Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
70569 Stuttgart
Germany

Diplomarbeit Nr. 3390

XPath Processing Optimization for SWoM

Optimizer
Xi Tu
Studiengang: Softwaretechnik
Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Phys. Dieter H. Roller
begonnen am: 01.09.2012
beendet am: 05.03.2013

CR-Klassifikation: D.2.11,D.1.3,H.2.8

Danksagung

Ich moéchte mich ganz herzlich bei Herrn Roller fiir die Unterstiitzung und seine wertvollen
Vorschlage bedanken, die mich beim Schreiben dieser Arbeit erleuchtet haben.

Mein Dank gilt auch Herr Prof. Dr. Leymann, der mir die Gelegenheit gab, diese Arbeit
anzufertigen.

Inhalt

DANKSAZUIEoovvvieiieeirieiree ettt ettt ettt bttt ettt asaesesaetataes 2
1. EANIEIEUDNE .ottt ettt seaes 5
2. HINEETGIUNG ..ottt 7
2.1 XML ettt et et et a e e e e e te et euteaeaae et ent e et aaeate e eneeeeaeeat et eneeeeaaeat et eneaeeaeeteneeneaaen 7
2.2 X P AN ettt e et e e et e ea e et et e et aaaa et et eaaeaae et eateeeeeat et aasesseeteateeaeeaeeteasessesnean 8
2.3 DIOM ettt e et e e e e ettt et e e r e e te e et aaaateaateeateeaaeaenateenrteeartesanaesaaeeenaeas 11

20 SAX et e et et e et e e rat e e e —eae—eaa e eaa—aaateaa—eaanateaaataaateeatesaateanateearteeeaesenaeeenaeas 15
2.5 VaTIADLE 111 BPEL.....oeeeeeeeeeeeee et e et eeeeeeeeeeseeeeeeseseeseesseeneeeenaesneenseneessesneenaennesneane 18
2.6 Java String Operation (Pattern und Matcher)........occcnniicninincccreccrcseeenes 19
2.6.1 RegUIATer AUSAITUCKcuieiiciricirceee st 19

2.6.2 Java Pattern und Matcher Class...........coovevoveeiieeereeeieeeeeeeeeeee et 22

2.7 XIML SCREITIA. .ottt e et e eeee e et et eeeeaee et eseeaeeeseeeeseenseeneeneennesneenseneenseeneenaenaesneane 23
2.8 XIMIL BOATIS ..ttt ettt ettt e ettt e eateseateseaeeesateseatesesteseaeeesaeessstesenaesenseesnstesartesenaeseaeeennees 25

3. ALGOTIEIIMIUS ...ttt 26
3.1 FUNAAMENETALE TACE ..ottt e e eae et et e e eae et esteseeseeeeeeneesesaeesentenesaeneen 26
3.2 Transformierung eines XML-DOKUMENLSccoceurimerrieinieinieirieirieiseeiseeisee e 28
3.3Entwicklung von Regularen Ausdriicken fiir das Verfahren...........coccoovcvvcnvcinncniccnnncs 29
3.3.1 Ausdruck fiir Knoten ohne Werte und Attributeoeveeveeeeeeeeeeeeeeeeeeeeeeeeeae. 30

3.3.2 Ausdruck fiir Knoten ohne Werte aber mit Attributencoccceeeeeeveeeeveeeveenee. 31

3.3.3 Ausdruck fiir Knoten mit Text-Werten aber ohne Attributeccoceeveevevenennee... 31

3.3.4 Ausdruck fiir Knoten mit Text-Werten und Attributeneceeveeeeeeeeveeveeenene. 32

3.4 String-Operationen fiir Erhalt der endgiiltigen Inhaltec.cccooencncncnncncncnenee 34
3.5 Das vollstandige Verfahren.........c.occicnciniciccnecncnccinecseces et esessescaseaes 35
3.6 DAS VETKUIZEE VEITANTEIN <.ttt eee et et e e eeeetesteeeseseeeeneesessesseeenessennen 38
4. TMPLEMENTALIONcetieiieie ettt 39
4.1 Hintergrund und Technologie der Implementation...........c.ccoeceurnnecinnnccennnccnrnccennes 39
4.1.1 Umgebung fUr den TeStcoueuieirieirieeerereeeree et eeees 39

4.1.2 Der Code fur Analyse eines XML-Dokuments mit DOM+XPath...................... 40

4.2 TMPlemMeENtatiOn.....c.ovcuiueirieeiriciricirccirtcre ettt ettt bttt 44
4.2.1 Implementation fiir Knoten ohne Werte und Attribute.........cccocovveevierinnncnne. 44

4.2.2 Implementation fiir Knoten mit Attributen aber ohne Werte..........cccccooevuunceee. 46

3

4.2.3 Implementation fiir Knoten mit Wert aber ohne Attributeccccoeeeeuennencee. 48

4.2.4 Implementation fiir Knoten mit Werten und Attributen...........cccccoovvivienncnne. 50

4.2.6 Implementation fiir Suche mit Vergleichszeichen.........cccoccvevcunienicncincnenee. 52
5. Zusammenfassung und AUSDLCK ..o 54
Anhang A cd.Xml [W3C-XML]....ccoiiririeinteineinteiseeiseesseietseiessese ettt sessssessesesscssens 55
Anhang B simple.Xml [XMLSPY] c.c.ovieiiieinieiniereneseeiseeiseetseie ettt sessesenns 63
Anhang C books.Xml [W3C-XML]cvuriiumiriirieieineiniinieieiseiseistse et ssessssessesessessssessesnees 65
LIteraturVerZEIChIIS .. .c.cvcueiiueiciriciecie ettt bbbt aen 67
ETKIATUNEZ ..ottt ettt seaes 69

1. Einleitung

Web services, die auf Service-orientiertem Architektur-Framework basieren, dienen als
Grundlage fiir modern verteilte, heterogene Anwendungen. Sie sind perfekt fir die
Schichtfunktion des Zwei-Ebene-Programmiermodells, das charakteristisch fiir Workflow-
basierte Anwendungen ist.

Workflow-basierte Anwendungen [LR00] setzen sich aus zwei verschiedenen Teilen
zusammen: Einem Prozessmodell, das die Reihenfolge beschreibt in der die verschiedenen
Aktivitaten, welche das Prozessmodell vorgibt, ausgefithrt werden (programming in the
large), und den einzelnen Komponenten, die die verschiedenen Aktivitidten implementieren
(programming in the small). In der Umgebung von Web-Diensten werden Prozessmodelle
unter Verwendung des Web Services Business Process Execution Language (WS-BPEL)
beschrieben.

Das Ziel eines Workflow-Management-Systems (WFMS), in das die WS-BPEL-Spezifikation
implementiert wird, ist es den gesamten Lebenszyklus von Geschéaftsprozessen zu verwalten,
durch die damit verbundenen Prozessmodelle zu navigieren und die entsprechenden Web-

Dienste aufzurufen. Die Stuttgarter Workflowmaschine (SWoM) implementiert teilweise die
entsprechenden WS-BPEL-Standard.

SWoM realisiert einen Flow-Optimierer, der fiir ein Prozess-Modell einen Flow
Ausfithrungsplan erzeugt, welchen der Navigator fiir eine optimale Verarbeitung der
Instanzen von Modell nutzen kann. Einer der Optimierungstechniken ist die Optimierung
von XPath-Abfragen, die in ibergangsbedingungen und Verteilung der Aktivititen genutzt
werden.

Das Ziel dieser Diplomarbeit ist es, eine Reihe von Optimierungs-Algorithmen fiir die
XPath-Verarbeitung zu entwerfen/zu gestalten/ zu implementieren, die die Standard DOM-
basierte Verarbeitung mit einem effizienteren, String-basierten Ansatz ersetzen. Es umfasst
insbesondere die folgenden Aktivitaten:

® Gestaltung/Implementierung einer Reihe von Optimierungsverfahren
® Ausfithrung der entsprechenden Performancetests

Die populdren und klassischen XML Datei Abfragetechniken sind DOM(Document Object
Model) + XPath sowie SAX.

Das Bild 1.1 zeigt einen Uberblick iiber das Verfahren, mit dem die DOM+XPath Abfrage
durch String Operationen ersetzt werden kann. Durch das Ersetzen kann der Aufwand der
Zeit und des Arbeitspeicheres bei der Abfrage verringert werden. Das Verfahren liest XML-
Dokument und XPath Ausdruck in den Arbeitsspeicher zuerst ein, transformiert das XML-
Dokument nach String, verwendet dann eine grundsitzliche String-Operation um das
Ergebnis herausauszufinden.

P,

> \\ .
. ~ Abgleich mit ™. . Substring-)
— - - —1
AML-Dock Tramsform —S"‘"g_b\String-Muster = tring— 0 peration Ergehms@

Bild 1.1 Verfahren der Ersetzungsoperation

Der Kern der String-Operation ist der Abgleich. Der Abgleich basiert auf einer String-
Operation, die Operation wie der XPath-Ausdruck ,//“ funktioniert. Durch die einmalige
oder mehrfache Verwendung der String-Operation kann eine XPath-Expression simuliert
und die DOM+XPath ersetzt werden. Damit erhilt man eine effiziente XML-Daten
Suchmechanik.

2. Hintergrund

Dieser Kapitel leitet in die gebrauchlichen assoziativen Grundlagen und Technologien ein,
die die Grundlage bilden, um den Inhalt dieser Diplomarbeit zu verstehen.

Dieses Kapitel wird die folgenden Themen behandeln:

2.1 XML

2.2 XPath

2.3 DOM

2.4 SAX

2.5 Variable in BPEL

2.6 Java String Operation (Pattern und Matcher)
2.7 XML Schema

2.8 XMLBeans

2.1 XML

XML (Engl. Extensible Markup Language) ist eine vom World Wide Web Consortium (W3C)
akzeptierte Auszeichnungssprache. Das XML Model wurde im Jahr 1998 vom W3C
aufgenommen.

XML wird entwickelt, um hierarchisch strukturierte Daten in Textform zu speichern und zu
transportieren, sowie um zu erkldren, was die Daten fiir eine Bedeutung haben [W3C-XML].
Ein XML Dokument besteht aus Textzeichen und wird als Baum dargestellt und betrachtet.
Der Einsatz von XML héangt nicht von der Plattform und Implementation ab. Durch die Hilfe
von XML koénnen Daten zwischen verschiedenen Computersystemen und auch im Internet
leichter ausgetauscht werden.

Das untere XML Beispiel zeigt: das XML definiert die Struktur und speichert die
Informationen von Jobs, dem Mitbegriinder von Apple.

Liste 2.1 XML Fragment

Ein XML-Dokument fiangt mit einer XML-Deklaration an, um XML-Version,
Zeichenkodierung und Verarbeitbarkeit ohne Dokumenttypdefinition zu spezifizieren.
Folgend kann eine Dokumenttypedefinition optional verwendet werden, danach kommen

7

Flemente vom XML-Dokument zum Einsatz. Die Elemente eines XML-Dokuments werden
als Baumstruktur organisiert. Als Beispiel zeigt die Liste 2.2 ein XML-Dokument:

Liste 2.2 XML-Dokument

Die erste Zeile des oben gennanten XML-Dokuments ist eine XML-Deklaration. Sie zeigt,
dass das XML-Dokument die XML Version 1.0 ist und die UTF-8 Zeichenkodierung
verwendet.

