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Kurzfassung

Cloud Computing iiberzeugt immer mehr durch seine Vorteile, wie z. B. Verfiig-
barkeit, Skalierbarkeit und Kosteneffizienz. Ein aktuelles Forschungsthema ist die
Synchronisation der Daten mit Cloud-Rechenzentren. In dieser Arbeit betrachten
wir daher Aspekte, die bei diesem Problem im Mittelpunkt stehen. Zuerst werden
in dieser Arbeit theoretische Grundlagen und aktuelle Technologien untersucht. An-
schlieBend wird das hier betrachtete Synchronisations-Problem genauer beschrieben
und potentielle Losungsanséitze vorgestellt. Das Ziel ist es, die lokalen Datenbank-
systeme durch den Einsatz des Cloud Computings iiberfliissig zu machen und dabei
die Vorteile des lokalen Datenbanksystems zu behalten. Es werden eine Architektur
und Mechanismen entwickelt, ein Ausschnitt der Losung implementiert und evalu-
iert. Abschliefend wird die Arbeit zusammengefasst und ein Ausblick auf mogliche
zukiinftige Arbeiten gegeben.
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Einleitung 1

1 Einleitung

Seit 2007 wird das neue Paradigma ,,Cloud Computing“ immer beliebter. Mit Cloud
Computing lassen sich I'T-Infrastrukturen dynamisch iiber das Netzwerk bereitstel-
len. Die Leistungen koénnen jederzeit an den momentanen Nutzungsbedarf angepasst
werden. Auch bei der Verwendung von Cloud Computing miissen verteilte Daten
synchronisiert werden, jedoch hat Cloud Computing gewisse Vorteile, sodass man
das Problem der Synchronisation unter einem anderen Blickwinkel betrachten kann

und somit die Moglichkeit hat, bessere Synchronisierung zu realisieren.

Im néchsten Abschnitt beschéftigen wir uns mit der Datensynchronisierung und dem
Cloud Computing - den Themen, die die Motivation dieser Arbeit darstellen. Dabei
kldren wir den Begriff ,,Cloud Computing®, diskutieren, welche Vor- und Nachteile
das Cloud Computing mit sich bringt und welche Rolle es in dieser Arbeit spielt.
Anschlielend wird die Aufgabenstellung dieser Arbeit beschrieben. Am Ende des
Kapitels folgt ein Uberblick iiber das gesamte Dokument.

1.1 Motivation

Cloud Computing liegt aktuell im Trend fiir die Bereitstellung der I'T-Infrastrukturen.
Die Abbildung 1 stellt die Nutzerstatistik der Google-Suchfunktion beziiglich des
Begriffs Cloud Computing dar. Man erkennt, dass ab September 2007 das Interesse
an Cloud Computing stetig wuchs, bis der Hohepunkt im Mé&rz 2011 erreicht wur-
de. In Abbildung 2 lédsst sich feststellen, dass das Interesse an Cloud Computing
weiterhin wéchst. Statistisch &uflert es sich jedoch durch Suchanfragen fiir konkrete

Cloud-Anbieter.

Immer mehr Firmen lagern ihre Dienste und Daten in die Cloud aus und oft muss
ein Teil dieser Daten auch lokal vorhanden sein. Entsprechend ist Datensynchroni-

sierung ein wichtiges Thema, auf das im Folgenden eingegangen wird.

1.1.1 Datensynchronisierung

Die Datensynchronisierung wird zwangsweise dann bendétigt, wenn gleiche Daten

iber das Netzwerk an mehreren Stellen gleichzeitig verteilt (d. h. repliziert) sind
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Abbildung 1: Suchanfragehaufigkeiten fiir den Begriff Cloud Computing. Die Such-
maschine Google erstellt eine Statistik zu einem gegebenen Begriff.

# Microsoft Azure
® Amazon EC2

JVNA’“AM

Abbildung 2: Eine Statistik fiir die Suchanfragen von zwei grofien Cloud-Anbietern.
Suchanfragehaufigkeiten fiir Begriffe Microsoft Azure und Amazon

EC2.

und an einzelnen Stellen gedndert werden, wodurch inkonsistente Datenzusténde

entstehen konnen.

,Leider muss die Replikation von Daten mit der Einschrankung erkauft
werden, dass es zu Konsistenzproblemen kommen kann, sobald mehrere
Kopien vorhanden sind.“ [T'S08]

Wird eine Datenkopie gedndert, dann miissen alle anderen Replikas die Anderung
durchfiihren, sonst divergiert die Konsistenz und die darauffolgenden Leseoperatio-

nen der verschiedenen Replikas ergeben unterschiedliche Ergebnisse.

,Daher sollte eine Aktualisierung, die an einer Kopie vorgenommen wur-

de, an alle Kopien weitergeleitet werden, bevor eine weitere Operation
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stattfinden kann.“ [TS08]

Das Problem der Datensynchronisation besteht schon ldnger und es wurden eini-
ge Algorithmen entwickelt, die das Problem weitgehend einschréanken. So existiert
das verteilte Dateisystem Coda, bei dem Daten zwischen den verteilten Rechnern
synchronisiert werden. IceCube ist eine Entwicklung, die Synchronisationskonflik-
te automatisch auflost. Dennoch existiert neben den einzelnen Entwicklungen ein

grofler Forschungsraum fiir das Synchronisierungsproblem.

Wie in jedem verteilten System kann es zu Verbindungsausfillen kommen, welche
zu der Unerreichbarkeit einiger Knoten fithren kénnen. Dieses konkrete Problem der
Synchronisierung ist in der Fachliteratur als ,Netzwerkpartitionierung* bekannt. In
dieser Arbeit wird ein besonderes Augenmerk darauf gelegt, die Auswirkungen der

Netzwerkausfalle einzuschranken.

Bevor die Details der Synchronisierungsmoglichkeiten in Kapitel 2 diskutiert werden,
beschéftigen wir uns mit dem Paradigma Cloud Computing und seinen Eigenschaf-

ten.

1.1.2 Cloud Computing

Definition

Bislang existieren nur frithe Definitionen fiir das Cloud Computing. So definieren

Wang et al. das Cloud Computing folgendermaflen:

»A computing Cloud is a set of network enabled services, providing sca-
lable, QoS guaranteed, normally personalized, inexpensive computing
platforms on demand, which could be accessed in a simple and pervasive
way.“ [WTK™08]

Eine alternative Definition des Cloud Computings wurde von Baun et al. [BKNT10]

wie folgt vorgeschlagen:

,Unter Ausnutzung virtualisierter Rechen- und Speicherressourcen und
moderner Web-Technologien stellt Cloud Computing skalierbare, Netzwerk-
zentrierte, abstrahierte IT-Infrastrukturen, Plattformen und Anwendun-

gen als on-demand Dienste zur Verfiigung. Die Abrechnung dieser Diens-
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te erfolgt nutzungsabhéngig.“ [BKNT10]
Foster et al.[FZRLO8] definieren den Begriff wie folgt:

»A large-scale distributed computing paradigm that is driven by eco-
nomies of scale, in which a pool of abstracted, virtualized, dynamically-
scalable, managed computing power, storage, platforms, and services are

delivered on demand to external customers over the Internet.“[FZRLO0S]

Aus den oben genannten Definitionen lassen sich folgende Haupteigenschaften ab-

leiten, die das Cloud Computing auszeichnen:
e Netzwerkbasiert und verteilt

Skalierbar

Virtualisierte Software

Garantierte QoS

Giinstige und leicht mietbare Hardware

Kosten sind Nutzungsabhingig

Plattformen, Rechenleistung und Speicher als Vertragsleistung entsprechend
SLA

Um das Bild zu vervollstdndigen, muss auch das Gegenstiick zu Cloud Computing
erwahnt werden. Es ist die lokale Ausfithrung der Dienste und wird als ,,on-premise
bezeichnet. Dabei ist die Hardware, auf der Dienste ausgefiihrt werden, vor Ort
fest installiert. Die Basis- und laufenden Kosten entstehen hauptséchlich durch die
Erstanschaffung, Administrierung und Wartung. Die Quality of Service hangt von
der jeweiligen Systemkonfiguration ab, die vom Administrator erstellt wird. Die
Software kann virtualisiert werden, jedoch fehlt dem Systembetreiber die Moglich-
keit, schnell zusétzliche Ressourcen hinzuzuschalten und somit die Skalierbarkeit zu

ermoglichen, um die Vorteile der Virtualisierung auszuschopfen.

Die Flexibilitét ist nur einen Vorteil des Cloud Computings. Weitere Vorziige dieses

Paradigmas sind im Folgenden beschrieben.

Vorteile

Aus den genannten Haupteigenschaften des Cloud Computings lassen sich folgende
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l_ |_ Kosten on-premise

L Kosten Cloud Computing
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| i >
Lastspitze 1 Lastspitze 2 t

Last und Kosten

Abbildung 3: Gegeniiberstellung der Kostenverteilung verschiedener Paradigmen.
Mit Cloud Computing lésst sich eine Kostensenkung erzielen.

Vorteile fiir den Cloud-Mieter feststellen. Mit Hilfe der Virtualisierung, kann die
Anderung der Hardwarekonfiguration auf eine effiziente Weise erfolgen, sodass das
System jederzeit flexibel bleibt. Die Infrastruktur und Mechanismen der Cloud un-
terstiitzen diese Moglichkeit und somit kann das System entsprechend der Konfigu-
rationsdnderung skalieren. Dies ermdglicht einem Cloud-Mieter eine Kostensenkung,
z. B. indem die Hardware-Konfiguration abhéngig von der Last des Systems gedn-
dert wird (Abbildung 3). Allgemein kann ein geringer administrativer Aufwand fir
den Cloud-Mieter verzeichnet werden, denn das iibernimmt der Cloud-Anbieter. Es
gibt keine Anschaffungskosten, denn Kosten fallen nur fiir die Miete an und werden
nur fiir die genutzten Ressourcen berechnet. Das Mieten der Ressourcen erfolgt da-
bei mit einem Mausklick. Cloud Computing {iberzeugt durch die hohe Verfiigharkeit,

die dem Cloud-Mieter vertraglich zugesichert wird.

Nachteile

Diesen Vorteilen miissen allerdings einige Nachteile entgegengesetzt werden. Das
wichtigste Thema ist die Absicherung der Daten vor Zugriffen Dritter. Aus diesem
Grund miissen laut [BCT08] und [FZRLO08] mit dem Cloud Computing-Anbieter
folgende Punkte geklédrt werden:

1. Wer den Zugriff auf gespeicherte Daten hat?
2. Wurde der Cloud-Anbieter auf sicheren Umgang mit fremden Daten gepriift?
3. In welchem Land werden Daten gespeichert?

4. Wie stark werden Daten von Daten anderer Kunden getrennt?
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5. Wie werden Daten repliziert und im Fehlerfall wiederhergestellt?

6. Welche Unterstiitzung bietet der Cloud-Anbieter den Ermittlern falls eine il-
legale Aktivitat stattfindet?

7. Welche Auswirkungen hat die Ubernahme des Cloud-Anbieters auf die Ver-
fiigbarkeit der Daten?

Des Weiteren sollte man bedenken, dass man von jedem beliebigen Internetanschluss
aus, alleine mit dem Administratorenpasswort des Cloud-Mieters alle Daten seines
Cloudsystems auslesen kann. Aber auch der Aspekt der Datenfreigabe soll beriick-
sichtigt werden. So muss entschieden werden, ob die sensiblen Daten in der Cloud
wirklich sicher sind und ausgelagert werden diirfen. Ob die Cloud fiir sensible Daten
geeignet ist, ldsst sich generell nicht entscheiden und héngt vom jeweiligen Cloud-
Anbieter ab. Eine allgemeine Empfehlung ist es, die Daten in der Cloud mit einem
unabhéngigen System und Passwort zu verschliisseln (vgl. [Rei01]) und sensible Da-

ten lokal zu halten.

In diesem Abschnitt wurden die Motivation dieser Arbeit und einige Details zu
den hier verwendeten Begriffen erortert. Im néchsten Abschnitt wird die konkrete

Aufgabenstellung dieser Arbeit prisentiert.

1.2 Aufgabenstellung

Die Aufgabenstellung besteht aus bestimmten Zielen, die im Folgenden formuliert
sind. Dabei wurden einige Schwerpunkte gesetzt, um die wichtigsten Punkte der

Arbeit tiefgehend zu bearbeiten.

1.2.1 Ziele

Das Ziel dieser Arbeit ist es, bestehende Konzepte und Algorithmen zu untersuchen
und neue zu entwickeln, sodass der lokale Datenzugriff und die lokale Datenspei-
cherung ohne Verwendung einer lokalen Datenbank realisiert werden und dabei die
Vorteile dieser sichergestellt werden, wie z. B. Zuverlassigkeit, Leistung und OfHi-

netauglichkeit.

Es sollen eine Architektur und einige Mechanismen entworfen, sowie der Konsis-
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tenzbegriff definiert werden. Es sollen optimierte Methoden fiir den Zugriff, die
Bereitstellung und die Synchronisierung der Daten entworfen, implementiert und
evaluiert werden. Einerseits sollen Algorithmen die Konsistenz der Daten sichern,
andererseits sollen Kosten fiir das Speichern der Daten in der Cloud und die Kommu-
nikation zwischen der Cloud und on-premise-Komponenten entsprechend iiblichen

Kostenmodellen minimiert werden.
Dabei sollen folgende Punkte bearbeitet werden:

1. Untersuchen der verwandten Arbeiten aus dem Bereich Datenverwaltung und

Cloud Computing
2. Analysieren und Definieren des Konsistenzbegriffs und der Optimierungsziele
3. Entwerfen des Systems

4. Entwerfen der Algorithmen fiir die Synchronisierung entsprechend dem Kon-

sistenzbegriff und den Optimierungszielen

5. Implementieren und Auswerten des erstellten Ansatzes, bzw. eines gewéhlten

Ausschnitts (Zielumgebung: Windows Azure und Microsoft SQL Server)

Schwerpunkte

Der grundlegende Schwerpunkt dieser Arbeit liegt auf der Entwicklung der Grun-
didee, sowie des Entwurfs eines Systems, das Daten mit der Cloud synchronisiert,
speichert und fiir lokale Endanwendungen verfiighar macht. Ein weiterer Schwer-

punkt ist es, den finanziellen Aufwand fiir die Dateniibertragung zu reduzieren.

Im Folgenden wird das zu erstellende System von anderen abgegrenzt, um die Ziele

zu konkretisieren.

1.2.2 Abgrenzung zu verwandten Arbeiten

Viele Ansétze enthalten bereits komplexe Synchronisierungsmechanismen, jedoch
nutzen sie die Moglichkeiten des neuen Paradigmas Cloud Computing nicht, das

viel Potential fiir die Optimierung der Ressourcennutzung und der Ablaufe bietet.

In dieser Arbeit werden im Gegensatz zu den im Abschnitt 2 vorgestellten Algo-

rithmen besondere Eigenschaften des Cloud Computings genutzt und die Ansétze
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der manchen hier beschriebenen Mechanismen so miteinander verzahnt, dass eine
bessere Synchronisation der Daten ermdéglicht wird. Die beschréankte, aber hohe und
durch SLA garantierte Verfiigbarkeit der Cloud spielt eine wichtige Rolle bei der
Wahl, der Zusammensetzung und der Entwicklung von Synchronisationsmethoden.
Zusammen mit dem sicheren Speicher in der Cloud ergibt sich eine zuverléssige zen-
trale Stelle im System, die Daten fiir alle Teilnehmer bereitstellt. Dies schafft Mog-
lichkeiten fiir die Neuentwicklung der Algorithmen aus dieser Perspektive. In der
bisherigen Sichtweise gelten zentrale Stellen aufgrund der Single-Point-of-Failure-
Problematik als unsicher. Die Alternative stellen Peer-to-Peer-Systeme dar, bei de-
nen die Konsistenzerhaltung der Daten aufgrund des hohen Verteiltheitsgrades ein
Problem darstellt, das nur eingegrenzt werden kann. Mit dieser Arbeit eréffnen sich

neue Moglichkeiten, Daten konsistent und verfiigbar zu machen.

Der néchste Abschnitt priasentiert den Aufbau des Dokuments und Hauptthemen
der néchsten Kapitel.

1.3 Uberblick iiber das Dokument

Nachdem ein Uberblick iiber bestehende Systeme im Kapitel 2 gegeben wird, be-
schéftigt sich das darauffolgende Kapitel 3 mit der Konkretisierung der Aufgaben
des Produkts, sowie der Einordnung der Losung in die Systemumgebung. Anschlie-
Bend wird das System im Kapitel 4 entworfen und die Komponenten werden einzeln
beleuchtet. Danach wird im Kapitel 5 auf die Besonderheiten und Details der Im-
plementierung eingegangen. Die Mechanismen des Systems werden dann im Kapitel
6 ausgewertet und es wird die Kosteneffizienz des Systems untersucht. AbschlieBend
werden alle Ergebnisse, Ideen und andere wichtigen Aspekte zusammengefasst und

ein resultierendes Fazit im Kapitel 7 gezogen.
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2 Verwandte Arbeiten

In diesem Kapitel werden verwandte Arbeiten, aus dem gleichen Forschungsbereich
wie diese Arbeit, beschrieben. Er dient dafiir, die existierenden Mechanismen vor-
zustellen, um den aktuellen Stand der Forschung zu vermitteln. Viele Algorithmen

werden in dieser Losung vollstéandig oder teilweise eingesetzt.

Zunéchst werden generelle Losungsansétze beschrieben, die in der Theorie die Grund-
lage fiir die praktischen Losungen bilden. Anschlieend werden die konkreten Aus-

priagungen der Algorithmen, die in der Praxis eingesetzt werden, vorgestellt.

2.1 Generelle Losungsansatze zur Erlangung von Konsistenz

Im vorausgehenden Kapitel wurde die Herausforderung eines Konflikts deutlich ge-
macht. Konflikte miissen entweder verhindert oder aufgelost werden. Dies kann auf
verschiedene Weisen geschehen. Einige Strategien, mit denen die Konsistenz erhal-
ten werden kann, sind: Locks, ACID-Transaktionen und Read-Write-Quorums. Die
bereits entstandenen Konflikte kénnen mit Last Write Wins aufgelost werden. Im
Folgenden werden diese Algorithmen einzeln vorgestellt, sowie die Vor- und Nach-

teile erortert.

2.1.1 Locks

Hierbei wird ein Datensatz vor seiner Bearbeitung von einem Prozess mit einem
Lock versehen. Nur dieser Prozess hat dann die Berechtigung den Datensatz zu be-
arbeiten. Anschliefend wird das Lock aufgehoben und der Datensatz fiir das Sperren

vom gleichen oder einem anderen Prozess freigegeben.

Es gibt zwei Arten von Locks: Write-Locks und Read-Write-Locks. Bei einem Write-
Lock ist nur der lesende Zugriff fiir andere Prozesse erlaubt und bei einem Read-
Write-Lock diirfen andere Prozesse weder lesend noch schreibend auf den Datensatz

zugreifen.

Der Vorteil liegt in der Eindeutigkeit des Zugriffsberechtigten. Es werden Konflikte
vermieden, indem erst gepriift wird, ob der Zugriff auf den Datensatz erlaubt ist.

Andererseits entstehen Wartezeiten fiir andere Prozesse, bis der Datensatz wieder
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freigegeben wird. Diese Wartezeit kann sich auf die Gesamtleistung des betroffenen
Systems auswirken, wenn Programmabliufe mit dem betroffenen Datensatz kausal

zusammenhédngen.

2.1.2 ACID-Transaktionen

ACID ist eine Abkiirzung fiir Atomicity, Consistency, Isolation, Durability. Es ist ein
Verfahren, um Datenzugriffe auf mehreren verteilten Rechnern atomar auszufiihren
und somit die Datenkonsistenz im System zu erhalten. Die Bedeutung der einzelnen
Aspekte ist wie folgt [Pri08]:

e Atomicity - Das alles-oder-nichts-Prinzip, Anderungen werden entweder iiber-
nommen, oder verworfen. Es ist wichtig, um die Transaktionslogik herzustel-

len.

e Consistency - die Integritatsbedingungen der Datenbank werden vor und nach

der Transaktion aufrecht erhalten.

e Isolation - Abgrenzung der einzelnen Operationen an der Datenbank, sodass

sie sich nicht beeinflussen.

e Durability - Daten werden nach dem Abschluss einer Transaktion dauerhaft

gespeichert und Anderungen werden nicht riickgingig gemacht.

Zunéchst wird ein Abkommen zwischen allen Beteiligten getroffen, ob eine Trans-
aktion durchgefiithrt wird. Erst wenn alle zustimmen, wird sie von allen Beteiligten
durchgefiihrt. Bei mindestens einer Gegenstimme wird die Transaktion von keinem

Beteiligten durchgefiihrt.

Der Nachteil bei diesem verfahren ist, dass alle Beteiligten im System verfiigbar sein

miissen. Der Ausfall eines Beteiligten verursacht bei allen anderen Wartezeiten.

2.1.3 Read-Write-Quorums

Bei diesem Verfahren entscheidet die Mehrheit der Replikas eine gemeinschaftliche
Wahl, die sich auf alle Teilnehmer auswirkt. Dabei gibt es folgende Entscheidungs-
kriterien, um Read- und Write-Operationen zu vollziehen: ,Majority“, , Read One

Write All“. Bei Majority miissen mindestens % + 1 Knoten jeder Operation zustim-
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men. So muss bei einer Write-Operation die Mehrheit die gleiche Datendnderung
durchfithren. Geben bei einer Read-Operation nicht alle % + 1 Knoten die Gleiche
Datensatzversion zuriick, dann muss es eine andere Version geben, die mehr als die
Hilfte aller Knoten hat. Bei Read One Write All muss jede Read-Operation nur

einen Knoten involvieren, dagegen eine Write-Operation die Gesamtheit.

Die Quorums sind in Abbildung 4 visualisiert.

Lese-Quorum

Schreib-Quorum

Abbildung 4: Anschauliche Darstellung des Read-Write-Quorums. Die einzelnen Re-
plikas sind als Buchstaben dargestellt. Mit den Blécken, die Replikas
gruppieren, sind die Stimmen fiir das Lesen und Schreiben dargestellt.
Jede Replika hat nur eine Stimme. [TS08]

Der Vorteil ist, dass dieses Verfahren ein gerechtes Lesen und Schreiben in einem

dezentralen Speicher ermdoglicht, ohne Konflikte zu verursachen.

Der Nachtteil dabei ist, dass fiir ein Write und ein Read mehr als die Hilfte aller
Replikas kontaktiert werden miissen. In einem System mit vielen Replikas verur-
sacht dieses Vorgehen einen enormen Kommunikationsaufwand. Des Weiteren muss
Wissen dariiber vorliegen, wie viele Knoten, die momentan nicht verfiighar sind, am
System teilnehmen, wenn sie wieder online gehen und welche Dateiversion sie haben.
Liegt dieses Wissen nicht vor, dann kann nicht beurteilt werden, ob ein ausreichen-
der Prozentsatz der Stimmen abgegeben wurde, um eine Operation durchzufiihren.
In einem statischen System kann dieses Wissen mit Hilfe einer Registrierungsrou-
tine erlangt werden. Im hochdynamischen System ist dieses Wissen dagegen nicht
greifbar, deshalb kann dieser Algorithmus nicht eingesetzt werden. Es gibt auch
einen weiteren Nachteil: Ist mehr als die Hélfte aller Knoten nicht verfiighar, dann

kann entweder nicht geschrieben oder nicht gelesen werden. Somit kann der verteilte
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Speicher nur eingeschrinkt verwendet werden.

2.1.4 Last Write Wins

Dies ist wohl die einfachste Strategie, bei der allerdings vorausgesetzt wird, dass
Uhren der Teilnehmer synchron sind. Es werden die Zeitstempel der letzten Ande-
rung der Eintrdge verglichen. Dabei ,, gewinnt® der jiingste Eintrag. Der Vorteil ist,
dass eine einfache Logik benotigt wird, um die Auflésung zu vollziehen. Anderer-
seits wird dabei der éltere Eintrag vollig ignoriert. In den meisten Systemen hat
jeder Eintrag eine lokale Wirksamkeit und globale Bedeutung und darf somit nicht

ignoriert werden.

2.1.5 Zusammenfassung

Es wurden die theoretischen Losungsansitze vorgestellt. Die Auflistung offenbart,
dass sie aufgrund gewisser Nachteile das Problem der Synchronisation nicht 16sen,
sondern nur eingrenzen. Im néchsten Abschnitt werden die wichtigsten praktischen
Mechanismen préasentiert, die teilweise auf diesen Mechanismen aufbauen. Sie setzen

komplexe Logik ein, um das Problem noch weiter einzugrenzen.

2.2 Konkrete Losungen aus der Praxis

In diesem Unterkapitel werden verschiedene Synchronisierungsalgorithmen vorge-
stellt. Die Arbeiten sind nach ihrer Komplexitit aufsteigend sortiert. Zuerst behan-
deln wir die einfachen Algorithmen, bei denen der Datenaustausch nur eine 1:1-
Beziehung voraussetzt. Danach werden Peer-to-Peer- und Client-Server-basierten
Dateisysteme beleuchtet. Abschlieflend untersuchen wir komplexe Algorithmen, die
iiber eine innovative Konfliktauflosung mittels Logs verfiigen. Es werden folgende
Verfahren beleuchtet: Rsync, Rumor, Roam, Coda, Bayou, SyncML, BASE und
IceCube. AnschlieBend werden ein Uberblick und eine Bewertung dieser Verfahren

gegeben.
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2.2.1 Rsync

Der Rsync-Algorithmus kann zwei Dateien miteinander synchronisieren. Es ist ein
Client-Server-System, bei dem Dateiteile vom Client auf den Server iibertragen wer-
den. Dabei wird bei einer Anderung nicht die vollstandige Datei nochmals iibertra-
gen, sondern nur der gednderte Teil. Um dies zu erreichen, wird die zu iibertragene
Datei in Blocke aufgeteilt und die Checksummen der Blocke werden berechnet. An-
schlieBend werden die Checksummen der Datei auf dem Client mit den Checksum-
men der Datei auf dem Server abgeglichen. Unterschiedliche Blocke werden ausge-

tauscht. [TM96]

Bei Rsync handelt es sich um einen grundlegenden Algorithmus, bei dem, aufgrund
der 1:1-Beziehung und der unidirektionalen Kommunikation (vom Client zum Ser-

ver) keine Konflikte entstehen und somit aufgelost werden miissen.

