an die Analyseumgebung
Zunächst werden die Anforderungen an die Analyseumgebung beschrieben. Dazu gehören
unter anderem welche Anforderungen an das System gelegt werden, das die Kommunikation
zwischen der Powerwall und dem Tabletop oder anderen Geräten verwaltet. Außerdem
welche Anforderungen an die Benutzbarkeit und die Oberfläche der Geräte innerhalb der
Analyseumgebung gestellt werden. Und welche Anforderungen speziell an die
Powerwallanzeige gestellt werden.

• Die öffentlichen Bereiche aller Geräte sollen die gleichen Elemente anzeigen.
Der Bereich, der bei allen Geräten auf die Powerwall synchronisiert werden soll, muss
immer die gleichen Elemente an entsprechender Position anzeigen. Die Umrechnung
der Perspektiven zwischen den einzelnen öffentlichen Bereichen sollte
nachvollziehbar sein. Außerdem sollen zugehörige Ansichten auf den verschiedenen
Geräten die gleichen Daten nutzen.

• Die Synchronisation der Geräte soll in angemessener Zeit passieren.
Für die Synchronisation der Geräte soll eine Technik verwendet werden, die es erlaubt
in einem lokalen Netzwerk die Geräte angemessen schnell zu synchronisieren. Der
Benutzer soll daher kaum eine Verzögerung wahrnehmen.

• Das System soll eine einheitliche Datenhaltung zur Verfügung stellen.
Das System der Analyseumgebung sollte eine Datenhaltung haben, die verhindert,
dass die einzelnen Geräte asynchrone Daten nutzen.

• Es sollen verschiedene Geräte eingesetzt werden können.
Die Interaktion mit der Analyseumgebung soll mit verschiedenen Geräten möglich
sein. Das schließt die Fernsteuerung der Powerwall mit verschiedenen Geräten, wie
dem Tabletop, und eine Möglichkeit der direkten Steuerung, wie in der Arbeit [46]
beschreiben, ein.

65 Anforderungsanalyse

• Es muss möglich sein, eine Sitzung vorzubereiten.

Es soll möglich sein die Daten für eine Analyse in das System zu importieren, so dass
sie später innerhalb des Systems genutzt werden können.

• Verschiedene Visualisierungsarten sollen angezeigt werden können.
Das System soll erweiterbar sein, damit verschiedene Arten von Visualisierungen
angezeigt werden können.

• Es sollen viele Visualisierungen gleichzeitig betrachtet werden können.
Die Oberfläche und Visualisierungen sollten so gehalten sein, dass möglichst viele
Visualisierungen angezeigt werden können.

• Die Visualisierungen sollen in einer Gruppe analysiert werden können.
Die Teilnehmer einer Analyse sollen sich in kleinen Gruppen zusammentun können,
um einzelne Aspekte einer größeren Aufgabe zu analysieren. Später sollen die
einzelnen Gruppen ihre Ergebnisse präsentieren können, damit in der großen Gruppe
ein Konsens entstehen kann.

5.4.2 Anforderungen an Tabletop-Oberfläche und Interaktionen
Dieses Kapitel beschreibt die Anforderungen an die Tabletop-Steuerung der Analyseumge-
bung. Dazu gehören Anforderungen an die Interaktionen, die Oberfläche der Tabletop-
Steuerung und die allgemeine Bedienbarkeit.

• Die Tabletop-Steuerung soll einen privaten und einen öffentlichen Bereich haben.
Damit die Benutzer sowohl auf der Powerwall als auch für sich selbst arbeiten können,
soll auf dem Tabletop ein öffentlicher Bereich und ein privater Bereich existieren. Der
öffentliche Bereich soll auf allen Geräten und der Powerwall angezeigt werden. Der
private Bereich soll nur auf dem Tabletop angezeigt werden, so dass die Benutzer
allein oder in kleinen Gruppen arbeiten können.

• Auf dem Tabletop soll von mehreren Nutzern gleichzeitig gearbeitet werden können.
Da der Tabletop für kollaboratives Arbeiten als Mehrbenutzersystem ausgelegt ist, soll
die Tabletop-Steuerung der Analyseumgebung eine gleichzeitige Nutzung ihrer
Benutzeroberfläche ermöglichen.

• Der Analysefluss soll nur minimal gestört werden.
Wenn eine Interaktion mit der Powerwall nötig wird, soll diese Interaktion auf dem
Tabletop so gelöst werden können, dass sie den Analysefluss nicht stört. Sie sollte
daher schnell und einfach durchzuführen sein und möglichst auch während der
Benutzer etwas erklärt.

• Die Datenrepräsentation und Filterung soll mit Tangibles möglich sein.
Laut der Aufgabenstellung ist ein Filterungssystem erwünscht, das es ermöglicht die
Datenmenge mit Tangibles zu beeinflussen. Beispielsweise sollte mit einem Tangible
für einen Probanden die Visualisierung nach diesem Probanden gefiltert werden
können.

66 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

• Die Interaktionen sollen möglichst intuitiv sein.
Natural User Interfaces sollen es dem Benutzer ermöglichen, als Anfänger die
Bedienung eines Systems schnell zu erlernen. Daher sollten die einzelnen
Interaktionen intuitiv sein und den Vorstellungen der Benutzer entsprechen.

67 Konzept

6 Konzept

Dieses Kapitel beschreibt grundsätzliche Konzepte, um die Anforderungen aus Kapitel 5
umzusetzen. Dabei wird zuerst das Konzept für das benötigte System vorgestellt. Weiter wird
die grundsätzliche Benutzeroberfläche auf Tabletops für das geforderte System erläutert.
Danach werden einzelne Interaktionsmodalitäten aufgezeigt, die entsprechend der
Anforderungen bei den Funktionen eingesetzt werden können. Anschließend wird das
Konzept für das lokale Datenmanagement des Tabletops erklärt, das benötigt wird um das
Konzept der Benutzeroberfläche mit dem des Systems in Einklang zu bringen. Das
Zusammenspiel der einzelnen grundsätzlichen Konzepte, die in diesem Kapitel vorgestellt
werden, beschreiben anschließend Kapitel 7, 8 und 9.

6.1 System

Wie in Kapitel 5 erläutert soll ein System entwickelt werden, das eine Analyse oder
Präsentation von Daten mit Visualisierungen an der Powerwall ermöglicht. Die Umsetzung
des hier vorgestellten Konzepts für das System der Analyseumgebung wird in Kapitel 8
vorgestellt.

Der Benutzer soll die Möglichkeit haben mit dem System schnell und unkompliziert zu
interagieren. Weiterhin soll das System die Möglichkeit bieten eine Analyse in einer Gruppe
durchzuführen. Daher soll das System auch von mehreren Personen bedient werden können.
Darauf aufbauend soll das System unterstützen, Analysen im Privaten durchzuführen und die
Ergebnisse der Gruppe vorzustellen. Diesen Erkenntnissen entsprechend, ergeben sich für die
Hardware zur Bedienung des Systems verschiedene Optionen.

• System zur Freiraum-Gestenerkennung
Freiraum-Gesten ermöglichen es direkt mit der Powerwall zu interagieren. Dies
ermöglicht direkte Manipulation der Elemente auf der Powerwall. Mögliche Hardware
sind Controller wie die Wiimote, Laserpointer oder für Freihand-Gesten die Kinect
von Microsoft. Damit sind keine oder nur eingeschränkte private Umgebungen
umzusetzen.

• Tabletop-PC
Ein Tabletop ist wie in Kapitel 2.3 beschrieben ein PC in Form eines Tisches mit
Multitouch-Eingabe. Tische sind bei Besprechungen oder Konferenzen üblich und
daher fügen sich Tabletops mit ihrer Berührungseingabe natürlicher in die
Besprechung mit ein als das bei einem normalen PC der Fall ist. Leider ist mit den
Tabletops nur indirekte Interaktion mit der Powerwall möglich. Dafür bietet der
Tabletop eigene Interaktionsmodalitäten wie Tangibles an, die neue Interaktion
ermöglichen und gleichzeitig die Distanz zwischen Nutzer und Benutzerschnittstelle
verringern. Tabletops sind außerdem für Mehrbenutzersysteme optimiert. So können
auch mehrere Personen privat an einem Tabletop arbeiten

• Tablets
Tablets sind kleine, berührungssensitive PCs mit begrenzter Multitouch-
Unterstützung. Dabei sind insbesondere „Slates“ von Interesse. Diese Art von Tablets
ist flach und hat zur Bedienung nur einen berührungsempfindlichen Bildschirm. Ein
Beispiel ist das Apple iPad. Sie sind sehr mobil und lassen sich während einer
Besprechung komfortabel nutzen. Sie können ähnlich einem Notizblock im Stehen
oder im Sitzen genutzt werden. Mit ihnen lassen sich einfach private Bereiche

68 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

umsetzen. Um allerdings Mehrbenutzerbetrieb zu gewährleisten sind mehrere Tablets
nötig.

• Smartphones
Smartphones können analog zu Tablets eingesetzt werden. Der hauptsächliche
Unterschied ist mehr Mobilität zu Kosten von Bildschirmgröße und Bedienkomfort.

Da alle Bedienungskonzepte und zugehörige Hardware ihre eigenen Stärken aufweisen, ist es
für das System am sinnvollsten eine offene Umgebung zu schaffen, die eine Integration aller
dieser Konzepte zulässt. Diese Umgebung soll durch ein Kommunikationsframework
zwischen den einzelnen Geräten bereitgestellt werden.

Das Kommunikationsframework stellt eine Abstraktion jeglicher Kommunikation, sowohl im
Bereich von Interaktionen als auch für den Datenaustausch, zur Verfügung. Das
Kommunikationsframework arbeitet mit Nachrichten. Das Framework bietet eine
Grundmenge an Nachrichtentypen an, welche aber erweitert werden kann. Weiterhin bietet es
eine grundsätzliche Abstraktion der Daten und Visualisierungen an, um eine Erweiterung der
Datenhaltung und des Nachrichtensystems offen zu halten. So können jegliche Arten von
Daten mit einer freien Auswahl an Visualisierungen untersucht werden. Durch die
Abstraktion können die Visualisierungen ebenfalls auf unterschiedlichen Systemen
implementiert werden. Jedoch sollte die Darstellungsweise ähnlich sein. Das Framework ist
ein Client-Server-System. Jedes Gerät erhält dabei einen Client. Der Server registriert die
Clients und verwaltet die Kommunikation. Weiterhin sollte der Server auch die Datenhaltung
übernehmen, so dass alle Clients auf die gleiche Datenquelle zugreifen können. Um dabei
eine gute Flexibilität zu erreichen, wird hier eine Schnittstelle für Datenquellen eingeführt.

Auf Seiten der Benutzeroberfläche werden die Daten innerhalb von Visualisierungen
angezeigt. Um eine Fernsteuerung der Powerwall mit Geräten, die keine direkte Manipulation
der Powerwall erlauben zu ermöglichen, muss die Darstellung und die grundlegenden
Interaktionen der Visualisierungen kompatibel sein. Dazu wird ein Visualisierungscontainer
genutzt, der jede Art von Visualisierung auf Basis der Abstraktion des Frameworks
aufnehmen kann. Dabei wird auf das bewährte Prinzip der Fenster zurückgegriffen. Die
Oberfläche wird abgesehen von der Powerwall in einen privaten und einen öffentlichen
Bereich eingeteilt. Der öffentliche Bereich stellt die Anzeige der Powerwall auf dem Gerät
dar und ermöglicht so die Fernsteuerung. Die Visualisierungsfenster können zwischen
privaten und öffentlichen Raum verschoben werden, um auf der Powerwall angezeigt zu
werden. Die Datengrundlage der Visualisierungen wird in einem Datenexplorer angezeigt und
dient gleichzeitig zum Anlegen neuer Visualisierungen.

Diese Arbeit konzentriert sich auf den Teil des Tabletop-Clients. Die Integration eines
Tabletops in das System ist folgendermaßen: In dem Besprechungsraum mit der Powerwall
wird ein Tabletop beliebig vor der Powerwall positioniert. Sowohl auf dem Tabletop, als auch
auf dem Steuerrechner der Powerwall läuft ein Client des Systems. Der Client der Powerwall
kann zusätzlich auch direkte Interaktion mit den vorherig genannten Methoden unterstützen.
Das wird in der Arbeit „Gestensteuerung für Powerwall-basierte Visualisierungen“ [46]
entwickelt. Auf einem beliebigen Rechner läuft der Server des Systems.

Im Weiteren werden die grundlegenden Konzepte in Bezug auf Benutzeroberfläche und
Interaktion des Tabletops dargestellt.

69 Konzept

6.2 Tabletop-Oberfläche

Das Kapitel beschreibt die Grundlagen für den Lösungsansatz der Bedienoberfläche auf dem
Tabletop.

Der Entwurf der Bedienungsoberfläche des Tabletops hält sich an die Überlegungen in
Kapitel 6.1. Somit wird die Oberfläche in einen privaten und einen öffentlichen Raum
eingeteilt. Jeder dieser Räume zeigt die Visualisierungen in Visualisierungscontainern an.
Jeder Container hat eine eigene Datengrundlage, die separat gefiltert werden kann.

Zuerst wird die grundlegende Funktion der Visualisierungscontainer beschrieben. Danach
wird auf den öffentlichen Raum und dessen Ausprägung auf einem Tabletop eingegangen.
Ebenso wird der private Raum beschrieben. Zum Schluss wird auf zwei verschiedene Ablagen
für Visualisierungscontainer eingegangen.

Die konkreten Formen der Benutzeroberfläche und der hier beschriebenen Konzepte wird in
Kapitel 7 beschrieben.

Interaktion mit den Visualisierungscontainern
Wie in den Anforderungen erarbeitet gibt es einige Interaktionen, die mit den Containern und
ihren zugehörigen Visualisierungen durchgeführt werden können. Die Container können
innerhalb der Räume skaliert und verschoben werden.

Wenn ein Benutzer eine identische Ansicht für eine weitere Verarbeitung braucht, um z.B. in
eine andere Richtung zu explorieren, kann der Container dupliziert werden. Die
Visualisierung des duplizierten Containers hat danach die gleiche Ansicht, wie die des
Originals. Der neue Container kann danach unabhängig von seinem Original genutzt werden.

Eine Erweiterung dieser Idee ist die Kopplung. Falls ein Benutzer zwei verschiedene
Visualisierungen mit der gleichen Datengrundlage und Filterung anzeigen möchte, dann kann
er die zugehörigen Container koppeln. Wenn die Filterung der Datengrundlage eines
Containers geändert wird, dann ändert sich diese auch in dem gekoppelten Container. Ein
Beispiel dafür wird in dem Eyetracking-Szenario in Kapitel 5.2 vorgestellt. Eine weitere Art
von Kopplung, die hauptsächlich für den privaten Raum sinnvoll ist, wirkt sich nicht nur auf
die Daten sondern auch auf die Anzeige aus. Dabei wird in Hinblick auf die
Visualisierungspipeline, im Gegensatz zur vorherigen Kopplung, das Rendering statt der
Filterung gekoppelt. Die Anzeige der gekoppelten Visualisierungen ist also immer identisch.
Diese Kopplung kann genutzt werden um in kleineren Gruppen Erkenntnisse zu besprechen
und Daten gemeinsam zu explorieren.

Innerhalb des Containers kann sowohl die Visualisierung als auch die Datengrundlage
gewechselt werden. Es kann nur auf eine Visualisierung gewechselt werden, die den aktuellen
Typ von Daten unterstützt. Analog dazu kann beim Wechsel der Datengrundlage nur
innerhalb des aktuellen Datentyps gewechselt werden. Das bewahrt die Übersicht und führt zu
keinem verwirrenden Wechseln bei der Visualisierung. Beide Wechsel sollten eine Vorschau
besitzen wenn möglich.

Privater Raum
Im privaten Raum des Tabletops können einzelne Benutzer oder kleinere Benutzergruppen die
Visualisierungen explorieren, ohne dass die Visualisierungen in die Analyseumgebung
übertragen werden. Dies dient zur Vorbereitung von Ansichten, die später der größeren
Gruppe vorgestellt werden. Auf ihm soll wie auf einem normalen Tisch gearbeitet werden
können.

70 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Im privaten Raum können, wie schon genannt, mehrere Personen gleichzeitig arbeiten. Er
nutzt die Mehrbenutzerfähigkeit des Tabletops. Jeder Container kann von einem anderen
Benutzer bedient werden. Somit können mehrere Benutzer arbeiten ohne ein eigenes Gerät zu
haben. Je nach Größe des Tabletops ist die Bedienung mit vielen Personen und längere Zeit
nicht sinnvoll. Allerdings ist das in einer Besprechung auch nicht angebracht. Alle
Interaktionen mit und zwischen Containern sind für eine Mehrbenutzerumgebung entworfen.
Innerhalb eines Containers ist keine Mehrbenutzerbedienung möglich. Mögliche
Anwendungsfälle die dies benötigen sollten allerdings größtenteils durch die Kopplung
abgedeckt werden.

Da der Tabletop frei vor der Powerwall positioniert werden kann und die Benutzer überall um
den Tisch stehen können, muss die Ausrichtung der Container auf dem privaten Raum
geändert werden können. Es gibt grundsätzlich zwei Arten von Methoden wie die
Orientierung der Container festgelegt werden kann. Die Methoden sind manuell und
automatisch.

• Manuelle Orientierung
Die manuelle Orientierung überlässt es komplett dem Benutzer wie der Container
ausgerichtet wird. Sie benötigt Interaktion, um die Container auszurichten. Bei der
manuellen Ausrichtung erhält man völlige Flexibilität bei etwas mehr
Interaktionsbedarf.

• Automatische Orientierung
Bei der automatischen Orientierung werden die Container entsprechend von Regeln
ausgerichtet. Normalerweise wird die Position als Ausgangspunkt genutzt. Dragicevic
et al. [49] stellen eine Methode mit Vektorfeldern vor. Bei den Vektorfeldern ist die
Ausrichtung des Containers abhängig von der Position auf dem Tisch angeben. Wenn
der Container bei automatischer Ausrichtung auf dem Tisch verschoben wird, ändert
er entsprechend des Vektorfelds seine Orientierung. Die nötigen Interaktionen für
Orientierung fallen bei dieser Methode weg, dies geht auf Kosten der Flexibilität.

Abbildung 48: Zeigt einige Ausrichtung anhand von Vektorfeldern
a) Vektoren als Pfeildarstellung, b) Vektorrichtung als Farbe [49]

In Anbetracht der vielen verschieden Situationen bei einer Besprechung, vor allem wenn
Benutzer sich öfters zur Powerwall begeben, stellt die manuelle Ausrichtung in diesem Fall
die bessere Wahl dar. Es können sich verschiedene Situationen ergeben z.B. können die
Benutzer sich anfangs um den Tabletop stellen und später hinter diesem stehen um Ergebnisse

71 Konzept

an der Powerwall zu betrachten. Die manuelle Ausrichtung verträgt sich ebenfalls besser mit
der Analogie zu einem normalen Tisch.

Weil sich das „privat“ im privaten Raum auf das Gerät bezieht, muss in Betracht gezogen
werden, dass es weitere Räume für die Benutzer innerhalb des privaten Raums gibt. Diese
persönlichen Räume grenzen sich von Bereichen, die von der Gruppe genutzt werden, ab. Der
persönliche Bereich ist meist direkt vor oder neben dem Benutzer. Scott et al. [50] haben dazu
das Verhalten von Personen beim Arbeiten an Tischen untersucht. Da das Szenario wie schon
genannt sehr dynamisch ist, werden keine persönlichen Räume im Konzept vorgesehen. Das
Prinzip findet sich jedoch zum Teil bei der persönlichen Ablage (siehe weiter unten) wieder.
Die persönlichen Räume ergeben sich daher wie bei einem normalen Tisch in Eigendynamik.

Öffentlicher Raum
Der öffentliche Raum dient der Fernsteuerung und damit der Interaktion mit der Powerwall.
Seine Anzeige ist direkt mit der der Powerwall verbunden. So können Visualisierungen auf
der Powerwall angezeigt werden. Dadurch lassen sich Ergebnisse vorstellen oder eine
Analyse in der größeren Gruppe durchzuführen.

Die Fernsteuerung ermöglicht es, die Visualisierungen der Powerwall anzupassen oder deren
Container zu verschieben bzw. zu skalieren. Im Gegensatz zum privaten Raum auf dem
Tabletop ist eine Rotation hier nicht sinnvoll. Die Visualisierungscontainer können wie im
System beschrieben zwischen dem öffentlichen Raum und dem privaten Raum verschoben
werden. Hier ist eine möglichst nahtlose Interaktion zu wählen, um eine natürliche Bedienung
zu erreichen.

Die Anzeige des öffentlichen Raums auf dem Tabletop hat in den meisten Fällen nicht
dieselbe Größe wie die Powerwall und ist daher skaliert. Um eine bessere Bedienung zu
ermöglichen, kann die Anzeige des öffentlichen Raums als Viewport frei auf der Powerwall
verschoben oder skaliert werden. Daher kann der Benutzer wählen ob er eine verkleinerte
Ansicht der Powerwall oder einen nicht skalierten Teil der Powerwall sehen möchte.

Für die Anzeige des öffentlichen Raums sind verschiedene Optionen denkbar. Eine Anzeige,
die separat von der Anzeige des privaten Raums positioniert ist. Dabei käme z.B. ein
gesplitteter Bildschirm oder Tabs in Frage. Eine andere Option wäre es den öffentlichen
Raum als eigener Container im privaten Bereich anzuzeigen. Diese Option vereinfacht die
Interaktionen und erlaubt ein freieres Anpassen der öffentlichen Anzeige. Dafür ist die
Trennung der beiden schwieriger zu erkennen. Umgekehrt gäbe es die Möglichkeit den
privaten Raum innerhalb des öffentlichen anzuzeigen. Diese Option ist allerdings verwirrend
und lässt weniger Freiheit bei der Bedienung. So ist es z.B. nicht mehr von überall mehr
möglich im privaten Raum zu arbeiten.

Persönliche Ablage
Der Tabletop ist bei vielen Benutzern schnell überfüllt, daher möchten Benutzer unter
Umständen Visualisierungen vom Tisch entfernen. Da Elemente vom Tabletop nicht wie von
einem normalen Tisch entfernt werden können, muss eine Ablage genutzt werden. Da ein
Benutzer bei einem normalen Tisch die Möglichkeit hat seine Dokumente bei sich zu
verstauen, liegt es nicht fern dieses Konzept bei Tabletops auch zu nutzen. Dafür benötigt der
Benutzer eine Art der Identifizierung um auf seine Ablage zuzugreifen. Eine mögliche
Lösung dafür wäre bei Tabletops Tangibles. Diese lassen sich im Gegensatz zu einer Eingabe
wie eines Benutzernamens oder einer anderen ID schneller nutzen.

72 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Dieses Konzept lässt sich ebenfalls mit persönlichen Geräten verbinden. So ist die persönliche
Ablage keine reine Ablage mehr sondern eine Verbindung zu einem privaten Gerät innerhalb
des Systems. So können z.B. Visualisierungen auf den privaten Tablet übertragen werden und
alleine weiter untersucht werden.

Globale Ablage
Analog zur persönlichen Ablage ist auch eine globale Ablage denkbar. Sie ermöglicht es
mehreren Nutzern Elemente gemeinsam abzulegen. Bei richtigem Entwurf kann sie auch von
den Benutzern eingesetzt werden um zwischen den Benutzern Elemente auszutauschen.

Globales Menü
Das globale Menü ermöglicht den Zugriff auf globale Funktionen des Systems. So können
z.B. globale Elemente wie der Dialog für Einstellungen oder der öffentliche Raum ein- und
ausgeblendet werden.

Das globale Menü braucht eine eindeutige Interaktion, mit der es von überall geöffnet werden
kann. Dafür würde eine einzigartige Geste oder ein Tangible in Frage kommen.

6.3 Tabletop-Interaktionsmodalitäten

Tabletops haben verschiedenste Interaktionsmodalitäten. Es gibt die klassischen
Steuerelemente. Diese sind für Berührungsinteraktion optimiert worden ähnlich wie die auf
Smartphones. Weiter gibt es die in Natural User Interfaces und Smartphones beliebten
Touchgesten. Am modernsten sind jedoch die Tangibles mit denen Tangible User Interfaces
entwickelt werden. Leider sind Tabletops ähnlich wie Tablets für normale
Desktopanwendungen nicht geeignet. Daher müssen Anwendungen für Tabletops in Hinblick
auf diese Interaktionsmodalitäten entworfen werden. Dieses Kapitel stellt die einzelnen
Interaktionsmodalitäten vor und gibt mögliche Anwendungsgebiete innerhalb des Tabletop-
Clients an.

Die konkrete Nutzung der einzelnen Interaktionsmodalitäten für die Tabletop-Oberfläche wird
in Kapitel 7 beschrieben.

Interaktion mit klassischen Steuerelementen
Klassische Steuerelemente wie Menüs, Werkzeugleisten oder einzelne Buttons haben sich bei
Desktops seit langem durchgesetzt und werden bis heute eingesetzt(siehe 2.2.2). Da jedoch
für Maus entwickelte Steuerelemente mit Berührung nur sehr schwer bedient werden können,
weil z.B. die Finger zu dick für die meist filigranen Elemente sind [23], wurden für
Berührungseingabe neue oder optimierte Steuerelemente entwickelt. Diese Entwicklung
begann in größerem Maßstab mit den Smartphones, die bei dieser Bedienung eine
Vorreiterrolle einnehmen. Dieselben Erkenntnisse wurden dann auch für Tablets angewendet.
Bei Tabletops wurde ebenfalls in dieser Richtung geforscht und Frameworks mit optimierten
Steuerelementen entwickelt. Die Optimierungen sind ähnlich wie bei Smartphones,
Größenanpassung der Elemente für Finger, Einbindung von Pan-, Pinch- und Slide-Gesten.

Die klassischen Steuerelemente haben folgende Vorteile:

• Sie haben einen starken Aufforderungscharakter.
Steuerelemente wie Knöpfe oder Menüs haben meist einen starken
Aufforderungscharakter nach den Designkonzepten von D.A. Norman [51]. Das heißt
der Nutzer versteht beim Anschauen des Elements dessen Zweck. Dies ergibt sich
natürlich auch aus der oft langen Erfahrung von Benutzern mit diesen

73 Konzept

Steuerelementen. Dadurch unterstützen die Steuerelemente den ungelernten Benutzer
bei dem Verständnis der Funktionen.

• Sie sind teilweise schnell zu bedienen.
Elemente wie Knöpfe oder Schieberegler lassen sich schnell bedienen, denn sie
benötigen nur eine Interaktionsform wie Drücken oder Schieben.

Die Nachteile der klassischen Steuerelemente sind dagegen

• Manche klassischen Steuerelemente sind nur langsam zu bedienen.
Steuerelemente wie Menüs oder größere Listen sind nicht so schnell zu bedienen wie
andere Steuerelemente. Sie werden daher von erfahrenen Benutzern oft nicht
verwendet.

• Sie verbrauchen viel Platz.
Beschriftungen oder Icons, die den Steuerelementen ihren Aufforderungscharakter
verleihen wirken sich negativ auf die Größe aus. Dadurch können sie bei
Benutzeroberflächen, die wenig Platz zur Verfügung haben nur begrenzt eingesetzt
werden. Dieser Effekt verstärkt sich noch bei Elementen für die
Berührungsbedienung, da diese meist noch Größer sind.

