
Institut für Software-Entwicklung

Abteilung SE2

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3378

Konzeption eines
Lego-Mindstorm Workshops für

Studieninteressenten

Raimund Metzler

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Wagner

Betreuer: Dipl.-Ing. Jan-Peter Ostberg

begonnen am: 25. September 2012

beendet am: 24. Januar 2013

CR-Klassifikation: K.3.1

Kurzfassung

Im Rahmen dieser Diplomarbeit entstand ein Workshop, welcher das Interesse von Studien-
interessenten an der Softwaretechnik wecken soll. Die Arbeit beschreibt wie und in welcher
Form, LEGO-Mindstorms als interessante Basis des Workshops zum Einsatz kommt. Folgend
wird beschrieben wie die Anforderung, die Mindstorm-Roboter mit Java zu programmie-
ren, umgesetzt wurde und wie die Teilnehmer diese Aufgabe bewerkstelligen sollen. Die
Diplomarbeit beschreibt des Weiteren den entstandenen Workshop, was er den Teilnehmern
vermittelt und mit welchen Stilmitteln gearbeitet wird. Um den Workshop und dessen Teil-
nehmer zu unterstützen, entstanden beispielsweise einige Materialien wie eine Präsentation,
Handouts und Beispiele, welche die Teilnehmer verwenden können.
Behandelt wird ebenfalls die Entwicklung der Roboter für den Workshop, welche Anforde-
rungen diese zu erfüllen haben und beschreibt das Szenario, in welchem die Roboter zum
Einsatz kommen. Da sich der Workshop um Elemente der Softwaretechnik dreht, werden
auch diese Elemente erwähnt und ausgearbeitet.

Abstract

During the work on this diploma thesis, a workshop was created to make prospective students
more interested in Software-Engineering. The thesis describes how LEGO-Mindstorms is used
as an engaging component to work with. Furthermore it describes how Java, as a requirement
of the thesis, was brought into the workshop and how the participants are affected by it. As
the workshop was the main task of the thesis, it is described with all its steps, elements and
materials used to support the participants. Since the workshop is about Software-Engineering,
some aspects of it are part of the thesis as well as the workshop it self.
The diploma thesis also describes the robots and the requirements implied by scenario they
are used in. Finally the software-suite the participants are using during the workshop is
explained as well as the challenges and problems, which had to be solved.

3

Inhaltsverzeichnis

1. Einleitung 9
1.1. Motivation . 9

1.2. Aufgabenstellung . 9

2. Softwaretechnische Grundlagen im Workshop 11
2.1. Abgrenzung . 11

2.2. Behandelte Aspekte der Softwaretechnik . 11

2.2.1. Analyse . 11

2.2.2. Spezifikation . 12

3. Robotik 15
3.1. LEGO-Mindstorms . 15

3.2. Der NXT-Baustein . 15

3.2.1. Sensoren . 16

3.2.2. Aktoren . 17

3.3. Der Roboter des Workshops . 17

3.3.1. Der Greifarm . 18

3.4. Odometry . 19

4. LeJOS 21
4.1. LeJOS im Allgemeinen . 21

4.2. Die LeJOS-API . 21

5. Workshop 23
5.1. Generelles zum Workshop . 23

5.1.1. Die Bojen . 23

5.1.2. Die Spielfeldgrenzen . 24

5.2. Ablauf . 24

5.2.1. Kick-Off . 24

5.2.2. Zusammenbauen des Roboters (optional) 24

5.2.3. Analyse der Spielregeln . 25

5.2.4. Entwurf und Planung der Robotersteuerung 25

5.2.5. Codierung . 26

5.2.6. Antritt im Szenario . 26

5.3. Einzelheiten zur Einleitung . 27

5.3.1. Vorlagen und Beispiele . 28

5.3.2. Anmerkung zur weiteren Entwicklung der Vorlagen 28

5

5.4. Details zur Planung der Robotersteuerung . 29

5.5. Einzelheiten zur Analyse der Spielregeln . 30

5.6. Ergebnisse der Pilotworkshops . 30

5.6.1. Viel vorausgesetztes Wissen . 31

5.6.2. Planungsphase kam zu kurz . 31

5.6.3. Benötigte Zeit . 31

6. Die Softwarebausteine als Programmiergrundlage im Workshop 33
6.1. Bausteine für den Workshop . 33

6.2. ObjectInfo . 33

6.3. ObjectHandler . 34

6.4. Coordinator . 35

6.5. Pilot . 36

6.6. Grappler . 37

6.7. OdometryResetListener . 38

6.8. BorderLines . 38

6.9. ObjectFinder . 39

6.9.1. BuoyLocator . 41

7. Szenarien 43
7.1. Verworfene Szenarien . 43

7.1.1. Capture The Flag (CTF) und Abwandlungen 43

7.2. Umsetzbare Szenarien . 44

7.2.1. Hindernisparcours . 44

7.2.2. Bojenjagd . 45

8. Probleme, Schwierigkeiten und Herausforderungen 47
8.1. Entwurf und Bau des Workshop-Roboters . 47

8.1.1. Greifarm . 48

8.2. Grenzen der Sensorik . 48

8.2.1. Verhalten von Ultraschallwellen . 50

8.3. Gestaltung des Workshops . 51

8.3.1. Zeitintensiver Aufbau des Roboters . 51

8.3.2. Die Wahl der Bojen . 52

8.3.3. Kick-Off-Präsentation . 52

9. Zusammenfassung und Ausblick 53

A. Anhang 55
A.1. Protokolle der Pilotworkshops . 55

A.2. Vorlagen und Beispiele . 61

A.2.1. Mögliches Beispiel der Präsentation . 61

A.2.2. Vorlage 1 der Steuerung . 66

A.2.3. Vorlage 2 der Steuerung . 71

A.2.4. Vorlage für die Spezifikation . 76

6

A.3. Handout . 80

Literaturverzeichnis 83

7

Abbildungsverzeichnis

3.1. NXT-Baustein mit Sensoren und Aktoren. 15

3.2. Greifarm: Draufsicht und Schrägansicht . 18

3.3. Koordinatensystem der Odometry, Ausrichtung von X- und Y-Achse beachten! 19

3.4. Winkel der Odometry . 20

5.1. Notation eines Programmablauf-Planes . 30

6.1. Klassen-Diagramm: ObjectInfo . 34

6.2. Object 1 bereits vorhanden, 2 wird verworfen, 3 gespeichert. 35

6.3. Klassen-Diagramm: ObjectHandler . 35

6.4. Klassen-Diagramm: Coordinator . 36

6.5. Klassen-Diagramme: Pilot und Pilot2 . 37

6.6. Klassen-Diagramm: Grappler und Grappler2 . 38

6.7. Klassen-Diagramm: BorderLines . 38

6.8. Klassen-Diagramm: BorderLines . 39

6.9. Suchkreis des ObjectFinders . 40

6.10. Klassen-Diagramm: ObjectFinder . 40

6.11. Klassen-Diagramm: BuoyLocator . 42

8.1. Ausbreitung eines Ultraschallfeldes[2] . 50

8.2. Ungünstig reflektierte Ultraschallwellen[2] . 51

8

1. Einleitung

1.1. Motivation

Die meisten Studieninteressenten sind nicht wirklich gut über den Inhalt eines Studiengan-
ges informiert und entscheiden sich oftmals aus dem Bauch heraus für einen Studiengang,
der scheinbar etwas mit dem eigenen Interessengebiet und eventuell mit den individuellen
Stärken zu tun hat. Zumeist handelt es sich dabei um bekannte und schon seit einigen Jahren
angebotene Studiengänge, wie die Informatik. Neben diesen bekannten Studiengängen, gibt
es aber natürlich noch weitere, leider oftmals unbekanntere oder auch neue Studiengänge,
welche möglicherweise viel besser das Interessengebiet eines Studieninteressenten treffen.
So gibt es die Möglichkeit, Softwaretechnik [4] anstatt Informatik zu studieren. Dies wäre
zum Beispiel eine praxisorientiertere Ausbildung gegenüber der Informatik.
Der Studiengang der Softwaretechnik ist aber verhältnismäßig unbekannt und wird oftmals
mit der Informatik gleichgesetzt. Letztere hat des Weiteren nach wie vor höhere Studienzah-
len [5] und den allgemein höheren Bekanntheitsgrad.
Die Motivation hinter dieser Diplomarbeit ist es, die Softwaretechnik gegenüber der Infor-
matik weiter zu betonen und ein generell höheres Interesse am Studiengang zu wecken. Auf
lange Sicht ist ein deutlich erhöhter Bekanntheitsgrad erhofft, so dass sich jeder Studieninter-
essent bewusst für die Softwaretechnik statt der Informatik entscheiden kann, sollte er dies
wollen.

1.2. Aufgabenstellung

Das Ziel dieser Diplomarbeit ist es, einen „Workshop“ zu erstellen, mit dessen Hilfe das
Interesse am Studiengang „Softwaretechnik“ geweckt bzw. gefördert werden soll. Um die
Zielsetzung zu erreichen, muss der Workshop interessant gestaltet, aber von Laien zu
bewerkstelligen sein. Mit LEGO [8] Mindstorms [9] als Motivationsbasis und ein paar
wenigen darauf basierenden Szenarien, liegt ein interessantes Konzept vor, welches den
Teilnehmern Spaß machen, gleichzeitig aber auch etwas Wissen vermitteln soll.
Da Interesse am Studiengang der Softwaretechnik geweckt werden soll, liegen einige wichtige
Aspekte des Software-Engineerings im Kern des Workshops, die den Teilnehmern vermittelt
werden sollen. Da es zeitliche Grenzen gibt die eingehalten werden müssen, ist es im
Workshop nicht mögliche diese Aspekte in aller Tiefe zu behandeln.

9

1. Einleitung

Gliederung

Nach diesem einleitenden Kapitel, gliedert sich die Diplomarbeit folgendermaßen:

Kapitel 2 – Softwaretechnische Grundlagen im Workshop: Ziel dieses Kapitels ist es, die
für den Workshop nötigen Grundlagen der Softwaretechnik zu erläutern.

Kapitel 3 – Robotik In diesem Kapitel werden die Lego-Bausteine, -Sensoren und -Aktoren
dargestellt und beschrieben.

Kapitel 4 – LeJOS Dieses Kapitel stellt eine kurze Beschreibung der LeJOS-API, -Werkzeuge
dar.

Kapitel 5 – Workshop Das folgende Kapitel beschreibt den geplanten Ablauf und alle ein-
zelnen Schritte des Workshops, sowie die bisherigen Ergebnisse und Auswertungen
der Pilotworkshops.

Kapitel 6 – Die Softwarebausteine als Programmiergrundlage im Workshop Dieser Teil der
Arbeit führt die einzelnen, im Laufe der Diplomarbeit entwickelten, Softwarebausteine
für den Workshop auf.

Kapitel 7 – Szenarien Dieses Kapitel beschreibt die Entwicklung der verschiedenen Szenari-
en, nennt die Gründe warum Andere verworfen und welches Szenario am Ende in den
Workshop übernommen wurde.

Kapitel 8 – Probleme, Schwierigkeiten und Herausforderungen Dieses Kapitel beschreibt
die Probleme und Schwierigkeiten die es zu lösen, aber auch zu akzeptieren galt
und stellt die Herausforderungen dar, welche hard- und softwareseitig gemeistert
werden mussten.

Kapitel 9 – Zusammenfassung und Ausblick

10

2. Softwaretechnische Grundlagen im
Workshop

Ziel dieses Kapitels ist es, die für den Workshop nötigen Grundlagen der Softwaretechnik
zu erläutern.

2.1. Abgrenzung

Der zu dieser Diplomarbeit gehörige Workshop, soll einige Grundlagen der Softwaretechnik
vermitteln. Mangels zur Verfügung stehender Zeit im Workshop, können dabei jedoch nur
einige wenige Aspekte der Softwaretechnik behandelt und in den Workshop aufgenommen
werden. Diese wenigen Aspekte können nur soweit behandelt werden, wie es im Rahmen
des Workshops sinnvoll ist.

2.2. Behandelte Aspekte der Softwaretechnik

2.2.1. Analyse

Die Analyse steht ganz zu Beginn im Entwicklungsprozess einer Software, man spricht von
der „Anforderungsanalyse“ . Sie dient dazu die Kundenwünsche genauestens zu analysieren
und auf diesem Wege die Anforderungen zu erheben. Nach IEEE [3] gibt es mehrere
Definitionen für den Begriff „Anforderungen“:

requirement A condition or capability needed by a user to solve a problem orachieve an
objective.
(2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
documents.
(3) A documented representation of a condition or capability as in (1) or (2).

IEEE Std. 610.12-1990

Im weiteren Verlauf der Arbeit wird nach Ludewig und Lichter [14, S. 357, 16.2.1] von der
ersten Definition ausgegangen und der Begriff „user“ als „Klient“ definiert.
Auch die „Analyse“ wurde nach IEEE definiert:

11

2. Softwaretechnische Grundlagen im Workshop

requirements analysis (1) The process of studying user needs to arrive at a definition of
system, hardware, or software requirements.
(2) The process of studying and refining system, hardware, or software requirements.

IEEE Std. 610.12-1990

Auch hier wird im Weiteren wieder von Definition (1) ausgegangen. Dies bedeutet also, dass
alle Anforderungen vom Klienten, beispielsweise Auftraggeber oder Kunde, kommen und in
der Analyse erfasst und gesammelt werden. Einmal erfasst, stellen die Anforderungen die
Basis der zu erstellenden Spezifikation dar.

Während der Erfassung der Anforderungen ist ein möglichst penibles Vorgehen angebracht.
Jedes Detail ist zu erfassen damit gewährleistet ist, dass Klient und Softwareentwickler das
selbe Verständnis unter der jeweiligen Anforderung haben.

Anwendung im Workshop

Die Teilnehmer des Workshops bekommen im Laufe der Kick-Off-Präsentation (5.3), nur
eine grobe Vorstellung der Spielregeln für das später folgende Szenario vermittelt. Genau an
diesem Punkt soll die Analyse ansetzen und den einzelnen Teams die Möglichkeit geben, die
Spielregeln genauestens zu hinterfragen und eine möglichst optimale Strategie zu entwickeln.
Dies bedeutet aber auch, dass einige Teams möglicherweise den ein oder anderen Vorteil
erfahren, den sie durch geschickte Ausnutzung von Grauzonen im Regelwerk erhalten
könnten. Auf diese Weise soll der Wettkampf im Szenario etwas betont und der Workshop
interessanter gestaltet werden.

2.2.2. Spezifikation

Die Spezifikation dient als gemeinsame Kommunikationsbasis zwischen Auftraggeber und
Auftragnehmer und definiert genau, wie alle weiteren Arbeiten umzusetzen sind. Auch für
die Spezifikation gibt es eine Definition im IEEE-Glossar:

specification A document that specifies, in a complete, precise, verifiable manner, the
requirements, design, behavior, or other characteristics of a system or component, and,
often, the procedures for determining whether these provisions have been satisfied.
See also: formal specification; product specification; requirements specification.

IEEE Std. 610.12-1990

Auch an dieser Stelle sei wieder Ludewig und Lichter [14, S. 375] erwähnt, welche den
Begriff „Anforderungsspezifkation“ wie folgt angeben: „Die Anforderungsspezifikation
dokumentiert die wesentlichen Anforderungen an eine Software und ihre Schnittstellen, und
zwar präzise, vollständig und überprüfbar.“

12

2.2. Behandelte Aspekte der Softwaretechnik

Die Spezifikation wird für gewöhnlich einem oder mehreren Reviews [14, S. 282] unterzogen,
bei welchen der Klient oder Kunde anwesend ist. Anhand der Ergebnisse dieser Reviews ist
zu entscheiden, ob die Spezifikation angenommen wird, oder nochmals überarbeitet werden
muss.

