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1 Einleitung

Diese Diplomarbeit beschäftigt sich mit einer intuitiven, aber trotzdem möglichst kom-
pakten Darstellung der Holonomie–Zerlegung von Automaten, die ausschließlich elemen-
tare Mittel nutzt. Durch die Formulierung des Problems als Graph konnten bisherige
Beweise vereinfacht werden, sodass nur noch Überdeckungen, statt relationalen Über-
deckungen, benötigt werden. Neu ist, dass der hier gegebene Beweis sogar konstruk-
tiv statt induktiv ist. Die graphentheoretische Formulierung ermöglicht eine einfache
Abschätzung der Faktorzahl einer vollständigen, sogenannten Krohn–Rhodes–Zerlegung.

Endliche Automaten und die damit beschriebenen regulären Sprachen sind Standard-
werkzeuge der Informatik. Sie sind ein allgemeines Modell für die strukturierte Abarbei-
tung von Benutzereingaben. Die bekanntesten Anwendungen sind Fahrkartenautoma-
ten, die Suche von Mustern in Texten oder Bestellprozesse. Aber auch biologische Stoff-
wechselvorgänge versucht man mit Hilfe von endlichen Automaten zu formalisieren[6][5].
Für die theoretische Beschreibung eines realen Computers wird pragmatischerweise oft
ein anderes Maschinenmodell, wie etwa eine Turingmaschine, herangezogen. Jedoch
kommt ein endlicher Automat, der potentiell sehr groß sein kann, einem realen Compu-
ter sehr nahe, denn der Speicher ist inhärent endlich. Die mathematisch grundlegende
Beschreibung endlicher Automaten ist gegeben durch Halbgruppen[9]. Um die Struktur
und damit die Komplexität einer solchen Maschine besser zu verstehen bietet sich das
Studium von Halbgruppen und deren hierarchische Zerlegungen an.

In gleicher Weise wie sich eine natürliche Zahl in ein Produkt von Primzahlen zerlegen
lässt, kann man Ähnliches für eine Halbgruppe erreichen. Dieses fundamentale Resul-
tat der Theorie über endliche Halbgruppen ist als Krohn–Rhodes–Zerlegung bekannt.
Demnach kann jede Halbgruppe in ein Produkt von einfachen, nicht weiter zerlegba-
ren Gruppen und Flip–Flops zerlegt werden. Flip–Flops sind drei–elementige Monoide,
deren Elemente alle idempotent sind.

Es gibt eine Vielzahl an Theoremen und unterschiedlichen Beweisen, die dieses Resul-
tat implizieren. Die Holonomie–Zerlegung ist seither das Theorem, welches eine Krohn–
Rhodes–Zerlegung mit der kleinsten Anzahl an Faktoren erreicht. Sie ist sogar so ef-
fizient, dass Implementierungen vorliegen und praktische Probleme damit untersucht
werden[2][6][5].

Nach der ursprünglichen Beweisidee von Zeiger ist nun die Version von Eilenberg
die allgemeine Arbeitsgrundlage[3, p.33-57] vieler Autoren. Jedoch wird die algebraische
Notation und die im Beweis benutzten Methoden beklagt[2][8]. Diese Diplomarbeit liefert
eine kompakte algebraische Darstellung der Holonomie–Zerlegung, die mit einfachen
Mitteln auskommt.
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2 Grundlagen

Alle Funktionen, die in dieser Arbeit angegeben werden, sind total. Außerdem sind
alle Mengen endlich und mit großen, lateinischen Buchstaben bezeichnet, wohingegen
Elemente mit kleinen Buchstaben bezeichnet werden. Außerdem wird vorausgesetzt,
dass der Leser vertraut mit endlichen Automaten und den Syntaktischen–Halbgruppen
ist, die solchen Automaten haben. Der endliche Automat in Abbildung 2 definiert die
Sprache L = (a|b)∗(aa|bb)(a|b)∗ über dem Alphabet { a, b }. Für alle Beispiele dieser
Arbeit werden wir diesen Automaten zugrunde legen. Die Syntaktische–Halbgruppe der
Sprache L ist gegeben durch

Synt+(L) = {s1 = [4, 4, 4, 4], s2 = [3, 4, 3, 4], s3 = [2, 2, 4, 4],

s4 = [2, 4, 2, 4], s5 = [3, 3, 4, 4]}

1start

2

3

4

a

b

a

b
b

a a, b

Abbildung 2.1: Endlicher Automat der Sprache L = (a|b)∗(aa|bb)(a|b)∗.

