Institut fiir Parallele und Verteilte Systeme
Abteilung Verteilte Systeme
Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3336

Wiederherstellung von
Ereignisstromen in CEP-Systemen

Ruben Mayer

Studiengang: Softwaretechnik

Prifer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Betreuer: Dr. Boris Koldehofe

begonnen am: 4. April 2012

beendet am: 24. September 2012

CR-Klassifikation: C.24,C4






Abstract

In den letzten Jahren wurde in der Informationstechnologie das
Paradigma des ,Complex Event Processing” entwickelt, mit dessen
Hilfe aus Datenstromen durch Korrelationen von einfachen Ereignissen
hoherwertige Informationen abgeleitet werden konnen. Aufgrund der
Anforderungen an die Skalierbarkeit, die durch Anwendungsgebiete wie
das , Internet der Dinge” an moderne CEP-Losungen gestellt werden, ist
eine verteilte Architektur vorteilhaft. Um die Ausfallsicherheit des Systems
unter Einhaltung strenger Korrektheitsbedingungen zu garantieren, wird
in dieser Arbeit ein Verfahren zur Wiederherstellung von Operatoren
entwickelt, das einen niedrigeren Overhead verursacht als klassische
Verfahren wie die redundante Auslegung von Operatoren oder die
persistente Speicherung von Prozesszustdnden in sogenannten Check-
points. Dieses Verfahren wird dann durch die Moglichkeit, an beliebigen
Stellen der Operatortopologie persistente Schichten einzuziehen, um
ein Werkzeug zur Partitionierung der Topologie erweitert, womit die
Belastung einzelner Operatoren verringert werden kann. Schliefllich wird
der Einfluss charakteristischer Gestaltungsparameter auf das Verfahren in
einer Simulation evaluiert.
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1 Einleitung

Durch die fortschreitende Entwicklung der Informations- und Kommunikationstechnologie
wurde in den vergangenen Jahren die Moglichkeit einer dichten Vernetzung zwischen
Informationssystemen und der realen Welt geschaffen. Durch die Verkniipfung von verschie-
denartigen Sensoren [BKR11], Kameras [RHI* 12] und mobilen Quellen [KORR12] wird so
ein ,Internet der Dinge” [AIM10] geschaffen, in dem bestimmte Sachverhalte aus der realen
Welt durch Computersysteme tiberwacht werden konnen. Dabei werden hohe Datenmen-
gen an verschiedenen Orten produziert, die iiber Datenstrome an andere Orte transferiert
und dort miteinander korreliert werden [KKR10], um hoherwertige Sachverhalte aus den
einfachen Daten zu extrahieren [Luco1]. Ein System, das solche Korrelationen ermoglicht,
wird auch als ,Complex Event Processing”-System (CEP-System) bezeichnet [BKog, EBog]. Ein
CEP-System fungiert als Middleware zwischen verschiedenen dezentralen Informationsquel-
len und den Konsumenten der aggregierten Informationen. Mogliche Einsatzgebiete liegen
beispielsweise in der Logistik, dem Energiemanagement, der Finanzwirtschaft und in der
Steuerung von Fertigungsprozessen [BKog].

Durch die unterschiedlichen Anwendungsgebiete werden vielféltige Anforderungen an
CEP-Systeme gestellt. Es wird eine hohe Skalierbarkeit vorausgesetzt, die korrelierten Ereig-
nisse miissen korrekt sein und das System muss als Ganzes robust gegen Ausfille gestaltet
werden. Vor allem die Skalierbarkeit und die Moglichkeit, Ereignisstrome lokal nahe der
Sensoren zu verarbeiten, spricht fiir ein verteiltes System. Doch wie kann man in einem sol-
chen verteilten CEP-System unter Berticksichtigung der Skalierbarkeit die Ausfallsicherheit
und Korrektheit garantieren?

Die bisherige Forschung zur Ausfallsicherheit von verteilten Systemen konzentriert sich vor
allem auf zwei Ansétze zur Losung dieses Problems: Zum einen kann durch redundante
Auslegung der Ausfall von Verarbeitungsknoten (Operatoren) ausgeglichen werden [VKR11],
zum anderen besteht die Moglichkeit, durch die persistente Speicherung von Zustanden
diese nach einem Ausfall wiederherzustellen [EAW]Joz]. Solche Verfahren sind zwar sicher
und in der Erforschung recht fortgeschritten, doch die Skalierbarkeit fiir Berechnungen auf
hochfrequenten Datenstromen ist nur begrenzt gegeben. Insbesondere entsteht durch die
klassischen Losungen ein hoher Overhead zur Laufzeit, was die redundante Kommuni-
kation und Berechnungen oder die persistente Speicherung von sog. Checkpoints angeht.
Das Ziel dieser Diplomarbeit ist es, ein Verfahren zu entwickeln, das die Ausfallsicher-
heit des Systems garantiert und gleichzeitig ohne redundante Berechnungen und ohne
die Speicherung von Funktionszustdnden in persistenten Datenspeichern auskommt, um
den Overhead zur Laufzeit geringer zu halten als es mit den bisherigen Losungen moglich ist.



1 Einleitung

Die wesentlichen Beitrdge dieser Arbeit bestehen unter anderem aus einem Verarbeitungsmo-
dell, mit dessen Hilfe die Zustandsinformationen von Operatoren moglichst klein gehalten
werden. Zudem wird ein Verfahren entwickelt, wie diese Daten auf andere Operatoren zur
Sicherung in ihrem volatilen Speicher verteilt werden konnen, sodass damit ein ausgefallener
Operator in einem bestimmten Zustand wiederhergestellt werden kann. Dazu wird ein Algo-
rithmus entworfen, der Ausfille erkennt und die ausgefallenen Operatoren wiederherstellt.
Das Verfahren wird durch die Moglichkeit erweitert, den Operatorgraphen durch persistente
Schichten dynamisch zu partitionieren, um so die Belastung einzelner Operatoren durch
gespeicherte Zustandsdaten zu reduzieren. Zum Abschluss wird das Verfahren in einer
Simulation evaluiert, in welcher der Einfluss charakteristischer Parameter auf die Belastung
der Operatoren untersucht wird.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2: Hier wird der Begriff des Complex Event Processing definiert und es werden
verschiedene Architekturen fiir CEP-Losungen vorgestellt.

Kapitel 3: In diesem Kapitel wird ein Systemmodell fiir verteiltes CEP eingefiihrt, das der
weiteren Arbeit zugrunde liegt.

Kapitel 4: Die Zielstellung der Diplomarbeit wird konkret definiert und anhand eines
Beispiels veranschaulicht. Insbesondere werden die Anforderungen an das CEP-System
aufgestellt, die auch in definierten Fehlersituationen nicht verletzt werden diirfen.

Kapitel 5: Der bisherige Forschungsstand wird beschrieben und der eigene Losungsansatz
von diesem abgegrenzt.

Kapitel 6: Hier wird das in dieser Arbeit entwickelte Verfahren zur Wiederherstellung
von Operatoren beschrieben. Dafiir wird zunéchst festgestellt, welche Zustandsinfor-
mationen ein Operator im Allgemeinen besitzt. Dann wird ein Ausfithrungsmodell
eingefiihrt, das diese Informationen zu bestimmten Zeitpunkten minimieren kann.
Schlie$lich wird beschrieben, wie die Zustandsinformationen verteilt werden und wie
die Wiederherstellung ausgefallener Operator abladuft.

Kapitel 7: Problematiken beziiglich bestimmter Operatortopologien werden besprochen. Ein
Werkzeug zur Partitionierung der Topologien und somit zur Verringerung der Lasten
auf einzelnen Operatoren wird entwickelt.

Kapitel 8: In einer Simulation wird evaluiert, welchen Einfluss charakteristische Parameter
auf die Belastung des Systems mit Zustandsinformationen haben.

Kapitel 9: Abschlieffend werden die Ergebnisse der Arbeit zusammengefasst und es wird ein
Ausblick auf mogliche Forschungsrichtungen gegeben, in welche die Arbeit fortgefiihrt
werden kann.



2 Complex Event Processing - Eine Einflihrung

2.1 Was ist Complex Event Processing?

Complex Event Processing (CEP), oft auch Event Processing genannt, hat sich in den letzten
Jahren als eigenes Gebiet in der Forschung und der Wirtschaft etabliert. Doch was steckt
genau dahinter und wie grenzt es sich von anderen, dhnlichen Gebieten in der Informatik
ab? Ausgehend von der Motivation aus dem ersten Kapitel, wollen wir CEP als einen
Problemlosungsansatz betrachten: Die komplexen Aktivititen in heutigen wirtschaftlichen
Computersystemen setzen sich aus vielen einfacheren Aktivititen zusammen, die wiederum
direkt, z.B. tiber Sensoren oder Nachrichten innerhalb des Systems, detektiert werden kénnen.
Um aus den beobachteten Aktivititen niedriger Komplexitit hoherwertige Einsichten zu
gewinnen, muss in geringer Zeit eine hohe Datenmenge analysiert und verarbeitet werden.
Dabei werden einfache Ereignisse zusammengefasst und nach Trends, Korrelationen und
Mustern untersucht, deren Auftreten auf andere, komplexere Aktivititen im System schlie-
3en ldsst. Dies alles leistet ein CEP-System, welches an Ereignisquellen angeschlossen ist
und kontinuierlich in Echtzeit die eingehenden Ereignisse weiterverarbeitet, um schlieflich
einem Endkunden (nur) die fiir ihn interessanten Aktivitdten durch Ausgabe entsprechender
komplexer Ereignisse anzuzeigen.

Die Definition der Gesellschaft fiir Informatik fasst diesen Sachverhalt knapp und pra-
zise zusammen:

,CEP ist ein Sammelbegriff fiir Methoden, Techniken und Werkzeuge, um Ereig-
nisse zu verarbeiten wihrend sie passieren, also kontinuierlich und zeitnah. CEP
leitet aus Ereignissen hoheres, wertvolles Wissen in Form von sog. komplexen
Ereignissen, d.h. Situationen die sich nur als Kombination mehrerer Ereignisse
erkennen lassen, ab.” (Informatik-Lexikon der Gesellschaft fiir Informatik [EBog])

Der Begriff ,Complex Event Processing” fiir eine solche Technologie wurde erstmals im Jahre
2002 von David Luckham in seinem Buch , The Power of Events” [Luco1] eingefiihrt und
von ihm mafigeblich geprdgt. Wie die oben genannte Definition schlieflen ldsst, manifestiert
sich CEP allerdings in einer breit gefacherten Komposition unterschiedlichster Methoden,
Techniken und Werkzeuge, die ihre Wurzeln in ebenso unterschiedlichen Forschungsgebieten
haben [EBog].
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2.1.1 Abgrenzung zu verwandten Gebieten
2.1.1.1 Stream Processing

Stream Processing ist eine Technologie, mit der CEP sehr nahe verwandst ist. Sie zeichnet sich
dadurch aus, dass durch Queries auf Datenstrome bestimmte Teilstrome abgefragt werden
konnen, vergleichbar mit Queries in einem Datenbanksystem. Eine solche Abfragesprache
wurde beispielsweise mit CQL [ABWo06] definiert. Stream Processing konzentriert sich dabei
weniger auf die Verarbeitung von Datenstromen bestimmter Datentypen zu hoherwertigen
Datenstromen als auf die Moglichkeit, durch Queries bestimmte relevante Daten abzufragen.
Die Technologien, die hinter Stream Processing stehen, sind allerdings fiir die Umsetzung
von CEP-Losungen relevant. Eine scharfe Abgrenzung der beiden Gebiete ist daher kaum
moglich.

2.1.1.2 Technologien im Umfeld von CEP

Neben der Definition von CEP soll in diesem Abschnitt kurz erwdahnt werden, welche
Technologien in dieser Arbeit nicht in die Kategorie des Complex Event Processing fallen,
obwohl sie in CEP-Systemen insgesamt durchaus eine Rolle spielen. Ein CEP-System als
Ganzes leistet natiirlich neben der blofsen Erkennung komplexer Situationen noch weitere
Dienste: Insbesondere sollen Ereignisse in der Praxis nicht nur erkannt werden, sondern es
soll direkt eine automatische Reaktion darauf erfolgen, die von den Ereigniskonsumenten
ausgeht. Zu moglichen Reaktionen zahlt das Absenden von Nachrichten in einer Messaging-
Middleware, die Interaktion mit Geschéftsprozessen, der Aufruf von Programmen, und so
weiter. Technologien, die der Reaktion auf den blofien Erkenntnisgewinn durch CEP dienen,
beispielsweise Visualisierungsverfahren fiir Ereignisse, reaktive Logikprogrammierung und
Business Process Management, sind in dieser Arbeit nicht Teil von CEP. Ebensowenig fallen
die Technologien auf der anderen Seite von CEP in dieses Feld: Sensortechnologien (bspw.
RFID) sind zwar als Ereignisquellen elementar wichtig in CEP-Systemen, werden hier aber
nicht als Teil der CEP-Technologie selbst angesehen. Vielmehr wird CEP als sog. Middleware
betrachtet, die zwischen Informationsquellen und den an den Informationen interessierten
Stellen Ereignisse verarbeitet und vermittelt.

2.2 Bestandteile von CEP-Verfahren

Nachdem im vorigen Abschnitt definiert wurde, was CEP leistet, stellt sich die Frage, wie
genau die eigentliche Korrelation der Ereignisse funktioniert. Im Prinzip sind hier zwei
verschiedene Ansitze moglich [EBog]: (1) Abfrage von a-priori bekannten Ereignismustern
oder (2) Entdeckung bisher unbekannter Ereignismuster. Im ersten Fall werden die konkreten
Ereignismuster, die eine komplexe Situation von Interesse anzeigen, direkt im CEP-System
fest implementiert. Je nachdem wie das System aufgebaut ist, werden diese Ereignismuster
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beim Deployment fest angelegt oder lassen sich von aufien dynamisch durch spezielle Ereig-
nisanfragesprachen konfigurieren, das CEP-System selbst manipuliert die Ereignismuster
allerdings nicht. Im zweiten Fall werden Ereignismuster zur Laufzeit vom CEP-System selbst
entwickelt und angewandyt, beispielsweise durch Einsatz von Technologien wie maschinel-
lem Lernen und Datamining auf den Ereignisstromen. Fiir den ersten Fall, die Abfrage
von definierten Ereignismustern, gibt es bereits eine Reihe von Definitionssprachen und
prototypische Implementierungen.

2.2.1 Definitionssprachen, Ausfiihrungsmodelle und Prototypen

Mit snoop [CMo4] wurde schon friih eine ausdrucksstarke Definitionssprache fiir Ereig-
nismuster entwickelt. Weiteren Sprachen folgten [WKL*08, CM10], die sich meist auf die
Unterstiitzung bestimmter Muster konzentrieren. Neben der reinen Definitionssprache
benotigt ein CEP-System auch ein Verarbeitungs- bzw. Ausfithrungsmodell, das beschreibt,
wie die in der Definitionssprache beschriebenen Korrelationen auf den Ereignisstromen
umgesetzt werden. Diese Ausfithrungsmodelle entscheiden durch ihre spezielle Ausle-
gung auf das Anwendungsgebiet iiber die Effizienz der Korrelationsberechnung. So gibt
es Ausfithrungsmodelle, die speziell auf mobile CEP-Szenarien zugeschnitten sind und
die Rekonfigurationen von Operatoren unterstiitzen [KORR12] oder solche, die fiir die
Verarbeitung von Ereignisstromen aus RFID-Auslesungen optimiert sind [WDRo6].

Es gibt zahlreiche Prototypen, die in der Forschung entwickelt wurden, beispielsweise
Cordies [KKR10], SASE [WDRo6], DHEP [SKPR1o] uvm. Diese beinhalten jeweils eine
spezifische Definitionssprache und ein Ausfithrungsmodell.

2.3 Aufbau von CEP-Systemen

2.3.1 Einordnung von CEP in die IT-Infrastruktur

Ein CEP-System kann in der IT-Architektur als Middleware zwischen Informationsquellen
und -interessenten betrachtet werden. Die Ereignisquellen und -konsumenten werden durch
Einbezug eines CEP-Systems entkoppelt [BKog], die Weiterverarbeitung, Filterung, usw. von
Ereignissen wird dabei von der CEP-Middleware tibernommen.

2.3.2 Zentrales CEP

Die einfachste und wohl auch intuitivste Architektur einer Systemkomponente wie einem
CEP-System ist, es als eigenstdndiges, zentrales Programm auf einem Server laufen zu lassen.
Alle Ereignisstrome werden mit diesem zentralen Programm verbunden, in dem samtliche
Korrelationsregeln gespeichert sind und auf die eingehenden Ereignisstrome angewandt
werden. Dabei werden aus den eingehenden Ereignissen nach definierbaren Regeln direkt
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komplexe Ereignisse erzeugt, die die Konsumenten weitergeleitet werden (vgl. Abb. 2.1). Ein
Beispiel fiir eine kommerziell erhiltliche zentrale CEP-Losung ist ,IBM Websphere Business
Events”.

Konsument Konsument

~

Zentrales
CEP-System

E

Regeln

/T\

Quelle

Quelle

Quelle

Abbildung 2.1: Ein zentrales CEP-System.

2.3.2.1 Vor- und Nachteile

Zu den Vorteilen eines zentralen CEP-Systems zdhlt, dass alle Ereignisstrome nur mit einem
zentralen System verbunden sind, sodass die Gesamtkomplexitdt des Systems in Grenzen
gehalten wird. Damit ist ein solches System auch relativ einfach zu administrieren. Im
Vergleich zu einem verteilten System ist ein zentrales einfacher zu programmieren und zu
testen und daher kostengiinstiger in der Entwicklung.

Nachteilig ist die begrenzte Skalierbarkeit eines zentralen Systems. Da die Ereignisse nicht
immer nahe ihrer Quellen verarbeitet werden konnen, sondern alle zum zentralen System
tibertragen werden miissen, ergeben sich zweierlei Problematiken: Zum einen wird durch
die Ubertragung vieler Ereignisse das Netzwerk belastet und es kommt zu Verzégerungen in
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der Verarbeitung, zum anderen sind in das CEP involvierte Parteien nicht autonom, sondern
vom zentralen CEP-System abhingig. Insbesondere miissen sie Geschiftsregeln aufdecken,
um sie im zentralen CEP-System integrieren zu konnen.

2.3.3 Verteiltes CEP

Ein verteiltes CEP-System ermoglicht die stufenweise Verarbeitung von Ereignisstromen. An-
statt dass aus einfachen Ereignissen direkt komplexe Ereignisse fiir die Ereigniskonsumenten
gewonnen werden, wie es in einem zentralen CEP-System der Fall ist, werden Ereignisstro-
me in Zwischenschritten miteinander korreliert, sodass nach und nach die gewiinschten
Ausgangsereignisse gebildet werden. Die Platzierung der Verarbeitungsknoten, die in dieser
Arbeit Operatoren genannt werden, kann fiir den jeweiligen Anwendungsfall optimal ange-
passt werden [RDR1o, SKR11]. Die Operatoren sind also untereinander vernetzt und bilden
somit eine Topologie. Eine Beispieltopologie eines verteilten CEP-Systems befindet sich in
Kapitel 3.1.

2.3.3.1 Vor- und Nachteile

Ein verteiltes CEP-System hat den Vorteil, dass durch die Verteilung der Ereignisverar-
beitung auf verschiedene Operatoren die Skalierbarkeit des Systems verbessert wird. Die
Verarbeitung von Ereignissen kann nahe ihrer Quelle geschehen, dadurch werden Kommuni-
kationskosten und Latenzzeiten verringert. Zudem sind in das CEP involvierte Parteien in
der Lage, eigene Operatoren zu realisieren und mit dem verteilten CEP-System zu verkniip-
fen. Dadurch konnen sie interne Geschéftsregeln geheim halten.

Nachteilig ist die hohe Systemkomplexitdt, wodurch der Administrationsaufwand und
die Entwicklungskosten steigen.

2.3.4 Fazit

Fiir grofie Szenarien mit vielen hochfrequenten Ereignisquellen, die tiber grofie raumliche
Distanzen verteilt sind, ist ein verteiltes CEP-System im Allgemeinen besser geeignet als
ein zentrales. Diese Arbeit bezieht sich daher im Weiteren ausschliefilich auf verteilte CEP-
Systeme.
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In diesem Abschnitt wird fiir verteilte CEP-Systeme eine Modellierung in einem sogenannten
Operatorenmodell eingefiihrt. Es werden einige Annahmen und Abstraktionen eingefiihrt, die
der weiteren Arbeit zugrunde liegen. Zudem werden auch schon einige Eigenschaften des
Ausfiihrungsmodells angefiihrt, mit dem das in dieser Arbeit entwickelte Wiederherstel-
lungsverfahren fiir Operatoren arbeitet. Zweck des Kapitels ist die frithe Definition einiger
Begriffe und Abstraktionen, mit deren Hilfe spiter die Aufgabenstellung und die Losung
derselben eindeutig beschrieben werden konnen.

3.1 Der Operatorgraph

Ein verteiltes CEP-System S kann durch einen gerichteten Operatorgraphen G((, E) darge-
stellt werden, der sich aus einer Menge von Operatoren Q) = {w1, wy, ..., W, } zusammensetzt,
die miteinander in einer unidirektionalen Verbindung stehen, was durch die Menge der
Kanten E C ) X Q) dargestellt wird. Operatoren (bezeichnet durch w;) verarbeiten eingehende
Ereignisse (bezeichnet durch ¢;) und erzeugen neue Ereignisse. Dabei konnen sie eingehende
Ereignisse nach vorgegebenen Regeln korrelieren. Die Gesamtfunktionalitdt des CEP-Systems
wird von den Operatoren in Teilschritten realisiert, indem jeder Operator eine Korrelations-
funktion f tiber Ereignisse ausfiihrt. Ereignisse sind die Daten, mit denen ein CEP-System
arbeitet. Sie werden von Operatoren empfangen, verarbeitet und neu erzeugt. Schliefilich
bestehen zwischen den Operatoren noch Kommunikationsverbindungen, tiber die Operatoren
Ereignisse iibertragen konnen. Eine Reihe von solchen Ubertragungen zwischen zwei Opera-
toren kann man auch als Ereignisstrom bezeichnen. Eingehende Ereignisstrome werden als I;
bezeichnet, die Menge aller Eingangsstrome in einem Operator ist I. Die Korrelationsfunktion
f bildet die Menge von Eingangsstromen I in eine Menge von Ausgangsstromen O ab, d.h.
die Korrelationsfunktion ist eine Abbildung f : I — O. Die Operatoren bilden untereinander
ein Netzwerk, auf dem Ereignisstrome zwischen den Knoten verschickt werden. Ein Beispiel-
graph findet sich in Abbildung 3.1. Dort sind 5 Operatoren eingezeichnet, die ein Netzwerk
bilden.

3.2 Ereignisse

Definition 3.1 (Ereignis). Ein Ereignis 0; ist ein Daten-Objekt von einem bestimmten Ereignistypen.
Es bekommt von seinem Produzenten einen unverinderlichen Zeitstempel T(0;) und eine eindeutige,
fortlaufende und unverinderliche Sequenznummer p(c;) zugeteilt.
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Abbildung 3.1: Ein CEP-System mit 5 Operatoren, 3 Ereignisquellen und 3 Konsumenten.

Ereignisse sind die Informationen bzw. Daten, die in einem CEP-System verarbeitet werden.
Aus einer oder mehreren Ereignisquellen werden Ereignisstrome erzeugt, die von dem
CEP-System zu einem oder mehreren ausgehenden Ereignisstromen verarbeitet und an die
Ereigniskonsumenten ausgeliefert werden. Auch innerhalb des CEP-Systems kommunizie-
ren die einzelnen Operatoren iiber solche Ereignisstrome. Ein Ereignis kann man sich als
Datenobjekt vorstellen, in dem alle fiir die Verarbeitung wichtigen Informationen enthalten
sind. In den folgenden Unterkapiteln werden diese Informationen erldutert.

3.2.1 Ereignistyp

Der Ereignistyp ist fiir jeden ausgehenden Ereignisstrom von einem Produzenten eindeutig
festgelegt und wird als String kodiert. Durch die feste Kopplung von Ereignistyp und Pro-
duzenten kann jedes Ereignis anhand seines Typs eindeutig einem Produzenten zugeordnet
werden.

3.2.2 Zeitstempel T

In der Anwendung von Regeln zur Korrelation von Ereignissen spielt oft der Zeitpunkt eine
wichtige Rolle, zu dem die Ereignisse aufgetreten sind. Die Beantwortung der Frage, wann
eine Situation, die durch ein Ereignis signalisiert wird, genau eingetreten ist, hangt vom
Kontext der Situation ab. Wir gehen aber davon aus, dass der Zeitpunkt des Auftretens von
Situationen immer von den Zeitpunkten der Ereignisse aus den synchronisierten Ereignisquellen
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abhdngt und nicht vom Zeitpunkt des , Entdeckens” der Situation durch einen Operator (die
je nach Geschwindigkeit der Verarbeitung ohnehin schwanken kann). Daher werden die
Zeitstempel erzeugter Ereignisse auf Basis der Zeitstempel der entsprechenden eingehenden
Ereignisse erzeugt. Denkbar wire ein Maximalwert oder Minimalwert der Zeitstempel aller
korrelierten Ereignisse, welcher den Zeitstempel des entsprechend erzeugten Ereignisses
bildet, oder auch die Angabe einer Zeitspanne. Der Zeitstempel ist somit unabhéngig von der
Echtzeit, zu der ein Ereignis von einem Operatoren erzeugt wird. Es kann dabei durchaus
vorkommen, dass zwei Ereignisse desselben Typs mit demselben Zeitstempel auftreten,
beispielsweise wenn ein Ereignis in der Korrelation mehrerer Ereignisse mitwirkt.

3.2.3 Sequenznummer p

Von seinem Produzenten erhilt ein Ereignis o; eine Sequenznummer p(c;). Sie ist unabhéngig
von einer physikalischen Uhr im Produzenten, es handelt sich vielmehr um eine Ordnung
tiber die produzierten Ereignisse. Die Sequenznummern werden inkrementell vergeben,
sodass folgende Invariante gilt:

Invariante 3.2.1. Wenn ein Ereignis o; von einem Ereignistyp zeitlich vor einem anderen Ereignis
o; vom selben Ereignistyp erzeugt wurde, dann gilt: p(c;) < p(0}).

Diese Invariante ist fiir das in dieser Arbeit entwickelte Verfahren wichtig: Die Ereignisse
eines Typs konnen so in eine Reihenfolge gebracht werden und von einem Ereignis aus in
Jfrithere” und ,spétere” Ereignisse eingeteilt werden. Ereignisstrome von einem bestimmten
Ereignistypen sind also geordnet. Global iiber alle Ereignistypen hinweg ergibt sich hingegen
durch die Sequenznummern alleine keine Ordnung.

3.2.4 Zusammenfassung: Inhalt eines Ereignisses

Ein Ereignis enthilt also folgende Informationen:
e Typ des Ereignisses
o Zeitstempel vom Produzenten
e Sequenznummer vom Produzenten

e Payload: Daten des Ereignisses wie z.B. Attribute, die fiir die Weiterverarbeitung von
Interesse sind
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3.3 Operatoren

Definition 3.2 (Operator). Ein Operator w; ist ein Prozess, der auf einem physikalischen Host
host(w;) liuft. Er empfiingt eingehende Ereignisstrome, sequenziert diese in einen globalen Eingangs-
strom I und verarbeitet diesen anhand der Korrelationsfunktion f : I — O weiter zu einer Menge
von ausgehenden Ereignisstromen O, die wiederum anderen Operatoren als Eingangsstrome dienen
konnen. Die so erzeugten Ereignisse sind von einem bestimmten Ereignistypen.

3.3.1 Vernetzung von Operatoren

Operatoren sind untereinander iiber Kommunikationsverbindungen (siehe Abschnitt 3.4)
vernetzt, tiber die Ereignisstrome flieen. Ein ausgehender Ereignisstrom O; eines Operators
w; kann dabei einem anderen Operatoren w; als eingehender Ereignisstrom dienen. w;
gilt dann als Nachfolger von w; und wird Teil der Menge der Nachfolger, die durch die
Bezeichnung succ(w;) gekennzeichnet ist. Anders herum ist w; dann Vorgiinger von w; und
ist Teil der Menge pred(w;). Uber die Nachfolger und Vorginger eines Operatoren w; lasst
sich jeweils eine transitive Hiille bilden, die als succ*(w;) bzw. pred*(w;) bezeichnet wird.

