
Institut für Parallele und Verteilte Systeme

Abteilung Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

70569 Stuttgart
Germany

Diplomarbeit Nr. 3420

Konzeption und Implementierung
eines OpenFlow-basierten

IP-Multicast-Dienstes
für Datenzentren

Jonas Danzl

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Betreuer: Dr. rer. nat. Frank Dürr

begonnen am: 10.12.2012

beendet am: 10.06.2013

CR-Klassifikation: C.2.1, C.2.3, C.2.2, C.4, G.2.2, G.1.6

Kurzfassung

Die rasante Verbreitung von Mobile-Computing, Cloud-Services und Big-Data Anwendun-
gen führt zu immer größeren Datenmengen, die in Datencentern verwaltet werden müssen.
Für ein effizientes Verteilen und Verarbeiten dieser Daten ist eine Multicast-Kommunikation
inzwischen unabdingbar geworden. Dennoch führt der rapide Anstieg von Speicher und Re-
chenkapazitäten sowie ein hoher Grad an Virtualisierung zu immer höheren Anforderungen
an die Netzinfrastruktur. Die heutigen statischen Netzwerke benötigen eine aufwändige, ma-
nuelle Administration und passen nicht mehr ins Systemumfeld moderner Datencenter. Es
sind Lösungen gefordert, die dynamisch auf Ausfälle, Datenverkehrsänderungen oder auf die
individuellen Bedürfnisse einzelner Anwendungen reagieren können. Mit Software defined Net-
working (SDN), in Zusammenhang mit dem OpenFlow-Protokoll, existiert eine flexible Netz-
werkarchitektur, die diesen Anforderungen begegnen kann. Während bisheriges Multicast-
Routing durch verteilte, nicht-optimale und komplexe Algorithmen eingeschränkt ist, bie-
tet ein OpenFlow-basierter IP-Multicast-Dienst die Möglichkeit, einfachere und effizientere
Lösungen zu finden. Austauschbare Softwaremodule ermöglichen es, mehrere Routingalgo-
rithmen zu implementieren und diese zur Laufzeit beliebig zu wechseln. Gleichzeitig können
die speziellen Anforderungen in Datenzentren einbezogen werden. Im Zuge dieser Diplomar-
beit wird ein solcher Dienst konzipiert, implementiert und ausgewertet. Hierfür werden auf
Grundlage des Steinerbaumproblems optimierte Routing-Lösungen betrachtet, die in bisheri-
gen, verteilt verwalteten Netzen, als nicht praktikabel galten. Durch proaktive Vorberechnung
und Einrichtung sämtlicher Multicast-Routen, wird dabei eine Paket-Weiterleitung in Line
Rate ermöglicht. Um vorhandene Netz-Ressourcen innerhalb eines Datencenters möglichst op-
timal auszunutzen, werden Methoden aus dem Bereich des Traffic Engineerings untersucht.
Die Evaluation zeigt, dass der Dienst effizient arbeitet und skalierbar ist. Gleichzeitig wird
eine eine Optimierung der Multicastbäume und eine Verbesserung der Lastverteilung erreicht.

Inhaltsverzeichnis

Abbildungsverzeichnis III

1 Einleitung 1
1.1 Motivation . 1
1.2 Aufbau dieser Arbeit . 3

2 Grundlagen 5
2.1 Multicast-Adressierung und Gruppenverwaltung 5

2.1.1 IP-Multicast im OSI-Schichtenmodell 6
2.1.2 Adressierung . 7
2.1.3 Gruppenverwaltung mit IGMP . 8

2.2 Multicast-Routing . 9
2.2.1 Verteilbäume . 10
2.2.2 Metriken . 10

2.3 Global optimierte Wegfindung . 11
2.3.1 Das Steinerbaumproblem . 12
2.3.2 QoS und Multimetriken . 14

2.4 Software Defined Networking . 15
2.4.1 SDN-Architektur . 15

2.5 OpenFlow . 17
2.5.1 OpenFlow-Switches . 18
2.5.2 OpenFlow-Protokoll . 19

2.6 Verwandte Arbeiten . 20

3 Anforderungen und Systemmodell 23
3.1 Problemstellung . 23
3.2 Systemmodell . 24
3.3 Anforderungen an einen OpenFlow-basierten Multicast-Dienst im Datencenter 25

4 Konzeption eines OpenFlow-basierten Multicast-Dienstes 27
4.1 Systemarchitektur . 27
4.2 Kommunikation mit der Datenschicht und Nachrichtenfilterung 29
4.3 Netzstrukturverwaltung . 31
4.4 Netzzustandsverwaltung . 33

4.4.1 Ermitteln der Netzstatistiken . 34
4.4.2 Überlauf- und Ausfallkontrolle . 36
4.4.3 Berechnung der Kantengewichte . 37
4.4.4 Datenstruktur . 39

I

4.5 Gruppenverwaltung . 40
4.5.1 IGMP über OpenFlow . 41
4.5.2 Datenstruktur . 42
4.5.3 Verarbeitung von IGMP-Nachrichten im Controller 43

4.6 Routenverwaltung . 45
4.6.1 Datenstruktur . 46

4.7 Routenberechnung und Flow-Modifikation . 47
4.7.1 Proaktives vs. reaktives Routing . 48
4.7.2 Routingkontrolle . 49
4.7.3 Routing-Algorithmen . 51
4.7.4 Flow-Modifikation . 56

5 Multicast-Implementierung in Floodlight 63
5.1 Floodlight OpenFlow-Controller . 63
5.2 Erweiterung von Floodlight um einen Multicastdienst 65

6 Evaluierung 71
6.1 Versuchsaufbau . 71
6.2 Testverfahren . 73

6.2.1 Auswertung für quellenbasierte Multicastbäume (KMB) 74
6.2.2 Auswertung für Shared-Trees . 78
6.2.3 Vergleich der Routingalgorithmen für dynamische Gruppen 81
6.2.4 Overhead bezogen auf die Flow-Tabellen-Größe 82
6.2.5 Ausfallbetrachtung . 83
6.2.6 Fazit . 84

7 Zusammenfassung und Ausblick 85
7.1 Zusammenfassung . 85
7.2 Zukünfige Arbeiten . 86

Literaturverzeichnis 89

II

Abbildungsverzeichnis

2.1 Verteilung von Multicastpaketen entlang eines Multicastbaumes 6
2.2 IGMP-Kommunikation in herkömmlichen Netzwerken 8
2.3 Vergleich zwischen Spann- und Steinerbaum 12
2.4 SDN-Architektur . 16
2.5 Spezifikation eines OpenFlow-Switches . 17
2.6 Headerfelder in OpenFlow . 17
2.7 Beispielkommunikation gemäß dem OpenFlow-Protokoll 19

3.1 Fat-Tree Topologie . 24

4.1 Systemarchitektur für einen OpenFlow-basierten Multicastdienst 28
4.2 Flussdiagramm des Nachrichtenfilters . 30
4.3 LLDP-Kommunikation der Netzstrukturverwaltung 32
4.4 Aufgaben der Netzzustandsverwaltung . 33
4.5 Anpassung der Intervallzeit . 35
4.6 Beispielnetz als kantengewichteter Graph und Adjazenzliste 38
4.7 Aufgaben der Gruppenverwaltung . 40
4.8 Zuordnung der Gruppenmitglieder über eine Hashtabelle 43
4.9 Verarbeitung ankommender IGMP-Nachrichten in der Gruppenverwaltung . . 44
4.10 Übersicht über die Routenverwaltung . 45
4.11 Datenstruktur der Routenverwaltung . 47
4.12 Übersicht zur Routenberechnung und Flow-Modifikation 48
4.13 Verarbeitung von Gruppenänderungen in der Routingkontrolle 50
4.14 Verarbeitung von Switch- und Leitungsausfällen in der Routingkontrolle . . . 51
4.15 Beispiel für den KMB-Algorithmus . 53
4.16 Shared-Tree mit zugehörigen Flow-Tables . 54
4.17 Ablauf und Phasen der Flow-Modifikation . 58
4.18 Lösch- und Deployment-Phase für einen quellenbasierten Multicastbaum . . . 59

5.1 Architektur von Floodlight . 64
5.2 Beispiel-Flows für einen ToR-Switch auf der Floodlight Weboberfläche 69

6.1 Topologie des Testaufbaus für die Evaulierung 71
6.2 Realisierung des Testaufbaus über Hardware-Switches 72
6.3 Latenz und Durchsatz eines mit KMB berechneten Baumes 74
6.4 Load-Balancing bei quellenbasierten Bäumen 76
6.5 Latenz und Durchsatz eines quellenbasierten Baumes unter Last 77
6.6 Verzögerungszeiten für verschiedene Sender im un- und vorbelasteten Netzwerk 78
6.7 Übertragungszeit und Anzahl der Switches eines Shared-Trees 78
6.8 Wahl des Rendezvous-Knoten . 79

III

6.9 Messung für Shared-Trees abhängig von der Gruppenanzahl 80
6.10 Load-Balancing bei Shared-Trees . 81
6.11 Vergleich der Routingalgorithmen . 82
6.12 Anzahl der Tabelleneinträge . 83

IV

1 Einleitung

In diesem Kapitel wird in Abschnitt 1.1 in den Themenbereich dieser Diplomarbeit eingeführt
und die Relevanz für Forschung und Praxis motiviert. Anschließend wird in Abschnitt 1.2 ein
Überblick über den Aufbau und die nachfolgenden Kapitel gegeben.

1.1 Motivation

Die Verbreitung von mobilen Anwendungen, Cloud-Services und sozialen Netzwerken haben in
den letzten Jahren zu stark wachsenden Anforderungen an Datencenter geführt. Ein Grund
dafür ist der stetige Anstieg des weltweiten Datenaufkommens. Das betrifft vor allem un-
strukturierte Daten, die nicht nur gespeichert, sondern auch verteilt und verarbeitet werden
müssen. Wie die IDC Studie „Digital Universe“ [GC08] aus dem Jahr 2011 zeigt, verdop-
pelt sich das Datenvolumen alle zwei Jahre. Die Gesamtmenge an Daten, die 2011 erstellt
oder repliziert worden ist, entsprach 1,8 Zettabyte. 2012 waren es bereits 2,7 Zettabyte. Um-
gerechnet sind das 2,7 Billionen Gigabyte. Dies würde einem Äquivalent von 70 Millionen
Jahren an HD-Filmmaterial entsprechen. Die IDC prognostiziert, dass sich die Datenmen-
gen in heutigen Datencentern bis zum Jahr 2020 noch verfünfzigfachen werden. Eine solche
Datenexplosion stellt nicht zuletzt enorme Anforderungen an die Netzinfrastruktur. Optima-
le Ausnutzung vorhandener Bandbreiten, effiziente Kommunikationsdienste und intelligente
Lastverteilungen sind unabdingbar, um einem drohenden Kollaps der Netze vorzubeugen.

Da sich die Systemlandschaft durch Server- und Speichervirtualisierung, Cloud-Services und
veränderter Kommunikationspatterns in Datencentern gewandelt hat, ist die Konfiguration
der Netzwerke heute komplexer denn je. Oftmals müssen selbst bei kleinen Änderungen eine
Reihe von zeitaufwändigen, manuellen Aufgaben durchgeführt werden, die herstellerabhängig
über eigene Konsolen und Befehle konfiguriert werden müssen. Dynamische und flexiblere
Ansätze sind gefordert, damit sich die Netzwerke automatisch an die jeweilige Anwendung
anpassen können. Ein Lösungsansatz, der das Potential hat diesen Problemen begegnen zu
können, ist das Software Defined Networking (SDN).

SDN ist eine aufkommende Netzwerkarchitektur, die direkt programmierbar ist [Fou12]. Die
Kontrolle und Verwaltung des Netzwerkes ist von der eigentlichen Weiterleitung der Daten-
pakete entkoppelt. Ein Kontrollprogramm, der SDN-Controller, besitzt eine zentrale Sicht
auf die unterliegende Infrastruktur und abstrahiert diese für diverse SDN-Anwendungen.
Solche Anwendungen kennen nicht nur die unterliegende Netzstruktur, sondern haben auch
die Möglichkeit, Gerätedaten, wie Weiterleitungstabellen, direkt zu manipulieren. Für diese
Abstrahierung besteht mit OpenFlow [MAB+08] eine API sowie ein zugehöriges Protokoll,

1

die zusammen einen einheitlichen Befehlssatz auf den Netzgeräten definieren. In traditionel-
len Systemen ist die Verwaltungslogik auf die einzelnen Netzgeräte, wie den Routern oder
den Switches, verteilt. Die durch OpenFlow hinzugewonnene Zentralität eröffnet völlig neue
Möglichkeiten, einheitliche Netzanwendungen, wie neue Routingalgorithmen, Firewalls, Netz-
werkmonitore, oder sogar Traffic Engineering, in Form von erweiterbaren Softwaremodulen
zu implementieren. Außerdem ist die Netzwerkvirtualisierung, mit dem Ziel global kontrol-
lierbare, logisch isolierte Netzwerke in die virtuelle Systemlandschaft heutiger Datencenter zu
integrieren, ein oft diskutierter Anwendungfall. Die vormals komplexen Aufgaben der Syste-
madministration können durch herstellerunabhängige Software, die selbst oder durch Drittan-
bieter entwickelt wird, übernommen werden. Erste Anwendungen von SDN werden schon von
Google und Facebook eingesetzt, die bereits OpenFlow in ihren Datencentern unterstützen
[goo]. Zusätzlich bieten zahlreiche IT-Dienstleister, wie Big Switch Networks [Net], HP [Pac]
oder IBM [IBM] ihren Kunden inzwischen OpenFlow-basierte Produktlösungen an.

Eine sinnvolle Nutzung von SDN in Datencentern setzt allerdings voraus, dass effiziente Kom-
munikationsdienste für darauf aufbauende SDN-Anwendungen zur Verfügung stehen. Die
meisten Controller bringen nativ ein Standard-Routingverfahren auf Basis einer einfachen
Entfernungsmetrik mit. Für die anspruchsvollen Anforderungen an Datencenternetzwerke ist
dies jedoch unzureichend. Der Datenverkehr muss dort effizient über die verfügbaren Ressour-
cen aufgeteilt und die verfügbare Bandbreite möglichst optimal ausgenutzt werden. So fehlt in
vielen SDN-Plattformen die Umsetzung eines Multicastdienstes. Dabei ist diese besonders ef-
fiziente Art der Gruppenkommunikation für viele verteilte Aufgaben unabdingbar. Multicast
wird für das Versenden von einer Datenquelle an mehrere spezifische Empfänger verwendet
und bietet die Grundlage für zahlreiche Anwendungen wie Video-Streaming, Datenreplikation
oder die Datenverteilung in Hochleistungsrechenzentren. War das Multicast-Routing jedoch
seither durch verteilte, nicht-optimale und komplexe Algorithmen eingeschränkt, bietet die
zentrale Sichtweise des SDN-Controllers die Möglichkeit, einfachere und effizientere Multi-
castlösungen zu finden.

In dieser Diplomarbeit wird ein OpenFlow-basierter IP-Multicast-Dienst konzipiert, der den
speziellen Anforderungen in Datenzentren gerecht werden soll. Dabei wird ein verbessertes
Routing zur effizienten Nutzung der Bandbreite in der Netz-Infrastruktur angestrebt. Im Zuge
dessen wird das aus der Graphentheorie bekannte Steinerbaumproblem [Pro02] mit dem Ziel
untersucht, kostenoptimierte Multicastbäume in polynomieller Zeit zu approximieren. Als Me-
trik kommt eine Kombination aus Entfernung und verfügbarer Bandbreite zum Einsatz, was
ein Load-Balancing über die Netzredundanzen im Datencenter ermöglichen soll. Außerdem
ist die Integration in vorhandene OpenFlow-fähige Netze von Relevanz.

Sämtliche im Zuge eines Multicast durchgeführten Aufgaben, die seither verteilt durch
Multicast-Router durchgeführt wurden, werden bei SDN durch entsprechende Softwaremodule
im Controller implementiert. Neben der Ermittlung von Verteilbäumen und der Speicherung
von Gruppenzusammensetzungen ist das vor allem die Implementierung und die Verwaltung
von Multicast-Routen auf den Netzgeräten. Dafür werden die Multicastbäume proaktiv vor-
berechnet und anschließend auf den Netzgeräten deployed. Im Gegensatz zu einem reaktiven
Einrichten der Routen, sind bei diesem Ansatz alle Hostgeräte im Netzwerk jederzeit und ohne
weiteren Konfigurationsaufwand bereit, eine Gruppenkommunikation zu initiieren. Besonders
in einem beschränkten Umfeld, wie in einem Datencenternetzwerk, bietet diese Lösung er-

2

hebliche Vorteile. Die Weiterleitung kann ab dem ersten Paket in Line-Rate erfolgen, so dass
Verzögerungen vermieden werden. Gleichzeitig wird der Überlastung des Controllers durch
einen plötzlich auftretenden Paket-Burst, was z. B. bei der Verwendung eines verbindungslo-
sen Protokolls wie UDP [Pos80] geschehen kann, vorgebeugt. Zusätzlich bietet eine Software
größere Flexibilität und einfachere Änderungsmöglichkeiten. Sollte beispielsweise die Menge
der Routeneinträge in den OpenFlow Netzgeräten eine kritische Anzahl erreichen, bietet der
Dienst die Möglichkeit den Routingalgorithmus zur Laufzeit zu wechseln. Weiterhin bezieht
sich diese Flexibilität auch auf die Robustheit eines OpenFlow-Netzes. So können Ausfall be-
dingte Topologieänderungen durch den Controller erkannt und die betroffenen Routen neu
berechnet werden.

Der Multicastdienst wird im Rahmen dieser Diplomarbeit als Erweiterung für den SDN-
Controller Floodlight [flo] implementiert und die Lösungskonzeption anschließend auf einer
Datencenter-Topologie ausgewertet. Die Evaluation zeigt, dass der Dienst effizient arbeitet
und skalierbar ist. Gleichzeitig wird eine eine Optimierung der Multicastbäume und eine
Verbesserung der Lastverteilung erreicht.

1.2 Aufbau dieser Arbeit

In Kapitel 2 werden Grundlagen bezogen auf Multicasting, SDN und OpenFlow vorgestellt
sowie auf verwandte Arbeiten eingegangen. Kapitel 3 beschäftigt sich mit der Vorstellung
des Systemmodells, insbesondere bezogen auf Datencenter-Topologien. Außerdem werden die
Anforderungen an den Multicastdienst formuliert. In Kapitel 4 wird auf Grundlage dieser
Anforderungen eine Konzeption erstellt. Dafür wird eine Architektur zur Umsetzung des
Multicastdienstes herausgearbeitet und vorgestellt. Kapitel 5 beschäftigt sich mit der Imple-
mentierung des in Kapitel 4 erarbeiteten Konzeptes und geht auf implementierungsspezfische
Details des Open-Source Controllers Floodlight ein. Anschließend wird die implementierte
Lösung in Kapitel 6 getestet und evaluiert. Dafür werden relevante Messergebnisse heraus-
gearbeitet und interpretiert. Zum Schluss wird eine Zusammenfassung und ein Ausblick in
Kapitel 7 gegeben.

3

2 Grundlagen

In diesem Kapitel werden die grundlegenden Begriffe zum Thema Multicast und Software
Defined Networking (SDN) erläutert. Dazu gehören das Internet Group Management
Protocol (IGMP) (Abschnitt 2.1) sowie die Untersuchung von optimierten Wegfindungsmetho-
den in Abschnitt 2.3. Ein besonderer Schwerpunkt soll dabei auf die Formalisierung zentrali-
sierter Multicast-Routing-Probleme gelegt werden. Der SDN-Teil beschreibt in Abschnitt 2.4
die allgemeine Architektur und geht in Abschnitt 2.5 auf den OpenFlow-Standard als Schlüs-
seltechnologie ein. Zum Schluss folgt ein Überblick über verwandte Arbeiten in Abschnitt 2.6.

2.1 Multicast-Adressierung und Gruppenverwaltung

Multicast ist eine Form der Gruppenkommunikation und bezeichnet eine Nachrichtenüber-
tragung von einer Datenquelle an mehrere Empfänger. Die Menge der Empfänger bildet eine
Multicastgruppe, wobei ein Sender nicht Mitglied dieser Gruppe sein muss.

Die Kommunikationsformen Broadcast und Unicast können als Spezialfälle einer Multicast-
Kommunikation angesehen werden. Während bei einem Broadcast alle Knoten im Netz Emp-
fänger sind, beschreibt ein Unicast eine Kommunikation zwischen genau einem Sender und
einem Empfänger. Zwar könnte man eine Gruppenverteilung auch mit mehreren Unicast-
Übertragungen realisieren, das führt jedoch bei steigender Gruppengröße zu einer starken
Verschwendung der Netzressourcen [Wit99]. Anstatt dieselbe Nachricht mehrfach über die
gleiche Leitung zu schicken, wird sie bei einem Multicast nur einmal gesendet. In den Zwi-
schensystemen, z. B. Router, wird sie repliziert und auf die entsprechenden Ausgangsleitungen
kopiert. Die Vorteile eines Multicasts liegen demnach in einer effizienten Bandbreitennutzung
und in der Entlastung der Zwischensysteme [Wit99].

Es gibt zahlreiche Anwendungen, die von den Vorteilen eines Multicast profitieren. Dazu
zählen Videokonferenzen, Video-Streaming, Groupware oder Onlinespiele. Trotzdem sind im
Internet nur wenige Router Multicast-fähig, d.h. sie bieten keine globale Multicastunterstüt-
zung über lokale Netzgrenzen hinweg [RES06]. Diese Arbeit konzentriert sich auf Datencen-
ternetze, in denen Multicastübertragungen uneingeschränkt eingesetzt werden können. Eine
Anwendung im Datencenter wäre beispielsweise die Replizierung von Daten an eine Menge
von Servern oder die Verteilung von Software an ausgewählte Rechnergruppen [BBB07].

5

Die verbreiteteste Mullticast-Implementierung ist der IP-Multicast. IP-Multicast basiert auf
der Erweiterung des IP-Protokolls um Gruppenverwaltung und Routingprotokolle [AFM92].
Für ersteres kommt das Internet Group Management Protocol (IGMP) zum Einsatz (sie-
he Abschnitt 2.1.3). Die Routingprotokolle sind für die Paketverteilung an die Zielrouter
verantwortlich. Sie sollen dabei Redundanzen und Schleifen bei der Wegfindung verhindern
[MSG+12].

Nachfolgend wird ein Überblick über die Multicast-Kommunikation in paketvermittelten Net-
zen gegeben und auf die Aufgaben der Gruppenverwaltung und des Routings genauer einge-
gangen. Ist im nachfolgenden Teil der Arbeit von Multicast die Rede, ist stets IP-Multicast
gemeint, sofern dies nicht anders vermerkt ist.

2.1.1 IP-Multicast im OSI-Schichtenmodell

Die Multicasttechnik lässt sich gemäß dem OSI-Modell in die Vermittlungsschicht einordnen.
Analog zu einer Unicast-Übertragung, schickt ein beliebiger Sender IP-Pakete an eine spezielle
IP-Empfängeradresse. Diese Adresse steht stellvertretend für eine gesamte Multicastgruppe.
Die dazwischen liegenden Router benutzen Tabelleneinträge für die Weiterleitung.

EmpfängerSender

Empfänger

Ziel-Router

Ziel-Router

Zwischen-Router

Ethernet

Ethernet

Ethernet

Ethernet

Empfänger

Sender-Router

Abbildung 2.1: Ein Sender (rot) schickt ein Multicastpaket entlang eines Multicastbaumes
(rote Verbindungsstücke) an eine Empfängergruppe (grün).

Abbildung 2.1 zeigt den Nachrichtenverlauf zwischen einem Sender und einer Multicast-
gruppe. Zuerst schickt ein Sender ein Multicastpaket über das Medium der Sicherungsschicht,
z. B. Ethernet, an den Multicast-Router. Dazu bildet der Sender die IP-Multicastadresse auf

6

eine MAC-Multicastadresse ab. Da es sich bei Ethernet um ein Broadcast-Medium handelt,
sind alle Gruppenmitglieder im selben Lokal Area Network (LAN) in der Lage das Paket zu
empfangen. Der Multicast-Router ist nun dafür zuständig, das Paket gemäß dem verwendeten
Routingprotokoll an alle Ziel-Router zu verteilen. Dies geschieht entlang eines Verteilbaumes.
Ein Ziel-Router ist ein Multicast-Router, der Mitglieder der Multicastgruppe in seinen an-
grenzenden Netzen hat. Die nötigen Mitgliederinformationen erhält er durch das Ausführen
von IGMP (siehe Abschnitt 2.1.3). Damit ein Ziel-Router ein Paket schließlich in den Zielnet-
zen ausliefern kann, wird die IP-Adresse erneut auf eine MAC-Multicastadresse abgebildet
und über den jeweiligen Port an die entsprechenden Hosts im LAN geschickt.

Mehrere LANs können durch einen Switch verbunden werden, der das Netz in Broadcastdo-
mänen aufteilt. Im einfachsten Fall leitet ein Switch, Rahmen mit MAC-Multicastadressen
über alle Ausgangsports weiter. Bei diesem Vorgehen können diese jedoch auch in Bereiche
des Netzes gelangen, in denen sich gar keine Gruppenmitglieder befinden. Eine effizientere
Lösung ist das IGMP-Snooping [CKS06]. IGMP-Snooping versetzt einen Switch in die Lage,
den IGMP Verkehr zwischen Host und Router mithören zu können. Dadurch kann er lernen
in welchem Teil des Netzes sich Gruppenmitglieder befinden.

Für die meisten Multicastanwendungen kommt auf der Transportebene das User Datagram
Protocol (UDP) [Pos80] zum Einsatz. UDP ist ein verbindungsloses Protokoll, d.h. es behan-
delt weder verloren gegangene Nachrichten noch wird die Auslieferungsreihenfolge beachtet
[TW12]. Der Vorteil ist jedoch eine effiziente Übertragung an möglichst viele Empfänger bei
geringem Overhead. Ähnlich dem Transmission Control Protocol (TCP) [Pos81] gibt es auch
Protokolle, die eine zuverlässige Multicast-Kommunikation garantieren. Ein Beispiel ist der
Pragmatic General Multicast (PGM) [SFL+98]. Weiterhin werden in RFC 3048 [WVK+01]
Mechanismen zum Erkennen und Reparieren von verloren gegangenen bzw. fehlerhaften Pa-
keten für Multicasting empfohlen.

2.1.2 Adressierung

Die IP-Multicastadressen müssen für die Übertragung auf der Sicherungsschicht in MAC-
Multicastadressen abgebildet werden. Für IPv4 stehen die Adressen der Klasse D (224.0.0.0
bis 239.255.255.255) und für IPv6 jede mit FF00::/8 beginnende Adresse für die Gruppen-
adressierung auf der Vermittlungsschicht zur Verfügung. Die Adressvergabe ist in RFC 5771
[VC10] von der Internet Engineering Task Force (IETF) spezifiziert. Bei der 48 Bit Ethernet-
Multicastadresse sind die 25 höchstwertigsten Bits fest vorgegeben, wobei das letzte Bit, des
höchstwertigsten Bytes, die Unterscheidung zwischen Unicast und Multicast angibt. Somit
stehen für die Gruppenadressierung mit IP-Adressen 25 Bit, für Ethernet-MAC-Adressen
aber lediglich 23 Bit zur Verfügung.

Im Gegensatz zur Unicast-Kommunikation erfolgt die Abbildung Eins-zu-Eins, wobei die füh-
renden 5 Bit einer IP-Adresse abgeschnitten werden [Wit99]. So kann auf eine aufwändige
Adressauflösung wie durch das Adress Resolution Protocol (ARP) [Plu82] verzichtet werden.
Durch die entstandene Uneindeutigkeit, müssen die Hosts beim Empfang die IP Multicast-
adressen vergleichen, um sicherzustellen, dass sie einen bestimmungsgemäßen Empfänger der
Gruppennachricht darstellen.

