
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3406

Verwendung von semantischen
Wikis zur Lösungsdokumentation

und Musteridentifikation

Daniel Andreas Kaupp

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Christoph Fehling
Johanna Barzen, M.A.

begonnen am: 19. Dezember 2012

beendet am: 5. Juli 2013

CR-Klassifikation: D.2.10, D.2.11, D.2.13, H.2.3, I.2.3

Inhaltsverzeichnis

1 Einleitung 9

2 Grundlagen und Verwandte Arbeiten 11
2.1 Grundlagen - Semantik . 11

2.1.1 Bedeutung von Daten . 11

2.1.2 Strukturierung der Daten einer Domäne 12

2.1.3 RDF/RDFS - Resource Description Framework und RDF Schema . . . 16

2.1.4 OWL - Web Ontology Language . 20

2.1.5 Abfragesprache SPARQL . 21

2.1.6 Semantische Wikis . 23

2.2 Grundlagen - Muster . 24

2.2.1 Muster nach Christopher Alexander . 24

2.2.2 Muster in der Informatik . 25

2.3 Kostüme im Film . 25

2.4 Muster-Identifikationsprozesse . 27

2.4.1 Identifikationsprozesse bei Cloud-Computing Patterns 27

2.4.2 Der Pattern Evolution Process . 28

2.4.3 Muster für Muster - Die Sprache des Hirten 29

3 Konzept zur Erfassung einer Musterdomäne 31
3.1 Identifikationsprozesse in der Kostümdomäne 31

3.1.1 Zugrundeliegendes Rollenmodell . 31

3.1.2 Der Muster-Identifikationsprozess . 34

3.2 Modellierung der Kostümdomäne . 39

3.2.1 Domänenmodellierung . 39

3.2.2 Erfassung des Domänenwissens . 41

3.2.3 Struktur des Wikis . 42

3.2.4 Taxonomie-Import ins Wiki . 43

3.2.5 Lösungsdokumentation und Eingabemodelle 44

3.2.6 Informationen aus dem Wiki auswerten 46

3.2.7 Teilautomatisierter Patternidentifikationsprozess 48

3

4 Anforderungen durch die Kostümdomäne 53
4.1 Domänenmodellierung . 53

4.2 Integration ins Wiki . 55

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne 57
5.1 Auswahl des Wikis . 57

5.2 Verwendete Technologien . 59

5.2.1 Apache HTTP Server . 59

5.2.2 MySQL . 59

5.2.3 PHP: Hypertext Preprocessor (PHP) . 59

5.2.4 JavaScript . 61

5.2.5 Asynchronous JavaScript and XML (Ajax) 62

5.2.6 Cascading Style Sheets (CSS) . 62

5.2.7 Java . 63

5.3 DataWiki . 63

5.3.1 MediaWiki (MW) . 63

5.3.2 Erweiterung: Semantic MediaWiki (SMW) 63

5.3.3 Erweiterung: Halo . 63

5.3.4 Erweiterung: Semantic Result Formats 64

5.3.5 Erweiterung: WYSIWYG . 64

5.3.6 Erweiterung: Semantic Drilldown . 64

5.3.7 Erweiterung: Validator . 64

5.3.8 Erweiterung: Enhanced Retrieval . 65

5.3.9 Erweiterung: SemanticForms (SF) . 65

5.3.10 Erweiterung: SF Select (SFS) . 66

5.3.11 DIQA Triplestore Basic . 67

5.4 Anpassung und Anwendung . 68

5.4.1 Einrichtung . 68

5.4.2 Erweiterungen . 69

5.4.3 Wiki-Bot Implementierungen . 70

5.4.4 Vorlagen und Formulare . 72

6 Zusammenfassung und Ausblick 77
6.1 Zusammenfassung . 77

6.2 Ausblick . 77

Literaturverzeichnis 79

4

Abbildungsverzeichnis

2.1 Daten eines Personalausweises. Quelle: BMI (Bundesministerium des Inneren) 13

2.2 Zusammenhang zwischen Klassen und Instanzen 13

2.3 Personendaten als Datenbankeinträge . 16

2.4 Mögliche Verteilung von Daten, Zeile um Zeile 17

2.5 Mögliche Verteilung von Daten, Spalte um Spalte 17

2.6 Mögliche Verteilung von Daten, Zellenweise . 18

2.7 Graph aus zusammengefügten Daten . 18

2.8 Anforderungen an ein Informationssystem, angelehnt an [SBLE12] 26

3.1 Das Rollenmodell in der Kostümdomäne . 32

3.2 Eigenschaften und Format eines Patterns angelehnt an [SBLE12, Abschnitt 5,
S. 12] . 35

3.3 Der Pattern-Identifikationsprozess in der Kostümdomäne, angeleht an [Ba13] . 37

3.4 Ausschnitt aus der Basiselemente-Taxonomie aus [Ba13] 39

3.5 Kostüme als UML-Klassendiagramm . 40

3.6 Schematische Übersicht Triplestore . 47

5.1 Formular, Formulardefinition, Vorlage und semantische Attribute einer Einga-
be von SemanticForms . 66

5.2 SF Ontology Select (SFOS) Darstellung für die Basiselement-Auswahl 70

5.3 SFOS Darstellung für die Material-Eigenschaft 71

5.4 Abfrageergebnis zur CLIQUE mit Wert 7 . 73

5.5 Graph für Wert 7 mit eingefärbten CLIQUEN 73

Verzeichnis der Listings

2.1 Abfrage nach Städten in Deutschland . 21

5

2.2 Abfrage nach Attribut „liegtIn“ . 21

2.3 Abfrage nach Attribut „liegtIn“ mit Eingrenzung Stadt 22

2.4 Abfrage nach Geburtsdaten in Europa nach 1970 22

3.1 Abfrage um Ähnlichkeit zwischen 2 Kostümen zu erhalten 49

5.1 Vorlage: Neues Kostüm erstellen . 73

Verzeichnis der Algorithmen

3.1 Algorithmus zum Auffinden der maximalen CLIQUE 52

6

Abkürzungsverzeichnis

AIFB Institut für angewandte Informatik und formale Beschreibungsverfahren

Ajax Asynchronous JavaScript and XML

API Application Programming Interface

CSS Cascading Style Sheets

DAML DARPA Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DIQA DIQA Projektmanagement GmbH

DOM Document Object Model

DV Datenverarbeitung

FIFO First In First Out

GoF Gang of Four

GPL General Public License

HTML Hypertext Markup Language

HTTP Hypertext Tansfer Protocol

IETF Internet Engineering Task Force

JSON JavaScript Object Notation

KIT Karlsruher Institut für Technologie

MW MediaWiki

MVC Model-View-Controller

OIL Ontology Inference Layer

OWL Web Ontology Language

PHP PHP: Hypertext Preprocessor

7

Verzeichnis der Algorithmen

PLoP Pattern Language of Programs

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RFC Request for Comments

SF SemanticForms

SFS SF Select

SFOS SF Ontology Select

SMW Semantic MediaWiki

SMW+ Semantic MediaWiki Plus

SPARQL SPARQL Protocol And RDF Query Language

SPARUL SPARQL Update Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XML eXtended Markup Language

8

1 Einleitung

„Wissen ist Macht!“ Diese alte Weisheit gilt heute mehr denn je. Das Informationszeitalter ist
geprägt durch Wissen und seine Verarbeitung. Viele Berufsbilder befassen sich ausschließlich
mit der Verarbeitung von Daten. Die Flut von Informationen, die in der heutigen Welt
generiert werden ist bei weitem zu groß, als dass ein einzelner Mensch sie verarbeiten
könnte.
Das führt dazu, dass Menschen sich vor Informationen schützen müssen: In früheren Jahr-
hunderten breiteten sich Informationen mit der Geschwindigkeit des Menschen aus. Damals
war es so, dass Informationen die jemanden erreichten auch zumindest in dessen mittelbarem
Umfeld relevant waren. Mittlerweile fällt es schwer die Zeit zu messen, die eine Information
braucht, um den Erdball zu umrunden. Die Welt ist zum mittelbaren Umfeld geworden und
die Informationen der Welt strömen auf jeden Menschen ein. Doch diese Informationen sind
bei weitem nicht alle relevant. Deutlich wird dies schon am eigenen E-Mail Posteingang:
Wie viel Prozent unserer E-Mails sind relevant? Und das sind nur Nachrichten, deren mehr
oder weniger intendierter Empfänger wir sind. Eine Filterung der Informationen ist also
unerlässlich, um irrelevante Inhalte auszublenden.
Auf der anderen Seite gehen sicher auch viele Informationen an uns vorbei, ohne dass wir
sie wahrnehmen. Die Chance, dass etwas dabei ist was für uns relevant gewesen wäre, ist
recht groß. Ein großer Anreiz an sozialen Netzwerken ist sicherlich das einfache „Teilen“
von Inhalten, die die eigenen Freunde unbedingt sehen sollten.
Was wäre, wenn diese Filtersysteme tatsächlich beides könnten? Irrelevante Informatio-
nen ausblenden und alle relevanten Informationen weiterreichen? Tim Berners-Lee hat
diese Vision im Artikel: „The Semantic Web“[BLHL01] in Form von „Agenten“ vorgestellt.
Computerprogramme haben eine reele Chance mit der Fülle an Daten fertig zu werden.
Doch das allein reicht nicht aus: Sie müssen auch verstehen was wichtig ist und was nicht.
Man muss die Bedeutung der Informationen mittragen, damit daraus verwertbares Wissen
wird. Während diese Idee in den letzten 12 Jahren bereits Zeit hatte, die IT und IT-nahen
Fachgebiete zu durchdringen, nähern sich die Geisteswissenschaften erst jetzt nach und nach
an.
Das Schlagwort dieser neuen Bewegung lautet „Digital Humanities“. Um den vollen Mehr-
wert aus einer Digitalisierung eines geisteswissenschaftlichen Fachgebiets zu gewinnen, ist
es ratsam nicht nur Daten, sondern Wissen - also Information mitsamt ihrer Bedeutung - zu

9

1 Einleitung

erfassen.
Bei einer Vorsortierung des Wissens eines Fachgebiets treten oft Strukturen hervor, die bei
der Gestaltung einer geeigneten Wissensrepräsentation helfen und darüber hinaus auch mit
geringem Adaptionsaufwand auf Strukturen der Informatik umgemünzt werden können.
Ein Beispiel für solche Strukturen sind Entwurfsmuster (engl.: Pattern). Daten, die nach
einem Entwurfsmuster aufgebaut sind, werden in dieser Arbeit mit dem Begriff „Lösungen“
bezeichnet.
Die Informatik hat für solche Strukturen Methoden und Werkzeuge, die eine Eingabe,
Konservierung, Verarbeitung und Ausgabe des Wissens ermöglichen. Daraus ergibt sich für
die Geisteswissenschaften mit geringem Adaptionsaufwand ein großer Mehrwert.

Ziel dieser Arbeit ist, das Fachwissen einer geisteswissenschaftlichen Disziplin in einem
semantischen Wiki zu erfassen und Methoden zur Dokumentation von Lösungen zu finden.
Desweiteren sollen die Möglichkeiten des Wikis dazu benutzt werden, Prozesse bei der Mus-
teridentifikation zu unterstützen. Für die Evaluation dieser Ziele wurde eine Unterdisziplin
der Theater-, Film- und Fernsehwissenschaft gewählt: Die Kostümwissenschaften.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 1 – Einleitung: Eine Einführung in die Arbeit und diese Gliederung.

Kapitel 2 – Grundlagen und Verwandte Arbeiten: Kapitel 2 bietet eine Einführung in seman-
tische Informationen und einen Einblick in aktuelle Entwicklungen in der Kostüm-
wissenschaft. Darüber hinaus werden einige Arbeiten zu Entwurfsmustern und deren
Identifikationsprozess betrachtet.

Kapitel 3 – Konzept zur Erfassung einer Musterdomäne: Dieses Kapitel erklärt das Vorge-
hen bei der Erfassung einer Domäne und beschreibt konkrete Musteridentifikations-
prozesse.

Kapitel 4 – Anforderungen durch die Kostümdomäne: Die Kostümdomäne hat spezielle
Anforderungen, die in diesem Kapitel erörtert werden.

Kapitel 5 – Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne:
Details zur Implementierung sowie der zugrundeliegenden Wikisoftware offenbart
dieses Kapitel.

Kapitel 6 – Zusammenfassung und Ausblick: Dieses Kapitel fasst die Ergebnisse der Arbeit
zusammen und bietet einen kurzen Ausblick.

10

2 Grundlagen und Verwandte Arbeiten

Diese Arbeit beschäftigt sich mit Methoden zur Lösungsdokumentation in einem semanti-
schen Wiki und mit der Identifikation von Mustern. Die Daten, die als „Lösungen“ doku-
mentiert werden, sind einem Fachgebiet, einer Domäne zuzuordnen. Abschnitt 2.1 erklärt
wichtige Begriffe rund um semantische Datenerfassung und Muster.
In Abschnitt 2.4 werden Musteridentifikationsprozesse in anderen Domänen betrachtet.

2.1 Grundlagen - Semantik

Seit Tim Berner-Lees wegweisendem Artikel „The semantic Web“ [BLHL01] aus dem Jahr
2001 hat dieser Begriff nicht nur die Welt der Informatik durchdrungen. Dabei sind die
Konzepte hinter diesem Begriff weitgehend unbekannt.

2.1.1 Bedeutung von Daten

Semantik, aus dem Griechischen abgeleitet für „dem Zeichen zugehörig“, ist die Bedeutung
eines oder mehrerer Zeichen. In natürlicher Sprache erschließt sich die Semantik dem Zuhö-
rer meist sofort, da unser Gehirn mehr darauf trainiert ist, Bedeutung und Zusammenhang
von Worten zu erfassen, als sich ihren exakten Laut zu merken. Dieses Verhalten ist bei
computergestützten Systemen gerade gegensätzlich: Ein Computer ist in der Lage, den
Wortlaut eines eingegebenen Satzes zu speichern und exakt wiederzugeben. Dabei hat er
von der Bedeutung der Worte in natürlicher Sprache keine Ahnung. Ihm ist es nicht möglich,
einfache Zusammenhänge oder Schlüsse aus Texten abzuleiten.

Eine der Grundaufgaben des Semantic Web ist, dem Computer ein Verstehen der Bedeutung
unserer Daten zu ermöglichen. Dabei geht es natürlich nicht um ein Verstehen im mensch-
lichen Sinn, sondern um die Fähigkeit, Daten in einem gegebenen Rahmen interpretieren
zu können und daraus Schlüsse zu ziehen. Als Lösung für dieses Problem bietet es sich an,
die Informationen mit Wissen zu versehen, das auch vom Computer interpretiert werden
kann. Dafür gibt es einige Sprachen, die sehr einfach sind und in einem Satz nur eine

11

2 Grundlagen und Verwandte Arbeiten

grundlegende Information verpacken können. Trotz dieser Beschränktheit lassen sich damit
die meisten Sachverhalte (wenn auch über Umwege) modellieren. Das Sprachkonstrukt
dieser Sprachen besteht aus einfachen Sätzen, die nur Subjekt, Prädikat und Objekt kennen.
Web Ontology Language (OWL) und Resource Description Framework (RDF) / Resource
Description Framework Schema (RDFS) sind die zwei bedeutendsten Vertreter und werden
im Folgenden näher betrachtet.
Bevor diese Sprachkonstrukte vorgestellt werden, macht es Sinn die Daten zu betrachten,
um deren Bedeutung es gehen soll. Wenngleich der Titel dieser Arbeit die Beschaffenheit
der Daten nicht einschränkt, beziehen sich Ihre Forderungen auf Daten, die eine Domäne
abbilden.

2.1.2 Strukturierung der Daten einer Domäne

Um eine Verarbeitung von Daten erst möglich zu machen, müssen diese in eine Struktur
gebracht werden. Das komplette Fachgebiet, welches strukturiert wird, bezeichnet man dabei
als Domäne. Diese Domäne kann ein beliebiges Wissensgebiet des „natürlichen“ Lebens
repräsentieren. Die Struktur muss dabei flexibel genug sein, um das gesamte Fachwissen
abzubilden und trotzdem so abstrakt, dass sie zur Weiterverarbeitung mit standardisierten
Methoden eingesetzt werden kann.
Um diese Strukturierung etwas anschaulicher zu gestalten, werden die weiteren Erklärungen
anhand der Domäne „Personendaten“ vorgenommen. Diese ist besonders geeignet, da jeder
zumindest mit seinen eigenen persönlichen Daten umgehen muss und somit bereits ein
Domänenexperte ist. Zudem ist diese Domäne recht überschaubar, was auch die Beispiele
sehr leicht verständlich macht. In Kapitel 5 werden die hier vorgestellten Prinzipien auf die
Domäne „Kostüme beim Film“ angewandt.

Überblick über vorhandene Daten Der Personalausweis enthält einige unserer wichtigsten
Personendaten. Um eine Einteilung vorzunehmen genügen bereits die wenigen Informa-
tionen auf der Vorderseite. Exemplarisch wollen wir hier die Daten von Frau Mustermann
betrachten. Abbildung 2.1 zeigt ihren Personalausweis.

Ein intuitiver Weg, diese Daten zu strukturieren ist, die beschreibendenden (blau hinter-
legt) und die echten Daten (grün hinterlegt) zusammenzufassen. Die beschreibenden Daten
werden dabei als Klassen oder Begriffe (engl.: concepts) bezeichnet. Diese Begriffe sind
auf jedem Personalausweis gleich, sie bilden also auch kein Unterscheidungsmerkmal. Im
Gegensatz dazu sind die grün hinterlegten Daten für jede Person eindeutig. Zumindest
sollten sie in ihrer Summe zu einer eindeutigen Identifizierbarkeit der Person führen. Dabei
spricht man von Instanzen.

12

2.1 Grundlagen - Semantik

Abbildung 2.1: Daten eines Personalausweises. Quelle: BMI (Bundesministerium des Inne-
ren)

Rot hinterlegt sind Zusammenhänge oder Tatsachen, die ein Mensch beim Lesen automatisch
weiß und deswegen nicht extra wahrnimmt, die aber wichtige Informationen für die Bedeu-
tung in sich tragen. Dies können Regeln, logische Schlüsse oder Hintergrundinformationen
sein, die nicht unmittelbar mit der Domäne zu tun haben. Man bezeichnet diese Daten als
Axiome.

Abbildung 2.2: Zusammenhang zwischen Klassen und Instanzen

13

2 Grundlagen und Verwandte Arbeiten

Klassen In den wenigsten Domänen fallen die Namen der Klassen, wie hier beim Personal-
ausweis direkt vom Himmel. Möchte man eine Klassifizierung vornehmen, muss man zuerst
die bereits vorhandenen Instanzen zuordnen. Dazu sortiert man sie nach ihren Eigenschaften.
Diese Eigenschaften werden abstrahiert und einer Klasse zugeschrieben. Dann erhält die
Klasse eine Bezeichnung, die möglichst exakt wiedergibt, welche Instanzen sie repräsentiert.
Je weniger Eigenschaften eine Klasse besitzt, desto allgemeiner ist sie. Das bedeutet, dass es
mehr Instanzen gibt, die dieser Klasse zuzuordnen sind. Eine sinnvolle Klasseneinteilung
ist natürlich nur dann gegeben, wenn auch die Unterschiede zwischen den Eigenschaften
zur Geltung kommen. Deswegen führt man Unterklassen ein, die die Eigenschaften der
übergeordneten Klasse erben und diese durch weitere Eigenschaften weiter einschränken.
Für den umgekehrten Weg von der Klasse zur Instanz sollen die Eigenschaften der Klasse
als Bauplan für die Instanz dienen.

Vererbung und Hierarchie Für jede Instanz eine eigene Klasse zu erfinden, ist genauso
wenig sinnvoll, wie alle Instanzen nur einer einzigen Klasse zuzuordnen. Letzteres wird in
der Beschreibung der Instanzen sehr unscharf, da nur elementare Basiseigenschaften allen
Instanzen gemein sind und sich die Klasse auf diese beschränken muss. In unserem Beispiel
würde diese Klasse vermutlich „Personendaten“ heißen und nur die Eigenschaft „Enthält
Daten, die für die Identifizierung oder Adressierung von Personen wichtig sind.“besitzen.
Würde man hingegen den ersten Ansatz verfolgen, müsste man jede Eigenschaft, die zwei
Instanzen gemein ist, auch in jeder dieser Klassen verankern. „Vorname“ und „Nachname“
unterscheiden sich in ihrem Aufbau nicht besonders, sind aber in ihrer Funktion verschieden.
Hier würde es sich also anbieten, die gemeinsamen Eigenschaften in einer neuen Klasse
„Name“ unterzubringen, und zu konstatieren, dass sowohl „Vorname“ als auch „Nachname“
Unterklassen von „Name“ sind. Hat jedes Element nur eine Oberklasse spricht man von
Einfachvererbung, bei mehreren Oberklassen von Mehrfachvererbung.
Während eine Einfachvererbung in einer Baumstruktur dargestellt werden kann, ist es
möglich, dass bei einer Mehrfachvererbung eine Raute entsteht, falls zwei Klassen, die die
Oberklasse einer Dritten bilden, von derselben Klasse erben. Die Vorteile einer Baumstruktur
liegen darin, dass der Pfad vom Blatt zur Wurzel eindeutig ist. Bei der Mehrfachvererbung
kann man zwar komplexere Sachverhalte abbilden, die Datenstruktur wird dadurch aber un-
übersichtlicher. In der Objektorientierung gibt es das „Interface“ Konzept, um die Nachteile
der Einfachvererbung auszugleichen. In Kapitel 5 wird eine vergleichbare Implementierung
für das Semantic Media Wiki vorgestellt.

