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Abstract

In den letzten Jahren wurde in der Informationstechnologie das
Paradigma des „Complex Event Processing“ entwickelt, mit dessen
Hilfe aus Datenströmen durch Korrelationen von einfachen Ereignissen
höherwertige Informationen abgeleitet werden können. Aufgrund der
Anforderungen an die Skalierbarkeit, die durch Anwendungsgebiete wie
das „Internet der Dinge“ an moderne CEP-Lösungen gestellt werden, ist
eine verteilte Architektur vorteilhaft. Um die Ausfallsicherheit des Systems
unter Einhaltung strenger Korrektheitsbedingungen zu garantieren, wird
in dieser Arbeit ein Verfahren zur Wiederherstellung von Operatoren
entwickelt, das einen niedrigeren Overhead verursacht als klassische
Verfahren wie die redundante Auslegung von Operatoren oder die
persistente Speicherung von Prozesszuständen in sogenannten Check-
points. Dieses Verfahren wird dann durch die Möglichkeit, an beliebigen
Stellen der Operatortopologie persistente Schichten einzuziehen, um
ein Werkzeug zur Partitionierung der Topologie erweitert, womit die
Belastung einzelner Operatoren verringert werden kann. Schließlich wird
der Einfluss charakteristischer Gestaltungsparameter auf das Verfahren in
einer Simulation evaluiert.
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1 Einleitung

Durch die fortschreitende Entwicklung der Informations- und Kommunikationstechnologie
wurde in den vergangenen Jahren die Möglichkeit einer dichten Vernetzung zwischen
Informationssystemen und der realen Welt geschaffen. Durch die Verknüpfung von verschie-
denartigen Sensoren [BKR11], Kameras [RHI+12] und mobilen Quellen [KORR12] wird so
ein „Internet der Dinge“ [AIM10] geschaffen, in dem bestimmte Sachverhalte aus der realen
Welt durch Computersysteme überwacht werden können. Dabei werden hohe Datenmen-
gen an verschiedenen Orten produziert, die über Datenströme an andere Orte transferiert
und dort miteinander korreliert werden [KKR10], um höherwertige Sachverhalte aus den
einfachen Daten zu extrahieren [Luc01]. Ein System, das solche Korrelationen ermöglicht,
wird auch als „Complex Event Processing“-System (CEP-System) bezeichnet [BK09, EB09]. Ein
CEP-System fungiert als Middleware zwischen verschiedenen dezentralen Informationsquel-
len und den Konsumenten der aggregierten Informationen. Mögliche Einsatzgebiete liegen
beispielsweise in der Logistik, dem Energiemanagement, der Finanzwirtschaft und in der
Steuerung von Fertigungsprozessen [BK09].

Durch die unterschiedlichen Anwendungsgebiete werden vielfältige Anforderungen an
CEP-Systeme gestellt. Es wird eine hohe Skalierbarkeit vorausgesetzt, die korrelierten Ereig-
nisse müssen korrekt sein und das System muss als Ganzes robust gegen Ausfälle gestaltet
werden. Vor allem die Skalierbarkeit und die Möglichkeit, Ereignisströme lokal nahe der
Sensoren zu verarbeiten, spricht für ein verteiltes System. Doch wie kann man in einem sol-
chen verteilten CEP-System unter Berücksichtigung der Skalierbarkeit die Ausfallsicherheit
und Korrektheit garantieren?

Die bisherige Forschung zur Ausfallsicherheit von verteilten Systemen konzentriert sich vor
allem auf zwei Ansätze zur Lösung dieses Problems: Zum einen kann durch redundante
Auslegung der Ausfall von Verarbeitungsknoten (Operatoren) ausgeglichen werden [VKR11],
zum anderen besteht die Möglichkeit, durch die persistente Speicherung von Zuständen
diese nach einem Ausfall wiederherzustellen [EAWJ02]. Solche Verfahren sind zwar sicher
und in der Erforschung recht fortgeschritten, doch die Skalierbarkeit für Berechnungen auf
hochfrequenten Datenströmen ist nur begrenzt gegeben. Insbesondere entsteht durch die
klassischen Lösungen ein hoher Overhead zur Laufzeit, was die redundante Kommuni-
kation und Berechnungen oder die persistente Speicherung von sog. Checkpoints angeht.
Das Ziel dieser Diplomarbeit ist es, ein Verfahren zu entwickeln, das die Ausfallsicher-
heit des Systems garantiert und gleichzeitig ohne redundante Berechnungen und ohne
die Speicherung von Funktionszuständen in persistenten Datenspeichern auskommt, um
den Overhead zur Laufzeit geringer zu halten als es mit den bisherigen Lösungen möglich ist.
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1 Einleitung

Die wesentlichen Beiträge dieser Arbeit bestehen unter anderem aus einem Verarbeitungsmo-
dell, mit dessen Hilfe die Zustandsinformationen von Operatoren möglichst klein gehalten
werden. Zudem wird ein Verfahren entwickelt, wie diese Daten auf andere Operatoren zur
Sicherung in ihrem volatilen Speicher verteilt werden können, sodass damit ein ausgefallener
Operator in einem bestimmten Zustand wiederhergestellt werden kann. Dazu wird ein Algo-
rithmus entworfen, der Ausfälle erkennt und die ausgefallenen Operatoren wiederherstellt.
Das Verfahren wird durch die Möglichkeit erweitert, den Operatorgraphen durch persistente
Schichten dynamisch zu partitionieren, um so die Belastung einzelner Operatoren durch
gespeicherte Zustandsdaten zu reduzieren. Zum Abschluss wird das Verfahren in einer
Simulation evaluiert, in welcher der Einfluss charakteristischer Parameter auf die Belastung
der Operatoren untersucht wird.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2: Hier wird der Begriff des Complex Event Processing definiert und es werden
verschiedene Architekturen für CEP-Lösungen vorgestellt.

Kapitel 3: In diesem Kapitel wird ein Systemmodell für verteiltes CEP eingeführt, das der
weiteren Arbeit zugrunde liegt.

Kapitel 4: Die Zielstellung der Diplomarbeit wird konkret definiert und anhand eines
Beispiels veranschaulicht. Insbesondere werden die Anforderungen an das CEP-System
aufgestellt, die auch in definierten Fehlersituationen nicht verletzt werden dürfen.

Kapitel 5: Der bisherige Forschungsstand wird beschrieben und der eigene Lösungsansatz
von diesem abgegrenzt.

Kapitel 6: Hier wird das in dieser Arbeit entwickelte Verfahren zur Wiederherstellung
von Operatoren beschrieben. Dafür wird zunächst festgestellt, welche Zustandsinfor-
mationen ein Operator im Allgemeinen besitzt. Dann wird ein Ausführungsmodell
eingeführt, das diese Informationen zu bestimmten Zeitpunkten minimieren kann.
Schließlich wird beschrieben, wie die Zustandsinformationen verteilt werden und wie
die Wiederherstellung ausgefallener Operator abläuft.

Kapitel 7: Problematiken bezüglich bestimmter Operatortopologien werden besprochen. Ein
Werkzeug zur Partitionierung der Topologien und somit zur Verringerung der Lasten
auf einzelnen Operatoren wird entwickelt.

Kapitel 8: In einer Simulation wird evaluiert, welchen Einfluss charakteristische Parameter
auf die Belastung des Systems mit Zustandsinformationen haben.

Kapitel 9: Abschließend werden die Ergebnisse der Arbeit zusammengefasst und es wird ein
Ausblick auf mögliche Forschungsrichtungen gegeben, in welche die Arbeit fortgeführt
werden kann.
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2 Complex Event Processing - Eine Einführung

2.1 Was ist Complex Event Processing?

Complex Event Processing (CEP), oft auch Event Processing genannt, hat sich in den letzten
Jahren als eigenes Gebiet in der Forschung und der Wirtschaft etabliert. Doch was steckt
genau dahinter und wie grenzt es sich von anderen, ähnlichen Gebieten in der Informatik
ab? Ausgehend von der Motivation aus dem ersten Kapitel, wollen wir CEP als einen
Problemlösungsansatz betrachten: Die komplexen Aktivitäten in heutigen wirtschaftlichen
Computersystemen setzen sich aus vielen einfacheren Aktivitäten zusammen, die wiederum
direkt, z.B. über Sensoren oder Nachrichten innerhalb des Systems, detektiert werden können.
Um aus den beobachteten Aktivitäten niedriger Komplexität höherwertige Einsichten zu
gewinnen, muss in geringer Zeit eine hohe Datenmenge analysiert und verarbeitet werden.
Dabei werden einfache Ereignisse zusammengefasst und nach Trends, Korrelationen und
Mustern untersucht, deren Auftreten auf andere, komplexere Aktivitäten im System schlie-
ßen lässt. Dies alles leistet ein CEP-System, welches an Ereignisquellen angeschlossen ist
und kontinuierlich in Echtzeit die eingehenden Ereignisse weiterverarbeitet, um schließlich
einem Endkunden (nur) die für ihn interessanten Aktivitäten durch Ausgabe entsprechender
komplexer Ereignisse anzuzeigen.

Die Definition der Gesellschaft für Informatik fasst diesen Sachverhalt knapp und prä-
zise zusammen:

„CEP ist ein Sammelbegriff für Methoden, Techniken und Werkzeuge, um Ereig-
nisse zu verarbeiten während sie passieren, also kontinuierlich und zeitnah. CEP
leitet aus Ereignissen höheres, wertvolles Wissen in Form von sog. komplexen
Ereignissen, d.h. Situationen die sich nur als Kombination mehrerer Ereignisse
erkennen lassen, ab.“ (Informatik-Lexikon der Gesellschaft für Informatik [EB09])

Der Begriff „Complex Event Processing“ für eine solche Technologie wurde erstmals im Jahre
2002 von David Luckham in seinem Buch „The Power of Events“ [Luc01] eingeführt und
von ihm maßgeblich geprägt. Wie die oben genannte Definition schließen lässt, manifestiert
sich CEP allerdings in einer breit gefächerten Komposition unterschiedlichster Methoden,
Techniken und Werkzeuge, die ihre Wurzeln in ebenso unterschiedlichen Forschungsgebieten
haben [EB09].
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2 Complex Event Processing - Eine Einführung

2.1.1 Abgrenzung zu verwandten Gebieten

2.1.1.1 Stream Processing

Stream Processing ist eine Technologie, mit der CEP sehr nahe verwandt ist. Sie zeichnet sich
dadurch aus, dass durch Queries auf Datenströme bestimmte Teilströme abgefragt werden
können, vergleichbar mit Queries in einem Datenbanksystem. Eine solche Abfragesprache
wurde beispielsweise mit CQL [ABW06] definiert. Stream Processing konzentriert sich dabei
weniger auf die Verarbeitung von Datenströmen bestimmter Datentypen zu höherwertigen
Datenströmen als auf die Möglichkeit, durch Queries bestimmte relevante Daten abzufragen.
Die Technologien, die hinter Stream Processing stehen, sind allerdings für die Umsetzung
von CEP-Lösungen relevant. Eine scharfe Abgrenzung der beiden Gebiete ist daher kaum
möglich.

2.1.1.2 Technologien im Umfeld von CEP

Neben der Definition von CEP soll in diesem Abschnitt kurz erwähnt werden, welche
Technologien in dieser Arbeit nicht in die Kategorie des Complex Event Processing fallen,
obwohl sie in CEP-Systemen insgesamt durchaus eine Rolle spielen. Ein CEP-System als
Ganzes leistet natürlich neben der bloßen Erkennung komplexer Situationen noch weitere
Dienste: Insbesondere sollen Ereignisse in der Praxis nicht nur erkannt werden, sondern es
soll direkt eine automatische Reaktion darauf erfolgen, die von den Ereigniskonsumenten
ausgeht. Zu möglichen Reaktionen zählt das Absenden von Nachrichten in einer Messaging-
Middleware, die Interaktion mit Geschäftsprozessen, der Aufruf von Programmen, und so
weiter. Technologien, die der Reaktion auf den bloßen Erkenntnisgewinn durch CEP dienen,
beispielsweise Visualisierungsverfahren für Ereignisse, reaktive Logikprogrammierung und
Business Process Management, sind in dieser Arbeit nicht Teil von CEP. Ebensowenig fallen
die Technologien auf der anderen Seite von CEP in dieses Feld: Sensortechnologien (bspw.
RFID) sind zwar als Ereignisquellen elementar wichtig in CEP-Systemen, werden hier aber
nicht als Teil der CEP-Technologie selbst angesehen. Vielmehr wird CEP als sog. Middleware
betrachtet, die zwischen Informationsquellen und den an den Informationen interessierten
Stellen Ereignisse verarbeitet und vermittelt.

2.2 Bestandteile von CEP-Verfahren

Nachdem im vorigen Abschnitt definiert wurde, was CEP leistet, stellt sich die Frage, wie
genau die eigentliche Korrelation der Ereignisse funktioniert. Im Prinzip sind hier zwei
verschiedene Ansätze möglich [EB09]: (1) Abfrage von a-priori bekannten Ereignismustern
oder (2) Entdeckung bisher unbekannter Ereignismuster. Im ersten Fall werden die konkreten
Ereignismuster, die eine komplexe Situation von Interesse anzeigen, direkt im CEP-System
fest implementiert. Je nachdem wie das System aufgebaut ist, werden diese Ereignismuster
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beim Deployment fest angelegt oder lassen sich von außen dynamisch durch spezielle Ereig-
nisanfragesprachen konfigurieren, das CEP-System selbst manipuliert die Ereignismuster
allerdings nicht. Im zweiten Fall werden Ereignismuster zur Laufzeit vom CEP-System selbst
entwickelt und angewandt, beispielsweise durch Einsatz von Technologien wie maschinel-
lem Lernen und Datamining auf den Ereignisströmen. Für den ersten Fall, die Abfrage
von definierten Ereignismustern, gibt es bereits eine Reihe von Definitionssprachen und
prototypische Implementierungen.

2.2.1 Definitionssprachen, Ausführungsmodelle und Prototypen

Mit snoop [CM94] wurde schon früh eine ausdrucksstarke Definitionssprache für Ereig-
nismuster entwickelt. Weiteren Sprachen folgten [WKL+

08, CM10], die sich meist auf die
Unterstützung bestimmter Muster konzentrieren. Neben der reinen Definitionssprache
benötigt ein CEP-System auch ein Verarbeitungs- bzw. Ausführungsmodell, das beschreibt,
wie die in der Definitionssprache beschriebenen Korrelationen auf den Ereignisströmen
umgesetzt werden. Diese Ausführungsmodelle entscheiden durch ihre spezielle Ausle-
gung auf das Anwendungsgebiet über die Effizienz der Korrelationsberechnung. So gibt
es Ausführungsmodelle, die speziell auf mobile CEP-Szenarien zugeschnitten sind und
die Rekonfigurationen von Operatoren unterstützen [KORR12] oder solche, die für die
Verarbeitung von Ereignisströmen aus RFID-Auslesungen optimiert sind [WDR06].

Es gibt zahlreiche Prototypen, die in der Forschung entwickelt wurden, beispielsweise
Cordies [KKR10], SASE [WDR06], DHEP [SKPR10] uvm. Diese beinhalten jeweils eine
spezifische Definitionssprache und ein Ausführungsmodell.

2.3 Aufbau von CEP-Systemen

2.3.1 Einordnung von CEP in die IT-Infrastruktur

Ein CEP-System kann in der IT-Architektur als Middleware zwischen Informationsquellen
und -interessenten betrachtet werden. Die Ereignisquellen und -konsumenten werden durch
Einbezug eines CEP-Systems entkoppelt [BK09], die Weiterverarbeitung, Filterung, usw. von
Ereignissen wird dabei von der CEP-Middleware übernommen.

2.3.2 Zentrales CEP

Die einfachste und wohl auch intuitivste Architektur einer Systemkomponente wie einem
CEP-System ist, es als eigenständiges, zentrales Programm auf einem Server laufen zu lassen.
Alle Ereignisströme werden mit diesem zentralen Programm verbunden, in dem sämtliche
Korrelationsregeln gespeichert sind und auf die eingehenden Ereignisströme angewandt
werden. Dabei werden aus den eingehenden Ereignissen nach definierbaren Regeln direkt
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komplexe Ereignisse erzeugt, die die Konsumenten weitergeleitet werden (vgl. Abb. 2.1). Ein
Beispiel für eine kommerziell erhältliche zentrale CEP-Lösung ist „IBM Websphere Business
Events“.

Zentrales 
CEP-System

RegelnRegeln

Quelle Quelle Quelle

KonsumentKonsument

Abbildung 2.1: Ein zentrales CEP-System.

2.3.2.1 Vor- und Nachteile

Zu den Vorteilen eines zentralen CEP-Systems zählt, dass alle Ereignisströme nur mit einem
zentralen System verbunden sind, sodass die Gesamtkomplexität des Systems in Grenzen
gehalten wird. Damit ist ein solches System auch relativ einfach zu administrieren. Im
Vergleich zu einem verteilten System ist ein zentrales einfacher zu programmieren und zu
testen und daher kostengünstiger in der Entwicklung.

Nachteilig ist die begrenzte Skalierbarkeit eines zentralen Systems. Da die Ereignisse nicht
immer nahe ihrer Quellen verarbeitet werden können, sondern alle zum zentralen System
übertragen werden müssen, ergeben sich zweierlei Problematiken: Zum einen wird durch
die Übertragung vieler Ereignisse das Netzwerk belastet und es kommt zu Verzögerungen in
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der Verarbeitung, zum anderen sind in das CEP involvierte Parteien nicht autonom, sondern
vom zentralen CEP-System abhängig. Insbesondere müssen sie Geschäftsregeln aufdecken,
um sie im zentralen CEP-System integrieren zu können.

2.3.3 Verteiltes CEP

Ein verteiltes CEP-System ermöglicht die stufenweise Verarbeitung von Ereignisströmen. An-
statt dass aus einfachen Ereignissen direkt komplexe Ereignisse für die Ereigniskonsumenten
gewonnen werden, wie es in einem zentralen CEP-System der Fall ist, werden Ereignisströ-
me in Zwischenschritten miteinander korreliert, sodass nach und nach die gewünschten
Ausgangsereignisse gebildet werden. Die Platzierung der Verarbeitungsknoten, die in dieser
Arbeit Operatoren genannt werden, kann für den jeweiligen Anwendungsfall optimal ange-
passt werden [RDR10, SKR11]. Die Operatoren sind also untereinander vernetzt und bilden
somit eine Topologie. Eine Beispieltopologie eines verteilten CEP-Systems befindet sich in
Kapitel 3.1.

2.3.3.1 Vor- und Nachteile

Ein verteiltes CEP-System hat den Vorteil, dass durch die Verteilung der Ereignisverar-
beitung auf verschiedene Operatoren die Skalierbarkeit des Systems verbessert wird. Die
Verarbeitung von Ereignissen kann nahe ihrer Quelle geschehen, dadurch werden Kommuni-
kationskosten und Latenzzeiten verringert. Zudem sind in das CEP involvierte Parteien in
der Lage, eigene Operatoren zu realisieren und mit dem verteilten CEP-System zu verknüp-
fen. Dadurch können sie interne Geschäftsregeln geheim halten.

Nachteilig ist die hohe Systemkomplexität, wodurch der Administrationsaufwand und
die Entwicklungskosten steigen.

2.3.4 Fazit

Für große Szenarien mit vielen hochfrequenten Ereignisquellen, die über große räumliche
Distanzen verteilt sind, ist ein verteiltes CEP-System im Allgemeinen besser geeignet als
ein zentrales. Diese Arbeit bezieht sich daher im Weiteren ausschließlich auf verteilte CEP-
Systeme.
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3 Verteiltes CEP - Ein Systemmodell

In diesem Abschnitt wird für verteilte CEP-Systeme eine Modellierung in einem sogenannten
Operatorenmodell eingeführt. Es werden einige Annahmen und Abstraktionen eingeführt, die
der weiteren Arbeit zugrunde liegen. Zudem werden auch schon einige Eigenschaften des
Ausführungsmodells angeführt, mit dem das in dieser Arbeit entwickelte Wiederherstel-
lungsverfahren für Operatoren arbeitet. Zweck des Kapitels ist die frühe Definition einiger
Begriffe und Abstraktionen, mit deren Hilfe später die Aufgabenstellung und die Lösung
derselben eindeutig beschrieben werden können.

3.1 Der Operatorgraph

Ein verteiltes CEP-System S kann durch einen gerichteten Operatorgraphen G(Ω, E) darge-
stellt werden, der sich aus einer Menge von Operatoren Ω = {ω1, ω2, ... , ωn} zusammensetzt,
die miteinander in einer unidirektionalen Verbindung stehen, was durch die Menge der
Kanten E ⊆ Ω X Ω dargestellt wird. Operatoren (bezeichnet durch ωi) verarbeiten eingehende
Ereignisse (bezeichnet durch σi) und erzeugen neue Ereignisse. Dabei können sie eingehende
Ereignisse nach vorgegebenen Regeln korrelieren. Die Gesamtfunktionalität des CEP-Systems
wird von den Operatoren in Teilschritten realisiert, indem jeder Operator eine Korrelations-
funktion f über Ereignisse ausführt. Ereignisse sind die Daten, mit denen ein CEP-System
arbeitet. Sie werden von Operatoren empfangen, verarbeitet und neu erzeugt. Schließlich
bestehen zwischen den Operatoren noch Kommunikationsverbindungen, über die Operatoren
Ereignisse übertragen können. Eine Reihe von solchen Übertragungen zwischen zwei Opera-
toren kann man auch als Ereignisstrom bezeichnen. Eingehende Ereignisströme werden als Ii
bezeichnet, die Menge aller Eingangsströme in einem Operator ist I. Die Korrelationsfunktion
f bildet die Menge von Eingangsströmen I in eine Menge von Ausgangsströmen O ab, d.h.
die Korrelationsfunktion ist eine Abbildung f : I→ O. Die Operatoren bilden untereinander
ein Netzwerk, auf dem Ereignisströme zwischen den Knoten verschickt werden. Ein Beispiel-
graph findet sich in Abbildung 3.1. Dort sind 5 Operatoren eingezeichnet, die ein Netzwerk
bilden.

3.2 Ereignisse

Definition 3.1 (Ereignis). Ein Ereignis σi ist ein Daten-Objekt von einem bestimmten Ereignistypen.
Es bekommt von seinem Produzenten einen unveränderlichen Zeitstempel τ(σi) und eine eindeutige,
fortlaufende und unveränderliche Sequenznummer ρ(σi) zugeteilt.
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Abbildung 3.1: Ein CEP-System mit 5 Operatoren, 3 Ereignisquellen und 3 Konsumenten.

Ereignisse sind die Informationen bzw. Daten, die in einem CEP-System verarbeitet werden.
Aus einer oder mehreren Ereignisquellen werden Ereignisströme erzeugt, die von dem
CEP-System zu einem oder mehreren ausgehenden Ereignisströmen verarbeitet und an die
Ereigniskonsumenten ausgeliefert werden. Auch innerhalb des CEP-Systems kommunizie-
ren die einzelnen Operatoren über solche Ereignisströme. Ein Ereignis kann man sich als
Datenobjekt vorstellen, in dem alle für die Verarbeitung wichtigen Informationen enthalten
sind. In den folgenden Unterkapiteln werden diese Informationen erläutert.

3.2.1 Ereignistyp

Der Ereignistyp ist für jeden ausgehenden Ereignisstrom von einem Produzenten eindeutig
festgelegt und wird als String kodiert. Durch die feste Kopplung von Ereignistyp und Pro-
duzenten kann jedes Ereignis anhand seines Typs eindeutig einem Produzenten zugeordnet
werden.

3.2.2 Zeitstempel τ

In der Anwendung von Regeln zur Korrelation von Ereignissen spielt oft der Zeitpunkt eine
wichtige Rolle, zu dem die Ereignisse aufgetreten sind. Die Beantwortung der Frage, wann
eine Situation, die durch ein Ereignis signalisiert wird, genau eingetreten ist, hängt vom
Kontext der Situation ab. Wir gehen aber davon aus, dass der Zeitpunkt des Auftretens von
Situationen immer von den Zeitpunkten der Ereignisse aus den synchronisierten Ereignisquellen
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3.2 Ereignisse

abhängt und nicht vom Zeitpunkt des „Entdeckens“ der Situation durch einen Operator (die
je nach Geschwindigkeit der Verarbeitung ohnehin schwanken kann). Daher werden die
Zeitstempel erzeugter Ereignisse auf Basis der Zeitstempel der entsprechenden eingehenden
Ereignisse erzeugt. Denkbar wäre ein Maximalwert oder Minimalwert der Zeitstempel aller
korrelierten Ereignisse, welcher den Zeitstempel des entsprechend erzeugten Ereignisses
bildet, oder auch die Angabe einer Zeitspanne. Der Zeitstempel ist somit unabhängig von der
Echtzeit, zu der ein Ereignis von einem Operatoren erzeugt wird. Es kann dabei durchaus
vorkommen, dass zwei Ereignisse desselben Typs mit demselben Zeitstempel auftreten,
beispielsweise wenn ein Ereignis in der Korrelation mehrerer Ereignisse mitwirkt.

3.2.3 Sequenznummer ρ

Von seinem Produzenten erhält ein Ereignis σi eine Sequenznummer ρ(σi). Sie ist unabhängig
von einer physikalischen Uhr im Produzenten, es handelt sich vielmehr um eine Ordnung
über die produzierten Ereignisse. Die Sequenznummern werden inkrementell vergeben,
sodass folgende Invariante gilt:

Invariante 3.2.1. Wenn ein Ereignis σi von einem Ereignistyp zeitlich vor einem anderen Ereignis
σj vom selben Ereignistyp erzeugt wurde, dann gilt: ρ(σi) < ρ(σj).

Diese Invariante ist für das in dieser Arbeit entwickelte Verfahren wichtig: Die Ereignisse
eines Typs können so in eine Reihenfolge gebracht werden und von einem Ereignis aus in
„frühere“ und „spätere“ Ereignisse eingeteilt werden. Ereignisströme von einem bestimmten
Ereignistypen sind also geordnet. Global über alle Ereignistypen hinweg ergibt sich hingegen
durch die Sequenznummern alleine keine Ordnung.

3.2.4 Zusammenfassung: Inhalt eines Ereignisses

Ein Ereignis enthält also folgende Informationen:

• Typ des Ereignisses

• Zeitstempel vom Produzenten

• Sequenznummer vom Produzenten

• Payload: Daten des Ereignisses wie z.B. Attribute, die für die Weiterverarbeitung von
Interesse sind
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3.3 Operatoren

Definition 3.2 (Operator). Ein Operator ωi ist ein Prozess, der auf einem physikalischen Host
host(ωi) läuft. Er empfängt eingehende Ereignisströme, sequenziert diese in einen globalen Eingangs-
strom I und verarbeitet diesen anhand der Korrelationsfunktion f : I → O weiter zu einer Menge
von ausgehenden Ereignisströmen O, die wiederum anderen Operatoren als Eingangsströme dienen
können. Die so erzeugten Ereignisse sind von einem bestimmten Ereignistypen.

3.3.1 Vernetzung von Operatoren

Operatoren sind untereinander über Kommunikationsverbindungen (siehe Abschnitt 3.4)
vernetzt, über die Ereignisströme fließen. Ein ausgehender Ereignisstrom Oi eines Operators
ωi kann dabei einem anderen Operatoren ωj als eingehender Ereignisstrom dienen. ωj
gilt dann als Nachfolger von ωi und wird Teil der Menge der Nachfolger, die durch die
Bezeichnung succ(ωi) gekennzeichnet ist. Anders herum ist ωj dann Vorgänger von ωi und
ist Teil der Menge pred(ωi). Über die Nachfolger und Vorgänger eines Operatoren ωi lässt
sich jeweils eine transitive Hülle bilden, die als succ*(ωi) bzw. pred*(ωi) bezeichnet wird.

3.3.2 Fehlermodell von Operatoren

Operatoren werden auf miteinander verbundenen Netzwerkknoten ausgeführt, die Hosts
genannt werden. Der Host eines Operators ωi wird als host(ωi) bezeichnet. Ein Host kann
dabei mehrere Operatoren beinhalten. Ausfälle von Hosts laufen nach dem Crash-Stop-Modell
ab: Dabei stoppt die Ausführung und der Host verliert sämtliche nicht-persistenten Daten
über den Zustand seiner Operatoren [SS83]. Andere Operatoren werden über den Absturz
nicht direkt informiert, sondern müssen sich die Information selbst beschaffen, beispielsweise
über die Kontrolle von Heartbeats.