7

2.1.3 Gruppenverwaltung mit IGMP

IP-Multicast basiert auf der Erweiterung des IP-Protokolls um Gruppenverwaltung und Rou-
tingprotokolle [AFM92]. Die Hauptaufgaben einer Gruppenverwaltung sind das Bereitstellen
der Mitgliederlisten und die Handhabung von Änderungen in der Gruppenzusammensetzung.
Diese Aufgaben können zentral oder verteilt durchgeführt werden. Eine zentrale Gruppen-
verwaltung besitzt eine globale Sicht über alle Gruppen, deren Mitglieder und auftretenden
Gruppenänderungen. Verteilte Verfahren wiederum haben Vorteile bezüglich Skalierbarkeit,
jedoch die Schwierigkeit eine konsistente Sicht bereitzustellen [Wit99]. Die Gruppenverwal-
tung beschränkt sich hier auf die Bekanntgabe der Gruppenmitgliedschaften an einen desi-
gnierten Multicast-Router.

Bei IPv4 kommt das Internet Group Protocol (IGMP) [CDK+02] für die Gruppenverwaltung
zum Einsatz. IGMP ist ein integraler Bestandteil des IP-Protokolls und muss implementiert
werden, wenn Multicast unterstützt werden soll. Die entsprechende Erweiterung für IPv6
nennt sich Multicast Listener Discovery (MLD) [DFH99] und funktioniert ähnlich. Pakete
zur Gruppenverwaltung sind in IP-Paketen gekapselt und tragen den vordefinierten Wert 2
im IP-Headerfeld protocol. Dieser gibt an, dass das Folgeprotokoll IGMP ist. Weitere mögliche
Folgeprotokolle wären z. B. TCP oder UDP für ein ankommendes Unicast- oder Multicastpa-
ket. Sämtliche Protokollnummern sind in einer Onlinedatenbank [Rey02] festgelegt. Zusätzlich
wird im IP-Header der Time to Live (TTL) mit einem Hop-Zähler von 1 versehen, so dass
IGMP Pakete das lokale Netz nicht verlassen können.

Ethernet

Multicast-
Router

Gerneral-
Membership-
Report (G2)

Gerneral-
Membership-
Report (G1)

General-
Membership-

Query

Empfänger der
Gruppe G1

Empfänger der
Gruppe G2

Empfänger der
Gruppe G1

Abbildung 2.2: IGMP-Nachrichten zwischen einem Multicast-Router und Endsystemen, die
jeweils zur Empfängergruppe 1 (grün) bzw der Empfängergrupe 2 (orange) angehören.

Der Ablauf ist in Bild 2.2 dargestellt. Ein Multicast-Router sendet periodisch sog. General-
Membership-Queries an die Gruppe aller Endsysteme in seinen angeschlossenen Netzen. Die
Endsysteme antworten nach einer bestimmten Wartezeit in Form eines General-Membership-
Reports. Diese enthalten Information darüber, zu welchen Gruppen die Endsysteme ange-
hören. Um redundante Rückmeldungen zu verhindern, wird nur geantwortet, sofern kein
anderes System bereits zuvor die entsprechende Antwort gab. Der Router kennt daraufhin
alle IP-Multicastadressen, dessen Pakete er in das jeweilige Netz ausliefern muss und speichert

8

sie in einer Tabelle. Ein Zähler zu jedem Eintrag stellt über einen Soft-State Mechanismus
sicher, dass die Mitgliederinformationen auf dem aktuellen Stand sind. Erhält der Router für
einen Eintrag über eine gewisse Zeitspanne hinweg keine General-Membership-Reports, läuft
der Zähler ab und der Eintrag erlischt. Um die Netzlast gering zu halten, sollten die General-
Memberhship-Queries in größeren Abständen (Standardwert 125 Sekunden) geschickt werden
[Fen97]. Aufgrund dieser großen Zeitspanne ist es für Endsysteme ebenso möglich, explizit
einer Multicastgruppe beizutreten, indem ohne vorherige Anfrage, ein General-Membership-
Report an den Multicastrouter gesendet wird.

Ab IGMPv2 [Fen97] ist auch ein explizites Verlassen eines Systems mit einem Leave-Report
möglich. Anschließend fragt der Router per Group-Specific-Query nach, ob sich weitere Inter-
essenten dieser Gruppe im Subnetz befinden, bevor er den Eintrag löschen kann.

Die derzeit aktuelle Version ist IGMPv3 [CDK+02]. Ab Version 3 können Endsysteme zu-
sätzlich feingranularere Registrierungen beim Router anfordern. So kann man in den Header-
Feldern Source Address eine Liste von Sender IP-Adressen (Unicast) definieren, von denen
man Gruppennachrichten erhalten möchte. Dazu ist eine weitere Nachricht, in Form einer
Group-and-Source-Specific-Query, nötig, damit der Router explizit nach Mitgliedschaften zu
bestimmten Sendern fragen kann.

2.2 Multicast-Routing

IP-Multicast basiert auf der Erweiterung des IP-Protokolls um Gruppenverwaltung und Rou-
tingprotokolle [AFM92]. Routingprotokolle sind für die Paketverteilung zu den Zielroutern
verantwortlich. Sie haben das Ziel möglichst effiziente Pfade von dem Sender zu den Empfän-
gern zu berechnen und dabei Redundanzen und Schleifen zu verhindern [MSG+12]. Im Fall
von Multicast ist das Ergebnis ein Verteilbaum.

Ein Multicast-Routingalgorithmus muss in der Lage sein, auf Änderungen in der Gruppenzu-
sammensetzung reagieren zu können. Nach [Wit99] kann man inkrementelle undmonolithische
Algorithmen unterscheiden. Im monolithischen Fall führt eine Änderung zu einer kompletten
Neuberechnung des Verteilbaumes während inkrementelle Algorithmen versuchen, den Baum
zu modifizieren. Eine Neuberechnung erfordert größeren Rechenaufwand resultiert aber da-
für in optimaleren Pfaden. Nach der Berechnung eines neuen Verteilbaumes, wird dieser in
Form von Tabelleneinträgen in den beteiligten Router gespeichert, so dass Pakete an eine
Multicastgruppe dementsprechend weitergeleitet werden können.

Die Berechnung eines Baumes kann zentral oder verteilt durchgeführt werden. In heutigen
Netzwerken werden verteilte Methoden, wie Distanz-Vektor-Algorithmen [WDP88a], Link-
State-Algorithmen [Moy94] oder Core-Based-Trees [FHKH06] verwendet. Diese Dezentralität
hat den Nachteil, dass die im Netz verteilten Zustände untereinander synchronisiert werden
müssen und Routen nicht global-optimal berechnet werden können. Zentrale Routingalgorith-
men besitzen wiederum eine komplette Sicht über das Netzwerk und können deshalb global op-
timierte Pfade bestimmen. Die Schwierigkeiten dabei sind eine konsistente Netzwerksicht her-
zustellen sowie Leistungsengpässe oder einen Single-Point-of-Failure zu Vermeiden [Wit99].

9

Durch das Aufkommen von SDN ist der Ansatz eines zentralisierten Routings erneut auf-
gegriffen worden (siehe Abschnitt 2.6). Im Nachfolgenden wird eine kurze Einführung zur
Berrechnung von Verteilbäumen gegeben.

2.2.1 Verteilbäume

Ein Spannbaum ist ein Verteilbaum, der alle Knoten in einem Graph (Netz) verbindet. Die
Berechnung erfolgt z. B. mit Dijkstras Algorithmus [Dij59]. Die Algorithmen von Prim [Pri57]
und Kruskal [Kru56] können verwendet werden, um einen minimalen Spannbaum in einem un-
gerichteten Graphen zu finden. Im gerichteten Fall gibt es vergleichbare Algorithmen [Edm67]
[Tar06]. Das Ergebnis wird als gewurzelter Baum (Rooted Tree) bezeichnet. Ein minimaler
gewurzelten Baum hat, analog zu einem minimalen Spannbaum, minimales Kantengewicht
und enthält, bei Verwendung einer Distanzmetrik, den kürzesten aufsummierten Weg zwi-
schen einer Quelle und den restlichen Knoten im Graph. Somit stellt ein minimaler Spann-
baum bzw. ein minimaler gewurzelter Baum ein optimaler Verteilbaum für eine Broadcast-
Kommunikation dar. Die Berechnung geschieht dabei in Polynomialzeit. Eine Paketverteilung
durch Spannbäume vermeidet unkontrolliertes Fluten und bietet so ein besseres Ausnutzen
der Bandbreite [TW12].

Bei einem Multicast sind im Allgemeinen nicht alle Knoten im Netz auch Mitglied der Multi-
castgruppe. Ein Baum, der nur eine Teilmenge von Knoten verbindet nennt man Multicast-
baum. Die Zeitkomplexität um einen optimalen (minimalen) Multicastbaum zu berechnen ist
exponentiell [Pro02] und deshalb nicht praktikabel 1.

Ein effizienterer Mechanismus für die Konstruktion eines Multicastbaumes ist das Stutzen
(Pruning). Ausgehend von einem Broadcastbaum werden Zweige, in denen sich keine Grup-
penmitglieder befinden, abgeschnitten. Das Ergebnis ist ein Multicastbaum, der eine Quelle
mit den Multicastmitgliedern verbindet. Das heißt, der Baum bietet eine Lösung zur Paket-
verteilung für einen bestimmten Sender an eine Multicastgruppe und wird als quell-basierter
Verteilbaum bezeichnet. Diese Methode findet u. a. bei MOSPF [Moy94] und im Dense-Mode
des Protocol Independent Multicast (PIM-DM) [ANS+05] Verwendung. Eine andere Möglich-
keit sind Core-Based-Trees [BFC93]. Während bei einem quell-basiertem Verteilbaum ein
Baum für jeden Sender pro Multicastgruppe berechnet werden muss, teilen sich hier alle Sen-
der einen zentralen Baum. Dieser kann mehrere Wurzelknoten besitzen, ausgehend von denen
der Baum aufgebaut wird. Existiert nur eine Wurzel, handelt es sich um einen Shared-Tree.
Die Nutzung eines Shared-Tree spart, gegenüber quellbasierten-Bäumen, Rechenzeit und redu-
ziert die Anzahl der benötigten Routingeinträge. Diese Technik kommt z. B. im Sparse-Mode
des Protocol Independent Multicast (PIM-SM) [FHKH06] zum Einsatz.

2.2.2 Metriken

Für die Berechnung des Multicastbaumes können beliebige Routing-Metriken herangezogen
werden. Eine einfache Metrik ist die Anzahl der Übertragungsschritte, die als Distanz dient.

1Dies gillt unter der Annahme P 6= NP [Coo06]

10

Weitere mögliche Metriken können die Verzögerungszeit, Auslastung, Bandbreite oder Ver-
lässlichkeit des Pfades sein.

Normalerweise werden den Kanten im Netzgraph Gewichtswerte zugeordnet. Diese können
statisch oder veränderlich sein. Abhängig von der Metrik werden die Werte im dynamischen
Fall an die aktuelle Netzsituation angepasst, während im statischen Fall konstante Gewichte
vergeben werden. Metriken können dabei additiv, multiplikativ oder min/max sein [Kui02].
Diese Gliederung legt fest, wie der Gewichtswert eines Pfades entlang der Kantenstücke be-
rechnet wird. Ein Beispiel für eine multiplikative Metrik ist der Paketverlust, die Pfadverzöge-
rung hingegen würde sich additiv akkumulieren. Die verfügbare Bandbreite wäre ein Beispiel
für eine einfache min/max Metrik. Ist eine einzige Metrik für die betrachtete Anwendung
nicht ausreichend, können auch mehrere Faktoren gleichzeitig betrachtet betrachtet werden.
Dies wird als Multimetrik bezeichnet und wird in Abschnitt 2.3.2 beschrieben.

2.3 Global optimierte Wegfindung

SDN stellt Informationen zum Netzzustand an zentraler Stelle bereit. Das ermöglicht die Ver-
wendung von zentralisierten Routingalgorithmen wie Steinerbäume. Vor allem in leistungs-
fähigen Rechenzentren ist es sinnvoll, weitere Routing-Optimierungen wie Latenz, Verläss-
lichkeit, Durchsatz oder Energieverbrauch zu betrachten [CHZ+11]. Zusätzlich können Mul-
ticastanwendungen Anforderungen bezüglich der Dienstgüte, bzw. Quality of Service (QoS)
stellen. Ein Ziel kann hierbei sein, die Gesamtverzögerung der Pfade zu minimieren. Ein realis-
tisches Beispiel wäre eine Videokonferenz, bei der alle Gruppenmitglieder das Bild möglichst
verzögerungsfrei bekommen sollen. Andere QoS-Anforderungen betreffen maximale Verzöge-
rungsschwankungen oder die minimale Bandbreite [BO10b]. Eine Optimierung des Routings
bezüglich solcher Faktoren nennt man QoS-Routing.

Der Prozess, mit dem eine bestimmte Dienstgüte bereitgestellt wird, ist das Traffic Engi-
neering (TE). Traffic Engineering beschäftigt sich mit der Analyse, Gestaltung und Opti-
mierung von Datenflüssen und dem globalen Ziel, die Netzwerknutzung zu optimieren [Wik].
Ein Beispiel dafür ist die gleichmäßige Verteilung der Leitungsauslastungen (Load Balancing)
[BO10b]. Das Point-to-Multipoint Multiprotocol Label Switching (P2MP MPLS) [Yas06] ist ei-
ne Technik, um Traffic Engineering für Multicastanwendungen in paketvermittelten Netzwer-
ken umzusetzen. Verwandte Arbeiten machen sich die durch SDN neugewonnene Zentralität
zu Nutze, um TE-Anwendungen zu implementieren [KWE+11] [MYLSP07]. Bisher aufwändi-
ge TE-Aufgaben werden dadurch stark vereinfacht, was sich in reduzierter Komplexität und
vereinfachtem Deployment auswirkt.

Die nachfolgenden Teilkapitel beleuchten einen theoretischen Ansatz für die globale Optimie-
rung der Wegfindung. Dafür wird das Multicast-Routing verallgemeinert und formalisiert.
Das Ziel ist es, die Komplexität für optimierte zentralisierte Routingalgorithmen aufzufüh-
ren, die in dieser Arbeit diskutiert und implementiert werden. Das im Anschluss definierte
Steinerbaumproblem bildet hierfür die Grundlage.

11

2.3.1 Das Steinerbaumproblem

Ein Steinerbaum ST ist ein Verteilbaum, der eine Teilmenge T ⊆ V aller Knoten eines Gra-
phen G(V,E) umspannt. Dabei wird mit V die Menge der Knoten und mit E die Menge
der Kanten bezeichnet. T ist die Menge der Terminalknoten, V \ T definiert die Menge der
möglichen Steinerknoten. Ein Steinerbaum kann beliebig viele Steinerknoten enthalten, muss
aber nicht. Ein Spannbaum ist ein Spezialfall davon, der alle Knoten des Graphen umfasst.
Abbildung 2.3 zeigt einen Graphen und einen zugehörigen Steiner- und Spannbaum im Ver-
gleich.

Ein minimaler Steinerbaum ist ein Multicastbaum, der die Kosten der Kanten in ST global
minimiert. Das Finden eines minimalen Steinerbaumes für einen gegebenen Graph G wird
Steinerbaumproblem genannt. Es existieren zahlreiche Heuristiken, mit denen man in einem
zentral verwalteten Netzwerk bestimmte Lösungsapproximationen erzielen kann. Eine davon
wird in Abschnitt 2.3.1 betrachtet. Das Finden einer exakten Lösung ist nicht praktikabel, da
für das Problem die NP-Vollständigkeit bewiesen wurde [Pro02] 1. Eine Instanz des Steiner-
baumproblems wird mit (G(V,E,w),K) bezeichnet. Im Anschluss wird wird das Problem
folgendermaßen definiert:

Gegeben ist ein zusammenhängender, ungerichteter Graph G(V,E,w), mit Kantengewichten
w(e) ∈ R, e ∈ E, ein Sendeknoten s ∈ V und eine Menge von Empfängern T ⊆ V . Es ist
ein Steinerbaum SK gesucht, der K := T ∪ {s} umspannt und dabei die Kosten bezüglich w
minimiert:

w(K) = min {w(K∗)| K∗ ist ein Steinerbaum der K umspannt} (2.1)

Ändert sich die Terminalmenge T , ändert sich auch der minimale Steinerbaum. Somit han-
delt es sich bei einem Steinerbaum um einen monolithischen Ansatz. Es sind keine lokal-
inkrementellen Modifikationen möglich, ohne dabei die Optimalitätseigenschaft zu verlieren
[Wit99]. Das minimale Steinerbaumproblem kann direkt auf das Routing per Multicast-
baum abgebildet werden. Die Terminalmenge T entspricht den Ziel-Routern einer Multi-
castgruppe, während der Router des Senders mit s gegeben ist. Weiterhin entsprechen die
Steinerknoten den Routern, die zwischen der Quelle und den Empfängern liegen.

a) c)b)

Abbildung 2.3: Teilbild a) zeigt einen Graphen G mit 4 Terminalknoten (gelb), b) ein minima-
ler Steinerbaum zu G mit 2 Steinerknoten (blau) und c) ein Spannbaum zu G. Die Restknoten
(grau) sind in Teilbild b) aus Übersichtsgründen weggelassen worden.

1Dies gillt unter der Annahme P 6= NP [Coo06]

12

Es sei angemerkt, dass in der ursprünglichen Problemformulierung die Steinerknoten nicht
fest vorgegeben sind, sondern beliebig eingefügt werden können. Außerdem wird nicht zwi-
schen Senderknoten und Terminalen unterschieden. Das stellt jedoch keine Einschränkung
dar, da ein Senderknoten lediglich ein weiteres Terminal ist.

Steinerbaum-packing-Problem Eine Generalisierung des Steinerproblems ist das Steiner-
baum-packing-Problem [Kos10]. Es beschreibt das Routing mehrerer Steinerbäume in einem
Netzwerk, sodass der Netzwerkfluss nach einer bestimmten Bedingung global optimiert wird.
Beispielsweise für eine maximale oder optimale Bandbreitenausnutzung [Kos10], oder eine
möglichst fairen Verteilung der Datenflüsse nach demMin-Max Prinzip [NNDKB08] [KRT99].
So gibt es in Datencenternetzen häufig redundante Verbindungsleitungen gleicher Länge, die
durch Lastverteilung optimal ausgenutzt werden können (Multipathing). Eine hinreichende
Lösung für solche Probleme kann aber auch durch die Wahl der Routingmetrik gefunden
werden. Ein Routingalgorithmus, der Steinerbäume berechnet und als Metrik die Restband-
breite mit einbezieht, wird für neue Verbindungen automatisch eine weniger stark ausgelastete
Kante bevorzugen.

Heuristiken Gegeben ist eine Instanz des Steinerbaumproblems (G(V,E,w),K). Ein ein-
facher Algorithmus listet alle Teilmengen von E auf. Danch prüft er, ob sie K umspannen
und dabei einen Steinerbaum bilden. Das Ergebnis mit dem kleinsten Kantengewicht ist ei-
ne exakte Lösung für das Steinerbaumproblem. Ein solcher Algorithmus hat jedoch keine
polynomielle Laufzeit. Einen Überblick über weitere exakte Lösungsalgorithmen sowie der
Berweis der NP-Vollständigkeit wird in [Kos10] gegeben. Aufgrund der Problemschwere gibt
es zahlreiche Heuristiken, die eine optimale Lösung lediglich approximieren. Die durch SDN
hinzugewonnene zentrale Sicht in Netzwerken ermöglicht es, einfache Heuristiken für ein Rou-
ting zu nutzen, die seither als nicht praktikabel galten.

Ein Beispiel hierfür ist der Algorithmus von Kou et al. [KMB81] (KMB), der auf minimalen
Spannbäumen basiert. Die optimale Lösung wird hier 2-approximiert. Das heisst, dass die
Kosten des berechneten Steinerbaumes maximal doppelt so hoch sind, wie die des minimalen
Steinerbaumes. Auswertungen nach [DL93] belegen, dass in der Praxis der schlechteste Fall
aber nur selten auftritt, so dass das Ergebnis im Schnitt nur um 5% vom Optimum abweicht.
Die Zeitkomplexität von KMB ist mit O(|K||V |2) gegeben.

Es gibt derzeit keinen Polynomialzeit-Algorithmus, der dass Problem besser als 2-approximiert
(im worst case) [Kos10]. Zahlreiche weitere Arbeiten beschäftigten sich lediglich mit der Ver-
besserung der Zeitkomplexität. Durch Adaption von [KMB81] kann eine leicht über-lineare
Laufzeit von O(|E|+ |V |log|V |) in der Knotenmenge erreicht werden [Meh88]. Eine ausführ-
liche Übersicht über Steiner-Approximationsalgorithmen findet sich in [Kos10]. Ein Vergleich
der verschiedenen Laufzeiten ist in [OP05] gegeben.

13

Das dynamische Steinerbaumproblem In einem dynamischen Umfeld, in dem sich die Mul-
ticastgruppen und die Sender beliebig ändern, müsste bei jeder Änderung eine Neuberechnung
des Steinerbaumes stattfinden. Trotz effizienter Heuristiken kann die ständige Neuberechnung
ein Effizienzproblem darstellen. Dies führt dazu, dass viele Routingtabellen häufig geändert
werden müssen. Ein inkrementeller Algorithmus nimmt lokale Änderungen am Multicastbaum
vor und vermeidet so eine Neuberechnung. Im Vergleich zur optimalen Lösung verschlechtert
sich das Ergebnis aber nach einer bestimmten Anzahl von Änderungen [PPX98].

Ein einfacher Greedy-Algorithmus verbindet bei einer Änderung den hinzugekommenen Kno-
ten mit der alten Terminalmenge auf dem kürzesten Pfad. Das entspricht dem Knoten aus
dem existierenden Spannbaum, der am nächsten zum neuen Knoten liegt. Beim Verlassen
eines Knotens wird der Zweig einfach gestutzt (Pruning). Imaze und Waxmann [IW91] haben
gezeigt, dass das Competitive Ratio eines solchen Algorithmus bei log2(N) liegt. Das Compe-
titive Ratio ist das Kostenmaximum aller Änderungsanfragen eines Online-Algorithmus zum
Verhältnis der Kosten für einen optimalen Offline-Baum, bei dem die Änderungen schon im
Voraus bekannt waren. Online-Algorithmen zum dynamischen Steinerbaumproblem wurden
in zahlreichen Ausarbeitungen diskutiert und verfeinert [BC97] [WY93] [Wax88] [PPX98].

2.3.2 QoS und Multimetriken

Ein Routingalgorithmus mit einer Metrik optimiert den Multicastbaum nach genau einem Kri-
terium. Das Steinerbaumproblem beschreibt in diesem Fall die optimale Lösung [Kui02]. Für
das Finden einer möglichst global-optimalen Lösung, die zusätzlich Anforderungen (Zielfunk-
tionen), wie kürzester Weg und maximale Bandbreite, oder Constraints wie eine garantierte
minimale Bandbreite, mitbringt, müssen mehrere Metriken mit einbezogen werden.

Beim Multiobjective Multicast Routing Problem (MMRP) ist in einem zusammenhängenden,
ungerichteten Graphen ein Multicastbaum gesucht, der mehrere Zielfunktionen und Cons-
traints aus dem QoS und Traffic Engineering Umfeld erfüllt und optimiert [BO10b]. Dabei
können verschiedene Bedingungen im Konflikt zueinander stehen, so dass eine global-optimale
Lösung nicht unbedingt jedes Ziel lokal optimiert. Das MMRP leitet sich aus der Pareto-
Optimierung [Brü07] ab, einem aus der Mathematik und Volkswirtschaftslehre bekanntem
Optimierungsproblem. Das Steinerbaumproblem kann als der Spezialfall des MMRP mit nur
einer Zielfunktion und keinen Constraints gesehen werden.

Ein einfacher Ansatz für mehrere Zielfunktionen ist eine gewichtete Summe [CB04]. Mehre-
re Routingmetriken werden normiert, mit entsprechenden Faktoren gewichtet und zu einem
kombinierten Wert addiert. Der Vorteil für den Routingalgorithmus ist, dass er nur eine Me-
trik behandeln muss. Andere Verfahren nutzen einen evolutionären Algorithmus wie SPEA2
[ZLT01], um eine Pareto-optimale Lösung für mehrere Zielfunktionen zu finden [BO10b]
[BO10a] [CB04].

Werden zusätzlich Constraints betrachtet, muss eine minimale Lösung gefunden werden und
dabei bestimmte lokale Bedingungen eingehalten werden. Kuipers und Mieghem [Kui02] be-
trachten in ihrem Algorithmus mehrere Constraints mit dem Ziel, die maximale Summe meh-
rerer Metriken zu minimieren. Zusätzlich dazu müssen eine Reihe von QoS-Anforderungen
erfüllt sein.

14

Kompella et al. [KPP93] wählen den Ansatz, eine vorhandene Steiner Heuristik um Verzögerun-
gs-Constraints zu erweitern. Die Heuristik arbeitet sehr ähnlich wie der KMB-Algorithmus
aus Abschnitt 2.3.1.

Der Constrained Shortest Path Tree Algorithm (SCPT) aus [CW98] berechnet zwei Bäume
und kombiniert sie. Einen mit minimalen Kosten und einen mit den minimalen Pfadverzöge-
rungen. Ein solcher Algorithmus ist für große Netzwerke besser geeignet, während [KPP93]
bei Graphen mit weniger Knoten effizienter arbeitet [PZH05].

Weiterhin wird in der Fachliteratur auch das dynamische Steinerbaumproblem (vgl. Abschnitt
2.3.1) im Zusammenhang mit verzögerungskritischen Anwendungen untersucht [RMSRM99].

2.4 Software Defined Networking

Der rapide Anstieg von Speicher und Rechenkapazitäten in modernen Rechenzentren führt
zu größeren Anforderungen an das Netzwerk. Die aufwändige, manuelle Netzadministration
erschwert zunehmend die Anpassung vorhandener Netze an neue Anforderungen. Auch die
steigende Komplexität durch Virtualisierung von Rechenressourcen und dadurch resultierende
Skalierbarkeitsprobleme haben die Entwicklung von Software Defined Networking motiviert
[Fou12].

Software Defined Networking (SDN) ist eine Netzwerkarchitektur, bei der das Netzwerk direkt
programmierbar ist und die Kontrollebene von der Datenebene entkoppelt wird (Definition
nach [Fou12]). Auf Datenebene geschieht die Weiterleitung des Datenverkehrs. Eine logisch
zentralisierte Kontrollebene regelt, wohin dieser fließen soll. In klassischen Netzen hat jedes
Gerät sich selbst verwaltet und musste individuell programmiert werden. Bei SDN übernimmt
dies ein zentraler Controller, der das gesamte oder einen bestimmten Teil des Netzwerks ver-
waltet. Die Programmierbarkeit wird erreicht, indem die unterliegende heterogene Infrastruk-
tur von den SDN-Anwendungen abstrahiert und über APIs eine vereinfachte und zentrale
Sicht des Netzwerkes zur Verfügung gestellt wird. Mit OpenFlow, siehe Abschnitt 2.5, exis-
tiert hierzu ein etabliertes Standardprotokoll, das die Kommunikation zwischen Kontroll- und
Datenebene übernimmt. Bisher komplexe Netzwerkaufgaben wie Konfiguration, Verwaltung,
Sicherheit oder Optimierungen, wie Traffic Engineering, können bei SDN herstellerunabhän-
gig mit einem einfachen Softwareprogramm gelöst werden. Das macht es zu einer dynamisch
flexiblen Netzwerkarchitektur, die sich schnell und einfach an die eigenen Anforderungen im
Netzwerk anpassen lässt.

In Abschnitt 2.4.1 wird die nachfolgend die allgemeine Architektur von SDN beschrieben.
Abschnitt 2.5 stellt anschließend den OpenFlow-Standard vor.

2.4.1 SDN-Architektur

Abbildung 2.4 zeigt die SDN-Architektur nach [Fou12]. Sie besteht aus der Anwendungs-
schicht, Kontrollschicht und der Datenschicht sowie den zugehörigen APIs.

