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1 Einführung 

Die Extraktion von Produkten, Produkteigenschaften und Werten der Produkteigenschaften aus 
einem natürlichen Text kann als ein Problem von Text Mining angesehen werden. Text Mining 
ist eine neue Disziplin, die in den letzten zehn Jahren entstanden ist, und es gibt keine generell 
akzeptierte Definition für Text Mining. Die folgende enge Definition wird für diese 
Ausarbeitung übernommen: „Mit dem Terminus Text Mining werden computergestützte 
Verfahren für die semantische Analyse von Texten bezeichnet, welche die automatische bzw. 
semi-automatische Strukturierung von Texten, insbesondere sehr großen Mengen von Texten, 
unterstützen.“ [1] Die natürliche Sprache besitzt keine Struktur. Aber es existieren Regeln, mit 
deren Hilfe aus den Wörtern die Phrasen und aus den Phrasen die Sätze aufgebaut werden. Um 
die natürlichen Texte zu bearbeiten, sollten die s.g. Regeln und Wortbedeutungen als 
Vorkenntnisse für Text Mining vorhanden sein. NLP bietet eine gute Möglichkeit für die 
Vorbearbeitung der natürlichen Sprache. Der natürliche Text wird durch syntaktische und 
semantische Analyse verarbeitet. Danach wird die Cluster Analyse durchgeführt und die Daten 
aus dem Clustering werden durch Filter gefiltert. 

 

Abbildung 1: Der Ablauf von Data Mining 

„Verarbeitung natürlicher Sprache (NLP: Natural language processing) ist ein Oberbegriff für 
alle Forschungs- und Anwendungsbereiche der Disziplinen Computerlinguistik (Computational 
Linguistik (CL)), der linguistischen Datenverarbeitung, der sprachorientierten Künstlichen-
Intelligenz-Forschung und Sprachtechnologie.“ [2] Durch die syntaktische Analyse wird der 
natürliche Text in die formalen Ausdrücke umgewandelt, z.B. Prädikatlogik erster Stufe und 
Dependenzbäume in ein USP System. Aber die durch syntaktische Analyse erzeugten 
Strukturen sind mehrdeutig. Mit Hilfe von semantischer Analyse werden den Wörtern die 
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semantischen Rollen zugewiesen. „Semantische Rollen können zu der automatischen 
Textinhaltserschließung eines Dokuments beitragen, da sie eine formalisierte Repräsentation 
von Informationen zu den Sachverhalten und Ereignissen, die aus einem Text extrahiert werden 
können, sowie zu den Relationen zwischen den involvierten Entitäten darstellen.“ [3] Damit 
werden die Ambiguitäten und syntaktischen Variationen abgezogen, weshalb die semantische 
Analyse eine wichtige Rolle bei der Sprachanalyse spielt und die semantische Analyse auch eine 
Schwierigkeit für die Sprachanalyse darstellt. Wie in Abbildung 2 gezeigt, besteht die 
Sprachanalyse aus syntaktischer Analyse und semantischer Analyse und liefert die semantischen 
Repräsentationen für den natürlichen Text. Je besser diese semantische Repräsentation ist, desto 
exakter sind die extrahierten Informationen. 

 

Abbildung 2 : Ablauf der Sprachanalyse 

Vor mehreren Jahren wurden einige Ansätze für die semantische Analyse entwickelt. Zum 
Beispiel die Ansätze aus [4] und [5]. In [4] und [5] müssen einige semantische Parser als Muster 
manuell vordefiniert und die logischen Formen für jeden Satz angegeben werden, danach 
werden alle semantischen Parser mithilfe des Maschinenlernens auf den Text abgebildet. Dies 
ist offensichtlich sehr aufwendig. „Unsupervised Semantic Parsing“ (Abk. USP) ist der erste 
nicht überwachte Ansatz für semantische Analysen. Dieser Ansatz wurde von Hoifung Poon und 
Pedro Domingos im Jahr 2009 entwickelt und ermöglicht es mit der Hilfe von Markov Logik 
Netzwerk, eine vollautomatische semantische Analyse zu realisieren. „Für die Extraktion der 
Informationen beschränkt USP System sich darauf, wievielmal die gesuchte Information im 
Korpus angegeben wird. Wenn die Information selten im Korpus angegeben würde, wäre es 
schwierig zu extrahieren.“ [6] Des Weiteren wurde basierend auf „Unsupervised Semantic 
Parsing“ im Jahr 2010 “Ontology Unsupervised Semantic Parsing“ (Abk. OntoUSP) 
vorgeschlagen. „Während der Umwandlung der Sätze in logische Formen wird ISA Hierarchie 
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von Lambda-Formen durch die Clusteranalyse der logischen Ausdrücke generiert. Damit ist es 
möglich, eine Ontologie zu erstellen.“ [7] Die Informationen können trotzdem extrahiert werden, 
wenn die Informationen selten in dem Korpus vorkommen, weil die Informationen schon in der 
Ontologie eingesetzt werden. 

1.1 Ziel der Diplomarbeit 

In dieser Diplomarbeit wird geprüft, ob OntoUSP eine Methode ist, mit der das Produkt, die 
Produkteigenschaft und die Werte der Produkteigenschaft aus einem natürlichen Text extrahiert 
werden können. Zwar ist das Programm von OntoUSP nicht vorhanden, aber man kann von den 
Ergebnissen von USP ausgehen, weil OntoUSP eine Erweiterung von USP ist, und bei 
Experimenten mit Onto USP werden die Ausgaben von USP benutzt, d.h. die Ausgaben von 
OntoUSP enthalten die gleichen oder ähnliche Informationen wie USP. 

1.2 Problem definieren 

Die Eingabe ist ein natürliches Dokument. Stanford Parser wandelt das natürliche Dokument in 
morphologische Wörter und die Dependenzen zwischen den Wörtern um. Die Ergebnisse von 
Stanford Parser sind die Eingaben für USP. Durch  eine Analyse der Ausgaben-Datei des USP 
Programms wird eine Hierarchie für die Wörter erstellt. Danach werden diese Wörter gefiltert, 
und die Ausgaben von Produkten, Produkteigenschaften und die Werte der 
Produkteigenschaften basierend auf folgenden Annahmen generiert : 

• Die Wurzel ist entweder ein Produkt oder ein Markenzeichen 
• Die Blätter sind die Werte der Produkteigenschaften 
• Die Eltern Knoten der Blätter sind Produkteigenschaften 
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2 Stand der Technik und Grundlagen 

2.1 Stand der Technik 

in der Vergangenheit wurden viele Ansätze von Extraktion von Produkt und 
Produkteigenschaftswerten entwickelt. Es gibt auch viele Ansätze für Informationsextraktion 
basierend auf Ontologie. Aber alle Ansätze erfordern entweder manuelle Unterstützung oder 
beschränkt sich auf eine bestimmte Wissensdomäne oder dem Format des Textes. 

In [8] ist die Extraktion für explizite Produkt Attribute basierend auf der Extraktion für „opinion 
word“. In [8] sind die manuell markierten Trainingsdaten sind erforderlich. Mit den markierten 
Daten werden die Pattern erzeugt, und diese Pattern werden wieder benutzt, um nach den 
„Attribute-Value“ die Entitäten zu extrahieren. Die Bindung von Produkt Attribute und Produkt 
Attribute Wert, und diese Bindung wird durch einen Dependenzparser (Minipar [9]) realisiert. 

In [10] sucht man nach den sehr oft vorkommenden Normen oder Norminalphrasen, die 
gefundene Normen bzw. Norminalphrasen werden als die Features der Produkte  ausgewählt. 
Mit der Hilfe von PMI(pointwise mutual information) und „Naive Bayes Classifier“ werden die 
Regeln für die Informationsextraktion generiert. 

In [11] werden die Sätze bzw. die Rekorder in Parser Bäume mit leichten semantischen 
Annotationen umgewandelt, weshalb sich dieser auf eine bestimmte Domäne beschränkt. 

In [12] wird die Shallow semantische Analyse benutzt. Die Ontologie der Domäne wird 
vordefiniert. Die Generierung der Ontologie ist die Abbildung zwischen den Wörtern und der 
vordefinierten Ontologie, d.h. die Ontologie wird nicht von Wörtern generiert. 

In [13] werden die Sätze in einem Text in semantische Term Graph umgewandelt, mit der Hilfe 
des „Page Ranking Algorithmus“ werden die Term Kandidaten auf entsprechende vordefinierte 
„Layer“ abgebildet. Gleich wie in [13], wird die Ontologie nicht von Wörtern generiert. 

USP liefert vollständig semantische Analysen und ein Markov Logik Netzwerk für Wörter. 
Damit werden die o.g. Schwächen überwunden. 

2.2 Grundlagen 

Die syntaktischen Analysen zusammen mit den semantischen Analysen liefern die  
semantischen Repräsentationen für einen natürlichen Text. Aus einem natürlicher Text werden 
durch die syntaktische Analyse(eng : syntax parsing) die syntaktische Bäume(auch Parser 
Bäume) erzeugt. Diese syntaktische Analyse erledigt in USP System durch Stanford Parser. Die 
Ausgaben von Stanford Parser sind die Eingaben für USP. USP führt die semantische Analyse 
durch und fügt für jedes Wort eine semantische Rolle hinzu und clustert die Wörter. Die 
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Ausgaben von USP sind „*.parse“ und „*.mln“ Dateien, wobei die „*.parse“ eine Baum 
Struktur liefert, und „mln“ ein Netz der Wörter liefert. Durch „*.parse“ und „*.mln“ Datein 
werden die Ausgaben generiert. 

 

Abbildung 3 : Der Durchlauf der Informationsextraktion 

Im Folgend werden die Grundlagen für USP System sowie die Komponente für USP System, 
Grundlagen für Logik, Grundlagen für Markov Logik Netzwerk und Grundlagen für Liguistik 
besprochen. 

2.2.1 Stanford Parser 

„Der Stanford Parser ist ein probabilistisches Parser Programm. Die natürliche Sprache ist die 
Eingabe für das Programm und durch den probabilistischen Parser kann die grammatische 
Struktur der Sätze bestimmt werden. Die Kenntnisse der Wahrscheinlichkeiten von 
probabilistischen Parsern werden aus manuellen analysierten Sätzen erworben, und mithilfe der 
probabilistischen Parser können die wahrscheinlichste Analyse von neuen Sätzen produziert 
werden. Dieser probabilistischen Parser garantiert nicht, dass die Ergebnisse 100% richtig sind.“ 
[14] „*.dep“, „*.input“ und „*.morph“ sind die Eingabe Dateien für USP und die drei Dateien 
werden von Stanford Parser generiert. In der Tabelle 1 sind ein Beispielsatz und der Inhalt der 
von Stanford Parser erzeugten Dateien dargestellt. In Abbildung 4 ist die graphische Darstellung 
der syntaktischen Analyse von Stanford Parser für den Beispielsatz. In Abbildung 5 ist die 
graphische Darstellung der manuell syntaktischen Analyse für den Beispielsatz gegeben. 
Stanford Parser hat die syntaktische Struktur falsch analysiert, die Fehler wird mit rot Oval 
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markiert. Die syntaktische Struktur der Nominalphrase aus Stanford Parser ist NP→NP PP_with 
NP, die richtige ist NP→NP CONJ_and NP. Solche Fehler führen zu einer falschen  Ontologie. 

 

Tabelle 1 : Beispiel für Stanford Parser 

In der ersten Zeile von Tabelle 1 ist der Satz. In der 2. Zeile sind die Darstellungen von Datei 
„*.dep“. Die Beziehungen der Wörter (wie nsubj, dobj, nn) und die Position der Wörter ( 
„Apple-1“ bedeutet „Apple“ ist das erste Wort, sowie „announce-2“ ist das zweite, usw.) 
werden angegeben. In der 3. Zeile sind die Darstellungen von Datei „*.input“. Hier werden die 
Wörter und der entsprechende syntaktische Worttypen angegeben. In Zeile 4 sind die 
Darstellungen von Datei „*.morph“. Die morphologischen Wörter werden angegeben, z.B. : 
„announce“ ist das morphologische Wort „announces“ ist das morphologische Wort für 
„announces“.  

 

Abbildung 4 : Der Parser Baum, der von Stanford Parser erzeugt wird. 
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Abbildung 5 : Der Parser Baum, der manuell erzeugt wird. 

