
Diplomarbeit Nr. 3397

Internetgestützte Textanalyse zur Extraktion
von Produktentwicklungswissen mittels

OntoUSP: eine Machbarkeitsanalyse

Chen Wang

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

INFORMATIK

Univ-Prof. Hon-Prof. Dr. Dieter Roller

M. Sc. Julian Eichhoff

06.11.2012

08.05.2013

I.2.7 I.5.2 J.6

Institut für Rechnergestützte Ingenieursysteme

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

Inhaltsverzeichnis

1 Einführung .. 7

1.1 Ziel der Diplomarbeit... 9

1.2 Problem definieren ... 9

2 Stand der Technik und Grundlagen ... 10

2.1 Stand der Technik... 10

2.2 Grundlagen .. 10
2.2.1 Stanford Parser ... 11
2.2.2 Semantik Analyse ... 13
2.2.3 Prädikatenlogik erster Stufe (Abk. PL1) ... 14
2.2.4 Quasi-logische Form, POS Tagging und Lambda(-Kalkül) Notation .. 16

2.2.4.1 Quasi-logische Form ... 16
2.2.4.2 Lambda(-Kalkül) Notation .. 17
2.2.4.3 POS Tagging ... 17

2.2.5 Markov Logik Netzwerk (Abk. MLN) ... 17
2.2.5.1 Markov Netzwerk (Abk. MN)... 17
2.2.5.2 Markov Logik Netzwerk (Abk. MLN) .. 18

2.2.6 Clusteranalyse .. 20
2.2.7 Unsupervised Semantic Parsing und Ontology Unsupervised Semantic Parsing 20

2.2.7.1 Unsupervised Semantic Parsing .. 21
2.2.7.2 Ontology Unsupervised Semantic Parsing .. 26

3 Entwurf ... 28

3.1 Ausgabedatei für USP .. 29

3.2 Der erste Ansatz : Generierung der Regeln für Informationsextraktion .. 31

3.3 Der zweite Ansatz : Generierung der Hierarchie der Wörter .. 33

4 Implementierung .. 35

4.1 Generierung der Hierarchie durch Bestimmung der Abhängigkeit von den Wörtern 35

4.2 Vorverarbeitung ... 35
4.2.1 Verschiedene Fälle ... 35
4.2.2 Bestimmung der Abhängigkeit ... 36
4.2.3 Bestimmung von Produkteigenschaften und Produkteigenschaftswerten .. 38
4.2.4 Aktualisierung der Werte von ClusterSum, Count und CClusterSum .. 38

4.3 Bearbeitung der Knoten mit CC>=0.5 .. 40
4.3.1 Vier Fälle .. 40

4.3.1.1 Der erste Fall ... 40
4.3.1.2 Der zweite Fall .. 41
4.3.1.3 Der dritte Fall .. 42
4.3.1.4 Der vierte Fall ... 43

2

4.3.2 Aktualisierung der Werte von ClusterSum, Count und CClusterSum .. 44

4.4 Verarbeitung der Konten mit CC<0.5 ... 44
4.4.1 Bestimmung der Abhängigkeit ... 44
4.4.2 Aktualisierung der Werte von ClusterSum, Count und CClusterSum .. 45

4.5 Verbessern die Hierarchie ... 46

4.6 Filter .. 48

4.7 Ausgaben Filter .. 50

5 Experiment .. 51

6 Zusammenfassung .. 56

7 Ausblick ... 57

7.1 Nicht löschbare Probleme .. 57

7.2 löschbare Probleme ... 58

7.3 Arbeit für die Zukunft ... 58

7.4 Begrenzung der System-Anforderung... 59

8 Literaturverzeichnis ... 60

3

Abbildungsverzeichnis

Abbildung 1: Der Ablauf von Data Mining... 7
Abbildung 2 : Ablauf der Sprachanalyse ... 8
Abbildung 3 : Der Durchlauf der Informationsextraktion ... 11
Abbildung 4 : Der Parser Baum, der von Stanford Parser erzeugt wird. ... 12
Abbildung 5 : Der Parser Baum, der manuell erzeugt wird... 13
Abbildung 6 : Ein Beispiel für Shallow Semantic Parsing .. 13
Abbildung 7 : Ein Beispiel für semantische Analyse .. 14
Abbildung 8 : (aus [17]) Beispiele für Wissensdomäne von Prädikatenlogik erster Stufe. Fr() ist Abkürzung für

Friends(), Sm() für Smokes(), and Ca() für Cancer().. 16
Abbildung 9 (aus [19]): Die Umwandelung des Satzes „Everybody speaks two languages“ in QLF und

entsprechender Prädikatenlogik .. 16
Abbildung 10 : Ein Satz markiert mit POS Tag. ... 17
Abbildung 11 : (aus [17]) : Der MLN Graph, der Tabelle 2entspricht. A und B sind die Konstant. 19
Abbildung 12 (aus [23]) : Cliques und Gewichte von MLN in Abbildung 11. Es gibt 6 Cliques. 19
Abbildung 13: Ein Beispiel für Clusteranalyse. „Tablet PC“ kann in der Gruppe „Tragbarer Computer“ oder in

„Netbook“ Gruppe sein. In Welcher Gruppe die Objekte zugeordnet werden, hängt stark
vom verwendeten Algorithmus, Parametern und verwendeten Objekt-Attributen ab. 20

Abbildung 14 (aus [24]) : Illustration für Clustering-Verfahren von USP .. 21
Abbildung 15: Beispiel für die Generierung von QLF. ... 22
Abbildung 16 : Die Partitionen von QLF. Wenn die Atomen die gleichen Bedeutungseinheit besitzt, werden

die Atomen in einem Cluster bzw. in einer Partition hinzufügt. ... 23
Abbildung 17 : Die sub-Formeln von QLF ... 23
Abbildung 18 : Ein Beispiel für Erzeugung der Lambdaformen ... 24
Abbildung 19 : Die Lambdaformen werden auf den Cluster aufgeteilt und den syntaktischen Variationen in

Argumenttypen zugeordnet. Links sind die Lambdaformen und rechts sind die Cluster. 24
Abbildung 20 : Beispiel für ein Cluster ... 25
Abbildung 21 : Beispiel für QLF Partition. Form(p, f!), ArgForm(p, i, f!) sind QLF Partitionen. 25
Abbildung 22 : Beispiel für ArgType(p, i, a!), Arg(p, i, p‘), Number(p, a, n) .. 26
Abbildung 23: Beispiel für Objekt und Eigenschaft Cluster. In „property cluster“ sind Argumentformen,

Argumente von Core Formen und Argument-Numbers. .. 27
Abbildung 24: Architektur für Extraktion von Produkten, Produkteigenschaften und

Produkteigenschaftswerten. .. 28
Abbildung 25 : Ein Beispiel für eine MLN Datei.. 29
Abbildung 26 : Ein Beispiel für eine PARSE Datei .. 30
Abbildung 27 : Beispiel für die graphische Darstellung von „mln“ Datei .. 31
Abbildung 28 : links ist die graphische Darstellung von Markov Logik Netzwerk. Rechts ist die gerichtete

graphische Darstellung, entspricht der graphische Darstellung von MLN. 33
Abbildung 29 : Ein weiteres Beispiel für graphische Darstellung von „*.mln“ Datei .. 33
Abbildung 30 : Illustration für einige Definitionen ... 35
Abbildung 31 : Ein Teil von „*.mln“ .. 36
Abbildung 32 : Oben ist die graphische Darstellung von Abbildung 31. Nach der Bestimmung der

Abhängigkeiten (CC=1) wird die graphische Darstellung (unten) erzeugt. 37
Abbildung 33 : Es gibt die Abhängigkeit zwischen Knoten „ips“ und „display“, aber die Abhängigkeit ist nicht

deutlich ... 37
Abbildung 34 : Beispiel für die Darstellung von Blättern in „*.mln“, 31 ist ein Blatt und 30 ist kein Blatt. 38

4

Abbildung 35 : Ein Beispiel für die Aktualisierung der Werte von ClusterSum, Count und CClusterSum 39
Abbildung 36 : Pseudocode für searchNode.. ... 39
Abbildung 37 : „*.mln“ für den 1. Fall.. 40
Abbildung 38 : Ein Beispiel für den 1. Fall ... 41
Abbildung 39 : „*.mln“ für 2.Fall .. 41
Abbildung 40 : Ein Beispiel für 2.Fall .. 42
Abbildung 41 : „*.mln“ für 3.Fall ... 42
Abbildung 42 : Ein Beispiel für 3.Fall .. 43
Abbildung 43 : „*.mln“ für 4.Fall ... 43
Abbildung 44 : Ein Beispiel für die Bestimmung der Abhängigkeiten. Links ist die Graphische Darstellung für

ein Cluster, rechts ist eine Tabelle für ClusterSum, ClusterSum und Count. 43
Abbildung 45 : ein Beispiel für die Bestimmung der Abhängigkeiten. Links ist die Graphische Darstellung für

ein Cluster, rechts ist eine Tabelle für ClusterSum, ClusterSum und Count. 44
Abbildung 46 : Pseudocode für Berechnung von CC Wert und mnm ... 45
Abbildung 47 : Pseudocode für Berechnung von neuer ClusterSum ... 46
Abbildung 48 : Pseudocode für Berechnung von neuem Count .. 46
Abbildung 49 : Beispiel für eine falsche Bestimmung der Abhängigkeit zwischen den Knoten 46
Abbildung 50 : Beispiel für eine Korrektur der Abhängigkeit .. 47
Abbildung 51 : Beispiel für Korrektur der Abhängigkeit .. 47
Abbildung 52 : Beispiel für Korrektur der Abhängigkeit .. 48
Abbildung 53: Beispiel für die Entfernung eines Zyklus .. 48
Abbildung 54 : Beispiel für den Filter ... 49
Abbildung 55 : Beispiel für den Filter ... 49
Abbildung 56 : Beispiel für den Filter ... 50
Abbildung 57 : Beispiel für den Filter ... 50
Abbildung 58 : Eine Darstellung für ein Produkt, sei der Produktname „BAC“, „A“ repräsentiert eine

Kategorie .. 51
Abbildung 59 : Genauigkeit für die Extraktion von Produkt ohne Filter, X-Achse: die Nummer von Text Data,

Y-Achse : die Genauigkeiten. ... 52
Abbildung 60 : Genauigkeit für die Extraktion von Produkt mit Filter. X-Achse: die Nummer von Text Data,

Y-Achse : die Genauigkeiten. ... 52
Abbildung 61 : Genauigkeit für die Extraktion von Produkteigenschaft. X-Achse: die Nummer von Text Data,

Y-Achse : die Genauigkeiten. ... 53
Abbildung 62 (aus [29]): Genauigkeit für die Extraktion von Produkteigenschaft. X-Achse: sind die Typen von

Text Data, Y-Achse: die Genauigkeiten. ... 54
Abbildung 63 : Genauigkeit für die Extraktion von Produkteigenschaftswert. X-Achse: die Nummer von Text

Data, Y-Achse : die Genauigkeiten .. 54
Abbildung 64 : Links ist die falsche Darstellung, rechts ist die richtige Darstellung. ... 57
Abbildung 65 : Beispiel für zwei Wörter, die Argumentform „nn“ haben. ... 57
Abbildung 66 : Die Verbesserung der Hierarchie mit Argumentform „conj“. .. 58

5

Tabellenverzeichnis

Tabelle 1 : Beispiel für Stanford Parser .. 12
Tabelle 2: (aus 6) Beispiele für Wissensdomäne von MLN. ... 19

6

1 Einführung

Die Extraktion von Produkten, Produkteigenschaften und Werten der Produkteigenschaften aus
einem natürlichen Text kann als ein Problem von Text Mining angesehen werden. Text Mining
ist eine neue Disziplin, die in den letzten zehn Jahren entstanden ist, und es gibt keine generell
akzeptierte Definition für Text Mining. Die folgende enge Definition wird für diese
Ausarbeitung übernommen: „Mit dem Terminus Text Mining werden computergestützte
Verfahren für die semantische Analyse von Texten bezeichnet, welche die automatische bzw.
semi-automatische Strukturierung von Texten, insbesondere sehr großen Mengen von Texten,
unterstützen.“ [1] Die natürliche Sprache besitzt keine Struktur. Aber es existieren Regeln, mit
deren Hilfe aus den Wörtern die Phrasen und aus den Phrasen die Sätze aufgebaut werden. Um
die natürlichen Texte zu bearbeiten, sollten die s.g. Regeln und Wortbedeutungen als
Vorkenntnisse für Text Mining vorhanden sein. NLP bietet eine gute Möglichkeit für die
Vorbearbeitung der natürlichen Sprache. Der natürliche Text wird durch syntaktische und
semantische Analyse verarbeitet. Danach wird die Cluster Analyse durchgeführt und die Daten
aus dem Clustering werden durch Filter gefiltert.

Abbildung 1: Der Ablauf von Data Mining

„Verarbeitung natürlicher Sprache (NLP: Natural language processing) ist ein Oberbegriff für
alle Forschungs- und Anwendungsbereiche der Disziplinen Computerlinguistik (Computational
Linguistik (CL)), der linguistischen Datenverarbeitung, der sprachorientierten Künstlichen-
Intelligenz-Forschung und Sprachtechnologie.“ [2] Durch die syntaktische Analyse wird der
natürliche Text in die formalen Ausdrücke umgewandelt, z.B. Prädikatlogik erster Stufe und
Dependenzbäume in ein USP System. Aber die durch syntaktische Analyse erzeugten
Strukturen sind mehrdeutig. Mit Hilfe von semantischer Analyse werden den Wörtern die

7

semantischen Rollen zugewiesen. „Semantische Rollen können zu der automatischen
Textinhaltserschließung eines Dokuments beitragen, da sie eine formalisierte Repräsentation
von Informationen zu den Sachverhalten und Ereignissen, die aus einem Text extrahiert werden
können, sowie zu den Relationen zwischen den involvierten Entitäten darstellen.“ [3] Damit
werden die Ambiguitäten und syntaktischen Variationen abgezogen, weshalb die semantische
Analyse eine wichtige Rolle bei der Sprachanalyse spielt und die semantische Analyse auch eine
Schwierigkeit für die Sprachanalyse darstellt. Wie in Abbildung 2 gezeigt, besteht die
Sprachanalyse aus syntaktischer Analyse und semantischer Analyse und liefert die semantischen
Repräsentationen für den natürlichen Text. Je besser diese semantische Repräsentation ist, desto
exakter sind die extrahierten Informationen.

