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Kurzfassung

Cloud Computing überzeugt immer mehr durch seine Vorteile, wie z. B. Verfüg-
barkeit, Skalierbarkeit und Kosteneffizienz. Ein aktuelles Forschungsthema ist die
Synchronisation der Daten mit Cloud-Rechenzentren. In dieser Arbeit betrachten
wir daher Aspekte, die bei diesem Problem im Mittelpunkt stehen. Zuerst werden
in dieser Arbeit theoretische Grundlagen und aktuelle Technologien untersucht. An-
schließend wird das hier betrachtete Synchronisations-Problem genauer beschrieben
und potentielle Lösungsansätze vorgestellt. Das Ziel ist es, die lokalen Datenbank-
systeme durch den Einsatz des Cloud Computings überflüssig zu machen und dabei
die Vorteile des lokalen Datenbanksystems zu behalten. Es werden eine Architektur
und Mechanismen entwickelt, ein Ausschnitt der Lösung implementiert und evalu-
iert. Abschließend wird die Arbeit zusammengefasst und ein Ausblick auf mögliche
zukünftige Arbeiten gegeben.
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Einleitung 1

1 Einleitung

Seit 2007 wird das neue Paradigma
”
Cloud Computing“ immer beliebter. Mit Cloud

Computing lassen sich IT-Infrastrukturen dynamisch über das Netzwerk bereitstel-

len. Die Leistungen können jederzeit an den momentanen Nutzungsbedarf angepasst

werden. Auch bei der Verwendung von Cloud Computing müssen verteilte Daten

synchronisiert werden, jedoch hat Cloud Computing gewisse Vorteile, sodass man

das Problem der Synchronisation unter einem anderen Blickwinkel betrachten kann

und somit die Möglichkeit hat, bessere Synchronisierung zu realisieren.

Im nächsten Abschnitt beschäftigen wir uns mit der Datensynchronisierung und dem

Cloud Computing - den Themen, die die Motivation dieser Arbeit darstellen. Dabei

klären wir den Begriff
”
Cloud Computing“, diskutieren, welche Vor- und Nachteile

das Cloud Computing mit sich bringt und welche Rolle es in dieser Arbeit spielt.

Anschließend wird die Aufgabenstellung dieser Arbeit beschrieben. Am Ende des

Kapitels folgt ein Überblick über das gesamte Dokument.

1.1 Motivation

Cloud Computing liegt aktuell im Trend für die Bereitstellung der IT-Infrastrukturen.

Die Abbildung 1 stellt die Nutzerstatistik der Google-Suchfunktion bezüglich des

Begriffs Cloud Computing dar. Man erkennt, dass ab September 2007 das Interesse

an Cloud Computing stetig wuchs, bis der Höhepunkt im März 2011 erreicht wur-

de. In Abbildung 2 lässt sich feststellen, dass das Interesse an Cloud Computing

weiterhin wächst. Statistisch äußert es sich jedoch durch Suchanfragen für konkrete

Cloud-Anbieter.

Immer mehr Firmen lagern ihre Dienste und Daten in die Cloud aus und oft muss

ein Teil dieser Daten auch lokal vorhanden sein. Entsprechend ist Datensynchroni-

sierung ein wichtiges Thema, auf das im Folgenden eingegangen wird.

1.1.1 Datensynchronisierung

Die Datensynchronisierung wird zwangsweise dann benötigt, wenn gleiche Daten

über das Netzwerk an mehreren Stellen gleichzeitig verteilt (d. h. repliziert) sind
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Abbildung 1: Suchanfragehäufigkeiten für den Begriff Cloud Computing. Die Such-
maschine Google erstellt eine Statistik zu einem gegebenen Begriff.

Abbildung 2: Eine Statistik für die Suchanfragen von zwei großen Cloud-Anbietern.
Suchanfragehäufigkeiten für Begriffe Microsoft Azure und Amazon
EC2.

und an einzelnen Stellen geändert werden, wodurch inkonsistente Datenzustände

entstehen können.

”
Leider muss die Replikation von Daten mit der Einschränkung erkauft

werden, dass es zu Konsistenzproblemen kommen kann, sobald mehrere

Kopien vorhanden sind.“ [TS08]

Wird eine Datenkopie geändert, dann müssen alle anderen Replikas die Änderung

durchführen, sonst divergiert die Konsistenz und die darauffolgenden Leseoperatio-

nen der verschiedenen Replikas ergeben unterschiedliche Ergebnisse.

”
Daher sollte eine Aktualisierung, die an einer Kopie vorgenommen wur-

de, an alle Kopien weitergeleitet werden, bevor eine weitere Operation
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stattfinden kann.“ [TS08]

Das Problem der Datensynchronisation besteht schon länger und es wurden eini-

ge Algorithmen entwickelt, die das Problem weitgehend einschränken. So existiert

das verteilte Dateisystem Coda, bei dem Daten zwischen den verteilten Rechnern

synchronisiert werden. IceCube ist eine Entwicklung, die Synchronisationskonflik-

te automatisch auflöst. Dennoch existiert neben den einzelnen Entwicklungen ein

großer Forschungsraum für das Synchronisierungsproblem.

Wie in jedem verteilten System kann es zu Verbindungsausfällen kommen, welche

zu der Unerreichbarkeit einiger Knoten führen können. Dieses konkrete Problem der

Synchronisierung ist in der Fachliteratur als
”
Netzwerkpartitionierung“ bekannt. In

dieser Arbeit wird ein besonderes Augenmerk darauf gelegt, die Auswirkungen der

Netzwerkausfälle einzuschränken.

Bevor die Details der Synchronisierungsmöglichkeiten in Kapitel 2 diskutiert werden,

beschäftigen wir uns mit dem Paradigma Cloud Computing und seinen Eigenschaf-

ten.

1.1.2 Cloud Computing

Definition

Bislang existieren nur frühe Definitionen für das Cloud Computing. So definieren

Wang et al. das Cloud Computing folgendermaßen:

”
A computing Cloud is a set of network enabled services, providing sca-

lable, QoS guaranteed, normally personalized, inexpensive computing

platforms on demand, which could be accessed in a simple and pervasive

way.“ [WTK+08]

Eine alternative Definition des Cloud Computings wurde von Baun et al. [BKNT10]

wie folgt vorgeschlagen:

”
Unter Ausnutzung virtualisierter Rechen- und Speicherressourcen und

moderner Web-Technologien stellt Cloud Computing skalierbare, Netzwerk-

zentrierte, abstrahierte IT-Infrastrukturen, Plattformen und Anwendun-

gen als on-demand Dienste zur Verfügung. Die Abrechnung dieser Diens-
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te erfolgt nutzungsabhängig.“ [BKNT10]

Foster et al.[FZRL08] definieren den Begriff wie folgt:

”
A large-scale distributed computing paradigm that is driven by eco-

nomies of scale, in which a pool of abstracted, virtualized, dynamically-

scalable, managed computing power, storage, platforms, and services are

delivered on demand to external customers over the Internet.“[FZRL08]

Aus den oben genannten Definitionen lassen sich folgende Haupteigenschaften ab-

leiten, die das Cloud Computing auszeichnen:

� Netzwerkbasiert und verteilt

� Skalierbar

� Virtualisierte Software

� Garantierte QoS

� Günstige und leicht mietbare Hardware

� Kosten sind Nutzungsabhängig

� Plattformen, Rechenleistung und Speicher als Vertragsleistung entsprechend

SLA

Um das Bild zu vervollständigen, muss auch das Gegenstück zu Cloud Computing

erwähnt werden. Es ist die lokale Ausführung der Dienste und wird als
”
on-premise“

bezeichnet. Dabei ist die Hardware, auf der Dienste ausgeführt werden, vor Ort

fest installiert. Die Basis- und laufenden Kosten entstehen hauptsächlich durch die

Erstanschaffung, Administrierung und Wartung. Die Quality of Service hängt von

der jeweiligen Systemkonfiguration ab, die vom Administrator erstellt wird. Die

Software kann virtualisiert werden, jedoch fehlt dem Systembetreiber die Möglich-

keit, schnell zusätzliche Ressourcen hinzuzuschalten und somit die Skalierbarkeit zu

ermöglichen, um die Vorteile der Virtualisierung auszuschöpfen.

Die Flexibilität ist nur einen Vorteil des Cloud Computings. Weitere Vorzüge dieses

Paradigmas sind im Folgenden beschrieben.

Vorteile

Aus den genannten Haupteigenschaften des Cloud Computings lassen sich folgende
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Abbildung 3: Gegenüberstellung der Kostenverteilung verschiedener Paradigmen.
Mit Cloud Computing lässt sich eine Kostensenkung erzielen.

Vorteile für den Cloud-Mieter feststellen. Mit Hilfe der Virtualisierung, kann die

Änderung der Hardwarekonfiguration auf eine effiziente Weise erfolgen, sodass das

System jederzeit flexibel bleibt. Die Infrastruktur und Mechanismen der Cloud un-

terstützen diese Möglichkeit und somit kann das System entsprechend der Konfigu-

rationsänderung skalieren. Dies ermöglicht einem Cloud-Mieter eine Kostensenkung,

z. B. indem die Hardware-Konfiguration abhängig von der Last des Systems geän-

dert wird (Abbildung 3). Allgemein kann ein geringer administrativer Aufwand für

den Cloud-Mieter verzeichnet werden, denn das übernimmt der Cloud-Anbieter. Es

gibt keine Anschaffungskosten, denn Kosten fallen nur für die Miete an und werden

nur für die genutzten Ressourcen berechnet. Das Mieten der Ressourcen erfolgt da-

bei mit einem Mausklick. Cloud Computing überzeugt durch die hohe Verfügbarkeit,

die dem Cloud-Mieter vertraglich zugesichert wird.

Nachteile

Diesen Vorteilen müssen allerdings einige Nachteile entgegengesetzt werden. Das

wichtigste Thema ist die Absicherung der Daten vor Zugriffen Dritter. Aus diesem

Grund müssen laut [BC+08] und [FZRL08] mit dem Cloud Computing-Anbieter

folgende Punkte geklärt werden:

1. Wer den Zugriff auf gespeicherte Daten hat?

2. Wurde der Cloud-Anbieter auf sicheren Umgang mit fremden Daten geprüft?

3. In welchem Land werden Daten gespeichert?

4. Wie stark werden Daten von Daten anderer Kunden getrennt?
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5. Wie werden Daten repliziert und im Fehlerfall wiederhergestellt?

6. Welche Unterstützung bietet der Cloud-Anbieter den Ermittlern falls eine il-

legale Aktivität stattfindet?

7. Welche Auswirkungen hat die Übernahme des Cloud-Anbieters auf die Ver-

fügbarkeit der Daten?

Des Weiteren sollte man bedenken, dass man von jedem beliebigen Internetanschluss

aus, alleine mit dem Administratorenpasswort des Cloud-Mieters alle Daten seines

Cloudsystems auslesen kann. Aber auch der Aspekt der Datenfreigabe soll berück-

sichtigt werden. So muss entschieden werden, ob die sensiblen Daten in der Cloud

wirklich sicher sind und ausgelagert werden dürfen. Ob die Cloud für sensible Daten

geeignet ist, lässt sich generell nicht entscheiden und hängt vom jeweiligen Cloud-

Anbieter ab. Eine allgemeine Empfehlung ist es, die Daten in der Cloud mit einem

unabhängigen System und Passwort zu verschlüsseln (vgl. [Rei01]) und sensible Da-

ten lokal zu halten.

In diesem Abschnitt wurden die Motivation dieser Arbeit und einige Details zu

den hier verwendeten Begriffen erörtert. Im nächsten Abschnitt wird die konkrete

Aufgabenstellung dieser Arbeit präsentiert.

1.2 Aufgabenstellung

Die Aufgabenstellung besteht aus bestimmten Zielen, die im Folgenden formuliert

sind. Dabei wurden einige Schwerpunkte gesetzt, um die wichtigsten Punkte der

Arbeit tiefgehend zu bearbeiten.

1.2.1 Ziele

Das Ziel dieser Arbeit ist es, bestehende Konzepte und Algorithmen zu untersuchen

und neue zu entwickeln, sodass der lokale Datenzugriff und die lokale Datenspei-

cherung ohne Verwendung einer lokalen Datenbank realisiert werden und dabei die

Vorteile dieser sichergestellt werden, wie z. B. Zuverlässigkeit, Leistung und Offli-

netauglichkeit.

Es sollen eine Architektur und einige Mechanismen entworfen, sowie der Konsis-
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tenzbegriff definiert werden. Es sollen optimierte Methoden für den Zugriff, die

Bereitstellung und die Synchronisierung der Daten entworfen, implementiert und

evaluiert werden. Einerseits sollen Algorithmen die Konsistenz der Daten sichern,

andererseits sollen Kosten für das Speichern der Daten in der Cloud und die Kommu-

nikation zwischen der Cloud und on-premise-Komponenten entsprechend üblichen

Kostenmodellen minimiert werden.

Dabei sollen folgende Punkte bearbeitet werden:

1. Untersuchen der verwandten Arbeiten aus dem Bereich Datenverwaltung und

Cloud Computing

2. Analysieren und Definieren des Konsistenzbegriffs und der Optimierungsziele

3. Entwerfen des Systems

4. Entwerfen der Algorithmen für die Synchronisierung entsprechend dem Kon-

sistenzbegriff und den Optimierungszielen

5. Implementieren und Auswerten des erstellten Ansatzes, bzw. eines gewählten

Ausschnitts (Zielumgebung: Windows Azure und Microsoft SQL Server)

Schwerpunkte

Der grundlegende Schwerpunkt dieser Arbeit liegt auf der Entwicklung der Grun-

didee, sowie des Entwurfs eines Systems, das Daten mit der Cloud synchronisiert,

speichert und für lokale Endanwendungen verfügbar macht. Ein weiterer Schwer-

punkt ist es, den finanziellen Aufwand für die Datenübertragung zu reduzieren.

Im Folgenden wird das zu erstellende System von anderen abgegrenzt, um die Ziele

zu konkretisieren.

1.2.2 Abgrenzung zu verwandten Arbeiten

Viele Ansätze enthalten bereits komplexe Synchronisierungsmechanismen, jedoch

nutzen sie die Möglichkeiten des neuen Paradigmas Cloud Computing nicht, das

viel Potential für die Optimierung der Ressourcennutzung und der Abläufe bietet.

In dieser Arbeit werden im Gegensatz zu den im Abschnitt 2 vorgestellten Algo-

rithmen besondere Eigenschaften des Cloud Computings genutzt und die Ansätze
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der manchen hier beschriebenen Mechanismen so miteinander verzahnt, dass eine

bessere Synchronisation der Daten ermöglicht wird. Die beschränkte, aber hohe und

durch SLA garantierte Verfügbarkeit der Cloud spielt eine wichtige Rolle bei der

Wahl, der Zusammensetzung und der Entwicklung von Synchronisationsmethoden.

Zusammen mit dem sicheren Speicher in der Cloud ergibt sich eine zuverlässige zen-

trale Stelle im System, die Daten für alle Teilnehmer bereitstellt. Dies schafft Mög-

lichkeiten für die Neuentwicklung der Algorithmen aus dieser Perspektive. In der

bisherigen Sichtweise gelten zentrale Stellen aufgrund der Single-Point-of-Failure-

Problematik als unsicher. Die Alternative stellen Peer-to-Peer-Systeme dar, bei de-

nen die Konsistenzerhaltung der Daten aufgrund des hohen Verteiltheitsgrades ein

Problem darstellt, das nur eingegrenzt werden kann. Mit dieser Arbeit eröffnen sich

neue Möglichkeiten, Daten konsistent und verfügbar zu machen.

Der nächste Abschnitt präsentiert den Aufbau des Dokuments und Hauptthemen

der nächsten Kapitel.

1.3 Überblick über das Dokument

Nachdem ein Überblick über bestehende Systeme im Kapitel 2 gegeben wird, be-

schäftigt sich das darauffolgende Kapitel 3 mit der Konkretisierung der Aufgaben

des Produkts, sowie der Einordnung der Lösung in die Systemumgebung. Anschlie-

ßend wird das System im Kapitel 4 entworfen und die Komponenten werden einzeln

beleuchtet. Danach wird im Kapitel 5 auf die Besonderheiten und Details der Im-

plementierung eingegangen. Die Mechanismen des Systems werden dann im Kapitel

6 ausgewertet und es wird die Kosteneffizienz des Systems untersucht. Abschließend

werden alle Ergebnisse, Ideen und andere wichtigen Aspekte zusammengefasst und

ein resultierendes Fazit im Kapitel 7 gezogen.
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2 Verwandte Arbeiten

In diesem Kapitel werden verwandte Arbeiten, aus dem gleichen Forschungsbereich

wie diese Arbeit, beschrieben. Er dient dafür, die existierenden Mechanismen vor-

zustellen, um den aktuellen Stand der Forschung zu vermitteln. Viele Algorithmen

werden in dieser Lösung vollständig oder teilweise eingesetzt.

Zunächst werden generelle Lösungsansätze beschrieben, die in der Theorie die Grund-

lage für die praktischen Lösungen bilden. Anschließend werden die konkreten Aus-

prägungen der Algorithmen, die in der Praxis eingesetzt werden, vorgestellt.

2.1 Generelle Lösungsansätze zur Erlangung von Konsistenz

Im vorausgehenden Kapitel wurde die Herausforderung eines Konflikts deutlich ge-

macht. Konflikte müssen entweder verhindert oder aufgelöst werden. Dies kann auf

verschiedene Weisen geschehen. Einige Strategien, mit denen die Konsistenz erhal-

ten werden kann, sind: Locks, ACID-Transaktionen und Read-Write-Quorums. Die

bereits entstandenen Konflikte können mit Last Write Wins aufgelöst werden. Im

Folgenden werden diese Algorithmen einzeln vorgestellt, sowie die Vor- und Nach-

teile erörtert.

2.1.1 Locks

Hierbei wird ein Datensatz vor seiner Bearbeitung von einem Prozess mit einem

Lock versehen. Nur dieser Prozess hat dann die Berechtigung den Datensatz zu be-

arbeiten. Anschließend wird das Lock aufgehoben und der Datensatz für das Sperren

vom gleichen oder einem anderen Prozess freigegeben.

Es gibt zwei Arten von Locks: Write-Locks und Read-Write-Locks. Bei einem Write-

Lock ist nur der lesende Zugriff für andere Prozesse erlaubt und bei einem Read-

Write-Lock dürfen andere Prozesse weder lesend noch schreibend auf den Datensatz

zugreifen.

Der Vorteil liegt in der Eindeutigkeit des Zugriffsberechtigten. Es werden Konflikte

vermieden, indem erst geprüft wird, ob der Zugriff auf den Datensatz erlaubt ist.

Andererseits entstehen Wartezeiten für andere Prozesse, bis der Datensatz wieder
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freigegeben wird. Diese Wartezeit kann sich auf die Gesamtleistung des betroffenen

Systems auswirken, wenn Programmabläufe mit dem betroffenen Datensatz kausal

zusammenhängen.

2.1.2 ACID-Transaktionen

ACID ist eine Abkürzung für Atomicity, Consistency, Isolation, Durability. Es ist ein

Verfahren, um Datenzugriffe auf mehreren verteilten Rechnern atomar auszuführen

und somit die Datenkonsistenz im System zu erhalten. Die Bedeutung der einzelnen

Aspekte ist wie folgt [Pri08]:

� Atomicity - Das alles-oder-nichts-Prinzip, Änderungen werden entweder über-

nommen, oder verworfen. Es ist wichtig, um die Transaktionslogik herzustel-

len.

� Consistency - die Integritätsbedingungen der Datenbank werden vor und nach

der Transaktion aufrecht erhalten.

� Isolation - Abgrenzung der einzelnen Operationen an der Datenbank, sodass

sie sich nicht beeinflussen.

� Durability - Daten werden nach dem Abschluss einer Transaktion dauerhaft

gespeichert und Änderungen werden nicht rückgängig gemacht.

Zunächst wird ein Abkommen zwischen allen Beteiligten getroffen, ob eine Trans-

aktion durchgeführt wird. Erst wenn alle zustimmen, wird sie von allen Beteiligten

durchgeführt. Bei mindestens einer Gegenstimme wird die Transaktion von keinem

Beteiligten durchgeführt.

Der Nachteil bei diesem verfahren ist, dass alle Beteiligten im System verfügbar sein

müssen. Der Ausfall eines Beteiligten verursacht bei allen anderen Wartezeiten.

2.1.3 Read-Write-Quorums

Bei diesem Verfahren entscheidet die Mehrheit der Replikas eine gemeinschaftliche

Wahl, die sich auf alle Teilnehmer auswirkt. Dabei gibt es folgende Entscheidungs-

kriterien, um Read- und Write-Operationen zu vollziehen:
”
Majority“,

”
Read One

Write All“. Bei Majority müssen mindestens N
2

+ 1 Knoten jeder Operation zustim-
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men. So muss bei einer Write-Operation die Mehrheit die gleiche Datenänderung

durchführen. Geben bei einer Read-Operation nicht alle N
2

+ 1 Knoten die Gleiche

Datensatzversion zurück, dann muss es eine andere Version geben, die mehr als die

Hälfte aller Knoten hat. Bei Read One Write All muss jede Read-Operation nur

einen Knoten involvieren, dagegen eine Write-Operation die Gesamtheit.

Die Quorums sind in Abbildung 4 visualisiert.

Abbildung 4: Anschauliche Darstellung des Read-Write-Quorums. Die einzelnen Re-
plikas sind als Buchstaben dargestellt. Mit den Blöcken, die Replikas
gruppieren, sind die Stimmen für das Lesen und Schreiben dargestellt.
Jede Replika hat nur eine Stimme. [TS08]

Der Vorteil ist, dass dieses Verfahren ein gerechtes Lesen und Schreiben in einem

dezentralen Speicher ermöglicht, ohne Konflikte zu verursachen.

Der Nachtteil dabei ist, dass für ein Write und ein Read mehr als die Hälfte aller

Replikas kontaktiert werden müssen. In einem System mit vielen Replikas verur-

sacht dieses Vorgehen einen enormen Kommunikationsaufwand. Des Weiteren muss

Wissen darüber vorliegen, wie viele Knoten, die momentan nicht verfügbar sind, am

System teilnehmen, wenn sie wieder online gehen und welche Dateiversion sie haben.

Liegt dieses Wissen nicht vor, dann kann nicht beurteilt werden, ob ein ausreichen-

der Prozentsatz der Stimmen abgegeben wurde, um eine Operation durchzuführen.

In einem statischen System kann dieses Wissen mit Hilfe einer Registrierungsrou-

tine erlangt werden. Im hochdynamischen System ist dieses Wissen dagegen nicht

greifbar, deshalb kann dieser Algorithmus nicht eingesetzt werden. Es gibt auch

einen weiteren Nachteil: Ist mehr als die Hälfte aller Knoten nicht verfügbar, dann

kann entweder nicht geschrieben oder nicht gelesen werden. Somit kann der verteilte
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Speicher nur eingeschränkt verwendet werden.

2.1.4 Last Write Wins

Dies ist wohl die einfachste Strategie, bei der allerdings vorausgesetzt wird, dass

Uhren der Teilnehmer synchron sind. Es werden die Zeitstempel der letzten Ände-

rung der Einträge verglichen. Dabei
”
gewinnt“ der jüngste Eintrag. Der Vorteil ist,

dass eine einfache Logik benötigt wird, um die Auflösung zu vollziehen. Anderer-

seits wird dabei der ältere Eintrag völlig ignoriert. In den meisten Systemen hat

jeder Eintrag eine lokale Wirksamkeit und globale Bedeutung und darf somit nicht

ignoriert werden.

2.1.5 Zusammenfassung

Es wurden die theoretischen Lösungsansätze vorgestellt. Die Auflistung offenbart,

dass sie aufgrund gewisser Nachteile das Problem der Synchronisation nicht lösen,

sondern nur eingrenzen. Im nächsten Abschnitt werden die wichtigsten praktischen

Mechanismen präsentiert, die teilweise auf diesen Mechanismen aufbauen. Sie setzen

komplexe Logik ein, um das Problem noch weiter einzugrenzen.

