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1 Einfdhrung

Die Extraktion von Produkten, Produkteigenschaften und Werten der Produkteigenschaften aus
einem natdrlichen Text kann als ein Problem von Text Mining angesehen werden. Text Mining
ist eine neue Disziplin, die in den letzten zehn Jahren entstanden ist, und es gibt keine generell
akzeptierte Definition fir Text Mining. Die folgende enge Definition wird fir diese
Ausarbeitung UGbernommen: ,,Mit dem Terminus Text Mining werden computergestutzte
Verfahren flr die semantische Analyse von Texten bezeichnet, welche die automatische bzw.
semi-automatische Strukturierung von Texten, insbesondere sehr grofien Mengen von Texten,
unterstutzen.” [1] Die natlrliche Sprache besitzt keine Struktur. Aber es existieren Regeln, mit
deren Hilfe aus den Wortern die Phrasen und aus den Phrasen die Satze aufgebaut werden. Um
die natirlichen Texte zu bearbeiten, sollten die s.g. Regeln und Wortbedeutungen als
Vorkenntnisse fir Text Mining vorhanden sein. NLP bietet eine gute Mdoglichkeit flr die
Vorbearbeitung der naturlichen Sprache. Der natirliche Text wird durch syntaktische und
semantische Analyse verarbeitet. Danach wird die Cluster Analyse durchgefiihrt und die Daten
aus dem Clustering werden durch Filter gefiltert.

4)[ Vorverarbeitung ]

Parser Baume

Nattirliche
Texte

Daten mit
semantischen Rollen

v

[ Clustering ]—)[ Filter ]

Abbildung 1: Der Ablauf von Data Mining

,Verarbeitung natlrlicher Sprache (NLP: Natural language processing) ist ein Oberbegriff fir
alle Forschungs- und Anwendungsbereiche der Disziplinen Computerlinguistik (Computational
Linguistik (CL)), der linguistischen Datenverarbeitung, der sprachorientierten Kunstlichen-
Intelligenz-Forschung und Sprachtechnologie.” [2] Durch die syntaktische Analyse wird der
natlirliche Text in die formalen Ausdriicke umgewandelt, z.B. Prédikatlogik erster Stufe und
Dependenzbdume in ein USP System. Aber die durch syntaktische Analyse erzeugten
Strukturen sind mehrdeutig. Mit Hilfe von semantischer Analyse werden den Wortern die
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semantischen Rollen zugewiesen. ,Semantische Rollen konnen zu der automatischen
TextinhaltserschlieBung eines Dokuments beitragen, da sie eine formalisierte Représentation
von Informationen zu den Sachverhalten und Ereignissen, die aus einem Text extrahiert werden
kdnnen, sowie zu den Relationen zwischen den involvierten Entitaten darstellen.” [3] Damit
werden die Ambiguitaten und syntaktischen Variationen abgezogen, weshalb die semantische
Analyse eine wichtige Rolle bei der Sprachanalyse spielt und die semantische Analyse auch eine
Schwierigkeit fur die Sprachanalyse darstellt. Wie in Abbildung 2 gezeigt, besteht die
Sprachanalyse aus syntaktischer Analyse und semantischer Analyse und liefert die semantischen
Reprasentationen fiir den natlrlichen Text. Je besser diese semantische Reprasentation ist, desto
exakter sind die extrahierten Informationen.

Sprachanalyse

Natirliche Sprache Syntaktischer Parser

/

Formale Ausdriicke bzw. Dependenzbidume

Semantischer Parser

semantische Repriasentationen

Computer

Abbildung 2 : Ablauf der Sprachanalyse

Vor mehreren Jahren wurden einige Ansatze fur die semantische Analyse entwickelt. Zum
Beispiel die Ansdtze aus [4] und [5]. In [4] und [5] mussen einige semantische Parser als Muster
manuell vordefiniert und die logischen Formen flr jeden Satz angegeben werden, danach
werden alle semantischen Parser mithilfe des Maschinenlernens auf den Text abgebildet. Dies
ist offensichtlich sehr aufwendig. ,,Unsupervised Semantic Parsing®“ (Abk. USP) ist der erste
nicht tberwachte Ansatz fir semantische Analysen. Dieser Ansatz wurde von Hoifung Poon und
Pedro Domingos im Jahr 2009 entwickelt und ermdglicht es mit der Hilfe von Markov Logik
Netzwerk, eine vollautomatische semantische Analyse zu realisieren. ,,Fir die Extraktion der
Informationen beschrankt USP System sich darauf, wievielmal die gesuchte Information im
Korpus angegeben wird. Wenn die Information selten im Korpus angegeben wirde, ware es
schwierig zu extrahieren.” [6] Des Weiteren wurde basierend auf ,,Unsupervised Semantic
Parsing” im Jahr 2010 “Ontology Unsupervised Semantic Parsing”“ (Abk. OntoUSP)
vorgeschlagen. ,,Wéhrend der Umwandlung der Satze in logische Formen wird ISA Hierarchie
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von Lambda-Formen durch die Clusteranalyse der logischen Ausdriicke generiert. Damit ist es
mdglich, eine Ontologie zu erstellen.” [7] Die Informationen kdnnen trotzdem extrahiert werden,
wenn die Informationen selten in dem Korpus vorkommen, weil die Informationen schon in der
Ontologie eingesetzt werden.

1.1 Ziel der Diplomarbeit

In dieser Diplomarbeit wird gepruft, ob OntoUSP eine Methode ist, mit der das Produkt, die
Produkteigenschaft und die Werte der Produkteigenschaft aus einem natirlichen Text extrahiert
werden kénnen. Zwar ist das Programm von OntoUSP nicht vorhanden, aber man kann von den
Ergebnissen von USP ausgehen, weil OntoUSP eine Erweiterung von USP ist, und bei
Experimenten mit Onto USP werden die Ausgaben von USP benutzt, d.h. die Ausgaben von
OntoUSP enthalten die gleichen oder ahnliche Informationen wie USP.

1.2 Problem definieren

Die Eingabe ist ein natirliches Dokument. Stanford Parser wandelt das natirliche Dokument in
morphologische Worter und die Dependenzen zwischen den Wartern um. Die Ergebnisse von
Stanford Parser sind die Eingaben fir USP. Durch eine Analyse der Ausgaben-Datei des USP
Programms wird eine Hierarchie flr die Worter erstellt. Danach werden diese Worter gefiltert,
und die Ausgaben von Produkten, Produkteigenschaften und die Werte der
Produkteigenschaften basierend auf folgenden Annahmen generiert :

e Die Wurzel ist entweder ein Produkt oder ein Markenzeichen
e Die Blatter sind die Werte der Produkteigenschaften
e Die Eltern Knoten der Blétter sind Produkteigenschaften



2 Stand der Technik und Grundlagen

2.1 Stand der Technik

in der Vergangenheit wurden viele Ansdtze von Extraktion von Produkt und
Produkteigenschaftswerten entwickelt. Es gibt auch viele Ansatze fur Informationsextraktion
basierend auf Ontologie. Aber alle Ansatze erfordern entweder manuelle Unterstiitzung oder
beschrankt sich auf eine bestimmte Wissensdomane oder dem Format des Textes.

In [8] ist die Extraktion fur explizite Produkt Attribute basierend auf der Extraktion fir ,,opinion
word*. In [8] sind die manuell markierten Trainingsdaten sind erforderlich. Mit den markierten
Daten werden die Pattern erzeugt, und diese Pattern werden wieder benutzt, um nach den
LAttribute-Value® die Entitaten zu extrahieren. Die Bindung von Produkt Attribute und Produkt
Attribute Wert, und diese Bindung wird durch einen Dependenzparser (Minipar [9]) realisiert.

In [10] sucht man nach den sehr oft vorkommenden Normen oder Norminalphrasen, die
gefundene Normen bzw. Norminalphrasen werden als die Features der Produkte ausgewdhlt.
Mit der Hilfe von PMI(pointwise mutual information) und ,,Naive Bayes Classifier* werden die
Regeln fiir die Informationsextraktion generiert.

In [11] werden die Séatze bzw. die Rekorder in Parser Baume mit leichten semantischen
Annotationen umgewandelt, weshalb sich dieser auf eine bestimmte Domane beschrankt.

In [12] wird die Shallow semantische Analyse benutzt. Die Ontologie der Domaéne wird
vordefiniert. Die Generierung der Ontologie ist die Abbildung zwischen den Wortern und der
vordefinierten Ontologie, d.h. die Ontologie wird nicht von Wartern generiert.

In [13] werden die Satze in einem Text in semantische Term Graph umgewandelt, mit der Hilfe
des ,,Page Ranking Algorithmus* werden die Term Kandidaten auf entsprechende vordefinierte
»Layer* abgebildet. Gleich wie in [13], wird die Ontologie nicht von Wortern generiert.

USP liefert vollstandig semantische Analysen und ein Markov Logik Netzwerk fur Worter.
Damit werden die 0.g. Schwéchen tberwunden.

2.2 Grundlagen

Die syntaktischen Analysen zusammen mit den semantischen Analysen liefern die
semantischen Reprasentationen fir einen naturlichen Text. Aus einem natirlicher Text werden
durch die syntaktische Analyse(eng : syntax parsing) die syntaktische Baume(auch Parser
Bdume) erzeugt. Diese syntaktische Analyse erledigt in USP System durch Stanford Parser. Die
Ausgaben von Stanford Parser sind die Eingaben fir USP. USP fiihrt die semantische Analyse
durch und fugt fur jedes Wort eine semantische Rolle hinzu und clustert die Worter. Die
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Ausgaben von USP sind ,,*.parse und ,*.mIn* Dateien, wobei die ,*.parse* eine Baum
Struktur liefert, und ,,mIn“ ein Netz der Worter liefert. Durch ,*.parse* und ,,*.mIn* Datein
werden die Ausgaben generiert.

natdrliches Dokument ] Stanford Parser
1 1
1 1
Produkten, * morphologische Worter
Produkteigenschaften _
und deren Werte . Dg_pendenzen zwischen den
e — e Wértern _
1 —_—
[ Analyse ]
T * * *
| | [ .dep ] [ .input ] [ .morph ]

53 [(N:generation):1]
0 11
6:<amod=:1
92:[(J:third):1]:1

92 [():third):1]

[
1

1 [(N:acer):3]

2 [(N:iconia):3]

3 [(N:w700):4]

Abbildung 3 : Der Durchlauf der Informationsextraktion

Im Folgend werden die Grundlagen fiir USP System sowie die Komponente fir USP System,
Grundlagen fir Logik, Grundlagen fur Markov Logik Netzwerk und Grundlagen fir Liguistik
besprochen.

2.2.1 Stanford Parser

,Der Stanford Parser ist ein probabilistisches Parser Programm. Die natirliche Sprache ist die
Eingabe flr das Programm und durch den probabilistischen Parser kann die grammatische
Struktur der Satze bestimmt werden. Die Kenntnisse der Wahrscheinlichkeiten wvon
probabilistischen Parsern werden aus manuellen analysierten Satzen erworben, und mithilfe der
probabilistischen Parser kdnnen die wahrscheinlichste Analyse von neuen Satzen produziert
werden. Dieser probabilistischen Parser garantiert nicht, dass die Ergebnisse 100% richtig sind.*
[14] ,,*.dep”, ,,*.input” und ,,*.morph* sind die Eingabe Dateien fiir USP und die drei Dateien
werden von Stanford Parser generiert. In der Tabelle 1 sind ein Beispielsatz und der Inhalt der
von Stanford Parser erzeugten Dateien dargestellt. In Abbildung 4 ist die graphische Darstellung
der syntaktischen Analyse von Stanford Parser fiir den Beispielsatz. In Abbildung 5 ist die
graphische Darstellung der manuell syntaktischen Analyse fiir den Beispielsatz gegeben.
Stanford Parser hat die syntaktische Struktur falsch analysiert, die Fehler wird mit rot Oval
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markiert. Die syntaktische Struktur der Nominalphrase aus Stanford Parser ist NP—NP PP_with
NP, die richtige ist NP-NP CONJ and NP. Solche Fehler fihren zu einer falschen Ontologie.

1 Apple announces 13 MacBook Pro with Retina display and new iMac.
o nsubj(announce-2, Apple-1), num(pro-5. 13-3), nn(pro-5, MacBook-4),
dobj(announce-2, pro-5), nn(display-8, Retina-7), prep with(announce-2,

display-8), amod(imac-11, new-10), conj and(display-8, imac-11)
3 Apple NNP, announces VBZ, 13 CD, MacBook NNP, Pro NNS, with IN,
Retina NNP, display NN, and CC, new JI, iMac NN, . .

4 Apple, announce, 13, MacBook, pro, with, Retina, display, and, new, imac, .

Tabelle 1 : Beispiel fur Stanford Parser

In der ersten Zeile von Tabelle 1 ist der Satz. In der 2. Zeile sind die Darstellungen von Datei
,~.dep*. Die Beziehungen der Worter (wie nsubj, dobj, nn) und die Position der Worter (
»Apple-1* bedeutet ,,Apple” ist das erste Wort, sowie ,,announce-2* ist das zweite, usw.)
werden angegeben. In der 3. Zeile sind die Darstellungen von Datei ,,*.input®. Hier werden die
Worter und der entsprechende syntaktische Worttypen angegeben. In Zeile 4 sind die
Darstellungen von Datei ,,*.morph“. Die morphologischen Worter werden angegeben, z.B. :
»announce“ ist das morphologische Wort ,announces” ist das morphologische Wort fir
»announces"“.

NP NP

NP
BN AN
\Y% adj N
cO N N ke
L]
Apple announces 13 MacBook Pro with Retina display and new iMac.

Abbildung 4 : Der Parser Baum, der von Stanford Parser erzeugt wird.
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NP prep

RN IAR A
ol T L

Apple announces 13 MacBook Pro with Retina display and new iMac.

Abbildung 5 : Der Parser Baum, der manuell erzeugt wird.

2.2.2 Semantik Analyse

Fur die Verarbeitung naturlicher Sprache gibt es folgende Schwierigkeiten : die heterogenen
Wissensdomaénen, die Auflosung der Ambiguitéat der Sprache, Modellierung der Sprache und die
Auflésung der syntaktischen Variationen der Sprache. Im Durchlauf von ,,Shallow Semantic
Parsing” erfolgt die Erkennung von semantischer Représentation z.B. ,,Wer*, ,,Was*, ,,Wann*,
»Wo“, ,Warum®, ,Wie“, usw. und nur die Elemente, die aufeinander folgend und
zusammenhéngend sind, werden ermittelt. ,,Shallow Semantic Parsing” kann die s.g.
Schwierigkeiten nicht auflésen und es fehlt die F&higkeit der Schlussfolgerung.

