
Institut für Parallele und Verteilte Systeme

Abteilung Anwendersoftware

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3344

Erweiterung und Evaluation eines
Prototyps für eine enge

Integration zwischen Datenbank-
und Workflow-Engines

Christian Ageu

Studiengang: Informatik

Prüfer: PD Dr. rer. nat. habil. Holger Schwarz

Betreuer: Dipl.-Inf. Peter Reimann

begonnen am: 17. Mai 2012

beendet am: 7. Dezember 2012

CR-Klassifikation: D.2.11, H.2.3, H.2.4, H.2.8, H.4.1

Inhaltsverzeichnis

1 Einführung 9
1.1 Motivation . 10

1.2 Konventionen und rechliche Hinweise . 10

1.3 Gliederung . 11

2 Grundlagen 13
2.1 Extensible Markup Language . 13

2.1.1 Dokumentstruktur . 13

2.1.2 Verarbeitung . 14

2.2 SOA und Webservices . 16

2.2.1 Service Oriented Architecture . 16

2.2.2 Webservices . 17

2.3 Workflows und Workflowmanagementsysteme 17

2.3.1 Workflow-Klassen . 18

2.3.2 Architektur eines sWfMS . 20

2.4 Web Services Business Process Execution Language 21

2.5 Datenbanksysteme . 23

3 Nutzung von Datenbanken in WfMS 25
3.1 Ansätze zur Datenverarbeitung . 25

3.2 Ansätze zur Verbesserung der Integration von Datenbanken 26

3.2.1 Konventionelle Funktionsweise von WfMS 26

3.2.2 Konzept für eine stärkere Integration von DBS 28

3.2.3 Techniken zur Verbesserung der Datenverarbeitung 29

3.3 Prototypische Erweiterungen eines WfMS . 31

3.3.1 Prototypen und Aufbau der Zeitmessungen 31

3.3.2 Testergebnisse . 33

3.4 Erweiterung von ODE-TI . 36

4 Konzeptionelle Erweiterungen 37
4.1 Literal-Pushdown . 37

4.2 Nachrichten-Pushdown . 40

4.3 XQuery-Pushdown . 42

5 Architektur von Apache ODE 43
5.1 Gesamtarchitektur . 43

3

5.2 Runtime im Detail . 45

5.2.1 OModel und BPEL-Typsystem . 46

5.2.2 ODE Hibernate DAO . 48

5.2.3 BpelRuntimeContext und Aktivitäten . 51

5.3 BPEL-Compiler . 53

5.4 Änderungen durch den ODE-TI Prototyp . 55

5.4.1 Datenbankschema . 55

5.4.2 DAO-Schicht . 55

Hauptmethoden von ScopeDAO . 58

5.4.3 Runtime-Schicht . 59

5.4.4 Funktionalität des Prototyps . 60

6 Implementierung der konzeptionellen Erweiterungen 63
6.1 Literal-Pushdown . 63

6.1.1 Datenbankschema . 64

6.1.2 BPEL-Compiler . 64

6.1.3 DAO-Schicht . 66

6.1.4 Runtime-Schicht . 67

6.2 Nachrichten-Pushdown . 68

6.2.1 Datenbankschema . 68

6.2.2 DAO-Schicht . 69

6.2.3 Runtime-Schicht . 70

6.3 XQuery-Pushdown . 71

6.4 Einschränkungen der Funktionalität des erweiterten Prototyps 72

7 Evaluation des erweiterten Prototyps 73
7.1 Testfälle . 73

7.2 Testumgebung . 73

7.3 Messergebnisse . 75

7.3.1 Literal-Pushdown . 75

7.3.2 Nachrichten-Pushdown . 76

7.3.3 Anwendungsfall . 78

8 Zusammenfassung und Ausblick 79
8.0.4 Ausblick . 79

Literaturverzeichnis 81

4

Abbildungsverzeichnis

2.1 Einteilung von Workflows nach ihrer Datenorientierung. Unterschiedliche
Workflowklassen sind rechteckig dargestellt, deren Anwendungsszenarien
sind oval gekennzeichnet. 18

2.2 Workflow zur Proteinmodellierung nach [RSM11] in Business Process Mode-
ling Notation (BPMN). 19

2.3 Architektur eines sWfMS nach [G+
11] . 20

3.1 Darstellung der Vorgänge bei den verschiedenen Ausprägungen von Daten-
operationen in Workflows (Vgl. [RSM]) . 27

3.2 Architektur kontrollflussorientierter Workflowausführung (a) sowie vorge-
schlagene Änderungen daran (b) (vgl. [RSM11]). 28

3.3 Pushdown-Arten nach [RSM11]. Die Zahlen deuten die Reihenfolge an, in der
einzelne Teilschritte ausgeführt werden. 29

3.4 Literal-Pushdown nach [RSM11] . 30

3.5 Architektur von Original ODE (a) und des ODE-TI Prototyps (b) (Vgl. [RSM11]) 32

3.6 Ergebnisse der Messungen von ODE-TI relativ zur Laufzeit von Original ODE
in Prozent. 34

3.7 Messergebnisse der sequenziellen (a) und parallelen (b) Ausführung des
Proteinmodellierungsworkflows(vgl. [RSM11]) 35

4.1 Verschiedene Konzepte zur Umsetzung des schreibenden Teils eines Literal-
Pushdown zur Entwurfszeit, während des Deployments oder zur Laufzeit. . . 38

4.2 Unterschiedliche Umsetzungen des Nachrichten-Pushdowns aus dem Work-
flow heraus (a) bzw. in der Datenbank (b). Die Zahlen deuten die Reihenfolge
an, in der einzelne Teilschritte ausgeführt werden. 41

5.1 Gesamtarchitektur von Apache ODE. (Vgl. [ode]) 44

5.2 Detailiertere Ansicht der ODE Runtime (Vgl. [Wag11]) 45

5.3 Ausschnitt des ODE OModel als UML-Diagramm (Vgl. [Wag11]). 47

5.4 Ausschnitt der ODE DAO-Schicht als UML-Diagramm (Vgl. [Wag11]). 49

5.5 Tabellenschema, welches sich durch die Hibernate Middleware direkt aus den
annotierten Klassen HScope und HXmlData aus Abb. 5.4 ergibt.(Vgl. [Wag11]). 51

5.6 Ausschnitt der ODE-Laufzeitkomponenten als UML-Diagramm (Vgl. [Wag11]). 52

5.7 Ausschnitt relevanter Komponenten des ODE-Compilers als UML-Diagramm. 54

5.8 Durch den ODE-TI-Prototyp verändertes Tabellenschema (Vgl. [Wag11]). . . . 56

5

5.9 UML-Diagramm der modifizierten DAO-Schicht. Die eingerahmten Kompo-
nenten wurden hinzugefügt, die weißen wurden im Vergleich zu Abb. 5.4 ver-
ändert. Grau eingefärbte Komponenten wurden nicht modifiziert (Vgl. [Wag11]). 57

5.10 UML-Diagramm der modifizierten Runtime-Schicht. Weiße Komponenten
wurden im Vergleich zu Abb. 5.6 verändert, grau eingefärbte Komponenten
wurden nicht modifiziert (Vgl. [Wag11]). 60

6.1 Tabellenschema für die Speicherung von Lieralwerten. 64

6.2 Veränderte Version des DOMBuilderContentHandler in UML-Notation. (vgl.
Abb. 5.7) . 64

6.3 Am Literal-Pushdown beteiligte Komponenten der DAO-Schicht in UML-
Notation. Unveränderte Klassen sind grau eingefärbt (vgl. Abb. 5.9). 66

6.4 Am Literal-Pushdown beteiligte Komponenten der Runtime-Schicht in UML-
Notation. Unveränderte Klassen sind grau eingefärbt (vgl. Abb. 5.10). 68

6.5 Geändertes Hibernate-(Teil-)Tabellenschema für die Persistenz von Nachrichten. 69

6.6 Am Nachrichten-Pushdown beteiligte Komponenten der DAO-Schicht in
UML-Notation. Unveränderte Klassen sind grau eingefärbt (vgl. Abb. 5.10). . . 70

6.7 Am Nachrichten-Pushdown beteiligte Komponenten der Runtime-Schicht in
UML-Notation. (vgl. Abb. 5.10). 71

7.1 Instanzlaufzeiten der Testprozesse mit unterschiedlich großen Literalwerten
(horizontale Achse) relativ zu Original ODE in Prozent (vertikale Achse) für
den Protoyp mit Literal-Pushdown sowie den Prototyp ohne Erweiterungen. . 76

7.2 Instanzlaufzeiten des Testprozesses mit unterschiedlich großen Eingangsnach-
richten (horizontale Achse) relativ zu Original ODE in Prozent (vertikale
Achse) für den Prototyp mit Nachrichten-Pushdown sowie den Prototyp ohne
Erweiterungen. 77

Tabellenverzeichnis

3.1 Konzeptionelle Unterscheidung von Datenoperationen in Workflows. (DIe
Abkürzung DM steht hierbei für data management) (Vgl. [RSM]) 26

6

Verzeichnis der Listings

2.1 Beispiel XML-Datei „diplomarbeit.xml“ . 14

5.1 Beispiel für die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll. 50

6.1 SQL-Befehl für die allgemeine Zuweisung eines Literalwerts in eine Variable . 66

6.2 SQL-Befehl für die Zuweisung eines Literalwerts in eine Variable vom Typ
Nachricht mit spezifiziertem <part>-Teil. 67

6.3 Hibernate-Annotation der Klasse HMessage zur Speicherung des Nachrichten-
inhalts als XML-Wert (vgl. Listing 5.1). 69

6.4 SQL-Befehl für die Zuweisung des Inhalts einer Nachricht in eine Variable. . . 70

7

1 Einführung

Durch die Wandlung von Information zu einem wirtschaftlichen Gut haben informationsver-
arbeitende Prozesse einen hohen Stellenwert erlangt. Seit Anbruch des Informationszeitalters
in den 1970er Jahren sind die Ansprüche an Kommunikationsnetzwerke und elektronischer
Datenverarbeitung stark gestiegen. Der von diesen Ansprüchen vorangetriebene wissen-
schaftliche und damit einhergehende technologische Fortschritt hat im Laufe der letzten
Jahrzehnte hochspezialisierte und damit sehr effiziente Lösungen und Technologien auf den
entsprechenden Sektoren hervorgebracht. Auch in Wissenschaft und Forschung kommt der
Informationsverarbeitung auf vielen Fachgebieten eine immer größer werdende Bedeutung
zu.

Um Informationen in Form von Daten auf Datenträgern zu speichern und wieder abrufen
zu können, wurden Datenbankverwaltungsysteme (engl.: database management systems, DBMS)
entwickelt, die teilweise seit über 30 Jahren bestehen, weiterentwickelt und dadurch verbes-
sert werden. Solche, mittlerweile hochkomplexe Systeme ermöglichen es heutzutage große
Datenmengen verhältnismäßig einfach, sicher und äußerst effizient zu verwalten und zu
verarbeiten [KE06].

Zur elektronischen Verarbeitung von Informationen wurde das Prinzip der Geschäftsprozesse
(engl.: business processes) entwickelt, nach dem Abläufe modelliert und ausgeführt werden
können. Geschäftsprozesse beschreiben eine Folge von Einzeltätigkeiten, die schrittweise
ausgeführt werden, um ein geschäftliches oder betriebliches Ziel zu erreichen [LR00]. Der
Teil eines Geschäftsprozesses, der auf einem Computer ausgeführt wird, wird als Workflow
bezeichnet, da der Gesamtablauf als fließende Hintereinanderausführung kleinerer Aktionen
realisiert wird. Workflows werden zur Beschreibung von Vorgängen im wirtschaftlichen
Umfeld, aber auch bei computergestützten Simulationen in Wissenschaft und Forschung,
eingesetzt [TDG07]. Dabei werden verschiedene Teilprozesse in ein Ablaufschema überführt,
welches den Gesamtprozess als Ausführungsgraph dieser Teilprozesse modelliert. Der so
entstandene Gesamtprozess kann wiederum als gesonderter Arbeitschritt aufgefasst und
als Teilprozess in größere Abläufe integriert werden. Durch dieses Konzept können einmal
fertiggestellte Workflows in anderen Workflows wiederverwendet werden. Zur Modellierung,
Ausführung und Ausführungsüberwachung solcher Workflows wurden Workflowmanage-
mentsysteme (WfMS) enwickelt, die die Umsetzung dieser Aufgaben auf einem Computer
ermöglichen.

9

1 Einführung

1.1 Motivation

Um Daten während einer Workflowausführung persistent zu halten, verwenden nahezu alle
WfMS entweder eigene (integrierte) oder extern angebundene Datenbanksysteme (DBS). Ein
DBS setzt sich aus einer Datenbank und einem darauf operierenden Datenbankmanagement-
system zusammen. Während einer Workflowausführung werden in der Datenbank unter
anderem die Variableninhalte der verwalteten Prozesse abgelegt. Die Daten in den Variablen
eines Workflows repräsentieren die Informationen, die von ihm verarbeitet werden. Das
Laden, Verarbeiten und Speichern dieser Daten stellt den produktiven Teil eines informati-
onsverarbeitenden Geschäftsprozesses dar. Da solche Daten je nach Einsatzgebiet sehr groß
werden können, kann die Verwaltung der Variableninhalte durch das WfMS die Ausführung
eines Workflows negativ beeinflussen oder sogar zur Überlastung des Systems und damit
dem Scheitern der Ausführung führen.

Um in Zukunft große Datenmengen innerhalb von Workflows effizienter und zuverlässiger
handhaben zu können, ist die Idee entstanden, die Funktionen des DBS auch intensiv für die
Workflowausführung einzusetzen, anstatt damit nur die Persistenz sicherzustellen [RSM11].
Dabei sollen datenintensive Operationen, auf die das DBS spezialisiert ist, dem WfMS
abgenommen werden und es damit entlasten. Die Ziele sind dabei schnelleres Laufzeitverhal-
ten, geringerer Speicherverbrauch, höhere Stabilität sowie Skalierbarkeit der Datenzugriffe
während der Workflowausführung.

Im Rahmen vorangegangener Arbeiten [Wag11],[RSM11] wurden bereits Konzepte zur Ver-
besserung der Workflowausführung durch Integration des DBS bei der Workflowausführung
erarbeitet und entsprechende Funktionalitäten prototypisch umgesetzt sowie evaluiert. Da-
bei sind sowohl einige Aspekte der Integration unbehandelt geblieben, als auch durch die
prototypische Umsetzung neue Problemstellungen identifiziert worden. So kam es beispiels-
weise zu ungewünschten Leistungseinbußen durch die gemischte Datenverarbeitung im DBS
einerseits und im WfMS andererseits. In dieser Arbeit sollen nun einige der unbehandelten
Aspekte und Problemstellungen untersucht, sowie Lösungsansätze zur weiteren Verlagerung
von Datenoperationen in das DBS umgesetzt und evaluiert werden.

1.2 Konventionen und rechliche Hinweise

Begriffe, die im weiteren Verlauf der Arbeit abgekürzt werden, werden bei der erstmaligen
Verwendung ausgeschrieben und die verwendete Abkürzung dahinter, innerhalb runder
Klammern, angegeben. Aus dem englischen übersetzte Fachbegriffe werden bei ihrer erstma-
ligen Verwendung zusätzlich mit ihrer englischen Bezeichnung in Klammern angegeben,
um den Bezug auf die englischsprachige Literatur zu ermöglichen.

In dieser Arbeit kam Software zum Einsatz, die nicht öffentlich zur Verfügung steht und für
die Lizenzen erworben werden müssen. Für die Evaluation des in dieser Arbeit entstandenen
Prototyps wurde eine entsprechende Lizenz erworben. Dies betrifft insbesondere:

10

1.3 Gliederung

• IBM DB2 V10.1 Advanced Enterprise Server Edition

Diese Arbeit enthält eine Datenbank-Auswertung. Der Autor dieser Arbeit hat die Vorberei-
tung und Ausführung dieser Auswertung mit besonderer Vorsicht durchgeführt. Trotzdem
kann der Autor mögliche Fehler, die hierbei entstanden sind, nicht ausschließen. Aus diesem
Grund übernimmt der Autor keine Verantwortung für die Korrektheit und Vollständigkeit
der gesamten Auswertung und der daraus geschlossenen Erkenntnisse.

1.3 Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Hier werden grundlegende informationstechnische Begriffe erläu-
tert und die in der Arbeit verwendeten Technologien vorgestellt.

Kapitel 3 – Nutzung von Datenbanken in WfMS: Hier werden durch vorangegangene Arbei-
ten hervorgebrachte Konzepte, Umsetzungen und Ergebnisse zur stärkeren Integration
von Datenbanken in WfMS vorgestellt, beschrieben und analysiert.

Kapitel 4 – Konzeptionelle Erweiterungen: Hier werden die in dieser Arbeit entwickelten
konzeptionellen Erweiterungen des bestehenden Systems vorgestellt.

Kapitel 5 – Architektur von Apache ODE: Hier werden die Teile der Softwarearchitektur
der Workflowengine Apache ODE beschrieben, die für diese Arbeit relevant sind.
Außerdem werden die durch die Vorarbeiten bereits implementierten Veränderungen
an der Architektur vorgestellt.

Kapitel 6 – Implementierung der konzeptionellen Erweiterungen: Hier werden implemen-
tierungstechnische Umsetzungen der in Kapitel 4 vorgestellten Erweiterungen im
Detail beschrieben.

Kapitel 7 – Evaluation des erweiterten Prototyps: Hier werden Aufbau, Durchführung und
Ergebnisse von Messungen an den Umsetzungen der Erweiterungen vorgestellt.

Kapitel 8 – Zusammenfassung und Ausblick: Hier wird die Arbeit zusammengefasst. Es
werden abschließende Kommentare abgegeben und auf weitere Themen hingewiesen,
die sich im Verlauf der Arbeit aufgetan haben, jedoch nicht behandelt wurden.

11

2 Grundlagen

In diesem Kapitel werden grundlegende informationstechnische Begriffe erläutert und
Technologien vorgestellt, die bei der Modellierung und Ausführung von Workflows im
allgemeinen eine wichtige Rolle spielen oder im weiteren Verlauf dieser Arbeit benötigt
werden. Dabei werden die ersten Probleme und Konflikte vorgestellt, für die im Rahmen
dieser Arbeit Lösungen gefunden werden sollen.

2.1 Extensible Markup Language

Die eXtensible Markup Language [xmla], kurz XML, ist eine weit verbreitete Markup-Sprache
zur Darstellung von hierarchisch strukturierten Daten in Textform. Mit Hilfe von Markup-
Sprachen lassen sich in einem Dokument neben Informationen auch deren Metainformatio-
nen bzw. Annotierungen speichern.

Durch den hohen Verbreitungsgrad der Sprachen existieren viele Werkzeuge, mit der sich
eine XML-basierte Datenbasis realisieren lässt. Sowohl die in dieser Arbeit verwendete
Beschreibungssprache für Workflows BPEL (s. Abschnitt 2.4), als auch alle betrachteten
Workflowdaten verwenden XML als Grundlage zur Speicherung und zum Austausch von
Informationen. In den folgenden Unterabschnitten werden Aufbau und Verarbeitung von
XML-Dokumenten näher beschrieben.

2.1.1 Dokumentstruktur

In XML werden Informationen von sogenannten Tags eingeschlossen. Tags beinhalten die
zu der von ihnen umschlossenen Information gehörenden Metainformationen und liefern
den namen eines Elements. Tags werden in XML durch spitze Klammern gekennzeichnet
(<TAG>), wobei schließende Tags einen zusätzlichen Schrägstrich vor dem Tagnamen besitzen
(</TAG>). In einem öffnenden Tag können zusätzlich Attribute des Elements definiert werden.
Solche Definitionen haben die Form <TAG ATTRIBUTNAME=�WERT�>. Im Gegenssatz zu anderen
Markup-Sprachen, wie zum Beispiel HTML, sind in XML Tag- und Attributnamen sowie
deren Bedeutung für die Informationsverarbeitung nicht vordefiniert. Diese können für
jedes XML-Dokument in einer separaten Spezifikationsdatei definiert werden. Hierfür steht
eine Reihe von Spezifikationssprachen zur Verfügung, zwei der gebräuchlichsten sind dabei
Document Type Definition (DTD) [xmla] sowie das neuere XML Schema [xmlb].

Ein XML-Dokument besteht aus drei Teilen:

13

2 Grundlagen

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <Diplomarbeit>

4 <Autor>

5 <Name>

6 Christian Ageu

7 </Name>

8 </Autor>

9

10 <Dokument type="Diplomarbeit">

11

12 <Titel Sprache="en">

13 Extension and evaluation of a prototype for a tight integration of database and

workflow engines

14 </Titel>

15

16 <Titel Sprache="de">

17 Erweiterung und Evaluation eines Prototyps für eine enge Integration zwischen

Datenbank- und Workflow-Engines

18 </Titel>

19

20 Diese Arbeit befasst sich mit Workflow- und Datenbanksystemen.

21 ...

22 </Dokument>

23 </Diplomarbeit>

Listing 2.1: Beispiel XML-Datei „diplomarbeit.xml“

• Präambel (optional): Hier können u.a. die verwendete XML-Version sowie die Zei-
chenkodierung des Dokuments angegeben werden.

• Schema (optional): Hier können im Dokument verwendete Schemainformationen
(DTD bzw. XML Schema) angegeben werden.

• Wurzelelement: Ein wohlgeformtes XML-Dokument besteht aus genau einem Wur-
zelelement, welches durch ein öffnendes und das entsprechende schließende Tag
gekennzeichnet ist.

Ein Element kann Attribute, Textinhalt sowie beliebig geschachtelte, weitere Unterelemente
beinhalten. Dadurch entsteht eine Baumstruktur, die durch bestehende und standardisierte
Techniken verarbeitet werden kann, z.B. anhand des Document Object Model (DOM) [dom].
Bei der Repräsentation mit Hilfe von XML werden Daten üblicherweise als Textinhalt
in den Blattknoten eines Dokuments abgespeichert, wobei der Pfad vom Wurzelknoten
zum Blattknoten die Bezeichnung eines Datums liefert. Listing 2.1 zeigt das Beispiel einer
wohlgeformten XML-Datei.

2.1.2 Verarbeitung

XML bietet umfangreiche Möglichkeiten zur Verwaltung, Abfrage und Manipulation von
Daten. Mit XQuery [xqu] steht eine mächtige Sprache zur Abfrage bzw. Transformation von

14

2.1 Extensible Markup Language

XML-Daten zur Verfügung. Dabei wird XPath [xpa] verwendet, um auf einzelne Elemente
eines XML-Dokuments zuzugreifen.

XPath

Bei XPath handelt es sich um eine Abfragesprache für XML-Dokumente. Mit ihrer Hilfe lassen
sich Teile eines XML-Dokuments adressieren, indem dessen Bestandteile als unterschiedliche
Knoten aufgefasst werden. Dabei werden unter anderem Text-, Attribut- und Unterknoten
unterschieden, die auf Anfrage durch ein XPath-Verarbeitungsprogramm zurückgegeben
werden können.

Ein XPath-Ausdruck setzt sich aus einem oder mehreren sogenannten Lokalisierungsschritten
zusammen, die den Pfadausdrücken des UNIX-Betriebssystems ähneln. Mit Hilfe definier-
ter Achsen kann in Lokalisierungsschritten durch ein XML-Dokument navigiert und ein
bestimmter Knoten zurückgegeben werden. Ein Lokalisierungsschritt hat die Form

/Achse::Knotentest[Prädikat][...]

Mögliche Achsen sind dabei unter anderem child (alle Unterknoten), parent (alle Elternk-
noten), self (der Knoten selbst) und attribute (Attributknoten). Ein Knotentest schränkt die
Elementauswahl einer Achse ein. Durch Angabe von Prädikaten kann die Auswahl noch
weiter eingeschränkt werden. So wählt beispielsweise der Lokalisierungsschritt

/child::Titel[1]

den ersten Unterknoten mit den Namen „Titel“ aus und gibt diesen zurück. Dies entspricht
im Beispieldokument dem englischen Titel der Diplomarbeit. Die Pfadselektion durch XPath-
Ausdrücke bildet die Grundlage für verschiedene XML-Technologien, unter anderem das
als nächstes vorgestellte XQuery. Für detailiertere Informationen über XPath und seine
Funktionen sei auf die XPath-Spezifikation [xpa] verwiesen.

XQuery

Mit XQuery [xqu] wurde eine Abfragesprache für XML-Dokumente entwickelt, die zu-
sätzlich zur Funktionalität von XPath noch weitere, komplexere Auswertungen von XML-
Dokumenten ermöglicht. Insbesondere lassen sich mit ihrer Hilfe mehrere Knoten aus
verschiedenen Dokumenten gleichzeitig verarbeiten und beispielsweise aggregieren. Dabei
werden Operationen auf XML-Daten ähnlich der Abfragesprache SQL für relationale Daten-
banken eingeführt. Grundlage einer XQuery-Abfrage bildet ein sog. FLWOR-Ausdruck (For,
Let, Where, Order by, Return). Beispielsweise liefert

15

2 Grundlagen

for $x in doc("diplomarbeit.xml")/Diplomarbeit

let $d := $x/Dokument

where $d/@type="'Diplomarbeit"']

order by $x/Titel

return {$x/Titel/text()}

die alphabetisch sortierten Textknoten aller Elemente mit dem Namen „Titel“. Mit for wird
zunächst der zu verarbeitende Dokumententeil an eine Variable x gebunden. Mittels der
let-Klausel können weitere Variablen für die Verwendung innerhalb des Ausdrucks definiert
werden. Durch Angabe der where-Klausel wird eine Selektion der Elemente durchgeführt.
Durch order by werden die selektierten Knoten nach ihrem Titel sortiert. Die return-Anweisung
gibt schließlich die Textinhalte der sortierten Knoten als Resultat des FLWOR-Ausdrucks zu-
rück. Es ist zu beachten, dass die XQuery-Spezifikation keine Möglichkeit zur Manipulation
von bestehnden XML-Dokumenten vorsieht. Dies ist nur über einen Umweg möglich, indem
bestehende Dokumente durch neu erzeugte XML-Dokumente vollständig überschrieben
werden.