Für die Anwendung ergibt sich aus diesen Erkenntnissen, dass klassische Steuerelemente wie
Knöpfe für häufige und wichtige Aufgaben eingesetzt werden. Steuerelemente wie Menüs
dagegen für Aufgaben die seltener genutzt werden müssen oder einen stärken
Erklärungsbedarf haben.

Drag&Drop-Interaktion
Drag&Drop ist eine Erweiterung von Icons kombiniert mit Mausinteraktion in Richtung von
Gesten. Wie der Name sagt basiert es auf dem Prinzip, dass ein Element aufgenommen,
verschoben (drag) wird und an einer anderen Stelle abgelegt (drop). Damit hat es eine
Analogie zur realen Welt, was sich meist vorteilhaft auf die Benutzererfahrung auswirkt.

Der Aufforderungscharakter hängt von dem Ausgangspunkt der Interaktion ab. Das
Ausgangselement muss anzeigen, dass es gezogen werden kann. Das ist nicht einfach und
wird von Benutzern oft erst durch Ausprobieren erkannt. Sobald ein Element aufgenommen
ist, kann es durch die Anzeige am Zeiger oder Berührpunkt mögliche Interaktionen mit
anderen Elementen darunter anzeigen. Daher hat die Interaktion auch immer ein
kontinuierliches Feedback, was eine natürliche Bedienung zulässt. Durch die Interaktion mit
der Oberfläche sind kontextabhängige Funktionen möglich.

Dadurch, dass die Herkunft der Drag&Drop-Interaktion bekannt ist und es sich um eine
Interaktion mit nur einem einzelnen Berührungspunkt handelt, kann sie sehr gut in
Mehrbenutzersystemen angewendet werden. Aus diesem Grund bieten Frameworks für
Tabletops einige Grundlagen für Drag&Drop-Interaktionen. Ein Beispiel ist das Surface SDK
von Microsoft, dort sind Drag&Drop-Interaktionen fest integriert und gut unterstützt.
Außerdem gibt es Steuerelemente, die speziell für Drag&Drop Operationen optimiert sind.

Gesten-Interaktion
Gesteninteraktion ist jede Art von dynamischer Interaktion auf dem Tabletop. Bei Tablets und
Smartphones haben sich bereits Gesten für Berührungsinteraktion durchgesetzt. Die meist
genutzten sind für Verschieben, Skalieren und Rotieren.

74 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Das größte Problem von Gesten ist ihre Existenz anzuzeigen. Denn Gesten verändern meist
direkt die Benutzeroberfläche, wie z.B. beim Skalieren. Daher ist der Aufforderungscharakter
von Gesten meistens schwierig, denn woher weiß der Benutzer was er manipulieren kann
[52]. Ihre Nutzbarkeit kommt durch ihre natürliche Bedienung mit der Benutzeroberfläche.
Die Beispiele dafür sind Verschiebe- und Pan-Gesten, diese verändern die Benutzeroberfläche
mit der Bewegung der Geste. Solche Gesten liefern dabei auch wie die Drag&Drop-
Interaktion ein kontinuierliches Feedback. Je komplizierter eine Geste ist, desto schwieriger
wird es sie in die Benutzeroberfläche zu integrieren. Je komplizierter eine Interaktion ist,
desto schwieriger wird es dafür eine natürliche Geste zu finden. Aus diesem Grund wird in
von Wobbrock et al. [48] das Verfahren vorgestellt, bei der Benutzer selbst Gesten definieren.
Dabei wird eine Studie mit Benutzer durchgeführt, bei der die Benutzer eine Geste für eine
bestimmte Aufgabe durchführen sollen. So können intuitive Gesten für bestimmte Aufgaben
gefunden werden.

Gesten können überall eingesetzt werden wo Elemente manipuliert werden können. Sie bieten
den Vorteil, dass sie keinen Platz durch Steuerelement verbrauchen. Wie schon genannt
müssen Gesten aber mit Sorgfalt entworfen werden, sonst sind sie für den Benutzer nicht
verständlich. Etwas anders verhält es sich mit bereits etablierten Gesten. Diese sind meist so
gebräuchlich, dass die meisten Nutzer deren Existenz als gegeben ansehen. Dazu gehören die
schon zu Anfang genannten Gesten: Verschieben, Skalieren und Rotieren.

Tangible-Interaktion
Die Tangible erweitern die Interaktionsmöglichkeiten um eine neue Dimension, indem sie
durch fassbare Objekte Interaktionen mit der Benutzerschnittstelle erlauben. Weiterhin geben
sie dem Benutzer eine stärkere Nähe zu der Benutzeroberfläche, was vor allem für Nutzer mit
weniger Erfahrung mit Computern angenehm sein könnte.

Zwei Nutzungen für Tangible liegen nahe: Einmal als Interaktionstangible, das eine
festgelegte Interaktion durchführt. Die zweite Möglichkeit ist etwas komplexer. Dabei ist das
Tangible eine Datenrepräsentation, mit der interagiert werden kann, bzw. die mit der
Benutzeroberfläche interagiert.

Interaktionstangible
Ein Interaktionstangible hat eine ihm zugeordnete Interaktion. Für diese Interaktion gibt es
eine bestimmte Sequenz, die mit dem Tangible durchgeführt wird. In diesem Sinne sind die
Interaktionstangibles vergleichbar mit Gesten. Allerdings ist durch die Existenz des Tangibles
ein höherer Aufforderungscharakter vorhanden. Im Weiteren müssen die Interaktionen nicht
komplett verbunden sein wie bei Gesten, da die Tangibles eindeutig sind. Die Interaktionen
sind zwar fest zugeordnet, können aber kontextabhängig unterschiedliche Aufgaben erfüllen.
So kann ein Tangible z.B. je nachdem wo es auf der Benutzeroberfläche abgesetzt wird
verschiedene Funktionen auslösen.

Diese Art von Tangibles kann ähnlich wie Gesten alle möglichen Aufgaben übernehmen. Da
Tangibles aber nur sehr wenig in größerem Maß genutzt worden sind, gibt es noch keine
Erfahrungswerte. Daher muss auch hier sorgfältig entworfen werden.

Datenrepräsentationstangible
Diese Tangibles repräsentieren visuelle Elemente oder Datenelemente des Systems. Wenn ein
Tangible ein Datenelement zugeordnet wird, kann es als Repräsentant des Datums mit der
Benutzeroberfläche interagieren. Im Gegensatz zu einer visuellen Repräsentation des Datums
innerhalb der Benutzeroberfläche, kann so viel einfacher mit diesen interagiert werden.
Weiterhin können die Tangibles und damit die Datenelemente von dem Tabletop entfernt

75 Konzept

werden und abseits der Benutzeroberfläche abgelegt werden. Dadurch erhält die
Benutzeroberfläche eine neue Dimension der Interaktion. Außerdem bieten die Tangibles den
Benutzern die Möglichkeit mit anfassbaren Objekten zu interagieren, das bringt den Benutzer
näher an die Benutzeroberfläche.

Analoges gilt für Repräsentationen von visuellen Elementen der Benutzeroberfläche, wie z.B.
Containern. Auch diese können von Tangibles repräsentiert werden. Das ermöglicht es
visuelle Elemente auf der Benutzeroberfläche mit Tangibles zu manipulieren oder
auszublenden.

Mit dieser Art von Tangible können, je nach Art des repräsentierten Elements,
Ausblendeaktionen, Positionierungsaktionen, Zuordnungsaktionen und Filteraktionen
durchgeführt werden.

6.4 Tabletop-Datenmanagement

Das Framework übernimmt wie in Kapitel 6.1 beschrieben einige Teile des
Datenmanagement durch Anbieten der Datenquelle und Abstraktion der Daten. Allerdings
benötigt der Tabletop-Client mit seinem privaten Raum ein eigenes Datenmanagement.
Dieses Datenmanagement verwaltet die Daten und Visualisierungen auf dem Tabletop. Die
konkrete Umsetzung der Datenhaltung wird in Kapitel 9 vorgestellt.

Die Verwaltung beinhaltet die Datenhaltung der Visualisierungen im privaten Raum. Weiter
verwaltet das Datenmanagement die Wechsel von Visualisierungscontainern zwischen
privaten und öffentlichen Raum. Wenn eine Visualisierung aus dem öffentlichen Raum
genommen wird, muss sie zwar in der Datenhaltung bleiben aber aus der Analyseumgebung
entfernt werden. Umgekehrt muss eine Visualisierung, die vom privaten Raum in den
öffentlichen Raum überführt wird, in die Analyseumgebung aufgenommen werden.

Ebenso muss das Datenmanagement die Verwaltung der Kopplungen übernehmen. Es
speichert die Kopplungen zwischen den Visualisierungen und hält Daten von
Visualisierungen vor, die mit welchen aus dem öffentlichen Raum gekoppelt sind. Denn diese
Daten müssen gesondert behandelt werden, da sie sich in der Analyseumgebung befinden und
gleichzeitig von Visualisierung im privaten Raum genutzt werden.

76 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

77 Lösungsansatz

7 Lösungsansatz

Der Lösungsansatz beschreibt Interaktionen und Benutzeroberflächenelemente, für die im
Lösungskonzept (Kapitel 6) beschriebenen Konzepte unter Einbeziehung der Anforderungen,
die in der Anforderungsanalyse (Kapitel 5) identifiziert wurden.

In 7.1 werden die Vorüberlegungen zu der Benutzeroberfläche und den Interaktionen
beschrieben. Diese wurden auf Basis der Anforderungen, Beobachtungen aus anderen
Projekten (siehe Kapitel 3), Konzepten aus dem Surface SDK und eigener Ideen entworfen.
Die Funktionen, die die Interaktionen ermöglichen sollen, wurden dafür in Kapitel 5
identifiziert. Nach den Vorüberlegungen wird die Vorstudie in 7.2 beschrieben, mit der die
Interaktionen und die Oberfläche aus 7.1 evaluiert und mit Ideen der Probanden ausgebaut
wird. Am Ende wird in 7.3 der Lösungsansatz aus den Vorüberlegungen mit den Ergebnissen
der Vorstudie noch einmal überarbeitet.

7.1 Vorüberlegungen

Die Vorüberlegungen zeichnen einen vorläufigen Lösungsansatz für die Benutzeroberfläche
und die Interaktionen.

Zuerst wird ein Überblick über die Benutzeroberfläche gegeben. Danach werden die Teile der
Benutzeroberfläche, wie die Powerwallanzeige und die Visualisierungscontainer, beschrieben.
Im Anschluss daran werden einige Interaktionen bzw. Funktionen dieser Teile näher
beschrieben. Zum Schluss wird das Filterkonzept für die Daten der Visualisierungen
beschrieben und die persönliche Ablage für Visualisierungen.

7.1.1 Überblick über die Benutzeroberfläche
Die Benutzeroberfläche ist eine freie Fläche auf dem Tabletop auf der die einzelnen Elemente
ungeordnet liegen (siehe Abbildung 49). Dieses Prinzip ist durch das Surface SDK [32]
inspiriert. Ist aber auch ähnlich im ZOIL Projekt [39] vorhanden.

Die gesamte Benutzeroberfläche kann für den privaten Raum genutzt werden. Daher liegen
die Visualisierungen des privaten Raums direkt auf der Benutzeroberfläche. Da die
Visualisierungen aber als Fenster funktionieren, liegen sie in Visualisierungscontainern. Die
Visualisierungscontainer können frei auf der Oberfläche verschoben und rotiert werden.
Ebenfalls auf der Benutzeroberfläche befinden sich die Powerwallansicht, der Datenexplorer
und die Oberflächenelemente, die auf Grund der Tangibleinteraktion auf der
Benutzeroberfläche erzeugt werden. Der Datenexplorer enthält Drag&Drop-Elemente für
Daten, die in der Analyseumgebung genutzt werden können. Diese können entnommen
werden und erzeugen neue Visualisierungen. Elemente wie die Powerwallansicht, der
Datenexplorer oder mögliche weitere Systemsteuerelemente können ebenfalls frei auf der
Oberfläche verschoben und rotiert werden. Die Elemente der Tangibles sind abhängig von
diesen. Tangibles, die Elemente auf der Oberfläche erzeugen sind die Tangibles für die
Filterung und die private Ablage. Die Tangibles für das Filtern erzeugen einen Kreis unter
diesem, in dem dann die Filterinteraktion stattfinden kann. Das Tangible für die private
Ablage erstellt einen Dialog als Ablagefläche für Visualisierungscontainer.

Die Kopplung von Visualisierungen innerhalb des privaten Raums wird als Linie zwischen
den Visualisierungscontainern angezeigt. Ebenso wird die Beziehung zwischen einer
Visualisierung und ihres Filtertangibles mit einer Linie dargestellt. Die gleiche Darstellung
kommt daher, dass die Kopplung und die Filterung die Elemente auf Datenebene auf ähnliche
Weise verbinden. Um eine Kopplung wieder zu entfernen, befinden sich an den Linien

78 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Knöpfe zum Entfernen mit einem entsprechenden Icon. Damit beide Benutzer einer
Visualisierung eine Kopplung aufheben können befindet sich an beiden Enden ein Knopf.

Abbildung 49: Skizze der Benutzeroberfläche

7.1.2 Powerwallansicht
Die Powerwallansicht (siehe Abbildung 50) repräsentiert den öffentlichen Raum auf der
Benutzeroberfläche des Tabletops. Sie ermöglicht es dem Benutzer Visualisierungen auf die
Powerwall zu übertragen und diese zu steuern. Die Powerwallansicht zeigt die
Visualisierungscontainer mit ihren Visualisierungen an, so wie sie auf der Powerwall
angezeigt werden. Die Visualisierungscontainer in der Powerwallansicht haben die gleichen
Funktionen wie jene im privaten Raum. Wenn zwei Visualisierungscontainer gekoppelt sind,
von denen sich einer im öffentlichen Raum befindet und der andere im privaten Raum, wird
die Kopplung über gleiche Rahmenfarbe angezeigt. Denn eine Linie über den Rahmen der
Powerwallansicht ist nicht sinnvoll darstellbar.

Private Visua-

lisierung

Private Visua-

lisierung Filterbereich

79 Lösungsansatz

Abbildung 50: Skizze der Powerwallansicht mit drei Visualisierungscontainern

Die Visualisierungscontainer können frei auf der Powerwallansicht verschoben werden aber
sie können nicht rotiert werden wie im privaten Raum. Das würde auf der Powerwall keinen
Sinn ergeben.

Da die Powerwallansicht meist kleiner ist als die Powerwall und damit meist auch eine
niedrigere Auflösung hat, müssen die Visualisierungscontainer auf der Powerwallansicht
skaliert werden. Dies hat zur Folge, dass entweder die komplette Powerwall gesehen werden
kann oder dass die Visualisierungen im gleichen Detail gesehen werden können wie auf der
Powerwall. Daher zeigt die Powerwallansicht einen Bereich der Powerwall an und ist damit
eine Art Fenster auf einen Teil der Powerwall, ein „Viewport“. Damit dieser Viewport frei auf
der Powerwall skaliert und verschoben werden kann, unterstützt die Powerwallansicht
„Pinch“- und „Pan“-Gesten. Das bedeutet mit einem Finger kann die Powerwall virtuell unter
dem Viewport verschoben werden. Das nennt sich „Pan“-Geste. Mit zwei Fingern kann die
Powerwall virtuell innerhalb des Viewports gestreckt und gestaucht werden. Das nennt sich
„Pinch“-Geste.

Um zu sehen wo sich der Viewport der Powerwallansicht auf der Powerwall befindet, hat die
Powerwallansicht an der rechten oberen Ecke eine „Minimap“. Die Minimap zeigt die
gesamte Powerwall stark verkleinert an. Innerhalb der Minimap wird der Viewport als
Rechteck angezeigt. So weiß der Benutzer immer wo er sich auf der Powerwall befindet ohne
die Ansicht mit der Powerwall zu vergleichen.

7.1.3 Visualisierungscontainer
Die Visualisierungscontainer (siehe Abbildung 51) enthalten, wie im Konzept beschrieben,
beliebige Visualisierungen. Um die Container zu manipulieren werden Gesten, die schon bei
Smartphones und Tablets in den normalen Gebrauch übergegangen sind, genutzt. Für
Verschieben wird eine Ziehgeste mit einem Finger genutzt. Skalieren wird als Pinch-Geste
mit zwei Fingern umgesetzt und Rotieren mit Drehen um eine Achse. Die Gesten können
fließend ineinander übergehen, denn wenn die zwei Finger parallel bewegt werden, findet
ebenfalls ein Verschieben statt. Die Gesten wurden in Varianten auch von Wobbrock et al.
[48] bestätigt.

Öffentliche Visualisierungscontainer

Minimap

80 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 51: Visualisierungscontainer
1) Interaktionsmodus, 2) Löschenknopf, 3) Drag&Drop-Interaktionselement

Um mit der Umgebung interagieren zu können, hat der Visualisierungscontainer an der
oberen linken Ecke ein Drag&Drop-Interaktionselement. Dieses Interaktionselement stellt
eine Miniaturdarstellung des Containers dar und ist somit eine Repräsentation des Containers
für Interaktionen mit anderen Elementen. Mit diesem Element werden die Aktionen
Verschieben auf die Powerwall, Duplizieren und Koppeln durchgeführt.

Am unteren Rand des Visualisierungscontainers ist ein Bereich für Steuerelemente. Dieser ist
hauptsächlich für Knöpfe mit häufig benötigten Funktionen reserviert. Man kann es als lokale
Werkzeugleiste sehen. Die Werkzeugleiste hat momentan zwei Funktionen mit jeweils einem
Knopf.

Der rechte Button dient dem Entfernen des Visualisierungscontainers und somit auch seiner
Visualisierung von der Benutzeroberfläche. Damit er nicht versehentlich gedrückt werden
kann, wird seine Funktion erst bei längerem Halten ausgelöst. Dazu wird eine visuelle
Rückmeldung gegeben, wie sich füllender Balken oder Rahmen um den Knopf. Wenn sich
der Visualisiercontainer im öffentlichen Raum befindet, wird er laut Konzept auch aus der
Analyseumgebung entfernt und daher auch von der Powerwall.

Da Interaktionen des Visualisierungscontainers und der Visualisierung in Konflikt geraten
können, muss einer der beiden Priorität gegeben werden. Dazu gibt es den linken Knopf auf
dem Visualisierungscontainer. Dieser Knopf dient als Umschalter des „Interaktionmodus“ des
Visualisieungscontainers. Der Interaktionsmodus hat zwei Zustände, den „Verschiebemodus“
und den „Bearbeitungsmodus“(siehe Abbildung 52). Der Verschiebemodus gibt dem
Visualisierungscontainer die Priorität über die Interaktionen. Das bedeutet der Benutzer kann
den Visualisierungscontainer mit seiner gesamten Fläche manipulieren, auch dort wo sich die
Visualisierung befindet. Der Bearbeitungsmodus gibt dagegen der Visualisierung die Priorität
über die Interaktion auf ihrer Fläche. Daher kann der Visualisierungscontainer nur noch an
den Rändern manipuliert werden und Interaktionen innerhalb der Visualisierung werden an
diese weitergegeben.

Visualisierung

1 2

3

81 Lösungsansatz

Abbildung 52: Zeigt die beiden Modi des Knopf für den Interaktionsmodus.
Beim Drücken wird zwischen diesen umgeschaltet.

Der linke Teil zeigt den Knopf im Verschiebemodus, der rechte zeigt ihn im Bearbeitungsmodus.

Die Interaktionen der Visualisierung werden von der Visualisierung selbst bestimmt. Daher
können sie je nach Visualisierung variieren.

Das Wechseln von Visualisierungen wird ebenfalls vom Visualisierungscontainer
übernommen. Sie geschieht im Verschiebemodus damit es keine Einschränkungen für die
Visualisierung bezogen auf die Interaktionen gibt. Der Wechsel geschieht über längere
Berührung der Visualisierung gefolgt von einer Wischgeste. Für die verschiedenen
Visualisierungen gibt es eine Vorschau über ein Karussell wie es aus Webanwendungen
bekannt ist.

7.1.4 Drag&Drop-Interaktionselement
Das Drag&Drop-Interaktionselement (siehe Abbildung 51) dient der Interaktion zwischen
verschiedenen Visualisierungscontainern. Das Element soll als eine Repräsentation des
Visualisierungscontainer angesehen werden und kann so an Stelle des Containers selbst mit
anderen Elementen der Benutzeroberfläche interagieren. Als Drag&Drop-Element kann das
Interaktionselement unabhängig von dem Visualisierungscontainer entnommen und abgelegt
werden. Die Hauptfunktionen, die das Interaktionselement ermöglicht, sind die Duplizierung,
das Verschieben auf die Powerwallansicht und die Kopplung von Visualisierungscontainern.

Die Duplizierung eines Containers erfolgt durch Verschieben des Interaktionselements in
einen freien Bereich im privaten Raum oder auf der Powerwallansicht (siehe Abbildung 53
unten). Falls das Interaktionselement auf die Powerwallansicht verschoben wird, muss der
Benutzer über ein Menü entscheiden ob ein Verschieben oder eine Duplizierung stattfinden
soll.

Die Kopplung geschieht durch das Ziehen des Interaktionselements auf einen anderen
Visualisierungscontainer (siehe Abbildung 53 oben).

Abbildung 53: Interaktionen mit dem Drag&Drop-Inter aktionselement
oben: Koppeln zweier Visualisierungscontainer

unten: Duplizierung eines Visualisierungscontainers

Das Drag&Drop-Interaktionselement ist somit kontextabhängig und erlaubt es mehrere
Funktionen in sich zu vereinen. Durch klar verständliche Unterschiede beim Kontext der

82 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Interaktionen kann der Benutzer die verschiedenen Funktionen dennoch leicht
auseinanderhalten.

7.1.5 Gesteninteraktion
Neben den Standardgesten aus 7.1.3 können auch für andere Interaktionen mit den
Visualisierungscontainern Gesten angewendet werden, so auch für die Duplizierung und
Kopplung.

Eine mögliche Geste für die Duplizierung wäre ein Auseinanderziehen eines
Visualisierungscontainers. Diese Art von Geste, mit jeweils einem Finger ausgeführt, würde
aber in Konflikt mit der Skalierungsgeste kommen. Darum wird eine Geste mit jeweils zwei
Fingern verwendet, die sich auf dem Visualisierungscontainer voneinander weg bewegen. Ab
einem bestimmten Abstand entstehen zwei gleiche Container. Eines der Fingerpaare behält
den alten Container und das andere erhält den duplizierten Container. (siehe Abbildung 54
oben)

Das Koppeln der Visualisierungscontainer wird durch eine Variante der vorherigen Geste
gelöst. Mit zwei Fingern wird der Visualisierungscontainer fixiert und einem weiteren Finger
wird von dem Container eine Ziehgeste auf einen anderen durchgeführt. Nach dem Loslassen
der Finger ist die Geste beendet. (siehe Abbildung 54 unten)

Abbildung 54: Gesteninteraktion mit dem Visualisierungscontainer
oben: Duplizieren mit Geste
unten: Koppeln mit Geste

7.1.6 Tangibleinteraktion
Mit den aus dem Konzept bekannten Interaktionstangibles ergibt sich für den Tabletop eine
weitere Variante der Interaktion mit den Visualisierungscontainern.

Um nicht zu viele verschiedene Tangibles zu benötigen wird auch hier eine kontextabhängige
Variante entworfen. Dadurch werden die Interaktionstangibles auf zwei minimiert.

Das erste ist das Duplizierungtangible. Es fungiert als eine Art Stempel. Als erstes wird durch
Stellen des Tangibles auf einen Visualisierungscontainer dieser registriert. Danach kann der
Benutzer durch Stellen desselben Tangibles auf den privaten Raum oder die
Powerwallanzeige den Visualisierungscontainer duplizieren. Wie bei einem Stempel kann
dies beliebig oft wiederholt werden. Eine Alternative mit zwei verbundenen Tangibles wäre
ein Kopieren- und ein Einfügentangible.

Das andere Tangible vereinigt mehrere Funktionen in sich. Die erste Unterscheidung ist beim
Registrieren des zugehörigen Visualisierungscontainers.

83 Lösungsansatz

Wird das Tangible nur kurz auf einen Visualisierungscontainer gestellt, wird der Container für
die Dateninteraktion registriert. Das bedeutet, die weitere Interaktion des Tangible hat
Auswirkungen auf die Daten des Containers bzw. seiner Visualisierung. Wird das Tangible
dann auf einen Visualisierungscontainer gelegt, wird eine Kopplung zwischen dem
registrierten und diesem Visualisierungscontainer angelegt. Wenn das Tangible andererseits
auf eine freie Region des privaten Raums abgelegt wird, dann wird ein Filterelement für den
Visualisierungscontainer angelegt. Damit können die Daten der Visualisierung dieses
Containers gefiltert werden (siehe 7.1.7).

Wird das Tangible länger auf einen Visualisierungscontainer gestellt, dann wird der Container
daran gebunden. Damit wird aus dem Tangible ein Repräsentionstangible für den Container.
Daher kann der Benutzer den Visualisierungscontainer mit dem Tangible manipulieren. Das
Tangible bietet die Möglichkeit den Container zu verschieben und zu rotieren. Eine
Skalierung ist mit einem einzelnen Tangible nicht möglich und wird daher mit der normalen
Geste, wie in 7.1.3 beschrieben, durchgeführt. Zudem kann das Tangible von der
Benutzeroberfläche genommen werden, wodurch sich der Visualisierungscontainer
ausblendet. Dadurch wird der reale Raum um den Tabletop selbst zur globalen Ablage für
Visualisierungscontainer.

Um kurzes von längerem Auflegen des Tangible unterscheiden zu können, benötigt der
Benutzer eine visuelle Rückmeldung. Dies kann durch die Animation eines sich schließenden
Kreissegments gelöst werden. Nachdem der Kreis vollständig ist, gilt es als langes Auflegen.

7.1.7 Filtern mit Tangibles
Laut Anforderungen und Konzept und entsprechend der Visualisierungspipeline sollen die
Daten der Visualisierungen gefiltert werden können. Eine Lösung mit Tangibles erschien
attraktiv. Darum wurde ein Filterinteraktionskonzept mit Tangibles erstellt. Das
Filterinteraktionskonzept sollte einfach zu verstehen und zu bedienen sein aber gleichzeitig
auch möglichst mächtig sein.

Eine Möglichkeit ist die Nutzung von Graphen, deren Knoten Mengen und Kanten Filter
darstellen, zu sehen in der Arbeit von Bosch et al. [17] .Diese Methode ist sehr mächtig und
die Darstellung ist einfach zu verstehen. Leider ist die Bedienung nicht ganz so einfach.
Außerdem verträgt es sich nur bedingt mit den Tangibles als Datenrepräsentation, wie es
gewünscht ist. In diesem Fall wären die Tangibles eher Manipulatoren des Graphen.