Tom loves Mary. Shallow SemanticParing - [, gpnT Tom] loves [receprentMary].

Abbildung 6 : Ein Beispiel fur Shallow Semantic Parsing

Im Gegensatz zu ,,Shallow Semantic Parsing” liefert die vollstandige semantische Analyse eine
Reprasentation eines Satzes in Pradikatenlogik erster Stufe oder andere formale Sprache und
unterstutzt eine automatische Schlussfolgerung. Die natlrliche Sprache wird im Leseprozess
vollstandig syntaktisch analysiert, damit die logischen Formen erzeugt werden kdnnen. Durch
semantische Analyse wird die von syntaktischer Analyse erzeugte logische Form, namlich die
logische Représentation der naturlichen Sprache, auf der vollstdndigen semantischen
Reprasentation, namlich die Bedeutungsreprasentation, abgebildet. Die
Bedeutungsreprésentationen der Sprache werden in dieser Ausarbeitung durch Pradikatenlogik
erster Stufe dargestellt. Einige Definitionen missen hier angeben werden :

e Ein Term ist ein Objekt in einer Domane. Ein Term kann eine Konstante, eine Variable
oder eine Funktion, die auf den Variablen angewendet, sein.
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e Eine Formel bzw. eine atomare Formel ist ein Pradikatsymbol, das auf n-Tupel von
Termen angewendet wird. Eine Formel kann aus mehreren atomaren Formeln verknupft
mit logischen Symbolen und Quantoren rekursiv konstruiert sein.

e Unter einer lexikalischen Einheit kann in dieser Ausarbeitung ein Wort verstanden
werden. Ein lexikalischer Eintrag definiert die logische Formel fur eine lexikalische
Einheit mit POS Tagging. A-gebundene Variablen markieren die fehlenden Argumenten
in den logischen Formen.

,Der semantische Parser eines Satzes wird hergeleitet, indem man mit logischen Formen in den
lexikalischen Eintrdgen anfédngt und die Bedeutung groRerer Fragmente rekursiv aus deren
Bestandteilen zusammensetzt.“ [7] In der Abbildung 7 wird gezeigt, dass ,,everybody”, ,,two
language” und ,speaks“ zuerst analysiert werden, danach werden die kleinen
Bedeutungsrepréasentationen in einer groRen Bedeutungsreprasentation zusammengestelit.

Verb[Ay Ax.love(x,y)] = loves
NP[Tom] = Tom
NP[Mary] - Mary
VP[rel(obj)] = Verb[rel] NP[obij]
S[rel(obj)] = NP[obj] VP[rel]

Abbildung 7 : Ein Beispiel fur semantische Analyse

Die ersten drei Zeilen in der Abbildung 7 sind lexikalische Eintrdge bzw. Worter. Die
syntaktische Kategorie bzw. POS Tagging von ,love* ist ,Verb“. Wenn zwei Atome die
Funktion ,,loves(x,y)* erfiillen, dann ist diese Funktion true. Die letzten zwei Zeilen haben
gezeigt, dass die lexikalischen Eintrdge in einem groReren Fragment der Bedeutung
zusammengestellt werden.

2.2.3 Pradikatenlogik erster Stufe ( Abk. PL1)

,Die Pradikatenlogik erster Stufe beschaftigt sich mit Objekten und Aussagen Uber deren
Eigenschaften.” [15] Die Pradikatenlogik erster Stufe ist ,,ausdruckstérker* als Aussagenlogik,
und Quantoren, Funktions- und Pradikatsymbole kommen hinzu. Die Préadikatlogik erster Stufe
ermoglicht ontologische Bindung zwischen den Objekten, das ist der wichtigste Unterschied von
allen zwischen Aussagenlogik und Pradikatlogik erster Stufe.

Einige Definitionen (aus [16]) :

e Eine Variable hat die Form X;

e Ein Pradikatsymbol hat die Form Pi und ein Funktionssymbol hat die Form f;

e Jede Variable ist ein Term, jede Konstante ein Term, sowie f (ty,...t;) auch ein Term,
falls f eine Funktion und t; die Terme sind.

e P(ty,...ty) ist eine Formel bzw. eine atomare Formel, fall P ein Pradikatsymbol ist und t;

Terme sind.
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e Fr jede Formel =F, 3F, VF, FVG, FAG sind auch die Formeln, wobei 3 und V sind die
Quantoren.

e Alle vorkommenden Variablen sind entweder frei oder gebunden. Wenn x in der Form
3AxF oder YxF vorkommt, dann heif3t die Variable x in Formel F gebunden, andernfalls
heif3t frei.

Eine Wissensdomane ist eine Sammlung von Informationen tber die Bedeutungen der Daten
und Uber die logischen Regeln. Eine PL1 Wissensdomane ist eine Menge von Satzen und
Formeln in PL1. Die Formeln bestehen aus Konstante, Variablen, Funktionen und Pradikaten.
Die neue Regeln bzw. die Randbedingungen konnen in die vorhandene Wissensdomane
hinzugefuigt werden, und die Wissensdoméne mittels der Regeln bzw. die Randbedingungen aus
dem vorhandenen Wissen Schlisse inferieren.

Einige Definitionen (aus [17]) :

e Jede Konstante ist ein Objekt in einer Wissensdoméne und kann typisiert sein, z.B.
Konstant HA représentiert Hersteller Apple.

e Die Variablen konnen typisiert sein und reprasentieren die Objekte gleichen Typs in
einer Wissensbasis, z.B. Variable x; = Tom ist der Name der Menschen in der
Wissensbasis ,,MenschenName (Tom, Jerry, Mary)“. Durch die Substitution der
Variablen durch eine Konstante aus der Konstante Menge werden die verschiedenen
Objekte entstehen, z.B. MenschenName (Tom) und MenschenName (Jerry).

e Die Beziehung zwischen den Objekten sind die Funktionen wie Mutter_von,
guter_Freund_von.

e Ein Prédikatsymbol reprasentiert die Beziehung zwischen den Objekten und die
Eigenschaften der Objekte, z.B. Feind und Rauchen.

e Ein Term kann eine Konstante, eine Variable oder eine Funktion sein, die auf
Unterterme angewendet werden kann.

e Eine atomare Formel ist ein Pradikatsymbol, das auf Unterterme angewendet wird.

e Eine Formel kann rekursiv aus atomaren Formeln, die mit Quantoren(3,v) und logischen
Symbolen(A,v,<,=) der Prédikatenlogik verkn(pft sind, konstruiert werden.

e Ein Grundterm ist ein Term, der keine Variable enthalt.

e Ein Grundatom oder ein Grundpradikat ist eine atomare Formel, deren Argumente alle

Grundterme sind.

Die von Stanford Parser erzeugten Dependenzen konnen in die PL1 Repréasentationen
umgewandelt werden. Der naturliche Text kann als die Kombination von den PL1
Reprasentationen gesehen werden. Somit ist die Wissensdoméne eines Textes die Sammlung
von Dependenzen in PL1 Reprasentationen mit den Objekten und diese PL1 Représentationen
sind die Randbedingungen im Markov Logik Netzwerk. Die Randbedingungen im Markov
Logik Netzwerk sind die in disjunktiver Normalform geschriebenen Klausel-Formen, damit die
Randbedingungen aufgeweicht werden. Eine Welt (possible world) ist wahr, wenn alle
vorkommenden Grundatome wahr sind.
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English First-Order Logic Clausal Form

Friends of friends are friends.  VxVyVvz Fr(x,y) AFr(y,z) = Fr(x,z) —Fr(x,y)V —Fr(y,z) V Fr(x,z)

Friendless people smoke. Vx (=(3y Fr(x,y)) = Sm(x)) Fr(x, g(x)) V Sm(x)
Smoking causes cancer. Vx Sm(x) = Ca(x) —Sm(x) V Ca(x)

If two people are friends, either ¥xVy Fr(x,y) = (Sm(x) < Sm(y)) =Fr(x,y) V Sm(x) V —Sm(y),
both smoke or neither does. —Fr(x,y) V —Sm(x) V Sm(y)

Abbildung 8 : (aus [17]) Beispiele fur Wissensdoméne von Pradikatenlogik erster Stufe. Fr() ist Abkirzung fir
Friends(), Sm() fir Smokes(), and Ca() fir Cancer().

2.2.4 Quasi-logische Form, POS Tagging und Lambda(-Kalkul)
Notation

2.2.4.1 Quasi-logische Form

Quasi-logische Form basiert auf der Pradikatlogik (in dieser Ausarbeitung wird mit
Prédikatenlogik erster Stufe beschaftigt. Details siehe [18]) und ist eine Darstellung der
Bedeutung des Dokuments. Jede QLF hat eine entsprechende Formel in Pradikatenlogik bzw.
Préadikatenlogik erster Stufe.

a. Fverybody two languages
Misies texgr
qlf index [1] ] index ]
restr  MZlperson([Z]) restr Al language([i)
quant every quant two
pl  Va.(person(z) — ...) two y.(language(y) = ....)
b.  speaks
[v form T
wvar £1
s fom
glf scope
form plam
form |pred speak
args (m, 8], E|> J
pl  speak(e,,.......)
¢. FEverybody here speaks two languages
rs fom T
scope
|'p_f<3=nr| 'I
qlf pred speak
form texgr 'I L KT 'I
index index
e <m' restr J.E.p-&rs«nnl{@jj' restr hmlanguage{mjj>
quant ewvery quant two ]

pl ‘r:'.r{ person(z) — (twoy language(y) A speak(er, z,y)))
twoy.(language(y) A Vr.(person(z) — speak(er, x,y)))

Abbildung 9 (aus [19]): Die Umwandelung des Satzes ,Everybody speaks two languages” in QLF und
entsprechender Pradikatenlogik
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2.2.4.2 Lambda(-Kalkul) Notation

»,Durch Lambda(A)-Ausdriicke werden formale Parameter eingeflhrt, die durch Terme ersetzt
werden konnen.” [20] Beide Ax.Love(x, y) und Ax. Ay.Love(x, y) sind die Lambda-Ausdriicke.
Die A-gebundene Variable kann durch ein Argument aus einem Definitionsbereich, z.B. aus
konstanten Menge in MLN, substituiert werden. Die nicht-A-gebundene Variable heif3t frei. Ein
Beispiel flir Substitution einer A-gebundenen Variable :

ax.Love(x, y)(Tom) = Love(Tom, y)

wobei y eine nicht-A-gebundenen Variable bzw. eine freie Variable ist. Die Substitution von A-
gebundenen Variable ist die A-Reduktion. ,,Ein Pradikat mit mehreren Argumenten kann durch
die A-Reduktion auf eine Folge von jeweils einstelligen Pradikaten abbilden.” [20]

2.2.4.3 POS Tagging

Ein Token ist in dieser Ausarbeitung ein einzelnes Wort. Ein ,,Tag® ist eine Markierung bzw.
eine Etikett von Token. Tagging ist ein Verfahren, durch das ein Tag einem Token zugewiesen
wird. POS(PART-OF-SPEECH) Tagging ist die Zuordnung der Wortart zu einem Token, z.B.
Verb, Nomen usw. Mithilfe von POS Tagging werden die Informationen der Sprache
kategorisiert. Die von Stanford Parser erzeugten Dependenzen enthalten die POS Tags schon.

Tom loves Mary.

l

(S(NP(NNP Tom)) (VP(VBZ loves) (NP (NNP Mary)))

Abbildung 10 : Ein Satz markiert mit POS Tag.

2.2.5 Markov Logik Netzwerk (Abk. MLN)

2.2.5.1 Markov Netzwerk (Abk. MN)

Das Folgende baut auf [17] auf. ,,Markov Netzwerk (oder Markov Random Field) ist ein
statistisches Modell fir multivariate Verteilung einer Menge von Variablen X = (X3, Xy, ... ,
Xn) € X und beschreibt die ungerichteten Graphen, die bedingte Unabhéngigkeitsaussagen
zwischen Variablen ausdrucken.” [17] & [21] In einem ungerichteten Graph représentiert jeder
Knote eine Variable, jede Clique im Graph hat eine potenzielle Funktion, die einen Zustand der
Clique représentiert. Die multivariate Verteilung von MN :

P(X = x) = =[P (xpy) (1)

wobei x{k} ist der Zustand von k-ste Clique ist, d.h. x{k} reprasentieren alle Werte von den
Variablen in der k-ste Clique. Z ist die Normalisierung. Die Formel (1) kann als log-lineares
Modell dargestellt werden.
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P(X=x)= iexp {Z_wjfj(x)} 2)
j

wobei o; Gewicht von einer Feature Funktion f; (x) ist. In dieser Ausarbeitung f; (x) € {0,1}.
Feature Funktion beschreibt einen Zustand der Clique und das Gewicht der Feature Funktion ist

l0g, (sy)-
2.2.5.2 Markov Logik Netzwerk (Abk. MLN)

Das Folgende baut auf [17] auf. Eine Wissensdomane besteht aus einer Folge von logischen
Regeln der Pradikatenlogik erster Stufe. Eine logische Regel in einer Wissensdomane ist eine
Randbedingung in einer Welt. Wenn eine Randbedingung einer Welt verletzt ist, hat die
entsprechende Welt die Wahrscheinlichkeit 0. Sehr oft ist ein solcher Fall nicht erwiinscht. Mit
Markov Logik wird diese Randbedingung dadurch aufgeweicht, dass jeder Randbedingung ein
Gewicht zugewiesen wird. Damit ist es moglich, dass eine Welt, in der eine Randbedingung
verletzt ist, eine geringere Wahrscheinlichkeit besitzt, aber nicht unméglich ist. Das Gewicht
beschreibt die Bindungswirkung der entsprechenden Randbedingung, wenn die Welt wahr ist.
Eine Welt, in der die Randbedingung erfullt ist, besitzt groRere Wahrscheinlichkeit als eine
alternative Welt, in der die Randbedingung verletzt wird. ,,Ein Markov Logik Netzwerk ist eine
probabilistisch logische Représentation, welche Prédikatenlogik erster Stufe und Markov-Netze
miteinander verknlpft.” [22]