2.2 Konkrete Lösungen aus der Praxis

In diesem Unterkapitel werden verschiedene Synchronisierungsalgorithmen vorge-

stellt. Die Arbeiten sind nach ihrer Komplexität aufsteigend sortiert. Zuerst behan-

deln wir die einfachen Algorithmen, bei denen der Datenaustausch nur eine 1:1-

Beziehung voraussetzt. Danach werden Peer-to-Peer- und Client-Server-basierten

Dateisysteme beleuchtet. Abschließend untersuchen wir komplexe Algorithmen, die

über eine innovative Konfliktauflösung mittels Logs verfügen. Es werden folgende

Verfahren beleuchtet: Rsync, Rumor, Roam, Coda, Bayou, SyncML, BASE und

IceCube. Anschließend werden ein Überblick und eine Bewertung dieser Verfahren

gegeben.
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2.2.1 Rsync

Der Rsync-Algorithmus kann zwei Dateien miteinander synchronisieren. Es ist ein

Client-Server-System, bei dem Dateiteile vom Client auf den Server übertragen wer-

den. Dabei wird bei einer Änderung nicht die vollständige Datei nochmals übertra-

gen, sondern nur der geänderte Teil. Um dies zu erreichen, wird die zu übertragene

Datei in Blöcke aufgeteilt und die Checksummen der Blöcke werden berechnet. An-

schließend werden die Checksummen der Datei auf dem Client mit den Checksum-

men der Datei auf dem Server abgeglichen. Unterschiedliche Blöcke werden ausge-

tauscht. [TM96]

Bei Rsync handelt es sich um einen grundlegenden Algorithmus, bei dem, aufgrund

der 1:1-Beziehung und der unidirektionalen Kommunikation (vom Client zum Ser-

ver) keine Konflikte entstehen und somit aufgelöst werden müssen.

2.2.2 Rumor

Rumor ist ein Algorithmus, um Dateien zwischen mehreren Rechnern mit Hilfe der

Peer-to-Peer-Kommunikation zu synchronisieren. Ist eine Datenkopie, auch Replika

genannt, nicht erreichbar, dann werden Daten trotzdem mit anderen Replikas über

Peer-to-Peer-Verbindungen abgeglichen. Für das Vergleichen und Aktualisieren der

Daten verschiedener Replikas werden Versionsvektoren verwendet. Sobald die aus-

gefallene Replika wieder verfügbar wird, werden Datenaktualisierungen auch dort

übernommen. Sollte es Konflikte beim Synchronisieren geben, z. B. wenn eine Datei

an zwei Replikas gleichzeitig geändert wurde, dann wendet Rumor einen automa-

tischen Mergealgorithmus1 an, der für wenige Dateitypen bereitsteht. Es gibt eine

Schnittstelle, um weitere Merge-Algorithmen hinzuzuschalten. Steht kein Merge-

Algorithmus für eine konfliktbehaftete Datei bereit, dann kann der Konflikt nicht

automatisch aufgelöst werden. In diesem Fall werden beide Dateiversionen beibe-

halten und der Benutzer muss den Konflikt manuell auflösen.[Rei] [GRR+99]

Rumor unterstützt auch selektive Synchronisation. Das heißt, dass Replikas nicht

1Ein Mergealgorithmus erhält als Eingabe verschiedene Versionen des konfliktbehafteten Da-
tensatzes und gibt einen konfliktfreien Datensatz zurück. Der Vorgang ist in der englischen
Literatur als

”
reconciliation“ bekannt. In einem verteilten System mit der lockeren Konsistenz

können Konflikte oft auftreten, aus diesem Grund ist das Thema reconciliation von besonderer
Bedeutung für diese Arbeit.
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die gleiche Dateimenge abdecken müssen, sondern dass auch Teile der Dateimenge

synchron gehalten werden können (Abbildung 5). [GRR+99]

Replka 4

Replka 3

Replka 1
A

C

Replka 2

B

D

Abbildung 5: Datenmengenabdeckung bei einer selektiven Synchronisation.. A, B,
C und D stellen die Datenteile dar. Verschiedene Replikas bilden un-
terschiedliche Datenmengen ab. Die Daten sind dennoch, in diesem
Fall, an mindestens zwei Stellen repliziert.

2.2.3 Roam

Roam wurde extra für mobile Geräte entwickelt. Das System wendet das Ward-

Vorgehen an, das dem Ultrapeer-System beim Gnutella-Netzwerk2 ähnelt. So haben

geografisch verteilte Replikas innerhalb einer geografischen Zone (auch Wards ge-

nannt, das für
”
wide area replication domains“ steht) einen Vertreter (genannt Ward

2Gnutella ist ein Peer-to-Peer-basiertes Overlaynetzwerk, bei dem es möglich ist, Dateien auszut-
auschen. Weitere Informationen über das Flooding mit Hilfe der Ultrapeers können in [LHSH05]
gefunden werden.
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Master), der mit anderen Vertretern des Gesamtsystems kommuniziert. Innerhalb

einer geografischen Zone synchronisieren sich die Replikas selbstständig, indem sie

einen Kommunikationsring bilden und die Änderungen über die entstandenen Kanä-

le austauschen. [Rat98] [RRPK01]

Roam zeichnet sich durch bessere Skalierbarkeit gegenüber dem Rumor-System aus.

Das wird am Anstieg des Festplattenspeicherverbrauchs pro hinzugefügte Replika

sichtbar [Rat98]. Des Weiteren berufen sich Ratner et al. darauf, dass Konflikte laut

[RHR+94] selten sind. Und wenn sie stattfinden, dann gibt es eine Art Brennpunkt,

sodass der Konflikt nur wenige Replikas tangiert.

2.2.4 Coda

Coda ist ein Client-Server-System für das verteilte Speichern von Volumes. Volu-

mes stellen ein Teil des Dateisystems dar, z. B. kann ein Volume aus einem Ordner

mit Unterordnern und Dateien bestehen. Ein Coda-System besteht aus mehreren

verteilten Servern, die Daten replizieren, sowie aus Clients, die auf diese Server zu-

greifen (Abbildung 6). Eine Peer-to-Peer-Verbindung zwischen den Clients ist nicht

vorgesehen, nur zwischen den Servern [Rat98]. Dabei ist das Protokoll für repli-

ziertes Schreiben ROWA (Read-One, Write-All). Das Problem der Netzwerkparti-

tionierung wird dadurch gelindert, dass ein Client auf einen der noch verfügbaren

Server in seiner Nähe zugreifen kann. Die Konflikte werden nach dem Beheben der

Netzwerkpartitionierung mittels Versions-Vektoren erkannt. [TS08]

In Coda besteht der Konfliktresolutionsalgorithmus aus vier Schritten:

� Lock des betroffenen Datensatzes

� Sammeln und Zusammenführen der Änderungen

� Verteilen und Anwenden der Änderungen

� Aufheben des Locks

Zuerst wird der Datensatz vor Änderungen geschützt. Als Nächstes werden alle

Änderungen des Datensatzes auf einem, für die Aktion ausgewählten, Server ge-

sammelt und zusammengeführt. Das Ergebnis der Zusammenführung wird an alle

Server verteilt. Diese wenden mittels entsprechenden Algorithmen die Änderungen

an. Anschließend wird das Lock auf allen Servern aufgehoben und Clients dürfen
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Abbildung 6: Darstellung einer möglichen Aufteilung der Server und Clients für das
Dateisystem Coda. Clients verfügen über einen lokalen Cache mit der
LRU3-Ersetzungsstrategie. Die als

”
sticky“ markierten Dateien bleiben

immer im Cache und werden nicht ersetzt. [SKK+90] [TS08]

Daten wieder ändern, außer es ist ein Konflikt aufgetreten, denn dann wird allen

Clients ein Konflikt gemeldet. Konflikte werden manuell korrigiert. Wird eine ma-

nuelle Korrektur des Konflikts während der Netzwerkpartitionierung ausgeführt,

dann wird nach der Wiederverbindung erneut ein Konflikt an demselben Datensatz

gemeldet, der wieder aufgelöst werden muss.[KS93]

In [KSS94] wurde ein erfolgreicher Versuch unternommen, Konflikte in Coda auto-

matisch aufzulösen. Es wurde ein
”
application-specific resolver“ implementiert, der

die Aufgabe auf der Anwendungsebene bewältigt.

2.2.5 Bayou

Bayou ist eine verteilte Datenbank, die auf einer Peer-to-Peer-Infrastruktur auf-

setzt und über eine anwendungsspezifische Konfliktauflösung verfügt. Mit diesem

Algorithmus kann man relationale Daten, sowie Flatfiles replizieren. [Rat98]

Das System ist dynamisch und Teilnehmer können hinzugefügt oder entfernt werden.

Die Trennung zwischen Client und Server ist unscharf, jeder Teilnehmer des Systems

erlaubt es einem anderen, auf Daten lesend und schreibend zuzugreifen. Alle Daten-

änderungen werden mit einem Flooding-ähnlichen Mechanismus an alle Teilnehmer

verteilt. Bei jedem Schreibvorgang wird die Operation auf anwendungsspezifische

Konflikte untersucht. Konflikte werden dabei mit Hilfe der Versionsvektoren und
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Zeitstempel aufgespürt. Für die Konfliktauflösung, wird eine Funktion
”
mergeproc“

aufgerufen, die das Problem auf der Anwendungslogik-Ebene beseitigt. [DPS+94]

Bei einer Änderung wird der entsprechende Datensatz als
”
vorläufig“ (engl. ten-

tative) gekennzeichnet, bis sie auf einem der Primary Server übernommen wurde.

Primary Server sind gewöhnliche Teilnehmer, die gesondert gekennzeichnet sind. So-

bald die Änderung auf einem Primary Server übernommen wurde, gilt der Datensatz

als
”
ausgeliefert“ (engl. committed). Die Anwendungen, die Bayou verwenden, ken-

nen diese zwei Datenzustände und können zwischen den zwei Konsistenzgraden der

Daten selbst wählen. [DPS+94]

Arbeiten die Anwendungen mit committed-Daten, dann wird die Konsistenz ge-

wahrt, jedoch muss einige Zeit vergehen, bis tentative-Daten repliziert werden, um

abschließend als committed gekennzeichnet zu werden. Verwenden Bayou-Anwendungen

die tentative-Daten, dann müssen sie berücksichtigen, dass an diesen Daten ein Kon-

flikt gemeldet werden kann und sie somit für ungültig erklärt werden.

Aufgrund der Datenreplikation kann es vorkommen, dass eine Anwendung Daten auf

einen Server geschrieben hat und später veraltete Daten vom anderen Server liest,

die aus der Sicht des Servers als committed gelten.
”
Session Guarantees“ stellen in

Bayou folgende vier Eigenschaften des Systems sicher [TDP+94]:

� Read your writes - Beim Lesen werden nicht ältere Daten zurückgegeben, als

die, die vom Client gespeichert wurden.

� Monotonic reads - Es werden keinesfalls ältere Daten zurückgegeben, als die,

die bereits gelesen wurden.

� Writes follow reads - Geschriebene Daten stehen immer in einer Abhängigkeit

zu den zuvor gelesenen Daten.

� Writes follow writes - Daten werden aktualisiert und keinesfalls durch ältere

wieder überschrieben.

2.2.6 SyncML

Aufgrund des stetigen Wachstums an mobilen Geräten, steigt auch der Bedarf, Da-

ten zwischen den Geräten auszutauschen. Dabei verwenden Benutzer Geräte ver-

schiedener Hersteller und wollen auf die Synchronität ihrer Daten nicht verzichten.
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Deshalb entstand SyncML - ein offener Standard für die Datensynchronisation. Die

Daten können Einträge in Kalendern, E-Mails, aber auch Kundendaten der Kunden-

managementtools sein. SyncML unterstützt uni- und bidirektionale Kommunikation,

unabhängig vom Übertragungsprotokoll. [JN01]

Auch bei der Verwendung des SyncMLs können Konflikte auftreten. Die Konflikt-

auflösung beschränkt sich auf drei Methoden [HMPT03]:

� Daten des Clients werden immer übernommen -
”
Client gewinnt“

� Daten des Clients werden immer verworfen -
”
Server gewinnt“

� Zuletzt geänderte Daten werden übernommen -
”
Letzte Änderung gewinnt“

Weitere Konfliktauflösungsstrategien sind nicht vorgesehen, denn das ist nicht der

Schwerpunkt des Standards:

”
In our approach, the job of change capture is weighted over others,

because if a change is missed, it can not be remedied until the next

change occurs at the same object.“ [YYLW08]

2.2.7 BASE

Es gibt ein CAP-Theorem, das besagt, dass die Konsistenz (Consistency), die Ver-

fügbarkeit (Availability) und die Partitionierungstoleranz (Partition tolerant) sich

gegenüberstehen. Es wurde in [GL02] bewiesen, dass Webdienste höchstens zwei

Aspekte in einem verteilten System sicherstellen können. [Pri08]

� Konsistenz und Verfügbarkeit:

Wenn ein System eine harte Konsistenz und hohe Verfügbarkeit bieten soll,

ist es nicht tolerant gegenüber der Netzwerkpartitionierungen, denn dann blo-

ckiert das System, bis alle Datenkopien wieder erreichbar sind, um die Kon-

sistenz nicht zu verletzen.

� Konsistenz und Partitionierungstoleranz:

Wenn eine starke Konsistenz und die Partitionierungstoleranz erreicht wer-

den soll, dann kann die hohe Verfügbarkeit durch Replizierung nicht erreicht

werden.

� Verfügbarkeit und Partitionierungstoleranz:
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Der andere Fall wäre die Sicherstellung der Verfügbarkeit und der Partitionie-

rungstoleranz. Wird das Netzwerk partitioniert, dann wird die Verfügbarkeit

durch einen lokalen Cache gesichert. Ohne eine Netzwerkverbindung kann sich

der lokale Cache mit dem Datenserver nicht synchronisieren, was zu der Da-

tendivergenz führt und somit die Konsistenz verletzt wird.

Mit dem Zweiphasencommit-Protokoll [TS08] können die ersten zwei ACID-Eigenschaften

sichergestellt werden - die Transaktionen werden atomar durchgeführt und über-

führen das System in jedem Fall in einen konsistenten Zustand. Jedoch wird da-

bei entsprechend dem CAP-Theorem nur die Konsistenz sichergestellt. Der Zwei-

phasencommit sieht keine Verfügbarkeits- und Netzwerkpartitionierungstoleranz-

Mechanismen vor.

BASE steht für
”
basically available, soft state, eventually consistent“ [Pri08]. Bei

diesem Ansatz wird versucht, ein Kompromiss zwischen den drei CAP-Punkten zu

finden. BASE stellt mit dem optimistischen Ansatz das Gegenteil zu der pessimis-

tischen ACID-Alternative dar. BASE speichert nicht nur Daten-Snapshots, sondern

auch den Aktionslog. Eine Transaktion besteht nicht aus einem Update von Daten,

wie es bei ACID der Fall ist, sondern aus dem Update der Transaktionslog-Tabelle

und dem Einreihen der Datenupdate-Kommandos in sichere Message Queues. Damit

ist die Transaktion abgeschlossen. Die Message Queues werden Schritt-für-Schritt

abgearbeitet. Darüber hinaus sind Ereignisbenachrichtigungen der Applikation beim

Abarbeiten der Queues möglich. [Pri08]

Da man davon ausgeht, dass sichere Message Queues in einer endlichen Zeit ab-

gearbeitet werden, ist somit Eventual Consistency gegeben. Eventual Consistency

bedeutet, dass das System einen konsistenten Zustand der Daten anstrebt und ihn

bei Ausbleiben von weiteren Änderungen, nach einiger Zeit erreicht [TS08].

2.2.8 IceCube

IceCube ist ein Ansatz, Daten auf der Middleware-Ebene zu synchronisieren. In

[PB99] wurde der Vorteil der aktionsbasierten Synchronisation über der zustands-

basierten Synchronisation hervorgehoben. So spielen auch in IceCube Aktionen die

zentrale Rolle. Dabei werden alle auszuführenden Aktionen an Daten in einem Log

festgehalten (ähnlich wie im BASE-Ansatz). Die Aktionen in IceCube haben vier
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Eigenschaften [KRSD01]:

� Zielobjekt - Das Objekt für die auszuführende Aktion, z. B. eine Datei

� Vorbedingung - Eine boolesche Funktion, die berechnet, ob sich das Zielobjekt

in einem für die Operation passenden Zustand befindet, z. B. die Datei ist nicht

größer als 100KB

� Operation - Funktion, die Auswirkungen auf das Objekt und seine Umgebung

bewirkt, z. B. Daten in die Datei hinzufügen

� Anhang - Alle zur Aktion zugehörige Daten, z. B. Parameter für die Vorbe-

dingungen und die Operation

Beim Synchronisieren werden die Logs einzelner Replikas in einem konfliktfreien Log

zusammengeführt und schließlich werden Daten entsprechend dem Log geändert.

Tritt beim Zusammenführen der Logs ein Konflikt auf, dann wird die Reihenfolge

der Operationen geändert. Dabei wird auf die Vorbedingungen der Operationen

geachtet. Aber auch hier kann ein Konflikt auftreten, der manuell aufgelöst werden

muss. [KRSD01]

Folgendes Beispiel veranschaulicht eine automatische Konfliktauflösung. Zwei Admi-

nistratoren verwalten ein System und führen Operationen aus. In folgender Tabelle

sind die Logs der Operationen aufgeführt, die zusammengeführt werden müssen

[KRSD01]:

Administrator A Administrator B

A1 Betriebssystem und Treiber

von v4 auf v5 aktualisieren

B1 Drucker kaufen, 400 ¿

A2 Bandlaufwerk kaufen, 800 ¿ B2 Druckertreiber v4 installieren

A3 Budget um 1500 ¿ erhöhen

Werden zuerst Kommandos des Administrators A ausgeführt und dann die des Ad-

ministrators B, dann tritt ein Konflikt auf, weil das System mittlerweile die Version

5 aufweist und die zu installierenden Druckertreiber Version 4. Die Umgekehrte Rei-

henfolge: zuerst Kommandos des Administrators B, dann die des Administrators A

ergeben einen anderen Konflikt. In diesem Fall halten sich die Kosten nicht inner-

halb des Budgets. IceCube erkennt die Abhängigkeit zwischen den Logs mit Hilfe

der Vorbedingungen. So muss B2 vor A1 ausgeführt werden, sowie A3 vor B1 und
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A2. Als eine der möglichen Lösungen des Konflikts wäre die Abfolge A3, B1, B2 A1,

A2 richtig. [KRSD01]

2.2.9 Zusammenfassung

Rsync ist ein Client-Server-System mit einer 1:1-Verbindung. Dateien werden in Blö-

cke aufgeteilt. Die Unterschiede werden mit Hilfe des Vergleichs der Checksummen

der Blöcke lokalisiert. Und beim Synchronisieren werden nur die unterschiedliche

Blöcke übertragen.

Rumor ist ein Peer-to-Peer-Synchronisierungssystem, das Netzwerkpartitionierung

toleriert und Daten mit Hilfe bereitgestellter Algorithmen, die für einzelne Daten-

typen existieren, zusammenführt. Fehlt ein Merge-Algorithmus für die betroffene

Datei, dann muss der Benutzer die Auflösung manuell vornehmen. Rumor unter-

stützt die selektive Synchronisation.

Roam ist ein System für mobile Geräte. Die geografisch verteilten Replikas werden

mit Hilfe des hierarchischen Flooding-Mechanismus synchronisiert. Der Vorteil von

Roam gegenüber Rumor ist seine bessere Skalierbarkeit.

Coda ist ein verteiltes Dateisystem, das aus Clients und Servern besteht. Server

kommunizieren über Peer-to-Peer, Clients nicht - sie greifen auf Server zu. Mit Ver-

sionsvektoren werden Datenänderungen registriert. Konflikte werden zentral aufge-

löst. Kann ein Konflikt nicht automatisch aufgelöst werden, dann muss es mit Hilfe

eines Resolvers oder manuell geschehen.

Bayou ist eine verteilte Datenbank für relationale Daten und Flatfiles. Die Kommu-

nikationsstruktur ist Peer-to-Peer. Die Konflikte werden mit Versionsvektoren und

Zeitstempeln lokalisiert und mittels Anwendungslogik-Resolver aufgelöst. Daten ha-

ben zwei Zustände, um eine Wahl zwischen den Konsistenzgraden zu bieten.
”
Session

Guarantees“ sorgen dafür, dass Daten sich für die Anwendung, trotz ihrer Vertei-

lung über die Replikas logisch verhalten und es keine paradoxen Datenänderungen

auftreten.

SyncML ist ein offener Standard, um Daten wie z. B. Kalendereinträge, E-Mails

und beliebige andere zu synchronisieren. SyncML verfügt nur über wenige Konflik-

tauflösungsstrategien, weil es während der Entwicklung nicht der Schwerpunkt der
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Arbeit war.

BASE ist ein Paradigma, das im Gegensatz zu ACID steht. Bei diesem Ansatz

werden hohe Verfügbarkeit und lockere Konsistenz angestrebt. Dies wird mit Hilfe

der Aktionslogs und sicheren Message Queues erreicht.

IceCube ist eine Entwicklung, bei der ebenfalls wie bei BASE Aktionslogs festge-

halten werden. Der Schwerpunkt der Arbeit lag darin, ein intelligentes System zu

entwickeln, das Konflikte auf Anwendungsebene auflöst. Es funktioniert, indem es

die Aktionen innerhalb der Aktionslogs neu anordnet und sie in einem Log zusam-

menführt, ohne dabei die semantischen Zusammenhänge der Daten zu verletzen.

2.2.10 Bewertung

Diese Mechanismen bieten eine gute Grundlage, die verteilten Daten synchron zu

halten, jedoch weisen sie Gemeinsamkeiten auf, die die Synchronisationsqualität

einschränken. So unternehmen die Algorithmen einen einzigen Konfliktauflösungs-

Versuch. Schlägt er fehl, dann ist eine manuelle Resolution unumgänglich. Dies re-

sultiert in einer Frustration von Benutzern der Endsysteme. Manuelle Auflösung

ist in großen verteilten Systemen, bei denen komplexe Abläufe ausgeführt werden

(z. B. Bank- und Buchungssystemen), nicht zumutbar. Aus diesem Grund werden

die Algorithmen eingesetzt, die keine Betriebsstörungen durch die Notwendigkeit

eines manuellen Eingriffs verursachen. Stattdessen werden in solchen Systemen Me-

chanismen eingesetzt, die volle Verfügbarkeit der Systemteilnehmer voraussetzen.

Entsprechend können hohe Latenzen und somit ein Eindruck der Trägheit des Sys-

tems entstehen, wenn die nötige Verfügbarkeit nicht gegeben ist.

Die bisherigen Lösungsansätze setzen eine gewisse Toleranz von Inkonsistenzen vor-

aus, die später aufgelöst werden oder die Akzeptanz, dass Teile des Systems ihren

Betrieb temporär einstellen, bis die Netzwerkverbindung wieder hergestellt wurde.

”
In vielen Situationen besteht die einzige wirkliche Lösung darin, die

Konsistenzbeschränkungen zu lockern.“ [TS08]

Somit lässt sich ein Fazit ziehen, dass die bisherigen Synchronisierungsalgorithmen

auch in ihrer praktischen Ausprägung nicht zufriedenstellend sind und Verbesserungs-

oder Innovationsbedarf besteht. Im nächsten Kapitel verschaffen wir uns einen Über-
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blick über die Randbedingungen und Aufgaben des zu entwickelnden Systems.
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3 Systemmodell und Problembeschreibung

Die verwandten Arbeiten im vorangehenden Kapitel zeigen den aktuellen Forschungs-

stand. Bevor ein neues System entwickelt wird, muss die Umgebung, Infrastruktur,

Systemteile, sowie die konkreten Aufgaben geklärt werden. In diesem Kapitel werden

zunächst das Systemmodell, ein praxisnahes Anwendungsszenario und anschließend

die daraus resultierenden Anforderungen an das Zielsystem vorgestellt. Zum Schluss

folgt eine Zusammenfassung, die die wesentlichen Kernpunkte dieses Kapitels be-

schreibt.

Es gibt zwei technische Umgebungen: die Cloudumgebung und die Umgebung der

on-premise Knoten (Abbildung 7). Die Cloudumgebung enthält den zentralen Da-

tenspeicher und den dazugehörigen Cloud-Rechner. Die Umgebung der on-premise

Knoten besteht aus einzelnen Rechnern, die geographisch verteilt sind und mit dem

Internet verbunden sind. Diese Rechner werden in dieser Arbeit als
”
Knoten“ oder

”
Clients“ bezeichnet. Ein Knoten besteht aus dem lokalen Cache mit dem lokalen

Speicher und der Endanwendung, die einen Cache nutzt.

Die wichtigsten Systemkomponenten werden im nächsten Abschnitt erläutert.

3.1 Infrastruktur und Komponenten

Im Systemmodell werden entsprechend den zuvor besprochenen Umgebungen fol-

gende Komponenten und Infrastruktur-Teile benötigt: Knoten, Cloud und das Netz-

werk. Die Eigenschaften der Komponenten werden in diesem Abschnitt einzeln her-

vorgehoben, dabei wird ihre Rolle im System erklärt. Des Weiteren werden Annah-

men über die Komponenten getroffen, die die Randbedingungen für diese Arbeit

bilden. Wir beginnen mit den Knoten des verteilten Systems.

3.1.1 Knoten

Wie bereits erwähnt, befinden sich auf einem Knoten die Anwendung, der Cache

und der lokale Speicher. Folgende grobe Abläufe finden auf diesem Knoten statt:

� Die Anwendung greift auf den Cache zu und nutzt die dort zwischengespei-

cherten Daten.
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Abbildung 7: Umgebungen und Komponenten des Systems. Die Cloud und die geo-
graphisch verteilten Knoten können Informationen über das Internet
austauschen.