2.2.2 Semantik Analyse 

Für die Verarbeitung natürlicher Sprache gibt es folgende Schwierigkeiten : die heterogenen 
Wissensdomänen, die Auflösung der Ambiguität der Sprache, Modellierung der Sprache und die 
Auflösung der syntaktischen Variationen der Sprache. Im Durchlauf von „Shallow Semantic 
Parsing“ erfolgt die Erkennung von semantischer Repräsentation z.B. „Wer“, „Was“, „Wann“, 
„Wo“, „Warum“, „Wie“, usw. und nur die Elemente, die aufeinander folgend und 
zusammenhängend sind, werden ermittelt. „Shallow Semantic Parsing“ kann die s.g. 
Schwierigkeiten nicht auflösen und es fehlt die Fähigkeit der Schlussfolgerung. 

 

Abbildung 6 : Ein Beispiel für Shallow Semantic Parsing 

Im Gegensatz zu „Shallow Semantic Parsing“ liefert die vollständige semantische Analyse eine 
Repräsentation eines Satzes in Prädikatenlogik erster Stufe oder andere formale Sprache und 
unterstützt eine automatische Schlussfolgerung. Die natürliche Sprache wird im Leseprozess 
vollständig syntaktisch analysiert, damit die logischen Formen erzeugt werden können. Durch 
semantische Analyse wird die von syntaktischer Analyse erzeugte logische Form, nämlich die 
logische Repräsentation der natürlichen Sprache, auf der vollständigen semantischen 
Repräsentation, nämlich die Bedeutungsrepräsentation, abgebildet. Die 
Bedeutungsrepräsentationen der Sprache werden in dieser Ausarbeitung durch Prädikatenlogik 
erster Stufe dargestellt. Einige Definitionen müssen hier angeben werden : 

• Ein Term ist ein Objekt in einer Domäne. Ein Term kann eine Konstante, eine Variable 
oder eine Funktion, die auf den Variablen angewendet, sein. 
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• Eine Formel bzw. eine atomare Formel ist ein Prädikatsymbol, das auf n-Tupel von 
Termen angewendet wird. Eine Formel kann aus mehreren atomaren Formeln verknüpft 
mit logischen Symbolen und Quantoren rekursiv konstruiert sein. 

• Unter einer lexikalischen Einheit kann in dieser Ausarbeitung ein Wort verstanden 
werden. Ein lexikalischer Eintrag definiert die logische Formel für eine lexikalische 
Einheit mit POS Tagging. λ-gebundene Variablen markieren die fehlenden Argumenten 
in den logischen Formen. 

„Der semantische Parser eines Satzes wird hergeleitet, indem man mit logischen Formen in den 
lexikalischen Einträgen anfängt und die Bedeutung größerer Fragmente rekursiv aus deren 
Bestandteilen zusammensetzt.“ [7] In der Abbildung 7 wird gezeigt, dass „everybody“, „two 
language“ und „speaks“ zuerst analysiert werden, danach werden die kleinen 
Bedeutungsrepräsentationen in einer großen Bedeutungsrepräsentation zusammengestellt. 

 

Abbildung 7 : Ein Beispiel für semantische Analyse 

Die ersten drei Zeilen in der Abbildung 7 sind lexikalische Einträge bzw. Wörter. Die 
syntaktische Kategorie bzw. POS Tagging von „love“ ist „Verb“. Wenn zwei Atome die 
Funktion „loves(x,y)“ erfüllen, dann ist diese Funktion true. Die letzten zwei Zeilen haben 
gezeigt, dass die lexikalischen Einträge in einem größeren Fragment der Bedeutung 
zusammengestellt werden. 

2.2.3 Prädikatenlogik erster Stufe ( Abk. PL1) 

„Die Prädikatenlogik erster Stufe beschäftigt sich mit Objekten und Aussagen über deren 
Eigenschaften.“ [15] Die Prädikatenlogik erster Stufe ist „ausdruckstärker“ als Aussagenlogik, 
und Quantoren, Funktions- und Prädikatsymbole kommen hinzu. Die Prädikatlogik erster Stufe 
ermöglicht ontologische Bindung zwischen den Objekten, das ist der wichtigste Unterschied von 
allen zwischen Aussagenlogik und Prädikatlogik erster Stufe. 

Einige Definitionen (aus [16]) : 

• Eine Variable hat die Form xi 
• Ein Prädikatsymbol hat die Form Pi und ein Funktionssymbol hat die Form fi 
• Jede Variable ist ein Term, jede Konstante ein Term, sowie f (t1,…tn) auch ein Term, 

falls f eine Funktion und ti die Terme sind.  
• P(t1,…tk) ist eine Formel bzw. eine atomare Formel, fall P ein Prädikatsymbol ist und ti 

Terme sind. 
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• Für jede Formel ¬F, ∃F, ∀F, F∨G, F∧G sind auch die Formeln, wobei ∃ und ∀ sind die 
Quantoren.  

• Alle vorkommenden Variablen sind entweder frei oder gebunden. Wenn x in der Form 
∃xF oder ∀xF vorkommt, dann heißt die Variable x in Formel F gebunden, andernfalls 
heißt frei. 

Eine Wissensdomäne ist eine Sammlung von Informationen über die Bedeutungen der Daten 
und über die logischen Regeln. Eine PL1 Wissensdomäne ist eine Menge von Sätzen und 
Formeln in PL1. Die Formeln bestehen aus Konstante, Variablen, Funktionen und Prädikaten. 
Die neue Regeln bzw. die Randbedingungen können in die vorhandene Wissensdomäne 
hinzugefügt werden, und die Wissensdomäne mittels der Regeln bzw. die Randbedingungen aus 
dem vorhandenen Wissen Schlüsse inferieren. 

Einige Definitionen (aus [17]) : 

• Jede Konstante ist ein Objekt in einer Wissensdomäne und kann typisiert sein, z.B. 
Konstant HA repräsentiert Hersteller Apple. 

• Die Variablen können typisiert sein und repräsentieren die Objekte gleichen Typs in 
einer Wissensbasis, z.B. Variable xi = Tom ist der Name der Menschen in der 
Wissensbasis „MenschenName (Tom, Jerry, Mary)“. Durch die Substitution der 
Variablen durch eine Konstante aus der Konstante Menge werden die verschiedenen 
Objekte entstehen, z.B. MenschenName (Tom) und MenschenName (Jerry). 

• Die Beziehung zwischen den Objekten sind die Funktionen wie Mutter_von, 
guter_Freund_von. 

• Ein Prädikatsymbol repräsentiert die Beziehung zwischen den Objekten und die 
Eigenschaften der Objekte, z.B. Feind und Rauchen. 

• Ein Term kann eine Konstante, eine Variable oder eine Funktion sein, die auf 
Unterterme angewendet werden kann. 

• Eine atomare Formel ist ein Prädikatsymbol, das auf Unterterme angewendet wird. 
• Eine Formel kann rekursiv aus atomaren Formeln, die mit Quantoren(∃,∀) und logischen 

Symbolen(∧,∨,⇔,⇒) der Prädikatenlogik verknüpft sind, konstruiert werden. 
• Ein Grundterm ist ein Term, der keine Variable enthält. 
• Ein Grundatom oder ein Grundprädikat ist eine atomare Formel, deren Argumente alle 

Grundterme sind. 

Die von Stanford Parser erzeugten Dependenzen können in die PL1 Repräsentationen 
umgewandelt werden. Der natürliche Text kann als die Kombination von den PL1 
Repräsentationen gesehen werden. Somit ist die Wissensdomäne eines Textes die Sammlung 
von Dependenzen in PL1 Repräsentationen mit den Objekten und diese PL1 Repräsentationen 
sind die Randbedingungen im Markov Logik Netzwerk. Die Randbedingungen im Markov 
Logik Netzwerk sind die in disjunktiver Normalform geschriebenen Klausel-Formen, damit die 
Randbedingungen aufgeweicht werden. Eine Welt (possible world) ist wahr, wenn alle 
vorkommenden Grundatome wahr sind. 
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Abbildung 8 : (aus [17]) Beispiele für Wissensdomäne von Prädikatenlogik erster Stufe. Fr() ist Abkürzung für 
Friends(), Sm() für Smokes(), and Ca() für Cancer(). 

2.2.4 Quasi-logische Form, POS Tagging und Lambda(-Kalkül) 
Notation 

2.2.4.1 Quasi-logische Form 

Quasi-logische Form basiert auf der Prädikatlogik (in dieser Ausarbeitung wird mit 
Prädikatenlogik erster Stufe beschäftigt. Details siehe [18]) und ist eine Darstellung der 
Bedeutung des Dokuments. Jede QLF hat eine entsprechende Formel in Prädikatenlogik bzw. 
Prädikatenlogik erster Stufe. 

 

Abbildung 9 (aus [19]): Die Umwandelung des Satzes „Everybody speaks two languages“ in QLF und 
entsprechender Prädikatenlogik 
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2.2.4.2 Lambda(-Kalkül) Notation 

„Durch Lambda(λ)-Ausdrücke werden formale Parameter eingeführt, die durch Terme ersetzt 
werden können.“ [20] Beide λx.Love(x, y) und λx. λy.Love(x, y) sind die Lambda-Ausdrücke. 
Die λ-gebundene Variable kann durch ein Argument aus einem Definitionsbereich, z.B. aus 
konstanten Menge in MLN, substituiert werden. Die nicht-λ-gebundene Variable heißt frei. Ein 
Beispiel für Substitution einer λ-gebundenen Variable : 

λx.Love(x, y)(Tom) ⇒ Love(Tom, y) 

wobei y eine nicht-λ-gebundenen Variable bzw. eine freie Variable ist. Die Substitution von λ-
gebundenen Variable ist die λ-Reduktion. „Ein Prädikat mit mehreren Argumenten kann durch 
die λ-Reduktion auf eine Folge von jeweils einstelligen Prädikaten abbilden.“ [20] 

2.2.4.3 POS Tagging 

Ein Token ist in dieser Ausarbeitung ein einzelnes Wort. Ein „Tag“ ist eine Markierung bzw. 
eine Etikett von Token. Tagging ist ein Verfahren, durch das ein Tag einem Token zugewiesen 
wird. POS(PART-OF-SPEECH) Tagging ist die Zuordnung der Wortart zu einem Token, z.B. 
Verb, Nomen usw. Mithilfe von POS Tagging werden die Informationen der Sprache 
kategorisiert. Die von Stanford Parser erzeugten Dependenzen enthalten die POS Tags schon. 

 

Abbildung 10 : Ein Satz markiert mit POS Tag. 

2.2.5 Markov Logik Netzwerk (Abk. MLN) 

2.2.5.1 Markov Netzwerk (Abk. MN)  

Das Folgende baut auf [17] auf. „Markov Netzwerk (oder Markov Random Field) ist ein 
statistisches Modell für multivariate Verteilung einer Menge von Variablen X = (X1, X2, … , 
Xn) ∈ ℵ und beschreibt die ungerichteten Graphen, die bedingte Unabhängigkeitsaussagen 
zwischen Variablen ausdrucken.“ [17] & [21] In einem ungerichteten Graph repräsentiert jeder 
Knote eine Variable, jede Clique im Graph hat eine potenzielle Funktion, die einen Zustand der 
Clique repräsentiert. Die multivariate Verteilung von MN : 

𝑃(𝑋 = 𝑥) = 1
𝑧
𝛱𝛷𝑘�𝑥{𝑘}�     (1) 

wobei x{k} ist der Zustand von k-ste Clique ist, d.h. x{k} repräsentieren alle Werte von den 
Variablen in der k-ste Clique. Z ist die Normalisierung. Die Formel (1) kann als log-lineares 
Modell dargestellt werden. 
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𝑃(𝑋 = 𝑥) = 1
𝑧

exp �� 𝜔𝑗𝑓𝑗(𝑥)
𝑗

�     (2) 

wobei ωj Gewicht von einer Feature Funktion fj (x) ist. In dieser Ausarbeitung fj (x)  ∈ {0,1}. 
Feature Funktion beschreibt einen Zustand der Clique und das Gewicht der Feature Funktion ist 
log𝜑𝑘�𝑥{𝑘}�. 