2.2 XPath

XPath (Engl. XML Path Language) ist eine Abfragesprache, um Teile eines XML-Dokuments
zu adressieren [W3C-XPath]. XPath ist vom World Wide Web Consortium (W3C)
entwickelt worden.

XPath liegt auf einem Baummodell von XML-Daten. Es gibt folgende sieben Knoten Typen
[W3C-XPath]:

1. Wurzel Knoten

2. Element Knoten

3. Attribute Knoten

4. Nameraume Knoten

5. Verarbeitungsanweisungen Knoten
6. Kommentare Knoten

7. Textknoten

Bild 2.1 Baummodell von XML-Daten [AIM]

Ein XPath-Ausdruck ist ein Ausdruck, der eine Schrittfolge von einem Knoten zu einem
anderen Knoten bedeutet. Die Schritte werden von ,/“ getrennt. Jeder Schritt besteht aus
drei Teilen:

® Achse (axis)
® Knotentest (node-test)
® null oder mehrere Pradikaten

Der unten gezeigte XPath-Ausdruck bedeutet, Cooking muss das Kind des Knotens Book
sein, Book muss das Kind des Knotens Catalog sein, wobei der Knoten Catalog die Wurzel
ist.

/child::Catalog/child::Book/child::Cooking

Liste 2.3 Original XPath-Ausdruck

Bei jedem Prozessschritt vom XPath-Ausdruck werden Achsen benutzt, um die
Einschrankung fiir jede Suche klar zu definieren. Eine Achse besteht aus einer Menge von
Knoten, die in Beziehung mit dem Zielknoten stehen. Durch Angabe von Achsen wird vom
aktuellen Knoten im XML-Dokument navigiert. Dem Knotentest folgt :: Zeichen nach. X::Y
bedeutet, dass man durch die Richtlinie X Achse in Y wéhlt. Beispielsweise das oben
genannte child :: Catalog bedeutet die Achse Child, dass das Ergebnis Kinder vom getesten
Knoten ist. Der Knoten ist Catalog.

Fir gewohnlich wird ein vereinfachter XPath-Ausdruck verwendet, weil ein XPath
Ausdruck mit Achsen zu kompliziert ist. Deshalb wird generell ein vereinfachter XPath-
Ausdruck benutzt.

Der unten gezeigte XPath-Ausdruck ist der vereinfachte XPath-Ausdruck aus Liste 2.3. Die
beiden Ausdriicke sind semantisch dquivalent.

9

Liste 2.4 Vereinfachte XPath-Ausdruck

Die untere Liste zeigt alle Achsen von XPath sowie seine Abkiirzungen sowie die Bedeutung
der Achsen.

ancestor tibergeordnete Knoten
ancestor-or-self iibergeordnete Knoten inklusive des
Kontextknotens
attribute Attributeknoten @
child direkt untergeordnete Knoten Einfach weg
descendant untergeordnete Knoten
descendant-or-self untergeordnete Knoten inklusive des
Kontextknotens
following im XML-Dokument nachfolgend (ohne

untergeordnete Knoten)

following-sibling wie following, aber zugleich vom selben
parent stammend

parent Direkt iibergeordnete Elternknoten J..

preceding im XML-Dokument vorangehend (ohne
iibergeordnete Knoten)

preceding-sibling wie preceding, aber zugleich vom selben
parent stammend

namespace Namensraumknoten, die aus dem Attribut
xmlns stammen

self der Kontextknoten selbst (niitzlich fir
zusatzliche Bedingungen)

Liste 2.5 Achsen vom XPath-Ausdruck [WiKi]

2.3 DOM

DOM (Engl. Document Object Model) ist vom World Wide Web Consortium (W3C) als eine
Spezifikation einer Schnittstelle definiert, die verwendet wird, um auf den Inhalt von XML
einfach zugreifen zu konnen. Durch die Richtlinie vom W3C ist DOM eine Schnittstelle fiir
Plattformen, Programmierungssprache und Internetbrowser, damit die anderen Standard-
Komponenten von Webseiten manipuliert werden konnen [W3C-DOM]. DOM ist Plattform-
und Sprachenunabhéngig.

DOM ist eine Menge von Knoten, die hierarchisch strukturiert organisiert werden. Diese
hierarchische Struktur wird als Baummodell dargestellt. Der Entwickler darf in der Struktur
navigieren, um Informationen zu suchen.

Baum

HML- Import
Dokument [———» DOM Paser

Tranformation

Bild 2.2 DOM Analysierung
Das Bild 2.2 zeigt das Arbeitsprinzip von DOM.

Folgendes XML-Fragment definiert einen Katalog mit dem Element Catalog und
verschiedenen Firmen.

Liste 2.6 XML Fragment

11

DOM ist in drei Teile aufgeteilt. Die drei Kerne sind DOM, HTML DOM und XML DOM. In
der Ausarbeitung sprechen wir hauptsichlich iiber XML DOM. XML DOM definiert die
Objekte und Attribute aller XML-Elemente sowie die Methoden (Schnittstellen) [W3C-
DOM], die verwendet werden, um die XML-Elemente zu manipulieren bzw. die XML
Elemente hinzuzufiigen, zu erfassen, zu dndern oder zu l6schen.

Durch folgende Richtlinien liest DOM die XML-Dokumente in Arbeitsspeicher eines
Computers ein. Die Richtlinien sind [W3C-DOM]:

Ein XML-Dokument ist ein Dokumentknoten
Jedes XML-Kennzeichen ist ein Elementknoten
Der Text eines Elementknotens, ist ein Textknoten
Jedes XML-Attribut ist ein Attributknoten
Annotation ist Annotationsknoten

Beispielsweise im in Liste 2.6 genannten XML-Dokument ist der Knoten <Catalog> die
Wurzel und alle anderen Knoten des XML-Dokuments sind vom <Catalog> enthalten. Der
Knoten <Catalog> hat zwei <Company> Knoten und jeder <Company> Knoten hat zwei
Knoten. Diese sind <NAME> und <CEO>. Jeder Knoten hat einen Textknoten, wie ,Apple®,
,Jobs®.

Das Bild 2.3 zeigt die hierarchische Organisation vom XML-Dokument, welches von der
Liste 2.6 prasentiert wird. Wir miissen aufpassen, dass ein Elementknoten keinen Text
enthilt. Der Text eines Elementknotens wird von Textknoten enthalten. Das bedeutet, der
Elementknoten <NAME>Apple</NAME> zeigt, dass der Elementknoten einen Textknoten
hat. Dieser Textknoten hat den Wert ,Apple®.

Dokument

Wurzel:
<Catalog>
[|
ELEMENT: ELEMENT:
<Company> <Company>
[
[] [1
ELEMENT: ELEMENT: ELEIENT: ELEMENT:
<NANE= <CEO > <NANE=> <CEQ>
TEXT: TEXT: TEXT: TEXT:
<Apple> <lobs> <Micrmsoft> <Gates>

Bild 2.3 Ein hierarchisches Diagramm der Liste 2.6

12

DOM organisiert Daten als ein Baum-Modell. Soll ein XML-Dokument mit Hilfe von DOM
geladen oder analysiert werden, muss das XML-Dokument zuerst das ganze Dokument mit
seiner hierarchischen Struktur als ein Baum in den Arbeitsspeicher eines Rechners
eingelesen werden. Danach kann damit angefangen werden, das XML-Dokument zu
bearbeiten. Aus diesem Grund hat DOM folgende Vorteile:

® XML-Dokument kann in Arbeitsspeichern durch Hilfe von DOM lange Zeit und
stabil vorliegen oder modifiziert werden, weil das Dokument von DOM als ein
Baum-Modell organisiert wird. Dadurch kdnnen normale Anwendungsprogramme
Daten und Struktur des XML-Dokuments leicht modifizieren

® Mit Hilfe von DOM kann jederzeit im XML-Dokument navigiert werden.

® Die Benutzung von DOM ist fiir Entwickler freundlich. DOM liefert API, durch
diese den Entwicklern erméglicht wird, im Baum Knoten leicht umzuwandeln, zu
verschieben, zu 16schen und einzufiigen

® DOM kann leicht mit XPath kombiniert werden, um Informationen im XML-
Dokument zu suchen

Das untere Code-Fragment zeigt, wie mit Hilfe von DOM fiir ein XML-Dokument ein Baum-
Modell erstellt wird, und mit Hilfe von XPath-Expression ,//Company“ in importiertem

XML-Dokument alle Knoten durchgesucht werden, die am Anfang mit <Company>
ausgezeichnet sind:

//Analysierung durch DOM+XPath.

//ein Parser durch Hilfe von DocumentBuilderFactory zu erzeuge

//ein DocumentBuilderFactory-Instanz zu erzeugen.

//eine Inputstream nach Document Object zu transformieren

//ein XPath-Instanz zu erzeugen.

//kompilier die importierte XPath-Expression nach eine XPathExpression Instanz.

espeichert.

Liste 2.6 DOM Anwendung

Durch den in Liste 2.6 gezeigten Code kann man wissen, welche Behandlungsschritte von
DOM+XPath sind:

Liste 2.7 Behandlungsschritte von DOM+XPath

Im Arbeitsspeicher wird ein Baum-Modell eingerichtet. Davon kann DOM viele Vorteile wie
zB leichte Navigierung sowie Programmierung usw. bekommen. Aber es gibt auch
Nachteile mit der Einrichtung des Baum-Modells im Arbeitsspeicher. Wenn ein XML-
Dokument zu grof3 ist, dann kann das Verfahren von Laden und Analysieren lange dauern
und hohe Anforderungen an die Ressourcen vom Rechner stellen, weil eine Baum-Struktur
viele Platze im Arbeitsspeicher benétigt und in Arbeitsspeichern stabil bleibt.

In der vorliegenden Ausarbeitung wird iiber die Findung einer neuen Methode diskutiert.
Die Methode soll gefunden werden, um bei der Suche in XML-Dokumenten als DOM+XPath

14

weniger Rechenzeitaufwand sowie weniger Anforderungen an die Ressourcen vom Rechner
zu stellen.

2.4 SAX

JAXP (Engl. Java API for XML Processing) liefert zwei verschiedene Meschanismen fiir die
Behandlung eines XML-Dokuments. Eine ist die im letzten Kapitel genannte DOM, die
andere ist SAX (Engl. Simple API for XML). Im Vergleich zu DOM besteht das
Arbeitsprinzip von SAX nicht durch Erzeugung eines Baum-Modells im Arbeitsspeicher,
sondern durch das sequentielle Scannen eines XML-Dokuments.

SAX bietet ein Modell, um XML-Dokumente schnell zu analysieren. SAX wird benutzt, um
ein XML-Dokument zu analysieren. SAX-Parser wird zwischen Scannen viele Ereignisse
treffen, z.B. den Start und Ende eines Dokuments oder eines Elements, dann wird der
geeignete Ereignis-Handler informiert. Der Handler behandelt jedes Ereignis durch vorher
definiertes Verhalten. Anschliessend scannt SAX wie vorher weiter bis zum Ende des
Dokuments. Im Allgemeinen entstehen folgende Ereignis-Typen bei Realisierung eines
SAX-Parseres:

® Vor und nach der Analysierung jedes Elements im XML-Dokument werden die
Elements-Ereignisse ausgelost

® Bei dem Start und Ende von Text werden die Charakter-Ereignisse ausgelost

® Bei der Behandlung vom Dokument DTD und Schema entsteht das DTD- oder
Schema-Ereignis

® Error-Ereignis wird benutzt, das Anwendungsprogramm zu informieren

Das Bild 2.3 zeigt das Arbeitsprinzip von SAX:

i Error
HML | Handler
Dokument [DTD
DT Handler
| SAX Reader
FH— Entity
| Resoher
SAX Parser f-—--------- >
Cantent
i| Handler

Bild 2.4 Das Arbeitsprinzip von SAX

Es gibt bei SAX vier oft verwendete Handlern. Die sind ContentHandler, DTDHandler,
ErrorHandler und EntityResolver.