Einige Definition (aus [17]) :

e Ein Markov Logik Netzwerk L ist eine Menge von Paaren (F;, ;), wobei F; eine logische
Formel der Prédikatenlogik der erster Stufe ist und w; ein Gewicht. Hier werden nur die
existenzquantifizierte Variablen betrachtet und alle allquantifizierten Variablen sind die
freie Variablen.

e (Fi, wi) zusammen mit einer endlichen Menge von logischen Konstanten C = {c, ¢y, ...,
Ciei} definieren ein Markov Logik Netz M c.

e Jedes Grundatom in L entspricht einem binaren Wert Knoten in M ¢c. Die Grundatome
Menge X= {Xi,...,.Xp} wird dadurch erhalten, dass die Variablen der
pradikatenlogischen Formel in L durch die in L gegebenen Konstanten substituiert
werden. Der Wert eines Knotens ist genau dann 1, wenn das Grundatom wahr ist,
ansonsten ist der Wert 0. Der Knoten kann mit anderen Knoten durch die Kanten
verbunden werden, wenn die beiden Knoten bzw. die Grundatome in einer Belegung der
Grundformel gemeinsam vorkommen.

o Fir jede Belegung einer Grundformel F; in L besitzt ein Feature f;, der Wert von f; genau
dann 1 ist, wenn die Belegung der Grundformel wahr ist und sonst 0. Die Summe der
Gewichte flr Feature f; ist das Gewicht w; in L.
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English First-Order Logic Clausal Form Weight

Friends of friends are friends. ~ VxVyVvz Fr(x,y) A Fr(y,z) = Fr(x,z) —Fr(x,y)V —Fr(y,z)VFr(x.z) 0.7

Friendless people smoke. Vx (—(Jy Fr(x,y)) = Sm(x)) Fr(x, g(x)) V Sm(x) 2.3
Smoking causes cancer. Vx 8m(x) = Ca(x) —Sm(x) V Ca(x) 1.5
If two people are friends, either Vx¥y Fr(x,y) = (Sm(x) < Sm(y)) —Fr(x,y) Vv Sm(x) V —Sm(y), 1.1
both smoke or neither does. —Fr(x,y) vV =Sm(x) V Sm(y) I3

Tabelle 2: (aus [17]) Beispiele fiir Wissensdomane von MLN.

In der Tabelle 2 ist Fr() Abklrzung fir Friends(), Sm() fur Smokes(), and Ca() fur Cancer(). Im
Vergleich zu Tabelle 2 werden hier die Gewichte hinzugeftigt. Allen Regeln in dem Spalt ,,First-
Order Logic* sind die Grundformeln und die Belegungen der Grundformeln in dem Spalt
,»Clausal Form*. Wenn eine Grundformel mehre Belegungen besitzt, dann wird das Gewicht der
Grundformel gleichmaRig auf Belegungen aufgeteilt, z.B. Das Gewicht fir vx Yy Fr(x; y) =
(Sm(x) , Sm(y)) ist 2.2 und das Gewichte fir jede Belegung ist 1.1.

Fr(4,B))
l‘jif(A A ) Sm(4 _) ( '_Sn; (7B)' ( FI(B B)

“Ca(d) Set? CCa(B)
: ‘_F."(B,A) : )

Abbildung 11 : (aus [17]) : Der MLN Graph, der Tabelle 2entspricht. A und B sind die Konstant.

First-Order logic Variable assignment Clique Weight
T Ty x=A {Sm(A4),Ca(A)} 1.5
Pevapme=Cal =B (Sm(B),Ca(B)) 15
x=4, y=A {Fr(A4,4),Sm(A)} 1.1
T T B s o {EFr(4,B),Sm(A),Sm(B)} 11
Fy:NxVy Fr(x,y)=(Sm(x)=Sm(y)) 2 e (Fr(B.A).Sm(A).Sm(B)} 11
x=B, y=B {Fr(B.B).Sm(B)} 1|

Abbildung 12 (aus [23]) : Cliques und Gewichte von MLN in Abbildung 11. Es gibt 6 Cliques.

Aus der Definition von MLN wird jeder Knoten in MLN M_c durch Einsetzen fur Variablen der
logischen Formeln in MLN die Grundatome erzeugt. Die Kante zwischen den Knoten entspricht
die Beziehung zwischen den Knoten. Deshalb kann MLN als Model von Markov Netzwerk
gesehen werden und die Wahrscheinlichkeitsverteilung ist :

PX=x)= iexp(ziwini()()) = él_[g)i(x{i})ni(x) (5)
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wobei n; die Anzahl der Grundformeln ist, die den Wert 1 haben. Formel (5) hat gezeigt, dass
eine Welt nicht unmdglich ist, wenn diese Welt eine Randbedingung oder mehrere
Randbedingungen verletzt, sondern besitzt geringere Wahrscheinlichkeit. Gewicht w; zeigt, wie
»stark” die Randbedingung in der Welt ist. Flr ein bestimmtes MLN konnen unterschiedliche
Markov Netzwerk erzeugt werden, wenn die Konstant Menge unterschiedlich sind, aber diese
Markov Netzwerk haben auch manche Gemeinsamkeiten wie die gleiche Anzahl der Clique. Die
Gewichte werden entweder aus dem Lernen von Trainingsdaten erhalten oder von Menschen
manuell gegeben.

2.2.6 Clusteranalyse

USP System startet mit Clustering von Wortern, die gleichen Typen haben, baut rekursiv
grolere Clusters auf. Hier wird das Cluster erklart, das Cluster ist eine Gruppe von Objekten,
die &hnliche Eigenschaften besitzen. Die Objekte werden entweder in verschiedene Klassen
aufgeteilt oder besitzen keine Struktur. Das Clustering (auch Clusteranalyse) dient dazu, dass
die Objekte ins Cluster untergeteilt werden, damit die in einem Cluster zugeordneten Objekte
eine moglichst hohe Ahnlichkeit besitzen. Die Clusteranalyse ermdoglicht eine Struktur fir die
Objekte aufzubauen. Bei der Clusteranalyse ist das Ziel, die Unterschiede zwischen den
einzelnen Gruppen maoglichst maximiert und die Unterschiede innerhalb der einzelnen Gruppen
maoglichst minimiert werden zu kénnen.

Tragbarer
Computer

" Tablets ist Tragharer Computer?

Notebook Tablets |  —— Netbook

Tablets ist Nethook? <
Ultrabooks Asus Eee Family

Abbildung 13: Ein Beispiel fur Clusteranalyse. ,,Tablet PC* kann in der Gruppe ,,Tragbarer Computer* oder in
»Netbook” Gruppe sein. In Welcher Gruppe die Objekte zugeordnet werden, hangt stark vom verwendeten
Algorithmus, Parametern und verwendeten Objekt-Attributen ab.

2.2.7 Unsupervised Semantic Parsing und Ontology Unsupervised
Semantic Parsing

Friher wurde der semantische Parser manuell erstellt, zwar einige Ansatze fir maschinelles

Lernen wurden danach entwickelt, aber die manuelle Unterstitzung war immer noch

erforderlich, und manche Ansétze beschrankten sich auf einer geschlossenen Wissensdomaéne.
USP ist der erste nicht-Uberwachte maschinelles Lernen Ansatz fir Semantik Parser. Ob ein
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Ansatz fir maschinelles Lernen (berwacht ist, ist abhangig davon, ob Eingabe- und
Ausgabedatei manuell markiert sind.

e (iberwachtes Lernen (engl. supervised learning) : Der Algorithmus lernt eine Funktion
aus gegebenen Paaren von Ein- und Ausgaben. Dabei stellt wahrend des Lernens ein
»Lehrer” den korrekten Funktionswert zu einer Eingabe bereit.

e nicht-uberwachtes Lernen (engl. unsupervised learning) : Der Algorithmus erzeugt fir
eine gegebene Menge von Eingaben ein Modell, das die Eingaben beschreibt und
Vorhersagen ermdglicht. Dabei gibt es Clustering-Verfahren, die die Daten in mehrere
Kategorien einteilen, die sich durch charakteristische Muster voneinander unterscheiden.

2.2.7.1 Unsupervised Semantic Parsing

USP beruht auf drei zentralen Ideen : (aus [7])

e Ziel Prédikat und Objekt Konstanten konnen als Cluster von syntaktischen Variationen
derselben Bedeutung angesehen werden, und aus Daten erlernt werden. Zum Beispiel
stellt ,,ACQUIRE* den Erwerb Beziehung, und kann als Cluster von verschiedenen
Formen zum Ausdruck dieser Beziehung, wie ,acquired”, ,bought*, ,purchased*
angesehen werden; Microsoft représentiert das Unternehmen Microsoft und kann als das
Cluster von ,,Microsoft*, usw. angesehen werden.

e Die gleiche Formen konnen clustert werden. Die Formen, die aus den gleichen Formen
bestehen, kdnnen clustert werden.

USP = Recursively cluster expressions with USP = Recursively cluster expressions with
similar subexpressions similar subexpressions

Microsoft buys Powerset Microsoft buys Powerset
Microsoft acquires semantic search engine Powerset M, i'ct'o.ﬂ'o}‘fwmumrc search engine Powerset

Powerset is acquired by Microsoft Corporation Powerset |is acquired by Microsoft Corporation

The Redmond software giant buys Powerset The Redmond sofiware giant buys Powerset
Microsoft’s purchase of Powerset, Microsoft ' ‘owerset,

Cluster same forms at the atom level Cluster forms in composition with same forms

Abbildung 14 (aus [24]) : Hlustration fur Clustering-Verfahren von USP

o USP startet direkt von syntaktischen Analysen und konzentriert sich nur auf deren
Umsetzung zum semantischen Inhalt. Die vorherige entwickelte Parser kénnen in USP
eingesetzt werden, deshalb stehen viele Ressourcen zur Verfugung. Die syntaktische
Analyse und die semantische Analyse sind in USP getrennt, damit die Komplexitat der
semantischen Analyse reduziert wird, weil es nicht erforderlich ist, bei
Zusammensetzung der Bedeutungen ein doménenspezifisches Verfahren zur Erzeugung
von Kandidaten Lexikon zu brauchen.

Die Eingaben fir USP System sind die Dependenzbdume, die von Stanford Parser generiert
werden. Eine naturliche Sprache ist die Eingabe fur Stanford Parser, ,,*.dep®, ,,*.input* und
».morph“ sind die Ausgabe von Stanford Parser, aus diesen drei Dateien werden die
Dependenzbdume generiert. Ein Dependenzbaum ist eine Baum Struktur, in der Baum-Struktur
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sind die Knoten die Worter, und die Kanten sind die Beziehungen zwischen den Worter. Die
QLF in dieser Ausarbeitung wird daraus erhalten :

e jeder Knoten in einem Dependenzbaum wird in ein undres Atom mit dem Préadikat
umwandelt, und das Pradikat wird mit POS Tag markiert, z.B. ,,Microsoft“ wird in
»Microsoft(n4)“ umgewandelt.

e jede Kante in einem Dependenzbaum entspricht einem Pradikat mit zwei Atomen, und
das Pradikat ist die ,,Beziehung* zwischen den Atomen, z.B. nsubj(n3, n2).

wobei n; und n3 die Skolemkonstante sind. Eine Skolemkonstante kann man in dieser
Ausarbeitung als eine Konstante aus der konstanten Menge in MLN verstehen. (Mehr (ber
Skolemkonstante sieht Kapitel 9 in [25]).

QLF von einem Satz kann als eine Konjunktion von logischen Formen von entsprechenden
Konten und Kanten angesehen werden. Dieser Vorgang ist illustriert in Abbildung 15. Die
Bedeutung eines Satzes kann als eine Kombination von den Sub-Formen der QLF gesehen
werden, deshalb die lexikalischen Eintrage beschrénken sich nicht mehr auf den adjazenten
Wortern sondern sind die beliebigen Fragmente in einem Dependenzbaum. Deswegen hat USP
System mehre Flexibilitat beim Maschinenlernen.

[ Microsoft Corporation buys Powerset. ]

Stanford Parser

Microsoft fden Microsoft_ NNP

Corporation nn(Corporation-2, Microsoft-1) Corporation_NNP
nsubj(buy-3, Corporation-2) =

buy dobilb buys_VBD
Powerset obj(buy-3, Powerset-4) Powerset NNP
* morph ~ '—  *input

buys buys(n3)
"Wi nsubj(n3,n2) dobj(n3,n4)
Corporation Powerset Corporation(n2) (Powerset n4)
nn nn(n2,n1)
Microsoft ORI Microsoft(nl)
i

[ QLF : Microsoft(nl)ACorporation(n2)Ann(n2, n1)Abuys(n3)Ansubj(n3, n2)Adobj(n3, nd)APowerset(n4). ]

Abbildung 15: Beispiel firr die Generierung von QLF.

Die naturliche Sprache wird durch s.g. Stanford Parser drei Dateien als Eingaben fur USP
System erzeugt. Diese drei Dateien stellen einen Dependenzbaum dar. Der Dependenzbaum
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wird in QLF umgewandelt. QLF in dieser Ausarbeitung wird vereinfacht. Deshalb ist die
Darstellung hier nicht gleich wie die Darstellung in der Abbildung 9.

In dem USP System wird QLF in den kleinen Teilen partitioniert, und die partitionierte Teile der
QLF werden in einer Gruppe bzw. in einem Cluster zugewiesen, wenn sie die gleiche
Bedeutung besitzen, z.B. ,,Microsoft“ und ,,Corporation* besitzen die gleiche Bedeutung.

Cluster : Acquire

reprasentiert durch

Acquisition buys(n3) Ansubj(n3, n2) A dobj(n3, n4)

Acquirer reprasentiert durch nsubj(n3, n2)

reprasentiert durch

Acquired dobj(n3, n4)

Cluster : Microsoft Cluster : Farecast

Microsoft(nl) ACorporation(n2)A nn(n2, nl) Powerset(n4)

Abbildung 16 : Die Partitionen von QLF. Wenn die Atomen die gleichen Bedeutungseinheit besitzt, werden die
Atomen in einem Cluster bzw. in einer Partition hinzufugt.