Daher wurde eine andere Vorgehensweise gewählt. Inspiriert wird das Filterkonzept von den
Darstellungen der Mengenlehre. Doch auch diese haben ihre Grenzen z.B. beim Schnitt und
eine Umsetzung wäre schwierig. Darum wurde es weiter vereinfacht. Die grundlegenden
Operationen bei dem Filterkonzept sind Vereinigung und Verfeinerung. Die eigentlichen
Filter werden durch Tangibles erzeugt. Die Tangibles sind dabei
Datenrepräsentationstangible. Jedes Tangible repräsentiert ein bestimmtes Datum. Dieses
Datum filtert die Ausgangsmenge der gesamten Filteroperation anhand dieses Datums. Als
Beispiel, wenn die Ausgangsmenge alle Fixationen sind und das Datum ein Proband, dann
entsteht eine Menge mit nur den Fixationen des Probanden. Diese gefilterten Mengen werden
schlussendlich über die Grundoperationen zur Ergebnismenge kombiniert. Die Verfeinerung
ist dabei im Prinzip nichts anderes als ein Schnitt. Dennoch ist „Verfeinerung“ der bessere
Begriff, da die Darstellung und Bedienung des Filterkonzepts im Grunde als Baum
funktionieren. Die Vereinigungen sind Nachbarknoten des Baums und Verfeinerungen
Kindknoten.

84 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 55: Filterkonzept mit Tangibles
Die Zylinder sind die Tangibles. Das graue Tangible stellt den Filterbereich her.

Der Baum schlägt sich auch in der Darstellung nieder. Der Wurzelknoten ist dabei das
Bedienungselement auf der die Filterinteraktion stattfindet. Er wird als Kreis dargestellt, zu
sehen in Kapitel 7.1.1, und erstellt durch ein Tangible wie in Kapitel 7.1.6 beschrieben. Durch
Ablegen eines Tangibles auf dem Kreis wird die Ergebnismenge auf den, durch das Tangible
beschriebenen Filter, reduziert. Werden nun weitere Tangibles auf den Kreis gelegt, werden
die Filtermengen dieses Tangibles zur Ergebnismenge hinzugefügt. So können Vereinigungen
genutzt werden. Dafür nochmal ein Beispiel für Eyetracking, wenn ein Benutzer mehrere
Tangibles für Probanden ablegt, dann werden die Fixationen aller dieser Probanden in die
Ergebnismenge übernommen. Jeder der Tangibles erzeugt innerhalb des Kreises einen
eigenen Kreis, der skaliert werden kann und in den wieder Tangibles abgelegt werden können.
Tangibles, die in den Kreis eines anderen Tangible gelegt werden, verfeinern die Filtermenge
dieses Tangibles. Das bedeutet in der Filtermenge des übergeordneten Tangibles bleiben nur
die Datenelemente, die auch in der Filtermenge des untergeordneten Tangibles vorkommen.
Werden mehrere Tangibles innerhalb des Kreises des Tangibles abgelegt, werden diese
Filtermengen vorher vereinigt, bevor sie die Filtermenge des übergeordneten Tangibles
verfeinern. Das entspricht dem allgemeinen Vereinigen. Das Verfeinern kann beliebig oft
wiederholt werden solange der Platz nicht ausgeht. Werden keine Tangibles auf dem Kreis
des Wurzelknotens abgelegt findet keine Filterung statt.

Sollen Daten zur Filterung verwendet werden, können sie durch einen Dialog einem
Datenrepräsentationstangible zugeordnet werden.

Das Filterkonzept ist relativ simpel und kann mit den Tangibles schnell bedient werden. Der
Benutzer kann sehr schnell in die Bedienung und Darstellung eingeführt werden. Die
Mächtigkeit des Filterkonzeptes wurde nicht näher untersucht, doch beim Ausprobieren mit
einigen Beispielen scheinen die meisten Möglichkeiten abgedeckt zu sein.

7.1.8 Persönliche Ablage
Eine persönliche Ablage wie sie im Konzept beschrieben wird, soll ebenfalls umgesetzt
werden. Auch für sie können Tangibles eingesetzt werden. Die Idee ist, dass jeder Benutzer
ein Tangible in Form einer Id-Karte erhält. Wenn die Karte auf einen freien Bereich des
privaten Raums gelegt wird, öffnet sich eine Ablage für Visualisierungscontainer. Die Ablage

85 Lösungsansatz

ist eine Drag&Drop-Ablage. Das bedeutet, dass Visualisierungscontainer mit dem
Drag&Drop-Interaktionselement in die Ablage überführt werden können.

Die Erweiterung dieser Idee mit persönlichen Geräten wie z.B. Tablets funktioniert ganz
ähnlich. Die Id-Karte öffnet in diesem Fall keinen einfachen Container, sondern zeigt den
privaten Raum des persönlichen Geräts an. Voraussetzung ist natürlich, dass das Gerät in die
Analyseumgebung eingebunden ist. Auf diese Weise können Visualisierungscontainer direkt
in den privaten Raum des persönlichen Gerätes abgelegt werden. Somit können die Container
sowohl abgelegt werden, als auch zur weiteren Untersuchung auf das persönliche Gerät
übertragen werden.

7.2 Vorstudie

Dieses Kapitel beschreibt die Vorstudie und deren Ergebnisse. Als erstes wird die
Durchführung der Studie und deren Aufgaben beschrieben. Danach wird das Verhalten der
Probanden beschrieben und die dabei gemachten Beobachtungen gekürzt wiedergegeben. Die
Ideen und Aussagen aber nicht bewertet oder zensiert. Die Studie wurde mit 5 Probanden
durchgeführt, die größtenteils auf dem Gebiet der Informatik arbeiten. Zum Schluss werden
die Beobachtungen zusammengefasst und analysiert.

7.2.1 Beschreibung
Die Studie nutzt „Paperprototyping“ [47] um das Konzept der Benutzeroberfläche und der
Interaktionen den Probanden vorzustellen. Beim Paperprototyping werden abstrahierte
Elemente der Benutzeroberfläche in Papierform hergestellt. Der Proband kann dann
Interaktionen anhand der Papierelemente ausführen und bewerten. Des Weiteren wird in
Anlehnung an das „User Defined Design“ [48] versucht durch Anregungen der Probanden
neue Ideen für das Konzept zu ermitteln. Dabei kann der Proband innerhalb des
Papierprototyps, Elemente der Benutzeroberfläche zeichnen und neue Interaktionen
beschreiben. Die Ergebnisse der Studie sind rein qualitativ.

Der Aufbau besteht aus einem ca. DIN A 1 großes weißes Blatt Papier, das auf einen Tisch
oder einer ähnliche Erhöhung wie z.B. Kartons gelegt wird. Dieses Papier stellt den Tabletop
dar. Auf dem Papier liegt ein brauner Papprahmen, der innen ungefähr die Größe des weißen
Papiers hat. Er stellt den Rand des Tabletop-Displays dar. Am Rand des Tischs wird eine
Kamera aufgestellt, um die Studie zu dokumentieren. Die Powerwall wird durch ein
Whiteboard oder eine Wand repräsentiert. (zu sehen in Abbildung 56)

Abbildung 56: Links: Studienszenario mit Position der Kamera
Rechts: Sicht der Kamera zur Dokumentation der Studie

86 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Durchgeführt wurde die Studie mit fünf Probanden. Vor Beginn der Studie wurden
demografische Aspekte sowie Vorkenntnisse anhand einer Umfrage (siehe Anhang A:
Fragebogen) ermittelt.

Tabelle 1: Teilnehmer der Studie

 Geschlecht Alter Touch-
Geräte

Nutzungsdauer
pro Woche (h)

Erfahrung
mit
Tabletops

Erfahrung
mit
Tangibles

Proband 1 Männlich 24 Ja >14 Nein Nein
Proband 2 Männlich 25 Nein 0 Nein Nein
Proband 3 Männlich 26 Ja 15 Nein Nein
Proband 4 Männlich 24 Ja 10 Ja Nein
Proband 5 Weiblich 23 Ja 48 Nein Nein

In der Studie wird für jede Funktionalität den Probanden anhand eines Beispiels eine Aufgabe
gestellt, für die sie mit den zur Verfügung stehenden Mitteln eine Interaktion entwickeln
sollen. Als Zweites oder wenn der Proband keine Idee für eine Interaktion hat, wird eine
eigene Interaktion vorgestellt, die der Proband dann objektiv und subjektiv bewerten kann.
Zusätzlich werden Probanden die Ideen von vorherigen Probanden vorgestellt die ihren
eigenen ähneln, so dass der Proband seinen Vorschlag noch verbessern kann. Der Proband
wird anfangs darauf hingewiesen, dass er durch lautes Nachdenken seinen Gedankengang
verdeutlichen soll.

Um das Prinzip abstrakt zu halten, wurden die Fenster der Visualisierungen im Lösungsansatz
als „Visualisierungscontainer“ bezeichnet. In der Studie wird dagegen der Begriff „Fenster“
verwendet, um die Probanden nicht zu verwirren.

Die Aufgaben in der Vorstudie wurden anhand der Vorüberlungen des Lösungskonzepts
entwickelt. Eyetracking-spezifische Funktionalitäten wurden verallgemeinert oder
weggelassen. Mögliche Interaktionen für folgende Aufgaben und zugehörige Funktionalität
wurden in der Studie untersucht. Die Aufgaben sind: Grundsätzliche Interaktionen mit
Fenstern auf berührungsempfindlichen Displays, Schieben eines Fensters auf die Powerwall,
Verschieben von Fenstern auf der Powerwall, Duplizieren eines Visualisierungsfensters,
Löschen eines Visualisierungsfensters, Koppeln von zwei Visualisierungsfenstern,
Entkoppeln von Visualisierungsfenstern, Nutzung einer private Ablage für Visualisierungen,
Nutzung einer globalen Ablage, ein Filterkonzept mit Tangibles erstellen, einen Filterbereich
für Tangibles erzeugen und Wechseln der Visualisierung im Fenster.

1. Grundsätzlich Interaktion mit Fenstern in berührungsempfindlichen Displays
Um einen Überblick über die grundsätzliche Fähigkeiten des Probanden mit
berührungsempfindliche Hardware zu bekommen und einen Vergleich mit existenten
Systemen zu ermöglichen, wird dem Proband die Aufgabe gegeben einfache
Interaktionen durchzuführen. Der Aufbau für diese Aufgabe ist eine freie Fläche mit
einem Papierelement, das ein Fenster darstellt. Der Aufbau wird dem Probanden
erklärt und er wird aufgefordert das Fenster zu verschieben, zu skalieren und zu
rotieren.

87 Lösungsansatz

Abbildung 57: Ausgangssituation bei Aufgabe 1

2. Schieben eines Fenster auf die Powerwall
Der Proband wird gebeten das Fenster auf die Powerwall zu schieben. Dabei wird
darauf geachtet, dass dem Probanden nicht vorgegeben wird ob das Fenster kopiert
oder verschoben wird. Der Aufbau zu Beginn der Aufgabe ist der gleiche wie in
Aufgabe 1. Mit dem Unterschied, dass eine Tafel oder ähnliches dem Proband als
Powerwall vorgestellt wird. Nachdem der Proband seine Interaktionsidee vorgestellt
hat, wird er gefragt wie der Endzustand aussieht.

Abbildung 58: Ausgangssituation von Aufgabe 2
Oben ist die Powerwall und unten der Tabletop zu sehen.

3. Verschieben des Fensters auf der Powerwall
Der Startaufbau dieser Aufgabe geht direkt aus der vorherigen hervor. Der Proband
wird gefragt wie er das Fenster auf der Powerwall verschieben würde.

88 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 59: Ausgangssituation von Aufgabe 3, falls der Proband das Fenster kopiert.

Dabei sollte der Proband die Erkenntnis haben, dass keine Interaktion mehr möglich
ist, falls das Fenster auf die Powerwall verschoben wurde (siehe Abbildung 60).
Daraufhin soll der Proband eine Lösung für das Problem finden.

Abbildung 60: Ausgangssituation von Aufgabe 3, falls der Proband das Fenster verschiebt.

Wenn keine Lösung gefunden wird oder eine andere als die Powerwallansicht wird
diese dem Proband vorgestellt. Die Powerwallansicht ist ein frei verschiebbares
Fenster, das einen skalierten Bereich der Powerwall anzeigt. Der Proband wird nach
seiner Meinung gefragt und es wird nochmals die Aufgabe gestellt, das Fenster auf die
Powerwall zu schieben. Im Anschluss wird er aufgefordert, das Fenster mit Hilfe der
Powerwallanzeige auf der Powerwall zu verschieben. In Hinblick darauf soll der

89 Lösungsansatz

Proband festlegen wann er auf die Powerwall schauen würde und wann auf den
Tabletop.

Abbildung 61: Tabletop mit Powerwallansicht und einem Fenster auf der Powerwall

4. Duplizieren eines Visualisierungsfensters
Ausgangsaufbau bei dieser Aufgabe ist ein Fenster auf dem Tabletop (siehe). Der
Proband wird aufgefordert das Fenster zu duplizieren. Davor wird der Proband darauf
hingewiesen, dass er alles einsetzen kann was ihm einfällt, zum Beispiel:
Steuerelemente, Gesten oder Tangibles. Wenn der Proband eine Geste vorschlägt,
können mögliche Konflikte mit z.B. der Skalierengeste besprochen werden. Nachdem
der Proband alle seine Ideen vorgestellt hat, wird dem Fenster eine Minidarstellung an
der linken oberen Ecke hinzugefügt. Danach wird der Proband gefragt wie dieses
Element zu verstehen sein könnte. Wenn der Proband keine Idee hat, wird das
Stichwort Drag&Drop eingeworfen. Falls der Proband den Begriff nicht kennt, wird
das Verfahren beschrieben. Im Falle, dass der Proband das Steuerelement versteht, soll
er die Interaktion mit diesem andeuten. Falls nicht, wird beschrieben, dass das
Steuerelement eine Miniaturrepräsentation des Fenster darstellt und an eine neue
Position verschoben werden kann, um das Fenster zu duplizieren. Wenn der Proband
bis zu diesem Punkt noch keine Interaktion mit Tangibles vorgeschlagen hat, wird er
aufgefordert dies noch zu tun.

90 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 62: Fenster mit Miniaturansicht(Drag&Drop -Interaktionselement)
auf dem Tabletop

5. Löschen eines Visualisierungsfensters
Bei dieser Aufgabe soll ein Fenster mit einer Visualisierung gelöscht werden. In der
Ausgangssituation gibt es wieder ein Fenster (siehe Abbildung 63). Der Proband wird
gefragt wie er das Fenster entfernen würde. Die angegebenen Lösungen können
daraufhin im Hinblick auf Mehrbenutzerbetrieb diskutiert werden. Als nächstes wird
dem Probanden die Variante mit einem Knopf am Fenster angeboten. Der Knopf hat
einen Mülleimer als Abbildung.

Abbildung 63: Fenster mit Löschenknopf

6. Koppeln von zwei Visualisierungsfenstern
Bei dieser Aufgabe soll eine Interaktion für das Koppeln von zwei
Visualisierungsfenstern gefunden werden. Der Proband bekommt als erstes eine kurze
Erklärung für welche Anwendungsfälle das Koppeln benötigt wird. Die
Ausgangsituation sind diesmal zwei Fenster mit den entsprechenden Drag&Drop-
Interaktionselementen. Nachdem der Proband seine Idee vorgeschlagen hat, wird
wieder die Interaktion mit dem Drag&Drop- Interaktionselement vorgestellt, falls der
Proband die Interaktion nicht schon gezeigt hat. Das Element kann auf das andere
Fenster geschoben werden, um eine Kopplung zu erzeugen. Falls der Proband noch
keine Interaktion mit tangibles vorgeschlagen hat, wird er an dieser Stelle aufgefordert
eine vorzuschlagen. Nachdem alle Interaktionen besprochen sind soll der Proband
zeigen wie er eine Kopplung darstellen würde.

91 Lösungsansatz

Abbildung 64: Zwei Fenster mit Drag&Drop-Interaktio nselementen

7. Entkoppeln von Visualisierungsfenstern
Nachdem der Proband vorgeschlagen hat wie die Kopplung auszusehen hat, soll er als
nächstes eine Interaktion angeben, die die Kopplung aufhebt. Er kann dabei von seiner
eigenen Darstellung der Kopplung ausgehen. Wenn der Proband mit seinen
Vorschlägen fertig ist, wird ihm eine Variante mit Linien als Kopplungsdarstellung
und Knöpfen, um die Kopplung aufzuheben, vorgestellt (siehe Abbildung 65).

Abbildung 65: Gekoppelte Fenster mit Linie und Knöpfen

8. Private Ablage für Visualisierungen
Die private Ablage ist eine Interaktion, die direkt aus dem Interaktionskonzept mit
Tangibles hervorgeht. Ein Tangible erzeugt hier einen Ablagecontainer in den
Visualisierungsfenster und optional andere Elemente abgelegt werden können. Das
Tangible ist als Identifikationskarte gestaltet, um dem Benutzer die private Bedeutung
zu suggerieren. Der Ursprungszustand bei dieser Aufgabe ist ein Fenster auf dem
Tabletop. Der Proband bekommt die Id-Karte und ihm wird erklärt, dass es sich dabei
um ein Tangible handelt. Der Proband kann die Karte auf den Tabletop legen, worauf
die Ablage erscheint (siehe Abbildung 66). Dem Proband wird erklärt, dass es sich
dabei um eine Ablage für Elemente des Systems, insbesondere Visualisierungsfenster,
handelt. Der Proband soll daraufhin ein Fenster ablegen.

92 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 66: Id-Karte erzeugt private Ablage für Fenster(rechts)

9. Globale Ablage für Visualisierungen
Um eine einfachere Ablage zu haben, die auch gemeinsam genutzt werden kann, soll
zusätzlich eine globale Ablage entworfen werden. Darum wird der Proband gefragt
wie er sich in Anlehnung an die private, eine globale Ablage vorstellen könnte.
In Anlehnung daran wird danach das Prinzip vorgestellt ein Tangible direkt an ein
Visualisierungsfenster zu binden. Das bedeutet das Fenster wird danach direkt durch
das Tangible positioniert und rotiert. Außerdem ist das Fenster nur sichtbar, wenn das
Tangible auf dem Tabletop liegt. Daher kann es ebenfalls als Ablage genutzt werden.

10. Filterkonzept mit Tangibles
Für die Analyseumgebung sollte eine Möglichkeit gefunden werden mit Tangibles
Daten einfach und intuitiv zu filtern. Das Filtersystem sollte daher einen möglichst
guten Kompromiss aus Mächtigkeit und einfacher Bedienung beinhalten.
Ausgangsituation bei dieser Aufgabe ist ein runder Bereich auf dem Tabletop (siehe
Abbildung 67), der als Filterinteraktionsbereich für die Tangibles dienen soll und einer
Visualisierung zugeordnet ist. Vorgegeben sind weiterhin einige Tangibles, denen
Datenelementen aus der Gesamtdatenmenge zugeordnet sind. Die Datenelemente sind
dann die Filterkriterien. Mit diesen Vorgaben und einem Datenbeispiel, aus dem
Umfeld des Probanden, soll der Proband ein Filterinteraktionskonzept entwickeln.
Wenn der Proband keine eigenen Ideen mehr hat, wird das eigene Konzept vorgestellt.

Abbildung 67: Kreis als Filterbereich

93 Lösungsansatz

11. Filterbereich für Tangibles aufrufen
In Anschluss an Aufgabe 10 soll bei dieser Aufgabe, nachdem der Proband von dem
Filterkonzept gehört hat, die Interaktion gefunden werden, um einen
Filterinteraktionsbereich für eine Visualisierung bzw. dessen Fenster zu erstellen.
Ausgangsituation ist wieder ein einzelnes Visualisierungsfenster. Der Proband wird
gefragt wie er einen Filterbereich erstellen würde. Wenn der Proband fertig ist, wird
angeboten den Filterbereich mit einem Tangible zu öffnen.

12. Fenster-/Visualisierungs-Interaktionsmodus
Es gibt zwei Interaktionsmodi für die Fenster. Im Verschiebemodus kann nur mit dem
Fenster interagiert werden, im anderen auch mit der Visualisierung. Auf diese Weise
kann der Benutzer die ganze Fensterfläche nutzen, um das Fenster zu verschieben oder
zu skalieren. Die Ausgangssituation ist ein Fenster mit einem Knopf. Der Proband
wird als erstes nochmal gefragt wie er verschieben oder skalieren würde. Wenn der
Proband die Visualisierungsfläche nutzt, wird er darauf angesprochen, dass die
Visualisierung möglicherweise auch Interaktionen zulässt. Danach wird der Proband
auf den Knopf aufmerksam gemacht. Der Knopf hat ein Steuerkreuz abgebildet, wird
er gedrückt dann kommt wird es ein Schraubenschlüssel. Der Knopf zeigt den Status
des Interaktionsmodus an. Falls der Proband die Bedeutung nicht versteht, wird das
Konzept erklärt. Der Steuerkreuzknopf zeigt den Verschiebenmodus an und der
Schraubenschlüsselknopf zeigt den Bearbeitenmodus an. Beim Drücken dient der
Knopf als Umschalter.

Abbildung 68: Fenster mit den beiden Modi des Knopfs

13. Wechseln der Visualisierung im Visualisierungsfenster
Eine weitere nötige Interaktion ist das Wechseln der Visualisierung im Fenster. Dazu
ist wieder ein Fenster Ausgangspunkt dieser Aufgabe. Der Proband wird gefragt, wie
er die Visualisierung in diesem Fenster wechseln würde. Wenn er keine Geste nennt,
wird explizit nachgefragt.

Es wurde angestrebt die Aufgaben der Studie in der angegebenen Reihenfolge durchzuführen.
Allerdings sind sie manchmal ineinander übergegangen oder der Proband hat sie zu einem
früheren Zeitpunkt schon beantwortet.

94 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

7.2.2 Proband 1
Proband 1 ist männlich und 24 Jahre alt. Er studiert Informatik und hat Erfahrung mit
Convertible Notebooks und Smartphones.

Der Proband nutzt für die Interaktionen Verschieben, Skalieren und Rotieren die
Standardgesten wie in Kapitel 7.1.3 beschrieben.

Für das Steuern der Powerwall legt der Proband einen extra Bereich auf dem Tabletop fest.
Um ein Fenster auf der Powerwall anzuzeigen, würde der Proband das Fenster auf diesen
Bereich schieben. Dabei erwartet der Proband nicht, dass diese den Bereich der Powerwall
überlappen können, sondern dass sie direkt übertragen werden. Die vorgestellte
Powerwallansicht findet der Proband sehr gut, da sie sich mit seiner Idee deckt. Beim Steuern
der Powerwall über die Powerwallansicht würde er hauptsächlich auf diese schauen.

Der Proband schlägt für das Duplizieren eines Fensters eine Geste vor. Die Geste entspricht
der Standardgeste für Skalieren. Das ergibt einen Konflikt der beiden Gesten. Der Proband
weiß keine Lösung, um diesen Konflikt zu umgehen. Der Vorschlag zwei statt einem Finger
einer Hand zu nutzen wird angenommen. Tangibles würde der Proband in dieser Situation auf
die gleiche Weise nutzen wie die Geste. Eine andere Idee dazu hat er nicht. Das Drag&Drop-
Interaktionselement versteht der Proband auch nach einiger Erklärung nicht wirklich. Auch ist
er von der Idee nicht sehr überzeugt.

Um ein Fenster zu löschen, würde der Proband es auf den Rand ziehen. Den Knopf zum
Löschen findet er nicht gut.

Für die Kopplung von Fenstern nutzt der Proband ebenfalls eine Geste. Dabei würde er den
Container mit zwei Fingern festhalten und mit einem Finger eine Linie zu dem anderen
Fenster ziehen. Die Kopplung würde der Proband als Linie zwischen den beiden Fenstern
darstellen. Das Entfernen der Kopplung würde der Proband als Geste lösen, bei der bildlich
mit einem Finger die Linie durchtrennt wird (siehe Abbildung 69). Ein Knopf ist auch hier
unerwünscht.

Abbildung 69: Entkoppeln zweier Fenster durch Durchstreichen der Linie

Die persönliche Ablage wurde bei kurzer Erklärung und der Simulation mit Papier vom
Probanden nicht verstanden. Nachdem das Prinzip ausführlich erklärt und vorgeführt wird,
versteht der Proband die Funktion. Der Proband ist allerdings von der Idee nicht überzeugt
und würde eher eine globale Ablage nutzen.

95 Lösungsansatz

Die globale Ablage würde der Proband als Randleiste umsetzen. Diese kann mit einer Geste
aus dem Rand herausgezogen werden. Das Ablegen einer Visualisierung funktioniert analog
zum Übertragen auf die Powerwallansicht. Der Vorschlag ein Tangible an ein Fenster zu
binden um das Fenster dann ablegen zu können wurde anfangs nicht begriffen. Nach einer
ausführlichen Erklärung wird die Idee aber als gut bewertet.

Als Filterinteraktionskonzept schlägt der Proband boolesche Ausdrücke vor. Diese können
mit speziellen Tangibles gebaut werden. Jedes der Tangibles ist entweder eine Menge oder
ein Operator. Der Vorschlag des Filterkonzepts aus dieser Arbeit wurde schnell verstanden
und sehr positiv bewertet.

Der Interaktionsmodus bei den Fenstern wurde zwar nicht auf Anhieb verstanden, aber nach
kurzer Erklärung ist der Proband von dessen Funktionalität überzeugt.

7.2.3 Proband 2
Proband 2 ist männlich und 25 Jahre alt. Er studiert Softwaretechnik mit der Vertiefung in
Visualisierung und Interaktive Systeme. Er hat kaum Erfahrung mit berührungsempfindlichen
Geräten.

Dieser Proband nützt die Standardgesten für Verschieben, Skalieren und Rotieren der Fenster.

Um die Powerwall zu steuern, schlägt der Proband eine „Bild in Bild“-Umschaltung vor, die
es dem Benutzer ermöglicht zwischen der lokalen Ansicht und der Powerwall umzuschalten,
ähnlich wie es bei Fernsehern der Fall ist. Verschieben würde er das Fenster indem er es in
Richtung der Powerwall schiebt. Der Vorschlag der Powerwallansicht aus dieser Arbeit
gefällt dem Probanden auch sehr gut. Hier würde er das Fenster direkt auf die Ansicht
verschieben (siehe Abbildung 70). Dass sich ein Fenster mit der Ansicht überlappen kann,
hält er für unnötig. Der Proband erkennt, dass der Übergang zwischen dem privaten Raum
und der Powerwallansicht schwierig ist und ein wohlüberlegtes Feedback benötigt. Daraufhin
hat er einen neuen Einfall. Die Berührungspunkte beim Schieben des Fensters können als
Bezugspunkte genommen werden. Sobald sich diese auf der Powerwallansicht befinden, wird
das Fenster auf die Powerwallansicht verschoben, statt im privaten Raum zu sein. Bei der
Steuerung der Powerwall mit der Ansicht würde der Proband in den meisten Fällen auf die
Powerwallansicht schauen. Auf Nachfrage bestätigt der Proband, dass er auf die Powerwall
schauen würde, wenn er etwas vorführe.

Abbildung 70: Schieben eines Fensters auf die Powerwallansicht

96 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Das Duplizieren von einem Fenster könnte sich der Proband mit einer Geste vorstellen. Die
Geste wird mit beiden Händen ausgeführt und zieht das Fenster auseinander. Um die Geste
von der Skalierung zu unterscheiden schlägt der Proband die Nutzung von drei Fingern vor.
Besser findet der Proband aber das Duplizieren über einen Knopf. Dieser erzeugt an einer
beliebigen Stelle ein Duplikat des Fensters. Das Drag&Drop-Interaktionselement wird,
nachdem es erklärt wurden, vom Probanden als nicht intuitiv bezeichnet. Daraufhin schlägt
der Proband vor, dass der Knopf für die Duplizierung eine Drag&Drop-Interaktion auslöst.
Diese erzeugt eine Vorschau des duplizierten Fensters, das frei auf dem Tisch positioniert
werden kann. Für die Duplizieren-Interaktion mit Tangibles schlägt der Proband dieselbe
Abfolge wie bei der Geste vor nur, dass statt den Händen ein Tangible genutzt wird. Die
Duplizierung per Tangible durch Stempel-Interaktion wird akzeptiert.

