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1 Einleitung

Diese Diplomarbeit beschéftigt sich mit einer intuitiven, aber trotzdem moglichst kom-
pakten Darstellung der Holonomie—Zerlegung von Automaten, die ausschliellich elemen-
tare Mittel nutzt. Durch die Formulierung des Problems als Graph konnten bisherige
Beweise vereinfacht werden, sodass nur noch Uberdeckungen, statt relationalen Uber-
deckungen, benotigt werden. Neu ist, dass der hier gegebene Beweis sogar konstruk-
tiv statt induktiv ist. Die graphentheoretische Formulierung erméglicht eine einfache
Abschétzung der Faktorzahl einer vollstandigen, sogenannten Krohn-Rhodes—Zerlegung.

Endliche Automaten und die damit beschriebenen reguldren Sprachen sind Standard-
werkzeuge der Informatik. Sie sind ein allgemeines Modell fiir die strukturierte Abarbei-
tung von Benutzereingaben. Die bekanntesten Anwendungen sind Fahrkartenautoma-
ten, die Suche von Mustern in Texten oder Bestellprozesse. Aber auch biologische Stoff-
wechselvorgénge versucht man mit Hilfe von endlichen Automaten zu formalisieren[6] [5].
Fiir die theoretische Beschreibung eines realen Computers wird pragmatischerweise oft
ein anderes Maschinenmodell, wie etwa eine Turingmaschine, herangezogen. Jedoch
kommt ein endlicher Automat, der potentiell sehr grof§ sein kann, einem realen Compu-
ter sehr nahe, denn der Speicher ist inhérent endlich. Die mathematisch grundlegende
Beschreibung endlicher Automaten ist gegeben durch Halbgruppen[9]. Um die Struktur
und damit die Komplexitét einer solchen Maschine besser zu verstehen bietet sich das
Studium von Halbgruppen und deren hierarchische Zerlegungen an.

In gleicher Weise wie sich eine natiirliche Zahl in ein Produkt von Primzahlen zerlegen
lisst, kann man Ahnliches fiir eine Halbgruppe erreichen. Dieses fundamentale Resul-
tat der Theorie iiber endliche Halbgruppen ist als Krohn—Rhodes—Zerlegung bekannt.
Demnach kann jede Halbgruppe in ein Produkt von einfachen, nicht weiter zerlegba-
ren Gruppen und Flip—Flops zerlegt werden. Flip—Flops sind drei—elementige Monoide,
deren Elemente alle idempotent sind.

Es gibt eine Vielzahl an Theoremen und unterschiedlichen Beweisen, die dieses Resul-
tat implizieren. Die Holonomie-Zerlegung ist seither das Theorem, welches eine Krohn—
Rhodes—Zerlegung mit der kleinsten Anzahl an Faktoren erreicht. Sie ist sogar so ef-
fizient, dass Implementierungen vorliegen und praktische Probleme damit untersucht
werden [2] [6] [5].

Nach der urspriinglichen Beweisidee von Zeiger ist nun die Version von Eilenberg
die allgemeine Arbeitsgrundlage[3, p.33-57] vieler Autoren. Jedoch wird die algebraische
Notation und die im Beweis benutzten Methoden beklagt[2][8]. Diese Diplomarbeit liefert
eine kompakte algebraische Darstellung der Holonomie—Zerlegung, die mit einfachen
Mitteln auskommt.






2 Grundlagen

Alle Funktionen, die in dieser Arbeit angegeben werden, sind total. Auflerdem sind
alle Mengen endlich und mit groflen, lateinischen Buchstaben bezeichnet, wohingegen
Elemente mit kleinen Buchstaben bezeichnet werden. Auflerdem wird vorausgesetzt,
dass der Leser vertraut mit endlichen Automaten und den Syntaktischen—Halbgruppen
ist, die solchen Automaten haben. Der endliche Automat in Abbildung |2 definiert die
Sprache L = (a|b)*(aalbb)(a|b)* iiber dem Alphabet {a,b}. Fiir alle Beispiele dieser
Arbeit werden wir diesen Automaten zugrunde legen. Die Syntaktische-Halbgruppe der
Sprache L ist gegeben durch

Synt™(L) = {s1 = [4,4,4,4], 50 = [3,4,3,4], 53 = [2,2,4,4],
su=[2,4,2,4], 85 = [3,3,4,4]}

a ° a
start °€ a,b

Abbildung 2.1: Endlicher Automat der Sprache L = (a|b)*(aa|bb)(a|b)*.