[ QLF : Microsoft(n1)ACorporation(n2)Ann(n2, n1)Abuys(n3)Ansubj{n3, n2)Adobj(n3, nd)APowerset(n4). ]

[ pl= buys(n3)/\nsubj(h3, n2)Adobj(n3, n4) ] [ p3= PoWerset(nﬂ) ]

MY
[ p2 = Corporation(n2)AMicrosoft(n1)Ann(n2, nl) ]

Abbildung 17 : Die sub-Formeln von QLF

Manche Atome sind die Bedeutungseinheiten, und mache Atome sind die Argumente. Z.B. :
buys(n3) ist ein ,,ACQUIRE Event“, Corporation(n2) ist ein Argument fiir ,ACQUIRER"
Beziehung von nsubj(n3, n2), und Powerset(n4) ist ein Argument fir ,,ACQUIRED"
Beziehung von dobj(n3, n4). In USP System hat jede Sub-Formel von QLF die entsprechende
Lambda Form. Bei der zugehdriger Lambda-Form wird jede Konstante n;, die nicht in einem
einstelligen Atom von Formel F vorkommt, durch eine eindeutige Variable x; ersetzt. Z.B. :
buys(n3)Ansubj(n3, n2)Adobj(nl, n4)
Axy. Ax4.buys(n3) A nsubj(n3, x2) A dobj(n3, X4)
wobei ny, n, und n3 die Skolemkonstante sind.

Die Lambdaform wird mit Hilfe von Davidsonian Semantics weiter zerlegt in Core Form und
Argumentform. Die Core Form ist eine Lambdaform, die keine Lambdavariable enthalt, und
eine Argumentform ist eine Lambdaform, die nur eine Lambdavariable enthalt.
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[bought(nl) Ansubj(nl, n2) A dobj(n1, n3) ]

[AxZ.RxS.bought(nl) A nsubj(nl, x2) A dobj(n1, x3) ]
|

Coreform | bought(nl)| Argumentform
' l

[hxz.nsubj{nl, x2) ] [AxS.dob}{nl, x3) ]

Abbildung 18 : Ein Beispiel fur Erzeugung der Lambdaformen

Durch die Clusteranalyse werden die Lambdaformen in den Lambda-Form Cluster aufgeteilt.
Ein Lambda-Form Cluster ist ein Cluster, das die semantisch austauschbaren Lambdaformen
enthédlt und die Bedeutung der Sub-Formel von QLF. Lambdaform Cluster kann den
Argumenttypen enthalten, damit die Typen der Argumente in den Beziehungen unterschieden
werden konnen. Z.B. : die Argumente ,,ACQUIRER" und ,,ACQUIRED* in den Relationen
nsubj(nl, n2) und dobj(nl, n3) entsprechen dem Subjekt und Objekt von Verb ,buys“. In
Stanford Parser kann die Argument ,,ACQUIRED" als ,,nsubjpass“ fur ein Subjekt in einen
passiven Satz reprasentiert werden. Die syntaktischen Variationen werden in dem Lambda-Form
Cluster abgezogen und unterschieden sich durch den Argumenttypen.

Cluster : ACQUIRE

PR
Ax2.nsubj(n3, x2) feav iR

Ax4.dobj(n3, x4) Af“:’gt‘j:‘;\g’ :

Corporation(n2)

nn(n2, nl) Cluster : MICROSOFT]

Microsoft(nl)

{cluster : POWERSET)

Abbildung 19 : Die Lambdaformen werden auf den Cluster aufgeteilt und den syntaktischen Variationen in
Argumenttypen zugeordnet. Links sind die Lambdaformen und rechts sind die Cluster.

Im USP System startet die semantische Analyse mit Clusteranalyse der Lambda-Formen in
Token bzw. in Atom Ebene, d.h. die QLFs werden durch die Partition auf den Sub-Formen der
QLF abgebildet, jede Sub-Form hat eine entsprechende Lambdaform, die Lambdaform wird
weiter in Core Form und Argumentform zerlegt. Um die Argumentform zu unterscheiden, wird
jede Argumentform einem Argumenttyp zugewiesen. Eine Regel, bei der eine Lambda-Form auf
ein Cluster abgebildet wird und einen Argumenttyp zuweist, ist eine semantische Grammatik.
Mit der semantischen Grammatik werden dann die Core Formen auf die Cluster und die
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Argumentformen auf den Argumenttypen abgebildet. USP eine Wahrscheinlichkeitsverteilung
Uber den semantischen Parser. Das Problem von maschinellem Lernen in USP ist das Lernen
von s.g. semantischer Grammatik. Das Lernen in USP wird realisiert durch die Nutzung von
Markov Logik Netzwerk.

Cluster : ACQUIRE

Core Form Argumenttyp : ACQUIRER

buys 01 || Subi 0.1 || MICROSOFT 0.6 || None 0.1
accquired 0.2 agent 0.2||GOOGLE 03| One 0.5(|""

Abbildung 20 : Beispiel fur ein Cluster

Ein semantischer Parser L partitioniert ein QLF in die QLF-Teile p1, p2, ... , pn, jedes Teil p
wird in einen oder einige Lambdaform Cluster ¢ zugewiesen, und p; wird spater in Core Form f
und Argumentformen f;, f,, ... , fx umgewandelt, jede Argumentform besitzt auch einen
Argumenttyp a in ¢. Um die Verteilung Uber die Lambdaformen zu modellieren, werden
Form(p, 1), ArgForm(p, i, f!) definiert, wobei p eine Partition ist, i der Index eines Arguments
und f eine Sub-Formel von QLF. Form(p, f!) ist true genau dann, wenn Partition p eine Core
Form f hat, und ArgForm(p, i, f!) ist true genau dann, wenn i-stes Argument in p die Sub-Form
hat. ,,f1* Notation bedeutet, dass jede Partition oder jedes Argument nur eine Form hat.

pl

buys(n3)
Form(p1, ,buys(n3)“)
Ax2.nsubj(n3, x2) ArgForm(pl, 2, ,Ax2.nsubj(n3, x2)")
ArgForm(p1l, 4, ,Ax2.0bj(n3, x4)")
\ Ax4.dobj(n3, x4) /
(p2 \

Corporation(n2)

nn(n2, n1) —[ Form(p2, ,Corporation(n2)AMicrosoft(n1) )]

\  Microsoft(nl) /

p3 1 "

Abbildung 21 : Beispiel fur QLF Partition. Form(p, f!), ArgForm(p, i, f!) sind QLF Partitionen.
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ra
Form(pl, ,buys(n3)”)

ArgForm(pl, 2, ,Ax2.nsubj(n3, x2)")
L ArgForm(p1, 4, ,Ax2.0bj(n3, x4)“)

( Arg(p1,13ﬂ,ﬂ|;)ﬂ4-)ﬂ-] [ ;\rgType(pl, 2 ACQUIRER)..:]. ‘[ Number(pl ACQUIRER, 1) |

l— i 1
[ Arg(p1,2,p2) | [ Number(p1, ACQUIRER, 1) | [ ArgType(p1, 4, ACQUIRED) |

Abbildung 22 : Beispiel fur ArgType(p, i, a!), Arg(p, i, p*), Number(p, a, n)

Die 0.g. semantische Grammatik Regeln von semantischer Analyse in USP werden durch
folgende 4 Formeln definiert :

p € +cAForm(p,+f)
ArgType(p, i, +a)AArgForm(p, i, +f)
Arg(p, i, p )AArgType(p, i, +a)Ap’ € +C’
Number(p, +a, +n)

2.2.7.2 Ontology Unsupervised Semantic Parsing

Eine Schwachheit des USP Systems ist das ,,Sparse Data“, das ,,Sparse Data“ bezeichnet hier die
Information, die selten im Korpus vorkommt. ,,,,Sparse Data* fiihrt zu niedriger Genauigkeit,
weil nicht genug Daten zur Verfligung stehen, um die Wahrscheinlichkeit des Ereignisses genau
abzuschéatzen.” [26] Onto USP ist die Erweiterung von USP und hat die Fahigkeit, die
Informationen zu strukturieren. Im Vergleich zu USP Onto USP fiihrt eine Hierarchie
Clusteranalyse durch. Onto USP l6st das Problem Gber das ,,Sparse Data* durch das Hierarchie
Clusteranalyse.

In Abbildung 23 kann man erkennen, dass es eine Hierarchie zwischen den Clustern gibt. Ein
,»object cluster” entspricht einer semantischen Bedeutung z.B. ACQUIRE und enthélt ein oder
einige ,,property cluster” z.B. ACQUIRER. In ,,core form* Cluster sind alle Variationen, die die
gleiche Bedeutung besitzen. In ,,property cluster” sind die Argumente von Variationen aus dem
»core form* Cluster. Mit der ,,IsPart“ Funktion wird die Hierarchie durch Verwendung einer
Regel erstellt. Die s.g. Regel ist :

X € +p A HasValue(x, +v)
e € ¢ A SUbExpr(x, e) A x € p = 3'i.IsPart(c, i, p)

wobei :
e HasValue(s, v) : Sub-Form der Lambdaform hat dem Wert v.
e e ec:inClusterc gibt es Lambdaform e.
e SubEXxpr(s, €) : s ist eine Sub-Form einer Lambdaform.
e IsPart(c, i, p) : i-ste Eigenschaft Cluster p in Cluster c. Durch die Kombination der Sub-

Formen der Lambdaformen erzeugt diese Funktion.
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Object Cluster : ACQUIRE
Core Form Property Cluster : ACQUIRER

buys 01 subj 0.1 || MICROSOFT 0.6 || None 0.1
accquired 0.2 agent 0.2 ||GOOGLE 03| One 0.5

Abbildung 23: Beispiel fir Objekt und Eigenschaft Cluster. In ,,property cluster* sind Argumentformen, Argumente
von Core Formen und Argument-Numbers.
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3 Entwurf

Der natirliche Text wird von Stanford Parser und USP verarbeitet, die Ausgaben von USP
System sind die ,,*.parse” und ,,*.mIn“ Dateien, wobei die ,*.parse” Datei die semantische
Parser liefert und die ,,*.mIn“ Datei einen Markov Logik Netzwerk liefert. Durch die Analyse
von diesen zwei Dateien wird eine Hierarchie fur die Worter erstellt. Danach werden diese
Worter gefiltert und die Ausgaben von Produkten, Produkteigenschaften und die Werte der
Produkteigenschaften generiert.

[*.par|se] [ *.min ]

Analyse l

|

Produkten,
Produkteigenschaften
und deren Werte

Abbildung 24: Architektur flr Extraktion von Produkten, Produkteigenschaften und Produkteigenschaftswerten.
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3.1 Ausgabedatei fur USP

Cluster ID _-Count
i A
,""/' //
- o S
P -y i

[1” (N:apple)}&‘]’ > — Cluster
(277 [(V:announceliT ]‘_/-// Argumentform |D:/Argumentf?f_m__;__Counts

2 =31 : L - )‘

0:<dobj>i1- 3: <nsubjg 4:<prep_with>:1

1:[( .apple) 4?]:1 5:[(N:pro):5]:1 7:[(N:display):5]:1

(37 |i(CD :13)44]-} — * Core Form T T

| 21 Cluste- ID : Core Form : Count
4}6}) with>:1 _13:<rcmod>:1

40:[(V:come): 4] | 461m-made|) 4] 1

Argumenttyp —
Argument Nummer ID : Argument Nummer Count

Abbildung 25 : Ein Beispiel fiir eine MLN Datei

In der MLN Datei sind die semantischen Parser. Jeder Cluster besitzt eine eindeutige
Identifikation(Abk. ID), neben der Cluster ID ist eine Darstellung von Core Form. Eine
Darstellung von Core Form besteht aus einem Worttyp, dem Wort von Core Form und der
Anzahl(Count) von Core Form. Die Anzahl in der Darstellung von Core Form beschreibt, wie
viel mal das Wort in dem Dokument vorkommt. In dem Programm wird diese Anzahl vom
Cluster ClusterSum benannt. Unter der Zeile von Cluster ist die Beschreibung der Argumente
von dem Cluster, wenn das Wort die Beziehungen mit anderen Wortern hat. Die Beschreibung
der Argumente von dem Cluster besitzt drei Zeilen, in der ersten Zeile ist der Argumenttyp, und
anschlieRend sind die Argument Nummer Identifikation und Anzahl von Argument Nummer zu
finden. In der zweiten Zeile ist die Beschreibung tber Argumentform und die Beschreibung
besteht aus einer eindeutigen Identifikation, Argumentform und Anzahl der Argumentform. In
der dritten Zeile ist die Beschreibung tber die benachbarten Worter. Diese Beschreibung besteht
aus einer eindeutige Cluster 1D von Core Form Word, der Darstellung von Core Form und die
Anzahl des Worts, und diese Anzahl beschreibt, wie viel mal das Wort als Nachbar vorkommt.
Z.B. 40:[(V:come):4]:1 bedeutet : Core Form Word ,,come* besitzt Cluster ID 40, hat den Typ
-V, kommt insgesamt 4 mal in dem Dokument vor und kommt 1 mal als Nachbar von Wort
213"
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Cluster ID

/ Core Form : Count
, / apple\, B
_ ) . i
/ ([(N:apple):a] J- _
000:?”:002\-:.._____5'}., E] [ [(v:announce):1] |
2 3 | —<nsubj>
|000:0:002| / |announce
~ E] [[(V:an'rlliounce):ll ] : Eltern-Wort ID
Wort ID e
L Wort (e
000:0:003 ' |
3 [[cpia3)d]
000:0:005 |

A 2 <num>

Argumenttyp ID Argumentform ID Argumentform

Abbildung 26 : Ein Beispiel flr eine PARSE Datei

In der ersten Zeile der ,,parse* Datei sind die Word ID und Wort zu finden. Eine Word
Identifikation ist eindeutig fir jedes Wort, und die Darstellung von Wort ID st
,DokumentID:AbschnittID:TokenID*. In der zweiten Zeile sind die eindeutige Cluster ID und
die Darstellung von Core Form. In der dritten Zeile sind die eindeutige Eltern-Wort 1D,
eindeutige Cluster 1D von Eltern-Wort und die Darstellung von Core Form. In der vierten Zeile
sind die Argumenttyp ID, eindeutige Argumentform ID und Argumentform.

