Institut fiir Parallele und Verteilte Systeme
Abteilung Anwendersoftware

Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3344

Erweiterung und Evaluation eines
Prototyps flir eine enge
Integration zwischen Datenbank-
und Workflow-Engines

Christian Ageu

Studiengang: Informatik

Prufer: PD Dr. rer. nat. habil. Holger Schwarz
Betreuer: Dipl.-Inf. Peter Reimann

begonnen am: 17.Mai 2012

beendet am: 7.Dezember 2012

CR-Klassifikation: D.2.11,H.2.3, H.2.4, H.2.8, H.4.1

Inhaltsverzeichnis

1.2 Konventionen und rechliche Hinweise

Extensible Markup Language
2.1.1 Dokumentstruktur oo
2.1.2 Verarbeitung L L L
SOA und Webservices
2.2.1 Service Oriented Architecture
222 Webservices
Workflows und Workflowmanagementsysteme
2.3.1 Workflow-Klassen
2.3.2 Architektur eines sSWEMS o Lo oo
2.4 Web Services Business Process Execution Language

Ansidtze zur Datenverarbeitungo oL
3.2 Ansidtze zur Verbesserung der Integration von Datenbanken
3.2.1 Konventionelle Funktionsweise von WEIMS
3.2.2 Konzept fiir eine stirkere Integrationvon DBS
3.2.3 Techniken zur Verbesserung der Datenverarbeitung
Prototypische Erweiterungen eines WEMS
3.3.1 Prototypen und Aufbau der Zeitmessungen
3.3.2 Testergebnisse L oL
3.4 Erweiterung von ODE-TI

4.2 Nachrichten-Pushdown
43 XQuery-Pushdown

5.1

Gesamtarchitektur

1 Einfiihrung
1.1 Motivation
1.3 Gliederung
2 Grundlagen
2.1
2.2
2.3
2.5 Datenbanksysteme
3 Nutzung von Datenbanken in WfMS
3.1
33
4 Konzeptionelle Erweiterungen
4.1 Literal-Pushdown
5 Architektur von Apache ODE

10
10
11

13
13
13
14
16
16
17
17
18
20
21

23

25
25
26
26
28
29
31
31
33
36

37
37
40
42
43
43

52 Runtimeim Detail o

5.2.1 OModel und BPEL-Typsystem

5.2.2 ODE Hibernate DAO

5.2.3 BpelRuntimeContext und Aktivitdten

53 BPEL-Compiler

5.4 Anderungen durch den ODE-TI Prototyp

5.4.1 Datenbankschema

5.4.2 DAO-Schicht

Hauptmethoden von ScopeDAO

5.4.3 Runtime-Schicht

5.4.4 Funktionalitdt des Prototyps
Implementierung der konzeptionellen Erweiterungen

6.1 Literal-Pushdown

6.1.1 Datenbankschema

6.1.2 BPEL-Compiler

6.1.3 DAO-Schicht

6.1.4 Runtime-Schicht

6.2 Nachrichten-Pushdown

6.2.1 Datenbankschema

6.2.2 DAO-Schicht

6.2.3 Runtime-Schicht

6.3 XQuery-Pushdown

6.4 Einschrankungen der Funktionalitdt des erweiterten Prototyps

Evaluation des erweiterten Prototyps

7.1 Testfdlle. o
7.2 Testumgebung
7.3 Messergebnisse L
7.3.1 Literal-Pushdown
7.3.2 Nachrichten-Pushdown
7.3.3 Anwendungsfall o L

8 Zusammenfassung und Ausblick

8.0.4 Ausblick

Literaturverzeichnis

Abbildungsverzeichnis

2.1

2.2

2.3
3.1
3.2
33
3-4

3-5
3.6

3.7

4.1

4.2

5.1
5.2
5-3
5-4
5-5

5.6

5.7
5.8

Einteilung von Workflows nach ihrer Datenorientierung. Unterschiedliche
Workflowklassen sind rechteckig dargestellt, deren Anwendungsszenarien

sind oval gekennzeichnet. o L o L L 18
Workflow zur Proteinmodellierung nach [RSM11] in Business Process Mode-
ling Notation (BPMN). 19
Architektur eines sWfMSnach [GT11] 20
Darstellung der Vorgidnge bei den verschiedenen Auspragungen von Daten-
operationen in Workflows (VgL. [RSM]) 27
Architektur kontrollflussorientierter Workflowausfithrung (a) sowie vorge-
schlagene Anderungen daran (b) (vgl. [RSM11]). 28
Pushdown-Arten nach [RSM11]. Die Zahlen deuten die Reihenfolge an, in der
einzelne Teilschritte ausgefithrt werden. 29
Literal-Pushdown nach [RSM11] 30

Architektur von Original ODE (a) und des ODE-TI Prototyps (b) (Vgl. [RSM11]) 32
Ergebnisse der Messungen von ODE-TI relativ zur Laufzeit von Original ODE

inProzent. 34
Messergebnisse der sequenziellen (a) und parallelen (b) Ausfiihrung des
Proteinmodellierungsworkflows(vgl. [RSM11]) 35

Verschiedene Konzepte zur Umsetzung des schreibenden Teils eines Literal-
Pushdown zur Entwurfszeit, wihrend des Deployments oder zur Laufzeit. . . 38
Unterschiedliche Umsetzungen des Nachrichten-Pushdowns aus dem Work-
flow heraus (a) bzw. in der Datenbank (b). Die Zahlen deuten die Reihenfolge

an, in der einzelne Teilschritte ausgefithrt werden. 41
Gesamtarchitektur von Apache ODE. (Vgl.[ode]) 44
Detailiertere Ansicht der ODE Runtime (Vgl. [Wag11]) 45
Ausschnitt des ODE OModel als UML-Diagramm (Vgl. [Wag11]).. 47
Ausschnitt der ODE DAO-Schicht als UML-Diagramm (Vgl. [Wag11]). 49

Tabellenschema, welches sich durch die Hibernate Middleware direkt aus den

annotierten Klassen HScope und HXmlData aus Abb. 5.4 ergibt.(Vgl. [Wag11]). 51
Ausschnitt der ODE-Laufzeitkomponenten als UML-Diagramm (Vgl. [Wag11]). 52
Ausschnitt relevanter Komponenten des ODE-Compilers als UML-Diagramm. 54
Durch den ODE-TI-Prototyp verdndertes Tabellenschema (Vgl. [Wag11]). . . . 56

59

5.10

6.1
6.2

6.3

6.4

6.5
6.6

6.7

7.1

7.2

UML-Diagramm der modifizierten DAO-Schicht. Die eingerahmten Kompo-
nenten wurden hinzugefiigt, die weifSen wurden im Vergleich zu Abb. 5.4 ver-
andert. Grau eingefarbte Komponenten wurden nicht modifiziert (Vgl. [Wag11]). 57
UML-Diagramm der modifizierten Runtime-Schicht. Weifie Komponenten
wurden im Vergleich zu Abb. 5.6 verdndert, grau eingefarbte Komponenten

wurden nicht modifiziert (Vgl. [Wag11]). 60
Tabellenschema fiir die Speicherung von Lieralwerten. 64
Veranderte Version des DOMBuilderContentHandler in UML-Notation. (vgl.
Abb. 5.7) e 64
Am Literal-Pushdown beteiligte Komponenten der DAO-Schicht in UML-
Notation. Unverdnderte Klassen sind grau eingefarbt (vgl. Abb. 5.9). 66
Am Literal-Pushdown beteiligte Komponenten der Runtime-Schicht in UML-
Notation. Unverdnderte Klassen sind grau eingefarbt (vgl. Abb. 5.10). 68

Geidndertes Hibernate-(Teil-)Tabellenschema fiir die Persistenz von Nachrichten. 69
Am Nachrichten-Pushdown beteiligte Komponenten der DAO-Schicht in
UML-Notation. Unverdnderte Klassen sind grau eingefarbt (vgl. Abb. 5.10).. . 70
Am Nachrichten-Pushdown beteiligte Komponenten der Runtime-Schicht in
UML-Notation. (vgl. Abb. 5.10). 71

Instanzlaufzeiten der Testprozesse mit unterschiedlich grofien Literalwerten
(horizontale Achse) relativ zu Original ODE in Prozent (vertikale Achse) fiir
den Protoyp mit Literal-Pushdown sowie den Prototyp ohne Erweiterungen. . 76
Instanzlaufzeiten des Testprozesses mit unterschiedlich grofien Eingangsnach-
richten (horizontale Achse) relativ zu Original ODE in Prozent (vertikale
Achse) fiir den Prototyp mit Nachrichten-Pushdown sowie den Prototyp ohne
Erweiterungen. 77

Tabellenverzeichnis

3.1

Konzeptionelle Unterscheidung von Datenoperationen in Workflows. (Dle
Abkiirzung DM steht hierbei fiir data management) (Vgl. [RSM]) 26

Verzeichnis der Listings

2.1

6.1
6.2

6.3

6.4

Beispiel XML-Datei , diplomarbeitxml”,

Beispiel fiir die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll. L

SQL-Befehl fiir die allgemeine Zuweisung eines Literalwerts in eine Variable .
SQL-Befehl fiir die Zuweisung eines Literalwerts in eine Variable vom Typ
Nachricht mit spezifiziertem <part>-Teil.
Hibernate-Annotation der Klasse HMessage zur Speicherung des Nachrichten-
inhalts als XML-Wert (vgl. Listing 5.1)..
SQL-Befehl fiir die Zuweisung des Inhalts einer Nachricht in eine Variable. . .

1 Einfuihrung

Durch die Wandlung von Information zu einem wirtschaftlichen Gut haben informationsver-
arbeitende Prozesse einen hohen Stellenwert erlangt. Seit Anbruch des Informationszeitalters
in den 1970er Jahren sind die Anspriiche an Kommunikationsnetzwerke und elektronischer
Datenverarbeitung stark gestiegen. Der von diesen Anspriichen vorangetriebene wissen-
schaftliche und damit einhergehende technologische Fortschritt hat im Laufe der letzten
Jahrzehnte hochspezialisierte und damit sehr effiziente Losungen und Technologien auf den
entsprechenden Sektoren hervorgebracht. Auch in Wissenschaft und Forschung kommt der
Informationsverarbeitung auf vielen Fachgebieten eine immer grofier werdende Bedeutung
zu.

Um Informationen in Form von Daten auf Datentrdgern zu speichern und wieder abrufen
zu konnen, wurden Datenbankverwaltungsysteme (engl.: database management systems, DBMS)
entwickelt, die teilweise seit tiber 30 Jahren bestehen, weiterentwickelt und dadurch verbes-
sert werden. Solche, mittlerweile hochkomplexe Systeme ermoglichen es heutzutage grofie
Datenmengen verhéltnismafSig einfach, sicher und duflerst effizient zu verwalten und zu
verarbeiten [KEo6].

Zur elektronischen Verarbeitung von Informationen wurde das Prinzip der Geschiiftsprozesse
(engl.: business processes) entwickelt, nach dem Abldufe modelliert und ausgefiihrt werden
konnen. Geschiftsprozesse beschreiben eine Folge von Einzeltédtigkeiten, die schrittweise
ausgefiithrt werden, um ein geschéftliches oder betriebliches Ziel zu erreichen [LRoo]. Der
Teil eines Geschéftsprozesses, der auf einem Computer ausgefiihrt wird, wird als Workflow
bezeichnet, da der Gesamtablauf als flieflende Hintereinanderausfiithrung kleinerer Aktionen
realisiert wird. Workflows werden zur Beschreibung von Vorgéangen im wirtschaftlichen
Umfeld, aber auch bei computergestiitzten Simulationen in Wissenschaft und Forschung,
eingesetzt [TDGoy]. Dabei werden verschiedene Teilprozesse in ein Ablaufschema tiberfiihrt,
welches den Gesamtprozess als Ausfiihrungsgraph dieser Teilprozesse modelliert. Der so
entstandene Gesamtprozess kann wiederum als gesonderter Arbeitschritt aufgefasst und
als Teilprozess in grofiere Abldufe integriert werden. Durch dieses Konzept konnen einmal
fertiggestellte Workflows in anderen Workflows wiederverwendet werden. Zur Modellierung,
Ausfiithrung und Ausfiihrungsiiberwachung solcher Workflows wurden Workflowmanage-
mentsysteme (WEMS) enwickelt, die die Umsetzung dieser Aufgaben auf einem Computer
ermoglichen.

1 Einfihrung

1.1 Motivation

Um Daten wahrend einer Workflowausfithrung persistent zu halten, verwenden nahezu alle
WIMS entweder eigene (integrierte) oder extern angebundene Datenbanksysteme (DBS). Ein
DBS setzt sich aus einer Datenbank und einem darauf operierenden Datenbankmanagement-
system zusammen. Wahrend einer Workflowausfithrung werden in der Datenbank unter
anderem die Variableninhalte der verwalteten Prozesse abgelegt. Die Daten in den Variablen
eines Workflows reprasentieren die Informationen, die von ihm verarbeitet werden. Das
Laden, Verarbeiten und Speichern dieser Daten stellt den produktiven Teil eines informati-
onsverarbeitenden Geschéftsprozesses dar. Da solche Daten je nach Einsatzgebiet sehr grof3
werden konnen, kann die Verwaltung der Variableninhalte durch das WfMS die Ausfiihrung
eines Workflows negativ beeinflussen oder sogar zur Uberlastung des Systems und damit
dem Scheitern der Ausfiihrung fiithren.

Um in Zukunft grofle Datenmengen innerhalb von Workflows effizienter und zuverlassiger
handhaben zu konnen, ist die Idee entstanden, die Funktionen des DBS auch intensiv fiir die
Workflowausfiihrung einzusetzen, anstatt damit nur die Persistenz sicherzustellen [RSM11].
Dabei sollen datenintensive Operationen, auf die das DBS spezialisiert ist, dem W{MS
abgenommen werden und es damit entlasten. Die Ziele sind dabei schnelleres Laufzeitverhal-
ten, geringerer Speicherverbrauch, hohere Stabilitdt sowie Skalierbarkeit der Datenzugriffe
wahrend der Workflowausfiihrung.

Im Rahmen vorangegangener Arbeiten [Wag11],[RSM11] wurden bereits Konzepte zur Ver-
besserung der Workflowausfiihrung durch Integration des DBS bei der Workflowausfiithrung
erarbeitet und entsprechende Funktionalitidten prototypisch umgesetzt sowie evaluiert. Da-
bei sind sowohl einige Aspekte der Integration unbehandelt geblieben, als auch durch die
prototypische Umsetzung neue Problemstellungen identifiziert worden. So kam es beispiels-
weise zu ungewiinschten Leistungseinbufien durch die gemischte Datenverarbeitung im DBS
einerseits und im W{MS andererseits. In dieser Arbeit sollen nun einige der unbehandelten
Aspekte und Problemstellungen untersucht, sowie Losungsansitze zur weiteren Verlagerung
von Datenoperationen in das DBS umgesetzt und evaluiert werden.

1.2 Konventionen und rechliche Hinweise

Begriffe, die im weiteren Verlauf der Arbeit abgekiirzt werden, werden bei der erstmaligen
Verwendung ausgeschrieben und die verwendete Abkiirzung dahinter, innerhalb runder
Klammern, angegeben. Aus dem englischen tibersetzte Fachbegriffe werden bei ihrer erstma-
ligen Verwendung zusatzlich mit ihrer englischen Bezeichnung in Klammern angegeben,
um den Bezug auf die englischsprachige Literatur zu ermdglichen.

In dieser Arbeit kam Software zum Einsatz, die nicht 6ffentlich zur Verfiigung steht und fiir
die Lizenzen erworben werden miissen. Fiir die Evaluation des in dieser Arbeit entstandenen
Prototyps wurde eine entsprechende Lizenz erworben. Dies betrifft insbesondere:

10

1.3 Gliederung

e IBM DB2 V1o0.1 Advanced Enterprise Server Edition

Diese Arbeit enthdlt eine Datenbank-Auswertung. Der Autor dieser Arbeit hat die Vorberei-
tung und Ausfiihrung dieser Auswertung mit besonderer Vorsicht durchgefiihrt. Trotzdem
kann der Autor mogliche Fehler, die hierbei entstanden sind, nicht ausschliefSen. Aus diesem
Grund tibernimmt der Autor keine Verantwortung fiir die Korrektheit und Vollstandigkeit
der gesamten Auswertung und der daraus geschlossenen Erkenntnisse.

1.3 Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: Hier werden grundlegende informationstechnische Begriffe erldu-
tert und die in der Arbeit verwendeten Technologien vorgestellt.

Kapitel 3 — Nutzung von Datenbanken in WfMS: Hier werden durch vorangegangene Arbei-
ten hervorgebrachte Konzepte, Umsetzungen und Ergebnisse zur stirkeren Integration
von Datenbanken in WEMS vorgestellt, beschrieben und analysiert.

Kapitel 4 — Konzeptionelle Erweiterungen: Hier werden die in dieser Arbeit entwickelten
konzeptionellen Erweiterungen des bestehenden Systems vorgestellt.

Kapitel 5 — Architektur von Apache ODE: Hier werden die Teile der Softwarearchitektur
der Workflowengine Apache ODE beschrieben, die fiir diese Arbeit relevant sind.
Auflerdem werden die durch die Vorarbeiten bereits implementierten Veranderungen
an der Architektur vorgestellt.

Kapitel 6 — Implementierung der konzeptionellen Erweiterungen: Hier werden implemen-
tierungstechnische Umsetzungen der in Kapitel 4 vorgestellten Erweiterungen im
Detail beschrieben.

Kapitel 7 — Evaluation des erweiterten Prototyps: Hier werden Aufbau, Durchfithrung und
Ergebnisse von Messungen an den Umsetzungen der Erweiterungen vorgestellt.

Kapitel 8 — Zusammenfassung und Ausblick: Hier wird die Arbeit zusammengefasst. Es
werden abschlielende Kommentare abgegeben und auf weitere Themen hingewiesen,
die sich im Verlauf der Arbeit aufgetan haben, jedoch nicht behandelt wurden.

11

2 Grundlagen

In diesem Kapitel werden grundlegende informationstechnische Begriffe erlautert und
Technologien vorgestellt, die bei der Modellierung und Ausfiihrung von Workflows im
allgemeinen eine wichtige Rolle spielen oder im weiteren Verlauf dieser Arbeit benotigt
werden. Dabei werden die ersten Probleme und Konflikte vorgestellt, fiir die im Rahmen
dieser Arbeit Losungen gefunden werden sollen.

2.1 Extensible Markup Language

Die eXtensible Markup Language [xmla], kurz XML, ist eine weit verbreitete Markup-Sprache
zur Darstellung von hierarchisch strukturierten Daten in Textform. Mit Hilfe von Markup-
Sprachen lassen sich in einem Dokument neben Informationen auch deren Metainformatio-
nen bzw. Annotierungen speichern.

Durch den hohen Verbreitungsgrad der Sprachen existieren viele Werkzeuge, mit der sich
eine XML-basierte Datenbasis realisieren ldsst. Sowohl die in dieser Arbeit verwendete
Beschreibungssprache fiir Workflows BPEL (s. Abschnitt 2.4), als auch alle betrachteten
Workflowdaten verwenden XML als Grundlage zur Speicherung und zum Austausch von
Informationen. In den folgenden Unterabschnitten werden Aufbau und Verarbeitung von
XML-Dokumenten niher beschrieben.

2.1.1 Dokumentstruktur

In XML werden Informationen von sogenannten Tags eingeschlossen. Tags beinhalten die
zu der von ihnen umschlossenen Information gehérenden Metainformationen und liefern
den namen eines Elements. Tags werden in XML durch spitze Klammern gekennzeichnet
(<TAG>), wobei schlieffende Tags einen zusitzlichen Schragstrich vor dem Tagnamen besitzen
(</TAG>). In einem 6ffnenden Tag konnen zusétzlich Attribute des Elements definiert werden.
Solche Definitionen haben die Form <TAG ATTRIBUTNAME=‘‘WERT‘‘>. Im Gegenssatz zu anderen
Markup-Sprachen, wie zum Beispiel HTML, sind in XML Tag- und Attributnamen sowie
deren Bedeutung fiir die Informationsverarbeitung nicht vordefiniert. Diese konnen fiir
jedes XML-Dokument in einer separaten Spezifikationsdatei definiert werden. Hierfiir steht
eine Reihe von Spezifikationssprachen zur Verfiigung, zwei der gebrauchlichsten sind dabei
Document Type Definition (DTD) [xmla] sowie das neuere XML Schema [xmlb].

Ein XML-Dokument besteht aus drei Teilen:

13

2 Grundlagen

<?xml version="1.0" encoding="UTF-8"7>

<Diplomarbeit>
<Autor>
<Name>
Christian Ageu
</Name>
</Autor>

<Dokument type="Diplomarbeit">

<Titel Sprache="en">
Extension and evaluation of a prototype for a tight integration of database and
workflow engines
</Titel>

<Titel Sprache="de">
Erweiterung und Evaluation eines Prototyps fiir eine enge Integration zwischen
Datenbank- und Workflow-Engines
</Titel>

Diese Arbeit befasst sich mit Workflow- und Datenbanksystemen.

</Dokument>
</Diplomarbeit>

Listing 2.1: Beispiel XML-Datei , diplomarbeit.xml”

e Priambel (optional): Hier konnen u.a. die verwendete XML-Version sowie die Zei-
chenkodierung des Dokuments angegeben werden.

e Schema (optional): Hier konnen im Dokument verwendete Schemainformationen
(DTD bzw. XML Schema) angegeben werden.

e Wurzelelement: Ein wohlgeformtes XML-Dokument besteht aus genau einem Wur-
zelelement, welches durch ein 6ffnendes und das entsprechende schlieffende Tag
gekennzeichnet ist.

Ein Element kann Attribute, Textinhalt sowie beliebig geschachtelte, weitere Unterelemente
beinhalten. Dadurch entsteht eine Baumstruktur, die durch bestehende und standardisierte
Techniken verarbeitet werden kann, z.B. anhand des Document Object Model (DOM) [dom].
Bei der Reprasentation mit Hilfe von XML werden Daten {iblicherweise als Textinhalt
in den Blattknoten eines Dokuments abgespeichert, wobei der Pfad vom Wurzelknoten
zum Blattknoten die Bezeichnung eines Datums liefert. Listing 2.1 zeigt das Beispiel einer
wohlgeformten XML-Datei.

2.1.2 Verarbeitung

XML bietet umfangreiche Moglichkeiten zur Verwaltung, Abfrage und Manipulation von
Daten. Mit XQuery [xqu] steht eine méchtige Sprache zur Abfrage bzw. Transformation von

14

2.1 Extensible Markup Language

XML-Daten zur Verfiigung. Dabei wird XPath [xpa] verwendet, um auf einzelne Elemente
eines XML-Dokuments zuzugreifen.

XPath

Bei XPath handelt es sich um eine Abfragesprache fiir XML-Dokumente. Mit ihrer Hilfe lassen
sich Teile eines XML-Dokuments adressieren, indem dessen Bestandteile als unterschiedliche
Knoten aufgefasst werden. Dabei werden unter anderem Text-, Attribut- und Unterknoten
unterschieden, die auf Anfrage durch ein XPath-Verarbeitungsprogramm zuriickgegeben
werden konnen.

Ein XPath-Ausdruck setzt sich aus einem oder mehreren sogenannten Lokalisierungsschritten
zusammen, die den Pfadausdriicken des UNIX-Betriebssystems dhneln. Mit Hilfe definier-
ter Achsen kann in Lokalisierungsschritten durch ein XML-Dokument navigiert und ein
bestimmter Knoten zuriickgegeben werden. Ein Lokalisierungsschritt hat die Form

/Achse: :Knotentest [Pradikat][...]

Mogliche Achsen sind dabei unter anderem child (alle Unterknoten), parent (alle Elternk-
noten), self (der Knoten selbst) und attribute (Attributknoten). Ein Knotentest schrankt die
Elementauswahl einer Achse ein. Durch Angabe von Prdadikaten kann die Auswahl noch
weiter eingeschrankt werden. So wahlt beispielsweise der Lokalisierungsschritt

/child::Titel[1]

den ersten Unterknoten mit den Namen , Titel” aus und gibt diesen zuriick. Dies entspricht
im Beispieldokument dem englischen Titel der Diplomarbeit. Die Pfadselektion durch XPath-
Ausdriicke bildet die Grundlage fiir verschiedene XML-Technologien, unter anderem das
als nachstes vorgestellte XQuery. Fiir detailiertere Informationen tiber XPath und seine
Funktionen sei auf die XPath-Spezifikation [xpa] verwiesen.

XQuery

Mit XQuery [xqu] wurde eine Abfragesprache fiir XML-Dokumente entwickelt, die zu-
sdtzlich zur Funktionalitdt von XPath noch weitere, komplexere Auswertungen von XML-
Dokumenten ermoglicht. Insbesondere lassen sich mit ihrer Hilfe mehrere Knoten aus
verschiedenen Dokumenten gleichzeitig verarbeiten und beispielsweise aggregieren. Dabei
werden Operationen auf XML-Daten dhnlich der Abfragesprache SQL fiir relationale Daten-
banken eingefiihrt. Grundlage einer XQuery-Abfrage bildet ein sog. FLWOR-Ausdruck (For,
Let, Where, Order by, Return). Beispielsweise liefert

15

2 Grundlagen

for $x in doc("diplomarbeit.xml")/Diplomarbeit
let $d := $x/Dokument

where $d/Q@type="’Diplomarbeit"’]

order by $x/Titel

return {$x/Titel/text(0}

die alphabetisch sortierten Textknoten aller Elemente mit dem Namen , Titel”. Mit for wird
zundchst der zu verarbeitende Dokumententeil an eine Variable x gebunden. Mittels der
let-Klausel konnen weitere Variablen fiir die Verwendung innerhalb des Ausdrucks definiert
werden. Durch Angabe der where-Klausel wird eine Selektion der Elemente durchgefiihrt.
Durch order by werden die selektierten Knoten nach ihrem Titel sortiert. Die return-Anweisung
gibt schliefilich die Textinhalte der sortierten Knoten als Resultat des FLWOR-Ausdrucks zu-
riick. Es ist zu beachten, dass die XQuery-Spezifikation keine Moglichkeit zur Manipulation
von bestehnden XML-Dokumenten vorsieht. Dies ist nur iiber einen Umweg moglich, indem
bestehende Dokumente durch neu erzeugte XML-Dokumente vollstindig tiberschrieben
werden.