� Der Cache stellt die Verfügbarkeit der Daten sicher und überwacht die Aktua-

lität der Daten.

� Der lokale Speicher ermöglicht dem Cache eine Persistierung der Daten.

Die Verfügbarkeit eines Knotens ist je nach Systemkonfiguration unterschiedlich.

Aus diesem Grund wird der Verfügbarkeitswert als variabel gesehen. Neue Knoten

können dem System jederzeit beitreten und später für unbestimmte Zeit aus dem

System austreten.

Die meisten PCs haben eine einzelne Festplatte als lokalen Speicher. Deshalb wird

es angenommen, dass der lokale Speicher des Knotens unzuverlässig ist und einzelne

Dateien nach einem Neustart des Systems verloren gehen können. Des Weiteren

kann es eine Störung oder einen Eingriff in die gespeicherten Daten geben. Die
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Sicherheit dieser Daten kann durch die Verwendung kryptographischer Verfahren,

z. B. Verschlüsselungsmechanismen gewährleistet werden.

3.1.2 Cloud

Cloud Computing stellt Datenspeicher und Rechenressourcen zur Verfügung. Die

Rechenressourcen werden für die Unterstützung der Synchronisierungsprotokolle be-

nötigt. Primär ist für die Lösung der Datenspeicher relevant. Der Datenspeicher in

der Cloud ist durch interne Replikation ausfallsicher gemacht. So ist unsere Annah-

me für diese Arbeit, dass Daten in der Cloud nicht verloren gehen, oder durch eine

Störung geändert werden. Jedoch beträgt die Verfügbarkeit der Cloud weniger als

100 Prozent. So sind die Rechenkapazitäten der Cloud von Amazon, sowie von Win-

dows Azure zu 99,95% verfügbar [Ama] [Mic]. 99,95% Verfügbarkeit bedeutet, dass

die Cloud in einem Monat, laut folgender Rechnung, für rund 22 Minuten ausfällt.

30Tage · 24Stunden · 60Minuten · (1− 99,95%
100%

) = 21, 6Minuten

3.1.3 Netzwerk

Das Netzwerk verbindet die Cloud und Knoten miteinander, sodass ein Datenaus-

tausch ermöglicht wird. ADSL stellt die aktuelle Technologie und eine günstige Me-

thode dar, eine Verbindung zwischen geographisch verteilten Rechnern herzustellen,

weshalb angenommen wird, dass die Kommunikation über ADSL stattfinden kann.

Für die Kommunikation wird heutzutage meistens das Kommunikationsprotokoll

TCP [Pos81] verwendet. Es werden deshalb die folgenden grundlegenden Eigen-

schaften von TCP für die Modellierung der Netzwerkschicht übernommen. So wird

davon ausgegangen, dass alle Netzwerkverbindungen bidirektional sind und Daten

zuverlässig übertragen werden, solange die Verbindung zwischen dem Sender und

Empfänger besteht. Daten, die über eine solche Leitung versendet werden gehen

nicht verloren und kommen in der gleichen Reihenfolge an, in der sie gesendet wur-

den.

Durch den Einsatz der Verschlüsselungs- und Authentifizierungsalgorithmen, wie z.

B. TLS [Die08] und Kerberos [SNS88], wird davon ausgegangen, dass ausgetauschte
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Daten von Dritten weder abgehört noch unbemerkt manipuliert werden können.

Nun wurden die wichtigsten Teile des Systemmodells besprochen. Jetzt müssen die

konkreten Anforderungen an das zu entwickelnde System betrachtet werden, womit

sich das folgende Unterkapitel beschäftigt.

3.2 Anforderungen an das Zielsystem

Um die Anforderungen an die zu entwickelnde Lösung herauszukristallisieren und

anschaulich zu machen, wird in diesem Abschnitt ein Anwendungsszenario unter-

sucht. Danach lassen sich wichtige Aspekte identifizieren und aus technischer Sicht

beschreiben. Es werden funktionale und nichtfunktionale Anforderungen unterschie-

den. Anschließend werden die Anforderungen tabellarisch zusammengefasst.

3.2.1 Beispielanwendung

Eine beispielhafte Anwendung, welche mit den Herausforderungen, die im Rah-

men dieser Arbeit untersucht werden, umgehen muss, wird im Folgenden als ei-

ne Smartphone-Anwendung für Supermarkt-Kunden vorgestellt. Hierdurch wird die

Praxisrelevanz der untersuchten Datensynchronisations-Problemstellung gezeigt.

Aufgrund des stetig wachsenden Ernährungsbewusstseins möchten Menschen für das

Kochen einer gewünschten Speise eine Hilfestellung beim Einkaufen im Supermarkt

erhalten. Mögliche Zielgruppen wären Vegetarier, Veganer, Allergiker, übergewich-

tige Menschen, Sportler und Bodybuilder. Sie sollen beim Einkaufen mit Hilfe einer

Smartphone-Anwendung unterstützt werden.

Zuerst müssen die Vorlieben an die Anwendung übergeben werden. So können die

Ernährungswünsche an die Produkte wie folgt sein:

� Maximaler Eiweißgehalt

� Die Glutamatmenge ist gleich null

� Der Kalorienanteil der Speise beträgt zwischen 2800 und 3200 Kcal

� Es sollen Fairtradeprodukte bevorzugt werden

� Es sollen möglichst günstige Produkte vorgeschlagen werden
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� Es dürfen keine tierischen Bestandteile enthalten sein

In der Cloud befindet sich eine Datenbank mit Rezepten. Der Käufer entscheidet

sich vor dem Betritt des Supermarkts für
”
Pasta Bolognese“ und gibt es in die

Anwendung ein. Auf dem Smartphone werden Informationen aus der Cloud lokal

abgespeichert:

� Das Rezept mit allen Zutaten (Pasta, Hackfleisch, Tomaten)

� Konkrete Produkte (Itali Pasta Fussili, Schnitzelberger Rindhack, Espan Po-

modoros)

� Position der Produkte im Supermarkt

� Bestandteile (Mehl, Eier, Wasser, Rindfleisch, Strauchtomaten)

� Chemische Zusammensetzung (Kalorien, Kohlenhydrate, Eiweißgehalt)

Im Supermarkt muss das Smartphone keinen Empfang haben, da er die Infos bereits

abgerufen hat.

Anschließend werden verfügbare Produkte mit ihrer Position im Supermarkt-Regal,

Preis und Bild angezeigt. Nun hat der Kunde die Wahl, nach einem alternativen

Produkt zu suchen, wie z. B. nach einer anderen Marke, oder Fleischersatz statt

Hackfleisch.

Der Kunde entdeckt im Regal ein weiteres Produkt, für das er sich entscheidet. Da

er will, dass beim nächsten Mal dieses Produkt in Betracht gezogen wird, gibt er die

Daten in die Anwendung ein. Wenn er wieder in den Onlinemodus wechselt, wird

das neue Produkt mit der Cloud synchronisiert.

Auch Supermärkte können ihre Produkte in der Cloud updaten. Sollte die Cloud

ausfallen, können Supermärkte einer oder mehrerer Supermarktketten untereinan-

der, mit Hilfe von Peer-to-Peer-Kommunikation synchronisieren. Ein Kunde kann

sich bei einem Cloudausfall über WLAN mit dem Server des Supermarkts verbin-

den und sein Handy synchronisieren, um aktuelle Informationen über Produkte und

beliebte Rezepte zu erhalten.

Sobald die Cloud wieder verfügbar wird, spielen Supermärkte und Smartphones

ihre Updates in die Cloud ein. Das Update in der Cloud wird erst ab einer Schwelle

an gleichen Änderungsvorschlägen der Benutzer übernommen, um unberechtigtes
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Schreiben zu verhindern. Solange es nicht geschehen ist, wird der Eintrag des Nutzers

lokal auf seinem Smartphone trotzdem berücksichtigt, da er lokal abgespeichert ist.

Dieses konkrete Beispiel lässt sich nun als eine Menge der Anforderungen abstra-

hieren, um die Kernpunkte des Systems universal zu formulieren. Wir beginnen mit

den funktionalen Anforderungen.

3.2.2 Funktionale Anforderungen

Das Zielsystem soll die Funktionalität eines verteilten Datenspeichers realisieren.

Für die Speicherung der Daten wird die Cloud als zentrale Stelle verwendet.

Somit lassen sich Rezepte bei bestehender Internetverbindung aus einer bekannten

Quelle herunterladen.

Um die Offlinefähigkeit zu unterstützen müssen Rezepte lokal gespeichert werden.

Es wird ein Cache benötigt, um Daten unabhängig vom Zustand anderer Teile des

Systems (z. B. Netzwerk, Cloud) verfügbar zu halten.

Ein Rezept besteht aus einer Zutaten-Tabelle und den dazugehörigen Bearbeitungs-

anweisungen. Die Struktur der Daten ist also flach, d. h. es werden Flatfiles, z. B.

CSV- und Text-Dateien gespeichert. Es sollen keine relationale Daten unterstützt

werden.

Für die Datenverarbeitung sollen grundlegende Dateioperationen ermöglicht wer-

den. Diese Operationen werden CRUD-Operationen (Create, Read, Update und

Delete) genannt. Damit lassen sich Daten in der Cloud und lokal verwalten. Des

Weiteren muss es ermöglicht werden, weitere Operationen an das System an-

zuschließen und sie auf Daten auszuführen. Somit wird ermöglicht, dass Rezepte

beliebig bearbeitet werden können, aber auch, dass sie anderen Bearbeitungsvor-

gängen zur Verfügung stehen.

Es wird gefordert, dass auftretende Konflikte automatisch aufgelöst werden.

Kann ein Konflikt nicht automatisch aufgelöst werden, so muss die Möglichkeit

bereitstehen, ihn manuell aufzulösen. Damit wird eine Möglichkeit geschaffen,

Konflikte in Rezepten automatisch zu beseitigen und bei Bedarf manuell.

Beim Start des Cache-Programms muss die Integrität von lokalen Daten geprüft

werden. So wird sichergestellt, dass der Anwendung, die Rezepte anzeigt, keine feh-
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lerhaften oder unvollständigen Daten gestellt werden.

In der Lösung soll das lockerere Konzept der letztendlichen Konsistenz (Eventual

Consistency) realisiert werden. Damit wird gesichert, dass beim Einsatz vieler

Knoten - im Beispiel: Smartphones - Änderungen an Rezepten auch bei Abwesenheit

einiger Knoten durchgeführt werden können und die Konsistenz der Datenbank

dabei nicht divergiert.

3.2.3 Nichtfunktionale Anforderungen

Für die Anwendung soll ein Offlinebetrieb ermöglicht werden. So kann die An-

wendung ohne Netzwerkverbindung nach außen mit Daten versorgt werden. Des

Weiteren soll sichergestellt werden, dass Zugriff auf Daten und Änderungen auch

während einer Netzwerkpartitionierung (bzw. während eines Ausfalls der Cloud)

erfolgen können. Diese Änderungen müssen auch für andere Caches sichtbar wer-

den. Sobald die Netzwerkpartitionierung aufgehoben wird (bzw. die Cloud wieder

verfügbar wird), sollen Daten zwischen beiden Partitionen synchronisiert werden.

Während einer bestehenden Verbindung sollen Daten laufend synchroni-

siert werden. Auf diese Weise sollen Rezepte aktuell gehalten werden.

Außerdem soll das System kein Single Point of Failure aufweisen. Die Ausfälle

der Cloud und einzelner Knoten sollen durch entsprechende Mechanis-

men toleriert werden. Somit besteht trotz Ausfalls des zentralen Speichers eine

Möglichkeit, die Rezepte zu synchronisieren.

Daten können von mehreren Knoten gleichzeitig in den zentralen Speicher geschrie-

ben werden, die für andere lesbar sind. Aus diesem Grund sind Maßnahmen zu

treffen, die unberechtigtes Schreiben verhindern. Jedoch sollen die lokalen

Änderungen der Anwendung unabhängig davon zur Verfügung stehen,

also priorisiert werden. Somit werden Fehler in Rezepten vermieden und lokale Ab-

weichungen vom Zustand im zentralen Speicher behalten.

Der Speicherverbrauch auf dem Knoten soll möglichst gering gehalten

werden, um breiten Einsatz des Systems zu ermöglichen, z. B in Embedded Systems.

Die Transferkosten zwischen dem Knoten und der Cloud sollen minimiert

werden, um den monetären Aufwand für den Einsatz des Systems möglichst gering

zu halten. Entsprechend wird das Betreiben des Rezepte-Systems günstig.
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Es sollen offene Schnittstellen und Standards verwendet werden, um Portabili-

tät der Lösung sicherzustellen. Auf diese Weise werden nicht nur Rezepte-Systeme,

sondern beliebige andere Datenverwaltungs-Systeme unterstützt.

Ein wichtiger Punkt ist die Verringerung der Konfliktwahrscheinlichkeit und

der manuellen Konfliktauflösung. Die entstandenen Konflikte sollen wenn mög-

lich maschinell aufgelöst werden. Dadurch werden weniger Benutzer damit konfron-

tiert, einen Konflikt im Rezept manuell aufzulösen.

Nun wurden das Beispielszenario, die funktionalen, sowie nichtfunktionalen Anfor-

derungen erläutert. Im nächsten Abschnitt folgt die Zusammenfassung des ganzen

Kapitels. Dabei wird ein Überblick über alle Anforderungen in tabellarischer Form

gegeben

3.3 Zusammenfassung

In diesem Kapitel wurde die dem System zugrundeliegende Infrastruktur mit den

Anforderungen betrachtet. Die drei Hauptteile des Systemmodells sind Knoten, die

Cloud und das Netzwerk. Knoten weisen ähnliche Eigenschaften auf, wie ein han-

delsüblicher PC. Die Cloud dient als eine hochverfügbare zentrale Speicherstelle im

System. Und das Netzwerk ist das Bindeglied zwischen den Systemteilen, das durch

eine ADSL-Verbindung realisiert wird.

Das Beispielszenario ist eine zentrale Rezepte-Datenbank in der Cloud und viele

Smartphone-Clients, die ihre Lieblingsrezepte lokal speichern, ändern und synchro-

nisieren können. Dabei wird ein Offline-Modus unterstützt, für den Fall, dass die

Cloud ausfällt, oder falls der Empfang des Smartphones nicht sichergestellt ist. Aus

dem Rezepte-System wurden Anforderungen abgeleitet, die in folgender Tabelle zu-

sammengefasst werden.
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Funktionale Anforderungen Nichtfunktionale Anforderungen

1. Bereitstellung eines verteilten Daten-

speichers

1. Offlineverfügbarkeit- und Editierbar-

keit

2. Cloud als zentraler Datenspeicher 2. Toleranz gegenüber Cloud- und Kno-

tenausfällen

3. Lokale Kopie im Cache 3. Synchronisation mit der Cloud bei

bestehender Verbindung

4. Flache Datenstruktur 4. Minimierung der Speicherkosten und

Optimierung der Kommunikation zwi-

schen Cloud und Cache

5. Unterstützung der CRUD-

Operationen auf Daten

5. Schutz gegen unberechtigtes Schrei-

ben

6. Hinzuschalten weiterer Operationen 6. Lokale Änderungen haben Priorität

7. Automatische und manuelle Kon-

fliktauflösung

7. Portabilität der Lösung

8. Integritätsprüfung der lokalen Daten 8. Reduktion der Wahrscheinlichkeit

für manuelle Konfliktauflösung

9. Eventual Consistency

Nun wurde eine Grundlage für die Entwicklung eines Systems gelegt. Das nächste

Kapitel beschäftigt sich mit der Entwicklung des Systems und einzelner Mechanis-

men, die die abgeleiteten Anforderungen auf Basis der beschriebenen Infrastruktur

realisieren.
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4 Entwurf

Im vorigen Kapitel wurden das Systemmodell und wichtige Anforderungen für das

Zielsystem festgelegt. Nun lässt sich eine grobe Architektur für das Zielsystem ent-

werfen. Hier wird zuerst eine grobe Struktur erklärt, anschließend wird sie schritt-

weise verfeinert und die Punkte innerhalb des Systems realisiert, welche für den

Entwurf der Lösung relevante Fragestellungen aufwerfen.

4.1 Systemarchitektur

Im Kapitel 3 wurden die Komponenten des Systems dargelegt. Diese Komponenten

spiegeln sich in der groben Gesamtarchitektur des Systems wieder. Die Abbildung 8

hebt sie farblich hervor und stellt die drei Hauptbereiche dar: die Cloud, den Cache

und die Anwendungsumgebung.

Als nächstes wird die Rolle der einzelnen Hauptbereiche Cloud und Cache erläutert.

Auf die Anwendungsumgebung wurde bereits in Kapitel 3 eingegangen.

4.1.1 Cloud

Die Cloud enthält den sicheren Speicher (Cloud Storage), die Mergekomponente

(Merge Logic), sowie die Synchronisierungskomponente (Sync Logic).

Cloud Storage ist eine Komponente des Cloud Computing. Dieser Speicher wird von

Cloud Computing-Anbietern verwaltet, gesichert und gewartet. Die Anbieter stellen

die Verfügbarkeit und die Zuverlässigkeit des Speichers sicher, sodass der Kunde kei-

nen Administrierungsaufwand hat und der Speicher für die zu entwickelnde Lösung

als wartungsfrei und ausfallsicher gilt.

Die Mergekomponente sorgt für die Datenintegrität innerhalb des Cloud Storage,

indem sie die Änderungen der Caches, die konfliktbehaftet sein können, in einen

konfliktfreien Zustand überführt.

Die Synchronisierungskomponente erlaubt den Zugriff auf die Daten und steuert die

Abläufe, um Daten herunter- oder hochzuladen.
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Sync Logic

Application

Cache

Sync Logic

Operation Logic

Operation-
Library

Application area

Cloud

Cloud Storage

Local StorageMerge Logic

Merge Logic

Abbildung 8: Grobarchitektur des Zielsystems. Es gibt drei Hauptbereiche: Cloud,
Cache und die Anwendungsumgebung. Der Cache fungiert als ein Bin-
deglied in zwischen der Cloud und der Anwendung.

4.1.2 Cache

Der Cache besteht aus Sync Logic, Merge Logic und Operation Logic.

Sync Logic steuert den Austausch der verteilten Daten. Hierbei wird sie benötigt,

um Daten kosteneffizient zu synchronisieren.

Merge Logic ist für die Konsistenz der Daten verantwortlich, es enthält Konfliktbeseitigungs-

Algorithmen, um die lokale Integrität der Daten zu sichern.

Operation Logic nimmt Kommandos von der Anwendung entgegen und führt sie

aus.

Nun wurde der Grundaufbau der Systemteile und ihre Aufgaben beschrieben. Nun

können Algorithmen diskutiert werden, die in diesen Komponenten realisiert werden.
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4.2 Algorithmen und Mechanismen

Im Folgenden werden Lösungen für die in Abschnitt 3.2 gestellten Anforderungen

vorgestellt und begründet. Es wird dargelegt, wie die Anforderungen realisiert, wel-

che Algorithmen verwendet und welche Mechanismen und Abläufe von anderen

Systemen übernommen werden. Abschließend folgt eine Zusammenfassung der Me-

chanismen, die einzelnen Anforderungen zugeordnet werden. Wir beginnen mit der

Grundidee, die Basis-Algorithmen für die wichtigsten Abläufe festhält.

4.2.1 Grundidee

Im Abschnitt 2.2.7 wurde das CAP-Theorem in Grundzügen erläutert und dabei der

Ansatz BASE als ein State of the Art-Kompromiss für das Problem vorgestellt. In

dieser Lösung werden aufgrund der Anforderungen, die Verfügbarkeit und Ausfall-

sicherheit sicherzustellen, die zwei Extrema Availability und Partitiontolerance des

Theorems angestrebt. Dies wird im System BASE erreicht und dabei eine Sicherheit

der Konvergenz gegen einen konsistenten Zustand der Daten gegeben, sodass man

durch Einsatz von BASE den Konsistenz-Punkt des Theorems ebenfalls anstrebt

(Abbildung 9). BASE kann die letztendliche Konsistenz nur dann bieten, wenn Da-

ten durch festgelegte, systemweit bekannte Aktionen geändert werden.

Diese Einschränkung ist für das zu entwickelnde System vorteilhaft, denn durch

Einsatz von Aktionen, wird die Verwendung von Algorithmen, wie in IceCube (Ab-

schnitt 2.2.8) möglich, die sich durch eine bessere Konfliktauflösung, verglichen mit

zustandsorientierten Auflösungsalgorithmen, auszeichnen.

Die Kombination dieser zwei Algorithmen macht das Gesamtsystem verfügbar, to-

lerant gegen Ausfälle, realisiert Eventual Consistency und reduziert die Anzahl an

Konflikten, die manuell aufgelöst werden müssen.

Um die internen Vorgänge von der Endanwendung zu verbergen und die Benut-

zung zu vereinfachen, wird das System als Middleware realisiert, die über eine API

verwendet werden kann.

Dadurch, dass die Cloud keine 100 % Verfügbarkeit hat, wird eine Failover-Lösung

benötigt, um die möglichen kurzzeitigen Ausfälle zu überbrücken. Peer-to-Peer ge-

hört aufgrund der Robustheit gegenüber zufälligen Ausfällen[CLMR04] der Knoten
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Consistency

Availability Partition tolerance

BASE

Abbildung 9: BASE-Eigenschaften abgebildet auf das CAP-Theorem. BASE sichert
die Verfügbarkeit und Partitionstoleranz und strebt die letztendliche
Konsistenz an.

und der hohen Verfügbarkeit[TS08] zu den sichersten Kommunikationsmodellen.

Aus diesem Grund wird es alternativ zur Cloud eingesetzt.

Nun werden die funktionalen und nichtfunktionalen Anforderungen nacheinander

besprochen.

4.2.2 Funktionale Anforderungen

Bereits im Systemmodell (Kapitel 3) wurde festgelegt, dass Daten sowohl in der

Cloud, als auch lokal auf Caches gespeichert werden. Dadurch ergibt sich ein ver-

teiltes Datenspeichersystem, wie es in der Anforderung Bereitstellung eines ver-

teilten Datenspeichers gefordert wird.

Wie es für die Verwendung von BASE und IceCube notwendig ist, werden Aktionen
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definiert, die Daten verarbeiten. Die Anforderung Unterstützung der CRUD-

Operationen auf Daten wird erfüllt, indem eine abstrakte Operation implemen-

tiert wird, die BASE- und IceCube-kompatibel ist. Alle Operationen, die an Daten

ausgeführt werden, müssen von der abstrakten Operation ableiten. Entsprechend

werden Create, Read, Update und Delete auf Basis der abstrakten Operation im-

plementiert.

Die Anforderung Hinzuschalten weiterer Operationen kann darauf aufbauend

realisiert werden. Alle Operationen liegen dem Cache als DLL-Dateien vor, die aus-

getauscht, hinzugefügt und entfernt werden können. Beim Starten des Caches, lädt

er aus einem bestimmten Ordner alle DLLs, die Operationen enthalten. Sobald die

DLLs geladen wurden, stehen die dort programmierten Operationen zur Verfügung

und können ausgeführt werden.

Dadurch, dass alle Änderungen primär in die Cloud hochgeladen werden, bildet sie

eine zentrale Datenhaltungs-Stelle im System, womit die Anforderung Cloud als

zentraler Datenspeicher erfüllt wird.

Die Speicherressourcen des Cloud Computings können in zwei Kategorien eingeord-

net werden: die relationalen und die nichtrelationalen Speicherressourcen. In der öko-

nomischen Hinsicht ist der nichtrelationale-Speicher, auch Blob-Speicher genannt,

günstiger als der relationale. Aufgrund der Anforderungen Flache Datenstruktur

und Minimierung der Speicher- und Transferkosten ist der Blob-Speicher für

das Speichern der Daten ideal. Für ein erleichtertes Datenmanagement werden Da-

tensätze in einzelnen, voneinander unabhängigen Blobs gespeichert. So können sie

flexibel erstellt, bearbeitet und entfernt werden, ohne dass andere Datensätze da-

durch beeinflusst werden. In Coda (Abschnitt 2.2.4), entsprechend der Arbeit von

Gray et al. [GHOS96] wird das sogenannte Two Tier-System eingesetzt, bei dem

Server auf der ersten Ebene konsistente Daten speichern, Änderungsanfragen er-

füllen und sich untereinander über Peer-to-Peer synchronisieren. Um Änderungen

an Daten vorzunehmen, greifen Clients, die zur zweiten Ebene gehören, auf einen

der Server zu. In der Cloud existiert die erste Ebene auch, aber sie ist selbst für

Entwickler transparent und erscheint als eine einzige Komponente.