Abbildung 2 : Ablauf der Sprachanalyse

Vor mehreren Jahren wurden einige Ansätze für die semantische Analyse entwickelt. Zum
Beispiel die Ansätze aus [4] und [5]. In [4] und [5] müssen einige semantische Parser als Muster
manuell vordefiniert und die logischen Formen für jeden Satz angegeben werden, danach
werden alle semantischen Parser mithilfe des Maschinenlernens auf den Text abgebildet. Dies
ist offensichtlich sehr aufwendig. „Unsupervised Semantic Parsing“ (Abk. USP) ist der erste
nicht überwachte Ansatz für semantische Analysen. Dieser Ansatz wurde von Hoifung Poon und
Pedro Domingos im Jahr 2009 entwickelt und ermöglicht es mit der Hilfe von Markov Logik
Netzwerk, eine vollautomatische semantische Analyse zu realisieren. „Für die Extraktion der
Informationen beschränkt USP System sich darauf, wievielmal die gesuchte Information im
Korpus angegeben wird. Wenn die Information selten im Korpus angegeben würde, wäre es
schwierig zu extrahieren.“ [6] Des Weiteren wurde basierend auf „Unsupervised Semantic
Parsing“ im Jahr 2010 “Ontology Unsupervised Semantic Parsing“ (Abk. OntoUSP)
vorgeschlagen. „Während der Umwandlung der Sätze in logische Formen wird ISA Hierarchie

8

von Lambda-Formen durch die Clusteranalyse der logischen Ausdrücke generiert. Damit ist es
möglich, eine Ontologie zu erstellen.“ [7] Die Informationen können trotzdem extrahiert werden,
wenn die Informationen selten in dem Korpus vorkommen, weil die Informationen schon in der
Ontologie eingesetzt werden.

1.1 Ziel der Diplomarbeit

In dieser Diplomarbeit wird geprüft, ob OntoUSP eine Methode ist, mit der das Produkt, die
Produkteigenschaft und die Werte der Produkteigenschaft aus einem natürlichen Text extrahiert
werden können. Zwar ist das Programm von OntoUSP nicht vorhanden, aber man kann von den
Ergebnissen von USP ausgehen, weil OntoUSP eine Erweiterung von USP ist, und bei
Experimenten mit Onto USP werden die Ausgaben von USP benutzt, d.h. die Ausgaben von
OntoUSP enthalten die gleichen oder ähnliche Informationen wie USP.

1.2 Problem definieren

Die Eingabe ist ein natürliches Dokument. Stanford Parser wandelt das natürliche Dokument in
morphologische Wörter und die Dependenzen zwischen den Wörtern um. Die Ergebnisse von
Stanford Parser sind die Eingaben für USP. Durch eine Analyse der Ausgaben-Datei des USP
Programms wird eine Hierarchie für die Wörter erstellt. Danach werden diese Wörter gefiltert,
und die Ausgaben von Produkten, Produkteigenschaften und die Werte der
Produkteigenschaften basierend auf folgenden Annahmen generiert :

• Die Wurzel ist entweder ein Produkt oder ein Markenzeichen
• Die Blätter sind die Werte der Produkteigenschaften
• Die Eltern Knoten der Blätter sind Produkteigenschaften

9

2 Stand der Technik und Grundlagen

2.1 Stand der Technik

in der Vergangenheit wurden viele Ansätze von Extraktion von Produkt und
Produkteigenschaftswerten entwickelt. Es gibt auch viele Ansätze für Informationsextraktion
basierend auf Ontologie. Aber alle Ansätze erfordern entweder manuelle Unterstützung oder
beschränkt sich auf eine bestimmte Wissensdomäne oder dem Format des Textes.

In [8] ist die Extraktion für explizite Produkt Attribute basierend auf der Extraktion für „opinion
word“. In [8] sind die manuell markierten Trainingsdaten sind erforderlich. Mit den markierten
Daten werden die Pattern erzeugt, und diese Pattern werden wieder benutzt, um nach den
„Attribute-Value“ die Entitäten zu extrahieren. Die Bindung von Produkt Attribute und Produkt
Attribute Wert, und diese Bindung wird durch einen Dependenzparser (Minipar [9]) realisiert.

In [10] sucht man nach den sehr oft vorkommenden Normen oder Norminalphrasen, die
gefundene Normen bzw. Norminalphrasen werden als die Features der Produkte ausgewählt.
Mit der Hilfe von PMI(pointwise mutual information) und „Naive Bayes Classifier“ werden die
Regeln für die Informationsextraktion generiert.

In [11] werden die Sätze bzw. die Rekorder in Parser Bäume mit leichten semantischen
Annotationen umgewandelt, weshalb sich dieser auf eine bestimmte Domäne beschränkt.

In [12] wird die Shallow semantische Analyse benutzt. Die Ontologie der Domäne wird
vordefiniert. Die Generierung der Ontologie ist die Abbildung zwischen den Wörtern und der
vordefinierten Ontologie, d.h. die Ontologie wird nicht von Wörtern generiert.

In [13] werden die Sätze in einem Text in semantische Term Graph umgewandelt, mit der Hilfe
des „Page Ranking Algorithmus“ werden die Term Kandidaten auf entsprechende vordefinierte
„Layer“ abgebildet. Gleich wie in [13], wird die Ontologie nicht von Wörtern generiert.

USP liefert vollständig semantische Analysen und ein Markov Logik Netzwerk für Wörter.
Damit werden die o.g. Schwächen überwunden.

2.2 Grundlagen

Die syntaktischen Analysen zusammen mit den semantischen Analysen liefern die
semantischen Repräsentationen für einen natürlichen Text. Aus einem natürlicher Text werden
durch die syntaktische Analyse(eng : syntax parsing) die syntaktische Bäume(auch Parser
Bäume) erzeugt. Diese syntaktische Analyse erledigt in USP System durch Stanford Parser. Die
Ausgaben von Stanford Parser sind die Eingaben für USP. USP führt die semantische Analyse
durch und fügt für jedes Wort eine semantische Rolle hinzu und clustert die Wörter. Die

10

Ausgaben von USP sind „*.parse“ und „*.mln“ Dateien, wobei die „*.parse“ eine Baum
Struktur liefert, und „mln“ ein Netz der Wörter liefert. Durch „*.parse“ und „*.mln“ Datein
werden die Ausgaben generiert.

Abbildung 3 : Der Durchlauf der Informationsextraktion

Im Folgend werden die Grundlagen für USP System sowie die Komponente für USP System,
Grundlagen für Logik, Grundlagen für Markov Logik Netzwerk und Grundlagen für Liguistik
besprochen.

2.2.1 Stanford Parser

„Der Stanford Parser ist ein probabilistisches Parser Programm. Die natürliche Sprache ist die
Eingabe für das Programm und durch den probabilistischen Parser kann die grammatische
Struktur der Sätze bestimmt werden. Die Kenntnisse der Wahrscheinlichkeiten von
probabilistischen Parsern werden aus manuellen analysierten Sätzen erworben, und mithilfe der
probabilistischen Parser können die wahrscheinlichste Analyse von neuen Sätzen produziert
werden. Dieser probabilistischen Parser garantiert nicht, dass die Ergebnisse 100% richtig sind.“
[14] „*.dep“, „*.input“ und „*.morph“ sind die Eingabe Dateien für USP und die drei Dateien
werden von Stanford Parser generiert. In der Tabelle 1 sind ein Beispielsatz und der Inhalt der
von Stanford Parser erzeugten Dateien dargestellt. In Abbildung 4 ist die graphische Darstellung
der syntaktischen Analyse von Stanford Parser für den Beispielsatz. In Abbildung 5 ist die
graphische Darstellung der manuell syntaktischen Analyse für den Beispielsatz gegeben.
Stanford Parser hat die syntaktische Struktur falsch analysiert, die Fehler wird mit rot Oval

11

markiert. Die syntaktische Struktur der Nominalphrase aus Stanford Parser ist NP→NP PP_with
NP, die richtige ist NP→NP CONJ_and NP. Solche Fehler führen zu einer falschen Ontologie.

Tabelle 1 : Beispiel für Stanford Parser

In der ersten Zeile von Tabelle 1 ist der Satz. In der 2. Zeile sind die Darstellungen von Datei
„*.dep“. Die Beziehungen der Wörter (wie nsubj, dobj, nn) und die Position der Wörter (
„Apple-1“ bedeutet „Apple“ ist das erste Wort, sowie „announce-2“ ist das zweite, usw.)
werden angegeben. In der 3. Zeile sind die Darstellungen von Datei „*.input“. Hier werden die
Wörter und der entsprechende syntaktische Worttypen angegeben. In Zeile 4 sind die
Darstellungen von Datei „*.morph“. Die morphologischen Wörter werden angegeben, z.B. :
„announce“ ist das morphologische Wort „announces“ ist das morphologische Wort für
„announces“.

Abbildung 4 : Der Parser Baum, der von Stanford Parser erzeugt wird.

12

Abbildung 5 : Der Parser Baum, der manuell erzeugt wird.

2.2.2 Semantik Analyse

Für die Verarbeitung natürlicher Sprache gibt es folgende Schwierigkeiten : die heterogenen
Wissensdomänen, die Auflösung der Ambiguität der Sprache, Modellierung der Sprache und die
Auflösung der syntaktischen Variationen der Sprache. Im Durchlauf von „Shallow Semantic
Parsing“ erfolgt die Erkennung von semantischer Repräsentation z.B. „Wer“, „Was“, „Wann“,
„Wo“, „Warum“, „Wie“, usw. und nur die Elemente, die aufeinander folgend und
zusammenhängend sind, werden ermittelt. „Shallow Semantic Parsing“ kann die s.g.
Schwierigkeiten nicht auflösen und es fehlt die Fähigkeit der Schlussfolgerung.

Abbildung 6 : Ein Beispiel für Shallow Semantic Parsing

Im Gegensatz zu „Shallow Semantic Parsing“ liefert die vollständige semantische Analyse eine
Repräsentation eines Satzes in Prädikatenlogik erster Stufe oder andere formale Sprache und
unterstützt eine automatische Schlussfolgerung. Die natürliche Sprache wird im Leseprozess
vollständig syntaktisch analysiert, damit die logischen Formen erzeugt werden können. Durch
semantische Analyse wird die von syntaktischer Analyse erzeugte logische Form, nämlich die
logische Repräsentation der natürlichen Sprache, auf der vollständigen semantischen
Repräsentation, nämlich die Bedeutungsrepräsentation, abgebildet. Die
Bedeutungsrepräsentationen der Sprache werden in dieser Ausarbeitung durch Prädikatenlogik
erster Stufe dargestellt. Einige Definitionen müssen hier angeben werden :

• Ein Term ist ein Objekt in einer Domäne. Ein Term kann eine Konstante, eine Variable
oder eine Funktion, die auf den Variablen angewendet, sein.

13

• Eine Formel bzw. eine atomare Formel ist ein Prädikatsymbol, das auf n-Tupel von
Termen angewendet wird. Eine Formel kann aus mehreren atomaren Formeln verknüpft
mit logischen Symbolen und Quantoren rekursiv konstruiert sein.

• Unter einer lexikalischen Einheit kann in dieser Ausarbeitung ein Wort verstanden
werden. Ein lexikalischer Eintrag definiert die logische Formel für eine lexikalische
Einheit mit POS Tagging. λ-gebundene Variablen markieren die fehlenden Argumenten
in den logischen Formen.

„Der semantische Parser eines Satzes wird hergeleitet, indem man mit logischen Formen in den
lexikalischen Einträgen anfängt und die Bedeutung größerer Fragmente rekursiv aus deren
Bestandteilen zusammensetzt.“ [7] In der Abbildung 7 wird gezeigt, dass „everybody“, „two
language“ und „speaks“ zuerst analysiert werden, danach werden die kleinen
Bedeutungsrepräsentationen in einer großen Bedeutungsrepräsentation zusammengestellt.

Abbildung 7 : Ein Beispiel für semantische Analyse

Die ersten drei Zeilen in der Abbildung 7 sind lexikalische Einträge bzw. Wörter. Die
syntaktische Kategorie bzw. POS Tagging von „love“ ist „Verb“. Wenn zwei Atome die
Funktion „loves(x,y)“ erfüllen, dann ist diese Funktion true. Die letzten zwei Zeilen haben
gezeigt, dass die lexikalischen Einträge in einem größeren Fragment der Bedeutung
zusammengestellt werden.

2.2.3 Prädikatenlogik erster Stufe (Abk. PL1)

„Die Prädikatenlogik erster Stufe beschäftigt sich mit Objekten und Aussagen über deren
Eigenschaften.“ [15] Die Prädikatenlogik erster Stufe ist „ausdruckstärker“ als Aussagenlogik,
und Quantoren, Funktions- und Prädikatsymbole kommen hinzu. Die Prädikatlogik erster Stufe
ermöglicht ontologische Bindung zwischen den Objekten, das ist der wichtigste Unterschied von
allen zwischen Aussagenlogik und Prädikatlogik erster Stufe.

Einige Definitionen (aus [16]) :

• Eine Variable hat die Form xi
• Ein Prädikatsymbol hat die Form Pi und ein Funktionssymbol hat die Form fi
• Jede Variable ist ein Term, jede Konstante ein Term, sowie f (t1,…tn) auch ein Term,

falls f eine Funktion und ti die Terme sind.
• P(t1,…tk) ist eine Formel bzw. eine atomare Formel, fall P ein Prädikatsymbol ist und ti

Terme sind.
14

• Für jede Formel ¬F, ∃F, ∀F, F∨G, F∧G sind auch die Formeln, wobei ∃ und ∀ sind die
Quantoren.

• Alle vorkommenden Variablen sind entweder frei oder gebunden. Wenn x in der Form
∃xF oder ∀xF vorkommt, dann heißt die Variable x in Formel F gebunden, andernfalls
heißt frei.

Eine Wissensdomäne ist eine Sammlung von Informationen über die Bedeutungen der Daten
und über die logischen Regeln. Eine PL1 Wissensdomäne ist eine Menge von Sätzen und
Formeln in PL1. Die Formeln bestehen aus Konstante, Variablen, Funktionen und Prädikaten.
Die neue Regeln bzw. die Randbedingungen können in die vorhandene Wissensdomäne
hinzugefügt werden, und die Wissensdomäne mittels der Regeln bzw. die Randbedingungen aus
dem vorhandenen Wissen Schlüsse inferieren.