15

 Kontrollschicht

 Anwendungsschicht

 SDN-Kontrollsoftware

Netzwerk-Services

Southbound-API
(z.B. OpenFlow)

Northbound-
API

Northbound-
API

Northbound-
API

Business-Anwendungen

 Datenschicht

Netzwerkgerätevirtuelle Netzwerkgeräte

Abbildung 2.4: SDN-Architektur nach [Fou12]

Die unterste Schicht besteht aus den Netzwerkgeräten. Auf Kontrollebene wird kein Unter-
schied zwischen physikalischen und virtuellen Switches gemacht. Deshalb zählen hier auch
virtuelle Geräte zur Datenschicht. Das sog. Southbound-Protokoll regelt die Kommunikation
zwischen Kontroll- und Datenschicht über die Southbound-Schnittstelle. Um SDN zu unter-
stützen, müssen die teilnehmenden Switches das Southbound-Protokoll beherrschen. Hersteller
müssen ihre Hardware nicht öffnen, sondern lediglich den Minimalbefehlssatz des Southbound-
Protokolls unterstützen. OpenFlow (siehe Abschnitt 2.5) hat sich hierfür als Quasi-Standard
etabliert [Onl]. Die Hauptaufgabe des Southbound-Protokolls ist das Umsetzen eines Grund-
befehlsatzes zur Manipulation der Flow-Tables in den Switches, um damit die Komplexität
und Heterogenität auf Datenebene transparent zu machen. Ähnlich der Funktionsweise eines
Compilers.

Auf der Kontrollschicht findet sich die SDN-Kontrollsoftware, oder auch SDN-Controller.
Man kann den Controller als Middleware ansehen, der die Geräte der Datenschicht für SDN-
Anwendungen abstrahiert. Außerdem können in der Kontrollschicht, Netzwerkdienste über
eine Menge von APIs, implementiert werden. Das können beispielsweise Dienste für Rou-
ting, Multicast, Security oder Traffic Engineering [Fou12] sein. Solche Anwendungen profi-
tieren stark von der zentralen Netzwerksicht und ermöglichen global-optimierte Lösungen.
Erste Controller sind bereits auf dem Markt. Unter anderem von Herstellern wie Big Switch
Networks [Net], HP [Pac] oder IBM [IBM]. Bekannte Open-Source-Controller sind NOX
[GKP+08] und Floodlight [flo].

Auf der Kontrollschicht aufbauend befinden sich, auf der obersten Schicht, die SDN
-Anwendungen wie Firewalls, Netzwerk-Monitore oder Load Balancer. Über die Nothbound-
APIs werden die Netzwerkdienste und eine Netzabstraktion für die Anwendungsebene zur
Verfügung gestellt. Im Gegensatz zur Southbound-API, hat sich zum Zeitpunkt dieser Diplom-
arbeit noch kein klarer Standard hierfür herauskristallisiert. Mögliche Gründe dafür könnten

16

sein, dass verschiedene Anwendungen unterschiedlich Anforderungen an die Granularität der
Netzinformationen oder Effizienzvorgaben haben, sowie die Konkurrenz unter den Herstellern,
die ihre Produkte auf dem Markt etablieren wollen [Gui].

2.5 OpenFlow

OpenFlow [MAB+08] ist das erste Standard-Interface, das speziell für SDN entwickelt wurde
[Fou12]. Ursprünglich wurde es in Stanford und Berkley entwickelt, wird aber mittlerweile
von der Open Networking Foundation (ONF) [ONF] vertreten. OpenFlow beschreibt eine
Southbound-API, die die Kontrollschicht von der Datenschicht trennt und einen effizienten
Datenverkehr über heterogene Netzwerkgeräte hinweg unterstützt. Die Kommunikation zwi-
schen Switch und dem OpenFlow-Controller geschieht über das OpenFlow-Protokoll.

Controller

Sicherer Kanal
Group Table

Flow Table Flow Table

OpenFlow Switch

Pipeline

OpenFlow Protokoll

Abbildung 2.5: Spezifikation eines OpenFlow-Switches und dessen Kommunikation über das
OpenFlow-Protokoll nach [P+11]

In

gr
es

s
P

o
rt

M
et

ad
at

a

Et
h

er
 s

rc

Et
h

er
 d

st

Et
h

er
 t

yp
e

V
LA

N
 id

V
LA

N
 p

ri
o

ri
ty

M
P

LS
 la

b
el

M
P

LS
 t

ra
ff

ic
 c

la
ss

IP
v4

 s
rc

IP
v4

 d
st

IP
v4

 p
ro

to
 /

 A
R

P
 o

p
co

d
e

IP
v4

 T
o

S
b

it
s

TC
P

 /
 U

D
P

 /
 S

C
TP

 s
rc

 p
o

rt

 IC
M

P
 T

yp
e

 TC
P

 /
 U

D
P

 /
 S

C
TP

 d
st

 p
o

rt

 IC
M

P
 T

yp
e

Abbildung 2.6: Headerfelder in OpenFlow für den Abgleich zwischen Flow-Table und Paket-
rahmen nach [P+12]

17

2.5.1 OpenFlow-Switches

In Abbildung 2.5 ist der Aufbau eines OpenFlow-Switches zu sehen. Die Kommunikation mit
dem Controller erfolgt über einen sicheren Kanal. Nach der OpenFlow Spezifikation (Version
1.3.0) [P+12] muss ein OpenFlow-Switch eine Gruppentabelle (Group-Table) und eine bzw.
mehrere Flow-Tabellen (Flow-Tables) enthalten.

Ein Eintrag in einer Flow-Table besteht aus 3 Komponenten: Headerfelder, Zähler und Aktio-
nen. Einem ankommenden Paket wird mit Hilfe der Headerfelder eine oder mehrere Aktionen
zugeordnet. Es existieren 12 Headerfelder, mit denen auf unterschiedlichen Granularitäten
ein Abgleich stattfinden kann. Das kann z. B. der Eingangsport, die Ethernet-Adresse, die
IP-Adresse oder der TCP/UDP-Port sein. Ein Vergleich aufgrund feingranularer Faktoren
erhöht den Kontroll-Overhead, erreicht dafür aber genauere Routingergebnisse [KSIT11]. Die
vollständige Liste aller 12 Headerfelder findet sich in Abbildung 2.6.

Existieren mehrere Flow-Tables, sind diese in einer Pipeline angeordnet. Alle Pakete werden
immer zuerst mit Tabelle 0 abgeglichen. Wird ein passender Eintrag gefunden, werden die
zugehörigen Aktionen ausgeführt oder diese modifiziert und anschließend erneut abgeglichen.
Existiert kein Tabelleneintrag, wird das Paket abhängig von der Tabellenkonfiguration igno-
riert, an den Controller gesendet oder entlang der Pipeline im Switch weitergeleitet. Kommt
das Paket beim Controller an, muss dieser dafür sorgen, dass ein passender Flow-Eintrag im
passenden Switch eingerichtet wird. Jedem dieser Einträge ist eine Menge von Aktionen zu-
geordnet, die vom Switch verarbeitet werden. Vom Standard vorgeschriebene Aktionen sind
Output, Group und die Möglichkeit ein Paket zu ignorieren (Drop). Output lässt das Pa-
ket über einen bestimmten Port weiterleiten, Group lässt das Paket durch einen spezifizierten
Gruppeneintrag verarbeiten. Außerdem gibt es zahlreiche optionale Aktionen, die ein Herstel-
ler zusätzlich implementieren kann. Für eine ausführliche Liste aller Aktionen sei auf [P+12]
verwiesen.

Zusätzlich sind jeder Flow-Table und jedem darin enthaltenen Eintrag gewisse Zähler zu-
geordnet. Sie zählen unter Anderem die Anzahl der weitergeleiteten Bytes, die Zeit die der
Eintrag existiert oder die Anzahl aller Einträge in einer Flow-Table. Die Zählerinformationen
können mit einer OpenFlow-Nachricht abgefragt und für Statistikanwendungen oder für eine
dynamische Routingmetrik weiterverwendet werden.

Die Group-Table wurde erst ab der Version 1.1.0 in die OpenFlow-Spezifikation aufgenommen.
In der im Moment gängigen Version 1.0 ist lediglich die Flow-Table definiert. Über die Group-
Table werden einem Gruppeneintrag mehrere sog. Action Buckets zugeordnet, wobei jeder
Bucket aus einer Menge von Aktionen besteht. Über den Gruppentyp wird die Semantik
festgelegt. So bedeutet der Typ all, dass ein ankommendes Paket, welches zu der Gruppe
passt, geklont wird. Pro Klon wird daraufhin genau ein Bucket ausgeführt. So ist es möglich,
dass ein Paket an mehrere Ports weitergeleitet werden kann, was die Anwendung von Broad-
und Multicast ermöglicht.

Ab Version 1.3.0 ist es unter anderem möglich mit einer weiteren Tabelle (Meter-Table) einfa-
che QoS-Operationen zu implementieren. Diese können einem Flow zugeordnet werden. Bei-
spiele sind Beschränkungen in Übertragungsrate oder auch komplexere Dienste wie DivServ.

18

2.5.2 OpenFlow-Protokoll

Die Kommunikation zwischen dem Switch und dem Controller erfolgt, wie in Abbildung 2.5
angedeutet, über einen sicheren Kanal. Er agiert als Schnittstelle, über die der Controller die
Switches verwaltet, Ereignisse bekommt und Pakete zurücksendet. Meist geschieht dies über
ein gesondertes Netzwerk (Out-of-band). In OpenFlow-Protokoll sind drei Nachrichtentypen
definiert: Controller-to-switch, Asynchronous, und Symmetric mit jeweils mehreren Subtypen.

Controller-to-Switch-Nachrichten werden vom Controller genutzt, um Switchkonfigurationen
zu ändern oder auszulesen. Das beinhaltet auch die Möglichkeit, eine Flow-Table zu modi-
fizieren (Flow_Modifikation-Nachricht) oder ihren aktuellen Zustand zu erfragen. Außerdem
kann der Controller ein Paket an einen Switch senden (Packet_out-Nachricht).

Der Typ Asynchronous definiert Nachrichten, die ein Switch unaufgefordert an den Control-
ler sendet. Darunter fallen Fehler- und Statusmeldungen. Sie können auftreten, falls sich ein
Portzustand ändert oder ein Flow-Eintrag durch Timeout oder Löschen-Aktion entfernt wird.
Außerdem kann mit Hilfe einer Packet_in-Nachricht ein Paket an einen Controller weiterge-
leitet werden.

Eine Nachricht vom Typ Symmetric kann sowohl vom Switch als auch vom Controller initiiert
werden. Dabei handelt es sich um Hello- oder Echo-Anfragen, die für den anfänglichen Ver-
bindungsaufbau wichtig sind. Außerdem können sie zum Testen von Latenz und Bandbreite
der Controller-Switch Verbindung genutzt werden.

Controller

 Switch

Datenpaket

Packet_In

OpenFlow-
Header

Datenpaket

Flow
Mod

Flow
Created OpenFlow-

Header

Datenpaket

Packet_Out

Miss Hit Datenpaket

Abbildung 2.7: Beispielkommunikation zwischen Switch und Controller gemäß dem
OpenFlow-Protokoll

19

Abbildung 2.7 zeigt eine Beispielkommunikation zwischen Switch und Controller. Ein Switch
erhält ein Paket, für das kein passender Eintrag in den Flow-Tables gefunden wird. Dieser
ist so konfiguriert, dass er daraufhin eine Packet_in-Nachricht an den Controller schickt.
Das Paket wird an die Packet_in-Nachricht angehängt und mit einem Grund, hier Reason
= No_Match, versehen. Außerdem fügt der Switch noch den Port hinzu, auf dem das Pa-
ket ursprünglich eingegangen ist. So ist später beim Zurücksenden eine Zuordnung möglich.
Der Controller antwortet mit einer Flow_Modifikation-Nachricht, woraufhin entsprechende
Einträge in der Flow-Table des Switches erzeugt werden. Sobald eine Statusmeldung quit-
tiert, dass der Eintrag erfolgreich erstellt wurde, sendet der Controller das Paket mit einer
Packet_out-Nachricht wieder zurück. Zuvor kopiert er den Port aus der Packet_in-Nachricht.
So weiß der Switch, auf welchem seiner Ports das Paket ursprünglich gekommen ist und kann
einen Tabellenabgleich durchführen. Nachkommende, gleichartige Pakete werden nun direkt
weitergeleitet.

2.6 Verwandte Arbeiten

Verteilte Routingprotokolle für IP-Multicast wie DVMRP [WDP88b] oder MOSPF [Moy94]
bauen auf Unicast-Verfahren auf. DVMRP nutzt die Tabelleneinträge des Unicast-Routings,
um Distanzen zu anderen Routern zu erhalten. Der Multicastbaum wird durch periodisches
Fluten (Flooding) und Stutznachrichten (Pruning) aufgebaut. Das führt zu einer erhöh-
ten Netzbelastung und reduzierter Skalierbarkeit. Protocol Independent Multicast (PIM-DM)
[ANS+05] ist nicht von einem Unicast-Protokoll abhängig, nutzt aber ebenfalls das Stut-
zen eines Broadcastbaumes. Multicast Open Shortest Path First (MOSPF) verteilt Grup-
peninformationen an alle Router, um eine konsistente Sicht auf die Topologie zu geben.
Dabei müssen Gruppenänderungen nicht nur im gesamten Netz geflutet, sondern auch sämt-
liche Multicastbäume von allen Routern redundant berechnet werden. Der Sparse-Mode des
Protocol Independent Multlicast (PIM-SM) [FHKH06] nutzt wurzelbasierte Bäume (Core-
Based-Trees) [BFC93]. Zwar wird das Fluten vermieden, dafür führt es zu längeren Wegen
als in quellenbasierten Bäumen. Außerdem muss zusätzlicher Aufwand aufgebracht werden,
um die Rendezvous-Knoten zu platzieren und zu verwalten.

Im Gegesatz hierzu berechnen zentralisierte Ansätze die Routen an einer oder mehreren zen-
tralen Stellen und verhindern dadurch redundante Berechnungen. Außerdem vermeiden sie
zusätzliche Netzlast, die durch den Austausch von verteilten Zustandsinformationen entstehen
würde.

Keshav und Paul [KP99] konzentrieren sich auf ein Multicast-Routing im Internet. Die Auto-
ren schlagen vor, für jede Domain eine zentrale Einheit zu haben, die das Routing durchführt.
Außerdem existieren sog. Root-Controller, die für die Verteilung der Multicastinformationen
über Domaingrenzen hinweg zuständig sind, vergleichbar mit DNS. Für die Routenberechnung
kann ein quellenbasierter oder ein geteilter Baum verwendet werden.

Marcondes et al. [MSG+12] nutzen OpenFlow für einen zentralisierten Multicastdienst für
IPTV-Anwendungen im Internet. Sie berechnen und speichern alle kürzeste Pfade der IPTV-
Sender zu allen Endgeräten im Voraus. Dies hat den Vorteil, schnell auf Änderungen in der

20

Gruppenzusammensetzung reagieren zu können. Kommt ein neuer Empfänger hinzu, wird der
Pfad von der Quelle zum neuem Knoten nachgeschlagen, mit dem aktuellen Baum verglichen
und an diesen angebunden. Beim Löschen wird der Baum gestutzt. Die Autoren ersetzen au-
ßerdem IGMP als Gruppenverwaltungsprotokoll. Dies hat eine Änderung in den Endgeräten
zur Folge, was bedeutet, dass der Ansatz nicht ohne weiteres in bestehende IP-Netze integriert
werden kann. In dieser Diplomarbeit hingegen wird IGMP beibehalten, um eine möglichst ein-
fache Integration in vorhandene Datencenternetze zu ermöglichen. Dabei wird von einer eher
konstanten Anzahl von Sendern und Emfpängern in einem beschränkten Umfeld ausgegan-
gen, die eine im Vergleich geringerer Gruppendynamik ausweisen. Der Fokus liegt hier auf
der optimalen Ausnutzung der Netzressourcen und effizienten Berechnung von optimierten
Multicastbäumen, während für eine IPTV-Anwendung im Internet das häufige Umschalten
der Kanäle (Zapping) und die damit verbundene Gruppendynamik im Vordergrund steht.

In [KSS12] präsentieren Kotani et al. ebenfalls ein Design für einen OpenFlow Controller, der
IP Multicast implementiert. Im Vordergrund steht das Reduzieren von Paketverlusten durch
Switch-Ausfälle, hervorgerufen durch Fehler oder Wartungsarbeiten. Dazu werden für jede
Multicastgruppe zwei Verteilbäume vorberechnet, die man bei Bedarf umschalten kann. Jeder
Redundanzbaum hat eine ID, die vom Sender-Switch in den Paket Header geschrieben wird.
Soll auf einen anderen Baum umgeschaltet werden, muss lediglich der Flow Eintrag im Sender-
Switch ersetzt werden. Die anderen Switches haben beide Bäume bereits vorinstalliert und
machen nur einen Abgleich auf die ID. Der Nachteil dieses Ansatzes ist, dass man doppelt so
viele Tabelleneinträge vorhalten muss. Zur Steigerung der Effizienz werden auch hier aktuelle
Bäume zwischengespeichert und bei Gruppenänderungen lediglich modifiziert. Im Gegensatz
dazu, konzentriert sich der Ansatz in dieser Diplomarbeit darauf, möglichst optimale Multi-
castbäume im Datencenter nutzen zu können. Während der grundlegende Ansatz in [KSS12]
auf der Redundanz und der inkrementellen Modifizierung von mehreren Multicastbäumen be-
ruht, wird bei einem Ausfall in dieser Arbeit die Neuberechnung von quellenbasierten Bäumen
oder Shared-Trees bevorzugt und so kein zusätzlicher Tabellenplatz benötigt.

Dürr [Dür12] präsentiert ein Netzwerkparadigma mit dem Namen Cloud-assisted SDN (Ca-
SDN), das die Vorteile des Cloud Computings mit der SDN Architektur kombiniert. Am Bei-
spiel einer OpenFlow-basierten Systemarchitektur für einen Multicastdienst wird aufgezeigt,
wie die komplexen Verwaltungsfunktionen von der Rechenleistung und Speicherkapazitäten
in der Cloud profitieren können. Controllerfunktionen wie die Routenberechnung oder Grup-
penverwaltung können ausgelagert werden und die Datenschicht von einem Rechenzentrum
aus beeinflussen.

Das optimale Routing-Ergebnis eines Multicast wird durch einen minimalen Steinerbaum be-
schrieben [Pro02]. Heuristiken wie [KMB81] sind in der Lage, ein gutes Approximationsergeb-
nis in Polynomialzeit zu berechnen. In [KPP93] und [CW98] werden zusätzlich Verzögerungs-
Constraints betrachtet.

In dieser Diplomarbeit wird ein OpenFlow-basierter IP-Multicast-Dienst für Datenzentren
konzipiert und implementiert. Die angestrebten Ziele sind eine einfache Integration in vor-
handene OpenFlow-fähige Netze, effizientes und möglichst global-optimales Routing sowie
eine gut skalierbare Netz- und Gruppenverwaltung. Dabei soll die Infrastruktur in modernen
Rechencenternetzen nach Möglichkeit optimal ausgenutzt werden.

21

3 Anforderungen und Systemmodell

In diesem Kapitel wird in Abschnitt 3.1 die Problemstellung präzisiert und danach in Ab-
schnitt 3.2 der Systemaufbau besprochen. Im Anschluss werden in Abschnitt 3.3 die Anfor-
derungen eines Multicastdienstes im Datencenter dargestellt.

3.1 Problemstellung

Der rapide Anstieg von Speicher und Rechenkapazitäten in modernen Datencentern führt auch
zu höheren Anforderungen an die Netzwerke. Heutige Anwendungen greifen auf verschiedene
Datenbanken und Server, die auf unterschiedlichen Maschinen liegen, zu und aggregieren
daraus ein Ergebnis. Darüber hinaus werden immer größere Datenmengen parallel verarbeitet.
Dies macht eine effiziente Multicast-Kommunikation in Datenzentren unabdingbar, um den
bestehenden Kommunikations-Overhead zu reduzieren.

Die aufwändige Netzadministration erschwert jedoch zunehmend die Anpassung vorhande-
ner Netze an neue Anforderungen. Durch Virtualisierung muss eine immer größer werdende
Anzahl von Rechnersystemen verwaltet werden. Dazu kommt die höhere Dynamik durch
Live-Migration. Virtuelle Maschinen können beliebig zwischen verschiedenen Hostrechnern
wechseln, was hohe Ansprüche an eine Netzwerkverwaltung stellt. Die heutigen statischen
Netzwerke stehen im Gegensatz zu diesen Anforderungen. Sie können nicht dynamisch auf
Ausfälle, Datenverkehrsänderungen oder auf Bedürfnisse der Benutzer bzw. der Anwendun-
gen eingehen. Durch die fehlende Zentralität kann die vorhandene Infrastruktur nicht optimal
ausgenutzt werden und es muss sich mit weniger optimalen Routingergebnissen zufrieden ge-
geben werden. SDN reduziert die Komplexität durch klare Trennung zwischen Daten- und
Kontrollschicht und stellt eine globale Netzwerksicht zur Verfügung. Dies bietet die nötige
Flexibilität um den dynamischen Anforderungen gerecht zu werden.

In dieser Diplomarbeit wird ein OpenFlow-basierter IP-Multicast-Dienst konzipiert, um die
Vorteile von SDN in moderenen Datencentern für Multicast-Anwendungen verfügbar zu ma-
chen (Kapitel 4). Die Ziele dabei sind: Eine einfache Integration in vorhandene OpenFlow-
fähige Netze, effizientes und möglichst global-optimales Routing sowie eine gut skalierbare
Gruppen- und Netzverwaltung. Dabei soll die Infrastruktur eines Datencenternetzes nach
Möglichkeit optimal ausgenutzt werden. Eine Implementierung, die diesen Anforderungen ge-
recht wird, wird in Kapitel 5 beschrieben und im Anschluss auf einer Datencenter-Topologie,
in Kapitel 6, evaluiert.

23

3.2 Systemmodell

Core-
Switches

Aggregate-
Switches

ToR-
SwitchesPod 0 Pod 1 Pod 2 Pod 3

Hosts

Abbildung 3.1: Fat-Tree Topologie nach [AFLV08] für k = 4

Typische Datencenternetzwerke weisen eine Baumstruktur, einen sog. Fat-Tree [AFLV08] auf.
Die Fat-Tree Topologie ist eine spezielle Instanz eines Clos-Netzwerkes [Clo53], die aus han-
delsüblichen Switches zusammengesetzt ist (Abbildung 3.1). Sie sollte nicht mit einem Baum
nach [Lei85] verwechselt werden, dessen Grundidee in [AFLV08] aufgegriffen wurde und nun
ebenfalls Fat-Tree genannt wird. Ein Fat-Tree, im Sinne von [AFLV08], weist eine gute Kon-
nektivität auf und hat das Ziel die Effizienz, Skalierbarkeit und Fehlertoleranz von Datencen-
ternetzwerken zu erhöhen [BBAL+11]. Außerdem stellt diese Topologie einen Kostenvorteil
dar, da gängige Standardhardware verbaut werden kann. Ein Beispiel für ein Netzwerkschema,
das einen Fat-Tree nutzt, ist Portland [NMPF+09]. Das Switching geschieht dort mit Hilfe von
Pseudo-MAC Adressen, die jedem Host zugeordnet werden. In diesen Adressen ist die Positi-
on des Hosts im Baum codiert, was beim Routing ausgenutzt werden kann. Eine ausführliche
Übersicht über weitere Netzwerktopologien in Datenzentren findet sich in [CHZ+11].

Ein Fat-Tree ist durch einen Wert k bestimmt. Er gibt die Anzahl der Pods und die Port-
anzahl der Switches an. Auf der untersten Ebene finden sich jeweils k/2 physikalische oder
virtuelle Hostmaschinen. Sie sind über die Top-of-Rack-Switches (ToR-Switches) miteinander
verbunden. Die restlichen k/2 Ports verknüpfen die ToR-Switches mit den darüberlegenden
Aggregate-Switches zu einem Verbund, der als Pod bezeichnet wird. Die Aggregate-Switches
wiederum verbinden die Pods auf der höchsten Ebene mit allen (k/2)2 Core-Switches. Bild
3.1 zeigt einen Fat-Tree für k = 4.

Zum Testen und Evaluieren dieser Diplomarbeit wird beispielhaft eine Hälfte der Fat-Tree
Topologie aus Abbildung 3.1 verwendet. Allerdings ist das beschriebene Verfahren grund-
sätzlich unabhängig von der Topologie. Als Switches werden durchgehend OpenFlow-fähige
Multilayer-Switches eingesetzt. Das sind Geräte die sowohl auf der Sicherungsschicht, als
auch als Router in der Vermittlungsschicht agieren können. Weiterhin wird ein IP-Netz
zu Grunde gelegt, mit dem Ziel, IP-Multicast umzusetzen. Dazu gillt die Annahme, dass
die Hostgeräte standardkonform zu IP-Multicast das Internet Group Management Protocol
[CDK+02] (IGMP) nutzen, um ihre Gruppenmitgliedschaften bekannt zu machen.

24

Somit ist keine Modifikation der Hostgeräte vorgesehen. Die Switches selbst implementie-
ren OpenFlow und werden von einem zentralen Controller verwaltet.

Wichtige Bewertungskriterien in einem Netzwerk sind Grad, Durchmesser, Kantenkonnektivi-
tät und die Bisektionsbandbreite [TMJ12]. Der Grad jedes inneren Knoten in einem Fat-Tree
ist k. Die längste Distanz zwischen zwei Knoten im Netz wird als Durchmesser bezeichnet.
In Bild 3.1 beträgt der Durchmesser sechs Längeneinheiten. Dagegen gibt die Kantenkon-
nektivität ein Maß für die vorhandenen Leitungsredundanzen an. Sie ist definiert durch die
minimale Anzahl von Kanten, die entfernt werden müssen, um das Netz zu unterbrechen. Im
Beispiel 3.1 beträgt dieser Wert zwei Längeneinheiten und wird durch den Fall bestimmt,
wenn genau ein ToR-Switch abgetrennt wird. Die Bisektionsbandbreite wiederum ist ein Maß
für die worst-case Kapazität in einem Netz. Je höher die Bisektionsbandbreite, desto selte-
ner treten Blockierungen auf. Sie wird durch die minimale Anzahl von Kanten bestimmt, die
entfernt werden müssen, um das Netz in zwei gleichgroße Teilnetze zu zerlegen. Die Summe
der Bandbreiten aller geschnittenen Verbindungsleitungen ist die Bisektionsbandbreite. Ein
Fat-Tree ist deshalb für Datencenternetze eine geeignete Wahl, da die volle Bisektionsband-
breite erreicht werden kann [AFLV08]. Das hat zur Folge, dass Knoten paarweise zwischen
den Hälften mit voller Geschwindigkeit kommunizieren können.

Zur Optimierung des Routings sollten die Mehrfachpfade eines Fat-Trees ausgenutzt werden,
um die verfügbare Bandbreite gleichmäßig verteilen zu können (Multipathing). Die Aufteilung
kann pro Verbindung stattfinden, d.h. pro Multicastbaum, oder auf Paketbasis. Letzteres
würde bedeuten, dass die Multicastpakete von einem Sender zu der gleichen Gruppe über
mehrere redundante Bäume geteilt werden. Es gibt mehrere Methoden, die in Rechenzentren
für ein Multipathing zum Einsatz kommen können. Standardverfahren wie ECMP [TH00]
basieren auf einfachem Hashing, haben aber den Nachteil dass die Netzlast nicht betrachtet
wird. In [AFRR+10] übernimmt ein zentraler Scheduler mit globalem Wissen die Platzierung
der Flows. In dieser Diplomarbeit wiederum wird OpenFlow verwendet, um die Bandbreite
beim Routing mit einzubeziehen.

3.3 Anforderungen an einen OpenFlow-basierten Multicast-Dienst
im Datencenter

Die Hauptaufgaben des Multicast-Dienstes bestehen aus Gruppenverwaltung, Routenverwal-
tung, Bereitstellen einer Netzrepräsentation und der Routenberechnung. Daraus, und aus der
Problemstellung in Abschnitt 3.1, lassen sich folgende Anforderungen für einen OpenFlow-
basierten Multicastdienst in einem Datencenter ableiten:

Globale Netzrepräsentation Der OpenFlow-Controller muss stets den aktuellen Zustand
des Netzwerkes bereitstellen. Dies beinhaltet neben der Netztopologie auch Statistiken, um
adaptives Routing aufgrund von aktuellen Netzzuständen zu ermöglichen. Dazu muss eine
Netzwerkrepräsentation als kantengewichteter Graph erstellt werden. Wichtig ist, dass ein
effizienter Zugriff auf diese Informationen erfolgen kann.