ContentHandler bleibt in org.xmlsax von Java Class Package. ContentHandler ist der
wichtigste Handler von SAX. Bei der Analyse eines XML-Dokuments werden viele
Ereignisse wie z.B. der Start und Ende des XML-Dokuments, Start und Ende des Elements

usw. auftauchen. Wenn solche Ereignisse entstehen, dann ruft SAX-Parser die geeignete
15

Methode von ContentHandler ab, um die Eregnisse zu behandeln. ContentHandler hat
folgende Methoden:

Liste 2.8 Methode von ContentHandler

DTDHandler wird benutzt, um die Mitteilung von DTD-Ereignissen anzunehmen. SAX-
Parser muss nach startDocument() und vor erstem startElement() alle DTD-Ereignisse
melden. DTDHandler hat folgende zwei Methoden:

Liste 2.9 Methode von DTDHandler

ErrorHandler ist eine SAX-Schnittstlle, um Fehler zu behandeln. Wenn SAX-
Anwendeungsprogramm eigene Behandlung fiir Fehler haben mochte, dann muss das
Programm die Schnittstelle verwirklichen, durch die der Parser alle Fehler und Alarme
melden kann. Liste 2.10 zeigt zwei Methoden von ErrorHandler:

Liste 2.10 Methoden von ErrorHandler

EntityResolver wird benutzt, um Entitdt zu analysieren und hat nur eine Methode wie Liste
2.11 zeigt:

Liste 2.11 Methode von EntityResolver

Fiir folgendes XML-Dokument:

Liste 2.12 ein XML Beispiel

Bei der Analysierung der oben genannten XML-Dokumente werden durch SAX folgende
Ereignisse erzeugt:

16

Liste 2.13 Ereignisse bei Analysierung der Liste 2.7 durch SAX

Bei einem vollstdndigen Verfahren von SAX-Behandlung sollten folgende Schritte enthalten

Liste 2.14 Das Verfahren von SAX-Behandlung

Die XML-Dokument Analysierung durch SAX, ergibt folgende Schritte:

Liste 2.15 Analysierungsschritte von SAX

Im Vergleich zu DOM hat SAX die folgenden Vorteile:

Liste 2.16 Vorteile von SAX im Vergleich zu DOM

Im Vergleich zu DOM hat SAX die folgenden Nachteile:

Liste 2.17 Nachteile von SAX im Vergleich zu DOM

17

2.5 Variable in BPEL

Variable wird in BPEL verwendet, um Business Status zu behalten. Jede Variable hat einen
eigenen Bereich, bei dem die Variable manipuliert werden kann. Es gibt in BPEL zwei
Methoden, die Variable erzeugen konnen. Die beiden Methoden sind in Liste 2.18
beschrieben.

Liste 2.18 Methoden fiir die Definition der Variablen in BPEL

Durch xsd koénnen einfache und komplexe Variablen erzeugt werden. Liste 2.19 zeigt ein
Beispiel fiir Definition einer einfachen Variablen.

Liste 2.19 Definition der Variablen durch XML Einfache Type

Liste 2.20 beschreibt die Definition durch XML Komplex Variablen. Der erste Teil der Liste
ist die Definition der komplexe Variable SuchResultes. Der zweite Teil ist die Instanz der
Definition.

Liste 2.20 Definition der Variablen durch XML Komplex Type

Liste 2.21 beschreibt die Definition durch WSDL Message. Der erste Teil der Liste ist die
Definition der Variable Suchlnfo. Der zweite Teil ist die Instanz der Definition.

18

Liste 2.21 Definition der Variablen durch WSDL Message

2.6 Java String Operation (Pattern und Matcher)

Java String Operation enthilt umfangreiche Inhalte. Hier werde ich nur auf die Inhalte
eingehen, die wir in dieser Diplomarbeit benétigen. Das bedeutet, dass ich im folgenden
Abschnitt nur tiber Regularen Ausdruck, sowie Java Pattern und Matcher Class schreiben
werde. Im Abschnitt diskutieren wir die Anpassung aus einer Zeichenkette.

Ein normales Verfahren fiir die Anpassung zeigt das untere Bild 2.5.

Schleife

Pattern- Matcher- H

i ; Emebni
Pattern.com | Object |pO.matcher(| Objeat
—Ausdruddge pilel) L patstiing) SR ol paD find()

Bild 2.5 Verfahren fiir Anpassung aus Zeichenkette

Man kann dem Bild 2.5 entnehmen, dass das Verfahren zuerst den Regularer Ausdruck
einliest und die Methode Pattern.compile() verwendet, um durch den Ausdruck ein Pattern
zu erzeugen. Beim zweiten Schritt benutzt die Methode PO.matcher(), um das Matcher-
Object zu erhalten. Danach wird durch die Methode find() von Matcher-Object die
gewiinschte Zeichenkette aus importierter Zeichenkette erhalten.

2.6.1 Reguldrer Ausdruck

Regulédrer Ausdruck wird benutzt, um String-Pattern zu bestimmen. Wenn man irgendwann
eine Zeichenkette, die an ein Pattern anpasst, positinieren mochte. Dann kann Regulérer
Ausdruck verwendet werden [Core Java 2]. Ich werde durch die folgenden Beispiele die
Grundlage des Ausdrucks erklaren, um das gewiinschte Ergebnis zu erhalten.

19

Zuerst fange ich mit einem einfachen Beispiel an. Wir suchen eine Zeichenkette, die
,book“ enthalt. Dies wird in der Liste 2.22 gezeigt:

Liste 2.22 Einfaches Beispiel fiir Regularen Ausdruck

Die Liste 2.23 zeigt die Benutzung der Notation ,,|“. Das Symbol bedeutet ,oder".

Liste 2.23 Beispiel fiir Zeichen ,,|*

Wie Liste 2.23 zeigt, alle Strings sind angepasst, dass seine erstes Charakter ,d°, letztes
Charakter ,e“ sind, und zwischen Charakteren ,d“ und ,e“ kann aus ,am®, ,u“ sowie
L,umm" irgendeine sein.

Die Liste 2.24 zeigt die Verwendung der Notation ,,[]“. Durch Hife der Notation kénnen alle
Woter angepasst werden, die ersten Charakter ,d“, letzten Charater ,x“ und dazwischen die
Symbole haben, die in der Notation enthalten werden.

Liste 2.24 Beispiel fiir das Zeichen ,[]*

Die Liste 2.25 zeigt die Benutzung der Notation ,.“. Durch Verwendung der Notation kann
mit irgendeinem Kennzeichen mit ,,.“ ausgetauscht werden.

Liste 2.25 Beispiel fiir Zeichen ,,.“

Die Liste 2.26 zeigt die Benutzung der Notation ,-“. Durch Hilfe der Notation darf ein
Umfang bestimmt werden.

[0-9] Irgendeine Ziffer aus 0-9

[A-Z] Irgendein Charakter aus A-Z

Liste 2.26 Beispiel fur Zeichen ,-*

Liste 2.27 zeigt eine Zeichengruppe, mit der die Haufigkeit der Symbole definiert werden
kann.

20

{n} Haufigkeit ist n

{n,m} Haufigkeit ist von n bis m

Haufigkeit kann 0 oder irgend wieviele sein

+ Haufigkeit kann 1 oder irgend viele sein

? Haufigkeit ist entweder 1 mal oder keine

Liste 2.27 Zeichengruppe fiir die Haufigkeit [Core Java 2]

Liste 2.28 zeigt eine Definition fiir ein Autoschild:

Liste 2.28 Beispiel: Reguldrer Ausdruck fiir ein Autoschild

Wenn man Charakter und Ziffer bei dem Beipiel, das in Liste 2.28 gezeigt wird, mit Zeichen

<

»- verbinden mochte, dann soll man den Reguliaren Ausdruck wie in Liste 2.29 gezeigt,
umformulieren.

Liste 2.29 Beispiel: Regularer Ausdruck fiir Autoschild mit Zeichen ,,-“

Werden die Zeichen ,,-“ nicht unbedingt gebraucht, dann gibt es die Moglichkeit hinter das
Zeichen ,-“ einfach ein ,?“ zu legen. z.B. [A-Z]{2} \-? [0-9]{4} \-? [A-Z][2], dann sind die
beiden in Liste 2.28 und 2.29 gezeigten Zeichenketten richtig.

Zeichen ,"“ bedeutet negativ, wenn das Zeichen mit anderen Zeichen von ,[]“ enthilt, wie
die untere Liste 2.30 zeigt:

Liste 2.30 Beispiel: Regularer Ausdruck mit Zeichen ,"“

Die richtige Erzeugung von Regulirem Ausdruck ist die Grundlage, mit der wir das
Ersetzungsverfahren durchfithren kénnen. Nachdem wir den Reguldren Ausdruck korrekt
erstellt haben, werden wir mit Hilfe des Regulden Ausdrucks ein Pattern herstellen.

21

2.6.2 Java Pattern und Matcher Class

Durch Hilfe von Java Pattern und Matcher Class kann fiir einen Reguldren Ausdruck ein
Pattern konstruiert werden, um geeignete Zeichenkette zu finden. Java Pattern Class
befindet sich in java.util.regex.Pattern. Java Matcher Class ist bei java.util.regex.Matcher.
Liste 2.31 zeigt seine typische Benutzung [Java™ 2 PlatformStandard Ed. 5.0]:

Liste 2.31 Die Muster typischer Benutzung von Java Pattern und Matcher Class

Nachdem der Ausdruck von Methode compile() kompiliert worden ist, ist die Zeichenkette
t*x der Reguldre Ausdruck und dieser kompilierte Ausdruck wird anschliessend in Pattern-
Object gespeichert. Durch Verwendung der Methode find() kann die importierte
Zeichenkette mit dem kompilierten Reguldren Ausdruck ,t*x“ verglichen werden, wenn es
die geeignete Zeichenkette gibt, dann gibt die Methode ein ,true® zuriick. Die Methode fingt
ab Anfang der Matcher-Object an, wenn beim letzten Mal eine geeignete Zeichenkette
gefunden wurde, dann fingt ab der erste neue Charakter an.

Bei Kompilation eines Patterns diirfen verschiedene Attribute verwendet werden. Die
Benutzung ist wie in Liste 2.32 dargestellt. Die Attribute bedeuten, dass es bei der
Anpassung keinen Unterschied zwischen Grofischreibung und Kleinschreibung gibt.

Liste 2.32 Attribute von Pattern-Object

Die Liste 2.33 zeigt alle sechs Attribute, die von Pattern-Object unterstiitzt werden:

Liste 2.33 Sechs von Pattern-Object unterstiitzte Attribute

Nachdem ein Pattern erzeugt wird, kann ein Matcher durch die Methode von Pattern-Object
wie pattern.matcher(importierte Zeichenkette) hergestellt werden. Durch den Matcher-
Object kann die geeignete Zeichenkette aus importiertem Zeichenfluss mit Methoden
herausgefunden werden. Die Methoden sind wie in Liste 2.34 dargestellt.