Einige Definitionen (aus [17]) :

• Jede Konstante ist ein Objekt in einer Wissensdomäne und kann typisiert sein, z.B.
Konstant HA repräsentiert Hersteller Apple.

• Die Variablen können typisiert sein und repräsentieren die Objekte gleichen Typs in
einer Wissensbasis, z.B. Variable xi = Tom ist der Name der Menschen in der
Wissensbasis „MenschenName (Tom, Jerry, Mary)“. Durch die Substitution der
Variablen durch eine Konstante aus der Konstante Menge werden die verschiedenen
Objekte entstehen, z.B. MenschenName (Tom) und MenschenName (Jerry).

• Die Beziehung zwischen den Objekten sind die Funktionen wie Mutter_von,
guter_Freund_von.

• Ein Prädikatsymbol repräsentiert die Beziehung zwischen den Objekten und die
Eigenschaften der Objekte, z.B. Feind und Rauchen.

• Ein Term kann eine Konstante, eine Variable oder eine Funktion sein, die auf
Unterterme angewendet werden kann.

• Eine atomare Formel ist ein Prädikatsymbol, das auf Unterterme angewendet wird.
• Eine Formel kann rekursiv aus atomaren Formeln, die mit Quantoren(∃,∀) und logischen

Symbolen(∧,∨,⇔,⇒) der Prädikatenlogik verknüpft sind, konstruiert werden.
• Ein Grundterm ist ein Term, der keine Variable enthält.
• Ein Grundatom oder ein Grundprädikat ist eine atomare Formel, deren Argumente alle

Grundterme sind.

Die von Stanford Parser erzeugten Dependenzen können in die PL1 Repräsentationen
umgewandelt werden. Der natürliche Text kann als die Kombination von den PL1
Repräsentationen gesehen werden. Somit ist die Wissensdomäne eines Textes die Sammlung
von Dependenzen in PL1 Repräsentationen mit den Objekten und diese PL1 Repräsentationen
sind die Randbedingungen im Markov Logik Netzwerk. Die Randbedingungen im Markov
Logik Netzwerk sind die in disjunktiver Normalform geschriebenen Klausel-Formen, damit die
Randbedingungen aufgeweicht werden. Eine Welt (possible world) ist wahr, wenn alle
vorkommenden Grundatome wahr sind.

15

Abbildung 8 : (aus [17]) Beispiele für Wissensdomäne von Prädikatenlogik erster Stufe. Fr() ist Abkürzung für
Friends(), Sm() für Smokes(), and Ca() für Cancer().

2.2.4 Quasi-logische Form, POS Tagging und Lambda(-Kalkül)
Notation

2.2.4.1 Quasi-logische Form

Quasi-logische Form basiert auf der Prädikatlogik (in dieser Ausarbeitung wird mit
Prädikatenlogik erster Stufe beschäftigt. Details siehe [18]) und ist eine Darstellung der
Bedeutung des Dokuments. Jede QLF hat eine entsprechende Formel in Prädikatenlogik bzw.
Prädikatenlogik erster Stufe.

Abbildung 9 (aus [19]): Die Umwandelung des Satzes „Everybody speaks two languages“ in QLF und
entsprechender Prädikatenlogik

16

2.2.4.2 Lambda(-Kalkül) Notation

„Durch Lambda(λ)-Ausdrücke werden formale Parameter eingeführt, die durch Terme ersetzt
werden können.“ [20] Beide λx.Love(x, y) und λx. λy.Love(x, y) sind die Lambda-Ausdrücke.
Die λ-gebundene Variable kann durch ein Argument aus einem Definitionsbereich, z.B. aus
konstanten Menge in MLN, substituiert werden. Die nicht-λ-gebundene Variable heißt frei. Ein
Beispiel für Substitution einer λ-gebundenen Variable :

λx.Love(x, y)(Tom) ⇒ Love(Tom, y)

wobei y eine nicht-λ-gebundenen Variable bzw. eine freie Variable ist. Die Substitution von λ-
gebundenen Variable ist die λ-Reduktion. „Ein Prädikat mit mehreren Argumenten kann durch
die λ-Reduktion auf eine Folge von jeweils einstelligen Prädikaten abbilden.“ [20]

2.2.4.3 POS Tagging

Ein Token ist in dieser Ausarbeitung ein einzelnes Wort. Ein „Tag“ ist eine Markierung bzw.
eine Etikett von Token. Tagging ist ein Verfahren, durch das ein Tag einem Token zugewiesen
wird. POS(PART-OF-SPEECH) Tagging ist die Zuordnung der Wortart zu einem Token, z.B.
Verb, Nomen usw. Mithilfe von POS Tagging werden die Informationen der Sprache
kategorisiert. Die von Stanford Parser erzeugten Dependenzen enthalten die POS Tags schon.

Abbildung 10 : Ein Satz markiert mit POS Tag.

2.2.5 Markov Logik Netzwerk (Abk. MLN)

2.2.5.1 Markov Netzwerk (Abk. MN)

Das Folgende baut auf [17] auf. „Markov Netzwerk (oder Markov Random Field) ist ein
statistisches Modell für multivariate Verteilung einer Menge von Variablen X = (X1, X2, … ,
Xn) ∈ ℵ und beschreibt die ungerichteten Graphen, die bedingte Unabhängigkeitsaussagen
zwischen Variablen ausdrucken.“ [17] & [21] In einem ungerichteten Graph repräsentiert jeder
Knote eine Variable, jede Clique im Graph hat eine potenzielle Funktion, die einen Zustand der
Clique repräsentiert. Die multivariate Verteilung von MN :

𝑃(𝑋 = 𝑥) = 1
𝑧
𝛱𝛷𝑘�𝑥{𝑘}� (1)

wobei x{k} ist der Zustand von k-ste Clique ist, d.h. x{k} repräsentieren alle Werte von den
Variablen in der k-ste Clique. Z ist die Normalisierung. Die Formel (1) kann als log-lineares
Modell dargestellt werden.

17

𝑃(𝑋 = 𝑥) = 1
𝑧

exp �� 𝜔𝑗𝑓𝑗(𝑥)
𝑗

� (2)

wobei ωj Gewicht von einer Feature Funktion fj (x) ist. In dieser Ausarbeitung fj (x) ∈ {0,1}.
Feature Funktion beschreibt einen Zustand der Clique und das Gewicht der Feature Funktion ist
log𝜑𝑘�𝑥{𝑘}�.

2.2.5.2 Markov Logik Netzwerk (Abk. MLN)

Das Folgende baut auf [17] auf. Eine Wissensdomäne besteht aus einer Folge von logischen
Regeln der Prädikatenlogik erster Stufe. Eine logische Regel in einer Wissensdomäne ist eine
Randbedingung in einer Welt. Wenn eine Randbedingung einer Welt verletzt ist, hat die
entsprechende Welt die Wahrscheinlichkeit 0. Sehr oft ist ein solcher Fall nicht erwünscht. Mit
Markov Logik wird diese Randbedingung dadurch aufgeweicht, dass jeder Randbedingung ein
Gewicht zugewiesen wird. Damit ist es möglich, dass eine Welt, in der eine Randbedingung
verletzt ist, eine geringere Wahrscheinlichkeit besitzt, aber nicht unmöglich ist. Das Gewicht
beschreibt die Bindungswirkung der entsprechenden Randbedingung, wenn die Welt wahr ist.
Eine Welt, in der die Randbedingung erfüllt ist, besitzt größere Wahrscheinlichkeit als eine
alternative Welt, in der die Randbedingung verletzt wird. „Ein Markov Logik Netzwerk ist eine
probabilistisch logische Repräsentation, welche Prädikatenlogik erster Stufe und Markov-Netze
miteinander verknüpft.“ [22]

Einige Definition (aus [17]) :

• Ein Markov Logik Netzwerk L ist eine Menge von Paaren (Fi, ωi), wobei Fi eine logische
Formel der Prädikatenlogik der erster Stufe ist und ωi ein Gewicht. Hier werden nur die
existenzquantifizierte Variablen betrachtet und alle allquantifizierten Variablen sind die
freie Variablen.

• (Fi, 𝜔i) zusammen mit einer endlichen Menge von logischen Konstanten C = {c1, c2, … ,
c|c|} definieren ein Markov Logik Netz ML,C.

• Jedes Grundatom in L entspricht einem binären Wert Knoten in ML,C. Die Grundatome
Menge X= {X1,…,Xn} wird dadurch erhalten, dass die Variablen der
prädikatenlogischen Formel in L durch die in L gegebenen Konstanten substituiert
werden. Der Wert eines Knotens ist genau dann 1, wenn das Grundatom wahr ist,
ansonsten ist der Wert 0. Der Knoten kann mit anderen Knoten durch die Kanten
verbunden werden, wenn die beiden Knoten bzw. die Grundatome in einer Belegung der
Grundformel gemeinsam vorkommen.

• Für jede Belegung einer Grundformel Fi in L besitzt ein Feature fi, der Wert von fi genau
dann 1 ist, wenn die Belegung der Grundformel wahr ist und sonst 0. Die Summe der
Gewichte für Feature fi ist das Gewicht wi in L.

18

Tabelle 2: (aus [17]) Beispiele für Wissensdomäne von MLN.

In der Tabelle 2 ist Fr() Abkürzung für Friends(), Sm() für Smokes(), and Ca() für Cancer(). Im
Vergleich zu Tabelle 2 werden hier die Gewichte hinzugefügt. Allen Regeln in dem Spalt „First-
Order Logic“ sind die Grundformeln und die Belegungen der Grundformeln in dem Spalt
„Clausal Form“. Wenn eine Grundformel mehre Belegungen besitzt, dann wird das Gewicht der
Grundformel gleichmäßig auf Belegungen aufgeteilt, z.B. Das Gewicht für ∀x ∀y Fr(x; y) ⇒
(Sm(x) , Sm(y)) ist 2.2 und das Gewichte für jede Belegung ist 1.1.

Abbildung 11 : (aus [17]) : Der MLN Graph, der Tabelle 2entspricht. A und B sind die Konstant.

Abbildung 12 (aus [23]) : Cliques und Gewichte von MLN in Abbildung 11. Es gibt 6 Cliques.

Aus der Definition von MLN wird jeder Knoten in MLN ML,C durch Einsetzen für Variablen der
logischen Formeln in MLN die Grundatome erzeugt. Die Kante zwischen den Knoten entspricht
die Beziehung zwischen den Knoten. Deshalb kann MLN als Model von Markov Netzwerk
gesehen werden und die Wahrscheinlichkeitsverteilung ist :

𝑃(𝑋 = 𝑥) = 1
𝑧

exp(∑ 𝜔𝑖𝑛𝑖(𝜒)𝑖) = 1
𝑧
� 𝛷𝑖�𝑥{𝑖}�

𝑛𝑖(𝑥)

𝑖
 (5)

19

wobei ni die Anzahl der Grundformeln ist, die den Wert 1 haben. Formel (5) hat gezeigt, dass
eine Welt nicht unmöglich ist, wenn diese Welt eine Randbedingung oder mehrere
Randbedingungen verletzt, sondern besitzt geringere Wahrscheinlichkeit. Gewicht 𝜔𝑖 zeigt, wie
„stark“ die Randbedingung in der Welt ist. Für ein bestimmtes MLN können unterschiedliche
Markov Netzwerk erzeugt werden, wenn die Konstant Menge unterschiedlich sind, aber diese
Markov Netzwerk haben auch manche Gemeinsamkeiten wie die gleiche Anzahl der Clique. Die
Gewichte werden entweder aus dem Lernen von Trainingsdaten erhalten oder von Menschen
manuell gegeben.

2.2.6 Clusteranalyse

USP System startet mit Clustering von Wörtern, die gleichen Typen haben, baut rekursiv
größere Clusters auf. Hier wird das Cluster erklärt, das Cluster ist eine Gruppe von Objekten,
die ähnliche Eigenschaften besitzen. Die Objekte werden entweder in verschiedene Klassen
aufgeteilt oder besitzen keine Struktur. Das Clustering (auch Clusteranalyse) dient dazu, dass
die Objekte ins Cluster untergeteilt werden, damit die in einem Cluster zugeordneten Objekte
eine möglichst hohe Ähnlichkeit besitzen. Die Clusteranalyse ermöglicht eine Struktur für die
Objekte aufzubauen. Bei der Clusteranalyse ist das Ziel, die Unterschiede zwischen den
einzelnen Gruppen möglichst maximiert und die Unterschiede innerhalb der einzelnen Gruppen
möglichst minimiert werden zu können.

Abbildung 13: Ein Beispiel für Clusteranalyse. „Tablet PC“ kann in der Gruppe „Tragbarer Computer“ oder in
„Netbook“ Gruppe sein. In Welcher Gruppe die Objekte zugeordnet werden, hängt stark vom verwendeten
Algorithmus, Parametern und verwendeten Objekt-Attributen ab.

2.2.7 Unsupervised Semantic Parsing und Ontology Unsupervised
Semantic Parsing

Früher wurde der semantische Parser manuell erstellt, zwar einige Ansätze für maschinelles
Lernen wurden danach entwickelt, aber die manuelle Unterstützung war immer noch
erforderlich, und manche Ansätze beschränkten sich auf einer geschlossenen Wissensdomäne.
USP ist der erste nicht-überwachte maschinelles Lernen Ansatz für Semantik Parser. Ob ein

20

Ansatz für maschinelles Lernen überwacht ist, ist abhängig davon, ob Eingabe- und
Ausgabedatei manuell markiert sind.

• überwachtes Lernen (engl. supervised learning) : Der Algorithmus lernt eine Funktion
aus gegebenen Paaren von Ein- und Ausgaben. Dabei stellt während des Lernens ein
„Lehrer“ den korrekten Funktionswert zu einer Eingabe bereit.

• nicht-überwachtes Lernen (engl. unsupervised learning) : Der Algorithmus erzeugt für
eine gegebene Menge von Eingaben ein Modell, das die Eingaben beschreibt und
Vorhersagen ermöglicht. Dabei gibt es Clustering-Verfahren, die die Daten in mehrere
Kategorien einteilen, die sich durch charakteristische Muster voneinander unterscheiden.