Definition 2.1: (X, .5) heiBt Transformations—Halbgruppe, falls X eine nicht leere Men-
ge, die sogenannte Zustandsmenge, und S eine Halbgruppe ist. Auflerdem existiert eine
rechts—Wirkung o : X x S — X beschrieben durch (z,s) — x - s, welche x - (s159) =
(x - s1) - so erfiillt. Die rechts—Wirkung, und dadurch die Transformations—Halbgruppe,
heiflt treu, falls fiir s; # s9 ein & € X existiert mit z - s; # x - s3. AuBlerdem heifit (X, 5)
Transformations—Monoid, falls S ein Monoid ist und z - 1 = x fiir alle z € X. Weiter
heifit (X, S) Transformations—Gruppe, falls S zusétzlich eine Gruppe ist.

Im Folgenden bezeichnen wir mit ”-” die rechts—Wirkung und mit dem leeren Operator
77 die Halbgruppen Operation. Ein Beispiel fiir eine treue Transformations-Halbgruppe
ist (SU{1},5S), wobei die rechts—Wirkung gleich der erweiterten Halbgruppen Operation
ist.



2 Grundlagen

Definition 2.2: Das Kranzprodukt von Transformations—Halbgruppen ist (Xi,.51).. .2
(X, S,) = (X, W), wobei X = [[r, X; und W = [, S+ %% Wegen (57%2)%s =
S £X2’X3) ist das Produkt in der Tat assoziativ. Wir definieren nun erst die rechts—Wirkung
und finden anschlielend eine kompatible Halbgruppen Operation auf W. Wir betrachten
das Ergebnis von zwei Funktionen f = (fi,...,fn),9 = (91,-..,9,) € W auf z =

(X1,...,2,) € X

x1 - filze, ..., xy)
(x-f)-g= : g
T - ful)
(:Ul-fl(xg,...,a:n)> i@ i@ @) s ey Tne fa)
(00 £0) - 9a()

Ty - [f1<m2,...,xn> gl<:p1-f1(x2,...,xn), ,$nfn()>}

o 120 9.0

Da die eckige Klammer von Komponente ¢ nur von Zustdnden x; mit héherem Index
j > i abhéngt, ist sie eine Funktion h; € Si)(i+1x"'XX". Damit definiert fg = h eine
abgeschlossene Operation auf W, die auflerdem assoziativ ist, da die Halbgruppe der
jeweiligen Komponente bereits assoziativ war. Auflerdem zeigt die Rechnung die Treue
von (X, W), falls jeder der Faktoren treu war.

An dieser Definition lasst sich auch die enge Verbindung des Kranzprodukts zu einem
Maschinenmodell sehen, welches nach jedem parallelen Rechenschritt eine begrenzte
Menge an Information austauscht.

2.1 Teiler und Uberdeckungen

Die Definitionen und Beweise der folgenden Unterkapitel sind der Darstellung in [I]
nachempfunden.

Definition 2.3: Eine Halbgruppe S teilt eine Halbgruppe 7', bezeichnet durch S < T,
falls eine Unterhalbgruppe 7" C T sowie ein surjektiver Homomorphismus ¢ : 7" — S
existiert.

Diese Definition lasst sich auf natiirliche Weise auf Transformations—Halbgruppen er-
weitern.

Definition 2.4: Eine Transformations-Halbgruppe (X, S) teilt (stark) eine Transforma-
tions—Halbgruppe (Y, T'), bezeichnet durch (X, S) < (Y, T'), falls es eine Unterhalbgruppe



2.2 Konstanten

T’ C T, einen surjektiven Morphismus ¢ : Y — X und einen surjektiven Homomorphis-
mus ¢ : T" — S gibt so, dass

p(y-1) = ey) - ¥(t)
fir alley € Y und t € T" gilt.

Die Relation Teilbarkeit ist transitiv durch Verkettung der Morphismen. Da der Nach-
weis von Homomorphismen nicht immer leicht ist, hat sich die Methode der Uberdeckung
als sehr hilfreich erwiesen [1][3].

Definition 2.5: Seien (X, 5), (Y, T) beliebige, moglicherweise nicht treue, Transforma-
tions—Halbgruppen und ¢ : Y — X eine beliebige Surjektion. Wir nennen ein Element
s €T ein Cover von s € S, falls fiir alle y € Y gilt:

oY) -s=¢(y-3)

Falls jedes Element s € S mindestens ein Cover besitzt nennen wir ¢ eine Uberdeckung
und schreiben (X, S) <, (Y,T).

