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Kurzfassung

Die rasante Verbreitung von Mobile-Computing, Cloud-Services und Big-Data Anwendun-
gen fithrt zu immer gréfferen Datenmengen, die in Datencentern verwaltet werden miissen.
Fiir ein effizientes Verteilen und Verarbeiten dieser Daten ist eine Multicast-Kommunikation
inzwischen unabdingbar geworden. Dennoch fiihrt der rapide Anstieg von Speicher und Re-
chenkapazitéten sowie ein hoher Grad an Virtualisierung zu immer héheren Anforderungen
an die Netzinfrastruktur. Die heutigen statischen Netzwerke benotigen eine aufwéindige, ma-
nuelle Administration und passen nicht mehr ins Systemumfeld moderner Datencenter. Es
sind Losungen gefordert, die dynamisch auf Ausfille, Datenverkehrsénderungen oder auf die
individuellen Bediirfnisse einzelner Anwendungen reagieren kénnen. Mit Software defined Net-
working (SDN), in Zusammenhang mit dem OpenFlow-Protokoll, existiert eine flexible Netz-
werkarchitektur, die diesen Anforderungen begegnen kann. Wahrend bisheriges Multicast-
Routing durch verteilte, nicht-optimale und komplexe Algorithmen eingeschrénkt ist, bie-
tet ein OpenFlow-basierter IP-Multicast-Dienst die Moglichkeit, einfachere und effizientere
Losungen zu finden. Austauschbare Softwaremodule ermdéglichen es, mehrere Routingalgo-
rithmen zu implementieren und diese zur Laufzeit beliebig zu wechseln. Gleichzeitig kénnen
die speziellen Anforderungen in Datenzentren einbezogen werden. Im Zuge dieser Diplomar-
beit wird ein solcher Dienst konzipiert, implementiert und ausgewertet. Hierfiir werden auf
Grundlage des Steinerbaumproblems optimierte Routing-Loésungen betrachtet, die in bisheri-
gen, verteilt verwalteten Netzen, als nicht praktikabel galten. Durch proaktive Vorberechnung
und Einrichtung sédmtlicher Multicast-Routen, wird dabei eine Paket-Weiterleitung in Line
Rate ermoglicht. Um vorhandene Netz-Ressourcen innerhalb eines Datencenters moglichst op-
timal auszunutzen, werden Methoden aus dem Bereich des Traffic Engineerings untersucht.
Die Evaluation zeigt, dass der Dienst effizient arbeitet und skalierbar ist. Gleichzeitig wird
eine eine Optimierung der Multicastbdume und eine Verbesserung der Lastverteilung erreicht.
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1 Einleitung

In diesem Kapitel wird in Abschnitt in den Themenbereich dieser Diplomarbeit eingefiihrt
und die Relevanz fiir Forschung und Praxis motiviert. Anschlieend wird in Abschnitt [I.2] ein
Uberblick iiber den Aufbau und die nachfolgenden Kapitel gegeben.

1.1 Motivation

Die Verbreitung von mobilen Anwendungen, Cloud-Services und sozialen Netzwerken haben in
den letzten Jahren zu stark wachsenden Anforderungen an Datencenter gefithrt. Ein Grund
dafiir ist der stetige Anstieg des weltweiten Datenaufkommens. Das betrifft vor allem un-
strukturierte Daten, die nicht nur gespeichert, sondern auch verteilt und verarbeitet werden
miissen. Wie die IDC Studie ,Digital Universe“ [GC08| aus dem Jahr 2011 zeigt, verdop-
pelt sich das Datenvolumen alle zwei Jahre. Die Gesamtmenge an Daten, die 2011 erstellt
oder repliziert worden ist, entsprach 1,8 Zettabyte. 2012 waren es bereits 2,7 Zettabyte. Um-
gerechnet sind das 2,7 Billionen Gigabyte. Dies wiirde einem Aquivalent von 70 Millionen
Jahren an HD-Filmmaterial entsprechen. Die IDC prognostiziert, dass sich die Datenmen-
gen in heutigen Datencentern bis zum Jahr 2020 noch verfiinfzigfachen werden. Eine solche
Datenexplosion stellt nicht zuletzt enorme Anforderungen an die Netzinfrastruktur. Optima-
le Ausnutzung vorhandener Bandbreiten, effiziente Kommunikationsdienste und intelligente
Lastverteilungen sind unabdingbar, um einem drohenden Kollaps der Netze vorzubeugen.

Da sich die Systemlandschaft durch Server- und Speichervirtualisierung, Cloud-Services und
verdnderter Kommunikationspatterns in Datencentern gewandelt hat, ist die Konfiguration
der Netzwerke heute komplexer denn je. Oftmals miissen selbst bei kleinen Anderungen eine
Reihe von zeitaufwéndigen, manuellen Aufgaben durchgefithrt werden, die herstellerabhéngig
iiber eigene Konsolen und Befehle konfiguriert werden miissen. Dynamische und flexiblere
Ansétze sind gefordert, damit sich die Netzwerke automatisch an die jeweilige Anwendung
anpassen kénnen. Ein Losungsansatz, der das Potential hat diesen Problemen begegnen zu
konnen, ist das Software Defined Networking (SDN).

SDN ist eine aufkommende Netzwerkarchitektur, die direkt programmierbar ist [Foul2]. Die
Kontrolle und Verwaltung des Netzwerkes ist von der eigentlichen Weiterleitung der Daten-
pakete entkoppelt. Ein Kontrollprogramm, der SDN-Controller, besitzt eine zentrale Sicht
auf die unterliegende Infrastruktur und abstrahiert diese fiir diverse SDN-Anwendungen.
Solche Anwendungen kennen nicht nur die unterliegende Netzstruktur, sondern haben auch
die Moglichkeit, Gerdtedaten, wie Weiterleitungstabellen, direkt zu manipulieren. Fiir diese
Abstrahierung besteht mit OpenFlow [MABT08| eine API sowie ein zugehoriges Protokoll,



die zusammen einen einheitlichen Befehlssatz auf den Netzgeriaten definieren. In traditionel-
len Systemen ist die Verwaltungslogik auf die einzelnen Netzgerite, wie den Routern oder
den Switches, verteilt. Die durch OpenFlow hinzugewonnene Zentralitét eroffnet vollig neue
Moglichkeiten, einheitliche Netzanwendungen, wie neue Routingalgorithmen, Firewalls, Netz-
werkmonitore, oder sogar Traffic Engineering, in Form von erweiterbaren Softwaremodulen
zu implementieren. Auflerdem ist die Netzwerkvirtualisierung, mit dem Ziel global kontrol-
lierbare, logisch isolierte Netzwerke in die virtuelle Systemlandschaft heutiger Datencenter zu
integrieren, ein oft diskutierter Anwendungfall. Die vormals komplexen Aufgaben der Syste-
madministration kénnen durch herstellerunabhéngige Software, die selbst oder durch Drittan-
bieter entwickelt wird, iibernommen werden. Erste Anwendungen von SDN werden schon von
Google und Facebook eingesetzt, die bereits OpenFlow in ihren Datencentern unterstiitzen
[g00]. Zusatzlich bieten zahlreiche IT-Dienstleister, wie Big Switch Networks [Net], HP [Pac]
oder IBM [IBM] ihren Kunden inzwischen OpenFlow-basierte Produktlésungen an.

Eine sinnvolle Nutzung von SDN in Datencentern setzt allerdings voraus, dass effiziente Kom-
munikationsdienste fiir darauf aufbauende SDN-Anwendungen zur Verfiigung stehen. Die
meisten Controller bringen nativ ein Standard-Routingverfahren auf Basis einer einfachen
Entfernungsmetrik mit. Fiir die anspruchsvollen Anforderungen an Datencenternetzwerke ist
dies jedoch unzureichend. Der Datenverkehr muss dort effizient tiber die verfiigharen Ressour-
cen aufgeteilt und die verfiighare Bandbreite moglichst optimal ausgenutzt werden. So fehlt in
vielen SDN-Plattformen die Umsetzung eines Multicastdienstes. Dabei ist diese besonders ef-
fiziente Art der Gruppenkommunikation fiir viele verteilte Aufgaben unabdingbar. Multicast
wird fiir das Versenden von einer Datenquelle an mehrere spezifische Empfanger verwendet
und bietet die Grundlage fiir zahlreiche Anwendungen wie Video-Streaming, Datenreplikation
oder die Datenverteilung in Hochleistungsrechenzentren. War das Multicast-Routing jedoch
seither durch verteilte, nicht-optimale und komplexe Algorithmen eingeschrénkt, bietet die
zentrale Sichtweise des SDN-Controllers die Moglichkeit, einfachere und effizientere Multi-
castlésungen zu finden.

In dieser Diplomarbeit wird ein OpenFlow-basierter IP-Multicast-Dienst konzipiert, der den
speziellen Anforderungen in Datenzentren gerecht werden soll. Dabei wird ein verbessertes
Routing zur effizienten Nutzung der Bandbreite in der Netz-Infrastruktur angestrebt. Im Zuge
dessen wird das aus der Graphentheorie bekannte Steinerbaumproblem [Pro02] mit dem Ziel
untersucht, kostenoptimierte Multicastbdume in polynomieller Zeit zu approximieren. Als Me-
trik kommt eine Kombination aus Entfernung und verfiigbarer Bandbreite zum Einsatz, was
ein Load-Balancing iiber die Netzredundanzen im Datencenter ermoglichen soll. Auflerdem
ist die Integration in vorhandene OpenFlow-fahige Netze von Relevanz.

Samtliche im Zuge eines Multicast durchgefithrten Aufgaben, die seither verteilt durch
Multicast-Router durchgefiihrt wurden, werden bei SDN durch entsprechende Softwaremodule
im Controller implementiert. Neben der Ermittlung von Verteilbdumen und der Speicherung
von Gruppenzusammensetzungen ist das vor allem die Implementierung und die Verwaltung
von Multicast-Routen auf den Netzgerdten. Dafiir werden die Multicastbdume proaktiv vor-
berechnet und anschlieend auf den Netzgeriten deployed. Im Gegensatz zu einem reaktiven
Einrichten der Routen, sind bei diesem Ansatz alle Hostgerdte im Netzwerk jederzeit und ohne
weiteren Konfigurationsaufwand bereit, eine Gruppenkommunikation zu initiieren. Besonders
in einem beschrankten Umfeld, wie in einem Datencenternetzwerk, bietet diese Losung er-



hebliche Vorteile. Die Weiterleitung kann ab dem ersten Paket in Line-Rate erfolgen, so dass
Verzogerungen vermieden werden. Gleichzeitig wird der Uberlastung des Controllers durch
einen plotzlich auftretenden Paket-Burst, was z. B. bei der Verwendung eines verbindungslo-
sen Protokolls wie UDP [Pos80] geschehen kann, vorgebeugt. Zusétzlich bietet eine Software
groBere Flexibilitit und einfachere Anderungsmoglichkeiten. Sollte beispielsweise die Menge
der Routeneintrage in den OpenFlow Netzgeriten eine kritische Anzahl erreichen, bietet der
Dienst die Moglichkeit den Routingalgorithmus zur Laufzeit zu wechseln. Weiterhin bezieht
sich diese Flexibilitat auch auf die Robustheit eines OpenFlow-Netzes. So kbnnen Ausfall be-
dingte Topologiednderungen durch den Controller erkannt und die betroffenen Routen neu
berechnet werden.

Der Multicastdienst wird im Rahmen dieser Diplomarbeit als Erweiterung fiir den SDN-
Controller Floodlight [flo] implementiert und die Losungskonzeption anschlieBend auf einer
Datencenter-Topologie ausgewertet. Die Evaluation zeigt, dass der Dienst effizient arbeitet
und skalierbar ist. Gleichzeitig wird eine eine Optimierung der Multicastbiume und eine
Verbesserung der Lastverteilung erreicht.

1.2 Aufbau dieser Arbeit

In Kapitel [2] werden Grundlagen bezogen auf Multicasting, SDN und OpenFlow vorgestellt
sowie auf verwandte Arbeiten eingegangen. Kapitel [3] beschéftigt sich mit der Vorstellung
des Systemmodells, insbesondere bezogen auf Datencenter-Topologien. Aulerdem werden die
Anforderungen an den Multicastdienst formuliert. In Kapitel [] wird auf Grundlage dieser
Anforderungen eine Konzeption erstellt. Dafiir wird eine Architektur zur Umsetzung des
Multicastdienstes herausgearbeitet und vorgestellt. Kapitel [5] beschaftigt sich mit der Imple-
mentierung des in Kapitel [f] erarbeiteten Konzeptes und geht auf implementierungsspezfische
Details des Open-Source Controllers Floodlight ein. Anschliefend wird die implementierte
Losung in Kapitel [6] getestet und evaluiert. Dafiir werden relevante Messergebnisse heraus-
gearbeitet und interpretiert. Zum Schluss wird eine Zusammenfassung und ein Ausblick in
Kapitel [7] gegeben.






2 Grundlagen

In diesem Kapitel werden die grundlegenden Begriffe zum Thema Multicast und Software
Defined Networking (SDN) erldutert. Dazu gehoren das Internet Group Management
Protocol (IGMP) (Abschnitt sowie die Untersuchung von optimierten Wegfindungsmetho-
den in Abschnitt Ein besonderer Schwerpunkt soll dabei auf die Formalisierung zentrali-
sierter Multicast-Routing-Probleme gelegt werden. Der SDN-Teil beschreibt in Abschnitt
die allgemeine Architektur und geht in Abschnitt auf den OpenFlow-Standard als Schliis-
seltechnologie ein. Zum Schluss folgt ein Uberblick iiber verwandte Arbeiten in Abschnitt

2.1 Multicast-Adressierung und Gruppenverwaltung

Multicast ist eine Form der Gruppenkommunikation und bezeichnet eine Nachrichteniiber-
tragung von einer Datenquelle an mehrere Empfianger. Die Menge der Empfénger bildet eine
Multicastgruppe, wobei ein Sender nicht Mitglied dieser Gruppe sein muss.

Die Kommunikationsformen Broadcast und Unicast konnen als Spezialfille einer Multicast-
Kommunikation angesehen werden. Wahrend bei einem Broadcast alle Knoten im Netz Emp-
fanger sind, beschreibt ein Unicast eine Kommunikation zwischen genau einem Sender und
einem Empfinger. Zwar konnte man eine Gruppenverteilung auch mit mehreren Unicast-
Ubertragungen realisieren, das fiihrt jedoch bei steigender Gruppengréfie zu einer starken
Verschwendung der Netzressourcen [Wit99]. Anstatt dieselbe Nachricht mehrfach iiber die
gleiche Leitung zu schicken, wird sie bei einem Multicast nur einmal gesendet. In den Zwi-
schensystemen, z. B. Router, wird sie repliziert und auf die entsprechenden Ausgangsleitungen
kopiert. Die Vorteile eines Multicasts liegen demnach in einer effizienten Bandbreitennutzung
und in der Entlastung der Zwischensysteme [Wit99].

Es gibt zahlreiche Anwendungen, die von den Vorteilen eines Multicast profitieren. Dazu
zéhlen Videokonferenzen, Video-Streaming, Groupware oder Onlinespiele. Trotzdem sind im
Internet nur wenige Router Multicast-fahig, d.h. sie bieten keine globale Multicastunterstiit-
zung iiber lokale Netzgrenzen hinweg [RES06]. Diese Arbeit konzentriert sich auf Datencen-
ternetze, in denen Multicastiibertragungen uneingeschrinkt eingesetzt werden kénnen. Eine
Anwendung im Datencenter wire beispielsweise die Replizierung von Daten an eine Menge
von Servern oder die Verteilung von Software an ausgewéhlte Rechnergruppen [BBBO07].



Die verbreiteteste Mullticast-Implementierung ist der IP-Multicast. I1P-Multicast basiert auf
der Erweiterung des IP-Protokolls um Gruppenverwaltung und Routingprotokolle [AFM92].
Fir ersteres kommt das Internet Group Management Protocol (IGMP) zum Einsatz (sie-
he Abschnitt . Die Routingprotokolle sind fiir die Paketverteilung an die Zielrouter
verantwortlich. Sie sollen dabei Redundanzen und Schleifen bei der Wegfindung verhindern
[IMSG™12].

Nachfolgend wird ein Uberblick iiber die Multicast-Kommunikation in paketvermittelten Net-
zen gegeben und auf die Aufgaben der Gruppenverwaltung und des Routings genauer einge-
gangen. Ist im nachfolgenden Teil der Arbeit von Multicast die Rede, ist stets IP-Multicast
gemeint, sofern dies nicht anders vermerkt ist.

2.1.1 IP-Multicast im OSI-Schichtenmodell

Die Multicasttechnik lasst sich gemafl dem OSI-Modell in die Vermittlungsschicht einordnen.
Analog zu einer Unicast-Ubertragung, schickt ein beliebiger Sender IP-Pakete an eine spezielle
IP-Empfangeradresse. Diese Adresse steht stellvertretend fiir eine gesamte Multicastgruppe.
Die dazwischen liegenden Router benutzen Tabelleneintrige fiir die Weiterleitung.

& Empfanger

(__Ethernet ()

&

Sender Empféanger

Ziel-Router

Empfanger

Abbildung 2.1: Ein Sender (rot) schickt ein Multicastpaket entlang eines Multicastbaumes
(rote Verbindungsstiicke) an eine Empfiangergruppe (griin).

Abbildung zeigt den Nachrichtenverlauf zwischen einem Sender und einer Multicast-
gruppe. Zuerst schickt ein Sender ein Multicastpaket iiber das Medium der Sicherungsschicht,
z. B. Ethernet, an den Multicast-Router. Dazu bildet der Sender die IP-Multicastadresse auf



eine MAC-Multicastadresse ab. Da es sich bei Ethernet um ein Broadcast-Medium handelt,
sind alle Gruppenmitglieder im selben Lokal Area Network (LAN) in der Lage das Paket zu
empfangen. Der Multicast-Router ist nun dafiir zustédndig, das Paket geméfl dem verwendeten
Routingprotokoll an alle Ziel-Router zu verteilen. Dies geschieht entlang eines Verteilbaumes.
Ein Ziel-Router ist ein Multicast-Router, der Mitglieder der Multicastgruppe in seinen an-
grenzenden Netzen hat. Die nétigen Mitgliederinformationen erhélt er durch das Ausfiihren
von IGMP (siehe Abschnitt [2.1.3). Damit ein Ziel-Router ein Paket schlieBlich in den Zielnet-
zen ausliefern kann, wird die IP-Adresse erneut auf eine MAC-Multicastadresse abgebildet
und tiber den jeweiligen Port an die entsprechenden Hosts im LAN geschickt.

Mehrere LANs konnen durch einen Switch verbunden werden, der das Netz in Broadcastdo-
ménen aufteilt. Im einfachsten Fall leitet ein Switch, Rahmen mit MAC-Multicastadressen
iiber alle Ausgangsports weiter. Bei diesem Vorgehen kénnen diese jedoch auch in Bereiche
des Netzes gelangen, in denen sich gar keine Gruppenmitglieder befinden. Eine effizientere
Losung ist das IGMP-Snooping [CKS06]. IGMP-Snooping versetzt einen Switch in die Lage,
den IGMP Verkehr zwischen Host und Router mithéren zu kénnen. Dadurch kann er lernen
in welchem Teil des Netzes sich Gruppenmitglieder befinden.

Fiir die meisten Multicastanwendungen kommt auf der Transportebene das User Datagram
Protocol (UDP) [Pos80] zum Einsatz. UDP ist ein verbindungsloses Protokoll, d.h. es behan-
delt weder verloren gegangene Nachrichten noch wird die Auslieferungsreihenfolge beachtet
[TW12]. Der Vorteil ist jedoch eine effiziente Ubertragung an moglichst viele Empfiinger bei
geringem Overhead. Ahnlich dem Transmission Control Protocol (TCP) [Pos81] gibt es auch
Protokolle, die eine zuverlassige Multicast-Kommunikation garantieren. Ein Beispiel ist der
Pragmatic General Multicast (PGM) [SELT98|. Weiterhin werden in RFC 3048 [WVK™01]
Mechanismen zum Erkennen und Reparieren von verloren gegangenen bzw. fehlerhaften Pa-
keten fiir Multicasting empfohlen.

2.1.2 Adressierung

Die IP-Multicastadressen miissen fiir die Ubertragung auf der Sicherungsschicht in MAC-
Multicastadressen abgebildet werden. Fur IPv4 stehen die Adressen der Klasse D (224.0.0.0
bis 239.255.255.255) und fir IPv6 jede mit FF00::/8 beginnende Adresse fiir die Gruppen-
adressierung auf der Vermittlungsschicht zur Verfiigung. Die Adressvergabe ist in RFC 5771
[VC10] von der Internet Engineering Task Force (IETF) spezifiziert. Bei der 48 Bit Ethernet-
Multicastadresse sind die 25 hochstwertigsten Bits fest vorgegeben, wobei das letzte Bit, des
hochstwertigsten Bytes, die Unterscheidung zwischen Unicast und Multicast angibt. Somit
stehen fiir die Gruppenadressierung mit IP-Adressen 25 Bit, fiir Ethernet-MAC-Adressen
aber lediglich 23 Bit zur Verfiigung.

Im Gegensatz zur Unicast-Kommunikation erfolgt die Abbildung Eins-zu-Eins, wobei die fiih-
renden 5 Bit einer IP-Adresse abgeschnitten werden [Wit99]. So kann auf eine aufwéindige
Adressauflosung wie durch das Adress Resolution Protocol (ARP) [Plu82] verzichtet werden.
Durch die entstandene Uneindeutigkeit, miissen die Hosts beim Empfang die IP Multicast-
adressen vergleichen, um sicherzustellen, dass sie einen bestimmungsgeméfien Empfanger der
Gruppennachricht darstellen.



2.1.3 Gruppenverwaltung mit IGMP

IP-Multicast basiert auf der Erweiterung des IP-Protokolls um Gruppenverwaltung und Rou-
tingprotokolle [AFM92]. Die Hauptaufgaben einer Gruppenverwaltung sind das Bereitstellen
der Mitgliederlisten und die Handhabung von Anderungen in der Gruppenzusammensetzung.
Diese Aufgaben kénnen zentral oder verteilt durchgefiihrt werden. Eine zentrale Gruppen-
verwaltung besitzt eine globale Sicht {iber alle Gruppen, deren Mitglieder und auftretenden
Gruppenédnderungen. Verteilte Verfahren wiederum haben Vorteile beziiglich Skalierbarkeit,
jedoch die Schwierigkeit eine konsistente Sicht bereitzustellen [Wit99]. Die Gruppenverwal-
tung beschrankt sich hier auf die Bekanntgabe der Gruppenmitgliedschaften an einen desi-
gnierten Multicast-Router.

Bei IPv4 kommt das Internet Group Protocol (IGMP) [CDK™02] fiir die Gruppenverwaltung
zum Einsatz. IGMP ist ein integraler Bestandteil des IP-Protokolls und muss implementiert
werden, wenn Multicast unterstiitzt werden soll. Die entsprechende Erweiterung fiir IPv6
nennt sich Multicast Listener Discovery (MLD) [DFH99] und funktioniert dhnlich. Pakete
zur Gruppenverwaltung sind in IP-Paketen gekapselt und tragen den vordefinierten Wert 2
im IP-Headerfeld protocol. Dieser gibt an, dass das Folgeprotokoll IGMP ist. Weitere mogliche
Folgeprotokolle wéren z. B. TCP oder UDP fiir ein ankommendes Unicast- oder Multicastpa-
ket. Samtliche Protokollnummern sind in einer Onlinedatenbank [Rey02] festgelegt. Zusétzlich
wird im IP-Header der Time to Live (TTL) mit einem Hop-Zahler von 1 versehen, so dass
IGMP Pakete das lokale Netz nicht verlassen kénnen.

Multicast-
Router

General-
Membership-
Query

Gerneral-
Membership-

Empfanger der
Report (G1) prang

Empfanger der Gruppe G1

Gruppe G1 B

Gerneral-

Membership- .
Report (G2) Empfanger der
Q Gruppe G2

Abbildung 2.2: IGMP-Nachrichten zwischen einem Multicast-Router und Endsystemen, die
jeweils zur Empféngergruppe 1 (griin) bzw der Empfangergrupe 2 (orange) angehoren.

Der Ablauf ist in Bild dargestellt. Ein Multicast-Router sendet periodisch sog. General-
Membership-Queries an die Gruppe aller Endsysteme in seinen angeschlossenen Netzen. Die
Endsysteme antworten nach einer bestimmten Wartezeit in Form eines General-Membership-
Reports. Diese enthalten Information dariiber, zu welchen Gruppen die Endsysteme ange-
héren. Um redundante Riickmeldungen zu verhindern, wird nur geantwortet, sofern kein
anderes System bereits zuvor die entsprechende Antwort gab. Der Router kennt daraufhin
alle IP-Multicastadressen, dessen Pakete er in das jeweilige Netz ausliefern muss und speichert



sie in einer Tabelle. Ein Zahler zu jedem Eintrag stellt iiber einen Soft-State Mechanismus
sicher, dass die Mitgliederinformationen auf dem aktuellen Stand sind. Erhélt der Router fiir
einen Eintrag iiber eine gewisse Zeitspanne hinweg keine General-Membership-Reports, 1auft
der Zéhler ab und der Eintrag erlischt. Um die Netzlast gering zu halten, sollten die General-
Memberhship-Queries in grofieren Abstdnden (Standardwert 125 Sekunden) geschickt werden
[Fen97]. Aufgrund dieser groBen Zeitspanne ist es fiir Endsysteme ebenso moglich, explizit
einer Multicastgruppe beizutreten, indem ohne vorherige Anfrage, ein General-Membership-
Report an den Multicastrouter gesendet wird.

Ab IGMPv2 [Fen97] ist auch ein explizites Verlassen eines Systems mit einem Leave-Report
moglich. Anschlieend fragt der Router per Group-Specific-Query nach, ob sich weitere Inter-
essenten dieser Gruppe im Subnetz befinden, bevor er den Eintrag l6schen kann.

Die derzeit aktuelle Version ist IGMPv3 [CDK'02]. Ab Version 3 kénnen Endsysteme zu-
sdtzlich feingranularere Registrierungen beim Router anfordern. So kann man in den Header-
Feldern Source Address eine Liste von Sender IP-Adressen (Unicast) definieren, von denen
man Gruppennachrichten erhalten méchte. Dazu ist eine weitere Nachricht, in Form einer
Group-and-Source-Specific- Query, notig, damit der Router explizit nach Mitgliedschaften zu
bestimmten Sendern fragen kann.

2.2 Multicast-Routing

IP-Multicast basiert auf der Erweiterung des IP-Protokolls um Gruppenverwaltung und Rou-
tingprotokolle [AFM92]. Routingprotokolle sind fiir die Paketverteilung zu den Zielroutern
verantwortlich. Sie haben das Ziel moglichst effiziente Pfade von dem Sender zu den Empfin-
gern zu berechnen und dabei Redundanzen und Schleifen zu verhindern [MSG™12|. Im Fall
von Multicast ist das Ergebnis ein Verteilbaum.

Ein Multicast-Routingalgorithmus muss in der Lage sein, auf Anderungen in der Gruppenzu-
sammensetzung reagieren zu konnen. Nach [Wit99] kann man inkrementelle und monolithische
Algorithmen unterscheiden. Im monolithischen Fall fiihrt eine Anderung zu einer kompletten
Neuberechnung des Verteilbaumes wéihrend inkrementelle Algorithmen versuchen, den Baum
zu modifizieren. Eine Neuberechnung erfordert gréfleren Rechenaufwand resultiert aber da-
fiir in optimaleren Pfaden. Nach der Berechnung eines neuen Verteilbaumes, wird dieser in
Form von Tabelleneintrédgen in den beteiligten Router gespeichert, so dass Pakete an eine
Multicastgruppe dementsprechend weitergeleitet werden kénnen.

Die Berechnung eines Baumes kann zentral oder verteilt durchgefithrt werden. In heutigen
Netzwerken werden verteilte Methoden, wie Distanz- Vektor-Algorithmen [WDP88al, Link-
State-Algorithmen [Moy94] oder Core-Based-Trees [FHKHO6] verwendet. Diese Dezentralitét
hat den Nachteil, dass die im Netz verteilten Zustinde untereinander synchronisiert werden
miissen und Routen nicht global-optimal berechnet werden kénnen. Zentrale Routingalgorith-
men besitzen wiederum eine komplette Sicht iiber das Netzwerk und kénnen deshalb global op-
timierte Pfade bestimmen. Die Schwierigkeiten dabei sind eine konsistente Netzwerksicht her-
zustellen sowie Leistungsengpésse oder einen Single- Point-of-Failure zu Vermeiden [Wit99].



Durch das Aufkommen von SDN ist der Ansatz eines zentralisierten Routings erneut auf-
gegriffen worden (siehe Abschnitt [2.6). Im Nachfolgenden wird eine kurze Einfiihrung zur
Berrechnung von Verteilbaumen gegeben.

2.2.1 Verteilbaume

Ein Spannbaum ist ein Verteilbaum, der alle Knoten in einem Graph (Netz) verbindet. Die
Berechnung erfolgt z. B. mit Dijkstras Algorithmus [Dij59]. Die Algorithmen von Prim [Pri57]
und Kruskal [Kru56] kénnen verwendet werden, um einen minimalen Spannbaum in einem un-
gerichteten Graphen zu finden. Im gerichteten Fall gibt es vergleichbare Algorithmen [Edm67]
[Tar06]. Das Ergebnis wird als gewurzelter Baum (Rooted Tree) bezeichnet. Ein minimaler
gewurzelten Baum hat, analog zu einem minimalen Spannbaum, minimales Kantengewicht
und enthélt, bei Verwendung einer Distanzmetrik, den kiirzesten aufsummierten Weg zwi-
schen einer Quelle und den restlichen Knoten im Graph. Somit stellt ein minimaler Spann-
baum bzw. ein minimaler gewurzelter Baum ein optimaler Verteilbaum fiir eine Broadcast-
Kommunikation dar. Die Berechnung geschieht dabei in Polynomialzeit. Eine Paketverteilung
durch Spannbdume vermeidet unkontrolliertes Fluten und bietet so ein besseres Ausnutzen
der Bandbreite [TW12].

Bei einem Multicast sind im Allgemeinen nicht alle Knoten im Netz auch Mitglied der Multi-
castgruppe. Ein Baum, der nur eine Teilmenge von Knoten verbindet nennt man Multicast-
baum. Die Zeitkomplexitit um einen optimalen (minimalen) Multicastbaum zu berechnen ist
exponentiell [Pro02] und deshalb nicht praktikabel [T]

Ein effizienterer Mechanismus fiir die Konstruktion eines Multicastbaumes ist das Stutzen
(Pruning). Ausgehend von einem Broadcastbaum werden Zweige, in denen sich keine Grup-
penmitglieder befinden, abgeschnitten. Das Ergebnis ist ein Multicastbaum, der eine Quelle
mit den Multicastmitgliedern verbindet. Das heifit, der Baum bietet eine Losung zur Paket-
verteilung fiir einen bestimmten Sender an eine Multicastgruppe und wird als quell-basierter
Verteilbaum bezeichnet. Diese Methode findet u. a. bei MOSPF [Moy94] und im Dense-Mode
des Protocol Independent Multicast (PIM-DM) [ANST05] Verwendung. Eine andere Moglich-
keit sind Core-Based-Trees [BFC93]. Wihrend bei einem quell-basiertem Verteilbaum ein
Baum fiir jeden Sender pro Multicastgruppe berechnet werden muss, teilen sich hier alle Sen-
der einen zentralen Baum. Dieser kann mehrere Wurzelknoten besitzen, ausgehend von denen
der Baum aufgebaut wird. Existiert nur eine Wurzel, handelt es sich um einen Shared- Tree.
Die Nutzung eines Shared- Tree spart, gegeniiber quellbasierten-Bdumen, Rechenzeit und redu-
ziert die Anzahl der benédtigten Routingeintrdge. Diese Technik kommt z. B. im Sparse-Mode
des Protocol Independent Multicast (PIM-SM) [FHKHO06] zum Einsatz.