Eigenschaften Eine Klasse kann beliebig viele Eigenschaften besitzen. Diese Eigenschaften
werden von Oberklasse zu Klasse vererbt; die Klasse besitzt somit automatisch alle Eigen-
schaften der Oberklasse(n). Eine Eigenschaft der Klasse „Geburtsdatum“ ist beispielsweise,

14

2.1 Grundlagen - Semantik

dass es nicht in der Zukunft liegen darf. Eine weitere Eigenschaften ist, dass es ein gültiges
Datum sein muss. „Geburtsdatum“ würde weitere Eigenschaften von „Datum“ erben.

Bauplan Erstellt man unter Berücksichtigung aller Eigenschaften einer Klasse eine neue
Instanz, kann diese Instanz der Klasse zugeordnet werden. In der Realität der Abbildung
einer vorhandenen Domäne ist dieser triviale Zusammenhang nicht von Bedeutung. Mit
der semantischen Erfassung der Domäne und den daraus resultierenden Möglichkeiten der
Datenverarbeitung ist es durchaus denkbar, Instanzen generieren zu lassen und auf ihre
Tauglichkeit zu testen. Dafür dient die Klasse als Bauplan.
Je genauer der Bauplan, desto kleiner ist die Variationsbreite der generierten Instanzen, desto
größer ist aber auch die Chance, dass taugliche Lösungen generiert werden.

Instanzen Als Instanzen oder Fakten bezeichnet man die konkreten Ausprägungen einer
Klasse: „Max“ und „Erika“ sind Instanzen von „Vorname“. Durch Instanzen gibt es erst eine
Domäne. Wissen, das keine Ausprägung in Instanzen hat, braucht auch nicht abstrahiert
werden; es gibt keine Eigenschaften und keine Regeln.
Während Klassen eher unbemerkt existieren, begegnen wir Instanzen ständig. Instanzen
sind in der direkten Wahrnehmung: „Hallo, ich bin Max.“, während sich uns die Klassen
erst dann eröffnen, wenn wir darüber nachdenken. Dass wir Menschen trotz allem intuitiv
mit Klassen arbeiten, zeigt sich darin, wie wir uns Dinge merken: Wir bilden Klassen („Der
heißt wie mein Freund Max.“) oder abstrahieren Eigenschaften aus Klassen („Max ist ein
Männername.“). Lösungserfassung, ein Teil dieser Arbeit, bedeutet nichts anderes als dass
man Instanzen findet und in die Klassifizierung einordnet.

Axiome Klassen hängen untereinander zusammen und können miteinander interagieren.
Die Zusammenhänge in der Domäne werden durch Axiome ausgedrückt. Für den beschränk-
ten Wissensausschnitt, den die Domäne repräsentiert, bilden Axiome zugleich die Abschlüsse
nach außen hin. Ein Axiom stellt eine Tatsache fest die nicht begründet oder hinterfragt
werden muss.
Diese Regeln zu finden und zu formulieren ist meist nicht leicht. Zum einen sind dem
Domänenexperten viele Zusammenhänge so klar, dass er diese als gegeben sieht und beim
Modellieren nicht beachtet, zum anderen ist es kaum möglich, alle Axiome zu finden. Even-
tuelle Lücken zeigen sich oft erst in der praktischen Anwendung der gesammelten Daten.
Auch in der Personendaten-Domäne finden wir Axiome: Einige Personendaten wie der
Nachname und die Anschrift sind veränderlich, andere - wie das Geburtsdatum - nicht. Eine
weitere Regel, die im deutschen Sprachgebrauch zunehmend an Bedeutung verliert, ist dass
sich die Anrede aus Geschlecht und Familienstand zusammensetzt: Die Folge davon ist, dass

15

2 Grundlagen und Verwandte Arbeiten

das „Fräulein“ ausstirbt.
Fasst man die so strukturierte Domäne zusammen, spricht man von einer Ontologie.

Ontologie Dr. Sylvia Radeschütz beschreibt in ihrer Dissertation eine Ontologie folgender-
maßen:
„Eine Ontologie stellt die eindeutige Wissensrepräsentation eines formal definierten Systems
von Begriffen und ihren Beziehungen dar [SS04]. Eine Ontologie kann demnach durch
ein Tupel O = (C, HC, PC, I, R, A) definiert werden. Die Menge C aus der Ontologie sind
prägnante Begriffe, die die Terminologie der Domäne beschreiben. Die Begriffe sind in einer
Hierarchie HC angeordnet, die durch Subkonzeptbeziehungen dargestellt wird. Begriffe sind
durch Attribute PC definiert, die ihre Beziehung mit anderen Begriffen oder Begriffen in
einem angegebenen Wertebereich angeben. Instanzen I repräsentieren Objekte der Ontolo-
gie. Relationen in R beschreiben, welche Beziehungen zwischen den Begriffen bestehen. A
beschreibt die Axiome. Das sind Regeln bestehend aus Begriffen, Attributen und Relationen,
mit denen aus bereits definiertem Wissen neues Wissen abgeleitet werden kann.“[Rad11,
S. 43 f.]

2.1.3 RDF/RDFS - Resource Description Framework und RDF Schema

RDF ist ein Standardmodell für Datenaustausch im Internet. Es setzt dabei auf die selben
Paradigmen, die schon das World Wide Web zu dem gemacht haben, was es heute ist: Alles ist
dezentral und jeder kann es beliebig erweitern. Dean Allemang drückt es treffend aus:„In the
Semantic Web we refer to the things in the world as resources; a resource can be anything that
someone might want to talk about.“[AH11] Sinngemäß: „Alles, worüber jemand reden wollen
könnte ist eine Ressource.“ Betrachtet man unsere Beispiel-Personendaten, würden diese
klassisch zentral vermutlich in einem Datenbankschema dargestellt, wie es in Abbildung 2.3
zu sehen ist.

Abbildung 2.3: Personendaten als Datenbankeinträge

Stellt man sich nun vor, diese Daten müssten auf mehreren unterschiedlichen Systemen
verteilt sein die nur lose miteinander verbunden sind, ergeben sich mehrere Probleme:

1. Verteilung der Daten: Eine Möglichkeit, die Daten aus der Datenbank in Abbildung
2.3 zu verteilen, ist die Daten zeilenweise auf den unterschiedlichen Rechnern zu

16

2.1 Grundlagen - Semantik

speichern. Somit würde jeder Rechner einen oder mehrere vollständige Datensätze
verwalten, wie in Abbildung 2.4 zu sehen ist. Dieses Vorgehen fördert zwar die Flexi-
bilität, bringt aber auch einen hohen Koordinationsaufwand mit sich. Wodurch wird
sichergestellt, dass die Reihenfolge der Spalten auf jedem Rechner gleich bleibt?

Abbildung 2.4: Mögliche Verteilung von Daten, Zeile um Zeile

Abbildung 2.5 zeigt ein alternatives Verteilungsschema: Hier werden die Informationen
der einzelnen Spalten auf unterschiedliche Rechner verteilt. Diese Lösung ähnelt der
Vorigen und hat wie sie auch das Problem, sicherzustellen, dass die „Datenreihe 2 auf
Server 1“ auch der „Datenreihe 2 auf Server 2“ entspricht. Für das Hinzufügen eines
Datensatzes ist ein großer Aufwand nötig.

Abbildung 2.5: Mögliche Verteilung von Daten, Spalte um Spalte

Eine Verteilung, die der Anforderung „jeder soll alles über jedes Thema sagen dür-
fen“ gerecht werden will, muss die Vorteile dieser beiden Ansätze vereinigen. Der in
Abbildung 2.6 vorgestellte Ansatz tut dies. Allerdings kauft man sich dabei auch die
Nachteile der beiden anderen Ansätze ein: Für jede Zelle muss man Informationen zu
Zeile und Spalte transportieren.
Für diese drei Informationen bietet sich die Darstellung als Tripel an: Zei-
le, Spalte, Wert. Diese Tripel werden auch, folgend dem englischen Satzaufbau

17

2 Grundlagen und Verwandte Arbeiten

mit Subjekt, Prädikat und Objekt betitelt. Beispielsweise wäre ein solches Tripel:
[Zeile] 2 [hat] Geburtstag [am] 01.02.1976 .

Abbildung 2.6: Mögliche Verteilung von Daten, Zellenweise

2. Zusammenfügen der verteilten Daten: Wenn man nun Tripel mit gleichem Subjekt
oder Objekt findet, lassen sich diese zusammenfassen. Daraus lässt sich ein gerichteter
Graph wie in Abbildung 2.7 erstellen.

Abbildung 2.7: Graph aus zusammengefügten Daten

18

2.1 Grundlagen - Semantik

So lassen sich nun nicht nur die eigentlich zusammengehörigen Daten zusammen-
fügen, sondern auch beliebige andere. Berlin als Entität bietet beispielsweise viele
Anknüpfpunkte. Hierin liegt die größte Stärke von RDF, denn nun ist jeder in der Lage
diesen Graphen zu erweitern. Das kann einen Wachstumseffekt wie den des Internet
bewirken.

3. Identifikation von Daten: Ein letztes Problem bleibt bestehen: Wo findet man in einem
hochgradig verteilten und dezentralen Netz immer die richtige Ressource? Die Antwort
darauf liefert das Internet gleich mit: Der Uniform Resource Identifier (URI) weißt jeder
Ressource im Internet eine eindeutige Id zu. Das allerdings liegt in der Verantwortung
der Betreiber der jeweiligen „Authority“, also den Betreibern der Website, auf der die
Entitäten hinterlegt sind. Die Definition des URI ist als Request for Comments (RFC)
unter der Nummer RFC3986 bei der Internet Engineering Task Force (IETF) hinterlegt.

Sprachkonstrukte von RDF: RDF liefert bei weitem keine vollständige Beschreibungs-
sprache für Ressourcen. Tatsächlich definiert es nur einige wenige Begriffe:

• rdf:type

• rdf:Property

• rdf:Statement

• rdf:subject

• rdf:predicate

• rdf:object

• rdf:Bag

• rdf:Seq

• rdf:Alt

• rdf:value

• rdf:List

Ein Ausdruck in RDF wird mit seiner vollen URI in spitzen Klammern dargestellt: Die
Information „Berlin liegt in Deutschland“ könnte also wie folgt aussehen:
<http://www.example.com/Resources/Geo/Cities#Berlin>

<http://www.example.com/Resources/Location#Lies_within>

<http://www.example.com/Resources/Geo/Countries#Germany>

Da diese Schreibweise sehr lang und wenig übersichtlich ist, bietet RDF die Möglichkeit,
ähnlich wie in eXtended Markup Language (XML) Namensräume zu definieren. Außerdem
gibt es noch eine Kompaktschreibweise namens Turtle. Die gängigen Anwendungen, die mit
RDF arbeiten, akzeptieren auch Eingaben in Turtle.

RDFS - RDF Schema: Bei RDFS handelt es sich um eine Erweiterung von RDF, die einige
weitere grundlegende Konzepte umsetzt. Mit den Begriffen

19

2 Grundlagen und Verwandte Arbeiten

• rdfs:subClassOf (Unterklasse von)

• rdfs:subPropertyOf (Unterattribut von)

• rdfs:domain (Definitionsbereich)

• rdfs:range (Wertebereich)

ermöglicht RDFS eine Ableitung vieler neuer Fakten. So kann man in RDFS beispielsweise
ein Attribut „hatMädchenName“ definieren, und diesem Attribut einen Definitionsbereich
„VerheirateteFrau“ zuweisen. „VerheirateteFrau“ ist natürlich eine Unterklasse von „Frau“.
Dadurch ist bei der Angabe eines Tripels „:Erika :hatMädchenName "Gabler"“ ein Schluss
auf „:Erika :type :Frau“ möglich. Durch den Klassenbegriff werden auch einfache Mengen-
operationen auf Tripeln möglich.

2.1.4 OWL - Web Ontology Language

Auch OWL basiert auf der Syntax von RDF. Bei OWL handelt es sich um eine Erweiterung
der RDF Sprachkonstrukte hin zu einer Sprache, mit der auch komplexe prädikatenlogische
Aussagen getroffen werden können. Als Vorgänger von OWL, das seit 2001 vom World Wide
Web Consortium (W3C) als Empfehlung ausgegeben wurde, gelten die beiden Standards
DARPA Agent Markup Language (DAML) und Ontology Inference Layer (OIL). Beide ba-
sieren ebenfalls auf RDF.
OWL liegt mittlerweile in der zweiten Version vor und ist der de facto-Standard für Ontologie-
Sprachen. Es erweitert RDFS um viele Funktionen. Hier sollen nur einige wichtige Sprach-
konstrukte erwähnt werden:

• owl:Restriction - Beschreibt eine Klasse indem es die erlaubten Werte eines be-
stimmten Attributs definiert.

• owl:hasValue - Definiert einen bestimmten Wert, den ein Attribut haben muss.

• owl:someValuesFrom - Definiert eine Menge von Werten, die ein Attribut annehmen
kann.

• owl:allValuesFrom - Definiert alle Werte, die ein Attribut annehmen kann.

• owl:onProperty - Stellt eine Verknüpfung zwischen einer Restriktion und dem
betroffenen Attribut her.

Damit lassen sich in Kombination mit den RDFS Sprachkonstrukten weitgehende Schlüsse
ziehen und auch komplexe Zusammenhänge modellieren. Beispielsweise können automa-
tisch Wahlunterlagen an eine Adresse versandt werden, die einer Person zugeordnet wird,
die die deutsche Staatsangehörigkeit hat und zum Zeitpunkt der Wahl volljährig ist.

20

2.1 Grundlagen - Semantik

2.1.5 Abfragesprache SPARQL

Das Semantic Web brächte keinen Nutzen, wenn man die hinterlegten Tripel nicht auch
abfragen und auswerten könnte. Dafür wurde die Abfragesprache SPARQL Protocol And
RDF Query Language (SPARQL) entwickelt. Sie basiert auf einem sehr einfachen Prinzip:
Was ich weiß gebe ich an, was ich suche versehe ich mit einem Fragezeichen.

Angenommen, der RDF Datengraph besteht aus folgenden Tripeln:1

:Erika :geborenIn :Berlin .

:Max :geborenIn :Musterstadt .

:Erika :geborenAm "1964-08-12"^^xsd:date .

:Max :geborenAm "1976-02-01"^^xsd:date .

:Berlin :liegtIn :Deutschland .

:Musterstadt :liegtIn :Deutschland .

:Deutschland :liegtIn :Europa .

:Berlin rdf:type :Stadt .

:Musterstadt rdf:type :Stadt .

Eine Abfrage kann nach Subjekt, Prädikat oder Objekt fragen. Dazu gibt man lediglich eine
Variable anstelle des gesuchten Teils in die Suchabfrage ein.

Die folgende Abfrage 2.1 zeigt alle (im Datengraph bekannten) Städte in Deutschland an:

SELECT ?Stadt

WHERE

{ ?Stadt :liegtIn :Deutschland . }

Listing 2.1: Abfrage nach Städten in Deutschland

?Stadt

Berlin

Musterstadt

Genauer gesagt zeigt diese Abfrage alles an, was ein Attribut „liegtIn“ mit dem Wert
„Deutschland“ hat. Möchte man alle Ressourcen die mittels dieses Attributs verbunden sind
ermitteln, muss man wie in Listing 2.2 auch das Objekt durch eine Variable ersetzen.

SELECT ?Was ?Wo

WHERE

{ ?Was :liegtIn ?Wo . }

1Hier wird die verkürzte Turtle Schreibweise (siehe Abschnitt 2.1.3) verwendet

21

2 Grundlagen und Verwandte Arbeiten

Listing 2.2: Abfrage nach Attribut „liegtIn“

?Was ?Wo

Berlin Deutschland

Musterstadt Deutschland

Deutschland Europa

Diese Abfrage lässt sich nun durch die Bedingung, dass die Subjekte eine Stadt sein müssen,
weiter eingrenzen.

SELECT ?Was ?Wo

WHERE

{ ?Was :liegtIn ?Wo .

?Was rdf:type :Stadt .}

Listing 2.3: Abfrage nach Attribut „liegtIn“ mit Eingrenzung Stadt

?Was ?Wo

Berlin Deutschland

Musterstadt Deutschland

Das Grundprinzip von SPARQL ist, dass ein Suchgraph aufgebaut wird, der mit dem
Datengraph abgeglichen wird. Auf diesem Prinzip lassen sich auch komplexe Abfragen
durchführen. Dazu liefert SPARQL noch einige weitere Mechanismen, wie Transitivität, das
Filtern der Ergebnismenge und viele aus anderen Query Languages bekannte Aggregats-
funktionen. Im letzten Beispiel (Listing 2.4) dieser kurzen Einführung wird die Transitivität
auf das Attribut „liegtIn“ angewandt (mit * gekennzeichnet), um alle Personen zu finden,
die einen Geburtstag in Europa haben, dessen Datum nach 1970 liegt. Erwartungsgemäß
gibt die vorhandene Datenmenge auf diese Abfrage genau einen Datensatz zurück:

SELECT ?Name ?Geburtsdatum

WHERE

{ ?Ort :liegtIn* :Europa .

?Ort rdf:type :Stadt .

?Name :geborenAm ?Geburtsdatum

?Name :geborenIn ?Ort

FILTER (?Geburtsdatum > 1970-01-01^^xsd:date)

}

Listing 2.4: Abfrage nach Geburtsdaten in Europa nach 1970

22

2.1 Grundlagen - Semantik

?Name ?Geburtsdatum

Max 1976-02-01

2.1.6 Semantische Wikis

Der Masseneffekt, den Wikipedia bewirkt hat, ist unvergleichlich: Millionen von Menschen
arbeiten freiwillig und unentgeltlich an einer gemeinsamen Wissensplattform. Die große
Befürchtung, dass die Qualität der Artikel schlecht oder schlecht recherchiert ist, hat sich
nicht bewahrheitet. Durch einfache Regeln, Nachvollziehbarkeit jeder Änderung und einige
freiwillige Administratoren, hält sich die Anzahl schlechter Artikel sehr in Grenzen. Dies ist
nicht zuletzt auch so, weil ein großes öffentliches Interesse darin besteht, dass die Informa-
tionen in Wikipedia vertrauenswürdig sind.
Diese Wikis (Wikipedia ist nur das populärste Beispiel) sind für Menschen optimiert. Sie
tragen als ein wichtiger Bestandteil zum „herkömmlichen“ Internet bei. Für das Semantic
Web sind diese Wikis jedoch nicht gemacht. Wie alle herkömmlichen Webseiten enthalten
sie Informationen in textueller Form, deren Bedeutung sich einer Maschine entzieht.2 Dabei
sind gerade Wikis für das Semantic Web sehr spannend, denn das sind die Orte an denen
Wissen abgelegt wird. Folglich ist also klar, dass auch das Semantic Web seine Wikis braucht:
Eben semantische Wikis.

Wichtige Anforderungen an ein semantisches Wiki für Funktionalität und Akzeptanz sind:

• Intuitives Mapping zwischen Tripeln und Wikidarstellung

• Ansprechende Darstellung der Inhalte für den Menschen

• Unkomplizierte Eingabe von semantischen Daten

• Im- und Export von und nach RDF / OWL

• Unterstützung von Suchfunktionen

• Umsetzung der OWL-Sprachkonstrukte

• Leichte Erweiterbarkeit durch Plugins

Weitere Anforderungen sind eine möglichst weite Verbreitung und eine große Benutzerge-
meinde, sowie guter Support und gute Dokumentation.

2Eine Ausnahme dazu bildet dbPedia.org. Hier werden die Inhalte der Faktenboxen auf Wikipedia als semanti-
sche Daten zur Verfügung gestellt.

23

2 Grundlagen und Verwandte Arbeiten

2.2 Grundlagen - Muster

2.2.1 Muster nach Christopher Alexander

Christopher Alexander, ein Architekt, hat mit seinem Standardwerk „A Pattern Language
- Towns, Buildings, Construction“[AIS77] nicht nur einen Meilenstein in der Architektur
gelegt, sondern auch das Denken in der Informatik grundlegend verändert. Ihm ist es zu
verdanken, dass man von Software-Architektur spricht. Nicht genug, dass sich Software und
Architektur in ihren Entwurfsprozessen sehr ähneln - es lassen sich auch die von Alexander
beschriebenen Patterns auf die Software übertragen.
Alexander beschreibt in seinem Buch städtebauliche Herausforderungen und zerlegt diese
geschickt in Teilprobleme, die an verschiedensten Stellen wieder auftreten können. Für diese
Herausforderungen erarbeitet er elegante Lösungen, erfasst Voraussetzungen und listet die
Probleme auf, für die dieser Ansatz eine Lösung ist. Die Patterns die Alexander beschreibt
gehorchen alle der folgenden fünfgliedrigen Form[Lea94]:

1. Name: Ein aussagekräftiger Name.

2. Example: Ein Beispiel für das Vorkommen, mit Bildern oder Zeichnungen verdeutlicht.

3. Context: Zeigt Einsatzort, Hintergründe und Diskussion dieses Patterns auf.

4. Problem: Hier werden die Kräfte und Einschränkungen beschrieben und wie sie
interagieren. Auch Design und Konstruktion können Teile des Problems darstellen.