2.2.2 Rumor

Rumor ist ein Algorithmus, um Dateien zwischen mehreren Rechnern mit Hilfe der
Peer-to-Peer-Kommunikation zu synchronisieren. Ist eine Datenkopie, auch Replika
genannt, nicht erreichbar, dann werden Daten trotzdem mit anderen Replikas iiber
Peer-to-Peer-Verbindungen abgeglichen. Fiir das Vergleichen und Aktualisieren der
Daten verschiedener Replikas werden Versionsvektoren verwendet. Sobald die aus-
gefallene Replika wieder verfiighbar wird, werden Datenaktualisierungen auch dort
iibernommen. Sollte es Konflikte beim Synchronisieren geben, z. B. wenn eine Datei
an zwei Replikas gleichzeitig gedndert wurde, dann wendet Rumor einen automa-
tischen Mergealgorithmus' an, der fiir wenige Dateitypen bereitsteht. Es gibt eine
Schnittstelle, um weitere Merge-Algorithmen hinzuzuschalten. Steht kein Merge-
Algorithmus fiir eine konfliktbehaftete Datei bereit, dann kann der Konflikt nicht
automatisch aufgelost werden. In diesem Fall werden beide Dateiversionen beibe-
halten und der Benutzer muss den Konflikt manuell auflésen.[Rei] [GRR99]

Rumor unterstiitzt auch selektive Synchronisation. Das heifit, dass Replikas nicht

!Ein Mergealgorithmus erhiilt als Eingabe verschiedene Versionen des konfliktbehafteten Da-
tensatzes und gibt einen konfliktfreien Datensatz zuriick. Der Vorgang ist in der englischen
Literatur als ,reconciliation“ bekannt. In einem verteilten System mit der lockeren Konsistenz
konnen Konflikte oft auftreten, aus diesem Grund ist das Thema reconciliation von besonderer
Bedeutung fiir diese Arbeit.
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die gleiche Dateimenge abdecken miissen, sondern dass auch Teile der Dateimenge
synchron gehalten werden kénnen (Abbildung 5). [GRR99]

-
\) ~

A

Replka 2

/
Replka 1 A

Replka 3

Replka 4

&

Abbildung 5: Datenmengenabdeckung bei einer selektiven Synchronisation.. A, B,
C und D stellen die Datenteile dar. Verschiedene Replikas bilden un-
terschiedliche Datenmengen ab. Die Daten sind dennoch, in diesem
Fall, an mindestens zwei Stellen repliziert.

2.2.3 Roam

Roam wurde extra fiir mobile Gerite entwickelt. Das System wendet das Ward-
Vorgehen an, das dem Ultrapeer-System beim Gnutella-Netzwerk? dhnelt. So haben
geografisch verteilte Replikas innerhalb einer geografischen Zone (auch Wards ge-

nannt, das fiir ,wide area replication domains* steht) einen Vertreter (genannt Ward

2Gnutella ist ein Peer-to-Peer-basiertes Overlaynetzwerk, bei dem es moglich ist, Dateien auszut-
auschen. Weitere Informationen iiber das Flooding mit Hilfe der Ultrapeers kénnen in [LHSHO05)
gefunden werden.



Verwandte Arbeiten 15

Master), der mit anderen Vertretern des Gesamtsystems kommuniziert. Innerhalb
einer geografischen Zone synchronisieren sich die Replikas selbststédndig, indem sie
einen Kommunikationsring bilden und die Anderungen iiber die entstandenen Kané-
le austauschen. [Rat98] [RRPKO01]

Roam zeichnet sich durch bessere Skalierbarkeit gegeniiber dem Rumor-System aus.
Das wird am Anstieg des Festplattenspeicherverbrauchs pro hinzugefiigte Replika
sichtbar [Rat98]. Des Weiteren berufen sich Ratner et al. darauf, dass Konflikte laut
[RHR194] selten sind. Und wenn sie stattfinden, dann gibt es eine Art Brennpunkt,

sodass der Konflikt nur wenige Replikas tangiert.

2.2.4 Coda

Coda ist ein Client-Server-System fiir das verteilte Speichern von Volumes. Volu-
mes stellen ein Teil des Dateisystems dar, z. B. kann ein Volume aus einem Ordner
mit Unterordnern und Dateien bestehen. Ein Coda-System besteht aus mehreren
verteilten Servern, die Daten replizieren, sowie aus Clients, die auf diese Server zu-
greifen (Abbildung 6). Eine Peer-to-Peer-Verbindung zwischen den Clients ist nicht
vorgesehen, nur zwischen den Servern [Rat98]. Dabei ist das Protokoll fiir repli-
ziertes Schreiben ROWA (Read-One, Write-All). Das Problem der Netzwerkparti-
tionierung wird dadurch gelindert, dass ein Client auf einen der noch verfiigbaren
Server in seiner Nahe zugreifen kann. Die Konflikte werden nach dem Beheben der

Netzwerkpartitionierung mittels Versions-Vektoren erkannt. [T'SOS]
In Coda besteht der Konfliktresolutionsalgorithmus aus vier Schritten:
e Lock des betroffenen Datensatzes
e Sammeln und Zusammenfiihren der Anderungen
e Verteilen und Anwenden der Anderungen
e Aufheben des Locks

Zuerst wird der Datensatz vor Anderungen geschiitzt. Als Nichstes werden alle
Anderungen des Datensatzes auf einem, fiir die Aktion ausgewihlten, Server ge-
sammelt und zusammengefiihrt. Das Ergebnis der Zusammenfiithrung wird an alle
Server verteilt. Diese wenden mittels entsprechenden Algorithmen die Anderungen

an. Anschliefend wird das Lock auf allen Servern aufgehoben und Clients diirfen
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|

Client
A

Unterbrochenes | Client
Netzwerk B

Abbildung 6: Darstellung einer moglichen Aufteilung der Server und Clients fiir das
Dateisystem Coda. Clients verfiigen iiber einen lokalen Cache mit der
LRU3-Ersetzungsstrategie. Die als ,sticky* markierten Dateien bleiben
immer im Cache und werden nicht ersetzt. [SKK*90] [T'S08]

Daten wieder éndern, aufler es ist ein Konflikt aufgetreten, denn dann wird allen
Clients ein Konflikt gemeldet. Konflikte werden manuell korrigiert. Wird eine ma-
nuelle Korrektur des Konflikts wiahrend der Netzwerkpartitionierung ausgefiihrt,
dann wird nach der Wiederverbindung erneut ein Konflikt an demselben Datensatz

gemeldet, der wieder aufgelost werden muss.[KS93]

In [KSS94] wurde ein erfolgreicher Versuch unternommen, Konflikte in Coda auto-
matisch aufzulosen. Es wurde ein ,,application-specific resolver* implementiert, der

die Aufgabe auf der Anwendungsebene bewéltigt.

2.2.5 Bayou

Bayou ist eine verteilte Datenbank, die auf einer Peer-to-Peer-Infrastruktur auf-
setzt und {iber eine anwendungsspezifische Konfliktauflosung verfiigt. Mit diesem

Algorithmus kann man relationale Daten, sowie Flatfiles replizieren. [Rat98§]

Das System ist dynamisch und Teilnehmer kénnen hinzugefiigt oder entfernt werden.
Die Trennung zwischen Client und Server ist unscharf, jeder Teilnehmer des Systems
erlaubt es einem anderen, auf Daten lesend und schreibend zuzugreifen. Alle Daten-
anderungen werden mit einem Flooding-dhnlichen Mechanismus an alle Teilnehmer
verteilt. Bei jedem Schreibvorgang wird die Operation auf anwendungsspezifische

Konflikte untersucht. Konflikte werden dabei mit Hilfe der Versionsvektoren und
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Zeitstempel aufgespiirt. Fiir die Konfliktauflosung, wird eine Funktion ,, mergeproc*

aufgerufen, die das Problem auf der Anwendungslogik-Ebene beseitigt. [DPST94]

Bei einer Anderung wird der entsprechende Datensatz als ,vorldufig* (engl. ten-
tative) gekennzeichnet, bis sie auf einem der Primary Server iibernommen wurde.
Primary Server sind gewohnliche Teilnehmer, die gesondert gekennzeichnet sind. So-
bald die Anderung auf einem Primary Server iibernommen wurde, gilt der Datensatz
als ,ausgeliefert” (engl. committed). Die Anwendungen, die Bayou verwenden, ken-
nen diese zwei Datenzustdnde und konnen zwischen den zwei Konsistenzgraden der
Daten selbst wéhlen. [DPS*94]

Arbeiten die Anwendungen mit committed-Daten, dann wird die Konsistenz ge-
wahrt, jedoch muss einige Zeit vergehen, bis tentative-Daten repliziert werden, um
abschliefend als committed gekennzeichnet zu werden. Verwenden Bayou-Anwendungen
die tentative-Daten, dann miissen sie beriicksichtigen, dass an diesen Daten ein Kon-

flikt gemeldet werden kann und sie somit fiir ungiiltig erklédrt werden.

Aufgrund der Datenreplikation kann es vorkommen, dass eine Anwendung Daten auf
einen Server geschrieben hat und spéter veraltete Daten vom anderen Server liest,
die aus der Sicht des Servers als committed gelten. ,,Session Guarantees” stellen in

Bayou folgende vier Eigenschaften des Systems sicher [TDP*94]:

e Read your writes - Beim Lesen werden nicht &ltere Daten zuriickgegeben, als

die, die vom Client gespeichert wurden.

e Monotonic reads - Es werden keinesfalls &dltere Daten zuriickgegeben, als die,

die bereits gelesen wurden.

e Writes follow reads - Geschriebene Daten stehen immer in einer Abhéngigkeit

zu den zuvor gelesenen Daten.

e Writes follow writes - Daten werden aktualisiert und keinesfalls durch altere

wieder iiberschrieben.

2.2.6 SyncML

Aufgrund des stetigen Wachstums an mobilen Geréiten, steigt auch der Bedarf, Da-
ten zwischen den Gerédten auszutauschen. Dabei verwenden Benutzer Geréte ver-

schiedener Hersteller und wollen auf die Synchronitédt ihrer Daten nicht verzichten.
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Deshalb entstand SyncML - ein offener Standard fiir die Datensynchronisation. Die
Daten konnen Eintrage in Kalendern, E-Mails, aber auch Kundendaten der Kunden-
managementtools sein. SyncML unterstiitzt uni- und bidirektionale Kommunikation,

unabhingig vom Ubertragungsprotokoll. [JNO1]

Auch bei der Verwendung des SyncMLs konnen Konflikte auftreten. Die Konflikt-
auflosung beschrénkt sich auf drei Methoden [HMPTO03]:

e Daten des Clients werden immer iibernommen - ,,Client gewinnt*
e Daten des Clients werden immer verworfen -  Server gewinnt*
o Zuletzt gedinderte Daten werden {ibernommen - ,Letzte Anderung gewinnt®

Weitere Konfliktauflosungsstrategien sind nicht vorgesehen, denn das ist nicht der

Schwerpunkt des Standards:

,In our approach, the job of change capture is weighted over others,
because if a change is missed, it can not be remedied until the next
change occurs at the same object.“ [YYLWOS§]

2.2.7 BASE

Es gibt ein CAP-Theorem, das besagt, dass die Konsistenz (Consistency), die Ver-
fiigharkeit (Availability) und die Partitionierungstoleranz (Partition tolerant) sich
gegeniiberstehen. Es wurde in [GL02] bewiesen, dass Webdienste hochstens zwei

Aspekte in einem verteilten System sicherstellen kénnen. [Pri08]

e Konsistenz und Verfiigbarkeit:
Wenn ein System eine harte Konsistenz und hohe Verfiigbarkeit bieten soll,
ist es nicht tolerant gegeniiber der Netzwerkpartitionierungen, denn dann blo-
ckiert das System, bis alle Datenkopien wieder erreichbar sind, um die Kon-

sistenz nicht zu verletzen.

e Konsistenz und Partitionierungstoleranz:
Wenn eine starke Konsistenz und die Partitionierungstoleranz erreicht wer-
den soll, dann kann die hohe Verfiigharkeit durch Replizierung nicht erreicht

werden.

e Verfiigharkeit und Partitionierungstoleranz:
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Der andere Fall wére die Sicherstellung der Verfiigharkeit und der Partitionie-
rungstoleranz. Wird das Netzwerk partitioniert, dann wird die Verfiigharkeit
durch einen lokalen Cache gesichert. Ohne eine Netzwerkverbindung kann sich
der lokale Cache mit dem Datenserver nicht synchronisieren, was zu der Da-

tendivergenz fithrt und somit die Konsistenz verletzt wird.

Mit dem Zweiphasencommit-Protokoll [T'S08| kénnen die ersten zwei ACID-Eigenschaften
sichergestellt werden - die Transaktionen werden atomar durchgefiihrt und iiber-
fithren das System in jedem Fall in einen konsistenten Zustand. Jedoch wird da-
bei entsprechend dem CAP-Theorem nur die Konsistenz sichergestellt. Der Zwei-
phasencommit sieht keine Verfiigharkeits- und Netzwerkpartitionierungstoleranz-

Mechanismen vor.

BASE steht fiir ,basically available, soft state, eventually consistent* [Pri08]. Bei
diesem Ansatz wird versucht, ein Kompromiss zwischen den drei CAP-Punkten zu
finden. BASE stellt mit dem optimistischen Ansatz das Gegenteil zu der pessimis-
tischen ACID-Alternative dar. BASE speichert nicht nur Daten-Snapshots, sondern
auch den Aktionslog. Eine Transaktion besteht nicht aus einem Update von Daten,
wie es bei ACID der Fall ist, sondern aus dem Update der Transaktionslog-Tabelle
und dem Einreihen der Datenupdate-Kommandos in sichere Message Queues. Damit
ist die Transaktion abgeschlossen. Die Message Queues werden Schritt-fiir-Schritt
abgearbeitet. Dariiber hinaus sind Ereignisbenachrichtigungen der Applikation beim
Abarbeiten der Queues moglich. [Pri0§]

Da man davon ausgeht, dass sichere Message Queues in einer endlichen Zeit ab-
gearbeitet werden, ist somit Eventual Consistency gegeben. Eventual Consistency
bedeutet, dass das System einen konsistenten Zustand der Daten anstrebt und ihn

bei Ausbleiben von weiteren Anderungen, nach einiger Zeit erreicht [TS08].

2.2.8 IceCube

IceCube ist ein Ansatz, Daten auf der Middleware-Ebene zu synchronisieren. In
[PB99] wurde der Vorteil der aktionsbasierten Synchronisation iiber der zustands-
basierten Synchronisation hervorgehoben. So spielen auch in IceCube Aktionen die
zentrale Rolle. Dabei werden alle auszufithrenden Aktionen an Daten in einem Log
festgehalten (&hnlich wie im BASE-Ansatz). Die Aktionen in IceCube haben vier
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Eigenschaften [KRSDO1]:
e Zielobjekt - Das Objekt fiir die auszufithrende Aktion, z. B. eine Datei

e Vorbedingung - Eine boolesche Funktion, die berechnet, ob sich das Zielobjekt
in einem fiir die Operation passenden Zustand befindet, z. B. die Datei ist nicht
grofer als 100KB

e Operation - Funktion, die Auswirkungen auf das Objekt und seine Umgebung

bewirkt, z. B. Daten in die Datei hinzufiigen

e Anhang - Alle zur Aktion zugehorige Daten, z. B. Parameter fiir die Vorbe-

dingungen und die Operation

Beim Synchronisieren werden die Logs einzelner Replikas in einem konfliktfreien Log
zusammengefiithrt und schlieflich werden Daten entsprechend dem Log gedndert.
Tritt beim Zusammenfiihren der Logs ein Konflikt auf, dann wird die Reihenfolge
der Operationen gedndert. Dabei wird auf die Vorbedingungen der Operationen
geachtet. Aber auch hier kann ein Konflikt auftreten, der manuell aufgelést werden

muss. [KRSDO01]

Folgendes Beispiel veranschaulicht eine automatische Konfliktauflosung. Zwei Admi-
nistratoren verwalten ein System und fithren Operationen aus. In folgender Tabelle
sind die Logs der Operationen aufgefithrt, die zusammengefiihrt werden miissen
[KRSDO1]:

Administrator A Administrator B

A1l Betriebssystem und Treiber | B1 Drucker kaufen, 400 €
von v4 auf vb aktualisieren
A2 Bandlaufwerk kaufen, 800 € | B2 Druckertreiber v4 installieren
A3 Budget um 1500 € erhchen

Werden zuerst Kommandos des Administrators A ausgefiihrt und dann die des Ad-
ministrators B, dann tritt ein Konflikt auf, weil das System mittlerweile die Version
5 aufweist und die zu installierenden Druckertreiber Version 4. Die Umgekehrte Rei-
henfolge: zuerst Kommandos des Administrators B, dann die des Administrators A
ergeben einen anderen Konflikt. In diesem Fall halten sich die Kosten nicht inner-
halb des Budgets. IceCube erkennt die Abhéngigkeit zwischen den Logs mit Hilfe

der Vorbedingungen. So muss B2 vor A1l ausgefiihrt werden, sowie A3 vor B1 und
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A2. Als eine der moglichen Losungen des Konflikts wére die Abfolge A3, B1, B2 A1,
A2 richtig. [KRSDO01]

2.2.9 Zusammenfassung

Rsync ist ein Client-Server-System mit einer 1:1-Verbindung. Dateien werden in Blo-
cke aufgeteilt. Die Unterschiede werden mit Hilfe des Vergleichs der Checksummen
der Blocke lokalisiert. Und beim Synchronisieren werden nur die unterschiedliche

Blocke iibertragen.

Rumor ist ein Peer-to-Peer-Synchronisierungssystem, das Netzwerkpartitionierung
toleriert und Daten mit Hilfe bereitgestellter Algorithmen, die fiir einzelne Daten-
typen existieren, zusammenfiihrt. Fehlt ein Merge-Algorithmus fiir die betroffene
Datei, dann muss der Benutzer die Auflésung manuell vornehmen. Rumor unter-

stiitzt die selektive Synchronisation.

Roam ist ein System fiir mobile Geréte. Die geografisch verteilten Replikas werden
mit Hilfe des hierarchischen Flooding-Mechanismus synchronisiert. Der Vorteil von

Roam gegeniiber Rumor ist seine bessere Skalierbarkeit.

Coda ist ein verteiltes Dateisystem, das aus Clients und Servern besteht. Server
kommunizieren iiber Peer-to-Peer, Clients nicht - sie greifen auf Server zu. Mit Ver-
sionsvektoren werden Datenédnderungen registriert. Konflikte werden zentral aufge-
16st. Kann ein Konflikt nicht automatisch aufgelost werden, dann muss es mit Hilfe

eines Resolvers oder manuell geschehen.

Bayou ist eine verteilte Datenbank fiir relationale Daten und Flatfiles. Die Kommu-
nikationsstruktur ist Peer-to-Peer. Die Konflikte werden mit Versionsvektoren und
Zeitstempeln lokalisiert und mittels Anwendungslogik-Resolver aufgelost. Daten ha-
ben zwei Zustdnde, um eine Wahl zwischen den Konsistenzgraden zu bieten. ,,Session
Guarantees” sorgen dafiir, dass Daten sich fiir die Anwendung, trotz ihrer Vertei-
lung iiber die Replikas logisch verhalten und es keine paradoxen Datenéinderungen

auftreten.

SyncML ist ein offener Standard, um Daten wie z. B. Kalendereintrige, E-Mails
und beliebige andere zu synchronisieren. SyncML verfiigt nur {iber wenige Konflik-

tauflosungsstrategien, weil es wihrend der Entwicklung nicht der Schwerpunkt der
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Arbeit war.

BASE ist ein Paradigma, das im Gegensatz zu ACID steht. Bei diesem Ansatz
werden hohe Verfiighbarkeit und lockere Konsistenz angestrebt. Dies wird mit Hilfe

der Aktionslogs und sicheren Message Queues erreicht.

IceCube ist eine Entwicklung, bei der ebenfalls wie bei BASE Aktionslogs festge-
halten werden. Der Schwerpunkt der Arbeit lag darin, ein intelligentes System zu
entwickeln, das Konflikte auf Anwendungsebene auflést. Es funktioniert, indem es
die Aktionen innerhalb der Aktionslogs neu anordnet und sie in einem Log zusam-

menfiihrt, ohne dabei die semantischen Zusammenhénge der Daten zu verletzen.

2.2.10 Bewertung

Diese Mechanismen bieten eine gute Grundlage, die verteilten Daten synchron zu
halten, jedoch weisen sie Gemeinsamkeiten auf, die die Synchronisationsqualitét
einschrinken. So unternehmen die Algorithmen einen einzigen Konfliktauflosungs-
Versuch. Schldagt er fehl, dann ist eine manuelle Resolution unumgénglich. Dies re-
sultiert in einer Frustration von Benutzern der Endsysteme. Manuelle Auflésung
ist in groflen verteilten Systemen, bei denen komplexe Abldufe ausgefithrt werden
(z. B. Bank- und Buchungssystemen), nicht zumutbar. Aus diesem Grund werden
die Algorithmen eingesetzt, die keine Betriebsstorungen durch die Notwendigkeit
eines manuellen Eingriffs verursachen. Stattdessen werden in solchen Systemen Me-
chanismen eingesetzt, die volle Verfiigharkeit der Systemteilnehmer voraussetzen.
Entsprechend kénnen hohe Latenzen und somit ein Eindruck der Tragheit des Sys-

tems entstehen, wenn die notige Verfiighbarkeit nicht gegeben ist.

Die bisherigen Losungsansétze setzen eine gewisse Toleranz von Inkonsistenzen vor-
aus, die spater aufgelost werden oder die Akzeptanz, dass Teile des Systems ihren

Betrieb temporéar einstellen, bis die Netzwerkverbindung wieder hergestellt wurde.

,In vielen Situationen besteht die einzige wirkliche Loésung darin, die

Konsistenzbeschrankungen zu lockern.“ [TS0§]

Somit lasst sich ein Fazit ziehen, dass die bisherigen Synchronisierungsalgorithmen
auch in ihrer praktischen Auspragung nicht zufriedenstellend sind und Verbesserungs-

oder Innovationsbedarf besteht. Im néichsten Kapitel verschaffen wir uns einen Uber-
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blick iiber die Randbedingungen und Aufgaben des zu entwickelnden Systems.
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3 Systemmodell und Problembeschreibung

Die verwandten Arbeiten im vorangehenden Kapitel zeigen den aktuellen Forschungs-
stand. Bevor ein neues System entwickelt wird, muss die Umgebung, Infrastruktur,
Systemteile, sowie die konkreten Aufgaben geklédrt werden. In diesem Kapitel werden
zunéchst das Systemmodell, ein praxisnahes Anwendungsszenario und anschlieend
die daraus resultierenden Anforderungen an das Zielsystem vorgestellt. Zum Schluss
folgt eine Zusammenfassung, die die wesentlichen Kernpunkte dieses Kapitels be-
schreibt.

Es gibt zwei technische Umgebungen: die Cloudumgebung und die Umgebung der
on-premise Knoten (Abbildung 7). Die Cloudumgebung enthélt den zentralen Da-
tenspeicher und den dazugehorigen Cloud-Rechner. Die Umgebung der on-premise
Knoten besteht aus einzelnen Rechnern, die geographisch verteilt sind und mit dem
Internet verbunden sind. Diese Rechner werden in dieser Arbeit als ,,Knoten“ oder
,Clients* bezeichnet. Ein Knoten besteht aus dem lokalen Cache mit dem lokalen

Speicher und der Endanwendung, die einen Cache nutzt.

Die wichtigsten Systemkomponenten werden im néchsten Abschnitt erlautert.

3.1 Infrastruktur und Komponenten

Im Systemmodell werden entsprechend den zuvor besprochenen Umgebungen fol-
gende Komponenten und Infrastruktur-Teile benttigt: Knoten, Cloud und das Netz-
werk. Die Eigenschaften der Komponenten werden in diesem Abschnitt einzeln her-
vorgehoben, dabei wird ihre Rolle im System erkldrt. Des Weiteren werden Annah-
men iiber die Komponenten getroffen, die die Randbedingungen fiir diese Arbeit

bilden. Wir beginnen mit den Knoten des verteilten Systems.

3.1.1 Knoten

Wie bereits erwdahnt, befinden sich auf einem Knoten die Anwendung, der Cache

und der lokale Speicher. Folgende grobe Ablidufe finden auf diesem Knoten statt:

e Die Anwendung greift auf den Cache zu und nutzt die dort zwischengespei-

cherten Daten.
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Abbildung 7: Umgebungen und Komponenten des Systems. Die Cloud und die geo-
graphisch verteilten Knoten kénnen Informationen iiber das Internet
austauschen.

e Der Cache stellt die Verfiigbarkeit der Daten sicher und iiberwacht die Aktua-
litdt der Daten.

e Der lokale Speicher ermoglicht dem Cache eine Persistierung der Daten.

Die Verfiigbarkeit eines Knotens ist je nach Systemkonfiguration unterschiedlich.
Aus diesem Grund wird der Verfiigbarkeitswert als variabel gesehen. Neue Knoten
kénnen dem System jederzeit beitreten und spéter fiir unbestimmte Zeit aus dem

System austreten.

Die meisten PCs haben eine einzelne Festplatte als lokalen Speicher. Deshalb wird
es angenommen, dass der lokale Speicher des Knotens unzuverléssig ist und einzelne
Dateien nach einem Neustart des Systems verloren gehen konnen. Des Weiteren

kann es eine Storung oder einen Eingriff in die gespeicherten Daten geben. Die
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Sicherheit dieser Daten kann durch die Verwendung kryptographischer Verfahren,

z. B. Verschliisselungsmechanismen gewihrleistet werden.