2.2.2 Metriken

Fiir die Berechnung des Multicastbaumes kénnen beliebige Routing-Metriken herangezogen
werden. Eine einfache Metrik ist die Anzahl der Ubertragungsschritte, die als Distanz dient.

'Dies gillt unter der Annahme P # NP [Coo06]
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Weitere mogliche Metriken kénnen die Verzogerungszeit, Auslastung, Bandbreite oder Ver-
lasslichkeit des Pfades sein.

Normalerweise werden den Kanten im Netzgraph Gewichtswerte zugeordnet. Diese kénnen
statisch oder verédnderlich sein. Abhéngig von der Metrik werden die Werte im dynamischen
Fall an die aktuelle Netzsituation angepasst, wiahrend im statischen Fall konstante Gewichte
vergeben werden. Metriken kénnen dabei additiv, multiplikativ oder min/max sein [Kui02].
Diese Gliederung legt fest, wie der Gewichtswert eines Pfades entlang der Kantenstiicke be-
rechnet wird. Ein Beispiel fiir eine multiplikative Metrik ist der Paketverlust, die Pfadverzoge-
rung hingegen wiirde sich additiv akkumulieren. Die verfiighare Bandbreite wére ein Beispiel
fiir eine einfache min/max Metrik. Ist eine einzige Metrik fiir die betrachtete Anwendung
nicht ausreichend, kénnen auch mehrere Faktoren gleichzeitig betrachtet betrachtet werden.
Dies wird als Multimetrik bezeichnet und wird in Abschnitt 2.3.2] beschrieben.

2.3 Global optimierte Wegfindung

SDN stellt Informationen zum Netzzustand an zentraler Stelle bereit. Das ermoglicht die Ver-
wendung von zentralisierten Routingalgorithmen wie Steinerbdume. Vor allem in leistungs-
fahigen Rechenzentren ist es sinnvoll, weitere Routing-Optimierungen wie Latenz, Verldss-
lichkeit, Durchsatz oder Energieverbrauch zu betrachten [CHZ™11]. Zusitzlich kénnen Mul-
ticastanwendungen Anforderungen beziiglich der Dienstgiite, bzw. Quality of Service (QoS)
stellen. Ein Ziel kann hierbei sein, die Gesamtverzogerung der Pfade zu minimieren. Ein realis-
tisches Beispiel wére eine Videokonferenz, bei der alle Gruppenmitglieder das Bild moglichst
verzogerungsfrei bekommen sollen. Andere QoS-Anforderungen betreffen maximale Verzoge-
rungsschwankungen oder die minimale Bandbreite [BO10b]. Eine Optimierung des Routings
beziiglich solcher Faktoren nennt man QoS-Routing.

Der Prozess, mit dem eine bestimmte Dienstgiite bereitgestellt wird, ist das Traffic Engi-
neering (TE). Traffic Engineering beschéftigt sich mit der Analyse, Gestaltung und Opti-
mierung von Datenfliissen und dem globalen Ziel, die Netzwerknutzung zu optimieren [Wik].
Ein Beispiel dafiir ist die gleichméfige Verteilung der Leitungsauslastungen (Load Balancing)
[BO10D]. Das Point-to-Multipoint Multiprotocol Label Switching (P2MP MPLS) [Yas00] ist ei-
ne Technik, um Traffic Engineering fiir Multicastanwendungen in paketvermittelten Netzwer-
ken umzusetzen. Verwandte Arbeiten machen sich die durch SDN neugewonnene Zentralitit
zu Nutze, um TE-Anwendungen zu implementieren [KWE™11] [MYLSP07]. Bisher aufwéindi-
ge TE-Aufgaben werden dadurch stark vereinfacht, was sich in reduzierter Komplexitdt und
vereinfachtem Deployment auswirkt.

Die nachfolgenden Teilkapitel beleuchten einen theoretischen Ansatz fiir die globale Optimie-
rung der Wegfindung. Dafiir wird das Multicast-Routing verallgemeinert und formalisiert.
Das Ziel ist es, die Komplexitét fiir optimierte zentralisierte Routingalgorithmen aufzufiih-
ren, die in dieser Arbeit diskutiert und implementiert werden. Das im Anschluss definierte
Steinerbaumproblem bildet hierfiir die Grundlage.
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2.3.1 Das Steinerbaumproblem

Ein Steinerbaum St ist ein Verteilbaum, der eine Teilmenge 7' C V aller Knoten eines Gra-
phen G(V, E) umspannt. Dabei wird mit V die Menge der Knoten und mit E die Menge
der Kanten bezeichnet. T ist die Menge der Terminalknoten, V' \ T definiert die Menge der
moglichen Steinerknoten. Ein Steinerbaum kann beliebig viele Steinerknoten enthalten, muss
aber nicht. Ein Spannbaum ist ein Spezialfall davon, der alle Knoten des Graphen umfasst.
Abbildung [2.3] zeigt einen Graphen und einen zugehédrigen Steiner- und Spannbaum im Ver-
gleich.

Ein minimaler Steinerbaum ist ein Multicastbaum, der die Kosten der Kanten in St global
minimiert. Das Finden eines minimalen Steinerbaumes fiir einen gegebenen Graph G wird
Steinerbaumproblem genannt. Es existieren zahlreiche Heuristiken, mit denen man in einem
zentral verwalteten Netzwerk bestimmte Losungsapproximationen erzielen kann. Eine davon
wird in Abschnitt betrachtet. Das Finden einer exakten Losung ist nicht praktikabel, da
fir das Problem die NP-Vollstédndigkeit bewiesen wurde [Pro02] D Eine Instanz des Steiner-
baumproblems wird mit (G(V, E,w), K) bezeichnet. Im Anschluss wird wird das Problem
folgendermaflen definiert:

Gegeben ist ein zusammenhéngender, ungerichteter Graph G(V, F, w), mit Kantengewichten
w(e) € R, e € E, ein Sendeknoten s € V und eine Menge von Empfingern 7' C V. Es ist
ein Steinerbaum Sk gesucht, der K := T U {s} umspannt und dabei die Kosten beziiglich w
minimiert:

w(K) = min {w(K™)| K* ist ein Steinerbaum der K umspannt} (2.1)

Andert sich die Terminalmenge T, indert sich auch der minimale Steinerbaum. Somit han-
delt es sich bei einem Steinerbaum um einen monolithischen Ansatz. Es sind keine lokal-
inkrementellen Modifikationen mdéglich, ohne dabei die Optimalitéitseigenschaft zu verlieren
[Wit99]. Das minimale Steinerbaumproblem kann direkt auf das Routing per Multicast-
baum abgebildet werden. Die Terminalmenge T entspricht den Ziel-Routern einer Multi-
castgruppe, wihrend der Router des Senders mit s gegeben ist. Weiterhin entsprechen die
Steinerknoten den Routern, die zwischen der Quelle und den Empfingern liegen.

Sl > S

Abbildung 2.3: Teilbild a) zeigt einen Graphen G mit 4 Terminalknoten (gelb), b) ein minima-
ler Steinerbaum zu G mit 2 Steinerknoten (blau) und c¢) ein Spannbaum zu G. Die Restknoten
(grau) sind in Teilbild b) aus Ubersichtsgriinden weggelassen worden.

'Dies gillt unter der Annahme P # NP [Coo06]
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Es sei angemerkt, dass in der urspriinglichen Problemformulierung die Steinerknoten nicht
fest vorgegeben sind, sondern beliebig eingefiigt werden kénnen. Auflerdem wird nicht zwi-
schen Senderknoten und Terminalen unterschieden. Das stellt jedoch keine Einschrénkung
dar, da ein Senderknoten lediglich ein weiteres Terminal ist.

Steinerbaum-packing-Problem Eine Generalisierung des Steinerproblems ist das Steiner-
baum-packing-Problem [Kosl(]. Es beschreibt das Routing mehrerer Steinerbdume in einem
Netzwerk, sodass der Netzwerkfluss nach einer bestimmten Bedingung global optimiert wird.
Beispielsweise fiir eine maximale oder optimale Bandbreitenausnutzung [Kos10], oder eine
moglichst fairen Verteilung der Datenfliisse nach dem Min-Maz Prinzip [NNDKBO§| [KRT99].
So gibt es in Datencenternetzen hidufig redundante Verbindungsleitungen gleicher Lange, die
durch Lastverteilung optimal ausgenutzt werden konnen (Multipathing). Eine hinreichende
Losung fiir solche Probleme kann aber auch durch die Wahl der Routingmetrik gefunden
werden. Ein Routingalgorithmus, der Steinerbdume berechnet und als Metrik die Restband-
breite mit einbezieht, wird fiir neue Verbindungen automatisch eine weniger stark ausgelastete
Kante bevorzugen.

Heuristiken Gegeben ist eine Instanz des Steinerbaumproblems (G(V, E,w), K). Ein ein-
facher Algorithmus listet alle Teilmengen von E auf. Danch prift er, ob sie K umspannen
und dabei einen Steinerbaum bilden. Das Ergebnis mit dem kleinsten Kantengewicht ist ei-
ne exakte Losung fiir das Steinerbaumproblem. Ein solcher Algorithmus hat jedoch keine
polynomielle Laufzeit. Einen Uberblick iiber weitere exakte Losungsalgorithmen sowie der
Berweis der NP-Vollstandigkeit wird in [Kos10] gegeben. Aufgrund der Problemschwere gibt
es zahlreiche Heuristiken, die eine optimale Losung lediglich approximieren. Die durch SDN
hinzugewonnene zentrale Sicht in Netzwerken ermoglicht es, einfache Heuristiken fiir ein Rou-
ting zu nutzen, die seither als nicht praktikabel galten.

Ein Beispiel hierfiir ist der Algorithmus von Kou et al. [KMB8&1] (KMB), der auf minimalen
Spannbdumen basiert. Die optimale Losung wird hier 2-approximiert. Das heisst, dass die
Kosten des berechneten Steinerbaumes maximal doppelt so hoch sind, wie die des minimalen
Steinerbaumes. Auswertungen nach [DL93] belegen, dass in der Praxis der schlechteste Fall
aber nur selten auftritt, so dass das Ergebnis im Schnitt nur um 5% vom Optimum abweicht.
Die Zeitkomplexitit von KMB ist mit O(|K||V|?) gegeben.

Es gibt derzeit keinen Polynomialzeit-Algorithmus, der dass Problem besser als 2-approximiert
(im worst case) [Kos10]. Zahlreiche weitere Arbeiten beschéftigten sich lediglich mit der Ver-
besserung der Zeitkomplexitdt. Durch Adaption von [KMBS81] kann eine leicht {iber-lineare
Laufzeit von O(|E| + |V|log|V]) in der Knotenmenge erreicht werden [Meh88]. Eine ausfiihr-
liche Ubersicht iiber Steiner-Approximationsalgorithmen findet sich in [Kos10]. Ein Vergleich
der verschiedenen Laufzeiten ist in [OP05] gegeben.
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Das dynamische Steinerbaumproblem In einem dynamischen Umfeld, in dem sich die Mul-
ticastgruppen und die Sender beliebig éndern, miisste bei jeder Anderung eine Neuberechnung
des Steinerbaumes stattfinden. Trotz effizienter Heuristiken kann die stdndige Neuberechnung
ein Effizienzproblem darstellen. Dies fiihrt dazu, dass viele Routingtabellen hiufig gedndert
werden miissen. Ein inkrementeller Algorithmus nimmt lokale Anderungen am Multicastbaum
vor und vermeidet so eine Neuberechnung. Im Vergleich zur optimalen Losung verschlechtert
sich das Ergebnis aber nach einer bestimmten Anzahl von Anderungen [PPX98].

Ein einfacher Greedy-Algorithmus verbindet bei einer Anderung den hinzugekommenen Kno-
ten mit der alten Terminalmenge auf dem kiirzesten Pfad. Das entspricht dem Knoten aus
dem existierenden Spannbaum, der am néchsten zum neuen Knoten liegt. Beim Verlassen
eines Knotens wird der Zweig einfach gestutzt (Pruning). Imaze und Waxmann [[W91] haben
gezeigt, dass das Competitive Ratio eines solchen Algorithmus bei loga (V) liegt. Das Compe-
titive Ratio ist das Kostenmaximum aller Anderungsanfragen eines Online-Algorithmus zum
Verhéltnis der Kosten fiir einen optimalen Offline-Baum, bei dem die Anderungen schon im
Voraus bekannt waren. Online-Algorithmen zum dynamischen Steinerbaumproblem wurden
in zahlreichen Ausarbeitungen diskutiert und verfeinert [BC97] [WY93|] [Wax88| [PPX9S].

2.3.2 QoS und Multimetriken

Ein Routingalgorithmus mit einer Metrik optimiert den Multicastbaum nach genau einem Kri-
terium. Das Steinerbaumproblem beschreibt in diesem Fall die optimale Losung [Kui02]. Fiir
das Finden einer moglichst global-optimalen Losung, die zusétzlich Anforderungen (Zielfunk-
tionen), wie kiirzester Weg und maximale Bandbreite, oder Constraints wie eine garantierte
minimale Bandbreite, mitbringt, miissen mehrere Metriken mit einbezogen werden.

Beim Multiobjective Multicast Routing Problem (MMRP) ist in einem zusammenhéngenden,
ungerichteten Graphen ein Multicastbaum gesucht, der mehrere Zielfunktionen und Cons-
traints aus dem QoS und Traffic Engineering Umfeld erfiillt und optimiert [BO10b]. Dabei
konnen verschiedene Bedingungen im Konflikt zueinander stehen, so dass eine global-optimale
Losung nicht unbedingt jedes Ziel lokal optimiert. Das MMRP leitet sich aus der Pareto-
Optimierung [Brii07] ab, einem aus der Mathematik und Volkswirtschaftslehre bekanntem
Optimierungsproblem. Das Steinerbaumproblem kann als der Spezialfall des MMRP mit nur
einer Zielfunktion und keinen Constraints gesehen werden.

Ein einfacher Ansatz fiir mehrere Zielfunktionen ist eine gewichtete Summe |[CB04]. Mehre-
re Routingmetriken werden normiert, mit entsprechenden Faktoren gewichtet und zu einem
kombinierten Wert addiert. Der Vorteil fiir den Routingalgorithmus ist, dass er nur eine Me-
trik behandeln muss. Andere Verfahren nutzen einen evolutionéren Algorithmus wie SPEA2
[ZLT01], um eine Pareto-optimale Losung fiir mehrere Zielfunktionen zu finden [BO10b]
[BO10a] [CBO4].

Werden zusétzlich Constraints betrachtet, muss eine minimale Losung gefunden werden und
dabei bestimmte lokale Bedingungen eingehalten werden. Kuipers und Mieghem [Kui02] be-
trachten in ihrem Algorithmus mehrere Constraints mit dem Ziel, die maximale Summe meh-
rerer Metriken zu minimieren. Zusétzlich dazu miissen eine Reihe von QoS-Anforderungen
erfiillt sein.
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Kompella et al. [KPP93] wihlen den Ansatz, eine vorhandene Steiner Heuristik um Verzogerun-
gs-Constraints zu erweitern. Die Heuristik arbeitet sehr dhnlich wie der KMB-Algorithmus
aus Abschnitt 22311

Der Constrained Shortest Path Tree Algorithm (SCPT) aus [CW98] berechnet zwei Baume
und kombiniert sie. Einen mit minimalen Kosten und einen mit den minimalen Pfadverzoge-
rungen. Ein solcher Algorithmus ist fiir grofe Netzwerke besser geeignet, wiahrend [KPP93)]
bei Graphen mit weniger Knoten effizienter arbeitet [PZHO05].

Weiterhin wird in der Fachliteratur auch das dynamische Steinerbaumproblem (vgl. Abschnitt
2.3.1)) im Zusammenhang mit verzogerungskritischen Anwendungen untersucht [RMSRM99].

2.4 Software Defined Networking

Der rapide Anstieg von Speicher und Rechenkapazititen in modernen Rechenzentren fihrt
zu groferen Anforderungen an das Netzwerk. Die aufwandige, manuelle Netzadministration
erschwert zunehmend die Anpassung vorhandener Netze an neue Anforderungen. Auch die
steigende Komplexitéit durch Virtualisierung von Rechenressourcen und dadurch resultierende
Skalierbarkeitsprobleme haben die Entwicklung von Software Defined Networking motiviert
[Foul2].

Software Defined Networking (SDN) ist eine Netzwerkarchitektur, bei der das Netzwerk direkt
programmierbar ist und die Kontrollebene von der Datenebene entkoppelt wird (Definition
nach [Foul2]). Auf Datenebene geschieht die Weiterleitung des Datenverkehrs. Eine logisch
zentralisierte Kontrollebene regelt, wohin dieser flielen soll. In klassischen Netzen hat jedes
Gerdt sich selbst verwaltet und musste individuell programmiert werden. Bei SDN iibernimmt
dies ein zentraler Controller, der das gesamte oder einen bestimmten Teil des Netzwerks ver-
waltet. Die Programmierbarkeit wird erreicht, indem die unterliegende heterogene Infrastruk-
tur von den SDN-Anwendungen abstrahiert und iiber APIs eine vereinfachte und zentrale
Sicht des Netzwerkes zur Verfiigung gestellt wird. Mit OpenFlow, siehe Abschnitt exis-
tiert hierzu ein etabliertes Standardprotokoll, das die Kommunikation zwischen Kontroll- und
Datenebene {ibernimmt. Bisher komplexe Netzwerkaufgaben wie Konfiguration, Verwaltung,
Sicherheit oder Optimierungen, wie Traffic Engineering, konnen bei SDN herstellerunabhén-
gig mit einem einfachen Softwareprogramm gelést werden. Das macht es zu einer dynamisch
flexiblen Netzwerkarchitektur, die sich schnell und einfach an die eigenen Anforderungen im
Netzwerk anpassen lasst.

In Abschnitt wird die nachfolgend die allgemeine Architektur von SDN beschrieben.
Abschnitt stellt anschliefend den OpenFlow-Standard vor.

2.4.1 SDN-Architektur

Abbildung zeigt die SDN-Architektur nach [Foul2]. Sie besteht aus der Anwendungs-
schicht, Kontrollschicht und der Datenschicht sowie den zugehorigen APIs.
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Abbildung 2.4: SDN-Architektur nach [Foul2]

Die unterste Schicht besteht aus den Netzwerkgerdten. Auf Kontrollebene wird kein Unter-
schied zwischen physikalischen und virtuellen Switches gemacht. Deshalb zéhlen hier auch
virtuelle Gerdte zur Datenschicht. Das sog. Southbound-Protokoll regelt die Kommunikation
zwischen Kontroll- und Datenschicht iiber die Southbound-Schnittstelle. Um SDN zu unter-
stiitzen, miissen die teilnehmenden Switches das Southbound-Protokoll beherrschen. Hersteller
miissen ihre Hardware nicht 6ffnen, sondern lediglich den Minimalbefehlssatz des Southbound-
Protokolls unterstiitzen. OpenFlow (siehe Abschnitt hat sich hierfiir als Quasi-Standard
etabliert [Onl]. Die Hauptaufgabe des Southbound-Protokolls ist das Umsetzen eines Grund-
befehlsatzes zur Manipulation der Flow-Tables in den Switches, um damit die Komplexitét
und Heterogenitit auf Datenebene transparent zu machen. Ahnlich der Funktionsweise eines
Compilers.

Auf der Kontrollschicht findet sich die SDN-Kontrollsoftware, oder auch SDN-Controller.
Man kann den Controller als Middleware ansehen, der die Gerédte der Datenschicht fiir SDN-
Anwendungen abstrahiert. Auflerdem koénnen in der Kontrollschicht, Netzwerkdienste iiber
eine Menge von APIs, implementiert werden. Das kénnen beispielsweise Dienste fiir Rou-
ting, Multicast, Security oder Traffic Engineering sein. Solche Anwendungen profi-
tieren stark von der zentralen Netzwerksicht und ermoglichen global-optimierte Losungen.
Erste Controller sind bereits auf dem Markt. Unter anderem von Herstellern wie Big Switch
Networks [Net], HP [Pac|] oder IBM [IBM]|. Bekannte Open-Source-Controller sind NOX

[GKP*08] und Floodlight [flo].

Auf der Kontrollschicht aufbauend befinden sich, auf der obersten Schicht, die SDN
-Anwendungen wie Firewalls, Netzwerk-Monitore oder Load Balancer. Uber die Nothbound-
APIs werden die Netzwerkdienste und eine Netzabstraktion fiir die Anwendungsebene zur
Verfiigung gestellt. Im Gegensatz zur Southbound-API, hat sich zum Zeitpunkt dieser Diplom-
arbeit noch kein klarer Standard hierfiir herauskristallisiert. Mogliche Griinde dafiir konnten
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sein, dass verschiedene Anwendungen unterschiedlich Anforderungen an die Granularitit der
Netzinformationen oder Effizienzvorgaben haben, sowie die Konkurrenz unter den Herstellern,
die ihre Produkte auf dem Markt etablieren wollen [Guil.

2.5 OpenFlow

OpenFlow [MABT0§] ist das erste Standard-Interface, das speziell fiir SDN entwickelt wurde
[Foul2]. Urspriinglich wurde es in Stanford und Berkley entwickelt, wird aber mittlerweile
von der Open Networking Foundation (ONF) [ONE] vertreten. OpenFlow beschreibt eine
Southbound-API, die die Kontrollschicht von der Datenschicht trennt und einen effizienten
Datenverkehr iiber heterogene Netzwerkgerite hinweg unterstiitzt. Die Kommunikation zwi-

schen Switch und dem OpenFlow-Controller geschieht iber das OpenFlow-Protokoll.

Controller

OpenFlow Protokoll

Sicherer Kanal

Group Table

Flow Table

----- P Flow Table
Pipeline

OpenFlow Switch

Abbildung 2.5: Spezifikation eines OpenFlow-Switches und dessen Kommunikation iiber das

OpenFlow-Protokoll nach

MPLS traffic class

MPLS label

Ingress Port
Metadata
Ether type
VLAN id
VLAN priority

Ether src
Ether dst

IPv4 proto / ARP opcode

IPv4 src
IPv4 dst
IPv4 ToS bits

TCP / UDP / SCTP src port

ICMP Type

TCP / UDP / SCTP dst port

ICMP Type

Abbildung 2.6: Headerfelder in OpenFlow fiir den Abgleich zwischen Flow-Table und Paket-

rahmen nach [P+12)]
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2.5.1 OpenFlow-Switches

In Abbildung ist der Aufbau eines OpenFlow-Switches zu sehen. Die Kommunikation mit
dem Controller erfolgt iiber einen sicheren Kanal. Nach der OpenFlow Spezifikation (Version
1.3.0) [P™12] muss ein OpenFlow-Switch eine Gruppentabelle (Group-Table) und eine bzw.
mehrere Flow-Tabellen (Flow-Tables) enthalten.

Ein Eintrag in einer Flow-Table besteht aus 3 Komponenten: Headerfelder, Zdhler und Aktio-
nen. Einem ankommenden Paket wird mit Hilfe der Headerfelder eine oder mehrere Aktionen
zugeordnet. Es existieren 12 Headerfelder, mit denen auf unterschiedlichen Granularititen
ein Abgleich stattfinden kann. Das kann z. B. der Eingangsport, die Ethernet-Adresse, die
IP-Adresse oder der TCP/UDP-Port sein. Ein Vergleich aufgrund feingranularer Faktoren
erhoht den Kontroll-Overhead, erreicht dafiir aber genauere Routingergebnisse [KSIT11]. Die
vollsténdige Liste aller 12 Headerfelder findet sich in Abbildung

Existieren mehrere Flow-Tables, sind diese in einer Pipeline angeordnet. Alle Pakete werden
immer zuerst mit Tabelle 0 abgeglichen. Wird ein passender Eintrag gefunden, werden die
zugehorigen Aktionen ausgefithrt oder diese modifiziert und anschlieffend erneut abgeglichen.
Existiert kein Tabelleneintrag, wird das Paket abhéngig von der Tabellenkonfiguration igno-
riert, an den Controller gesendet oder entlang der Pipeline im Switch weitergeleitet. Kommt
das Paket beim Controller an, muss dieser dafiir sorgen, dass ein passender Flow-Eintrag im
passenden Switch eingerichtet wird. Jedem dieser Eintréige ist eine Menge von Aktionen zu-
geordnet, die vom Switch verarbeitet werden. Vom Standard vorgeschriebene Aktionen sind
Output, Group und die Moglichkeit ein Paket zu ignorieren (Drop). Output lasst das Pa-
ket iiber einen bestimmten Port weiterleiten, Group lasst das Paket durch einen spezifizierten
Gruppeneintrag verarbeiten. Auflerdem gibt es zahlreiche optionale Aktionen, die ein Herstel-
ler zusétzlich implementieren kann. Fiir eine ausfiihrliche Liste aller Aktionen sei auf [P™12]
verwiesen.

Zusétzlich sind jeder Flow-Table und jedem darin enthaltenen Eintrag gewisse Zahler zu-
geordnet. Sie zdhlen unter Anderem die Anzahl der weitergeleiteten Bytes, die Zeit die der
Eintrag existiert oder die Anzahl aller Eintrdge in einer Flow-Table. Die Zéhlerinformationen
kénnen mit einer OpenFlow-Nachricht abgefragt und fiir Statistikanwendungen oder fiir eine
dynamische Routingmetrik weiterverwendet werden.

Die Group-Table wurde erst ab der Version 1.1.0 in die OpenFlow-Spezifikation aufgenommen.
In der im Moment géingigen Version 1.0 ist lediglich die Flow-Table definiert. Uber die Group-
Table werden einem Gruppeneintrag mehrere sog. Action Buckets zugeordnet, wobei jeder
Bucket aus einer Menge von Aktionen besteht. Uber den Gruppentyp wird die Semantik
festgelegt. So bedeutet der Typ all, dass ein ankommendes Paket, welches zu der Gruppe
passt, geklont wird. Pro Klon wird daraufhin genau ein Bucket ausgefiihrt. So ist es moglich,
dass ein Paket an mehrere Ports weitergeleitet werden kann, was die Anwendung von Broad-
und Multicast ermdoglicht.

Ab Version 1.3.0 ist es unter anderem moglich mit einer weiteren Tabelle (Meter-Table) einfa-

che QoS-Operationen zu implementieren. Diese konnen einem Flow zugeordnet werden. Bei-
spiele sind Beschrinkungen in Ubertragungsrate oder auch komplexere Dienste wie DivServ.
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2.5.2 OpenFlow-Protokoll

Die Kommunikation zwischen dem Switch und dem Controller erfolgt, wie in Abbildung [2.5]
angedeutet, iiber einen sicheren Kanal. Er agiert als Schnittstelle, iiber die der Controller die
Switches verwaltet, Ereignisse bekommt und Pakete zuriicksendet. Meist geschieht dies iiber
ein gesondertes Netzwerk (Out-of-band). In OpenFlow-Protokoll sind drei Nachrichtentypen
definiert: Controller-to-switch, Asynchronous, und Symmetric mit jeweils mehreren Subtypen.

Controller-to-Switch-Nachrichten werden vom Controller genutzt, um Switchkonfigurationen
zu andern oder auszulesen. Das beinhaltet auch die Moéglichkeit, eine Flow-Table zu modi-
fizieren (Flow__Modifikation-Nachricht) oder ihren aktuellen Zustand zu erfragen. Auerdem
kann der Controller ein Paket an einen Switch senden (Packet_out-Nachricht).

Der Typ Asynchronous definiert Nachrichten, die ein Switch unaufgefordert an den Control-
ler sendet. Darunter fallen Fehler- und Statusmeldungen. Sie kénnen auftreten, falls sich ein
Portzustand éndert oder ein Flow-Eintrag durch Timeout oder Loschen-Aktion entfernt wird.
Auflerdem kann mit Hilfe einer Packet_in-Nachricht ein Paket an einen Controller weiterge-
leitet werden.

Eine Nachricht vom Typ Symmetric kann sowohl vom Switch als auch vom Controller initiiert
werden. Dabei handelt es sich um Hello- oder Echo-Anfragen, die fiir den anfénglichen Ver-
bindungsauftbau wichtig sind. Aulerdem kdnnen sie zum Testen von Latenz und Bandbreite
der Controller-Switch Verbindung genutzt werden.

Controller

Packet_In Packet_Out
Flow Flow

Mod Created

OpenFlow-
Header

OpenFlow-
Header

Datenpaket

Datenpaket

Switch

Datenpaket

Abbildung 2.7: Beispielkommunikation zwischen Switch und Controller geméfli dem
OpenFlow-Protokoll
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Abbildung zeigt eine Beispielkommunikation zwischen Switch und Controller. Ein Switch
erhélt ein Paket, fiir das kein passender Eintrag in den Flow-Tables gefunden wird. Dieser
ist so konfiguriert, dass er daraufthin eine Packet in-Nachricht an den Controller schickt.
Das Paket wird an die Packet in-Nachricht angehédngt und mit einem Grund, hier Reason
= No__Match, versehen. Auflerdem fiigt der Switch noch den Port hinzu, auf dem das Pa-
ket urspriinglich eingegangen ist. So ist spédter beim Zuriicksenden eine Zuordnung moglich.
Der Controller antwortet mit einer Flow Modifikation-Nachricht, woraufhin entsprechende
Eintrage in der Flow-Table des Switches erzeugt werden. Sobald eine Statusmeldung quit-
tiert, dass der Eintrag erfolgreich erstellt wurde, sendet der Controller das Paket mit einer
Packet__out-Nachricht wieder zuriick. Zuvor kopiert er den Port aus der Packet in-Nachricht.
So weifl der Switch, auf welchem seiner Ports das Paket urspriinglich gekommen ist und kann
einen Tabellenabgleich durchfithren. Nachkommende, gleichartige Pakete werden nun direkt
weitergeleitet.

2.6 Verwandte Arbeiten

Verteilte Routingprotokolle fiir IP-Multicast wie DVMRP [WDP88b] oder MOSPF [Moy94]
bauen auf Unicast-Verfahren auf. DVMRP nutzt die Tabelleneintrége des Unicast-Routings,
um Distanzen zu anderen Routern zu erhalten. Der Multicastbaum wird durch periodisches
Fluten (Flooding) und Stutznachrichten (Pruning) aufgebaut. Das fithrt zu einer erhéh-
ten Netzbelastung und reduzierter Skalierbarkeit. Protocol Independent Multicast (PIM-DM)
[ANST05] ist nicht von einem Unicast-Protokoll abhingig, nutzt aber ebenfalls das Stut-
zen eines Broadcastbaumes. Multicast Open Shortest Path First (MOSPF) verteilt Grup-
peninformationen an alle Router, um eine konsistente Sicht auf die Topologie zu geben.
Dabei miissen Gruppenadnderungen nicht nur im gesamten Netz geflutet, sondern auch samt-
liche Multicastbdume von allen Routern redundant berechnet werden. Der Sparse-Mode des
Protocol Independent Multlicast (PIM-SM) [FHKHO6] nutzt wurzelbasierte Baume (Core-
Based-Trees) [BEC93]. Zwar wird das Fluten vermieden, dafiir fithrt es zu langeren Wegen
als in quellenbasierten Baumen. Auflerdem muss zusétzlicher Aufwand aufgebracht werden,
um die Rendezvous-Knoten zu platzieren und zu verwalten.

Im Gegesatz hierzu berechnen zentralisierte Ansétze die Routen an einer oder mehreren zen-
tralen Stellen und verhindern dadurch redundante Berechnungen. Auflerdem vermeiden sie
zusétzliche Netzlast, die durch den Austausch von verteilten Zustandsinformationen entstehen
wiirde.

Keshav und Paul [KP99] konzentrieren sich auf ein Multicast-Routing im Internet. Die Auto-
ren schlagen vor, fiir jede Domain eine zentrale Einheit zu haben, die das Routing durchfiihrt.
Auflerdem existieren sog. Root-Controller, die fiir die Verteilung der Multicastinformationen
iiber Domaingrenzen hinweg zusténdig sind, vergleichbar mit DNS. Fiir die Routenberechnung
kann ein quellenbasierter oder ein geteilter Baum verwendet werden.