25

Skalierbarkeit Ein wichtiges Designkriterium für einen Multicastdienst ist die Skalierbarkeit
in Gruppengröße und Gruppenanzahl [Wit99]. Auf der einen Seite betrifft das den Controller,
der innerhalb kürzester Zeit auf Gruppenänderungen reagieren muss, um keinen Flaschenhals
zu bilden. Außerdem muss er in der Lage sein, die Gruppen effektiv zu verwalten und einen
schnellen Datenzugriff ermöglichen. Auf der anderen Seite stehen die Beschränkungen bezüg-
lich der Tabellengröße in den Switches. Ein drohender Überlauf in einer Flow-Table sollte
erkannt und darauf entsprechend reagiert werden. Dies kann durch Umstellen des Routing-
protokolls, Zusammenfassen mehrerer Tabelleneinträge (Flow Aggregation) [MSG+12] oder
Umleitung des Verkehrs über andere Router erfolgen. Zusätzlich könnte der Controller verteilt
implementiert werden. Das verhindert einen Single-Point-of-Failure und erhöht die Skalier-
barkeit. Außerdem sollten in den Hostrechnern ausreichend Rechen- und Speicherressourcen
zur Verfügung stehen.

Global-optimales Routing Die Rechenressourcen eines Datencenters und die Zentralität von
SDN erlauben es, komplexere Routingalgorithmen zu verwenden. Ziel ist es, einen möglichst
minimalen Multicastbaum in polynomieller Zeit zu berechnen. Dieser sollte mehrere Kriterien
gleichzeitig erfüllen können und eine möglichst optimale Lösung finden. Traffic Engineering,
nach Kapitel 2.3, ist für eine bessere Ausnutzung redundanter Pfade in der Netzwerkstruktur
aus Abschnitt 3.2 nötig. Ein Mechanismus dafür ist Flow Balancing, bei dem der Datenverkehr
bevorzugt über weniger ausgelastete Verbindungsstücke geroutet wird. Das hat zum Ziel, eine
möglichst optimale Ausnutzung der Bandbreite zu erreichen [Kos10].

Effizienz Routenberechnung, Flow-Updates, Verwaltung und Weiterleitung sollten effizient
ablaufen und ungenutzte Ressourcen, wie innaktive Flow-Table Einträge explizit freigemacht
werden. Dazu müssen die installierten Routen im Controller gespeichert werden, um bei Ände-
rungen ein zeitaufwändiges Anfragen in der Datenschicht zu vermeiden. Die Zeit für Routen-
berechnung und Flow-Updates, kann durch proaktives Vorinstallieren der benötigten Daten-
pfade reduziert werden. Das Ziel ist, auf Datenebene eine unterbrechungsfreie Weiterleitung
in Line-Rate zu ermöglichen. Alternativ kann ein reaktives Verfahren zur Flow-Erstellung
genutzt werden. Dabei sollten Gruppenänderungen aber nur zu inkrementellen Änderungen
an den Tabelleneinträgen führen, damit eine komplette Neuberechnung verhindert wird.

Robustheit Durch das adaptive Umleiten des Datenverkehrs auf redundante Pfade werden
Paketverluste aufgrund von Leitungs- und Switch-Ausfällen reduziert. Diese Art von Topo-
logieänderungen muss am Controller registriert und in die aktuelle Routenberechnung mit
einbezogen werden. Ein Weiteres Problem ist, dass ein Daten-Burst einen Switch mit Pake-
ten überfluten kann, wenn erst durch den OpenFlow-Controller ein passender Tabelleneintrag
eingerichtet werden muss. Dauert dieser Prozess zu lange, läuft die Eingangswarteschlange
im Switch voll und Pakete werden verworfen.

Integration Der Multicastdienst soll möglichst einfach in ein vorhandenes OpenFlow-fähiges
Netzwerk integrierbar sein. Die Grundvoraussetzung dafür ist, dass die Switches OpenFlow-
fähig sein müssen. Zusätzlich muss ein Controller und ein Controllernetzwerk existieren. Je-
doch sollen keine Änderungen an den Endsystemen nötig sein. Das hat zur Folge, dass die
Kommunikation mit den Hosts standardkonform zu IP-Multicast geschehen muss.

26

4 Konzeption eines OpenFlow-basierten
Multicast-Dienstes

In diesem Kapitel wird die Lösungskonzeption für einen OpenFlow-basierten Multicast-Dienst
vorgestellt, die den gestellten Anforderungen aus Kapitel 3.3 gerecht werden soll. Zunächst
wird in Abschnitt 4.1 eine Übersicht über die erarbeitete Architektur der Controller-Software
gegeben sowie die dazu nötigen Softwareprozesse identifiziert. Anschließend werden die einzel-
nen Prozesse sowie die zugehörigen Verbindungen und Schnittstellen beschrieben (Abschnitte
4.2 bis 4.7).

4.1 Systemarchitektur

Die allgemeine Systemarchitektur des OpenFlow-basierten Multicast-Dienstes ist in Abbil-
dung 4.1 dargestellt. Die Datenschicht weist eine Datencenter-Topologie auf und sämtliche
Switches sind Multilayer- und OpenFlow-fähig. Die Kommunikation zwischen Datenschicht
und Controller geschieht über OpenFlow. Die Kantenbeschriftungen geben die Art der In-
formationen bzw. die Nachrichtentypen an, die intern zwischen den Prozessen ausgetauscht
werden. Folgende Controller-Prozesse lassen sich aus Abbildung 4.1 identifizieren:

• OpenFlow: Southbound-API, zuständig für die Kommunikation mit der Datenschicht
und die Modifikation der Flow-Tables

• Nachrichtenfilter: Empfängt alle Nachrichten, die aus der Datenschicht an den Con-
troller gesendet werden und leitet sie abhängig vom Nachrichtentyp an den jeweiligen
Prozess weiter.

• Netzstrukturverwaltung: Die Aufgaben bestehen aus dem Bereitstellen, Überwa-
chen und Speichern des aktuellen Netzzustandes. Das betrifft die Topologie sowie die
Bestimmung von Switch-Informationen wie Portnamen oder IP- und MAC-Adressen.
Für die Topologiebestimmung wird das Link Layer Discovery Protocol (LLDP) [lld05]
verwendet.

• Netzzustandsverwaltung: Überwacht den Netzzustand aufgrund von Statistikinfor-
mationen aus der Datenschicht. Diese Informationen werden mit der Netztopologie kom-
biniert und stellen der Routenberechnung eine kantengewichtete Netzrepräsentation zur
Verfügung. Außerdem werden Ausfälle, sowie drohende Überläufe in den Flow-Tabellen
erkannt und eine Behandlung dieser Probleme in der Routenberechnung initiiert.

27

 Controller

 Datenschicht

OpenFlow-API

Netzstrukturverwaltung
Gruppenverwaltung

Routenberechnung und
Flow Modifikation

Routenverwaltung

OpenFlow
Protokoll

Packet_Out (LLDP) Packet_Out (IGMP)

Gruppenmitglieder

Flow-
Informationen

Topologie

Mutlilayer OpenFlow-Switch

...
... ...

Nachrichtenfilter
LLDP IGMP

OpenFlow Nachrichten

ADD/ DELETE/ MOD-
FLOW

Netzzustandsverwaltung

Statistiken

Topologie/
Kantengewichte/

Überläufe/
Ausfälle

Statistikanfragen

Status-/
Fehlermeldungen

Abbildung 4.1: Systemarchitektur für einen OpenFlow-basierten Multicastdienst

• Gruppenverwaltung: Speichert die aktuellen Gruppen und deren Zusammensetzung.
Außerdem ist sie dafür zuständig, Gruppenänderungen aus dem Netz anzufragen. Dies
geschieht indem das Gruppenverwaltungsprotokoll IGMP implementiert wird.

• Routenverwaltung: Hält Informationen über die aktuell implementierten Flows be-
reit, um bei Gruppenänderungen die nötigen Anpassungen im Netz vornehmen zu kön-
nen. Nach der Ausführung einer Routenberechnung werden die Daten der Routenver-
waltung entsprechend angepasst, sofern die Änderungen durch entsprechende Status-
meldungen von der Datenschicht quittiert wurden und kein Fehler aufgetreten ist.

• Routenberechnung und Flow Modifikation: Ist für die Berechnung der Multi-
castbäume zuständig. Dazu werden Daten aus der Netzzustandsverwaltung, Gruppen-
verwaltung und der Routenverwaltung verwendet. Treten Änderungen in der Grup-
penzusammensetzung oder in der Topologie auf, wird die Routenberechnung von der
Gruppenverwaltung bzw. der Netzzustandsverwaltung angestoßen. Mit Hilfe der Infor-
mationen aus der Routenverwaltung werden im Anschluss an die Berechnung die nötigen
Änderungen über die OpenFlow-API vorgenommen.

28

Im Nachfolgenden werden, in den Abschnitten 4.2 bis 4.7, die einzelnen Aufgaben der Pro-
zesse aus Abbildung 4.1 sowie die zugehörigen Verbindungen und Schnittstellen ausführ-
lich beschrieben. Diese Beschreibung erfolgt unabhängig von einer konkreten Controller-
Implementierung auf OpenFlow-Basis.

4.2 Kommunikation mit der Datenschicht und
Nachrichtenfilterung

Die Kommunikation mit der Datenschicht geschieht gemäß dem OpenFlow-Protokoll über
die OpenFlow-API. Die vollständige Spezifikation aller OpenFlow-Nachrichtentypen findet
sich in [P+12]. Über TCP mit TLS-Verschlüsselung (Transport Layer Security) [Die08] wird,
durch einen Handshake zwischen dem Controller und den OpenFlow-Switches, eine Verbin-
dung über ein externes Controllernetz aufgebaut. Um mit den Switches kommunizieren zu
können, werden dementsprechend TCP-Sockets mit ihren Bezeichnern, IP-Adressen und Ports
im Controller verwaltet. Da der Controller zu jedem Switch nur jeweils eine TCP-Verbindung
aufbaut, können diese eindeutig über ihre IP-Adresse identifiziert werden. Alternativ kann zu
diesem Zweck eine Controller-interne Switch-ID zugewiesen werden. Sie erleichtert das Spei-
chern von Gruppen- und Flow-Informationen im Controller. Die OpenFlow Dokumentation
[P+12] spezifiziert eine solche ID als 64-Bit Bezeichner, wovon die letzten 48-Bit die MAC-
Adresse darstellen. Die oberen 16 Bit sind frei belegbar und hängen so von der jeweiligen
Implementierung ab. Wenn im Nachfolgenden vom Senden oder Empfangen einer Nachricht
durch den Controller die Rede ist, beinhaltet das implizit auch immer eine Zuordnung der
Switch-ID zum jeweiligen TCP-Socket durch IP-Adresse und Port. Im Nachfolgenden wird
zur Beschreibung des Datenaustausches gemäß Bild 4.1 zwischen vom Controller ausgehenden
und am Controller ankommenden Nachrichten unterschieden.

Ausgehende Nachrichten Es müssen Nachrichtenpakete verschiedener Art zwischen dem
Controller und der Datenebene ausgetauscht werden. Die Netzstrukturverwaltung und die
Gruppenverwaltung benutzen die OpenFlow-Nachricht Packet_Out, um IGMP- oder LLDP-
Anfragen an einen Switch zu schicken. Mit einer Packet_Out-Nachricht ist es möglich einen
beliebigen Ethernet-Rahmen mit einem OpenFlow-Header zu versehen und an die Daten-
schicht zu schicken. Für die Modifikation von Flow- und Group-Tables schickt die Routen-
berechnung Änderungsanfragen in Form einer Flow Table Modification-Nachricht. Man un-
terscheidet dabei die Nachrichtentypen Add, Delete und Mod für das Hinzufügen, Löschen
oder Ändern von Tabelleneinträgen. Zusätzlich fragt die Netzzustandsverwaltung über eine
sog. Multipart_Request-Nachricht aktuelle Statistikwerte bezogen auf die Flow-, Table- oder
Gruppenzähler eines Switches ab.

Ankommende Nachrichten und Verteilung durch den Nachrichtenfilter Der Nachrichten-
filter aus Abbildung 4.1 ist dafür zuständig, alle am Controller ankommenden Open-Flow
Nachrichten entsprechend weiterzuleiten. Dieser erhält über die OpenFlow-API Packet_In-,
Statistik- sowie Fehler- und Statusnachrichten. Die Zuordnung nach den entsprechenden
Headerfeldern ist in Abbildung 4.2 zu sehen.

29

Packet_In

OpenFlow Type =
10 ?

EtherType
=0x88CC ?

Ja

Sende an
Netzstrukturverwaltung

Ja

protocol = 2?

 Nein

Sende an
Gruppenverwaltung

Ja

IGMP

LLDP

Multipart_Reply

Fehlermeldung

Flow_Removed

Extrahiere
Headerfelder

OpenFlow-Nachrichten

OpenFlow Type
= 11 ?

Sende an
Routenverwaltung

Ja

OpenFlow Type
= 1 ?

Nein

Fehlertyp =
5 oder 6 ?

Ja

Sende an
Routenberechnung

Ja

Sende an AnwendungNein

OpenFlow Type
= 19 ?

Nein

Sende an
Netzzustandsverwaltung

Ja

Paket ignorieren
Sonst

Flow_Mod-/
Group_Mod-

Fehler

Nein

Nein

Nein

Abbildung 4.2: Flussdiagramm des Nachrichtenfilters

Über die OpenFlow-Nachricht Packet_In kann ein beliebiger Switch ein Paket an den Control-
ler weiterleiten. Eine Packet_In-Nachricht wird über dem Wert 10 im OpenFlow-Headerfeld
Type erkannt. Im Nachrichtenfilter wird dann zwischen LLDP- und IGMP-Paketen unterschie-
den. Am Controller ankommende LLDP-Nachrichten sind Antworten der Switches auf vor-
hergegangene LLDP-Anfragen, die von der Netzstrukturverwaltung ausgegangen sind. Ana-
log wurden IGMP-Nachrichten von der Gruppenverwaltung gesendet und müssen nun vom
Nachrichtenfilter wieder dem anfragenden Prozess zugeordnet werden. Für die Unterscheidung
der beiden Nachrichtentypen werden die Headerfelder auf der Sicherungs- und Vermittlungs-
schicht inspiziert. Ein EtherType von 0x88CC zeigt einen LLDP-Rahmen an, während ein
IP-Header mit einem Nachfolgeprotokollwert von 2 auf eine IGMP Nachricht hinweist (Pro-
tocol-Header).

Tritt bei der Änderung eines Eintrages in einer Flow-Tabelle ein Fehler auf, antwortet der
Switch mit einer Fehlermeldung, was durch einen Wert type = 1 im OpenFlow-Header erkannt
wird. Fehlermeldungen werden als Antwort auf eine Mod/Add/Delete-Nachricht geschickt und
müssen deshalb an die Routenberechnung geleitet werden. Der Fehlertyp 5 gibt einen Fehler
bei der Flow-Modifikation an, während der Fehlertyp 6 einen Fehler bei der Gruppenmodifi-
kation anzeigt. Für den Multicastdienst nicht direkt relevante Fehlertypen werden durch eine
allgemeine Fehlerbehandlung in OpenFlow oder von der Anwendung verarbeitet und sind hier
nicht weiter aufgeführt.

30

Weiterhin werden in Abbildung 4.2 Flow_Removed- und Multipart_Reply-Nachrichten un-
terschieden. Eine Flow_Removed-Nachricht ist eine Statusnachricht, die das Löschen eines
Flows bestätigt. Sie wird durch den Wert 11 im OpenFlow-Headerfeld type erkannt. Da der
Multicastdienst den Soft-State-Mechanismus von OpenFlow für Flow-Table Einträge nicht
verwendet, kann eine solche Löschmeldung nur als Antwort auf eine Delete- Anweisung ge-
sendet worden sein. Sie wird deshalb an die Routenberechnung weitergeleitet. Die Antwort
auf eine vorangegangene Statistikanfrage der Netzzustandsverwaltung geschieht in Form ei-
ner Multipart_Reply-Nachricht. Der zugehörige OpenFlow type-Wert beträgt 19. Sämtliche
Nachrichten dieser Art werden zurück zur Netzzustandsverwaltung geleitet. Alle anderen Pa-
kete, die keine der beschriebenen Headerinformationen aufweisen, sind für den Multicastdienst
nicht von direkter Bedeutung und werden ignoriert. Die Verarbeitung solcher Pakete erfolgt
außerhalb der Sichtweise der beschriebenen Architektur.

4.3 Netzstrukturverwaltung

Um eine Repräsentation der physikalischen Netzstruktur für die Routenberechnung zu er-
halten, führt die Netzstrukturverwaltung das Link Layer Discovery Protocol (LLDP) [lld05]
aus. Außerdem dienen diese Informationen als Grundlage für das Erkennen von Änderungen
und Ausfällen durch die Netzzustandsverwaltung. Mit LLDP kann ermittelt werden, welche
Netzwerkgeräte mit welchen Nachbargeräten verbunden sind. Außerdem können System- und
Portnamen, Netzadressen sowie die Funktionen der einzelnen Geräte bestimmt werden. Aus
diesen Informationen wird ein Graph in Form einer Adjazenzliste konstruiert.

In einem herkömmlichen Netzwerk initiieren die Router eine LLDP Kommunikation, indem
sie Informationen über sich selbst an ihre Nachbarn versenden. Empfangene Informationen
werden in einer Information-Base im Router gespeichert und können dann z. B. über das
SNMP-Protokoll [CMPS02] abgefragt werden. Im OpenFlow-Netzwerk wird diese Funktiona-
lität von den Switches in den Controller verlagert.

LLDP arbeitet auf der Sicherungsschicht. Ein entsprechender Rahmen wird mit dem Ether-
Type 0x88cc versehen und periodisch über eine Packet_Out-Nachricht, vom Controller an alle
OpenFlow-fähige Switches geschickt. LLDP-Rahmen sollen von den empfangenden Switches
über alle Ports weitergeleitet werden, um benachbarte Netzwerkverbindungen zu erkennen.
Ein LLDP-Paket muss von einem Switch als solches erkannt und daraufhin eine entsprechende
Output:All Aktion ausgeführt werden. Der logische All-Port steht dabei stellvertretend für al-
le Ports eines Switches. Handelt es sich bei einem Nachbargerät um einen OpenFlow-Switch,
leitet dieser den LLDP-Rahmen über eine Packet_In-Nachricht an den Controller zurück.
Dies geschieht entweder aufgrund der Switch-Konfiguration, falls kein passender Eintrag in
der Flow-Table gefunden wird, oder alternativ, durch eine explizit eingerichtete Aktion zur
Weiterleitung an den Controllerport (Output:Controller). Im Controller leitet der Nachrich-
tenfilter den LLDP-Rahmen an die Netzstrukturverwaltung weiter, die dann daraus schließen
kann, dass zwischen zwei Switches eine Verbindung besteht.

31

 Controller

OpenFlow-APIPacket_Out (LLDP)

NachrichtenfilterLLDP

Packet_In (LLDP)

Netzstrukturverwaltung

...

Packet_Out
 (LLDP_1)

Packet_In
(LLDP_1)

OpenFlow-Switch 1 OpenFlow-Switch 2

LLDP_1

LLDP_2

Packet_Out
(LLDP_2)

Packet_In
(LLDP_2)

Flow-Table 1

...Match

LLDP

...

Action

Output:Controller

...

Flow-Table 2

...Match

LLDP

...

Action

Output:Controller

...

Action

Output:All

Action

Output:All

Abbildung 4.3: LLDP-Kommunikation zwischen Netzstrukturverwaltung und zwei benach-
barten OpenFlow-Switches

In Abbildung 4.3 ist der beschriebene Informationsaustausch für zwei benachbarte OpenFlow-
Switches dargestellt. Außerdem sind die dafür nötigen Aktionen und die Abgleichkriterien auf
Datenebene zu sehen. Der Eintrag in der Flow-Table muss vor der eigentliche Kommunika-
tion eingerichtet werden und darf danach nicht mehr verworfen werden. Das heisst es darf
insbesondere kein Timeout-Wert gesetzt sein. Die Aktion Output:All für ausgehende LLDP-
Rahmen wird direkt in der Packet_Out-Nachricht definiert. Nur Pakete, die im Zuge dieser
Packet_Out-Nachricht vom Controller kommen, werden über diese Aktion behandelt. Der
Eintrag in der Flow-Table des Switches gleicht, unabhängig vom Eingangsport, nach dem
LLDP EtherType ab. Das heißt sämtliche LLDP-Rahmen werden vom empfangenden Switch
direkt an den Controller weitergegeben.

Wichtig ist, dass ein Switch einen LLDP-Rahmen, den er von einem Nachbarn erhalten hat,
nicht auf der Datenschicht weitersendet. Die LLDP Spezifikation gibt als spezielle Empfänge-
radresse für LLDP-Rahmen die Multicastadresse „01:80:c2:00:00:0e“ vor. Rahmen mit dieser
Adresse dürfen von einem Switch nicht weitergeleitet werden, so dass nur Informationen zwi-
schen Nachbarn ausgetauscht werden. In dem Fall, dass zwischen zwei OpenFlow-Switches
keine Direktverbindung besteht, sondern ein zusätzlicher, nicht OpenFlow-fähiger Switch da-
zwischengeschaltet ist, führt das zu einem Problem. Der Switch würde den LLDP-Rahmen
konsumieren und nicht beim nächsten OpenFlow-Switch ankommen. Als Alternative kann
man auf die Broadcastadresse „ff:ff:ff:ff:ff:ff“ zurückgreifen und manuell durch einen extra
Eintrag in der Flow-Table sicherstellen, dass der nächste OpenFlow-Switch den Rahmen nicht
mehr weiterleitet.

32

4.4 Netzzustandsverwaltung

Die Netzzustandsverwaltung ist dafür zuständig, den aktuellen Zustand der Switches und der
Verbindungen auf Datenebene zu ermitteln. Dazu gehören die verfügbare Restbandbreite aller
Leitungen und die Überwachung der Flow-Tables. Die Restbandbreite wird für die adaptive
Wegberechnung in der Routenberechnung benötigt. Die Netzzustandsverwaltung errechnet
für die gegebene Netztopologie eine gewichtete Summe. Diese besteht aus den Distanzen, den
Leitungskapazitäten und der verfügbaren Restbandbreite. Das Ergebnis ist ein zusammenge-
setztes Kantengewicht, dass die Leitungsauslastung im Datencenter in die Routenberechnung
miteinbezieht. Die Informationen über die Topologie, Distanzen und Kapazitäten stammen
von der Netzstrukturverwaltung.

 Controller

OpenFlow-API

Netzstrukturverwaltung

Routenberechnung und
Flow Modifikation

Nachrichtenfilter

OpenFlow Nachrichten

Statistikanfragen

OpenFlow-Switch 1

Multipart:
 port_stats_reply

Multipart:
port_stats_request

Netzzustandsverwaltung

Topologie

Netzstatistik-
Deamon Statistiken

Berechnung der
Kantengewichte

Aktualisierung der
Datenstruktur

Topologie/
Kantengewichte

Port/Flow-Zähler

Kantengewichte

Nach TPort
Sekunden

OpenFlow-Switch 2

Multipart:
table_stats_request

Multipart:
table_stats_reply

Tabellenüberlauf/
Ausfallmeldungen

Überlauf- und
Ausfallkontrolle

Table-ZählerNach TTable
Sekunden

...

...

Abbildung 4.4: Aufgaben der Netzzustandsverwaltung

Eine Übersicht über den Ablauf der einzelnen Aufgaben der Netzzustandsverwaltung ist in
Abbildung 4.4 dargestellt. Statistik- und Topologieinformationen werden an die Netzzustands-
verwaltung übergeben. Eine kantengewichtete Netzrepräsentation, sowie die Benachrichtigung
über einen drohenden Tabellenüberlauf stellen die Ausgangsinformationen an die Routenbe-
rechnung dar. Zusätzlich wird die Routenberechnung über Ausfälle in der Netzstruktur in-
formiert. Die in Abbildung 4.4 definierten Aufgaben werden nachfolgend in den Abschnitten
4.4.1 bis 4.4.4 einzeln beschrieben.

33

4.4.1 Ermitteln der Netzstatistiken

OpenFlow bietet über eineMultipart-Nachricht die Möglichkeit, Statistikinformationen an den
Switches abzufragen. Das geschieht hier periodisch über den Netzstatistik-Deamon. Im Zeitab-
ständen von TP ort-Sekunden fragt er Port- und Flow-Statistiken ab. Im Abstand von TT able-
Sekunden werden Statistiken über Flow- und Group-Tables ermittelt. Dabei soll
TP ort 6= TT able gelten.

Ein OpenFlow-Switch implementiert nach der OpenFlow-Spezifikation mehrere Zähler, die die
Zeit, die Anzahl der Pakete und die Anzahl der Bytes auf verschiedenen Granularitätsebenen
vorhalten. Ein Multipart_Request weist den Switch an, die aktuellen Zählerwerte an den
Controller zurückzuschicken. Für die Anfrage muss im Header lediglich der gewünschten Port,
die Tabelle oder ein Flow vorgeben werden. Aus dem Body der Multipart-Antwort kann die
Netzzustandsverwaltung die gewünschten Zähler auswerten.

Hier sind die Bytezähler der einzelnen Ports und Flows von Interesse, um daraus die aktuelle
Netzlast zu errechnen. Für die Port-Statistik wird an alle Switches ein Multipart Request vom
Typ Port_Stats versendet. Im Header wird der Any-Port vorgegeben, woraufhin der Con-
troller die Zähler für alle auf dem Switch vorhandenen Ports zurückerhält. Zusätzlich werden
für jeden aktiven Multicastbaum die Flow-Statistikwerte benötigt, um feststellen zu können
mit welcher Bandbreite dieser zur Gesamtauslastung beiträgt. Dies geschieht, gleichzeitig
zur Portanfrage, über einen Multipart Requests vom Typ Flow_Stats, der an die jeweils zur
Gruppe gehörenden Switches gesendet wird. Diese Information ist wichtig, damit bei einer
Neuberechnung für eine Gruppe nicht der eigen produzierte Traffic zu einer möglicherweise
schlechteren Route führt.

Sei Cout(t, p) der Zähler, der die Anzahl der Bytes für einen Switch zurückgibt, die bis zum
Zeitpunkt t über den Port p herausgeschickt wurden. Durch periodisches Abfragen der aktu-
ellen Zählerwerte in einem Zeitintervall TP ort, kann die aktuelle Bandbreitenauslastung Li(e)
eines Ausgangsports (bzw. Kante) e im Netzgraph G(V,E) folgendermaßen errechnet werden:

Li(e) := Cout(ti, p)− Cout(ti−1, p)
TP ort

(4.1)

Damit bestimmt Li(e) die Anzahl der Bytes pro Sekunde, die im Zeitraum zwischen ti und
ti−1 über diese Kante geflossen sind. Im Systemmodell wird von Vollduplex-Leitungen aus-
gegangen, so dass in beide Richtungen, unabhängig voneinander, die volle Bandbreite zur
Verfügung steht. Analog zu Li(e) bezeichnet L(s,K)i

(e) die Bandbreite, die über einen Flow-
Eintrag einer bestimmten Gruppe K ⊆ V mit zugehörigem Sender s ∈ V momentan ge-
nutzt wird. Sie wird über die angefragten Bytezähler der Gruppen-Flows ermittelt. L(s,K)i

(e)
ist 0, wenn diese Gruppe zuvor nicht existiert hat oder in der letzten Zeitperiode TP ort keine
Übertragung stattgefunden hat.

Um die Historie in die aktuelle Berechnung mit einzubeziehen, wird der exponentiell geglät-
tete Mittelwert (exponential moving average) L∗i−1(e) aus den vorangegangenen Messungen
herangezogen. Der initiale Bandbreitenwert L∗0(e) ist dabei mit 0 vorgegeben.

34

Die aktuelle Auslastung unter Berücksichtigung der Historie wird mit L∗i (e) bezeichnet und
errechnet sich durch:

L∗i (e) := βLi(e) + (1− β)L∗i−1(e) (4.2)

Die rekursive Formel (4.2) bezieht, neben der aktuellen Auslastung, die vorangegangenen Mit-
telwerte mit absteigender Gewichtung mit ein. Je weiter ein Wert in der Vergangenheit liegt,
desto geringer ist sein Einfluss. Der Faktor 0 ≤ β ≤ 1 bestimmt dabei die Gewichtung zwischen
der aktuellen Bandbreite und dem vorangegangenen Mittelwert. Die Betrachtung der Historie
ist sinnvoll, da die zukünftige Auslastung einer Kante im Allgemeinen nicht bekannt ist und
die Kantenauslastung, während der aktuellen Routenberechnung im Zeitintervall TP ort, stark
von den vorherigen Werten abweichen kann. So ist es beispielsweise denkbar, dass eine Kante
in größeren Abständen durch bestimmte Multicastübertragungen stark ausgelastet wird, dies
aber in der aktuellen Berechnung, innerhalb des im Vergleich kurzen Intervalls TP ort, nicht
erkannt wird. Durch die Einberechnung vergangener Werte ist so eine realistischere Prognose
zukünftiger Übertragungen möglich. Die selbe Berechnung, wie in Gleichung 4.2, geschieht
analog für L∗(s,K)i

(e) für jeden vorhandenen Multicastbaum. Dieser Wert gibt den Einfluss
des Baumes (s,K) bezüglich der Auslastung auf Kante e, inklusive der Historie, an.