2.2 SOA und Webservices

Um den Anforderungen komplexer, heterogener Geschiftsumgebungen gerecht zu wer-
den, wurden Technologien entwickelt, die die Verwaltung, Pflege und Integration von
Geschiéftsprozessen standardisiert und vereinfacht haben. In den folgenden Unterabschnitten
weden Konzepte vorgestelt, auf denen sich diese Technologien stiitzen.

2.2.1 Service Oriented Architecture

Die Service Oriented Architecture (SOA) ist ein Architekturmuster, bei dem Geschiftspro-
zesse mit Hilfe von Diensten realisiert werden. Anstatt einen Gesamtprozess als Ganzes
zu implementieren, wird versucht, ihn in kleinere Teilprozesse aufzuspalten. Ein so ge-
kapselter Teilprozess bildet einen Dienst, der isoliert ausgefiihrt eine bestimmte Aufgabe
erfiillt. Mehrere Dienste zusammen bilden bei koordinierter (orchestrierter) Ausfithrung den
Gesamtprozess.

Einer SOA liegt ein System aus Konsument, Anbieter und einem Verzeichnis zugrunde. Be-
sonderes Merkmal dieser Architektur ist die lose Kopplung der Dienste an die aufrufenden
Prozesse: Ein Konsument ist nicht an einen bestimmten Dienst gebunden, sondern findet
tiber das Verzeichnis anhand einer Beschreibung einen Dienst, der die fiir ihn benotigte
Funktionalitdt zur Verfiigung stellt. Der besondere Vorteil bei dieser Architektur liegt in der
Wiederverwendbarkeit der einzelnen Dienste. Die Aufteilung von Geschiftsprozessen in
kleinere, gekapselte Dienste bietet auch eine leichtere Uberschaubarkeit fiir den Entwickler
und damit einfachere Erstellung und Pflege der einzelnen (Teil-)Prozesse.

16

2.3 Workflows und Workflowmanagementsysteme

2.2.2 Webservices

Das Konzept der Webservices wird durch eine Reihe von Standards des W3C* (World Wide
Web Consortium) sowie von OASIS* (Organization for the Advancement of Structured
Information Standards) beschrieben. Webservices bieten eine Moglichkeit, nach dem SOA-
Prinzip fertiggestellte Dienste plattformunabhéngig in einem Netzwerk tiber das HTTP-
Protkoll bereitzustellen.

Mochte ein Anbieter einen Dienst als Webservice zur Verfiigung stellen, so meldet er seinen
Dienst und dessen Schnittstellen, beschrieben in der XML-basierten Web Services Description
Language (WSDL), bei einem Verzeichnisserver, der UDDI Registry (Universal Description,
Discovery, and Integration), an. Ein interessierter Konsument kann diesen Webservice daraufhin
tiber die UDDI Registry finden (discover), und ihn anschlieffend aufrufen (invoke). Der
Nachrichtenaustausch zwischen Anbieter und Konsument erfolgt mittels ebenfalls XML-
basierter SOAP-Nachrichten (Simple Object Access Protocol [?]). Die Rollen des Anbieters
und des Konsumenten tibernehmen dabei die Prozesse, die den Dienst bereitstellen bzw.
benotigen. Da die aufrufenden Prozesse auch selbst Webservices sein konnen, wird mit
Hilfe dieses Konzeptes eine hohe Kombinationsmoglichkeit und Wiederverwendung der
Webservices ermoglicht.

2.3 Workflows und Workflowmanagementsysteme

Ein Workflow (Arbeitsablauf) ist die Verkntipfung verschiedener Arbeitsschritte zu einem
Gesamtablauf, basierend auf kausalen Abhédngigkeiten oder Datenabhingigkeiten zwischen
den Teilschritten. Die Reprédsentation von Workflows erfolgt entweder mit Hilfe von Dia-
grammen oder durch eine Workflowsprache, die einen Prozess in maschinenlesbarer Form
beschreibt. Beispiele fiir eine solche Sprache sind die Business Process Execution Language
(BPEL) (Abschnitt 2.4) oder die XML Process Definition Language (XPDL) [xpd]. Wir betrach-
ten Workflows, die vollstandig durch ein Workflowmanagementsystem (WfMS) auf einem
Computer ausgefiihrt werden.

In der Vergangenheit wurden Workflows hauptsachlich zur EDV-gestiitzten Beschreibung
und Ausfithrung wirtschaftlicher Geschiftsprozesse verwendet (business workflows). Seit kur-
zem finden Workflows auch im wissenschaftlichen Bereich Anwendung (scientific workflows
[TDGoy]), insbesondere auch im Gebiet der Simulationen [GT11]. Die dabei eingesetzten
Workflowsysteme werden scientific workflow management systems, kurz sWfMS, genannt. Die
folgenden Teilabschnitte befassen sich mit den Eigenschaften unterschiedlicher Workflows
und der Architektur von W{Ms.

Thttp://www.w3.org/
2https://www.oasis-open.org/

17

http://www.w3.org/
https://www.oasis-open.org/

2 Grundlagen

["Workflows |
Workflows
Orchestrierungs- datenintensive
workflows Workflows

-7 wissenschaftliche Workflows B

. Simulations-

~

Geschafts- J verwaltunas Datenanalyse- | | Datenmodellierungs- '\ ETL-
- 1
workflows . work ﬂOV\?S workflows workflows /| Workflows

Muster-
erkennung
in Stoffen

Simulation v.
Knochenver-
formungen

Protein-
modellierung

Geschafts- ~ Daten-
prozess integration

Abbildung 2.1: Einteilung von Workflows nach ihrer Datenorientierung. Unterschiedliche
Workflowklassen sind rechteckig dargestellt, deren Anwendungsszenarien
sind oval gekennzeichnet.

2.3.1 Workflow-Klassen

Bei wissenschaftlichen Workflows steht oftmals die Verarbeitung groflerer Datenmengen im
Vordergrund. Im Gegensatz dazu werden Geschiiftsworkflows (business workflows) hauptséch-
lich zur Steuerung des Kontrollflusses eines Prozesses eingesetzt. Diese beiden Schwerpunkte
erlauben eine Klassifizierung von Workflows in datenfluss- bzw. kontrollflussorientierte
Workflows. Abb. 2.1 zeigt eine Einteilung von Workflows anhand der Auspriagung ihrer
Datenorientierung gemafl [RSM11].

Orchestrierungsworkflows beinhalten traditionell Geschiftsworkflows, bei denen die Koordi-
nation (Orchestrierung) verschiedener Geschéftsprozesse zu einem Gesamtprozess im Vor-
dergrund steht. Zu diesem Zweck werden dabei hauptsdchlich die Konzepte der SOA,
insbesondere das der Webservices eingesetzt. Die neuere Klasse der Simulationsverwaltungs-
workflows koordiniert auf d&hnliche Weise einzelne Simulationsprogramme wissenschaftlicher
Anwendungunen. Dabei riickt allerdings die Datenverabeitung der einzelnen Programme

18

2.3 Workflows und Workflowmanagementsysteme

fur jede Proteinsequenz

Sequenz-Header
@} LiSte der S Ja_> E —”:,
@ Proteinsequenzen equenz

extrahieren entspricht
Empfang von Muster? i Antwort an
; negative ;
Eingabeparametern Nein Sequenzen Client
zahlen
[9)

Abbildung 2.2: Workflow zur Proteinmodellierung nach [RSM11] in Business Process
Modeling Notation (BPMN).

(Teilprozesse) mehr in den Vordergrund, was auch Auswirkungen auf die Datenverarbeitung
innerhalb des Workflows mit sich bringt. Beispielsweise werden bei der Simulation von Kno-
chenverformungen in einem Teilprozess die Daten fiir das Modell eines Knochens erzeugt,
die dann dem eigentlichen Simulationsprozess zur Verfiigung gestellt werden miissen.

Datenintensive Workflows stellen im Gegensatz zu den Orchestrierungsworkflows die Daten-
verarbeitung in den Vordergrund. Dabei werden grofie Datenmengen von unterschiedlichen
Quellen durch den Workflow selbst verarbeitet, anstatt dies durch externe Programme zu
veranlassen. Datenanalyseworkflows haben das Ziel, zuvor gesammelte Daten zu untersuchen
und in einer bestimmten Form darzustellen, um so neue Erkenntnisse zu gewinnen. Hierbei
spielt Mustererkennung eine wesentliche Rolle, z.B. bei der Untersuchung von Eigenschaften
chemischer Verbindungen.

Die Klasse der Datenmodellierungsworkflows dient unter anderem der Extraktion von Mo-
dellen aus gegeben Problemstellungen, die anschlieflend fiir Berechnungen herangezogen
werden konnen. Sie werden beispielsweise auch bei der Proteinmodellierung eingesetzt,
wobei unterschiedliche Modelle erzeugt und auf ihre Eigenschaften hin untersucht werden.
Der in Abb. 2.2 dargestellte Workflow zeigt das Beispiel eines solchen Proteinmodellie-
rungsworkflows. Dabei wird zunédchst eine Liste mit Proteinsequenzen geladen. Einzelne
Proteinsequenzen werden anschliefend auf Ahnlichkeit mit einem Muster hin iiberpriift.
Bei positivem Ergebnis wird der Header der Proteinsequenz zu den bisher gefundenen
hinzugefiigt, bei negativem Ergebnis wird nur ein entsprechender Zahler erhoht.

ETL-Workflows (extract, transform, load) werden eingesetzt, um die Integration grofSer Daten-
mengen zu realisieren, wobei diese in einer bestimmten Form zusammengestellt werden.
Der Workflow selbst ist in diesem Fall lediglich ein Werkzeug fiir die Datentransformation,
das von tibergeordneten Anwendungen dazu aufgerufen wird.

Der Begriff der ,wissenschaftliche Workflows” (scientific workflows) umfasst eine Teilmenge
dieser Workflow-Klassen, ndmlich die Simulationsverwaltungsworkflows, die Datenanalysework-
flows und die Datenmodellierungsworkflows. Diese Arbeit befasst sich verstarkt mit eben diesen
wissenschaftlichen Workflows, wobei der Fokus auf den dantenintensiven Workflows liegt.

19

2 Grundlagen

Scientific Workflow Management System ‘
GuUI <
Function . Result
Catalog sWF Modeler Monitor Display / ~, \
/ g N
Y Y @ "lv
4 Y v ’ g
£ — Service Bus [
o Monitoring Deployment \ @) /
5 Resource Q"%
e 5 < , < N Manage- o A~ /
S+ rovenance Execution ment =
> Engine Sorvicel o
£ Auditing Reesr;ll.lcr?:e B Q
é i - Discovery
i Service Registry

Abbildung 2.3: Architektur eines sSWfMS nach [GT11]

Im ndchsten Abschnitt wird das Architekturmodell eines Managementsystems fiir solche
wissenschaftliche Workflows vorgestellt.

2.3.2 Architektur eines sWfMS

Um Workflows zu modellieren und auszufithren, wurden Architekturmodelle entwickelt,
dass den Anpriichen unterschiedlicher Workflowarten entspricht. Abbildung 2.3 veranschau-
licht die Architektur eines sWfMS basierend auf der in [LRoo] definierten Technologie fiir
Geschifts- und Produktionsworkflows. Es folgt eine Beschreibung der einzelnen Komponen-
ten gemdf [RRST11] und [GT11].

Zuerst werden die Komponenten der GUI betrachtet:

e Der sWf Modeler unterstiitzt den Entwickler beim Modellieren der Spezifikationen
und Deploymentinformationen eines Workflows.

e Der Function Catalog stellt eine Liste von im Workflow verfiigbaren Diensten bereit,
die bei der Modellierung eingesetzt werden kénnen.

e Die Monitor-Komponente bietet eine Benutzerschnittstelle, die zur Uberwachung der
Ausfiihrung von Workflow-Instanzen und damit zum Erkennen von unerwarteten
Ereignissen bzw. Fehlern wihrend der Ausfithrung dient.

e Das Result-Display liefert die Zwischen- und Endergebnisse des ausgefiihrten Work-
flows (z.B. Simulationsergebnisse) in einem fiir den Benutzer bedarfsgerechten Format.

Als nédchstes werden die Laufzeitkomponenten (Runtime Components) erldutert:

20

2.4 Web Services Business Process Execution Language

¢ Die Deployment-Komponente tiberfiihrt das Modell eines Workflows in ein Objekt und
installiert dieses in einer Ausfiihrungsengine (z.B Apache ODE3), die spédter Instanzen
davon ausfiihrt.

e Die Auditing-Komponente speichert workflowbezogene Ereignisse und Aktivitdten,
die zur Laufzeit auftreten, z.B. den Anfangszeitpunkt eines Workflowaufrufs.

e Die Monitoring-Komponente iiberwacht die Zustdnde von Workflowausfiihrungen
mit Hilfe der Daten aus der Auditing-Komponente.

e Die Provenance-Komponente erfasst weitere, detaillierte Daten einer Ausfiihrung als
die Auditing-Komponente. Mit Hilfe dieser Informationen lassen sich Ausfiihrungen
exakt nachvollziehen.

e Der Service Bus ist fiir das Finden und Auswéhlen von Diensten zur Implementierung
des Workflows zustdndig. Desweiteren dient er der Zustellung von Nachrichten sowie
der Durchfiihrung von Datentransformationen innerhalb des sWfMs und kann externe
Ressourcen (z.B. Datenquellen) an den Workflow anbinden.

e Die Resource Management-Komponente speichert Meta-Informationen iiber die exter-
nen Ressourcen und Dienste.

e Die Service/Resource Discovery-Komponente erstellt anhand dieser Meta-
Informationen oder mit Hilfe externer Verzeichnisse eine Liste der in Frage
kommenden Dienste und Ressourcen, die vorher beispielsweise durch semantische
Annotation beschrieben wurden (vgl. lose Kopplung, Abschnitt 2.2.1). Mit Hilfe dieser
Liste ist wihrend der Ausfithrung beipielsweise im Fehlerfall die Anbindung eines
alternativen Dienstes oder einer alternativen Ressource moglich.

2.4 Web Services Business Process Execution Language

Die Web Services Business Process Execution Language [bpe], kurz: WS-BPEL, ist eine XML-
basierte Workflowsprache, die Vorgdnge innerhalb von Geschéftsprozessen mit Hilfe von
Webservices beschreibt. Sie gilt als de-facto Standard zur Implementierung von Geschaftspro-
zessen und wird in dieser Arbeit verwendet. Mit ihrer Hilfe konnen Workflows beschrieben,
bearbeitet und ausgetauscht werden. Sie ermoglicht eine integrierte und selbststindige
Ausfiihrung des Workflows durch ein WEMS, sofern alle Teilprozesse und die Bereitstellung
der dazu benétigten Daten ebenfalls automatisch durchgefiihrt werden kénnen.

Bei der Beschreibung von Geschiftsprozessen mit Hilfe von BPEL werden einzelen Teil-
schritte im Allgemeinen durch Webservices implementiert. Ausnahmen hiervon bilden
Erweiterungen wie z.B. BPEL4People [KKL"05], bei der menschliche Interaktion in einen
Workflow eingebettet werden kann. Die wesentlichen Vorteile von BPEL bei der Beschreibung
von wissenschaftlichen Workflows sind der modulare Aufbau, die Flexibilitdt im Umgang

3http://ode.apache.org/

21

http://ode.apache.org/

2 Grundlagen

mit genereischen XML-Datentypen und der spaten Anbindung von Diensten an den Work-
flow, sowie umfangreiche Moglichkeiten zur Erweiterung sowie Fehlerbehandlung und
-kompensation [AMAO06].

Grundlage der Ausfithrung von Workflows mit BPEL sind Aktivititen. Eine Aktivitat repra-
sentiert einen Ausfithrungsschritt innerhalb eines Workflows. Es gibt drei grundlegende
Arten von BPEL-Aktivitaten:

Aktionen

Aktionen fiihren einen bestimmten Arbeitsschritt innerhlab eines Workflows aus. Dazu
gehoren unter anderem die folgenden Aktivititen:

e RECEIVE wartet auf den Empfang einer bestimmten SOAP-Nachricht, die von einem
aufrufenden Prozess als Anfrage versendet wird, und setzt darauthin die Workflow-
ausfiihrung an der modellierten Stelle fort. Ein BPEL-Workflow beginnt stets mit einer
RECEIVE-AKktivitat, die eine Instanz des Workflows erzeugt (Attribut createlnstance=yes).

e REPLY erzeugt und versendet eine Ausgangsnachricht als Riickantwort an den auf-
rufenden Prozess. Eine REPLY-Aktivitat lasst sich damit immer einer empfangenden
(RECEIVE)-Aktividt zuordnen.

e PICK wartet, dhnlich wie Receive, auf den Eingang einer Nachricht (onMessage) oder
auf das Eintreten einer zeitlichen Bedingung (onAlarm). Hierbei konnen nun mehrere
Nachrichten angegeben werden, die jeweils eine unterschiedliche Folgeaktivitdt auslo-
sen konnen. Es wird immer diejenige Folgeaktivitdt ausgelost, deren Ereignis als erstes
eingetreten ist.

e INVOKE ruft eine bestimtme Operation eines anderen Webservice auf. Der Workflow,
der die INVOKE-Aktivitdat ausfiithrt, iibernimmt dabei die Rolle des aufrufenden Prozes-
ses. Die Aus- bzw. Eingangsnachrichten werden dabei aus bzw. in Workflowvariablen
zugewiesen.

e ASSIGN: Durch ASSIGN-Aktivititen konnen workflowinterne Variablen manipuliert
werden. Innerhalb einer ASSIGN-Aktivitit konnen Zuweisungen durch mehrere COPY-
Bliocke stattfinden, wobei einer Variablen unter anderem eine andere Variable, ein
Literalwert oder ein Ausdruck (z.B. XPath oder XQuery) zugewiesen werden kann.
Die unterschiedlichen Zuweisungsarten von ASSIGN-Aktivititen werden im weiteren
Verlauf dieser Arbeit ndher untersucht.

Kontrollstrukturen

Kontrollstrukturen dienen der bedingten oder wiederholten Ausfithrung bestimmter Teile
eines Workflows sowie der Organisation von Aktivititen.

22

2.5 Datenbanksysteme

e IF: Uberpriift eine odere mehrere Bedingungen (,,expression evaluation”) und fiihrt
abhingig vom Ergebnis unterschiedliche Folgeaktivititen aus.

e WHILE: Innerhalb einer WHILE-Aktivitdt geschachtelte Aktivitdten werden wiederholt
ausgefiihrt, so lange die damit verkniipften Bedingungen zutreffen.

e SCOPE: Durch eine SCOPE-Aktivitat konnen mehrere Aktivititen zu einem seman-
tischen Verbund zusammengefasst werden. Ein Scope stellt einen Gultigkeits- und
Sichtbarkeitsbereich fiir Variablen dar und erlaubt die Definition von Fehlerbehandlung
und -kompensation fiir die enthaltenen Aktivitdten. Im Fehlerfall konnen alle Aktivita-
ten innerhalb eines Scope wieder riickgdngig gemacht werden, ohne dass Aktivitdten
auflerhalb des Scope davon betroffen sind.

Fehlerbehandlung

Fehlerbehandlung kann in WS-BPEL durch das Werfen von Ausnahmen (THROW-AKktivitét)
kontrolliert werden. Daraufhin kann etwa die Ausfithrung eines Prozesses abgebrochen
und eine Fehlermeldung ausgegeben werden (EXIT-Aktivitit). Fehlerbehandlung wird
im Kontekt dieser Arbeit nicht ndher verwendet und daher an dieser Stelle nicht weiter
nehandelt.

Detailiertere Informationen zu diesem oder anderen BPEL-Themen sind im OASIS-Standard
[bpe] nachzulesen.

2.5 Datenbanksysteme

Fiir den Zugriff auf Daten und deren Speicherung wurden im Verlauf der letzten Jahrzehnte
viele Technologien und Produkte entwickelt, die diese Aufgaben mit besonders hoher
Effizienz erfiillen. Datenbanksysteme (DBS) sind heutzutage ein wichtiges Werkzeug zur
Datenverarbeitung und werden von den meisten Unternehmen eingesetzt. Auch im Internet
spielen Datenbanken eine grofie Rolle. So kommt heutzutage kaum eine Webseite ohne eine
Datenbank aus, das im Hintergrund den auf den Seiten dargestellten Inhalt verwaltet.

Ein Datenbanksystem setzt sich aus der zugrundeliegenden Datenbank sowie einem Daten-
bankmanagementsystem (DBMS) zusammen. Ein DBMS ermdglicht es dem Anwender seine
Daten sicher und komfortabel zu verwalten. So konnen beispielsweise unterschiedlichen
Benutzern verschiedene Zugriffs- und Verwaltungsrechte auf bestimmte Daten gewédhrt oder
verweigert werden. Durch die Festlegung von Integritdtsbedingungen kann gewihrleistet
werden, dass keine fehlerhaften Eingaben gemacht werden konnen und sich die Datenbank
somit zu jedem Zeitpunkt in einem konsistenten Zustand befindet. Fiir weitere Vorteile
und Einsatzmoglichkeiten von Datenbanksystemen sei auf die entsprechende Literatur zum
Thema Datenbanken verwiesen [KEo06].

23

2 Grundlagen

Am weitesten verbreitet sind sogenannte relationale Datenbanksysteme, bei denen Daten als
Zeilen einer Tabelle aufgefasst werden. Die auf diese Weise gespeicherten Daten werden
durch entsprechende Operatoren mengenorientiert verkniipft und verarbeitet, d.h. Resultate
werden letztlich durch Selektion, Vereinigung oder dem Schnitt verschiedener Datensit-
ze erzeugt. Die entsprechenden Operationen werden mit Hilfe der Abfragesprache SQL
(Structured Query Language) [sql] formuliert und mit Hilfe eines DBMS in der Datenbank
ausgefiihrt.

Durch die anhaltende Verbreitung von XML enstand die Anforderung an DBMS, dieses
Datenformat innerhalb von Datenbanken zu unterstiitzen. Dabei enstanden unter anderem
sogenannte native XML-Datenbanken, die ausschlieSlich XML-Dokumente mit Hilfe der
dafiir entwickelten Abfragesprachen speichern und verarbeiten. Etablierte relationale Da-
tenbanken fiihrten jedoch einen neuen XML-Spaltentyp ein und werden als XML-Enabled
bezeichnet. Dabei werden alle Eigenschaften einer SQL-basierten relationalen Datenbank
beibehalten, wiahrend die XML-Spalten zusatzlich durch XML-Abfragesprachen verarbeitet
werden konnen.

Bei dem in dieser Arbeit verwendeten Datenbanksystem handelt es sich um das Produkt
DB2 der Firma IBM (International Business Machines), das in den 198oer Jahren eingefiihrt
und seitdem stetig weiterentwickelt wurde. DB2 ist eine relationale Datenbank und besitzt
seit Version g einen XML-Spaltentyp. Es gehort damit zu den Vertretern der XML-Enabled
Datenbanken. Die in DB2 umgesetzten XML-Technologien und Abfragesprachen werden
unter dem Begriff pureXML zusammengefasst. PureXML unterstiitzt die XQuery- und
somit auch die XPath-Spezifikation. Es ist moglich XQuery-Anfragen in SQL-Ausdriicke
einzubetten und relationale Daten in XQuery-Anfragen einzubinden. Zur Einbettung von
XQuery in SQL wird die SQL-Funktion XMLQUERY verwendet. Fiir die Einbettung von
SQL oder den Zugriff auf ein relationales XML-Feld innerhalb eines XQuery-Ausdrucks
kommen die XQuery-Erweiterungsfuntionen dbz-fn:sqlquery bzw. dbz-fn:xmlcolumn zum
Einsatz. Dariiber hinaus besitzt pureXML eine eigene, in XQuery eingebettete Syntax zur
Manipulation von XML-Daten.

Es fanden bereits durch vorangegangenen Arbeiten Evaluationen mit Hilfe von DB2 statt. In
dieser Arbeit wird ebenfalls DB2, in der Version 10.1, zur Evaluation eingesetzt.

24

3 Nutzung von Datenbanken in WfMS

In diesem Kapitel soll das Zusammenspiel von Datenbanken und Workflowmanagementsys-
teme untersucht werden. Zunichst wird erldutert wie verschiedene, konventionelle WEMS
Datenbanksysteme bisher einsetzen. Danach werden Konzepte, die eine stirkere Integration
von DBS bei der Workflowausfiithrung thematisieren, sowie deren momentaner Entwicklungs-
stand vorgestellt. Schliefilich werden die bereits entwickelten Konzepte weiter untersucht,
um fehlende bzw. unausgereifte Teilaspekte zu beleuchten und mogliche Losungs- und
Verbesserungswege aufzuzeigen.

Wie von vielen anderen Softwarearchitekturen werden Datenbanken auch von WfMS ein-
gesetzt. Sie werden verwendet, um Daten iiber bekannte Prozesse und laufende Workflo-
winstanzen (z.B. Variableninhalte) zu speichern und persistent zu halten. Dadurch kénnen
laufende Instanzen nach einem Systemausfall wiederhergestellt oder im Fehlerfall tiber
Monitoring-Tools analysiert werden. Die meisten WfMS benutzen dazu eine integrierte
Datenbank. Die Nutzung dieser Datenbank fiir Aufgaben wihrend der Workflowausfiihrung
wird von konventionellen Systemen bisher nicht verfolgt.

3.1 Ansatze zur Datenverarbeitung

Es sind bereits in der Vergangenheit Ansétze entwickelt worden, um die Leistungsfahigkeit
von Datenbanksystemen bei der Ausfiihrung von Workflows ausnutzen zu kénnen. Dazu ist
konzeptionell zundchst zu unterscheiden, ob eine anfallende Datenoperation innerhalb oder
aufierhalb des Workflows definiert ist und ob sie innerhalb oder aufierhalb des Workflows
ausgefiihrt wird (Vgl. Tabelle 3.1).

Im Fall der Ausfiihrung aufierhalb des Workflows werden Datenoperationen durch das
Aufrufen eines externen Prozesses realisiert, der dann die entsprechende Datenoperation
ausfiihrt. Ubernimmt der externe Prozess dabei auch die Definition der Datenoperation selbst,
d.h. also sowohl Definition als auch Ausfiihrung der Datenoperation finden vollstindig
aufierhalb des Workflows statt, so nennt man diese externen Prozesse Data Management-
bzw. DM-Dienste (engl.: data services). Der Zugriff auf die Datenquelle wird damit durch
den externen Prozess vollstindig vom Workflow gekapselt und damit getrennt. Die meisten
aktuellen WEMS bieten Moglichkeiten fiir die Einbindung solcher externen Prozesse innerhalb
eines Workflows an, z.B. in Form von Webservice-Aufrufen.