Anwendung im Workshop

Die von den Teilnehmern im Laufe des Workshops anzufertigende Spezifikation, soll bei
Weitem nicht so umfangreich und genau sein, wie es für die Entwicklung einer Software
nötig wäre. Die Teilnehmer sollen aber ihr Vorgehen im Szenario planen, gegen die ana-
lysierten Spielregeln prüfen und ihre Ergebnisse schließlich niederschreiben. Inhalt der
Spezifikation:

• Analysierte Regeln

• Gefundene Grauzonen im Regelwerk

• Mögliche Vorteile und / oder zu beachtende Dinge

• Vorgehen zum Erforschen des Spielfeldes unter Berücksichtigung der Verteilung und
Größe der Suchpunkte sowie der Spielfeldabmessungen

• Falls Bestandteil des Szenarios, Punktewertigkeit der Bojen und daraus resultierendes
Vorgehen

Den Teilnehmern steht für die Spezifikation eine einfache Vorlage (A.2.4) zur Verfügung,
welche im Anhang zu finden ist.

13

3. Robotik

In diesem Kapitel werden die Lego-Bausteine, -Sensoren und -Aktoren dargestellt und
beschrieben, sowie auf den im Workshop zum Einsatz kommenden Roboter eingegangen.

3.1. LEGO-Mindstorms

LEGO-Mindstorms [9] erweitert die bekannten LEGO-Standartbausteine um einige Sensoren
und Aktoren sowie einen programmierbaren NXT-Baustein (3.2), welcher die eben genannten
Sensoren und Aktoren anspricht und mit Energie versorgt.
Online, durch die große Community, als auch direkt von LEGO, sind viele Bauanleitungen
für unterschiedliche Projekte verfügbar [9].

3.2. Der NXT-Baustein

Abbildung 3.1.: NXT-Baustein mit Sensoren und Aktoren.

Der „NXT-Baustein“ stellt das programmierbare Herzstück von Mindstorms dar. Program-
miert wird er in der Standartausführung mit Hilfe einer von LEGO gestellten Software [10].
Falls nötig, lässt sich über die NXT-Software auch die aktuellste Firmwareversion für den
NXT-Baustein installieren.
Die Programme für LEGO-Mindstorms werden in Form von Bausteinen grafisch zusammen-
gesetzt und anschließend auf den NXT gespielt. Eine richtige Verkabelung der Sensoren und
Aktoren vorausgesetzt, kann das Programm dann direkt ausgeführt werden.

15

3. Robotik

Der NXT-Baustein hat zur Kommunikation mit dem PC zwei Schnittstellen, bei welchen
es sich um eine USB- und eine Bluetooth-Schnittstelle handelt. Alle weiteren Anschlüsse
sind für Sensoren, von welchen insgesamt maximal vier Stück gleichzeitig betrieben werden
können, und Aktoren, maximal drei gleichzeitig, vorgesehen. Zu beachten ist aber, dass
Sensoren und Aktoren die selben Anschlüsse und Kabel teilen, jedoch mit unterschiedlichen
Spannungen versorgt werden. Es ist stets auf eine korrekte Verkabelung zu achten, um
Schäden zu vermeiden.
Der Baustein hat unterhalb des USB-Anschlusses, im linken Loch, einen Reset-Knopf. Dieser
kann beispielsweise mit einer aufgebogenen Büroklammer betätigt werden, um ein laufendes
Programm abzubrechen.

3.2.1. Sensoren

Für Mindstorms ist eine Vielzahl an unterschiedlichen Sensoren verfügbar. Beschrieben
werden hier aber nur die im Rahmen der Diplomarbeit verwendeten Sensoren.
Probleme, die im Zusammenhang mit der Sensorik auftreten, werden in Kapitel „Probleme,
Schwierigkeiten und Herausforderungen“ genauer ausgeführt.

Tastsensor

Der Tastsensor ist der vermutlich einfachste Sensor des Systems und liefert binäre Werte
zurück, um den momentanen Zustand (Taster gedrückt, Taster nicht gedrückt) zu beschrei-
ben.

Helligkeitssensor

Der dem Baukasten beiliegende Helligkeitssensor eignet sich nur zur Unterscheidung von
starken Kontrasten. So kann Hell von Dunkel, Schwarz von Weiß oder ein kräftiges Rot von
einem blassem Blau unterschieden und über den zurückgelieferten Helligkeitswert auch
begrenzt einer Farbe zugeordnet werden. Zur Erkennung der farbigen Bojen im Szenario
reicht der Helligkeitssensor aber nicht aus. Daher wurde der optional angebotene Farbsensor
nachbestellt.

Farbsensor

Der Farbsensor unterscheidet auf eine maximale Distanz von ca. 5 cm zuverlässig die
Farben

• rot

• blau

• gelb

16

3.3. Der Roboter des Workshops

• grün

• schwarz

• weiß

und weniger zuverlässig, Farbwerte zwischen den eben genannten. Je weiter zwei Farben auf
der Farbtabelle von einander entfernt sind, desto zuverlässiger können diese auch erkannt
oder unterschieden werden. Blautöne werden beispielsweise nur sehr schlecht von einander
unterschieden.

Ultraschallsensor

Der Ultraschallsensor ist der einzige, für LEGO-Mindstorms verfügbare Sensor, mit welchem
auch über Distanzen von mehr als nur einigen Zentimetern Messungen durchgeführt werden
können. Die maximale Reichweite ist mit (je nach Modell) ca. 170 cm angegeben, während
bei weniger als 10 cm, Distanzen nur ungenau oder gar nicht gemessen werden können.
Der Sensor arbeitet im Bereich von 20 cm aufwärts aber relativ genau und liefert, je nach
Oberflächenbeschaffenheit, zentimetergenaue Ergebnisse zurück.

3.2.2. Aktoren

Dem Baukasten liegen genau drei Servomotoren bei, welche dem NXT-Baustein als Aktoren
dienen. Die Maximalgeschwindigkeit hängt stark von Akku-Ladezustand oder den verwen-
deten Batterien ab, mit welchen die Aktoren für gewöhnlich mehr Leistung als mit dem
mitgelieferten Akku erzielen.

3.3. Der Roboter des Workshops

Das Grundmodell des im Workshop zum Einsatz kommenden Roboters, basiert auf einem
Bauplan, welcher unter „NXT-Programs“[16] unter dem Namen „Castor-Bot“[1] veröffent-
licht wurde. Das Modell wurde so modifiziert, dass es aus den zur Verfügung stehenden
Bauteilen umgesetzt werden kann. Da es sich aber nur um ein Basis-Modell zur Verwendung
in weiteren Projekten handelt, wurde zusätzlich ein dritter Servomotor, ein Greifarm (3.3.1),
ein Ultraschall-, ein Farb- sowie ein Tastsensor verbaut. Der Roboter hat drei Räder, wovon
eines ein einfaches Stützrad ist, während die anderen beiden jeweils von einem Servomotor
angetrieben werden.

17

3. Robotik

3.3.1. Der Greifarm

Der am Roboter angebrachte Greifarm muss mit nur einem Servomotor, Bojen greifen und
schließlich auch vom Boden heben können.

Abbildung 3.2.: Greifarm: Draufsicht und Schrägansicht

Das Zusammenspiel, der auf Zangen und Arm wirkenden Kräfte, ermöglicht dem Greifarm
die nötigen Bewegungen.
Entwickelt wurde der Greifarm im Verlauf dieser Arbeit nachdem verschiedene Greifarme
von Baggern und Kränen und deren Mechanik untersucht wurden. Vergleichbare Greifer
aus Lego existieren, jedoch brachte die Recherche keinen Bauplan, der als Vorlage dienen
konnte, zu Tage.
Der Greifer ist mit einem Farbsensor ausgestattet, um die Farbe einer angehobenen Boje
bestimmen zu können.

18

3.4. Odometry

3.4. Odometry

Bei der Odometry handelt es sich um die Positionsbestimmung eines sich fortbewegenden
Objektes anhand von Daten des Antriebssystems. So kann beispielsweise die von einem
immer gerade aus fahrendem Auto zurückgelegt Strecke berechnet werden, wenn der Rad-
durchmesser und die Zahl der Radumdrehungen bekannt sind. Die Fahrzeugrichtung kann
über die Lenkwinkel der einzelnen Räder bestimmt werden.
Bezieht man die berechnete relative Positionsveränderung auf einen definierten Bezugspunkt,
ist eine absolute Positionsbestimmung möglich.
Der Roboter aus dem Workshop hat keine unterschiedlichen Lenkwinkel, die Fahrzeugrich-
tung kann aber über den Radstand und die jeweilige Geschwindigkeit der beiden motorisier-
ten Räder bestimmt werden. Zu beachten ist aber, dass äußere Einflüsse wie zum Beispiel
durchdrehende Räder, die Positionsbestimmung verfälschen.
Den Nullpunkt des abgebildeten Koordinaten-Systems, stellt der Initialisierungspunkt des

Abbildung 3.3.: Koordinatensystem der Odometry, Ausrichtung von X- und Y-Achse beach-
ten!

Roboters dar. Im Workshop wird das immer die eigene Basis sein. Die Odometry des Robo-
ters (siehe auch Kapitel „Pilot“) arbeitet mit Winkeln von 0◦ bis 180◦ nach links und −1◦ bis
−179◦ nach rechts:

19

3. Robotik

Abbildung 3.4.: Winkel der Odometry

20

4. LeJOS

Dieses Kapitel stellt LeJOS mit der zugehörigen Software und API vor.

4.1. LeJOS im Allgemeinen

Bei LeJOS [6] handelt es sich um eine kleine Java-VM, welche auf den NXT-Baustein gespielt
werden kann. Dieser lässt sich dadurch mit Java und den dafür üblichen Programmier-
werkzeugen programmieren. Das Projekt „LeJOS“ bietet außerdem die nötigen Treiber und
Softwarekomponenten, um Java-Code auf den NXT-Baustein (3.2) zu überspielen. Unterstützt
wird die Java-Entwicklung mit Hilfe der IDE Eclipse [7], für welche ein Plugin [12] existiert,
mit dessen Unterstützung man den Code direkt aus der IDE auf den NXT-Baustein kopieren
kann.

LeJOS ist ein quelloffenes Projekt und steht als solches unter der Mozilla-Public-License [15].
Das zum Projekt gehörende Forum ist die einzige Form eines Supportes. Allerdings erhält
man diesen auch tatsächlich, sollte ein Problem oder eine Frage, welche durch das projektei-
gene Wiki [13] oder die Dokumentation [11] nicht beantwortet werden kann, auftreten.

LeJOS wird zwar schon seit einigen Jahren entwickelt, befindet sich aber noch immer in
der beta-Phase des Projektes. Dies fällt hauptsächlich an kleineren Fehlern in der API,
nicht implementiertem Funktionsumfang oder der an manchen Stellen unvollständigen
Dokumentation auf.

4.2. Die LeJOS-API

Die von LeJOS zur Verfügung gestellte API [11] bietet prinzipiell den selben Funktionsum-
fang, wie die Standard Java-API, das Hauptaugenmerk liegt aber auf der Unterstützung
der I/O-Ports des NXT-Baustein. Dinge wie Multi-Threading gehören aber dennoch zum
Funktionsumfang, genauso wie Sockets oder die Möglichkeit in Dateien zu schreiben bzw.
von diesen zu lesen. Jedoch ist anzumerken, dass der zur Verfügung stehende Speicherplatz
auf dem NXT-Baustein mit 256kb sehr begrenzt ist.
Wie oben bereits kurz angesprochen, ist die API leider nicht ganz fehlerfrei. Während der
Entwicklung der Softwarebausteine (6) für den Workshop, stellten diese Fehler immer wieder
ein Problem dar, welches teilweise erst nach langem Debuggen als Fehler in der API erkannt

21

4. LeJOS

wurde.

22

5. Workshop

Das folgende Kapitel beschreibt den geplanten Ablauf und alle einzelnen Schritte des
Workshops, sowie die bisherigen Ergebnisse und Auswertungen der Pilotworkshops. Des
Weiteren wird vermittelt, auf welche Dinge man bei der Durchführung des Workshops
achten muss.

5.1. Generelles zum Workshop

Die Zielgruppe des Workshops, sind Interessenten am Studiengang der Softwaretechnik. Der
Workshop ist für maximal vier Teams mit jeweils höchstens drei Teilnehmern ausgelegt. Jedes
Team bekommt dabei einen Roboter oder einen LEGO-Mindstorms [9] -Baukasten sowie
einen Erweiterungskasten zur Verfügung gestellt, sollte der Roboter von den Teilenehmern
selbst zusammengebaut werden.
Der Workshop ist für einen Zeitrahmen von ca. drei bis sechs Stunden ausgelegt. Laien ohne
Hintergrundwissen werden diese Zeit auch benötigen, da doch ein gewisser Wissenstand
nötig ist. Dieser wird aber, mit Hilfe einer ausführlichen Präsentation und zugehörigem
Beispiel, vermittelt.
Wenigstens ein, besser zwei Betreuer, sollten den Workshop leiten und die Teilnehmer
unterstützen, sollte dies von Nöten sein.

5.1.1. Die Bojen

Die Bojen für das Szenario müssen einige Bedingungen erfüllen. So waren die im Lego-
Baukasten enthaltenen, etwa tischtennisballgroßen, roten und blauen Bälle ungeeignet und
das nicht nur, weil sie auf Grund ihrer Form ständig über das Spielfeld rollen würden. Denn
die Oberfläche einer Kugel reflektiert nur einen kleinen Teil der Ultraschallwellen zurück zum
Sensor (siehe auch Kapitel „Verhalten von Ultraschallwellen“). Hinzu kommt die geringe
Höhe, oder auch Radius der Kugel, aufgrund dessen die Kugel, je nach Sensorposition oder
möglicher Neigung, nur sehr selten erkannt wurde.
Die jetzt für den Workshop zum Einsatz kommenden Bojen sind wesentlich höher und
zylindrisch, was die Ultraschallwellen nur noch seitlich zerstreut, aber nicht mehr vertikal.
Im Test wurde die aktuelle Boje selbst an den Rändern eines Suchkreises, also auf bis zu
50 cm Abstand, zuverlässig erkannt. Von ihrem Durchmesser sind die Bojen groß genug,
um erkannt zu werden, aber klein genug, dass der Greifarm sie, selbst mit einem kleinen

23

5. Workshop

Fehler in der Positionsbestimmung, noch gut greifen kann. Die Bojen sind mit einem kleinen
Standfuß versehen, welcher es vereinfacht diese zu greifen, da sie nicht sofort umfallen,
sollte der Greifarm gegen die Bojen stoßen.

5.1.2. Die Spielfeldgrenzen

Die Spielfeldabmessungen sind dem Roboter zwar bekannt, jedoch ist eine optische Ab-
grenzung dennoch anzuraten, um eine Grenzverletzung (Regelverstoß, siehe auch Kapitel
„Regelwerk der Bojenjagd“) gleich erkennen zu können. Außerdem verhindert eine Spielfeld-
abgrenzung das Betreten des Spielfeldes durch Dritte.

5.2. Ablauf

5.2.1. Kick-Off

Der erste Schritt im Verlauf des Workshops, stellt eine einführende Präsentation (5.3) dar,
welche den Teilnehmern den Ablauf und die Ziele des Workshops darstellen, als auch das
nötige Wissen und die zugehörigen Grundlagen vermitteln soll. Die Präsentation ist ein
äußerst wichtiges Element des Workshops, welches den weiteren Verlauf des Workshops
stark beeinflussen kann. Je besser die Teilnehmer den präsentierten Stoff verstehen, desto
wahrscheinlicher ist auch die erfolgreiche Anwendung des Selben im Workshop.

Benötigte Zeit: 30 bis 45 Minuten.

Das entstehende Beispiel zur Präsentation

Zur oben erwähnten Präsentation soll parallel zu dieser ein Beispielcode entstehen, welcher
den Teilnehmern später als Vorlage dient. Je nach Gestaltung dieses Beispiels, kann der
Schwierigkeitsgrad des Workshops stark variieren. Das Beispiel entsteht dabei entsprechend
der behandelten Themen in der Präsentation. Der vorgestellte Stoff kann somit direkt
vorgeführt werden. Die Teilnehmer können dabei in die Erstellung des Beispiels einbezogen
werden, oder falls zuvor die passende Vorlage ausgeteilt wurde, auch direkt mitschreiben.
Weitere Informationen sind unter Kapitel „Vorlagen und Beispiele“ zu finden.