Definition 2.1: (X,S) heißt Transformations–Halbgruppe, falls X eine nicht leere Men-
ge, die sogenannte Zustandsmenge, und S eine Halbgruppe ist. Außerdem existiert eine
rechts–Wirkung α : X × S → X beschrieben durch (x, s) 7→ x · s, welche x · (s1s2) =
(x · s1) · s2 erfüllt. Die rechts–Wirkung, und dadurch die Transformations–Halbgruppe,
heißt treu, falls für s1 6= s2 ein x ∈ X existiert mit x · s1 6= x · s2. Außerdem heißt (X,S)
Transformations–Monoid, falls S ein Monoid ist und x · 1 = x für alle x ∈ X. Weiter
heißt (X,S) Transformations–Gruppe, falls S zusätzlich eine Gruppe ist.

Im Folgenden bezeichnen wir mit ”·” die rechts–Wirkung und mit dem leeren Operator
”” die Halbgruppen Operation. Ein Beispiel für eine treue Transformations–Halbgruppe
ist (S∪{ 1 } , S), wobei die rechts–Wirkung gleich der erweiterten Halbgruppen Operation
ist.
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2 Grundlagen

Definition 2.2: Das Kranzprodukt von Transformations–Halbgruppen ist (X1, S1) o . . . o
(Xn, Sn) = (X,W ), wobei X =

∏n
i=1Xi und W =

∏n
i=1 S

Xi+1×...×Xn

i . Wegen (SX2
1 )X3 =

S
(X2,X3)
1 ist das Produkt in der Tat assoziativ. Wir definieren nun erst die rechts–Wirkung

und finden anschließend eine kompatible Halbgruppen Operation auf W . Wir betrachten
das Ergebnis von zwei Funktionen f = (f1, . . . , fn), g = (g1, . . . , gn) ∈ W auf x =
(x1, . . . , xn) ∈ X:

(x · f) · g =

x1 · f1(x2, . . . , xn)
...

xn · fn()

 · g

=


(
x1 · f1(x2, . . . , xn)

)
· g1(x1 · f1(x2, . . . , xn) , . . . , xn · fn())
...(

xn · fn()
)

· gn()



=


x1 ·

[
f1

(
x2, . . . , xn

)
g1

(
x1 · f1(x2, . . . , xn) , . . . , xn · fn()

) ]
...

xn ·
[
fn() gn()

]


Da die eckige Klammer von Komponente i nur von Zuständen xj mit höherem Index

j > i abhängt, ist sie eine Funktion hi ∈ S
Xi+1×...×Xn

i . Damit definiert fg = h eine
abgeschlossene Operation auf W , die außerdem assoziativ ist, da die Halbgruppe der
jeweiligen Komponente bereits assoziativ war. Außerdem zeigt die Rechnung die Treue
von (X,W ), falls jeder der Faktoren treu war.

An dieser Definition lässt sich auch die enge Verbindung des Kranzprodukts zu einem
Maschinenmodell sehen, welches nach jedem parallelen Rechenschritt eine begrenzte
Menge an Information austauscht.

2.1 Teiler und Überdeckungen

Die Definitionen und Beweise der folgenden Unterkapitel sind der Darstellung in [1]
nachempfunden.

Definition 2.3: Eine Halbgruppe S teilt eine Halbgruppe T , bezeichnet durch S ≺ T ,
falls eine Unterhalbgruppe T ′ ⊆ T sowie ein surjektiver Homomorphismus ψ : T ′ → S
existiert.

Diese Definition lässt sich auf natürliche Weise auf Transformations–Halbgruppen er-
weitern.

Definition 2.4: Eine Transformations–Halbgruppe (X,S) teilt (stark) eine Transforma-
tions–Halbgruppe (Y, T ), bezeichnet durch (X,S) ≺ (Y, T ), falls es eine Unterhalbgruppe
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2.2 Konstanten

T ′ ⊆ T , einen surjektiven Morphismus ϕ : Y → X und einen surjektiven Homomorphis-
mus ψ : T ′ → S gibt so, dass

ϕ(y · t) = ϕ(y) · ψ(t)

für alle y ∈ Y und t ∈ T ′ gilt.

Die Relation Teilbarkeit ist transitiv durch Verkettung der Morphismen. Da der Nach-
weis von Homomorphismen nicht immer leicht ist, hat sich die Methode der Überdeckung
als sehr hilfreich erwiesen [1][3].

Definition 2.5: Seien (X,S), (Y, T ) beliebige, möglicherweise nicht treue, Transforma-
tions–Halbgruppen und ϕ : Y → X eine beliebige Surjektion. Wir nennen ein Element
ŝ ∈ T ein Cover von s ∈ S, falls für alle y ∈ Y gilt:

ϕ(y) · s = ϕ(y · ŝ)

Falls jedes Element s ∈ S mindestens ein Cover besitzt nennen wir ϕ eine Überdeckung
und schreiben (X,S) ≺ϕ (Y, T ).

Der Formalismus von Teilbarkeit und Überdeckung ist eng verbunden. Das folgende
Lemma zeigt wie Überdeckungen bequem Beweise von Teilbarkeit ermöglichen.