3.3.2 Fehlermodell von Operatoren

Operatoren werden auf miteinander verbundenen Netzwerkknoten ausgefiihrt, die Hosts
genannt werden. Der Host eines Operators w; wird als host(w;) bezeichnet. Ein Host kann
dabei mehrere Operatoren beinhalten. Ausfélle von Hosts laufen nach dem Crash-Stop-Modell
ab: Dabei stoppt die Ausfithrung und der Host verliert simtliche nicht-persistenten Daten
tiber den Zustand seiner Operatoren [SS83]. Andere Operatoren werden tiber den Absturz
nicht direkt informiert, sondern miissen sich die Information selbst beschaffen, beispielsweise
iiber die Kontrolle von Heartbeats.

Das Verfahren in dieser Arbeit wiirde auch mit einem Crash-Recovery-Fehlermodell funk-
tionieren, das ja im Prinzip eine Erweiterung von Crash-Stop darstellt. Anstatt dass ein
ausgefallener Host durch einen anderen ersetzt wird, konnte dann darauf gewartet werden,
dass der Host selbststindig wieder seine Arbeit aufnimmt, worauf er dann in einen definier-
ten Zustand versetzt werden miisste. Da Crash-Stop aber ein allgemeineres Modell ist und
viele Ausfallursachen abdeckt, wird in dieser Arbeit mit diesem Modell gearbeitet.

3.3.3 Sequenzierung der Eingangsstrome

Ein Operator w; kann im Operatorgraphen mehrere Vorgéanger-Operatoren, d.h. auch meh-
rere eingehende Ereignisstrome, besitzen. Operatoren verfiigen untereinander iiber keine
Zeitsynchronisierung, sie laufen asynchron. Um Ereignisse aus mehreren Stromen in einer
Korrelationsfunktion zu verarbeiten, werden die Strome in einen einzigen Eingangsstrom
I, der die Menge der einzelnen Eingangsstrome I; zusammenfasst, gebracht. I fasst die
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Abbildung 3.2: Sequenzierung zweier Strome zum Eingangsstrom I.

einzelnen Strome zusammen und ordnet sie gegeneinander, sodass Ereignisse verschiedener
Eingangsstrome gegeneinander eine eindeutige Positionierung bzw. Ordnung besitzen. Man
spricht hier auch vom Sequenzieren der eingehenden Ereignisse, die anschlieffend vom Opera-
toren verarbeitet werden konnen. Die Ereignisse werden nach ihrem Zeitstempel angeordnet,
bei gleichem Zeitstempel entscheidet der Ereignistyp und als drittrangiges Kriterium die
Sequenznummer. In Abb. 3.2 ist ein Szenario dargestellt, das eine zweistufige Sequenzierung
zweier einzelner Eingangsstrome in einen gemeinsamen Eingangsstrom I zeigt: Die beiden
Ausgangsstrome der Vorgdngeroperatoren werden dabei zunédchst in eine Sequenz mit
aufsteigenden Zeitstempeln gebracht, wobei auch verschiedene Ereignisse mit dem gleichen
Zeitstempel auftreten konnen. Daher wird nach der ersten Sortierung nach dem priméren
Kriterium (Zeitstempel) eine weitere Sortierung nach dem sekundéren Kriterium (Herkunft
bzw. Typ des Ereignisses) durchgefiihrt, in dem Beispiel werden bei gleichem Zeitstempel
Ereignisse aus wy vor Ereignissen aus w, einsortiert. Wére entgegen des Beispielfalls auch
dann noch keine eindeutige Sequenz erreicht, wiirde eine Sortierung nach dem tertidren
Kriterium (Sequenznummer) eine eindeutige Losung ermoglichen. Die primédre Anord-
nung nach Zeitstempel kommt dem hdufigen Anwendungsfall entgegen, dass ein Operator
Ereignisse iiber bestimmte Zeitraume korreliert, um zeitabhingige Situationen zu erken-
nen. Die Korrelationsfunktion kann in einem nach Zeitstempeln geordneten Strom solche
Korrelationen viel einfacher realisieren als bei einer Sortierung des Stroms nach anderen
Kriterien. Wird ein Ereignis in der Sequenzierung an einer bestimmten Stelle eingeordnet, ist
durch das Ordnungsverfahren sichergestellt, dass nachfolgende Ereignisse im Eingangsstrom
keinen niedrigeren Zeitstempel haben. Dadurch kann die Verarbeitung des Eingangsstroms I
effizient gestaltet werden.

Die Sequenzierung ist also Teil des Ausfithrungsmodells der Operatoren und dient der
Verarbeitungseffizienz.
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3.3.3.1 Definition von Relationen tiber Ereignisse im globalen Eingangsstrom |

Folgende Relationen iiber zwei Ereignisse 0; und ¢; werden definiert:
o; > 01 0; liegt in I hinter o;.

0; < 0j: o;liegtin I vor o;.

0; = 0j : 0 ist identisch mit o;.

0; > 0j: 0; liegt in I hinter 0; oder ist identisch mit ;.

IN

0; < 0j: 0;liegtin I vor o; oder ist identisch mit ;.

3.3.4 Konsum von Ereignissen

Ein eingehendes Ereignis kann von einem Operator mehrfach zur Berechnung eines neuen
Ereignisses herangezogen werden. An einem bestimmten Punkt kann der Operator aller-
dings ein Ereignis nach seiner Verarbeitung ,aus dem Rennen nehmen’, d.h. aus dem
Eingangsstrom loschen, sodass es in kiinftigen Berechnungen keine Rolle mehr spielt. Wird
ein Ereignis in einer Berechnung genutzt und anschlieffend geltscht, spricht man davon,
dass das Ereignis konsumiert wurde. Wird ein Ereignis nach seiner Nutzung nicht direkt
konsumiert, steht es fiir weitere Operationen weiterhin im Eingangsstrom zur Verfiigung,
bis es schlieSlich doch konsumiert wird oder der Operator es verwirft.

Die Konsumierung von Ereignissen kann ein wichtiger Bestandteil von CEP-Systemen sein
und wurde beispielsweise in der Ereignisverarbeitungssprache snoop von S. Chakravarthy
und D. Mishra [CMo4] thematisiert. Dort wird diese Thematik durch die Parameterkontexte
behandelt, die eindeutige Korrelationsvorschriften bei einem nicht eindeutigen Eingangs-
strom ermoglichen. Hintergrund dieser Kontexte ist, dass Korrelationsvorschriften der Art
,Korreliere immer ein Ereignis des Typs A mit einem Ereignis des Typs B“ manchmal alleine
noch keine hinreichend eindeutige Verarbeitung ermoglichen. Wenn nun beispielsweise im
Eingangsstrom mehrere Ereignisse beider Typen vorliegen, muss der Operator eindeutig
entscheiden konnen, welche spezifischen Ereignisse aus der Menge der potentiellen Korrela-
tionskandidaten er zur Berechnung der Ausgangsereignisse heranzieht. In snoop wurden
dafiir verschiedene Moglichkeiten definiert, die in Tabelle 3.1 erldutert und in Bezug zu den
dafiir notwendigen Konsumoperationen gesetzt werden.

Um alle Parameterkontexte aus snoop unterstiitzen zu konnen, ist fiir die Operatoren
also die Moglichkeit des gezielten Ereigniskonsums unerldsslich. Es muss moglich sein,
manche Ereignisse mehrmals zu verarbeiten, wiahrend andere schon nach der ersten Ver-
arbeitung entfernt werden. Die Implikationen, die sich aus dem Ereigniskonsum fiir das
Wiederherstellungsverfahren ergeben, das in dieser Arbeit entwickelt wird, werden in Kapitel
6.2.1 ausfiihrlich analysiert.
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Name Beschreibung Konsumoperationen

Recent Es werden immer die neuesten moglichen Er- | Konsumiert werden die
eignisse zur Korrelation herangezogen, sobald | neusten Ereignisse, die
eine Korrelation moglich ist. Nach der Korrelati- | zu einer Korrelation ge-
on werden die daran teilnehmenden Ereignisse | fithrt haben.
konsumiert.

Chronicle Ereignisse werden nach ihrem Auftreten in chro- | Konsumiert werden die
nologischer Reihenfolge zur Korrelation heran- | &ltesten Ereignisse, die
gezogen. Das bedeutet, dass immer die dltesten | zu einer Korrelation ge-
verfiigbaren Ereignisse korreliert werden. Nach | fiihrt haben.
der Korrelation werden die daran teilnehmen-
den Ereignisse konsumiert.

Continuous | Aus dem Eingangsstrom werden kontinuierlich | Konsumiert wird das
Korrelationen durchgefiihrt, und zwar mit je- | Startereignis einer Kor-
dem Ereignis, das als erstes Ereignis einer Kor- | relation.
relation in Frage kommt und den édltesten nach-
folgenden weiteren fiir die Korrelation relevan-
ten Ereignissen. Jedes Ereignis kann nur eine
Korrelation starten, daher wird das Startereig-
nis konsumiert.

Cumulative | Alle Ereignisse zwischen dem ersten Ereignis, | Konsumiert werden al-
das eine Korrelation starten kann, und dem | le Ereignisse zwischen
ersten Ereignis, mit dem die Korrelation abge- | dem Startereignis und
schlossen wird, werden in die Korrelation mit | dem letzten Ereignis in
einbezogen. Nach der Korrelation werden alle | einer Korrelation.
daran beteiligten Ereignisse konsumiert.

Tabelle 3.1: Parameterkontexte in snoop [CMo4]

3.4 Kommunikationsverbindungen

Um die Betrachtung des Operatorenmodells von der Problematik moglicher Ausfille der
Kommunikationsverbindungen zu entkoppeln, werden fiir diese Verbindungen bestimmte
Eigenschaften vorausgesetzt. Hinweise zur Implementierung der eingefiihrten Abstraktionen
finden sich in der Literatur [GRo6].

Eigenschaft 3.4.1 (Keine Erzeugung). Wenn ein Operator w, ein Ereignis o empfiingt, dann hat
ein anderer Operator wy oder eine Ereignisquelle q dieses Ereignis erzeugt.

Eigenschaft 3.4.2 (Keine Duplikation). Jedes iibertragene Ereignis o, das von einem Operator w
gesendet wird, wird maximal einmal empfangen.

Eigenschaft 3.4.3 (Best-Effort). Wenn Operator wy an Operator wy ein Ereignis o sendet, und
keiner der Operatoren einen Fehler vermutet, dann empfingt w, o letztendlich.

15



3 Verteiltes CEP - Ein Systemmodell

Dies sind die Eigenschaften eines sog. Best-Effort-Kommunikationskanals (vgl. [GOg6]).
Zusétzlich wird noch folgende Eigenschaft benotigt:

Eigenschaft 3.4.4 (Erhaltung der Reihenfolge). Bei der Ubertragung mehrerer Ereignisse zwischen
zwei Operatoren empfingt der Empfinger die Ereignisse in der Reihenfolge, in denen sie vom Sender
versendet wurden.

Die Eigenschaften der Kommunikationskandle werden im Folgenden erldutert:

e Eigenschaft 3.4.1 besagt, dass die Kommunikationskanile keine Ereignisse an den
Empféanger tibermitteln diirfen, die nicht vom Sender selbst erzeugt wurden.

e Eigenschaft 3.4.2 besagt, dass die Kommunikationskanile Ereignisse bei der Ubertra-
gung nicht duplizieren diirfen. Die Frage, ob Operatoren Ereignisse mehrfach erzeugen,
wird von dieser Eigenschaft nicht beriihrt.

e Eigenschaft 3.4.3 besagt, dass jede Nachricht letztendlich korrekt tibertragen wird, so-
lange weder der Sender noch der Empfanger einen Fehler im Kommunikationspartner
oder -link vermutet. Die Frage der Fehlerdetektion, d.h. wie die Operatoren den Ausfall
anderer Operatoren oder der Verbindung zu diesen detektieren, wird in Kapitel 6.5.3.2
untersucht.

e Eigenschaft 3.4.4 besagt, dass der Kommunikationskanal Ereignisse in der Reihenfolge
beim Empfanger abliefert, in der sie der Sender versendet hat.

3.5 Ereignisquellen

Ereignisquellen sind Systemkomponenten, die eine Schnittstelle zu der Welt aufierhalb
des CEP-Systems realisieren. Zu einer solchen ,Umwelt” konnen zum Beispiel Sensoren
gehoren oder auch Computersysteme, die Signale an die Ereignisverarbeitung weiterleiten.
Die aus der Umgebung eingehenden Informationen werden zu Ereignissen im Sinne des
CEP-Systems weiterverarbeitet, d.h. die fiir die Verarbeitung in den Operatoren notwendigen
Informationen werden hinzugefiigt und das Ereignis wird in ein fiir die Operatoren lesbares
Format gebracht. In diesem Sinne sind Ereignisquellen mit den ,,Event Adapters” aus dem in
D. Luckhams Buch , The Power of Events [...]” [Luco1] eingefiihrten CEP-System vergleichbar.

Als besonderes Merkmal besitzen die Ereignisquellen im Gegensatz zu den Operatoren
untereinander synchronisierte Systemuhren, damit sie den Ereignissen Zeitstempel geben konnen,
welche die synchronisierte Realzeit der Ereignisse wiederspiegeln. Die von Ereignisquellen
erzeugten Ereignisse sind die einfachsten Ereignisse im CEP-System und werden deshalb
auch Basisereignisse genannt. Die Ereignisse werden in einem Ereignislog persistent gespei-
chert, bis sie nicht mehr benétigt werden. Aufierdem konnen Ereignisquellen auch andere
notwendigen Daten persistent speichern. Ereignisquellen miissen so implementiert werden,
dass sie fiir die Anforderungen des Gesamtsystems ausreichend ausfallsicher sind, entweder
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durch eine redundante Auslegung oder durch den Einsatz von geeigneten Wiederherstel-
lungsverfahren. Sie konnen vom CEP-System nicht wiederhergestellt werden und diirfen
daher keine Daten verlieren, die nicht vorher explizit zur Loschung freigegeben wurden. Die
Implementierung dieser Abstraktion wird in dieser Arbeit nicht thematisiert, eine Losung
iiber robuste, persistente Speichersysteme wie z.B. ,Redundant Arrays of Independent Disks”
(RAIDs) ist dafiir denkbar.

3.6 Ereigniskonsumenten

Ereigniskonsumenten sind Adapter zwischen den Operatoren, deren Ausgangsstrome das
CEP-System verlassen, und den an den Ereignissen interessierten Stellen in der Welt au-
Berhalb des CEP-Systems. Ebenso wie die Ereignisquellen miissen sie standig verfiigbar
sein, miissen aber keine Informationen aus den Operatoren persistent speichern kénnen. Die
genaue Implementierung dieser Abstraktion wird ebenso wie bei den Ereignisquellen in
dieser Arbeit nicht weiter thematisiert, eine Losung iiber redundante oder wiederherstellbare
Prozesse ist dafiir denkbar.

3.7 Nutzung von Kontrollereignissen zur Effizienzsteigerung

Um lange Wartezeiten bei Berechnungen und Sequenzierungen und zu vermeiden, kénnen
Quellen von Zeit zu Zeit Kontrollereignisse versenden, die entsprechend weiterverarbeitet
werden konnen. Auf diese Weise schreitet die Gesamtverarbeitung fort und keine Stelle im
System wartet vergeblich auf Ereignisse, die niemals ankommen werden.

3.8 Zeit und Asynchronitat - Analyse der Implikationen

3.8.1 Synchrone Quellen

Nur die Ereignisquellen verfiigen tiber hinreichend synchronisierte Systemuhren, um tatsiach-
liche Echtzeitstempel fiir die Basisereignisse vergeben zu konnen. Mithilfe der Zeitstempel
aus den Quellen wird in hoheren Verarbeitungsebenen der Bezug der korrelierten Ereignisse
zur Echtzeit einer eingetretenen Situation hergestellt.

3.8.2 Asynchrone Operatoren

Fiir die Operatoren werden keine Annahmen {iber zeitliche Abldufe getroffen, was Berechnun-
gen und Kommunikationsverzogerungen angeht. Dadurch hat das eingefiihrte Systemmodell
eine hohe Abdeckung beztiglich realer Systeme. Synchronitét in den Operatoren wird fiir
das Wiederherstellungsverfahren weder vorausgesetzt noch benétigt.
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4 Zielstellung

4.1 Definition der Zielstellung

Diese Arbeit adressiert grofse Szenarien in verteilten CEP-Systemen, die hohe Anforderungen
an die Skalierbarkeit, die Verfiigbarkeit, die Latenz, die Korrektheit und die Ausfallsicherheit
stellen. Es wird ein Modell fiir ein hochskalierbares, verteiltes CEP-System entworfen, das
durch ein Wiederherstellungsverfahren fiir Ereignisstrome gegeniiber gutartigen Fehlern in
den Operatoren robust ist. Insbesondere diirfen beim gleichzeitigen Ausfall von einer festge-
legten Anzahl F an Operatoren die Anforderungen (siehe Abschnitt 4.2) an das CEP-System
nicht verletzt werden. Das Verfahren soll ohne persistente Checkpoints der Operatorzustande
und ohne redundante Berechnungen auskommen, um den Overhead zur Laufzeit gering
zu halten. Durch die Einfiihrung von persistenten Schichten soll vielmehr ein dynamisch
einsetzbares Werkzeug geschaffen werden, um Operatortopologien zu partitionieren und so
die Belastung einzelner Operatoren mit Zustandsdaten zu verringern. Das Wiederherstel-
lungsverfahren wird erldutert und anhand eines konkreten Szenarios in einer Simulation
evaluiert.

4.2 Anforderungen an das CEP-System

Aus den Anwendungsfillen lassen sich Anforderungen ableiten, die im Allgemeinen an
CEP-Systeme gestellt werden [VKR11, CDMRV10, SSMW10]. Ein CEP-System arbeitet dann
zuverldssig, wenn es die gestellten Anforderungen unter bestimmten Bedingungen, d.h. auch
in definierten Fehlersituationen, erfiillt.

4.2.1 Hohe Skalierbarkeit

In den typischen Anwendungsgebieten von CEP fallen mitunter hohe Datenmengen an,
die vom CEP-System verarbeitet werden miissen. Die Vernetzung von Gegenstdanden im
,Internet der Dinge”, beispielsweise durch Einsatz von RFID-Chips, produziert eine regel-
rechte Datenflut, die von CEP-Systemen bewiltigt werden muss [SSMW10]. Daher muss
das System skalierbar sein, d.h. es muss ohne Qualititseinschrankungen mit steigenden
Lasten zurechtkommen. Insbesondere darf die steigende Last nicht zu einer Erh6hung der
Latenzzeiten oder zu einer Einschrankung der Korrektheit der Ergebnisse fiihren.
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4 Zielstellung

4.2.2 Geringe Latenzzeiten

Im Gegensatz zu Techniken, die zur Analyse von bestehenden Datensitzen relativ lange nach
dem eigentlichen Auftreten der entsprechenden Vorgiange dienen, bspw. klassisches Data-
Mining und Data-Warehouses, wird mit der Anwendung von CEP eine sofortige Analyse
der Ereignisse in Echtzeit verfolgt. Je schneller eine Situation erkannt wird, desto besser.
Werden aufgetretene Situationen zu spét erkannt, kann die Erkenntnis dariiber sogar wertlos
werden. Im Business Activity Monitoring (BAM) beispielsweise konnen CEP-Systeme zur
Echtzeit-Erkennung von Situationen im Geschéftsprozess benutzt werden, beispielsweise zur
Ermittlung von Key-Performance-Indikatoren (KPIs) und Uberwachung von Service-Level-
Agreements (SLAs) [CDMRV1o]. Es diirfen also keine grofien Verzogerungen (Latenzen) bis
zur Entdeckung einer Situation auftreten.

4.2.3 Korrektheit der Ergebnisse

Die Anforderungen an die Korrektheit der Ergebnisse (d.h. der detektierten Situationen)
eines CEP-Systems konnen je nach Anwendungsfall voneinander abweichen [OB10]. An-
forderungen an die Korrektheit der Situationserkennung von CEP-Systemen sind in dieser
Arbeit:

o Keine falschen Ereignisse, d.h. jedem vom CEP-System an einen Konsumenten abgege-
benen Ereignis muss auch eine tatsdchlich geschehene Situation zugrunde liegen.

o Keine verlorenen Ereignisse, d.h. jede aufgetretene Situation von Interesse wird auch
tatsdchlich durch ein entsprechendes Ereignis den Konsumenten mitgeteilt. Auch beim
gleichzeitigen Ausfall von F Operatoren gehen keine fiir die Situationserkennung
relevanten Informationen verloren.

e Erhaltung der Reihenfolge der Ereignisse, d.h. auch durch den Ausfall und die Wie-
derherstellung von F Operatoren darf die Reihenfolge der erkannten Situationen nicht
durcheinandergeraten.

Strenge Korrektheitsanforderungen sind insbesondere dort gestellt, wo schon ein kleiner
Fehler in der Ereignisverarbeitung zu grofien Auswirkungen fithren kann, zum Beispiel
in der Produktionssteuerung einer Fabrik [VKR11]. Ein detailliertes Beispielszenario, das
solche hohen Korrektheitsanforderungen an das CEP-System begriindet, wird in Abschnitt
4.3 vorgestellt.

4.2.3.1 Abgrenzung zu weicheren Korrektheitsanforderungen

Manchmal kann es ausreichend sein, bestimmte Mindestanforderungen zu stellen und
einige nicht korrekt erkannte Situationen zu tolerieren oder auflerhalb des CEP-Systems
manuell zu behandeln [OB10]. Insbesondere kann so eine Verbesserung der Performanz
des Systems erreicht werden. Beispiele: (i) Im Tracking von RFID-Daten kénnen zeitweise
Ausfille verkraftet werden, indem entsprechende Situationen manuell nachgepriift werden.
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4.3 Beispielszenario: Logistik in einem groBen Seehafen

(ii) Beim Berechnen von Durchschnittstemperaturen kann ein Konsument unter Umstanden
damit leben, dass iiber bestimmte Zeitraume hinweg einige Sensoren vom CEP-System nicht
korrekt berticksichtigt werden, so lange ein gentigend grofser Teil der Temperaturdaten in
die Gesamtberechnung eingeflossen ist.

Diese Arbeit konzentriert sich allerdings auf eine Losung, die hohe Korrektheitsanfor-
derungen abdeckt.

4.2.4 Ausfallsicherheit

CEP-Systeme sollen im Allgemeinen hochverfiigbar sein. Auch beim gleichzeitigen Ausfall von
F Operatoren soll das Gesamtsystem weiterhin verfiigbar sein und korrekt arbeiten und nach
aufsen hin keine Abweichungen im Verhalten zeigen. Ereignisse diirfen weder verloren gehen
noch verindert werden, und auch die Latenzanforderungen miissen beim Ausfall mehrerer
Operatoren weiterhin eingehalten werden.

4.3 Beispielszenario: Logistik in einem groBen Seehafen

Zur Steuerung und Uberwachung der Logistik in einem grofien Seehafen soll ein verteiltes
CEP-System eingesetzt werden. Eine Hafenlogistik bietet von Natur aus ein verteiltes Szena-
rio: Es gibt viele verschiedene Docks und Lagerhallen, an denen tédglich tausende Container
von dutzenden groflen Containerschiffen umgeschlagen und teilweise auch zwischengelagert
werden. Jeder Container ist mit RFID-Chips ausgestattet und tiberall auf dem Hafengeldnde
sind Sensoren installiert, die die Position der Container standig ermitteln. Auch innerhalb
eines Containers fallen Sensordaten an, beispielsweise iiber das Klima innerhalb des Con-
tainers (Temperatur, Luftfeuchtigkeit, etc.) und den Zustand der Ladung. Insgesamt fallen
in jeder Sekunde viele tausend Ereignisse aus den Sensoren an, die moglichst lokal in
Operatoren weiterverarbeitet werden, um Situationen wie z.B. ,,Container X ist in Lagerhalle
Y angekommen”, ,Kiihlaggregat in Container X ausgefallen, Temperatur erreicht kritischen
Wert”, etc. zu erkennen. Zudem ist die Hafenlogistik nur ein Teil der gesamten Logistik-
kette, die sich iiber verschiedene Transportwege erstrecken kann, beispielsweise bei einer
Verladung auf LKWs oder Giiterziige.

4.3.1 Begriindung der harten Korrektheitsanforderungen

Die Anforderungen aus Abschnitt 4.2.3 werden fiir das vorliegende Szenario folgendermafsen
begriindet:

1.) Keine falschen Ereignisse: Falsche Ereignisse konnten zu falschen Warnmeldungen
oder auch falschen Abrechnungen mit beteiligten Dienstleistern fiihren.
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4 Zielstellung

2.) Keine verlorenen Ereignisse: Wenn beispielsweise eine Positionsaktualisierung eines
Containers verloren geht, konnte es schwer werden, diesen auf dem riesigen Hafengeldnde
wiederzufinden.

3.) Erhaltung der Reihenfolge: Wire die Reihenfolge verdndert, konnten falsche Schliis-

se aus den Ereignissen gezogen werden, beispielsweise bei zwei aufeinanderfolgenden
Positionsaktualisierungen wire der daraus extrahierte Weg eines Containers falsch.
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5 Abgrenzung

Um die Anforderungen zu erfiillen, die in Kapitel 4.2 insbesondere an die Ausfallsicherheit
und Korrektheit verteilter CEP-Systeme gestellt wurden, sind verschiedene Losungsansitze
denkbar. In diesem Kapitel werden die grundsitzlichen Moglichkeiten untersucht, wie
CEP-Systeme ausfallsicher gestaltet werden konnen, und der Losungsraum wird beziiglich
der weiteren Anforderung aus Kapitel 4.2 abgegrenzt.

Um die Ausfallsicherheit zu steigern, kann man prinzipiell verschiedene Methoden an-
wenden und miteinander kombinieren. Zu den wichtigsten Methoden gehort, die Ausfallsi-
cherheit der einzelnen Komponenten zu verbessern, ausgefallene Komponenten wiederher-
zustellen und die Komponenten redundant anzulegen [RHS85]. In der Vergangenheit haben
sich zur Steigerung der Ausfallsicherheit verteilter Systeme vor allem 2 Ansédtze durchgesetzt:
(1) Aktive Replikation von redundanten Prozessen [VKR11] und (2) Rollback-Recovery
ausgefallener Prozesse anhand persistent gespeicherter Zustandsdaten [EAW]Joz, SM11].
Im Folgenden werden beide Ansétze vorgestellt und auf ihre Tauglichkeit beziiglich der
Anforderungen aus Kapitel 4.2 untersucht.

5.1 Redundante Prozesse

Im Entwurf eines verteilten CEP-Systems kann man dieses redundant auslegen, sodass einige
an der verteilten Berechnung teilnehmenden Operatoren abstiirzen konnen und das System
als Ganzes weiterhin fehlerfrei arbeitet. In der Praxis erreicht man ein solches Verhalten durch
das Vorhalten von Operator-Replikaten [VKR11]. Wéahrend ein Operator im Normalbetrieb
lauft, muss er F Replikate vorhalten, die im Falle seines Ausfalls diesen Operatoren ersetzen
konnen, sodass die Berechnung fehlerfrei weiterlauft (vgl. Abb. 5.1). Die Replikate miissen
immer auf dem Stand des , Original-Operators” gehalten werden, was durch die Replikation
der eingehenden Ereignisse an alle Replikate realisiert wird (active standby). Da die Replikate
dieselben Ereignisse mit denselben Algorithmen verarbeiten wie der Original-Operator, wird
der Zustand der Replikate immer aktuell gehalten. Fillt der Original-Operator aus, kann
eines der Replikate direkt die Arbeit tibernehmen. Diesen Ansatz kann man noch verfeinern,
indem man die Versendung von ausgehenden Ereignissen so koordiniert, dass nur einer der
redundanten Operatoren diese Ereignisse an die Nachfolger weiterleitet [VKR11].
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c C
S S

a) b)

Abbildung 5.1: Active Standby: Links ein System ohne Replikate, rechts ein System mit
redundanter Auslegung [VKR11].

5.1.1 Bewertung der L6sung

Durch die redundanten Operatoren wird die Latenzzeit des Gesamtsystems nicht erhoht.
Die Ergebnisse sind auch bei Operatorausfillen korrekt [VKR11]. Die Ausfallsicherheit bei
F gleichzeitigen Ausféllen ist dann gegeben, wenn jeder Operator F Replikate bereitstellt.
Eine solche redundante Losung kann also die Anforderungen nach geringen Latenzzeiten,
Korrektheit der Ergebnisse und der Ausfallsicherheit erfiillen.