Das Verfahren in dieser Arbeit würde auch mit einem Crash-Recovery-Fehlermodell funk-
tionieren, das ja im Prinzip eine Erweiterung von Crash-Stop darstellt. Anstatt dass ein
ausgefallener Host durch einen anderen ersetzt wird, könnte dann darauf gewartet werden,
dass der Host selbstständig wieder seine Arbeit aufnimmt, worauf er dann in einen definier-
ten Zustand versetzt werden müsste. Da Crash-Stop aber ein allgemeineres Modell ist und
viele Ausfallursachen abdeckt, wird in dieser Arbeit mit diesem Modell gearbeitet.

3.3.3 Sequenzierung der Eingangsströme

Ein Operator ωi kann im Operatorgraphen mehrere Vorgänger-Operatoren, d.h. auch meh-
rere eingehende Ereignisströme, besitzen. Operatoren verfügen untereinander über keine
Zeitsynchronisierung, sie laufen asynchron. Um Ereignisse aus mehreren Strömen in einer
Korrelationsfunktion zu verarbeiten, werden die Ströme in einen einzigen Eingangsstrom
I, der die Menge der einzelnen Eingangsströme Ii zusammenfasst, gebracht. I fasst die
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τ 
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τ 

I(ω3)

O(ω2)

O(ω1)

I(ω3)

ω1 ω2

ω3

Ereignisse

Sequenzierter Eingangsstrom:

Abbildung 3.2: Sequenzierung zweier Ströme zum Eingangsstrom I.

einzelnen Ströme zusammen und ordnet sie gegeneinander, sodass Ereignisse verschiedener
Eingangsströme gegeneinander eine eindeutige Positionierung bzw. Ordnung besitzen. Man
spricht hier auch vom Sequenzieren der eingehenden Ereignisse, die anschließend vom Opera-
toren verarbeitet werden können. Die Ereignisse werden nach ihrem Zeitstempel angeordnet,
bei gleichem Zeitstempel entscheidet der Ereignistyp und als drittrangiges Kriterium die
Sequenznummer. In Abb. 3.2 ist ein Szenario dargestellt, das eine zweistufige Sequenzierung
zweier einzelner Eingangsströme in einen gemeinsamen Eingangsstrom I zeigt: Die beiden
Ausgangsströme der Vorgängeroperatoren werden dabei zunächst in eine Sequenz mit
aufsteigenden Zeitstempeln gebracht, wobei auch verschiedene Ereignisse mit dem gleichen
Zeitstempel auftreten können. Daher wird nach der ersten Sortierung nach dem primären
Kriterium (Zeitstempel) eine weitere Sortierung nach dem sekundären Kriterium (Herkunft
bzw. Typ des Ereignisses) durchgeführt, in dem Beispiel werden bei gleichem Zeitstempel
Ereignisse aus ω1 vor Ereignissen aus ω2 einsortiert. Wäre entgegen des Beispielfalls auch
dann noch keine eindeutige Sequenz erreicht, würde eine Sortierung nach dem tertiären
Kriterium (Sequenznummer) eine eindeutige Lösung ermöglichen. Die primäre Anord-
nung nach Zeitstempel kommt dem häufigen Anwendungsfall entgegen, dass ein Operator
Ereignisse über bestimmte Zeiträume korreliert, um zeitabhängige Situationen zu erken-
nen. Die Korrelationsfunktion kann in einem nach Zeitstempeln geordneten Strom solche
Korrelationen viel einfacher realisieren als bei einer Sortierung des Stroms nach anderen
Kriterien. Wird ein Ereignis in der Sequenzierung an einer bestimmten Stelle eingeordnet, ist
durch das Ordnungsverfahren sichergestellt, dass nachfolgende Ereignisse im Eingangsstrom
keinen niedrigeren Zeitstempel haben. Dadurch kann die Verarbeitung des Eingangsstroms I
effizient gestaltet werden.

Die Sequenzierung ist also Teil des Ausführungsmodells der Operatoren und dient der
Verarbeitungseffizienz.
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3.3.3.1 Definition von Relationen über Ereignisse im globalen Eingangsstrom I

Folgende Relationen über zwei Ereignisse σi und σj werden definiert:

σi > σj : σi liegt in I hinter σj.

σi < σj : σi liegt in I vor σj.

σi = σj : σi ist identisch mit σj.

σi ≥ σj : σi liegt in I hinter σj oder ist identisch mit σj.

σi ≤ σj : σi liegt in I vor σj oder ist identisch mit σj.

3.3.4 Konsum von Ereignissen

Ein eingehendes Ereignis kann von einem Operator mehrfach zur Berechnung eines neuen
Ereignisses herangezogen werden. An einem bestimmten Punkt kann der Operator aller-
dings ein Ereignis nach seiner Verarbeitung „aus dem Rennen nehmen’", d.h. aus dem
Eingangsstrom löschen, sodass es in künftigen Berechnungen keine Rolle mehr spielt. Wird
ein Ereignis in einer Berechnung genutzt und anschließend gelöscht, spricht man davon,
dass das Ereignis konsumiert wurde. Wird ein Ereignis nach seiner Nutzung nicht direkt
konsumiert, steht es für weitere Operationen weiterhin im Eingangsstrom zur Verfügung,
bis es schließlich doch konsumiert wird oder der Operator es verwirft.

Die Konsumierung von Ereignissen kann ein wichtiger Bestandteil von CEP-Systemen sein
und wurde beispielsweise in der Ereignisverarbeitungssprache snoop von S. Chakravarthy
und D. Mishra [CM94] thematisiert. Dort wird diese Thematik durch die Parameterkontexte
behandelt, die eindeutige Korrelationsvorschriften bei einem nicht eindeutigen Eingangs-
strom ermöglichen. Hintergrund dieser Kontexte ist, dass Korrelationsvorschriften der Art
„Korreliere immer ein Ereignis des Typs A mit einem Ereignis des Typs B“ manchmal alleine
noch keine hinreichend eindeutige Verarbeitung ermöglichen. Wenn nun beispielsweise im
Eingangsstrom mehrere Ereignisse beider Typen vorliegen, muss der Operator eindeutig
entscheiden können, welche spezifischen Ereignisse aus der Menge der potentiellen Korrela-
tionskandidaten er zur Berechnung der Ausgangsereignisse heranzieht. In snoop wurden
dafür verschiedene Möglichkeiten definiert, die in Tabelle 3.1 erläutert und in Bezug zu den
dafür notwendigen Konsumoperationen gesetzt werden.

Um alle Parameterkontexte aus snoop unterstützen zu können, ist für die Operatoren
also die Möglichkeit des gezielten Ereigniskonsums unerlässlich. Es muss möglich sein,
manche Ereignisse mehrmals zu verarbeiten, während andere schon nach der ersten Ver-
arbeitung entfernt werden. Die Implikationen, die sich aus dem Ereigniskonsum für das
Wiederherstellungsverfahren ergeben, das in dieser Arbeit entwickelt wird, werden in Kapitel
6.2.1 ausführlich analysiert.
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Name Beschreibung Konsumoperationen
Recent Es werden immer die neuesten möglichen Er-

eignisse zur Korrelation herangezogen, sobald
eine Korrelation möglich ist. Nach der Korrelati-
on werden die daran teilnehmenden Ereignisse
konsumiert.

Konsumiert werden die
neusten Ereignisse, die
zu einer Korrelation ge-
führt haben.

Chronicle Ereignisse werden nach ihrem Auftreten in chro-
nologischer Reihenfolge zur Korrelation heran-
gezogen. Das bedeutet, dass immer die ältesten
verfügbaren Ereignisse korreliert werden. Nach
der Korrelation werden die daran teilnehmen-
den Ereignisse konsumiert.

Konsumiert werden die
ältesten Ereignisse, die
zu einer Korrelation ge-
führt haben.

Continuous Aus dem Eingangsstrom werden kontinuierlich
Korrelationen durchgeführt, und zwar mit je-
dem Ereignis, das als erstes Ereignis einer Kor-
relation in Frage kommt und den ältesten nach-
folgenden weiteren für die Korrelation relevan-
ten Ereignissen. Jedes Ereignis kann nur eine
Korrelation starten, daher wird das Startereig-
nis konsumiert.

Konsumiert wird das
Startereignis einer Kor-
relation.

Cumulative Alle Ereignisse zwischen dem ersten Ereignis,
das eine Korrelation starten kann, und dem
ersten Ereignis, mit dem die Korrelation abge-
schlossen wird, werden in die Korrelation mit
einbezogen. Nach der Korrelation werden alle
daran beteiligten Ereignisse konsumiert.

Konsumiert werden al-
le Ereignisse zwischen
dem Startereignis und
dem letzten Ereignis in
einer Korrelation.

Tabelle 3.1: Parameterkontexte in snoop [CM94]

3.4 Kommunikationsverbindungen

Um die Betrachtung des Operatorenmodells von der Problematik möglicher Ausfälle der
Kommunikationsverbindungen zu entkoppeln, werden für diese Verbindungen bestimmte
Eigenschaften vorausgesetzt. Hinweise zur Implementierung der eingeführten Abstraktionen
finden sich in der Literatur [GR06].

Eigenschaft 3.4.1 (Keine Erzeugung). Wenn ein Operator ω2 ein Ereignis σ empfängt, dann hat
ein anderer Operator ω1 oder eine Ereignisquelle q dieses Ereignis erzeugt.

Eigenschaft 3.4.2 (Keine Duplikation). Jedes übertragene Ereignis σ, das von einem Operator ω
gesendet wird, wird maximal einmal empfangen.

Eigenschaft 3.4.3 (Best-Effort). Wenn Operator ω1 an Operator ω2 ein Ereignis σ sendet, und
keiner der Operatoren einen Fehler vermutet, dann empfängt ω2 σ letztendlich.
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Dies sind die Eigenschaften eines sog. Best-Effort-Kommunikationskanals (vgl. [GO96]).
Zusätzlich wird noch folgende Eigenschaft benötigt:

Eigenschaft 3.4.4 (Erhaltung der Reihenfolge). Bei der Übertragung mehrerer Ereignisse zwischen
zwei Operatoren empfängt der Empfänger die Ereignisse in der Reihenfolge, in denen sie vom Sender
versendet wurden.

Die Eigenschaften der Kommunikationskanäle werden im Folgenden erläutert:

• Eigenschaft 3.4.1 besagt, dass die Kommunikationskanäle keine Ereignisse an den
Empfänger übermitteln dürfen, die nicht vom Sender selbst erzeugt wurden.

• Eigenschaft 3.4.2 besagt, dass die Kommunikationskanäle Ereignisse bei der Übertra-
gung nicht duplizieren dürfen. Die Frage, ob Operatoren Ereignisse mehrfach erzeugen,
wird von dieser Eigenschaft nicht berührt.

• Eigenschaft 3.4.3 besagt, dass jede Nachricht letztendlich korrekt übertragen wird, so-
lange weder der Sender noch der Empfänger einen Fehler im Kommunikationspartner
oder -link vermutet. Die Frage der Fehlerdetektion, d.h. wie die Operatoren den Ausfall
anderer Operatoren oder der Verbindung zu diesen detektieren, wird in Kapitel 6.5.3.2
untersucht.

• Eigenschaft 3.4.4 besagt, dass der Kommunikationskanal Ereignisse in der Reihenfolge
beim Empfänger abliefert, in der sie der Sender versendet hat.

3.5 Ereignisquellen

Ereignisquellen sind Systemkomponenten, die eine Schnittstelle zu der Welt außerhalb
des CEP-Systems realisieren. Zu einer solchen „Umwelt“ können zum Beispiel Sensoren
gehören oder auch Computersysteme, die Signale an die Ereignisverarbeitung weiterleiten.
Die aus der Umgebung eingehenden Informationen werden zu Ereignissen im Sinne des
CEP-Systems weiterverarbeitet, d.h. die für die Verarbeitung in den Operatoren notwendigen
Informationen werden hinzugefügt und das Ereignis wird in ein für die Operatoren lesbares
Format gebracht. In diesem Sinne sind Ereignisquellen mit den „Event Adapters“ aus dem in
D. Luckhams Buch „The Power of Events [...]“ [Luc01] eingeführten CEP-System vergleichbar.

Als besonderes Merkmal besitzen die Ereignisquellen im Gegensatz zu den Operatoren
untereinander synchronisierte Systemuhren, damit sie den Ereignissen Zeitstempel geben können,
welche die synchronisierte Realzeit der Ereignisse wiederspiegeln. Die von Ereignisquellen
erzeugten Ereignisse sind die einfachsten Ereignisse im CEP-System und werden deshalb
auch Basisereignisse genannt. Die Ereignisse werden in einem Ereignislog persistent gespei-
chert, bis sie nicht mehr benötigt werden. Außerdem können Ereignisquellen auch andere
notwendigen Daten persistent speichern. Ereignisquellen müssen so implementiert werden,
dass sie für die Anforderungen des Gesamtsystems ausreichend ausfallsicher sind, entweder
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3.6 Ereigniskonsumenten

durch eine redundante Auslegung oder durch den Einsatz von geeigneten Wiederherstel-
lungsverfahren. Sie können vom CEP-System nicht wiederhergestellt werden und dürfen
daher keine Daten verlieren, die nicht vorher explizit zur Löschung freigegeben wurden. Die
Implementierung dieser Abstraktion wird in dieser Arbeit nicht thematisiert, eine Lösung
über robuste, persistente Speichersysteme wie z.B. „Redundant Arrays of Independent Disks“
(RAIDs) ist dafür denkbar.

3.6 Ereigniskonsumenten

Ereigniskonsumenten sind Adapter zwischen den Operatoren, deren Ausgangsströme das
CEP-System verlassen, und den an den Ereignissen interessierten Stellen in der Welt au-
ßerhalb des CEP-Systems. Ebenso wie die Ereignisquellen müssen sie ständig verfügbar
sein, müssen aber keine Informationen aus den Operatoren persistent speichern können. Die
genaue Implementierung dieser Abstraktion wird ebenso wie bei den Ereignisquellen in
dieser Arbeit nicht weiter thematisiert, eine Lösung über redundante oder wiederherstellbare
Prozesse ist dafür denkbar.

3.7 Nutzung von Kontrollereignissen zur Effizienzsteigerung

Um lange Wartezeiten bei Berechnungen und Sequenzierungen und zu vermeiden, können
Quellen von Zeit zu Zeit Kontrollereignisse versenden, die entsprechend weiterverarbeitet
werden können. Auf diese Weise schreitet die Gesamtverarbeitung fort und keine Stelle im
System wartet vergeblich auf Ereignisse, die niemals ankommen werden.

3.8 Zeit und Asynchronität - Analyse der Implikationen

3.8.1 Synchrone Quellen

Nur die Ereignisquellen verfügen über hinreichend synchronisierte Systemuhren, um tatsäch-
liche Echtzeitstempel für die Basisereignisse vergeben zu können. Mithilfe der Zeitstempel
aus den Quellen wird in höheren Verarbeitungsebenen der Bezug der korrelierten Ereignisse
zur Echtzeit einer eingetretenen Situation hergestellt.

3.8.2 Asynchrone Operatoren

Für die Operatoren werden keine Annahmen über zeitliche Abläufe getroffen, was Berechnun-
gen und Kommunikationsverzögerungen angeht. Dadurch hat das eingeführte Systemmodell
eine hohe Abdeckung bezüglich realer Systeme. Synchronität in den Operatoren wird für
das Wiederherstellungsverfahren weder vorausgesetzt noch benötigt.
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4 Zielstellung

4.1 Definition der Zielstellung

Diese Arbeit adressiert große Szenarien in verteilten CEP-Systemen, die hohe Anforderungen
an die Skalierbarkeit, die Verfügbarkeit, die Latenz, die Korrektheit und die Ausfallsicherheit
stellen. Es wird ein Modell für ein hochskalierbares, verteiltes CEP-System entworfen, das
durch ein Wiederherstellungsverfahren für Ereignisströme gegenüber gutartigen Fehlern in
den Operatoren robust ist. Insbesondere dürfen beim gleichzeitigen Ausfall von einer festge-
legten Anzahl F an Operatoren die Anforderungen (siehe Abschnitt 4.2) an das CEP-System
nicht verletzt werden. Das Verfahren soll ohne persistente Checkpoints der Operatorzustände
und ohne redundante Berechnungen auskommen, um den Overhead zur Laufzeit gering
zu halten. Durch die Einführung von persistenten Schichten soll vielmehr ein dynamisch
einsetzbares Werkzeug geschaffen werden, um Operatortopologien zu partitionieren und so
die Belastung einzelner Operatoren mit Zustandsdaten zu verringern. Das Wiederherstel-
lungsverfahren wird erläutert und anhand eines konkreten Szenarios in einer Simulation
evaluiert.

4.2 Anforderungen an das CEP-System

Aus den Anwendungsfällen lassen sich Anforderungen ableiten, die im Allgemeinen an
CEP-Systeme gestellt werden [VKR11, CDMRV10, SSMW10]. Ein CEP-System arbeitet dann
zuverlässig, wenn es die gestellten Anforderungen unter bestimmten Bedingungen, d.h. auch
in definierten Fehlersituationen, erfüllt.

4.2.1 Hohe Skalierbarkeit

In den typischen Anwendungsgebieten von CEP fallen mitunter hohe Datenmengen an,
die vom CEP-System verarbeitet werden müssen. Die Vernetzung von Gegenständen im
„Internet der Dinge“, beispielsweise durch Einsatz von RFID-Chips, produziert eine regel-
rechte Datenflut, die von CEP-Systemen bewältigt werden muss [SSMW10]. Daher muss
das System skalierbar sein, d.h. es muss ohne Qualitätseinschränkungen mit steigenden
Lasten zurechtkommen. Insbesondere darf die steigende Last nicht zu einer Erhöhung der
Latenzzeiten oder zu einer Einschränkung der Korrektheit der Ergebnisse führen.
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4 Zielstellung

4.2.2 Geringe Latenzzeiten

Im Gegensatz zu Techniken, die zur Analyse von bestehenden Datensätzen relativ lange nach
dem eigentlichen Auftreten der entsprechenden Vorgänge dienen, bspw. klassisches Data-
Mining und Data-Warehouses, wird mit der Anwendung von CEP eine sofortige Analyse
der Ereignisse in Echtzeit verfolgt. Je schneller eine Situation erkannt wird, desto besser.
Werden aufgetretene Situationen zu spät erkannt, kann die Erkenntnis darüber sogar wertlos
werden. Im Business Activity Monitoring (BAM) beispielsweise können CEP-Systeme zur
Echtzeit-Erkennung von Situationen im Geschäftsprozess benutzt werden, beispielsweise zur
Ermittlung von Key-Performance-Indikatoren (KPIs) und Überwachung von Service-Level-
Agreements (SLAs) [CDMRV10]. Es dürfen also keine großen Verzögerungen (Latenzen) bis
zur Entdeckung einer Situation auftreten.

4.2.3 Korrektheit der Ergebnisse

Die Anforderungen an die Korrektheit der Ergebnisse (d.h. der detektierten Situationen)
eines CEP-Systems können je nach Anwendungsfall voneinander abweichen [OB10]. An-
forderungen an die Korrektheit der Situationserkennung von CEP-Systemen sind in dieser
Arbeit:

• Keine falschen Ereignisse, d.h. jedem vom CEP-System an einen Konsumenten abgege-
benen Ereignis muss auch eine tatsächlich geschehene Situation zugrunde liegen.

• Keine verlorenen Ereignisse, d.h. jede aufgetretene Situation von Interesse wird auch
tatsächlich durch ein entsprechendes Ereignis den Konsumenten mitgeteilt. Auch beim
gleichzeitigen Ausfall von F Operatoren gehen keine für die Situationserkennung
relevanten Informationen verloren.

• Erhaltung der Reihenfolge der Ereignisse, d.h. auch durch den Ausfall und die Wie-
derherstellung von F Operatoren darf die Reihenfolge der erkannten Situationen nicht
durcheinandergeraten.

Strenge Korrektheitsanforderungen sind insbesondere dort gestellt, wo schon ein kleiner
Fehler in der Ereignisverarbeitung zu großen Auswirkungen führen kann, zum Beispiel
in der Produktionssteuerung einer Fabrik [VKR11]. Ein detailliertes Beispielszenario, das
solche hohen Korrektheitsanforderungen an das CEP-System begründet, wird in Abschnitt
4.3 vorgestellt.

4.2.3.1 Abgrenzung zu weicheren Korrektheitsanforderungen

Manchmal kann es ausreichend sein, bestimmte Mindestanforderungen zu stellen und
einige nicht korrekt erkannte Situationen zu tolerieren oder außerhalb des CEP-Systems
manuell zu behandeln [OB10]. Insbesondere kann so eine Verbesserung der Performanz
des Systems erreicht werden. Beispiele: (i) Im Tracking von RFID-Daten können zeitweise
Ausfälle verkraftet werden, indem entsprechende Situationen manuell nachgeprüft werden.
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4.3 Beispielszenario: Logistik in einem großen Seehafen

(ii) Beim Berechnen von Durchschnittstemperaturen kann ein Konsument unter Umständen
damit leben, dass über bestimmte Zeiträume hinweg einige Sensoren vom CEP-System nicht
korrekt berücksichtigt werden, so lange ein genügend großer Teil der Temperaturdaten in
die Gesamtberechnung eingeflossen ist.

Diese Arbeit konzentriert sich allerdings auf eine Lösung, die hohe Korrektheitsanfor-
derungen abdeckt.

4.2.4 Ausfallsicherheit

CEP-Systeme sollen im Allgemeinen hochverfügbar sein. Auch beim gleichzeitigen Ausfall von
F Operatoren soll das Gesamtsystem weiterhin verfügbar sein und korrekt arbeiten und nach
außen hin keine Abweichungen im Verhalten zeigen. Ereignisse dürfen weder verloren gehen
noch verändert werden, und auch die Latenzanforderungen müssen beim Ausfall mehrerer
Operatoren weiterhin eingehalten werden.

4.3 Beispielszenario: Logistik in einem großen Seehafen

Zur Steuerung und Überwachung der Logistik in einem großen Seehafen soll ein verteiltes
CEP-System eingesetzt werden. Eine Hafenlogistik bietet von Natur aus ein verteiltes Szena-
rio: Es gibt viele verschiedene Docks und Lagerhallen, an denen täglich tausende Container
von dutzenden großen Containerschiffen umgeschlagen und teilweise auch zwischengelagert
werden. Jeder Container ist mit RFID-Chips ausgestattet und überall auf dem Hafengelände
sind Sensoren installiert, die die Position der Container ständig ermitteln. Auch innerhalb
eines Containers fallen Sensordaten an, beispielsweise über das Klima innerhalb des Con-
tainers (Temperatur, Luftfeuchtigkeit, etc.) und den Zustand der Ladung. Insgesamt fallen
in jeder Sekunde viele tausend Ereignisse aus den Sensoren an, die möglichst lokal in
Operatoren weiterverarbeitet werden, um Situationen wie z.B. „Container X ist in Lagerhalle
Y angekommen“, „Kühlaggregat in Container X ausgefallen, Temperatur erreicht kritischen
Wert“, etc. zu erkennen. Zudem ist die Hafenlogistik nur ein Teil der gesamten Logistik-
kette, die sich über verschiedene Transportwege erstrecken kann, beispielsweise bei einer
Verladung auf LKWs oder Güterzüge.

4.3.1 Begründung der harten Korrektheitsanforderungen

Die Anforderungen aus Abschnitt 4.2.3 werden für das vorliegende Szenario folgendermaßen
begründet:

1.) Keine falschen Ereignisse: Falsche Ereignisse könnten zu falschen Warnmeldungen
oder auch falschen Abrechnungen mit beteiligten Dienstleistern führen.
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2.) Keine verlorenen Ereignisse: Wenn beispielsweise eine Positionsaktualisierung eines
Containers verloren geht, könnte es schwer werden, diesen auf dem riesigen Hafengelände
wiederzufinden.

3.) Erhaltung der Reihenfolge: Wäre die Reihenfolge verändert, könnten falsche Schlüs-
se aus den Ereignissen gezogen werden, beispielsweise bei zwei aufeinanderfolgenden
Positionsaktualisierungen wäre der daraus extrahierte Weg eines Containers falsch.
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5 Abgrenzung

Um die Anforderungen zu erfüllen, die in Kapitel 4.2 insbesondere an die Ausfallsicherheit
und Korrektheit verteilter CEP-Systeme gestellt wurden, sind verschiedene Lösungsansätze
denkbar. In diesem Kapitel werden die grundsätzlichen Möglichkeiten untersucht, wie
CEP-Systeme ausfallsicher gestaltet werden können, und der Lösungsraum wird bezüglich
der weiteren Anforderung aus Kapitel 4.2 abgegrenzt.

Um die Ausfallsicherheit zu steigern, kann man prinzipiell verschiedene Methoden an-
wenden und miteinander kombinieren. Zu den wichtigsten Methoden gehört, die Ausfallsi-
cherheit der einzelnen Komponenten zu verbessern, ausgefallene Komponenten wiederher-
zustellen und die Komponenten redundant anzulegen [RH85]. In der Vergangenheit haben
sich zur Steigerung der Ausfallsicherheit verteilter Systeme vor allem 2 Ansätze durchgesetzt:
(1) Aktive Replikation von redundanten Prozessen [VKR11] und (2) Rollback-Recovery
ausgefallener Prozesse anhand persistent gespeicherter Zustandsdaten [EAWJ02, SM11].
Im Folgenden werden beide Ansätze vorgestellt und auf ihre Tauglichkeit bezüglich der
Anforderungen aus Kapitel 4.2 untersucht.

5.1 Redundante Prozesse

Im Entwurf eines verteilten CEP-Systems kann man dieses redundant auslegen, sodass einige
an der verteilten Berechnung teilnehmenden Operatoren abstürzen können und das System
als Ganzes weiterhin fehlerfrei arbeitet. In der Praxis erreicht man ein solches Verhalten durch
das Vorhalten von Operator-Replikaten [VKR11]. Während ein Operator im Normalbetrieb
läuft, muss er F Replikate vorhalten, die im Falle seines Ausfalls diesen Operatoren ersetzen
können, sodass die Berechnung fehlerfrei weiterläuft (vgl. Abb. 5.1). Die Replikate müssen
immer auf dem Stand des „Original-Operators“ gehalten werden, was durch die Replikation
der eingehenden Ereignisse an alle Replikate realisiert wird (active standby). Da die Replikate
dieselben Ereignisse mit denselben Algorithmen verarbeiten wie der Original-Operator, wird
der Zustand der Replikate immer aktuell gehalten. Fällt der Original-Operator aus, kann
eines der Replikate direkt die Arbeit übernehmen. Diesen Ansatz kann man noch verfeinern,
indem man die Versendung von ausgehenden Ereignissen so koordiniert, dass nur einer der
redundanten Operatoren diese Ereignisse an die Nachfolger weiterleitet [VKR11].
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Abbildung 5.1: Active Standby: Links ein System ohne Replikate, rechts ein System mit
redundanter Auslegung [VKR11].

5.1.1 Bewertung der Lösung

Durch die redundanten Operatoren wird die Latenzzeit des Gesamtsystems nicht erhöht.
Die Ergebnisse sind auch bei Operatorausfällen korrekt [VKR11]. Die Ausfallsicherheit bei
F gleichzeitigen Ausfällen ist dann gegeben, wenn jeder Operator F Replikate bereitstellt.
Eine solche redundante Lösung kann also die Anforderungen nach geringen Latenzzeiten,
Korrektheit der Ergebnisse und der Ausfallsicherheit erfüllen.