Die Bytezähler, die für die Berechnung aus Gleichung 4.1 benötigt werden, sind in der Open-
Flow Spezifikation als optional gekennzeichnet. Es muss daher bei der Auswahl der Hardware
darauf geachtet werden, dass diese auch tatsächlich implementiert sind. Zusätzlich kann es
sich bei den Zählern um ungenauere Softwarezähler handeln, die lediglich durch das periodi-
sche Anfragen von Hardwarezählern implementiert sind [P+12]. Ungenauigkeiten können aber
auch durch die Verzögerung derMultipart-Nachrichten an der Schnittstelle, im Netz und in der
Eingangswarteschlange der Switches auftreten. Die Kommunikation im Controllernetzwerk
geschieht typischerweise über TCP, was zusätzlich schwer vorhersehbare Verzögerungszeiten
mit sich bringen kann.

Netzzustandsverwaltung OpenFlow-Switch

Multipart: port_stats_request(ALL)

Multipart: port_stats_reply

Multipart: port_stats_request(ALL)

Multipart: port_stats_reply

Lese Werte

Lese Werte

TPort -TMulltipart

TMulltipart

TPort

Abbildung 4.5: Anpassung der Intervallzeit TP ort

35

Durch die hier verwendete Trennung zwischen Controllernetz und Datenschicht, können diese
Probleme zum Teil reduziert werden, sofern das Controllernetz eine geringe Auslastung auf-
weist. Zusätzlich wird zur Verbesserung der Genauigkeit die letzte Verzögerungszeit zwischen
Anfrage und Antwort der Multipart-Nachricht gemessen und das Zeitintervall TP ort bis zur
nächsten Anfrage entsprechend angepasst (siehe Abbildung 4.5). Das basiert auf der Annah-
me, dass in einem gering ausgelasteten Netz die Übertragungszeit der Anfrage und die der
Antwort etwa gleich lang ist. In diesem Fall kann man die Zeit, die vergangen ist, seit dem
die Zählerwerte tatsächlich gelesen wurden, mit TMultipart/2 annähern. Indem man nun die
Wartezeit TP ort bis zum Senden der nächsten Anfragenachricht um TMultipart reduziert, er-
reicht man im Idealfall einen Zeitabstand von TP ort zwischen zwei Lesevorgängen.

4.4.2 Überlauf- und Ausfallkontrolle

Neben den Byte-Statistiken ist der Netzstatistik-Deamon auch für die Ermittlung der Einträge
für die Flow- und Group-Tables zuständig. Diese Informationen werden in der Überlauf- und
Ausfallkontrolle verarbeitet. Desweiteren findet nach jeder Neubestimmung der Topologie eine
Überprüfung nach Switch- und Leitungsausfällen statt.

Überlaufkontrolle Mit demMultipart-Type: Flow_Stats_Request kann man, analog zu Flows
und Ports, die Zähler einer Flow-Table abfragen. Dazu muss in der Anfrage die Tabellen-ID
angegeben werden. So erhält man die Anzahl aller aktiven Flow-Einträge sowie die Anzahl der
Lookups und der erfolgreichen Matchings zurück. Die maximale Anzahl der Tabelleneinträge
hängt vom Switch-Modell ab und muss vorab bekannt sein. Die Überlaufkontrolle bestimmt
daraus, zu wie viel Prozent die Tabellen gefüllt sind. Überschreitet eine Tabelle den definier-
ten SchwellenwertKmax, folgt eine Signalisierung an die Routenverwaltung. Daraufhin werden
nachfolgende Flow-Einträge in Form eines Shared-Trees eingerichtet, um Tabelleneinträge zu
sparen. Fällt die Anzahl der maximalen Einträge aller Tabellen anschließend erneut unter
einen bestimmten unteren Schwellwert Kmin, wird der Routenberechnung signalisiert, dass
wieder auf quellenbasierte Bäume umgestellt werden kann. Die Abfrage geschieht ebenfalls
periodisch mit der Zykluszeit TT able. Allerdings nicht im gleichen Zyklus wie die Portstatistik-
Abfrage, um die Netzlast im Controller-Netzwerk möglichst gering zu halten.

Ausfallkontrolle Die Überlauf- und Ausfallkontrolle speichert eine Kopie der aktuellen Netz-
topologie. Nach jeder periodischen Neubestimmung der Netzstrukturverwaltung, geschieht ein
Abgleich zwischen der aktuellen und der alten Topologie, durch einen Knoten- und Kanten-
vergleich. Dadurch werden Änderungen, wie der Ausfall eines Switches oder einer Leitung
erkannt und an die Routenberechnung gemeldet. Dabei werden 2 Mengen übergeben. Die
Menge S der ausgefallenen Switches und die Menge E aller ausgefallenen Leitungen, die nicht
zu einem Switch in S gehören. Die Routenberechnung führt mit Hilfe dieser Informationen
eine sofortige Neuberechnung für die betroffenen Routen durch, um Paketverluste zu redu-
zieren. Um nicht auf den nächsten Aktualisierungszyklus der Netzstrukturverwaltung warten
zu müssen, werden die ausgefallenen Kanten sowie alle Kanten eines ausgefallenen Switches
vorübergehend mit unendlich markiert. Es sei anzumerken, dass bei Topologieänderungen

36

lediglich ein Ausfall einer gesonderten Behandlung bedarf. Neu hinzugekommene Switches
und Verbindungen werden dagegen von der Routenberechnung für aktuelle Berechnungen ak-
tualisiert. Vorhandene Routen passen sich, abhängig von der Gruppendynamik, an eine neue
Topologie automatisch an und erfordern deshalb keine extra Betrachtung.

4.4.3 Berechnung der Kantengewichte

Wie in Kapitel 2.3.2 diskutiert, gibt es verschiedene Möglichkeiten, ein Routing mit mehreren
Metriken zu realisieren. Hier soll das Ziel sein, Multipathing auf Baumebene auszunutzen,
um eine gleichmäßige Lastverteilung (Flow-Balancing) zu erreichen. Im Hinblick auf eine
möglichst performante Routenberechnung wird eine gewichtete Summe verwendet, um die
Kantenauslastung in die Routenberechnung mit einzubeziehen. Das hat den großen Vorteil,
dass der Routingalgorithmus lediglich nach einem Wert optimieren muss. Im Vergleich zu
komplexeren Optimierungsverfahren, bringt dies für das Routing keine höhere Laufzeit mit
sich.

Gegeben ist die Netztopologie in Form eines Graphen G(V,E, d(e)). Die Funktion d(e) ordnet
jeder Kante e ∈ E eine fixe Distanz zu. Die Gleichung 4.3 bestimmt das zusammengesetzte
Kantengewicht w(e), das die Distanz und die aktuell zur Verfügung stehende Bandbreite,
inklusive der Historie, miteinander verrechnet. B(e) ist die initiale Bandbreite (Kapazität) der
Leitung und ändert sich nicht, während L(e) die aktuelle Netzlast der Kante nach Gleichung
4.1 angibt. L∗i (e) betrachtet zusätzlich den Mittelwert vorangegangener Werte nach Gleichung
4.2. Die maximale Kantendistanz d(e) aller Kanten im Graph wird mit dmax bezeichnet.

w(e) :=


(
α d(e)

dmax
+ (1− α)L∗

i (e)
B(e)

)
r für Li(e)

B(e) ≤ L
”∞” für Li(e)

B(e) > L
(4.3)

Überschreitet die aktuelle Netzlast einen bestimmten konstanten Schwellenwert 0 ≤ L ≤ 1,
wird die Kante als ausgelastet markiert. Was zur Folge hat, dass ausschließlich alternative
Pfade genutzt werden. Das verhindert Paketverluste durch Leitungsüberlastung (Congesti-
on). Setzt man L = 1 wird dieser Fall ignoriert und es wird niemals eine Kante mit unendlich
markiert. Bei Einrichtung einer Route ist im Allgemeinen nicht bekannt, wie hoch die ver-
brauchte Bandbreite sein wird. Deshalb sollte K so gewählt werden, dass ein ausreichender
Puffer nach oben gegeben ist. Im gegebenen Systemmodell stellt 0,9 ein sinnvoller Wert dar.
Das bedeutet, dass einer Kante die zu 90% oder mehr ausgelastet ist, keine neuen Routen
mehr zugewiesen werden. Für den Fall, dass die Bandbreite kleiner als K ist, normalisiert der
erste Summand in Gleichung 4.3 die Kantenlänge. Der zweite normalisiert analog dazu die
exponentiell geglättete Netzlast in Bezug auf die Kantenkapazität. Im konkreten Fall gilt hier
d(e)

dmax
= 1∀e, da als Distanz die Anzahl der Hops verwendet wird. 0 ≤ α ≤ 1 bestimmt das Ver-

hältnis zwischen Distanz und Bandbreite. Der Extremfall α = 1 würde eine Pfadauswahl nach
kürzesten Wegen unabhängig von der Bandbreite bedeuten, während man bei α = 0 lediglich
die Bandbreite beachten würde. Im Fall α = 0, 5 wären beide Teile genau gleich gewichtet. Der
Faktor r skaliert das Ergebnis auf beliebige Größe, so dass der Routingalgorithmus wahlweise
mit Ganzzahlen oder Gleitkommazahlen rechnen kann.

37

Analog dazu werden die Gewichte w(s,K) nach 4.4 ermittelt. Diese Werte werden für je-
den Multicastbaum abgespeichert und erst bei einer Neuberechnung des Baumes jeweils vom
aktuellen Gesamtgewicht w(e) abgezogen. Der Wert w(s,K) spiegelt dabei den Anteil der
Bandbreite wieder, den der Multicastbaum (s,K) selbst verbraucht. Er soll bei auftreten-
den Gruppenänderungen und den darauf folgenden Routenberechnungen für diesen Baum
ignoriert werden.

w(s,K) :=


(
(1− α)L∗

(s,K)i
(e)

B(e)

)
r für L(s,K)i

(e)
B(e) ≤ L

”∞” für L(s,K)i
(e)

B(e) > L
(4.4)

Bild 4.6 zeigt ein Beispiel für einen Graphen mit berechneten Kantengewichten w(e) und
die zugehörige Datenstruktur. Durch den Vollduplex-Betrieb werden für die beiden Rich-
tungen eigene Gewichte berechnet, die unabhängig von der jeweiligen Gegenrichtung sind.
Die Auslastung der Kanten ist in Prozent angegeben, zugehörige Kantengewichte sind rot,
bzw. violett hervorgehoben. Die Kante zwischen Knoten 2 und 3 ist zu 50% ausgelastet. Der
Routingalgorithmus würde, um Knoten 1 mit Knoten 5 zu verbinden, die Kante über Kno-
ten 4 bevorzugen. Die Gesamtkosten für diesen Weg betragen nur (13, 2), während der Weg
über Knoten 3 Kosten von (16, 2) aufweist. Die Gewichtungen der Kanten in Gegenrichtung
(grau dargestellt), haben durchgehend den Wert 4 und sind für dieses Beispiel nicht relevant.
Die Berechnungsvorschrift für das Beispiel lautet w(e) =

(
0.4 + 0.6L∗

i (e)
B(e)

)
10 nach folgender

Wertebelegung für Gleichung 4.3:

α 0.4
d(e) 1
dmax 1
r 10
L 1

Tabelle 4.1: Wertebelegung für Abbildung 4.6

Hashtabelle

2

4

3

5

1

20%

50%

0%

0%

0%

7

5,2

4 4

4

1

2

3

4

5

2

1 3

2

2

4

5

5

5,2

474

4 4

4 4

0%0%

0%0%

0%

44

4 4
4

3 4
4 4

Abbildung 4.6: Beispielnetz als kantengewichteter Graph und Adjazenzliste

38

4.4.4 Datenstruktur

Der Netzgraph wird von der Netzstrukturverwaltung in Form einer Adjazenzliste zur Ver-
fügung gestellt. Das hat den Vorteil, dass die Datenstruktur jederzeit erweiterbar ist, einen
geringen Platzbedarf hat und schnell initialisiert werden kann [Leh]. Aus Effizienzgründen
kommt dazu keine verkettete Liste, sondern eine Hashtabelle zum Einsatz. Einem Knoten
wird über seine Knoten-ID die zugehörige Kantenmenge zugewiesen. Die Netzzustandsver-
waltung erweitert die Datenstruktur um die berechneten Kantengewichte, indem für jede
Kante, über eine weitere Hashtabelle, ein Kantengewicht zugeordnet wird (Bild 4.6). Da-
durch ist die Datenstruktur für die Gewichtsbelegung von der Topologie entkoppelt und kann
unabhängig vom Zyklus der Netzzustandsverwaltung aktualisiert oder nach Belieben aus-
getauscht werden. Dieser Vorgang geschieht periodisch, da sich die Auslastung der Kanten
ständig ändern kann und der Routingalgorithmus adaptiv darauf reagieren soll. Neben dem
eigentlichen Netzgraph gibt es eine weitere Hashtabelle, die die aktuelle Auslastung bezogen
auf einen Multicastbaum abspeichert. Sie wird analog zu der in Bild 4.6 gezeigten Hashtabel-
le angelegt. Diese Informationen werden erst dann benötigt, wenn für den betroffenen Baum
tatsächlich eine Neuberechnung stattfindet und sind deshalb erst in der Routenberechnung
relevant. Nachdem TP ort-Sekunden seit der letzten Aktualisierung vergangen sind, wird der
Netzstatistik-Deamon nach Bild 4.4 erneut gestartet und der geschilderte Ablauf beginnt mit
der Ermittlung der Netzstatistiken von vorne.

39

4.5 Gruppenverwaltung

Die Gruppenverwaltung ist für das Ermitteln, Speichern und Weitergeben von Mitgliederin-
formationen der Multicastgruppen zuständig. Abbildung 4.7 zeigt eine Übersicht über diese
Aufgaben. Die Gruppeninformationen werden in der Routenberechnung benötigt und kön-
nen über eine Schnittstelle abgefragt werden. Der IGMP-Deamon sendet periodisch IGMP-
Anfragen an die Datenschicht. Die Antworten werden gespeichert und die Routenberechnung
über Änderungen informiert. Im Nachfolgenden sind die einzelnen Aufgaben ausführlicher
beschrieben.

 Controller

OpenFlow-API

Routenberechnung und
Flow Modifikation

Nachrichtenfilter

Gruppenverwaltung

Packet_Out (IGMP)

IGMP

Gruppenmitglieder

OpenFlow Nachrichten

ToR-Switch

Packet_In:
Membership-Reports/

Leave-Reports

Speichern der
Gruppeninformationen

IGMP-Deamon

Gruppenänderungen

Gruppen-
mitglieder

...

Host

Änderungsmeldungen

Nach TGroup

Sekunden

Membership-Report/
Leave-Report

...
...Match

IGMP

...

Action

Output:Controller

...

Schnittstelle

Flow-Table

Action

Output:HostPorts

Packet_Out:
General-Membership-Query /

Group-Specific-Query

Abbildung 4.7: Aufgaben der Gruppenverwaltung

40

4.5.1 IGMP über OpenFlow

Einrichtung der Flow-Tables Initial müssen die Flow-Tables in den Switches so konfiguriert
werden, dass IGMP-Nachrichten weitergeleitet werden können. Nach dem hier betrachteten
Systemmodell, betrifft das lediglich die ToR-Switches, da alle Hostmaschinen als Blattknoten
im Fat-Tree angeschlossen sind. In allgemeinen Netztopologien müsste man Flows in allen
vorhandenen Switches einrichten.

Bild 4.7 zeigt schematisch die Flow-Table eines ToR-Switches. Das Hinzufügen der Flows ge-
schieht initial per OpenFlow über eine Flow_Mod-Nachricht vom Typ ADD mit deaktivierten
Timeout-Zählern. Ein IGMP-Paket wird über eine Packet_Out-Nachricht zu den Hosts gelei-
tet. Dafür wird die auszuführende Aktion, hier das Weiterleiten an alle Host-Ports, direkt in
der Packet_Out-Nachricht spezifiziert. Abgeglichen wird dabei der Eingangsport und das Feld
nw_proto, welches das Nachfolgeprotokoll des IP-Headers bestimmt. Eine Protokollnummer
von 2 identifiziert IGMP-Pakete. Eine alternative Lösung wäre, einen extra Tabelleneintrag für
ausgehende IGMP-Pakete in den Switches einzurichten und die Aktion Packet_Out-Nachricht
mit Table zu markieren. Dies hat zur Folge, dass dieses Paket standardmäßig über die Flow-
Table des Empfängerswitches abgeglichen wird. Die erste Variante spart jedoch Tabellenplatz
und wird deshalb hier bevorzugt. Ein Eintrag in der Flow-Table leitet schließlich die IGMP-
Antworten zurück zum Controller, indem unabhängig vom Eingangsport nach IGMP-Paketen
gefiltert wird. Da sich im Systemmodell nur OpenFlow-Switches befinden, ist der von IGMP
spezifizierte TTL (Time to Live) von 1 nicht mehr von Bedeutung. Durch die Einträge in den
Flow-Tables wird eine Weiterleitung über das lokale Netz hinaus implizit ausgeschlossen. Bei
einer Mischung zwischen OpenFlow-Switches und Netzgeräten, die nicht OpenFlow fähig sind,
muss der TTL jedoch dementsprechend angepasst werden, um das ungewollte Konsumieren
einer IGMP Nachricht zu verhindern.

Implementierung von IGMP Die Gruppenverwaltung implementiert IGMP, um eine nach IP
standardkonforme Kommunikation mit den Hostgeräten zu ermöglichen. Der IGMP-Deamon
erzeugt periodisch, in Zeitabständen vonQI-Sekunden (Query Interval),General-Membership-
Queries. Der Standardwert fürQI ist 125 Sekunden [CDK+02]. Über Packet_Out-Nachrichten
werden die IGMP-Anfragen an alle ToR-Switches geschickt. Dabei ist der Controller in der
Lage, beliebig IGMP-Anfragen der Version 1, 2 oder 3 zu verschicken. Normalerweise einigen
sich die Netzgeräte dann auf die neuste IGMP-Version, die alle Kommunikationsteilnehmer
(hier Controller und Host) unterstützen. Als Zieladresse im IP-Header wird vom Controller
„224.0.0.1“ vorgegeben. Dies entspricht einer vordefinierten Multicastadresse, die automa-
tisch alle Geräte im Netz beinhaltet. Dadurch wird sichergestellt, dass auch alle Endgeräte
die IGMP-Nachricht annehmen und verarbeiten. Die Hosts antworten dann wiederum per
General-Membership-Report mit ihren aktuellen Gruppenmitgliedschaften.

IGMP definiert neben den General-Membership-Queries auch noch gruppenspezifische An-
fragen. Damit wird bei den Hosts konkret nach einer im Header definierten Gruppe gefragt.
Das Versenden einer solchen Group-Specific-Query geschieht nicht periodisch, sondern nur
als Antwort auf einen explizit gesendeten Leave-Report. Ein Host schickt einen Leave-Report
gemäß IGMPv2/3 ohne vorangegangene Anfrage. Mit der Group-Specific-Query wird geprüft,

41

ob noch weitere Hosts, die an den entsprechenden Gruppennachrichten interessiert sind, an
diesem Switch angeschlossen sind. Analog dazu, kann ein Host, der nicht auf die nächste
General-Membership-Query warten möchte, explizit per Membership-Report einer Gruppe
beitreten. Sämtliche Änderungen in der Gruppenzusammensetzung führen zu einer Änderung
des Gruppenspeichers.

4.5.2 Datenstruktur

Lookup- und Update-Operationen auf den gespeicherten Gruppeninformationen sollen effizi-
ent und skalierbar sein. Aus diesem Grund werden die aktuellen Gruppenzusammensetzungen
im Hauptspeicher vorgehalten. Dadurch wird ein schneller Zugriff auf die Gruppeninformatio-
nen für die Routenberechnung und die Gruppenverwaltung sichergestellt. Abgespeichert wird
eine Menge von ToR-Switches, die entsprechende Multicast-Nachrichten erhalten wollen. Die
letztendliche Auslieferung an die Endgeräte geschieht vom Tor-Switch aus per Broadcast.
Für eine noch genauere Zustellung könnte man auch einzelne Hosts speichern. Das würde
die Datenstruktur jedoch unnötig vergrößern und im betrachteten Systemmodell zu keinem
nennenswerten Vorteil führen.

Zur Speicherung der Daten wird eine Hashtabelle verwendet. Das bringt den Vorteil einer,
im Idealfall, konstanten Zugriffszeit bei geringem Speicherplatz. Die dort gespeicherten Grup-
pendaten müssen stets an die aktuelle Situation im Netz angepasst werden. Der Routenbe-
rechnung soll so eine aktuelle Sichtweise der Gruppen und deren Mitglieder zur Verfügung
gestellt werden. Jegliche Änderungen, signalisiert durch ankommende IGMP-Reports, führen
zu entsprechenden Anpassungen in der Hashtabelle. Ein IGMP-Report enthält stets eine Mul-
ticastadresse für die Gruppe, zu der ein Switch beitreten möchte. Anhand des Eingangsports
im Controller ist es außerdem möglich, die ID des Switches zu bestimmen, der den IGMP-
Report gesendet hat. Diese beiden Informationen sind für die Gruppenverwaltung ausreichend
und werden in folgender Datenstruktur gespeichert:

< Multicastadresse, {Switch1, Switch2, ...} >
mit Switchk := (SwitchIDk, T imeout_Zählerk)

(4.5)

Die Multicastadresse identifiziert eine Gruppe eindeutig und bildet den Schlüssel der Hash-
tabelle. Jeder Multicastgruppe ist über ihren Schlüssel eine Liste von Switches zugeordnet,
die die Gruppenmitglieder darstellen. Ein Switch besteht aus einer Switch-ID, die das Grup-
penmitglied eindeutig identifiziert. Außerdem ist jedem Switch ein Zähler zugeordnet, der
den Soft-State-Mechanismus von IGMP implementiert. Der Zähler wird periodisch bis auf
0 heruntergezählt, woraufhin der Switch-Eintrag automatisch aus der Tabelle gelöscht wird.
Das hat eine sofortige Benachrichtigung an die Routenberechnung zur Folge. Sobald keine
Einträge mehr in einer Switch-Liste vorhanden sind, wird die gesamte Multicastgruppe, nach
einer gewissen Verzögerungszeit, automatisch aus der Hashtabelle entfernt. In Abbildung 4.8
ist die Datenstruktur mit der Zuordnung der Switches zu einer Multicastadresse zu sehen.

42

Der initiale Timeout-Wert für Timeout_Zählerk berechnet sich nach der IGMP Spezifikation
[CDK+02] mit:

Timeout_Zählerk := R×QI +QRI (4.6)

R ist die Robustness Variable und wird abhängig von der Zuverlässigkeit des Netzes gewählt.
In einem verlustreichen Netzwerk sollte R einen höheren Wert aufweisen, der Standartwert
beträgt 2. QI (Query Interval) ist die Zeitperiode zwischen zwei Anfragen. QRI (Query
Response Interval) steht für die maximale Antwortzeit, die einem Host für eine General-
Membership-Query zur Verfügung steht. Der Standardwert für QRI beträgt 10 Sekunden.

224.0.1.4

Switches

(192.168.1.3, 254)

(192.168.1.5, 132)

...

Switches

(192.168.1.3, 32)

(192.168.1.7, 122)

...

Switches

(192.168.1.7, 73)

(192.168.1.5, 111)

...

Gruppenliste

Multicastadressen Hashtabelle

239.255.137.28

239.17.33.28

...

Abbildung 4.8: Zuordnung der Gruppenmitglieder über eine Hashtabelle

4.5.3 Verarbeitung von IGMP-Nachrichten im Controller

Periodisch werden dem IGMP-Deamon Gruppenänderungen in Form von IGMP-Membership-
Reports gemeldet, oder ein explizites Verlassen durch Leave-Reports signalisiert. Bild 4.9 zeigt
die Verarbeitung der Report-Nachrichten nach dem Empfang durch den IGMP-Deamon. Die
linke Seite (hellblauer Hintergrund) filtert die Nachrichten nach ihrem Typ. Die rechte Sei-
te zeigt die Verarbeitungsschritte, die für die einzelnen Typen durchgeführt werden (roter
Hintergrund: Leave-Report, lila Hintergrund: Membership-Report). Die dazu benötigten In-
formationen sind die Multicastadresse und der IGMP-Nachrichtentyp aus dem Nachrichten-
header, sowie die Switch-ID des Senders.

43

Leave-Report

Membership-ReportNachrichtentypen

Extrahiere aus Headerfelder:
(IGMP-Type, Multicast-Adresse,

IP-Adresse)

IGMP-Type
= 0x12 | 0x16

IGMP-Type
=0x22 ?

IGMP-Nachrichten

Ja

IGMP-Type
= 0x11 ?

Nein

INCLUDE ∅ ?

Nachricht ignorieren

Nein

Leave-Report

Memmbership-
Report (v3)

Nein

Timer für Eintrag
zurücksetzen

MC-
Adresse schon im

Speicher ?
Ja

Switch
IP-Adresse

 in Gruppe ?

Gruppe schon
vorhanden

Ja

Switch schon
registriert

Nein

Neuer Eintrag
<MC-Adresse, {IP-Adresse}>

In Hashtabelle anlegen

Neue Gruppe
Nein

IP-Adresse dem Eintrag
<MC-Adresse, {IP-Adressen, ...}>

hinzufügen

Neuer Switch

Membership-
Report (v. 1 /2)

Ja

Nein

Ignoriere
Senderliste

Leave-Report Eintrag löschen

MC-
Adresse schon im

Speicher ?
Ja

Switch
IP-Adresse

 in Gruppe ?

Gruppe
vorhanden

Ja

Switch in Gruppe
registriert

Gruppe nicht
vorhanden

Switch nicht
in Gruppe

Ja

Änderung an
Routenberechnung

melden

Weitere
Gruppenmitglieder

an Switch ?

Nein

NeinNein

Sende Spefific-
Membership-Query

Ja

Abbildung 4.9: Verarbeitung ankommender IGMP-Nachrichten in der Gruppenverwaltung

Die Membership-Reports der IGMP-Versionen unterscheiden sich im IGMP-Type-Header. Die
Reports der Version 1 und 2 werden gemeinsam verarbeitet, da der Unterschied zwischen
diesen lediglich aus verschiedenen Typnummern besteht. Aus Flexibilitätsgründen wird auch
IGMPv3 unterstützt. Jedoch ignoriert die Gruppenverwaltung aufgrund der Einfachheit sol-
che IGMPv3-Reports, die bestimmte Sendergruppen ausschließen wollen. Das Verarbeiten
solcher Nachrichten würde erheblichen Zusatzaufwand bedeuten, da diese Informationen für
jeden Host verschieden sein können. Der hier beschriebene Controller verwaltet allerdings
lediglich ToR-Switches und keine einzelnen Hosts. Einzig der Fall, wenn alle Sender einer
Gruppe ausgeschlossen sind, wird einzeln behandelt. Dies würde nämlich einem Leave-Report
gleichkommen. In allen anderen Fällen wird der Switch analog zu IGMPv1- und IGMPv2-
Reports, der im Header spezifizierten Multicastgruppe, hinzugefügt. Dennoch hat die Ver-
wendung von IGMPv3 den Vorteil, dass die gesamte Netzlast reduziert wird. Die Gruppen-
mitgliedschaften eines Hosts werden, im Gegensatz zu den vorherigen Versionen, bei Version
3 gemeinsam in einer einzigen Nachricht versendet. Falls trotzdem eine Filterung nach einzel-
nen Senderquellen gewünscht ist, muss dies der Host selbst übernehmen. Existiert bei Ankuft
eines Reports noch kein Eintrag zu der im Reportheader empfangenen Multicastadresse, wird
zuerst eine neue Gruppe erstellt. Dies geschieht, indem die Multicastadresse in die Hashta-
belle hinzugefügt wird. Danach wird der Switch mit seiner ID in die Liste der neu erstellten
Gruppe hinzugefügt. Falls eine entsprechende Gruppe bereits existiert, der Switch aber noch
kein Mitglied ist, wird er in die vorhandene Gruppenliste ergänzt. Für den Fall, dass der
Host bereits in der Mitgliederliste enthalten ist, wird der IGMP-Zähler zurückgesetzt. Das
Verhindert ein Timeout, da der Switch weiterhin Interesse an der Multicastgruppe bekundet
hat.