Marcondes et al. [MSG™12] nutzen OpenFlow fiir einen zentralisierten Multicastdienst fiir
IPTV-Anwendungen im Internet. Sie berechnen und speichern alle kiirzeste Pfade der IPTV-
Sender zu allen Endgeriiten im Voraus. Dies hat den Vorteil, schnell auf Anderungen in der
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Gruppenzusammensetzung reagieren zu konnen. Kommt ein neuer Empfanger hinzu, wird der
Pfad von der Quelle zum neuem Knoten nachgeschlagen, mit dem aktuellen Baum verglichen
und an diesen angebunden. Beim Loschen wird der Baum gestutzt. Die Autoren ersetzen au-
Berdem IGMP als Gruppenverwaltungsprotokoll. Dies hat eine Anderung in den Endgeriten
zur Folge, was bedeutet, dass der Ansatz nicht ohne weiteres in bestehende IP-Netze integriert
werden kann. In dieser Diplomarbeit hingegen wird IGMP beibehalten, um eine moglichst ein-
fache Integration in vorhandene Datencenternetze zu ermdéglichen. Dabei wird von einer eher
konstanten Anzahl von Sendern und Emfpéngern in einem beschrinkten Umfeld ausgegan-
gen, die eine im Vergleich geringerer Gruppendynamik ausweisen. Der Fokus liegt hier auf
der optimalen Ausnutzung der Netzressourcen und effizienten Berechnung von optimierten
Multicastbdumen, wahrend fiir eine IPTV-Anwendung im Internet das hdufige Umschalten
der Kanéle (Zapping) und die damit verbundene Gruppendynamik im Vordergrund steht.

In [KSS12] présentieren Kotani et al. ebenfalls ein Design fiir einen OpenFlow Controller, der
IP Multicast implementiert. Im Vordergrund steht das Reduzieren von Paketverlusten durch
Switch-Ausfille, hervorgerufen durch Fehler oder Wartungsarbeiten. Dazu werden fiir jede
Multicastgruppe zwei Verteilbdume vorberechnet, die man bei Bedarf umschalten kann. Jeder
Redundanzbaum hat eine ID, die vom Sender-Switch in den Paket Header geschrieben wird.
Soll auf einen anderen Baum umgeschaltet werden, muss lediglich der Flow Eintrag im Sender-
Switch ersetzt werden. Die anderen Switches haben beide Bdume bereits vorinstalliert und
machen nur einen Abgleich auf die ID. Der Nachteil dieses Ansatzes ist, dass man doppelt so
viele Tabelleneintrage vorhalten muss. Zur Steigerung der Effizienz werden auch hier aktuelle
Béume zwischengespeichert und bei Gruppendnderungen lediglich modifiziert. Im Gegensatz
dazu, konzentriert sich der Ansatz in dieser Diplomarbeit darauf, moglichst optimale Multi-
castbdume im Datencenter nutzen zu kénnen. Wihrend der grundlegende Ansatz in [KSS12]
auf der Redundanz und der inkrementellen Modifizierung von mehreren Multicastbdumen be-
ruht, wird bei einem Ausfall in dieser Arbeit die Neuberechnung von quellenbasierten Baumen
oder Shared-Trees bevorzugt und so kein zusétzlicher Tabellenplatz bendtigt.

Dirr [Diirl2] prasentiert ein Netzwerkparadigma mit dem Namen Cloud-assisted SDN (Ca-
SDN), das die Vorteile des Cloud Computings mit der SDN Architektur kombiniert. Am Bei-
spiel einer OpenFlow-basierten Systemarchitektur fiir einen Multicastdienst wird aufgezeigt,
wie die komplexen Verwaltungsfunktionen von der Rechenleistung und Speicherkapazitéten
in der Cloud profitieren kénnen. Controllerfunktionen wie die Routenberechnung oder Grup-
penverwaltung konnen ausgelagert werden und die Datenschicht von einem Rechenzentrum
aus beeinflussen.

Das optimale Routing-Ergebnis eines Multicast wird durch einen minimalen Steinerbaum be-
schrieben [Pro02]. Heuristiken wie [KMB81] sind in der Lage, ein gutes Approximationsergeb-
nis in Polynomialzeit zu berechnen. In [KPP93|] und [CW9§| werden zusétzlich Verzégerungs-
Constraints betrachtet.

In dieser Diplomarbeit wird ein OpenFlow-basierter IP-Multicast-Dienst fiir Datenzentren
konzipiert und implementiert. Die angestrebten Ziele sind eine einfache Integration in vor-
handene OpenFlow-fahige Netze, effizientes und moglichst global-optimales Routing sowie
eine gut skalierbare Netz- und Gruppenverwaltung. Dabei soll die Infrastruktur in modernen
Rechencenternetzen nach Moglichkeit optimal ausgenutzt werden.

21






3 Anforderungen und Systemmodell

In diesem Kapitel wird in Abschnitt die Problemstellung prézisiert und danach in Ab-
schnitt der Systemaufbau besprochen. Im Anschluss werden in Abschnitt die Anfor-
derungen eines Multicastdienstes im Datencenter dargestellt.

3.1 Problemstellung

Der rapide Anstieg von Speicher und Rechenkapazitdten in modernen Datencentern fithrt auch
zu hoheren Anforderungen an die Netzwerke. Heutige Anwendungen greifen auf verschiedene
Datenbanken und Server, die auf unterschiedlichen Maschinen liegen, zu und aggregieren
daraus ein Ergebnis. Dariiber hinaus werden immer gréere Datenmengen parallel verarbeitet.
Dies macht eine effiziente Multicast-Kommunikation in Datenzentren unabdingbar, um den
bestehenden Kommunikations-Overhead zu reduzieren.

Die aufwéindige Netzadministration erschwert jedoch zunehmend die Anpassung vorhande-
ner Netze an neue Anforderungen. Durch Virtualisierung muss eine immer grofier werdende
Anzahl von Rechnersystemen verwaltet werden. Dazu kommt die héhere Dynamik durch
Live-Migration. Virtuelle Maschinen kénnen beliebig zwischen verschiedenen Hostrechnern
wechseln, was hohe Anspriiche an eine Netzwerkverwaltung stellt. Die heutigen statischen
Netzwerke stehen im Gegensatz zu diesen Anforderungen. Sie kénnen nicht dynamisch auf
Ausfille, Datenverkehrsénderungen oder auf Bediirfnisse der Benutzer bzw. der Anwendun-
gen eingehen. Durch die fehlende Zentralitdt kann die vorhandene Infrastruktur nicht optimal
ausgenutzt werden und es muss sich mit weniger optimalen Routingergebnissen zufrieden ge-
geben werden. SDN reduziert die Komplexitdt durch klare Trennung zwischen Daten- und
Kontrollschicht und stellt eine globale Netzwerksicht zur Verfiigung. Dies bietet die nétige
Flexibilitdt um den dynamischen Anforderungen gerecht zu werden.

In dieser Diplomarbeit wird ein OpenFlow-basierter IP-Multicast-Dienst konzipiert, um die
Vorteile von SDN in moderenen Datencentern fiir Multicast-Anwendungen verfiighbar zu ma-
chen (Kapitel . Die Ziele dabei sind: Eine einfache Integration in vorhandene OpenFlow-
fahige Netze, effizientes und moglichst global-optimales Routing sowie eine gut skalierbare
Gruppen- und Netzverwaltung. Dabei soll die Infrastruktur eines Datencenternetzes nach
Moglichkeit optimal ausgenutzt werden. Eine Implementierung, die diesen Anforderungen ge-
recht wird, wird in Kapitel [5| beschrieben und im Anschluss auf einer Datencenter-Topologie,
in Kapitel [0}, evaluiert.

23



3.2 Systemmodell
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Abbildung 3.1: Fat-Tree Topologie nach [AFLV0S] fiir k£ = 4

Typische Datencenternetzwerke weisen eine Baumstruktur, einen sog. Fat-Tree [AFLV0S] auf.
Die Fat-Tree Topologie ist eine spezielle Instanz eines Clos-Netzwerkes [Clo53], die aus han-
delsiiblichen Switches zusammengesetzt ist (Abbildung . Sie sollte nicht mit einem Baum
nach [Lei85] verwechselt werden, dessen Grundidee in [AFLV0S8] aufgegriffen wurde und nun
ebenfalls Fat-Tree genannt wird. Ein Fat-Tree, im Sinne von [AFLV0g|, weist eine gute Kon-
nektivitdt auf und hat das Ziel die Effizienz, Skalierbarkeit und Fehlertoleranz von Datencen-
ternetzwerken zu erhéhen [BBALT11]. AuBlerdem stellt diese Topologie einen Kostenvorteil
dar, da géingige Standardhardware verbaut werden kann. Ein Beispiel fiir ein Netzwerkschema,
das einen Fat-Tree nutzt, ist Portland [NMPFT09]. Das Switching geschieht dort mit Hilfe von
Pseudo-MAC Adressen, die jedem Host zugeordnet werden. In diesen Adressen ist die Positi-
on des Hosts im Baum codiert, was beim Routing ausgenutzt werden kann. Eine ausfiihrliche
Ubersicht iiber weitere Netzwerktopologien in Datenzentren findet sich in [CHZ™11].

Ein Fat-Tree ist durch einen Wert k bestimmt. Er gibt die Anzahl der Pods und die Port-
anzahl der Switches an. Auf der untersten Ebene finden sich jeweils k/2 physikalische oder
virtuelle Hostmaschinen. Sie sind iiber die Top-of-Rack-Switches (ToR-Switches) miteinander
verbunden. Die restlichen k/2 Ports verkniipfen die ToR-Switches mit den dariiberlegenden
Aggregate-Switches zu einem Verbund, der als Pod bezeichnet wird. Die Aggregate-Switches
wiederum verbinden die Pods auf der héchsten Ebene mit allen (k/2)? Core-Switches. Bild
zeigt einen Fat-Tree fiir k = 4.

Zum Testen und Evaluieren dieser Diplomarbeit wird beispielhaft eine Hélfte der Fat-Tree
Topologie aus Abbildung verwendet. Allerdings ist das beschriebene Verfahren grund-
sétzlich unabhéngig von der Topologie. Als Switches werden durchgehend OpenFlow-fihige
Multilayer-Switches eingesetzt. Das sind Geréte die sowohl auf der Sicherungsschicht, als
auch als Router in der Vermittlungsschicht agieren konnen. Weiterhin wird ein IP-Netz
zu Grunde gelegt, mit dem Ziel, IP-Multicast umzusetzen. Dazu gillt die Annahme, dass
die Hostgeréte standardkonform zu IP-Multicast das Internet Group Management Protocol
[CDK™02] (IGMP) nutzen, um ihre Gruppenmitgliedschaften bekannt zu machen.

24



Somit ist keine Modifikation der Hostgerédte vorgesehen. Die Switches selbst implementie-
ren OpenFlow und werden von einem zentralen Controller verwaltet.

Wichtige Bewertungskriterien in einem Netzwerk sind Grad, Durchmesser, Kantenkonnektivi-
tat und die Bisektionsbandbreite [TMJ12]. Der Grad jedes inneren Knoten in einem Fat-Tree
ist k. Die langste Distanz zwischen zwei Knoten im Netz wird als Durchmesser bezeichnet.
In Bild betrdgt der Durchmesser sechs Langeneinheiten. Dagegen gibt die Kantenkon-
nektivitdt ein Maf fiir die vorhandenen Leitungsredundanzen an. Sie ist definiert durch die
minimale Anzahl von Kanten, die entfernt werden miissen, um das Netz zu unterbrechen. Im
Beispiel betragt dieser Wert zwei Langeneinheiten und wird durch den Fall bestimmt,
wenn genau ein ToR-Switch abgetrennt wird. Die Bisektionsbandbreite wiederum ist ein Maf3
fiir die worst-case Kapazitdt in einem Netz. Je hoher die Bisektionsbandbreite, desto selte-
ner treten Blockierungen auf. Sie wird durch die minimale Anzahl von Kanten bestimmt, die
entfernt werden miissen, um das Netz in zwei gleichgrofie Teilnetze zu zerlegen. Die Summe
der Bandbreiten aller geschnittenen Verbindungsleitungen ist die Bisektionsbandbreite. Ein
Fat-Tree ist deshalb fiir Datencenternetze eine geeignete Wahl, da die volle Bisektionsband-
breite erreicht werden kann [AFLV0S]. Das hat zur Folge, dass Knoten paarweise zwischen
den Hélften mit voller Geschwindigkeit kommunizieren kénnen.

Zur Optimierung des Routings sollten die Mehrfachpfade eines Fat-Trees ausgenutzt werden,
um die verfiigbare Bandbreite gleichmafig verteilen zu konnen (Multipathing). Die Aufteilung
kann pro Verbindung stattfinden, d.h. pro Multicastbaum, oder auf Paketbasis. Letzteres
wiirde bedeuten, dass die Multicastpakete von einem Sender zu der gleichen Gruppe iiber
mehrere redundante Baume geteilt werden. Es gibt mehrere Methoden, die in Rechenzentren
fir ein Multipathing zum Einsatz kommen kénnen. Standardverfahren wie ECMP [THO0]
basieren auf einfachem Hashing, haben aber den Nachteil dass die Netzlast nicht betrachtet
wird. In [AFRR10] iibernimmt ein zentraler Scheduler mit globalem Wissen die Platzierung
der Flows. In dieser Diplomarbeit wiederum wird OpenFlow verwendet, um die Bandbreite
beim Routing mit einzubeziehen.

3.3 Anforderungen an einen OpenFlow-basierten Multicast-Dienst
im Datencenter

Die Hauptaufgaben des Multicast-Dienstes bestehen aus Gruppenverwaltung, Routenverwal-
tung, Bereitstellen einer Netzreprdsentation und der Routenberechnung. Daraus, und aus der
Problemstellung in Abschnitt lassen sich folgende Anforderungen fiir einen OpenFlow-
basierten Multicastdienst in einem Datencenter ableiten:

Globale Netzreprasentation Der OpenFlow-Controller muss stets den aktuellen Zustand
des Netzwerkes bereitstellen. Dies beinhaltet neben der Netztopologie auch Statistiken, um
adaptives Routing aufgrund von aktuellen Netzzustdnden zu erméglichen. Dazu muss eine
Netzwerkrepriasentation als kantengewichteter Graph erstellt werden. Wichtig ist, dass ein
effizienter Zugriff auf diese Informationen erfolgen kann.
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Skalierbarkeit FEin wichtiges Designkriterium fiir einen Multicastdienst ist die Skalierbarkeit
in Gruppengréfle und Gruppenanzahl [Wit99]. Auf der einen Seite betrifft das den Controller,
der innerhalb kiirzester Zeit auf Gruppendnderungen reagieren muss, um keinen Flaschenhals
zu bilden. Auflerdem muss er in der Lage sein, die Gruppen effektiv zu verwalten und einen
schnellen Datenzugriff ermdglichen. Auf der anderen Seite stehen die Beschrankungen beziig-
lich der Tabellengréfie in den Switches. Ein drohender Uberlauf in einer Flow-Table sollte
erkannt und darauf entsprechend reagiert werden. Dies kann durch Umstellen des Routing-
protokolls, Zusammenfassen mehrerer Tabelleneintrige (Flow Aggregation) [MSGT12] oder
Umleitung des Verkehrs iiber andere Router erfolgen. Zusétzlich kénnte der Controller verteilt
implementiert werden. Das verhindert einen Single-Point-of-Failure und erhoht die Skalier-
barkeit. Aulerdem sollten in den Hostrechnern ausreichend Rechen- und Speicherressourcen
zur Verfliigung stehen.

Global-optimales Routing Die Rechenressourcen eines Datencenters und die Zentralitat von
SDN erlauben es, komplexere Routingalgorithmen zu verwenden. Ziel ist es, einen mdoglichst
minimalen Multicastbaum in polynomieller Zeit zu berechnen. Dieser sollte mehrere Kriterien
gleichzeitig erfiillen kénnen und eine moglichst optimale Losung finden. Traffic Engineering,
nach Kapitel ist fiir eine bessere Ausnutzung redundanter Pfade in der Netzwerkstruktur
aus Abschnitt [3.2n6tig. Ein Mechanismus dafiir ist Flow Balancing, bei dem der Datenverkehr
bevorzugt iiber weniger ausgelastete Verbindungsstiicke geroutet wird. Das hat zum Ziel, eine
moglichst optimale Ausnutzung der Bandbreite zu erreichen [Kos10].

Effizienz Routenberechnung, Flow-Updates, Verwaltung und Weiterleitung sollten effizient
ablaufen und ungenutzte Ressourcen, wie innaktive Flow-Table Eintrage explizit freigemacht
werden. Dazu miissen die installierten Routen im Controller gespeichert werden, um bei Ande-
rungen ein zeitaufwéindiges Anfragen in der Datenschicht zu vermeiden. Die Zeit fiir Routen-
berechnung und Flow-Updates, kann durch proaktives Vorinstallieren der benotigten Daten-
pfade reduziert werden. Das Ziel ist, auf Datenebene eine unterbrechungsfreie Weiterleitung
in Line-Rate zu ermdglichen. Alternativ kann ein reaktives Verfahren zur Flow-Erstellung
genutzt werden. Dabei sollten Gruppeninderungen aber nur zu inkrementellen Anderungen
an den Tabelleneintragen fiihren, damit eine komplette Neuberechnung verhindert wird.

Robustheit Durch das adaptive Umleiten des Datenverkehrs auf redundante Pfade werden
Paketverluste aufgrund von Leitungs- und Switch-Ausfillen reduziert. Diese Art von Topo-
logiedinderungen muss am Controller registriert und in die aktuelle Routenberechnung mit
einbezogen werden. FEin Weiteres Problem ist, dass ein Daten-Burst einen Switch mit Pake-
ten {iberfluten kann, wenn erst durch den OpenFlow-Controller ein passender Tabelleneintrag
eingerichtet werden muss. Dauert dieser Prozess zu lange, lduft die Eingangswarteschlange
im Switch voll und Pakete werden verworfen.

Integration Der Multicastdienst soll méglichst einfach in ein vorhandenes OpenFlow-fahiges
Netzwerk integrierbar sein. Die Grundvoraussetzung dafiir ist, dass die Switches OpenFlow-
fahig sein miissen. Zusétzlich muss ein Controller und ein Controllernetzwerk existieren. Je-
doch sollen keine Anderungen an den Endsystemen nétig sein. Das hat zur Folge, dass die
Kommunikation mit den Hosts standardkonform zu IP-Multicast geschehen muss.
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4 Konzeption eines OpenFlow-basierten
Multicast-Dienstes

In diesem Kapitel wird die Losungskonzeption fiir einen OpenFlow-basierten Multicast-Dienst
vorgestellt, die den gestellten Anforderungen aus Kapitel gerecht werden soll. Zunéchst
wird in Abschnitt eine Ubersicht iiber die erarbeitete Architektur der Controller-Software
gegeben sowie die dazu nétigen Softwareprozesse identifiziert. Anschlieend werden die einzel-
nen Prozesse sowie die zugehorigen Verbindungen und Schnittstellen beschrieben (Abschnitte

[4.2] bis [4.7).

4.1 Systemarchitektur

Die allgemeine Systemarchitektur des OpenFlow-basierten Multicast-Dienstes ist in Abbil-
dung dargestellt. Die Datenschicht weist eine Datencenter-Topologie auf und sdmtliche
Switches sind Multilayer- und OpenFlow-fahig. Die Kommunikation zwischen Datenschicht
und Controller geschieht iiber OpenFlow. Die Kantenbeschriftungen geben die Art der In-
formationen bzw. die Nachrichtentypen an, die intern zwischen den Prozessen ausgetauscht
werden. Folgende Controller-Prozesse lassen sich aus Abbildung identifizieren:

e OpenFlow: Southbound-API, zustindig fiir die Kommunikation mit der Datenschicht
und die Modifikation der Flow-Tables

e Nachrichtenfilter: Empfingt alle Nachrichten, die aus der Datenschicht an den Con-
troller gesendet werden und leitet sie abhéngig vom Nachrichtentyp an den jeweiligen
Prozess weiter.

e Netzstrukturverwaltung: Die Aufgaben bestehen aus dem Bereitstellen, Uberwa-
chen und Speichern des aktuellen Netzzustandes. Das betrifft die Topologie sowie die
Bestimmung von Switch-Informationen wie Portnamen oder IP- und MAC-Adressen.
Fiir die Topologiebestimmung wird das Link Layer Discovery Protocol (LLDP) [1d05]
verwendet.

e Netzzustandsverwaltung: Uberwacht den Netzzustand aufgrund von Statistikinfor-
mationen aus der Datenschicht. Diese Informationen werden mit der Netztopologie kom-
biniert und stellen der Routenberechnung eine kantengewichtete Netzreprasentation zur
Verfiigung. Auflerdem werden Ausfille, sowie drohende Uberlédufe in den Flow-Tabellen
erkannt und eine Behandlung dieser Probleme in der Routenberechnung initiiert.

27



28

Controller

Topologie/ Routenberechnung und Flow- :
Kantengewichte/ Flow Modifikation Informationen Routenverwaltiing
Uberlaufe/
Ausfalle

Netzzustandsverwaltung

!

Topologie
Statistiken

Netzstrukturverwaltung \
Nachrichtenfilter

Packet_Out (LLDP)

Gruppenmitglieder

Gruppenverwaltung

Packet_Out (IGMP)

Status-/
Fehlermeldungen

OpenFlow Nachrichten

ADD/ DELETE/ MOD-

Statistikanfragen FLOW

OpenFlow
Protokoll

Datenschicht

Abbildung 4.1: Systemarchitektur fiir einen OpenFlow-basierten Multicastdienst

Gruppenverwaltung: Speichert die aktuellen Gruppen und deren Zusammensetzung.
Auflerdem ist sie dafiir zustdndig, Gruppendnderungen aus dem Netz anzufragen. Dies
geschieht indem das Gruppenverwaltungsprotokoll IGMP implementiert wird.

Routenverwaltung: Hélt Informationen iiber die aktuell implementierten Flows be-
reit, um bei Gruppendnderungen die nétigen Anpassungen im Netz vornehmen zu kon-
nen. Nach der Ausfithrung einer Routenberechnung werden die Daten der Routenver-
waltung entsprechend angepasst, sofern die Anderungen durch entsprechende Status-
meldungen von der Datenschicht quittiert wurden und kein Fehler aufgetreten ist.

Routenberechnung und Flow Modifikation: Ist fiir die Berechnung der Multi-
castbdume zustédndig. Dazu werden Daten aus der Netzzustandsverwaltung, Gruppen-
verwaltung und der Routenverwaltung verwendet. Treten Anderungen in der Grup-
penzusammensetzung oder in der Topologie auf, wird die Routenberechnung von der
Gruppenverwaltung bzw. der Netzzustandsverwaltung angestoflen. Mit Hilfe der Infor-
mationen aus der Routenverwaltung werden im Anschluss an die Berechnung die nétigen
Anderungen iiber die OpenFlow-API vorgenommen.



Im Nachfolgenden werden, in den Abschnitten bis die einzelnen Aufgaben der Pro-
zesse aus Abbildung sowie die zugehorigen Verbindungen und Schnittstellen ausfiihr-
lich beschrieben. Diese Beschreibung erfolgt unabhéngig von einer konkreten Controller-
Implementierung auf OpenFlow-Basis.

4.2 Kommunikation mit der Datenschicht und
Nachrichtenfilterung

Die Kommunikation mit der Datenschicht geschieht gemafl dem OpenFlow-Protokoll {iber
die OpenFlow-API. Die vollstdndige Spezifikation aller OpenFlow-Nachrichtentypen findet
sich in [PT12]. Uber TCP mit TLS-Verschliisselung ( Transport Layer Security) [Die08] wird,
durch einen Handshake zwischen dem Controller und den OpenFlow-Switches, eine Verbin-
dung iiber ein externes Controllernetz aufgebaut. Um mit den Switches kommunizieren zu
kénnen, werden dementsprechend TCP-Sockets mit ihren Bezeichnern, IP-Adressen und Ports
im Controller verwaltet. Da der Controller zu jedem Switch nur jeweils eine TCP-Verbindung
aufbaut, konnen diese eindeutig iiber ihre IP-Adresse identifiziert werden. Alternativ kann zu
diesem Zweck eine Controller-interne Switch-ID zugewiesen werden. Sie erleichtert das Spei-
chern von Gruppen- und Flow-Informationen im Controller. Die OpenFlow Dokumentation
[PT12] spezifiziert eine solche ID als 64-Bit Bezeichner, wovon die letzten 48-Bit die MAC-
Adresse darstellen. Die oberen 16 Bit sind frei belegbar und héngen so von der jeweiligen
Implementierung ab. Wenn im Nachfolgenden vom Senden oder Empfangen einer Nachricht
durch den Controller die Rede ist, beinhaltet das implizit auch immer eine Zuordnung der
Switch-ID zum jeweiligen TCP-Socket durch IP-Adresse und Port. Im Nachfolgenden wird
zur Beschreibung des Datenaustausches geméafl Bild zwischen vom Controller ausgehenden
und am Controller ankommenden Nachrichten unterschieden.

Ausgehende Nachrichten FEs miissen Nachrichtenpakete verschiedener Art zwischen dem
Controller und der Datenebene ausgetauscht werden. Die Netzstrukturverwaltung und die
Gruppenverwaltung benutzen die OpenFlow-Nachricht Packet Out, um IGMP- oder LLDP-
Anfragen an einen Switch zu schicken. Mit einer Packet Qut-Nachricht ist es moglich einen
beliebigen Ethernet-Rahmen mit einem OpenFlow-Header zu versehen und an die Daten-
schicht zu schicken. Fiir die Modifikation von Flow- und Group-Tables schickt die Routen-
berechnung Anderungsanfragen in Form einer Flow Table Modification-Nachricht. Man un-
terscheidet dabei die Nachrichtentypen Add, Delete und Mod fiir das Hinzufiigen, Loschen
oder Andern von Tabelleneintrigen. Zusitzlich fragt die Netzzustandsverwaltung iiber eine
sog. Multipart _Request-Nachricht aktuelle Statistikwerte bezogen auf die Flow-, Table- oder
Gruppenzéahler eines Switches ab.

Ankommende Nachrichten und Verteilung durch den Nachrichtenfilter Der Nachrichten-
filter aus Abbildung ist dafiir zusténdig, alle am Controller ankommenden Open-Flow
Nachrichten entsprechend weiterzuleiten. Dieser erhélt iiber die OpenFlow-API Packet_ In-,
Statistik- sowie Fehler- und Statusnachrichten. Die Zuordnung nach den entsprechenden
Headerfeldern ist in Abbildung zu sehen.
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Abbildung 4.2: Flussdiagramm des Nachrichtenfilters

Uber die OpenFlow-Nachricht Packet In kann ein beliebiger Switch ein Paket an den Control-
ler weiterleiten. Eine Packet_ In-Nachricht wird iiber dem Wert 10 im OpenFlow-Headerfeld
Type erkannt. Im Nachrichtenfilter wird dann zwischen LLDP- und IGMP-Paketen unterschie-
den. Am Controller ankommende LLDP-Nachrichten sind Antworten der Switches auf vor-
hergegangene LLDP-Anfragen, die von der Netzstrukturverwaltung ausgegangen sind. Ana-
log wurden IGMP-Nachrichten von der Gruppenverwaltung gesendet und miissen nun vom
Nachrichtenfilter wieder dem anfragenden Prozess zugeordnet werden. Fiir die Unterscheidung
der beiden Nachrichtentypen werden die Headerfelder auf der Sicherungs- und Vermittlungs-
schicht inspiziert. Ein EtherType von 0x88C'C zeigt einen LLDP-Rahmen an, wahrend ein
IP-Header mit einem Nachfolgeprotokollwert von 2 auf eine IGMP Nachricht hinweist (Pro-
tocol-Header).

Tritt bei der Anderung eines Eintrages in einer Flow-Tabelle ein Fehler auf, antwortet der
Switch mit einer Fehlermeldung, was durch einen Wert type = 1 im OpenFlow-Header erkannt
wird. Fehlermeldungen werden als Antwort auf eine Mod/Add/Delete-Nachricht geschickt und
miissen deshalb an die Routenberechnung geleitet werden. Der Fehlertyp 5 gibt einen Fehler
bei der Flow-Modifikation an, wiahrend der Fehlertyp 6 einen Fehler bei der Gruppenmodifi-
kation anzeigt. Fiir den Multicastdienst nicht direkt relevante Fehlertypen werden durch eine
allgemeine Fehlerbehandlung in OpenFlow oder von der Anwendung verarbeitet und sind hier
nicht weiter aufgefiihrt.
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Weiterhin werden in Abbildung Flow _Removed- und Multipart Reply-Nachrichten un-
terschieden. Eine Flow Remowved-Nachricht ist eine Statusnachricht, die das Loschen eines
Flows bestétigt. Sie wird durch den Wert 11 im OpenFlow-Headerfeld type erkannt. Da der
Multicastdienst den Soft-State-Mechanismus von OpenFlow fiir Flow-Table Eintrdge nicht
verwendet, kann eine solche Léschmeldung nur als Antwort auf eine Delete- Anweisung ge-
sendet worden sein. Sie wird deshalb an die Routenberechnung weitergeleitet. Die Antwort
auf eine vorangegangene Statistikanfrage der Netzzustandsverwaltung geschieht in Form ei-
ner Multipart_Reply-Nachricht. Der zugehorige OpenFlow type-Wert betrigt 19. Samtliche
Nachrichten dieser Art werden zuriick zur Netzzustandsverwaltung geleitet. Alle anderen Pa-
kete, die keine der beschriebenen Headerinformationen aufweisen, sind fiir den Multicastdienst
nicht von direkter Bedeutung und werden ignoriert. Die Verarbeitung solcher Pakete erfolgt
auflerhalb der Sichtweise der beschriebenen Architektur.

4.3 Netzstrukturverwaltung

Um eine Reprisentation der physikalischen Netzstruktur fiir die Routenberechnung zu er-
halten, fiihrt die Netzstrukturverwaltung das Link Layer Discovery Protocol (LLDP) [l1d05]
aus. AuBlerdem dienen diese Informationen als Grundlage fiir das Erkennen von Anderungen
und Ausfillen durch die Netzzustandsverwaltung. Mit LLDP kann ermittelt werden, welche
Netzwerkgeréte mit welchen Nachbargeréiten verbunden sind. Auflerdem kénnen System- und
Portnamen, Netzadressen sowie die Funktionen der einzelnen Geréte bestimmt werden. Aus
diesen Informationen wird ein Graph in Form einer Adjazenzliste konstruiert.

In einem herkémmlichen Netzwerk initiieren die Router eine LLDP Kommunikation, indem
sie Informationen iiber sich selbst an ihre Nachbarn versenden. Empfangene Informationen
werden in einer Information-Base im Router gespeichert und kénnen dann z. B. iiber das
SNMP-Protokoll [CMPS02] abgefragt werden. Im OpenFlow-Netzwerk wird diese Funktiona-
litdt von den Switches in den Controller verlagert.

