
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3383

Real-time detection and tracing
of vehicles via camera systems

Andreas Harnisch

Course of Study: Computer Science

Examiner: Prof. Dr. rer. nat. habil. Paul Levi

Supervisor: Dipl.-Inf. Bernd Eckstein

Commenced: August 20, 2012

Completed: February 19, 2013

CR-Classification: I.2.10, I.4.8, I.4.9

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Preliminary work . 11

1.2.1 Flow Diagram Editor (FloDiEdi) . 11
1.2.2 OpenCV . 12
1.2.3 Qt . 13

2 Fundamentals 15
2.1 Camera hardware . 15

2.1.1 Digital image capturing . 15
2.1.2 Camera internals . 16

2.2 Image processing fundamentals . 19
2.2.1 Frequency domain and spatial domain 19
2.2.2 Region of interest . 20
2.2.3 Features . 20
2.2.4 Structural element . 22
2.2.5 Mathematical morphology . 22
2.2.6 Information and knowledge . 26
2.2.7 Thresholding . 26
2.2.8 Cross ratio . 27
2.2.9 Perspective transformation . 28
2.2.10 Image stabilisation . 29

3 Level model to extract knowledge from images 31
3.1 Low-level preparation . 31

3.1.1 Noise filtering with Gaussian low pass filter 31
3.1.2 Image subtraction . 34

3.2 Feature extraction . 34
3.2.1 Shi-Tomasi feature detector . 35
3.2.2 Lucas-Kanade feature tracker . 35

3.3 Object extraction . 38
3.3.1 Connected-component labeling . 38
3.3.2 Template matching . 39

3.4 Objects recognition . 39
3.4.1 Type estimation . 40

3.5 Scene recognition . 40
3.5.1 Speed calculation . 40

3

3.5.2 Speed calculation in perspective transformed images 43

4 Methods for vehicle detection and tracing 44
4.1 General preparational work . 44

4.1.1 Camera calibration . 44
4.1.2 Background extraction . 44

4.2 Approach I: Background subtraction, feature detection and feature tracking . . 45
4.2.1 Preparation and preprocessing of the image 45
4.2.2 Foreground extraction . 48
4.2.3 Vehicle extraction . 49
4.2.4 Feature detection and assignment . 49
4.2.5 Feature tracking and speed calculation 51
4.2.6 Processing of the collected data . 52

4.3 Approach II: Perspective transformation and feature tracking 55
4.3.1 Preparational work . 55
4.3.2 Foreground extraction . 56
4.3.3 Vehicle extraction . 56
4.3.4 Feature detection . 57
4.3.5 Feature tracking and speed calculation 57
4.3.6 Processing of the collected data . 58

4.4 Approach III: Perspective transformation, position estimation and template
matching . 61
4.4.1 Preparational work . 61
4.4.2 Foreground extraction . 62
4.4.3 Vehicle extraction . 62
4.4.4 Position estimation . 62
4.4.5 Template matching . 63
4.4.6 Speed calculation . 63
4.4.7 Processing of the collected data . 64

5 Methods for vehicle detection and tracing 66
5.1 Evaluation . 66

5.1.1 Computational time . 66
5.1.2 Vehicle detection rate . 68
5.1.3 Tracking . 68
5.1.4 Vehicle type detection . 69

5.2 Appraisal of results . 69

6 Conclusion of work and outlook 71

A Apendix 73
A.1 Instructions for using the vehicleDetection plug-in 73

Bibliography 77

4

List of Figures

1.1 FloDiEdi screen shot . 12
1.2 Qt IDE screen shot . 14

2.1 Pinhole camera model . 15
2.2 Bayer filter . 16
2.3 Three sensor system . 16
2.4 Analog digital conversion . 17
2.5 Radial distortion . 18
2.6 Frequency and spatial domain . 20
2.7 Region of interest . 21
2.8 Pixel neighbourhood . 21
2.9 Structural element N ×N . 22
2.10 Structural element N ×M . 22
2.11 Erosion performed on an image . 24
2.12 Dilation performed on an image . 24
2.13 Opening performed on an image . 25
2.14 Closing performed on an image . 25
2.15 Cross ratio . 27
2.16 Perspective transformation . 29

3.1 From an image to knowledge . 32
3.2 Distorted image with noise . 33
3.3 Gaussian low pass filter . 33
3.4 Image subtraction . 34
3.5 Image pyramid with resized versions of the original image 37
3.6 Connected-component labeling . 39
3.7 Collinear points for cross ratio . 41
3.8 Pythagorean theorem for error estimation . 42

4.1 Rectangular region for line detection . 47
4.2 ROI fit to the lanes . 48
4.3 Closing applied to the extracted foreground . 50
4.4 Result of feature detection with the Shi-Thomasi detector 51
4.5 Tracking using the first approach . 53
4.6 Result image of the first approach . 54
4.7 Closing applied to the extracted foreground in the perspective corrected image. 56
4.8 Tracking using the second approach . 59

5

4.9 Resulting image using the second approach . 60
4.10 Tracking using the third approach . 64
4.11 Result image of approach three . 65

5.1 Evaluation window for tracking . 67
5.2 Setup for time measurement . 67

A.1 Selection of the ROI and lanes . 74
A.2 Settings for the VehicleDetecition plug-in . 75
A.3 Method selection in the plug-in . 75

List of Tables

5.1 Computational time comparison . 68
5.2 Detection rate comparison . 68
5.3 Grouped detection of vehicles . 68
5.4 Tracking rate comparison . 69
5.5 Successful tracking comparison in the whole image 69
5.6 Comparison of correct estimated vehicle type 70

List of Listings

4.1 Data structure for storing all information aquired in the first approach for an
vehicle. 46

4.2 Output of approach I in xml format for usage with LISA 54
4.3 Data structure for storing all information aquired in the second approach for

an vehicle. 55
4.4 Output of approach II in xml format for usage with LISA 58
4.5 Data structure for storing all information aquired in the third approach for an

vehicle. 61
4.6 Output of approach III in xml format for usage with LISA 65

6

List of Algorithms

2.1 Threshold algorithm . 26
2.2 Image stabilisation algorithm . 30

3.1 Feature detection algorithm . 35
3.2 Pyramidical implementation of the Lucas-Kanade tracker 36
3.3 Connected-component labeling . 38

4.1 Detection of the street limiting lines . 49
4.2 Extraction of vehicles from the mask matrix . 51

7

Abstract

Traffic surveillance and analysis is an important matter to increase the safety on the roads.
By monitoring the traffic appropriate measures be taken when dangerous situations appear
or to keep the traffic flow steady. Therefore it is necessary to use a system that can detect
and track vehicles so that details of the traffic situation can be evaluated. A distinction of
the vehicle types is also useful to get more detailed information about the traffic. In this
diploma thesis different approaches for vehicle detection and tracing via camera systems are
implemented and evaluated. The implementation is a plug-in for the program FloDiEdi done
in C++. Three different approaches are implemented and evaluated. The first and second
approach use the Shi-Tomasi feature detector and an modified Lucas-Kanade feature tracker.
Perspective transformation is used in the second and third approach too. In the third approach
a combination of position estimation and template matching is used to track vehicles. For
speed calculation the first approach uses cross ratio. The second and third, due to perspective
transformation, use a pixel to meter conversion to get the distance in meters. The extracted
information are visually presented such as the ID, the type and the speed of the vehicle is
displayed and additionally stored to an xml file. Furthermore in the xml file the lane and the
size of the vehicle is stored. The camera system is a stationary system which captures the
images of the street. The first approach achieves a high detection rate but the tracking does not
work well, so just around 10% of the vehicles were successfully tracked. In the second approach
the detection rate is lower than in the first but tracking works more reliable with an tracking
rate of around 30%. The third approach has the same detection rate as the second approach
but the amount of successful tracked vehicles is over 70%. Concerning the computational time,
the third approach is seven times more faster than the first and second, which are similarly
slow. After evaluating the three methods the fastest of the three approaches and most accurate
approach is the third one. There is still room for more improvements such as achieving a speed
up by using the GPU for matrix operations or parallel programming.

8

List of abbreviations

BSD Berkeley Software Distribution

CUDA Compute Unified Device Architecture

IDE Integrated Development Environment

FFT Fast Fourier Transformation

FPS Frames Per Second

FloDiEdi Flow Diagram Editor

GIMP GNU Image Manipulation Program

GPL General Public License

GPU Graphics Processing Unit

LGPL Lesser General Public License

ROI Region Of Interest

SVD Singular Value Decomposition

9

1 Introduction

1.1 Motivation

The number of vehicles sold worldwide is permanently increasing. As a result the streets are
getting more and more congested. It can be observed every holidays in Germany that there
are huge traffic jams, especially in the summer holidays1. Long traffic jams are a result of
more cars on the street. An idea to confront this problem is simple but not always feasible -
build more or wider streets. Building streets costs a lot of money, takes a lot of time to build
and of course the ground needs to be available or bought which costs also money. In Singapore
a “Certificates of Entitlement” is necessary to be permitted of driving on the streets2. These
certificates are sold on auctions where the government regulates the amount of certificates.
This is another way of dealing with the number of cars on the street but reduces the freedom
to drive a vehicle. A solution for the problem of congested streets would be to adapt the speed
limit to the current traffic volume or the admittance of driving on parts of the streets where it
is normally not allowed, like the emergency lane. In a real world example it is possible to act
before a traffic jam occurs. When observing the traffic and a general slow down is noticed
the emergency lane could be opened to let the traffic flow more fluently. For observation the
amount of cars on the street needs to be taken into consideration. Also the current speed,
compared to the average speed, is important.
In this diploma thesis different approaches for vehicle detection and tracing are introduced,
implemented and compared with each other. The necessity for vehicle detection and tracing is
that the traffic can be evaluated, which allows an intelligent traffic management.

Another use is better safety on the streets by monitoring the traffic and sending information to
the vehicles. Therefore assistant systems, which are build in the vehicles, receive information
about the road regulations. This can then be used for automated fines for traffic offender. This
idea can be seen in “Live In-vehicle Smart Assistant” (LISA) as part of the “Advanced Safety
and Driver Support for Essential Road Transport” (ASSET-Road) project of the European
Commission [LIS]. In Germany currently also a big discussion about the prevention of wrong-
way driver is on-going. In Bavaria there are big warning signs, with a violent yellow color,
erected on the slip roads to prevent people from taking the wrong road3. Other ideas are
that manufacturers of navigation systems post a warning on the screen of the device if the

1http://www.adac.de/infotestrat/adac-im-einsatz/motorwelt/Autobahnstaubilanz.aspx
2http://www.singapur.diplo.de/Vertretung/singapur/de/01/Leben__und__Arbeiten/Willkommen__in_

_Singapur.html
3http://www.dvr.de/aktuelles/sonst/1965.htm

10

http://www.adac.de/infotestrat/adac-im-einsatz/motorwelt/Autobahnstaubilanz.aspx
http://www.singapur.diplo.de/Vertretung/singapur/de/01/Leben__und__Arbeiten/Willkommen__in__Singapur.html
http://www.singapur.diplo.de/Vertretung/singapur/de/01/Leben__und__Arbeiten/Willkommen__in__Singapur.html
http://www.dvr.de/aktuelles/sonst/1965.htm

1.2 Preliminary work

driver takes the wrong slip road as for example in the upcoming Mercedes Benz S-Class and
E-Class4.

The implementation is intended as a plug-in for the program FloDiEdi. As FloDiEdi is
implemented in C++ to make use of the functionality OpenCV and the Qt framework offers,
this implementation is done in C++. The OpenCV library is used here mainly for basic
operations provided in this library. Implementations of the functions used in the thesis are
gernerally implemented from scratch.

No personal data was gathered during filming of the video for the evaluation.

1.2 Preliminary work

1.2.1 Flow Diagram Editor (FloDiEdi)

The program FloDiEdi5 is developed by research fellows working at the institute for parallel
and distributed systems (IPVS) of the University of Stuttgart. This program is a flow diagram
editor whose main focus is on image processing. The graphical user interface allows to easily
connect different quadrangle blocks whose purpose is to compute or analyze images or videos.
These blocks can be grouped into functions such as:

• Load data from different sources (e.g. capture images via webcam or load variables,
images or movies from a file)

• Data storage (Store data as images or matrix values as numbers)

• Algorithms for image processing (Filtering, histograms, drawing, ...)

• Display data representations or images

• Tools (Cycle timer, counter, ...)

Each blocks represents an implemented plug-in which contain functions for image processing.
This way FloDiEdi allows image processing in a convenient manner. FloDiEdi is similar to the
image processing program Khoros developed by Khoral Research, Inc.6. In contrast to the
commercial program Khoros, FloDiEdi is open source and free of use for everyone as it uses a
GPLv3 license7. FloDiEdi uses the OpenCV computer vision library and the Qt framework
which offer a rich library of functionality. Currently FloDiEdi supports Linux but support for
Windows is planned. See figure 1.1 on page 12 for an screen shot of the FloDiEdi environment
with the possible settings and functionality.

4http://www.daimler.com/dccom/0-5-7153-49-1567517-1-0-0-0-0-0-16694-0-0-0-0-0-0-0-0.html
5http://sourceforge.net/projects/flodiedi/
6http://www.khoral.com/
7http://www.gnu.org/licenses/gpl-3.0

11

http://www.daimler.com/dccom/0-5-7153-49-1567517-1-0-0-0-0-0-16694-0-0-0-0-0-0-0-0.html
http://sourceforge.net/projects/flodiedi/
http://www.khoral.com/
http://www.gnu.org/licenses/gpl-3.0

1.2 Preliminary work

Figure 1.1: FloDiEdi environment with different blocks. The result of this interconnection is
a perspective transformed image and conversion to a gray scale image.

1.2.2 OpenCV

OpenCV8 is an abreviation for Open Source Computer Vision Library which is developed
by Intel R© and Willow Garage9. It is released under the BSD license10 which allows free
commercial and academic use. OpenCV has interfaces for Java, Python, C and C++. There
is official support for a number of operation systems such as Windows, Linux, Mac OS, iOS
and Android but also ports exist for Blackberry 1011 or maemo12. The focus is on efficient
and real-time applications. It contains a lot of functionality from multiplication of matrices
and scalars to tracking of objects. OpenCV covers functionality13 for:

8http://opencv.org/
9http://www.willowgarage.com/

10http://opensource.org/licenses/bsd-license.php
11https://github.com/blackberry/OpenCV
12https://garage.maemo.org/projects/opencv
13http://docs.opencv.org/modules/core/doc/intro.html

12

http://opencv.org/
http://www.willowgarage.com/
http://opensource.org/licenses/bsd-license.php
https://github.com/blackberry/OpenCV
https://garage.maemo.org/projects/opencv
http://docs.opencv.org/modules/core/doc/intro.html

1.2 Preliminary work

• Core functionality, including data structures.