Der Formalismus von Teilbarkeit und Uberdeckung ist eng verbunden. Das folgende
Lemma zeigt wie Uberdeckungen bequem Beweise von Teilbarkeit ermoglichen.

Lemma 2.1: Seien (X, S), (Y,T) Transformations—Halbgruppen. Falls (X, S) treu ist
impliziert (X, S) <, (Y,T) bereits (X,S) < (Y,T).

Beweis: Betrachte S, = {(s,5)} € S x T. Wir definieren eine Operation auf
dieser Menge durch (s1,51)(s2,52) = (8182,5182). Da die zweite Komponente durch
das Ergebnis der Ersten bestimmt wird, haben wir tatséichlich eine Halbgruppe.
Falls wir eine Unterhalbgruppe R, C S, finden, wobei die Projektion auf die ers-
te Komponente 7(R,) surjektiv bleibt und my(R,) injektiv ist, haben wir auch
einen surjektiven Homomorphismus my(R,) — m(R,) = S gefunden. Angenommen
(s1,%), (s2,t) sind Elemente von S,. Da ¢ surjektiv ist erhalten wir fir s; # sy aus der
Treue z - 51 = @(y) - 51 = @(y - t) # x-s5 = p(y - t). Daher ist S, = R, bereits so
eine Unterhalbgruppe und wir haben einen surjektiven Homomorphismus gefunden. [

2.2 Konstanten

Definition 2.6: Sei (X, 5) eine Transformations—Halbgruppe, wir definieren den Ab-
schluss unter Konstanten als:

(X,9) = (X,SUX)

wobei X = {Z | # € X }. Durch Erweitern der rechts-Wirkung mit y - z = =z fiir
alle z,y € X und der Halbgruppen Operation mit st = ¥ und s = T - s fiir jedes
s € S, x € X, erhalten wir in der Tat eine Transformations—Halbgruppe.



2 Grundlagen

Lemma 2.2: Sei (X,G) eine treue Transformations—Gruppe, dann haben wir die Divi-
sion (X, G) < (X,Ux) (G, G), wobei das Monoid Ux = X U{1} ist.

Beweis: Sei ¢(,g) = 2 - g und wir setzen cover : GUX — Ux“ x G wie folgt:

1 Jallsy € G y Lfallsye @
covery(y,h) =< — — covers(y) = —
y-h=t Jfallsy e X 1 Jfallsy e X
Es gilt fiir alle (z,9) € X x G
(2, 9) - cover(y)) = ¢((x,9) - (1)) = (x, 9y) = (z,9) -y yeG

o((z,g) - cover(y)) =@(x-y-gtg-1)=9ly-9" 9 =y=wlr,g) -y yeX

]

Das treue Transformations—-Monoid (X, Ux ) lasst sich, d&hnlich einer bindren Représen-
tation, weiter in ein Produkt der kleineren Monoide U; mit nur drei idempotenten Ele-
menten (m? = m) zerlegen.

Lemma 2.3: Sein > 2 und i = [loga(n)]. Es gelten:

{xo, o yxn1 },Un) < (o, .oy x9iog },Usi)
({xo,... w01 },Up) < ({xo,...,29i-1_1 },Usi-1) X ({ @, 1 },Us)

Beweis: Die Transformations—Monoide sind treu. Fiir die erste Division sei ¢(xy) =
T(k modn) Und da U, C U, konnen wir die Cover identisch wihlen und es gilt fiir
[ <n-—1:

(- cover(m)) = plax - T) = w1 = p(xx) - T,

Fiir die zweite Division sei ¢(zy, 2;) = 2 (2k41)- Wir geben ein Cover in der Form cover :
Usyi — Uyi-1 x Uy an:

(1,1) Jallsy =1

(Tk/2: Tk mod 2)) »fallsy =7

cover(y) = {

Es gilt:

o((wr, 27) - cover(Tm)) = P(Tr, 1) - (Trmy2: Tm mod 2)))
= @(fm/m Z(m mod 2)) = T(m/2)24+(m mod 2) = Tm
=@

(g, 1) * T



2.3 Zerlegungen von Gruppen

2.3 Zerlegungen von Gruppen
Lemma 2.4: Falls N Normalteiler in G ist, gilt die Division
(G,G) < (N,N)1 (G/N,G/N).
Beweis: Wir identifizieren die Faktormengen durch die fixierten Représentanten
G/N ={hy,..., h,} wobei h; € G. Sei @(n, h;) = nh; und cover : G — NN x G/N

1

covery(g, h) = hglhg|™ covers(g) = [g]

Und wir rechnen nach:
©((n, h) - cover(g)) = @(n - hglhg] ™", h - [g]) = ¢(nhglhg] ™", [hg))
=nhg =p(n,h)-g
O

Definition 2.7: Eine Gruppe G heifit einfach, falls jeder Normalteiler N in G entweder
trivial N = {1} oder ganz N = G ist.