LLDP arbeitet auf der Sicherungsschicht. Ein entsprechender Rahmen wird mit dem FEther-
Type 0x88cc versehen und periodisch iiber eine Packet Qut-Nachricht, vom Controller an alle
OpenFlow-fahige Switches geschickt. LLDP-Rahmen sollen von den empfangenden Switches
iiber alle Ports weitergeleitet werden, um benachbarte Netzwerkverbindungen zu erkennen.
Ein LLDP-Paket muss von einem Switch als solches erkannt und daraufhin eine entsprechende
Output:All Aktion ausgefiihrt werden. Der logische All-Port steht dabei stellvertretend fiir al-
le Ports eines Switches. Handelt es sich bei einem Nachbargerdt um einen OpenFlow-Switch,
leitet dieser den LLDP-Rahmen iiber eine Packet In-Nachricht an den Controller zurick.
Dies geschieht entweder aufgrund der Switch-Konfiguration, falls kein passender Eintrag in
der Flow-Table gefunden wird, oder alternativ, durch eine explizit eingerichtete Aktion zur
Weiterleitung an den Controllerport (Qutput:Controller). Im Controller leitet der Nachrich-
tenfilter den LLDP-Rahmen an die Netzstrukturverwaltung weiter, die dann daraus schlieffen
kann, dass zwischen zwei Switches eine Verbindung besteht.
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Abbildung 4.3: LLDP-Kommunikation zwischen Netzstrukturverwaltung und zwei benach-
barten OpenFlow-Switches

In Abbildung[4.3]ist der beschriebene Informationsaustausch fiir zwei benachbarte OpenFlow-
Switches dargestellt. Aulerdem sind die dafiir nétigen Aktionen und die Abgleichkriterien auf
Datenebene zu sehen. Der Eintrag in der Flow-Table muss vor der eigentliche Kommunika-
tion eingerichtet werden und darf danach nicht mehr verworfen werden. Das heisst es darf
insbesondere kein Timeout-Wert gesetzt sein. Die Aktion Output:All fiir ausgehende LLDP-
Rahmen wird direkt in der Packet Qut-Nachricht definiert. Nur Pakete, die im Zuge dieser
Packet__Out-Nachricht vom Controller kommen, werden iiber diese Aktion behandelt. Der
Eintrag in der Flow-Table des Switches gleicht, unabhéngig vom Eingangsport, nach dem
LLDP FEtherType ab. Das heifit simtliche LLDP-Rahmen werden vom empfangenden Switch
direkt an den Controller weitergegeben.

Wichtig ist, dass ein Switch einen LLDP-Rahmen, den er von einem Nachbarn erhalten hat,
nicht auf der Datenschicht weitersendet. Die LLDP Spezifikation gibt als spezielle Empfange-
radresse fiir LLDP-Rahmen die Multicastadresse ,,01:80:¢2:00:00:0e* vor. Rahmen mit dieser
Adresse diirfen von einem Switch nicht weitergeleitet werden, so dass nur Informationen zwi-
schen Nachbarn ausgetauscht werden. In dem Fall, dass zwischen zwei OpenFlow-Switches
keine Direktverbindung besteht, sondern ein zusétzlicher, nicht OpenFlow-fahiger Switch da-
zwischengeschaltet ist, fithrt das zu einem Problem. Der Switch wiirde den LLDP-Rahmen
konsumieren und nicht beim néchsten OpenFlow-Switch ankommen. Als Alternative kann
man auf die Broadcastadresse , ff:ff:ff:ff:ff:ff* zuriickgreifen und manuell durch einen extra
Eintrag in der Flow-Table sicherstellen, dass der néchste OpenFlow-Switch den Rahmen nicht
mehr weiterleitet.
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4.4 Netzzustandsverwaltung

Die Netzzustandsverwaltung ist dafiir zusténdig, den aktuellen Zustand der Switches und der
Verbindungen auf Datenebene zu ermitteln. Dazu gehoren die verfiighbare Restbandbreite aller
Leitungen und die Uberwachung der Flow-Tables. Die Restbandbreite wird fiir die adaptive
Wegberechnung in der Routenberechnung benétigt. Die Netzzustandsverwaltung errechnet
fiir die gegebene Netztopologie eine gewichtete Summe. Diese besteht aus den Distanzen, den
Leitungskapazitaten und der verfiigharen Restbandbreite. Das Ergebnis ist ein zusammenge-
setztes Kantengewicht, dass die Leitungsauslastung im Datencenter in die Routenberechnung
miteinbezieht. Die Informationen tber die Topologie, Distanzen und Kapazitidten stammen
von der Netzstrukturverwaltung.
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Abbildung 4.4: Aufgaben der Netzzustandsverwaltung

Eine Ubersicht iiber den Ablauf der einzelnen Aufgaben der Netzzustandsverwaltung ist in
Abbildung[4.4] dargestellt. Statistik- und Topologieinformationen werden an die Netzzustands-
verwaltung {ibergeben. Eine kantengewichtete Netzrepréisentation, sowie die Benachrichtigung
iiber einen drohenden Tabelleniiberlauf stellen die Ausgangsinformationen an die Routenbe-
rechnung dar. Zusétzlich wird die Routenberechnung iiber Ausfille in der Netzstruktur in-
formiert. Die in Abbildung [£.4] definierten Aufgaben werden nachfolgend in den Abschnitten
[4.4.7] bis [4.4.4] einzeln beschrieben.

33



4.4.1 Ermitteln der Netzstatistiken

OpenFlow bietet iiber eine Multipart-Nachricht die Moglichkeit, Statistikinformationen an den
Switches abzufragen. Das geschieht hier periodisch {iber den Netzstatistik-Deamon. Im Zeitab-
stdnden von Tpy+-Sekunden fragt er Port- und Flow-Statistiken ab. Im Abstand von Trpgpie-
Sekunden werden Statistiken {iiber Flow- und Group-Tables ermittelt. Dabei soll

Tport 7é Trapie gelten'

Ein OpenFlow-Switch implementiert nach der OpenFlow-Spezifikation mehrere Zéhler, die die
Zeit, die Anzahl der Pakete und die Anzahl der Bytes auf verschiedenen Granularitétsebenen
vorhalten. Ein Multipart _Request weist den Switch an, die aktuellen Zahlerwerte an den
Controller zuriickzuschicken. Fiir die Anfrage muss im Header lediglich der gewtinschten Port,
die Tabelle oder ein Flow vorgeben werden. Aus dem Body der Multipart-Antwort kann die
Netzzustandsverwaltung die gewiinschten Zahler auswerten.

Hier sind die Bytezéhler der einzelnen Ports und Flows von Interesse, um daraus die aktuelle
Netzlast zu errechnen. Fur die Port-Statistik wird an alle Switches ein Multipart Request vom
Typ Port_Stats versendet. Im Header wird der Any-Port vorgegeben, worauthin der Con-
troller die Zéahler fiir alle auf dem Switch vorhandenen Ports zuriickerhélt. Zusétzlich werden
fiir jeden aktiven Multicastbaum die Flow-Statistikwerte benotigt, um feststellen zu kénnen
mit welcher Bandbreite dieser zur Gesamtauslastung beitrdgt. Dies geschieht, gleichzeitig
zur Portanfrage, iiber einen Multipart Requests vom Typ Flow Stats, der an die jeweils zur
Gruppe gehoérenden Switches gesendet wird. Diese Information ist wichtig, damit bei einer
Neuberechnung fiir eine Gruppe nicht der eigen produzierte Traffic zu einer moglicherweise
schlechteren Route fiihrt.

Sei Cout(t,p) der Zéhler, der die Anzahl der Bytes fiir einen Switch zuriickgibt, die bis zum
Zeitpunkt t iiber den Port p herausgeschickt wurden. Durch periodisches Abfragen der aktu-
ellen Zéhlerwerte in einem Zeitintervall Tp,,¢, kann die aktuelle Bandbreitenauslastung L;(e)
eines Ausgangsports (bzw. Kante) e im Netzgraph G(V, E) folgendermaflen errechnet werden:

Cout (tiv p) - C'out (tifl ) p)
TPort

Li(e) := (4.1)

Damit bestimmt L;(e) die Anzahl der Bytes pro Sekunde, die im Zeitraum zwischen ¢; und
t;—1 liber diese Kante geflossen sind. Im Systemmodell wird von Vollduplex-Leitungen aus-
gegangen, so dass in beide Richtungen, unabhangig voneinander, die volle Bandbreite zur
Verfiigung steht. Analog zu L;(e) bezeichnet L, ), (e) die Bandbreite, die iiber einen Flow-
Eintrag einer bestimmten Gruppe K C V mit zugehdrigem Sender s € V momentan ge-
nutzt wird. Sie wird iiber die angefragten Bytezihler der Gruppen-Flows ermittelt. L, ), (e)
ist 0, wenn diese Gruppe zuvor nicht existiert hat oder in der letzten Zeitperiode 1Tp,,+ keine
Ubertragung stattgefunden hat.

Um die Historie in die aktuelle Berechnung mit einzubeziehen, wird der exponentiell geglét-
tete Mittelwert (ezponential moving average) LY_,(e) aus den vorangegangenen Messungen
herangezogen. Der initiale Bandbreitenwert L{j(e) ist dabei mit 0 vorgegeben.
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Die aktuelle Auslastung unter Berticksichtigung der Historie wird mit L}(e) bezeichnet und
errechnet sich durch:

Li(e) := BLi(e) + (1 = ) Li_1(e) (4.2)

Die rekursive Formel bezieht, neben der aktuellen Auslastung, die vorangegangenen Mit-
telwerte mit absteigender Gewichtung mit ein. Je weiter ein Wert in der Vergangenheit liegt,
desto geringer ist sein Einfluss. Der Faktor 0 < 5 < 1 bestimmt dabei die Gewichtung zwischen
der aktuellen Bandbreite und dem vorangegangenen Mittelwert. Die Betrachtung der Historie
ist sinnvoll, da die zukinftige Auslastung einer Kante im Allgemeinen nicht bekannt ist und
die Kantenauslastung, wiahrend der aktuellen Routenberechnung im Zeitintervall Tp,,, stark
von den vorherigen Werten abweichen kann. So ist es beispielsweise denkbar, dass eine Kante
in grofleren Absténden durch bestimmte Multicastiibertragungen stark ausgelastet wird, dies
aber in der aktuellen Berechnung, innerhalb des im Vergleich kurzen Intervalls Tp,,¢, nicht
erkannt wird. Durch die Einberechnung vergangener Werte ist so eine realistischere Prognose
zukiinftiger Ubertragungen mdoglich. Die selbe Berechnung, wie in Gleichung M geschieht
analog fiir L* (s i), (e) fiir jeden vorhandenen Multicastbaum. Dieser Wert gibt den Einfluss
des Baumes (s, K) beziiglich der Auslastung auf Kante e, inklusive der Historie, an.

Die Bytezéhler, die fiir die Berechnung aus Gleichung benétigt werden, sind in der Open-
Flow Spezifikation als optional gekennzeichnet. Es muss daher bei der Auswahl der Hardware
darauf geachtet werden, dass diese auch tatséchlich implementiert sind. Zusétzlich kann es
sich bei den Zahlern um ungenauere Softwarezéhler handeln, die lediglich durch das periodi-
sche Anfragen von Hardwarezihlern implementiert sind [P™12]. Ungenauigkeiten kénnen aber
auch durch die Verzogerung der Multipart-Nachrichten an der Schnittstelle, im Netz und in der
Eingangswarteschlange der Switches auftreten. Die Kommunikation im Controllernetzwerk
geschieht typischerweise iiber TCP, was zusétzlich schwer vorhersehbare Verzogerungszeiten
mit sich bringen kann.

Netzzustandsverwaltung OpenFlow-Switch

‘,, L I AL Lese Werte
Multipart: port_stats_request(ALL
TMuIItipart 3 T

p l«¢————Multipart: port_stats_reply:

TPort 'TMuIItipart - T
Port

Multipart: port_stats_request(ALL)

l«——Multipart: port_stats_reply:
. | Lese Werte

Abbildung 4.5: Anpassung der Intervallzeit Tpo,
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Durch die hier verwendete Trennung zwischen Controllernetz und Datenschicht, kénnen diese
Probleme zum Teil reduziert werden, sofern das Controllernetz eine geringe Auslastung auf-
weist. Zusédtzlich wird zur Verbesserung der Genauigkeit die letzte Verzogerungszeit zwischen
Anfrage und Antwort der Multipart-Nachricht gemessen und das Zeitintervall Tp,.; bis zur
nichsten Anfrage entsprechend angepasst (siehe Abbildung . Das basiert auf der Annah-
me, dass in einem gering ausgelasteten Netz die Ubertragungszeit der Anfrage und die der
Antwort etwa gleich lang ist. In diesem Fall kann man die Zeit, die vergangen ist, seit dem
die Zahlerwerte tatséchlich gelesen wurden, mit Tasytipert/2 annéhern. Indem man nun die
Wartezeit Tpo¢ bis zum Senden der nichsten Anfragenachricht um Thsytipert reduziert, er-
reicht man im Idealfall einen Zeitabstand von Tp,+ zwischen zwei Lesevorgédngen.

4.4.2 Uberlauf- und Ausfallkontrolle

Neben den Byte-Statistiken ist der Netzstatistik-Deamon auch fiir die Ermittlung der Eintrége
fiir die Flow- und Group-Tables zustindig. Diese Informationen werden in der Uberlauf- und
Ausfallkontrolle verarbeitet. Desweiteren findet nach jeder Neubestimmung der Topologie eine
Uberpriifung nach Switch- und Leitungsausfillen statt.

Uberlaufkontrolle Mit dem Multipart- Type: Flow Stats Request kann man, analog zu Flows
und Ports, die Zahler einer Flow-Table abfragen. Dazu muss in der Anfrage die Tabellen-ID
angegeben werden. So erhélt man die Anzahl aller aktiven Flow-Eintrige sowie die Anzahl der
Lookups und der erfolgreichen Matchings zuriick. Die maximale Anzahl der Tabelleneintrage
hingt vom Switch-Modell ab und muss vorab bekannt sein. Die Uberlaufkontrolle bestimmt
daraus, zu wie viel Prozent die Tabellen gefiillt sind. Uberschreitet eine Tabelle den definier-
ten Schwellenwert K., folgt eine Signalisierung an die Routenverwaltung. Daraufthin werden
nachfolgende Flow-Eintrége in Form eines Shared-Trees eingerichtet, um Tabelleneintrige zu
sparen. Fallt die Anzahl der maximalen Eintrdge aller Tabellen anschliefend erneut unter
einen bestimmten unteren Schwellwert K,,;,, wird der Routenberechnung signalisiert, dass
wieder auf quellenbasierte Baume umgestellt werden kann. Die Abfrage geschieht ebenfalls
periodisch mit der Zykluszeit Trrqp.. Allerdings nicht im gleichen Zyklus wie die Portstatistik-
Abfrage, um die Netzlast im Controller-Netzwerk moglichst gering zu halten.

Ausfallkontrolle Die Uberlauf- und Ausfallkontrolle speichert eine Kopie der aktuellen Netz-
topologie. Nach jeder periodischen Neubestimmung der Netzstrukturverwaltung, geschieht ein
Abgleich zwischen der aktuellen und der alten Topologie, durch einen Knoten- und Kanten-
vergleich. Dadurch werden Anderungen, wie der Ausfall eines Switches oder einer Leitung
erkannt und an die Routenberechnung gemeldet. Dabei werden 2 Mengen iibergeben. Die
Menge S der ausgefallenen Switches und die Menge E aller ausgefallenen Leitungen, die nicht
zu einem Switch in S gehoren. Die Routenberechnung fithrt mit Hilfe dieser Informationen
eine sofortige Neuberechnung fiir die betroffenen Routen durch, um Paketverluste zu redu-
zieren. Um nicht auf den néchsten Aktualisierungszyklus der Netzstrukturverwaltung warten
zu miissen, werden die ausgefallenen Kanten sowie alle Kanten eines ausgefallenen Switches
voriibergehend mit unendlich markiert. Es sei anzumerken, dass bei Topologieinderungen
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lediglich ein Ausfall einer gesonderten Behandlung bedarf. Neu hinzugekommene Switches
und Verbindungen werden dagegen von der Routenberechnung fiir aktuelle Berechnungen ak-
tualisiert. Vorhandene Routen passen sich, abhéngig von der Gruppendynamik, an eine neue
Topologie automatisch an und erfordern deshalb keine extra Betrachtung.

4.4.3 Berechnung der Kantengewichte

Wie in Kapitel diskutiert, gibt es verschiedene Méglichkeiten, ein Routing mit mehreren
Metriken zu realisieren. Hier soll das Ziel sein, Multipathing auf Baumebene auszunutzen,
um eine gleichméaBige Lastverteilung (Flow-Balancing) zu erreichen. Im Hinblick auf eine
moglichst performante Routenberechnung wird eine gewichtete Summe verwendet, um die
Kantenauslastung in die Routenberechnung mit einzubeziehen. Das hat den groflien Vorteil,
dass der Routingalgorithmus lediglich nach einem Wert optimieren muss. Im Vergleich zu
komplexeren Optimierungsverfahren, bringt dies fiir das Routing keine hohere Laufzeit mit
sich.

Gegeben ist die Netztopologie in Form eines Graphen G(V, E, d(e)). Die Funktion d(e) ordnet
jeder Kante e € E eine fixe Distanz zu. Die Gleichung bestimmt das zusammengesetzte
Kantengewicht w(e), das die Distanz und die aktuell zur Verfiigung stehende Bandbreite,
inklusive der Historie, miteinander verrechnet. B(e) ist die initiale Bandbreite (Kapazitét) der
Leitung und &ndert sich nicht, wihrend L(e) die aktuelle Netzlast der Kante nach Gleichung
angibt. L} (e) betrachtet zusétzlich den Mittelwert vorangegangener Werte nach Gleichung
. Die maximale Kantendistanz d(e) aller Kanten im Graph wird mit d,,,, bezeichnet.

dmaz

R .. Li(e)
oo”  fiir Ble) =~ L

(4.3)

d(e) _ 0 Eile) o Li(e)
w(e) ::{ (0 + (1= o) 5 ) fir 5 < 1

Uberschreitet die aktuelle Netzlast einen bestimmten konstanten Schwellenwert 0 < L < 1,
wird die Kante als ausgelastet markiert. Was zur Folge hat, dass ausschliellich alternative
Pfade genutzt werden. Das verhindert Paketverluste durch Leitungsiiberlastung (Congesti-
on). Setzt man L = 1 wird dieser Fall ignoriert und es wird niemals eine Kante mit unendlich
markiert. Bei Einrichtung einer Route ist im Allgemeinen nicht bekannt, wie hoch die ver-
brauchte Bandbreite sein wird. Deshalb sollte K so gewéhlt werden, dass ein ausreichender
Puffer nach oben gegeben ist. Im gegebenen Systemmodell stellt 0,9 ein sinnvoller Wert dar.
Das bedeutet, dass einer Kante die zu 90% oder mehr ausgelastet ist, keine neuen Routen
mehr zugewiesen werden. Fiir den Fall, dass die Bandbreite kleiner als K ist, normalisiert der
erste Summand in Gleichung [4-3] die Kantenliange. Der zweite normalisiert analog dazu die
exponentiell geglittete Netzlast in Bezug auf die Kantenkapazitdt. Im konkreten Fall gilt hier
% = 1Ve, da als Distanz die Anzahl der Hops verwendet wird. 0 < a < 1 bestimmt das Ver-
héltnis zwischen Distanz und Bandbreite. Der Extremfall « = 1 wiirde eine Pfadauswahl nach
kiirzesten Wegen unabhéngig von der Bandbreite bedeuten, wihrend man bei a = 0 lediglich
die Bandbreite beachten wiirde. Im Fall « = 0,5 wéren beide Teile genau gleich gewichtet. Der
Faktor r skaliert das Ergebnis auf beliebige Grofie, so dass der Routingalgorithmus wahlweise
mit Ganzzahlen oder Gleitkommazahlen rechnen kann.
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Analog dazu werden die Gewichte w4 k) nach ermittelt. Diese Werte werden fir je-
den Multicastbaum abgespeichert und erst bei einer Neuberechnung des Baumes jeweils vom
aktuellen Gesamtgewicht w(e) abgezogen. Der Wert wy, i spiegelt dabei den Anteil der
Bandbreite wieder, den der Multicastbaum (s, K) selbst verbraucht. Er soll bei auftreten-
den Gruppendnderungen und den darauf folgenden Routenberechnungen fiir diesen Baum
ignoriert werden.

L*( 5,5K); (€)
(1—04)*( = fiir 209 <
W(s k) :={ ( ) e (4.4)

9 N9 - s, Z()
oo”  flr % > L

Bild zeigt ein Beispiel fiir einen Graphen mit berechneten Kantengewichten w(e) und
die zugehorige Datenstruktur. Durch den Vollduplex-Betrieb werden fiir die beiden Rich-
tungen eigene Gewichte berechnet, die unabhédngig von der jeweiligen Gegenrichtung sind.
Die Auslastung der Kanten ist in Prozent angegeben, zugehorige Kantengewichte sind rot,
bzw. violett hervorgehoben. Die Kante zwischen Knoten 2 und 3 ist zu 50% ausgelastet. Der
Routingalgorithmus wiirde, um Knoten 1 mit Knoten 5 zu verbinden, die Kante iiber Kno-
ten 4 bevorzugen. Die Gesamtkosten fiir diesen Weg betragen nur (13,2), wihrend der Weg
iiber Knoten 3 Kosten von (16, 2) aufweist. Die Gewichtungen der Kanten in Gegenrichtung
(grau dargestellt), haben durchgehend den Wert 4 und sind fiir dieses Beispiel nicht relevant.

Die Berechnungsvorschrift fiir das Beispiel lautet w(e) = (O 44 0.6 1(( )))10 nach folgender
Wertebelegung fiir Gleichung [4.3}

a 0.4
dle) | 1
dmam 1
r 10
L 1

Tabelle 4.1: Wertebelegung fiir Abbildung

Hashtabelle

Abbildung 4.6: Beispielnetz als kantengewichteter Graph und Adjazenzliste
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4.4.4 Datenstruktur

Der Netzgraph wird von der Netzstrukturverwaltung in Form einer Adjazenzliste zur Ver-
fligung gestellt. Das hat den Vorteil, dass die Datenstruktur jederzeit erweiterbar ist, einen
geringen Platzbedarf hat und schnell initialisiert werden kann [Leh]. Aus Effizienzgriinden
kommt dazu keine verkettete Liste, sondern eine Hashtabelle zum Einsatz. Einem Knoten
wird iiber seine Knoten-ID die zugehoérige Kantenmenge zugewiesen. Die Netzzustandsver-
waltung erweitert die Datenstruktur um die berechneten Kantengewichte, indem fiir jede
Kante, iiber eine weitere Hashtabelle, ein Kantengewicht zugeordnet wird (Bild . Da-
durch ist die Datenstruktur fiir die Gewichtsbelegung von der Topologie entkoppelt und kann
unabhangig vom Zyklus der Netzzustandsverwaltung aktualisiert oder nach Belieben aus-
getauscht werden. Dieser Vorgang geschieht periodisch, da sich die Auslastung der Kanten
stdndig dndern kann und der Routingalgorithmus adaptiv darauf reagieren soll. Neben dem
eigentlichen Netzgraph gibt es eine weitere Hashtabelle, die die aktuelle Auslastung bezogen
auf einen Multicastbaum abspeichert. Sie wird analog zu der in Bild gezeigten Hashtabel-
le angelegt. Diese Informationen werden erst dann bendtigt, wenn fiir den betroffenen Baum
tatsdchlich eine Neuberechnung stattfindet und sind deshalb erst in der Routenberechnung
relevant. Nachdem Tp,;-Sekunden seit der letzten Aktualisierung vergangen sind, wird der
Netzstatistik-Deamon nach Bild [f.4] erneut gestartet und der geschilderte Ablauf beginnt mit
der Ermittlung der Netzstatistiken von vorne.
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4.5 Gruppenverwaltung

Die Gruppenverwaltung ist fiir das Ermitteln, Speichern und Weitergeben von Mitgliederin-
formationen der Multicastgruppen zusténdig. Abbildung zeigt eine Ubersicht iiber diese
Aufgaben. Die Gruppeninformationen werden in der Routenberechnung benétigt und kon-
nen iiber eine Schnittstelle abgefragt werden. Der IGMP-Deamon sendet periodisch IGMP-
Anfragen an die Datenschicht. Die Antworten werden gespeichert und die Routenberechnung
iiber Anderungen informiert. Im Nachfolgenden sind die einzelnen Aufgaben ausfiihrlicher
beschrieben.

Controller Gruppenverwaltung

Gruppen-
mitgliede

Speichern der
Gruppeninformationen

Routenberechnung und

Flow Modifikation Gruppenmitglieder

Schnittstelle

Anderungsmeldungen

LN
Nach Teroup
Sekunden

Gruppendnderungen

Nachrichtenfilter IGMP— IGMP-Deamon

OpenFlow Nachrichten

Packet_Out (IGMP)

Packet_Out:
General-Membership-Query /
Group-Specific-Query

Packet_In:
Membership-Reports/
Leave-Reports

ToR-Switch Match Action
Output:HostPorts
IGMP Output:Controller
Flow-Table

Membership-Report/
Leave-Report

&

Host

Abbildung 4.7: Aufgaben der Gruppenverwaltung
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4.5.1 IGMP iiber OpenFlow

Einrichtung der Flow-Tables Initial miissen die Flow-Tables in den Switches so konfiguriert
werden, dass IGMP-Nachrichten weitergeleitet werden konnen. Nach dem hier betrachteten
Systemmodell, betrifft das lediglich die ToR-Switches, da alle Hostmaschinen als Blattknoten
im Fat-Tree angeschlossen sind. In allgemeinen Netztopologien miisste man Flows in allen
vorhandenen Switches einrichten.

Bild zeigt schematisch die Flow-Table eines ToR-Switches. Das Hinzufiigen der Flows ge-
schieht initial per OpenFlow {iber eine Flow_Mod-Nachricht vom Typ A DD mit deaktivierten
Timeout-Zahlern. Ein IGMP-Paket wird liber eine Packet Out-Nachricht zu den Hosts gelei-
tet. Dafiir wird die auszufiihrende Aktion, hier das Weiterleiten an alle Host-Ports, direkt in
der Packet QOut-Nachricht spezifiziert. Abgeglichen wird dabei der Eingangsport und das Feld
nw__proto, welches das Nachfolgeprotokoll des IP-Headers bestimmt. Eine Protokollnummer
von 2 identifiziert IGMP-Pakete. Eine alternative Losung wire, einen extra Tabelleneintrag fiir
ausgehende IGMP-Pakete in den Switches einzurichten und die Aktion Packet Out-Nachricht
mit Table zu markieren. Dies hat zur Folge, dass dieses Paket standardméfig tiber die Flow-
Table des Empfangerswitches abgeglichen wird. Die erste Variante spart jedoch Tabellenplatz
und wird deshalb hier bevorzugt. Ein Eintrag in der Flow-Table leitet schlielich die IGMP-
Antworten zuriick zum Controller, indem unabhéngig vom Eingangsport nach IGMP-Paketen
gefiltert wird. Da sich im Systemmodell nur OpenFlow-Switches befinden, ist der von IGMP
spezifizierte TTL (Time to Live) von 1 nicht mehr von Bedeutung. Durch die Eintrdge in den
Flow-Tables wird eine Weiterleitung iiber das lokale Netz hinaus implizit ausgeschlossen. Bei
einer Mischung zwischen OpenFlow-Switches und Netzgeréten, die nicht OpenFlow fihig sind,
muss der TTL jedoch dementsprechend angepasst werden, um das ungewollte Konsumieren
einer IGMP Nachricht zu verhindern.

Implementierung von IGMP Die Gruppenverwaltung implementiert IGMP, um eine nach IP
standardkonforme Kommunikation mit den Hostgerédten zu erméglichen. Der IGMP-Deamon
erzeugt periodisch, in Zeitabstdnden von QI-Sekunden (Query Interval), General-Membership-
Queries. Der Standardwert fiir Q1 ist 125 Sekunden [CDKT02]. Uber Packet_ Out-Nachrichten
werden die IGMP-Anfragen an alle ToR-Switches geschickt. Dabei ist der Controller in der
Lage, beliebig IGMP-Anfragen der Version 1, 2 oder 3 zu verschicken. Normalerweise einigen
sich die Netzgerédte dann auf die neuste IGMP-Version, die alle Kommunikationsteilnehmer
(hier Controller und Host) unterstiitzen. Als Zieladresse im IP-Header wird vom Controller
,224.0.0.1“ vorgegeben. Dies entspricht einer vordefinierten Multicastadresse, die automa-
tisch alle Geréte im Netz beinhaltet. Dadurch wird sichergestellt, dass auch alle Endgeréte
die IGMP-Nachricht annehmen und verarbeiten. Die Hosts antworten dann wiederum per
General-Membership- Report mit ihren aktuellen Gruppenmitgliedschaften.

IGMP definiert neben den General-Membership-Queries auch noch gruppenspezifische An-
fragen. Damit wird bei den Hosts konkret nach einer im Header definierten Gruppe gefragt.
Das Versenden einer solchen Group-Specific-Query geschieht nicht periodisch, sondern nur
als Antwort auf einen explizit gesendeten Leave-Report. Ein Host schickt einen Leave-Report
gemaf IGMPv2/3 ohne vorangegangene Anfrage. Mit der Group-Specific-Query wird gepriift,
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ob noch weitere Hosts, die an den entsprechenden Gruppennachrichten interessiert sind, an
diesem Switch angeschlossen sind. Analog dazu, kann ein Host, der nicht auf die néchste
General-Membership-Query warten mochte, explizit per Membership-Report einer Gruppe
beitreten. Sémtliche Anderungen in der Gruppenzusammensetzung fiihren zu einer Anderung
des Gruppenspeichers.

4.5.2 Datenstruktur

Lookup- und Update-Operationen auf den gespeicherten Gruppeninformationen sollen effizi-
ent und skalierbar sein. Aus diesem Grund werden die aktuellen Gruppenzusammensetzungen
im Hauptspeicher vorgehalten. Dadurch wird ein schneller Zugriff auf die Gruppeninformatio-
nen fiir die Routenberechnung und die Gruppenverwaltung sichergestellt. Abgespeichert wird
eine Menge von ToR-Switches, die entsprechende Multicast-Nachrichten erhalten wollen. Die
letztendliche Auslieferung an die Endgeréte geschieht vom Tor-Switch aus per Broadcast.
Fiir eine noch genauere Zustellung kénnte man auch einzelne Hosts speichern. Das wiirde
die Datenstruktur jedoch unnétig vergrofiern und im betrachteten Systemmodell zu keinem
nennenswerten Vorteil fithren.

Zur Speicherung der Daten wird eine Hashtabelle verwendet. Das bringt den Vorteil einer,
im Idealfall, konstanten Zugriffszeit bei geringem Speicherplatz. Die dort gespeicherten Grup-
pendaten miissen stets an die aktuelle Situation im Netz angepasst werden. Der Routenbe-
rechnung soll so eine aktuelle Sichtweise der Gruppen und deren Mitglieder zur Verfiigung
gestellt werden. Jegliche Anderungen, signalisiert durch ankommende IGMP-Reports, fithren
zu entsprechenden Anpassungen in der Hashtabelle. Ein IGMP-Report enthélt stets eine Mul-
ticastadresse fiir die Gruppe, zu der ein Switch beitreten moéchte. Anhand des Eingangsports
im Controller ist es aulerdem moglich, die ID des Switches zu bestimmen, der den IGMP-
Report gesendet hat. Diese beiden Informationen sind fir die Gruppenverwaltung ausreichend
und werden in folgender Datenstruktur gespeichert:

< Multicastadresse, { Switchy, Switchs, ...} >

4.5
mit Switchy, := (Switchl Dy, Timeout__Zahlery,) (45)

Die Multicastadresse identifiziert eine Gruppe eindeutig und bildet den Schliissel der Hash-
tabelle. Jeder Multicastgruppe ist iiber ihren Schliissel eine Liste von Switches zugeordnet,
die die Gruppenmitglieder darstellen. Ein Switch besteht aus einer Switch-ID, die das Grup-
penmitglied eindeutig identifiziert. Auflerdem ist jedem Switch ein Zahler zugeordnet, der
den Soft-State-Mechanismus von IGMP implementiert. Der Zahler wird periodisch bis auf
0 heruntergezdhlt, woraufhin der Switch-Eintrag automatisch aus der Tabelle geléscht wird.
Das hat eine sofortige Benachrichtigung an die Routenberechnung zur Folge. Sobald keine
Eintrage mehr in einer Switch-Liste vorhanden sind, wird die gesamte Multicastgruppe, nach
einer gewissen Verzogerungszeit, automatisch aus der Hashtabelle entfernt. In Abbildung
ist die Datenstruktur mit der Zuordnung der Switches zu einer Multicastadresse zu sehen.
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Der initiale Timeout-Wert fiir T'imeout_ Z&hlery, berechnet sich nach der IGMP Spezifikation
[CDK™02] mit:

Timeout_ Zahlery := R x QI + QRI (4.6)

R ist die Robustness Variable und wird abhangig von der Zuverlassigkeit des Netzes gewéhlt.
In einem verlustreichen Netzwerk sollte R einen héheren Wert aufweisen, der Standartwert
betragt 2. QI (Query Interval) ist die Zeitperiode zwischen zwei Anfragen. QRI (Query
Response Interval) steht fiir die maximale Antwortzeit, die einem Host fiir eine General-
Membership-Query zur Verfiigung steht. Der Standardwert fiir QRI betrégt 10 Sekunden.