2.2 SOA und Webservices

Um den Anforderungen komplexer, heterogener Geschäftsumgebungen gerecht zu wer-
den, wurden Technologien entwickelt, die die Verwaltung, Pflege und Integration von
Geschäftsprozessen standardisiert und vereinfacht haben. In den folgenden Unterabschnitten
weden Konzepte vorgestelt, auf denen sich diese Technologien stützen.

2.2.1 Service Oriented Architecture

Die Service Oriented Architecture (SOA) ist ein Architekturmuster, bei dem Geschäftspro-
zesse mit Hilfe von Diensten realisiert werden. Anstatt einen Gesamtprozess als Ganzes
zu implementieren, wird versucht, ihn in kleinere Teilprozesse aufzuspalten. Ein so ge-
kapselter Teilprozess bildet einen Dienst, der isoliert ausgeführt eine bestimmte Aufgabe
erfüllt. Mehrere Dienste zusammen bilden bei koordinierter (orchestrierter) Ausführung den
Gesamtprozess.

Einer SOA liegt ein System aus Konsument, Anbieter und einem Verzeichnis zugrunde. Be-
sonderes Merkmal dieser Architektur ist die lose Kopplung der Dienste an die aufrufenden
Prozesse: Ein Konsument ist nicht an einen bestimmten Dienst gebunden, sondern findet
über das Verzeichnis anhand einer Beschreibung einen Dienst, der die für ihn benötigte
Funktionalität zur Verfügung stellt. Der besondere Vorteil bei dieser Architektur liegt in der
Wiederverwendbarkeit der einzelnen Dienste. Die Aufteilung von Geschäftsprozessen in
kleinere, gekapselte Dienste bietet auch eine leichtere Überschaubarkeit für den Entwickler
und damit einfachere Erstellung und Pflege der einzelnen (Teil-)Prozesse.

16

2.3 Workflows und Workflowmanagementsysteme

2.2.2 Webservices

Das Konzept der Webservices wird durch eine Reihe von Standards des W3C1 (World Wide
Web Consortium) sowie von OASIS2 (Organization for the Advancement of Structured
Information Standards) beschrieben. Webservices bieten eine Möglichkeit, nach dem SOA-
Prinzip fertiggestellte Dienste plattformunabhängig in einem Netzwerk über das HTTP-
Protkoll bereitzustellen.

Möchte ein Anbieter einen Dienst als Webservice zur Verfügung stellen, so meldet er seinen
Dienst und dessen Schnittstellen, beschrieben in der XML-basierten Web Services Description
Language (WSDL), bei einem Verzeichnisserver, der UDDI Registry (Universal Description,
Discovery, and Integration), an. Ein interessierter Konsument kann diesen Webservice daraufhin
über die UDDI Registry finden (discover), und ihn anschließend aufrufen (invoke). Der
Nachrichtenaustausch zwischen Anbieter und Konsument erfolgt mittels ebenfalls XML-
basierter SOAP-Nachrichten (Simple Object Access Protocol [?]). Die Rollen des Anbieters
und des Konsumenten übernehmen dabei die Prozesse, die den Dienst bereitstellen bzw.
benötigen. Da die aufrufenden Prozesse auch selbst Webservices sein können, wird mit
Hilfe dieses Konzeptes eine hohe Kombinationsmöglichkeit und Wiederverwendung der
Webservices ermöglicht.

2.3 Workflows und Workflowmanagementsysteme

Ein Workflow (Arbeitsablauf) ist die Verknüpfung verschiedener Arbeitsschritte zu einem
Gesamtablauf, basierend auf kausalen Abhängigkeiten oder Datenabhängigkeiten zwischen
den Teilschritten. Die Repräsentation von Workflows erfolgt entweder mit Hilfe von Dia-
grammen oder durch eine Workflowsprache, die einen Prozess in maschinenlesbarer Form
beschreibt. Beispiele für eine solche Sprache sind die Business Process Execution Language
(BPEL) (Abschnitt 2.4) oder die XML Process Definition Language (XPDL) [xpd]. Wir betrach-
ten Workflows, die vollständig durch ein Workflowmanagementsystem (WfMS) auf einem
Computer ausgeführt werden.

In der Vergangenheit wurden Workflows hauptsächlich zur EDV-gestützten Beschreibung
und Ausführung wirtschaftlicher Geschäftsprozesse verwendet (business workflows). Seit kur-
zem finden Workflows auch im wissenschaftlichen Bereich Anwendung (scientific workflows
[TDG07]), insbesondere auch im Gebiet der Simulationen [G+

11]. Die dabei eingesetzten
Workflowsysteme werden scientific workflow management systems, kurz sWfMS, genannt. Die
folgenden Teilabschnitte befassen sich mit den Eigenschaften unterschiedlicher Workflows
und der Architektur von WfMs.

1http://www.w3.org/
2https://www.oasis-open.org/

17

http://www.w3.org/
https://www.oasis-open.org/

2 Grundlagen

Workflows

Orchestrierungs-

workflows

datenintensive

Workflows

Geschäfts-

workflows

Simulations-

verwaltungs-

workflows

Datenanalyse-

workflows

Datenmodellierungs-

workflows
ETL-

Workflows

wissenschaftliche Workflows

Geschäfts-

prozess

Simulation v.

Knochenver-

formungen

Muster-

erkennung

in Stoffen

Protein-

modellierung

Daten-

integration

Abbildung 2.1: Einteilung von Workflows nach ihrer Datenorientierung. Unterschiedliche
Workflowklassen sind rechteckig dargestellt, deren Anwendungsszenarien

sind oval gekennzeichnet.

2.3.1 Workflow-Klassen

Bei wissenschaftlichen Workflows steht oftmals die Verarbeitung größerer Datenmengen im
Vordergrund. Im Gegensatz dazu werden Geschäftsworkflows (business workflows) hauptsäch-
lich zur Steuerung des Kontrollflusses eines Prozesses eingesetzt. Diese beiden Schwerpunkte
erlauben eine Klassifizierung von Workflows in datenfluss- bzw. kontrollflussorientierte
Workflows. Abb. 2.1 zeigt eine Einteilung von Workflows anhand der Ausprägung ihrer
Datenorientierung gemäß [RSM11].

Orchestrierungsworkflows beinhalten traditionell Geschäftsworkflows, bei denen die Koordi-
nation (Orchestrierung) verschiedener Geschäftsprozesse zu einem Gesamtprozess im Vor-
dergrund steht. Zu diesem Zweck werden dabei hauptsächlich die Konzepte der SOA,
insbesondere das der Webservices eingesetzt. Die neuere Klasse der Simulationsverwaltungs-
workflows koordiniert auf ähnliche Weise einzelne Simulationsprogramme wissenschaftlicher
Anwendungunen. Dabei rückt allerdings die Datenverabeitung der einzelnen Programme

18

2.3 Workflows und Workflowmanagementsysteme

für jede Proteinsequenz

Empfang von

Eingabeparametern

Liste der
Proteinsequenzen

extrahieren
Antwort an

Clientnegative
Sequenzen

zählen

Sequenz-Header
hinzufügen

Sequenz

entspricht

Muster?

Ja

Nein

Abbildung 2.2: Workflow zur Proteinmodellierung nach [RSM11] in Business Process
Modeling Notation (BPMN).

(Teilprozesse) mehr in den Vordergrund, was auch Auswirkungen auf die Datenverarbeitung
innerhalb des Workflows mit sich bringt. Beispielsweise werden bei der Simulation von Kno-
chenverformungen in einem Teilprozess die Daten für das Modell eines Knochens erzeugt,
die dann dem eigentlichen Simulationsprozess zur Verfügung gestellt werden müssen.

Datenintensive Workflows stellen im Gegensatz zu den Orchestrierungsworkflows die Daten-
verarbeitung in den Vordergrund. Dabei werden große Datenmengen von unterschiedlichen
Quellen durch den Workflow selbst verarbeitet, anstatt dies durch externe Programme zu
veranlassen. Datenanalyseworkflows haben das Ziel, zuvor gesammelte Daten zu untersuchen
und in einer bestimmten Form darzustellen, um so neue Erkenntnisse zu gewinnen. Hierbei
spielt Mustererkennung eine wesentliche Rolle, z.B. bei der Untersuchung von Eigenschaften
chemischer Verbindungen.

Die Klasse der Datenmodellierungsworkflows dient unter anderem der Extraktion von Mo-
dellen aus gegeben Problemstellungen, die anschließend für Berechnungen herangezogen
werden können. Sie werden beispielsweise auch bei der Proteinmodellierung eingesetzt,
wobei unterschiedliche Modelle erzeugt und auf ihre Eigenschaften hin untersucht werden.
Der in Abb. 2.2 dargestellte Workflow zeigt das Beispiel eines solchen Proteinmodellie-
rungsworkflows. Dabei wird zunächst eine Liste mit Proteinsequenzen geladen. Einzelne
Proteinsequenzen werden anschließend auf Ähnlichkeit mit einem Muster hin überprüft.
Bei positivem Ergebnis wird der Header der Proteinsequenz zu den bisher gefundenen
hinzugefügt, bei negativem Ergebnis wird nur ein entsprechender Zähler erhöht.

ETL-Workflows (extract, transform, load) werden eingesetzt, um die Integration großer Daten-
mengen zu realisieren, wobei diese in einer bestimmten Form zusammengestellt werden.
Der Workflow selbst ist in diesem Fall lediglich ein Werkzeug für die Datentransformation,
das von übergeordneten Anwendungen dazu aufgerufen wird.

Der Begriff der „wissenschaftliche Workflows“ (scientific workflows) umfasst eine Teilmenge
dieser Workflow-Klassen, nämlich die Simulationsverwaltungsworkflows, die Datenanalysework-
flows und die Datenmodellierungsworkflows. Diese Arbeit befasst sich verstärkt mit eben diesen
wissenschaftlichen Workflows, wobei der Fokus auf den dantenintensiven Workflows liegt.

19

2 Grundlagen

Abbildung 2.3: Architektur eines sWfMS nach [G+
11]

Im nächsten Abschnitt wird das Architekturmodell eines Managementsystems für solche
wissenschaftliche Workflows vorgestellt.

2.3.2 Architektur eines sWfMS

Um Workflows zu modellieren und auszuführen, wurden Architekturmodelle entwickelt,
dass den Anprüchen unterschiedlicher Workflowarten entspricht. Abbildung 2.3 veranschau-
licht die Architektur eines sWfMS basierend auf der in [LR00] definierten Technologie für
Geschäfts- und Produktionsworkflows. Es folgt eine Beschreibung der einzelnen Komponen-
ten gemäß [RRS+11] und [G+

11].

Zuerst werden die Komponenten der GUI betrachtet:

• Der sWf Modeler unterstützt den Entwickler beim Modellieren der Spezifikationen
und Deploymentinformationen eines Workflows.

• Der Function Catalog stellt eine Liste von im Workflow verfügbaren Diensten bereit,
die bei der Modellierung eingesetzt werden können.

• Die Monitor-Komponente bietet eine Benutzerschnittstelle, die zur Überwachung der
Ausführung von Workflow-Instanzen und damit zum Erkennen von unerwarteten
Ereignissen bzw. Fehlern während der Ausführung dient.

• Das Result-Display liefert die Zwischen- und Endergebnisse des ausgeführten Work-
flows (z.B. Simulationsergebnisse) in einem für den Benutzer bedarfsgerechten Format.

Als nächstes werden die Laufzeitkomponenten (Runtime Components) erläutert:

20

2.4 Web Services Business Process Execution Language

• Die Deployment-Komponente überführt das Modell eines Workflows in ein Objekt und
installiert dieses in einer Ausführungsengine (z.B Apache ODE3), die später Instanzen
davon ausführt.

• Die Auditing-Komponente speichert workflowbezogene Ereignisse und Aktivitäten,
die zur Laufzeit auftreten, z.B. den Anfangszeitpunkt eines Workflowaufrufs.

• Die Monitoring-Komponente überwacht die Zustände von Workflowausführungen
mit Hilfe der Daten aus der Auditing-Komponente.

• Die Provenance-Komponente erfasst weitere, detaillierte Daten einer Ausführung als
die Auditing-Komponente. Mit Hilfe dieser Informationen lassen sich Ausführungen
exakt nachvollziehen.

• Der Service Bus ist für das Finden und Auswählen von Diensten zur Implementierung
des Workflows zuständig. Desweiteren dient er der Zustellung von Nachrichten sowie
der Durchführung von Datentransformationen innerhalb des sWfMs und kann externe
Ressourcen (z.B. Datenquellen) an den Workflow anbinden.

• Die Resource Management-Komponente speichert Meta-Informationen über die exter-
nen Ressourcen und Dienste.

• Die Service/Resource Discovery-Komponente erstellt anhand dieser Meta-
Informationen oder mit Hilfe externer Verzeichnisse eine Liste der in Frage
kommenden Dienste und Ressourcen, die vorher beispielsweise durch semantische
Annotation beschrieben wurden (vgl. lose Kopplung, Abschnitt 2.2.1). Mit Hilfe dieser
Liste ist während der Ausführung beipielsweise im Fehlerfall die Anbindung eines
alternativen Dienstes oder einer alternativen Ressource möglich.

2.4 Web Services Business Process Execution Language

Die Web Services Business Process Execution Language [bpe], kurz: WS-BPEL, ist eine XML-
basierte Workflowsprache, die Vorgänge innerhalb von Geschäftsprozessen mit Hilfe von
Webservices beschreibt. Sie gilt als de-facto Standard zur Implementierung von Geschäftspro-
zessen und wird in dieser Arbeit verwendet. Mit ihrer Hilfe können Workflows beschrieben,
bearbeitet und ausgetauscht werden. Sie ermöglicht eine integrierte und selbstständige
Ausführung des Workflows durch ein WfMS, sofern alle Teilprozesse und die Bereitstellung
der dazu benötigten Daten ebenfalls automatisch durchgeführt werden können.

Bei der Beschreibung von Geschäftsprozessen mit Hilfe von BPEL werden einzelen Teil-
schritte im Allgemeinen durch Webservices implementiert. Ausnahmen hiervon bilden
Erweiterungen wie z.B. BPEL4People [KKL+

05], bei der menschliche Interaktion in einen
Workflow eingebettet werden kann. Die wesentlichen Vorteile von BPEL bei der Beschreibung
von wissenschaftlichen Workflows sind der modulare Aufbau, die Flexibilität im Umgang

3http://ode.apache.org/

21

http://ode.apache.org/

2 Grundlagen

mit genereischen XML-Datentypen und der späten Anbindung von Diensten an den Work-
flow, sowie umfangreiche Möglichkeiten zur Erweiterung sowie Fehlerbehandlung und
-kompensation [AMA06].

Grundlage der Ausführung von Workflows mit BPEL sind Aktivitäten. Eine Aktivität reprä-
sentiert einen Ausführungsschritt innerhalb eines Workflows. Es gibt drei grundlegende
Arten von BPEL-Aktivitäten:

Aktionen

Aktionen führen einen bestimmten Arbeitsschritt innerhlab eines Workflows aus. Dazu
gehören unter anderem die folgenden Aktivitäten:

• RECEIVE wartet auf den Empfang einer bestimmten SOAP-Nachricht, die von einem
aufrufenden Prozess als Anfrage versendet wird, und setzt daraufhin die Workflow-
ausführung an der modellierten Stelle fort. Ein BPEL-Workflow beginnt stets mit einer
RECEIVE-Aktivität, die eine Instanz des Workflows erzeugt (Attribut createInstance=yes).

• REPLY erzeugt und versendet eine Ausgangsnachricht als Rückantwort an den auf-
rufenden Prozess. Eine REPLY-Aktivität lässt sich damit immer einer empfangenden
(RECEIVE)-Aktiviät zuordnen.

• PICK wartet, ähnlich wie Receive, auf den Eingang einer Nachricht (onMessage) oder
auf das Eintreten einer zeitlichen Bedingung (onAlarm). Hierbei können nun mehrere
Nachrichten angegeben werden, die jeweils eine unterschiedliche Folgeaktivität auslö-
sen können. Es wird immer diejenige Folgeaktivität ausgelöst, deren Ereignis als erstes
eingetreten ist.

• INVOKE ruft eine bestimtme Operation eines anderen Webservice auf. Der Workflow,
der die INVOKE-Aktivität ausführt, übernimmt dabei die Rolle des aufrufenden Prozes-
ses. Die Aus- bzw. Eingangsnachrichten werden dabei aus bzw. in Workflowvariablen
zugewiesen.

• ASSIGN: Durch ASSIGN-Aktivitäten können workflowinterne Variablen manipuliert
werden. Innerhalb einer ASSIGN-Aktivität können Zuweisungen durch mehrere COPY-
Blöcke stattfinden, wobei einer Variablen unter anderem eine andere Variable, ein
Literalwert oder ein Ausdruck (z.B. XPath oder XQuery) zugewiesen werden kann.
Die unterschiedlichen Zuweisungsarten von ASSIGN-Aktivitäten werden im weiteren
Verlauf dieser Arbeit näher untersucht.

Kontrollstrukturen

Kontrollstrukturen dienen der bedingten oder wiederholten Ausführung bestimmter Teile
eines Workflows sowie der Organisation von Aktivitäten.

22

2.5 Datenbanksysteme

• IF: Überprüft eine odere mehrere Bedingungen („expression evaluation“) und führt
abhängig vom Ergebnis unterschiedliche Folgeaktivitäten aus.

• WHILE: Innerhalb einer WHILE-Aktivität geschachtelte Aktivitäten werden wiederholt
ausgeführt, so lange die damit verknüpften Bedingungen zutreffen.

• SCOPE: Durch eine SCOPE-Aktivität können mehrere Aktivitäten zu einem seman-
tischen Verbund zusammengefasst werden. Ein Scope stellt einen Gultigkeits- und
Sichtbarkeitsbereich für Variablen dar und erlaubt die Definition von Fehlerbehandlung
und -kompensation für die enthaltenen Aktivitäten. Im Fehlerfall können alle Aktivitä-
ten innerhalb eines Scope wieder rückgängig gemacht werden, ohne dass Aktivitäten
außerhalb des Scope davon betroffen sind.

Fehlerbehandlung

Fehlerbehandlung kann in WS-BPEL durch das Werfen von Ausnahmen (THROW-Aktivität)
kontrolliert werden. Daraufhin kann etwa die Ausführung eines Prozesses abgebrochen
und eine Fehlermeldung ausgegeben werden (EXIT-Aktivität). Fehlerbehandlung wird
im Kontekt dieser Arbeit nicht näher verwendet und daher an dieser Stelle nicht weiter
nehandelt.

Detailiertere Informationen zu diesem oder anderen BPEL-Themen sind im OASIS-Standard
[bpe] nachzulesen.

2.5 Datenbanksysteme

Für den Zugriff auf Daten und deren Speicherung wurden im Verlauf der letzten Jahrzehnte
viele Technologien und Produkte entwickelt, die diese Aufgaben mit besonders hoher
Effizienz erfüllen. Datenbanksysteme (DBS) sind heutzutage ein wichtiges Werkzeug zur
Datenverarbeitung und werden von den meisten Unternehmen eingesetzt. Auch im Internet
spielen Datenbanken eine große Rolle. So kommt heutzutage kaum eine Webseite ohne eine
Datenbank aus, das im Hintergrund den auf den Seiten dargestellten Inhalt verwaltet.

Ein Datenbanksystem setzt sich aus der zugrundeliegenden Datenbank sowie einem Daten-
bankmanagementsystem (DBMS) zusammen. Ein DBMS ermöglicht es dem Anwender seine
Daten sicher und komfortabel zu verwalten. So können beispielsweise unterschiedlichen
Benutzern verschiedene Zugriffs- und Verwaltungsrechte auf bestimmte Daten gewährt oder
verweigert werden. Durch die Festlegung von Integritätsbedingungen kann gewährleistet
werden, dass keine fehlerhaften Eingaben gemacht werden können und sich die Datenbank
somit zu jedem Zeitpunkt in einem konsistenten Zustand befindet. Für weitere Vorteile
und Einsatzmöglichkeiten von Datenbanksystemen sei auf die entsprechende Literatur zum
Thema Datenbanken verwiesen [KE06].

23

2 Grundlagen

Am weitesten verbreitet sind sogenannte relationale Datenbanksysteme, bei denen Daten als
Zeilen einer Tabelle aufgefasst werden. Die auf diese Weise gespeicherten Daten werden
durch entsprechende Operatoren mengenorientiert verknüpft und verarbeitet, d.h. Resultate
werden letztlich durch Selektion, Vereinigung oder dem Schnitt verschiedener Datensät-
ze erzeugt. Die entsprechenden Operationen werden mit Hilfe der Abfragesprache SQL
(Structured Query Language) [sql] formuliert und mit Hilfe eines DBMS in der Datenbank
ausgeführt.

Durch die anhaltende Verbreitung von XML enstand die Anforderung an DBMS, dieses
Datenformat innerhalb von Datenbanken zu unterstützen. Dabei enstanden unter anderem
sogenannte native XML-Datenbanken, die ausschließlich XML-Dokumente mit Hilfe der
dafür entwickelten Abfragesprachen speichern und verarbeiten. Etablierte relationale Da-
tenbanken führten jedoch einen neuen XML-Spaltentyp ein und werden als XML-Enabled
bezeichnet. Dabei werden alle Eigenschaften einer SQL-basierten relationalen Datenbank
beibehalten, während die XML-Spalten zusätzlich durch XML-Abfragesprachen verarbeitet
werden können.

Bei dem in dieser Arbeit verwendeten Datenbanksystem handelt es sich um das Produkt
DB2 der Firma IBM (International Business Machines), das in den 1980er Jahren eingeführt
und seitdem stetig weiterentwickelt wurde. DB2 ist eine relationale Datenbank und besitzt
seit Version 9 einen XML-Spaltentyp. Es gehört damit zu den Vertretern der XML-Enabled
Datenbanken. Die in DB2 umgesetzten XML-Technologien und Abfragesprachen werden
unter dem Begriff pureXML zusammengefasst. PureXML unterstützt die XQuery- und
somit auch die XPath-Spezifikation. Es ist möglich XQuery-Anfragen in SQL-Ausdrücke
einzubetten und relationale Daten in XQuery-Anfragen einzubinden. Zur Einbettung von
XQuery in SQL wird die SQL-Funktion XMLQUERY verwendet. Für die Einbettung von
SQL oder den Zugriff auf ein relationales XML-Feld innerhalb eines XQuery-Ausdrucks
kommen die XQuery-Erweiterungsfuntionen db2-fn:sqlquery bzw. db2-fn:xmlcolumn zum
Einsatz. Darüber hinaus besitzt pureXML eine eigene, in XQuery eingebettete Syntax zur
Manipulation von XML-Daten.

Es fanden bereits durch vorangegangenen Arbeiten Evaluationen mit Hilfe von DB2 statt. In
dieser Arbeit wird ebenfalls DB2, in der Version 10.1, zur Evaluation eingesetzt.

24

3 Nutzung von Datenbanken in WfMS

In diesem Kapitel soll das Zusammenspiel von Datenbanken und Workflowmanagementsys-
teme untersucht werden. Zunächst wird erläutert wie verschiedene, konventionelle WfMS
Datenbanksysteme bisher einsetzen. Danach werden Konzepte, die eine stärkere Integration
von DBS bei der Workflowausführung thematisieren, sowie deren momentaner Entwicklungs-
stand vorgestellt. Schließlich werden die bereits entwickelten Konzepte weiter untersucht,
um fehlende bzw. unausgereifte Teilaspekte zu beleuchten und mögliche Lösungs- und
Verbesserungswege aufzuzeigen.

Wie von vielen anderen Softwarearchitekturen werden Datenbanken auch von WfMS ein-
gesetzt. Sie werden verwendet, um Daten über bekannte Prozesse und laufende Workflo-
winstanzen (z.B. Variableninhalte) zu speichern und persistent zu halten. Dadurch können
laufende Instanzen nach einem Systemausfall wiederhergestellt oder im Fehlerfall über
Monitoring-Tools analysiert werden. Die meisten WfMS benutzen dazu eine integrierte
Datenbank. Die Nutzung dieser Datenbank für Aufgaben während der Workflowausführung
wird von konventionellen Systemen bisher nicht verfolgt.

3.1 Ansätze zur Datenverarbeitung

Es sind bereits in der Vergangenheit Ansätze entwickelt worden, um die Leistungsfähigkeit
von Datenbanksystemen bei der Ausführung von Workflows ausnutzen zu können. Dazu ist
konzeptionell zunächst zu unterscheiden, ob eine anfallende Datenoperation innerhalb oder
außerhalb des Workflows definiert ist und ob sie innerhalb oder außerhalb des Workflows
ausgeführt wird (Vgl. Tabelle 3.1).

Im Fall der Ausführung außerhalb des Workflows werden Datenoperationen durch das
Aufrufen eines externen Prozesses realisiert, der dann die entsprechende Datenoperation
ausführt. Übernimmt der externe Prozess dabei auch die Definition der Datenoperation selbst,
d.h. also sowohl Definition als auch Ausführung der Datenoperation finden vollständig
außerhalb des Workflows statt, so nennt man diese externen Prozesse Data Management-
bzw. DM-Dienste (engl.: data services). Der Zugriff auf die Datenquelle wird damit durch
den externen Prozess vollständig vom Workflow gekapselt und damit getrennt. Die meisten
aktuellen WfMS bieten Möglichkeiten für die Einbindung solcher externen Prozesse innerhalb
eines Workflows an, z.B. in Form von Webservice-Aufrufen.