Korollar 2.5: Fir jede endliche Gruppe G haben wir die Division
(G, G) < (Gl, Gl) ... (Gm, Gm>

wobei in jedem Foktor G; eine einfache Gruppe steht und |Gy| - ... |G| = |G| mit
m < [logs(|G)]-

Beweis: Falls G nicht einfach ist existiert ein Normalteiler {1} C N C G. Auflerdem
ist die Faktorgruppe G/N nicht trivial und echt kleiner als G. Durch Induktion mit
Lemma [2.4] folgt die Behauptung. O






3 Die Holonomie—Zerlegung

3.1 Der Inklusionsgraph einer
Transformations—Halbgruppe

Definition 3.1: Jede Transformations—Halbgruppe (X, S) induziert einen verbundenen,
gerichteten azyklischen Graph G(x ¢y = (V, E) durch ihre rechts-Wirkung, mit

V={X-s|seStuXxu{Xx}
E={(AB) | A2BuwdjCecV:A2C2B}.

Im Fall der Transformations—Halbgruppe (S U {1},S) sind die Green’schen
L-Faktormengen die Knoten dieses Graphes.

Lemma 3.1: Fir jeden inneren Knoten A€ V\ X gilt A= 4 pyep B Auerdem ist
die Holonomie—Gruppe

Ga={s:A—>A|TseS:A-s=AundVeeA:z-s=x-5}

entweder leer oder (Ea,Ga) ist eine treue Transformations—Gruppe, wobei E, =
{(B,C)eEF | B=A}.

Beweis: Ein Element g € G4 # () ist eine lokale Permutation auf A und es gibt
einen Exponenten i > 1 der ¢ zur identischen Transformation ¢' = 14, € G4 auf
A macht. Insbesondere existiert ein inverses Element ¢=! und G4 ist eine Gruppe.
Die rechts—Wirkung eines g € G4 lésst sich in natiirlicher Weise auf die Kanten E4
erweitern, durch (A, B)-g = (A-g = A, B-g). In der Tat definiert dies eine Kante in Fy.
Es gilt |B| = |B-g| und B-g C A. Angenommen (A, C) € E4 mit C C B - g. Betrachte
A D C-g ' D B, was die Maximalitiit von B zum Widerspruch fiihrt. Dadurch ist
(A, B - g) € Ea. Diese rechts—Wirkung ist assoziativ, da sie es bereits auf (X, S) war.
AuBlerdem ist sie treu, da G4 keine zwei identischen Transformationen enthélt. O

Definition 3.2: Wir definieren die Relation R auf den Knoten durch
R={(A,B)eVxxV |Ja,beSU{l}:A-a=Band B-b=A}

Da wir Reflexivitdt, Symmetrie und Transitivitdt haben, ist R eine Aquivalenzrelation.

Lemma 3.2: Sei (X,95) eine Transformations—Halbgruppe. Falls (X - s)R(X - §') dann
ist (Ex.s,Gx.s) = (Ex.s, Gx.sr).



3 Die Holonomie—Zerlegung

Beweis: Bezeichne A = X - s und B = X - s’ die beiden Knoten in G(x,9)-

7<": Wegen A = A - ab ist ab eine lokale Permutation auf A. Wir haben |A| = | B| und
es gibt eine natiirliche Zahl ¢ > 1 mit x - (ab)® = z fiir jedes x € A. Sei a= = b(ab)**,
¢ : Ep — E4 mit (B,C) — (B,C)-a~ =(B-a = A,C-a). Wir finden ein Cover
fiir jedes g € G4 beschrieben durch cover(g) = a~ga € Gp. Fiir eine beliebige Kante
e € Ep gilt p(e - cover(g)) = p(e-a"ga) = (e-a"g)-aa” =e-a g = p(e)-g. Durch die
Treue von (E4, G4) folgt die Teilbarkeit.