Die Frage nach der Skalierbarkeit gestaltet sich schwieriger. Fiir eine hohe Ausfallsicher-
heit in grofien Operatortopologien miissen sehr viele aktive Replikate vorgehalten werden.
Wihrend ein Operator hingegen fehlerfrei lauft, verschwenden die Replikate Ressourcen,
da sie in dieser Zeit vergeblich arbeiten. Die Losung ist also zumindest sehr kostenintensiv.
Ein Vorhalten von gentigend Replikaten fiir extreme Ausfallsituationen ist kaum wirtschaftlich
durchzufiihren. Eine Losung mit weniger Overhead im Normalbetrieb, d.h. in der Zeit, in der
keine Fehler auftreten, wire unter der Annahme begrenzter Ressourcen besser skalierbar.
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5.2 Rollback-Recovery mit persistentem Zustandsspeicher

5.2 Rollback-Recovery mit persistentem Zustandsspeicher

Anstatt redundante Operatoren vorzuhalten, die einen Ausfall kompensieren konnen, kann
man auch den Versuch unternehmen, einen Operator nach dessen Absturz wiederherzu-
stellen. In CEP-Systemen gibt es zwei Moglichkeiten, wie ein Operator mit eingehenden
Ereignissen verfahrt. Entweder er betrachtet jedes Ereignis einzeln und bearbeitet es aus-
schliefslich beziiglich der Informationen, die dieses einzelne Ereignis beinhaltet (was die
Moglichkeiten der Ereignisverarbeitung aber extrem beschneidet). In diesem Fall ist der
Operator zustandslos, die Verarbeitung eines Ereignisses steht fiir sich alleine und ist nicht
von anderen, vorher oder nachher auftretenden Ereignissen abhidngig. Oder er aggregiert
Informationen aus mehreren eingehenden Ereignissen, die er zusammenfasst und in aus-
gehende Ereignisse weiterverarbeitet. Dann baut der Operator einen internen Zustand auf,
der Informationen tiber schon ausgefiihrte Verarbeitungsschritte beinhaltet und das weitere
Verhalten beim Eingang neuer Ereignisse bestimmt. Solch ein interner Zustand muss, um den
mit einem Ausfall einhergehenden Verlust der volatil gespeicherten Daten zu tiberstehen, in
irgendeiner Form persistent gesichert werden, damit der Operator wiederhergestellt werden
kann. Um den internen Zustand eines Operators zu sichern, gibt es zwei mogliche Verfahren
[EAW]Joz]: Checkpoints und Logs.

Checkpoints [KBGo8] sind Speicherausziige von Operatoren, die entweder in regelmafiigen
Abstdnden oder durch ein tibergeordnetes Protokoll koordiniert angefertigt werden. Diese
enthalten den internen Zustand des Operators zum Zeitpunkt des Anlegens des Checkpoints.
Im Falle einer Wiederherstellung wird der Zustand, der im Checkpoint gespeichert ist, in den
Operator geladen und die Arbeit wird an dieser Stelle fortgesetzt. Zustandsinformationen,
die zwischen dem Anlegen eines Checkpoints und dem Absturz des Operators angefallen
sind, gehen verloren.

Logs speichern zunichst alle in einen Operator eingehenden Ereignisse. Falls ein Ope-
rator ausfdllt und wiederhergestellt werden muss, werden die gespeicherten Ereignisse
aus dem Log geladen und in den neu gestarteten Operatoren eingespeist. Die Verarbei-
tung wird sozusagen zuriickgerollt und neu durchgefiihrt, was schliefslich darin miindet,
dass der Zustand vor dem Absturz wiederhergestellt wird. Allerdings kénnen durch die
mehrfache Verarbeitung von eingehenden Ereignissen Duplikate produziert werden, die
von nachfolgenden Operatoren herausgefiltert werden miissen. Es ist sinnvoll, die beiden
Verfahren der Logs und der Checkpoints miteinander zu kombinieren. So wird von Zeit
zu Zeit ein Checkpoint gespeichert und die Zeit zwischen zwei Checkpoints wird durch
Logs abgebildet. Zur Wiederherstellung wird dann der letzte Checkpoint geladen und alle
Logs ab diesem Zeitpunkt werden erneut eingespeist, damit nicht die gesamte Verarbeitung
seit dem initialen Start des Operators wiederholt werden muss. Die Logs sollten zudem
regelméfiig ,zurechtgeschnitten” (Pruning) werden, d.h. nicht mehr benétigte Logs werden
geloscht, damit der Speicher entlastet wird.
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5 Abgrenzung

5.2.1 Bewertung der L6sung

Die Korrektheit der Ergebnisse und die Ausfallsicherheit bei F gleichzeitigen Ausfillen sind
mit diesem Verfahren umsetzbar: Zum einen kann ein Operator durch die Checkpoints und
Logs in genau den Zustand versetzt werden, den er zum Zeitpunkt seines Ausfalls hatte,
sodass die produzierten Ereignisse nicht vom Normalbetrieb abweichen. Zum anderen sind
die Operatoren durch die lokale Speicherung ihrer Zustandsinformationen untereinander
nicht auf Hilfe bei der Wiederherstellung angewiesen, sodass auch mehrere gleichzeitige
Ausfélle auf die Wiederherstellung des einzelnen Operators keinen Einfluss haben.

Das beschriebene Rollback-Recovery-Verfahren ist auf einen persistenten Speicher angewie-
sen, der die Zustandsdaten (Checkpoints und Logs) sicher speichert, sodass der Operator
nach seinem Neustart auf den letzten bekannten Zustand initialisiert werden kann. Eine
persistente Speicherung ist im Sinne des Ressourcenverbrauchs teuer, insbesondere in CEP-
Systemen, die sehr viele Ereignisse in kurzer Zeit verarbeiten miissen. Zudem benétigt das
Anlegen eines Speicherabbilds, d.h. eines Checkpoints, Prozessorzeit, was zu Verzdgerungen
in der Verarbeitung der Ereignisstrome fithren kann. Die Skalierbarkeit und die Latenzzeiten
konnen bei einem solchen System also schnell zu kritischen Punkten werden.

5.3 Schlussfolgerungen

Wie sich in der Untersuchung klassischer Losungen zur Steigerung der Ausfallsicherheit
gezeigt hat, sind die Ansitze zwar geeignet, einen Operatoren korrekt wiederherzustellen,
jedoch nur zum Preis eines hohen Overhead wahrend des Normalbetriebs. Bei hohen
Lasten und grofsen Topologien sind die Verfahren zumindest sehr teuer, was bei begrenzten
Ressourcen zu Problemen mit der Skalierbarkeit fiihrt. Gesucht ist ein Verfahren, das ohne
redundante Operatoren und ohne persistente Zustandsspeicherungen in den Operatoren
auskommt. Ein solches Verfahren soll im Folgenden entwickelt werden.
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In Kapitel 3 wurde ein Systemmodell fiir verteilte CEP-Systeme eingefiihrt und es wurden
einige Eigenschaften des eigentlichen Ausfiihrungsmodells festgelegt, um anhand der darin
definierten Begrifflichkeiten die Aufgabenstellung dieser Diplomarbeit eindeutig beschreiben
zu konnen. In dem nun folgenden Kapitel wird nun zunédchst das Ausfithrungsmodell, das
dem Wiederherstellungsverfahren zugrunde liegt, vollstindig beschreiben. Darauf aufbau-
end wird das Wiederherstellungsverfahren fiir ausgefallene Operatoren entwickelt, indem
zundchst der Zustand eines Operators beschrieben und das Vorgehen bei der Verteilung
dieser Informationen im CEP-System Schritt fiir Schritt herausgebildet wird. Anschliefiend
werden Algorithmen zur Fehlerdetektion, zur Wiederherstellung der Operatortopologie
und zur Wiederherstellung des Zustands von Operatoren entworfen. All dies macht dann
zusammengenommen das Verfahren zur Wiederherstellung von Operatoren aus und bildet
damit den Hauptteil dieser Diplomarbeit.

6.1 Fensterbasiertes Ausfilhrungsmodell von Operatoren

Wie in der Definition fiir Operatoren festgelegt, hat ein Operator w; einen Eingangsstrom
I, der durch die Sequenzierung nach Zeitstempeln 7 geordnet und mit inkrementellen Se-
quenznummern p ausgestattet ist. Auf einem solchen Strom lésst sich ein Teilstrom S[o7;ys,
O1ast] Zwischen zwei Ereignissen ;s und 07,5 definieren. Ein Operator implementiert eine
Korrelationsfunktion f, die ein Fenster S auf dem Eingangsstrom I jeweils auf ein Ausgangser-
eignis im Ausgangsstrom O abbildet. Das heifst, die Korrelationsfunktion wird kontinuierlich
hintereinander ausgefiihrt und arbeitet dabei in jeder Ausfithrung auf genau einem solchen
Fenster S. Die aufeinander folgenden Fenster konnen dabei tiberlappen, d.h. bestimmte
Ereignisse konnen mehrfach als Eingabe fiir Ausfithrungen der Korrelationsfunktion dienen.
Es gibt aber immer nur ein aktuelles Korrelationsfenster w zu einem bestimmten Zeitpunkt
in einem bestimmten Operator. Ein solches Ausfithrungsmodell ist sehr ausdrucksstark,
d.h. es kann eine grofie Bandbreite von moglichen CEP-Funktionalititen in den Operatoren
abgebildet werden (vgl. Abschnitt 6.1.3).

6.1.1 Verwaltung von Korrelationsfenstern
6.1.1.1 Das Pradikat Py;,;

Bei der Initialisierung eines Operators muss auf dem Eingangsstrom I auf einem Ereignis das
erste Korrelationsfenster geoffnet werden. Welches der Ereignisse dafiir genutzt wird, wird
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im Prddikat Py;,s; beschrieben. Das Pradikat wird beziiglich jedes eingehenden Ereignisses
o kontextfrei ausgewertet, d.h. nur fiir sich und ohne Einbeziehung von Informationen aus
anderen Ereignissen. Beim ersten Ereignis, auf welchem das Pradikat als true ausgewertet
wird, wird das erste Korrelationsfenster geoffnet.

Beispiel Der Eingangsstrom eines Operators setzt sich aus 3 verschiedenen Ereignistypen
zusammen: A, B und C. Der Operator korreliert jeweils eine Gruppe aus Ereignissen aller 3
Typen A;B;C in dieser Reihenfolge zu einem neuen Ereignis D. Bei dem aus 3 Eingangsstro-
men sequenzierten globalen Eingangsstrom

BBCAACCBBCC

beispielsweise wiirden die kursivgedruckten Ereignisse zur Erzeugung eines neuen Ereignis-
ses fithren. Das Pradikat Py;,s; wére fiir das erste Ereignis des Typs A wahr und wiirde zur
Offnung des ersten Korrelationsfensters fithren.

6.1.1.2 Das Pradikat Pj,;

Nachdem ein Korrelationsfenster ge6ffnet wurde und Ereignisse auf dem Eingangsstrom
I innerhalb des offenen Fensters von der Korrelationsfunktion zur Erzeugung eines ausge-
henden Ereignisses genutzt wurden, wird das Fenster nach Abschluss der dazu nétigen
Berechnungen wieder geschlossen. Der Abschluss des Fensters markiert das Ende der Be-
rechnung und muss im Falle der wiederholten Verarbeitung desselben Fensters zum selben
Ergebnis fithren. Um das letzte Ereignis des Fensters zu ermitteln, wird jedes Ereignis ab
dem Startereignis beztiglich des Pradikats P,; ausgewertet. In die Auswertung des Pradikats
konnen Informationen aus simtlichen Ereignissen innerhalb des aktuellen Fensters einfliefien,
nicht jedoch aus Ereignissen, die aufSerhalb des Fensters liegen.

Beispiel Im Beispiel in Abschnitt 6.1.1.1 wédre das Pradikat Pj,s; so definiert, dass das
aktuelle Fenster geschlossen wird, sobald auf das Startereignis des Typs A schliefilich ein
weiteres Ereignis des Typs B und darauthin ein weiteres Ereignis C gefolgt ist, wobei die
entsprechenden Ereignisse nicht direkt aufeinander folgen miissen. Beim ersten Ereignis
des Typs C, welches diese Bedingungen erfiillt, wiirde das aktuelle Korrelationsfenster
geschlossen und das ausgehende Ereignis D erzeugt. Die Ereignisse, die in die Erzeugung
von D eingeflossen sind, wiirden konsumiert, sodass sie in weiteren Korrelationen nicht
mehr berticksichtigt werden.
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6.1.1.3 Die Funktion next(v, P;;st)

Nachdem das aktuelle Korrelationsfenster geschlossen wurde, muss das Startereignis des
ndchsten Korrelationsfensters ermittelt werden. Dies geschieht im Operator mithilfe der
Funktion next(c, Pyjys). Die Funktion sucht im Eingangsstrom ab dem Ereignis ¢ nach
dem Ereignis, mit dem das nidchste Korrelationsfenster beginnt, d.h. welches das Pradikat
Pyt erfiillt. Wichtig ist vor allem, dass die Berechnung reproduzierbar ist, d.h. bei einer
Wiederholung der Berechnung des vorangegangenen Fensters auf demselben Eingangsstrom
muss auch die Funktion next(c, Py;s;) dasselbe Ereignis als ndchstes Startereignis bestimmen.
Die Funktion next(c, Pfirst) ist wie folgt definiert:

/ AN : /
next(c, Pripst) = {U =N P.ﬂm(a) ' mm(.g ) . L
L wenn ein solches Ereignis nicht existiert

Die Vergleichsrelationen wurden bereits in Kapitel 3.3.3.1 eingefiihrt und beziehen sich auf
die Position eines Ereignisses im Eingangsstrom, die Bedingung min(¢’) bedeutet, dass es
kein den Bedingungen entsprechendes Ereignis geben darf, das im Strom weiter vorne plat-
ziertist als ¢’ (¢ ist also minimal). Entsprechend ist ¢’ das friiheste Ereignis im Strom, auf das
die Bedingungen ¢’ > o und Py, (') zutreffen. Im o.g. Beispiel wére nach der Verarbeitung
des ersten Korrelationsfensters das ndchste Ereignis des Typs A ein mogliches Startereignis
fir die ndchste Korrelation einer Gruppe aus A;B;C. Der Operator wiirde die Funktion
next(A, Prirs) aufrufen und das zweite Ereignis von Typ A als ndchstes Startereignis ermitteln.

Die Parameter der Funktion bestimmt der Operator entsprechend der in ihm implementier-
ten Semantiken. Durch den Parameter ¢ und die Priddikate Py;5; und Py kann er bestimmen,
wie sich das Korrelationsfenster auf dem Eingangsstrom fortbewegt. Dabei ist zu beachten,
dass sich das Startereignis zwischen zwei aufeinanderfolgenden Fenstern nicht nach hin-
ten im Strom verschieben darf, d.-h. o > 0j451510¢ it Opgst510r+ als Startereignis des letzten
Korrelationsfensters.

6.1.2 Ereigniskonsum

Im Ausfithrungsmodell darf ein Operator auf einem Eingangsstrom in jedem Korrelations-
fenster beliebig viele Ereignisse konsumieren, d.h. verarbeiten und aus dem Eingangsstrom
loschen (vgl. dazu Kapitel 3.3.4).

6.1.3 Ausdrucksstarke des Ausfiuhrungsmodells

Nachdem nun ein fensterbasiertes Ausfithrungsmodell fiir Operatoren eingefiihrt wurde,
stellt sich die Frage, wie ausdrucksstark oder méachtig dieses Modell ist. Anders formuliert:
Inwiefern lassen sich Klassen von Situationserkennungen mit diesem Modell tatsdchlich
umsetzen und wo liegen die Grenzen des Modells? Welche Erkennungsmuster miissen
tberhaupt unterstiitzt werden? Um dieser Frage auf den Grund zu gehen, wird in dieser
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Arbeit ein ,Klassiker” im Forschungsfeld der Ereignisverarbeitung betrachtet: Die Ereignis-
verarbeitungssprache snoop [CMo4], die bereits im Systemmodell in Kapitel 3.3.4 erldutert
wurde. Im Folgenden werden diese Parameterkontexte genutzt, um das fensterbasierte
Ausfiihrungsmodell beziiglich seiner Ausdrucksstdarke zu bewerten. Je mehr verschiedene
Arten der Ereignisauswahl mit dem Ausfiihrungsmodell implementierbar sind, desto aus-
drucksstarker ist das Modell. Fiir jeden Parameterkontext aus snoop wird gezeigt, wie er
durch das Ausfiihrungsmodell umgesetzt werden kann.

Recent : Es werden immer die neuesten moglichen Ereignisse zur Korrelation heran-
gezogen, sobald eine Korrelation moglich ist. Nach der Korrelation werden die daran
teilnehmenden Ereignisse konsumiert.

Abbildungsvorschrift:

1. Offne ein Korrelationsfenster beim ersten Ereignis Ofirst, das das Startereignis einer
Korrelation sein konnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation moglich ist.
3. Schliefse dann das Korrelationsfenster.

4. Ziehe die jeweils neuesten nach der Korrelationsvorschrift in Frage kommenden Ereig-
nisse zur Korrelation heran und konsumiere diese danach.

5. Offne das nichste Korrelationsfenster beim nichsten auf 0rirst folgenden Ereignis, das
das Startereignis einer Korrelation sein konnte.

6. Beginne wieder bei Schritt 2.

Chronicle :  Ereignisse werden nach ihrem Auftreten in chronologischer Reihenfolge zur
Korrelation herangezogen. Das bedeutet, dass immer die dltesten verfiigbaren Ereignisse kor-
reliert werden. Nach der Korrelation werden die daran teilnehmenden Ereignisse konsumiert.

Abbildungsvorschrift:

1. Offne ein Korrelationsfenster beim ersten Ereignis Ofirst, das das Startereignis einer
Korrelation sein konnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation moglich ist.
3. SchliefSe dann das Korrelationsfenster.

4. Ziehe die jeweils dltesten nach der Korrelationsvorschrift in Frage kommenden Ereig-
nisse zur Korrelation heran und konsumiere diese danach.

5. Offne das nichste Korrelationsfenster beim nachsten auf 0rirst folgenden Ereignis, das
das Startereignis einer Korrelation sein konnte.

6. Beginne wieder bei Schritt 2.
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Continous :  Auf dem Eingangsstrom werden kontinuierlich Korrelationen durchgefiihrt,
und zwar mit jedem Ereignis, das als erstes Ereignis einer Korrelation in Frage kommt
und den &ltesten nachfolgenden weiteren fiir die Korrelation relevanten Ereignissen. Jedes
Ereignis kann nur eine Korrelation starten, daher wird das Startereignis konsumiert.

Abbildungsvorschrift:

1. Offne ein Korrelationsfenster beim ersten Ereignis Ofirst, das das Startereignis einer
Korrelation sein konnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation moglich ist.
3. SchliefSe dann das Korrelationsfenster.

4. Ziehe neben o7, die jeweils éltesten nach der Korrelationsvorschrift in Frage kom-
menden Ereignisse zur Korrelation heran und konsumiere dann nur ;.

5. Offne das nichste Korrelationsfenster beim nachsten auf 0irst folgenden Ereignis, das
das Startereignis einer Korrelation sein kénnte.

6. Beginne wieder bei Schritt 2.

Cumulative :  Alle Ereignisse zwischen dem ersten Ereignis, das eine Korrelation starten
kann, und dem ersten Ereignis, mit dem die Korrelation abgeschlossen wird, werden in die
Korrelation mit einbezogen. Nach der Korrelation werden alle daran beteiligten Ereignisse
konsumiert.

Abbildungsvorschrift:

1. Offne ein Korrelationsfenster beim ersten Ereignis Ofirst, das das Startereignis einer
Korrelation sein konnte.

2. Lese so lange Ereignisse ein, bis eine Korrelation moglich ist.
SchliefSe dann das Korrelationsfenster.

Ziehe alle Ereignisse des Korrelationsfensters zur Korrelation heran.

R Sl

Der Konsum des kompletten Fensters kann vermieden werden: Offne das néchste
Korrelationsfenster beim nichsten auf das Endereignis folgenden potentiellen Starter-
eignis.

6. Beginne wieder bei Schritt 2.

Damit kdnnen alle snoop-Parameterkontexte in dem Ausfithrungsmodell abgebildet werden.
Das Modell ist also méchtig genug, um in snoop definierte Korrelationen zu implementieren.
Beispiele zu den Parameterkontexten werden in der Veroffentlichung von S. Chakravar-
thy und D. Mishra [CMo4] gegeben und werden daher an dieser Stelle nicht detailliert
ausgefiihrt.
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6.2 Reproduzierbarkeit der Ereigniserzeugung

Die Idee, die hinter dem Ausfiihrungsmodell und der Wiederherstellung von Ereignisstro-
men steckt, ldsst sich folgendermafsen zusammenfassen: Wenn ein Operator ausfillt, muss er
in seinem Zustand wiederhergestellt werden. Ohne persistente Sicherung durch Checkpoints
stehen die notigen Informationen allerdings nicht direkt zur Verfiigung, sondern miissen
aus den Ausgangsstromen der Vorgéngeroperatoren im Operatorgraphen wiederhergestellt
werden. Die Vorgangeroperatoren halten dazu einen Teil ihrer Ausgangsstrome zur wie-
derholten Verarbeitung im neu gestarteten Operator bereit. Wenn es gelingt, aus diesen
Teilstiicken als Eingangsstrom den urspriinglichen Ausgangsstrom des Operators wieder-
herzustellen und fehlerlos an der Stelle fortzusetzen, an der der Operator ausgefallen ist,
kann er so weiterarbeiten, als wire er nie ausgefallen und hitte nie alle volatilen Zustandsin-
formationen verloren. Insbesondere kann so der Zustand des CEP-Systems auch nach dem
Ausfall mehrerer Operatoren in Reihe wiederhergestellt werden: Die Ereignisstrome werden
sukzessive von Vorgangern zu Nachfolgern reproduziert, bis alle ausgefallenen Operatoren
wiederhergestellt sind. Durch die reproduzierbare Offnung und SchlieSung der Korrelati-
onsfenster und der ebenfalls reproduzierbaren Berechnung des ausgehenden Ereignisses
in einem Korrelationsfenster wird sichergestellt, dass auf demselben Eingangsstrom ein
Operator immer denselben Ausgangsstrom berechnet. Bisher sind die Fenster jedoch noch
voneinander abhdngig: Die Berechnung des Startereignisses des Folgefensters geschieht
innerhalb des Vorgidngerfensters. Aufiferdem kann die Konsumierung von Ereignissen den
Eingangsstrom und damit auch die Berechnungen in folgenden Fenstern beeinflussen. Diese
Abhiéngigkeiten miissen aufgelost werden, damit zur Wiederherstellung eines Teilstroms
von Ausgangsereignissen nicht der gesamte Eingangsstrom I neu bearbeitet werden muss.

Die Wiederherstellung der Startereignisse ist dabei der einfachere Teil: Ein Teilstrom T,
der mit einem Ereignis o beginnt, kann reproduziert werden, wenn die wiederholte Verar-
beitung im Startereignis des Korrelationsfensters ws beginnt, in dem o urspriinglich erzeugt
wurde, d.h. ein eindeutiger Verweis auf dieses Startereignisses muss gespeichert werden. Die
Verarbeitung muss dabei auf einem Eingangsstrom geschehen, der mit dem Eingangsstrom
zum Zeitpunkt der ersten Ausfithrung von w; identisch ist.

Der Effekt von Konsumoperationen auf die Reproduzierbarkeit von Ereignisstromen wird
im folgenden Abschnitt untersucht. In Abschnitt 6.2.2 werden die hier aufgefiihrten Eigen-
schaften des Ausfithrungsmodells formalisiert zusammengefasst.

6.2.1 Wiederherstellung des Eingangsstroms bei Konsumoperationen

Wenn ein Konsum von Ereignissen (wie in Kapitel 3.3.4 eingefiihrt) in einem Korrelationsfens-
ter stattfindet, der die Ereignisse in einem darauf folgenden Korrelationsfenster beeinflusst,
d.h. wenn Ereignisse konsumiert werden, die im Eingangsstrom hinter dem Startereignis
eines Folgefensters liegen, dann entsteht dadurch eine Abhingigkeit zwischen dem Fenster,
in dem Ereignisse konsumiert wurden und den betroffenen Folgefenstern. Wie in Abschnitt
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6.2 erldutert wurde, muss jede Abhidngigkeit zwischen den Fenstern aufgelost werden, damit
ein effizientes Rollback-Recovery-Verfahren zur Wiederherstellung von Ereignisstromen
erreicht werden kann.

Um die Erzeugung eines Ereignisses 0, in einem Operator w zu wiederholen, muss die Kor-
relationsfunktion f auf dasselbe Fenster w, von Ereignissen aus demselben Eingangsstrom
I angewendet werden. Das heifst, dass sowohl das Startereignis s und das Endereignis o,
bei der Wiederholung mit der urspriinglichen Ausfithrung von f {ibereinstimmen mdtissen,
als auch alle Ereignisse, die zwischen o5 und 0o, liegen. Wenn in einem Vorgingerfenster w),
das mit w, tiberlappt, Ereignisse zwischen ¢; und o, aus dem Eingangsstrom I konsumiert
wurden, muss bei einer Wiederholung von w, zuvor dieser Konsum von Ereignissen ebenfalls
wiederholt werden, damit das Ergebnis der erneuten Anwendung von f auf das Fenster mit
dem Ergebnis der urspriinglichen Anwendung tibereinstimmt.

Beispiel Ein Operator hat einen Eingangsstrom I, der sich aus Ereignissen der Typen A, B
und C zusammensetzt. Es soll jeweils eine (nicht notwendigerweise zusammenhéngende)
Sequenz aus A, B und C detektiert und konsumiert werden und fiir jede detektierte Sequenz
ein Ausgangsereignis von Typ D erzeugt werden. Dabei werden jeweils die dltesten Vorkom-
men der jeweiligen Ereignistypen miteinander korreliert (Chronicle-Parameterkontext aus
snoop [CMo4]). Beim Eingangsstrom I

By By C3 |As A5 C¢ C7 Bg Bg Cyp| Cqg ..

(die tiefgestellten Zahlen sind ein Index zur eindeutigen Referenzierung eines Ereignisses
in der Beschreibung dieses Beispiels) wiirden die Ereignisse 4, 8 und 10 im Fenster w, (das
sich von Ereignis 4 bis Ereignis 10 streckt) zu einem Ereignis D, verarbeitet und konsumiert.
Der Eingangsstrom I wiirde dadurch verdndert und sdhe danach so aus:

Bl Bz C3 . |A5 C(, C77]39 7C11|

Das darauffolgende Korrelationsfenster w, geht von Ereignis 5 bis Ereignis 11 und verarbei-
tet und konsumiert die Ereignisse 5, 9 und 11 zum ausgehenden Ereignis D,. Was wiirde
passieren, wenn nach einer Wiederherstellung des Operators die Verarbeitung des urspriing-
lichen Eingangsstroms I ab Ereignis 5 wiederholt wiirde, also ohne erneute Ausfiihrung der
Konsumoperationen des Korrelationsfensters w,?

|As Cs C7 Bg By Cyo| Ci ...

Das Fenster w,, das bei Ereignis 5 startet, wiirde sich bis Ereignis 10 ziehen, und die Ereignisse
5,8 und 10 wiirden zu einem Ausgangsereignis D,” verarbeitet, welches vom urspriinglichen
Ereignis D, abweicht. Auf diese Weise liefe sich der Teil des Ausgangsstroms O ab Ereignis D,
aus dem urspriinglichen Eingangsstrom I nicht wiederherstellen. Wenn nur der urspriingliche
Eingangsstrom erhalten ist, muss zur Wiederherstellung eines Teils des Ausgangsstroms
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der gesamte Eingangsstrom neu verarbeitet werden. Dies ist in der Praxis natiirlich keine
Option. Besser ist es, den Zustand des Eingangsstroms mit seinen Verdnderungen durch die
Konsumoperationen zu sichern und im Falle einer Wiederherstellung des Operators diesem
zur Verfiigung zu stellen. Wie genau diese Sicherung geschieht, wird im Abschnitt 6.4 tiber
den Ablauf der Ereignisverarbeitung im Normalbetrieb ndher betrachtet.

6.2.2 Eigenschaften des Ausfiihrungsmodells beziiglich der Zustande von
Operatoren

Durch die kontextfreie Definition des Pradikats Py;s; wird sichergestellt, dass ein Ereignis
unabhingig von anderen Ereignissen beziiglich dieses Pradikats ausgewertet wird. Das
Pradikat P, berticksichtigt nur Ereignisse des aktuellen Korrelationsfensters, d.h. auch
dieses Pradikat bringt keine Abhdngigkeit zwischen zwei aufeinanderfolgenden Fenstern
mit sich. Abgesehen von den Konsumoperationen, die in Abschnitt 6.2.1 untersucht wurden,
sind die Fenster also unabhidngig voneinander und es gilt folgender Satz:

Satz 6.2.1 (Zustandslosigkeit zwischen zwei aufeinanderfolgenden Fenstern). Zwischen der
Ausfithrung zweier aufeinanderfolgender Korrelationsfenster muss abgesehen von den Konsumopera-
tionen keine Zustandsinformation gespeichert werden.