3.1.2 Cloud

Cloud Computing stellt Datenspeicher und Rechenressourcen zur Verfiigung. Die
Rechenressourcen werden fiir die Unterstiitzung der Synchronisierungsprotokolle be-
notigt. Primér ist fiir die Losung der Datenspeicher relevant. Der Datenspeicher in
der Cloud ist durch interne Replikation ausfallsicher gemacht. So ist unsere Annah-
me fiir diese Arbeit, dass Daten in der Cloud nicht verloren gehen, oder durch eine
Storung gedndert werden. Jedoch betréigt die Verfiigharkeit der Cloud weniger als
100 Prozent. So sind die Rechenkapazitéiten der Cloud von Amazon, sowie von Win-
dows Azure zu 99,95% verfiigbar [Amal [Mic]. 99,95% Verfiigbharkeit bedeutet, dass

die Cloud in einem Monat, laut folgender Rechnung, fiir rund 22 Minuten ausféllt.

30T age - 24Stunden - 60 Minuten - (1 — gf(’)%;?) = 21,6 Minuten

3.1.3 Netzwerk

Das Netzwerk verbindet die Cloud und Knoten miteinander, sodass ein Datenaus-
tausch ermoglicht wird. ADSL stellt die aktuelle Technologie und eine giinstige Me-
thode dar, eine Verbindung zwischen geographisch verteilten Rechnern herzustellen,

weshalb angenommen wird, dass die Kommunikation iiber ADSL stattfinden kann.

Fiir die Kommunikation wird heutzutage meistens das Kommunikationsprotokoll
TCP [Pos81] verwendet. Es werden deshalb die folgenden grundlegenden Eigen-
schaften von TCP fiir die Modellierung der Netzwerkschicht iibernommen. So wird
davon ausgegangen, dass alle Netzwerkverbindungen bidirektional sind und Daten
zuverléssig iibertragen werden, solange die Verbindung zwischen dem Sender und
Empfinger besteht. Daten, die iiber eine solche Leitung versendet werden gehen
nicht verloren und kommen in der gleichen Reihenfolge an, in der sie gesendet wur-

den.

Durch den Einsatz der Verschliisselungs- und Authentifizierungsalgorithmen, wie z.

B. TLS [Die08] und Kerberos [SNS88|, wird davon ausgegangen, dass ausgetauschte
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Daten von Dritten weder abgehtrt noch unbemerkt manipuliert werden koénnen.

Nun wurden die wichtigsten Teile des Systemmodells besprochen. Jetzt miissen die
konkreten Anforderungen an das zu entwickelnde System betrachtet werden, womit

sich das folgende Unterkapitel beschéftigt.

3.2 Anforderungen an das Zielsystem

Um die Anforderungen an die zu entwickelnde Losung herauszukristallisieren und
anschaulich zu machen, wird in diesem Abschnitt ein Anwendungsszenario unter-
sucht. Danach lassen sich wichtige Aspekte identifizieren und aus technischer Sicht
beschreiben. Es werden funktionale und nichtfunktionale Anforderungen unterschie-

den. Anschliefend werden die Anforderungen tabellarisch zusammengefasst.

3.2.1 Beispielanwendung

Eine beispielhafte Anwendung, welche mit den Herausforderungen, die im Rah-
men dieser Arbeit untersucht werden, umgehen muss, wird im Folgenden als ei-
ne Smartphone-Anwendung fiir Supermarkt-Kunden vorgestellt. Hierdurch wird die

Praxisrelevanz der untersuchten Datensynchronisations-Problemstellung gezeigt.

Aufgrund des stetig wachsenden Erndhrungsbewusstseins moéchten Menschen fiir das
Kochen einer gewiinschten Speise eine Hilfestellung beim Einkaufen im Supermarkt
erhalten. Mogliche Zielgruppen wéren Vegetarier, Veganer, Allergiker, {ibergewich-
tige Menschen, Sportler und Bodybuilder. Sie sollen beim Einkaufen mit Hilfe einer

Smartphone-Anwendung unterstiitzt werden.

Zuerst miissen die Vorlieben an die Anwendung {ibergeben werden. So kénnen die

Erndhrungswiinsche an die Produkte wie folgt sein:

e Maximaler Eiweifigehalt

Die Glutamatmenge ist gleich null

Der Kalorienanteil der Speise betréagt zwischen 2800 und 3200 Kcal

Es sollen Fairtradeprodukte bevorzugt werden

Es sollen moglichst giinstige Produkte vorgeschlagen werden
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e Es diirfen keine tierischen Bestandteile enthalten sein

In der Cloud befindet sich eine Datenbank mit Rezepten. Der Kéaufer entscheidet
sich vor dem Betritt des Supermarkts fiir ,Pasta Bolognese“ und gibt es in die
Anwendung ein. Auf dem Smartphone werden Informationen aus der Cloud lokal

abgespeichert:

e Das Rezept mit allen Zutaten (Pasta, Hackfleisch, Tomaten)

Konkrete Produkte (Itali Pasta Fussili, Schnitzelberger Rindhack, Espan Po-

modoros)

Position der Produkte im Supermarkt

Bestandteile (Mehl, Eier, Wasser, Rindfleisch, Strauchtomaten)

Chemische Zusammensetzung (Kalorien, Kohlenhydrate, Eiweiflgehalt)

Im Supermarkt muss das Smartphone keinen Empfang haben, da er die Infos bereits

abgerufen hat.

Anschlieflend werden verfiighare Produkte mit ihrer Position im Supermarkt-Regal,
Preis und Bild angezeigt. Nun hat der Kunde die Wahl, nach einem alternativen

Produkt zu suchen, wie z. B. nach einer anderen Marke, oder Fleischersatz statt
Hackfleisch.

Der Kunde entdeckt im Regal ein weiteres Produkt, fiir das er sich entscheidet. Da
er will, dass beim néchsten Mal dieses Produkt in Betracht gezogen wird, gibt er die
Daten in die Anwendung ein. Wenn er wieder in den Onlinemodus wechselt, wird

das neue Produkt mit der Cloud synchronisiert.

Auch Supermérkte konnen ihre Produkte in der Cloud updaten. Sollte die Cloud
ausfallen, konnen Supermérkte einer oder mehrerer Supermarktketten untereinan-
der, mit Hilfe von Peer-to-Peer-Kommunikation synchronisieren. Ein Kunde kann
sich bei einem Cloudausfall iiber WLAN mit dem Server des Supermarkts verbin-
den und sein Handy synchronisieren, um aktuelle Informationen iiber Produkte und

beliebte Rezepte zu erhalten.

Sobald die Cloud wieder verfiighbar wird, spielen Supermérkte und Smartphones
ihre Updates in die Cloud ein. Das Update in der Cloud wird erst ab einer Schwelle

an gleichen Anderungsvorschlégen der Benutzer iibernommen, um unberechtigtes
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Schreiben zu verhindern. Solange es nicht geschehen ist, wird der Eintrag des Nutzers

lokal auf seinem Smartphone trotzdem beriicksichtigt, da er lokal abgespeichert ist.

Dieses konkrete Beispiel ldsst sich nun als eine Menge der Anforderungen abstra-
hieren, um die Kernpunkte des Systems universal zu formulieren. Wir beginnen mit

den funktionalen Anforderungen.

3.2.2 Funktionale Anforderungen

Das Zielsystem soll die Funktionalitét eines verteilten Datenspeichers realisieren.
Fiir die Speicherung der Daten wird die Cloud als zentrale Stelle verwendet.
Somit lassen sich Rezepte bei bestehender Internetverbindung aus einer bekannten

Quelle herunterladen.

Um die Offlinefdhigkeit zu unterstiitzen miissen Rezepte lokal gespeichert werden.
Es wird ein Cache benétigt, um Daten unabhéngig vom Zustand anderer Teile des

Systems (z. B. Netzwerk, Cloud) verfiighar zu halten.

Ein Rezept besteht aus einer Zutaten-Tabelle und den dazugehorigen Bearbeitungs-
anweisungen. Die Struktur der Daten ist also flach, d. h. es werden Flatfiles, z. B.
CSV- und Text-Dateien gespeichert. Es sollen keine relationale Daten unterstiitzt

werden.

Fiir die Datenverarbeitung sollen grundlegende Dateioperationen erméglicht wer-
den. Diese Operationen werden CRUD-Operationen (Create, Read, Update und
Delete) genannt. Damit lassen sich Daten in der Cloud und lokal verwalten. Des
Weiteren muss es ermoglicht werden, weitere Operationen an das System an-
zuschlieflen und sie auf Daten auszufithren. Somit wird ermdoglicht, dass Rezepte
beliebig bearbeitet werden konnen, aber auch, dass sie anderen Bearbeitungsvor-

gidngen zur Verfiigung stehen.

Es wird gefordert, dass auftretende Konflikte automatisch aufgeldst werden.
Kann ein Konflikt nicht automatisch aufgelost werden, so muss die Moglichkeit
bereitstehen, ihn manuell aufzul6sen. Damit wird eine Moglichkeit geschaffen,

Konflikte in Rezepten automatisch zu beseitigen und bei Bedarf manuell.

Beim Start des Cache-Programms muss die Integritéit von lokalen Daten gepriift

werden. So wird sichergestellt, dass der Anwendung, die Rezepte anzeigt, keine feh-
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lerhaften oder unvollstéandigen Daten gestellt werden.

In der Losung soll das lockerere Konzept der letztendlichen Konsistenz (Eventual
Consistency) realisiert werden. Damit wird gesichert, dass beim FEinsatz vieler
Knoten - im Beispiel: Smartphones - Anderungen an Rezepten auch bei Abwesenheit
einiger Knoten durchgefiihrt werden kénnen und die Konsistenz der Datenbank

dabei nicht divergiert.

3.2.3 Nichtfunktionale Anforderungen

Fiir die Anwendung soll ein Offlinebetrieb ermoglicht werden. So kann die An-
wendung ohne Netzwerkverbindung nach auflen mit Daten versorgt werden. Des
Weiteren soll sichergestellt werden, dass Zugriff auf Daten und Anderungen auch
wéhrend einer Netzwerkpartitionierung (bzw. wihrend eines Ausfalls der Cloud)
erfolgen kénnen. Diese Anderungen miissen auch fiir andere Caches sichtbar wer-
den. Sobald die Netzwerkpartitionierung aufgehoben wird (bzw. die Cloud wieder
verfiighar wird), sollen Daten zwischen beiden Partitionen synchronisiert werden.
Wiéhrend einer bestehenden Verbindung sollen Daten laufend synchroni-

siert werden. Auf diese Weise sollen Rezepte aktuell gehalten werden.

AuBlerdem soll das System kein Single Point of Failure aufweisen. Die Ausfille
der Cloud und einzelner Knoten sollen durch entsprechende Mechanis-
men toleriert werden. Somit besteht trotz Ausfalls des zentralen Speichers eine

Moglichkeit, die Rezepte zu synchronisieren.

Daten kénnen von mehreren Knoten gleichzeitig in den zentralen Speicher geschrie-
ben werden, die fiir andere lesbar sind. Aus diesem Grund sind Mafinahmen zu
treffen, die unberechtigtes Schreiben verhindern. Jedoch sollen die lokalen
Anderungen der Anwendung unabhiingig davon zur Verfiigung stehen,
also priorisiert werden. Somit werden Fehler in Rezepten vermieden und lokale Ab-

weichungen vom Zustand im zentralen Speicher behalten.

Der Speicherverbrauch auf dem Knoten soll moéglichst gering gehalten
werden, um breiten Einsatz des Systems zu ermoglichen, z. B in Embedded Systems.
Die Transferkosten zwischen dem Knoten und der Cloud sollen minimiert
werden, um den monetiren Aufwand fiir den Einsatz des Systems moglichst gering

zu halten. Entsprechend wird das Betreiben des Rezepte-Systems giinstig.
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Es sollen offene Schnittstellen und Standards verwendet werden, um Portabili-
tat der Losung sicherzustellen. Auf diese Weise werden nicht nur Rezepte-Systeme,

sondern beliebige andere Datenverwaltungs-Systeme unterstiitzt.

Ein wichtiger Punkt ist die Verringerung der Konfliktwahrscheinlichkeit und
der manuellen Konfliktauflésung. Die entstandenen Konflikte sollen wenn méog-
lich maschinell aufgelost werden. Dadurch werden weniger Benutzer damit konfron-

tiert, einen Konflikt im Rezept manuell aufzulésen.

Nun wurden das Beispielszenario, die funktionalen, sowie nichtfunktionalen Anfor-
derungen erldutert. Im néchsten Abschnitt folgt die Zusammenfassung des ganzen
Kapitels. Dabei wird ein Uberblick iiber alle Anforderungen in tabellarischer Form

gegeben

3.3 Zusammenfassung

In diesem Kapitel wurde die dem System zugrundeliegende Infrastruktur mit den
Anforderungen betrachtet. Die drei Hauptteile des Systemmodells sind Knoten, die
Cloud und das Netzwerk. Knoten weisen dhnliche Eigenschaften auf, wie ein han-
delsiiblicher PC. Die Cloud dient als eine hochverfiighare zentrale Speicherstelle im
System. Und das Netzwerk ist das Bindeglied zwischen den Systemteilen, das durch
eine ADSL-Verbindung realisiert wird.

Das Beispielszenario ist eine zentrale Rezepte-Datenbank in der Cloud und viele
Smartphone-Clients, die ihre Lieblingsrezepte lokal speichern, &ndern und synchro-
nisieren konnen. Dabei wird ein Offline-Modus unterstiitzt, fiir den Fall, dass die
Cloud ausfillt, oder falls der Empfang des Smartphones nicht sichergestellt ist. Aus
dem Rezepte-System wurden Anforderungen abgeleitet, die in folgender Tabelle zu-

sammengefasst werden.
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Funktionale Anforderungen

Nichtfunktionale Anforderungen

1. Bereitstellung eines verteilten Daten-

speichers

1. Offlineverfiigbarkeit- und Editierbar-
keit

2. Cloud als zentraler Datenspeicher

2. Toleranz gegeniiber Cloud- und Kno-

tenausfallen

3. Lokale Kopie im Cache

3. Synchronisation mit der Cloud bei

bestehender Verbindung

4. Flache Datenstruktur

4. Minimierung der Speicherkosten und
Optimierung der Kommunikation zwi-

schen Cloud und Cache

5. Unterstiitzung  der  CRUD-

Operationen auf Daten

5. Schutz gegen unberechtigtes Schrei-

ben

6. Hinzuschalten weiterer Operationen

6. Lokale Anderungen haben Prioritéit

7. Automatische und manuelle Kon-

fliktauflosung

7. Portabilitdat der Losung

8. Integritétspriifung der lokalen Daten

8. Reduktion der Wahrscheinlichkeit

fiir manuelle Konfliktauflosung

9. Eventual Consistency

Nun wurde eine Grundlage fiir die Entwicklung eines Systems gelegt. Das néchste
Kapitel beschéiftigt sich mit der Entwicklung des Systems und einzelner Mechanis-
men, die die abgeleiteten Anforderungen auf Basis der beschriebenen Infrastruktur

realisieren.
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4 Entwurf

Im vorigen Kapitel wurden das Systemmodell und wichtige Anforderungen fiir das
Zielsystem festgelegt. Nun ldsst sich eine grobe Architektur fiir das Zielsystem ent-
werfen. Hier wird zuerst eine grobe Struktur erklart, anschliefend wird sie schritt-
weise verfeinert und die Punkte innerhalb des Systems realisiert, welche fiir den

Entwurf der Losung relevante Fragestellungen aufwerfen.

4.1 Systemarchitektur

Im Kapitel 3 wurden die Komponenten des Systems dargelegt. Diese Komponenten
spiegeln sich in der groben Gesamtarchitektur des Systems wieder. Die Abbildung 8
hebt sie farblich hervor und stellt die drei Hauptbereiche dar: die Cloud, den Cache

und die Anwendungsumgebung.

Als néchstes wird die Rolle der einzelnen Hauptbereiche Cloud und Cache erlautert.

Auf die Anwendungsumgebung wurde bereits in Kapitel 3 eingegangen.

4.1.1 Cloud

Die Cloud enthilt den sicheren Speicher (Cloud Storage), die Mergekomponente

(Merge Logic), sowie die Synchronisierungskomponente (Sync Logic).

Cloud Storage ist eine Komponente des Cloud Computing. Dieser Speicher wird von
Cloud Computing-Anbietern verwaltet, gesichert und gewartet. Die Anbieter stellen
die Verfiigharkeit und die Zuverlissigkeit des Speichers sicher, sodass der Kunde kei-
nen Administrierungsaufwand hat und der Speicher fiir die zu entwickelnde Losung

als wartungsfrei und ausfallsicher gilt.

Die Mergekomponente sorgt fiir die Datenintegritit innerhalb des Cloud Storage,
indem sie die Anderungen der Caches, die konfliktbehaftet sein konnen, in einen
konfliktfreien Zustand iiberfiihrt.

Die Synchronisierungskomponente erlaubt den Zugriff auf die Daten und steuert die

Ablaufe, um Daten herunter- oder hochzuladen.
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Abbildung 8: Grobarchitektur des Zielsystems. Es gibt drei Hauptbereiche: Cloud,
Cache und die Anwendungsumgebung. Der Cache fungiert als ein Bin-
deglied in zwischen der Cloud und der Anwendung.

4.1.2 Cache

Der Cache besteht aus Sync Logic, Merge Logic und Operation Logic.

Sync Logic steuert den Austausch der verteilten Daten. Hierbei wird sie benotigt,

um Daten kosteneffizient zu synchronisieren.

Merge Logic ist fiir die Konsistenz der Daten verantwortlich, es enthélt Konfliktbeseitigungs-

Algorithmen, um die lokale Integritédt der Daten zu sichern.

Operation Logic nimmt Kommandos von der Anwendung entgegen und fiihrt sie

aus.

Nun wurde der Grundaufbau der Systemteile und ihre Aufgaben beschrieben. Nun

kénnen Algorithmen diskutiert werden, die in diesen Komponenten realisiert werden.
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4.2 Algorithmen und Mechanismen

Im Folgenden werden Losungen fiir die in Abschnitt 3.2 gestellten Anforderungen
vorgestellt und begriindet. Es wird dargelegt, wie die Anforderungen realisiert, wel-
che Algorithmen verwendet und welche Mechanismen und Abldufe von anderen
Systemen iibernommen werden. Abschlielend folgt eine Zusammenfassung der Me-
chanismen, die einzelnen Anforderungen zugeordnet werden. Wir beginnen mit der
Grundidee, die Basis-Algorithmen fiir die wichtigsten Ablaufe festhilt.

4.2.1 Grundidee

Im Abschnitt 2.2.7 wurde das CAP-Theorem in Grundziigen erldutert und dabei der
Ansatz BASE als ein State of the Art-Kompromiss fiir das Problem vorgestellt. In
dieser Losung werden aufgrund der Anforderungen, die Verfiigharkeit und Ausfall-
sicherheit sicherzustellen, die zwei Extrema Availability und Partitiontolerance des
Theorems angestrebt. Dies wird im System BASE erreicht und dabei eine Sicherheit
der Konvergenz gegen einen konsistenten Zustand der Daten gegeben, sodass man
durch Einsatz von BASE den Konsistenz-Punkt des Theorems ebenfalls anstrebt
(Abbildung 9). BASE kann die letztendliche Konsistenz nur dann bieten, wenn Da-

ten durch festgelegte, systemweit bekannte Aktionen gedndert werden.

Diese Einschriankung ist fiir das zu entwickelnde System vorteilhaft, denn durch
Einsatz von Aktionen, wird die Verwendung von Algorithmen, wie in IceCube (Ab-
schnitt 2.2.8) moglich, die sich durch eine bessere Konfliktauflosung, verglichen mit

zustandsorientierten Auflosungsalgorithmen, auszeichnen.

Die Kombination dieser zwei Algorithmen macht das Gesamtsystem verfiighar, to-
lerant gegen Ausfille, realisiert Eventual Consistency und reduziert die Anzahl an

Konflikten, die manuell aufgelost werden miissen.

Um die internen Vorginge von der Endanwendung zu verbergen und die Benut-
zung zu vereinfachen, wird das System als Middleware realisiert, die iiber eine API

verwendet werden kann.

Dadurch, dass die Cloud keine 100 % Verfiigharkeit hat, wird eine Failover-Losung
benotigt, um die moglichen kurzzeitigen Ausfélle zu iiberbriicken. Peer-to-Peer ge-
hort aufgrund der Robustheit gegeniiber zufélligen Ausfillen| CLMRO04] der Knoten
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Consistency

Availability Partition tolerance

Abbildung 9: BASE-Eigenschaften abgebildet auf das CAP-Theorem. BASE sichert
die Verfiigbarkeit und Partitionstoleranz und strebt die letztendliche
Konsistenz an.

und der hohen Verfiigbarkeit[TS08] zu den sichersten Kommunikationsmodellen.

Aus diesem Grund wird es alternativ zur Cloud eingesetzt.

Nun werden die funktionalen und nichtfunktionalen Anforderungen nacheinander

besprochen.

4.2.2 Funktionale Anforderungen

Bereits im Systemmodell (Kapitel 3) wurde festgelegt, dass Daten sowohl in der
Cloud, als auch lokal auf Caches gespeichert werden. Dadurch ergibt sich ein ver-
teiltes Datenspeichersystem, wie es in der Anforderung Bereitstellung eines ver-

teilten Datenspeichers gefordert wird.

Wie es fiir die Verwendung von BASE und IceCube notwendig ist, werden Aktionen



Entwurf 37

definiert, die Daten verarbeiten. Die Anforderung Unterstiitzung der CRUD-
Operationen auf Daten wird erfiillt, indem eine abstrakte Operation implemen-
tiert wird, die BASE- und IceCube-kompatibel ist. Alle Operationen, die an Daten
ausgefithrt werden, miissen von der abstrakten Operation ableiten. Entsprechend
werden Create, Read, Update und Delete auf Basis der abstrakten Operation im-

plementiert.

Die Anforderung Hinzuschalten weiterer Operationen kann darauf aufbauend
realisiert werden. Alle Operationen liegen dem Cache als DLL-Dateien vor, die aus-
getauscht, hinzugefiigt und entfernt werden kénnen. Beim Starten des Caches, 1adt
er aus einem bestimmten Ordner alle DLLs, die Operationen enthalten. Sobald die
DLLs geladen wurden, stehen die dort programmierten Operationen zur Verfiigung

und konnen ausgefiithrt werden.

Dadurch, dass alle Anderungen primér in die Cloud hochgeladen werden, bildet sie
eine zentrale Datenhaltungs-Stelle im System, womit die Anforderung Cloud als

zentraler Datenspeicher erfiillt wird.

Die Speicherressourcen des Cloud Computings kénnen in zwei Kategorien eingeord-
net werden: die relationalen und die nichtrelationalen Speicherressourcen. In der 6ko-
nomischen Hinsicht ist der nichtrelationale-Speicher, auch Blob-Speicher genannt,
giinstiger als der relationale. Aufgrund der Anforderungen Flache Datenstruktur
und Minimierung der Speicher- und Transferkosten ist der Blob-Speicher fiir
das Speichern der Daten ideal. Fiir ein erleichtertes Datenmanagement werden Da-
tensétze in einzelnen, voneinander unabhéngigen Blobs gespeichert. So konnen sie
flexibel erstellt, bearbeitet und entfernt werden, ohne dass andere Datenséitze da-
durch beeinflusst werden. In Coda (Abschnitt 2.2.4), entsprechend der Arbeit von
Gray et al. [GHOS96] wird das sogenannte Two Tier-System eingesetzt, bei dem
Server auf der ersten Ebene konsistente Daten speichern, Anderungsanfragen er-
filllen und sich untereinander iiber Peer-to-Peer synchronisieren. Um Anderungen
an Daten vorzunehmen, greifen Clients, die zur zweiten Ebene gehoren, auf einen
der Server zu. In der Cloud existiert die erste Ebene auch, aber sie ist selbst fiir

Entwickler transparent und erscheint als eine einzige Komponente.

Damit sichere Warteschlangen nach einer Datentrdgerschiadigung keine falschen In-
formationen in die Cloud {ibermitteln und Anwendungen nur mit richtigen Daten

versorgen, werden kryptographische Hashes fiir die einzelnen Datensiitze kalkuliert



38 Entwurf

und lokal abgespeichert. Geschieht eine, durch eine Stérung verursachte Anderung
der lokalen Daten, so unterscheidet sich mindestens ein neuberechneter Hashwert
von dem abgespeicherten Kontroll-Hashwert. Entsprechend wird der betroffene Da-
tensatz als ,beschidigt® gemeldet. Die Anforderung Integrititspriifung der lo-
kalen Daten ist somit erfiillt.

Die Anforderung Automatische und manuelle Konfliktauflosung wird dhnlich
wie im System IceCube durch die Zusammenfithrung der Aktionslogs realisiert. Da-
bei werden einzelne Operationen aus zwei konfliktbehafteten Datensétzen in einem
konfliktfreien Log zusammengefiihrt und ausgefiihrt. Fiir die manuelle Konfliktauf-
l6sung wird eine Schnittstelle bereitgestellt, iiber die beide konfliktbehafteten Ver-
sionen ausgelesen werden kénnen, eine der Versionen als konfliktfrei gewéhlt und die
andere verworfen werden kann. Alternativ kann eine dritte, manuell erstellte Version

iibermittelt und der Konflikt somit aufgelost werden.

Eventual Consistency FEventual Consistency ist ein clientzentriertes Konsistenz-

modell, das sicherstellt, dass Daten gegen einen konsistenten Zustand konvergieren.

Datenspeicher mit dieser Art von Konsistenz verfiigen daher iiber die Ei-
genschaft, dass bei ausbleibenden Aktualisierungen alle Replikate nach
und nach konsistent werden. Diese Form der Konsistenz wird als Even-
tual Consistency bezeichnet. [T'SOS]

Tanenbaum et al. beschreibt in [TS08], dass Eventual Consistency seine Urspriinge
im System Bayou (Abschnitt 2.2.5) hat. Er formuliert die einzelnen Punkte der

Session Guarantees aus [TDP194] wie folgt:

e Konsistenz fiir monotones Lesen - wenn ein Prozess den Wert eines
Datenelementes x liest, gibt jede anschliefende Leseoperation dieses

Prozesses auf x stets denselben oder einen aktuelleren Wert zuriick.

e Konsistenz fiir monotones Schreiben - Eine Schreiboperation eines
Prozesses an einem Datenelement x wird abgeschlossen, bevor eine
folgende Schreiboperation auf x durch denselben Prozess erfolgen

kann.

e Read Your Writes“-Konsistenz - Die Folge einer Schreiboperation

eines Prozesses auf das Datenelement x wird fiir eine anschlieSende
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Leseoperation auf x durch denselben Prozess stets sichtbar sein.

e Writes Follow Reads“-Konsistenz - Einer Schreiboperation eines
Prozesses auf ein Datenelement x, die auf eine vorherige Leseope-
ration auf x durch denselben Prozess folgt, wird garantiert, dass
sie auf demselben oder einem aktuelleren Wert von z stattfindet.
[T'S08]

Durch den Einsatz von einer lokalen Datenkopie, die bei jeder Datenoperation zur
Verfiigung steht, bevor andere Kopien und der zentrale Datenspeicher kontaktiert
werden, wird eine Art Session aufgebaut, sodass alle Punkte der Session Guarantees

dadurch erfiillt werden.