5. Solution: Beschreibung, wie eine Lösung zu konstruieren ist; oft unter Zuhilfenahme
von Subpatterns und in mehreren Variationen.

Weiterhin zeichnet sich ein Pattern nach Alexander laut Lea [Lea94] durch folgende Eigen-
schaften aus:

• Encapsulation: Das Problem ist nach außen hin abgegrenzt. Die Lösung stellt sicher,
dass das Problem im Ganzen auch in Details bearbeitet wird.

• Generativity: Das Pattern enthält eine Prozessbeschreibung, mit deren Hilfe sich
Instanzen erzeugen lassen.

• Equilibrium: Das Pattern muss in der Problembeschreibung eine Invariante erhalten,
die den Konflikt zwischen Kräften und Einschränkungen minimalisiert. In jedem
Designschritt muss die Designentscheidung durch diese Invariante begründbar sein.
Dies ist ein Gratwanderung und wird oft nicht erreicht.

• Abstraction: Das Pattern abstrahiert konkrete Vorkommnisse.

24

2.3 Kostüme im Film

• Openness: Ein Pattern kann beliebig detailliert sein; es gibt keine Untergrenze für die
Feingranularität des Patterns. Das meint Lea mit Offenheit.

• Composibility: Die hierarchische Struktur von Patterns muss sich dadurch ausdrücken,
dass Patterns zu neuen Superpatterns komponiert oder in Subpatterns zerlegt werden
können.

2.2.2 Muster in der Informatik

Lösungen zu alltäglichen Softwareproblemen haben Gamma, Helm, Johnson und Vlis-
sides in ihrem Buch „Entwurfsmuster: Elemente wiederverwendbarer objektorientierter
Software“[GHJV96] zum Standard erhoben. Sie werden oft auch als die „Gang of Four (GoF)“
bezeichnet und ihr Buch nicht selten mit GoF-Book referenziert. Sie legen eine detailreichere
Struktur zur Notation von Patterns zugrunde und füllen damit die weiteren Forderungen
von Alexander (vgl.: Abschnitt 2.2.1) ebenfalls mit Leben. Auf nähere Einzelheiten zu dieser
Struktur wird diese Arbeit nicht eingehen.
Nahezu alle neueren Entwicklungen im Bereich Programmier-Patterns können in einem der
Konferenzbände der Konferenz Pattern Language of Programs (PLoP) nachverfolgt werden.
PLoP stellt unter anderem auch Empfehlungen zum Entwickeln von Entwurfsmustern (Pat-
ternwriting) bereit. Dieses Vorgehen soll neben anderen Pattern-Identifikationsprozessen
im nächsten Abschnitt näher betrachtet werden. Diese Betrachtungen werden auch dieses
Grundlagenkapitel abschließen und nahtlos in das konzeptionelle Vorgehen beim Pattern-I-
dentifikationsprozess in der Kostümdomäne überleiten.

2.3 Kostüme im Film

Obgleich es befremdlich scheint, einen Abschnitt über Kostüme beim Film in einer Arbeit
über Musteridentifikation und semantische Wikis zu schreiben, sind doch die Kostüme ein
zentraler Punkt dieser Arbeit. Im Zuge einer zunehmenden Durchdringung der Welt durch
digitale Informationssysteme rücken auch immer mehr Teile dieser bis dato fremden Welt
in den Fokus der Informatik. Das Schlagwort „Digital Humanities“ spielt hier eine immer
größere Rolle. Rollen im Film unterliegen Mustern. Diese drücken sich vor allem durch die
gewählte Kostümierung der Darsteller aus. Dieses Thema ist ein gemeinsames Forschungsin-
teresse an der Universität zu Köln und der Universität Stuttgart. Die Autoren von „A Pattern
Language for Costumes in Films“[SBLE12] und „Taxonomien kostümrelevanter Parameter:
Annäherung an eine Ontologisierung der Domäne des Filmkostüms“[Ba13] schlagen eine
Mustersprache für Kostüme vor. Darin beschreiben sie, wie mit klassischen Methoden der
Informatik eine Erfassung und Auswertung von Kostümmustern geschehen kann. Sie führen

25

2 Grundlagen und Verwandte Arbeiten

aus, dass es bisher für Kostüme noch keine einheitliche Beschreibungssprache gibt.[SBLE12,
S. 7] Dadurch mangelt es auch an DV-Unterstützung. Kostümbildner und Kostümforscher
behelfen sich derzeit mit klassischen Methoden (Sichten von Filmmaterial und Kostümfun-
dus), bzw. benutzen Kostüm-Verwaltungssoftware, die keinen hohen Detaillierungsgrad
unterstützt, um einen Film auszustatten oder Forschung zu betreiben. Viele Fragestellungen
zu Kostümen könnten beantwortet werden, wenn eine entsprechende Datenbasis zur Verfü-
gung stünde.
Die Domäne Kleidung ist jedoch sehr umfangreich und auch die Anzahl an Filmen ist
immens. Die Autoren planen daher, auf einem begrenzten Filmkorpus Untersuchungen
durchzuführen. Dafür wird ein Informationssystem benötigt. Abbildung 2.8 zeigt die Anfor-
derungen an ein solches System.

Abbildung 2.8: Anforderungen an ein Informationssystem, angelehnt an [SBLE12]

Die Anforderungen sind ein Katalogsystem zu schaffen, in dem Kostümprimitive und
Kostümmuster in einer formalisierten Sprache abgelegt werden können. Desweiteren soll
ein Modellierungswerkzeug und eine Anwendung zum Durchsuchen des Katalogsystems
entstehen. Die Daten sollen durchsuchbar sein und exportiert werden können.
In RDF gespeicherte Daten erfüllen die Kriterien an Durchsuchbarkeit und Exportmöglich-

26

2.4 Muster-Identifikationsprozesse

keiten. Für das Modellieren der Domäne bietet sich eine Ontologiesprache an. Diese Gründe
sprechen für eine Lösung im Semantic Web. Ein Katalogsystem spricht für den Einsatz eines
Wikis.

Vestimentäre Kommunikation „Kleider machen Leute!“ Dieses alte Sprichwort stimmt
heute genauso wie vor 100 Jahren. Heute weiß man sogar, dass Kleider Botschaften transpor-
tieren können. Für den Film ist diese vestimentäre (vestimentär: die Kleidung betreffend)
Kommunikation sogar noch bedeutender. Kleider schaffen es, auf den ersten Blick einen
Eindruck einer Rolle zu vermitteln. Das ist insbesondere dann wichtig, wenn das Drehbuch
keine Zeit vorsieht, den Charakter langsam zu entwickeln. Jede Rolle in einem Film spielt im
wahrsten Sinn des Wortes eine Rolle und erfüllt somit eine Funktion. Je weniger die Rolle zu
sagen hat, umso mehr muss ihre Kleidung die Funktion der Rolle transportieren. Wie sich
Kostümierung und Charaktereigenschaften zueinander verhalten ist eine der spannenden
Fragen in der Kostümforschung.

2.4 Muster-Identifikationsprozesse

Ein zentrales Thema dieser Arbeit ist das Identifizieren bzw. Entwickeln von Entwurfsmus-
tern. Die hier betrachteten Identifikationsprozesse stammen aus unterschiedlichen Domänen
und agieren zum Teil auch auf unterschiedlichen Ebenen. Sie wurden ausgewählt, weil sie
einen interessanten Querschnitt durch die Abstraktionsebenen bilden.

2.4.1 Identifikationsprozesse bei Cloud-Computing Patterns

Dieser Abschnitt zeigt das Vorgehen am praktischen Beispiel der Cloud-Computing Domäne
wie es in „Capturing Cloud Computing Knowledge and Experience in Patterns“[FEL+

12]
beschrieben wird:

1. Customization of the Pattern Format: In „Capturing Cloud Computing Knowledge
and Experience in Patterns“[FEL+

12] wird das Patternformat von Alexander zugrunde
gelegt und um einige Strukturpunkte erweitert:

• Icon: Ein Icon, das den Wiedererkennungswert des Patterns erhöht und nach
Möglichkeit bereits dessen Inhalt andeutet.

• „Example“ wird zu „Driving Question“: Bietet einen schnellen Überblick über die
wichtigsten Beweggründe für das Pattern.

• Scetch: Eine Zeichnung, die die Lösung darstellt.

27

2 Grundlagen und Verwandte Arbeiten

• Variations: Hier werden unterschiedliche Varianten des Patterns vorgestellt.

• References: Dieser Abschnitt bildet die Beziehung zu anderen Patterns ab: Kom-
position (Zusammensetzung mehrere Pattern), Verfeinerung (Detailierung eines
abstrakten Pattern) und Generalisierung (Abstraktion eines konkreteren Pattern -
beispielsweise einer speziellen Implementierung).

• Known Uses: Zeigt praktische Anwendungen des Musters.

• Annotations: Hier können weiterführende Hilfen für den Leser untergebracht
werden.

2. Collection of Information Sources: Stellt eine Sammlung von Quellen für Patterns in
Form von Links zu Provider-Anleitungen, Büchern und Journalartikeln dar.

3. Classification of Information Sources: Es erfolgt die Einteilung der Informationen
bezüglich ihrer Architekturdomäne in Klassen.

4. Abstraction of Architectural Concepts: In diesem Schritt werden die in den Klassen
enthaltenen Daten abstrahiert, wobei providerspezifische Details entfernt werden.

5. Creation and Classification of Patterns: Die Patterns werden aus den abstrakten Mo-
dellen komponiert. Dabei ist die schwierigste Aufgabe, das richtige Maß an Abstraktion
walten zu lassen, um einerseits möglichst dem speziellen Problem gerecht zu werden,
andererseits aber auch die unterschiedlichen Implementierungen für dieses Problem
zu vereinen.

6. Iterative Improvement: In diesem Prozessschritt wird das Pattern immer wieder in
der praktischen Anwendung auf Tauglichkeit und Verständlichkeit getestet und bei
Bedarf angepasst.

Die praktische Erfahrung hat gezeigt, dass sich dieses Vorgehen für die Erfassung von
Cloud-Computing Pattern gut eignet.

2.4.2 Der Pattern Evolution Process

René Reiners beschreibt in „A Pattern Evolution Process - From Ideas to Patterns“[Rei12] ein
Katalogsystem zur Verwaltung und Verbesserung von Patterns. Der Ansatz dabei ist, so früh
wie möglich die Community mit in den Pattern-Verbesserungsprozess hinein zu nehmen.
Durch dieses Vorgehen möchte Reiners den Prozess, der „top down“ stattfindet, also von
einer kleinen Gruppe entwickelt wurde und anschließend der breiten Masse zugänglich
gemacht wird, umkehren.
In einem ersten Schritt wird automatisch geprüft, ob alle geforderten Felder ausgefüllt

28

2.4 Muster-Identifikationsprozesse

sind. Ist dies der Fall wird das Pattern mit einem zusätzlichen Statusattribut versehen, das
ausdrückt, wie die Entwicklung über die Zeit stattgefunden hat:

• just created: Der initiale Status, der aussagt, dass das Pattern noch nicht überprüft
wurde.

• under consideration: Das Pattern ist vielversprechend, bedarf aber weiterer Überprü-
fung.

• pattern candidate: Dieses Pattern ist kurz davor, anerkannt zu werden.

• approved: Ein Pattern mit diesem Status ist als Design Pattern anerkannt.

Stellt sich heraus, dass ein Patternkandidat nicht zum Pattern taugt, kann es vermutlich als
„Antipattern“ noch gute Dienste tun. Dieser Ansatz setzt ebenfalls auf die Effekte, die von
Wikipedia bekannt sind, wenngleich sicherlich die Zahl derer, die an einem Softwarepattern
mitarbeiten um einige Größenordnungen kleiner ist. Reiners erhofft sich von diesem Prozess
mehr Patterns, deren Potential zu einem früheren Zeitpunkt abschätzbar ist.

2.4.3 Muster für Muster - Die Sprache des Hirten

In diesem Journalbeitrag mit dem ungewöhnlichen Titel „The Language of Shepherding“
citeshepherd beschreibt Neil Harrison, wie das Anleiten eines Patternentwicklers (Schaf)
durch einen erfahrenen Patternentwickler (Hirte) den Pattern-Entwicklungsprozess unter-
stützen kann. Den Vorgang dieses Anleitens bezeichnet er als „Shepherding“. Harrison
betont, wie wichtig es ist, dass der Anleitende nicht nur beratend zur Seite steht, sondern
auch einige Schritte in die Wege leitet, die den Prozess für den Patternschreiber vereinfachen
sollen. Diese Schritte beziehen sich auf Patterns for Patternwriting, also Muster, mit deren
Hilfe man selbst wieder Muster schreiben kann. Diese Muster unterteilt er dabei in zwei
Gruppen: Muster, die dazu dienen, dem Hirten die Arbeit leichter zu machen und den
Prozess des Shepherding zu vereinfachen und Muster, die direkt Einfluss auf das Pattern
haben. An dieser Stelle werden nur letztere kurz vorgestellt:

• Big Picture: Ziel dieses Patterns ist, dass sowohl Autor als auch Hirte das zentrale
Problem des Patterns verstehen und dabei an das Gleiche denken. Die Idee des Patterns
soll dabei beim einmaligen Lesen des Problems und der Lösung klar werden.

• Matching Problem and Solution: Oft sind Problem und Lösung nicht deckungsgleich.
Das sollen sie allerdings sein. Das Problem sollte komplett durch die Lösung erfasst
sein und die Lösung sollte nicht mehr als das Problem lösen. Hier ist eine Balance
zwischen Lösung und Problem gesucht, wobei in einem lösungsorientierten Ansatz
die Lösung der entscheidende Teil ist und eher das Problem angepasst werden sollte.

29

2 Grundlagen und Verwandte Arbeiten

• Convincing Solution: Die Lösung des Problems muss überzeugend sein. Der Hirte
soll darauf achten, dass die Lösung so auch existiert. An mancher Stelle muss der
Autor die Lösung etwas schmälern, da er sonst Gefahr läuft, dass nicht alle Fälle seiner
breiten Lösung funktionieren.

• Forces Define Problem: Die Problem-Sektion des Pattern ist oft nicht klar genug
formuliert. Die Kräfte-Sektion des Pattern kann helfen, das Problem besser zu verste-
hen, indem der Leser versteht, welche Überlegung welcher Entscheidung zugrunde
liegt. Dafür muss der Autor in mehreren Iterationen zwischen Problem und Kräften
vermitteln.

• Balanced Context: In der Kontext-Sektion sollte sowohl der Ausgangszustand stehen,
auf den das Pattern anwendbar ist, als auch das Ergebnis nach der Anwendung des
Pattern. Um hier einen vernünftigen Ausgleich zu erhalten ist es sinnvoll „vorher“,
die Lösung und „nachher“ zu betrachten. Es hilft auch, wenn man „vorher“ mit dem
Problem und „nachher“ mit der Lösung vergleicht.

• War Stories: Unter den Kriegsgeschichten versteht Harrison ein Beispiel von einem
echten Einsatz des Patterns. Oft leidet die Lesefreude an der mangelnden Fähigkeit des
Autors, zu begeistern. Bei Kriegsgeschichten hören die meisten jedoch aufmerksam zu.
Diesen Effekt soll sich der Autor zu eigen machen.

• Form Follows Function: Es gibt viele unterschiedliche Patternformate. Meist bleibt
der Autor bei dem Pattern, das er bereits kennt. Dabei soll sich die Form dem Pattern
anpassen und nicht das Pattern der Form. Der Hirte kann darauf hinarbeiten, indem er
nicht plump ein neues Patternformat vorschlägt, sondern den Autor neue Abschnitte
herausarbeiten lässt.

• Small Patterns: Ziel des letzten Patterns ist es, ein Pattern klein und übersichtlich
zu halten. Das ist allerdings während des Shepherding-Prozesses nicht möglich, da
von außen viele Anregungen an den Autor kommen und das Pattern sich so erst
einmal aufbläht. Nun kommt zum Ende des Prozesses die Anforderung, alles was
nicht essentiell ist, aus dem Pattern zu entfernen.

30

3 Konzept zur Erfassung einer Musterdomäne

Dieses Kapitel beschreibt den Identifikationsprozess von Patterns und Lösungen und deren
Darstellungsform in der Kostümdomäne. Desweiteren werden die Zuständigkeiten rund um
die Erfassung in einem Rollenmodell erläutert. Im letzten Abschnitt werden die einzelnen
Vorgänge bei der Erfassung und Musteridentifikation geschildert. Außerdem wird gezeigt,
wie sich ein Teil dieses Prozesses automatisieren lässt. Wie sich diese Konzepte in Semantic
Media Wiki umsetzen lassen, wird in Kapitel 5 beschrieben.

3.1 Identifikationsprozesse in der Kostümdomäne

Der hier dargestellte Prozess basiert in großen Teilen auf [Ba13].

3.1.1 Zugrundeliegendes Rollenmodell

Für die Kostümdomäne gibt es folgende Rollen:

• Kostümexperte

• Wikiexperte

• Lösungserfasser

• Kunden: Kostümverleih, Kostüm-Forscher, Kostümbildner

• Bot

Abbildung 3.1 verdeutlicht die Zusammenhänge.

31

3 Konzept zur Erfassung einer Musterdomäne

Abbildung 3.1: Das Rollenmodell in der Kostümdomäne

Kostümexperte Der Kostümexperte verfügt über vollständiges Domänenwissen und ist in
der Lage, dieses Wissen in Taxonomien zu erfassen. Die Aufgabe des Kostümexperten ist es
nicht nur, die Ontologie seiner Domäne zu modellieren, sondern auch, einen Filmkorpus
für die Lösungserfasser vorzugeben und deren Arbeit zu prüfen, bzw. darauf zu achten,
dass die Ontologie, sollte sie Lücken aufweisen, ergänzt wird. Hierbei wird er vom Wiki
unterstützt. Der Kostümexperte pflegt auch bereits bekannte Muster nach dem in Abschnitt
3.1.2 beschriebenen Verfahren ein.

Wikiexperte Der Wikiexperte steht in enger Zusammenarbeit mit dem Kostümexperten. Er
ist dafür verantwortlich, dass ein geeignetes Wiki installiert wird und dass die Domänenda-
ten aus der Ontologie ins Wiki importiert werden können. Er muss sicherstellen, dass die
Eingabe von Kostümen geführt erfolgt. Außerdem muss er die Restriktionen und zusätzli-
chen Zusammenhänge in der Domäne modellieren, die nicht durch einen Taxonomie-Import
gelöst werden können. Er gestaltet nach den Vorgaben des Kostümexperten Abfragen im Stil

32

3.1 Identifikationsprozesse in der Kostümdomäne

von Reportingseiten, die wichtige Fragestellungen aufgrund der aktuell gesammelten Daten
beantworten. Er ist auch dafür verantwortlich, dass die Lösungserfasser mit entsprechenden
Zugriffsrechten ausgestattet werden. Dabei muss er beachten, dass die Ontologiedaten
vor unbefugtem Zugriff geschützt bleiben. Nur der Kostümexperte darf an der Ontologie
modellieren.

Lösungserfasser Der Lösungerfasser sollte ein grundlegendes Verständnis von Kostümen
und Mode mit sich bringen, aber auch die Fähigkeit, Daten in einem Wiki zu erfassen. Seine
Aufgabe besteht in der Durchsicht der Filme des Filmkorpus und der Erfassung der darin
vorkommenden Kostüme. Die Hauptschwierigkeit besteht dabei in der Identifikation der
verschiedenen Kleidungsstücke, die für eine spätere Auswertung essentiell ist. Ein weiterer
wichtiger Punkt, der dieser Rolle zukommt, ist die Bestimmung der Relevanz des einzelnen
Kleidungsstücks für ein Kostüm. Dies kann Faktoren wie die Art der Darstellung, die
Zeitspanne in der das Element zu sehen ist oder auch Relevanz in der Funktionalität oder
für den Ablauf der Handlung beinhalten.
Der Lösungserfasser weist jedem Kostümteil ein oder mehrere Eigenschaften aus der On-
tologie zu. Dabei kann es vorkommen, dass er auf eine Lücke in der Ontologie stößt. Das
fehlende Ontologiewissen muss vom Kostümexperten nachmodelliert werden. Dies kann
direkt im Wiki geschehen, so dass ein weiterer Import nicht nötig ist. Manche Wikis bieten
auch die Möglichkeit, dass der Lösungserfasser das fehlende Element einfach eingibt. Der
Kostümexperte bekommt dann gemeldet, dass dieses Element verwendet wurde, obwohl es
nicht modelliert ist.

Kunden Der Kreis der Kunden ist noch nicht näher spezifiziert. Denkbare Szenarien sind
jedoch, dass Kostümverleihe direkt ihre Teile mit dem Wiki verknüpfen könnten, um so
einem Kostümbildner einen schnelleren und direkteren Zugriff zu ermöglichen.
Kostümbildner und Kostüm-Forscher können aufgrund der gesammelten Daten schnell eine
Recherche durchführen, um typische Kostüme oder spezielle Instanzen nachzuschlagen.
Hierfür eignet sich besonders eine Volltextsuche, wie sie in Semantic Media Wiki imple-
mentiert ist. Auch komplexe Abfrageergebnisse lassen sich aufgrund der semantischen
Annotation extrahieren. Dazu können auf die vom Wikiexperten modellierten Abfragen
zurückgegriffen werden oder eigene Reportingseiten erstellt werden.
Für Kleidungshersteller eröffnen sich neue Möglichkeiten, da mit hinterlegten Herstellungs-
anleitungen schnell und nach Bedarf produziert werden kann.
Auch wenn bislang die Recherche im Vordergrund steht, soll der Mehrwert, der durch

33

3 Konzept zur Erfassung einer Musterdomäne

diese semantische Datenerfassung entsteht, allen Kostümschaffenden zugänglich gemacht
werden.