Finden sowohl Definition als auch Ausführung von Datenoperationen innerhalb des Work-
flows statt, so spricht man von lokaler Datenverarbeitung (engl.: local data processing). Dabei
werden alle verwendeten Daten innerhalb des Workflows erfasst und verarbeitet. Diese

25

3 Nutzung von Datenbanken in WfMS

`````````````̀Ausführung
Definition

innerhalb des Workflows außerhalb des Workflows

innerhalb des Workflows lokale Datenverarbeitung -
außerhalb des Workflows DM-Aktivitäten DM-Dienste

Tabelle 3.1: Konzeptionelle Unterscheidung von Datenoperationen in Workflows. (DIe
Abkürzung DM steht hierbei für data management) (Vgl. [RSM])

Daten müssen einer Workflowinstanz zunächst bereitgestellt werden, dies geschieht z.B.
mit Hilfe von Eingangsnachrichten. Dieses Konzept bildet den Schwerpunkt dieser Arbeit,
wobei die Datenverarbeitung innerhalb des Workflows zusätzlich mit Hilfe einer integrierten
Datenbank erfolgt.

Ein dritter Fall liegt dann vor, wenn Datenoperationen von externen Prozessen ausgeführt,
jedoch innerhalb des Workflows definiert werden. Man spricht dabei von Data Management-
bzw. DM-Aktivitäten (engl.: data management activities). Hierbei wird nicht die gesamte
Datenoperation durch den externen Prozess gekapselt, stattdessen wird der Zugriff auf eine
externe Datenquelle durch besondere Aktivitäten modelliert. Ein Beispiel für den Einsatz
dieses Konzepts ist eine Erweiterung von BPEL-Prozesen um die Möglichkeit SQL-Befehle
an ein gekapseltes DBS abzusetzen [VSRM08]. Eine Abstraktion dieser Funktionalität bietet
das SIMPL-Rahmenwerk, das als reine BPEL-Erweiterung unabhängig von WfMS entwickelt
wird und Zugriff auf bestimmte, unterschiedliche Datenquellen erlauben soll [RRS+11].
Abbildung 3.1 veranschaulicht die drei beschriebenen, unterschiedlichen Vorgänge der
Ausprägungen von Datenoperationen.

3.2 Ansätze zur Verbesserung der Integration von Datenbanken

Um die Möglichkeiten einer engeren Integration zwischen Datenbank und WfMS untersu-
chen zu können, wird zunächst das bestehende Funktionsprinzip bei der Datenverarbeitung
innerhalb eines Workflows beleuchtet. Anschließend wird ein Konzept vorgestellt, das auf
dieser Grundlage die integrierte Datenbank und deren Funktionen während der Workflow-
ausführung stärker ausnutzt.

3.2.1 Konventionelle Funktionsweise von WfMS

Abb. 3.2(a) zeigt die für die interne Datenverarbeitung wesentlichen Teile des Architektur-
modells, das der Ausführung kontrollflussorientierter Workflows zugrundeliegt. Bei der
abgebildeten Datenbank handelt es sich wohlgemerkt nicht um eine extern angebundene
Datenbank, wie sie von DM-Aktivitäten oder DM-Diensten (vgl. Abschnitt 3.1) verwendet
wird. Es handelt sich um die interne Datenbank des WfMS, die in erster Linie für die
prozessbegleitenden Daten sowie für die Persistenz der Workflowdaten verwendet wird.
Diese persistenten Daten werden vom WfMS jedoch während einer Workflowausführung

26



3.2 Ansätze zur Verbesserung der Integration von Datenbanken

DM-Dienst

(“Data Wall“)

Datenebene

Workflowebene

DatenbankserverDatenserver
Data Grid

Unstrukturierte Dokumente

Lokale Ausführung von

Datenverwaltungsoperationen

Andere 

Workflowschritte 

bzw. -aktivitäten

DM-Dienstaufruf 

bzw. -antwort
DM-Aktivität

DM-Operationen/Befehle

Lokaler Datenver-

arbeitungsschritt 

(z.B. Zuweisung)

DM-Dienste Lokale Datenverarbeitung DM-Aktivitäten

Kontroll-/

Datenfluss

Nachrichten- bzw.

Datenaustausch

Lokale 

Datenver-

arbeitungs-

einheit

Abbildung 3.1: Darstellung der Vorgänge bei den verschiedenen Ausprägungen von
Datenoperationen in Workflows (Vgl. [RSM])

nicht verwendet (z.B. für Variablenzuweisungen), sodern nur in Ausnahmefällen zur Kor-
rektur oder Diagnose herangezogen. Stattdessen werden alle Datenoperationen von der
Workflowengine auf einem ihr zugrundeliegenden, internen Datenmodell durchgeführt. Bei
diesem Datenmodell können die Variablen beispielsweise durch Java-Objekte auf der Halde
(heap) des Arbeitsspeichers der Workflowengine realisiert sein, die von dort z.B. durch die
Ausdruckauswertungsengine (expression evaluation engine) ausgewertet werden. Die Kompo-
nente Datenverarbeitungslogik (data processing logic) bestimmt dabei, wie die Bestandteile des
WfMS (z.B. einzelne BPEL-Aktivitäten) auf diese Variablen zugreifen und diese verarbeiten
können.

Ein Persistenzmanager (persistence manager) speichert Inhalte aus dem Datenmodell des Work-
flows in das eingebettete Datenbanksystem und sorgt so für deren Dauerhaftigkeit. Welches
Datenbanksystem dabei verwendet wird spielt dabei grundsätzlich keine Rolle. Um ein
Abbild von Inhalten eines Workflows zu gewährleisten, muss die Datenbank, ebenso wie die
Laufzeitkomponente (runtime) des WfMS, einen eigenen Variablenvorrat (variable pool) verwalten.
Es ist Aufgabe des Persistenzmanagers, den Variablenvorrat in der Datenbank mit dem
aktuellen Inhalt der Variablen in der Laufzeitkomponente zu synchronisieren. Dies geschieht
entweder selbsttätig oder auf Anfrage durch die Laufzeitkomponente. Der Persistenzmana-
ger verwendet dabei die Anfrage-/Ausdruckausführungsengine (query/expression execution engine)
des verwendeten DBMS, um die entsprechenden Zuweisungen der Inhalte durchzuführen.

27



3 Nutzung von Datenbanken in WfMS

Workflow-Ausführungsumgebung

Workflow-Laufzeitkomponente

Persistenzmanager

(z.B., DAO-Schicht)

Workflow-Ausführungsumgebung

Workflow-Laufzeitkomponente

Datenverarbeitungslogik

Variablen-

vorrat

Ausdruck-

auswertungs-

Engine

Persistenz-

manager

Anfrage-/

Ausdruck-

schnittstelle

Datenverarbeitungs-

optimierer

Assign WS-Aufruf
Kontrollfluss-

entscheidung

lokales Datenbanksystem

Datenbankmanagementsystem

Datenbank

Anfrage-/Ausdruck-

ausführungsengine

Variablen-

vorrat

lokales Datenbanksystem

Datenbankmanagementsystem

Datenbank

Anfrage-/Ausdruck-

ausführungsengine

Variablen-

vorrat

Datenverarbeitungslogik

Variablen-

vorrat

Ausdruck-

auswertungs-

Engine

Assign WS-Aufruf
Kontrollfluss-

entscheidung

a) konventionelle Architektur – DB nur zur Speicherung b) neue Architektur nutzt Funktionen der DB aus

Datenfluss bzw.

Anfrageübermittlung

Kontrollnachrichten und

Austausch von Metadaten
DatenverarbeitungVariablenabbildung

Abbildung 3.2: Architektur kontrollflussorientierter Workflowausführung (a) sowie
vorgeschlagene Änderungen daran (b) (vgl. [RSM11]).

3.2.2 Konzept für eine stärkere Integration von DBS

Um Workflowdaten innerhalb datenintensiver Workflows effizienter und zuverlässiger ver-
walten zu können, wurde das Architekturmodell aus Abb. 3.2(b) entwickelt, bei dem einige
Teile der Architektur verändert und einige hinzugefügt wurden. Das Ziel war dabei eine
Aufteilung der Datenverwaltungsaufgaben zwischen der Laufzeitkomponente und dem
Datenbanksystem, sodass die Stärken des DBS während der Workflowausführung bestmög-
lich ausgenutzt werden. Dabei sollten keinerlei Auswirkungen auf die Modellierung der
Workflows entstehen. Das bedeutet, dass alle Änderungen für den Anwender transparent
sein müssen, damit die Bedienung durch die Integration nicht beeinflusst wird.

Neben dem Persistenzmanager wurde eine Anfrage-/Ausdruckschnittstelle (query/expression
interface) eingeführt, mit deren Hilfe sich zusätzliche Operationen auf dem DBS ausführen
lassen. Hiermit sollen keine Datenmengen zwischen der Laufzeitkomponente und dem DBS

28



3.2 Ansätze zur Verbesserung der Integration von Datenbanken

Workflow-Ausführungsumgebung

4)1)

Workflow-Laufzeitkomponente

Persistenz-

manager

Anfrage-/

Ausdruck-

schnittstelle

Datenbanksystem

Workflow-Ausführungsumgebung

3)1)

Workflow-Laufzeitkomponente

Persistenz-

manager

Anfrage-/

Ausdruck-

schnittstelle

Datenbanksystem

a) Zuweisungs-Pushdown b) Ausdrucksauswertungs-Pushdown

Versand von 

Anfragen bzw. 

Ausdrücken

Versand von

Mitteilungen

Versand von

Ergebnisdaten

Ausdrucks-

auswertung

Ergebnis-

zuweisung
3)2)

Workflow-Ausführungsumgebung

Persistenz-

manager

Datenbanksystem

Service

2) Serviceaufruf aus

der Datenbank heraus

c) Webservice-Pushdown

2) 3)

1) 4)

Anfrage-/

Ausdruck-

schnittstelle

Workflow-Laufzeitkomponente

Abbildung 3.3: Pushdown-Arten nach [RSM11]. Die Zahlen deuten die Reihenfolge an, in
der einzelne Teilschritte ausgeführt werden.

ausgetauscht werden, es soll lediglich eine Schnittstelle sein, um Ausdrücke bzw. Anfra-
gen an die Datenbank zu senden, die höchstens durch kurze Statusnachrichten quittiert
werden. Damit soll beispielsweise der Kontrollfluss innerhalb eines Workflows abhängig
von Datenbankinhalten gesteuert werden können. Da die im Rahmen der Integration von
WfMS und DBS entstehenden Datenbankanfragen nicht immer so trivial sind, wie es etwa
bei der Abbildung von Variablen durch den Persistenzmanager der Fall ist, müssen bei
dieser Schnittstelle für unterschiedliche DBS gegebenenfalls verschiedene Implementierun-
gen bestimmter Anfragen erstellt werden. Die Laufzeitkomponente bleibt damit weiterhin
unabhängig vom eingesetzten DBS.

Der ebenfalls neu eingeführte Datenverarbeitungsoptimierer (data processing optimizer) ent-
scheidet, ob eine Datenoperation in der Laufzeitkomponente ausgeführt oder an das DBS
delegiert werden soll und wo das Ergebnis der Operation gespeichert werden soll. Das Ziel
dieser Entscheidungen ist es wiederum, die Stärken des DBS bei der Datenverarbeitung und
-abfrage bestmöglich auszunutzen und dabei gleichzeitig den Datenverkehr zwischen dem
DBS und der Laufzeitkomponente so gering wie möglich zu halten. Welche Operationen
an das DBS delegiert und welche intern verarbeitet werden, hängt unter anderem von der
Datenmenge und der Komplexität der Operation ab.

3.2.3 Techniken zur Verbesserung der Datenverarbeitung

Der im vorigen Abschnitt beschriebene Datenverarbeitungsoptimierer kann verschiedene
Änderungen bei der Ausführung workflowinterner Datenoperationen vornehmen. Die Vor-
gänge, bei denen bestimmte Operationen auf das DBS „heruntergedrückt“ werden, werden
als Pushdowns bezeichnet. Einige Pushdown-Konzepte sind in Abb. 3.3 dargestellt.

Beim Zuweisungs-Pushdown (assignment pushdown) werden Variablenzuweisungen aus der
Laufzeitkomponente in die Datenbank ausgelagert. Die Datenbank empfängt dabei zunächst
einen Zuweisungsausdruck (1), den sie auswertet (2). Danach wird die entsprechende Zuwei-
sung innerhalb des Variablenvorrats der Datenbank durchgeführt (3) und anschließend wird
der Laufzeitkomponente eine Statusnachricht über den Erfolg bzw. Fehlerfall des Ausdrucks

29



3 Nutzung von Datenbanken in WfMS

Workflow-Ausführungsumgebung

Datenbanksystem

Datenbank

Workflow- 

Compiler
Persistenz-

manager Tabelle mit

Literalwerten

Literalwert

Literal-Pushdown

Literal Value

Workflow Model

Verweis

interne Workflowrepräsentation

Literalwert

Workflowmodell

Abbildung 3.4: Literal-Pushdown nach [RSM11]

zurückgegeben (4). Die entsprechende Datenoperation kann vom WfMS asynchron ausgelöst
werden, d.h. während das DBS die Operation durchführt, kann die Workflowausführung
fortgesetzt werden.

Der Ausdruckauswertungs-Pushdown (expression evaluation pushdown) dient zur Abfrage
von Variableninhalten für Entscheidungen über den Kontrollfluss innerhalb der Workflow-
ausführung. Hierbei werden auch Ausdrücke an das DBS gesendet und dort ausgewertet.
Die Antwortnachricht des DBMS wird allerdings diesmal von der Laufzeitkomponente des
WfMS benötigt, wodurch die Workflowausführung bis zu ihrem Eintreffen unterbrochen
werden muss (synchrone Ausführung).

Mit Hilfe dieser beiden Pushdown-Konzepte lässt sich prinzipiell schon eine Geschwindig-
keitssteigerung erreichen, da das DBS DM-Operationen effizient und teilweise asynchron
übernehmen kann, ohne dass viel Datenverkehr zwischen der Laufzeitkomponente des
WfMS und dem DBS entsteht. Allerdings setzen diese beiden Konzepte voraus, dass alle für
die Auswertung eines Ausdrucks bzw. für eine Zuweisung benötigten Daten bereits in der
Datenbank vorliegen. Ist dies nicht der Fall, so müssen diese Daten zunächst, etwa mit Hilfe
des Persistenzmanagers, an die Datenbank übermittelt werden. Dies wirkt sich wiederum
negativ auf die Ausführungsgeschwindigkeit aus. Um diese negativen Auswirkungen zu
vermeiden wurden zwei weitere Pushdown-Arten entwickelt, die sicherstellen sollen, dass
die benötigten Daten zum richtigen Zeitpunkt in der Datenbank vorliegen.

Es gibt in BPEL zunächst nur zwei Arten, wie ein Workflow Daten von außerhalb des WfMS
erhalten kann: Durch SOAP-Nachrichten aus der Kommunikationsinfrastruktur als Ergebnis
eines Webservice-Aufrufs und durch Literalwerte, die innerhalb des Workflowmodells
definiert und anschließend einer Variablen zugewiesen wurden. Um das Problem der
Antwortnachrichten bei einem Webservice-Aufruf durch den Workflow zu lösen, wurde der
Webservice-Pushdown konzipiert. Hierbei wird ein vom Workflow aufzurufender Webservice
direkt durch das DBS aufgerufen und das Ergebnis des Aufrufs in der Datenbank abgelegt.
Dazu muss das eingesetzte DBS allerdings über einen entsprechenden Funktionsumfang
zum selbständigen Aufruf von Webservices verfügen.

30



3.3 Prototypische Erweiterungen eines WfMS

Literale sind Teile des Workflowmodells und werden als solche üblicherweise nicht durch
den Persistenzmanager auf die Datenbank abgebildet. Beim Konzept des Literal-Pushdown
wird die Tatsache ausgenutzt, dass Literalwerte bereits zur Modellierungszeit definiert
werden. Sie können also bereits vor ihrer Verwendung während der Ausführung (z.B. beim
Deployment innerhalb des Workflow-Compilers) in der Datenbank abgespeichert werden.
Dort gespeicherte Literalwerte werden zur Laufzeit durch einen im Modell hinterlassenen
Verweis (Referenz) auf den Datenbankeintrag adressiert (Vgl. Abb. 3.4).

Durch diese zwei Konzepte soll sichergestellt werden, dass beim Auftreten einer mit Push-
down umgesetzten Datenoperation alle für sie benötigten Daten in der Datebank vorliegen.
Der Geschwindigkeitsverlust durch das Abspeichern der Literalwerte in der Datenbank kann
auf weniger kritische Phasen eines Workflows verschoben werden, während Webservice-
Aufrufe eigenständig vom DBS durchgeführt werden. Letzteres stellt einen Schritt in Richtung
eines DBS als WfMS erster Klasse dar, was ein weiteres Forschungsthema ist [AIL98] [AIL98],
auf das in dieser Arbeit jedoch nicht weiter eingegangen wird.

3.3 Prototypische Erweiterungen eines WfMS

Einige Teile der in den vorigen Abschnitten vorgestellten Techniken wurden bereits proto-
typisch umgesetzt [Wag11]. Das dabei verwendete, java-basierte WfMS Apache ODE, sowie
wichtige Aspekte seiner Architektur werden in Kapitel 5 detailiert vorgestellt. Der entstan-
dene Prototyp mit den umgesetzten Pushdown-Arten wurde ODE-TI (Tight Integration)
genannt und in [RSM11] genauer evaluiert. Die im Folgenden beschriebenen Konzepte,
Implementierungen und Auswertungen basieren auf den genannten Quellen.

Beim ODE-TI Prototyp wurden der Zuweisungs-Pushdown, der Ausdruckauswertungs-Pushdown
sowie der Webservice-Pushdown implementiert und evaluiert. Dabei wurden anhand von
Instanzlaufzeiten und Ausgaben in Logdateien die Laufzeiten verschiedener Workflowausfüh-
rungen berechnet. Dadurch konnten bestimmte Aussagen über eine Leistungsveränderung
durch die Modifikationen des Prototyps bei datenintensiven Workflows getroffen werden.

3.3.1 Prototypen und Aufbau der Zeitmessungen

Für den Vergleich der Pushdown-Konzepte mit den konventionellen Workflowausführun-
gen wurde Apache ODE V1.3.4 in zwei unterschiedlichen Implementierungen verwendet
(Abb. 3.5). Dabei wurden jeweils Hibernate1 V3.2.5 als Persistenzmanager und IBM DB2

2

V9.7 als DBS gewählt. Innerhalb von ODE werden Variablen als XML-Dokumente gespeichert,
die während der Ausführung als Java-Ojbekte vom Typ W3CNode3 im Hauptspeicher liegen.
Diese strukturierten Objekte werden vor dem Festschreiben in das DBS durch Hibernate in

1Hibernate: http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
2IBM DB2: http://www-01.ibm.com/software/data/db2/
3W3C Node: http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/Node.html

31

http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
http://www-01.ibm.com/software/data/db2/
http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/Node.html


3 Nutzung von Datenbanken in WfMS

Workflow-Ausführungsumgebung

Apache Orchestration

Director Engine (ODE)

Hibernate

IBM DB2

a) Original ODE b) ODE-TI (Tight Integration)

Workflow- 

Laufzeit-

komponente

Persistenz- 

manager

Datenbank-

system

W3CNode

VarChar BLOB

Variablen-

abbildung

<= 256 char. > 256 char.

Workflow-Ausführungsumgebung

Apache Orchestration

Director Engine (ODE)

Hibernate

IBM DB2

W3CNode

XML 

(pureXML)

Variablen-

abbildung

Pushdown
Zuwei-

sung

WS-

Aufruf

Ausdr.-

Ausw.

Abbildung 3.5: Architektur von Original ODE (a) und des ODE-TI Prototyps (b)
(Vgl. [RSM11])

Text- bzw. Bytecoderepräsentationen umgewandelt. Dabei werden kleinere XML-Dokumente
(<=256 Zeichen) in Textform gespeichert, während größere als Binärobjekte (BLOB) kompri-
miert in der Datenbank abgelegt werden (Abb. 3.5(a)). Diese Architektur ist stellvertretend
für die konventionelle Ausführung von Workflows und wird als Original ODE bezeich-
net. Um die pureXML-Abfragefunktionen von DB2 bei der Workflowausführung für die
Pushdown-Konzepte nutzen zu können wurde bei der Architektur in Abbildung 3.5(b) die
Datenbankstruktur und die damit verbundene Abbildung durch Hibernate dahingehend
geändert, dass XML-Inhalte von Variablen nun ausschließlich in dem datenbanknativen
XML-Spaltentyp gespeichert werden.

Es wurden verschiedene Testworkflows erstellt, die unterschiedliche Aspekte einer Work-
flowausführung betonen. Veränderliche Kriterien sind dabei die Größe der verarbeiteten
Daten, die Komplexität der verwendeten Ausdrücke, sowie die Komplexität des gesam-
ten Workflows. Durch Variation dieser Größen wurde versucht Rentabilitätsschwellen zu
finden, ab denen die Workflowausführung auf dem ODE-TI-Prototyp gegenüber Original
ODE effizienter oder zuverlässiger wird. Diese Renatbilitätsschwellen variieren je nach
verwendetem System und Anwendungsszenario. Die Evaluation der Pushdown-Techniken
wurde zunächst isoliert anhand eigens dafür erstellter Workflows durchgeführt, welche
nur Aktivitäten jeweils einer zu messenden Pushdown-Technik modellieren. Dabei wur-
den beispielsweise der Zuweisungs-Pushdown mittels einer BPEL Assign-Aktivität, der
Ausdruckauswertungs-Pushdown mittels einer If-Aktivität und der Webservice-Pushdown
mittels einer Invoke-Aktivität modelliert und ausgewertet. Zusätzlich wurden Messungen
unter Verwendung eines Beispielszenarios aus der Proteinmodellierung (vgl. Abb. 2.2) durch-
geführt. Dabei wird eine Liste mit Proteinsequenzen mittels eines WS-Aufrufs (invoke)
geladen, einzelne Proteine mittels einer If-Aktivität auf Ähnlichkeit mit einem Muster hin
überprüft und anschließend mittels Assign-Aktivitäten zu den entsprechenden Ergebnis-
werten hinzugefügt. Dadurch werden die genannten Pushdown-Techniken nochmals im
Zusammenspiel evaluiert.

32



3.3 Prototypische Erweiterungen eines WfMS

Die Testdaten bei der Durchführung der isolierten Tests sind die selben Listen von Prote-
insequenzen, wie sie vom späteren Beispielszenario verwendet werden. Dabei wird jede
Proteinsequenz durch ein XML-Element innerhalb der Liste der Proteinsequenzen repräsen-
tiert. Es wurden Messungen mit Listen der Größen 100 KB, 500 KB, 4 MB, 9 MB sowie 50 MB
durchgeführt. Diese entsprechen jeweils 40, 199, 697, 1394 sowie 7695 Proteinsequenzen, was
auch der Anzahl der Iterationen der Vergeichsschleife des Proteinmodellierungsworkflows
entspricht. Größere XML-Dokumente konnten nicht getestet werden, da Apache ODE dabei
entweder Speicherüberläufe erzeugt oder die Workflowausführung ohne Angabe von Fehlern
oder Ergebnissen nach 2000 Sekunden abbricht.

Die hier vorgestellten Messungen wurden auf einem Testsystem unter Windows Server 2003

(32-bit) Enterprise Edition SP2 mit einem Intel Xeon PowerEdge 2850 3,2 GHz-Prozessor und
8 GB Hauptspeicher durchgeführt [RSM11].

3.3.2 Testergebnisse

Bei Datengrößen bis zu 9 MB wurde jeder BPEL-Prozess für die isolierte Evaluation 100

Mal ausgeführt, die Prozesse mit 50 MB Datengröße wurden 50 Mal ausgeführt. Aus allen
gemessenen Laufzeiten der jeweils verwendeten Aktivität wurden Mittelwerte für diese
berechnet. Die Ergebniswerte der mittleren Laufzeiten von ODE-TI sind in Abbildung 3.6
relativ zu den Laufzeiten von Original ODE dargestellt.

Der Zuweisungs-Pushdown wurde unter Verwendung unterschiedlich komplexer XPath-
Ausdrücke evaluiert. Der dabei verwendete Ausdruck muss zum Auslesen des Variablenin-
halts ausgewertet werden, damit anschließend das Ergebnis des Ausdrucks abgespeichert
werden kann. Der erste Testfall beinhaltet keinen Ausdruck, hier wird einfach der gesamte
Variableninhalt kopiert. Der zweite Fall (einfacher Ausdruck) beinhaltet einen XPath-Ausdruck,
der genau eine Proteinsequenz aus der Liste selektiert. Der dritte Fall (komplexer Ausdruck)
selektiert zwei Proteinsequenzen aus der Liste und fügt diese zusammen. In den letzten
beiden Fällen wird für alle Listengrößen die gleiche Datenmenge in die Zielvariable ge-
speichert, da immer nur ein bzw. zwei Elemente aus dem Ausdruck hervorgehen. Bei den
Zuweisungen ohne Ausdruck sowie bei denen mit einfachem Ausdruck wurden bei allen
Testgrößen Leistungseinbußen zwischen 358% und 14% beobachtet. Bei Zuweisungen mit