Die Anforderung Eventual Consistency wird mit dem Einsatz des Systems BASE
erreicht: Jede Aktion wird in eine sichere Warteschlange eingereiht, sodass die An-
derungen mit dem Abarbeiten der Warteschlangen in die Cloud propagiert werden
und somit im gesamten System letztendlich vorgenommen werden. Entsprechend
werden Operationen in dieser Losung an einem lokalen Datensatz sofort ausgefiihrt
und einer sicheren Warteschlange hinzugefiigt, sodass die durchgefiihrten Operatio-
nen beim néchsten Synchronisationsvorgang hochgeladen werden. Auf diese Weise
ist es gesichert, dass eine Kopie des betroffenen Datensatzes lokal vorhanden ist
und somit die Anforderung Lokale Kopie im Cache erfiillt ist. Inspiriert von
[GHOS96] und dem Dateisystems Coda, werden zwei Datensatzversionen gespei-
chert: die letzte aktuelle digital signierte Version aus dem zentralen Speicher und die
Anderungen dieser Version. Die Cloudversion kann iiber Peer-to-Peer, von Caches,
die sie zwischengespeichert haben, an Knoten verteilt werden, die auf die Cloud
nicht zugreifen kénnen. Fiir das Verteilen der Daten iiber Peer-to-Peer existieren
Flooding-Ansétze, wie z. B. [BGL106], sodass die letztendliche Konsistenz auch

wahrend eines Cloudausfalls erreicht werden kann.

4.2.3 Nichtfunktionale Anforderungen
Die Anforderung Offlineverfiigbarkeit- und Editierbarkeit wird mit dem Si-
cherstellen der Verfiigbarkeit durch BASE erreicht.

In dieser Losung wird Peer-to-Peer eingesetzt, um die Anforderung Toleranz ge-

geniiber Cloud- und Knotenausfillen zu erfiillen. Fillt die Verbindung zur
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Cloud aus, dann werden Aktualisierungen zwischen den Clients iiber das Peer-
to-Peer-Netzwerk ausgetauscht. Eine solche Funktionalitdt wurde in Coda [Rat98§]
[SKK*90] und Bayou [DPS*94] verwirklicht, um Aktualisierungen zwischen den

Datenservern auszutauschen und die Kopien konsistent zu halten (Abbildung 6).

Jeder Cache kann Daten dndern und in die Cloud hochladen, die fiir andere Teilneh-
mer sichtbar werden. Mit der Anforderung Schutz gegen unberechtigtes Schrei-
ben soll verhindert werden, dass fehlerhafte Daten in der Cloud gespeichert werden.
Dies ist realisierbar, indem man eine Schwelle festlegt, sodass ab einer bestimmten
Anzahl der gleichen oder dhnlichen Eintrédge die Daten in der Cloud {ibernommen
und fiir alle sichtbar werden. Dieses Vorgehen erschwert die absichtliche oder un-
absichtliche Félschung der Daten, bietet jedoch keine Garantie, denn ein Angreifer
kann mehrere Clients gleichzeitig starten, Daten abdndern und somit die Schwelle
an gleichen Eintrdgen erreichen, was in einer vertrauenswiirdiger Umgebung un-
realistisch ist. Der Schwellwert kann je nach Anwendungsszenario variieren. Wird
diese Funktionalitdt des Systems nicht bené6tigt, dann kann der Schwellwert auf eins

reduziert werden, damit Anderungen in der Cloud sofort iibernommen werden.

Um die Anforderung Portabilitidt der Losung zu realisieren, werden fiir die Kom-
munikation zwischen der Anwendung und dem Cache, sowie zwischen dem Cache
und der Cloud Webservices verwendet. Es werden SOAP-Nachrichten [BTNOO] aus-
getauscht und Schnittstellen in Form von 6ffentlich zugénglichen WSDL-Dateien
[CCM™01] publiziert. Durch die Verwendung von Webservices, lassen sich auch B2B-
Systeme an das zu entwickelnde System anschliefen, bei denen der gréfite Teil der
Kommunikation grundsétzlich iiber Webservices stattfindet. Somit wird eine API

angeboten, mit der das System flexibel verwendet werden kann.

Die Anforderung Reduktion der Wahrscheinlichkeit fiir manuelle Konflikt-
auflésung wird mit der Anwendung der Aktionslog-basierten Zusammenfiihrung
der Datensatz-Zusténde, mit einem IceCube-&dhnlichen-System erreicht. In [GHOS96]
wird deutlich gemacht, dass die Verwendung von Aktionen statt Datensatz-Zusténden,
die Konvergenz der verteilten Daten gegen einen konsistenten Zustand unterstiitzt
und somit die Wahrscheinlichkeit fiir manuelles Auflésen reduziert. Es werden Ge-
meinsamkeiten in den zwei Logs gesucht. Die unterschiedlichen Teile werden zu-
sammengefiithrt, indem die Aktionen in eine eindeutige Reihenfolge gebracht wer-

den, sodass die Ausfithrung dieser Aktionen konfliktfrei verlduft. Des Weiteren wird
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die Auflésung der Konflikte durch die anwendungsspezifische Funktion auf Anwen-
dungsebene durchgefiihrt. So kénnen auch die CRUD-Konflikte maschinell und an-
wendungsgerecht behoben werden, bevor ein manueller Eingriff benotigt wird. Diese
Funktionalitéit ist im Abschnitt 4.3.4 detailliert beschrieben.

Synchronisation mit der Cloud bei bestehender Verbindung

Zunéachst muss festgestellt werden, welche Datensétze synchronisiert werden sollen.
Hierfiir kann entweder der Pull- oder der Push-Ansatz verwendet werden. Beim
Push-Ansatz kennt der Server alle Clients und benachrichtigt sie, wenn Aktualisie-
rungen vorliegen. Beim Pull-Ansatz senden Clients an den Server Anfragen, um zu

erfahren, ob es Aktualisierungen fiir bestimmte Datensitze gibt.[TS08]

Es konnen drei Fille auftreten, in denen eine Synchronisation notwendig ist: An-
derung in der Cloud, aber nicht lokal; Anderung lokal, aber nicht in der Cloud;
Anderung Lokal und in der Cloud. Gibt es weder Anderungen in der Cloud noch

lokal, dann muss nicht synchronisiert werden.
Anderung in der Cloud, aber nicht lokal

Zu jedem Datensatz wird der Zeitpunkt der letzten Anderung gespeichert. Zunéchst
werden Zeitpunkte aus der Cloud fiir die Datensétze, die auch lokal existieren, herun-
tergeladen und mit den lokalen Werten verglichen. Werden Unterschiede festgestellt,
dann miissen entsprechende Datensétze synchronisiert werden. Die Priifung auf An-
derungen in der Cloud muss in regelméfligen Zeitabsténden durchgefiihrt werden,

denn im Pull-Ansatz ist keine Benachrichtigung iiber Anderungen vorgesehen.
Die Routine fiir den Pull-Ansatz kann in vier Schritte eingeteilt werden:
1. Tabelle mit Datensatznamen und Zeitstempel der letzten Anderung aufbauen
2. Zeitstempel der Datensétze in der Cloud herunterladen
3. Vergleichen der Zeitstempel
4. Unterschiedliche Datensétze synchronisieren
Beim Push-Ansatz wird wie folgt vorgegangen:
1. Benachrichtigung an alle Clients mit Datensatz-Namen senden

2. Clients priifen, ob der Datensatz fiir sie relevant ist (selektive Synchronisation)
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3. Ist der Datensatz relevant, dann initiiert der Client den Ladevorgang.

Im Peer-to-Peer-Modus kann beim Push-Ansatz éhnlich vorgegangen werden. Beim
Pull-Ansatz muss der Client seine Peers nach einer Datenversion fragen, die jiinger
ist als seine. Bekommt er positive Antworten, kann der Ladevorgang zwischen zwei

Peers beginnen.
1. Anfrage fiir einen Datensatz mit Name x und Anderungsdatum >y senden
2. Jiingste Version des Datensatzes aus Riickmeldungen auswihlen
3. Ladevorgang starten

Um Datensiitze zu aktualisieren, kann der Ansatz des Systems ,Rsync* (siehe Ab-
schnitt 2.2.1) angewendet werden. Dabei werden nur die unterschiedlichen Teile eines

Datensatzes ausgetauscht. Dies reduziert die Transferkosten.
Anderung lokal, aber nicht in der Cloud

In diesem Fall wird die lokale Anderung in die Cloud hochgeladen oder iiber das
Peer-to-Peer-Netzwerk verteilt. Wann das Hochladen erfolgt, entscheidet die Opti-

mierungsfunktion, die nachfolgend detailliert beschrieben wird.
Anderung lokal und in der Cloud

Dieser Fall kann durch eine Netzwerkpartitionierung auftreten, indem festgestellt
wird, dass in der Cloud eine neuere Version vorhanden ist, und dass Anderungen
auch lokal am gleichen Datensatz vorgenommen wurden. In dieser Situation wird
der Konflikt lokal aufgelost und die konfliktfreie Version schlieflich in die Cloud
hochgeladen. Das genaue Vorgehen beim Auflésen des Konflikts ist in Abschnitt
4.3.4 beschrieben.

Minimierung der Speicherkosten und Optimierung der Kommunikation

zwischen Cloud und Cache

Es wird ermoglicht, dass nur ein relevanter Teil aller Daten synchron bleibt. Hier-
fiir muss der zu entwickelnden Losung mitgeteilt werden, welche Datensétze sollen
aktuell gehalten werden. Entsprechend werden nur diese Datensétze beim Synchro-
nisieren beriicksichtigt und {ibertragen. Dieses Vorgehen wird ,,selektive Synchroni-

sation® genannt und verhindert das iiberfliissige Speichern und Synchronisieren.

Daten, auf die oft zugegriffen wird miissen zwecks guter Performance unkompri-
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miert bleiben. Daten, deren Zugriffe durchschnittlich einen bestimmten Schwellwert

unterschreiten, werden komprimiert und bei Bedarf temporér entpackt.

Einige Knoten, die erwartungsgemé&f hohe Verfiigbarkeit und geringe Kommunikati-
onskosten haben (z. B. stationdre Rechner, Server, keine Smartphones), kénnen Ak-
tualisierungen von der Cloud herunterladen und iiber Peer-to-Peer an andere Knoten
verteilen. Das wiirde das Traffic in der Cloud, und somit Kosten minimieren. Um
die dabei moglichen Daten-Félschungen auszuschliefen, wird jede Aktualisierung

bereits in der Cloud digital signiert.

Die Ubertragungskosten fiir Daten wachsen mit der Synchronisierungsfrequenz. Ent-
sprechend den Anforderungen an die Losung soll der finanzielle Aufwand moglichst

gering halten werden.

Aus Zugriffs- und Anderungs-Rate, sowie einer Kostenfunktion kann eine Synchro-
nisierungsrate ermittelt werden, bei der die Kosten minimiert und die Aktualitét
der Daten maximiert werden. Im Folgenden wird die Optimierungsfunktion mathe-

matisch ermittelt.

Das Problem kann als das mathematische Constrained Optimization Problem for-
muliert und gelost werden. Fiir die Losung wird eine Bewertungsfunktion verwendet,
die das Problem in ein Unconstrained Optimization Problem umwandelt. Als Folge
lassen sich die Extrempunkte der mathematischen Funktion bestimmen und somit
der gesuchte Wert. Das Problem wird zweierlei gelost, ndmlich fiir das Hochladen

der Aktualisierungen ,,put und fiir das Herunterladen ,, get’
Bewertungsfunktion

Sei eval(x) die Bewertungsfunktion. Sie enthélt Extremwerte, die fiir unsere Losung
von Bedeutung sind. f(x) ist die mathematische Funktion, deren Eingaben bewertet
werden sollen. Die Bewertung éndert sich entsprechend der Penalty-Funktion p(x).
Yeniay [Yen05] beschreibt zwei Typen von Bewertungsfunktionen fiir Constrained

Optimization Problems:
1. Additive Form: eval(x) = f(z) + p(z)
2. Multiplikative Form: eval(z) = f(z) - p(z)

In dieser Arbeit miissen die Synchronisationsraten hinsichtlich der Kosten bewertet

werden. Dabei beeinflusst p(z) die Bewertung entsprechend der Wahrscheinlichkeit
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fiir das Lesen eines inkonsistenten Datensatzes, abhéngig von der Synchronisations-
rate z. Die Funktion f(x) errechnet die Synchronisations-Kosten, abhingig von der
Synchronisationsrate. Das Minimum der Bewertungsfunktion eval(zx) ergibt Kosten
fiir die optimale Synchronisationsrate x,,:. Die Synchronisationsrate x bezieht sich
auf einen festen Zeitabschnitt ¢t und gibt an, wie oft eine Synchronisierung innerhalb
dieses Zeitabschnitts stattfindet. Die Konstante ¢t kann z. B. I Tag oder 1 Monat

betragen.

In Realitdt entstehen durch das Lesen eines inkonsistenten Datensatzes messbare
Kosten in €. Unabhingig von der Konsistenz des Datensatzes entstehen fiir das
Synchronisierungsvorgéinge ebenfalls messbare Kosten in €. Die Summe ergibt die
Gesamtkosten fiir den Betrieb des Systems, die entsprechend der Aufgabenbeschrei-
bung minimiert werden sollen. Aus diesem Grund miissen diese Kosten auch in der
Bewertungsfunktion addiert werden, d. h. es wird die additive Form der Bewertungs-

funktion verwendet:

eval(z) = p(z) + f(x)

Penalty-Funktion

Nun wird die Penalty-Funktion hergeleitet. Finanzielle Kosten verursacht das Lesen
eines veralteten Datensatzes oder das nichthochladen einer Anderung. Das Nicht-
synchronisieren der Datensétze, die nicht gelesen werden verursacht keine Kosten.
Auch das Synchronisieren der Datensétze, die nicht gelesen werden, bringt keine
Vorteile - weder finanzielle, noch funktionelle. Dementsprechend muss fiir das Her-
unterladen nur die Leserate und die Aktualitdt der Datensétze in Betracht gezogen
werden. Entsprechend ist fiir das Hochladen die Schreibrate wichtig. Betrachten wir

zuerst die Penalty-Funktion fiir das Herunterladen, also fiir die Get-Aktion.

Die Wahrscheinlichkeit fiir das Lesen eines veralteten Datensatzes betragt l Das
entspricht einer falschen Leseoperation aus x Synchronisierungen pro Zeitabs%hnitt.
Der Wert wird mit der Anzahl der Leseoperationen innerhalb des Zeitabschnitts
Greaqs Multipliziert, was die statistische Anzahl an falschen Leseoperationen ergibt.
Anschlieend wird eine eins subtrahiert, denn wenn die Anzahl der Leseoperatio-
nen und Synchronisierungen gleich ist, dann entstehen keine Kosten. Jede falsche

Leseoperation verursacht Kosten in Hohe von ¢;.cqq 01, deswegen wird dieser Wert
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multipliziert. AbschlieBend wird ein Faktor ac.ches hinzugefiigt, um die Gesamtheit
aller synchronisierenden Caches zu beriicksichtigen, damit die Kosten insgesamt ge-

senkt werden. Zusammenfassend ergibt sich die folgende Formel:

Pyet (ZE) - (5 * Areads — 1) * Cread_old * Qcaches

Ahnlich verhilt es sich mit den Kosten bei der Put-Aktion, die durch das nichthoch-
laden von Anderungen entstehen. Jedoch muss die Leserate durch die Schreibrate
ersetzt werden. Die Kosten fiir eine nicht hochgeladene Anderung sind viel Hoher,
als die fiir das Lesen eines falschen Datensatzes. Dies kommt dadurch zustande,
dass jeder einzelne der Knoten, die veraltete Version mehrmals liest. Also muss der
entsprechende Kostenfaktor cgeiqin write €ingesetzt werden, der in Realitit ungefahr
Greads * Cread old Detragt, in der Formel aber allgemein gehalten wird. Auch bei der
Put-Aktion muss die Anzahl der Caches aqcpes beriicksichtigt werden. Das resultiert

in folgender Formel:

pput (:E) = (E * Qurites — ]-) * Cdetain_write * Qcaches

Kosten-Funktion

Die Kosten entstehen durch die Ubertragung der Daten von- und zur Cloud. Um
die Gesamtdatenmenge fiir Synchronisierungen innerhalb des Zeitabschnitts zu be-
rechnen, werden Synchronisierungsrate = mit der durchschnittlichen Datenmenge
dgata, die iibertragen werden muss, multipliziert. Das Ergebnis mit dem Kostenfak-
tor Cyataser multipliziert, ergibt die Kosten fiir die gesamte Dateniibertragung iiber
den Zeitabschnitt. Mit dem Faktor a.q.nes werden Kosten berechnet, die alle Caches

verursachen. Des Weiteren gibt es Fix-Kosten cy;, pro Zeitabschnitt ¢.

fput<x> =" ddata,up * Cdataset * Qcaches T Cfiz

fget(x> =T- ddata,down * Cdataset * Gcaches T Cfix

Constrained Optimization Problem

Als Néchstes ldsst sich das Optimierungsproblem mit Nebenbedingungen wie folgt

aufstellen.

Minimize:
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o cvaly () = pput(x) + frut(2)

) evalget(a?) = pget(w> + fget($)

subject to:
1
® Dput (SL’) = (E * Qurites — 1) * Cdetain_write * Qcaches
1
b pget(x) = (; * Qreads — 1) * Cread_old * Qcaches

i fput (ZL’) =T ddata,up * Cdataset * Qcaches T Cfix
14 fget (J)) =- ddata,down * Cdataset * Qeaches + Cfix

® Cdetain_write — Qreads * Cread_old

Qreads = Tread write * Qwrites

Ein Datensatz wird in manchen Systemen &fter gelesen als geschrieben. Ent-

sprechend ist die Leserate um einen Faktor grofler als die Schreibrate.

Um das Minimierungsproblem zu l6sen, werden die Evaluierungsfunktionen abgelei-
tet und anschlieSend werden die Nullstellen bestimmt und die letztendliche Formel

expandiert. Die Nullstellen geben die Optimale Synchronisierungsrate an.

evalput (37) - (E * Qurites — 1) * Cdetain_write * Qcaches +x- ddata,up * Cdataset * Qcaches + Cfia:
Qwrites * Cdetain_write * Qcaches

xr2

/ —
6valput (ZL’) - ddata,up * Cdataset * Geaches —

\/awrites * Cdetain_write

\/ddata,up * Cdataset
\/ Qrites * Tread_write * Quwrites * Cread_old

\/ ddata,up * Cdataset

Lopt_put = +

Lopt_put =

1
evalget<x) = (E * Areads — 1) * Cread_old * Qcaches +x- ddata,doum * Cdataset * Qcaches + Cfix

Greads * Cread_old * Qcaches
.7}2

/ —
get<I> - ddata,down * Cdataset * Qcaches —

eval

\/areads * Cread_old

Lopt_get = +
\/ddata,down * Cdataset
\/rread,write * Qurites * Cread_old

Lopt_get = +
\/ddata,down * Cdataset

Entsprechend miissen Anderungen pro Zeitabschnitt zop g+ Mal herunter- und @pin pur
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Mal hochgeladen werden, um das beste Kosten-/Nutzen-Verhéltnis einzuhalten. Da-
bei muss beachtet werden, dass Aktualisierungen nicht 6fter heruntergeladen werden
sollen, als sie gelesen werden:

Topt_get < Qreads

Und die Aktualisierungen sollen nicht 6fter hochgeladen werden, als sie produziert

werden:

Lopt_put S Qyrites

Entsprechend gilt:
o Lopt_get falls Lopt_get S Qreads
Lopt_get_limited =
Areads; — SONSt
Lopt_puts falls Topt_put S Qyrites

Lopt_put_limited —
Qrites sonst

4.2.4 Zusammenfassung

Die Grundidee ist die Konsistenzerhaltung der Daten mit Hilfe des BASE-Algorithmus.
Dabei werden Synchronisationskonflikte mit dem System IceCube aufgelost. BASE
und IceCube setzen die Verwendung der Operationen voraus, die als Grundelemente
in diesem System gesehen werden. Dadurch, dass die Cloud weniger als 100 % Ver-
fiigharkeit hat, wird Peer-to-Peer-Kommunikation als Fail-Over-Losung verwendet,
um Aktualisierungen auszutauschen. Die Kernpunkte der Losung fiir die einzelnen

Anforderungen werden in folgenden Tabellen dargestellt.
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Funktionale Anforderungen

Strategie

Bereitstellung eines verteilten Daten-

speichers

Daten tiber Cloud und Caches verteilt

Cloud als zentraler Datenspeicher

Daten im Blob-Speicher der Cloud hal-

ten

Lokale Kopie im Cache

Replikas im lokalen Speicher

Flache Datenstruktur

Blobs, nicht hierarchisch aufgeteilt

Unterstiitzung der CRUD-Operationen

auf Daten

Operations

Hinzuschalten weiterer Operationen

Schnittstelle fiir DLLs

Automatische und manuelle Konflikt-

auflosung

Zusammenfithrung der Aktionslogs

Integritatspriifung der lokalen Daten

Liste mit Hashwerten der Datensatzin-
halte

Eventual Consistency

BASE, Flooding

Nichtfunktionale Anforderungen | Strategie

Offlineverfiigbarkeit- und Editierbar- | BASE

keit

Toleranz gegeniiber Cloud- und Kno- | Peer-to-Peer als Failover-
tenausfillen Kommunikation

Synchronisation mit der Cloud bei be-

stehender Verbindung

Zeitstempelvergleich der letzten Ande-

rungen, Rsync

Minimierung der Speicherkosten und

Optimierung der Kommunikation zwi-
schen Cloud und Cache

Selektive Synchronisation, Komprimie-

rung, Optimierungsfunktion

Schutz gegen unberechtigtes Schreiben

Schwellenwert fiir gleiche Eintrage

Portabilitdat der Losung

Webservices, WSDL

Reduktion der Wahrscheinlichkeit fiir

manuelle Konfliktauflosung

Maschinelle Konfliktauflosung

Nachdem die einzelnen Algorithmen diskutiert wurden, wird nun die Stelle betrach-

tet, an der BASE und IceCube verzahnt werden. Der gemeinsame Ausgangspunkt

beider Algorithmen sind Operationen. Der folgende Abschnitt geht auf die Rolle

der Operationen ein und beschéftigt sich detailliert mit ihrem Einsatz in diesem
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System. Die Sammlung der Mechanismen fiir die Datenverarbeitung mittels Ope-
rationen wird in dieser Arbeit als Operations bezeichnet. Operations kann als ein

Baustein des Systems gesehen werden.

4.3 Operations-Komponente

Entsprechend den Uberlegungen in Abschnitt 4.2.1, wird ein #hnlicher Ansatz erfor-
dert, wie in [PB99] und [KRSDO1]: eine Strategie, bei der Aktionen fiir Manipulation
der Daten bereitgestellt werden und diese beim Ausfiihren, fiir einzelne Datensétze
mitgeschnitten werden. Eine Komponente, die diese Strategie realisiert, wird zwi-
schen die Anwendung und die Rohdaten geschaltet (Abbildung 10).

V"*
Daten
—_ -

[eTs}

C

o

(]
Anwendung ‘3

c

o

<

(8]

c

>

(V]
Operations

Daten

Abbildung 10: Aufbau der Struktur Anwendung-Operations-Daten. Die Anwendung
greift auf Daten ausschlieflich iiber Operations zu. Das interne Da-
tenmanagement bleibt der Anwendung verborgen, es kann jedoch mit
frei programmierbaren Operationen offenbart werden.
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Um die Konfliktwahrscheinlichkeit einzuschrinken, miissen hcherwertige Abstrak-
tionen der Operationen existieren, z. B. neben CRUD-Operationen auch die, die
Anwendungslogik- und Semantik beriicksichtigen. Betrachten wir das folgende Bei-
spiel: Mehrere Teilnehmer tragen gleichzeitig jeweils einen Eintrag fiir den gleichen
Termin in eine Kalenderdatei ein. Auf der CRUD-Ebene wiirde es zum Konflikt
fithren, denn eine Tabellenzelle der Datei kann nur einen Eintrag enthalten. Ent-
sprechend der Anwendungslogik wire diese Handlung jedoch erlaubt, denn es wiirde
fiir mehrere gleichzeitige Termine ein einziger, komplexer Eintrag gespeichert wer-
den, der von der Anwendung interpretiert und in einer Tabellenzelle gespeichert

werden kann.

In néchsten Abschnitten wird das Konzept der Operations erlautert, die die Midd-
leware realisieren. Zunéchst wird gezeigt, wie ein Datensatz gespeichert wird und
welche Eigenschaften er hat. Danach werden Operationen beleuchtet, die Datensétze
bearbeiten. AnschlieBend wird présentiert, wie Konflikte durch eine Mergefunktion
aufgelost werden. Danach wird erklért, wie Operations in bestehende Anwendungen
integriert werden konnen. Schlussendlich wird das Unterkapitel zusammengefasst.

Wir beginnen mit der Betrachtung der Datensétze als Informationseinheiten.

4.3.1 Datensatz

Ein Datensatz ist die Informationseinheit, die im System synchronisiert wird. Sie
besteht aus drei Teilen. In jedem Fall miissen Nutzdaten gespeichert werden, sonst
kann das System nicht sinnvoll verwendet werden. Des Weiteren miissen Metadaten
gespeichert werden, um die systeminterne Datenverarbeitung zu organisieren. An-
schlieend ist ein Log notwendig, um die Verwendung von BASE und IceCube zu

ermoglichen.