Liste 2.34 Wichtige Methoden von Matcher
22

Das Ziel dieser Arbeit ist nicht das ganze Dokument mit einem Reguldren Ausdruck
anzupassen, sondern aus einem Dokument eine oder mehrere Zeichenketten auszusuchen,
die mit einem Regularen Ausdruck identisch sind. Die Methode find() bietet einen Boolean-
Wert, ob die eine passende Zeichenkette gefunden worden ist. Wenn der Wert ,Ja“ ist, dann
versucht die Methode die nichste passende Zeichenkette in dem restlichen Dokument zu
finden. Bei jedem Ergebnis von Methode find() kann man durch Verwendung von Methode
start() den Anfang der passenden Zeichenkette positionieren, oder durch Verwendung von
Methode end() das Ende der passenden Zeichenketter positionieren. Das Verfahren kann
durch den in Liste 2.35 gezeigten Code realisiert werden.

Liste 2.35 Implementation fiir den Erhalt des Anapssungsergebnisses

Bei der Liste 2.35 benutzt man eine while-schleife, der Wert von Methode find() ist als
Bedingung. Die Methode substring() nimmt die Werte von start() und end() als Attribute,
um die gewiinschte Zeichenkette zu bekommen.

2.7 XML Schema

XML Schema ist Nachfolger der XML DTD. XML Schema beschreibt die Struktur eines XML
Dokuments. XML Schema basiert auf XML. Die XML-Schema-Sprache wird auch als XML
Schema Definition (XSD) bezeichnet [W3C-Schema]. Das heif3t, dass XML Schema benutzt
wird, um die Teile eines XML Dokuments zu definieren. Ein XML Schema:

Liste 2.36 Funktionen von XML Schema [W3C-Schema]

XML Schema definiert verschiedene Datentypen. Die konnen in zwei grofle Mengen geteilt
werden. Eine ist einfacher Datentyp, die andere ist komplexer Datentyp. Die einfachen
Datentypen werden in Liste 2.37 gezeigt und wurden vom W3C vordefiniert.

Liste 2.37 Die von W3C vordefinierten einfachen Datentypen [W3C-Schema]

Die Liste 2.38 zeigt fiir die einfachen Datentypen ein paar Beispiele:

Liste 2.38 Beispiele fiir die einfachen Datentypen von XML Schema

Die Syntax zur Definition eines einfachen Elementes ist <xs:element name="..." type="...">.
Die Liste 2.39 zeigt die geeigeneten Definitionen der Elemente, die die einfachen
Datentypen besitzen:

Liste 2.39 Die geeignete Definition fiir die Elemente von Liste 2.38

Ein einfaches Element darf nur Text aber keine anderen Elemente oder Attribute enthalten.
Die sogenannten Texte sind die in Liste 2.37 gezeigten Datentypen.

Ein Komplex Element besteht aus anderen Elementen und/oder Attributen. Es gibt vier
Arten von komplexen Elementen. Diese sind wie in Liste 2.40 beschrieben.

Liste 2.40 Vier Arten von komplexen Elementen

Die Liste 2.41 zeigt vier verschiedene komplexe Elemente durch vier Beispiele.

Liste 2.41 Beispiele fiir vier verschiedene Arten von komplexen Elementen

Als Beispiel zeigt die Liste 2.42, wie ein Komplex Element "name"definiert wird.

24

Liste 2.42 Definition des komplexen Elementes "name"

Die Ermittlung der oben genannten verschiedenen Elemente von XML Schema ist wichtig
fir diese Ausarbeitung.

2.8 XML Beans

XMLBeans ist eine Technologie, die benutzt wird, um XML Dokument mit Java Object zu
verbinden. XMLBeans liefert eine direkte Methode, damit XML Dokument durch Java leicht
behandlt werden kann [XMLBeans].

Nachdem XMLBeans auf Rechner installiert wird, kann ein XMLBeansprojekt angefangen
werden. XML Schema ist der Startpunkt fiir jedes XMLBeansprojekt. Fiir die Analysierung
eines Schemas wird bei der DOS-Umgebung nur das Eintippen des Ausdrucks scomp
benotigt. Die genaue Erklarung tiber scomp Ausdruck kann man bei [XMLBeans] finden.

Bild 2.6 zeigt das Prinzip der Analysierung fiir XML Schema durch Hilfe von XMLBeans.

[XMLSchema] [JAR]

X¥MLBears q

Bild 2.6 Analysierung eines XML Schemas durch XMLBeans

Nachdem ein XML Schema von XMLBeans analysiert wird, wird eine geeignete JAR Datei
erstellt. Dann konnen XML Elemente wie Java Object behandelt werden.

Im Kapitel 2 wurden das fiir die Ausarbeitung erfordernde Wissen und Technologien
beschrieben. Im nachsten Kapitel wird der Fokus auf die Beschreibung des Algorithmus
gelegt.

25

3. Algorithmus

Das Kapitel thematisiert die Technik, die DOM+XPath ersetzen wird, um Infomationen aus
einem XML-Dokument auszusuchen. Ich werde versuchen, bei dem Verfahren pure String-
Operationen zu benutzen, damit auf der einen Seite die DOM+XPath Technik optimal
ersetzt werden kann und auf der anderen Seite die Nachteile insbesondere der Zeitbedarf
und der Rechenressourcenbedarf der Hardware minimiert werden konnen.

Die folgenden Abschnitte werden die Details der String-Operationen erkléaren:

® Abschnitt 3.1 ,Fundamentale Idee” beschreibt die Einleitung in den Algorithmus

® Abschnitt 3.2 ,Transfomierung eines XML-Dokuments® beschreibt das Verfahren,
wie XML-Dokument nach String-Fluss umgewandelt wird

® Abschnitt 3.3 ,Entwickeln des Regulidren Ausdrucks fiir das Verfahren® zeigt vier
entwickelte Regulare Ausdriicke fiir vier Situationen

® Abschnitt 3.4 ,String-Operationen fur Erhalt der endgiiltigen Inhalte® zeigt, dass die
normalen String-Operationen benutzt werden, um endgiiltige Inhalte zu bekommen

3.1 Fundamentale Idee

In diesem Abschnitt werden wir die fundamentale Idee einleiten.

Die fundamentale Idee von der Ersatztechnik ist wie in Bild 3.1 dargestellt Das Verfahren
liest zuerst XML-Dokument, XML-Schema und XPath-Ausdruck ein. Dazwischen wird
XML-Dokument als String-Fluss eingelesen und als String-Object gespeichert. Parallel wird
XPath-Ausdruck durch Hilfe von StringTokenizer in individuelle Einheiten eingeteilt.
Gleichzeitig wird XML-Schema durch Hilfe von XML Beans analysiert, um die geeignete
Struktur von XML-Dokument zu ermitteln. Nachdem die Struktur eines XML-Dokuments
ermittelt wurde, kann das XML-Dokument durch einmaligen oder mehrmaligen
Anwendung der anpassenden Implementierungen analysiert werden, die wie in Liste 3.19
dargestellt werden.

26

XMLDokument XMNLSchema XPath-Ausdruck

String-Transformer
fUr XML Dokument
und XPath-Awsdruck

Trars former fiir Trams fomseb
XMLSchema en

Pas er fir XML- Tokenger fiir XPath- Anakseben
Schema Ausdruck
Implementier
ungseben

Ergebnisse

Bild 3.1 Drei Ebenen der pure String-Operation

Das Verfahren besteht aus drei Ebenen. Diese lauten Transformsebene, Analysebene und
Implementierungsebene. Die drei Ebenen werden durch das Bild 3.1 beschrieben.

Um diese Idee zu realisieren, muss der XPath-Ausdruck ,//Suchobject® nach geeignetem
Regularen Ausdruck definiert werden. Die Reguldren Ausdriicke, die fiir verschiedene
Situationen passend sind, sind durch Liste 3.19 beschrieben. Wir nehmen die mit XPath-
Ausdruck ,//Suchobject” passenden Regularen Ausdriicke als Grundlage fir unsere
Ersatztechnik. Durch den richtigen Ausdruck kann das gewiinschte Ergebnis aus dem
String-Fluss ausgefiltert werden und in eine ArrayList als String abgespeichert werden.

Das Verfahren sollte aus den vier in Liste 3.1 gezeigten Phasen bestehen.

Liste 3.1 die Vierphasen von Ersetzstechnik

27

3.2 Transformierung eines XML-Dokuments

In diesem Abschnitt spreche ich tiber die Transformierung vom XML-Dokuments zu einem
String-Fluss.

Das Bild 3.1 zeigt den Vorgang.

XM L-Dokurnent String-Zeile Export e
— 3| BufferReader StringBuilder 0';'].':;

A

Schleif liest
jede Zeile

Bild 3.2 Vorgang der Umwandlung

Die in Liste 3.2 gezeigte Methode readFile(String fileName) wandelt das XML-Dokument
zum String-Fluss um.

28

Liste 3.2 Transformierung vom XML-Dokument zum String-Fluss

Die Methode importiert zuerst das XML-Dokument als File-Fluss. Im zweiten Schritt wird
der File-Fluss von BufferedReader-Object Zeile fir Zeile eingelesen. Im letzten Schritt
werden die eingelesenen XML-Daten durch StringBuilder-Object nach String-Object
transformiert.

3.3Entwicklung von Regularen Ausdriicken fiir das Verfahren

In diesem Abschnitt werden wir fiir das Verfahren die geeigneten Ausdriicke entwickeln
und durch die Ausdriicke die Patterns erhalten. Die wichtigste Arbeit in dem Verfahren ist
es die geeigneten Reguldren Ausdriicke zu entwickeln, weil das Verfahren nur mit den
korrekten Patterns, die aus Reguldren Ausdriicken erzeugt werden, das gewiinschte
Ergebnis erzielen kann. Die Behauptung ist selbstverstiandlich, denn ohne korrekte Patterns
kann iiberhaupt kein richtiges Ergebnis erzielt werden.

Es ist bekannt, dass die Struktur eines XML-Dokuments vom Entwickler selbst definiert
wird. Deshalb gibt es nicht nur eine einzige Struktur fiir jedes XML-Dokument. Das heifit,
dass jedes XML-Dokument eine eigene Struktur hat. Beispielsweise enthalten Knoten in
manchen Dokumenten Text-Knoten, in anderen Dokumenten jedoch keine. Deshalb habe
ich fur verschiedene Situationen verschiedene Reguldre Ausdriicke entwickelt, damit die
Suche korrekt durchgefiihrt werden kann.

Liste 3.3 zeigt vier verschiedene Situationen fiir das Erstellen der Regularen Ausdriicke. Mit
Hilfe der Ausdriicke kann die gewiinschte Information aus dem XML-Dokument extrahiert
werden.

Liste 3.3 Vier verschiedene Situationen fiir das Erstellen der reguldren Ausdriicke

29

Liste 3.4 zeigt vier Reguldre Ausdriicke, die nach den in Liste 3.3 genannten Situationen
enwickelt werden. Die Reguldren Ausdriicke konnen auch andere gegenwértigen Form sein.