Finden sowohl Definition als auch Ausfithrung von Datenoperationen innerhalb des Work-
flows statt, so spricht man von lokaler Datenverarbeitung (engl.: local data processing). Dabei
werden alle verwendeten Daten innerhalb des Workflows erfasst und verarbeitet. Diese

25

3 Nutzung von Datenbanken in WIMS

.. Definition innerhalb des Workflows | aufderhalb des Workflows
Ausfiithrung

innerhalb des Workflows || lokale Datenverarbeitung -
auflerhalb des Workflows DM-Aktivitaten DM-Dienste

Tabelle 3.1: Konzeptionelle Unterscheidung von Datenoperationen in Workflows. (Dle
Abkiirzung DM steht hierbei fiir data management) (Vgl. [RSM])

Daten miissen einer Workflowinstanz zunédchst bereitgestellt werden, dies geschieht z.B.
mit Hilfe von Eingangsnachrichten. Dieses Konzept bildet den Schwerpunkt dieser Arbeit,
wobei die Datenverarbeitung innerhalb des Workflows zusatzlich mit Hilfe einer integrierten
Datenbank erfolgt.

Ein dritter Fall liegt dann vor, wenn Datenoperationen von externen Prozessen ausgefiihrt,
jedoch innerhalb des Workflows definiert werden. Man spricht dabei von Data Management-
bzw. DM-Aktivititen (engl.: data management activities). Hierbei wird nicht die gesamte
Datenoperation durch den externen Prozess gekapselt, stattdessen wird der Zugriff auf eine
externe Datenquelle durch besondere Aktivitdten modelliert. Ein Beispiel fiir den Einsatz
dieses Konzepts ist eine Erweiterung von BPEL-Prozesen um die Moglichkeit SQL-Befehle
an ein gekapseltes DBS abzusetzen [VSRMo8]. Eine Abstraktion dieser Funktionalitit bietet
das SIMPL-Rahmenwerk, das als reine BPEL-Erweiterung unabhingig von WfMS entwickelt
wird und Zugriff auf bestimmte, unterschiedliche Datenquellen erlauben soll [RRST 11].
Abbildung 3.1 veranschaulicht die drei beschriebenen, unterschiedlichen Vorgiange der
Auspragungen von Datenoperationen.

3.2 Ansatze zur Verbesserung der Integration von Datenbanken

Um die Moglichkeiten einer engeren Integration zwischen Datenbank und WfMS untersu-
chen zu kénnen, wird zunédchst das bestehende Funktionsprinzip bei der Datenverarbeitung
innerhalb eines Workflows beleuchtet. AnschliefSend wird ein Konzept vorgestellt, das auf
dieser Grundlage die integrierte Datenbank und deren Funktionen wahrend der Workflow-
ausfiihrung starker ausnutzt.

3.2.1 Konventionelle Funktionsweise von WfMS

Abb. 3.2(a) zeigt die fiir die interne Datenverarbeitung wesentlichen Teile des Architektur-
modells, das der Ausfithrung kontrollflussorientierter Workflows zugrundeliegt. Bei der
abgebildeten Datenbank handelt es sich wohlgemerkt nicht um eine extern angebundene
Datenbank, wie sie von DM-Aktivititen oder DM-Diensten (vgl. Abschnitt 3.1) verwendet
wird. Es handelt sich um die interne Datenbank des WfMS, die in erster Linie fiir die
prozessbegleitenden Daten sowie fiir die Persistenz der Workflowdaten verwendet wird.
Diese persistenten Daten werden vom WMS jedoch wéahrend einer Workflowausfithrung

26

3.2 Ansétze zur Verbesserung der Integration von Datenbanken

! Workflowebene |
e e, [mmmmmmmmm————— e e mm——————————— 1
i i DM-Dienste ! i Lokale Datenverarbeitung | | DM-Aktivitaten ::
y . P |
[[[1
1 | | : 1
i b P o
[[[1
1 | ! 1
i - . o
L y; Do Lokale Ausfiihrung von Do i
L y Do Datenverwaltungsoperationen | | | I i
] 1 I ()

b [| 1 Lokale Do | | L
I 1 I 1 [
I . Datenver- [| | I
b | | arbeitungs- b Ul
I 1 b einheit . | | o
! e g g gy g |
—————— e S Bt

DM-Dienst !)
DM-Operationen/Befehl
(‘Data Wall*) | peratl € | €
____________ Y o ¥ ¥ ____.
i e
& N e i
! I
! X N 3‘3 O i
| Unstrukturierte Dokumente Datenserver S Datenbankserver |
! Datenebene Data Grid |
. Lokaler Datenver- Andere .
DM-Dienstaufruf arbeitungsschritt DM-Aktivitat Workflowschritte - ONtrol-/ <« — Nachrichten- bzw.
bzw. -antwort Datenfluss Datenaustausch

(z.B. Zuweisung) bzw. -aktivitaten
Abbildung 3.1: Darstellung der Vorginge bei den verschiedenen Auspriagungen von
Datenoperationen in Workflows (Vgl. [RSM])

nicht verwendet (z.B. fiir Variablenzuweisungen), sodern nur in Ausnahmefillen zur Kor-
rektur oder Diagnose herangezogen. Stattdessen werden alle Datenoperationen von der
Workflowengine auf einem ihr zugrundeliegenden, internen Datenmodell durchgefiihrt. Bei
diesem Datenmodell konnen die Variablen beispielsweise durch Java-Objekte auf der Halde
(heap) des Arbeitsspeichers der Workflowengine realisiert sein, die von dort z.B. durch die
Ausdruckauswertungsengine (expression evaluation engine) ausgewertet werden. Die Kompo-
nente Datenverarbeitungslogik (data processing logic) bestimmt dabei, wie die Bestandteile des
WIMS (z.B. einzelne BPEL-Aktivitdten) auf diese Variablen zugreifen und diese verarbeiten
konnen.

Ein Persistenzmanager (persistence manager) speichert Inhalte aus dem Datenmodell des Work-
flows in das eingebettete Datenbanksystem und sorgt so fiir deren Dauerhaftigkeit. Welches
Datenbanksystem dabei verwendet wird spielt dabei grundsatzlich keine Rolle. Um ein
Abbild von Inhalten eines Workflows zu gewihrleisten, muss die Datenbank, ebenso wie die
Laufzeitkomponente (runtime) des WEMS, einen eigenen Variablenvorrat (variable pool) verwalten.
Es ist Aufgabe des Persistenzmanagers, den Variablenvorrat in der Datenbank mit dem
aktuellen Inhalt der Variablen in der Laufzeitkomponente zu synchronisieren. Dies geschieht
entweder selbsttitig oder auf Anfrage durch die Laufzeitkomponente. Der Persistenzmana-
ger verwendet dabei die Anfrage-/Ausdruckausfiihrungsengine (query/expression execution engine)
des verwendeten DBMS, um die entsprechenden Zuweisungen der Inhalte durchzufiihren.

27

3 Nutzung von Datenban

ken in WIMS

a) konventionelle Architektur —

DB nur zur Speicherung

b) neue Architektur nutzt Funktionen der DB aus

Workflow-Ausfiihr

Aitl

ungsumgebung

Variablen-
vorrat

Ausdruck-
auswertungs-
Engine

R W

—=3

|I Assign J| |IWS»Aufruf J|

Datenverarbeitungslogik

L(ontro“ﬂuss—
ntscheidung

...]

Variablen- sl J

auswertungs-
vorrat
o0 .]

1

Engine

= =

[Datenverarbeitungslogik

i Kontrollfluss-
|I =S || |I e || kntscheidun

Datenverarbeitungs-

optimierer

|
| Persistenz-
| manager

Anfrage-/Ausdruck-
ausflihrungsengine

A

Anfrage-/Ausdruck-
ausflihrungsengine

Datenbal

|

|

|

| e

!_ ! Variablen- '
vorrat

lokales Datenbanksystem

lokales Datenbanksystem) L

<« — »Variablenabbildung «—— , Dtenflussbzw.
Anfragetbermittlung

_ Kontrollnachrichten und N\

Austausch von Metadaten S/ Datenverarbeitung

Abbildung 3.2: Architektur kontrollflussorientierter Workflowausfiihrung (a) sowie
vorgeschlagene Anderungen daran (b) (vgl. [RSM11]).

3.2.2 Konzept fiir eine starkere Integration von DBS

Um Workflowdaten innerhalb datenintensiver Workflows effizienter und zuverlassiger ver-
walten zu konnen, wurde das Architekturmodell aus Abb. 3.2(b) entwickelt, bei dem einige
Teile der Architektur verdndert und einige hinzugefiigt wurden. Das Ziel war dabei eine
Aufteilung der Datenverwaltungsaufgaben zwischen der Laufzeitkomponente und dem
Datenbanksystem, sodass die Starken des DBS wéhrend der Workflowausfithrung bestmog-
lich ausgenutzt werden. Dabei sollten keinerlei Auswirkungen auf die Modellierung der
Workflows entstehen. Das bedeutet, dass alle Anderungen fiir den Anwender transparent
sein miissen, damit die Bedienung durch die Integration nicht beeinflusst wird.

Neben dem Persistenzmanager wurde eine Anfrage-/Ausdruckschnittstelle (query/expression
interface) eingefiihrt, mit deren Hilfe sich zusitzliche Operationen auf dem DBS ausfiihren
lassen. Hiermit sollen keine Datenmengen zwischen der Laufzeitkomponente und dem DBS

28

3.2 Ansétze zur Verbesserung der Integration von Datenbanken

Versand von

a) Zuweisungs-Pushdown

b) Ausdrucksauswertungs-Pushdown

c) Webservice-Pushdown

Workflow-Ausfiihrungsumgebung

Workflow-Ausfiihrungsumgebung

Workflow-Ausfiihrungsumgebung

----- » Anfragen bzw.
Ausdriicken

[Workﬂow-Laufzeitkomponente] LWorkflow-Laufzeitkomponente] LWorkﬂow-Laufzeitkomponente]ﬁ

Versand von
Mitteilungen

pi T y ni T

Anfrage- Anfrage-

Ausdruck-

Versand von
Ergebnisdaten

{aé;} Ausdrucks-
auswertung
7~ Ergebnis-
_/ zuweisung

Persistenz-
manager

Persistenz-
manager

Persistenz-
manager

Ausdruck-
schnittstelle

Anfrage-
Ausdruck-
e

Service
B 1
v |

[Datenbanksystem@)(? 2)408 3}

o]
2 |

2) Serviceaufruf aus
der Datenbank heraus

v
[Datenbanksystem G}?Z)] [Datenbanksystem G2 }

Abbildung 3.3: Pushdown-Arten nach [RSM11]. Die Zahlen deuten die Reihenfolge an, in
der einzelne Teilschritte ausgefiihrt werden.

ausgetauscht werden, es soll lediglich eine Schnittstelle sein, um Ausdriicke bzw. Anfra-
gen an die Datenbank zu senden, die hochstens durch kurze Statusnachrichten quittiert
werden. Damit soll beispielsweise der Kontrollfluss innerhalb eines Workflows abhingig
von Datenbankinhalten gesteuert werden kénnen. Da die im Rahmen der Integration von
WIMS und DBS entstehenden Datenbankanfragen nicht immer so trivial sind, wie es etwa
bei der Abbildung von Variablen durch den Persistenzmanager der Fall ist, miissen bei
dieser Schnittstelle fiir unterschiedliche DBS gegebenenfalls verschiedene Implementierun-
gen bestimmter Anfragen erstellt werden. Die Laufzeitkomponente bleibt damit weiterhin
unabhéngig vom eingesetzten DBS.

Der ebenfalls neu eingefiihrte Datenverarbeitungsoptimierer (data processing optimizer) ent-
scheidet, ob eine Datenoperation in der Laufzeitkomponente ausgefiihrt oder an das DBS
delegiert werden soll und wo das Ergebnis der Operation gespeichert werden soll. Das Ziel
dieser Entscheidungen ist es wiederum, die Starken des DBS bei der Datenverarbeitung und
-abfrage bestmoglich auszunutzen und dabei gleichzeitig den Datenverkehr zwischen dem
DBS und der Laufzeitkomponente so gering wie moglich zu halten. Welche Operationen
an das DBS delegiert und welche intern verarbeitet werden, hiangt unter anderem von der
Datenmenge und der Komplexitdt der Operation ab.

3.2.3 Techniken zur Verbesserung der Datenverarbeitung

Der im vorigen Abschnitt beschriebene Datenverarbeitungsoptimierer kann verschiedene
Anderungen bei der Ausfithrung workflowinterner Datenoperationen vornehmen. Die Vor-
gédnge, bei denen bestimmte Operationen auf das DBS ,heruntergedriickt” werden, werden
als Pushdowns bezeichnet. Einige Pushdown-Konzepte sind in Abb. 3.3 dargestellt.

Beim Zuweisungs-Pushdown (assignment pushdown) werden Variablenzuweisungen aus der
Laufzeitkomponente in die Datenbank ausgelagert. Die Datenbank empfangt dabei zunéchst
einen Zuweisungsausdruck (1), den sie auswertet (2). Danach wird die entsprechende Zuwei-
sung innerhalb des Variablenvorrats der Datenbank durchgefiihrt (3) und anschliefend wird
der Laufzeitkomponente eine Statusnachricht tiber den Erfolg bzw. Fehlerfall des Ausdrucks

29

3 Nutzung von Datenbanken in WIMS

Workflow-Ausfiihrungsumgebung

Workflowmodell R
interne Workflowreprasentation Literal-Pushdown Datenbank .
i L ee—
EJ\ Workflow- - Persistenz- e
y— Compiler . . manager Tabelle mit
L _\/ . A>< A:>A) B itcraiverten
A,)_ Datenbanksystem
Literalwert 1 I
: NS N
Verweis \ y

Abbildung 3.4: Literal-Pushdown nach [RSM11]

zuriickgegeben (4). Die entsprechende Datenoperation kann vom WfMS asynchron ausgelost
werden, d.h. wihrend das DBS die Operation durchfiihrt, kann die Workflowausfiihrung
fortgesetzt werden.

Der Ausdruckauswertungs-Pushdown (expression evaluation pushdown) dient zur Abfrage
von Variableninhalten fiir Entscheidungen tiber den Kontrollfluss innerhalb der Workflow-
ausfiihrung. Hierbei werden auch Ausdriicke an das DBS gesendet und dort ausgewertet.
Die Antwortnachricht des DBMS wird allerdings diesmal von der Laufzeitkomponente des
WIEMS benotigt, wodurch die Workflowausfithrung bis zu ihrem Eintreffen unterbrochen
werden muss (synchrone Ausfiihrung).

Mit Hilfe dieser beiden Pushdown-Konzepte ldsst sich prinzipiell schon eine Geschwindig-
keitssteigerung erreichen, da das DBS DM-Operationen effizient und teilweise asynchron
tibernehmen kann, ohne dass viel Datenverkehr zwischen der Laufzeitkomponente des
WIMS und dem DBS entsteht. Allerdings setzen diese beiden Konzepte voraus, dass alle fiir
die Auswertung eines Ausdrucks bzw. fiir eine Zuweisung benétigten Daten bereits in der
Datenbank vorliegen. Ist dies nicht der Fall, so miissen diese Daten zunédchst, etwa mit Hilfe
des Persistenzmanagers, an die Datenbank tibermittelt werden. Dies wirkt sich wiederum
negativ auf die Ausfiihrungsgeschwindigkeit aus. Um diese negativen Auswirkungen zu
vermeiden wurden zwei weitere Pushdown-Arten entwickelt, die sicherstellen sollen, dass
die benétigten Daten zum richtigen Zeitpunkt in der Datenbank vorliegen.

Es gibt in BPEL zundchst nur zwei Arten, wie ein Workflow Daten von auflerhalb des WfMS
erhalten kann: Durch SOAP-Nachrichten aus der Kommunikationsinfrastruktur als Ergebnis
eines Webservice-Aufrufs und durch Literalwerte, die innerhalb des Workflowmodells
definiert und anschlieflend einer Variablen zugewiesen wurden. Um das Problem der
Antwortnachrichten bei einem Webservice-Aufruf durch den Workflow zu 16sen, wurde der
Webservice-Pushdown konzipiert. Hierbei wird ein vom Workflow aufzurufender Webservice
direkt durch das DBS aufgerufen und das Ergebnis des Aufrufs in der Datenbank abgelegt.
Dazu muss das eingesetzte DBS allerdings tiber einen entsprechenden Funktionsumfang
zum selbstandigen Aufruf von Webservices verfiigen.

30

3.3 Prototypische Erweiterungen eines WIMS

Literale sind Teile des Workflowmodells und werden als solche iiblicherweise nicht durch
den Persistenzmanager auf die Datenbank abgebildet. Beim Konzept des Literal-Pushdown
wird die Tatsache ausgenutzt, dass Literalwerte bereits zur Modellierungszeit definiert
werden. Sie konnen also bereits vor ihrer Verwendung wihrend der Ausfithrung (z.B. beim
Deployment innerhalb des Workflow-Compilers) in der Datenbank abgespeichert werden.
Dort gespeicherte Literalwerte werden zur Laufzeit durch einen im Modell hinterlassenen
Verweis (Referenz) auf den Datenbankeintrag adressiert (Vgl. Abb. 3.4).

Durch diese zwei Konzepte soll sichergestellt werden, dass beim Auftreten einer mit Push-
down umgesetzten Datenoperation alle fiir sie benétigten Daten in der Datebank vorliegen.
Der Geschwindigkeitsverlust durch das Abspeichern der Literalwerte in der Datenbank kann
auf weniger kritische Phasen eines Workflows verschoben werden, wahrend Webservice-
Aufrufe eigenstandig vom DBS durchgefiihrt werden. Letzteres stellt einen Schritt in Richtung
eines DBS als WEMS erster Klasse dar, was ein weiteres Forschungsthema ist [AIL98] [AIL98],
auf das in dieser Arbeit jedoch nicht weiter eingegangen wird.

3.3 Prototypische Erweiterungen eines WfMS

Einige Teile der in den vorigen Abschnitten vorgestellten Techniken wurden bereits proto-
typisch umgesetzt [Wag11]. Das dabei verwendete, java-basierte WEIMS Apache ODE, sowie
wichtige Aspekte seiner Architektur werden in Kapitel 5 detailiert vorgestellt. Der entstan-
dene Prototyp mit den umgesetzten Pushdown-Arten wurde ODE-TI (Tight Integration)
genannt und in [RSM11] genauer evaluiert. Die im Folgenden beschriebenen Konzepte,
Implementierungen und Auswertungen basieren auf den genannten Quellen.

Beim ODE-TI Prototyp wurden der Zuweisungs-Pushdown, der Ausdruckauswertungs-Pushdown
sowie der Webservice-Pushdown implementiert und evaluiert. Dabei wurden anhand von
Instanzlaufzeiten und Ausgaben in Logdateien die Laufzeiten verschiedener Workflowausfiih-
rungen berechnet. Dadurch konnten bestimmte Aussagen tiiber eine Leistungsverdnderung
durch die Modifikationen des Prototyps bei datenintensiven Workflows getroffen werden.

3.3.1 Prototypen und Aufbau der Zeitmessungen

Fiir den Vergleich der Pushdown-Konzepte mit den konventionellen Workflowausfiihrun-
gen wurde Apache ODE V1.3.4 in zwei unterschiedlichen Implementierungen verwendet
(Abb. 3.5). Dabei wurden jeweils Hibernate' V3.2.5 als Persistenzmanager und IBM DB2?
V9.7 als DBS gewdhlt. Innerhalb von ODE werden Variablen als XML-Dokumente gespeichert,
die wéahrend der Ausfiihrung als Java-Ojbekte vom Typ W3CNode3 im Hauptspeicher liegen.
Diese strukturierten Objekte werden vor dem Festschreiben in das DBS durch Hibernate in

'Hibernate: http://docs. jboss.org/hibernate/core/3.5/reference/en/html/
2IBM DB2: http://www-01.ibm.com/software/data/db2/
3W3C Node: http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/Node.html

31

http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
http://www-01.ibm.com/software/data/db2/
http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/Node.html

3 Nutzung von Datenbanken in WIMS

a) Original ODE b) ODE-TI (Tight Integration)
Workflow-Ausfiihrungsumgebung Workflow-Ausfiihrungsumgebung
Workflow- - :
o Apache Orchestration Apache Orchestration
K Laufzeit [Director Engine (ODE) @l W [Director Engine (ODE) @]
omponente 4 I Y
Persistenz- . Variablen- e e Pusvr‘}gownA 3 Variablen-
manager abbildung suna || Aufrat A‘LSSM’J abbildung
.S

<= 256[char. > 256 char. \ /

Abbildung 3.5: Architektur von Original ODE (a) und des ODE-TI Prototyps (b)
(Vgl. [RSM11])

Text- bzw. Bytecodereprasentationen umgewandelt. Dabei werden kleinere XML-Dokumente
(<=256 Zeichen) in Textform gespeichert, wahrend grofsere als Bindrobjekte (BLOB) kompri-
miert in der Datenbank abgelegt werden (Abb. 3.5(a)). Diese Architektur ist stellvertretend
fir die konventionelle Ausfithrung von Workflows und wird als Original ODE bezeich-
net. Um die pureXML-Abfragefunktionen von DB2 bei der Workflowausfiihrung fiir die
Pushdown-Konzepte nutzen zu konnen wurde bei der Architektur in Abbildung 3.5(b) die
Datenbankstruktur und die damit verbundene Abbildung durch Hibernate dahingehend
gedndert, dass XML-Inhalte von Variablen nun ausschlieSlich in dem datenbanknativen
XML-Spaltentyp gespeichert werden.

Es wurden verschiedene Testworkflows erstellt, die unterschiedliche Aspekte einer Work-
flowausfiihrung betonen. Verdnderliche Kriterien sind dabei die Grofie der verarbeiteten
Daten, die Komplexitdt der verwendeten Ausdriicke, sowie die Komplexitdt des gesam-
ten Workflows. Durch Variation dieser Grofien wurde versucht Rentabilitatsschwellen zu
finden, ab denen die Workflowausfithrung auf dem ODE-TI-Prototyp gegentiber Original
ODE effizienter oder zuverldssiger wird. Diese Renatbilitatsschwellen variieren je nach
verwendetem System und Anwendungsszenario. Die Evaluation der Pushdown-Techniken
wurde zunéchst isoliert anhand eigens dafiir erstellter Workflows durchgefiihrt, welche
nur Aktivitdten jeweils einer zu messenden Pushdown-Technik modellieren. Dabei wur-
den beispielsweise der Zuweisungs-Pushdown mittels einer BPEL Assign-Aktivitit, der
Ausdruckauswertungs-Pushdown mittels einer If-Aktivitdt und der Webservice-Pushdown
mittels einer Invoke-Aktivitdt modelliert und ausgewertet. Zusitzlich wurden Messungen
unter Verwendung eines Beispielszenarios aus der Proteinmodellierung (vgl. Abb. 2.2) durch-
gefiihrt. Dabei wird eine Liste mit Proteinsequenzen mittels eines WS-Aufrufs (invoke)
geladen, einzelne Proteine mittels einer If-Aktivitidt auf Ahnlichkeit mit einem Muster hin
tberpriift und anschlieffend mittels Assign-Aktivitdten zu den entsprechenden Ergebnis-
werten hinzugefiigt. Dadurch werden die genannten Pushdown-Techniken nochmals im
Zusammenspiel evaluiert.

32

3.3 Prototypische Erweiterungen eines WIMS

Die Testdaten bei der Durchfithrung der isolierten Tests sind die selben Listen von Prote-
insequenzen, wie sie vom spéteren Beispielszenario verwendet werden. Dabei wird jede
Proteinsequenz durch ein XML-Element innerhalb der Liste der Proteinsequenzen reprasen-
tiert. Es wurden Messungen mit Listen der Grofien 100 KB, 500 KB, 4 MB, 9 MB sowie 50 MB
durchgefiihrt. Diese entsprechen jeweils 40, 199, 697, 1394 sowie 7695 Proteinsequenzen, was
auch der Anzahl der Iterationen der Vergeichsschleife des Proteinmodellierungsworkflows
entspricht. Groflere XML-Dokumente konnten nicht getestet werden, da Apache ODE dabei
entweder Speichertiberldufe erzeugt oder die Workflowausfithrung ohne Angabe von Fehlern
oder Ergebnissen nach 2000 Sekunden abbricht.

Die hier vorgestellten Messungen wurden auf einem Testsystem unter Windows Server 2003
(32-bit) Enterprise Edition SP2 mit einem Intel Xeon PowerEdge 2850 3,2 GHz-Prozessor und
8 GB Hauptspeicher durchgefiithrt [RSM11].

3.3.2 Testergebnisse

Bei Datengrofsen bis zu 9 MB wurde jeder BPEL-Prozess fiir die isolierte Evaluation 100
Mal ausgefiihrt, die Prozesse mit 50 MB Datengrofie wurden 50 Mal ausgefiihrt. Aus allen
gemessenen Laufzeiten der jeweils verwendeten Aktivitdit wurden Mittelwerte fiir diese
berechnet. Die Ergebniswerte der mittleren Laufzeiten von ODE-TI sind in Abbildung 3.6
relativ zu den Laufzeiten von Original ODE dargestellt.

Der Zuweisungs-Pushdown wurde unter Verwendung unterschiedlich komplexer XPath-
Ausdriicke evaluiert. Der dabei verwendete Ausdruck muss zum Auslesen des Variablenin-
halts ausgewertet werden, damit anschliefSfend das Ergebnis des Ausdrucks abgespeichert
werden kann. Der erste Testfall beinhaltet keinen Ausdruck, hier wird einfach der gesamte
Variableninhalt kopiert. Der zweite Fall (einfacher Ausdruck) beinhaltet einen XPath-Ausdruck,
der genau eine Proteinsequenz aus der Liste selektiert. Der dritte Fall (komplexer Ausdruck)
selektiert zwei Proteinsequenzen aus der Liste und fligt diese zusammen. In den letzten
beiden Fillen wird fiir alle Listengroflen die gleiche Datenmenge in die Zielvariable ge-
speichert, da immer nur ein bzw. zwei Elemente aus dem Ausdruck hervorgehen. Bei den
Zuweisungen ohne Ausdruck sowie bei denen mit einfachem Ausdruck wurden bei allen
Testgrofien LeistungseinbufSen zwischen 358% und 14% beobachtet. Bei Zuweisungen mit
komplexem Ausdruck betrdgt der Leistungsverlust bei Testgrofien von 100 KB und 500
KB zwischen 131% und 38%. Erhoht man jedoch die Grofie weiterhin, erreicht man beim
verwendeten System ab etwa 4 MB eine Rentabilitdtsschwelle, ab der die Ausfiihrung durch
ODE-TI um bis zu 18% im Vergleich zu Original ODE beschleunigt wird.