Ein Datensatz besteht somit aus:
e Inhalt
e Metadaten
e Log

Ein Datensatz kann Text- sowie Bindrinhalte beinhalten. Die Endanwendung ent-

scheidet iiber den Dateityp des Datensatzes.
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Als Metadaten kann gespeichert werden, ob der Datensatz schreibgeschiitzt ist, seine
Zugriffsrechte, der Datensatztyp und sonstige fiir Operationen relevante Informatio-
nen. AuBerdem wird dort festgehalten, welche Operationen den Datensatz bearbei-
ten diirfen. Dies wird in Form von einer Whitelist und einer Blacklist bewerkstelligt.
Nur die in der Whitelist eingetragenen Operationen diirfen den Datensatz bearbei-
ten und die Operationen, die in der Blacklist definiert wurden diirfen den Datensatz
nicht bearbeiten. Die Operation, die den Datensatz erstellt, legt fest, ob die White-
oder Blacklist verwendet werden soll und welche Operationen auf den Datensatz
Zugriff haben.

Der Log wird mit jeder Ausfithrung der Operationen geschrieben. Dort werden In-
formationen iiber vergangene und die anstehende Operation inklusive Parameter,

des aktuellen Zeitstempels und des Erfolgs der Operationsausfiihrung festgehalten.

Formal ist der Datensatz ein Tupel aus dem Datensatznamen, Datensatzinhalten,
Datensatz-Metadaten und dem dazugehorigen Log:
Dataset := (Name, Content, M etadata, Log)

Operationen, die die eben beschriebenen Datensétze bearbeiten, werden nun eben-
falls detailliert betrachtet.

4.3.2 Operation

Eine Operation ist eine Funktion, die Datensétze bearbeiten kann. Jede Funktion
hat die Ein- und Ausgabe, so auch die Operation. Sie benétigt Informationen iiber
die zu verarbeitende Datensétze, also die Eingabequelle und das Ausgabeziel. Daten
werden jedoch nicht nur aus einem Datensatz gelesen, sondern kénnen vom Benut-
zer oder einem anderen System vorgegeben sein. Diese werden iiber einen Parameter
iibergeben. Bei der Datenverarbeitung gibt es Einflussfaktoren, die unbedingt zu be-
riicksichtigen sind. Hierfiir gibt es einen Informationskanal, iiber den die Operation

diese Daten erhalt.

Dementsprechend hat jede Operation die folgende Form:

OperationN ame(Source, Destination, Payload, Speci ficParameters)
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Dabei enthalten die Parameter Referenzen auf die Quelle und das Ziel der Daten,
sowie einen bindren Dateninput. Um eine hohe Diversitédt der Operationen zu er-
moglichen, gibt es eine zuséitzliche Variable, in der weitere, operationsspezifische
Parameter iibergeben werden kénnen. Die Ausgabe der verarbeiteten Daten kann
durch den Riickgabewert der Funktion und durch das Schreiben in einen Datensatz

stattfinden. Die Parameter einer Operation sind in Abbildung 11 visualisiert.
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Abbildung 11: Parameter einer Operation. Die Operation bekommt Referenzen auf
die Quelle und das Ziel, sowie die fiir die Verarbeitung notigen Da-
ten. Die Ausgabe muss nicht in den unter ,,Destination“ angegebenen
Datensatz erfolgen, denn es kann auch ein anderer Datensatz als Aus-
gabeziel verwendet werden.

Im Folgenden sind einige Beispiele der moglichen Operationen aufgefiihrt:

e Rename(“orange.tzt” “banana.txt”, NULL, NULL)
Mit dieser Operation wird ein Datensatz mit dem Namen orange.txt in bana-

na.txt umbenannt.



Entwurf 53

e AppendText(NULL, “banana.txt”,“Very_fruity_banana.”, NULL)
Diese Operation héngt an das Ende des Datensatzes banana.txt eine Zeichen-

kette an.

e Delete(“banana.tzt” NULL,NULL,NULL)

Der Datensatz banana.txt wird mit Hilfe dieser Operation gelscht.

Die Instanz einer Operation enthélt zuséitzlich den Erfolg, Zeitstempel des Starts
und dem Ende der Ausfithrung und eine eindeutige Id :

OperationInstance = Operation N ameU

{Source, Destination, Payload, Speci ficParameters}U

{Guid, Success, TimestampStart, TimestampEnd}

Der Erfolg der Ausfithrung ist fiir die Integritiat des Datensatzes notwendig. Wird es
nicht beriicksichtigt, dann kann bei der Konfliktauflosung (Abschnitt 4.3.4) zu einer
Verfélschung der Daten kommen. Die Zeitstempel sind fiir die anwendungsspezifi-
schen Konfliktauflosungsstrategien notwendig (vgl. Last Write Wins in Abschnitt
2.1.4). Die eindeutige Id ist ebenfalls fiir die Konfliktauflosung wichtig, um Gemein-
samkeiten und Unterschiede zu erkennen, falls Operationen mit gleichen Parametern
ausgefithrt wurden. Wird es missachtet, dann werden gleiche Operationsinstanzen

doppelt ausgefiihrt.

Es bietet sich an, Operationen bereitzustellen, die mit geringem Modifikationsauf-
wand als Grundlage fiir die individuellen Anwendungen dienen kénnen und somit fiir
verschiedene Anwendungen wiederverwendbar sind. Das erméglicht ein hoherwerti-
ges Datenmanagement im ganzen System und ermoglicht einfachere Entwicklung

von anwendungsspezifischen Operationen.

Somit ergibt sich eine Hierarchie von Operationen, die aus drei Schichten besteht
(Abbildung 12).

Im Folgenden wird auf die Basisoperationen, Erweiterungsoperationen und anwen-
dungsspezifischen Operationen ndher eingegangen.
Basisoperationen

Die Basisoperationen stellen die grundlegenden Operationen bereit, mit denen Ar-

beit mit Dateien ermdglicht wird. Fiir die Datenbearbeitung werden die CRUD-
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Abbildung 12: Hierarchie von Operationen. Die oberste Schicht ist frei program-
mierbar und fiir jede Anwendung individuell. Die mittlere kann wie-
derverwendet und erweitert werden. Die untere Schicht bietet die
Grundlage und ist fest.

Operationen bereitgestellt
e Create
e Read
e Update
e Delete

Des Weiteren werden die grundlegenden Operationen bereitgestellt, die das Verwal-

ten der Datensétze ermoglichen:
e Search by name (dhnlich List)

e Search by metadata
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e Rename (dhnlich Move)
e Duplicate (&hnlich Copy/Paste)

Die Operation ,Search by name“ ermoglicht eine Suche nach Namen eines Daten-
satzes. In einer flachen Datenordnung macht die Operation ,,List directory content®
keinen Sinn, denn es wiirden alle gespeicherten Datensétze ungefiltert zuriickgege-
ben werden. Ist eine Auflistung der Datensétze mit bestimmten Kriterien erwiinscht,
muss ,,Search by metadata“ ausgefiihrt werden. Allerdings miissen diese Kriterien als
Metadaten des Datensatzes gespeichert sein. Um die Suche nach Datensatz-Inhalten
zu realisieren, muss die Operation, aufgrund der anwendungsspezifischen Daten die
anwendungsspezifische Logik beinhalten, die nicht fiir jede Anwendung generisch
realisiert werden kann. Sollte diese Funktion von Néten sein, dann muss sie als eine

anwendungsspezifische Operation implementiert werden.

Die Funktionalitéit von ,Move“ und ,,Copy/Paste® ist sinnvoll in einer hierarchischen
Organisation der Daten. Eine Move-Operation in einer flachen Struktur bewirkt
nur eine Namensédnderung, deshalb ist der Operationsname ,, Rename® sinnvoller.
Ebenfalls bewirkt ,,Copy/Paste nur eine Verdopplung des Datensatzes (,,Duplicate®)

im Speicher.

Die Operation ,Link“ die eine Verkniipfung zu einer anderen Datei erstellt, wird
aufgrund der Anforderung ,,Flache Datenstruktur® nicht unterstiitzt, denn sie wiirde

eine Relation zwischen zwei Datensatzen erstellen.

Die Basisoperationen konnen durch weitere ergénzt werden, um komplexere Da-
tenzugriffe oder Steuerungsvorgéinge und somit effiziente Arbeit mit Daten zu er-
moglichen. Diese kénnen je nach Anwendungsfall niitzlich sein und durch andere

Anwendungen wiederverwendet werden.

Erweiterungsoperationen

Basisoperationen, die hauptséchlich fiir die Datenverarbeitung bereitstehen bieten
keine Moglichkeit Einfluss auf die systeminterne Vorgénge zu nehmen. So konnte
man mit einer Erweiterungsoperation einen Synchronisierungsvorgang erzwingen,
um beispielsweise die Aktualitdt der Daten zu einem bestimmten Zeitpunkt zu ga-

rantieren. Weitere niitzliche Operationen sind:

e Shred dataset - Loscht alle Versionen eines Datensatzes in der Cloud und im
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Cache aller Peers

e Entangle two datasets - Verschriankt zwei Datensétze miteinander, die beim

Synchronisieren atomar behandelt werden
e Restore old version - Uberschreibt die aktuelle Version durch eine éltere

Basisoperationen und Erweiterungsoperationen bieten nicht die bestmdogliche Fle-
xibilitat fiir die Endanwendung. Sie haben den Zweck, Daten zu verarbeiten und
Steuerung von Operations zu ermoglichen. Um das volle Potential des Systems zu
nutzen, werden anwendungsspezifische Operationen benétigt, die auf die Endanwen-

dung zugeschnitten sind.

Anwendungsspezifische Operationen

Die anwendungsspezifischen Operationen miissen je nach Anwendungslogik indivi-
duell entwickelt werden. Sie kénnen beispielsweise die Operationen der Tuple Spaces

implementieren, was einer moglichen Endanwendung entspricht.

Tuple Spaces ist ein assoziativer Speicher, der aus der Sicht eines datenkonsumie-
renden Prozesses eine Art zentraler Speicher mit Daten in Form von Tupeln ist.
Diese Tupeln werden in einem Blackboard-System (vgl. [Cor91]) gespeichert, dabei
kann ein Tupel von genau einem Prozess verarbeitet werden. Es geschieht, indem ein
Tupel aus dem Tuple Space entnommen und dem Prozess iibergeben wird. Dieser

verarbeitet diesen Tupel und kann ihn wieder zuriick, in das Tuple Space einfiigen.

Abgebildet auf das entwickelte System wiére der zentrale Speicher die Cloud und
Tupeln wiren Datenstrukturen, die in Flatfiles serialisiert gespeichert werden. Das
Verwenden der Tupel durch einen Prozess geschieht mit einer Operation. Fiir die
Losung wére der Einsatz von Tupel Spaces eine spezifische Anwendung. So miissen

nach Foster [Fos95] nur die folgenden speziellen Operationen realisiert werden:

e Einfiigen des Tupels

Blockierendes Lesen des Tupels

Nicht blockierendes Lesen des Tupels

Blockierendes Lesen und Entfernen des Tupels

Nicht blockierendes Lesen und Entfernen des Tupels
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,Five operations are supported: insert ( out), blocking read ( rd), non-
blocking read ( rdp), blocking read and delete ( in), and nonblocking
read and delete ( inp)* [Fos95]

Durch den exklusiven Ausschluss des Zugriffs auf die Tupel kann es in diesem An-

wendungsfall zu keinen Konflikten kommen.

In vielen Systemen ist es nicht moglich den exklusiven Ausschluss zu realisieren,
wodurch es zu Konflikten kommen kann. Jedoch bevor ein Konflikt aufgelost werden

kann, muss ein Log der ausgefithrten Operationen existieren.

4.3.3 Log

Entsprechend dem System BASE, gibt es fiir jeden Datensatz genau einen Log,
der mit einem neuen Datensatz erstellt wird und mit dem Loschen eines Daten-
satzes entfernt wird. Jede Replika des Datensatzes enthélt somit den Endzustand
nach der Ausfithrung der Operationen, sowie einen zugehorigen Log als Protokoll
jeder Anderung, der fiir IceCube verwendet werden kann. Ein Log ist somit eine
Liste mit durchgefiihrten Operationen und der aktuell anstehenden Operation am

entsprechenden Datensatz. Formal wird er wie folgt beschrieben.

Log = {OperationInstancey, ..., OperationInstance, } U OperationInstance .yrent

Existieren zwei unterschiedliche Logs desselben Datensatzes, so konnen diese Logs

mit der Mergefunktion zusammengefiihrt werden.

4.3.4 Mergefunktion

Die Mergefunktion wird bendétigt, sobald zwei Zustédnde eines Datensatzes in einen
iiberfithrt werden miissen. Daten sollen auch im Peer-to-Peer-Modus zusammenge-
fithrt werden, deshalb muss die Ausfithrung der Mergefunktion im Cache stattfinden.
In der Cloud wird eine andere Mergefunktion benétigt, die die Anforderung ,,Schutz
gegen unberechtigtes Schreiben” realisiert. Deshalb werden in dieser Losung zwei

unterschiedliche Mergefunktionen eingesetzt: Cloud Merge und Peer Merge.

Cloud Merge
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Sobald eine bestimmte Anzahl an gleichen Verénderungsanfragen in der Cloud er-
reicht wird, wird die Anderung iibernommen und fiir alle lesbar gemacht. Dies re-
sultiert in einem neuen Zustand des betroffenen Datensatzes. Dieser Schwellenwert
kann fiir einzelne Datensétze beliebig festgelegt werden. So ist der Einsatz des Sys-
tems in einer 6ffentlichen, sowie vertrauenswiirdigen Umgebung moglich. Liegt der
Wert bei 1, dann werden Anderungen sofort iibernommen. AuBerdem ist es sinnvoll,
bei Datensétzen, die oft gedndert werden, diesen Wert zu erhohen, um eine Stabili-
tat des Zustands zu gewéhrleisten. Entsprechend soll der Wert bei Datensétzen, die
selten geéndert werden - klein sein, damit die Anderungen zeitnah vorgenommen

werden.

Ein quorumbasiertes Verfahren ist in dem Fall nicht einsetzbar, weil man bei jeder
Anderung oder regelmifig die Gesamtanzahl an aktiven Knoten ermittelt miisste,
was ineffizient wére. Es wiirde mit der Anforderung ,, Minimierung der Speicherkos-
ten und Optimierung der Kommunikation zwischen Cloud und Cache® kollidieren,

weil hohe Transferkosten aufgrund dieses Verhaltens anfallen wiirden.

Um eine gewisse Toleranz zwischen den Abweichungen der Anderungsanfragen fest-
zulegen, wird eine anwendungsspezifische Funktion Fquals verwendet. Sie vergleicht
Datensétze miteinander und entscheidet, ob die Abweichung unter der Toleranzgren-
ze liegt. Mit dieser Information kann man die Zugehorigkeit zu Aquivalenzklassen
priifen. Nach dem Bilden der Aquivalenzklassen wird die grofite Aquivalenzklasse

gewahlt und aus dieser Menge die neue Datensatzversion zuféllig bestimmt.

Um Raceconditions zwischen zwei Aquivalenzklassen zu vermeiden, miissen Caches,
deren Anderungsanfrage abgelehnt wurde, vor der néchsten Anderungsanfrage auf
die neue Version des Datensatzes gebracht werden. Hierfiir steht die Funktion ,, Peer

Merge* bereit, die im Folgenden diskutiert wird.

Betrachten wir folgendes Beispiel: Sei eine Version des Datensatzes in der Cloud
dp und Anderungsanfragen {di,...,ds}. Dabei ergibt die Equals-Funktion folgen-
des (zwecks Ubersichtlichkeit wurden die trivialen Kombinationen der Reflexivitiit,

Transitivitdt und Symmetrie weggelassen ):
e Equals(dy,ds) = true
e FEquals(dy,ds) = true
e Equals(dy,dy) = false
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e Fquals(ds,ds
e Fquals(dy,ds

Aufgrund dieser Berechnung kénnen folgende zwei Aquivalenzklassen gebildet wer-

den:
la1] = {di,ds,ds} und [as] = {d4, d5}

Mit [[a1]] = 3 und |[ag]| = 2 bildet die erste Aquivalenzklasse die Mehrheit. Nun
wird ein zufélliger Kandidat aus dieser Menge, z. B. d mit dem zugehérigen Log
und Metadaten als neue Version des Datensatzes in der Cloud gewéhlt und fiir alle

Caches lesbar gemacht:
CloudMerge(dy,{dy, ...,ds}) = ds

Letztendlich sollen Caches, die die Anderungsanfragen d, und ds machten, synchro-
nisiert werden. Hierfiir laden sie den Datensatz dy aus der Cloud herunter und fiithren

dy und do, bzw. d5 und dy mit Peer Merge zusammen.

Peer Merge

Ein Konflikt tritt immer dann auf, wenn wéhrend eines Synchronisierungsvorgangs
eine Datensatzversion auf den Knoten geladen wird, die von der lokalen Version
abweicht. Eine Abweichung liegt dann vor, wenn die zufillig generierten Instanz-Ids
der letzten Operationen unterschiedlich sind. Das ist ein Zeichen dafiir, dass Ande-
rungen, die an zwei Stellen durchgefithrt wurden, nicht synchron sind. Wurde ein
Konflikt mittels Vergleich der Ids erkannt, kann die Konfliktauflosung durchgefiihrt

werden.

Konfliktauflosung

Die Konfliktauflosung auf dem Knoten erfolgt schrittweise: kann ein Konflikt im ers-

ten Schritt nicht aufgelost werden, wird es im néchsten Schritt versucht. Der Ablauf
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ist als Zustandsdiagramm in Abbildung 13 dargestellt. Die erste Stufe fithrt Daten-
zusténde mit einem IceCube-dhnlichen Algorithmus zusammen, indem eine gemein-
same Reihenfolge der Operationen fiir beide Logs festgelegt wird. Dabei entsteht
ein gemeinsamer konfliktfreier Zustand. Die zweite Stufe ist eine von der speziellen
Anwendung festgelegte Routine. Dieser Funktion werden zwei Datensatz-Versionen
iibermittelt, auf Basis deren sie eine dritte, konfliktfreie Version zuriickgibt. Die
dritte Stufe ist die manuelle Auflésung und wird durch den Benutzer vorgenommen.
Ihm werden zwei Versionen vorgeschlagen und er wéhlt eine der Versionen oder

iibermittelt eine dritte, von ihm personlich kreierte Version.

m/ Auflésung durch \\

Logzusammenfiihrung

Auflésung durch
l anwendungsspezifische

Mergefunktion

4 i
. A
( Manuelle auflésung /

@ v v v
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Abbildung 13: Ablauf der Konfliktauflosung auf dem Knoten. Peer Merge besteht
aus mehreren Teilen, die Konfliktauflosung iibernehmen.

Ein solcher dreistufiger Resolutions-Ablauf ist in keinem der in dieser Arbeit vor-
gestellten Systeme vorhanden, jedoch dem Ansatz in IceCube und Bayou dhnlich.

IceCube verwendet nur die erste und dritte Stufe, Bayou nur die zweite und dritte.

Alternativ konnte man die anwendungsspezifische Auflosung als ersten Schritt ein-
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setzen. Jedoch wird in dieser Arbeit davon ausgegangen, dass die anwendungsspe-
zifische Auflésung nur fiir wenige Datensatztypen, dhnlich wie in Coda, bereitsteht.
Entsprechend ist es besser, ein universelles Auflésungsverfahren zuerst einzusetzen,
um bereits in der ersten Stufe die meisten Konflikte aufzulosen. Aus diesem Grund

wird der erste Ablauf (Abbildung 13) in dieser Losung eingesetzt.

Erste Stufe

Die zweite und dritte Stufen sind trivial, jedoch die erste umso komplexer. Der
IceCube-Ansatz wurde in Abschnitt 2.2.8 vorgestellt. In IceCube miissen zu jeder
Operation alle Vorbedingungen genau definiert werden, damit die Operation beim
Zusammenfiihren der Logs vom Algorithmus an die richtige Stelle gesetzt wird. Dies
ist in einem komplexen System sehr aufwendig. Des Weiteren verlieren Operationen
auf diese Weise an Wartbarkeit, denn die Vorbedingungen miissen immer mit der
Funktion genau korrelieren. Deshalb muss der IceCube-Algorithmus an dieser Stelle

angepasst werden.

Der Ablauf ist nun wie folgt. Als Erstes muss ein gemeinsamer Ausgangspunkt beider
Logs gefunden werden. Die Logs werden deshalb operationsweise durchgegangen und
die Ids der Operationinstanzen verglichen. Die Operation vor der ersten Diskrepanz
stellt den gemeinsamen Ausgangspunkt dar, ab dem zusammengefiihrt werden soll.
Als Néchstes werden Operationen gesucht, die aufgrund von Abhéngigkeiten die
Permutierungsfreiheit einschréinken. Diese Operationen definieren einen Rahmen,
in dem einzelne Logteile mittels IceCube zusammengefiihrt werden kénnen. Dieses
Vorgehen reduziert die Anzahl und die Komplexitéit der Vorbedingungen fiir den

originalen IceCube-Algorithmus.

Entsprechend muss das Operations-System in der ersten Stufe die Operationen mit
Abhéngigkeiten erkennen. Die Beurteilungskriterien fiir solche Operationen werden

im nachsten Abschnitt diskutiert.

4.3.5 Qualitatsstufen der Operationen

Operationen kénnen in unterschiedliche Qualitétsstufen eingeteilt werden. In diesem
Dokument werden drei Stufen verwendet. Um die Beschreibung zu vereinfachen,

werden einzelnen Stufen Farben zugeordnet. Das Qualitéatskriterium ist die, aus
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den Operationen resultierende, Komplexitit des Mergevorgangs. Kénnen Operatio-
nen sehr effizient zusammengefiithrt werden, dann haben sie eine gute Qualitéit und
entsprechen der Farbe Griin. Ist mit dem Mergen ein erheblicher Rechenaufwand
verbunden, dann sind diese Operationen qualitativ mittelméaflig und entsprechen der
Farbe Gelb. Behindern Operationen die Zusammenfithrung, dann ist die Qualitat

schlecht und es wird ihnen die Farbe Rot zugeordnet.

Die Effizienz der Logzusammenfiithrung héngt mit den mathematischen Eigenschaf-
ten der Operationen zusammen. Ist die Reihenfolge der Operationen im Log irrele-
vant, dann sind sie kommutativ und kénnen dementsprechend an beliebiger Stelle
im konfliktfreien Log eingesetzt werden. Wenn es eine kausale Abhéngigkeit zwi-
schen zwei Datenzustinden gibt, dann ist es eine Einschrinkung und die richtige
Reihenfolge muss zuerst berechnet werden. Werden nichtkommutative und kausal
abhéngige Operationen verwendet, dann ist der Losungsraum der Mergefunktion ex-
trem gering und kann unter Umstidnden keine Losung enthalten. Diese Verhiltnisse

lassen sich in folgender Tabelle veranschaulichen:

Qualitéat Farbe | Kommutativ | Kausal unabhéingig
Schlecht Rot - /-

MittelméBig | Gelb | / -

Gut Grin |/ V

Die CRUD-Operationen sind als rot einzustufen, denn mit Read und Write lésst sich
eine kausale Abhéngigkeit herstellen. Des Weiteren sind Create und Delete nicht
kommutativ. Aus diesem Grund, wirkt sich die Verwendung von anwendungsspezi-
fischen griinen Funktionen, statt den CRUD-Operationen, positiv auf die Leistung

des Mergealgorithmus aus.

Griine Operationen sind besser

Es empfiehlt sich der verstdarkte Einsatz von griinen Operationen, die kommuta-
tiv und kausal unabhéngig sind, um eine bessere Konfliktauflosung zu erméglichen.
Auch in [GHOS96] wird gesagt, dass die Verwendung von kommutativen Operatio-
nen die Konvergenz der Datensédtze gegen einen konsistenten Zustand unterstiitzt,

weil sie einfach zusammengefiihrt werden kénnen.

Betrachten wir das folgende Beispiel: In einem Club mit zwei Ein- und Ausgéngen

soll die aktuelle Anzahl an Besuchern gezéhlt werden. Es gibt eine Datei mit einem
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numerischen Wert 0, der zweimal hochgezéhlt wird. Das inkrementieren kann mit
einer anwendungsspezifischen Operation Increment und mit den CRUD-Operationen

Read und Write realisiert werden.

Zihler Anw.spez.-Operation CRUD- Dateiinhalt
Operation

1 a = Read() 0

1 Increment() Write(a+1) 1

2 b = Read() 0

2 Increment|() Write(b+1) 1

In beiden Féllen werden insgesamt zwei Besucher an zwei Eingédngen gezdhlt. Nun
werden diese Dateien synchronisiert. Ein Konflikt mit Zwei aufeinanderfolgenden
Operationen Increment() lasst sich einfach auflosen, weil die Reihenfolge beliebig

sein kann.

Die Reihenfolge der aufeinanderfolgenden Read() und Write() Operationen darf
nicht gedndert werden, weil es Abhéngigkeiten zwischen den Funktionen gibt, die bei
einer Neuanordnung verletzt werden wiirden. Deshalb muss dieser Konflikt durch
die zweite Stufe des Mergealgorithmus aufgelost werden. Demnach muss die an-
wendungsspezifische Mergefunktion diesen Fall kennen und entsprechend die Werte
beider Zahler addieren.

Rote Operationen in griine umwandeln

Mochte man Werte schreiben, die auf gelesenen basieren, dann muss das Lesen und
Schreiben atomar innerhalb einer Operation durchgefithrt werden. Die Operation
Increment() ist nach diesem Muster entwickelt, denn zundchst wird ein Wert ge-
lesen, dann inkrementiert und abschliefend in die Datei geschrieben. Die Folge ist:
es kann kein veralteter Wert aus der Vergangenheit gelesen werden. Entsprechend
kann auch kein Wert mit veralteten Daten iiberschrieben werden. Dies stellt lokal

einen gewissen Isolierungs-Grad sicher (vgl. [ALO00]).