2.2.7.1 Unsupervised Semantic Parsing

USP beruht auf drei zentralen Ideen : (aus [7])

• Ziel Prädikat und Objekt Konstanten können als Cluster von syntaktischen Variationen
derselben Bedeutung angesehen werden, und aus Daten erlernt werden. Zum Beispiel
stellt „ACQUIRE“ den Erwerb Beziehung, und kann als Cluster von verschiedenen
Formen zum Ausdruck dieser Beziehung, wie „acquired“, „bought“, „purchased“
angesehen werden; Microsoft repräsentiert das Unternehmen Microsoft und kann als das
Cluster von „Microsoft“, usw. angesehen werden.

• Die gleiche Formen können clustert werden. Die Formen, die aus den gleichen Formen
bestehen, können clustert werden.

Abbildung 14 (aus [24]) : Illustration für Clustering-Verfahren von USP

• USP startet direkt von syntaktischen Analysen und konzentriert sich nur auf deren
Umsetzung zum semantischen Inhalt. Die vorherige entwickelte Parser können in USP
eingesetzt werden, deshalb stehen viele Ressourcen zur Verfügung. Die syntaktische
Analyse und die semantische Analyse sind in USP getrennt, damit die Komplexität der
semantischen Analyse reduziert wird, weil es nicht erforderlich ist, bei
Zusammensetzung der Bedeutungen ein domänenspezifisches Verfahren zur Erzeugung
von Kandidaten Lexikon zu brauchen.

Die Eingaben für USP System sind die Dependenzbäume, die von Stanford Parser generiert
werden. Eine natürliche Sprache ist die Eingabe für Stanford Parser, „*.dep“, „*.input“ und
„*.morph“ sind die Ausgabe von Stanford Parser, aus diesen drei Dateien werden die
Dependenzbäume generiert. Ein Dependenzbaum ist eine Baum Struktur, in der Baum-Struktur

21

sind die Knoten die Wörter, und die Kanten sind die Beziehungen zwischen den Wörter. Die
QLF in dieser Ausarbeitung wird daraus erhalten :

• jeder Knoten in einem Dependenzbaum wird in ein unäres Atom mit dem Prädikat
umwandelt, und das Prädikat wird mit POS Tag markiert, z.B. „Microsoft“ wird in
„Microsoft(n4)“ umgewandelt.

• jede Kante in einem Dependenzbaum entspricht einem Prädikat mit zwei Atomen, und
das Prädikat ist die „Beziehung“ zwischen den Atomen, z.B. nsubj(n3, n2).

wobei n2 und n3 die Skolemkonstante sind. Eine Skolemkonstante kann man in dieser
Ausarbeitung als eine Konstante aus der konstanten Menge in MLN verstehen. (Mehr über
Skolemkonstante sieht Kapitel 9 in [25]).

QLF von einem Satz kann als eine Konjunktion von logischen Formen von entsprechenden
Konten und Kanten angesehen werden. Dieser Vorgang ist illustriert in Abbildung 15. Die
Bedeutung eines Satzes kann als eine Kombination von den Sub-Formen der QLF gesehen
werden, deshalb die lexikalischen Einträge beschränken sich nicht mehr auf den adjazenten
Wörtern sondern sind die beliebigen Fragmente in einem Dependenzbaum. Deswegen hat USP
System mehre Flexibilität beim Maschinenlernen.

Abbildung 15: Beispiel für die Generierung von QLF.

Die natürliche Sprache wird durch s.g. Stanford Parser drei Dateien als Eingaben für USP
System erzeugt. Diese drei Dateien stellen einen Dependenzbaum dar. Der Dependenzbaum

22

wird in QLF umgewandelt. QLF in dieser Ausarbeitung wird vereinfacht. Deshalb ist die
Darstellung hier nicht gleich wie die Darstellung in der Abbildung 9.

In dem USP System wird QLF in den kleinen Teilen partitioniert, und die partitionierte Teile der
QLF werden in einer Gruppe bzw. in einem Cluster zugewiesen, wenn sie die gleiche
Bedeutung besitzen, z.B. „Microsoft“ und „Corporation“ besitzen die gleiche Bedeutung.

Abbildung 16 : Die Partitionen von QLF. Wenn die Atomen die gleichen Bedeutungseinheit besitzt, werden die
Atomen in einem Cluster bzw. in einer Partition hinzufügt.

Abbildung 17 : Die sub-Formeln von QLF

Manche Atome sind die Bedeutungseinheiten, und mache Atome sind die Argumente. Z.B. :
buys(n3) ist ein „ACQUIRE Event“, Corporation(n2) ist ein Argument für „ACQUIRER“
Beziehung von nsubj(n3, n2), und Powerset(n4) ist ein Argument für „ACQUIRED“
Beziehung von dobj(n3, n4). In USP System hat jede Sub-Formel von QLF die entsprechende
Lambda Form. Bei der zugehöriger Lambda-Form wird jede Konstante ni, die nicht in einem
einstelligen Atom von Formel F vorkommt, durch eine eindeutige Variable xi ersetzt. Z.B. :

buys(n3)∧nsubj(n3, n2)∧dobj(n1, n4)
𝝀𝒙𝟐.𝝀𝒙𝟒.buys(n3) ∧ nsubj(n3, x2) ∧ dobj(n3, x4)

wobei n1, n2 und n3 die Skolemkonstante sind.

Die Lambdaform wird mit Hilfe von Davidsonian Semantics weiter zerlegt in Core Form und
Argumentform. Die Core Form ist eine Lambdaform, die keine Lambdavariable enthält, und
eine Argumentform ist eine Lambdaform, die nur eine Lambdavariable enthält.

23

Abbildung 18 : Ein Beispiel für Erzeugung der Lambdaformen

Durch die Clusteranalyse werden die Lambdaformen in den Lambda-Form Cluster aufgeteilt.
Ein Lambda-Form Cluster ist ein Cluster, das die semantisch austauschbaren Lambdaformen
enthält und die Bedeutung der Sub-Formel von QLF. Lambdaform Cluster kann den
Argumenttypen enthalten, damit die Typen der Argumente in den Beziehungen unterschieden
werden können. Z.B. : die Argumente „ACQUIRER“ und „ACQUIRED“ in den Relationen
nsubj(n1, n2) und dobj(n1, n3) entsprechen dem Subjekt und Objekt von Verb „buys“. In
Stanford Parser kann die Argument „ACQUIRED“ als „nsubjpass“ für ein Subjekt in einen
passiven Satz repräsentiert werden. Die syntaktischen Variationen werden in dem Lambda-Form
Cluster abgezogen und unterschieden sich durch den Argumenttypen.

Abbildung 19 : Die Lambdaformen werden auf den Cluster aufgeteilt und den syntaktischen Variationen in
Argumenttypen zugeordnet. Links sind die Lambdaformen und rechts sind die Cluster.

Im USP System startet die semantische Analyse mit Clusteranalyse der Lambda-Formen in
Token bzw. in Atom Ebene, d.h. die QLFs werden durch die Partition auf den Sub-Formen der
QLF abgebildet, jede Sub-Form hat eine entsprechende Lambdaform, die Lambdaform wird
weiter in Core Form und Argumentform zerlegt. Um die Argumentform zu unterscheiden, wird
jede Argumentform einem Argumenttyp zugewiesen. Eine Regel, bei der eine Lambda-Form auf
ein Cluster abgebildet wird und einen Argumenttyp zuweist, ist eine semantische Grammatik.
Mit der semantischen Grammatik werden dann die Core Formen auf die Cluster und die

24

Argumentformen auf den Argumenttypen abgebildet. USP eine Wahrscheinlichkeitsverteilung
über den semantischen Parser. Das Problem von maschinellem Lernen in USP ist das Lernen
von s.g. semantischer Grammatik. Das Lernen in USP wird realisiert durch die Nutzung von
Markov Logik Netzwerk.

Abbildung 20 : Beispiel für ein Cluster

Ein semantischer Parser L partitioniert ein QLF in die QLF-Teile p1, p2, … , pn, jedes Teil p
wird in einen oder einige Lambdaform Cluster c zugewiesen, und pi wird später in Core Form f
und Argumentformen f1, f2, … , fk umgewandelt, jede Argumentform besitzt auch einen
Argumenttyp a in c. Um die Verteilung über die Lambdaformen zu modellieren, werden
Form(p, f!), ArgForm(p, i, f!) definiert, wobei p eine Partition ist, i der Index eines Arguments
und f eine Sub-Formel von QLF. Form(p, f!) ist true genau dann, wenn Partition p eine Core
Form f hat, und ArgForm(p, i, f!) ist true genau dann, wenn i-stes Argument in p die Sub-Form
hat. „f!“ Notation bedeutet, dass jede Partition oder jedes Argument nur eine Form hat.

Abbildung 21 : Beispiel für QLF Partition. Form(p, f!), ArgForm(p, i, f!) sind QLF Partitionen.

25

Abbildung 22 : Beispiel für ArgType(p, i, a!), Arg(p, i, p‘), Number(p, a, n)

Die o.g. semantische Grammatik Regeln von semantischer Analyse in USP werden durch
folgende 4 Formeln definiert :

p ∈ +c∧Form(p,+f)
ArgType(p, i, +a)∧ArgForm(p, i, +f)

Arg(p, i, p’)∧ArgType(p, i, +a)∧p’ ∈ +c’
Number(p, +a, +n)

2.2.7.2 Ontology Unsupervised Semantic Parsing

Eine Schwachheit des USP Systems ist das „Sparse Data“, das „Sparse Data“ bezeichnet hier die
Information, die selten im Korpus vorkommt. „„Sparse Data“ führt zu niedriger Genauigkeit,
weil nicht genug Daten zur Verfügung stehen, um die Wahrscheinlichkeit des Ereignisses genau
abzuschätzen.“ [26] Onto USP ist die Erweiterung von USP und hat die Fähigkeit, die
Informationen zu strukturieren. Im Vergleich zu USP Onto USP führt eine Hierarchie
Clusteranalyse durch. Onto USP löst das Problem über das „Sparse Data“ durch das Hierarchie
Clusteranalyse.

In Abbildung 23 kann man erkennen, dass es eine Hierarchie zwischen den Clustern gibt. Ein
„object cluster“ entspricht einer semantischen Bedeutung z.B. ACQUIRE und enthält ein oder
einige „property cluster“ z.B. ACQUIRER. In „core form“ Cluster sind alle Variationen, die die
gleiche Bedeutung besitzen. In „property cluster“ sind die Argumente von Variationen aus dem
„core form“ Cluster. Mit der „IsPart“ Funktion wird die Hierarchie durch Verwendung einer
Regel erstellt. Die s.g. Regel ist :

x ∈ +p ∧ HasValue(x, +v)
e ∈ c ∧ SubExpr(x, e) ∧ x ∈ p ⇒ ∃1i.IsPart(c, i, p)

wobei :

• HasValue(s, v) : Sub-Form der Lambdaform hat dem Wert v.
• e ∈ c : in Cluster c gibt es Lambdaform e.
• SubExpr(s, e) : s ist eine Sub-Form einer Lambdaform.
• IsPart(c, i, p) : i-ste Eigenschaft Cluster p in Cluster c. Durch die Kombination der Sub-

Formen der Lambdaformen erzeugt diese Funktion.
26

Abbildung 23: Beispiel für Objekt und Eigenschaft Cluster. In „property cluster“ sind Argumentformen, Argumente
von Core Formen und Argument-Numbers.

27

3 Entwurf

Der natürliche Text wird von Stanford Parser und USP verarbeitet, die Ausgaben von USP
System sind die „*.parse“ und „*.mln“ Dateien, wobei die „*.parse“ Datei die semantische
Parser liefert und die „*.mln“ Datei einen Markov Logik Netzwerk liefert. Durch die Analyse
von diesen zwei Dateien wird eine Hierarchie für die Wörter erstellt. Danach werden diese
Wörter gefiltert und die Ausgaben von Produkten, Produkteigenschaften und die Werte der
Produkteigenschaften generiert.

Abbildung 24: Architektur für Extraktion von Produkten, Produkteigenschaften und Produkteigenschaftswerten.

28

3.1 Ausgabedatei für USP

Abbildung 25 : Ein Beispiel für eine MLN Datei

In der MLN Datei sind die semantischen Parser. Jeder Cluster besitzt eine eindeutige
Identifikation(Abk. ID), neben der Cluster ID ist eine Darstellung von Core Form. Eine
Darstellung von Core Form besteht aus einem Worttyp, dem Wort von Core Form und der
Anzahl(Count) von Core Form. Die Anzahl in der Darstellung von Core Form beschreibt, wie
viel mal das Wort in dem Dokument vorkommt. In dem Programm wird diese Anzahl vom
Cluster ClusterSum benannt. Unter der Zeile von Cluster ist die Beschreibung der Argumente
von dem Cluster, wenn das Wort die Beziehungen mit anderen Wörtern hat. Die Beschreibung
der Argumente von dem Cluster besitzt drei Zeilen, in der ersten Zeile ist der Argumenttyp, und
anschließend sind die Argument Nummer Identifikation und Anzahl von Argument Nummer zu
finden. In der zweiten Zeile ist die Beschreibung über Argumentform und die Beschreibung
besteht aus einer eindeutigen Identifikation, Argumentform und Anzahl der Argumentform. In
der dritten Zeile ist die Beschreibung über die benachbarten Wörter. Diese Beschreibung besteht
aus einer eindeutige Cluster ID von Core Form Word, der Darstellung von Core Form und die
Anzahl des Worts, und diese Anzahl beschreibt, wie viel mal das Wort als Nachbar vorkommt.
Z.B. 40:[(V:come):4]:1 bedeutet : Core Form Word „come“ besitzt Cluster ID 40, hat den Typ
„V“, kommt insgesamt 4 mal in dem Dokument vor und kommt 1 mal als Nachbar von Wort
„13“.

29

Abbildung 26 : Ein Beispiel für eine PARSE Datei

In der ersten Zeile der „parse“ Datei sind die Word ID und Wort zu finden. Eine Word
Identifikation ist eindeutig für jedes Wort, und die Darstellung von Wort ID ist
„DokumentID:AbschnittID:TokenID“. In der zweiten Zeile sind die eindeutige Cluster ID und
die Darstellung von Core Form. In der dritten Zeile sind die eindeutige Eltern-Wort ID,
eindeutige Cluster ID von Eltern-Wort und die Darstellung von Core Form. In der vierten Zeile
sind die Argumenttyp ID, eindeutige Argumentform ID und Argumentform.