Bot Obwohl es auf den ersten Blick verwunderlich scheint, dass ein Programm zusammen
mit Menschen Teil eines Rollenmodells ist, macht diese Einteilung bei näherer Betrachtung
doch Sinn.
Obwohl ein Wiki schon weit über den Stand eines „Datenspeichers“ hinausgewachsen ist, gibt
es dennoch Funktionen, die eines weiteren, externen Programms bedürfen. Dies sind meistens
Wartungsfunktionen. In dieser Domäne übernimmt der Bot eine Analysefunktion. Für solche
Bot-Programme bietet Mediawiki eine Schnittstelle. Der Bot muss sich allerdings wie jeder
andere Benutzer mit Benutzername und Passwort identifizieren, bevor er Änderungen
vornehmen oder Seiten auslesen kann.

3.1.2 Der Muster-Identifikationsprozess

Am Anfang der Identifikation von Patterns steht die Frage, was ein Pattern eigentlich ist
und wie es sich darstellen lässt. Die allgemeine Antwort darauf liefert Abschnitt 2.2.1.
Zur Beantwortung des konkreten Falles eines Kostümpatterns soll der nächste Abschnitt
dienen.

Darstellungsform eines Kostümpattern

Ein Kostümpattern wird im Wiki als eigener Artikel dargestellt. Dieser implementiert die
in „A Pattern Language for Costumes in Films“[SBLE12] vorgestellte Form (Abb.: 3.2), die
sich an den Architekturmustern nach [AIS77] und [HW03] orientiert und sich wie folgt
darstellt:

• Name: Ein eindeutiger Name mit hohem Wiedererkennungswert. Der Name des Wiki-
Artikels.

• Icon: Eine grafische Darstellung des Kostüms.

• Zweck: Kurze Beschreibung der vestimentären Botschaft, die dieses Kostümmuster
transportiert.

• Zusammensetzung: Hier werden die einzelnen Kostümteile oder Unterpatterns be-
schrieben, aus denen das Pattern zusammengesetzt ist. Es werden auch die Beziehun-
gen zwischen den einzelnen Kostümteilen abgebildet.

34

3.1 Identifikationsprozesse in der Kostümdomäne

Abbildung 3.2: Eigenschaften und Format eines Patterns angelehnt an [SBLE12, Abschnitt 5,
S. 12]

• Kräfte: Dieser Abschnitt beschäftigt sich mit den innerfilmischen Wechselwirkungen
die beim Einsatz dieses Musters zum Tragen kommen.

• Kontext: Genre und weiterer Kontext zum Pattern

• Beschreibung: Eine textuelle Beschreibung des Patterns

• Optionale Eigenschaften:

Verwandte Kostümmuster: Verlinkungen zu weiteren Mustern, die im Zusam-
menhang stehen.

Bekannte Vorkommen: Eine Sammlung aller Instanzen, die dieses Pattern imple-
mentieren.

Anwendung: Hier können weitere Informationen, zum Beispiel eine Ankleiderei-
henfolge hinterlegt werden.

Nähanweisung: Falls vorhanden können hier Informationen zum Herstellungspro-
zess eingetragen sein.

Unter Zusammensetzung finden sich Links auf die zugehörigen Kostümteile, die wiederum
eigene Artikel sind.
Diese besitzen ebenfalls eine Zuordnung zu den Taxonomien. Die vom Kostümexperten mo-
dellierten Taxonomien sind hierarchisch angeordnet und werden vom abstrakten „Schuh“ zur

35

3 Konzept zur Erfassung einer Musterdomäne

„Riemchensandalette“ immer konkreter. Alle Eigenschaften (wie in Abschnitt 2 beschrieben),
die für ein Kostümteil gültig sind, können auch dem abstrakten Kostümteil eines Patterns
annotiert werden. In den meisten Fällen sollte ein Musterkostüm eher abstrakten, in der
Hierarchie höher stehenden Elementen zugeordnet sein. Dies ist jedoch nicht zwingend.

Identifizierung von Mustern

Wie in vielen anderen Domänen, ist auch bei den Kostümen die Identifikation eines Patterns
Handarbeit. Der Kostüm-Experte kennt aus seinem professionellen Umgang mit Kostümen
die gängigen Rollen und deren Merkmale.
Diese Muster sind immer auch soziale Rollen und unterliegen dem gesellschaftlichen Wandel.
Dies bringt mit sich, dass das Muster auf dem eine Filmrolle basiert, je nach Kontext einem
Beruf, Stereotyp oder auch einer Charaktereingenschaft zuzuordnen ist.
Im Gegensatz zu dem in „A Pattern Language for Costumes in Films“[SBLE12] vorgestellten
Pattern-Identifikationsprozess entfällt die Wahl des Genres und Filmkorpus als expliziter
Schritt. Implizit sind beide Schritte in der Auswahl von Instanzen vertreten. Der hier ge-
wählte Ansatz ermöglicht auch die Genregrenzen zu verlassen und übergreifende Muster zu
bestimmen. Ein weiterer Unterschied besteht darin, dass hier zu Beginn des Identifikations-
prozesses ein Patternkandidat gewählt wird und nicht alle gängigen Rollen eines Genres
betrachtet werden.
Die einzelnen Schritte könnten also wie folgt beschrieben werden:

1. Wahl eines Patternkandidaten

2. Auswahl von Instanzen

3. Dekomposition der Instanzen

4. Ähnlichkeitsanalyse der Komponenten

5. Filterung

6. Abstraktion zum gemeinsamen Oberbegriff

7. Komposition zum Pattern

Die folgenden Schritte werden manuell durchgeführt. Wo die Unterstützung durch das Wiki
wie möglich ist, steht explizit dabei. Abschnitt 3.2.7 verfolgt einen anderen, weitestgehend
automatisierten Ansatz.

36

3.1 Identifikationsprozesse in der Kostümdomäne

Abbildung 3.3: Der Pattern-Identifikationsprozess in der Kostümdomäne, angeleht an [Ba13]

Wahl eines Patternkandidaten Der Kostümexperte wählt aus Stereotypen, Beruf oder Cha-
raktereigenschaften einer Rolle einen Patternkandidaten aus. Die vorhandenen Attributwerte
kann er dabei aus dem Wiki ablesen, sofern bereits die entsprechenden Lösungen im Wiki
hinterlegt wurden.

Auswahl von Instanzen Der Kostümexperte wählt nun diejenigen Instanzen, die den ge-
wählten Patternkandidaten implementieren. Das Wiki kann sehr leicht eine Liste mit allen
Instanzen erzeugen, die den entsprechenden Attributwert besitzen.

Dekomposition der Instanzen In diesem Schritt müssen die Kostüme in ihre einzelnen Teile
zerlegt werden. Bis zur Komposition werden alle weiteren Schritte auf den Kostümteilen
durchgeführt. Ist eine Lösung im Wiki eingetragen, sind auch ihre einzelnen Kostümteile
vorhanden und entsprechend zugeordnet. Benutzt man eine entsprechende Abfrage, kann
man diesen und den vorhergehenden Schritt zusammenfassen.

Ähnlichkeitsanalyse der Komponenten Dies ist der Kern des hier vorgestellten Identifi-
kationsprozesses. Im Gegensatz zu „A Pattern Language for Costumes in Films“[SBLE12],

37

3 Konzept zur Erfassung einer Musterdomäne

wo nur von „Describe Components“ die Rede ist, wird hier eine Analyse durchgeführt, die
zwei miteinander verglichenen Kostümteilen einen numerischen Wert zuordnet, der die
Ähnlichkeit ausdrückt. Dies geschieht über die Hierarchieebenen der einzelnen Taxonomien.
Dabei wird jede Ebene mit einem Wert versehen, der ihrem Abstand zur Wurzel entspricht.
Nun sucht man zu den zwei Elementen (in jeder Eigenschaft) den ersten gemeinsamen
Oberbegriff in der Taxonomie und summiert die Werte von dort bis zur Wurzel auf. Die
Summe dieser Werte bringt die Ähnlichkeit zweier Kostümteile zum Ausdruck, da zwei
Elemente, die im Taxonomiebaum näher beieinander stehen automatisch einen höheren Wert
erzielen. Je ähnlicher sich mehrere Kostümteile sind, desto größer ist die Wahrscheinlichkeit,
dass diese Teile für das Pattern relevant sind.
Diese Analyse kann in Semantic Media Wiki von einer SPARQL-Abfrage übernommen
werden.

Filterung Der Nachteil dieser Methode wird im folgenden Schritt, „Abstraktion zum ge-
meinsamen Oberbegriff“ klar: Vermutlich wird man viele Instanzen finden, die sich sehr
ähneln, in wenigen Details jedoch signifikant unterscheiden. Möchte man nun für die Eigen-
schaft mit der großen Differenz einen gemeinsamen Oberbegriff finden, landet man sehr
nahe am Wurzelelement. Wiederholt sich dieser Vorgang mit anderen Instanzen bei anderen
Eigenschaften, hat man zuletzt ein sehr unscharfes Pattern, mit dem man nichts anfangen
kann.
Deswegen ist es wichtig, diese „Ausreißer“ herauszufiltern und nicht in den Pattern-
Kompositionsprozess einfließen zu lassen. Dies ist eine Aufgabe, die der Kostümexperte im
referenzierten Modell[SBLE12] intuitiv übernimmt.

Abstraktion zum gemeinsamen Oberbegriff Nachdem die Daten gefiltert wurden, werden
für die korrespondierenden Kostümteile die gemeinsamen Oberbegriffe gesucht.

Komposition zum Pattern Diese werden nun im Abschnitt „Zusammensetzung“ verlinkt.
Die weiteren Abschnitte auf der Patternseite werden ausgefüllt.
Im Anschluss daran sollte das Pattern gegen weitere Instanzen geprüft und gegebenenfalls
angepasst werden.

38

3.2 Modellierung der Kostümdomäne

Abbildung 3.4: Ausschnitt aus der Basiselemente-Taxonomie aus [Ba13]

3.2 Modellierung der Kostümdomäne

3.2.1 Domänenmodellierung

Das Herz der Kostümdomäne sind die einzelnen Kostüme, wie sie in Filmen vorkommen.
Um ein Kostüm zu erfassen, gilt es, die einzelnen Kostümteile exakt aufzunehmen und auch
weitere Eigenschaften wie Zustand und Trageweise sowie Assoziationen mit dem Kostüm zu
erfassen. Abbildung 3.5 bietet einen Überblick über die Eigenschaften, die bei einem Kostüm
modelliert werden und zeigt die Zusammenhänge zwischen Film, Rolle, Kostüm, Kostümteil
und Teilbereich.
Kostüme werden aus Kostümteilen komponiert. Um ein gemeinsames Vokabular vorzugeben
und Referenzen auf diese Vokabeln anzugeben, wurden Farben, Basiselemente, Teilelemente,
Formen und Materialien in Taxonomien vom Domänenexperten modelliert und standar-
disiert. Diese hierarchisch aufgebauten Fakten ermöglichen eine Ähnlichkeitsanalyse wie
in Abschnitt 3.1.2 beschrieben. Tabelle 3.1 zeigt, für welche Eigenschaften ein Vokabular in
Form einer Taxonomie vorgegeben ist, während Abbildung 3.4 einen Ausschnitt aus der
Basiselemente-Taxonomie zeigt.

39

3 Konzept zur Erfassung einer Musterdomäne

Abbildung 3.5: Kostüme als UML-Klassendiagramm

Dateiname Zeilenanzahl Hierarchietiefe Bsp. tiefstes Element
Alter 13 2 in den 20ern
Basiselement 889 7 Trainingshorts
Design 29 4 gestreift
Familienstand 4 1 ledig
Farbe 53 3 dunkelviolett
Farb-Eigenschaft 6 1 glänzend
Farbkonzept 7 1 überzeichnet
Form 30 3 knöchellang
Funktion 219 5 Chirurgenkleidung
Geschlecht 4 1 weiblich
Körpermodifikation 44 4 Hochsteckfrisur
Material 99 5 Spandex
Material-Eigenschaft 7 1 fließend
Operator 15 2 angesteckt
Ortsgegebenheit 4 1 draußen
Rollenrelevanz 4 1 Nebenrolle
Tageszeit 7 2 nachmittags
Teilelement 203 5 Stiletto
Trageweise 10 2 hochgekrempelt
Zustand 28 3 ausgewaschen

Tabelle 3.1: Eigenschaften, die mittels Taxonomie in [Ba13] modelliert wurden

Um eine saubere Katalogisierung der Kostüme vorzunehmen, werden diese einer Rolle
zugeordnet, die wiederum einem Film zugehört. Somit lassen sich Kostüme auch getrennt
nach Genres oder Produktionsländern und Produktionsjahren betrachten.
Für das Kostüm werden zusätzliche Informationen wie der Zeitpunkt des Auf- und Ab-
tritts erfasst. Der Charakter und Stereotyp der verkörperten Rolle werden ebenfalls notiert.

40

3.2 Modellierung der Kostümdomäne

Ersteres ermöglicht eine Betrachtung über die Zeit hinweg und kann aufschlussreiche Infor-
mationen liefern, wie lange ein Kleidungsstück oder eine Farbe zu sehen ist, letzteres soll
Korrelationen zwischen Charaktereigenschaften oder Stereotypen und Kleidung, Farben,
Materialien, etc. aufzeigen. Je kürzer eine Kostüm zu sehen ist, desto wichtiger ist die in
Kapitel 2.3 beschriebene vestimentäre Kommunikation. Da der Rolle kaum Zeit bleibt, ihre
Funktion und Charaktereigenschaften auszuspielen, muss die Kostümierung versuchen, dies
dem Zuschauer klar zu machen.
Der Kompositionsabschnitt eines Patterns ist die abstrahierte Form einer Kostümlösung:
Aus der konkreten Instanz des Sheriffs in „Rio Bravo“ wird beispielsweise das Pattern des
Wild-West Sheriffs. Während die Instanz alle Details enthält, beinhaltet das Pattern nur die
charakteristischen Kleidungsstücke, bzw. deren charakteristische Eigenschaften.
Eine Kostümlösung beschreibt ein Kostüm einer Rolle in einem Film, das Pattern versucht,
alle Kostüme aller Rollen, die vom gleichen Typ (Beruf, Charakter, Stereotyp) sind, abzubil-
den. Der größte gemeinsame Nenner aller (oder der meisten (vgl. Abschnitt 3.1.2)) Instanzen
gibt somit die Abstraktionsebene des Patterns vor. Dabei ist es schwierig zu entscheiden, ob
eine Instanz nun typisch für ein Pattern ist, oder nicht. Lösungen für diese Entscheidung
kommen erst mit einer großen Anzahl erfasster Kostüme oder durch fachliche Bewertung
des Domänenexperten.

3.2.2 Erfassung des Domänenwissens

Das Domänenwissen besteht aus Fakten (vgl. Abschnitt 2.1.2) und ihren Zusammenhängen.
Dieses Wissen kann in Form von Ontologien abgespeichert werden. Für unterschiedliche
Domänen ist das Ontologiewissen natürlich nicht einheitlich. Daher gibt es keine Muster-
lösung mit der alle Domänen gleichermaßen im Wiki dargestellt werden können. Einzelne
Bereiche einer Ontologie können aber durchaus verallgemeinert werden: so sind viele Fakten
beispielsweise hierarchisch aufgebaut. Diese Hierarchie lässt sich durch eine „ist eine“ Be-
ziehung abbilden. Diese hierarchische Struktur der Fakten ist besonders wichtig, um später
Auswertungen auf den gesammelten Daten durchzuführen. Die Zusammenhänge zwischen
den einzelnen Fakten sind sehr domänenspezifisch, jedoch lässt sich in den einzelnen Domä-
nen meist eine Unterscheidung in unterschiedliche Ebenen vornehmen. Die Fakten, die der
Domänenexperte modelliert hat, sollen nicht verändert werden. Eine wichtige Aufgabe des
Systems ist es, dem Erfasser der Daten die richtigen Fakten zur Auswahl vorzugeben. Mit
der Lösung dieses Problems befasst sich Abschnitt 3.2.5. Nur so kann gewährleistet werden,
dass auf erfassten Daten auch sinnvoll gesucht werden kann.

41

3 Konzept zur Erfassung einer Musterdomäne

3.2.3 Struktur des Wikis

Dieser Abschnitt beschreibt kurz die Struktur eines Wikis und erläutert die für die Kostüm-
domäne relevanten Elemente.

Artikel Sie sind der zentrale Datentyp eines Wikis. Fast alles im Wiki wird von einem Artikel
repräsentiert. Jeder Artikel hat einen eindeutigen Namen (innerhalb seines Namensraums)
und liegt in einem Namensraum, der dem Namen als Präfix vorangestellt ist. Ein Artikel
hält seine Änderungshistorie in Revisionen vor und stellt seine Inhalte in einer optisch
ansprechenden Form dar.

Kategorien Dieses Konzept ist ein Spezialfall eines Artikels und auch der Grund für
semantische Attribute: Eine Kategorie ist ein Artikel, der mit einem speziellen Tag von einem
anderen Artikel aus referenziert werden kann und diesen als zugehörig anzeigt. Ein Artikel
kann beliebig vielen Kategorien zugehören. Im Prinzip ist das nichts anderes als das erste
semantische Attribut „zugehörig zu einer Kategorie“.

Semantische Attribute Die Ausdrucksschwäche des Kategorie-Konzepts führte zur Ent-
wicklung semantischer Attribute: Sie erweitern das Vokabular eines Wikis um eine ganze
Wortklasse, die Verben. Mit diesen Attributen lassen sich Zusammenhänge erst richtig dar-
stellen. Die Regeln für grundlegenden Satzbau, Subjekt - Prädikat - Objekt, gelten nach
„The Semantic Web“[BLHL01] auch, wo Zusammenhänge semantisch beschrieben werden
sollen. Subjekt und Objekt sind dabei Artikel des Wikis. Objekte können auch von anderen
Datentypen sein, die das Wiki erlaubt. Prädikate sind durch die Attribute selbst dargestellt.

Namensräume Artikel werden in Namensräumen organisiert. Dies hilft Artikel nach ihrer
Funktion zu trennen und verlagert das Problem, zwei Artikel nicht gleich benennen zu kön-
nen. Für Namensräume können unterschiedliche Zugriffsrechte vergeben werden. Dadurch
lassen sich Inhalte vor ungewollter oder böswilliger Veränderung schützen.

Vorlagen Wiederkehrende Inhalte wie bestimmte Abfragen, Zugehörigkeit zu einer Ka-
tegorie oder die Verfügbarmachung bestimmter semantischer Attribute in einem Artikel
können durch die Benutzung von Vorlagen stark vereinfacht werden. Dabei wird die Vorlage
im Artikel nur referenziert. Die Vorlage ist ein Artikel in einem speziellen Namensraum.
Vorlagen eignen sich auch hervorragend, um zentrale Änderungen vorzunehmen.

42

3.2 Modellierung der Kostümdomäne

Formulare Vorlagen können von Formularen interpretiert werden. Semantic Media Wiki
mit der Erweiterung SemanticForms bietet die Möglichkeit, einen neuen Artikel mit Hilfe
eines Formulars zu erstellen, dem eine Vorlage zugrunde liegt. Das Formular füllt die
Vorlage anhand der Benutzereingaben aus. Formulare sind ein bequemer Weg, Artikel im
Wiki anzulegen.

Abfragen Der Nutzen abgelegter Daten, die nicht durchsucht oder verwendet werden
können, ist fraglich. Deswegen bringt das Wiki einige Befehle, die Abfragen von einfach
bis sehr komplex ermöglichen. Dabei kann entweder auf die Wiki-Datenbank oder auf ein
externes Programm zurückgegriffen werden. Auch die Abfragebefehle unterscheiden sich in
Syntax und Komplexität.

3.2.4 Taxonomie-Import ins Wiki

Für den Import von Ontologien bietet Semantic MediaWiki (SMW) eine eigene Funktion.
Dabei werden zwar alle modellierten Daten richtig in das Wiki übertragen, die Benennung
der Artikel erfolgt jedoch hierarchisch, so dass der komplette Pfadname des Ontologiebaumes
als Artikelname angegeben wird. Dadurch wird das Wiki unübersichtlich. Eine Verwendung
von Namensräumen sieht der Import ebenfalls nicht vor. Aus diesen Gründen ist von der
Benutzung dieser Import-Funktion abzuraten.
Alternativ kann der Import über die Programmierschnittstelle von MediaWiki (MW) erfolgen.
Dieses Interface existiert für viele Programmiersprachen.[med13c] So ist es möglich, aus
einem gewählten Eingabe-Format einen Import ins Wiki zu erhalten, der ebenfalls sehr
flexibel angepasst werden kann. Beispielsweise kann die Zuordnung in Namensräume und
die Ausgestaltung der Artikel mit vorgefertigten Abfragen erfolgen.
Im Referenzprojekt haben wir uns für die Implementierung der Taxonomien in Freeplane
bzw. Freemind entschieden. Dieses unter der GNU-General Public License erschienene
Mindmap-Programm ermöglicht die einfache hierarchische Gliederung von Fakten und
verfügt über eine Reihe von Exportformaten.
Die nötigen Zusammenhänge zwischen den Fakten der Taxonomien sowie die Restriktionen,
ob ein Attribut beispielsweise mehrere Werte haben darf und Vorgaben für die Eingabe
müssen in Vorlagen und Formularen verankert werden. Dies ist die Hauptaufgabe des
Wiki-Experten. Hier gilt es, in enger Zusammenarbeit mit dem Domänenexperten dessen
Vorstellungen mit den Möglichkeiten, die Media Wiki und seine Extensions bieten in Einklang
zu bringen. An manchen Stellen muss hier die Domäne mit einer gewissen Ungenauigkeit
modelliert werden, an anderer Stelle muss eine Erweiterung für das MediaWiki selbst
geschrieben oder um eine gewisse Funktionalität erweitert werden.