44

Die andere Art von Nachricht, die der IGMP-Deamon empfängt, sind Leave-Reports. Sollte
die darin spezifizierte Gruppe nicht existieren oder die Switch-Adresse in der entsprechen-
den Gruppenliste gar nicht vorhanden sein, wird die Nachricht einfach ignoriert. Anderenfalls
muss vor dem Löschen sichergestellt werden, dass kein anderer Host die Gruppennachrich-
ten weiterhin erhalten möchte. Deswegen wird per Specific-Membership-Query nach weiteren
Interessenten gefragt. Erst im Anschluss darf der Eintrag gelöscht werden. Zum Schluss müs-
sen jegliche Gruppenänderungen der Routenberechnung gemeldet werden, damit die neuen
Multicastbäume berechnet und in den Switches eingerichtet werden können.

4.6 Routenverwaltung

Bild 4.10 gibt einen Überblick über die Routenverwaltung und dessen Interaktion mit der
Routenberechnung. Die Routenverwaltung speichert alle Multicastbäume, die aktuell in Form
von Flow-Table Einträgen auf der Datenebene implementiert sind. Somit stellt sie die Da-
tenbasis für die eingerichteten Flows auf Datenschicht zur Verfügung. Dazu existiert eine
Datenstruktur im Hauptspeicher, die nach jeder bestätigten Änderung in der Flow-Table
entsprechend aktualisiert wird. Über eine Schnittstelle erfolgt sowohl der Zugriff sowie die
Aktualisierung der Daten durch die Routenberechnung. Abhängig von der Arbeitsweise des
Routingalgorithmus, können die Flow-Informationen z. B. für die konsistente Aktualisierung
in der Datenschicht oder für eine inkrementelle Baumaktualisierung genutzt werden.

 Controller

OpenFlow-API

Routenberechnung und
Flow Modifikation

Routenverwaltung

Flow-Informationen

Schnittstelle

Multicast-
bäume

ADD/ DELETE/ MOD-
FLOW

Nachrichtenfilter

Status- und Fehlermeldungen

OpenFlow-Nachrichten

Abbildung 4.10: Übersicht über die Routenverwaltung und die Interaktion mit der Routen-
berechnung

Weiterhin werden diese Daten bei der Flow-Einrichtung benötigt. Bevor eine neue Route
auf Datenschicht installiert werden kann, muss der alte Baum durch die Flow-Modifikation
per OpenFlow-Nachrichten vom Typ Delete gelöscht werden. Die Informationen, wer die

45

Empfängerswitches dieser Nachrichten sein müssen, stammen aus der Routenverwaltung.
Die Teilstrukturen des neuen Baumes, die sich nicht unterscheiden, werden nicht gelöscht
und können direkt übernommen werden. Es sei angemerkt, dass OpenFlow einen Soft-State-
Mechanismus für Flow-Table-Einträge unterstützt, der veraltete Einträge automatisch löschen
würde. Aufgrund der proaktiven Berechnung der Multicastbäume kann, davon hier aber nicht
Gebrauch gemacht werden und es muss auf ein explizites Löschen zurückgegriffen werden
(siehe Abschnitt 4.7.1). Arbeitet ein Routingalgorithmus inkrementell, kann er die Daten der
Routenverwaltung als Ausgangsdaten für die Berechnung nutzen. Auf Basis des alten Bau-
mes werden neue Kanten dann demenstprechend durch die Flow-Modifikation entfernt oder
hinzugefügt.

4.6.1 Datenstruktur

Sofern eine neue Flow-Aktualisierung von der Datenschicht bestätigt wurde, bzw. kein Fehler
gemeldet wurde, müssen die Änderungen an die Routenverwaltung zurückgemeldet werden.
Dadurch wird sichergestellt, dass die Datenbasis stets eine konsistente Sicht aufweist. Diese
Datenbasis besteht nach Definition 4.7 aus einer Hashtabelle, die sowohl Multicastbäume als
auch Unicast-Routen speichern kann. Eine Hashtabelle ermöglicht dabei eine besonders effi-
ziente Zugriffsmöglichkeit. Multicastbäume werden in Form von Adjazenzlisten vorgehalten.
Unterschiede zwischen zwei Bäumen können so durch einen einfachen Kantenvergleich er-
kannt werden. Für eine Unicast-Route ist das Speichern als Knotenliste ohne Kantenverweise
ausreichend.

< (SenderID +GruppenID),Multicastbaum/Route > (4.7)

Der Schlüssel der Hashtabelle besteht aus einer Konkatenation von Sender-ID und Gruppen-
ID. Es sei angemerkt, dass im Systemmodell aus Abschnitt 3.2, die Senderrolle nur durch einen
ToR-Switch eingenommen werden kann. Als Sender-ID wird die Switch-ID oder die IP-Adresse
des Controller-Netzes verwendet, während die Gruppen-ID aus der Multicastadresse besteht.
Einem jeden (Sender-ID, Gruppen-ID)-Paar wird über die Liste ein Multicastbaum zugeord-
net. Damit ist die Datenstruktur für das Speichern von quellenbasierten Bäumen geeignet.
Wahlweise können auch Shared-Trees gespeichert werden, indem der gemeinsame Baum unter
dem Schlüssel der Gruppen-ID angelegt wird. Jeder Eintrag in der Hashliste verweist dann
lediglich auf diesen Baum, indem die zugehörige Unicast-Route dort gespeichert wird. Sie
dient dazu, den Sender-Switch mit dem Shared-Tree zu verbinden. Zur einfacheren Unter-
scheidung existiert in jedem Eintrag ein Flag, das entweder eine Unicast-Route oder einen
quellenbasierten Baum anzeigt. Diese Speichermethode ermöglicht ein beliebiges Umschal-
ten zwischen den beiden Baumarten, ohne Einfluss auf den Aufbau der Datenstruktur. Das
bedeutet, es wird sichergestellt, dass zu einem (Sender-ID, Gruppen-ID)-Paar entweder eine
Unicast-Route, oder ein quellenbasierter Baum existiert. Zwischen verschiedenen (Sender-ID,
Gruppen-ID)-Paaren, insbesondere auch innerhalb derselben Gruppe, ist aber durchaus eine
Mischung beider Methoden möglich.

46

Bild 4.11 zeigt dazu ein Beispiel. Der linke Hashtabellen-Ausschnitt zeigt die Zuordnung von
zwei Senderquellen zu einem Shared-Tree der Multicastgruppe „239.255.137.28“. Die Einträge
der Hashtabelle verweisen auf den Shared-Tree und auf die Knotenliste der Unicast-Route. Im
rechten Ausschnitt wird drei verschiedenen Sendern der gleichen Gruppe jeweils ein eigener
Multicastbaum zugeordnet. Die Sender-ID ist die IP-Adresse.

196.152.1.5 224.0.1.4

Schlüssel Hashtabelle
Auschnitt 2

196.152.1.13 239.255.137.28

196.152.1.7 239.255.137.28

196.152.1.13 224.0.1.4

196.152.1.2 224.0.1.4

...

Hashtabelle
Auschnitt 1

...

239.255.137.28

...

A

B

C

...

Multicastbaum

X Y C1

W V C1

A

B

C

0

F

A

C

0

B

E

A

0

A

B

C

0

...

...

...

...

Multicastbaum

Abbildung 4.11: Datenstruktur der Routenverwaltung

4.7 Routenberechnung und Flow-Modifikation

Die Routenberechnung ist eine Kernaufgabe des Multicastdienstes. Die Daten aus Netzzu-
standsverwaltung, Gruppenverwaltung und Routenverwaltung werden für die Berechnung der
Multicastbäume verwendet. Das Resultat ist eine Menge von Flow-Aktualisierungen, die in
Form von OpenFlow Modification-Nachrichten an die Switches gesendet werden. Die Ein-
richtung geschieht über die Group-Table mit zugehörigen Flow-Table-Einträgen, die auf eine
Gruppe verweisen. Rückmeldungen durch Status- und Fehlermeldungen geben Auskunft dar-
über, ob die Modifikationen erfolgreich waren.

In Abbildung 4.12 ist eine Übersicht der Aufgaben und der Datenflüsse in der Routenbe-
rechnung zu sehen. In der Routingkontrolle laufen alle benötigen Eingangsdaten zusammen.
Daraufhin erfolgen die Auswahl des Routingalgorithmus und die Weitergabe des Ergebnisses
an die Flow-Modifikation. Die Flow-Modifikation ist schließlich für die Implementierung der
Multicastbäume auf der Datenschicht zuständig.

47

 Controller

OpenFlow-API

Gruppenverwaltung

Routenverwaltung

Nachrichtenfilter
OpenFlow

Nachrichten

Netzzustandsverwaltung

OpenFlow-Switch

Status-/
Fehlermeldungen

Flow-Modification/
Group-Modification

Routenberechnung und Flow Modifikation

Routingkontrolle

Status-/
Fehlermeldungen

Flow-Modifikation

RoutingalgorithmusRoutingalgorithmusRoutingalgorithmus

Topologie/
Kantengewichte/

Überläufe/
Ausfälle

Gruppenmitglieder

Flow-
Informationen

Auswahl/Starten
Multlicastbaum/Unicast-Route

Änderungsmeldungen

Flow-
Informationen

...Match

MC-Adresse_1

MC-Adresse_2

...

Action

Group:A

Group:B

...

Flow-Table

Group Identifier

A

B

...

Actions

Output: (Port1, Port2, ..)

Output: (Port5, Port7, ..)

...

Group-Table

ADD/ DELETE/ MOD-
FLOW

Abbildung 4.12: Übersicht zur Routenberechnung und Flow-Modifikation

4.7.1 Proaktives vs. reaktives Routing

Eine grundsätzliche Designentscheidung ist die Wahl zwischen proaktiver und reaktiver Rou-
tenberechnung.

Beim reaktiven Routing werden die Multicastbäume erst dann bestimmt, wenn tatsächlich ei-
ne Übertragung vom jeweiligen Sender stattfindet. Das hat zur Folge, dass Datenpakete auf die
Einrichtung der Routen warten müssen, was im Vergleich zur einer direkten Weiterleitung eine
erhebliche Verzögerung bedeutet. Angenommen ein Host startet erstmalig eine Übertragung
an eine Multicastgruppe. Im Zuge dessen beginnt er einen Daten-Burst mit voller Bandbreite
an seinen ToR-Switch zu senden. Betrachtet man heutiges 10-Gigabit Ethernet im Vergleich
zu den verfügbaren Zwischenspeicherkapazitäten in den Netzwerkgeräten, kann ein Sender in
der Zeit, die für die Aktualisierung der Flow-Table benötigt wird, die Eingangswarteschlange
des ToR-Switches überflutet haben. Das hat dann neben erhöhten Verzögerungszeiten auch
Paketverluste zur Folge und stellt ein grundsätzliches Problem dar.

48

Deshalb fällt die Wahl auf eine proaktive Routenberechnung. Diese Entscheidung ist unab-
hängig vom gewählten Routingalgorithmus und wird von der Routingkontrolle umgesetzt. Die
Multicastbäume werden für jede vorhandene Gruppe und für jeden Sender initial auf Basis
der aktuell vorliegenden Gruppeninformationen bestimmt. Tritt danach ein weiteres Ereignis,
wie eine Gruppenänderung oder die Anfrage für eine neue Multicastgruppe auf, werden alle
zur Gruppe gehörigen Bäume erneut vorberechnet und entsprechende Routen direkt in den
Switches eingerichtet. Das erlaubt im Idealfall eine Weiterleitung in Line-Rate und stellt die
Hauptmotivation für die Wahl dieses Ansatzs dar. Die Nachteile sind ein erhöhter Rechen-
und Flow-Modifikationsaufwand, der direkt in Relation zu der Menge der Sender, Gruppen-
größe und der Anzahl der Änderungen steht. Bezogen auf das Systemmodell wird allerdings
von einer vorher bekannten, statischen Anzahl von Hosts sowie von einem eher seltenen Auf-
treten von Gruppenänderungen ausgegangen. Die tatsächlich gemessenen Auswirkungen sind,
abhängig von der Gruppendynamik, in der Evaluierung (Kapitel 6) zu sehen.

4.7.2 Routingkontrolle

Die Routingkontrolle ist ein Prozess, der den Ablauf in der Routenberechnung koordiniert und
zusammen mit einem Routingalgorithmus die Kernlogik des Multicastdienstes implementiert.
Abhängig von der aktuellen Netzsituation wird einer der drei vorhandenen Routingalgorith-
men gewählt und auf den Eingangsdaten ausgeführt. Dabei kann sich die Routingkontrolle
in zwei verschiedenen Modi befinden: Standard- oder Überlaufmodus. Sie signalisieren, ob
genügend Flow-Table-Einträge zur Verfügung stehen, um optimale Bäume zu berechnen. Ste-
hen genügend freie Einträge zur Verfügung, ist der Standardmodus aktiv und es wird eine
monolithische Steinerheuristik gewählt, die quellenbasierte Multicastbäume berechnet. Für
Test- und Evaluationszwecke, ist außerdem ein inkrementeller Algorithmus implementiert,
auf den beliebig während des laufenden Betriebs umgeschaltet werden kann. Befindet sich die
Routingkontrolle im Überlaufmodus, wird auf Shared-Trees gewechselt, um Tabelleneinträge
zu sparen und einem Überlauf der Flow-Table vorzubeugen. Ein Umschalten zwischen den
Modi kann jederzeit durch das Auftreten einer Überlaufwarnung geschehen und hat keinen
Einfluss auf zuvor eingerichtete Routen. Überlaufwarnungen werden direkt von der Netz-
zustandsverwaltung gemeldet. Sie überwacht die Auslastung der Flow-Tables und setzt den
Modus, abhängig von bestimmten Schwellwerten auf „Überlauf“, oder zurück auf „Standard“.
Quellenbasierte- und geteilte Bäume (Shared-Trees) können in beliebiger Mischung koexistie-
ren, sofern für jeden Sender nur eine Baumart zur gleichen Zeit genutzt wird. Findet sich
sowohl ein Shared-Tree als auch ein quellenbasierter Baum auf Datenebene, wird letzterer
bevorzugt verwendet.

Abhängig von den Eingangsmeldungen und dem Modus der Routingkontrolle gibt es folgende
Fälle, die zu einem Anstoßen der jeweiligen Routingalgorithmen führen:

Gruppenänderung Tritt eine Gruppenänderung in Gruppe K auf, meldet die Gruppenver-
waltung dies an die Routingkontrolle und verarbeitet die Änderung nach Abbildung 4.13.
Wenn eine Gruppe aus der Gruppenverwaltung gelöscht wurde, wird die Flow-Modifikation
angestoßen, um alle Bäume dieser Gruppe zu entfernen. Ansonsten bestimmt der Überlauf-

49

modus die Wahl zwischen quellbasiertem Baum und Shared-Tree. Bei quellbasierten Bäu-
men müssen alle n Senderhosts beachtet werden und so auch n Bäume berechnet werden.
Bei einem Shared-Tree müssen zusätzlich zum eigentlichen Baum, Unicast-Routen für jeden
ToR-Switch errechnet werden. Sie verbinden den jeweiligen Sender mit dem Shared-Tree.
Nach Beendigung einer Berechnung wird das Ergebnis an die Flow-Modifikation gegeben, die
zur Einrichtung der Routen dann die entsprechenden OpenFlow-Nachrichten an die beteiligten
Switches schickt. Ein Sonderfall tritt bei der ersten Gruppenänderung nach dem Umschalten
vom Überlaufmodus in den Standardmodus auf. Der Shared-Tree muss hier explizit gelöscht
werden, da dieser extra unter der Multicastadresse als Hash-Schlüssel abgespeichert wurde.
Diese Löschoperation wird in diesem Fall direkt von der Routingkontrolle initiiert und an die
Flow-Modifikation gemeldet.

 Auswahllogik Baumberechnung Routeneinrichtung

Gruppenänderung
in Gruppe K

Modus =
Überlauf ?

Berechne
Shared-Tree (K) und

Unicast-Routen
Ja

Nein
Berechne für Sender s[i]:
Quellenbasierter-Baum

(s[i],K)

Weitere Hosts im
Netz vorhanden

Ja

i := i+1

Nein

Gebe Ergebnis und K an
Flow-Modifikation

Gebe Ergebnis und K an
Flow-Modifikation

K gelöscht ? Nein

Gebe Löschauftrag(K) an
Flow-Modifikation

Ja

Gebe Löschauftrag
 Shared-Tree (K)

an Flow-Modifikation

Alter
Shared-Tree
vorhanden ?

JaNein

Abbildung 4.13: Verarbeitung von Gruppenänderungen in der Routingkontrolle

Switch- und Leitungsausfälle Das folgende Verhalten ist in Abbildung 4.14 dargestellt. Das
Ziel ist, möglichst schnell auf Ausfälle zu reagieren zu können, um den Paketverlust auf einem
Minimum zu halten. Ein Ausfall wird durch die Netzzustandsverwaltung gemeldet, indem die
ausgefallenen Switches und Leitungen als Mengen (S,E) an die Routingkontrolle gemeldet
werden. Die Menge E enthält nur ausgefallene Leitungen, die nicht zu einem Switch aus S ge-
hören. Daraufhin wird mit Hilfe der Routenverwaltung bestimmt, welche Multicastbäume und
Unicast-Routen vom Ausfall betroffen sind. Dazu müssen alle Adjazenzlisten geprüft werden,
ob einer der ausgefallenen Knoten oder Kanten darin enthalten ist. Die Schnittstelle der Rou-
tenverwaltung stellt für diesen Zweck eine entsprechende Operation zur Verfügung. Sie gibt
alle betroffenen Multicastbäume in Form ihrer eindeutigen Schlüssel (Sender-ID, Gruppen-
ID) bzw. (Gruppen-ID) zurück. Mit der Gruppen-ID werden die zugehörigen Mitglieder von
der Gruppenverwaltung abgefragt. Abhängig vom aktuellen Modus stößt die Routingkontrolle
einen Routingalgorithmus an, um für die vom Ausfall betroffene Menge an Bäumen eine Alter-
nativroute zu berechnen. Die ausgefallenen Kanten werden zuvor im Netzgraph mit unendlich
markiert, um nicht auf den nächsten Aktualisierungszyklus der Netzstrukturverwaltung war-
ten zu müssen. Nach der Neuberechnung werden die Änderungen über die Flow-Modifikation
zur Datenebene gemeldet.

50

 Sender, Mullticastadresse und Gruppenmitglieder suchen

 Baumberechnung

 Routeneinrichtung

Ausfall (S, E)

Modus =
Überlauf ?

Finde zugehörige
Gruppenmitglieder K mit

GruppenID über
Gruppenverwaltung

Ja

Weitere Knoten
 aus S in Routen-

verwaltung ?

Berechne
Shared-Tree (K) und
Unicast-Routen falls

nicht schon berechnet

Weitere Kanten
 aus E in Routen-

verwaltung ?

Nein

Durchsuche betroffene
Bäume und Unicast-

Routen in
Routenverwaltung

Ja

Berechne
Quellenbasierter

Baum (SwitchID, K)
Nein

Ja

Gebe Ergebnisse an
Flow-Modifikation

Nein

Abbildung 4.14: Verarbeitung von Switch- und Leitungsausfällen in der Routingkontrolle

4.7.3 Routing-Algorithmen

Die Aufgabe eines Routingalgorithmus ist es, auf dem Netzgraph G einen Multicastbaum
SK für eine Gruppe K zu berechnen. Die optimale Lösung dafür ist durch das Steinerbaum-
problem nach Abschnitt 2.3.1 definiert. Eine Instanz des Problems ist mit (G(V,E,w),K)
gegeben, mit dem Ziel, die Kosten des Multicastbaumes SK bezüglich w zu minimieren.
Vor jeder Berechnung wird der kantengewichtete Graph der Netzzustandsverwaltung mit den
aktuellen Gewichten w(s,K) des betroffenen Multicastbaumes verrechnet, um die eigene Band-
breite vom Gesamtgewicht abzuziehen. Somit steht für jeden Baum ein Graph G(V,E,w) mit
individuellen Kantengewichten w zur Verfügung.

In dieser Arbeit werden drei Algorithmen implementiert, zwischen diesen im laufenden Be-
trieb beliebig umgeschaltet werden kann. Die KMB-Steinerheuristik [KMB81], ein Algorith-
mus für Shared-Trees und ein inkrementeller Greedy-Algorithmus (iGA). KMB ist eine Nä-
herung für den minimalen Steinerbaum mit polynomiellen Zeitaufwand und findet hier für
die Berechnung der quellenbasierten Bäume Anwendung. Im Vergleich ermittelt KMB die
hier kostenoptimalste Lösung. Für die Berechnung der Shared-Trees wird ein Rendezvous-
Knoten verwendet. Damit muss nur ein Multicastbaum pro Gruppe berechnet werden. Der
Baum ist jedoch lediglich für den Rendezvous-Knoten optimiert und nicht für jede Quel-
le. Außerdem sind Unicast-Routen nötig, die die Sender über eine effiziente Route mit dem
Shared-Tree verbinden. Während die ersten beiden Algorithmen monolithisch arbeiten, bietet
der Greedy-Algorithmus (iGA) eine Vergleichsmöglichkeit zu einem quellbasierten inkremen-
tellen Lösungsansatz. Dieser Ansatz spart eine komplexe Neueinrichtung sämtlicher Routen
nach aufgetretener Gruppenänderung. Jedoch divergiert der Baum nach einer gewissen An-
zahl von Änderungen immer mehr von der optimalen Lösung.

51

Alle drei vorgestellten Algorithmen haben eine polynomielle Laufzeit. Abhängig von der Op-
timalität des Algorithmus werden die Kosten entsprechend der in 4.4.3 eingeführten Metrik
minimiert und dadurch ein Flow-Balancing erreicht. Folgende Eingangsdaten stehen den Rou-
tingalgorithmen dafür zur Verfügung:

• Repräsentation des aktuellen Netzes als kantengewichteter Graph G(V,E,w(e)), inklu-
sive aller ToR-Switches s ∈ V als mögliche Senderknoten und die zugehörigen Gewichte
w(s,K)(e) für alle bereits vorhanden Multicastbäume.

• Gruppenmitglieder aus der Gruppenverwaltung als Terminalmenge T . Die
Gesamtmenge bezüglich des Senderknotens s wird mit K := T ∪ {s} bezeichnet. Im
Fall eines Shared-Tree, ist s der Rendezvous-Knoten.

• Flow-Informationen aus der Routenverwaltung, die die Menge der im Moment aktuellen
Multicastbäume darstellen.

KMB Steinerheuristik Der KMB-Algorithmus von Kou et al. [KMB81] ist eine Steinerheu-
ristik und basiert auf minimalen Spannbäumen. Sie ist in Algorithmus 1 dargestellt. KMB
wird hier im Standardmodus der Routenberechnung verwendet, um minimale quellenbasierte
Multicastbäume zu approximieren. Die optimale Lösung wird dabei 2-approximiert, d.h. die
Kosten, hier Länge und Auslastung, des berechneten Steinerbaumes sind maximal doppelt
so hoch wie der minimale Steinerbaum. Die Zeitkomplexität beträgt im schlechtesten Fall
O(|K||V |2).

Algorithmus 1: KMB: 2-Approximationsalgorithmus nach [KMB81]
Eingabe : (G(V,E,w),K)
Ausgabe : Steinerbaum SK von G

G∗(K,ED, wD) := SUB(G(V,E,w));
S∗ := MST(G∗);
GS∗ := RSUB(S∗);
S+

K := MST (GS∗);
while S+

K hat Blattknoten v /∈ K do
entferne v aus S+

K

end
return S+

K

Zuerst wird der Distanzgraph G∗ über die SUB Funktion berechnet. Dabei werden die Kanten
zwischen allen Knotenpaaren aus K durch ihren kürzesten Pfad subsituiert. Die Kanten ED

stellen aggregierte Kanten der kürzesten Pfade aus G mit summierten Gewichtswerten wD dar.
Im Distanzgraph wird nun ein minimaler Spannbaum berechnet (MST-Funktion), der dann
anschließend wieder in einen Teilgraph mit den Ursprungskanten aufgelöst wird (RSUB). Eine
Kante in S∗ entspricht einem kürzesten Pfad in G, d.h. nach der Rücksubstitution, ist der neu
entstandene Teilgraph GS∗ im Allgemeinen kein Baum mehr. Auf diesem Teilgraph wird nun
erneut ein minimaler Spannbaum berechnet. Anschließend werden überflüssige Blattknoten
entfernt, so dass nur noch die Blätter aus K vorhanden sind (PRUNE).

52

SUB

2

41

3

4

4

4

4
4 4

2

1

3

4

4

4

4

DESUB

1

9

52

3

6

4

7

8

1

0.5

0.5

1

1

10

1

8 2

9

2

1 MST

MST

1

9

52

3

6

4

7

8

1

0.5

0.5

1

1 1

2 2

1

PRUNE

1

9

52

3

6

4

7

8

1

0.5

0.5

1 1

2 2

1

1

9

52

3

6

4

1

1 1

2 2

1

Abbildung 4.15: Beispiel für den KMB-Algorithmus aus [KMB81]

Abbildung 4.15 zeigt in einem kantengewichteten Beispielgraphen die einzelnen Schritte aus
Algorithmus 1. Dabei besteht die Knotenmenge aus neun durchnummerierten Knoten und
es gilt K = {1, 2, 3, 4}. Im Bild sind die Zielknoten gelb und alle anderen blau dargestellt.
Eine rote Umrandung steht für überflüssige Baumzweige, die im letzten Schritt gestutzt wer-
den können. Für die Berechnung der kürzesten Pfade in KMB kommt Dijkstra [Dij59] zum
Einsatz. Um den minimalen Spannbaum zu finden, wird der Algorithmus von Tarjan [Tar06]
verwendet. Dabei handelt es sich um eine effizientere Implementierung von Edmond’s Al-
gorithmus [Edm67] für optimale Kantenverzweigungen (Branching) in gerichteten Graphen.
Technisch gesehen handelt es sich bei dem betrachteten Systemmodell um einen gerichteten
Graphen, da der Vollduplex-Betrieb zwischen zwei Switches auch zwei unabhängige gerichte-
te Kanten im Graphen impliziert, die insbesondere auch verschiedene Kantengewichte haben.
Das minimale Spannbaumproblem wird im gerichteten Fall durch einen gewurzelten Baum
(rooted Tree) gelöst. Die Wurzel ist in diesem Fall der Senderknoten. Tarjan’s Algorithmus
hat eine Zeitkomplexität von O(|E|log|V |) für dünn besiedelte Graphen (sonst O(|V |2)) und
erreicht damit die gleiche Performance wie der bekannte Algorithmus von Prim [Pri57] für
ungerichtete Graphen. Für eine verbessertes Zeitverhalten kann die Laufzeit von Dijkstra’s
Algorithmus durch die Implementierung mit Fibonacci-Heaps, von ursprünglich O(|V |2 + |E|)
auf O(|E|+ |V |log|V |), noch weiter reduziert werden [FT87].

Der KMB-Algorithmus gibt folgende Garantie zwischen der Gesamtpfadlänge von SK und
dem minimalen Steinerbaum Sopt.

|SK | ≤ 2(1− 1
|K|)|Sopt|, mit |S| =

∑
e aus S

w(e) (4.8)

53

In der Praxis kommt der schlechteste Fall selten vor, so dass im Schnitt das Ergebnis nur
um 5% vom Optimum abweicht [DL93]. Es gibt derzeit keinen Polynomialzeit-Algorithmus,
der das Steinerbaumproblem besser als 2-Approximiert (im worst case) [Kos10]. Da die Be-
rechnung für jeden Sender pro Multicastgruppe passieren muss, ist der Gesamtaufwand im
betrachteten Systemmodell für eine Neuberechnung nach oben durch k2/2 × O(|K||V |2) be-
grenzt. Dabei ist k der Fat-Tree Parameter, der die Anzahl der Pods im Systemmodell angibt.
Pro Pod gibt es k/2 Tor-Switches, die jeweils eine Senderrolle einnehmen können.