Die ,,parse* Datei und ,,*.mIn* Datei implizieren die Strukturen von Wortern, weil jede Cluster-
ID in der ,,*.mIn“ Datei mit einer oder mehren Cluster-1D durch eine oder mehre Beziehungen
verbindet, und jede Wort-ID in der ,parse” Datei mit einer eindeutigen Eltern-Wort-ID
verbindet. Mit Hilfe der Software ,GVEdit* wird eine ,mIn“ Datei als ein Wort Netz
visualisiert. Jeder Knoten entspricht einem Wort aus Core Form, jede Kante reprasentiert eine
Beziehung zwischen den zwei Wortern und entspricht einer Argumentform. Folgende sind die
Graphische Darstellung von ,,mIn“ Datei und fir einen kleinen Text mit zwei Abschnitten.
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[Apple announces 13 MacBook Pro with Retina display and new iMac. ]

13 MacBook Pro will feature a 2560x1600 IPS display and starts at $1699.

min

Abbildung 27 : Beispiel fur die graphische Darstellung von ,,mIn“ Datei

3.2 Der erste Ansatz : Generierung der Regeln fir
Informationsextraktion

Dieser Ansatz wurde von Betreuer Julian Eichhoff mit mir zusammen entwickelt. In [18] wahlt
man die sehr oft vorkommenden Daten aus, damit mit der Hilfe von PMI und ,,Naive Bayes
Classifier die Regeln fiir die Informationsextraktion generiert werden. Die Idee ist ahnlich.
Durch die Analyse der Beziehungen zwischen den Wortern werden einige Regeln generiert,
damit das Produkt und die Produkteigenschaft zuerst extrahiert werden kénnen. Um die ,,mIn“
Datei zu analysieren, habe ich die Software WEKA benutzt. WEKA(mehr sehen [27]) ist ein
Data Mining Software und sammelt viele Maschinenlernen Algorithmus fir die Aufgaben von
Data Mining. Ich habe 300 Daten benutzt, um die Regeln fiir die Informationsextraktion zu
finden. Die Annahmen sind :
e Die sehr oft vorkommenden, gefundenen Worter sind Produkteigenschaft, weil
verschiedene Produkte sehr moglich die gleiche Produkteigenschaft haben.
e Die Produkteigenschaft bindet direkt mit Produkt und Produkteigenschaftswert bindet
direkt mit Produkteigenschaft
e Produkteigenschaft sind am meisten die Nomen
e Produkte sind Nomen
e Verb ist kein Produkt, keine Produkteigenschaft, kein Produkteigenschaftswert

31



Die Regeln werden zwar schon gefunden, aber man muss die folgende Probleme l6sen :

e Nach der Annahme, die sehr oft vorkommenden, gefundenen Worter sind
Produkteigenschaft, s.g. ,,oft* muss mdglichst gut definiert werden.

e Wie bindet Produkteigenschaft mit Produkt? Wie bindet Produkteigenschaft mit
Produkteigenschaftswert? D.h. wie ist die Hierarchie der Worter?

e Die Regeln, die mit der Hilfe von WEKA generiert werden, gelten theoretisch nur fir die
Daten, die in WEKA eingesetzt werden.

Um die Regeln zu generieren, muss man die Dateien in ein Eingabeformat von WEKA
umwandeln. Die Eingabe fur ,,EKA ist ,*.arff* Datei. In einer ,*.arff“ Datei werden die
Instanzen und die Attribute der Instanzen beschrieben. D.h. eine ,*.arff* Datei stellt eine
Datenmenge bereit. Die fiir ca. 300 Testdateien erzeugte ,,*.arff* Datei ist ca. 200MB grol3. Es
konnte viele irrelevante oder redundante Informationen fur das Lernverfahren geben. [28] Eine
reduzierte ,,*.arff* Datei ist ca. 2 MB und wird wieder als Eingabe fir WEKA benutzt. Durch
Analyse des Ergebnisses von WEKA werden die Regeln fur Informationsextraktion gestellt :
e Produkteigenschaften sind am meisten Nomen.
e Produkt ist Norm.
e Wenn ein Wort Worttyp ,CD* hat, ist das Wort sehr moglich ein
Produkteigenschaftswert.
e Wenn ein Wort Worttyp ,,V* hat, ist das Wort kein Produkt, keine Produkteigenschaft
oder kein Produkteigenschaftswert.
e Produkt und Produkteigenschaft sind in Verbindung mit Argumentform ,,amod*
e Produkt und Produkteigenschaft sind in Verbindung mit Argumentform ,,appos*
e Produkt und Produkteigenschaft sind in Verbindung mit Argumentform ,,num*
e Produkt und Produkteigenschaft sind in Verbindung mit Argumentform ,,nn“
e Produkt und Produkteigenschaft sind in Verbindung mit Einheiten

Nach der ersten Annahme sind die sehr oft vorkommenden gefundenen Worter sind
Produkteigenschaft. Aber es ist immer schwierig zu l6sen, wie kann man ,,sehr oft* definieren.
Sei ,sehr oft* so dass, in jedem Text mindestens einmal der Begriff vorkommt. Viele
Eigenschaften werden ignoriert, weil nicht alle Produkteigenschaften in jedem Text
vorkommen. Sei ,sehr oft“ fur 300 Dateien 100, dann werden viele irrelevante Worter
extrahiert.

Zwar werden die Regeln generiert, aber das Problem fir die Unterscheidung zwischen Produkt
und Produkteigenschaft immer noch nicht geldst. Das Problem geht darauf wieder zuriick, eine
Hierarchie aufzubauen.
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3.3 Der zweite Ansatz : Generierung der Hierarchie der
Worter

Ein natirlicher Text wird mit Hilfe von USP bzw. OntoUSP in Markov Logik Netzwerk fur die
Worter umgewandelt. Ein MLN verknlpft Préadikatenlogik erster Stufe und Markov-Netze
miteinander. Deshalb kann das Wissen mittels der Regeln aus dem vorhandenen Wissen
Schlisse inferieren. Eine Hierarchie der Worter kann als die Abh&ngigkeiten zwischen den
Wortern gesehen werden. Die Erstellung der Hierarchie kann als ein Problem fiir Bestimmung
der Abhangigkeiten zwischen den Wortern gesehen werden. Die von USP System erzeugte
»*.mIn* Datei liefert einen Markov Logik Netzwerk bzw. ein Netz der Worter. Die Idee geht
davon aus, dass durch die Analyse von ,*.miIn“ Datei bzw. von dem Netz der Worter die
Abhangigkeiten bestimmt werden.

In Abbildung 11 wird die Ursache von Krebs beschreibt: wenn man raucht, leidet man an Krebs,
d.h. Rauchen fuhrt zu Krebs. Die formale Darstellung fir die Aussage ,,Rauchen fiihrt zu Krebs*
ist YxSm(x) = Ca(x). Durch die Lambda Reduktion wird die Form gebildet : Sm(A) = Ca(A).
Die graphische Darstellungen sind :

Abbildung 28 : links ist die graphische Darstellung von Markov Logik Netzwerk. Rechts ist die gerichtete
graphische Darstellung, entspricht der graphische Darstellung von MLN.

Fur jedes Paar von zwei Knoten entspricht die graphischen Darstellung von MLN einer
gerichteten graphischen Darstellung. Der Elternknoten reprasentiert Ursache und der
Kindknoten repréasentiert die Wirkung. Der Kindknoten wird aus den Elternknoten abgeleitet.
Mit anderen Worten, das Vorkommen der Kindknoten ist abhéngig von dem Vorkommen der
Elternknoten. Das Problem von Extraktion von Produkten, Produkteigenschaften und
Produkteigenschaftswerten ist das Problem von Bestimmen der Abhangigkeit zwischen den
Knoten.

Auflésung
1200%1920 1080*1920

Abbildung 29 : Ein weiteres Beispiel fur graphische Darstellung von ,,*.mIn“ Datei

33



Ein gerichteter Graph besitzt auch eine Hierarchie. Elternknoten liegt in der hthen Ebene und
Kindknoten liegt eine Ebene niedriger. Eine Hierarchie ist illustriert in Abbildung 29. In dieser
Hierarchie kann der Elternknoten und Kindknoten in einer gleichen Klasse sein, und auch in
verschiedene Klasse sein. Aber die Klasse, in der die Kindknoten liegen, ist nicht héher als die
Klasse, in der die Elternknoten liegen. Z.B. ,,24* und ,,Monitor* gehdren zu einer gleichen
Klasse, trotzdem ist ,,24* ein Kindknoten.

Um die Idee zu erklaren, werde ich die Definitionen und Annahme wiederholen :

Ein Blatt ist ein Knoten, der keine Kindknoten hat.

Ein Wurzel Knoten ist der Knoten, der keine Elternknoten hat.

Die Blatter sind die Produkteigenschaftswerte.

Die Produkteigenschaftswerte verbinden sich nicht mit Verb Wortern.

Die Elternknoten der Blatter sind Produkteigenschaften.

Die Wurzel ist entweder ein Produkt oder ein Markenzeichen.

Ein Produkt ist ein Nomen. Verb Wort ist kein Produkt, keine Produkteigenschaft, kein
Produkteigenschaftswert.

Die Idee ist :

Bestimmen der Abhangigkeit zwischen den Bléatter und ihren Eltern Knoten.

Nach der Annahme werden die Blatter in die Menge vom Produkteigenschaftswert
hinzugefugt, und die direkten Elternknoten der Blatter werden in die Menge von
Produkteigenschaft hinzugefugt.

Bestimmen der Abh&ngigkeit zwischen den Knoten.

Wahrend der Bestimmung der Abhéngigkeiten wird die Hierarchie gleichzeitig erstellt.
Nach der Annahme werden die Wurzel Knoten in die Menge von Produkt hinzugeflgt.
Nach der Annahme werden alle nicht Normen Wort werden gefiltert.

Im Vergleich zu den vorherigen Ansétzen, z.B. [8], [10], [11], [12] und [13], Die Extraktion von
Produkten, Produkteigenschaften und Produkteigenschaftswerten ist voll automatisch :

Nur die Software fiir die Sprachanalyse ist erforderlich.

Die Daten der Eingabe muss nicht mehr manuell markiert werden.

Die Ontologie bzw. die Hierarchie der Worter wird bei Analyse vom Netz der Worter
erstellt.

Dieses Text Mining Verfahren gilt fur natirlichen Text und offene Domanen.
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4 Implementierung

4.1 Generierung der Hierarchie durch Bestimmung der
Abhangigkeit von den Wadrtern

Die Hauptaufgabe dieses Ansatzes ist die Bestimmung der Abhéngigkeit zwischen dem Knoten,
damit eine Hierarchie der Worter erstellt wird. Danach wird die Hierarchie verbessert,
schliellich werden die bestimmten Knoten in dem Graph gefiltert.

Einige Definitionen :

e Wenn ein Knoten Count und ClusterSum hat, kommt dieser Knoten aus dem Bereich
»Argumente von Core Form* (siehe in der Abbildung 30). ,,apple®, ,,pro“ und ,,display*
haben Count und ClusterSum. ,,announce* hat Clustersum aber kein ,,Count®.

e Cluster ID von Knoten aus dem Bereich ,,Argumente von Core Form* wird CClusterID
genannt, ClusterSum von Knoten aus dem Bereich ,,Argumente von Core Form* wird
CClusterSum genannt.

e CC = Count/CClusterSum

ClusterSum

ClusterlD Wordtyp CoreForm
/ / / CClusterSum
[(Viannounce):1 Efount

2 3:1
0:<dobj>:1 ‘/3:<nsubj>:1 ‘//4:<prep_with>:1
1:[(N:apple):4 :1/,5:[(N:pro):5]:1 7:[(N:display):5]:1

CClusterID Argumente von Core Form

Abbildung 30 : lllustration fiir einige Definitionen

4.2 Vorverarbeitung

In diesem Schritt wird die Abhangigkeit zwischen den Blattern und Elternknoten bestimmt.
Wenn die Hierarchie zwischen den Blattern und Elternknoten festgelegt wird, konnen die
Produkteigenschaften und die Produkteigenschaftswerte nach der Annahmen in ,,property
Menge hinzugefugt werden. Die Werte von CC werden fir alle Knoten berechnet. Um die
Hierarchie in dem ndchsten Schritt weiter zu erstellen, mussen die Werte von Count und
CClusterSum von Kindknoten und ClusterSum von Elternknoten aktualisiert werden.

4.2.1 Verschiedene Falle

Um die Abhéngigkeit zwischen den Knoten zu bestimmen, werden die folgende Situationen
betrachtet :
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e Viele Knoten kommen nur einmal im Graph vor. Solche Knoten kommen im Graph vor,
genau dann wenn ihre Nachbarknoten im Graph vorkommen. Es gibt eine Ursachlichkeit
bzw. Abh&ngigkeit dazwischen.

e Manche Knoten kommen einige Male im Graph vor. Die Knoten kommen im Graph vor,
genau dann wenn ihre Nachbarknoten im Graphen vorkommen. Es gibt eine
Ursachlichkeit bzw. Abh&ngigkeit dazwischen.

e Manche Knoten kommen einige Male im Graph vor. Der Knoten kommt im Graph am
meisten zusammen mit ihrem Nachbarknoten vor. Es gibt eine Ursachlichkeit bzw.
Abhéngigkeit dazwischen.

Abbildung 31 illustriert die 0.9. Félle :
e ,,1920x1080* kommt vor, genau dann wenn ,,display* vorkommt.

e retina“ kommt vor, genau dann wenn ,,display” vorkommt.
e wenn ,ips* vorkommt, kommt ,,display” am meisten vor.

ﬁ [(N:display):5] \

1 1.4
l:<nn>4
6:[(N:retina):2]:2  12:[(N:ips):3]:2
2 1:4
5:<conj_and>:1 6:<amod>:2 13:<rcmod>:1
99:[(J:1920x1080):1]:1 9:[(N:imac):5]:1

\ 10:[(V:feature):3]:1 /

Abbildung 31 : Ein Teil von ,,*.mIn“

4.2.2 Bestimmung der Abhangigkeit

CClusterSum und Count von ,,1920x1080“ sind 1. Das bedeutet :
o ,,1920x1080“ kommt nur einmal in diesem Text vor. ,,1920x1080“ kommt einmal als
Nachbarknoten von ,,display* vor. Das Vorkommen von ,,1920x1080“ ist nur abhangig
von dem VVorkommen von ,,display*.