5.2.2. Zusammenbauen des Roboters (optional)

Dieser Schritt ist, je nach zur Verfügung stehender Zeit, optional und kein Pflichtbestandteil
des Workshops.
Die Teilnehmer sollen in ihren Teams (max. drei Teilnehmer = 1 Team) den für den Workshop
benötigten Roboter, Schritt für Schritt aus den gestellten Lego-Bausteinen, zusammenbauen.

24

5.2. Ablauf

Für diesen Zweck steht eine Baueinleitung zur Verfügung, welche jeden einzelnen Schritt
mit einer Abbildung darstellt.

Benötigte Zeit: 50 bis 80 Minuten (mehrere Teilnehmer können sich in Baugruppen auftei-
len)

5.2.3. Analyse der Spielregeln

Im Laufe der Kick-Off-Präsentation werden die Spielregeln nur soweit erklärt, dass die
Teilnehmer ungefähr wissen was sie zu tun haben. Die genauen Spielregeln sollen von den
Teilnehmern im Laufe der Analyse selbst erkannt und begriffen werden. So wie in der für
die Softwaretechnik typischen Analyse der Anforderungen im Gespräch mit dem Kunden,
ist hierbei ein möglichst gründliches Vorgehen von Vorteil:
Eine nicht erkannte oder falsch analysierte Regel, welche im später folgenden Szenario
gegen das tatsächliche Regelwerk (siehe auch Kapitel „Szenarien“) verstößt, führt zu einem
Punkteabzug. Andererseits können Teams, welche das Regelwerk verstanden haben und
dieses nach Möglichkeiten ausreizen, einen Vorteil gegenüber anderen Teams erlangen und
Punkte durch Ausnutzung von Grauzonen leichter bzw. schneller erzielen.

Die Analyse unternimmt jedes Team getrennt von den anderen. Dies hat den Zweck, dass
auch tatsächlich Vor- oder Nachteile erzielt werden können, sollten die Teams die Spielregeln
unterschiedlich gut analysieren.

Benötigte Zeit: 5 bis 10 Minuten pro Team

5.2.4. Entwurf und Planung der Robotersteuerung

In der Entwurfs- und Planungsphase sollen alle Teilnehmer eine Strategie entwickeln, nach
welcher der Roboter schließlich das Spielfeld erkunden soll. Die Teilnehmer sollen dabei
durchaus zeichnerisch vorgehen und jeden einzelnen Schritt möglichst genau planen, um
bei der Codierung Denkfehler zu vermeiden. Algorithmen können dabei auch in einer
Programmablaufnotation (5.4) verfasst werden.
Die jeweilige Strategie eines Teams das Spielfeld zu erkunden, muss dabei im Vordergrund
stehen: Die Pilotworkshops (5.6) ergaben wesentlich bessere und erfolgreichere Ergebnisse,
wenn dieser Schritt vor allen anderen geplant wird und alles Weitere auf Basis dieser Grund-
lage erarbeitet wird.
Die Ergebnisse der Pilotworkshops als auch eigene, im Laufe der Diplomarbeit zu Test-
zwecken entstandene Robotersteuerungen, zeigten auf, dass unterschiedliche Strategien
das Spielgeschehen im Szenario stark beeinflussen können. Stark überlappende Suchkreise
finden in fast allen Fällen jede Boje auf dem Spielfeld, letzteres wird aber deutlich langsamer
erkundet als bei weniger stark überlappenden Suchkreisen.

25

5. Workshop

Um die Teilnehmer etwas zu Unterstützen ist es Sinnvoll, die im nächsten Schritt beschrie-
benen Zwischenziele (Suchpunkte anfahren, Bojen lokalisieren, Bojen greifen/absetzen) zu
nennen, damit auch diese geplant und spezifiziert werden können.

Benötigte Zeit: 20 Minuten

5.2.5. Codierung

In diesem Schritt soll die tatsächliche Robotersteuerung implementiert werden. Als Grundla-
ge dient dabei der in der vorhergehenden Phase entstandene Entwurf.
Gearbeitet wird mit Java und den in dieser Diplomarbeit entstandenen Softwarebausteinen
(6). Das hierzu nötige Wissen erhalten die Teilnehmer aus der Kick-Off-Präsentation, mögli-
chen Hand-Outs sowie der zur Verfügung stehenden Dokumentation der Bausteine.
Als Entwicklungsumgebung kommt „Eclipse“ [7] zum Einsatz, da es für diese IDE Unter-
stützung und AddOns direkt von LeJOS [6] gibt.

Bei der Codierung müssen die Teilnehmer Zwischenziele erreichen, welche einzeln getestet
werden:

• Erfolgreiches Anfahren der einzelnen Suchpunkte.

• Lokalisieren einer Boje an einem Suchpunkt.

• Annähern und Greifen einer Boje und diese zur Basis bringen. Anschließende Rückkehr
an den letzten oder anderweitig definierten (Such-)Punkt.

Die Zwischenziele sollen den Teilnehmern helfen, in kleinen Paketen zu denken. Ein Fehler
/ Bug während dem Testlauf für eines der Zwischenziele ist leichter zu identifizieren, wenn
nicht der gesamte Code danach abgesucht werden muss.
Es macht Sinn, die oben gelisteten Zwischenziele schon in der Planungsphase zu berücksich-
tigen und zu nennen.

5.2.6. Antritt im Szenario

Im letzten Teil des Workshops müssen sich die Roboter der einzelnen Teams im Wettstreit
gegeneinander beweisen. Spätestens in dieser Phase des Workshops, werden sich Vorteile,
durch eine gründliche Analyse des Regelwerkes während der Befragung oder eine saubere
Planung, aufzeigen und das Geschehen hoffentlich abwechslungsreich beeinflussen.
Die Einzelheiten und das dem Szenario zu Grunde liegende Regelwerk des Spiels, sind im
Kapitel „Szenarien“ abgehandelt.

26

5.3. Einzelheiten zur Einleitung

5.3. Einzelheiten zur Einleitung

Die Präsentation beschreibt Java-Sprachelemente, beginnend mit Variablen und für den
Workshop relevante Variablen-Typen. Da der Workshop auch etwas Wissen über Klassen
und Objekte voraussetzt, wird auch dieses Thema, soweit wie für die gestellten Aufgaben
benötigt, behandelt. Den Abschluss bilden Java-Sprachelemente wie Methoden, Schleifen
und if-/else-Konstrukte und natürlich die zugehörige Syntax.
Die Präsentation vermittelt den Teilnehmern das nötige Wissen zur Implementierung der
Robotersteuerung und bringt allen Teams möglichst gleiche Chancen, die gesteckten Ziele
zu erreichen und den Workshop erfolgreich zu absolvieren.
Da sich der in der Präsentation vermittelte Stoff, laut den Ergebnissen der Pilotworkshops
(5.6), als sehr umfangreich entpuppte, wurde der Vortrag um „Live-Beispiele“ erweitert. Im
Laufe des Vortrags soll auf diese Weise eine primitive, ineffektive aber durchaus lauffähige
Robotersteuerung entstehen. Enthalten sind alle, in der Präsentation behandelten, Sprachele-
mente. Diese Robotersteuerung (A.2) kann den Teilnehmern durchaus zur Verfügung gestellt
werden und als Vorlage dienen. Je nach Gestaltung dieser Vorlage, kann der Schwierigkeits-
grad des gesamten Workshops stark beeinflusst werden.

Bei gänzlich unerfahrenen Teilnehmern, würde sich ein kooperatives Vorgehen zur Erstellung
des Beispiels anbieten. So würden die Teilnehmer Schritt für Schritt ihr eigenes Beispiel im
Laufe der Präsentation erstellen. Zu beachten ist dann aber der zusätzliche Zeitaufwand
für jeden Schritt des Beispiels. Da jedes Team die behandelte Zeile Code selbst verfassen
muss und mögliche Fragen dazu stellen könnte, sind pro Schritt weitere 1-10 Minuten (je
nach Umfang des zu verfassenden Codes) anzurechnen. Hinzukommen mögliche Fehler,
die jedes Team bei der Codierung des Beispiels begehen könnte. Positiv wäre hingegen der
Lerneffekt zu erwähnen. Das vermittelte Wissen aus der Präsentation kann direkt in der
Praxis angewandt werden und das allgemeine Verständnis fördern.
Sollte statt dem entstehenden Beispiel, eine der verfügbaren beiden Vorlagen (A.2.2, A.2.3)
zur Verfügung gestellt werden, sind mögliche Fehler durch die Teilnehmer beim Mitschrieb
ausgeschlossen, der Praxisbezug würde aber fehlen.
Ob das Beispiel jetzt kooperativ oder nicht entsteht, hängt stark von der zur Verfügung
stehen Zeit ab. Bei zeitlich knapp bemessen Workshops wäre ein kooperatives Beispiel
vermutlich zu aufwendig. Jedoch wäre eine mögliche Zeitersparnis bei der Planungs- und
Codierungsphase möglich, da schon viel Code vorgegeben wurde.

Generell ist natürlich eine möglichst lebhafte Gestaltung des Vortrags anzuraten und das
Publikum, gerade während der Erstellung des Beispiels, in das Geschehen mit einzubeziehen.
Lohnenswert in den Vortrag investierte Zeit zahlt sich aus, da sich Unverständnis und
Probleme besonders in der Codierungsphase zeitraubend bemerkbar machen.

Weitere Informationen zu den im obrigen Abschnitt genannten Vorlagen und Beispielen sind
unter Kapitel „Vorlagen und Beispiele“ zu finden.

27

5. Workshop

5.3.1. Vorlagen und Beispiele

Um die entstehende Robotersteuerung schon von Anfang an in einer gewünschten Art und
Weise zu beeinflussen, stehen ein paar wenige Vorlagen für diese zur Verfügung. Je nach
Vorwissen der Teilnehmer und gewünschtem Schwierigkeitsgrad des Workshops, stellen die
Vorlagen schon mehr oder eben weniger komplettierte Robotersteuerungen zur Verfügung.

Einzelheiten zu Vorlage 1

Die erste, der beiden Vorlagen enthält nur einige Kommentarköpfe, eine fertig initialisierte
Variable für den späteren Gebrauch, sowie ein komplett instantiiertes Objekt mit allen dazu
gehörigen Parametern. Alle weiteren nötigen Variablen, Objekte, Schleifen und sonstige
Sprachelemente, sind von den Teilnehmern selbst und auf Basis der einführenden Präsenta-
tion zu verfassen. Wie in „Ergebnisse der Pilotworkshops“ nachzulesen, gestaltet sich die
Planungs- und Codierungsphase als durchaus anspruchsvoll. Sollte ein Workshop mit dieser
Vorlage durchgeführt werden, ist mit vielen Fragen seitens der Teilnehmer zu rechnen.
Die hier beschriebene Vorlage ist im „Anhang“ unter „Vorlage 1 der Steuerung“ zu finden.

Einzelheiten zu Vorlage 2

Schon weitaus vollständiger und umfangreicher als die Erste, gestaltet sich die Zweite, der
beiden Vorlagen. Diese stellt eine vollständige, aber noch sehr triviale und nicht optimierte
Robotersteuerung zur Verfügung. Beinhaltet sind neben vielen Kommentarköpfen, die jede
Einzelheit beschreiben, auch alle Sprachelemente der Präsentation. Die Teilnehmer müssen
sich weniger mit der Definition und Instantiierung von Variablen, Objekten, Schleifen und
Methoden auseinander setzen, als viel mehr mit deren richtiger Anwendung:
Die Robotersteuerung der Vorlage deckt nur einen sehr kleinen Teil des Spielfeldes (ein
einzelner Suchpunkt) ab und würde eine Boje nur genau dann lokalisieren können, wenn
sich diese innerhalb des Suchfeldes befinden würde. Die Teilnehmer haben die Steuerung
also so anzupassen, dass Suchpunkte auf dem ganzen Feld verteilt, angefahren und un-
tersucht werden. Des Weiteren sind die nötigen Vorgänge um Punkte zu erzielen, nur in
durch Kommentare beschriebener Form vorhanden. Der Aufruf dieser Anweisungen an der
passenden stelle, ist ebenfalls selbst zu bestimmen.
Vorlage 2 (A.2.3) bietet den Workshopteilnehmern ungleich mehr Unterstützung als Nr. 1,
unterfordert aber möglicherweise erfahrenere Teilnehmer.

5.3.2. Anmerkung zur weiteren Entwicklung der Vorlagen

Die zur Verfügung stehenden Vorlagen sollten im Laufe von mehreren Workshops überarbei-
tet und so angepasst werden, dass Sie für den Großteil der Teilnehmer verwendet werden

28

5.4. Details zur Planung der Robotersteuerung

können. Zu beachten ist dabei die tatsächlich gewählte Zeitvorgabe für den Workshop sowie
die gewünschten Spielelemente im Szenario. Beispielsweise könnte man die unterschiedli-
chen Farben der Bojen missachten und jeder Boje die gleiche Punktezahl zuordnen, um den
Schwierigkeitsgrad weiter zu vereinfachen. Im Falle der zweiten Vorlage, wäre der Schwie-
rigkeitsgrad wohl sehr gering, da , neben dem Greifen der Bojen, nur noch Suchpunkte auf
dem Spielfeld zu verteilen wären.

Das Beispiel aus der Präsentation

Wie schon erwähnt, entsteht im Laufe der Präsentation eine lauffähige Robotersteuerung,
welche als Beispiel dienen soll. Ob diese Steuerung den Teilnehmern zur Verfügung gestellt
werden soll oder nicht, hängt vom Leiter des Workshops ab. Beachten sollte dieser, wie
Umfangreich das Beispiel gestaltet ist. Die im Anhang vorzufindende Beispielsteuerung
(A.2.1) beinhaltet alle, in der Präsentation vorgestellten, Sprachelemente und verbindet diese
zu einer komplett funktionstüchtigen Robotersteuerung. Mit einigen geschickt gesetzten
Suchpunkten, würde diese Steuerung bereits Erfolge im Szenario erzielen und daher eine
eher ungeeignete, da zu einfache, Vorlage für die Teilnehmer darstellen. Als Beispiel hingegen
ist sie gut geeignet und könnte als Anregung für weitere Präsentationen hilfreich sein.

5.4. Details zur Planung der Robotersteuerung

Um zu verhindern, dass die Teilnehmer gleich nach der Präsentation beginnen ihre Ro-
botersteuerung zu kodieren ohne sich über ihr Vorgehen im Klaren zu sein, sollte die
Planungsphase explizit erwähnt und betont werden. Die Pilotworkshops zeigten auf, das
unterschiedliche Teams zu unterschiedlichen Strategien neigen, das Spielfeld abzudecken.
Sollte eine Tafel oder ähnliches zur Verfügung stehen, kann durchaus ein kurze Liste über
ein paar wenige zu beachtende Details aufgeschrieben werden. Zu beachten ist, dass man
nicht jedes Detail nennt, um die Spannung im Wettkampf nicht negativ zu beeinflussen.
Es geht vielmehr darum, Denkanstöße zu geben und die Teilnehmer zum Nachdenken zu
animieren.
Zur Planung des weiteren Vorgehens ist eine kleine Vorlage (A.2.4) im Anhang zu finden. Die
Vorlage ist sehr einfach gehalten (Titel, Namensfelder für Teilnehmer, vorgefertigte Zeilen),
bewirkt aber allein durch ihre Existenz, dass die Teilnehmer ihr mehr Aufmerksamkeit
schenken, als einem leeren Blatt Papier.