2.2.5.2 Markov Logik Netzwerk (Abk. MLN)  

Das Folgende baut auf [17] auf. Eine Wissensdomäne besteht aus einer Folge von logischen 
Regeln der Prädikatenlogik erster Stufe. Eine logische Regel in einer Wissensdomäne ist eine 
Randbedingung in einer Welt. Wenn eine Randbedingung einer Welt verletzt ist, hat die 
entsprechende Welt die Wahrscheinlichkeit 0. Sehr oft ist ein solcher Fall nicht erwünscht. Mit 
Markov Logik wird diese Randbedingung dadurch aufgeweicht, dass jeder Randbedingung ein 
Gewicht zugewiesen wird. Damit ist es möglich, dass eine Welt, in der eine Randbedingung 
verletzt ist, eine geringere Wahrscheinlichkeit besitzt, aber nicht unmöglich ist. Das Gewicht 
beschreibt die Bindungswirkung der entsprechenden Randbedingung, wenn die Welt wahr ist. 
Eine Welt, in der die Randbedingung erfüllt ist, besitzt größere Wahrscheinlichkeit als eine 
alternative Welt, in der die Randbedingung verletzt wird. „Ein Markov Logik Netzwerk ist eine 
probabilistisch logische Repräsentation, welche Prädikatenlogik erster Stufe und Markov-Netze 
miteinander verknüpft.“ [22] 

Einige Definition (aus [17]) : 

• Ein Markov Logik Netzwerk L ist eine Menge von Paaren (Fi, ωi), wobei Fi eine logische 
Formel der Prädikatenlogik der erster Stufe ist und ωi ein Gewicht. Hier werden nur die 
existenzquantifizierte Variablen betrachtet und alle allquantifizierten Variablen sind die 
freie Variablen. 

• (Fi, 𝜔i) zusammen mit einer endlichen Menge von logischen Konstanten C = {c1, c2, … , 
c|c|} definieren ein Markov Logik Netz ML,C. 

• Jedes Grundatom in L entspricht einem binären Wert Knoten in ML,C. Die Grundatome 
Menge X= {X1,…,Xn} wird dadurch erhalten, dass die Variablen der 
prädikatenlogischen Formel in L durch die in L gegebenen Konstanten substituiert 
werden. Der Wert eines Knotens ist genau dann 1, wenn das Grundatom wahr ist, 
ansonsten ist der Wert 0. Der Knoten kann mit anderen Knoten durch die Kanten 
verbunden werden, wenn die beiden Knoten bzw. die Grundatome in einer Belegung der 
Grundformel gemeinsam vorkommen. 

• Für jede Belegung einer Grundformel Fi in L besitzt ein Feature fi, der Wert von fi genau 
dann 1 ist, wenn die Belegung der Grundformel wahr ist und sonst 0. Die Summe der 
Gewichte für Feature fi ist das Gewicht wi in L.  

18 

 



 

 

Tabelle 2: (aus [17]) Beispiele für Wissensdomäne von MLN.  

In der Tabelle 2 ist Fr() Abkürzung für Friends(), Sm() für Smokes(), and Ca() für Cancer(). Im 
Vergleich zu Tabelle 2 werden hier die Gewichte hinzugefügt. Allen Regeln in dem Spalt „First-
Order Logic“ sind die Grundformeln und die Belegungen der Grundformeln in dem Spalt 
„Clausal Form“. Wenn eine Grundformel mehre Belegungen besitzt, dann wird das Gewicht der 
Grundformel gleichmäßig auf Belegungen aufgeteilt, z.B. Das Gewicht für ∀x ∀y Fr(x; y) ⇒ 
(Sm(x) , Sm(y)) ist 2.2 und das Gewichte für jede Belegung ist 1.1. 

 

Abbildung 11 : (aus [17]) : Der MLN Graph, der Tabelle 2entspricht. A und B sind die Konstant. 

 

Abbildung 12 (aus [23]) : Cliques und Gewichte von MLN in Abbildung 11. Es gibt 6 Cliques. 

Aus der Definition von MLN wird jeder Knoten in MLN ML,C durch Einsetzen für Variablen der 
logischen Formeln in MLN die Grundatome erzeugt. Die Kante zwischen den Knoten entspricht 
die Beziehung zwischen den Knoten. Deshalb kann MLN als Model von Markov Netzwerk 
gesehen werden und die Wahrscheinlichkeitsverteilung ist : 

𝑃(𝑋 = 𝑥) = 1
𝑧

exp(∑ 𝜔𝑖𝑛𝑖(𝜒)𝑖 ) = 1
𝑧
� 𝛷𝑖�𝑥{𝑖}�

𝑛𝑖(𝑥)

𝑖
     (5) 
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wobei ni die Anzahl der Grundformeln ist, die den Wert 1 haben. Formel (5) hat gezeigt, dass 
eine Welt nicht unmöglich ist, wenn diese Welt eine Randbedingung oder mehrere 
Randbedingungen verletzt, sondern besitzt geringere Wahrscheinlichkeit. Gewicht 𝜔𝑖 zeigt, wie 
„stark“ die Randbedingung in der Welt ist. Für ein bestimmtes MLN können unterschiedliche 
Markov Netzwerk erzeugt werden, wenn die Konstant Menge unterschiedlich sind, aber diese 
Markov Netzwerk haben auch manche Gemeinsamkeiten wie die gleiche Anzahl der Clique. Die 
Gewichte werden entweder aus dem Lernen von Trainingsdaten erhalten oder von Menschen 
manuell gegeben. 

2.2.6 Clusteranalyse 

USP System startet mit Clustering von Wörtern, die gleichen Typen haben, baut rekursiv 
größere Clusters auf. Hier wird das Cluster erklärt, das Cluster ist eine Gruppe von Objekten, 
die ähnliche Eigenschaften besitzen. Die Objekte werden entweder in verschiedene Klassen 
aufgeteilt oder besitzen keine Struktur. Das Clustering (auch Clusteranalyse) dient dazu, dass 
die Objekte ins Cluster untergeteilt werden, damit die in einem Cluster zugeordneten Objekte 
eine möglichst hohe Ähnlichkeit besitzen. Die Clusteranalyse ermöglicht eine Struktur für die 
Objekte aufzubauen. Bei der Clusteranalyse ist das Ziel, die Unterschiede zwischen den 
einzelnen Gruppen möglichst maximiert und die Unterschiede innerhalb der einzelnen Gruppen 
möglichst minimiert werden zu können. 

 

Abbildung 13: Ein Beispiel für Clusteranalyse. „Tablet PC“ kann in der Gruppe „Tragbarer Computer“ oder in 
„Netbook“ Gruppe sein. In Welcher Gruppe die Objekte zugeordnet werden, hängt stark vom verwendeten 
Algorithmus, Parametern und verwendeten Objekt-Attributen ab. 

2.2.7 Unsupervised Semantic Parsing und Ontology Unsupervised 
Semantic Parsing 

Früher wurde der semantische Parser manuell erstellt, zwar einige Ansätze für maschinelles 
Lernen wurden danach entwickelt, aber die manuelle Unterstützung war immer noch 
erforderlich, und manche Ansätze beschränkten sich auf einer geschlossenen Wissensdomäne. 
USP ist der erste nicht-überwachte maschinelles Lernen Ansatz für Semantik Parser. Ob ein 
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Ansatz für maschinelles Lernen überwacht ist, ist abhängig davon, ob Eingabe- und 
Ausgabedatei manuell markiert sind. 

• überwachtes Lernen (engl. supervised learning) : Der Algorithmus lernt eine Funktion 
aus gegebenen Paaren von Ein- und Ausgaben. Dabei stellt während des Lernens ein 
„Lehrer“ den korrekten Funktionswert zu einer Eingabe bereit. 

• nicht-überwachtes Lernen (engl. unsupervised learning) : Der Algorithmus erzeugt für 
eine gegebene Menge von Eingaben ein Modell, das die Eingaben beschreibt und 
Vorhersagen ermöglicht. Dabei gibt es Clustering-Verfahren, die die Daten in mehrere 
Kategorien einteilen, die sich durch charakteristische Muster voneinander unterscheiden. 

2.2.7.1 Unsupervised Semantic Parsing 

USP beruht auf drei zentralen Ideen : (aus [7]) 

• Ziel Prädikat und Objekt Konstanten können als Cluster von syntaktischen Variationen 
derselben Bedeutung angesehen werden, und aus Daten erlernt werden. Zum Beispiel 
stellt „ACQUIRE“ den Erwerb Beziehung, und kann als Cluster von verschiedenen 
Formen zum Ausdruck dieser Beziehung, wie „acquired“, „bought“, „purchased“ 
angesehen werden; Microsoft repräsentiert das Unternehmen Microsoft und kann als das 
Cluster von „Microsoft“, usw. angesehen werden. 

• Die gleiche Formen können clustert  werden. Die Formen, die aus den gleichen Formen 
bestehen, können clustert werden. 
 

 

Abbildung 14 (aus [24]) : Illustration für Clustering-Verfahren von USP 

• USP startet direkt von syntaktischen Analysen und konzentriert sich nur auf deren 
Umsetzung zum semantischen Inhalt. Die vorherige entwickelte Parser können in USP 
eingesetzt werden, deshalb stehen viele Ressourcen zur Verfügung. Die syntaktische 
Analyse und die semantische Analyse sind in USP getrennt, damit die Komplexität der 
semantischen Analyse reduziert wird, weil es nicht erforderlich ist, bei 
Zusammensetzung der Bedeutungen ein domänenspezifisches Verfahren zur Erzeugung 
von Kandidaten Lexikon zu brauchen. 

 
Die Eingaben für USP System sind die Dependenzbäume, die von Stanford Parser generiert 
werden. Eine natürliche Sprache ist die Eingabe für Stanford Parser, „*.dep“, „*.input“ und 
„*.morph“ sind die Ausgabe von Stanford Parser, aus diesen drei Dateien werden die 
Dependenzbäume generiert. Ein Dependenzbaum ist eine Baum Struktur, in der Baum-Struktur 
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sind die Knoten die Wörter, und die Kanten sind die Beziehungen zwischen den Wörter. Die 
QLF in dieser Ausarbeitung wird daraus erhalten : 

• jeder Knoten in einem Dependenzbaum wird in ein unäres Atom mit dem Prädikat 
umwandelt, und das Prädikat wird mit POS Tag markiert, z.B. „Microsoft“ wird in 
„Microsoft(n4)“ umgewandelt. 

• jede Kante in einem Dependenzbaum entspricht einem Prädikat mit zwei Atomen, und 
das Prädikat ist die „Beziehung“ zwischen den Atomen, z.B. nsubj(n3, n2). 

wobei n2 und n3 die Skolemkonstante sind. Eine Skolemkonstante kann man in dieser 
Ausarbeitung als eine Konstante aus der konstanten Menge in MLN verstehen. (Mehr über 
Skolemkonstante sieht Kapitel 9 in [25]). 

QLF von einem Satz kann als eine Konjunktion von logischen Formen von entsprechenden 
Konten und Kanten angesehen werden. Dieser Vorgang ist illustriert in Abbildung 15. Die 
Bedeutung eines Satzes kann als eine Kombination von den Sub-Formen der QLF gesehen 
werden, deshalb die lexikalischen Einträge beschränken sich nicht mehr auf den adjazenten 
Wörtern sondern sind die beliebigen Fragmente in einem Dependenzbaum. Deswegen hat USP 
System mehre Flexibilität beim Maschinenlernen. 

 

Abbildung 15: Beispiel für die Generierung von QLF.  

Die natürliche Sprache wird durch s.g. Stanford Parser drei Dateien als Eingaben für USP 
System erzeugt. Diese drei Dateien stellen einen Dependenzbaum dar. Der Dependenzbaum 
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wird in QLF umgewandelt. QLF in dieser Ausarbeitung wird vereinfacht. Deshalb ist die 
Darstellung hier nicht gleich wie die Darstellung in der Abbildung 9. 

In dem USP System wird QLF in den kleinen Teilen partitioniert, und die partitionierte Teile der 
QLF werden in einer Gruppe bzw. in einem Cluster zugewiesen, wenn sie die gleiche 
Bedeutung besitzen, z.B. „Microsoft“ und „Corporation“ besitzen die gleiche Bedeutung. 

 

Abbildung 16 : Die Partitionen von QLF. Wenn die Atomen die gleichen Bedeutungseinheit besitzt, werden die 
Atomen in einem Cluster bzw. in einer Partition hinzufügt. 