Multicastadressen Hashtabelle

Switches
(192.168.1.3, 254)
(192.168.1.5, 132)

Gruppenliste

239.255.137.28

239.17.33.28 i

Switches
(192.168.1.3, 32)
(192.168.1.7, 122)

L]

Switches
(192.168.1.7, 73)
(192.168.1.5, 111)

Abbildung 4.8: Zuordnung der Gruppenmitglieder {iber eine Hashtabelle

4.5.3 Verarbeitung von IGMP-Nachrichten im Controller

Periodisch werden dem IGMP-Deamon Gruppenadnderungen in Form von IGMP-Membership-
Reports gemeldet, oder ein explizites Verlassen durch Leave-Reports signalisiert. Bild zeigt
die Verarbeitung der Report-Nachrichten nach dem Empfang durch den IGMP-Deamon. Die
linke Seite (hellblauer Hintergrund) filtert die Nachrichten nach ihrem Typ. Die rechte Sei-
te zeigt die Verarbeitungsschritte, die fiir die einzelnen Typen durchgefithrt werden (roter
Hintergrund: Leave-Report, lila Hintergrund: Membership-Report). Die dazu benétigten In-
formationen sind die Multicastadresse und der IGMP-Nachrichtentyp aus dem Nachrichten-
header, sowie die Switch-ID des Senders.
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IGMP-Nachrichten

Extrahiere aus Headerfelder:
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IP-Adresse
in Gruppe ?

Ja.

Ignoriere Neue Gruppe Neuer Switch
Senderliste Nein Nein
Nein . v v y
Nein Neuer Eintrag IP-Adresse dem Eintrag

Timer fiir Eintrag
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Noi Gruppe nicht ~ Switch nicht
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2 <€

Nachricht ignorieren

Abbildung 4.9: Verarbeitung ankommender IGMP-Nachrichten in der Gruppenverwaltung

Die Membership-Reports der IGMP-Versionen unterscheiden sich im IGMP-Type-Header. Die
Reports der Version 1 und 2 werden gemeinsam verarbeitet, da der Unterschied zwischen
diesen lediglich aus verschiedenen Typnummern besteht. Aus Flexibilitdtsgriinden wird auch
IGMPv3 unterstiitzt. Jedoch ignoriert die Gruppenverwaltung aufgrund der Einfachheit sol-
che IGMPv3-Reports, die bestimmte Sendergruppen ausschliefen wollen. Das Verarbeiten
solcher Nachrichten wiirde erheblichen Zusatzaufwand bedeuten, da diese Informationen fiir
jeden Host verschieden sein kénnen. Der hier beschriebene Controller verwaltet allerdings
lediglich ToR-Switches und keine einzelnen Hosts. Einzig der Fall, wenn alle Sender einer
Gruppe ausgeschlossen sind, wird einzeln behandelt. Dies wiirde ndmlich einem Leave-Report
gleichkommen. In allen anderen Fillen wird der Switch analog zu IGMPv1- und IGMPv2-
Reports, der im Header spezifizierten Multicastgruppe, hinzugefiigt. Dennoch hat die Ver-
wendung von IGMPv3 den Vorteil, dass die gesamte Netzlast reduziert wird. Die Gruppen-
mitgliedschaften eines Hosts werden, im Gegensatz zu den vorherigen Versionen, bei Version
3 gemeinsam in einer einzigen Nachricht versendet. Falls trotzdem eine Filterung nach einzel-
nen Senderquellen gewiinscht ist, muss dies der Host selbst iibernehmen. Existiert bei Ankuft
eines Reports noch kein Eintrag zu der im Reportheader empfangenen Multicastadresse, wird
zuerst eine neue Gruppe erstellt. Dies geschieht, indem die Multicastadresse in die Hashta-
belle hinzugefiigt wird. Danach wird der Switch mit seiner ID in die Liste der neu erstellten
Gruppe hinzugefiigt. Falls eine entsprechende Gruppe bereits existiert, der Switch aber noch
kein Mitglied ist, wird er in die vorhandene Gruppenliste ergdnzt. Fiir den Fall, dass der
Host bereits in der Mitgliederliste enthalten ist, wird der IGMP-Zahler zuriickgesetzt. Das
Verhindert ein Timeout, da der Switch weiterhin Interesse an der Multicastgruppe bekundet
hat.
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Die andere Art von Nachricht, die der IGMP-Deamon empfangt, sind Leave-Reports. Sollte
die darin spezifizierte Gruppe nicht existieren oder die Switch-Adresse in der entsprechen-
den Gruppenliste gar nicht vorhanden sein, wird die Nachricht einfach ignoriert. Anderenfalls
muss vor dem Loschen sichergestellt werden, dass kein anderer Host die Gruppennachrich-
ten weiterhin erhalten méchte. Deswegen wird per Specific-Membership-Query nach weiteren
Interessenten gefragt. Erst im Anschluss darf der Eintrag geloscht werden. Zum Schluss miis-
sen jegliche Gruppenidnderungen der Routenberechnung gemeldet werden, damit die neuen
Multicastbdume berechnet und in den Switches eingerichtet werden kénnen.

4.6 Routenverwaltung

Bild gibt einen Uberblick iiber die Routenverwaltung und dessen Interaktion mit der
Routenberechnung. Die Routenverwaltung speichert alle Multicastbaume, die aktuell in Form
von Flow-Table Eintrédgen auf der Datenebene implementiert sind. Somit stellt sie die Da-
tenbasis fiir die eingerichteten Flows auf Datenschicht zur Verfiigung. Dazu existiert eine
Datenstruktur im Hauptspeicher, die nach jeder bestiitigten Anderung in der Flow-Table
entsprechend aktualisiert wird. Uber eine Schnittstelle erfolgt sowohl der Zugriff sowie die
Aktualisierung der Daten durch die Routenberechnung. Abhéngig von der Arbeitsweise des
Routingalgorithmus, kénnen die Flow-Informationen z. B. fiir die konsistente Aktualisierung
in der Datenschicht oder fiir eine inkrementelle Baumaktualisierung genutzt werden.

Routenberechnung und
Flow Modifikation
<—’U<7F[ow-lnformationen {
Multicast-
;él‘l::es Status- und Fehlermeldungen
Schnittstelle
Nachrichtenfilter

OpenFlow-Nachrichten

Controller

Routenverwaltung

ADD/ DELETE/ MOD-
FLOW

Abbildung 4.10: Ubersicht iiber die Routenverwaltung und die Interaktion mit der Routen-
berechnung

Weiterhin werden diese Daten bei der Flow-Einrichtung benétigt. Bevor eine neue Route
auf Datenschicht installiert werden kann, muss der alte Baum durch die Flow-Modifikation
per OpenFlow-Nachrichten vom Typ Delete geloscht werden. Die Informationen, wer die
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Empfiangerswitches dieser Nachrichten sein missen, stammen aus der Routenverwaltung.
Die Teilstrukturen des neuen Baumes, die sich nicht unterscheiden, werden nicht gel6scht
und konnen direkt ibernommen werden. Es sei angemerkt, dass OpenFlow einen Soft-State-
Mechanismus fiir Flow-Table-Eintrige unterstiitzt, der veraltete Eintrage automatisch 16schen
wiirde. Aufgrund der proaktiven Berechnung der Multicastbdume kann, davon hier aber nicht
Gebrauch gemacht werden und es muss auf ein explizites Loschen zuriickgegriffen werden
(siehe Abschnitt . Arbeitet ein Routingalgorithmus inkrementell, kann er die Daten der
Routenverwaltung als Ausgangsdaten fiir die Berechnung nutzen. Auf Basis des alten Bau-
mes werden neue Kanten dann demenstprechend durch die Flow-Modifikation entfernt oder
hinzugefiigt.

4.6.1 Datenstruktur

Sofern eine neue Flow-Aktualisierung von der Datenschicht bestétigt wurde, bzw. kein Fehler
gemeldet wurde, miissen die Anderungen an die Routenverwaltung zuriickgemeldet werden.
Dadurch wird sichergestellt, dass die Datenbasis stets eine konsistente Sicht aufweist. Diese
Datenbasis besteht nach Definition [£.7] aus einer Hashtabelle, die sowohl Multicastbiaume als
auch Unicast-Routen speichern kann. Eine Hashtabelle ermd&glicht dabei eine besonders effi-
ziente Zugriffsmoglichkeit. Multicastbdume werden in Form von Adjazenzlisten vorgehalten.
Unterschiede zwischen zwei Badumen konnen so durch einen einfachen Kantenvergleich er-
kannt werden. Fiir eine Unicast-Route ist das Speichern als Knotenliste ohne Kantenverweise
ausreichend.

< (SenderID + GruppenlID), Multicastbaum/Route > (4.7)

Der Schliissel der Hashtabelle besteht aus einer Konkatenation von Sender-ID und Gruppen-
ID. Es sei angemerkt, dass im Systemmodell aus Abschnitt die Senderrolle nur durch einen
ToR-Switch eingenommen werden kann. Als Sender-ID wird die Switch-ID oder die IP-Adresse
des Controller-Netzes verwendet, wiahrend die Gruppen-ID aus der Multicastadresse besteht.
Einem jeden (Sender-ID, Gruppen-ID)-Paar wird {iber die Liste ein Multicastbaum zugeord-
net. Damit ist die Datenstruktur fiir das Speichern von quellenbasierten Baumen geeignet.
Wahlweise kénnen auch Shared-Trees gespeichert werden, indem der gemeinsame Baum unter
dem Schliissel der Gruppen-ID angelegt wird. Jeder Eintrag in der Hashliste verweist dann
lediglich auf diesen Baum, indem die zugehorige Unicast-Route dort gespeichert wird. Sie
dient dazu, den Sender-Switch mit dem Shared-Tree zu verbinden. Zur einfacheren Unter-
scheidung existiert in jedem Eintrag ein Flag, das entweder eine Unicast-Route oder einen
quellenbasierten Baum anzeigt. Diese Speichermethode ermdoglicht ein beliebiges Umschal-
ten zwischen den beiden Baumarten, ohne Einfluss auf den Aufbau der Datenstruktur. Das
bedeutet, es wird sichergestellt, dass zu einem (Sender-ID, Gruppen-ID)-Paar entweder eine
Unicast-Route, oder ein quellenbasierter Baum existiert. Zwischen verschiedenen (Sender-1D,
Gruppen-ID)-Paaren, insbesondere auch innerhalb derselben Gruppe, ist aber durchaus eine
Mischung beider Methoden méglich.
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Bild zeigt dazu ein Beispiel. Der linke Hashtabellen- Ausschnitt zeigt die Zuordnung von
zwei Senderquellen zu einem Shared-Tree der Multicastgruppe ,,239.255.137.28 Die Eintrédge
der Hashtabelle verweisen auf den Shared-Tree und auf die Knotenliste der Unicast-Route. Im
rechten Ausschnitt wird drei verschiedenen Sendern der gleichen Gruppe jeweils ein eigener
Multicastbaum zugeordnet. Die Sender-1D ist die IP-Adresse.

Hashtabelle Schliissel Hashtabelle
Auschnitt 1 Auschnitt 2

[196.152.15 224.0.14 :an Multicastbaum
|
|
|
|

| 196.152.1.13 224.0.1.4

| 196.152.1.2 224.0.1.4

Multicastbaum

LA
E E 239.255.137.28

<I 196.152.1.13 239.255.137.28

‘—I 196.152.1.7 239.255.137.28

(O] -]

(o[ m-m-m|

Abbildung 4.11: Datenstruktur der Routenverwaltung

4.7 Routenberechnung und Flow-Modifikation

Die Routenberechnung ist eine Kernaufgabe des Multicastdienstes. Die Daten aus Netzzu-
standsverwaltung, Gruppenverwaltung und Routenverwaltung werden fiir die Berechnung der
Multicastbdume verwendet. Das Resultat ist eine Menge von Flow-Aktualisierungen, die in
Form von OpenFlow Modification-Nachrichten an die Switches gesendet werden. Die Ein-
richtung geschieht tiber die Group-Table mit zugehdrigen Flow-Table-Eintragen, die auf eine
Gruppe verweisen. Riickmeldungen durch Status- und Fehlermeldungen geben Auskunft dar-
iiber, ob die Modifikationen erfolgreich waren.

In Abbildung ist eine Ubersicht der Aufgaben und der Datenfliisse in der Routenbe-
rechnung zu sehen. In der Routingkontrolle laufen alle ben6tigen Eingangsdaten zusammen.
Daraufhin erfolgen die Auswahl des Routingalgorithmus und die Weitergabe des Ergebnisses
an die Flow-Modifikation. Die Flow-Modifikation ist schliellich fiir die Implementierung der
Multicastbdume auf der Datenschicht zusténdig.
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Abbildung 4.12: Ubersicht zur Routenberechnung und Flow-Modifikation

4.7.1 Proaktives vs. reaktives Routing

Eine grundsétzliche Designentscheidung ist die Wahl zwischen proaktiver und reaktiver Rou-
tenberechnung.

Beim reaktiven Routing werden die Multicastbdume erst dann bestimmt, wenn tatsachlich ei-
ne Ubertragung vom jeweiligen Sender stattfindet. Das hat zur Folge, dass Datenpakete auf die
Einrichtung der Routen warten miissen, was im Vergleich zur einer direkten Weiterleitung eine
erhebliche Verzogerung bedeutet. Angenommen ein Host startet erstmalig eine Ubertragung
an eine Multicastgruppe. Im Zuge dessen beginnt er einen Daten-Burst mit voller Bandbreite
an seinen ToR-Switch zu senden. Betrachtet man heutiges 10-Gigabit Ethernet im Vergleich
zu den verfiigbaren Zwischenspeicherkapazitédten in den Netzwerkgeriten, kann ein Sender in
der Zeit, die fiir die Aktualisierung der Flow-Table benétigt wird, die Eingangswarteschlange
des ToR-Switches tiberflutet haben. Das hat dann neben erhéhten Verzogerungszeiten auch
Paketverluste zur Folge und stellt ein grundséatzliches Problem dar.

48



Deshalb fallt die Wahl auf eine proaktive Routenberechnung. Diese Entscheidung ist unab-
héngig vom gewéhlten Routingalgorithmus und wird von der Routingkontrolle umgesetzt. Die
Multicastbdume werden fiir jede vorhandene Gruppe und fiir jeden Sender initial auf Basis
der aktuell vorliegenden Gruppeninformationen bestimmt. Tritt danach ein weiteres Ereignis,
wie eine Gruppenédnderung oder die Anfrage fiir eine neue Multicastgruppe auf, werden alle
zur Gruppe gehorigen Baume erneut vorberechnet und entsprechende Routen direkt in den
Switches eingerichtet. Das erlaubt im Idealfall eine Weiterleitung in Line-Rate und stellt die
Hauptmotivation fiir die Wahl dieses Ansatzs dar. Die Nachteile sind ein erhéhter Rechen-
und Flow-Modifikationsaufwand, der direkt in Relation zu der Menge der Sender, Gruppen-
groBe und der Anzahl der Anderungen steht. Bezogen auf das Systemmodell wird allerdings
von einer vorher bekannten, statischen Anzahl von Hosts sowie von einem eher seltenen Auf-
treten von Gruppenidnderungen ausgegangen. Die tatséchlich gemessenen Auswirkungen sind,
abhéngig von der Gruppendynamik, in der Evaluierung (Kapitel @ zu sehen.

4.7.2 Routingkontrolle

Die Routingkontrolle ist ein Prozess, der den Ablauf in der Routenberechnung koordiniert und
zusammen mit einem Routingalgorithmus die Kernlogik des Multicastdienstes implementiert.
Abhéngig von der aktuellen Netzsituation wird einer der drei vorhandenen Routingalgorith-
men gewéhlt und auf den Eingangsdaten ausgefiihrt. Dabei kann sich die Routingkontrolle
in zwei verschiedenen Modi befinden: Standard- oder Uberlaufmodus. Sie signalisieren, ob
geniigend Flow-Table-Eintrige zur Verfiigung stehen, um optimale Bdume zu berechnen. Ste-
hen geniigend freie Eintrdge zur Verfiigung, ist der Standardmodus aktiv und es wird eine
monolithische Steinerheuristik gewéhlt, die quellenbasierte Multicastbdume berechnet. Fiir
Test- und Evaluationszwecke, ist aulerdem ein inkrementeller Algorithmus implementiert,
auf den beliebig wiahrend des laufenden Betriebs umgeschaltet werden kann. Befindet sich die
Routingkontrolle im Uberlaufmodus, wird auf Shared-Trees gewechselt, um Tabelleneintrige
zu sparen und einem Uberlauf der Flow-Table vorzubeugen. Ein Umschalten zwischen den
Modi kann jederzeit durch das Auftreten einer Uberlaufwarnung geschehen und hat keinen
Einfluss auf zuvor eingerichtete Routen. Uberlaufwarnungen werden direkt von der Netz-
zustandsverwaltung gemeldet. Sie iiberwacht die Auslastung der Flow-Tables und setzt den
Modus, abhiingig von bestimmten Schwellwerten auf ,,Uberlauf“, oder zuriick auf ,,Standard*.
Quellenbasierte- und geteilte Baume (Shared-Trees) konnen in beliebiger Mischung koexistie-
ren, sofern fiir jeden Sender nur eine Baumart zur gleichen Zeit genutzt wird. Findet sich
sowohl ein Shared-Tree als auch ein quellenbasierter Baum auf Datenebene, wird letzterer
bevorzugt verwendet.

Abhéngig von den Eingangsmeldungen und dem Modus der Routingkontrolle gibt es folgende
Fille, die zu einem Anstoflen der jeweiligen Routingalgorithmen fiihren:

Gruppenanderung Tritt eine Gruppenidnderung in Gruppe K auf, meldet die Gruppenver-
waltung dies an die Routingkontrolle und verarbeitet die Anderung nach Abbildung
Wenn eine Gruppe aus der Gruppenverwaltung geléscht wurde, wird die Flow-Modifikation
angestofien, um alle Biaume dieser Gruppe zu entfernen. Ansonsten bestimmt der Uberlauf-
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modus die Wahl zwischen quellbasiertem Baum und Shared-Tree. Bei quellbasierten Bau-
men miissen alle n Senderhosts beachtet werden und so auch n Bdume berechnet werden.
Bei einem Shared-Tree miissen zusétzlich zum eigentlichen Baum, Unicast-Routen fiir jeden
ToR-Switch errechnet werden. Sie verbinden den jeweiligen Sender mit dem Shared-Tree.
Nach Beendigung einer Berechnung wird das Ergebnis an die Flow-Modifikation gegeben, die
zur Einrichtung der Routen dann die entsprechenden OpenFlow-Nachrichten an die beteiligten
Switches schickt. Ein Sonderfall tritt bei der ersten Gruppenédnderung nach dem Umschalten
vom Uberlaufmodus in den Standardmodus auf. Der Shared-Tree muss hier explizit geléscht
werden, da dieser extra unter der Multicastadresse als Hash-Schliissel abgespeichert wurde.
Diese Loschoperation wird in diesem Fall direkt von der Routingkontrolle initiiert und an die
Flow-Modifikation gemeldet.

Auswahllogik Baumberechnung Routeneinrichtung
s Berechne
Gruppendnderun . . = i
- .ppG K —»< Kgeloscht? D>-Nein U’\::?I:Zf? Ja——————>»| Shared-Tree ()und —> Ge:z:lr_g“tﬂet‘;z:;:;?oﬁan
in Gruppe ) Unicast-Routen
l i:= i+l
Nein B hne fiir Sender s[i] J
erechne tur sender s|ij:
Ja eitere Hosts im N Gebe Ergebnis und K an
L Netz vorhanden Ja=> Quellenk::[sillelr(‘;er-Baum Flow-Modifikation

Nein

Gebe Léschauftrag
Shared-Tree (K)
an Flow-Modifikation

Alter
Shared-Tree
vorhanden ?

Q
A4

Gebe Loschauftrag(K) an
Flow-Modifikation

Abbildung 4.13: Verarbeitung von Gruppenénderungen in der Routingkontrolle

Switch- und Leitungsausfélle Das folgende Verhalten ist in Abbildung [4.14] dargestellt. Das
Ziel ist, moglichst schnell auf Ausfille zu reagieren zu konnen, um den Paketverlust auf einem
Minimum zu halten. Ein Ausfall wird durch die Netzzustandsverwaltung gemeldet, indem die
ausgefallenen Switches und Leitungen als Mengen (S,E) an die Routingkontrolle gemeldet
werden. Die Menge E enthélt nur ausgefallene Leitungen, die nicht zu einem Switch aus S ge-
hoéren. Daraufhin wird mit Hilfe der Routenverwaltung bestimmt, welche Multicastbdume und
Unicast-Routen vom Ausfall betroffen sind. Dazu miissen alle Adjazenzlisten gepriift werden,
ob einer der ausgefallenen Knoten oder Kanten darin enthalten ist. Die Schnittstelle der Rou-
tenverwaltung stellt fiir diesen Zweck eine entsprechende Operation zur Verfiigung. Sie gibt
alle betroffenen Multicastbdume in Form ihrer eindeutigen Schliissel (Sender-ID, Gruppen-
ID) bzw. (Gruppen-ID) zuriick. Mit der Gruppen-ID werden die zugehorigen Mitglieder von
der Gruppenverwaltung abgefragt. Abhéngig vom aktuellen Modus st6f8t die Routingkontrolle
einen Routingalgorithmus an, um fiir die vom Ausfall betroffene Menge an Bdumen eine Alter-
nativroute zu berechnen. Die ausgefallenen Kanten werden zuvor im Netzgraph mit unendlich
markiert, um nicht auf den ndchsten Aktualisierungszyklus der Netzstrukturverwaltung war-
ten zu miissen. Nach der Neuberechnung werden die Anderungen iiber die Flow-Modifikation
zur Datenebene gemeldet.
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Abbildung 4.14: Verarbeitung von Switch- und Leitungsausfillen in der Routingkontrolle

4.7.3 Routing-Algorithmen

Die Aufgabe eines Routingalgorithmus ist es, auf dem Netzgraph G einen Multicastbaum
Sg fir eine Gruppe K zu berechnen. Die optimale Losung dafiir ist durch das Steinerbaum-
problem nach Abschnitt definiert. Eine Instanz des Problems ist mit (G(V, E,w), K)
gegeben, mit dem Ziel, die Kosten des Multicastbaumes Sy beziiglich w zu minimieren.
Vor jeder Berechnung wird der kantengewichtete Graph der Netzzustandsverwaltung mit den
aktuellen Gewichten w(, g des betroffenen Multicastbaumes verrechnet, um die eigene Band-
breite vom Gesamtgewicht abzuziehen. Somit steht fiir jeden Baum ein Graph G(V, E, w) mit
individuellen Kantengewichten w zur Verfiigung.

In dieser Arbeit werden drei Algorithmen implementiert, zwischen diesen im laufenden Be-
trieb beliebig umgeschaltet werden kann. Die KMB-Steinerheuristik [KMBS&1], ein Algorith-
mus fiir Shared-Trees und ein inkrementeller Greedy-Algorithmus (iGA). KMB ist eine N&-
herung fiir den minimalen Steinerbaum mit polynomiellen Zeitaufwand und findet hier fiir
die Berechnung der quellenbasierten Bdume Anwendung. Im Vergleich ermittelt KMB die
hier kostenoptimalste Losung. Fiir die Berechnung der Shared-Trees wird ein Rendezvous-
Knoten verwendet. Damit muss nur ein Multicastbaum pro Gruppe berechnet werden. Der
Baum ist jedoch lediglich fiir den Rendezvous-Knoten optimiert und nicht fiir jede Quel-
le. Auflerdem sind Unicast-Routen nétig, die die Sender tiber eine effiziente Route mit dem
Shared-Tree verbinden. Wahrend die ersten beiden Algorithmen monolithisch arbeiten, bietet
der Greedy-Algorithmus (iGA) eine Vergleichsmoglichkeit zu einem quellbasierten inkremen-
tellen Losungsansatz. Dieser Ansatz spart eine komplexe Neueinrichtung sdmtlicher Routen
nach aufgetretener Gruppenidnderung. Jedoch divergiert der Baum nach einer gewissen An-
zahl von Anderungen immer mehr von der optimalen Lésung.
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Alle drei vorgestellten Algorithmen haben eine polynomielle Laufzeit. Abhéngig von der Op-
timalitdt des Algorithmus werden die Kosten entsprechend der in eingefiihrten Metrik
minimiert und dadurch ein Flow-Balancing erreicht. Folgende Eingangsdaten stehen den Rou-
tingalgorithmen dafiir zur Verfiigung;:

e Reprasentation des aktuellen Netzes als kantengewichteter Graph G(V, E,w(e)), inklu-
sive aller ToR-Switches s € V' als mogliche Senderknoten und die zugehorigen Gewichte
w(s, i) (e) fiir alle bereits vorhanden Multicastbdume.

e Gruppenmitglieder aus der Gruppenverwaltung als Terminalmenge 7. Die
Gesamtmenge beziiglich des Senderknotens s wird mit K := T' U {s} bezeichnet. Im
Fall eines Shared-Tree, ist s der Rendezvous-Knoten.

e Flow-Informationen aus der Routenverwaltung, die die Menge der im Moment aktuellen
Multicastbdume darstellen.

KMB Steinerheuristik Der KMB-Algorithmus von Kou et al. [KMB8]1] ist eine Steinerheu-
ristik und basiert auf minimalen Spannbdumen. Sie ist in Algorithmus [I| dargestellt. KMB
wird hier im Standardmodus der Routenberechnung verwendet, um minimale quellenbasierte
Multicastbdume zu approximieren. Die optimale Losung wird dabei 2-approximiert, d.h. die
Kosten, hier Linge und Auslastung, des berechneten Steinerbaumes sind maximal doppelt
so hoch wie der minimale Steinerbaum. Die Zeitkomplexitit betrdgt im schlechtesten Fall
O(IK|[V ).

Algorithmus 1: KMB: 2-Approximationsalgorithmus nach [KMB8]1]
Eingabe : (G(V,E,w), K)
Ausgabe : Steinerbaum Sk von G

G*(K,Ep,wp) := SUB(G(V, E,w));

S* = MST(G");

Gg+ := RSUB(S*);

S[Jg = MST(Gg);

while S} hat Blattknoten v ¢ K do
‘ entferne v aus S’;g

end

return S?{

Zuerst wird der Distanzgraph G* iiber die SUB Funktion berechnet. Dabei werden die Kanten
zwischen allen Knotenpaaren aus K durch ihren kiirzesten Pfad subsituiert. Die Kanten Ep
stellen aggregierte Kanten der kiirzesten Pfade aus G mit summierten Gewichtswerten wp dar.
Im Distanzgraph wird nun ein minimaler Spannbaum berechnet (MST-Funktion), der dann
anschliefend wieder in einen Teilgraph mit den Ursprungskanten aufgelést wird (RSUB). Eine
Kante in S* entspricht einem kiirzesten Pfad in GG, d.h. nach der Riicksubstitution, ist der neu
entstandene Teilgraph Gg- im Allgemeinen kein Baum mehr. Auf diesem Teilgraph wird nun
erneut ein minimaler Spannbaum berechnet. Anschliefend werden iiberfliissige Blattknoten
entfernt, so dass nur noch die Blatter aus K vorhanden sind (PRUNE).
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Abbildung 4.15: Beispiel fiir den KMB-Algorithmus aus [KMBS8I]

Abbildung zeigt in einem kantengewichteten Beispielgraphen die einzelnen Schritte aus
Algorithmus [I} Dabei besteht die Knotenmenge aus neun durchnummerierten Knoten und
es gilt K = {1,2,3,4}. Im Bild sind die Zielknoten gelb und alle anderen blau dargestellt.
Eine rote Umrandung steht fiir iiberfliissige Baumzweige, die im letzten Schritt gestutzt wer-
den kénnen. Fiir die Berechnung der kiirzesten Pfade in KMB kommt Dijkstra [Dij59] zum
Einsatz. Um den minimalen Spannbaum zu finden, wird der Algorithmus von Tarjan [Tar06]
verwendet. Dabei handelt es sich um eine effizientere Implementierung von Edmond’s Al-
gorithmus [Edm67] fiir optimale Kantenverzweigungen (Branching) in gerichteten Graphen.
Technisch gesehen handelt es sich bei dem betrachteten Systemmodell um einen gerichteten
Graphen, da der Vollduplex-Betrieb zwischen zwei Switches auch zwei unabhéngige gerichte-
te Kanten im Graphen impliziert, die insbesondere auch verschiedene Kantengewichte haben.
Das minimale Spannbaumproblem wird im gerichteten Fall durch einen gewurzelten Baum
(rooted Tree) gelost. Die Wurzel ist in diesem Fall der Senderknoten. Tarjan’s Algorithmus
hat eine Zeitkomplexitit von O(|E|log|V|) fiir diinn besiedelte Graphen (sonst O(|V|?)) und
erreicht damit die gleiche Performance wie der bekannte Algorithmus von Prim [Pri57] fir
ungerichtete Graphen. Fiir eine verbessertes Zeitverhalten kann die Laufzeit von Dijkstra’s
Algorithmus durch die Implementierung mit Fibonacci-Heaps, von urspriinglich O(|V |> +|E|)
auf O(|E| + |V|log|V|), noch weiter reduziert werden [F'T87].

Der KMB-Algorithmus gibt folgende Garantie zwischen der Gesamtpfadlinge von Sk und
dem minimalen Steinerbaum Sp;.

Skl < 2(1 = ) Soptl, mit [S| =3 w(e) (4.8)

eaus S
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In der Praxis kommt der schlechteste Fall selten vor, so dass im Schnitt das Ergebnis nur
um 5% vom Optimum abweicht [DL93]. Es gibt derzeit keinen Polynomialzeit-Algorithmus,
der das Steinerbaumproblem besser als 2-Approximiert (im worst case) [Kosl0]. Da die Be-
rechnung fiir jeden Sender pro Multicastgruppe passieren muss, ist der Gesamtaufwand im
betrachteten Systemmodell fiir eine Neuberechnung nach oben durch k2/2 x O(|K||V'|?) be-
grenzt. Dabei ist k der Fat-Tree Parameter, der die Anzahl der Pods im Systemmodell angibt.
Pro Pod gibt es k/2 Tor-Switches, die jeweils eine Senderrolle einnehmen koénnen.

Shared-Tree Algorithmus mit Rendezvous-Knoten Der Shared-Tree Algorithmus wird an-
gewandt, wenn die Flow- bzw. Group-Tables zu viele Eintrige haben und ein Uberlauf droht.
Im Vergleich zu quellenbasierten Bédumen, ist ein Shared-Tree fiir die Weiterleitung aller
Pakete sdmtlicher Sender (ToR-Switches) fiir eine Multicastgruppe zustdndig. Nachdem die
Routingkontrolle in den Uberlaufmodus wechselt, findet automatisch ein Wechsel des Rou-
tingalgorithmus statt. Alle danach auftretenden Gruppen-Ereignisse werden anschlieflend als
Shared-Tree behandelt.