Der Ausdruckauswertungs-Pushdown wurde auf dhnliche Weise mit verschieden komplexen
Ausdriicken evaluiert. Auch hier wird beim einfachen Ausdruck eine einzelne Proteinsequenz
selektiert, wahrend beim komplexen Ausdruck zwei Sequenzen konkateniert werden. Hier
wird im Gegesatz zum Zuweisungs-Pushdown keine Schreiboperation durchgefiihrt, es wird
lediglich der Ausdruck anhand der Liste der Proteinsequenzen ausgewertet. Beim Messen
der Operationen mit einfachem Ausdruck stellten sich bis 9 MB Grofie Leistungsverluste
gegentiber Original ODE im Bereich von 127% bis 17% ein. Die Rentabilitdtsschwelle wird

33

3 Nutzung von Datenbanken in WIMS

500

N
@
o

N
o
o

w

a

o
[
@
pa

w
8
|

100 KB
500 KB
o4 MB
=9 MB

50 MB

272 261

N
a
o

227

n
o
o

i
15
o

130150117

138
101 o9 95 100 98 100 97 96
O.
h26 5 W

Zuweisungs- Zuweisungs- Zuweisungs- Ausdruck- Ausdruck- Webservice-
Pushdown Pushdown Pushdown auswertungs- auswertungs- Pushdown
(ohne Ausdr.) (einfacher Ausdr.) (komplexer Ausdr.) Pushdown Pushdown
(einfacher Ausdr.) (komplexer Ausdr.)

=
o
o

Laufzeit von ODE-TI als % von original ODE
u
o

o

Abbildung 3.6: Ergebnisse der Messungen von ODE-TI relativ zur Laufzeit von Original
ODE in Prozent.

hier bei der 50 MB-Messung erreicht, wo eine Leistungssteigerung von 5% erkennbar ist.
Beim komplexen Ausdruck wurde durch den Einsatz von ODE-TI bei Datengrofsen ab 500
KB Leistungssteigerungen zwischen 74% und 85% gemessen. Der Webservice-Pushdown
erzielt dhnliche Ergebnisse wie Original ODE, mit einer Leistungssteigerung bis zu 14% fiir
steigende Datengrofien.

Diese Messungen haben gezeigt, dass die Pushdown-Techniken fiir sich allein betrachtet
nur dann eine Leistungssteigerung bewirken, wenn komplexe Ausdriicke auf einer grofien
Datenmenge ausgewertet werden sollen. Vergleicht man die Messergebnisse des Zuweisungs-
Pushdowns mit denen des Ausdruckauswertungs-Pushdowns, stellt man fest, dass die
zusatzliche Schreiboperation bei der Zuweisung von Original ODE wesentlich effizienter
durchgefiihrt wird als von ODE-TI. Dies ldsst sich dadruch erkldren, dass das DBMS zusitz-
liche Log-Informationen zu jeder Anfrage auf die Festplatte speichert. AufSerdem miissen
beim Einfiigen oder Andern von Daten auch betroffene Indizes, die Leseoperationen auf der
Datenbank beschleunigen sollen, angepasst werden. Bei den Messungen der Zuweisungen
ohne Ausdruck nimmt die Leistung von ODE-TI bei den Grofien bis 4 MB schrittweise zu,
verschlechtert sich jedoch ab g MB wieder deutlich. Dies lasst sich dadurch erklédren, dass die
durch ihre Begleitoperationen ineffiziente Schreiboperation einen immer grofseren Einfluss
auf die Gesamtlaufzeit nimmt. Bei allen anderen Messungen wird die Schreiboperation
durch die vorherige Selektion von einem bzw. zwei Elementen konstant gehalten. Dadurch
hat die Schreiboperation bei wachsender Datengrofie einen immer geringeren Einfluss auf
die Gesamtlaufzeit. Der Webservice-Pushdown erzielt in ODE-TI und Original ODE &hnliche
Ergebnisse. Dies riihrt daher, dass das Ergebnis eines WS-Aufrufs durch Invoke bei Original
ODE grundsétzlich durch den Persistenzmanager im DBS gespeichert wird, damit es fiir
eine etwaige, spatere Wiederherstellung persistent ist. Dies wiegt die Schreiboperation von
ODE-TI nach Erhalt der Antwort in vergleichbarem Mafle auf, fiir groflere Daten ist jedoch

34

3.3 Prototypische Erweiterungen eines WIMS

(a) Sequentielle Workflowausfiihrung (b) Parallele Workflowausfiihrung
1800

1200
1620
1600

1000

=
o
(=3
S

1400

1200

®
(=3
S

1000

@
(=}
<]

800

Mittlere Laufzeit einer Workflowinstanz in Sekunden
Speicheriiberlastung nach ca. 200 Iterationen
Speicheriiberlastung nach ca. 100 Iterationen

Gesamtlaufzeit aller Workflowinstanzen in Sekunden
Speicheriiberlastung nach 17 Minuten
Speicheriiberlastung nach' 15 Minuten
Speicheriiberlastung nach 10 Minuten

original ODE
m ODE-TI 600
400
262 o1 400
200 200 145
45 20
1 4 31 0
0 — —_— 40 199 697 1394
40 199 697 1394 Iterationen Iterationen Iterationen Iterationen
Iterationen Iterationen Iterationen Iterationen (100 KB) (500 KB) (4 MB) (9 MB)
(100 KB) (500 KB) (4 MB) (9 MB) (10 Instanzen) (10 Instanzen) (5 Instanzen) (3 Instanzen)

Abbildung 3.7: Messergebnisse der sequenziellen (a) und parallelen (b) Ausfithrung des
Proteinmodellierungsworkflows(vgl. [RSM11])

auch hier eine Tendenz zu Gunsten von ODE-TI erkennbar, nicht zuletzt weil dort der
Datenverkehr zwischen WfMS und DBS groftenteils entfallt.

Am Beispielszenario des Proteinmodellierungsworkflows wurden jeweils Messungen bei
sequenzieller und paralleler Ausfithrung durchgefiihrt. Bei der sequenziellen Ausfithrung
wurden jeweils 100 Instanzen mit den Datengrofien 100 KB und 500 KB sowie 50 Instanzen
mit den Grofien 4 MB und 9 MB erzeugt. Messungen mit DatengrofSen von 50 MB und grofer
konnten wegen der bereits angesprochenen Limitierungen von ODE (Speicher, Laufzeiten)
nicht durchgefiihrt werden. Bei der Listengrofie von 100 KB wurde eine Leistungssteigerung
um Faktor 3 gemessen, eine Verbesserung um Faktor 8 zeigte sich bei 500 Kb Grofe. Original
ODE stiirzte bei 4 MB und 9 MB nach ca. 200 bzw. 100 Iterationen wegen einer Uberladung
des Hauptspeichers ab und konnte daher kein vergleichbares Ergebnis liefern, ODE-TI konnte
jedoch alle 50 Instanzen der beiden Workflows ohne Probleme bis zu deren Beendigung
ausfiihren.

Bei den parallelen Messungen wurden alle Workflowinstanzen gleichzeitig gestartet. Es
wurden jeweils 10 Instanzen der Grofien 100 KB und 500 KB, 5 Instanzen mit 4 MB, sowie 3
Instanzen mit g MB Listengrofse ausgefiihrt. Auch hier zeigte ODE-TI eine Leistungssteige-
rung um Faktor 2 fiir 100 KB. Bei der parallelen Ausfiihrung mehrerer Instanzen scheitert
Original ODE bereits bei den Workflows mit 500 KB Listengrofie an Hauptspeicheriiber-
ladungen. Dies lasst sich durch den addierten Speicherbedarf der zeitgleich ausgefiihrten
Workflowinstanzen erkldren.

Aus diesen Messergebnissen ldsst sich schliefien, dass der Einsatz der Pushdown-Techniken
sowohl die Effizienz als auch die Zuverldssigkeit von Workflowausfiihrungen steigern
kann. Dies gilt sowohl bei sequenzieller als auch paralleler Workflowausfiihrung bei grofien
Datenmengen und komplexen Ausdriicken.

35

3 Nutzung von Datenbanken in WIMS

3.4 Erweiterung von ODE-TI

Eine genauere Betrachtung des ODE-TI Prototyps zeigt einige Problemstellungen auf. Bei-
spielsweise wurde hier der Literal-Pushdown, der eine wichtige Rolle beim Zuweisungs-
Pushdown spielt, nicht implementiert. Zuweisungen, die Literalwerte verwenden, werden
weiterhin auf konventionelle Weise innerhalb der ODE-Laufzeitkomponente durchgefiihrt
und sind zunidchst im DBS nicht sichtbar. Ebenso wurden etliche Aktivitiaten, die, dhnlich
wie ein WS-Aufruf, Daten in Form von Nachrichten an den Workflow heranfithren bzw. aus
dem Workflow versenden (z.B. Receive), nicht als Pushdownvarianten implementiert.

Diese Umstinde haben zur Folge, dass vor dem Aufruf implementierter Pushdown-
Aktivitaten oft ein zusétzlicher Schritt notwendig ist, um sicherzustellen, dass alle fiir
die Aktivitdt erforderlichen Inhalte in der Datenbank vorhanden sind. Dieser zusétzliche
Schritt wird in der momentanen Implementierung von ODE-TI vom Persistenzmanager
durch einen vollstandigen Flush realisiert. Dabei werden die workflowinternen Daten an
das DBS iibermittelt. Neben den eigentlich benétigten Variableninhalten, werden dabei
zusétzlich auch Prozess- und Auditingdaten des WfMS unselektiv mit der Datenbank syn-
chronisiert [Wag11]. Der dabei entstehende Aufwand wirkt sich negativ auf die Laufzeit der
Workflowinstanzen aus.

Ziel dieser Arbeit ist es unter anderem die Probleme durch fehlende Daten in der Datenbank
bzw. Leistungseinbufien durch die unselektive Synchronisation zu beheben. Dazu sollen im
weiteren Verlauf Pushdown-Implementierungen fiir die restlichen datenrelevanten Aktivita-
ten erarbeitet werden. Die im Rahmen dieser Arbeit entstandenen Losungensansitze werden
im néchsten Kapitel vorgestellt.

36

4 Konzeptionelle Erweiterungen

Die im vergangenen Kapitel vorgestellte Umsetzung der Integration von WfMS und DBS
enthilt einige Liicken und Nebeneffekte. In diesem Kapitel werden nun weitere Konzepte
zur Integration eines DBS vorgestellt, die im Rahmen dieser Arbeit entwickelt und un-
tersucht wurden. Durch Umsetzung der fehlenden Konzepte aus Kapitel 3, sowie durch
das Einfiihren neuer Pushdown-Konzepte, sollen zuséatzliche Verbesserungen der Effizienz
und Zuverldssigkeit bei der Workflowsausfiihrung erreicht werden. Diese werden in den
folgenden Unterabschnitten vorgestellt.

4.1 Literal-Pushdown

Der Literal-Pushdown wurde bereits in Abschnitt 3.2.3 und Abbildung 3.4 konzeptionell
vorgestellt. Daten, die in Form von Literalen tiber das Prozessmodell in den Workflow
eingebracht werden, sind zunédchst nur in der Laufzeitkomponente des WfMS sichtbar
und konnen vom DBS daher nicht verwendet werden. Wird innerhalb einer Zuweisung
ein Literal verwendet, so kann diese Zuweisung bisher nur auf konventionelle Weise auf
dem Variablenvorrat der Laufzeitkomponente durchgefiihrt werden. Wird die mit dem
Literalinhalt beschriebene Variable nun Quelle einer Zuweisung, die durch Pushdown-
Techniken implementiert ist, so muss vorher ein zuséatzlicher Schritt durchgefiihrt werden,
der sie in der Datenbank abspeichert. Um diesen Zwischenschritt zu umgehen, wurde der
Literal-Pushdown bereits konzeptionell entwickelt, jedoch noch nicht implementiert.

Der Literal-Pushdown kann in einen schreibenden und einen lesenden Teil unterteilt werden.
Beim schreibenden Teil werden Literalwerte aus dem Workflowmodell extrahiert und in
der Datenbank gespeichert, wahrend der lesende Teil die in der Datenbank gespeicherten
Literalwerte fiir Zuweisungsoperationen verwendet. Im Folgenden werden unterschiedliche
Varianten zur Umsetzung des Literal-Pushdowns vorgestellt und diskutiert. Sie kann grund-
sdtzlich auf drei verschiedene Arten erfolgen, die sich hauptsichlich in Ort und Zeitpunkt
des schreibenden Teils unterscheiden. Die verschiedenen Varianten des schreibenden Teils
sind in Abbildung 4.1 dargestellt.

37

4 Konzeptionelle Erweiterungen

a) Entwurfszeit b) Deployment c) Laufzeit

Wif-Modell Wif-Modell Wi-Ausflihrung

@ Wf-Entwickler JL

L WfMS-Compiler W Y
J

‘ﬁ Wf-Datenmodell l

Q interne Reprasentation
\ 4 N

i

L Persistenzmanager J
I I

\ J

L Persistenzmanager

:j — Verweis auf Speicherungv. () Wf-Schritt
— | Literalwert L] Literalwert «——»P g v . :
Literalwerten @ Literaloperation

Abbildung 4.1: Verschiedene Konzepte zur Umsetzung des schreibenden Teils eines
Literal-Pushdown zur Entwurfszeit, wahrend des Deployments oder zur
Laufzeit.

a) Entwurfszeit

Da Literalwerte bereits bei der Modellierung eines Workflows bekannt sind, konnen diese
prinzipiell zur Entwurfzeit durch den Entwickler bzw. durch Entwicklungswerkzeuge
extrahiert und in der Datenbank abgespeichert werden. Dies setzt jedoch voraus, dass
die entsprechenden Datenbankbefehle dem Entwickler bekannt sind bzw. durch die
verwendeten Entwicklungswerkzeuge implementiert werden. In der Laufzeitkomponente
des ausfiithrenden WfMS muss anschliefiend fiir Literalzuweisungen der lesende Teil des
Literal-Pushdowns implementiert werden.

b) Deployment
Der schreibende Teil des Literal-Pushdowns kann, dhnlich wie beim Abspeichern der

Literalwerte zur Entwurfszeit durch Entwicklungswerkeuge, auch beim Deployment
eines Workflows durch die Deploymentkomponente des WEMS erfolgen. Zuséatzlich

38

4.1 Literal-Pushdown

zum lesenden Teil muss, etwa im W{-Compiler, noch eine Logik zum Festschreiben der
Literalwerte implementiert werden. Die eigentlichen Datenbankbefehle zur Speicherung
werden dabei tiblicherweise vom Persistenzmanager (DAO-Schicht) implementiert.

¢) Laufzeit

Literalwerte, die auf herkoémmliche Weise in den Workflowkontext geladen wurden, sind
wihrend der Ausfiihrung als Teil des im Hauptspeicher befindlichen Datenmodells der
entsprechenden Ausfiihrungsinstanz verfiigbar. So kénnen beispielsweise alle Literalwerte
zu Beginn der Ausfiihrung in der Datenbank gespeichert werden. Die Anforderungen an
die Umsetzung dieser Variante des Literal-Pushdows sind dabei prinzipiell die selben
wie in Variante (b), konzeptionell wird hierbei lediglich der schreibende Teil in die
Laufzeitkompomente verlagert.

Bei allen drei Varianten muss der lesende Teil des Literal-Pushdowns innerhalb der Zuwei-
sungslogik eines WfMS implementiert werden und mit dem schreibenden Teil abgestimmt
sein. Der lesende Teil stellt damit konzeptionell eigentlich eine Erweiterung des Zuweisungs-
Pushdowns dar. Bei allen vorgestellten Varianten muss nach der Extraktion eines Literals
durch den schreibenden Teil ein Verweis hinterlassen werden, mit dessen Hilfe der Literal-
wert vom lesenden Teil zur Laufzeit in der Datenbank wiedergefunden werden kann. Ein
individueller Workflow wird ein Mal modelliert. Das fertige Modell kann dann mehrmals
(z.B. in verschiedenen W{MS) als Prozess deployt werden, welcher wiederum mehrmals
instanziiert und ausgefiihrt werden kann. Daraus ergibt sich eine 1 : n : m -Beziehung
zwischen Modellierung, Deployment und Ausfiithrung eins Workflows, wobei 1 < n < m.
Aus dieser Tatsache ergibt sich zunéchst die Uberlegung, dass Variante (a) den geringsten
Laufzeitaufwand darstellt und daher angestrebt werden sollte.

Bei Variante (a) wird der schreibende Teil in die Entwicklungswerkzeuge ausgelagert oder
gar ganzlich dem Entwickler tiberlassen. Problematisch ist dabei allerdings, dass hier die
Modellierungs- und Ausfithrungsphase des Workflowmanagements miteinander verwoben
werden und dadurch nicht mehr unabhédngig voneinander durchgefiihrt werden kénnen. Wei-
terhin verwenden unterschiedliche Workflow-Ausfithrungsumgebungen auch unterschiedli-
che Datenbanksysteme. Deswegen miissten die Daten dennoch in mehrere Datenbanksysteme
und damit auch mehrmals gespeichert werden, wobei hierfiir sogar entsprechende Integrati-
onsprobleme bzgl. heterogener Datenbanksysteme gelost werden miissen. Damit ergeben
sich die oben genannten Performance-Vorteile dieser Variante (a) nur in sehr seltenen Fallen.
Aufierdem soll der Entwickler auch nicht mit zusitzlichen Aufgaben belastet werden. Auf
Grund dieser Uberlegungen sehen wir in dieser Arbeit von einer Umsetzung dieser Variante
(a) ab.

Die Varianten (b) und (c) lassen sich ohne Auswirkungen auf die Modellierung umsetzen.
Die Entscheidung zwischen Variante (b) und (c) hdngt davon ab, ob das Deployment oder die
Ausfiithrung die performanzkritische Phase des Lebenszyklus eines Workflows darstellt. Bei
den in dieser Arbeit betrachteten Fillen sind die Auswirkungen auf die Deploymentphase
vernachlédssigbar, da Prozesse meist nur ein Mal in der selben Umgebung deployt werden
und somit der Fall n = 1 eintritt, wodurch der Pushdown nach Variante (b) nur ein Mal
ausgefiihrt werden muss. Nachdem ein Prozess nach Variante (b) deployt wurde, konnen

39

4 Konzeptionelle Erweiterungen

die gespeicherten Literalwerte von allen seinen Ausfiihrungsinstanzen verwendet werden,
ohne dass der schreibende Teil des Pushdowns wiederholt werden muss. Bei Variante (c)
miissen Literale fiir jede Instanz eines Workflows neu geschrieben werden, daher ist Variante
immer (b) effizienter als Variante (c), wenn ein deployter Workflow mehrmals ausgefiihrt
werden muss. Auflerdem besteht dabei zusétzlich die Moglichkeit, Literalwerte nach dem
Deployment und vor der Ausfithrung eines Workflows auf externem Wege direkt in der
Datenbank zu bearbeiten. Wenn also eine Flexibilidt zur Laufzeit gewiinscht ist, konnen
die Literalwerte auch bei Variante (b) noch nachtréaglich gedndert werden. Details zu einer
Implementierung dieser Variante in Apache ODE sowie eine Evaluation werden in den
Kapiteln 6 bzw. 7 behandelt.

4.2 Nachrichten-Pushdown

Abgesehen von Variableninhalten und Literalwerten gibt es noch eine weitere Art von
Daten, die wihrend einer Workflowausfiithrung verwaltet werden. Ein BPEL-Prozess kann
SOAP-Nachrichten von anderen Prozessen empfangen und an andere Prozesse senden.
Dies geschieht insbesondere jeweils am Anfang und am Ende eines Workflows, wenn die
Ausfiihrung durch eine Eingangsnachricht gestartet oder die Antwortnachricht nach der
erfolgreichen Beendigung zuriickgesendet wird. Die Eingangsnachricht enthélt Daten, die im
Verlauf der Workflowausfithrung meist in irgendeiner Form Gegenstand von Zuweisungen
oder Ausdruckauswertungen sind. Der datenrelevante Teil dieser Nachricht wird unmittelbar
nach deren Verarbeitung in einer Eingangsvariable abgelegt. Um auch diese Daten ohne
aufwendigen Zusatzschritt innerhalb von Pushdown-Aktivitdten nutzen zu konnen, wird an
dieser Stelle der Nachrichten-Pushdown vorgestellt.

Beim Nachrichten-Pushdown soll, dhnlich wie beim Zuweisungs-Pushdown, die Zuweisung
des Inhalts einer Nachricht in die Eingangsvariable in der Datenbank unmittelbar nach dem
Empfang der Nachricht erfolgen. Zwei der dabei in Frage kommenden Umsetzungen sind in
Abbildung 4.2 dargestellt. Bei der Variante (a) wird der komplette Inhalt einer Nachricht nach
ihrem Empfang bei der Workflowausfiihrung zum Speichern iiber den Persistenzmanager
an das DBS tibermittelt. Anschlieffend kann der datenrelevante Teil der Nachricht innerhalb
der Datenbank der Eingangsvariable zugewiesen werden. Variante (b) setzt zundchst voraus,
dass die Nachricht bereits in irgend einer Form im DBS gespeichert ist. Indem die Nachricht
innerhalb des DBS einer Variablen zugewiesen wird, wird der Kommunikationsaufwand
zwischen Laufzeitkomponente und DBS verringert. Je nach Implementierung eines WfMS
kann die Nachricht zum Zeitpunkt des Beginns der Workflowausfiihrung bereits z.B. durch
Komponenten des Nachrichtenaustausches im DBS persistent gemacht worden sein. Falls die-
se Voraussetzung erfiillt ist, ist Variante (b) fiir die Umsetzung eines Nachrichten-Pushdowns
zu bevorzugen, da durch den verringerten Kommunikationsaufwand ein besseres Laufzeit-
verhalten zu erwarten ist. Variante (a) muss hingegen eingesetzt werden, wenn die Nachricht
nicht zuvor im DBS gespeichert wurde.

Bei der Umsetzung nach der Variante (b) liegt der Unterschied zum Zuweisungs-Pushdown
lediglich darin, dass die Nachrichten wahrscheinlich an einer anderen Stelle der Datenbank

40

4.2 Nachrichten-Pushdown

a) aus dem Workflowkontext b) in der Datenbank
ga:hmhte“‘ Workflow-Ausfiihrungsumgebung Workflow-Ausfiihrungsumgebung
aten
Variablen- [Workflow-Laufzeitkomponente} [Workflow—Laufzeitkomponente}
inhalt

Versand von 1 1

A4
Mitteilungen . 1)]
9 Persistenz- Persistenz-
manager | manager
Versand von

_> Y
Daten 2) i 4) 2): 14)
Daten-
G zuweisung ‘ Datenbanksystem O 3) 5 ’ ‘ Datenbanksystem) G 3) | ’

Abbildung 4.2: Unterschiedliche Umsetzungen des Nachrichten-Pushdowns aus dem
Workflow heraus (a) bzw. in der Datenbank (b). Die Zahlen deuten die
Reihenfolge an, in der einzelne Teilschritte ausgefiihrt werden.

und in einer anderen Form gespeichert werden als die Variablen. Der Ablauf ist dabei
identisch mit dem des Zuweisungs-Pushdowns in Abbildung 3.3(a), jedoch wird beim
Nachrichten-Pushdown kein Ausdruck im engeren Sinne evaluiert, da immer der selbe
(komplette) Inhalt einer Nachricht kopiert werden muss. Statdessen kann eine Transformation
zwischen den moglicherweise unterschiedlichen Formaten der Nachrichten und Variablen
notwendig sein.

Der umgekehrte Weg, die Zuweisung einer Variablen in eine Nachricht, kann problematisch
werden. Da das DBS konventionellerweise nicht bei der Workflowausfiihrung eingesetzt wird,
werden im DBS gespeicherte Nachrichten auch nicht als Quelle fiir den Nachrichtenversand
verwendet. Es kann zwar eine Variable wieder in eine Nachricht kopiert werden, diese
wird aber u.U. nicht vom W{MS ausgewertet. In diesem Fall bietet sich die Variante (a) des
Nachrichten-Pushdowns in umgekehrter Form an: Der Inhalt einer Ausgangsvariable wird
aus der Datenbank in den Workflowkontext geladen und dort zu einer Nachricht verarbeitet,
die dann auf konventionelle Weise an einen Partnerprozess versendet wird. Es wire denkbar
weitere Komponenten des WEMS zu verdndern, damit diese die Nachrichten aus der Daten-
bank nach Variante (b) verarbeiten. Dieser Ansatz kann jedoch im Verhéltnis zum erwarteten
Nutzen zu komplex ausfallen, da die Verarbeitung von Eingangs- und Ausgangsnach-
richten erfahrungsgemaif’ keine signifikanten Auswirkungen auf die Gesamtlaufzeit einer
Workflowinstanz hat. Typischerweise bestehen Eingangs- wie auch Ausgangsnachrichten
einzelner Workflow-Instanzen nur aus kleineren Parameterwerten, die bei der Gesamtlaufzeit
- insbesondere von datenintensiven Workflows - weniger ins Gewicht fallen. Der Nachrichten-
Pushdown ist fiir eingehende Nachrichten dennoch wichtig, um etwaige Zwischenschritte
fir das Herunterschreiben von Daten vor anderen Pushdown-Aktivitdten zu vermeiden.
Im Rahmen dieser Arbeit wurde auf eine auwendige Implementierung des Pushdowns fiir

41

4 Konzeptionelle Erweiterungen

ausgehende Nachrichten verzichtet und dafiir stattdessen die Umgekehrte Form der variante
(a) genutzt.