• Image processing which covers filtering, transformations, histograms, etc.

• Video analysing module for motion analysis, image subtraction and object tracking.

• 3D module including 3D reconstruction.

• Feature detection, description and matching in 2D.

• Object detection for various and predefined (eye, hand, face, . . .) objects.

• Interface for image and video capturing as well as support for different codecs.

• GPU module for taking advantage of GPU accelerated algorithms.

The OpenCV version used for developing was 2.4.2 which was released on July 4th, 2012.

1.2.3 Qt

On the homepage of Qt it is described as a cross-platform application and UI framework for
developers using C++ or QML, a CSS & JavaScript like language14. A short overview of some
modules that are offered by Qt:

• Core functionality like basic data types (strings, integer, . . .), file writing and reading
and more.

• GUI components such as buttons, mouse events or draw functions.

• Network module for programming of TCP, UDP or SSL connections.

• OpenGL module for graphic programming

• Database module to initialize und utilize a SQL database

• Multimedia module for video and audio playback or transformation of audio streams.

• and more modules15.

Qt offers also an integrated development environment (IDE) that is called Qt Creator. It
offers rich functionality for development and debugging, see Figure 1.2. Shortcuts for many
functions are available to increase the efficiency and offer an easy to handle environment. Qt
uses the GPLv3 and LGPLv21 licenses16. The Qt version used is 4.8.0.

14http://qt.digia.com/
15http://doc.qt.digia.com/stable/modules.html
16http://qt.digia.com/Product/Licensing/

13

http://qt.digia.com/
http://doc.qt.digia.com/stable/modules.html
http://qt.digia.com/Product/Licensing/

1.2 Preliminary work

Figure 1.2: Qt Creator IDE which offers functionality for development, debugging and
analysis of C++ or QML code. On the left are the options to switch between
projects, build the project, etc . On the right side is the window of the editor for
programming. The top left window is a project or file browser. The lower left
window shows the open files.

Structure of the thesis

This thesis is structured to give first a general introduction to image processing before discussing
and evaluating the approaches for vehicle detection and tracing. The fundamentals are stated in
chapter 2 on page 15. This chapter covers the general internal build of cameras, the procedure
of image aquisation and basic techniques used in image processing. In chapter 3 on page 31
are the methods and algorithms stated which are used in the thesis to solve the task of vehicle
detection and tracing. Chapter 3 is divided into the different levels of extracting knowledge
from images. To each level the corresponding method are assigned. The chapter 4 lists and
explains the three approaches that are used to detect and trace vehicles. The preparational
work, which is done beforehand, is also part of this chapter. In chapter 5 on page 66 the the
different approaches are evaluated. Evaluated are the successful detected vehicles, the tracking
of the vehicles and the type estimation. In chapter 6 is an an overview about the results of
the approaches given. Furthermore the personal opinion is stated and an outlook for related
work is given. In the appendix are the instructions for using the plug-in.

14

2 Fundamentals

In this chapter an introduction into the image retrieving process and fundamentals of image
processing, in regard of the thesis, are presented.

2.1 Camera hardware

2.1.1 Digital image capturing

The camera model used for analog and digital images is a pinhole camera, see Figure 2.1. The
pinhole camera model serves as a general approach to describe how cameras work. The area
that is going to be captured is focused through the lense at the camera. Capturing digital

Figure 2.1: Pinhole camera as a model for cameras which captures images with a lens.

images is quite similar to capture analog images. When using analog techniques the camera
opens the shutter of the lens and lets light pass through to expose the photographic film. The
image is then captured on the photographic film.
Whereas in digital image capturing, the lens shutter is also opened but the light does not
incidence on a photographic film but a sensor. There are two general cases how the image is
captured. In the first, the light is exposed on a single sensor which has a RGB (Red, Green and
Blue) matrix with a specific pattern of photodiods installed. Figure 2.2 shows an arrangement
of the photodiods in an Bayer filter [Bay76]. This pattern is built similar to the human retina.
An big disadvantage of single sensor camers, especially for image processing tasks, is that
the colors of the image are interpolated during the processing of the pixels. This can lead to
problems when detecting small objects. The interpolation process can make a white line with
a green background into a yellowish color at the border of the line. If the image is probed

15

2.1 Camera hardware

Figure 2.2: Arrangement of photodiods in the way a Bayer filter is built.

for yellow objects, yellow objects will be detected at the line. But those detected objects are
not there in reality, which makes it necessary to deal with this problem. Therefore it is very
important that the source image is of good quality with low distortions.
In the second case there is a sensor with photodiods for each primary color. Therefore the
light is splitted by a prism into the three primary colors. Now each sensor captures only
its corresponding color. The purpose of this is to achieve a higher light exposure. By this
method the colors of the image become more saturated and more precise. Also when the
illumination is bad the captured images have still a good quality with relatively low noise. A
principal configuration of the capturing is in Figure 2.3. The camera, a Panasonic HDC-HS700
which was used for capturing the images of the street, has three sensors and a resolution of
1920× 1080 [Pan10].

Figure 2.3: Principal functionality of a camera with three sensors. The light is splitted into
eacher primary color for each of sensors.

The voltage emitted by the photodiods represents the value of a pixel. This is done by sampling
and digitizing the values of the signal. Sampling is a techniques for measuring in steps of ∆t.
Digitizing is the process of forming analog values to discrete digital values or digital numbers.
This is not limited to a fixed sampling time, as it might be beneficial if it varies over time on
special tasks. A conversion of an analog-ditigal conversion of a signal is in Figure 2.4.

2.1.2 Camera internals

To work with cameras it is necessary to have information about the camera. Especially if it is
not only used for taking images without further processing. A camera can be described by

16

2.1 Camera hardware

Δt t

10

20

I
x

x
x

x

I = Intensity
t = Time of scanning
D.N. = Digital number

D.N.

Figure 2.4: An analogue to digital conversion. Sampling at every time ∆t and discretisation
of the intensity values.

intrinsic and extrinsic parameters. For an optimal calibration and accurate measurements it is
mandatory that those parameters are known.
The camera matrix, which describes the intrinsic parameters, is shown in Equation 2.1.

K =

fx 0 cx
0 fy cy
0 0 1

 (2.1)

It is necessary to calculate the parameters as manufacturer generally do not provides these
matrices. The parameters fx and fy can be calculated with the equation in Equation 2.2 and
Equation 2.3.

fx = F · sx (2.2)

fy = F · sy (2.3)

In the equations is F the focal length in mm and sx and sy are scaling parameters. The
calculation of these scaling factors can be seen in Equation 2.4 and Equation 2.5.

sx = (Imagewidth)
(Sensorwidth) (2.4)

sy = (Imageheight)
(Sensorheight)

(2.5)

17

2.1 Camera hardware

The unit of sx and sy is px
mm . The other two parameters, to create a camera matrix, are values

of the principal point which are in u0 and v0. The principal point in a perfect camera would be
at the center of the image. In reality this is mostly not possible due to imprecise assembling.
To fill in these values for an initial guess, the center can be used but the exact point has to be
calculated.
Now the intrinsic camera matrix M can be created. As concerning distortions there are two
types which have the main impact. These are the radial and the tangetial distortion [BK08].
The effects of radial distortion can be seen in Figure 2.5. Radial distortion is corrected by
Equation 2.6.

Square object

Camera lens

Image plane

Figure 2.5: By radial distortion a square object can loose its sharp edges and have a rather
round shape. Due to the shape of the lens the rays get bent more as the rays
that are further away from the center.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (2.6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

Tangential distortion is removed by Equation 2.7.

xcorrected = x+ (2p1y + p2(r2 + 2x2)) (2.7)
ycorrected = y + (p1(r2 + 2y2) + 2p2x)

OpenCV uses a vector representation with five coefficients to describe radial and tangetial
distortion. The parameters are k1, k2, k3, p1 and p2 where the ki is used for the radial
distortion and pi is for the tangetial distortion.

18

2.2 Image processing fundamentals

As stated above the camera also has extrinsic paramers. These parameters are a rotation
matrix R and a translation matrix T. The extrinsic parameters are necessary if the origin of
the camera in 3D space needs to be calculated. The rotation matrix states the rotation of the
camera and the translation matrix the translation of the camera. To calculate the origin C see
equation 2.8. For rotation matrices it is true that R−1 = RT , see [MW06].

C = −R−1 · T = −RT · T (2.8)

To calculate the origin of a camera another possible method is to solve the perspective-n-point
problem using RANSAC as suggested by Bolles and Fischler in [BF81].

2.2 Image processing fundamentals

2.2.1 Frequency domain and spatial domain

The definition of spatial domain by Gonzalez and Woods is “The term spatial domain refers
to the aggregate of pixels composing an image. Spatial domain methods are procedures that
operate directly on the pixels.” [GW92]. The advantage of using spatial domain is that the
results of the operations can visually be evaluated and the viewer can decide whether the
resulting image is good or not. But it has to be kept in mind that for further processing it
might be advantageous to optimise it for machine recognition and not for the human viewers.
The frequency domain is the domain for signals with respect to the frequency. The definition
for spatial frequency by Jensen is “Spatial frequency is the number of changes in brightness
value per unit distance for any part of an image.” [JLR87]. The unit can be 1/pixel, 1/mm,
etc . About the frequencies and their characteristics it can be said that high frequencies are
often details or noise in images because there are many changes between the brightness values.
Whereas low frequencies are areas with the same brightness. This is because in areas with the
same brightness there is no or low change to the brightness.
An example how a signal looks in the frequency domain and in the spatial domain is in Figure 2.6.
To transform the one-dimensional image from the spatial domain to the frequency domain
fourier transformation is used. See Equation 2.9 for the formula of one-dimensional images.
One-dimensional images can be transformed from the frequency domain to the spacial domain
by using the inverse fourier transformation in Equation 2.10. For the two-dimensional case the
formula for fourier transformation is in Equation 2.11 and the inverse fourier transformation
in Equation 2.12. This transformation does not lose information by changing from one domain
into another.

F (u) =
∫ ∞
−∞

f(x) e−2πixu dx (2.9)

f(x) =
∫ ∞
−∞

F (u) e2πiux du (2.10)

F (u, v) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−2πi(ux+vy) dx dy (2.11)

f(x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (u, v) e2πi(ux+vy) dudv (2.12)

19

2.2 Image processing fundamentals

f
x0

3*f
x0

5*f
x0

S(x)

f
x

b(x)

x
0

x

Figure 2.6: An signal shown in the frequency domain on the left with the three frequencies
and their amplitude. The same signal in the spatial domain on the right where
the three frequencies are overlain by each other resulting in this image.

The first contribution in this field was done by Jean-Baptiste-Joseph Fourier. He stated
that “each periodic function can be expressed as the sum of sines and/or cosines of different
frequencies, each multiplied by a different coefficient.” [GW92] which is now known as the
fourier series. A well known and often used algorithm for transformation from spatial domain
to frequency domain is the Fast Fourier Transform (FFT) algorithm by Cooley and Tukey
[CT65]. Linear filtering is similar to a concept called convolution in the frequency domain.
In the spatial domain it is therefore often referred to as –convolving a mask with an image–
hence named a convolution mask.

2.2.2 Region of interest

The region of interest (ROI) is used to focus on a specific part of an image. An image can have
different ROI’s to reduce the amount of pixels which are processed. The ROI in this diploma
thesis is the street in the center of the image. Other parts like the streets in parallel do not to
be processed and can therefore be ignored, thus gaining faster processing of the image. See
Figure 2.7 for the use of a selected region of interest. The difference between the region of
interest and the whole image is in this example over twice the size of the marked region. So
only a small part of all pixels needs to be processed.

2.2.3 Features

Generally spoken a feature is a point which is of interest for processing. Features can be edges,
corners or blobs. Therefore for finding features corresponding methods such as edge detectors
like the canny filter [Can86], corner detectors like Tomasi-Shi feature detector [ST94] or a blob
detector such as the Laplacian of Gaussian [Bur82] can be used. Features can also be used for

20

2.2 Image processing fundamentals

Figure 2.7: The region of interest is selected in an image of a street. The part of the
image which is out of the focus does not need to be processed so unnecessary
computational time can be reduced.

tracking as these features, if in the next or other image still present, can be found again. This
works reliable if the features are good features. Whether a feature is good has to be defined
first. The neighbourhood of the pixel can help to make such a decision. Depending on the
user-defined neighbourhood it can contain several pixels connected to the center pixel. In
Figure 2.8 two common neighbourhood types, the four- and eight-neighbourhood, are shown.
Imagine a black pixel whose eight-neighbourhood is completely white. Assume that this
constellation is fixed, this point can be found again in other related images.

Figure 2.8: On the left side the four-connected neighbourhood and on the right side the
eight-connected neighbourhood is shown. The black dot marks the center pixel.

21

2.2 Image processing fundamentals

2.2.4 Structural element

A structural element is used in mathematical morphology as a shape or form for processing an
image. The size of a structural element is normally symmetrical N ×N where N is an odd
number. Chosing an odd number makes it possible to know exactly where the center or anchor
point in the structural element is. Knowing where the center is, is needed for the allignment
of the structural element to the original image. The structural element does not need any
numerical values for processing. The size or shape is the object of interest as this is used for
the transformation [GW92]. When the size is N ×M the resulting image can be reshaped that
the objects do not resemble the origin object anymore. See Figure 2.9 for dilation performed
on a binary image with an N ×N structural element. In Figure 2.10 dilation is applied with a
N ×M structural element to a binary image. This is not necessarily a problem if an advantage
can be drawn out of the resulting reshaping of the object.

Figure 2.9: On the left is the original binary image. In the middle is the N ×N structural
element. The right shows the resulting image when performing dilation with the
N ×N structural element.

Figure 2.10: The left shows the orignal binary image. In the middle is the N ×M structural
element shown. On the right is the image after performing dilation with the
N ×M structural element.

2.2.5 Mathematical morphology

Mathematical Morphology is a tool for extracting image components that are useful for
representation and description [Ser88]. The technique was originally developed by Matheron

22

2.2 Image processing fundamentals

and Serra at the Ecole des Mines in Paris in the year 19981. Mathematical morphology is a
theoretical model for digital images. It is mostly used on binary images. The logical operations
“AND” and “OR” are the basic moduls. From these the basic operations dilation and erosion are
created. The definition of dilation is A⊕B = {c|c = a+ b for some a ∈ A and b ∈ B}. Dilation
is sometimes also called Minkowski addition. The operation dilation is associative as well as
commutative. This means that (A⊕B)⊕C = A⊕ (B⊕C). When using dilation the resulting
image has all of the original “1” pixels in the image, the borders are expaned and in case there
are small holes these are filled. It can be described as an logical “OR” operation in conjunction
with the structural element. Erosion is defined as A 	 B = {x|x + b ∈ for every b}. It is
sometimes called Minkowski subtraction. In regard of dilation, erosion is whether associative
nor commutative. The result of erosion can be described as shrinking of the object, as the
boundaries of the object are etched or eroded. Erosion is in terms of logical operations a “AND”
operator as only those shapes that are the size of the structural element remain. Morphological
operations cover [Lev11]:

• Thinning A⊗B = A− (A~B)

• Thickening A�B = A ∪ (A~B)

• Translation (A)z = {w|w = a+ z, for a ∈ A}

• Reflection (B̂ = {w|w = −b, for b ∈ B}

• Complement AC = {w|w /∈ A}

• Difference A−B = {w|w ∈ a,w /∈ B} = A ∩Bc

• Dilation (A⊕B) = {z|(B̂)z ∩A 6= ∅}

• Erosion (A	B) = {z|((B)z ⊆ A}

• Opening ⇒ A ◦X = (A	X)⊕X

• Closing A •B = (A⊕B)	B

• Hit-or-miss transform A~B = (A	B1)− (A⊕ B̂2)

• Boundary extraction β(A) = A− (A	B)

• . . .