Match Action

PR Src=1; Dst=224.0.1.4 | Group: 224.0.1.4
@
Flow-Table 7

Rendezvous-
Knoten

Group Identifier | Actions

224.0.1.4 Modify Src; Output -> 6, 8

Match Action

Src=1; Dst=224.0.1.4 Output ->7

Group-Table 7

Flow-Table 5

Empfanger Empfanger

Sender

Match Action

Src=1; Dst=224.0.1.4 Output ->5

Flow-Table 1

Abbildung 4.16: Shared-Tree mit zugehorigen Flow-Tables

Tritt nach dem Wechsel in den Uberlaufmodus eine neue Gruppe oder eine Gruppeninderung
auf, kommt zuerst KMB zum Einsatz, um einen neuen Baum zu berechnen. Als Senderquelle
wird ein fester Rendezvous-Knoten vorgegeben, der vorab ermittelt wurde. Nach der erfolg-
reichen Berechnung des Shared-Trees miissen die Routen ermittelt werden, die die Sender mit
dem Baum verbinden. Von jedem ToR-Switch wird dazu proaktiv eine kiirzeste Unicast-Route
zum Rendezvous-Knoten mit Dijkstra’s-Algorithmus [Dij59] errechnet.

Die errechneten Unicast-Routen bilden auf der Datenschicht die Wege, die alle Multicastpake-
te einer Gruppe an den Rendezvous-Knoten weiterleiten. Erreichen die Pakete den Rendezvous-
Knoten, startet die eigentliche Auslieferung an die Empfénger. Errechnete Unicast-Routen
werden zusammen mit dem Shared-Tree an die Flow-Modifikation gegeben und auf Da-
tenschicht eingerichtet. In Bild ist ein Ausschnitt eines Shared-Trees mit zugehorigen
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Flow-Tables gezeigt. Der Sender schickt seine Pakete entlang der blauen Unicast-Route in
Richtung Shared-Tree, bis er auf den Rendezvous-Knoten trifft. Im Bild entspricht das Kno-
ten 7, der Multicastpakete von Sender 1 mit der Zieladresse ,,224.0.1.4“ empfangt. Von dort
aus startet die Auslieferung entlang des Baumes (in rot). Dabei ist der Baum {iber die Group-
Table definiert, auf die ein Flow-Table-Eintrag verweist. Der Senderknoten ist dunkelblau
dargestellt, die Gruppenmitglieder in rot.

Eine wichtige Fragestellung betrifft die Auswahl des Rendezvous-Knoten. Dies hat direkten
Einfluss auf die Verzogerungszeit und Bandbreitenausnutzung im Netz. Eine schlechte Kno-
tenwahl kann unnétig lange und ungiinstige Pfade zur Folge haben. Eine Moglichkeit ist die
zuféllige Platzierung. Dadurch wird zwar ab einer gewissen Anzahl von Mullticastgruppen ei-
ne Gleichverteilung erreicht, die einzelnen Routen sind jedoch nicht optimal gewéhlt. Fiir eine
Optimierung ist das offensichtliche Ziel, den Rendezvous-Knoten in der Mitte des Netzwerks
zu platzieren, so dass die maximalen Kosten fiir jeden potentiellen Sender und Empfinger
minimiert werden.

Fiir jede Multicastgruppe wird ein eigener Rendezvous-Knoten berechnet. Der Switch, zu
dem alle Empfingerknoten den kleinsten Abstand beziiglich der in Abschnitt vorgestellten
Metrik haben, wird als die Mitte dieser Knoten bezeichnet. Um die kiirzesten Pfade zwischen
allen Switches und der Empfangergruppe zu bestimmen, kommt eine n-malige Ausfithrung
des Dijkstra-Algorithmus zum Einsatz. Danach wird fiir jeden Knoten der gréfite Abstand zu
einem Gruppenmitglied verglichen. s muss nur noch der Knoten im Netz ausgewéhlt werden,
bei dem dieser maximale Abstand fiir alle Empfénger am kleinsten ist. Sollte dies auf mehrere
Kandidaten zutreffen, wird der nédchstbeste als die neue Graphmitte fiir die Multicastgruppe
ausgewahlt. Der Zeitaufwand wird durch das Berechnen der kiirzesten Pfade bestimmt und
betrigt O(n?), wobei n die Anzahl der Switches im Netz darstellt. Senderknoten werden bei
der Berechnung des Rendezvous-Knoten nicht extra behandelt, da jeder ToR-Switch zu jedem
Zeitpunkt eine Senderrolle fiir eine beliebige Gruppe annehmen kann.

Inkrementeller Greedy-Algorithmus (iGA) Im dynamischen Fall wird das Steinerbaumpro-
blem aus Kapitel um ein R := {(v;,0;)|v; € V,0; € {add,leave}} erweitert. R besteht
aus einer Menge von Anderungsanfragen, bei denen Knoten der Terminalgruppe beitreten
oder sie verlassen konnen. Das Ziel ist nach jeder Anderung (vi,0;) einen Steinerbaum S;
zu berechnen, der die verinderte Terminalmenge K; umspannt. Die Anderungsanfragen aus
der Menge R treten iterativ und plétzlich auf (online), und sind einem (Online-)Algorithmus,
der dieses Problem l6sen soll, zuvor nicht bekannt. Im Gegensatz zu KMB oder Shared-Tree,
arbeitet ein solcher Losungsansatz stets auf den aktuellen Bauminformationen aus der Rou-
tenverwaltung.

Das kommt einem Algorithmus gleich, der inkrementell arbeitet. Das heif3t der aktuell berech-
nete Baum wird bei einer Anderung aktualisiert, anstatt ihn neu zu berechnen. Die Grund-
voraussetzung ist, dass bereits ein durch KMB berechneter initialer Multicastbaum fiir jede
Quelle existiert und die Routenkontrolle sich im Standard-Modus befindet. Findet sich iiber
die Routenverwaltung kein quellenbasierter Multicastbaum, wird ein solcher erst errechnet.
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Algorithmus [2| beschreibt die iterative Berechnungsvorschrift zur Anpassung eines bestehen-
den quellenbasierten Baumes bei aufgetretener Gruppenénderung.

Algorithmus 2: Online Greedy-Algorithmus
Eingabe : (G(V, E, w), SZ(Kl), (UZ', Oi)
Ausgabe : Steinerbaum S;;1(K;+1) der K; 11 umspannt
if 0; = add then
| Verbinde v; mit .S; auf kiirzestem Pfad

else
| Markiere v; als geldscht. Stutze ausgehend von v; alle unnétigen Kanten in S;41

end

Gruppenédnderungen (v;, 0;) werden durch die Gruppenverwaltung nacheinander einzeln ge-
meldet, der zugehorige Baum S(;_1) findet sich in der Routenverwaltung. Der Online-Greedy-
Algorithmus (Algorithmus [2)) verbindet bei einer Anderung (v;, add) den hinzugekommenen
Knoten v; mit der Terminalmenge K; 1 auf dem kiirzesten Pfad zu S;_1. D.h. mit dem Kno-
ten aus S(;_1), der am néchsten zu v; liegt. Beim Verlassen eines Knotens wird der Zweig
einfach gestutzt (Pruning).

Der Vorteil dieses Algorithmus ist, dass er wenige Anderungen auf Datenschicht zur
Folge hat. Da dies ein wesentlicher Zeitfaktor ist, wurde Algorithmus [2] in dieser Diplom-
arbeit implementiert, um den tatséchlichen Zusatzaufwand mit der Optimalitit des Routings
vergleichen zu konnen. Imaze und Waxmann [IW9I] haben gezeigt, dass das Competitive
Ratio eines solchen Algorithmus bei loga N liegt. Das Competitive Ratio ist das Kostenmaxi-
mum eines Online-Algorithmus aller Anderungsanfragen zum Verhéltnis zu den Kosten fiir
einen optimalen offline Baum, bei dem die Anderungen schon im Voraus bekannt sind.

4.7.4 Flow-Modifikation

Die Flow-Modifikation ist fiir die Implementierung der Routingergebnisse auf Datenebene
und fiir die Aktualisierung der Routenverwaltung zustindig. Ziel ist es, moglichst wenig An-
derungen auf Datenebene durchfithren zu miissen. Das ist insbesondere fiir den Fall relevant,
wenn nach einer Neuberechnung alte, aber immer noch giiltige Tabelleneintrige beibehalten
werden kénnen. Das bedeutet, dass nach Anderungen ein Vergleich zwischen dem neuen und
dem bisherigen Baum stattfinden muss, um die Unterschiede festzustellen.

Zur Einrichtung eines neuen Multicastbaumes werden OpenFlow Modification-Nachrichten
vom Typ Add, Delete oder Mod an die entsprechenden Switches gesendet. An jedem Switch
sind ein Gruppeneintrag in der Group-Table, sowie ein zugehdriger Verweis in der Flow-Table
notig. Das Deployment wird als erfolgreich angesehen, wenn nach einer ausreichend langen
Wartezeit keine Fehlermeldung zuriickgemeldet wurde. Erst dann darf die Flow-Modifikation
die Datenbasis der Routenverwaltung aus Abschnitt aktualisieren. Zu beachten ist, dass
die eingerichteten Flows keine giiltigen Timeoutzeiten aufweisen diirfen. Das wiirde im Wider-
spruch zum proaktiven Berechnungsansatz stehen. Somit wird die Flow-Modifikation gezwun-
gen, vor der Einrichtung der neuen Routen, nunmehr veraltete Eintrége explizit zu 16schen.
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Der Ablauf in der Flow-Modifikation wird in Lésch-, Deployment- und Aktualisierungsphase
gegliedert. Nachfolgend werden die einzelnen Ereignisse unterschieden, die zu einem Aufruf
der Flow-Modifikation fiihren:

e Neuer quellenbasierter Multicastbaum: Nach der Ausfithrung einer der beiden
Routingalgorithmen fiir quellenbasierte Multicastbdume wird das Ergebnis, zusammen
mit der Gruppen-ID und der Sender-ID, als Adjazenzliste an die Flow-Modifikation
tibergeben. Mit dem Schliissel (Sender-ID+Gruppen-ID) kann der vorherige Multicast-
baum aus der Routenverwaltung gesucht werden. Im Anschluss folgt die Lésch- und
Deployment-Phase fiir Multicastbdume.

e Neuer Shared-Tree: Nach der Berechnung eines neuen Shared-Trees wird der Baum
als Adjazenzliste zusammen mit der Gruppen-ID weitergegeben. Der passende Eintrag
in der Routenverwaltung wird dann iiber den Schliissel (Gruppen-ID) bestimmt. An-
schlieBend wird ebenfalls mit der Losch- und Deployment-Phase fiir Multicastbdume
fortgefahren.

e Neuer Sender fiir Shared-Tree: Fir jeden im Graph vorhandenen Sender
(Sender-ID) wird, nach der Berechnung eines neuen Shared-Trees, die zugehorige Kno-
tenliste fiir eine Unicast-Route zum Rendezvous-Knoten iibergeben. Auflerdem ist die
Gruppen-ID von Bedeutung. Der Lookup in der Routenverwaltung erfolgt iiber
(Sender-ID+Gruppen-ID) um die bisherige Verbindungsroute zu erhalten. Anschliefend
wird die Losch- und Deployment-Phase fiir Unicast-Routen ausgefiihrt

e Gruppe loschen: Die Gruppenverwaltung meldet das Loéschen einer Gruppe mit der
Gruppen-ID an die Routingkontrolle. Da ein solches Ereignis nicht zu einer Neuberech-
nung fiihrt, wird die Flow-Modifikation direkt benachrichtigt. Alle zugehoérigen Eintrige
auf der Datenebene werden daraufhin geléscht und die Routenverwaltung aktualisiert.

Losch- und Deployment-Phase fiir Multicastbiaume Der Ablauf nach der Ubergabe eines
neuen Multicastbaumes an die Flow-Modifikation ist mit den einzelnen Phasen in Abbildung
zu sehen. Ergibt der Lookup iiber die Routenverwaltung kein Ergebnis, kann die Losch-
phase tibersprungen und direkt mit der Deployment-Phase fir Multicastbdume fortgefahren
werden. Ansonsten unterscheidet ein Flag in der Datenstruktur, ob eine Unicast-Route oder
ein Multicastbaum gefunden wurde. Bei einer Unicast-Route werden alle zugehorigen Tabel-
leneintrége geldscht. Alle beteiligten Switches erhalten dazu eine Flow-Table Modification-
Nachricht mit Delete-Anweisung. Anschliefend kann direkt mit der der Deployment-Phase
fiir Multicastbaume fortgefahren werden.

Ist durch den Lookup in der Routenverwaltung ein Multicastbaum erkannt worden, fin-
det ein Vergleich zwischen dem neu berechneten und dem aktuellen Baum statt. Zuerst
werden all diejenigen Knoten bestimmt, die im alten Baum, aber nicht im neuen vorhan-
den sind. Sie werden mit V, bezeichnet. Dadurch werden die Switches identifiziert, bei de-
nen der gesamte Gruppeneintrag geléscht werden kann. Sie erhalten jeweils eine Group-
Table Modification-Nachricht mit der Delete-Anweisung fiir den passenden Tabelleneintrag,
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Initialisierung

_SenderlD, GruppeniID,

Ermittle S (Var, Ear) per

Ermittle Sa (Var, Ear) per
Lookup in Routenverwaltung:

GruppenlD,
— pp |

. —>» Lookup in Routenverwaltung:
Baum: Sneu (Vnew Eneu) (SenderlD+GruppenlID)

(GruppeniD) Baum: Sneu (Vieus Eneu)

Alter Eintrag

Loschphase

Nein—)  gefunden i =i+l
Ja |
Ja g igis;") Sende Delete-Nachricht fiir
Alte T Ja—| Gruppen- bzw. Flow-Eintrag
Unicast] Nein Alter Baum an Switch v[i] € V,
route o gefunden
Nei
Vai= Vaie \ Vieu em‘ K = k+1
Ea:= (Eait\ Eneu) \
{(x,y)|x € Va y € Var}
Sende Gruppen-
L Va = Var Ja—> Modifikationsnachricht zum
E.:=0 Léschen von e[k] € E,
Léschmengen
i = i+ 1 Deploymentphase
+—Nein
Vii= Vieu \ Vait Sende Add-Nachricht fiir
Kenater > En:= (Eneu \ Eart)\ Ja—» Gruppen- und Flow-Eintrag
Eintrag gefunden {(y)1X € Vo y € Voeuk an Switch v[i] € V,
Deployment-Mengen Nein
—k:= k+1—|

Nein;
Nach T sekunden

Fehlermeldung

'

Sende Gruppen-
-Ja—» Modifikationsnachricht zum
Hinzufiigen von e[k] € E,

erhalten ?

Nein

v

Setze Flag=0 in Sy, und aktualisiere
Datenbasis in der Routenverwaltung tiber
(GruppenlID) bzw. (SourcelD+Gruppen|D)

Aktualisierungsphase

A 4
Fehlermeldung an
Anwendung oder

Standardfehlerbehandlung

Abbildung 4.17: Ablauf und Phasen der Flow-Modifikation

der iiber die Multicastadresse identifiziert wird. Anschlieflend muss der zugehérige Flow-Table
Eintrag entfernt werden, der auf die nun gel6schte Gruppe verweist. Nach erfolgreicher Losch-
meldung, geschieht dieselbe Betrachtung fiir hinféllige Kanten, wobei nur noch solche Kanten
beachtet werden, die nicht bereits zuvor mit einem Knoten geléscht wurden (E,). Eine nicht-
leere Kantenmenge FE, repriasentiert den Fall, dass der neue Baum teilweise iiber die gleichen
Switches verlduft wie bisher, jedoch nicht mehr iiber dieselben Ein- und Ausgangskanten. Alle
Kanten, die im neuen Baum nicht mehr vorkommen, werden iiber eine Group-Table Modificati-
on-Nachricht mit der Modify-Anweisung geléscht. Das erfolgt durch Entfernen der passenden
Output:Port-Aktion im Gruppeneintrag. Anschliefend wird mit der Deployment-Phase fiir

Multicastbdume fortgefahren.
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Das Deployment lduft analog zur Léschphase ab. Unabhéngig vom vorliegenden Baum, werden
zuerst alle Knoten bestimmt, die neu hinzugekommen sind. Sie werden mit V,, bezeichnet. Die
Menge der Kanten zu einem dieser Knoten definiert am zugehorigen Switch die Erstellung
eines neuen Gruppeneintrags. Die passende Group-Table-Modification-Nachricht beinhaltet
eine ADD-Anweisung, sowie die nétigen Informationen zur Gruppen-ID und den Kanten.
In der Group-Table wird daraufthin ein neuer Eintrag erstellt, dem so viele Action Buckets
zugeordnet werden, wie Kanten existieren. Alle Kanten werden auf die passenden Ports ab-
gebildet und jedem Bucket eine Output:Port-Aktion zugeordnet. Der Gruppentyp muss auf
all gesetzt werden, um sicherzustellen, dass eine Nachricht iiber jeden spezifizierten Port
weitergeleitet wird. Der Eintrag der Flow-Table, der iiber die Group-Table behandelt wer-
den soll, wird mit einer Group-Action versehen. Eine in der Group-Table definierte Gruppe
kann tiber einen Verweis in der Group-Action mit einem 32-bit Group Identifier identifiziert
werden. Dafiir wird fiir quellenbasierte Badume ein Hashwert aus Senderquelle und Multica-
stadresse verwendet, Shared Trees nutzen einfach die Multicastadresse. Zum Schluss muss
per Flow-Table Modification iiber ADD ein neuer Eintrag in der Flow-Table erstellt werden.
Der Eintrag hat die Aufgabe alle Pakete, die an die Multicastadresse geschickt werden, an
den eben erstellten Gruppeneintrag zu verweisen. Nachdem alle neuen Knoten verarbeitet
wurden, erfolgt die Einrichtung der neu hinzugekommenen Kantenmenge FE,. Dabei werden
nur Kanten betrachtet, die nicht bereits im Zuge eines neuen Knoten hinzugefiigt werden. Sie
werden durch Hinzufligen einer entsprechenden Ouitput:Port-Aktion fiir einen vorhandenen
Gruppeneintrag per Modify-Anweisung behandelt. Der Eintrag in der Flow-Table muss nicht
verdandert werden.

Flow-Table 8
a) b) Match Action

Group Identifier | Action Buckets 0 Horc=1, Dst=224.0.14 | Group: H(1,224.0.1.4)
H(1;224.0.1.4) (0 ):t:8, Output: 2)
Group Identifier Action Buckets
$H(1;224.0.1.4) { Output:6}

Group-Table 5

Group-Table 8

Neuer Empfinger Sender Empfanger  Neuer Empfanger

Sender Empfanger .
Empfanger Empfanger

Flow-Table 7
d) Match Action

Group Identifier | Action Buckets + Src=1; Dst=224.0.1.4 | Group: H(1;224.0.1.4)
}
Group Identifier Action Buckets

H(1;224.0.1.4) | {Output: 2, Output:7,
H(1;224.0.1.4) { Output:6}

Group-Table 5

Group-Table 7

Group Identifier | Action Buckets i
H(1;224.0.1.4) {Output: 4, Output:3} B
Empfanger | ...

Neuer
Empfanger Sender

Empfanger

Neuer
Empfanger

Sender Empfanger

Group-Table 6

Abbildung 4.18: Lésch- und Deployment-Phase fiir einen quellenbasierten Multicastbaum

Abbildung zeigt die Abfolge der Losch- und Deployment-Phase auf Datenschicht am
Beispiel eines quellenbasierten Multicastbaumes. Knoten 3 ist neu hinzugekommen, was eine
Neuberechnung zur Folge hat. Der alte Baum in [l.18la beinhaltet Knoten 8, wéihrend der
neue Baum iiber Knoten 7 verlduft d). Das hat das Loschen von Knoten 8 sowie der
Kante von 5 zur Folge b). Dazu miussen die gezeigten Tabelleneintrige (in rot) geloscht
bzw. modifiziert werden. In [£.18 ¢ ist der Baum nach erfolgreicher Loschphase dargestellt. In
Teilbild £.18/d wird im Zuge der Deployment-Phase Knoten 7 hinzugefiigt, sowie die neuen
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Kanten von Knoten 5 und 6. Dafiir miissen die gezeigten Tabelleneintrige (in griin) einge-
richtet bzw. modifiziert werden. Die Funktion H stellt eine beliebige Hashfunktion dar, deren
einzige Aufgabe es ist, eine Kombination aus Sender-ID und Multicastadresse auf einen 32-bit
langen Identifier abzubilden.

Die Prioritét simtlicher Flow-Eintrige wird mit einem festen Wert vorgegeben. Dabei gilt die
Konvention, dass eine Baumkante hoher priorisiert wird, als eine Unicast-Route. Auflerdem
erhalten quellenbasierte Baumkanten eine héhere Prioritdt als ein Shared-Tree, fiir den Fall
dass beide Baumarten zur gleichen Zeit vorhanden sind. Es ist jedoch nicht erlaubt, dass fir
den gleichen Sender zu einem Zeitpunkt sowohl eine Unicast-Route als auch ein quellenba-
sierter Baum existiert. Somit bedarf dieser Fall keiner gesonderten Prioritdtsbehandlung. Der
Zeitaufwand fiir die Vergleichsoperationen beim Léschen und Deployment kann jeweils durch
O(|Va|? + |E,|?) bzw. O(|V,)? + |En|?) nach oben abgeschéitzt werden. Dabei entsprechen die
Mengen der Definition aus Abbildung fiir die jeweilige Phase. Es muss allerdings ange-
merkt werden, dass F, bzw. E, bereits keine Kanten mehr aus V, bzw. V,, enthalten und
die Anzahl der Kanten pro Knoten durch & im Systemmodell beschrankt ist (Kapitel .
Auflerdem beziehen sich die Ursprungsmengen V und E auf einen Baum Sp und nicht auf
den gesamten Graph.

Jeder Flow, der in einem Switch eingerichtet wird, muss tiber einen Bezeichner eindeutig
identifizierbar sein. AuBerdem diirfen keine uneindeutigen Uberschneidungen bei den Ab-
gleichkriterien entstehen. Bei quellenbasierten Bdumen koénnen sich die einzelnen Baume ei-
ner Gruppe iiberlappen, was bedeutet, dass ein Abgleich auf die Multicastadresse in dem
Fall nicht ausreichend ist. Fiir eine Eindeutige Unterscheidung der Flows zwischen den je-
weiligen Absendern, muss zusétzlich die Senderadresse abgeglichen werden. Der Controller
selbst verwaltet jedoch keine Hosts, d.h. der Host iibergibt nach dem ersten Hop die Sen-
derrolle an seinen ToR-Switch. Eine OpenFlow Action vom Typ Modify-Field tiberschreibt
die MAC-Adresse des Senders mit der des Switches. Dies findet immer dann statt, wenn
ein ToR-Switch eine Multicastnachricht iiber einen Host-Port empfangt. Diese Losung er-
reicht eine Unabhéngigkeit von den eigentlichen Hosts und spart Tabelleneintrége in der
Hinsicht, dass nicht fiir jede einzelne Sendermaschine eigene Flows benétigt werden. Da-
fiir ist jedoch beim Empfang auf einem ToR-Switch ein zusétzlicher Flow noétig, der die
Multicastpakete letztendlich {iber alle Host-Ports ausliefert. Bei einem Shared-Tree ist da-
fiir auBerdem eine zusétzliche Unterscheidung am Rendezvous-Knoten noétig, da die ToR-
Switches hier im Allgemeinen nicht dem Sender-Switch des Baumes entsprechen. Zuerst wer-
den die Pakete iiber Unicast-Routen zum Rendezvous-Knoten geschickt. Bis zum Erreichen
des Baumes werden sie iiber ihre ToR-Senderadresse abgeglichen. Anschliefflend erfolgt am
Rendezvous-Knoten ein erneutes Umschreiben der Addresse in die Adresse des Shared-Trees
(Rendevous-Knoten-ID + Multicastadresse) wie in Bild gezeigt.

Losch- und Deployment-Phase fiir Unicast-Routen Die Losch- und Deployment-Phase fiir
Unicast-Routen erfolgt analog zu den Phasen fiir Multicastbdume. Wenn sich in der Rou-
tenverwaltung noch kein Eintrag findet wird die Loschphase iibersprungen und die neue
Route direkt eingerichtet. Anderenfalls wird zwischen einem quellenbasierten Baum oder
einer Unicast-Route unterschieden. Findet sich ein Baum, wird dieser komplett gel6scht
und danach direkt mit der Deployment-Phase fiir Unicast-Routen fortgefahren. Wurde eine
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Unicast-Route erkannt, werden die Knoten und Kanten verglichen, alte Tabelleneintrage ge-
16scht und anschliefend neue hinzugefiigt. Kanten, die sowohl in der alten als auch in der
neuen Route vorhanden waren, werden beibehalten. Der einzige Unterschied zur Loésch- und
Deployment-Phase fiir Multicastbdume ist, dass die Routen {iber die Flow-Table eingerich-
tet werden, wiahrend die Bdume iiber die Group-Table definiert werden. Die entsprechenden
OpenFlow-Nachrichten sind: Flow-Table Modification-Nachrichten mit den jeweiligen Header-
Anweisungen: Delete, Add und Modify. An den ToR-Switches erfolgt derselbe Rollentausch
durch das Umschreiben der Senderadresse, wie das bei quellenbasierten-Bdumen der Fall ist.
Eine zusétzliche Modify-Field-Action ist beim Wechsel zwischen Unicast-Route und Multi-
castbaum am Rendezvous-Knoten notwendig. Ein Beispiel dafiir ist in Bild gezeigt.

Aktualisierungsphase Das erfolgreiche Loschen eines Flows wird in OpenFlow durch ei-
ne Flow-Removed-Statusmeldung angezeigt. Tritt bei der Modifikation einer Flow-Table ein
Fehler auf, meldet der Switch eine entsprechende Fehlermeldung zuriick. In diesem Fall darf
die Routenverwaltung nicht aktualisiert werden, um keinen inkonsistenten Zustand zur Da-
tenschicht hervorzurufen. Um sicherzugehen, dass keine Fehler aufgetreten sind, muss eine
ausreichend lange Zeitspanne abgewartet werden. Diese Wartezeit bezieht sich jedoch ledig-
lich auf die Aktualisierung der internen Datenstruktur in der Routenverwaltung und nicht
auf die Einrichtung der Routen auf Datenebene. Sind in dieser Zeitspanne keine Fehler zu-
riickgemeldet worden, wird der neuberechnete Multicastbaum oder die Unicast-Route in der
Routenverwaltung aktualisiert. Dazu wird, falls vorhanden, der alte Eintrag in der Hashtabel-
le verworfen und durch den neuen ersetzt. Anschlieend muss durch ein Flag gekennzeichnet
werden, ob es sich um einen Baum (Flag=0) oder eine Unicast-Route (Flag=1) handelt.
Der Zugriff erfolgt dabei {iber eine entsprechende API, die von der Routenverwaltung zur
Verfiigung gestellt wird. Ein Beispiel zur Datenstruktur findet sich in Abschnitt Bild
Es muss beachtet werden, dass die verschiedenen Routen zum richtigen Schliissel abge-
speichert werden. Ein Shared-Tree wird unter dem Hashtabelleneintrag der Multicastadresse
abgespeichert. Die Unicast-Routen werden als Knotenliste, zusammen mit einem Zeiger auf
den Shared-Tree mit dem konkatenierten Schliissel zwischen Sender-ID und Multicastadres-
se abgelegt. Die Reihenfolge in der Knotenliste entspricht dem Weg der Unicast-Route vom
Sender bis zum Rendezvous-Knoten des Shared-Tree. Ein quellenbasierter Baum wird un-
ter dem gleichen Schliissel gespeichert, da von einem Sender zur gleichen Zeit entweder eine
Unicast-Route zum Shared-Tree oder ein quellenbasierter Baum benétigt wird.
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5 Multicast-Implementierung in Floodlight

In diesem Kapitel soll die in Kapitel[d] erarbeitete Konzeption fiir einen Multicastdienst in Java
implementiert werden. Zuerst wird in Abschnitt der OpenFlow-Controller Floodlight [flo]
vorgestellt und anschliefend in Abschnitt eine darauf aufbauende Multicastimplementie-
rung beschrieben.

5.1 Floodlight OpenFlow-Controller

Floodlight [flo] ist ein in Java implementierter OpenFlow-Controller, der aus einer frithen
Version des Beacon Projekts [Uni] hervorgegangen ist. Entwickelt wurde er von Big Switch
Networks und diente als Basis fiir die im November 2012 erschienene kommerzielle Version mit
dem Namen Big Network Controller [Net]. Floodlight selbst ist Open-Source und wird unter
Apache Lizenz vertrieben. Anders als Beacon basiert Floodlight nicht mehr auf OSGi und
bietet ein eigenes, einfach zu erweiterndes Modulsystem. Die wachsende Verbreitung und die
standige Weiterentwicklung durch Big Switch Networks, sowie die Plattformunabhéngigkeit
und die einfache Erweiterungsmoglichkeiten in Java waren die ausschlaggebenden Kriterien
fiir die Wahl von Floodlight in dieser Diplomarbeit.

Abbildung zeigt die Controller-Architektur. Neben der Umsetzung des OpenFlow Proto-
kolls existieren mehrere parallel laufende Module. Sie implementieren zusammen jeweils eine
Menge von verschiedenen Funktionalitdten, um ein OpenFlow-Netzwerk in Java ansprechen
und verwalten zu kdnnen. So reprasentiert beispielsweise ein Objekt der Klasse I0FSwitch
einen Switch auf Datenebene, der iiber einen eindeutigen Bezeichner namens Datapath-1D
(DPID) identifiziert wird. Dessen Attribute kénnen iiber entsprechende Methoden beliebig
ausgelesen oder manipuliert werden. Die Umsetzung in die zugehorigen OpenFlow-Nachrichten,
sowie die eigentliche Kommunikation gemafl des OpenFlow-Protokolls werden intern iiber den
FloodlightProvider abgewickelt und so vor dem Entwickler verborgen. Ein Modulmanager ist
fiir die Verwaltung der aktiven Module zustdndig. Neue Module miissen dabei zuerst in einer
Konfigurationsdatei bekannt gemacht werden, bevor der Modulmanager sie automatisch mit
Floodlight starten und verwalten kann. Eine Klasse wird als Modul behandelt, wenn sie das
Interface IFloodlightModule implementiert.

Jedes Modul kann mehrere Services bereitstellen, die als Java-Schnittstelle zwischen den in-
ternen Modulen einer Anwendung dienen. Der Device Manager verwaltet Hostmaschinen im
Netzwerk und stellt dafiir einen Service zur Verfiigung. LinkDiscovery ist fiir das Erkennen von
Verbindungen zwischen zwei Switches zusténdig und bietet iiber den LinkDiscoveryService
eine abstrahierte Sichtweise auf das Netzwerk an. Der TopologyManager verfolgt diese
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Abbildung 5.1: Architektur von Floodlight nach [flo]

Informationen und stellt unter anderem einen Listener fiir gedinderte Netzwerktopologie zur
Verfiigung. Fiir das Empfangen von OpenFlow-Nachrichten wie Packet_In-Pakete sowie das
Senden von Packet Out-Nachrichten stehen ebenfalls entsprechende Listener und Schnitt-
stellen zur Verfigung. Auflerdem existieren ein Routing- und ein Forwarding-Modul, die ein
Unicast-Routing realisieren. Standardméflig wird iiber eine einfache Entfernungsmetrik ein
kiirzester Pfad zwischen einem Sender und Empfanger berechnet und reaktiv, also bei Emp-
fang eines Packet_In-Pakets, auf Datenebene eingerichtet. Eine Multicastbehandlung ist zum
Zeitpunkt dieser Diplomarbeit nicht realisiert.

Zusétzlich zum Forwarding beinhaltet Floodlight neben den Basisservices noch einige weitere
Anwendungen. So existiert unter anderem ein Firewall-Modul, ein Modul fiir die Behandlung
von Port-Down Fvents und ein Static-Flow-Entry-Pusher, der es erlaubt, iiber einen Service
beliebige Flows auf Datenebene einzurichten. Jedes dieser Anwendungsmodule kann nach
Bedarf geladen oder deaktiviert werden. Eine eigene Anwendung kann ebenso in Form von
Modulen erweitert werden, die wiederum eigene Services zur Verfiigung stellen konnen, wah-
rend auf die Grundfunktionen iiber die erlduterten Basis-Services zugegriffen werden kann.