7" lasst sich symmetrisch zeigen. O]

Abgesehen von |A| = |B| haben wir also eine Bijektion der Kanten von E4 und Ep
der Knoten mit ARB und die Aquivalenzrelation R lisst sich auf natiirliche Weise
auf alle Kanten von G(x s) erweitern, da Kanten nur einen Vater—Knoten haben. Obige
Verkettung von lokalen Transformationen ist die Motivation fiir den Namen Holonomie—
Zerlegung.

Abbildung 3.1: Bijektion zwischen Kanten E4 und Eg zweier Knoten mit A R B.

Lemma 3.3: Die Aquivalenzrelation R partitioniert die inneren Knoten von Gx,s) n
V=XUI[X;]U ... U[X,] und die Kanten E = [Ex,] U ... U [Ex,] mitn <|S|+ 1.
Weiter gibt es eine lineare Ordnung dieser Partitionen welche fiir alle s € S Beides

X <|X5] = i<y
Ac[XjJund A-selX;] = 1<j
erfillt.

Beweis: Die Reprisentanten X; sein beliebig, aber von nun an fest. X,, = X bezeichnet
stets den maximalen Knoten im Graph. Durch Lemma [3.2] iibertrdgt sich die Partition
direkt auf die Kanten.

Wir sortieren die Klassen der Knoten topologisch, wobei wir zusétzlich zu den Kanten
des Inklusionsgraph G x s) auch Kanten der Form

Es={(A,B)eV? |3s€S:A-s=B}

10



3.1 Der Inklusionsgraph einer Transformations—Halbgruppe

beriicksichtigen. Da |A - s| < |A| existieren keine Kreise auerhalb einer Klasse. Fiir
A € [X;] und B € [X;] mit [X;] # [X] existiert maximal eine Kante (A4, B) € Eg, da
sonst A R B. O

{1,2,3,4}

Abbildung 3.2: Inklusionsgraph der Beispielsprache von Kapitel . Die gewihlten Re-
prasentanten sind als Rechtecke, iibrigen Knoten als Kreise, Kanten
als durchgezogene Pfeile und R—Zusammenhéinge als gepunktete Pfei-
le gezeichnet.

Lemma 3.4: FEs existieren eine injektive Abbildung ¢ von Pfaden zu Kanten—Reprisen-
tanten und eine inverse Abbildung d, welche fiir jeden Pfad pa = e1...e; von X =
source(e;) nach A = target(ey) Folgendes erfiillen:

d(c(pa)) = pa-
Insbesondere existiert eine Abbildung von Suffiven zu Knoten decode : Ex, X ... x Ex, —
V', die fir alle Suffize bis i Folgendes erfiillt:

decode(iy1-..7) € [X;] = j <.

Beweis: Sei ps = e;...¢ ein Pfad der target(e;) = A € [X;] mit dem maximalen
Knoten source(e;) = X = X, verbindet. Die Funktion ¢ bildet jede Kante auf die Kante
des Reprisentanten ab, wobei unbenutzte Klassen beliebig gewéhlt werden. Genauer,
falls [Ex,] eine Kante e; enthélt, haben wir source(e;) = Xj - @ und wahlen das Bild
Y& = € - a~. Anderenfalls wéhlen wir v, beliebig.

c:e1...eg = Yiq1---Vn

Sei die Funktion target nun auf Pfade erweitert. Wir definieren die Funktion d induktiv
auf Suffixen:

Vi Jfallsi=n
dYi---m) =4 (vi-a) dVigr---v) S falls target(d(Yig1r---m)) = Xi-a
d(Yig1---Vn) , sonst

11



3 Die Holonomie—Zerlegung

Da p4 zusammenhéngend war, liefert eine Induktion iiber die Suffixlange den identischen,
verbundenen Pfad. Der mittlere Fall in der Abbildung d stellt die Verbindung zwischen
ausgewerteten Suffixen mit steigender Lénge sicher.

Und wir definieren die Abbildung decode(; . ..v,) = target(d(v; .. .7,)) und es gilt:

decode(c(pa)) = A.

Beispiel 3.1
Wir betrachten obigen Inklusionsgraph. Durch R haben wir die folgende Partition und
wéhlen Représentanten X;.

Vi={{4} {2} {3} {1}y u {{2,4},{3,4}} U {{1,2,3,4}}
X;={2,4}
Xo={1,2,3,4}

Wir codieren nun den Pfad pgsy = (34,3)(1234,34). Es gilt {3,4} = X; - s5 und X; =
{3,4} - s4. AuBerdem ist s; = s, und wir erhalten relativ zu den Représentanten den
Pfadcode

c(prsy) = ((34,4) - s5)(1234,34) = (24,2)(1234,34) =~

Wir berechnen nun d(v). Da target(d(y2)) = {3,4 } = X; - s5 erhalten wir
() = ((24,2) - 55)(1234, 34) = (34, 3)(1234, 34)

Und decode(y) = {3 }.