Lemma 2.1: Seien (X,S), (Y, T ) Transformations–Halbgruppen. Falls (X,S) treu ist
impliziert (X,S) ≺ϕ (Y, T ) bereits (X,S) ≺ (Y, T ).

Beweis: Betrachte Sϕ = { (s, ŝ) } ⊆ S × T . Wir definieren eine Operation auf
dieser Menge durch (s1, ŝ1)(s2, ŝ2) = (s1s2, ŝ1s2). Da die zweite Komponente durch
das Ergebnis der Ersten bestimmt wird, haben wir tatsächlich eine Halbgruppe.
Falls wir eine Unterhalbgruppe Rϕ ⊆ Sϕ finden, wobei die Projektion auf die ers-
te Komponente π1(Rϕ) surjektiv bleibt und π2(Rϕ) injektiv ist, haben wir auch
einen surjektiven Homomorphismus π2(Rϕ) → π1(Rϕ) = S gefunden. Angenommen
(s1, t), (s2, t) sind Elemente von Sϕ. Da ϕ surjektiv ist erhalten wir für s1 6= s2 aus der
Treue x · s1 = ϕ(y) · s1 = ϕ(y · t) 6= x · s2 = ϕ(y · t). Daher ist Sϕ = Rϕ bereits so
eine Unterhalbgruppe und wir haben einen surjektiven Homomorphismus gefunden.

2.2 Konstanten

Definition 2.6: Sei (X,S) eine Transformations–Halbgruppe, wir definieren den Ab-
schluss unter Konstanten als:

(X,S) = (X,S ∪X)

wobei X = { x̄ | x ∈ X }. Durch Erweitern der rechts–Wirkung mit y · x̄ = x für
alle x, y ∈ X und der Halbgruppen Operation mit sx̄ = x̄ und x̄s = x · s für jedes
s ∈ S, x̄ ∈ X, erhalten wir in der Tat eine Transformations–Halbgruppe.

5



2 Grundlagen

Lemma 2.2: Sei (X,G) eine treue Transformations–Gruppe, dann haben wir die Divi-
sion (X,G) ≺ (X,UX) o (G,G), wobei das Monoid UX = X ∪ { 1 } ist.

Beweis: Sei ϕ(x, g) = x · g und wir setzen cover : G ∪X → UX
G ×G wie folgt:

cover1(y, h) =

{
1 , falls y ∈ G
y · h−1 , falls y ∈ X

cover2(y) =

{
y , falls y ∈ G
1 , falls y ∈ X

Es gilt für alle (x, g) ∈ X ×G

ϕ((x, g) · cover(y)) = ϕ((x, g) · (1, y)) = ϕ(x, gy) = ϕ(x, g) · y y ∈ G
ϕ((x, g) · cover(y)) = ϕ(x · y · g−1, g · 1)) = ϕ(y · g−1, g) = y = ϕ(x, g) · y y ∈ X

Das treue Transformations–Monoid (X,UX) lässt sich, ähnlich einer binären Repräsen-
tation, weiter in ein Produkt der kleineren Monoide U2 mit nur drei idempotenten Ele-
menten (m2 = m) zerlegen.

Lemma 2.3: Sei n > 2 und i = dlog2(n)e. Es gelten:

({x0, . . . , xn−1 } , Un) ≺ ({x0, . . . , x2i−1 } , U2i)

({x0, . . . , x2i−1 } , U2i) ≺ ({x0, . . . , x2i−1−1 } , U2i−1)× ({x0, x1 } , U2)

Beweis: Die Transformations–Monoide sind treu. Für die erste Division sei ϕ(xk) =
x(k mod n) und da Un ⊆ U2i können wir die Cover identisch wählen und es gilt für
l ≤ n− 1:

ϕ(xk · cover(xl)) = ϕ(xk · xl) = xl = ϕ(xk) · xl.

Für die zweite Division sei ϕ(xk, xl) = x(2k+l). Wir geben ein Cover in der Form cover :
U2i → U2i−1 × U2 an:

cover(y) =

{
(1, 1) , falls y = 1

(xk/2, x(k mod 2)) , falls y = xk

Es gilt:

ϕ((xk, xl) · cover(xm)) = ϕ((xk, xl) · (xm/2, x(m mod 2)))

= ϕ(xm/2, x(m mod 2)) = x(m/2)2+(m mod 2) = xm

= ϕ(xk, xl) · xm.
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2.3 Zerlegungen von Gruppen

2.3 Zerlegungen von Gruppen

Lemma 2.4: Falls N Normalteiler in G ist, gilt die Division

(G,G) ≺ (N,N) o (G/N,G/N).