Dies fiihrt direkt zu folgendem Satz:

Satz 6.2.2 (Ereigniserzeugung nur anhand des aktuellen Fensters). Ausgehende Ereignisse
werden nur anhand der Ereignisse im aktuellen Fenster erzeugt. Ereignisse, die vor der Offnung des
aktuellen Fensters liegen, beeinflussen die Ereigniserzeugung nicht.

Dies fiihrt zur folgenden Schlussfolgerung;:

Schlussfolgerung 6.2.1 (Wiederherstellung von Ereignisstromen). Um ein ausgehendes Ereig-
nis o, in einem Operator w wiederherzustellen, miissen im Operator ausschliefSlich die Ereignisse
vorliegen, die in dem Korrelationsfenster liegen, das bei der Erzeugung von o, das aktuelle Korrelati-
onsfenster gewesen ist.

Dies ist die entscheidende Eigenschaft fiir das folgende Wiederherstellungsverfahren und
somit die Motivation zur Einfithrung des fensterbasierten Ausfithrungsmodells der Operato-
ren.

6.2.3 Zeitstempel von Ereignissen

In Kapitel 3.2.2 wurde die genaue Gestaltung der Zeitstempel recht offen gelassen. Fiir das
Ausfithrungsmodell in dieser Arbeit ist es im Allgemeinen auch unerheblich, was genau der
Zeitstempel ausdriickt, solange folgende Eigenschaften gelten:
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Eigenschaft 6.2.1 (Reproduzierbare Berechnung der Zeitstempel). Zeitstempel miissen unab-
hingig vom Zeitpunkt der Erzeugung eines Ereignisses in einem Operator sein, sodass sie im Fall
einer wiederholten Erzeugung nicht vom urspriinglichen Wert abweichen.

Eigenschaft 6.2.2 (Aufsteigende Zeitstempel im Ausgangsstrom). Der Ausgangsstrom O in
einem Operator muss gleichbleibende oder aufsteigende Zeitstempel besitzen.

Eigenschaft 6.2.3 (Zeitstempel von Startereignissen). Bei zwei im Ausgangsstrom aufeinander-
folgenden, in einem Operatoren erzeugten Ausgangsereignissen o; und o1 gilt: Das Startereignis
des Korrelationsfensters zur Erzeugung von o; hat keinen grofleren Zeitstempel als das entsprechende
Startereignis von o 1.

6.2.3.1 Begriindung der Notwendigkeit der Eigenschaften

Eigenschaft 6.2.1 ist notwendig: Im Falle einer wiederholten Erzeugung, d.h. wenn ein
Ereignisstrom wiederhergestellt werden soll, ist die Echtzeit der Ereigniserzeugung natiirlich
eine andere als bei der urspriinglichen Erzeugung der Ereignisse. Ereignisse, die aus wieder-
hergestellten Ereignisstromen kommen, konnen dadurch die Verarbeitung in nachfolgenden
Operatoren durcheinanderbringen, indem sie urspriinglich spater aufgetretene Ereignisse
,iberholen” und so die Ergebnisse vom Normalbetrieb abweichen.

Eigenschaft 6.2.2 ist notwendig: Da der Eingangsstrom eines Nachfolgeoperators nach
Zeitstempeln aufsteigend geordnet ist, muss zur Wiederherstellung eines Teils dieses Ein-
gangsstrom nur ein zeitlich begrenzter Teil der Ausgangsstrome der Vorgangeroperatoren
vorgehalten werden. Diese Begrenzung lasst sich effizient implementieren, wenn auch die
Ausgangsstrome nach Zeitstempeln aufsteigend geordnet sind. Details zur Wiederherstellung
von Ereignisstromen werden in Abschnitt 6.5 erldutert. Um im in Kapitel 6.1 beschriebenen
Ausfiihrungsmodell einen Ausgangsstrom mit aufsteigenden Zeitstempeln zu generieren,
muss die Berechnung der Zeitstempel bei der Erzeugung von Ereignissen in aufeinanderfol-
genden Korrelationsfenstern zu aufsteigenden oder gleichbleibenden, aber keinesfalls zu
absteigenden Zeitstempeln fiihren.

Eigenschaft 6.2.3 ist notwendig: Die Wiederherstellung von ausgehenden Ereignissen in
einem ausgefallenen Operator soll dadurch moglich werden, dass die eingehenden Ereig-
nisstrome neu eingelesen und verarbeitet werden. Wenn fiir ein Ereignis der Punkt in den
eingehenden Stromen definiert ist, ab dem diese neu verarbeitet werden miissen, diirfen
nicht fiir ein spéteres Ereignis plotzlich frithere Punkte in den Eingangsstromen notwendig
sein.

Bemerkung: Eine Umsortierung erzeugter Ereignisse zur Herstellung von Eigenschaft 6.2.2
kommt also nicht in Frage, da dadurch Eigenschaft 6.2.3 verletzt werden kann.
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6.2.3.2 Mdgliche Zeitstempeldefinition

Ohne Beschrankung der Allgemeinheit wird im Folgenden eine Implementierung von
Zeitstempeln und einer Ordnung dariiber eingefiihrt, die fiir verteilte CEP-Systeme sinnvoll
ist und fiir die Evaluation als Beispielimplementierung genutzt wird.

Definition 6.1 (Zeitstempel). Ein Zeitstempel T eines komplexen Ereignisses ¢ ist ein Zeitraum,
der sich zwischen zwei Zeitpunkten t g und ty,g aufspannt. t g ist der Zeitpunkt, zu dem das
erste einfache Ereignis in einer Ereignisquelle aufgetreten ist, das in die Korrelation von o eingeflossen
ist. Entsprechend ist t;,; der Zeitpunkt, zu dem das letzte einfache Ereignis in einer Ereignisquelle
aufgetreten ist, das in die Korrelation von o eingeflossen ist.

Damit ist t;,5; der Zeitpunkt des eigentlichen Auftretens der durch das komplexe Ereignis
angezeigten Situation und fg;; der Zeitpunkt des Beginns der Situationserkennung. In
unserem Ausfithrungsmodell fiir Operatoren (siehe Kapitel 6.1) werden Ereignisse sequentiell
auf einem Ereignisstrom korreliert, wobei ein Korrelationsfenster die Ereignisse bestimmt, die
in der Korrelation eines neuen Ereignisses berticksichtigt werden. In diesem Sinne berechnet
sich der Zeitstempel des neu erzeugten Ereignisses aus dem kleinsten ¢ ;. und dem grofiten
tiast aller Ereignisse im entsprechenden Korrelationsfenster. Da die Startereignisse von
Korrelationsfenstern im sequenzierten Eingangsstrom sich nur nach hinten bewegen kénnen,
die Endereignisse aber unabhidngig von den Endereignissen anderer Fenster bestimmt
werden (also nach vorne und hinten schwanken kénnen), gibt es nur eine sinnvolle Ordnung
tiber die Zeitstempel:

Definition 6.2 (Ordnung tiber Zeitstempel). Zeitstempel werden iiber die Startzeitpunkte t ¢y
geordnet. Das heifst, fiir zwei Zeitstempel T1 und T, gilt:
m>T< tfirstl > tfirstz

Bei Gleichheit von t First gilt weder 71 > 1 noch T < T, sondern T, = Tp.

Mit dieser Ordnung ist ein Ausgangsstrom, der in einem Operator durch das fensterbasierte
Ausfithrungsmodell erzeugt wird, automatisch nach Zeitstempeln aufsteigend geordnet, da
die Startereignisse von Korrelationsfenstern immer zeitlich aufsteigend sind: Eigenschaft
6.2.2 wird also erfiillt. Durch die Berechnung der Zeitstempel aus den Zeitstempeln der
korrelierten Ereignisse ist auch Eigenschaft 6.2.1 erfiillt. Die Erfiillung von Eigenschaft 6.2.3
ergibt sich aus der Erfiillung von Eigenschaft 6.2.2 in den beiden Eingangsstromen und der
Tatsache, dass Startereignisse von Korrelationsfenstern sich nur nach hinten bewegen kénnen
(vgl. Abschnitt 6.1.1.3).

6.3 Voraussetzungen zur Wiederherstellung ausgefallener
Operatoren

Im CEP-System werden Ereignisse in den Operatoren miteinander korreliert und weiter-
verarbeitet, bis sie schliefslich an einen oder mehrere Konsumenten ausgeliefert werden.
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Ein Ereignis, das nach moglicherweise mehrstufiger Korrelation schliefdlich an einen Kon-
sumenten ausgeliefert wird, hat in der Zwischenzeit eine Menge an Informationen aus
,hiederwertigen” Ereignissen in sich aufgenommen. Letztendlich ldsst sich der Informa-
tionsgehalt eines an einen Konsumenten ausgelieferten Ereignisses schrittweise auf eine
Menge von ,, Zwischen-Ereignissen” und schliefilich vollstindig auf ,primitive” Ereignisse
aus den Ereignisquellen herunterbrechen. Im Folgenden bezeichnen wir ein ausgehendes
Ereignis, das an einen Konsumenten ausgeliefert werden kann, als c¢ousumer- In jedem der
Zwischenschritte, die in der Verarbeitung von Ereignissen aus den Quellen bis zu der Aus-
lieferung an die Konsumenten liegen, wird zumindest indirekt an einem oder mehreren
Teonsumer gearbeitet. Jeder Operator, der einen dieser Zwischenschritte ausfiihrt, hat zu jedem
Zeitpunkt einen ganz bestimmten Zustand beziiglich der Erzeugung der o¢pusumer-Ereignisse,
auch wenn er nicht direkt ein solches Ereignis erzeugt. Die eigentlichen oppsumer-Ereignisse
werden unmittelbar nur von Operatoren erzeugt, die direkte Vorgianger von Konsumenten im
Operatorgraphen sind. Die Information, welche Zwischenergebnisse (und schliefSlich, welche
einfachen Ereignisse aus den Ereignisquellen) zur Korrelation der sich aktuell im Aufbau
befindlichen oconsumer-Ereignisse eingebunden wurden, muss stromabwdrts von den letzten
Operatoren zu den ersten Operatoren weitergegeben werden. Dazu dienen die Bestidtigungs-
nachrichten, die hier kurz auch als ACK gekennzeichnet sind. Jedes Ereignis, das direkt
fiir den Bau eines 0;onsumer-Ereignisses, d.h. auf der obersten Verarbeitungsebene, gebraucht
wird, muss solange verfiigbar oder zumindest wiederherstellbar sein, bis das entsprechende
Ereignis sicher an den Konsumenten ausgeliefert wurde und es damit nicht mehr benétigt
wird. Diese oberste Verarbeitungsebene nennen wir im Folgenden Ebene o. Wenn wir nun
Ereignisse aus Ebene o wiederherstellen miissen, benotigen wir dafiir Ereignisse aus Ebene
1, fiir Ereignisse aus Ebene 1 benotigen wir Ereignisse aus Ebene 2, und so weiter.

6.3.1 Das Wiederherstellungsproblem

An das Wiederherstellungsverfahren ist die Anforderung gestellt, dass beim gleichzeitigen
Ausfall von F Operatoren eine Stabilisierung der Ereignisstrome erreicht werden kann, die
dazu fiihrt, dass in der Ebene der Konsumenten (sozusagen Ebene -1) die eintreffenden
Ereignisse in keiner Weise vom Normalbetrieb ohne Ausfille abweichen. Im schlechtesten
Fall im Sinne der Wiederherstellung von Ereignisstromen fallen F Operatoren in F zusammen-
hingenden Verarbeitungsebenen aus, d.h. die ausgefallenen Operatoren stehen alle in einer
strikten Reihe von Vorgdnger- und Nachfolgerbeziehungen. Um den Operator der obersten
ausgefallenen Ebene wiederherzustellen, benotigt man Ereignisse aus der zweithdchsten
Ebene. Wenn diese Ebene durch einen Ausfall ebenfalls weggebrochen ist, benotigt man
Ereignisse aus der dritthochsten Ebene, um zunéchst die zweithochste Ebene wiederherzu-
stellen, und so weiter. Jede Ebene muss in der Form wiederhergestellt werden, dass fiir die
hoherliegenden Ebenen der Ausfall der Ebene nicht ersichtlich ist. Die Wiederherstellung
einer Ebene bzw. der Operatoren einer Ebene nach einem Ausfall ist dann gegeben, wenn alle
Ereignisse im Ausgangsstrom wiederhergestellt sind, die fiir ein noch unvollstindiges Ereig-
NiS eonsumer eNOtigt werden, und der Operator mit dem letzten unvollstindig berechneten
Korrelationsfenster die Berechnung fortsetzt. Wenn dies gegeben ist, ist fiir die nachsthohere
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Ebene der Ausfall transparent, da die wiederhergestellten Operatoren ihre Arbeit an genau
der Stelle fortsetzen, an der sie zuvor ausgefallen sind.

6.3.1.1 Definition des Problems

Ein Operator ist dann wiederherstellbar, wenn nach dem Verlust seiner volatiler Zustandsin-
formationen diese durch Informationen wiederhergestellt werden konnen, die in anderen
Stellen im CEP-System gespeichert sind. Der Zustand eines Operators ist dabei wie folgt
definiert:

Definition 6.3 (Zustand eines Operators). Der Zustand eines Operators w zu einem bestimmten
Zeitpunkt zeichnet sich aus durch:

o Sein Ausgangslog L(w) von ausgehenden Ereignissen
o Seinen Eingangsstrom I (inklusive der konsumierten Ereignisse zum aktuellen Zeitpunkt)

o Dem aktuellen Berechnungszustand der Korrelationsfunktion f

Die Herausforderung besteht nun darin, diese Zustandsinformationen mdoglichst klein zu
halten. Das grofite Problem besteht dabei im aktuellen Stand der Berechnung der Korrelati-
onsfunktion f: Um den genauen Zustand der Berechnung festzuhalten, wire im Allgemeinen
ein teilweises Speicherabbild unerldsslich, um alle Variablen, den Control Stack, etc. zu
sichern, wie es in vielen Rollback-Recovery-Verfahren ja auch durchgefiihrt wird. An dieser
Stelle kommt das fensterbasierte Ausfithrungsmodell der Operatoren ins Spiel. Immer zu
Beginn eines Korrelationsfensters ist der Berechnungszustand von f ndmlich leer und man
muss all die Zustandsinformationen, die in der Ausfiihrung einer beliebigen Routine anfallen
konnen, nicht speichern. Stattdessen gentigt es, das Startereignis auf dem Eingangsstrom
zu speichern, die Korrelationsfunktion (die ja persistent als Routine im Operator gespei-
chert ist) wird dann auf den Ereignissen des Eingangsstrom ab dem gesicherten Punkt
ausgefiihrt. Zu bestimmten Zeiten wird jeder Operator seinen Zustand in einem sog. Siche-
rungspunkt festhalten und diesen Sicherungspunkt dann an andere Operatoren tibertragen.
Ein Sicherungspunkt ist wie folgt definiert:

Definition 6.4 (Sicherungspunkt). Ein Sicherungspunkt eines Operators enthiilt alle Informationen,
um mithilfe derselben Eingangsstrome einen Operator in genau den Zustand zu bringen, den er zum
fiir die Erstellung des Sicherungspunktes relevanten Zeitpunkt hatte. Der relevante Zeitpunkt wird
auf Basis der Bestitiqungsnachrichten der Vorgingeroperatoren bestimmt.

Was genau der Sicherungspunkt beinhaltet, wird spéter in Abschnitt 6.4 untersucht. Jedenfalls
muss er geniligend Informationen bereitstellen, um aus einer Reihe von Eingangsstromen,
die eventuell auch an verschiedenen Sicherungspunkten starten konnen, das richtige Korre-
lationsfenster zu 6ffnen und die Korrelationsfunktion f darauf auszufiihren. Zudem mdiissen
diese Eingangsstrome auch noch durch die Wiederholung der Konsumoperationen auf den
Stand gebracht werden, der zum Zeitpunkt der Offnung des urspriinglichen Korrelations-
fensters giiltig war. Liegen diese Informationen und die urspriinglichen Eingangsstrome (ab
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den relevanten ersten Ereignissen) vor, kann ein Operator wiederhergestellt werden. Die
Wiederherstellung ist wie folgt definiert:

Definition 6.5 (Wiederherstellung eines Operators). Ein Operator ist nach dem Verlust seiner
volatilen Zustandsinformationen genau dann wiederhergestellt, wenn sein Zustand dem letzten durch
einen Sicherungspunkt bestitigten Zustand vor dem Ausfall des Operators entspricht.

Der Operator wird also beziiglich eines Sicherungspunktes wiederhergestellt. Im Idealfall
geschieht dies beziiglich des aktuellsten Sicherungspunktes, insofern dieser auch an alle
relevanten Vorgéangeroperatoren tibertragen wurde. Welche Vorgangeroperatoren fiir welchen
Fehlerfall den Sicherungspunkt speichern miissen, wird spéter in Abschnitt 6.4 genauer
untersucht.

6.3.2 Invarianten fur die Problemlésung

Bevor eine Losung des Wiederherstellungsproblems Schritt fiir Schritt eingefiihrt wird, wer-
den in diesem Abschnitt zwei Invarianten fiir das CEP-System aufgefiihrt. Diese Invarianten
miissen jederzeit giiltig sein. Anhand der Invarianten wird dann in Abschnitt 6.3.2.1 die Kor-
rektheit des Systems bewiesen, und spiter in Abschnitt 6.5.4 die Giiltigkeit der Invarianten
im Wiederherstellungsverfahren bewiesen. Die Invarianten sind also eine Abstraktion, die in
der Analyse des Systems hilfreich ist.

Invariante 6.3.1 (Wiederherstellbarkeit von Operatoren). Im CEP-System miissen jederzeit alle
notwendigen Informationen vorhanden sein, um in der Fehlersituation ,Ausfall von F Operatoren”
jeden Operator beziiglich eines Sicherungspunkts wiederherstellen zu konnen.

Diese Invariante besagt, dass jeder Operator in der definierten Fehlersituation ,, Ausfall von
F Operatoren” wiederherstellbar sein muss. Das impliziert, dass die zur Wiederherstellung
notwendigen Information gentigend oft repliziert sein miissen, damit auch ein zeitgleicher
Ausfall von F Operatoren die Informationen nicht aus dem System entfernen kann.

Invariante 6.3.2 (Zeitpunkte von Sicherungspunkten). Sicherungspunkte miissen so gewdihlt
werden, dass sie sich auf Zeitpunkte beziehen, zu denen es der Zustand der Operatoren erlaubt, alle
noch nicht von allen Konsumenten empfangenen 0consumer-Ereignisse zu erzeugen.

Diese Invariante besagt, dass jedes 0¢ousumer-Ereignis auch beim gleichzeitigen Ausfall von F
Operatoren erzeugbar bleiben muss.

6.3.2.1 Beweis der Einhaltung der Korrektheitsanforderungen

Wenn die Invarianten 6.3.1 und 6.3.2 gelten, hat das folgende Auswirkungen:
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e Durch Ausfille konnen keine Ereignisse erzeugt werden, die es nicht auch ohne
die Ausfille gegeben hitte (falsche Ereignisse), denn Operatoren erzeugen nach der
Wiederherstellung genau dieselben Ausgangsstrome, die sie auch ohne Ausfall erzeugt
hitten. Dies folgt aus Invariante 6.3.1 und der Definition von Sicherungspunkten in
Abschnitt 6.3.1.1.

e Dass durch Ausfille keine Ereignisse verlorengehen konnen, folgt direkt aus Invariante
6.3.2.

e Die Erhaltung der Reihenfolge der Ereignisse folgt aus der Tatsache, dass Ereignisse
nicht umsortiert werden konnen und die Kommunikationskanéle Ereignisse in der
Reihenfolge der Versendung beim Empfianger ausliefern (vgl. Kapitel 3.4).

Das System lduft also bei Einhaltung der Invarianten korrekt nach den Korrektheitsanforde-
rungen aus Kapitel 4.2.3.

6.4 Verwaltung von Zustandsinformationen im Normalbetrieb

Der Normalbetrieb ist der Betrieb des verteilten CEP-Systems, wenn keine Operatoren aus-
fallen. Ausgehend vom Normalbetrieb wird dann die Reaktion des Systems auf Ausfille von
Operatoren untersucht. Im Normalbetrieb werden Informationen gesammelt, verteilt und ver-
waltet, die fiir eine Wiederherstellung von Operatoren benétigt werden. Jeder Operator fiihrt
einen Algorithmus zur Verwaltung von Logs und Sicherungspunkten aus, die er in seinem
volatilen Speicher sichert. Das heifit insbesondere, dass ein Operator keine Statusinformationen
persistent speichert, was den wesentlichen Unterschied zu klassischen Rollback-Recovery-
Verfahren ausmacht (vgl. dazu Kapitel 5). Zur Verwaltung dieser Informationen tauschen
sich die Operatoren gegenseitig Statusnachrichten aus. Diese sind nicht Teil der eigentlichen
Ereignisverarbeitung, vielmehr bilden die Operatoren untereinander ein von der verteilten
Ereignisverarbeitung getrenntes Netz zum Austausch von Statusinformationen. Statusnach-
richten tauchen also beispielsweise nicht in der Queue von eingehenden Ereignissen auf,
sie konnen direkt zwischen Operatoren ausgetauscht werden und werden auch mit hoherer
Prioritét als die ,normale” Ereignisverarbeitung verarbeitet.

6.4.1 Einfaches System: Quelle, Operator, Konsument
6.4.1.1 Ereignisstréme

In Abb. 6.1 ist das einfachste verteilte CEP-System im Sinne des Systemmodells in dieser
Arbeit dargestellt. Eine Ereignisquelle S ist mit einem Operator w verbunden, der wiederum
mit einem Ereigniskonsumenten C verbunden ist. Von S geht ein Ereignisstrom von einfachen
Ereignissen des Typs ¢, nach w, wo die Ereignisse miteinander korreliert werden. Als
Ergebnis dieser Verarbeitung von Ereignissen des Typs 0, erzeugt w ausgehende Ereignisse
des Typs o.. Diese ausgehenden Ereignisse werden in einer Sequenz im Ausgangsstrom
angeordnet und inkrementell mit Sequenznummern p. versehen. Schliellich werden sie an
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6.4 Verwaltung von Zustandsinformationen im Normalbetrieb

Abbildung 6.1: Versendung und Bestdtigung von Ereignissen im einfachsten CEP-System.

den Ereigniskonsumenten C ausgeliefert. Wie an diesem Vorgang zu erkennen ist, flieSen
die Ereignisse immer von der Ereignisquelle iiber den Operator zum Ereigniskonsumenten.
Wir nennen diese Fliefirichtung der Ereignisstrome ,,stromabwérts”.

6.4.1.2 Bestéatigung durch den Konsumenten

Sobald Ereignisse des Typs o, den Konsumenten erreichen, kann dieser den Empfang beim
Operator bestédtigen. Dabei muss zur Lastminderung nicht jedes Ereignis einzeln besta-
tigt werden, es ist auch denkbar, dass nur in bestimmten Intervallen Ereignisse bestatigt
werden und durch eine solche Bestitigung alle Vorgidngerereignisse im Ereignisstrom mit
bestétigt werden. Durch die Eigenschaften der Abstraktion der , Best-Effort-Verbindungen”
ist sichergestellt, dass diese Annahme getroffen werden kann (vgl. Kapitel 3.4). Die Besta-
tigung des Konsumenten ACK(p,) enthélt die Sequenznummer p, des bestétigten Ereignisses.

Wenn ein Ereignis vom Konsumenten bestitigt wurde, heifst das, dass dieses Ereignis
im CEP-System nicht mehr benotigt wird. Es wurde erfolgreich ausgeliefert und hat damit
den Zustdndigkeitsbereich des CEP-Systems verlassen. Das bestétigte Ereignis muss also
weder im Ausgangslog von w vorgehalten werden, noch miissen an irgendeiner anderen
Stelle Ereignisse vorgehalten werden, die irgendeine Vorstufe zur erneuten Erzeugung des
Ereignisses darstellen. Diese Information muss im gesamten CEP-System verteilt werden, und
zwar ,stromaufwérts” vom Konsumenten bis zur Quelle. Dazu dienen die Bestatigungsnach-
richten. Der Konsument bestitigt wie erwdhnt den Empfang direkt bei w tiber eine Nachricht
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ACK mit der Sequenznummer des bestitigten Ereignisses. Bei w muss diese Bestadtigung fiir
die Vorgianger im Operatorgraphen in Sequenznummern der entsprechenden Strome, die
w als Eingangsstrome zur Erzeugung des bestitigten Ausgangsereignisses gedient hatten,
umgerechnet werden. Dazu ruft w die Umkehrfunktion ! auf.

6.4.1.3 Umkehrfunktion f1

Um die Umkehrfunktion ! zu verstehen, muss man zunichst die Korrelationsfunktion
f betrachten. Die Funktion f: I — O bildet eine Menge von Ereignissen (genauer: eine
durch ein Korrelationsfenster begrenzte Menge von Ereignissen) aus dem Eingangsstrom
auf ein ausgehendes Ereignis ab. Sie wird auf aufeinanderfolgenden Korrelationsfenstern
ausgefiihrt und erzeugt so eine Menge von Ausgangsereignissen, die im Ausgangsstrom O
sequenziert werden. Die Umkehrfunktion bildet mathematisch gesehen entsprechend ein
ausgehendes Ereignis auf ,sein” Fenster im Eingangsstrom ab, also f~!: O — 1. Wenn ein
Operator eine Sequenznummer eines ausgehenden Ereignisses ¢, bestitigt bekommt, kann
er mithilfe dieser Sequenznummer in seinem Ausgangslog L(w) das entsprechende Ereignis
ermitteln. Waren in diesem Ereignis alle Ereignisse des Korrelationsfensters gespeichert,
konnte f~1(0,) anhand dieser Informationen in ¢, ermittelt werden. Doch im Prinzip ist es
unnotig, tatsdchlich das gesamte Korrelationsfenster von ¢, zu rekonstruieren. Wirklich von
Belang ist das Startereignis o; des Fensters, denn es ist sicher, dass alle Ereignisse, die im Ein-
gangsstrom vor dem Startereignis des Korrelationsfensters eines bestiitigten Ereignisses liegen, nicht
mehr benotigt werden. Eigentlich werden auch alle Ereignisse bis zum Startereignis des néichsten
Korrelationsfensters nicht mehr benotigt, doch es ist nicht immer moglich, dieses nachste
Startereignis zu bestimmen. Daher bleibt, um ein immer gleiches Verhalten des Systems zu
garantieren, nur die Freigabe aller Ereignisse vor dem Startereignis des Korrelationsfensters.
Die Umkehrfunktion f~! kann vereinfacht werden zu einer Funktion f~1: ¢ — o, die ein
Ereignis 0, des Ausgangsstroms auf das Ereignis ¢; im Eingangsstrom abbildet, das das
Startereignis des Korrelationsfensters gewesen ist, das zur Erzeugung von o, fiihrte. Wird
der Ereignistyp und die Sequenznummer von oy direkt in ¢, gespeichert, kann anhand dieser
Informationen im Eingangsstrom I das entsprechende Ereignis ermittelt und so die Funktion
f~! im Operator implementiert werden. Wenn ein Operator mehr als einen Eingangsstrom
hat, ist die Ermittlung von f~1 etwas komplexer. Fiir den Moment geniigt aber die Ermittlung
dieses einen Ereignisses ¢ aus dem Eingangsstrom.

Die Sequenznummer von ¢; wird zum Sicherungspunkt von w hinzugeftigt.

6.4.1.4 Konsumoperationen

Zusitzlich zu den Informationen {iber das Korrelationsfenster muss auch der Zustand des
Eingangsstroms zur Zeit des Offnens des Korrelationsfensters gespeichert werden, wenn im
Ausfiihrungsmodell der Operatoren Konsumoperationen auf dem Eingangsstrom erlaubt
sind. Durch die reproduzierbare Sequenzierung der Eingangsstrome (vgl. Kapitel 3.3.3)
im Operator kann der Eingangsstrom grundsitzlich tiber die Ausgangslogs L(wredecessors)
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der Vorgangerknoten wiederhergestellt werden. Durch Konsumoperationen kann dieser
urspriingliche Eingangsstrom aber bis zum Erreichen des Korrelationsfensters verandert
worden sein. Daher miissen alle Konsumoperationen, die in jedem Korrelationsfenster durch-
gefiihrt wurden, in einer Tabelle gespeichert werden (Tabelle 6.1).

out_id ‘ consumed_events
1 A1, A3, etc...
2 A2, As, etc...