Damit sichere Warteschlangen nach einer Datenträgerschädigung keine falschen In-

formationen in die Cloud übermitteln und Anwendungen nur mit richtigen Daten

versorgen, werden kryptographische Hashes für die einzelnen Datensätze kalkuliert
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und lokal abgespeichert. Geschieht eine, durch eine Störung verursachte Änderung

der lokalen Daten, so unterscheidet sich mindestens ein neuberechneter Hashwert

von dem abgespeicherten Kontroll-Hashwert. Entsprechend wird der betroffene Da-

tensatz als
”
beschädigt“ gemeldet. Die Anforderung Integritätsprüfung der lo-

kalen Daten ist somit erfüllt.

Die Anforderung Automatische und manuelle Konfliktauflösung wird ähnlich

wie im System IceCube durch die Zusammenführung der Aktionslogs realisiert. Da-

bei werden einzelne Operationen aus zwei konfliktbehafteten Datensätzen in einem

konfliktfreien Log zusammengeführt und ausgeführt. Für die manuelle Konfliktauf-

lösung wird eine Schnittstelle bereitgestellt, über die beide konfliktbehafteten Ver-

sionen ausgelesen werden können, eine der Versionen als konfliktfrei gewählt und die

andere verworfen werden kann. Alternativ kann eine dritte, manuell erstellte Version

übermittelt und der Konflikt somit aufgelöst werden.

Eventual Consistency Eventual Consistency ist ein clientzentriertes Konsistenz-

modell, das sicherstellt, dass Daten gegen einen konsistenten Zustand konvergieren.

Datenspeicher mit dieser Art von Konsistenz verfügen daher über die Ei-

genschaft, dass bei ausbleibenden Aktualisierungen alle Replikate nach

und nach konsistent werden. Diese Form der Konsistenz wird als Even-

tual Consistency bezeichnet. [TS08]

Tanenbaum et al. beschreibt in [TS08], dass Eventual Consistency seine Ursprünge

im System Bayou (Abschnitt 2.2.5) hat. Er formuliert die einzelnen Punkte der

Session Guarantees aus [TDP+94] wie folgt:

� Konsistenz für monotones Lesen - wenn ein Prozess den Wert eines

Datenelementes x liest, gibt jede anschließende Leseoperation dieses

Prozesses auf x stets denselben oder einen aktuelleren Wert zurück.

� Konsistenz für monotones Schreiben - Eine Schreiboperation eines

Prozesses an einem Datenelement x wird abgeschlossen, bevor eine

folgende Schreiboperation auf x durch denselben Prozess erfolgen

kann.

�
”
Read Your Writes“-Konsistenz - Die Folge einer Schreiboperation

eines Prozesses auf das Datenelement x wird für eine anschließende
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Leseoperation auf x durch denselben Prozess stets sichtbar sein.

�
”
Writes Follow Reads“-Konsistenz - Einer Schreiboperation eines

Prozesses auf ein Datenelement x, die auf eine vorherige Leseope-

ration auf x durch denselben Prozess folgt, wird garantiert, dass

sie auf demselben oder einem aktuelleren Wert von x stattfindet.

[TS08]

Durch den Einsatz von einer lokalen Datenkopie, die bei jeder Datenoperation zur

Verfügung steht, bevor andere Kopien und der zentrale Datenspeicher kontaktiert

werden, wird eine Art Session aufgebaut, sodass alle Punkte der Session Guarantees

dadurch erfüllt werden.

Die Anforderung Eventual Consistency wird mit dem Einsatz des Systems BASE

erreicht: Jede Aktion wird in eine sichere Warteschlange eingereiht, sodass die Än-

derungen mit dem Abarbeiten der Warteschlangen in die Cloud propagiert werden

und somit im gesamten System letztendlich vorgenommen werden. Entsprechend

werden Operationen in dieser Lösung an einem lokalen Datensatz sofort ausgeführt

und einer sicheren Warteschlange hinzugefügt, sodass die durchgeführten Operatio-

nen beim nächsten Synchronisationsvorgang hochgeladen werden. Auf diese Weise

ist es gesichert, dass eine Kopie des betroffenen Datensatzes lokal vorhanden ist

und somit die Anforderung Lokale Kopie im Cache erfüllt ist. Inspiriert von

[GHOS96] und dem Dateisystems Coda, werden zwei Datensatzversionen gespei-

chert: die letzte aktuelle digital signierte Version aus dem zentralen Speicher und die

Änderungen dieser Version. Die Cloudversion kann über Peer-to-Peer, von Caches,

die sie zwischengespeichert haben, an Knoten verteilt werden, die auf die Cloud

nicht zugreifen können. Für das Verteilen der Daten über Peer-to-Peer existieren

Flooding-Ansätze, wie z. B. [BGL+06], sodass die letztendliche Konsistenz auch

während eines Cloudausfalls erreicht werden kann.

4.2.3 Nichtfunktionale Anforderungen

Die Anforderung Offlineverfügbarkeit- und Editierbarkeit wird mit dem Si-

cherstellen der Verfügbarkeit durch BASE erreicht.

In dieser Lösung wird Peer-to-Peer eingesetzt, um die Anforderung Toleranz ge-

genüber Cloud- und Knotenausfällen zu erfüllen. Fällt die Verbindung zur
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Cloud aus, dann werden Aktualisierungen zwischen den Clients über das Peer-

to-Peer-Netzwerk ausgetauscht. Eine solche Funktionalität wurde in Coda [Rat98]

[SKK+90] und Bayou [DPS+94] verwirklicht, um Aktualisierungen zwischen den

Datenservern auszutauschen und die Kopien konsistent zu halten (Abbildung 6).

Jeder Cache kann Daten ändern und in die Cloud hochladen, die für andere Teilneh-

mer sichtbar werden. Mit der Anforderung Schutz gegen unberechtigtes Schrei-

ben soll verhindert werden, dass fehlerhafte Daten in der Cloud gespeichert werden.

Dies ist realisierbar, indem man eine Schwelle festlegt, sodass ab einer bestimmten

Anzahl der gleichen oder ähnlichen Einträge die Daten in der Cloud übernommen

und für alle sichtbar werden. Dieses Vorgehen erschwert die absichtliche oder un-

absichtliche Fälschung der Daten, bietet jedoch keine Garantie, denn ein Angreifer

kann mehrere Clients gleichzeitig starten, Daten abändern und somit die Schwelle

an gleichen Einträgen erreichen, was in einer vertrauenswürdiger Umgebung un-

realistisch ist. Der Schwellwert kann je nach Anwendungsszenario variieren. Wird

diese Funktionalität des Systems nicht benötigt, dann kann der Schwellwert auf eins

reduziert werden, damit Änderungen in der Cloud sofort übernommen werden.

Um die Anforderung Portabilität der Lösung zu realisieren, werden für die Kom-

munikation zwischen der Anwendung und dem Cache, sowie zwischen dem Cache

und der Cloud Webservices verwendet. Es werden SOAP-Nachrichten [BTN00] aus-

getauscht und Schnittstellen in Form von öffentlich zugänglichen WSDL-Dateien

[CCM+01] publiziert. Durch die Verwendung von Webservices, lassen sich auch B2B-

Systeme an das zu entwickelnde System anschließen, bei denen der größte Teil der

Kommunikation grundsätzlich über Webservices stattfindet. Somit wird eine API

angeboten, mit der das System flexibel verwendet werden kann.

Die Anforderung Reduktion der Wahrscheinlichkeit für manuelle Konflikt-

auflösung wird mit der Anwendung der Aktionslog-basierten Zusammenführung

der Datensatz-Zustände, mit einem IceCube-ähnlichen-System erreicht. In [GHOS96]

wird deutlich gemacht, dass die Verwendung von Aktionen statt Datensatz-Zuständen,

die Konvergenz der verteilten Daten gegen einen konsistenten Zustand unterstützt

und somit die Wahrscheinlichkeit für manuelles Auflösen reduziert. Es werden Ge-

meinsamkeiten in den zwei Logs gesucht. Die unterschiedlichen Teile werden zu-

sammengeführt, indem die Aktionen in eine eindeutige Reihenfolge gebracht wer-

den, sodass die Ausführung dieser Aktionen konfliktfrei verläuft. Des Weiteren wird
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die Auflösung der Konflikte durch die anwendungsspezifische Funktion auf Anwen-

dungsebene durchgeführt. So können auch die CRUD-Konflikte maschinell und an-

wendungsgerecht behoben werden, bevor ein manueller Eingriff benötigt wird. Diese

Funktionalität ist im Abschnitt 4.3.4 detailliert beschrieben.

Synchronisation mit der Cloud bei bestehender Verbindung

Zunächst muss festgestellt werden, welche Datensätze synchronisiert werden sollen.

Hierfür kann entweder der Pull- oder der Push-Ansatz verwendet werden. Beim

Push-Ansatz kennt der Server alle Clients und benachrichtigt sie, wenn Aktualisie-

rungen vorliegen. Beim Pull-Ansatz senden Clients an den Server Anfragen, um zu

erfahren, ob es Aktualisierungen für bestimmte Datensätze gibt.[TS08]

Es können drei Fälle auftreten, in denen eine Synchronisation notwendig ist: Än-

derung in der Cloud, aber nicht lokal; Änderung lokal, aber nicht in der Cloud;

Änderung Lokal und in der Cloud. Gibt es weder Änderungen in der Cloud noch

lokal, dann muss nicht synchronisiert werden.

Änderung in der Cloud, aber nicht lokal

Zu jedem Datensatz wird der Zeitpunkt der letzten Änderung gespeichert. Zunächst

werden Zeitpunkte aus der Cloud für die Datensätze, die auch lokal existieren, herun-

tergeladen und mit den lokalen Werten verglichen. Werden Unterschiede festgestellt,

dann müssen entsprechende Datensätze synchronisiert werden. Die Prüfung auf Än-

derungen in der Cloud muss in regelmäßigen Zeitabständen durchgeführt werden,

denn im Pull-Ansatz ist keine Benachrichtigung über Änderungen vorgesehen.

Die Routine für den Pull-Ansatz kann in vier Schritte eingeteilt werden:

1. Tabelle mit Datensatznamen und Zeitstempel der letzten Änderung aufbauen

2. Zeitstempel der Datensätze in der Cloud herunterladen

3. Vergleichen der Zeitstempel

4. Unterschiedliche Datensätze synchronisieren

Beim Push-Ansatz wird wie folgt vorgegangen:

1. Benachrichtigung an alle Clients mit Datensatz-Namen senden

2. Clients prüfen, ob der Datensatz für sie relevant ist (selektive Synchronisation)
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3. Ist der Datensatz relevant, dann initiiert der Client den Ladevorgang.

Im Peer-to-Peer-Modus kann beim Push-Ansatz ähnlich vorgegangen werden. Beim

Pull-Ansatz muss der Client seine Peers nach einer Datenversion fragen, die jünger

ist als seine. Bekommt er positive Antworten, kann der Ladevorgang zwischen zwei

Peers beginnen.

1. Anfrage für einen Datensatz mit Name x und Änderungsdatum >y senden

2. Jüngste Version des Datensatzes aus Rückmeldungen auswählen

3. Ladevorgang starten

Um Datensätze zu aktualisieren, kann der Ansatz des Systems
”
Rsync“ (siehe Ab-

schnitt 2.2.1) angewendet werden. Dabei werden nur die unterschiedlichen Teile eines

Datensatzes ausgetauscht. Dies reduziert die Transferkosten.

Änderung lokal, aber nicht in der Cloud

In diesem Fall wird die lokale Änderung in die Cloud hochgeladen oder über das

Peer-to-Peer-Netzwerk verteilt. Wann das Hochladen erfolgt, entscheidet die Opti-

mierungsfunktion, die nachfolgend detailliert beschrieben wird.

Änderung lokal und in der Cloud

Dieser Fall kann durch eine Netzwerkpartitionierung auftreten, indem festgestellt

wird, dass in der Cloud eine neuere Version vorhanden ist, und dass Änderungen

auch lokal am gleichen Datensatz vorgenommen wurden. In dieser Situation wird

der Konflikt lokal aufgelöst und die konfliktfreie Version schließlich in die Cloud

hochgeladen. Das genaue Vorgehen beim Auflösen des Konflikts ist in Abschnitt

4.3.4 beschrieben.

Minimierung der Speicherkosten und Optimierung der Kommunikation

zwischen Cloud und Cache

Es wird ermöglicht, dass nur ein relevanter Teil aller Daten synchron bleibt. Hier-

für muss der zu entwickelnden Lösung mitgeteilt werden, welche Datensätze sollen

aktuell gehalten werden. Entsprechend werden nur diese Datensätze beim Synchro-

nisieren berücksichtigt und übertragen. Dieses Vorgehen wird
”
selektive Synchroni-

sation“ genannt und verhindert das überflüssige Speichern und Synchronisieren.

Daten, auf die oft zugegriffen wird müssen zwecks guter Performance unkompri-



Entwurf 43

miert bleiben. Daten, deren Zugriffe durchschnittlich einen bestimmten Schwellwert

unterschreiten, werden komprimiert und bei Bedarf temporär entpackt.

Einige Knoten, die erwartungsgemäß hohe Verfügbarkeit und geringe Kommunikati-

onskosten haben (z. B. stationäre Rechner, Server, keine Smartphones), können Ak-

tualisierungen von der Cloud herunterladen und über Peer-to-Peer an andere Knoten

verteilen. Das würde das Traffic in der Cloud, und somit Kosten minimieren. Um

die dabei möglichen Daten-Fälschungen auszuschließen, wird jede Aktualisierung

bereits in der Cloud digital signiert.

Die Übertragungskosten für Daten wachsen mit der Synchronisierungsfrequenz. Ent-

sprechend den Anforderungen an die Lösung soll der finanzielle Aufwand möglichst

gering halten werden.

Aus Zugriffs- und Änderungs-Rate, sowie einer Kostenfunktion kann eine Synchro-

nisierungsrate ermittelt werden, bei der die Kosten minimiert und die Aktualität

der Daten maximiert werden. Im Folgenden wird die Optimierungsfunktion mathe-

matisch ermittelt.

Das Problem kann als das mathematische Constrained Optimization Problem for-

muliert und gelöst werden. Für die Lösung wird eine Bewertungsfunktion verwendet,

die das Problem in ein Unconstrained Optimization Problem umwandelt. Als Folge

lassen sich die Extrempunkte der mathematischen Funktion bestimmen und somit

der gesuchte Wert. Das Problem wird zweierlei gelöst, nämlich für das Hochladen

der Aktualisierungen
”
put“ und für das Herunterladen

”
get’”

Bewertungsfunktion

Sei eval(x) die Bewertungsfunktion. Sie enthält Extremwerte, die für unsere Lösung

von Bedeutung sind. f(x) ist die mathematische Funktion, deren Eingaben bewertet

werden sollen. Die Bewertung ändert sich entsprechend der Penalty-Funktion p(x).

Yeniay [Yen05] beschreibt zwei Typen von Bewertungsfunktionen für Constrained

Optimization Problems:

1. Additive Form: eval(x) = f(x) + p(x)

2. Multiplikative Form: eval(x) = f(x) · p(x)

In dieser Arbeit müssen die Synchronisationsraten hinsichtlich der Kosten bewertet

werden. Dabei beeinflusst p(x) die Bewertung entsprechend der Wahrscheinlichkeit
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für das Lesen eines inkonsistenten Datensatzes, abhängig von der Synchronisations-

rate x. Die Funktion f(x) errechnet die Synchronisations-Kosten, abhängig von der

Synchronisationsrate. Das Minimum der Bewertungsfunktion eval(x) ergibt Kosten

für die optimale Synchronisationsrate xopt. Die Synchronisationsrate x bezieht sich

auf einen festen Zeitabschnitt t und gibt an, wie oft eine Synchronisierung innerhalb

dieses Zeitabschnitts stattfindet. Die Konstante t kann z. B. 1 Tag oder 1 Monat

betragen.

In Realität entstehen durch das Lesen eines inkonsistenten Datensatzes messbare

Kosten in ¿. Unabhängig von der Konsistenz des Datensatzes entstehen für das

Synchronisierungsvorgänge ebenfalls messbare Kosten in ¿. Die Summe ergibt die

Gesamtkosten für den Betrieb des Systems, die entsprechend der Aufgabenbeschrei-

bung minimiert werden sollen. Aus diesem Grund müssen diese Kosten auch in der

Bewertungsfunktion addiert werden, d. h. es wird die additive Form der Bewertungs-

funktion verwendet:

eval(x) = p(x) + f(x)

Penalty-Funktion

Nun wird die Penalty-Funktion hergeleitet. Finanzielle Kosten verursacht das Lesen

eines veralteten Datensatzes oder das nichthochladen einer Änderung. Das Nicht-

synchronisieren der Datensätze, die nicht gelesen werden verursacht keine Kosten.

Auch das Synchronisieren der Datensätze, die nicht gelesen werden, bringt keine

Vorteile - weder finanzielle, noch funktionelle. Dementsprechend muss für das Her-

unterladen nur die Leserate und die Aktualität der Datensätze in Betracht gezogen

werden. Entsprechend ist für das Hochladen die Schreibrate wichtig. Betrachten wir

zuerst die Penalty-Funktion für das Herunterladen, also für die Get-Aktion.

Die Wahrscheinlichkeit für das Lesen eines veralteten Datensatzes beträgt
1

x
. Das

entspricht einer falschen Leseoperation aus x Synchronisierungen pro Zeitabschnitt.

Der Wert wird mit der Anzahl der Leseoperationen innerhalb des Zeitabschnitts

areads multipliziert, was die statistische Anzahl an falschen Leseoperationen ergibt.

Anschließend wird eine eins subtrahiert, denn wenn die Anzahl der Leseoperatio-

nen und Synchronisierungen gleich ist, dann entstehen keine Kosten. Jede falsche

Leseoperation verursacht Kosten in Höhe von cread old, deswegen wird dieser Wert
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multipliziert. Abschließend wird ein Faktor acaches hinzugefügt, um die Gesamtheit

aller synchronisierenden Caches zu berücksichtigen, damit die Kosten insgesamt ge-

senkt werden. Zusammenfassend ergibt sich die folgende Formel:

pget(x) = (
1

x
· areads − 1) · cread old · acaches

Ähnlich verhält es sich mit den Kosten bei der Put-Aktion, die durch das nichthoch-

laden von Änderungen entstehen. Jedoch muss die Leserate durch die Schreibrate

ersetzt werden. Die Kosten für eine nicht hochgeladene Änderung sind viel Höher,

als die für das Lesen eines falschen Datensatzes. Dies kommt dadurch zustande,

dass jeder einzelne der Knoten, die veraltete Version mehrmals liest. Also muss der

entsprechende Kostenfaktor cdetain write eingesetzt werden, der in Realität ungefähr

areads · cread old beträgt, in der Formel aber allgemein gehalten wird. Auch bei der

Put-Aktion muss die Anzahl der Caches acaches berücksichtigt werden. Das resultiert

in folgender Formel:

pput(x) = (
1

x
· awrites − 1) · cdetain write · acaches

Kosten-Funktion

Die Kosten entstehen durch die Übertragung der Daten von- und zur Cloud. Um

die Gesamtdatenmenge für Synchronisierungen innerhalb des Zeitabschnitts zu be-

rechnen, werden Synchronisierungsrate x mit der durchschnittlichen Datenmenge

ddata, die übertragen werden muss, multipliziert. Das Ergebnis mit dem Kostenfak-

tor cdataset multipliziert, ergibt die Kosten für die gesamte Datenübertragung über

den Zeitabschnitt. Mit dem Faktor acaches werden Kosten berechnet, die alle Caches

verursachen. Des Weiteren gibt es Fix-Kosten cfix pro Zeitabschnitt t.

fput(x) = x · ddata up · cdataset · acaches + cfix

fget(x) = x · ddata down · cdataset · acaches + cfix

Constrained Optimization Problem

Als Nächstes lässt sich das Optimierungsproblem mit Nebenbedingungen wie folgt

aufstellen.

Minimize:
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� evalput(x) = pput(x) + fput(x)

� evalget(x) = pget(x) + fget(x)

subject to:

� pput(x) = (
1

x
· awrites − 1) · cdetain write · acaches

� pget(x) = (
1

x
· areads − 1) · cread old · acaches

� fput(x) = x · ddata up · cdataset · acaches + cfix

� fget(x) = x · ddata down · cdataset · acaches + cfix

� cdetain write = areads · cread old

� areads = rread write · awrites

Ein Datensatz wird in manchen Systemen öfter gelesen als geschrieben. Ent-

sprechend ist die Leserate um einen Faktor größer als die Schreibrate.

Um das Minimierungsproblem zu lösen, werden die Evaluierungsfunktionen abgelei-

tet und anschließend werden die Nullstellen bestimmt und die letztendliche Formel

expandiert. Die Nullstellen geben die Optimale Synchronisierungsrate an.

evalput(x) = (
1

x
· awrites − 1) · cdetain write · acaches + x · ddata up · cdataset · acaches + cfix

eval′put(x) = ddata up · cdataset · acaches −
awrites · cdetain write · acaches

x2

xopt put = ±
√
awrites · cdetain write√
ddata up · cdataset

xopt put = ±
√
awrites · rread write · awrites · cread old√

ddata up · cdataset

evalget(x) = (
1

x
· areads − 1) · cread old · acaches + x · ddata down · cdataset · acaches + cfix

eval′get(x) = ddata down · cdataset · acaches −
areads · cread old · acaches

x2

xopt get = ±
√
areads · cread old√

ddata down · cdataset
xopt get = ±

√
rread write · awrites · cread old√

ddata down · cdataset

Entsprechend müssen Änderungen pro Zeitabschnitt xopt get Mal herunter- und xmin put
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Mal hochgeladen werden, um das beste Kosten-/Nutzen-Verhältnis einzuhalten. Da-

bei muss beachtet werden, dass Aktualisierungen nicht öfter heruntergeladen werden

sollen, als sie gelesen werden:

xopt get ≤ areads

Und die Aktualisierungen sollen nicht öfter hochgeladen werden, als sie produziert

werden:

xopt put ≤ awrites

Entsprechend gilt:

xopt get limited =

{
xopt get, falls xopt get ≤ areads

areads, sonst

xopt put limited =

{
xopt put, falls xopt put ≤ awrites

awrites, sonst

4.2.4 Zusammenfassung

Die Grundidee ist die Konsistenzerhaltung der Daten mit Hilfe des BASE-Algorithmus.

Dabei werden Synchronisationskonflikte mit dem System IceCube aufgelöst. BASE

und IceCube setzen die Verwendung der Operationen voraus, die als Grundelemente

in diesem System gesehen werden. Dadurch, dass die Cloud weniger als 100 % Ver-

fügbarkeit hat, wird Peer-to-Peer-Kommunikation als Fail-Over-Lösung verwendet,

um Aktualisierungen auszutauschen. Die Kernpunkte der Lösung für die einzelnen

Anforderungen werden in folgenden Tabellen dargestellt.
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Funktionale Anforderungen Strategie

Bereitstellung eines verteilten Daten-

speichers

Daten über Cloud und Caches verteilt

Cloud als zentraler Datenspeicher Daten im Blob-Speicher der Cloud hal-

ten

Lokale Kopie im Cache Replikas im lokalen Speicher

Flache Datenstruktur Blobs, nicht hierarchisch aufgeteilt

Unterstützung der CRUD-Operationen

auf Daten

Operations

Hinzuschalten weiterer Operationen Schnittstelle für DLLs

Automatische und manuelle Konflikt-

auflösung

Zusammenführung der Aktionslogs

Integritätsprüfung der lokalen Daten Liste mit Hashwerten der Datensatzin-

halte

Eventual Consistency BASE, Flooding

Nichtfunktionale Anforderungen Strategie

Offlineverfügbarkeit- und Editierbar-

keit

BASE

Toleranz gegenüber Cloud- und Kno-

tenausfällen

Peer-to-Peer als Failover-

Kommunikation

Synchronisation mit der Cloud bei be-

stehender Verbindung

Zeitstempelvergleich der letzten Ände-

rungen, Rsync

Minimierung der Speicherkosten und

Optimierung der Kommunikation zwi-

schen Cloud und Cache

Selektive Synchronisation, Komprimie-

rung, Optimierungsfunktion

Schutz gegen unberechtigtes Schreiben Schwellenwert für gleiche Einträge

Portabilität der Lösung Webservices, WSDL

Reduktion der Wahrscheinlichkeit für

manuelle Konfliktauflösung

Maschinelle Konfliktauflösung

Nachdem die einzelnen Algorithmen diskutiert wurden, wird nun die Stelle betrach-

tet, an der BASE und IceCube verzahnt werden. Der gemeinsame Ausgangspunkt

beider Algorithmen sind Operationen. Der folgende Abschnitt geht auf die Rolle

der Operationen ein und beschäftigt sich detailliert mit ihrem Einsatz in diesem
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System. Die Sammlung der Mechanismen für die Datenverarbeitung mittels Ope-

rationen wird in dieser Arbeit als Operations bezeichnet. Operations kann als ein

Baustein des Systems gesehen werden.