Beweis: Wir identifizieren die Faktormengen durch die fixierten Repräsentanten
G/N = {h1, . . . , hn } wobei hi ∈ G. Sei ϕ(n, hi) = nhi und cover : G→ NG/N ×G/N

cover1(g, h) = hg[hg]−1 cover2(g) = [g]

Und wir rechnen nach:

ϕ((n, h) · cover(g)) = ϕ(n · hg[hg]−1, h · [g]) = ϕ(nhg[hg]−1, [hg])

= nhg = ϕ(n, h) · g

Definition 2.7: Eine Gruppe G heißt einfach, falls jeder Normalteiler N in G entweder
trivial N = { 1 } oder ganz N = G ist.

Korollar 2.5: Für jede endliche Gruppe G haben wir die Division

(G,G) ≺ (G1, G1) o . . . o (Gm, Gm)

wobei in jedem Faktor Gi eine einfache Gruppe steht und |G1| · . . . · |Gm| = |G| mit
m ≤ dlog2(|G|)e.

Beweis: Falls G nicht einfach ist existiert ein Normalteiler { 1 } ( N ( G. Außerdem
ist die Faktorgruppe G/N nicht trivial und echt kleiner als G. Durch Induktion mit
Lemma 2.4 folgt die Behauptung.
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3 Die Holonomie–Zerlegung

3.1 Der Inklusionsgraph einer
Transformations–Halbgruppe

Definition 3.1: Jede Transformations–Halbgruppe (X,S) induziert einen verbundenen,
gerichteten azyklischen Graph G(X,S) = (V,E) durch ihre rechts–Wirkung, mit

V = {X · s | s ∈ S } ∪X ∪ {X }
E = { (A,B) | A ) B und @C ∈ V : A ) C ) B } .

Im Fall der Transformations–Halbgruppe (S ∪ { 1 } , S) sind die Green’schen
L–Faktormengen die Knoten dieses Graphes.

Lemma 3.1: Für jeden inneren Knoten A ∈ V \X gilt A =
⋃

(A,B)∈E B. Außerdem ist
die Holonomie–Gruppe

GA = { s′ : A→ A | ∃s ∈ S : A · s = A und ∀x ∈ A : x · s = x · s′ }

entweder leer oder (EA, GA) ist eine treue Transformations–Gruppe, wobei EA =
{ (B,C) ∈ E | B = A }.

Beweis: Ein Element g ∈ GA 6= ∅ ist eine lokale Permutation auf A und es gibt
einen Exponenten i ≥ 1 der gi zur identischen Transformation gi = 1A ∈ GA auf
A macht. Insbesondere existiert ein inverses Element g−1 und GA ist eine Gruppe.
Die rechts–Wirkung eines g ∈ GA lässt sich in natürlicher Weise auf die Kanten EA

erweitern, durch (A,B) ·g = (A ·g = A,B ·g). In der Tat definiert dies eine Kante in EA.
Es gilt |B| = |B · g| und B · g ( A. Angenommen (A,C) ∈ EA mit C ( B · g. Betrachte
A ) C · g−1 ) B, was die Maximalität von B zum Widerspruch führt. Dadurch ist
(A,B · g) ∈ EA. Diese rechts–Wirkung ist assoziativ, da sie es bereits auf (X,S) war.
Außerdem ist sie treu, da GA keine zwei identischen Transformationen enthält.

Definition 3.2: Wir definieren die Relation R auf den Knoten durch

R = { (A,B) ∈ V × V | ∃a, b ∈ S ∪ { 1 } : A · a = B and B · b = A }

Da wir Reflexivität, Symmetrie und Transitivität haben, ist R eine Äquivalenzrelation.

Lemma 3.2: Sei (X,S) eine Transformations–Halbgruppe. Falls (X · s)R(X · s′) dann
ist (EX·s, GX·s) ∼= (EX·s′ , GX·s′).

9



3 Die Holonomie–Zerlegung

Beweis: Bezeichne A = X · s und B = X · s′ die beiden Knoten in G(X,S).
”≺”: Wegen A = A · ab ist ab eine lokale Permutation auf A. Wir haben |A| = |B| und
es gibt eine natürliche Zahl i ≥ 1 mit x · (ab)i = x für jedes x ∈ A. Sei a− = b(ab)i−1,
ϕ : EB → EA mit (B,C) 7→ (B,C) · a− = (B · a− = A,C · a−). Wir finden ein Cover
für jedes g ∈ GA beschrieben durch cover(g) = a−ga ∈ GB. Für eine beliebige Kante
e ∈ EB gilt ϕ(e · cover(g)) = ϕ(e · a−ga) = (e · a−g) · aa− = e · a−g = ϕ(e) · g. Durch die
Treue von (EA, GA) folgt die Teilbarkeit.
”�” lässt sich symmetrisch zeigen.

Abgesehen von |A| = |B| haben wir also eine Bijektion der Kanten von EA und EB

der Knoten mit ARB und die Äquivalenzrelation R lässt sich auf natürliche Weise
auf alle Kanten von G(X,S) erweitern, da Kanten nur einen Vater–Knoten haben. Obige
Verkettung von lokalen Transformationen ist die Motivation für den Namen Holonomie–
Zerlegung.