Die Frage nach der Skalierbarkeit gestaltet sich schwieriger. Für eine hohe Ausfallsicher-
heit in großen Operatortopologien müssen sehr viele aktive Replikate vorgehalten werden.
Während ein Operator hingegen fehlerfrei läuft, verschwenden die Replikate Ressourcen,
da sie in dieser Zeit vergeblich arbeiten. Die Lösung ist also zumindest sehr kostenintensiv.
Ein Vorhalten von genügend Replikaten für extreme Ausfallsituationen ist kaum wirtschaftlich
durchzuführen. Eine Lösung mit weniger Overhead im Normalbetrieb, d.h. in der Zeit, in der
keine Fehler auftreten, wäre unter der Annahme begrenzter Ressourcen besser skalierbar.
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5.2 Rollback-Recovery mit persistentem Zustandsspeicher

5.2 Rollback-Recovery mit persistentem Zustandsspeicher

Anstatt redundante Operatoren vorzuhalten, die einen Ausfall kompensieren können, kann
man auch den Versuch unternehmen, einen Operator nach dessen Absturz wiederherzu-
stellen. In CEP-Systemen gibt es zwei Möglichkeiten, wie ein Operator mit eingehenden
Ereignissen verfährt. Entweder er betrachtet jedes Ereignis einzeln und bearbeitet es aus-
schließlich bezüglich der Informationen, die dieses einzelne Ereignis beinhaltet (was die
Möglichkeiten der Ereignisverarbeitung aber extrem beschneidet). In diesem Fall ist der
Operator zustandslos, die Verarbeitung eines Ereignisses steht für sich alleine und ist nicht
von anderen, vorher oder nachher auftretenden Ereignissen abhängig. Oder er aggregiert
Informationen aus mehreren eingehenden Ereignissen, die er zusammenfasst und in aus-
gehende Ereignisse weiterverarbeitet. Dann baut der Operator einen internen Zustand auf,
der Informationen über schon ausgeführte Verarbeitungsschritte beinhaltet und das weitere
Verhalten beim Eingang neuer Ereignisse bestimmt. Solch ein interner Zustand muss, um den
mit einem Ausfall einhergehenden Verlust der volatil gespeicherten Daten zu überstehen, in
irgendeiner Form persistent gesichert werden, damit der Operator wiederhergestellt werden
kann. Um den internen Zustand eines Operators zu sichern, gibt es zwei mögliche Verfahren
[EAWJ02]: Checkpoints und Logs.

Checkpoints [KBG08] sind Speicherauszüge von Operatoren, die entweder in regelmäßigen
Abständen oder durch ein übergeordnetes Protokoll koordiniert angefertigt werden. Diese
enthalten den internen Zustand des Operators zum Zeitpunkt des Anlegens des Checkpoints.
Im Falle einer Wiederherstellung wird der Zustand, der im Checkpoint gespeichert ist, in den
Operator geladen und die Arbeit wird an dieser Stelle fortgesetzt. Zustandsinformationen,
die zwischen dem Anlegen eines Checkpoints und dem Absturz des Operators angefallen
sind, gehen verloren.

Logs speichern zunächst alle in einen Operator eingehenden Ereignisse. Falls ein Ope-
rator ausfällt und wiederhergestellt werden muss, werden die gespeicherten Ereignisse
aus dem Log geladen und in den neu gestarteten Operatoren eingespeist. Die Verarbei-
tung wird sozusagen zurückgerollt und neu durchgeführt, was schließlich darin mündet,
dass der Zustand vor dem Absturz wiederhergestellt wird. Allerdings können durch die
mehrfache Verarbeitung von eingehenden Ereignissen Duplikate produziert werden, die
von nachfolgenden Operatoren herausgefiltert werden müssen. Es ist sinnvoll, die beiden
Verfahren der Logs und der Checkpoints miteinander zu kombinieren. So wird von Zeit
zu Zeit ein Checkpoint gespeichert und die Zeit zwischen zwei Checkpoints wird durch
Logs abgebildet. Zur Wiederherstellung wird dann der letzte Checkpoint geladen und alle
Logs ab diesem Zeitpunkt werden erneut eingespeist, damit nicht die gesamte Verarbeitung
seit dem initialen Start des Operators wiederholt werden muss. Die Logs sollten zudem
regelmäßig „zurechtgeschnitten“ (Pruning) werden, d.h. nicht mehr benötigte Logs werden
gelöscht, damit der Speicher entlastet wird.
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5.2.1 Bewertung der Lösung

Die Korrektheit der Ergebnisse und die Ausfallsicherheit bei F gleichzeitigen Ausfällen sind
mit diesem Verfahren umsetzbar: Zum einen kann ein Operator durch die Checkpoints und
Logs in genau den Zustand versetzt werden, den er zum Zeitpunkt seines Ausfalls hatte,
sodass die produzierten Ereignisse nicht vom Normalbetrieb abweichen. Zum anderen sind
die Operatoren durch die lokale Speicherung ihrer Zustandsinformationen untereinander
nicht auf Hilfe bei der Wiederherstellung angewiesen, sodass auch mehrere gleichzeitige
Ausfälle auf die Wiederherstellung des einzelnen Operators keinen Einfluss haben.

Das beschriebene Rollback-Recovery-Verfahren ist auf einen persistenten Speicher angewie-
sen, der die Zustandsdaten (Checkpoints und Logs) sicher speichert, sodass der Operator
nach seinem Neustart auf den letzten bekannten Zustand initialisiert werden kann. Eine
persistente Speicherung ist im Sinne des Ressourcenverbrauchs teuer, insbesondere in CEP-
Systemen, die sehr viele Ereignisse in kurzer Zeit verarbeiten müssen. Zudem benötigt das
Anlegen eines Speicherabbilds, d.h. eines Checkpoints, Prozessorzeit, was zu Verzögerungen
in der Verarbeitung der Ereignisströme führen kann. Die Skalierbarkeit und die Latenzzeiten
können bei einem solchen System also schnell zu kritischen Punkten werden.

5.3 Schlussfolgerungen

Wie sich in der Untersuchung klassischer Lösungen zur Steigerung der Ausfallsicherheit
gezeigt hat, sind die Ansätze zwar geeignet, einen Operatoren korrekt wiederherzustellen,
jedoch nur zum Preis eines hohen Overhead während des Normalbetriebs. Bei hohen
Lasten und großen Topologien sind die Verfahren zumindest sehr teuer, was bei begrenzten
Ressourcen zu Problemen mit der Skalierbarkeit führt. Gesucht ist ein Verfahren, das ohne
redundante Operatoren und ohne persistente Zustandsspeicherungen in den Operatoren
auskommt. Ein solches Verfahren soll im Folgenden entwickelt werden.

26



6 Problemlösung

In Kapitel 3 wurde ein Systemmodell für verteilte CEP-Systeme eingeführt und es wurden
einige Eigenschaften des eigentlichen Ausführungsmodells festgelegt, um anhand der darin
definierten Begrifflichkeiten die Aufgabenstellung dieser Diplomarbeit eindeutig beschreiben
zu können. In dem nun folgenden Kapitel wird nun zunächst das Ausführungsmodell, das
dem Wiederherstellungsverfahren zugrunde liegt, vollständig beschreiben. Darauf aufbau-
end wird das Wiederherstellungsverfahren für ausgefallene Operatoren entwickelt, indem
zunächst der Zustand eines Operators beschrieben und das Vorgehen bei der Verteilung
dieser Informationen im CEP-System Schritt für Schritt herausgebildet wird. Anschließend
werden Algorithmen zur Fehlerdetektion, zur Wiederherstellung der Operatortopologie
und zur Wiederherstellung des Zustands von Operatoren entworfen. All dies macht dann
zusammengenommen das Verfahren zur Wiederherstellung von Operatoren aus und bildet
damit den Hauptteil dieser Diplomarbeit.

6.1 Fensterbasiertes Ausführungsmodell von Operatoren

Wie in der Definition für Operatoren festgelegt, hat ein Operator ωi einen Eingangsstrom
I, der durch die Sequenzierung nach Zeitstempeln τ geordnet und mit inkrementellen Se-
quenznummern ρ ausgestattet ist. Auf einem solchen Strom lässt sich ein Teilstrom S[σf irst,
σlast] zwischen zwei Ereignissen σf irst und σlast definieren. Ein Operator implementiert eine
Korrelationsfunktion f, die ein Fenster S auf dem Eingangsstrom I jeweils auf ein Ausgangser-
eignis im Ausgangsstrom O abbildet. Das heißt, die Korrelationsfunktion wird kontinuierlich
hintereinander ausgeführt und arbeitet dabei in jeder Ausführung auf genau einem solchen
Fenster S. Die aufeinander folgenden Fenster können dabei überlappen, d.h. bestimmte
Ereignisse können mehrfach als Eingabe für Ausführungen der Korrelationsfunktion dienen.
Es gibt aber immer nur ein aktuelles Korrelationsfenster w zu einem bestimmten Zeitpunkt
in einem bestimmten Operator. Ein solches Ausführungsmodell ist sehr ausdrucksstark,
d.h. es kann eine große Bandbreite von möglichen CEP-Funktionalitäten in den Operatoren
abgebildet werden (vgl. Abschnitt 6.1.3).

6.1.1 Verwaltung von Korrelationsfenstern

6.1.1.1 Das Prädikat Pf irst

Bei der Initialisierung eines Operators muss auf dem Eingangsstrom I auf einem Ereignis das
erste Korrelationsfenster geöffnet werden. Welches der Ereignisse dafür genutzt wird, wird
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im Prädikat Pf irst beschrieben. Das Prädikat wird bezüglich jedes eingehenden Ereignisses
σ kontextfrei ausgewertet, d.h. nur für sich und ohne Einbeziehung von Informationen aus
anderen Ereignissen. Beim ersten Ereignis, auf welchem das Prädikat als true ausgewertet
wird, wird das erste Korrelationsfenster geöffnet.

Beispiel Der Eingangsstrom eines Operators setzt sich aus 3 verschiedenen Ereignistypen
zusammen: A, B und C. Der Operator korreliert jeweils eine Gruppe aus Ereignissen aller 3

Typen A;B;C in dieser Reihenfolge zu einem neuen Ereignis D. Bei dem aus 3 Eingangsströ-
men sequenzierten globalen Eingangsstrom

B B C A A C C B B C C

beispielsweise würden die kursivgedruckten Ereignisse zur Erzeugung eines neuen Ereignis-
ses führen. Das Prädikat Pf irst wäre für das erste Ereignis des Typs A wahr und würde zur
Öffnung des ersten Korrelationsfensters führen.

6.1.1.2 Das Prädikat Plast

Nachdem ein Korrelationsfenster geöffnet wurde und Ereignisse auf dem Eingangsstrom
I innerhalb des offenen Fensters von der Korrelationsfunktion zur Erzeugung eines ausge-
henden Ereignisses genutzt wurden, wird das Fenster nach Abschluss der dazu nötigen
Berechnungen wieder geschlossen. Der Abschluss des Fensters markiert das Ende der Be-
rechnung und muss im Falle der wiederholten Verarbeitung desselben Fensters zum selben
Ergebnis führen. Um das letzte Ereignis des Fensters zu ermitteln, wird jedes Ereignis ab
dem Startereignis bezüglich des Prädikats Plast ausgewertet. In die Auswertung des Prädikats
können Informationen aus sämtlichen Ereignissen innerhalb des aktuellen Fensters einfließen,
nicht jedoch aus Ereignissen, die außerhalb des Fensters liegen.

Beispiel Im Beispiel in Abschnitt 6.1.1.1 wäre das Prädikat Plast so definiert, dass das
aktuelle Fenster geschlossen wird, sobald auf das Startereignis des Typs A schließlich ein
weiteres Ereignis des Typs B und daraufhin ein weiteres Ereignis C gefolgt ist, wobei die
entsprechenden Ereignisse nicht direkt aufeinander folgen müssen. Beim ersten Ereignis
des Typs C, welches diese Bedingungen erfüllt, würde das aktuelle Korrelationsfenster
geschlossen und das ausgehende Ereignis D erzeugt. Die Ereignisse, die in die Erzeugung
von D eingeflossen sind, würden konsumiert, sodass sie in weiteren Korrelationen nicht
mehr berücksichtigt werden.
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6.1.1.3 Die Funktion next(σ, Pf irst)

Nachdem das aktuelle Korrelationsfenster geschlossen wurde, muss das Startereignis des
nächsten Korrelationsfensters ermittelt werden. Dies geschieht im Operator mithilfe der
Funktion next(σ, Pf irst). Die Funktion sucht im Eingangsstrom ab dem Ereignis σ nach
dem Ereignis, mit dem das nächste Korrelationsfenster beginnt, d.h. welches das Prädikat
Pf irst erfüllt. Wichtig ist vor allem, dass die Berechnung reproduzierbar ist, d.h. bei einer
Wiederholung der Berechnung des vorangegangenen Fensters auf demselben Eingangsstrom
muss auch die Funktion next(σ, Pf irst) dasselbe Ereignis als nächstes Startereignis bestimmen.
Die Funktion next(σ, Pf irst) ist wie folgt definiert:

next(σ, Pf irst) =

{
σ′ ≥ σ ∧ Pf irst(σ

′) : min(σ′)

⊥ wenn ein solches Ereignis nicht existiert

Die Vergleichsrelationen wurden bereits in Kapitel 3.3.3.1 eingeführt und beziehen sich auf
die Position eines Ereignisses im Eingangsstrom, die Bedingung min(σ′) bedeutet, dass es
kein den Bedingungen entsprechendes Ereignis geben darf, das im Strom weiter vorne plat-
ziert ist als σ′ (σ′ ist also minimal). Entsprechend ist σ′ das früheste Ereignis im Strom, auf das
die Bedingungen σ′ ≥ σ und Pf irst(σ

′) zutreffen. Im o.g. Beispiel wäre nach der Verarbeitung
des ersten Korrelationsfensters das nächste Ereignis des Typs A ein mögliches Startereignis
für die nächste Korrelation einer Gruppe aus A;B;C. Der Operator würde die Funktion
next(A, Pf irst) aufrufen und das zweite Ereignis von Typ A als nächstes Startereignis ermitteln.

Die Parameter der Funktion bestimmt der Operator entsprechend der in ihm implementier-
ten Semantiken. Durch den Parameter σ und die Prädikate Pf irst und Plast kann er bestimmen,
wie sich das Korrelationsfenster auf dem Eingangsstrom fortbewegt. Dabei ist zu beachten,
dass sich das Startereignis zwischen zwei aufeinanderfolgenden Fenstern nicht nach hin-
ten im Strom verschieben darf, d.h. σ ≥ σlastStart mit σlastStart als Startereignis des letzten
Korrelationsfensters.

6.1.2 Ereigniskonsum

Im Ausführungsmodell darf ein Operator auf einem Eingangsstrom in jedem Korrelations-
fenster beliebig viele Ereignisse konsumieren, d.h. verarbeiten und aus dem Eingangsstrom
löschen (vgl. dazu Kapitel 3.3.4).

6.1.3 Ausdrucksstärke des Ausführungsmodells

Nachdem nun ein fensterbasiertes Ausführungsmodell für Operatoren eingeführt wurde,
stellt sich die Frage, wie ausdrucksstark oder mächtig dieses Modell ist. Anders formuliert:
Inwiefern lassen sich Klassen von Situationserkennungen mit diesem Modell tatsächlich
umsetzen und wo liegen die Grenzen des Modells? Welche Erkennungsmuster müssen
überhaupt unterstützt werden? Um dieser Frage auf den Grund zu gehen, wird in dieser
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Arbeit ein „Klassiker“ im Forschungsfeld der Ereignisverarbeitung betrachtet: Die Ereignis-
verarbeitungssprache snoop [CM94], die bereits im Systemmodell in Kapitel 3.3.4 erläutert
wurde. Im Folgenden werden diese Parameterkontexte genutzt, um das fensterbasierte
Ausführungsmodell bezüglich seiner Ausdrucksstärke zu bewerten. Je mehr verschiedene
Arten der Ereignisauswahl mit dem Ausführungsmodell implementierbar sind, desto aus-
drucksstärker ist das Modell. Für jeden Parameterkontext aus snoop wird gezeigt, wie er
durch das Ausführungsmodell umgesetzt werden kann.

Recent : Es werden immer die neuesten möglichen Ereignisse zur Korrelation heran-
gezogen, sobald eine Korrelation möglich ist. Nach der Korrelation werden die daran
teilnehmenden Ereignisse konsumiert.

Abbildungsvorschrift:

1. Öffne ein Korrelationsfenster beim ersten Ereignis σf irst, das das Startereignis einer
Korrelation sein könnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation möglich ist.

3. Schließe dann das Korrelationsfenster.

4. Ziehe die jeweils neuesten nach der Korrelationsvorschrift in Frage kommenden Ereig-
nisse zur Korrelation heran und konsumiere diese danach.

5. Öffne das nächste Korrelationsfenster beim nächsten auf σf irst folgenden Ereignis, das
das Startereignis einer Korrelation sein könnte.

6. Beginne wieder bei Schritt 2.

Chronicle : Ereignisse werden nach ihrem Auftreten in chronologischer Reihenfolge zur
Korrelation herangezogen. Das bedeutet, dass immer die ältesten verfügbaren Ereignisse kor-
reliert werden. Nach der Korrelation werden die daran teilnehmenden Ereignisse konsumiert.

Abbildungsvorschrift:

1. Öffne ein Korrelationsfenster beim ersten Ereignis σf irst, das das Startereignis einer
Korrelation sein könnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation möglich ist.

3. Schließe dann das Korrelationsfenster.

4. Ziehe die jeweils ältesten nach der Korrelationsvorschrift in Frage kommenden Ereig-
nisse zur Korrelation heran und konsumiere diese danach.

5. Öffne das nächste Korrelationsfenster beim nächsten auf σf irst folgenden Ereignis, das
das Startereignis einer Korrelation sein könnte.

6. Beginne wieder bei Schritt 2.
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Continous : Auf dem Eingangsstrom werden kontinuierlich Korrelationen durchgeführt,
und zwar mit jedem Ereignis, das als erstes Ereignis einer Korrelation in Frage kommt
und den ältesten nachfolgenden weiteren für die Korrelation relevanten Ereignissen. Jedes
Ereignis kann nur eine Korrelation starten, daher wird das Startereignis konsumiert.

Abbildungsvorschrift:

1. Öffne ein Korrelationsfenster beim ersten Ereignis σf irst, das das Startereignis einer
Korrelation sein könnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation möglich ist.

3. Schließe dann das Korrelationsfenster.

4. Ziehe neben σf irst die jeweils ältesten nach der Korrelationsvorschrift in Frage kom-
menden Ereignisse zur Korrelation heran und konsumiere dann nur σf irst.

5. Öffne das nächste Korrelationsfenster beim nächsten auf σf irst folgenden Ereignis, das
das Startereignis einer Korrelation sein könnte.

6. Beginne wieder bei Schritt 2.

Cumulative : Alle Ereignisse zwischen dem ersten Ereignis, das eine Korrelation starten
kann, und dem ersten Ereignis, mit dem die Korrelation abgeschlossen wird, werden in die
Korrelation mit einbezogen. Nach der Korrelation werden alle daran beteiligten Ereignisse
konsumiert.

Abbildungsvorschrift:

1. Öffne ein Korrelationsfenster beim ersten Ereignis σf irst, das das Startereignis einer
Korrelation sein könnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation möglich ist.

3. Schließe dann das Korrelationsfenster.

4. Ziehe alle Ereignisse des Korrelationsfensters zur Korrelation heran.

5. Der Konsum des kompletten Fensters kann vermieden werden: Öffne das nächste
Korrelationsfenster beim nächsten auf das Endereignis folgenden potentiellen Starter-
eignis.

6. Beginne wieder bei Schritt 2.

Damit können alle snoop-Parameterkontexte in dem Ausführungsmodell abgebildet werden.
Das Modell ist also mächtig genug, um in snoop definierte Korrelationen zu implementieren.
Beispiele zu den Parameterkontexten werden in der Veröffentlichung von S. Chakravar-
thy und D. Mishra [CM94] gegeben und werden daher an dieser Stelle nicht detailliert
ausgeführt.
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6.2 Reproduzierbarkeit der Ereigniserzeugung

Die Idee, die hinter dem Ausführungsmodell und der Wiederherstellung von Ereignisströ-
men steckt, lässt sich folgendermaßen zusammenfassen: Wenn ein Operator ausfällt, muss er
in seinem Zustand wiederhergestellt werden. Ohne persistente Sicherung durch Checkpoints
stehen die nötigen Informationen allerdings nicht direkt zur Verfügung, sondern müssen
aus den Ausgangsströmen der Vorgängeroperatoren im Operatorgraphen wiederhergestellt
werden. Die Vorgängeroperatoren halten dazu einen Teil ihrer Ausgangsströme zur wie-
derholten Verarbeitung im neu gestarteten Operator bereit. Wenn es gelingt, aus diesen
Teilstücken als Eingangsstrom den ursprünglichen Ausgangsstrom des Operators wieder-
herzustellen und fehlerlos an der Stelle fortzusetzen, an der der Operator ausgefallen ist,
kann er so weiterarbeiten, als wäre er nie ausgefallen und hätte nie alle volatilen Zustandsin-
formationen verloren. Insbesondere kann so der Zustand des CEP-Systems auch nach dem
Ausfall mehrerer Operatoren in Reihe wiederhergestellt werden: Die Ereignisströme werden
sukzessive von Vorgängern zu Nachfolgern reproduziert, bis alle ausgefallenen Operatoren
wiederhergestellt sind. Durch die reproduzierbare Öffnung und Schließung der Korrelati-
onsfenster und der ebenfalls reproduzierbaren Berechnung des ausgehenden Ereignisses
in einem Korrelationsfenster wird sichergestellt, dass auf demselben Eingangsstrom ein
Operator immer denselben Ausgangsstrom berechnet. Bisher sind die Fenster jedoch noch
voneinander abhängig: Die Berechnung des Startereignisses des Folgefensters geschieht
innerhalb des Vorgängerfensters. Außerdem kann die Konsumierung von Ereignissen den
Eingangsstrom und damit auch die Berechnungen in folgenden Fenstern beeinflussen. Diese
Abhängigkeiten müssen aufgelöst werden, damit zur Wiederherstellung eines Teilstroms
von Ausgangsereignissen nicht der gesamte Eingangsstrom I neu bearbeitet werden muss.

Die Wiederherstellung der Startereignisse ist dabei der einfachere Teil: Ein Teilstrom T,
der mit einem Ereignis σs beginnt, kann reproduziert werden, wenn die wiederholte Verar-
beitung im Startereignis des Korrelationsfensters ws beginnt, in dem σs ursprünglich erzeugt
wurde, d.h. ein eindeutiger Verweis auf dieses Startereignisses muss gespeichert werden. Die
Verarbeitung muss dabei auf einem Eingangsstrom geschehen, der mit dem Eingangsstrom
zum Zeitpunkt der ersten Ausführung von ws identisch ist.

Der Effekt von Konsumoperationen auf die Reproduzierbarkeit von Ereignisströmen wird
im folgenden Abschnitt untersucht. In Abschnitt 6.2.2 werden die hier aufgeführten Eigen-
schaften des Ausführungsmodells formalisiert zusammengefasst.

6.2.1 Wiederherstellung des Eingangsstroms bei Konsumoperationen

Wenn ein Konsum von Ereignissen (wie in Kapitel 3.3.4 eingeführt) in einem Korrelationsfens-
ter stattfindet, der die Ereignisse in einem darauf folgenden Korrelationsfenster beeinflusst,
d.h. wenn Ereignisse konsumiert werden, die im Eingangsstrom hinter dem Startereignis
eines Folgefensters liegen, dann entsteht dadurch eine Abhängigkeit zwischen dem Fenster,
in dem Ereignisse konsumiert wurden und den betroffenen Folgefenstern. Wie in Abschnitt
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6.2 erläutert wurde, muss jede Abhängigkeit zwischen den Fenstern aufgelöst werden, damit
ein effizientes Rollback-Recovery-Verfahren zur Wiederherstellung von Ereignisströmen
erreicht werden kann.

Um die Erzeugung eines Ereignisses σo in einem Operator ω zu wiederholen, muss die Kor-
relationsfunktion f auf dasselbe Fenster wo von Ereignissen aus demselben Eingangsstrom
I angewendet werden. Das heißt, dass sowohl das Startereignis σs und das Endereignis σe
bei der Wiederholung mit der ursprünglichen Ausführung von f übereinstimmen müssen,
als auch alle Ereignisse, die zwischen σs und σe liegen. Wenn in einem Vorgängerfenster wp,
das mit wo überlappt, Ereignisse zwischen σs und σe aus dem Eingangsstrom I konsumiert
wurden, muss bei einer Wiederholung von wo zuvor dieser Konsum von Ereignissen ebenfalls
wiederholt werden, damit das Ergebnis der erneuten Anwendung von f auf das Fenster mit
dem Ergebnis der ursprünglichen Anwendung übereinstimmt.

Beispiel Ein Operator hat einen Eingangsstrom I, der sich aus Ereignissen der Typen A, B
und C zusammensetzt. Es soll jeweils eine (nicht notwendigerweise zusammenhängende)
Sequenz aus A, B und C detektiert und konsumiert werden und für jede detektierte Sequenz
ein Ausgangsereignis von Typ D erzeugt werden. Dabei werden jeweils die ältesten Vorkom-
men der jeweiligen Ereignistypen miteinander korreliert (Chronicle-Parameterkontext aus
snoop [CM94]). Beim Eingangsstrom I

B1 B2 C3 |A4 A5 C6 C7 B8 B9 C10| C11 ...

(die tiefgestellten Zahlen sind ein Index zur eindeutigen Referenzierung eines Ereignisses
in der Beschreibung dieses Beispiels) würden die Ereignisse 4, 8 und 10 im Fenster wp (das
sich von Ereignis 4 bis Ereignis 10 streckt) zu einem Ereignis Dp verarbeitet und konsumiert.
Der Eingangsstrom I würde dadurch verändert und sähe danach so aus:

B1 B2 C3 |A5 C6 C7 B9 C11| ...

Das darauffolgende Korrelationsfenster wo geht von Ereignis 5 bis Ereignis 11 und verarbei-
tet und konsumiert die Ereignisse 5, 9 und 11 zum ausgehenden Ereignis Do. Was würde
passieren, wenn nach einer Wiederherstellung des Operators die Verarbeitung des ursprüng-
lichen Eingangsstroms I ab Ereignis 5 wiederholt würde, also ohne erneute Ausführung der
Konsumoperationen des Korrelationsfensters wp?

|A5 C6 C7 B8 B9 C10| C11 ...

Das Fenster wo, das bei Ereignis 5 startet, würde sich bis Ereignis 10 ziehen, und die Ereignisse
5, 8 und 10 würden zu einem Ausgangsereignis Do’ verarbeitet, welches vom ursprünglichen
Ereignis Do abweicht. Auf diese Weise ließe sich der Teil des Ausgangsstroms O ab Ereignis Do
aus dem ursprünglichen Eingangsstrom I nicht wiederherstellen. Wenn nur der ursprüngliche
Eingangsstrom erhalten ist, muss zur Wiederherstellung eines Teils des Ausgangsstroms
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der gesamte Eingangsstrom neu verarbeitet werden. Dies ist in der Praxis natürlich keine
Option. Besser ist es, den Zustand des Eingangsstroms mit seinen Veränderungen durch die
Konsumoperationen zu sichern und im Falle einer Wiederherstellung des Operators diesem
zur Verfügung zu stellen. Wie genau diese Sicherung geschieht, wird im Abschnitt 6.4 über
den Ablauf der Ereignisverarbeitung im Normalbetrieb näher betrachtet.

6.2.2 Eigenschaften des Ausführungsmodells bezüglich der Zustände von
Operatoren

Durch die kontextfreie Definition des Prädikats Pf irst wird sichergestellt, dass ein Ereignis
unabhängig von anderen Ereignissen bezüglich dieses Prädikats ausgewertet wird. Das
Prädikat Plast berücksichtigt nur Ereignisse des aktuellen Korrelationsfensters, d.h. auch
dieses Prädikat bringt keine Abhängigkeit zwischen zwei aufeinanderfolgenden Fenstern
mit sich. Abgesehen von den Konsumoperationen, die in Abschnitt 6.2.1 untersucht wurden,
sind die Fenster also unabhängig voneinander und es gilt folgender Satz:

Satz 6.2.1 (Zustandslosigkeit zwischen zwei aufeinanderfolgenden Fenstern). Zwischen der
Ausführung zweier aufeinanderfolgender Korrelationsfenster muss abgesehen von den Konsumopera-
tionen keine Zustandsinformation gespeichert werden.