Annotation to the definition of the operations:

• A is the original image

• Ac is the complement image

• A∪B is the union of the images A and B

• A∩B is the intersection of the images A and B

1http://cmm.ensmp.fr/~serra/apub.htm

23

http://cmm.ensmp.fr/~serra/apub.htm

2.2 Image processing fundamentals

• A−B = A ∩Bc is the difference between the image A and B

• #A is the cardinality of A

The result of the morphologial operation erosion is shown in Figure 2.11. For an example of
dilation refer to Figure 2.12. Opening is performed in Figure 2.13. Closing is performed in
Figure 2.14. The transformed shape depends generally on the structural element, the original
shape and the performed operation.

Figure 2.11: Erosion is applied on an image. On the left side is the structural element, in
the middle is the original image and the eroded image is on the right.

Figure 2.12: Dilation is applied on an image. On the left side is the structural element, in
the middle is the original image and the dilated image is on the right.

24

2.2 Image processing fundamentals

Figure 2.13: Opening performed on an image. The structural element is depicted at the
upper left and the original image is at the upper left. Erosion of the original
image is shown in the lower left. The lower right image shows the dilation of
the eroded image which is the result of the operation.

Figure 2.14: Closing performed on an image. The structural element is depicted at the top
left. The original image is at top right. On the lower left is the dilated version
of the image The lower right shows the final result.

25

2.2 Image processing fundamentals

2.2.6 Information and knowledge

There is a distinction between information and knowledge. Even though in colloquial language
it is sometimes not distinguished and the two words are used with the same meaning. In the
oxford dictionary information means “facts provided or learned about something or someone”2.
The definition “Data only becomes ’information’ when it is transmitted” is taken from [Ker11].
Therefore information, in terms of image processing, can be the intensity of a pixel value, the
color of a pixel, the speed of a vehicle, the amount of vehicles on the street,. . . . These are just
a few examples what information can be.
Whereas knowledge is explained as “facts, information, and skills acquired through experience
or education; the theoretical or practical understanding of a subject”3. Knowledge is the
combination of information with each other and reasoning. It is not just a collection of
information which are somehow loosely related. “Information becomes ’knowledge’ when it is
interpreted” is defined in [Ker11], which is taken as the definition for this thesis. Examples
for knowledge can be that the motorway is currently heavy loaded with cars or motor trucks.
Most offences of the road traffic regulations such as speeding or distance offences are commited
mostly on the left lanes, in regard to right hand traffic. There is a traffic jam for x meters and
the resulted delay by taking this road is y minutes. The generalisation of this definition means
that we can gain knowledge from information.

2.2.7 Thresholding

When thresholding is applied the values of a pixel in an image are either set to the minimal
value or maximum value. The decision depends on whether the current value of the pixel is
above or below the threshold value and is set correspondingly. Algorithm 2.1 shows an pseudo
implementation of an binary threshold algorithm.

Algorithm 2.1 Threshold algorithm
procedure thresholding(thresholdV alue, minV alue, maxV alue)

for pixel(x, y) ∈ Image do
if pixel(x, y) ≤ thresholdV alue then

pixel(x, y)← minV alue
else

pixel(x, y)← maxV alue
end if

end for
end procedure

2http://oxforddictionaries.com/definition/english/information?q=information
3http://oxforddictionaries.com/definition/english/knowledge?q=knowledge

26

http://oxforddictionaries.com/definition/english/information?q=information
http://oxforddictionaries.com/definition/english/knowledge?q=knowledge

2.2 Image processing fundamentals

2.2.8 Cross ratio

Cross ratio is located in the field of linear algebra. The property of cross ratio is the correlation
between points in two different spaces [Tay63]. For using cross ratio it is mandatory to have
four collinear points in both spaces. These spaces are the image space and the real world space
for example. The points have to have in the same distance in each space. This means that
these points have to be chosen in way that the distance between each point can be calculated.
Therefore all distances have to be known either in the real world or in the image space. Assume
cross ratio is calculated and all the distances in the image space are known. For the real
world the three points are known. The distances between the points in the image space are
calculated first. Afterwards the Equation 2.13 is solved for λ. |XY | in the equation stands for
the distance between the point X and Y.

λ = [RSTU] = |RT |
|RU |

|SU |
|ST |

= |rt|
|ru|
|su|
|st|

(2.13)

As the three real world points have the same ratio of distances, which are used for calculating
the cross ratio in the image space, are calculated. The equation is then transposed so that
the final missing distance between two points can be calculated. Now the distance to the
point is known. In figure 2.15 it becomes clearer how these points have to be located and
their relationship is defined. The points r, s, t, u are in the image space, the points R, S, T,

C

n
r

s

t

u

U

T

S

R

N

Figure 2.15: The correlation between points in two different spaces (r, s, t, u in the image
space and R, S, T, U in the real world) from the origin of the camera C. This
correlation is used for cross ratio which is invariant to perspective transformation.

U is in the real world space and C is the camera. One advantage of cross ratio is that the
computational effort is small. Cross ratio is invariant to perspective transformations. But the

27

2.2 Image processing fundamentals

downside is that the seven of eight points and their distances have to be known previously. So
without knowledge about these facts cross ratio will not work. Cross ratio can be used for
calculating distances in different spaces which is done in this diploma thesis.

2.2.9 Perspective transformation

When taking images of two parallel lines, the lines meet at the horizon. In the case of a view
on a street it is a one-point perspective as there is one vanishing point. Marsh describes
it as “Perspective projections map parallel lines in world coordinate space to parallel lines
in the viewplane if and only if the lines are parallel to the viewplane.”[Mar04]. To get the
lines in parallel, like it is in reality, a perspective transformation has to be performed on the
image. For the perspective transformation matrix four points of the original image are needed.
These points represent the perspective of the image. Also the points of the rectangular shape
are needed which represent the shape of the image it is transformed to. The perspective
matrix P for 2-dimensional images is a 3x3 matrix. It is populated with the coefficient for the
transformation. The formula for transforming x- and y-coordinate into the respective u- and
v-coordinate is in Equation 2.14, taken from [HZ04].

ui = c0 · xi + c1 · yi + c2
c6 · xi + c7 · yi + c8

vi = c3 · xi + c4 · yi + c5
c6 · xi + c7 · yi + c8

(2.14)

So a point z can be transformed by using Equation 2.15.

w = P · z (2.15)

In the equations are x and y the original points and u and v are the transformed points. To
aquire the perspective matrix the equation 2.16 is used.

x0 y0 1 0 0 0 −x0 · u0 −y0 · u0
x1 y1 1 0 0 0 −x1 · u1 −y1 · u1
x2 y2 1 0 0 0 −x2 · u2 −y2 · u2
x3 y3 1 0 0 0 −x3 · u3 −y3 · u3
0 0 0 x0 y0 1 −x0 · v0 −y0 · v0
0 0 0 x1 y1 1 −x1 · v1 −y1 · v1
0 0 0 x2 y2 1 −x2 · v2 −y2 · v2
0 0 0 x3 y3 1 −x3 · v3 −y3 · v3


·



c0
c1
c2
c3
c4
c5
c6
c7


=



u0
u1
u2
u3
v0
v1
v2
v3


(2.16)

This equation is taken from [Svo06]. Now the perspective matrix P is built in Equation 2.17
by use of direct linear transformation and set c9 to one.

P =

c0 c1 c3
c4 c5 c6
c7 c8 1

 (2.17)

28

2.2 Image processing fundamentals

Vanishing
Point

0

Perspective
transformation

Figure 2.16: A one-point perspective view on a road with on the left where the lines meet
the vanishing point. On the right is the perspective transformed result where
the lines are parallel.

Setting the coefficient to one is possible as there is a total number of freedoms in a 2D
perspective transformation which is eight [HZ04]. The result of a perspective transform can
be seen in Figure 2.16. To solve the equation the singular value decomposition (SVD) method
can be used. The SVD solving method is explained in [GVL96].

2.2.10 Image stabilisation

When taking images it is necessary to hold the camera in a fixed position to get a good result.
Light shaking of the camera can be surpressed using stabilisation systems. When there is not
only light shaking but heavy shaking or even camera movements, it is necessary to have a
reference point or trackable feature. The reference point is needed to know in which direction
the camera has moved. Assuming a camera based tracking system. If the object of interest
is about to move out of the visible area the camera has to try to follow the object as long
as possible. To know how much the camera has moved the reference point can be used to
get the translation between images. If possible choose the reference point as a stationary
point or region in the image that is never concealed. Using algorithms it is possible to think
of various approaches to solve the calculation of the translation. For example a template
matching algorithm can be used which searches in the image for the template. The difference
between the found positions of the template in the current and the previous image is the
offset of camera movement. The approach used here is phase correlation which is described in
[JZWL09] and the pseudo implementation is in Algorithm 2.2. Phase correlation uses a FFT
and image registration to estimate the offset between two similar images. Another possible
method is the use of histograms as explained in [SM09].

29

2.2 Image processing fundamentals

Algorithm 2.2 Image stabilisation algorithm
procedure stabilizeImage(inputImage)

Set ROIreference and ROIcurrent on inputImage
Matrixresult ←Phase correlation (ROIreference, ROIcurrent)
Get position of max value in Matrixresult
Add offset to ROI

end procedure

30

3 Level model to extract knowledge from images

In this chapter methods for extracting knowledge from images for vehicle detection and tracing
are explained. The model of how knowledge is extracted from an image is shown in Figure 3.1
which is taken from [Lev11].

3.1 Low-level preparation

In this subsection methods for low-level preparations are stated and explained. The methods
here are noise filtering, image subtraction and mathematical morphologial.

3.1.1 Noise filtering with Gaussian low pass filter

Noise occurs in the process of capturing an image. When looking at noise in the frequency
domain, it is visible as high frequency which might not be directly obvious to the observer. In
the spatial domain, noise is visible to the observer directly. An example of a noisy image in
the spatial domain of the famous Lena1 can be seen in Figure 3.2. Noise is for people not a
big problem as it can still be recognized what is on the picture up to a relatively high level of
noise. For computers on the other hand it can be very problematic. For slightly low noise in
images a gaussian low pass filter can be used to smoothen the image and get rid of the noise.
By smoothening the image losses its sharpness, depending on the strength of the smoothening.
The gaussian filtering works with a kernel that passes every pixel and for each pixel it sets
a new value which is calculated by the kernel. The handling of the borders can be choosen
freely but one has to think of how this will affect the pixels in the border region. The gaussian
filter works like a moving window. It is moved over the whole image and each existing value of
each pixel is new calculated. The moving window is also called a convolution mask. For a
calculation of a pixel value refer to equation Equation 3.1.

Pixelx,y =
N−1∑
i=0

N−1∑
j=0

Pixelx−i+k,y−j+k ·Maski,j (3.1)

An application of a gaussian low pass filter can be seen in Figure 3.3. In the spatial domain,
noise filtering is a neighbourhood operation. Jähne describes it as “A neighbourhood operator

1Copyright c©Playboy Enterprises, Inc. Image taken from http://sipi.usc.edu/database/download.php?
vol=misc&img=4.2.04

31

http://sipi.usc.edu/database/download.php?vol=misc&img=4.2.04
http://sipi.usc.edu/database/download.php?vol=misc&img=4.2.04

3.1 Low-level preparation

Image

Scene
recognition

Object
recognition

Component
extraction

Feature
extraction

Low-level
preparation

Knowledge

Figure 3.1: The level-model of getting from the image to knowledge. The infomation on each
ascending level gets more precise.

N, connected by suitable operations, links the value in the neighbourhood to a point and write
the result back at the point. This operation is done for alle points of the signal.”[Jäh05].

32

3.1 Low-level preparation

Figure 3.2: The original image of Lena on the left. On the right side is the same image but
distorted with noise.

84

23

46

73

200

60

79

33

125

125

178

26

10

80

19

203 73 33 26

10

80

19

203

84

23

46

200

95

79

125

125

178

1

2

1

2

4

2

1

2

1

Gaussian low pass filter

Figure 3.3: A 3x3 Gaussian low pass filter is applied to an pixel. The image before filtering
is on the left and the image after filtering is on the right. The used Gaussian low
pass filter is at the bottom.

33

3.2 Feature extraction

3.1.2 Image subtraction

Image subtraction is an operation where a image is subtracted by another. Thinking about
a static scene with moving objects in the foreground. The background stays the same over
the whole time when changes in illumination are neglected. The principle of the extraction of
the foreground objects can be done by subtracting the foreground from the background, see
Equation 3.2.

ImageForeground − ImageBackground = ImageSegmented (3.2)

The resulting image is not clearly revealing the difference of the images. Even slight changes
in illumination can result in unusable results if it is not treated properly. This means further
processing has to be done. This operation can be combined by binarization with thresholding
followed by morphologial operations. By threshold the pixels with low values can be filtered
out and shadows casts can be reduced. The keypoint is to choose the threshold level thoughtful.
After the binarization the image can be processed by eriosion, dilation or the combination of
them in opening or closing, see subsection 2.2.5 for details. With morphologial closing holes in
the image get filled where in contrast opening lessens the remaining pixels. An illustration of
image subtraction result is in Figure 3.4.

Figure 3.4: The result of the image subtraction of the current image from the already aquired
background image. The rough contour of the vehicles can already be seen.

3.2 Feature extraction

The term features is explained in subsection 2.2.3. How features can be detected is explained
in this section. Feature extraction can be used to make objects trackable. A use for features is
also the object recognition.

34

3.2 Feature extraction

3.2.1 Shi-Tomasi feature detector

For feature detection the algorithm proposed from Shi-Tomasi [ST94] can be used. The func-
tionality of this algorithm will now be explained in detail. As explained in the fundamentals
there are different features which can be detected. This algorithm is a corner feature detector.
The algorithm calculates the gradients in x- and y-direction of the image by solving Equa-
tion 3.3.