43

3 Konzept zur Erfassung einer Musterdomäne

3.2.5 Lösungsdokumentation und Eingabemodelle

Unterstützte Eingabe von Instanzen

Dieser Abschnitt beschreibt das Vorgehen des Lösungserfassers bei der Dokumentation einer
Lösung.
Alle Schritte sind durchgängig durch Formulare und Übersichtsseiten mit Eingabemasken
unterstützt. Die nötigen semantischen Attribute, die den Zusammenhang zwischen den Sei-
ten sichern, werden dabei von den Formularen selbstständig erstellt. Diese Zusammenhänge
sind auch in Abb. 3.5 in den Verbindungen die mit „gehört zu“ annotiert sind, abgebildet.

1. Film erfassen: In einem ersten Schritt ist es nötig, den Filmtitel, Daten zu Genre,
Entstehungsland und -zeit und kostümverantwortlichen Personen zu erfassen. Dieser
Schritt muss für jeden Film natürlich nur einmal vorgenommen werden. Möchte man
an einem bestehenden Film weiterarbeiten, genügt ein Klick auf den entsprechenden
Link auf der Startseite.

2. Rolle erfassen: Bevor Kostüme erfasst werden können, muss festgelegt werden, welcher
gespielten Rolle ein Kostüm zugeordnet werden soll. Weitere wichtige Informationen
sind der Stereotyp den die Rolle verkörpert, sowie Charaktereigenschaften der Rolle
oder ob es sich um eine Haupt- oder Nebenrolle handelt. Der Name der Rolle setzt sich
aus Film und eingegebenem Rollenname zusammen und wird im Namensraum „Rolle:“
abgelegt. Auch hier gilt wie beim Film, dass eine einmal angelegte Rolle durchaus
mehrere Kostüme tragen kann, ohne dass die Rolle deswegen neu eingegeben werden
müsste.

3. Kostüm erfassen: Der Kostümname wird fortlaufend und automatisch vergeben. Für
jedes Kostüm muss eine Kurzbeschreibung angegeben werden. Dann wählt man aus
Taxonomien die Ortsgegebenheit und Tageszeit. In die Felder für Timecode-Aufzug
und -Abgang gibt man die Zahl der Sekunden ab Filmstart ein. Mit diesen Werten kann
das Wiki auch rechnen. Assoziation bietet ein Feld zur Freitexteingabe der subjektiven
Wahrnehmung des Lösungserfassers. Im Gegensatz zum Stereotyp der für die ganze
Rolle gilt, ist die Assoziation nur auf das Kostüm bezogen. Funktion, Zustand und
Körpermodifikation werden aus den entsprechenden Taxonomien ausgewählt.

4. Kostümteil erfassen: Auch hier wird der Name des Artikels vom Wiki vergeben und
fortlaufend durchnummeriert. Der Lösungserfasser wählt ein Basiselement aus der
Taxonomie und spezifiziert, ebenfalls mit Hilfe der Taxonomien Form, Material, Farbe,
Design und Trageweise. Die gewählten Werte für Funktion und Zustand aus der
Kostümeingabe werden automatisch übernommen, können aber hier noch bearbeitet
werden. Der Wert für die Relevanz gibt auf einer Skala von 1-10 an, wie wichtig oder

44

3.2 Modellierung der Kostümdomäne

typisch das Kleidungsstück für das Kostüm und die Rolle ist. Dies unterliegt natürlich
ebenfalls der subjektiven Wahrnehmung des Erfassers.

5. Teilbereich erfassen: Optional kann man zu jedem Kostümteil noch beliebig vie-
le Teilbereiche näher spezifizieren. Solche sind beispielsweise ein Kragen, Ärmel,
Reißverschluss-Partien. Dies führt dazu, dass ein Kostümteil mit einem sehr hohen
Detailgrad erfasst werden kann. Für jeden Teilbereich muss man ein Teilelement wählen
und dann, wie beim Kostümteil Eigenschaften angeben, die dieses näher bestimmen.
Die möglichen Eigenschaften sind die gleichen, wie im Kostümteil und werden von
dort auch übernommen, können dann jedoch angepasst werden.

Durch diese geführte Eingabe wird sichergestellt, dass bei jedem Kostümteil für jede Ei-
genschaft aus der richtigen und gleichen Taxonomie Werte zum Einsatz kommen. Durch
Vorgabe der Fakten wird auch die Gefahr von Tippfehlern minimiert, da nur wenige Freitexte
vorhanden sind. Diese strukturierte Darstellung der Kostümlösungen ist die Grundlage für
den Pattern-Identifikationsprozess. Nur wenn alle Werte eines semantischen Attributs auch
in der selben Taxonomie zu finden sind, lassen sie sich miteinander vergleichen.

Referenzierung von Fakten durch konfektionierte Auswahl

Aufgabe des Wikiexperten ist es, die Formulare für die Lösungserfasser möglichst einfach
und intuitiv zu gestalten. Dabei muss er die Möglichkeit bieten, schnell auf die Fakten
der richtigen Taxonomie zu verweisen. In Formularen kann dies durch Texteingabe mit
Autovervollständigung erreicht werden.
Da im Fall der Kostümdomäne zum Teil sehr große Taxonomien vorliegen und man allein bei
den Basiselementen aus 890 Fakten wählen kann, bietet die Einarbeitung in diese Taxonomie
eine große Einstiegshürde. Aus diesem Grund wurde ein Formular entwickelt, das sowohl
die klassische Eingabe unterstützt, als auch den Taxonomie-Lernprozess durch die grafische
Darstellung des Taxonomiebaumes vereinfacht. Der Lösungserfasser kann sich so entweder
durch den Taxonomiebaum hangeln oder die Direktverbindung zu einem Fakt wählen. Diese
beiden Verfahren lassen sich auch an beliebiger Stelle durchmischen.
Der Domänenexperte spezifiziert auch Attribute, die mehrere Werte haben können. (Bei-
spielsweise Farben). Um auch hier die Eingabe so intuitiv wie möglich zu gestalten, gibt es
bei den Formularfeldern, die mehrere Werte erlauben, einen Knopf der den aktuellen Wert
sichert, und die Baumansicht wieder auf das Standardelement zurücksetzt, so dass man
einen neuen Wert auswählen kann.

45

3 Konzept zur Erfassung einer Musterdomäne

3.2.6 Informationen aus dem Wiki auswerten

Ziel der semantischen Erfassung von Informationen ist, Maschinen zu ermöglichen, die
Bedeutung eines Sachverhaltes zu erkennen. Darin sind Maschinen, verglichen mit Menschen,
nicht besonders gut. Auch semantische Daten „verstehen“ Maschinen nicht in dem Sinne,
dass sie ihre wahre Bedeutung erfassen könnten. Das schreibt auch Tim Berners-Lee: „The
computer doesn’t truly „understand“ any of this information, but it can now manipulate
the terms much more effectively in ways that are useful and meaningful to the human
user.“[BLHL01]
Vielmehr ermöglicht Semantik, die Daten in einem Format darzustellen mit dem die Ma-
schine arbeiten kann, auf dem sie Schlüsse ziehen und Vorkommnisse suchen kann. Das
sind Vorgänge, die Maschinen besser beherrschen, als Menschen, denn es sind nun einfach
Berechnungen.

Triplestore Um diesem Sinn gerecht zu werden, sind auch die semantischen Informatio-
nen, die in einem Wiki abgespeichert werden dergestalt, dass sie von einem Computer
verarbeitet werden können. Um die Mächtigkeit ihrer Darstellungsform zu demonstrieren
ermöglichen viele Wikis die Verarbeitung des Wissens mit Bordmitteln. Andere greifen auf
spezielle Abfragemaschinen zurück. SMW tut beides: Die Sprache, auf der die Computer
mit den Daten operieren können, ist eine Tripelsprache: Dabei werden Zusammenhänge in
der Form Subjekt - Prädikat - Objekt dargestellt. Das Wiki verwandelt die ihm bekannten
Informationen in solche Tripel. Das ist recht einfach, da das Subjekt immer der Artikel ist,
in dem ein Attribut steht, das Prädikat das Attribut ist und das Objekt durch den Wert des
Attributs bestimmt wird. Man kann sich leicht vorstellen, dass so eine große Anzahl an
Tripeln entsteht. Diese schickt das Wiki nun an ein Programm, das diese Tripel verwalten
und auf ihnen arbeiten kann, den Triplestore (Tripel-Speicher).
Der Triplestore ist von seinem Aufbau her dreigeteilt. Eine detaillierte Beschreibung des
Aufbaus anhand des TripleStore Basic von DIQA ist in Abschnitt 5.3.11 zu finden.
Eine Logik-Einheit sorgt dafür, dass Attribute transitiv (Attribut „gehört zu“ in Abb.
3.5), oder symmetrisch verwendet werden können. Dort können auch Regeln hinterlegt
sein, die beispielsweise aus den Informationen: X hat_Geschlecht weiblich und
Y ist_Vater_von X ein weiteres Tripel X ist_Tochter_von Y ableiten.
Ein weiteres Element des Triplestore ist die Query Engine, die Abfragen auf den Tripeln
ausführt. Eine Abfrage liefert im Grunde immer eine Menge von Tripeln zurück, bei denen
Subjekt, Prädikat oder Objekt mit den in der Abfrage spezifizierten Werten übereinstimmen.
Alle komplexeren Abfragen sind Mengenoperationen auf den unterschiedlichen Ergebnis-
mengen.
Im Vordergrund läuft eine Benutzerschnittstelle, die Anfragen in einer Querysprache ent-

46

3.2 Modellierung der Kostümdomäne

gegennimmt und die gefundenen Ergebnisse formatiert und zurückschickt. Abbildung 3.6
verdeutlicht den Aufbau des Triplestore. Der Triplestore implementiert somit den von Dean
Allemang beschriebenen RDF-Store ([AH11, Seite 57]).
Aus Abbildung 3.6 geht auch hervor, dass der Triplestore sowohl aus dem Wiki als auch von
außerhalb abgefragt werden kann.

Abbildung 3.6: Schematische Übersicht Triplestore

Abfragen Anfragen an den Triplestore erfolgen in SPARQL (siehe Abschnitt 2.1.5). Seman-
tic Media Wiki bietet zwar auch die Möglichkeit, Abfragen in der wikieigenen Sprache
„Wikitext“ zu formulieren, da aber letztlich alle Abfragen in SPARQL umgewandelt werden,
verzichtet diese Arbeit auf deren Betrachtung.
Der Wikiexperte ist angehalten für den Domänenexperten wichtige Daten in der Art von
Reports zur Verfügung zu stellen. Da mit dem Laden einer Seite auch die Abfrage neu
ausgewertet wird, spiegeln die Ergebnisse immer den aktuellen Wissensstand des Wiki
wider. In der Kostümdomäne könnten folgende Kenngrößen aufschlussreich sein: Anzahl
der eingegebenen Kostüme, durchschnittliche Anzahl an Rollen pro Film, durchschnittliche
Anzahl angelegter Kostümteile pro Kostüm.
Für die Kostümforschung wichtige Fragen können ebenfalls mit SPARQL-Queries beant-
wortet werden. Ein Beispiel hierfür ist, welche Farbe in einem Film dominant ist. Das Wiki
kann diese Frage natürlich nur bezogen auf die Kostüme beantworten und auf Kamerafüh-
rung oder relative Größe der Kleidungsstücke zueinander nimmt es auch keine Rücksicht.
Doch wenn man, wie in diesem Fall die Anzahl der gleichfarbigen Kleidungsstücke mit der

47

3 Konzept zur Erfassung einer Musterdomäne

Auftrittsdauer des Kostüms multipliziert, erhält man einen Wert, der die Dominanz einer
Farbe ausdrückt. Über die Höhe dieses Werts lässt sich auch die Signifikanz dieser Aussage
relativieren.
Für den Pattern-Identifikationsprozess lassen sich die Abfragen auch nutzen, um eine Ähn-
lichkeitsanalyse durchzuführen. Dieses Vorgehen wird im folgenden Abschnitt genauer
beschrieben.

3.2.7 Teilautomatisierter Patternidentifikationsprozess

Der Identifikationsprozess von Patterns wurde in Abschnitt 3.1.2 bereits vorgestellt. Dieser
Abschnitt beschreibt, wie dieser Prozess mit Hilfe der erfassten Daten zumindest teilweise
automatisiert werden kann.
Der nachfolgend beschriebene Prozess geht von einer grundsätzlich anderen Annahme
aus: Er sucht kein Pattern basierend auf einem Patternkandidaten, sondern eine Menge
von Instanzen, die sich untereinander ähneln. Diese bietet er dem Domänenexperten zur
Überprüfung an. Dahinter steht die Annahme, dass Kostüme, die sich stark ähneln auch
ein gemeinsames Muster implementieren. Das nachfolgend beschriebene Verfahren zur
Ähnlichkeitsanalyse basiert auf einer Abfrage, die eine Ähnlichkeit zwischen 2 Kostümen
ausdrückt. Die Güte dieses Ansatzes steht und fällt mit der Qualität dieser Abfrage. Für
eine erste Implementierung des Verfahrens wurde eine sehr einfache und vermutlich auch
schlechte Heuristik zur Ähnlichkeitsbestimmung angenommen. Eine wirklich gute Heuristik
für die Ähnlichkeit von 2 Kostümteilen anzugeben, liegt eher im Forschungsbereich der
Kostümwissenschaften und würde den Rahmen dieser Arbeit sprengen.

Ähnlichkeitsanalyse Um die Ähnlichkeit zwischen zwei beliebigen Kostümen messen zu
können, benötigt man Vergleichskriterien. Diese sind zum einen in der Zahl der angegebenen
Eigenschaften gegeben, zum anderen in der tatsächlichen Ähnlichkeit der einzelnen Teile.
Die Relevanz eines Teiles muss genauso berücksichtigt werden wie die Nähe zweier Teile
zueinander in der Taxonomie. Für eine erste Testimplementierung wurde eine Heuristik
herangenommen, die nur die Basiselemente und deren Abstand in der Taxonomie betrachtet.
Dabei werden nicht nur die korrespondierenden Kleidungsstücke (also Kopfbedeckung von
Kostüm1 mit Kopfbedeckung von Kostüm2) verglichen, sondern es findet ein Kreuzvergleich
statt. Dies scheint auf den ersten Blick unnötig kompliziert, vereinfacht aber die Abfrage
und verfälscht das Ergebnis nicht. Der numerische Wert einer Ähnlichkeit berechnet sich
durch das semantische Attribut „Ebene“, das bereits beim Import der Taxonomie jedem Fakt
zugewiesen wurde. Der Wert dieses Attributs ist wie in Abschnitt 3.1.2 beschrieben, der
Abstand des entsprechenden Knotens zur Wurzel.
Da ein Vergleich aller Instanzen eine große und rechenintensive Aufgabe ist, wird für

48

3.2 Modellierung der Kostümdomäne

diese Aufgabe ein Wiki-Bot, also ein automatisiertes Wartungsprogramm, eingesetzt. Dieses
überprüft in regelmäßigen Abständen, ob ein neues Kostüm angelegt wurde und überprüft
es auf Ähnlichkeit mit allen anderen vorhandenen Kostümen. Dazu verwendet es eine
vorgefertigte Abfrage, die in Listing 3.1 zu sehen ist und ersetzt vor Ausführung das „XXX“
in der Anfrage durch den Namen des betreffenden Kostüms. Die Ergebnisse seiner Analyse
legt der Bot in den betroffenen Artikeln ab. So gibt es eine Ähnlichkeitsbeziehung in Form
eines semantischen Attributs von Kostüm A nach Kostüm B. Diese Informationen werden
allerdings so angebracht, dass sie beim normalen Betrachten des Wikis nicht auffallen.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX tsctype: <http://www.ontoprise.de/smwplus/tsc/unittype#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?kostüm2 (SUM(?wert) AS ?Summe)

WHERE

{

{

?kostüm1 a cat:Kostüm .

?kostümteil1 prop:Gehört_zu ?kostüm1 .

?kostümteil1 a cat:Kostümteil .

?kostüm2 a cat:Kostüm .

?kostümteil2 prop:Gehört_zu ?kostüm2 .

?kostümteil2 a cat:Kostümteil .

FILTER

(

(?kostüm1 != ?kostüm2) && (?kostüm1 = XXX)

)

?kostümteil1 prop:Basiselement ?compElement1 .

?kostümteil2 prop:Basiselement ?compElement2 .

?compElement1 prop:Unterelement_von* ?hierarchie1 .

?compElement2 prop:Unterelement_von* ?hierarchie2 .

FILTER (?hierarchie1 = ?hierarchie2)

?hierarchie1 prop:Ebene ?wert .

FILTER (?wert != 0)

}

}

GROUP BY ?kostüm2

ORDER BY DESC(?Summe)

Listing 3.1: Abfrage um Ähnlichkeit zwischen 2 Kostümen zu erhalten

Einteilung in Ähnlichkeitsklassen Die Art dieses semantischen Attributs stellt ein Problem
dar, das an mehreren Stellen im Umgang mit dem Wiki existiert: Ein Attribut kann keine

49

3 Konzept zur Erfassung einer Musterdomäne

Gewichtung haben. Das liegt an der Triplestruktur, die neben Subjekt - Prädikat - Objekt
keinen Platz bietet, ein Prädikat mit einem quantitativen Argument zu versehen.
Würde man das Attribut als Kante eines Graphen zwischen den zwei Knoten Subjekt und
Objekt betrachten, wäre die Kante zwar gerichtet, aber nicht gewichtet. Eine naheliegende
Lösung dafür wäre es, zu jedem Grad an Ähnlichkeit, ein semantisches Attribut zu bilden.
Daraus folgt aber im schlechtesten Fall (keine zwei Kostümpaare sind sich gleich ähnlich),
dass plötzlich bei n-Kostümen n×(n−1)

2 neue semantische Attribute dem Wiki hinzugefügt
werden würden.
Dies ist keinesfalls wünschenswert. Durch eine Normalisierung der Werte auf einen Pro-
zentsatz zwischen 0 und 100, würde die Anzahl der neuen Attribute konstant 100 betragen,
allerdings verliert man auch ein wenig Genauigkeit, da bei der Berechnung des Prozentsat-
zes Nachkommastellen ignoriert werden müssen, um die Beziehung zwischen den beiden
Elementen einer Ähnlichkeitsklasse zuzuordnen. Als Referenzwert zur Normalisierung kann
man die Identität eines vollständig spezifizierten Kostüms mit 100% ansetzen. Daraus lässt
sich nun ein Prozentwert wie folgt berechnen:

(3.1) babsoluter Ähnlichkeitswert× 100
absoluter Identitätswert

+ 0, 5c = Ähnlichkeitswert in Prozent

Dieser Wert wird nun bei beiden Kostümen wie folgt eingetragen:
Für Kostüm A: [[ähnelt zu XX %::Kostüm B]],
für Kostüm B: [[ähnelt zu XX %::Kostüm A]],
wobei XX jeweils der Ähnlichkeitswert in % ist. Natürlich muss bei diesen Ähnlichkeitswerten
berücksichtigt werden, dass ein höherer Wert automatisch auch die Bedingungen eines
niedrigeren Wertes erfüllt. Hierzu sollte man bei den semantischen Attributen von einer
Unterattribut-Eigenschaft (subProperty) Gebrauch machen und jedem Attribut mitteilen,
dass es ein Unterattribut des Attributes mit einem Prozentpunkt weniger ist. Dadurch baut
sich eine Attributkette auf und bei Suchabfragen werden die Unterattribute automatisch
mitberücksichtigt.
Hat man die Ähnlichkeiten zwischen je 2 Kostümen ermittelt, ist der nächste Schritt, die
Ähnlichsten zu gruppieren. Davon handelt der folgende Abschnitt.

Gruppierung der ähnlichsten Kostüme Für die Lösung dieses Problems kann man die
Kostüme als Knoten eines Graphen und die Ähnlichkeits-Attribute als Kanten betrachten. Da
alle Ähnlichkeits-Attribute bidirektional sind, kann man von einem ungerichteten Graphen
ausgehen. Da von jedem Kostüm zu jedem anderen eine Kante besteht, ist der Graph auch
vollständig.

50

3.2 Modellierung der Kostümdomäne

Streicht man jetzt alle Kanten heraus, die kleiner als ein gewünschter Ähnlichkeits-
Schwellenwert sind, erhält man einen ungerichteten Graphen, der partitioniert sein kann.
Die ähnlichsten Kostüme sind nicht nur zu einem dritten Kostüm ähnlich, sondern auch
zueinander. Somit suchen wir jetzt einen Teilgraph, der ebenfalls vollständig ist. Dieses
Problem ist in der Informatik als CLIQUE bekannt. Hier suchen wir nun den vollständigen
Teilgraph maximaler Größe, also die maximale CLIQUE. Die NP-Vollständigkeit dieses
Problems wurde 1972 von Richard Karp bewiesen, indem er es auf das 3-SAT-Problem
reduzierte. [Kar72]
Nachfolgender primitiver Algorithmus löst dieses Problem und liefert die Ergebnismengen
E[] zurück, deren Größte auch die maximale Clique darstellt.