 

Abbildung 17 : Die sub-Formeln von QLF 

Manche Atome sind die Bedeutungseinheiten, und mache Atome sind die Argumente. Z.B. : 
buys(n3) ist ein „ACQUIRE Event“, Corporation(n2) ist ein Argument für „ACQUIRER“ 
Beziehung von nsubj(n3, n2), und Powerset(n4) ist ein Argument für „ACQUIRED“ 
Beziehung von dobj(n3, n4). In USP System hat jede Sub-Formel von QLF die entsprechende 
Lambda Form. Bei der zugehöriger Lambda-Form wird jede Konstante ni, die nicht in einem 
einstelligen Atom von Formel F vorkommt, durch eine eindeutige Variable xi ersetzt. Z.B. : 

buys(n3)∧nsubj(n3, n2)∧dobj(n1, n4) 
𝝀𝒙𝟐.𝝀𝒙𝟒.buys(n3) ∧ nsubj(n3, x2) ∧ dobj(n3, x4) 

wobei n1, n2 und n3 die Skolemkonstante sind. 

Die Lambdaform wird mit Hilfe von Davidsonian Semantics weiter zerlegt in Core Form und 
Argumentform. Die Core Form ist eine Lambdaform, die keine Lambdavariable enthält, und 
eine Argumentform ist eine Lambdaform, die nur eine Lambdavariable enthält. 
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Abbildung 18 : Ein Beispiel für Erzeugung der Lambdaformen 

Durch die Clusteranalyse werden die Lambdaformen in den Lambda-Form Cluster aufgeteilt. 
Ein Lambda-Form Cluster ist ein Cluster, das die semantisch austauschbaren Lambdaformen 
enthält und die Bedeutung der Sub-Formel von QLF. Lambdaform Cluster kann den 
Argumenttypen enthalten, damit die Typen der Argumente in den Beziehungen unterschieden 
werden können. Z.B. : die Argumente „ACQUIRER“ und „ACQUIRED“ in den Relationen 
nsubj(n1, n2) und dobj(n1, n3) entsprechen dem Subjekt und Objekt von Verb „buys“. In 
Stanford Parser kann die Argument „ACQUIRED“ als „nsubjpass“ für ein Subjekt in einen 
passiven Satz repräsentiert werden. Die syntaktischen Variationen werden in dem Lambda-Form 
Cluster abgezogen und unterschieden sich durch den Argumenttypen. 

 

Abbildung 19 : Die Lambdaformen werden auf den Cluster aufgeteilt und den syntaktischen Variationen in 
Argumenttypen zugeordnet. Links sind die Lambdaformen und rechts sind die Cluster. 

Im USP System startet die semantische Analyse mit Clusteranalyse der Lambda-Formen in 
Token bzw. in Atom Ebene, d.h. die QLFs werden durch die Partition auf den Sub-Formen der 
QLF abgebildet, jede Sub-Form hat eine entsprechende Lambdaform, die Lambdaform wird 
weiter in Core Form und Argumentform zerlegt. Um die Argumentform zu unterscheiden, wird 
jede Argumentform einem Argumenttyp zugewiesen. Eine Regel, bei der eine Lambda-Form auf 
ein Cluster abgebildet wird und einen Argumenttyp zuweist, ist eine semantische Grammatik. 
Mit der semantischen Grammatik werden dann die Core Formen auf die Cluster und die 
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Argumentformen auf den Argumenttypen abgebildet. USP eine Wahrscheinlichkeitsverteilung 
über den semantischen Parser. Das Problem von maschinellem Lernen in USP ist das Lernen 
von s.g. semantischer Grammatik. Das Lernen in USP wird realisiert durch die Nutzung von 
Markov Logik Netzwerk. 

 

Abbildung 20 : Beispiel für ein Cluster 

Ein semantischer Parser L partitioniert ein QLF in die QLF-Teile p1, p2, … , pn, jedes Teil p 
wird in einen oder einige Lambdaform Cluster c zugewiesen, und pi wird später in Core Form f 
und Argumentformen f1, f2, … , fk umgewandelt, jede Argumentform besitzt auch einen 
Argumenttyp a in c. Um die Verteilung über die Lambdaformen zu modellieren, werden 
Form(p, f!), ArgForm(p, i, f!) definiert, wobei p eine Partition ist, i der Index eines Arguments 
und f eine Sub-Formel von QLF. Form(p, f!) ist true genau dann, wenn Partition p eine Core 
Form f hat, und ArgForm(p, i, f!) ist true genau dann, wenn i-stes Argument in p die Sub-Form 
hat. „f!“ Notation bedeutet, dass jede Partition oder jedes Argument nur eine Form hat. 

 

Abbildung 21 : Beispiel für QLF Partition. Form(p, f!), ArgForm(p, i, f!) sind QLF Partitionen. 

25 

 



 

 

Abbildung 22 : Beispiel für ArgType(p, i, a!), Arg(p, i, p‘), Number(p, a, n) 

Die o.g. semantische Grammatik Regeln von semantischer Analyse in USP werden durch 
folgende 4 Formeln definiert : 

p ∈ +c∧Form(p,+f) 
ArgType(p, i, +a)∧ArgForm(p, i, +f) 

Arg(p, i, p’)∧ArgType(p, i, +a)∧p’ ∈ +c’ 
Number(p, +a, +n) 

2.2.7.2 Ontology Unsupervised Semantic Parsing 

Eine Schwachheit des USP Systems ist das „Sparse Data“, das „Sparse Data“ bezeichnet hier die 
Information, die selten im Korpus vorkommt. „„Sparse Data“ führt zu niedriger Genauigkeit, 
weil nicht genug Daten zur Verfügung stehen, um die Wahrscheinlichkeit des Ereignisses genau 
abzuschätzen.“ [26] Onto USP ist die Erweiterung von USP und hat die Fähigkeit, die 
Informationen zu strukturieren. Im Vergleich zu USP Onto USP führt eine Hierarchie 
Clusteranalyse durch. Onto USP löst das Problem über das „Sparse Data“ durch das Hierarchie 
Clusteranalyse. 

In Abbildung 23 kann man erkennen, dass es eine Hierarchie zwischen den Clustern gibt. Ein 
„object cluster“ entspricht einer semantischen Bedeutung z.B. ACQUIRE und enthält ein oder 
einige „property cluster“ z.B. ACQUIRER. In „core form“ Cluster sind alle Variationen, die die 
gleiche Bedeutung besitzen. In „property cluster“ sind die Argumente von Variationen aus dem 
„core form“ Cluster. Mit der „IsPart“ Funktion wird die Hierarchie durch Verwendung einer 
Regel erstellt. Die s.g. Regel ist : 

x ∈ +p ∧ HasValue(x, +v) 
e ∈ c ∧ SubExpr(x, e) ∧ x ∈ p ⇒ ∃1i.IsPart(c, i, p) 

wobei : 

• HasValue(s, v) : Sub-Form der Lambdaform hat dem Wert v. 
• e ∈ c : in Cluster c gibt es Lambdaform e. 
• SubExpr(s, e) : s ist eine Sub-Form einer Lambdaform. 
• IsPart(c, i, p) : i-ste Eigenschaft Cluster p in Cluster c. Durch die Kombination der Sub-

Formen der Lambdaformen erzeugt diese Funktion. 
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Abbildung 23: Beispiel für Objekt und Eigenschaft Cluster. In „property cluster“ sind Argumentformen, Argumente 
von Core Formen und Argument-Numbers. 
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3 Entwurf 

Der natürliche Text wird von Stanford Parser und USP verarbeitet, die Ausgaben von USP 
System sind die „*.parse“ und „*.mln“ Dateien, wobei die „*.parse“ Datei die semantische 
Parser liefert und die „*.mln“ Datei einen Markov Logik Netzwerk liefert.  Durch die Analyse 
von diesen zwei Dateien wird eine Hierarchie für die Wörter erstellt. Danach werden diese 
Wörter gefiltert und die Ausgaben von Produkten, Produkteigenschaften und die Werte der 
Produkteigenschaften generiert. 

 

Abbildung 24: Architektur für Extraktion von Produkten, Produkteigenschaften und Produkteigenschaftswerten. 
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3.1 Ausgabedatei für USP 

 

Abbildung 25 : Ein Beispiel für eine MLN Datei 

In der MLN Datei sind die semantischen Parser. Jeder Cluster besitzt eine eindeutige 
Identifikation(Abk. ID), neben der Cluster ID ist eine Darstellung von Core Form. Eine 
Darstellung von Core Form besteht aus einem Worttyp, dem Wort von Core Form und der 
Anzahl(Count) von Core Form. Die Anzahl in der Darstellung von Core Form beschreibt, wie 
viel mal das Wort in dem Dokument vorkommt. In dem Programm wird diese Anzahl vom 
Cluster ClusterSum benannt. Unter der Zeile von Cluster ist die Beschreibung der Argumente 
von dem Cluster, wenn das Wort die Beziehungen mit anderen Wörtern hat. Die Beschreibung 
der Argumente von dem Cluster besitzt drei Zeilen, in der ersten Zeile ist der Argumenttyp, und 
anschließend sind die Argument Nummer Identifikation und Anzahl von Argument Nummer zu 
finden. In der zweiten Zeile ist die Beschreibung über Argumentform und die Beschreibung 
besteht aus einer eindeutigen Identifikation, Argumentform und Anzahl der Argumentform. In 
der dritten Zeile ist die Beschreibung über die benachbarten Wörter. Diese Beschreibung besteht 
aus einer eindeutige Cluster ID von Core Form Word, der Darstellung von Core Form und die 
Anzahl des Worts, und diese Anzahl beschreibt, wie viel mal das Wort als Nachbar vorkommt. 
Z.B. 40:[(V:come):4]:1 bedeutet : Core Form Word „come“ besitzt Cluster ID 40, hat den Typ 
„V“, kommt insgesamt 4 mal in dem Dokument vor und kommt 1 mal als Nachbar von Wort 
„13“. 
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Abbildung 26 : Ein Beispiel für eine PARSE Datei 

In der ersten Zeile der „parse“ Datei sind die Word ID und Wort zu finden. Eine Word 
Identifikation ist eindeutig für jedes Wort, und die Darstellung von Wort ID ist 
„DokumentID:AbschnittID:TokenID“. In der zweiten Zeile sind die eindeutige Cluster ID und 
die Darstellung von Core Form. In der dritten Zeile sind die eindeutige Eltern-Wort ID, 
eindeutige Cluster ID von Eltern-Wort und die Darstellung von Core Form. In der vierten Zeile 
sind die Argumenttyp ID, eindeutige Argumentform ID und Argumentform. 

Die „parse“ Datei und „*.mln“ Datei implizieren die Strukturen von Wörtern, weil jede Cluster-
ID in der „*.mln“ Datei mit einer oder mehren Cluster-ID durch eine oder mehre Beziehungen 
verbindet, und jede Wort-ID in der „parse“ Datei mit einer eindeutigen Eltern-Wort-ID 
verbindet. Mit Hilfe der Software „GVEdit“ wird eine „mln“ Datei als ein Wort Netz 
visualisiert. Jeder Knoten entspricht einem Wort aus Core Form, jede Kante repräsentiert eine 
Beziehung zwischen den zwei Wörtern und entspricht einer Argumentform. Folgende sind die 
Graphische Darstellung von „mln“ Datei und für einen kleinen Text mit zwei Abschnitten. 
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Abbildung 27 : Beispiel für die graphische Darstellung von „mln“ Datei 

3.2 Der erste Ansatz : Generierung der Regeln für 
Informationsextraktion 

Dieser Ansatz wurde von Betreuer Julian Eichhoff mit mir zusammen entwickelt. In [18] wählt 
man die sehr oft vorkommenden Daten aus, damit mit der Hilfe von PMI und „Naive Bayes 
Classifier“ die Regeln für die Informationsextraktion generiert werden. Die Idee ist ähnlich. 
Durch die Analyse der Beziehungen zwischen den Wörtern werden einige Regeln generiert, 
damit das Produkt und die Produkteigenschaft zuerst extrahiert werden können. Um die „mln“ 
Datei zu analysieren, habe ich die Software WEKA benutzt. WEKA(mehr sehen [27]) ist ein 
Data Mining Software und sammelt viele Maschinenlernen Algorithmus für die Aufgaben von 
Data Mining. Ich habe 300 Daten benutzt, um die Regeln für die Informationsextraktion zu 
finden. Die Annahmen sind : 

• Die sehr oft vorkommenden, gefundenen Wörter sind Produkteigenschaft, weil 
verschiedene Produkte sehr möglich die gleiche Produkteigenschaft haben. 