Auf jedem Knoten kann auf den Datensatz gleichzeitig nur eine Operation zugreifen.
Entsprechend wird auch nach dem Zusammenfiithren zweier Logs eine Operation
nach der anderen ausgefiihrt. Die serielle Ausfiithrung der in sich abgeschlossenen
Operationen gleicht der Anwendung der Read- und Write-Locks in einer Datenbank
mit dem Isolierungsgrad SERIALIZABLE.
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Beispiel fiir die Logzusammenfiihrung mit roten Operationen

Manchmal ist die Anwendung roter Operationen aufgrund der Anwendungslogik
unumgénglich. Werden kommutative und nichtkommutative Operationen an einem
Datensatz ausgefiihrt, dann bilden die nichtkommutativen, entsprechend dem Vor-
gehen in der ersten Stufe, einen Rahmen fiir die kommutativen Operationen. So
kénnen die kommutativen Operationen innerhalb dieses Rahmens zusammengefiihrt

werden.

Als Beispiel dienen uns zwei Zéhler, die ihre Messungen in eine Datei schreiben, die
anschlieffend synchronisiert wird. Es ist ein Konflikt entstanden und er wird in der
ersten Stufe aufgelost (Abbildung 14).

Counter 1 Counter 2
Write(0) ——— Write(0)
Increment()/ Increment()
Increment()D/gv Decrement()
Read() —A/ Read()
Decrement()
Read()

Abbildung 14: Erste Stufe des Peer Merge-Algorithmus. Die permutierbare Ope-
rationen werden innerhalb des Rahmens zusammengefiihrt, der von
nicht permutierbaren Operationen gebildet wird.

Die Read- und Write-Operationen werden als Rot eingestuft. Die Increment- und
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Decrement-Operationen dagegen als Griin. So wird in Abbildung 14 zun#chst der
erste Rahmen zwischen Write und Read betrachtet, danach der zweite, der von den
beiden Read-Operationen des ersten Zihlers gebildet wird. Auf diese Weise werden

Logs zusammengefiihrt und die kausalen Abhéngigkeiten bleiben unverletzt.

Operations wurde im Detail diskutiert, jetzt bietet es sich an, aus der Makroper-
spektive zu untersuchen, wie es in Entwiirfen anderer Systeme prasent wird. Hierfiir
wird Operations als Baustein gesehen, der in Architekturmustern sichtbar wird.
Der nédchste Abschnitt beschéftigt sich mit der Frage, wie Operations wiahrend der

Planungsphase eines Systems eingegliedert werden kann.

4.3.6 Integration der Operations in Architekturmuster

Operations ist ein architektonischer Baustein, der bei Verwendung diverser Archi-
tekturmuster fiir den grundlegenden Aufbau einer Anwendung verwendet werden

kann.

Die meisten Anwendungen sind nach einem Drei-Schichten- oder MVVM-Architekturmuster
entwickelt. Sonstige Architekturmuster kann man auf die genannten abbilden. Aus
diesem Grund wird hier nur die Integration der Operations in diese zwei Architek-

turmuster betrachtet.

Drei-Schichten

Drei-Schichten gehort zu den klassischen Architekturmustern. Es besteht aus Kom-
ponenten: Data, Logic und View. Die Komponente Data umfasst Daten und Daten-
zugriffe fiir die dazugehorige Verarbeitung in der Komponente Logic. View ist fiir
die Darstellung der Daten verantwortlich. Es ist nicht erlaubt, dass View mit Daten

direkt kommuniziert.

Fiir die Integration der Operations muss der Entwickler nur die Komponente Da-
ta abéndern, sodass Datenzugriffe {iber ein Webservice und Operations stattfinden.
Operations lédsst sich weder in die Komponente Data, noch in Logic einordnen.
Es enthélt Funktionen, die grundlegende anwendungsspezifische Datenaufbereitung
iibernehmen. Aus diesem Grund muss es als Bindeglied zwischen Data und Logic
gesehen werden. Entsprechen erkennt man in der Abbildung 15, dass diese Kompo-

nente die, mit gestrichelten Linien, dargestellte Trennung der Ebenen iiberbriickt.
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Datenabstrahierungsebenen

Drei-Schichten Data | Logic | View
| |
OP-Drei-Schichten| Data Operations Logic : View
| V'l
MVVM Model=Data+Business Logic 1ew View
Model
| |
. Business View .
OP-MVVM | Data Operations . View
Logic Moldel

Abbildung 15: Eingliederung der Operations in Drei-Schichten und MVVM. Die Ar-
chitekturmuster wurden auf eine Gerade abgebildet, die Abstrakti-
onsebenen der Daten darstellt. Operations ist ein Baustein, den man
in Architekturmuster zwischen Rohdaten und Logik einbauen kann.

MVVM

Model-View-ViewModel ist ein Architekturmuster, das zwischen dem Model und
dem View eine Schicht hat, die Daten fiir die Présentation vorbereitet. Die Kompo-

nente Model umfasst Daten und die dazugehorige Verarbeitungslogik.

Eine MVVM-Anwendung kann Operations verwenden, nur muss der Entwickler das
Model reorganisieren, sodass Daten und Logik von einander entkoppelt werden. An-
schliefend kann die Operations-Schicht zwischen Daten und Logik geschaltet wer-
den, &hnlich wie zwischen Data und Logic der Drei-Schichten-Architektur (Abbil-
dung 15).

Die Integration von Operations in MVVM resultiert in einer Fiinf-Schichten- Architektur:
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Daten (Data), anwendungsspezifische Daten (Operations), Verarbeitungslogik (Busi-
ness Logic), Darstellungslogik (ViewModel), Darstellung (View). Entsprechend ist
der Einsatz von Operations in einer Fiinf-Schichten-Architektur mit einem geringen
Anderungsaufwand verbunden, da nur die zweite Schicht ersetzt werden muss und

keine Anpassungen der Grundarchitektur notwendig sind.

Verwendung durch bestehende Anwendungen

Generell lasst sich Operations auch in bestehende Systeme einbauen. Dies erfordert
jedoch eine lose Kopplung zwischen Daten und Logik. Am wenigsten Aufwand ver-
ursacht die Integration, wenn bei der Endanwendung ein Enterprise Service Bus
eingesetzt wird. In diesem Fall muss Operations lediglich an den Message Bus ange-
schlossen werden und entsprechende Routing- und Transformations-Informationen
hinterlegt werden. In anderen Féllen muss ein Adapter fiir die Anwendung entwi-
ckelt werden, der Operationen iiber Webservices und entsprechende Schnittstelle

aufruft.

4.3.7 Zusammenfassung

Operationen sind der Kern der Middleware. Sie bearbeiten Datensétze, die aus Nutz-
daten, Metadaten und Logs bestehen und koénnen in eine Hierarchie eingeordnet
werden. Die Operationen erméglichen eine verbesserte Konfliktauflosung durch Mer-
gefunktionen, von denen es zwei gibt - eine in der Cloud, mit der Konflikte fiir alle
Teilnehmer aufgelost werden und eine auf dem Peer, um lokale Konflikte zu besei-
tigen. Auflerdem konnen Operationen in verschiedene Qualitétsstufen eingeordnet
werden, was fiir den Peer Merge-Algorithmus von grofler Wichtigkeit ist. Der Bau-
stein Operations lasst sich flexibel in die populdrsten Entwurfsmuster eingliedern
und verwenden, sodass er in der Planungsphase beriicksichtigt, oder auch nachtrég-
lich in ein bestehendes System integriert werden kann. Das néchste Kapitel geht in

die Details der Implementierung von der Middleware.
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5 Implementierung

In diesem Kapitel wird beschrieben, wie das entworfene System praktisch umge-
setzt wird. Zunéchst wird die Architektur des Systems aus dem vorausgehenden
Kapitel verfeinert, anschlieend werden die verwendeten Entwurfsmuster und ihre
Rolle fiir das Gesamtsystem beleuchtet. Die Schnittstellen bilden einen wichtigen
Teil der Losung und werden in einem separaten Abschnitt betrachtet. Des Weiteren
beschiftigen wir uns mit den Abldufen, die durch die Komponenten des Systems
gesteuert und ausgefithrt werden. Anschlieend wird eine Zusammenfassung des

Kapitels gegeben.

5.1 Architektur

Die Architektur des Systems kann auf zwei Ebenen betrachtet werden. So werden
in diesem Kapitel zuerst die Interaktionen zwischen den einzelnen Umgebungen

prasentiert, danach das Zusammenspiel einzelner Komponenten und Klassen.

5.1.1 System

In Abbildung 16 ist eine detailreiche Architektur des Systems dargestellt. In diesem
Schaubild erkennt man zusétzlich zu den Grundkomponenten die einzelnen Klassen,
die in weifl dargestellt sind und die Schnittstellen. Alle Schnittstellen, die fiir RPC-
Aufrufe verwendet werden, sind griin gekennzeichnet. Die Schnittstellen, die auf

Klassen-Ebene eingesetzt werden, sind grau.

Jede Kommunikation zwischen der Cloud und dem Cache findet iiber die Schnitt-
stelle ICloudSync statt. Die Verbindung zwischen Cache und Application Area ge-
schieht iiber drei Wege. Die Operationsaufrufe und Aufrufe fiir das manuelle Mergen
erfolgen iiber Webservices. Der Zugriff auf die anwendungsspezifischen Operationen
erfolgt tiber die dynamische Anbindung einer DLL. Die Nutzung des lokalen Spei-
chers erfolgt direkt mit Hilfe des .NET-Frameworks.

Um die Funktionalitét genauer zu erortern, wird nun auf die Mikroebene gewechselt

und die einzelnen Komponenten werden fokussiert betrachtet.
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Abbildung 16: Feinarchitektur des Systems. Die Bereiche und Komponenten ent-
sprechen der Abbildung 8. Diese Darstellung enthélt die wichtigsten
Schnittstellen des Systems.
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5.1.2 Komponenten

Cache Sync und Cloud Sync sind die beiden Komponenten, die die Synchronisati-

onslogik umsetzen und Daten fiir das eventuelle Mergen bereitstellen.

Cloud Storage Manager und Local Storage Manager ermoglichen den Zugriff auf
den jeweiligen Datenspeicher. In der Cloud ist es das Cloud Storage und in der

Application Area das Local Storage.

Cache Communicator, Cloud Communicator, Peer Communicator, Application Com-
municator machen den Zugriff auf entfernte Objekte und die Ausfithrung der RPC-
Funktionen komfortabel, indem sie die RPC-Aufrufe als einfache Funktionsaufrufe

reprasentieren.

Command Executor sorgt fiir eine sichere Ausfithrung der Operationen und behan-
delt die auftretenden Fehler.

Die Komponente Merge Logic auf dem Cache besteht aus vier Klassen. Merge Con-
troller steuert den Konfliktauflosungsvorgang, der drei weitere Klassen involviert.
Log Resolver iibernimmt die Zusammenfithrung von zwei Logs. Application Resol-
ver ist eine Klasse, die Daten fiir die Konfliktbeseitigung durch die Applikation
vorbereitet und diese Ausfithrt. Manual Resolver bereitet Daten fiir die manuelle

Resolution durch den Benutzer vor.

Merge Logic in der Cloud beinhaltet andere Klassen, weil sie andere Konfliktauf-
16sungsalgorithmen einsetzt. Sie besteht aus zwei Klassen. Version Collector sam-
melt Anderungsanfragen, die von Caches eingebracht werden. Des Weiteren trig-
gert er den Version Selector, der aus einer Menge von Anderungsvorschligen die
Nachfolger-Version wihlt. Aulerdem kann Version Selector dltere Versionen eines
konkreten Datensatzes auf explizite Anfrage zuriickgeben, sofern der Cloud-Anbieter

diese Funktion unterstiitzt.

Das entworfene System kann mit jeder objektorientierten Sprache umgesetzt wer-
den, z. B. C#, C++, Java, etc. und kann mit allen Cloud Computing-Plattformen
betrieben werden, solange der Anbieter TaaS oder PaaS bereitstellt und offene Stan-
dards fiir die Webkommunikation einsetzt. In der praktischen Ausarbeitung wird C#
und Windows Azure eingesetzt. Verwendet wird PaaS des Cloud Computings, weil

die Infrastrukturebene nicht im Fokus des praktischen Teils dieser Arbeit liegt. Ent-
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sprechend wird auf das zugrundeliegende Betriebssystem nicht eingegangen. Bietet
der Anbieter nur IaaS an, dann muss zuerst ein Betriebssystem aufgesetzt werden
und anschliefiend die fiir die Losung benotigten Bibliotheken (z. B. die des .NET-
Frameworks). In jedem Fall hat die Verwendung von laaS keinen Einfluss auf die
Technologien oder Algorithmen dieser Losung, da der Entwurf in allgemeiner Form

durchgefiihrt wurde.

Um den einzelnen Klassen innerhalb der Komponenten eine Grundstruktur zu verlei-
hen, wurden Entwurfsmuster eingesetzt. Im néchsten Abschnitt werden sie einzeln,

bezogen auf die Architektur und Funktion vorgestellt.

5.2 Verwendete Entwurfsmuster

Die in der Losung verwendeten Entwurfsmuster sind: Singleton, Proxy, Abstract-

Factory, Command, Memento, Template Method, Mediator.

5.2.1 Singleton

Das Singleton-Entwurfsmuster erlaubt die Erzeugung maximal eines Objektes von
einem Typ. Alle Communicators, Storage-, Merge- und Sync-Komponenten sind
singleton. Nur die Datenobjekte, die ausgetauscht werden, konnen mehrmals er-
zeugt werden. Das System gewinnt dadurch an Robustheit gegeniiber asynchronen

Aufrufen und Vereinfachung der Verwendung der Objekte.

5.2.2 Proxy

Das Proxy-Entwurfsmuster kapselt die Aufrufe eines Objekts, sodass eine impli-
zite Verarbeitung ermoglicht wird. Alle Communicators (Cache Communicator,
Cloud Communicator, Peer Communicator, Application Communicator) unterstiit-
zen RPC-Aufrufe iiber die dazugehorigen Schnittstellen und realisieren Proxies. Dies
ermoglicht einen transparenten Zugriff auf entfernte Objekte. In diesen Klassen wird
auch die zu der Kommunikation zugehorige Fehlerbehandlung {ibernommen. Das
System gewinnt dadurch an Ubersichtlichkeit im Code und einer losen Kapselung

zwischen den Klassen.
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5.2.3 Abstract-Factory

Das Abstract-Factory-Entwurfsmuster erméglicht die Erzeugung der Objekte eines
vorgegebenen Typs. Es besteht aus einer Abstrakten Fabrik, die konkrete Fabriken
erzeugen kann. Diese Fabriken sind in der Lage konkrete Objekte eines abstrakten
Types zu erzeugen. Alle Kommunikationsobjekte in Communicators werden von ei-
ner Fabrik erzeugt, bevor sie verwendet werden kénnen. So muss eine ChannelFacto-
ry und anschliefend ein Channel des korrespondierenden Typs erzeugt werden, bevor
ein RPC-Aufruf erfolgen kann. Das System gewinnt dadurch an einer Monotonie im
Code, sodass die Ubersichtlichkeit verbessert und die Code-Wiederverwendbarkeit

ausgenutzt wird.

5.2.4 Command

Klient Aufrufer [———————= Befehl

i FuehreAus()

:; I Empfaenger 2}‘

\ Aktion() it SmplRengE KonkreterBefehl

‘ FuehreAus() ©- -~ -~ -1 = =i empfaenger->Aktion}
e s s i et s o ™ zustand

Abbildung 17: Command-Entwurfsmuster. Das Command-Entwurfsmuster spiegelt
sich in der Architektur der Losung wieder. Dabei ist jedes Command
eine Operation.[GHJV10]

Das Command-Entwurfsmuster kann einen Befehl als Objekt représentieren, der
sich ausfiihren léasst. Operationen basierten auf dem Command-Entwurfsmuster. Das
Pattern besteht aus: Aufrufer, Befehl, konkreter Befehl, Empfianger und Klient (Ab-
bildung 17) [GHJV10]. Der Aufrufer ist die Anwendung, die Operations verwendet.
Der Befehl entspricht einer Operation des Typs IOperation aus einer angeschlos-
senen Operations Library. Command Executor erstellt einen konkreten Befehl, der
einen Ausfithrungs-Zustand hat, somit ist er der Klient. Der Empfianger ist abhéngig

von der eigentlichen Funktion der Operation. In den meisten Féllen wird es ein I5-
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torage-Objekt sein, der einen Datenzugriff ermoglicht.Das System gewinnt dadurch

an Erweiterbarkeit und hoher Flexibilitat im Einsatz.

5.2.5 Memento

Memento erméglicht, einen Zustand des Objekts zu speichern und zu einem spéteren
Zeitpunkt wieder zu laden. Es besteht aus folgenden Teilen: Urheber, Memento,
Aufbewahrer [GHJV10]. Die Serialisierungsroutinen in den Klassen, die IStorage
implementieren, ermoglichen den Einsatz des Memento-Entwurfsmusters. So konnen
z. B. Logs und Metadata der Datensétze flexibel im Speicher abgelegt und bei
Bedarf wieder geladen werden. Den Urheber stellt Cloud Storage Manager und Local
Storage Manager dar. Sie verfiigen {iber die Serialisierungsroutinen fiir Objekte.
Die Memento sind die Objekte, die serialisiert werden - in diesem Fall Logs und
Metadata. Der Aufbewahrer ist der Speicher selbst, also Cloud Storage und Local
Storage. Erst die Verwendung des Memento ermoglicht dem System das Erfiillen

gewisser Anforderungen, die das Speichern der Objekte betreffen.

5.2.6 Template Method

Dieses Entwurfsmuster gibt einer abstrakten Klasse einen bestimmten Ablauf vor,
der auch von den geerbten Klassen erfiillt wird. Template Method wird mit Hilfe der
abstrakten Klasse IOperation realisiert. Es wird ein Ablauf mit Funktionen vorge-
geben, der unmittelbar vor und nach der Hauptfunktion der Operation ausgefiihrt
wird. Ein Teil dieser Funktionen wird von der abgeleiteten Klasse implementiert.
Das System gewinnt dadurch an Stabilitdt und einem geregelten Ablauf der Aus-

fithrung von individuell programmierten Operations.

5.2.7 Mediator

Dieses Entwurfsmuster ermdoglicht eine Entkopplung der Klassen, indem der Ab-
lauf von einer zentralen Klasse gesteuert wird. Es besteht aus einem Vermittler,
der den Ablauf steuert und Kollegen - den Klassen, die im Ablauf involviert sind.
Der Vermittler ist der Merge Controller und die Kollegen sind: Log Resolver, Ap-

plication Resolver und Manual Resolver. Der Vermittler steuert den Ablauf der
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einzelnen Resolver, ohne dass sie sich gegenseitig und den Gesamtablauf kennen
miissen. Das System gewinnt dadurch an Flexibilitdt und léasst sich mit weiteren

Resolver-Algorithmen erweitern.

Nachdem die einzelnen Teile der Architektur besprochen wurden, betrachten wir die

Verbindungen zwischen ihnen - die Schnittstellen .

5.3 Schnittstellen

Fiir Systemteile, die eine lose Kopplung voraussetzen oder eine #hnliche Aufgabe
erfiillen, werden Schnittstellen verwendet. Die Schnittstellen ICloudSync, IMerge,
I[EzecuteOperation sind fiir die Interoperabilitdt zwischen den drei Umgebungen
essentiell. IStorage, IPeerSync, 1Operation spielen ihre wichtigste Rolle bei der in-

ternen Verarbeitung.

5.3.1 IStorage

Die Schnittstelle IStorage ist eine abstrakte Klasse, die den Zugriff auf Daten so-
wohl in der Cloud als auch lokal auf eine vereinheitlichte Weise anbietet. Sie ist fiir
die applikationsspezifischen Operationen von besonderer Wichtigkeit, denn so kon-
nen beliebige Operationen dateisystemunabhéngig auf Daten lesend und schreibend
zugreifen. Entsprechend werden Datensétze in der Cloud und Lokal {iber gleiche

Aufrufe gelesen und geschrieben, was der Ubersichtlichkeit des Codes dient.

5.3.2 ICloudSync

ICloudSync ermdglicht die Kommunikation iiber Webservices zwischen der Cloud
und dem Cache. Sie wird verwendet, um neue Datensatzversionen auf den Cache zu

laden, sowie die gewiinschten Anderungen an Datensétzen in die Cloud hochzuladen.

5.3.3 IPeerSync

IPeerSync ermoglicht die Peer-to-Peer-Kommunikation zwischen den Caches. Es
stehen RPC-Aufrufe zur Verfiigung, die die neueste, auf anderen Caches vorhande-

ne Cloudversion zuriickgeben. Des Weiteren kann auch eine von Caches geédnderte
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Version angefragt werden. Entsprechend sind in dieser Schnittstelle auch Antworten

auf die Anfragen definiert.

Dadurch, dass iiber diese Schnittstelle immer nur mit der Gesamtheit der Peers
kommuniziert werden kann, ist sie Unidirektional formuliert. Das heifit, dass es
keine Response-Nachrichten gibt. Die Antworten werden genauso wie die Anfragen
im Kommunikationsraum fiir alle sichtbar publiziert. Die Zuordnung der Antworten

zu den Anfragen geschieht intern im Peer Communicator.

5.3.4 IMerge

IMerge ist eine Schnittstelle in Form einer abstrakten Klasse, die einmal in der
Operations-Library der Anwendung implementiert ist und einmal in der Applikation
selbst. Der Code in der Bibliothek wird von der Komponente Application Resolver
ausgefithrt, um eine anwendungsspezifische Konfliktauflosung durchzufiihren. Der
Code in der Applikation wird von Manual Resolver ausgefiihrt, um entsprechenden

Dialog dem Benutzer anzuzeigen, damit er die Konfliktauflésung vornehmen kann.

5.3.5 10peration

IOperation ist eine abstrakte Klasse, die gewisse Abldufe und Funktionsaufrufe ent-
hélt, damit alle Operationen nach dem gleichen Grundschema ausgefithrt werden
konnen. Die Abldufe enthalten wichtige Priifungen und Fehlerbehandlungen, sodass

ein korrekter Operationsaufruf erfolgen kann.

5.3.6 IExecuteOperation

IExecuteOperation ist eine Schnittstelle fiir ein Webservice, um der Anwendung
einen Operationsaufruf zu ermdéglichen und gleichzeitig eine lose Kopplung zwischen

dem Cache und der Anwendung sicherzustellen.

An dieser Stelle sind alle Komponenten und ihre Verbindungen besprochen. Im

Folgenden werden Vorgénge beschrieben, die im System stattfinden.
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5.4 Ablaufe

In diesem Abschnitt werden Ablaufe beschrieben, um die wichtigsten Funktionen
der Komponenten in Verbindung zu bringen. Es wird angenommen, dass die anwen-
dungsspezifischen Operationen als DLLs im bestimmten Ordner des Caches abgelegt
sind. Des Weiteren wird vorausgesetzt, dass alle drei Teile: Cloud, Cache und die
Anwendung gestartet sind und die Verbindung zueinander hergestellt wurde. Wir
beginnen mit dem Ablauf einer Operationsausfithrung und gehen anschlieend iiber

Synchronisationsablaufe zu der Konfliktauflosung.

5.4.1 Operationsaufruf

Die Applikation ruft iiber ein Webservice mit der Schnittstelle IEzecuteOperation
die gewiinschte Operation auf. Der Application Communicator empfingt den Aufruf
und {ibergibt die Informationen iiber die auszufiihrende Operation an den Command
Executor. Dieser priift die Existenz der auszufithrenden Operation und erstellt eine
Operation-Instanz des Typs IOperation. Dieser Instanz werden beim Erstellen fol-
gende Informationen iibermittelt: Operationsname, Operationsparameter und eine
Instanz des Local Storage Managers als IStorage. Nachdem die Operation mit diesen

Informationen instanziiert wurde, wird sie geméf folgendem Ablauf ausgefiihrt:
1. Vorbedingungen fiir die Ausfithrung priifen
2. Intention speichern
3. Operation ausfithren: Daten und Metadaten Lesen und Schreiben
4. Intention an Log anhéingen, Erfolg vermerken
5. Riickgabewert zuriickgeben

Der Riickgabewert, der ein beliebiges Objekt beinhalten kann, wird an Command
Executor zuriickgegeben. Dieser reicht diesen Wert an Application Communicator
weiter. Er iibermittelt den Wert iiber Webservices als eine Antwort auf die Anfrage

an die Applikation.

Im Hintergrund wird die Instanz der Operation durch den Garbage Collector auf-

geraumt, weil alle Referenzen darauf geloscht wurden.
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Nach einigen Operationsausfithrungen konnen Anderungen entsprechend der Syn-

chronisierungsroutine ausgetauscht, die in nichsten Abschnitten beleuchtet wird.

5.4.2 Synchronisation mit der Cloud

Sync Logic des Caches initiiert einen Synchronisierungsvorgang mit der Cloud. Der
Ausloser kann ein durch Timer getriggertes Ereignis oder ein explizites Kommando
sein. Der Cloud Communicator sendet eine Anfrage iiber die Schnittstelle ICloud-
Sync an den Cache Communicator in der Cloud, die Aktualitdt bestimmter Da-
tensétze zu priifen und die Anderungen zu iibermitteln. Der Version Selector der
Cloud gibt die gewiinschten Datensétze zuriick. Dabei greift er iiber die Schnittstelle
IStorage auf den Cloud-Speicher Cloud Storage zu. Die Antwort des Cache Com-
municators wird vom Cloud Communicator an Sync Logic weitergereicht. Dieser

initiiert bei einem Konflikt den Mergevorgang in der Komponente Merge Logic.

AnschlieBend werden die lokal gesinderten Daten in die Cloud als Anderungsanfra-
gen hochgeladen. Das geschieht auf dem gleichen Weg iiber die Communicators.
Die neuen Zustinde der Datensétze werden an Version Collector iibergeben, der
diese abspeichert und priift, ob eine neue Datensatzversion iiber Version Selector
generiert werden kann. Sind bestimmte Vorbedingungen erfiillt, dann wird die neue
Datensatzversion erstellt und in der Cloud abgespeichert. Beim néchsten Synchro-
nisierungsvorgang wird die neueste Datensatzversion an alle Caches {ibermittelt,
die ihre lokale Version aktualisieren mochten und entsprechende Synchronisations-

Anfragen stellen.