Die „parse“ Datei und „*.mln“ Datei implizieren die Strukturen von Wörtern, weil jede Cluster-
ID in der „*.mln“ Datei mit einer oder mehren Cluster-ID durch eine oder mehre Beziehungen
verbindet, und jede Wort-ID in der „parse“ Datei mit einer eindeutigen Eltern-Wort-ID
verbindet. Mit Hilfe der Software „GVEdit“ wird eine „mln“ Datei als ein Wort Netz
visualisiert. Jeder Knoten entspricht einem Wort aus Core Form, jede Kante repräsentiert eine
Beziehung zwischen den zwei Wörtern und entspricht einer Argumentform. Folgende sind die
Graphische Darstellung von „mln“ Datei und für einen kleinen Text mit zwei Abschnitten.

30

Abbildung 27 : Beispiel für die graphische Darstellung von „mln“ Datei

3.2 Der erste Ansatz : Generierung der Regeln für
Informationsextraktion

Dieser Ansatz wurde von Betreuer Julian Eichhoff mit mir zusammen entwickelt. In [18] wählt
man die sehr oft vorkommenden Daten aus, damit mit der Hilfe von PMI und „Naive Bayes
Classifier“ die Regeln für die Informationsextraktion generiert werden. Die Idee ist ähnlich.
Durch die Analyse der Beziehungen zwischen den Wörtern werden einige Regeln generiert,
damit das Produkt und die Produkteigenschaft zuerst extrahiert werden können. Um die „mln“
Datei zu analysieren, habe ich die Software WEKA benutzt. WEKA(mehr sehen [27]) ist ein
Data Mining Software und sammelt viele Maschinenlernen Algorithmus für die Aufgaben von
Data Mining. Ich habe 300 Daten benutzt, um die Regeln für die Informationsextraktion zu
finden. Die Annahmen sind :

• Die sehr oft vorkommenden, gefundenen Wörter sind Produkteigenschaft, weil
verschiedene Produkte sehr möglich die gleiche Produkteigenschaft haben.

• Die Produkteigenschaft bindet direkt mit Produkt und Produkteigenschaftswert bindet
direkt mit Produkteigenschaft

• Produkteigenschaft sind am meisten die Nomen
• Produkte sind Nomen
• Verb ist kein Produkt, keine Produkteigenschaft, kein Produkteigenschaftswert

mln

31

Die Regeln werden zwar schon gefunden, aber man muss die folgende Probleme lösen :

• Nach der Annahme, die sehr oft vorkommenden, gefundenen Wörter sind
Produkteigenschaft, s.g. „oft“ muss möglichst gut definiert werden.

• Wie bindet Produkteigenschaft mit Produkt? Wie bindet Produkteigenschaft mit
Produkteigenschaftswert? D.h. wie ist die Hierarchie der Wörter?

• Die Regeln, die mit der Hilfe von WEKA generiert werden, gelten theoretisch nur für die
Daten, die in WEKA eingesetzt werden.

Um die Regeln zu generieren, muss man die Dateien in ein Eingabeformat von WEKA
umwandeln. Die Eingabe für „EKA ist „*.arff“ Datei. In einer „*.arff“ Datei werden die
Instanzen und die Attribute der Instanzen beschrieben. D.h. eine „*.arff“ Datei stellt eine
Datenmenge bereit. Die für ca. 300 Testdateien erzeugte „*.arff“ Datei ist ca. 200MB groß. Es
könnte viele irrelevante oder redundante Informationen für das Lernverfahren geben. [28] Eine
reduzierte „*.arff“ Datei ist ca. 2 MB und wird wieder als Eingabe für WEKA benutzt. Durch
Analyse des Ergebnisses von WEKA werden die Regeln für Informationsextraktion gestellt :

• Produkteigenschaften sind am meisten Nomen.
• Produkt ist Norm.
• Wenn ein Wort Worttyp „CD“ hat, ist das Wort sehr möglich ein

Produkteigenschaftswert.
• Wenn ein Wort Worttyp „V“ hat, ist das Wort kein Produkt, keine Produkteigenschaft

oder kein Produkteigenschaftswert.
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „amod“
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „appos“
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „num“
• Produkt und Produkteigenschaft sind in Verbindung mit Argumentform „nn“
• Produkt und Produkteigenschaft sind in Verbindung mit Einheiten

Nach der ersten Annahme sind die sehr oft vorkommenden gefundenen Wörter sind
Produkteigenschaft. Aber es ist immer schwierig zu lösen, wie kann man „sehr oft“ definieren.
Sei „sehr oft“ so dass, in jedem Text mindestens einmal der Begriff vorkommt. Viele
Eigenschaften werden ignoriert, weil nicht alle Produkteigenschaften in jedem Text
vorkommen. Sei „sehr oft“ für 300 Dateien 100, dann werden viele irrelevante Wörter
extrahiert.

Zwar werden die Regeln generiert, aber das Problem für die Unterscheidung zwischen Produkt
und Produkteigenschaft immer noch nicht gelöst. Das Problem geht darauf wieder zurück, eine
Hierarchie aufzubauen.

32

3.3 Der zweite Ansatz : Generierung der Hierarchie der
Wörter

Ein natürlicher Text wird mit Hilfe von USP bzw. OntoUSP in Markov Logik Netzwerk für die
Wörter umgewandelt. Ein MLN verknüpft Prädikatenlogik erster Stufe und Markov-Netze
miteinander. Deshalb kann das Wissen mittels der Regeln aus dem vorhandenen Wissen
Schlüsse inferieren. Eine Hierarchie der Wörter kann als die Abhängigkeiten zwischen den
Wörtern gesehen werden. Die Erstellung der Hierarchie kann als ein Problem für Bestimmung
der Abhängigkeiten zwischen den Wörtern gesehen werden. Die von USP System erzeugte
„*.mln“ Datei liefert einen Markov Logik Netzwerk bzw. ein Netz der Wörter. Die Idee geht
davon aus, dass durch die Analyse von „*.mln“ Datei bzw. von dem Netz der Wörter die
Abhängigkeiten bestimmt werden.

In Abbildung 11 wird die Ursache von Krebs beschreibt: wenn man raucht, leidet man an Krebs,
d.h. Rauchen führt zu Krebs. Die formale Darstellung für die Aussage „Rauchen führt zu Krebs“
ist ∀xSm(x) ⇒ Ca(x). Durch die Lambda Reduktion wird die Form gebildet : Sm(A) ⇒ Ca(A).
Die graphische Darstellungen sind :

Abbildung 28 : links ist die graphische Darstellung von Markov Logik Netzwerk. Rechts ist die gerichtete
graphische Darstellung, entspricht der graphische Darstellung von MLN.

Für jedes Paar von zwei Knoten entspricht die graphischen Darstellung von MLN einer
gerichteten graphischen Darstellung. Der Elternknoten repräsentiert Ursache und der
Kindknoten repräsentiert die Wirkung. Der Kindknoten wird aus den Elternknoten abgeleitet.
Mit anderen Worten, das Vorkommen der Kindknoten ist abhängig von dem Vorkommen der
Elternknoten. Das Problem von Extraktion von Produkten, Produkteigenschaften und
Produkteigenschaftswerten ist das Problem von Bestimmen der Abhängigkeit zwischen den
Knoten.

Abbildung 29 : Ein weiteres Beispiel für graphische Darstellung von „*.mln“ Datei

33

Ein gerichteter Graph besitzt auch eine Hierarchie. Elternknoten liegt in der höhen Ebene und
Kindknoten liegt eine Ebene niedriger. Eine Hierarchie ist illustriert in Abbildung 29. In dieser
Hierarchie kann der Elternknoten und Kindknoten in einer gleichen Klasse sein, und auch in
verschiedene Klasse sein. Aber die Klasse, in der die Kindknoten liegen, ist nicht höher als die
Klasse, in der die Elternknoten liegen. Z.B. „24“ und „Monitor“ gehören zu einer gleichen
Klasse, trotzdem ist „24“ ein Kindknoten.

Um die Idee zu erklären, werde ich die Definitionen und Annahme wiederholen :

• Ein Blatt ist ein Knoten, der keine Kindknoten hat.
• Ein Wurzel Knoten ist der Knoten, der keine Elternknoten hat.
• Die Blätter sind die Produkteigenschaftswerte.
• Die Produkteigenschaftswerte verbinden sich nicht mit Verb Wörtern.
• Die Elternknoten der Blätter sind Produkteigenschaften.
• Die Wurzel ist entweder ein Produkt oder ein Markenzeichen.
• Ein Produkt ist ein Nomen. Verb Wort ist kein Produkt, keine Produkteigenschaft, kein

Produkteigenschaftswert.

Die Idee ist :
• Bestimmen der Abhängigkeit zwischen den Blätter und ihren Eltern Knoten.
• Nach der Annahme werden die Blätter in die Menge vom Produkteigenschaftswert

hinzugefügt, und die direkten Elternknoten der Blätter werden in die Menge von
Produkteigenschaft hinzugefügt.

• Bestimmen der Abhängigkeit zwischen den Knoten.
• Während der Bestimmung der Abhängigkeiten wird die Hierarchie gleichzeitig erstellt.
• Nach der Annahme werden die Wurzel Knoten in die Menge von Produkt hinzugefügt.
• Nach der Annahme werden alle nicht Normen Wort werden gefiltert.

Im Vergleich zu den vorherigen Ansätzen, z.B. [8], [10], [11], [12] und [13], Die Extraktion von
Produkten, Produkteigenschaften und Produkteigenschaftswerten ist voll automatisch :

• Nur die Software für die Sprachanalyse ist erforderlich.
• Die Daten der Eingabe muss nicht mehr manuell markiert werden.
• Die Ontologie bzw. die Hierarchie der Wörter wird bei Analyse vom Netz der Wörter

erstellt.
• Dieses Text Mining Verfahren gilt für natürlichen Text und offene Domänen.

34

4 Implementierung

4.1 Generierung der Hierarchie durch Bestimmung der
Abhängigkeit von den Wörtern

Die Hauptaufgabe dieses Ansatzes ist die Bestimmung der Abhängigkeit zwischen dem Knoten,
damit eine Hierarchie der Wörter erstellt wird. Danach wird die Hierarchie verbessert,
schließlich werden die bestimmten Knoten in dem Graph gefiltert.

Einige Definitionen :
• Wenn ein Knoten Count und ClusterSum hat, kommt dieser Knoten aus dem Bereich

„Argumente von Core Form“ (siehe in der Abbildung 30). „apple“, „pro“ und „display“
haben Count und ClusterSum. „announce“ hat Clustersum aber kein „Count“.

• Cluster ID von Knoten aus dem Bereich „Argumente von Core Form“ wird CClusterID
genannt, ClusterSum von Knoten aus dem Bereich „Argumente von Core Form“ wird
CClusterSum genannt.

• CC = Count/CClusterSum

Abbildung 30 : Illustration für einige Definitionen

4.2 Vorverarbeitung

In diesem Schritt wird die Abhängigkeit zwischen den Blättern und Elternknoten bestimmt.
Wenn die Hierarchie zwischen den Blättern und Elternknoten festgelegt wird, können die
Produkteigenschaften und die Produkteigenschaftswerte nach der Annahmen in „property“
Menge hinzugefügt werden. Die Werte von CC werden für alle Knoten berechnet. Um die
Hierarchie in dem nächsten Schritt weiter zu erstellen, müssen die Werte von Count und
CClusterSum von Kindknoten und ClusterSum von Elternknoten aktualisiert werden.

4.2.1 Verschiedene Fälle

Um die Abhängigkeit zwischen den Knoten zu bestimmen, werden die folgende Situationen
betrachtet :

35

• Viele Knoten kommen nur einmal im Graph vor. Solche Knoten kommen im Graph vor,
genau dann wenn ihre Nachbarknoten im Graph vorkommen. Es gibt eine Ursachlichkeit
bzw. Abhängigkeit dazwischen.

• Manche Knoten kommen einige Male im Graph vor. Die Knoten kommen im Graph vor,
genau dann wenn ihre Nachbarknoten im Graphen vorkommen. Es gibt eine
Ursachlichkeit bzw. Abhängigkeit dazwischen.

• Manche Knoten kommen einige Male im Graph vor. Der Knoten kommt im Graph am
meisten zusammen mit ihrem Nachbarknoten vor. Es gibt eine Ursachlichkeit bzw.
Abhängigkeit dazwischen.

Abbildung 31 illustriert die o.g. Fälle :
• „1920x1080“ kommt vor, genau dann wenn „display“ vorkommt.
• „retina“ kommt vor, genau dann wenn „display“ vorkommt.
• wenn „ips“ vorkommt, kommt „display“ am meisten vor.

Abbildung 31 : Ein Teil von „*.mln“

4.2.2 Bestimmung der Abhängigkeit

CClusterSum und Count von „1920x1080“ sind 1. Das bedeutet :
• „1920x1080“ kommt nur einmal in diesem Text vor. „1920x1080“ kommt einmal als

Nachbarknoten von „display“ vor. Das Vorkommen von „1920x1080“ ist nur abhängig
von dem Vorkommen von „display“.

CClusterSum und Count von „retina“ sind 2. Das bedeutet :
• „retina“ kommt zweimal in diesem Text vor. „retina“ kommt zweimal als

Nachbarknoten von „display“ vor. Das Vorkommen von „retina“ ist nur abhängig von
dem Vorkommen von „display“.

Count von „ips“ ist 2 und CClusterSum von „ips“ ist 3. Das bedeutet :
• „ips“ kommt sehr oft zusammen mit dem Nachbarknoten „display“ vor. (Das Problem ist

hier, wie man „oft“ möglichst gut definieren kann. Das ist eine Arbeit für die Zukunft.
Hier wird die „oft“ als „Count/ClusterSum >=0.5” definiert)

Verallgemeinerte Bedeutung :

36

• CClusterSum = Count ⇒ Es gibt eine starke Abhängigkeit zwischen den Knoten. Wenn
die Knoten aus dem Bereich „Argumente von Core Form“ im Text vorkommen, genau
dann wenn ihre Nachbarknoten im Text vorkommen.

• CC>= 0.5 ⇒ Es gibt eine leichte Abhängigkeit zwischen den Knoten, die Abhängigkeit
ist noch nicht deutlich.