Tabelle 6.1: Tabelle der Konsumoperationen

Die Spalte out_id beinhaltet aufsteigend die Sequenznummer des Korrelationsfensters (die-
se stimmt mit der Sequenznummer des darin erzeugten Ereignisses iiberein). Die Spalte
consumed_events listet die Ereignisse auf, die im entsprechenden Korrelationsfenster konsu-
miert wurden. In Sicherungspunkt fiigt w samtliche Konsumoperationen bis einschlieflich
der Zeile mit der Sequenznummer von Wy,coper €IiN.

6.4.1.5 Ubertragung des Sicherungspunkts

Nachdem die Informationen fiir den Sicherungspunkt gesammelt wurden, wird dieser an
den Vorgédnger von w, in diesem Fall die Ereignisquelle S, iibertragen werden. In Abb.
6.1 wird dies durch die Nachricht ACK(SP) ausgefiihrt, die stromabwiérts vom Operator
zur Quelle gesendet wird. Der Sicherungspunkt fiithrt in der Ereignisquelle S zu zweierlei
Aktionen: Zum einen wird das Log der Ereignisse bereinigt, indem alle Ereignisse, die im
Ausgangsstrom vor der Sequenznummer im Sicherungspunkt liegen, geloscht werden. Zum
anderen werden die Informationen des Sicherungspunktes selbst in S gespeichert, damit
sie im Falle einer Wiederherstellung von w zur Verfiigung stehen. Wenn die ausgehenden
Ereignisse ab ¢; und alle Konsumoperationen bis zum Zeitpunkt der Ausfithrung des
Korrelationsfensters, das mit o; startet und zur Erzeugung von o, fiithrt, zur Verfiigung
stehen, kann w genau in den Zustand versetzt werden, der zu der Zeit vor der Berechnung
von 0, giiltig war: w kann beziiglich des Sicherungspunkts wiederhergestellt werden.

6.4.2 Mehrere Konsumenten

Um das einfachste CEP-System zu erweitern, wird im Folgenden der Fall betrachtet, dass
ein Operator mit mehreren Konsumenten verbunden ist. In Abb. 6.2 existiert wieder eine
Ereignisquelle S, die mit einem Operatoren w verbunden ist. Dieser ist nun allerdings mit n
Konsumenten C; bis C,, verbunden, die beide jeweils bestimmte Ereignisse konsumieren,
die w produziert. Es stellt sich nun die Frage, was sich durch das Vorhandensein mehrerer
Operatoren fiir die Bestdtigung von Ereignissen und das Erzeugen der Sicherungspunkt
verdndert.
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Abbildung 6.2: Versendung und Bestédtigung von Ereignissen in einem CEP-System mit
mehreren Konsumenten.

6.4.2.1 Ereignisstrome

An den Ereignisstromen dndert sich nur wenig. Der Eingangsstrom aus der Ereignisquel-
le wird weiterhin von w zu einem Ausgangsstrom weiterverarbeitet. Die Ereignisse des
Ausgangsstroms werden an die Konsumenten versendet. Es kann sich dabei um immer
exakt dieselben Ereignisse handeln oder es kann sein, dass w manche Ereignisse nur an
einen der Konsumenten versendet. Jedoch ist zu beachten, dass w nach den Regeln des
Systemmodells trotzdem nur einen sequenzierten Ausgangsstrom O besitzt, unabhdngig
davon, ob alle Konsumenten an allen Ereignissen Interesse haben. Ein solches Verhalten
liefle sich beispielsweise durch Publish-Subscribe-Channels implementieren, in dem sich
die Konsumenten registrieren. Wir gehen aber von dem allgemeinsten Fall aus, dass jeder
Operator an jedem Ereignis Interesse hat, da dadurch alle anderen Fille mit abgedeckt
werden.

6.4.2.2 Mehrere Konsumenten bestéatigen zur selben Zeit verschiedene Ereignisse
Der interessante Teil der Untersuchung beginnt, wenn die Konsumenten parallel Bestéti-

gungsnachrichten an w zuriickgeben. Die Bestatigungsnachrichten unterscheiden sich nicht
von denen im Fall eines einzelnen Konsumenten: Jeder Konsument bestétigt in regelmafSigen
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Abstianden den Empfang des letzten Ereignisses durch eine Nachricht, die die Sequenz-
nummer des bestédtigten Ereignisses enthilt. Es kann nun jedoch vorkommen, dass der
Operator w zur selben Zeit verschiedene Bestdtigungsnachrichten von den verschiedenen
Konsumenten erhilt: Einer der Konsumenten bestétigt das Ereignis mit der Sequenznummer
p1, der andere das Ereignis mit der Sequenznummer p;. Auf Basis welcher Bestitigung kann
w die Umkehrfunktion f~! aufrufen, den Sicherungspunkt bestimmen und diesen an die
Ereignisquelle weitergeben?

Wenn in w verschiedene Bestatigungsnachrichten vorliegen, muss unter den Konsumen-
ten immer die Bestitigung mit der niedrigsten Sequenznummer als die aktuell giiltige
Bestdtigung betrachtet werden. Wird eine andere Bestdtigung herangezogen und w wird
wiederhergestellt, konnen Ereignisse irreversibel verloren gegangen sein, die von manchen
der Konsumenten noch nicht bestitigt wurden. Erst, wenn jeder Konsument ein bestimmten
Ereignis bestatigt hat, darf es wirklich freigegeben werden. Dies wird durch das Heranziehen
der niedrigsten aller aktuellen Bestdtigungen aller Konsumenten sichergestellt. Doch wie
kann es sein, dass manche Konsumenten ein Ereignis erhalten und bestitigt haben, das
andere Konsumenten noch nicht empfangen konnten? Dieser Fall kann eintreten, wenn
w ein Ereignis erzeugt und an einige Konsumenten versenden kann, wihrend die Kom-
munikationskanédle zu anderen der Konsumenten lange Latenzzeiten haben. Wahrend der
Versand des Ereignisses zu diesen Konsumenten noch stockt, d.h. beispielsweise «w macht
weitere Ubertragungsversuche, haben die anderen das Ereignis bereits bestitigt. Wenn
nun w abstiirzt, bevor es den Versand zu allen Konsumenten durchgesetzt hat, aber die
Bestdtigung schon weitergegeben hat, konnen die Konsumenten, bei denen der Versand nicht
fertiggestellt werden konnte, dieses Ereignis nicht mehr erhalten. Daher kann ein Ereignis
nur als bestitigt gelten, wenn es von allen Konsumenten bestitigt wurde. Immer, wenn eine
Bestatigungsnachricht von einem der Konsumenten eingeht, iiberpriift der Operator, ob sich
dadurch der aktuelle Sicherungspunkt dndert. Falls ja, wird der Sicherungspunkt wie im
obigen Abschnitt beschrieben bestimmt und an die Ereignisquelle weitergeleitet.

Ansonsten dndert sich an dem Verfahren gegeniiber dem Fall mit nur einem Konsumenten
nichts.

6.4.3 Mehrere Quellen
Im Folgenden wird das System wiederum erweitert: Nun gibt es n Ereignisquellen statt

nur einer einzigen. Wie in Abb. 6.3 dargestellt, sind die Ereignisquellen S; bis S;; mit dem
Operatoren w verbunden, der wiederum mit den Konsumenten C; bis C,, verbunden ist.

6.4.3.1 Ereignisstrome

An der Verarbeitung der Ereignisstrome dndert sich nur wenig. Da w nun mehrere Eingangs-
strome hat, miissen diese durch ein eindeutiges, reproduzierbares Verfahren in einen einzigen
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Abbildung 6.3: Versendung und Bestédtigung von Ereignissen in einem CEP-System mit
mehreren Quellen.

Eingangsstrom sequenziert werden. Auf diesem Strom fiihrt w wieder die Korrelationsfunk-
tion aus und erzeugt einen Ausgangsstrom, den er an die Konsumenten weiterleitet.

6.4.3.2 Verschiedene Ereignisquellen mit verschiedenen Versionen des
Sicherungspunkts

Im Vergleich zum vorherigen Fall mit nur einer Ereignisquelle tritt nun folgendes Problem
auf:

w hat zu verschiedenen Zeitpunkten verschiedene Sicherungspunkte. Wenn die Weiter-
gabe des Sicherungspunktes an eine der Ereignisquellen erfolgreich verlaufen ist und dann
w ausfillt, bevor der Sicherungspunkt auch an die anderen Ereignisquellen weitergege-
ben werden konnte, besitzen die verschiedenen Quellen einen unterschiedlich aktuellen
Sicherungspunkt. Die Frage ist nun, an welchem Punkt die Verarbeitung der Eingangs-
strome bei der Wiederherstellung von w aufgenommen wird. Durch den Empfang einer
Bestatigungsnachricht fiihrt eine Ereignisquelle irreversible Aktionen beziiglich des empfan-
genen Sicherungspunktes aus, sodass sie nie wieder an der Wiederherstellung eines dlteren
Sicherungspunktes teilnehmen kann. Es muss daher w zum aktuellsten Sicherungspunkt wie-
derhergestellt werden. Zudem muss ein Sicherungspunkt gentigend Informationen enthalten,
dass bei der Wiederherstellung von w auch Eingangsstrome mit beliebigen Ereignisfolgen vor
dem Startereignis des ersten Korrelationsfensters kein Problem darstellen. Diese ,beliebigen”
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Ereignisfolgen (sie sind nicht vollig beliebig, aber in ihrem genauen Umfang eben doch
unbekannt) konnen durch veraltete Sicherungspunkte in manchen Vorgangern entstehen,
die zu einem nicht vorhersehbaren Eingangsstrom in w fiihren. Erst ab dem Ereignis o5 im
aktuellsten Sicherungspunkt ist der Eingangsstrom von w tatsdchlich wieder vollstandig
und reproduzierbar hergestellt. Welcher der verschiedenen Sicherungspunkte der Vorganger
von w der aktuellste ist, wird auf dieselbe Weise ermittelt, in der die Sequenzierung von
Ereignissen aus den verschiedenen eingehenden Ereignisstromen in den Eingangsstrom I
bestimmt wird. Werden die Ereignisse o5 aus den Vorgédngern in eine Sequenz gebracht, ist
das letzte Ereignis in dieser Sequenz das Startereignis des aktuellsten Sicherungspunkts.

6.4.3.3 Umkehrfunktion f—!

Die Berechnung der Umkehrfunktion f~!: O — 1, die eine Abbildung des bestitigten
Ausgangsereignis auf das Startereignis o; des entsprechenden Korrelationsfensters im Ein-
gangsstrom ist, wird im Falle mehrerer Vorgédnger von w etwas abgedndert. Wahrend bei
nur einem Vorgidnger die Sequenznummer von ¢ zur eindeutigen Identifizierung aus-
reicht, muss im Falle unterschiedlicher Vorgénger fiir jeden dieser Vorgédnger eine eigene
Sequenznummer bestimmt und einem Vektor gespeichert werden. Diese bestimmt jeweils,
ab welchem Ausgangsereignis ein Vorgdnger seinen Ausgangsstrom zur Wiederherstellung
an w versenden muss. Die Umkehrfunktion bestimmt also nicht mehr nur das Startereignis
des Korrelationsfensters, sondern die ersten Ereignisse aller einzelnen Eingangsstrome I;
in diesem Korrelationsfenster. Diese Information muss aus dem bestétigten Ereignis im
Ausgangslog extrahiert werden. Daher muss die Information in einem Ausgangsereignis o,
nach Abschnitt 6.4.1.3 um einen Vektor von Startereignissen erweitert werden.

Ansonsten dndert sich im Vergleich zum System mit nur einer Ereignisquelle nichts.

6.4.4 Mehrere sequentiell abhangige Operatoren

Bisher wurden CEP-Systeme mit nur einem Operatoren betrachtet. Nun wird das Modell
erweitert, indem zwischen den Ereignisquellen und den Ereigniskonsumenten mehrere
sequentiell abhdngige Operatoren die Ereignisse in verschiedenen Zwischenschritten weiter-
verarbeiten. In Abb. 6.4 ist eine Reihe von Ereignisquellen S; bis S,; mit einem Operator wy
verbunden, der in einer Sequenz von miteinander verbundenen Operatoren von wy_1 bis wp
steht. wy ist dann mit einer Reihe von Ereigniskonsumenten verbunden, C; bis C,,.

6.4.4.1 Ereignisstrome

Die Ereignisse aus den Quellen werden im Operatoren wy zu anderen Ereignissen korreliert,
die einen Zwischenschritt zwischen den einfachen Ereignissen aus den Quellen und den kom-
plexen Ereignissen, die an die Konsumenten ausgeliefert werden, darstellen. Diese Ereignisse
werden wiederum von anderen Operatoren weiterverarbeitet, jeder Operator implementiert
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Abbildung 6.4: Versendung und Bestédtigung von Ereignissen in einem CEP-System mit
mehreren sequentiell abhdngigen Operatoren.

einen Verarbeitungsschritt. SchliefSlich fiihrt wp in der letzten Verarbeitungsebene die letzte
Korrelation durch, als deren Ergebnis das , Endprodukt” von komplexen Ereignissen ent-
steht, die an die Konsumenten ausgeliefert werden und die die vom CEP-System erkannten
Situationen von Interesse anzeigen.

6.4.4.2 Verschiedene Operatoren mit jeweils eigenen Sicherungspunkten

In Systemen mit mehreren voneinander abhingigen Operatoren hat jeder Operator zu jedem
Zeitpunkt einen eigenen, bestimmten Zustand. Zu bestimmten Zeitpunkten sichert jeder
Operator diesen Zustand in einem Sicherungspunkt. Der Zeitpunkt der Sicherung wird
von den Bestdtigungsnachrichten der Ereigniskonsumenten angestofSen. Immer, wenn ein
Ereigniskonsument bei seinem Vorgédngeroperatoren den Empfang eines Ereignisses oder
mehrerer Ereignisse bestitigt, breitet sich diese Bestatigungsnachricht wellenférmig tiber die
jeweiligen Vorgianger im Operatorgraphen bis hin zu den Ereignisquellen aus. Ein bestétigtes
Ereignis der hochsten Komplexitat fiihrt i.A. dazu, dass Ereignisse aller Zwischenstufen
bestatigt werden konnen und sich diese Bestatigung schliefslich bis zu den einfachsten
Ereignissen aus den Quellen fortsetzt.

Immer, wenn ein Operator von seinen Vorgangern eine Bestdtigung beziiglich einiger

der Ereignisse aus seinem Ausgangsstrom erhalten hat, aktualisiert er seinen Sicherungs-
punkt in der Weise, wie es in den vorherigen Abschnitten beschrieben wurde: Bei mehreren
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Nachfolgern gilt die niedrigste aktuelle Bestdtigung, die Umkehrfunktion wird aufgerufen,
das Startereignis o des entsprechenden Korrelationsfensters wyecoer und der zu dem Zeit-
punkt giiltige Stand der Konsumtabelle werden im Sicherungspunkt gespeichert. Wahrend
in den bisher betrachteten Systemen mit nur einem Operator dieser Sicherungspunkt direkt
an die Ereignisquellen iibertragen und dort gesichert wurde, gestaltet sich die Situation bei
mehreren abhidngigen Operatoren etwas anders.

Um die Bestimmung und Ubertragung der Sicherungspunkte genauer zu untersuchen,
folgen wir dem Verlauf der ,Bestitigungswelle” von den Konsumenten bis zu den Quellen.
Die Bestdtigungen der Konsumenten enthalten nur eine Sequenznummer, namlich die des
letzten bestitigten Ereignisses. Nennen wir den Operatoren, der eine solche Bestitigung be-
kommt, wp und nehmen an, dass die Bestdtigung zur Aktualisierung des Sicherungspunktes
fithrt. wy tibertrdgt seinen neuen Sicherungspunkt SP[wp] mit Hilfe einer Bestdtigungsnach-
richt ACK(SP[wy]) an seinen Vorganger w;. Im {ibertragenen Sicherungspunkt findet sich die
Information, ab welchem Ereignis im Ausgangsstrom von w; dieser im Fall einer Wiederher-
stellung von wy neu tibertragen werden muss. Alle Ereignisse, die davor in der Sequenz im
Ausgangsstrom davor liegen, kénnen also freigegeben werden. w; wendet auf das Ereignis
aus SP[wy] die Umkehrfunktion an, das Ergebnis ist das Ereignis o5 aus dem Eingangsstrom
von w1, von dem aus alle dlteren Ereignisse in diesem Eingangsstrom freigegeben werden
konnen. w; bildet nun einen Sicherungspunkt SP[w;] beziiglich des Zeitpunkts, an dem das
Korrelationsfenster, das zur Erzeugung des in SP[wy] bestétigten Ereignisses fiihrte, ge6ffnet
wurde. Dieser Sicherungspunkt wird mit einer Bestdtigungsnachricht an den Vorganger von
w1 libertragen, welcher wiederum seinen eigenen Sicherungspunkt auf dieselbe Weise aktua-
lisiert und an seine Vorganger iibertragt, bis schliefSlich die Bestatigung und Aktualisierung
der Sicherungspunkte in jedem Pfad bis zu den Ereignisquellen fortgefiihrt worden ist.

6.4.4.3 Redundante Speicherung der Sicherungspunkte

Das Ziel des Wiederherstellungsverfahrens ist, wie in Kapitel 4 beschrieben, die Wiederher-
stellung des Systems bei einem gleichzeitigen Ausfall von maximal F Operatoren. Das heifst,
dass in einer Sequenz von F+1 abhédngigen Operatoren immer mindestens 1 Operator korrekt
lauft. Im schlechtesten Fall muss von diesem Operator, nennen wir ihn wy, ausgehend eine
Reihe von F Operatoren, wy_1 bis wy_r, wiederhergestellt werden. wy hat den Sicherungs-
punkt SP[wy_1] gespeichert und kann anhand der darin enthaltenen Informationen und
dem Ausgangslog L(wy) seinen Nachfolger wy_; wiederherstellen. wy_; kann zwar sein
Ausgangslog L(wy_1) wiederherstellen, doch fehlt nach der Wiederherstellung der Siche-
rungspunkt SP[wy_,], ohne den wy_, nicht wiedergestellt werden kann. Daher muss wy auch
den Sicherungspunkt SP[wy_;] speichern und bei der Wiederherstellung von wy_; an diesen
tibertragen. Genauso verhilt es sich mit den Operatoren wy_3 bis wi_r: Um eine Reihe von
F Operatoren wiederherstellen zu kénnen, muss in wy eine Liste von F Sicherungspunkten
SP[wy_1] bis SP[wk_N] gespeichert sein.

Aus dieser Beobachtung folgt, dass ein Operator nicht nur die Sicherungspunkte seiner
direkten Nachfolger speichert, sondern eine Liste von Sicherungspunkten der folgenden
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F Operatoren. Immer, wenn er eine Bestitigungsnachricht von einem seiner Nachfolger
empfangt, aktualisiert er den eigenen Sicherungspunkt und fiigt ihn an erster Stelle in eine
Liste von Sicherungspunkten ein. Falls darauthin mehr als F Sicherungspunkte in der Liste
sind, entfernt er den letzten Eintrag aus der Liste und schickt sie weiter an seine Vorgénger.
Die Liste der Sicherungspunkte in Operator w; enthilt also die Sicherungspunkte w; bis
maximal w;_f, sofern es so viele Operatoren gibt, die auf w; folgen. Der Vorgidnger von
wi, wjy1, erhdlt diese Liste, berechnet anhand des Sicherungspunkts SP[w;] den eigenen
Sicherungspunkt SP[w; 1], fiigt diesen in die Liste ein, entfernt SP[w;_r] und schickt eine
Bestatigungsnachricht mit der Liste an seinen Vorganger w;,,. Dieses Verfahren wird so
lange fortgesetzt, bis die Ereignisquellen von den Bestatigungsnachrichten erreicht werden.

6.4.5 Operator mit mehreren Vorgangern

ACK(SP[(DK_]_], ...,Sp[wk_p])

ACK(SPm[wil, ..., ,
SI:)m[(»*)k-F+1] )) / g

ACK(SP,[wy], ...,
SPn [wk-F+1])

/

\I" w; | /ij

A ACK(SPr[wil,.., Ay ACK(SP[w,...
SI:)m[(*)k-F+2]) SPn[(’)k-F+2])

Abbildung 6.5: Bestdtigungsnachrichten in einem Ausschnitt aus einem CEP-System mit
einem Operator, der mehrere Vorgédnger hat.

In Abb. 6.5 ist ein Ausschnitt aus einem CEP-System dargestellt, in dem ein Operator,
wy, mehrere Vorgédnger hat. Mehrere Vorganger zu haben bedeutet fiir wy, dass zu seiner
Wiederherstellung die Ausgangsstrome aus samtlichen Vorgangern notwendig sind. Daher
bestitigt wy seinen eigenen Sicherungspunkt bei allen seinen Vorgédngern. Die Sicherungs-
punkte der auf wy folgenden Operatoren miissen, wie in Abschnitt 6.4.4 begriindet wird,
redundant in den Vorgéngeroperatoren von wjy gespeichert werden, sodass jede Kette von
F aufeinanderfolgenden Operatoren wiederherstellbar ist. Daher versendet wy neben dem
eigenen Sicherungspunkt auch die Sicherungspunkte der F-1 auf wy folgenden Operatoren
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an seine Vorginger.

Es ist zu beachten, dass zwar die Vorgdnger von wy verschieden aktuelle Sicherungs-
punkte von wy und seinen Nachfolgern besitzen konnen, die Listen der Sicherungspunkte
an sich aber immer in sich konsistent sind. Eine konsistente Liste von Sicherungspunkten
bedeutet, dass der Sicherungspunkt eines Nachfolgers stets beziiglich eines Zeitpunkts
erstellt wurde, der zeitlich spéater als der entsprechende Zeitpunkt des Sicherungspunkts des
Vorgdngers liegt. Ware es anders, d.h. ein Operator soll einen Nachfolger in seinem Zustand
zu einem fritheren Zeitpunkt wiederherstellen als der Zeitpunkt des eigenen Zustands
hergibt, konnte dieser die Wiederherstellung nicht durchfiihren, da er dafiir dltere Ereignisse
aus seinem Ausgangsstrom benétigte. Die Konsistenz der Listen ist durch die Eigenschaften
der Umkehrfunktion gegeben: Das Ergebnis der Umkehrfunktion ist stets ein Ereignis, das
in der urspriinglichen Ausfiithrung der Korrelationsfunktion ein Eingangsereignis war. Wenn
aus einem Ereignis ein anderes Ereignis erzeugt wird, muss ersteres zuerst existiert haben.
Daher bezieht sich der Sicherungspunkt, der anhand der Umkehrfunktion berechnet wurde,
immer auf einen fritheren Zeitpunkt.

Damit diese Konsistenz erhalten bleibt, ist die Speicherung der Listen in allen Vorgangern
notwendig. Ware die Liste beispielsweise im CEP-System in Abb. 6.5 nur in w; gespeichert
und hétte w; einen aktuelleren Sicherungspunkt SP;, [wy] erhalten als w;, der SPy, [wy] spei-
chert, konnte zwar wy zum Sicherungspunkt SP,[wy]| wiederhergestellt werden, doch die
Nachfolgeroperatoren miissten mit den &lteren Sicherungspunkten aus den Listen von w;
wiederhergestellt werden. Es konnte nicht garantiert werden, dass diese Sicherungspunkte
nicht auf iltere Ereignisse zugreifen miissen, als sie in SP,[wy] vorhanden sind. Durch
das ,Mischen” der Sicherungspunkte wére also die Konsistenz der Liste nicht mehr zu
gewdhrleisten.

6.4.6 Operator mit mehreren Nachfolgern

Um sdamtliche moglichen Topologien der Operatorgraphen abzudecken, fehlt noch ein Fall:
Ein Operator, der mit mehreren Nachfolgeroperatoren verbunden ist. Abb. 6.6 zeigt einen
Ausschnitt aus einem solchen CEP-System. Operator wy muss in der Lage sein, sowohl
samtliche Nachfolger als auch deren Nachfolger bis zu F-1 Ebenen weit wiederherzustellen.
Das heifit, dass wy alle Sicherungspunkte seiner Nachfolger und deren Nachfolger der
nichsten F-1 Ebenen in seinem Vorgédnger speichern muss. An dieser Stelle wird die bisher
verwendete Liste von Sicherungspunkten durch einen Baum ersetzt. Man kann es auch so
formulieren, dass in einem CEP-System, in dem Operatoren niemals mehrere Nachfolger
haben, der Baum von Sicherungspunkten so flach ist, dass es sich dabei um eine Liste
handelt. Der vor uns liegende Fall ist also allgemeiner als die Spezialfille, die wir zuvor
betrachtet haben.

Ein Operator muss stets einen Baum von Sicherungspunkten, einen ,Sicherungsbaum® spei-

chern. Dieser Baum hat den Sicherungspunkt des Operators selbst als Wurzel und verlauft
in Ereignisflussrichtung entsprechend der Topologie des Operatorgraphen bis zur Tiefe
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ACK(SP[w],..., s/ ACK(SP[wj],...,
SP[wi.p41])

ACK(SP[wy],
SP[w]...SP[wirs),
SP[(.UJ] ...SP[(A.)J'_F+2])

Abbildung 6.6: Bestdtigungsnachrichten in einem Ausschnitt aus einem CEP-System mit
einem Operator, der mehrere Nachfolger hat.

F. Wenn ein Operator von einem Nachfolger einen Sicherungsbaum erhilt, aktualisiert er
anhand des Sicherungspunkts des direkten Vorgédngers seinen eigenen Sicherungspunkt und
baut an diesen als Wurzel die jeweils aktuellsten Sicherungsbdume all seiner Nachfolger an.
Diesen neuen Sicherungsbaum beschneidet er so, dass alle Knoten in einer Tiefe grofer als F
entfernt werden und sendet ihn anschlieflend an seine Vorgénger.

Das Konzept der Sicherungsbdaume ist also die konsequente Verallgemeinerung des bisheri-

gen Ansatzes, die es ermoglicht, eine ,verzweigte” Topologie der Tiefe F von einem Operator
aus wiederherzustellen.

6.4.7 Zusammenfassung: Verwaltung von Logs und Sicherungspunkten
Wenn man alle gesammelten Informationen zusammenfasst, kommt man zu einem allge-

meinen Ablauf der Verwaltung von Sicherungspunkten und Logs, der fiir alle erlaubten
Topologien des Operatorgraphen geeignet ist.
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Algorithmus 6.1 Operator: handleAcknowledgement

procedure HANDLEACKNOWLEDGEMENT(Acknowledgement ack)

UPDATESTOREDACK(ack,ack.producer) // aktualisiere ACK des Nachfolgers
if oldest stored ACK has changed then
UPDATEOWNSAVEPOINT // durch Aufruf von f~!
PRUNELOGS // Events und Konsumoperationen
BUILDNEWSAVEPOINTTREE // mit eigenem Sicherungspkt. als Wurzel
SENDACK(predecessors)
end if

end procedure

6.4.7.1 Inhalt eines Sicherungspunktes

Ein Sicherungspunkt SP[w] eines Operators w enthalt:

1. Einen Vektor von Sequenznummern. Fiir jeden Operator aus pred(w) enthélt der
Vektor eine Sequenznummer.

2. Die Sequenznummer des nichsten von w zu erzeugenden Ereignisses.

3. Die Tabelle der Konsumoperationen zum Wiederherstellungszeitpunkt.

6.4.7.2 Empfang von Bestatigungsnachrichten mit Sicherungsbdumen

Ein Operator empfangt von seinen Nachfolgern Bestatigungsnachrichten, die einen Baum von
Sicherungspunkten enthalten. Diese Bestdtigungsnachrichten werden von den Konsumenten
angestofien und werden stromabwarts von Operator zu Operator weiterverarbeitet, bis
sie schliefilich in den Ereignisquellen ankommen. Wenn ein Operator w von einem seiner
Nachfolger ws eine Bestdtigungsnachricht empfangt, fithrt er Algorithmus 6.1 aus. Im
Folgenden wird der Algorithmus erklart:

1. Der Operator aktualisiert das gespeicherte ACK beziiglich seines Nachfolgers.

2. Der tiberpriift, ob sich dadurch das édlteste gespeicherte ACK &dndert. Falls ja, aktuali-
siert er seinen eigenen Sicherungspunkt, indem er die Umkehrfunktion auf das ihn
betreffende Ereignis in SP[w;] aufruft.

3. Er kiirzt sein Ausgangslog und bereinigt seine Tabelle der Konsumoperationen, falls er
seinen eigenen Sicherungspunkt in diesem Durchgang aktualisiert hat.

4. Er fiigt den eigenen (evtl. aktualisierten) Sicherungspunkt als Wurzel in einen Siche-
rungsbaum ein. Die Kinder sind die aktuellen Sicherungsbdume seiner Nachfolger. Der
Baum wird auf eine Tiefe von F gekiirzt.