Im Falle einer Netzwerkpartitionierung wird die Peer-to-Peer-Verbindung verwen-

det, um die Datensétze zu synchronisieren. Der entsprechende Ablauf ist wie folgt.

5.4.3 Synchronisation iiber Peer-to-Peer

Auch im Peer-to-Peer-Modus initiiert Sync Logic den Synchronisierungsvorgang.
Uber Peer Communicator und die Schnittstelle IPeerSync wird bei erreichbaren
Peers eine Datensatzversion angefordert, die aktueller ist als die lokale Version.
Dabei antworten Peers, die die gewiinschte Version lokal vorhanden haben. An-

schlieBend wéhlt der Anfragende einen konkreten Peer aus und lddt seine Version
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herunter. Als néchstes werden die beiden Versionen mit Hilfe der Mergekomponente

zusammengefiihrt.

Der genaue Ablauf, wie die Versionen zusammengefiithrt werden, wird im néchsten
Abschnitt beschrieben.

5.4.4 Konfliktauflésung

Der Mergevorgang wird von Sync Logic im Merge Controller initiiert. Dieser ver-
sucht den Konflikt entsprechend dem Ablauf aus Abschnitt 4.3.4 aufzulésen. Zu-
nachst kommt Log Resolver zum Einsatz. Bei Misserfolg versucht Application Re-
solver den Konflikt iiber die Schnittstelle IMerge und die entsprechende, in einer
Operations-DLL hinterlegte anwendungsspezifische Funktion aufzulésen. Schligt auch
dieser Versuch fehl, dann kommt der Manual Resolver zum Einsatz. Die konflikt-
behafteten Datensatzversionen werden der Anwendung iiber Application Commu-
nicator und die Schnittstelle IMerge tibergeben. Die Anwendung 16st mit Hilfe des
Benutzers den Konflikt auf und gibt auf dem gleichen Pfad das Ergebnis des Mergens

zuriick.
Abschlieend wird das Resultat iiber die IStorage-Schnittstelle lokal abgespeichert.

Die in diesem Kapitel beschriebenen Komponenten, Schnittstellen und Ablaufe sind
nicht nur theoretisch - sie wurden auch praktisch umgesetzt. Hierfiir existiert ei-
ne Beispielanwendung, die die Funktionalitdten veranschaulicht und im néchsten

Abschnitt prisentiert wird.

5.5 Beispielanwendung

Entsprechend dem Entwurf aus Kapitel 4 und den Uberlegungen aus diesem Kapitel
wurde ein konkretes System mit grundlegenden Funktionen implementiert. Des Wei-
teren wurde die im Beispielszenario (Abschnitt 3.2.1) beschriebene Endanwendung
in Grundziigen ebenfalls programmiert. Damit wir die zwei Implementierungen un-
terscheiden kénnen, nennen wir das System, das Operations realisiert ,,OpSync* und

die Beispielanwendung ,,RecipeApp“.

Da es sich um ein Proof of Concept handelt, wurden nur die grundlegenden Funk-
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tionen implementiert. Dabei wurde die Machbarkeit der Interaktion zwischen dem

Cache und der Endanwendung (Operationsaufrufe), Synchronisation zwischen den

Caches iiber Peer-to-Peer, sowie zwischen dem Cache und der Cloud gepriift. Au-

Berdem wurde das Mergen zweier Datensatzversionen auf der Log-Ebene getestet

und schlussendlich die Verwendung der Datensitze von der Endanwendung.

Wir beginnen mit dem Aufbau des Proof of Concept, dann gehen wir zu den einzel-

nen Anwendungsfillen {iber und schlussendlich werden Hintergrundinformationen

gegeben.

5.5.1 Aufbau

E¥ 10 - Start Cache A

[Cloud connected: True
Application service opened.
[Peer service opened.

[OpSync Cache A

Help:
: test cloud connection
: test peer connection

g guit

: Upload pasta hlognese to cloud
Download pasta blognese from cloud

2
[3: Download pasta blognese from peer
[4: Merge

What to do?

€ i,

]

BN 11 - Start Cache B

Cloud connected: True
pplicat ice opened.
iy d.

(0pSync Cache B
Help:

: test cloud connection
: test peer connection
@ quit
1: Upload pasta blognese to cloud
: Douwnload pasta blognese from cloud
: Dounload pasta blognese from peer
: Merge

What to do?

4 Tl

[o=] & ]

a5 Recipe application: A sl==
Operation: Name: Amount:
| Add Ingredient ‘
| Change Amount ‘
| Delete Ingredient
Recipe Content:
Test Connection

o5 Recipe application: B o= = |
Operation: Name: Amourt
—_—

‘ Add Ingredient |
| ChangeAmourt |

‘ Delete Ingredient |

Recipe Content:

Test Connection

Abbildung 18: Bildschirmfoto der Endanwendungen und Demonstrationskonsolen.
Die einzelnen Endanwendungen sind an jeweils einen Cache ange-
schlossen, der durch eine Demonstrationskonsole prisentiert wird.

In Abbildung 18 sind zwei Konsolenfenstern und zwei Formularfenster zu sehen. Die
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Konsolenfenster stehen zu Demonstrationszwecken bereit; in einer Produktivumge-
bung arbeitet OpSync vollautomatisch und unsichtbar. Uber die Konsolenfenster
lassen sich einzelne Anwendungsfélle Schritt-fiir-Schritt ausfithren, die im Folgen-
den konkret beschrieben werden. Die Formularfenster visualisieren die Endanwen-
dung, die Daten gebraucht. Damit lassen sich Rezepte erstellen und anzeigen, sowie

Zutaten hinzufiigen, modifizieren und entfernen.

5.5.2 Anwendungsfille

B 10 - Start Cache A = B = | (g 11-Start Cache B (== =)
ICloud connected: True
Application service opened.
[Peer seruvice opened.

Cloud connected: True
Application service opened.
vice opened.

OpSync Cache A
Help:

ftcc: test cloud connection

jtpc = test peer connection

g guit

1: Upload pasta blognese to cloud

[2: Download pasta blognese from cloud
[3: Download pasta blognese from peer
[4: Merge

est cloud connection
est peer connection
t

pload pasta blognese to cloud

ownload pasta blognese from cloud

ownload pasta blognese from peer
: Merge

What to do?
il

What to do?
2

Dataset downloaded.
What to do?

Upload done.
What to do?

< . 3 < 1L 3

a2 Recipe application: A (=N EI| a5 Recipe applimt\'an:E___r E

Operation: Name: Amount: Operation: Name: Amount

Add Ingredient pasta 400 | Addingredient |

| Create Recipe ‘ pasta bolognese | Show Recipe ‘

| Change Amount ‘ L}) Change Amount |

Delete Ingredient |

| Delete Ingredient

Recipe Content: Recipe Content:
pasta: 400 g pasta: 400

Test Connection Test Connection

Abbildung 19: Demonstration der Implementierung - Anwendungsfall 1. Synchroni-
sierung eines Rezeptes iiber die Cloud.

Zunéchst wird mit RecipeApp A ein Rezept erstellt und von OpSync A mit der
Cloud synchronisiert. Anschliefend synchronisiert OpSync B mit der Cloud und die
Anwendung RecipeApp B zeigt das eben erstellte Rezept an (Abbildung 19).
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B 10 Stor: Coche A N <= =) (3 11 Stort Coche B o BLE

ltcc: test cloud connection - OpSync Cache B
: test peer connection
= guit
: Upload pasta blognese to cloud
[2: Download pasta blognese from cloud
3: Download pasta blognese from peer
4: Merge

est cloud connection
est peer connection

t
: Upload pasta blognese to cloud
: Dounload pasta blognese from cloud
: Download pasta bhlognese from peer
: Merge

What to do?
2

L3

Dataset downloaded.

What to do?

User A looks for pasta holognese

I have it!?

User A asks to send him pasta bolognese
Sent .

r pasta bolognese

dataset. Ask him to send it.
User B sent pasta bolognese
[Finished.

4 Tl 3

a;' Recipe application: A (=i o5 Recipe application: B (===
Operation: Name: Amount: Operation: Name: Amourt
| Create Recipe | pasta bolognese | Show Recipe | | Create Recipe | pasts bologrese | Show Recipe |
| Change Amourt ‘ ‘ Change Amount |

Delete Ingredient |

| Delete Ingredient

Recipe Content: Recipe Content:
pasta: 400 2 pasta: 400
tomato: 100 garlic: 2
Test Connection Test Connection

Abbildung 20: Demonstration der Implementierung - Anwendungsfall 2. Synchroni-
sierung eines Rezeptes iiber Peer-to-Peer. Der Datensatz wird {iber-
tragen, aber noch nicht gemereged.

Im néchsten Anwendungsfall wird das Rezept von beiden Endanwendungen mo-
difiziert und iiber die Peer-to-Peer-Kommunikation synchronisiert, um die Funkti-
onsfiahigkeit bei einem Cloud-Ausfall zu demonstrieren. Den Dialog zwischen den
OpSync-Instanzen lésst sich in Abbildung 20 nachvollziechen. OpSync A fragt alle
erreichbaren Peers nach einer Version des Rezeptes Pasta Bolognese, OpSync B gibt

Bescheid, dass er Pasta Bolognese hat. Anschlielend wird der Datensatz iibertragen.

Der néchste Anwendungsfall zeigt, dass OpSync A die zwei Datensatzversionen zu-
sammengefithrt hat und nach dem Wiederherstellen der Verbindung zur Cloud wie-
der hochgeladen. RecipeApp A stellt dabei die Daten von dem vorherigen Anwen-
dungsfall dar, weil sie von der Endanwendung nicht neugeladen wurden (Abbildung
21).
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@ 10-Ston Coche A N - @ 11 Start Cache 8 D

OpSync Cache B

OpSync Cache A

Help:

tec: test cloud connection

jtpc: test peer connection

I guit

: Upload pasta blognese to cloud

2: Download pasta blognese from cloud
3: Download pasta blognese from peer
4: Merge

est cloud connection
est peer connection

t
pload pasta blognese to cloud
ounload pasta blognese from cloud
ounload pasta blognese from peer

Mhat to do?
4 Dataset downloaded.

What to do?

User A looks for pasta bholognese

I have it!?

User A asks to send him pasta bolognese
Sent .

Merge done.
Mhat to do?

i
Upload done.
Mhat to do?

a;' Recipe application: A (=i o5 Recipe application: B (===
Operation: Name: Amount: Operation: Name: Amourt
| Create Recipe | pasta bolognese | Show Recipe | | Create Recipe | pasts bologrese | Show Recipe |
[ cnange Amount | [ Change Amount |
| Delete Ingredient ‘ ‘ Delete Ingredient |
Recipe Content: Recipe Content:
pasta: 400 2 pasta: 400
tomato: 100 garlic: 2
[ TestConnection | Test Connection

Abbildung 21: Demonstration der Implementierung - Anwendungsfall 3. Mergen von
zwei Datensatzversionen und Hochladen in die Cloud.

Der letzte Anwendungsfall der Demonstration zeigt OpSync A mit geleertem Ca-
che, der einen neuen Teilnehmer im System darstellt. Pasta Bolognese wird aus der
Cloud heruntergeladen und mit einem Klick auf ,,Show Recipe* werden Auswirkun-
gen des Bearbeitens, der Synchronisation iiber Peer-to-Peer, des Mergens und der
Synchronisation iiber die Cloud aus den letzten Anwendungsfillen sichtbar (Abbil-
dung 22).

5.5.3 Hintergrundinformationen

Der Datensatz besteht aus einer binér serialisierten Tabelle. In der ersten Spalte
werden Zutaten eingetragen, in der zweiten wird die Menge als numerischer Wert

gespeichert.
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BN 10 - Start Cache A (== 8 ]

Cloud connected: True
i ion service opened.
ice opened.

tce: test cloud connection

tpc: test peer connection

gz quit

1: Upload pasta blognese to cloud

2: Download pasta blognese from cloud
3: Download pasta blognese from peer
4: Merge

What to do?
2

Dataset downloaded.
What to do?

Operation Mame Amount:

| Create Recipe | pasta bolognese
| Add Ingredient |

| Change Amount |

|

Delete Ingredient |

FzzralEiEnl
pasta: 400
garlic: 2

tomato: 100 |

Test Connection

Abbildung 22: Demonstration der Implementierung - Anwendungsfall 4. Ein neuer
Teilnehmer tritt dem System bei und synchronisiert ein Rezept.

— CreateRecipe(, pasta bolognese”)
— AddIngredient(,, pasta“, 400)

— AddlIngredient(, garlic”, 2)

— AddIngredient(,,tomato”, 100)

Abbildung 23: Zusammengefiihrter Log nach simultaner Bearbeitung eines Rezep-
tes. Die griin hervorgehobene Zeile zeigt die aus dem anderen Log
hinzugefiigte Operation.

Das Mergen wurde nicht auf Datenzustandsebene durchgefiihrt, indem die von einer
Version abweichende Tabellenzeile hinzugefiigt wurde, sondern auf der Logebene,
indem die abweichende Operation aus dem anderen Log eingefiigt (Abbildung 23)

und der neue Log anschliefend ausgefithrt wurde, um einen konfliktfreien Zustand



84 Implementierung

des Datensatzes zu erhalten.

5.6 Zusammenfassung

In diesem Kapitel wurde eine genaue Architektur des Systems vorgestellt. Dabei
wurde das System aus der Mikro-, sowie Makroperspektive betrachtet. Die Losung
besteht aus einzelnen Komponenten und Klassen, die mit der Verwendung der Ent-
wurfsmuster strukturiert sind. Die beschriebenen Schnittstellen zwischen den Kom-
ponenten bilden Kommunikationswege, iiber die verschiedene Ablidufe stattfinden
kénnen. Das implementierte System wird anhand einer Beispiel-Endanwendung de-
monstriert: die Abldufe des Systems ermdglichen eine Datenverarbeitung- und Ver-

waltung, wie es am Anfang des Dokumentes beabsichtigt war.

Als Néchstes folgt ein Kapitel, indem das System evaluiert wird. Dabei liegt der

Schwerpunkt auf den finanziellen Aspekten, die das System optimiert.
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6 Evaluierung

In diesem Kapitel soll die Synchronisierungsroutine der Losung hinsichtlich der Be-
triebskosten evaluiert werden. Es wird nur die Synchronisierung mit der Cloud be-
trachtet, denn es ist entsprechend der Aufgabenstellung dieser Arbeit der Schwer-

punkt. Die Synchronisation iiber Peer-to-Peer wird nur am Rande erwahnt.

Zunichst wird die Evaluationsumgebung beschrieben, um die Umsténde zu defi-
nieren, unter welchen die Evaluierung stattfindet. Des Weiteren werden Parameter
erlautert, die das System beeinflussen. Anschlieend wird ein konkretes Kostenmo-
dell vorgestellt, das den finanziellen Aufwand fiir den Betrieb des Systems berechnet
und die wichtigsten Kostenfaktoren herauskristallisiert. Danach werden Szenarien
fiir verschiedene Konfigurationen dieser Kostenfaktoren vorgestellt und unter dem
Gesichtspunkt der Optimierung bewertet. Abschlieend wird ein Fazit tiber die Kos-

teneffizienz des Systems gezogen.

6.1 Setup

In diesem Unterkapitel wird die Grundlage fiir die Evaluation gelegt. Es wird ein
Aufbau der Systems und die Randbedingungen beschrieben. Wir beginnen mit der
Evaluationsumgebung, danach folgen die fiir die Evaluation wichtigen Parameter.

Anschliefend werden die finanziellen Aspekte diskutiert.

6.1.1 Evaluationsumgebung

Bei der Evaluation wird mit der Synchronisierung von 1, 10, 100 und 1000 Caches ge-
rechnet, um verschiedene Szenarien abzudecken. Die Caches sind entsprechend dem
Systemmodell (Kapitel 3) geografisch verteilt und an das Internet angeschlossen.
Die Caches synchronisieren ihre Kopien mit der Cloud. Es wird nur der Fall evalu-
iert, wenn die Cloud verfiigbar ist. Im Ausnahmefall wenn sie nicht verfiigbar ist,
geschieht die Synchronisation iiber Peer-to-Peer, was nicht zu den Schwerpunkten

der Arbeit gehort und somit nicht evaluiert wird.

In der Windows Azure-Cloud wird ein Rechner mit 1 GHz CPU, 768 MB RAM und
20 GB Festplattenspeicher eingesetzt. Auf diesem Rechner wird folgende Software
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ausgefiithrt: Windows Server 2008 R2 mit .NET 4.5 und IIS 7, sowie dem Cloud-Teil

der Implementierung.

Es wird davon ausgegangen, dass Caches auf Rechnern ausgefiihrt werden, die min-
destens so leistungsfiahig sind, wie der Entwicklungsrechner, auf dem die Implemen-
tierung und Tests (Kapitel 5) vorgenommen wurden. Dabei ist die Hardwarekon-
figuration wie folgt: Prozessor: 2x2,5 GHz, 3 GB RAM und 320 GB Festplatte.
Betrieben wird die Hardware mit Microsoft Windows 7 und .NET 4.5.

Der Einsatz von schwicheren Rechnern kann die Leistung des Caches reduzieren,
dies wird jedoch in den nachfolgenden Rechnungen nicht weiter beriicksichtigt. Die
Leistung des Systems kann auch in Verbindung mit der Systemkonfiguration evalu-

iert werden, was jedoch nicht im Fokus dieser Arbeit liegt.

6.1.2 Evaluationsparameter

Es wird der Worst Case angenommen, dass Datensétze aus zufillig generierten Da-
ten bestehen und bei einer Anderung durch neue Daten vollstindig ersetzt wer-
den. Entsprechend lassen sich keine Transferkosten durch Rsync (Abschnitt 2.2.1)
reduzieren. Des Weiteren wird in dieser Evaluation mit Brutto-Datenmengen ge-
rechnet. Das heiffit, wenn 100 MB an Datensétzen synchronisiert werden, dann ist
es die Summe aus Nutzdaten, den Logs, sowie den zugehorigen Metadaten. Das
Netto/Brutto-Verhéltnis variiert je nach Anwendungsfall sehr stark. Entsprechend
ist die Evaluation nur dann reprasentativ, wenn die Brutto-Datenmengen verwendet
werden. Das Verhéltnis der individuellen Anwendungsfille kann mit dem Ergebnis
der Evaluation verrechnet werden, um die Netto-Angaben zu erhalten. Aufgrund

dieser Annahmen wird die reine Synchronisations-Routine evaluiert.

Es wird angenommen, dass es sich um ein System handelt, bei dem regelméfig

gelesen und geschrieben wird, was fiir Business-Anwendungen iiblich ist.
Die variierten Werte sind:

e Anzahl der Caches: 1 - 1000

o Ubertragene Datenmenge pro Synchronisierung: 1-1024 MB

e Synchronisierungs-/Lesehéufigkeit: téglich bis alle fiinf Minuten
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e Kosten fiir das Lesen eines veralteten Datensatzes: 1-20 €
(z. B. durch das Verkaufen einer Ware, fiir die der Preis erhoht, aber der alte

Preis gelesen und verbucht wurde)

Ausgewertet wird der finanzielle Aufwand fiir das Betreiben des Systems in Euro,
abhéngig von den genannten Parametern. Wie genau die Kosten berechnet werden,

wird im néchsten Unterkapitel beschrieben.

6.1.3 Finanzielle Kosten

Es werden die Kosten fiir den Einsatz des Systems evaluiert. Entsprechend miis-
sen die monatlichen Kosten fiir den Betrieb der Cloud-Infrastruktur beriicksichtigt
werden. Um konkrete Kosten berechnen zu koénnen, wird ein existierender Cloud-
Anbieter hinzugezogen. Es kann ein beliebiger Anbieter sein; in dieser Arbeit wird,
aufgrund seiner Einfachheit und weiten Verbreitung, das System Windows Azure
von Microsoft betrachtet. Im Folgenden wird das Preismodell des Anbieters be-

schrieben und erklart.

Die Kosten fiir den Peer-to-Peer Betrieb werden durch andere Faktoren beeinflusst,
als die Cloud-Kosten. Dort spielt die Bandbreite eine grofie Rolle, denn durch auf
Flooding basierende Verfahren entsteht eine grofie Menge an Nachrichten, die ver-
schickt werden. Auflerdem ist je nach Anwendungsfall moglich, dass laufende Kos-
ten fiir die Ubertragung der einzelnen Nachrichten anfallen, oder dass die Ubertra-
gungsgeschwindigkeit nach dem Erreichen eines Limits erheblich reduziert wird. Die
Kosten fiir die Cloud werden anhand eines konkreten Kostenmodells berechnet, in

diesem Fall anhand der Windows Azure-Kostenverteilung.

Windows Azure

Fiir die Kostenberechnung wird ein Zeitraum von einem Monat betrachtet. Die
Fixkosten fiir den Betrieb von der entwickelten Losung in der Microsoft Azure Cloud

berechnen sich wie folgt.

Fixkosten: Es fallen 6,64 € fiir die Bereitstellung der Rechenkapazititen in Form
eines Rechners und 6,6 € fiir einen 100 GB-groflen Blob-Speicher an. Die Summe
ergibt 13,24 €.

Laufende Kosten: Die laufenden Kosten entstehen durch die Speichertransaktionen
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in der Cloud, den Datenverkehr und den {iber Service Bus versandten Nachrichten.
Jede Speicher- oder Lade-Transaktion kostet 8.0 - 107% €. Jedes iibertragene GB
kostet 0,0809 €. Jede Nachricht, die iiber den Service Bus versandt wird, kostet
7,1-1077 €.

Eine Synchronisierungsoperation besteht aus dem Herunterladen einer aktualisierten
Version, oder dem Hochladen einer neuen Version. Dabei wird eine Speicher- oder
Lade-Transaktion bendétigt, und miissen zwei Nachrichten versandt werden - eine
Anfrage und eine Antwort. Dabei ist die durchschnittliche Datensatzgrofie je nach
Anwendungsszenario unterschiedlich und wird hier durch die Variable d (in GB)
reprasentiert. Die Variable h stellt die Anzahl der Synchronisierungsoperationen

pro Monat dar und n gibt die Anzahl der synchronisierenden Caches an.

Die monatlichen Gesamtkosten werden durch folgende Formel berechnet: f(h,d,n) =
. . 78 . . . . 77 . .
6.6446,6+h ( $0:.10° B +0,0809-h-d+7,1-107-2.h)

. . NV
Fixkosten Speichertransaktions—Kosten — Transferkosten ServiceBus—Kosten

Somit sind die ausschlaggebenden Parameter, die die Kosten beeinflussen: die zu
synchronisierende Datenmenge, Synchronisierungshéufigkeit und die Anzahl der Ca-

ches.

Anhand dieser Formel lassen sich Kostenverteilungen fiir verschiedene Szenarien

erstellen. Die Szenarien werden nachfolgend beschrieben.

6.2 Szenarien

In den Evaluations-Szenarien betrachten wir zunéchst, entsprechend den zwei Eva-
luationsparametern Synchronisierungshéufigkeit und Datenmenge, vier realistische
Extremfille, die sich kombinatorisch ergeben. Die Extremfélle sind in Form eines
Quadrats in der Abbildung 24 dargestellt und mit Bezeichnungen, wie z. B. ,0H
1D* abgekiirzt. Dabei steht ,H* fiir die Synchronisierungshéufigkeit und ,,D* fiir die
Datenmenge. Die fiihrende Ziffer gibt die Grofle des jeweiligen Parameters an. 0
steht fiir das Minimum und 1 fiir das Maximum. Die Grenzen werden anhand des

fiir die Evaluierung relevanten Beispiels wie folgt festgelegt.

Ein Unternehmen synchronisiert Stammdaten* alle 24 Stunden, also in einem Monat

4Stammdaten: ,In der betrieblichen Datenverarbeitung wichtige Grunddaten (Daten) ei-
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OH 1D 1H 1D

Datenmenge

OH 0D 1HOD

\4

Synchronisierungshaufigkeit

Abbildung 24: Darstellung der Evaluationskriterien. Aus den Kriterien Synchroni-
sierungshéufigkeit und Datenmenge ergeben sich vier Szenarien.

30 Mal® und damit sehr selten, d. h. 0H = 30 Mal/Monat.

Die Bewegungsdaten® des Unternehmens werden alle 15 Minuten synchronisiert und
damit sehr hdufig, d. h. 1H = 30 - 24 - 4 = 2880 Mal/Monat.

Die Stammdaten &ndern sich téglich um 100 MB. Nur die Anderung wird beim
erneuten Synchronisationsvorgang iibertragen. Die Bewegungsdaten &ndern sich alle
15 Minuten um 1 MB. Daraus ergeben sich folgende Grenzwerte: 0D = 1 MB und

nes Betriebs, die iiber einen gewissen Zeitraum nicht verdndert werden; z.B. Artikel-
Stammdaten, Kunden-Stammdaten, Lieferanten-Stammdaten, Erzeugnisstrukturen (Stiicklis-
ten) u.a. Stammdaten werden oft nicht permanent, sondern periodisch aktualisiert (Dateifort-
schreibung).“ [Spr]

5Um die Rechnung zu vereinfachen wird der Durchschnittswert der Linge aller Monate verwendet:
3 ~ 30.

6Bewegungsdaten: ,In der betrieblichen Datenverarbeitung Daten, die Verédnderungen von Zu-

stdnden beschreiben und dazu herangezogen werden, Stammdaten zu aktualisieren.“ [Spr]
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1D = 100 MB.
Mit diesen Grenzwerten lassen sich die folgenden realistischen Szenarien erstellen:

e Ein Unternehmen synchronisiert selten grofie Stammdaten (0H 1D)

(z. B. Artikel- oder Kundenstamm eines Einzelhéndlers)

e Ein Unternehmen synchronisiert oft kleine Bewegungsdaten (1H 0D)

(z. B. Preisénderungen und Anderungen der Kundeninformationen)

e Ein Privatanwender synchronisiert selten geringe Datenmengen (OH 0D)

(z. B. Abgleich seines Kalenders auf verschiedenen Geréten)

e Ein Wetter-Forschungsinstitut synchronisiert oft grofe Datenmengen (1H 1D)

(z. B. Sensor- und Berechnungsdaten)

(6.64 + 100 * 0.066) + (8*10%*-8 = x) + (0.0809 = (y/1024) * x) + ( 7.1 * 10%*-7 * 2 * x)
35
30—
25 ——

1H1D

Costs in EUR 5T

Data volume in MB

Sync operations per month

Abbildung 25: Kosten fiir die Synchronisation eines Caches ohne Optimierung. Die
Kosten bei drei Szenarien liegen knapp iiber den Fixkosten von 13,24
€.