CClusterSum und Count von ,,retina* sind 2. Das bedeutet :
o retina“ kommt zweimal in diesem Text vor. ,retina® kommt zweimal als
Nachbarknoten von ,,display” vor. Das Vorkommen von ,retina*“ ist nur abhangig von
dem Vorkommen von ,display*.

Count von ,,ips* ist 2 und CClusterSum von ,,ips*“ ist 3. Das bedeutet :

e ,.ips* kommt sehr oft zusammen mit dem Nachbarknoten ,,display* vor. (Das Problem ist
hier, wie man ,,0ft* maoglichst gut definieren kann. Das ist eine Arbeit flr die Zukunft.
Hier wird die ,,oft“ als ,,Count/ClusterSum >=0.5" definiert)

Verallgemeinerte Bedeutung :
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e CClusterSum = Count = Es gibt eine starke Abhangigkeit zwischen den Knoten. Wenn
die Knoten aus dem Bereich ,,Argumente von Core Form* im Text vorkommen, genau
dann wenn ihre Nachbarknoten im Text vorkommen.

e CC>= 0.5 = Es gibt eine leichte Abh&ngigkeit zwischen den Knoten, die Abhangigkeit
ist noch nicht deutlich.

Nach o0.g. Aussage wird die Hierarchie der Knoten bestimmt. Der Knoten mit CC=1, ist ein
Kindknoten von seinem Nachbarknoten. Abbildung 32 illustriert die Erstellung einer Hierarchie
durch die Bestimmung der Abhéngigkeit zwischen den Knoten. Nach der Bestimmung der
Abhangigkeiten entstehen die Blatter in dem Graph. Der rote Knoten ist der Kindknoten und die
Knoten ,,display* ist Elternknoten von Kindknoten.

.m.w .@ .@ .hﬁﬁb*mso

.m_.m .‘m .@ “__-_1_;2_0*1080

Abbildung 32 : Oben ist die graphische Darstellung von Abbildung 31. Nach der Bestimmung der Abhangigkeiten
(CC=1) wird die graphische Darstellung (unten) erzeugt.

Nach o.g. Aussage wird der Knoten mit CC>=0.5 ausgewahlt, weil es eine Abhéngigkeit
zwischen den Knoten und ihren Nachbarknoten gibt. Aber die Abhangigkeit kann in dem Schritt
von Vorverarbeitung nicht bestimmt werden. In Abbildung 33 hat der grine Knoten eine
Abhangigkeit mit ,,display”, aber die Abhéngigkeit ist unklar. Die Knoten ,,imac* und ,,feature*
sind die Nachbarknoten von ,,display*, es gibt jetzt noch keine Abh&ngigkeit dazwischen.

.m.m ’m .@ .‘”.-1”95&]*1080

.m_.m -m .@ ‘-_:;2-0*1080

Abbildung 33 : Es gibt die Abhéngigkeit zwischen Knoten ,,ips“ und ,,display“, aber die Abhéngigkeit ist nicht
deutlich
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4.2.3 Bestimmung von Produkteigenschaften und
Produkteigenschaftswerten

e Nach der Annahme sind alle Knoten, die Worttyp ,,V* besitzt, keine Produkte, keine
Produkteigenschaften und keine Produkteigenschaftswerte.

¢ Nach der Annahme sind die Blatter die Produkteigenschaftswerten

e Nach der Annahme sind die Elternknoten der Blatter Produkteigenschaften

e Nach der Annahme allen Knoten, die mit Verb Wortern sich verbinden, sind keine
Produkteigenschaftswerte.

e Wenn ein Cluster keine Kindcluster besitzt, z.B. ,,31* in der Abbildung 34, sind die
entsprechenden Cluster Knoten die Blatter.

31 [(CD:20):1]
30 [(N:brightness):1]
1 2:1
2:<num>:1 6:<amod>:1

29:[(J:nits):1]:1 28:[(CD:300):1]:1

Abbildung 34 : Beispiel fur die Darstellung von Blattern in ,,*.mIn“, 31 ist ein Blatt und 30 ist kein Blatt.

Die gefundenen Knoten werden durch 0.g. Annahmen gefiltert, schlieRlich werden die tbrigen
Knoten in einer ,property“ Menge hinzugefigt. Um die Produkteigenschaften und
Produkteigenschaftswerte in einer Menge zu unterscheiden, wird jedem Knoten ein Wert
zugewiesen, Produkteigenschaft entspricht den Wert 0 und Produkteigenschaftswert entspricht
Wert -10.

4.2.4 Aktualisierung der Werte von ClusterSum, Count und
CClusterSum

Wenn ein Knoten als Kindknoten oder Elternknoten benannt ist, bedeutet dies das, die
Abhangigkeit zwischen den Knoten und seinem Nachbarknoten bereit bestimmt ist.

e Der Knoten hat nur ein Blatt = ClusterSum = ClusterSum — Count, CClusterSum=0 und
Count=0.
e Der Knoten besitzt mehrere Knoten =
o searchNode ist eine Funktion(aus java Code) und gibt eine Menge von WordID
zurlck. Die WordID kommt aus der ,,*.parse” Datei (sieh Abbildung 26). Ein
Knoten entspricht einem Wort, ein Wort kann mehre WordID haben, weil ein
Wort in einem Text einige Male vorkommt. Alle WordID von einem
Elternknoten mit einem bestimmten Kindknoten kdénnen durch searchNote
bestimmt werden und in einer Menge, die ,,processednode” benannt, hinzugefgt
werden. Mit Hilfe von searchNode werden die WordID der Elternknoten von
allen Kindknoten berechnet. Die Menge ,,processednode* enthaltet alle WordID
von Elternknoten, die die bestimmte Abh&ngigkeit mit Kindknoten haben.
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0 ClusterSum=Clustersum - |processednode| (Grol3e der Menge ,,processednode®).
o Count von jedem Kindknoten wird 0, d.h. Count=0.
0 CClusterSum von jedem Kindknoten wird 0, d.h. CClusterSum=0

Sei WordID Menge vom Wort ,,display* {000:0:003, 000:0:050}. Seien searchNode(retina,
display)={000:0:050}, searchNode(ips, display)={000:0:003, 000:0:050} und
searchNode(1920*1080, display)={000:0:050}, daraus folgt processednode={000:0:003,
000:0:050} und |processednode|=2.

[ Clustersum | CClustersum
display 5

1920%1080 1
___ips 3 2

2 2

|_l

[ Clustersum | Cllustersum | Count
2

retina 0 0

0 0
— o ! 0

Abbildung 35 : Ein Beispiel fir die Aktualisierung der Werte von ClusterSum, Count und CClusterSum

searchNode (cid1, cid2) {
/ while (all cid1‘ of min) { \

if (cid1=cid1’ && cid2=cid2‘){
add WordID to WordIDSet
}

}
return WordiDSet

& A

Abbildung 36 : Pseudocode fiir searchNode. Wenn ein Wort A mit Cluster ID cidl ein Eltern-Word B mit Cluster
ID cid2 hétte, dann wird die WordID von Knoten B in einer Menge WordIDSet hinzugefiigt. SchlieBlich gibt die
Menge WordIDSet zuriick.

In diesem Schritt werden alle Abhé&ngigkeiten von den Knoten mit CC=1 bestimmt, und die
Produkteigenschaften und Produkteigenschaftswerte gefunden. Die Knoten mit CC>=0.5
werden auch ausgewdhlt, es gibt die Abhangigkeiten zwischen diesen Knoten und ihren
Nachbarknoten. Um die nicht deutlichen Abhéngigkeiten zu bestimmen, mussen die Werte von
ClusterSum, Count und CClusterSum aktualisiert werden.
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4.3 Bearbeitung der Knoten mit CC>=0.5

Nach der Aktualisierung der Werte von ClusterSum, Count und CClusterSum entstehen 4 Félle,
durch die Analyse von diesen 4 Fallen werden die Abhdngigkeiten bestimmt.

4.3.1 Vier Falle

4.3.1.1 Der erste Fall
CClusterSum=0 und Count=0 Bedingung (1)

Sei initClusterSum ein niemals aktualisierte ClusterSum, d.h. der Wert kommt aus ,,*.miIn*,
initCClusterSum sei ein niemals aktualisierte CClusterSum. d.h. der Wert kommt aus ,,*.mIn*.
Die Abhangigkeit wird dadurch bestimmt :

e Solcher Fall tritt auf, wenn ein Knoten zu mehren Nachbarknoten gehort. Der Knoten,
der die Bedingung (1) erfillt, ist ein Kindknoten von ihrem Nachbarknoten, d.h.
Nachbarknoten ist Elternknoten, z.B. ,,2560*1600* in der Abbildung 37 und 38.

e Aber wenn initClusterSum = Count, ist die Abhangigkeit zwischen den Knoten anders.
Sei Knoten A besitzt einen initClusterSum Wert, und Knoten B besitzt einen Count
Wert. Die Bedingung ,initClusterSum = Count” bedeutet, dass Knoten A im Text
insgesamt n-mal vorkommt, und sein Nachbarknoten B auch n-mal vorkommt. Knoten B
kann mehr als n-mal im Text vorkommen. Mit anderen Worten, der Knoten A kommt in
einem Text vor, genau dann wenn Knoten B vorkommt, deshalb ist Knoten B ein
Elternknoten von seinem Nachbarknoten A, und sein Nachbarknoten A ist Kindknoten,
z.B. ,,imac” in der Abbildung 37 und 38.

ﬁ [(N:display \

1 1:4
1:<nn>:4
6:[(N:retina):6]:2  12:[(N:ips):2]:2

2 1:4
5:<conj_and>:1 6:<amod>:2 13:<rcmod>:1
99:[(J:1920x1080):1]:1 9:[(N:imac):5]:1 10:[(V:feature):3]:1

\ 11:[(J:2560x1600):2]:1
94 [(N:edge){1]
1 4:1
6:<amod>:2 9:<advmod>:1 27:<appos>:1

16:[(R:just):2]:1 93:[(J:thin):1]:1 9:[(N:imac):51t1)  92:[(J:5mm):1]:1

Abbildung 37 : ,,*.mIn*“ fur den 1. Fall
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Tomm >

Abbildung 38 : Ein Beispiel fir den 1. Fall

4.3.1.2 Der zweite Fall
CClusterSum>0 und Count=0 Bedingung (2)

Wenn ein Knoten, der die Bedingung (2) erfillt, im Text vorkommt, kommt ihr Nachbarknoten
auch vor.

ﬁ ([)(N:pro \

2:5

1l:i<nn>:7 2:<num>:3

35:[(N:generation):2]:1 3:[(CD:13 4:[(N:macbook
6:[(N:retina):6]:1

2 1:2
6:<amod>:2
34:[(J:previous):2]:1 8:[(J:new):4]:1
4 2:1
d:<prep_with>:1  12:<poss>:1
\ 21:[(PRPS:they):2]:1 7:[(N:display):5]:1 /

Abbildung 39 : ,,*.mIn“ fur 2.Fall

Der Knoten ,,3:[(CD:13):4]:3* und der Knoten ,,4:[(N:macbook):6]:5” erfiillen die Bedingung
(2), aber die Abhédngigkeiten zwischen der Knoten ,,[(N:pro):5]“ und der  Knoten
»3:[(CD:13):4]:3* und der Knoten ,,4:[(N:macbook):6]:5” sind Unterschiedlich :
e Der Knoten ,,3:[(CD:13):4]:3” kommt im Text am meisten zusammen mit Knoten
»[(N:pro):5]“ vor. D.h. der Knoten ,,3:[(CD:13):4]:3“ zu mehren Nachbarknoten gehort.
e Der Knoten ,[(N:pro):5]“ kommt im Text vor genau dann wenn der Knoten
»4:[(N:macbook):6]:5” vorkommt. Mit anderen Wort, es gibt eine starke Abh&ngigkeit
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zwischen der Knoten ,,4:[(N:macbook):6]:5” und der Knoten ,[(N:pro):5]%, d.h.
»4:[(N:macbook):6]:5” ist ein Elternknoten von ,,[(N:pro):5]*, und ,,[(N:pro):5]* ist ein
Kindknoten.

Sei initClusterSum eine niemals aktualisierte ClusterSum, intCClusterSum eine niemals
aktualisierte CClusterSum. Die Abhangigkeit wird dadurch bestimmt :
e Wenn ein Knoten die Bedingung (2) erfillt und initClusterSum>= initCClusterSum,
dann ist dieser Knoten ein Kindknoten von Nachbarknoten.
e Wenn ein Knoten Bedingung (2) erfullt und initClusterSum<initCClusterSum, dann ist
dieser Knoten ein Elternknoten von Nachbarknoten.

Abbildung 40 : Ein Beispiel fir 2.Fall

4.3.1.3 Der dritte Fall
CClusterSum=0 und Count>0 Bedingung (3)

Wenn ein Knoten, der die Bedingung (3) erfillt, im Text vorkommt, kommt ihr Nachbarknoten
auch vor.

/33 [(J:thinner]:2] X
0 1:2

14:<npadvmod>:2

32:[(N:%):1]:1 95:[(CD:80):1]:1

1 1:2
15:<prep_than>:2
\ 35:[(N:generation):2]:1 5:[(N:pro)

Abbildung 41 : ,,*.mIn“ fur 3.Fall

42



(%) (80D () Cpro>

Abbildung 42 : Ein Beispiel fir 3.Fall

4.3.1.4 Der vierte Fall
CClusterSum>0 und Count>0 Bedingung (4)

Wenn ein Knoten A nur einen Nachbarknoten B, der die Bedingung (4) erfillt, hat, dann ist
Knoten A ein Kindknoten von Knoten B und B ist ein Elternknoten. Wenn ein Knoten mehrere
Nachbarknoten hat, welche die Bedingung (4) erfullen kénnen, wird dieser Knoten im néachsten
Schritt weiter verarbeitet.