3.2 Varianten der Holonomie—Zerlegung

Die Hauptidee um Zerlegungen von rechts—Wirkungen in dieser Anschauung zu beweisen
ist Mikrokomponenten, wie (E4, G 4), und ihre Isomorphien ”~” zu benutzen. Ahnlich
wie bei Weichen in einem Schienennetz wird durch lokale Manipulationen ein Pfad mit
Ziel x - s generiert.

Satz 3.5 (Holonomie—Zerlegung[l0]): Sei (X,S) eine Transformations—Halbgruppe,
dann gilt
<X7 S) =p (EXU GX1) Lol (EXn7GXn) s

wobei alle n < |S|+1 Faktoren treu sind. Jeder Gruppenfaktor ist entweder leer Gx, = )
oder eine Untergruppe Gx, C S. Letzterenfalls ist (FEx,,Gx,) eine Transformations—
Gruppe.

Das Hauptresultat dieser Arbeit ist der folgende Beweis.
Beweis: Sei Gx,5) = (V,E) und Ex, , die Kanten von Représentant i, angeordnet

wie in Lemma beschrieben. Nach Lemma ist ¢ = decode eine Surjektion von

12



3.2 Varianten der Holonomie—Zerlegung

[1-, Ex, nach X. Fiir den Beweis geniigt es ein Cover anzugeben, welches einen Pfad
von X nach z zu einem Pfad von X nach z - s fiir ein gegebenes s € S transformiert.

Seien x = Ay C ... C A;y; = X die Knoten solch eines gegebenen Pfades p =e; ... ¢;.
Anstatt nun einen beliebigen Pfad nach z - s zu erhalten, wird dieser Beweis einen
eindeutigen Pfad rekonstruieren, der zumindest alle Bilder x-s = A;-s C ... C Aj11-s C
X enthélt. Wir fixieren nun fiir jedes Paar von Knoten C, D € V mit C' D D unabhéngig
von s oder p exakt einen, jedoch beliebigen, verbindenden Pfad. Dadurch ist der zu
rekonstruierende Pfad p’ =€) ... e/, mit Ziel x - s eindeutig.

Durch die Abbildung cover : S — [, { Ex, UGx, }EXZ'“X"'XEX” wird fiir jedes
s € S ein Cover angegeben. Wir definieren die Abbildung cover komponentenweise und
bezeichnen abkiirzend mit A = decode(it1 ... Vm), wobei v; € Ex,, den bis i kleinsten
Knoten des urspriinglichen Pfades und mit p'| 4.5 den Suffix von p’ bis Knoten A - s.

150y yfalls A=X;-apund A-s= X, - s
cover;(s, (Yig1---Tm)) = § (C,D)-a~ , falls [Ex,] Np'|as = (C,D) mit C = X, -«
beliebig , sonst

Da p’ cin Pfad ist, enthiilt jede Aquivalenzklasse [Ey,] maximal eine zu belegende
Kante. Wir zeigen nun, dass nach dem Update genau diese belegt wird. Noch immer
sei A = decode(Yit1...7v,) und j durch A - s € [X|]| gegeben. Durch die Anordnung der
Reprisentanten (Lemma haben wir zwei Fille:

e j =1: Damit gilt A= X;-a; und A-s = X, as und s wirkt als Kanten—Bijektion
in [Ey,]. Esgilte=(A,C)ep = (A-5,C-s)=¢ €p und es folgt:

i = i - covery(s, (Vi1 -+ Tn))
= Y - 180
=(e-a7) - aisay

=(e-s)-a, =€ -a;
(e-8) >

e j < i: Durch die Eindeutigkeit enthélt [E,] maximal eine Kante (C,D) =€’ € p'.
Wir haben C' = X; - a und es folgt:

Vi = - covery(s, (Vig1 -+ -Tn))
=7 (C,D)-a”=¢-a”

Da jede notwendige Klasse den Code der jeweiligen Kante von p’ belegt, ist ¢ = decode
eine Uberdeckung. O