51

3 Konzept zur Erfassung einer Musterdomäne

Algorithmus 3.1 Algorithmus zum Auffinden der maximalen CLIQUE
Require: U ← alle Knoten in einem zusammenhängenden ungerichteten Graphen

B, S, E[P(U)]← {} // Hilfs- und Ergebnismengen definieren
index ← 0
while B 6= U do // Wenn alle Knoten bearbeitet sind, breche ab

S← U // Kopiere alle Elemente aus U in eine Menge S
for all s ∈ S ∧ s /∈ B do // Wähle ein beliebiges s nicht Element von B aus S

if S = U then // erster Durchlauf
B← B ∪ {s} // füge s der Bearbeitet-Menge hinzu

end if
S← S− {x|x ∈ S ∧ x hat keine Kante zu s} // Entferne alle Knoten aus S,

// zu denen s keine Kante hat
E[index]← E[index] ∪ {s} // Füge s der Ergebnismenge hinzu
S← S− {s} // Entferne s aus S

end for
index ← index + 1 // Erhöhe den Index für eine neue Ergebnismenge

end while

Es gibt einige E(i) die identisch sind, diese kann man noch vereinigen. Das größte E(i) ist die
maximale CLIQUE.

Für die Implementierung wurde der Algorithmus nach Bron und Kerbosch [BK73] gewählt,
da dieser als Teil der Java Graph Bibliothek JGraphT[jgr13] bereits implementiert ist. Dieser
Algorithmus wird von einem weiteren Bot im Hintergrund ausgeführt, der die Instanzen in
der CLIQUE mit einer einzigartigen ID versieht und als
[[CliqueID::<Ähnlichkeitswert>-<uniqueID>]] kennzeichnet.

Darstellung und Auswertung Das Aufzeigen aller Kostüme, die eine CliqueID mit einem
bestimmten Ähnlichkeitswert enthalten ist nun eine einfache Reporting-Aufgabe die von
einer SPARQL-Abfrage übernommen wird. Lediglich der Schwellwert für diese Suche muss
noch gesetzt werden.
Der Domänenexperte analysiert im letzten Schritt die vorgeschlagenen Gruppen von ähnli-
chen Kostümen. Vielleicht entsteht aus einer dieser Cliquen ein neues Pattern.

Abschnitt 5.4.3 zeigt das Ergebnis dieses Algorithmus an einem kleinen Beispielgraphen.

52

4 Anforderungen durch die Kostümdomäne

Das Fachgebiet der Kostümwissenschaften ist sehr umfangreich. Das zentrale Element,
das Kostüm ist hoch dynamisch. Es kann aus einer Vielzahl von Fakten in vielen unter-
schiedlichen Anordnungen komponiert werden. Äußere Restriktionen durch Film und Rolle
schränken diese Möglichkeiten wieder ein. Die Anforderungen, die bei der Modellierung
dieser Domäne erfüllt werden mussten sind in Abschnitt 4.1 aufgeführt.
Auch bei der Integration ins Wiki mussten spezielle Anforderungen beachtet werden. Die
Umsetzung dieser Anforderungen sind in Abschnitt 5.4 beschrieben, die Anforderungen
werden in Abschnitt 4.2 beschrieben.

4.1 Domänenmodellierung

Ziele der Modellierung der Kostümdomäne sind:

1. Ein Nachschlagewerk zu schaffen, das sowohl vom Menschen als auch der Maschine
ausgewertet werden kann: Durch die Erfassung von Kostümen an einem zentralen Ort
soll diese Plattform auch einen Mehrwert für andere Kostümschaffende bilden: Es sollen
Zusatzinformationen zu den Kostümen abgelegt werden wie Nähanleitungen, Verleih-
und Bezugsmöglichkeiten, Checklisten zur Kostümvorbereitung. Filmschaffenden, die
neue Kostüme kreieren soll es zur Recherche und als Ablageort dienen. Forschern soll
es eine rechnergestützte Recherche auf den Daten ermöglichen.

2. Eine formale Kostüm-Mustersprache zu entwerfen und zu verfeinern: Diese Sprache
muss so beschaffen sein, dass sie die Realität von Kostümmustern abbilden kann.
Durch Hinzufügen neuer Kostümmuster muss sich zeigen, wie gut die Sprache die
Bedürfnisse der Domäne abdeckt.

Kostüme sind sehr detailreich. Ein Katalogsystem muss diese Details geeignet wiedergeben
können:

• Kostüme sind zusammengesetzt aus Kostümteilen:

– Jedes Kostümteil ist ein Kleidungsstück oder Accessoire: Die Anzahl dieser Ba-
siselemente ist groß aber durch eine Taxonomie hinreichend erfassbar.

53

4 Anforderungen durch die Kostümdomäne

– Jedes Kostümteil hat mindestens eine Farbe.

– Jedes Kostümteil hat mindestens eine Form-Eigenschaft.

– Jedes Kostümteil ist aus mindestens einem Material gefertigt.

– Jedes Kostümteil hat mindestens ein Design.

– Jedes Kostümteil kann in einem oder mehreren Zuständen (z.B.: nass) sein.

– Jedes Kostümteil kann eine oder mehrere Funktionen erfüllen. (z.B.: Sportbeklei-
dung)

– Jedem Kostümteil kann eine oder mehrere Trageweisen zugeordnet sein.

– Kostümteile sind unterschiedlich wichtig für eine Rolle. Diesem Umstand muss
Rechnung getragen werden.

– Jedes Kostümteil kann beliebig detailliert beschrieben werden. Es muss eine
Möglichkeit geben, Teilbereiche zu beschreiben.

• Jedes Kostüm kann aus beliebig vielen Kostümteilen bestehen.

• Jedes Kostüm ist einer oder mehreren Szenen zugeordnet.

• Jedes Kostüm ist einer Rolle zugeordnet.

Durch eine semantische Erfassung für eine maschinelle Verarbeitung des Wissens ergeben
sich folgende Forderungen:

• Alle Eigenschaften dürfen nur Werte annehmen, die Teil der Ontologie sind.

• Film, Rolle, Kostüm, Kostümteil und Teilbereich müssen durch semantische Attribute
miteinander verknüpft sein. Eine textuelle Zuordnung genügt nicht.

• Die Benennung von Artikeln muss eindeutig sein.

Alle Kostümteile und Kostüme müssen die Möglichkeit zur Erweiterung durch Zusatzinfor-
mationen bieten.

54

4.2 Integration ins Wiki

4.2 Integration ins Wiki

Aus diesen Anforderungen ergeben sich Designentscheidungen die bei der Integration ins
Wiki berücksichtigt werden müssen:

• Bei der Eingabe der Kostüme muss sichergestellt sein, dass nur bereits angelegte Fakten
gewählt werden können und diese zur Auswahl ansprechend dargestellt werden. Die
Ontologie darf nur vom Domänenexperten bearbeitet werden.

• Die grundlegende Struktur des Wiki sind einzelne Artikel: Jede Entität (Film, Rolle,
Kostüm, Kostümteil, Teilbereich) wird durch einen eigenständigen Artikel repräsentiert
und mit semantischen Links verknüpft.

• Es existieren nur Taxonomien der Eigenschaften, keine Ontologie. Die Axiome müssen
mit der Einrichtung des Wikis in Wiki-Strukturen abgelegt werden, um die Ontologie
zu vervollständigen. Um spätere Änderungen an der Ontologie in den erfassten Daten
nachführen zu können, ist eine Programmierschnittstelle nötig.

• Der Taxonomie-Import muss automatisiert aus den modellierten Daten erfolgen.

55

5 Implementierung eines semantischen Wikis
zur Erfassung der Kostümdomäne

In diesem Kapitel werden die Technologien erläutert, die für DataWiki von besonderer
Bedeutung sind. Dabei werden hauptsächlich die Konzepte der Technologien beleuchtet, die
für den Einsatz in oder das Zusammenspiel mit DataWiki entscheidend sind.
Im ersten Abschnitt dieses Kapitels werden die Beweggründe erörtert, die für die Ent-
scheidung für DataWiki maßgeblich waren. Nach einem Überblick über DataWiki werden
im letzten Abschnitt dieses Kapitels die Anstrengungen dokumentiert, die Unternommen
wurden, um eine völlige Abdeckung der Kostümdomäne mit DataWiki zu erreichen.

5.1 Auswahl des Wikis

Es gibt einige semantische Wiki Implementierungen, die zum Teil eigenständige Projekte,
zum Teil auch Erweiterungen herkömmlicher Wikis sind. Viele davon sind spezialisiert auf
einzelne semantische Fähigkeiten wie Ontologiemodellierung oder Konsistenzüberprüfung
der Ontologie durch prädikatenlogische Schlüsse. Das umfangreichste semantische Wiki ist
SMW. Es erweitert die MW Plattform um semantische Daten und wird seinerseits wieder
erweitert, so dass für SMW bereits viele Methoden und Werkzeuge aus unterschiedlichsten
Anwendungsbereichen existieren. Viele davon sind sehr speziell, beispielsweise zur Verknüp-
fung von Geodaten mit Kartenmaterial - andere sehr allgemein gehalten.
SMW entstammt einem Projekt des Institut für angewandte Informatik und formale Be-
schreibungsverfahren (AIFB) des Karlsruher Institut für Technologie (KIT), wo 2005 die
erste Version entwickelt wurde. Es liegt mittlerweile in Version 1.8.0.5 vor und wird ständig
weiterentwickelt. Für SMW gibt es eine sehr lebendige Unterstützergemeinde und eine
umfassende Dokumentation.
Eine Weiterentwicklung von SMW mit stärkerem Fokus auf Durchsuchbarkeit und Verwend-
barkeit als wissenschaftliches Expertensystem ist Semantic MediaWiki Plus (SMW+). SMW+
wurde von Ontoprise gepflegt und weiterentwickelt. Dabei entstand eine Zusammenarbeit

57

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

mit der Investment Firma Vulcan Inc1. Vulcan brachte dabei Erkenntnisse aus dem Projekt
Halo in SMW+ mit ein.
Im Mai 2012 stellte Ontoprise einen Insolvenzantrag. Daraufhin gingen die Rechte an SMW+
an die DIQA Projektmanagement GmbH (DIQA), die SMW+ unter dem Namen DataWiki
weiterentwickelt und vertreibt. DataWiki als Erweiterung von SMW+ unterliegt der General
Public License (GPL), die besagt, dass Weiterentwicklungen ebenfalls unter der GPL stehen
und quelloffen sein müssen. DIQA vertreibt DataWiki kostenlos und bietet kostenpflichtigen
Support an. Mit der Insolvenz von Ontoprise ist auch das Forum zu SMW+ und die Unter-
stützung durch die Benutzergemeinde weggebrochen.
Die Vorzüge von DataWiki, die letztlich zu einer Entscheidung für dieses Wiki geführt
haben, ist die komfortable Installation als Komplettpaket (zumindest unter Windows) und
die mögliche Anbindung an einen Triplestore, der auch von DIQA kommt. Da Semantic
MediaWiki ohne die Halo-Extension über keinen geeigneten aktuellen Reasoner verfügt,
schied dies als Alternative aus.
Durch die Entscheidung für DataWiki mussten auch einige Nachteile in Kauf genommen
werden:

• Wenig Dokumentation und kaum Support: DataWiki liegt lediglich eine Installati-
onsanweisung bei, in der einige (aber leider nicht alle) Konfigurationsmöglichkeiten
erläutert werden. Supportanfragen per Email haben die Mitarbeiter von DIQA zwar
freundlich beantwortet, aber das Fehlen eines Forums, eines Handbuchs und einer
Benutzergemeinde machen sich in der täglichen Arbeit negativ bemerkbar.

• Inkompatibilität mit neueren Versionen von Extensions: DataWiki basiert auf Me-
diaWikis Version 1.17.0. Die aktuelle Version ist 1.21.1. Dadurch bleiben viele Verbesse-
rungen, nicht nur von MW sondern auch von seinen Erweiterungen, die oftmals zur
Version 1.17.0 inkompatibel sind, unbenutzbar.

• Kein Support für alte Versionen von SMW-Community: Die Entwickler einer Er-
weiterung in einem OpenSource Projekt sind natürlich darauf bedacht, dass ihre
Erweiterung besser wird, und die Kompatibilität zur aktuellen Version der Hauptsoft-
ware gegeben ist. Fragt man nach 2 Jahre alten Fehlern, bekommt man meistens zu
hören, dass diese in der neuesten Version nicht mehr auftreten. Das hilft leider nichts,
wenn man aus Kompatibilitätsgründen an eine alte Version gebunden ist.

1Microsoft Mitbegründer Paul Allen ist Gründer und Alleinaktionär von Vulcan Incorporated

58

5.2 Verwendete Technologien

5.2 Verwendete Technologien

Dieser Abschnitt liefert einen kurzen Überblick über die Technologien, die bei der Implemen-
tierung des Wikis eine Rolle spielen. Die ersten 3 Abschnitte sind dabei dem XAMP-Stack
gewidmet, der in der Web-Programmierung eine große Rolle spielt. Das X steht austauschbar
für das Betriebssystem, A, M und P für Apache HTTP Server, MySQL und PHP.

5.2.1 Apache HTTP Server

Der Apache HTTP Server, der oft nur mit „Apache“ referenziert wird, ist der am weitesten
verbreitete Webserver. Er bietet ein einfaches Deployment und kann mit dem entsprechenden
Plugin jede der gängigen serverseitigen Sprachen interpretieren. Zusammen mit MySQL
und PHP ist er in vielen Webprojekten erfolgreich im Einsatz. Durch den Einsatz von Caches
kann der Apache auch bei großen Datenmengen und vielen Anfragen schnelle Ergebnisse
liefern. Das ist gerade für Wiki-Anwendungen ein entscheidender Vorteil.

5.2.2 MySQL

Wie in vielen Webanwendungen kommt auch bei MediaWiki MySQL als Datenbank zum
Einsatz. MySQL ist nach eigenen Angaben[ORA13] die populärste Open-Source-Datenbank
der Welt. Diese relationale Datenbank arbeitet auf verschiedenen Datenbank-Schemata. Die
bekanntesten sind MyISAM und InnoDB. MySQL wurde seit 1994 von Michael Widenius
und David Axmark entwickelt, 2008 von Sun Microsystems aufgekauft, und gehört seit 2010

zu Oracle.
Der MySQL Erfinder Michael Widenius hat zum bestehenden MySQL einen Ableger entwi-
ckelt, der auch in Zukunft quelloffen bleiben muss. Dieser Ableger heißt MariaDB. Aufgrund
der totalen Kompatibilität zu MySQL ist der Umstieg besonders leicht. Die Wikipedia ist
bereits auf MariaDB umgestiegen.[Wik13]
MediaWiki legt alle Daten in der Datenbank ab. Dieses Vorgehen unterscheidet es bei-
spielsweise von TWiki, das alle Artikel als Textdateien ablegt. Die Benutzung von MySQL
ermöglicht MW-Erweiterungen wie SMW oder Halo, die Datenbank für Ihre Zwecke mitzu-
benutzen.

5.2.3 PHP

PHP ist eine Programmiersprache, die im Web-Umfeld sehr verbreitet ist. Der Name PHP
steht für „PHP: Hypertext Preprocessor“. Das P in der Abkürzung ist rekursiv zu verstehen.

59

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

PHP-Quellcode wird von allen gängigen Webservern unterstützt. Der Webserver interpretiert
den Code und generiert dabei HTML-Markup, das an den Client gesendet wird. PHP ist
leicht zu erlernen, da seine Syntax stark an die von Java und c++ angelehnt ist. Die beson-
ders einfache Anbindung an Datenbanksysteme und die Erweiterbarkeit durch zahllose
Bibliotheken machen es zu einem festen Bestandteil eines Großteils aller Webseiten.
Mit PHP lassen sich auch große Webprojekte realisieren. Bibliotheken können leicht eingebun-
den werden und Quellcode lässt sich gut in kleinere Module zerlegen. Ein großer Vorteil ist,
dass benutzerdefinierte Funktionen und Methoden ausgeführt werden können. Dabei wird
die Funktion oder Methode als String, und ihre Argumente als weiterer String an die Funk-
tion call_user_func($func, $param) oder call_user_method($func, $param)

übergeben. Wollte man so etwas beispielsweise in Java realisieren würde man nicht um
den Gebrauch der Java Reflect API herumkommen. Hierbei müssten die unterschiedlichen
Datentypen in Einklang gebracht werden was umfangreiche Typkonvertierungen zur Folge
hätte. Durch PHPs Typlosigkeit ist es hier sehr viel flexibler.
Dieses einfache Einbinden von Funktionen ermöglicht ein Vorgehen, bei dem sich eine
Erweiterung bei einer globalen Instanz registriert. An jeder beliebigen Stelle im Quellcode
(Hook) kann nun überprüft werden, ob eine registrierte Erweiterung an dieser Stelle mit
dem Programm interagieren möchte. Aus der Sicht der Erweiterung ist diese Stelle ein
Haken, an dem der eigene Code eingehängt werden kann. Deswegen nennt man solche
Stellen FunctionHooks. MediaWiki bedient sich dieses Konzepts durchgängig. Über 430

dieser Hooks sind in MediaWiki dokumentiert.[med13b]
MediaWiki verwendet auch ParserFunctions und MagicWords, deren Konzepte ebenfalls
auf die Verwendung von Hooks zurückgehen, jedoch dergestalt spezialisiert sind, dass
dabei Schlüsselwörter in Benutzereingaben ausgewertet werden. So können sich hinter
einem MagicWord eine Variable, eine Funktion oder eine vom Benutzer angelegte Vorlage
verstecken.
PHP ermöglicht ein gutes Design im Sinne des Model-View-Controller (MVC)-
Entwurfsmusters. Das MVC-Design sieht eine Trennung zwischen der Anwendungslogik
(Model), der Benutzeroberfläche (View) und der Benutzerinteraktion (Controller) vor. Bei
Webanwendungen ist hier immer noch zu betrachten, dass PHP auf dem Server interpretiert
wird, der Benutzer jedoch an einem Webbrowser sitzt. Deswegen wird PHP oft zusammen
mit CSS und JavaScript verwendet.
CSS übernimmt dabei einen Teil der Gestaltung, und gibt Antwort auf die Frage „Wie sieht
ein einzelnes Element aus? “ JavaScript und PHP sind für die Positionierung der Elemente
im HTML-Markup verantwortlich, JavaScript unterstützt bei der Eingabe und Navigation
auf der Seite und kann Benutzereingaben validieren. PHP interpretiert die HTTP-Requests
und reagiert darauf.

60

5.2 Verwendete Technologien

5.2.4 JavaScript

JavaScript ist eine Scriptsprache auf Clientseite. Seine Syntax basiert auf Java, im Gegensatz
zu Java kennt es aber keine Typen. JavaScript wird häufig dazu verwendet, auf Ereignisse im
Browser zu reagieren (onClick(), onLoad()), Eingaben zu validieren oder Hilfestellungen
anzubieten. Außerdem bietet es viele Möglichkeiten, Webseiten dynamisch wirken zu lassen,
indem visuelle Effekte auf das HTML-Markup angewendet werden. Für alle lokalen Belange,
für die keine Interaktion mit dem Server nötig ist, sollte eine clientseitige Scriptsprache zum
Einsatz kommen.
Im Gegensatz zur Architektur des Servers, ist die Software, die auf dem Client eingesetzt
wird, nicht im Voraus bekannt. So unterstützen verschiedene Browser nicht alle JavaScript
Befehle, bzw. interpretieren diese unterschiedlich. Glücklicherweise gibt es hier mit jQuery
eine Bibliothek, die diese Unterschiede zwischen den Browsern größtenteils transparent
behandelt.

jQuery

jQuery ist eine Bibliothek für JavaScript. Sie implementiert viele Funktionen zum Durchsu-
chen und zur Manipulation des Document Object Model (DOM)-Baumes. Weiterhin bietet
sie Funktionen für komplexe Events und visuelle Effekte an.
Der Einsatz von jQuery ist sehr simpel: In jeder JavaScript-Umgebung kann man mit ei-
nem $() oder der Funktion jQuery() eine Filterfunktion auf den DOM-Baum anwenden,
die eine Menge von jQuery-Objekten zurückgibt, auf denen eine Vielzahl von Funktionen
durchgeführt werden kann.

$(’.target’).hide(2000);

blendet beispielsweise alle Elemente aus, die mit .target selektiert wurden. Der vorstehen-
de Punkt ist der Selektor für das Hypertext Markup Language (HTML)-Attribut „class“. Es
werden in diesem Beispiel alle DOM-Elemente, die "class=target" besitzen in einer 2

Sekunden dauernden Animation ausgeblendet. Ebenso einfach kann man einem Element ein
Event zuweisen:

$(’.target’).click(function(){alert($(this) + " wurde geklickt"});

Eine besonders nützliche Eigenschaft von jQuery ist die Funktion delegate() oder live(),
mit der man einem Element einen Eventhandler zuweisen kann, das zu diesem Zeitpunkt
noch garnicht existiert. Wird das Element erzeugt, überprüft jQuery, ob es mit dem Filter

61

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

der delegate() Funktion übereinstimmt, und führt im Erfolgsfall die Anweisung darauf
aus. Mit dieser Funktion kann man das Verhalten fremder JavaScript-Dateien beeinflussen,
auch wenn man auf die Datei selbst keinen Zugriff hat.