Um ein Fenster zu entfernen schlägt der Proband vor, das Fenster auf einen Mülleimer zu
ziehen oder einen Knopf zum Löschen anzubringen. Er bevorzuge aber den Knopf, da das
Ziehen des Fensters umständlich ist.

Das Koppeln zweier Fenster würde der Proband analog zur Duplizierung ebenfalls mit einem
Knopf lösen, der eine Drag&Drop-Operation auslöst. Mit der Drag&Drop-Operation kann das
zweite Fenster ausgewählt werden. Für die gleiche Funktion mit Tangibles hat der Nutzer
keine Idee. Das kombinierte Tangible mit der Duplizierung gefällt dem Benutzer nicht so gut.
Die Kopplung zweier Fenster würde der Proband über Farbcodierung anzeigen. Zwei
gekoppelte Fenster haben z.B. die gleiche Rahmenfarbe. Die Kopplung über eine
Verbindungslinie findet der Proband nicht ideal, weil diese verdeckt werden könnte. Das
Entkoppeln würde der Proband über einen Knopf umsetzen.

Die persönliche Ablage wird vom Probanden nach kurzer Erklärung verstanden. Der Proband
findet sie gut. Um Fenster in die Ablage zu verschieben, würde der Proband gleich vorgehen
wie beim Verschieben in die Powerwallansicht.

Das Binden eines Tangibles an einen Visualisierungscontainer findet der Proband gut.
Allerdings merkt er an, dass bei den Tangibles mit kombinierten Funktionen dann die
Duplizierung und Kopplung unklar wird.

Für die Filterung mit Tangibles hat der Proband keine Idee. Nach kurzer Überlegung, schlägt
der Proband eine Interaktion analog zur Mengenlehre vor. Er kann aber keinen nützlichen
Umgang mit den Tangibles finden. Das Filterkonzept aus den Vorüberlegungen gefällt dem
Probanden sehr gut. Allerdings merkt er an, dass diese Bedienung für Wissenschaftler
möglicherweise nicht mächtig genug ist.

Nach kurzer Einweisung ist dem Proband der Konflikt zwischen Interaktion mit dem Fenster
und der Visualisierung innerhalb klar. Der Interaktionsmodus wird erst nach Erklärung
verstanden. Dabei ist der Proband anfangs skeptisch, nach einigen Beispielen ist er aber
überzeugt.

7.2.4 Proband 3
Der 3. Proband ist männlich und 26 Jahre alt. Er studiert Softwaretechnik und hat längere
Erfahrung mit Smartphones.

Der Proband nutzt Standardgesten für das Rotieren, Verschieben und Skalieren.

Für das Verschieben eines Fensters auf die Powerwall schiebt der Proband das Fenster in
Richtung der Powerwall aus dem Rand. Das Fenster ist danach nicht mehr auf dem Tabletop
sondern nur noch auf der Powerwall zu sehen. Auf Anfrage, wie der Proband nun das Fenster

97 Lösungsansatz

auf der Powerwall manipulieren würde, erkennt er das Problem. Der Proband schlägt keine
Powerwallansicht vor und hat auch sonst keine Idee wie man die Fenster komplett steuern
könnte. Von der Powerwallansicht ist der Proband begeistert. Das Schieben eines Fensters auf
die Powerwall würde der Proband durch Verschieben des Fensters in die Powerwallansicht
lösen. Die Idee von Proband 2 den Berührpunkt des Benutzers als Bezugspunkt zu
verwenden, findet der Proband gut.

Für das Duplizieren von Fenstern schlägt der Proband zwei Gesten vor. Die erste ist das
Auseinanderziehen von Fenstern wie es auch schon Proband 1 und Proband 2 vorgeschlagen
haben. Dabei schlägt er jeweils zwei Finger pro Hand vor, damit es keinen Konflikt zu
anderen Gesten gibt. Die zweite Geste ist ein symbolisches Durchschneiden des Fensters mit
einem Finger. Der Proband führt es vor indem er einen Finger vom oberen Rand zum unter
Rand des Fensters zieht. Außer den Gesten schlägt der Proband Copy&Paste mit Menüs vor.
Dabei könne er sich eine Art Kontextmenü vorstellen, das auf den Fenstern und dem freien
Bereich des Tabletops geöffnet werden kann. Die Funktion des Drag&Drop-
Interaktionselements versteht der Proband nach kurzer Erklärung. Er empfindet das Element
allerdings als störend. Die Idee Drag&Drop-Elemente als Repräsentation des Fensters zu
nutzen findet er allerdings sehr gut. Er schlägt vor ein Drag&Drop-Element durch einen
Button zu erstellen, das dann im Fenster erscheint. Dieses Element kann dann wie das
Drag&Drop-Interaktionselement verwendet werden(siehe 7.1.4).

Beim Löschen bevorzugt der Proband das Ziehen des Fensters auf einen Papierkorb oder den
Rand. Ein Löschbutton könnte versehentlich gedrückt werden.

Zum Koppeln könnte sich der Proband eine Zusammenziehgeste mit Drag&Drop-Elementen
oder das Ziehen eines Drag&Drop-Elements auf ein anderes Fenster vorstellen. Auch das
Verbinden von Konnektorpunkten (siehe Abbildung 71) an den Fenstern ist möglich. Ebenso
ist die Lösung durch ein Koppeltangible vorstellbar. Er hält jedoch die Tangible-Lösungen
nicht für intuitiv.

Abbildung 71: Erklärung von Koppeln mit Konnektorpu nkten

Der Proband bevorzugt das Verbinden von bestimmten Fensterpunkten(Koppel- oder
Ankerpunkte). Entkoppelt wird durch das Durchtrennen der Verbindungslinie. Es könnte aber
auch einen Entkoppelknopf an der Linie oder am Fenster geben.

Für die Kopplungsdarstellung wird eine Farbkodierung vorgeschlagen. Die Linien sollen nur
bei aktiven Fenstern angezeigt werden.

98 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Die private Ablage wird von Proband als gut empfunden.

Auch das gebundene Tangible wird als gute Idee angesehen, musste aber erklärt werden.

Zum Filtern schlägt der Proband eine Graphstruktur vor. Er versteht die vorgeschlagene
Filteridee und findet sie gut.

Ebenso wird die Notwendigkeit des Verschiebe- und Bearbeitungsmodus verstanden. Der
Proband hat aber ein Problem mit dem Togglebutton und schlägt eine Art von Radiobutton
vor.

Für den Visualisierungswechsel im Fenster könnte er sich einen Button oder eine Wischgeste
vorstellen. Dabei sollte aber der aktuelle Interaktionsmodus beachtet werden und man sollte
eine Vorschau einbauen. Bei vielen Visualisierungen wäre ein Dropdown-Menü gut.

7.2.5 Proband 4
Der 4. Proband ist männlich und 24 Jahre alt. Er studiert Softwaretechnik und hat Erfahrung
mit Smartphones. Er hat schon einen Tabletop-PC benützt.

Der Proband hat keine Idee für den Einsatz von Tangibles.

Für das Verschieben und Skalieren von Fenstern schlägt er die Standardgesten vor. Für die
Rotieren-Operation einen Kreis um das Element, der überall angefasst werden kann.

Durch das Schieben des Fensters aus dem Rand in Richtung der Powerwall, wird auf die
Powerwall verschoben. Das Interaktionsproblem wird über ein Klonen der Powerwall gelöst.
Wenn auch ein Bereich auf dem Tisch ohne Interaktion mit der Powerwall existieren soll,
könnte man durch „Bild in Bild“ zwischen beiden wechseln. Die vorgestellte
Powerwallansicht wird positiv aufgenommen. Fenster werden einfach auf die Ansicht
geschoben oder mit einer speziellen Geste, sofern eine Überlappung mit der Powerwallansicht
möglich sein soll. Der Proband würde auf die Powerwall schauen, wenn er etwas zeigen will
und auf den Tisch, wenn er für sich selbst arbeitet.

Duplizieren will er über eine längere Berührung mit dem ein Menü aufgerufen wird. Die
Geste, die er vorschlägt kollidiert mit der Skalierungsgeste. Darauf hingewiesen, entschließt
er sich zum Auseinanderziehen mit vier Fingern, findet es aber nicht sehr intuitiv. Das
Drag&Drop-Interaktionselement wird erst nach Erklärung verstanden und für sinnvoll
erachtet. Als Alternative wäre ein verständlicher Ankerpunkt oder ein Seitenmenü am Fenster
möglich. Bei der Benutzung von Tangibles könnte er sich eine Variante vorstellen, bei der ein
Menü aus dem Fenster kommt oder die Stempel-Aktion.

Gelöscht wird mit einem Button oder dem üblichen X. Möglich ist auch das Ziehen in einen
Mülleimer oder über den Rand.

Für das Koppeln schlägt der Proband vor, beide Fenster anzutippen. Nach dem Hinweis auf
den Konflikt durch mehrere User hat er nach mehreren unvollständigen Ansätzen keine Idee
mehr. Die Benutzung eines Koppelbutton und nachfolgendes Ziehen findet er gut. Stempeln
mit einem Koppeltangible findet er sinnig, aber er zieht den Einsatz eines
Koppeltangiblepaars vor. Damit werden die Fenster kurz angetippt.

Entkoppelt wird über ein Menü oder über ein Tangiblepaar entsprechend zum Koppeln.

99 Lösungsansatz

Die private Ablage wird verstanden und für das Ablegen wird Drag&Drop empfohlen. Für die
globale Ablage wird ein Rand-Container vorgeschlagen.

Der Proband schlägt selbst vor, ein Fenster durch ein Tangible aufzunehmen. Er würde das
Fenster aber nicht fest binden. Nach der Erklärung wird das Binden als nicht schlecht
empfunden.

Die vom Proband vorgeschlagenen Filterlösungen haben nur eingeschränkte Möglichkeiten,
da Schnitt und Vereinigung vom Filtertyp abhängig sind. Die angebotene Filterlösung wird
verstanden und als gut empfunden (siehe Abbildung 72).

Abbildung 72: Proband beim Ausprobieren des vorgeschlagenen Filterkonzepts

Der Konflikt der Interaktionen innerhalb des Fensters und mit dem Fenster selbst wird
erkannt. Der Proband schlägt einen Modus vor der nur eine einmalige Operation zulässt. Der
vorgeschlagene Interaktionsmodus-Umschalter wird nicht als gut empfunden, da danach
wieder zurückgeschaltet werden muss.

Bei mehreren Visualisierungen innerhalb eines Fensters schlägt der Proband vor, wie bei
Webseiten, mit Hilfe eines Karussells durch die Visualisierungen zu navigieren. Alternativ
kann ein Radialmenü benützt werden. Als Geste wird Wischen vorgeschlagen.

Der Proband merkt an, dass er generell Menüs bevorzuge, da man dabei direkt die Bedeutung
und Möglichkeiten sähe. Das ist Vorteilhaft wenn man nicht täglich mit einer Oberfläche
arbeitet.

7.2.6 Proband 5
Der 5. Proband ist weiblich und 23 Jahre alt. Sie studiert Forschung und Entwicklung in der
Erziehungswissenschaft im Masterstudiengang. Sie hat Erfahrung im Umgang mit
Smartphones und einem iPad.

Die Probandin hat keine spontanen Ideen für Tangibles. Sie könnte sich vorstellen damit zu
Malen. Der Hinweis, dass jedes Tangible individuell erkannt wird, führt zu ihrer Idee, mit
Tangibles Elemente zu gruppieren und zu kennzeichnen. Die Standardinteraktionen führt sie
etwas ungewöhnlich aus. Sie rotiert die Fenster mit vier Fingern und verschiebt sie mit drei
Fingern. Das Skalieren erfolgt in üblicher Weise.

100 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Ein Fenster würde sie in Richtung der Powerwall „schubsen“, um es auf der Powerwall
anzuzeigen. Sie erkennt das Interaktionsproblem mit der Powerwall und möchte, dass das
Fenster nicht vom Tisch verschwindet. Ob ein Fenster nur auf dem Tisch existiert oder auch
auf der Powerwall, soll farblich unterschieden werden. Für alleiniges Arbeiten würde der
Tisch genutzt, um jemand etwas zu zeigen würde die Probandin auf die Powerwall schauen.
Eine Powerwallansicht auf dem Tisch findet sie sehr sinnvoll. Sie würde jetzt die Fenster auf
die Powerwallansicht schieben. Die Idee von Proband 2, einen möglichen
Skalierungsunterschied beim Überwinden des Berührungspunkts auf die Powerwallansicht
stattfinden zu lassen, findet sie gut. Eine Überlappung von Fenstern auf der Powerwall findet
sie eher störend und keinesfalls nötig.

Fenster duplizieren würde die Probandin mit einem Button. Das duplizierte Fenster erscheint
leicht versetzt und kann dann verschoben werden. Mehrfach dupliziert wird durch
wiederholtes Drücken. Die Drag&Drop-Variante wird gleich verstanden und auch als gute
Lösung empfunden. Sie könnte sich auch eine Duplizierung durch Teilen mit einer Geste
vorstellen. Vier Finger ziehen das Fenster auseinander. Auf den Einsatz von Tangibles
hingewiesen kommt die Probandin schnell auf ein Dupliziertangible mit dem das Stempeln
nachgebildet wird. Den Einsatz von einem Tangiblepaar findet sie zu aufwendig.

Zum Löschen könnte es, nach Meinung der Probandin, entsprechend auch ein Löschtangible
geben. Bei einem Löschbutton wird die Gefahr eines unbeabsichtigten Löschens als zu groß
empfunden, eine ständige Nachfrage als zu lästig. An das Schieben erinnert, sieht die
Probandin sofort das „vom Tisch schieben“(siehe Abbildung 73) als gute Lösung.

Abbildung 73: Die Probandin schiebt ein Fenster vom Tisch

Bei der ersten Idee zum Fenster koppeln werden die Fenster aneinandergeschoben. Danach
könnte sich die Probandin ein Koppeltangible oder Koppeltangiblepaar (siehe Abbildung 74)
vorstellen. Die Kopplung könnte durch Linien oder gleiche Zahlen in der linken oberen Ecke
angezeigt werden. Den Vorschlag gleiche Farben zu nehmen findet sie nicht so gut. Die
Entkopplung wird durch ein Entkoppeltangible vorgenommen. Eine Unterbrechung der
Koppellinie findet sie auch gut.

101 Lösungsansatz

Abbildung 74: Das Koppeln mit einem Tangiblepaar wird angedeutet

Eine persönliche Ablage, die an eine Id-Karte gekoppelt ist, wird für gut befunden. Die
Fenster werden hineingeschoben und erscheinen als Mini-Fenster. Die globale Ablage hätte
die Probandin gerne als Weltkugel. Da es aber keine sinnvolle Position dafür gibt, wird der
Vorschlag die Ablage in eine „Randschublade“ zu integrieren akzeptiert.

Das gebundene Tangible wird verstanden und als sinnvoll empfunden.

Zur Filterung hatte die Probandin keine Ideen, die vorgestellten Lösungsansätze fand sie aber
gut.

Als Unterscheidung ob mit oder im Fenster gearbeitet wird, wird ein Button mit
Zustandsanzeige des Interaktionsmodus vorgeschlagen.

Bei mehreren Visualisierungen im Fenster könnte sich die Probandin ein Dropdown-Menü
vorstellen. Ebenso aber auch Blättern mit Hilfe einer Wischgeste.

7.2.7 Fazit
Bei der Studie mit fünf Probanden konnte keine grundlegende Präferenz für die Bedienung
festgestellt werden. Es gab zwar Übereinstimmungen unter den Probanden für verschiedene
Einzelinteraktionen, allerdings konnte kein klarer Trend zu einem benutzerübergreifenden
Interaktionsprinzip gefunden werden. Die Vorlieben der Probanden können folgendermaßen
zusammengefasst werden:

• Proband 1
Der Proband bevorzugte Gesten bei den meisten Interaktionen. Er möchte keine
klassischen Steuerelemente benutzen solange es nicht nötig wird. Mit Tangibles
konnte er nur wenig anfangen.

• Proband 2
Der Proband hätte gern schnell erreichbare Buttons für wichtige Funktionen. Denn
damit könne er mit einem Klick Funktionen auslösen. Gesten würde er nutzen, wenn
es sinnvoll ist, aber in einigen Fällen sind sie ihm zu aufwendig. Mit Tangibles hatte
der Proband keine Ideen. Er würde sie wie die Gesten einsetzen.

• Proband 3
Der Proband bevorzugt eine Umgebung mit klassischen Steuerelementen und Gesten.

102 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Er würde Kontextmenüs an Stellen, die das ermöglichen, nutzen. Ansonsten sei er
seiner Meinung nach von Smartphones beeinflusst. Daher würde er Gesten, die von
Smartphones bekannt sind, nutzen. Tangibles würde er ähnlich wie die Gesten
einsetzen.

• Proband 4
Der Proband benötigt nach eigener Meinung eine selbsterklärende Benutzeroberfläche
und möchte daher gerne Menüs. Gesten könne er sich nicht merken und er wolle sich
nicht jedes Mal in ein Programm einarbeiten. Er scheint auch stark von
Desktopsystemen beeinflusst zu sein. Die Tangibles findet er interessant, hat aber
ebenfalls Schwierigkeiten mit ihnen.

• Proband 5
Der Proband findet die Tangibles sehr interessant und hätte gerne eine
Benutzerschnittstelle mit viel Tangible-Interaktion. Außerdem sei er stark von Tablets
beeinflusst und wünscht sich auch viele Interaktionen mit Gesten. Der Proband
wünscht sich auch verschiedene Interaktionsmöglichkeiten, um sich die angenehmste
Interaktion auszusuchen.

Da die verschiedenen Vorlieben der Benutzer stark variieren, ist es schwierig ein klares Bild
für das Interaktionsprinzip zu bekommen. Durch Abdeckung mehrerer Interaktionskonzepten
also z.B. Gesten, Tangibles und klassischer Bedienung mit Buttons können aber die Vorlieben
vieler Benutzer getroffen werden.

Im Verlauf der Studie konnten auch einige Beobachtungen von Wobbrock et al [48] bestätigt
oder ähnlich beobachtet werden:

• Die Benutzer werden stark von existierenden Systemen beeinflusst.
Bei einigen Probanden der Studie konnte beobachtet werden, dass sie von
Desktopsystemen beeinflusst sind. So wurden z.B. Positionen von Steuerelementen
vorgeschlagen, die ähnlich zu denen aus Desktop-Betriebssystemen sind. Als Beispiel
kann der Schließen-Knopf eines Fensters an der rechten oberen Ecke genannt werden.

• Bei Gesten achten die Nutzer nicht auf die Anzahl der Finger, die sie nutzen.
Bei den meisten Gesten der Probanden ist aufgefallen, dass sie anfangs nicht
unbedingt darauf achten wie viele Finger sie benutzen. Allerdings waren sich fast alle
Probanden im Klaren, wenn zwei Gesten in Konflikt kommen. Daraufhin wurde
meistens eine Unterscheidung mit einer verschiedenen Anzahl der Finger
vorgeschlagen.

Im Folgenden werden die Ergebnisse der Vorstudie, zu den verschiedenen Aspekten der
Benutzeroberfläche der Vorstudie, zusammengefasst.

Powerwall-Steuerung/-Ansicht
Auf die Frage wie eine Visualisierung auf die Powerwall übertragen werden kann, haben alle
Probanden bis auf Proband 1 vorgeschlagen sie in Richtung der Powerwall vom Tisch zu
schieben. Das führte meist zu dem Problem, wie die Visualisierungen auf der Powerwall zu
steuern sind. Auf dieses Problem hatten nur Proband 1, 2 und 4 eine vollständige Lösung. Ein
Klonen der Powerwall auf dem Gerät. Die Ideen dazu waren eine fester Bereich der
Oberfläche für das Klonen und eine Bild in Bild-Funktion, wobei Proband 1 nebenbei auch
eine frei verschiebbare Powerwallansicht vorgeschlagen hat. (siehe Tabelle 2)

103 Lösungsansatz

Tabelle 2: Vorschläge bezüglich der Powerwallsteuerung
(X: der Proband erwähnt die Funktionalität)

Funktionalität Proband 1 Proband 2 Proband 3 Proband 4 Proband 5

Schieben in
Richtung der
Powerwall

_ X X X X

Duplizierung der
Powerwall

X X _ X _

Verschiebbare
Powerwallansicht

X _ _ _ _

Die Präsentation der Lösung, mit dem frei verschiebbaren Powerwallansichtsfenster auf der
Benutzeroberfläche, wurde von allen Probanden positiv aufgenommen und als beste Lösung
akzeptiert. Alle Probanden würden die bei der Steuerung der Powerwall eher auf die
Powerwallansicht schauen als auf die Powerwall selbst. Ausnahme dabei ist, wenn der
Benutzer etwas an der Powerwall vorstellt.

Interaktionen mit den Visualisierungscontainern (für die Probanden das Fenster)
Bei den Interaktionen für die Manipulationen haben fast alle Probanden die Standardgesten
(siehe 7.1.3) genannt. Nur Proband 5 hat für das Verschieben drei Finger angegeben und für
das Skalieren und Rotieren vier Finger. Proband 4 hat außerdem bei der Rotation einen Kreis
um den Visualisierungscontainer vorgeschlagen.

Wenn ein Visualisierungscontainer auf die Powerwall verschoben wird, dann soll direkt der
Visualisierungscontainer verwendet werden. Das wird von allen Probanden bestätigt.

Das Drag&Drop-Interaktionselement wurde von allen Probanden nicht verstanden und die
meisten Probanden waren nach längerer Erklärung nicht überzeugt. Drag&Drop selbst wurde
dagegen von allen Probanden als nützliches Prinzip gesehen. Als Ersatz des Drag&Drop-
Interaktionselements hat sich der Vorschlag von Proband 2 durchgesetzt. Dieser hatte einen
Knopf vorgeschlagen, der eine Drag&Drop-Operation auslöst. Für Duplizieren und Koppeln
soll dabei ein Knopf vorhanden sein.

Der Interaktionsmodus für den Visualisierungscontainer, der zwischen Interaktion mit der
Visualisierung und Interaktion mit dem Container umschaltet, wurde größtenteils gut
aufgenommen. Nur Proband 4 würde ihn nicht verwenden, da er nicht gerne umschaltet.

Gesteninteraktion
Es werden kurz die Ideen für die Gesten beschrieben und zusammengefasst (siehe Tabelle 3).

104 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Tabelle 3: Vorschläge für Gesten
(-- : keine Aussage oder wurde nicht gefragt)

Funktion Proband 1 Proband 2 Proband 3 Proband 4 Proband 5

Duplizieren Auseinander-
ziehen mit
jeweils zwei
Fingern

Auseinander-
ziehen mit
jeweils drei
Fingern

Auseinander-
ziehen mit
jeweils zwei
Fingern oder mit
einem Finger eine
Teilungslinie
ziehen

Auseinander-
ziehen mit
jeweils zwei
Fingern

Auseinander-
ziehen mit
jeweils zwei
Fingern

Löschen Fenster über
den Rand
ziehen

Fenster auf
einen
Mülleiner
ziehen

Fenster auf einen
Mülleiner oder
über den Rand
ziehen

Fenster auf
einen
Mülleiner oder
über den Rand
ziehen

Fenster über
den Rand
ziehen

Koppeln Fenster mit
zwei Fingern
halten, mit
einem Finger
eine Linie
ziehen

--

Zusammenziehen
von Interaktions-
elementen oder
Verbinden von
Konnektor-
punkten

--

Fenster
aneinander-
schieben

Entkoppeln Linie mit einem
Finger trennen --

Linie mit einem
Finger trennen --

Linie mit einem
Finger trennen

Visualisierungs-
wechsel -- --

Wischen Wischen Wischen

Das Duplizieren wurde einheitlich mit einer Geste gemacht, die das Fenster auseinanderzieht.
Der Konflikt mit Skalieren wird über mehrere Finger gelöst. (siehe auch 7.1.5)

Beim Löschen ergab sich in Anbetracht der Mehrbenutzerfähigkeit die Geste, bei der das
Fenster aus dem Rand gezogen wird. Alle Probanden schlagen aber auch das Ziehen auf einen
Mülleimer vor.

Das Koppeln hat keine einheitliche Geste, jedoch deckt sich die Geste von Proband 1 mit der
aus den Vorüberlegungen (siehe 7.1.5).

Für Entkoppeln wurde als Geste das Ziehen mit dem Finger durch die Linie vorgeschlagen,
falls der Proband Linien nutzen würde.

Das Wechseln der Visualisierung wurde einheitlich mit einer Wischgeste durchgeführt.
Proband 1 und Proband 2 wurden nicht befragt.

Tangibleinteraktion
Es werden kurz die Ideen für die Tangibleinteraktion beschrieben und zusammengefasst
(siehe Tabelle 4).

105 Lösungsansatz

Tabelle 4: Vorschläge für Tangibleinteraktion
(-- : keine Aussage)

Funktion Proband 1 Proband 2 Proband 3 Proband 4 Proband 5

Duplizieren Ziehen Stempeln Stempeln Stempeln Stempeln
Löschen -- -- -- -- Stempeln
Koppeln -- -- Stempeln mit Paar mit Paar
Entkoppeln -- -- -- mit Paar mit Paar

Allgemein waren die Probanden bei den Tangibles eher ratlos. Nur Proband 5 war bei dieser
Art von Interaktion kreativ. Das könnte sein, weil Proband 5 weiblich ist. Das kann aber aus
der Studie nicht bestätigt werden. Ein wahrscheinlicherer Ansatz ist, dass Proband 1 – 4 aus
dem Bereich der Informatik stammen und Proband 5 nicht.

Bei den Tangibles hat sich für das Duplizieren fast einheitlich eine Stempel-Interaktion
ergeben. Bei dieser berührt der Proband erst das Fenster und dann einen freien Bereich auf der
Benutzeroberfläche.

Für das Koppeln hat sich eine Interaktion mit zwei gepaarten Tangibles herauskristallisiert.
Dabei wird auf jedes Fenster eines der Tangible gestellt. Entkoppeln funktioniert dann analog.
Proband 4 und Proband 5 haben sich auch explizit gegen eine weitere Stempel-Interaktion
ausgesprochen.

Das Binden eines Tangibles an einen Visualisierungscontainer bzw. ein Fenster wurde von
allen Probanden als gute Idee empfunden.

Abschließende Bemerkungen
Das Ergebnis der Studie ist leider nicht repräsentativ worauf auch die inhomogenen
Ergebnisse hindeuten. Allerdings kann für eine größere Studie davon ausgegangen werden,
dass auch dort die Probanden große Schwankungen in ihren Vorlieben haben. Dies lässt sich
aus der Tatsache begründen, dass bereits die kleine Studie mit Probanden ähnlichen Alters
und Profession große Unterschiede bei ihren Vorlieben aufzeigten.

Die Probanden selbst waren auf Nachfrage sehr begeistert von der Art der Studie. Die meisten
versicherten auch, dass sie Spaß hatten mitzumachen auch wenn sie nicht potentielle
Anwender des Systems sind. Allerdings hatten sie teilweise Hemmungen selbst Ideen auf das
Papier aufzuzeichnen.