Ix = I ·Gy ·Gx
∂

∂x
(3.3)

Iy = I ·Gx ·Gy
∂

∂y

Afterwards the matrix L is created and calculated in Equation 3.4.

L =
(

I2
x Ix · Iy

Ix · Iy I2
y

)
(3.4)

In the next step the eigenvalues λ1 and λ2 are calculated and the maximum and the minimum
is taken. Shi-Tomasi uses the Equation 3.5 to decide whether a point is a good feature or
not.

Pixelx, y > minV alue+ (maxV alue−minV alue) ·QualityV ariable (3.5)
The value of the “quality variable” is in the range from zero to one. If the value is near
one the features are better and are more likely to be found again in images. This means
generally less found features but more stable ones. The pseudocode implementation can be
seen Algorithm 3.1.

Algorithm 3.1 Feature detection algorithm
procedure FeatureDetection(InputImage, V ectorfeatures)

MatrixEigenvalue ← Eigenvalues from inputImage
min← Minimum value of MatrixEigenvalue
max← Maximum value of MatrixEigenvalue
for row = 0 to Inputrows do

for col = 0 to Inputcolumns do
if MatrixEigen(row, col) > min + (max−min) ·QualityLevel then

V ectorfeatures ← Point(row, col)
end if

end for
end for

end procedure

3.2.2 Lucas-Kanade feature tracker

As the vehicles need to be tracked to make an assumption about the speed or wrong-way driving
a method for tracking is needed. The tracking was done with an extended Lucas-Kanade

35

3.2 Feature extraction

tracker [TK91] in an implementation by Jean-Yves Bouguet [Bou00]. Algorithm 3.2 shows a
pseudo implementation of the feature tracker implementation by Bouguet.

This algorithm by Lucas-Kanade uses optical flow and works successfully if the requirements
are fulfilled. These are:

• The brightness of the pixels in the neighbourhood are constant

• The displacement is small

• Aperture is not a problem

The advantage of the pyramidical Lucas-Kanade implementation, in contrast to the original
algorithm, can deal with bigger displacements. As the word pyramidical implies it uses a
resized version of the original image in a pyramidic like shape. This is visualized in Figure 3.5.

Algorithm 3.2 Pyramidical implementation of the Lucas-Kanade tracker
procedure featureTracker(inputImage, previousImage, uL)

Build the pyramid for inputImage and previousImage with: (Size of the image)/2L

Pyramidical guess: gLm =
[
0 0

]T
for L = Lm to 0 do

Locate point uL on image: IL: uL =
[
px py

]T
= uL/2L

Derive image IL with respect to x: Ix(x, y)
Derive image IL with respect to y: Iy(x, y)
Calculate spatial gradient G:

G =
∑px+wx
x=px−wx

∑py+wy

x=py−wy

[
Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

]
Initialize of iterative vector: v0 =

[
0 0

]T
for (k = 1 to K do

Image difference: δIk

Mismatch vector: bk =
∑px+wx
x=px−wx

∑py+wy

x=py−wy

[
δIk(x, y)Ix(x, y)
δIk(x, y)Iy(x, y)

]
Optical flow: ηk = G−1 · bk
Guess for next iteration: vk = vk−1 + ηk

end for
Final optical flow on level L: dLvk

Guess for the next level L-1: gL−1 =
[
gL−1
x gL−1

y

]T
= 2(gL + dL)

end for
Final optical flow vector: d = g0 + d0

Location of point on J: v = u+ d
end procedure

36

3.2 Feature extraction

Figure 3.5: Pyramidical view of the original image at the bottom and the corresponding
resized versions with a scaling factor of two between each level. Here are three
levels displayed.

37

3.3 Object extraction

3.3 Object extraction

In this subsection methods for object extraction will be explained in detail for later use in the
vehicle detection and tracing method.

3.3.1 Connected-component labeling

The connected-component labeling algorithm is used to group pixels which are connected in a
neighbourhood. For an example of a four-connected neighbourhood refer to Figure 2.8. The
algorithm works on binary images. On a sidenote, there must be the possibility to set the pixel
values for example in a range from 0-255. If a higher range is choosen then more connected
components can be found and distinguished. How many components will be found in the
image has to be pre-estimated, when in doubt a higher range is preferable. Before starting,
the values of the binary image have to be set to either zero or one. If it is not already done a
threshold algorithm can be used. The pixels which are white are then set to the value one
instead of 255. This is useful as the algorithm takes this as given and takes advantage of this
knowledge. When the procedure is called, a counter is initialized with the value of two. When
iterating the pixels in the matrix it will be skipped if the value is not one. The one indicates
that it is an unprocessed pixel in the image. If the value of a pixel is zero then the pixel is not
of interest and is skipped. Pixels with other values than zero or one are already processed and
can also be skipped. If an pixel with the value one is found this pixel and all the pixels in the
neighbourhood with the value one are set to the value of the counter. This is done recursively
done for all the pixel in the neighbourhood. After assigning the value the counter is increased
by one and the algorithm continues to iterate over the image. In Figure 3.6 the steps in the
labeling algorithm can be seen. The connected-component labeling algorithm can be seen at
Algorithm 3.3.

Algorithm 3.3 Connected-component labeling
procedure connectedComponentLabeling(inputImage, regionV ector)

regionCounter ← 2
for row = 0 to inputImagerows do

for column = 0 to inputImagecolumns do
if inputImagerow,column = 1 then

V alue of pixels in connected region← regionCounter
regionV ector ← connected points in region
regionCounter + +

end if
end for

end for
end procedure

38

3.4 Objects recognition

Figure 3.6: An example of the connected-component labeling algorithm. On the left is the
unprocessed binary image. The middle shows the algorithm during processing
and on the right is the result. The colors are only used for the purpose of visibility.

3.3.2 Template matching

Template matching is used for finding a template T in an image. The template needs to be
smaller than the image and it is moved across the image to check every pixel. By moving over
the image for each pixel, except the border pixels or where the template does not fit completly,
a matching is calculated. To match templates there are different matching methods, such as
the squared difference in Equation 3.6. In the case of squared difference the perfect match
would be zero whereas a bad matching is large. Another method to calculate the matching of
a template is the correlation matching method in Equation 3.7. When using this method the
perfect matching results in a large value and bad or mismatches would be either small or zero
[BK08].

ResultSquaredDifference(x, y) =
∑
x′,y′

(
T (x′, y′)− I(x+ x′, y + y′)

)2 (3.6)

ResultCorrelationMatching(x, y) =
∑
x′,y′

(
T (x′, y′) · I(x+ x′, y + y′)

)2 (3.7)

3.4 Objects recognition

When analysing images the detection of objects is a difficult task. Because the problem is,
how these objects are defined. Even when defining something simple as a chair it is not an
easy task. People see a chair and normally know instantly that it is a chair. For a computer it

39

3.5 Scene recognition

must be defined in detail or there must be a training for recognizing chairs. How to descripe a
chair? It has four legs, a seat and a back?! Starting with the legs, how are they connected or
aligned to each other? How long are the legs? The seat is connected to the legs and the back?
There are many things to think of when modelling a chair. For a simple modelling assume
the chair has for legs and these are straight downward in the same distance to each other.
The seat is on top of the legs and the back is mounted to the seat. This description would be
satisfying for a lot of chairs but for three legged chairs this would not be sufficient.
If the task for object detection is limited to detecting one object and the characteristics of the
object are known it facilitates the task. In the case of vehicle detection it is assumed that on
the motorway are only vehicles. The main task here is to distinguish between the different
types of vehicles like motor bikes, cars and motor trucks.

3.4.1 Type estimation

For estimation of the type the vehicles are grouped into three different types, cars, motor
trucks and motor bikes. To distinguish each type of vehicle it is mandatory to know the
characteristics of each type. Motorcycles distinct from the other two in size, especially in
width. Other distinctive features motorcycles have are one headlight, two tires, no licence
plate on the front, the windscreen is small or no windscreen at all. The most distinctive and
easiest to recognize feature of a motorcycle is the width. For distinction of cars and motor
truck it gets more difficult. Both share a big windscreen and have a similar width as they,
except for compact cars, can be very broad. The number of headlights is not a good distinctive
feature as some cars can have fog lights. This leaves the length as a good distinctive feature.
Another possibility is to use the ratio of the width and length to estimate the type. For a bike
the ratio is around 2:1. A car has an approximate ratio of 1:1. For a truck the approximate
ratio is 3:1. As the distinction between motor bike and truck is very hard by just taking the
ratio it is necessary to take the real size into account as the width of a normal motor bike is
around 1 - 1.5 meters and a truck is over 3 meter in width.

3.5 Scene recognition

On the scenes recognition level a scene can be created from the extraced information so far. In
a scene the object types and their position are known. Also the relation between those objects
is now known.

3.5.1 Speed calculation

Calculating the speed of an object can be done by using the time period and travelled distance.
To aquire these infomations the frames per second of the video is used to know how much
time has passed in X frames. This is calculated by ∆t = (1/fps) ·X. For the estimation of
the travelled distance cross ratio was used. Advantages of this method are fast computation
and being invariant to projective transformations. As already explained in subsection 2.2.8.

40

3.5 Scene recognition

With four known points located on the image the cross ratio λ can be calculated. By taking λ
and the three corresponding known points in the real world the distance of a fourth unknown
point can be calculated.
As a requirement the points have to be on a collinear line. At first three points in the real
world are choosen whose distance is known. These points are on the markings on the street,
see Figure 3.7. This is done as the distances between spacing and marking are known to the

Figure 3.7: Three colinear points marked red on the image. The fourth point would be the
position of a vehicle, which is moved in y-direction to be on the collinear line.
These four points can then be used for calculation of the distance by using cross
ratio.

fact that these have regulated distances. The length of a marking in Germany is six meters
and the spacing between two markings is twelve meters on a motorway [RMS80]. Then the
three corresponding points in the image were chosen. This leaves two more points, one in the
real world and one in the image. The fourth point on the image is the detected position of the
vehicle. Now the distances between the points in the image are calculated. By having these
four distances the formula could be solved and λ is known. As λ has the same value for the
distances in the real world and on the image this leaves now the calculation of the distances of
the points in the real world. The absolute distance of the vehicle is calculated by transforming
the cross ratio equation and calculating it. There is one problem as the vehicle is seldom
exactly on the line. Therefore the x-coordinate of the position of the vehicle was changed to
be exactly on the line. This moves the vehicle in x-direction and leads to inaccurateness. For
a decent accuracy this is sufficient. The Pythagorean theorem is used for the error estimation,
see Figure 3.8. Taken that the angle of a car changing the lane is at maximum 25◦. Taking

41

3.5 Scene recognition

90°

 α

Distance in y-
direction

Travelled distance

Distance in x-
direction

2 3

1

Figure 3.8: Pythagorean theorem usage for error estimation. The yellow vehicle marked
with “1” is the previous position, the number “2” shows the position of the car
when using only the x-direction and the number “3” is the actual position of
the vehicle. The difference between the real travelled distance and the distance
travelled in y-direction is between vehicle “2” and “3”.

the speed is at 120kmh , which is 33.3ms , the accuracy is at over 90%. In Equation 3.8 is an
calculation for the accuracy estimation.

cos(25◦) = b

33.3
⇒ b = cos(25◦) · 33.3 = 30.2m30.2m

33.3m
= 0.906% (3.8)

An observed normal lane change, the angle α is roughly 10◦ which leads to an higher accuracy
at 98.5%, see Equation 3.9. As cross ratio is invariant to perspective transformations it works
in perspective images.

cos(10◦) = b

33.3
⇒ b = cos(10◦) · 33.3 = 32.8m32.8m

33.3m
= 0.985% (3.9)

To average the speed the current calculated and the previous speed is added to smoothen the
errors. As the speed of an vehicle is not changing rapidly if there is no obstacle or such in the
way. For more accuracy one could take the distance travelled in y-direction into account.

42

3.5 Scene recognition

3.5.2 Speed calculation in perspective transformed images

The calculation of the speed in a perspective transformed image is compared to the previous
introduced method in subsection 3.5.1 a trivial task. But only if having already gathered
information about the real world and the camera. This infomation is the known distance
between two points and the number of frames per second in which the camera is recording.
The points do not have to be at the same position but the distance in a unit (meters is the
unit of choice in this thesis) has to be known. The frames per second are necessary to calculate
the time difference between the two images. It is not mandatory to use every frame if the
application is not relying on it. Taking every n-th frame is possible, but then the time between
two frames has to be multiplied by the number of frames passed.
The size of a pixel in the meters is calculated in Equation 3.10.

distancePixel =
√

(y2 − y1)2 + (x2 − x1)2 (3.10)

Pixel in meter = distancePixel
distanceMeter

These two steps have to be done only once if the time between each calculation is equidistant.
Also the resizing of the image can now be done as the pixel in meter distance would differ
from the actual value. Now the distance of the previous position and the current position
needs to be calculated. The calculation of speed is now done as all variables are known. The
formula can be seen in Equation 3.11.

Speed = distancePixel · Pixel in meter · fps · 3.6 (3.11)

In the formula the coefficient 3.6 originates of the conversion from m
s into km

h . The result of
the equation is the speed in km

h .

43

4 Methods for vehicle detection and tracing

4.1 General preparational work

In this section the work is explained which has to done before the actual processing is started.
This covers camera calibration and background extraction. These two steps can be done
beforehand.

4.1.1 Camera calibration

As first step the image is corrected with the camera parameters.To correct the image captured
by a camera, which is represented as a matrix, it has to be undistorted with the distortion
matrices. For a detailed description see 2.1.1. As the vendor of the camera is mostly not
shipping the camera with matrices to undistort the images, these matrices were acquired
by using camera calibration. Therefore the plug-in cameraCalibration for FloDiEdi was
implemented which calculates them with the help of a chessboard that is moved across space.
To make it usable for other tasks the calculated matrices are stored in a file. As OpenCV is
providing a big part of the functionality of FloDiEdi, the format of choice for saving is the
yml format which is used by OpenCV. A number of images, which shows the chessboard in
different positions, have to be captured. This means that the chessboard has to be moved
forth, back, up and down. When the chessboard is positioned the capture button has to be
pressed to take a snapshot. All of the detected corners on the chessboard are displayed to
help the user in decide whether the image is good or not. In case not all corners are detected
and the user clicked the capture button the number of successfully captured images will not
increase.

4.1.2 Background extraction

Background extraction is the process to aquire an image without the objects in the foreground.
A background is, in terms of this thesis, an empty street without vehicles. Three possibilities
to achieve this background image are explained here. The obvious one with no computation at
all is to wait until the street is empty and use this image as the background image. But this
has a disadvantage when trying to take the image on heavy loaded streets. It is very hard
to acquire such a picture off an street with steady traffic as at least one vehicle will be often
present.
The second option is to take several images on the street and use the parts of the image where

44

4.2 Approach I: Background subtraction, feature detection and feature tracking

no vehicle is. When every part of the image is captured the single parts need to be put together
to the background image.
The third option is by using a background extraction algorithm. A principle of extraction is
to use the images and use an addition. So a simple background extraction algorithm is by
using weighted addition of the previous background image and the current captured image,
see Equation 4.1.