4.3 Operations-Komponente

Entsprechend den Überlegungen in Abschnitt 4.2.1, wird ein ähnlicher Ansatz erfor-

dert, wie in [PB99] und [KRSD01]: eine Strategie, bei der Aktionen für Manipulation

der Daten bereitgestellt werden und diese beim Ausführen, für einzelne Datensätze

mitgeschnitten werden. Eine Komponente, die diese Strategie realisiert, wird zwi-

schen die Anwendung und die Rohdaten geschaltet (Abbildung 10).

Operations

Anwendung

Daten

Daten
Sy
n
ch
ro
n
is
ie
ru
n
g

Abbildung 10: Aufbau der Struktur Anwendung-Operations-Daten. Die Anwendung
greift auf Daten ausschließlich über Operations zu. Das interne Da-
tenmanagement bleibt der Anwendung verborgen, es kann jedoch mit
frei programmierbaren Operationen offenbart werden.
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Um die Konfliktwahrscheinlichkeit einzuschränken, müssen höherwertige Abstrak-

tionen der Operationen existieren, z. B. neben CRUD-Operationen auch die, die

Anwendungslogik- und Semantik berücksichtigen. Betrachten wir das folgende Bei-

spiel: Mehrere Teilnehmer tragen gleichzeitig jeweils einen Eintrag für den gleichen

Termin in eine Kalenderdatei ein. Auf der CRUD-Ebene würde es zum Konflikt

führen, denn eine Tabellenzelle der Datei kann nur einen Eintrag enthalten. Ent-

sprechend der Anwendungslogik wäre diese Handlung jedoch erlaubt, denn es würde

für mehrere gleichzeitige Termine ein einziger, komplexer Eintrag gespeichert wer-

den, der von der Anwendung interpretiert und in einer Tabellenzelle gespeichert

werden kann.

In nächsten Abschnitten wird das Konzept der Operations erläutert, die die Midd-

leware realisieren. Zunächst wird gezeigt, wie ein Datensatz gespeichert wird und

welche Eigenschaften er hat. Danach werden Operationen beleuchtet, die Datensätze

bearbeiten. Anschließend wird präsentiert, wie Konflikte durch eine Mergefunktion

aufgelöst werden. Danach wird erklärt, wie Operations in bestehende Anwendungen

integriert werden können. Schlussendlich wird das Unterkapitel zusammengefasst.

Wir beginnen mit der Betrachtung der Datensätze als Informationseinheiten.

4.3.1 Datensatz

Ein Datensatz ist die Informationseinheit, die im System synchronisiert wird. Sie

besteht aus drei Teilen. In jedem Fall müssen Nutzdaten gespeichert werden, sonst

kann das System nicht sinnvoll verwendet werden. Des Weiteren müssen Metadaten

gespeichert werden, um die systeminterne Datenverarbeitung zu organisieren. An-

schließend ist ein Log notwendig, um die Verwendung von BASE und IceCube zu

ermöglichen.

Ein Datensatz besteht somit aus:

� Inhalt

� Metadaten

� Log

Ein Datensatz kann Text- sowie Binärinhalte beinhalten. Die Endanwendung ent-

scheidet über den Dateityp des Datensatzes.
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Als Metadaten kann gespeichert werden, ob der Datensatz schreibgeschützt ist, seine

Zugriffsrechte, der Datensatztyp und sonstige für Operationen relevante Informatio-

nen. Außerdem wird dort festgehalten, welche Operationen den Datensatz bearbei-

ten dürfen. Dies wird in Form von einer Whitelist und einer Blacklist bewerkstelligt.

Nur die in der Whitelist eingetragenen Operationen dürfen den Datensatz bearbei-

ten und die Operationen, die in der Blacklist definiert wurden dürfen den Datensatz

nicht bearbeiten. Die Operation, die den Datensatz erstellt, legt fest, ob die White-

oder Blacklist verwendet werden soll und welche Operationen auf den Datensatz

Zugriff haben.

Der Log wird mit jeder Ausführung der Operationen geschrieben. Dort werden In-

formationen über vergangene und die anstehende Operation inklusive Parameter,

des aktuellen Zeitstempels und des Erfolgs der Operationsausführung festgehalten.

Formal ist der Datensatz ein Tupel aus dem Datensatznamen, Datensatzinhalten,

Datensatz-Metadaten und dem dazugehörigen Log:

Dataset := (Name,Content,Metadata, Log)

Operationen, die die eben beschriebenen Datensätze bearbeiten, werden nun eben-

falls detailliert betrachtet.

4.3.2 Operation

Eine Operation ist eine Funktion, die Datensätze bearbeiten kann. Jede Funktion

hat die Ein- und Ausgabe, so auch die Operation. Sie benötigt Informationen über

die zu verarbeitende Datensätze, also die Eingabequelle und das Ausgabeziel. Daten

werden jedoch nicht nur aus einem Datensatz gelesen, sondern können vom Benut-

zer oder einem anderen System vorgegeben sein. Diese werden über einen Parameter

übergeben. Bei der Datenverarbeitung gibt es Einflussfaktoren, die unbedingt zu be-

rücksichtigen sind. Hierfür gibt es einen Informationskanal, über den die Operation

diese Daten erhält.

Dementsprechend hat jede Operation die folgende Form:

OperationName(Source,Destination, Payload, SpecificParameters)
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Dabei enthalten die Parameter Referenzen auf die Quelle und das Ziel der Daten,

sowie einen binären Dateninput. Um eine hohe Diversität der Operationen zu er-

möglichen, gibt es eine zusätzliche Variable, in der weitere, operationsspezifische

Parameter übergeben werden können. Die Ausgabe der verarbeiteten Daten kann

durch den Rückgabewert der Funktion und durch das Schreiben in einen Datensatz

stattfinden. Die Parameter einer Operation sind in Abbildung 11 visualisiert.
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Abbildung 11: Parameter einer Operation. Die Operation bekommt Referenzen auf
die Quelle und das Ziel, sowie die für die Verarbeitung nötigen Da-
ten. Die Ausgabe muss nicht in den unter

”
Destination“ angegebenen

Datensatz erfolgen, denn es kann auch ein anderer Datensatz als Aus-
gabeziel verwendet werden.

Im Folgenden sind einige Beispiele der möglichen Operationen aufgeführt:

� Rename(“orange.txt”,“banana.txt”, NULL,NULL)

Mit dieser Operation wird ein Datensatz mit dem Namen orange.txt in bana-

na.txt umbenannt.
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� AppendText(NULL,“banana.txt”,“V ery fruity banana.”, NULL)

Diese Operation hängt an das Ende des Datensatzes banana.txt eine Zeichen-

kette an.

� Delete(“banana.txt”, NULL,NULL,NULL)

Der Datensatz banana.txt wird mit Hilfe dieser Operation gelöscht.

Die Instanz einer Operation enthält zusätzlich den Erfolg, Zeitstempel des Starts

und dem Ende der Ausführung und eine eindeutige Id :

OperationInstance = OperationName∪
{Source,Destination, Payload, SpecificParameters}∪
{Guid, Success, T imestampStart, T imestampEnd}

Der Erfolg der Ausführung ist für die Integrität des Datensatzes notwendig. Wird es

nicht berücksichtigt, dann kann bei der Konfliktauflösung (Abschnitt 4.3.4) zu einer

Verfälschung der Daten kommen. Die Zeitstempel sind für die anwendungsspezifi-

schen Konfliktauflösungsstrategien notwendig (vgl. Last Write Wins in Abschnitt

2.1.4). Die eindeutige Id ist ebenfalls für die Konfliktauflösung wichtig, um Gemein-

samkeiten und Unterschiede zu erkennen, falls Operationen mit gleichen Parametern

ausgeführt wurden. Wird es missachtet, dann werden gleiche Operationsinstanzen

doppelt ausgeführt.

Es bietet sich an, Operationen bereitzustellen, die mit geringem Modifikationsauf-

wand als Grundlage für die individuellen Anwendungen dienen können und somit für

verschiedene Anwendungen wiederverwendbar sind. Das ermöglicht ein höherwerti-

ges Datenmanagement im ganzen System und ermöglicht einfachere Entwicklung

von anwendungsspezifischen Operationen.

Somit ergibt sich eine Hierarchie von Operationen, die aus drei Schichten besteht

(Abbildung 12).

Im Folgenden wird auf die Basisoperationen, Erweiterungsoperationen und anwen-

dungsspezifischen Operationen näher eingegangen.

Basisoperationen

Die Basisoperationen stellen die grundlegenden Operationen bereit, mit denen Ar-

beit mit Dateien ermöglicht wird. Für die Datenbearbeitung werden die CRUD-
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Abbildung 12: Hierarchie von Operationen. Die oberste Schicht ist frei program-
mierbar und für jede Anwendung individuell. Die mittlere kann wie-
derverwendet und erweitert werden. Die untere Schicht bietet die
Grundlage und ist fest.

Operationen bereitgestellt

� Create

� Read

� Update

� Delete

Des Weiteren werden die grundlegenden Operationen bereitgestellt, die das Verwal-

ten der Datensätze ermöglichen:

� Search by name (ähnlich List)

� Search by metadata



Entwurf 55

� Rename (ähnlich Move)

� Duplicate (ähnlich Copy/Paste)

Die Operation
”
Search by name“ ermöglicht eine Suche nach Namen eines Daten-

satzes. In einer flachen Datenordnung macht die Operation
”
List directory content“

keinen Sinn, denn es würden alle gespeicherten Datensätze ungefiltert zurückgege-

ben werden. Ist eine Auflistung der Datensätze mit bestimmten Kriterien erwünscht,

muss
”
Search by metadata“ ausgeführt werden. Allerdings müssen diese Kriterien als

Metadaten des Datensatzes gespeichert sein. Um die Suche nach Datensatz-Inhalten

zu realisieren, muss die Operation, aufgrund der anwendungsspezifischen Daten die

anwendungsspezifische Logik beinhalten, die nicht für jede Anwendung generisch

realisiert werden kann. Sollte diese Funktion von Nöten sein, dann muss sie als eine

anwendungsspezifische Operation implementiert werden.

Die Funktionalität von
”
Move“ und

”
Copy/Paste“ ist sinnvoll in einer hierarchischen

Organisation der Daten. Eine Move-Operation in einer flachen Struktur bewirkt

nur eine Namensänderung, deshalb ist der Operationsname
”
Rename“ sinnvoller.

Ebenfalls bewirkt
”
Copy/Paste“ nur eine Verdopplung des Datensatzes (

”
Duplicate“)

im Speicher.

Die Operation
”
Link“, die eine Verknüpfung zu einer anderen Datei erstellt, wird

aufgrund der Anforderung
”
Flache Datenstruktur“ nicht unterstützt, denn sie würde

eine Relation zwischen zwei Datensätzen erstellen.

Die Basisoperationen können durch weitere ergänzt werden, um komplexere Da-

tenzugriffe oder Steuerungsvorgänge und somit effiziente Arbeit mit Daten zu er-

möglichen. Diese können je nach Anwendungsfall nützlich sein und durch andere

Anwendungen wiederverwendet werden.

Erweiterungsoperationen

Basisoperationen, die hauptsächlich für die Datenverarbeitung bereitstehen bieten

keine Möglichkeit Einfluss auf die systeminterne Vorgänge zu nehmen. So könnte

man mit einer Erweiterungsoperation einen Synchronisierungsvorgang erzwingen,

um beispielsweise die Aktualität der Daten zu einem bestimmten Zeitpunkt zu ga-

rantieren. Weitere nützliche Operationen sind:

� Shred dataset - Löscht alle Versionen eines Datensatzes in der Cloud und im



56 Entwurf

Cache aller Peers

� Entangle two datasets - Verschränkt zwei Datensätze miteinander, die beim

Synchronisieren atomar behandelt werden

� Restore old version - Überschreibt die aktuelle Version durch eine ältere

Basisoperationen und Erweiterungsoperationen bieten nicht die bestmögliche Fle-

xibilität für die Endanwendung. Sie haben den Zweck, Daten zu verarbeiten und

Steuerung von Operations zu ermöglichen. Um das volle Potential des Systems zu

nutzen, werden anwendungsspezifische Operationen benötigt, die auf die Endanwen-

dung zugeschnitten sind.

Anwendungsspezifische Operationen

Die anwendungsspezifischen Operationen müssen je nach Anwendungslogik indivi-

duell entwickelt werden. Sie können beispielsweise die Operationen der Tuple Spaces

implementieren, was einer möglichen Endanwendung entspricht.

Tuple Spaces ist ein assoziativer Speicher, der aus der Sicht eines datenkonsumie-

renden Prozesses eine Art zentraler Speicher mit Daten in Form von Tupeln ist.

Diese Tupeln werden in einem Blackboard-System (vgl. [Cor91]) gespeichert, dabei

kann ein Tupel von genau einem Prozess verarbeitet werden. Es geschieht, indem ein

Tupel aus dem Tuple Space entnommen und dem Prozess übergeben wird. Dieser

verarbeitet diesen Tupel und kann ihn wieder zurück, in das Tuple Space einfügen.

Abgebildet auf das entwickelte System wäre der zentrale Speicher die Cloud und

Tupeln wären Datenstrukturen, die in Flatfiles serialisiert gespeichert werden. Das

Verwenden der Tupel durch einen Prozess geschieht mit einer Operation. Für die

Lösung wäre der Einsatz von Tupel Spaces eine spezifische Anwendung. So müssen

nach Foster [Fos95] nur die folgenden speziellen Operationen realisiert werden:

� Einfügen des Tupels

� Blockierendes Lesen des Tupels

� Nicht blockierendes Lesen des Tupels

� Blockierendes Lesen und Entfernen des Tupels

� Nicht blockierendes Lesen und Entfernen des Tupels
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”
Five operations are supported: insert ( out), blocking read ( rd), non-

blocking read ( rdp), blocking read and delete ( in), and nonblocking

read and delete ( inp)“ [Fos95]

Durch den exklusiven Ausschluss des Zugriffs auf die Tupel kann es in diesem An-

wendungsfall zu keinen Konflikten kommen.

In vielen Systemen ist es nicht möglich den exklusiven Ausschluss zu realisieren,

wodurch es zu Konflikten kommen kann. Jedoch bevor ein Konflikt aufgelöst werden

kann, muss ein Log der ausgeführten Operationen existieren.

4.3.3 Log

Entsprechend dem System BASE, gibt es für jeden Datensatz genau einen Log,

der mit einem neuen Datensatz erstellt wird und mit dem Löschen eines Daten-

satzes entfernt wird. Jede Replika des Datensatzes enthält somit den Endzustand

nach der Ausführung der Operationen, sowie einen zugehörigen Log als Protokoll

jeder Änderung, der für IceCube verwendet werden kann. Ein Log ist somit eine

Liste mit durchgeführten Operationen und der aktuell anstehenden Operation am

entsprechenden Datensatz. Formal wird er wie folgt beschrieben.

Log = {OperationInstance1, ..., OperationInstancen} ∪OperationInstancecurrent

Existieren zwei unterschiedliche Logs desselben Datensatzes, so können diese Logs

mit der Mergefunktion zusammengeführt werden.

4.3.4 Mergefunktion

Die Mergefunktion wird benötigt, sobald zwei Zustände eines Datensatzes in einen

überführt werden müssen. Daten sollen auch im Peer-to-Peer-Modus zusammenge-

führt werden, deshalb muss die Ausführung der Mergefunktion im Cache stattfinden.

In der Cloud wird eine andere Mergefunktion benötigt, die die Anforderung
”
Schutz

gegen unberechtigtes Schreiben“ realisiert. Deshalb werden in dieser Lösung zwei

unterschiedliche Mergefunktionen eingesetzt: Cloud Merge und Peer Merge.

Cloud Merge
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Sobald eine bestimmte Anzahl an gleichen Veränderungsanfragen in der Cloud er-

reicht wird, wird die Änderung übernommen und für alle lesbar gemacht. Dies re-

sultiert in einem neuen Zustand des betroffenen Datensatzes. Dieser Schwellenwert

kann für einzelne Datensätze beliebig festgelegt werden. So ist der Einsatz des Sys-

tems in einer öffentlichen, sowie vertrauenswürdigen Umgebung möglich. Liegt der

Wert bei 1, dann werden Änderungen sofort übernommen. Außerdem ist es sinnvoll,

bei Datensätzen, die oft geändert werden, diesen Wert zu erhöhen, um eine Stabili-

tät des Zustands zu gewährleisten. Entsprechend soll der Wert bei Datensätzen, die

selten geändert werden - klein sein, damit die Änderungen zeitnah vorgenommen

werden.

Ein quorumbasiertes Verfahren ist in dem Fall nicht einsetzbar, weil man bei jeder

Änderung oder regelmäßig die Gesamtanzahl an aktiven Knoten ermittelt müsste,

was ineffizient wäre. Es würde mit der Anforderung
”
Minimierung der Speicherkos-

ten und Optimierung der Kommunikation zwischen Cloud und Cache“ kollidieren,

weil hohe Transferkosten aufgrund dieses Verhaltens anfallen würden.

Um eine gewisse Toleranz zwischen den Abweichungen der Änderungsanfragen fest-

zulegen, wird eine anwendungsspezifische Funktion Equals verwendet. Sie vergleicht

Datensätze miteinander und entscheidet, ob die Abweichung unter der Toleranzgren-

ze liegt. Mit dieser Information kann man die Zugehörigkeit zu Äquivalenzklassen

prüfen. Nach dem Bilden der Äquivalenzklassen wird die größte Äquivalenzklasse

gewählt und aus dieser Menge die neue Datensatzversion zufällig bestimmt.

Um Raceconditions zwischen zwei Äquivalenzklassen zu vermeiden, müssen Caches,

deren Änderungsanfrage abgelehnt wurde, vor der nächsten Änderungsanfrage auf

die neue Version des Datensatzes gebracht werden. Hierfür steht die Funktion
”
Peer

Merge“ bereit, die im Folgenden diskutiert wird.

Betrachten wir folgendes Beispiel: Sei eine Version des Datensatzes in der Cloud

d0 und Änderungsanfragen {d1, ..., d5}. Dabei ergibt die Equals-Funktion folgen-

des (zwecks Übersichtlichkeit wurden die trivialen Kombinationen der Reflexivität,

Transitivität und Symmetrie weggelassen):

� Equals(d1, d2) = true

� Equals(d1, d3) = true

� Equals(d1, d4) = false
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� Equals(d1, d5) = false

� Equals(d2, d3) = true

� Equals(d2, d4) = false

� Equals(d2, d5) = false

� Equals(d3, d4) = false

� Equals(d3, d5) = false

� Equals(d4, d5) = true

Aufgrund dieser Berechnung können folgende zwei Äquivalenzklassen gebildet wer-

den:

[a1] = {d1, d2, d3} und [a2] = {d4, d5}

Mit |[a1]| = 3 und |[a2]| = 2 bildet die erste Äquivalenzklasse die Mehrheit. Nun

wird ein zufälliger Kandidat aus dieser Menge, z. B. d2 mit dem zugehörigen Log

und Metadaten als neue Version des Datensatzes in der Cloud gewählt und für alle

Caches lesbar gemacht:

CloudMerge(d0, {d1, ..., d5}) = d2

Letztendlich sollen Caches, die die Änderungsanfragen d4 und d5 machten, synchro-

nisiert werden. Hierfür laden sie den Datensatz d2 aus der Cloud herunter und führen

d4 und d2, bzw. d5 und d2 mit Peer Merge zusammen.

Peer Merge

Ein Konflikt tritt immer dann auf, wenn während eines Synchronisierungsvorgangs

eine Datensatzversion auf den Knoten geladen wird, die von der lokalen Version

abweicht. Eine Abweichung liegt dann vor, wenn die zufällig generierten Instanz-Ids

der letzten Operationen unterschiedlich sind. Das ist ein Zeichen dafür, dass Ände-

rungen, die an zwei Stellen durchgeführt wurden, nicht synchron sind. Wurde ein

Konflikt mittels Vergleich der Ids erkannt, kann die Konfliktauflösung durchgeführt

werden.

Konfliktauflösung

Die Konfliktauflösung auf dem Knoten erfolgt schrittweise: kann ein Konflikt im ers-

ten Schritt nicht aufgelöst werden, wird es im nächsten Schritt versucht. Der Ablauf
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ist als Zustandsdiagramm in Abbildung 13 dargestellt. Die erste Stufe führt Daten-

zustände mit einem IceCube-ähnlichen Algorithmus zusammen, indem eine gemein-

same Reihenfolge der Operationen für beide Logs festgelegt wird. Dabei entsteht

ein gemeinsamer konfliktfreier Zustand. Die zweite Stufe ist eine von der speziellen

Anwendung festgelegte Routine. Dieser Funktion werden zwei Datensatz-Versionen

übermittelt, auf Basis deren sie eine dritte, konfliktfreie Version zurückgibt. Die

dritte Stufe ist die manuelle Auflösung und wird durch den Benutzer vorgenommen.

Ihm werden zwei Versionen vorgeschlagen und er wählt eine der Versionen oder

übermittelt eine dritte, von ihm persönlich kreierte Version.

Auflösung durch 
Logzusammenführung

Auflösung durch 
anwendungsspezifische 

Mergefunktion

Manuelle auflösung

Konflikt behoben

Erfolgreich?

Erfolgreich?

Ja                             Nein

Ja                             Nein

Abbildung 13: Ablauf der Konfliktauflösung auf dem Knoten. Peer Merge besteht
aus mehreren Teilen, die Konfliktauflösung übernehmen.

Ein solcher dreistufiger Resolutions-Ablauf ist in keinem der in dieser Arbeit vor-

gestellten Systeme vorhanden, jedoch dem Ansatz in IceCube und Bayou ähnlich.

IceCube verwendet nur die erste und dritte Stufe, Bayou nur die zweite und dritte.

Alternativ könnte man die anwendungsspezifische Auflösung als ersten Schritt ein-
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setzen. Jedoch wird in dieser Arbeit davon ausgegangen, dass die anwendungsspe-

zifische Auflösung nur für wenige Datensatztypen, ähnlich wie in Coda, bereitsteht.

Entsprechend ist es besser, ein universelles Auflösungsverfahren zuerst einzusetzen,

um bereits in der ersten Stufe die meisten Konflikte aufzulösen. Aus diesem Grund

wird der erste Ablauf (Abbildung 13) in dieser Lösung eingesetzt.

Erste Stufe

Die zweite und dritte Stufen sind trivial, jedoch die erste umso komplexer. Der

IceCube-Ansatz wurde in Abschnitt 2.2.8 vorgestellt. In IceCube müssen zu jeder

Operation alle Vorbedingungen genau definiert werden, damit die Operation beim

Zusammenführen der Logs vom Algorithmus an die richtige Stelle gesetzt wird. Dies

ist in einem komplexen System sehr aufwendig. Des Weiteren verlieren Operationen

auf diese Weise an Wartbarkeit, denn die Vorbedingungen müssen immer mit der

Funktion genau korrelieren. Deshalb muss der IceCube-Algorithmus an dieser Stelle

angepasst werden.

Der Ablauf ist nun wie folgt. Als Erstes muss ein gemeinsamer Ausgangspunkt beider

Logs gefunden werden. Die Logs werden deshalb operationsweise durchgegangen und

die Ids der Operationinstanzen verglichen. Die Operation vor der ersten Diskrepanz

stellt den gemeinsamen Ausgangspunkt dar, ab dem zusammengeführt werden soll.

Als Nächstes werden Operationen gesucht, die aufgrund von Abhängigkeiten die

Permutierungsfreiheit einschränken. Diese Operationen definieren einen Rahmen,

in dem einzelne Logteile mittels IceCube zusammengeführt werden können. Dieses

Vorgehen reduziert die Anzahl und die Komplexität der Vorbedingungen für den

originalen IceCube-Algorithmus.

Entsprechend muss das Operations-System in der ersten Stufe die Operationen mit

Abhängigkeiten erkennen. Die Beurteilungskriterien für solche Operationen werden

im nächsten Abschnitt diskutiert.

4.3.5 Qualitätsstufen der Operationen

Operationen können in unterschiedliche Qualitätsstufen eingeteilt werden. In diesem

Dokument werden drei Stufen verwendet. Um die Beschreibung zu vereinfachen,

werden einzelnen Stufen Farben zugeordnet. Das Qualitätskriterium ist die, aus
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den Operationen resultierende, Komplexität des Mergevorgangs. Können Operatio-

nen sehr effizient zusammengeführt werden, dann haben sie eine gute Qualität und

entsprechen der Farbe Grün. Ist mit dem Mergen ein erheblicher Rechenaufwand

verbunden, dann sind diese Operationen qualitativ mittelmäßig und entsprechen der

Farbe Gelb. Behindern Operationen die Zusammenführung, dann ist die Qualität

schlecht und es wird ihnen die Farbe Rot zugeordnet.