Dies führt direkt zu folgendem Satz:

Satz 6.2.2 (Ereigniserzeugung nur anhand des aktuellen Fensters). Ausgehende Ereignisse
werden nur anhand der Ereignisse im aktuellen Fenster erzeugt. Ereignisse, die vor der Öffnung des
aktuellen Fensters liegen, beeinflussen die Ereigniserzeugung nicht.

Dies führt zur folgenden Schlussfolgerung:

Schlussfolgerung 6.2.1 (Wiederherstellung von Ereignisströmen). Um ein ausgehendes Ereig-
nis σo in einem Operator ω wiederherzustellen, müssen im Operator ausschließlich die Ereignisse
vorliegen, die in dem Korrelationsfenster liegen, das bei der Erzeugung von σo das aktuelle Korrelati-
onsfenster gewesen ist.

Dies ist die entscheidende Eigenschaft für das folgende Wiederherstellungsverfahren und
somit die Motivation zur Einführung des fensterbasierten Ausführungsmodells der Operato-
ren.

6.2.3 Zeitstempel von Ereignissen

In Kapitel 3.2.2 wurde die genaue Gestaltung der Zeitstempel recht offen gelassen. Für das
Ausführungsmodell in dieser Arbeit ist es im Allgemeinen auch unerheblich, was genau der
Zeitstempel ausdrückt, solange folgende Eigenschaften gelten:
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Eigenschaft 6.2.1 (Reproduzierbare Berechnung der Zeitstempel). Zeitstempel müssen unab-
hängig vom Zeitpunkt der Erzeugung eines Ereignisses in einem Operator sein, sodass sie im Fall
einer wiederholten Erzeugung nicht vom ursprünglichen Wert abweichen.

Eigenschaft 6.2.2 (Aufsteigende Zeitstempel im Ausgangsstrom). Der Ausgangsstrom O in
einem Operator muss gleichbleibende oder aufsteigende Zeitstempel besitzen.

Eigenschaft 6.2.3 (Zeitstempel von Startereignissen). Bei zwei im Ausgangsstrom aufeinander-
folgenden, in einem Operatoren erzeugten Ausgangsereignissen σi und σi+1 gilt: Das Startereignis
des Korrelationsfensters zur Erzeugung von σi hat keinen größeren Zeitstempel als das entsprechende
Startereignis von σi+1.

6.2.3.1 Begründung der Notwendigkeit der Eigenschaften

Eigenschaft 6.2.1 ist notwendig: Im Falle einer wiederholten Erzeugung, d.h. wenn ein
Ereignisstrom wiederhergestellt werden soll, ist die Echtzeit der Ereigniserzeugung natürlich
eine andere als bei der ursprünglichen Erzeugung der Ereignisse. Ereignisse, die aus wieder-
hergestellten Ereignisströmen kommen, können dadurch die Verarbeitung in nachfolgenden
Operatoren durcheinanderbringen, indem sie ursprünglich später aufgetretene Ereignisse
„überholen“ und so die Ergebnisse vom Normalbetrieb abweichen.

Eigenschaft 6.2.2 ist notwendig: Da der Eingangsstrom eines Nachfolgeoperators nach
Zeitstempeln aufsteigend geordnet ist, muss zur Wiederherstellung eines Teils dieses Ein-
gangsstrom nur ein zeitlich begrenzter Teil der Ausgangsströme der Vorgängeroperatoren
vorgehalten werden. Diese Begrenzung lässt sich effizient implementieren, wenn auch die
Ausgangsströme nach Zeitstempeln aufsteigend geordnet sind. Details zur Wiederherstellung
von Ereignisströmen werden in Abschnitt 6.5 erläutert. Um im in Kapitel 6.1 beschriebenen
Ausführungsmodell einen Ausgangsstrom mit aufsteigenden Zeitstempeln zu generieren,
muss die Berechnung der Zeitstempel bei der Erzeugung von Ereignissen in aufeinanderfol-
genden Korrelationsfenstern zu aufsteigenden oder gleichbleibenden, aber keinesfalls zu
absteigenden Zeitstempeln führen.

Eigenschaft 6.2.3 ist notwendig: Die Wiederherstellung von ausgehenden Ereignissen in
einem ausgefallenen Operator soll dadurch möglich werden, dass die eingehenden Ereig-
nisströme neu eingelesen und verarbeitet werden. Wenn für ein Ereignis der Punkt in den
eingehenden Strömen definiert ist, ab dem diese neu verarbeitet werden müssen, dürfen
nicht für ein späteres Ereignis plötzlich frühere Punkte in den Eingangsströmen notwendig
sein.

Bemerkung: Eine Umsortierung erzeugter Ereignisse zur Herstellung von Eigenschaft 6.2.2
kommt also nicht in Frage, da dadurch Eigenschaft 6.2.3 verletzt werden kann.
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6.2.3.2 Mögliche Zeitstempeldefinition

Ohne Beschränkung der Allgemeinheit wird im Folgenden eine Implementierung von
Zeitstempeln und einer Ordnung darüber eingeführt, die für verteilte CEP-Systeme sinnvoll
ist und für die Evaluation als Beispielimplementierung genutzt wird.

Definition 6.1 (Zeitstempel). Ein Zeitstempel τ eines komplexen Ereignisses σ ist ein Zeitraum,
der sich zwischen zwei Zeitpunkten t f irst und tlast aufspannt. t f irst ist der Zeitpunkt, zu dem das
erste einfache Ereignis in einer Ereignisquelle aufgetreten ist, das in die Korrelation von σ eingeflossen
ist. Entsprechend ist tlast der Zeitpunkt, zu dem das letzte einfache Ereignis in einer Ereignisquelle
aufgetreten ist, das in die Korrelation von σ eingeflossen ist.

Damit ist tlast der Zeitpunkt des eigentlichen Auftretens der durch das komplexe Ereignis
angezeigten Situation und t f irst der Zeitpunkt des Beginns der Situationserkennung. In
unserem Ausführungsmodell für Operatoren (siehe Kapitel 6.1) werden Ereignisse sequentiell
auf einem Ereignisstrom korreliert, wobei ein Korrelationsfenster die Ereignisse bestimmt, die
in der Korrelation eines neuen Ereignisses berücksichtigt werden. In diesem Sinne berechnet
sich der Zeitstempel des neu erzeugten Ereignisses aus dem kleinsten t f irst und dem größten
tlast aller Ereignisse im entsprechenden Korrelationsfenster. Da die Startereignisse von
Korrelationsfenstern im sequenzierten Eingangsstrom sich nur nach hinten bewegen können,
die Endereignisse aber unabhängig von den Endereignissen anderer Fenster bestimmt
werden (also nach vorne und hinten schwanken können), gibt es nur eine sinnvolle Ordnung
über die Zeitstempel:

Definition 6.2 (Ordnung über Zeitstempel). Zeitstempel werden über die Startzeitpunkte t f irst
geordnet. Das heißt, für zwei Zeitstempel τ1 und τ2 gilt:
τ1 > τ2 ⇔ t f irst1 > t f irst2

Bei Gleichheit von t f irst gilt weder τ1 > τ2 noch τ1 < τ2, sondern τ1
.
= τ2.

Mit dieser Ordnung ist ein Ausgangsstrom, der in einem Operator durch das fensterbasierte
Ausführungsmodell erzeugt wird, automatisch nach Zeitstempeln aufsteigend geordnet, da
die Startereignisse von Korrelationsfenstern immer zeitlich aufsteigend sind: Eigenschaft
6.2.2 wird also erfüllt. Durch die Berechnung der Zeitstempel aus den Zeitstempeln der
korrelierten Ereignisse ist auch Eigenschaft 6.2.1 erfüllt. Die Erfüllung von Eigenschaft 6.2.3
ergibt sich aus der Erfüllung von Eigenschaft 6.2.2 in den beiden Eingangsströmen und der
Tatsache, dass Startereignisse von Korrelationsfenstern sich nur nach hinten bewegen können
(vgl. Abschnitt 6.1.1.3).

6.3 Voraussetzungen zur Wiederherstellung ausgefallener
Operatoren

Im CEP-System werden Ereignisse in den Operatoren miteinander korreliert und weiter-
verarbeitet, bis sie schließlich an einen oder mehrere Konsumenten ausgeliefert werden.
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Ein Ereignis, das nach möglicherweise mehrstufiger Korrelation schließlich an einen Kon-
sumenten ausgeliefert wird, hat in der Zwischenzeit eine Menge an Informationen aus
„niederwertigen“ Ereignissen in sich aufgenommen. Letztendlich lässt sich der Informa-
tionsgehalt eines an einen Konsumenten ausgelieferten Ereignisses schrittweise auf eine
Menge von „Zwischen-Ereignissen“ und schließlich vollständig auf „primitive“ Ereignisse
aus den Ereignisquellen herunterbrechen. Im Folgenden bezeichnen wir ein ausgehendes
Ereignis, das an einen Konsumenten ausgeliefert werden kann, als σconsumer. In jedem der
Zwischenschritte, die in der Verarbeitung von Ereignissen aus den Quellen bis zu der Aus-
lieferung an die Konsumenten liegen, wird zumindest indirekt an einem oder mehreren
σconsumer gearbeitet. Jeder Operator, der einen dieser Zwischenschritte ausführt, hat zu jedem
Zeitpunkt einen ganz bestimmten Zustand bezüglich der Erzeugung der σconsumer-Ereignisse,
auch wenn er nicht direkt ein solches Ereignis erzeugt. Die eigentlichen σconsumer-Ereignisse
werden unmittelbar nur von Operatoren erzeugt, die direkte Vorgänger von Konsumenten im
Operatorgraphen sind. Die Information, welche Zwischenergebnisse (und schließlich, welche
einfachen Ereignisse aus den Ereignisquellen) zur Korrelation der sich aktuell im Aufbau
befindlichen σconsumer-Ereignisse eingebunden wurden, muss stromabwärts von den letzten
Operatoren zu den ersten Operatoren weitergegeben werden. Dazu dienen die Bestätigungs-
nachrichten, die hier kurz auch als ACK gekennzeichnet sind. Jedes Ereignis, das direkt
für den Bau eines σconsumer-Ereignisses, d.h. auf der obersten Verarbeitungsebene, gebraucht
wird, muss solange verfügbar oder zumindest wiederherstellbar sein, bis das entsprechende
Ereignis sicher an den Konsumenten ausgeliefert wurde und es damit nicht mehr benötigt
wird. Diese oberste Verarbeitungsebene nennen wir im Folgenden Ebene 0. Wenn wir nun
Ereignisse aus Ebene 0 wiederherstellen müssen, benötigen wir dafür Ereignisse aus Ebene
1, für Ereignisse aus Ebene 1 benötigen wir Ereignisse aus Ebene 2, und so weiter.

6.3.1 Das Wiederherstellungsproblem

An das Wiederherstellungsverfahren ist die Anforderung gestellt, dass beim gleichzeitigen
Ausfall von F Operatoren eine Stabilisierung der Ereignisströme erreicht werden kann, die
dazu führt, dass in der Ebene der Konsumenten (sozusagen Ebene -1) die eintreffenden
Ereignisse in keiner Weise vom Normalbetrieb ohne Ausfälle abweichen. Im schlechtesten
Fall im Sinne der Wiederherstellung von Ereignisströmen fallen F Operatoren in F zusammen-
hängenden Verarbeitungsebenen aus, d.h. die ausgefallenen Operatoren stehen alle in einer
strikten Reihe von Vorgänger- und Nachfolgerbeziehungen. Um den Operator der obersten
ausgefallenen Ebene wiederherzustellen, benötigt man Ereignisse aus der zweithöchsten
Ebene. Wenn diese Ebene durch einen Ausfall ebenfalls weggebrochen ist, benötigt man
Ereignisse aus der dritthöchsten Ebene, um zunächst die zweithöchste Ebene wiederherzu-
stellen, und so weiter. Jede Ebene muss in der Form wiederhergestellt werden, dass für die
höherliegenden Ebenen der Ausfall der Ebene nicht ersichtlich ist. Die Wiederherstellung
einer Ebene bzw. der Operatoren einer Ebene nach einem Ausfall ist dann gegeben, wenn alle
Ereignisse im Ausgangsstrom wiederhergestellt sind, die für ein noch unvollständiges Ereig-
nis σconsumer benötigt werden, und der Operator mit dem letzten unvollständig berechneten
Korrelationsfenster die Berechnung fortsetzt. Wenn dies gegeben ist, ist für die nächsthöhere
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Ebene der Ausfall transparent, da die wiederhergestellten Operatoren ihre Arbeit an genau
der Stelle fortsetzen, an der sie zuvor ausgefallen sind.

6.3.1.1 Definition des Problems

Ein Operator ist dann wiederherstellbar, wenn nach dem Verlust seiner volatiler Zustandsin-
formationen diese durch Informationen wiederhergestellt werden können, die in anderen
Stellen im CEP-System gespeichert sind. Der Zustand eines Operators ist dabei wie folgt
definiert:

Definition 6.3 (Zustand eines Operators). Der Zustand eines Operators ω zu einem bestimmten
Zeitpunkt zeichnet sich aus durch:

• Sein Ausgangslog L(ω) von ausgehenden Ereignissen

• Seinen Eingangsstrom I (inklusive der konsumierten Ereignisse zum aktuellen Zeitpunkt)

• Dem aktuellen Berechnungszustand der Korrelationsfunktion f

Die Herausforderung besteht nun darin, diese Zustandsinformationen möglichst klein zu
halten. Das größte Problem besteht dabei im aktuellen Stand der Berechnung der Korrelati-
onsfunktion f: Um den genauen Zustand der Berechnung festzuhalten, wäre im Allgemeinen
ein teilweises Speicherabbild unerlässlich, um alle Variablen, den Control Stack, etc. zu
sichern, wie es in vielen Rollback-Recovery-Verfahren ja auch durchgeführt wird. An dieser
Stelle kommt das fensterbasierte Ausführungsmodell der Operatoren ins Spiel. Immer zu
Beginn eines Korrelationsfensters ist der Berechnungszustand von f nämlich leer und man
muss all die Zustandsinformationen, die in der Ausführung einer beliebigen Routine anfallen
können, nicht speichern. Stattdessen genügt es, das Startereignis auf dem Eingangsstrom
zu speichern, die Korrelationsfunktion (die ja persistent als Routine im Operator gespei-
chert ist) wird dann auf den Ereignissen des Eingangsstrom ab dem gesicherten Punkt
ausgeführt. Zu bestimmten Zeiten wird jeder Operator seinen Zustand in einem sog. Siche-
rungspunkt festhalten und diesen Sicherungspunkt dann an andere Operatoren übertragen.
Ein Sicherungspunkt ist wie folgt definiert:

Definition 6.4 (Sicherungspunkt). Ein Sicherungspunkt eines Operators enthält alle Informationen,
um mithilfe derselben Eingangsströme einen Operator in genau den Zustand zu bringen, den er zum
für die Erstellung des Sicherungspunktes relevanten Zeitpunkt hatte. Der relevante Zeitpunkt wird
auf Basis der Bestätigungsnachrichten der Vorgängeroperatoren bestimmt.

Was genau der Sicherungspunkt beinhaltet, wird später in Abschnitt 6.4 untersucht. Jedenfalls
muss er genügend Informationen bereitstellen, um aus einer Reihe von Eingangsströmen,
die eventuell auch an verschiedenen Sicherungspunkten starten können, das richtige Korre-
lationsfenster zu öffnen und die Korrelationsfunktion f darauf auszuführen. Zudem müssen
diese Eingangsströme auch noch durch die Wiederholung der Konsumoperationen auf den
Stand gebracht werden, der zum Zeitpunkt der Öffnung des ursprünglichen Korrelations-
fensters gültig war. Liegen diese Informationen und die ursprünglichen Eingangsströme (ab
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den relevanten ersten Ereignissen) vor, kann ein Operator wiederhergestellt werden. Die
Wiederherstellung ist wie folgt definiert:

Definition 6.5 (Wiederherstellung eines Operators). Ein Operator ist nach dem Verlust seiner
volatilen Zustandsinformationen genau dann wiederhergestellt, wenn sein Zustand dem letzten durch
einen Sicherungspunkt bestätigten Zustand vor dem Ausfall des Operators entspricht.

Der Operator wird also bezüglich eines Sicherungspunktes wiederhergestellt. Im Idealfall
geschieht dies bezüglich des aktuellsten Sicherungspunktes, insofern dieser auch an alle
relevanten Vorgängeroperatoren übertragen wurde. Welche Vorgängeroperatoren für welchen
Fehlerfall den Sicherungspunkt speichern müssen, wird später in Abschnitt 6.4 genauer
untersucht.

6.3.2 Invarianten für die Problemlösung

Bevor eine Lösung des Wiederherstellungsproblems Schritt für Schritt eingeführt wird, wer-
den in diesem Abschnitt zwei Invarianten für das CEP-System aufgeführt. Diese Invarianten
müssen jederzeit gültig sein. Anhand der Invarianten wird dann in Abschnitt 6.3.2.1 die Kor-
rektheit des Systems bewiesen, und später in Abschnitt 6.5.4 die Gültigkeit der Invarianten
im Wiederherstellungsverfahren bewiesen. Die Invarianten sind also eine Abstraktion, die in
der Analyse des Systems hilfreich ist.

Invariante 6.3.1 (Wiederherstellbarkeit von Operatoren). Im CEP-System müssen jederzeit alle
notwendigen Informationen vorhanden sein, um in der Fehlersituation „Ausfall von F Operatoren“
jeden Operator bezüglich eines Sicherungspunkts wiederherstellen zu können.

Diese Invariante besagt, dass jeder Operator in der definierten Fehlersituation „Ausfall von
F Operatoren“ wiederherstellbar sein muss. Das impliziert, dass die zur Wiederherstellung
notwendigen Information genügend oft repliziert sein müssen, damit auch ein zeitgleicher
Ausfall von F Operatoren die Informationen nicht aus dem System entfernen kann.

Invariante 6.3.2 (Zeitpunkte von Sicherungspunkten). Sicherungspunkte müssen so gewählt
werden, dass sie sich auf Zeitpunkte beziehen, zu denen es der Zustand der Operatoren erlaubt, alle
noch nicht von allen Konsumenten empfangenen σconsumer-Ereignisse zu erzeugen.

Diese Invariante besagt, dass jedes σconsumer-Ereignis auch beim gleichzeitigen Ausfall von F
Operatoren erzeugbar bleiben muss.

6.3.2.1 Beweis der Einhaltung der Korrektheitsanforderungen

Wenn die Invarianten 6.3.1 und 6.3.2 gelten, hat das folgende Auswirkungen:
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• Durch Ausfälle können keine Ereignisse erzeugt werden, die es nicht auch ohne
die Ausfälle gegeben hätte (falsche Ereignisse), denn Operatoren erzeugen nach der
Wiederherstellung genau dieselben Ausgangsströme, die sie auch ohne Ausfall erzeugt
hätten. Dies folgt aus Invariante 6.3.1 und der Definition von Sicherungspunkten in
Abschnitt 6.3.1.1.

• Dass durch Ausfälle keine Ereignisse verlorengehen können, folgt direkt aus Invariante
6.3.2.

• Die Erhaltung der Reihenfolge der Ereignisse folgt aus der Tatsache, dass Ereignisse
nicht umsortiert werden können und die Kommunikationskanäle Ereignisse in der
Reihenfolge der Versendung beim Empfänger ausliefern (vgl. Kapitel 3.4).

Das System läuft also bei Einhaltung der Invarianten korrekt nach den Korrektheitsanforde-
rungen aus Kapitel 4.2.3.

6.4 Verwaltung von Zustandsinformationen im Normalbetrieb

Der Normalbetrieb ist der Betrieb des verteilten CEP-Systems, wenn keine Operatoren aus-
fallen. Ausgehend vom Normalbetrieb wird dann die Reaktion des Systems auf Ausfälle von
Operatoren untersucht. Im Normalbetrieb werden Informationen gesammelt, verteilt und ver-
waltet, die für eine Wiederherstellung von Operatoren benötigt werden. Jeder Operator führt
einen Algorithmus zur Verwaltung von Logs und Sicherungspunkten aus, die er in seinem
volatilen Speicher sichert. Das heißt insbesondere, dass ein Operator keine Statusinformationen
persistent speichert, was den wesentlichen Unterschied zu klassischen Rollback-Recovery-
Verfahren ausmacht (vgl. dazu Kapitel 5). Zur Verwaltung dieser Informationen tauschen
sich die Operatoren gegenseitig Statusnachrichten aus. Diese sind nicht Teil der eigentlichen
Ereignisverarbeitung, vielmehr bilden die Operatoren untereinander ein von der verteilten
Ereignisverarbeitung getrenntes Netz zum Austausch von Statusinformationen. Statusnach-
richten tauchen also beispielsweise nicht in der Queue von eingehenden Ereignissen auf,
sie können direkt zwischen Operatoren ausgetauscht werden und werden auch mit höherer
Priorität als die „normale“ Ereignisverarbeitung verarbeitet.

6.4.1 Einfaches System: Quelle, Operator, Konsument

6.4.1.1 Ereignisströme

In Abb. 6.1 ist das einfachste verteilte CEP-System im Sinne des Systemmodells in dieser
Arbeit dargestellt. Eine Ereignisquelle S ist mit einem Operator ω verbunden, der wiederum
mit einem Ereigniskonsumenten C verbunden ist. Von S geht ein Ereignisstrom von einfachen
Ereignissen des Typs σp nach ω, wo die Ereignisse miteinander korreliert werden. Als
Ergebnis dieser Verarbeitung von Ereignissen des Typs σp erzeugt ω ausgehende Ereignisse
des Typs σc. Diese ausgehenden Ereignisse werden in einer Sequenz im Ausgangsstrom
angeordnet und inkrementell mit Sequenznummern ρc versehen. Schließlich werden sie an
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Abbildung 6.1: Versendung und Bestätigung von Ereignissen im einfachsten CEP-System.

den Ereigniskonsumenten C ausgeliefert. Wie an diesem Vorgang zu erkennen ist, fließen
die Ereignisse immer von der Ereignisquelle über den Operator zum Ereigniskonsumenten.
Wir nennen diese Fließrichtung der Ereignisströme „stromabwärts“.

6.4.1.2 Bestätigung durch den Konsumenten

Sobald Ereignisse des Typs σc den Konsumenten erreichen, kann dieser den Empfang beim
Operator bestätigen. Dabei muss zur Lastminderung nicht jedes Ereignis einzeln bestä-
tigt werden, es ist auch denkbar, dass nur in bestimmten Intervallen Ereignisse bestätigt
werden und durch eine solche Bestätigung alle Vorgängerereignisse im Ereignisstrom mit
bestätigt werden. Durch die Eigenschaften der Abstraktion der „Best-Effort-Verbindungen“
ist sichergestellt, dass diese Annahme getroffen werden kann (vgl. Kapitel 3.4). Die Bestä-
tigung des Konsumenten ACK(ρc) enthält die Sequenznummer ρc des bestätigten Ereignisses.

Wenn ein Ereignis vom Konsumenten bestätigt wurde, heißt das, dass dieses Ereignis
im CEP-System nicht mehr benötigt wird. Es wurde erfolgreich ausgeliefert und hat damit
den Zuständigkeitsbereich des CEP-Systems verlassen. Das bestätigte Ereignis muss also
weder im Ausgangslog von ω vorgehalten werden, noch müssen an irgendeiner anderen
Stelle Ereignisse vorgehalten werden, die irgendeine Vorstufe zur erneuten Erzeugung des
Ereignisses darstellen. Diese Information muss im gesamten CEP-System verteilt werden, und
zwar „stromaufwärts“ vom Konsumenten bis zur Quelle. Dazu dienen die Bestätigungsnach-
richten. Der Konsument bestätigt wie erwähnt den Empfang direkt bei ω über eine Nachricht
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ACK mit der Sequenznummer des bestätigten Ereignisses. Bei ω muss diese Bestätigung für
die Vorgänger im Operatorgraphen in Sequenznummern der entsprechenden Ströme, die
ω als Eingangsströme zur Erzeugung des bestätigten Ausgangsereignisses gedient hatten,
umgerechnet werden. Dazu ruft ω die Umkehrfunktion f−1 auf.

6.4.1.3 Umkehrfunktion f−1

Um die Umkehrfunktion f−1 zu verstehen, muss man zunächst die Korrelationsfunktion
f betrachten. Die Funktion f : I → O bildet eine Menge von Ereignissen (genauer: eine
durch ein Korrelationsfenster begrenzte Menge von Ereignissen) aus dem Eingangsstrom
auf ein ausgehendes Ereignis ab. Sie wird auf aufeinanderfolgenden Korrelationsfenstern
ausgeführt und erzeugt so eine Menge von Ausgangsereignissen, die im Ausgangsstrom O
sequenziert werden. Die Umkehrfunktion bildet mathematisch gesehen entsprechend ein
ausgehendes Ereignis auf „sein“ Fenster im Eingangsstrom ab, also f−1 : O→ I. Wenn ein
Operator eine Sequenznummer eines ausgehenden Ereignisses σo bestätigt bekommt, kann
er mithilfe dieser Sequenznummer in seinem Ausgangslog L(ω) das entsprechende Ereignis
ermitteln. Wären in diesem Ereignis alle Ereignisse des Korrelationsfensters gespeichert,
könnte f−1(σo) anhand dieser Informationen in σo ermittelt werden. Doch im Prinzip ist es
unnötig, tatsächlich das gesamte Korrelationsfenster von σo zu rekonstruieren. Wirklich von
Belang ist das Startereignis σs des Fensters, denn es ist sicher, dass alle Ereignisse, die im Ein-
gangsstrom vor dem Startereignis des Korrelationsfensters eines bestätigten Ereignisses liegen, nicht
mehr benötigt werden. Eigentlich werden auch alle Ereignisse bis zum Startereignis des nächsten
Korrelationsfensters nicht mehr benötigt, doch es ist nicht immer möglich, dieses nächste
Startereignis zu bestimmen. Daher bleibt, um ein immer gleiches Verhalten des Systems zu
garantieren, nur die Freigabe aller Ereignisse vor dem Startereignis des Korrelationsfensters.
Die Umkehrfunktion f−1 kann vereinfacht werden zu einer Funktion f−1 : σ → σ, die ein
Ereignis σo des Ausgangsstroms auf das Ereignis σs im Eingangsstrom abbildet, das das
Startereignis des Korrelationsfensters gewesen ist, das zur Erzeugung von σo führte. Wird
der Ereignistyp und die Sequenznummer von σs direkt in σo gespeichert, kann anhand dieser
Informationen im Eingangsstrom I das entsprechende Ereignis ermittelt und so die Funktion
f−1 im Operator implementiert werden. Wenn ein Operator mehr als einen Eingangsstrom
hat, ist die Ermittlung von f−1 etwas komplexer. Für den Moment genügt aber die Ermittlung
dieses einen Ereignisses σs aus dem Eingangsstrom.

Die Sequenznummer von σs wird zum Sicherungspunkt von ω hinzugefügt.

6.4.1.4 Konsumoperationen

Zusätzlich zu den Informationen über das Korrelationsfenster muss auch der Zustand des
Eingangsstroms zur Zeit des Öffnens des Korrelationsfensters gespeichert werden, wenn im
Ausführungsmodell der Operatoren Konsumoperationen auf dem Eingangsstrom erlaubt
sind. Durch die reproduzierbare Sequenzierung der Eingangsströme (vgl. Kapitel 3.3.3)
im Operator kann der Eingangsstrom grundsätzlich über die Ausgangslogs L(ωpredecessors)
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der Vorgängerknoten wiederhergestellt werden. Durch Konsumoperationen kann dieser
ursprüngliche Eingangsstrom aber bis zum Erreichen des Korrelationsfensters verändert
worden sein. Daher müssen alle Konsumoperationen, die in jedem Korrelationsfenster durch-
geführt wurden, in einer Tabelle gespeichert werden (Tabelle 6.1).

out_id consumed_events
1 A1, A3, etc...
2 A2, A5, etc...

Tabelle 6.1: Tabelle der Konsumoperationen

Die Spalte out_id beinhaltet aufsteigend die Sequenznummer des Korrelationsfensters (die-
se stimmt mit der Sequenznummer des darin erzeugten Ereignisses überein). Die Spalte
consumed_events listet die Ereignisse auf, die im entsprechenden Korrelationsfenster konsu-
miert wurden. In Sicherungspunkt fügt ω sämtliche Konsumoperationen bis einschließlich
der Zeile mit der Sequenznummer von wrecover ein.