Liste 3.4 Geeignete Ausdriicke fiir die vier verschiedenen Situationen

3.3.1 Ausdruck fiir Knoten ohne Werte und Attribute

Fiir die erste Situation ist der in Liste 3.5 gezeigte Ausdruck enwickelt worden. Mit Hilfe des
Ausdrucks konnen alle Knoten, die mit gewiinschtem Kennzeichen keine eigenen Text-
Werte und neben Kennzeichen keine eigene Attribute enthalten, im XML-Dokument
erhalten.

Liste 3.5 Reguldrer Ausdruck fiir Knoten ohne Werte und Attribute

Ein XML-Dokument, das als Beispiel in Liste 3.6 dargestellt wird:

Liste 3.6 XML-Dokument Beispiel

€ »

Das in Liste 3.6 gezeigte XML-Dokument kann durch den Reguldren Ausdruck “<
+Variable+ “/>” behandelt werden, wobei der in Liste 3.5 gezeigte Ausdruck als Pattern
verwendet wird. Das Ergebnis ist in Liste 3.7 dargestellt.

Liste 3.7 Ergebnis durch Verwendung des in Liste 3.7 gezeigten Ausdrucks

Fir die Situation ist das Ergebnis das endgiiltige Ergebnis, weil XML-Dokument in der
Situation keinen Inhalt hat. Deshalb ist das Ergebnis nur das Kennzeichen <variable/>.
Natiirlich braucht bei der Situation keine ,Substring-Operation“ verwendet werden. Aber
mit DOM+XPath Technologie kann nur Leerzeichen als Ergebnis erhalten werden.

30

3.3.2 Ausdruck fiir Knoten ohne Werte aber mit Attributen

Fir die zweite Situation ist der in Liste 3.8 gezeigte Ausdruck enwickelt worden. Mit Hilfe
des Ausdrucks konnen alle Knoten, die mit gewiinschtem Kennzeichen keine eigenen Text-
Werte aber mit eigenen Attributen enthalten, im XML-Dokument erhalten.

Liste 3.8 Regularer Ausdruck fiir Knoten ohne Werte aber mit Attributen

Ein XML-Dokument, das als Beispiel in Liste 3.9 dargestellt wird.

Liste 3.9 XML-Dokument Beispiel des Knotens mit Attributten aber ohne Werte

Das in Liste 3.9 gezeigte XML-Dokument kann durch den Reguliren Ausdruck “<”
+Variable +“ .*?/>” behandelt werden, wobei der in Liste 3.8 gezeigte Ausdruck als Pattern
verwendet wird. Das Ergebnis ist wie in Liste 3.10 dargestellt.

Liste 3.10 Ergebnis durch Verwendung von dem in Liste 3.8 gezeigten Ausdruck

Fir die Situation ist das Ergebnis das endgiiltige Ergebnis, weil XML-Dokument in der
Situation keinen Inhalt hat. Deshalb ist das Ergebnis nur das Kennzeichen wie <variable
name="cd1" type="string"/>. Natiirlich wird bei der Situation ebenfalls keine ,Substring-
Operation® verwendet.

3.3.3 Ausdruck fiir Knoten mit Text-Werten aber ohne Attribute

Fir die dritte Situation ist der in Liste 3.11 gezeigte Ausdruck enwickelt worden. Mit Hilfe
von dem Ausdruck koénnen alle Knoten, die mit gewiinschtem Kennzeichen eigene Text-
Werte aber keine eigene Attribute enthalten, im XML-Dokument erhalten.

Liste 3.11 Reguldrer Ausdruck Knoten mit Werten aber ohne Attribute

31

Ein XML-Dokument, das als Beispiel in Liste 3.12 gezeigt wird.

Liste 3.12 XML-Dokument Beispiel des Knotenes mit Werten aber ohne Attribute

Das in Liste 3.12 gezeigte XML-Dokument kann durch den Reguldren Ausdruck “<” + title +
“> “4 © "2 </” + title + “>” behandelt werden, wobei der in Liste 3.11 gezeigte Ausdruck als
Pattern verwendet wird. Das Ergebnis wird in Liste 3.13 gezeigt.

Liste 3.13 Ergebnis durch Verwendung des in Liste 3.11 gezeigten Ausdrucks

Fir die Situation ist das in Liste 3.13 gezeigte Ergebnis kein endgiiltiges Ergebnis, weil XML-
Dokument in der Situation Inhalt hat. Deshalb sollte das endgiiltige Ergebnis nur der Inhalt
zwischen Kennzeichen <title>...</title> sein. Es muss bei der Situation ,Substring-
Operation® verwendet werden, um das endgiiltige Ergebnis zu erhalten.

3.3.4 Ausdruck fiir Knoten mit Text-Werten und Attributen

Fiir die vierte Situation ist der in Liste 3.14 gezeigte Ausdruck enwickelt worden. Mit Hilfe
des Ausdrucks konnen alle Knoten, die mit gewiinschtem Kennzeichen eigene Text-Werte
und Attribute enthalten, im XML-Dokument erhalten.

Liste 3.14 Reguldrer Ausdruck fiir Situation der Knoten mit Werten und Attributen

Ein XML-Dokument, das als Beispiel in Liste 3.15 gezeigt wird.

Liste 3.15 XML-Dokument Beispiel des Knotenes mit Attributen und Werten

Das in Liste 3.15 gezeigte XML-Dokument kann durch den Reguldren Ausdruck “<” + book
+ % .*? </” + book + “>” behandelt werden, wobei der in Liste 3.14 gezeigte Ausdruck als
Pattern verwendet wird. Das Ergebnis ist wie in Liste 3.16 dargestellt.

Liste 3.16 Ergebnis durch Verwendung des in Liste 3.14 gezeigten Ausdrucks

Fiir die Situation ist das in Liste 3.16 gezeigte Ergebnis kein endgiiltiges Ergebnis, weil XML-
Dokument in der Situation Inhalt hat. Deshalb sollte das endgiiltige Ergebnis nur der Inhalt
zwischen Kennzeichen <book category="children">...</book> sein. Es muss bei der
Situation ,Substring-Operation” verwendet werden, um das endgiltige Ergebnis zu erhalten.

3.4 String-Operationen fiir Erhalt der endgiiltigen Inhalte

Abschnitt 3.3 zeigt vier verschiedene Reguldre Ausdriicke. Man kann durch verschiedene
Situationen aus den vier Reguldren Ausdriicken den geeigneten Reguldren Ausdruck wihlen,
um die gewiinschten Ergebnisse zu erhalten. Die Ergebnisse fiir die dritte und vierte
Situation sind noch keine endgiiltigen Ergebnisse, weil es bei den Situationen Texte-Inhalte
der gewiinschte Knoten gibt. Diese Ergebnisse bendtigen zusitzliche Bearbeitung, um als
endgiiltige Ergebnisse festzustehen. Die alle entstehenden Zwischenergebnisse werden in
einem String-ArrayList Object gespeichert, damit die Zwischenergebnisse von String-
Operationen weiter bearbeitet werden kénnen.

Abschnitt 3.4 beschreibt die zusitzlichen String-Operationen, mit denen die endgiiltigen
Ergebnisse erhalten werden kénnen.

Die Liste 3.17 zeigt ein Code-Fragment, um einen gewtiinschten Inhalt abzuschneiden.

Liste 3.17 Code fiir das Abschneiden gewiinschter Inhalte

In der Liste 3.17 wird ein Java Code-Fragment gezeigt. Das ist eine While-Schleife. In der
Voraussetzung von der Schleife ist matcher Pattern, das von im Abschnitt 3.3 erklartem
Ausdruck abgeleitet wird. Die Methode matcher.find() priift den String-Fluss, der aus dem
XML-Dokument transformiert wird. Wenn in der Priifung mit gewiinschten Charakteren
getroffen hat, dann positioniert durch Hilfe von den Methoden match.start() und match.end()
die genauen Stellen der gewiinschten Inhalte. Das Statement tempString.substring(start, end)
schneidet die gewiinschten Inhalte aus dem String-Fluss ab. Die endgiiltigen Ergebnisse
werden durch Hilfe von normalen String-Operationen match.indexOf(">")+1 und
indexOf("</"+var+">") positioniert. Und durch die String-Operation substring(m, n) werden
die endgiiltigen Ergebnisse erhalten. Am Ende jeder Schleife wird ein endgiiltiges Ergebnis
in eine ArrayList<String> Object result eingespeichert.

3.5 Das vollstiandige Verfahren

In den Abschnitten 3.2-3.4 wurden die wichtigesten Teile des Verfahrens erklart. Im
folgenden Abschnitt wird durch das Verfahren-Diagramm das vollstindige Verfahren
beschrieben.

Bild 3.3 zeigt Teil 1 vom Verfahren.

E»

Schema,
X¥Path, XML

Y

ngewvon XPat
=147

Impl. 4

END

Bild 3.3 Teil 1 vom Verfahren

35

Im Bild 3.3 wird dargestellt, dass das Verfahren XPath-Ausdruck, XML-Dokument und
XML-Schema eingelesen werden. Dann priift das Verfahren die Lange des importierten
XPath-Ausdrucks. Diese Prifung verwendet java.Util.StringTokenizer-Class, um XPath-
Ausdruck in einzelne Schritte zu trennen. Die geteilten Schritte werden individuell in einem
Array gespeichert. Durch Lange der Array kann die Lange der Schritte vom importierten
XPath-Ausdruck erhalten werden. Das Verfahren wird von dem in Liste 3.18 gezeigten Code
realisiert.

Liste 3.18 Code fiir den Erhalt der Lange von XPath-Ausdruck

In der Liste 3.18 gezeigte Methode xpRead(String xpath) liest den XPath-Ausdruck als
String-Object ein. Durch Hilfe einer vordefinierte Zeichengruppe, die in der Liste 3.18
»/[1//° dargestellt ist, kann der XPath-Ausdruck von StringTokenizer-Object zerlegt werden.
Das heifit, dass die alle Zeichen in der Zeichengruppe aus dem XPath-Ausdruck
weggelassen werden. Die restlichen Inhalte vom XPath-Ausdruck werden als Such-

36

Schliisselworte in eine Array als String gespeichert. Die Schliisselworter werden als
Suchziele bei nachsten Schritten verwendet.

Nachdem die Schliisselworter erhalten wurden, wird gepriift, ob es keinen Text bei dem
gewiinschte Knoten gibt, wenn nein, wird gepriift, ob Knoten Attribute enthalt. Falls nein,
wird die Impl. 1 durchgefiihrt, sonst wird die Impl. 2 durchgefithrt. Wenn Knoten Text und
Attribute enthélt, dann wird Impl. 4 durchgefithrt. Wenn Knoten Text enthilt aber keine
Attribute, dann wird Impl. 3 durchgefiihrt.

In Liste 3.19 erklart Impl. 1—Impl. 5

Liste 3.19 Erklarung fiir die Bearbeitung von 1 - 5

Wir nehmen das in Liste 3.15 gezeigte XML-Dokument als Beispiel, um Impl. 5 zu erklédren.
Beispielsweise wenn wir das Buch suchen mdchten, das den Preis 30.00 hat. Der XPath-
Ausdruck ist wie in 3.20 beschrieben.