• Die Produkteigenschaft bindet direkt mit Produkt und Produkteigenschaftswert bindet 
direkt mit Produkteigenschaft 

• Produkteigenschaft sind am meisten die Nomen 
• Produkte sind Nomen 
• Verb ist kein Produkt, keine Produkteigenschaft, kein Produkteigenschaftswert 

mln 
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Die Regeln werden zwar schon gefunden, aber man muss die folgende Probleme lösen : 

• Nach der Annahme, die sehr oft vorkommenden, gefundenen Wörter sind 
Produkteigenschaft, s.g. „oft“  muss möglichst gut definiert werden. 

• Wie bindet Produkteigenschaft mit Produkt? Wie bindet Produkteigenschaft mit 
Produkteigenschaftswert? D.h. wie ist die Hierarchie der Wörter? 

• Die Regeln, die mit der Hilfe von WEKA generiert werden, gelten theoretisch nur für die 
Daten, die in WEKA eingesetzt werden. 

Um die Regeln zu generieren, muss man die Dateien in ein Eingabeformat von WEKA 
umwandeln. Die Eingabe für „EKA ist „*.arff“ Datei. In einer „*.arff“ Datei werden die 
Instanzen und die Attribute der Instanzen beschrieben. D.h. eine „*.arff“ Datei stellt eine 
Datenmenge bereit. Die für ca. 300 Testdateien erzeugte „*.arff“ Datei ist ca. 200MB groß. Es 
könnte viele irrelevante oder redundante Informationen für das Lernverfahren geben. [28] Eine 
reduzierte „*.arff“ Datei ist ca. 2 MB und wird wieder als Eingabe für WEKA benutzt. Durch 
Analyse des Ergebnisses von WEKA werden die Regeln für Informationsextraktion gestellt : 

• Produkteigenschaften sind am meisten Nomen. 
• Produkt ist Norm. 
• Wenn ein Wort Worttyp „CD“ hat, ist das Wort sehr möglich ein 

Produkteigenschaftswert. 
• Wenn ein Wort Worttyp „V“ hat, ist das Wort kein Produkt,  keine Produkteigenschaft 

oder kein Produkteigenschaftswert. 
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „amod“ 
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „appos“ 
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „num“ 
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „nn“ 
• Produkt und Produkteigenschaft sind in Verbindung mit Einheiten 

Nach der ersten Annahme sind die sehr oft vorkommenden gefundenen Wörter sind 
Produkteigenschaft. Aber es ist immer schwierig zu lösen, wie kann man „sehr oft“ definieren. 
Sei „sehr oft“ so dass, in jedem Text mindestens einmal der Begriff vorkommt. Viele 
Eigenschaften werden ignoriert, weil nicht alle Produkteigenschaften in jedem Text 
vorkommen. Sei „sehr oft“ für 300 Dateien 100, dann werden viele irrelevante Wörter 
extrahiert. 

Zwar werden die Regeln generiert, aber das Problem für die Unterscheidung zwischen Produkt 
und Produkteigenschaft immer noch nicht gelöst. Das Problem geht darauf wieder zurück, eine 
Hierarchie aufzubauen. 
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3.3 Der zweite Ansatz : Generierung der Hierarchie der 
Wörter 

Ein natürlicher Text wird mit Hilfe von USP bzw. OntoUSP in Markov Logik Netzwerk für die 
Wörter umgewandelt. Ein MLN verknüpft Prädikatenlogik erster Stufe und Markov-Netze 
miteinander. Deshalb kann das Wissen mittels der Regeln aus dem vorhandenen Wissen 
Schlüsse inferieren. Eine Hierarchie der Wörter kann als die Abhängigkeiten zwischen den 
Wörtern gesehen werden. Die Erstellung der Hierarchie kann als ein Problem für Bestimmung 
der Abhängigkeiten zwischen den Wörtern gesehen werden. Die von USP System erzeugte 
„*.mln“ Datei liefert einen Markov Logik Netzwerk bzw. ein Netz der Wörter. Die Idee geht 
davon aus, dass durch die Analyse von „*.mln“ Datei bzw. von dem Netz der Wörter die 
Abhängigkeiten  bestimmt werden. 

In Abbildung 11 wird die Ursache von Krebs beschreibt: wenn man raucht, leidet man an Krebs, 
d.h. Rauchen führt zu Krebs. Die formale Darstellung für die Aussage „Rauchen führt zu Krebs“ 
ist ∀xSm(x) ⇒ Ca(x). Durch die Lambda Reduktion wird die Form gebildet : Sm(A) ⇒ Ca(A). 
Die graphische Darstellungen sind : 

 

Abbildung 28 : links ist die graphische Darstellung von Markov Logik Netzwerk. Rechts ist die gerichtete 
graphische Darstellung, entspricht der graphische Darstellung von MLN. 

Für jedes Paar von zwei Knoten entspricht die graphischen Darstellung von MLN einer 
gerichteten graphischen Darstellung. Der Elternknoten repräsentiert Ursache und der 
Kindknoten repräsentiert die Wirkung. Der Kindknoten wird aus den Elternknoten abgeleitet. 
Mit anderen Worten, das Vorkommen der Kindknoten ist abhängig von dem Vorkommen der 
Elternknoten. Das Problem von Extraktion von Produkten, Produkteigenschaften und 
Produkteigenschaftswerten ist das Problem von Bestimmen der Abhängigkeit zwischen den 
Knoten. 

 

Abbildung 29 : Ein weiteres Beispiel für graphische Darstellung von „*.mln“ Datei 
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Ein gerichteter Graph besitzt auch eine Hierarchie. Elternknoten liegt in der höhen Ebene und 
Kindknoten liegt eine Ebene niedriger. Eine Hierarchie ist illustriert in Abbildung 29. In dieser 
Hierarchie kann der Elternknoten und Kindknoten in einer gleichen Klasse sein, und auch in 
verschiedene Klasse sein. Aber die Klasse, in der die Kindknoten liegen, ist nicht höher als die 
Klasse, in der die Elternknoten liegen. Z.B. „24“ und „Monitor“ gehören zu einer gleichen 
Klasse, trotzdem ist „24“ ein Kindknoten. 

Um die Idee zu erklären, werde ich die Definitionen und Annahme wiederholen : 

• Ein Blatt ist ein Knoten, der keine Kindknoten hat. 
• Ein Wurzel Knoten ist der Knoten, der keine Elternknoten hat. 
• Die Blätter sind die Produkteigenschaftswerte. 
• Die Produkteigenschaftswerte verbinden sich nicht mit Verb Wörtern. 
• Die Elternknoten der Blätter sind Produkteigenschaften. 
• Die Wurzel ist entweder ein Produkt oder ein Markenzeichen. 
• Ein Produkt ist ein Nomen. Verb Wort ist kein Produkt, keine Produkteigenschaft, kein 

Produkteigenschaftswert. 

Die Idee ist : 
• Bestimmen der Abhängigkeit zwischen den Blätter und ihren Eltern Knoten. 
• Nach der Annahme werden die Blätter in die Menge vom Produkteigenschaftswert 

hinzugefügt, und die direkten Elternknoten der Blätter werden in die Menge von 
Produkteigenschaft hinzugefügt. 

• Bestimmen der Abhängigkeit zwischen den Knoten. 
• Während der Bestimmung der Abhängigkeiten wird die Hierarchie gleichzeitig erstellt. 
• Nach der Annahme werden die Wurzel Knoten in die Menge von Produkt hinzugefügt. 
• Nach der Annahme werden alle nicht Normen Wort werden gefiltert. 

Im Vergleich zu den vorherigen Ansätzen, z.B. [8], [10], [11], [12] und [13], Die Extraktion von 
Produkten, Produkteigenschaften und Produkteigenschaftswerten ist voll automatisch :  

• Nur die Software für die Sprachanalyse ist erforderlich. 
• Die Daten der Eingabe muss nicht mehr manuell markiert werden. 
• Die Ontologie bzw. die Hierarchie der Wörter wird bei Analyse vom Netz der Wörter 

erstellt. 
• Dieses Text Mining Verfahren gilt für natürlichen Text und offene Domänen. 
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4 Implementierung 

4.1 Generierung der Hierarchie durch Bestimmung der 
Abhängigkeit von den Wörtern 

Die Hauptaufgabe dieses Ansatzes ist die Bestimmung der Abhängigkeit zwischen dem Knoten, 
damit eine Hierarchie der Wörter erstellt wird. Danach wird die Hierarchie verbessert, 
schließlich werden die bestimmten Knoten in dem Graph gefiltert. 

Einige Definitionen : 
• Wenn ein Knoten Count und ClusterSum hat, kommt dieser Knoten aus dem Bereich 

„Argumente von Core Form“ (siehe in der Abbildung 30). „apple“, „pro“ und „display“ 
haben Count und ClusterSum. „announce“ hat Clustersum aber kein „Count“. 

• Cluster ID von Knoten aus dem Bereich „Argumente von Core Form“ wird CClusterID 
genannt, ClusterSum von Knoten aus dem Bereich „Argumente von Core Form“ wird 
CClusterSum genannt. 

• CC = Count/CClusterSum 

 

Abbildung 30 : Illustration für einige Definitionen 

4.2 Vorverarbeitung 

In diesem Schritt wird die Abhängigkeit zwischen den Blättern und Elternknoten bestimmt. 
Wenn die Hierarchie zwischen den Blättern und Elternknoten festgelegt wird, können die 
Produkteigenschaften und die Produkteigenschaftswerte nach der Annahmen in „property“ 
Menge hinzugefügt werden. Die Werte von CC werden für alle Knoten berechnet. Um die 
Hierarchie in dem nächsten Schritt weiter zu erstellen, müssen die Werte von Count und 
CClusterSum von Kindknoten und ClusterSum von Elternknoten aktualisiert werden. 

4.2.1 Verschiedene Fälle 

Um die Abhängigkeit zwischen den Knoten zu bestimmen, werden die folgende Situationen 
betrachtet : 
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• Viele Knoten kommen nur einmal im Graph vor. Solche Knoten kommen im Graph vor, 
genau dann wenn ihre Nachbarknoten im Graph vorkommen. Es gibt eine Ursachlichkeit 
bzw. Abhängigkeit dazwischen. 

• Manche Knoten kommen einige Male im Graph vor. Die Knoten kommen im Graph vor, 
genau dann wenn ihre Nachbarknoten im Graphen vorkommen. Es gibt eine 
Ursachlichkeit bzw. Abhängigkeit dazwischen. 

• Manche Knoten kommen einige Male im Graph vor. Der Knoten kommt im Graph am 
meisten zusammen mit ihrem Nachbarknoten vor. Es gibt eine Ursachlichkeit bzw. 
Abhängigkeit dazwischen. 

Abbildung 31 illustriert die o.g. Fälle : 
• „1920x1080“ kommt vor, genau dann wenn „display“ vorkommt.  
• „retina“ kommt vor, genau dann wenn „display“ vorkommt. 
• wenn „ips“ vorkommt, kommt „display“ am meisten vor. 

 

Abbildung 31 : Ein Teil von „*.mln“ 

4.2.2 Bestimmung der Abhängigkeit 

CClusterSum und Count von „1920x1080“ sind 1. Das bedeutet : 
• „1920x1080“ kommt nur einmal in diesem Text vor. „1920x1080“ kommt einmal als 

Nachbarknoten von „display“ vor. Das Vorkommen von „1920x1080“ ist nur abhängig 
von dem Vorkommen von „display“. 

CClusterSum und Count von „retina“ sind 2. Das bedeutet : 
• „retina“ kommt zweimal in diesem Text vor. „retina“ kommt zweimal als 

Nachbarknoten von „display“ vor. Das Vorkommen von „retina“ ist nur abhängig von 
dem Vorkommen von „display“. 