19 [(V:take)
3 4:1
0O:<dobj>:1 3:<nsubj>:1 8:<advcl>:1 1l:<prep_off>:1
1:[(N:app|e) 18:[(V:expect):1]:1 20:[(N:wrap):1]:1 5:[(N:pro)

Abbildung 43 : ,,*.mIn* fur 4.Fall

[ | Clustersum] Cllustersum | Goune
[ take [

e S

.--"-- ™~ N T
— . T
/ M T apple
.,

R B =Y
Bl e

C app-I;/; 4 exce.pt )

ClusterSum

o
apple

(=R, =R
(=T = R

ClusterSum | CClusterSum m

Q
apple

=R I = B}
(= M =

Custersum | Count |

Q
apple

(=N = =T
(== B =Ry

Abbildung 44 : Ein Beispiel fir die Bestimmung der Abhéngigkeiten. Links ist die Graphische Darstellung fiir ein
Cluster, rechts ist eine Tabelle fur ClusterSum, ClusterSum und Count.
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In der Abbildung 44, die Abhéngigkeiten zwischen ,,take” und ,,except” sowie ,,wrap“ werden in
Vorverarbeitungsschritt bestimmt, die Abhéngigkeiten zwischen ,,take* und ,,pro* wird nach der
Bedingung (3) bestimmt, und die Abhéngigkeiten zwischen ,,take* und ,,apple* wird nach der
Bedingung (4) bestimmt.

4.3.2 Aktualisierung der Werte von ClusterSum, Count und
CClusterSum

Der Verfahren der Aktualisierung der Werte von ClusterSum, Count und CClusterSum ist gleich
wie der Fall ,,Der Knoten besitzt mehrere Knoten* in 4.2.4.

4.4 Verarbeitung der Konten mit CC<0.5

4.4.1 Bestimmung der Abhangigkeit

Bis jetzt kann die Abhangigkeit zwischen den Knoten und ihren Nachbarknoten mit CC>=0.5
bestimmt werden. Es gibt einige Knoten mit CC<0.5. Die Idee fiir die Verarbeitung von dem
Knoten mit CC<0.5 ist : man aktualisiert die Werte von Count, CClusterSum und ClusterSum
bis zu CC Wert>=0.5, damit die vorherige Ansatze wieder verwendbar sind.

5
generation

machook

2 1
4 3
6 2
6 1
2 1
4 i
2 Al
o 1

generation

machook

{ S s R T Y = T e
L= R =R = ==

 ClusterSum | CClusterSum | Count |
1]

generation

machook

DD > O T o6

cCo oo NoOoOo
(=N =R = = B = Q= == Qi =]

Abbildung 45 : ein Beispiel fir die Bestimmung der Abhéngigkeiten. Links ist die Graphische Darstellung fir ein
Cluster, rechts ist eine Tabelle fur ClusterSum, ClusterSum und Count.
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Hdisplay®, ,,new* und ,retina*“ besitzt den Wert CC>0.5, durch maximal zwei Aktualisierung der
Werten ClusterSum, ClusterSum und Count werden die CC Werte bis zu kleiner gleich 0.5
reduziert.

SchlieRlich gibt es keine Knoten mit CC<0.5. Wenn es keine Knoten mit CC<0.5 gibt, wird die
Hierarchie der Knoten erstellt. Ein ungerichteter Graph in einen gerichteten Graph
umgewandelt.

Das Verfahren von der Aktualisierung der Werte von ClusterSum, Count und CClusterSum ist
gleich wie der Fall ,,Der Knoten besitzt mehre Knoten* in 4.2.4.

4.4.2 Aktualisierung der Werte von ClusterSum, Count und
CClusterSum

Im Vorverarbeitungsschritt werden die CC Werte berechnet. Wenn der CC Wert groRer gleich
0.5 ist, dann werden entsprechende Knoten in mnm(Merged Node Map) hinzugefugt, die
aktualisierten Werte von ClusterSum werden in mergedmap_c2s hinzugefigt und die
aktualisierter Werte von CClusterSum und Count werden in mergedmap_c2cnsc hinzugefigt.

Einige Definitionen :
e mnm : LinkedHashMap ClusterID = [ClusterID, die entsprechende Knoten mit CC>=0.5]
e mergedmap_c2s : LinkedHashMap ClusterID = neuer ClusterSum
e mergedmap_c2cnsc : LinkedHashMap ClusterID = [ClusterID!neuer ClusterSum!neue
Count]

Aktualisierung der Werte von ClusterSum, Count und CClusterSum fiir die Knoten mit CC+1
werden dadurch erlegdigt, mnm, mergedmap_c2cnsc und mergedmap_c2cnsc zu aktualisieren.

e Geht von mergedmap _c2s aus. Wenn CC Wert groRer gleich 0.5, dann wird
entsprechende Knoten in mnm hinzugefiigt. Bemerkung : Die Bedingung (n2sum != 0
&& n2count !'= 0) implementiert 4. Fall in 4.2.2.1. Nur die Knoten, die 4. Fall erfillt,
werden verarbeitet, weil die Abhéngigkeiten von anderen Knoten schon festgelegt
werden.

while (mergedmap_c2cnscis not empty)

{
if (Count/CClusterSum>=0.5) {

add ClusterlD into mnm

}

Abbildung 46 : Pseudocode fir Berechnung von CC Wert und mnm

e Geht von mergedmap_c2s aus, wenn der Knoten kein Blatt ist, wird die Menge von
»processednode” mithilfe der Funktion searchNode berechnet. Die GrofRe der Menge

45



von ,,processednode* beschreibt, wie viele Abhéngigkeiten zwischen diesem Knoten und
anderen Knoten schon bestimmt werden. Die originale ClusterSum minus Anzahl von
festgelegten Abhéngigkeiten ist neue ClusterSum bzw. CClusterSum.

while (mergedmap_c2sis not empty) {
if (node is processed) {
new CClusterSum = CClusterSum - the number of processednode
add new CClusterSum into mergedmap_c2s

}

Abbildung 47 : Pseudocode fur Berechnung von neuer ClusterSum

e Geht von mergedmap_c2cnsc aus, neu Count ist alter Count Wert minus die Anzahl der
festgelegten Abhangigkeiten. Nur die Knoten, die 4. Fall erfullt, werden verarbeitet, weil
die Abhangigkeiten von anderen Knoten schon festgelegt werden.

while (mergedmap_c2cnscis not empty) {
new Count = Count—searchNode (cid2, cid)

}

Abbildung 48 : Pseudocode fir Berechnung von neuem Count

45 Verbessern die Hierarchie

Zwar werden die Abhdangigkeiten bis jetzt schon bestimmt, aber es gibt immer noch einige
Fehler. Mit folgenden Funktionen werden die Fehler korrigiert.

' la N:ultrabook

Abbildung 49 : Beispiel fir eine falsche Bestimmung der Abhéngigkeit zwischen den Knoten

e Wenn ein Verb Wort die Abhdangigkeiten zwischen den Normen hat und eine
Abhangigkeit ,,nn“ zwischen den Normen besteht. Dann werden die Abhédngigkeit
zwischen Verb und Norm, die als einen Kindknoten représentiert wird, geléscht. Der
Grund fir die Korrektur der Abhdangigkeit ist : ,,nn“ Abhdangigkeit ist starker als die
Abhangigkeit zwischen Verb und Norm. Um die Korrektur zu realisieren, muss zuerst
das Wort Verb gefunden werden. Danach werden alle Kindknoten von Verb
durchgelesen, um die die Beziehung zwischen den Kindknoten festzulegen. Der
Kindknoten A sei Elternknoten von Kindknoten B. Wenn die Beziehung zwischen den
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Knoten A und Knoten B ,,nn“ ist, wird die Anhangigkeit zwischen Verb und Knoten B
geldscht.

/// . W nn
il N:ultrabook

Abbildung 50 : Beispiel fur eine Korrektur der Abhangigkeit

e Wenn die Knoten die in Abbildung 51 dargestellte Beziehung haben und Knoten A hat
keine Beziehungen mit anderen Knoten, wird die Abh&ngigkeit zwischen den Knoten
korrigiert. Diese Abbildung 51 illustriert einen solchen Fall.

Abbildung 51 : Beispiel fur Korrektur der Abhéngigkeit

Um die Korrektur zu realisieren, muss zuerst den Knoten A gefunden werden. Danach
werden die Argumentform von Knoten A bestimmt. Alle Elternknoten von Knoten C
werden durchgelesen. Wenn ein Elternknoten von Knoten C ein Verb ist, korrigiert das
Programm die Abhangigkeit von ,,A->C* in ,,C->A". Die Grlnde der Korrektur sind : A
ist ein Objekt und gehort zu einem Subjekt. Ein Elternknoten hat Einfluss auf die
Kindknoten, aber die Elternknoten von dem Elternknoten keinen Einfluss auf die
Kindknoten. Das heil3t, wenn die Abhangigkeit zwischen Knoten A und C sich andern,
gibt es keinen Einfluss auf die Abhéngigkeit zwischen Knoten B und seine
Nachbarknoten.

e Wenn die Knoten die in Abbildung 52 dargestellte Beziehung haben, dann wird die
Abhangigkeit korrigiert. Knoten V1 ist ein Kindknoten von Knoten root und Knoten root
hat keine anderen Nachbarknoten, soll Knoten V3 keinen Einfluss auf Knoten root
haben. Mit anderem Wort, das Vorkommen von Knoten root ist abhangig von dem
Vorkommen von Knoten V1. Abbildung 52 illustriert die Korrektur.
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Abbildung 52 : Beispiel fur Korrektur der Abhéangigkeit

Nun sind die Abhangigkeiten zwischen den Knoten festgelegt. Aber es kdnnte jedoch noch
Zyklen auftreten. Eine Hierarchie muss ein Baum oder ein gerichteter azyklischer Graph sein.
Daher mussen maogliche Zyklen entfernt werden. Bindet ein Verb zwei Knoten, die
Abhangigkeit bereits bestimmt wurde, flhrt dies zu einer Zyklus. Um den Zyklus zu entfernen,
muss zuerst der Zyklus gefunden werden, danach wird die Abhangigkeit zwischen dem Verb
und seinem Kindknoten entfernt. Abbildung 53 53 illustriert die Korrektur.

Abbildung 54: Beispiel fir die Entfernung eines Zyklus

Durch o.g. Verfahren wird die Hierarchie korrigiert. Um eine bessere Hierarchie zu erhalten, ist
eine Erweiterung erforderlich. Einige Regeln, die in 3.3 generiert werden, kann man zum
Korrektur der Abhédngigkeit benutzten. Aus meiner Erfahrung ist die Korrektur der
Abhangigkeit mit einzelnen Regeln, ist es moglich, dass die richtige Hierarchie falsch korrigiert
wird.

4.6 Filter

Alle gefundene Produkt, Produkteigenschaft und Produkteigenschaftswerte werden noch einmal
gefiltert, um die Klassifikation der Worter zu verbessern.

e Einige Worter, die als Produkteigenschaftswerte erkannt werden, sind Kkeine
Produkteigenschaftswerte. Diese Worter in der Hierarchie sind Kindknoten wvon
Produkteigenschaften, aber sie haben die Beziehung zwischen den diesen Kindknoten
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und Produkteigenschaften, d.h. die Argumentform ist ,,nn*“. Wenn die Worter die
Argumentform ,,nn“ haben, sind die Worter eine Nominalphrase. Das heif3t, wenn die
Elternknoten eine  Produkteigenschaft ist, ist die Kindknoten nicht ein
Produkteigenschaftswert sondern eine Produkteigenschaft, weil die Nominalphrase aus
diesen Wortern besteht. Es geht von Eigenschaftswert in ,,property* Menge aus, wenn
das Wort des Eigenschaftswerts mit seinem Elternknoten die Argumentform ,,nn* hat,
dann wird das Wort des Eigenschaftswerts als Eigenschaft korrigiert. Abbildung 54

illustriert das Verfahre von Filter.

Lo,
\
nn / . nn
7 21
/ e

N

Abbildung 55 : Beispiel fur den Filter

Wenn die Beziehung, ausgehend von der ,root* Menge, zwischen einer Wurzel und
seinem Kindknoten ,,nn* ist und sein Kindknoten ein Kindknoten von einer anderen
Wurzel ist, gehort dieser Kindknoten gehort zu anderem Produkt. Abbildung 55

illustriert das Verfahre von Filter.

Abbildung 56 : Beispiel fur den Filter

Sei ein Knoten A ein Kindknoten von einer Wurzel B. Im Pfad von Knoten A bis zur
Waurzel C gibt es mehrere Verben. D.h. Knoten B ist ein Kindknoten von einer anderen
Wurzel, d.h. dieser Kindknoten gehort zu einem anderen Produkt. Abbildung 56
illustriert das Verfahre des Filterns.
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Abbildung 57 : Beispiel fur den Filter

e Einige Worter, die als Produkte erkannt werden, sind keine Produkte. Diese Worter in
der Hierarchie sind Wurzel Knoten, haben aber eine Beziehung ,,conj_and“ oder
»conj_or* zwischen den Wortern und ihre Kindknoten(d.h. die Argumentform ist
»conj_and“ oder ,,conj_or“). Wenn ihre Kindknoten Produkteigenschaften sind, ist es
mdoglich, dass die Wurzel Knoten ebenfalls Produkteigenschaft sind. Wenn ein
Kindknoten einer Wourzel, ausgehend von einer Wurzel Menge aus, eine
Produkteigenschaft ist, dann wird diese Wurzel als Produkteigenschaft bezeichnet.
Abbildung 57 illustriert das Verfahre des Filterns.

Abbildung 58 : Beispiel fur den Filter

Der Filter hat keinen Einfluss auf die Anderung der Hierarchie, deshalb hat die Korrektheit der
Hierarchie einen groflen Einfluss auf die Filter. Wenn das Produkt, Produkteigenschaft und
Produkteigenschaftswert nicht richtig erkannt werden, werden die Ergebnisse von Filter auch
nicht exakt.

4.7 Ausgaben Filter

Einige Wurzel Knoten keine Normen sind. Nach der Annahme in 3.3 werden alle Worter, die
keine Normen sind, gefiltert.
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5 Experiment

39 Daten werden zum Testen benutzt. Diese Texte kommen aus einem Website. Diese Texte
sind Uber elektronische Geréte, z.B. Tablets, Notebook, HIFI. Die System Anforderung von
USP ist sehr hoch, deshalb werden die kurze Texts ausgewahlt. In einer Hierarchie der Wurzel
ist eine Kategorie, wie Wurzel ,, Tablet* ist Kategorie von ,,Windows 8 Tablet“. Wenn eine
Kategorie von einem Produkt finden, dann wird dieses Produkt richtig gefunden. Wie in
Abbildung 58 gezeigt, wenn Knoten A als Produkt erkennt, dann wird das Produkt A gefunden.
Wie ein Produkt richtig darstellt wird, ist eine Aufgabe fur die Zukunft.

num_~~  \.nn

® ©

Abbildung 59 : Eine Darstellung fur ein Produkt, sei der Produktname ,,BAC*, ,,A“ représentiert eine Kategorie

Die Genauigkeit von Produkt, Produkteigenschaft und Produkteigenschaftswert werden in der
folgenden Abbildungen gegeben. Die Genauigkeit beschreibt den Anteil von relevanten Wortern
an der Menge von gefundenen Woértern :

relevante Worter

- gefundene Worter
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Genauigkeit fur die Extraktion von Produkt
ohne Filter

m Genauigkeit fur die Extraktion von Produkt

Abbildung 60 : Genauigkeit fir die Extraktion von Produkt ohne Filter, X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten.