Eine weitere denkbare Variante fiir eine moglicherweise effizientere Umsetzung des
Nachrichten-Pushdowns wiére die Verlagerung des Nachrichtenaustasches in das DBS analog
zum Webservice-Pushdown. Dazu miissten Eingangsnachrichten in Form von Prozedurauf-
rufen an das DBS kommuniziert werden, welches dann die gesamte Logik zur Instanziierung
von Workflows selbst implementieren muss und damit Aufgaben der Workflowverwaltung
iibernimmt. Diesem Implementierungsaufwand steht die Tatsache gegeniiber, dass der er-
wartete Geschwindigkeitszuwachs beim Nachrichten-Pushdown im Verhéltnis zur Laufzeit
der gesamten Workflowausfithrung, wie bereits erwdhnt, sehr gering ist. Aus diesem Grund
wurde diese Variante im Rahmen dieser Arbeit nicht umgesetzt.

Details zu einer Implementierung des Nachrichten-Pushdowns in ODE-TI sowie dessen
Evaluation wird in den Kapiteln 6 bzw. 7 behandelt.

4.3 XQuery-Pushdown

In den vergangenen Abschnitten wurden konzeptionelle Erweiterungen vorgestellt, die die
Ausfiihrung der bisher in ODE-TI umgesetzten Pushdowntechniken ermoglichen, unter-
stiitzen und verbessern sollen. An dieser Stelle wird nun mit dem XQuery-Pushdown eine
Erweiterung vorgestellt, die einen Zusatz zur bisherigen Funktionalitdt darstellt.

Die bisherige Umsetzung von ODE-TI ist derzeit nur in der Lage, XPath-Ausdriicke innerhalb
von Zuweisungen und Ausdruckauswertungen zu verarbeiten. Dies geniigt zwar der Midest-
anforderung durch die Spezifikation von BPEL, Apache ODE bietet aber beispielsweise die
Moglichkeit, XQuery-Ausdrucke innerhalb von datenverarbeitenden BPEL-Aktivitdten zu
verwenden. Die Evaluation der bisherigen Pushdown-Konzepte (s. Abschnitt 3.3.2) hat ge-
zeigt, dass gerade bei komplexen Ausdriicken die Ausfiihrung innerhalb des DBS effizienter
ist, als die Ausfithrung im W{MS. Da XQuery-Ausdriicke wesentlich komplexer als XPath-
Ausdriicke werden konnen, ist also durch den XQuery-Pushdown eine Leistungssteigerung
bei deren Auswertung zu erwarten. Die Erweiterung von ODE-TI um die Verarbeitung von
XQuery-Ausdriicken stellt keine konzeptionelle Innovation dar. Eine Implementierung des
XQuery-Pushdowns ist im Rahmen dieser Arbeit nicht durchgefiihrt worden.

42

5 Architektur von Apache ODE

Im vergangenen Kapitel wurden Konzepte und Techniken vorgestellt, die die Nutzung von
Datenbanken innerhalb von Workflowmanagementsystemen behandeln. In diesem Kapitel
wird Apache ODE" (Orchestration Director Engine) als konkretes WfMS mit den fiir diese
Arbeit relevanten Teilen seiner Architektur detailiert vorgestellt. Die Wahl von Apache
ODE als WEMS ist hier bedingt durch den Prototyp aus [Wag11], der die Konzepte aus
Abschnitt 3.4 in Apache ODE implementiert und der in dieser Arbeit erweitert werden
soll.

5.1 Gesamtarchitektur

Apache ODE ist eine Java-basierte Workflowengine zum Deployment und zur Ausfithrung
von BPEL-Prozessen. Das Uberwachen, Anhalten und Fortsetzen von Workflowinstanzen
ist dabei eingeschréankt {iber ein Application Programming Interface (API) oder iiber eine
Webseite moglich. BPEL-Prozesse, die in Apache ODE bekannt gemacht wurden, werden
in Form von Webservice-Aufrufen instanziiert. Aus diesem Grund muss Apache ODE in
eine Kommunikationsinfrastruktur fiir Webservices eingebettet werden. Ublicherweise wird
dazu ein Apache Tomcat Server* mit Axis2 verwendet. Es besteht ebenfalls die Moglichkeit
Apache ODE in den Apache ServiceMix3 einzubetten, dieser wird im Rahmen dieser Arbeit
jedoch nicht verwendet.

Die Gesamtarchitektur wird in Abb. 5.1 veranschaulicht. In WS-BPEL definierte Prozesse
werden durch den ODE BPEL Compiler (oben) zuerst in ein Java Objektschema tibersetzt
und anschlieflend serialisiert als Datei abgespeichert. Fiir das Instanziieren des Prozesses
und seiner WS-Aufrufe miissen die entsprechenden WSDL Dateien iibergeben werden. Um
XML-Daten (Literalwerte) innerhalb einer BPEL-Prozessdatei zu validieren, miissen die
entsprechenden XML-Schemadateien beim kompilieren vorliegen. Wurde ein Prozess durch
den BPEL-Compiler erfolgreich kompiliert und bekannt gemacht, kann dieser ab sofort
instanziiert und aufgerufen werden.

Die ODE BPEL Runtime besteht aus vielen Komponenten, von denen in Abb 5.1 nur die fiir
die Gesamtarchitektur wichtigsten dargestellt sind:

Thttp://ode.apache.org/
2http://tomcat.apache.org/
Shttp://servicemix.apache.org/

43

http://ode.apache.org/
http://tomcat.apache.org/
http://servicemix.apache.org/

5 Architektur von Apache ODE

Apache ODE

Abbildung 5.1: Gesamtarchitektur von Apache ODE. (Vgl. [ode])

e JACOB VPU*: Die JACOB Virutal Processing Unit ist ein fiir ODE entwickeltes Rahmen-

werk, das die Grundlage der Architektur der BPEL Runtime bildet. Dieses Rahmenwerk
koordiniert die gleichzeitige Ausfithrung von ODE-Prozessinstanzen und sorgt fiir die
Dauerhaftigkeit deren Ausfiihrungszustande.

BPEL Aktivititen: Die durch den OASIS-Standard (s. Abschnitt 2.4) definierten und
von ODE umgesetzten BPEL-Aktivitdten sind in dieser Komponente der Runtime
implementiert. Die verschiedenen Aktivitdten interagieren mit der benachbarten DAO-
Schicht sowie mit der Komponente fiir den Nachrichtenaustausch, um Daten (z.B.
Variableninhalte) einer Prozessinstanz persistent zu halten und mit anderen Webser-
vices zu kommunizieren.

ODE DAO-Schicht: Die DAO-Schicht (Data Access Object) ist fiir die Speicherung
von Prozess- und Instanzdaten zustdndig. Hier ist die Kommunikation mit dem einge-
bundenen DBS implementiert, die dadurch von den Aktivitidten der Runtime gekapselt
wird (siehe auch Abschnitt 3.1).

Nachrichtenaustausch: Diese Komponente verwaltet den Empfang und den Versand
von WSDL-Nachrichten zwischen Prozessinstanzen und anderen Webservices. Sie
interagiert {iber die ODE Integrationsschicht der verwendeten Infrastruktur (z.B. Axis2,
ServiceMix) mit den beteiligten Webservices.

4http://ode.apache.org/jacob.html

44

http://ode.apache.org/jacob.html

5.2 Runtime im Detail

ODE-Runtime

Abbildung 5.2: Detailiertere Ansicht der ODE Runtime (Vgl. [Wag11])

5.2 Runtime im Detail

Die im vorigen Abschnitt beschriebene ODE Runtime-Komponente, sowie mehrere Bestand-
teile davon, werden nun in Abb. 5.2 genauer betrachtet. Hierbei ist zu beachten, dass immer
noch eine starke Abstraktion der tatsachlichen Implementierung vorliegt. Die einzelnen
Komponenten und ihr Zusammenspiel werden im folgenden Vorgestellt.

e DAO-Schicht: Bei der Speicherung von Prozess- und Instanzdaten kann bei Apache
ODE zwischen drei unterschiedlichen Implementierungen gewahlt werden: Hibernate5,
open]PA® sowie in-memory Ausfiihrung. Hibernate und openJPA sind Middleware-
Systeme, die markierte Objekte einer Java-Anwendung in einem DBS persistent machen.
Die beiden Systeme unterscheiden sich lediglich in den einbindbaren DBS und kleineren

Shttp://www.hibernate.org/
Shttp://openjpa.apache.org/

45

http://www.hibernate.org/
http://openjpa.apache.org/

5 Architektur von Apache ODE

Implementierungsdetails [Wag11]. Die in-memory Ausfithrung von BPEL-Prozessen
unterliegt einigen Einschrankungen und wird daher nur in Sonderfillen eingesetzt.

Ausfiihrungslogik: Die Komponenten BPELProcess, BPELRuntimeContext und Activity
bilden in diesem Modell die Ausfiithrungslogik. Activity implementiert die BPEL-
Aktivitdten und deren Logik. Der BPELRuntimeContext implementiert die Zugriffsfunk-
tionen auf die zu verwendende DAO-Schicht und enthélt unter anderem die Laufzeit-
parameter von ODE (z.B. Datenbank-Einstellungen). Die Komponente BPELProcess
verwaltet die Informationen zu einem kompilierten BPEL Prozess, wie aufzurufende
Webservices und die im Prozess verwendeten Query-Sprachen (XPath, XQuery etc.).
Die Auswertung von Ausdriicken sowie der Aufruf von Webservices innerhalb eines
Prozesses erfolgt daher iiber diese Komponente.

Query-Auswertung: Fiir die Evaluierung von XPath-Ausdriicken in BPEL-Aktivitdten
werden das Jaxen und Javax Framework verwendet.

Kommunikationsinfrastruktur: Als Kommunikationsinfrastruktur kann wie bereits
erwdahnt entweder Axis2 oder der ServiceMix verwendet werden.

In den folgenden Abschnitten stellen wir das Objektmodell, die Hibernate DAO-Schicht und
die Runtime-Schicht vor.

5.2.1 OModel und BPEL-Typsystem

Durch den ODE BPEL Compiler erzeugte Prozesse werden intern durch das OModel
reprdsentiert. Jede Aktivitdat sowie die meisten Sprachkonstrukte (Literalwerte, Ausdriicke)
innerhablb eines BPEL-Workflows werden durch ein entsprechendes Objekt aus diesem
OModel gespeichert. Abbildung 5.3 stellt den fiir diese Arbeit wesentlichen Teil des OModel
dar.

46

OBase ist die Superklasse aller weitere OModel-Klassen. Die Methode dehydrate()
wird von den jeweiligen Unterklassen erweitert und erlaubt so die Informationen, die
in einem OModel-Objekt gespeichert sind, aus dem Hauptspeicher zu entfernen um
so Systemressourcen frei zu geben. Dies kann z.B. bei lang laufenden Prozessen mit
hohen Wartezeiten sinnvoll sein.

OScope reprasentiert ein BPEL Scope, einen Sichtbarkeitsblock fiir Variablen mit
statischer Namensbindung (vgl. Abschnitt 2.4). Dieser trdgt die Informationen zu allen
Variablen, die in diesem Block definiert wurden.

OScope.Variable stellt eine BPEL-Prozessvariable dar. Dieses Objekt beinhaltet den
Namen sowie den Typ der Variable sowie eine Referenz auf den Scope in dem sie
deklariert ist.

OVarType ist die Oberklasse der im OModel reprédsentierten BPEL Datentypen, denen
eine Variable angehoren kann. Die BPEL-Variablentypen werden spéter erldautert.

OActivity bildet die Oberklasse fiir alle Objekte, die BPEL-Aktivitdten reprdsentieren.

5.2 Runtime im Detail

OScope

+variables : HashMap <String, OScope.Variable>

OScope.Variable

+name : string
+declaringScope : OScope
+type : OVarType

OBase

OElementVarType

OVarType

+dehydrate() : void

AN

OActivity

+elementType : QName

OMessageVarType

Olnvoke

+inputVar : OScope.Variable
+outputVar : OScope.Variable
+operation : Operation

OAssign

+copy : ArrayList <OAssign.Copy>

OAssign.Copy

+to : LValue

+from : RValue

+messageType : QName

OXsdTypeVarType

+xsdType : QName

OExpression

OXPath10Expression

+xpath : string

+vars : HashMap <String, OScope.Variable>

«interface»
LValue

+getVariable() : OScope.Variable

«interface»
RValue

7o

«implements»

«implements»

+simple : bool

VariableRef

+variable : OScope.Variable
+location : OExpression

Expression

-|+expression : OExpression

Literal

—+xmlLiteral : string

Abbildung 5.3: Ausschnitt des ODE OModel als UML-Diagramm (Vgl. [Wag11]).

47

5 Architektur von Apache ODE

e Olnvoke représentiert eine Invoke-Aktivitdt. Gespeichert werden die Variable, die
die Ausgangsnachricht hélt (inputVar), die Variable, in welche die Eingangsnachricht
gespeichert wird (outputVar), und die aufzurufende WSDL Operation (Operation).
Der Webservice wird in seiner WSDL-Datei beschrieben und tiber BPEL partnerLinks
(OPartnerLink) eingebunden.

e OAssign reprasentiert die Assign-Aktivitat, mit der Zuwseiungen erfolgen. Diese kann
mehrere Copy Blocke beinhalten (OAssign.Copy).

e OAssign.Copy stellt einen Copy Block innerhalb einer Assign-Aktivitdt dar. Gespei-
chert werden die linke Seite (to) und die rechte Seite der Zuweisung (from). Die linke
Seite muss auf eine Variable referenzieren, weshalb das entsprechende Interface LValue
die getVariable() Methode implementieren muss. Die rechte Seite der Zuweisung (RVa-
lue) kann eine Variable (VariableRef), einen Ausdruck (Expression) oder ein Literal
enthalten. Literale sind Start- bzw. Initialwerte fiir BPEL-Variablen und werden im
Prozessmodell definiert.

e OExpression ist die Oberklasse fiir alle Query-Sprachen, die implementiert sind. Wir
betrachten zunéchst nur die Unterklasse OXPath10Expression, welche XPath1.0 Aus-
driicke reprasentiert. Sie beinhaltet den XPath-Ausdruck sowie alle an dem Ausdruck
beteiligten Variablen.

Die OVarType-Unterklassen OMessageVarType, OXsdTypeVarType und OElementVarType repra-
sentieren die im BPEL-Standard [bpe] spezifizierten Typen WSDL message, XML Schema und
XML Schema element, die eine Variablendeklaration enthalten darf. Der jeweils zugehorige
XML Schema Typ aus der Prozessdefinition wird als Qualified Name (QName) gespeichert.
Zur Verwendung und Manipulation von XML Daten innerhalb von Apache ODE werden
intern die Wrapper-Elemente <message/> , <xsd-complex-type-wrapper/> und <temporary-simple-
type-wrapper/> verwendet, Variablen vom Typ OMessageVarType, OXsdTypeVarType(complex)
bzw. OXsdTypeVarType(simple) zu speichern. Diese Wrapper-Elemente werden bendtigt um
z.B DOM-Operationen und XPath-Auswertungen korrekt zu verarbeiten zu kénnen.

Im OModel werden keine Variableninhalte gespeichert. Lediglich im Prozessmodell definierte
Literalwerte werden durch die Literal-Implementierung des RValue-Interfaces im OModel
vorgehalten. Die Speicherung von Variableninhalten erfolgt in der DAO-Schicht, die im
nédchsten Abschnitt ndher betrachtet wird.

5.2.2 ODE Hibernate DAO

In diesem Abschnitt wird nun vorgestellt, wie die Variablenspeicherung mittels der DAO-
Schnittstellen bewerkstelligt wird. Es wird Hibernate DAO verwendet, da dies die vom zu
erweiternden Prototyp verwendete Implementierung ist. Von besonderem Interesse sind
dabei nur die DAO-Schnittstellen zu Scopes und Variableninhalten. Die entsprechenden
Komponenten sind in Abbildung 5.4 dargestellt.

Uber die ProcessInstanceDAO- und die ScopeDAO-Schnittstelle erhilt man Zugriff auf die
Informationen zu den XmlDataDAQO-Schnittstellen, welche die Daten zu den Variablen

48

ime im Detail

5.2 Runt

«spu

pioA : (Buoj : uie)ppes+
Buoj : ()ppeb+

Buo : E|.A|

103[qOH

«spu

([118epm] 18A) wwresSerq-TAN STe WPIYPRS-OVA A0 PP HIuypssny :b°s Sunpriqqy

pioA : ([lolhq : uie)eleqios+
[lo¥Aq : (Jeyeiob+
|ooq : adAajdwis™ -

PIXo»

SNEN

Buuys : sweu -
[lo14q : ejep-
ejeqjuxH

ploA : ()eyepdng| «spu

oeqgajeusaqiy

«spu

PIOA : (<B}eQ|WXH> 189S : UI9)SO|qeLBA)OS +
<eleg|uxH> 198 : ()se|qeuepiab+

Buuys : sweu” |
<Bleq|WXH> }9S : S9|qeleA -

adoogH

A_|

«sasny

Buwys : enjepsydwis ™. — _ _ _ __ _ _ _ _ _______________

PIXo»

SVEN

SPON : 9pou” |
ejeq|wxH : eyep |

|dwjoegejequyx

........... >

PIOA : (BPON : UIB)joS+
9poN : ()1eb+

burys : (JoweNjob+
buoj : ()preb+

«sjuawa|dwi»

ovaejeqiwx
«a0epsju»

«sasn»
f

adoogH : 8doos -
<Ovaereqiuy‘buus>depyseH : sojqeuea -

........... >

<Oova@ejeqjux> uonoejjoy : ()sejqelepab+
ovaejeqjux : (Buujs : ure)ejqelepob+
burys : (JoweNiob+

|dwjoegadoog

«syuawa|dwi»

«sasn»

ovaadoag
«aoepauI»

0
|
|
|

«sasny,

OvQ@gedoos : (buoj : uis)adooSiab+

0OV@a@oue)su|ssasoid
«aoBpBIUIN

49

5 Architektur von Apache ODE

/**
* @hibernate.class table="BPEL_XML_DATA"

*/
public class HXmlData extends HObject {

private byte[] _data;

VAL:
* Q@hibernate.property type="byte[]"
* Q@hibernate.column name="DATA" sql-type="BLOB"
*/
public byte[] getData() {
return _data;

}
public void setData(byte[] data) {
_data = data;
}
}

Listing 5.1: Beispiel fiir die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll.

beinhalten. Diese werden iiber Getter- und Settermethoden verfiigbar gemacht. Die Pro-
cessInstanceDAO-Schnittstelle bildet die Verbindung zum BpelRuntimeContext, die genaue
Implementierung ist fiir uns dabei uninteressant.

In der Oberklasse HibernateDao werden unter anderem aktuelle DB-Sitzungen verwaltet und
Hibernate-Methden (z.B. update()) zur Verfiigung gestellt. Die Unterklassen ScopeDaolmpl
und XmlDataDaolmpl sind Hibernate-Implementierungen der entsprechenden Interfaces.

XmlDataDaolmpl enthilt ein Attribut vom Typ W3C Node (_node), sowie ein Attribut vom
Typ HXmlData (_data). Ein XML-Dokument wird in _node gespeichert. Falls dieses grofser
als 256 Zeichen ist wird es in eine Byte-Reprasentation konvertiert und in HXmlData._data
gespeichert. Andernfalls wird es als HXmlData._simpleValue gespeichert. Dies wird aus
Performanzgriinden durchgefiihrt, um String- anstatt BLOB-Felder fiir kleine Inhalte inner-
halb der DB zu verwenden. Entsprechend referenziert ScopeDaolmpl auf ein Objekt vom Typ
HScope in dem unter anderem der Name des Scopes gespeichert wird.

Objekte von HScope und HXmlData stellen durch die Hibernate Middleware direkt Zeilen
entsprechender Datenbanktabellen dar. Hibernate verwaltet die Synchronisierung dieser
Objekte iiber die Getter-/Settermethoden und durch Uberwachung des Java Bytecodes
selbststandig. Dazu miissen die Datenfelder solcher Objekte entsprechend annotiert werden
(siehe Listing 5.1).

Aus diesen Annotationen ergeben sich im Fall von HScope und HXmlDate die Tabellensche-
mata fiir die Datenbank, die in Abb. 5.5 dargestellt sind.

50

5.2 Runtime im Detail

BPEL_SCOPE BPEL_XML_DATA
PK [ID int ¢——PK |[ID int
NAME | varchar(255) NAME varchar(255)
DATA varbinary(max)
SIMPLE_VALUE | varchar(255)
HScope <-> BPEL_SCOPE SIMPLE TYPE | bit
HXmIData <-> BPEL_XML_DATA FK1 | SCOPE int

Abbildung 5.5: Tabellenschema, welches sich durch die Hibernate Middleware direkt aus
den annotierten Klassen HScope und HXmlData aus Abb. 5.4
ergibt.(Vgl. [Wag11]).

5.2.3 BpelRuntimeContext und Aktivitaten

Abschliefsend zur detaillierten Betrachtung der Runtime-Komponenten wird nun die Funkti-
onsweise der Aktivititen (ACTIVITY), des Laufzeitkontext (BpelRuntimeContext) und deren
Anbindung an die DAO-Schicht und an das OModel vorgestellt. Die Komponenten sind in
Abbildung 5.6 dargestellt.

¢ BpelRuntimeContext und die Implementierung BpelRuntimeContextImpl stellen Metho-
den zur Verfiigung, mit denen Variableninhalte gelesen (readVariable) und geschrieben
(writeVariable) werden konnen. Diese greifen direkt auf die DAO-Schicht zu. Der
BpelRuntimeContext ist somit das Bindeglied zwischen Runtime und DAO-Schicht. Au-
Berdem werden WS-Aufrufe an die Kommunikationsinfrastruktur weitergeleitet und
die Auswertungsmodule fiir Query-Sprachen (wie XPath, XQuery etc.) den Aktivititen
zur Verfiigung gestellt.

e ScopeFrame implementiert die Funktionen der BPEL-Scopes, z.B das Aufldsen ei-
ner Variable (resolve) entsprechend der Sichtbarkeit, die durch die im BPEL-Prozess
definierten Scopes gegeben sind. Dariiber hinaus stellt ScopeFrame Methoden fiir
das Lesen (fetchVariableData) und Schreiben (writeVariable, commitChanges) von
Variableninhalten bereit. ScopeFrame ist direkt mit seiner OModel-Reprisentation
verbunden (oscope).

e Variablelnstance ist eine Wrapperklasse fiir eine Variable aus dem OModel (OSco-
pe.Variable) und der ID des Scope, dem sie angehort.

e ACTIVITY ist die Oberklasse aller implementierten BPEL-Aktivitdten. Sie beinhaltet
den ScopeFrame, in dem sie eingebettet ist, sowie die OModel-Reprédsentation der
Aktivitat iiber ein Objekt der Klasse ActivityInfo. Sie stellt ebenfalls Methoden zum Le-
sen (fetchVariableData) und Schreiben (commitChanges) von Variableninhalten bereit.
Desweiteren hat sie Zugriff auf das aktuelle BpelRuntimeContext-Objekt, welches fiir
die laufende Instanz von Apache ODE giiltig ist. Auf dieses kann tiber die Methode

51

5 Architektur von Apache ODE

52

BpelRuntimeContextimpl

-_dao : ProcessinstanceDAO

Variablelnstance

«implements» +declaration : OScope.Variable
| +scopelnstance : long
«interface»
BpelRuntimeContext «uses»

+readVariable(ein : long, ein : string, ein : bool) : Node
+writeVariable(ein : Variablelnstance, ein : Node) : Node
+invoke(ein : Operation, ein : Node) : string
+getExpLangRuntime() : <nicht spezifiziert>

0
«uses»
|
ScopeFrame

I
I
| -oscope : OScope

! -parent : ScopeFrame

BpelJacobRunnable +resolve(ein : OScope.Variable) : Variablelnstance

+fetchVariableData(ein : BpelRuntimeContext, ein : Variablelnstance, ein : bool) : Node
+writeVariable(ein : BpelRuntimeContext, ein : Variablelnstance, ein : Node) : Node

#getBpelRuntimeContext() : BpelRuntimeContext +commitChanges(ein : BpelRuntimeContext, ein : Variablelnstance, ein : Node) : Node
ZS
I
I
I
I
I
i
uses: ACTIVITY «uses» |
o « %,
Activitylnfo #_self : ActivityInfo |
+0: OActivity ----|#_scopeFrame : ScopeFrame ~ f--—-—--—-—-——oo I
+fetchVariableData(ein : Variablelnstance, ein : bool) : Node

+commitChanges(ein : Variablelnstance, ein : Node) : void

INVOKE FOREACH ASSIGN

+run() : void +run() : void +run() : void

-evaluateCondition(ein : OExpression) : int -copy(ein : OAssign.Copy) : void
-evalLValue(ein : LValue) : Node
-evalRValue(ein : RValue) : Node
-evalQuery(ein : OExpression) : Node

Abbildung 5.6: Ausschnitt der ODE-Laufzeitkomponenten als UML-Diagramm
(Vgl. [Wag11]).

getBpelRuntimeContext(), welche von BpelJacobRunnable ererbt wurde, zugegriffen wer-
den. Im Folgenden werden einige Aktivitdten vorgestellt, die im Zusammenhang dieser
Arbeit relevant sind. Alle von ACIVITY abgeleiteten Aktivititen miissen die Methode
run() implementieren. Diese wird von der JacobVPU aufgerufen um die Aktivitdt zu
starten.

INVOKE realisiert die Logik eines WS-Aufrufs. Zuerst wird die Variable mit der
Ausgangsnachricht gelesen, diese an die invoke-Methode des BpelRuntimeContext
iibergeben und anschlieffend die Antwortnachricht des WS in die dafiir vorgesehene
Variable geschrieben.

FOREACH realisiert die Logik der BPEL-Foreach Schleife. Diese Schleife besitzt einen
Start- und einen Endwert, tiber den ein Zahler lduft. Diese Werte werden tiber Query-
Ausdriicke bestimmt (evaluateCondition).

ASSIGN realisiert die BPEL-Assign Logik. Hierbei werden sequentiell alle Copy-Blocke
durchlaufen und jeweils die Variable der linken Seite aufgeltst (evalLValue) sowie

5.3 BPEL-Compiler

das Resultat des Ausdrucks oder der Inhalt der Variable der rechten Seite (evalRVa-
lue) und dieser Wert anschliefiend in die Variable der linken Seite gespeichert. Die
Methode evalQuery wird verwendet um Query-Ausdriicke innerhalb von evalRValue
auszuwerten.

e PICK (nicht abgebildet) vereint die BPEL-Aktivitdten Pick und Receive. Eine Receive-
Aktivitat wird dabei intern auf eine Pick-Aktivitdt mit einem einzelnen onMessage-Event
abgebildet. Hierbei sind vor allem die instanzerzeugenden Aktivitdten (createlnstan-
ce=yes) von Interesse, da jeder BPEL-Prozess davon mindestens eine enthélt. Die Me-
thode initVariable() extrahiert dabei aus der Eingangsnachricht den Nachrichteninhalt,
der anschliefiend der Eingangsvariable zugewiesen wird.

e REPLY (nicht abgebildet) extrahiert den Variableninhalt der Ausgangsvariable, stellt
eine Antwortnachricht zusammen und sendet diese an den aufrufenden Prozess.