komplexem Ausdruck beträgt der Leistungsverlust bei Testgrößen von 100 KB und 500

KB zwischen 131% und 38%. Erhöht man jedoch die Größe weiterhin, erreicht man beim
verwendeten System ab etwa 4 MB eine Rentabilitätsschwelle, ab der die Ausführung durch
ODE-TI um bis zu 18% im Vergleich zu Original ODE beschleunigt wird.

Der Ausdruckauswertungs-Pushdown wurde auf ähnliche Weise mit verschieden komplexen
Ausdrücken evaluiert. Auch hier wird beim einfachen Ausdruck eine einzelne Proteinsequenz
selektiert, während beim komplexen Ausdruck zwei Sequenzen konkateniert werden. Hier
wird im Gegesatz zum Zuweisungs-Pushdown keine Schreiboperation durchgeführt, es wird
lediglich der Ausdruck anhand der Liste der Proteinsequenzen ausgewertet. Beim Messen
der Operationen mit einfachem Ausdruck stellten sich bis 9 MB Größe Leistungsverluste
gegenüber Original ODE im Bereich von 127% bis 17% ein. Die Rentabilitätsschwelle wird

33



3 Nutzung von Datenbanken in WfMS

331 

458 

261 

227 

100 98 

227 

272 

138 130 

26 

100 
114 

184 

101 
120 

15 

97 

161 

191 

89 

117 

17 

96 

190 
177 

82 
95 

23 

86 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

Zuweisungs-    
Pushdown              

(ohne Ausdr.) 

Zuweisungs-    
Pushdown              

(einfacher Ausdr.) 

Zuweisungs-    
Pushdown             

(komplexer Ausdr.) 

Ausdruck-         
auswertungs-       

Pushdown         
(einfacher Ausdr.) 

Ausdruck-         
auswertungs-       

Pushdown        
(komplexer Ausdr.) 

Webservice-    
Pushdown 

100 KB 

500 KB 

4 MB 

9 MB 

50 MB 

L
a

u
fz

e
it

 v
o

n
 O

D
E

-T
I 

a
ls

 %
 v

o
n

 o
ri

g
in

a
l 

O
D

E
 

Abbildung 3.6: Ergebnisse der Messungen von ODE-TI relativ zur Laufzeit von Original
ODE in Prozent.

hier bei der 50 MB-Messung erreicht, wo eine Leistungssteigerung von 5% erkennbar ist.
Beim komplexen Ausdruck wurde durch den Einsatz von ODE-TI bei Datengrößen ab 500

KB Leistungssteigerungen zwischen 74% und 85% gemessen. Der Webservice-Pushdown
erzielt ähnliche Ergebnisse wie Original ODE, mit einer Leistungssteigerung bis zu 14% für
steigende Datengrößen.

Diese Messungen haben gezeigt, dass die Pushdown-Techniken für sich allein betrachtet
nur dann eine Leistungssteigerung bewirken, wenn komplexe Ausdrücke auf einer großen
Datenmenge ausgewertet werden sollen. Vergleicht man die Messergebnisse des Zuweisungs-
Pushdowns mit denen des Ausdruckauswertungs-Pushdowns, stellt man fest, dass die
zusätzliche Schreiboperation bei der Zuweisung von Original ODE wesentlich effizienter
durchgeführt wird als von ODE-TI. Dies lässt sich dadruch erklären, dass das DBMS zusätz-
liche Log-Informationen zu jeder Anfrage auf die Festplatte speichert. Außerdem müssen
beim Einfügen oder Ändern von Daten auch betroffene Indizes, die Leseoperationen auf der
Datenbank beschleunigen sollen, angepasst werden. Bei den Messungen der Zuweisungen
ohne Ausdruck nimmt die Leistung von ODE-TI bei den Größen bis 4 MB schrittweise zu,
verschlechtert sich jedoch ab 9 MB wieder deutlich. Dies lässt sich dadurch erklären, dass die
durch ihre Begleitoperationen ineffiziente Schreiboperation einen immer größeren Einfluss
auf die Gesamtlaufzeit nimmt. Bei allen anderen Messungen wird die Schreiboperation
durch die vorherige Selektion von einem bzw. zwei Elementen konstant gehalten. Dadurch
hat die Schreiboperation bei wachsender Datengröße einen immer geringeren Einfluss auf
die Gesamtlaufzeit. Der Webservice-Pushdown erzielt in ODE-TI und Original ODE ähnliche
Ergebnisse. Dies rührt daher, dass das Ergebnis eines WS-Aufrufs durch Invoke bei Original
ODE grundsätzlich durch den Persistenzmanager im DBS gespeichert wird, damit es für
eine etwaige, spätere Wiederherstellung persistent ist. Dies wiegt die Schreiboperation von
ODE-TI nach Erhalt der Antwort in vergleichbarem Maße auf, für größere Daten ist jedoch

34



3.3 Prototypische Erweiterungen eines WfMS

11 

262 

4 
31 

291 

1000 

0 

200 

400 

600 

800 

1000 

1200 

40       
Iterationen 
(100 KB) 

199 
Iterationen  
(500 KB) 

697 
Iterationen    

(4 MB) 

1394 
Iterationen  

(9 MB) 

original ODE 

ODE-TI 

M
it

tl
e

re
 L

a
u

fz
e

it
 e

in
e

r 
W

o
rk

fl
o

w
in

s
ta

n
z
 i

n
 S

e
k

u
n

d
e

n
 

S
p

e
ic

h
e

rü
b

e
rl

a
s

tu
n

g
 n

a
c

h
 c

a
. 
1

0
0

 I
te

ra
ti

o
n

e
n

 

(a) Sequentielle Workflowausführung 

S
p

e
ic

h
e

rü
b

e
rl

a
s

tu
n

g
 n

a
c

h
 c

a
. 

2
0

0
 I

te
ra

ti
o

n
e

n
 

45 20 

145 

736 

1620 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

40    
Iterationen 
(100 KB)        

(10 Instanzen) 

199  
Iterationen 
(500 KB)        

(10 Instanzen) 

697  
Iterationen     

(4 MB)              
(5 Instanzen) 

1394 
Iterationen     

(9 MB)              
(3 Instanzen) 

G
e

s
a

m
tl

a
u

fz
e

it
 a

ll
e

r 
W

o
rk

fl
o

w
in

s
ta

n
z
e

n
 i

n
 S

e
k

u
n

d
e

n
 (b) Parallele Workflowausführung 

S
p

e
ic

h
e

rü
b

e
rl

a
s

tu
n

g
 n

a
c

h
 1

7
 M

in
u

te
n

 

S
p

e
ic

h
e

rü
b

e
rl

a
s

tu
n

g
 n

a
c

h
 1

5
 M

in
u

te
n

 

S
p

e
ic

h
e

rü
b

e
rl

a
s

tu
n

g
 n

a
c

h
 1

0
 M

in
u

te
n

 

Abbildung 3.7: Messergebnisse der sequenziellen (a) und parallelen (b) Ausführung des
Proteinmodellierungsworkflows(vgl. [RSM11])

auch hier eine Tendenz zu Gunsten von ODE-TI erkennbar, nicht zuletzt weil dort der
Datenverkehr zwischen WfMS und DBS größtenteils entfällt.

Am Beispielszenario des Proteinmodellierungsworkflows wurden jeweils Messungen bei
sequenzieller und paralleler Ausführung durchgeführt. Bei der sequenziellen Ausführung
wurden jeweils 100 Instanzen mit den Datengrößen 100 KB und 500 KB sowie 50 Instanzen
mit den Größen 4 MB und 9 MB erzeugt. Messungen mit Datengrößen von 50 MB und größer
konnten wegen der bereits angesprochenen Limitierungen von ODE (Speicher, Laufzeiten)
nicht durchgeführt werden. Bei der Listengröße von 100 KB wurde eine Leistungssteigerung
um Faktor 3 gemessen, eine Verbesserung um Faktor 8 zeigte sich bei 500 Kb Größe. Original
ODE stürzte bei 4 MB und 9 MB nach ca. 200 bzw. 100 Iterationen wegen einer Überladung
des Hauptspeichers ab und konnte daher kein vergleichbares Ergebnis liefern, ODE-TI konnte
jedoch alle 50 Instanzen der beiden Workflows ohne Probleme bis zu deren Beendigung
ausführen.

Bei den parallelen Messungen wurden alle Workflowinstanzen gleichzeitig gestartet. Es
wurden jeweils 10 Instanzen der Größen 100 KB und 500 KB, 5 Instanzen mit 4 MB, sowie 3

Instanzen mit 9 MB Listengröße ausgeführt. Auch hier zeigte ODE-TI eine Leistungssteige-
rung um Faktor 2 für 100 KB. Bei der parallelen Ausführung mehrerer Instanzen scheitert
Original ODE bereits bei den Workflows mit 500 KB Listengröße an Hauptspeicherüber-
ladungen. Dies lässt sich durch den addierten Speicherbedarf der zeitgleich ausgeführten
Workflowinstanzen erklären.

Aus diesen Messergebnissen lässt sich schließen, dass der Einsatz der Pushdown-Techniken
sowohl die Effizienz als auch die Zuverlässigkeit von Workflowausführungen steigern
kann. Dies gilt sowohl bei sequenzieller als auch paralleler Workflowausführung bei großen
Datenmengen und komplexen Ausdrücken.

35



3 Nutzung von Datenbanken in WfMS

3.4 Erweiterung von ODE-TI

Eine genauere Betrachtung des ODE-TI Prototyps zeigt einige Problemstellungen auf. Bei-
spielsweise wurde hier der Literal-Pushdown, der eine wichtige Rolle beim Zuweisungs-
Pushdown spielt, nicht implementiert. Zuweisungen, die Literalwerte verwenden, werden
weiterhin auf konventionelle Weise innerhalb der ODE-Laufzeitkomponente durchgeführt
und sind zunächst im DBS nicht sichtbar. Ebenso wurden etliche Aktivitäten, die, ähnlich
wie ein WS-Aufruf, Daten in Form von Nachrichten an den Workflow heranführen bzw. aus
dem Workflow versenden (z.B. Receive), nicht als Pushdownvarianten implementiert.

Diese Umstände haben zur Folge, dass vor dem Aufruf implementierter Pushdown-
Aktivitäten oft ein zusätzlicher Schritt notwendig ist, um sicherzustellen, dass alle für
die Aktivität erforderlichen Inhalte in der Datenbank vorhanden sind. Dieser zusätzliche
Schritt wird in der momentanen Implementierung von ODE-TI vom Persistenzmanager
durch einen vollständigen Flush realisiert. Dabei werden die workflowinternen Daten an
das DBS übermittelt. Neben den eigentlich benötigten Variableninhalten, werden dabei
zusätzlich auch Prozess- und Auditingdaten des WfMS unselektiv mit der Datenbank syn-
chronisiert [Wag11]. Der dabei entstehende Aufwand wirkt sich negativ auf die Laufzeit der
Workflowinstanzen aus.

Ziel dieser Arbeit ist es unter anderem die Probleme durch fehlende Daten in der Datenbank
bzw. Leistungseinbußen durch die unselektive Synchronisation zu beheben. Dazu sollen im
weiteren Verlauf Pushdown-Implementierungen für die restlichen datenrelevanten Aktivitä-
ten erarbeitet werden. Die im Rahmen dieser Arbeit entstandenen Lösungensansätze werden
im nächsten Kapitel vorgestellt.

36



4 Konzeptionelle Erweiterungen

Die im vergangenen Kapitel vorgestellte Umsetzung der Integration von WfMS und DBS
enthält einige Lücken und Nebeneffekte. In diesem Kapitel werden nun weitere Konzepte
zur Integration eines DBS vorgestellt, die im Rahmen dieser Arbeit entwickelt und un-
tersucht wurden. Durch Umsetzung der fehlenden Konzepte aus Kapitel 3, sowie durch
das Einführen neuer Pushdown-Konzepte, sollen zusätzliche Verbesserungen der Effizienz
und Zuverlässigkeit bei der Workflowsausführung erreicht werden. Diese werden in den
folgenden Unterabschnitten vorgestellt.

4.1 Literal-Pushdown

Der Literal-Pushdown wurde bereits in Abschnitt 3.2.3 und Abbildung 3.4 konzeptionell
vorgestellt. Daten, die in Form von Literalen über das Prozessmodell in den Workflow
eingebracht werden, sind zunächst nur in der Laufzeitkomponente des WfMS sichtbar
und können vom DBS daher nicht verwendet werden. Wird innerhalb einer Zuweisung
ein Literal verwendet, so kann diese Zuweisung bisher nur auf konventionelle Weise auf
dem Variablenvorrat der Laufzeitkomponente durchgeführt werden. Wird die mit dem
Literalinhalt beschriebene Variable nun Quelle einer Zuweisung, die durch Pushdown-
Techniken implementiert ist, so muss vorher ein zusätzlicher Schritt durchgeführt werden,
der sie in der Datenbank abspeichert. Um diesen Zwischenschritt zu umgehen, wurde der
Literal-Pushdown bereits konzeptionell entwickelt, jedoch noch nicht implementiert.

Der Literal-Pushdown kann in einen schreibenden und einen lesenden Teil unterteilt werden.
Beim schreibenden Teil werden Literalwerte aus dem Workflowmodell extrahiert und in
der Datenbank gespeichert, während der lesende Teil die in der Datenbank gespeicherten
Literalwerte für Zuweisungsoperationen verwendet. Im Folgenden werden unterschiedliche
Varianten zur Umsetzung des Literal-Pushdowns vorgestellt und diskutiert. Sie kann grund-
sätzlich auf drei verschiedene Arten erfolgen, die sich hauptsächlich in Ort und Zeitpunkt
des schreibenden Teils unterscheiden. Die verschiedenen Varianten des schreibenden Teils
sind in Abbildung 4.1 dargestellt.

37



4 Konzeptionelle Erweiterungen

DBS

a) Entwurfszeit c) Laufzeit

Literalwert
Literaloperation

Speicherung v.
Literalwerten

Wf-EntwicklerWf-Entwickler

b) Deployment

Wf-Modell Wf-Modell

WfMS-Compiler

Verweis auf 
Literalwert

Persistenzmanager

Wf-Ausführung

Persistenzmanager

Wf-Datenmodell

interne Repräsentation

Wf-Schritt

Abbildung 4.1: Verschiedene Konzepte zur Umsetzung des schreibenden Teils eines
Literal-Pushdown zur Entwurfszeit, während des Deployments oder zur

Laufzeit.

a) Entwurfszeit
Da Literalwerte bereits bei der Modellierung eines Workflows bekannt sind, können diese
prinzipiell zur Entwurfzeit durch den Entwickler bzw. durch Entwicklungswerkzeuge
extrahiert und in der Datenbank abgespeichert werden. Dies setzt jedoch voraus, dass
die entsprechenden Datenbankbefehle dem Entwickler bekannt sind bzw. durch die
verwendeten Entwicklungswerkzeuge implementiert werden. In der Laufzeitkomponente
des ausführenden WfMS muss anschließend für Literalzuweisungen der lesende Teil des
Literal-Pushdowns implementiert werden.

b) Deployment
Der schreibende Teil des Literal-Pushdowns kann, ähnlich wie beim Abspeichern der
Literalwerte zur Entwurfszeit durch Entwicklungswerkeuge, auch beim Deployment
eines Workflows durch die Deploymentkomponente des WfMS erfolgen. Zusätzlich

38



4.1 Literal-Pushdown

zum lesenden Teil muss, etwa im Wf-Compiler, noch eine Logik zum Festschreiben der
Literalwerte implementiert werden. Die eigentlichen Datenbankbefehle zur Speicherung
werden dabei üblicherweise vom Persistenzmanager (DAO-Schicht) implementiert.

c) Laufzeit
Literalwerte, die auf herkömmliche Weise in den Workflowkontext geladen wurden, sind
während der Ausführung als Teil des im Hauptspeicher befindlichen Datenmodells der
entsprechenden Ausführungsinstanz verfügbar. So können beispielsweise alle Literalwerte
zu Beginn der Ausführung in der Datenbank gespeichert werden. Die Anforderungen an
die Umsetzung dieser Variante des Literal-Pushdows sind dabei prinzipiell die selben
wie in Variante (b), konzeptionell wird hierbei lediglich der schreibende Teil in die
Laufzeitkompomente verlagert.

Bei allen drei Varianten muss der lesende Teil des Literal-Pushdowns innerhalb der Zuwei-
sungslogik eines WfMS implementiert werden und mit dem schreibenden Teil abgestimmt
sein. Der lesende Teil stellt damit konzeptionell eigentlich eine Erweiterung des Zuweisungs-
Pushdowns dar. Bei allen vorgestellten Varianten muss nach der Extraktion eines Literals
durch den schreibenden Teil ein Verweis hinterlassen werden, mit dessen Hilfe der Literal-
wert vom lesenden Teil zur Laufzeit in der Datenbank wiedergefunden werden kann. Ein
individueller Workflow wird ein Mal modelliert. Das fertige Modell kann dann mehrmals
(z.B. in verschiedenen WfMS) als Prozess deployt werden, welcher wiederum mehrmals
instanziiert und ausgeführt werden kann. Daraus ergibt sich eine 1 : n : m -Beziehung
zwischen Modellierung, Deployment und Ausführung eins Workflows, wobei 1 ≤ n ≤ m.
Aus dieser Tatsache ergibt sich zunächst die Überlegung, dass Variante (a) den geringsten
Laufzeitaufwand darstellt und daher angestrebt werden sollte.

Bei Variante (a) wird der schreibende Teil in die Entwicklungswerkzeuge ausgelagert oder
gar gänzlich dem Entwickler überlassen. Problematisch ist dabei allerdings, dass hier die
Modellierungs- und Ausführungsphase des Workflowmanagements miteinander verwoben
werden und dadurch nicht mehr unabhängig voneinander durchgeführt werden können. Wei-
terhin verwenden unterschiedliche Workflow-Ausführungsumgebungen auch unterschiedli-
che Datenbanksysteme. Deswegen müssten die Daten dennoch in mehrere Datenbanksysteme
und damit auch mehrmals gespeichert werden, wobei hierfür sogar entsprechende Integrati-
onsprobleme bzgl. heterogener Datenbanksysteme gelöst werden müssen. Damit ergeben
sich die oben genannten Performance-Vorteile dieser Variante (a) nur in sehr seltenen Fällen.
Außerdem soll der Entwickler auch nicht mit zusätzlichen Aufgaben belastet werden. Auf
Grund dieser Überlegungen sehen wir in dieser Arbeit von einer Umsetzung dieser Variante
(a) ab.

Die Varianten (b) und (c) lässen sich ohne Auswirkungen auf die Modellierung umsetzen.
Die Entscheidung zwischen Variante (b) und (c) hängt davon ab, ob das Deployment oder die
Ausführung die performanzkritische Phase des Lebenszyklus eines Workflows darstellt. Bei
den in dieser Arbeit betrachteten Fällen sind die Auswirkungen auf die Deploymentphase
vernachlässigbar, da Prozesse meist nur ein Mal in der selben Umgebung deployt werden
und somit der Fall n = 1 eintritt, wodurch der Pushdown nach Variante (b) nur ein Mal
ausgeführt werden muss. Nachdem ein Prozess nach Variante (b) deployt wurde, können

39



4 Konzeptionelle Erweiterungen

die gespeicherten Literalwerte von allen seinen Ausführungsinstanzen verwendet werden,
ohne dass der schreibende Teil des Pushdowns wiederholt werden muss. Bei Variante (c)
müssen Literale für jede Instanz eines Workflows neu geschrieben werden, daher ist Variante
immer (b) effizienter als Variante (c), wenn ein deployter Workflow mehrmals ausgeführt
werden muss. Außerdem besteht dabei zusätzlich die Möglichkeit, Literalwerte nach dem
Deployment und vor der Ausführung eines Workflows auf externem Wege direkt in der
Datenbank zu bearbeiten. Wenn also eine Flexibiliät zur Laufzeit gewünscht ist, können
die Literalwerte auch bei Variante (b) noch nachträglich geändert werden. Details zu einer
Implementierung dieser Variante in Apache ODE sowie eine Evaluation werden in den
Kapiteln 6 bzw. 7 behandelt.

4.2 Nachrichten-Pushdown

Abgesehen von Variableninhalten und Literalwerten gibt es noch eine weitere Art von
Daten, die während einer Workflowausführung verwaltet werden. Ein BPEL-Prozess kann
SOAP-Nachrichten von anderen Prozessen empfangen und an andere Prozesse senden.
Dies geschieht insbesondere jeweils am Anfang und am Ende eines Workflows, wenn die
Ausführung durch eine Eingangsnachricht gestartet oder die Antwortnachricht nach der
erfolgreichen Beendigung zurückgesendet wird. Die Eingangsnachricht enthält Daten, die im
Verlauf der Workflowausführung meist in irgendeiner Form Gegenstand von Zuweisungen
oder Ausdruckauswertungen sind. Der datenrelevante Teil dieser Nachricht wird unmittelbar
nach deren Verarbeitung in einer Eingangsvariable abgelegt. Um auch diese Daten ohne
aufwendigen Zusatzschritt innerhalb von Pushdown-Aktivitäten nutzen zu können, wird an
dieser Stelle der Nachrichten-Pushdown vorgestellt.

Beim Nachrichten-Pushdown soll, ähnlich wie beim Zuweisungs-Pushdown, die Zuweisung
des Inhalts einer Nachricht in die Eingangsvariable in der Datenbank unmittelbar nach dem
Empfang der Nachricht erfolgen. Zwei der dabei in Frage kommenden Umsetzungen sind in
Abbildung 4.2 dargestellt. Bei der Variante (a) wird der komplette Inhalt einer Nachricht nach
ihrem Empfang bei der Workflowausführung zum Speichern über den Persistenzmanager
an das DBS übermittelt. Anschließend kann der datenrelevante Teil der Nachricht innerhalb
der Datenbank der Eingangsvariable zugewiesen werden. Variante (b) setzt zunächst voraus,
dass die Nachricht bereits in irgend einer Form im DBS gespeichert ist. Indem die Nachricht
innerhalb des DBS einer Variablen zugewiesen wird, wird der Kommunikationsaufwand
zwischen Laufzeitkomponente und DBS verringert. Je nach Implementierung eines WfMS
kann die Nachricht zum Zeitpunkt des Beginns der Workflowausführung bereits z.B. durch
Komponenten des Nachrichtenaustausches im DBS persistent gemacht worden sein. Falls die-
se Voraussetzung erfüllt ist, ist Variante (b) für die Umsetzung eines Nachrichten-Pushdowns
zu bevorzugen, da durch den verringerten Kommunikationsaufwand ein besseres Laufzeit-
verhalten zu erwarten ist. Variante (a) muss hingegen eingesetzt werden, wenn die Nachricht
nicht zuvor im DBS gespeichert wurde.

Bei der Umsetzung nach der Variante (b) liegt der Unterschied zum Zuweisungs-Pushdown
lediglich darin, dass die Nachrichten wahrscheinlich an einer anderen Stelle der Datenbank

40



4.2 Nachrichten-Pushdown

Workflow-Ausführungsumgebung

4)

Workflow-Laufzeitkomponente

Persistenz-

manager

Datenbanksystem

a) aus dem Workflowkontext

Versand von

Mitteilungen

Versand von

Daten

Daten-

zuweisung 3)

1)

2)

Workflow-Ausführungsumgebung

4)

Workflow-Laufzeitkomponente

Persistenz-

manager

Datenbanksystem

b) in der Datenbank

3)

1)

2)

Variablen-
inhalt

Nachrichten-
daten

Abbildung 4.2: Unterschiedliche Umsetzungen des Nachrichten-Pushdowns aus dem
Workflow heraus (a) bzw. in der Datenbank (b). Die Zahlen deuten die

Reihenfolge an, in der einzelne Teilschritte ausgeführt werden.

und in einer anderen Form gespeichert werden als die Variablen. Der Ablauf ist dabei
identisch mit dem des Zuweisungs-Pushdowns in Abbildung 3.3(a), jedoch wird beim
Nachrichten-Pushdown kein Ausdruck im engeren Sinne evaluiert, da immer der selbe
(komplette) Inhalt einer Nachricht kopiert werden muss. Statdessen kann eine Transformation
zwischen den möglicherweise unterschiedlichen Formaten der Nachrichten und Variablen
notwendig sein.

Der umgekehrte Weg, die Zuweisung einer Variablen in eine Nachricht, kann problematisch
werden. Da das DBS konventionellerweise nicht bei der Workflowausführung eingesetzt wird,
werden im DBS gespeicherte Nachrichten auch nicht als Quelle für den Nachrichtenversand
verwendet. Es kann zwar eine Variable wieder in eine Nachricht kopiert werden, diese
wird aber u.U. nicht vom WfMS ausgewertet. In diesem Fall bietet sich die Variante (a) des
Nachrichten-Pushdowns in umgekehrter Form an: Der Inhalt einer Ausgangsvariable wird
aus der Datenbank in den Workflowkontext geladen und dort zu einer Nachricht verarbeitet,
die dann auf konventionelle Weise an einen Partnerprozess versendet wird. Es wäre denkbar
weitere Komponenten des WfMS zu verändern, damit diese die Nachrichten aus der Daten-
bank nach Variante (b) verarbeiten. Dieser Ansatz kann jedoch im Verhältnis zum erwarteten
Nutzen zu komplex ausfallen, da die Verarbeitung von Eingangs- und Ausgangsnach-
richten erfahrungsgemäß keine signifikanten Auswirkungen auf die Gesamtlaufzeit einer
Workflowinstanz hat. Typischerweise bestehen Eingangs- wie auch Ausgangsnachrichten
einzelner Workflow-Instanzen nur aus kleineren Parameterwerten, die bei der Gesamtlaufzeit
- insbesondere von datenintensiven Workflows - weniger ins Gewicht fallen. Der Nachrichten-