Liste 3.20 XPath-Ausdruck fiir Suche des Buches, das price=30.00 hat

Fir den Ersatz des XPath-Ausdrucks wird zuerst die Impl. 3 fiir Knoten <bookstore> benutzt,
weil Knoten <bookstore> Text-Werte enthalt, aber keine Attribute. Danach wird Impl. 4 fir
Knoten <book> verwendet, weil Knoten <book> Inhalte und Attribute enthilt. Danach kann
man Impl. 3 fir Knoten <price> noch mal verwenden und das Ergebnis im anderen
ArrayList<String> Object zu speichern und mit 30.00 zu vergleichen. Gibt das Platz-
Nummer vom price Knoten aus, der mit Werte 30.00 ist. Dann kann man durch die Platz-
Nummer aus dem ersten ArrayList<String> Object das Buch finden.

Bild 3.4 zeigt Teil 2 vom Verfahren. Das Bild zeigt, wenn es beim XPath-Ausdruck
Vergleichszeichen gibt, dann wird Impl. 5 durchgefiihrt, wenn es im XPath-Ausdruck keine
Vergleichszeichen gibt, dann wird gepriift, ob Knoten Attribute enthélt. Falls ja, wird Impl. 4
durchgefiihrt, sonst wird Impl. 3 durchgefiihrt.

” |
///- R —
Gewdinschte ™ R
Impl.5 | !
mp W —»(@m0)
LN i S V.
7 Gibtes T~ .~ Gewiinschte £ '
S——
¥
h 4
Impl. 4
Zwischen Ergebnis
) 4
NG
2N

Gewiinschte ™ o7 X
W >——Y-—-><|\ END)

Bild 3.4 Teil 2 vom Verfahren

3.6 Das verkiirzte Verfahren

Normaleweise wenn wir alle Knoten <title>, die in Liste 3.15 gezeigt werden, erhalten
mochten, missen wir zuerst den Reguldren Ausdruck “<” + bookstore + “> “ + “ *? </7 +
bookstore + “>” benutzen. Dann wird der Regulare Ausdruck “<” + book + “ .*? </” + book +
“>” auf dem Zwischenergebnis verwendet. Anschliessend wird der Reguldre Ausdruck “<” +
author + “> “ + “ *? </” + author + “>” noch mal benutzt. Dann kann man das endgiiltige
Ergebnis bekommen. Aber wenn ein Knoten in einem XML-Dokument wohl definiert wird,
beispielsweise wie das der Knoten <author> in Liste 3.15 zeigt, wird im XML-Dokument nur
von Knoten <book> enthalten. Dann kann man fiir den Knoten <author> die fundamentale
String-Operation direkt verwenden. Das heisst, dass wir nur die geeigneten String-
Operationen zu verwenden brauchen, die den XPath-Ausdruck ,//author” ersetzen kénnen.

Liste 3.21 zeigt die Verkiirzung.

« € »

+“ *? </” + author + “>

€ »

<” + author + “>

Liste 3.21 XPath-Ausdruck fiir Suche aller in Liste 3.15 gezeigten Knoten <author>

In diesem Kapitel werden alle XML-Dokumente in vier Arten eingeordnet und es werden
vier geeignete Reguldre Ausdriicke entwickelt. Mit den Ausdriicken werden XML-
Dokumente korrekt behandelt. Im nachsten Kapitel wird die String-Operation
implementiert und anschliessend mit der DOM+XPath Technik verglichen. Ziel ist es
herauszufinden welche Technik effizienter ist.

38

4. Implementation

In diesem Kapitel wird der im Kapitel 3 gezeigte Algorithmus implementiert, um
nachzupriifen, ob der Algorithmus funktionsfahig ist. Und wir werden in diesem Kapitel den
Algorithmus mit DOM+XPath vergleichen, um zu erfahren, welche Technik effizienter ist.

Wir werden in der gleichen Hardware- und Softwareumgebung die in Kapitel 3 genannten
funf Situationen testen und mit dem gleichen XML-Dokument auf der selben Plattform die
Technik DOM+XPath ebenfalls testen. Ziel ist der Vergleich.

Das Testen besteht aus zwei Teilen. Einen Teil des Testens stellt die Gebrauchszeit fiir jeden
Testfall dar. Beim zweiten Testteil wird die Anforderung des Arbeitsspeichers bei der
Implementation getestet.

Wir werden fiir jeden Testfall die beiden Techniken verwenden. Fiir jede Technik fithren
wir den Test mit einem XML-Dokument zuerst ein einziges Mal durch. Anschliessend
fihren wir mit dem selben XML-Dokument fiir jede Technik 10000 mal durch. Und die
durchschnittlichen Zeiten werden berechnet.

4.1 Hintergrund und Technologie der Implementation

In diesem Abschnitt werden die beim Test verwendete Plattform und die entsprechende
Technologie beschrieben.

4.1.1 Umgebung fiir den Test

Die Testplattform wird wie in Liste 4.1 gezeigt aus folgender Hardware- und Software
bestehen.

Liste 4.1 Die Testumgebung fiir die Implementation des Verfahrens

Wir werden das in Liste 4.2 gezeigte Code-Fragment verwenden, um die Laufzeit eines
Verfahrens zu messen.

39

Liste 4.2 Das Code-Fragment fiir die Messung der Laufzeit

Wie die Liste 4.2 zeigt, bevor ein Verfahren durchgefithrt wird, kann die Anfangszeit durch
die Methode System.currentTimeMillis() ermittelt werden. Nachdem das Verfahren
durchgefithrt wurde, dann kann die Endzeit durch die Methode erhalten werden. Danach
kann die Laufzeit von der Implemention eines Verfahrens berechnet werden.

Wir werden das in Liste 4.3 gezeigte Code-Fragment verwenden, um den benétigten
Arbeitsspeicher bei der Laufzeit eines Verfahrens zu messen.

Liste 4.3 Das Code-Fragment fiir die Messung des benétigten Arbeitsspeichers

Wie die Liste 4.3 zeigt, bevor ein Verfahren durchgefithrt wird, kann der freie
Arbeitsspeicher durch die Methode Runtime.getRuntime().freeMemory() ermittelt werden.
Nachdem das Verfahren durchgefithrt wurde, kann der freie Arbeitsspeicher durch die
Methode nochmals ermittelt werden. Danach kann der bendtigte Arbeitsspeicher von der
Implemention eines Verfahrens berechnet werden.

4.1.2 Der Code fiir Analyse eines XML-Dokuments mit DOM+XPath

Wir werden das in Liste 4.4 gezeigte Code-Fragment verwenden, um ein XML-Dokument zu
analysieren. Das Code-Fragment verwendet die populare Technik DOM+XPath.

Liste 4.4 Code-Fragment fiir das Analysieren eines XML-Dokuments

4.2 Implementation

In diesem Abschnitt fithren wir mit verschiedenen XML-Dokumenten verschiedene
Verfahren durch. Und wir werden durch Diagramme zeigen, was die Unterschiede zwischen
DOM+XPath und String-Operationen bei der Anforderung von Rechenzeit und
Arbeitsspeicher sind.

Liste 4.5 zeigt den XPath-Ausdruck, der von verschiedenen Reguldren Ausdriicken nach
verschiedenen Situationen simuliert wird. Dann kénnen wir diese Reguldren Ausdriicke als
Grundlage nehmen, um die Analysetechnik bzw. DOM+XPath fiir XML-Dokument zu
ersetzen.

Liste 4.5 Der von reguldren Ausdriicken simulierte XPath-Ausdruck

4.2.1 Implementation fiir Knoten ohne Werte und Attribute

In diesem Abschnitt wird das Verfahren durchgefithrt, um Knoten ohne Werte und
Attribute zu behandeln. Das Verfahren ist die in Liste 3.19 gezeigte Impl1. Das wird benutzt,
den geeigneten XPath-Ausdruck zu ersetzen.

Liste 4.6 zeigt das XML-Dokument, das als Testfall verwendet wird.

44

Liste 4.6 XML-Dokument als Testfall

Liste 4.7 zeigt den Regularen Ausdruck, der benutzt wird, um den in Liste 4.5 gezeigten
XPath-Ausdruck zu simulieren, Knoten ohne Werte und Attribute auszusuchen.

Liste 4.7 Reguldrer Ausdruck fiir Knoten ohne Werte und Attribute

In dem Bild 4.1 wird der Vergleich der Laufzeit zwischen DOM+XPath und String-Operation
gezeigt. Das verwendete XML-Dokument steht in Liste 4.6. Der gesuchte Zweck ist
,varibale®“.

Laufzeitvergleich
1500
1000
B XML-Doc 1
500
0 T T 1
String OP DOM+Xpath

Bild 4.1 Laufzeitvergleich mit Suchzweck ohne Attribute und Werte (Einheit: ms)

Bei dem Suchverfahren braucht String-Operation 15 ms, aber DOM+XPath braucht 1287 ms.
Das Suchergebnis sollte leer sein, weil es bei dem Knoten keinen Wert gibt.

Im Bild 4.2 zeigt der Vergleich die Anforderung an den Arbeitsspeicher zwischen beiden
Techniken. Das verwendete XML-Dokument ist die Liste 4.6. Der gesuchte Zweck ist
,varibale®“.

Anforderung an Arbeitsspeicher
1.2

0.8
0.6
0.4
0.2

= Anforderung bei
Arbeitsspeicher

String OP DOM+Xpath

Bild 4.2 Anforderung an Arbeitsspeicher fiir beide Techniken (Einheit: MB)

45

Bei dem Test benoétigt die String-Operation beim Arbeitsspeicher 0.04MB, aber DOM+XPath
braucht beim Arbeitspeicher 0.96MB.

In dem Bild 4.3 zeigt der Vergleich die durchschnittliche Laufzeit zwischen DOM+XPath
und String-Operation nach 10000 mal. Das verwendete XML-Dokument ist in der Liste 4.6
dargestellt. Der gesuchte Zweck ist ,varibale®.

Die durchschnittliche Laufzeit

10

— I
String OP DOM+Xpath

M Die durchschnittliche Laufzeit

Bild 4.3 Die durchschnittliche Laufzeit nach 10000 Laufen (Einheit: ms)

Bei dem Suchverfahren braucht die String-Operation durchschnittlich 1.1 ms, aber
DOM+XPath braucht 7.9 ms. Das Suchergebnis sollte leer sein, weil es bei dem Knoten
keinen Wert gibt.

4.2.2 Implementation fiir Knoten mit Attributen aber ohne Werte

In diesem Abschnitt wird das Verfahren durchgefithrt, um den Knoten ohne Werte aber mit
Attributen zu behandeln. Das Verfahren ist die in Liste 3.19 gezeigte Impl2. Das wird
benutzt, den geeigneten XPath-Ausdruck zu ersetzen.

Liste 4.8 zeigt das XML-Dokument, das als Testfall verwendet wird.

Liste 4.8 XML-Dokument als Testfall

46

Liste 4.9 zeigt den Regulden Ausdruck, der benutzt wird, um den in Liste 4.5 gezeigten
XPath-Ausdruck zu simulieren, den Knoten ohne Werte aber mit Attributen auszusuchen.

Liste 4.9 Regularer Ausdruck fiir Knoten ohne Werte aber mit Attributen

Das Bild 4.4 zeigt den Vergleich der Laufzeit zwischen DOM+XPath und String-Operation.
Das verwendete XML-Dokument ist die Liste 4.8. Der gesuchte Zweck ist ,variable®.

Laufzeitvergleich
1500
1000
B XML-Doc 2
500
O T T 1
String OP DOM+Xpath

Bild 4.4 Laufzeitvergleich mit Suchzweck ohne Werte aber mit Attributen (Einheit:ms)

Bei dem Suchverfahren benétigt die String-Operation 16 ms, aber DOM+XPath braucht 1344
ms. Das Suchergebnis sollte leer sein, weil es bei dem Knoten keinen Wert gibt.