7.3 Lösungsansatz-Erweiterung

In diesem Kapitel werden Erkenntnisse aus der Vorstudie auf den Lösungsansatz angewandt
und unintuitive Ideen verworfen. Im Weiteren werden die speziellen Interaktionen vorgestellt,
die durch die Nutzer in der Vorstudie vorgeschlagen wurden und sich mit dem
Lösungskonzept decken.

Powerwall-Steuerung/-Ansicht
Die frei verschiebbare Powerwallansicht wurde von den Probanden der Studie als gut
empfunden. Darum wird am Lösungsansatz der Powerwallansicht nichts verändert.

Das Verschieben eines Visualisierungscontainers auf die Powerwall wird folgendermaßen
geändert: Die Visualisierungscontainer können direkt auf die Powerwallansicht verschoben
werden. Dabei wird der Berührungspunkt als Bezugspunkt verwendet, um zu entscheiden ob

106 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

sich ein Visualisierungscontainer bereits auf der Powerwallansicht befindet oder nicht. Sobald
der Bezugspunkt über der Ansicht ist, wird der Visualisierungscontainer in den öffentlichen
Raum verschoben und kann dann sofort auf der Powerwallansicht weiterverschoben werden.

Abbildung 75: Änderung beim Verschieben auf die Powerwallansicht

Interaktion mit den Visualisierungscontainern
Die Interaktionen Verschieben, Skalieren und Rotieren wurden in der Studie bestätigt und
werden daher nicht geändert.

Das Drag&Drop-Interaktionselement wurde von den Probanden nicht positiv angenommen.
Daher wird dieses Interaktionselement verworfen. Drag&Drop als Interaktion war aber
durchaus gefragt. Darum wurde für die jetzt fehlenden Interaktionen Duplizieren und Koppeln
Knöpfe eingeführt, die beim Drücken eine Drag&Drop-Operation auslösen. Die Lösung
wurde ausgewählt, weil sie von Proband 2 vorgeschlagen wurde und die folgenden Probanden
diese Lösung ebenfalls akzeptierten. Der Knopf für die Duplizierung erzeugt eine
Drag&Drop-Vorschau und erzeugt beim Loslassen auf dem privaten Bereich oder der
Powerwallansicht ein Duplikat des Visualisierungscontainers. Der Knopf für die Kopplung
erzeugt einen Drag&Drop-Cursor. Dieser kann auf einen anderen Visualisierungscontainer
gezogen werden. Beim Loslassen werden die beiden Visualisierungscontainer gekoppelt.

Gesteninteraktion
Die vorgestellten Gesten werden nicht verändert, da sie entweder von den Probanden bestätigt
oder sogar vorgeschlagen wurden.

Für das Entfernen von Visualisierungscontainern wird allerdings eine neue Geste eingeführt.
Alle Probanden haben vorgeschlagen den Visualisierungscontainer entweder auf einen
Mülleimer oder den Rand zu verschieben. Da jedoch ein Mülleimer für mehrere Benutzer
nicht sinnvoll positioniert werden kann, wird der Rand des Tabletops verwendet. Jeder
Benutzer hat mindestens einen Rand in seiner Nähe. Damit waren alle Probanden
einverstanden. Wenn der Visualisierungscontainer auf den Rand gezogen wird, erscheint ab
einen gewissen Abstand ein visuelles Feedback in Form eines Mülleimers, das das Löschen
des Containers andeutet. Wird der Container vom Benutzer losgelassen, dann wird er
daraufhin entfernt. Als Bezugspunkt der Operation gilt hier wiederum der Berührpunkt des
Benutzers.

Privater Bereich

Powerwallansicht

107 Lösungsansatz

Tangibleinteraktion
Die Vereinigung von verschiedenen Interaktionen in ein Tangible ist bei den Probanden nicht
so gut angekommen. Daher werden diese getrennt und für jede Interaktion ein separater
Tangible-Typ vorgesehen.

Das Tangible für Duplizieren funktioniert wie ein Stempel. Alle Probanden waren mit einer
Stempelgeste für das Duplizierentangible einverstanden. Das Tangible muss als erstes einen
Visualisierungscontainer als Quelle zugeordnet bekommen. Daher wird es als erstes auf
einem Container abgelegt. Ein visuelles Feedback, wie z.B. das Aufblinken des Fensters zeigt
den Erfolg an. Danach kann das Tangible durch Stempeln an beliebigen freien Stellen auf
dem privaten Raum und der Powerwallansicht Duplikate des ursprünglichen
Visualisierungscontainers anlegen. Wenn das Tangible nicht sofort vom Tabletop genommen
wird nachdem es ein Duplikat angelegt hat, kann mit dem Tangible das Duplikat verschoben
werden.

Das Tangible für die Kopplung könnte ebenfalls als Stempel funktionieren. Allerdings gab es
einige Probanden, die eine Unterscheidung bei den Interaktionsabläufen wünschten. Daher
funktioniert die Kopplung nun mit zwei fest zugeordneten Tangibles. Sobald beide Tangibles
auf jeweils einem Visualisierungscontainer stehen, werden diese gekoppelt. Falls die beiden
Container schon gekoppelt waren, werden sie entkoppelt. Da die Handhabung von zwei
Tangibles gleichzeitig etwas komplizierter ist, haben sie eine kurze Zeitverzögerung bevor sie
zwei Visualisierungscontainer koppeln bzw. entkoppeln. Die Zeitverzögerung wird durch ein
sich schließendes Kreissegment angezeigt. Damit sieht der Benutzer, dass seine Interaktion
ausgeführt wird und wann sie abgeschlossen ist. Gleichzeitig ist die Bedienung für zwei
Benutzer, die jeweils eines der Kopplungstangibles haben, einfacher.

Das Tangible für die Filteranzeige funktioniert gleich wie in den Vorüberlegungen. Der
einzige Unterschied ist, dass es jetzt einen eigenen Tangible-Typ hat.

Die vorher genannten Tangibles können als Interaktionstangibles bezeichnet werden, da sie
einer bestimmten Interaktion zugeordnet sind. Die zweite Klasse von Tangibles, die
Datenrepräsentationstangibles, werden nun in einen Tangible-Typ vereinigt, der verschiedene
Arten von Daten aufnehmen kann. Dieser Tangible-Typ wird für die Filter des Filterkonzepts
und das Binden von Visualisierungscontainern genutzt.

Private Ablage
Bei der privaten Ablage selbst werden keine Änderungen vorgenommen. Die Art, wie
Visualisierungscontainer abgelegt werden, funktioniert jetzt wie das Verschieben auf die
Powerwallansicht.

Globale Ablage
Die Probanden wollten neben der Ablage, mit an Tangibles gebundenen Visualisierungs-
containern, auch eine globale Ablage auf der Benutzeroberfläche. Der Konsens war eine Art
Schublade am Rand des Tabletops, die durch eine Geste geöffnet werden kann. Die
Visualisierungscontainer können wie das Schieben auf die Powerwall abgelegt werden. Die
globale Ablage kann von allen Rändern aus geöffnet werden, enthält aber überall die gleichen
Elemente. Dadurch lassen sich auch Visualisierungscontainer am Tabletop austauschen.

108 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

109 Framework der Analyseumgebung

8 Framework der Analyseumgebung

Das folgende Kapitel beschreibt die Umsetzung des Frameworks der multimodalen
Analyseumgebung. Hierbei werden die Architektur und die Entwurfsentscheidungen
beschrieben, sowie beispielhaft einige Abläufe dargestellt. Das Framework wurde in
Zusammenarbeit mit der Diplomarbeit „Gestensteuerung für Powerwall-basierte
Visualisierungen“ [46] implementiert. Die Umsetzung basiert auf den, in Kapitel 6,
vorgestellten Konzepten für multimodale Analyseumgebungen.

Das Framework bietet ein asynchrones Nachrichtensystem mit dem die einzelnen Teile des
Systems, im weiteren Client genannt, synchronisiert werden können. Außerdem werden
grundsätzliche Funktionen, die jeder Client im System benötigt, zur Verfügung gestellt. Um
eine leichte Erweiterbarkeit und hohe Flexibilität beim Einsatz des Systems zu gewährleisten,
werden Schnittstellen für die Entwicklung eigener Datenbestände, Visualisierungen und
ganzer Clients bereitgestellt. Sämtliche bestehenden Implementierungen sind auf .NET-Basis.
Durch die Nutzung von SOAP-Webservices zur Kommunikation ist es jedoch möglich,
Clients auf Basis andere Sprachen zu implementieren.

Im Folgenden werden zuerst die eingesetzten Architekturmuster beschrieben. Darauf folgend
wird die tatsächliche Architektur vorgestellt und beschrieben wie die Architekturmuster
zusammenspielen. Daraufhin werden die einzelnen Komponenten und deren Zusammenhang
beschrieben. Zum Schuss werden einige ausgewählte Abläufe dargestellt.

8.1 Architekturmuster

Client-Server-Architektur
Bei der Client-Server-Architektur bietet ein Server (Server-Prozess) einer beliebigen Anzahl
von Clients (Client-Prozessen) Softwaredienste an. Grundsätzlich wird die Architektur
genutzt, um Aufgaben innerhalb eines Netzwerks zu verteilen. Der Server muss sich dabei
immer in Bereitschaft befinden, um Anfragen eines Clients beantworten zu können.

Schichtenarchitektur
Bei einer Schichtenarchitektur sind die Teile des Systems einzelne Schichten zugeordnet.
Diese werden in einer festen Hierarchie angeordnet. Die Teile einer Schicht dürfen hierbei nur
Aspekte tieferer Schichten verwenden, wobei bei strenger Schichtenarchitektur keine
Schichten übersprungen werden dürfen. Dies ist jedoch nicht zwingend vorgegeben,
allerdings führt ein Überspringen von Schichten insgesamt zu einer höheren Koppelung.

8.2 Architektur

Dieser Abschnitt beschreibt die konkrete Architektur und wie die Architekturmuster
eingesetzt werden. Außerdem werden die einzelnen Teile der Architektur kurz erläutert.

Das Framework basiert auf einer, in einer Client-Server-Architektur eingebetteten, Schichten-
Architektur (siehe Abbildung 76). Die wichtigsten Teile der Architektur sind die Clients, der
Server und die Kommunikation zwischen diesen.

110 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 76: Architektur des Systems

Server
Das Framework bietet eine grundsätzliche Serverimplementierung, die einen für die
Anwendung spezialisierten „message broker“ enthält. Der message broker nimmt Nachrichten
der Clients an und sendet sie an ihren Adressaten oder verteilt sie im System. Der message
broker ist über Kommunikationsschichten mit den Clients verbunden. Die
Kommunikationsschichten werden vom Framework bereitgestellt.

Clients
Zwischen der eigentlichen Anwendungslogik der Clients und den Kommunikationsschichten
findet eine Abstraktion der Daten statt, die garantieren soll, dass beliebige Arten von Daten
versendet werden können. Es gibt zwei Arten von Clients: der „Visualisierungsclient“ (siehe
Abbildung 76 oben), der die eigentliche Benutzerschnittstelle darstellt und der „Dataprovider-
Client“(siehe Abbildung 76 unten), der die Möglichkeit bieten soll jegliche Datenquelle als
Grundlage zu verwenden. Beim Visualisierungsclient werden grundsätzliche Funktionen, wie
die Kommunikation zum Server und ein Visualisierungspluginmanager, bereits von dem

111 Framework der Analyseumgebung

Framework implementiert. Der Dataprovider ist als Schnittstelle definiert, wobei die
Kommunikation mit dem Server bereits implementiert ist.

Kommunikation
Die Kommunikation der Visualisierungsclients zum Server funktioniert asynchron, um dem
Benutzer eine möglichst nahtlose Bedienung zu ermöglichen. Die Übertragung findet über
Nachrichten statt, welche von einer im Framework enthaltene Bibliothek beschrieben werden.

Der DataProvider kommuniziert synchron über einen Webservice mit dem Server. Da der
DataProvider eine ausgelagerte Komponente des Servers darstellt und daher eine engere
Beziehung zwischen den beiden Komponenten besteht, ist eine synchrone Kommunikation
angemessener.

8.3 Komponentenstruktur

Im Weiteren folgt eine Beschreibung der wichtigsten Komponenten im System . Die
folgenden Komponenten sind: die Bibliotheken der Abstraction-Komponente, die Server-
Komponente mit dem message broker, die DataProvider-Komponente zur Datenanbindung
und die Komponente für die Visualisierungsclients (siehe Abbildung 77).

Abbildung 77: Komponentenstruktur des Systems und deren Zusammenhänge

112 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

8.3.1 Abstraction
Die Abstraction-Komponente enthält Bibliotheken, die die Abstraktion der Datenhaltung und
des Nachrichtensystems ermöglichen (siehe Abbildung 78). Die Funktionalität entspricht der
Abstraktionsschicht. Die Abstraktion findet sowohl bei den Nachrichten als auch bei den
Daten statt, um sowohl das Nachrichtensystem als auch die Datenhaltung erweitern zu
können.

Abbildung 78: Klassenstruktur der Abstraction-Komponente

Die Daten werden über Datencontainer abstrahiert und mit Metainformationen, wie die Id, für
die Visualisierungsclients versehen. Diese Zusatzinformationen befinden sich in
AbstractDataContainer . Hier werden der Datentyp der Daten, die eindeutige Id des
Datencontainers und die Filter, die auf den Daten wirken sollen, festgelegt. Die eigentlichen
Daten sind in den Unterklassen zu finden, die entweder einzelne Daten aufnehmen oder eine
Datenmenge. Zusätzlich werden die Datenschlüssel vermerkt.

113 Framework der Analyseumgebung

Jeder Datencontainer hat eine Menge von Filtern (Filter), die als Baumstruktur aufgebaut
werden. Jeder Filter repräsentiert eine Teilmenge der Daten, welche den Filterkriterien
entsprechen. Die Baumstruktur sagt aus wie die Datenmengen verbunden werden. Wenn die
Filter Geschwisterknoten sind werden die Datenmengen vereinigt. Ein Filter als Kindknoten
verfeinert die Datenmenge nochmal. Ein Filter wird durch ein Filterprädikat und ein Ziel
beschrieben. Das Filterprädikat (Predicate) ist ein Ausdruck, der beschreibt wie gefiltert
werden soll. Das Ziel (Target) ist eine Eigenschaft der Datenmenge, nach der gefiltert
werden soll.

Die Nachrichten des Systems werden über die abstrakte Klasse MessageBase abstrahiert.
Diese enthält alle Informationen, um die Nachricht an den entsprechenden Client
weiterzuleiten. So enthält die Nachricht zum Beispiel das Ziel und den Sender der Nachricht.
Adressat und Absender werden als Urls von Webservices angegeben. Alle weiteren
Eigenschaften der Nachrichten sind frei wählbar.

Sowohl Daten- als auch Nachrichtenabstraktion nutzen Reflection, um die eigentlichen
Datentypen zu erkennen, was nötig ist, damit der XML-Serialisierer die Nachrichten und ihre
Inhalte versenden kann. Dazu wird die Klasse KnownTypeHelper verwendet. Die Klasse
liest die in der Anwendungskonfiguration angegebenen Assemblies ein und gibt mit Hilfe des
IKnownTypeHelper -Interface die gesuchten Datentypen zurück.

8.3.2 Server
Der Server ist die zentrale Komponente des Gesamtsystems und verwaltet die
Nachrichtenkommunikation zwischen den Visualisierungsclients. Außerdem verwaltet er die
DataProvider und leitet Anfragen der Visualisierungsclients an die Datenhaltung weiter.

Abbildung 79: Klassenstruktur des Servers

Message Broker
Die zentrale Komponente des Servers ist der Message Broker. Dieser wird durch die
MessageBroker -Klasse implementiert. Die Klasse enthält den Service des Servers, die
Clients für die Rückkanäle zu den Visualisierungsclients und die Clients für den
DataProvider-Service.

114 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Die Funktionalität des MessageBroker wird durch folgende öffentliche Methoden
bereitgestellt:

• RegisterClient(clientUrl : Uri)
Diese Methode registriert einen Visualisierungsclient. Danach werden empfangene
Broadcast-Nachrichten auch an den neu registrierten Client gesendet und es können
Nachrichten direkt an den registrierten Client gesendet werden. Der Client ist über die
clientUrl erreichbar. Diese muss auf einen gestarteten MessageClientService
verweisen. Die Methode wird vom MessageBrokerService aufgerufen, wenn
RegisterClient(…) von außerhalb ausgelöst wird.

• RegisterDataProvider(…)
Es wird ein neuer DataProvider registriert. Dieser übergibt seine providerUrl , über
die ein DataProviderService erreichbar sein sollte, und die Typen, die von dem
DatenProvider abgerufen werden können. Nach der Registrierung stehen die Daten
von dem DataProvider den Visualisierungsclients zur Verfügung.
Ereignis des MessageBrokerService wird zu dieser Methode weitergeleitet.

• StartService()
Startet die Services des Servers. Dieser muss gestartet sein, damit Clients registriert
werden können.

• StopService()
Stoppt die Services des Servers.

• TransferMessage(message: MessageBase)
An diese Methode wird ein TransferMessage(…) –Ereignis des
MessageBrokerService weitergeleitet. Um Asynchronität zu gewährleisten, wird die
ProcessMessage-Methode in einem neuen Thread gestartet.

• UnregisterClient(clientUrl: URI)
Entfernt die Registrierung eines Clients mit der clientUrl . Das Ereignis wird von
MessageBrokerService an diese Methode weitergeleitet.

• UnregisterDataProvider(providerUrl: URI)
Entfernt die Registrierung eines DataProviders. Das Ereignis wird vom
MessageBrokerService an diese Methode weitergeleitet.

• ProcessMessage(message: MessageBase)

Verarbeitet eine Nachricht (message) von einem Visualisierungsclient.

• ProcessMessageOnServer(message: MessageBase)
Verarbeitet Nachrichten (message), die nicht an andere Visualisierungsclients
gerichtet sind sondern an den Server selbst. Dazu gehören Nachrichten, die Daten von
dem DataProvider abfragen.

MessageBrokerService
Der MessageBrokerService ist der Service, der die Funktionalität des Servers nach
außen bereitstellt. Alle Aufrufe werden an den MessageBroker weitergeleitet. Die
Methoden des MessageBrokerService finden sich daher auch im MessageBroker .

MessageClientServiceClient
Diese Clients bilden die Rückleitungen zu den Visualisierungsclients. Dafür wird auf den
Visualierungsclients ein Webservice bereitgestellt, mit dem sich der Server verbindet sobald
ein Client sich registriert. Die einzige Methode ist ReceiveMessage(message:
MessageBase) . Die Methode sendet eine Nachricht an den Service.

115 Framework der Analyseumgebung

DataProviderServiceClient
Diese Clients werden mit den DataProvidern verbunden. Wird in der DataProvider näher
erklärt.

8.3.3 DataProvider
Die DataProvider implementieren die Funktionalität der Datenhaltung. Diese können von den
Anwendern des Systems anhand ihrer Datenquellen implementiert werden. Jeder
DataProvider kann eine Anzahl von Datentypen unterstützen. Die Datentypen können später
von den Visualisierungsclients abgefragt werden. Die unterstützen Datentypen sollten mit
Datentypen mit der gleichen Signatur bei den Visualisierungen kompatibel sein. Um
Flexibilität bei der Implementierung zu ermöglichen, werden Datentypen als Strings definiert.
Die DatenProvider sollten das Nachladen von Daten mit variabler Tiefe unterstützen. Dadurch
lässt sich innerhalb der Clients, abhängig von der Datenmenge und Datenstruktur, ein ideales
Gleichgewicht zwischen Anzahl der Nachladezyklen und der Datenmenge beim Nachladen
festlegen. Einzelne Datenobjekte können hierbei, anhand ihres Datentyps und
Indentifikationsschlüssels, eindeutig identifiziert werden. Der Identifikationsschlüssel kann
von jeglichem Datentyp sein, der Aufrufer muss jedoch darauf achten, dass ein kompatibler
Schlüssel übergeben wird.

Der DataProviderService stellt die Funktionalität des DataProvider nach außen zur
Verfügung, wobei in der IDataProviderService - Schnittstelle die Methoden des
DataProvider definiert sind.

Abbildung 80: Klassenstruktur der DataProvider-Komponente

116 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Die Methoden der Schnittstelle sind die folgenden:

• GetAllInformation()
Gibt alle Datentypen mit den zugehörigen Datenidentifikationsschlüsseln zurück.
Diese Methode kann aufgerufen werden, um einen Überblick über alle Datentypen des
DataProvider zu bekommen.

• GetDataInformation(type: String)
Gibt alle Datenindentifikationsschlüssel eines Datentyps zurück. Die Methode wird
verwendet, um Zugriff auf alle Daten eines Datentyps zu erhalten.

• GetObject(dataType: String, dataKey: Object)
Diese Methode gibt ein Datenobjekt anhand seines Typs(dataType) und
Indentifikationsschlüssels (dataKey) zurück. Das zurückgegebene Objekt enthält
keine weiteren Objekte. Alle Referenzen zu weiteren Objekten fehlen. Diese Objekte
müssen identifiziert werden oder müssen über die LoadProperty -Methode
nachgeladen werden.

• GetObjectWithProperties(dataType: String, dataKey: Object,
propertiesToInclude: String[])
Alternativ zu GetObject(…) können Datenobjekte auch mit referenzierten Objekten
geladen werden. Die Strings in propertiesToInclude legen fest, welche
referenzierten Objekte geladen werden. Dabei stellt jeder String ein Pfad im
Datenmodell dar.

• GetSupportedTypes()

Gibt die unterstützen Typen des DataProviders zurück.

• LoadProperty(dataType: String, dataKey: Object,
propertyToLoad: String)
Lädt eine Referenz, in C# eine Eigenschaft, eines Datenobjekts, welches wieder durch
Typ und Schlüssel identifiziert wird. Der Name der Referenz wird durch
propertyToLoad angegeben.

Wenn ein DataProvider für eine Datenquelle entwickelt werden soll, kann entweder ein
Webservice angeboten werden, der die Schnittstelle implementiert oder eine Implementierung
der Schnittstelle wird dem DataProviderServiceWrapper übergeben, der einen Webservice
erstellt. Der DataProviderServiceWrapper ist eine Singleton-Klasse und implementiert den
DataProvider-Service als Fassade. Die eigentliche Implementierung kann dem Wrapper über
die Eigenschaft ProcessingDataProvider zugeordnet werden, welche wiederum die
Schnittstelle implementieren muss.

8.3.4 VisualizationClient
Die Komponente VisualizationClient ist für die Visualisierungsclients, die den Benutzern die
Benutzeroberfläche für die Analyseumgebung für bestimmte Geräte zur Verfügung stellen.
Das Framework bietet ein grundsätzliches Client-Backend, welches die Kommunikation mit
Ereignissen kapselt. Diese Ereignisse können von den Visualsierungsclients abonniert werden
und sie können so den Empfang der Nachrichten direkt in ihre Anwendungslogik einbauen.

117 Framework der Analyseumgebung

Abbildung 81: Klassenstruktur des VisualisierungsClient-Backends

Die Klasse ClientApplication dient als Grundlage für eine WPF-Anwendung. Sie
kapselt die Webservice-Komponenten und bietet die oben genannten Zusatzfunktionen. Die
Klasse MessageClient erzeugt einen Service, der vom Server aufgerufen wird und stellt
damit die Rückleitung vom Server zur Verfügung. Der Service selbst wird durch die
MessageClientService -Klasse dargestellt. Die einzige Methode des Webservice ist
ReceiveMessage(…) . Diese empfängt Nachrichten vom Server und leitet sie an die
ClientApplication -Klasse weiter. Die Klasse MessageBrokerServiceClient ist
der Client des MessageBrokerService. Mit ihm können Nachrichten an den Server versendet
werden. (siehe Abbildung 81)

Um einen Visualisierungsclient zu entwickeln, kann die ClientApplication-Klasse als
Basisklasse verwendet werden. Ihre Funktionalität wird unter anderem mit folgenden
Methoden bereitgestellt:

• Connect()
Startet den MessageClient-Service damit der Server eine Verbindung zum Client
aufbauen kann. Danach verbindet das Backend die Anwendung mit dem
MessageBroker-Service und registriert den Client beim Server mit der
RegisterClient(clientUrl) Methode. Die clientUrl ist die Adresse des MessageClient-
Service um eine Verbindung zum Client zu ermöglichen.

• Disconnect()
Entfernt die Registrierung des Clients beim MessageBroker-Service mit
UnregisterClient(clientURL). Danach wird die Verbindung zum Server geschlossen
und der MessageClient-Service beendet.

118 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

• GetAllDataInformation()

Fragt beim Server alle Dateninformation von allen DataProvidern ab. Dazu muss der
Server bei allen DataProvidern die GetAllDataInformation()-Methoden aufrufen.

• GetDataInformation(dataType: String)
Fragt die Dateninformation für einen Datentypen ab. Der Server fragt die
Dateninformationen für den Datentyp bei den DataProvider mit
GetDataInfromation(…) ab. Wenn mehrere DataProvider den gleichen
Datentyp unterstützen müssen diese kompatibel sein.

• GetDataTypes()
Fragt alle unterstützten Datentypen ab. Der Server ruft bei allen DataProvidern die
Datentypen mit GetDataTypes() ab. Auch hier gilt, dass die gleichen Datentypen
kompatibel sein müssen.

• LoadObject(dataKey: Object, dataType: String)

Lädt ein Object mit den gegebenen Daten, siehe LoadObject(…) im DataProvider.

• LoadProperty(key: Object, obj: Object, property: St ring)

Lädt eine Eigenschaft eines Objekts, siehe LoadProperty(…) im DataProvider.

• SendMessage(message: MessageBase, broadcastToSelf: bool,
target: Uri)
Sendet eine Nachricht über den Server an ein Ziel (target). Wenn das Ziel nicht
angegeben ist, bekommen alle Visualisierungsclients diese Nachricht. Der Parameter
broadcastToSelf gibt an, ob der Client selbst die Nachricht auch bekommt.

Für alle üblichen Nachrichten existieren zusätzlich noch eigene Methoden. Mit diesen
kann eine Nachricht es bestimmten Typs versendet werden.

Neben der Funktionalität der VisualizationClient -Klasse können die
Visualisierungsclients ein Pluginsystem für die Visualisierungen verwenden.

119 Framework der Analyseumgebung

Visualisierungsplugins (Visualizations-Komponente)

Abbildung 82: Klassenstruktur des Plugin-Systems für Visualisierungen

Zur Verwaltung und zum dynamischen Nachladen von Visualisierungen existiert ein
Visualisierungsmanager. Dieser lädt, die in der Applikationskonfiguration angegebene,
Assemblies für Visualisierungen. Danach werden die entsprechenden Visualisierungs-
Controls ausgelesen und gespeichert. Diese müssen das IVisualization -Interface
implementieren und vom Typ UIControl sein. Alle wichtigen Meta-Informationen des
Controls können über die Klasse VisualizationInformation abgerufen werden.