A B

A1
. . . An B1

. . . Bn

·a·g

·b
∃ · a−

·a ·a

·a− ·a−

Abbildung 3.1: Bijektion zwischen Kanten EA und EB zweier Knoten mit A R B.

Lemma 3.3: Die Äquivalenzrelation R partitioniert die inneren Knoten von G(X,S) in
V = X ∪̇ [X1] ∪̇ . . . ∪̇ [Xn] und die Kanten E = [EX1 ] ∪̇ . . . ∪̇ [EXn ] mit n ≤ |S|+ 1.
Weiter gibt es eine lineare Ordnung dieser Partitionen welche für alle s ∈ S Beides

|Xi| < |Xj| ⇒ i < j

A ∈ [Xj] und A · s ∈ [Xi] ⇒ i ≤ j

erfüllt.

Beweis: Die Repräsentanten Xi sein beliebig, aber von nun an fest. Xn = X bezeichnet
stets den maximalen Knoten im Graph. Durch Lemma 3.2 überträgt sich die Partition
direkt auf die Kanten.

Wir sortieren die Klassen der Knoten topologisch, wobei wir zusätzlich zu den Kanten
des Inklusionsgraph G(X,S) auch Kanten der Form

ES =
{

(A,B) ∈ V 2
∣∣ ∃s ∈ S : A · s = B

}
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3.1 Der Inklusionsgraph einer Transformations–Halbgruppe

berücksichtigen. Da |A · s| ≤ |A| existieren keine Kreise außerhalb einer Klasse. Für
A ∈ [Xi] und B ∈ [Xj] mit [Xi] 6= [Xj] existiert maximal eine Kante (A,B) ∈ ES, da
sonst A R B.

{ 1 } { 2 } { 3 } { 4 }

{ 2, 4 } { 3, 4 }

{ 1, 2, 3, 4 }

Abbildung 3.2: Inklusionsgraph der Beispielsprache von Kapitel 2. Die gewählten Re-
präsentanten sind als Rechtecke, übrigen Knoten als Kreise, Kanten
als durchgezogene Pfeile und R–Zusammenhänge als gepunktete Pfei-
le gezeichnet.

Lemma 3.4: Es existieren eine injektive Abbildung c von Pfaden zu Kanten–Repräsen-
tanten und eine inverse Abbildung d, welche für jeden Pfad pA = e1 . . . el von X =
source(el) nach A = target(e1) Folgendes erfüllen:

d(c(pA)) = pA.

Insbesondere existiert eine Abbildung von Suffixen zu Knoten decode : EXi
× . . .×EXn →

V , die für alle Suffixe bis i Folgendes erfüllt:

decode(γi+1 . . . γn) ∈ [Xj] ⇒ j ≤ i.

Beweis: Sei pA = e1 . . . el ein Pfad der target(e1) = A ∈ [Xi] mit dem maximalen
Knoten source(el) = X = Xn verbindet. Die Funktion c bildet jede Kante auf die Kante
des Repräsentanten ab, wobei unbenutzte Klassen beliebig gewählt werden. Genauer,
falls [EXk

] eine Kante ej enthält, haben wir source(ej) = Xk · a und wählen das Bild
γk = ej · a−. Anderenfalls wählen wir γk beliebig.

c : e1 . . . el 7→ γi+1 . . . γn

Sei die Funktion target nun auf Pfade erweitert. Wir definieren die Funktion d induktiv
auf Suffixen:

d(γi . . . γn) =


γn , falls i = n

(γi · a) d(γi+1 . . . γn) , falls target(d(γi+1 . . . γn)) = Xi · a
d(γi+1 . . . γn) , sonst

11



3 Die Holonomie–Zerlegung

Da pA zusammenhängend war, liefert eine Induktion über die Suffixlänge den identischen,
verbundenen Pfad. Der mittlere Fall in der Abbildung d stellt die Verbindung zwischen
ausgewerteten Suffixen mit steigender Länge sicher.

Und wir definieren die Abbildung decode(γi . . . γn) = target(d(γi . . . γn)) und es gilt:

decode(c(pA)) = A.

Beispiel 3.1
Wir betrachten obigen Inklusionsgraph. Durch R haben wir die folgende Partition und
wählen Repräsentanten Xi.

V = { { 4 } , { 2 } , { 3 } , { 1 } } ∪̇ { { 2, 4 } , { 3, 4 } } ∪̇ { { 1, 2, 3, 4 } }
X1 = { 2, 4 }
X2 = { 1, 2, 3, 4 }

Wir codieren nun den Pfad p{ 3 } = (34, 3)(1234, 34). Es gilt { 3, 4 } = X1 · s5 und X1 =
{ 3, 4 } · s4. Außerdem ist s−5 = s4 und wir erhalten relativ zu den Repräsentanten den
Pfadcode

c(p{ 3 }) = ((34, 4) · s−5 )(1234, 34) = (24, 2)(1234, 34) = γ

Wir berechnen nun d(γ). Da target(d(γ2)) = { 3, 4 } = X1 · s5 erhalten wir

d(γ) = ((24, 2) · s5)(1234, 34) = (34, 3)(1234, 34)

Und decode(γ) = { 3 }.