Alle Module kénnen zusétzlich eine REST Schnittstelle zur Verfiigung stellen. Sie sind durch
ein ,R“ in Bild gekennzeichnet. Die meisten Basis- und Anwendungsmodule bieten Ent-
wicklern so die Moglichkeit, aufbauende REST-Anwendungen unabhéngig von der Program-
miersprache zu entwickeln. Ein Beispiel dafiir zeigt das Web-UI Modul, mit dem man jederzeit
Topologieinformationen und Statistiken {iber eine Weboberfliche im Browser kontrollieren
kann.
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5.2 Erweiterung von Floodlight um einen Multicastdienst

Eine Umsetzung der OpenFlow-Version 1.3 in Floodlight ist bereits angekiindigt, zum Zeit-
punkt dieser Diplomarbeit wird jedoch lediglich die Version 1.0 unterstiitzt. Dadurch exis-
tieren in der Implementierung einige Einschrénkungen, insbesondere das Fehlen der Group-
Tables. Obwohl nicht explizit in der OpenFlow Spezifikation [Spe09] dokumentiert, ist das
Einfiigen mehrerer OpenFlow-Aktionen fiir einen einzigen Flow auch ohne Group-Table {iber
die Flow-Table moglich. Die Abarbeitungsreihenfolge geschieht sequentiell in der Reihenfol-
ge, in der die Aktionen definiert wurden. So ermdoglichen mehrere Ouput-Actions auch das
Beschreiben mehrerer Ausgangsports fiir einen Flow und so eine Moglichkeit zur Abbildung
von Multicastbdumen. Es muss aber darauf hingewiesen werden, dass diese Moglichkeit her-
stellerabhéngig ist und so moglicherweise nicht von allen OpenFlow-Switches in der Version
1.0 unterstitzt wird.

Fiir die Implementierung des Multicastdienstes ergibt sich die Wahl zwischen einer REST-
Anwendung und einer direkten in Java integrierten Losung. Zum Zeitpunkt dieser Diplomar-
beit kénnen zukiinftige Anderungen an den Schnittstellen aber nicht ausgeschlossen werden
[flo]. Aufgrund der starken Abhéngigkeit zu Topologie und Statistikwerten, sowie der héufi-
gen Kommunikation mit der Datenschicht, fallt die Wahl auf Anwendungsmodule, die direkt
in Floodlight integriert werden. Dabei kénnen die herausgearbeiteten Prozesse aus Kapitel
fast eins zu eins in Floodlight-Module umgesetzt werden.

Das Paket net.floodlightcontroller.multicast enthélt alle fiir den Multicastdienst um-
gesetzten Module und Klassen. Folgende Multicast-Module werden beim Start des Controllers
geladen: NetworkStateManagement. java, GroupManagement.java, RoutingControl. java,
FlowMod. java und RouteManagement . java. Im Folgenden wird die Umsetzung der einzelnen
Prozesse mit Hilfe dieser Module besprochen.

Der Informationsaustausch zwischen den Modulen geschieht iiber Services, die den anderen
Multicast-Modulen als Schnittstelle zur Verfiigung stehen. Nach Konvention werden Schnitt-
stellen stets mit ,,I{ Modulname}Service.java® bezeichnet. Dabei steht der Modulname fiir
die Klasse, die das Interface implementiert. Fir die Weitergabe von Ereignissen wird das
Observer-Pattern verwendet. Ein Observer erlaubt es, ein auftretendes Ereignis von einem
Modul an alle zuvor angemeldeten Empfangermodule weiterzugeben. Damit eine Klasse als
Empfanger agieren kann, muss dieser das Interface Observer implementieren.

Nachrichtenfilter Floodlight bietet iiber den IOFMessageListener bereits die Moglichkeit,
angekommene Nachrichten zu erhalten und tiber Abfragen nach Headerfeldern zu filtern.
Somit besteht die Umsetzung des Nachrichtenfilters aus der Implementierung des Liste-
ners durch die jeweiligen Empféngermodule. GroupManagement . java filtert diese Nachrichten
nach der IGMP Protokollnummer. Das Modul NetworkStateManagement.java fragt Port-
Statistiken direkt ab und bend6tigt somit iiberhaupt keine Behandlung der Statistiknachrichten
auf OpenFlow Ebene.
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Netzstruktur- und Zustandsverwaltung Die Netzzustandsverwaltung wird durch das Modul
NetworkStateManagement . java umgesetzt. Das Abfragen von Verbindungen {iber LLDP, so-
wie das Bereitstellen der Topologie als (Switch, Link)-Objekte geschieht bereits im
LinkDisvoceryManager von Floodlight und muss deshalb nicht neu implementiert werden. Die
Topologieinformationen werden iiber den LinkDiscoveryService und TopologyService ab-
gefragt und anschlieBend vom NetworkStateManagement-Modul weiterverarbeitet. Ein Java-
Thread fragt periodisch alle Switches nach Portstatistiken ab und errechnet daraus die aktuel-
len Gewichte, die als ConcurrentHashMap gespeichert werden. Diese Datenstruktur garantiert
vollsténdig parallelen Zugriff mehrerer Threads ohne Blockierungen. So kénnen die Gewich-
te bei Bedarf durch andere Prozesse gelesen werden, ohne die periodische Aktualisierung zu
storen. Das NetworkStateManagement-Modul ist auBerdem fiir die Uberwachung der Flow-
Eintrige zustindig. Ein drohender Uberlauf wird durch einen periodisch ablaufenden Thread
erkannt und tiber den Quverflow-Observer sofort an das RoutingControl-Modul gemeldet.

Zusétzlich wird die Floodlight-Klasse I0FSwitch um das Attribut isToR erweitert. Mit
Hilfe des TopologyService werden alle Switches periodisch gepriift, ob sie in direkter Nach-
barschaft mit einer Hostmaschine verbunden sind. Falls dies der Fall ist, werden sie als
ToR-Switches markiert. Diese Kennzeichnung ist fiir ein gezieltes Versenden von IGMP-
Nachrichten und die Einrichtung initialer Flows im vorliegenden Systemmodell relevant.
Fiir die Weitergabe der Netzzustands-Daten stellt das NetworkStateManagement-Modul im
Zuge des Multicastdienstes einen Service IStateManagementService.java zur Verfligung.
Er ermoglicht dem Routing-Modul Zugriff auf die aufbereitete Topologie und die zugehorigen
Kantengewichte.

Gruppenverwaltung Die Gruppenverwaltung wird durch das Modul GroupManagement . java
implementiert. Hier konnen auch die jeweiligen IGMP Antwort- und Sendezeiten belegt und
gedndert werden. Die Datenstruktur fiir aktuelle Gruppeninformationen unterstiitzt ebenfalls
vollsténdige Parallelitit durch eine ConcurrentHashMap. Ein Objekt der Klasse
GroupElement. java représentiert einen Eintrag in der HashMap und beinhaltet neben der
Multicastadresse und der Switch-ID auch den aktuellen Zahlerwert fiir die Umsetzung des
IGMP-Protokolls. Die Zahler aller Eintrédge werden periodisch von einem Java-Thread herun-
tergezéhlt. Ein weiterer Thread versendet in definierten Zeitabstdnden die IGMP-Membership-
Requests. Fir die Verarbeitung von IGMP-Paketen ist es nétig, eine Erginzung in den Flood-
light Datenstrukturen fiir die Nachrichtenkommunikation vorzunehmen. Die neue Klasse
IGMP. java erweitert dazu die Floodlight Klasse BasePacket . java um die spezifischen Eigen-
schaften eines IGMP Paketes. Das sind insbesondere die Headerfelder Type,
MazResponseTime, Checksum, GroupAddress. Um auch IGMPv3 Nachrichten verarbeiten zu
kénnen, wird IGMP. java wiederum von einer weitere Klasse IGMPv3Report.java erweitert.
Zur Laufzeit werden alle ankommenden IGMP-Nachrichten zuerst in ein Objekt der Klasse
IGMP deserialisiert und anschliefend aufgrund des Typ-Feldes bestimmt, ob eine Deserialisie-
rung in ein IGMPv3Report-Objekt stattfinden muss. Um ankommende IP-Pakete mit IGMP-
Inhalt richtig zuordnen und deserialisieren zu konnen, muss auflerdem die
IGMP Protokollnummer in IPv4. java erganzt und registriert werden.

Hat der Controller einen ankommenden IGMP-Membership-Report richtig zugeordnet und
die zugehorigen Gruppenadressen ausgelesen, hat dies einen Methodenaufruf im
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GroupManagement-Modul zur Folge. Darauthin werden Gruppenzéhler entweder erneuert
oder Anderungen in der Gruppenzusammensetzung vorgenommen. Um solche Anderungen
moglichst schnell bekannt zu machen, registriert das GroupManagement-Modul den Group-
Observer, der aktuelle Gruppendnderungen sofort an das Routing-Modul meldet. Auflerdem
lauft ein Java-Thread, der periodisch IGMP-Anfragen erstellt und diese iiber das Floodlight
Switch-Objekt des jeweiligen Empfiangerswitches verschickt. Die aktuellen Gruppeninforma-
tionen stehen iiber den Service IGroupManagementService. java fiir andere Module zur Ver-
fiigung.

Routenberechnung Das Modul RoutingControl. java bildet die Funktionalitdt der Rou-
tenberechnung ab. Wichtig hierfiir ist die Listener-Methode topologyChanged() sowie die
Observer-Methode Update(), iiber die die inneren Klassen GroupObserver.java und
Overflowobserver. java benachrichtigt werden. Diese Methoden werden bei Topologie-,
Gruppen- und Uberlaufinderungen aufgerufen und filtern die Ereignisse nach Kriterien wie
Delete-, Add oder New-FEvents.

Eine Gruppendnderung stofit den Routingalgorithmus an. Das ist, abhéingig vom
Uberlaufmodus, entweder KMB, Shared-Tree oder iGA. Einem Routingalgorithmus stehen die
Basisalgorithmen in den Klassen Dijkstra. java, Tarjan. java und Kruskal. java zur Ver-
fligung. Tarjan wird fiir KMB benétigt und errechnet einen minimal gewurzelten Baum
(minimaler gerichteter Spannbaum), Dijkstra ermittelt den kiirzesten Weg zwischen einer
Quelle und einem Ziel. Auflerdem implementiert das RoutingControl-Modul die fir KMB re-
levanten Methoden SUB, RESUB und PRUNE. Fiir die Shared-Tree Berechnung steht eine
Methode calculateCenter () bereit, die den Rendezvous-Knoten fiir eine Gruppe errech-
net. Der Shared-Tree Algorithmus verwendet anschliefend die KMB-Methode, um von dem
Rendezvous-Knoten einen quellenbasierten Baum zu allen Gruppenmitgliedern zu berechnen.
Mit Hilfe des Algorithmus von Dijkstra und KMB wird aulerdem iGA umgesetzt.

Weitere Routingalgorithmen kénnen beliebig erweitert werden und bei Bedarf die erwéhnten
Basisalgorithmen nutzen. Zur Représentation des aktuellen Netzgraphen und der jeweiligen
End- und Zwischenergebnisse existieren die Klassen: RoutingEdge. java, RoutingNode. java,
CompleteGraph. java, DijkstraPath. java und MulticastTree.java, sowie etliche Hilfs-
und Konvertierungskonstrukte. Nach Ausfithrung einer Berechnung nutzt das RoutingControl-
Modul den RouteManagement-Service, um die neuen Multicastbiume oder Anderungen wei-
terzugeben und abzuspeichern.

Um Topologiednderungen zu erkennen, kann ein beliebiges Modul den von Floodlight be-
reitgestellten ITopologyListener implementieren. Daraufhin werden alle Anderungen iiber
den Methodenaufruf erkannt und es kann nach Ereignissen wie Switch-Ausfall oder Link-
Ausfall gefiltert werden. Ein solcher Aufruf hat einen sofortigen Datenabgleich mit dem
NetworkStateManagement- und RouteManagement-Modul sowie eine Neuberechnung der be-
troffenen Multicastbdume zur Folge.

Das NetworkStateManagement-Modul meldet {iber ein Observer-Ereignis einen drohenden
Uberlauf der Routingtabelle. RoutingControl implementiert diesen Observer in einer inneren
Klasse mit dem Namen OverflowObserver. java. Darauthin wird der interne Routingmodus
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,OverflowMode=true“ gesetzt. Diese Mafinahme ersetzt fiir zukiinftige Gruppendnderungen
KMB durch den Aufruf des Shared-Tree Algorithmus. Ein Zuriicksetzen des Overflow-Modus
erfolgt durch ein analoges Ereignis am Observer.

Routenverwaltung Uber das Modul RouteManagement.java wird die Funktionalitit der
Routenverwaltung abgedeckt. Das Modul ist fiir die Speicherung der Objekte vom Typ
MulticastTree. java und DijkstraPath. java zustidndig. Dafiir wird eine HashMap genutzt
und die nétigen Methoden fiir das Anfragen, Speichern, Vergleichen oder Andern von Mul-
ticastbdumen iiber den IRouteManagementService.java bereitgestellt. Ein MulticastTree-
Objekt enthélt eine HashMap, die aus Knoten und zugeordneten Kantenlisten besteht. Die
Datenbasis flir DijkstraPath-Objekte besteht aus einer einfachen Knotenliste. Fiir die eindeu-
tige Identifizierung von quellenbasierten Ba&umen und Unicast-Pfaden wird die von Floodlight
vergebene Switch-DPID des Senders in Kombination mit der Multicastadresse genutzt. Der
Schliissel eines Shared-Trees besteht aus der Multicastadresse ohne Senderangabe.

Flow-Modifikation Das Modul FlowMod. java ist fiir die Einrichtung der Flows auf Da-
tenebene zustidndig. Aufgerufen wird es iiber den Service IFlowModService.java, der die
Methoden fiir das Hinzufiigen, Andern und Léschen von Multicastbiumen, IGMP-Flows und
ModifyField-Flows bereitstellt. Jeder Flow muss auch auf Datenebene einen eindeutigen Be-
zeichner tragen. Hier gilt die Konvention, dass samtliche Baume und Routen die DPID der
Senderquelle in Verbindung mit der Multicastadresse tragen. Eine Quelle stellt dabei entweder
einen ToR-Switch oder einen Rendezvous-Knoten dar.

Das FlowMod-Modul kiimmert sich zuerst um die Einrichtung initialer Flows. Dazu zéhlen
ModifyField-Actions, die jeder ToR-Switch beim Erhalt eines Paketes iiber einen Host-Port
benétigt, um die Senderadresse von einem Host in die Senderadresse in die DPID des Swit-
ches umzuschreiben. Zusétzlich benétigt jeder ToR-Switch einen IGMP-Flow fiir die korrekte
Weiterleitung von IGMP-Antworten an den Controller-Port. Andert sich die Topologie, ins-
besondere die Menge der ToR-Switches, muss die Einrichtung erneut geschehen. Ansonsten
bleiben diese Flows wihrend der gesamten Laufzeit des Controllers statisch.

Anderungen in Flows, die Multicastbiume betreffen, werden vom RoutingControl-Modul in-
itiiert und treten unter anderem bei jeder Gruppendnderung auf. Der aktuelle Multicast-
baum wird mit dem neuen verglichen und im FlowMod-Modul in Einzeloperationen wie
addFlowForLink() oder deleteFlowFromGroup() umgesetzt. Analoge Operationen existie-
ren bei Shared-Trees fiir die Einrichtung von DijkstraPath-Objekten als Unicast-Routen. Eine
Sonderbehandlung ist fiir den Rendezvous-Knoten nétig. Fiir am Baum ankommende Unicast-
Routen muss ein entsprechender ModifyField-Flow eingerichtet werden, um die Quelladresse
vom Sender-Switch in die des Rendezvous-Knoten umzuschreiben. Nachdem alle Flows so
eingerichtet sind, dass sdmtliche Ziel-Switches der Gruppenmitglieder die Multicastpakete
empfangen konnen, fehlt noch die eigentliche Auslieferung an die Hosts. Dafiir werden pro
Gruppe alle Host-Ports ermittelt und zusétzliche Aktionen fiir die Auslieferung an die End-
gerite eingerichtet.
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Bei Gruppenénderungen muss stets zwischen ToR-Switches und inneren Knoten unterschieden
werden, da sémtliche Aktionen, inklusive den ModifyField-Actions und den Output-Actions fiir
die Auslieferung zu den Hosts, in einem einzigen Flow definiert werden miissen. Aufgrund der
sequentiellen Abarbeitung der Aktionen muss darauf geachtet werden, dass die ModifyField-
Actions vor allen Qutput-Actions stehen.

Bild[5.2]zeigt die Beispiel-Flows fiir einen ToR-Switch mit der DPID ,,00:00:00:00:00:00:00:09%
fiir einen quellenbasierten Multicastbaum auf Datenebene. Der obere Flow leitet ankommende
Pakete mit der Multicastadresse ,,200.200.200.200“, die vom quellenbasierten Baum mit der
Sender-DPID ,,00:00:00:00:00:00:00:0b“ kommen, iiber die Host-Ports 1 und 2 weiter. Der
Flow in der Mitte ist fiir das Zurtickschicken einer IGMP-Antwort an den Controller-Port
—3 zustédndig. Der untere Flow nimmt Pakete entgegen, die von dem Host, der iiber Port 1
angeschlossen ist, gesendet wurden. Zuerst wird dazu die MAC-Adresse {iber eine ModifyField-
Action in ,,00:00:00:00:00:09“ umgeschrieben und anschlieBend geméfl des Multicastbaumes
iiber mehrere Ausgangsports verteilt.

Die Entscheidung, fiir diese Implementierung das FlowMod-Modul von der RoutingControl
zu entkoppeln, hat den praktischen Grund, dass alle Manipulationen der Datenschicht an
zentraler Stelle vorgenommen werden. Alternativ hétte die initiale Einrichtung der IGMP
und ModifyField-Flows aber auch in den jeweiligen Modulen NetworkStateManagement und
GroupManagement geschehen konnen und das FlowMod-Modul in die Routenberechnung inte-
griert werden konnen.

Flows (9)

Cookie Priority Match Action Packets Bytes Age Timeout

45035996273704960 30 src=00:00:00:00:00:0b, ethertype=0x0800, output 2, output 1 0 0 5s 0s
dest=200.200.200.200

45035996273704960 5 ethertype=0x0800, proto=2, IP src port=0, IP output -3 0 0 101 0s
dest port=0 s

45035996273704960 0 port=1, ethertype=0x0800, src=00:00:00:00:00:09, output 2, 0 0 5s 0s
dest=255 255 255 255 output 1, output 3

Abbildung 5.2: Beispiel-Flows fiir einen ToR-Switch auf der Floodlight Weboberfliche

Weitere Klassen und Erweiterungen Die Klasse REST. java erlaubt das Absetzen eines
REST-Aufrufs aus dem Java Code heraus und so die Verwendung der REST-Schnittstelle
von Floodlight. Dies kann als Evaluierungs- und Testmoglichkeit genutzt werden oder bei
Bedarf fiir Einzelaufgaben, wie das Abfragen von Statistiken, von Nutzen sein. Zu Vergleichs-
und Testzwecken kann das Routing jederzeit durch ein Flag im RoutingControl-Modul in den
simple-Mode versetzt werden. Darauthin wird bei der Einrichtung neuer Flows auf Vergleiche
mit vorherigen Berechnungen verzichtet. Alte Flows miissen dann zuerst komplett geléscht
werden, bevor neue eingerichtet werden konnen. Zusétzlich kann tber das Flag force iga auf
den inkrementellen Algorithmus (iGA) umgeschaltet werden.
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6 Evaluierung

In diesem Kapitel wird die in Kapitel [§] vorgestellte Implementierung getestet und ausgewertet.
In Abschnitt [6.3] wird der hier verwendete Versuchsaufbau fiir das Testbed beschrieben. Im
Anschluss werden in Abschnitt [6.2] die Messergebnisse vorgestellt.

6.1 Versuchsaufbau

25:90: 25:90:
93:96:00 94:70:30

25:90: OpenV
93:97:9¢ SWltCheS

25:90

:90: 25:90: 25:90:
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LD £ 8D |
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10.2.11.11  10.2.11.22 10.2.11.33 10.2.11.44 10.2.12.11  10.2.12.22 10.2.12.33  10.2.12.44

25:90:
94:6d:a8

Abbildung 6.1: Topologie des Testaufbaus mit den IP-Adressen der VMs und den Switch-IDs

Der Test und die Evaluierung des in Floodlight implementierten Multicast-Dienstes findet
auf dem Testbed der Abteilung Verteilte Systeme der Universitdt Stuttgart statt. Der Auf-
bau spiegelt eine Hélfte der Fat-Tree Topologie aus Kapitel 3.2] Bild [3:1} fiir k = 4, wie-
der. Abbildung zeigt die Topologie dieses Testaufbaus mit den zugewiesenen IP-Adressen
und den Switch-IDs. Die ersten 24 Bit einer Switch-ID sind in diesem Fall null und wer-
den aus Ubersichtsgriinden weggelassen. Die Topologie ist durch insgesamt zwolf pyhsika-
lische Rechnerknoten realisiert. Es existieren acht virtuelle Maschinen, die als Sender oder
Empfinger fiir Multicastnachrichten agieren kénnen, wobei sich jeweils vier VMs einen phy-
sikalischen Hostrechner teilen. Dabei steht jeder VM 10Gb HD und 4 Gb RAM zur Verfii-
gung. Im Netz werden Open-vSwitches eingesetzt, die alle auf einem eigenen PC mit jeweils
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vier physikalischen Datenports laufen. Ein weiterer Port steht fiir die Controllerverbindung
zur Verfigung (on-board NIC). Die Netzwerkgeschwindigkeit betrdgt 1 Gbit/s im full du-
plex Betrieb, d.h. die volle Bandbreite steht sowohl in Hin- als auch in Gegenrichtung zur
Verfiigung. Durch schnelle CPU und I/O Performance auf den Switch-Rechnern wird eine
Weiterleitung in Line-Rate angestrebt. Sdmtliche virtuellen Switches unterstiitzen zum Zeit-
punkt dieser Diplomarbeit den OpenFlow 1.0 Standard.

PC11 PC12

Vm1i-1 | | Vm11-2 Vm12-1 | | Vm12-2
Vm11-3 | | Vm1l-4 Vm12-3 | | Vm12-4

PC (Frontend) —' Managed Switch (48 Port) ‘
4 NIC 4 NIC
Floodlight g
Controller mit §
Multicastdienst
Open vSwitch Open vSwitch
PC1 PC 10

Abbildung 6.2: Realisierung des Testaufbaus iiber Hardware-Switches

Um einfache Topologiednderungen vornehmen zu koénnen, werden die gesamten Verbindungen
durch einen 48-Port groflen Managed-Switch programmiert. Dabei handelt es sich um einen
1 Gbps Hardware-Switch, der die Punkt-zu-Punkt Verbindungen zwischen den Rechnern
durch einfaches switching entsprechend vordefinierten Regeln konfiguriert. So miissen bei
Topologieinderungen keine physikalischen Kabel umgesteckt werden. Neben dem Managed-
Switch steht ein weiterer 1 Gbps Hardware-Switch fiir das Controllernetzwerk zur Verfiigung.
Der Floodlight Controller mit der Multicast-Erweiterung lauft auf einer Frontend-Maschine,
die mit dem Controllernetzwerk verbunden ist. Uber diese Maschine kénnen auch das Netz-
werk und die virtuellen Maschinen konfiguriert werden. Bild zeigt die Realisierung iiber
den Managed-Switch sowie das Controllernetzwerk.
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6.2 Testverfahren

Im Vordergrund des Testens steht der Vergleich zwischen den einzelnen Routingalgorith-
men, sowie die allgemeine Performance eines OpenFlow-Netzes in Bezug auf die Multicast-
Kommunikation. Fiir die nachfolgenden Durchsatzmessungen wurde das Kommandozeilen-
Werkzeug iperf benutzt, um 1470 Byte grole UDP-Datagramme mit einer bestimmten Band-
breite iiber einen fest definierten Zeitraum an eine Multicastadresse zu schicken. Die Auswer-
tung am Empfanger iibernimmt ein einfaches Java-Programm, das der Gruppe beitritt und
die Anzahl der angekommenen Pakete innerhalb dieses Zeitraumes ermittelt. Somit berechnet
sich der Durchsatz aus dem Quotienten zwischen den erhaltenen und der Anzahl der gesen-
deten Pakete. Die theoretische Leitungskapazitit liegt bei 1 Gbit/s. In den nachfolgenden
Messungen erreichten die Sender mit iperf eine maximale Bandbreite von etwa 800 MBit/s,
was 100 MB/s entspricht.

Alle aufgefiihrten Ubertragungszeiten sind in Mikrosekunden gemessen. Dazu existiert jeweils
ein weiteres Java-Programm fiir den Sender und den Empfinger. Aufgrund der Ungenauig-
keit zwischen den Uhren auf den Endsystemen wird die Paketumlaufzeit (Round Trip Time)
gemessen und die Ubertragungszeit angenihert, indem die Riicksendezeit abgezogen wird.
Dazu schickt das Sender-Programm ein Datagramm iiber einen UDP-Socket an eine Multi-
castadresse. Das Gegenstiick am Empféanger tritt zuvor einer iiber die Kommandozeile defi-
nierten Multicastadresse bei und schickt das Paket unverziiglich an den Sender zuriick. Dieser
kann nun wiederum die Zeitdifferenz fiir diesen Weg messen. Da bei Multicast die proaktiv
berechneten Routen jeweils nur vom Sender zu den Empfingern giiltig sind, wird die Antwort
auflerhalb des SDN-Testbeds zuriickgeschickt. Aus diesem Grund koénnen sich die Pfade fiir
Hin- und Riickweg stark unterscheiden. Deshalb wurde die Paketumlaufzeit des Riickweges
ebenfalls gemessen und die zugehorige Ubertragungszeit mit der Hélfte angenihert. Ubertra-
gungen auflerhalb des Testbeds an die selbe physikalische Maschine wiesen eine Verzogerung
von durchschnittlich 420us auf, wihrend die Datagramme an die jeweils andere Maschine etwa
600us bendtigten. Die Datagrammgrofie wird analog zu den Durchsatzmessungen mit 1470
Byte gewihlt. Die nachfolgend aufgelisteten Ubertragungszeitmessungen sind Mittelwerte aus
mehreren hundert Messungen. Der erste Messwert wurde dabei verworfen, da er einen stark
erhohten Wert bei der Riicksendung aufgewiesen hat.
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6.2.1 Auswertung fiir quellenbasierte Multicastbaume (KMB)

Zu Beginn soll das Netz im lastfreien Fall untersucht werden. Abbildung |6.3| (oben) zeigt die
Ubertragungszeiten von quellenbasierten Multicastbdumen abhéngig von der Gruppengrofe,
die mittels KMB berechnet wurden. Im unteren Diagramm sind die zugehorigen Durchsatz-
messungen zu sehen. Die Maschine vm11-1 agiert hierbei als Sender fiir eine ansteigende Zahl
vom Empfangern. Der betrachtete Empfanger ist vim12-4, d.h. es wird die ldngst mogliche
Strecke zwischen 2 Maschinen untersucht. Dabei muss beachtet werden, dass, obwohl hier 8
Hosts unterstiitzt werden, die effektive Anzahl an Sendern und Empfinger nur 4 betrégt. Der
Grund hierfir ist, dass der Controller lediglich ToR-Switches verwaltet und deshalb jeweils
zwei Hosts gemeinsam behandelt. Somit fallen hier stets zwei VMs auf einen gemeinsamen
Multicastbaum zusammen.
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Abbildung 6.3: Latenz und Durchsatz eines mit KMB berechneten Baumes abhéngig von der
Gruppengrofe

Die Messwerte aus Abbildung (oben) zeigen eine Ubertragungszeit von 1460us fiir eine
Gruppengrofle von 1. In diesem Fall degeneriert der Multicastbaum zu einer Unicast-Route,
die den kiirzesten Pfad nach Dijkstra darstellt. Auf diesem Pfad liegen 5 Open-vSwitches (rote
Kurve), was eine Verzogerungszeit von etwa 300us pro Switch nahelegt. Zusétzlich dirfte
durch das Umschreiben der Senderadresse die Verzogerungszeit an den ToR-Switches etwas
hoher liegen, als bei einem Switch in der Mitte des Netzes. Bei einer Gruppengréfie von 2 wihlt
der Algorithmus fiir den Empfanger vinl12-4 einen weniger optimalen Pfad, was sich in einer
verlingerten Ubertragungszeit wiederspiegelt. Das gleiche gilt auch fiir die Gruppengréfien 3
und 4. Der Durchsatz aus Bild |6.3| (unten) ist dabei weitestgehend konstant. Da keine weitere
Last auf dem Netz liegt, kann die volle Bandbreite von rund 800MBit/s erreicht werden.
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Die Messwerte fur die restlichen Empfanger sind in Tabelle gezeigt. Es handelt sich um
Ubertragungszeiten bei voller Gruppengréfe fiir den Baum aus (rechts). Auffallig ist der
hohe Wert fiir den Empfanger vin11-2, da zwischen dem Sender und dem Empfinger faktisch
nur ein Switch liegt. Eine Erklédrung hierfiir kénnte die Tatsache sein, dass der ToR-Switch
hier sowohl als Sender- und Empfanger-Switch agiert. Dies bringt zusétzlichen Overhead
am Switch mit sich. AuBlerdem koénnten die Einflisse der Virtualisierung beim Senden und
Empfangen zu einer héheren Verzogerungzeit beitragen. Allerdings konnte dieses Phinomen
im Rahmen dieser Diplomarbeit nicht eindeutig erklart werden.

Empfinger | Laufzeit | Switches 935600 & 347030

vml12-4 1886us | 7

vm12-1 1404us | 5

le 1—3 1 1 14/.,63 3 25:90: 25:90: e 25:90:
93:96:a8 = 94:6d:74 94:6d:84 % 93:97:9¢

vm11-2 692us | 1 D §

i %\; Wl W %) e

vm11-1 vm11-2 vm11-3 vml1l-4 vm12-1 vm12-2 vm12-3 vm12-4
10.2.11.11  10.2.11.22 10.2.11.33 10.2.11.44 10.2.12.11  10.2.12.22 10.2.12.33  10.2.12.44

Tabelle 6.1: Ubertragungszeiten aller Empfinger fiir einen quellenbasierten Baum mit dem
Sender vin11-1

Im Fall eines belasteten Netzwerkes sind vor allem das Load-Balancing und der direkt davon
abhéngige Durchsatz von Relevanz. Diese Faktoren werden in Relation zu der Anzahl akti-
ver Multicastgruppen untersucht. Abhéngig davon wie viele Kanten im Netz belastet oder
ausgelastet sind, wird bei einer Gruppenidnderung mit KMB ein Multicastbaum berechnet,
der eine moglichst unbelastete, als auch kurze Route bevorzugt. Der Faktor «, aus Kapitel [4]
Gleichung [£:3] der das Verhéltnis zwischen Bandbreite und Entfernung bei der Kantenge-
wichtsberechnung bestimmt, wird fiir die nachfolgenden Tests mit o = 0.5 vorbelegt. Somit
werden von KMB sowohl kiirzere Wege als auch gering belastete Kanten im Verhéltnis eins
zu eins mit einbezogen.