Dynatree Dynatree ist eine Erweiterung von jQuery die Operationen auf Baumstrukturen
zur Verfügung stellt. Knoten lassen sich nach Belieben einfügen, sortieren, auf- und zuklap-
pen und entfernen. Die Baumknoten werden im HTML-Markup als -Liste dargestellt.
Der Baum kann mit unterschiedlichen CSS-Dateien gestaltet werden. Im Standard liefert
Dynatree ein Custom-Thema und eines im Stil von Windows Vista.

5.2.5 Asynchronous JavaScript and XML (Ajax)

[Win09] Ajax ist ein Konzept, um Webseiten dynamisch zu gestalten. Vor Ajax mussten
Webseiten immer am Stück geladen werden. Formulareingaben wurden als Parameter
zwischen Client und Server hin und hergeschickt, oder in Session-Variablen oder Cookies
gespeichert, um eine Illusion von Dynamik zu erzeugen. Ajax hingegen ist in der Lage,
einzelne Bereiche einer Website dynamisch nachzuladen, indem es asynchron, also nicht
zum Zeitpunkt der Generierung der Seite, Nachrichten zum Server schickt. Dieser kann
nun die Anfrage bearbeiten (beispielsweise mit einer Datenbankabfrage) und die Antwort
als XML oder JavaScript Object Notation (JSON) Objekt zum Client zurücksenden. Dort
kann JavaScript einfach den Inhalt in die bestehende Webseite einbinden, ohne Daten in
anderen Bereichen anzufassen. Das erspart viel Parametrisierungsaufwand und macht echtes
dynamisches Verhalten erst möglich.
Wie bereits erwähnt kann das Ergebnis als XML-Markup oder JSON Objekt verschickt
werden. Geht es schlicht darum, direkt HTML Inhalte einzublenden, sind JSON Objekte
überflüssig und nicht empfehlenswert. Muss man die Daten zuerst noch weiterverarbeiten
und braucht dazu Javascript - Objekte, empfiehlt es sich, die Nachrichten als JSON Objekt
zu versenden.

5.2.6 Cascading Style Sheets (CSS)

CSS enthalten wichtige visuelle Informationen, die auf die unterschiedlichen HTML-
Elemente angewendet werden. Die Referenzierung geschieht dabei über das DOM, das
jeder Website zugrunde liegt.
Diese Hierarchie sorgt dafür, dass untergeordnete HTML-Elemente die Style-Informationen
ihrer übergeordneten Elemente erben. Auf jeder Ebene können Style-Informationen neu
angepasst werden. DataWiki enthält mit „ontoskin“ ebenfalls ein eigenes CSS-Design.

62

5.3 DataWiki

5.2.7 Java

Java spielt als Programmiersprache durch ihre klare Struktur, den großen Funktionsumfang
und die weite Verbreitung in fast allen Bereichen eine große Rolle. Unter Verwendung
von Servlet-Containern wie Apache Tomcat, GlassFish oder Apache Jetty lassen sich mit
Java umfangreiche Webservices bauen. Java ist im Zusammenhang mit DataWiki nur im
Triplestore und SOLR[Fou13b] vorhanden. Die Wiki-Bots sind ebenfalls in Java geschrieben.

5.3 DataWiki

DataWiki ist hauptsächlich eine Kombination aus Erweiterungen zu MediaWiki. In diesem
Kapitel sollen die Eigenschaften von MediaWiki und den in DataWiki enthaltenen Erweite-
rungen beschrieben werden, um so einen Gesamteindruck von DataWiki zu gewinnen.

5.3.1 MediaWiki (MW)

MediaWiki ist das Wiki, das für die Wikipedia entwickelt wurde. Es bietet das Grundgerüst
für alle semantischen Erweiterungen. Es bietet eine Benutzer- und Versionsverwaltung, die
Markup-Sprache „WikiText“ und das Kategorienkonzept. Das wichtigste Feature von MW
ist aber seine Erweiterbarkeit. Die große Anzahl an verfügbaren Extensions ist ein Zeugnis
dafür, wie gut das Erweiterungskonzept durchdacht ist.

5.3.2 Erweiterung: Semantic MediaWiki (SMW)

SMW ist die umfangreichste Erweiterung von MediaWiki. Sie führt semantische Attribute
ein. Sie ermöglicht Abfragen auf diesen strukturierten Daten und stellt einige Formate zur
Verfügung, in denen Abfrageergebnisse präsentiert werden können. SMW hat sich dem
Gedanken des Semantic Web stark verpflichtet, indem es eine einfache Funktion geschaffen
hat, um das Wiki zu veröffentlichen, das heißt, die semantischen Daten für Dritte zugänglich
zu machen.

5.3.3 Erweiterung: Halo

Halo ist eine der wichtigsten Erweiterungen für DataWiki. Halo verbessert die Eingabemög-
lichkeit durch die „Data Toolbar“. In dieser Toolbar lassen sich semantische Annotationen
schnell und unkompliziert durchführen. Bei allen Feldern in dieser Toolbar wird die Auswahl

63

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

der Attribute zusätzlich durch Autovervollständigung vereinfacht. Ein weiterer wichtiger
Punkt, den Halo erfüllt ist die Anbindung an den DIQA Triplestore über den Triplestore-
Connector. Halo sorgt dafür, dass die Daten aus dem Wiki in einen Graphen geladen werden
und an den Triplestore geschickt werden. Auch das Query-Interface und der Data-Explorer
sind durch Halo in DataWiki vorhanden.

5.3.4 Erweiterung: Semantic Result Formats

Abfrageergebnisse in Semantic MediaWiki lassen sich in den unterschiedlichsten Formaten
anzeigen. Diese Erweiterung liefert von der einfachen Tabelle bis zur TagCloud alles. Eine
Übersicht über die unterschiedlichen Darstellungsformate findet sich auf den Seiten der
Erweiterung.[med13a]

5.3.5 Erweiterung: WYSIWYG

Diese Extension liefert einen Editor für Wikiseiten, der anstelle von Wiki-Markup bereits
formatierten Text (What you see is what you get) und andere Elemente(Bilder, Abfragen) als
Grafiken anzeigt. Daraus wird dann Wikitext generiert. Die Eingabe im WikiText-Editor ist
etwas performanter und wenn man direkt mit den semantischen Attributen arbeiten möchte
ist der WYSIWYG-Editor eher hinderlich. Für den User ist dieser Editor jedoch sehr nützlich
und komfortabel, da keine Kenntnisse über das Wiki-Markup nötig sind.

5.3.6 Erweiterung: Semantic Drilldown

Semantic Drilldown ist eine Erweiterung, die es erlaubt über die Attributwerte eine Filterung
vorzunehmen und somit Artikel anhand ihrer annotierten Attribute zu filtern. Das entspricht
dem Semantischen Browsen, das durch SMW implementiert wurde, nur mit dem Unterschied,
dass nicht auf allen Artikeln gesucht wird, sondern nur auf einer bereits im vorhergehenden
Suchschritt eingeschränkten Ergebnismenge.

5.3.7 Erweiterung: Validator

Validator ist Teil des Semantic Bundle und eine Pflichterweiterung, wenn man SMW benutzen
möchte. Es validiert vom Benutzer eingegebene Parameter und generiert besser verständliche
Fehlermeldungen.

64

5.3 DataWiki

5.3.8 Erweiterung: Enhanced Retrieval

SOLR ist eine Suchmaschine aus dem Projekt Apache Lucene.[Fou13b] Es bietet eine klassi-
sche Volltextsuche, Facettensuche, Text-Highlighting, schnelle Indexierung, Datenbankunter-
stützung und ist durch viele Programmierinterfaces anbindbar. SOLR läuft als eigenständige
Software mit einem Jetty-Server und führt die Suchanfragen von DataWiki aus. Dafür ist die
SMW Extension „Enhanced Retrieval“ zuständig, die mit DataWiki ausgeliefert wird.

5.3.9 Erweiterung: SemanticForms (SF)

Diese Erweiterung generiert auf Vorlagen basierend HTML-Formulare. Um ein Formular zu
benutzen, muss es auf eine Vorlage abgestimmt sein. Ein Formular kann auch mehr als eine
Vorlage befüllen. Für das Anlegen der Formulare stellt SF eine komfortable Benutzeroberflä-
che zur Verfügung. Formulare können die Restriktionen, die in einer Vorlage hinterlegt sind
darstellen. Akzeptiert ein Attribut beispielsweise nur eine begrenzte Anzahl an Werten und
eine Mehrfacheingabe ist erlaubt, werden die Werte in Form von Checkboxen dargestellt.
Die Formularfelder arbeiten mit Autovervollständigung, wenn dies konfiguriert ist.
Um einen neuen Artikel im Wiki mit Hilfe eines Formulars zu erzeugen, wählt man eine
spezielle Seite von SF Special:FormStart und gibt dort an, welches Formular verwendet
werden, und wie der neue Artikel heißen soll. SF liefert auch eine Methode, mit der man
diese Eingabefelder direkt in eine vorhandene Seite oder Vorlage einbinden kann. Es bietet
die Möglichkeit, den Artikel- und Formularnamen vorzugeben, so dass sich der Lösungs-
erfasser nicht um die richtige Abfolge von Formularen und Seitennamen kümmern muss.
Generierte Artikelnamen können eine fortlaufende oder zufällige Nummer enthalten. Da
alle diese Informationen in der URL codiert werden, lassen sich auch beliebige Attribute
und ihre Werte über den Querystring des HTTP-GET Protokolls mitsenden. SF wertet diese
Attribute aus. Dieses Verhalten kann dazu verwendet werden, semantische Verknüpfungen
zwischen Artikeln herzustellen. Zum Beispiel gehört ein Kostümteil zu einem Kostüm. Klickt
man die Schaltfläche „Kostümteil anlegen“ auf der Seite eines Kostüms erhält automatisch
das Attribut „gehört zu“ des neuen Kostümteils den Seitennamen des Kostüms als Wert.
Schickt man das Formular ab, werden die eingegebenen Werte den verknüpften Attributen
in den Vorlagen zugewiesen und anschließend im neu angelegten Wiki-Artikel angezeigt.
Abbildung 5.1 zeigt den Ausschnitt eines SF-Formulars, und die zugehörigen Wikitext
Einträge.

65

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

Abbildung 5.1: Formular, Formulardefinition, Vorlage und semantische Attribute einer Ein-
gabe von SemanticForms

5.3.10 Erweiterung: SF Select (SFS)

SFS erweitert SF dergestalt, dass es eine vordefinierte Query auswertet, und die Ergebnisse
dieser Abfrage mit Ajax ins Formular transportiert und als zulässige Wertemenge für das
Eingabefeld zur Verfügung stellt. Dabei kann die Query eine Variable enthalten, die den Wert
eines anderen Feldes annimmt. Sobald eines der von SFS überwachten Felder geändert wird,
werden alle Queries neu abgeschickt und die Werte, die in Dropdown-Feldern angeboten
werden bei Bedarf aktualisiert.
Dieses Vorgehen ermöglicht es, durch hierarchische Daten zu manövrieren. Da eine Hierar-
chie jedoch üblicherweise in einer Baumstruktur dargestellt wird, wurde die Vorgehensweise
von SFS zum Vorbild für SFOS.

66

5.3 DataWiki

5.3.11 DIQA Triplestore Basic

Der DIQA Triplestore ist im Gegensatz zu DataWiki keine quelloffene Software. Er wird
trotzdem kostenlos in Form einer Evaluationslizenz zur Verfügung gestellt. Der Triplestore
benutzt Teile von Apaches Jena Framework[Fou13a]. Dieses steht unter der Apache 2.0
Lizenz, welche besagt, dass Programme, die Code verwenden, der unter der Apache 2.0
Lizenz veröffentlicht wurde auf diesen Umstand hinweisen müssen, aber ihre Lizenz frei
wählen dürfen. Triplestore Basic lässt sich in 3 Ebenen2 aufteilen:

• RDF-Ebene: Auf dieser Ebene kommuniziert der Triplestore über SPARQL und
SPARQL Update Language (SPARUL). Über einen Webserver empfängt der Triplestore
auf Port :8080 SPARQL Abfragen und auf Port :8081 SPARUL Updates. DataWiki
benutzt diese Schnittstelle, um die Tripel aus dem Wiki in Form eines Graphen in
den Tripelstore zu laden. Der Triplestore ist auch in der Lage, MediaWiki Ask-Queries
auszuführen. Auf dieser Ebene werden die Sprachkonstrukte geparst und zur internen
Datenverarbeitung in das Graph Format umgewandelt.

• Inferenz-Ebene: Der Triplestore kann mit verschiedenen Reasonern3 zusammen be-
nutzt werden. In der Standardinstallation wird ein „GenericRuleReasoner“ verwendet,
der Transitivität, Symmetrie und Inversion von Attributen unterstützt. Diese Regeln
sind über Textfiles auch erweiterbar. An dieser Stelle wird vermutlich die Inference-API
von Jena verwendet, die auch eine Auswahl von externen Reasonern zulässt.

• Speicher-Ebene: Zur Speicherung der Tripel sieht Triplestore Basic mehrere Mög-
lichkeiten vor, die sich an der Store API von Jena orientieren: Eine Speicherung im
Hauptspeicher ist die Standardauswahl, doch auch die Jena TDB und SDB Modelle
können gewählt werden.
Jena SDB basiert auf einer SQL-Datenbank, in der die Tripel persistent abgelegt wer-
den. Bei Jena TDB werden die Tripel in Tabellen auf der Festplatte abgespeichert. Als
Datenstruktur dienen hier Tabellen und B+-Bäume. Auch die Verwendung weiterer
semantischer Datenbanken ist möglich.
Der Austausch zwischen der Speicher- und der Inferenz-Ebene erfolgt über einen
Graph-Datentyp. Möchte man also eine andere Datenbank anbinden, muss lediglich
das Interface für diesen Datentyp angepasst werden.

2Angelehnt an die Grafik unter http://jena.apache.org/about_jena/architecture.html
3Programm, mit dem Schlussfolgerungen gezogen werden (engl.: to reason)

67

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

5.4 Anpassung und Anwendung

Obwohl Semantic Media Wiki mit den Erweiterungen SemanticForms und SemanticForms-
Select schon sehr gute Möglichkeiten bietet, um die Benutzereingabe zu vereinfachen und
vereinheitlichen, gibt es an vielen Stellen noch Bedarf für weitere Funktionalitäten. Zwar wird
SemanticForms kontinuierlich weiterentwickelt, allerdings ist es zusammen mit DataWiki
nur in der Version bis 2.4 kompatibel.
Um diese Problematik zu umgehen, entstand die Erweiterung: SFOS, die stark auf SFS ba-
siert, diese aber um einige optische Effekte, eine zweite Eingabemethode mit Baumstruktur
und eine vereinfachte Integration in das Formular erweitert. SFOS kann überall dort zum
Einsatz kommen, wo aus einer hierarchischen Struktur Fakten gewählt werden sollen. Es
unterstützt auch die Eingabe von mehreren Werten und wird in Abschnitt 5.4.2 ausführlich
beschrieben.
Zum Import der Taxonomien und zur Analyse von Ähnlichkeiten entstanden drei Wiki-Bots,
die in Abschnitt 5.4.3 beschrieben sind. Diese basieren auf der MediaWiki Java Programmier-
schnittstelle und führen ihre Funktionen über das Hypertext Tansfer Protocol aus.
Für die Repräsentation der Patterns wurde die Erweiterung „PatternRepository“ verwendet.
Diese entstand im Zuge der Diplomarbeit von Norbert Fürst.[Fü13] PatternRepostitory wird
kurz in Abschnitt 5.4.2 vorgestellt.

5.4.1 Einrichtung

Namensräume

Um eine Abgrenzung zwischen Ontologiewissen und Instanzen zu schaffen, und letztere
sauber zu gliedern, wurden folgende zusätzliche Namensräume in den Semantic MediaWiki
Einstellungen definiert:

• $wgExtraNamespaces[120]="Ontologie"

• $wgExtraNamespaces[121]="Ontologie_Talk"

• $wgExtraNamespaces[122]="Rolle"

• $wgExtraNamespaces[123]="Rolle_Talk"

• $wgExtraNamespaces[124]="Film"

• $wgExtraNamespaces[125]="Film_Talk"

• $wgExtraNamespaces[126]="Kostuem"

• $wgExtraNamespaces[127]="Kostuem_Talk"

68

5.4 Anpassung und Anwendung

• $wgExtraNamespaces[128]="Pattern"

• $wgExtraNamespaces[129]="Pattern_Talk"

• $wgExtraNamespaces[130]="Kostuemteil"

• $wgExtraNamespaces[131]="Kostuemteil_Talk"

• $wgExtraNamespaces[132]="Abfrage"

• $wgExtraNamespaces[133]="Abfrage_Talk"

In den Namensräumen musste aus Kompatibilitätsgründen mit dem Triplestore auf Umlaute
verzichtet werden, da diese immer wieder zu Fehlern führten. Der Ontologie Namensraum
wird vor Bearbeitung durch einen nicht Administrator geschützt.

5.4.2 Erweiterungen

Erweiterung: SF Ontology Select (SFOS)

Diese Erweiterung entstand im Rahmen dieser Arbeit. Sie erweitert die Eingabemöglichkeiten
von SFS um eine Baumstruktur. Diese Baumliste kann traversiert werden und lädt dabei
dynamisch die Unterelemente der nächsten Ebene nach, wenn diese aufgeklappt wird. Da
parallel auch noch zwei weitere Eingabemöglichkeiten Verwendung finden sollen, ist es
wichtig, Synchronizität zwischen den Eingabeelementen zu erzeugen. Dies wird durch
Abbildung 5.2 illustriert. Die aufgeklappte Baumebene enthält die selben Elemente wie das
Dropdown. Für das Basiselement ist keine Mehrfachauswahl gestattet.

Die anderen Eingabemöglichkeiten sind die im vorausgehenden Abschnitt beschriebenen
Dropdown-Felder und die SF-Standardtexteingabe mit Autovervollständigung. Abbildung
5.3 zeigt diese drei Eingabemöglichkeiten.

Bei der Programmierung dieser Erweiterung wurden auch Schritte unternommen, um den
Wikitext, der für die Erzeugung dieser Felder notwendig ist, zu optimieren. So musste in
SFS für jedes Feld ein Eintrag im Formular vorhanden sein. Für SFOS genügt ein Eintrag mit
einem Argument, bis zu welcher Hierarchietiefe Felder erzeugt werden sollen. Ausserdem
bietet SFOS eine ansprechende Form, einem Attribut mehrere Werte zuzuweisen. Ob dies
erlaubt ist, wird ebenfalls direkt dem in der Vorlage hinterlegten Wert entnommen. Wird
ein weiterer Wert gewünscht, wandert der bereits ausgewählte Wert in eine Zeile über der
Formularzeile. Durch Klick kann er bei Bedarf wieder gelöscht werden.

69

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

Abbildung 5.2: SFOS Darstellung für die Basiselement-Auswahl

Erweiterung: PatternRepository

PatternRepository stellt das in Abschnitt 3.1.2 vorgestellte Format zum Ablegen von Patterns
zur Verfügung. Es bietet zudem komfortable Funktionen zum semantischen Annotieren von
Patterns, zum Anlegen eines neuen Pattern und zur Verwaltung. Ausserdem werden ver-
wandte Pattern als Leseempfehlung angegeben. PatternRepository wird in der Diplomarbeit
von Norbert Fürst ausführlich beschrieben.[Fü13]

5.4.3 Wiki-Bot Implementierungen

Wiki Import-Bot

MediaWiki verfügt über Programmierschnittstellen für die gängigen Programmiersprachen.
Hier wurde die API für Java verwendet. Um die Daten der Ontologie in das Wiki zu importie-
ren, genügen zwei Funktionen der Java Wiki API: Das Programm muss sich im Wiki anmel-
den (login()) und Artikel editieren (edit(articleName, newText, comment)). Die
Hauptaufgabe besteht im Auslesen des Taxonomieformats. Dabei müssen die Unterelement-
Beziehungen zwischen den einzelnen Fakten berücksichtigt werden. Für die Darstellung

70

5.4 Anpassung und Anwendung

Abbildung 5.3: SFOS Darstellung für die Material-Eigenschaft

im Wiki muss eine geeignete Form gefunden werden. Das Schema für die Artikelbenen-
nung ist dabei dergestalt, dass alle importierten Artikel das Präfix „Ontologie:“ erhalten,
und somit dem Namensraum „Ontologie“ zugeordnet werden. Danach folgt der Name der
Taxonomie und der Name des Fakts. Der Taxonomiename bildet eine Kategorie „Ontologie
Taxonomiename“, und jeder in der Taxonomie vorkommende Fakt wird dieser Kategorie zu-
geordnet. Die Kategorie bietet einen guten Überblick über die bereits importierten Elemente.
Da eine Taxonomie hierarchisch angeordnet ist, kommt hier keine Mehrfachvererbung zum
Einsatz. Für manche Fakten der Kostümdomäne wäre es wünschenswert, nicht nur einer
Oberklasse zuzugehören, sondern auch einer weiteren. In der objektorientierten Program-
mierung kennt man hierfür das Konzept der Interfaces. Für SMW kann man in diesem
Fall die Kategorie als vergleichbares Konzept sehen. Der Vergleich hinkt zwar etwas, da
eine Kategorie ja nur eine Eigenschaft transportiert, und ein Interface eine ganze Klasse an
Eigenschaften, doch auch die hierarchische Verknüpfung durch ein semantisches Attribut
vererbt nur die Hierarchie-Beziehung selbst. Folgendes Beispiel aus der Kostümdomäne
macht dies deutlich:
Die Basiselement-Hierarchie ist nach den Körperbereichen sortiert, an denen ein Kleidungs-
stück getragen wird. Möchte man jetzt eine Abfrage nach allen Schmuckstücken vornehmen,
kann man in der Hierarchie kein gemeinsames Oberelement (außer dem Wurzelelement)
finden. Sucht man im Gegensatz dazu nach allen Kleidungsstücken die am Oberkörper
getragen werden gibt es einen solchen Artikel. Diesem Problem kann man dadurch begegnen,
dass man alle Schmuckstücke in eine Kategorie:Schmuck einordnet. Das ist allerdings Teil
des Domänenwissens und muss vom Domänenexperten modelliert werden. Über eine Suche
nach Teilbegriffen eines Artikels (z.Bsp. Reif, Ring, Kette für Schmuck) kann in einem fortge-
schrittenen Importer auch solches Wissen extrahiert und ins Wiki importiert werden. Diese

71

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

Modellierung von „nicht-hierarchischen“ Eigenschaften kann auch als Wartungsfunktion
von einem Programm ausgeführt werden.