Shared-Tree Algorithmus mit Rendezvous-Knoten Der Shared-Tree Algorithmus wird an-
gewandt, wenn die Flow- bzw. Group-Tables zu viele Einträge haben und ein Überlauf droht.
Im Vergleich zu quellenbasierten Bäumen, ist ein Shared-Tree für die Weiterleitung aller
Pakete sämtlicher Sender (ToR-Switches) für eine Multicastgruppe zuständig. Nachdem die
Routingkontrolle in den Überlaufmodus wechselt, findet automatisch ein Wechsel des Rou-
tingalgorithmus statt. Alle danach auftretenden Gruppen-Ereignisse werden anschließend als
Shared-Tree behandelt.

6

1 2

5

3

7

4

8

...Match

Src=1; Dst=224.0.1.4

...

Action

Output -> 5

...

Flow-Table 1

...

Match

Src=1; Dst=224.0.1.4

...

Action

Output -> 7

...

Flow-Table 7

Flow-Table 5

EmpfängerEmpfänger

Sender

Rendezvous-
Knoten

Group Identifier

224.0.1.4

...

Actions

Modify Src; Output -> 6, 8

...

Group-Table 7

...Match

Src=1; Dst=224.0.1.4

...

Action

Group: 224.0.1.4

...

Abbildung 4.16: Shared-Tree mit zugehörigen Flow-Tables

Tritt nach dem Wechsel in den Überlaufmodus eine neue Gruppe oder eine Gruppenänderung
auf, kommt zuerst KMB zum Einsatz, um einen neuen Baum zu berechnen. Als Senderquelle
wird ein fester Rendezvous-Knoten vorgegeben, der vorab ermittelt wurde. Nach der erfolg-
reichen Berechnung des Shared-Trees müssen die Routen ermittelt werden, die die Sender mit
dem Baum verbinden. Von jedem ToR-Switch wird dazu proaktiv eine kürzeste Unicast-Route
zum Rendezvous-Knoten mit Dijkstra’s-Algorithmus [Dij59] errechnet.

Die errechneten Unicast-Routen bilden auf der Datenschicht die Wege, die alle Multicastpake-
te einer Gruppe an den Rendezvous-Knoten weiterleiten. Erreichen die Pakete den Rendezvous-
Knoten, startet die eigentliche Auslieferung an die Empfänger. Errechnete Unicast-Routen
werden zusammen mit dem Shared-Tree an die Flow-Modifikation gegeben und auf Da-
tenschicht eingerichtet. In Bild 4.16 ist ein Ausschnitt eines Shared-Trees mit zugehörigen

54

Flow-Tables gezeigt. Der Sender schickt seine Pakete entlang der blauen Unicast-Route in
Richtung Shared-Tree, bis er auf den Rendezvous-Knoten trifft. Im Bild entspricht das Kno-
ten 7, der Multicastpakete von Sender 1 mit der Zieladresse „224.0.1.4“ empfängt. Von dort
aus startet die Auslieferung entlang des Baumes (in rot). Dabei ist der Baum über die Group-
Table definiert, auf die ein Flow-Table-Eintrag verweist. Der Senderknoten ist dunkelblau
dargestellt, die Gruppenmitglieder in rot.

Eine wichtige Fragestellung betrifft die Auswahl des Rendezvous-Knoten. Dies hat direkten
Einfluss auf die Verzögerungszeit und Bandbreitenausnutzung im Netz. Eine schlechte Kno-
tenwahl kann unnötig lange und ungünstige Pfade zur Folge haben. Eine Möglichkeit ist die
zufällige Platzierung. Dadurch wird zwar ab einer gewissen Anzahl von Mullticastgruppen ei-
ne Gleichverteilung erreicht, die einzelnen Routen sind jedoch nicht optimal gewählt. Für eine
Optimierung ist das offensichtliche Ziel, den Rendezvous-Knoten in der Mitte des Netzwerks
zu platzieren, so dass die maximalen Kosten für jeden potentiellen Sender und Empfänger
minimiert werden.

Für jede Multicastgruppe wird ein eigener Rendezvous-Knoten berechnet. Der Switch, zu
dem alle Empfängerknoten den kleinsten Abstand bezüglich der in Abschnitt 4.3 vorgestellten
Metrik haben, wird als die Mitte dieser Knoten bezeichnet. Um die kürzesten Pfade zwischen
allen Switches und der Empfängergruppe zu bestimmen, kommt eine n-malige Ausführung
des Dijkstra-Algorithmus zum Einsatz. Danach wird für jeden Knoten der größte Abstand zu
einem Gruppenmitglied verglichen. Es muss nur noch der Knoten im Netz ausgewählt werden,
bei dem dieser maximale Abstand für alle Empfänger am kleinsten ist. Sollte dies auf mehrere
Kandidaten zutreffen, wird der nächstbeste als die neue Graphmitte für die Multicastgruppe
ausgewählt. Der Zeitaufwand wird durch das Berechnen der kürzesten Pfade bestimmt und
beträgt O(n3), wobei n die Anzahl der Switches im Netz darstellt. Senderknoten werden bei
der Berechnung des Rendezvous-Knoten nicht extra behandelt, da jeder ToR-Switch zu jedem
Zeitpunkt eine Senderrolle für eine beliebige Gruppe annehmen kann.

Inkrementeller Greedy-Algorithmus (iGA) Im dynamischen Fall wird das Steinerbaumpro-
blem aus Kapitel 2.3.1, um ein R := {(vi, oi)|vi ∈ V, oi ∈ {add, leave}} erweitert. R besteht
aus einer Menge von Änderungsanfragen, bei denen Knoten der Terminalgruppe beitreten
oder sie verlassen können. Das Ziel ist nach jeder Änderung (vi, oi) einen Steinerbaum Si

zu berechnen, der die veränderte Terminalmenge Ki umspannt. Die Änderungsanfragen aus
der Menge R treten iterativ und plötzlich auf (online), und sind einem (Online-)Algorithmus,
der dieses Problem lösen soll, zuvor nicht bekannt. Im Gegensatz zu KMB oder Shared-Tree,
arbeitet ein solcher Lösungsansatz stets auf den aktuellen Bauminformationen aus der Rou-
tenverwaltung.

Das kommt einem Algorithmus gleich, der inkrementell arbeitet. Das heißt der aktuell berech-
nete Baum wird bei einer Änderung aktualisiert, anstatt ihn neu zu berechnen. Die Grund-
voraussetzung ist, dass bereits ein durch KMB berechneter initialer Multicastbaum für jede
Quelle existiert und die Routenkontrolle sich im Standard-Modus befindet. Findet sich über
die Routenverwaltung kein quellenbasierter Multicastbaum, wird ein solcher erst errechnet.

55

Algorithmus 2 beschreibt die iterative Berechnungsvorschrift zur Anpassung eines bestehen-
den quellenbasierten Baumes bei aufgetretener Gruppenänderung.

Algorithmus 2: Online Greedy-Algorithmus
Eingabe : (G(V,E,w), Si(Ki), (vi, oi)
Ausgabe : Steinerbaum Si+1(Ki+1) der Ki+1 umspannt
if oi = add then

Verbinde vi mit Si auf kürzestem Pfad
else

Markiere vi als gelöscht. Stutze ausgehend von vi alle unnötigen Kanten in Si+1
end

Gruppenänderungen (vi, oi) werden durch die Gruppenverwaltung nacheinander einzeln ge-
meldet, der zugehörige Baum S(i−1) findet sich in der Routenverwaltung. Der Online-Greedy-
Algorithmus (Algorithmus 2) verbindet bei einer Änderung (vi, add) den hinzugekommenen
Knoten vi mit der Terminalmenge Ki−1 auf dem kürzesten Pfad zu Si−1. D.h. mit dem Kno-
ten aus S(i−1), der am nächsten zu vi liegt. Beim Verlassen eines Knotens wird der Zweig
einfach gestutzt (Pruning).

Der Vorteil dieses Algorithmus ist, dass er wenige Änderungen auf Datenschicht zur
Folge hat. Da dies ein wesentlicher Zeitfaktor ist, wurde Algorithmus 2 in dieser Diplom-
arbeit implementiert, um den tatsächlichen Zusatzaufwand mit der Optimalität des Routings
vergleichen zu können. Imaze und Waxmann [IW91] haben gezeigt, dass das Competitive
Ratio eines solchen Algorithmus bei log2N liegt. Das Competitive Ratio ist das Kostenmaxi-
mum eines Online-Algorithmus aller Änderungsanfragen zum Verhältnis zu den Kosten für
einen optimalen offline Baum, bei dem die Änderungen schon im Voraus bekannt sind.

4.7.4 Flow-Modifikation

Die Flow-Modifikation ist für die Implementierung der Routingergebnisse auf Datenebene
und für die Aktualisierung der Routenverwaltung zuständig. Ziel ist es, möglichst wenig Än-
derungen auf Datenebene durchführen zu müssen. Das ist insbesondere für den Fall relevant,
wenn nach einer Neuberechnung alte, aber immer noch gültige Tabelleneinträge beibehalten
werden können. Das bedeutet, dass nach Änderungen ein Vergleich zwischen dem neuen und
dem bisherigen Baum stattfinden muss, um die Unterschiede festzustellen.

Zur Einrichtung eines neuen Multicastbaumes werden OpenFlow Modification-Nachrichten
vom Typ Add, Delete oder Mod an die entsprechenden Switches gesendet. An jedem Switch
sind ein Gruppeneintrag in der Group-Table, sowie ein zugehöriger Verweis in der Flow-Table
nötig. Das Deployment wird als erfolgreich angesehen, wenn nach einer ausreichend langen
Wartezeit keine Fehlermeldung zurückgemeldet wurde. Erst dann darf die Flow-Modifikation
die Datenbasis der Routenverwaltung aus Abschnitt 4.6.1 aktualisieren. Zu beachten ist, dass
die eingerichteten Flows keine gültigen Timeoutzeiten aufweisen dürfen. Das würde im Wider-
spruch zum proaktiven Berechnungsansatz stehen. Somit wird die Flow-Modifikation gezwun-
gen, vor der Einrichtung der neuen Routen, nunmehr veraltete Einträge explizit zu löschen.

56

Der Ablauf in der Flow-Modifikation wird in Lösch-, Deployment- und Aktualisierungsphase
gegliedert. Nachfolgend werden die einzelnen Ereignisse unterschieden, die zu einem Aufruf
der Flow-Modifikation führen:

• Neuer quellenbasierter Multicastbaum: Nach der Ausführung einer der beiden
Routingalgorithmen für quellenbasierte Multicastbäume wird das Ergebnis, zusammen
mit der Gruppen-ID und der Sender-ID, als Adjazenzliste an die Flow-Modifikation
übergeben. Mit dem Schlüssel (Sender-ID+Gruppen-ID) kann der vorherige Multicast-
baum aus der Routenverwaltung gesucht werden. Im Anschluss folgt die Lösch- und
Deployment-Phase für Multicastbäume.

• Neuer Shared-Tree: Nach der Berechnung eines neuen Shared-Trees wird der Baum
als Adjazenzliste zusammen mit der Gruppen-ID weitergegeben. Der passende Eintrag
in der Routenverwaltung wird dann über den Schlüssel (Gruppen-ID) bestimmt. An-
schließend wird ebenfalls mit der Lösch- und Deployment-Phase für Multicastbäume
fortgefahren.

• Neuer Sender für Shared-Tree: Für jeden im Graph vorhandenen Sender
(Sender-ID) wird, nach der Berechnung eines neuen Shared-Trees, die zugehörige Kno-
tenliste für eine Unicast-Route zum Rendezvous-Knoten übergeben. Außerdem ist die
Gruppen-ID von Bedeutung. Der Lookup in der Routenverwaltung erfolgt über
(Sender-ID+Gruppen-ID) um die bisherige Verbindungsroute zu erhalten. Anschließend
wird die Lösch- und Deployment-Phase für Unicast-Routen ausgeführt

• Gruppe löschen: Die Gruppenverwaltung meldet das Löschen einer Gruppe mit der
Gruppen-ID an die Routingkontrolle. Da ein solches Ereignis nicht zu einer Neuberech-
nung führt, wird die Flow-Modifikation direkt benachrichtigt. Alle zugehörigen Einträge
auf der Datenebene werden daraufhin gelöscht und die Routenverwaltung aktualisiert.

Lösch- und Deployment-Phase für Multicastbäume Der Ablauf nach der Übergabe eines
neuen Multicastbaumes an die Flow-Modifikation ist mit den einzelnen Phasen in Abbildung
4.17 zu sehen. Ergibt der Lookup über die Routenverwaltung kein Ergebnis, kann die Lösch-
phase übersprungen und direkt mit der Deployment-Phase für Multicastbäume fortgefahren
werden. Ansonsten unterscheidet ein Flag in der Datenstruktur, ob eine Unicast-Route oder
ein Multicastbaum gefunden wurde. Bei einer Unicast-Route werden alle zugehörigen Tabel-
leneinträge gelöscht. Alle beteiligten Switches erhalten dazu eine Flow-Table Modification-
Nachricht mit Delete-Anweisung. Anschließend kann direkt mit der der Deployment-Phase
für Multicastbäume fortgefahren werden.

Ist durch den Lookup in der Routenverwaltung ein Multicastbaum erkannt worden, fin-
det ein Vergleich zwischen dem neu berechneten und dem aktuellen Baum statt. Zuerst
werden all diejenigen Knoten bestimmt, die im alten Baum, aber nicht im neuen vorhan-
den sind. Sie werden mit Va bezeichnet. Dadurch werden die Switches identifiziert, bei de-
nen der gesamte Gruppeneintrag gelöscht werden kann. Sie erhalten jeweils eine Group-
Table Modification-Nachricht mit der Delete-Anweisung für den passenden Tabelleneintrag,

57

InitialisierungInitialisierung

Aktualisierungsphase

Deploymentphase

Löschphase

 Fehlermeldung
erhalten ?

Fehlermeldung an
Anwendung oder

Standardfehlerbehandlung

Setze Flag=0 in Sneu und aktualisiere
Datenbasis in der Routenverwaltung über
(GruppenID) bzw. (SourceID+GruppenID)

Nein

Valt = ∅ ?

Ermittle Salt (Valt, Ealt) per
Lookup in Routenverwaltung:

(SenderID+GruppenID)

SenderID, GruppenID,
Baum: Sneu (Vneu, Eneu)

 GruppenID,
Baum: Sneu (Vneu, Eneu)

Ermittle Salt (Valt, Ealt) per
Lookup in Routenverwaltung:

(GruppenID)

Va:= Valt \ Vneu

Ea:= (Ealt \ Eneu) \
{(x,y)|x ∈ Va ,y ∈ Valt}

Ja

Sende Delete-Nachricht für
Gruppen- bzw. Flow-Eintrag

an Switch v[i] ∈ Va

i ≤ |Va| ? Ja

i := i+1

Nein

k ≤ |Ea| ?
Sende Gruppen-

Modifikationsnachricht zum
Löschen von e[k] ∈ Ea

Ja

k := k+1

Vn:= Vneu \ Valt

En:= (Eneu \ Ealt)\
{(x,y)|x ∈ Vn ,y ∈ Vneu}

Sende Add-Nachricht für
Gruppen- und Flow-Eintrag

an Switch v[i] ∈ Vn

i ≤ |Vn| ? Ja

i := i+1

Nein

k ≤ |En| ?
Sende Gruppen-

Modifikationsnachricht zum
Hinzufügen von e[k] ∈ En

Ja

k := k+1

Nein;
Nach T sekunden

Ja

Flag(Salt)
= 1 ?

Ja

Nein

Nein

Alter Eintrag
gefunden

Alte
Unicast
route

Alter Baum
gefunden

Löschmengen

Deployment-Mengen

Va := Valt

Ea := ∅

Nein

Kein alter
Eintrag gefunden

Abbildung 4.17: Ablauf und Phasen der Flow-Modifikation

der über die Multicastadresse identifiziert wird. Anschließend muss der zugehörige Flow-Table
Eintrag entfernt werden, der auf die nun gelöschte Gruppe verweist. Nach erfolgreicher Lösch-
meldung, geschieht dieselbe Betrachtung für hinfällige Kanten, wobei nur noch solche Kanten
beachtet werden, die nicht bereits zuvor mit einem Knoten gelöscht wurden (Ea). Eine nicht-
leere Kantenmenge Ea repräsentiert den Fall, dass der neue Baum teilweise über die gleichen
Switches verläuft wie bisher, jedoch nicht mehr über dieselben Ein- und Ausgangskanten. Alle
Kanten, die im neuen Baum nicht mehr vorkommen, werden über eine Group-Table Modificati-
on-Nachricht mit der Modify-Anweisung gelöscht. Das erfolgt durch Entfernen der passenden
Output:Port-Aktion im Gruppeneintrag. Anschließend wird mit der Deployment-Phase für
Multicastbäume fortgefahren.

58

Das Deployment läuft analog zur Löschphase ab. Unabhängig vom vorliegenden Baum, werden
zuerst alle Knoten bestimmt, die neu hinzugekommen sind. Sie werden mit Vn bezeichnet. Die
Menge der Kanten zu einem dieser Knoten definiert am zugehörigen Switch die Erstellung
eines neuen Gruppeneintrags. Die passende Group-Table-Modification-Nachricht beinhaltet
eine ADD-Anweisung, sowie die nötigen Informationen zur Gruppen-ID und den Kanten.
In der Group-Table wird daraufhin ein neuer Eintrag erstellt, dem so viele Action Buckets
zugeordnet werden, wie Kanten existieren. Alle Kanten werden auf die passenden Ports ab-
gebildet und jedem Bucket eine Output:Port-Aktion zugeordnet. Der Gruppentyp muss auf
all gesetzt werden, um sicherzustellen, dass eine Nachricht über jeden spezifizierten Port
weitergeleitet wird. Der Eintrag der Flow-Table, der über die Group-Table behandelt wer-
den soll, wird mit einer Group-Action versehen. Eine in der Group-Table definierte Gruppe
kann über einen Verweis in der Group-Action mit einem 32-bit Group Identifier identifiziert
werden. Dafür wird für quellenbasierte Bäume ein Hashwert aus Senderquelle und Multica-
stadresse verwendet, Shared Trees nutzen einfach die Multicastadresse. Zum Schluss muss
per Flow-Table Modification über ADD ein neuer Eintrag in der Flow-Table erstellt werden.
Der Eintrag hat die Aufgabe alle Pakete, die an die Multicastadresse geschickt werden, an
den eben erstellten Gruppeneintrag zu verweisen. Nachdem alle neuen Knoten verarbeitet
wurden, erfolgt die Einrichtung der neu hinzugekommenen Kantenmenge En. Dabei werden
nur Kanten betrachtet, die nicht bereits im Zuge eines neuen Knoten hinzugefügt werden. Sie
werden durch Hinzufügen einer entsprechenden Output:Port-Aktion für einen vorhandenen
Gruppeneintrag per Modify-Anweisung behandelt. Der Eintrag in der Flow-Table muss nicht
verändert werden.

6

1

5

3 4

EmpfängerNeuer
Empfänger

Sender

87

Sender

6

1 2

5

3 4

EmpfängerNeuer
Empfänger

87

Empfänger

2

6

1

5

3 4

EmpfängerNeuer
Empfänger

87

Empfänger

2

Sender

Flow-Table 8

...Match

Src=1, Dst=224.0.1.4

...

Action

Group: H(1;224.0.1.4)

...

Group Identifier

H(1;224.0.1.4)

...

Action Buckets

{ Output:6}

...

Group-Table 8

Group-Table 5

6

1 2

5

3 4

EmpfängerNeuer
Empfänger

8
7

Sender

Group Identifier

H(1;224.0.1.4)

...

Action Buckets

{ Output:6}

...

Group-Table 7

Flow-Table 7

...Match

Src=1; Dst=224.0.1.4

...

Action

Group: H(1;224.0.1.4)

...
Group Identifier

H(1;224.0.1.4)

...

Action Buckets

{Output: 2, Output:7}

...

Group-Table 5

Empfänger

Group Identifier

H(1;224.0.1.4)

...

Action Buckets

{Output: 4, Output:3}

...

Group-Table 6

a) b)

c) d)

Action Buckets

{ Output:8, Output: 2}

...

Group Identifier

H(1;224.0.1.4)

...

Abbildung 4.18: Lösch- und Deployment-Phase für einen quellenbasierten Multicastbaum

Abbildung 4.18 zeigt die Abfolge der Lösch- und Deployment-Phase auf Datenschicht am
Beispiel eines quellenbasierten Multicastbaumes. Knoten 3 ist neu hinzugekommen, was eine
Neuberechnung zur Folge hat. Der alte Baum in 4.18.a beinhaltet Knoten 8, während der
neue Baum über Knoten 7 verläuft (4.18.d). Das hat das Löschen von Knoten 8 sowie der
Kante von 5 zur Folge (4.18.b). Dazu müssen die gezeigten Tabelleneinträge (in rot) gelöscht
bzw. modifiziert werden. In 4.18.c ist der Baum nach erfolgreicher Löschphase dargestellt. In
Teilbild 4.18.d wird im Zuge der Deployment-Phase Knoten 7 hinzugefügt, sowie die neuen

59

Kanten von Knoten 5 und 6. Dafür müssen die gezeigten Tabelleneinträge (in grün) einge-
richtet bzw. modifiziert werden. Die Funktion H stellt eine beliebige Hashfunktion dar, deren
einzige Aufgabe es ist, eine Kombination aus Sender-ID und Multicastadresse auf einen 32-bit
langen Identifier abzubilden.

Die Priorität sämtlicher Flow-Einträge wird mit einem festen Wert vorgegeben. Dabei gilt die
Konvention, dass eine Baumkante höher priorisiert wird, als eine Unicast-Route. Außerdem
erhalten quellenbasierte Baumkanten eine höhere Priorität als ein Shared-Tree, für den Fall
dass beide Baumarten zur gleichen Zeit vorhanden sind. Es ist jedoch nicht erlaubt, dass für
den gleichen Sender zu einem Zeitpunkt sowohl eine Unicast-Route als auch ein quellenba-
sierter Baum existiert. Somit bedarf dieser Fall keiner gesonderten Prioritätsbehandlung. Der
Zeitaufwand für die Vergleichsoperationen beim Löschen und Deployment kann jeweils durch
O(|Va|2 + |Ea|2) bzw. O(|Vn|2 + |En|2) nach oben abgeschätzt werden. Dabei entsprechen die
Mengen der Definition aus Abbildung 4.17 für die jeweilige Phase. Es muss allerdings ange-
merkt werden, dass Ea bzw. En bereits keine Kanten mehr aus Va bzw. Vn enthalten und
die Anzahl der Kanten pro Knoten durch k im Systemmodell beschränkt ist (Kapitel 3.2).
Außerdem beziehen sich die Ursprungsmengen V und E auf einen Baum ST und nicht auf
den gesamten Graph.

Jeder Flow, der in einem Switch eingerichtet wird, muss über einen Bezeichner eindeutig
identifizierbar sein. Außerdem dürfen keine uneindeutigen Überschneidungen bei den Ab-
gleichkriterien entstehen. Bei quellenbasierten Bäumen können sich die einzelnen Bäume ei-
ner Gruppe überlappen, was bedeutet, dass ein Abgleich auf die Multicastadresse in dem
Fall nicht ausreichend ist. Für eine Eindeutige Unterscheidung der Flows zwischen den je-
weiligen Absendern, muss zusätzlich die Senderadresse abgeglichen werden. Der Controller
selbst verwaltet jedoch keine Hosts, d.h. der Host übergibt nach dem ersten Hop die Sen-
derrolle an seinen ToR-Switch. Eine OpenFlow Action vom Typ Modify-Field überschreibt
die MAC-Adresse des Senders mit der des Switches. Dies findet immer dann statt, wenn
ein ToR-Switch eine Multicastnachricht über einen Host-Port empfängt. Diese Lösung er-
reicht eine Unabhängigkeit von den eigentlichen Hosts und spart Tabelleneinträge in der
Hinsicht, dass nicht für jede einzelne Sendermaschine eigene Flows benötigt werden. Da-
für ist jedoch beim Empfang auf einem ToR-Switch ein zusätzlicher Flow nötig, der die
Multicastpakete letztendlich über alle Host-Ports ausliefert. Bei einem Shared-Tree ist da-
für außerdem eine zusätzliche Unterscheidung am Rendezvous-Knoten nötig, da die ToR-
Switches hier im Allgemeinen nicht dem Sender-Switch des Baumes entsprechen. Zuerst wer-
den die Pakete über Unicast-Routen zum Rendezvous-Knoten geschickt. Bis zum Erreichen
des Baumes werden sie über ihre ToR-Senderadresse abgeglichen. Anschließend erfolgt am
Rendezvous-Knoten ein erneutes Umschreiben der Addresse in die Adresse des Shared-Trees
(Rendevous-Knoten-ID + Multicastadresse) wie in Bild 4.16 gezeigt.

Lösch- und Deployment-Phase für Unicast-Routen Die Lösch- und Deployment-Phase für
Unicast-Routen erfolgt analog zu den Phasen für Multicastbäume. Wenn sich in der Rou-
tenverwaltung noch kein Eintrag findet wird die Löschphase übersprungen und die neue
Route direkt eingerichtet. Anderenfalls wird zwischen einem quellenbasierten Baum oder
einer Unicast-Route unterschieden. Findet sich ein Baum, wird dieser komplett gelöscht
und danach direkt mit der Deployment-Phase für Unicast-Routen fortgefahren. Wurde eine

60

Unicast-Route erkannt, werden die Knoten und Kanten verglichen, alte Tabelleneinträge ge-
löscht und anschließend neue hinzugefügt. Kanten, die sowohl in der alten als auch in der
neuen Route vorhanden waren, werden beibehalten. Der einzige Unterschied zur Lösch- und
Deployment-Phase für Multicastbäume ist, dass die Routen über die Flow-Table eingerich-
tet werden, während die Bäume über die Group-Table definiert werden. Die entsprechenden
OpenFlow-Nachrichten sind: Flow-Table Modification-Nachrichten mit den jeweiligen Header-
Anweisungen: Delete, Add und Modify. An den ToR-Switches erfolgt derselbe Rollentausch
durch das Umschreiben der Senderadresse, wie das bei quellenbasierten-Bäumen der Fall ist.
Eine zusätzliche Modify-Field-Action ist beim Wechsel zwischen Unicast-Route und Multi-
castbaum am Rendezvous-Knoten notwendig. Ein Beispiel dafür ist in Bild 4.16 gezeigt.

Aktualisierungsphase Das erfolgreiche Löschen eines Flows wird in OpenFlow durch ei-
ne Flow-Removed-Statusmeldung angezeigt. Tritt bei der Modifikation einer Flow-Table ein
Fehler auf, meldet der Switch eine entsprechende Fehlermeldung zurück. In diesem Fall darf
die Routenverwaltung nicht aktualisiert werden, um keinen inkonsistenten Zustand zur Da-
tenschicht hervorzurufen. Um sicherzugehen, dass keine Fehler aufgetreten sind, muss eine
ausreichend lange Zeitspanne abgewartet werden. Diese Wartezeit bezieht sich jedoch ledig-
lich auf die Aktualisierung der internen Datenstruktur in der Routenverwaltung und nicht
auf die Einrichtung der Routen auf Datenebene. Sind in dieser Zeitspanne keine Fehler zu-
rückgemeldet worden, wird der neuberechnete Multicastbaum oder die Unicast-Route in der
Routenverwaltung aktualisiert. Dazu wird, falls vorhanden, der alte Eintrag in der Hashtabel-
le verworfen und durch den neuen ersetzt. Anschließend muss durch ein Flag gekennzeichnet
werden, ob es sich um einen Baum (Flag=0) oder eine Unicast-Route (Flag=1) handelt.
Der Zugriff erfolgt dabei über eine entsprechende API, die von der Routenverwaltung zur
Verfügung gestellt wird. Ein Beispiel zur Datenstruktur findet sich in Abschnitt 4.6.1, Bild
4.11. Es muss beachtet werden, dass die verschiedenen Routen zum richtigen Schlüssel abge-
speichert werden. Ein Shared-Tree wird unter dem Hashtabelleneintrag der Multicastadresse
abgespeichert. Die Unicast-Routen werden als Knotenliste, zusammen mit einem Zeiger auf
den Shared-Tree mit dem konkatenierten Schlüssel zwischen Sender-ID und Multicastadres-
se abgelegt. Die Reihenfolge in der Knotenliste entspricht dem Weg der Unicast-Route vom
Sender bis zum Rendezvous-Knoten des Shared-Tree. Ein quellenbasierter Baum wird un-
ter dem gleichen Schlüssel gespeichert, da von einem Sender zur gleichen Zeit entweder eine
Unicast-Route zum Shared-Tree oder ein quellenbasierter Baum benötigt wird.