Nach o.g. Aussage wird die Hierarchie der Knoten bestimmt. Der Knoten mit CC=1, ist ein
Kindknoten von seinem Nachbarknoten. Abbildung 32 illustriert die Erstellung einer Hierarchie
durch die Bestimmung der Abhängigkeit zwischen den Knoten. Nach der Bestimmung der
Abhängigkeiten entstehen die Blätter in dem Graph. Der rote Knoten ist der Kindknoten und die
Knoten „display“ ist Elternknoten von Kindknoten.

Abbildung 32 : Oben ist die graphische Darstellung von Abbildung 31. Nach der Bestimmung der Abhängigkeiten
(CC=1) wird die graphische Darstellung (unten) erzeugt.

Nach o.g. Aussage wird der Knoten mit CC>=0.5 ausgewählt, weil es eine Abhängigkeit
zwischen den Knoten und ihren Nachbarknoten gibt. Aber die Abhängigkeit kann in dem Schritt
von Vorverarbeitung nicht bestimmt werden. In Abbildung 33 hat der grüne Knoten eine
Abhängigkeit mit „display“, aber die Abhängigkeit ist unklar. Die Knoten „imac“ und „feature“
sind die Nachbarknoten von „display“, es gibt jetzt noch keine Abhängigkeit dazwischen.

Abbildung 33 : Es gibt die Abhängigkeit zwischen Knoten „ips“ und „display“, aber die Abhängigkeit ist nicht
deutlich

37

4.2.3 Bestimmung von Produkteigenschaften und
Produkteigenschaftswerten

• Nach der Annahme sind alle Knoten, die Worttyp „V“ besitzt, keine Produkte, keine
Produkteigenschaften und keine Produkteigenschaftswerte.

• Nach der Annahme sind die Blätter die Produkteigenschaftswerten
• Nach der Annahme sind die Elternknoten der Blätter Produkteigenschaften
• Nach der Annahme allen Knoten, die mit Verb Wörtern sich verbinden, sind keine

Produkteigenschaftswerte.
• Wenn ein Cluster keine Kindcluster besitzt, z.B. „31“ in der Abbildung 34, sind die

entsprechenden Cluster Knoten die Blätter.

Abbildung 34 : Beispiel für die Darstellung von Blättern in „*.mln“, 31 ist ein Blatt und 30 ist kein Blatt.

Die gefundenen Knoten werden durch o.g. Annahmen gefiltert, schließlich werden die übrigen
Knoten in einer „property“ Menge hinzugefügt. Um die Produkteigenschaften und
Produkteigenschaftswerte in einer Menge zu unterscheiden, wird jedem Knoten ein Wert
zugewiesen, Produkteigenschaft entspricht den Wert 0 und Produkteigenschaftswert entspricht
Wert -10.

4.2.4 Aktualisierung der Werte von ClusterSum, Count und
CClusterSum

Wenn ein Knoten als Kindknoten oder Elternknoten benannt ist, bedeutet dies das, die
Abhängigkeit zwischen den Knoten und seinem Nachbarknoten bereit bestimmt ist.

• Der Knoten hat nur ein Blatt ⇒ ClusterSum = ClusterSum – Count, CClusterSum=0 und
Count=0.

• Der Knoten besitzt mehrere Knoten ⇒
o searchNode ist eine Funktion(aus java Code) und gibt eine Menge von WordID

zurück. Die WordID kommt aus der „*.parse“ Datei (sieh Abbildung 26). Ein
Knoten entspricht einem Wort, ein Wort kann mehre WordID haben, weil ein
Wort in einem Text einige Male vorkommt. Alle WordID von einem
Elternknoten mit einem bestimmten Kindknoten können durch searchNote
bestimmt werden und in einer Menge, die „processednode“ benannt, hinzugefügt
werden. Mit Hilfe von searchNode werden die WordID der Elternknoten von
allen Kindknoten berechnet. Die Menge „processednode“ enthaltet alle WordID
von Elternknoten, die die bestimmte Abhängigkeit mit Kindknoten haben.

38

o ClusterSum=Clustersum - |processednode| (Größe der Menge „processednode“).
o Count von jedem Kindknoten wird 0, d.h. Count=0.
o CClusterSum von jedem Kindknoten wird 0, d.h. CClusterSum=0

Sei WordID Menge vom Wort „display“ {000:0:003, 000:0:050}. Seien searchNode(retina,
display)={000:0:050}, searchNode(ips, display)={000:0:003, 000:0:050} und
searchNode(1920*1080, display)={000:0:050}, daraus folgt processednode={000:0:003,
000:0:050} und |processednode|=2.

Abbildung 35 : Ein Beispiel für die Aktualisierung der Werte von ClusterSum, Count und CClusterSum

Abbildung 36 : Pseudocode für searchNode. Wenn ein Wort A mit Cluster ID cid1 ein Eltern-Word B mit Cluster
ID cid2 hätte, dann wird die WordID von Knoten B in einer Menge WordIDSet hinzugefügt. Schließlich gibt die
Menge WordIDSet zurück.

In diesem Schritt werden alle Abhängigkeiten von den Knoten mit CC=1 bestimmt, und die
Produkteigenschaften und Produkteigenschaftswerte gefunden. Die Knoten mit CC>=0.5
werden auch ausgewählt, es gibt die Abhängigkeiten zwischen diesen Knoten und ihren
Nachbarknoten. Um die nicht deutlichen Abhängigkeiten zu bestimmen, müssen die Werte von
ClusterSum, Count und CClusterSum aktualisiert werden.

39

4.3 Bearbeitung der Knoten mit CC>=0.5

Nach der Aktualisierung der Werte von ClusterSum, Count und CClusterSum entstehen 4 Fälle,
durch die Analyse von diesen 4 Fällen werden die Abhängigkeiten bestimmt.

4.3.1 Vier Fälle

4.3.1.1 Der erste Fall

CClusterSum=0 und Count=0 Bedingung (1)

Sei initClusterSum ein niemals aktualisierte ClusterSum, d.h. der Wert kommt aus „*.mln“,
initCClusterSum sei ein niemals aktualisierte CClusterSum. d.h. der Wert kommt aus „*.mln“.
Die Abhängigkeit wird dadurch bestimmt :

• Solcher Fall tritt auf, wenn ein Knoten zu mehren Nachbarknoten gehört. Der Knoten,
der die Bedingung (1) erfüllt, ist ein Kindknoten von ihrem Nachbarknoten, d.h.
Nachbarknoten ist Elternknoten, z.B. „2560*1600“ in der Abbildung 37 und 38.

• Aber wenn initClusterSum = Count, ist die Abhängigkeit zwischen den Knoten anders.
Sei Knoten A besitzt einen initClusterSum Wert, und Knoten B besitzt einen Count
Wert. Die Bedingung „initClusterSum = Count“ bedeutet, dass Knoten A im Text
insgesamt n-mal vorkommt, und sein Nachbarknoten B auch n-mal vorkommt. Knoten B
kann mehr als n-mal im Text vorkommen. Mit anderen Worten, der Knoten A kommt in
einem Text vor, genau dann wenn Knoten B vorkommt, deshalb ist Knoten B ein
Elternknoten von seinem Nachbarknoten A, und sein Nachbarknoten A ist Kindknoten,
z.B. „imac“ in der Abbildung 37 und 38.

Abbildung 37 : „*.mln“ für den 1. Fall

40

Abbildung 38 : Ein Beispiel für den 1. Fall

4.3.1.2 Der zweite Fall

CClusterSum>0 und Count=0 Bedingung (2)

Wenn ein Knoten, der die Bedingung (2) erfüllt, im Text vorkommt, kommt ihr Nachbarknoten
auch vor.

Abbildung 39 : „*.mln“ für 2.Fall

Der Knoten „3:[(CD:13):4]:3“ und der Knoten „4:[(N:macbook):6]:5” erfüllen die Bedingung
(2), aber die Abhängigkeiten zwischen der Knoten „[(N:pro):5]“ und der Knoten
„3:[(CD:13):4]:3“ und der Knoten „4:[(N:macbook):6]:5” sind Unterschiedlich :

• Der Knoten „3:[(CD:13):4]:3” kommt im Text am meisten zusammen mit Knoten
„[(N:pro):5]“ vor. D.h. der Knoten „3:[(CD:13):4]:3“ zu mehren Nachbarknoten gehört.

• Der Knoten „[(N:pro):5]“ kommt im Text vor genau dann wenn der Knoten
„4:[(N:macbook):6]:5” vorkommt. Mit anderen Wort, es gibt eine starke Abhängigkeit

41

zwischen der Knoten „4:[(N:macbook):6]:5” und der Knoten „[(N:pro):5]“, d.h.
„4:[(N:macbook):6]:5” ist ein Elternknoten von „[(N:pro):5]“, und „[(N:pro):5]“ ist ein
Kindknoten.

Sei initClusterSum eine niemals aktualisierte ClusterSum, intCClusterSum eine niemals
aktualisierte CClusterSum. Die Abhängigkeit wird dadurch bestimmt :

• Wenn ein Knoten die Bedingung (2) erfüllt und initClusterSum>= initCClusterSum,
dann ist dieser Knoten ein Kindknoten von Nachbarknoten.

• Wenn ein Knoten Bedingung (2) erfüllt und initClusterSum<initCClusterSum, dann ist
dieser Knoten ein Elternknoten von Nachbarknoten.

Abbildung 40 : Ein Beispiel für 2.Fall

4.3.1.3 Der dritte Fall

CClusterSum=0 und Count>0 Bedingung (3)

Wenn ein Knoten, der die Bedingung (3) erfüllt, im Text vorkommt, kommt ihr Nachbarknoten
auch vor.

Abbildung 41 : „*.mln“ für 3.Fall

42

Abbildung 42 : Ein Beispiel für 3.Fall

4.3.1.4 Der vierte Fall

CClusterSum>0 und Count>0 Bedingung (4)

Wenn ein Knoten A nur einen Nachbarknoten B, der die Bedingung (4) erfüllt, hat, dann ist
Knoten A ein Kindknoten von Knoten B und B ist ein Elternknoten. Wenn ein Knoten mehrere
Nachbarknoten hat, welche die Bedingung (4) erfüllen können, wird dieser Knoten im nächsten
Schritt weiter verarbeitet.

Abbildung 43 : „*.mln“ für 4.Fall

Abbildung 44 : Ein Beispiel für die Bestimmung der Abhängigkeiten. Links ist die Graphische Darstellung für ein
Cluster, rechts ist eine Tabelle für ClusterSum, ClusterSum und Count.

43

In der Abbildung 44, die Abhängigkeiten zwischen „take“ und „except“ sowie „wrap“ werden in
Vorverarbeitungsschritt bestimmt, die Abhängigkeiten zwischen „take“ und „pro“ wird nach der
Bedingung (3) bestimmt, und die Abhängigkeiten zwischen „take“ und „apple“ wird nach der
Bedingung (4) bestimmt.

4.3.2 Aktualisierung der Werte von ClusterSum, Count und
CClusterSum

Der Verfahren der Aktualisierung der Werte von ClusterSum, Count und CClusterSum ist gleich
wie der Fall „Der Knoten besitzt mehrere Knoten“ in 4.2.4.

4.4 Verarbeitung der Konten mit CC<0.5

4.4.1 Bestimmung der Abhängigkeit

Bis jetzt kann die Abhängigkeit zwischen den Knoten und ihren Nachbarknoten mit CC>=0.5
bestimmt werden. Es gibt einige Knoten mit CC<0.5. Die Idee für die Verarbeitung von dem
Knoten mit CC<0.5 ist : man aktualisiert die Werte von Count, CClusterSum und ClusterSum
bis zu CC Wert>=0.5, damit die vorherige Ansätze wieder verwendbar sind.

Abbildung 45 : ein Beispiel für die Bestimmung der Abhängigkeiten. Links ist die Graphische Darstellung für ein
Cluster, rechts ist eine Tabelle für ClusterSum, ClusterSum und Count.

44

„display“, „new“ und „retina“ besitzt den Wert CC>0.5, durch maximal zwei Aktualisierung der
Werten ClusterSum, ClusterSum und Count werden die CC Werte bis zu kleiner gleich 0.5
reduziert.

Schließlich gibt es keine Knoten mit CC<0.5. Wenn es keine Knoten mit CC<0.5 gibt, wird die
Hierarchie der Knoten erstellt. Ein ungerichteter Graph in einen gerichteten Graph
umgewandelt.

Das Verfahren von der Aktualisierung der Werte von ClusterSum, Count und CClusterSum ist
gleich wie der Fall „Der Knoten besitzt mehre Knoten“ in 4.2.4.

4.4.2 Aktualisierung der Werte von ClusterSum, Count und
CClusterSum

Im Vorverarbeitungsschritt werden die CC Werte berechnet. Wenn der CC Wert größer gleich
0.5 ist, dann werden entsprechende Knoten in mnm(Merged Node Map) hinzugefügt, die
aktualisierten Werte von ClusterSum werden in mergedmap_c2s hinzugefügt und die
aktualisierter Werte von CClusterSum und Count werden in mergedmap_c2cnsc hinzugefügt.

Einige Definitionen :
• mnm : LinkedHashMap ClusterID = [ClusterID, die entsprechende Knoten mit CC>=0.5]
• mergedmap_c2s : LinkedHashMap ClusterID = neuer ClusterSum
• mergedmap_c2cnsc : LinkedHashMap ClusterID = [ClusterID!neuer ClusterSum!neue

Count]

Aktualisierung der Werte von ClusterSum, Count und CClusterSum für die Knoten mit CC≠1
werden dadurch erlegdigt, mnm, mergedmap_c2cnsc und mergedmap_c2cnsc zu aktualisieren.

• Geht von mergedmap_c2s aus. Wenn CC Wert größer gleich 0.5, dann wird
entsprechende Knoten in mnm hinzugefügt. Bemerkung : Die Bedingung (n2sum != 0
&& n2count != 0) implementiert 4. Fall in 4.2.2.1. Nur die Knoten, die 4. Fall erfüllt,
werden verarbeitet, weil die Abhängigkeiten von anderen Knoten schon festgelegt
werden.