6.4.1.5 Übertragung des Sicherungspunkts

Nachdem die Informationen für den Sicherungspunkt gesammelt wurden, wird dieser an
den Vorgänger von ω, in diesem Fall die Ereignisquelle S, übertragen werden. In Abb.
6.1 wird dies durch die Nachricht ACK(SP) ausgeführt, die stromabwärts vom Operator
zur Quelle gesendet wird. Der Sicherungspunkt führt in der Ereignisquelle S zu zweierlei
Aktionen: Zum einen wird das Log der Ereignisse bereinigt, indem alle Ereignisse, die im
Ausgangsstrom vor der Sequenznummer im Sicherungspunkt liegen, gelöscht werden. Zum
anderen werden die Informationen des Sicherungspunktes selbst in S gespeichert, damit
sie im Falle einer Wiederherstellung von ω zur Verfügung stehen. Wenn die ausgehenden
Ereignisse ab σs und alle Konsumoperationen bis zum Zeitpunkt der Ausführung des
Korrelationsfensters, das mit σs startet und zur Erzeugung von σo führt, zur Verfügung
stehen, kann ω genau in den Zustand versetzt werden, der zu der Zeit vor der Berechnung
von σo gültig war: ω kann bezüglich des Sicherungspunkts wiederhergestellt werden.

6.4.2 Mehrere Konsumenten

Um das einfachste CEP-System zu erweitern, wird im Folgenden der Fall betrachtet, dass
ein Operator mit mehreren Konsumenten verbunden ist. In Abb. 6.2 existiert wieder eine
Ereignisquelle S, die mit einem Operatoren ω verbunden ist. Dieser ist nun allerdings mit n
Konsumenten C1 bis Cn verbunden, die beide jeweils bestimmte Ereignisse konsumieren,
die ω produziert. Es stellt sich nun die Frage, was sich durch das Vorhandensein mehrerer
Operatoren für die Bestätigung von Ereignissen und das Erzeugen der Sicherungspunkt
verändert.
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Abbildung 6.2: Versendung und Bestätigung von Ereignissen in einem CEP-System mit
mehreren Konsumenten.

6.4.2.1 Ereignisströme

An den Ereignisströmen ändert sich nur wenig. Der Eingangsstrom aus der Ereignisquel-
le wird weiterhin von ω zu einem Ausgangsstrom weiterverarbeitet. Die Ereignisse des
Ausgangsstroms werden an die Konsumenten versendet. Es kann sich dabei um immer
exakt dieselben Ereignisse handeln oder es kann sein, dass ω manche Ereignisse nur an
einen der Konsumenten versendet. Jedoch ist zu beachten, dass ω nach den Regeln des
Systemmodells trotzdem nur einen sequenzierten Ausgangsstrom O besitzt, unabhängig
davon, ob alle Konsumenten an allen Ereignissen Interesse haben. Ein solches Verhalten
ließe sich beispielsweise durch Publish-Subscribe-Channels implementieren, in dem sich
die Konsumenten registrieren. Wir gehen aber von dem allgemeinsten Fall aus, dass jeder
Operator an jedem Ereignis Interesse hat, da dadurch alle anderen Fälle mit abgedeckt
werden.

6.4.2.2 Mehrere Konsumenten bestätigen zur selben Zeit verschiedene Ereignisse

Der interessante Teil der Untersuchung beginnt, wenn die Konsumenten parallel Bestäti-
gungsnachrichten an ω zurückgeben. Die Bestätigungsnachrichten unterscheiden sich nicht
von denen im Fall eines einzelnen Konsumenten: Jeder Konsument bestätigt in regelmäßigen
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Abständen den Empfang des letzten Ereignisses durch eine Nachricht, die die Sequenz-
nummer des bestätigten Ereignisses enthält. Es kann nun jedoch vorkommen, dass der
Operator ω zur selben Zeit verschiedene Bestätigungsnachrichten von den verschiedenen
Konsumenten erhält: Einer der Konsumenten bestätigt das Ereignis mit der Sequenznummer
ρ1, der andere das Ereignis mit der Sequenznummer ρ2. Auf Basis welcher Bestätigung kann
ω die Umkehrfunktion f−1 aufrufen, den Sicherungspunkt bestimmen und diesen an die
Ereignisquelle weitergeben?

Wenn in ω verschiedene Bestätigungsnachrichten vorliegen, muss unter den Konsumen-
ten immer die Bestätigung mit der niedrigsten Sequenznummer als die aktuell gültige
Bestätigung betrachtet werden. Wird eine andere Bestätigung herangezogen und ω wird
wiederhergestellt, können Ereignisse irreversibel verloren gegangen sein, die von manchen
der Konsumenten noch nicht bestätigt wurden. Erst, wenn jeder Konsument ein bestimmten
Ereignis bestätigt hat, darf es wirklich freigegeben werden. Dies wird durch das Heranziehen
der niedrigsten aller aktuellen Bestätigungen aller Konsumenten sichergestellt. Doch wie
kann es sein, dass manche Konsumenten ein Ereignis erhalten und bestätigt haben, das
andere Konsumenten noch nicht empfangen konnten? Dieser Fall kann eintreten, wenn
ω ein Ereignis erzeugt und an einige Konsumenten versenden kann, während die Kom-
munikationskanäle zu anderen der Konsumenten lange Latenzzeiten haben. Während der
Versand des Ereignisses zu diesen Konsumenten noch stockt, d.h. beispielsweise ω macht
weitere Übertragungsversuche, haben die anderen das Ereignis bereits bestätigt. Wenn
nun ω abstürzt, bevor es den Versand zu allen Konsumenten durchgesetzt hat, aber die
Bestätigung schon weitergegeben hat, können die Konsumenten, bei denen der Versand nicht
fertiggestellt werden konnte, dieses Ereignis nicht mehr erhalten. Daher kann ein Ereignis
nur als bestätigt gelten, wenn es von allen Konsumenten bestätigt wurde. Immer, wenn eine
Bestätigungsnachricht von einem der Konsumenten eingeht, überprüft der Operator, ob sich
dadurch der aktuelle Sicherungspunkt ändert. Falls ja, wird der Sicherungspunkt wie im
obigen Abschnitt beschrieben bestimmt und an die Ereignisquelle weitergeleitet.

Ansonsten ändert sich an dem Verfahren gegenüber dem Fall mit nur einem Konsumenten
nichts.

6.4.3 Mehrere Quellen

Im Folgenden wird das System wiederum erweitert: Nun gibt es n Ereignisquellen statt
nur einer einzigen. Wie in Abb. 6.3 dargestellt, sind die Ereignisquellen S1 bis Sn mit dem
Operatoren ω verbunden, der wiederum mit den Konsumenten C1 bis Cn verbunden ist.

6.4.3.1 Ereignisströme

An der Verarbeitung der Ereignisströme ändert sich nur wenig. Da ω nun mehrere Eingangs-
ströme hat, müssen diese durch ein eindeutiges, reproduzierbares Verfahren in einen einzigen
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ω

s1

c1

(σpn, ρpn)
…

cn

(σc1, ρ1) (σcn, ρn)

ω

c1 cn

SPi = f-1(SNi)
ω

c1 cn

ACK(ρ1) ACK(ρn)
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(σp1, ρp2)
…

s1 sn s1 sn

SNi = min(ρ1,...ρn)

ACK(SPm) ACK(SPn)

… … …

………

Abbildung 6.3: Versendung und Bestätigung von Ereignissen in einem CEP-System mit
mehreren Quellen.

Eingangsstrom sequenziert werden. Auf diesem Strom führt ω wieder die Korrelationsfunk-
tion aus und erzeugt einen Ausgangsstrom, den er an die Konsumenten weiterleitet.

6.4.3.2 Verschiedene Ereignisquellen mit verschiedenen Versionen des
Sicherungspunkts

Im Vergleich zum vorherigen Fall mit nur einer Ereignisquelle tritt nun folgendes Problem
auf:

ω hat zu verschiedenen Zeitpunkten verschiedene Sicherungspunkte. Wenn die Weiter-
gabe des Sicherungspunktes an eine der Ereignisquellen erfolgreich verlaufen ist und dann
ω ausfällt, bevor der Sicherungspunkt auch an die anderen Ereignisquellen weitergege-
ben werden konnte, besitzen die verschiedenen Quellen einen unterschiedlich aktuellen
Sicherungspunkt. Die Frage ist nun, an welchem Punkt die Verarbeitung der Eingangs-
ströme bei der Wiederherstellung von ω aufgenommen wird. Durch den Empfang einer
Bestätigungsnachricht führt eine Ereignisquelle irreversible Aktionen bezüglich des empfan-
genen Sicherungspunktes aus, sodass sie nie wieder an der Wiederherstellung eines älteren
Sicherungspunktes teilnehmen kann. Es muss daher ω zum aktuellsten Sicherungspunkt wie-
derhergestellt werden. Zudem muss ein Sicherungspunkt genügend Informationen enthalten,
dass bei der Wiederherstellung von ω auch Eingangsströme mit beliebigen Ereignisfolgen vor
dem Startereignis des ersten Korrelationsfensters kein Problem darstellen. Diese „beliebigen“
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Ereignisfolgen (sie sind nicht völlig beliebig, aber in ihrem genauen Umfang eben doch
unbekannt) können durch veraltete Sicherungspunkte in manchen Vorgängern entstehen,
die zu einem nicht vorhersehbaren Eingangsstrom in ω führen. Erst ab dem Ereignis σs im
aktuellsten Sicherungspunkt ist der Eingangsstrom von ω tatsächlich wieder vollständig
und reproduzierbar hergestellt. Welcher der verschiedenen Sicherungspunkte der Vorgänger
von ω der aktuellste ist, wird auf dieselbe Weise ermittelt, in der die Sequenzierung von
Ereignissen aus den verschiedenen eingehenden Ereignisströmen in den Eingangsstrom I
bestimmt wird. Werden die Ereignisse σs aus den Vorgängern in eine Sequenz gebracht, ist
das letzte Ereignis in dieser Sequenz das Startereignis des aktuellsten Sicherungspunkts.

6.4.3.3 Umkehrfunktion f−1

Die Berechnung der Umkehrfunktion f−1 : O → I, die eine Abbildung des bestätigten
Ausgangsereignis auf das Startereignis σs des entsprechenden Korrelationsfensters im Ein-
gangsstrom ist, wird im Falle mehrerer Vorgänger von ω etwas abgeändert. Während bei
nur einem Vorgänger die Sequenznummer von σs zur eindeutigen Identifizierung aus-
reicht, muss im Falle unterschiedlicher Vorgänger für jeden dieser Vorgänger eine eigene
Sequenznummer bestimmt und einem Vektor gespeichert werden. Diese bestimmt jeweils,
ab welchem Ausgangsereignis ein Vorgänger seinen Ausgangsstrom zur Wiederherstellung
an ω versenden muss. Die Umkehrfunktion bestimmt also nicht mehr nur das Startereignis
des Korrelationsfensters, sondern die ersten Ereignisse aller einzelnen Eingangsströme Ii
in diesem Korrelationsfenster. Diese Information muss aus dem bestätigten Ereignis im
Ausgangslog extrahiert werden. Daher muss die Information in einem Ausgangsereignis σo
nach Abschnitt 6.4.1.3 um einen Vektor von Startereignissen erweitert werden.

Ansonsten ändert sich im Vergleich zum System mit nur einer Ereignisquelle nichts.

6.4.4 Mehrere sequentiell abhängige Operatoren

Bisher wurden CEP-Systeme mit nur einem Operatoren betrachtet. Nun wird das Modell
erweitert, indem zwischen den Ereignisquellen und den Ereigniskonsumenten mehrere
sequentiell abhängige Operatoren die Ereignisse in verschiedenen Zwischenschritten weiter-
verarbeiten. In Abb. 6.4 ist eine Reihe von Ereignisquellen S1 bis Sn mit einem Operator ωk
verbunden, der in einer Sequenz von miteinander verbundenen Operatoren von ωk−1 bis ω0
steht. ω0 ist dann mit einer Reihe von Ereigniskonsumenten verbunden, C1 bis Cn.

6.4.4.1 Ereignisströme

Die Ereignisse aus den Quellen werden im Operatoren ωk zu anderen Ereignissen korreliert,
die einen Zwischenschritt zwischen den einfachen Ereignissen aus den Quellen und den kom-
plexen Ereignissen, die an die Konsumenten ausgeliefert werden, darstellen. Diese Ereignisse
werden wiederum von anderen Operatoren weiterverarbeitet, jeder Operator implementiert
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Abbildung 6.4: Versendung und Bestätigung von Ereignissen in einem CEP-System mit
mehreren sequentiell abhängigen Operatoren.

einen Verarbeitungsschritt. Schließlich führt ω0 in der letzten Verarbeitungsebene die letzte
Korrelation durch, als deren Ergebnis das „Endprodukt“ von komplexen Ereignissen ent-
steht, die an die Konsumenten ausgeliefert werden und die die vom CEP-System erkannten
Situationen von Interesse anzeigen.

6.4.4.2 Verschiedene Operatoren mit jeweils eigenen Sicherungspunkten

In Systemen mit mehreren voneinander abhängigen Operatoren hat jeder Operator zu jedem
Zeitpunkt einen eigenen, bestimmten Zustand. Zu bestimmten Zeitpunkten sichert jeder
Operator diesen Zustand in einem Sicherungspunkt. Der Zeitpunkt der Sicherung wird
von den Bestätigungsnachrichten der Ereigniskonsumenten angestoßen. Immer, wenn ein
Ereigniskonsument bei seinem Vorgängeroperatoren den Empfang eines Ereignisses oder
mehrerer Ereignisse bestätigt, breitet sich diese Bestätigungsnachricht wellenförmig über die
jeweiligen Vorgänger im Operatorgraphen bis hin zu den Ereignisquellen aus. Ein bestätigtes
Ereignis der höchsten Komplexität führt i.A. dazu, dass Ereignisse aller Zwischenstufen
bestätigt werden können und sich diese Bestätigung schließlich bis zu den einfachsten
Ereignissen aus den Quellen fortsetzt.

Immer, wenn ein Operator von seinen Vorgängern eine Bestätigung bezüglich einiger
der Ereignisse aus seinem Ausgangsstrom erhalten hat, aktualisiert er seinen Sicherungs-
punkt in der Weise, wie es in den vorherigen Abschnitten beschrieben wurde: Bei mehreren
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Nachfolgern gilt die niedrigste aktuelle Bestätigung, die Umkehrfunktion wird aufgerufen,
das Startereignis σs des entsprechenden Korrelationsfensters wrecover und der zu dem Zeit-
punkt gültige Stand der Konsumtabelle werden im Sicherungspunkt gespeichert. Während
in den bisher betrachteten Systemen mit nur einem Operator dieser Sicherungspunkt direkt
an die Ereignisquellen übertragen und dort gesichert wurde, gestaltet sich die Situation bei
mehreren abhängigen Operatoren etwas anders.

Um die Bestimmung und Übertragung der Sicherungspunkte genauer zu untersuchen,
folgen wir dem Verlauf der „Bestätigungswelle“ von den Konsumenten bis zu den Quellen.
Die Bestätigungen der Konsumenten enthalten nur eine Sequenznummer, nämlich die des
letzten bestätigten Ereignisses. Nennen wir den Operatoren, der eine solche Bestätigung be-
kommt, ω0 und nehmen an, dass die Bestätigung zur Aktualisierung des Sicherungspunktes
führt. ω0 überträgt seinen neuen Sicherungspunkt SP[ω0] mit Hilfe einer Bestätigungsnach-
richt ACK(SP[ω0]) an seinen Vorgänger ω1. Im übertragenen Sicherungspunkt findet sich die
Information, ab welchem Ereignis im Ausgangsstrom von ω1 dieser im Fall einer Wiederher-
stellung von ω0 neu übertragen werden muss. Alle Ereignisse, die davor in der Sequenz im
Ausgangsstrom davor liegen, können also freigegeben werden. ω1 wendet auf das Ereignis
aus SP[ω0] die Umkehrfunktion an, das Ergebnis ist das Ereignis σs aus dem Eingangsstrom
von ω1, von dem aus alle älteren Ereignisse in diesem Eingangsstrom freigegeben werden
können. ω1 bildet nun einen Sicherungspunkt SP[ω1] bezüglich des Zeitpunkts, an dem das
Korrelationsfenster, das zur Erzeugung des in SP[ω0] bestätigten Ereignisses führte, geöffnet
wurde. Dieser Sicherungspunkt wird mit einer Bestätigungsnachricht an den Vorgänger von
ω1 übertragen, welcher wiederum seinen eigenen Sicherungspunkt auf dieselbe Weise aktua-
lisiert und an seine Vorgänger überträgt, bis schließlich die Bestätigung und Aktualisierung
der Sicherungspunkte in jedem Pfad bis zu den Ereignisquellen fortgeführt worden ist.

6.4.4.3 Redundante Speicherung der Sicherungspunkte

Das Ziel des Wiederherstellungsverfahrens ist, wie in Kapitel 4 beschrieben, die Wiederher-
stellung des Systems bei einem gleichzeitigen Ausfall von maximal F Operatoren. Das heißt,
dass in einer Sequenz von F+1 abhängigen Operatoren immer mindestens 1 Operator korrekt
läuft. Im schlechtesten Fall muss von diesem Operator, nennen wir ihn ωk, ausgehend eine
Reihe von F Operatoren, ωk−1 bis ωk−F, wiederhergestellt werden. ωk hat den Sicherungs-
punkt SP[ωk−1] gespeichert und kann anhand der darin enthaltenen Informationen und
dem Ausgangslog L(ωk) seinen Nachfolger ωk−1 wiederherstellen. ωk−1 kann zwar sein
Ausgangslog L(ωk−1) wiederherstellen, doch fehlt nach der Wiederherstellung der Siche-
rungspunkt SP[ωk−2], ohne den ωk−2 nicht wiedergestellt werden kann. Daher muss ωk auch
den Sicherungspunkt SP[ωk−2] speichern und bei der Wiederherstellung von ωk−1 an diesen
übertragen. Genauso verhält es sich mit den Operatoren ωk−3 bis ωk−F: Um eine Reihe von
F Operatoren wiederherstellen zu können, muss in ωk eine Liste von F Sicherungspunkten
SP[ωk−1] bis SP[ωk−N] gespeichert sein.

Aus dieser Beobachtung folgt, dass ein Operator nicht nur die Sicherungspunkte seiner
direkten Nachfolger speichert, sondern eine Liste von Sicherungspunkten der folgenden
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F Operatoren. Immer, wenn er eine Bestätigungsnachricht von einem seiner Nachfolger
empfängt, aktualisiert er den eigenen Sicherungspunkt und fügt ihn an erster Stelle in eine
Liste von Sicherungspunkten ein. Falls daraufhin mehr als F Sicherungspunkte in der Liste
sind, entfernt er den letzten Eintrag aus der Liste und schickt sie weiter an seine Vorgänger.
Die Liste der Sicherungspunkte in Operator ωi enthält also die Sicherungspunkte ωi bis
maximal ωi−F, sofern es so viele Operatoren gibt, die auf ωi folgen. Der Vorgänger von
ωi, ωi+1, erhält diese Liste, berechnet anhand des Sicherungspunkts SP[ωi] den eigenen
Sicherungspunkt SP[ωi+1], fügt diesen in die Liste ein, entfernt SP[ωi−F] und schickt eine
Bestätigungsnachricht mit der Liste an seinen Vorgänger ωi+2. Dieses Verfahren wird so
lange fortgesetzt, bis die Ereignisquellen von den Bestätigungsnachrichten erreicht werden.

6.4.5 Operator mit mehreren Vorgängern

ωi

...

... ...

ωk

ωj

ACK(SP[ωk-1],…,SP[ωk-F])

SPi[ωk] = f-1(SPi[ωk-1])

...

ACK(SPn[ωk],…,
SPn[ωk-F+1])

ACK(SPm[ωk],…,
SPm[ωk-F+1]))

ACK(SPm[ωi],…,
SPm[ωk-F+2])

ACK(SPn[ωj],…,
SPn[ωk-F+2])

Abbildung 6.5: Bestätigungsnachrichten in einem Ausschnitt aus einem CEP-System mit
einem Operator, der mehrere Vorgänger hat.

In Abb. 6.5 ist ein Ausschnitt aus einem CEP-System dargestellt, in dem ein Operator,
ωk, mehrere Vorgänger hat. Mehrere Vorgänger zu haben bedeutet für ωk, dass zu seiner
Wiederherstellung die Ausgangsströme aus sämtlichen Vorgängern notwendig sind. Daher
bestätigt ωk seinen eigenen Sicherungspunkt bei allen seinen Vorgängern. Die Sicherungs-
punkte der auf ωk folgenden Operatoren müssen, wie in Abschnitt 6.4.4 begründet wird,
redundant in den Vorgängeroperatoren von ωk gespeichert werden, sodass jede Kette von
F aufeinanderfolgenden Operatoren wiederherstellbar ist. Daher versendet ωk neben dem
eigenen Sicherungspunkt auch die Sicherungspunkte der F-1 auf ωk folgenden Operatoren
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an seine Vorgänger.

Es ist zu beachten, dass zwar die Vorgänger von ωk verschieden aktuelle Sicherungs-
punkte von ωk und seinen Nachfolgern besitzen können, die Listen der Sicherungspunkte
an sich aber immer in sich konsistent sind. Eine konsistente Liste von Sicherungspunkten
bedeutet, dass der Sicherungspunkt eines Nachfolgers stets bezüglich eines Zeitpunkts
erstellt wurde, der zeitlich später als der entsprechende Zeitpunkt des Sicherungspunkts des
Vorgängers liegt. Wäre es anders, d.h. ein Operator soll einen Nachfolger in seinem Zustand
zu einem früheren Zeitpunkt wiederherstellen als der Zeitpunkt des eigenen Zustands
hergibt, könnte dieser die Wiederherstellung nicht durchführen, da er dafür ältere Ereignisse
aus seinem Ausgangsstrom benötigte. Die Konsistenz der Listen ist durch die Eigenschaften
der Umkehrfunktion gegeben: Das Ergebnis der Umkehrfunktion ist stets ein Ereignis, das
in der ursprünglichen Ausführung der Korrelationsfunktion ein Eingangsereignis war. Wenn
aus einem Ereignis ein anderes Ereignis erzeugt wird, muss ersteres zuerst existiert haben.
Daher bezieht sich der Sicherungspunkt, der anhand der Umkehrfunktion berechnet wurde,
immer auf einen früheren Zeitpunkt.

Damit diese Konsistenz erhalten bleibt, ist die Speicherung der Listen in allen Vorgängern
notwendig. Wäre die Liste beispielsweise im CEP-System in Abb. 6.5 nur in ωi gespeichert
und hätte ωj einen aktuelleren Sicherungspunkt SPn[ωk] erhalten als ωi, der SPm[ωk] spei-
chert, könnte zwar ωk zum Sicherungspunkt SPn[ωk] wiederhergestellt werden, doch die
Nachfolgeroperatoren müssten mit den älteren Sicherungspunkten aus den Listen von ωi
wiederhergestellt werden. Es könnte nicht garantiert werden, dass diese Sicherungspunkte
nicht auf ältere Ereignisse zugreifen müssen, als sie in SPn[ωk] vorhanden sind. Durch
das „Mischen“ der Sicherungspunkte wäre also die Konsistenz der Liste nicht mehr zu
gewährleisten.

6.4.6 Operator mit mehreren Nachfolgern

Um sämtliche möglichen Topologien der Operatorgraphen abzudecken, fehlt noch ein Fall:
Ein Operator, der mit mehreren Nachfolgeroperatoren verbunden ist. Abb. 6.6 zeigt einen
Ausschnitt aus einem solchen CEP-System. Operator ωk muss in der Lage sein, sowohl
sämtliche Nachfolger als auch deren Nachfolger bis zu F-1 Ebenen weit wiederherzustellen.
Das heißt, dass ωk alle Sicherungspunkte seiner Nachfolger und deren Nachfolger der
nächsten F-1 Ebenen in seinem Vorgänger speichern muss. An dieser Stelle wird die bisher
verwendete Liste von Sicherungspunkten durch einen Baum ersetzt. Man kann es auch so
formulieren, dass in einem CEP-System, in dem Operatoren niemals mehrere Nachfolger
haben, der Baum von Sicherungspunkten so flach ist, dass es sich dabei um eine Liste
handelt. Der vor uns liegende Fall ist also allgemeiner als die Spezialfälle, die wir zuvor
betrachtet haben.

Ein Operator muss stets einen Baum von Sicherungspunkten, einen „Sicherungsbaum“ spei-
chern. Dieser Baum hat den Sicherungspunkt des Operators selbst als Wurzel und verläuft
in Ereignisflussrichtung entsprechend der Topologie des Operatorgraphen bis zur Tiefe
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ωi

...

...

ωk

ωj

...

ACK(SP[ωj],…,
SP[ωj-F+1])

ACK(SP[ωi],…,
SP[ωi-F+1])

ACK(SP[ωk],
SP[ωi]...SP[ωi-F+2],
SP[ωj]...SP[ωj-F+2])

Abbildung 6.6: Bestätigungsnachrichten in einem Ausschnitt aus einem CEP-System mit
einem Operator, der mehrere Nachfolger hat.

F. Wenn ein Operator von einem Nachfolger einen Sicherungsbaum erhält, aktualisiert er
anhand des Sicherungspunkts des direkten Vorgängers seinen eigenen Sicherungspunkt und
baut an diesen als Wurzel die jeweils aktuellsten Sicherungsbäume all seiner Nachfolger an.
Diesen neuen Sicherungsbaum beschneidet er so, dass alle Knoten in einer Tiefe größer als F
entfernt werden und sendet ihn anschließend an seine Vorgänger.

Das Konzept der Sicherungsbäume ist also die konsequente Verallgemeinerung des bisheri-
gen Ansatzes, die es ermöglicht, eine „verzweigte“ Topologie der Tiefe F von einem Operator
aus wiederherzustellen.

6.4.7 Zusammenfassung: Verwaltung von Logs und Sicherungspunkten

Wenn man alle gesammelten Informationen zusammenfasst, kommt man zu einem allge-
meinen Ablauf der Verwaltung von Sicherungspunkten und Logs, der für alle erlaubten
Topologien des Operatorgraphen geeignet ist.
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Algorithmus 6.1 Operator: handleAcknowledgement
procedure handleAcknowledgement(Acknowledgement ack)

updateStoredAck(ack,ack.producer) // aktualisiere ACK des Nachfolgers
if oldest stored ACK has changed then

updateOwnSavepoint // durch Aufruf von f−1

pruneLogs // Events und Konsumoperationen
buildNewSavepointTree // mit eigenem Sicherungspkt. als Wurzel
sendAck(predecessors)

end if
end procedure

6.4.7.1 Inhalt eines Sicherungspunktes

Ein Sicherungspunkt SP[ω] eines Operators ω enthält:

1. Einen Vektor von Sequenznummern. Für jeden Operator aus pred(ω) enthält der
Vektor eine Sequenznummer.

2. Die Sequenznummer des nächsten von ω zu erzeugenden Ereignisses.

3. Die Tabelle der Konsumoperationen zum Wiederherstellungszeitpunkt.

6.4.7.2 Empfang von Bestätigungsnachrichten mit Sicherungsbäumen

Ein Operator empfängt von seinen Nachfolgern Bestätigungsnachrichten, die einen Baum von
Sicherungspunkten enthalten. Diese Bestätigungsnachrichten werden von den Konsumenten
angestoßen und werden stromabwärts von Operator zu Operator weiterverarbeitet, bis
sie schließlich in den Ereignisquellen ankommen. Wenn ein Operator ω von einem seiner
Nachfolger ωs eine Bestätigungsnachricht empfängt, führt er Algorithmus 6.1 aus. Im
Folgenden wird der Algorithmus erklärt:

1. Der Operator aktualisiert das gespeicherte ACK bezüglich seines Nachfolgers.

2. Der überprüft, ob sich dadurch das älteste gespeicherte ACK ändert. Falls ja, aktuali-
siert er seinen eigenen Sicherungspunkt, indem er die Umkehrfunktion auf das ihn
betreffende Ereignis in SP[ωs] aufruft.