3.2 Varianten der Holonomie–Zerlegung

Die Hauptidee um Zerlegungen von rechts–Wirkungen in dieser Anschauung zu beweisen
ist Mikrokomponenten, wie (EA, GA), und ihre Isomorphien ”≈” zu benutzen. Ähnlich
wie bei Weichen in einem Schienennetz wird durch lokale Manipulationen ein Pfad mit
Ziel x · s generiert.

Satz 3.5 (Holonomie–Zerlegung[10]): Sei (X,S) eine Transformations–Halbgruppe,
dann gilt

(X,S) ≺ϕ (EX1 , GX1) o . . . o (EXn , GXn) ,

wobei alle n ≤ |S|+1 Faktoren treu sind. Jeder Gruppenfaktor ist entweder leer GXi
= ∅

oder eine Untergruppe GXi
⊆ S. Letzterenfalls ist (EXi

, GXi
) eine Transformations–

Gruppe.

Das Hauptresultat dieser Arbeit ist der folgende Beweis.
Beweis: Sei G(X,S) = (V,E) und EXi

, die Kanten von Repräsentant i, angeordnet

wie in Lemma 3.3 beschrieben. Nach Lemma 3.4 ist ϕ = decode eine Surjektion von

12



3.2 Varianten der Holonomie–Zerlegung

∏n
i=1EXi

nach X. Für den Beweis genügt es ein Cover anzugeben, welches einen Pfad
von X nach x zu einem Pfad von X nach x · s für ein gegebenes s ∈ S transformiert.

Seien x = A1 ( . . . ( Al+1 = X die Knoten solch eines gegebenen Pfades p = e1 . . . el.
Anstatt nun einen beliebigen Pfad nach x · s zu erhalten, wird dieser Beweis einen
eindeutigen Pfad rekonstruieren, der zumindest alle Bilder x·s = A1 ·s ⊆ . . . ⊆ Al+1 ·s ⊆
X enthält. Wir fixieren nun für jedes Paar von Knoten C,D ∈ V mit C ) D unabhängig
von s oder p exakt einen, jedoch beliebigen, verbindenden Pfad. Dadurch ist der zu
rekonstruierende Pfad p′ = e′1 . . . e

′
m mit Ziel x · s eindeutig.

Durch die Abbildung cover : S →
∏n

i=1

{
EXi
∪GXi

}EXi+1
×...×EXn wird für jedes

s ∈ S ein Cover angegeben. Wir definieren die Abbildung cover komponentenweise und
bezeichnen abkürzend mit A = decode(γi+1 . . . γm), wobei γi ∈ EXi

, den bis i kleinsten
Knoten des ursprünglichen Pfades und mit p′|A·s den Suffix von p′ bis Knoten A · s.

coveri(s, (γi+1 . . . γm)) =


α1sα

−
2 , falls A = Xi · α1 und A · s = Xi · α2

(C,D) · α− , falls [EXi
] ∩ p′|A·s = (C,D) mit C = Xi · α

beliebig , sonst

Da p′ ein Pfad ist, enthält jede Äquivalenzklasse [EXi
] maximal eine zu belegende

Kante. Wir zeigen nun, dass nach dem Update genau diese belegt wird. Noch immer
sei A = decode(γi+1 . . . γn) und j durch A · s ∈ [Xj] gegeben. Durch die Anordnung der
Repräsentanten (Lemma 3.3) haben wir zwei Fälle:

• j = i: Damit gilt A = Xi ·α1 und A · s = Xi ·α2 und s wirkt als Kanten–Bijektion
in [EXi

]. Es gilt e = (A,C) ∈ p ⇒ (A · s, C · s) = e′ ∈ p′ und es folgt:

γi = γi · coveri(s, (γi+1 . . . γn))

= γi · α1sα
−
2

= (e · α−1 ) · α1sα
−
2

= (e · s) · α−2 = e′ · α−2

• j < i: Durch die Eindeutigkeit enthält [EXi
] maximal eine Kante (C,D) = e′ ∈ p′.

Wir haben C = Xi · α und es folgt:

γ′i = γi · coveri(s, (γi+1 . . . γn))

= γi · (C,D) · α− = e′ · α−

Da jede notwendige Klasse den Code der jeweiligen Kante von p′ belegt, ist ϕ = decode
eine Überdeckung.