Pushdown ist für eingehende Nachrichten dennoch wichtig, um etwaige Zwischenschritte
für das Herunterschreiben von Daten vor anderen Pushdown-Aktivitäten zu vermeiden.
Im Rahmen dieser Arbeit wurde auf eine auwendige Implementierung des Pushdowns für

41



4 Konzeptionelle Erweiterungen

ausgehende Nachrichten verzichtet und dafür stattdessen die Umgekehrte Form der variante
(a) genutzt.

Eine weitere denkbare Variante für eine möglicherweise effizientere Umsetzung des
Nachrichten-Pushdowns wäre die Verlagerung des Nachrichtenaustasches in das DBS analog
zum Webservice-Pushdown. Dazu müssten Eingangsnachrichten in Form von Prozedurauf-
rufen an das DBS kommuniziert werden, welches dann die gesamte Logik zur Instanziierung
von Workflows selbst implementieren muss und damit Aufgaben der Workflowverwaltung
übernimmt. Diesem Implementierungsaufwand steht die Tatsache gegenüber, dass der er-
wartete Geschwindigkeitszuwachs beim Nachrichten-Pushdown im Verhältnis zur Laufzeit
der gesamten Workflowausführung, wie bereits erwähnt, sehr gering ist. Aus diesem Grund
wurde diese Variante im Rahmen dieser Arbeit nicht umgesetzt.

Details zu einer Implementierung des Nachrichten-Pushdowns in ODE-TI sowie dessen
Evaluation wird in den Kapiteln 6 bzw. 7 behandelt.

4.3 XQuery-Pushdown

In den vergangenen Abschnitten wurden konzeptionelle Erweiterungen vorgestellt, die die
Ausführung der bisher in ODE-TI umgesetzten Pushdowntechniken ermöglichen, unter-
stützen und verbessern sollen. An dieser Stelle wird nun mit dem XQuery-Pushdown eine
Erweiterung vorgestellt, die einen Zusatz zur bisherigen Funktionalität darstellt.

Die bisherige Umsetzung von ODE-TI ist derzeit nur in der Lage, XPath-Ausdrücke innerhalb
von Zuweisungen und Ausdruckauswertungen zu verarbeiten. Dies genügt zwar der Midest-
anforderung durch die Spezifikation von BPEL, Apache ODE bietet aber beispielsweise die
Möglichkeit, XQuery-Ausdrucke innerhalb von datenverarbeitenden BPEL-Aktivitäten zu
verwenden. Die Evaluation der bisherigen Pushdown-Konzepte (s. Abschnitt 3.3.2) hat ge-
zeigt, dass gerade bei komplexen Ausdrücken die Ausführung innerhalb des DBS effizienter
ist, als die Ausführung im WfMS. Da XQuery-Ausdrücke wesentlich komplexer als XPath-
Ausdrücke werden können, ist also durch den XQuery-Pushdown eine Leistungssteigerung
bei deren Auswertung zu erwarten. Die Erweiterung von ODE-TI um die Verarbeitung von
XQuery-Ausdrücken stellt keine konzeptionelle Innovation dar. Eine Implementierung des
XQuery-Pushdowns ist im Rahmen dieser Arbeit nicht durchgeführt worden.

42



5 Architektur von Apache ODE

Im vergangenen Kapitel wurden Konzepte und Techniken vorgestellt, die die Nutzung von
Datenbanken innerhalb von Workflowmanagementsystemen behandeln. In diesem Kapitel
wird Apache ODE1 (Orchestration Director Engine) als konkretes WfMS mit den für diese
Arbeit relevanten Teilen seiner Architektur detailiert vorgestellt. Die Wahl von Apache
ODE als WfMS ist hier bedingt durch den Prototyp aus [Wag11], der die Konzepte aus
Abschnitt 3.4 in Apache ODE implementiert und der in dieser Arbeit erweitert werden
soll.

5.1 Gesamtarchitektur

Apache ODE ist eine Java-basierte Workflowengine zum Deployment und zur Ausführung
von BPEL-Prozessen. Das Überwachen, Anhalten und Fortsetzen von Workflowinstanzen
ist dabei eingeschränkt über ein Application Programming Interface (API) oder über eine
Webseite möglich. BPEL-Prozesse, die in Apache ODE bekannt gemacht wurden, werden
in Form von Webservice-Aufrufen instanziiert. Aus diesem Grund muss Apache ODE in
eine Kommunikationsinfrastruktur für Webservices eingebettet werden. Üblicherweise wird
dazu ein Apache Tomcat Server2 mit Axis2 verwendet. Es besteht ebenfalls die Möglichkeit
Apache ODE in den Apache ServiceMix3 einzubetten, dieser wird im Rahmen dieser Arbeit
jedoch nicht verwendet.

Die Gesamtarchitektur wird in Abb. 5.1 veranschaulicht. In WS-BPEL definierte Prozesse
werden durch den ODE BPEL Compiler (oben) zuerst in ein Java Objektschema übersetzt
und anschließend serialisiert als Datei abgespeichert. Für das Instanziieren des Prozesses
und seiner WS-Aufrufe müssen die entsprechenden WSDL Dateien übergeben werden. Um
XML-Daten (Literalwerte) innerhalb einer BPEL-Prozessdatei zu validieren, müssen die
entsprechenden XML-Schemadateien beim kompilieren vorliegen. Wurde ein Prozess durch
den BPEL-Compiler erfolgreich kompiliert und bekannt gemacht, kann dieser ab sofort
instanziiert und aufgerufen werden.

Die ODE BPEL Runtime besteht aus vielen Komponenten, von denen in Abb 5.1 nur die für
die Gesamtarchitektur wichtigsten dargestellt sind:

1http://ode.apache.org/
2http://tomcat.apache.org/
3http://servicemix.apache.org/

43

http://ode.apache.org/
http://tomcat.apache.org/
http://servicemix.apache.org/


5 Architektur von Apache ODE

Abbildung 5.1: Gesamtarchitektur von Apache ODE. (Vgl. [ode])

• JACOB VPU4: Die JACOB Virutal Processing Unit ist ein für ODE entwickeltes Rahmen-
werk, das die Grundlage der Architektur der BPEL Runtime bildet. Dieses Rahmenwerk
koordiniert die gleichzeitige Ausführung von ODE-Prozessinstanzen und sorgt für die
Dauerhaftigkeit deren Ausführungszustände.

• BPEL Aktivitäten: Die durch den OASIS-Standard (s. Abschnitt 2.4) definierten und
von ODE umgesetzten BPEL-Aktivitäten sind in dieser Komponente der Runtime
implementiert. Die verschiedenen Aktivitäten interagieren mit der benachbarten DAO-
Schicht sowie mit der Komponente für den Nachrichtenaustausch, um Daten (z.B.
Variableninhalte) einer Prozessinstanz persistent zu halten und mit anderen Webser-
vices zu kommunizieren.

• ODE DAO-Schicht: Die DAO-Schicht (Data Access Object) ist für die Speicherung
von Prozess- und Instanzdaten zuständig. Hier ist die Kommunikation mit dem einge-
bundenen DBS implementiert, die dadurch von den Aktivitäten der Runtime gekapselt
wird (siehe auch Abschnitt 3.1).

• Nachrichtenaustausch: Diese Komponente verwaltet den Empfang und den Versand
von WSDL-Nachrichten zwischen Prozessinstanzen und anderen Webservices. Sie
interagiert über die ODE Integrationsschicht der verwendeten Infrastruktur (z.B. Axis2,
ServiceMix) mit den beteiligten Webservices.

4http://ode.apache.org/jacob.html

44

http://ode.apache.org/jacob.html


5.2 Runtime im Detail

Abbildung 5.2: Detailiertere Ansicht der ODE Runtime (Vgl. [Wag11])

5.2 Runtime im Detail

Die im vorigen Abschnitt beschriebene ODE Runtime-Komponente, sowie mehrere Bestand-
teile davon, werden nun in Abb. 5.2 genauer betrachtet. Hierbei ist zu beachten, dass immer
noch eine starke Abstraktion der tatsächlichen Implementierung vorliegt. Die einzelnen
Komponenten und ihr Zusammenspiel werden im folgenden Vorgestellt.

• DAO-Schicht: Bei der Speicherung von Prozess- und Instanzdaten kann bei Apache
ODE zwischen drei unterschiedlichen Implementierungen gewählt werden: Hibernate5,
openJPA6 sowie in-memory Ausführung. Hibernate und openJPA sind Middleware-
Systeme, die markierte Objekte einer Java-Anwendung in einem DBS persistent machen.
Die beiden Systeme unterscheiden sich lediglich in den einbindbaren DBS und kleineren

5http://www.hibernate.org/
6http://openjpa.apache.org/

45

http://www.hibernate.org/
http://openjpa.apache.org/


5 Architektur von Apache ODE

Implementierungsdetails [Wag11]. Die in-memory Ausführung von BPEL-Prozessen
unterliegt einigen Einschränkungen und wird daher nur in Sonderfällen eingesetzt.

• Ausführungslogik: Die Komponenten BPELProcess, BPELRuntimeContext und Activity
bilden in diesem Modell die Ausführungslogik. Activity implementiert die BPEL-
Aktivitäten und deren Logik. Der BPELRuntimeContext implementiert die Zugriffsfunk-
tionen auf die zu verwendende DAO-Schicht und enthält unter anderem die Laufzeit-
parameter von ODE (z.B. Datenbank-Einstellungen). Die Komponente BPELProcess
verwaltet die Informationen zu einem kompilierten BPEL Prozess, wie aufzurufende
Webservices und die im Prozess verwendeten Query-Sprachen (XPath, XQuery etc.).
Die Auswertung von Ausdrücken sowie der Aufruf von Webservices innerhalb eines
Prozesses erfolgt daher über diese Komponente.

• Query-Auswertung: Für die Evaluierung von XPath-Ausdrücken in BPEL-Aktivitäten
werden das Jaxen und Javax Framework verwendet.

• Kommunikationsinfrastruktur: Als Kommunikationsinfrastruktur kann wie bereits
erwähnt entweder Axis2 oder der ServiceMix verwendet werden.

In den folgenden Abschnitten stellen wir das Objektmodell, die Hibernate DAO-Schicht und
die Runtime-Schicht vor.

5.2.1 OModel und BPEL-Typsystem

Durch den ODE BPEL Compiler erzeugte Prozesse werden intern durch das OModel
repräsentiert. Jede Aktivität sowie die meisten Sprachkonstrukte (Literalwerte, Ausdrücke)
innerhablb eines BPEL-Workflows werden durch ein entsprechendes Objekt aus diesem
OModel gespeichert. Abbildung 5.3 stellt den für diese Arbeit wesentlichen Teil des OModel
dar.

• OBase ist die Superklasse aller weitere OModel-Klassen. Die Methode dehydrate()
wird von den jeweiligen Unterklassen erweitert und erlaubt so die Informationen, die
in einem OModel-Objekt gespeichert sind, aus dem Hauptspeicher zu entfernen um
so Systemressourcen frei zu geben. Dies kann z.B. bei lang laufenden Prozessen mit
hohen Wartezeiten sinnvoll sein.

• OScope repräsentiert ein BPEL Scope, einen Sichtbarkeitsblock für Variablen mit
statischer Namensbindung (vgl. Abschnitt 2.4). Dieser trägt die Informationen zu allen
Variablen, die in diesem Block definiert wurden.

• OScope.Variable stellt eine BPEL-Prozessvariable dar. Dieses Objekt beinhaltet den
Namen sowie den Typ der Variable sowie eine Referenz auf den Scope in dem sie
deklariert ist.

• OVarType ist die Oberklasse der im OModel repräsentierten BPEL Datentypen, denen
eine Variable angehören kann. Die BPEL-Variablentypen werden später erläutert.

• OActivity bildet die Oberklasse für alle Objekte, die BPEL-Aktivitäten repräsentieren.

46



5.2 Runtime im Detail

Abbildung 5.3: Ausschnitt des ODE OModel als UML-Diagramm (Vgl. [Wag11]).

47



5 Architektur von Apache ODE

• OInvoke repräsentiert eine Invoke-Aktivität. Gespeichert werden die Variable, die
die Ausgangsnachricht hält (inputVar), die Variable, in welche die Eingangsnachricht
gespeichert wird (outputVar), und die aufzurufende WSDL Operation (Operation).
Der Webservice wird in seiner WSDL-Datei beschrieben und über BPEL partnerLinks
(OPartnerLink) eingebunden.

• OAssign repräsentiert die Assign-Aktivität, mit der Zuwseiungen erfolgen. Diese kann
mehrere Copy Blöcke beinhalten (OAssign.Copy).

• OAssign.Copy stellt einen Copy Block innerhalb einer Assign-Aktivität dar. Gespei-
chert werden die linke Seite (to) und die rechte Seite der Zuweisung (from). Die linke
Seite muss auf eine Variable referenzieren, weshalb das entsprechende Interface LValue
die getVariable() Methode implementieren muss. Die rechte Seite der Zuweisung (RVa-
lue) kann eine Variable (VariableRef), einen Ausdruck (Expression) oder ein Literal
enthalten. Literale sind Start- bzw. Initialwerte für BPEL-Variablen und werden im
Prozessmodell definiert.

• OExpression ist die Oberklasse für alle Query-Sprachen, die implementiert sind. Wir
betrachten zunächst nur die Unterklasse OXPath10Expression, welche XPath1.0 Aus-
drücke repräsentiert. Sie beinhaltet den XPath-Ausdruck sowie alle an dem Ausdruck
beteiligten Variablen.

Die OVarType-Unterklassen OMessageVarType, OXsdTypeVarType und OElementVarType reprä-
sentieren die im BPEL-Standard [bpe] spezifizierten Typen WSDL message, XML Schema und
XML Schema element, die eine Variablendeklaration enthalten darf. Der jeweils zugehörige
XML Schema Typ aus der Prozessdefinition wird als Qualified Name (QName) gespeichert.
Zur Verwendung und Manipulation von XML Daten innerhalb von Apache ODE werden
intern die Wrapper-Elemente <message/> , <xsd-complex-type-wrapper/> und <temporary-simple-
type-wrapper/> verwendet, Variablen vom Typ OMessageVarType, OXsdTypeVarType(complex)
bzw. OXsdTypeVarType(simple) zu speichern. Diese Wrapper-Elemente werden benötigt um
z.B DOM-Operationen und XPath-Auswertungen korrekt zu verarbeiten zu können.

Im OModel werden keine Variableninhalte gespeichert. Lediglich im Prozessmodell definierte
Literalwerte werden durch die Literal-Implementierung des RValue-Interfaces im OModel
vorgehalten. Die Speicherung von Variableninhalten erfolgt in der DAO-Schicht, die im
nächsten Abschnitt näher betrachtet wird.

5.2.2 ODE Hibernate DAO

In diesem Abschnitt wird nun vorgestellt, wie die Variablenspeicherung mittels der DAO-
Schnittstellen bewerkstelligt wird. Es wird Hibernate DAO verwendet, da dies die vom zu
erweiternden Prototyp verwendete Implementierung ist. Von besonderem Interesse sind
dabei nur die DAO-Schnittstellen zu Scopes und Variableninhalten. Die entsprechenden
Komponenten sind in Abbildung 5.4 dargestellt.

Über die ProcessInstanceDAO- und die ScopeDAO-Schnittstelle erhält man Zugriff auf die
Informationen zu den XmlDataDAO-Schnittstellen, welche die Daten zu den Variablen

48



5.2 Runtime im Detail

A
bb

il
du

ng
5.

4:
A

us
sc

hn
it

t
de

r
O

D
E

D
A

O
-S

ch
ic

ht
al

s
U

M
L-

D
ia

gr
am

m
(V

gl
.[

W
ag

1
1
])

.

49



5 Architektur von Apache ODE

1 /**

2 * @hibernate.class table="BPEL_XML_DATA"

3 */

4 public class HXmlData extends HObject {

5

6 private byte[] _data;

7 ...

8

9 /**

10 * @hibernate.property type="byte[]"

11 * @hibernate.column name="DATA" sql-type="BLOB"

12 */

13 public byte[] getData() {

14 return _data;

15 }

16

17 public void setData(byte[] data) {

18 _data = data;

19 }

20 ...

21 }

Listing 5.1: Beispiel für die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll.

beinhalten. Diese werden über Getter- und Settermethoden verfügbar gemacht. Die Pro-
cessInstanceDAO-Schnittstelle bildet die Verbindung zum BpelRuntimeContext, die genaue
Implementierung ist für uns dabei uninteressant.

In der Oberklasse HibernateDao werden unter anderem aktuelle DB-Sitzungen verwaltet und
Hibernate-Methden (z.B. update()) zur Verfügung gestellt. Die Unterklassen ScopeDaoImpl
und XmlDataDaoImpl sind Hibernate-Implementierungen der entsprechenden Interfaces.

XmlDataDaoImpl enthält ein Attribut vom Typ W3C Node (_node), sowie ein Attribut vom
Typ HXmlData (_data). Ein XML-Dokument wird in _node gespeichert. Falls dieses größer
als 256 Zeichen ist wird es in eine Byte-Repräsentation konvertiert und in HXmlData._data
gespeichert. Andernfalls wird es als HXmlData._simpleValue gespeichert. Dies wird aus
Performanzgründen durchgeführt, um String- anstatt BLOB-Felder für kleine Inhalte inner-
halb der DB zu verwenden. Entsprechend referenziert ScopeDaoImpl auf ein Objekt vom Typ
HScope in dem unter anderem der Name des Scopes gespeichert wird.

Objekte von HScope und HXmlData stellen durch die Hibernate Middleware direkt Zeilen
entsprechender Datenbanktabellen dar. Hibernate verwaltet die Synchronisierung dieser
Objekte über die Getter-/Settermethoden und durch Überwachung des Java Bytecodes
selbstständig. Dazu müssen die Datenfelder solcher Objekte entsprechend annotiert werden
(siehe Listing 5.1).

Aus diesen Annotationen ergeben sich im Fall von HScope und HXmlDate die Tabellensche-
mata für die Datenbank, die in Abb. 5.5 dargestellt sind.

50



5.2 Runtime im Detail

Abbildung 5.5: Tabellenschema, welches sich durch die Hibernate Middleware direkt aus
den annotierten Klassen HScope und HXmlData aus Abb. 5.4

ergibt.(Vgl. [Wag11]).

5.2.3 BpelRuntimeContext und Aktivitäten

Abschließend zur detaillierten Betrachtung der Runtime-Komponenten wird nun die Funkti-
onsweise der Aktivitäten (ACTIVITY), des Laufzeitkontext (BpelRuntimeContext) und deren
Anbindung an die DAO-Schicht und an das OModel vorgestellt. Die Komponenten sind in
Abbildung 5.6 dargestellt.

• BpelRuntimeContext und die Implementierung BpelRuntimeContextImpl stellen Metho-
den zur Verfügung, mit denen Variableninhalte gelesen (readVariable) und geschrieben
(writeVariable) werden können. Diese greifen direkt auf die DAO-Schicht zu. Der
BpelRuntimeContext ist somit das Bindeglied zwischen Runtime und DAO-Schicht. Au-
ßerdem werden WS-Aufrufe an die Kommunikationsinfrastruktur weitergeleitet und
die Auswertungsmodule für Query-Sprachen (wie XPath, XQuery etc.) den Aktivitäten
zur Verfügung gestellt.

• ScopeFrame implementiert die Funktionen der BPEL-Scopes, z.B das Auflösen ei-
ner Variable (resolve) entsprechend der Sichtbarkeit, die durch die im BPEL-Prozess
definierten Scopes gegeben sind. Darüber hinaus stellt ScopeFrame Methoden für
das Lesen (fetchVariableData) und Schreiben (writeVariable, commitChanges) von
Variableninhalten bereit. ScopeFrame ist direkt mit seiner OModel-Repräsentation
verbunden (oscope).

• VariableInstance ist eine Wrapperklasse für eine Variable aus dem OModel (OSco-
pe.Variable) und der ID des Scope, dem sie angehört.

• ACTIVITY ist die Oberklasse aller implementierten BPEL-Aktivitäten. Sie beinhaltet
den ScopeFrame, in dem sie eingebettet ist, sowie die OModel-Repräsentation der
Aktivität über ein Objekt der Klasse ActivityInfo. Sie stellt ebenfalls Methoden zum Le-
sen (fetchVariableData) und Schreiben (commitChanges) von Variableninhalten bereit.
Desweiteren hat sie Zugriff auf das aktuelle BpelRuntimeContext-Objekt, welches für
die laufende Instanz von Apache ODE gültig ist. Auf dieses kann über die Methode

51



5 Architektur von Apache ODE

+readVariable(ein  : long, ein  : string, ein  : bool) : Node

+writeVariable(ein  : VariableInstance, ein  : Node) : Node

+invoke(ein  : Operation, ein  : Node) : string

+getExpLangRuntime() : <nicht spezifiziert>

«interface»

BpelRuntimeContext

+declaration : OScope.Variable

+scopeInstance : long

VariableInstance

-_dao : ProcessInstanceDAO

BpelRuntimeContextImpl

#getBpelRuntimeContext() : BpelRuntimeContext

BpelJacobRunnable

+fetchVariableData(ein  : VariableInstance, ein  : bool) : Node

+commitChanges(ein  : VariableInstance, ein  : Node) : void

#_self : ActivityInfo

#_scopeFrame : ScopeFrame

ACTIVITY

+resolve(ein  : OScope.Variable) : VariableInstance

+fetchVariableData(ein  : BpelRuntimeContext, ein  : VariableInstance, ein  : bool) : Node

+writeVariable(ein  : BpelRuntimeContext, ein  : VariableInstance, ein  : Node) : Node

+commitChanges(ein  : BpelRuntimeContext, ein  : VariableInstance, ein  : Node) : Node

-oscope : OScope

-parent : ScopeFrame

ScopeFrame

«implements»

+run() : void

-copy(ein  : OAssign.Copy) : void

-evalLValue(ein  : LValue) : Node

-evalRValue(ein  : RValue) : Node

-evalQuery(ein  : OExpression) : Node

ASSIGN

+o : OActivity

ActivityInfo

+run() : void

INVOKE

+run() : void

-evaluateCondition(ein  : OExpression) : int

FOREACH

«uses»

«uses»

«uses»

«uses»

Abbildung 5.6: Ausschnitt der ODE-Laufzeitkomponenten als UML-Diagramm
(Vgl. [Wag11]).

getBpelRuntimeContext(), welche von BpelJacobRunnable ererbt wurde, zugegriffen wer-
den. Im Folgenden werden einige Aktivitäten vorgestellt, die im Zusammenhang dieser
Arbeit relevant sind. Alle von ACIVITY abgeleiteten Aktivitäten müssen die Methode
run() implementieren. Diese wird von der JacobVPU aufgerufen um die Aktivität zu
starten.

• INVOKE realisiert die Logik eines WS-Aufrufs. Zuerst wird die Variable mit der
Ausgangsnachricht gelesen, diese an die invoke-Methode des BpelRuntimeContext
übergeben und anschließend die Antwortnachricht des WS in die dafür vorgesehene
Variable geschrieben.

• FOREACH realisiert die Logik der BPEL-Foreach Schleife. Diese Schleife besitzt einen
Start- und einen Endwert, über den ein Zähler läuft. Diese Werte werden über Query-
Ausdrücke bestimmt (evaluateCondition).

• ASSIGN realisiert die BPEL-Assign Logik. Hierbei werden sequentiell alle Copy-Blöcke
durchlaufen und jeweils die Variable der linken Seite aufgelöst (evalLValue) sowie

52



5.3 BPEL-Compiler

das Resultat des Ausdrucks oder der Inhalt der Variable der rechten Seite (evalRVa-
lue) und dieser Wert anschließend in die Variable der linken Seite gespeichert. Die
Methode evalQuery wird verwendet um Query-Ausdrücke innerhalb von evalRValue
auszuwerten.

• PICK (nicht abgebildet) vereint die BPEL-Aktivitäten Pick und Receive. Eine Receive-
Aktivität wird dabei intern auf eine Pick-Aktivität mit einem einzelnen onMessage-Event
abgebildet. Hierbei sind vor allem die instanzerzeugenden Aktivitäten (createInstan-
ce=yes) von Interesse, da jeder BPEL-Prozess davon mindestens eine enthält. Die Me-
thode initVariable() extrahiert dabei aus der Eingangsnachricht den Nachrichteninhalt,
der anschließend der Eingangsvariable zugewiesen wird.

• REPLY (nicht abgebildet) extrahiert den Variableninhalt der Ausgangsvariable, stellt
eine Antwortnachricht zusammen und sendet diese an den aufrufenden Prozess.

Lesende und schreibende Zugriffe auf eine Variable innerhalb einer Aktivität finden grund-
sätzlich folgendermaßen statt:

1. Die Variable liegt als OScope.Variable vor und wird mit Hilfe von ScopeFrame.resolve
aufgelöst und zusammen mit seiner Scope-ID in ein Objekt vom Typ VariableInstance
umgewandelt.

2. Es wird auf die Schreib- und Lese-Methoden von ACTIVITY unter Verwendung von
VariableInstance zugegriffen, diese geben den Aufruf an die Methoden von ScopeFrame
weiter, die prinzipiell auch innerhalb der Aktivität direkt angesprochen werden können.
Hierfür muss zusätzlich der BpelRuntimeContext übergeben werden.

3. ScopeFrame leitet die Anfrage an die Methoden zum Lesen und Schreiben von Varia-