Programm-Ablauf-Notation

Programmablaufpläne stellen eine Möglichkeit dar, Programmkonstrukte graphisch darzu-
stellen. So lässt sich vorhandener Code leichter verständlich präsentieren oder zu implemen-
tierende Programmkonstrukte besser Planen.
Die Programmablaufnotation könnte den Teilnehmern in der Planungsphase behilflich sein,

29

5. Workshop

die einzelnen Schritte ihrer Vorgehensstrategie übersichtlich zu planen. Ein in dieser Notation
verfasstes Programmkonstrukt, lässt sich oftmals leichter durchschauen, als ein nur durch
Text erklärtes.
Zu beachten ist aber, dass Programmablaufpläne für große Programmkonstrukte auch sehr
verwirrend sein können. Im Rahmen dieses Workshops sollte ein solcher Fall aber nicht
eintreten. Die folgende Abbildung stellt die einzelnen Notationen dar:

Abbildung 5.1.: Notation eines Programmablauf-Planes

5.5. Einzelheiten zur Analyse der Spielregeln

Die Spielregeln sind bewusst vage zu nennen und sollen Fragen aufwerfen. Tritt dieser Fall
ein, herrschen optimale Bedingungen für die Analyse. Selbige ist, zugunsten des Wettkamp-
fes, für jedes Team einzeln zu halten und am geschicktesten während der Aufbauphase des
Roboters (falls Teil des Workshops) untergebracht. Sollte der Roboter fertig aufgebaut zur
Verfügung gestellt werden (Zeitersparnis), sollte die Analyse möglichst zu Beginn oder noch
vor der Planungsphase durchgeführt werden. Dies wäre zwar nicht optimal, da manche für
die Planung nötigen Details, durch die Analyse beeinflusst werden könnten, jedoch lässt sich
ohne den Aufbau des Roboters kaum ein anderer Zeitpunkt finden.

5.6. Ergebnisse der Pilotworkshops

Dieses Kapitel schildert die ausgewerteten Ergebnisse der Pilotworkshops.

30

5.6. Ergebnisse der Pilotworkshops

5.6.1. Viel vorausgesetztes Wissen

Die Pilotworkshops zeigten einige Schwierigkeiten auf, das nötige Wissen an die Teilnehmer
zu vermitteln. Die Zielgruppe stellen Studieninteressenten wie beispielsweise Abiturienten
dar, bei welchen man aber kein umfangreiches Vorwissen voraussetzen kann. So hatten
Testkandidaten ohne Vorwissen große Probleme der gesamten Präsentation zu folgen oder
das daraus resultierende Wissen anzuwenden. Da aber das nötige Wissen für den Workshop
nicht reduziert werden kann, ist ein besserer Weg nötig, das Wissen zu vermitteln.
Da die meisten Menschen durch praktische Anwendung, zuvor vermitteltes Wissen, besser
behalten als trockene Theorie, soll im Laufe der Präsentation, in Zusammenarbeit mit dem
Publikum, eine einfache aber ineffektive Robotersteuerung (A.2.1) entstehen. Diese dient
nicht nur als Beispiel für die Präsentation, sondern später auch als mögliche Vorlage für die
Workshop-Teilnehmer.
Die Vorlage ist so gestaltet, dass ohne signifikante Änderungen, keine erfolgreiche Teilenahme
am Szenario des Workshops möglich ist.

5.6.2. Planungsphase kam zu kurz

Alle Teilnehmer der Pilotworkshops nahmen sich nur wenig Zeit, die Elemente, Algorithmen
und nötigen Schritte durchzuplanen. Einige Testkandidaten ignorierten in der anschließen-
den Implementierung ihre Planung oder Spezifikation sogar komplett und gingen völlig
anders vor. Die daraus resultierende Robotersteuerung zeigte im abschließenden Szenario
aber nur wenig Erfolg. Testteilnehmer mit guter Planung hingegen, hatten meist sichtlichen
Erfolg und konnten Punkte im Wettkampf für das eigene Team ergattern.
Um der Spezifikation etwas mehr Aufmerksamkeit zukommen zu lassen, ist eine Vorlage
angedacht, welche von den Teilnehmern nur noch ausgefüllt werden muss. Eine ausge-
druckte Vorlage zieht mehr Aufmerksamkeit auf sich, als ein leeres Blatt Papier, welches die
Teilnehmer vielleicht sogar noch selber mitbringen müssen.

5.6.3. Benötigte Zeit

Testteilnehmer ohne Vorwissen benötigten ungleich mehr Zeit als solche, die schon einmal
die eine oder andere Zeile Code verfassten, oder gar Erfahrungen in Java und Eclipse
aufweisen können. Erfahrenere Teilnehmer konnten den Workshop in angemessener Zeit
absolvieren, während Laien den Zeitrahmen sprengten.
Auch hier soll das oben beschrieben „Live-Beispiel“ während der Präsentation Abhilfe
schaffen.

Anmerkung: Alle Protokolle der Pilotworkshops sind im Anhang (A) einzusehen

31

6. Die Softwarebausteine als
Programmiergrundlage im Workshop

Dieses Kapitel beschreibt die einzelnen, in dieser Diplomarbeit entwickelten, Softwarebau-
steine für den Workshop. Dabei erreicht es nicht den Umfang einer kompletten Spezifikation,
stellt aber den Anspruch, jeden Baustein ausreichend genau zu beschreiben sowie den
Gedanken dahinter zu vermitteln.

6.1. Bausteine für den Workshop

Die Möglichkeit LEGO-Mindstorms-Roboter mit Java zu programmieren, ist eine inter-
essante, für Laien aber auch sehr anspruchsvolle Beschäftigung. Um dies für Laien ohne
Hintergrundwissen umsetzbar zu gestalten, galt es die Ansprüche an das nötige Know-How
zu reduzieren. Im Laufe der Diplomarbeit entstanden, mit diesem Hintergedanken, Softwa-
rebausteine, welche auch ohne Fachwissen eingesetzt werden können, um die gesteckten
Ziele des Workshops zu erreichen. Im Laufe des besagten Workshops sollen die Teilnehmer
eine Robotersteuerung, mit Hilfe dieser Softwarebausteine, entwerfen und umsetzen. Jeder
Softwarebaustein kapselt dabei aufwendige Algorithmen oder generell komplexe Vorgänge,
in leicht gebräuchliche und zueinander passende Klassen bzw. Java-Pakete. Mit Hilfe der
Bausteine, können die Teilnehmer auf abstrahierter und stark vereinfachter Ebene, ihre
Robotersteuerung implementieren. Da für den Workshop nur begrenzt Zeit verfügbar ist, ist
dieser Punkt besonders wichtig, um den Teilnehmern nach Absolvierung des Workshops ein
Erfolgserlebnis zu ermöglichen.

Manche Bausteine sind in zwei Ausführungen vorhanden: Eine Basisausführung und eine
abstraktere Version, welche einige Vorgänge vereinfacht und dem Benutzer Arbeit abnimmt.
Zweck der vereinfachten Versionen ist eine Zeitersparnis, welche bei zeitlich stark einge-
schränkten Workshops oder Teilnehmern ohne Vorwissen zum Einsatz kommen kann.
Im Folgenden wird jeder Baustein vorgestellt und beschrieben.

6.2. ObjectInfo

Die Klasse „ObjectInfo“ speichert Informationen über vom Roboter bzw. Sensor gefundene
Objekte auf dem Spielfeld. Neben mehreren Gettern und Settern beinhaltet ObjectInfo auch

33

6. Die Softwarebausteine als Programmiergrundlage im Workshop

eine Methode, die anhand der zur Verfügung stehenden Informationen entscheidet, ob es
sich um eine relevante Boje, eine des gegnerischen Teams, oder ob es sich überhaupt um
eine Boje handelt.
Die Abfrage gestaltet sich für den Benutzer einfach, da nur ein bool’scher Wert berücksichtigt
werden muss. Die Workshopteilnehmer, bzw. das entsprechende Team, geben die Team-
Zugehörigkeit des Roboters an und erhalten zu jeder Boje die nötigen Informationen, um
entscheiden zu können, ob diese viele Punkte wert ist oder nicht.

Abbildung 6.1.: Klassen-Diagramm: ObjectInfo

6.3. ObjectHandler

Der „ObjectHandler“ verwaltet alle vom Sensor auf dem Spielfeld gefundenen Objekte und
bietet dem Benutzer Möglichkeiten zum Einsehen, Hinzufügen oder Löschen der selben.
Objekte werden als ObjectInfo (6.2) gespeichert. Der „ObjectHandler“ speichert eine weitere
Instanz von ObjectInfo nur genau dann, wenn diese, oder eine Instanz mit sehr ähnlichen
Koordinaten, nicht bereits vorhanden ist. Die Folgende Abbildung stellt symbolisch 3 Objekte
dar, von welchen „Object 1“ bereits gespeichert wurde, während „Object 2“ und „Object 3“
hinzugefügt werden sollen. Da „Object 2“ aber ähnliche Orts-Koordination wie „Object 1“
hat, wird es nicht gespeichert.

34

6.4. Coordinator

Abbildung 6.2.: Object 1 bereits vorhanden, 2 wird verworfen, 3 gespeichert.

Mehrfach wahrgenommene Objekte werden, auch unter Einfluss von Messungenauigkeiten
(bis zu einem gewissen Grad), nur ein einziges Mal gespeichert.

Abbildung 6.3.: Klassen-Diagramm: ObjectHandler

6.4. Coordinator

Der „Coordinator“ bekommt eine Reihe von Distanzen und Winkeln übergeben. Die Distan-
zen entsprechen denen, die während der Suchrotation vom wahrgenommenen Objekt zum
Sensor gemessen wurden. Die Winkel beschreiben „wann“ eine bestimmte Distanz zu einem
Objekt im Verlauf der Rotation gemessen wurde.

35

6. Die Softwarebausteine als Programmiergrundlage im Workshop

Distanzen und Winkel die ihren Nachbarn ähnlich (|ni − ni+1)| < ε) sind, beschreiben
ein Objekt während sich nicht ähnelnde (|ni − ni+1| > ε) Werte in der Reihe, als Grenzen
zwischen den einzelnen Objekte dienen.

Distanzen(mm) : [1 1 1 1 6 6 6 6 6 6 3 3 3]

Winkel(Grad) : [5 6 7 8 82 83 84 85 86 87 317 387 319]︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Objekt1 Objekt2 Objekt3

Für jedes Objekt wird mit Hilfe der aktuellen Position des Roboters, sowie Winkel und Di-
stanz zum Objekt, ein Punkt berechnet, welcher die Position des Objektes durch Koordinaten
beschreibt.

Abbildung 6.4.: Klassen-Diagramm: Coordinator

6.5. Pilot

Der „Pilot“ ist ursprünglich eine von LeJOS [6] stammende Klasse, welche dazu dient,
einen Roboter mit zwei motorisierten Rädern und einem Stützrad zu bewegen. Für den
Workshop wurde er aber so modifiziert, dass relativ komplexe Bewegungsabläufe möglichst
einfach bewerkstelligt werden können. Des Weiteren wurde die Möglichkeit einen Listener
zu registrieren, welcher die Odometry (3.4) des Roboters verfolgt, fest integriert. Der Pilot
dient also dazu den Roboter zu bewegen, als auch Positionsangaben zurückzugeben.
Der Pilot existiert in zwei Ausführungen: Die Grundlegende unterstützt nur elementare
Bewegungsabläufe wie „rotieren“, oder „forwärts fahren“. Es liegt also beim Benutzer, die
zurückzulegende Strecke zum Ziel und die nötigen Rotationswinkel zu berechnen.
Die zweite Ausführung vereinfacht den oben beschriebenen Piloten und bietet die Möglich-
keit, automatisch von der aktuellen Position aus, zu einem gegebenen Punkt P zu reisen.
Ein Punkt wird dabei mit Koordinaten beschrieben: P(x,y). Die Einheit, in welcher die
zurückzulegende Strecke berechnet wird, bestimmt der Benutzer über die Angaben von

36

6.6. Grappler

Raddurchmesser und Radstand. Diese Größen sind nötige Größen zur Berechnung der
Odometry (3.4).

Abbildung 6.5.: Klassen-Diagramme: Pilot und Pilot2

6.6. Grappler

Auch diesen Baustein gibt es in zweifacher Ausführung: In der Basisausführung wird nur
Greifen bzw. Heben und Senken bzw. Loslassen des Greifarms unterstützt. Die Zweite
Ausführung vereinfacht wieder die nötigen Vorgänge zum Aufnehmen und Abstellen einer
Boje. Zum Greifen muss der Roboter weit genug von der Boje entfernt sein, um den Greifarm
senken und öffnen zu können. Zum Aufnehmen der Boje muss sich der Roboter zunächst ein
Stück auf die Boje zubewegen, damit diese beim Schließen der Zange auch tatsächlich von
dieser gegriffen wird. Zum Abstellen einer Boje ist nichts weiter zu beachten, doch um den
Greifarm wieder in Ausgangsposition zu bewegen, muss sich der Roboter zunächst von der
Boje entfernen, um anschließend den Greifarm anheben zu können, ohne die Boje wieder zu
greifen.
In der Basisausführung des „Grapplers“ muss der Benutzer sich diese Vorgänge selbst
überlegen und zusammenbauen, während die zweite Variante dies automatisch übernimmt.

37

6. Die Softwarebausteine als Programmiergrundlage im Workshop

Abbildung 6.6.: Klassen-Diagramm: Grappler und Grappler2

6.7. OdometryResetListener

Der OdometryResetListener dient nur dazu, einen Tastendruck (ENTER) auf dem Roboter
abzufangen und ein Signal zu geben, dass der Benutzer die Odometry (3.4) neu initialisieren
möchte. Da Ungenauigkeiten in den Radabmessungen, im Radstand oder auch äußere
Einflüsse wie ein rutschiger Untergrund, einen sich fortpflanzenden Fehler in der Odometry
bewirken, wird diese immer weiter verfälscht. Durch eine neue Initialisierung der Odometry,
wird dieser Fehler behoben bis er sich wieder neu aufgebaut hat. Zum Neuinitialisieren der
Odometry, ist der Roboter von Hand in der Basis zu platzieren.

Abbildung 6.7.: Klassen-Diagramm: BorderLines

6.8. BorderLines

Dieser Baustein dient dazu, die aktuelle Position des Roboters oder der gefundenen Bo-
jen/Objekte, gegen die gesetzten Spielfeldgrenzen zu prüfen. Bojen/Objekte außerhalb des
Spielfeldes können als ungültig erklärt und Reisestrecken so verkürzt werden, dass das Ziel

38

6.9. ObjectFinder

noch innerhalb der Grenzen liegt.

Abbildung 6.8.: Klassen-Diagramm: BorderLines

6.9. ObjectFinder

Der „ObjectFinder“ dient dazu, mit Hilfe des Ultraschallsensors Objekte zu lokalisieren.
Der „ObjectFinder“ nutzt dabei den Pilot (6.5), um den Roboter einmal um die eigene
Achse zu rotieren. Während dieser Rotation wird vom Ultraschallsensor die Umgebung
abgetastet. Softwareseitig werden aber, zu Gunsten des Workshops, nur Objekte in einer
Distanz von maximal 50 cm zum Sensor beachtet. Diese Beschränkung soll verhindern,
dass das Spielfeld, in welchem sich der oder die Roboter später bewegen sollen, nicht zu
schnell erkundet werden kann. Wurde ein Objekt im innersten der Kreise (6.9) gefunden,
wird eine Repräsentation durch Koordinaten (siehe Kapitel „Coordinator“) berechnet, und
überprüft ob das Objekt bereits bekannt ist oder gespeichert werden soll (siehe Kapitel
„ObjectHandler“).

39

6. Die Softwarebausteine als Programmiergrundlage im Workshop

Abbildung 6.9.: Suchkreis des ObjectFinders

Abbildung 6.10.: Klassen-Diagramm: ObjectFinder

40

6.9. ObjectFinder

6.9.1. BuoyLocator

Der „BuoyLocator“ erweitert den ObjectFinder und vereinfacht die nötigen Schritte, eine Boje
zu lokalisieren und sich dieser gegebenenfalls zu nähern. Der „BuoyLocator“ entscheidet
dabei selbstständig, ob die gefundene Boje die Spielfeldgrenzen verletzt oder aufgenommen
werden kann. Falls mehr als nur eine einzelne Boje lokalisiert wird, wird nur die erste
Gültige, der gefundenen Bojen behandelt, während der Rest verworfen wird:
Gerade bei mehreren Robotern auf dem selben Spielfeld, werden Bojen oftmals zu ähnlichen
Zeitpunkten lokalisiert und in ihrer Position verändert. Eine Boje B die ursprünglich an
Punkt P vorzufinden war, könnte sich jetzt an Punkt Q befinden, während man selbst Boje A
zur eigenen Basis bringt. Die ursprünglichen Koordinaten der Boje B wurden verändert. Um
das Geschehen zu vereinfachen, wird Boje B also gar nicht erst beachtet.