Eine Visualization-Assembly wird über eine „visConfig.xml“ definiert und mit Meta-
Informationen annotiert. Die XML ist folgendermaßen aufgebaut:

Quellcode 1: Zeigt den Aufbau einer Konfigurationsdatei für ein Visualisierungsplugin

Der Visualization -Assembly wird ein Autor mit dem entsprechenden Tag zugeordnet.
Versionsinformationen können über die Version der Assembly festgelegt werden, um
konform mit dem .NET-Framework zu bleiben. Die einzelnen Visualisierungen werden
innerhalb des Visualizations-Tag definiert. Für jede Visualisierung muss ein Visualization-

<?xml version =" 1.0 " encoding =" utf-8 " ?>
<root >
 < Author >Nico </ Author >
 < Path >Vis.PowerInteractions.Samples.Mp3Library.Vis.dll </ Path >
 < Visualizations >
 < Visualization name=" Mp3Vis " version =" 1.0 "
class =" Vis.PowerInteractions.Samples.Mp3Library.Vis.Mp3Vis " >
 < Type >Vis.PowerInteractions.Samples.Mp3Library.Model.Song </ Type >
 </ Visualization >
 </ Visualizations >
</ root >

120 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Tag existieren. Der Tag erhält ein name-, version- und class- Attribut. Die drei Attribute
bestimmen die Identität der Visualisierung. Das class-Attribut dient zusätzlich dazu, die
Visualisierung später zu instanziieren. Innerhalb des Tags werden die Typen, die die
Visualisierung verarbeiten kann, definiert. Jeder Typ wird durch einem Type-Tag
beschrieben. (siehe Quellcode 1)

Die wichtigste Klasse, um die Visualisierungen nutzen zu können, ist die
VisualizationManager -Klasse. Sie ist eine Singleton-Klasse und verwaltet die
Visualisierungen. Die Klasse besitzt folgende Methoden:

• CreateVisualization(info: VisualizationInfo)
Erstellt ein Visualisierungs-Control mit den gegebenen Meta-Informationen.

• GetAllVisualizations()
Gibt die Meta-Informationen aller Visualisierungs-Controls zurück. Hiermit können
alle geladenen Visualisierungen ausgelesen werden.

• GetVisualizationsByDataType(dataType: string)
Gibt die Meta-Informationen aller Visualisierungs-Controls zurück, die den gegebenen
Datentyp verarbeiten können. Die Methode ist nützlich, um alle Visualisierungen zu
erhalten, die den aktuellen Datentyp unterstützen.

• LoadVisualization(assemblyPath: string)
Lädt eine Assembly mit Visualisierungs-Controls manuell.

Jede der Visualisierungs-Controls muss das Interface IVisualization implementieren.
Dadurch wird eine Grundfunktionalität und die Schnittstelle zum Visualisierungsclient
gewährleistet. Das Interface hat folgende Elemente:

• Data
Diese Eigenschaft enthält die aktuelle Datengrundlage der Visualisierung. Die
Datengrundlage wird dabei von einem AbstractDataContainer repräsentiert.
Die Implementierung muss dafür sorgen, dass eine Änderung der Grundlage eine
Änderung der Sicht bewirkt.

• DataChanged
DataChanged ist ein Ereignis, das von dem Visualisierungsclient abonniert werden
kann. Das Ereignis wird ausgelöst wenn sich die Daten ändern. Das Ereignis ist ein
„Stub“ für spätere Implementierungen, da Datenänderung noch nicht vorgesehen ist.

• DataFiltered
DataFiltered ist ein Ereignis, das von dem Visualisierungsclient abonniert werden
sollte. Es wird ausgelöst wenn die Daten von der Visualisierung gefiltert werden.

• VisualizationId
Diese Id ist die eindeutige Identifikation der Visualisierungsinstanz. Sie sollte nur
initial gesetzt werden.

• GetMinimalSize()
Gibt die minimale Größe, die die Visualisierung sinnvoll anzeigen kann, an. Die
Visualisierungsclients sollten die Visualisierungen nicht kleiner anzeigen oder eine
alternative Ansicht zeigen.

121 Framework der Analyseumgebung

8.4 Abläufe

Dieses Kapitel beschreibt einige wichtige Abläufe des Systems. Zunächst wird der Ablauf,
mit der sich ein Visualisierungsclient beim Server registrieren kann, beschrieben. Dadurch
wird der Client in die Analyseumgebung eingebunden. Danach wird gezeigt, wie der message
broker Nachrichten im System verteilt. Zum Schluss wird erklärt wie die
Visualisierungsclients Daten von den DataProvidern nachladen können.

8.4.1 Visualisierungsclient registrieren
Der Abschnitt zeigt den Ablauf, wenn ein Visualisierungsclient sich beim message broker
registriert. Das Registrieren geschieht im Framework automatisch, wenn beim
Visualisierungsclient Connect(…) aufgerufen wird.

Abbildung 83: Ablauf beim Registrieren eines Visualisierungsclients

Der Visualisierungsclient erzeugt einen neuen MessageClient , der den Service bereitstellt,
über den der Server Nachrichten zum Client versenden kann. Dieser Service wird gestartet,
wodurch ein ServiceHost angelegt und der Service für Zugriffe geöffnet wird (1 in Abbildung
83). Danach wird der MessageBrokerServiceClient mit dem Server verbunden und
RegisterClient(…) des Services aufgerufen (2 in Abbildung 83). Dieser leitet es zum
MessageBroker weiter. Im MessageBroker wird drauf der Service des
MessageClients registriert (3 in Abbildung 83). Die Aufrufe sind alle synchron.

8.4.2 Nachricht verteilen
Eine Übersicht über den Ablauf beim Versenden und Verteilen von Nachrichten.

MessageBrokerMessageClientClient.Backend MessageBrokerServiceMessageClientService

<<create>>

<<return>>

RegisterClient(ClientServiceUrl)

<<return IsRegistered>>

RegisterClient(ClientServiceUrl)

<<return IsRegistered>>

StartService

<<return>>

<<create ServiceHost>>

<<return>>

Open()

<<return>>

1

2

3

122 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 84: Ablauf beim Verteilen von Nachrichten im System

Wenn im Visualisierungsclient eine Nachricht versendet wird, löst das einen asynchronen
Aufruf der TransferMessage(…) -Methode des MessageBroker -Service aus (1 in
Abbildung 84). Dieser leitet den Aufruf an den message broker weiter, der wiederum die
Zustellung der Nachricht übernimmt (2 in Abbildung 84). Im message broker werden die
Sender und Empfänger Eigenschaften der Nachricht ausgelesen und die Nachricht
entsprechend verarbeitet. Der message broker legt dazu einen neuen anonymen Thread an und
verarbeitet die Nachricht mit diesem (3 in Abbildung 84). Der neue Thread soll die
Erreichbarkeit des Servers gewährleisten, indem der Servicethread entlastet wird. Die
Nachrichten die keinen Sender haben werden ignoriert, da es nicht möglich ist eine Antwort
zu senden. Da das für einige Nachrichten aber nötig ist, genügt eine solche Nachricht nicht
den Minimalanforderungen. Im weiteren Verlauf wird der Empfänger oder das Ziel der
Nachricht ausgelesen. Dabei gibt es grundsätzlich zwei Möglichkeiten (siehe Abbildung 85).
Es gibt keinen Empfänger, dann wird die Nachricht an alle Clients weitergeleitet oder es gibt
ein einzelnes Ziel. Dabei muss zwischen dem Server als Empfänger und einem Client als
Empfänger unterschieden werden. Wenn der Server der Empfänger ist, dann wird die
ProcessMessageOnServer(…) -Methode aufgerufen. Der Server kann jedoch nur
bestimmte Nachrichten verarbeiten, alle anderen werden ignoriert. Im Falle eines Clients als
Empfänger wird gleich vorgegangen wie bei keinem Empfänger, mit dem Unterschied, dass
nur der eine Client benachrichtigt wird. Dies geschieht, indem die RecieveMessage(…) -
Methode des MessageClient -Service aufgerufen wird (5 in Abbildung 84). Die Antwort
an die Clients findet ebenfalls asynchron statt. Der Client erhält zum Schluss die Nachricht
vom MessageClient .

1
2

3

4

5

123 Framework der Analyseumgebung

Abbildung 85: Zustände des message brokers beim Verteilen der Nachrichten

8.4.3 Daten nachladen
Angelehnt an das vorherige Kapitel wird in diesem der Ablauf beim Versenden einer
Nachricht an den Server gezeigt. Als Beispiel dient das Nachladen eines Datenobjekts.

Abbildung 86: Ablauf beim Nachladen von Daten aus einem DataProvider

Wie beim Versenden anderer Nachrichten muss die Methode TransferMessage(…)
aufgerufen werden. Da die Nachricht als Ziel den Server hat, wird innerhalb des anonymen
Threads des message brokers die ProcessMessageOnServer(…) aufgerufen (1 in
Abbildung 86). Die Methode erkennt die „LoadObjectMessage“-Nachricht und ruft auf dem
DataProvider, über den DataProviderService , LoadObject(…) auf (2 in Abbildung
86). Der message broker muss vorher feststellen welchen DataProvider er nutzen muss, um
ein Objekt dieses Typs laden zu können. Daraufhin gibt der DataProvider das Objekt
synchron zurück (3 in Abbildung 86). Im message broker wird schlussendlich eine
„ObjectLoadedMessage“ erstellt und asynchron an den Client zurückgesendet (4 in
Abbildung 86).

1

2

3

4

124 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

125 Prototyp

9 Prototyp

Dieses Kapitel beschreibt die Implementierung des Prototyps der Tabletop-Steuerung
innerhalb der multimodalen Analyseumgebung, sowie alle nötigen Komponenten dafür. Der
Prototyp wird dabei als Client des Frameworks realisiert, um mittels eines Tabletops die
Analyseumgebung für Eyetracking-Daten steuern zu können. Die Architektur wird von dem,
in Kapitel 8, entworfenen Framework bereitgestellt. Die Tabletop-Steuerung wird als Client
dieses Frameworks umgesetzt. Die Benutzeroberfläche und Interaktionen der Tabletop-
Steuerung basieren auf dem Lösungsansatz aus Kapitel 7.

Im ersten Teil werden die Komponenten erläutert, die dem Framework für eine
Analyseumgebung mit Eyetracking-Daten noch fehlen. Das ist zum einen die
Datenkomponente, die die Eyetracking-Daten innerhalb der Analyseumgebung bereitstellt.
Zum anderen fehlen noch die Visualisierungen, die zur Anzeige der Eyetracking-Daten
benötigt werden. Diese geräteunabhängigen Komponenten wurden, wie das Framework, in
Zusammenarbeit mit der Diplomarbeit „Gestensteuerung für Powerwall-basierte
Visualisierungen“ implementiert.

Im Anschluss wird die prototypische Implementierung des Tabletop-Clients beschrieben, der
über eine Benutzeroberfläche und geeignete Interaktionen verfügt, so dass eine Analyse der
Daten möglich wird. Das beinhaltet, die Beschreibung der Implementierung der
Benutzeroberfläche und der Interaktionen mit dem Surface SDK.

Im Anschluss beschreibt der letzte Teil noch den Powerwall-Client, der notwendig ist, um
Visualisierungen auf der Powerwall anzuzeigen.

9.1 Datenkomponente der Analyseumgebung

Um Visualisierungen für Eyetracking-Analysen anzuzeigen, ist eine Datenkomponente
notwendig, die die Datengrundlage zur Verfügung stellt. Die Datenkomponente besteht aus
zwei Teilen. Das Datenmodell für Eyetracking-Daten stellt das Grundgerüst für die Daten dar.
Außerdem wird ein Dataprovider benötigt wie er in Kapitel 8.3.3 beschrieben wird, damit die
Daten des Datenmodells in die Analyseumgebung integriert werden können.

9.1.1 Eyetracking-Datenmodell
Das Eyetracking-Datenmodell umfasst die Daten, die während einer Eye-Tracking-Studie
aufgezeichnet werden, um eine spätere Analyse vornehmen zu können. Im vorliegenden Fall
basiert das konkrete Modell auf den Daten, die ein Tobii Eyetracker zur Verfügung stellt. Für
die Datensätze dieses Eyetrackers wurde eine Importfunktion implementiert, mit der die
Aufzeichnungen in das Eyetracking-Modell importiert werden.

Das Eyetracking-Datenmodell ermöglicht es, sowohl eine Klassenstruktur in C#, als auch ein
Datenbankschema für Microsoft SQL anzulegen. Daher können die Daten in einer Datenbank
gespeichert werden und gleichzeitig als Klassen in einem Programm genutzt werden.

Das Datenmodell besteht aus Entitäten, die über Relationen miteinander verbunden sind. Für
die Eyetracking-Daten existieren dabei geeignete Entitäten (siehe Abbildung 87). Die
Eyetracking-Daten werden in zwei Stufen in Projekten organisiert. Die erste Stufe stellt die
Entität SuperProject dar. Ein solches kann mehrere Project -Entitäten enthalten. Diese
Projekte bestehen aus Szenarios, welche durch die Entität Scenario verkörpert werden.
Szenarios sind aus Stimuli aufgebaut, das sind die Bilder in einer Eyetracking-Studie. Sie

126 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

werden durch die Entität Stimulus repräsentiert und enthalten Metadaten, wie Größe und
Name, und die Grafik als Binärdaten. Jedes Projekt des Datenmodells hat außerdem eine
Anzahl von Probanden. Diese werden in der Entität Participant gespeichert. Eine
einzelne Eyetracking-Analyse mit einem Proband und einem Stimulus wird in der Entität
Recording gespeichert. Damit Probanden während einer Studie ein Szenario mehrmals
durchlaufen können, wird zwischen Stimulus und Recording eine N:M-Beziehung erstellt.
Diese kommt in der Entität StimulusInRecording zum Ausdruck. Die Fixationen sind
die Grundlage der Visualisierungen der Eyetracking-Daten. Sie werden der Entität
Fixation zugeordnet. Da die Entität Recording eine Analyse enthält, besitzt sie eine
Menge an Fixationen. Außerdem wird bei den Fixationen der zugehörige Stimulus gesetzt,
auf dem Fixation aufgenommen wurde.

127 Prototyp

Abbildung 87: Eyetracking Datenmodell für den Daten-Provider des Prototyps
Die Pfeile zwischen den Klassen stellen 1:N-Beziehungen dar.

128 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

9.1.2 Dataprovider
Der DataProvider für Eyetracking-Daten stellt diese in der Analyseumgebung bereit, so dass
sie mit Visualisierungen angezeigt werden können.

Dazu muss eine DataProvider-Komponente implementiert werden, wie es in Kapitel 8.3.3
angesprochen wurde. Diese DataProvider-Komponente stellt über das Framework Daten aus
dem Eyetracking-Datenmodell für die Clients der Analyseumgebung zur Verfügung. Der
Eyetracking-DataProvider besteht aus zwei Klassen: der Klasse
EyeTrackingDataProvider und der Klasse Program , welche ausgeführt werden kann
und so den DataProvider startet.

Der Eyetracking-DataProvider greift auf eine SQLServer-Datenbank zu, die das Eyetracking-
Datenmodell (siehe Kapitel 9.1.1) als Schema hat. Die Verbindung zur Datenbank erfolgt
über das Microsoft ADO.NET EntityFramework [53] und kann in der Anwendungs-
konfigurationsdatei eingestellt werden.

9.2 Visualisierungen

Wie in Kapitel 8.3.4 beschrieben, können für die Clients Visualisierungen als Plugins
implementiert werden. Im Rahmen des Prototyps für Eyetracking-Daten wurden eine
Auswahl an Visualisierungen implementiert. Diese Visualisierungen sind die Stimulus-
Visualisierung, die Heatmap-Visualisierung und die „Gaze-Duration-Sequence“-
Visualisierung.

Stimulus-Visualisierung

Diese Visualisierung zeigt ausschließlich den Stimulus als Bild an. Mit dieser Visualisierung
kann nicht interagiert werden.

Heatmap-Visualisierung

Die Heatmap-Visualisierung zeigt im Hintergrund ebenfalls den Stimulus als Bild an. Im
Vordergrund wird eine halbtransparente Heatmap auf Basis einer ausgewählten Menge an
Fixationen angezeigt. Daher werden Gegenden mit vielen Fixationen in Rot dargestellt und
Gegenden mit wenigen in grün. Die Heatmap wird erzeugt, indem für jede Fixation ein
Graustufen-Pinselpunkt in eine Intensitätskarte gezeichnet wird. Diese Intensitätskarte wird
über einen Pixelshader und einer vorgegebenen Textur zur Heatmap transformiert. Die Textur
enthält für jeden Intensitätswert eine Farbe. Auch die Heatmap-Visualisierung beherscht keine
weiteren Interaktionen.

Gaze-Duration-Sequenz-Visualisierung

Diese Visualisierung zeigt ein „Gaze Duration Sequence“-Diagramm an. Auf der rechten
Seite ist eine Legende, die die Probanden und deren Farben anzeigt. Auf diesem Diagramm
können die vertikalen Achsen für die AOIs umsortiert werden.

129 Prototyp

Abbildung 88: Visualisierungen für Eyetracking-Daten
1) Stimulus-Visualisierung, 2) Heatmap-Visualisierung, 3) Gaze-Duration-Sequenz-

Visualisierung

9.3 Tabletop-Client

Dieser Teil beschreibt den Prototypen des Tabletop-Client. Er ist in C# auf Basis des .NET 4
Frameworks geschrieben. Seine Benutzeroberfläche baut auf dem Windows Presentation
Framework(WPF) auf und nutzt gleichzeitig das Surface SDK 2. Die eingesetzte Hardware ist
der Microsoft Pixelsense-Tabletop, dieser wird von Samsung als SUR40 hergestellt (siehe
Abbildung 89).

Abbildung 89: Der Microsoft Pixelsense des VIS

Der Client-Prototyp setzt ausgewählte Konzepte aus dem Lösungsansatz (Kapitel 7) um. Zu
Anfang wird die Nutzung des Frameworks kurz wiederholt. Danach wird die
Benutzeroberfläche des Tabletop-Clients beschrieben. Auf die Benutzeroberfläche folgt ein
Abschnitt über die Implementierung von Gesten für den Client. Darauf wird beschrieben, wie
die Interaktionen mit Tangibles umgesetzt wurden.

3

1

2

130 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

9.3.1 Nutzung des Frameworks
Jeder Client der Analyseumgebung muss in das Framework (siehe Kapitel 8) eingebunden
werden. Da der Tabletop-Client in C# geschrieben ist, kann er die vorgefertigten Klassen des
Frameworks für Clients verwenden. Die Klasse ClientApplication des Frameworks
bietet dem Client die Funktionalität das Framework zu nutzen. Sie ermöglicht dem Client den
Webservice einfacher zu nutzen.

Um Nachrichten mit der Analyseumgebung auszutauschen, bietet die Klasse
ClientApplication Methoden zum Senden der Nachrichten und Ereignisse zum
Empfangen der Nachrichten.

Für die Datenabstraktion werden die Datencontainer eingesetzt. Diese werden ebenfalls vom
Framework zur Verfügung gestellt und durch die Klasse AbstractDataContainer
repräsentiert. Jeder Datenaustausch zwischen den verschiedenen Clients geschieht über diese
Datencontainer.

9.3.2 Benutzeroberfläche
Die Benutzeroberfläche besteht aus vorrangig aus einem ScatterView des Surface SDK.
Dieses Steuerelement ermöglicht es, eine Oberfläche mit frei verschiebbaren Elementen zu
erstellen, wie es im Lösungsansatz beschrieben wird. Unter dem ScatterView liegt ein
TagVisualizer , ebenfalls aus dem Surface SDK. Der TagVisualizer ermöglicht die
Interaktion mit Tangibles, die mit visuellen Markern, den Byte-Tags von Microsoft,
ausgestattet wurden.

Auf dem ScatterView können beliebig viele ScatterViewItems liegen. Alle
Elemente, abgesehen von den Anzeigeelementen für die Tangibles, sind
ScatterViewItems oder von diesen abgeleitet.

Die festen Elemente der Benutzeroberfläche, wie sie im Lösungsansatz beschrieben werden,
sind statische ScatterViewItems . Diese werden statisch über die XAML-Datei zum
ScatterView hinzugefügt. Diese Elemente umfassen die Powerwallanzeige, den
Datenexplorer und den Administrationsdialog. Der Admin-Dialog kommt nicht im
Lösungsansatz vor, da er keine Bedeutung für eigentliche Funktion des Programmes hat.

Ferner können dynamische Elemente auf dem ScatterView liegen. Bei diesen handelt es
sich um die Visualisierungscontainer des privaten Raumes. Für die Visualisierungscontainer
selbst gibt es zwei Arten. Erstens die Visualisierungscontainer des privaten Raums, sie
werden durch die Klasse SurfaceVisWindow dargestellt. Zweitens die
Visualisierungscontainer auf der Powerwallansicht, repräsentiert durch die Klasse
PowerwallVisWindow . Abstrahiert werden die Visualisierungscontainer durch die
Oberklasse AbstractVisWindow .

131 Prototyp

Abbildung 90: Benutzeroberfläche des Clients
1) privater Visualisierungscontainer, 2) Powerwallansicht

3) Datenexplorer, 4) Administrationsdialog

Powerwallansicht
Die Powerwallansicht (siehe Abbildung 91) besteht aus einem Canvas innerhalb eines
SurfaceScrollViewers , einem Steuerelement aus dem Surface SDK. Das Canvas hat
die Auflösung der Powerwall. Der ScrollViewer beschränkt das Canvas auf die Größe des
umschließenden ScatterViewItems , in dem die Powerwallansicht dargestellt wird.
Dadurch wird nur ein Bereich der Powerwall, sein Viewport, angezeigt. Um den Bereich zu
verschieben, unterstützt der SurfaceScrollViewer eine Pan-Geste. Außerdem kann der
Bereich auch gezoomt werden. Dafür musste eine Pinch-Geste nachimplementiert werden.
Die allgemeine Vorgehensweise für die Implementierung von Gesten kann in
Gesteninteraktion(9.3.3) nachgelesen werden.

Die Minimap (siehe Abbildung 91) wird ebenfalls durch ein Canvas gelöst, das ein
gerendertes Abbild des großen Canvas, der Powerwall-Darstellung, verkleinert darstellt.
Außerdem wird mit einem Rechtecks-Element der Viewport angezeigt. Die Aktualisierung
der Minimap funktioniert über Ereignisse des ScrollViewers, die ausgelöst werden, wenn
dieser durch den Benutzer verändert wird.

Innerhalb des Canvas werden die Visualisierungscontainer der Powerwallansicht angezeigt.
Diese werden durch die PowerwallVisWindow Klasse abgebildet. Die
Visualisierungscontainer auf der Powerwallansicht sind eine Darstellung des öffentlichen
Raums. Daher müssen sie in die Analyseumgebung und somit auch auf die Powerwall
synchronisiert werden. Die Synchronisierung geschieht über die Nachrichten des Frameworks
der Analyseumgebung (siehe 8.3.1).

1

2

3 4

132 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 91: Powerwallansicht
1) öffentlicher Visualisierungscontainer, 2) Minimap

Neue Visualisierungscontainer werden durch eine NewViewMessage bekanntgegeben. Neue
Container haben meist auch neue Daten, diese werden durch die NewDataMessage an die
Analyseumgebung weitergegeben. Neuen Daten folgen meist ChangeDataMessages , mit
denen die Daten eines Visualisierungscontainers aktualisiert werden.

Beim Verschieben eines Visualisierungscontainer wird die MoveViewMessage mit den
Koordinaten versendet. Die Skalierung eines Containers wird über die
ResizeViewMessage , die die neue Größe enthält, weitergegeben.

Wenn zwei Visualisierungscontainer gekoppelt werden, so erfolgt dies über eine
CoupleViewMessage an die Analyseumgebung. Beim Wechsel der Visualisierung eines
Containers wird eine ChangeVisualizationMessage gesendet. Wurden die Daten einer
Visualisierung gefiltert, dann wird der Analyseumgebung mit der FilterDataMessage
über die Filtereigenschaften informiert.

Das Löschen eines Visualisierungscontainers wird durch die Nachricht
RemoveViewMessage weitergeleitet.

Datenexplorer
Der Datenexplorer wird über ein LibraryContainer des Surface SDK gelöst. Der
LibraryContainer bietet von sich aus Drag&Drop-Interaktionen an. Der Datenexplorer
zeigt Daten aus der Analyseumgebung an, die als Visualisierungen dargestellt werden können.
Jedes Datenelement hat eine Vorschau.

1

2

133 Prototyp

Abbildung 92: Datenexplorer mit Stimuli

Administrationsdialog
Dieser Dialog dient dazu, den Client mit dem Server zu verbinden. Es kann zu einem
beliebigen Server oder dem Server, der in der Konfigurationsdatei angeben ist, verbunden
werden. Außerdem zeigt der Dialog Debug-Informationen für die Analyseumgebung an (siehe
Abbildung 92).

Visualisierungscontainer
Die grundlegende Funktion der Visualisierungscontainer wird durch die Klasse
AbstractVisWindow bereitgestellt (Abbildung 93). Die Klasse ist jedoch nicht abstrakt
implementiert, da abstrakte Klassen sich nicht mit dem Designer des Visual Studios
vertragen. Die Klasse hat einen Platzhalter für das Steuerelement, das die Visualisierung
enthält. Die Klasse stellt ebenfalls einen Container für die Daten bereit, die von der
Visualisierung angezeigt werden. Außerdem lädt es mit dem Plugin-System für
Visualisierungen aus dem Framework die Steuerelemente der Visualisierungen. Mit der
Methode GetVisualizationsByDataType(…) holt sich die Klasse das Steuerelement
für eine Visualisierung, die mit den zugewiesenen Daten kompatibel ist. Dieses wird
instanziiert und auf dem Platzhalter der AbstractVisWindow Klasse gesetzt. Die
Unterklassen dieser Klasse sind dann dafür zuständig, dass das Steuerelement angezeigt wird.

+VisualisationContentControl() : ContentControl
+DisplayedDataType() : string
+DisplayedVisualization() : IVisualization
+WindowGlow()
+ChangeVisualization(eing. visualizationNameToChangeTo : string)
+ChangeVisualization(eing. plusOrMinusOne : int)
+Refresh()
+VisualizationChanged() : EventHandler<System.EventArgs>
+Data() : AbstractDataContainer

#_Visualizations : List<Vis.PowerInteractions.Client.Visualizations.IVisualization>

AbstractVisWindow

Abbildung 93: AbstractVisWindow
Stellt die grundlegenden Funktionen eines Visualisierungscontainer bereit.

Die SurfaceVisWindow Klasse ist eine Unterklasse von AbstractVisWindow und
dient als Visualisierungscontainer im privaten Raum (siehe Abbildung 94). Sie wird als
ScatterViewItem auf dem ScatterView angezeigt. Da das ScatterViewItem durch
die so genannten „Manipulations“ schon durch das Surface SDK verschoben, rotiert und
skaliert werden kann, müssen diese Funktionen nicht implementiert werden. Die
Funktionsknöpfe des Visualisierungscontainers am unteren Rand werden über
SurfaceButtons des Surface SDKs gelöst. Die Buttons für die Duplizierung und
Kopplung starten eine Drag&Drop-Operation. Das Surface SDK bietet im Vergleich zu WPF

134 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

eine erweiterte Drag&Drop-Unterstützung, diese wird durch die Klasse SurfaceDragDrop
zur Verfügung gestellt.