Wir wollen dies nun mit dem Beweis von Eilenberg[3, p.33-57] vergleichen, der Grund-
lage für unseren Beweis ist. Hierin wird eine, zu Beginn triviale, relationale Überdeckung
ϕ und Cover, zusammen induktiv verfeinert bis diese eine Überdeckung sind. In unse-
rer Notation lässt sich der Prozess entkoppelt darstellen. Die Funktion decode stimmt

13



3 Die Holonomie–Zerlegung

mit der verfeinerten Relation ϕ überein, jedoch drückt sich das dort generierte Cover in
unserer Notation wie folgt aus:

coveri(s, (γi+1 . . . γm)) =



α1sα
−
2 , falls A = Xi · α1 und A · s = Xi · α2

(C,D) · α− , falls ∃j > i :

decode(γ|j · cover(s, (γj+1 . . . γn))) = C

mit C = Xi · α
und (C,D) ∈ [EXi

] beliebig mit D ⊇ A · s
beliebig , sonst

Durch die beliebige Wahl und anschließende sukzessive Rekonstruktion der Ergebnisse
mit höherem Index wird dort ein beliebiger Pfad mit Ziel x·s als Ergebnis von γ ·cover(s)
erzeugt.

Zusammen mit den grundlegenden Zerlegungen von Konstanten und Gruppen aus
Kapitel 2 impliziert das Holonomie–Theorem 3.5 bereits die Krohn–Rhodes Zerlegung.
Durch den Inklusionsgraph ist die Abschätzung für die Anzahl der Faktoren besonders
leicht.

Korollar 3.6 (Krohn/Rhodes[7]): Jede treue Transformations–Halbgruppe (X,S) teilt
ein Kranzprodukt der Form

(X1,M1) o . . . o (Xn,Mn)

wobei jeder der n Faktoren (Xi,Mi) entweder gleich ({x0, x1 } , U2) oder gleich (G,G)
ist, und G ist eine nicht–triviale einfache Gruppe, die S teilt. Außerdem ist die Anzahl
der Faktoren durch n < c |S| log2(|S|+ |X|) beschränkt.

Beweis: Wir nutzen die Transitivität von Überdeckungen ≺ϕ um die Fak-

toren (EA, GA) die in der Holonomie–Zerlegung vorkommen weiter zu ver-
einfachen. Durch Lemma 2.2 und die Treue eines solchen Faktors haben wir
(EA, GA) ≺ (EA, UEA

) o (GA, GA) . Außerdem lässt sich der Konstanten–Faktor mit
Lemma 2.3 in ein direktes Produkt von dlog2(|EA|)e Faktoren der Form ({x0, x1 } , U2)
zerlegen, was ein Spezialfall des Kranzprodukts ist. Durch Korollar 2.5 teilt der
Gruppen–Faktor ein Produkt (G1, G1) o . . . o (Gm, Gm), wobei m ≤ dlog2(|GA|)e und alle
Gi sind einfach und teilen GA. Für n erhalten wir die folgende Abschätzung:

n ≤
|S|+1∑
i=1

dlog2(|EXi
|)e+ dlog2(|GXi

|)e

≤
|S|+1∑
i=1

dlog2(|E|)e+ dlog2(|S|)e

14



3.3 Beispiel einer Zerlegung

≤ (|S|+ 1)
(

2 + log2(|E|) + log2(|S|)
)

≤ (|S|+ 1)
(

2 + log2
(
(|S|+ 1)(|S|+ |X|)

)
+ log2(|S|)

)
≤ (|S|+ 1)

(
2 + log2(|S|+ 1) + log2(|S|+ |X|) + log2(|S|)

)
≤ c |S| log2(|S|+ |X|).

3.3 Beispiel einer Zerlegung

Wir geben hier eine Holonomie–Zerlegung an. Die Transformations–Halbgruppe
(X,S) = ({ 1, 2, 3, 4 } , Synt+(L)) unserer Beispielsprache L = (a|b)∗(aa|bb)(a|b)∗ von
Kapitel 2 teilt folglich ein Produkt von

(X,S) ≺ (EX1 , GX1) o (EX2 , GX2) mit

GX2 ∪ EX2 = ∅ ∪
{

(1234, 1), (1234, 24), (1234, 34)
}

GX1 ∪ EX1 = { s3 } ∪
{

(24, 2), (24, 4)
}

Wir geben außerdem noch jeweils die Urbilder von ϕ = decode an.

decode−1(1) = { (1234, 1) } ,
decode−1(2) = { (24, 2)(1234, 24) } ,
decode−1(3) = { (24, 2)(1234, 34) } ,
decode−1(4) = { (24, 4)(1234, 24), (24, 4)(1234, 34) }

Da dieses Beispiel nur für Zustand 4 mehrere Pfade besitzt genügt es hier nur
p{ 1,2,3,4 },{ 4 } = (24, 4)(1234, 24) zusätzlich zu fixieren. Abschließend geben wir noch die
Cover an:

cover1(s1, (γ2)) = (24, 4) cover2(s1, ()) = (1234, 24)

cover1(s2, (γ2)) =


(24, 2) , falls γ2 = (1234, 1)