3. Er kürzt sein Ausgangslog und bereinigt seine Tabelle der Konsumoperationen, falls er
seinen eigenen Sicherungspunkt in diesem Durchgang aktualisiert hat.

4. Er fügt den eigenen (evtl. aktualisierten) Sicherungspunkt als Wurzel in einen Siche-
rungsbaum ein. Die Kinder sind die aktuellen Sicherungsbäume seiner Nachfolger. Der
Baum wird auf eine Tiefe von F gekürzt.

5. Er versendet den neuen Sicherungsbaum an alle seine Vorgänger.
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Bereinigung der eigenen Logs Das Ausgangslog L(ω) eines Operators ω wird immer so
gekürzt, dass alle Ereignisse gelöscht werden, die vor der niedrigsten ihn betreffenden
Sequenznummer bezüglich aller seiner Nachfolger liegen. Diese Ereignisse sind von allen
Nachfolgern bestätigt und müssen nicht mehr im Speicher für den Fall einer Wiederherstel-
lung eines Nachfolgers vorgehalten werden. Das Ausgangslog und seine Kürzung betreffen
also die direkten Nachfolger und deren Wiederherstellung.

Die Tabelle der Konsumoperationen wird immer so gekürzt, dass die Informationen über
Konsumoperationen gelöscht werden, die vor dem Startereignis des nächsten wiederher-
zustellenden Fensters liegen. Diese Konsumoperationen werden im Wiederherstellungsfall
nicht mehr benötigt, da sie die Berechnung der Korrelationsfunktion nicht beeinflussen. Das
Startereignis des nächsten wiederherzustellenden Fensters ist genau das Ereignis σs, welches
die Umkehrfunktion zurückgibt. Die Konsumoperationen und deren Kürzung betreffen also
die Wiederherstellung des Operators selbst.

6.5 Wiederherstellung im Fehlerfall

6.5.1 Anforderungen an die Wiederherstellung

Wenn ein oder mehrere Operatoren ausfallen, muss das CEP-System in zweierlei Hinsicht
wiederhergestellt werden. Zum einen muss die Topologie des Operatorgraphen wieder-
hergestellt werden: Die ausgefallenen Operatoren werden durch neue ersetzt und die
Verbindungen zwischen den Operatoren müssen neu aufgebaut werden. Letztendlich muss
sich die Topologie so stabilisieren, dass sie der Topologie vor dem Ausfall entspricht. Zum
anderen müssen die Ereignisströme der ausgefallenen Operatoren wiederhergestellt wer-
den. Wenn ein Operator ausfällt, verliert er sämtliche volatilen Zustandsinformationen,
wie z.B. das Ausgangslog, den empfangenen Eingangsstrom, die laufende Berechnung der
Korrelationsfunktion und den gespeicherten Sicherungsbaum. Alle diese Informationen
müssen wiederhergestellt werden, um schließlich die Ströme von Ereignissen zwischen den
Operatoren wiederherzustellen. Es darf kein unbestätigtes Ereignis durch den Verlust der
Zustandsinformationen irreversibel verlorengehen. Die Ereignisströme müssen sich also
insofern stabilisieren, dass die Ereignisse, die an die Konsumenten ausgeliefert werden, sich
nicht von dem Fall unterscheiden, in dem kein Operator ausgefallen ist.

Im Folgenden wird in einem zweistufigen Verfahren untersucht, wie das Wiederherstel-
lungsverfahren aussehen muss, um beide Anforderungen zu erfüllen. Dazu wird zunächst
angenommen, dass die Topologie immer stabil bleibt, um ein Verfahren zur Stabilisierung
der Ereignisströme zu entwickeln. Schließlich wird ein Stabilisierungsverfahren für die
Topologie eingeführt, und somit gezeigt, dass auch die erste Wiederherstellungsanforderung
abgedeckt wird.
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Algorithmus 6.2 Operator: recover
procedure recover

send RecoveryRequest to all predecessors // aktualisiere ACK des Nachfolgers
wait for answers...
if all predecessors answered then

RecoveryInformation ri = highestNextSeqNo(allAnswers) // nutze die
// Informationen aus der Antwort, die die höchste nächste Seq.nr. angibt

extractOwnSavepointTree(ri)
sequenceIncomingEventStreams(ownSavepoint)
openCorrelationWindow(incomingStream)
consumeEvents(consumptionTable)

end if
send RecoveryNotification to all successors

end procedure

6.5.2 Wiederherstellung der Ereignisströme

Wir nehmen zunächst also an, dass ein ausgefallener Operator sich insofern erholt, als dass er
nach dem Ausfall automatisch neu gestartet wird. Alle volatilen Informationen sind verloren,
doch der Operator taucht unter derselben Adresse im Netzwerk wieder auf und startet eine
Recovery-Prozedur. Nehmen wir weiter an, dass der Operator seine direkten Vorgänger im
Operatorgraphen kennt und diese Informationen auch nach dem Neustart noch vorhanden
ist.

6.5.2.1 Die Recovery-Prozedur

Sobald ein Operator ω neu gestartet wurde, ruft er eine Initialisierungsroutine auf. Diese
Routine sendet einen RecoveryRequest an alle direkten Vorgänger des Operators. Wenn
ein Operator ωp einen RecoveryRequest empfängt, sendet er anhand des gespeicherten
Sicherungspunkts SP[ω] folgende Informationen an seinen Nachfolger ω:

• Die Sequenznummer des nächsten von ω zu erzeugenden Ereignisses.

• Die Tabelle der Konsumoperationen in ω zum Wiederherstellungszeitpunkt.

• Der Vektor von Sequenznummern aller direkten Vorgänger von ω.

• Alle Ereignisse aus dem Ausgangslog L(ωp) ab der ωp betreffenden Sequenznummer.

• Der Sicherungsbaum von ωp zur Wiederherstellung nachfolgender Operatoren.

Sobald ω von allen Vorgängern auf den RecoveryRequest Antwort erhalten hat, kann der
Zustand zum aktuellsten Sicherungspunkt wiederhergestellt werden. Dazu geht ω nach
Algorithmus 6.2 vor, der im Folgenden erläutert wird:
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1. Aus allen Antworten wird die Antwort mit dem höchsten Wert für die Sequenznummer
des nächsten von ω zu erzeugenden Ereignisses ausgewählt.

2. Aus dieser Antwort wird der eigene Sicherungsbaum wiederhergestellt, indem der
Teilbaum mit ω als Wurzelknoten aus dem Sicherungsbaum von ωp ausgeschnitten
wird.

3. Anhand des Vektors von Sequenznummern wird aus den eingehenden Ereignisströmen
aus den Vorgängern für jeden dieser Ströme das Ereignis ermittelt, ab dem die Ströme
in den Eingangsstrom I sequenziert werden. Alle eingehenden Ereignisse mit einer
kleineren Sequenznummer als die entsprechende Sequenznummer im Vektor werden
verworfen.

4. Die Konsumoperationen werden auf den sequenzierten Eingangsstrom I angewandt.

5. Ein Korrelationsfenster wird geöffnet, als Startereignis dient das erste Ereignis aus dem
sequenzierten Eingangsstrom.

Wenn mehrere Operatoren in Reihe ausgefallen sind, werden sie von unten nach oben
sukzessive wiederhergestellt. Sobald ein Operator wiederhergestellt ist, sendet er an seine
Nachfolger eine RecoveryNotification. Er kennt die Nachfolger aus den empfangenen
Sicherungsbäumen. Ist der Nachfolger selbst ausgefallen gewesen und befindet sich gerade
in der Wiederherstellungsphase, in der er auf Antwort von allen Vorgängern wartet, kann er
nun seinen RecoveryRequest an den gerade wiederhergestellten Vorgänger wiederholen.
Auf diese Weise wird letztendlich jeder Operator wiederhergestellt.

Es ist zu beachten, dass die Sicherungsbäume sich bei einer Wiederherstellung um ei-
ne Ebene verkürzen. Bei einer sequentiellen Wiederherstellung von N aufeinander folgenden
Operatoren kann der Sicherungsbaum des letzten wiederhergestellten Operators folglich
völlig leer sein, was bedeutet, dass kein weiterer Operator in dieser Reihe wiederhergestellt
werden kann. Die Informationen aus den Sicherungsbäumen reichen also gerade dazu aus, F
Operatoren in Reihe wiederherzustellen, und keinen weiteren. In dem Sinne ist ein Operator
an dieser Stelle noch nicht vollständig wiederhergestellt, da er einen Ausfall weiterer F Opera-
toren in Folge nicht direkt kompensieren kann. Allerdings kann der Operator schon mit der
Ereignisverarbeitung fortfahren, d.h. die Ereignisverarbeitung ist bereits wiederhergestellt,
die Recovery-Fähigkeit aber noch nicht. Um einen Operator vollständig wiederherzustellen,
bedarf es der Wiederherstellung des kompletten Sicherungsbaumes. Dies geschieht durch
Antwort auf die RecoveryNotification: Ist der Nachfolger, der sie erhält, nicht selbst in
einer Wiederherstellungsphase, sondern bereits komplett wiederhergestellt, sendet er an
seinen nur teilweise wiederhergestellten Vorgänger seinen aktuellen Sicherungspunkt, damit
dieser den Sicherungsbaum wieder komplettieren kann. Ein Operator ist komplett wieder-
hergestellt, wenn er von allen seinen Nachfolgern den Sicherungsbaum empfangen und in
seinen eigenen Sicherungsbaum integriert hat. Dies führt im Normalbetrieb zur sukzessiven
Weitergabe des Sicherungsbaumes, bis alle Operatoren vollständig wiederhergestellt sind.
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6.5.3 Kontrolle und Anpassung der Topologie

Die bisherige Annahme des „automatischen“ Neustarts eines ausgefallenen Operators lässt
sich anhand der Abstraktion einer zentralen Fehlerdetektor-Komponente [Rey05, FGK11,
CT96, GR06] im CEP-System veranschaulichen. Ein solcher zentraler Detektor könnte be-
stimmen, wann ein Operator ausgefallen ist und seine Recovery-Prozedur anstoßen. Doch
wie genau arbeitet der Fehlerdetektor?

6.5.3.1 Eigenschaften des Fehlerdetektors

Der Fehlerdetektor ist eine zentrale Komponente, die auf einem Fail-Recovery-System läuft.
Das heißt, wenn der Fehlerdetektor abstürzt wird er neugestartet und kann seine Arbeit an
der Stelle fortsetzen, an der er zuvor abgestürzt war. Das System wird letztendlich immer
lebendig sein, d.h. nach einer unbekannten Zahl von Abstürzen und Wiederherstellungen
läuft der Fehlerdetektor stabil. Zu beachten ist dabei, dass ein solcher Fehlerdetektor even-
tuell mit einem persistenten Speicher ausgestattet sein kann, aber die Ereignisströme und
Operatoren in der eigentlichen Ereignisverarbeitung weiterhin ohne persistenten Speicher
arbeiten.

6.5.3.2 Fehlererkennung

Um festzustellen, ob ein spezifischer Operator korrekt arbeitet oder ob er ausgefallen ist,
gibt es grundsätzlich 2 Möglichkeiten (vgl. [GR06, S. 45ff]): Die erste Möglichkeit ist von
einem synchronen System auszugehen, in dem folgende Eigenschaften gelten: Synchrone
Berechnung (d.h. nach oben begrenzte Berechnungszeit), synchrone Kommunikation (d.h.
nach oben begrenzte Kommunikationsverzögerungen) und synchrone physikalische Uhren.
In einem solchen System wäre es recht einfach, einen Operator innerhalb einer festen Zeit-
grenze als fehlerhaft bzw. ausgefallen zu erkennen, beispielsweise indem jeder Operator
dem Fehlerdetektor periodisch Heartbeat-Nachrichten zuschickt. Diese müssen durch die
festen Zeitgrenzen für Berechnung und Nachrichtenübertragung innerhalb einer bestimmten
Zeit ankommen, wenn der Operator korrekt arbeitet. Wenn die Zeitgrenzen immer eingehal-
ten werden, wird ein fehlerhafter Operator schließlich innerhalb einer berechenbaren Zeit
vom Fehlerdetektor als solcher erkannt. Dieses Modell hat allerdings hauptsächlich einen
Nachteil: Die Abdeckung des Systems. In realen CEP-Szenarien kann man nicht einfach
von einer solchen Synchronität ausgehen, insbesondere wenn das System hochskalierbar ist
und beispielsweise die Operatoren über das Internet miteinander verbunden sind und sehr
komplexe Berechnungen ausführen müssen. Das Problem der schwankenden Antwortzeiten
wird auch als „Jitter“ bezeichnet. Man müsste zumindest die Zeitschranken für den Jitter so
hoch ansetzen, dass man mit einer sehr hohen Wahrscheinlichkeit davon ausgehen kann, dass
sie von einem korrekten Prozess nicht verletzt werden, d.h. also von den Worst-Case-Fällen
ausgehen. Dies kann das System aber ineffizient machen, da zwischen dem Auftritt des
Fehlers und seiner Erkennung eine lange Zeit vergehen kann. In dieselbe Richtung geht auch
die Idee der teilsynchronen Systeme: Die zeitlichen Annahmen gelten darin letztendlich, d.h.
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nach einer beschränkt langen Zeit, in der sie verletzt werden können. Es ist damit ebenso ein
synchrones System in dem Sinne, dass zeitliche Annahmen gemacht werden, auf denen die
weiteren Algorithmen basieren.

Eine Alternative zum synchronen Systemmodell ist ein asynchrones Systemmodell oh-
ne solche festen Synchronitätsvorgaben, wie es in unserem Systemmodell angenommen wird.
Das heißt, ein Operator kann für einen Berechnungsschritt eine beliebig lange, aber endliche
Zeit benötigen, Ereignisse und Nachrichten zwischen 2 Operatoren können beliebig lange
unterwegs sein, bis sie schließlich vom Empfänger empfangen werden, und die Uhren in den
Operatoren sind in keiner Weise synchronisiert, d.h. weder haben sie ursprünglich dieselbe
Zeit noch laufen sie in derselben Geschwindigkeit. Zunächst kann ein Fehlerdetektor A über
einen Operatoren B in einem asynchronen System nicht eindeutig und fehlerfrei feststellen,
ob dieser abgestürzt ist oder noch korrekt läuft. Wartet A beispielsweise auf eine Heartbeat-
Nachricht von B, gibt es zwei Möglichkeiten: B ist abgestürzt oder er läuft korrekt. Wie lange
soll A nun auf den Heartbeat warten? Wenn B abgestürzt ist, wartet A unendlich lange und
das System als Ganzes ist nicht mehr lebendig (Liveness-Property, vgl. [Lam77]). Wenn B
nicht abgestürzt ist, aber sich der Heartbeat trotzdem sehr lange verzögert, beispielsweise
weil der Kommunikationskanal überlastet ist, und A irgendwann fälschlicherweise annimmt,
dass B wohl abgestürzt sein muss und daraufhin eine nicht reversible Aktion ausführt, läuft
das System vielleicht nicht sicher (Safety-Property, vgl. [Lam77]). Was ist also zu tun?

Der Lösungsansatz in dieser Arbeit liegt darin, die Sicherheit des Systems zu garantie-
ren, auch wenn der Fehlerdetektor eine falsche Entscheidung bezüglich eines Operators trifft.
Dies kann dann realisiert werden, wenn der Fehlerdetektor die Ausführung irreversibler
Aktionen vermeidet. Zudem muss ein Kompromiss zwischen der Korrektheit des Fehler-
detektors und der Reaktionszeit des Systems auf Ausfälle gefunden werden, indem eine
flexible Zeitschranke für die Verzögerung der Heartbeat-Nachrichten definiert wird (vgl.
Abschnitt 6.5.3.4).

6.5.3.3 Sichere Wiederherstellung der Topologie bei unsicherer Fehlererkennung

Um die Sicherheit des Systems zu garantieren, auch wenn der Fehlerdetektor eine falsche
Entscheidung bezüglich des Zustands (lebendig oder ausgefallen) eines Operators getrof-
fen hat, muss man zunächst untersuchen, welche falschen Entscheidungen dabei in Frage
kommen. Dabei soll im Folgenden der Befund ausgefallen als positiver Befund bezeichnet
werden, entsprechend ist der Befund lebendig ein negativer Befund. Falsche Befunde können
falsch-negativ oder falsch-positiv sein.

Falsch-negative Befunde bedeuten, dass der Fehlerdetektor einen ausgefallenen Operator
dauerhaft als lebendig einschätzt. Im Fall einer Heartbeat-Überprüfung, wie sie im dieser
Arbeit zugrundeliegenden Modell angewandt wird, kann ein solcher falsch-negativer Befund
nicht auftreten, denn ein ausgefallener Operator kann keine Heartbeat-Nachrichten mehr
erzeugen und somit wird er letztendlich vom Fehlerdetektor als ausgefallen eingeschätzt.
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Falsch-positive Befunde bedeuten, dass der Fehlerdetektor einen Operator (evtl. nur kurz-
zeitig) als ausgefallen einschätzt, obwohl der Operator eigentlich lebendig ist. Dies kann
vorkommen, wenn der Fehlerdetektor eine zu geringe Zeitschranke für die Wartezeit auf
eine Heartbeat-Nachricht hat oder sich die Nachricht bspw. wegen Überlastung der Verbin-
dung außergewöhnlich lange verzögert. Es gibt aufgrund des asynchronen Systems für den
Fehlerdetektor keine Möglichkeit, einen falsch-positiven Befund innerhalb einer festgelegten
Zeitspanne von einem korrekten Befund zu unterscheiden. Letztendlich wird ein lebendiger
Operator seine Heartbeat-Nachrichten immer an den Fehlerdetektor senden, doch wenn
der Heartbeat ausfällt, kann der Fehlerdetektor nicht erkennen, ob der Operator wirklich
ausgefallen ist. Er nimmt nach Ablauf einer Zeitschranke an, dass der Operator ausgefallen
ist, kann nun aber weiterhin nicht unterscheiden, ob dieser Befund korrekt oder falsch-positiv
ist: Die Fehlererkennung ist unsicher.

Die Problematik der unsicheren Fehlererkennung liegt darin, dass ein Fehlerdetektor im
schlechtesten Fall theoretisch alle Operatoren als ausgefallen einschätzt und deren Wiederher-
stellung anstößt. Anders gesagt, es gibt in einem asynchronen System trotz sorgfältigster
Auswahl der Zeitschranken keine Höchstzahl von als ausgefallen eingeschätzten Operatoren (die
geringer ist als die Zahl der Operatoren insgesamt). Ganz im Gegensatz dazu steht die
Annahme, dass im Gesamtsystem maximal F (sequentielle) Operatoren gleichzeitig tatsächlich
ausfallen dürfen, um das System trotzdem wiederherstellen zu können. Damit wird klar,
dass der Fehlerdetektor nicht ohne weiteres jeden als ausgefallen eingeschätzten Operator
sofort durch einen neugestarteten und im Sinne eines Sicherungspunktes wiederhergestellten
Operatoren ersetzen darf. Stattdessen setzt das Wiederherstellungsverfahren auf eine Dop-
pelstrategie: Wenn der Fehlerdetektor einen Operator verdächtigt, wird ein Ersatzoperator
initialisiert und auf den letzten Sicherungspunkt des verdächtigten Operators wiederherge-
stellt. Der Operator und sein Ersatz laufen nun zunächst parallel zueinander: Die Vorgänger
senden ihre Ereignisse an beide Operatoren und bekommen von beiden Operatoren Bestä-
tigungsnachrichten, ebenso verhält es sich mit den erzeugten Ereignissen, die von beiden
Operatoren an die Nachfolger weitergegeben werden. Da der Ersatzoperator auf einen
(früheren) Zustand des verdächtigten Operators wiederhergestellt wurde, erzeugt er exakt
denselben Ausgangsstrom, sodass die Vorgänger und Nachfolger von ihm dieselben Ereig-
nisse und Bestätigungsnachrichten bekommen. Ist der verdächtigte Operator noch lebendig,
kommen bei den Nachfolgern Ereignisse doppelt an, die durch die Sequenznummern recht
einfach herausgefiltert werden können. Zudem kommen die Bestätigungsnachrichten bei
den Vorgängern ebenfalls doppelt an, doch da nur die jeweils aktuellste Bestätigung zur
Veränderung des Sicherungsbaumes führt, werden solche Duplikate von den Vorgängern
ebenfalls ignoriert. Ein solcher „Doppelbetrieb“ ist für die Korrektheit der Ereignisverarbei-
tung folglich mit keinen Einschränkungen verbunden, das Verfahren funktioniert weiterhin,
ohne zu Fehlern bei den Konsumenten zu führen.

Der Doppelbetrieb sollte aus Gründen der Effizienz und der Skalierbarkeit des Systems
schnellstmöglich wieder enden, zumal bei einem vermuteten Ausfall des Ersatzoperators ein
Dreifachbetrieb, Vierfachbetrieb, etc. entstehen kann. Um einen Doppelbetrieb zu beenden,
muss einer der redundanten Operatoren durch den Fehlerdetektor entfernt werden: Entwe-
der der Originaloperator oder der Ersatzoperator. Der Ersatzoperator kann sofort entfernt
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werden, wenn sich herausstellt, dass der Originaloperator entgegen der ursprünglichen
Annahmen doch nicht ausgefallen, sondern lebendig ist. Der Originaloperator kann erst
dann entfernt werden, wenn der Ersatzoperator vollständig wiederhergestellt ist, d.h. nicht
nur im Sinne der Ereignisverarbeitung, sondern auch im Sinne der Wiederherstellungs-
fähigkeit nachfolgender Operatoren (vgl. dazu Abschnitt 6.5.2). Zudem muss durch den
Ersatzoperator ein Fortschritt in der Ereignisverarbeitung erzielt worden sein, bevor der
Originaloperator entfernt wird, damit die Lebendigkeit des Systems in einem globalen Kontext
sichergestellt werden kann. Solch ein Fortschritt ist dann gesichert, wenn der Ersatzoperator
eine Bestätigungsnachricht von einem seiner Nachfolger erhält, die eine höhere Sequenz-
nummer bestätigt als dieser Nachfolger zuvor beim Originaloperator bestätigt hatte. Ob
der Originaloperator tatsächlich ausgefallen war, lässt sich nicht feststellen, er wird im
Zweifelsfall nach der Installation und vollständigen Wiederherstellung des Ersatzoperators
einfach vom System entfernt. Ein Operator wird entfernt, indem allen mit ihm verbundenen
Operatoren der Befehl gegeben wird, die Verbindungen mit dem Operator zu entfernen.
Anschließend kann der Host die Ressourcen anderweitig vergeben.

Allgemein betrachtet kann es vorkommen, dass der Ersatzoperator selbst ebenfalls di-
rekt nach seiner Initialisierung ausfällt oder vom Fehlerdetektor als ausgefallen eingeschätzt
wird, noch bevor er wirklich Ereignisse erzeugt und einen wie oben definierten Fortschritt
im Gesamtsystem verursacht. Dann wird ein neuer Ersatzoperator eingerichtet und wenn
dieser eine Zeitlang keinen Heartbeat an den Fehlerdetektor ausliefert, ein weiterer, und
so weiter. Nach Definition der Ausfallcharakteristik dürfen im gesamten System maximal
F Operatoren tatsächlich ausfallen, um Garantien für eine Wiederherstellung des Systems
zu erhalten, d.h. wenn mehr Operatoren gleichzeitig ausfallen, kann das System in einem
undefinierten Zustand geraten und weder Sicherheit noch Lebendigkeit werden garantiert.
Das bedeutet, dass wenn schließlich eine Gruppe von F Ersatzoperatoren gestartet wurde,
mindestens einer der Operatoren (oder der Originaloperator) tatsächlich lebendig sein muss,
ganz egal wie der Fehlerdetektor die Lebendigkeit einschätzt. Vielleicht hat er sämtliche
Zeitschranken für die Kommunikationsverzögerungen und den Jitter zu niedrig angesetzt
und schätzt damit zunächst generell jeden Operator, auch die gerade erst initialisierten,
als ausgefallen ein. Dieser eine Operator wird schließlich irgendwann den oben definier-
ten Fortschritt machen und diesen an den Fehlerdetektor melden. Erst dann entscheidet
sich der Fehlerdetektor dafür, jenen Operator als einzigen unter seinen „Klonen“ in der
neuen Topologie zu erhalten und entfernt alle anderen Operatoren. Dadurch, dass der
Fehlerdetektor auf den Fortschritt gewartet hat, bevor er so handelte, konnte er zum einen
sicherstellen, dass er nur einen tatsächlich lebendigen Operator in die neue, stabilisierte
Topologie aufnimmt und zum anderen, dass ein global sichtbarer Fortschritt stattfindet.
Selbst wenn der so ermittelte Operator direkt danach wieder ausfällt oder als ausgefallen
eingeschätzt wird und der Fehlerdetektor schließlich eine neue Gruppe von Ersatzoperatoren
nach und nach initialisiert, ist durch den Fortschritt in jeder Durchführung dieses Stabilisie-
rungsverfahrens ein Gesamtfortschritt und damit die Lebendigkeit des Systems sichergestellt.

Was könnte passieren, wenn der Fehlerdetektor nicht einen Fortschritt in dem Opera-
tor abwartet, der letztendlich als einziger in der Topologie verbleibt, sondern sofort nach
der Initialisierung und vollständigen Wiederherstellung eines Ersatzoperators alle anderen
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Operatoren aus dem System entfernt? Nehmen wir an, einer der Operatoren, ω, ist genau
der eine Operator aus den maximal F Operatoren mit derselben Korrelationsfunktion, der
für die Zeit der Stabilisierungsphase der Topologie durchgehend lebendig ist. ω könnte
direkt nach seiner (wenn es sich nicht um den Originaloperatoren handelt) Initialisierung
und Zustandswiederherstellung vom Fehlerdetektoren als ausgefallen eingeschätzt werden,
weil die Heartbeat-Nachricht sich verzögert. Ein anderer Operator - nehmen wir an, es
handelt sich dabei bereits um den F-ten Ersatzoperator ωF - wird daraufhin initialisiert
und wiederhergestellt, und ersetzt ω, d.h. der eigentlich lebendige Operator wird aus dem
System entfernt. Da ω lebendig ist, darf ωF direkt nach seiner Wiederherstellung (und der
Bestätigung dieser beim Fehlerdetektor) ausfallen. Das Problem ist nun, dass der einzige
wirklich durchgängig lebendige Operator fälschlicherweise verworfen wurde, während ein
nur kurzzeitig lebendiger Operator, der keinen wahren Fortschritt für das Gesamtsystem
gebracht hat, als Ersatzoperator in der „stabilisierten“ Topologie eingesetzt wurde. Dies
führt im schlechtesten Fall zu einem Hin- und Herspringen zwischen verschiedenen neuen
Ersatzoperatoren, die immer wieder durch andere ersetzt werden, ohne dass ein wirklicher
Fortschritt stattfindet. Das System wäre nicht lebendig in einem globalen Kontext, da keine
Ereignisströme aus dem Umfeld der sich immer wieder neu startenden Operatoren fließen.
Es lässt sich nicht vermeiden, dass ein lebendiger Operator irgendwann einmal doch entfernt
wird, aber durch die Forderung der Wiederherstellung und des Fortschritts kann das nur ge-
schehen, wenn ein anderer wirklich lebendiger Operator im Sinne eines Gesamtfortschrittes
ihn ersetzt. Da mindestens einer der F Operatorenklone lebendig ist und einen Fortschritt
macht, muss der Fehlerdetektor nur abwarten, wo der Fortschritt geschehen ist, um einen
wirklich lebendigen Operator ausfindig zu machen.

Um diese Fortschrittsanforderung umzusetzen, muss ein Operator, wenn er einem wie-
derhergestellten Operatoren eine Bestätigungsnachricht schickt, durch eine „Flag“ anzeigen,
ob die bestätigte Sequenznummer in dieser Nachricht bereits an einen anderen Operatoren
mit der selben Korrelationsfunktion gegangen ist, oder ob es sich um einen Fortschritt
handelt. Eine solche Flag wird als bool’sche Variable mit dem Namen Progress der Bestäti-
gungsnachricht angehängt.