Abbildung 94: Privater Visualisierungscontainer (SurfaceVisWindow)
1: Duplizierenknopf, 2: Koppelnknopf, 3: Interaktionsmodus, 4: Löschenknopf,

5: Visualisierung

Die PowerwallVisWindow Klasse ist die zweite Unterklasse von AbstractVisWindow .
Sie ist für die Anzeige von Visualisierungscontainern auf der Powerwallansicht zuständig
(siehe Abbildung 95). Die Steuerelemente, die für die Interaktion zuständig sind, sind die
gleichen wie bei SurfaceVisWindow . Das Aussehen wurde aber an die des
Powerwallclient, der in Kapitel 9.4 erwähnt wird, angepasst. Die Interaktions-Steuerelemente
werden nach einer Zeit ausgeblendet, so dass die Visualisierungscontainer auf der
Powerwallanzeige wie die auf der Powerwall aussehen. Die Gesten für Verschieben und
Skalieren mussten mit dem Touchframework aus WPF neu implementiert werden, da die
Manipulations innerhalb des SkatterViewItems nicht funktionsfähig waren.

Abbildung 95: Öffentlicher Visualisierungscontainer(PowerwallVisWindow)
 mit ausgeblendeten Steuerelementen

1 2 3 4

5

135 Prototyp

Das Verschieben eines SurfaceVisWindows auf die Powerwallansicht soll entsprechend
Kapitel 7.3 möglichst nahtlos funktionieren. Dazu führt das SurfaceVisWindow an dem
Punkt, an dem es verschoben wird, ein Hittesting aus, um herauszufinden ob die
Powerwallansicht sich unter dem Punkt befindet. Wenn dies zutrifft, wird das
SurfaceVisWindow entfernt und ein PowerwallVisWindow angelegt. Die
Verschiebeinteraktion wird dann an das PowerwallVisWindow abgegeben, indem dessen
Berührpunkt weitergegeben wird. Der Berührpunkt wird dabei durch ein TouchDevice des
WPF repräsentiert. Umgekehrt funktioniert die Interaktion analog.

9.3.3 Gesteninteraktion
Die Gesten des Clients werden über das Touchframework von WPF implementiert.
Vorgefertigte Gesten werden durch die Manipulations aus WPF bereitgestellt. Diese
ermöglichen es, hauptsächlich geometrische Transformationen durch Gesten durchzuführen.
Weiterhin bietet das Surface SDK Methoden an, um Wisch- und Tippgesten umzusetzen.
Gesten für die es keine Unterstützung gibt, müssen über das grundlegende Touchframework
umgesetzt werden. Dieses Framework funktioniert über Ereignisse, die Berührungen und das
Verschieben von Fingern melden. Dabei bekommt jeder Berührungspunkt ein
TouchDevice . Auf diese Art und Weise können die verschiedenen Finger auf dem Tabletop
auseinandergehalten werden.

Die Vorgehensweise bei der Erkennung neuer Gesten ist die Folgende: Zuerst werden
Bereiche festgelegt, die nur von einem Benutzer gleichzeitig verwendet werden. So können
sich die Benutzer nicht gegenseitig mit ihren Gesten stören. Diese Bereiche werden sinnvoll
gewählt, z.B. einzelne Visualisierungscontainer oder die Fläche der Powerwallansicht für das
Paning. Der nächste Schritt ist ein einfacher Zustandsautomat. Da die entworfenen Gesten
durch die Anzahl der eingesetzten Finger auseinander gehalten werden können, sind die ersten
Zustände durch die Anzahl der Finger auf den genannten Bereichen definiert. Umgesetzt wird
dies durch das Zählen der TouchDevices mit dem TouchDown Ereignis für die jeweiligen
Bereiche. Danach wird mit dem TouchMove Ereignis die eigentliche Durchführung der
Geste erkannt. Da die Geste schon im Schritt davor festgelegt ist, muss dabei nur noch darauf
geachtet werden, dass die Geste wie erwartet abläuft. Falls das nicht der Fall ist, wird die
Geste abgebrochen.

9.3.4 Tangibleinteraktion
Für den Microsoft Pixelsense gibt es nur eine Möglichkeit Tangibles zu nutzen. Dafür werden
die Byte-Tags von Microsoft an den entsprechenden Objekten befestigt. Als physikalische
Interaktionskonzepte wurden Plexiglas Zylinder hergestellt. Auf eine der Grundflächen der
Zylinder ist ein Byte-Tag aufgeklebt (siehe Abbildung 96). Die Transparenz des Plexiglases
ermöglicht es das Display besser zu sehen als bei opaken Materialien. Der Zylinder wurde
gewählt, da er auf den Tisch gestellt werden kann und zum Anfassen eine angenehme Form
hat. Der Tabletop erkennt das Tangible über den Byte-Tag, wenn es auf den Tisch platziert
wird. Damit der Benutzer die verschiedenen Tangibles unterscheiden kann könnten
Abbildungen auf die Oberseite geklebt werden. Für den Prototyp werden die Tangibles mit
Markern beschrieben.

136 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 96: Tangible mit Byte-Tag

Abbildung 97: Verschiedene Tangibles des Client
1) Datenrepräsentationstangibles,

2) Kopplungstangiblepaar, 3) Duplizierungstangible

Die verschieden Tangible-Typen werden durch unterschiedliche Bereiche der Byte-Tags
festgelegt. Für die Datenrepräsentationstangibles werden die ersten 50 Tags reserviert. Für die
Filter- und Duplizierungstangibles werden jeweils immer 10 Tags reserviert. Die Kopplungs-
Tangibles erhalten 20 Tags. Da die Kopplungstangibles immer paarweise eingesetzt werden,
sind die Tags mit gleichem Modulo 10 Wert gepaart. Den Tags der Id-Karte von den privaten
Ablagen werden ebenfalls 10 Tags zugeordnet.

Die Tangibles werden in die Software über sogenannte TagVisualizations des Surface
SDKs eingebunden. Die TagVisualizations werden auf dem TagVisualizer der
Benutzeroberfläche angezeigt. Die TagVisualizations sind beliebige Steuerelemente auf
der Benutzeroberfläche und werden normalerweise anhand des Tangible ausgerichtet und
positioniert. Sie werden angezeigt sobald das Tangible auf dem Tabletop steht und beim
Wegnehmen wieder entfernt. Jeder der Tangible-Typen bekommt über die Tags eine Klasse
zugeordnet, die von der TagVisualization -Klasse abgeleitet ist.

• Duplizierungstangible: DuplicateTagVisualization -Klasse
• Kopplungstangible: CoupleTagVisualization -Klasse
• Filtertangible: FilterTagVisualization -Klasse
• Datenrepräsentationstangible: GenericTagVisualization -Klasse
• Id-Karte der privaten Ablage: DepotTagVisualization -Klasse

1 2 3

137 Prototyp

Abbildung 98: Kopplung von zwei Visualisierungscontainer mit Tangibles
Die Kreisanimation zeigt den Fortschritt an.

Sichtbare TagVisualizations haben nur die Datenrepräsentationstangibles, die Filtertangibles
und die private Ablage.

• Datenrepräsentationstangible
Die TagVisualization dieses tangible wird angezeigt, wenn es auf freier Fläche
des privaten Raums abgelegt wird. Innerhalb der TagVisualization befindet sich
ein Dialog, der es ermöglicht dem tangible Daten zuzuordnen. Über den Dialog
können dem tangible entweder Daten für das Filterkonzept oder
Visualisierungscontainer zugeordnet werden. Wurde dem tangible ein
Visualisierungscontainer zugeordnet, dann wird die TagVisualization des
tangible unsichtbar und der Visualisierungscontainer mit der TagVisualization
verschoben und rotiert. Das bedeutet wiederum, dass der Visualisierungscontainer
direkt vom tangible gesteuert werden kann. Verliert die TagVisualization ihr
tangible wird sie entfernt, vorher kann aber über das Ereignis LostTag der
Visualisierungscontainer ausgeblendet werden. Wird das Tangible wieder hingestellt,
dann blendet die neue TagVisualization über das Ereignis GotTag den
Visualisierungscontainer wieder ein. Eine andere Möglichkeit dem Tangible einen
Visualisierungscontainer zuzuordnen, ist durch längeres Abstellen des Tangible auf
den Container.

• Filtertangible
Die TagVisualization des Tangibles wird angezeigt, wenn das Tangible auf eine
freie Fläche des privaten Raums abgelegt wird und ihm ein Visualisierungscontainer
zugeordnet wurde. Dem Tangible kann ein Visualisierungscontainer zugeordnet
werden, indem das Tangible kurzzeitig auf den Container abgestellt wird. Die Anzeige
der TagVisualization stellt entsprechend des Lösungsansatzes einen Kreis dar.
Die Datenrepräsentationstangibles suchen über Hittesting eine TagVisualization
des Filtertangible. Finden sie eine wird der TagVisualization mitgeteilt wo sich
das Datenrepräsentationstangibles befindet und sie kann entsprechend des
Filterkonzepts einen zugehörigen Filter anzeigen.

• Private Ablage
Die TagVisualization der privaten Ablage enthält ein LibraryContainer
des SurfaceSDK. Visualisierungscontainer können wie bei der Powerwallansicht in

138 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

den Container verschoben werden. Nur wird hier ein Drag&Drop-Element erzeugt,
sobald sich der Visualisierungscontainer im LibraryContainer befindet.
Herausgenommen können Visualisierungscontainer wieder, indem sie aus dem
LibraryContainer per Drag&Drop herausgezogen werden. Dies funktioniert wie
bei dem Datenexplorer.

Die TagVisualizations aller Tangible-Typen müssen bei ihrer Interaktion Objekte auf
dem Display erkennen können. Dies wird über Hittesting umgesetzt. In WPF kann durch
Hittesting ein Steuerelement unterhalb eines Punktes gefunden werden. Um bestimmte
Steuerelemente, z.B. Visualisierungscontainer, zu finden führen die TagVisualizations
der Tangibles Hittesting durch sobald sie erzeugt oder verschoben werden. Dies wird durch
die Klasse VisWindowHitTester ermöglicht.

Die registrierten Daten der Tangibles, z.B. welche Visualisierungscontainer zugeordnet
wurden, werden in der lokalen Datenhaltung gespeichert.

9.3.5 Lokale Datenhaltung
Die lokale Datenhaltung verwaltet die Daten des Client. Die Datenhaltung sorgt dafür, dass
die Daten mit der Analyseumgebung synchronisiert werden und unterscheidet dabei, welche
Daten im öffentlichen Raum benötigt werden und welche nur lokal im privaten Raum
vorhanden sind. Außerdem verwaltet die Datenhaltung die Kopplung von
Visualisierungscontainern und die Filterung der Daten einer Visualisierung. Die Hauptklasse
der lokalen Datenhaltung ist der LocalDataManager .

Abbildung 99: LocalDataManager-Klasse

Die Eigenschaft PublicDataContainers des LocalDataManager enthält alle
Datencontainer der Visualisierungen des öffentlichen Raums. Werden Daten zu dieser
Eigenschaft hinzugefügt, dann werden die neuen Datencontainer automatisch mit der
NewDataMessage an die Analyseumgebung weitergegeben. Analog dazu speichert die
PrivateDataContainers -Eigenschaft die Datencontainer des privaten Raums.

Die Eigenschaft PowerwallVisualizationContainers enthält die
Visualisierungscontainer auf der Powerwallansicht. Ein Hinzufügen oder Löschen eines
Visualisierungscontainer aus der Liste bewirkt, dass er auf dem Canvas der Powerwallansicht
dargestellt oder entfernt wird. Die Eigenschaft SurfaceVisualizationContainers
speichert die Visualisierungscontainer des privaten Raums. Hier werden beim Ändern der
Liste die Visualisierungscontainer von dem ScatterView hinzugefügt oder von diesem
entfernt.

139 Prototyp

Mit den „registries“ für zugewiesene Datencontainer, die mit
Register*AssignedDataContainer und
Unregister*AssignedDataContainer bedient werden, werden die zu
Visualisierungscontainern zugewiesenen Datencontainer registriert. Das ermöglicht es, die
Datencontainer nur zu löschen, wenn sie nicht mehr einem Visualisierungscontainer
zugeordnet sind. Dabei wird, wie bei den anderen Eigenschaften, zwischen privaten und
öffentlichen Räumen unterschieden. Gelöscht werden die DatenContainer mit
TryDeleteDataContainer(…) .

Die Methode SetVisualizationCoupled(…) koppelt zwei Visualisierungscontainer
und die Methode RemoveCoupling(…) entfernt diese wieder.

9.4 Kinect-Powerwall-Client

Um tatsächlich Visualisierungen auf der Powerwall anzuzeigen, wird neben dem Tabletop-
Client auch ein Powerwall-Client benötigt.

Dieser Powerwall-Client hat zunächst nur die Funktion, die Visualisierungen die zur
Analyseumgebung hinzugefügt werden auf der Powerwall anzuzeigen. Das kann z.B. durch
Hinzufügen einer Visualisierung zur Powerwallanzeige innerhalb des Tabletop-Clients
geschehen. Weiterhin wartet der Client auf Nachrichten des Frameworks und passt seine
Darstellung entsprechend an.

Die Erweiterung des Powerwall-Clients ist der Prototyp der Diplomarbeit „Gestensteuerung
für Powerwall-basierte Visualisierungen“ [46]. Hier gibt es zusätzlich die Möglichkeit die
Powerwall mit Freihandgesten über eine Microsoft Kinect zu steuern.

Abbildung 100: Aufbau für den Powerwall-Client

140 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

141 Zusammenfassung und Ausblick

10 Zusammenfassung und Ausblick

Das letzte Kapitel fasst die Ergebnisse der Diplomarbeit zusammen und wichtige inhaltliche
Punkte werden wiederholt. Es werden einige Aspekte noch einmal bewertet und Stellen
angesprochen, die positiv oder negativ aufgefallen sind. Zum Schluss wird ein Ausblick in
Bereiche aus dieser Arbeit gegeben, an denen weitergearbeitet werden kann.

10.1 Zusammenfassung und Bewertung

Dieses Kapitel fasst zuerst die Arbeit noch einmal zusammen. Zu Beginn wurde eine
Anforderungsanalyse durchgeführt, bei der unter anderem zwei Szenarien für eine
Analyseumgebung entstanden sind. Daraufhin wurde ein Konzept für eine Analyseumgebung
für Powerwalls und ein Interaktionskonzept für eine Tabletop-Steuerung innerhalb der
Analyseumgebung entworfen. Dabei wurde das Interaktionskonzept in einer Vorstudie
evaluiert und verbessert. Danach wurde das Konzept für die Analyseumgebung in einem
Framework umgesetzt und das Interaktionskonzept in einem Prototyp implementiert. Der
Prototyp nutzt dabei das Framework für die Analyseumgebung.

10.1.1 Zusammenfassung
Das Ziel dieser Arbeit war es ein Interaktionskonzept für die Steuerung einer
Analyseumgebung für die Powerwall mit einem Tabletop zu entwickeln. Die
Analyseumgebung soll dabei Visualisierungen zur Analyse auf der Powerwall anzeigen. Um
dies zu ermöglichen wurde auch ein Konzept für die Analyseumgebung entwickelt.

Um einen Überblick über mögliche Funktionen einer solchen Analyseumgebung und deren
Einsatz zu bekommen, wurde eine Anforderungsanalyse durchgeführt. Diese
Anforderungsanalyse wurde unter anderem durch Beobachtung der Analyse einer
Eyetracking-Studie durchgeführt. Die Anforderungsanalyse führte zu zwei Szenarien für die
Anwendung der Analyseumgebung:

• Szenario für die Auswertung von Eyetracking-Studien
Das erste Szenario ist aus dem Bereich der Informationsvisualisierung. In dem
Szenario wird die Analyseumgebung bei der Auswertung einer Eyetracking-Studie
eingesetzt. Bei einer solchen Auswertung werden unter Umständen viele
Visualisierungen geöffnet. Diese müssen verglichen werden, um Muster zu finden.
Darum wird die Auswertung an einer Powerwall durchgeführt.

• Szenario für MegaMol
Das zweite Szenario ist aus dem Bereich der wissenschaftlichen Visualisierung. Bei
diesem Szenario wird versucht die Analyseumgebung zu nutzen, um große Moleküle
anzuzeigen.

Anhand der Szenarien wurden Anforderungen an die Analyseumgebung und die Tabletop-
Steuerung aufgestellt.

Im Anschluss wurde anhand der Anforderungen ein Konzept für die Analyseumgebung mit
Powerwall entwickelt. Dabei wurde analysiert welche Geräte eingesetzt werden. Es wurde
erkannt, dass sowohl Geräte zur direkten Steuerung der Powerwall als auch Geräte, die die
Powerwall fernsteuern, eingesetzt werden können. Im Weiteren wurde der grundsätzliche
Aufbau des Frameworks für die Analyseumgebung mit Kommunikation und Datenabstraktion
festgelegt. Das Framework sollte außerdem in besonderem Maße erweiterbar sein. Zum

142 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Schluss wurde festgelegt wie ein Tabletop in die Analyseumgebung eingebaut werden kann.
Der Tabletop kann sowohl einen öffentlichen Bereich für die Steuerung der Powerwall als
auch einen privaten Bereich für sich selbst besitzen. Innerhalb des privaten Bereichs
ermöglicht der Tabletop durch seine Technik einen Mehrbenutzerbetrieb. Es können daher
Gruppen von Benutzern an einem Tabletop arbeiten. Für den Mehrbenutzerbetrieb sollten
Funktionen wie Koppeln oder Ablagen unterstützt werden. Außerdem wurde identifiziert
welche Aufgaben die Interaktionsmodalitäten des Tabletops, wie Gesten oder Tangibles,
übernehmen können.

Auf Basis des Konzepts wurde ein Framework für die Analyseumgebung entworfen und
implementiert. Das Framework wurde in .NET 4 entwickelt und nutzt für eine mögliche
Plattformunabhängigkeit Webservices.

Auf Basis des abstrakten Konzepts wurden ein Interaktionskonzept und die
Bedienungsoberfläche für die Tabletop-Steuerung entworfen.

Dabei wurde in Vorüberlegungen ein Lösungsansatz für das Interaktionskonzept entworfen.
Der Lösungsansatz enthält sowohl Ansätze für die Benutzeroberfläche, als auch für die
Interaktionen mit den verschiedenen Interaktionsmodalitäten des Tabletops. Der Ansatz wird
durch existierende Arbeiten und Toolkits für Tabletops inspiriert. Da das Interaktionskonzept
möglichst nah an einem Natural User Interface sein soll, wurde daraufhin eine Vorstudie
durchgeführt.

Da das Interaktionskonzept nicht in einer normalen Benutzerstudie getestet werden kann
wurde Paperprototyping eingesetzt. Bei der Vorstudie konnten Teile der Benutzeroberfläche
und die Interaktionen untersucht werden und außerdem neue Ideen gefunden werden. Die
Studie ergab, dass es keine einheitlichen Vorlieben für ein Interaktionskonzept gibt. Die
Probanden der Studie waren sich bei einigen Gesten und der Anwendung von Tangible-
interaktionen einig und sie bestätigten viele Teile der Benutzeroberfläche, wie z.B. die
Powerwallansicht und das Filterkonzept. Ein gemeinsames Muster der Vorlieben konnte aber
nicht gefunden werden. Manche Probanden schlugen vor verschiedene
Interaktionsmodalitäten zu nutzen, so dass jeder Benutzer nach eigenem Belieben arbeiten
kann. Viele der Probanden wollten einen starken Aufforderungscharakter für die Interaktionen
und Mehrdeutigkeiten bei diesen wurden meistens abgelehnt. Die Ergebnisse der Vorstudie
flossen daraufhin in eine Verbesserung des Lösungskonzeptes ein. Bei der Verbesserung
wurden einige Ideen, wie das Drag&Drop-Interaktionselement, verworfen und andere
verbessert.

Im Anschluss an den Lösungsansatz des Interaktionskonzepts wurde der Prototyp für die
Tabletop-Steuerung im Rahmen der Analyseumgebung entwickelt. In diesem Sinne nutzt der
Prototyp das Framework für die Analyseumgebung. Der Prototyp selbst wird für den
Microsoft Pixelsense entwickelt. Der Pixelsense nutzt ein eigenes Toolkit, genannt Surface
SDK 2.0, welches wiederum auf dem Windows Presentation Framework von Microsoft
aufbaut. In dem Prototyp werden einige Teile des Lösungsansatzes umgesetzt. Abstriche
wurden dabei bei komplexeren Gesten und aufwendigem Feedback gemacht. Die
Visualisierungen und die Datengrundlage beruhen auf dem ersten Szenario, das für
Eyetracking-Studien entwickelt wurde. Für den Teil der Analyseumgebung, der die Anzeige
auf der Powerwall übernimmt, wurde der Prototyp der Diplomarbeit „Gestensteuerung für
Powerwall-basierte Visualisierungen“ [46] verwendet.

143 Zusammenfassung und Ausblick

10.1.2 Bewertung
In diesem Kapitel werden einige Aspekte der Arbeit beleuchtet und auf Probleme oder
vorteilhafte Erkenntnisse untersucht.

Anforderungsanalyse
Mit der Anforderungsanalyse konnten die Ziele und die grundsätzlichen Vorgehensweise bei
einer solchen Auswertung verstanden werden. Die Schwierigkeit, ein Szenario für die
Analyseumgebung zu entwickeln, war das Fehlen von guten Werkzeugen und einheitlicher
Vorgehensweise für die Auswertung.

Konzept und Framework für die Analyseumgebung
Das Konzept und das Framework für die Analyseumgebung wurden in Zusammenarbeit mit
der Diplomarbeit „Gestensteuerung für Powerwall-basierte Visualisierungen“ [46]
ausgearbeitet. Die Zusammenarbeit beim Konzept lieferte schnell Ergebnisse, die von beiden
Seiten als gut empfunden wurden. Kernpunkte waren dabei die Abstraktion und die
Erweiterbarkeit des Frameworks. Daher wurde, unter gemeinsamem Einverständnis, der
Einsatz von Webservices beschlossen und eine Plugin-Architektur für die Visualisierungen
entworfen. So können einfach neue Geräte in das System eingebunden werden und neue
Visualisierungen entwickelt werden.

Durch Verteilung der Aufgaben und Einsatz von „Extreme Programming“ bei schwierigeren
Teilen konnte das Framework schnell implementiert werden.

Lösungsansatz des Interaktionskonzepts
Die Entwicklung des Lösungsansatzes des Interaktionskonzeptes stellte eine Herausforderung
dar, da es wenig Erfahrung auf dem Gebiet der Tabletop-Anwendungen und
Analyseumgebungen mit Powerwalls gibt. Auch wenn Arbeiten in diese Richtung existieren,
beschränken sich diese meist auf Erforschung der Grundlagen und Verbesserung der
Technologien. Auch Anwendungen, die auf dem Surface SDK beruhen, sind meist auf
speziellere Anwendungsgebiete beschränkt oder kommen aus dem Unterhaltungsbereich.
Daher wurde nach einigen Entwürfen entschieden die Vorstudie durchzuführen.

Die Studie lieferte kein vollkommen einheitliches und rundes Konzept. Lediglich das
Filterkonzept war allgemein sehr beliebt

Vorstudie
Die Vorstudie gab einen guten Einblick in die Wünsche und Erwartungen von Benutzern. Es
konnten einige Stellen im Lösungskonzept erkannt werden, die dem Benutzer nicht klar waren
oder unintuitiv sind. Außerdem konnten in der Absprache mit Probanden neue Ideen
entwickelt werden. Das Paperprototyping ermöglichte schnelles Testen von Konzepten bei
Interaktionen und Benutzeroberflächen. Ebenso können relativ schnell Anpassungen
vorgenommen werden und diese wieder geprüft werden. Die Kombination mit „User Defined
Design“ [48] macht die Studie noch flexibler und bringt schnell Inspiration für den Entwurf
der Benutzeroberfläche und deren Interaktionen.

Der Einsatz von Probanden aus dem Bereich der Informatik hat zwar viele Ideen von
Experten geliefert. Allerdings konnten so keine Meinungen von unerfahrenen Benutzern
eingeholt werden, was den Einsatz für Laien erschweren könnte. Die Studie liefert, so wie sie
in dieser Arbeit durchgeführt wurde, nur qualitative Ergebnisse. Um quantitative Ergebnisse
zu bekommen müsste ein Fragebogen entworfen werden, mit dem jeder Proband eine
Bewertung abgeben kann.

144 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Microsoft Pixelsense
Der Microsoft Pixelsense ist ein sehr kompakter Tabletop und kann daher für viele Szenarien
eingesetzt werden. Allerdings ist die Pixelsense-Technik noch nicht ausgereift genug.
Infrarote Umgebungsstrahlung stört die Erkennung von Berührungen und Tangibles stark und
kann unter Umständen die Eingabe komplett unmöglich machen. Daher muss genau auf die
Umgebungsbeleuchtung geachtet werden.

Das Surface SDK 2.0 erlaubt es schnell einfache Anwendungen zu erstellen. Es bietet
grundlegende Unterstützung für Gesten und Tangibleinteraktion. Wenn allerdings komplexere
Aufgaben zu lösen sind, stößt das SDK gelegentlich an Grenzen.

10.2 Ausblick

Dieses Kapitel gibt einen Ausblick über Ideen die in dieser Arbeit nicht, oder nur geringfügig,
bearbeitet werden konnten. Außerdem werden Vorschläge genannt, wie technische Lösungen
die Arbeit verbessern könnten.

10.2.1 Benutzerstudie
Um die tatsächliche Nutzbarkeit des Prototyps zu testen, sollte eine Benutzerstudie für diesen
durchgeführt werden. Um in dieser ersten Studie den Prototypen des Tabletops zu evaluieren,
kann für die Powerwall ein Client eingesetzt werden, der keine Interaktion zulässt. Der
Versuchsaufbau besteht aus der Powerwall mit einem Steuerrechner, der diesen Client
ausführt und einem Microsoft Pixelsense, der den Prototypen ausführt. Die Aufgaben können
aus den implementierten Teilen des Lösungsansatzes entworfen werden. Dabei werden die
einzelnen Interaktionsmodalitäten (Tangibles, Gesten) getrennt, damit ein Vergleich dieser für
die einzelnen Aufgaben durchgeführt werden kann. Die Durchführung der Studie beginnt mit
einer Einführung in das System und eine grobe Vorstellung der Aufgaben. Bei der
Ausführung der Aufgaben wird die Aufgabe zuerst erklärt. Danach wird sie mit den einzelnen
Interaktionsmodalitäten vorgeführt. Darauf wird der Proband gebeten die Aufgabe
auszuführen. Dabei soll er zwar mit der Interaktion anfangen, die ihm am besten gefällt, aber
alle einmal ausprobieren. Für Aufgaben, die für Mehrbenutzerbetrieb relevant sind, können
ein oder mehrere Statisten den Probanden unterstützen. Wenn der Proband die Interaktionen
ausprobiert hat, soll er einen Fragebogen zum Vergleich der Interaktionsmodalitäten für die
spezielle Aufgabe ausfüllen. Am Ende der Studie soll der Proband einen Fragebogen
ausfüllen wie er die Aufgabe und ihre Interaktionen vom Schwierigkeitsgrad bewertet. Aus
den Ergebnissen kann der Prototyp des Tabletop-Clients und dessen Interaktionen weiter
verbessert werden.