(24, 4) , falls γ2 = (1234, 24)

s5s2s4 = s3 , falls γ2 = (1234, 34)

cover2(s2, ()) = (1234, 24)

cover1(s3, (γ2)) =


(24, 2) , falls γ2 = (1234, 1)

s3 , falls γ2 = (1234, 24)

(24, 4) , falls γ2 = (1234, 34)

cover2(s3, ()) = (1234, 24)

15



3 Die Holonomie–Zerlegung

cover1(s4, (γ2)) =


(24, 2) , falls γ2 = (1234, 1)

(24, 4) , falls γ2 = (1234, 24)

s5s41 = s3 , falls γ2 = (1234, 34)

cover2(s4, ()) = (1234, 24)

cover1(s5, (γ2)) =


(24, 2) , falls γ2 = (1234, 1)

1s5s4 = s3 , falls γ2 = (1234, 24)

(24, 4) , falls γ2 = (1234, 34)

cover2(s5, ()) = (1234, 24)

Das soll jedoch nicht heißen, dass man diese Sprache nicht in noch einfachere Kompo-
nenten zerlegen könnte.
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4 Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit einer intuitiven, aber trotzdem möglichst kom-
pakten Darstellung der Holonomie–Zerlegung von Automaten, die ausschließlich elemen-
tare Mittel nutzt. In Kapitel 2 werden die Grundlagen zu Transformations–Halbgruppen,
Divisionen und Überdeckungen dargestellt. Anders als bei vielen Arbeiten wird hier ei-
ne vektorielle Notation des Kranzprodukts verwendet, was sich als sehr nützlich für
die konstruktive Definition einer Überdeckung erweist. Die Beweise dieses Kapitels sind
nicht neu und können in vielen Standardwerken nachgelesen werden. Eine Ausnahme ist
eventuell Lemma 2.3, welches das Transformations–Monoid ({ 0, . . . , n− 1 } , Un) in nur
logarithmisch viele Flip–Flops ({ 0, 1 } , U2) zerlegt. In Kapitel 3 wird der Inklusionsgraph
einer Transformations–Halbgruppe eingeführt und die Kanten, die als Transformations–
Gruppe operieren, sowie Isomorphien dieser werden beschrieben. Anschließend wird ein
neuer Beweis für die Holonomie–Zerlegung gegeben, der das Cover für die Überde-
ckung konstruktiv angibt. Als Korollar erhalten wir die Krohn–Rhodes Zerlegung einer
Transformations–Halbgruppe (X,S) mit nur maximal c · |S| · log2(|S|+ |X|) Faktoren.

Ältere Beweise für das Krohn–Rhodes Theorem[7] sind algebraisch gehalten und
benutzen neben Induktion über die Größe der Halbgruppe auch das nicht–triviale
Trichotomie–Lemma von Krohn und Rhodes. Zeigers Beweis der Holonomie–Zerlegung
[10] kommt ohne diese Induktion aus. Er verwendet aber, wie auch spätere Versionen[4],
eine Mischung von automatentheoretischen und algebraischen Konzepten, um eine
Relation genügend zu verfeinern. Die vollständige und rein algebraische Formulierung
dieser Idee durch Eilenberg[3, p.33-57] ist aktuelle Arbeitsgrundlage. Allerdings ver-
wendet diese Darstellung partiell definierte Überdeckungen, die aus einer gemeinsamen,
induktiven Verfeinerung von relationaler Überdeckung und Cover hervorgeht. Dieser
Ansatz ist nachvollziehbar, aber nur schwer verständlich, weshalb neuere Arbeiten einen
intuitiveren Beweis suchen. Maler gibt beispielsweise einen neueren, induktiven Beweis
in automatentheoretisch-algebraischer Notation[8]. Diese Beweise tendieren, wegen der
Übertragung algebraischer Konzepte auf Automaten, dazu unübersichtlich zu wirken.

Der hier vorgestellte Beweis der Holonomie–Zerlegung argumentiert algebraisch an-
hand des Inklusionsgraphen. Dadurch ist es möglich eine Überdeckung direkt konstruk-
tiv anzugeben. Auch die Formulierung des Covers ist so auf eine nicht–induktive Weise
möglich. Außerdem werden keine tieferen algebraischen Konzepte benötigt. Die Formu-
lierung als Graph ermöglicht gleichzeitig eine einfache Abschätzung der Faktorenzahl
einer Krohn–Rhodes Zerlegung.
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[9] Dominique Perrin and Jean-Éric Pin. Infinite Words, volume 141. Elsevier, 2004.

[10] Paul Zeiger. Yet another proof of the cascade decomposition theorem for finite
automata. Theory of Computing Systems, 1:225–228, 1967. 10.1007/BF01703821.

19





Erklärung

Hiermit versichere ich, diese Arbeit
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