Imagebackground = α · Imagecurrent + (1− α) · Imagebackground (4.1)

To acquire the image of the background a Gaussian Mixture-based Background/Foreground
Segmentation Algorithm from Zivkovic [Ziv04] is used. The algorithm is fast and also uses
shadow removal techniques to achieve good results. This implementation is one of the algorithms
provided by OpenCV in the class BackgroundSubtractorMOG2. A real-time implementation
is also possible which achieves good results. This was done by Butler et al. in [BBS05].
Furthermore the scene is static which means that after acquiring the background it will not
change. This is true if the changes in illumination are neglected when clouds cover the sky,
dawn or twilight. In comparison with the result of the Mixture of Gaussians method, the sum
method has problems in terms of accuracy. After a thousand processed images there are still
light remainings of visible vehicles. The background is stored, like the camera parameters
during the calibration, in the yml format to support file handling with OpenCV. A number
of background extraction algorithms are presented, explained and evaluated in the thesis of
Brutzer [Bru10].

4.2 Approach I: Background subtraction, feature detection and feature
tracking

The idea for the first approach was to get the vehicles, extract features from the vehicles on the
image and track those features. A similar approach is used in [GS08]. The proposed method
only detects and tracks vehicles without processing further information. The data structure
for storing the information is shown in Listing 4.1. All collected information of a vehicle in
this approach is saved in this vector.

4.2.1 Preparation and preprocessing of the image

Before starting with the processing of the images the mounting and positioning of the camera
has to be considered. Cameras mounted on a pole are deep-seated and will not shake much
in case of wind or vehicles passing by. The camera for capturing was mounted on a tripod
and was standing on a bridge to get a good overview of the traffic scene. When there was
weak wind it was stable but as a motor trucks are passing the bridge started to swing and
shake. Therefore the image had to be stabilised at first. To prevent a shaken image the image
stabilisation algorithm from Algorithm 2.2 is implemented. As reference a part of the image
with no moving elements is choosen. This way no vehicles can falsify the result. When no
stabilisation action is done the results of the whole processing can be falsified. It might happen

45

4.2 Approach I: Background subtraction, feature detection and feature tracking

Listing 4.1 Data structure for storing all information aquired in the first approach for an
vehicle.
<listing name="Data structure">

struct vehicleDescription {
//Stores the ID-number assigned to the vehicle.
int IDNumber;
The rectangle which covers the area of the vehicle.
cv::Rect carHull;
The current position of the vehicle.
cv::Point2i center;
// Current speed of the vehicle.
int speed;
// Defines the type of vehicle: 1 for motor bikes 2 for motor truck and 3 for cars.
int type;
// The vector containing the found feature points of the vehicle which is used for

tracking.
std::vector <cv::Point> vehicleFeatures;

};
</listing>

that by shaking the vehicles appear not to move between two frames. This leads to false speed
calculations or problems in tracing the vehicles.
As stated in subsection 2.1.1 the resolution of the camera is 1920× 1080. The aspect ratio
of the camera is therefore 16:9 and on the left and right side is an area in the image which
contains partially irrelevant regions that are not relevant for processing. In these regions
can be the road in the opposite direction, trees and so on. This means that these regions
of the image can be ignored in terms of vehicle recognition as there is nothing relevant for
this task. Concerning the high resolution of the camera and the amount of data that needs
to be processed a region of interest (ROI) is used. By using the ROI the computing time is
optimised and the focus is kept on the important part of the image.
For finding the ROI in the image a frame of the videostream was grabbed. The frame was
loaded with the program GIMP1 (GNU Image Manipulation Program) to manually find the
x- and y-coordinates of the ROI. The stabilisation algorithm returns an offset for the x- and
y-coordinate that is added to the previously selected points of the ROI. By this method the
ROI is moved horizontal and vertical but the size of the ROI remains the same. The whole
operations are done only on the ROI.
As further computing time optimisation the white lines, which limit the width of the street,
are choosen as a further reduction of the ROI. Therefore a mask matrix is created to have
the ability to check whether a point is in or outside the focused area of the image. As mask
matrix a single-channel matrix with 8-bit depth is used to preserve memory and the size of the
previously defined ROI. In the mask matrix the non-relevant pixels are set to zero to indicate
that the pixel is outside the focus and have the value one if it is inside the focus. By doing
so no unnecessary features are found, have to be tracked and filtered out afterwards as they
are not in the scope. The size of used memory will be unchanged by this. To find the white

1http://www.gimp.org/

46

http://www.gimp.org/

4.2 Approach I: Background subtraction, feature detection and feature tracking

lines hough transformation [GW92] is used. At first the image is converted to a binary image.
Afterwards the image processed by the OpenCV function cv::HoughLinesP. This method uses
an approach which is described in [MGK00]. The output of the function is a vector with the
start and end point of the lines. By having the points the length of the vector is calculated
and evaluated. Taking the two longest lines was investigated but this was not successful. The
result was that the lines were both on the left or right side. Therefore the position of the end
and start points were taken into consideration. By knowing that one of the two points, which
define the line, has to be in to lower part of the image. For the left line in the lower left part
and in the lower right part for the right line. The points however were not exactly at the
corner points of the image. For this an additional constraint was added. The point has to
be near the corner point. Therefore a rectangle with width and height of 100 pixels is set as
possible range where these points are. Now the lanes get properly detected. See Figure 4.1 for
a visual representation.
This was however not sufficient to create the mask matrix as the line was not from the top to

Figure 4.1: At the bottom are the red rectangles marking the search area for the white lines.
The two successful detected lines are marked green.

the bottem of the image. As the start and end point of the line is known, the linear equation
y = m · x+ b is used to calculate the points at the top and bottom. The slope m is calculated
with Equation 4.2.

m = ∆y
∆x = y2 − y1

x2 − x1
(4.2)

As OpenCV uses a coordinate system where the point (0, 0) is at the top left the offset of height
of the image had to be added to the offset b. The formula used is described in Equation 4.3.

b = (heightimage − y1 − x1 ·m) (4.3)

Finally the mask matrix is initialised with “1”, iterated and for all points which were not inside
the the traffic lane borders is set to zero. The implementation can be seen in Algorithm 4.1.

47

4.2 Approach I: Background subtraction, feature detection and feature tracking

The resulting ROI is shown in Figure 4.2. Another possible approach is introduced in [GO00]
using a histogram-based segmentation and decision trees. As last step the previously aquired

Figure 4.2: In green is the rectangular ROI marked and in red is fitted ROI. The ROI changed
from a recangular shape to trapezoid shape, covering now only the street.

background is loaded from a file. The background image is also converted to a grey scale
image for later usage in the foreground extraction.

4.2.2 Foreground extraction

The aquiration of the foreground is done by subtracting the current image from the previously
obtained background, see Equation 4.4.

MForeground = MCurrentImage −MBackground (4.4)

Therefore the input image is converted to a grey scale image. The result of the subtraction do
not provide accuracy on a high level. Therefore the image is taken under further processing.
As next step the image is binarised by thresholding which is applied to the image. Depending
on the level of the threshold value the resulting shapes of the cars do not contain a lot of
shadow. But for vehicles with a similar color like the street the detection does not achieve
good detection results. The foreground image is processed by thresholding to convert it to
a binary image. After this the morphological operation closing is applied. This way smaller
holes in the mask matrix can be filled which compensates small errors which are caused by the
subtraction. The difference in the image before and after closing can be seen in Figure 4.3.

48

4.2 Approach I: Background subtraction, feature detection and feature tracking

Algorithm 4.1 Detection of the street limiting lines
procedure limitROI(roiImage, maskMatrix)

LinesHough ← houghTransform(roiImage)
for linei ∈ vector LinesHough do

if (linei ∈ left corner) & (|linei| > |lineleft| then
lineleft ← linei

else if (linei ∈ right corner) & (|linei| > |lineright|) then
lineright ← linei

end if
end for
maskMatrix← 1
for all pixelx,y ∈ maskMatrix do

if pixelx,y not between traffic lane borders then
pixelx,y ← 0

end if
end for

end procedure

4.2.3 Vehicle extraction

The mask matrix from the previous step contains the vehicle shapes. Extraction of the single
vehicles from this mask matrix is conducted. For extracting the vehicles from the mask matrix a
connected-component labeling algorithm was implemented. The connected-component labeling
pseudo algorithm can be seen in Algorithm 3.3. During the labeling of the image each found
vehicle is added to the vector which contains all found cars in the current image. The vector
uses the struct defined in Listing 4.1. Therefore a center point is calculated, the rectangular
hull which contains the shape of the vehicle, the type of detected vehicle and an temporary ID.
The detection of the type is done by using the width and length of the rectangular hull. The
size, width and length, for each type is preset. The pseudo implementation is in Algorithm 4.2.
For the filling of the shapes the OpenCV function cv::Floodfill is used.

4.2.4 Feature detection and assignment

So far all vehicles are extracted and stored in the vector. In this step the features in the image
are detected and assigned. For this detection the Shi-Tomasi feature detector is used. This
detector was chosen as vehicles have a rectangular shape and can contain corners. The ROI
matrix is processed with the Shi-Tomasi feature detector which is explained in subsection 3.2.1.
Before the detection the variable for the quality of features is set. When processing the image
and finding a feature it is first checked wheter the point is between the traffic lane borders.
This is done by checking the mask matrix if the point is on a “1” in the mask matrix. The
next step is to assign the feature to the corresponding vehicle. Therefore the vector with the
vehicles is iterated and checked wheter the point is inside the hull. If it is, then the feature
point is added to the vector vehicleFeatures of the vehicle otherwise the next vehicle is

49

4.2 Approach I: Background subtraction, feature detection and feature tracking

Figure 4.3: The upper image shows the extracted foreground. On the bottom is erosion
applied to the image to fill small holes and remove single pixels which do not
belong to the foreground.

checked. If it is not inside any vehicle hull the feature point is discarded. The vehicle have
features that are traceable. In Figure 4.4 the found features are marked by red points.

50

4.2 Approach I: Background subtraction, feature detection and feature tracking

Algorithm 4.2 Extraction of vehicles from the mask matrix
procedure extractVehicleShape(InputImage, maskMatrix)

counter ← 2
IDCounter ← 0
for Pixel(x, y) ∈ maskMatrix do

if Pixel(x, y) 6= 0 then
Set value of all pixels connected with the same value to counter
Get rectangle
Calculate center position
Set ID
Push vehicle information to vector
IDCounter++

end if
end for

end procedure

Figure 4.4: Features detected in the foreground image with the Shi-Thomasi detector. The
image is overlayn by the mask matrix to see the detected shapes of the vehicles.

4.2.5 Feature tracking and speed calculation

As every vehicle has its features these features can be used for tracking the vehicle. For
tracking the previous image and the previous vehicle vectors have to be saved for each iteration.
The tracking algorithm used is the pyramidical implementation of the Lucas-Kanade tracker,
explained in subsection 3.2.2 on page 35. The tracking is done by iterating the vector with the
previous vehicles. For each feature of the vehicle the tracker function is called with the feature
point, the input image and the previous image as input. The return value of the function is
the new estimated position of the feature point. This point is searched in the vector of the

51

4.2 Approach I: Background subtraction, feature detection and feature tracking

vehicles, extracted from the current image. If the feature point is found inside the hull of a
vehicle then the vehicle is considered successfully tracked.
When a feature is successfully tracked the current and the previous position is known. This
enables the calculation of the speed. Therefore the two positions are passed to the speed
calculation function.
The function uses cross ratio to compute the distances from the image coordinates to real
world distances in meter. Therefore four colinear points have to be predefined in the image
and their distance in the real world have to be known. A possibility is the use of the distance
the marker posts have as there is a regulation about the distance between two marker posts.
But it might be that these are due to an previous accident are damaged or removed. To be on
the safe side the markings on the road were used. As stated in subsection 3.5.1 the distance
between two lines is regulated by law in [RMS80]. The distance in pixel is calculated by using
the pythagorean theorem. But with the x-coordinate set to be on the collect line of the three
predefined points. Then the cross ratio value λ was calculated. Now the real world distances
are used and the cross ratio formula is transformed using Equation 4.5.

distanced = λ · (distancea · distanceb)/distancec (4.5)

The distance was calculated for both, the previous and current position. Finally the positions
were subtracted and converted to km/h with consideration of the frame rate as passed time,
see Equation 4.6.

Speed = 3.6 · (distanceprevious − distancecurrent)/∆time (4.6)

The value of ∆t is 1/(frames per second) and the coefficient 3.6 is the used by converting from
m/s to km/h. This is shown in Equation 4.7.

x
m

s
= x · (60 · 60)sec

1000m = x · 3.6km
h

(4.7)

If the vehicle is found for the first time the calculated speed is then stored in the current
vehicle. Otherwise the previous speed and the current calculated speed is added and divided
by two to smoothen the result in case of inacurate speed calculation. As the speed calculation
needs two frames this works after the completion of the initialisation. The result of tracking
can be seen in Figure 4.5.

4.2.6 Processing of the collected data

In this last step the vehicles are drawn and the data is saved to a xml file. For the drawing of
the detected vehicles the list of current vehicles is iterated and for each vehicle the ID and the
current speed is displayed. The hull, which was detected in subsection 4.2.3, is drawn around
the vehicle. To show the type of the detected vehicle the color blue, red and green is used as
border for cars, motor bikes and motor trucks.
For storing the vehicles the xml format of LISA [LIS] is used. It is possible to store all kinds
of information in the proposed form. A sample of the extracted information stored in the xml
file can be seen in Listing 4.2. The written data is stored in the home directory of the logged
in user in the folder “XMLData”. In Figure 4.6 the completly processed image is shown.

52

4.2 Approach I: Background subtraction, feature detection and feature tracking

Figure 4.5: The blue vehicle gets detected correct and grouping of three vehicles is done due
to bad detection. The grouping of the vehicles is caused by being close to each
other and due to shadow cast. Both images show the same region but have at a
different time.

53

4.2 Approach I: Background subtraction, feature detection and feature tracking

Listing 4.2 Output of approach I in xml format for usage with LISA
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<VehicleList xmlns="http://www.asset.eu/lisa">

<Vehicle ID="197" TimeStamp="19" VehicleType="Bike" Width="318" Length="74" PosLong="723"
PosLat="1015" LaneID="0" Speed="67" /></Vehicle>

<Vehicle ID="52" TimeStamp="19" VehicleType="Passenger Car" Width="266" Length="472"
PosLong="1357" PosLat="528" LaneID="2" Speed="62" /></Vehicle>

</VehicleList>

Figure 4.6: The image shows the processed and marked image using the first approach. The
vehicles are marked with the rectangles and the gathered information is printed.
On the upper left is additionaly the frame number shown.