In dem Bild 4.5 zeigt der Vergleich die Anforderung an den Arbeitsspeicher zwischen beiden
Techniken. Das verwendete XML-Dokument ist in Liste 4.8 dargestellt. Der gesuchte Zweck
ist ,variable®.

Anforderung an Arbeitsspeicher

1.2

0.8
0.6
0.4
0.2
0 - T
String OP DOM+Xpath

= Anforderung bei
Arbeitsspeicher

Bild 4.5 Anforderung an Arbeitsspeicher fiir beide Techniken (Einheit: MB)

Bei dem Test benétigt die String-Operation den Arbeitsspeicher 0.041MB, aber DOM+XPath
braucht den Arbeitspeicher 0.97MB.

47

In dem Bild 4.6 zeigt der Vergleich eine durchschnittliche Laufzeit zwischen DOM+XPath
und String-Operation nach 10000 mal. Das verwendete XML-Dokument ist in Liste 4.8
dargestellt. Der gesuchte Zweck ist ,variable®.

Die durchschnittliche Laufzeit

o N B O

String OP DOM+XPath

M Die durchschnittliche Laufzeit

Bild 4.6 Die durchschnittliche Laufzeit nach 10000 Laufen (Einheit: ms)

Bei dem Suchverfahren braucht String-Operation durchschnittlich 1.9 ms, aber DOM+XPath
braucht 6.7 ms. Das Suchergebnis sollte leer sein, weil es bei dem Knoten keinen Wert gibt.

4.2.3 Implementation fiir Knoten mit Wert aber ohne Attribute

In diesem Abschnitt wird das Verfahren durchgefithrt, um den Knoten mit Werten aber
ohne Attribute zu behandeln. Das Verfahren ist die in Liste 3.19 gezeigte Impl3. Das wird
benutzt, um den geeigneten XPath-Ausdruck zu ersetzen.

Der Anhang A zeigt die XML-Dokumente, die als Testfall verwendet werden.

Die Liste 4.10 zeigt den Regularen Ausdruck, der benutzt wird, um den in Liste 4.5 gezeigten
XPath-Ausdruck zu simulieren, den Knoten mit Werten aber ohne Attribute auszusuchen.

«€_» .

| @ “<”+Suchobject + “.*? </” + Suchobject + “>”; |
Liste 4.10 Regularer Ausdruck fiir Knoten mit Werten aber ohne Attribute

Im Bild 4.7 wird der Vergleich der Laufzeit zwischen DOM+XPath und String-Operation
gezeigt. Die verwendeten XML-Dokumente sind im Anhang. Der gesuchte Zweck ist der
Wert von Knoten ,TITLE® von cd.xml, Knoten ,price“ von simple.xml, sowie Knoten
»author® von books.xml. Wobei cd.xml 5KB Grosse hat, simple.xml 2KB Grosse und
books.xml die Grosse von 1KB besitzt.

48

Laufzeitvergleich

1400
1200 —— -
1000 \./

800

600

400

200

0 = o *
cd books simple
—0—String OP ——DOM+Xpah
Bild 4.7 Laufzeitvergleich fiir Suchzweck ohne Attribute aber mit Werten (Einheit: ms)

Bei dem
17ms fur

Suchverfahren benétigt String-Operation 62ms fiir cd.xml, 16ms fiir books.xml und
simple.xml. Aber DOM+XPath benétigt 1235 ms fiir cd.xml, 1000ms fiir books.xml

und 1219ms fiir simple.xml.

Bild 4.8 zeigt den Vergleich bei der Anforderung an den Arbeitsspeicher zwischen beiden

Techniken. Das verwendete XML-Dokument befindet sich im Anhang.

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

M cd.xml

M book.xml

 simple.xml

String OP DOM+Xpath

Bei dem Test benétigt die String-Operation den Arbeitsspeicher 0.09MB, 0.04MB und

Bild 4.8 Anforderung an Arbeitsspeicher fiir beide Techniken (Einheit: MB)

0.04MB. DOM+XPath braucht den Arbeitspeicher 0.46MB, 0.38MB und 0.38MB.

Das Bild

4.9 zeigt den Vergleich der durchschnittlichen Laufzeit zwischen DOM+XPath und
String-Operation nach 10000 mal. Die verwendeten XML-Dokumente sind im Anhang

dargestellt.

49

Die durchschnittliche Laufzeit

15
10 —
5 \ —
0 — —— —&
cd books simple

=== String OP =fll=DOM+Xpah

Bild 4.9 Die durchschnittliche Laufzeit nach 10000 Laufen (Einheit: ms)

Bei dem Suchverfahren benétigt String-Operation durchschnittlich 2.9ms fiir cd.xml, 1.4ms
fir books.xml und 1.2ms fir simple.xml. DOM+XPath braucht 11.1 ms, 6.9ms sowie 5.9ms.

4.2.4 Implementation fiir Knoten mit Werten und Attributen

In dem Abschnitt wird das Verfahren durchgefithrt, um den Knoten mit Werten und
Attributen zu behandeln. Das Verfahren ist die in Liste 3.19 gezeigte Impl4. Das wird
benutzt um den geeigneten XPath-Ausdruck zu ersetzen.

Im Anhang werden XML-Dokumente gezeigt, die als Testfall verwendet werden.

Liste 4.11 zeigt den Reguldren Ausdruck, der benutzt wird, um den in Liste 4.5 gezeigten
XPath-Ausdruck zu simulieren, den Knoten mit Werten und Attributen auszusuchen.

< «_» |

| ® “<” +Suchobject + “” + “.*? </” + Suchobject + “>
Liste 4.11 Reguldrer Ausdruck fiir Knoten mit Werten und Attributen

Bild 4.10 zeigt den Vergleich der Laufzeiten zwischen DOM+XPath und String-Operation.
Die verwendeten XML-Dokumente sind im Anhang dargestellt. Der gesuchte Zweck sind
die Werte von Knoten ,ARTIST von cd.xml, von Knoten ,name” von simple.xml, sowie von
Knoten ,, TITLE® von books.xml. Wobei cd.xml eine 5KB Grosse hat, simple.xml eine 2KB
Grosse hat und books.xml hat eine Grosse von 1KB.

50

Laufzeitvergleich
1200
1000 - —
800
600
400
200
0 ———— & *
cd books simple
=9—"String OP =ll=—DOM+Xpah

Bild 4.10 Laufzeitvergleich fiir Knoten mit Attributen und Werten (Einheit: ms)

Bei dem Suchverfahren benétigt String-Operation 32ms fiir cd.xml, 15ms fir books.xml und
16ms fir simple.xml. Aber DOM+XPath braucht 1094 ms fiir cd.xml, 1063ms fiir books.xml
und 1000ms fiir simple.xml.

Das Bild 4.11 zeigt den Vergleich bei der Anforderung an Arbeitsspeicher zwischen beiden
Techniken. Das verwendete XML-Dokument steht im Anhang.

0.5

0.45
0.4

0.35
0.3
0.25
0.2
0.15

M cd.xml

M book.xml

 simple.xml

0.1
0.05 -

String OP DOM+Xpath

Bild 4.11 Anforderung an Arbeitsspeicher fiir beide Techniken (Einheit: MB)

Bei dem Test benétigt die String-Operation den Arbeitsspeicher von 0.09MB, 0.04MB und
0.04MB. Aber DOM+XPath bendtigt den Arbeitspeicher 0.45MB, 0.38MB und 0.38MB.

Bild 4.11 zeigt den Vergleich der durchschnittlichen Laufzeit zwischen DOM+XPath und
String-Operation nach 10000 mal. Die verwendeten XML-Dokumente sind im Anhang.

51

Die durchschnittliche Laufzeit

20

15 C=

10 \

B =

—¢ ¢

cd books simple

=9—"String OP =ll—=DOM+Xpah

Bild 4.12 Die durchschnittliche Laufzeit nach 10000 Laufen (Einheit: ms)

Bei dem Suchverfahren benétigt String-Operation durchschnittlich 4.3ms fiir cd.xml, 1.6ms
fir books.xml und 1.7ms fiir simple.xml. Aber DOM+XPath braucht 15.4 ms, 8.2ms sowie
8.3ms.

4.2.6 Implementation fiir Suche mit Vergleichszeichen

Im Abschnitt wird das Verfahren durchgefithrt, um Knoten mit Werten und Attributen zu
behandeln. Das Verfahren ist die in Liste 3.19 gezeigte Impl5. Das wird benutzt, den
geeigneten XPath-Ausdruck zu ersetzen.

Anhang zeigt das XML-Dokument, das als Testfall verwendet wird.

Diese Implementation besteht aus zwei Teilen. Erster Teil ist wie normal, dass das grunde
XPath-Ausdruck ,,//“ durch oben gennante vier Situationen simuliert wird. Zweiter Teil ist
der Vergleichteil. Man kann durch eine Schleife jedes Ergebnis von erstem Teil mit
Kondition vergleichen, dann kann man endgiiltige Ergebnis bekommen.

Wir nehmen das XML-Dokument cd.xml und XPath-Ausdruck wie in Liste 4.12 gezeigt als
Beispiel. Das XML-Dokument cd.xml steht im Anhang.

Liste 4.11 Beispiel fiir XPath-Ausdruck mit Vergleichszeichen

Die Ersatztechnik wird vom in Liste 4.12 gezeigten Verfahren realisiert.

52

Liste 4.11 Verfahren, um den XPath-Ausdruck mit Vergleichszeichen zu simulieren

Bild 4.13 zeigt den Vergleich der Laufzeit zwischen DOM+XPath und String-Operation. Die
verwendeten XML-Dokumente stehen im Anhang.

Vergleich

1200
1000 [— —_—
800
600
400
200
0 — —— -

Al A2 A3

=9—>String OP =ll—=DOM+Xpath

Bild 4.3 Simulation des komplizierten XPath-Ausdrucks (Einheit: ms)

Bei dem Suchverfahren benétigt String-Operation Al 31ms, A2 32ms, A3 63ms
durchzufihren. Aber DOM+XPath braucht 1000ms um A1, 969ms um A2, 1078ms um A3
durchzufuhren.

Durch die oben veranschaulichten Testfille wird deutlich, dass die Ersatztechnik bzw. die
pure String-Operation viel weniger Ressourcen des Rechners benétigt. Das heif3t, dass die
pure String-Operation weniger Rechenzeitaufwand und Arbeitsspeicherressourcen als
DOM+XPath braucht.

53

5. Zusammenfassung und Ausblick

In dieser Diplomarbeit wird der Fokus auf die Entwicklung einer neuen Abfragtechnik fiir
XML-Dokument gelegt, um die klassische Abfragetechnik DOM+XPath zu ersetzen. Das
Ergebnis ist die reine String-Operation.

Durch den Vergleich der beiden Abfragtechniken wird klar, dass die reine String-Operation
bei der Abfrage viel weniger Zeit und Arbeitsspeicher als die DOM+XPath Technik benétigt.
Das heifit, dass die reine String-Operation effizienter als DOM+XPath ist. Bei einmaliger
Druchfithrung eine Gréflenordnung werden beim Anwenden der String-Operation weniger
Ressourcen eines Rechners verbraucht als bei DOM+XPath. Mit Erhéhung der Grosse eines
XML-Dokuments und der Komplexitat einer Abfrage werden die angeforderte Zeit und
Arbeitsspeicher nur linear erhoht.