Die Effizienz der Logzusammenführung hängt mit den mathematischen Eigenschaf-

ten der Operationen zusammen. Ist die Reihenfolge der Operationen im Log irrele-

vant, dann sind sie kommutativ und können dementsprechend an beliebiger Stelle

im konfliktfreien Log eingesetzt werden. Wenn es eine kausale Abhängigkeit zwi-

schen zwei Datenzuständen gibt, dann ist es eine Einschränkung und die richtige

Reihenfolge muss zuerst berechnet werden. Werden nichtkommutative und kausal

abhängige Operationen verwendet, dann ist der Lösungsraum der Mergefunktion ex-

trem gering und kann unter Umständen keine Lösung enthalten. Diese Verhältnisse

lassen sich in folgender Tabelle veranschaulichen:

Qualität Farbe Kommutativ Kausal unabhängig

Schlecht Rot -
√

/-

Mittelmäßig Gelb
√

-

Gut Grün
√ √

Die CRUD-Operationen sind als rot einzustufen, denn mit Read und Write lässt sich

eine kausale Abhängigkeit herstellen. Des Weiteren sind Create und Delete nicht

kommutativ. Aus diesem Grund, wirkt sich die Verwendung von anwendungsspezi-

fischen grünen Funktionen, statt den CRUD-Operationen, positiv auf die Leistung

des Mergealgorithmus aus.

Grüne Operationen sind besser

Es empfiehlt sich der verstärkte Einsatz von grünen Operationen, die kommuta-

tiv und kausal unabhängig sind, um eine bessere Konfliktauflösung zu ermöglichen.

Auch in [GHOS96] wird gesagt, dass die Verwendung von kommutativen Operatio-

nen die Konvergenz der Datensätze gegen einen konsistenten Zustand unterstützt,

weil sie einfach zusammengeführt werden können.

Betrachten wir das folgende Beispiel: In einem Club mit zwei Ein- und Ausgängen

soll die aktuelle Anzahl an Besuchern gezählt werden. Es gibt eine Datei mit einem
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numerischen Wert 0, der zweimal hochgezählt wird. Das inkrementieren kann mit

einer anwendungsspezifischen Operation Increment und mit den CRUD-Operationen

Read und Write realisiert werden.

Zähler Anw.spez.-Operation CRUD-

Operation

Dateiinhalt

1 a = Read() 0

1 Increment() Write(a+1) 1

2 b = Read() 0

2 Increment() Write(b+1) 1

In beiden Fällen werden insgesamt zwei Besucher an zwei Eingängen gezählt. Nun

werden diese Dateien synchronisiert. Ein Konflikt mit Zwei aufeinanderfolgenden

Operationen Increment() lässt sich einfach auflösen, weil die Reihenfolge beliebig

sein kann.

Die Reihenfolge der aufeinanderfolgenden Read() und Write() Operationen darf

nicht geändert werden, weil es Abhängigkeiten zwischen den Funktionen gibt, die bei

einer Neuanordnung verletzt werden würden. Deshalb muss dieser Konflikt durch

die zweite Stufe des Mergealgorithmus aufgelöst werden. Demnach muss die an-

wendungsspezifische Mergefunktion diesen Fall kennen und entsprechend die Werte

beider Zähler addieren.

Rote Operationen in grüne umwandeln

Möchte man Werte schreiben, die auf gelesenen basieren, dann muss das Lesen und

Schreiben atomar innerhalb einer Operation durchgeführt werden. Die Operation

Increment() ist nach diesem Muster entwickelt, denn zunächst wird ein Wert ge-

lesen, dann inkrementiert und abschließend in die Datei geschrieben. Die Folge ist:

es kann kein veralteter Wert aus der Vergangenheit gelesen werden. Entsprechend

kann auch kein Wert mit veralteten Daten überschrieben werden. Dies stellt lokal

einen gewissen Isolierungs-Grad sicher (vgl. [ALO00]).

Auf jedem Knoten kann auf den Datensatz gleichzeitig nur eine Operation zugreifen.

Entsprechend wird auch nach dem Zusammenführen zweier Logs eine Operation

nach der anderen ausgeführt. Die serielle Ausführung der in sich abgeschlossenen

Operationen gleicht der Anwendung der Read- und Write-Locks in einer Datenbank

mit dem Isolierungsgrad SERIALIZABLE.
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Beispiel für die Logzusammenführung mit roten Operationen

Manchmal ist die Anwendung roter Operationen aufgrund der Anwendungslogik

unumgänglich. Werden kommutative und nichtkommutative Operationen an einem

Datensatz ausgeführt, dann bilden die nichtkommutativen, entsprechend dem Vor-

gehen in der ersten Stufe, einen Rahmen für die kommutativen Operationen. So

können die kommutativen Operationen innerhalb dieses Rahmens zusammengeführt

werden.

Als Beispiel dienen uns zwei Zähler, die ihre Messungen in eine Datei schreiben, die

anschließend synchronisiert wird. Es ist ein Konflikt entstanden und er wird in der

ersten Stufe aufgelöst (Abbildung 14).

Counter 1

Write(0)

Increment()

Increment()

Read()

Decrement()

Read()

Counter 2

Write(0)

Increment()

Decrement()

Read()

Abbildung 14: Erste Stufe des Peer Merge-Algorithmus. Die permutierbare Ope-
rationen werden innerhalb des Rahmens zusammengeführt, der von
nicht permutierbaren Operationen gebildet wird.

Die Read- und Write-Operationen werden als Rot eingestuft. Die Increment- und
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Decrement-Operationen dagegen als Grün. So wird in Abbildung 14 zunächst der

erste Rahmen zwischen Write und Read betrachtet, danach der zweite, der von den

beiden Read-Operationen des ersten Zählers gebildet wird. Auf diese Weise werden

Logs zusammengeführt und die kausalen Abhängigkeiten bleiben unverletzt.

Operations wurde im Detail diskutiert, jetzt bietet es sich an, aus der Makroper-

spektive zu untersuchen, wie es in Entwürfen anderer Systeme präsent wird. Hierfür

wird Operations als Baustein gesehen, der in Architekturmustern sichtbar wird.

Der nächste Abschnitt beschäftigt sich mit der Frage, wie Operations während der

Planungsphase eines Systems eingegliedert werden kann.

4.3.6 Integration der Operations in Architekturmuster

Operations ist ein architektonischer Baustein, der bei Verwendung diverser Archi-

tekturmuster für den grundlegenden Aufbau einer Anwendung verwendet werden

kann.

Die meisten Anwendungen sind nach einem Drei-Schichten- oder MVVM-Architekturmuster

entwickelt. Sonstige Architekturmuster kann man auf die genannten abbilden. Aus

diesem Grund wird hier nur die Integration der Operations in diese zwei Architek-

turmuster betrachtet.

Drei-Schichten

Drei-Schichten gehört zu den klassischen Architekturmustern. Es besteht aus Kom-

ponenten: Data, Logic und View. Die Komponente Data umfasst Daten und Daten-

zugriffe für die dazugehörige Verarbeitung in der Komponente Logic. View ist für

die Darstellung der Daten verantwortlich. Es ist nicht erlaubt, dass View mit Daten

direkt kommuniziert.

Für die Integration der Operations muss der Entwickler nur die Komponente Da-

ta abändern, sodass Datenzugriffe über ein Webservice und Operations stattfinden.

Operations lässt sich weder in die Komponente Data, noch in Logic einordnen.

Es enthält Funktionen, die grundlegende anwendungsspezifische Datenaufbereitung

übernehmen. Aus diesem Grund muss es als Bindeglied zwischen Data und Logic

gesehen werden. Entsprechen erkennt man in der Abbildung 15, dass diese Kompo-

nente die, mit gestrichelten Linien, dargestellte Trennung der Ebenen überbrückt.
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Drei-Schichten

MVVM

OP-MVVM Data

Data

Model=Data+Business Logic

Logic

Business 
Logic

Operations
View 

Model

View 
Model

View

View

View

Datenabstrahierungsebenen

OP-Drei-Schichten Data Logic ViewOperations

Abbildung 15: Eingliederung der Operations in Drei-Schichten und MVVM. Die Ar-
chitekturmuster wurden auf eine Gerade abgebildet, die Abstrakti-
onsebenen der Daten darstellt. Operations ist ein Baustein, den man
in Architekturmuster zwischen Rohdaten und Logik einbauen kann.

MVVM

Model-View-ViewModel ist ein Architekturmuster, das zwischen dem Model und

dem View eine Schicht hat, die Daten für die Präsentation vorbereitet. Die Kompo-

nente Model umfasst Daten und die dazugehörige Verarbeitungslogik.

Eine MVVM-Anwendung kann Operations verwenden, nur muss der Entwickler das

Model reorganisieren, sodass Daten und Logik von einander entkoppelt werden. An-

schließend kann die Operations-Schicht zwischen Daten und Logik geschaltet wer-

den, ähnlich wie zwischen Data und Logic der Drei-Schichten-Architektur (Abbil-

dung 15).

Die Integration von Operations in MVVM resultiert in einer Fünf-Schichten-Architektur:
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Daten (Data), anwendungsspezifische Daten (Operations), Verarbeitungslogik (Busi-

ness Logic), Darstellungslogik (ViewModel), Darstellung (View). Entsprechend ist

der Einsatz von Operations in einer Fünf-Schichten-Architektur mit einem geringen

Änderungsaufwand verbunden, da nur die zweite Schicht ersetzt werden muss und

keine Anpassungen der Grundarchitektur notwendig sind.

Verwendung durch bestehende Anwendungen

Generell lässt sich Operations auch in bestehende Systeme einbauen. Dies erfordert

jedoch eine lose Kopplung zwischen Daten und Logik. Am wenigsten Aufwand ver-

ursacht die Integration, wenn bei der Endanwendung ein Enterprise Service Bus

eingesetzt wird. In diesem Fall muss Operations lediglich an den Message Bus ange-

schlossen werden und entsprechende Routing- und Transformations-Informationen

hinterlegt werden. In anderen Fällen muss ein Adapter für die Anwendung entwi-

ckelt werden, der Operationen über Webservices und entsprechende Schnittstelle

aufruft.

4.3.7 Zusammenfassung

Operationen sind der Kern der Middleware. Sie bearbeiten Datensätze, die aus Nutz-

daten, Metadaten und Logs bestehen und können in eine Hierarchie eingeordnet

werden. Die Operationen ermöglichen eine verbesserte Konfliktauflösung durch Mer-

gefunktionen, von denen es zwei gibt - eine in der Cloud, mit der Konflikte für alle

Teilnehmer aufgelöst werden und eine auf dem Peer, um lokale Konflikte zu besei-

tigen. Außerdem können Operationen in verschiedene Qualitätsstufen eingeordnet

werden, was für den Peer Merge-Algorithmus von großer Wichtigkeit ist. Der Bau-

stein Operations lässt sich flexibel in die populärsten Entwurfsmuster eingliedern

und verwenden, sodass er in der Planungsphase berücksichtigt, oder auch nachträg-

lich in ein bestehendes System integriert werden kann. Das nächste Kapitel geht in

die Details der Implementierung von der Middleware.
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5 Implementierung

In diesem Kapitel wird beschrieben, wie das entworfene System praktisch umge-

setzt wird. Zunächst wird die Architektur des Systems aus dem vorausgehenden

Kapitel verfeinert, anschließend werden die verwendeten Entwurfsmuster und ihre

Rolle für das Gesamtsystem beleuchtet. Die Schnittstellen bilden einen wichtigen

Teil der Lösung und werden in einem separaten Abschnitt betrachtet. Des Weiteren

beschäftigen wir uns mit den Abläufen, die durch die Komponenten des Systems

gesteuert und ausgeführt werden. Anschließend wird eine Zusammenfassung des

Kapitels gegeben.

5.1 Architektur

Die Architektur des Systems kann auf zwei Ebenen betrachtet werden. So werden

in diesem Kapitel zuerst die Interaktionen zwischen den einzelnen Umgebungen

präsentiert, danach das Zusammenspiel einzelner Komponenten und Klassen.

5.1.1 System

In Abbildung 16 ist eine detailreiche Architektur des Systems dargestellt. In diesem

Schaubild erkennt man zusätzlich zu den Grundkomponenten die einzelnen Klassen,

die in weiß dargestellt sind und die Schnittstellen. Alle Schnittstellen, die für RPC-

Aufrufe verwendet werden, sind grün gekennzeichnet. Die Schnittstellen, die auf

Klassen-Ebene eingesetzt werden, sind grau.

Jede Kommunikation zwischen der Cloud und dem Cache findet über die Schnitt-

stelle ICloudSync statt. Die Verbindung zwischen Cache und Application Area ge-

schieht über drei Wege. Die Operationsaufrufe und Aufrufe für das manuelle Mergen

erfolgen über Webservices. Der Zugriff auf die anwendungsspezifischen Operationen

erfolgt über die dynamische Anbindung einer DLL. Die Nutzung des lokalen Spei-

chers erfolgt direkt mit Hilfe des .NET-Frameworks.

Um die Funktionalität genauer zu erörtern, wird nun auf die Mikroebene gewechselt

und die einzelnen Komponenten werden fokussiert betrachtet.
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Abbildung 16: Feinarchitektur des Systems. Die Bereiche und Komponenten ent-
sprechen der Abbildung 8. Diese Darstellung enthält die wichtigsten
Schnittstellen des Systems.
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5.1.2 Komponenten

Cache Sync und Cloud Sync sind die beiden Komponenten, die die Synchronisati-

onslogik umsetzen und Daten für das eventuelle Mergen bereitstellen.

Cloud Storage Manager und Local Storage Manager ermöglichen den Zugriff auf

den jeweiligen Datenspeicher. In der Cloud ist es das Cloud Storage und in der

Application Area das Local Storage.

Cache Communicator, Cloud Communicator, Peer Communicator, Application Com-

municator machen den Zugriff auf entfernte Objekte und die Ausführung der RPC-

Funktionen komfortabel, indem sie die RPC-Aufrufe als einfache Funktionsaufrufe

repräsentieren.

Command Executor sorgt für eine sichere Ausführung der Operationen und behan-

delt die auftretenden Fehler.

Die Komponente Merge Logic auf dem Cache besteht aus vier Klassen. Merge Con-

troller steuert den Konfliktauflösungsvorgang, der drei weitere Klassen involviert.

Log Resolver übernimmt die Zusammenführung von zwei Logs. Application Resol-

ver ist eine Klasse, die Daten für die Konfliktbeseitigung durch die Applikation

vorbereitet und diese Ausführt. Manual Resolver bereitet Daten für die manuelle

Resolution durch den Benutzer vor.

Merge Logic in der Cloud beinhaltet andere Klassen, weil sie andere Konfliktauf-

lösungsalgorithmen einsetzt. Sie besteht aus zwei Klassen. Version Collector sam-

melt Änderungsanfragen, die von Caches eingebracht werden. Des Weiteren trig-

gert er den Version Selector, der aus einer Menge von Änderungsvorschlägen die

Nachfolger-Version wählt. Außerdem kann Version Selector ältere Versionen eines

konkreten Datensatzes auf explizite Anfrage zurückgeben, sofern der Cloud-Anbieter

diese Funktion unterstützt.

Das entworfene System kann mit jeder objektorientierten Sprache umgesetzt wer-

den, z. B. C#, C++, Java, etc. und kann mit allen Cloud Computing-Plattformen

betrieben werden, solange der Anbieter IaaS oder PaaS bereitstellt und offene Stan-

dards für die Webkommunikation einsetzt. In der praktischen Ausarbeitung wird C#

und Windows Azure eingesetzt. Verwendet wird PaaS des Cloud Computings, weil

die Infrastrukturebene nicht im Fokus des praktischen Teils dieser Arbeit liegt. Ent-
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sprechend wird auf das zugrundeliegende Betriebssystem nicht eingegangen. Bietet

der Anbieter nur IaaS an, dann muss zuerst ein Betriebssystem aufgesetzt werden

und anschließend die für die Lösung benötigten Bibliotheken (z. B. die des .NET-

Frameworks). In jedem Fall hat die Verwendung von IaaS keinen Einfluss auf die

Technologien oder Algorithmen dieser Lösung, da der Entwurf in allgemeiner Form

durchgeführt wurde.

Um den einzelnen Klassen innerhalb der Komponenten eine Grundstruktur zu verlei-

hen, wurden Entwurfsmuster eingesetzt. Im nächsten Abschnitt werden sie einzeln,

bezogen auf die Architektur und Funktion vorgestellt.

5.2 Verwendete Entwurfsmuster

Die in der Lösung verwendeten Entwurfsmuster sind: Singleton, Proxy, Abstract-

Factory, Command, Memento, Template Method, Mediator.

5.2.1 Singleton

Das Singleton-Entwurfsmuster erlaubt die Erzeugung maximal eines Objektes von

einem Typ. Alle Communicators, Storage-, Merge- und Sync-Komponenten sind

singleton. Nur die Datenobjekte, die ausgetauscht werden, können mehrmals er-

zeugt werden. Das System gewinnt dadurch an Robustheit gegenüber asynchronen

Aufrufen und Vereinfachung der Verwendung der Objekte.

5.2.2 Proxy

Das Proxy-Entwurfsmuster kapselt die Aufrufe eines Objekts, sodass eine impli-

zite Verarbeitung ermöglicht wird. Alle Communicators (Cache Communicator,

Cloud Communicator, Peer Communicator, Application Communicator) unterstüt-

zen RPC-Aufrufe über die dazugehörigen Schnittstellen und realisieren Proxies. Dies

ermöglicht einen transparenten Zugriff auf entfernte Objekte. In diesen Klassen wird

auch die zu der Kommunikation zugehörige Fehlerbehandlung übernommen. Das

System gewinnt dadurch an Übersichtlichkeit im Code und einer losen Kapselung

zwischen den Klassen.



72 Implementierung

5.2.3 Abstract-Factory

Das Abstract-Factory-Entwurfsmuster ermöglicht die Erzeugung der Objekte eines

vorgegebenen Typs. Es besteht aus einer Abstrakten Fabrik, die konkrete Fabriken

erzeugen kann. Diese Fabriken sind in der Lage konkrete Objekte eines abstrakten

Types zu erzeugen. Alle Kommunikationsobjekte in Communicators werden von ei-

ner Fabrik erzeugt, bevor sie verwendet werden können. So muss eine ChannelFacto-

ry und anschließend ein Channel des korrespondierenden Typs erzeugt werden, bevor

ein RPC-Aufruf erfolgen kann. Das System gewinnt dadurch an einer Monotonie im

Code, sodass die Übersichtlichkeit verbessert und die Code-Wiederverwendbarkeit

ausgenutzt wird.

5.2.4 Command

Abbildung 17: Command-Entwurfsmuster. Das Command-Entwurfsmuster spiegelt
sich in der Architektur der Lösung wieder. Dabei ist jedes Command
eine Operation.[GHJV10]

Das Command-Entwurfsmuster kann einen Befehl als Objekt repräsentieren, der

sich ausführen lässt. Operationen basierten auf dem Command-Entwurfsmuster. Das

Pattern besteht aus: Aufrufer, Befehl, konkreter Befehl, Empfänger und Klient (Ab-

bildung 17) [GHJV10]. Der Aufrufer ist die Anwendung, die Operations verwendet.

Der Befehl entspricht einer Operation des Typs IOperation aus einer angeschlos-

senen Operations Library. Command Executor erstellt einen konkreten Befehl, der

einen Ausführungs-Zustand hat, somit ist er der Klient. Der Empfänger ist abhängig

von der eigentlichen Funktion der Operation. In den meisten Fällen wird es ein IS-
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torage-Objekt sein, der einen Datenzugriff ermöglicht.Das System gewinnt dadurch

an Erweiterbarkeit und hoher Flexibilität im Einsatz.

5.2.5 Memento

Memento ermöglicht, einen Zustand des Objekts zu speichern und zu einem späteren

Zeitpunkt wieder zu laden. Es besteht aus folgenden Teilen: Urheber, Memento,

Aufbewahrer [GHJV10]. Die Serialisierungsroutinen in den Klassen, die IStorage

implementieren, ermöglichen den Einsatz des Memento-Entwurfsmusters. So können

z. B. Logs und Metadata der Datensätze flexibel im Speicher abgelegt und bei

Bedarf wieder geladen werden. Den Urheber stellt Cloud Storage Manager und Local

Storage Manager dar. Sie verfügen über die Serialisierungsroutinen für Objekte.

Die Memento sind die Objekte, die serialisiert werden - in diesem Fall Logs und

Metadata. Der Aufbewahrer ist der Speicher selbst, also Cloud Storage und Local

Storage. Erst die Verwendung des Memento ermöglicht dem System das Erfüllen

gewisser Anforderungen, die das Speichern der Objekte betreffen.

5.2.6 Template Method

Dieses Entwurfsmuster gibt einer abstrakten Klasse einen bestimmten Ablauf vor,

der auch von den geerbten Klassen erfüllt wird. Template Method wird mit Hilfe der

abstrakten Klasse IOperation realisiert. Es wird ein Ablauf mit Funktionen vorge-

geben, der unmittelbar vor und nach der Hauptfunktion der Operation ausgeführt

wird. Ein Teil dieser Funktionen wird von der abgeleiteten Klasse implementiert.

Das System gewinnt dadurch an Stabilität und einem geregelten Ablauf der Aus-

führung von individuell programmierten Operations.

5.2.7 Mediator

Dieses Entwurfsmuster ermöglicht eine Entkopplung der Klassen, indem der Ab-

lauf von einer zentralen Klasse gesteuert wird. Es besteht aus einem Vermittler,

der den Ablauf steuert und Kollegen - den Klassen, die im Ablauf involviert sind.

Der Vermittler ist der Merge Controller und die Kollegen sind: Log Resolver, Ap-

plication Resolver und Manual Resolver. Der Vermittler steuert den Ablauf der
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einzelnen Resolver, ohne dass sie sich gegenseitig und den Gesamtablauf kennen

müssen. Das System gewinnt dadurch an Flexibilität und lässt sich mit weiteren

Resolver-Algorithmen erweitern.

Nachdem die einzelnen Teile der Architektur besprochen wurden, betrachten wir die

Verbindungen zwischen ihnen - die Schnittstellen .

5.3 Schnittstellen

Für Systemteile, die eine lose Kopplung voraussetzen oder eine ähnliche Aufgabe

erfüllen, werden Schnittstellen verwendet. Die Schnittstellen ICloudSync, IMerge,

IExecuteOperation sind für die Interoperabilität zwischen den drei Umgebungen

essentiell. IStorage, IPeerSync, IOperation spielen ihre wichtigste Rolle bei der in-

ternen Verarbeitung.

5.3.1 IStorage

Die Schnittstelle IStorage ist eine abstrakte Klasse, die den Zugriff auf Daten so-

wohl in der Cloud als auch lokal auf eine vereinheitlichte Weise anbietet. Sie ist für

die applikationsspezifischen Operationen von besonderer Wichtigkeit, denn so kön-

nen beliebige Operationen dateisystemunabhängig auf Daten lesend und schreibend

zugreifen. Entsprechend werden Datensätze in der Cloud und Lokal über gleiche

Aufrufe gelesen und geschrieben, was der Übersichtlichkeit des Codes dient.

5.3.2 ICloudSync

ICloudSync ermöglicht die Kommunikation über Webservices zwischen der Cloud

und dem Cache. Sie wird verwendet, um neue Datensatzversionen auf den Cache zu

laden, sowie die gewünschten Änderungen an Datensätzen in die Cloud hochzuladen.

5.3.3 IPeerSync

IPeerSync ermöglicht die Peer-to-Peer-Kommunikation zwischen den Caches. Es

stehen RPC-Aufrufe zur Verfügung, die die neueste, auf anderen Caches vorhande-

ne Cloudversion zurückgeben. Des Weiteren kann auch eine von Caches geänderte
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Version angefragt werden. Entsprechend sind in dieser Schnittstelle auch Antworten

auf die Anfragen definiert.

Dadurch, dass über diese Schnittstelle immer nur mit der Gesamtheit der Peers

kommuniziert werden kann, ist sie Unidirektional formuliert. Das heißt, dass es

keine Response-Nachrichten gibt. Die Antworten werden genauso wie die Anfragen

im Kommunikationsraum für alle sichtbar publiziert. Die Zuordnung der Antworten

zu den Anfragen geschieht intern im Peer Communicator.

5.3.4 IMerge

IMerge ist eine Schnittstelle in Form einer abstrakten Klasse, die einmal in der

Operations-Library der Anwendung implementiert ist und einmal in der Applikation

selbst. Der Code in der Bibliothek wird von der Komponente Application Resolver

ausgeführt, um eine anwendungsspezifische Konfliktauflösung durchzuführen. Der

Code in der Applikation wird von Manual Resolver ausgeführt, um entsprechenden

Dialog dem Benutzer anzuzeigen, damit er die Konfliktauflösung vornehmen kann.