Abbildung 46 : Pseudocode für Berechnung von CC Wert und mnm

• Geht von mergedmap_c2s aus, wenn der Knoten kein Blatt ist, wird die Menge von
„processednode“ mithilfe der Funktion searchNode berechnet. Die Größe der Menge

45

von „processednode“ beschreibt, wie viele Abhängigkeiten zwischen diesem Knoten und
anderen Knoten schon bestimmt werden. Die originale ClusterSum minus Anzahl von
festgelegten Abhängigkeiten ist neue ClusterSum bzw. CClusterSum.

Abbildung 47 : Pseudocode für Berechnung von neuer ClusterSum

• Geht von mergedmap_c2cnsc aus, neu Count ist alter Count Wert minus die Anzahl der
festgelegten Abhängigkeiten. Nur die Knoten, die 4. Fall erfüllt, werden verarbeitet, weil
die Abhängigkeiten von anderen Knoten schon festgelegt werden.

Abbildung 48 : Pseudocode für Berechnung von neuem Count

4.5 Verbessern die Hierarchie

Zwar werden die Abhängigkeiten bis jetzt schon bestimmt, aber es gibt immer noch einige
Fehler. Mit folgenden Funktionen werden die Fehler korrigiert.

Abbildung 49 : Beispiel für eine falsche Bestimmung der Abhängigkeit zwischen den Knoten

• Wenn ein Verb Wort die Abhängigkeiten zwischen den Normen hat und eine
Abhängigkeit „nn“ zwischen den Normen besteht. Dann werden die Abhängigkeit
zwischen Verb und Norm, die als einen Kindknoten repräsentiert wird, gelöscht. Der
Grund für die Korrektur der Abhängigkeit ist : „nn“ Abhängigkeit ist stärker als die
Abhängigkeit zwischen Verb und Norm. Um die Korrektur zu realisieren, muss zuerst
das Wort Verb gefunden werden. Danach werden alle Kindknoten von Verb
durchgelesen, um die die Beziehung zwischen den Kindknoten festzulegen. Der
Kindknoten A sei Elternknoten von Kindknoten B. Wenn die Beziehung zwischen den

46

Knoten A und Knoten B „nn“ ist, wird die Anhängigkeit zwischen Verb und Knoten B
gelöscht.

Abbildung 50 : Beispiel für eine Korrektur der Abhängigkeit

• Wenn die Knoten die in Abbildung 51 dargestellte Beziehung haben und Knoten A hat
keine Beziehungen mit anderen Knoten, wird die Abhängigkeit zwischen den Knoten
korrigiert. Diese Abbildung 51 illustriert einen solchen Fall.

Abbildung 51 : Beispiel für Korrektur der Abhängigkeit

Um die Korrektur zu realisieren, muss zuerst den Knoten A gefunden werden. Danach
werden die Argumentform von Knoten A bestimmt. Alle Elternknoten von Knoten C
werden durchgelesen. Wenn ein Elternknoten von Knoten C ein Verb ist, korrigiert das
Programm die Abhängigkeit von „A->C“ in „C->A“. Die Gründe der Korrektur sind : A
ist ein Objekt und gehört zu einem Subjekt. Ein Elternknoten hat Einfluss auf die
Kindknoten, aber die Elternknoten von dem Elternknoten keinen Einfluss auf die
Kindknoten. Das heißt, wenn die Abhängigkeit zwischen Knoten A und C sich ändern,
gibt es keinen Einfluss auf die Abhängigkeit zwischen Knoten B und seine
Nachbarknoten.

• Wenn die Knoten die in Abbildung 52 dargestellte Beziehung haben, dann wird die
Abhängigkeit korrigiert. Knoten V1 ist ein Kindknoten von Knoten root und Knoten root
hat keine anderen Nachbarknoten, soll Knoten V3 keinen Einfluss auf Knoten root
haben. Mit anderem Wort, das Vorkommen von Knoten root ist abhängig von dem
Vorkommen von Knoten V1. Abbildung 52 illustriert die Korrektur.

47

Abbildung 52 : Beispiel für Korrektur der Abhängigkeit

Nun sind die Abhängigkeiten zwischen den Knoten festgelegt. Aber es könnte jedoch noch
Zyklen auftreten. Eine Hierarchie muss ein Baum oder ein gerichteter azyklischer Graph sein.
Daher müssen mögliche Zyklen entfernt werden. Bindet ein Verb zwei Knoten, die
Abhängigkeit bereits bestimmt wurde, führt dies zu einer Zyklus. Um den Zyklus zu entfernen,
muss zuerst der Zyklus gefunden werden, danach wird die Abhängigkeit zwischen dem Verb
und seinem Kindknoten entfernt. Abbildung 53 53 illustriert die Korrektur.

Abbildung 54: Beispiel für die Entfernung eines Zyklus

Durch o.g. Verfahren wird die Hierarchie korrigiert. Um eine bessere Hierarchie zu erhalten, ist
eine Erweiterung erforderlich. Einige Regeln, die in 3.3 generiert werden, kann man zum
Korrektur der Abhängigkeit benutzten. Aus meiner Erfahrung ist die Korrektur der
Abhängigkeit mit einzelnen Regeln, ist es möglich, dass die richtige Hierarchie falsch korrigiert
wird.

4.6 Filter

Alle gefundene Produkt, Produkteigenschaft und Produkteigenschaftswerte werden noch einmal
gefiltert, um die Klassifikation der Wörter zu verbessern.

• Einige Wörter, die als Produkteigenschaftswerte erkannt werden, sind keine
Produkteigenschaftswerte. Diese Wörter in der Hierarchie sind Kindknoten von
Produkteigenschaften, aber sie haben die Beziehung zwischen den diesen Kindknoten

48

und Produkteigenschaften, d.h. die Argumentform ist „nn“. Wenn die Wörter die
Argumentform „nn“ haben, sind die Wörter eine Nominalphrase. Das heißt, wenn die
Elternknoten eine Produkteigenschaft ist, ist die Kindknoten nicht ein
Produkteigenschaftswert sondern eine Produkteigenschaft, weil die Nominalphrase aus
diesen Wörtern besteht. Es geht von Eigenschaftswert in „property“ Menge aus, wenn
das Wort des Eigenschaftswerts mit seinem Elternknoten die Argumentform „nn“ hat,
dann wird das Wort des Eigenschaftswerts als Eigenschaft korrigiert. Abbildung 54
illustriert das Verfahre von Filter.

Abbildung 55 : Beispiel für den Filter

• Wenn die Beziehung, ausgehend von der „root“ Menge, zwischen einer Wurzel und
seinem Kindknoten „nn“ ist und sein Kindknoten ein Kindknoten von einer anderen
Wurzel ist, gehört dieser Kindknoten gehört zu anderem Produkt. Abbildung 55
illustriert das Verfahre von Filter.

Abbildung 56 : Beispiel für den Filter

• Sei ein Knoten A ein Kindknoten von einer Wurzel B. Im Pfad von Knoten A bis zur
Wurzel C gibt es mehrere Verben. D.h. Knoten B ist ein Kindknoten von einer anderen
Wurzel, d.h. dieser Kindknoten gehört zu einem anderen Produkt. Abbildung 56
illustriert das Verfahre des Filterns.

49

Abbildung 57 : Beispiel für den Filter

• Einige Wörter, die als Produkte erkannt werden, sind keine Produkte. Diese Wörter in
der Hierarchie sind Wurzel Knoten, haben aber eine Beziehung „conj_and“ oder
„conj_or“ zwischen den Wörtern und ihre Kindknoten(d.h. die Argumentform ist
„conj_and“ oder „conj_or“). Wenn ihre Kindknoten Produkteigenschaften sind, ist es
möglich, dass die Wurzel Knoten ebenfalls Produkteigenschaft sind. Wenn ein
Kindknoten einer Wurzel, ausgehend von einer Wurzel Menge aus, eine
Produkteigenschaft ist, dann wird diese Wurzel als Produkteigenschaft bezeichnet.
Abbildung 57 illustriert das Verfahre des Filterns.

Abbildung 58 : Beispiel für den Filter

Der Filter hat keinen Einfluss auf die Änderung der Hierarchie, deshalb hat die Korrektheit der
Hierarchie einen großen Einfluss auf die Filter. Wenn das Produkt, Produkteigenschaft und
Produkteigenschaftswert nicht richtig erkannt werden, werden die Ergebnisse von Filter auch
nicht exakt.

4.7 Ausgaben Filter

Einige Wurzel Knoten keine Normen sind. Nach der Annahme in 3.3 werden alle Wörter, die
keine Normen sind, gefiltert.

50

5 Experiment

39 Daten werden zum Testen benutzt. Diese Texte kommen aus einem Website. Diese Texte
sind über elektronische Geräte, z.B. Tablets, Notebook, HIFI. Die System Anforderung von
USP ist sehr hoch, deshalb werden die kurze Texts ausgewählt. In einer Hierarchie der Wurzel
ist eine Kategorie, wie Wurzel „Tablet“ ist Kategorie von „Windows 8 Tablet“. Wenn eine
Kategorie von einem Produkt finden, dann wird dieses Produkt richtig gefunden. Wie in
Abbildung 58 gezeigt, wenn Knoten A als Produkt erkennt, dann wird das Produkt A gefunden.
Wie ein Produkt richtig darstellt wird, ist eine Aufgabe für die Zukunft.

Abbildung 59 : Eine Darstellung für ein Produkt, sei der Produktname „BAC“, „A“ repräsentiert eine Kategorie

Die Genauigkeit von Produkt, Produkteigenschaft und Produkteigenschaftswert werden in der
folgenden Abbildungen gegeben. Die Genauigkeit beschreibt den Anteil von relevanten Wörtern
an der Menge von gefundenen Wörtern :

𝑃 =
relevante Wörter
gefundene Wörter

51

Abbildung 60 : Genauigkeit für die Extraktion von Produkt ohne Filter, X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten.

Abbildung 61 : Genauigkeit für die Extraktion von Produkt mit Filter. X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839

Genauigkeit für die Extraktion von Produkt
ohne Filter

Genauigkeit für die Extraktion von Produkt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839

Genauigkeit für die Extraktion von Produkt
mit Filter

Genauigkeit für die Extraktion von Produkt

52

In Abbildung 59 ist die Genauigkeit für die Extraktion von Produkten ohne Filter dargestellt.
Die durchschnittliche Genauigkeit beträgt ca. 0.3627. In der Abbildung 60 ist die Genauigkeit
für die Extraktion von Produkt mit Filter dargestellt. Die durchschnittliche Genauigkeit beträgt
ca. 0.4984. Durch die Verwendung von verschiedenen Filtern wird die Genauigkeit auf ca. 37.4%
erhöht. Aus den zwei Abbildungen kann man erkennen, dass ein guter Filter die Genauigkeit
erhöhen kann. Jedoch ist es auch möglich, dass gebrauchte Wörter gefiltert werden, z.B. : Test
Data 22 und Test Data 29. In dem Programm wird eine Abfolge der Randbedingungen benutzt.
Ein „Voting Algorithmus“ wäre ein Vorschlag für zukünftige Arbeiten.

Abbildung 62 : Genauigkeit für die Extraktion von Produkteigenschaft. X-Achse: die Nummer von Text Data, Y-
Achse : die Genauigkeiten.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839

Genauigkeit für die Extraktion von
Produkteigenschaft

Genauigkeit für die Extraktion von Produkteigenschaft

53

Abbildung 63 (aus [29]): Genauigkeit für die Extraktion von Produkteigenschaft. X-Achse: sind die Typen von
Text Data, Y-Achse: die Genauigkeiten.

Abbildung 64 : Genauigkeit für die Extraktion von Produkteigenschaftswert. X-Achse: die Nummer von Text Data,
Y-Achse : die Genauigkeiten

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Digital camera MP3 Player LCD TV Mittelwert

Der Mittelwert der Produkteigenschaft

Der Mittelwert der
Produkteigenschaft

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839

Genauigkeit für die Extraktion von
Produkteigenschaftswert

Genauigkeit für die Extraktion von Produkteigenschaftswert

54

Der Mittelwert der Genauigkeit der Produkteigenschaft ist ca. 0.6467 und der Mittelwert der
Genauigkeit Produkteigenschaftswert ist ca. 0.6344. Die beiden Genauigkeiten sind nicht sehr
hoch, weil einerseits viele irrelevante Wörter nicht gefiltert werden, anderseits die Wörter nicht
vollständig klassifiziert werden. In [29] wird ein nicht-überwachte Verfahren für die
Normalisierung der Produkteigenschaften vorgestellt. Im Vergleich zu dem Ergebnis aus [29],
ist der Mittelwert der Genauigkeit der Extraktion von Produkteigenschaften ca. 0.68. Zwar ist
der Mittelwert der Genauigkeit nicht höher als der Mittelwert der Genauigkeit in [29], aber das
Verfahren in dieser Diplomarbeit ist voll automatisch und unabhängig von dem Format des
Text, mithilfe der Erweiterung ist die Verbesserung der Genauigkeit ebenfalls möglich.

Aus den Ergebnissen des Experiments kann die Schlussfolgerungen gezogen werden. Die
Extraktion von den Informationen über die Produkte aus einem natürlichen Text ist sehr
komplex, weil es in einem natürlichen Text viele irrelevante Wörter über die Produkte gibt.
Während der Erstellung der Hierarchie werden die irrelevanten Informationen in dem Programm
nicht gefiltert. Einige irrelevante Informationen werden mit Filtern gefiltert. Aber es gibt immer
noch einige irrelevante Informationen, welche den stärkeren Einfluss auf den Genauigkeiten für
die Extraktionen von Produkteigenschaften und Produkteigenschaftswerten haben. Wenn die
Hierarchie eines Texts sehr gut aufgebaut wird, dann ist die Genauigkeit für die Extraktion von
Produkt sehr hoch. Wenn die irrelevanten Informationen möglichst entfernt werden können,
erhöht sich die Genauigkeit von Produkt, Produkteigenschaft und Produkteigenschaftswert.
Wenn es in einem natürliche Text mehre exakte Informationen über das Produkt als allgemeine
oder implizite Informationen gibt, ist die Genauigkeit von Produkteigenschaft und
Produkteigenschaftswert höher. In dem Programm wird eine Abfolge der Randbedingungen
benutzt. Ein „Voting“ Algorithmus entspannt die Randbedingungen, sodass es möglich ist, ein
Wort zu filtern, wenn es eine Randbedingung in dem Programm verletzt.