Abbildungzeigt die durch KMB berechneten Multicastbdume (in Rot) bei einer steigenden
Anzahl von Gruppen im Netz. Diese Gruppen besitzen jeweils einen Empfinger und senden
gleichzeitig einen konstanten Datenstrom von 370 Mbit/s (schwarze Pfeile). Die Gruppen-
kommunikation beschrinkt sich hierbei auf die Maschinen vm11-3, vim11-4, vm12-2, vim12-3,
um die Testergebnisse nicht durch Uberlastung eines Sender- oder Empfingerhosts zu be-
einflussen. Der rot gefarbte Multicastbaum soll nun Daten von vm11-1 nach vm12-4 senden.
Er wird in den Bildern stets zuletzt berechnet und soll so die Wegwahl des Routingalgo-
rithmus bei steigender Vorbelastung der Kanten demonstrieren. Die Berechnungsreihenfolge
der anderen Béume entspricht der Reihenfolge von Bild [6.4]a bis [6.4ld, wobei pro Bild ein
weiterer Baum hinzukommt. Bis zu einer Gruppenanzahl von mindestens 3 weiteren Gruppen

(Teilbilder [6.4la bis [6.4}c) ist KMB in der Lage, fiir den roten Baum eine Route zu finden,
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die nur unbelastete Kanten nutzt. Sobald 4 verschiedene Gruppen gleichzeitig senden, ist dies
nicht mehr moglich und zwei Kanten iiberlappen sich mit dem gelb gekennzeichneten Baum

in 6.41d.

a) b)
25:90: 25:90: 25:90: 25:90:
93:96:00 94:70:30 93:96:00 94:70:30

25:90: 25:90:  25:90: 25:90: 25:90: / 25:90:  25:90: 25:90:
93:96:a8 94:6d:74 94:6d:84) 93:97:9¢ 93:96:a8 94:6d:74 94:6d:84, 93:97:9¢
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94:70:2c| D 94:70:8¢c 94:70:34 94:6d:a8 94:70:2c| 94:70:8¢c 94:70:34] 94:6d:a8
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Abbildung 6.4: Load-Balancing bei quellenbasierten Baumen in Abhéangigkeit der Gruppen-
anzahl unter Last. Jeder schwarze und gelbe Pfeil symbolisiert eine Auslastung von 370Mbit /s
fiir die zugehorige Kante.

Fiir den in Teilbild [6.4d gezeigten Fall, mit insgesamt 4 aktiven Multicastgruppen, wird nun
der Durchsatz des roten Baumes untersucht. Dieser sendet dabei mit der vollen Bandbreite
von 800 Mbit/s. Die Ergebnisse sind in Abbildung (unten) zu sehen. Alle schwarz ge-
kennzeichneten Baume senden dabei einmal nicht (0 Mbit/s) sowie einmal mit 370 Mbit/s,
wéahrend der gelbe Baum nun eine variable Bandbreite aufweist. Bis zu einer Senderate von
100 MBit/s bzw. 200 MBit/s ist fiir beide Kurven kein nennenswerter Abfall des Durchsat-
zes zu verzeichnen. Durch die Uberlappungen zwischen den zwei betrachteten Baumen tritt
jedoch bei héheren Senderaten eine Uberlast auf, woraufhin Pakete verloren gehen. Wihrend
in der Kurve fiir 0 Mbit/s fir geringe Senderaten noch die volle Bandbreite erreicht wird,
ist diese fiir die Messungen mit 370 Mbit/s zu Beginn bereits deutlich reduziert. Dies konnte
auf die Virtualisierung zuriickzufithren sein, da die einzelnen Hosts lediglich durch 2 physi-
kalische Rechner realisiert sind. Bei einer Sendeleistung von 500 MBit/s ist der Durchsatz
um 62% bzw. 71% abgefallen und hélt sich anschlieend bei einem Wert von 475 Mbit/s. Die
Ubertragungszeiten (oben) zeigen einen leicht ansteigenden Trend bei hoherer Leistungs-
auslastung. Der Maximalwert fiir die 370 Mbit/s Kurve liegt mit 1728us insgesamt 180us
iiber dem Startwert. Die Werte fiir die 0 Mbit/s Kurve liegen im Schnitt 358us darunter.
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Abbildung 6.5: Latenz und Durchsatz des roten Baumes in Abhéngigkeit der Senderate des
gelben Baumes aus Abbildung @d

Fiir die Messung der Ubertragungszeiten zu allen anderen Empfingern wird der rote Baum
aus Abbildung[6.4ld zur vollen Gruppengrofie, die alle 4 Empfinger umfasst, erweitert. Abbil-
dung[6.6]zeigt den Vergleich zwischen einem komplett unbelasteten Netz sowie fiir vorbelastete
Netze mit Senderaten von 370Mbit/s und 800Mbit /s fiir sdmtliche in Abbildungl6.4/d vorhan-
denen Multicastbdume. Die Messung erfolgt wieder zwischen vm11-1 als Sender und jeweils 4
Empfanger-VMs, verteilt iiber die vorhandenen ToR-Switches. Im unbelasteten Fall hangt die
Verzogerungszeit vor allem von der Lange des Pfades ab, wofiir pro Switch etwa 300us bend-
tigt werden. Senden alle 4 parallel existierenden Bdume mit einer Rate von 370 Mbit/s oder
800 Mbit/s, ist eine erhohte Ubertragungszeit aufgrund von insgesamt drei Kanteniiberlap-
pungen zu den Empféngern vm12-1 und vm12-4 festzustellen. Der im Vergleich stark erhohte
Wert fiir vin12-1 ist aufgrund der hohen Uberlast zwischen ToR-Switch und Host zu erkléren,
da diese Maschine der Empféanger fiir alle vier aktiven Multicastbdume darstellt. Somit tritt
dort bereits bei einer Rate von 370 Mbit /s eine starke Uberlast mit Paketverlust auf, wihrend
sich dies fiir vin12-4 erst bei einer Senderate von 800Mbit/s auswirkt.
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Empfianger VM

—o— Ubertragungszeit (unbelastetes Netz) ==#==Ubertragungszeit (370 Mbit/s) ==#==Ubertragungszeit (800 Mbit/s)

Abbildung 6.6: Verzégerungszeiten fiir verschiedene Sender im un- und vorbelasteten Netz-
werk

6.2.2 Auswertung fiir Shared-Trees

Um Datagramme iiber einen Shared-Tree verschicken zu kénnen, werden die Pakete zuerst
iiber eine Unicast-Route an den Rendezvous-Knoten geschickt. Die Pfadléange und die daraus
resultierenden Ubertragungszeiten hingen vom Sender ab, da der Rendezvous-Knoten nur
beziiglich der Empfangergruppe und nicht nach den Sendern optimiert wird.
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Abbildung 6.7: Ubertragungszeit und Anzahl der Switches eines Shared-Trees, inklusive den
Unicast-Routen, in Abhédngigkeit vom Senderknoten und der Gruppengrofie.
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Abbildung (oben) beleuchtet die Ubertragungszeiten in einem Shared-Tree an den festen
Empfénger vin12-3 in Abhéngigkeit des Senders und der Gruppengréfie. Bei einer Gréfle von
1 degeneriert der Multicastbaum zur Unicast-Kommunikation und das Ergebnis unterscheidet
sich nicht von KMB aus Abschnitt In diesem Fall weist eine Kommunikation ausgehend
von vmll-1 die héchste Ubertragungszeit auf, da der Pfad mit 5 Switches am lingsten ist.
Ein Datagramm von vm12-1 oder vm12-4 muss dagegen nur einen Switch durchqueren. Ab ei-
ner Gruppengrofle von 3 wird einer der beiden Core-Switches als Rendezvous-Knoten gewéhlt.
Dadurch verldngert sich auch der Pfad zu vin12-1 bzw. vin12-4 auf jeweils 5 Zwischenschritte,
was so auch eine verlingerte Ubertragungszeit mit sich bringt. Die Lingen aller Pfade abhéin-
gig der Gruppengrofie sind in (unten) zu sehen. Sie beinhalten sowohl die Unicast-Route
zum Rendezvous-Knoten als auch die eigentliche Verteilung entlang des Baumes.

a) b)
25:90: 25:90: 25:90: 25:90:
93:96:00 94:70:30 93:96:00 94:70:30

25:90: 25:90: 25:90: 25:90: 25:90: 25:90: 25:90: 25:90:
93:96:a8 94:6d:74 94:6d:84, < 93:97:9¢ 93:96:a8 94:6d:74 94:6d:84 93:97:9¢

25:90: 25:90:  25:90: N 25:90: 25:90: 25:90:  25:90: N 25:90:
94:70:2c 94:70:8c 94:70:34 94:6d:a8 94:70:2c 94:70:8c 94:70:34 94:6d:a8

d)

25:90: 25:90:
93:96:00 94:70:30

25:90: 25:90: 25:90:  25:90: 25:90:
93:97:9c 93:96:a8 94:6d:74 94:6d:84! 93:97:9c

25:90:  25:90: . 25:90: 25:90: 25:90:  25:90: L 25:90:
94:70:8c 94:70:34 94:6d:a8 94:70:2¢ 94:70:8¢ 94:70:34 %) 94:6d:a8

Abbildung 6.8: Wahl des Rendezvous-Knoten bei ansteigender Gruppengrofie eines Shared-
Trees fiir die Messungen aus Abbildung

Die Baume der verschiedenen Gréflen sind in Abbildung gezeigt. Dabei ist der Multicast-
baum und der Rendezvous-Knoten stets rot und die Unicast-Routen, abhéngig vom Sender,
jeweils in einer anderer Farbe gekennzeichnet. Abbildung [6.8a zeigt, dass der Rendezvous-
Knoten bei einer Gruppengréfie von 1 mit dem Empfingerknoten zusammenfillt. Sind 2
Empfinger vorhanden, wird der néchstliegende Zwischenknoten als Rendezvous-Knoten ge-
wéhlt, was hier dem Switch 25:90:93:97:9c entspricht. Ab einer Gréfie von 3 findet sich der
Rendezvous-Knoten dann auf der Ebene der Core-Switches.

Nachfolgend wird das Netz im belasteten Zustand betrachtet. Abbildung zeigt die Uber-
tragungszeit und den Durchsatz von vm11-1 an alle Empfénger in Abhéngigkeit der Grup-
penanzahl. Diese Gruppen haben eine feste Grofle von 2 Empféingern und senden ausgehend
von vinl1-4 parallel mit einer Datenrate von 370 Mbit/s. In den Bildern a bis d sind
die zugehorigen Baume in aufsteigender Reihenfolge zur Gruppenanzahl zu sehen. Der rote
Baum sendet mit voller Bandbreite. Er entspricht dabei immer der Gruppe, fir die die Mes-
sung zu Grunde liegt. Eine dazu gehorige Unicast-Route zum Rendezvous-Knoten ist orange

79



dargestellt. Die Belastung einer Kante von 370 Mbit/s durch einen anderen Multicastbaum
oder dessen zugehorige Unicast-Route ist durch einen schwarzen Pfeil gekennzeichnet. Um
das Load-Balancing zu demonstrieren, wurde der rote Baum stets zuletzt berechnet.
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Abbildung 6.9: Latenz und Durchsatz eines Shared-Trees bei steigender Gruppenanzahl.

Die Ergebnisse nach (unten) zeigen, dass mit steigender Gruppenanzahl die Wahrschein-
lichkeit, eine vorbelastete Kante zu belegen, stark ansteigt. Fiir den Empfianger vim11-3 kann
ab einer Anzahl von 4 Gruppen eine Kanteniiberlappung nicht mehr vermieden werden. Fiir
vm12-2 und vm12-4 findet bereits bei einer Gruppenanzahl von 2 eine Doppelbelegung statt.
Bei einer Grofle von 4 miissen diese sich bereits eine Leitung mit 2 anderen Sendern teilen,
wodurch der Durchsatz um mehr als ein Drittel einbricht. Betrachtet man vm12-1, dann fillt
der Durchsatz schon bei einer Gruppenanzahl von 1 stark ab. Grund hierfiir ist, dass vim12-1
neben vm11-1 als Empfénger fiir alle im Moment sendenden Multicastgruppen agiert. Das hat
zur Folge, dass eine Uberlast auf der Leitung zwischen ToR-Switch und Host auftritt. So ist be-
reits bei einer Gruppengréfie von 2 diese Kante komplett ausgelastet und der Durchsatz bricht
um mehr als die Hélfte ein. Allgemein ist zu beobachten, dass durch die ldngeren Wege eines
Shared-Trees, im Gegensatz zu quellenbasierten Baumen, auch mehr Kanteniiberlappungen
auftreten, was sich durch einen schlechteren Durchsatz duBert. Die Ubertragungszeiten aus
(oben) zeigen das ausgehend von der Durchsatzbetrachtung erwartete Verhalten. Steigen-
de Last fiihrt zu héheren Zeiten sowie einer Abweichung von vim12-1 ab einer Gruppenanzahl
von 4 aufgrund der Uberlast zwischen ToR-Switch und Host.
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a) b)
25:90: 25:90: 25:90: 25:90:
93:96:00 94:70:30 93:96:00 94:70:30

\

25:90: 5:90:  25:90: 25:90: 25:90: 25:90:  25:90: 25:90:
93:96:a8 94:6d:74 94:6d:8 93:97:9¢ 93:96:a8| 94:6d:74 94:6d:84) 93:97:9¢

25:90: 25:90: 25:90: 25:90: 25:90: Q 25:90: 25:90: 25:90:
94:70:2¢ 94:70:8¢c  94:70:3. 94:6d:a8 94:70:2c| 94:70:8c  94:70:3 94:6d:a8

s 25:90: d) 500 25:90:

93:96:00 94:70:30 93:96:00 94:70:30

25:90: 25:90:  25:90: 25:90: 25:90:

:90: s 25:90:
93:96:a8 94:6d:74 94-6d:8 93:97:9¢ 939638 25:90:  25:90:

94:64:74 94:60:8 93:97:9¢
25:90: 25:90:  25:90: 25:90: 25:90: 2500 25.0: -
w702 94:70:8¢c 94:70:3 94:6d:a8 94:70:2¢ 94:70:8¢ 94:70:3 0a:6d:a8

Abbildung 6.10: Load-Balancing in Abhéngigkeit der Gruppenanzahl unter Last fiir die Mes-
sungen aus Abbildung [6.9]

6.2.3 Vergleich der Routingalgorithmen fiir dynamische Gruppen

Wihrend in den vorangegangenen Messungen keine Anderungs-Events zur Laufzeit betrachtet
wurden, soll nun die Performanz der Routingalgorithmen bei plétzlich auftretenden Gruppen-
anderungen untersucht werden. Dafiir dient ein Baum mit 2 Empfangern als Ausgangsgruppe.
Gemessen wird der Durchsatz zwischen vim11-1 und vm12-4 wihrend der Neueinrichtung der
Routen. Abbildung zeigt die Ergebnisse in Abhédngigkeit des Routingalgorithmus und
den Anderungen pro Sekunde. Anderungen treten innerhalb einer Zeitspanne von 10 Sekun-
den in einer festen Reihenfolge auf, wobei vin12-4 der einzige statische Empfinger im Baum
darstellt. Zuerst treten die restlichen Empfanger der Gruppe bei, worauthin 2 weitere diese
wieder verlassen. Dieser Vorgang wird dann mit verschiedenen VMs wiederholt.

Neben KMB und Shared-Tree werden auch KMB im simple-Mode und iGA als Vergleichs-
moglichkeiten herangezogen. Im simple-Mode werden die berechneten Routen ohne Abgleich
mit dem vorher existierenden Baum auf Datenebene installiert. Existierende Kanten kénnen
somit nicht wiederverwendet werden. Dafiir ist der Rechenaufwand aber um einiges geringer.
Weiterhin soll iGA als Stellvertreter fiir inkrementelle Algorithmen dienen, bei denen keine
Neuberechnung stattfindet, sondern ein vorher existierender Baum modifiziert wird. Dadurch
werden die Flow-Anderungen auf Datenebene minimiert.

Da sdmtliche Algorithmen zu Beginn auf KMB beruhen, zeigt sich in Abbildung bei 0.1
Anderungen/s fiir alle Kurven ein leichter Paketverlust, der auf der initialen Neueinrichtung
der Routen beruht. Signifikante Unterschiede sind erst ab einer Anderungsrate von 0.3 zu
erkennen. Die Moglichkeit alte Routen bei KMB beizubehalten, erweist sich bei steigender
Anderungszahl gegeniiber des reduzierten Rechenaufwandes von KMB im simple-Mode als
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Abbildung 6.11: Vergleich der Routingalgorithmen abhéngig von der Anzahl der Gruppenén-
derungen

signifikanter Vorteil. Daraus ldsst sich schlieen, dass die Einrichtung der Routen auf Date-
nebene zeitkritischer ist, als eine erhohte Rechenzeit im Controller. Die Neueinrichtung eines
Shared-Trees hingegen hat im Test die grofiten Paketverluste zu verzeichnen, was sich in einer
Reduzierung des Durchsatzes wiederspiegelt. Der Grund hierfiir ist vor allem auf die komplet-
te Neueinrichtung der Unicast-Routen beim Wechsel des Rendezvous-Knoten zuriickzufiihren.
Das beste Ergebnis liefert erwartungsgemafl iGA. Jedoch féllt der Unterschied zu KMB relativ
gering aus. Es iiberwiegen deshalb klar die Vorteile einer besseren Routenwahl durch KMB,
weshalb der inkrementelle Ansatz in dieser Arbeit nicht weiter verfolgt wurde.

6.2.4 Overhead bezogen auf die Flow-Tabellen-GroBe

Wiéhrend ein Shared-Tree in der Routenwahl und der Performance bei Gruppenénderungen
eindeutig schlechtere Ergebnisse liefert, liegt der Vorteil in der reduzierten Flowanzahl auf
Datenebene. Bei einem drohenden Tabelleniiberlauf findet deshalb ein Wechsel des Routin-
galgorithmus statt. Der Anstieg der Tabelleneintrdge in Abhéngigkeit der Gruppenanzahl
ist in Abbildung [6.12] dargestellt. Die Kurven zeigen die durchschnittliche sowie die maxi-
male Anzahl aller Flows tiber sdmtliche Switches im Netz bei der Verwendung von KMB
(rote Kurven) und Shared-Tree (griine Kurven). Im Vergleich benétigen quellenbasierte Béu-
me, fiir dieselbe Multicastgruppe, das 1, 6-fache an Flow-Eintrdgen als ein entsprechender
Shared-Tree. Die maximale Anzahl von Flows in einem Switch wachst fiir KMB im Test um 5
Eintrége pro Multicastgruppe, die durchschnittliche Anzahl um etwa 2.4 Eintrédge pro Switch.
Im Vergleich dazu wéchst ein Shared-Tree nur um 3 Eintrige in der Maximums-Kurve sowie
um durchschnittlich 1.7 Eintrdge pro Switch. Diese Werte Verhalten sich jedoch nicht immer
linear. Die Flowanzahl ist abhéngig von der Wegwahl des Routingalgorithmus. Langere We-
ge flihren demnach auch zu mehr Flow-Eintragen. Fiir die fiinfte Multicastgruppe in diesem
Beispiel wiahlt KMB aufgrund der Kantenauslastung einen leicht verlangerten Weg, was die
durchschnittliche Anzahl an Tabelleneintriage von den erwarteten 13 auf 13.3 erhoht. Das
erklart die leichte Kriitmmung der Kurve aus Abbildung [6.12]
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Abbildung 6.12: Anzahl der maximalen und durchschnittlichen Tabelleneintrage auf Datene-
bene abhéngig von der Gruppenanzahl

6.2.5 Ausfallbetrachtung

Zuletzt wird die Robustheit des Systems untersucht. Falls ein Switch- oder Leitungsausfall
auftritt, wird dieses Ereignis an die Routingkontrolle gemeldet. Diese fithrt eine Neuberech-
nung der betroffenen Multicastbdume oder Unicast-Routen aus. Der Durchsatz ist dabei durch
die Zeit, die das Controllerprogramm bendtigt, um den Ausfall zu erkennen sowie durch die
Berechnung und Einrichtung der neuen Routen bestimmt. Letzteres wurde bereits im Rah-
men von Gruppendnderungen untersucht. Die Verzogerungszeit, vom Auftritt eines Ausfalles
bis hin zur eigentlichen Neuberechnung, wurde mit durchschnittlich 9.67 Sekunden gemessen.
Innerhalb dieser Zeitspanne treten Paketverluste fiir die betroffenen und im Moment aktiven
Multicastgruppen auf.

Fiir diesen Test wird ein Multicastbaum eingerichtet, der iiber den Switch mit der DPID
»,25:90:94:6d:74% verlauft. AnschlieBend wird eine Firewall-Regel aktiviert, mit der man Ver-
bindungen zum Controller fiir diesen Switch blockiert. Gleichzeitig werden alle zugehorigen
Eintrage in der Flow-Table geloscht. Der TopologyListener meldet daraufhin den Ausfall und
die Ausfallbehandlung des Multicastdienstes bestimmt alle in Folge dessen ausgefallenen Lei-
tungen. AnschlieBend werden sémtliche eingerichteten Biume nach Uberlappungen mit einer
ausgefallenen Kante durchsucht und an die Routenberechnung weitergegeben. Die Kantenge-
wichte werden zuvor auf unendlich gesetzt, um eine Neubelegung dieser Kanten zu verhindern
und dabei nicht auf den néchsten Aktualisierungszyklus der Netzzustandsverwaltung warten
Zu miussen.

Die gemessene Zeit von 9.67 Sekunden wird hauptséchlich durch die Zykluszeit der LLDP-
Anfragen bestimmt. Bei Floodlight betragt sie initial 15 Sekunden. Erhélt der Controller fiir
eine Verbindungsleitung keine LLDP-Nachricht mehr, resultiert dies in einem Link-Down-
Ereignis. Aufgrund der Grofienordnung dieser Erkennungszeit ist die Zeit fiir die Neube-
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rechnung und Einrichtung im betrachteten Testumfeld vernachléssigbar gering. Daraus kann
geschlossen werden, dass diese Zeitspanne von 15 Sekunden, unabhéngig vom gewéhlten Rou-
tingalgorithmus, eine obere Schranke fiir die Ausfallerkennung darstellt. Durch das Herabset-
zen der Zykluszeit wére eine schnellere Reaktion bei Ausféllen zu erwarten. Jedoch fithrt dies
zu einer Erhohung der Packet In-Nachrichten am Controller. Die zusétzliche Controllerlast
ist dann stark von der Gréfle des vorliegenden Netzes abhéngig. Falls der Ausfall einer Ver-
bindung zu einem Port-Down-Ereignis fithrt, muss Floodlight nicht auf die LLDP-Antworten
warten und registriert den Ausfall, ohne Verzégerung, sofort. In diesem Fall gleicht die Durch-
satzbetrachtung der, fiir die Gruppendnderungen.

6.2.6 Fazit

Die Ergebnisse aus den vorangegangenen Abschnitten zeigen, dass die Verzégerungszeiten
eines Shared-Trees aufgrund langerer Pfade im Mittel hoher sind als fiir einen quellbasierten
Baum. Die Lénge hingt stark von der Wahl des Rendezvous-Knoten und somit von der
Anzahl und Position der Empfinger ab. Allgemein konnte eine Verzogerungszeit von 300us
pro Switch festgestellt werden. Unabhéngig vom Routingalgorithmus betrigt die gemessene
Verzogerungszeit bei einem Ausfall vertretbare 9.67 Sekunden.

Der Durchsatz wird vor allem durch die Lastverteilung bestimmt. Auch hier hat KMB den
Vorteil, bessere Wege zu finden und reduziert dadurch die Wahrscheinlichkeit einer Uberlast
auf den Kanten. Bei Shared-Trees fithren Umwege tiber den Rendezvous-Knoten und der
héhere Anderungsaufwand fiir die Unicastrouten zu verschlechtertem Durchsatzverhalten.
Die Vorteile liegen wiederum in der geringeren Anzahl der Tabelleneintrége, die in der Flow-
Table fiir die Einrichtung nétig sind. Somit eignet sich ein Shared-Tree besonders dann, wenn
der Tabellenplatz knapp wird und ein Uberlauf droht.

Die im Zuge der Evaluation durchgefiihrten Tests implizieren, dass der Multicastdienst durch-
aus in der Praxis Anwendung finden kann. Die ermittelten Verzogerungszeiten zeigen, dass
selbst mit virtualisierter Hardware ein performanter Datenaustausch in OpenFlow-basierten
Netzen moglich ist. Auflerdem spiegeln die im Zuge der Durchsatzmessungen dargelegten Load
Balancing Eigenschaften eine gute Ausnutzung heutiger Datencenter-Topologien wieder. Dies,
in Zusammenhang mit der hohen Flexibilitdt und der Optimierung der Routingalgorithmen,
kénnten in Zukunft ein auschlaggebendes Argument fiir die Integration von SDN-basierten
Diensten in Rechnernetze darstellen.
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7 Zusammenfassung und Ausblick

In diesem Kapitel werden in[7.1]die vorherigen Abschnitte zusammengefasst und das Erreichen
der Ziele dieser Diplomarbeit bewertet. Anschliefend wird in Abschnitt ein Ausblick auf
zukunftige Arbeiten gegeben.

7.1 Zusammenfassung

Das Ziel dieser Arbeit war die Konzeption und Implementierung eines OpenFlow-basierten
IP-Multicast-Dienstes fiir Datenzentren. Dieser sollte den Kriterien aus Kapitel beziiglich
der Skalierbarkeit, Effizienz, Robustheit und Integration geniigen und ein moéglichst optimales
Routing auf einer globalen Netzwerksicht realisieren. Waren bisherige Multicastlosungen fast
ausschlieBlich verteilt implementiert, bietet das Software defined Networking (SDN) einen
zentralisierten Ansatz, der fiir ein neuartiges Multicast-Routing ausgenutzt werden kann. In
Kapitel [4| wurden im Zuge einer Konzeption konkrete Prozesse herausgearbeitet, die fiir einen
zentralen Multicastdienst umgesetzt werden miissen. Eine Untersuchung des Steinerbaum-
problems resultierte in der Auswahl der Heuristik KMB zur Realisierung eines verbesserten
aber trotzdem skalierbaren Routings. Fiir eine gleichméflige Lastverteilung im Datencenter-
netzwerk wurde eine Routingmetrik, bestehend aus einer gewichteten Summe aus Bandbreite
und Entfernung, bevorzugt. Die Auswertung hat gezeigt, dass so eine gute Lastverteilung
erreicht wird, ohne einen komplexeren Routingalgorithmus implementieren zu miissen. Dabei
ist es durch proaktive Einrichtung der Routen, sowie durch den Vergleich bestehender Bau-
me bei Gruppendnderungen gelungen, eine effiziente Routeneinrichtung zu realisieren und
die Controllerverzogerung als potentiellen Flaschenhals zu reduzieren. Zusétzlich ermogli-
chen effiziente Datenstrukturen basierend auf Hash-Tabellen einen schnellen Zugriff auf die
verschiedenen Controllerinformationen wie Multicastgruppen, eingerichtete Routen, IGMP-
Zahlerwerte und die kantengewichtete Netztopologie. Skalierbarkeitsprobleme beziiglich der
Flow-Eintrage in den Switches werden durch einen Shared-Tree Algorithmus, auf den wah-
rend der Laufzeit gewechselt werden kann, vorgebeugt. Der Multicastdienst ist aulerdem in
der Lage, Topologiednderungen und insbesondere Leitungs- und Switchausfélle zu erkennen
und die eingerichteten Routen automatisch umzuleiten. Sowohl bei Gruppen- als auch Topo-
logiedinderungen zeigten die Testergebnisse Paketverluste in vertretbarem Umfang. Fiir die
Verwaltung der Gruppen im Controllerprogramm wird IGMP implementiert. Dabei ist der
Multicastdienst in der Lage sowohl IGMPv1, IGMPv2, als auch IGMPv3 Nachrichten zu
verarbeiten und kann somit ohne weiteres in bestehende OpenFlow-Netze integriert werden.
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Die erarbeitete Konzeption wurde anschliefend in Kapitel 5| als Erweiterung fiir den SDN-
Controller Floodlight in Java implementiert. Prozesse, die im Zuge der Konzeption herausgear-
beitet wurden, konnten eins zu eins in Floodlight-Module iibernommen werden. Als wichtigste
Datenstruktur kam die ConcurrentHashMap zum Einsatz. Sie ermoglicht einen schnellen und
uneingeschrankten parallelen Zugriff auf die gespeicherten Controllerinformationen. Damit
plotzlich auftretende Ereignisse wie Topologie- oder Gruppendnderungen schnell an die Rou-
tenberechnung gemeldet werden kénnen, wurde fiir die Kommunikation zwischen den Modulen
auf das Observer-Pattern zuriickgegriffen.

Schliellich wurde der Dienst auf dem in Kapitel vorgestellten Testbed evaluiert. Die
Testumgebung spiegelt einen Ausschnitt aus einer realistischen Fat-Tree Topologie wieder.
Dabei wurden Open-vSwitches verwendet. Die Ergebnisse haben gezeigt, dass die Verzoge-
rungszeiten einer Route bei etwa 300us pro Switch liegen und der Durchsatz in einem lastfreien
Netz annahernd die maximale Bandbreite erreicht. Wobei beachtet werden muss, dass es sich
bei diesen Werten um virtuelle Switches handelt. Eine Evaluierung auf realer Hardware war
zum Zeitpunkt dieser Diplomarbeit nicht méglich. Trotzdem kann geschlussfolgert werden,
dass der hier beleuchtete Ansatz fiir einen Multicastdienst auf OpenFlow-Basis eine gute und
vor allem flexible Alternative zu bestehenden Multicastunterstiitzungen in Datencenternetzen
gesehen werden kann.

7.2 Zukiinfige Arbeiten

Zum Zeitpunkt dieser Arbeit unterstiitzen der Floodlight Controller und die hier verwen-
dete virtualisierte Hardware nur den OpenFlow Standard 1.0. Fiir eine saubere Umsetzung
von Multicasting auf einem OpenFlow-Switch, sollte dieser jedoch mindestens Version 1.1.0
unterstiitzen. Der Grund hierfiir liegt in der fehlenden Umsetzung der Group-Tables, die es
erlauben wiirden ein Paket {iber mehrere Ports zu senden. Aus diesem Grund beruht die
Konzeption dieser Arbeit bereits auf Version 1.3, obwohl die beschriebene Implementierung
in Kapitel 5| auf Version 1.0 basiert. Eine Implementierung und Test mit Group-Table Unter-
stiitzung war wihrend dieser Diplomarbeit nicht méglich und sollte Gegenstand zukiinftiger
Untersuchungen sein.

Zusétzlich sind Verbesserungen des hier erarbeiteten Multicastdienstes denkbar, die auf einer
feineren Unterscheidung der Hostgeréte basieren und somit eine zielgenauere Auslieferung
bieten konnen. Wéhrend die hier vorgestellte Losung darauf verzichtet, einzelne Hosts zu ver-
walten, konnte dies jedoch einen zusétzlichen Gewinn an Performance auf Datenschicht mit
sich bringen. Auflerdem wére eine Behandlung von IGMPv3-Reports, bei denen der Emp-
fénger selbst bestimmen kann von welchen Sendern Multicastnachrichten ausgeliefert werden
sollen, moglich.

Als Erweiterung ist es auflerdem vorstellbar, IGMP durch eine entsprechende auf OpenFlow
zugeschnitte Losung zu ersetzen. Entsprechende Vorschléange wurden von Marcondes et al.
IMSG™12] fiir IPTV-Anwendungen aufgegriffen. Die Autoren kommen zu dem Schluss, dass
IGMP bei hoher Gruppendynamik einen grofien Einfluss auf die Verzogerung hat. Der Nachteil
ist allerdings, dass eine entsprechende Anpassung der Hosts notig sein wird. Damit kann der
Dienst nicht mehr so einfach in ein bestehendes OpenFlow-Netzwerk integriert werden.
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Zusétzlich muss angemerkt werden, dass sich die hier vorgestellte Losung auf einen SDN-
Controller reduziert. Um die Verfiigbarkeit zu erhohen, knnten zukiinftige Arbeiten ein ver-
teiltes Controllerprogramm anstreben. Das wiirde das Risiko, dass der Controller ein Single-
Point-of-Fuailure darstellt reduzieren und koénnte die Controller-Last in groflen Netzwerken
noch weiter verringern.
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