5.3.5 IOperation

IOperation ist eine abstrakte Klasse, die gewisse Abläufe und Funktionsaufrufe ent-

hält, damit alle Operationen nach dem gleichen Grundschema ausgeführt werden

können. Die Abläufe enthalten wichtige Prüfungen und Fehlerbehandlungen, sodass

ein korrekter Operationsaufruf erfolgen kann.

5.3.6 IExecuteOperation

IExecuteOperation ist eine Schnittstelle für ein Webservice, um der Anwendung

einen Operationsaufruf zu ermöglichen und gleichzeitig eine lose Kopplung zwischen

dem Cache und der Anwendung sicherzustellen.

An dieser Stelle sind alle Komponenten und ihre Verbindungen besprochen. Im

Folgenden werden Vorgänge beschrieben, die im System stattfinden.
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5.4 Abläufe

In diesem Abschnitt werden Abläufe beschrieben, um die wichtigsten Funktionen

der Komponenten in Verbindung zu bringen. Es wird angenommen, dass die anwen-

dungsspezifischen Operationen als DLLs im bestimmten Ordner des Caches abgelegt

sind. Des Weiteren wird vorausgesetzt, dass alle drei Teile: Cloud, Cache und die

Anwendung gestartet sind und die Verbindung zueinander hergestellt wurde. Wir

beginnen mit dem Ablauf einer Operationsausführung und gehen anschließend über

Synchronisationsabläufe zu der Konfliktauflösung.

5.4.1 Operationsaufruf

Die Applikation ruft über ein Webservice mit der Schnittstelle IExecuteOperation

die gewünschte Operation auf. Der Application Communicator empfängt den Aufruf

und übergibt die Informationen über die auszuführende Operation an den Command

Executor. Dieser prüft die Existenz der auszuführenden Operation und erstellt eine

Operation-Instanz des Typs IOperation. Dieser Instanz werden beim Erstellen fol-

gende Informationen übermittelt: Operationsname, Operationsparameter und eine

Instanz des Local Storage Managers als IStorage. Nachdem die Operation mit diesen

Informationen instanziiert wurde, wird sie gemäß folgendem Ablauf ausgeführt:

1. Vorbedingungen für die Ausführung prüfen

2. Intention speichern

3. Operation ausführen: Daten und Metadaten Lesen und Schreiben

4. Intention an Log anhängen, Erfolg vermerken

5. Rückgabewert zurückgeben

Der Rückgabewert, der ein beliebiges Objekt beinhalten kann, wird an Command

Executor zurückgegeben. Dieser reicht diesen Wert an Application Communicator

weiter. Er übermittelt den Wert über Webservices als eine Antwort auf die Anfrage

an die Applikation.

Im Hintergrund wird die Instanz der Operation durch den Garbage Collector auf-

geräumt, weil alle Referenzen darauf gelöscht wurden.
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Nach einigen Operationsausführungen können Änderungen entsprechend der Syn-

chronisierungsroutine ausgetauscht, die in nächsten Abschnitten beleuchtet wird.

5.4.2 Synchronisation mit der Cloud

Sync Logic des Caches initiiert einen Synchronisierungsvorgang mit der Cloud. Der

Auslöser kann ein durch Timer getriggertes Ereignis oder ein explizites Kommando

sein. Der Cloud Communicator sendet eine Anfrage über die Schnittstelle ICloud-

Sync an den Cache Communicator in der Cloud, die Aktualität bestimmter Da-

tensätze zu prüfen und die Änderungen zu übermitteln. Der Version Selector der

Cloud gibt die gewünschten Datensätze zurück. Dabei greift er über die Schnittstelle

IStorage auf den Cloud-Speicher Cloud Storage zu. Die Antwort des Cache Com-

municators wird vom Cloud Communicator an Sync Logic weitergereicht. Dieser

initiiert bei einem Konflikt den Mergevorgang in der Komponente Merge Logic.

Anschließend werden die lokal geänderten Daten in die Cloud als Änderungsanfra-

gen hochgeladen. Das geschieht auf dem gleichen Weg über die Communicators.

Die neuen Zustände der Datensätze werden an Version Collector übergeben, der

diese abspeichert und prüft, ob eine neue Datensatzversion über Version Selector

generiert werden kann. Sind bestimmte Vorbedingungen erfüllt, dann wird die neue

Datensatzversion erstellt und in der Cloud abgespeichert. Beim nächsten Synchro-

nisierungsvorgang wird die neueste Datensatzversion an alle Caches übermittelt,

die ihre lokale Version aktualisieren möchten und entsprechende Synchronisations-

Anfragen stellen.

Im Falle einer Netzwerkpartitionierung wird die Peer-to-Peer-Verbindung verwen-

det, um die Datensätze zu synchronisieren. Der entsprechende Ablauf ist wie folgt.

5.4.3 Synchronisation über Peer-to-Peer

Auch im Peer-to-Peer-Modus initiiert Sync Logic den Synchronisierungsvorgang.

Über Peer Communicator und die Schnittstelle IPeerSync wird bei erreichbaren

Peers eine Datensatzversion angefordert, die aktueller ist als die lokale Version.

Dabei antworten Peers, die die gewünschte Version lokal vorhanden haben. An-

schließend wählt der Anfragende einen konkreten Peer aus und lädt seine Version
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herunter. Als nächstes werden die beiden Versionen mit Hilfe der Mergekomponente

zusammengeführt.

Der genaue Ablauf, wie die Versionen zusammengeführt werden, wird im nächsten

Abschnitt beschrieben.

5.4.4 Konfliktauflösung

Der Mergevorgang wird von Sync Logic im Merge Controller initiiert. Dieser ver-

sucht den Konflikt entsprechend dem Ablauf aus Abschnitt 4.3.4 aufzulösen. Zu-

nächst kommt Log Resolver zum Einsatz. Bei Misserfolg versucht Application Re-

solver den Konflikt über die Schnittstelle IMerge und die entsprechende, in einer

Operations-DLL hinterlegte anwendungsspezifische Funktion aufzulösen. Schlägt auch

dieser Versuch fehl, dann kommt der Manual Resolver zum Einsatz. Die konflikt-

behafteten Datensatzversionen werden der Anwendung über Application Commu-

nicator und die Schnittstelle IMerge übergeben. Die Anwendung löst mit Hilfe des

Benutzers den Konflikt auf und gibt auf dem gleichen Pfad das Ergebnis des Mergens

zurück.

Abschließend wird das Resultat über die IStorage-Schnittstelle lokal abgespeichert.

Die in diesem Kapitel beschriebenen Komponenten, Schnittstellen und Abläufe sind

nicht nur theoretisch - sie wurden auch praktisch umgesetzt. Hierfür existiert ei-

ne Beispielanwendung, die die Funktionalitäten veranschaulicht und im nächsten

Abschnitt präsentiert wird.

5.5 Beispielanwendung

Entsprechend dem Entwurf aus Kapitel 4 und den Überlegungen aus diesem Kapitel

wurde ein konkretes System mit grundlegenden Funktionen implementiert. Des Wei-

teren wurde die im Beispielszenario (Abschnitt 3.2.1) beschriebene Endanwendung

in Grundzügen ebenfalls programmiert. Damit wir die zwei Implementierungen un-

terscheiden können, nennen wir das System, das Operations realisiert
”
OpSync“ und

die Beispielanwendung
”
RecipeApp“.

Da es sich um ein Proof of Concept handelt, wurden nur die grundlegenden Funk-
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tionen implementiert. Dabei wurde die Machbarkeit der Interaktion zwischen dem

Cache und der Endanwendung (Operationsaufrufe), Synchronisation zwischen den

Caches über Peer-to-Peer, sowie zwischen dem Cache und der Cloud geprüft. Au-

ßerdem wurde das Mergen zweier Datensatzversionen auf der Log-Ebene getestet

und schlussendlich die Verwendung der Datensätze von der Endanwendung.

Wir beginnen mit dem Aufbau des Proof of Concept, dann gehen wir zu den einzel-

nen Anwendungsfällen über und schlussendlich werden Hintergrundinformationen

gegeben.

5.5.1 Aufbau

Abbildung 18: Bildschirmfoto der Endanwendungen und Demonstrationskonsolen.
Die einzelnen Endanwendungen sind an jeweils einen Cache ange-
schlossen, der durch eine Demonstrationskonsole präsentiert wird.

In Abbildung 18 sind zwei Konsolenfenstern und zwei Formularfenster zu sehen. Die
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Konsolenfenster stehen zu Demonstrationszwecken bereit; in einer Produktivumge-

bung arbeitet OpSync vollautomatisch und unsichtbar. Über die Konsolenfenster

lassen sich einzelne Anwendungsfälle Schritt-für-Schritt ausführen, die im Folgen-

den konkret beschrieben werden. Die Formularfenster visualisieren die Endanwen-

dung, die Daten gebraucht. Damit lassen sich Rezepte erstellen und anzeigen, sowie

Zutaten hinzufügen, modifizieren und entfernen.

5.5.2 Anwendungsfälle

Abbildung 19: Demonstration der Implementierung - Anwendungsfall 1. Synchroni-
sierung eines Rezeptes über die Cloud.

Zunächst wird mit RecipeApp A ein Rezept erstellt und von OpSync A mit der

Cloud synchronisiert. Anschließend synchronisiert OpSync B mit der Cloud und die

Anwendung RecipeApp B zeigt das eben erstellte Rezept an (Abbildung 19).
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Abbildung 20: Demonstration der Implementierung - Anwendungsfall 2. Synchroni-
sierung eines Rezeptes über Peer-to-Peer. Der Datensatz wird über-
tragen, aber noch nicht gemereged.

Im nächsten Anwendungsfall wird das Rezept von beiden Endanwendungen mo-

difiziert und über die Peer-to-Peer-Kommunikation synchronisiert, um die Funkti-

onsfähigkeit bei einem Cloud-Ausfall zu demonstrieren. Den Dialog zwischen den

OpSync-Instanzen lässt sich in Abbildung 20 nachvollziehen. OpSync A fragt alle

erreichbaren Peers nach einer Version des Rezeptes Pasta Bolognese, OpSync B gibt

Bescheid, dass er Pasta Bolognese hat. Anschließend wird der Datensatz übertragen.

Der nächste Anwendungsfall zeigt, dass OpSync A die zwei Datensatzversionen zu-

sammengeführt hat und nach dem Wiederherstellen der Verbindung zur Cloud wie-

der hochgeladen. RecipeApp A stellt dabei die Daten von dem vorherigen Anwen-

dungsfall dar, weil sie von der Endanwendung nicht neugeladen wurden (Abbildung

21).
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Abbildung 21: Demonstration der Implementierung - Anwendungsfall 3. Mergen von
zwei Datensatzversionen und Hochladen in die Cloud.

Der letzte Anwendungsfall der Demonstration zeigt OpSync A mit geleertem Ca-

che, der einen neuen Teilnehmer im System darstellt. Pasta Bolognese wird aus der

Cloud heruntergeladen und mit einem Klick auf
”
Show Recipe“ werden Auswirkun-

gen des Bearbeitens, der Synchronisation über Peer-to-Peer, des Mergens und der

Synchronisation über die Cloud aus den letzten Anwendungsfällen sichtbar (Abbil-

dung 22).

5.5.3 Hintergrundinformationen

Der Datensatz besteht aus einer binär serialisierten Tabelle. In der ersten Spalte

werden Zutaten eingetragen, in der zweiten wird die Menge als numerischer Wert

gespeichert.
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Abbildung 22: Demonstration der Implementierung - Anwendungsfall 4. Ein neuer
Teilnehmer tritt dem System bei und synchronisiert ein Rezept.

Abbildung 23: Zusammengeführter Log nach simultaner Bearbeitung eines Rezep-
tes. Die grün hervorgehobene Zeile zeigt die aus dem anderen Log
hinzugefügte Operation.

Das Mergen wurde nicht auf Datenzustandsebene durchgeführt, indem die von einer

Version abweichende Tabellenzeile hinzugefügt wurde, sondern auf der Logebene,

indem die abweichende Operation aus dem anderen Log eingefügt (Abbildung 23)

und der neue Log anschließend ausgeführt wurde, um einen konfliktfreien Zustand
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des Datensatzes zu erhalten.

5.6 Zusammenfassung

In diesem Kapitel wurde eine genaue Architektur des Systems vorgestellt. Dabei

wurde das System aus der Mikro-, sowie Makroperspektive betrachtet. Die Lösung

besteht aus einzelnen Komponenten und Klassen, die mit der Verwendung der Ent-

wurfsmuster strukturiert sind. Die beschriebenen Schnittstellen zwischen den Kom-

ponenten bilden Kommunikationswege, über die verschiedene Abläufe stattfinden

können. Das implementierte System wird anhand einer Beispiel-Endanwendung de-

monstriert: die Abläufe des Systems ermöglichen eine Datenverarbeitung- und Ver-

waltung, wie es am Anfang des Dokumentes beabsichtigt war.

Als Nächstes folgt ein Kapitel, indem das System evaluiert wird. Dabei liegt der

Schwerpunkt auf den finanziellen Aspekten, die das System optimiert.
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6 Evaluierung

In diesem Kapitel soll die Synchronisierungsroutine der Lösung hinsichtlich der Be-

triebskosten evaluiert werden. Es wird nur die Synchronisierung mit der Cloud be-

trachtet, denn es ist entsprechend der Aufgabenstellung dieser Arbeit der Schwer-

punkt. Die Synchronisation über Peer-to-Peer wird nur am Rande erwähnt.

Zunächst wird die Evaluationsumgebung beschrieben, um die Umstände zu defi-

nieren, unter welchen die Evaluierung stattfindet. Des Weiteren werden Parameter

erläutert, die das System beeinflussen. Anschließend wird ein konkretes Kostenmo-

dell vorgestellt, das den finanziellen Aufwand für den Betrieb des Systems berechnet

und die wichtigsten Kostenfaktoren herauskristallisiert. Danach werden Szenarien

für verschiedene Konfigurationen dieser Kostenfaktoren vorgestellt und unter dem

Gesichtspunkt der Optimierung bewertet. Abschließend wird ein Fazit über die Kos-

teneffizienz des Systems gezogen.

6.1 Setup

In diesem Unterkapitel wird die Grundlage für die Evaluation gelegt. Es wird ein

Aufbau der Systems und die Randbedingungen beschrieben. Wir beginnen mit der

Evaluationsumgebung, danach folgen die für die Evaluation wichtigen Parameter.

Anschließend werden die finanziellen Aspekte diskutiert.

6.1.1 Evaluationsumgebung

Bei der Evaluation wird mit der Synchronisierung von 1, 10, 100 und 1000 Caches ge-

rechnet, um verschiedene Szenarien abzudecken. Die Caches sind entsprechend dem

Systemmodell (Kapitel 3) geografisch verteilt und an das Internet angeschlossen.

Die Caches synchronisieren ihre Kopien mit der Cloud. Es wird nur der Fall evalu-

iert, wenn die Cloud verfügbar ist. Im Ausnahmefall wenn sie nicht verfügbar ist,

geschieht die Synchronisation über Peer-to-Peer, was nicht zu den Schwerpunkten

der Arbeit gehört und somit nicht evaluiert wird.

In der Windows Azure-Cloud wird ein Rechner mit 1 GHz CPU, 768 MB RAM und

20 GB Festplattenspeicher eingesetzt. Auf diesem Rechner wird folgende Software
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ausgeführt: Windows Server 2008 R2 mit .NET 4.5 und IIS 7, sowie dem Cloud-Teil

der Implementierung.

Es wird davon ausgegangen, dass Caches auf Rechnern ausgeführt werden, die min-

destens so leistungsfähig sind, wie der Entwicklungsrechner, auf dem die Implemen-

tierung und Tests (Kapitel 5) vorgenommen wurden. Dabei ist die Hardwarekon-

figuration wie folgt: Prozessor: 2x2,5 GHz, 3 GB RAM und 320 GB Festplatte.

Betrieben wird die Hardware mit Microsoft Windows 7 und .NET 4.5.

Der Einsatz von schwächeren Rechnern kann die Leistung des Caches reduzieren,

dies wird jedoch in den nachfolgenden Rechnungen nicht weiter berücksichtigt. Die

Leistung des Systems kann auch in Verbindung mit der Systemkonfiguration evalu-

iert werden, was jedoch nicht im Fokus dieser Arbeit liegt.

6.1.2 Evaluationsparameter

Es wird der Worst Case angenommen, dass Datensätze aus zufällig generierten Da-

ten bestehen und bei einer Änderung durch neue Daten vollständig ersetzt wer-

den. Entsprechend lassen sich keine Transferkosten durch Rsync (Abschnitt 2.2.1)

reduzieren. Des Weiteren wird in dieser Evaluation mit Brutto-Datenmengen ge-

rechnet. Das heißt, wenn 100 MB an Datensätzen synchronisiert werden, dann ist

es die Summe aus Nutzdaten, den Logs, sowie den zugehörigen Metadaten. Das

Netto/Brutto-Verhältnis variiert je nach Anwendungsfall sehr stark. Entsprechend

ist die Evaluation nur dann repräsentativ, wenn die Brutto-Datenmengen verwendet

werden. Das Verhältnis der individuellen Anwendungsfälle kann mit dem Ergebnis

der Evaluation verrechnet werden, um die Netto-Angaben zu erhalten. Aufgrund

dieser Annahmen wird die reine Synchronisations-Routine evaluiert.

Es wird angenommen, dass es sich um ein System handelt, bei dem regelmäßig

gelesen und geschrieben wird, was für Business-Anwendungen üblich ist.

Die variierten Werte sind:

� Anzahl der Caches: 1 - 1000

� Übertragene Datenmenge pro Synchronisierung: 1-1024 MB

� Synchronisierungs-/Lesehäufigkeit: täglich bis alle fünf Minuten



Evaluierung 87

� Kosten für das Lesen eines veralteten Datensatzes: 1-20 ¿

(z. B. durch das Verkaufen einer Ware, für die der Preis erhöht, aber der alte

Preis gelesen und verbucht wurde)

Ausgewertet wird der finanzielle Aufwand für das Betreiben des Systems in Euro,

abhängig von den genannten Parametern. Wie genau die Kosten berechnet werden,

wird im nächsten Unterkapitel beschrieben.

6.1.3 Finanzielle Kosten

Es werden die Kosten für den Einsatz des Systems evaluiert. Entsprechend müs-

sen die monatlichen Kosten für den Betrieb der Cloud-Infrastruktur berücksichtigt

werden. Um konkrete Kosten berechnen zu können, wird ein existierender Cloud-

Anbieter hinzugezogen. Es kann ein beliebiger Anbieter sein; in dieser Arbeit wird,

aufgrund seiner Einfachheit und weiten Verbreitung, das System Windows Azure

von Microsoft betrachtet. Im Folgenden wird das Preismodell des Anbieters be-

schrieben und erklärt.

Die Kosten für den Peer-to-Peer Betrieb werden durch andere Faktoren beeinflusst,

als die Cloud-Kosten. Dort spielt die Bandbreite eine große Rolle, denn durch auf

Flooding basierende Verfahren entsteht eine große Menge an Nachrichten, die ver-

schickt werden. Außerdem ist je nach Anwendungsfall möglich, dass laufende Kos-

ten für die Übertragung der einzelnen Nachrichten anfallen, oder dass die Übertra-

gungsgeschwindigkeit nach dem Erreichen eines Limits erheblich reduziert wird. Die

Kosten für die Cloud werden anhand eines konkreten Kostenmodells berechnet, in

diesem Fall anhand der Windows Azure-Kostenverteilung.

Windows Azure

Für die Kostenberechnung wird ein Zeitraum von einem Monat betrachtet. Die

Fixkosten für den Betrieb von der entwickelten Lösung in der Microsoft Azure Cloud

berechnen sich wie folgt.

Fixkosten: Es fallen 6, 64 ¿ für die Bereitstellung der Rechenkapazitäten in Form

eines Rechners und 6, 6 ¿ für einen 100 GB-großen Blob-Speicher an. Die Summe

ergibt 13, 24 ¿.

Laufende Kosten: Die laufenden Kosten entstehen durch die Speichertransaktionen
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in der Cloud, den Datenverkehr und den über Service Bus versandten Nachrichten.

Jede Speicher- oder Lade-Transaktion kostet 8.0 · 10−8 ¿. Jedes übertragene GB

kostet 0, 0809 ¿. Jede Nachricht, die über den Service Bus versandt wird, kostet

7, 1 · 10−7 ¿.

Eine Synchronisierungsoperation besteht aus dem Herunterladen einer aktualisierten

Version, oder dem Hochladen einer neuen Version. Dabei wird eine Speicher- oder

Lade-Transaktion benötigt, und müssen zwei Nachrichten versandt werden - eine

Anfrage und eine Antwort. Dabei ist die durchschnittliche Datensatzgröße je nach

Anwendungsszenario unterschiedlich und wird hier durch die Variable d (in GB)

repräsentiert. Die Variable h stellt die Anzahl der Synchronisierungsoperationen

pro Monat dar und n gibt die Anzahl der synchronisierenden Caches an.

Die monatlichen Gesamtkosten werden durch folgende Formel berechnet: f(h, d, n) =

6, 64 + 6, 6︸ ︷︷ ︸
Fixkosten

+h · ( 8.0 · 10−8 · h︸ ︷︷ ︸
Speichertransaktions−Kosten

+ 0, 0809 · h · d︸ ︷︷ ︸
Transferkosten

+ 7, 1 · 10−7 · 2 · h︸ ︷︷ ︸
ServiceBus−Kosten

)

Somit sind die ausschlaggebenden Parameter, die die Kosten beeinflussen: die zu

synchronisierende Datenmenge, Synchronisierungshäufigkeit und die Anzahl der Ca-

ches.

Anhand dieser Formel lassen sich Kostenverteilungen für verschiedene Szenarien

erstellen. Die Szenarien werden nachfolgend beschrieben.

6.2 Szenarien

In den Evaluations-Szenarien betrachten wir zunächst, entsprechend den zwei Eva-

luationsparametern Synchronisierungshäufigkeit und Datenmenge, vier realistische

Extremfälle, die sich kombinatorisch ergeben. Die Extremfälle sind in Form eines

Quadrats in der Abbildung 24 dargestellt und mit Bezeichnungen, wie z. B.
”
0H

1D“ abgekürzt. Dabei steht
”
H“ für die Synchronisierungshäufigkeit und

”
D“ für die

Datenmenge. Die führende Ziffer gibt die Größe des jeweiligen Parameters an. 0

steht für das Minimum und 1 für das Maximum. Die Grenzen werden anhand des

für die Evaluierung relevanten Beispiels wie folgt festgelegt.

Ein Unternehmen synchronisiert Stammdaten4 alle 24 Stunden, also in einem Monat

4Stammdaten:
”
In der betrieblichen Datenverarbeitung wichtige Grunddaten (Daten) ei-
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Abbildung 24: Darstellung der Evaluationskriterien. Aus den Kriterien Synchroni-
sierungshäufigkeit und Datenmenge ergeben sich vier Szenarien.

30 Mal5 und damit sehr selten, d. h. 0H = 30 Mal/Monat.

Die Bewegungsdaten6 des Unternehmens werden alle 15 Minuten synchronisiert und

damit sehr häufig, d. h. 1H = 30 · 24 · 4 = 2880 Mal/Monat.

Die Stammdaten ändern sich täglich um 100 MB. Nur die Änderung wird beim

erneuten Synchronisationsvorgang übertragen. Die Bewegungsdaten ändern sich alle

15 Minuten um 1 MB. Daraus ergeben sich folgende Grenzwerte: 0D = 1 MB und

nes Betriebs, die über einen gewissen Zeitraum nicht verändert werden; z.B. Artikel-
Stammdaten, Kunden-Stammdaten, Lieferanten-Stammdaten, Erzeugnisstrukturen (Stücklis-
ten) u.a. Stammdaten werden oft nicht permanent, sondern periodisch aktualisiert (Dateifort-
schreibung).“ [Spr]

5Um die Rechnung zu vereinfachen wird der Durchschnittswert der Länge aller Monate verwendet:
365
12 ≈ 30.

6Bewegungsdaten:
”
In der betrieblichen Datenverarbeitung Daten, die Veränderungen von Zu-

ständen beschreiben und dazu herangezogen werden, Stammdaten zu aktualisieren.“ [Spr]
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1D = 100 MB.

Mit diesen Grenzwerten lassen sich die folgenden realistischen Szenarien erstellen:

� Ein Unternehmen synchronisiert selten große Stammdaten (0H 1D)

(z. B. Artikel- oder Kundenstamm eines Einzelhändlers)

� Ein Unternehmen synchronisiert oft kleine Bewegungsdaten (1H 0D)

(z. B. Preisänderungen und Änderungen der Kundeninformationen)

� Ein Privatanwender synchronisiert selten geringe Datenmengen (0H 0D)

(z. B. Abgleich seines Kalenders auf verschiedenen Geräten)

� Ein Wetter-Forschungsinstitut synchronisiert oft große Datenmengen (1H 1D)

(z. B. Sensor- und Berechnungsdaten)

Abbildung 25: Kosten für die Synchronisation eines Caches ohne Optimierung. Die
Kosten bei drei Szenarien liegen knapp über den Fixkosten von 13,24
¿.