54

4.3 Approach II: Perspective transformation and feature tracking

4.3 Approach II: Perspective transformation and feature tracking

In this approach of vehicle detection and tracking the image is perspective transformed. The
tracking of vehicles is done by feature tracking. The ROI is selected manually with the mouse.
This makes this approach more adaptable to different views of the street. The data structure
is in Listing 4.3. Before starting with this approach the user has to set the number of lanes
which. As standard this is set to three. Also the distance between the road markings has to
be set as this is later used for the speed calculation.

Listing 4.3 Data structure for storing all information aquired in the second approach for an
vehicle.
<listing name="Data structure">

struct templateVehicle {
//Stores the ID-number assigned to the vehicle.
int IDNumber;
// The rectangle which covers the area of the vehicle.
cv::Rect carHull;
// The current position of the vehicle.
cv::Point2i center;
// Current speed of the vehicle
int speed;
// Defines the type of vehicle: 1 for motor bikes 2 for motor truck and 3 for cars.
int type;
// The vector containing the found feature points of the vehicle which is used for

tracking.
std::vector <cv::Point> vehicleFeatures;
// The lane the vehicle is driving on
int lane;

};
</listing>

4.3.1 Preparational work

After starting the program there are a various things to set up. At first the perspective matrix
P is calculated. For the details about the calculation refer to subsection 2.2.9. The user input
is used to get the four points of the perspective transformation and computes automatically
the other four points to have a rectangular image. For this the points, which are chosen by the
user, are enclosed by a minimum bounding rectangle. Before continuing with the next step
the background, which was already extracted, is loaded from a file. The background is warped
with the calculated perspective matrix and converted to a grey scale image to use it for the
foreground extraction. For later use the resulting image is refered to as perspectiveBackground.
in the rest of this approach.

55

4.3 Approach II: Perspective transformation and feature tracking

4.3.2 Foreground extraction

The foreground extraction in the second approach is similar to the method in the first approach.
The difference is that the image is perspective corrected. At first the current input image is
warped using the perspective matrix P. Then the warped image is converted to a grey scale
image, called greyInput. Then the greyInput is subtracted by the perspectiveBackground, see
Equation 4.8.

Foreground = greyInput− perspectiveBackground (4.8)

The resulting image has no clear shapes of the vehicles and even results in vehicles being split
in two or more parts of connected pixels. Therefore the image has to be further processed.
Thresholding is applied to the image which binarises it. It can also reduce the amount of
shadows if the threshold value is set to a reasonable value. Then the morphological operation
closing is done to reduce this problem. As this operation fills small holes, see subsection 2.2.5,
it can also connect the split up vehicles together again. This leads to better results concerning
the vehicle shape. The application of morphological closing to the image is shown in Figure 4.7.
This binary image is uses as mask to find pixels in the foreground and for the vehicle extraction.

Figure 4.7: The image on the left is before the morphological operation closing is performed.
On the right image is the image after closing. Some single pixels are removed
and the vehicles have a more rectangular shape.

4.3.3 Vehicle extraction

For extracting the vehicles a connected-component labeling algorithm is used as in the first
approach. The enhanced binary image contains the shapes of the vehicles and can be processed.
The method for extraction is to iterate over each pixel in the image and label each connected

56

4.3 Approach II: Perspective transformation and feature tracking

pixels. By doing so the vehicles which are in the foreground will be extracted. The extracted
vehicles obtain an ID, the center position of the vehicle, the lane the vehicle is on, the type
and the size of the vehicle is estimated. The ID is an increasing counter, starting with zero.
After each assignment the counter is increased by one. The lane detection is done by checking
if the center is to the left of the first lane, if so then the vehicle is on the left. If it is not,
the check is be done for the second, third, . . . lane. The carHull of a vehicle is a return value
of the used function cv::Floodfill. The size is derived from the size of the rectangle and the
center is the center of the rectangle. The type is estimated by the ratio of the length and
width of the rectangle. Through observation the following ratios were found out: A motor
bike has roughly the length to width ratio of 2:1, a car has around 1:1 and a motor truck has
around 6:4. Every vehicle is stored in a vector with the type templateVehicle. Although the
closing operation was performed in the previous step, there is still a small amount of vehicles
which have not been properly connected. Therefore the height of the vehicle is increased by
a few pixels. Now there is a check to find the rectangles which intersect with others. When
two rectangles intersect the length of these two is combined and the width is set to the higher
value of the two. A last step checks wheter the size of a vehicle is above 1.5 times the size of a
lane. The value of 1.5 is choosen as due to shadows the vehicle appear larger. This is done as
in dense traffic vehicles, which are close to each other, can be distinguished.

4.3.4 Feature detection

To detect the features the Shi-Tomasi detector is used. This detector extracts edges as features.
See subsection 3.2.1 for a detailed explanation. As in the first approach the features are only
detected in the specified ROI, which is selected by the user at the beginning. Every time a
feature is detected a check wheter the feature is in the rectangle of a vehicle is conducted.
Therefore the vector which contains the vehicles is iterated as long as no vehicle rectangle is
found that contains the point of the feature. If the vehicle is found the feature point is added
to this vehicle in the vehicleFeatures vector.

4.3.5 Feature tracking and speed calculation

Up to now the vehicles have been extracted, the features in the image are detected and assigned
to the corresponding vehicle. The tracking of the features is now conducted. This procedure is
simliar as in the first approach. For the next step in the application flow the previously found
features are tracked and the speed calculation is done. To track the features the Lucas-Kanade
tracker from section 3.2.2 is used. When using the tracker the current image, the previous
image, the current list of vehicles and the previous list of vehicles are mandatory. As in the
initialisation of the program there are no previous images or previous vehicle lists, the tracking
can start after the second iteration. To track the features the vector containing the previous
vehicles is iterated. Then the current and previous image is processed by the feature tracker,
which returns the position of the feature in the current image.
As the position of the features are points, it is checked wheter the point is in any car and
the tracking is successful. Therefore are the current vehicles iterated and for each vehicle is

57

4.3 Approach II: Perspective transformation and feature tracking

Listing 4.4 Output of approach II in xml format for usage with LISA
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<VehicleList xmlns="http://www.asset.eu/lisa"></Vehicle>

<Vehicle ID="0" TimeStamp="0" VehicleType="Bike" Width="40.6342" Length="33.3008"
PosLong="755" PosLat="553" LaneID="0" Speed="0" /></Vehicle>

<Vehicle ID="1" TimeStamp="0" VehicleType="Passenger Car" Width="13.2241" Length="1.56285"
PosLong="1086" PosLat="443" LaneID="1" Speed="0" /></Vehicle>

</VehicleList>

checked if the point is enclosed in the rectangle carHull of the vehicle. If it is enclosed the
vehicle is tracked, otherwise the next vehicle is checked.
When having tracked a vehicle between the two consecutive images the speed of this vehicle is
calculated. At first the distance between the two center points, the variable center, of the
vehicles is calculated with pythagorean theorem. At the beginning in the subsection 4.3.1 the
user has to set the ROI and mark the distances between two road markings. The distance
between these is fixed and can therefore be used to calculate the size of a pixel in the real
world. With the size of a pixel the actual distance in meter is calculated. As the frame rate
is used as constraint for the passed time between the two images. The used ∆t is 1/fps. To
transform from m/s to km/h the value has to be multiplied with the value 3.6. Before the
actual speed calculation the distance in pixels is calculated by Equation 4.9.

DistancePixel =
√

(xcurrent − xprevious)2 · (ycurrent − yprevious)2 (4.9)

The Equation 4.10 is used to calculate the speed of the vehicle.

Speedkm/h = (DistancePixel · pixelSize · 3.6)/fps (4.10)

In Figure 4.8 is the successful tracking of three vehicles over ten consecutive frames shown.

4.3.6 Processing of the collected data

In this last part of the program the collected data about the vehicles is mapped on the image
and stored to a file. For the mapping the vector of vehicles is iterated and around each vehicle
is a rectangle drawn with the size of carHull around the center of the vehicle position stored
in center. The color of the border line depends on the type of vehicle. It is blue if it is a car,
green for a motor bike and a motor truck is framed with a red color. The displayed information
as text on the image is the ID, the type , the lane and the speed of the vehicle. The saved
file uses also the xml format from LISA [LIS]. In comparison to the first approach the saved
information is enhanced by the lane the vehicle drives on. The files are stored in the home
directory of the user in the folder XMLData. If it does not exist it will be created. An example
can be seen in 4.4. In Figure 4.9 is the image shown which is the output of the plug-in.

58

4.3 Approach II: Perspective transformation and feature tracking

Figure 4.8: Three detected vehicles in the upper image. The lower image shows the same
detected vehicles after 10 frames successfully tracked. In both images is the same
part of the image selected.

59

4.3 Approach II: Perspective transformation and feature tracking

Figure 4.9: The resulting image when processing the video. All vehicles are marked and their
information is printed. As additional information is the frame rate shown.

60

4.4 Approach III: Perspective transformation, position estimation and template matching

4.4 Approach III: Perspective transformation, position estimation and
template matching

This approach allows the user to select the ROI and the road markings in the image. The
input images are perspective transformed to get a bird’s eye view of the street. Different to
the other two approaches is that no feature is detected and tracked but the new position of
the vehicle is estimated. Additionally template matching is used to confirm the correctness of
the estimation. The focus in this approach is also the achievement of real-time processing.

4.4.1 Preparational work

At first the user has to define the region of interest and the road markings manually. To do
this the Qt framework is used the get the coordinates which are clicked on the image. The
road markings have to be clicked to have a reference of the pixel size in meter. Therefore the
gap between two road marking is selected as this distance is regulated, see [RMS80].
After all points have been set the perspective matrix is calculated. To get the perspective
matrix a total of eight points is needed. Four of these points, which define the perspective
projection are already selected by the user. The other four points are set automatically to the
enclosing rectangle of the selected region of interest.
As last step in the preparation the background image is transformed by the perspective matrix
and converted to a grey scale image. This image is stored in the variable greyBackground.
The data structure for this approach is in Listing 4.5.

Listing 4.5 Data structure for storing all information aquired in the third approach for an
vehicle.
<listing name="Data structure">

struct templateVehicle {
//Stores the ID-number assigned to the vehicle.
int IDNumber;
// The rectangle which covers the area of the vehicle.
cv::Rect carHull;
// The current position of the vehicle.
cv::Point2i center;
// The current speed of the vehicle.
int speed;
// Defines the type of vehicle: 1 for motor bikes 2 for motor truck and 3 for cars.
int type;
// The lane on which the vehicle is on.
int lane;
// This matrix contains the vehicle extracted from the image.
cv::Mat vehicleImage;

};
</listing>

61

4.4 Approach III: Perspective transformation, position estimation and template matching

4.4.2 Foreground extraction

In this approach the foreground is extracted by using the same method as in the second
approach. At first the input image is converted to grey scale and stored in the variable
greyInput. The foreground is extracted using the method of subtracting the greyInput
from the grey background image greyBackground in Equation 4.11.

Foreground = greyInput− perspectiveBackground (4.11)

This leads not to perfect results. Therefore the image needs to be further processed. The
image is binarised by thresholding which, if a good value is found, can also reduce the amount
of shadows. The binary image now has either the values “0” or “1” even though it is possible
to store values in the range of 0. . . 255 . This is done to use the connected-component
labeling algorithm in the next step of vehicle extraction. Finally the image is processed by the
morphological operation closing. The advantage of this is that the binary image may contain
holes which can be filled and a connected shape of a vehicle is the result. This binary image is
used for the vehicle extraction step.

4.4.3 Vehicle extraction

Extracting the vehicles is done by a connected-component labeling algorithm. This is also
done in the previous two approaches. This algorithm iterates over the image and if a point is
found whose value is 1, the value of this and all pixels interconnected with the same value ate
set to the value of the counter. The counter is initialised with the value of two, as zero and
one is already taken. This way each vehicle gets a unique label. For setting the values the
OpenCV function cv::Floodfill was used. The return values of this function is the center of
the shape and a bounding box. The center point is used as center for the vehicle and the
bounding box is stored as the carHull. The type of vehicle is estimated by using the real
world sizes of the detected vehicle. Therefore the width and length are multiplied by the pixel
size in meters. At first a check wheter the width of the vehicle is larger than two meters is
performed, if it smaller than two meters the vehicle is a motor bike. Otherwise it is tested if it
is a car or a motor truck. This is done by using the length in meters. If the vehicle is longer
than six meters it is a truck and otherwise a car. Six meters are chosen as cars with trailers
should be still detected as cars. Also vans or sport utility vehicles are larger than normal cars.
Even though the small holes were filled in the previous step there might still be vehicles that
are not connected. Therefore the length of the vehicle is increased by a small amount and it is
checked wheter there are intersecting bounding boxes. If they intersect they are combined in
length and the width is set to the higher value.

4.4.4 Position estimation

In the first two approaches the vehicles were tracked by using a feature tracker. For this
approach the new position of the vehicle is being estimated. To estimate the position the
current speed of the vehicle is taken to calculate the distance driven in the the time ∆t. For

62

4.4 Approach III: Perspective transformation, position estimation and template matching

the calculation the predefined input for the distance is taken into account as it defines the
size of a pixel. Each vehicle in the vector is iterated. For the new position of the vehicle the
speed variable from each vehicle is used to calculate the travelled distance in pixels. Distance
is calculated by the Equation 4.12.

Distance = V ehiclespeed

distance of marking · fps · 3.6 (4.12)

The travelled distance is added to the x-coordinate to estimate the position.
If there is no previous calculated speed, the assumption is made that the vehicle drives at the
speed of the average speed of the lane which is continuously updated.

4.4.5 Template matching

To ensure that the vehicle is tracked correct, template matching is used. The vehicleImage is
used as template for the matching. From the position estimation the new position of the vehicle
is known. Therefore the vector with the current vehicles is iterated and each vehicle is checked
if the estimated position is in the carHull rectangle. If this is true the vehicleImage of the
currently iterated vehicle and the vehicle from the previous vector whose match is searched, is
resized to the same size. The matching with the squared difference in Equation 4.13

ResultSquaredDifference(x, y) =
∑
x′,y′

(
T (x′, y′)− I(x+ x′, y + y′)

)2 (4.13)

is calculated and if the matching is good, meaning the resulting value is near zero, the vehicle
is successfully found.

4.4.6 Speed calculation

In this approach the speed calculation is done separately instead of during the feature tracking
as in the first and second approach. As the vehicles are matched with the template matching,
the two center points of the vehicles are used to calculate the distance in pixels. To get the
distance the pythagorean theorem is used in Equation 4.14.