Lesende und schreibende Zugriffe auf eine Variable innerhalb einer Aktivitat finden grund-
sdtzlich folgendermafien statt:

1. Die Variable liegt als OScope.Variable vor und wird mit Hilfe von ScopeFrame.resolve
aufgelost und zusammen mit seiner Scope-ID in ein Objekt vom Typ VariableInstance
umgewandelt.

2. Es wird auf die Schreib- und Lese-Methoden von ACTIVITY unter Verwendung von
Variablelnstance zugegriffen, diese geben den Aufruf an die Methoden von ScopeFrame
weiter, die prinzipiell auch innerhalb der Aktivitit direkt angesprochen werden konnen.
Hierfiir muss zusatzlich der BpelRuntimeContext tibergeben werden.

3. ScopeFrame leitet die Anfrage an die Methoden zum Lesen und Schreiben von Varia-
blen des BpelRuntimeContext weiter.

4. Der BpelRuntimeContext greift auf die konkreten Variableninhalte tiber die DAO-
Schicht zu, iiberschreibt diese mit neuen Werten oder liefert den aktuellen Inhalt
zuriick.

Die Aktivitdten sind indirekt mit dem OModel tiber Activitylnfo und tiber den ScopeFrame
verkniipft (vgl. Abschnitt 5.2.1). Die Anbindung an die DAO-Schicht erfolgt innerhalb der
BpelRuntimeContextImpl tiber die ProcessIntanceDAO (vgl. Abschnitt 5.2.2).

5.3 BPEL-Compiler

An dieser Stelle wird der Aufbau und die Funktionsweise der Compiler-Komponente von
Apache ODE ausschnittsweise vorgestellt. Sie ist spéter fiir die Umsetzung des Literal-
Pushdowns von Bedeutung. Die dazu relevanten Teile des Compilers sind in Abbildung 5.7
als UML-Diagramm dargestellt und werden nun im einzelnen erldutert.

53

5 Architektur von Apache ODE

BpelObjectFactory BpelCompiler
T
+parse(in isrc, in ...) : <unspecified> L +compile(in process, in ...) : <unspecified>
T BpelC
I
: -_bpelFile
]‘ +compile(in bpelFile, in ...) : void
+compile(in process, in ...) : void

DomBuilderContentHandler BpelCompiler1l| |BpelCompiler20| |BpelCompiler20Draft

+startElement(in ...)
+endElement(in ...)

Abbildung 5.7: Ausschnitt relevanter Komponenten des ODE-Compilers als
UML-Diagramm.

BpelC ist die Klasse, in welche der fiir uns relevante Teil des Kompiliervorgangs
stattfindet. Sie besitzt ein Attribut _bpelFile vom Typ File, das auf die Quelldatei
des zu kompilierenden BPEL-Processes (.bpel) verweist. Diese Datei wird in einem
ersten Kompilierschritt (compile(bpelFile,...)) zundchst in ein internes DOM-Objekt (Pro-
cess) umgewandelt. In einem weiteren Schritt, dem eigentlichen Kompiliervorgang
(compile(process,...)), wird dieses Prozessobjekt schliefdlich in das OModel fiir Prozes-
se (OProcess) tiberfiihrt und das Resultat als .cbp-Datei (compiled bpel process) im
Deploymentverzeichnis zu weiteren Verwendung durch ODE abgespeichert.

BpelObjectFactory bietet Funktionen zur Umwandlung von XML-Daten in die von
ODE bendétigte, internen Objektreprasentationen. Insbesondere beinhaltet sie die Me-
thode parse(irsc,...) die eine Datei, die durch eine InputSource-Referenz spezifiziert wird,
mit Hilfe des SAX-Parsers XMLReader” in ein ODE-Prozessobjekt umwandelt. Die
Methode parse(isrc,...) wird von BpelC im ersten Kompilierschritt verwendet.

DomBuilderContentHandler ist eine Erweiterung der Klasse DOMBuilder® und wird
vom SAX-Parser XMLReader verwendet, um auf bestimmte Ereignisse wahrend des
Parsens zu reagieren. Beispielsweise konnen hier iiber die Methoden startElement(...)
und endElement(...) zusétzliche Aktionen ausgefiihrt werden, sobald beim Parsen der
Anfang bzw. das Ende eines Elementknotens erreicht wird.

BpelCompiler ist eine abstrakte Klasse, die den Kompiliervorgang eines ODE-
Prozessobjekts im Detail implementiert. Dabei wird aus einem DOM-Objekt (Process)
mit Hilfe zahlreicher Kompiliermethoden das fertige OModel-Objekt (OProcess) fiir
die weitere Verwendung in ODE erzeugt.

BpelCompiler11, 20 und 20Draft sind Erweiterungen der abstrakten Klasse Bpel-
Compiler, mit deren Hilfe der Kompiliervorgang fiir die unterschiedlichen BPEL-
Spezifikationen realisiert wird.

7org.xml.sax. XMLReader
8org.apache.xml.utils.DOMBuilder

54

5.4 Anderungen durch den ODE-TI Prototyp

5.4 Anderungen durch den ODE-TI Prototyp

Zur Evaluierung der Konzepte aus ODE-TI wurde in einer vorangegangener Arbeit ein
Prototyp mit Umsetzungen der Pushdown-Techniken auf Basis von Apache ODE in der
Version 1.3.4 implementiert. In diesem Abschnitt wird der bei Beginn dieser Arbeit bestehen-
de Prototyp kurz und auszugsweise vorgestellt, bevor im nidchsten Kapitel auf die darauf
aufbauende Implementierung der Konzepte aus dieser Arbeit detailliert eingegangen wird.
Eine detailliertere und umfassendere Beschreibung der zuvor bestehenden Implementierung
ist der Vorgangerarbeit [Wag11] zu entnehmen.

5.4.1 Datenbankschema

Um die Implementierungen der Pushdown-Techniken vorzubereiten, musste das Datenmo-
dell bzw. das Tabellenschema aus Abbildung 5.5 gedandert werden. Das BLOB-Feld DATA der
Tabelle BPEL_XML_DATA wurde in ein Feld vom XML-Spaltentyp gedndert, um die XML-
Verarbeitung innerhalb des DBS zu ermoglichen. Dazu wurde die Hibernate-Annotierung
fiir das Attribut _data der Klasse HXmlData aus Abb. 5.4 von BLOB auf XML geédndert.

In der Originalversion von Apache ODE wird zur Speicherung von XML-Daten ein benut-
zerdefinierter Typ verwendet, der XML-Daten aus HXmlData in komprimierter Form in
die Datenbank ablegt. Um eine direkte Verarbeitung der XML-Inhalte durch das DBS zu
ermdglichen, wurde diese Komprimierung aufgehoben.

Um eine einheitliche Verarbeitung und Struktur der SQL- bzw. XPath-Ausdriicke zu erhalten,
die im Prototyp generiert werden miissen, wurde die Unterscheidung zwischen einfachen
Werten (SIMPLE_VALUE) und grofien Werten (DATA) innerhalb von ODE aufgehoben.
Alle XML-Daten werden fortan im Feld DATA gespeichert. Da XML Felder in einem DBS
nur wohlgeformte XML Dokumente enthalten diirfen, wurde fiir XSD-einfache Typen ein
Wrapperelement (<temporary-simple-type-wrapper/>) verwendet, um den Wert im XML-Feld
DATA der Datenbank ablegen zu kénnen. Das verdnderte Tabellenschema ist in Abb. 5.8
dargestellt.

5.4.2 DAO-Schicht

Die DAO-Schicht verwaltet die Zugriffe auf die Datenbank. Dies geschieht im Allgemeinen
tber das DB-Middlewaresystem Hibernate, welches SQL Anfragen an das DBS kapselt
und somit die Runtime prinzipiell unabhéngig vom konkreten DBS und dem Datenschema
macht. Die DAO-Schicht ist deshalb der Ort, an dem die SQL-Anfragen der Pushdown-
Techniken generiert und das DBS geschickt werden miissen. Abb. 5.9 zeigt das modifizierte
UML-Diagramm der DAO-Schicht. Unverdnderte Komponenten sind grau eingefarbt, neue
Klassen und Typen sind eingerahmt im rechten unteren Teil dargestellt. Alle anderen
Komponenten (weify) wurden in irgendeiner Weise modifiziert, um Pushdown-Techniken zu
realisieren. Im Folgenden werden die einzelnen Anderungen kurz vorgestellt.

55

5 Architektur von Apache ODE

BPEL_SCOPE BPEL_XML_DATA
PK | ID int < PK |ID int
NAME | varchar(255) NAME | varchar(255)
DATA xml
FK1 | SCOPE |int

HScope <-> BPEL_SCOPE
HXmIData <-> BPEL_XML_DATA

Abbildung 5.8: Durch den ODE-TI-Prototyp verandertes Tabellenschema (Vgl. [Wag11]).

56

e HibernateDao Die HibernateDao wird um die Methode hibernateFlush() erweitert. Diese

wird in der Methode XmlDataDaolmpl.set() verwendet, um das Festschreiben eines
Variablenwertes und somit dessen Persistenz zu erzwingen, was fiir die Realisierung
der Pushdown-Techniken essentiell ist.

ScopeDAO und ScopeDaolmpl In der ScopeDAO werden die Hauptmethoden der
Pushdown-Techniken implementiert. Mit dataAssignByContext wird der Zuweisungs-
Pushdown, mit Hilfe von inDatabaseXPath und insbesondere inDatabaseExpression der
Ausdruckauswertungs-Pushdown realisiert. Die Methode invokeWS wird fiir die Reali-
sierung des Webservice-Pushdown benoétigt.

XmlDataDAO und XmlDataDaoImpl Die XmlDataDAO wurde verdndert, um einen
veralteten Variableninhalt in HXmlIData zu kennzeichnen (setDetached). Wird eine Va-
riable durch einen Pushdown in der Datenbank verdndert, muss bei einer spateren
Verwendung dieser Variable innerhalb des Workflowkontext ihr verdnderter Wert in
den Hauptspeicher geladen werden.

HXmlData Die Hibernate-Annotierung fiir HXmlData wurde von der komprimierten
Bytedarstellung auf XML gedndert. Das zusatzliche Attribut _detached ermoglicht die
Kennzeichnung von veraltetem Inhalt. Dieses ist nur fiir die Workflowausfiihrung
interessant und wird daher nicht auf das Datenbankschema tibertragen.

VariableContext Um z.B. die Logik fiir den Zuweisungs-Pushdown auf die DAO-
Schicht tibertragen zu konnen, wird diese Wrapper-Klasse eingefiihrt, die alle dafiir
benétigten Informationen einer Variable zusammenfasst. Ausdriicke werden dabei als
Pseudovariablen ohne ID iibergegeben. Insbesondere wird dabei im Attribut ID der
Priméarschliissel aus der Tabelle BPEL_XML_DATA der jeweiligen Variable sowie im
Fall von Ausdriicken in exprContext Referenzen auf enthaltene Variablen gespeichert.
In varType wird eine durch den Prototyp eingefiihrte Typunterscheidung von Variablen
festgehalten, die zur Umsetzung verschiedener Pushdown-Techniken verwendet wird.

VarType VarType ist eine Aufzdhlung moglicher Typen, die bei einer Zuweisung auf-
treten konnen und wird in VariableContext verwendet. Die Typen entsprechen dabei

([rr3em] 13A)
HISIZYIPOW PPIU USpINM usjusuodwioy] 91qrejadure neis) “JHapuelaa 'S 'qqy Nz Yora[319A W UspInm usgom
arp 18nya8nzury uspimm uajusuodwoy] Uy eIa3urd S “WPIYIS-OV ([UdHSIZYTpow Iop wwrelder- T 6 Sunpriqqy

5.4 Anderungen durch den ODE-TI Prototyp

10sa161s0dNal 2g9anai NOISSTHdXI+ <IXajuoDs|qele A ‘buns>deNyseH : 1xauodidxa+
!] asx3dnIS+ . mc_ﬁw red+
S . ! ASXX31dWOD+ IX3JUODSN - Sa2e! mem:.r
q SNENERER wEmzo : adAi+
JOVSSIAN+ adALreA : Nn; ._...m>+
seliendaAIRNaseqelegpalelbalu| adA1LIen uo| : ai+
RELIIEY <UONRIBWNUD» 1X3JU0D3|qeleA
: \”/ PIOA : (J0Oq : UIB)PaYIBISAIaS+H
[, PIOA : (9PON : UIB)}aS+
i Tt = apoN : ()196+
I | 9pON : dpou” -, .
| H X () P, \v Buins : ()awen1ab+
eleqQ|WXH : Blep -
m | " TEQIXH * B1ep «sjuawa|dwi» Buoj :)pnab+
1 |dwjoegereq|ux
i pon: (Joihq :_ uis)ereqios+ |osss OvaeRdlun
! [l14q : (ereqeb+ i ¢ Wi
! |00q : payoeiap - i o= J
«s9SN», 100q : adA 1 ajdwis™-| | |
Bus : anepsdwis™N T | «sasn»
Bulns : sweu™ - I
:.E\E Terep - «SpuPIXS» ploA : (Buis : ue ‘Buis @ ule ‘sweNQO : ule ‘Buo| : ule ‘Buo| : UIB)SMBNOAUI+H

9pON : (<IxawoDa|qene fulis>deyseH : JX3JUODSN : uId ‘Buis : uld)uoissaldx3aseqerequi+
eleqgjwxH B9PON : (IX3WODSN : UL ‘Buis : ue ‘sweNQd : ud ‘Buol : uR)yredxaseqerequi+
PIOA : (IXaJUODB|GELI_A © UIS ‘IX8JU0DS|qeleA : ule)ixajuodAgubissyerep+
<ovaereqg|ux> uondajjod : ()se|qeneAab+

ovaelequy : (buwis : uie)s|qerenlab+

«SPUBIX

pioA: (Buoj : ure)pias+ pIoA : (Jysnjereusaqiyy# Buis : (JaweNiab+
Buo : ()ppab+ pion : ()arepdn| Ovaadoos
Buoj : pr M_ T mm:w:Ocu_&A_ REGITN
N

108[q0OH oegareulaqiH D !

! “

«SpUPIXe» \ “

9d0ogH : 8doos™ - | T
«spubIxe» <ovaereq|wx ‘bums>deyseH : ssjqelen -~ UMmulclme_ duwi» «sasn»
e AAEmn__Exc_:._v Homm” :,_mnwww_nw__umz.ww Idwioegadoos 0v@adoos : (Buoj : uz)adoos)eb+
IS 2ok 5 I - A \ OVd29UeISU|SSa00id
ULS & SUIBU i — — - — - - - oo ’ «aoepBIU»

<ele |WXH> 19S : So|qeuen -|
2doosH

«sasn»

57

5 Architektur von Apache ODE

den Typen aus dem OModel von ODE (OMessageVarType, OElementVarType,...). Die
Typen COMPLEXXSD und SIMPLEXSD entsprechen dem Typ OXsdTypeVarType mit
den Eigenschaften simple=false bzw. simple=true.

IntegratedDatabaseNativeQueries Diese Schnittstelle kapselt alle SQL-Anfragen und
Fragmente, die fiir das Zusammenstellen der Anfragen an das DBS benotigt werden.
Diese Schnittstelle wurde erstellt, um verschiedene Datenbanksysteme anbinden zu
konnen, da die Middleware Hibernate keine eigenen Moglichkeiten zur internen XML-
Verarbeitung bietet. Diese Schnittstelle wird innerhalb von ScopeDaolmpl verwendet,
um die konkreten SQL-Anfragen an das DBS zu generieren. Beim ODE-TI Prototyp
wurden einige Techniken neben DBz auch fiir das DBS PostgreSQL? implementiert. Fiir
diese Arbeit wird jedoch nur die DB2-Implementierung betrachtet, da sich PostgreSQL
nicht als geeignet erwiesen hat, um alle Pushdown-Konzepte zu realisieren [Wag11].

Hauptmethoden von ScopeDAO

Hier weden kurz die Methoden vorgestellt, die die Anweisungen der umgesetzten Pushdown-
Konzepte an das DBS weitergeben.

e invokwWS ruft eine benutzerdefinierte Funktion (UDF) des DBS auf, die einen

Webservice-Aufruf erzeugt. Sie besitzt die zwei Parameter inputVar und outputVar,
die fiir die Primédrschliissel der Variablen stehen, die als Eingangs- bzw. Ergebnisvaria-
ble des Webservice-Aufrufs agieren. Die iibrigen Parameter der Funktion dienen zur
Identifikation der Webservice-Operation.

inDatabaseXpath stellt SQL-Anfragen fiir synchronen Pushdown innerhalb von Zu-
weisungen zusammen und liefert das Ergebnis als (XML-) Node. Im Gegensatz zu
inDatabaseExpression kann nur auf eine Variable referenziert werden, die Methode stellt
damit einen Sonderfall des Ausdruckauswertungs-Pushdowns dar.

inDatabaseExpression stellt die SQL-Abfrage fiir den synchronen Pushdown eines
allgemeinen Ausdrucks zusammen und liefert das Ergebnis als (XML-) Node. In
einem Parameter xPath wird der auszuwertende Ausdruck gespeichert, wiahrend ein
Parameter exprContext alle im Ausdruck vorkommenden Variablen als Hashtabelle
mehrerer VariableContext-Objekte speichert.

dataAssignByContext ist fiir den (asynchronen) Zuweisungs-Pushdown verantwort-
lich. Diese Methode implementiert die verdnderte Zuweisungslogik der ASSIGN-
Aktivitat innerhalb der DAO-Schicht. Als Parameter iibernimmt sie den VariableContext
der linken sowie die rechten Seite einer Zuwesiung (IContext, rContext). Sie sorgt
dafiir, dass innerhalb des DBS die Zuweisung der rechten Seite an die linke Seite
erfolgt. In rContext kann dabei entsprechend der Definition von VariableContext ent-
weder eine Variable oder ein Ausdruck enthalten sein. Die endgiiltige Durchfiihrung
eines Zuweisungs-Pushdowns stellt sich unter Zuhilfenahme von zahlreichen weiteren

9PostgreSQL - http://www.postgresql.org/

58

http://www.postgresql.org/

5.4 Anderungen durch den ODE-TI Prototyp

Methoden zusammen. Dabei werden z.B. Ausdruckauswertungen nach dem selben
Prinzip wie bei inDatabaseExpression durchgefiihrt, bevor das Ergebnis der linken Seite
Zugewiesen wird.

5.4.3 Runtime-Schicht

Die in der DAO-Schicht vorgestellten Verdnderungen reichen nicht aus, um die Pushdown-
Techniken bei der Workflowausfithrung zu verwenden. Um dies zu bewerkstelligen miissen
noch fiir alle BPEL-Aktivitdten, die nach einem Pushdown-Konzept ausgefiihrt werden
sollen, die Ausfiihrungslogik so verdndert werden, dass die neu implementierten Methoden
der DAO-Schicht aufgerufen werden. Die Hauptarbeit in der Runtime-Schicht besteht nun
darin, Informationen zu Variablen und Ausdriicken aus dem OModel zu extrahieren und in
geeigneter Form (direkt oder durch die Wrapperklasse VariableContext) an die DAO-Schicht
zu iibergeben, die dann die entsprechenden Operationen im DBS durchfiihrt. Abb. 5.10
zeigt das modifizierte UML-Diagramm der Runtime-Schicht. Unverdnderte Komponenten
sind grau eingefdarbt, weifse Komponenten wurden in irgendeiner Weise modifiziert, um
Pushdown-Techniken zu realisieren. Im Folgenden werden die einzelnen Anderungen kurz
vorgestellt.

e BpelRuntimeContext und BpelRuntimeContextImpl stellen vier Pushdown-
Methoden (inDatabaseAssign, inDatabaseExpressionAssign, inDatabaseXPath,
inDatabaseXPath-Expression) bereit, die ausschliefSlich von ScopeFrame aus auf-
gerufen werden. Hier werden aufgelste Variablen und Ausdriicke iibernommen und
die dazugehorigen fiir die DAO-Schicht benétigten Informationen extrahiert. Diese
Informationen werden ggf. in Objekte der Wrapper-Klasse VariableContext tiberfiihrt.
Die Methode inDatabaselnvoke wird direkt von der INVOKE-Aktivitdt aufgerufen.

e ScopeFrame stellt drei Methoden (inDatabase*) bereit, die von den einzelnen BPEL-
Aktivititen verwendet werden konnen, um einen Pushdown einzuleiten. Der
Aufruf von inDatabaseAssign fithrt zu einem asynchronen Zuweisungs-Pushdown.
Der Aufruf von inDatabase-XPathExpression bewirkt einen allgemeinen synchronen
Ausdruckauswertungs-Pushdown, der auch fiir die Evaluierung von Bedingungen in
Kontrollstrukturen und Schleifen genutzt werden kann.

e ACTIVITY und Unterklassen leiten eine Pushdown-Operation ein, indem sie die neu-
en Methoden von ScopeFrame aufrufen. Eine Ausnahme bildet die Aktivitat INVOKE,
die direkt auf Methoden von BpelRuntimeContext zugreift.

Durch diese Aufteilung der Methoden zur Realisierung von Pushdowns auf die verschiede-
nen Runtime-Komponenten konnen die implementierten Methoden von weiteren Aktivitaten
und eventuell auch fiir die Umsetzung anderer Konzepte wiederverwendet werden.

59

5 Architektur von Apache ODE

BpelRuntimeContextimpl Variablelnstance (VI)
- dao : ProcessinstanceDAO +declaration : OScope.Variable
= +scopelnstance : long

! «implements»

L__________________v
«interface»

BpelRuntimeContext

+readVariable(ein :long, ein : string, ein : bool) : Node

+writeVariable(ein : VI, ein : Node) : Node

+invoke(ein : Operation, ein : Node) : string

+getExpLangRuntime() : <nicht spezifiziert>

+inDatabaseAssign(ein : VI, ein : VI, ein : OAssign.Copy) : void

+inDatabaseExpressionAssign(ein : VI, ein : OXPath10Expression, ein : HashMap<String,VI>, ein : OAssign.Copy) : void

+inDatabaseXpath(ein : VI, ein : RValue) : Node

+inDatabaseXpathExpression(ein : OXPath10Expression, ein : HashMap<String,VI>) : Node

+inDatabaselnvoke(ein , ein : Operation, ~ ‘'l ein : VI) : void

«uses».

I |
| |
| |
| I

BpelJacobRunnable ScopeFrame

-oscope : OScope
-parent : ScopeFrame

#getBpelRuntimeContext() : BpelRuntimeContext

+resolve(ein : OScope.Variable) : VI
ZE +fetchVariableData(ein : BpelRuntimeContext, ein : VI, ein : bool) : Node
+writeVariable(ein : BpelRuntimeContext, ein : VI, ein : Node) : Node

+commitChanges(ein : BpelRuntimeContext, ein : VI, ein : Node) : Node
+inDatabaseAssign(ein : BpelRuntimeContext, ein : VI, ein : VI, ein : OAssign.Copy) : void
+inDatabaseXPath(ein : BpelRuntimeContext, ein : VI, ein : RValue) : Node
+inDatabaseXPathExpression(ein : BpelRuntimeContext, ein : Expression) : Node

7N

|
1
ACTIVITY :
T «uses» [#_self : Activityinfo «uses» |
AC"V'ty!nfo #_scopeFrame : ScopeFrame !
0 OActivity K-- -~~~ +fetchVariableData(ein : VI, ein :bool):Node [~~~ "~~~ """ 7T
+commitChanges(ein : VI, ein : Node) : void
+inDatabaseAssign(ein : OAssign.Copy) : void
+inDatabaseXPath(ein : RValue) : Node
INVOKE FOREACH ASSIGN
+run() : void +run() : void +run() : void
-evaluateCondition(ein : OExpression) : int -copy(ein : OAssign.Copy) : void
-evalLValue(ein : LValue) : Node
-evalRValue(ein : RValue) : Node
-evalQuery(ein : OExpression) : Node

Abbildung 5.10: UML-Diagramm der modifizierten Runtime-Schicht. Weifie Komponenten
wurden im Vergleich zu Abb. 5.6 verdndert, grau eingefdrbte
Komponenten wurden nicht modifiziert (Vgl. [Wag11]).

5.4.4 Funktionalitat des Prototyps

Das Konzepte des Zuweisungs-Pushdowns sowie des Ausdruckauswertungs-Pushdowns
wurden fiir XPath-Ausdriicke in IBM DB2 vollstindig implementiert. Der Webservice-
Pushdown wurde rudimentdr implementiert, hier fehlt noch eine Logik zur Fehlerbehand-
lung und Fehlerweitergabe an Apache ODE aus dem DBS heraus. Fiir die Evaluation der
Laufzeit des Webservice-Pushdowns ist die bestehende Implementierung jedoch zureichend.
Generell wird im Falle eines Fehlers, z.B. bei Auftreten einer Ausnahme in einer der neuen
Methoden, die urspriingliche Logik der entsprechenden Aktivitat ausgefiihrt.

60

5.4 Anderungen durch den ODE-TI Prototyp

Im einzelnen wurden generelle Pushdown-Funktionen fiir die Aktivitaten ASSIGN, INVOKE,
FOREACH, WHILE, REPEATUNTIL, IF, ONALARM, WAIT und fur TransitionConditions
umgesetzt. Gegenstand dieser Arbeit sind die nicht aufgefiihrten Aktivititen RECEIVE,
PICK, REPLY und ON_EVENT, sowie die Erweiterung von ASSIGN um den Literal-Pushdown.
Aufierdem sollen nach Moglichkeit alle Pushdown-Konzepte neben XPath auch XQuery bzw.
pureXML als Ausdrucksprache im Zusammenspiel mit DB2 unterstiitzen.

61

6 Implementierung der konzeptionellen
Erweiterungen

In diesem Kapitel werden Implementierungen der in Kapitel 4 eingefiihrten, neuen
Pushdown-Konzepte auf der Grundlage des ODE-TI-Prototyps vorgestellt. Damit wird
die in Abschnitt 5.4 vorgestellte Implementierung erweitert. In den folgenden Unterkapiteln
werden die durch diese Arbeit entwickelten Anderungen an betroffenen Komponenten von
ODE-TT im Detail beschrieben.