Genauigkeit fr die Extraktion von Produkt
mit Filter

m Genauigkeit fir die Extraktion von Produkt

Abbildung 61 : Genauigkeit fiir die Extraktion von Produkt mit Filter. X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten.
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In Abbildung 59 ist die Genauigkeit fur die Extraktion von Produkten ohne Filter dargestellt.
Die durchschnittliche Genauigkeit betragt ca. 0.3627. In der Abbildung 60 ist die Genauigkeit
fiir die Extraktion von Produkt mit Filter dargestellt. Die durchschnittliche Genauigkeit betragt
ca. 0.4984. Durch die Verwendung von verschiedenen Filtern wird die Genauigkeit auf ca. 37.4%
erhdht. Aus den zwei Abbildungen kann man erkennen, dass ein guter Filter die Genauigkeit
erhdhen kann. Jedoch ist es auch moglich, dass gebrauchte Worter gefiltert werden, z.B. : Test
Data 22 und Test Data 29. In dem Programm wird eine Abfolge der Randbedingungen benutzt.
Ein ,,Voting Algorithmus* ware ein VVorschlag fir zukunftige Arbeiten.

Genauigkeit fur die Extraktion von
Produkteigenschaft

m Genauigkeit fur die Extraktion von Produkteigenschaft

Abbildung 62 : Genauigkeit fir die Extraktion von Produkteigenschaft. X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten.
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Der Mittelwert der Produkteigenschaft

0.9
0.8
0.7 -
0.6 -
0.5 -
0.4
0.3 -
0.2

m Der Mittelwert der
Produkteigenschaft

Digital camera MP3 Player LCD TV Mittelwert

Abbildung 63 (aus [29]): Genauigkeit fiir die Extraktion von Produkteigenschaft. X-Achse: sind die Typen von
Text Data, Y-Achse: die Genauigkeiten.

Genauigkeit fur die Extraktion von
Produkteigenschaftswert

123456789

[y

01112131415161718192021222324252627282930313233343536373839

m Genauigkeit fir die Extraktion von Produkteigenschaftswert

Abbildung 64 : Genauigkeit fur die Extraktion von Produkteigenschaftswert. X-Achse: die Nummer von Text Data,
Y-Achse : die Genauigkeiten
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Der Mittelwert der Genauigkeit der Produkteigenschaft ist ca. 0.6467 und der Mittelwert der
Genauigkeit Produkteigenschaftswert ist ca. 0.6344. Die beiden Genauigkeiten sind nicht sehr
hoch, weil einerseits viele irrelevante Worter nicht gefiltert werden, anderseits die Worter nicht
vollstandig klassifiziert werden. In [29] wird ein nicht-Uberwachte Verfahren fir die
Normalisierung der Produkteigenschaften vorgestellt. Im Vergleich zu dem Ergebnis aus [29],
ist der Mittelwert der Genauigkeit der Extraktion von Produkteigenschaften ca. 0.68. Zwar ist
der Mittelwert der Genauigkeit nicht hoher als der Mittelwert der Genauigkeit in [29], aber das
Verfahren in dieser Diplomarbeit ist voll automatisch und unabhéngig von dem Format des
Text, mithilfe der Erweiterung ist die Verbesserung der Genauigkeit ebenfalls maglich.

Aus den Ergebnissen des Experiments kann die Schlussfolgerungen gezogen werden. Die
Extraktion von den Informationen Uber die Produkte aus einem naturlichen Text ist sehr
komplex, weil es in einem naturlichen Text viele irrelevante Worter Gber die Produkte gibt.
Wahrend der Erstellung der Hierarchie werden die irrelevanten Informationen in dem Programm
nicht gefiltert. Einige irrelevante Informationen werden mit Filtern gefiltert. Aber es gibt immer
noch einige irrelevante Informationen, welche den starkeren Einfluss auf den Genauigkeiten flr
die Extraktionen von Produkteigenschaften und Produkteigenschaftswerten haben. Wenn die
Hierarchie eines Texts sehr gut aufgebaut wird, dann ist die Genauigkeit fur die Extraktion von
Produkt sehr hoch. Wenn die irrelevanten Informationen moglichst entfernt werden koénnen,
erhoht sich die Genauigkeit von Produkt, Produkteigenschaft und Produkteigenschaftswert.
Wenn es in einem natirliche Text mehre exakte Informationen tber das Produkt als allgemeine
oder implizite Informationen gibt, ist die Genauigkeit von Produkteigenschaft und
Produkteigenschaftswert hoher. In dem Programm wird eine Abfolge der Randbedingungen
benutzt. Ein ,,VVoting” Algorithmus entspannt die Randbedingungen, sodass es moglich ist, ein
Wort zu filtern, wenn es eine Randbedingung in dem Programm verletzt.
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6 Zusammenfassung

Ein natdrlicher Text wird mit der Hilfe von USP bzw. OntoUSP in eine MLN fur die Worter
umgewandelt. Ein MLN verknupft Pradikatenlogik erster Stufe und Markov Netzwerk
miteinander. Deshalb kann das Wissen mittels der Regeln aus dem vorhandenen Wissen
Schlisse inferieren. Die Korrektheit der Ergebnisse von ,,Standford Parse* und USP hat starken
Einfluss auf die Schlussfolgerung. Durch die Analyse von MLN kann eine Hierarchie fur die
Worter erstellt werden. Die Hierarchie kann man verbessern. Zwar ist die Hierarchie nicht ideal,
aber das Produkt, die Produkteigenschaft und der Produkteigenschaftswert konnen extrahiert
werden. Im Vergleich zu anderen Ansatzen ist der Algorithmus, der in dieser Diplomarbeit
entwickelt wird, voll automatisch. Durch die Verbesserung der Hierarchie werden die
Genauigkeit der Informationsextraktion verbessert. Wenn die Hierarchie besser aufgebaut wird,
werden die mehrere richtige Informationen extrahiert. Bei der Verbesserung der Hierarchie ist
immer die Schwierigkeit, die Fehler aus den Ergebnissen von Standford Parse und USP System
zu korrigieren. Durch die Korrektur der Abhangigkeit wird die Hierarchie verbessert. Die
Korrektur ist meistens abhangig von syntaktischen Beziehungen, aber die richtige Korrektur
muss mit einer Kombination von syntaktischen Beziehungen durchgefiihrt werden. Beim Filter
werden die Ausgabe zu verbessern, fuhrt keine mehr Korrektur von Abhéangigkeit durch. Aus
den Ergebnissen der Experimente kennt man das, wenn die Worter, die mit dem Produkt
irrelevant sind, gefiltert werden konnen oder die Hierarchie verbessert werden kann, wird die
Genauigkeit verbessert.
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7 Ausblick

Durch Erstellung einer Hierarchie der Worter werden die Produkte, Produkteigenschaften und
Produkteigenschaftswerte extrahiert, zwar ist die Genauigkeit nicht gut, aber es ist moglich zu
erweitern.

7.1 Nicht Idschbare Probleme

e Wie Abbildung 4 und Abbildung 5 zeigt, gibt es immer noch Probleme. Fir eine richtige
Erstellung einer Hierarchie der Worter spielen Stanford Parse und USP System eine sehr
wichtige Rolle. Wenn die Stanford Parse und USP System falsche Ergebnisse liefert,
kdnnen die Fehler spater nicht mehr korrigiert werden. In der Abbildung, ,,iMac* ist eine
Konstitution von ,,13 Macbook Pro“. Stanford Parse liefert kein richtigen Ergebnis.
»~IMac* kann nicht als ein Produkt extrahiert werden, weil ,iMac* in ,,*.mIn*“ eine
Konstitution von ,,display” ist. Deswegen wird diese Fehler wéhrend der Bestimmung
der Abhangigkeit nicht mehr korrigiert.

/P
/ ."I T -
7 / T Np
/ AN
T
NP / / JBA Sete
/AN # L
] _ / ‘ \\\ . / /// ! \‘ 5 ‘\\“\.
NP / NP prep NP \ow NP NP prep /"”f \\ W
1\ /N conj /\ /| \ o ocon /)
v JAEN ¢ 4 2 AR
l v / l Ny & 1 adj N v /N ¢ a N
; o N N W | c N N Mo
L] N | |

Apple announces 13 MacBook Pro vith Refina display and new iMac Ap"ple announces 13 MacBook PFO with Retina display and new iMac.

Abbildung 65 : Links ist die falsche Darstellung, rechts ist die richtige Darstellung.

e Wenn die Argumentform zwischen Kindknoten und Elternknoten ,,nn* ist, dann ist die
Abhéangigkeit zwischen den Knoten schwierig zu bestimmen.

23 [(N-twist):7] @
0 1:6

12:<nn>:6
24:[(N:thinkpad):7]:6
1 Al

1:<amod>:1 :
153:[(J:12.5-inch):1]:1

Abbildung 66 : Beispiel fur zwei Worter, die Argumentform ,,nn“ haben.
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7.2

Im Beispiel ,thinkpad® ist ein Argument von Core Form ,twist”. Tatsachlich ist
Hwist* Serie von ,thinkpad®“, d.h. ,thinkpad“ soll ein Elternknoten von ,twist* sein.
Solche Fehler sind sehr schwierig zu korrigieren.

l6schbare Probleme

Wie in ,,4.5 Verbessern die Hierarchie® gezeigt, dass es einige léschbare Probleme gibt.

Wenn zwei Wurzeln oder zwei Elternknoten die gleichen Produkteigenschaften haben,
sind die zwei Knoten sehr maoglich ein gleiches Produkt, z.B. ,,macbook* und ,,device*.
In dieser Diplomarbeit ist die Produkteigenschaft und Produkteigenschaftswert nur in
dem Schritt Vorverarbeitung extrahiert. Basiert auf den Knoten, die gefundene
Produkteigenschaft und Produkteigenschaftswert sind, koénnen ihre Nachbarknoten
weiter  unterschieden  werden, ob das Wort Produkteigenschaft  oder
Produkteigenschaftswert ist. Aber man muss bemerken, dass ein Elternknoten der
Produkteigenschaft eine Produkteigenschaft oder ein Produkt sein konnte, und ein
Elternknoten des Produkteigenschaftswerts ein Produkteigenschaft,
Produkteigenschaftswert oder ein Produkt sein kdnnte. Ein ,,Voting Algorithm* kénnte
hier eingesetzt werden.

Um die Produkteigenschaft und den Produkteigenschaftswert zu unterscheiden, kann
man die Regel fir Informationsextraktion, die in 3.2 generiert wird, kann man benutzen.
Ein Voting Algorithm(mehr siehe 26) kann man benutzen, damit die Regeln bzw. die
Randbedingungen entspannt werden.

Die erstellte Hierarchie kann durch Analyse von syntaktischen Beziehungen bzw.
Argumentformen verbessert werden. Zum Beispiel wenn Kindknoten und sein
Elternknoten die Argumentform ,.conj“ haben, dann konnte die Kindknoten als
Kindknoten von dem Elternknoten von seinem Elternknoten gesehen werden. Abbildung
67 illustriert die Verbesserung der Hierarchie.

Abbildung 67 : Die Verbesserung der Hierarchie mit Argumentform ,,conj*“.

7.3 Arbeit fur die Zukunft

In dieser Diplomarbeit wird die Bestimmung der Abhangigkeit eine Abfolge der Bedingungen
benutzt. Das heil3t, wenn eine Bedingung verletzt, wird die Abhédngigkeit falsch bestimmt.
Besser kann man den Voting Algorithmus benutzen, um die Hierarchie besser aufzubauen. Es
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gibt viele Worter, die irrelevant flr Produkt aber nétig fur einen nattrlichen Text sind. Fir die
zukiinftige Arbeit ist es erwinscht, alle irrelevanten Worter zu filtern. Alle in Kapitel 7.2
darstellte Probleme ist die Arbeit fur die Zukunft. Dieser Diplomarbeit geht von der Analyse
von ,,*.mIn“ Datei aus, wahrend Aktualisierung der Werte von ClusterSum, CClusterSum und
Count wird die ,*.parse Datei benutzt. Aber es ist vielleicht auch mdglich, dass von
. ~.parse” Datei ausgeht, weil ,,*.parse* Datei die Badume Struktur impliziert.

7.4 Begrenzung der System-Anforderung

Die System-Anforderung ist sehr hoch. Beim Experiment von USP mit 2000 Testdaten hat ein
Rechner mit acht Cores (Intel Xeon 2.3GHz) benutzt, wenn die maximale GroRe Heap von 20
GB eingestellt wird, dann braucht es 20 Minuten und 8 GB fiir 80 Minuten. Deshalb ist es
unmoglich, USP als App s in Web oder Server einzusetzen.
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Anhang A: Der Ergebnis von WEKA : (Aus diesem
Ergebnis werden die Regeln (in 3.2) fr
Informationsextraktion generiert.)

Associate | Select attributes |
== ———

|BestFirst -0 1 -M 5

N e e e e e e
attribute Selection Mode Attribute selection output
e full training set e P P [+
Cross-validation Folds |10 L
e | Evaluator: weka.attributeSelection.Cfs5ubsetEval T
Search:weka.attributeSelection.BestFirst -D 1 -N 5 b1
—— Y | Relation: usp
[(Nom} ga= 'J' Instances: 10057
Attributes: 10057
) [list of attributes omitted]
Resulk list {right-click for options) Evaluation mode:evaluate on all training data

14:25:51 - BestFirst + CfsSubsetEval

=== Attribute Selection on all input data ===

Search Method:

Best first.

Start set: no attributes

Search direction: forward

Stale search after 5 node expansions

Total number of subsets evaluated: 1110117 -
£l i | r

Status
OK
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