5. Er versendet den neuen Sicherungsbaum an alle seine Vorganger.
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Bereinigung der eigenen Logs Das Ausgangslog L(w) eines Operators w wird immer so
gekiirzt, dass alle Ereignisse geloscht werden, die vor der niedrigsten ihn betreffenden
Sequenznummer beziiglich aller seiner Nachfolger liegen. Diese Ereignisse sind von allen
Nachfolgern bestitigt und miissen nicht mehr im Speicher fiir den Fall einer Wiederherstel-
lung eines Nachfolgers vorgehalten werden. Das Ausgangslog und seine Kiirzung betreffen
also die direkten Nachfolger und deren Wiederherstellung.

Die Tabelle der Konsumoperationen wird immer so gekiirzt, dass die Informationen tiber
Konsumoperationen geldscht werden, die vor dem Startereignis des nachsten wiederher-
zustellenden Fensters liegen. Diese Konsumoperationen werden im Wiederherstellungsfall
nicht mehr benétigt, da sie die Berechnung der Korrelationsfunktion nicht beeinflussen. Das
Startereignis des ndchsten wiederherzustellenden Fensters ist genau das Ereignis o5, welches
die Umkehrfunktion zurtickgibt. Die Konsumoperationen und deren Kiirzung betreffen also
die Wiederherstellung des Operators selbst.

6.5 Wiederherstellung im Fehlerfall

6.5.1 Anforderungen an die Wiederherstellung

Wenn ein oder mehrere Operatoren ausfallen, muss das CEP-System in zweierlei Hinsicht
wiederhergestellt werden. Zum einen muss die Topologie des Operatorgraphen wieder-
hergestellt werden: Die ausgefallenen Operatoren werden durch neue ersetzt und die
Verbindungen zwischen den Operatoren miissen neu aufgebaut werden. Letztendlich muss
sich die Topologie so stabilisieren, dass sie der Topologie vor dem Ausfall entspricht. Zum
anderen miissen die Ereignisstrome der ausgefallenen Operatoren wiederhergestellt wer-
den. Wenn ein Operator ausfillt, verliert er samtliche volatilen Zustandsinformationen,
wie z.B. das Ausgangslog, den empfangenen Eingangsstrom, die laufende Berechnung der
Korrelationsfunktion und den gespeicherten Sicherungsbaum. Alle diese Informationen
miissen wiederhergestellt werden, um schliefilich die Strome von Ereignissen zwischen den
Operatoren wiederherzustellen. Es darf kein unbestétigtes Ereignis durch den Verlust der
Zustandsinformationen irreversibel verlorengehen. Die Ereignisstrome miissen sich also
insofern stabilisieren, dass die Ereignisse, die an die Konsumenten ausgeliefert werden, sich
nicht von dem Fall unterscheiden, in dem kein Operator ausgefallen ist.

Im Folgenden wird in einem zweistufigen Verfahren untersucht, wie das Wiederherstel-
lungsverfahren aussehen muss, um beide Anforderungen zu erfiillen. Dazu wird zunéchst
angenommen, dass die Topologie immer stabil bleibt, um ein Verfahren zur Stabilisierung
der Ereignisstrome zu entwickeln. Schliefllich wird ein Stabilisierungsverfahren fiir die
Topologie eingefiihrt, und somit gezeigt, dass auch die erste Wiederherstellungsanforderung
abgedeckt wird.
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Algorithmus 6.2 Operator: recover

procedure RECOVER
SEND RECOVERYREQUEST TO ALL PREDECESSORS // aktualisiere ACK des Nachfolgers
wait for answers...
if all predecessors answered then
RecoveryInformation ri = HIGHESTNEXTSEQNoO(allAnswers) // nutze die
// Informationen aus der Antwort, die die hochste ndchste Seq.nr. angibt
EXTRACTOWNSAVEPOINT TREE(Tr1)
SEQUENCEINCOMINGEVENTSTREAMS(OwnSavepoint)
OPENCORRELATIONWINDOW (incomingStream)
CONSUMEEVENTS(consumptionTable)
end if
SEND RECOVERYNOTIFICATION TO ALL SUCCESSORS
end procedure

6.5.2 Wiederherstellung der Ereignisstrome

Wir nehmen zunéchst also an, dass ein ausgefallener Operator sich insofern erholt, als dass er
nach dem Ausfall automatisch neu gestartet wird. Alle volatilen Informationen sind verloren,
doch der Operator taucht unter derselben Adresse im Netzwerk wieder auf und startet eine
Recovery-Prozedur. Nehmen wir weiter an, dass der Operator seine direkten Vorganger im
Operatorgraphen kennt und diese Informationen auch nach dem Neustart noch vorhanden
ist.

6.5.2.1 Die Recovery-Prozedur

Sobald ein Operator w neu gestartet wurde, ruft er eine Initialisierungsroutine auf. Diese
Routine sendet einen RECOVERYREQUEST an alle direkten Vorganger des Operators. Wenn
ein Operator w), einen RECOVERYREQUEST empféngt, sendet er anhand des gespeicherten
Sicherungspunkts SP[w] folgende Informationen an seinen Nachfolger w:

e Die Sequenznummer des nédchsten von w zu erzeugenden Ereignisses.

Die Tabelle der Konsumoperationen in w zum Wiederherstellungszeitpunkt.

Der Vektor von Sequenznummern aller direkten Vorgianger von w.

Alle Ereignisse aus dem Ausgangslog L(w;) ab der w), betreffenden Sequenznummer.

Der Sicherungsbaum von w, zur Wiederherstellung nachfolgender Operatoren.

Sobald w von allen Vorgangern auf den RECOVERYREQUEST Antwort erhalten hat, kann der
Zustand zum aktuellsten Sicherungspunkt wiederhergestellt werden. Dazu geht w nach
Algorithmus 6.2 vor, der im Folgenden erldutert wird:
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1. Aus allen Antworten wird die Antwort mit dem hochsten Wert fiir die Sequenznummer
des nédchsten von w zu erzeugenden Ereignisses ausgewdhlt.

2. Aus dieser Antwort wird der eigene Sicherungsbaum wiederhergestellt, indem der
Teilbaum mit w als Wurzelknoten aus dem Sicherungsbaum von w; ausgeschnitten
wird.

3. Anhand des Vektors von Sequenznummern wird aus den eingehenden Ereignisstromen
aus den Vorgéangern fiir jeden dieser Strome das Ereignis ermittelt, ab dem die Strome
in den Eingangsstrom I sequenziert werden. Alle eingehenden Ereignisse mit einer
kleineren Sequenznummer als die entsprechende Sequenznummer im Vektor werden
verworfen.

4. Die Konsumoperationen werden auf den sequenzierten Eingangsstrom I angewandt.

5. Ein Korrelationsfenster wird geoffnet, als Startereignis dient das erste Ereignis aus dem
sequenzierten Eingangsstrom.

Wenn mehrere Operatoren in Reihe ausgefallen sind, werden sie von unten nach oben
sukzessive wiederhergestellt. Sobald ein Operator wiederhergestellt ist, sendet er an seine
Nachfolger eine RECOVERYNOTIFICATION. Er kennt die Nachfolger aus den empfangenen
Sicherungsbdumen. Ist der Nachfolger selbst ausgefallen gewesen und befindet sich gerade
in der Wiederherstellungsphase, in der er auf Antwort von allen Vorgangern wartet, kann er
nun seinen RECOVERYREQUEST an den gerade wiederhergestellten Vorgdnger wiederholen.
Auf diese Weise wird letztendlich jeder Operator wiederhergestellt.

Es ist zu beachten, dass die Sicherungsbdume sich bei einer Wiederherstellung um ei-
ne Ebene verkiirzen. Bei einer sequentiellen Wiederherstellung von N aufeinander folgenden
Operatoren kann der Sicherungsbaum des letzten wiederhergestellten Operators folglich
vollig leer sein, was bedeutet, dass kein weiterer Operator in dieser Reihe wiederhergestellt
werden kann. Die Informationen aus den Sicherungsbdaumen reichen also gerade dazu aus, F
Operatoren in Reihe wiederherzustellen, und keinen weiteren. In dem Sinne ist ein Operator
an dieser Stelle noch nicht vollsténdig wiederhergestellt, da er einen Ausfall weiterer F Opera-
toren in Folge nicht direkt kompensieren kann. Allerdings kann der Operator schon mit der
Ereignisverarbeitung fortfahren, d.h. die Ereignisverarbeitung ist bereits wiederhergestellt,
die Recovery-Fahigkeit aber noch nicht. Um einen Operator vollstindig wiederherzustellen,
bedarf es der Wiederherstellung des kompletten Sicherungsbaumes. Dies geschieht durch
Antwort auf die RECOVERYNOTIFICATION: Ist der Nachfolger, der sie erhilt, nicht selbst in
einer Wiederherstellungsphase, sondern bereits komplett wiederhergestellt, sendet er an
seinen nur teilweise wiederhergestellten Vorganger seinen aktuellen Sicherungspunkt, damit
dieser den Sicherungsbaum wieder komplettieren kann. Ein Operator ist komplett wieder-
hergestellt, wenn er von allen seinen Nachfolgern den Sicherungsbaum empfangen und in
seinen eigenen Sicherungsbaum integriert hat. Dies fiihrt im Normalbetrieb zur sukzessiven
Weitergabe des Sicherungsbaumes, bis alle Operatoren vollstindig wiederhergestellt sind.
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6.5.3 Kontrolle und Anpassung der Topologie

Die bisherige Annahme des ,automatischen” Neustarts eines ausgefallenen Operators ldsst
sich anhand der Abstraktion einer zentralen Fehlerdetektor-Komponente [Reyos, FGK11,
CT96, GRo6] im CEP-System veranschaulichen. Ein solcher zentraler Detektor konnte be-
stimmen, wann ein Operator ausgefallen ist und seine Recovery-Prozedur anstofien. Doch
wie genau arbeitet der Fehlerdetektor?

6.5.3.1 Eigenschaften des Fehlerdetektors

Der Fehlerdetektor ist eine zentrale Komponente, die auf einem Fail-Recovery-System lduft.
Das heifst, wenn der Fehlerdetektor abstiirzt wird er neugestartet und kann seine Arbeit an
der Stelle fortsetzen, an der er zuvor abgestiirzt war. Das System wird letztendlich immer
lebendig sein, d.h. nach einer unbekannten Zahl von Abstiirzen und Wiederherstellungen
lauft der Fehlerdetektor stabil. Zu beachten ist dabei, dass ein solcher Fehlerdetektor even-
tuell mit einem persistenten Speicher ausgestattet sein kann, aber die Ereignisstrome und
Operatoren in der eigentlichen Ereignisverarbeitung weiterhin ohne persistenten Speicher
arbeiten.

6.5.3.2 Fehlererkennung

Um festzustellen, ob ein spezifischer Operator korrekt arbeitet oder ob er ausgefallen ist,
gibt es grundsitzlich 2 Moglichkeiten (vgl. [GRo6, S. 45ff]): Die erste Moglichkeit ist von
einem synchronen System auszugehen, in dem folgende Eigenschaften gelten: Synchrone
Berechnung (d.h. nach oben begrenzte Berechnungszeit), synchrone Kommunikation (d.h.
nach oben begrenzte Kommunikationsverzégerungen) und synchrone physikalische Uhren.
In einem solchen System wiére es recht einfach, einen Operator innerhalb einer festen Zeit-
grenze als fehlerhaft bzw. ausgefallen zu erkennen, beispielsweise indem jeder Operator
dem Fehlerdetektor periodisch Heartbeat-Nachrichten zuschickt. Diese miissen durch die
festen Zeitgrenzen fiir Berechnung und Nachrichteniibertragung innerhalb einer bestimmten
Zeit ankommen, wenn der Operator korrekt arbeitet. Wenn die Zeitgrenzen immer eingehal-
ten werden, wird ein fehlerhafter Operator schliefilich innerhalb einer berechenbaren Zeit
vom Fehlerdetektor als solcher erkannt. Dieses Modell hat allerdings hauptsachlich einen
Nachteil: Die Abdeckung des Systems. In realen CEP-Szenarien kann man nicht einfach
von einer solchen Synchronitidt ausgehen, insbesondere wenn das System hochskalierbar ist
und beispielsweise die Operatoren iiber das Internet miteinander verbunden sind und sehr
komplexe Berechnungen ausfiihren miissen. Das Problem der schwankenden Antwortzeiten
wird auch als , Jitter” bezeichnet. Man miisste zumindest die Zeitschranken fiir den Jitter so
hoch ansetzen, dass man mit einer sehr hohen Wahrscheinlichkeit davon ausgehen kann, dass
sie von einem korrekten Prozess nicht verletzt werden, d.h. also von den Worst-Case-Fallen
ausgehen. Dies kann das System aber ineffizient machen, da zwischen dem Auftritt des
Fehlers und seiner Erkennung eine lange Zeit vergehen kann. In dieselbe Richtung geht auch
die Idee der teilsynchronen Systeme: Die zeitlichen Annahmen gelten darin letztendlich, d.h.
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nach einer beschrankt langen Zeit, in der sie verletzt werden konnen. Es ist damit ebenso ein
synchrones System in dem Sinne, dass zeitliche Annahmen gemacht werden, auf denen die
weiteren Algorithmen basieren.

Eine Alternative zum synchronen Systemmodell ist ein asynchrones Systemmodell oh-
ne solche festen Synchronitdtsvorgaben, wie es in unserem Systemmodell angenommen wird.
Das heifit, ein Operator kann fiir einen Berechnungsschritt eine beliebig lange, aber endliche
Zeit benoétigen, Ereignisse und Nachrichten zwischen 2 Operatoren konnen beliebig lange
unterwegs sein, bis sie schliefllich vom Empfanger empfangen werden, und die Uhren in den
Operatoren sind in keiner Weise synchronisiert, d.h. weder haben sie urspriinglich dieselbe
Zeit noch laufen sie in derselben Geschwindigkeit. Zunéchst kann ein Fehlerdetektor A tiber
einen Operatoren B in einem asynchronen System nicht eindeutig und fehlerfrei feststellen,
ob dieser abgestiirzt ist oder noch korrekt lauft. Wartet A beispielsweise auf eine Heartbeat-
Nachricht von B, gibt es zwei Moglichkeiten: B ist abgestiirzt oder er lauft korrekt. Wie lange
soll A nun auf den Heartbeat warten? Wenn B abgesttirzt ist, wartet A unendlich lange und
das System als Ganzes ist nicht mehr lebendig (Liveness-Property, vgl. [Lam77]). Wenn B
nicht abgestiirzt ist, aber sich der Heartbeat trotzdem sehr lange verzogert, beispielsweise
weil der Kommunikationskanal iiberlastet ist, und A irgendwann filschlicherweise annimmt,
dass B wohl abgesttiirzt sein muss und daraufhin eine nicht reversible Aktion ausfiihrt, lauft
das System vielleicht nicht sicher (Safety-Property, vgl. [Lam7y7]). Was ist also zu tun?

Der Losungsansatz in dieser Arbeit liegt darin, die Sicherheit des Systems zu garantie-
ren, auch wenn der Fehlerdetektor eine falsche Entscheidung beziiglich eines Operators trifft.
Dies kann dann realisiert werden, wenn der Fehlerdetektor die Ausfithrung irreversibler
Aktionen vermeidet. Zudem muss ein Kompromiss zwischen der Korrektheit des Fehler-
detektors und der Reaktionszeit des Systems auf Ausfélle gefunden werden, indem eine
flexible Zeitschranke fiir die Verzogerung der Heartbeat-Nachrichten definiert wird (vgl.
Abschnitt 6.5.3.4).

6.5.3.3 Sichere Wiederherstellung der Topologie bei unsicherer Fehlererkennung

Um die Sicherheit des Systems zu garantieren, auch wenn der Fehlerdetektor eine falsche
Entscheidung beziiglich des Zustands (lebendig oder ausgefallen) eines Operators getrof-
fen hat, muss man zunéchst untersuchen, welche falschen Entscheidungen dabei in Frage
kommen. Dabei soll im Folgenden der Befund ausgefallen als positiver Befund bezeichnet
werden, entsprechend ist der Befund lebendig ein negativer Befund. Falsche Befunde konnen
falsch-negativ oder falsch-positiv sein.

Falsch-negative Befunde bedeuten, dass der Fehlerdetektor einen ausgefallenen Operator
dauerhaft als lebendig einschitzt. Im Fall einer Heartbeat-Uberpriifung, wie sie im dieser
Arbeit zugrundeliegenden Modell angewandt wird, kann ein solcher falsch-negativer Befund
nicht auftreten, denn ein ausgefallener Operator kann keine Heartbeat-Nachrichten mehr
erzeugen und somit wird er letztendlich vom Fehlerdetektor als ausgefallen eingeschatzt.
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Falsch-positive Befunde bedeuten, dass der Fehlerdetektor einen Operator (evtl. nur kurz-
zeitig) als ausgefallen einschitzt, obwohl der Operator eigentlich lebendig ist. Dies kann
vorkommen, wenn der Fehlerdetektor eine zu geringe Zeitschranke fiir die Wartezeit auf
eine Heartbeat-Nachricht hat oder sich die Nachricht bspw. wegen Uberlastung der Verbin-
dung aufiergewohnlich lange verzogert. Es gibt aufgrund des asynchronen Systems fiir den
Fehlerdetektor keine Moglichkeit, einen falsch-positiven Befund innerhalb einer festgelegten
Zeitspanne von einem korrekten Befund zu unterscheiden. Letztendlich wird ein lebendiger
Operator seine Heartbeat-Nachrichten immer an den Fehlerdetektor senden, doch wenn
der Heartbeat ausfillt, kann der Fehlerdetektor nicht erkennen, ob der Operator wirklich
ausgefallen ist. Er nimmt nach Ablauf einer Zeitschranke an, dass der Operator ausgefallen
ist, kann nun aber weiterhin nicht unterscheiden, ob dieser Befund korrekt oder falsch-positiv
ist: Die Fehlererkennung ist unsicher.

Die Problematik der unsicheren Fehlererkennung liegt darin, dass ein Fehlerdetektor im
schlechtesten Fall theoretisch alle Operatoren als ausgefallen einschitzt und deren Wiederher-
stellung anstofst. Anders gesagt, es gibt in einem asynchronen System trotz sorgfiltigster
Auswahl der Zeitschranken keine Hochstzahl von als ausgefallen eingeschitzten Operatoren (die
geringer ist als die Zahl der Operatoren insgesamt). Ganz im Gegensatz dazu steht die
Annahme, dass im Gesamtsystem maximal F (sequentielle) Operatoren gleichzeitig tatsichlich
ausfallen diirfen, um das System trotzdem wiederherstellen zu konnen. Damit wird klar,
dass der Fehlerdetektor nicht ohne weiteres jeden als ausgefallen eingeschitzten Operator
sofort durch einen neugestarteten und im Sinne eines Sicherungspunktes wiederhergestellten
Operatoren ersetzen darf. Stattdessen setzt das Wiederherstellungsverfahren auf eine Dop-
pelstrategie: Wenn der Fehlerdetektor einen Operator verdachtigt, wird ein Ersatzoperator
initialisiert und auf den letzten Sicherungspunkt des verdachtigten Operators wiederherge-
stellt. Der Operator und sein Ersatz laufen nun zunéchst parallel zueinander: Die Vorgianger
senden ihre Ereignisse an beide Operatoren und bekommen von beiden Operatoren Besta-
tigungsnachrichten, ebenso verhélt es sich mit den erzeugten Ereignissen, die von beiden
Operatoren an die Nachfolger weitergegeben werden. Da der Ersatzoperator auf einen
(fritheren) Zustand des verddchtigten Operators wiederhergestellt wurde, erzeugt er exakt
denselben Ausgangsstrom, sodass die Vorganger und Nachfolger von ihm dieselben Ereig-
nisse und Bestdtigungsnachrichten bekommen. Ist der verdédchtigte Operator noch lebendig,
kommen bei den Nachfolgern Ereignisse doppelt an, die durch die Sequenznummern recht
einfach herausgefiltert werden kénnen. Zudem kommen die Bestatigungsnachrichten bei
den Vorgédngern ebenfalls doppelt an, doch da nur die jeweils aktuellste Bestiatigung zur
Verdanderung des Sicherungsbaumes fiihrt, werden solche Duplikate von den Vorgangern
ebenfalls ignoriert. Ein solcher ,Doppelbetrieb” ist fiir die Korrektheit der Ereignisverarbei-
tung folglich mit keinen Einschrankungen verbunden, das Verfahren funktioniert weiterhin,
ohne zu Fehlern bei den Konsumenten zu fiihren.

Der Doppelbetrieb sollte aus Griinden der Effizienz und der Skalierbarkeit des Systems
schnellstmoglich wieder enden, zumal bei einem vermuteten Ausfall des Ersatzoperators ein
Dreifachbetrieb, Vierfachbetrieb, etc. entstehen kann. Um einen Doppelbetrieb zu beenden,
muss einer der redundanten Operatoren durch den Fehlerdetektor entfernt werden: Entwe-
der der Originaloperator oder der Ersatzoperator. Der Ersatzoperator kann sofort entfernt
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werden, wenn sich herausstellt, dass der Originaloperator entgegen der urspriinglichen
Annahmen doch nicht ausgefallen, sondern lebendig ist. Der Originaloperator kann erst
dann entfernt werden, wenn der Ersatzoperator vollstindig wiederhergestellt ist, d.h. nicht
nur im Sinne der Ereignisverarbeitung, sondern auch im Sinne der Wiederherstellungs-
tahigkeit nachfolgender Operatoren (vgl. dazu Abschnitt 6.5.2). Zudem muss durch den
Ersatzoperator ein Fortschritt in der Ereignisverarbeitung erzielt worden sein, bevor der
Originaloperator entfernt wird, damit die Lebendigkeit des Systems in einem globalen Kontext
sichergestellt werden kann. Solch ein Fortschritt ist dann gesichert, wenn der Ersatzoperator
eine Bestdtigungsnachricht von einem seiner Nachfolger erhdlt, die eine hohere Sequenz-
nummer bestatigt als dieser Nachfolger zuvor beim Originaloperator bestitigt hatte. Ob
der Originaloperator tatsdchlich ausgefallen war, ldsst sich nicht feststellen, er wird im
Zweifelsfall nach der Installation und vollstindigen Wiederherstellung des Ersatzoperators
einfach vom System entfernt. Ein Operator wird entfernt, indem allen mit ihm verbundenen
Operatoren der Befehl gegeben wird, die Verbindungen mit dem Operator zu entfernen.
Anschliefiend kann der Host die Ressourcen anderweitig vergeben.

Allgemein betrachtet kann es vorkommen, dass der Ersatzoperator selbst ebenfalls di-
rekt nach seiner Initialisierung ausféllt oder vom Fehlerdetektor als ausgefallen eingeschitzt
wird, noch bevor er wirklich Ereignisse erzeugt und einen wie oben definierten Fortschritt
im Gesamtsystem verursacht. Dann wird ein neuer Ersatzoperator eingerichtet und wenn
dieser eine Zeitlang keinen Heartbeat an den Fehlerdetektor ausliefert, ein weiterer, und
so weiter. Nach Definition der Ausfallcharakteristik diirfen im gesamten System maximal
F Operatoren tatsdchlich ausfallen, um Garantien fiir eine Wiederherstellung des Systems
zu erhalten, d.h. wenn mehr Operatoren gleichzeitig ausfallen, kann das System in einem
undefinierten Zustand geraten und weder Sicherheit noch Lebendigkeit werden garantiert.
Das bedeutet, dass wenn schliefdlich eine Gruppe von F Ersatzoperatoren gestartet wurde,
mindestens einer der Operatoren (oder der Originaloperator) tatsdchlich lebendig sein muss,
ganz egal wie der Fehlerdetektor die Lebendigkeit einschétzt. Vielleicht hat er samtliche
Zeitschranken fiir die Kommunikationsverzogerungen und den Jitter zu niedrig angesetzt
und schétzt damit zunéchst generell jeden Operator, auch die gerade erst initialisierten,
als ausgefallen ein. Dieser eine Operator wird schliefilich irgendwann den oben definier-
ten Fortschritt machen und diesen an den Fehlerdetektor melden. Erst dann entscheidet
sich der Fehlerdetektor dafiir, jenen Operator als einzigen unter seinen , Klonen” in der
neuen Topologie zu erhalten und entfernt alle anderen Operatoren. Dadurch, dass der
Fehlerdetektor auf den Fortschritt gewartet hat, bevor er so handelte, konnte er zum einen
sicherstellen, dass er nur einen tatsiachlich lebendigen Operator in die neue, stabilisierte
Topologie aufnimmt und zum anderen, dass ein global sichtbarer Fortschritt stattfindet.
Selbst wenn der so ermittelte Operator direkt danach wieder ausféllt oder als ausgefallen
eingeschidtzt wird und der Fehlerdetektor schliefdlich eine neue Gruppe von Ersatzoperatoren
nach und nach initialisiert, ist durch den Fortschritt in jeder Durchfithrung dieses Stabilisie-
rungsverfahrens ein Gesamtfortschritt und damit die Lebendigkeit des Systems sichergestellt.

Was konnte passieren, wenn der Fehlerdetektor nicht einen Fortschritt in dem Opera-

tor abwartet, der letztendlich als einziger in der Topologie verbleibt, sondern sofort nach
der Initialisierung und vollstandigen Wiederherstellung eines Ersatzoperators alle anderen
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Operatoren aus dem System entfernt? Nehmen wir an, einer der Operatoren, w, ist genau
der eine Operator aus den maximal F Operatoren mit derselben Korrelationsfunktion, der
fir die Zeit der Stabilisierungsphase der Topologie durchgehend lebendig ist. w konnte
direkt nach seiner (wenn es sich nicht um den Originaloperatoren handelt) Initialisierung
und Zustandswiederherstellung vom Fehlerdetektoren als ausgefallen eingeschitzt werden,
weil die Heartbeat-Nachricht sich verzogert. Ein anderer Operator - nehmen wir an, es
handelt sich dabei bereits um den F-ten Ersatzoperator wr - wird daraufhin initialisiert
und wiederhergestellt, und ersetzt w, d.h. der eigentlich lebendige Operator wird aus dem
System entfernt. Da w lebendig ist, darf wr direkt nach seiner Wiederherstellung (und der
Bestdtigung dieser beim Fehlerdetektor) ausfallen. Das Problem ist nun, dass der einzige
wirklich durchgéngig lebendige Operator filschlicherweise verworfen wurde, wahrend ein
nur kurzzeitig lebendiger Operator, der keinen wahren Fortschritt fiir das Gesamtsystem
gebracht hat, als Ersatzoperator in der ,stabilisierten” Topologie eingesetzt wurde. Dies
fiihrt im schlechtesten Fall zu einem Hin- und Herspringen zwischen verschiedenen neuen
Ersatzoperatoren, die immer wieder durch andere ersetzt werden, ohne dass ein wirklicher
Fortschritt stattfindet. Das System wire nicht lebendig in einem globalen Kontext, da keine
Ereignisstrome aus dem Umfeld der sich immer wieder neu startenden Operatoren fliefSen.
Es lasst sich nicht vermeiden, dass ein lebendiger Operator irgendwann einmal doch entfernt
wird, aber durch die Forderung der Wiederherstellung und des Fortschritts kann das nur ge-
schehen, wenn ein anderer wirklich lebendiger Operator im Sinne eines Gesamtfortschrittes
ihn ersetzt. Da mindestens einer der F Operatorenklone lebendig ist und einen Fortschritt
macht, muss der Fehlerdetektor nur abwarten, wo der Fortschritt geschehen ist, um einen
wirklich lebendigen Operator ausfindig zu machen.

Um diese Fortschrittsanforderung umzusetzen, muss ein Operator, wenn er einem wie-
derhergestellten Operatoren eine Bestdtigungsnachricht schickt, durch eine , Flag” anzeigen,
ob die bestitigte Sequenznummer in dieser Nachricht bereits an einen anderen Operatoren
mit der selben Korrelationsfunktion gegangen ist, oder ob es sich um einen Fortschritt
handelt. Eine solche Flag wird als bool’sche Variable mit dem Namen PROGRESs der Bestiti-
gungsnachricht angehangt.

6.5.3.4 Beispiele

Falsch-positive Ausfallerkennung mit Entfernung des Ersatzoperators In Abb. 6.7 ist eine
Topologie mit 5 Operatoren (w; bis w,,) abgebildet, die von einem Fehlerdetektor (FD) auf
ihre Lebendigkeit tiberpriift werden. Das Schaubild zeigt die (falsche) Verdachtigung von wy,
die Initialisierung eines Ersatzoperators und schliefflich die Verwerfung des Ersatzoperators.
Schritt fiir Schritt 1auft die Wiederherstellung folgendermafsen ab:

1. Der FD erkennt, dass eine Heartbeat-Nachricht von wy sich tiber die Zeitschranke
T hinaus verzogert hat und verdachtigt wy infolgedessen, ausgefallen zu sein. Ein
Ersatzoperator wy’ wird initialisiert.