41

6. Die Softwarebausteine als Programmiergrundlage im Workshop

Abbildung 6.11.: Klassen-Diagramm: BuoyLocator

42

7. Szenarien

Dieses Kapitel beschreibt die Entwicklung der verschiedenen Szenarien, nennt die Gründe
warum manche verworfen und welches Szenario am Ende in den Workshop übernommen
wurde.

7.1. Verworfene Szenarien

Zu Beginn der Diplomarbeit entstanden mehrere Szenarien, von denen sich aber schlussend-
lich nicht alle haben umsetzen lassen:

7.1.1. Capture The Flag (CTF) und Abwandlungen

klassisches CTF

Schon in der Antike wurden Banner oder Flaggen eines Feindes gestohlen oder auf dem
Schlachtfeld erobert, um die Moral des Gegners zu brechen oder schlichtweg eine Trophäe zu
ergattern. Heutzutage wurde daraus ein Spiel: „Capture the Flag“ oder kurz „CTF“. Ziel des
Spieles CTF ist es, die Flagge des gegnerischen Teams aus dessen Basis zu entwenden und
zur eigenen zu bringen. Eine gestohlene Flagge kann dem Träger oder Dieb abgenommen
und zur eigenen Basis zurück gebracht werden. Durch wiederholtes Stehlen der gegnerischen
Flagge können Punkte für das eigene Team gewonnen werden, welche schlussendlich zum
Sieg führen. Je nach Regelwerk und der Größe des Spielfeldes, kann ein Spiel auch schon
durch die einmalige Eroberung der gegnerischen Flagge gewonnen werden.
Für den in dieser Diplomarbeit erstellten Workshop, stellt CTF ein interessantes Szenario
dar, welches nach einigen Anpassungen als abschließender Wettkampf dienen sollte.

Das beschriebene Szenario stellte sich jedoch als zu komplex für die zugrundeliegende
Sensorik heraus:
In verschiedenen Probeläufen reagierten die Systeme zu langsam oder zu ungenau, um
eine Flagge schnell und zuversichtlich von einem Roboter zu unterscheiden. Einen „Flag-
genträger“, den Dieb, als solchen von den eigenen und gegnerischen Einheiten schnell und
auf Distanz zu erkennen, ist mit den zur Verfügung stehenden Sensoren fast nicht möglich.
Die gestohlene Flagge dem Dieb wieder abzunehmen, stellt zusätzliche Ansprüche an die
Bewegungsfreiheit des Greifarms und lässt sich mit nur einem Servomotor (die restlichen
zwei sind für die Fortbewegung des Roboters verantwortlich) nicht umsetzen.

43

7. Szenarien

Ein Ansatz diese Problem zu lösen war es, mit Hilfe von RF-ID einen einfachen Datenaus-
tausch zwischen zwei Robotern aufzubauen. Über diese Datenverbindung sollte ein Signal
an den Flaggendieb abgesetzt werden, die gestohlene Flagge fallen zu lassen. Aber auch
dieser Ansatz ist zu sehr von der genauen Positionsbestimmung eines Roboters und der sehr
begrenzten Reichweite der RF-ID-Chips abhängig.
Die von CTF gestellten Anforderungen an Präzision, Reaktionszeit und Geschwindigkeit,
sind von den zur Verfügungen stehen Sensoren und Aktoren leider nicht zu erfüllen.

Abgewandeltes CTF

Um das obige Szenario etwas zu vereinfachen, sollte eine einzelne, an beliebiger Position auf
dem Spielfeld abgestellte, Flagge gesucht und geborgen werden. Ist die Flagge gefunden
und zur eigenen Basis zurück gebracht worden, erhält das jeweilige Team einen Punkt und
die Flagge muss von Hand wieder an eine beliebige Position des Spielfeldes gesetzt werden.
Hat eine Einheit die Flagge gefunden, kann eine Einheit des gegnerischen Teams versuchen,
diese dem ursprünglichen Träger wieder abzunehmen.
Die Schwierigkeit, die eigene Flagge zu schützen während gleichzeitig nach der gegnerischen
gesucht werden muss, fällt bei dieser Abwandlung weg. Noch immer bestünde aber die
oben genannte Notwendigkeit, Flaggen und Roboter sehr genau in ihrer Position zu bestim-
men und Flaggenträger von normalen Einheiten zuverlässig zu unterscheiden. Auch die
notwendige Bewegungsfreiheit des Greifarmes kann nach wie vor nicht umgesetzt werden.

7.2. Umsetzbare Szenarien

7.2.1. Hindernisparcours

Dieses Szenario sollte von den jeweiligen Teilnehmern möglichst schnell und auf Zeit absol-
viert werden. Verschiedene Hindernisse wie Unebenheiten, auszuweichenden Objekten oder
Steigungen, sollen dabei den Roboter des jeweiligen Teams den Weg von Start- zu Ziellinie
erschweren. Je schneller und zuverlässiger ein Roboter durch den Parcours kommt, desto
besser dessen Platzierung am Ende.
Bei diesem Szenario müssen Flaggen nicht von weiteren Robotern unterschieden werden
und generell sind die Anforderungen von Reaktionszeit und Genauigkeit an die Sensorik,
bei weitem nicht so hoch wie bei den oben dargestellten Szenarien. Mögliche Probleme lägen
bei der zuverlässigen Objekterkennung, je nach Hindernisgeometry oder Oberflächenbe-
schaffenheit.

Der Hindernissparcours ist zwar prinzipiell umsetzbar, dafür aber nicht sonderlich unter-
haltsam. Hinzu kommt die Möglichkeit, die vom Roboter zu wählende Route durch den
Parcours voraus zu berechnen, was den Sinn des Szenarios etwas in Frage stellt.

44

7.2. Umsetzbare Szenarien

Mehr zu dieser Thematik ist im Kapitel „Probleme, Schwierigkeiten und Herausforderungen“
zu finden.

7.2.2. Bojenjagd

Die „Bojenjagd“ entstand, als alle als zu komplex geltenden Aspekte des CTF oder des
abgewandelten CTF entfernt und die gut umsetzbaren Aspekte hervorgehoben wurden:
Statt nur einer Flagge, sind mehrere Flaggen auf dem Spielfeld verteilt. Eine Flagge ist
zwischen einem und mehreren Punkten, in Abhängigkeit der Flaggenfarbe, wert. Punkte gibt
es aber nur, wenn eine Flagge erfolgreich gegriffen und zur eigenen Basis gebracht wurde.
Eine vom Roboter momentan angehobene Flagge kann und darf nicht von einer gegnerischen
Einheit gestohlen werden. Ziel ist es, vor Ablauf der Zeit möglichst viele Flaggen und Punkte
zu sammeln.
Bei diesem Szenario muss der Dieb der eigenen Flagge nicht aufgehalten oder erst als solcher
identifiziert werden. Der Greifarm muss nur heben, senken und greifen können und auch
die Anforderungen von Reaktionszeit und Genauigkeit an die Sensorik, sind nicht zu hoch.
Flaggen wurden durch „Bojen“ ersetzt, da diese Umschreibung auf das tatsächliche, auf dem
Spielfeld stehenden, Objekt eher zutrifft.
Die Roboter der Teams müssen nicht unbedingt alle zur gleichen Zeit antreten. Eins gegen
Eins in im K.O.- oder Turnier-Verfahren ist sinnvoller, da weniger Roboter auf dem Spielfeld
auch weniger Störsignale für die Ultraschallsensoren bedeuten.

Abwandlung der Bojenjagd

Das Vorliegende Szenario kann ohne Weiteres so verändert werden, dass die Teilnehmer
nacheinander und auf Zeit antreten. Ziel ist es in möglichst kurzer Zeit so viele Bojen und
Punkte wie möglich zu sammeln. Die Platzierung verläuft nach gesammelten Punkten und
Zeitdauer.
Diese Abwandlung der Bojenjagd vereinfacht das ursprüngliche Szenario: Immer nur eine
einzelne Einheit ist auf dem Spielfeld und auf Bojenjagd. Dadurch können sich Ultraschall-
sensoren untereinander nicht stören (siehe auch Kapitel „Verhalten von Ultraschallwellen“)
und Bojen müssen nicht von Robotern unterschieden werden.
Des Weiteren können, je nach gewünschtem Schwierigkeitsgrad oder zur Verfügung stehen-
der Zeit, die Farben der Bojen mit unterschiedlich vielen Punkten belegt oder eben missachtet
werden. Ein von der Bojenfarbe abhängiger Punktewert, könnte das Spielgeschehen sehr
beeinflussen. Einige Teams könnten planen zunächst nach den wertvollen Bojen zu suchen
und alle anderen vorerst zu ignorieren, während andere Teams jede Bojen greifen, auf die
sie stoßen.
Die auf dem Spielfeld verteilten Bojen können auch, je nach Farbe, einem Team zugeordnet
werden. So würde „Team-Blau“ nur für blaue und „Team-Grün“ nur für grüne Bojen Punkte
bekommen können. Jedoch könnte Team-Blau grüne Bojen jagen und am Spielfeldrand
„verstecken“ oder die Boje einfach um schmeißen, damit der Roboter des Gegnerteams diese
nicht mehr oder nur schwer greifen kann.

45

7. Szenarien

Anmerkungen

Je nach Suchradius des Roboters, ist die Spielfeldgröße des Szenarios zu beachten. Der
Suchradius ist standardmäßig auf 50 cm gesetzt. Diese Einstellung soll von den Workshop-
teilnehmern nicht geändert werden, die Möglichkeit dazu besteht jedoch in der Klasse
„toolKit.ObjectFinder“. Ein Spielfeld von zwei auf zwei Metern ist bei Standarteinstellungen
relativ klein, aber dennoch akzeptabel, da Bojen gerade an den Suchkreisrändern teilweise
gar nicht oder nur ungenau erkannt werden. Die Teilnehmer werden daher oftmals zu
überlappenden Suchkreisen neigen, falls sie auf diese Problematik hingewiesen wurden oder
in der Analyse erkannt haben. Das genannte Spielfeld sollte in diesem Fall also groß genug
sein.

Regelwerk der Bojenjagd

• Die Spielfeldgrenzen dürfen von einem Roboter nicht verletzt werden.

• Bojen außerhalb der Spielfeldgrenzen, gelten als ungültig. Sollte ein Roboter eine solche
Boje aufgreifen, befindet er sich außerhalb des Spielfeldes und verstößt gegen obige
Regel. Für die ungültige Boje gibt es jedoch keinen Punktabzug.

• Bojen dürfen und können aus der gegnerischen Basis gestohlen werden (nur relevant
falls ein Gegner auf dem Spielfeld vorhanden ist)

• Sollte eine in der Basis befindliche Boje, unabsichtlich aus dem Spielfeld oder der
Basis geschoben werden, zählt diese Boje weiterhin als Punkt für das eigene Team. Der
Unparteiische hat hierbei das letzte Wort.

• Zwei ineinander verhakte Roboter, sind vom Unparteiischen zu trennen und in der
jeweiligen Basis zu platzieren (Odometry-Reset beachten).

46

8. Probleme, Schwierigkeiten und
Herausforderungen

Probleme kann man niemals mit
derselben Denkweise lösen, durch
die sie entstanden sind.

(Albert Einstein)

Dieses Kapitel beschreibt die Probleme und Schwierigkeiten die es zu lösen, aber auch zu
akzeptieren galt und stellt die Herausforderungen dar, welche hard- und softwareseitig
gemeistert werden mussten.

8.1. Entwurf und Bau des Workshop-Roboters

Der im Workshop zum Einsatz kommende Roboter, muss einige Anforderungen erfüllen:

• Rotation (Kurvenfahrt mit Radius = 0) in beide Richtungen für einfache und exakte
Ausrichtung auf Bojen

• Vorwärts und rückwärts fahren um Distanz zu Bojen genau variieren zu können.

• Erkennung der Umgebung / von Hindernissen um Bojen zu lokalisieren. Muss auf
ausreichend große Distanzen möglich sein.

• Heben, senken und greifen einer Boje durch Greifarm mit nur einem Motor

Da zur Fortbewegung und Rotation des Roboters schon allein zwei, der maximal drei
zur Verfügung stehenden Servomotoren benötigt werden, war ein Greifarm zu entwickeln,
welcher mit nur einem einzigen Antrieb heben, senken und greifen kann (siehe Kapitel
„Greifarm“).
Distanzen von mehr als 2 - 4 cm können nur vom Ultraschallsensor abgetastet werden. Dieser
muss dabei so angebracht werden, dass er am Boden stehende Objekte erkennt, ohne dabei
von angehobenen Bojen verdeckt zu werden. Um Bojen-Farben unterscheiden zu können,
muss ein Farbsensor am Roboter angebracht sein. Dieser soll möglichst angehobene, als auch
am Boden befindliche Bojen abtasten können. Die Positionierung des Sensors muss also
gewährleisten, dass Bojen unabhängig von ihrer Position um den Roboter abgetastet werden
können (so lange sie in Reichweite sind). Eine Montierung an der Greifzange bietet sich hier
an: Gegriffene Bojen befinden sich direkt vor dem Sensor und am Boden befindliche Bojen
können vom Sensor erfasst werden, wenn dieser vom Greifarm entsprechend in Position
gebracht wird.

47

8. Probleme, Schwierigkeiten und Herausforderungen

8.1.1. Greifarm

Der Greifarm stellte die eigentliche Herausforderung am Entwurf und Bau des Roboters dar.
Wie oben schon erwähnt, werden bereits zwei von drei Servomotoren zur Fortbewegung
benötigt. Der Letzte, für den Greifarm übrigbleibende Servomotor, muss den Greifarm heben,
senken, öffnen und schließen. Umzusetzen ist dies mit den im Baukasten zur Verfügung
stehenden Mitteln nur, wenn man den Widerstand der Greifzange nutzt, welcher Auftritt,
wenn diese komplett geschlossen ist oder ein Objekt mit genügend hohem Druck gegriffen
hat. Statt der Zangenbewegung wird eine Hub- oder Senkbewegung ausgeführt. Die genaue
Beschreibung des Greifers ist unter Kapitel „Der Greifarm“ nachzulesen.

8.2. Grenzen der Sensorik

Die von Lego im Baukasten mitgelieferte Sensorik arbeitet leider nicht so genau wie erhofft.
So sollte der mitgelieferte Helligkeitssensor beispielsweise die Farben Rot und Blau anhand
deren Helligkeit unterscheiden können. Tatsächlich aber funktioniert dies nur äußerst un-
zuverlässig. Auch die Wahrnehmung der mitgelieferten Hindernisse (zwei Bälle, etwa der
Größe eines Tischtennisballes), klappt mit Hilfe des Ultraschallsensors nur in den seltensten
Fällen.
Im Folgenden werden die für den Workshop benötigten Sensoren sowie deren Problematik
genauer dargestellt:

Helligkeitssensor / Farbsensor

Der Helligkeitssensor eignet sich gut um Kontraste von einander zu unterscheiden. So wird
Schwarz von Weiß bei ausreichender Beleuchtung zuverlässig von einander unterschieden.
Auch Farben lassen sich bei ausreichender Beleuchtung beschränkt, anhand ihres Hellig-
keitswertes, von einander unterscheiden. Je ähnlicher die voneinander zu unterscheidenden
Farben jedoch sind, desto ähnlicher deren Helligkeitswert und desto unzuverlässiger die
Unterscheidung. Ein kräftiges Rot lässt sich von einem kräftigen Blau nicht immer präzise
unterscheiden. Generell werden gute Lichtverhältnisse benötigt.