6.5.3.4 Beispiele

Falsch-positive Ausfallerkennung mit Entfernung des Ersatzoperators In Abb. 6.7 ist eine
Topologie mit 5 Operatoren (ωi bis ωm) abgebildet, die von einem Fehlerdetektor (FD) auf
ihre Lebendigkeit überprüft werden. Das Schaubild zeigt die (falsche) Verdächtigung von ωk,
die Initialisierung eines Ersatzoperators und schließlich die Verwerfung des Ersatzoperators.
Schritt für Schritt läuft die Wiederherstellung folgendermaßen ab:

1. Der FD erkennt, dass eine Heartbeat-Nachricht von ωk sich über die Zeitschranke
T hinaus verzögert hat und verdächtigt ωk infolgedessen, ausgefallen zu sein. Ein
Ersatzoperator ωk’ wird initialisiert.

2. Der Ersatzoperator ωk’ wird gestartet und schickt an seine Vorgänger ωi und ωj einen
RecoveryRequest (vgl. Abschnitt 6.5.2.1).
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Abbildung 6.7: Der Fehlerdetektor (FD) schätzt den Operator ωk fälschlicherweise als aus-
gefallen ein und korrigiert den Fehler später.

3. ωi und ωj antworten auf den RecoveryRequest, indem sie alle relevanten Wieder-
herstellungsinformationen an ihren neuen Nachfolger ωk’ senden (siehe Abschnitt
6.5.2.1). Diese Informationen beinhalten auch den jeweils aktuellen Sicherungsbaum
der Operatoren und den jeweiligen relevanten Teil der Ausgangslogs. Die Verbindung
zu ωk wird dabei nicht abgebrochen: Die ausgehenden Ereignisse werden von ωi und
ωj weiterhin ebenfalls an ωk gesendet, die beiden Operatoren verhalten sich so, als
hätten sie 2 Nachfolger. ωk, der von der Initialisierung seines Ersatzoperators nichts
mitbekommen hat, arbeitet in der Zwischenzeit ganz normal weiter und sendet seine
erzeugten Ereignisse an die beiden Nachfolger ωl und ωm. Der Ersatzoperator ωk’
kann seine Ereignisverarbeitung mit Hilfe der von seinen Vorgängern empfangenen
Information wiederherstellen und sendet dann eine RecoveryNotification an seine
Nachfolger ωl und ωm.

Während dieses Vorganges kommt irgendwann doch noch die Heartbeat-Nachricht
des als ausgefallen eingeschätzten Operators ωk beim Fehlerdetektor an, d.h. aus Sicht
des FD muss ωk lebendig sein. Da der FD noch keinen Bescheid vom Ersatzoperator
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6.5 Wiederherstellung im Fehlerfall

ωk’ über dessen vollständige Wiederherstellung und den Fortschritt im Gesamtsystem be-
kommen hat, entscheidet er sich dafür, ihn zurückzuziehen und stattdessen weiter ωk
im CEP-System zu nutzen.

4. Das System läuft wieder im Normalbetrieb ohne redundante Operatoren.

Anmerkung: Wenn der Fehlerdetektor den Originaloperator ωk fälschlicherweise als ausge-
fallen eingeschätzt hatte und diese Einschätzung korrigiert, kann er die Zeitschranke T für
den Jitter der Heartbeat-Nachrichten nach oben korrigieren, um künftige Fehleinschätzungen
zu vermeiden.
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Abbildung 6.8: Der Fehlerdetektor (FD) schätzt den Operator ωk fälschlicherweise als aus-
gefallen ein und übernimmt den Ersatzoperator ωk’ in die Topologie.

Falsch-positive oder korrekte Ausfallerkennung mit Entfernung des Originaloperators In
Abb. 6.8 ist eine Topologie mit 5 Operatoren (ωi bis ωm) abgebildet, die von einem Fehlerde-
tektor (FD) auf ihre Lebendigkeit überprüft werden. Das Schaubild zeigt die (falsche oder
korrekte) Verdächtigung von ωk, die Initialisierung eines Ersatzoperators und schließlich die
Verwerfung des Originaloperators. Ob ωk tatsächlich ausgefallen war, spielt in dem Fall, in
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dem ein Ersatzoperator in der stabilisierten Topologie eingesetzt wird, letztendlich keine
Rolle mehr und es ist für den Fehlerdetektor auch nicht ersichtlich, ob er sich bezüglich ωk
geirrt hat. Schritt für Schritt läuft die Wiederherstellung folgendermaßen ab:

1. Der FD erkennt, dass eine Heartbeat-Nachricht von ωk sich über die Zeitschranke
T hinaus verzögert hat und verdächtigt ωk infolgedessen, ausgefallen zu sein. Ein
Ersatzoperator ωk’ wird initialisiert.

2. Der Ersatzoperator ωk’ wird gestartet und schickt an seine Vorgänger ωi und ωj einen
RecoveryRequest (vgl. Abschnitt 6.5.2.1).

3. ωi und ωj antworten auf den RecoveryRequest, indem sie alle relevanten Wieder-
herstellungsinformationen an ihren neuen Nachfolger ωk’ senden (siehe Abschnitt
6.5.2.1). Diese Informationen beinhalten auch den jeweils aktuellen Sicherungsbaum
der Operatoren und den jeweiligen relevanten Teil der Ausgangslogs. Die Verbindung
zu ωk wird dabei nicht abgebrochen: Die ausgehenden Ereignisse werden von ωi und
ωj weiterhin ebenfalls an ωk gesendet, die beiden Operatoren verhalten sich so, als
hätten sie 2 Nachfolger. ωk, der von der Initialisierung seines Ersatzoperators nichts
mitbekommen hat, arbeitet in der Zwischenzeit ganz normal weiter und sendet seine
erzeugten Ereignisse an die beiden Nachfolger ωl und ωm. Der Ersatzoperator ωk’
kann seine Ereignisverarbeitung mit Hilfe der von seinen Vorgängern empfangenen
Information wiederherstellen und sendet dann eine RecoveryNotification an seine
Nachfolger ωl und ωm.

Im Gegensatz zum vorherigen Beispiel in Abb. 6.7 kommt von ωk auch weiterhin
keine Heartbeat-Nachricht beim Fehlerdetektor an. Die Ereignisverarbeitung über den
Ersatzoperator ωk’ schreitet weiter voran, bis ihm schließlich einer der Nachfolger eine
Bestätigungsnachricht sendet, die ein Ereignis mit höherer Sequenznummer bestätigt
als die von diesem Nachfolger zuvor gesendeten Bestätigungen.

4. Wenn ωk’ eine Bestätigungsnachricht von einem der Nachfolger erhalten hat, die einen
Fortschritt in der Ereignisverarbeitung für das Gesamtsystem anzeigt, benachrichtigt er
den Fehlerdetektor darüber („Recovered!“). Der Fehlerdetektor, der in der Zwischenzeit
immer noch keine Nachrichten von ωk erhalten hat, entscheidet sich daraufhin, den
(nachgewiesenermaßen lebendigen) Ersatzoperator ωk’ zu dem Operator zu machen,
der in der stabilisierten Topologie den Platz des Originaloperators einnimmt, und
nimmt ωk aus dem System.

Anpassung der Zeitschranke T Die Zeitschranke T für die Übertragungszeit und den Jitter
von Heartbeat-Nachrichten wird zu Beginn auf einen sinnvollen Wert initialisiert. Dieser Wert
hängt von der Netzwerktopologie ab, die der Operatortopologie zugrunde liegt und muss
vom Systemarchitekten bestimmt werden. Ein sinnvoller Wert ist ein Wert, der üblicherweiser
nicht überschritten wird, der aber andererseits die Durchschnittszeit nicht zu sehr übersteigt,
damit das System auf Ausfälle relativ zügig reagieren kann. Der Initialwert für T kann
in einer bestimmten Situation angepasst werden: Wenn der Fehlerdetektor einen Operator
fälschlicherweise verdächtigt, ausgefallen zu sein, und diese Entscheidung rückgängig macht,
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6.5 Wiederherstellung im Fehlerfall

d.h. den dafür initialisierten Ersatzoperator wieder aus dem System entfernt, kann T für die
Kommunikation mit diesem Operator höher gesetzt werden, um diesen Fehler in Zukunft
zu vermeiden. Für die Anpassung von Zeitschranken für Fehlerdetektoren gibt es in der
Literatur schon verschiedene Verfahren der dynamischen Adaption, z.B für Eventually Perfect
Failure Detectors [CT96].

6.5.3.5 Verteilung des zentralen Fehlerdetektors auf die Operatoren

Die Abstraktion des zentralen Fehlerdetektors vereinfacht die Sicht auf das Wiederherstel-
lungsverfahren und ist daher für die theoretische Betrachtung und Analyse zweckmäßig.
Wenn das CEP-System implementiert wird, kann man auch andenken, den Fehlerdetektor
auf verschiedene Operatoren zu verteilen. Beispielsweise könnte jeweils einer der Vorgänger-
operatoren den Heartbeat seiner Nachfolger überprüfen und dann entsprechend handeln.
Allerdings kommen bei einem solchen verteilten Fehlerdetektor neue Fragestellungen auf,
die vor allem mit der Asynchronität zusammenhängen. Beispielsweise müssen sich verschie-
dene Operatoren, die für einen Einsatz als Fehlerdetektor für einen bestimmten anderen
Operatoren in Frage kommen, darauf einigen, welcher Operator diese Rolle innehat. Es muss
sichergestellt sein, dass der Operator, welcher Fehlerdetektor ist, auch tatsächlich lebendig
ist. Eine ungeeignete Anordnung von Operatoren, die sich gegenseitig überprüfen, kann
zu Deadlock-Situationen führen. Die genaue Untersuchung der Möglichkeiten für einen
verteilten Fehlerdetektor auf Fail-Silent-Operatoren ist ein spannendes Forschungsgebiet,
das im Rahmen dieser Arbeit allerdings nicht vertieft werden kann.

6.5.4 Beweis der Korrektheit

In diesem Abschnitt folgt nun der Beweis, dass die Invarianten 6.3.1 und 6.3.2 aus Abschnitt
6.3.2 eingehalten werden und somit das Verfahren korrekt arbeitet.

Invariante 6.3.1, die Wiederherstellbarkeit von Operatoren, ist durch das Konzept der
Sicherungspunkte und Sicherungsbäume sichergestellt. Ein Operator sendet stets einen
aktuellen Sicherungspunkt an alle seine Vorgänger, diese bauen ihn in einen Sicherungsbaum
ein und senden diesen an ihre Vorgänger, und so weiter, sodass der Sicherungspunkt des
Operators in allen Vorgänger bis zu F Ebenen weit gespeichert ist. Selbst wenn also der
Operator und F-1 Vorgänger in einer Sequenz gleichzeitig ausfallen, ist der Sicherungspunkt
des Operators nach der Wiederherstellung seiner Vorgänger noch verfügbar. Somit ist der
Operator auch beim gleichzeitigen Ausfall von F Operatoren zu einem Sicherungspunkt
wiederherstellbar.

Invariante 6.3.2, die definiert, dass die Sicherungspunkte so gewählt sein müssen, dass
jederzeit alle von den Konsumenten noch nicht bestätigten σconsumer-Ereignisse wieder er-
zeugt werden können, ist ebenfalls jederzeit erfüllt. Dies folgt daraus, dass ja gerade die
Konsumenten durch ihre Bestätigungsnachrichten (ACKs) überhaupt erst eine Aktuali-
sierung der Sicherungspunkte anstoßen, die sich „wellenförmig“ stromabwärts über die
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Operatoren fortsetzt. Durch die Berechnung der Umkehrfunktion f−1, die jeweils das Star-
tereignis des Korrelationsfensters eines bestätigten Ereignisses zurückgibt, ist sichergestellt,
dass nur Ereignisse, die älter als die an der Erzeugung von σconsumer beteiligten Ereignisse
sind, gelöscht werden.

Nach Abschnitt 6.3.2.1 folgt daraus die Korrektheit des Wiederherstellungsverfahrens.
Dass die Lebendigkeit des Gesamtsystems ebenfalls sichergestellt ist (d.h. es macht nicht
nur „nichts Falsches“, sondern es macht auch „das Richtige“), wird in Abschnitt 6.5.3.3
ausführlich dargelegt.

6.6 Kritik des Ansatzes

Das in diesem Kapitel eingeführte Rollback-Recovery-Verfahren ohne persistente Check-
points bringt einige Vorteile gegenüber anderen Wiederherstellungsverfahren mit sich. Die
Operatoren müssen über keinen persistenten Speicher zur Sicherung von Zustandsinforma-
tionen oder Ereignislogs verfügen und eine Sicherung dieser Informationen im volatilen
Speicher verspricht schnellere Zugriffszeiten. Es müssen nicht dauerhaft redundante Opera-
toren vorgehalten werden, damit das System eine Ausfallsituation überstehen kann. Dies
sind die substantiellen Vorteile gegenüber den gängigen Wiederherstellungsverfahren, wie
sie auch in Kapitel 5 untersucht werden.

Doch es gibt auch Nachteile bei dem Verfahren, insbesondere wenn die Zahl der Ope-
ratoren und der Parameter F für die maximal verkraftbare Anzahl der gleichzeitigen Ausfälle
sehr hoch sind. Es müssen mitunter sehr viele Zustandsinformationen in einem Operator
gespeichert werden, denn je nach Topologie und Tiefe kann der Sicherungsbaum schnell
anwachsen, im schlechtesten Fall muss in manchen Operatoren von beinahe jedem anderen
Operatoren ein Sicherungspunkt gespeichert werden. Ebenso problematisch kann der Ausfall
einer Sequenz von Operatoren sein: Dadurch, dass in einem solchen Fall keine parallele
Wiederherstellung aller ausgefallenen Operatoren möglich ist, sondern die Operatoren
sequentiell von unten nach oben wiederhergestellt werden müssen, kann es relativ lange
dauern, bis alle Operatoren wieder korrekt laufen.

Im folgenden Kapitel werden diese Probleme analysiert und es wird ein Lösungsvorschlag
erarbeitet.
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7 Erweiterung des Ansatzes

In Abschnitt 6.6 wurden einige mögliche Schwachstellen des vorgestellten Modells angespro-
chen, die insbesondere die Skalierbarkeit des Systems und die Latenzzeit bei Operatorausfäl-
len beeinträchtigen können. In diesem Kapitel soll genauer untersucht werden, in welchen
Fällen sich durch die Topologie des CEP-Systems der Aufwand für Kommunikation und
Berechnungen und der Speicherbedarf für die einzelnen Operatoren besonders verstärken
kann. Es wird gezeigt, dass manche Topologieformen die Anzahl der übertragenen Bestä-
tigungsnachrichten, die Größe des Ausgangslogs und das Ausmaß des Sicherungsbaumes
für bestimmte Operatoren signifikant verstärken können. Durch die Nutzung persistenter
Speicherschichten können bestimmte Operatoren besonders entlastet werden, indem die Men-
ge an zu sichernder Zustandsinformation verringert wird. Zudem kann die Latenzzeit bis
zur Wiederherstellung einer Sequenz von ausgefallenen Operatoren ebenfalls verringert
werden. Es wird gezeigt, wie persistente Speicherschichten das CEP-System in verschiedene
Teilsysteme unterteilen können, was den einzelnen Operatoren in einem solchen Teilsystem
entlastet.

7.1 Problematische Topologien

7.1.1 Operatoren mit vielen Vorgängern

In Abb. 7.1 ist eine Topologie dargestellt, in der ein Operator ωi n direkte Vorgänger ω1 bis
ωn hat. Ein solches Muster in der Topologie hat spezielle Folgen für die Zustandsinformatio-
nen, die in den Vorgängern gespeichert werden. Die Bestätigungsnachrichten von ωi werden
n Mal repliziert und haben damit auch einen n-fachen Effekt auf die Aktualisierung von
Sicherungspunkten und die Kürzung von Ausgangslogs und gespeicherten Konsumopera-
tionen. Ein Operator mit vielen Vorgängern ist also ein Bestätigungs-Verstärker. Zudem wird
der Sicherungsbaum von ωi bei einer neuen Bestätigungsnachricht n mal versendet und n
mal gespeichert.

Es wäre vorteilhaft, wenn ωi einen möglichst kleinen Sicherungsbaum besitzt, um die
übertragene Datenmenge in den Bestätigungsnachrichten zu minimieren und damit auch
die Größe der Sicherungsbäume der Vorgänger und deren Vorgänger bis zu einer Tiefe
von n-1 Verarbeitungsebenen. Zudem wäre es vorteilhaft, wenn ωi empfangene Ereignisse
möglichst schnell bestätigen kann, damit die Vorgänger (und deren Vorgänger bis zu den
Ereignisquellen) ihre Ausgangslogs und gespeicherten Konsumoperationen möglichst schnell
nach der Erzeugung wieder kürzen können. Je tiefer der Operatorbaum sich bis zu den
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Abbildung 7.1: Eine Topologie, in der ein Operator viele Vorgänger hat.

Konsumenten zieht, desto größer werden im Allgemeinen die Mengen an für die Wiederher-
stellung vorgehaltenen Ereignissen in allen Zwischenstufen bis zu einem fertiggestellten und
bestätigten Ereignis, das an einen Konsumenten ausgeliefert wurde. Die Tatsache, dass ein
Operator viele Vorgänger hat, vervielfacht diesen Effekt.

7.1.2 Operatoren mit vielen Nachfolgern

Ein anderes Extrem in Topologien ist ein Operator, der viele direkte Nachfolger hat. In
Abb. 7.2 ist eine solche Topologie dargestellt: Der Operator ωi hat mit den Operatoren ω1
bis ωn n direkte Nachfolger. Ein solches Muster hat für den Operatoren ωi und dessen
Vorgänger wiederum spezielle Folgen. So setzt sich der Sicherungsbaum von ωi aus Teilen
der Sicherungsbäume aller seiner n Nachfolger zusammen, bei einem großen n kann der
Sicherungsbaum also entsprechend groß werden. Dieser potentiell große Sicherungsbaum
wird gekürzt auch an die Vorgänger von ωi weitergegeben und dort gespeichert. Die Ver-
größerung des Sicherungsbaumes kann sich somit bis zu F-1 Ebenen stromabwärts von ωi
aus fortsetzen, wobei sich der Effekt durch die Kürzung der Sicherungsbäume auf eine Tiefe
von F nach und nach abschwächt. Eine Bestätigungsnachricht eines Nachfolgers führt nicht
immer direkt zu einer Aktualisierung des Sicherungspunkts von ωi, sondern nur wenn
sich die niedrigste bestätigte Sequenznummer aller Vorgänger ändert, ein Operator mit
vielen Nachfolgern kann in diesem Sinne also als ein Bestätigungs-Aggregator angesehen
werden. Der Sicherungsbaum wird allerdings bei jeder empfangenen Bestätigungsnachricht
aktualisiert.
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Abbildung 7.2: Eine Topologie, in der ein Operator viele Nachfolger hat.

Bei sehr vielen Nachfolgern kann es für den Operatoren ωi schwierig werden, die Si-
cherungsbäume zu speichern. Wenn er dazu viele Vorgänger hat, muss er seinen eigenen
großen Sicherungsbaum auch noch regelmäßig an diese versenden (vgl. Abschnitt 7.1.1). Es
wäre also vorteilhaft, wenn der Sicherungsbaum von ωi verkleinert werden könnte.

7.1.3 Viele Operatoren in einer Sequenz

Bei vielen Operatoren in einer Sequenz zwischen Ereignisquellen und -konsumenten kann
sich der Speicherbedarf für das Ausgangslog eines Operators erhöhen, wenn zwischen
dem Operator und den Konsumenten viele weitere Operatoren und damit viele weitere
Zwischenschritte in der Ereignisverarbeitung positioniert sind. Dadurch, dass in den ein-
zelnen Verarbeitungsschritten im Allgemeinen die Anzahl der Ereignisse eher abnimmt,
da „einfache“ Ereignisse zu „komplexen“ Ereignissen verdichtet werden, sind jeweils viele
Ereignisse aus niedrigen Verarbeitungsebenen an der Erzeugung eines Ereignisses aus einer
hohen Verarbeitungsebene beteiligt. Das heißt auch, dass sich die Größe des Ausgangslogs
im Sinne der Anzahl der gespeicherten Ereignisse im Allgemeinen stromabwärts erhöht.
Mit jedem weiteren sequentiellen Operatoren vergrößert sich das Ausgangslog aller seiner
Vorgänger in der transitiven Hülle pred* sogar um den Faktor der durchschnittlichen Anzahl
ws an neuen Ereignissen, die der Operator von jedem Vorgänger für eine Korrelation benö-
tigt. Dies hängt damit zusammen, dass für die Produktion eines Ereignisses, das an einen
Konsumenten ausgeliefert wird, dann eine ws-fache Menge an Ereignissen der niedrigeren
Verarbeitungsebenen benötigt wird. Die Ausgangslogs können somit mit der Anzahl der
sequentiellen Operatoren exponentiell anwachsen. In der Evaluation in Kapitel 8.5.1 wird
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diese Überlegung durch Messungen bestätigt.

Ein weiterer Nachteil einer tiefen Topologie mit vielen Verarbeitungsebenen tritt bei der
Wiederherstellung einer großen Menge von Operatoren, die in einer Sequenz liegen, auf. Um
den letzten Operator in der Sequenz wiederherzustellen, müssen erst alle seine Vorgänger
wiederhergestellt werden. Dies setzt sich fort bis zur Wiederherstellung der ausgefallenen
Operatoren der niedrigsten Verarbeitungsebenen. Im schlechtesten Fall muss beim Ausfall
von F Operatoren der Operator der höchsten Verarbeitungsebene bis zu seiner eigenen Wie-
derherstellung zunächst auf die Wiederherstellung von F-1 anderen Operatoren warten. Eine
Parallelisierung der Wiederherstellung ist im Falle eines Ausfalls sequentiell angeordneter
Operatoren nicht möglich.

7.2 Persistente Speicherschichten

Bisher sind die Operatoren und die Algorithmen für ihre Wiederherstellung gezielt so
entworfen worden, dass sie ohne einen persistenten Speicher funktionieren. Dies hat mehrere
Vorteile: Zum einen sind persistente Speicheroperationen vergleichsweise teuer, da sie mehr
Zeit benötigen als eine Speicherung in einem volatilen Speicher. Zum anderen kann ein
solcher Algorithmus auch auf Computersystemen laufen, die gar keinen beschreibbaren
persistenten Speicher für die Anwendung bereitstellen.

Es kann jedoch sinnvoll sein, in bestimmten Situationen auf einen persistenten Speicher
zurückzugreifen, um die Operatoren und die Kommunikationsverbindungen zu entlasten.
Die Idee dahinter ist, dass eine Sicherung bestimmter Zustandsdaten von Operatoren in
einem persistenten Speicher trotz der höheren einmaligen Speicherungskosten immer noch
günstiger sein kann als die Replikation dieser Daten in mehreren volatilen Speichern, die
auf verschiedene Operatoren verteilt sind. Wenn eine persistente Speicherung günstiger ist
und ein persistenter Speicher mit ausreichender Datenverfügbarkeit vorhanden ist, sollte
ein solcher Speicher verwendet werden. Außerdem kann die Skalierbarkeit erhöht werden,
indem mit der Speicherung von Zustandsdaten überlastete Operatoren durch einen per-
sistenten Speicher entlastet werden können. Was ist dann aber der Unterschied zu einem
„klassischen“ Rollback-Recovery-Verfahren, in dem jeder Knoten von Zeit zu Zeit einen
persistenten Checkpoint anlegt? Es ist die Flexibilität: Eine persistente Speicherschicht kann
eingesetzt werden, sie muss es nicht. Vielmehr kann in jeder Topologie an jeder Stelle die
Abwägung getroffen werden, ob ein persistenter Speicher oder die Verteilung der Zustands-
informationen auf volatile Speicher die günstigere Alternative ist. Eine Kostenrechnung führt
zur Entscheidung für oder gegen einen persistenten Speicher an bestimmten Stellen in der
Topologie des Systems. Schließlich könnte diese dann in einem dynamischen Algorithmus
angewendet werden, der die automatisierte Verwaltung von persistenten Speicherschichten
ermöglicht.

In diesem Abschnitt wird das Konzept des Einsatzes eines persistenten Speichers im Rahmen
des Systemmodells erläutert.
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7.2.1 Konzept und Funktionsweise

Der persistente Speicher arbeitet wie ein weiterer Operator, der zwischen zwei oder mehr
miteinander verbundene Operatoren geschaltet wird. Die entsprechenden Operatoren kom-
munizieren dann nicht mehr direkt miteinander, sondern mit dem persistenten Speicher.
Dieser speichert die übertragenen Daten, d.h. Ereignisse von seinen Vorgängern und Siche-
rungsbäume von seinen Nachfolgern. Die Ereignisse werden nach der Speicherung an die
Nachfolger zur Sequenzierung in deren Eingangsströmen weitergeleitet, die Sicherungsbäu-
me hingegen werden persistent in ihrer jeweils aktuellsten Version gespeichert, aber nicht
vollständig an die Vorgänger zur volatilen Speicherung weitergeleitet. Statt der Übertragung
der kompletten Sicherungsbäume der Tiefe F werden in den Bestätigungsnachrichten an
die Vorgänger lediglich die empfangenen und persistent gespeicherten Ereignisse bestätigt.
Damit arbeitet ein persistenter Speicher wie eine Kombination aus Ereigniskonsument und
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Abbildung 7.3: Funktionsweise eines persistenten Speichers in der Kommunikation mit 2

Operatoren.

-quelle. Gegenüber den Vorgängern des persistenten Speichers gibt er sich als Konsument
aus, der empfangene und persistent gespeicherte Ereignisse mit einfachen Nachrichten be-
stätigt. Gegenüber seinen Nachfolgern liefert er diese Ereignisse wie eine Ereignisquelle aus,
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speichert und verwaltet die in den Bestätigungsnachrichten empfangenen Sicherungsbäume
und bereinigt die Ausgangslogs.

Abb. 7.3 zeigt einen persistenten Speicher P, der zwischen zwei ursprünglich miteinan-
der verbundene Operatoren ω1 und ω2 geschaltet wurde. Ereignisse, die von ω1 an P
gesendet werden, werden von P persistent gespeichert und dann mit einer einfachen Bestä-
tigungsnachricht (Bestätigung der Sequenznummer) beim Produzenten bestätigt. Insofern
verhält sich P gegenüber ω1 wie ein Ereigniskonsument. Die von P persistent gespeicherten
Ereignisse werden an den Empfänger ω2 gesendet. Dieser wird die Ereignisse weiterverar-
beiten, bis sie schließlich als σconsumer-Ereignisse an einen Konsumenten ausgeliefert und
von diesem bestätigt werden. Die Bestätigungen werden stromabwärts weiterverarbeitet
und führen zum Aufbau eines Sicherungsbaums der maximalen Tiefe F. Schließlich sendet
ω2 eine Bestätigungsnachricht an P, die einen Sicherungsbaum enthält. P speichert bzw.
aktualisiert den Sicherungsbaum, um ω2 und dessen Nachfolger wiederherstellen zu können,
und kann nun anhand des Sicherungspunktes von ω2 sein eigenes persistentes Log von
Ereignissen kürzen, indem alle Ereignisse mit einer niedrigeren Sequenznummer als das
zuletzt von ω2 bestätigte Ereignis aus dem persistenten Speicher entfernt werden.
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8 Evaluation

Basierend auf dem eingeführten Systemmodell (siehe Kapitel 3) wurde das entwickelte
Wiederherstellungsverfahren (siehe Kapitel 6) im ereignisbasierten Simulations-Framework
OMNeT++ [Omn] implementiert. Anhand dieser Implementierung wird eine Evaluation
des Systemverhaltens unter verschiedenen Simulationsparametern durchgeführt. Ziel der
Evaluation ist es vor allem, einige der in Kapitel 7 analysierten Fragen und Annahmen über
das Systemverhalten durch eine Untersuchung der gewonnen Messdaten zu hinterfragen
und somit auch zu Schlussfolgerungen über den Einsatz von persistenten Speicherschichten
zu kommen. Zudem wird durch die praktische Implementierung der Algorithmen und der
Prüfung der Ergebnisse das Wiederherstellungsverfahren validiert.