2. Der Ersatzoperator w;” wird gestartet und schickt an seine Vorgénger w; und w; einen
RECOVERYREQUEST (vgl. Abschnitt 6.5.2.1).
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Abbildung 6.7: Der Fehlerdetektor (FD) schitzt den Operator wy félschlicherweise als aus-

62

gefallen ein und korrigiert den Fehler spéter.

3. w; und w; antworten auf den RECOVERYREQUEST, indem sie alle relevanten Wieder-

herstellungsinformationen an ihren neuen Nachfolger wy” senden (siehe Abschnitt
6.5.2.1). Diese Informationen beinhalten auch den jeweils aktuellen Sicherungsbaum
der Operatoren und den jeweiligen relevanten Teil der Ausgangslogs. Die Verbindung
zu wi wird dabei nicht abgebrochen: Die ausgehenden Ereignisse werden von w; und
w; weiterhin ebenfalls an wy gesendet, die beiden Operatoren verhalten sich so, als
hétten sie 2 Nachfolger. wy, der von der Initialisierung seines Ersatzoperators nichts
mitbekommen hat, arbeitet in der Zwischenzeit ganz normal weiter und sendet seine
erzeugten Ereignisse an die beiden Nachfolger w; und w;,. Der Ersatzoperator wy’
kann seine Ereignisverarbeitung mit Hilfe der von seinen Vorgdngern empfangenen
Information wiederherstellen und sendet dann eine RECOVERYNOTIFICATION an seine
Nachfolger w; und wy,.

Wiéhrend dieses Vorganges kommt irgendwann doch noch die Heartbeat-Nachricht
des als ausgefallen eingeschdtzten Operators wy beim Fehlerdetektor an, d.h. aus Sicht
des FD muss wy lebendig sein. Da der FD noch keinen Bescheid vom Ersatzoperator
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wy” tiber dessen vollstindige Wiederherstellung und den Fortschritt im Gesamtsystem be-
kommen hat, entscheidet er sich dafiir, ihn zuriickzuziehen und stattdessen weiter wy
im CEP-System zu nutzen.

4. Das System lauft wieder im Normalbetrieb ohne redundante Operatoren.

Anmerkung: Wenn der Fehlerdetektor den Originaloperator wj falschlicherweise als ausge-
fallen eingeschitzt hatte und diese Einschidtzung korrigiert, kann er die Zeitschranke T fiir
den Jitter der Heartbeat-Nachrichten nach oben korrigieren, um kiinftige Fehleinschdtzungen
zu vermeiden.
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Abbildung 6.8: Der Fehlerdetektor (FD) schitzt den Operator wy félschlicherweise als aus-
gefallen ein und iibernimmt den Ersatzoperator wy’ in die Topologie.

Falsch-positive oder korrekte Ausfallerkennung mit Entfernung des Originaloperators In
Abb. 6.8 ist eine Topologie mit 5 Operatoren (w; bis wy,) abgebildet, die von einem Fehlerde-
tektor (FD) auf ihre Lebendigkeit tiberpriift werden. Das Schaubild zeigt die (falsche oder
korrekte) Verddchtigung von wy, die Initialisierung eines Ersatzoperators und schliefilich die
Verwerfung des Originaloperators. Ob wy tatsdchlich ausgefallen war, spielt in dem Fall, in
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dem ein Ersatzoperator in der stabilisierten Topologie eingesetzt wird, letztendlich keine
Rolle mehr und es ist fiir den Fehlerdetektor auch nicht ersichtlich, ob er sich beziiglich wy
geirrt hat. Schritt fiir Schritt lauft die Wiederherstellung folgendermaflen ab:

1. Der FD erkennt, dass eine Heartbeat-Nachricht von wy sich tiber die Zeitschranke
T hinaus verzogert hat und verdachtigt wy infolgedessen, ausgefallen zu sein. Ein
Ersatzoperator wy’ wird initialisiert.

2. Der Ersatzoperator w;” wird gestartet und schickt an seine Vorgénger w; und w; einen
RECOVERYREQUEST (vgl. Abschnitt 6.5.2.1).

3. w; und w; antworten auf den RECOVERYREQUEST, indem sie alle relevanten Wieder-
herstellungsinformationen an ihren neuen Nachfolger wy” senden (siehe Abschnitt
6.5.2.1). Diese Informationen beinhalten auch den jeweils aktuellen Sicherungsbaum
der Operatoren und den jeweiligen relevanten Teil der Ausgangslogs. Die Verbindung
zu wi wird dabei nicht abgebrochen: Die ausgehenden Ereignisse werden von w; und
w; weiterhin ebenfalls an wy gesendet, die beiden Operatoren verhalten sich so, als
hétten sie 2 Nachfolger. wy, der von der Initialisierung seines Ersatzoperators nichts
mitbekommen hat, arbeitet in der Zwischenzeit ganz normal weiter und sendet seine
erzeugten Ereignisse an die beiden Nachfolger w; und w;,. Der Ersatzoperator wy’
kann seine Ereignisverarbeitung mit Hilfe der von seinen Vorgdngern empfangenen
Information wiederherstellen und sendet dann eine RECOVERYNOTIFICATION an seine
Nachfolger w; und wy,.

Im Gegensatz zum vorherigen Beispiel in Abb. 6.7 kommt von wj auch weiterhin
keine Heartbeat-Nachricht beim Fehlerdetektor an. Die Ereignisverarbeitung iiber den
Ersatzoperator wy” schreitet weiter voran, bis ihm schliefilich einer der Nachfolger eine
Bestdtigungsnachricht sendet, die ein Ereignis mit hoherer Sequenznummer bestétigt
als die von diesem Nachfolger zuvor gesendeten Bestdtigungen.

4. Wenn wy” eine Bestdtigungsnachricht von einem der Nachfolger erhalten hat, die einen
Fortschritt in der Ereignisverarbeitung fiir das Gesamtsystem anzeigt, benachrichtigt er
den Fehlerdetektor dartiber (,,Recovered!”). Der Fehlerdetektor, der in der Zwischenzeit
immer noch keine Nachrichten von wj erhalten hat, entscheidet sich daraufthin, den
(nachgewiesenermafien lebendigen) Ersatzoperator wy’ zu dem Operator zu machen,
der in der stabilisierten Topologie den Platz des Originaloperators einnimmt, und
nimmt wj aus dem System.

Anpassung der Zeitschranke T Die Zeitschranke T fiir die Ubertragungszeit und den Jitter
von Heartbeat-Nachrichten wird zu Beginn auf einen sinnvollen Wert initialisiert. Dieser Wert
hédngt von der Netzwerktopologie ab, die der Operatortopologie zugrunde liegt und muss
vom Systemarchitekten bestimmt werden. Ein sinnvoller Wert ist ein Wert, der tiblicherweiser
nicht tiberschritten wird, der aber andererseits die Durchschnittszeit nicht zu sehr {tibersteigt,
damit das System auf Ausfille relativ ziigig reagieren kann. Der Initialwert fiir T kann
in einer bestimmten Situation angepasst werden: Wenn der Fehlerdetektor einen Operator
falschlicherweise verdachtigt, ausgefallen zu sein, und diese Entscheidung riickgangig macht,
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d.h. den dafiir initialisierten Ersatzoperator wieder aus dem System entfernt, kann T fiir die
Kommunikation mit diesem Operator hoher gesetzt werden, um diesen Fehler in Zukunft
zu vermeiden. Fiir die Anpassung von Zeitschranken fiir Fehlerdetektoren gibt es in der
Literatur schon verschiedene Verfahren der dynamischen Adaption, z.B fiir Eventually Perfect
Failure Detectors [CT9g6].

6.5.3.5 Verteilung des zentralen Fehlerdetektors auf die Operatoren

Die Abstraktion des zentralen Fehlerdetektors vereinfacht die Sicht auf das Wiederherstel-
lungsverfahren und ist daher fiir die theoretische Betrachtung und Analyse zweckmafig.
Wenn das CEP-System implementiert wird, kann man auch andenken, den Fehlerdetektor
auf verschiedene Operatoren zu verteilen. Beispielsweise konnte jeweils einer der Vorgéanger-
operatoren den Heartbeat seiner Nachfolger tiberpriifen und dann entsprechend handeln.
Allerdings kommen bei einem solchen verteilten Fehlerdetektor neue Fragestellungen auf,
die vor allem mit der Asynchronitdt zusammenhdngen. Beispielsweise miissen sich verschie-
dene Operatoren, die fiir einen Einsatz als Fehlerdetektor fiir einen bestimmten anderen
Operatoren in Frage kommen, darauf einigen, welcher Operator diese Rolle innehat. Es muss
sichergestellt sein, dass der Operator, welcher Fehlerdetektor ist, auch tatsachlich lebendig
ist. Eine ungeeignete Anordnung von Operatoren, die sich gegenseitig tiberpriifen, kann
zu Deadlock-Situationen fithren. Die genaue Untersuchung der Moglichkeiten fiir einen
verteilten Fehlerdetektor auf Fail-Silent-Operatoren ist ein spannendes Forschungsgebiet,
das im Rahmen dieser Arbeit allerdings nicht vertieft werden kann.

6.5.4 Beweis der Korrektheit

In diesem Abschnitt folgt nun der Beweis, dass die Invarianten 6.3.1 und 6.3.2 aus Abschnitt
6.3.2 eingehalten werden und somit das Verfahren korrekt arbeitet.

Invariante 6.3.1, die Wiederherstellbarkeit von Operatoren, ist durch das Konzept der
Sicherungspunkte und Sicherungsbdume sichergestellt. Ein Operator sendet stets einen
aktuellen Sicherungspunkt an alle seine Vorgéanger, diese bauen ihn in einen Sicherungsbaum
ein und senden diesen an ihre Vorgéanger, und so weiter, sodass der Sicherungspunkt des
Operators in allen Vorganger bis zu F Ebenen weit gespeichert ist. Selbst wenn also der
Operator und F-1 Vorgédnger in einer Sequenz gleichzeitig ausfallen, ist der Sicherungspunkt
des Operators nach der Wiederherstellung seiner Vorgidnger noch verfiigbar. Somit ist der
Operator auch beim gleichzeitigen Ausfall von F Operatoren zu einem Sicherungspunkt
wiederherstellbar.

Invariante 6.3.2, die definiert, dass die Sicherungspunkte so gewdhlt sein miissen, dass
jederzeit alle von den Konsumenten noch nicht bestétigten ocousumer-Ereignisse wieder er-
zeugt werden konnen, ist ebenfalls jederzeit erfiillt. Dies folgt daraus, dass ja gerade die
Konsumenten durch ihre Bestdtigungsnachrichten (ACKs) tiberhaupt erst eine Aktuali-
sierung der Sicherungspunkte anstofsen, die sich , wellenformig” stromabwarts tiber die
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6 Problemlésung

Operatoren fortsetzt. Durch die Berechnung der Umkehrfunktion f~1, die jeweils das Star-
tereignis des Korrelationsfensters eines bestdtigten Ereignisses zurtickgibt, ist sichergestellt,
dass nur Ereignisse, die dlter als die an der Erzeugung von consumer beteiligten Ereignisse
sind, geloscht werden.

Nach Abschnitt 6.3.2.1 folgt daraus die Korrektheit des Wiederherstellungsverfahrens.
Dass die Lebendigkeit des Gesamtsystems ebenfalls sichergestellt ist (d.h. es macht nicht
nur ,nichts Falsches”, sondern es macht auch ,,das Richtige”), wird in Abschnitt 6.5.3.3
ausfiihrlich dargelegt.

6.6 Kritik des Ansatzes

Das in diesem Kapitel eingefiihrte Rollback-Recovery-Verfahren ohne persistente Check-
points bringt einige Vorteile gegeniiber anderen Wiederherstellungsverfahren mit sich. Die
Operatoren miissen iiber keinen persistenten Speicher zur Sicherung von Zustandsinforma-
tionen oder Ereignislogs verfiigen und eine Sicherung dieser Informationen im volatilen
Speicher verspricht schnellere Zugriffszeiten. Es miissen nicht dauerhaft redundante Opera-
toren vorgehalten werden, damit das System eine Ausfallsituation tiberstehen kann. Dies
sind die substantiellen Vorteile gegentiber den géngigen Wiederherstellungsverfahren, wie
sie auch in Kapitel 5 untersucht werden.

Doch es gibt auch Nachteile bei dem Verfahren, insbesondere wenn die Zahl der Ope-
ratoren und der Parameter F fiir die maximal verkraftbare Anzahl der gleichzeitigen Ausfélle
sehr hoch sind. Es miissen mitunter sehr viele Zustandsinformationen in einem Operator
gespeichert werden, denn je nach Topologie und Tiefe kann der Sicherungsbaum schnell
anwachsen, im schlechtesten Fall muss in manchen Operatoren von beinahe jedem anderen
Operatoren ein Sicherungspunkt gespeichert werden. Ebenso problematisch kann der Ausfall
einer Sequenz von Operatoren sein: Dadurch, dass in einem solchen Fall keine parallele
Wiederherstellung aller ausgefallenen Operatoren moglich ist, sondern die Operatoren
sequentiell von unten nach oben wiederhergestellt werden miissen, kann es relativ lange
dauern, bis alle Operatoren wieder korrekt laufen.

Im folgenden Kapitel werden diese Probleme analysiert und es wird ein Losungsvorschlag
erarbeitet.
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7 Erweiterung des Ansatzes

In Abschnitt 6.6 wurden einige mogliche Schwachstellen des vorgestellten Modells angespro-
chen, die insbesondere die Skalierbarkeit des Systems und die Latenzzeit bei Operatorausfal-
len beeintrachtigen konnen. In diesem Kapitel soll genauer untersucht werden, in welchen
Fallen sich durch die Topologie des CEP-Systems der Aufwand fiir Kommunikation und
Berechnungen und der Speicherbedarf fiir die einzelnen Operatoren besonders verstarken
kann. Es wird gezeigt, dass manche Topologieformen die Anzahl der {ibertragenen Besta-
tigungsnachrichten, die Grofie des Ausgangslogs und das Ausmafs des Sicherungsbaumes
fiir bestimmte Operatoren signifikant verstirken konnen. Durch die Nutzung persistenter
Speicherschichten kdnnen bestimmte Operatoren besonders entlastet werden, indem die Men-
ge an zu sichernder Zustandsinformation verringert wird. Zudem kann die Latenzzeit bis
zur Wiederherstellung einer Sequenz von ausgefallenen Operatoren ebenfalls verringert
werden. Es wird gezeigt, wie persistente Speicherschichten das CEP-System in verschiedene
Teilsysteme unterteilen konnen, was den einzelnen Operatoren in einem solchen Teilsystem
entlastet.

7.1 Problematische Topologien

7.1.1 Operatoren mit vielen Vorgangern

In Abb. 7.1 ist eine Topologie dargestellt, in der ein Operator w; n direkte Vorganger w; bis
wy hat. Ein solches Muster in der Topologie hat spezielle Folgen fiir die Zustandsinformatio-
nen, die in den Vorgédngern gespeichert werden. Die Bestitigungsnachrichten von w; werden
n Mal repliziert und haben damit auch einen n-fachen Effekt auf die Aktualisierung von
Sicherungspunkten und die Kiirzung von Ausgangslogs und gespeicherten Konsumopera-
tionen. Ein Operator mit vielen Vorgidngern ist also ein Bestitigungs-Verstirker. Zudem wird
der Sicherungsbaum von w; bei einer neuen Bestdtigungsnachricht n mal versendet und n
mal gespeichert.

Es wire vorteilhaft, wenn w; einen moglichst kleinen Sicherungsbaum besitzt, um die
iibertragene Datenmenge in den Bestdtigungsnachrichten zu minimieren und damit auch
die Grofie der Sicherungsbdaume der Vorganger und deren Vorgéanger bis zu einer Tiefe
von n-1 Verarbeitungsebenen. Zudem wiére es vorteilhaft, wenn w; empfangene Ereignisse
moglichst schnell bestdtigen kann, damit die Vorgdnger (und deren Vorgéanger bis zu den
Ereignisquellen) ihre Ausgangslogs und gespeicherten Konsumoperationen moglichst schnell
nach der Erzeugung wieder kiirzen konnen. Je tiefer der Operatorbaum sich bis zu den
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7 Erweiterung des Ansatzes

Abbildung 7.1: Eine Topologie, in der ein Operator viele Vorgidnger hat.

Konsumenten zieht, desto grofier werden im Allgemeinen die Mengen an fiir die Wiederher-
stellung vorgehaltenen Ereignissen in allen Zwischenstufen bis zu einem fertiggestellten und
bestatigten Ereignis, das an einen Konsumenten ausgeliefert wurde. Die Tatsache, dass ein
Operator viele Vorgidnger hat, vervielfacht diesen Effekt.

7.1.2 Operatoren mit vielen Nachfolgern

Ein anderes Extrem in Topologien ist ein Operator, der viele direkte Nachfolger hat. In
Abb. 7.2 ist eine solche Topologie dargestellt: Der Operator w; hat mit den Operatoren w;
bis w, n direkte Nachfolger. Ein solches Muster hat fiir den Operatoren w; und dessen
Vorgianger wiederum spezielle Folgen. So setzt sich der Sicherungsbaum von w; aus Teilen
der Sicherungsbdume aller seiner n Nachfolger zusammen, bei einem grofien n kann der
Sicherungsbaum also entsprechend grofs werden. Dieser potentiell grofSe Sicherungsbaum
wird gekiirzt auch an die Vorgédnger von w; weitergegeben und dort gespeichert. Die Ver-
groflerung des Sicherungsbaumes kann sich somit bis zu F-1 Ebenen stromabwiérts von w;
aus fortsetzen, wobei sich der Effekt durch die Kiirzung der Sicherungsbaume auf eine Tiefe
von F nach und nach abschwicht. Eine Bestdtigungsnachricht eines Nachfolgers fiihrt nicht
immer direkt zu einer Aktualisierung des Sicherungspunkts von w;, sondern nur wenn
sich die niedrigste bestdtigte Sequenznummer aller Vorgdnger dndert, ein Operator mit
vielen Nachfolgern kann in diesem Sinne also als ein Bestitigungs-Aggregator angesehen
werden. Der Sicherungsbaum wird allerdings bei jeder empfangenen Bestatigungsnachricht
aktualisiert.
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7.1 Problematische Topologien

Abbildung 7.2: Eine Topologie, in der ein Operator viele Nachfolger hat.

Bei sehr vielen Nachfolgern kann es fiir den Operatoren w; schwierig werden, die Si-
cherungsbaume zu speichern. Wenn er dazu viele Vorgidnger hat, muss er seinen eigenen
groflen Sicherungsbaum auch noch regelméfiig an diese versenden (vgl. Abschnitt 7.1.1). Es
wire also vorteilhaft, wenn der Sicherungsbaum von w; verkleinert werden kénnte.

7.1.3 Viele Operatoren in einer Sequenz

Bei vielen Operatoren in einer Sequenz zwischen Ereignisquellen und -konsumenten kann
sich der Speicherbedarf fiir das Ausgangslog eines Operators erhchen, wenn zwischen
dem Operator und den Konsumenten viele weitere Operatoren und damit viele weitere
Zwischenschritte in der Ereignisverarbeitung positioniert sind. Dadurch, dass in den ein-
zelnen Verarbeitungsschritten im Allgemeinen die Anzahl der Ereignisse eher abnimmt,
da ,einfache” Ereignisse zu , komplexen” Ereignissen verdichtet werden, sind jeweils viele
Ereignisse aus niedrigen Verarbeitungsebenen an der Erzeugung eines Ereignisses aus einer
hohen Verarbeitungsebene beteiligt. Das heifit auch, dass sich die Grofie des Ausgangslogs
im Sinne der Anzahl der gespeicherten Ereignisse im Allgemeinen stromabwirts erhoht.
Mit jedem weiteren sequentiellen Operatoren vergrofiert sich das Ausgangslog aller seiner
Vorgédnger in der transitiven Hiille pred* sogar um den Faktor der durchschnittlichen Anzahl
ws an neuen Ereignissen, die der Operator von jedem Vorgénger fiir eine Korrelation beno-
tigt. Dies hdangt damit zusammen, dass fiir die Produktion eines Ereignisses, das an einen
Konsumenten ausgeliefert wird, dann eine ws-fache Menge an Ereignissen der niedrigeren
Verarbeitungsebenen benotigt wird. Die Ausgangslogs konnen somit mit der Anzahl der
sequentiellen Operatoren exponentiell anwachsen. In der Evaluation in Kapitel 8.5.1 wird
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7 Erweiterung des Ansatzes

diese Uberlegung durch Messungen bestitigt.

Ein weiterer Nachteil einer tiefen Topologie mit vielen Verarbeitungsebenen tritt bei der
Wiederherstellung einer grofsen Menge von Operatoren, die in einer Sequenz liegen, auf. Um
den letzten Operator in der Sequenz wiederherzustellen, miissen erst alle seine Vorganger
wiederhergestellt werden. Dies setzt sich fort bis zur Wiederherstellung der ausgefallenen
Operatoren der niedrigsten Verarbeitungsebenen. Im schlechtesten Fall muss beim Ausfall
von F Operatoren der Operator der hochsten Verarbeitungsebene bis zu seiner eigenen Wie-
derherstellung zundchst auf die Wiederherstellung von F-1 anderen Operatoren warten. Eine
Parallelisierung der Wiederherstellung ist im Falle eines Ausfalls sequentiell angeordneter
Operatoren nicht moglich.

7.2 Persistente Speicherschichten

Bisher sind die Operatoren und die Algorithmen fiir ihre Wiederherstellung gezielt so
entworfen worden, dass sie ohne einen persistenten Speicher funktionieren. Dies hat mehrere
Vorteile: Zum einen sind persistente Speicheroperationen vergleichsweise teuer, da sie mehr
Zeit benotigen als eine Speicherung in einem volatilen Speicher. Zum anderen kann ein
solcher Algorithmus auch auf Computersystemen laufen, die gar keinen beschreibbaren
persistenten Speicher fiir die Anwendung bereitstellen.

Es kann jedoch sinnvoll sein, in bestimmten Situationen auf einen persistenten Speicher
zuriickzugreifen, um die Operatoren und die Kommunikationsverbindungen zu entlasten.
Die Idee dahinter ist, dass eine Sicherung bestimmter Zustandsdaten von Operatoren in
einem persistenten Speicher trotz der hoheren einmaligen Speicherungskosten immer noch
glinstiger sein kann als die Replikation dieser Daten in mehreren volatilen Speichern, die
auf verschiedene Operatoren verteilt sind. Wenn eine persistente Speicherung giinstiger ist
und ein persistenter Speicher mit ausreichender Datenverfiigbarkeit vorhanden ist, sollte
ein solcher Speicher verwendet werden. Aufierdem kann die Skalierbarkeit erhoht werden,
indem mit der Speicherung von Zustandsdaten tiberlastete Operatoren durch einen per-
sistenten Speicher entlastet werden konnen. Was ist dann aber der Unterschied zu einem
,klassischen” Rollback-Recovery-Verfahren, in dem jeder Knoten von Zeit zu Zeit einen
persistenten Checkpoint anlegt? Es ist die Flexibilitat: Eine persistente Speicherschicht kann
eingesetzt werden, sie muss es nicht. Vielmehr kann in jeder Topologie an jeder Stelle die
Abwéagung getroffen werden, ob ein persistenter Speicher oder die Verteilung der Zustands-
informationen auf volatile Speicher die giinstigere Alternative ist. Eine Kostenrechnung fiihrt
zur Entscheidung fiir oder gegen einen persistenten Speicher an bestimmten Stellen in der
Topologie des Systems. Schliefilich konnte diese dann in einem dynamischen Algorithmus
angewendet werden, der die automatisierte Verwaltung von persistenten Speicherschichten
ermoglicht.

In diesem Abschnitt wird das Konzept des Einsatzes eines persistenten Speichers im Rahmen
des Systemmodells erldutert.
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7.2 Persistente Speicherschichten

7.2.1 Konzept und Funktionsweise

Der persistente Speicher arbeitet wie ein weiterer Operator, der zwischen zwei oder mehr
miteinander verbundene Operatoren geschaltet wird. Die entsprechenden Operatoren kom-
munizieren dann nicht mehr direkt miteinander, sondern mit dem persistenten Speicher.
Dieser speichert die tibertragenen Daten, d.h. Ereignisse von seinen Vorgangern und Siche-
rungsbdume von seinen Nachfolgern. Die Ereignisse werden nach der Speicherung an die
Nachfolger zur Sequenzierung in deren Eingangsstromen weitergeleitet, die Sicherungsbau-
me hingegen werden persistent in ihrer jeweils aktuellsten Version gespeichert, aber nicht
vollstindig an die Vorgénger zur volatilen Speicherung weitergeleitet. Statt der Ubertragung
der kompletten Sicherungsbdume der Tiefe F werden in den Bestdtigungsnachrichten an
die Vorganger lediglich die empfangenen und persistent gespeicherten Ereignisse bestatigt.
Damit arbeitet ein persistenter Speicher wie eine Kombination aus Ereigniskonsument und

A |
A/
(l Wy |
I
ACK(SP) |
I
Save(SP) p
Prune()

Abbildung 7.3: Funktionsweise eines persistenten Speichers in der Kommunikation mit 2
Operatoren.

-quelle. Gegeniiber den Vorgidngern des persistenten Speichers gibt er sich als Konsument
aus, der empfangene und persistent gespeicherte Ereignisse mit einfachen Nachrichten be-
statigt. Gegentiber seinen Nachfolgern liefert er diese Ereignisse wie eine Ereignisquelle aus,

71



7 Erweiterung des Ansatzes

speichert und verwaltet die in den Bestdtigungsnachrichten empfangenen Sicherungsbaume
und bereinigt die Ausgangslogs.

Abb. 7.3 zeigt einen persistenten Speicher P, der zwischen zwei urspriinglich miteinan-
der verbundene Operatoren w; und w, geschaltet wurde. Ereignisse, die von w; an P
gesendet werden, werden von P persistent gespeichert und dann mit einer einfachen Besta-
tigungsnachricht (Bestiatigung der Sequenznummer) beim Produzenten bestdtigt. Insofern
verhilt sich P gegeniiber w; wie ein Ereigniskonsument. Die von P persistent gespeicherten
Ereignisse werden an den Empfanger w, gesendet. Dieser wird die Ereignisse weiterverar-
beiten, bis sie schlieflich als 0¢onsumer-Ereignisse an einen Konsumenten ausgeliefert und
von diesem bestdtigt werden. Die Bestdtigungen werden stromabwarts weiterverarbeitet
und fithren zum Aufbau eines Sicherungsbaums der maximalen Tiefe F. Schliefslich sendet
wy eine Bestdtigungsnachricht an P, die einen Sicherungsbaum enthilt. P speichert bzw.
aktualisiert den Sicherungsbaum, um w; und dessen Nachfolger wiederherstellen zu kdnnen,
und kann nun anhand des Sicherungspunktes von w, sein eigenes persistentes Log von
Ereignissen kiirzen, indem alle Ereignisse mit einer niedrigeren Sequenznummer als das
zuletzt von w; bestdtigte Ereignis aus dem persistenten Speicher entfernt werden.

72



8 Evaluation

Basierend auf dem eingefiihrten Systemmodell (siehe Kapitel 3) wurde das entwickelte
Wiederherstellungsverfahren (siehe Kapitel 6) im ereignisbasierten Simulations-Framework
OMNeT++ [Omn] implementiert. Anhand dieser Implementierung wird eine Evaluation
des Systemverhaltens unter verschiedenen Simulationsparametern durchgefiihrt. Ziel der
Evaluation ist es vor allem, einige der in Kapitel 7 analysierten Fragen und Annahmen {iber
das Systemverhalten durch eine Untersuchung der gewonnen Messdaten zu hinterfragen
und somit auch zu Schlussfolgerungen iiber den Einsatz von persistenten Speicherschichten
zu kommen. Zudem wird durch die praktische Implementierung der Algorithmen und der
Priifung der Ergebnisse das Wiederherstellungsverfahren validiert.

Ein grober Uberblick iiber die Implementierungsdetails wird in Abschnitt 8.1 gegeben.
In Abschnitt 8.2 werden die Topologien definiert, auf denen die Simulationsldufe ausgefiihrt
werden und es wird erklirt, wie die Simulation im Einzelnen ablauft. Schliefdlich werden in
Abschnitt 8.3 die Szenarien bzw. Parameter definiert, unter denen die Simulation ablauft,
bevor in Abschnitt 8.4 die entsprechenden Ergebnisse in grafischen Schaubildern dargestellt
werden. Das Kapitel schliefst in Abschnitt 8.5 mit Schlussfolgerungen dariiber, was die
erzielten Ergebnisse fiir den Einsatz von persistenten Speicherschichten im Kontext des
Wiederherstellungsverfahrens bedeuten.