• Maximale Distanz: ca. 4 bis 5 cm

• Minimale Distanz: ca. 1 cm (genügend Abstand zum Objekt, um eine ausreichende
Beleuchtung zu gewährleisten)

• Unterscheidung von ausreichend starken Kontrasten

• Probleme bei Farben, deren Helligkeitswerte zu ähnlich sind

• Beispielhafte Anwendung: Linien-Folger

48

8.2. Grenzen der Sensorik

Da der Helligkeitssensor Farben zu unpräzise oder gar nicht unterscheidet, kommt im
Workshop stattdessen ein nachbestellter Farbsensor zum Einsatz. Dieser erkennt Farben bei
ausreichenden Lichtverhältnissen und Beleuchtung relativ genau, unterliegt aber sonst, bis
auf diese Erweiterung, den selben Beschränkungen wie der Helligkeitssensor.

Berührungssensor

Der Berührungssensor ist relativ unempfindlich gegenüber äußeren Einflüssen. Der Sensor
reagiert sobald der Taster ausreichend stark gedrückt wird. Das Signal beschränkt sich dabei
auf 1 oder 0 (binär) für „gedrückt“ oder „nicht gedrückt“, eine Erfassung des anliegenden
Druckes ist nicht möglich.
Der nötige Druck, um das am Taster anliegende Signal zu ändern, ist relativ hoch. Eine
Boje könnte einfach umgefahren werden, ohne das der Taster reagiert. Daher kann die
Positionierung des Roboter, um eine Boje aufzunehmen, nicht über den Berührungssensor
verwirklicht werden.

Ultraschallsensor

Als einziger, dem Baukasten beiliegender, ist der Ultraschallsensor dazu in der Lage, Objekte
auch auf Distanzen von mehr als 5 cm zu erkennen. Erkannt wird die Distanz zu einem
Objekt mit Hilfe einer vom Sender ausgesandten Ultraschallwelle. Diese Welle wird vom
Objekt reflektiert und vom Empfänger des Sensors aufgefangen. Anhand der gemessenen
Zeit, die die Welle vom Sender bis zum Objekt und von diesem zurück benötigt, kann
die Distanz zwischen Sensor und Objekt berechnet und zurückgegeben werden. Je nach
Geometrie, Oberflächenbeschaffenheit und Distanz zum Objekt, funktioniert die Erfassung
besser oder schlechter. Der mitgelieferte Sensor hat eine Reichweite von ca. 170 cm und
gibt „255“ im Fehlerfall, oder falls nichts erkannt wird, an. Der Sensor arbeitet je nach
Distanz unterschiedlich genau und verwendet Zentimeter (cm) als Einheit. Im Bereich von
0 bis 20 cm gibt der Sensor leider häufig recht ungenaue Rückgabewerte an und erkennt
auch Änderungen in der Distanz oftmals nur in 5 cm Sprüngen. Von 20 cm an aufwärts,
arbeitet der Sensor relativ genau, solange ein Objekt erkannt wird. Ein Objekt wird auf
große Distanzen (> 50 cm) aber nicht immer erkannt. Hier spielt die Größe des Objektes
eine wichtige Rolle: Je größer ein Objekt, desto zuverlässiger dessen Erkennung auf große
Distanzen.
Der Ultraschallsensor arbeitet mit einem Kegel von ca. 60◦ vor dem Sensor, in welchem sich
das Ultraschallfeld ausbreitet. Die genauerer Problematik und Eigenheiten der Ultraschall-
technik, werden in Kapitel „Verhalten von Ultraschallwellen“ beschrieben.

49

8. Probleme, Schwierigkeiten und Herausforderungen

Abbildung 8.1.: Ausbreitung eines Ultraschallfeldes[2]

8.2.1. Verhalten von Ultraschallwellen

Wie oben schon kurz erwähnt, breitet sich Ultraschall, innerhalb eines Öffnungsbereiches
von ca. 60◦ vor dem Sensor aus. Innerhalb dieses Feldes können Objekte erkannt, in ihrer
Position aber nicht ohne Weiteres genauer bestimmt werden.

Ultraschallwellen legen, je nach Oberflächenbeschaffenheit oder Geometrie eines Objektes,
ein unpraktisches Verhalten an den Tag. So gibt es Oberflächen die Ultraschallwellen besser
oder schlechter reflektieren, oder diese gar komplett absorbieren. In solchen Fällen wird ein
Objekt innerhalb des Erkennungsbereiches gut, schlecht oder unzuverlässig erkannt, unter
Umständen auch gar nicht.
Bei einem sehr flachen Winkel von Objekt-Oberfläche zu Sensor, kann das Feld so reflektiert
werden, dass die einzelnen Wellen nicht mehr zum Empfänger zurück gelangen. Auch hier
wird das Objekt nur unzuverlässig oder gar nicht erkannt. Ein weiterer Problemfall entsteht
bei einer ungünstigen Oberflächen-Geometrie, welche das Feld zerstreut, anstatt es zum
Empfänger zurück zu reflektieren. Eine zuverlässige Erkennung des Objektes ist auch hier
wieder nicht möglich.
Ein vierter Fall, in welchem Objekte nicht zuverlässig erkannt werden, tritt ein, wenn das
Ultraschallfeld nicht direkt zum Empfänger zurück reflektiert wird, sondern über Umwege
zu diesem zurück gelangt. In einem solchen Fall misst der Sensor aufgrund der mehrfach
reflektierten Welle und der damit einher gehenden größeren Zeitdauer, eine größere als die
tatsächliche Distanz zum Objekt.
Die folgenden drei Abbildungen zeigen Fälle, in denen Ultraschallwellen ungünstig reflektiert
werden:

50

8.3. Gestaltung des Workshops

Abbildung 8.2.: Ungünstig reflektierte Ultraschallwellen[2]

Ein letztes, wenn auch Mindstorms spezifisches Problem tritt auf, wenn mehrere Ultraschall-
sensoren in näherer Umgebung aktiv sind. Arbeiten die Sensoren auf der selben Frequenz,
so stören sie sich gegenseitig und empfangen möglicherweise Signale des jeweils ande-
ren Sensors. Der von Lego ausgelieferte Sensor bietet weder hard- noch softwareseitige
Möglichkeiten, die Frequenzen der Sensoren zu ändern. Diese Problematik ist nur durch
entsprechende Gestaltung der Umgebung oder des Szenarios zu kompensieren, oder muss
einfach akzeptiert werden.

8.3. Gestaltung des Workshops

Der Workshop, oder dessen Anforderungen, sind gerade für Laien doch relativ hoch. So
sind Kenntnisse im Umgang mit Sprachelementen von Java oder dessen Syntax sowie der
eingesetzten IDE (Eclipse) nur der Anfang. Die Teilnehmer müssen Vorgehensstrategien
planen, Algorithmen entwerfen und beides schließlich implementieren. Generell steht eher
zu wenig, als zu viel Zeit zur Verfügung.

8.3.1. Zeitintensiver Aufbau des Roboters

Alle Testkandidaten, welche den Roboter selbst zusammenbauten, benötigten für dessen
Komplettierung ungefähr eine Stunde oder gar mehr, falls der Teilnehmer allein arbeitete.
Da für den Workshop aber eher zu wenig als zu viel Zeit zur Verfügung steht, wird der
Aufbau bei den meisten Workshops wohl komplett aus dem Programm gestrichen werden
müssen. Alternativ könnte man die Teilnehmer nur einen Teil, beispielsweise den Greifarm,
des Roboters bauen lassen, während ein Grundmodell gestellt werden würde.
Der Zusammenbau des Roboters stellt, den Pilotworkshops zu folge, aber einen sehr moti-
vierenden Part des gesamten Programms dar, so fragten alle Teilnehmer, ob sie den Roboter

51

8. Probleme, Schwierigkeiten und Herausforderungen

selber bauen dürften. Aus motivationstechnischen Gründen wäre ein Kompromiss zwischen
Zeitaufwand und Aufbau interessant.

8.3.2. Die Wahl der Bojen

Wie in „Verhalten von Ultraschallwellen“ beschrieben, ist die Oberflächenbeschaffenheit
eines Objekts ein wichtiges Detail bei der Wahl der Boje. Die Boje muss aus möglichst
jeder Position auf dem Spielfeld lokalisiert werden können und sollte demnach keine
scharfen Ecken in Verbindung mit angrenzenden flachen Oberflächen haben. Eine viereckige
Bojenform stellte sich als problematisch heraus, während Dreiecke nur schwer vom Sensor
erkannt werden konnten (siehe auch Kapitel „Verhalten von Ultraschallwellen“). Die den
Baukästen beiliegenden farbigen Bälle waren ebenfalls ungeeignet, da sie aufgrund ihrer
Geometrie das Ultraschallfeld in alle Richtungen zerstreuen.
Die schließlich gewählte Boje wird unter Kapitel „Die Bojen“ genauer Beschrieben.

8.3.3. Kick-Off-Präsentation

Der, in der am Anfang des Workshops stehenden Präsentation (5.3), behandelte Stoff ist doch
sehr Umfangreich für die vorgesehene Zeit. Die Pilotworkshops (5.6) zeigten auf, dass nur
Teilnehmer mit entsprechendem Hintergrundwissen, der Präsentation ohne Probleme folgen
und das vermittelte Wissen umsetzen konnten. Da aber Laien ebenfalls zur Zielgruppe
gehören, ist die Präsentation so zu gestalten und mit didaktischen Stilmitteln zu bestücken,
dass nach der Präsentation alle Teilnehmer die möglichst gleichen Chancen haben.
Für den Workshop nötiges Wissen:

• Java-Syntax

• Schleifen

• if-/else-Konstrukte

• Verknüpfen von Bedingungen durch Logik-Operatoren

• Definition von Variablen

• Instanziierung von Objekten

• Definition und Aufruf von Methoden

• (Umgang mit Eclipse (IDE))

Diese Dinge können durch die besagte Präsentation abgedeckt werden. Passende Beispiele
sollen dabei helfen.

52

9. Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde mit Hilfe von LEGO-Mindstorms ein Workshop
verwirklicht, welcher die Aufmerksamkeit von Studieninteressenten auf die Softwaretechnik
lenken soll. Da sich der Workshop um die Softwaretechnik dreht, vermittelt er den Teilneh-
mern einige wenige Dinge, die im Software-Engineering üblich sind und verpackt diese
möglichst interessant.
Der erste Schritt war es, einen Roboter zu entwickeln, welcher im Workshop zum Einsatz
kommen soll. Dieser Roboter soll in besagtem Workshop von den Teilnehmern mit Hilfe
von Java programmiert werden. Um den Teilnehmern ihre Arbeit zu erleichtern, wurden
speziell für den Workshop, einige Softwarebausteine entwickelt. Diese geben dem Benutzer,
in diesem Fall der Teilnehmer, die Möglichkeit, die eigentlich sehr komplexe Robotersteue-
rung, auch ohne Fachwissen zu verwirklichen. Das dazu nötige Wissen wird zu Beginn des
Workshops vermittelt und mit Hilfe von Beispielen, Vorlagen und Handouts verdeutlicht.
Am Ende des Workshop, treten die Roboter der einzelnen Teams in einem eigens konzipierten
Szenario gegeneinander an, welches das große Finale des Workshops darstellt.

Ausblick

Der Workshop könnte im Lauf der Zeit weiter ausgebaut werden: Mehr Softwarebausteine
für mehr Möglichkeiten in der Gestaltung der Robotersteuerung, weitere Szenarien wären
ebenfalls denkbar. So könnte man sich auf lange Sicht für jede Teilnehmergruppe, einen
angemessen anspruchsvollen Workshop anfertigen. Letzterer könnte dann nicht nur für Stu-
dieninteressenten, sondern möglicherweise auch im Rahmen der ein oder anderen Vorlesung
zum Einsatz kommen. Außerdem wird LEGO-Mindstorms ständig weiterentwickelt und
würde dem Workshop in Zukunft vielleicht völlig neue Möglichkeiten bieten. Die Motoren
werden Leistungsfähiger, die Sensoren genauer und vielfältiger. Eine Kamera in Verbindung
mit genügend Speicherplatz, würde einen weiteren Weg zu Erkennung der Umgebung
ermöglichen. Auch ein Lasersensor wäre sehr interessant, da äußerst präzise. Eine Kom-
bination aus Ultraschall- und Laser-Sensor könnte Beispielsweise ein weites Feld, schnell
nach Objekten abtasten und die genaue Position und Entfernung zum Objekt mit Hilfe
des Lasersensors genau bestimmen. Möglichkeiten zur Weiterentwicklung des Workshops
würden in Zukunft also zu genüge bestehen.

53

A. Anhang

A.1. Protokolle der Pilotworkshops

55

Protokoll - Pilotworkshop 02.01.2012

Raimund Metzler

Teilnehmer:

• Teilnehmer 1

� Informatikstudium

� Erfahrung mit Eclipse

� Begrenzte Java-Kenntnisse

Gesamtdauer des Workshops: 13:40 - 18:00 Uhr (inkl. Feedback und kon-
struktiver Kritik)

Präsentation

Dauer: 13:45 - 14:05 Uhr
Bemerkung:
Der Teilnehmer hatte keine Schwierigkeiten dem Inhalt der Präsentation zu
folgen. Unklarheiten wurden mit kurzen Fragen geklärt.

Feedback

• Seitenzahlen für bessere Übersicht

• Zu viel Text auf den Folien (Stichwörter)

• Code-Beispiele als solchen kennzeichnen und besser hervorheben.

• Mehr Beispiele für die einzelnen Themen der Präsentation (Die Teil-
nehmer sind Laien, keine Informatikstudenten)

• Verwendete Fachwörter erklären

• Bessere Unterscheidung von Methoden mit und ohne Rückgabewert

• Logik-Operatoren behandeln (&&, ||, ==, !)

1

• Darstellung von Koordinaten-System mit Dreh-Winkeln des Roboters
ist missverständlich In zwei Zeichnungen aufspalten.

• Farben in der Abbildung des Suchkreises tauschen

Zusammenbau des Roboters

Dauer: 14:15 - 15:35 Uhr
Bemerkung:
Der Teilnehmer hatte teilweise Schwierigkeiten dem Bauplan zu folgen, wenn
Bausteine rotiert oder die Perspektive der Abbildungen geändert wurde. Die
einzelnen Schritte konnten sonst gut nachvollzogen werden.

Feedback

• Schritte / Abbildungen durchnummerieren

• Rotationen mit Pfeilen zwischen den Abbildungen andeuten.

Entwurf, Planung und Implementierung

Dauer: 15:45 - 18:00 Uhr
Bemerkung:
Teilnehmer ging mehr nach �Code & Fix� vor, als zu planen. Entwurf /
Planung wurde nur auf Au�orderung des Workshop-Leiters (kurz) vollzogen.

Feedback

Der Teilnehmer hatte Spaÿ am Workshop, fand diesen aber doch relativ an-
spruchsvoll für die vorgesehene Zeit. Laien würde möglicherweise überfordert
sein.

Ergebnis

Der Teilnehmer konnte alle Phasen des Workshops erfolgreich absolvieren
und auch das Szenario am Ende bewältigen.

2

Protokoll - Pilotworkshop 06.01.2012

Raimund Metzler

Teilnehmer:

• Teilnehmer 1

� kein Hintergrundwissen vorhanden

• Teilnehmer 2

� kein Hintergrundwissen vorhanden

• Teilnehmer 3

� Grundlegende Kenntnisse in Java.

Gesamtdauer des Workshops: ...

Präsentation

Dauer: 17:30 - 18:00 Uhr
Bemerkung:
Der Inhalt der Präsentation war für die beiden Teilnehmer ohne Vorwissen
zu viel. Beide hatten Schwierigkeiten den Sto� zu verarbeiten. Der dritte
Teilnehmer hatte, aufgrund seines Vorwissens, keinerlei Probleme der Prä-
sentation zu folgen.