blen des BpelRuntimeContext weiter.

4. Der BpelRuntimeContext greift auf die konkreten Variableninhalte über die DAO-
Schicht zu, überschreibt diese mit neuen Werten oder liefert den aktuellen Inhalt
zurück.

Die Aktivitäten sind indirekt mit dem OModel über ActivityInfo und über den ScopeFrame
verknüpft (vgl. Abschnitt 5.2.1). Die Anbindung an die DAO-Schicht erfolgt innerhalb der
BpelRuntimeContextImpl über die ProcessIntanceDAO (vgl. Abschnitt 5.2.2).

5.3 BPEL-Compiler

An dieser Stelle wird der Aufbau und die Funktionsweise der Compiler-Komponente von
Apache ODE ausschnittsweise vorgestellt. Sie ist später für die Umsetzung des Literal-
Pushdowns von Bedeutung. Die dazu relevanten Teile des Compilers sind in Abbildung 5.7
als UML-Diagramm dargestellt und werden nun im einzelnen erläutert.

53



5 Architektur von Apache ODE

+startElement(in ...)
+endElement(in ...)

-...

DomBuilderContentHandler

+parse(in isrc, in ...) : <unspecified>

-...

BpelObjectFactory

+compile(in process, in ...) : <unspecified>

-...

BpelCompiler

+compile(in bpelFile, in ...) : void
+compile(in process, in ...) : void

-_bpelFile

BpelC

BpelCompiler11 BpelCompiler20 BpelCompiler20Draft

Abbildung 5.7: Ausschnitt relevanter Komponenten des ODE-Compilers als
UML-Diagramm.

• BpelC ist die Klasse, in welche der für uns relevante Teil des Kompiliervorgangs
stattfindet. Sie besitzt ein Attribut _bpelFile vom Typ File, das auf die Quelldatei
des zu kompilierenden BPEL-Processes (.bpel) verweist. Diese Datei wird in einem
ersten Kompilierschritt (compile(bpelFile,...)) zunächst in ein internes DOM-Objekt (Pro-
cess) umgewandelt. In einem weiteren Schritt, dem eigentlichen Kompiliervorgang
(compile(process,...)), wird dieses Prozessobjekt schließlich in das OModel für Prozes-
se (OProcess) überführt und das Resultat als .cbp-Datei (compiled bpel process) im
Deploymentverzeichnis zu weiteren Verwendung durch ODE abgespeichert.

• BpelObjectFactory bietet Funktionen zur Umwandlung von XML-Daten in die von
ODE benötigte, internen Objektrepräsentationen. Insbesondere beinhaltet sie die Me-
thode parse(irsc,...) die eine Datei, die durch eine InputSource-Referenz spezifiziert wird,
mit Hilfe des SAX-Parsers XMLReader7 in ein ODE-Prozessobjekt umwandelt. Die
Methode parse(isrc,...) wird von BpelC im ersten Kompilierschritt verwendet.

• DomBuilderContentHandler ist eine Erweiterung der Klasse DOMBuilder8 und wird
vom SAX-Parser XMLReader verwendet, um auf bestimmte Ereignisse während des
Parsens zu reagieren. Beispielsweise können hier über die Methoden startElement(...)
und endElement(...) zusätzliche Aktionen ausgeführt werden, sobald beim Parsen der
Anfang bzw. das Ende eines Elementknotens erreicht wird.

• BpelCompiler ist eine abstrakte Klasse, die den Kompiliervorgang eines ODE-
Prozessobjekts im Detail implementiert. Dabei wird aus einem DOM-Objekt (Process)
mit Hilfe zahlreicher Kompiliermethoden das fertige OModel-Objekt (OProcess) für
die weitere Verwendung in ODE erzeugt.

• BpelCompiler11, 20 und 20Draft sind Erweiterungen der abstrakten Klasse Bpel-
Compiler, mit deren Hilfe der Kompiliervorgang für die unterschiedlichen BPEL-
Spezifikationen realisiert wird.

7org.xml.sax.XMLReader
8org.apache.xml.utils.DOMBuilder

54



5.4 Änderungen durch den ODE-TI Prototyp

5.4 Änderungen durch den ODE-TI Prototyp

Zur Evaluierung der Konzepte aus ODE-TI wurde in einer vorangegangener Arbeit ein
Prototyp mit Umsetzungen der Pushdown-Techniken auf Basis von Apache ODE in der
Version 1.3.4 implementiert. In diesem Abschnitt wird der bei Beginn dieser Arbeit bestehen-
de Prototyp kurz und auszugsweise vorgestellt, bevor im nächsten Kapitel auf die darauf
aufbauende Implementierung der Konzepte aus dieser Arbeit detailliert eingegangen wird.
Eine detailliertere und umfassendere Beschreibung der zuvor bestehenden Implementierung
ist der Vorgängerarbeit [Wag11] zu entnehmen.

5.4.1 Datenbankschema

Um die Implementierungen der Pushdown-Techniken vorzubereiten, musste das Datenmo-
dell bzw. das Tabellenschema aus Abbildung 5.5 geändert werden. Das BLOB-Feld DATA der
Tabelle BPEL_XML_DATA wurde in ein Feld vom XML-Spaltentyp geändert, um die XML-
Verarbeitung innerhalb des DBS zu ermöglichen. Dazu wurde die Hibernate-Annotierung
für das Attribut _data der Klasse HXmlData aus Abb. 5.4 von BLOB auf XML geändert.

In der Originalversion von Apache ODE wird zur Speicherung von XML-Daten ein benut-
zerdefinierter Typ verwendet, der XML-Daten aus HXmlData in komprimierter Form in
die Datenbank ablegt. Um eine direkte Verarbeitung der XML-Inhalte durch das DBS zu
ermöglichen, wurde diese Komprimierung aufgehoben.

Um eine einheitliche Verarbeitung und Struktur der SQL- bzw. XPath-Ausdrücke zu erhalten,
die im Prototyp generiert werden müssen, wurde die Unterscheidung zwischen einfachen
Werten (SIMPLE_VALUE) und großen Werten (DATA) innerhalb von ODE aufgehoben.
Alle XML-Daten werden fortan im Feld DATA gespeichert. Da XML Felder in einem DBS
nur wohlgeformte XML Dokumente enthalten dürfen, wurde für XSD-einfache Typen ein
Wrapperelement (<temporary-simple-type-wrapper/>) verwendet, um den Wert im XML-Feld
DATA der Datenbank ablegen zu können. Das veränderte Tabellenschema ist in Abb. 5.8
dargestellt.

5.4.2 DAO-Schicht

Die DAO-Schicht verwaltet die Zugriffe auf die Datenbank. Dies geschieht im Allgemeinen
über das DB-Middlewaresystem Hibernate, welches SQL Anfragen an das DBS kapselt
und somit die Runtime prinzipiell unabhängig vom konkreten DBS und dem Datenschema
macht. Die DAO-Schicht ist deshalb der Ort, an dem die SQL-Anfragen der Pushdown-
Techniken generiert und das DBS geschickt werden müssen. Abb. 5.9 zeigt das modifizierte
UML-Diagramm der DAO-Schicht. Unveränderte Komponenten sind grau eingefärbt, neue
Klassen und Typen sind eingerahmt im rechten unteren Teil dargestellt. Alle anderen
Komponenten (weiß) wurden in irgendeiner Weise modifiziert, um Pushdown-Techniken zu
realisieren. Im Folgenden werden die einzelnen Änderungen kurz vorgestellt.

55



5 Architektur von Apache ODE

BPEL_SCOPE

PK ID int

 NAME varchar(255)

BPEL_XML_DATA

PK ID int

 NAME varchar(255)

 DATA xml

FK1 SCOPE int
HScope <-> BPEL_SCOPE

HXmlData <-> BPEL_XML_DATA

Abbildung 5.8: Durch den ODE-TI-Prototyp verändertes Tabellenschema (Vgl. [Wag11]).

• HibernateDao Die HibernateDao wird um die Methode hibernateFlush() erweitert. Diese
wird in der Methode XmlDataDaoImpl.set() verwendet, um das Festschreiben eines
Variablenwertes und somit dessen Persistenz zu erzwingen, was für die Realisierung
der Pushdown-Techniken essentiell ist.

• ScopeDAO und ScopeDaoImpl In der ScopeDAO werden die Hauptmethoden der
Pushdown-Techniken implementiert. Mit dataAssignByContext wird der Zuweisungs-
Pushdown, mit Hilfe von inDatabaseXPath und insbesondere inDatabaseExpression der
Ausdruckauswertungs-Pushdown realisiert. Die Methode invokeWS wird für die Reali-
sierung des Webservice-Pushdown benötigt.

• XmlDataDAO und XmlDataDaoImpl Die XmlDataDAO wurde verändert, um einen
veralteten Variableninhalt in HXmlData zu kennzeichnen (setDetached). Wird eine Va-
riable durch einen Pushdown in der Datenbank verändert, muss bei einer späteren
Verwendung dieser Variable innerhalb des Workflowkontext ihr veränderter Wert in
den Hauptspeicher geladen werden.

• HXmlData Die Hibernate-Annotierung für HXmlData wurde von der komprimierten
Bytedarstellung auf XML geändert. Das zusätzliche Attribut _detached ermöglicht die
Kennzeichnung von veraltetem Inhalt. Dieses ist nur für die Workflowausführung
interessant und wird daher nicht auf das Datenbankschema übertragen.

• VariableContext Um z.B. die Logik für den Zuweisungs-Pushdown auf die DAO-
Schicht übertragen zu können, wird diese Wrapper-Klasse eingeführt, die alle dafür
benötigten Informationen einer Variable zusammenfasst. Ausdrücke werden dabei als
Pseudovariablen ohne ID übergegeben. Insbesondere wird dabei im Attribut ID der
Primärschlüssel aus der Tabelle BPEL_XML_DATA der jeweiligen Variable sowie im
Fall von Ausdrücken in exprContext Referenzen auf enthaltene Variablen gespeichert.
In varType wird eine durch den Prototyp eingeführte Typunterscheidung von Variablen
festgehalten, die zur Umsetzung verschiedener Pushdown-Techniken verwendet wird.

• VarType VarType ist eine Aufzählung möglicher Typen, die bei einer Zuweisung auf-
treten können und wird in VariableContext verwendet. Die Typen entsprechen dabei

56



5.4 Änderungen durch den ODE-TI Prototyp

+
g

e
tN

a
m

e
()

 :
 s

tr
in

g

+
g

e
tV

a
ri
a

b
le

(e
in

  
: 

s
tr

in
g
) 

: 
X

m
lD

a
ta

D
A

O

+
g

e
tV

a
ri
a

b
le

s
()

 :
 C

o
lle

c
ti
o

n
 <

X
m

lD
a

ta
D

A
O

>

+
d

a
ta

A
s
s
ig

n
B

y
C

o
n

te
x
t(

e
in

  
: 
V

a
ri
a

b
le

C
o

n
te

x
t,
 e

in
  
: 

V
a

ri
a

b
le

C
o

n
te

x
t)

 :
 v

o
id

+
in

D
a

ta
b

a
s
e

X
P

a
th

(e
in

  
: 

lo
n

g
, 

e
in

  
: 

Q
N

a
m

e
, 
e

in
  
: 

s
tr

in
g
, 

e
in

  
: 
N

S
C

o
n

te
x
t)

 :
 N

o
d

e

+
in

D
a

ta
b

a
s
e

E
x
p

re
s
s
io

n
(e

in
  
: 
s
tr

in
g
, 

e
in

  
: 

N
S

C
o

n
te

x
t,
 e

in
  
: 

H
a

s
h

M
a

p
<

S
tr

in
g

,V
a

ri
a

b
le

C
o

n
te

x
t>

) 
: 

N
o

d
e

+
in

v
o

k
e

W
S

(e
in

  
: 
lo

n
g

, 
e

in
  
: 
lo

n
g

, 
e

in
  
: 

Q
N

a
m

e
, 

e
in

  
: 
s
tr

in
g
, 

e
in

  
: 
s
tr

in
g

) 
: 
v
o

id

«
in

te
rf

a
c
e

»

S
c

o
p

e
D

A
O

+
g

e
tI
d

()
 :
 l
o

n
g

+
g

e
tN

a
m

e
()

 :
 s

tr
in

g

+
g

e
t(

) 
: 
N

o
d

e

+
s
e

t(
e

in
  
: 
N

o
d

e
) 

: 
v
o

id

+
s
e

tD
e

ta
c
h

e
d

(e
in

  
: 

b
o

o
l)
 :
 v

o
id

«
in

te
rf

a
c
e

»

X
m

lD
a

ta
D

A
O

#
u

p
d

a
te

()
 :
 v

o
id

#
h

ib
e

rn
a

te
F

lu
s
h

()
 :
 v

o
id

#
id

n
Q

u
e

ri
e

s

H
ib

e
rn

a
te

D
a

o

-_
v
a

ri
a

b
le

s
 :
 H

a
s
h

M
a

p
<

S
tr

in
g

,X
m

lD
a

ta
D

A
O

>

-_
s
c
o

p
e

 :
 H

S
c
o

p
eS

c
o

p
e

D
a

o
Im

p
l

«
e

x
te

n
d

s
»

«
im

p
le

m
e

n
ts

»

+
g

e
tI
d
()

 :
 l
o

n
g

+
s
e

tI
d
(e

in
  
: 
lo

n
g

) 
: 
v
o

id

-_
id

 :
 l
o

n
gH

O
b

je
c

t

+
g

e
tV

a
ri
a

b
le

s
()

 :
 S

e
t 
<

H
X

m
lD

a
ta

>

+
s
e

tV
a

ri
a

b
le

s
(e

in
  
: 
S

e
t 
<

H
X

m
lD

a
ta

>
) 

: 
v
o

id

-_
v
a

ri
a

b
le

s
 :
 S

e
t 
<

H
X

m
lD

a
ta

>

-_
n

a
m

e
 :
 s

tr
in

g

H
S

c
o

p
e

«
e

x
te

n
d

s
»

+
g

e
tD

a
ta

()
 :
 b

y
te

[]

+
s
e

tD
a

ta
(e

in
  
: 

b
y
te

[]
) 

: 
v
o

id

-_
d

a
ta

 :
 b

y
te

[]

-_
n

a
m

e
 :
 s

tr
in

g

-_
s
im

p
le

V
a

lu
e

 :
 s

tr
in

g

-_
s
im

p
le

T
y
p

e
 :
 b

o
o

l

-_
d

e
ta

c
h

e
d

 :
 b

o
o

l

H
X

m
lD

a
ta

«
e

x
te

n
d

s
»

-_
d

a
ta

 :
 H

X
m

lD
a

ta

-_
n

o
d

e
 :
 N

o
d

e

X
m

lD
a

ta
D

a
o

Im
p

l
«

im
p

le
m

e
n

ts
»

«
e

x
te

n
d

s
»

«
u

s
e

s
»

«
u

s
e

s
»

«
u

s
e

s
»

+
g

e
tS

c
o

p
e

(e
in

  
: 
lo

n
g

) 
: 
S

c
o

p
e

D
A

O

«
in

te
rf

a
c
e

»

P
ro

c
e

s
s

In
s

ta
n

c
e

D
A

O

«
u

s
e

s
»

+
ID

 :
 l
o

n
g

+
v
a

rT
y
p

e
 :
 V

a
rT

y
p

e

+
ty

p
e

 :
 Q

N
a

m
e

+
n

a
m

e
s
p

a
c
e

s
 :
 N

S
C

o
n

te
x
t

+
p

a
th

 :
 s

tr
in

g

+
e

x
p

rC
o

n
te

x
t 

: 
H

a
s
h

M
a

p
<

S
tr

in
g

,V
a

ri
a

b
le

C
o

n
te

x
t>

V
a

ri
a

b
le

C
o

n
te

x
t

+
M

E
S

S
A

G
E

+
E

L
E

M
E

N
T

+
C

O
M

P
L

E
X

X
S

D

+
S

IM
P

L
E

X
S

D

+
E

X
P

R
E

S
S

IO
N

«
e

n
u

m
e

ra
ti
o

n
»

V
a

rT
y

p
e

«
in

te
rf

a
c
e

»

In
te

g
ra

te
d

D
a

ta
b

a
s

e
N

a
ti

v
e

Q
u

e
ri

e
s

ID
N

D
B

2
ID

N
P

o
s

tg
re

S
Q

L

«
u

s
e

s
»

A
bb

il
du

ng
5.

9:
U

M
L-

D
ia

gr
am

m
de

r
m

od
ifi

zi
er

te
n

D
A

O
-S

ch
ic

ht
.D

ie
ei

ng
er

ah
m

te
n

K
om

po
ne

nt
en

w
ur

de
n

hi
nz

ug
ef

üg
t,

di
e

w
ei

ße
n

w
ur

de
n

im
Ve

rg
le

ic
h

zu
A

bb
.5

.4
ve

rä
nd

er
t.

G
ra

u
ei

ng
ef

är
bt

e
K

om
po

ne
nt

en
w

ur
de

n
ni

ch
t

m
od

ifi
zi

er
t

(V
gl

.[
W

ag
1
1
])

.

57



5 Architektur von Apache ODE

den Typen aus dem OModel von ODE (OMessageVarType, OElementVarType,...). Die
Typen COMPLEXXSD und SIMPLEXSD entsprechen dem Typ OXsdTypeVarType mit
den Eigenschaften simple=false bzw. simple=true.

• IntegratedDatabaseNativeQueries Diese Schnittstelle kapselt alle SQL-Anfragen und
Fragmente, die für das Zusammenstellen der Anfragen an das DBS benötigt werden.
Diese Schnittstelle wurde erstellt, um verschiedene Datenbanksysteme anbinden zu
können, da die Middleware Hibernate keine eigenen Möglichkeiten zur internen XML-
Verarbeitung bietet. Diese Schnittstelle wird innerhalb von ScopeDaoImpl verwendet,
um die konkreten SQL-Anfragen an das DBS zu generieren. Beim ODE-TI Prototyp
wurden einige Techniken neben DB2 auch für das DBS PostgreSQL9 implementiert. Für
diese Arbeit wird jedoch nur die DB2-Implementierung betrachtet, da sich PostgreSQL
nicht als geeignet erwiesen hat, um alle Pushdown-Konzepte zu realisieren [Wag11].

Hauptmethoden von ScopeDAO

Hier weden kurz die Methoden vorgestellt, die die Anweisungen der umgesetzten Pushdown-
Konzepte an das DBS weitergeben.

• invokwWS ruft eine benutzerdefinierte Funktion (UDF) des DBS auf, die einen
Webservice-Aufruf erzeugt. Sie besitzt die zwei Parameter inputVar und outputVar,
die für die Primärschlüssel der Variablen stehen, die als Eingangs- bzw. Ergebnisvaria-
ble des Webservice-Aufrufs agieren. Die übrigen Parameter der Funktion dienen zur
Identifikation der Webservice-Operation.

• inDatabaseXpath stellt SQL-Anfragen für synchronen Pushdown innerhalb von Zu-
weisungen zusammen und liefert das Ergebnis als (XML-) Node. Im Gegensatz zu
inDatabaseExpression kann nur auf eine Variable referenziert werden, die Methode stellt
damit einen Sonderfall des Ausdruckauswertungs-Pushdowns dar.

• inDatabaseExpression stellt die SQL-Abfrage für den synchronen Pushdown eines
allgemeinen Ausdrucks zusammen und liefert das Ergebnis als (XML-) Node. In
einem Parameter xPath wird der auszuwertende Ausdruck gespeichert, während ein
Parameter exprContext alle im Ausdruck vorkommenden Variablen als Hashtabelle
mehrerer VariableContext-Objekte speichert.

• dataAssignByContext ist für den (asynchronen) Zuweisungs-Pushdown verantwort-
lich. Diese Methode implementiert die veränderte Zuweisungslogik der ASSIGN-
Aktivität innerhalb der DAO-Schicht. Als Parameter übernimmt sie den VariableContext
der linken sowie die rechten Seite einer Zuwesiung (lContext, rContext). Sie sorgt
dafür, dass innerhalb des DBS die Zuweisung der rechten Seite an die linke Seite
erfolgt. In rContext kann dabei entsprechend der Definition von VariableContext ent-
weder eine Variable oder ein Ausdruck enthalten sein. Die endgültige Durchführung
eines Zuweisungs-Pushdowns stellt sich unter Zuhilfenahme von zahlreichen weiteren

9PostgreSQL - http://www.postgresql.org/

58

http://www.postgresql.org/


5.4 Änderungen durch den ODE-TI Prototyp

Methoden zusammen. Dabei werden z.B. Ausdruckauswertungen nach dem selben
Prinzip wie bei inDatabaseExpression durchgeführt, bevor das Ergebnis der linken Seite
Zugewiesen wird.

5.4.3 Runtime-Schicht

Die in der DAO-Schicht vorgestellten Veränderungen reichen nicht aus, um die Pushdown-
Techniken bei der Workflowausführung zu verwenden. Um dies zu bewerkstelligen müssen
noch für alle BPEL-Aktivitäten, die nach einem Pushdown-Konzept ausgeführt werden
sollen, die Ausführungslogik so verändert werden, dass die neu implementierten Methoden
der DAO-Schicht aufgerufen werden. Die Hauptarbeit in der Runtime-Schicht besteht nun
darin, Informationen zu Variablen und Ausdrücken aus dem OModel zu extrahieren und in
geeigneter Form (direkt oder durch die Wrapperklasse VariableContext) an die DAO-Schicht
zu übergeben, die dann die entsprechenden Operationen im DBS durchführt. Abb. 5.10

zeigt das modifizierte UML-Diagramm der Runtime-Schicht. Unveränderte Komponenten
sind grau eingefärbt, weiße Komponenten wurden in irgendeiner Weise modifiziert, um
Pushdown-Techniken zu realisieren. Im Folgenden werden die einzelnen Änderungen kurz
vorgestellt.

• BpelRuntimeContext und BpelRuntimeContextImpl stellen vier Pushdown-
Methoden (inDatabaseAssign, inDatabaseExpressionAssign, inDatabaseXPath,
inDatabaseXPath-Expression) bereit, die ausschließlich von ScopeFrame aus auf-
gerufen werden. Hier werden aufgelöste Variablen und Ausdrücke übernommen und
die dazugehörigen für die DAO-Schicht benötigten Informationen extrahiert. Diese
Informationen werden ggf. in Objekte der Wrapper-Klasse VariableContext überführt.
Die Methode inDatabaseInvoke wird direkt von der INVOKE-Aktivität aufgerufen.

• ScopeFrame stellt drei Methoden (inDatabase*) bereit, die von den einzelnen BPEL-
Aktivitäten verwendet werden können, um einen Pushdown einzuleiten. Der
Aufruf von inDatabaseAssign führt zu einem asynchronen Zuweisungs-Pushdown.
Der Aufruf von inDatabase-XPathExpression bewirkt einen allgemeinen synchronen
Ausdruckauswertungs-Pushdown, der auch für die Evaluierung von Bedingungen in
Kontrollstrukturen und Schleifen genutzt werden kann.

• ACTIVITY und Unterklassen leiten eine Pushdown-Operation ein, indem sie die neu-
en Methoden von ScopeFrame aufrufen. Eine Ausnahme bildet die Aktivität INVOKE,
die direkt auf Methoden von BpelRuntimeContext zugreift.

Durch diese Aufteilung der Methoden zur Realisierung von Pushdowns auf die verschiede-
nen Runtime-Komponenten können die implementierten Methoden von weiteren Aktivitäten
und eventuell auch für die Umsetzung anderer Konzepte wiederverwendet werden.

59



5 Architektur von Apache ODE

+readVariable(ein  : long, ein  : string, ein  : bool) : Node

+writeVariable(ein  : VI, ein  : Node) : Node

+invoke(ein  : Operation, ein  : Node) : string

+getExpLangRuntime() : <nicht spezifiziert>

+inDatabaseAssign(ein  : VI, ein  : VI, ein  : OAssign.Copy) : void

+inDatabaseExpressionAssign(ein  : VI, ein  : OXPath10Expression, ein  : HashMap<String,VI>, ein  : OAssign.Copy) : void

+inDatabaseXpath(ein  : VI, ein  : RValue) : Node

+inDatabaseXpathExpression(ein  : OXPath10Expression, ein  : HashMap<String,VI>) : Node

+inDatabaseInvoke(ein , ein  : Operation, ein  : VI, ein  : VI) : void

«interface»

BpelRuntimeContext

+declaration : OScope.Variable

+scopeInstance : long

VariableInstance (VI)

-_dao : ProcessInstanceDAO

BpelRuntimeContextImpl

#getBpelRuntimeContext() : BpelRuntimeContext

BpelJacobRunnable

+fetchVariableData(ein  : VI, ein  : bool) : Node

+commitChanges(ein  : VI, ein  : Node) : void

+inDatabaseAssign(ein  : OAssign.Copy) : void

+inDatabaseXPath(ein  : RValue) : Node

#_self : ActivityInfo

#_scopeFrame : ScopeFrame

ACTIVITY

+resolve(ein  : OScope.Variable) : VI

+fetchVariableData(ein  : BpelRuntimeContext, ein  : VI, ein  : bool) : Node

+writeVariable(ein  : BpelRuntimeContext, ein  : VI, ein  : Node) : Node

+commitChanges(ein  : BpelRuntimeContext, ein  : VI, ein  : Node) : Node

+inDatabaseAssign(ein  : BpelRuntimeContext, ein  : VI, ein  : VI, ein  : OAssign.Copy) : void

+inDatabaseXPath(ein  : BpelRuntimeContext, ein  : VI, ein  : RValue) : Node

+inDatabaseXPathExpression(ein  : BpelRuntimeContext, ein  : Expression) : Node

-oscope : OScope

-parent : ScopeFrame

ScopeFrame

«implements»

+run() : void

-copy(ein  : OAssign.Copy) : void

-evalLValue(ein  : LValue) : Node

-evalRValue(ein  : RValue) : Node

-evalQuery(ein  : OExpression) : Node

ASSIGN

+o : OActivity

ActivityInfo

+run() : void

INVOKE

+run() : void

-evaluateCondition(ein  : OExpression) : int

FOREACH

«uses»

«uses»«uses»

«uses»

Abbildung 5.10: UML-Diagramm der modifizierten Runtime-Schicht. Weiße Komponenten
wurden im Vergleich zu Abb. 5.6 verändert, grau eingefärbte

Komponenten wurden nicht modifiziert (Vgl. [Wag11]).

5.4.4 Funktionalität des Prototyps

Das Konzepte des Zuweisungs-Pushdowns sowie des Ausdruckauswertungs-Pushdowns
wurden für XPath-Ausdrücke in IBM DB2 vollständig implementiert. Der Webservice-
Pushdown wurde rudimentär implementiert, hier fehlt noch eine Logik zur Fehlerbehand-
lung und Fehlerweitergabe an Apache ODE aus dem DBS heraus. Für die Evaluation der
Laufzeit des Webservice-Pushdowns ist die bestehende Implementierung jedoch zureichend.
Generell wird im Falle eines Fehlers, z.B. bei Auftreten einer Ausnahme in einer der neuen
Methoden, die ursprüngliche Logik der entsprechenden Aktivität ausgeführt.

60



5.4 Änderungen durch den ODE-TI Prototyp

Im einzelnen wurden generelle Pushdown-Funktionen für die Aktivitäten ASSIGN, INVOKE,
FOREACH, WHILE, REPEATUNTIL, IF, ONALARM, WAIT und für TransitionConditions
umgesetzt. Gegenstand dieser Arbeit sind die nicht aufgeführten Aktivitäten RECEIVE,
PICK, REPLY und ON_EVENT, sowie die Erweiterung von ASSIGN um den Literal-Pushdown.
Außerdem sollen nach Möglichkeit alle Pushdown-Konzepte neben XPath auch XQuery bzw.
pureXML als Ausdrucksprache im Zusammenspiel mit DB2 unterstützen.

61





6 Implementierung der konzeptionellen
Erweiterungen

In diesem Kapitel werden Implementierungen der in Kapitel 4 eingeführten, neuen
Pushdown-Konzepte auf der Grundlage des ODE-TI-Prototyps vorgestellt. Damit wird
die in Abschnitt 5.4 vorgestellte Implementierung erweitert. In den folgenden Unterkapiteln
werden die durch diese Arbeit entwickelten Änderungen an betroffenen Komponenten von
ODE-TI im Detail beschrieben.

Bevor die bestehende Implementierung verändert wurde, wurden alle durch den ODE-