55

6 Zusammenfassung

Ein natürlicher Text wird mit der Hilfe von USP bzw. OntoUSP in eine MLN für die Wörter
umgewandelt. Ein MLN verknüpft Prädikatenlogik erster Stufe und Markov Netzwerk
miteinander. Deshalb kann das Wissen mittels der Regeln aus dem vorhandenen Wissen
Schlüsse inferieren. Die Korrektheit der Ergebnisse von „Standford Parse“ und USP hat starken
Einfluss auf die Schlussfolgerung. Durch die Analyse von MLN kann eine Hierarchie für die
Wörter erstellt werden. Die Hierarchie kann man verbessern. Zwar ist die Hierarchie nicht ideal,
aber das Produkt, die Produkteigenschaft und der Produkteigenschaftswert können extrahiert
werden. Im Vergleich zu anderen Ansätzen ist der Algorithmus, der in dieser Diplomarbeit
entwickelt wird, voll automatisch. Durch die Verbesserung der Hierarchie werden die
Genauigkeit der Informationsextraktion verbessert. Wenn die Hierarchie besser aufgebaut wird,
werden die mehrere richtige Informationen extrahiert. Bei der Verbesserung der Hierarchie ist
immer die Schwierigkeit, die Fehler aus den Ergebnissen von Standford Parse und USP System
zu korrigieren. Durch die Korrektur der Abhängigkeit wird die Hierarchie verbessert. Die
Korrektur ist meistens abhängig von syntaktischen Beziehungen, aber die richtige Korrektur
muss mit einer Kombination von syntaktischen Beziehungen durchgeführt werden. Beim Filter
werden die Ausgabe zu verbessern, führt keine mehr Korrektur von Abhängigkeit durch. Aus
den Ergebnissen der Experimente kennt man das, wenn die Wörter, die mit dem Produkt
irrelevant sind, gefiltert werden können oder die Hierarchie verbessert werden kann, wird die
Genauigkeit verbessert.

56

7 Ausblick

Durch Erstellung einer Hierarchie der Wörter werden die Produkte, Produkteigenschaften und
Produkteigenschaftswerte extrahiert, zwar ist die Genauigkeit nicht gut, aber es ist möglich zu
erweitern.

7.1 Nicht löschbare Probleme

• Wie Abbildung 4 und Abbildung 5 zeigt, gibt es immer noch Probleme. Für eine richtige
Erstellung einer Hierarchie der Wörter spielen Stanford Parse und USP System eine sehr
wichtige Rolle. Wenn die Stanford Parse und USP System falsche Ergebnisse liefert,
können die Fehler später nicht mehr korrigiert werden. In der Abbildung, „iMac“ ist eine
Konstitution von „13 Macbook Pro“. Stanford Parse liefert kein richtigen Ergebnis.
„iMac“ kann nicht als ein Produkt extrahiert werden, weil „iMac“ in „*.mln“ eine
Konstitution von „display“ ist. Deswegen wird diese Fehler während der Bestimmung
der Abhängigkeit nicht mehr korrigiert.

Abbildung 65 : Links ist die falsche Darstellung, rechts ist die richtige Darstellung.

• Wenn die Argumentform zwischen Kindknoten und Elternknoten „nn“ ist, dann ist die
Abhängigkeit zwischen den Knoten schwierig zu bestimmen.

Abbildung 66 : Beispiel für zwei Wörter, die Argumentform „nn“ haben.

57

Im Beispiel „thinkpad“ ist ein Argument von Core Form „twist“. Tatsächlich ist
„twist“ Serie von „thinkpad“, d.h. „thinkpad“ soll ein Elternknoten von „twist“ sein.
Solche Fehler sind sehr schwierig zu korrigieren.

7.2 löschbare Probleme

Wie in „4.5 Verbessern die Hierarchie“ gezeigt, dass es einige löschbare Probleme gibt.

• Wenn zwei Wurzeln oder zwei Elternknoten die gleichen Produkteigenschaften haben,
sind die zwei Knoten sehr möglich ein gleiches Produkt, z.B. „macbook“ und „device“.

• In dieser Diplomarbeit ist die Produkteigenschaft und Produkteigenschaftswert nur in
dem Schritt Vorverarbeitung extrahiert. Basiert auf den Knoten, die gefundene
Produkteigenschaft und Produkteigenschaftswert sind, können ihre Nachbarknoten
weiter unterschieden werden, ob das Wort Produkteigenschaft oder
Produkteigenschaftswert ist. Aber man muss bemerken, dass ein Elternknoten der
Produkteigenschaft eine Produkteigenschaft oder ein Produkt sein könnte, und ein
Elternknoten des Produkteigenschaftswerts ein Produkteigenschaft,
Produkteigenschaftswert oder ein Produkt sein könnte. Ein „Voting Algorithm“ könnte
hier eingesetzt werden.
Um die Produkteigenschaft und den Produkteigenschaftswert zu unterscheiden, kann
man die Regel für Informationsextraktion, die in 3.2 generiert wird, kann man benutzen.
Ein Voting Algorithm(mehr siehe 26) kann man benutzen, damit die Regeln bzw. die
Randbedingungen entspannt werden.

• Die erstellte Hierarchie kann durch Analyse von syntaktischen Beziehungen bzw.
Argumentformen verbessert werden. Zum Beispiel wenn Kindknoten und sein
Elternknoten die Argumentform „conj“ haben, dann könnte die Kindknoten als
Kindknoten von dem Elternknoten von seinem Elternknoten gesehen werden. Abbildung
67 illustriert die Verbesserung der Hierarchie.

Abbildung 67 : Die Verbesserung der Hierarchie mit Argumentform „conj“.

7.3 Arbeit für die Zukunft

In dieser Diplomarbeit wird die Bestimmung der Abhängigkeit eine Abfolge der Bedingungen
benutzt. Das heißt, wenn eine Bedingung verletzt, wird die Abhängigkeit falsch bestimmt.
Besser kann man den Voting Algorithmus benutzen, um die Hierarchie besser aufzubauen. Es

58

gibt viele Wörter, die irrelevant für Produkt aber nötig für einen natürlichen Text sind. Für die
zukünftige Arbeit ist es erwünscht, alle irrelevanten Wörter zu filtern. Alle in Kapitel 7.2
darstellte Probleme ist die Arbeit für die Zukunft. Dieser Diplomarbeit geht von der Analyse
von „*.mln“ Datei aus, während Aktualisierung der Werte von ClusterSum, CClusterSum und
Count wird die „*.parse“ Datei benutzt. Aber es ist vielleicht auch möglich, dass von
„*.parse“ Datei ausgeht, weil „*.parse“ Datei die Bäume Struktur impliziert.

7.4 Begrenzung der System-Anforderung

Die System-Anforderung ist sehr hoch. Beim Experiment von USP mit 2000 Testdaten hat ein
Rechner mit acht Cores (Intel Xeon 2.3GHz) benutzt, wenn die maximale Größe Heap von 20
GB eingestellt wird, dann braucht es 20 Minuten und 8 GB für 80 Minuten. Deshalb ist es
unmöglich, USP als App s in Web oder Server einzusetzen.

59

8 Literaturverzeichnis

[1] C. Zietzsch und N. Zänker, Text Mining und dessen Implementierung, Diplomica Verlag
GmbH, 2011, p. 12.

[2] A. Dreßler, Patente in Technologie-Orientierten Mergers & Acquisitions, 1. Auflage Hrsg.,
Der Deutsche Universitäts-Verlag, Juni 2006, p. 143.

[3] S. Noubours, „Computerlinguistik 13. Vorlesung,“ 21 01 2010. [Online]. Available:
http://www.ikp.uni-bonn.de/lehre/informationen-materialien/informationen-und-
materialien-kopho/materialien-1/schade/computerlinguistik/CL13%20F.pdf. [Zugriff am 01
05 2013].

[4] L. S. Zettlemoyer und C. Michael, „Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammers,“ 2005.

[5] R. J. Mooney, „Learning for Semantic Parsing,“ 2007.

[6] H. Poon und P. Domingos, „Unsupervised Ontology Induction from Text,“ 2006.

[7] H. Poon und P. Domingos, „Unsupervised Semantic Parsing,“ 2006.

[8] R. Ghani, K. Probst, Y. Liu, M. Krema und A. Fano, „Text Mining for Product Attribute
Extraction,“ 2006.

[9] D. Lin, „Dependency-based Evaluation of MINIPAR,“ 1998.

[10] A.-M. Popescu und O. Etzioni, „Extracting Product Features and Opinions from Reviews,“
2005.

[11] B. Farley, „Extracting information from free-text aircraft repair notes,“ Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, Bd. 15, Nr. ISSN:0890-
0604, pp. 295 - 305, September 2001.

[12] Z. Li und K. Ramani, „Ontology-based design information extraction and retrieval,“ 2007.

[13] Y. Liang, Y. Liu, C. K. Kwong und W. B. Lee, „Learning the "Whys": Discovering design
rationale using text mining—An algorithm perspective,“ Computer-Aided Design, Bd. 44,
Nr. j.cad.2011.08.002, p. 916–930, 10 2012.

60

[14] „The Stanford Parser: A statistical parser,“ [Online]. Available: http://www-
nlp.stanford.edu/software/lex-parser.shtml. [Zugriff am 05 Mai 2013].

[15] P. D. N. Schweikardt, „Vorlesung Skript für Diskrete Modellierung, Kapitel 5: Logik erster
Stufe,“ Wintersemester 2008/2009. [Online]. Available: http://www.tks.informatik.uni-
frankfurt.de/lehre/WS0809/DM/downloads/MOD-Skript-Teil2.pdf. [Zugriff am 02 05
2013].

[16] U. Schöning, Logik für Informatiker, Spektrum Akademischer Verlag, 2000, pp. 49 - 58.

[17] M. Richardson und P. Domingos, „Markov Logic Networks,“ Machine Learning, Bd. 62,
pp. 107-136, February 2006.

[18] H. Alshawi und J. v. Eijck, „Logical Forms In The Core Language Engine,“ 1989.

[19] G. v. Noord, „Quasi logical form,“ [Online]. Available:
http://www.let.rug.nl/~vannoord/papers/nle/node20.html. [Zugriff am 02 Mai 2013].

[20] D. Jurafsky und J. Martin, „Zusammenfassung Kapitel 15: Semantik, Teil 2,“ [Online].
Available: http://www.uni-
due.de/imperia/md/content/computerlinguistik/semantikkap15.pdf. [Zugriff am 02 Mai
2013].

[21] M. A. Al-Hames, „Graphische Modelle in der Mustererkennung,“ Juli 2007.

[22] R. Mikut und M. Reischl, „18. Workshop Comp Intelligence,“ pp. 5 - 7, Dezember 2008.

[23] X. Cong-Fu, H. Chun-Liang, S. Bao-Jun und L. Jun-Jie, „Research Progress in Markov
Logic Networks,“ April 2011.

[24] H. Poon, „Unsupervised Semantic Parsing,“ [Online]. Available:
http://research.microsoft.com/en-us/um/people/hoifung/talks/usp09.pdf. [Zugriff am 03 Mai
2013].

[25] S. Russel und P. Norvig, Künstliche Intelligenz, 3. aktualisierte Auflage Hrsg., PEARSON.

[26] W. Daelemans, „Memory-Based Language Processing. Introduction to the Special Issue,“
1999.

[27] I. H. Witten, E. Frank und M. A. Hall, Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann, 2011.

[28] I. H. Witten und E. Frank, Data Mining, Carl Hanser Verlag, 2001, p. 251.

61

[29] T.-L. Wong, L. Bing und W. Lam, Normalizing Web Product Attributes and Discovering,
2011.

62

Anhang A: Der Ergebnis von WEKA : (Aus diesem
Ergebnis werden die Regeln (in 3.2) für
Informationsextraktion generiert.)

63

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Erklärung

Stuttgart, 06.05.2013

Unterschrift:

	1 Einführung
	1.1 Ziel der Diplomarbeit
	1.2 Problem definieren

	2 Stand der Technik und Grundlagen
	2.1 Stand der Technik
	2.2 Grundlagen
	2.2.1 Stanford Parser
	2.2.2 Semantik Analyse
	2.2.3 Prädikatenlogik erster Stufe (Abk. PL1)
	2.2.4 Quasi-logische Form, POS Tagging und Lambda(-Kalkül) Notation
	2.2.4.1 Quasi-logische Form
	2.2.4.2 Lambda(-Kalkül) Notation
	2.2.4.3 POS Tagging

	2.2.5 Markov Logik Netzwerk (Abk. MLN)
	2.2.5.1 Markov Netzwerk (Abk. MN)
	2.2.5.2 Markov Logik Netzwerk (Abk. MLN)

	2.2.6 Clusteranalyse
	2.2.7 Unsupervised Semantic Parsing und Ontology Unsupervised Semantic Parsing
	2.2.7.1 Unsupervised Semantic Parsing
	2.2.7.2 Ontology Unsupervised Semantic Parsing

	3 Entwurf
	3.1 Ausgabedatei für USP
	3.2 Der erste Ansatz : Generierung der Regeln für Informationsextraktion
	3.3 Der zweite Ansatz : Generierung der Hierarchie der Wörter

	4 Implementierung
	4.1 Generierung der Hierarchie durch Bestimmung der Abhängigkeit von den Wörtern
	4.2 Vorverarbeitung
	4.2.1 Verschiedene Fälle
	4.2.2 Bestimmung der Abhängigkeit
	4.2.3 Bestimmung von Produkteigenschaften und Produkteigenschaftswerten
	4.2.4 Aktualisierung der Werte von ClusterSum, Count und CClusterSum

	4.3 Bearbeitung der Knoten mit CC>=0.5
	4.3.1 Vier Fälle
	4.3.1.1 Der erste Fall
	4.3.1.2 Der zweite Fall
	4.3.1.3 Der dritte Fall
	4.3.1.4 Der vierte Fall

	4.3.2 Aktualisierung der Werte von ClusterSum, Count und CClusterSum

	4.4 Verarbeitung der Konten mit CC<0.5
	4.4.1 Bestimmung der Abhängigkeit
	4.4.2 Aktualisierung der Werte von ClusterSum, Count und CClusterSum

	4.5 Verbessern die Hierarchie
	4.6 Filter
	4.7 Ausgaben Filter

	5 Experiment
	6 Zusammenfassung
	7 Ausblick
	7.1 Nicht löschbare Probleme
	7.2 löschbare Probleme
	7.3 Arbeit für die Zukunft
	7.4 Begrenzung der System-Anforderung

	8 Literaturverzeichnis