8.1 Details zur Implementierung

In Abb. 8.1 wird die Architektur der Implementierung vereinfacht dargestellt. Ein zentraler
Aspekt ist hierbei der sog. Broker, der einen Host implementiert, auf dem jeweils ein Opera-
tor platziert werden kann. Diese Broker laufen im Gegensatz zur Definition in Kapitel 3.3.2
zur Vereinfachung des Verfahrens in einem Crash-Recovery-Fehlermodell, d.h. bei einem
Absturz verliert der Broker alle Zustandsinformationen, fahrt allerdings automatisch wieder
hoch und steht zur Wiederherstellung des platzierten Operators zur Verfiigung. Somit sind
Rekonfigurationen der Operatortopologie unnétig, die Evaluation zielt ausschliefSlich auf die
Wiederherstellung der Ereignisstrome ab (vergleiche dazu auch den Aufbau in Kapitel 6.5).

Quellen und Konsumenten sind iiber Kommunikationsverbindungen jeweils mit den Brokern
verbunden, die in OMNeT++ iiber gates und connections realisiert werden. Die Strome

von Ereignissen und Bestitigungsnachrichten laufen wie in Kapitel 6.4 erldutert ab.

Der Coordinator tiberwacht die Heartbeat-Nachrichten der Broker und veranlasst und

73



8 Evaluation

Coordinator CrashGenerator

A A

o

Broker

Operator

A \ 4

Source Consumer

Abbildung 8.1: Architektur der Implementierung. Die Rechtecke stellen Komponenten dar,
die Pfeile Kommunikationsverbindungen.

koordiniert die Wiederherstellung von abgestiirzten Brokern. Ob und wann ein Broker ab-
stiirzt, wird von der Komponente CrashGenerator gesteuert, der periodisch an verschiedene
Broker CrashRequests verschickt. Uber diese Komponente lassen sich die Frequenz und die
Wahrscheinlichkeit von Abstiirzen steuern.

8.2 Topologien und Simulationsablauf

NG

Abbildung 8.2: Topologien in der Evaluation.

Bei der Evaluation in dieser Arbeit wird keine , praxistypische” Topologie untersucht, son-
dern ein sog. kritischer Pfad, anhand dessen die Verhaltensweisen des Systems in bestimmten
Situation beobachtet werden konnen. Das heift, dass die untersuchten Topologien immer
nach dem folgenden Muster aufgebaut sind (Abb. 8.2): Eine Ereignisquelle ist mit einer
Sequenz von 1 bis N Operatoren verbunden und der letzte Operator in dieser Reihe ist
schliefdlich mit einem Konsumenten verbunden. Eine solche einfache Topologie ldsst direkte
Schliisse auf Verhdltnismafligkeiten zwischen Parametereinstellungen und gemessenen Da-
ten zu.
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8.3 Getestete Szenarien und Parameter

In der Simulation werden verschiedene Konstellationen von Parametern getestet. Dabei
werden stets alle Parameter bis auf einen festgehalten, und die Anderungen im System-
verhalten bei verschiedenen Werten fiir den verdnderbaren Parameter untersucht. Bei der
Entscheidung des CrashGenerator iiber Abstiirze von Brokern wird auf einen Zufallszahlen-
generator zuriickgegriffen, was ausschlieSlich Szenario 3 (siehe Abschnitt 8.3.3.3) betrifft.
Hierbei wird eine Gleichverteilung des Mersenne Twister Random Number Generator [MNQ8]
eingesetzt, der im OMNet++-Framework implementiert ist. Fiir jede Parameterkonfiguration
wird eine Reihe von 5 Simulationsdurchldufen durchgefiihrt, bei denen jeweils verschiedene
Seeds fiir den RNG eingesetzt werden. Die Ergebnisse der Simulationsldufe werden dann
in einem Konfidenzintervall dargestellt. In Szenario 1 und 2 (siehe Abschnitte 8.3.3.1 und
8.3.3.2) wird nicht auf Zufallswerte zugegriffen, sodass dort lediglich ein Simulationslauf
durchgefiihrt wird. Fiir alle Szenarien gilt, dass in jedem Simulationslauf 1.000.000 Ereignisse
in der Ereignisquelle produziert und durch die Operatortopologie verarbeitet werden.

Die Operatoren sind so eingestellt, dass sie immer eine bestimmte Anzahl von einge-
henden Ereignissen in einem Korrelationsfenster sammeln. Sobald die festgelegte Zahl
an Ereignissen eingegangen ist, wird das Korrelationsfenster geschlossen, die Korrelation
wird durchgefiihrt und es wird ein ausgehendes Ereignis produziert. Das nachste Korre-
lationsfenster wird dann mit dem ersten eingehenden Ereignis nach dem Endereignis des
vorherigen Fensters geoffnet. Damit haben alle Korrelationsfenster in den Operatoren die
selbe Grofse und {iberlappen nicht.

8.3 Getestete Szenarien und Parameter

8.3.1 Parameter

Auf Basis der beiden vorhergehenden Abschnitte, in denen die Architektur der Implementie-
rung und der Aufbau der Operatortopologie in der Simulation beschrieben werden, lassen
sich verschiedene Parameter feststellen, anhand deren die Simulation in ihren wesentlichen
Aspekten gesteuert wird. Einige der Parameter werden in allen Parameterkonfigurationen
auf einen festen Wert eingestellt sein, andere wiederum sind verdnderlich, um bestimmte
Verhaltensweisen des Systems aufzuzeigen. In Tabelle 8.1 folgt eine Ubersicht iiber die
wesentlichen Parameter; die verdnderbaren Parameter bekommen dabei einen speziellen
Bezeichner, der in den Auswertungen zur Referenzierung benutzt wird.

8.3.2 Was wird gemessen?

Gemessen wird die Lebensdauer von Ereignissen in den Quellen, das heifst der Zeitraum
zwischen der Erzeugung eines Ereignisses (und damit der Speicherung im Ausgangslog der
Quelle) und dem Empfang der Bestitigungsnachricht, die zur Entfernung des Ereignisses aus
dem Ausgangslog fiihrt. Uber die gemessenen Zeitrdume lassen sich direkte Riickschliisse
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Bezeichner | Name Wertebereich Beschreibung
Verzogerung fest: 20 ms Verzogerung der Kommuni-
kationsverbindungen. Samtli-
che Kommunikationsverbin-
dungen haben diesen Verzo-
gerungswert fest eingestellt.
Anzahl Quellen fest: 1 Anzahl der Ereignisquellen.
Anzahl Konsu- | fest: 1 Anzahl der Ereigniskonsu-
menten menten.
Frequenz der | fest: 1 Event / ms Frequenz, in der Ereignisquel-
Quellen len neue Ereignisse produzie-
ren.
ws Korrelations- variabel: 5 bis 40 Anzahl von Ereignissen in ei-
fenstergrofse nem Korrelationsfenster.
pl Pfadlange variabel: 1 bis 5 Anzahl der in Sequenz ge-
schalteten Operatoren zwi-
schen Quelle und Konsumen-
ten.
Heartbeat- fest: 1 / 2000 ms Frequenz der Heartbeat-
Frequenz Nachrichten (bestimmt auch
Verzogerung der Ausfaller-
kennung).
P(crash) Absturz- variabel: 0,00 bis 0,40 | Wahrscheinlichkeit fiir einen
wahrscheinlichkeit Operator, wihrend einer Ent-
scheidung des CrashGenera-
tor abzustiirzen.
Frequenz des | fest: 1 / 1000 ms Frequenz, in welcher der
CrashGenerator CrashGenerator tiber Absttir-

ze von Operatoren (jeweils
mit P(crash)) entscheidet.

Maximale Anzahl

fest: Pfadldange

Es konnen in jeder Ent-

der Abstiirze scheidung des CrashGenera-
tor samtliche Operatoren ab-
stlirzen (falls P(crash) > o ist).
Simulations- fest: 1000 s Die Simulation wird nach Ab-
laufzeit lauf der Simulationslaufzeit
abgeschlossen und die Ergeb-
nisse werden ermittelt.
Verarbeitungs- fest: o ms Korrelationen werden sofort
dauer durchgefiihrt, eine Verzoge-

rung durch benotigte Berech-
nungszeit wird nicht einbe-
rechnet.

Tabelle 8.1: Simulationsparameter
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8.3 Getestete Szenarien und Parameter

auf die Grofse des Ausgangslogs in den Quellen ziehen. Es wird stets die minimale und
die maximale Lebensdauer {iiber alle Ereignisse in der Ereignisquelle gemessen sowie ein
aus allen Messungen des Simulationslaufes gebildeter Mittelwert berechnet. Die Werte
werden dann tiber alle Simulationsldufe gemittelt. Die maximale Lebenszeit aller Ereignisse
bestimmt die Grofle, die das Ausgangslog einer Ereignisquelle annehmen kann. Durch die
Produktionsfrequenz der Quellen von genau 1 Event / ms sind die Lebensdauer eines
Ereignisses in ms und Anzahl der gespeicherten Ereignisse im Ausgangslog identisch.

8.3.3 Parametereinstellungen in den verschiedenen Szenarien
8.3.3.1 Szenario 1: Variable Pfadlange

Das erste Szenario untersucht den Einfluss der Pfadlange pl auf die Lebensdauer der Ereig-
nisse in den Ausgangslogs der Ereignisquelle. Die variablen Parameter ws und P(crash) sind
auf folgende Werte eingestellt:

WS = 10
P(crash) = 0,00

Der Einfluss der Pfadldnge auf die Lebensdauer der Ereignisse in den Ausgangslogs der
Ereignisquelle wird durch theoretische Betrachtungen als signifikant eingeschétzt. Jeder
zusdtzliche Operator und damit eingehender Korrelationsschritt vergrofiert die Zahl der Er-
eignisse aus den Ereignisquellen, die zu einem an den Konsumenten ausgelieferten Ereignis
korreliert werden. Damit ist auch ein Einfluss auf die Lebensdauer der Ereignisse in der
Ereignisquelle zu erwarten.

8.3.3.2 Szenario 2: Variable GroBe der Korrelationsfenster

Das zweite Szenario untersucht den Einfluss der Grofse der Korrelationsfenster ws auf die
Lebensdauer der Ereignisse in den Ausgangslogs der Ereignisquelle. Die variablen Parameter
pl und P(crash) sind auf folgende Werte eingestellt:

pl=3
P(crash) = 0,00

Die Grofle der Korrelationsfenster verdndert die Menge der Ereignisse aus der Ereignisquelle,
die fiir ein korreliertes und an den Konsumenten ausgelieferten Ereignis benotigt werden.
Damit ist auch ein Einfluss auf die Lebensdauer der Ereignisse in der Ereignisquelle zu
erwarten.
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8.3.3.3 Szenario 3: Variable Absturzwahrscheinlichkeit

Das dritte Szenario untersucht den Einfluss der Absturzwahrscheinlichkeit P(crash) auf die
Lebensdauer der Ereignisse in den Ausgangslogs der Ereignisquelle. Die variablen Parameter
ws und pl sind auf folgende Werte eingestellt:

Abstiirze und Wiederherstellungen von Operatoren haben zwar keinen Einfluss auf die Men-
ge der Ereignisse aus der Ereignisquelle, die zu einem an den Konsumenten ausgelieferten
Ereignis korreliert werden, doch durch die Dauer des Wiederherstellungsverfahrens wird
zwischen der Erzeugung und der Bestdtigung von Ereignissen eine zuséatzliche Verzogerung
verursacht. Diese beinflusst die Lebensdauer der Ereignisse in den Ereignisquellen.

8.4 Ergebnisse

Die folgenden Abbildungen stellen die Simulationsergebnisse der verschiedenen Szenarien
dar. Unter den Schaubildern ist jeweils eine Tabelle mit den genauen Messergebnissen
angegeben. Die Ergebnisse der Simulation werden in Abschnitt 8.5 analysiert.
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Abbildung 8.3: Szenario 1: Variable Pfadldnge mit ws = 10 und P(crash) = o,00.

Pfadliange | min. Lebensdauer | max. Lebensdauer | durchsch. Lebens-
[ms] [ms] dauer [ms]

1 90 100 95

2 230 330 280

3 1270 2270 1770

4 11310 21310 16310

5 111350 211350 161350

Tabelle 8.2: Szenario 1: Messergebnisse
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Szenario 2: Variable GrofSe der Korrelationsfenster

1e+006 . . ——
maximal —+—
durchschn.
- minimal —¥—
100000 : I

10000

Lebensdauer der Ereignisse [ms]

5 25

GroRe der Korrelationsfenster

Abbildung 8.4: Szenario 2: Variable Grofie der Korrelationsfenster mit pl = 3 und P(crash) =

0,00.

Grofle d. | min. Lebensdauer | max. Lebensdauer | durchsch. Lebens-
Korrelations- [ms] [ms] dauer [ms]
fensters

5 315 440 377-5

10 1270 2270 1770

15 3775 7150 5462.5

20 8580 16580 12580

25 16435 32060 24247.5

30 28090 55090 41590

35 44295 87170 65732.5
40 65800 129800 97800

Tabelle 8.3: Szenario 2: Messergebnisse
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Szenario 3: Variable Ausfallwahrscheinlichkeit
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Ausfallwahrscheinlichkeit

Abbildung 8.5: Szenario 3: Variable Ausfallwahrscheinlichkeit mit ws = 10 und pl = 3.

P(crash) min. Lebensdauer | max. Lebensdauer | durchsch. Lebens-
[ms] [ms] dauer [ms]
0.00 1270 2270 1770
0.05 1270 8310 2365
0.10 1270 9766 2837
0.15 1270 11566 3182
0.20 1270 12838 3502
0.25 1270 13238 3679
0.30 1270 13814 3861
0.35 1270 13038 3915
0.40 1270 13250 3887

Tabelle 8.4: Szenario 3: Messergebnisse
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8.5 Analyse und Schlussfolgerungen

8.5.1 Einfluss der Pfadlange

Wie in Abb. 8.3 zu erkennen ist, steigt die Lebensdauer der Ereignisse mit der Anzahl der
Operatoren exponentiell an. Fiir jeden Operatoren, der im sequentiellen Verarbeitungspfad
zwischen Quelle und Konsumenten hinzugefiigt wird, steigen sowohl die minimale, als auch
die durchschnittliche und die maximale Lebensdauer der Ereignisse anndhernd um den
Faktor 10. Dieser Faktor entspricht genau der Grofle der Korrelationsfenster. Dies entspricht
exakt den Erwartungen, die in Kapitel 7.1.3 an das Systemverhalten gestellt wurden. Ein
Operator mit der Korrelationsfenstergrofie von ws verlangert also die Lebensdauer der Ereig-
nisse anndhernd um den Faktor ws, und zwar gleichermafien die minimale, die maximale
und die durchschnittliche Lebensdauer. Der Faktor ndhert sich dabei ws lediglich an, da sich
die Gesamtverzogerung neben den Korrelationen und der damit verbundenen Wartezeit
auch noch aus den Verzogerungen der Kommunikationsverbindungen zusammensetzt. Diese
Parameter multiplizieren sich nicht, sondern addieren sich lediglich, sodass der Faktor ws
lediglich auf die Wartezeit fiir Korrelationen angerechnet werden kann.

Eine weitere Beobachtung ist, dass sich die Unterschiede zwischen der minimalen und
der maximalen Lebensdauer mit jedem weiteren Operatoren ebenso verzehnfachen und
auf das Verhiltnis 1 zu 2 zulaufen. Dies erklért sich dadurch, dass im optimalen Fall ein
produziertes Ereignis im ndchsten Operatoren sofort zu einer Korrelation und damit der
Erzeugung eines neuen Ereignisses fiihrt, dieses Ereignis wiederum beim néachsten Opera-
toren zur Korrelation fiihrt, und so weiter, d.h. das Ereignis fiihrt direkt ohne Wartezeiten
auf weitere Ereignisse zur Erzeugung eines Ereignisses, das vom Konsumenten bestitigt
wird. Die Bestdtigungen laufen nun stromabwirts vom Konsumenten bis zur Quelle. Jedoch
wird in jedem Operator jeweils das Startereignis des Korrelationsfenster bestatigt, das zur
Erzeugung eines bestitigten Ereignisses gefiihrt hat, da das Startereignis des nichsten Korre-
lationsfensters noch unbekannt ist (vergleiche dazu Kapitel 6.4.1.3). Dadurch verzogert sich
die Bestdtigung des Ereignisses, das ja eigentlich direkt zur Korrelation gefiihrt hat, in jedem
Operator um den Faktor ws. Im schlechtesten Fall wurde das Ereignis in der Quelle direkt
nach dem Ereignis im gerade beschriebenen optimalen Fall erzeugt. Dann muss zunéchst
ein komplettes weiteres komplexes Ereignis korreliert werden, um das Ereignis in der Quelle
freigeben zu konnen, was asymptotisch doppelt so lange dauert. Das Durchschnittsereignis
liegt genau in der Mitte zwischen dem optimalen und dem schlechtesten Fall, und hat daher
genau eine mittlere Lebensdauer zwischen beiden Extremen.

Die Pfadldange fiihrt also zu einem exponentiellen Wachstum der Grofie der Ausgangs-
logs in Abhédngigkeit zur Korrelationsfenstergrofle. Daher sind persistente Schichten wie in
Kapitel 7.2 besprochen bei langen kritischen Pfaden insbesondere sinnvoll, um die Grofie der
Ausgangslogs zu vermindern. Ab einer bestimmten Pfadldnge wird durch das exponentielle
Wachstum die Belastung fiir die unteren Verarbeitungsschichten so hoch, dass an einer
Partitionierung der Topologie durch persistente Schichten kein Weg mehr vorbei fiihrt.
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8.5.2 Einfluss der GroBe der Korrelationsfenster

In Abb. 8.4 ist der Einfluss der Korrelationsfenstergrofie auf die Lebensdauer der Ereignisse
dargestellt. Beide Achsen sind exponentiell skaliert. Es ist zu beobachten, dass eine Verdop-
pelung der Fenstergrofie asymptotisch zur Verachtfachung der Lebensdauer fiihrt. Da im
Experiment eine Pfadldnge von 3 festgelegt wurde, deckt sich dies mit der Beobachtung aus
dem ersten Szenario (vgl. Abschnitt 8.5.1), dass jeder Operator im kritischen Pfad zu einer
Multiplikation der Lebensdauer der Ereignisse um den Faktor der jeweiligen Fenstergrofse
fithrt. Wenn w! also um den Faktor x verdndert wird und die Pfadlédnge pl konstant bleibt, ist
die neue Lebensdauer niherungsweise (w! x x)?!, analog wie in Szenario 1 gleichermafen
fiir die minimale, die durchschnittliche und die maximale Lebensdauer. Die Beobachtungen
aus dem zweiten Szenario stiitzen also die Ergebnisse der Analyse des ersten Szenarios.

8.5.3 Einfluss von Ausfallen

Im dritten Szenario wurde die Ausfallwahrscheinlichkeit der Broker verdandert, was zu einer
Entwicklung der Lebensdauer wie in Abb. 8.5 dargestellt gefiihrt hat. Die minimale Lebens-
dauer liegt konstant bei einem Wert von 1270 ms, da auch bei hdufigen Ausfallen letztendlich
ein optimaler Durchlauf erreicht werden kann, in dem keine Ausfille die Verarbeitung und
Bestédtigung des Ereignisses storen. Interessanter ist die maximale Lebensdauer, die schon
bei einer Ausfallwahrscheinlichkeit von 0,05 signifikant auf einen knapp vierfachen Wert
ansteigt. Der Maximalwert steigt immer weiter, bis er sich bei einer Ausfallwahrscheinlich
um 0,30 stabilisiert bzw. sogar wieder leicht abféllt. Dies hdangt mit der Art und Weise
zusammen, wie in dem Szenario die Ausfille erzeugt werden. Einmal alle 1000 ms wird von
der CrashGenerator-Komponente der Ausfall von Brokern ausgelost. Das heifit auch, dass es
immer wieder Zeitrdume gibt, in denen auf keinen Fall ein Ausfall geschieht, sodass alleine
dadurch schon die maximale Lebenszeit der Ereignisse begrenzt ist. Die grofite Verzogerung
tritt dann auf, wenn die Broker nicht gleichzeitig, sondern zeitversetzt ausfallen: Wahrend
ein Broker wiederhergestellt wird, fillt ein anderer aus, sodass der wiederhergestellte Broker
wiederum warten muss, und so weiter. Wenn die Broker gleichzeitig ausfallen, werden sie
sequentiell wiederhergestellt und sind danach fiir eine gewisse Zeit wieder alle lebendig,
bis die nédchste Ausfallrunde beginnt. Wenn die Ausfallwahrscheinlichkeit sehr hoch ist,
kommt dieser Fall hdufiger vor und es wird unwahrscheinlicher, dass die Broker zeitversetzt
ausfallen.

Abgesehen von dieser Einschrankung ist zu beobachten, dass durch Ausfille und Wie-
derherstellungen von Operatoren die maximale Lebensdauer von Ereignissen bis anndhernd
einem Faktor von 6 erhoht werden konnte. Dies zeigt, dass zwar auch Wiederherstellungen
von Operatoren eine signifikante Vergrofierung der Ausgangslogs zur Folge haben konnen,
diese Vergrofierung im Vergleich zu anderen Faktoren aber nicht so stark ins Gewicht
fallt. Dass ein Operator bzw. sein Host in jeder Sekunde mit einer Wahrscheinlichkeit von
bis zu 40 Prozent ausfillt, ist auch schon sehr hoch gegriffen und wird in der Realitat
nattirlich so nicht auftreten. Die eigentlichen Faktoren, die die Ausgangslogs exponentiell
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anwachsen lassen, sind nicht die Ausfélle von Operatoren, sondern die Pfadldange und die
Korrelationsfenstergrofle. Dies ist die Beobachtung aus dem dritten Szenario.

8.5.4 Einfluss von Sicherungsbaumen und Kommunikationsaufwand

Messungen wihrend der Simulationen haben gezeigt, dass den Sicherungsbaumen nur ein
kleiner Anteil an der Gesamtmenge der gespeicherten Zustandsinformationen zugeschrieben
werden kann. Wenn bisweilen mehr als 200000 Ereignisse im Ausgangslog einer Quelle
persistent gespeichert werden miissen, kommt es nicht mehr unbedingt auf die zuséatzlichen
Sicherungsbdaume der Nachfolgeroperatoren an, es sei denn, die Topologie besttinde aus
zehntausenden von Knoten. Auch in der Versendung der Bestidtigungsnachrichten spielt
die Grofle der angehdngten Sicherungsbdaume keine besonders herausragende Rolle, da im
Vergleich zur Zahl der versendeten Ereignisse nur sehr wenige Bestdtigungsnachrichten
erzeugt werden. Bei den vorliegenden Zahlen und insbesondere in Anbetracht des expo-
nentiellen Wachstums sind die Ausgangslogs der entscheidende Faktor fiir den Entwurf
der Operatortopologie und die Entscheidung tiber die Nutzung persistenter Schichten nach
Kapitel 7.



9 Zusammenfassung und Ausblick

Aufgrund der Anforderungen, die aus verschiedenen Anwendungsgebieten an CEP-Systeme
gestellt werden, ist vor allem in Hinblick auf die Skalierbarkeit eine verteilte Architektur
meist der sinnvollste Ansatz. Es wird fiir mancherlei Anwendungsfille ein hochskalierbares
und ausfallsicheres System benétigt, das sich zudem durch eine hohe Verarbeitungsgeschwin-
digkeit auszeichnet, das fehlertolerant ist und dessen Ergebnisse unter allen einplanbaren
Umstianden, d.h. auch in definierten Fehlersituationen, korrekt sind. Auf Basis dieser Anfor-
derungen wurde in dieser Diplomarbeit ein Verfahren zur korrekten Wiederherstellung von
Ereignisstromen entwickelt und evaluiert.

Auf dem Weg dorthin wurden zunéchst die in der Forschung bisher vorhandenen Lo-
sungsansidtze zur Gewdhrleistung der Ausfallsicherheit verteilter Systeme untersucht. Es
wurde gezeigt, welche Stirken und Schwichen diese Ansitze in ihrer Anwendung fiir
verteilte CEP-Systeme besitzen und es wurde der Bedarf nach einem neuen Verfahren
begriindet, das ohne eine persistente Zustandsspeicherung in jedem Berechnungsknoten
bzw. Operatoren und ohne redundante Berechnungen auskommt. Ein solches Verfahren
wurde als Rollback-Recovery ohne persistente Zustandsspeicher bezeichnet.

Um eine hinreichend redundante volatile Sicherung der Zustandsinformationen eines
Operatoren zu ermoglichen, wurde untersucht, aus welchen Teilen ein solcher Zustand
besteht. Durch ein geeignetes Verarbeitungsmodell, das auf sogenannten Korrelationsfens-
tern aufbaut, konnte erreicht werden, dass der Zustand der Korrelationsoperationen zu
bestimmten Zeitpunkten leer ist, was die Menge der wiederherzustellenden Daten signifi-
kant reduzieren konnte. Die Zustandsinformationen zu solchen Zeitpunkten wurden als
Sicherungspunkte definiert und es wurde anhand verschiedener Operatortopologien Schritt
fiir Schritt ein Verfahren entwickelt, um diese Sicherungspunkte redundant in den volatilen
Speichern der Operatoren zu verteilen. Zudem wurde ein Algorithmus entwickelt, nach dem
ein Operator aus den entsprechend verteilten Zustandsinformationen zu einem bestimmten
Sicherungspunkt wiederhergestellt werden kann. Das entwickelte Wiederherstellungsver-
fahren fiihrt auch nach dem Ausfall und der Wiederherstellung beliebig vieler Operatoren
zu korrekten Ergebnissen, es arbeitet mit einer effizienten Verarbeitung und Verteilung der
Zustandsinformationen der Operatoren, es ist skalierbar, hat eine hohe Ausdrucksstéarke
beztiglich der moglichen Korrelationen und benétigt keinen persistenten Speicher in den
Operatoren.

SchlieSlich wurde untersucht, welchen Einfluss verschiedene Operatortopologien auf die

Menge der iibertragenen und gespeicherten Zustandsinformationen haben und es wur-
den bestimmte Verstarkungseffekte ausgemacht, die in solchen Topologien in Bezug auf
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die iibertragene und gespeicherte Menge an Zustandsinformationen auftreten. Um diese
Datenmenge reduzieren zu konnen, wurde durch das Konzept der persistenten Speicher-
schichten ein Werkzeug entwickelt, mit dem man eine Topologie partitionieren kann, sodass
die verstirkenden Effekte abgeschwacht werden. Durch dieses Konzept ermoglicht das
Wiederherstellungsverfahren einen dynamisch implementierbaren Mittelweg im Umgang
mit Zustandsinformationen zwischen persistenter Speicherung und redundanter Verteilung.
Eine solche dynamisch regulierbare Zustandsverwaltung ist schliefilich der Beitrag dieser
Diplomarbeit zum Forschungsfeld der Ausfallsicherheit und Wiederherstellung verteilter
Systeme, die alle typischen Anforderungen an verteiltes Complex Event Processing erfiillt.
Schliefslich wurden noch einige Systemeigenschaften in einer Simulation untersucht und die
theoretischen Uberlegungen durch praktische Daten untermauert.

Ausblick

Zu dem in dieser Diplomarbeit vorgestellten Verfahren kénnen noch verschiedene Fragen
untersucht werden. So wire eine Evaluierung tiber den Einfluss von Berechnungszeiten fiir
die Korrelationen in den Operatoren interessant. Aufserdem kann das Verfahren mit weite-
ren aktuellen Forschungsgebieten im verteilten Complex Event Processing in Verbindung
gebracht werden, wie zum Beispiel Verfahren zur Platzierung von Operatoren [SKR11] und
tiir mobile CEP-Szenarien [KORR12]. Fiir die Platzierung von persistenten Schichten kann
ein Algorithmus zur dynamischen Einteilung entwickelt werden, der aus verschiedenen
Parametern eine optimale Partitionierung der Operatortopologie berechnet.

Das Verfahren kann auch noch in verschiedener Hinsicht verfeinert werden, um in spezi-
ellen Féllen wie dem Auftreten besonders grofier Korrelationsfenster oder der Platzierung
mehrerer Operatoren auf einem Host die Verarbeitungseffizienz zu steigern. Von Interesse
ist auch die Frage, wie man das Verfahren mit neuen Speichertechnologien, die dhnliche
Zugriffseigenschaften wie Arbeitsspeicher bieten, verbinden kann (Storage Class Memory
[Lam1o0]).
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