TI-Prototyp vorgenommenen Änderungen an Apache ODE auf die zum Zeitpunkt dieser
Arbeit aktuellste ODE Version 1.3.5 portiert, um bei der Weiterentwicklung der Pushdown-
Implementierungen von den Bugfixes und Verbesserungen1 der neueren Version zu profitie-
ren.

Nach jedem erfolgreich ausgeführten Pushdown wird die interne Workflowvariable, die ohne
den Pushdown verändert worden wäre, mittels der Metode setDetached ihres DAO-Objekts
als veraltet gekennzeichnet. Vor jeder Verwendung von internen Workflowvariablen wird
diese Eigenschaft durch die Implementierungen des ODE-TI-Prototyps abgefragt und bei
Bedarf die Variable mit ihrem Wert aus der Datenbank synchronisiert. Dieser Fall sollte nach
Fertigstellung aller Pushdown-Implementierungen idealerweise nicht mehr auftreten, da
dann alle Variablenoperationen ausnahmlos im DBS stattfinden sollten. Die hier vorgestellten
Erweiterungen tragen zum Teil dazu bei.

6.1 Literal-Pushdown

Zur Implementierung des Literal-Pushdowns müssen Veränderungen zur Realisierung des
schreibenden sowie des lesenden Teils (vgl. Abschnitt 4.1) vorgenommen werden. Der
lesende Teil, bei dem die Literale zur Laufzeit abgerufen werden, muss innerhalb der
Zuweisungslogik in der Runtime-Schicht von ODE implementiert werden. Der schreibende
Teil des Pushdowns wird nach Variante (b) von Abbildung 4.1 in den BPEL-Compiler von
ODE implementiert. Außerdem muss das Datenbankschema verändert werden, um die
zusätzlichen Literalwerte aufzunehmen. Die genauen Änderungen an den Komponenten
werden nun vorgestellt.

1https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12310270&version=12314243

63

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12310270&version=12314243


6 Implementierung der konzeptionellen Erweiterungen

BPEL_LITERALS

PK ID bigint

 DATA xml

Abbildung 6.1: Tabellenschema für die Speicherung von Lieralwerten.

+startElement(in localName : String, in atts : Attributes, in ...)
+endElement(in localName : String, in ...)

-literalcount : int
-currentID : long
-con : Connection

DOMBuilderContentHandler

Abbildung 6.2: Veränderte Version des DOMBuilderContentHandler in UML-Notation. (vgl.
Abb. 5.7)

6.1.1 Datenbankschema

Um Literalwerte in der Datenbank speichern zu können, muss dort zunächst ein geeigneter
Ort gefunden werden. Dazu wird eine neue Tabelle mit dem Namen BPEL_LITERALS
erzeugt. Das Schema der neuen Tabelle ist in Abbildung 6.1 dargestellt.

Ein Literalwert wird in das XML-Feld DATA einer Zeile der Tabelle BPEL_LITERALS abgelegt.
Die Spalte ID ist Primärschlüssel der Tabelle und dient der eindeutigen Identifikation eines
gespeicherten Lietrals.

6.1.2 BPEL-Compiler

Die Architektur des BPEL-Compilers wurde in Abschnitt 5.3 vorgestellt. Seine Komponenten
sollen nun so geändert werden, dass Lieralwerte während des Kompiliervorgangs eines BPEL-
Prozesses aus der Quelldatei in das DBS geschrieben werden. Um dies zu realisiren, wurde
lediglich die Klasse DOMBuilderContentHandler modifiziert. Die wichtigsten Bestandteile
der daraus resultierenden Klasse sind in Abbildung 6.2 in UML-Notation in Anlehnung an
Abbildung 5.7 dargestellt.

Die Methode startElement wird immer dann aufgerufen, wenn beim zeilenweisen Parsen
der Quelldatei der Beginn eines Elementknotens festgestellt wird. Dabei wird der Name

64



6.1 Literal-Pushdown

des beginnenden Elements im Parameter localName übergeben. Über den Parameter atts
werden zudem die Attribute des beginnenden Elements als Attributes2-Objekt übergeben. Die
Attribute des Elementknotens stehen also innerhalb der Methode startElement zur Verfügung
und können hier während des Parsevorgangs manipuliert werden.

In der Variablen literalcount wird die Anzahl gefundener Literale beim Parsen der Quelldatei
festgehalten. Diese wird zu Beginn des Parsevorgangs mit dem Wert 0 initialisiert und in der
Methode startElement immer dann um den Wert 1 erhöht, wenn im Parameter localName der
Wert „literal“ übergeben wird. Innerhalb von BPEL-Zuweisungen ist das Umschließen von
Literalwerten mit dem Wurzelelement <literal ...>...</literal> durch die BPEL-Spezifikation
vorgeschrieben. Während der weiteren Ausführung der Methode startElement wird die
Variable literalcount als Identifikationsnummer des aktuellen Literalwerts verwendet. Unter
Zuhilfenahme der Systemzeit wird daraus zu jedem Literalwert ein eindeutiger ID-Wert, der
später als Primärschlüssel in der Datenbanktabelle BPEL_LITERALS dient, erzeugt und in
der Variable currentID festgehalten.

Die Methode endElement wird immer dann aufgerufen, wenn beim Parsen das Ende eines
Elementknotens festgestellt wird. Zu diesem Zeitpunkt ist der endende Elementknoten
vollständig geparst worden und es kann auf seinen kompletten Inhalt zugegriffen werden.
Jedem Aufruf der Methode endElement geht immer ein Aufruf die Methode startElement
voraus. Handelt es sich bei dem Element um ein Literal, wird immer der gesamte Inhalt
als Blattknoten aufgefasst, sodass zwischen dem Aufruf von startElement und endElement
eines Literalknotens kein weiterer Aufruf der beiden Methoden stattfindet. Insbesondere
beinhaltet dann die Variable currentID bei jedem Aufruf von endElement noch den Wert, der
durch startElement des selben Elements gesetzt wurde. Mit Hilfe der currentID und des nun
vollständig bekannten Inhalts des Literalknotens wird mittels der Datenbankverbindung
con sowie entsprechender Datenbankbefehle der Literalwert in die Tabelle BPEL_LITERALS
hinzugefügt und steht damit im DBS zur Verfügung.

Um einen in der Datenbank gespeicherten Literalwert zur Laufzeit wiederzufinden muss im
BPEL-Prozessmodell noch ein Verweis darauf hinterlassen werden. Zu diesem Zweck wurde
in der Methode startElement eine eindeutige ID für den Literalwert erzeugt. Dieser Wert wird
noch im selben Aufruf der Methode mit Hilfe des Attributobjekts atts des Literalknotens
als ein zusätzliches Attribut gespeichert. Damit kann jedem Literal über das neue Attribut
db2literal im Wurzelelement sein Inhalt in der Datenbank zugeordnet werden. Um Fehler
beim Literal-Pushdown zur Laufzeit leichter kompensieren zu können, wird durch den
schreibenden Teil die konventionelle Ausführungslogik und Datenstruktur, bis auf das
hinzufügen des ID-Attributs, nicht beeinflusst. Die Datenstruktur kann jedoch angepasst
werden, sodass nur noch das ID-Attribut eines Literals vorgehalten wird, was zur Entlastung
des Hauptspeichers während der Ausführung beitragen kann.

2org.xml.sax.Attributes

65



6 Implementierung der konzeptionellen Erweiterungen

+inDatabaseLiteral2Variable(in lvar : VariableContext, in literalKey : Long)

«interface»

ScopeDAO

ScopeDaoImpl

+literalAssignQuery() : String
+literalAssign2msg() : String

«interface»

IntegratedDatabaseNativeQueries
IDNDB2

«implements»

«implements»HibernateDao

«extends»

«uses»

Abbildung 6.3: Am Literal-Pushdown beteiligte Komponenten der DAO-Schicht in
UML-Notation. Unveränderte Klassen sind grau eingefärbt (vgl. Abb. 5.9).

1 UPDATE BPEL_XML_DATA

2 SET DATA = XMLDOCUMENT(

3 XMLQUERY('$literaldata/*[local-name()="literal"]/*'

4 PASSING (SELECT DATA

5 FROM BPEL_LITERALS

6 WHERE ID = :literalid)

7 AS "literaldata"))

8 WHERE ID = :varid

Listing 6.1: SQL-Befehl für die allgemeine Zuweisung eines Literalwerts in eine Variable

6.1.3 DAO-Schicht

Um den lesenden Teil des Literal-Pushdowns innerhalb des Zuweisungs-Pushdowns zu
ermöglichen, müssen entsprechende Funktionen und Datenbankbefehle in der DAO-Schicht
hinzugefügt werden (vgl. Abschnitt 5.4.2, Abb. 5.9). Die daran beteiligten Komponenten sind
in Abbildung 6.3 dargestellt.

Die Hauptmethode des lesenden Literal-Pushdown in der DAO-Schicht ist inDatabaseLite-
ral2Variable. Sie wird in der Schnittstelle ScopeDAO definiert und in ScopeDaoImpl imple-
mentiert. Hier wird anhand der ID eines Literalwertes seine Zuweisung an die Variable, die
durch lvar spezifiziert wird, durchgeführt. Der SQL-Befehl für die allgemeine Zuweisung
von Literalwerten in Variablen ist Listing 6.1 zu entnehmen.

Der SQL-Befehl wird durch die Methode literalAssignQuery aus der IDNDB2-
Implementierung der Schnittstelle IntegratedDatabaseNativeQueries bereitgestellt. Durch
den XPath-Ausdruck $literaldata/*[local-name()=“literal“]/* wird der Literalwert ohne das
Wurzelelement <literal> selektiert. Die geschachtelte SELECT-Anweisung liefert den Wert
des Literals aus der Literaltabelle, dieser wird in die Variable literaldata des XPath-Ausdrucks
kopiert. Die Platzhalter :literalid und :varid werden in der Methode inDatabaseLiteral2Variable
durch die entsprechenden ID-Werte des Literals bzw. der Variable ersetzt, bevor der Befehl

66



6.1 Literal-Pushdown

1 UPDATE BPEL_XML_DATA

2 SET DATA = XMLQUERY('COPY $new := $DATA

3 MODIFY DO REPLACE $new:lValuePath

4 WITH $literaldata/*[local-name()="literal"]/*

5 RETURN $new'

6 PASSING (SELECT DATA

7 FROM BPEL_LITERALS

8 WHERE ID = :literalid)

9 AS "literaldata")

10 WHERE ID = :varid

Listing 6.2: SQL-Befehl für die Zuweisung eines Literalwerts in eine Variable vom Typ
Nachricht mit spezifiziertem <part>-Teil.

an das DBS gesendet wird. Der SQL-Befehl hinter der Methode literalAssign2msg realisiert die
Zuweisung für Variablen vom Typ Nachricht. Eine solche Variable kann aus mehreren Teilen
(parts) bestehen, die nach dem BPEL-Standard individuell Ziel einer Zuweisung sein können,
sodass nicht der gesamte Variableninhalt ersetzt wird. Der entsprechende SQL-Befehl ist ist
ebenfalls in der Klasse IDNDB2 implementiert und Listing 6.2 zu entnehmen.

Bei den Befehlen innerhalb der XMLQUERY-Funktion in Listing 6.2 handelt es sich um
die XQuery-Erweiterung durch pureXML zur Manipulation von XML-Dokumenten (vgl.
Abschnitt 2.5). Die Anweisung MODIFY DO REPLACE bewirkt, dass der Inhalt des XML-
Dokuments an der durch einen XPath-Ausdruck spezifizierten Stelle mit dem Wert der
XPath-Auswertung hinter der WITH-Anweisung ersetzt wird. Dies wird benötigt, da hier die
Tabelle BPEL_XML_DATA innerhalb eines XML-Datenfelds verändert wird, und nicht mehr
auf Zeilenebene. Der Platzhalter :lValuePath wird vor der Ausführung durch einen XPath-
Ausdruck ersetzt, der dem in der Zweisung spezifizierten Nachrichtenteil (part) entspricht.
Die Platzhalter :literalid und :varkey werden, wie bei allgemeinen Literalzuweisungen, durch
die Primärschlüssel des verwendeten Literals bzw. der zu verändernden Variable ersetzt.

6.1.4 Runtime-Schicht

Wie bereits bei den Pushdown-Techniken des ursprünglichen ODE-TI-Prototyp muss auch
für den Literal-Pushdown die Zuweisungslogik in der Runtime-Schicht so geändert werden,
dass die neu eingeführten Methoden der DAO-Schicht aufgerufen werden, um so die Literal-
zuweisung innerhalb der Datenbank zu realisieren. Die daran beteiligten Komponenten sind
in Abbildung 6.4 dargestellt.

Eine Zuweisung wird innerhalb einer ASSIGN-Aktivität mit der Methode copy eingelei-
tet. Ist die rechte Seite der Zuweisung ein Literalwert, so wird im bisherigen Prototyp
der Zuweisungs-Pushdown abgebrochen und es wird mit einer konventionellen (original
ODE) Literalzuweisung innerhalb des Workflows fortgefahren. Mit dem Literal-Pushdown
wird nun der Zuweisungs-Pushdown auch beim Auftreten von Literalwerten weiterge-
führt. Zunächst wird das interne Objekt ocopy, das alle modellierten Informationen eines
Zuweisungsblocks enthält, an die Methode inDatabaseAssign seiner Superklasse ACTIVITY
weitergeleitet. Hier wird unter anderem die Referenz der Zielvariable aufgelöst und als

67



6 Implementierung der konzeptionellen Erweiterungen

+inDatabaseLiteralAssign(in lvar : VariableInstance, in ocopy : OAssign.Copy)

«interface»

BpelRuntimeContext

BpelRuntimeContextImpl

+inDatabaseAssign(in ocopy : OAssign.Copy)

ACTIVITY

+inDatabaseAssign(in ...)

ScopeFrame

+copy(in ocopy : OAssign.Copy)

ASSIGN«uses»

«uses»

«implements»

Abbildung 6.4: Am Literal-Pushdown beteiligte Komponenten der Runtime-Schicht in
UML-Notation. Unveränderte Klassen sind grau eingefärbt (vgl. Abb. 5.10).

VariableInstance-Objekt an den Scopeframe weitergegeben. In der dortigen Methode inDa-
tabaseAssign wird die rechte Seite des Zuweisungsblocks genauer analysiert und je nach
Art ihrer Ausprägung unterschiedliche Zuweisungsmethoden aufgerufen. An dieser Stelle
setzt der lesende Teil des Literal-Pushdown ein und ruft beim Auftreten eines Literalwerts
die neue Methode inDatabaseLiteralAssign der DAO-Schicht auf, die die Literalzuweisung
innerhalb des DBS durchführt (vgl. Abschnitt 6.1.3). Am Ende wird die interne Workflowva-
riable, die aufgrund der Pushdownlogik nicht verändert wurde, als veraltet gekennzeichnet
(setDetached).

6.2 Nachrichten-Pushdown

Der Nachrichten-Pushdown wird für die Zuweisung von Nachrichten in Variablen nach der
in Abschnitt 4.2 vorgestellten Variante (b), also ohne Datenaustausch zwischen Workflowin-
stanz und DBS, implementiert. Die umgekehrte Zuweisung von Variablen in Nachrichten
wird hier nicht im DBS umgesetzt, stattdessen wird dazu die verwendete Workflowvariable
vorher mit der Datenbank synchronisiert und auf konventionellem Wege verarbeitet. Die
Gründe hierfür wurden bereits in Abschnitt 4.2 erörtert.

6.2.1 Datenbankschema

Zur Realisierung von Zuweisungen zwischen Nachrichten- und Variableninhalten muss zu-
nächst deren Verarbeitung durch das DBS ermöglicht werden. Die Tabelle BPEL_MESSAGE,
in der Nachrichten durch die DAO-Schicht gespeichert werden, hält den Dateninhalt ei-
ner Nachricht als komprimiertes BLOB-Objekt vor. Dieses lässt sich nicht ohne weiteres
einem XML-Feld aus BPEL_XML_DATA zuweisen. Daher wurde analog zu den Änderun-
gen an HXMLData nun auch die Hibernate-Annotierung der Nachrichtenklasse HMessage
dahingehend geändert, dass die Daten als unkomprimierter XML-Wert gespeichert werden
(Listing 6.3). Das daraus resultierende (Teil-)Tabellenschema ist in Abbildung 6.5 abgebil-
det.

68



6.2 Nachrichten-Pushdown

BPEL_MESSAGE

PK ID bigint

 MESSAGE_DATA xml

Abbildung 6.5: Geändertes Hibernate-(Teil-)Tabellenschema für die Persistenz von
Nachrichten.

1 /**

2 * @hibernate.class table="BPEL_MESSAGE"

3 */

4 public class HMessage extends HObject {

5

6 private byte[] _data;

7 ...

8

9 /**

10 * @hibernate.property type="byte[]"

11 * @hibernate.column name="MESSAGE_DATA" sql-type="XML"

12 */

13 public byte[] getMessageData() {

14 return _data;

15 }

16 ...

17 }

Listing 6.3: Hibernate-Annotation der Klasse HMessage zur Speicherung des
Nachrichteninhalts als XML-Wert (vgl. Listing 5.1).

Durch das veränderte Tabellenschema wird eine direkte Manipulation zwischen den Spalten
BPEL_MESSAGE.MESSAGE_DATA und BPEL_XML_DATA.DATA innerhalb des DBS unter
Verwendung von SQL bzw. pureXML ermöglicht.

6.2.2 DAO-Schicht

In der DAO-Schicht müssen zur Realisierung des Nachrichten-Pushdowns ebenfalls ent-
sprechende Funktionen und Datenbankbefehle hinzugefügt werden. Die daran beteiligten
Komponenten sind in Abbildung 6.6 dargestellt.

Die Hauptmethode des Nachrichten-Pushdowns in der DAO-Schicht ist inDatabaseMes-
sage2Variable. Sie wird in der Schnittstelle MessageDAO definiert und in MessageDaoImpl
implementiert. Hier erfolgt die Zuweisung einer Nachricht, deren Primärschlüssel aus dem
der Klasse zugehörigen HMessage-Objekt ausgelesen wird, in die Variable, deren Primär-
schlüssel durch den Parameter varID übergeben wird. Der SQL-Befehl für die Zuweisung
einer Nachricht in eine Variable ist in der Klasse IDNDB2 implementiert und aus Listing 6.4

69



6 Implementierung der konzeptionellen Erweiterungen

+inDatabaseMessage2Variable(in varID : Long)

«interface»

MessageDAO

MessageDaoImpl

+msgAssignQuery() : String

«interface»

IntegratedDatabaseNativeQueries

IDNDB2

«implements»

«implements»HibernateDao

«extends»

«uses»

Abbildung 6.6: Am Nachrichten-Pushdown beteiligte Komponenten der DAO-Schicht in
UML-Notation. Unveränderte Klassen sind grau eingefärbt (vgl. Abb. 5.10).

1 UPDATE BPEL_XML_DATA

2 SET DATA = (SELECT MESSAGE_DATA

3 FROM BPEL_MESSAGE

4 WHERE ID = :mexID)

5 WHERE ID = :varID

Listing 6.4: SQL-Befehl für die Zuweisung des Inhalts einer Nachricht in eine Variable.

zu entnehmen. Die Platzhalter :mexID und :varID werden vor der Ausführung durch den
Primärschlüssel der verwendeten Nachricht bzw der zu verändernden Variable ersetzt.

6.2.3 Runtime-Schicht

Auch beim Nachrichten-Pushdown müssen die neuen Funktionen der DAO-Schicht durch
Komponenten der Runtime-Schicht aufgerufen werden. Die daran beteiligten Komponenten
sind in Abbildung 6.7 dargestellt.

Der Nachrichten-Pushdown wird innerhalb der Klasse PICK- bzw. EH_EVENT eingeleitet.
Die Klasse PICK implementiert die BPEL-Aktivitäten RECEIVE und PICK, während die
Klasse EH_EVENT einen OnEvent-Handler realisiert. Beide Aktivitäten reagieren auf einen
Nachrichteneingang in ODE (vgl. Abschnitt 5.2.3). Die Methode onRequestRcvd der Klasse
PICK wird aufgerufen, sobald eine Eingangsnachricht empfangen wurde. Darin wird die
Hilfsfunktion initVariable mit den Parametern mexID, der die Eingangsnachricht identifi-
ziert, und onMessage, indem unter anderem die Zielvariable spezifiziert ist, aufgerufen. Hier
erfolgt die Initialisierung der Zielvariablen mit dem Nachrichteninhalt. An dieser Stelle
ersetzt der Nachrichten-Pushdown die konventionelle Ausführungslogik, indem die neue
Methode inDatabaseReceiveMessage2Variable des BpelRuntimeContext aufgerufen wird. Diese
Methode übernimmt als Parameter wiederum die mexID der Nachricht sowie die aus dem
onMessage-Objekt aufgelöste Variable als VariableInstance (Parameter var). Hier wird das zur

70



6.3 XQuery-Pushdown

+inDatabaseReceiveMessage2Variable(in var : VariableInstance, in mexID : String)

«interface»

BpelRuntimeContext

BpelRuntimeContextImpl

+onRequestRcvd(in ...)
+initVariable(in mexID : String, in onMessage : OPickReceive.OnMessage)

PICK

«implements»

«uses»

+onRequestRcvd(in ...)

EH_EVENT «uses»

Abbildung 6.7: Am Nachrichten-Pushdown beteiligte Komponenten der Runtime-Schicht in
UML-Notation. (vgl. Abb. 5.10).

Nachricht gehörende MessageDAO-Objekt ermittelt und anschließend dessen Pushdown-
Methode inDatabaseMessage2Variable (vgl. Abschnitt 6.2.2) unter Angabe des Primärschlüssels
der aufgelösten Zielvariable aufgerufen. Schließlich wird die interne Workflowvariable, die
aufgrund der Pushdownlogik nicht verändert wurde, als veraltet gekennzeichnet (setDeta-
ched). Der gleiche Vorgang wird in der Klasse EH_EVENTfür OnEvent-Handler ausgelöst.
Hier wird die Methode inDatabaseReceiveMessage2Variable des BpelRuntimeContext direkt in
der Methode onRequestRcvd aufgerufen, das Vorgehen ist ansonsten das selbe wie in der
Klasse PICK.

6.3 XQuery-Pushdown

Um die Auswertung von XQuery-Ausdrücken innerhalb von BPEL-Aktivitäten unter Ver-
wendung von Pushdowns innerhalb der Datenbank zu ermöglichen, müssen alle an einer
Ausdruckauswertung beteiligten Komponenten erweitert werden:

• In der DAO-Schicht werden datenbankspezifische SQL- bzw. pureXML-Befehle in
implementiert, mit deren Hilfe die XQuery-Audrücke an das DBS übermittelt werden.
Dies geschieht, ebenso wie bei den anderen Pushdownarten, in der Klasse IDNDB2.

• In der Runtime-Schicht muss innerhalb der Pushdown-Logik jeder Aktivität, die XQuery
unterstützen soll, über eine Fallunterscheidung die neuen Methoden der DAO-Schicht
aufgerufen werden. Diese Fallunterscheidung bewirkt bisher beim Auftreten eines
XQuery-Ausdrucks, dass die Pushdown-Logik abgebrochen wird und die Aktivität
auf konventionelle Art durchgeführt wird, wodurch wiederum Daten entstehen, die
zunächst nur im Workflowkontext verfügbar sind.

71



6 Implementierung der konzeptionellen Erweiterungen

6.4 Einschränkungen der Funktionalität des erweiterten Prototyps

Die Implementierung des erweiterten Prototyps ließ sich aufgrund technischer und im-
plementierungslogischer Besonderheiten nicht reibungslos in den vorhandenen ODE-TI-
Prototyp integrieren.

Um beim Literal-Pushdown auch größere Literalwerte (>32 KB) in der DB2 speichern zu
können, wird im BPEL-Compiler ein SQLXML-Objekt als Hostvariable für den Datenbankbe-
fehl verwendet. Um diese Variable korrekt an das DBS zu übermitteln, wird ein aktualsierter
JDBC-Treiber (db2jcc4.jar) für DB2 benötigt, der separat von IBM bezogen werden muss.

Die Verwendung der Wrapperelemente <temporary-simple-type-wrapper/> und <xsd-complex-
type-wrapper/> führt bei Literalwerten im Zusammenhang mit den bestehenden Prototyp-
Implementierungen zu Komplikationen bei der Auswertung von XPath-Ausdrücken in der
Datenbank. Die Funktionalität des Literal-Pushdowns ist evtl. nicht mit allen möglichen
Folgeoperationen kompatibel.

72



7 Evaluation des erweiterten Prototyps

In diesem Kapitel wird die in Kapitel 6 vorgestellte Implementierung des erweiterten ODE-TI-
Prototypen anhand von Laufzeitmessungen evaluiert. Aufgrund technischer Komplikationen
bei der endgültigen Implementierung konnte im Rahmen dieser Arbeit nur eine rudimentäre
Evaluation der neuen Pushdown-Konzepte vorgenommen werden.

7.1 Testfälle

Um das Laufzeitverhalten des erweiterten Prototyps zu evaluieren, wurden Testfälle verwen-
det, die bereits beim bestehenden Prototypen zum Einsatz kamen.

Zur Evaluation des Literal-Pushdowns steht die Laufzeit von ASSIGN-Aktivitäten ohne
Ausdruck im Vordergrund, da jeder Literalwert vor seiner weiteren Verwendung immer
zuerst einer Variablen zugewiesen wird. Die darauffolgenden Aktivitäten bleiben vom Literal-
Pushdown unbeeinflusst. Für die Messungen werden die selben BPEL-Prozesse verwendet,