Ohne jegliche Optimierung würden im Rahmen der einzelnen Szenarien folgende

Kosten entstehen (Abbildung 25).

� 0H 0D: f(30, 1MB, 1) ≈ 13, 24 ¿

� 0H 1D: f(30, 100MB, 1) ≈ 13, 48 ¿

� 1H 0D: f(2880, 1MB, 1) ≈ 13, 47 ¿
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� 1H 1D: f(2880, 100MB, 1) ≈ 36, 00 ¿

Aufgrund einer geringen Steigerung der Kosten in den Szenarien 0H 0D, 0H 1D

und 1H 0D von maximal 0,24 ¿ gegenüber den Fixkosten, werden sie nach der

Optimierung nur für das Szenario 1H 1D ausgewertet, bei dem der Unterschied

bei 22,76 ¿ liegt. Die Auswertung folgt im nächsten Abschnitt, in dem auch der

Grund für die Kostenexplosion untersucht wird. Dementsprechend werden Kosten

berechnet, wenn das System die Synchronisation optimiert.

6.3 Auswertung

In diesem Abschnitt wird das Szenario 1H 1D unter die Lupe genommen. Für

diesen Extremfall werden Kosten und die dazugehörige Kostensenkung berechnet.

Anschließend werden die einzelnen Parameter des Szenarios variiert. Wenn diese

Parameter Extremwerte annehmen, lässt sich ein Trend für die Kostenverteilung

beobachten, der anschließend bewertet wird.

6.3.1 Kosten im Szenario 1H 1D

Zunächst müssen wir die einzelnen Summanden der additiven Kostenfunktion unter-

suchen, um die ausschlaggebenden Parameter zu bestimmen, die am meisten Kosten

verursachen. Die Funktion wurde bereits in Abschnitt 6.1.3 präsentiert und hier wird

sie zwecks Übersichtlichkeit wiederholt.

f(h, d, n) = 6, 64 + 6, 6︸ ︷︷ ︸
Fixkosten

+h·( 8.0 · 10−8 · h︸ ︷︷ ︸
Speichertransaktions−Kosten

+ 0, 0809 · h · d︸ ︷︷ ︸
Transferkosten

+ 7, 1 · 10−7 · 2 · h︸ ︷︷ ︸
ServiceBus−Kosten

)

Man erkennt, dass die Speicherzugriffskosten und die Service Bus-Kosten selbst bei

hoher Synchronisationsrate x aufgrund des vorangestellten Faktors von 10−8 bzw.

10−7 keine signifikante Kostensteigerung verursachen:

� Speicherzugriffs-Kosten: 8.0 · 10−8 · 2880 ≈ 0.00 ¿

� Service Bus-kosten: 7, 1 · 10−7 · 2 · 2880 ≈ 0.00 ¿

Das Ausschlaggebende sind die Datenübertragungskosten pro synchronisierten Ca-

che: 0, 0809 · 2880 · 100

1024
≈ 22, 75 ¿. Bei zehn Caches betragen diese Kosten 227, 5

¿, was ein beträchtlicher Wert ist, der mit jedem weiteren Cache linear wächst. Es
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wird nun untersucht, in wieweit die Transfer-Kosten durch den Einsatz der in dieser

Arbeit entwickelten Lösung gesenkt werden.

6.3.2 Kostensenkung durch die Optimierungsfunktion

In Abschnitt 4.2.3 wurden Funktionen xopt get limited, xopt put limited, pget, pput, evalget

und evalput definiert, die von einigen Konstanten abhängig sind. Diese werden in

der nachfolgenden Tabelle definiert, dabei wird weiterhin das Szenario 1H 1D mit

entsprechenden Werten betrachtet.

Variable Wert(e) Beschreibung

awrites = areads 2880 Pro Zeitabschnitt wird 1H oft gelesen und geschrie-

ben

acaches 1; 10; 100;

1000

Variable Anzahl an Caches, die evaluiert werden

cread old 5 ¿ Jedes Lesen eines veralteten Wertes kostet 5¿

ddata up
100
1024

1D werden geändert und hochgeladen, in GB

cdataset 0,0809 Kosten in Windows Azure für die einmalige Über-

tragung von 1 GB

ddata down
100
1024

1D Aktualisierungen werden pro Cache herunter-

geladen, in GB

cfix 13,24 ¿ Entspricht den Fixkosten im Azure-Kostenmodell

Für diesen Anwendungsfall ergeben die optimalen Synchronisierungsraten für alle

Größenordnungen der Cache-Anzahl folgende Werte:

xopt put limited = 2880 (Häufigkeit für das Hochladen der Updates; entspricht awrites

und somit der naiven Synchronisationsrate 1H)

xopt get limited = 1350 (Häufigkeit für das Herunterladen der Updates)

Die monatlichen Kosten, berechnet mit der generischen Optimierungsformel mit

naiver Synchronisationsrate von 1H (Abbildung 26):

Formel acaches=1 acaches=10 acaches=100 acaches=1000

evalget(2880) 35,99 ¿ 240,77 ¿ 2288,55 ¿ 22766,36 ¿

evalput(2880) 35,99 ¿ 240,77 ¿ 2288,55 ¿ 22766,36 ¿
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Abbildung 26: Kostenverteilung der generischen Kosten-Funktion. Die Kurven
eval put naive, eval put und eval get naive liegen übereinander.

Die monatlichen Kosten, berechnet mit der generischen Optimierungsformel und

optimierten Synchronisationsraten für unterschiedliche Anzahl der Caches sind

wie folgt (Abbildung 26):

Formel acaches=1 acaches=10 acaches=100 acaches=1000

evalget(1350) 29,57 ¿ 176,56 ¿ 1646,46 ¿ 16345,43 ¿

evalput(2880) 35,99 ¿ 240,77 ¿ 2288,55 ¿ 22766,36 ¿

Bevor die Azure-Kosten berechnet werden können, muss die Rechnung durch die

Penalty-Funktion ergänzt werden, die die Kosten für das Lesen der veralteten Werte

berechnet und somit bei optimierten Synchronisierungsraten berücksichtigt werden

muss. Auf diese Weise werden die Optimierungsformel und die Azure-Kostenformel

miteinander vergleichbar, denn beide berechnen die vollen Betriebskosten.

Die monatlichen Windows Azure-Kosten im Fall 1H 1D ohne Optimierung (Ab-

bildung 27). Dabei ist p(2880) = 0, weil die Synchronisierungsrate im naiven Fall

nicht herabgesenkt (und somit optimiert) wird:
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Formel G/P acaches=1 acaches=10

pget(2880) + f(2880, 100MB, acaches) Get 36 ¿ 240,81 ¿

pput(2880) + f(2880, 100MB, acaches) Put 36 ¿ 240,81 ¿

Formel G/P acaches=100 acaches=1000

pget(2880) + f(2880, 100MB, acaches) Get 2288,98 ¿ 22770,68 ¿

pput(2880) + f(2880, 100MB, acaches) Put 2288,98 ¿ 22770,68 ¿
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Abbildung 27: Kostenverteilung mit und ohne Optimierung. Die Kurven azu-
re costs put, azure costs get naive und azure costs put naive liegen
übereinander.

Die monatlichen Windows Azure-Kosten für die optimierten Synchronisationsra-

ten sind (Abbildung 27):

Formel G/P acaches=1 acaches=10

pget(1350) + f(1350, 100MB, acaches) Get 29,57 ¿ 176,58 ¿

pput(2880) + f(2880, 100MB, acaches) Put 36 ¿ 240,81 ¿

Formel G/P acaches=100 acaches=1000

pget(1350) + f(1350, 100MB, acaches) Get 1646,66 ¿ 16347,46 ¿

pput(2880) + f(2880, 100MB, acaches) Put 2288,98 ¿ 22770,68 ¿

Ein Vergleich der Kostenverteilung der generischen Optimierungsformel und der
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Azure-Kostenformel zeigt, dass die Funktionen miteinander korrelieren und die Op-

timierungsformel der Realität entspricht.

Aus den berechneten Kosten mit dem naiven Synchronisierungsansatz und dem

optimierten Ansatz, lässt sich ein Ersparniswert in Prozent angeben. Nachfolgend

konzentrieren wir uns auf die Ersparniswerte, die sich durch den Einsatz des Systems

ergeben.

6.3.3 Kostenersparnis

Die Kostenersparnis wird mit folgender Formel berechnet. Es werden immer die

Azure-Kosten ausgewertet. Die Variable x ist die optimierte Synchronisierungsrate

und y die nichtoptimierte Rate. Auch hier muss bei der Verwendung der optimierten

Synchronisierungsrate die Penaltyfunktion p(x) berücksichtigt werden.

fsaving(x, y, d, n) = (1− p(x) + f(x, d, n)

f(y, d, n)
) · 100%

Für die Optimierung aus dem vorangehenden Abschnitt lassen sich folgende Werte

berechnen:

Formel G/P acaches=1 acaches=10

xopt get limited Get 1350 1350

xopt put limited Put 2880 2880

fsaving(xopt get limited, 2880, 100MB, acaches) Get 18% 27%

fsaving(xopt put limited, 2880, 100MB, acaches) Put 0% 0%

Formel G/P acaches=100 acaches=1000

xopt get limited Get 1350 1350

xopt put limited Put 2880 2880

fsaving(xopt get limited, 2880, 100MB, acaches) Get 28% 28%

fsaving(xopt put limited, 2880, 100MB, acaches) Put 0% 0%

Es fällt auf, dass die Ersparnis nach dem Optimieren der Hochladehäufigkeit (put)

bei null liegt. Bereits zu Beginn des Abschnitts wurde festgestellt, dass die optimier-

te Hochladehäufigkeit xopt put limited der naiven Häufigkeit entspricht. Eine Ersparnis

von 0% ist eine offensichtliche Folge des mangelnden Optimierungsfreiraums beim

Veröffentlichen von Änderungen an Datensätzen. Jede nichtveröffentlichte Änderung
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verursacht enorme Penalty-Kosten von jedem einzelnen Cache, der einen veralteten

Wert liest. Entsprechend ist es finanziell untragbar, eine Aktualisierung zurückzu-

halten. Des Weiteren ist bemerkenswert, dass sich die optimierte Häufigkeit, wegen

der Unabhängigkeit von der Anzahl der Caches, nicht ändert, während der Erspar-

niswert größer wird. Das ist damit in Verbindung zu bringen, dass die Fixkosten mit

steigender Anzahl der Caches weniger ins Gewicht fallen.

Als nächstes wird die Kostenersparnis, abhängig von den ausschlaggebenden Para-

metern wie Datenmenge, Lese-/Schreibrate und dem Penalty-Kostenfaktor betrach-

tet. Hierfür werden Parameter wie folgt variiert:

Variable Wert(e) Beschreibung

awrites = areads 30; 30 ·24; 30 ·24 ·4;

30 · 24 · 12

Pro Monat wird täglich, stündlich, viertel-

stündlich, alle 5 Minuten geschrieben/ge-

lesen

acaches 100 100 Caches nehmen am System teil

cread old 1; 5; 10; 20 Jedes Lesen eines veralteten Wertes kostet

1, 5, 10 und 20 ¿

ddata up
1

1024
; 100
1024

; 512
1024

; 1024
1024

Es werden unterschiedliche Datenmengen

hochgeladen, gerechnet in GB

ddata down
1

1024
; 100
1024

; 512
1024

; 1024
1024

Es werden unterschiedliche Datenmengen

heruntergeladen, gerechnet in GB

Es wird immer eine Variable als Laufvariable gewählt, alle anderen bleiben fest, mit

Werten aus dem vorangehenden Abschnitt.

Laufvariable awrites: Beim Variieren der Anzahl an Synchronisierungen pro Monat

verteilen sich die Ersparnisse wie folgt (Abbildung 28).

Formel G/P awrites=30 awrites=720

(Täglich) (Stündlich)

xopt get limited Get 30 675

xopt put limited Put 30 720

fsaving(xopt get limited, awrites, 100MB, 100) Get 0% 0%

fsaving(xopt put limited, awrites, 100MB, 100) Put 0% 0%
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Formel G/P awrites=2880 awrites=8640

(Alle 15 Min.) (Alle 5 Min.)

xopt get limited Get 1350 2338

xopt put limited Put 2880 8640

fsaving(xopt get limited, awrites, 100MB, 100) Get 28% 53%

fsaving(xopt put limited, awrites, 100MB, 100) Put 0% 0%
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Abbildung 28: Kostenersparnis abhängig von der Lese-/Schreibrate. Der Vorteil ent-
steht erst ab c. a. 1000 Aktualisierungen pro Monat.

Laufvariable ddata up und ddata down: Beim Erhöhen der zu synchronisierender Daten-

menge, sind die Ersparnisse entsprechend Abbildung 29.

Formel G/P ddata up=1 MB ddata up=100 MB

xopt get limited Get 2880 1350

xopt put limited Put 2880 2880

fsaving(xopt get limited, 2880, ddata up, 100) Get 0% 28%

fsaving(xopt get limited, 2880, ddata up, 100) Put 0% 0%
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Formel G/P ddata up=512 MB ddata up=1024 MB

xopt get limited Get 597 422

xopt put limited Put 2880 2880

fsaving(xopt get limited, 2880, ddata up, 100) Get 63% 73%

fsaving(xopt get limited, 2880, ddata up, 100) Put 0% 0%
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Abbildung 29: Kostenersparnis abhängig von der Datenmenge. Die Datenmenge be-
einflusst die Ersparnisse erheblich.

Laufvariable cread old:Beim Senken der Kosten für jedes veraltete Lesen der Daten,

erhöht sich die Ersparnis wie in Abbildung 30. Es hängt damit zusammen, dass

Penalty-Kosten erheblich sinken und die optimale Synchronisationsrate einen klei-

neren Wert annimmt.

Formel G/P cread old=1 ¿ cread old=5 ¿

xopt get limited Get 604 1350

xopt put limited Put 2880 2880

fsaving(xopt get limited, 2880, 100MB, 100) Get 62% 28%

fsaving(xopt put limited, 2880, 100MB, 100) Put 0% 0%
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Formel G/P cread old=10 ¿ cread old=20 ¿

xopt get limited Get 1909 2700

xopt put limited Put 2880 2880

fsaving(xopt get limited, 2880, 100MB, 100) Get 11% 0%

fsaving(xopt put limited, 2880, 100MB, 100) Put 0% 0%
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Abbildung 30: Kostenersparnis abhängig von den Kosten für das Lesen eines ver-
alteten Datensatzes. Die Kosten lassen sich enorm einsparen, wenn
geringer finanzieller Aufwand für das Lesen veralteter Daten entsteht.

In diesem Abschnitt wurden die Werte einzeln variiert und es wurde festgestellt,

dass die Ersparnis maximal wird, wenn die Leserate und die Datenmenge erhöht

und dabei die Kosten für das Lesen eines veralteten Datensatzes verringert werden.

6.3.4 Kosten für den Ausfall der Cloud

Die oben beschriebenen Kosten entstehen, solange die Cloud verfügbar ist. In Ab-

schnitt 3.1.2 wurde festgehalten, dass die Cloud Monatlich 0,05% nicht verfüg-

bar ist. In diesem Fall würden die monatlichen Stillstand-Kosten, bei 100 Caches

(acaches = 100), wie Folgt anfallen, dabei ist h die Anzahl der Leseoperationen und

entspricht areads.
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fno cloud(h) = h · 0.0005 · cread old · acaches

Formel cread old=1 ¿ cread old=5 ¿ cread old=10 ¿ cread old=20 ¿

fno cloud(30) 1,5 ¿ 7,5 ¿ 15 ¿ 30 ¿

fno cloud(720) 36 ¿ 180 ¿ 360 ¿ 720 ¿

fno cloud(2880) 144 ¿ 720 ¿ 1440 ¿ 2880 ¿

fno cloud(8640) 432 ¿ 2160 ¿ 4320 ¿ 8640 ¿

Diese Kosten fallen jedoch nur an, wenn keine Synchronisierung stattfindet. Dieses

System nutzt die Peer-to-Peer-Infrastruktur, um die Synchronisierung weiterhin zu

ermöglichen und somit diese Kosten zu vermeiden.

Die Berechnungen aus vorangehenden Abschnitten zeigen einen klaren Trend, der

nachfolgend im Fazit bewertet wird.

6.3.5 Fazit der Evaluation

Durch das Verringern der Hochlade-Häufigkeit, lassen sich keine Kosten einsparen,

denn jedes nicht hochgeladene Update ist mit vervielfachten Kosten für das Lesen

der falschen Daten von jedem einzelnen Cache verbunden. Entsprechend übersteigen

in diesem Fall Penaltykosten die vergleichsweise geringen Transferkosten. Aus diesem

Grund gleicht in allen Szenarien xopt put limited der naiven Synchronisierungshäufig-

keit 1H. Dagegen lassen sich die Kosten durch die Optimierung der Get-Häufigkeit

tatsächlich herabsenken. Es ist vom Anwendungsfall abhängig, wie viel sich einspa-

ren lässt, jedoch zeigt die Evaluation, dass besonders bei Szenarien, in denen viel

Traffic verursacht wird, eine deutliche Kostensenkung erzielt wird.

6.4 Zusammenfassung

Entsprechend dem Schwerpunkt dieser Arbeit, die Kommunikationskosten zu re-

duzieren, verringert die Lösung tatsächlich die Kosten, verglichen mit der naiven

Synchronisierung. Der Vorteil dieser Lösung wird besonders in Szenarien deutlich,

in denen eine hohe Datenmenge oft synchronisiert wird. Durch die Optimierungs-

funktion wird die Synchronisierungshäufigkeit soweit verringert, bis die Kosten für

das Lesen der veralteten Datensätze mit den Kosten für die Datenübertragung aus-
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balanciert sind, wodurch sich ein Kostenminimum ergibt.

Im nachfolgenden Kapitel wird ein kurzer Überblick über die ganze Arbeit gegeben

und ein Fazit gezogen.
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7 Fazit

In diesem abschließenden Kapitel wird ein Rückblick der ganzen Arbeit gegeben und

ein Ausblick in die Zukunft gewagt. Es wird der Kern der Aufgabenstellung, des zu

entwickelnden Systems, des Entwurfs sowie der Implementierung hervorgehoben.

Die Evaluierung untermauert den praktischen Teil der Arbeit. Diese Arbeit bietet

weiterhin Forschungsraum für weitere Arbeiten - dies wird im letzten Abschnitt

erläutert.

7.1 Zusammenfassung

Das Ziel dieser Ausarbeitung war es, bestehende Algorithmen zur Synchronisation

zu untersuchen und ein System, das eine verbesserte Synchronisation ermöglicht, zu

entwickeln. Dabei soll Cloud Computing als wichtiges Teil des Systems eingesetzt

werden, um die Daten-Konsistenz und -Verfügbarkeit zu unterstützen.

Zunächst wurde das Synchronisierungsproblem untersucht. Dabei stellte sich her-

aus, dass Netzwerkpartitionierung die Datenkonsistenz oder -Verfügbarkeit sehr ein-

schränkt.

Einige bestehende Systeme, wie z. B. Coda oder Bayou bieten gute Ansätze, um das

Synchronisierungsproblem einzugrenzen, sind jedoch unzureichend in einigen Punk-

ten. Als nützlich erwiesen sich das System BASE, das die Konsistenz des verteilten

Systems sicherstellt und IceCube, das auftretende Konflikte auf der Anwendungs-

ebene beseitigt. Es wurde ein System benötigt, um diese beiden Entwicklungen

miteinander zu verzahnen.

So wurde zunächst die Infrastruktur mit den beteiligten Komponenten herauskris-

tallisiert. Das verteilte System besteht aus dem zentralen Speicher in der Cloud und

den geografisch verteilten Caches. So können Caches die gespeicherten Daten mit

der Cloud synchronisieren. Ist die Cloud nicht verfügbar, dann werden Aktualisie-

rungen über das Peer-to-Peer-Netzwerk ausgetauscht, in dem Caches miteinander

direkt kommunizieren. Auf diese Weise wurde die Verfügbarkeit der Daten und Aus-

fallsicherheit der Komponenten sichergestellt.

Darauf aufbauend wurde die Grundidee für die Problemlösung entwickelt. Die bei-
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den Systeme BASE und IceCube verwenden Operationen als grundlegende Elemen-

te. Operationen sind ausführbare Programmteile, mit denen das Lesen und Schrei-

ben der Daten ermöglicht wird. So greift eine Endanwendung über eine definierte

Schnittstelle auf den Cache zu und übergibt die Parameter für das Ausführen ei-

ner Operation. Anschließend wird der durch eine Operation geänderte Datensatz

mit BASE synchronisiert. Tritt beim Synchronisieren ein Konflikt auf, wird er mit

IceCube aufgelöst.

Ein wichtiger Punkt der Aufgabe, ist es die Gesamtkosten für den Einsatz der Lö-

sung zu reduzieren. Der Synchronisationsvorgang findet deshalb entsprechend einer

Optimierungsfunktion statt, die die Anzahl der Synchronisierungen reduziert, um

die Transferkosten zu senken, aber dabei die dadurch entstehenden Kosten für das

Lesen eines veralteten Datensatzes berücksichtigt.

Das Ergebnis dieser Arbeit ist eine ganzheitliche Middleware-Lösung, die das Syn-

chronisierungsproblem umfassend und effektiv reduziert. Die Implementierung der

Middleware zeigt, dass trotz der in Realität auftretenden Netzwerkpartitionierung

eine effiziente Synchronisation ermöglicht wird und Daten verfügbar und Konsis-

tent gehalten werden. Die Implementierung der Beispielanwendung beweist die Ef-

fektivität des Systems hinsichtlich der der Möglichkeit, Daten zu verarbeiten, der

Synchronisierung, sowie der Konfliktauflösung.

Die Evaluierung bestätigt die Kosteneffizienz. Dabei wurde festgestellt, dass eine

größere zu synchronisierende Datenmenge, eine größere Synchronisierungshäufigkeit

und die geringere Kosten für das Lesen eines veralteten Datensatzes am meisten

Optimierungsraum bieten und somit einen höherer Erparnis-Wert erreicht wird.

I. Foster prophezeit in [FZRL08], dass Cloud Computing und Client Computing

werden in Zukunft stärker ausgeprägt sein und dementsprechend Themen wie Netz-

werkpartitionierung, Caching und Replizierung eine stärkere Rolle spielen werden

als bisher. Aus dieser Perspektive ist diese Lösung zukunftssicher und bildet eine

Basis für spätere wissenschaftliche Arbeiten. Nachfolgend werden konkrete wissen-

schaftliche Arbeiten vorgeschlagen, die auf dieser aufbauen können.
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7.2 Ausblick auf weitere Arbeiten

Dieses System kann dafür dienen, Daten mit Hilfe von Operationen sowohl im Roh-

zustand, als auch anwendungsspezifisch zu erfassen und zu untersuchen. Es ist also

möglich, Sensordaten mit weiteren Daten aus dem Kontext des Systems zu ver-

binden. Somit können sie semantisch gekennzeichnet werden. Ohne das Wissen der

Anwendungssemantik ist es sehr schwierig, hochwertige semantische Metadaten zu

produzieren. Deshalb wäre es in einer wissenschaftlichen Arbeit zu untersuchen, wie

Metadaten mit Operationen auf semantischer Ebene erfasst und den verarbeitenden

Anwendungen übermittelt werden können.

Es ist möglich, eine zusätzliche Komponente zu entwickeln, die die Reihenfolge der

Operationen beim Zusammenführen der Änderungshistorien mit Hilfe einer Gram-

matik prüft. Die Grammatik muss dabei die Standardabläufe des Systems, d. h.

die Operationsabfolgen beschreiben, um möglichst viele Fälle zu berücksichtigen.

Sie würde einerseits den Suchraum für die korrekten Reihenfolgen der Operationen

eingrenzen, andererseits würde sie die Korrektheit der Zusammenführung sicher-

stellen. Somit wird eine Effizienzsteigerung erzielt und die Korrektheit bestätigt. Es

muss untersucht werden, welche Vorteile die Erweiterung bringt und welche Nach-

teile müssen in Kauf genommen werden. Dies kann in Form einer weiterführenden

Arbeit geschehen.

Diese Arbeit bietet Freiraum, um weitere Forschungen für eine verbesserte Konflikt-

auflösung oder Datenerfassung zu betreiben. Das System bietet eine flexible Basis,

um neue Algorithmen, die im Laufe der Forschung entwickelt werden, einfach an-

zuschließen und in der Praxis zu testen. Somit stellt die Lösung in der Praxis ein

nützliches System dar und in der Forschung eine Basis für weitere Arbeiten.
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