Feedback

• Beispiele auf den Workshop / Roboter beziehen

• �Live-Beispiele� als Hilfe um das Wissen zu verfestigen und einen prak-
tischen Bezug zu erstellen.

1

Zusammenbau des Roboters

Dauer: 18:00 -18:50 Uhr
Bemerkung:
Die drei Teilnehmer teilten sich in Untergruppen auf und konnten teile des
Roboters parallel zusammenbauen.
Es traten kaum Schwierigkeiten auf, eine Seitenzahl auf jeder Folie hätte aber
für mehr Übersicht gesorgt.

Feedback

• Alle Schritte durchnummerieren.

• Seitenzahl auf jeder Folie

• Abbildung des fertigen Roboters am Anfang des Bauplan (Ziel vor Au-
gen)

Entwurf, Planung und Implementierung

Dauer: 18:55 - 19:15 Uhr
Bemerkung:
Der Sinn dieses Schrittes war anfänglich nicht allen Teilnehmern klar. Auch
das weitere Vorgehen war etwas unklar (vermutlich wegen mangelnder Er-
fahrung?).

Schwierigkeiten traten von Anfang auf:

• De�nition von Variablen: unklar

• Instanziierung von Objekten: unklar

• Umgang mit der IDE anfänglich problematisch

Die zunächst geplante Strategie zur Erkundung des Spielfeldes, wurde im
Laufe der Implementierung verworfen und völlig anders umgesetzt.

Feedback

Zwei der drei Teilnehmer meinte, überfordert gewesen zu sein. Und das an
jedem Punkt dieser Phase. Der dritte Teilnehmer konnte Fortschritte auch
ohne Hilfe verzeichnen, fand die Implementierung aber doch sehr anspruchs-
voll.

2

Ergebnis

Die fertige Robotersteuerung war nicht wirklich funktionstüchtig und brachte
nur zufällig die Eine oder Andere Boje erfolgreich in die Basis.
Bemerkungen:
Der Workshop sollte noch weiter vereinfacht werden.
Ein Zeitrahmen von drei Stunden ist mit Laien vermutlich nicht einzuhalten.

3

A.2. Vorlagen und Beispiele

A.2. Vorlagen und Beispiele

A.2.1. Mögliches Beispiel der Präsentation

61

WS_fertigesBsp.java

1 /**

2 * Defines the package, this class is part of.

3 * NOT IMPORTANT FOR THE WORKSOP

4 */

5 package main;

6

7 /**

8 * Import necessary libraries.

9 * NOT IMPORTANT FOR THE WORKSHOP

10 */

11 import java.util.ArrayList;

12

13 import lejos.geom.Point;

14 import lejos.nxt.Button;

15 import lejos.nxt.Motor;

16 import lejos.nxt.SensorPort;

17 import lejos.nxt.TouchSensor;

18 import lejos.nxt.UltrasonicSensor;

19 import lejos.robotics.navigation.Pose;

20 import toolKit.Enums.Team;

21 import toolKit.ObjectInfo;

22 import toolKit.OdometryResetListener;

23 import toolKit2.BuoyLocator;

24 import toolKit2.Grappler2;

25 import toolKit2.Pilot2;

26

27 /**

28 * This class represents the robot-control created as example during the

Kick-Off-Presentation.

29 * Every step the robot takes is defined inside this class.

30 * NOTE: This is just an example and does not solve the scenario. You can use it to create

31 * your own robot-control or just improve this one.

32 */

33 public class WS_fertigesBsp {

34 /**

35 * Main class, called and executed be the lejos-vm on your robot.

36 */

37 public static void main(String[] args) {

38 /**

39 * Variable used as parameter for the pilot, instantiated later on.

40 * Wheel-diameter = 56mm.

41 */

42 double wheelDiameter = 56.0;

43

44 /**

45 * Variable used as parameter for the pilot, instantiated later on.

46 * Wheel-base = 120mm

47 */

48 double wheelBase = 120.0;

49

50 /**

51 * The pilot moves and rotates the robot and keeps track of its whereabouts.

52 * Parameter:

53 * wheelDiameter: The Diameter of the robot's wheels in mm.

54 * wheelBase: The robot's wheelbase in mm.

55 * leftMotor: The motor responsible for the left wheel (Motor.A)

56 * rightMotor: The motor responsible for the right wheel (Motor.B)

57 */

58 Pilot2 pilot = new Pilot2(wheelDiameter, wheelBase, Motor.A, Motor.B);

59

60 /**

61 * The touchsensor is part of the grappler (instantiated later on) and shall

Page 1

WS_fertigesBsp.java

62 * be connected to sensorport 4 (SensorPort.S4)

63 * Parameter:

64 * port: The sensortport, the sensor is connected to (SensorPort.S4)

65 */

66 TouchSensor touch = new TouchSensor(SensorPort.S4);

67

68 /**

69 * The grappler can grab an object like a buoy and release it afterwards.

70 * Parameter:

71 * grapplerMotor: The motor used to impel the grappler

72 * touchSensor: The touchsensor is used to stop the grapplerMotor when the grappler

73 * is in its highest position.

74 * pilot: The pilot is used for automatic close-in to the object so the grappler

can

75 * savely grab it.

76 */

77 Grappler2 grappler = new Grappler2(Motor.C, touch, pilot);

78

79 /**

80 * Since odometry propagates an error with each movement, a reset once in a while

can

81 * improve over-all accuracy.

82 */

83 OdometryResetListener resetter = new OdometryResetListener();

84 Thread resetThread = new Thread(resetter);

85 resetThread.start();

86

87 /**

88 * This sensor is used by the BuoyLocator to locate objects.

89 */

90 UltrasonicSensor sonic = new UltrasonicSensor(SensorPort.S1);

91

92 /**

93 * To define a rectangle, this two points define one of its upper and one of its

lower

94 * corners, diagonal to each other. The rectangle serves as the field.

95 * Parameter:

96 * minBorders: lower, right corner of the field. (X, Y)

97 * maxBorders: higher, left corner of the field. (X, Y)

98 */

99 Point minBorders = new Point(0,-900);

100 Point maxBorders = new Point(1800, 900);

101

102 /**

103 * The BuoyLocator is used to locate objects in the robots surroundings.

104 * Parameter:

105 * pilot: The pilot is used to rotate the robot during the searchprocess.

106 * team: The team specifies the team-membership of the robot.

107 * minBorders: The lower, right corner of the field.

108 * maxBorders: The higher, left corner of the field.

109 */

110 BuoyLocator locator = new BuoyLocator(pilot, Team.TEAMBLUE, minBorders, maxBorders,

sonic);

111

112 /**

113 * This are searchpoints. The robot can travel to a searchpoint and locate

114 * every buoy in its surrounding.

115 * Parameter: x-y-Coordinates of the searchpoint P(x,y).

116 */

117 Point searchPoint1 = new Point(1500,400);

118 Point searchPoint2 = new Point(1000,400);

119 Point searchPoint3 = new Point(500,400);

Page 2

WS_fertigesBsp.java

120

121 /**

122 * This list stores the searchpoints defined above. The list-elements can be

accessed via

123 * there index in the list. (searchPoints.get(index);)

124 */

125 ArrayList<Point> searchPoints = new ArrayList<Point>();

126 searchPoints.add(searchPoint1);

127 searchPoints.add(searchPoint2);

128 searchPoints.add(searchPoint3);

129

130 /**

131 * This point will be used to represent the element of the list used in the loop

below.

132 */

133 Point searchPoint;

134

135 /**

136 * This int will serve as the list-index and used to access each (one at

137 * a time) searchpoint in the loop below.

138 */

139 int searchPointsIndex = 0;

140

141 /**

142 * Wait until the user sets the startsignal by pressing any button on the robot.

143 */

144 Button.waitForAnyPress();

145

146 /**

147 * Repeat the steps in the {..} until "i >= 3"

148 */

149 while (searchPointsIndex < 3)

150 {

151 /**

152 * Check if the reset-button was pressed and if so,

153 * reset the pilot's odometry.

154 */

155 boolean reset = resetter.resetPlanned();

156 if (reset)

157 {

158 pilot.DoOdometryReset();

159 }

160

161 searchPoint = searchPoints.get(searchPointsIndex);

162

163 /**

164 * Move the robot to the searchPoint defined above:

165 */

166 pilot.TravelTo(searchPoint);

167

168 /**

169 * Once arrived at the searchpoint, locate all objects in range:

170 */

171 locator.LocateObjectClockwise();

172

173 /**

174 * Check if a buoy was found:

175 */

176 boolean foundBuoy = locator.foundBuoy();

177

178 /**

179 * if a buoy was found, grab it and bring it to the base to score a point:

Page 3

WS_fertigesBsp.java

180 */

181 if (foundBuoy)

182 {

183 scorePoint(pilot, locator, grappler);

184 }

185

186 /**

187 * To access the next element in the list, the searchPointsIndex has to be

iterated by one.

188 */

189 searchPointsIndex++;

190 }

191

192 /**

193 * After the every searchpoint

194 */

195 pilot.HeadHome();

196 }

197

198 /**

199 * Grabs a buoy and brings it to the base. Returns to the last position afterwards.

200 * @param pilot for movement, rotation and movement-tracking of the robot

201 * @param locator locates buoys in range

202 * @param grappler grabs and releases buoys.

203 */

204 public static void scorePoint(Pilot2 pilot, BuoyLocator locator, Grappler2 grappler)

205 {

206 // save last position:

207 Pose lastPosition = pilot.getLocation();

208

209 // close in to buoy:

210 ObjectInfo buoy = locator.getBuoyInfo();

211 locator.CloseInToBuoy(buoy);

212

213 // grab buoy

214 grappler.GrepBuoy();

215

216 // bring the buoy to your base:

217 pilot.HeadHome();

218

219 // release the buoy

220 grappler.ReleaseBuoy();

221

222 // return to last position

223 Point lastPosCoords = lastPosition.getLocation();

224 float lastHeading = lastPosition.getHeading();

225 pilot.TravelTo(lastPosCoords);

226 pilot.RotateTo(lastHeading);

227 }

228

229 }

230

Page 4

A. Anhang

A.2.2. Vorlage 1 der Steuerung

66

WS_vorlage1.java

1 /**

2 * Defines the package, this class is part of.

3 * NOT IMPORTANT FOR THE WORKSOP

4 */

5 package main;

6

7 /**

8 * Import necessary libraries.

9 * NOT IMPORTANT FOR THE WORKSHOP

10 */

11 import java.util.ArrayList;

12

13 import lejos.geom.Point;

14 import lejos.nxt.Motor;

15 import lejos.nxt.SensorPort;

16 import lejos.nxt.TouchSensor;

17 import lejos.nxt.UltrasonicSensor;

18 import lejos.robotics.navigation.Pose;

19 import toolKit.Enums.Team;

20 import toolKit.ObjectInfo;

21 import toolKit.OdometryResetListener;

22 import toolKit2.BuoyLocator;

23 import toolKit2.Grappler2;

24 import toolKit2.Pilot2;

25

26 /**

27 * This class represents the robot-control created as example during the

Kick-Off-Presentation.

28 * Every step the robot takes is defined inside this class.

29 * NOTE: This is just an example and does not solve the scenario. You can use it to create

30 * your own robot-control or just improve this one.

31 * This robot-control uses toolKit2.

32 */

33 public class WS_vorlage1 {

34 /**

35 * Main class, called and executed be the lejos-vm on your robot.

36 */

37 public static void main(String[] args) {

38 /**

39 * Variable used as parameter for the pilot, instantiated later on.

40 * Wheel-diameter = 56mm, type: double.

41 */

42 double wheelDiameter = 56;

43

44 /**

45 * Variable used as parameter for the pilot, instantiated later on.

46 * Wheel-base = 120mm, type: double.

47 */

48

49

50 /**

51 * The pilot moves and rotates the robot and keeps track of its whereabouts.

52 * Parameter:

53 * wheelDiameter: The Diameter of the robot's wheels in mm.

54 * wheelBase: The robot's wheelbase in mm.

55 * leftMotor: The motor responsible for the left wheel (Motor.A)

56 * rightMotor: The motor responsible for the right wheel (Motor.B)

57 */

58 Pilot2 pilot = new Pilot2(wheelDiameter, trachWidth, Motor.A; Motor.B);

59

60 /**

61 * The touchsensor is part of the grappler (instantiated later on) and shall

Page 1

WS_vorlage1.java

62 * be connected to sensorport 4 (SensorPort.S4)

63 * Parameter:

64 * port: The sensortport, the sensor is connected to (SensorPort.S4)

65 */

66

67

68 /**

69 * The grappler can grab an object like a buoy and release it afterwards.

70 * Parameter:

71 * grapplerMotor: The motor used to impel the grappler

72 * touchSensor: The touchsensor is used to stop the grapplerMotor when the grappler

73 * is in its highest position.

74 * pilot: The pilot is used for automatic close-in to the object so the grappler

can

75 * savely grab it.

76 */

77

78

79 /**

80 * Since odometry propagates an error with each movement, a reset once in a while

can

81 * improve over-all accuracy.

82 */

83 OdometryResetListener resetter = new OdometryResetListener();

84 Thread resetThread = new Thread(resetter);

85 resetThread.start();

86

87 /**

88 * This sensor is used by the BuoyLocator to locate objects.

89 */

90

91

92 /**

93 * To define a rectangle, this two points define one of its upper and one of its

lower

94 * corners, diagonal to each other. The rectangle serves as the field.

95 * Parameter:

96 * minBorders: lower, right corner of the field. (X, Y)

97 * maxBorders: higher, left corner of the field. (X, Y)

98 * class: lejos.geom.Point

99 */

100

101

102 /**

103 * The BuoyLocator is used to locate objects in the robots surroundings.

104 * Parameter:

105 * pilot: The pilot is used to rotate the robot during the searchprocess.

106 * team: The team specifies the team-membership of the robot.

107 * minBorders: The lower, right corner of the field.

108 * maxBorders: The higher, left corner of the field.

109 * sensor: UltrasonicSensor with its SensorPort.

110 */

111

112

113 /**

114 * This are searchpoints:

115 * P1(500,400)

116 * P2(1000,400)

117 * P3(1500,400)

118 * The robot can travel to a searchpoint and locate

119 * every buoy in its surrounding.

120 * Parameter: x-y-Coordinates of the searchpoint.

Page 2

WS_vorlage1.java

121 */

122

123

124 /**

125 * Once added, this list stores the searchpoints defined above. The list-elements

126 * can be accessed via there index in the list. (searchPoints.get(index);)

127 */

128

129

130 /**

131 * This point will be used to represent the element of the list used in the loop

below.

132 */

133

134

135 /**

136 * This int will serve as the list-index and is used to access each (one at

137 * a time) searchpoint in the loop below.

138 */

139

140

141 /**

142 * Repeat the steps in the {..} until "i >= 3"

143 */

144

145

146 /**

147 * Check if the reset-button was pressed and if so,

148 * reset the pilot's odometry.

149 */

150 boolean reset = resetter.resetPlanned();

151 if (reset)

152 {

153 pilot.DoOdometryReset();

154 }

155

156 /**

157 * This "searchPoint" represents the elements (one at a time), accessed while

looping

158 * over the searchpoints-list.

159 */

160

161

162 /**

163 * Move the robot to the searchPoint defined above:

164 */

165

166

167 /**

168 * Once arrived at the searchpoint, locate all objects in range:

169 */

170

171

172 /**

173 * Check if a buoy was found:

174 */

175

176

177 /**

178 * if a buoy was found, grab it and bring it to the base to score a point:

179 */

180

Page 3

WS_vorlage1.java

181

182 /**

183 * To access the next element in the list, the index has to be iterated by one.

184 */

185

186

187

188 /**

189 * After the every searchpoint

190 */

191

192 }

193

194 /**

195 * Grabs a buoy and brings it to the base. Returns to the last position afterwards.

196 * @param pilot for movement, rotation and movement-tracking of the robot

197 * @param locator locates buoys in range

198 * @param grappler grabs and releases buoys.