Count von „ips“ ist 2 und CClusterSum von „ips“ ist 3. Das bedeutet : 
• „ips“ kommt sehr oft zusammen mit dem Nachbarknoten „display“ vor. (Das Problem ist 

hier, wie man „oft“ möglichst gut definieren kann. Das ist eine Arbeit für die Zukunft. 
Hier wird die „oft“ als „Count/ClusterSum >=0.5” definiert) 

Verallgemeinerte Bedeutung : 
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• CClusterSum = Count ⇒ Es gibt eine starke Abhängigkeit zwischen den Knoten. Wenn 
die Knoten aus dem Bereich „Argumente von Core Form“ im Text vorkommen, genau 
dann wenn ihre Nachbarknoten im Text vorkommen. 

• CC>= 0.5 ⇒ Es gibt eine leichte Abhängigkeit zwischen den Knoten, die Abhängigkeit 
ist noch nicht deutlich. 

Nach o.g. Aussage wird die Hierarchie der Knoten bestimmt. Der Knoten mit CC=1, ist ein 
Kindknoten von seinem Nachbarknoten. Abbildung 32 illustriert die Erstellung einer Hierarchie 
durch die Bestimmung der Abhängigkeit zwischen den Knoten. Nach der Bestimmung der 
Abhängigkeiten entstehen die Blätter in dem Graph. Der rote Knoten ist der Kindknoten und die 
Knoten „display“ ist Elternknoten von Kindknoten. 

 

Abbildung 32 : Oben ist die graphische Darstellung von Abbildung 31. Nach der Bestimmung der Abhängigkeiten 
(CC=1) wird die graphische Darstellung (unten) erzeugt. 

Nach o.g. Aussage wird der Knoten mit CC>=0.5 ausgewählt, weil es eine Abhängigkeit 
zwischen den Knoten und ihren Nachbarknoten gibt. Aber die Abhängigkeit kann in dem Schritt 
von Vorverarbeitung nicht bestimmt werden. In Abbildung 33 hat der grüne Knoten eine 
Abhängigkeit mit „display“, aber die Abhängigkeit ist unklar. Die Knoten „imac“ und „feature“ 
sind die Nachbarknoten von „display“, es gibt jetzt noch keine Abhängigkeit dazwischen. 

 

Abbildung 33 : Es gibt die Abhängigkeit zwischen Knoten „ips“ und „display“, aber die Abhängigkeit ist nicht 
deutlich 
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4.2.3 Bestimmung von Produkteigenschaften und 
Produkteigenschaftswerten 

• Nach der Annahme sind alle Knoten, die Worttyp „V“ besitzt, keine Produkte, keine 
Produkteigenschaften und keine Produkteigenschaftswerte. 

• Nach der Annahme sind die Blätter die Produkteigenschaftswerten 
• Nach der Annahme sind die Elternknoten der Blätter Produkteigenschaften 
• Nach der Annahme allen Knoten, die mit Verb Wörtern sich verbinden, sind keine 

Produkteigenschaftswerte. 
• Wenn ein Cluster keine Kindcluster besitzt, z.B. „31“ in der Abbildung 34, sind die 

entsprechenden Cluster Knoten die Blätter. 

 

Abbildung 34 : Beispiel für die Darstellung von Blättern in „*.mln“, 31 ist ein Blatt und 30 ist kein Blatt. 

Die gefundenen Knoten werden durch o.g. Annahmen gefiltert, schließlich werden die übrigen 
Knoten in einer „property“ Menge hinzugefügt. Um die Produkteigenschaften und 
Produkteigenschaftswerte in einer Menge zu unterscheiden, wird jedem Knoten ein Wert 
zugewiesen, Produkteigenschaft entspricht den Wert 0 und Produkteigenschaftswert entspricht 
Wert -10. 

4.2.4 Aktualisierung der Werte von ClusterSum, Count und 
CClusterSum 

Wenn ein Knoten als Kindknoten oder Elternknoten benannt ist, bedeutet dies das, die 
Abhängigkeit zwischen den Knoten und seinem Nachbarknoten bereit bestimmt ist. 

• Der Knoten hat nur ein Blatt ⇒ ClusterSum = ClusterSum – Count, CClusterSum=0 und 
Count=0. 

• Der Knoten besitzt mehrere Knoten ⇒ 
o searchNode ist eine Funktion(aus java Code) und gibt eine Menge von WordID 

zurück. Die WordID kommt aus der „*.parse“ Datei (sieh Abbildung 26). Ein 
Knoten entspricht einem Wort, ein Wort kann mehre WordID haben, weil ein 
Wort in einem Text einige Male vorkommt. Alle WordID von einem 
Elternknoten mit einem bestimmten Kindknoten können durch searchNote 
bestimmt werden und in einer Menge, die „processednode“ benannt, hinzugefügt 
werden. Mit Hilfe von searchNode werden die WordID der Elternknoten von 
allen Kindknoten berechnet. Die Menge „processednode“ enthaltet alle WordID 
von Elternknoten, die die bestimmte Abhängigkeit mit Kindknoten haben. 
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o ClusterSum=Clustersum - |processednode| (Größe der Menge „processednode“). 
o Count von jedem Kindknoten wird 0, d.h. Count=0. 
o CClusterSum von jedem Kindknoten wird 0, d.h. CClusterSum=0 

Sei WordID Menge vom Wort „display“ {000:0:003, 000:0:050}. Seien searchNode(retina, 
display)={000:0:050}, searchNode(ips, display)={000:0:003, 000:0:050} und 
searchNode(1920*1080, display)={000:0:050}, daraus folgt processednode={000:0:003, 
000:0:050} und |processednode|=2. 

 

Abbildung 35 : Ein Beispiel für die Aktualisierung der Werte von ClusterSum, Count und CClusterSum 

 

Abbildung 36 : Pseudocode für searchNode. Wenn ein Wort A mit Cluster ID cid1 ein Eltern-Word B mit Cluster 
ID cid2 hätte, dann wird die WordID von Knoten B in einer Menge WordIDSet hinzugefügt. Schließlich gibt die 
Menge WordIDSet zurück. 

In diesem Schritt werden alle Abhängigkeiten von den Knoten mit CC=1 bestimmt, und die 
Produkteigenschaften und Produkteigenschaftswerte gefunden. Die Knoten mit CC>=0.5 
werden auch ausgewählt, es gibt die Abhängigkeiten zwischen diesen Knoten und ihren 
Nachbarknoten. Um die nicht deutlichen Abhängigkeiten zu bestimmen, müssen die Werte von 
ClusterSum, Count und CClusterSum aktualisiert werden. 
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4.3 Bearbeitung der Knoten mit CC>=0.5 

Nach der Aktualisierung der Werte von ClusterSum, Count und CClusterSum entstehen 4 Fälle, 
durch die Analyse von diesen 4 Fällen werden die Abhängigkeiten bestimmt. 

4.3.1 Vier Fälle 

4.3.1.1 Der erste Fall 

CClusterSum=0 und Count=0                           Bedingung (1) 

Sei initClusterSum ein niemals aktualisierte ClusterSum, d.h. der Wert kommt aus „*.mln“, 
initCClusterSum sei ein niemals aktualisierte CClusterSum. d.h. der Wert kommt aus „*.mln“. 
Die Abhängigkeit wird dadurch bestimmt : 

• Solcher Fall tritt auf, wenn ein Knoten zu mehren Nachbarknoten gehört. Der Knoten, 
der die Bedingung (1) erfüllt, ist ein Kindknoten von ihrem Nachbarknoten, d.h. 
Nachbarknoten ist Elternknoten, z.B. „2560*1600“ in der Abbildung 37 und 38. 

• Aber wenn initClusterSum = Count, ist die Abhängigkeit zwischen den Knoten anders. 
Sei Knoten A besitzt einen initClusterSum Wert, und Knoten B besitzt einen Count 
Wert. Die Bedingung „initClusterSum = Count“ bedeutet, dass Knoten A im Text 
insgesamt n-mal vorkommt, und sein Nachbarknoten B auch n-mal vorkommt. Knoten B 
kann mehr als n-mal im Text vorkommen. Mit anderen Worten, der Knoten A kommt in 
einem Text vor, genau dann wenn Knoten B vorkommt, deshalb ist Knoten B ein 
Elternknoten von seinem Nachbarknoten A, und sein Nachbarknoten A ist Kindknoten, 
z.B. „imac“ in der Abbildung 37 und 38. 

 

 

Abbildung 37 : „*.mln“ für den 1. Fall 
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Abbildung 38 : Ein Beispiel für den 1. Fall 

4.3.1.2 Der zweite Fall 

CClusterSum>0 und Count=0                           Bedingung (2) 

Wenn ein Knoten, der die Bedingung (2) erfüllt, im Text vorkommt, kommt ihr Nachbarknoten 
auch vor. 

 

Abbildung 39 : „*.mln“ für  2.Fall 

Der Knoten „3:[(CD:13):4]:3“ und der Knoten „4:[(N:macbook):6]:5” erfüllen die Bedingung 
(2), aber die Abhängigkeiten zwischen der Knoten „[(N:pro):5]“ und der  Knoten 
„3:[(CD:13):4]:3“ und der Knoten „4:[(N:macbook):6]:5” sind Unterschiedlich : 

• Der Knoten „3:[(CD:13):4]:3” kommt im Text am meisten zusammen mit Knoten 
„[(N:pro):5]“ vor. D.h. der Knoten „3:[(CD:13):4]:3“ zu mehren Nachbarknoten gehört. 

• Der Knoten „[(N:pro):5]“ kommt im Text vor genau dann wenn der Knoten 
„4:[(N:macbook):6]:5” vorkommt. Mit anderen Wort, es gibt eine starke Abhängigkeit 
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zwischen der Knoten „4:[(N:macbook):6]:5” und der Knoten „[(N:pro):5]“, d.h. 
„4:[(N:macbook):6]:5” ist ein Elternknoten von „[(N:pro):5]“, und „[(N:pro):5]“ ist ein 
Kindknoten. 

Sei initClusterSum eine niemals aktualisierte ClusterSum, intCClusterSum eine niemals 
aktualisierte CClusterSum. Die Abhängigkeit wird dadurch bestimmt : 

• Wenn ein Knoten die Bedingung (2) erfüllt und initClusterSum>= initCClusterSum, 
dann ist dieser Knoten ein Kindknoten von Nachbarknoten. 

• Wenn ein Knoten Bedingung (2) erfüllt und initClusterSum<initCClusterSum, dann ist 
dieser Knoten ein Elternknoten von Nachbarknoten. 

 

Abbildung 40 : Ein Beispiel für 2.Fall 

4.3.1.3 Der dritte Fall 

CClusterSum=0 und Count>0                           Bedingung (3) 

Wenn ein Knoten, der die Bedingung (3) erfüllt, im Text vorkommt, kommt ihr Nachbarknoten 
auch vor. 

 

Abbildung 41 : „*.mln“ für 3.Fall 

 

42 

 



 

 

Abbildung 42 : Ein Beispiel für 3.Fall 

4.3.1.4 Der vierte Fall 

CClusterSum>0 und Count>0                           Bedingung (4) 

Wenn ein Knoten A nur einen Nachbarknoten B, der die Bedingung (4) erfüllt, hat, dann ist 
Knoten A ein Kindknoten von Knoten B und B ist ein Elternknoten. Wenn ein Knoten mehrere 
Nachbarknoten hat, welche die Bedingung (4) erfüllen können, wird dieser Knoten im nächsten 
Schritt weiter verarbeitet. 

 

Abbildung 43 : „*.mln“ für 4.Fall 

 

Abbildung 44 : Ein Beispiel für die Bestimmung der Abhängigkeiten. Links ist die Graphische Darstellung für ein 
Cluster, rechts ist eine Tabelle für ClusterSum, ClusterSum und Count. 
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In der Abbildung 44, die Abhängigkeiten zwischen „take“ und „except“ sowie „wrap“ werden in 
Vorverarbeitungsschritt bestimmt, die Abhängigkeiten zwischen „take“ und „pro“ wird nach der 
Bedingung (3) bestimmt, und die Abhängigkeiten zwischen „take“ und „apple“ wird nach der 
Bedingung (4) bestimmt. 

4.3.2 Aktualisierung der Werte von ClusterSum, Count und 
CClusterSum 

Der Verfahren der Aktualisierung der Werte von ClusterSum, Count und CClusterSum ist gleich 
wie der Fall „Der Knoten besitzt mehrere Knoten“ in 4.2.4. 