DistancePixel =
√

(xcurrent − xprevious)2 · (ycurrent − yprevious)2 (4.14)

The user provides the defined length in meter for the selected length in pixels. Therefore
the pixel size in meters is calculated. As next step the distance in meters is calculated by
DistancePixel · pixelSize. With the real distance and the ∆t from the frame rate the speed in
m/s and then in km/h can be calculated. This is done using the Equation 4.15

Speedkm/h = DistancePixel · pixelSize · 3.6/fps (4.15)

The calculated speed is stored in speed of the current vehicle. To smoothen the possible error
the speed of the current and the previous vehicle is added and divided by two. In Figure 4.10
is the successful tracking shown.

63

4.4 Approach III: Perspective transformation, position estimation and template matching

Figure 4.10: The tracking of two vehicles in the left image. On the right did the blue vehicle
leave the camera view. Both images represent the same area in the image.

4.4.7 Processing of the collected data

In this final part of the approach, the collected data in the approach is now dispayed on the
image and stored to a file. The information displayed cover the ID, speed and the lane as
text and the vehicle type as a colored rectangle. The color of the rectangle is blue for cars,
green for motor bikes and red for motor trucks.
All of the information as the ID, size, the lane the vehicle is currently on, the speed and
the type of the vehicle is stored in an xml file. But there is a little change in the data of the
size, the size is multiplied by the pixel size to get the real size of the vehicle. The files are
stored in the home directory in the subfolder XMLData. If it does not exist it will be created
automatically. The xml file has the format which is compatible with LISA [LIS]. This way
the plug-in could be used to deliver the data directly to the server where the data is further
processed. The data format used is in Listing 4.6. In Figure 4.11 is the image shown with the
detected vehicles.

64

4.4 Approach III: Perspective transformation, position estimation and template matching

Listing 4.6 Output of approach III in xml format for usage with LISA
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<VehicleList xmlns="http://www.asset.eu/lisa">
<VehicleList>

</Vehicle><Vehicle ID="2" TimeStamp="8" VehicleType="Truck" Width="18.3556"
Length="7.10187" PosLong="1035" PosLat="645" LaneID="1" Speed="116" />

</Vehicle><Vehicle ID="3" TimeStamp="8" VehicleType="Passenger Car" Width="32.6686"
Length="24.6926" PosLong="637" PosLat="662" LaneID="0" Speed="125" />

</Vehicle><Vehicle ID="43" TimeStamp="8" VehicleType="Passenger Car" Width="32.6686"
Length="24.6926" PosLong="637" PosLat="662" LaneID="0" Speed="119" /></Vehicle>

</VehicleList>

Figure 4.11: The image shows the processed and marked image using approach three. Every
detected vehicle is marked and the previously extracted information is printed.

65

5 Methods for vehicle detection and tracing

5.1 Evaluation

The evaluation takes a closer look at the characteristics of the approaches. Covered here are
the computational time as the goal was to achive real-time computation. The detection rate
and the tracking of the vehicles are a measurement of reliability of an approach. The tracking
of the vehicles and the type estimation are also evaluated here. For the evaluation a sequence
of 500 video frames used. A total of 30 different vehicles appear in the sequence. Of these 30
vehicles is one of them a motor bike, three motor trucks and the remaining 26 vehicles are cars.
For the tracking a small region of the image was used which can be seen in Figure 5.1. For
the evaluation an IBM ThinkPad X60 with an Intel Core 2 CPU T5500 which is clocked at
1.66GHz and 3GB RAM. The operating system is Ubuntu 12.041. The video was recorded at
50 frames per second but it was converted so it is running at 25 frames per second. The format
of the video is H.2642 which already uses a fair amount of resources for playback. For the
conversion the program Handbrake3 was used. The average computation time for processing
a video frame in FloDiEdi is 75 milliseconds. The accuracy of the speed calculation is not
evaluated as there is no reference vehicle whose speed is known.

5.1.1 Computational time

As real-time is an important part of this thesis this is evaluated first. For the rating are ten
consecutive frames processed by each of the approaches. The time is clocked using the two
plug-ins cycleTime and doubleDisplay, shown in Figure 5.2. The plugin cycleTime has four
different output connectors, each in the double format, one for the cycles per second, the
average number of cylces per second, the time for one step and the average time for one step
in milliseconds. One step is equal to one processed frame of video. To display the results the
doubleDisplay plug-in is used which has one input in double format and displays it. The first
approach is quite slow and needs for one step 3,402 milliseconds, so the resulting speed is
not near real-time. On average are 3,011 milliseconds passed in the second approach for one
step, which is only slightly faster. The third approach processes one frame on average in 470
milliseconds. The fastes approach is the third. This is mainly because the feature detection and

1http://www.ubuntu.com/
2http://www.mpegla.com/main/programs/AVC/Pages/Intro.aspx
3http://handbrake.fr/

66

http://www.ubuntu.com/
http://www.mpegla.com/main/programs/AVC/Pages/Intro.aspx
http://handbrake.fr/

5.1 Evaluation

Figure 5.1: The pink marked area is the window used to rate wheter the tracking was
successful or not. This does not count for the seperate evaluation of the complete
tracking of a vehicle.

tracking are very time consuming tasks. The position estimation and the template matching
in contrary is very light weight. The results are presented in the Table 5.1.

Figure 5.2: The two provided plug-ins of FloDiEdi to clock the average time of a step for
the evaluation of the computational time. The displayed number is the clocked
time for the third approach.

67

5.1 Evaluation

Approach Average computational time

Approach I 3,402 milliseconds
Approach II 3,011 milliseconds
Approach III 470 milliseconds

Table 5.1: This table shows the average computational time for one frame. Averaging is done
over ten consecutive frames. The fastes and near real-time approach is the third
approach.

5.1.2 Vehicle detection rate

The reliability of the approaches consits mainly of the successful detection and the tracking
of the vehicles. Only correct detected vehicles are counted here. Table 5.2 shows the result
of the successful detected vehicles. There is also a table showing the vehicles being grouped
together as these are too close to each other or the shadow is being falsely detected as part of
the vehicle. This can be seen in Table 5.3.

Approach Detected vehicles

Approach I 28 vehicles
Approach II 27 vehicles
Approach III 24 vehicles

Table 5.2: The number of successfully detected vehicles. A total of 30 vehicles are in the
evaluated time frame.

Approach Grouped vehicles

Approach I 3 vehicles
Approach II 3 vehicles
Approach III 1 vehicles

Table 5.3: During the evaluation of the video a small number of vehicles are falsely detected
as these vehicles are too close together.

5.1.3 Tracking

Successful tracking is important to know how many vehicles are on the street and to do
speed calculations. If the tracking is not working for every new frame there will be completly

68

5.2 Appraisal of results

new vehicles thus making it hard to make any assumption about the traffic scene. For the
evaluation of successful tracking are two distinctions made. The first is that the the tracking
has to work in the predefined area which is shown in Figure 5.1. Second the tracking works in
the whole image from the appearance of the vehicle at the top of the image to the vanishing at
the bottom. In Table 5.4 the results of the tracking in the pink window are shown. Table 5.5
shows the result of the vehicle tracking in the whole image.

Approach Successful tracked vehicles

Approach I 2 vehicles
Approach II 10 vehicles
Approach III 24 vehicles

Table 5.4: The amount of vehicles which were successfully tracked in the pink window which
is shown above in Figure 5.1.

Approach Successful complete tracked vehicles

Approach I 0 vehicles
Approach II 7 vehicles
Approach III 22 vehicles

Table 5.5: The amount of successfully tracked vehicles in the whole image.

5.1.4 Vehicle type detection

In this evaluation the correct type of vehicle is probed. There are three types where the
approaches have to distinguish. These three types are cars, motor trucks and motor bikes.
Distinction of these types is important to get the information about the load of the different
types. Motor trucks with a trailer are much heavier than a normal car which means the streets
gets more damaged by these heavy vehicles. The first approach uses the size in pixels of the
vehicle to estimate the type. For the second approach the type estimation is done by using
the ratio of height to width. The third approach uses the real size of the bounding box of the
vehicle. Therefore the size of the box in pixels was multiplied with the pixel size in meters. In
Table 5.6 is the result of the evaluation of the successful type detection.

5.2 Appraisal of results

Starting with the first approach which ranked in last position. The overall performance and
reliability of the first approach was not satisfying. Concerning the performance it is very slow

69

5.2 Appraisal of results

Approach Correct detected vehicle type

Approach I 19 vehicles
Approach II 16 vehicles
Approach III 20 vehicles

Table 5.6: Most correct vehicle types were detected by the third apporach. This is due to
the consideration of real world sizes of the vehicles.

with 3402 milliseconds processing time for one frame. The detection rate was the highest but it
also detects the most grouped vehicles. Tracking was not working reliable as only two vehicles
were tracked in the marked area and no tracking in the whole image.
The second best in the evaluation is the second approach. Performance was slightly better
than the first with 3011 milliseconds for one frame. The detection of two or more vehicles
grouped to one vehicle was the same as the first approach but it was a bit less accurate with
the detection of single vehicles. Tracking worked in comparison with the first approach, with
five times more tracked vehicles, much better.
The best approach is the third approach. The reason is that it has the fastest computation
time of the three approaches for one frame with 470 milliseconds. The detection rate was the
worst but also only one detection of grouped vehicles. For the tracking it was the best, even
the tracking over the complete image was working very well.

70

6 Conclusion of work and outlook

As image processing is used in a wide field of applications such as for surveillance, in vehicles
as supportive system or even in home entertainment systems there will be much more to come.
Nowadays it is possible to use high resolution cameras as these are located in a reasonable
price segment. It depends on the actual field of application. With a look at the Microsoft
Kinect R© sensor the with a maximum camera resolution of 640× 4801. For body movement
detection this is an sufficient resolution. But more precise details cannot be recognised such as
fingers or finger movement.
Concerning the overall bad performance in achieving real-time computation, as stated in the
previous chapter, the CPU is not cutting-edge technology. So running an approach at 25 or
even 50 frames per second was tried to achieve. In my opinion real-time in terms of traffic
surveillance systems is achieved if the frame rate is lower than 25 frames per second which
should suffice. If storing the captured images to a hard drive with an resolution of 1920× 1080
and 50 frames per second the demand of memory is big for long term surveillance. For an 11
minutes long recording are over 2GB of space are needed and for a whole day of recording
around 262GB. To increase the overall performance and storage size it is possible to resize the
image as the used high resolution images may not be mandatory. Neglecting the amount of
storage needed there are some ideas to improve the results and increase reliability.
To increase the vehicle extraction rate it is possible to make an update the background every
n-th frames. This way changes in illumination may not have a big impact on the system. But
this does not necessarily solve the problem when the weather situation changes to heavy rain,
thick fog or heavy snow. If this is the case other sensors have to be included in the system
such as laser or radar sensors. In the paper by Foresti and Snidaro a sensor network is used to
handle changes in the wheater and day and night changes [FS02]. The collected data of the
different sensor (infrared, radar, optical, . . .) has therefore be fused.
Instead of template matching it is possible to use Speeded Up Robust Features (SURF) and a
different templates of vehicles and vehicle types to detect and to typify them. SURF is able to
detect feature points in image [BETVG08]. If a matching template is found then the type is
known and if there are only different kind of vehicles on the street, could even be used without
tracking, but this may not appeal to real world examples as there is only a limited number of
different vehicles. Or if not many templates are available, it is possible to use an evolutionary
algorithm that has the prototype of a motorbike, car and motor truck and let the program
achieve a better distinction between the types.
Apart from the direct methods of extracting, detecting and tracking of vehicles there are
other things that have to be considered when using this for traffic surveillance. The problem

1http://msdn.microsoft.com/en-us/library/microsoft.kinect.depthimageformat.aspx

71

http://msdn.microsoft.com/en-us/library/microsoft.kinect.depthimageformat.aspx

6 Conclusion of work and outlook

with several vehicles getting grouped together for example. It could be better to use image
subtraction in a different color model than the RGB such as the HSV (Hue, Saturation, and
Value). Also the handling of vehicles being occluded by other vehicles, animals or objects
other than vehicles on the road and also the handling of wrong way drivers, as adressed in the
introduction. To detect wrong-way driver one can think of different ideas. The first idea is that
the windscreen and the headlights can not be detected. A vehicle with a special coachwork
could be detected false and a false warning is sent out. This is not very reliable. The other
and better idea because is to check the position of the vehicle during the speed calculation.
During the calculation the previous and current position of one vehicle is processed and a
warning can be posted if the vehicle is driving with a negative speed compared to the other
vehicles in the image. This is very effective because the property of having a negative speed,
compared to the other vehicles, is a unique property that wrong-way driver have.
To give a general speed up of the approaches it is possible to make use of multithreading and/or
GPU-accelerated programming. For taking advantage of a fast GPU there is a technique
which was developed by nVidia called CUDA (Compute Unified Device Architecture). On
the website of nVidia is claimed that there is a performance boost in FFT of ten times with
the NVIDIA cuFFT library and the NVIDIA cuSPARSE library can speed up sparse matrix
operations2.
If work is based on this thesis I would recommend using the third approach as it is light weight
in terms of needed performance and achieves high reliability. But instead of the position
estimation used in the approach it is better to use a Kalman filter for higher accuracy in terms
position estimation[Kal60].

2https://developer.nvidia.com/gpu-accelerated-libraries

72

https://developer.nvidia.com/gpu-accelerated-libraries

A Apendix

A.1 Instructions for using the vehicleDetection plug-in

General information about the plug-in

The plug-in provides three different methods to detect and track vehicles. These methods are
FeatureTrack, FeaturePersp and TemplateMatch. FeatureTrack is a method which uses feature
detection with the Shi-Tomasi feature detector and for tracking of the features the Lucas-
Kanade feature tracker, implemented in a pyramidical approach. FeaturePersp uses perspective
transformation to create a top-down view of the street and for detection and tracking similar to
the method in FeatureTrack. The TemplateMatch method uses also perspective transformation
but the vehicle position is estimated and affirmed by template matching of the found vehicle.
The information extracted by each method is drawn on the output image. If selected by the
user the data is written to the folder “XMLData”, which will be created if it does not already
exists, in the home directory. The plug-in has one inport and one outport also an image and a
button labeled “clear”. As input type for the inport and outport is the OpenCV type Mat
used. The view shows the current image from the inport. The user can set the points on the
image which define the perspective transformation (marked red) and the lanes (marked green).
This is illustrated in Figure A.1. By clicking on the clear button all selected point in the view
are deleted.
For the input the plug-in VideoFile can be used. There has to be a video file selected and
the outport connected to the inport of the VehicleDetection plug-in. The outport can be
connected to the imshow plug-in to display the images. To make the plug-in flexible and usable
for different kinds of views on streets there are a number of settings to make this possible. To
customize the plug-in the possible settings are:

• The type of method used.

• Frame rate of the input video.

• The number of lanes.

• The distance between two specified points.

• Write the data to a file.

• Extract the background to a file.