Ein grober Überblick über die Implementierungsdetails wird in Abschnitt 8.1 gegeben.
In Abschnitt 8.2 werden die Topologien definiert, auf denen die Simulationsläufe ausgeführt
werden und es wird erklärt, wie die Simulation im Einzelnen abläuft. Schließlich werden in
Abschnitt 8.3 die Szenarien bzw. Parameter definiert, unter denen die Simulation abläuft,
bevor in Abschnitt 8.4 die entsprechenden Ergebnisse in grafischen Schaubildern dargestellt
werden. Das Kapitel schließt in Abschnitt 8.5 mit Schlussfolgerungen darüber, was die
erzielten Ergebnisse für den Einsatz von persistenten Speicherschichten im Kontext des
Wiederherstellungsverfahrens bedeuten.

8.1 Details zur Implementierung

In Abb. 8.1 wird die Architektur der Implementierung vereinfacht dargestellt. Ein zentraler
Aspekt ist hierbei der sog. Broker, der einen Host implementiert, auf dem jeweils ein Opera-
tor platziert werden kann. Diese Broker laufen im Gegensatz zur Definition in Kapitel 3.3.2
zur Vereinfachung des Verfahrens in einem Crash-Recovery-Fehlermodell, d.h. bei einem
Absturz verliert der Broker alle Zustandsinformationen, fährt allerdings automatisch wieder
hoch und steht zur Wiederherstellung des platzierten Operators zur Verfügung. Somit sind
Rekonfigurationen der Operatortopologie unnötig, die Evaluation zielt ausschließlich auf die
Wiederherstellung der Ereignisströme ab (vergleiche dazu auch den Aufbau in Kapitel 6.5).

Quellen und Konsumenten sind über Kommunikationsverbindungen jeweils mit den Brokern
verbunden, die in OMNeT++ über gates und connections realisiert werden. Die Ströme
von Ereignissen und Bestätigungsnachrichten laufen wie in Kapitel 6.4 erläutert ab.

Der Coordinator überwacht die Heartbeat-Nachrichten der Broker und veranlasst und
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Source Consumer

Broker

Operator

Coordinator CrashGenerator

Abbildung 8.1: Architektur der Implementierung. Die Rechtecke stellen Komponenten dar,
die Pfeile Kommunikationsverbindungen.

koordiniert die Wiederherstellung von abgestürzten Brokern. Ob und wann ein Broker ab-
stürzt, wird von der Komponente CrashGenerator gesteuert, der periodisch an verschiedene
Broker CrashRequests verschickt. Über diese Komponente lassen sich die Frequenz und die
Wahrscheinlichkeit von Abstürzen steuern.

8.2 Topologien und Simulationsablauf

ω1 ωNS C...

Abbildung 8.2: Topologien in der Evaluation.

Bei der Evaluation in dieser Arbeit wird keine „praxistypische“ Topologie untersucht, son-
dern ein sog. kritischer Pfad, anhand dessen die Verhaltensweisen des Systems in bestimmten
Situation beobachtet werden können. Das heißt, dass die untersuchten Topologien immer
nach dem folgenden Muster aufgebaut sind (Abb. 8.2): Eine Ereignisquelle ist mit einer
Sequenz von 1 bis N Operatoren verbunden und der letzte Operator in dieser Reihe ist
schließlich mit einem Konsumenten verbunden. Eine solche einfache Topologie lässt direkte
Schlüsse auf Verhältnismäßigkeiten zwischen Parametereinstellungen und gemessenen Da-
ten zu.
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8.3 Getestete Szenarien und Parameter

In der Simulation werden verschiedene Konstellationen von Parametern getestet. Dabei
werden stets alle Parameter bis auf einen festgehalten, und die Änderungen im System-
verhalten bei verschiedenen Werten für den veränderbaren Parameter untersucht. Bei der
Entscheidung des CrashGenerator über Abstürze von Brokern wird auf einen Zufallszahlen-
generator zurückgegriffen, was ausschließlich Szenario 3 (siehe Abschnitt 8.3.3.3) betrifft.
Hierbei wird eine Gleichverteilung des Mersenne Twister Random Number Generator [MN98]
eingesetzt, der im OMNet++-Framework implementiert ist. Für jede Parameterkonfiguration
wird eine Reihe von 5 Simulationsdurchläufen durchgeführt, bei denen jeweils verschiedene
Seeds für den RNG eingesetzt werden. Die Ergebnisse der Simulationsläufe werden dann
in einem Konfidenzintervall dargestellt. In Szenario 1 und 2 (siehe Abschnitte 8.3.3.1 und
8.3.3.2) wird nicht auf Zufallswerte zugegriffen, sodass dort lediglich ein Simulationslauf
durchgeführt wird. Für alle Szenarien gilt, dass in jedem Simulationslauf 1.000.000 Ereignisse
in der Ereignisquelle produziert und durch die Operatortopologie verarbeitet werden.

Die Operatoren sind so eingestellt, dass sie immer eine bestimmte Anzahl von einge-
henden Ereignissen in einem Korrelationsfenster sammeln. Sobald die festgelegte Zahl
an Ereignissen eingegangen ist, wird das Korrelationsfenster geschlossen, die Korrelation
wird durchgeführt und es wird ein ausgehendes Ereignis produziert. Das nächste Korre-
lationsfenster wird dann mit dem ersten eingehenden Ereignis nach dem Endereignis des
vorherigen Fensters geöffnet. Damit haben alle Korrelationsfenster in den Operatoren die
selbe Größe und überlappen nicht.

8.3 Getestete Szenarien und Parameter

8.3.1 Parameter

Auf Basis der beiden vorhergehenden Abschnitte, in denen die Architektur der Implementie-
rung und der Aufbau der Operatortopologie in der Simulation beschrieben werden, lassen
sich verschiedene Parameter feststellen, anhand deren die Simulation in ihren wesentlichen
Aspekten gesteuert wird. Einige der Parameter werden in allen Parameterkonfigurationen
auf einen festen Wert eingestellt sein, andere wiederum sind veränderlich, um bestimmte
Verhaltensweisen des Systems aufzuzeigen. In Tabelle 8.1 folgt eine Übersicht über die
wesentlichen Parameter; die veränderbaren Parameter bekommen dabei einen speziellen
Bezeichner, der in den Auswertungen zur Referenzierung benutzt wird.

8.3.2 Was wird gemessen?

Gemessen wird die Lebensdauer von Ereignissen in den Quellen, das heißt der Zeitraum
zwischen der Erzeugung eines Ereignisses (und damit der Speicherung im Ausgangslog der
Quelle) und dem Empfang der Bestätigungsnachricht, die zur Entfernung des Ereignisses aus
dem Ausgangslog führt. Über die gemessenen Zeiträume lassen sich direkte Rückschlüsse
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Bezeichner Name Wertebereich Beschreibung
Verzögerung fest: 20 ms Verzögerung der Kommuni-

kationsverbindungen. Sämtli-
che Kommunikationsverbin-
dungen haben diesen Verzö-
gerungswert fest eingestellt.

Anzahl Quellen fest: 1 Anzahl der Ereignisquellen.
Anzahl Konsu-
menten

fest: 1 Anzahl der Ereigniskonsu-
menten.

Frequenz der
Quellen

fest: 1 Event / ms Frequenz, in der Ereignisquel-
len neue Ereignisse produzie-
ren.

ws Korrelations-
fenstergröße

variabel: 5 bis 40 Anzahl von Ereignissen in ei-
nem Korrelationsfenster.

pl Pfadlänge variabel: 1 bis 5 Anzahl der in Sequenz ge-
schalteten Operatoren zwi-
schen Quelle und Konsumen-
ten.

Heartbeat-
Frequenz

fest: 1 / 2000 ms Frequenz der Heartbeat-
Nachrichten (bestimmt auch
Verzögerung der Ausfaller-
kennung).

P(crash) Absturz-
wahrscheinlichkeit

variabel: 0,00 bis 0,40 Wahrscheinlichkeit für einen
Operator, während einer Ent-
scheidung des CrashGenera-
tor abzustürzen.

Frequenz des
CrashGenerator

fest: 1 / 1000 ms Frequenz, in welcher der
CrashGenerator über Abstür-
ze von Operatoren (jeweils
mit P(crash)) entscheidet.

Maximale Anzahl
der Abstürze

fest: Pfadlänge Es können in jeder Ent-
scheidung des CrashGenera-
tor sämtliche Operatoren ab-
stürzen (falls P(crash) > 0 ist).

Simulations-
laufzeit

fest: 1000 s Die Simulation wird nach Ab-
lauf der Simulationslaufzeit
abgeschlossen und die Ergeb-
nisse werden ermittelt.

Verarbeitungs-
dauer

fest: 0 ms Korrelationen werden sofort
durchgeführt, eine Verzöge-
rung durch benötigte Berech-
nungszeit wird nicht einbe-
rechnet.

Tabelle 8.1: Simulationsparameter

76
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auf die Größe des Ausgangslogs in den Quellen ziehen. Es wird stets die minimale und
die maximale Lebensdauer über alle Ereignisse in der Ereignisquelle gemessen sowie ein
aus allen Messungen des Simulationslaufes gebildeter Mittelwert berechnet. Die Werte
werden dann über alle Simulationsläufe gemittelt. Die maximale Lebenszeit aller Ereignisse
bestimmt die Größe, die das Ausgangslog einer Ereignisquelle annehmen kann. Durch die
Produktionsfrequenz der Quellen von genau 1 Event / ms sind die Lebensdauer eines
Ereignisses in ms und Anzahl der gespeicherten Ereignisse im Ausgangslog identisch.

8.3.3 Parametereinstellungen in den verschiedenen Szenarien

8.3.3.1 Szenario 1: Variable Pfadlänge

Das erste Szenario untersucht den Einfluss der Pfadlänge pl auf die Lebensdauer der Ereig-
nisse in den Ausgangslogs der Ereignisquelle. Die variablen Parameter ws und P(crash) sind
auf folgende Werte eingestellt:

ws = 10

P(crash) = 0,00

Der Einfluss der Pfadlänge auf die Lebensdauer der Ereignisse in den Ausgangslogs der
Ereignisquelle wird durch theoretische Betrachtungen als signifikant eingeschätzt. Jeder
zusätzliche Operator und damit eingehender Korrelationsschritt vergrößert die Zahl der Er-
eignisse aus den Ereignisquellen, die zu einem an den Konsumenten ausgelieferten Ereignis
korreliert werden. Damit ist auch ein Einfluss auf die Lebensdauer der Ereignisse in der
Ereignisquelle zu erwarten.

8.3.3.2 Szenario 2: Variable Größe der Korrelationsfenster

Das zweite Szenario untersucht den Einfluss der Größe der Korrelationsfenster ws auf die
Lebensdauer der Ereignisse in den Ausgangslogs der Ereignisquelle. Die variablen Parameter
pl und P(crash) sind auf folgende Werte eingestellt:

pl = 3

P(crash) = 0,00

Die Größe der Korrelationsfenster verändert die Menge der Ereignisse aus der Ereignisquelle,
die für ein korreliertes und an den Konsumenten ausgelieferten Ereignis benötigt werden.
Damit ist auch ein Einfluss auf die Lebensdauer der Ereignisse in der Ereignisquelle zu
erwarten.
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8.3.3.3 Szenario 3: Variable Absturzwahrscheinlichkeit

Das dritte Szenario untersucht den Einfluss der Absturzwahrscheinlichkeit P(crash) auf die
Lebensdauer der Ereignisse in den Ausgangslogs der Ereignisquelle. Die variablen Parameter
ws und pl sind auf folgende Werte eingestellt:

ws = 10

pl = 3

Abstürze und Wiederherstellungen von Operatoren haben zwar keinen Einfluss auf die Men-
ge der Ereignisse aus der Ereignisquelle, die zu einem an den Konsumenten ausgelieferten
Ereignis korreliert werden, doch durch die Dauer des Wiederherstellungsverfahrens wird
zwischen der Erzeugung und der Bestätigung von Ereignissen eine zusätzliche Verzögerung
verursacht. Diese beinflusst die Lebensdauer der Ereignisse in den Ereignisquellen.

8.4 Ergebnisse

Die folgenden Abbildungen stellen die Simulationsergebnisse der verschiedenen Szenarien
dar. Unter den Schaubildern ist jeweils eine Tabelle mit den genauen Messergebnissen
angegeben. Die Ergebnisse der Simulation werden in Abschnitt 8.5 analysiert.
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Abbildung 8.3: Szenario 1: Variable Pfadlänge mit ws = 10 und P(crash) = 0,00.

Pfadlänge min. Lebensdauer
[ms]

max. Lebensdauer
[ms]

durchsch. Lebens-
dauer [ms]

1 90 100 95

2 230 330 280

3 1270 2270 1770

4 11310 21310 16310

5 111350 211350 161350

Tabelle 8.2: Szenario 1: Messergebnisse
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Abbildung 8.4: Szenario 2: Variable Größe der Korrelationsfenster mit pl = 3 und P(crash) =
0,00.

Größe d.
Korrelations-
fensters

min. Lebensdauer
[ms]

max. Lebensdauer
[ms]

durchsch. Lebens-
dauer [ms]

5 315 440 377.5
10 1270 2270 1770

15 3775 7150 5462.5
20 8580 16580 12580

25 16435 32060 24247.5
30 28090 55090 41590

35 44295 87170 65732.5
40 65800 129800 97800

Tabelle 8.3: Szenario 2: Messergebnisse
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Abbildung 8.5: Szenario 3: Variable Ausfallwahrscheinlichkeit mit ws = 10 und pl = 3.

P(crash) min. Lebensdauer
[ms]

max. Lebensdauer
[ms]

durchsch. Lebens-
dauer [ms]

0.00 1270 2270 1770

0.05 1270 8310 2365

0.10 1270 9766 2837

0.15 1270 11566 3182

0.20 1270 12838 3502

0.25 1270 13238 3679

0.30 1270 13814 3861

0.35 1270 13038 3915

0.40 1270 13250 3887

Tabelle 8.4: Szenario 3: Messergebnisse
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8.5 Analyse und Schlussfolgerungen

8.5.1 Einfluss der Pfadlänge

Wie in Abb. 8.3 zu erkennen ist, steigt die Lebensdauer der Ereignisse mit der Anzahl der
Operatoren exponentiell an. Für jeden Operatoren, der im sequentiellen Verarbeitungspfad
zwischen Quelle und Konsumenten hinzugefügt wird, steigen sowohl die minimale, als auch
die durchschnittliche und die maximale Lebensdauer der Ereignisse annähernd um den
Faktor 10. Dieser Faktor entspricht genau der Größe der Korrelationsfenster. Dies entspricht
exakt den Erwartungen, die in Kapitel 7.1.3 an das Systemverhalten gestellt wurden. Ein
Operator mit der Korrelationsfenstergröße von ws verlängert also die Lebensdauer der Ereig-
nisse annähernd um den Faktor ws, und zwar gleichermaßen die minimale, die maximale
und die durchschnittliche Lebensdauer. Der Faktor nähert sich dabei ws lediglich an, da sich
die Gesamtverzögerung neben den Korrelationen und der damit verbundenen Wartezeit
auch noch aus den Verzögerungen der Kommunikationsverbindungen zusammensetzt. Diese
Parameter multiplizieren sich nicht, sondern addieren sich lediglich, sodass der Faktor ws
lediglich auf die Wartezeit für Korrelationen angerechnet werden kann.

Eine weitere Beobachtung ist, dass sich die Unterschiede zwischen der minimalen und
der maximalen Lebensdauer mit jedem weiteren Operatoren ebenso verzehnfachen und
auf das Verhältnis 1 zu 2 zulaufen. Dies erklärt sich dadurch, dass im optimalen Fall ein
produziertes Ereignis im nächsten Operatoren sofort zu einer Korrelation und damit der
Erzeugung eines neuen Ereignisses führt, dieses Ereignis wiederum beim nächsten Opera-
toren zur Korrelation führt, und so weiter, d.h. das Ereignis führt direkt ohne Wartezeiten
auf weitere Ereignisse zur Erzeugung eines Ereignisses, das vom Konsumenten bestätigt
wird. Die Bestätigungen laufen nun stromabwärts vom Konsumenten bis zur Quelle. Jedoch
wird in jedem Operator jeweils das Startereignis des Korrelationsfenster bestätigt, das zur
Erzeugung eines bestätigten Ereignisses geführt hat, da das Startereignis des nächsten Korre-
lationsfensters noch unbekannt ist (vergleiche dazu Kapitel 6.4.1.3). Dadurch verzögert sich
die Bestätigung des Ereignisses, das ja eigentlich direkt zur Korrelation geführt hat, in jedem
Operator um den Faktor ws. Im schlechtesten Fall wurde das Ereignis in der Quelle direkt
nach dem Ereignis im gerade beschriebenen optimalen Fall erzeugt. Dann muss zunächst
ein komplettes weiteres komplexes Ereignis korreliert werden, um das Ereignis in der Quelle
freigeben zu können, was asymptotisch doppelt so lange dauert. Das Durchschnittsereignis
liegt genau in der Mitte zwischen dem optimalen und dem schlechtesten Fall, und hat daher
genau eine mittlere Lebensdauer zwischen beiden Extremen.

Die Pfadlänge führt also zu einem exponentiellen Wachstum der Größe der Ausgangs-
logs in Abhängigkeit zur Korrelationsfenstergröße. Daher sind persistente Schichten wie in
Kapitel 7.2 besprochen bei langen kritischen Pfaden insbesondere sinnvoll, um die Größe der
Ausgangslogs zu vermindern. Ab einer bestimmten Pfadlänge wird durch das exponentielle
Wachstum die Belastung für die unteren Verarbeitungsschichten so hoch, dass an einer
Partitionierung der Topologie durch persistente Schichten kein Weg mehr vorbei führt.
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8.5.2 Einfluss der Größe der Korrelationsfenster

In Abb. 8.4 ist der Einfluss der Korrelationsfenstergröße auf die Lebensdauer der Ereignisse
dargestellt. Beide Achsen sind exponentiell skaliert. Es ist zu beobachten, dass eine Verdop-
pelung der Fenstergröße asymptotisch zur Verachtfachung der Lebensdauer führt. Da im
Experiment eine Pfadlänge von 3 festgelegt wurde, deckt sich dies mit der Beobachtung aus
dem ersten Szenario (vgl. Abschnitt 8.5.1), dass jeder Operator im kritischen Pfad zu einer
Multiplikation der Lebensdauer der Ereignisse um den Faktor der jeweiligen Fenstergröße
führt. Wenn wl also um den Faktor x verändert wird und die Pfadlänge pl konstant bleibt, ist
die neue Lebensdauer näherungsweise (wl ∗ x)pl , analog wie in Szenario 1 gleichermaßen
für die minimale, die durchschnittliche und die maximale Lebensdauer. Die Beobachtungen
aus dem zweiten Szenario stützen also die Ergebnisse der Analyse des ersten Szenarios.

8.5.3 Einfluss von Ausfällen

Im dritten Szenario wurde die Ausfallwahrscheinlichkeit der Broker verändert, was zu einer
Entwicklung der Lebensdauer wie in Abb. 8.5 dargestellt geführt hat. Die minimale Lebens-
dauer liegt konstant bei einem Wert von 1270 ms, da auch bei häufigen Ausfällen letztendlich
ein optimaler Durchlauf erreicht werden kann, in dem keine Ausfälle die Verarbeitung und
Bestätigung des Ereignisses stören. Interessanter ist die maximale Lebensdauer, die schon
bei einer Ausfallwahrscheinlichkeit von 0,05 signifikant auf einen knapp vierfachen Wert
ansteigt. Der Maximalwert steigt immer weiter, bis er sich bei einer Ausfallwahrscheinlich
um 0,30 stabilisiert bzw. sogar wieder leicht abfällt. Dies hängt mit der Art und Weise
zusammen, wie in dem Szenario die Ausfälle erzeugt werden. Einmal alle 1000 ms wird von
der CrashGenerator-Komponente der Ausfall von Brokern ausgelöst. Das heißt auch, dass es
immer wieder Zeiträume gibt, in denen auf keinen Fall ein Ausfall geschieht, sodass alleine
dadurch schon die maximale Lebenszeit der Ereignisse begrenzt ist. Die größte Verzögerung
tritt dann auf, wenn die Broker nicht gleichzeitig, sondern zeitversetzt ausfallen: Während
ein Broker wiederhergestellt wird, fällt ein anderer aus, sodass der wiederhergestellte Broker
wiederum warten muss, und so weiter. Wenn die Broker gleichzeitig ausfallen, werden sie
sequentiell wiederhergestellt und sind danach für eine gewisse Zeit wieder alle lebendig,
bis die nächste Ausfallrunde beginnt. Wenn die Ausfallwahrscheinlichkeit sehr hoch ist,
kommt dieser Fall häufiger vor und es wird unwahrscheinlicher, dass die Broker zeitversetzt
ausfallen.

Abgesehen von dieser Einschränkung ist zu beobachten, dass durch Ausfälle und Wie-
derherstellungen von Operatoren die maximale Lebensdauer von Ereignissen bis annähernd
einem Faktor von 6 erhöht werden konnte. Dies zeigt, dass zwar auch Wiederherstellungen
von Operatoren eine signifikante Vergrößerung der Ausgangslogs zur Folge haben können,
diese Vergrößerung im Vergleich zu anderen Faktoren aber nicht so stark ins Gewicht
fällt. Dass ein Operator bzw. sein Host in jeder Sekunde mit einer Wahrscheinlichkeit von
bis zu 40 Prozent ausfällt, ist auch schon sehr hoch gegriffen und wird in der Realität
natürlich so nicht auftreten. Die eigentlichen Faktoren, die die Ausgangslogs exponentiell

83



8 Evaluation

anwachsen lassen, sind nicht die Ausfälle von Operatoren, sondern die Pfadlänge und die
Korrelationsfenstergröße. Dies ist die Beobachtung aus dem dritten Szenario.

8.5.4 Einfluss von Sicherungsbäumen und Kommunikationsaufwand

Messungen während der Simulationen haben gezeigt, dass den Sicherungsbäumen nur ein
kleiner Anteil an der Gesamtmenge der gespeicherten Zustandsinformationen zugeschrieben
werden kann. Wenn bisweilen mehr als 200000 Ereignisse im Ausgangslog einer Quelle
persistent gespeichert werden müssen, kommt es nicht mehr unbedingt auf die zusätzlichen
Sicherungsbäume der Nachfolgeroperatoren an, es sei denn, die Topologie bestünde aus
zehntausenden von Knoten. Auch in der Versendung der Bestätigungsnachrichten spielt
die Größe der angehängten Sicherungsbäume keine besonders herausragende Rolle, da im
Vergleich zur Zahl der versendeten Ereignisse nur sehr wenige Bestätigungsnachrichten
erzeugt werden. Bei den vorliegenden Zahlen und insbesondere in Anbetracht des expo-
nentiellen Wachstums sind die Ausgangslogs der entscheidende Faktor für den Entwurf
der Operatortopologie und die Entscheidung über die Nutzung persistenter Schichten nach
Kapitel 7.
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9 Zusammenfassung und Ausblick

Aufgrund der Anforderungen, die aus verschiedenen Anwendungsgebieten an CEP-Systeme
gestellt werden, ist vor allem in Hinblick auf die Skalierbarkeit eine verteilte Architektur
meist der sinnvollste Ansatz. Es wird für mancherlei Anwendungsfälle ein hochskalierbares
und ausfallsicheres System benötigt, das sich zudem durch eine hohe Verarbeitungsgeschwin-
digkeit auszeichnet, das fehlertolerant ist und dessen Ergebnisse unter allen einplanbaren
Umständen, d.h. auch in definierten Fehlersituationen, korrekt sind. Auf Basis dieser Anfor-
derungen wurde in dieser Diplomarbeit ein Verfahren zur korrekten Wiederherstellung von
Ereignisströmen entwickelt und evaluiert.

Auf dem Weg dorthin wurden zunächst die in der Forschung bisher vorhandenen Lö-
sungsansätze zur Gewährleistung der Ausfallsicherheit verteilter Systeme untersucht. Es
wurde gezeigt, welche Stärken und Schwächen diese Ansätze in ihrer Anwendung für
verteilte CEP-Systeme besitzen und es wurde der Bedarf nach einem neuen Verfahren
begründet, das ohne eine persistente Zustandsspeicherung in jedem Berechnungsknoten
bzw. Operatoren und ohne redundante Berechnungen auskommt. Ein solches Verfahren
wurde als Rollback-Recovery ohne persistente Zustandsspeicher bezeichnet.

Um eine hinreichend redundante volatile Sicherung der Zustandsinformationen eines
Operatoren zu ermöglichen, wurde untersucht, aus welchen Teilen ein solcher Zustand
besteht. Durch ein geeignetes Verarbeitungsmodell, das auf sogenannten Korrelationsfens-
tern aufbaut, konnte erreicht werden, dass der Zustand der Korrelationsoperationen zu
bestimmten Zeitpunkten leer ist, was die Menge der wiederherzustellenden Daten signifi-
kant reduzieren konnte. Die Zustandsinformationen zu solchen Zeitpunkten wurden als
Sicherungspunkte definiert und es wurde anhand verschiedener Operatortopologien Schritt
für Schritt ein Verfahren entwickelt, um diese Sicherungspunkte redundant in den volatilen
Speichern der Operatoren zu verteilen. Zudem wurde ein Algorithmus entwickelt, nach dem
ein Operator aus den entsprechend verteilten Zustandsinformationen zu einem bestimmten
Sicherungspunkt wiederhergestellt werden kann. Das entwickelte Wiederherstellungsver-
fahren führt auch nach dem Ausfall und der Wiederherstellung beliebig vieler Operatoren
zu korrekten Ergebnissen, es arbeitet mit einer effizienten Verarbeitung und Verteilung der
Zustandsinformationen der Operatoren, es ist skalierbar, hat eine hohe Ausdrucksstärke
bezüglich der möglichen Korrelationen und benötigt keinen persistenten Speicher in den
Operatoren.

Schließlich wurde untersucht, welchen Einfluss verschiedene Operatortopologien auf die
Menge der übertragenen und gespeicherten Zustandsinformationen haben und es wur-
den bestimmte Verstärkungseffekte ausgemacht, die in solchen Topologien in Bezug auf

85



9 Zusammenfassung und Ausblick

die übertragene und gespeicherte Menge an Zustandsinformationen auftreten. Um diese
Datenmenge reduzieren zu können, wurde durch das Konzept der persistenten Speicher-
schichten ein Werkzeug entwickelt, mit dem man eine Topologie partitionieren kann, sodass
die verstärkenden Effekte abgeschwächt werden. Durch dieses Konzept ermöglicht das
Wiederherstellungsverfahren einen dynamisch implementierbaren Mittelweg im Umgang
mit Zustandsinformationen zwischen persistenter Speicherung und redundanter Verteilung.
Eine solche dynamisch regulierbare Zustandsverwaltung ist schließlich der Beitrag dieser
Diplomarbeit zum Forschungsfeld der Ausfallsicherheit und Wiederherstellung verteilter
Systeme, die alle typischen Anforderungen an verteiltes Complex Event Processing erfüllt.
Schließlich wurden noch einige Systemeigenschaften in einer Simulation untersucht und die
theoretischen Überlegungen durch praktische Daten untermauert.

Ausblick

Zu dem in dieser Diplomarbeit vorgestellten Verfahren können noch verschiedene Fragen
untersucht werden. So wäre eine Evaluierung über den Einfluss von Berechnungszeiten für
die Korrelationen in den Operatoren interessant. Außerdem kann das Verfahren mit weite-
ren aktuellen Forschungsgebieten im verteilten Complex Event Processing in Verbindung
gebracht werden, wie zum Beispiel Verfahren zur Platzierung von Operatoren [SKR11] und
für mobile CEP-Szenarien [KORR12]. Für die Platzierung von persistenten Schichten kann
ein Algorithmus zur dynamischen Einteilung entwickelt werden, der aus verschiedenen
Parametern eine optimale Partitionierung der Operatortopologie berechnet.

Das Verfahren kann auch noch in verschiedener Hinsicht verfeinert werden, um in spezi-
ellen Fällen wie dem Auftreten besonders großer Korrelationsfenster oder der Platzierung
mehrerer Operatoren auf einem Host die Verarbeitungseffizienz zu steigern. Von Interesse
ist auch die Frage, wie man das Verfahren mit neuen Speichertechnologien, die ähnliche
Zugriffseigenschaften wie Arbeitsspeicher bieten, verbinden kann (Storage Class Memory
[Lam10]).
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