Wir wollen dies nun mit dem Beweis von Eilenberg[3, p.33-57] vergleichen, der Grund-
lage fiir unseren Beweis ist. Hierin wird eine, zu Beginn triviale, relationale Uberdeckung
¢ und Cover, zusammen induktiv verfeinert bis diese eine Uberdeckung sind. In unse-
rer Notation lasst sich der Prozess entkoppelt darstellen. Die Funktion decode stimmt
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3 Die Holonomie—Zerlegung

mit der verfeinerten Relation ¢ iiberein, jedoch driickt sich das dort generierte Cover in
unserer Notation wie folgt aus:

'alsog yfalls A= X, -ayund A-s= X, - s
(C,D)-a~ , falls3j >i:

covery(s, (Vix1 -+ -Ym)) = ecode(7|j - cover(s, (Vj+1..-mm))) =C

und (C, D) € [Ex,] beliebig mit D D A - s
| beliebig , sonst

Durch die beliebige Wahl und anschlieBende sukzessive Rekonstruktion der Ergebnisse
mit hoherem Index wird dort ein beliebiger Pfad mit Ziel x-s als Ergebnis von - cover(s)
erzeugt.

Zusammen mit den grundlegenden Zerlegungen von Konstanten und Gruppen aus
Kapitel [2] impliziert das Holonomie-Theorem bereits die Krohn-Rhodes Zerlegung.
Durch den Inklusionsgraph ist die Abschétzung fiir die Anzahl der Faktoren besonders
leicht.

Korollar 3.6 (Krohn/Rhodes[7]): Jede treue Transformations—Halbgruppe (X, S) teilt
ewn Kranzprodukt der Form

(X1, My) .. U (X, M,)

wobei jeder der n Faktoren (X;, M;) entweder gleich ({ zo,z1},Us) oder gleich (G, Q)
ist, und G ist eine nicht—triviale einfache Gruppe, die S teilt. Auflerdem ist die Anzahl
der Faktoren durch n < ¢ |S| loga(|S| + | X]|) beschrinkt.

Beweis: Wir nutzen die Transitivitit von Uberdeckungen <, um die Fak-
toren (F4,G4) die in der HolonomieZerlegung vorkommen weiter zu ver-
einfachen. Durch Lemma P22 und die Treue eines solchen Faktors haben wir
(Ea,Ga) < (Ea,Ug,) 0 (Ga,Ga) . AuBlerdem ldsst sich der Konstanten—Faktor mit
Lemma [2.3|in ein direktes Produkt von [logs(|E4|)| Faktoren der Form ({ zo,x; }, Us)
zerlegen, was ein Spezialfall des Kranzprodukts ist. Durch Korollar teilt der
Gruppen—Faktor ein Produkt (G1,G1) ... 0 (Gh, Gi), wobel m < [logs(|G4|)] und alle

G; sind einfach und teilen G 4. Fiir n erhalten wir die folgende Abschétzung:

|S|+1

n <y [logs(|Ex,
i=1

|S]+1

< > Tlogs(|EN] + [loga(]S))]

=1

)1+ [loga(|Gx,

)l
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< (]5]+1)

IN

(151 +1)

I/ N7 N N

<(ISI+1)
< c |5] logs

—~

ST+ 1X1).

3.3 Beispiel einer Zerlegung

3.3 Beispiel einer Zerlegung

2+ logs(| E|) +—logg(L9!))
2+ loga((15] + (1| +1X1)) + Loga(1S]))

2+ 10gs (|| + 1) + loga(|S] + |X1) + loga(1S]))

Wir geben hier eine Holonomie-Zerlegung an. Die Transformations—Halbgruppe

(Xv S) =
Kapitel [2] teilt folglich ein Produkt von

({1,2,3,4},Synt™ (L)) unserer Beispielsprache L = (a|b)*(aa|bb)(a|b)* von

(X,9) <

(EX17 GXl) {

mit

(EX27 GXQ)

(}XéLJEZg'::wLJ{(1234,1%(1234,24%(1234,34)}

Gx, UBx, = {52} U{ (24,2, (24.4) }

Wir geben aulerdem noch jeweils die Urbilder von ¢ = decode an.