4.4 Verarbeitung der Konten mit CC<0.5 

4.4.1 Bestimmung der Abhängigkeit 

Bis jetzt kann die Abhängigkeit zwischen den Knoten und ihren Nachbarknoten mit CC>=0.5 
bestimmt werden. Es gibt einige Knoten mit CC<0.5. Die Idee für die Verarbeitung von dem 
Knoten mit CC<0.5 ist : man aktualisiert die Werte von Count, CClusterSum und ClusterSum 
bis zu CC Wert>=0.5, damit die vorherige Ansätze wieder verwendbar sind. 

 

Abbildung 45 : ein Beispiel für die Bestimmung der Abhängigkeiten. Links ist die Graphische Darstellung für ein 
Cluster, rechts ist eine Tabelle für ClusterSum, ClusterSum und Count. 
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„display“, „new“ und „retina“ besitzt den Wert CC>0.5, durch maximal zwei Aktualisierung der 
Werten ClusterSum, ClusterSum und Count werden die CC Werte bis zu kleiner gleich 0.5 
reduziert. 

Schließlich gibt es keine Knoten mit CC<0.5. Wenn es keine Knoten mit CC<0.5 gibt, wird die 
Hierarchie der Knoten erstellt. Ein ungerichteter Graph in einen gerichteten Graph 
umgewandelt. 

Das Verfahren von der Aktualisierung der Werte von ClusterSum, Count und CClusterSum ist 
gleich wie der Fall „Der Knoten besitzt mehre Knoten“ in 4.2.4. 

4.4.2 Aktualisierung der Werte von ClusterSum, Count und 
CClusterSum 

Im Vorverarbeitungsschritt werden die CC Werte berechnet. Wenn der CC Wert größer gleich 
0.5 ist, dann werden entsprechende Knoten in mnm(Merged Node Map) hinzugefügt, die 
aktualisierten Werte von ClusterSum werden in mergedmap_c2s hinzugefügt und die 
aktualisierter Werte von CClusterSum und Count werden in mergedmap_c2cnsc hinzugefügt. 

Einige Definitionen : 
• mnm : LinkedHashMap ClusterID = [ClusterID, die entsprechende Knoten mit CC>=0.5] 
• mergedmap_c2s : LinkedHashMap ClusterID = neuer ClusterSum 
• mergedmap_c2cnsc : LinkedHashMap ClusterID = [ClusterID!neuer ClusterSum!neue 

Count] 

Aktualisierung der Werte von ClusterSum, Count und CClusterSum für die Knoten mit CC≠1 
werden dadurch erlegdigt, mnm, mergedmap_c2cnsc und mergedmap_c2cnsc zu aktualisieren. 

• Geht von mergedmap_c2s aus. Wenn CC Wert größer gleich 0.5, dann wird 
entsprechende Knoten in mnm hinzugefügt. Bemerkung : Die Bedingung (n2sum != 0 
&& n2count != 0) implementiert 4. Fall in 4.2.2.1. Nur die Knoten, die 4. Fall erfüllt, 
werden verarbeitet, weil die Abhängigkeiten von anderen Knoten schon festgelegt 
werden. 

 

Abbildung 46 : Pseudocode für Berechnung von CC Wert und mnm 

• Geht von mergedmap_c2s aus, wenn der Knoten kein Blatt ist, wird die Menge von 
„processednode“ mithilfe der Funktion searchNode berechnet. Die Größe der Menge 
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von „processednode“ beschreibt, wie viele Abhängigkeiten zwischen diesem Knoten und 
anderen Knoten schon bestimmt werden. Die originale ClusterSum minus Anzahl von 
festgelegten Abhängigkeiten ist neue ClusterSum bzw. CClusterSum. 

 

Abbildung 47 : Pseudocode für Berechnung von neuer ClusterSum 

• Geht von mergedmap_c2cnsc aus, neu Count ist alter Count Wert minus die Anzahl der 
festgelegten Abhängigkeiten. Nur die Knoten, die 4. Fall erfüllt, werden verarbeitet, weil 
die Abhängigkeiten von anderen Knoten schon festgelegt werden. 

 

Abbildung 48 : Pseudocode für Berechnung von neuem Count 

4.5 Verbessern die Hierarchie 

Zwar werden die Abhängigkeiten bis jetzt schon bestimmt, aber es gibt immer noch einige 
Fehler. Mit folgenden Funktionen werden die Fehler korrigiert. 

 

Abbildung 49 : Beispiel für eine falsche Bestimmung der Abhängigkeit zwischen den Knoten 

• Wenn ein Verb Wort die Abhängigkeiten zwischen den Normen hat und eine  
Abhängigkeit „nn“ zwischen den Normen besteht. Dann werden die Abhängigkeit 
zwischen Verb und Norm, die als einen Kindknoten repräsentiert wird, gelöscht. Der 
Grund für die Korrektur der Abhängigkeit ist : „nn“ Abhängigkeit ist stärker als die 
Abhängigkeit zwischen Verb und Norm. Um die Korrektur zu realisieren, muss zuerst 
das Wort Verb gefunden werden. Danach werden alle Kindknoten von Verb 
durchgelesen, um die die Beziehung zwischen den Kindknoten festzulegen. Der 
Kindknoten A sei Elternknoten von Kindknoten B. Wenn die Beziehung zwischen den 
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Knoten A und Knoten B „nn“ ist, wird die Anhängigkeit zwischen Verb und Knoten B 
gelöscht. 
 

 

Abbildung 50 : Beispiel für eine Korrektur der Abhängigkeit 

• Wenn die Knoten die in Abbildung 51 dargestellte Beziehung haben und Knoten A hat 
keine Beziehungen mit anderen Knoten,  wird die Abhängigkeit zwischen den Knoten 
korrigiert. Diese Abbildung 51 illustriert einen solchen Fall. 

 

Abbildung 51 : Beispiel für Korrektur der Abhängigkeit 

Um die Korrektur zu realisieren, muss zuerst den Knoten A gefunden werden. Danach 
werden die Argumentform von Knoten A bestimmt. Alle Elternknoten von Knoten C 
werden durchgelesen. Wenn ein Elternknoten von Knoten C ein Verb ist, korrigiert das 
Programm die Abhängigkeit von „A->C“ in „C->A“. Die Gründe der Korrektur sind :  A 
ist ein Objekt und gehört zu einem Subjekt. Ein Elternknoten hat Einfluss auf die 
Kindknoten, aber die Elternknoten von dem Elternknoten keinen Einfluss auf die 
Kindknoten. Das heißt, wenn die Abhängigkeit zwischen Knoten A und C sich ändern, 
gibt es keinen Einfluss auf die Abhängigkeit zwischen Knoten B und seine 
Nachbarknoten. 
 

• Wenn die Knoten die in Abbildung 52 dargestellte Beziehung haben, dann wird die 
Abhängigkeit korrigiert. Knoten V1 ist ein Kindknoten von Knoten root und Knoten root 
hat keine anderen Nachbarknoten, soll Knoten V3 keinen Einfluss auf Knoten root 
haben. Mit anderem Wort, das Vorkommen von Knoten root ist abhängig von dem 
Vorkommen von Knoten V1. Abbildung 52 illustriert die Korrektur. 
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Abbildung 52 : Beispiel für Korrektur der Abhängigkeit 

Nun sind die Abhängigkeiten zwischen den Knoten festgelegt. Aber es könnte jedoch noch  
Zyklen auftreten. Eine Hierarchie muss ein Baum oder ein gerichteter azyklischer Graph sein. 
Daher müssen mögliche Zyklen entfernt werden. Bindet ein Verb zwei Knoten, die 
Abhängigkeit bereits bestimmt wurde, führt dies zu einer Zyklus. Um den Zyklus zu entfernen, 
muss zuerst der Zyklus gefunden werden, danach wird die Abhängigkeit zwischen dem Verb 
und seinem Kindknoten entfernt. Abbildung 53 53 illustriert die Korrektur. 

 

 

Abbildung 54: Beispiel für die Entfernung eines Zyklus 

Durch o.g. Verfahren wird die Hierarchie korrigiert. Um eine bessere Hierarchie zu erhalten, ist 
eine Erweiterung erforderlich. Einige Regeln, die in 3.3 generiert werden, kann man zum 
Korrektur der Abhängigkeit benutzten. Aus meiner Erfahrung ist die Korrektur der 
Abhängigkeit mit einzelnen Regeln, ist es möglich, dass die richtige Hierarchie falsch korrigiert 
wird. 

4.6 Filter 

Alle gefundene Produkt, Produkteigenschaft und Produkteigenschaftswerte werden noch einmal 
gefiltert, um die Klassifikation der Wörter zu verbessern. 

• Einige Wörter, die als Produkteigenschaftswerte erkannt werden, sind keine 
Produkteigenschaftswerte. Diese Wörter in der Hierarchie sind Kindknoten von 
Produkteigenschaften, aber sie haben die Beziehung zwischen den diesen Kindknoten 
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und Produkteigenschaften, d.h. die Argumentform ist „nn“. Wenn die Wörter die 
Argumentform „nn“ haben, sind die Wörter eine Nominalphrase. Das heißt, wenn die 
Elternknoten eine Produkteigenschaft ist, ist die Kindknoten nicht ein 
Produkteigenschaftswert sondern eine Produkteigenschaft, weil die Nominalphrase aus 
diesen Wörtern besteht. Es geht von Eigenschaftswert in „property“ Menge aus, wenn 
das Wort des Eigenschaftswerts mit seinem Elternknoten die Argumentform „nn“ hat, 
dann wird das Wort des Eigenschaftswerts als Eigenschaft korrigiert. Abbildung 54 
illustriert das Verfahre von Filter. 

 

Abbildung 55 : Beispiel für den Filter 

• Wenn die Beziehung, ausgehend von der „root“ Menge, zwischen einer Wurzel und 
seinem Kindknoten „nn“ ist und sein Kindknoten ein Kindknoten von einer anderen 
Wurzel ist, gehört dieser Kindknoten gehört zu anderem Produkt. Abbildung 55 
illustriert das Verfahre von Filter. 

 

Abbildung 56 : Beispiel für den Filter 

• Sei ein Knoten A ein Kindknoten von einer Wurzel B. Im Pfad von Knoten A bis zur 
Wurzel C gibt es mehrere Verben. D.h. Knoten B ist ein Kindknoten von einer anderen 
Wurzel, d.h. dieser Kindknoten gehört zu einem anderen Produkt. Abbildung 56 
illustriert das Verfahre des Filterns. 
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Abbildung 57 : Beispiel für den Filter 

• Einige Wörter, die als Produkte erkannt werden, sind keine Produkte. Diese Wörter in 
der Hierarchie sind Wurzel Knoten, haben aber eine Beziehung „conj_and“ oder 
„conj_or“ zwischen den Wörtern und ihre Kindknoten(d.h. die Argumentform ist 
„conj_and“ oder „conj_or“). Wenn ihre Kindknoten Produkteigenschaften sind, ist es 
möglich, dass die Wurzel Knoten ebenfalls Produkteigenschaft sind. Wenn ein 
Kindknoten einer Wurzel, ausgehend von einer Wurzel Menge aus, eine 
Produkteigenschaft ist, dann wird diese Wurzel als Produkteigenschaft bezeichnet. 
Abbildung 57 illustriert das Verfahre des Filterns. 

 

Abbildung 58 : Beispiel für den Filter 

Der Filter hat keinen Einfluss auf die Änderung der Hierarchie, deshalb hat die Korrektheit der 
Hierarchie einen großen Einfluss auf die Filter. Wenn das Produkt, Produkteigenschaft und 
Produkteigenschaftswert nicht richtig erkannt werden, werden die Ergebnisse von Filter auch 
nicht exakt. 

4.7 Ausgaben Filter 

Einige Wurzel Knoten keine Normen sind. Nach der Annahme in 3.3 werden alle Wörter, die 
keine Normen sind, gefiltert. 
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5 Experiment 

39 Daten werden zum Testen benutzt. Diese Texte kommen aus einem Website. Diese Texte 
sind über elektronische Geräte, z.B. Tablets, Notebook, HIFI. Die System Anforderung von 
USP ist sehr hoch, deshalb werden die kurze Texts ausgewählt. In einer Hierarchie der Wurzel 
ist eine Kategorie, wie Wurzel „Tablet“ ist Kategorie von „Windows 8 Tablet“. Wenn eine 
Kategorie von einem Produkt finden, dann wird dieses Produkt richtig gefunden. Wie in 
Abbildung 58 gezeigt, wenn Knoten A als Produkt erkennt, dann wird das Produkt A gefunden. 
Wie ein Produkt richtig darstellt wird, ist eine Aufgabe für die Zukunft.  