Bevor die bestehende Implementierung verandert wurde, wurden alle durch den ODE-
TI-Prototyp vorgenommenen Anderungen an Apache ODE auf die zum Zeitpunkt dieser
Arbeit aktuellste ODE Version 1.3.5 portiert, um bei der Weiterentwicklung der Pushdown-
Implementierungen von den Bugfixes und Verbesserungen' der neueren Version zu profitie-
ren.

Nach jedem erfolgreich ausgefiihrten Pushdown wird die interne Workflowvariable, die ohne
den Pushdown verdndert worden wiére, mittels der Metode setDetached ihres DAO-Objekts
als veraltet gekennzeichnet. Vor jeder Verwendung von internen Workflowvariablen wird
diese Eigenschaft durch die Implementierungen des ODE-TI-Prototyps abgefragt und bei
Bedarf die Variable mit ihrem Wert aus der Datenbank synchronisiert. Dieser Fall sollte nach
Fertigstellung aller Pushdown-Implementierungen idealerweise nicht mehr auftreten, da
dann alle Variablenoperationen ausnahmlos im DBS stattfinden sollten. Die hier vorgestellten
Erweiterungen tragen zum Teil dazu bei.

6.1 Literal-Pushdown

Zur Implementierung des Literal-Pushdowns miissen Verdnderungen zur Realisierung des
schreibenden sowie des lesenden Teils (vgl. Abschnitt 4.1) vorgenommen werden. Der
lesende Teil, bei dem die Literale zur Laufzeit abgerufen werden, muss innerhalb der
Zuweisungslogik in der Runtime-Schicht von ODE implementiert werden. Der schreibende
Teil des Pushdowns wird nach Variante (b) von Abbildung 4.1 in den BPEL-Compiler von
ODE implementiert. Auflerdem muss das Datenbankschema verandert werden, um die
zusitzlichen Literalwerte aufzunehmen. Die genauen Anderungen an den Komponenten
werden nun vorgestellt.

Thttps://issues.apache.org/jira/secure/ReleaseNote. jspa?projectId=12310270&version=12314243

63

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12310270&version=12314243

6 Implementierung der konzeptionellen Erweiterungen

BPEL_LITERALS

PK | ID bigint

DATA | xml

Abbildung 6.1: Tabellenschema fiir die Speicherung von Lieralwerten.

DOMBUuilderContentHandler

-literalcount : int
-currentID : long
-con : Connection

+startElement(in localName : String, in atts : Attributes, in ...)
+endElement(in localName : String, in ...)

Abbildung 6.2: Verdnderte Version des DOMBuilderContentHandler in UML-Notation. (vgl.
Abb. 5.7)

6.1.1 Datenbankschema

Um Literalwerte in der Datenbank speichern zu kénnen, muss dort zunéchst ein geeigneter
Ort gefunden werden. Dazu wird eine neue Tabelle mit dem Namen BPEL_LITERALS
erzeugt. Das Schema der neuen Tabelle ist in Abbildung 6.1 dargestellt.

Ein Literalwert wird in das XML-Feld DATA einer Zeile der Tabelle BPEL_LITERALS abgelegt.
Die Spalte ID ist Priméarschliissel der Tabelle und dient der eindeutigen Identifikation eines
gespeicherten Lietrals.

6.1.2 BPEL-Compiler

Die Architektur des BPEL-Compilers wurde in Abschnitt 5.3 vorgestellt. Seine Komponenten
sollen nun so gedndert werden, dass Lieralwerte wihrend des Kompiliervorgangs eines BPEL-
Prozesses aus der Quelldatei in das DBS geschrieben werden. Um dies zu realisiren, wurde
lediglich die Klasse DOMBuilderContentHandler modifiziert. Die wichtigsten Bestandteile
der daraus resultierenden Klasse sind in Abbildung 6.2 in UML-Notation in Anlehnung an
Abbildung 5.7 dargestellt.

Die Methode startElement wird immer dann aufgerufen, wenn beim zeilenweisen Parsen
der Quelldatei der Beginn eines Elementknotens festgestellt wird. Dabei wird der Name

64

6.1 Literal-Pushdown

des beginnenden Elements im Parameter localName iibergeben. Uber den Parameter atts
werden zudem die Attribute des beginnenden Elements als Attributes>-Objekt {ibergeben. Die
Attribute des Elementknotens stehen also innerhalb der Methode startElement zur Verfiigung
und konnen hier wihrend des Parsevorgangs manipuliert werden.

In der Variablen literalcount wird die Anzahl gefundener Literale beim Parsen der Quelldatei
festgehalten. Diese wird zu Beginn des Parsevorgangs mit dem Wert o initialisiert und in der
Methode startElement immer dann um den Wert 1 erhoht, wenn im Parameter localName der
Wert , literal” tibergeben wird. Innerhalb von BPEL-Zuweisungen ist das Umschliefien von
Literalwerten mit dem Wurzelelement </iteral ...>...</literal> durch die BPEL-Spezifikation
vorgeschrieben. Wahrend der weiteren Ausfithrung der Methode startElement wird die
Variable literalcount als Identifikationsnummer des aktuellen Literalwerts verwendet. Unter
Zuhilfenahme der Systemzeit wird daraus zu jedem Literalwert ein eindeutiger ID-Wert, der
spéter als Priméarschliissel in der Datenbanktabelle BPEL_LITERALS dient, erzeugt und in
der Variable currentID festgehalten.

Die Methode endElement wird immer dann aufgerufen, wenn beim Parsen das Ende eines
Elementknotens festgestellt wird. Zu diesem Zeitpunkt ist der endende Elementknoten
vollstandig geparst worden und es kann auf seinen kompletten Inhalt zugegriffen werden.
Jedem Aufruf der Methode endElement geht immer ein Aufruf die Methode startElement
voraus. Handelt es sich bei dem Element um ein Literal, wird immer der gesamte Inhalt
als Blattknoten aufgefasst, sodass zwischen dem Aufruf von startElement und endElement
eines Literalknotens kein weiterer Aufruf der beiden Methoden stattfindet. Insbesondere
beinhaltet dann die Variable currentID bei jedem Aufruf von endElement noch den Wert, der
durch startElement des selben Elements gesetzt wurde. Mit Hilfe der currentID und des nun
vollstandig bekannten Inhalts des Literalknotens wird mittels der Datenbankverbindung
con sowie entsprechender Datenbankbefehle der Literalwert in die Tabelle BPEL_LITERALS
hinzugefiigt und steht damit im DBS zur Verfiigung.

Um einen in der Datenbank gespeicherten Literalwert zur Laufzeit wiederzufinden muss im
BPEL-Prozessmodell noch ein Verweis darauf hinterlassen werden. Zu diesem Zweck wurde
in der Methode startElement eine eindeutige ID fiir den Literalwert erzeugt. Dieser Wert wird
noch im selben Aufruf der Methode mit Hilfe des Attributobjekts atts des Literalknotens
als ein zusatzliches Attribut gespeichert. Damit kann jedem Literal tiber das neue Attribut
dbzliteral im Wurzelelement sein Inhalt in der Datenbank zugeordnet werden. Um Fehler
beim Literal-Pushdown zur Laufzeit leichter kompensieren zu konnen, wird durch den
schreibenden Teil die konventionelle Ausfithrungslogik und Datenstruktur, bis auf das
hinzuftigen des ID-Attributs, nicht beeinflusst. Die Datenstruktur kann jedoch angepasst
werden, sodass nur noch das ID-Attribut eines Literals vorgehalten wird, was zur Entlastung
des Hauptspeichers wihrend der Ausfiihrung beitragen kann.

2org.xml.sax.Attributes

65

® N

6 Implementierung der konzeptionellen Erweiterungen

ScopeDaolmpl «implements» «interface»
ScopeDAO
+inDatabaseliteral2Variable(in Ivar : VariableContext, in literalKey : Long)
«extends»
HibernateDao| ~ “Uses” «interface» «implements» IDNDB2

IntegratedDatabaseNativeQueries

+literalAssignQuery() : String
+literalAssign2msg() : String

Abbildung 6.3: Am Literal-Pushdown beteiligte Komponenten der DAO-Schicht in
UML-Notation. Unverdnderte Klassen sind grau eingefarbt (vgl. Abb. 5.9).

UPDATE BPEL_XML_DATA
SET DATA = XMLDOCUMENT (
XMLQUERY(’$literaldata/*[local-name()="1literal"]/*’
PASSING (SELECT DATA
FROM BPEL_LITERALS
WHERE ID = :literalid)
AS "literaldata"))
WHERE ID = :varid

Listing 6.1: SQL-Befehl fiir die allgemeine Zuweisung eines Literalwerts in eine Variable

6.1.3 DAO-Schicht

Um den lesenden Teil des Literal-Pushdowns innerhalb des Zuweisungs-Pushdowns zu
ermoglichen, miissen entsprechende Funktionen und Datenbankbefehle in der DAO-Schicht
hinzugeftigt werden (vgl. Abschnitt 5.4.2, Abb. 5.9). Die daran beteiligten Komponenten sind
in Abbildung 6.3 dargestellt.

Die Hauptmethode des lesenden Literal-Pushdown in der DAO-Schicht ist inDatabaseLite-
ral2Variable. Sie wird in der Schnittstelle ScopeDAO definiert und in ScopeDaolmpl imple-
mentiert. Hier wird anhand der ID eines Literalwertes seine Zuweisung an die Variable, die
durch [var spezifiziert wird, durchgefiihrt. Der SQL-Befehl fiir die allgemeine Zuweisung
von Literalwerten in Variablen ist Listing 6.1 zu entnehmen.

Der SQL-Befehl wird durch die Methode literalAssignQuery aus der IDNDB2-
Implementierung der Schnittstelle IntegratedDatabaseNativeQueries bereitgestellt. Durch
den XPath-Ausdruck $literaldata/*[local-name()="literal“]/* wird der Literalwert ohne das
Wurzelelement <literal> selektiert. Die geschachtelte SELECT-Anweisung liefert den Wert
des Literals aus der Literaltabelle, dieser wird in die Variable literaldata des XPath-Ausdrucks
kopiert. Die Platzhalter :literalid und :varid werden in der Methode inDatabaseLiteral2Variable
durch die entsprechenden ID-Werte des Literals bzw. der Variable ersetzt, bevor der Befehl

66

6.1 Literal-Pushdown

© N o Ul kW

UPDATE BPEL_XML_DATA
>| SET DATA = XMLQUERY(’COPY $new := $DATA
MODIFY DO REPLACE $new:1ValuePath
WITH $literaldata/*[local-name()="1iteral"]/#
RETURN $new’
PASSING (SELECT DATA
FROM BPEL_LITERALS
WHERE ID = :literalid)
AS "literaldata")
WHERE ID = :varid

Listing 6.2: SQL-Befehl fiir die Zuweisung eines Literalwerts in eine Variable vom Typ
Nachricht mit spezifiziertem <part>-Teil.

an das DBS gesendet wird. Der SQL-Befehl hinter der Methode literal Assign2msg realisiert die
Zuweisung fiir Variablen vom Typ Nachricht. Eine solche Variable kann aus mehreren Teilen
(parts) bestehen, die nach dem BPEL-Standard individuell Ziel einer Zuweisung sein kdnnen,
sodass nicht der gesamte Variableninhalt ersetzt wird. Der entsprechende SQL-Befehl ist ist
ebenfalls in der Klasse IDNDB2 implementiert und Listing 6.2 zu entnehmen.

Bei den Befehlen innerhalb der XMLQUERY-Funktion in Listing 6.2 handelt es sich um
die XQuery-Erweiterung durch pureXML zur Manipulation von XML-Dokumenten (vgl.
Abschnitt 2.5). Die Anweisung MODIFY DO REPLACE bewirkt, dass der Inhalt des XML-
Dokuments an der durch einen XPath-Ausdruck spezifizierten Stelle mit dem Wert der
XPath-Auswertung hinter der WITH-Anweisung ersetzt wird. Dies wird benétigt, da hier die
Tabelle BPEL_ XML DATA innerhalb eines XML-Datenfelds verandert wird, und nicht mehr
auf Zeilenebene. Der Platzhalter :/ValuePath wird vor der Ausfiihrung durch einen XPath-
Ausdruck ersetzt, der dem in der Zweisung spezifizierten Nachrichtenteil (part) entspricht.
Die Platzhalter :literalid und :varkey werden, wie bei allgemeinen Literalzuweisungen, durch
die Primarschliissel des verwendeten Literals bzw. der zu verdandernden Variable ersetzt.

6.1.4 Runtime-Schicht

Wie bereits bei den Pushdown-Techniken des urspriinglichen ODE-TI-Prototyp muss auch
fiir den Literal-Pushdown die Zuweisungslogik in der Runtime-Schicht so gedndert werden,
dass die neu eingefiihrten Methoden der DAO-Schicht aufgerufen werden, um so die Literal-
zuweisung innerhalb der Datenbank zu realisieren. Die daran beteiligten Komponenten sind
in Abbildung 6.4 dargestellt.

Eine Zuweisung wird innerhalb einer ASSIGN-Aktivitit mit der Methode copy eingelei-
tet. Ist die rechte Seite der Zuweisung ein Literalwert, so wird im bisherigen Prototyp
der Zuweisungs-Pushdown abgebrochen und es wird mit einer konventionellen (original
ODE) Literalzuweisung innerhalb des Workflows fortgefahren. Mit dem Literal-Pushdown
wird nun der Zuweisungs-Pushdown auch beim Auftreten von Literalwerten weiterge-
fihrt. Zunichst wird das interne Objekt ocopy, das alle modellierten Informationen eines
Zuweisungsblocks enthilt, an die Methode inDatabaseAssign seiner Superklasse ACTIVITY
weitergeleitet. Hier wird unter anderem die Referenz der Zielvariable aufgelost und als

67

6 Implementierung der konzeptionellen Erweiterungen

ScopeFrame «uses» ACTIVITY ASSIGN
+inDatabaseAssign(in ...) +inDatabaseAssign(in ocopy : OAssign.Copy) +copy(in ocopy : OAssign.Copy)

T

i

:«uses»

|

| «interface» «implements» BpelRuntimeContextimpl

'____> BpelRuntimeContext

+inDatabaseliteralAssign(in Ivar : Variablelnstance, in ocopy : OAssign.Copy)

Abbildung 6.4: Am Literal-Pushdown beteiligte Komponenten der Runtime-Schicht in
UML-Notation. Unveranderte Klassen sind grau eingeféarbt (vgl. Abb. 5.10).

Variablelnstance-Objekt an den Scopeframe weitergegeben. In der dortigen Methode inDa-
tabaseAssign wird die rechte Seite des Zuweisungsblocks genauer analysiert und je nach
Art ihrer Auspragung unterschiedliche Zuweisungsmethoden aufgerufen. An dieser Stelle
setzt der lesende Teil des Literal-Pushdown ein und ruft beim Auftreten eines Literalwerts
die neue Methode inDatabaseLiteral Assign der DAO-Schicht auf, die die Literalzuweisung
innerhalb des DBS durchfiihrt (vgl. Abschnitt 6.1.3). Am Ende wird die interne Workflowva-
riable, die aufgrund der Pushdownlogik nicht verdndert wurde, als veraltet gekennzeichnet
(setDetached).

6.2 Nachrichten-Pushdown

Der Nachrichten-Pushdown wird fiir die Zuweisung von Nachrichten in Variablen nach der
in Abschnitt 4.2 vorgestellten Variante (b), also ohne Datenaustausch zwischen Workflowin-
stanz und DBS, implementiert. Die umgekehrte Zuweisung von Variablen in Nachrichten
wird hier nicht im DBS umgesetzt, stattdessen wird dazu die verwendete Workflowvariable
vorher mit der Datenbank synchronisiert und auf konventionellem Wege verarbeitet. Die
Griinde hierfiir wurden bereits in Abschnitt 4.2 erortert.

6.2.1 Datenbankschema

Zur Realisierung von Zuweisungen zwischen Nachrichten- und Variableninhalten muss zu-
ndchst deren Verarbeitung durch das DBS ermdoglicht werden. Die Tabelle BPEL_MESSAGE,
in der Nachrichten durch die DAO-Schicht gespeichert werden, hélt den Dateninhalt ei-
ner Nachricht als komprimiertes BLOB-Objekt vor. Dieses ldsst sich nicht ohne weiteres
einem XML-Feld aus BPEL_XML_DATA zuweisen. Daher wurde analog zu den Anderun-
gen an HXMLData nun auch die Hibernate-Annotierung der Nachrichtenklasse HMessage
dahingehend gedndert, dass die Daten als unkomprimierter XML-Wert gespeichert werden
(Listing 6.3). Das daraus resultierende (Teil-)Tabellenschema ist in Abbildung 6.5 abgebil-
det.

68

6.2 Nachrichten-Pushdown

BPEL_MESSAGE

PK |ID bigint

MESSAGE_DATA | xml

Abbildung 6.5: Gedndertes Hibernate-(Teil-)Tabellenschema fiir die Persistenz von
Nachrichten.

VAL

* Q@hibernate.class table="BPEL_MESSAGE"
*/

public class HMessage extends HObject {

private byte[] _data;

/*k
* Ohibernate.property type='"bytel[]"
* Q@hibernate.column name="MESSAGE_DATA" sql-type="XML"
*/
public byte[] getMessageData() {
return _data;

}

Listing 6.3: Hibernate-Annotation der Klasse HMessage zur Speicherung des
Nachrichteninhalts als XML-Wert (vgl. Listing 5.1).

Durch das verdnderte Tabellenschema wird eine direkte Manipulation zwischen den Spalten
BPEL._ MESSAGE.MESSAGE_DATA und BPEL_XML_DATA.DATA innerhalb des DBS unter
Verwendung von SQL bzw. pureXML ermdglicht.

6.2.2 DAO-Schicht

In der DAO-Schicht miissen zur Realisierung des Nachrichten-Pushdowns ebenfalls ent-
sprechende Funktionen und Datenbankbefehle hinzugefiigt werden. Die daran beteiligten
Komponenten sind in Abbildung 6.6 dargestellt.

Die Hauptmethode des Nachrichten-Pushdowns in der DAO-Schicht ist inDatabaseMes-
sage2Variable. Sie wird in der Schnittstelle MessageDAO definiert und in MessageDaolmpl
implementiert. Hier erfolgt die Zuweisung einer Nachricht, deren Primérschliissel aus dem
der Klasse zugehorigen HMessage-Objekt ausgelesen wird, in die Variable, deren Primar-
schliissel durch den Parameter varID tibergeben wird. Der SQL-Befehl fiir die Zuweisung
einer Nachricht in eine Variable ist in der Klasse IDNDB2 implementiert und aus Listing 6.4

69

v

6 Implementierung der konzeptionellen Erweiterungen

MessageDaolmpl «implements» «interface»

{> MessageDAO
«exids»

+inDatabaseMessage2Variable(in varlD : Long)
HibernateDao

«uses» - .
«interface» «implements» IDNDB2

___________ 3 IntegratedDatabaseNativeQueries q
+msgAssignQuery() : String

Abbildung 6.6: Am Nachrichten-Pushdown beteiligte Komponenten der DAO-Schicht in
UML-Notation. Unverdnderte Klassen sind grau eingefarbt (vgl. Abb. 5.10).

UPDATE BPEL_XML_DATA

SET DATA = (SELECT MESSAGE_DATA
FROM BPEL_MESSAGE
WHERE ID = :mexID)

WHERE ID = :varID

Listing 6.4: SQL-Befehl fiir die Zuweisung des Inhalts einer Nachricht in eine Variable.

zu entnehmen. Die Platzhalter :mexID und :varID werden vor der Ausfithrung durch den
Primaérschliissel der verwendeten Nachricht bzw der zu verdandernden Variable ersetzt.

6.2.3 Runtime-Schicht

Auch beim Nachrichten-Pushdown miissen die neuen Funktionen der DAO-Schicht durch
Komponenten der Runtime-Schicht aufgerufen werden. Die daran beteiligten Komponenten
sind in Abbildung 6.7 dargestellt.

Der Nachrichten-Pushdown wird innerhalb der Klasse PICK- bzw. EH_EVENT eingeleitet.
Die Klasse PICK implementiert die BPEL-Aktivitdten RECEIVE und PICK, wihrend die
Klasse EH_EVENT einen OnEvent-Handler realisiert. Beide Aktivititen reagieren auf einen
Nachrichteneingang in ODE (vgl. Abschnitt 5.2.3). Die Methode onRequestRcvd der Klasse
PICK wird aufgerufen, sobald eine Eingangsnachricht empfangen wurde. Darin wird die
Hilfsfunktion initVariable mit den Parametern mexID, der die Eingangsnachricht identifi-
ziert, und onMessage, indem unter anderem die Zielvariable spezifiziert ist, aufgerufen. Hier
erfolgt die Initialisierung der Zielvariablen mit dem Nachrichteninhalt. An dieser Stelle
ersetzt der Nachrichten-Pushdown die konventionelle Ausfiihrungslogik, indem die neue
Methode inDatabaseReceiveMessage2 Variable des BpelRuntimeContext aufgerufen wird. Diese
Methode tibernimmt als Parameter wiederum die mexID der Nachricht sowie die aus dem
onMessage-Objekt aufgeldste Variable als VariableInstance (Parameter var). Hier wird das zur

70

6.3 XQuery-Pushdown

EH_EVENT «uses» «uses» PICK

+onRequestRevd(in ...)
+initVariable(in mexID : String, in onMessage : OPickReceive.OnMessage)

+onRequestRcvd(in ...)

A4

«interface» «implements» BpelRuntimeContextimpl

BpelRuntimeContext <]—

+inDatabaseReceiveMessage2Variable(in var : Variablelnstance, in mexID : String)

Abbildung 6.7: Am Nachrichten-Pushdown beteiligte Komponenten der Runtime-Schicht in
UML-Notation. (vgl. Abb. 5.10).

Nachricht gehorende MessageDAO-Objekt ermittelt und anschliefsend dessen Pushdown-
Methode inDatabaseMessage2 Variable (vgl. Abschnitt 6.2.2) unter Angabe des Primérschliissels
der aufgelosten Zielvariable aufgerufen. SchliefSlich wird die interne Workflowvariable, die
aufgrund der Pushdownlogik nicht verdndert wurde, als veraltet gekennzeichnet (setDeta-
ched). Der gleiche Vorgang wird in der Klasse EH_EVENTfiir OnEvent-Handler ausgelost.
Hier wird die Methode inDatabaseReceiveMessage2Variable des BpelRuntimeContext direkt in
der Methode onRequestRcvd aufgerufen, das Vorgehen ist ansonsten das selbe wie in der
Klasse PICK.

6.3 XQuery-Pushdown

Um die Auswertung von XQuery-Ausdriicken innerhalb von BPEL-Aktivitidten unter Ver-
wendung von Pushdowns innerhalb der Datenbank zu ermoglichen, miissen alle an einer
Ausdruckauswertung beteiligten Komponenten erweitert werden:

e In der DAO-Schicht werden datenbankspezifische SQL- bzw. pureXML-Befehle in
implementiert, mit deren Hilfe die XQuery-Audriicke an das DBS tibermittelt werden.
Dies geschieht, ebenso wie bei den anderen Pushdownarten, in der Klasse IDNDB2.

o In der Runtime-Schicht muss innerhalb der Pushdown-Logik jeder Aktivitit, die XQuery
unterstiitzen soll, tiber eine Fallunterscheidung die neuen Methoden der DAO-Schicht
aufgerufen werden. Diese Fallunterscheidung bewirkt bisher beim Auftreten eines
XQuery-Ausdrucks, dass die Pushdown-Logik abgebrochen wird und die Aktivitat
auf konventionelle Art durchgefiihrt wird, wodurch wiederum Daten entstehen, die
zundchst nur im Workflowkontext verfiigbar sind.

71

6 Implementierung der konzeptionellen Erweiterungen

6.4 Einschrankungen der Funktionalitat des erweiterten Prototyps

Die Implementierung des erweiterten Prototyps liefs sich aufgrund technischer und im-
plementierungslogischer Besonderheiten nicht reibungslos in den vorhandenen ODE-TI-
Prototyp integrieren.

Um beim Literal-Pushdown auch grofiere Literalwerte (>32 KB) in der DB2 speichern zu
konnen, wird im BPEL-Compiler ein SQLXML-Objekt als Hostvariable fiir den Datenbankbe-
fehl verwendet. Um diese Variable korrekt an das DBS zu tibermitteln, wird ein aktualsierter
JDBC-Treiber (dbz2jccg.jar) fiir DB2 benétigt, der separat von IBM bezogen werden muss.

Die Verwendung der Wrapperelemente <temporary-simple-type-wrapper/> und <xsd-complex-
type-wrapper/> fiihrt bei Literalwerten im Zusammenhang mit den bestehenden Prototyp-
Implementierungen zu Komplikationen bei der Auswertung von XPath-Ausdriicken in der
Datenbank. Die Funktionalitdt des Literal-Pushdowns ist evtl. nicht mit allen moglichen
Folgeoperationen kompatibel.

72

7 Evaluation des erweiterten Prototyps

In diesem Kapitel wird die in Kapitel 6 vorgestellte Implementierung des erweiterten ODE-TI-
Prototypen anhand von Laufzeitmessungen evaluiert. Aufgrund technischer Komplikationen
bei der endgiiltigen Implementierung konnte im Rahmen dieser Arbeit nur eine rudimentare
Evaluation der neuen Pushdown-Konzepte vorgenommen werden.

7.1 Testfalle

Um das Laufzeitverhalten des erweiterten Prototyps zu evaluieren, wurden Testfélle verwen-
det, die bereits beim bestehenden Prototypen zum Einsatz kamen.

Zur Evaluation des Literal-Pushdowns steht die Laufzeit von ASSIGN-Aktivitaten ohne
Ausdruck im Vordergrund, da jeder Literalwert vor seiner weiteren Verwendung immer
zuerst einer Variablen zugewiesen wird. Die darauffolgenden Aktivitdten bleiben vom Literal-
Pushdown unbeeinflusst. Fiir die Messungen werden die selben BPEL-Prozesse verwendet,
die schon zur Evaluation des Zuweisungs-Pushdowns (vgl. Abschnitt 3.3) eingesetzt wurden.
Gemessen wurden Prozesse mit Literalwerten von 100 KB, 500 KB, 4 MB, gMB sowie 50
MB Grofle. Zur Auswertung der Messergebnisse wird in erster Linie die durchschnittliche
Laufzeit aller Ausfiihrungsinstanzen verwendet (im Normalfall 100 Instanzen). Innerhalb des
Testprozesses wird ein Literalwert zundchst einer Variable zugewiesen, bevor diese Variable
anschlieffend mit Hilfe des Zuweisungs-Pushdowns einer anderen Variable zugewiesen
wird.