24,2)(1234,34) } |

decode™ (1) = {(1234,1) } ,
decode™(2) =
decode™(3) =
decode™ (4) =

{(
{(24,2)(1234,24) } |
{(
{(

2 ,4)(1234,24), (24,4)(1234,34) }

Da dieses Beispiel nur fiir Zustand 4 mehrere Pfade besitzt geniigt es hier nur
P{1,234},{4} = (24,4)(1234,24) zusitzlich zu fixieren. Abschlielend geben wir noch die

Cover an:
covery(sy, (12)) = (24, 4)

(24, 2)  falls v =

covery(sz, (72)) = (24, 4) ,falls o
S5S054 = 53, falls 75 =

(24,2) falls o =

covery(ss, (712)) = } s3  falls vo =

(24,4) falls v =

= (1234, 24)

covery(sy, () = (1234, 24)

(1234,1)
covery(sa, () = (1234, 24)

(1234, 34)

(1234,1)
(1234, 24)
(1234, 34)

covery(ss, () = (1234, 24)

15



3 Die Holonomie—Zerlegung

(24,2) falls vo = (1234, 1)

covery(sy, (72)) = ¢ (24,4)  falls vo = (1234, 24) covers(sy, () = (1234,24)
s5s4l = 53, falls v = (1234, 34)

(24,2) falls o = (1234, 1)
covery(Ss, (72)) = { 1sssy = 53, falls 5 = (1234, 24) covery(ss, () = (1234, 24)
(24, 4) falls 7, = (1234, 34)

Das soll jedoch nicht heiflen, dass man diese Sprache nicht in noch einfachere Kompo-
nenten zerlegen koénnte.
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4 Zusammenfassung

Diese Diplomarbeit beschéftigt sich mit einer intuitiven, aber trotzdem moglichst kom-
pakten Darstellung der Holonomie—Zerlegung von Automaten, die ausschliellich elemen-
tare Mittel nutzt. In Kapitel [2] werden die Grundlagen zu Transformations—-Halbgruppen,
Divisionen und Uberdeckungen dargestellt. Anders als bei vielen Arbeiten wird hier ei-
ne vektorielle Notation des Kranzprodukts verwendet, was sich als sehr niitzlich fiir
die konstruktive Definition einer Uberdeckung erweist. Die Beweise dieses Kapitels sind
nicht neu und kénnen in vielen Standardwerken nachgelesen werden. Eine Ausnahme ist
eventuell Lemma [2.3| welches das Transformations—Monoid ({0,...,n —1},U,) in nur
logarithmisch viele Flip—Flops ({ 0,1}, Us) zerlegt. In Kapitel | wird der Inklusionsgraph
einer Transformations—Halbgruppe eingefiihrt und die Kanten, die als Transformations—
Gruppe operieren, sowie Isomorphien dieser werden beschrieben. Anschliefend wird ein
neuer Beweis fiir die Holonomie—Zerlegung gegeben, der das Cover fiir die Uberde-
ckung konstruktiv angibt. Als Korollar erhalten wir die Krohn—Rhodes Zerlegung einer
Transformations—Halbgruppe (X, S) mit nur maximal c - |S| - logs(]|S| + | X|) Faktoren.

Altere Beweise fiir das Krohn-Rhodes Theorem|[7] sind algebraisch gehalten und
benutzen neben Induktion iiber die Grofle der Halbgruppe auch das nicht-triviale
Trichotomie-Lemma von Krohn und Rhodes. Zeigers Beweis der Holonomie—Zerlegung
[10] kommt ohne diese Induktion aus. Er verwendet aber, wie auch spétere Versionen[4],
eine Mischung von automatentheoretischen und algebraischen Konzepten, um eine
Relation geniigend zu verfeinern. Die vollstdndige und rein algebraische Formulierung
dieser Idee durch Eilenberg[3, p.33-57] ist aktuelle Arbeitsgrundlage. Allerdings ver-
wendet diese Darstellung partiell definierte Uberdeckungen, die aus einer gemeinsamen,
induktiven Verfeinerung von relationaler Uberdeckung und Cover hervorgeht. Dieser
Ansatz ist nachvollziehbar, aber nur schwer verstéindlich, weshalb neuere Arbeiten einen
intuitiveren Beweis suchen. Maler gibt beispielsweise einen neueren, induktiven Beweis
in automatentheoretisch-algebraischer Notation[8]. Diese Beweise tendieren, wegen der
Ubertragung algebraischer Konzepte auf Automaten, dazu uniibersichtlich zu wirken.

Der hier vorgestellte Beweis der Holonomie-Zerlegung argumentiert algebraisch an-
hand des Inklusionsgraphen. Dadurch ist es moglich eine Uberdeckung direkt konstruk-
tiv anzugeben. Auch die Formulierung des Covers ist so auf eine nicht—induktive Weise
moglich. Aulerdem werden keine tieferen algebraischen Konzepte benotigt. Die Formu-
lierung als Graph ermdglicht gleichzeitig eine einfache Abschétzung der Faktorenzahl
einer Krohn-Rhodes Zerlegung.
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