Ohne jegliche Optimierung wiirden im Rahmen der einzelnen Szenarien folgende
Kosten entstehen (Abbildung 25).

e OH OD: f(30,1MB,1) ~ 13,24 €
e OH 1D: f(30,100M B, 1) ~ 13,48 €
o 1H OD: f(2880,1MB,1) ~ 13,47 €
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e 1H 1D: £(2880,100M B, 1) ~ 36,00 €

Aufgrund einer geringen Steigerung der Kosten in den Szenarien OH 0D, OH 1D
und 1H 0D von maximal 0,24 € gegeniiber den Fixkosten, werden sie nach der
Optimierung nur fiir das Szenario 1H 1D ausgewertet, bei dem der Unterschied
bei 22,76 € liegt. Die Auswertung folgt im néchsten Abschnitt, in dem auch der
Grund fiir die Kostenexplosion untersucht wird. Dementsprechend werden Kosten

berechnet, wenn das System die Synchronisation optimiert.

6.3 Auswertung

In diesem Abschnitt wird das Szenario 1H 1D unter die Lupe genommen. Fiir
diesen Extremfall werden Kosten und die dazugehorige Kostensenkung berechnet.
Anschliefend werden die einzelnen Parameter des Szenarios variiert. Wenn diese
Parameter Extremwerte annehmen, lédsst sich ein Trend fiir die Kostenverteilung

beobachten, der anschlieBend bewertet wird.

6.3.1 Kosten im Szenario 1H 1D

Zunéchst miissen wir die einzelnen Summanden der additiven Kostenfunktion unter-
suchen, um die ausschlaggebenden Parameter zu bestimmen, die am meisten Kosten
verursachen. Die Funktion wurde bereits in Abschnitt 6.1.3 présentiert und hier wird

sie zwecks Ubersichtlichkeit wiederholt.

e . . _8- . . . _7- .
flhod,n) =6,64+6,6+h(  80-10°-h  +0,0809-h-d+7,1-107-2h)

. . vV vV
Fixkosten Speichertransaktions—Kosten Transferkosten ServiceBus— Kosten

Man erkennt, dass die Speicherzugriffskosten und die Service Bus-Kosten selbst bei
hoher Synchronisationsrate z aufgrund des vorangestellten Faktors von 1078 bzw.

10~7 keine signifikante Kostensteigerung verursachen:
e Speicherzugriffs-Kosten: 8.0 - 1078 - 2880 ~ 0.00 €
e Service Bus-kosten: 7,1-1077-2-2880 ~ 0.00 €

Das Ausschlaggebende sind die Dateniibertragungskosten pro synchronisierten Ca-

1
che: 0,0809 - 2880 - % ~ 22,75 €. Bei zehn Caches betragen diese Kosten 227,5

€, was ein betréchtlicher Wert ist, der mit jedem weiteren Cache linear wéchst. Es
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wird nun untersucht, in wieweit die Transfer-Kosten durch den Einsatz der in dieser

Arbeit entwickelten Losung gesenkt werden.

6.3.2 Kostensenkung durch die Optimierungsfunktion

In Abschnitt 4.2.3 wurden Funktionen Zopt get timited, Topt_put timiteds Pgets Pputs €V get
und evaly,; definiert, die von einigen Konstanten abhéngig sind. Diese werden in
der nachfolgenden Tabelle definiert, dabei wird weiterhin das Szenario 1H 1D mit

entsprechenden Werten betrachtet.

Variable Wert(e) Beschreibung

Qurites = Qreads 2880 Pro Zeitabschnitt wird 1H oft gelesen und geschrie-
ben

Geaches 1; 10; 100; | Variable Anzahl an Caches, die evaluiert werden

1000

Cread.old 5 € Jedes Lesen eines veralteten Wertes kostet 5€

Adata up 110% 1D werden geéndert und hochgeladen, in GB

Cdataset 0,0809 Kosten in Windows Azure fiir die einmalige Uber-
tragung von 1 GB

Adata down % 1D Aktualisierungen werden pro Cache herunter-
geladen, in GB

Cfix 13,24 € Entspricht den Fixkosten im Azure-Kostenmodell

Fiir diesen Anwendungsfall ergeben die optimalen Synchronisierungsraten fiir alle
GroBenordnungen der Cache-Anzahl folgende Werte:

Lopt_put_timited = 2880 (Haufigkeit fiir das Hochladen der Updates; entspricht @qpites
und somit der naiven Synchronisationsrate 1H)

Topt_get_timited = 1350 (Héufigkeit fiir das Herunterladen der Updates)

Die monatlichen Kosten, berechnet mit der generischen Optimierungsformel mit

naiver Synchronisationsrate von 1H (Abbildung 26):

Formel Qcaches=1 | Qcaches=10 | Qcaches=100 | caenes=1000
evalget(2880) 35,99 € 240,77 € 2288.55 € 22766,36 €
evalput(2880) 35,99 € 240,77 € 2288.55 G 22766,36 €
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25000 | | |
'‘eval_put_naive'
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Abbildung 26: Kostenverteilung der generischen Kosten-Funktion. Die Kurven
eval_put_naive, eval_put und eval_get_naive liegen iibereinander.

Die monatlichen Kosten, berechnet mit der generischen Optimierungsformel und
optimierten Synchronisationsraten fiir unterschiedliche Anzahl der Caches sind
wie folgt (Abbildung 26):

Formel Qcaches™= 1 Qcaches™ 10 Qeaches™= 100 Qeaches™= 1000
evalye:(1350) | 29,57 € 176,56 € 1646,46 € 16345,43 €
evalput(2880) 35,99 € 240,77 € 2288.55 & 22766,36 €

Bevor die Azure-Kosten berechnet werden kénnen, muss die Rechnung durch die
Penalty-Funktion ergénzt werden, die die Kosten fiir das Lesen der veralteten Werte
berechnet und somit bei optimierten Synchronisierungsraten beriicksichtigt werden
muss. Auf diese Weise werden die Optimierungsformel und die Azure-Kostenformel

miteinander vergleichbar, denn beide berechnen die vollen Betriebskosten.

Die monatlichen Windows Azure-Kosten im Fall 1H 1D ohne Optimierung (Ab-
bildung 27). Dabei ist p(2880) = 0, weil die Synchronisierungsrate im naiven Fall

nicht herabgesenkt (und somit optimiert) wird:
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Formel G/P | acoches=1 | Qeaches=10
Dget(2880) + (2880, 100M B, Geaenes) | Get | 36 € 240,81 €

Dot (2880) + £(2880, 100M B, toaenes) | Put | 36 € 240,81 €
Formel G/P | acacnes=100 | acaenes=1000
Dger(2880) + £(2880, 100M B, Gacnes) | Get | 228898 € | 22770,68 €
Pput (2880) + £(2880, 100M B, Geaenes) | Put 2288,98 € 22770,68 €

25000 ‘ :
'azure_costs_put'
'azure_costs_get_naive' - _-
‘azure_costs_put_naive' — -
20000 - ‘azure_costs_get' -~ -
S 15000 | 7 i
w ) e
£ i
S 10000 - / -
5000 - 4
0 Z 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Number of caches

Abbildung 27: Kostenverteilung mit und ohne Optimierung. Die Kurven azu-
re_costs_put, azure_costs_get_naive und azure_costs_put_naive liegen
iibereinander.

Die monatlichen Windows Azure-Kosten fiir die optimierten Synchronisationsra-
ten sind (Abbildung 27):

Formel G/P | acaches=1 | Gcaches=10

oot (1350) + £(1350, 100M B, Guepes) | Get | 20,57 € | 176,58 €

Dyt (2880) + £(2880, 100M B, toneres) | Put | 36 € 240,31 €
Formel G/P | acocnes=100 | acaenes=1000
Dot (1350) + £(1350, 100M B, degenes) | Get | 1646,66 € | 1634746 €
Pput (2880) + £(2880, 100M B, Geaenes) | Put 2288,98 € 22770,68 €

Ein Vergleich der Kostenverteilung der generischen Optimierungsformel und der
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Azure-Kostenformel zeigt, dass die Funktionen miteinander korrelieren und die Op-

timierungsformel der Realitdt entspricht.

Aus den berechneten Kosten mit dem naiven Synchronisierungsansatz und dem
optimierten Ansatz, lidsst sich ein Ersparniswert in Prozent angeben. Nachfolgend
konzentrieren wir uns auf die Ersparniswerte, die sich durch den Einsatz des Systems

ergeben.

6.3.3 Kostenersparnis

Die Kostenersparnis wird mit folgender Formel berechnet. Es werden immer die
Azure-Kosten ausgewertet. Die Variable x ist die optimierte Synchronisierungsrate
und y die nichtoptimierte Rate. Auch hier muss bei der Verwendung der optimierten

Synchronisierungsrate die Penaltyfunktion p(x) berticksichtigt werden.

fsaving(z,y,d,n) = (1 — p(z) + [z, d, n)) -100%

f(y.d;n)
Fiir die Optimierung aus dem vorangehenden Abschnitt lassen sich folgende Werte
berechnen:
Formel G/P | acaches=1 | Qcaches=10
T opt_get_limited Get 1350 1350
Topt_put_limited Put | 2880 2880
Fsaving(Topt_get timited, 2880, 100M B, Gcaches) | Get | 18% 27%
fsaving(Topt_put_timited, 2880, 100M B, Gcaches) | Put | 0% 0%
Formel G/P | acacnes=100 | acaenes=1000
T opt_get_limited Get 1350 1350
Lopt_put_limited Put | 2880 2880
fsaving(Topt_get_timited, 2880, 100M B, acaches) | Get | 28% 28%
Fsaving(Topt_put_timiteds 2880, L00M B, @cqcnes) | Put | 0% 0%

Es féllt auf, dass die Ersparnis nach dem Optimieren der Hochladehéufigkeit (put)
bei null liegt. Bereits zu Beginn des Abschnitts wurde festgestellt, dass die optimier-
te Hochladeh&dufigkeit @opt put 1imited der naiven Haufigkeit entspricht. Eine Ersparnis
von 0% ist eine offensichtliche Folge des mangelnden Optimierungsfreiraums beim

Versffentlichen von Anderungen an Datensétzen. Jede nichtversffentlichte Anderung
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verursacht enorme Penalty-Kosten von jedem einzelnen Cache, der einen veralteten

Wert liest. Entsprechend ist es finanziell untragbar, eine Aktualisierung zuriickzu-

halten. Des Weiteren ist bemerkenswert, dass sich die optimierte Haufigkeit, wegen

der Unabhéngigkeit von der Anzahl der Caches, nicht d&ndert, wiahrend der Erspar-

niswert grofler wird. Das ist damit in Verbindung zu bringen, dass die Fixkosten mit

steigender Anzahl der Caches weniger ins

Gewicht fallen.

Als néchstes wird die Kostenersparnis, abhéingig von den ausschlaggebenden Para-

metern wie Datenmenge, Lese-/Schreibrate und dem Penalty-Kostenfaktor betrach-

tet. Hierfiir werden Parameter wie folgt variiert:

Variable Wert(e) Beschreibung
Arites = Qreads 30; 30-24; 30-24-4; | Pro Monat wird téaglich, stiindlich, viertel-
30-24-12 stiindlich, alle 5 Minuten geschrieben/ge-

lesen

Geaches 100 100 Caches nehmen am System teil

Cread_old 1; 5; 10; 20 Jedes Lesen eines veralteten Wertes kostet
1,5, 10 und 20 €

Adata up ﬁ; %; 150%; }8% Es werden unterschiedliche Datenmengen
hochgeladen, gerechnet in GB

Adatadown ﬁ; %; 150%; }8% Es werden unterschiedliche Datenmengen
heruntergeladen, gerechnet in GB

Es wird immer eine Variable als Laufvariable gewéhlt, alle anderen bleiben fest, mit

Werten aus dem vorangehenden Abschnitt.

Laufvariable a,iss: Beim Variieren der Anzahl an Synchronisierungen pro Monat

verteilen sich die Ersparnisse wie folgt (Abbildung 28).

Formel G/P | aurites=30 | Qurites=T720
(Taglich) | (Stiindlich)
Topt_get_limited Get | 30 675
Lopt_put_limited Put | 30 720
Fsaving(Topt_get timited, Gurites; L00M B, 100) | Get | 0% 0%
Fsaving(Topt_put_timiteds Qurites; L00M B, 100) | Put | 0% 0%
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Formel G/P | ayrites=2880 Qrites =8640
(Alle 15 Min.) | (Alle 5 Min.)
Lopt_get_limited Get 1350 2338
xopt,put,limited Put 2880 8640
fsaving (xopt,get,limiteda Qoprites 100MB7 100) Get 28% 53%
fsaving (xopt,put,limitedy Qoprites 1OOMB7 100) Put 0% 0%
100 \ \
'savings_put_h' ——
'savings_get_h'
80 - B
X 60+ i
:
;fn;U 40 -~ ]
20 ~ B
0 ! ! ! ! ! ! ! !
1000 2000 3000 4000 5000 6000 7000 8000

Number of reads per month

Abbildung 28: Kostenersparnis abhéngig von der Lese-/Schreibrate. Der Vorteil ent-

steht erst ab c. a. 1000 Aktualisierungen pro Monat.

Laufvariable dgqtq_up Und dgata_down: Beim Erhohen der zu synchronisierender Daten-

menge, sind die Ersparnisse entsprechend Abbildung 29.

Formel G/P | dystaup=1 MB | dyatq ;=100 MB
Topt_get_limited Get 2880 1350

Topt_put_limited Put 2880 2880
Fsaving(Zopt_get timited> 2880, ddatq up, 100) | Get | 0% 28%

Jsaving(Topt_get timited> 2880, ddata_up, 100) | Put | 0% 0%
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Formel G/P | dustaup=512 MB | dystq.p=1024 MB
Lopt_get_limited Get 597 422
Lopt_put_limited Put 2880 2880
fsaving(:L‘opt,get,limitem 28807 ddata,upa 100) Get 63% 73%
fsaving (xopt,get,limitem 28807 ddata,upa 100) Put 0% 0%
100 \
'savings_put d' ——
'savings_get_d'
80 |- 4
X 60 -~ -
2
8 40| i
20 - 4
0 I I I I I
0 200 400 600 800 1000

Amount of data per synchronisation in MB

Abbildung 29: Kostenersparnis abhéngig von der Datenmenge. Die Datenmenge be-
einflusst die Ersparnisse erheblich.

Laufvariable ¢,cqq oq:Beim Senken der Kosten fiir jedes veraltete Lesen der Daten,

erhoht sich die Ersparnis wie in Abbildung 30. Es hédngt damit zusammen, dass

Penalty-Kosten erheblich sinken und die optimale Synchronisationsrate einen klei-

neren Wert annimmt.

Formel G/P | Creadoia=1 € | Cread ota=5 €
Topt_get_limited Get 604 1350
Zopt_put_limited Put 2880 2880
Fsaving(Zopt_get_timited, 2880, 100M B, 100) | Get 62% 28%
Fsaving(Topt_put_timited, 2880, 100M B, 100) | Put 0% 0%
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Formel G/P Cread,old:]-o € Crea&oldzzo €
Lopt_get_limited Get 1909 2700
Lopt_put_limited Put 2880 2880
fsaving (xopt,get,limiteda 28807 ]-OOMBa 100) Get 11% 0%
Fsaving(Topt_put_timitea, 2880, 100M B, 100) | Put 0% 0%
100 : : :
'savings_put_c'
'savings_get c'
80 - i
X 60 i
£
g
2 40| i
20 - i
0 | | | | | | | | | =
2 4 6 8 10 12 14 16 18 20

Costs for each old read in EUR

Abbildung 30: Kostenersparnis abhéngig von den Kosten fiir das Lesen eines ver-
alteten Datensatzes. Die Kosten lassen sich enorm einsparen, wenn
geringer finanzieller Aufwand fiir das Lesen veralteter Daten entsteht.

In diesem Abschnitt wurden die Werte einzeln variiert und es wurde festgestellt,

dass die Ersparnis maximal wird, wenn die Leserate und die Datenmenge erhoht

und dabei die Kosten fiir das Lesen eines veralteten Datensatzes verringert werden.

6.3.4 Kosten fiir den Ausfall der Cloud

Die oben beschriebenen Kosten entstehen, solange die Cloud verfiighar ist. In Ab-
schnitt 3.1.2 wurde festgehalten, dass die Cloud Monatlich 0,05% nicht verfiig-
bar ist. In diesem Fall wiirden die monatlichen Stillstand-Kosten, bei 100 Caches

(Geaches = 100), wie Folgt anfallen, dabei ist h die Anzahl der Leseoperationen und

entspricht a,eqds-
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fno,cloud(h) = h-0.0005 - Cread_old * Qcaches

Formel

Cread_old=— 1€

Cread_old=— 5 €

Cread_old=— 10 €

Cread_old=— 20 €

fno,cloud(?)O)

15 €

75 €

15 €

30 €

Froctoud(r20) | 36 € 180 € 360 € 720 €
Fro-cloud(zsso) | 144 € 720 € 1440 € 2880 €
Froctoud(ssa0) | 432 € 2160 € 4320 € 8640 €

Diese Kosten fallen jedoch nur an, wenn keine Synchronisierung stattfindet. Dieses
System nutzt die Peer-to-Peer-Infrastruktur, um die Synchronisierung weiterhin zu

ermoglichen und somit diese Kosten zu vermeiden.

Die Berechnungen aus vorangehenden Abschnitten zeigen einen klaren Trend, der

nachfolgend im Fazit bewertet wird.

6.3.5 Fazit der Evaluation

Durch das Verringern der Hochlade-H&aufigkeit, lassen sich keine Kosten einsparen,
denn jedes nicht hochgeladene Update ist mit vervielfachten Kosten fiir das Lesen
der falschen Daten von jedem einzelnen Cache verbunden. Entsprechend iibersteigen
in diesem Fall Penaltykosten die vergleichsweise geringen Transferkosten. Aus diesem
Grund gleicht in allen Szenarien Zop: put 1imited der naiven Synchronisierungshéufig-
keit 1H. Dagegen lassen sich die Kosten durch die Optimierung der Get-Haufigkeit
tatsédchlich herabsenken. Es ist vom Anwendungsfall abhéngig, wie viel sich einspa-
ren ldsst, jedoch zeigt die Evaluation, dass besonders bei Szenarien, in denen viel

Traffic verursacht wird, eine deutliche Kostensenkung erzielt wird.

6.4 Zusammenfassung

Entsprechend dem Schwerpunkt dieser Arbeit, die Kommunikationskosten zu re-
duzieren, verringert die Losung tatsdchlich die Kosten, verglichen mit der naiven
Synchronisierung. Der Vorteil dieser Lésung wird besonders in Szenarien deutlich,
in denen eine hohe Datenmenge oft synchronisiert wird. Durch die Optimierungs-
funktion wird die Synchronisierungshaufigkeit soweit verringert, bis die Kosten fiir

das Lesen der veralteten Datensétze mit den Kosten fiir die Dateniibertragung aus-
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balanciert sind, wodurch sich ein Kostenminimum ergibt.

Im nachfolgenden Kapitel wird ein kurzer Uberblick iiber die ganze Arbeit gegeben

und ein Fazit gezogen.
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7 Fazit

In diesem abschlieenden Kapitel wird ein Riickblick der ganzen Arbeit gegeben und
ein Ausblick in die Zukunft gewagt. Es wird der Kern der Aufgabenstellung, des zu
entwickelnden Systems, des Entwurfs sowie der Implementierung hervorgehoben.
Die Evaluierung untermauert den praktischen Teil der Arbeit. Diese Arbeit bietet
weiterhin Forschungsraum fiir weitere Arbeiten - dies wird im letzten Abschnitt

erlautert.

7.1 Zusammenfassung

Das Ziel dieser Ausarbeitung war es, bestehende Algorithmen zur Synchronisation
zu untersuchen und ein System, das eine verbesserte Synchronisation ermdoglicht, zu
entwickeln. Dabei soll Cloud Computing als wichtiges Teil des Systems eingesetzt

werden, um die Daten-Konsistenz und -Verfiigharkeit zu unterstiitzen.

Zunéichst wurde das Synchronisierungsproblem untersucht. Dabei stellte sich her-
aus, dass Netzwerkpartitionierung die Datenkonsistenz oder -Verfiigharkeit sehr ein-

schrankt.

Einige bestehende Systeme, wie z. B. Coda oder Bayou bieten gute Ansétze, um das
Synchronisierungsproblem einzugrenzen, sind jedoch unzureichend in einigen Punk-
ten. Als niitzlich erwiesen sich das System BASE, das die Konsistenz des verteilten
Systems sicherstellt und IceCube, das auftretende Konflikte auf der Anwendungs-
ebene beseitigt. Es wurde ein System benétigt, um diese beiden Entwicklungen

miteinander zu verzahnen.

So wurde zunichst die Infrastruktur mit den beteiligten Komponenten herauskris-
tallisiert. Das verteilte System besteht aus dem zentralen Speicher in der Cloud und
den geografisch verteilten Caches. So konnen Caches die gespeicherten Daten mit
der Cloud synchronisieren. Ist die Cloud nicht verfiigbar, dann werden Aktualisie-
rungen iiber das Peer-to-Peer-Netzwerk ausgetauscht, in dem Caches miteinander
direkt kommunizieren. Auf diese Weise wurde die Verfiigbarkeit der Daten und Aus-

fallsicherheit der Komponenten sichergestellt.

Darauf aufbauend wurde die Grundidee fiir die Problemlésung entwickelt. Die bei-
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den Systeme BASE und IceCube verwenden Operationen als grundlegende Elemen-
te. Operationen sind ausfithrbare Programmteile, mit denen das Lesen und Schrei-
ben der Daten ermdglicht wird. So greift eine Endanwendung iiber eine definierte
Schnittstelle auf den Cache zu und iibergibt die Parameter fiir das Ausfiithren ei-
ner Operation. Anschliefend wird der durch eine Operation gednderte Datensatz
mit BASE synchronisiert. Tritt beim Synchronisieren ein Konflikt auf, wird er mit

IceCube aufgelost.

Ein wichtiger Punkt der Aufgabe, ist es die Gesamtkosten fiir den Einsatz der Lo-
sung zu reduzieren. Der Synchronisationsvorgang findet deshalb entsprechend einer
Optimierungsfunktion statt, die die Anzahl der Synchronisierungen reduziert, um
die Transferkosten zu senken, aber dabei die dadurch entstehenden Kosten fiir das

Lesen eines veralteten Datensatzes beriicksichtigt.

Das Ergebnis dieser Arbeit ist eine ganzheitliche Middleware-Losung, die das Syn-
chronisierungsproblem umfassend und effektiv reduziert. Die Implementierung der
Middleware zeigt, dass trotz der in Realitit auftretenden Netzwerkpartitionierung
eine effiziente Synchronisation ermdoglicht wird und Daten verfiighar und Konsis-
tent gehalten werden. Die Implementierung der Beispielanwendung beweist die Ef-
fektivitdt des Systems hinsichtlich der der Moglichkeit, Daten zu verarbeiten, der

Synchronisierung, sowie der Konfliktauflosung.

Die Evaluierung bestétigt die Kosteneffizienz. Dabei wurde festgestellt, dass eine
groflere zu synchronisierende Datenmenge, eine gréffere Synchronisierungshéufigkeit
und die geringere Kosten fiir das Lesen eines veralteten Datensatzes am meisten

Optimierungsraum bieten und somit einen hoherer Erparnis-Wert erreicht wird.

I. Foster prophezeit in [FZRLO08|, dass Cloud Computing und Client Computing
werden in Zukunft stdarker ausgeprigt sein und dementsprechend Themen wie Netz-
werkpartitionierung, Caching und Replizierung eine stérkere Rolle spielen werden
als bisher. Aus dieser Perspektive ist diese Losung zukunftssicher und bildet eine
Basis fiir spétere wissenschaftliche Arbeiten. Nachfolgend werden konkrete wissen-

schaftliche Arbeiten vorgeschlagen, die auf dieser aufbauen kénnen.
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7.2 Ausblick auf weitere Arbeiten

Dieses System kann dafiir dienen, Daten mit Hilfe von Operationen sowohl im Roh-
zustand, als auch anwendungsspezifisch zu erfassen und zu untersuchen. Es ist also
moglich, Sensordaten mit weiteren Daten aus dem Kontext des Systems zu ver-
binden. Somit konnen sie semantisch gekennzeichnet werden. Ohne das Wissen der
Anwendungssemantik ist es sehr schwierig, hochwertige semantische Metadaten zu
produzieren. Deshalb wire es in einer wissenschaftlichen Arbeit zu untersuchen, wie
Metadaten mit Operationen auf semantischer Ebene erfasst und den verarbeitenden

Anwendungen iibermittelt werden konnen.

Es ist moglich, eine zusétzliche Komponente zu entwickeln, die die Reihenfolge der
Operationen beim Zusammenfiihren der Anderungshistorien mit Hilfe einer Gram-
matik priift. Die Grammatik muss dabei die Standardabldufe des Systems, d. h.
die Operationsabfolgen beschreiben, um moglichst viele Félle zu beriicksichtigen.
Sie wiirde einerseits den Suchraum fiir die korrekten Reihenfolgen der Operationen
eingrenzen, andererseits wiirde sie die Korrektheit der Zusammenfithrung sicher-
stellen. Somit wird eine Effizienzsteigerung erzielt und die Korrektheit bestétigt. Es
muss untersucht werden, welche Vorteile die Erweiterung bringt und welche Nach-
teile miissen in Kauf genommen werden. Dies kann in Form einer weiterfithrenden

Arbeit geschehen.

Diese Arbeit bietet Freiraum, um weitere Forschungen fiir eine verbesserte Konflikt-
auflosung oder Datenerfassung zu betreiben. Das System bietet eine flexible Basis,
um neue Algorithmen, die im Laufe der Forschung entwickelt werden, einfach an-
zuschlieen und in der Praxis zu testen. Somit stellt die Losung in der Praxis ein

niitzliches System dar und in der Forschung eine Basis fiir weitere Arbeiten.
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