die schon zur Evaluation des Zuweisungs-Pushdowns (vgl. Abschnitt 3.3) eingesetzt wurden.
Gemessen wurden Prozesse mit Literalwerten von 100 KB, 500 KB, 4 MB, 9MB sowie 50

MB Größe. Zur Auswertung der Messergebnisse wird in erster Linie die durchschnittliche
Laufzeit aller Ausführungsinstanzen verwendet (im Normalfall 100 Instanzen). Innerhalb des
Testprozesses wird ein Literalwert zunächst einer Variable zugewiesen, bevor diese Variable
anschließend mit Hilfe des Zuweisungs-Pushdowns einer anderen Variable zugewiesen
wird.

Zur Evaluation des Nachrichten-Pushdowns wurde ein einzelner, allgemeiner Testfall erzeugt,
der mit verschieden Eingangsnachrichten der Größen 100 KB, 500 KB, 4 MB und 9 MB
aufgerufen wird. Testläufe mit 50 MB Nachrichtengröße waren nicht möglich, da dabei
die Kommunikationsinfrastruktur stets mit einer Hauptspeicherausnahme abbrach. Der
zugrundeliegende Prozess betseht aus einer Receive-Aktivität, einer Assign-Aktivität, die
den kompletten Inhalt der Eingangsnachricht in die Ausgangsnachricht kopiert, sowie einer
Reply-Aktiviät, die diese zurückliefert.

7.2 Testumgebung

Alle Messungen wurden auf einem eigens für die Evaluation zur Verfügung gestellten
Testsystem durchgeführt. Es handelt sich dabei um einen Desktop-PC mit einer Quad-Core

73



7 Evaluation des erweiterten Prototyps

CPU (Intel Core2 Quad Q9300 @2.50 GHz), 4 GB RAM und installiertem Windows 7 Profes-
sional 64-Bit Betriebssystem. Als Datenbanksystem wurde IBM DB2 Advanced Enterprise
Server Edition v10.1.0.872 verwendet. Alle Messungen wurden auf der Workflowenginge
Apache ODE 1.3.5 unter Apache Tomcat 6.0 durchgeführt. Dabei wurden folgende Varianten
unterschieden:

• Original ODE Die Originalversion von Apache ODE 1.3.5 unter Verwendung von DB2

als internes DBS mit unverändertem (Hibernate-)Tabellenschema.

• Prototyp mit Literal-Pushdown Der auf ODE 1.3.5 portierte und um die neuen
Pushdown-Konzepte erweiterte Prototyp aus [Wag11] mit verändertem Datenbank-
schema (s. Kap. 5, Kap. 6) und ausgeschaltetem Nachrichten-Pushdown. Er dient zur
Messung der Instanzlaufzeiten bei eingeschaltetem Literal-Pushdown.

• Prototyp mit Nachrichten-Pushdown Der selbe Protoyp mit ausgeschaltetem Literal-
Pushdown und eingeschaltetem Nachrichten-Pushdown. Mit ihm sollen die Auswir-
kungen des Nachrichten-Pushdowns untersucht werden.

• Prototyp ohne Erweiterungen Der selbe Protoyp mit ausgeschaltetem Nachrichten-
und Literal-Pushdown. Er repräsentiert die Implementierung des alten ODE-TI Proto-
typs mit den bis dahin umgesetzten Pushdown-Konzepten. Er dient hauptsächlich als
Referenz für die Bewertung der neuen Pushdown-Konzepte.

Als Grundlage für Vergleiche wurden zunächst alle Messungen mit Original ODE durchge-
führt. Danach wurden die selben Testdurchläufe mit dem zu Untersuchenden Prototyp mit
Literal-Pushdown bzw. Prototyp mit Nachrichten-Pushdown und dann noch ein weiteres Mal
mit dem Prototyp ohne Erweiterungen durchgeführt. Dadurch erhält man zum einen einen
Überblick über die Leistungen der Pushdown-Implementierungen im Vergleich zu Original
ODE, zum anderen eine Gegenüberstellung der Pushdown-Implementierungen mit und
ohne der entsprechenden Erweiterung.

Die Gesamtlaufzeit des jeweiligen Testdurchlaufs wurde von der Startzeit der ersten Instanz
bis zum Zeitpunkt der letzten Tätigkeit der letzten Instanz mit Hilfe einer eine SQL-Anfrage
bestimmt. Apache ODE speichert die Informationen zu Ausführungsinstanzen in der Ta-
belle BPEL_INSTANCE. Die Testdurchläufe wurden mit Hilfe eines Perl-Skripts, das auch
in [Wag11] verwendet wurde, automatisiert mehrmals direkt nacheinander ausgeführt. Der
Ablauf einer Messung erfolgte nach folgenden Schritten:

1. Löschen aller Tabelleninhalte der verwendeten Datenbank, Tomcat-Logdateien sowie
der in ODE deployten Prozesse (processes-Verzeichnis).

2. Starten des Tomcat-Servers mit der gemessenen ODE-Variante.

3. Kopieren des Testprozesses in das processes-Verzeichnis und warten, bis er vollständig
deployt wurde. Bei den Prototyp-Varianten kann dies aufgrund des schreibenden
Literal-Pushdowns etwas länger dauern (vor allem bei sehr Großen Literalwerten).

4. Erster, vollständiger Durchlauf der automatischen Testfall-Ausführung (Perl-Skript).

74



7.3 Messergebnisse

5. Löschen aller Instanzdaten (BPEL_INSTANCE) in der Datenbank sowie des Inhalts der
Tomcat-Logdatei (Löschen der Datei ist zu diesem Zeitpunkt nicht möglich, da Tomcat
noch läuft).

6. Zweiter, vollständiger Durchlauf der automatischen Testfall-Ausführung.

7. Stoppen des laufenden Tomcat-Servers.

8. Speichern der Tomcat-Logdatei sowie vermerken der Gesamtlaufzeit und Anzahl der
gemessenen Instanzen.

Der zusätzliche, erste Durchlauf der Testfall-Ausführung wird durchgeführt, damit sich das
DBS zu Beginn eines neuen Testfalls auf die neuen Daten einstellen kann. Speziell die ersten
DB-Operationen eines neuen Testprozeses benötigen deutlich mehr Zeit als darauf folgende.
Im nächsten Abschnitt werden die Ergebnisse der Messungen vorgestellt und anschließend
diskutiert.

7.3 Messergebnisse

Um die Leistung der Pushdown-Konzepte zu untersuhen, werden alle Messergebnisse relativ
zur Laufzeit von Original ODE angegeben. Neben der Evaluation der neuen Pushdown-
Konzepte wird durch die Messung aller Varianten auch eine erneute Evaluation des ur-
sprünglichen Prototyps in der portierten Version mit der Originalversion von ODE 1.3.5
ermöglicht.

Bereits bei der Implementierung des urpsrünglichen Prototyps wurde festgestellt, dass die
verwendete Hibernate-DAO der Original Apache ODE Version die Daten erst nach Ende
der Instanz oder an bestimmten Stellen im Workflow (z.B. während eines INVOKE) in
die Datenbank überträgt und festschreibt [Wag11]. Da der Prototyp dieses Festschreiben
während der jeweiligen Aktivität durchführt, sind die isolierten Messwerte der einzelnen
Pushdown-Aktivitäten nicht direkt mit den Werten der Original ODE Variante vergleichbar.

7.3.1 Literal-Pushdown

Die Messergebisse sind in Abbildung 7.1 relativ zur Laufzeit von Original ODE in Prozent
dargestellt. Für die Literalgrößen 100 KB, 500 KB, 4 MB und 9 MB wurden jeweils 100

Testdurchläufe durchgeführt, für 50 MB nur 10 Durchläufe.

Vergleicht man die Zuweisungen bei untersdchiedlichen Datengrößen mit den Messergeb-
nissen aus Abschnitt 3.3.2 (Abb. 3.6), so fällt zunächst auf, dass die relativen Laufzeiten
wesentlich konstanter verlaufen, als bei den dortigen Messungen, die mit ODE 1.3.4 und
DB2 V9.7 durchgeführt wurden. Außerdem fällt hier die Verschlechterung des Prototyps
gegenüber Original ODE mit durchschnittlich ca. 130% gegenüber ca. 200% deutlich schwä-
cher aus. Somit hat der Zuweisungs-Pushdown ohne Ausdruck in ODE 1.3.5 mit DB2 10.1
ein besseres relatives Laufzeitverhalten als bei den vorigen Messungen. Diese Resultate

75



7 Evaluation des erweiterten Prototyps

117 

131 

161 

144 141 

115 
123 

145 

127 

140 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

100kb 500kb 4MB 9MB 50MB 

Prototyp mit 
Literal-Pushdown 

Prototyp ohne 
Erweiterungen 

Abbildung 7.1: Instanzlaufzeiten der Testprozesse mit unterschiedlich großen Literalwerten
(horizontale Achse) relativ zu Original ODE in Prozent (vertikale Achse) für
den Protoyp mit Literal-Pushdown sowie den Prototyp ohne Erweiterungen.

lassen sich nur durch Unterschiede in den verschiedenen Versionen von DB2 (verbesserte
Schreiboperationen) bzw. ODE erklären.

Vergleicht man die Laufzeiten der Prototyp-Varianten mit und ohne Literal-Pushdown mit-
einander, so ergeben sich ähnliche relative Laufzeiten, jedoch mit einer klaren Tendenz zu
Geschwindigkeitseinbußen bei eingeschaltetem Literal-Pushdown. Das schlechtere Lauf-
zeitverhalten mit Literal-Pushdown lässt sich implementierungstechnisch begründen. Beim
Prototypen ohne Erweiterungen wird der Literalwert in ODE intern zugewiesen und durch
Hibernate in die Datenbank geschrieben. Diese Vorgänge laufen offenbar effizienter ab als
die Zuweisung des Literalwerts aus der Literaltabelle in die Tabelle BPEL_XML_DATA.
Dies könnte mit der Tatsache zusammenhängen, dass für eine Literalzuweisung momentan
ein einfacher XPath-Ausdruck verwendet werden muss (s. Abschnitt 6.1, Listing 6.1), um
den Wert aus der Literaltabelle auszulesen, anstatt das gesamte Datenfeld in die andere
Tabelle zu kopieren. Es lässt sich also abschließend sagen, dass die Implementierung des
Literal-Pushdown in ihrer momentanen Form keinen Vorteil bezüglich der Laufzeit von
Literalzuweisungen darstellt, jedoch kann und sollte sie optimiert und anschließend erneut
evaluiert werden.

7.3.2 Nachrichten-Pushdown

Die Ergebisse der Messungen zum Nachrichten-Pushdown sind in Abbildung 7.2 relativ
zur Laufzeit von Original ODE in Prozent dargestellt. Für die Nachrichtengrößen 100 KB
und 500 KB wurden jeweils 100 Testdurchläufe durchgeführt, für 4 MB und 9 MB nur 50

Durchläufe. Alle Messungen umspannen auch die Zeit, die das aufrufende Skript zwischen
zwei Aufrufen benötigt, um die Rückantwort in Form einer Textdatei auf der Festplatte
zu speichern und die nächste Nachricht an ODE zu übermitteln. Bei den Messungen des

76



7.3 Messergebnisse

102 

92 

83 
80 

104 

96 
91 91 

0 

20 

40 

60 

80 

100 

120 

100kb 500kb 4MB 9MB 

Prototyp mit 
Nachrichten-Pushdown 

Prototyp ohne  
Erweiterungen 

Abbildung 7.2: Instanzlaufzeiten des Testprozesses mit unterschiedlich großen
Eingangsnachrichten (horizontale Achse) relativ zu Original ODE in

Prozent (vertikale Achse) für den Prototyp mit Nachrichten-Pushdown
sowie den Prototyp ohne Erweiterungen.

Nachrichten-Pushdowns wird diese Zeit durch die Größe der Eingangsnachricht beeinflusst
und fließt in die Gesamtlaufzeit mit ein.

Die Messungen zeigen zum einen einen Leistungsgewinn durch die Verwendung von
Pushdown-Techniken gegenüber Original ODE bei größeren Datenmengen im Allgemei-
nen, insbesondere aber auch eine Verbesserung durch die Verwendung des Nachrichten-
Pushdowns gegenüber des Prototyps ohne Erweiterungen. Der allgemeine Leistungsgewinn
bei steigender Datengröße lässt sich durch die Effizienz des DBS beim Zuweisungs-Pushdown
während des Kopierens der Eingangsvariable in die Ausgangsvariable erklären. Der Leis-
tungsgewinn durch den eingeschalteten Nachrichten-Pushdown lässt sich damit erklären,
dass die Implementierung der Nachricht-zu-Variable Zuweisung innerhalb des DBS effizien-
ter ist, als die Zuweisung innerhalb von ODE und das anschließende Festschreiben in der
Datenbank. Da hier die Zuweisung aus einer Datenbanktabelle in eine andere effizienter ist,
als die Verarbeitung in ODE, bestärkt dies die Annahme, dass der Literal-Pushdown nach
durch weitere Optimierungen ebenfalls zu einem Leistungsgewinn führen kann.

77



7 Evaluation des erweiterten Prototyps

7.3.3 Anwendungsfall

Das Szenario mit dem Testprozess aus dem Gebiet der Proteinmodellierung (vgl. Ab-
schnitt 2.3.1, Abschnitt 3.3) konnte im Rahmen dieser Arbeit aufgrund technischer Kom-
plikationen bei der Implementierung des Literal-Pushdowns nicht evaluiert werden. Erste
Versuche haben jedoch gezeigt, dass die Ausführung des Testprozesses unter der Testumge-
bung mit Original ODE bereits für Dateigrößen von 500 KB nicht korrekt durchläuft. Da eine
Auswertung mit dem erweitereten Prototypen zu diesem Zeitpunkt ebenfalls nicht möglich
ist, muss die Evaluation der Kombinierten Pushdown-Konzepte anhand des Anwendungs-
falls zu einem späteren Zeitpunkt erfolgen.

78



8 Zusammenfassung und Ausblick

Um große Datenmengen innerhalb von Workflows effizienter und zuverlässiger handhaben
zu können, wurden Konzepte zur Verbesserung der Workflowausführung durch Integration
eines DBS entwickelt. Dabei entstanden verschiedene Pushdown-Konzepte, die dem Work-
flow Aufgaben der Datenverarbeitung abnehmen und in das integrierte DBS auslagern. Diese
Konzepte wurden bereits implementiert und evaluiert, wobei sich herausstellte, dass durch
ihre Umsetzung eine erhöhte Zuverlässigkeit sowie für bestimmte Szenarien ein verbessertes
Laufzeitverhalten der Workflowausführung erreicht werden kann (vgl. Abschnitt 3.3.2).

In dieser Arbeit wurden zusätzliche Konzepte entwickelt, die zum Ziel hatten, die bestehen-
den Pushdown-Konzepte zu erweitern und zu vervollständigen. Dabei wurden die Konzepte
Literal-Pushdown, Nachrichten-Pushdown sowie XQuery-Pushdown herausgearbeitet, wobei im
Rahmen dieser Arbeit nur der Literal-Pushdown und der Nachrichten-Pushdown Implementiert
und evaluiert wurden.

Die beiden umgesetzten Pushdown-Konzepte wurden im Rahmen dieser Arbeit anhand
von Zeitessungen evaluiert. Dabei wurde festgestellt, dass sie im Zusammenspiel mit den
bisherigen Pushdown-Konzepten durchaus zu weiteren Leistungssteigerungen der Workflo-
wausführung führen können, sofern die entprechenden Erweiterungen mit einer effizien-
ten Implementierung umgesetzt werden. Bei der Evaluation des Nachrichten-Pushdowns
konnten Leistungssteigerungen bereits anhand der prototypischen Implementierung nach-
gewiesen werden (vgl. Abschnitt 7.3.2). Im Fall des Literal-Pushdowns tendierte dessen
prototypische Implementierung zu kleinen, aber erkennbaren Leistungseinbußen, wobei dort
aber bereits Ansätze für Optimierungen aufgezeigt wurden. Dennoch konnte dabei aufgrund
des verwendeten Testfalls eine allgemeine Leistungsverbesserung bei der Verwendung der
Pushdown-Konzepte im Vegleich zur Evaluation mit älteren Versionen von DB2 und ODE
festgestellt werden (vgl. Abschnitt 7.3.1).

8.0.4 Ausblick

Aufgrund von technischen Komplikationen bei der Implementierung ist die Evaluation
der erweiterten Konzepte nur rudimentär erfolgt. Insbesondere konnte keine Auswertung
von Testfällen für einen Anwendungsfall erfolgen, bei dem alle implementierten Konzepte
im Zusammenspiel miteinander untersucht weden. Als weiterführende Arbeit ist daher
zunächst die Verbesserung der Implementierung vorrangig zu behandeln. Nach Behebung
aller bestehenden Probleme an der prototypischen Implementierung (sowie ggf. weiterer
Optimierungen), kann eine detaillierte Evaluation anhand von Anwendungsfällen erfolgen.

79



8 Zusammenfassung und Ausblick

Von besonderem Interesse sind dabei Messungen am Anwendungsfall aus der Proteinmo-
dellierung, der bereits vom bestehenden ODE-TI-Prototypen zur Evaluation herangezogen
wurde (Abschnitt 3.3).

Nach der Verbesserung des erweiterten Prototyps und seiner Evaluation ist der nächste
Schritt eine tatsächliche Implementierung und Evaluation des XQuery-Pushdown. Dazu gehört
neben der Umsetzung innerhalb von Apache ODE auch das Erstellen geeigneter Testfälle
für Laufzeitmessungen unter Verwendung von XQuery-Ausdrücken. Je nach Komplexität
der dabei verwendeten Ausdrücke sowie der Größe der Daten ist durch die Auswertung
innerhalb des DBS, ähnlich wie beim bisherigen Pushdown mit XPath-Ausdrücken, ein
Vorteil gegenüber der konventionellen Implementierung innerhalb von ODE zu erwarten.

Die bereits durch [Wag11] (dort Kapitel 8) vorgestellen konzeptionellen Erweiterungen blei-
ben von dieser Arbeit weitestgehend unberührt. Die dort vorgeschlagene Referenzarchitektur,
bei der eine Trennung zwischen der DAO-Schicht und einer Pushdown-Schicht stattfindet,
sollte langfristiges Ziel bei der engen Integration von DBS in WfMS sein. Insbesondere
führt momentan die gemeinsame Nutzung von Datenbanktabellen durch Pushdownlogik
und Persistenzmanager zu gewissen Einschränkungen. So kann momentan beispielswei-
se eine Variable erst von einer Pushdown-Aktivität verwendet werden, nachdem diese
durch den Persistenzmanager in der Datenbank erzeugt worden ist. Idealerweise sollte eine
Pushdown-Implementierung komplett unabhängig von der DAO-Schicht eines gegebenen
WfMS sein.

80



Literaturverzeichnis

[AIL98] A. Ailamaki, Y. E. Ioannidis, M. Livny. Scientific workflow management by
database management. In Tenth Int Scientific and Statistical Database Management
Conf, pp. 190–199. 1998. (Zitiert auf Seite 31)

[AMA06] A. Akram, D. Meredith, R. Allan. Evaluation of BPEL to Scientific Workflows.
Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID’06),
2006. (Zitiert auf Seite 22)

[bpe] Web Services Business Process Execution Language Version 2.0 - OASIS Standard.
URL http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf. (Zitiert auf
den Seiten 21, 23 und 48)

[dom] Document Object Model (DOM). URL http://www.w3.org/DOM/. (Zitiert auf
Seite 14)

[G+
11] K. Görlach, et al. Guide to e-Science, chapter Conventional Workflow Technology

for Scientific Simulation, pp. 323–352. Springer, 2011. (Zitiert auf den Seiten 5, 17

und 20)

[KE06] A. Kemper, A. Eickler. Datanbanksysteme - Eine Einführung. Oldenbourg Verlag
München Wien, 6 edition, 2006. (Zitiert auf den Seiten 9 und 23)

[KKL+
05] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen,

P. Schmidt, I. Trickovic. WS-BPEL Extension for People - BPEL4People, 2005.
(Zitiert auf Seite 21)

[LR00] F. Leymann, D. Roller. Production Workflow - Concepts and Techniques. Prentice
Hall PTR, 2000. (Zitiert auf den Seiten 9 und 20)

[ode] ODE - Architectural Overview. URL http://ode.apache.org/

architectural-overview.html. (Zitiert auf den Seiten 5 und 44)

[RRS+11] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. SIMPL - A
Frameworrk for Accessing External Data in Simulation Workflows, 2011. (Zitiert
auf den Seiten 20 und 26)

[RSM] P. Reimann, H. Schwarz, B. Mitschang. DATA PROVISIONING TECHNIQUES
FOR SIMULATION WORKFLOWS. Unveröffentlichter Bericht des Instituts für
Parallel und Verteilte Systeme. (Zitiert auf den Seiten 5, 6, 26 und 27)

81

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.w3.org/DOM/
http://ode.apache.org/architectural-overview.html
http://ode.apache.org/architectural-overview.html


Literaturverzeichnis

[RSM11] P. Reimann, H. Schwarz, B. Mitschang. Design, Implementation, and Evaluation
of a Tight Integration of Database and Workflow Engines. Journal of Information
and Data Management, 2(3), 2011. (Zitiert auf den Seiten 5, 10, 18, 19, 28, 29, 30, 31,
32, 33 und 35)

[sql] ISO/IEC 9075. (Zitiert auf Seite 24)

[TDG07] I. Taylor, E. Deelman, D. Gannon. Workflows for e-Science - Scientific Workflows for
Grids. Springer, 2007. (Zitiert auf den Seiten 9 und 17)

[VSRM08] M. Vrhovnik, H. Schwarz, S. Radeschütz, B. Mitschang. An Overview of SQL
Support in Workflow Products. In IEEE 24th Int. Conf. Data Engineering ICDE, pp.
1287–1296. 2008. (Zitiert auf Seite 26)

[Wag11] F. Wagner. Nutzung einer integrierten Datenbank zur effizienten Ausführung von
Workflows. Diplomarbeit, Institut für Parallele und Verteilte Systeme, Universität
Stuttgart, 2011. (Zitiert auf den Seiten 5, 6, 10, 31, 36, 43, 45, 46, 47, 49, 51, 52, 55,
56, 57, 58, 60, 74, 75 und 80)

[xmla] Extensible Markup Language (XML) 1.0 (Fifth Edition). URL http://www.w3.

org/TR/REC-xml/. (Zitiert auf Seite 13)

[xmlb] XML Schema. URL http://www.w3.org/XML/Schema. (Zitiert auf Seite 13)

[xpa] XML Path Language (XPath) Version 1.0 - W3C Recommendation 16 November
1999. URL http://www.w3.org/TR/xpath/. (Zitiert auf Seite 15)

[xpd] XPDL Support and Resources. URL http://www.wfmc.org/xpdl.html. (Zitiert
auf Seite 17)

[xqu] XQuery 1.0: An XML Query Language (Second Edition). URL http://www.w3.

org/TR/xquery/. (Zitiert auf den Seiten 14 und 15)

Angegebene Links wurden zuletzt überprüft am: 06.12.2012

82

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xpath/
http://www.wfmc.org/xpdl.html
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/


Erklärung

Ich versichere, diese Arbeit selbstständig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

(Christian Ageu)


	1 Einführung
	1.1 Motivation
	1.2 Konventionen und rechliche Hinweise
	1.3 Gliederung

	2 Grundlagen
	2.1 Extensible Markup Language
	2.1.1 Dokumentstruktur
	2.1.2 Verarbeitung

	2.2 SOA und Webservices
	2.2.1 Service Oriented Architecture
	2.2.2 Webservices

	2.3 Workflows und Workflowmanagementsysteme
	2.3.1 Workflow-Klassen
	2.3.2 Architektur eines sWfMS

	2.4 Web Services Business Process Execution Language
	2.5 Datenbanksysteme

	3 Nutzung von Datenbanken in WfMS
	3.1 Ansätze zur Datenverarbeitung
	3.2 Ansätze zur Verbesserung der Integration von Datenbanken
	3.2.1 Konventionelle Funktionsweise von WfMS
	3.2.2 Konzept für eine stärkere Integration von DBS
	3.2.3 Techniken zur Verbesserung der Datenverarbeitung

	3.3 Prototypische Erweiterungen eines WfMS
	3.3.1 Prototypen und Aufbau der Zeitmessungen
	3.3.2 Testergebnisse

	3.4 Erweiterung von ODE-TI

	4 Konzeptionelle Erweiterungen
	4.1 Literal-Pushdown
	4.2 Nachrichten-Pushdown
	4.3 XQuery-Pushdown

	5 Architektur von Apache ODE
	5.1 Gesamtarchitektur
	5.2 Runtime im Detail
	5.2.1 OModel und BPEL-Typsystem
	5.2.2 ODE Hibernate DAO
	5.2.3 BpelRuntimeContext und Aktivitäten

	5.3 BPEL-Compiler
	5.4 Änderungen durch den ODE-TI Prototyp
	5.4.1 Datenbankschema
	5.4.2 DAO-Schicht
	Hauptmethoden von ScopeDAO

	5.4.3 Runtime-Schicht
	5.4.4 Funktionalität des Prototyps


	6 Implementierung der konzeptionellen Erweiterungen
	6.1 Literal-Pushdown
	6.1.1 Datenbankschema
	6.1.2 BPEL-Compiler
	6.1.3 DAO-Schicht
	6.1.4 Runtime-Schicht

	6.2 Nachrichten-Pushdown
	6.2.1 Datenbankschema
	6.2.2 DAO-Schicht
	6.2.3 Runtime-Schicht

	6.3 XQuery-Pushdown
	6.4 Einschränkungen der Funktionalität des erweiterten Prototyps

	7 Evaluation des erweiterten Prototyps
	7.1 Testfälle
	7.2 Testumgebung
	7.3 Messergebnisse
	7.3.1 Literal-Pushdown
	7.3.2 Nachrichten-Pushdown
	7.3.3 Anwendungsfall


	8 Zusammenfassung und Ausblick
	8.0.4 Ausblick

	Literaturverzeichnis