Wiki Similarity-Bot

Im Gegensatz zum Import-Bot, der auf einmaligen Gebrauch zum Import der Taxonomien
ausgelegt ist, sollte der Similarity-Bot ständig im Hintergrund arbeiten. Dieser Bot beob-
achtet die Kostüm-Seiten, die sich ändern oder neu angelegt wurden und führt zu jeder
dieser Seiten eine Ähnlichkeitsanalyse wie in Abschnitt 3.2.7 beschrieben aus. Die Ergebnisse
dieser Analyse schreibt er auf die Wikiseite der entsprechenden Kostüme. Obwohl diese
Einträge nicht angezeigt werden, erzeugen sie doch eine Leerzeile, wodurch der Artikel pro
Kostüm eine Zeile tiefer rutscht. Bei einer Überarbeitung des Bots muss überprüft werden,
ob es Vorteile bringt, wenn die Ähnlichkeitswerte direkt über SPARQL CONSTRUCT in den
Datengraphen modelliert werden.
Da die Abfragen zur Ähnlichkeit eventuell etwas länger dauern können, wenn die Daten-
menge steigt, werden die zu untersuchenden Elemente in einer First In First Out (FIFO)
Warteschlange verwaltet. Die anschließenden Änderungen werden ebenfalls in einem sepa-
raten Thread in einer Queue abgearbeitet. Für den Zugriff auf eine Wikiseite gibt es einen
Schwellwert, der in jedem Fall abgewartet wird, bis die Aktion als beendet gilt, so dass die
Zeit, die zum Editieren der Seiten gebraucht wird die Analysedauer des Abfrageergebnisses
bei weitem übersteigt.

Wiki CLIQUE-Bot

Der CLIQUE-Bot arbeitet ebenfalls im Hintergrund und bildet aus den Paaren ähnlicher
Kostüme für jeden diskreten Ähnlichkeitswert über eine Abfrage einen Graphen. Dazu
wurde die freie Java Bibliothek JGraphT[jgr13] verwendet. Diese Bibliothek liefert auch eine
fertige Implementierung des CLIQUE-Algorithmus nach Bron und Kerbosch.

Die Zugehörigkeit zu einer gefundenen Clique wird im Artikel des betroffenen Kostüms
vermerkt. Das Ergebnis für den Wert 7 zeigen die Abbildungen 5.4 und 5.5

5.4.4 Vorlagen und Formulare

Die im Namensraum „Ontologie“ enthaltenen Begriffe bilden nur einen Teil der Ontologie
ab. Bestandteil der Ontologie sind auch die Zusammenhänge zwischen Kostüm und Ko-
stümteil oder die Kardinalitäten eines Attributs. Dieses Wissen muss nachträglich in das
Wiki eingebracht werden. Dies geschieht hauptsächlich über Vorlagen: Eine Vorlage kann an

72

5.4 Anpassung und Anwendung

Abbildung 5.4: Abfrageergebnis zur
CLIQUE mit Wert 7

Abbildung 5.5: Graph für Wert 7 mit einge-
färbten CLIQUEN

beliebiger Stelle in eine Seite eingebunden werden. Der Artikel wird dann so angezeigt, als
Stünde der Text der Vorlage direkt im Artikel. SemanticForms macht von dieser Eigenschaft
Gebrauch und erstellt eine neue Seite mit den dem Formular zugrundeliegenden Vorlagen.
In der Vorlage kann auch weiterer Text stehen, den SemanticForms nicht auswertet. Dadurch
können leicht Abfragen spezifiziert werden, die alle dem Kostüm zugeordneten Kostümteile
auflisten. Desweiteren kann in der Vorlage auch eine Schaltfläche definiert werden, die ein
neues Formular basierend auf einer weiterführenden Vorlage, öffnet. Listing 5.1 zeigt einen
Ausschnitt aus der Vorlage, die für das Erstellen eines neuen Kostüms verantwortlich ist.

<includeonly>{|

|-

! Kurzbeschreibung

| [[Kurzbeschreibung::{{{Kurzbeschreibung|}}}]]

|-

! Ortsgegebenheit

| [[Ortsgegebenheit::{{{Ortsgegebenheit|}}}]]

|-

! Tageszeit

| {{#arraymap:{{{Tageszeit|}}}|,|x|[[Tageszeit::x]]}}

|-

! Timecode Anfang

| [[Timecode von::{{{Timecode Anfang|}}}]]

|-

! Timecode Ende

73

5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne

| [[Timecode bis::{{{Timecode Ende|}}}]]

|-

! Charaktereigenschaften / Assoziation

| {{#arraymap:{{{Assoziation|}}}|,|x|[[Assoziation::x]]}}

|-

! gehört zu

| [[gehört zu::{{{gehört zu|}}}]]

|}

== Neues Kostümteil anlegen ==

{{#formlink:

|form=Kostümteil anlegen

|link text=neues Kostümteil anlegen

|link type=button

|query string=Kostümteil anlegen[Gehört zu]={{FULLPAGENAME}}

|Kostümteil anlegen[Funktion]={{#ask: [[{{FULLPAGENAME}}]]

| ?Funktion =

| source=wiki

| link=none|mainlabel=- }}

| Kostümteil anlegen[Zustand]={{#ask: [[{{FULLPAGENAME}}]]

| ?Zustand=

| source=wiki

| link=none

| mainlabel=- }}

}}

== Kostümteil bearbeiten ==

{{#forminput:form=Kostümteil anlegen|query string=Kostümteil anlegen[Gehört

zu]={{FULLPAGENAME}} }}

{{#ask:

[[gehört zu::{{FULLPAGENAME}}]]

| intro=zugehörige Kostümteile

| ?Basiselement

| ?Material

| ?Farbe

| ?Design

| ?Relevanz

| format=fancytable

| style=table_zebra_grid

| source=wiki

| merge=false

|}}

</includeonly>

Listing 5.1: Vorlage: Neues Kostüm erstellen

74

5.4 Anpassung und Anwendung

Die mit #arraymap: gekennzeichneten Attribute können mehrere Werte annehmen, die
anderen nur einen. Unter #formlink: wird ein Button erzeugt, bei dessen Klick eine neue
Seite mit der form:Kostümteil anlegen erzeugt wird. Dieser neuen Seite werden bereits
drei Parameter mitgegeben: Zum einen der Seitenname der eigenen Seite als Referenz vom
Kostümteil zum Kostüm, zum anderen die Ergebnisse zweier Abfragen: Damit werden
die Werte für Funktion und Zustand aus dem Kostüm an das Kostümteil weiterpropagiert.
Nach diesem Schema müssen alle Verbindungen zwischen den Taxonomien vorgenommen
werden, sofern die Ontologie das vorsieht. Diese Arbeit ist sehr fehleranfällig, und sollte
nach Möglichkeit im Wiki komfortabel modelliert werden können.

75

6 Zusammenfassung und Ausblick

Dieses Kapitel bietet einen kurzen Durchgang durch die Arbeit und zeigt auf, wo zukünftig
noch Verbesserungen am System vorgenommen werden können.

6.1 Zusammenfassung

Im Mittelpunkt dieser Arbeit standen Betrachtungen zur Modellierung einer geisteswissen-
schaftlichen Domäne. Ziel dieser Modellierung ist es, die Vorteile semantischer Annotation
geschickt auszunutzen, um neue Erkenntnisse über die Domäne zu gewinnen.
In der Kostümdomäne wurden Strukturen entdeckt, die mit Patterns in der Informatik ver-
gleichbar sind. Daraus entstand die Forderung nach einem Informations- und Katalogsystem
für Kostüme und Kostümpatterns. Dieses wurde im Rahmen dieser Arbeit implementiert. Es
wurden Lösungen erarbeitet, um das Domänenwissen in das Katalogsystem zu transferieren.
Die nötigen Verbindungen zwischen den Elementen der Ontologie, die nicht importiert wer-
den konnten, wurden mit Vorlagen und Formularen nachgebildet. Im Zuge einer möglichst
einfachen Eingabe von Lösungen entstand eine Erweiterung für Semantic MediaWiki, die
eine komfortable Auswahlmöglichkeit für hierarchisch strukturierte Daten anbietet.
Der Pattern-Identifikationsprozess wurde eingehend beschrieben und es wurde ein alter-
nativer Prozess vorgestellt, der auf einer IT-gestützten Ähnlichkeitsanalyse basiert. Das
generelle Vorgehen in diesem Prozess wurde positiv getestet, die Ergebnisse sind allerdings
Aufgrund einer schlechten Heuristik und einer geringen Datenmenge nicht aussagekräftig.
Reportingseiten, die auf Abfragen des Datenbestandes beruhen, wurden implementiert.

6.2 Ausblick

Die Kostümdomäne hat ein riesiges Datenpotential. In jedem Film tragen viele Schauspieler
viele Kostüme. Und Filme gibt es auch nicht gerade wenige. Wenn die Anzahl der erfassten
Kostüme steigt, werden gute Algorithmen zur Mustererkennung nötig. Die von mir vorge-
stellte Ähnlichkeitsanalyse kann mit einer guten Heuristik sicher einiges dazu beitragen.
Es wäre wünschenswert, dass DataWiki den Anschluss an die MediaWiki-Community nicht

77

6 Zusammenfassung und Ausblick

ganz verliert. Im letzten Jahr hat sich Semantic MediaWiki stark weiterentwickelt. Mit einem
Update von DataWiki auf die aktuelle MediaWiki Version würden sich sowohl für DataWiki-,
als auch für MediaWiki-User tolle Synergieeffekte ergeben.

78

Literaturverzeichnis

[AH11] D. Allemang, J. Hendler. Semantic Web for the Working Ontologist: Effective Modeling
in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2nd Auflage, 2011. (Zitiert auf den Seiten 16 und 47)

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein. A pattern language: towns, buildings,
construction. Oxford Univ. Press, New York, 1977. (Zitiert auf den Seiten 24

und 34)

[BK73] C. Bron, J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM, 16(9):575–577, 1973. doi:10.1145/362342.362367. URL http:

//doi.acm.org/10.1145/362342.362367. (Zitiert auf Seite 52)

[Ba13] J. Barzen. Taxonomien kostümrelevanter Parameter: Annäherung an eine Ontolo-
gisierung der Domäne des Filmkostüms. Technischer Bericht 2013/04, Universität
Stuttgart. (Zitiert auf den Seiten 5, 25, 31, 37, 39 und 40)

[BLHL01] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific Ame-
rican, 284(5):34–43, 2001. URL http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21. (Zitiert auf den
Seiten 9, 11, 42 und 46)

[Fü13] N. Fürst. Semantic Wiki for Design Pattern Capturing, 2013. (Zitiert auf den
Seiten 68 und 70)

[FEL+
12] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, D. Schumm. Capturing

Cloud Computing Knowledge and Experience in Patterns. In R. Chang, Herausge-
ber, IEEE CLOUD, S. 726–733. IEEE, 2012. URL http://dblp.uni-trier.

de/db/conf/IEEEcloud/IEEEcloud2012.html#FehlingELPRS12. (Zi-
tiert auf Seite 27)

[Fou13a] A. S. Foundation[HRG]. Apache Jena, 2013. URL http://jena.apache.org/.
(Zitiert auf Seite 67)

[Fou13b] A. S. Foundation[HRG]. Lucene and SOLR, 2013. URL http://lucene.

apache.org/solr/. (Zitiert auf den Seiten 63 und 65)

79

http://doi.acm.org/10.1145/362342.362367
http://doi.acm.org/10.1145/362342.362367
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://dblp.uni-trier.de/db/conf/IEEEcloud/IEEEcloud2012.html#FehlingELPRS12
http://dblp.uni-trier.de/db/conf/IEEEcloud/IEEEcloud2012.html#FehlingELPRS12
http://jena.apache.org/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Literaturverzeichnis

[GHJV96] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Entwurfsmuster: Elemente wieder-
verwendbarer objektorientierter Software. Addison-Wesley, Bonn, 1. Aufl. Auflage,
1996. Design Patterns, 1995, Deutsche Übersetzung von Dirk Riehle. (Zitiert auf
Seite 25)

[HW03] G. Hohpe, B. Woolf. Enterprise integration patterns: designing, building, and deploying
messaging solutions. Addison-Wesley, Boston, Mass. [u.a.], 2003. (Zitiert auf
Seite 34)

[jgr13] jgrapht.org[HRG]. jGraphT: A Free Java Graph Library, 2013. URL http://

jgrapht.org/. (Zitiert auf den Seiten 52 und 72)

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller, J. W.
Thatcher, Herausgeber, Complexity of Computer Computations, S. 85–103. Plenum
Press, 1972. (Zitiert auf Seite 51)

[Lea94] D. Lea. Christopher Alexander, An Introduction for Object-Oriented Designers.
Software Engineering Notes, 1994. URL http://gee.cs.oswego.edu/dl/ca/.
(Zitiert auf Seite 24)

[med13a] semantic mediawiki.org[HRG]. Extension: Semantic Result Formats,
2013. URL http://semantic-mediawiki.org/wiki/Semantic_Result_

Formats. (Zitiert auf Seite 64)

[med13b] mediawiki.org[HRG]. Hooks in MediaWiki, 2013. URL http://www.

mediawiki.org/wiki/Category:MediaWiki_hooks. (Zitiert auf Seite 60)

[med13c] mediawiki.org[HRG]. MediaWiki API Client Code, 2013. URL http://www.

mediawiki.org/wiki/API:Client_code. (Zitiert auf Seite 43)

[ORA13] ORACLE[HRG]. About MySQL, 2013. URL http://www.mysql.de/about/.
(Zitiert auf Seite 59)

[Rad11] S. N. Radeschütz. Business Impact Analysis - Konzept und Realisierung einer ganzheit-
lichen Geschäftsanalyse. Dissertation, Universität Stuttgart, Holzgartenstr. 16, 70174

Stuttgart, 2011. URL http://elib.uni-stuttgart.de/opus/volltexte/

2012/7262. (Zitiert auf Seite 16)

[Rei12] R. Reiners. A Pattern Evolution Process - From Ideas to Patterns. In Informatiktage,
Band S-11 von LNI, S. 115–118. GI, 2012. URL http://dblp.uni-trier.de/

db/conf/informatiktage/informatiktage2012.html#Reiners12. (Zi-
tiert auf Seite 28)

80

http://jgrapht.org/
http://jgrapht.org/
http://gee.cs.oswego.edu/dl/ca/
http://semantic-mediawiki.org/wiki/Semantic_Result_Formats
http://semantic-mediawiki.org/wiki/Semantic_Result_Formats
http://www.mediawiki.org/wiki/Category:MediaWiki_hooks
http://www.mediawiki.org/wiki/Category:MediaWiki_hooks
http://www.mediawiki.org/wiki/API:Client_code
http://www.mediawiki.org/wiki/API:Client_code
http://www.mysql.de/about/
http://elib.uni-stuttgart.de/opus/volltexte/2012/7262
http://elib.uni-stuttgart.de/opus/volltexte/2012/7262
http://dblp.uni-trier.de/db/conf/informatiktage/informatiktage2012.html#Reiners12
http://dblp.uni-trier.de/db/conf/informatiktage/informatiktage2012.html#Reiners12

Literaturverzeichnis

[SBLE12] D. Schumm, J. Barzen, F. Leymann, L. Ellrich. A Pattern Language for Costumes
in Films. In Proceedings of the 17th European Conference on Pattern Languages of
Programs (EuroPLoP 2012). 2012. (Zitiert auf den Seiten 5, 25, 26, 34, 35, 36, 37

und 38)

[SS04] S. Staab, R. Studer, Herausgeber. Handbook on Ontologies. International Handbooks
on Information Systems. Springer, 2004. (Zitiert auf Seite 16)

[Wik13] WikiMedia[HRG]. Wikipedia adopts MariaDB, 2013. URL http://blog.

wikimedia.org/2013/04/22/wikipedia-adopts-mariadb/. (Zitiert auf
Seite 59)

[Win09] J. Winkler. JavaScript und Ajax: das Praxisbuch für Webentwicklung ; [JavaScript-
Grundlagen beherrschen und anwenden; Ajax-Anwendungen verstehen und selbst
programmieren; inklusive umfassender Objektreferenz zum Nachschlagen]. Know-
how ist blau. Franzis, 2009. URL http://books.google.de/books?id=

IR3RPwAACAAJ. (Zitiert auf Seite 62)

Alle URLs wurden zuletzt am 04.07.2013 geprüft.

81

http://blog.wikimedia.org/2013/04/22/wikipedia-adopts-mariadb/
http://blog.wikimedia.org/2013/04/22/wikipedia-adopts-mariadb/
http://books.google.de/books?id=IR3RPwAACAAJ
http://books.google.de/books?id=IR3RPwAACAAJ

Erklärung

Ich versichere, diese Arbeit selbstständig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wörtlich oder sinngemäß aus anderen Werken
übernommenen Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

(Daniel Andreas Kaupp)

	1 Einleitung
	2 Grundlagen und Verwandte Arbeiten
	2.1 Grundlagen - Semantik
	2.1.1 Bedeutung von Daten
	2.1.2 Strukturierung der Daten einer Domäne
	2.1.3 RDF/RDFS - Resource Description Framework und RDF Schema
	2.1.4 OWL - Web Ontology Language
	2.1.5 Abfragesprache SPARQL
	2.1.6 Semantische Wikis

	2.2 Grundlagen - Muster
	2.2.1 Muster nach Christopher Alexander
	2.2.2 Muster in der Informatik

	2.3 Kostüme im Film
	2.4 Muster-Identifikationsprozesse
	2.4.1 Identifikationsprozesse bei Cloud-Computing Patterns
	2.4.2 Der Pattern Evolution Process
	2.4.3 Muster für Muster - Die Sprache des Hirten

	3 Konzept zur Erfassung einer Musterdomäne
	3.1 Identifikationsprozesse in der Kostümdomäne
	3.1.1 Zugrundeliegendes Rollenmodell
	3.1.2 Der Muster-Identifikationsprozess

	3.2 Modellierung der Kostümdomäne
	3.2.1 Domänenmodellierung
	3.2.2 Erfassung des Domänenwissens
	3.2.3 Struktur des Wikis
	3.2.4 Taxonomie-Import ins Wiki
	3.2.5 Lösungsdokumentation und Eingabemodelle
	3.2.6 Informationen aus dem Wiki auswerten
	3.2.7 Teilautomatisierter Patternidentifikationsprozess

	4 Anforderungen durch die Kostümdomäne
	4.1 Domänenmodellierung
	4.2 Integration ins Wiki

	5 Implementierung eines semantischen Wikis zur Erfassung der Kostümdomäne
	5.1 Auswahl des Wikis
	5.2 Verwendete Technologien
	5.2.1 Apache HTTP Server
	5.2.2 MySQL
	5.2.3 PHP
	5.2.4 JavaScript
	5.2.5 Asynchronous JavaScript and XML (Ajax)
	5.2.6 Cascading Style Sheets (CSS)
	5.2.7 Java

	5.3 DataWiki
	5.3.1 MediaWiki (MW)
	5.3.2 Erweiterung: Semantic MediaWiki (SMW)
	5.3.3 Erweiterung: Halo
	5.3.4 Erweiterung: Semantic Result Formats
	5.3.5 Erweiterung: WYSIWYG
	5.3.6 Erweiterung: Semantic Drilldown
	5.3.7 Erweiterung: Validator
	5.3.8 Erweiterung: Enhanced Retrieval
	5.3.9 Erweiterung: SemanticForms (SF)
	5.3.10 Erweiterung: SF Select (SFS)
	5.3.11 DIQA Triplestore Basic

	5.4 Anpassung und Anwendung
	5.4.1 Einrichtung
	5.4.2 Erweiterungen
	5.4.3 Wiki-Bot Implementierungen
	5.4.4 Vorlagen und Formulare

	6 Zusammenfassung und Ausblick
	6.1 Zusammenfassung
	6.2 Ausblick

	Literaturverzeichnis