Zur Evaluation des Nachrichten-Pushdowns wurde ein einzelner, allgemeiner Testfall erzeugt,
der mit verschieden Eingangsnachrichten der Grofien 100 KB, 500 KB, 4 MB und 9 MB
aufgerufen wird. Testldufe mit 50 MB Nachrichtengrofie waren nicht moglich, da dabei
die Kommunikationsinfrastruktur stets mit einer Hauptspeicherausnahme abbrach. Der
zugrundeliegende Prozess betseht aus einer Receive-Aktivitit, einer Assign-Aktivitit, die
den kompletten Inhalt der Eingangsnachricht in die Ausgangsnachricht kopiert, sowie einer
Reply-Aktividt, die diese zurtickliefert.

7.2 Testumgebung

Alle Messungen wurden auf einem eigens fiir die Evaluation zur Verfiigung gestellten
Testsystem durchgefiihrt. Es handelt sich dabei um einen Desktop-PC mit einer Quad-Core

73

7 Evaluation des erweiterten Prototyps

CPU (Intel Core2 Quad Q9300 @2.50 GHz), 4 GB RAM und installiertem Windows 7 Profes-
sional 64-Bit Betriebssystem. Als Datenbanksystem wurde IBM DB2 Advanced Enterprise
Server Edition v10.1.0.872 verwendet. Alle Messungen wurden auf der Workflowenginge
Apache ODE 1.3.5 unter Apache Tomcat 6.0 durchgefiihrt. Dabei wurden folgende Varianten
unterschieden:

e Original ODE Die Originalversion von Apache ODE 1.3.5 unter Verwendung von DB2
als internes DBS mit unverdndertem (Hibernate-)Tabellenschema.

e Prototyp mit Literal-Pushdown Der auf ODE 1.3.5 portierte und um die neuen
Pushdown-Konzepte erweiterte Prototyp aus [Wagi1] mit verdandertem Datenbank-
schema (s. Kap. 5, Kap. 6) und ausgeschaltetem Nachrichten-Pushdown. Er dient zur
Messung der Instanzlaufzeiten bei eingeschaltetem Literal-Pushdown.

e Prototyp mit Nachrichten-Pushdown Der selbe Protoyp mit ausgeschaltetem Literal-
Pushdown und eingeschaltetem Nachrichten-Pushdown. Mit ihm sollen die Auswir-
kungen des Nachrichten-Pushdowns untersucht werden.

e Prototyp ohne Erweiterungen Der selbe Protoyp mit ausgeschaltetem Nachrichten-
und Literal-Pushdown. Er représentiert die Implementierung des alten ODE-TI Proto-
typs mit den bis dahin umgesetzten Pushdown-Konzepten. Er dient hauptséchlich als
Referenz fiir die Bewertung der neuen Pushdown-Konzepte.

Als Grundlage fiir Vergleiche wurden zunichst alle Messungen mit Original ODE durchge-
fithrt. Danach wurden die selben Testdurchldufe mit dem zu Untersuchenden Prototyp mit
Literal-Pushdown bzw. Prototyp mit Nachrichten-Pushdown und dann noch ein weiteres Mal
mit dem Prototyp ohne Erweiterungen durchgefiihrt. Dadurch erhdlt man zum einen einen
Uberblick iiber die Leistungen der Pushdown-Implementierungen im Vergleich zu Original
ODE, zum anderen eine Gegeniiberstellung der Pushdown-Implementierungen mit und
ohne der entsprechenden Erweiterung.

Die Gesamtlaufzeit des jeweiligen Testdurchlaufs wurde von der Startzeit der ersten Instanz
bis zum Zeitpunkt der letzten Tatigkeit der letzten Instanz mit Hilfe einer eine SQL-Anfrage
bestimmt. Apache ODE speichert die Informationen zu Ausfiithrungsinstanzen in der Ta-
belle BPEL_INSTANCE. Die Testdurchldufe wurden mit Hilfe eines Perl-Skripts, das auch
in [Wag11] verwendet wurde, automatisiert mehrmals direkt nacheinander ausgefiihrt. Der
Ablauf einer Messung erfolgte nach folgenden Schritten:

1. Loschen aller Tabelleninhalte der verwendeten Datenbank, Tomcat-Logdateien sowie
der in ODE deployten Prozesse (processes-Verzeichnis).

2. Starten des Tomcat-Servers mit der gemessenen ODE-Variante.

3. Kopieren des Testprozesses in das processes-Verzeichnis und warten, bis er vollstandig
deployt wurde. Bei den Prototyp-Varianten kann dies aufgrund des schreibenden
Literal-Pushdowns etwas ldnger dauern (vor allem bei sehr Grofien Literalwerten).

4. Erster, vollstandiger Durchlauf der automatischen Testfall-Ausfiihrung (Perl-Skript).

74

7.3 Messergebnisse

5. Loschen aller Instanzdaten (BPEL_INSTANCE) in der Datenbank sowie des Inhalts der
Tomcat-Logdatei (Loschen der Datei ist zu diesem Zeitpunkt nicht moglich, da Tomcat
noch lauft).

6. Zweiter, vollstandiger Durchlauf der automatischen Testfall-Ausfiihrung.
7. Stoppen des laufenden Tomcat-Servers.

8. Speichern der Tomcat-Logdatei sowie vermerken der Gesamtlaufzeit und Anzahl der
gemessenen Instanzen.

Der zusitzliche, erste Durchlauf der Testfall-Ausfithrung wird durchgefiihrt, damit sich das
DBS zu Beginn eines neuen Testfalls auf die neuen Daten einstellen kann. Speziell die ersten
DB-Operationen eines neuen Testprozeses benoétigen deutlich mehr Zeit als darauf folgende.
Im néchsten Abschnitt werden die Ergebnisse der Messungen vorgestellt und anschliefsend
diskutiert.

7.3 Messergebnisse

Um die Leistung der Pushdown-Konzepte zu untersuhen, werden alle Messergebnisse relativ
zur Laufzeit von Original ODE angegeben. Neben der Evaluation der neuen Pushdown-
Konzepte wird durch die Messung aller Varianten auch eine erneute Evaluation des ur-
spriinglichen Prototyps in der portierten Version mit der Originalversion von ODE 1.3.5
ermoglicht.

Bereits bei der Implementierung des urpsriinglichen Prototyps wurde festgestellt, dass die
verwendete Hibernate-DAO der Original Apache ODE Version die Daten erst nach Ende
der Instanz oder an bestimmten Stellen im Workflow (z.B. wihrend eines INVOKE) in
die Datenbank {tibertragt und festschreibt [Wagi1]. Da der Prototyp dieses Festschreiben
wiahrend der jeweiligen Aktivitat durchfiihrt, sind die isolierten Messwerte der einzelnen
Pushdown-Aktivitdten nicht direkt mit den Werten der Original ODE Variante vergleichbar.

7.3.1 Literal-Pushdown

Die Messergebisse sind in Abbildung 7.1 relativ zur Laufzeit von Original ODE in Prozent
dargestellt. Fiir die Literalgroien 100 KB, 500 KB, 4 MB und 9 MB wurden jeweils 100
Testdurchldufe durchgefiihrt, fiir 50 MB nur 10 Durchlaufe.

Vergleicht man die Zuweisungen bei untersdchiedlichen Datengrofien mit den Messergeb-
nissen aus Abschnitt 3.3.2 (Abb. 3.6), so fdllt zundchst auf, dass die relativen Laufzeiten
wesentlich konstanter verlaufen, als bei den dortigen Messungen, die mit ODE 1.3.4 und
DB2 V9.7 durchgefiihrt wurden. Aufierdem f&llt hier die Verschlechterung des Prototyps
gegeniiber Original ODE mit durchschnittlich ca. 130% gegentiber ca. 200% deutlich schwa-
cher aus. Somit hat der Zuweisungs-Pushdown ohne Ausdruck in ODE 1.3.5 mit DB2 10.1
ein besseres relatives Laufzeitverhalten als bei den vorigen Messungen. Diese Resultate

75

7 Evaluation des erweiterten Prototyps

180 -
161
160 -

145 144 141 140

140 131
123 127

120 {17 115 Prototyp mit

100 Literal-Pushdown

B Prototyp ohne
Erweiterungen

[
100kb 500kb 4MB 9mB 50MB

Abbildung 7.1: Instanzlaufzeiten der Testprozesse mit unterschiedlich grofsen Literalwerten
(horizontale Achse) relativ zu Original ODE in Prozent (vertikale Achse) fiir
den Protoyp mit Literal-Pushdown sowie den Prototyp ohne Erweiterungen.

lassen sich nur durch Unterschiede in den verschiedenen Versionen von DB2 (verbesserte
Schreiboperationen) bzw. ODE erkléren.

Vergleicht man die Laufzeiten der Prototyp-Varianten mit und ohne Literal-Pushdown mit-
einander, so ergeben sich dhnliche relative Laufzeiten, jedoch mit einer klaren Tendenz zu
Geschwindigkeitseinbufsen bei eingeschaltetem Literal-Pushdown. Das schlechtere Lauf-
zeitverhalten mit Literal-Pushdown lésst sich implementierungstechnisch begriinden. Beim
Prototypen ohne Erweiterungen wird der Literalwert in ODE intern zugewiesen und durch
Hibernate in die Datenbank geschrieben. Diese Vorgédnge laufen offenbar effizienter ab als
die Zuweisung des Literalwerts aus der Literaltabelle in die Tabelle BPEL_XML_DATA.
Dies konnte mit der Tatsache zusammenhéangen, dass fiir eine Literalzuweisung momentan
ein einfacher XPath-Ausdruck verwendet werden muss (s. Abschnitt 6.1, Listing 6.1), um
den Wert aus der Literaltabelle auszulesen, anstatt das gesamte Datenfeld in die andere
Tabelle zu kopieren. Es ldsst sich also abschliefSend sagen, dass die Implementierung des
Literal-Pushdown in ihrer momentanen Form keinen Vorteil beziiglich der Laufzeit von
Literalzuweisungen darstellt, jedoch kann und sollte sie optimiert und anschlieffend erneut
evaluiert werden.

7.3.2 Nachrichten-Pushdown

Die Ergebisse der Messungen zum Nachrichten-Pushdown sind in Abbildung 7.2 relativ
zur Laufzeit von Original ODE in Prozent dargestellt. Fiir die Nachrichtengréfien 100 KB
und 500 KB wurden jeweils 100 Testdurchldufe durchgefiihrt, fiir 4 MB und 9 MB nur 50
Durchldufe. Alle Messungen umspannen auch die Zeit, die das aufrufende Skript zwischen
zwei Aufrufen benoétigt, um die Riickantwort in Form einer Textdatei auf der Festplatte
zu speichern und die ndchste Nachricht an ODE zu iibermitteln. Bei den Messungen des

76

7.3 Messergebnisse

120 +

102 104

100 96
92 91 91

8 80 Prototyp mit
Nachrichten-Pushdown

80

60 -

M Prototyp ohne

40 -+ .
Erweiterungen

20 +

100kb 500kb 4MB 9MB

Abbildung 7.2: Instanzlaufzeiten des Testprozesses mit unterschiedlich grofien
Eingangsnachrichten (horizontale Achse) relativ zu Original ODE in
Prozent (vertikale Achse) fiir den Prototyp mit Nachrichten-Pushdown
sowie den Prototyp ohne Erweiterungen.

Nachrichten-Pushdowns wird diese Zeit durch die Grofle der Eingangsnachricht beeinflusst
und fliefst in die Gesamtlaufzeit mit ein.

Die Messungen zeigen zum einen einen Leistungsgewinn durch die Verwendung von
Pushdown-Techniken gegentiber Original ODE bei grofieren Datenmengen im Allgemei-
nen, insbesondere aber auch eine Verbesserung durch die Verwendung des Nachrichten-
Pushdowns gegeniiber des Prototyps ohne Erweiterungen. Der allgemeine Leistungsgewinn
bei steigender DatengrofSe ldsst sich durch die Effizienz des DBS beim Zuweisungs-Pushdown
wihrend des Kopierens der Eingangsvariable in die Ausgangsvariable erkldren. Der Leis-
tungsgewinn durch den eingeschalteten Nachrichten-Pushdown lédsst sich damit erkldren,
dass die Implementierung der Nachricht-zu-Variable Zuweisung innerhalb des DBS effizien-
ter ist, als die Zuweisung innerhalb von ODE und das anschliefSende Festschreiben in der
Datenbank. Da hier die Zuweisung aus einer Datenbanktabelle in eine andere effizienter ist,
als die Verarbeitung in ODE, bestédrkt dies die Annahme, dass der Literal-Pushdown nach
durch weitere Optimierungen ebenfalls zu einem Leistungsgewinn fiihren kann.

77

7 Evaluation des erweiterten Prototyps

7.3.3 Anwendungsfall

Das Szenario mit dem Testprozess aus dem Gebiet der Proteinmodellierung (vgl. Ab-
schnitt 2.3.1, Abschnitt 3.3) konnte im Rahmen dieser Arbeit aufgrund technischer Kom-
plikationen bei der Implementierung des Literal-Pushdowns nicht evaluiert werden. Erste
Versuche haben jedoch gezeigt, dass die Ausfithrung des Testprozesses unter der Testumge-
bung mit Original ODE bereits fiir Dateigrofien von 500 KB nicht korrekt durchlduft. Da eine
Auswertung mit dem erweitereten Prototypen zu diesem Zeitpunkt ebenfalls nicht moglich
ist, muss die Evaluation der Kombinierten Pushdown-Konzepte anhand des Anwendungs-
falls zu einem spéteren Zeitpunkt erfolgen.

78

8 Zusammenfassung und Ausblick

Um grofse Datenmengen innerhalb von Workflows effizienter und zuverladssiger handhaben
zu konnen, wurden Konzepte zur Verbesserung der Workflowausfiihrung durch Integration
eines DBS entwickelt. Dabei entstanden verschiedene Pushdown-Konzepte, die dem Work-
flow Aufgaben der Datenverarbeitung abnehmen und in das integrierte DBS auslagern. Diese
Konzepte wurden bereits implementiert und evaluiert, wobei sich herausstellte, dass durch
ihre Umsetzung eine erhohte Zuverldssigkeit sowie fiir bestimmte Szenarien ein verbessertes
Laufzeitverhalten der Workflowausfiihrung erreicht werden kann (vgl. Abschnitt 3.3.2).

In dieser Arbeit wurden zusétzliche Konzepte entwickelt, die zum Ziel hatten, die bestehen-
den Pushdown-Konzepte zu erweitern und zu vervollstindigen. Dabei wurden die Konzepte
Literal-Pushdown, Nachrichten-Pushdown sowie XQuery-Pushdown herausgearbeitet, wobei im
Rahmen dieser Arbeit nur der Literal-Pushdown und der Nachrichten-Pushdown Implementiert
und evaluiert wurden.

Die beiden umgesetzten Pushdown-Konzepte wurden im Rahmen dieser Arbeit anhand
von Zeitessungen evaluiert. Dabei wurde festgestellt, dass sie im Zusammenspiel mit den
bisherigen Pushdown-Konzepten durchaus zu weiteren Leistungssteigerungen der Workflo-
wausfithrung fithren konnen, sofern die entprechenden Erweiterungen mit einer effizien-
ten Implementierung umgesetzt werden. Bei der Evaluation des Nachrichten-Pushdowns
konnten Leistungssteigerungen bereits anhand der prototypischen Implementierung nach-
gewiesen werden (vgl. Abschnitt 7.3.2). Im Fall des Literal-Pushdowns tendierte dessen
prototypische Implementierung zu kleinen, aber erkennbaren Leistungseinbufien, wobei dort
aber bereits Ansitze fiir Optimierungen aufgezeigt wurden. Dennoch konnte dabei aufgrund
des verwendeten Testfalls eine allgemeine Leistungsverbesserung bei der Verwendung der
Pushdown-Konzepte im Vegleich zur Evaluation mit dlteren Versionen von DB2 und ODE
festgestellt werden (vgl. Abschnitt 7.3.1).

8.0.4 Ausblick

Aufgrund von technischen Komplikationen bei der Implementierung ist die Evaluation
der erweiterten Konzepte nur rudimentér erfolgt. Insbesondere konnte keine Auswertung
von Testfdllen fiir einen Anwendungsfall erfolgen, bei dem alle implementierten Konzepte
im Zusammenspiel miteinander untersucht weden. Als weiterfithrende Arbeit ist daher
zunichst die Verbesserung der Implementierung vorrangig zu behandeln. Nach Behebung
aller bestehenden Probleme an der prototypischen Implementierung (sowie ggf. weiterer
Optimierungen), kann eine detaillierte Evaluation anhand von Anwendungsfillen erfolgen.

79

8 Zusammenfassung und Ausblick

Von besonderem Interesse sind dabei Messungen am Anwendungsfall aus der Proteinmo-
dellierung, der bereits vom bestehenden ODE-TI-Prototypen zur Evaluation herangezogen
wurde (Abschnitt 3.3).

Nach der Verbesserung des erweiterten Prototyps und seiner Evaluation ist der nédchste
Schritt eine tatsdchliche Implementierung und Evaluation des XQuery-Pushdown. Dazu gehort
neben der Umsetzung innerhalb von Apache ODE auch das Erstellen geeigneter Testfélle
fir Laufzeitmessungen unter Verwendung von XQuery-Ausdriicken. Je nach Komplexitat
der dabei verwendeten Ausdriicke sowie der Grofle der Daten ist durch die Auswertung
innerhalb des DBS, dhnlich wie beim bisherigen Pushdown mit XPath-Ausdriicken, ein
Vorteil gegeniiber der konventionellen Implementierung innerhalb von ODE zu erwarten.

Die bereits durch [Wag11] (dort Kapitel 8) vorgestellen konzeptionellen Erweiterungen blei-
ben von dieser Arbeit weitestgehend unberiihrt. Die dort vorgeschlagene Referenzarchitektur,
bei der eine Trennung zwischen der DAO-Schicht und einer Pushdown-Schicht stattfindet,
sollte langfristiges Ziel bei der engen Integration von DBS in WfMS sein. Insbesondere
fithrt momentan die gemeinsame Nutzung von Datenbanktabellen durch Pushdownlogik
und Persistenzmanager zu gewissen Einschrankungen. So kann momentan beispielswei-
se eine Variable erst von einer Pushdown-Aktivitit verwendet werden, nachdem diese
durch den Persistenzmanager in der Datenbank erzeugt worden ist. Idealerweise sollte eine
Pushdown-Implementierung komplett unabhéngig von der DAO-Schicht eines gegebenen
WIMS sein.

8o

Literaturverzeichnis

[AIL98]

[AMAOo6]

[bpe]

[dom]

[GT11]

[KEo6]

[KKL"o5]

[LRoo]
[ode]

[RRST11]

[RSM]

A. Ailamaki, Y. E. Ioannidis, M. Livny. Scientific workflow management by
database management. In Tenth Int Scientific and Statistical Database Management
Conf, pp. 190-199. 1998. (Zitiert auf Seite 31)

A. Akram, D. Meredith, R. Allan. Evaluation of BPEL to Scientific Workflows.
Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06),
2006. (Zitiert auf Seite 22)

Web Services Business Process Execution Language Version 2.0 - OASIS Standard.
URL http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf. (Zitiert auf
den Seiten 21, 23 und 48)

Document Object Model (DOM). URL http://www.w3.0org/DOM/. (Zitiert auf
Seite 14)

K. Gorlach, et al. Guide to e-Science, chapter Conventional Workflow Technology
for Scientific Simulation, pp. 323—352. Springer, 2011. (Zitiert auf den Seiten 5, 17
und 20)

A. Kemper, A. Eickler. Datanbanksysteme - Eine Einfiihrung. Oldenbourg Verlag
Miinchen Wien, 6 edition, 2006. (Zitiert auf den Seiten 9 und 23)

M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen,
P. Schmidt, I. Trickovic. WS-BPEL Extension for People - BPEL4People, 2005.
(Zitiert auf Seite 21)

F. Leymann, D. Roller. Production Workflow - Concepts and Techniques. Prentice
Hall PTR, 2000. (Zitiert auf den Seiten 9 und 20)

ODE - Architectural Overview. URL http://ode.apache.org/
architectural-overview.html. (Zitiert auf den Seiten 5 und 44)

P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. SIMPL - A
Frameworrk for Accessing External Data in Simulation Workflows, 2011. (Zitiert
auf den Seiten 20 und 26)

P. Reimann, H. Schwarz, B. Mitschang. DATA PROVISIONING TECHNIQUES
FOR SIMULATION WORKFLOWS. Unverdffentlichter Bericht des Instituts fiir
Parallel und Verteilte Systeme. (Zitiert auf den Seiten 5, 6, 26 und 27)

81

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.w3.org/DOM/
http://ode.apache.org/architectural-overview.html
http://ode.apache.org/architectural-overview.html

Literaturverzeichnis

[RSM11]

[sql]
[TDGo7]

[VSRMOo8]

[Wag11]

[xmla]

[xmlb]
[xpa]

[xpd]

[xqu]

P. Reimann, H. Schwarz, B. Mitschang. Design, Implementation, and Evaluation
of a Tight Integration of Database and Workflow Engines. Journal of Information
and Data Management, 2(3), 2011. (Zitiert auf den Seiten 5, 10, 18, 19, 28, 29, 30, 31,

32, 33 und 35)
ISO/IEC 9o75. (Zitiert auf Seite 24)

I. Taylor, E. Deelman, D. Gannon. Workflows for e-Science - Scientific Workflows for
Grids. Springer, 2007. (Zitiert auf den Seiten 9 und 17)

M. Vrhovnik, H. Schwarz, S. Radeschiitz, B. Mitschang. An Overview of SQL
Support in Workflow Products. In IEEE 24th Int. Conf. Data Engineering ICDE, pp.
1287-1296. 2008. (Zitiert auf Seite 26)

F. Wagner. Nutzung einer integrierten Datenbank zur effizienten Ausfiihrung von
Workflows. Diplomarbeit, Institut fiir Parallele und Verteilte Systeme, Universitat
Stuttgart, 2011. (Zitiert auf den Seiten 5, 6, 10, 31, 36, 43, 45, 46, 47, 49, 51, 52, 55,
56, 57, 58, 60, 74, 75 und 80)

Extensible Markup Language (XML) 1.0 (Fifth Edition). URL http://www.w3.
org/TR/REC-xml/. (Zitiert auf Seite 13)

XML Schema. URL http://www.w3.org/XML/Schema. (Zitiert auf Seite 13)

XML Path Language (XPath) Version 1.0 - W3C Recommendation 16 November
1999. URL http://www.w3.0org/TR/xpath/. (Zitiert auf Seite 15)

XPDL Support and Resources. URL http://wuw.wfmc.org/xpdl.html. (Zitiert
auf Seite 17)

XQuery 1.0: An XML Query Language (Second Edition). URL http://www.w3.
org/TR/xquery/. (Zitiert auf den Seiten 14 und 15)

Angegebene Links wurden zuletzt tiberpriift am: 06.12.2012

82

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xpath/
http://www.wfmc.org/xpdl.html
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

Erkldrung

Ich versichere, diese Arbeit selbststandig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wortlich oder sinngeméfd aus anderen Werken
tibernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Priifungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollstandig veroffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

(Christian Ageu)

	1 Einführung
	1.1 Motivation
	1.2 Konventionen und rechliche Hinweise
	1.3 Gliederung

	2 Grundlagen
	2.1 Extensible Markup Language
	2.1.1 Dokumentstruktur
	2.1.2 Verarbeitung

	2.2 SOA und Webservices
	2.2.1 Service Oriented Architecture
	2.2.2 Webservices

	2.3 Workflows und Workflowmanagementsysteme
	2.3.1 Workflow-Klassen
	2.3.2 Architektur eines sWfMS

	2.4 Web Services Business Process Execution Language
	2.5 Datenbanksysteme

	3 Nutzung von Datenbanken in WfMS
	3.1 Ansätze zur Datenverarbeitung
	3.2 Ansätze zur Verbesserung der Integration von Datenbanken
	3.2.1 Konventionelle Funktionsweise von WfMS
	3.2.2 Konzept für eine stärkere Integration von DBS
	3.2.3 Techniken zur Verbesserung der Datenverarbeitung

	3.3 Prototypische Erweiterungen eines WfMS
	3.3.1 Prototypen und Aufbau der Zeitmessungen
	3.3.2 Testergebnisse

	3.4 Erweiterung von ODE-TI

	4 Konzeptionelle Erweiterungen
	4.1 Literal-Pushdown
	4.2 Nachrichten-Pushdown
	4.3 XQuery-Pushdown

	5 Architektur von Apache ODE
	5.1 Gesamtarchitektur
	5.2 Runtime im Detail
	5.2.1 OModel und BPEL-Typsystem
	5.2.2 ODE Hibernate DAO
	5.2.3 BpelRuntimeContext und Aktivitäten

	5.3 BPEL-Compiler
	5.4 Änderungen durch den ODE-TI Prototyp
	5.4.1 Datenbankschema
	5.4.2 DAO-Schicht
	Hauptmethoden von ScopeDAO

	5.4.3 Runtime-Schicht
	5.4.4 Funktionalität des Prototyps

	6 Implementierung der konzeptionellen Erweiterungen
	6.1 Literal-Pushdown
	6.1.1 Datenbankschema
	6.1.2 BPEL-Compiler
	6.1.3 DAO-Schicht
	6.1.4 Runtime-Schicht

	6.2 Nachrichten-Pushdown
	6.2.1 Datenbankschema
	6.2.2 DAO-Schicht
	6.2.3 Runtime-Schicht

	6.3 XQuery-Pushdown
	6.4 Einschränkungen der Funktionalität des erweiterten Prototyps

	7 Evaluation des erweiterten Prototyps
	7.1 Testfälle
	7.2 Testumgebung
	7.3 Messergebnisse
	7.3.1 Literal-Pushdown
	7.3.2 Nachrichten-Pushdown
	7.3.3 Anwendungsfall

	8 Zusammenfassung und Ausblick
	8.0.4 Ausblick

	Literaturverzeichnis