199 *

200 * steps:

201 * - save last position

202 * - close in to buoy

203 * - grab buoy

204 * - bring buoy to base

205 * - release buoy

206 * - return to last position

207 * - rotate to last heading

208 */

209

210

211 }

212

Page 4

A.2. Vorlagen und Beispiele

A.2.3. Vorlage 2 der Steuerung

71

WS_vorlage2.java

1 /**

2 * Defines the package, this class is part of.

3 * NOT IMPORTANT FOR THE WORKSOP

4 */

5 package main;

6

7 /**

8 * Import necessary libraries.

9 * NOT IMPORTANT FOR THE WORKSHOP

10 */

11 import java.util.ArrayList;

12

13 import lejos.geom.Point;

14 import lejos.nxt.Motor;

15 import lejos.nxt.SensorPort;

16 import lejos.nxt.TouchSensor;

17 import lejos.nxt.UltrasonicSensor;

18 import toolKit.Enums.Team;

19 import toolKit.OdometryResetListener;

20 import toolKit2.BuoyLocator;

21 import toolKit2.Grappler2;

22 import toolKit2.Pilot2;

23

24 /**

25 * This class represents the robot-control created as example during the

Kick-Off-Presentation.

26 * Every step the robot takes is defined inside this class.

27 * NOTE: This is just an example and does not solve the scenario. You can use it to create

28 * your own robot-control or just improve this one.

29 */

30 public class WS_vorlage2 {

31 /**

32 * Main class, called and executed be the lejos-vm on your robot.

33 */

34 public static void main(String[] args) {

35 /**

36 * Variable used as parameter for the pilot, instantiated later on.

37 * Wheel-diameter = 56mm.

38 */

39 double wheelDiameter = 56.0;

40

41 /**

42 * Variable used as parameter for the pilot, instantiated later on.

43 * Wheel-base = 120mm

44 */

45 double wheelBase = 120.0;

46

47 /**

48 * The pilot moves and rotates the robot and keeps track of its whereabouts.

49 * Parameter:

50 * wheelDiameter: The Diameter of the robot's wheels in mm.

51 * wheelBase: The robot's wheelbase in mm.

52 * leftMotor: The motor responsible for the left wheel (Motor.A)

53 * rightMotor: The motor responsible for the right wheel (Motor.B)

54 */

55 Pilot2 pilot = new Pilot2(wheelDiameter, wheelBase, Motor.A, Motor.B);

56

57 /**

58 * The touchsensor is part of the grappler (instantiated later on) and shall

59 * be connected to sensorport 4 (SensorPort.S4)

60 * Parameter:

61 * port: The sensortport, the sensor is connected to (SensorPort.S4)

Page 1

WS_vorlage2.java

62 */

63 TouchSensor touch = new TouchSensor(SensorPort.S4);

64

65 /**

66 * The grappler can grab an object like a buoy and release it afterwards.

67 * Parameter:

68 * grapplerMotor: The motor used to impel the grappler

69 * touchSensor: The touchsensor is used to stop the grapplerMotor when the grappler

70 * is in its highest position.

71 * pilot: The pilot is used for automatic close-in to the object so the grappler

can

72 * savely grab it.

73 */

74 Grappler2 grappler = new Grappler2(Motor.C, touch, pilot);

75

76 /**

77 * Since odometry propagates an error with each movement, a reset once in a while

can

78 * improve over-all accuracy.

79 */

80 OdometryResetListener resetter = new OdometryResetListener();

81 Thread resetThread = new Thread(resetter);

82 resetThread.start();

83

84 /**

85 * This sensor is used by the BuoyLocator to locate objects.

86 * SensorPort.S1 to SensorPort.S4

87 */

88 UltrasonicSensor sonic = new UltrasonicSensor(SensorPort.S1);

89

90 /**

91 * To define a rectangle, this two points define one of its upper and one of its

lower

92 * corners, diagonal to each other. The rectangle serves as the field.

93 * Parameter:

94 * minBorders: lower, right corner of the field. (X, Y)

95 * maxBorders: higher, left corner of the field. (X, Y)

96 */

97 Point minBorders = new Point(0,-900);

98 Point maxBorders = new Point(1800, 900);

99

100 /**

101 * The BuoyLocator is used to locate objects in the robots surroundings.

102 * Parameter:

103 * pilot: The pilot is used to rotate the robot during the searchprocess.

104 * team: The team specifies the team-membership of the robot.

105 * minBorders: The lower, right corner of the field.

106 * maxBorders: The higher, left corner of the field.

107 */

108 BuoyLocator locator = new BuoyLocator(pilot, Team.TEAMBLUE, minBorders, maxBorders,

sonic);

109

110 /**

111 * This are searchpoints. The robot can travel to a searchpoint and locate

112 * every buoy in its surrounding.

113 * Parameter: x-y-Coordinates of the searchpoint P(x,y).

114 */

115 Point searchPoint1 = new Point(2000,400);

116 Point searchPoint2 = new Point(1000,400);

117

118

119 /**

Page 2

WS_vorlage2.java

120 * This list stores the searchpoints defined above. The list-elements can be

accessed via

121 * there index in the list. (searchPoints.get(index);)

122 */

123 ArrayList<Point> searchPoints = new ArrayList<Point>();

124 searchPoints.add(searchPoint1);

125 searchPoints.add(searchPoint2);

126

127 /**

128 * This point will be used to represent the element of the list used in the loop

below.

129 */

130 Point searchPoint;

131

132 /**

133 * This int will serve as the list-index and used to access each (one at

134 * a time) searchpoint in the loop below.

135 */

136 int searchPointsIndex = 0;

137

138 /**

139 * Repeat the steps in the {..} until "i >= 3"

140 */

141 while (searchPointsIndex < 3)

142 {

143 /**

144 * Check if the reset-button was pressed and if so,

145 * reset the pilot's odometry.

146 */

147 boolean reset = resetter.resetPlanned();

148 if (reset)

149 {

150 pilot.DoOdometryReset();

151 }

152

153 searchPoint = searchPoints.get(searchPointsIndex);

154

155 /**

156 * Move the robot to the searchPoint defined above:

157 */

158 pilot.TravelTo(searchPoint);

159

160 /**

161 * Once arrived at the searchpoint, locate all objects in range:

162 */

163 locator.LocateObjectClockwise();

164

165 /**

166 * To access the next element in the list, the searchPointsIndex has to be

iterated by one.

167 */

168 searchPointsIndex++;

169 }

170

171 /**

172 * After the every searchpoint

173 */

174 pilot.HeadHome();

175 }

176

177 /**

178 * Grabs a buoy and brings it to the base. Returns to the last position afterwards.

Page 3

WS_vorlage2.java

179 * @param pilot for movement, rotation and movement-tracking of the robot

180 * @param locator locates buoys in range

181 * @param grappler grabs and releases buoys.

182 */

183 public static void scorePoint(Pilot2 pilot, BuoyLocator locator, Grappler2 grappler)

184 {

185 // save last position:

186

187

188 // close in to buoy:

189

190

191 // grab buoy

192

193

194 // bring the buoy to your base:

195

196

197 // release the buoy

198

199

200 // return to last position

201

202 }

203

204 }

205

Page 4

A. Anhang

A.2.4. Vorlage für die Spezifikation

76

Spezifikation
LEGO-Mindstorms Workshop

Team:

 Teilnehmer:

Notizen:

A. Anhang

A.3. Handout

80

Überblick: Java-Sprachelemente

Schleifen:
while (<BEDINGUNG>) do
{ {

// Anweisung // Anweisung
} }

while (<BEDINGUNG>)

if- / else:
if (<BEDINUNG>)
{

// Anweisung im Fall <BEDINGUNG> ist wahr
}
else
{

// Anwesiung im anderen Fall, <BEDINGUNG> ist falsch
}

Typen, Objekte und Rückgabewerte:
int: int varInt = 0; // Alle ganzen Zahlen
float: float varFloat = - 4.0; // Alle Kommazahlen
double: double varDouble = -4.0; // Wie „float“
boolean: boolean varBool = true; // {true, false}, für Bedinungen

void; // kein Typ! Beschreibt „kein Rückgabewert“ bei Methoden.

Klasse Objektbezeichner Aufruf Konstruktor
Pilot2 pilot = new Pilot2 (<Parameter>);

Methoden:
public static <RückgabeTyp> Bezeichner (<Parameter>)
{

// Anweisung(en)
}

Aufrufbeispiel:
int result = Multiply(2, 6) // Multipliziert die beiden Parameter und

// schreibt das Ergebnis in die Variable „result“.

Programmablaufnotation:

Das Szenario

• Auf dem Spielfeld sind verschiedenfarbige Bojen verteilt.
• Die Bojen sind entsprechend ihrer Farbe unterschiedlich viele Punkte wert.
• Punkte gibt es nur für erfolgreich zur eigenen Basis gebrachte Bojen.

Literaturverzeichnis

[1] Castor-bot. http://www.nxtprograms.com/castor_bot/index.html. (Zitiert auf Sei-
te 17)

[2] Generation robots. http://www.generationrobots.com/

ultrasonic-sonar-sensors-for-robots,us,8,19.cfm. (Zitiert auf den Seiten 8,
50 und 51)

[3] Institute of electrical and electronics engineers (ieee). www.ieee.org. (Zitiert auf Seite 11)

[4] Studiengang an der uni-stuttgart. http://www.uni-stuttgart.de/studieren/angebot/
software_bsc/. (Zitiert auf Seite 9)

[5] Studistatistiken an der uni-stuttgart. http://www.uni-stuttgart.de/ueberblick/wir_
ueber_uns/zahlen_fakten/statistik/studstat.html. (Zitiert auf Seite 9)

[6] Lejos - java for lego mindstorms, 2006 to 2012. http://lejos.sourceforge.net/. (Zi-
tiert auf den Seiten 21, 26 und 36)

[7] Eclipse-Foundation. Eclipse ide for java-developement. www.eclipse.org/. (Zitiert auf
den Seiten 21 und 26)

[8] Lego. Lego. http://www.lego.com/. (Zitiert auf Seite 9)

[9] Lego. Lego-mindstorms. http://mindstorms.lego.com/eng/default.aspx. (Zitiert
auf den Seiten 9, 15 und 23)

[10] Lego. Nxt software. http://service.lego.com/en-us/helptopics/?questionid=2655.
(Zitiert auf Seite 15)

[11] lejos. lejos - api. http://lejos.sourceforge.net/nxt/nxj/api/index.html. (Zitiert
auf Seite 21)

[12] lejos. Lejos - plugin für eclipse. http://lejos.sourceforge.net/nxt/nxj/tutorial/
Preliminaries/UsingEclipse.htm. (Zitiert auf Seite 21)

[13] lejos. lejos - wiki. http://sourceforge.net/apps/mediawiki/lejos/index.php?

title=Main_Page. (Zitiert auf Seite 21)

[14] Jochen Ludewig and Horst Lichter. Software Engineering. dpunkt.verlag. 2., überarbeitete,
aktualisierte u. ergänzte Auflage. (Zitiert auf den Seiten 11, 12 und 13)

[15] Mozilla. Mozilla-puplic-license (mpl). http://www.mozilla.org/MPL/. (Zitiert auf
Seite 21)

83

http://www.nxtprograms.com/castor_bot/index.html
http://www.generationrobots.com/ultrasonic-sonar-sensors-for-robots,us,8,19.cfm
http://www.generationrobots.com/ultrasonic-sonar-sensors-for-robots,us,8,19.cfm
www.ieee.org
http://www.uni-stuttgart.de/studieren/angebot/software_bsc/
http://www.uni-stuttgart.de/studieren/angebot/software_bsc/
http://www.uni-stuttgart.de/ueberblick/wir_ueber_uns/zahlen_fakten/statistik/studstat.html
http://www.uni-stuttgart.de/ueberblick/wir_ueber_uns/zahlen_fakten/statistik/studstat.html
http://lejos.sourceforge.net/
www.eclipse.org/
http://www.lego.com/
http://mindstorms.lego.com/eng/default.aspx
http://service.lego.com/en-us/helptopics/?questionid=2655
http://lejos.sourceforge.net/nxt/nxj/api/index.html
http://lejos.sourceforge.net/nxt/nxj/tutorial/Preliminaries/UsingEclipse.htm
http://lejos.sourceforge.net/nxt/nxj/tutorial/Preliminaries/UsingEclipse.htm
http://sourceforge.net/apps/mediawiki/lejos/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/lejos/index.php?title=Main_Page
http://www.mozilla.org/MPL/

Literaturverzeichnis

[16] NXT-Programs. Fun projects for your lego mindstorms nxt! http://www.nxtprograms.
com/index.html. (Zitiert auf Seite 17)

Alle URLs wurden zuletzt am 23. 01. 2013 geprüft.

84

http://www.nxtprograms.com/index.html
http://www.nxtprograms.com/index.html

Erklärung:

Hiermit erkläre ich, dass ich die vorliegende Arbeit
selbständig verfasst habe und dabei keine andere als
die angegebene Literatur verwendet habe. Alle Zitate
und sinngemäßen Entlehnungen sind als solche unter
genauer Angabe der Quelle gekennzeichnet.

(Raimund Metzler)

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung

	2 Softwaretechnische Grundlagen im Workshop
	2.1 Abgrenzung
	2.2 Behandelte Aspekte der Softwaretechnik
	2.2.1 Analyse
	2.2.2 Spezifikation

	3 Robotik
	3.1 LEGO-Mindstorms
	3.2 Der NXT-Baustein
	3.2.1 Sensoren
	3.2.2 Aktoren

	3.3 Der Roboter des Workshops
	3.3.1 Der Greifarm

	3.4 Odometry

	4 LeJOS
	4.1 LeJOS im Allgemeinen
	4.2 Die LeJOS-API

	5 Workshop
	5.1 Generelles zum Workshop
	5.1.1 Die Bojen
	5.1.2 Die Spielfeldgrenzen

	5.2 Ablauf
	5.2.1 Kick-Off
	5.2.2 Zusammenbauen des Roboters (optional)
	5.2.3 Analyse der Spielregeln
	5.2.4 Entwurf und Planung der Robotersteuerung
	5.2.5 Codierung
	5.2.6 Antritt im Szenario

	5.3 Einzelheiten zur Einleitung
	5.3.1 Vorlagen und Beispiele
	5.3.2 Anmerkung zur weiteren Entwicklung der Vorlagen

	5.4 Details zur Planung der Robotersteuerung
	5.5 Einzelheiten zur Analyse der Spielregeln
	5.6 Ergebnisse der Pilotworkshops
	5.6.1 Viel vorausgesetztes Wissen
	5.6.2 Planungsphase kam zu kurz
	5.6.3 Benötigte Zeit

	6 Die Softwarebausteine als Programmiergrundlage im Workshop
	6.1 Bausteine für den Workshop
	6.2 ObjectInfo
	6.3 ObjectHandler
	6.4 Coordinator
	6.5 Pilot
	6.6 Grappler
	6.7 OdometryResetListener
	6.8 BorderLines
	6.9 ObjectFinder
	6.9.1 BuoyLocator

	7 Szenarien
	7.1 Verworfene Szenarien
	7.1.1 Capture The Flag (CTF) und Abwandlungen

	7.2 Umsetzbare Szenarien
	7.2.1 Hindernisparcours
	7.2.2 Bojenjagd

	8 Probleme, Schwierigkeiten und Herausforderungen
	8.1 Entwurf und Bau des Workshop-Roboters
	8.1.1 Greifarm

	8.2 Grenzen der Sensorik
	8.2.1 Verhalten von Ultraschallwellen

	8.3 Gestaltung des Workshops
	8.3.1 Zeitintensiver Aufbau des Roboters
	8.3.2 Die Wahl der Bojen
	8.3.3 Kick-Off-Präsentation

	9 Zusammenfassung und Ausblick
	A Anhang
	A.1 Protokolle der Pilotworkshops
	A.2 Vorlagen und Beispiele
	A.2.1 Mögliches Beispiel der Präsentation
	A.2.2 Vorlage 1 der Steuerung
	A.2.3 Vorlage 2 der Steuerung
	A.2.4 Vorlage für die Spezifikation

	A.3 Handout

	Literaturverzeichnis