Im Vergleich zu DOM+XPath hat die reine String-Operation als Abfragetechnik nicht nur
einen Effizenzvorteil. Bei einer Abfrage kann DOM+XPath nur den Inhalt von Knoten
bekommen. Beispielsweise kann fiir den XPath-Ausdruck /CD/TITLE/text() nur der Inhalt
von TITLE erhalten werden. Im Gegensatz dazu kann mit der reinen String-Operation leicht
der Erhalt eines kompletten Knotens mit Knotenwert und Knotenkennzeichnung realisiert
werden.

In der Zukunft sollte aufbauend auf dieser Arbeit mehr Testfille erstellt und getestet werden,
damit das Algorithmus vervollstindigt werden kann. Eine Methode kann probiert werden,
dass eine Behandlung vorab durchgefiihrt, alle andere Geschwerster-Knoten vom gezielte
Knoten geloscht zu werden, damit Suchungszeit verkiirtzte werden kann, und Fehler zu
vermeiden.

In der Zukunft kénnen aufbauend auf dieser Arbeit bessere Regulire Ausdriicke weiter
entwicklt werden. Vielleicht kann ein Reguldrer Ausdruck fiir alle Situationen z.B. Konten
mit Attributen oder ohne Attributten entwicklt werden.

Fin anderer Bereich konnte auch sein, dass die Schnittstelle SAX benutzt wird, um entweder
fiir XML-Dokument oder XML-Schema zu analysieren.

54

Anhang A cd.xml [W3C-XML]

<?xml version="1.0" encoding="ISO-8859-1"?>
<CATALOG>
<CD category="COOKING">
<TITLE>Empire Burlesque</TITLE>
<ARTIST nr="1">Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY >
<PRICE>10.90</PRICE>
<YEAR>1989</YEAR>
</CD>
<CD category="COOKING">
<TITLE>Hide your heart</TITLE>
<ARTIST nr="2">Bonnie Tyler</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
</CD>
<CD category="CHILDREN">
<TITLE>Greatest Hits</TITLE>
<ARTIST nr="3">Dolly Parton</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>RCA</COMPANY>

<PRICE>9.90</PRICE>

55

<YEAR>1982</YEAR>

</CD>

<CD category="WEB">
<TITLE>Still got the blues</TITLE>
<ARTIST nr="4">Gary Moore</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin records</COMPANY>
<PRICE>10.20</PRICE>
<YEAR>1990</YEAR>

</CD>

<CD category="COOKING">
<TITLE>Eros</TITLE>
<ARTIST nr="5">Eros Ramazzotti</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>BMG</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1997</YEAR>

</CD>

<CD category="CHILDREN">
<TITLE>One night only</TITLE>
<ARTIST nr="6">Bee Gees</ARTIST>
<COUNTRY>UK</COUNTRY >
<COMPANY>Polydor</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1998</YEAR>

</CD>

<CD category="CHILDREN">

56

<TITLE>Sylvias Mother</TITLE>
<ARTIST nr="7">Dr.Hook</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS</COMPANY>
<PRICE>8.10</PRICE>
<YEAR>1973</YEAR>

</CD>

<CD category="WEB">
<TITLE>Maggie May</TITLE>
<ARTIST nr="8">Rod Stewart</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Pickwick</COMPANY>
<PRICE>8.50</PRICE>
<YEAR>1990</YEAR>

</CD>

<CD category="CHILDREN">
<TITLE>Romanza</TITLE>
<ARTIST nr="9">Andrea Bocelli</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Polydor</COMPANY>
<PRICE>10.80</PRICE>
<YEAR>1996</YEAR>

</CD>

<CD category="COOKING">
<TITLE>When a man loves a woman</TITLE>
<ARTIST nr="11">Percy Sledge</ARTIST>

<COUNTRY>USA</COUNTRY>

57

<COMPANY>Atlantic</COMPANY>
<PRICE>8.70</PRICE>
<YEAR>1987</YEAR>

</CD>

<CD category="CHILDREN">
<TITLE>Black angel</TITLE>
<ARTIST nr="12">Savage Rose</ARTIST>
<COUNTRY>EU</COUNTRY>
<COMPANY>Mega</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1995</YEAR>

</CD>

<CD category="WEB">
<TITLE>1999 Grammy Nominees</TITLE>
<ARTIST nr="13">Many</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Grammy</COMPANY>
<PRICE>10.20</PRICE>
<YEAR>1999</YEAR>

</CD>

<CD category="WEB">
<TITLE>For the good times</TITLE>
<ARTIST nr="14">Kenny Rogers</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Mucik Master</COMPANY>
<PRICE>8.70</PRICE>

<YEAR>1995</YEAR>

58

</CD>

<CD category="WEB">

</CD>

<TITLE>Big Willie style</TITLE>
<ARTIST nr="15">Will Smith</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY >
<PRICE>9.90</PRICE>

<YEAR>1997</YEAR>

<CD category="CHILDREN">

</CD>

<TITLE>Tupelo Honey</TITLE>

<ARTIST nr="16">Van Morrison</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Polydor</COMPANY>
<PRICE>8.20</PRICE>

<YEAR>1971</YEAR>

<CD category="COOKING">

</CD>

<TITLE>The very best of</TITLE>
<ARTIST nr="17">Cat Stevens</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Island</COMPANY>
<PRICE>8.90</PRICE>

<YEAR>1990</YEAR>

<CD category="WEB">

<TITLE>Stop</TITLE>

59

<ARTIST nr="18">Sam Brown</ARTIST>
<COUNTRY>UK</COUNTRY >
<COMPANY>A and M</COMPANY>
<PRICE>8.90</PRICE>
<YEAR>1988</YEAR>

</CD>

<CD category="CHILDREN">
<TITLE>Bridge of Spies</TITLE>
<ARTIST nr="19">T"Pau</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Siren</COMPANY >
<PRICE>7.90</PRICE>
<YEAR>1987</YEAR>

</CD>

<CD category="COOKING">
<TITLE>Private Dancer</TITLE>
<ARTIST nr="20">Tina Turner</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Capitol</COMPANY>
<PRICE>8.90</PRICE>
<YEAR>1983</YEAR>

</CD>

<CD category="WEB">
<TITLE>Midt om natten</TITLE>
<ARTIST nr="21">Kim Larsen</ARTIST>
<COUNTRY>EU</COUNTRY>

<COMPANY>Medley</COMPANY>

60

<PRICE>7.80</PRICE>
<YEAR>1983</YEAR>

</CD>

<CD category="WEB">
<TITLE>Pavarotti Gala Concert</TITLE>
<ARTIST nr="22">Luciano Pavarotti</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>DECCA</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1991</YEAR>

</CD>

<CD category="CHILDREN">
<TITLE>The dock of the bay</TITLE>
<ARTIST nr="23">Otis Redding</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Atlantic</COMPANY >
<PRICE>7.90</PRICE>
<YEAR>1987</YEAR>

</CD>

<CD category="CHILDREN">
<TITLE>Picture book</TITLE>
<ARTIST nr="24">Simply Red</ARTIST>
<COUNTRY>EU</COUNTRY >
<COMPANY>Elektra</COMPANY>
<PRICE>7.20</PRICE>
<YEAR>1985</YEAR>

</CD>

61

<CD category="WEB">
<TITLE>Red</TITLE>
<ARTIST nr="25">The Communards</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>London</COMPANY >
<PRICE>7.80</PRICE>
<YEAR>1987</YEAR>

</CD>

<CD category="WEB">
<TITLE>Unchain my heart</TITLE>
<ARTIST nr="26">Joe Cocker</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>EMI</COMPANY >
<PRICE>8.20</PRICE>
<YEAR>1987</YEAR>

</CD>

</CATALOG>

62

Anhang B simple.xml [XMLSpy]

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Edited with XML Spy v2007 (http://www.altova.com) -->
<breakfast_menu>
<food>
<name nr="1">Belgian Waffles</name>
<price>$5.95</price>

<description>two of our famous Belgian Waffles with plenty of real maple
syrup</description>

<calories>650</calories>

</food>

<food>
<name nr="2">Strawberry Belgian Waffles</name>
<price>$7.95</price>

<description>light Belgian waffles covered with strawberries and whipped
cream</description>

<calories>900</calories>

</food>

<food>
<name nr="3">Berry-Berry Belgian Waffles</name>
<price>$8.95</price>

<description>light Belgian waffles covered with an assortment of fresh
berries and whipped cream </description>

<calories>900</calories>

</food>

<food>

63

<name nr="4">French Toast</name>
<price>$4.50</price>

<description>thick slices made from our homemade sourdough bread
</description>

<calories>600</calories>

</food>

<food>
<name nr="5">Homestyle Breakfast</name>
<price>$6.95</price>

<description>two eggs, bacon or sausage, toast, and our ever-popular hash
browns </description>

<calories>950</calories>
</food>

</breakfast_menu>

64

Anhang C books.xml [W3C-XML]

<?xml version="1.0" encoding="ISO-8859-1"?>
<bookstore>

<book category="children">

<TITLE lang="en">Harry Potter</TITLE>
<author>]J K. Rowling</author>
<year>2005</year>

<price>29.99</price>

</book>

<book category="cooking">

<TITLE lang="en">Everyday Italian</TITLE>
<author>Giada De Laurentiis</author>
<year>2005</year>

<price>30.00</price>

</book>

<book category="web" cover="paperback">
<TITLE lang="en">Learning XML</TITLE>
<author>Erik T. Ray</author>
<year>2003</year>

<price>39.95</price>

</book>

<book category="web">

<TITLE lang="en">XQuery Kick Start</TITLE>
<author>James McGovern</author>

<author>Per Bothner</author>

65

<author>Kurt Cagle</author>
<author>James Linn</author>
<author>Vaidyanathan Nagarajan</author>
<year>2003</year>

<price>49.99</price>

</book>

</bookstore>

66

Literaturverzeichnis

[AIM] Advanced Information Management, Holger Schwarz

URL: http://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/
lehreveranstaltungen/vorlesungen/SS12/aim2012

[Core Java 2] Core Java 2, Volume I — Fundamentals Seventh Edition, Cay S. Hostmann

Gary Cornell

[LROO] Frank Leymann and Dieter Roller, Production Workflow. Concepts and

Techniques, Prentice-Hall, 2000

[W3C-DOM] DOM, W3C URL: http://www.w3schools.com/dom

Verifizierung am 19.02.2013

[W3C-Schema] Schema, W3C URL: http://www.w3schools.com/schema

Verifizierung am 24.02.2013

[W3C-XML] XML, W3C URL: http://www.w3schools.com/xml

Verifizierung am 19.02.2013

[W3C-XPath] XPath, W3C URL: http://www.w3schools.com/xpath

Verifizierung am 19.02.2013

[WiKi] XPath, WIKIPEDIA URL: http://de.wikipedia.org/wiki/XPath

Verifizierung am 24.02.2013

67

[XMLBeans] ~ Welcome to XMLBeans, Apache = URL: http://xmlbeans.apache.org

Verifizierung am 24.02.2013

[XMLSpy] XMLSpy, Altova URL: http://www.altova.com/xmlspy

Verifizierung am 24.02.2013

68

Erklarung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen Quellen
benutzt zu haben. Wértliche und sinngeméfle Ubernahmen aus anderen Quellen habe ich
nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 05. Marz 2013

69