• Set number of frames used for background extraction

73

A.1 Instructions for using the vehicleDetection plug-in

1 2

3 4

5

6

7

8

Figure A.1: This is an example of a street with 3 lanes. At first the ROI points in red have
to be selected and afterwards the lane points in green. The lane points need to
be set to the known distance for correct calculation of speed.

The user has to provide a 3-channel uchar matrix called “backgroundMatrix” where the
background is stored. The filename is fixed to “background.yml” and the file must be placed
in the home directory or the directory the user starts FloDiEdi. For undistorting the image a
file called camera-parameters.yml must be provided which contains the intrinsic camera matrix
which is named “intrinsicMatrix” and the distortion matrix called “distortionCoefficientMatrix”.
When selecting FeatureTrack in the method selection field the plug-in starts automatically. If
TemplateMatch or FeaturePersp is selected, the user has to select four points, which define the
perspective transformation, first. The order of setting the points is top left, top right, lower
left and lower right. After the selection the user has to click on point which have a known
distance, such as the distance between two distance markings on a lane. The points have to
be set from left to right, so starting from the most left lane. Wheter the top or bottom point
is chosen first do not matter. The available settings are shown in Figure A.2.

Detailed explanation of the settings

There is a number of settings that can be made to use the plug-in. All settings are shown
Figure A.2. The numberOfLanes option allows the user set the number of lanes in the image.
The standard value is set to three.

74

A.1 Instructions for using the vehicleDetection plug-in

Figure A.2: The available settings for the VehicleDetection plug-in are shown here. The
number of lanes in the image, the type of detection and tracking, frames per
second of the video and more can be changed.

The option method types lets the user select between the three methods, see Figure A.3.

Figure A.3: The user can select which method is used. The three available methods are
FeatureTrack, FeaturePersp and TemplateMatch which represent the three
approaches from the thesis.

By setting the value in frameRate, the user sets the frame rate of the video which is running.
This value is used for speed calculations of the vehicles as ∆t. The predefined value is 25.
The distanceMarking is used to set the distance between the first two points while selecting
the lanes. This input is used by the second and third approach to do the speed caculations.
It is important that the distance is choosen accurate as the distance is used for the speed
calculation. It is preset to the value “12”, meaning the distance between the two points in the
image is twelve meters. In Germany the distance between two road markings is mostly twelve
meters on a motor way [RMS80].
WriteBoolean can be set to true to enable writing the collected data to a file. The file is
located in the folder “XMLData” in the home directory. The filename contains a timestamp of
the time of starting.

75

A.1 Instructions for using the vehicleDetection plug-in

extractBG is used, if set to true, to determine wheter to extract the background from a
sequence of images. The amount of images used can be set by the user in setting background-
Frames.

76

Bibliography

[Bay76] B. E. Bayer. Color imaging array, 1976. URL http://www.patentlens.net/
patentlens/patent/US_3971065/en/. (Cited on page 15)

[BBS05] D. E. Butler, V. M. Bove, Jr., S. Sridharan. Real-time adaptive foreground/back-
ground segmentation. EURASIP J. Appl. Signal Process., 2005:2292–2304,
2005. doi:10.1155/ASP.2005.2292. URL http://dx.doi.org/10.1155/ASP.
2005.2292. (Cited on page 45)

[BETVG08] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool. Speeded-Up Robust Features
(SURF). Comput. Vis. Image Underst., 110(3):346–359, 2008. doi:10.1016/j.cviu.
2007.09.014. URL http://dx.doi.org/10.1016/j.cviu.2007.09.014. (Cited
on page 71)

[BF81] R. C. Bolles, M. A. Fischler. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, 1981. doi:10.1145/358669.358692. URL http://doi.acm.
org/10.1145/358669.358692. (Cited on page 19)

[BK08] G. Bradski, A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, 2008. (Cited on pages 18 and 39)

[Bou00] J.-Y. Bouguet. Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm, 2000. URL http://robots.stanford.
edu/cs223b04/algo_tracking.pdf. (Cited on page 36)

[Bru10] S. Brutzer. Background Subtraction in der Videoüberwachung, 2010. URL http:
//elib.uni-stuttgart.de/opus/volltexte/2010/5523. (Cited on page 45)

[Bur82] P. J. Burt. Fast algorithms for estimating local image properties. Technical
Report IPL-TR-022, Rensselaer Polytechnic Institute (Troy, NY US), 1982. URL
http://dx.doi.org/10.1016/S0734-189X(83)80049-8. (Cited on page 20)

[Can86] J. Canny. A Computational Approach to Edge Detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679 –698, 1986.
doi:10.1109/TPAMI.1986.4767851. URL http://dx.doi.org/10.1109/TPAMI.
1986.4767851. (Cited on page 20)

[CT65] J. W. Cooley, J. W. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301, 1965. (Cited on
page 20)

77

http://www.patentlens.net/patentlens/patent/US_3971065/en/
http://www.patentlens.net/patentlens/patent/US_3971065/en/
http://dx.doi.org/10.1155/ASP.2005.2292
http://dx.doi.org/10.1155/ASP.2005.2292
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://doi.acm.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5523
http://elib.uni-stuttgart.de/opus/volltexte/2010/5523
http://dx.doi.org/10.1016/S0734-189X(83)80049-8
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851

Bibliography

[FS02] G. Foresti, L. Snidaro. A distributed sensor network for video surveillance of
outdoor environments. In Image Processing. 2002. Proceedings. 2002 International
Conference on, volume 1, pp. I–525 – I–528 vol.1. 2002. doi:10.1109/ICIP.2002.
1038076. (Cited on page 71)

[GO00] J. Gonzalez, U. Ozguner. Lane detection using histogram-based segmentation
and decision trees. In Intelligent Transportation Systems, 2000. Proceedings. 2000
IEEE, pp. 346 –351. 2000. doi:10.1109/ITSC.2000.881084. (Cited on page 48)

[GS08] R. García, D. Shu. Vision based Vehicle Tracking using a high angle camera.
2008. URL http://www.ces.clemson.edu/~stb/ece847/projects/VISION_
BASED_VEHICLE_TRACKING.pdf. (Cited on page 45)

[GVL96] G. Golub, C. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 1996. (Cited on page 29)

[GW92] R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1992. (Cited on pages 19,
20, 22 and 47)

[HZ04] R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, 2004. URL http://dx.doi.org/10.1017/
CBO9780511811685. (Cited on pages 28 and 29)

[Jäh05] B. Jähne. Digitale Bildverarbeitung. Springer Berlin Heidelberg, 2005. doi:10.
1007/3-540-27384-0_20. URL http://dx.doi.org/10.1007/3-540-27384-0_
20. (Cited on page 32)

[JLR87] A. S. Jensen, L. Lindvold, E. Rasmussen. Transformation of image positions,
rotations, and sizes into shift parameters. Applied Optics, 26(9):1775–1781, 1987.
(Cited on page 19)

[JZWL09] R. Jia, H. Zhang, L. Wang, J. Li. Digital Image Stabilization Based on Phase
Correlation. In Artificial Intelligence and Computational Intelligence, 2009.
AICI ’09. International Conference on, volume 3, pp. 485 –489. 2009. doi:
10.1109/AICI.2009.489. (Cited on page 29)

[Kal60] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45,
1960. URL http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.
pdf. (Cited on page 72)

[Ker11] S. Kernbach. Evolutionäre und kollektive Robotik Lecture, 2011. (Cited on
page 26)

[Lev11] P. Levi. Image Understanding Lecture, 2011. (Cited on pages 23 and 31)

[LIS] European Commission - Advanced Safety and Driver Support in Essential Road
Transport. URL http://www.project-asset.com/data/ASSET_DEL3_2_Smart_
information_provision_and_regulation_support_concepts_V2_0.pdf.
(Cited on pages 10, 52, 58 and 64)

78

http://www.ces.clemson.edu/~stb/ece847/projects/VISION_BASED_VEHICLE_TRACKING.pdf
http://www.ces.clemson.edu/~stb/ece847/projects/VISION_BASED_VEHICLE_TRACKING.pdf
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1007/3-540-27384-0_20
http://dx.doi.org/10.1007/3-540-27384-0_20
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://www.project-asset.com/data/ASSET_DEL3_2_Smart_information_provision_and_regulation_support_concepts_V2_0.pdf
http://www.project-asset.com/data/ASSET_DEL3_2_Smart_information_provision_and_regulation_support_concepts_V2_0.pdf

Bibliography

[Mar04] D. Marsh. Applied Geometry for Computer Graphics and CAD. Springer Under-
graduate Mathematics Series. Springer, 2004. (Cited on page 28)

[MGK00] J. Matas, C. Galambos, J. Kittler. Robust Detection of Lines Using the Progressive
Probabilistic Hough Transform. 78(1):119–137, 2000. (Cited on page 47)

[MW06] G. Merziger, T. Wirth. Repetitorium der höheren Mathematik. Binomi Verlag, 5
edition, 2006. (Cited on page 19)

[Pan10] Panasonic. Panasonic Bedienungsanleitung High Definition Camcorder
Modell-Nr. HDC-SD700 HDC-SD707 HDC-TM700 HDC-HS700. Panasonic,
2010. URL http://dlc.panasonic-europe-service.com/EUDocs/GetDoc.
aspx?did=189273&fmt=PDF&lang=de&src=3. (Cited on page 16)

[RMS80] Forschungsgesellschaft für das Straßenwesen - Richtlinien für die Markierung
von Straßen RMS Teil 1 Abmessungen und geometrische Anordnung von
Markierungszeichen RMS-1, 1980. (Cited on pages 41, 52, 61 and 75)

[Ser88] J. Serra. Image analysis and mathematical morphology: Theoretical advances.
Image Analysis and Mathematical Morphology. Academic Press, 1988. URL
http://dl.acm.org/citation.cfm?id=1098652. (Cited on page 22)

[SM09] M. Shakoor, M. Moattari. Digital Image Stabilization Using Histogram-Based
Sorting. In Knowledge Acquisition and Modeling, 2009. KAM ’09. Second Interna-
tional Symposium on, volume 3, pp. 266 –268. 2009. doi:10.1109/KAM.2009.125.
(Cited on page 29)

[ST94] J. Shi, C. Tomasi. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society Confer-
ence on, pp. 593 –600. 1994. doi:10.1109/CVPR.1994.323794. (Cited on pages 20
and 35)

[Svo06] T. Svoboda. Homography from point pairs, 2006. URL http://cmp.felk.cvut.
cz/cmp/courses/XE33PVR/WS20072008/Lectures/Geometry/homography.pdf.
(Cited on page 28)

[Tay63] C. Taylor. Geometrical conics including anharmonic ratio and projection: with
numerous examples. Macmillan, 1863. URL http://archive.org/details/
cu31924031263779. (Cited on page 27)

[TK91] C. Tomasi, T. Kanade. Detection and Tracking of Point Features. Technical
report, Carnegie Mellon University, CMU, 1991. URL www.ces.clemson.edu/
~stb/klt/tomasi-kanade-techreport-1991.pdf. (Cited on page 36)

[Ziv04] Z. Zivkovic. Improved adaptive Gaussian mixture model for background
subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the
17th International Conference on, volume 2, pp. 28 – 31 Vol.2. 2004. doi:
10.1109/ICPR.2004.1333992. (Cited on page 45)

All links were last followed on February 17, 2013.

79

http://dlc.panasonic-europe-service.com/EUDocs/GetDoc.aspx?did=189273&fmt=PDF&lang=de&src=3
http://dlc.panasonic-europe-service.com/EUDocs/GetDoc.aspx?did=189273&fmt=PDF&lang=de&src=3
http://dl.acm.org/citation.cfm?id=1098652
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Geometry/homography.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Geometry/homography.pdf
http://archive.org/details/cu31924031263779
http://archive.org/details/cu31924031263779
www.ces.clemson.edu/~stb/klt/tomasi-kanade-techreport-1991.pdf
www.ces.clemson.edu/~stb/klt/tomasi-kanade-techreport-1991.pdf

Erklärung

Ich versichere, diese Arbeit selbstständig
verfasst zu haben.
Ich habe keine anderen als die angegebenen
Quellen benutzt und alle wörtlich oder
sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile
daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

(Andreas Harnisch)

	1 Introduction
	1.1 Motivation
	1.2 Preliminary work
	1.2.1 Flow Diagram Editor (FloDiEdi)
	1.2.2 OpenCV
	1.2.3 Qt

	2 Fundamentals
	2.1 Camera hardware
	2.1.1 Digital image capturing
	2.1.2 Camera internals

	2.2 Image processing fundamentals
	2.2.1 Frequency domain and spatial domain
	2.2.2 Region of interest
	2.2.3 Features
	2.2.4 Structural element
	2.2.5 Mathematical morphology
	2.2.6 Information and knowledge
	2.2.7 Thresholding
	2.2.8 Cross ratio
	2.2.9 Perspective transformation
	2.2.10 Image stabilisation

	3 Level model to extract knowledge from images
	3.1 Low-level preparation
	3.1.1 Noise filtering with Gaussian low pass filter
	3.1.2 Image subtraction

	3.2 Feature extraction
	3.2.1 Shi-Tomasi feature detector
	3.2.2 Lucas-Kanade feature tracker

	3.3 Object extraction
	3.3.1 Connected-component labeling
	3.3.2 Template matching

	3.4 Objects recognition
	3.4.1 Type estimation

	3.5 Scene recognition
	3.5.1 Speed calculation
	3.5.2 Speed calculation in perspective transformed images

	4 Methods for vehicle detection and tracing
	4.1 General preparational work
	4.1.1 Camera calibration
	4.1.2 Background extraction

	4.2 Approach I: Background subtraction, feature detection and feature tracking
	4.2.1 Preparation and preprocessing of the image
	4.2.2 Foreground extraction
	4.2.3 Vehicle extraction
	4.2.4 Feature detection and assignment
	4.2.5 Feature tracking and speed calculation
	4.2.6 Processing of the collected data

	4.3 Approach II: Perspective transformation and feature tracking
	4.3.1 Preparational work
	4.3.2 Foreground extraction
	4.3.3 Vehicle extraction
	4.3.4 Feature detection
	4.3.5 Feature tracking and speed calculation
	4.3.6 Processing of the collected data

	4.4 Approach III: Perspective transformation, position estimation and template matching
	4.4.1 Preparational work
	4.4.2 Foreground extraction
	4.4.3 Vehicle extraction
	4.4.4 Position estimation
	4.4.5 Template matching
	4.4.6 Speed calculation
	4.4.7 Processing of the collected data

	5 Methods for vehicle detection and tracing
	5.1 Evaluation
	5.1.1 Computational time
	5.1.2 Vehicle detection rate
	5.1.3 Tracking
	5.1.4 Vehicle type detection

	5.2 Appraisal of results

	6 Conclusion of work and outlook
	A Apendix
	A.1 Instructions for using the vehicleDetection plug-in

	Bibliography