Da die Arbeit aber auch die multimodale Analyseumgebung betrifft, sollte auch eine weitere
Studie durchgeführt werden. In dieser Studie sollte ein Szenario evaluiert werden, bei dem
verschiedene Geräte eingesetzt werden. Der erste Schritt dafür wäre der gleichzeitige Einsatz
des Tabletop-Clients und des Powerwall-Clients mit Freihandgestensteuerung aus der Arbeit
„Gestensteuerung für Powerwall-basierte Visualisierungen“ [46]. Dies ermöglicht die
Einsatzfähigkeit der Analyseumgebung mit mehreren Geräten zu evaluieren. Weiterhin gibt es
aber auch Aufschluss darauf, wie gut die Interaktionskonzepte zusammen funktionieren und
an welchen Stellen sie sich ergänzen. Die Ergebnisse der Studie können schlussendlich zur
Verbesserung der Interaktionskonzepte in Bezug auf Kompatibilität verwendet werden.
Außerdem ermöglichen die Ergebnisse das Framework der Analyseumgebung zu erweitern.

10.2.2 Technische Lösungen
Dieser Abschnitt gibt einen Ausblick welche technischen Möglichkeiten die Bedienung des
Tabletop-Client verbessern könnten.

145 Zusammenfassung und Ausblick

Tabletop
Der Microsoft Pixelsense hat Probleme mit externem Infrarotlicht, was wahrscheinlich auf die
Empfindlichkeit des Pixelsense-Verfahrens rückzuführen ist. Die Probleme können durch
Wahl der richtigen Beleuchtung verringert werden. Allerdings ist das nicht immer möglich,
wenn die Räumlichkeiten Fenster haben, da Sonnenlicht ebenfalls einen starken Infrarotteil
enthält. Eine Verbesserung der Technologie durch Microsoft wäre eine Lösung dieses
Umstands. Eine andere Lösung wäre der Einsatz eines Tabletops, der auf DI (siehe Kapitel
2.3) basiert. Diese Technik ist nicht ganz so anfällig für externes Infrarotlicht. Die Tabletops
sind leider schwer und sperrig, allerdings könnte man solch einen Tabletop fest vor einer
Powerwall einbauen, da diese ebenfalls nicht mobil ist.

Tangibles
Im Gegensatz zu den passiven Tangibles, die keine eigenes Feedback, Anzeige oder
Interaktionen erlauben, könnten ebenso elektronisch augmentierte Tangibles eingesetzt
werden. Diese Tangibles könnten über drahtlose Kommunikationsmittel mit ihrem Host
verbunden sein. Dies ermöglicht es, über Tangibles selbst Informationen auszugeben oder die
Interaktionsmöglichkeiten zu erweitern. In diesem Zusammenhang wären folgende
Erweiterungen denkbar.

• Display
Wenn das Tangible mit einem Display ausgestattet ist, kann es den aktuellen Status
anzeigen. Bei Datenrepräsentationstangibles können außerdem Informationen über die
repräsentierten Daten angezeigt werden, ohne dass das Tangible auf dem Tabletop
steht. Das wiederum erhöht den Nutzen des Tangibles als Ablage erheblich, da der
Benutzer sich nicht merken muss welche Daten im Tangible gespeichert sind.

• Interaktionselemente
Die Interaktionsmöglichkeiten des Tangibles können durch echte Steuerelemente auf
dem Tangible, wie elektronischen Knöpfen oder Reglern, erweitert werden. Das
erweitert die Tangibles um neue Interaktionen, die auch haptisches Feedback
mitbringen. Des Weiteren können Interaktionen ausgeführt werden, ohne dass das
Tangible sich auf dem Tabletop befindet. So können z.B. Daten entfernt werden, die
einem Tangible zugeordnet sind oder der Status des Tangibles zurückgesetzt werden.
In diesem Fall sollte die Erweiterung aber mit dem Display kombiniert werden sonst
erhält der Benutzer zu wenig Feedback.

• Annäherungserkennung
Eine Annäherungserkennung des Tangibles an den Tabletop würde es erlauben
Feedback zu der Funktionalität des Tangibles zu geben, bevor irgendwelche Aktionen
ausgeführt werden. Dies kann analog zu der Hover-Eigenschaft der Maussteuerung
genutzt werden. Auf diese Weise kann eine Vorschau von Aktionen angezeigt werden.

Eine anderer Art von Tangible, die auf Tabletops eingesetzt werden könnten, sind die
„Silicone iLluminated Active Peripherals(SLAP) Widgets“ [54]. Diese Art von Tangibles sind
Widgets, die als reale Objekte auf dem Tabletop positioniert werden können. Die Tangibles
werden aus Silikon hergestellt und sind halbtransparent, können also vom Display beleuchtet
werden. Einfache Beispiele sind Knöpfe, Drehschalter oder Schieberegler. Diese Widgets
liefern im Gegensatz zu ihren digitalen Gegenstücken ein haptisches Feedback. Außerdem
zeigen ihre physikalischen Objekte ihren Status an, ohne dass das Display des Tabletops zum
Einsatz kommen muss.

146 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Abbildung 101: Eine Auswahl an SLAP Widgets
a) Radiobuttons, b) Drehknopf, c) Regler, d) Tastatur

10.2.3 Implementierung
Erweiterung für die Implementierung des Frameworks und des Tabletops sind möglich und
werden im Weiteren beschrieben.

Framework der Analyseumgebung
Das Framework bietet momentan nur die Möglichkeit, Daten zu laden. Sollen Veränderungen
oder Notizen gespeichert werden, muss das Framework angepasst werden. Das ist allerdings
nicht ganz so einfach. Das Framework ist momentan so ausgelegt, dass Clients Daten auf
Bedarf nachladen. Die Clients synchronisieren sich, indem sie kurz gesagt weitergeben
welche Daten sie verwenden. Um aber Daten auch verändern zu können, muss auch aktiv
synchronisiert werden, denn sonst wissen die Clients nicht, dass Daten verändert wurden. Die
einfachste Anpassung des Frameworks, um dies zu ermöglichen, ist eine Erweiterung der
passiven Synchronisierung. Bei dieser Erweiterung werden die Daten in der Datenhaltung der
Analyseumgebung gespeichert. Danach wird eine Nachricht an die anderen Clients gesendet,
dass sich gewisse Daten geändert haben. Daraufhin können sich die Clients die geänderten
Daten nachladen.

Das Framework erlaubt momentan nur einen öffentlichen Bereich. Ein Austausch zwischen
privaten Bereichen verschiedener Clients ist nicht möglich. Das Framework unterstützt den
Austausch von Daten zwischen Clients. Daher wäre ein Austausch zwischen privaten
Bereichen durch eine Einführung von neuen Nachrichten möglich. Der Einsatz eines
Austauschs zwischen zwei Clients ist vielfältig. Es könnten Tangibles ähnlich der
MediaBlocks [25] zum Austausch von Daten zwischen Clients verwendet werden. So können
sich Tabletops Tangibles und ihre Daten teilen. Eine andere Anwendung wäre eine
Verschmelzung der privaten Bereiche zweier oder mehrerer Clients. Dies ermöglicht eine
kombinierte Nutzung mehrerer Tabletops.

Clients für persönliche Geräte
Es können Clients der Analyseumgebung für persönliche Geräte entwickelt werden. Die
persönlichen Geräte sollten kompakt und einfach zu bedienen sein. Wenn für die persönlichen
Geräte Tablets und Smartphones verwendet werden, können die Konzepte des Tabletops
verwendet werden und für den Einzelnutzerbetrieb rückoptimiert werden. Das Tablet braucht
keine Oberfläche mit frei rotierbaren Fenstern. In Smartphones kann auf Grund ihrer Größe
nur eine Visualisierung angezeigt werden. Die Powerwallanzeige ist in ihrem abstrakten
Konzept genauso auf Tablets oder Smartphones einsetzbar. Auf Grund der geringen Größe

147 Zusammenfassung und Ausblick

der Geräte müssen aber sinnvolle Vorkehrungen getroffen werden, dass die Powerwallanzeige
sinnvoll bedient werden kann. Ebenso können die entworfenen Gesten auch auf solchen
Geräten verwendet werden.

Tabletop-Client
Da zur Zeit der Implementierung keine Clients für persönliche Geräte existiert haben, konnten
auch keine Verbindungsmöglichkeit des Tabletop-Clients mit diesen Geräten umgesetzt
werden. Im Lösungsansatz wird vorgeschlagen eine Erweiterung der privaten Ablagen
vorzunehmen. Die Erweiterung sollte den privaten Raum des Geräts anzeigen. Doch sehen die
privaten Räume der verschiedenen Geräte unterschiedlich aus und werden unterschiedlich
bedient. Daher wäre es sinnvoll für jedes Gerät eine eigene Darstellung zu entwickeln. Da das
Framework jedoch offen für neue Geräte ist, sollte eine einheitliche Schnittstelle verwendet
werden. Diese sollte es erlauben die Darstellung für eine Verbindung zu einem neuen Gerät
zum Client hinzuzufügen, ohne dass dessen Quellcode angepasst werden muss. Dies kann
wiederum über ein Plugin-System gelöst werden, wie es auch bei den Visualisierungen der
Fall ist. Für den Fall, dass es kein Plugin für ein Gerät gibt sollte es eine Standarddarstellung
geben.

Die Erkennung der Tangibles ist beim Ziehen oder bei schlechten Lichtbedingungen etwas
instabil, daher sollten die Interaktionen so angepasst werden, dass ein kurzes Verlieren des
Tangibles keine Auswirkung auf die Funktion hat. Zusätzlich könnte man Tags mit höherer
Qualität nehmen, die die Erkennung erleichtern.

Ebenfalls könnten noch weiter Funktionen für die Hilfestellung eingeführt werden. Für die
Visualisierungscontainer könnte eine Kurzhilfe entwickelt werden, die jedes Steuerelement
des Containers mit einem Popup kurz beschreibt. Dadurch können völlige Neueinsteiger einen
kurzen Überblick über die Funktionen erhalten

Visualisierungen
Im Prototyp werden einige Visualisierungen für Eyetracking-Auswertung entwickelt. Neben
der im Prototyp entwickelten Visualisierung existieren noch weitere Parallel-Scan-Path –
Visualisierungen, wie in Kapitel 5.1.2 vorgestellt. Diese können ebenfalls als Plugins für die
Analyseumgebung entwickelt werden.

148 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

149 Literaturverzeichnis

Literaturverzeichnis

[1] EMC, „EMC Digital Universe,“ EMC, [Online]. Available:
http://germany.emc.com/leadership/programs/digital-universe.htm. [Zugriff am 19.
August 2012].

[2] D. Keim, „Information visualization and visual data mining,“ IEEE Transactions on
Visualization and Computer Graphics, Bd. 8, Nr. 1, pp. 1-8, 2002.

[3] S. Grottel, „MegaMol Projektseite,“ Universität Stuttgart VISUS, [Online]. Available:
https://svn.vis.uni-stuttgart.de/trac/megamol/. [Zugriff am 19. August 2012].

[4] R. Fraedrich, J. Schneider und R. Westermann, „Exploring the millennium run--scalable
rendering of large-scale cosmological datasets.,“ IEEE transactions on visualization and
computer graphics, pp. 1251-1258, Novermber 2009.

[5] G. Mark, A. Kobsa und V. Gonzalez, „Do four eyes see better than two? Collaborative
versus individual discovery in data visualization systems,“ Proceedings Sixth
International Conference on Information Visualisation, pp. 249-255, 2002.

[6] G. Schmidt, O. Staadt, M. Livingston, R. Ball und R. May, „A Survey of Large High-
Resolution Display Technologies, Techniques, and Applications,“ in IEEE Virtual
Reality Conference (VR 2006), 2006. pp. 223-236., DOI 10.1109/VR.2006.20

[7] P. Dietz und D. Leigh, „DiamondTouch: a multi-user touch technology,“ in Proceedings
of the 14th annual ACM symposium on User interface software and technology - UIST
'01, New York, 2001. pp. 219-226., DOI 10.1145/502348.502389

[8] Microsoft, „Microsoft Pixelsense,“ Microsoft, [Online]. Available: www.pixelsense.com.
[Zugriff am 19. August 2012].

[9] Microsoft, „Harrah’s Entertainment Launches Microsoft Surface at Rio iBar, Providing
Guests With Innovative and Immersive New Entertainment Experiences,“ Microsoft,
[Online]. Available: http://www.microsoft.com/en-us/news/press/2008/jun08/06-
11hetsurfacepr.aspx. [Zugriff am 19. August 2012].

[10] Microsoft, „AT&T First to Introduce Microsoft Surface in Retail Stores to Enhance
Mobile Shopping Experience,“ Microsoft, [Online]. Available:
http://www.microsoft.com/en-us/news/press/2008/apr08/04-01surfaceretailpr.aspx.
[Zugriff am 19. August 2012].

[11] M. Weiser, „The computer for the 21 st century,“ ACM SIGMOBILE Mobile Computing
and Communications Review, pp. 3-11, 1999.

[12] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas und H. Ziegler, „Visual
Analytics: Scope and Challenges,“ University of Konstanz.

150 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

[13] J. J. Thomas und K. A. Cook, Illuminating the Path, IEEE.

[14] D. Keim, J. Kohlhammer, G. Ellis und F. Mansmann, Mastering the Information Age
Solving Problems with Visual Analytics, Eurographics Association, 2010. , ISBN 978-3-
905673-77-7

[15] C. R. Johnson und C. D. Hansen, The Visualization Handbook, Elsevier, 2005. , ISBN
978-0123875822

[16] H. Schumann und W. Müller, Visualisierung, Grundlagen und allgemeine Methoden,
Berlin: Springer-Verlag, 2000. , ISBN 978-3-540-64944-1

[17] H. Bosch, D. Thom, M. Worner, S. Koch, E. Puttmann, D. Jackle und T. Ertl,
„ScatterBlogs: Geo-spatial document analysis,“ in 2011 IEEE Conference on Visual
Analytics Science and Technology (VAST), 2011. pp. 309-310., DOI
10.1109/VAST.2011.6102488

[18] B. Shneiderman, „The Eyes have it: A task by data type taxonomy for information
visualization.,“ IEEE Symposium on Visual Languages, p. 336–343, 1996.

[19] H. D. Hellige, Mensch-Computer-Interface: Zur Geschichte und Zukunft der
Computerbedienung, transcript Verlag, 2008.

[20] V. Bush, „As we may think,“ ACM SIGPC Notes, Bd. 1, Nr. 4, pp. 36-44, 1979.

[21] I. E. Sutherland, „Sketchpad: a man-machine graphical communication system,“ in
Proceedings of the May 21-23, 1963, spring joint computer conference on - AFIPS '63
(Spring), 1963. pp. 329-346., DOI 10.1145/1461551.1461591

[22] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer, E. T. Solovey und J.
Zigelbaum, „Reality-based interaction: a framework for post-WIMP interfaces,“ in
Proceeding of the twenty-sixth annual CHI conference on Human factors in computing
systems - CHI '08, 2008. pp. 201-210., DOI 10.1145/1357054.1357089

[23] D. Wigdor und D. Wixon, Brave Nui World, Burlington, MA: Elsevier Inc, 2010. , ISBN
978-0-12-382231-4

[24] H. Ishii und B. Ullmer, „Tangible bits: towards seamless interfaces between people, bits
and atoms,“ in Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI '97, 1997. , DOI 10.1145/258549.258715

[25] B. Ullmer, H. Ishii und D. Glas, „mediaBlocks: Physical Containers, Transports, and
Controls for Online Media,“ in Proceedings of the 25th annual conference on Computer
graphics and interactive techniques - SIGGRAPH '98, 1998. pp. 379-386., DOI
10.1145/280814.280940

[26] S. Jordà, G. Geiger, M. Alonso und M. Kaltenbrunner, „The reacTable : Exploring the
Synergy between Live Music Performance and Tabletop Tangible Interfaces,“ in
Proceedings of the 1st international conference on Tangible and embedded interaction -

151 Literaturverzeichnis

TEI '07, 2007. pp. 139 - 146., DOI 10.1145/1226969.1226998

[27] R. Chang, F. Wang und P. You, „A Survey on the Development of Multi-touch
Technology,“ in 2010 Asia-Pacific Conference on Wearable Computing Systems, 2010.
pp. 363-366., DOI 10.1109/APWCS.2010.99

[28] P. Brandl, F. Daiber und F. Echtler, „Multi-touch surfaces: A technical guide,“
Interactive Surfaces, 2008.

[29] J. Y. Han, „Low-cost multi-touch sensing through frustrated total internal reflection,“ in
UIST, Seattle, WA, 2005.

[30] J. Y. Han, „Multi-touch interaction wall,“ in SIGGRAPH, Boston, Massachusetts, 2006.

[31] Microsoft, „MSDN - Surface SDK SP1,“ Microsoft, [Online]. Available:
http://msdn.microsoft.com/en-us/library/ee804767(v=surface.10).aspx. [Zugriff am 19.
August 2012].

[32] Microsoft, „MSDN - Surface SDK 2,“ Microsoft, [Online]. Available:
http://msdn.microsoft.com/en-us/library/ff727815. [Zugriff am 19. August 2012].

[33] S. Jordà, „The Reactable: Tangible and Tabletop Music Performance,“ in Proceedings of
the 28th of the international conference extended abstracts on Human factors in
computing systems - CHI EA '10, 2010. pp. 2989-2994., DOI 10.1145/1753846.1753903

[34] SAGE, „SAGE :: GALLERY,“ SAGE, [Online]. Available:
http://www.evl.uic.edu/cavern/sage/gallery.php. [Zugriff am 19. August 2012].

[35] VISUS, „Technischer Aufbau - VISUS,“ VISUS, Uni Stuttgart, [Online]. Available:
http://www.visus.uni-stuttgart.de/institut/visualisierungslabor/technischer-aufbau.html.
[Zugriff am 19. August 2012].

[36] D. J. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka und T. A. DeFanti, „The Varrier
autostereoscopic virtual reality display,“ in ACM SIGGRAPH 2005 Papers on -
SIGGRAPH '05, 2005. pp. 894 - 903., DOI 10.1145/1186822.1073279

[37] W. A. König, R. Rädle und H. Reiterer, „Squidy: a zoomable design environment for
natural user interfaces,“ in Proceedings of the 27th international conference extended
abstracts on Human factors in computing systems - CHI EA '09, 2009. pp. 4561-4566.,
DOI 10.1145/1520340.1520700

[38] T. Gjerlufsen, C. Klokmose, J. Eagan, C. Pillias und M. Beaudouin-Lafon, „Shared
substance: developing flexible multi-surface applications,“ in Proceedings of the 2011
annual conference on Human factors in computing systems, 2011. p. 3383–3392., DOI
10.1145/1978942.1979446

[39] H.-c. Jetter, W. A. König, J. Gerken und H. Reiterer, „ZOIL – A Cross-Platform User
Interface Paradigm for Personal Information Management,“ in Personal Information
Management: PIM 2008, CHI 2008 Workshop, 2008. pp. 1-9.

152 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

[40] A. Bragdon, R. DeLine, K. Hinckley und M. R. Morris, „Code Space: Touch + Air
Gesture Hybrid Interactions for Supporting Developer Meetings,“ in Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces - ITS '11, 2011.
pp. 212-221., DOI 10.1145/2076354.2076393

[41] F. IOSB, „SmartControlRoom,“ Fraunhofer IOSB, [Online]. Available:
http://www.iosb.fraunhofer.de/servlet/is/6620/. [Zugriff am 19. August 2012].

[42] N. Streitz, T. Prante, C. Müller-Tomfelde, P. Tandler und C. Magerkurth, „Roomware:
the second generation,“ in CHI '02 extended abstracts on Human factors in computing
systems - CHI '02, 2002. pp. 506-507., DOI 10.1145/506443.506452

[43] O. Shaer, M. Strait, C. Valdes, T. Feng, M. Lintz und H. Wang, „Enhancing genomic
learning through tabletop interaction,“ in Proceedings of the 2011 annual conference on
Human factors in computing systems - CHI '11, 2011. pp. 2817-2826., DOI
10.1145/1978942.1979361

[44] B. Schneider, M. Strait, L. Muller, S. Elfenbein, O. Shaer und C. Shen, „Phylo-Genie:
engaging students in collaborative 'tree-thinking' through tabletop techniques,“ in
Proceedings of the 2012 ACM annual conference on Human Factors in Computing
Systems - CHI '12, 2012. pp. 3071-3080., DOI 10.1145/2207676.2208720

[45] X. Chen, „Visuelle Analyse von Eye-Tracking-Daten,“ 2011.

[46] N. Ploner, „Gestensteuerung für Powerwall-basierte Visualisierungen,“ 2012.

[47] C. Snyder, Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces, San Francisco: Elsevier, 2003. , ISBN 978-1-55860-870-2

[48] J. O. Wobbrock, M. R. Morris und A. D. Wilson, „User-defined gestures for surface
computing,“ in Proceedings of the 27th international conference on Human factors in
computing systems - CHI '09, 2009. p. 1083ff., DOI 10.1145/1518701.1518866

[49] P. Dragicevic und Y. Shi, „Visualizing and manipulating automatic document orientation
methods using vector fields,“ in Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces - ITS '09, 2009. pp. 65-68., DOI
10.1145/1731903.1731918

[50] S. Scott, M. Sheelagh, T. Carpendale und K. Inkpen, „Territoriality in collaborative
tabletop workspaces,“ in Proceedings of the 2004 ACM conference on Computer
supported cooperative work, 2004. p. 294–303., DOI 10.1145/1031607.1031655

[51] D. A. Norman, The Design of Everyday Things, Perseus Books, 2002. , ISBN 978-
0465067107

[52] D. Saffer, Designing Gestural Interfaces, Sebastopol: O'Reilly, 2008. , ISBN 978-0-596-
51839-4

[53] Microsoft, „MSDN - ADO.NET Entity Framework,“ [Online]. Available:

153 Literaturverzeichnis

http://msdn.microsoft.com/de-de/library/bb399572. [Zugriff am 19. August 2012].

[54] M. Weiss, J. Wagner, Y. Jansen, R. Jennings, R. Khoshabeh, J. D. Hollan und J.
Borchers, „SLAP Widgets: Bridging the Gap Between Virtual and Physical Controls on
Tabletops,“ in Proceedings of the 27th international conference on Human factors in
computing systems - CHI '09, 2009. pp. 481-490., DOI 10.1145/1518701.1518779

154 Tabletop-Computer-basierte Steuerung für Powerwall-Visualisierungen

Anhang A: Fragebogen

Demografische Angaben

Geschlecht: M W Alter:
Angaben zur Ausbildung

Höchster
Bildungsabschluss:

Beruf:

Studiengang:
Fachsemester:
Vertiefung /
Studienschwerpunkt:

Angestrebter
Abschluss:

Bachelor Master Staatsexamen Diplom

Vorkenntnisse in der Gesteninteraktion

Besitzen Sie eine XBOX 360 mit KINECT? Ja Nein
Besitzen Sie eine PlayStation 3 mit Move-
Controller?

Ja Nein

Besitzen Sie eine Nintendo Wii? Ja Nein
Wie viele Stunden spielen Sie mit dieser
Konsole durchschnittlich pro Woche?

Besitzen Sie einen Touch-Eingabegerät für
Ihren PC? (Touchscreen, Convertible …)

Ja Nein

Besitzen Sie ein iPad, iPod-Touch, Galaxy-
Tab oder ein ähnliches Tablet?

Ja Nein

Besitzen Sie ein touch-fähiges Smartphone? Ja Nein
Wie viele Stunden pro Woche verbringen Sie
mit diesen Geräten?

Haben sie schon einen Tabletop-PC
(Microsoft Surface, …) benutzt?

Ja Nein

Haben sie in diesem Zusammenhang
Interaktionen mit Realweltobjekten
durchgeführt?

Ja Nein

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen
benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen Quellen habe ich nach
bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 21. August 2012 _____________________

	Inhalt
	Mind-Map
	Abbildungsvezeichnis
	Tabellenverzeichnis
	1 Einleitung
	1.1 Motivation
	1.2 Aufbau
	2 Grundlagen
	2.1 Visual Analytics und Visualisierung
	2.1.1 Visual Analytics
	2.1.2 Visualisierung
	2.1.3 „Visual Analytics“-Prozess
	2.2 Interaktion
	2.2.1 Entwicklung der Benutzerschnittstellen und der Computerinteraktion
	2.2.2 Windows, Icons, Menus and Pointers (WIMP)
	2.2.3 Natural User Interfaces
	2.2.4 Tangible User Interfaces
	2.3 Tabletops
	2.3.1 Eingabetechniken für Tabletops
	2.3.2 Technologiebeispiele
	2.4 Powerwalls
	2.4.1 Hardwarekonfigurationen
	2.4.2 Anwendungsgebiete
	3 Verwandte Arbeiten
	3.1 Multimodale Interaktionsframeworks
	3.2 Multimodale Interaktionsumgebung
	3.3 Tabletop-Anwendungen
	4 Aufgabenbeschreibung
	4.1 Hintergrund
	4.2 Aufgabenstellung
	4.3 Lösungsüberblick
	5 Anforderungsanalyse
	5.1 Beobachtungen aus der Auswertungssitzung der Eyetracking-Studie
	5.1.1 „Visual Elements“-Studie
	5.1.2 Auswertungswerkzeuge
	5.1.3 Beobachtungen bei der Auswertung
	5.2 Eyetracking-Szenario
	5.3 MegaMol-Szenario
	5.4 Anforderungen
	5.4.1 Anforderungen an die Analyseumgebung
	5.4.2 Anforderungen an Tabletop-Oberfläche und Interaktionen
	6 Konzept
	6.1 System
	6.2 Tabletop-Oberfläche
	6.3 Tabletop-Interaktionsmodalitäten
	6.4 Tabletop-Datenmanagement
	7 Lösungsansatz
	7.1 Vorüberlegungen
	7.1.1 Überblick über die Benutzeroberfläche
	7.1.2 Powerwallansicht
	7.1.3 Visualisierungscontainer
	7.1.4 Drag&Drop-Interaktionselement
	7.1.5 Gesteninteraktion
	7.1.6 Tangibleinteraktion
	7.1.7 Filtern mit Tangibles
	7.1.8 Persönliche Ablage
	7.2 Vorstudie
	7.2.1 Beschreibung
	7.2.2 Proband 1
	7.2.3 Proband 2
	7.2.4 Proband 3
	7.2.5 Proband 4
	7.2.6 Proband 5
	7.2.7 Fazit
	7.3 Lösungsansatz-Erweiterung
	8 Framework der Analyseumgebung
	8.1 Architekturmuster
	8.2 Architektur
	8.3 Komponentenstruktur
	8.3.1 Abstraction
	8.3.2 Server
	8.3.3 DataProvider
	8.3.4 VisualizationClient
	8.4 Abläufe
	8.4.1 Visualisierungsclient registrieren
	8.4.2 Nachricht verteilen
	8.4.3 Daten nachladen
	9 Prototyp
	9.1 Datenkomponente der Analyseumgebung
	9.1.1 Eyetracking-Datenmodell
	9.1.2 Dataprovider
	9.2 Visualisierungen
	9.3 Tabletop-Client
	9.3.1 Nutzung des Frameworks
	9.3.2 Benutzeroberfläche
	9.3.3 Gesteninteraktion
	9.3.4 Tangibleinteraktion
	9.3.5 Lokale Datenhaltung
	9.4 Kinect-Powerwall-Client
	10 Zusammenfassung und Ausblick
	10.1 Zusammenfassung und Bewertung
	10.1.1 Zusammenfassung
	10.1.2 Bewertung
	10.2 Ausblick
	10.2.1 Benutzerstudie
	10.2.2 Technische Lösungen
	10.2.3 Implementierung
	Literaturverzeichnis
	Anhang A: Fragebogen