 

Abbildung 59 : Eine Darstellung für ein Produkt, sei der Produktname „BAC“, „A“ repräsentiert eine Kategorie 

Die Genauigkeit von Produkt, Produkteigenschaft und Produkteigenschaftswert werden in der 
folgenden Abbildungen gegeben. Die Genauigkeit beschreibt den Anteil von relevanten Wörtern 
an der Menge von gefundenen Wörtern : 

𝑃 =
relevante Wörter 
gefundene Wörter
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Abbildung 60 : Genauigkeit für die Extraktion von Produkt ohne Filter, X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten. 

 

Abbildung 61 : Genauigkeit für die Extraktion von Produkt mit Filter. X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten. 
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In Abbildung 59 ist die Genauigkeit für die Extraktion von Produkten ohne Filter dargestellt. 
Die durchschnittliche Genauigkeit beträgt ca. 0.3627. In der  Abbildung 60 ist die Genauigkeit 
für die Extraktion von Produkt mit Filter dargestellt.  Die durchschnittliche Genauigkeit beträgt 
ca. 0.4984. Durch die Verwendung von verschiedenen Filtern wird die Genauigkeit auf  ca. 37.4% 
erhöht. Aus den zwei Abbildungen kann man erkennen, dass ein guter Filter die Genauigkeit 
erhöhen kann. Jedoch ist es auch möglich, dass gebrauchte Wörter gefiltert werden, z.B. : Test 
Data 22 und Test Data 29. In dem Programm wird eine Abfolge der Randbedingungen benutzt. 
Ein „Voting Algorithmus“ wäre ein Vorschlag für zukünftige Arbeiten. 

 

 

Abbildung 62 : Genauigkeit für die Extraktion von Produkteigenschaft. X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten. 
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Abbildung 63 (aus [29]): Genauigkeit für die Extraktion von Produkteigenschaft. X-Achse: sind die Typen von 
Text Data, Y-Achse:  die Genauigkeiten. 

 

Abbildung 64 : Genauigkeit für die Extraktion von Produkteigenschaftswert. X-Achse: die Nummer von Text Data, 
Y-Achse : die Genauigkeiten 
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Der Mittelwert der Genauigkeit der Produkteigenschaft ist ca. 0.6467 und der Mittelwert der 
Genauigkeit Produkteigenschaftswert ist ca. 0.6344. Die beiden Genauigkeiten sind  nicht sehr 
hoch, weil einerseits viele irrelevante Wörter nicht gefiltert werden, anderseits die Wörter nicht 
vollständig klassifiziert werden. In [29] wird ein nicht-überwachte Verfahren für die 
Normalisierung der Produkteigenschaften vorgestellt. Im Vergleich zu dem Ergebnis aus [29], 
ist der Mittelwert der Genauigkeit der Extraktion von Produkteigenschaften ca. 0.68. Zwar ist 
der Mittelwert der Genauigkeit nicht höher als der Mittelwert der Genauigkeit in [29], aber das 
Verfahren in dieser Diplomarbeit ist voll automatisch und unabhängig von dem Format des 
Text, mithilfe der Erweiterung ist die Verbesserung der Genauigkeit ebenfalls möglich. 

Aus den Ergebnissen des Experiments kann die Schlussfolgerungen gezogen werden. Die 
Extraktion von den Informationen über die Produkte aus einem natürlichen Text ist sehr 
komplex, weil es in einem natürlichen Text viele irrelevante Wörter über die Produkte gibt. 
Während der Erstellung der Hierarchie werden die irrelevanten Informationen in dem Programm 
nicht gefiltert. Einige irrelevante Informationen werden mit Filtern gefiltert. Aber es gibt immer 
noch einige irrelevante Informationen, welche den stärkeren Einfluss auf den Genauigkeiten für 
die Extraktionen von Produkteigenschaften und Produkteigenschaftswerten haben. Wenn die 
Hierarchie eines Texts sehr gut aufgebaut wird, dann ist die Genauigkeit für die Extraktion von 
Produkt sehr hoch. Wenn die irrelevanten Informationen möglichst entfernt werden können, 
erhöht  sich die Genauigkeit von Produkt, Produkteigenschaft und Produkteigenschaftswert. 
Wenn es in einem natürliche Text mehre exakte Informationen über das Produkt als allgemeine 
oder implizite Informationen gibt, ist die Genauigkeit von Produkteigenschaft und 
Produkteigenschaftswert höher. In dem Programm wird eine Abfolge der Randbedingungen 
benutzt. Ein „Voting“ Algorithmus entspannt die Randbedingungen, sodass es möglich ist, ein 
Wort zu filtern, wenn es eine Randbedingung in dem Programm verletzt.  
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6 Zusammenfassung 

Ein natürlicher Text wird mit der Hilfe von USP bzw. OntoUSP in eine MLN für die Wörter 
umgewandelt. Ein MLN verknüpft Prädikatenlogik erster Stufe und Markov Netzwerk 
miteinander. Deshalb kann das Wissen mittels der Regeln aus dem vorhandenen Wissen 
Schlüsse inferieren. Die Korrektheit der Ergebnisse von „Standford Parse“ und USP hat starken 
Einfluss auf die Schlussfolgerung. Durch die Analyse von MLN kann eine Hierarchie für die 
Wörter erstellt werden. Die Hierarchie kann man verbessern. Zwar ist die Hierarchie nicht ideal, 
aber das Produkt, die Produkteigenschaft und der Produkteigenschaftswert können extrahiert 
werden. Im Vergleich zu anderen Ansätzen ist der Algorithmus, der in dieser Diplomarbeit 
entwickelt wird, voll automatisch. Durch die Verbesserung der Hierarchie werden die 
Genauigkeit der Informationsextraktion verbessert. Wenn die Hierarchie besser aufgebaut wird, 
werden die mehrere richtige Informationen extrahiert. Bei der Verbesserung der Hierarchie ist 
immer die Schwierigkeit, die Fehler aus den Ergebnissen von Standford Parse und USP System 
zu korrigieren. Durch die Korrektur der Abhängigkeit wird die Hierarchie verbessert. Die 
Korrektur ist meistens abhängig von syntaktischen Beziehungen, aber die richtige Korrektur 
muss mit einer Kombination von syntaktischen Beziehungen durchgeführt werden. Beim Filter 
werden die Ausgabe zu verbessern, führt keine mehr Korrektur von  Abhängigkeit durch. Aus 
den Ergebnissen der Experimente kennt man das, wenn die Wörter, die mit dem Produkt 
irrelevant sind, gefiltert werden können oder die Hierarchie verbessert werden kann, wird die 
Genauigkeit verbessert. 
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7 Ausblick 

Durch Erstellung einer Hierarchie der Wörter werden die Produkte, Produkteigenschaften und 
Produkteigenschaftswerte extrahiert, zwar ist die Genauigkeit nicht gut, aber es ist möglich zu 
erweitern. 

7.1 Nicht löschbare Probleme 

• Wie Abbildung 4 und Abbildung 5 zeigt, gibt es immer noch Probleme. Für eine richtige 
Erstellung einer Hierarchie der Wörter spielen Stanford Parse und USP System eine sehr 
wichtige Rolle. Wenn die Stanford Parse und USP System falsche Ergebnisse liefert, 
können die Fehler später nicht mehr korrigiert werden. In der Abbildung, „iMac“ ist eine 
Konstitution von „13 Macbook Pro“. Stanford Parse liefert kein richtigen Ergebnis. 
„iMac“ kann nicht als ein Produkt extrahiert werden, weil „iMac“ in „*.mln“ eine 
Konstitution von „display“ ist. Deswegen wird diese Fehler während der Bestimmung 
der Abhängigkeit nicht mehr korrigiert. 

 

Abbildung 65 : Links ist die falsche Darstellung, rechts ist die richtige Darstellung. 

• Wenn die Argumentform zwischen Kindknoten und Elternknoten „nn“ ist, dann ist die 
Abhängigkeit zwischen den Knoten schwierig zu bestimmen. 

 

Abbildung 66 : Beispiel für zwei Wörter, die Argumentform „nn“ haben. 
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Im Beispiel „thinkpad“ ist ein Argument von Core Form „twist“. Tatsächlich ist 
„twist“ Serie von „thinkpad“, d.h. „thinkpad“ soll ein Elternknoten von „twist“ sein. 
Solche Fehler sind sehr schwierig zu korrigieren. 

7.2 löschbare Probleme 

Wie in „4.5 Verbessern die Hierarchie“ gezeigt, dass es einige löschbare Probleme gibt. 

• Wenn zwei Wurzeln oder zwei Elternknoten die gleichen Produkteigenschaften haben, 
sind die zwei Knoten sehr möglich ein gleiches Produkt, z.B. „macbook“ und „device“. 

• In dieser Diplomarbeit ist die Produkteigenschaft und Produkteigenschaftswert nur in 
dem Schritt Vorverarbeitung extrahiert. Basiert auf den Knoten, die gefundene 
Produkteigenschaft und Produkteigenschaftswert sind, können ihre Nachbarknoten 
weiter unterschieden werden, ob das Wort Produkteigenschaft oder 
Produkteigenschaftswert ist. Aber man muss bemerken, dass ein Elternknoten der 
Produkteigenschaft eine Produkteigenschaft oder ein Produkt sein könnte, und ein 
Elternknoten des Produkteigenschaftswerts ein Produkteigenschaft, 
Produkteigenschaftswert oder ein Produkt sein könnte. Ein „Voting Algorithm“ könnte 
hier eingesetzt werden. 
Um die Produkteigenschaft und den Produkteigenschaftswert zu unterscheiden, kann 
man die Regel für Informationsextraktion, die in 3.2 generiert wird, kann man benutzen. 
Ein Voting Algorithm(mehr siehe 26) kann man benutzen, damit die Regeln bzw. die 
Randbedingungen entspannt werden. 

• Die erstellte Hierarchie kann durch Analyse von syntaktischen Beziehungen bzw. 
Argumentformen verbessert werden. Zum Beispiel wenn Kindknoten und sein 
Elternknoten die Argumentform „conj“ haben, dann könnte die Kindknoten als 
Kindknoten von dem Elternknoten von seinem Elternknoten gesehen werden. Abbildung 
67 illustriert die Verbesserung der Hierarchie. 

 

Abbildung 67 : Die Verbesserung der Hierarchie mit Argumentform „conj“. 

7.3 Arbeit für die Zukunft 

In dieser Diplomarbeit wird die Bestimmung der Abhängigkeit eine Abfolge der Bedingungen 
benutzt. Das heißt, wenn eine Bedingung verletzt, wird die Abhängigkeit falsch bestimmt. 
Besser kann man den Voting Algorithmus benutzen, um  die Hierarchie besser aufzubauen. Es 
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gibt viele Wörter, die irrelevant für Produkt aber nötig für einen natürlichen Text sind. Für die 
zukünftige Arbeit ist es erwünscht, alle irrelevanten Wörter zu filtern. Alle in Kapitel 7.2 
darstellte Probleme ist die Arbeit für die Zukunft. Dieser Diplomarbeit geht von der Analyse 
von „*.mln“ Datei aus, während Aktualisierung der Werte von ClusterSum, CClusterSum und 
Count wird die „*.parse“ Datei benutzt. Aber es ist vielleicht auch möglich, dass von 
„*.parse“ Datei ausgeht, weil „*.parse“ Datei die Bäume Struktur impliziert. 

7.4 Begrenzung der System-Anforderung 

Die System-Anforderung ist sehr hoch. Beim Experiment von USP mit 2000 Testdaten hat ein 
Rechner mit acht Cores (Intel Xeon 2.3GHz) benutzt, wenn die maximale Größe Heap von 20 
GB eingestellt wird, dann braucht es 20 Minuten und 8 GB für 80 Minuten. Deshalb ist es 
unmöglich, USP als App s in Web oder Server einzusetzen. 
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Anhang A: Der Ergebnis von WEKA : (Aus diesem 
Ergebnis werden die Regeln (in 3.2) für 
Informationsextraktion generiert.)  
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