61

5 Multicast-Implementierung in Floodlight

In diesem Kapitel soll die in Kapitel 4 erarbeitete Konzeption für einen Multicastdienst in Java
implementiert werden. Zuerst wird in Abschnitt 5.1 der OpenFlow-Controller Floodlight [flo]
vorgestellt und anschließend in Abschnitt 5.2 eine darauf aufbauende Multicastimplementie-
rung beschrieben.

5.1 Floodlight OpenFlow-Controller

Floodlight [flo] ist ein in Java implementierter OpenFlow-Controller, der aus einer frühen
Version des Beacon Projekts [Uni] hervorgegangen ist. Entwickelt wurde er von Big Switch
Networks und diente als Basis für die im November 2012 erschienene kommerzielle Version mit
dem Namen Big Network Controller [Net]. Floodlight selbst ist Open-Source und wird unter
Apache Lizenz vertrieben. Anders als Beacon basiert Floodlight nicht mehr auf OSGi und
bietet ein eigenes, einfach zu erweiterndes Modulsystem. Die wachsende Verbreitung und die
ständige Weiterentwicklung durch Big Switch Networks, sowie die Plattformunabhängigkeit
und die einfache Erweiterungsmöglichkeiten in Java waren die ausschlaggebenden Kriterien
für die Wahl von Floodlight in dieser Diplomarbeit.

Abbildung 5.1 zeigt die Controller-Architektur. Neben der Umsetzung des OpenFlow Proto-
kolls existieren mehrere parallel laufende Module. Sie implementieren zusammen jeweils eine
Menge von verschiedenen Funktionalitäten, um ein OpenFlow-Netzwerk in Java ansprechen
und verwalten zu können. So repräsentiert beispielsweise ein Objekt der Klasse IOFSwitch
einen Switch auf Datenebene, der über einen eindeutigen Bezeichner namens Datapath-ID
(DPID) identifiziert wird. Dessen Attribute können über entsprechende Methoden beliebig
ausgelesen oder manipuliert werden. Die Umsetzung in die zugehörigen OpenFlow-Nachrichten,
sowie die eigentliche Kommunikation gemäß des OpenFlow-Protokolls werden intern über den
FloodlightProvider abgewickelt und so vor dem Entwickler verborgen. Ein Modulmanager ist
für die Verwaltung der aktiven Module zuständig. Neue Module müssen dabei zuerst in einer
Konfigurationsdatei bekannt gemacht werden, bevor der Modulmanager sie automatisch mit
Floodlight starten und verwalten kann. Eine Klasse wird als Modul behandelt, wenn sie das
Interface IFloodlightModule implementiert.

Jedes Modul kann mehrere Services bereitstellen, die als Java-Schnittstelle zwischen den in-
ternen Modulen einer Anwendung dienen. Der Device Manager verwaltet Hostmaschinen im
Netzwerk und stellt dafür einen Service zur Verfügung. LinkDiscovery ist für das Erkennen von
Verbindungen zwischen zwei Switches zuständig und bietet über den LinkDiscoveryService
eine abstrahierte Sichtweise auf das Netzwerk an. Der TopologyManager verfolgt diese

63

Abbildung 5.1: Architektur von Floodlight nach [flo]

Informationen und stellt unter anderem einen Listener für geänderte Netzwerktopologie zur
Verfügung. Für das Empfangen von OpenFlow-Nachrichten wie Packet_In-Pakete sowie das
Senden von Packet_Out-Nachrichten stehen ebenfalls entsprechende Listener und Schnitt-
stellen zur Verfügung. Außerdem existieren ein Routing- und ein Forwarding-Modul, die ein
Unicast-Routing realisieren. Standardmäßig wird über eine einfache Entfernungsmetrik ein
kürzester Pfad zwischen einem Sender und Empfänger berechnet und reaktiv, also bei Emp-
fang eines Packet_In-Pakets, auf Datenebene eingerichtet. Eine Multicastbehandlung ist zum
Zeitpunkt dieser Diplomarbeit nicht realisiert.

Zusätzlich zum Forwarding beinhaltet Floodlight neben den Basisservices noch einige weitere
Anwendungen. So existiert unter anderem ein Firewall-Modul, ein Modul für die Behandlung
von Port-Down Events und ein Static-Flow-Entry-Pusher, der es erlaubt, über einen Service
beliebige Flows auf Datenebene einzurichten. Jedes dieser Anwendungsmodule kann nach
Bedarf geladen oder deaktiviert werden. Eine eigene Anwendung kann ebenso in Form von
Modulen erweitert werden, die wiederum eigene Services zur Verfügung stellen können, wäh-
rend auf die Grundfunktionen über die erläuterten Basis-Services zugegriffen werden kann.

Alle Module können zusätzlich eine REST Schnittstelle zur Verfügung stellen. Sie sind durch
ein „R“ in Bild 5.1 gekennzeichnet. Die meisten Basis- und Anwendungsmodule bieten Ent-
wicklern so die Möglichkeit, aufbauende REST-Anwendungen unabhängig von der Program-
miersprache zu entwickeln. Ein Beispiel dafür zeigt das Web-UI Modul, mit dem man jederzeit
Topologieinformationen und Statistiken über eine Weboberfläche im Browser kontrollieren
kann.

64

5.2 Erweiterung von Floodlight um einen Multicastdienst

Eine Umsetzung der OpenFlow-Version 1.3 in Floodlight ist bereits angekündigt, zum Zeit-
punkt dieser Diplomarbeit wird jedoch lediglich die Version 1.0 unterstützt. Dadurch exis-
tieren in der Implementierung einige Einschränkungen, insbesondere das Fehlen der Group-
Tables. Obwohl nicht explizit in der OpenFlow Spezifikation [Spe09] dokumentiert, ist das
Einfügen mehrerer OpenFlow-Aktionen für einen einzigen Flow auch ohne Group-Table über
die Flow-Table möglich. Die Abarbeitungsreihenfolge geschieht sequentiell in der Reihenfol-
ge, in der die Aktionen definiert wurden. So ermöglichen mehrere Ouput-Actions auch das
Beschreiben mehrerer Ausgangsports für einen Flow und so eine Möglichkeit zur Abbildung
von Multicastbäumen. Es muss aber darauf hingewiesen werden, dass diese Möglichkeit her-
stellerabhängig ist und so möglicherweise nicht von allen OpenFlow-Switches in der Version
1.0 unterstützt wird.

Für die Implementierung des Multicastdienstes ergibt sich die Wahl zwischen einer REST-
Anwendung und einer direkten in Java integrierten Lösung. Zum Zeitpunkt dieser Diplomar-
beit können zukünftige Änderungen an den Schnittstellen aber nicht ausgeschlossen werden
[flo]. Aufgrund der starken Abhängigkeit zu Topologie und Statistikwerten, sowie der häufi-
gen Kommunikation mit der Datenschicht, fällt die Wahl auf Anwendungsmodule, die direkt
in Floodlight integriert werden. Dabei können die herausgearbeiteten Prozesse aus Kapitel 4
fast eins zu eins in Floodlight-Module umgesetzt werden.

Das Paket net.floodlightcontroller.multicast enthält alle für den Multicastdienst um-
gesetzten Module und Klassen. Folgende Multicast-Module werden beim Start des Controllers
geladen: NetworkStateManagement.java, GroupManagement.java, RoutingControl.java,
FlowMod.java und RouteManagement.java. Im Folgenden wird die Umsetzung der einzelnen
Prozesse mit Hilfe dieser Module besprochen.

Der Informationsaustausch zwischen den Modulen geschieht über Services, die den anderen
Multicast-Modulen als Schnittstelle zur Verfügung stehen. Nach Konvention werden Schnitt-
stellen stets mit „I{Modulname}Service.java“ bezeichnet. Dabei steht der Modulname für
die Klasse, die das Interface implementiert. Für die Weitergabe von Ereignissen wird das
Observer-Pattern verwendet. Ein Observer erlaubt es, ein auftretendes Ereignis von einem
Modul an alle zuvor angemeldeten Empfängermodule weiterzugeben. Damit eine Klasse als
Empfänger agieren kann, muss dieser das Interface Observer implementieren.

Nachrichtenfilter Floodlight bietet über den IOFMessageListener bereits die Möglichkeit,
angekommene Nachrichten zu erhalten und über Abfragen nach Headerfeldern zu filtern.
Somit besteht die Umsetzung des Nachrichtenfilters aus der Implementierung des Liste-
ners durch die jeweiligen Empfängermodule. GroupManagement.java filtert diese Nachrichten
nach der IGMP Protokollnummer. Das Modul NetworkStateManagement.java fragt Port-
Statistiken direkt ab und benötigt somit überhaupt keine Behandlung der Statistiknachrichten
auf OpenFlow Ebene.

65

Netzstruktur- und Zustandsverwaltung Die Netzzustandsverwaltung wird durch das Modul
NetworkStateManagement.java umgesetzt. Das Abfragen von Verbindungen über LLDP, so-
wie das Bereitstellen der Topologie als (Switch, Link)-Objekte geschieht bereits im
LinkDisvoceryManager von Floodlight und muss deshalb nicht neu implementiert werden. Die
Topologieinformationen werden über den LinkDiscoveryService und TopologyService ab-
gefragt und anschließend vom NetworkStateManagement-Modul weiterverarbeitet. Ein Java-
Thread fragt periodisch alle Switches nach Portstatistiken ab und errechnet daraus die aktuel-
len Gewichte, die als ConcurrentHashMap gespeichert werden. Diese Datenstruktur garantiert
vollständig parallelen Zugriff mehrerer Threads ohne Blockierungen. So können die Gewich-
te bei Bedarf durch andere Prozesse gelesen werden, ohne die periodische Aktualisierung zu
stören. Das NetworkStateManagement-Modul ist außerdem für die Überwachung der Flow-
Einträge zuständig. Ein drohender Überlauf wird durch einen periodisch ablaufenden Thread
erkannt und über den Overflow-Observer sofort an das RoutingControl-Modul gemeldet.

Zusätzlich wird die Floodlight-Klasse IOFSwitch um das Attribut isToR erweitert. Mit
Hilfe des TopologyService werden alle Switches periodisch geprüft, ob sie in direkter Nach-
barschaft mit einer Hostmaschine verbunden sind. Falls dies der Fall ist, werden sie als
ToR-Switches markiert. Diese Kennzeichnung ist für ein gezieltes Versenden von IGMP-
Nachrichten und die Einrichtung initialer Flows im vorliegenden Systemmodell relevant.
Für die Weitergabe der Netzzustands-Daten stellt das NetworkStateManagement-Modul im
Zuge des Multicastdienstes einen Service IStateManagementService.java zur Verfügung.
Er ermöglicht dem Routing-Modul Zugriff auf die aufbereitete Topologie und die zugehörigen
Kantengewichte.

Gruppenverwaltung Die Gruppenverwaltung wird durch das Modul GroupManagement.java
implementiert. Hier können auch die jeweiligen IGMP Antwort- und Sendezeiten belegt und
geändert werden. Die Datenstruktur für aktuelle Gruppeninformationen unterstützt ebenfalls
vollständige Parallelität durch eine ConcurrentHashMap. Ein Objekt der Klasse
GroupElement.java repräsentiert einen Eintrag in der HashMap und beinhaltet neben der
Multicastadresse und der Switch-ID auch den aktuellen Zählerwert für die Umsetzung des
IGMP-Protokolls. Die Zähler aller Einträge werden periodisch von einem Java-Thread herun-
tergezählt. Ein weiterer Thread versendet in definierten Zeitabständen die IGMP-Membership-
Requests. Für die Verarbeitung von IGMP-Paketen ist es nötig, eine Ergänzung in den Flood-
light Datenstrukturen für die Nachrichtenkommunikation vorzunehmen. Die neue Klasse
IGMP.java erweitert dazu die Floodlight Klasse BasePacket.java um die spezifischen Eigen-
schaften eines IGMP Paketes. Das sind insbesondere die Headerfelder Type,
MaxResponseTime, Checksum, GroupAddress. Um auch IGMPv3 Nachrichten verarbeiten zu
können, wird IGMP.java wiederum von einer weitere Klasse IGMPv3Report.java erweitert.
Zur Laufzeit werden alle ankommenden IGMP-Nachrichten zuerst in ein Objekt der Klasse
IGMP deserialisiert und anschließend aufgrund des Typ-Feldes bestimmt, ob eine Deserialisie-
rung in ein IGMPv3Report-Objekt stattfinden muss. Um ankommende IP-Pakete mit IGMP-
Inhalt richtig zuordnen und deserialisieren zu können, muss außerdem die
IGMP Protokollnummer in IPv4.java ergänzt und registriert werden.

Hat der Controller einen ankommenden IGMP-Membership-Report richtig zugeordnet und
die zugehörigen Gruppenadressen ausgelesen, hat dies einen Methodenaufruf im

66

GroupManagement-Modul zur Folge. Daraufhin werden Gruppenzähler entweder erneuert
oder Änderungen in der Gruppenzusammensetzung vorgenommen. Um solche Änderungen
möglichst schnell bekannt zu machen, registriert das GroupManagement-Modul den Group-
Observer, der aktuelle Gruppenänderungen sofort an das Routing-Modul meldet. Außerdem
läuft ein Java-Thread, der periodisch IGMP-Anfragen erstellt und diese über das Floodlight
Switch-Objekt des jeweiligen Empfängerswitches verschickt. Die aktuellen Gruppeninforma-
tionen stehen über den Service IGroupManagementService.java für andere Module zur Ver-
fügung.

Routenberechnung Das Modul RoutingControl.java bildet die Funktionalität der Rou-
tenberechnung ab. Wichtig hierfür ist die Listener-Methode topologyChanged() sowie die
Observer-Methode Update(), über die die inneren Klassen GroupObserver.java und
Overflowobserver.java benachrichtigt werden. Diese Methoden werden bei Topologie-,
Gruppen- und Überlaufänderungen aufgerufen und filtern die Ereignisse nach Kriterien wie
Delete-, Add oder New-Events.

Eine Gruppenänderung stößt den Routingalgorithmus an. Das ist, abhängig vom
Überlaufmodus, entweder KMB, Shared-Tree oder iGA. Einem Routingalgorithmus stehen die
Basisalgorithmen in den Klassen Dijkstra.java, Tarjan.java und Kruskal.java zur Ver-
fügung. Tarjan wird für KMB benötigt und errechnet einen minimal gewurzelten Baum
(minimaler gerichteter Spannbaum), Dijkstra ermittelt den kürzesten Weg zwischen einer
Quelle und einem Ziel. Außerdem implementiert das RoutingControl-Modul die für KMB re-
levanten Methoden SUB, RESUB und PRUNE. Für die Shared-Tree Berechnung steht eine
Methode calculateCenter() bereit, die den Rendezvous-Knoten für eine Gruppe errech-
net. Der Shared-Tree Algorithmus verwendet anschließend die KMB-Methode, um von dem
Rendezvous-Knoten einen quellenbasierten Baum zu allen Gruppenmitgliedern zu berechnen.
Mit Hilfe des Algorithmus von Dijkstra und KMB wird außerdem iGA umgesetzt.

Weitere Routingalgorithmen können beliebig erweitert werden und bei Bedarf die erwähnten
Basisalgorithmen nutzen. Zur Repräsentation des aktuellen Netzgraphen und der jeweiligen
End- und Zwischenergebnisse existieren die Klassen: RoutingEdge.java, RoutingNode.java,
CompleteGraph.java, DijkstraPath.java und MulticastTree.java, sowie etliche Hilfs-
und Konvertierungskonstrukte. Nach Ausführung einer Berechnung nutzt das RoutingControl-
Modul den RouteManagement-Service, um die neuen Multicastbäume oder Änderungen wei-
terzugeben und abzuspeichern.

Um Topologieänderungen zu erkennen, kann ein beliebiges Modul den von Floodlight be-
reitgestellten ITopologyListener implementieren. Daraufhin werden alle Änderungen über
den Methodenaufruf erkannt und es kann nach Ereignissen wie Switch-Ausfall oder Link-
Ausfall gefiltert werden. Ein solcher Aufruf hat einen sofortigen Datenabgleich mit dem
NetworkStateManagement- und RouteManagement-Modul sowie eine Neuberechnung der be-
troffenen Multicastbäume zur Folge.

Das NetworkStateManagement-Modul meldet über ein Observer-Ereignis einen drohenden
Überlauf der Routingtabelle. RoutingControl implementiert diesen Observer in einer inneren
Klasse mit dem Namen OverflowObserver.java. Daraufhin wird der interne Routingmodus

67

„OverflowMode=true“ gesetzt. Diese Maßnahme ersetzt für zukünftige Gruppenänderungen
KMB durch den Aufruf des Shared-Tree Algorithmus. Ein Zurücksetzen des Overflow-Modus
erfolgt durch ein analoges Ereignis am Observer.

Routenverwaltung Über das Modul RouteManagement.java wird die Funktionalität der
Routenverwaltung abgedeckt. Das Modul ist für die Speicherung der Objekte vom Typ
MulticastTree.java und DijkstraPath.java zuständig. Dafür wird eine HashMap genutzt
und die nötigen Methoden für das Anfragen, Speichern, Vergleichen oder Ändern von Mul-
ticastbäumen über den IRouteManagementService.java bereitgestellt. Ein MulticastTree-
Objekt enthält eine HashMap, die aus Knoten und zugeordneten Kantenlisten besteht. Die
Datenbasis für DijkstraPath-Objekte besteht aus einer einfachen Knotenliste. Für die eindeu-
tige Identifizierung von quellenbasierten Bäumen und Unicast-Pfaden wird die von Floodlight
vergebene Switch-DPID des Senders in Kombination mit der Multicastadresse genutzt. Der
Schlüssel eines Shared-Trees besteht aus der Multicastadresse ohne Senderangabe.

Flow-Modifikation Das Modul FlowMod.java ist für die Einrichtung der Flows auf Da-
tenebene zuständig. Aufgerufen wird es über den Service IFlowModService.java, der die
Methoden für das Hinzufügen, Ändern und Löschen von Multicastbäumen, IGMP-Flows und
ModifyField-Flows bereitstellt. Jeder Flow muss auch auf Datenebene einen eindeutigen Be-
zeichner tragen. Hier gilt die Konvention, dass sämtliche Bäume und Routen die DPID der
Senderquelle in Verbindung mit der Multicastadresse tragen. Eine Quelle stellt dabei entweder
einen ToR-Switch oder einen Rendezvous-Knoten dar.

Das FlowMod-Modul kümmert sich zuerst um die Einrichtung initialer Flows. Dazu zählen
ModifyField-Actions, die jeder ToR-Switch beim Erhalt eines Paketes über einen Host-Port
benötigt, um die Senderadresse von einem Host in die Senderadresse in die DPID des Swit-
ches umzuschreiben. Zusätzlich benötigt jeder ToR-Switch einen IGMP-Flow für die korrekte
Weiterleitung von IGMP-Antworten an den Controller-Port. Ändert sich die Topologie, ins-
besondere die Menge der ToR-Switches, muss die Einrichtung erneut geschehen. Ansonsten
bleiben diese Flows während der gesamten Laufzeit des Controllers statisch.

Änderungen in Flows, die Multicastbäume betreffen, werden vom RoutingControl-Modul in-
itiiert und treten unter anderem bei jeder Gruppenänderung auf. Der aktuelle Multicast-
baum wird mit dem neuen verglichen und im FlowMod-Modul in Einzeloperationen wie
addFlowForLink() oder deleteFlowFromGroup() umgesetzt. Analoge Operationen existie-
ren bei Shared-Trees für die Einrichtung von DijkstraPath-Objekten als Unicast-Routen. Eine
Sonderbehandlung ist für den Rendezvous-Knoten nötig. Für am Baum ankommende Unicast-
Routen muss ein entsprechender ModifyField-Flow eingerichtet werden, um die Quelladresse
vom Sender-Switch in die des Rendezvous-Knoten umzuschreiben. Nachdem alle Flows so
eingerichtet sind, dass sämtliche Ziel-Switches der Gruppenmitglieder die Multicastpakete
empfangen können, fehlt noch die eigentliche Auslieferung an die Hosts. Dafür werden pro
Gruppe alle Host-Ports ermittelt und zusätzliche Aktionen für die Auslieferung an die End-
geräte eingerichtet.

68

Bei Gruppenänderungen muss stets zwischen ToR-Switches und inneren Knoten unterschieden
werden, da sämtliche Aktionen, inklusive denModifyField-Actions und denOutput-Actions für
die Auslieferung zu den Hosts, in einem einzigen Flow definiert werden müssen. Aufgrund der
sequentiellen Abarbeitung der Aktionen muss darauf geachtet werden, dass die ModifyField-
Actions vor allen Output-Actions stehen.

Bild 5.2 zeigt die Beispiel-Flows für einen ToR-Switch mit der DPID „00:00:00:00:00:00:00:09“
für einen quellenbasierten Multicastbaum auf Datenebene. Der obere Flow leitet ankommende
Pakete mit der Multicastadresse „200.200.200.200“, die vom quellenbasierten Baum mit der
Sender-DPID „00:00:00:00:00:00:00:0b“ kommen, über die Host-Ports 1 und 2 weiter. Der
Flow in der Mitte ist für das Zurückschicken einer IGMP-Antwort an den Controller-Port
−3 zuständig. Der untere Flow nimmt Pakete entgegen, die von dem Host, der über Port 1
angeschlossen ist, gesendet wurden. Zuerst wird dazu die MAC-Adresse über eineModifyField-
Action in „00:00:00:00:00:09“ umgeschrieben und anschließend gemäß des Multicastbaumes
über mehrere Ausgangsports verteilt.

Die Entscheidung, für diese Implementierung das FlowMod-Modul von der RoutingControl
zu entkoppeln, hat den praktischen Grund, dass alle Manipulationen der Datenschicht an
zentraler Stelle vorgenommen werden. Alternativ hätte die initiale Einrichtung der IGMP
und ModifyField-Flows aber auch in den jeweiligen Modulen NetworkStateManagement und
GroupManagement geschehen können und das FlowMod-Modul in die Routenberechnung inte-
griert werden können.

Abbildung 5.2: Beispiel-Flows für einen ToR-Switch auf der Floodlight Weboberfläche

Weitere Klassen und Erweiterungen Die Klasse REST.java erlaubt das Absetzen eines
REST-Aufrufs aus dem Java Code heraus und so die Verwendung der REST-Schnittstelle
von Floodlight. Dies kann als Evaluierungs- und Testmöglichkeit genutzt werden oder bei
Bedarf für Einzelaufgaben, wie das Abfragen von Statistiken, von Nutzen sein. Zu Vergleichs-
und Testzwecken kann das Routing jederzeit durch ein Flag im RoutingControl-Modul in den
simple-Mode versetzt werden. Daraufhin wird bei der Einrichtung neuer Flows auf Vergleiche
mit vorherigen Berechnungen verzichtet. Alte Flows müssen dann zuerst komplett gelöscht
werden, bevor neue eingerichtet werden können. Zusätzlich kann über das Flag force_iga auf
den inkrementellen Algorithmus (iGA) umgeschaltet werden.

69

6 Evaluierung

In diesem Kapitel wird die in Kapitel 5 vorgestellte Implementierung getestet und ausgewertet.
In Abschnitt 6.1 wird der hier verwendete Versuchsaufbau für das Testbed beschrieben. Im
Anschluss werden in Abschnitt 6.2 die Messergebnisse vorgestellt.

6.1 Versuchsaufbau

VMs

openV
Switches

vm11-1
10.2.11.11

vm12-1
10.2.12.11

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

vm11-2
10.2.11.22

vm11-3
10.2.11.33

vm11-4
10.2.11.44

vm12-2
10.2.12.22

vm12-3
10.2.12.33

vm12-4
10.2.12.44

Abbildung 6.1: Topologie des Testaufbaus mit den IP-Adressen der VMs und den Switch-IDs

Der Test und die Evaluierung des in Floodlight implementierten Multicast-Dienstes findet
auf dem Testbed der Abteilung Verteilte Systeme der Universität Stuttgart statt. Der Auf-
bau spiegelt eine Hälfte der Fat-Tree Topologie aus Kapitel 3.2, Bild 3.1, für k = 4, wie-
der. Abbildung 6.1 zeigt die Topologie dieses Testaufbaus mit den zugewiesenen IP-Adressen
und den Switch-IDs. Die ersten 24 Bit einer Switch-ID sind in diesem Fall null und wer-
den aus Übersichtsgründen weggelassen. Die Topologie ist durch insgesamt zwölf pyhsika-
lische Rechnerknoten realisiert. Es existieren acht virtuelle Maschinen, die als Sender oder
Empfänger für Multicastnachrichten agieren können, wobei sich jeweils vier VMs einen phy-
sikalischen Hostrechner teilen. Dabei steht jeder VM 10Gb HD und 4 Gb RAM zur Verfü-
gung. Im Netz werden Open-vSwitches eingesetzt, die alle auf einem eigenen PC mit jeweils

71

vier physikalischen Datenports laufen. Ein weiterer Port steht für die Controllerverbindung
zur Verfügung (on-board NIC). Die Netzwerkgeschwindigkeit beträgt 1 Gbit/s im full du-
plex Betrieb, d.h. die volle Bandbreite steht sowohl in Hin- als auch in Gegenrichtung zur
Verfügung. Durch schnelle CPU und I/O Performance auf den Switch-Rechnern wird eine
Weiterleitung in Line-Rate angestrebt. Sämtliche virtuellen Switches unterstützen zum Zeit-
punkt dieser Diplomarbeit den OpenFlow 1.0 Standard.

4 NIC

PC (Frontend)

Floodlight
Controller mit

Multicastdienst

Sw
itch

Managed Switch (48 Port)

PC 1 PC 10

...
Open vSwitch Open vSwitch

4 NIC

PC 11

Vm11-1 Vm11-2

Vm11-3 Vm11-4

PC 12

Vm12-1 Vm12-2

Vm12-3 Vm12-4

Abbildung 6.2: Realisierung des Testaufbaus über Hardware-Switches

Um einfache Topologieänderungen vornehmen zu können, werden die gesamten Verbindungen
durch einen 48-Port großen Managed-Switch programmiert. Dabei handelt es sich um einen
1 Gbps Hardware-Switch, der die Punkt-zu-Punkt Verbindungen zwischen den Rechnern
durch einfaches switching entsprechend vordefinierten Regeln konfiguriert. So müssen bei
Topologieänderungen keine physikalischen Kabel umgesteckt werden. Neben dem Managed-
Switch steht ein weiterer 1 Gbps Hardware-Switch für das Controllernetzwerk zur Verfügung.
Der Floodlight Controller mit der Multicast-Erweiterung läuft auf einer Frontend-Maschine,
die mit dem Controllernetzwerk verbunden ist. Über diese Maschine können auch das Netz-
werk und die virtuellen Maschinen konfiguriert werden. Bild 6.2 zeigt die Realisierung über
den Managed-Switch sowie das Controllernetzwerk.

72

6.2 Testverfahren

Im Vordergrund des Testens steht der Vergleich zwischen den einzelnen Routingalgorith-
men, sowie die allgemeine Performance eines OpenFlow-Netzes in Bezug auf die Multicast-
Kommunikation. Für die nachfolgenden Durchsatzmessungen wurde das Kommandozeilen-
Werkzeug iperf benutzt, um 1470 Byte große UDP-Datagramme mit einer bestimmten Band-
breite über einen fest definierten Zeitraum an eine Multicastadresse zu schicken. Die Auswer-
tung am Empfänger übernimmt ein einfaches Java-Programm, das der Gruppe beitritt und
die Anzahl der angekommenen Pakete innerhalb dieses Zeitraumes ermittelt. Somit berechnet
sich der Durchsatz aus dem Quotienten zwischen den erhaltenen und der Anzahl der gesen-
deten Pakete. Die theoretische Leitungskapazität liegt bei 1 Gbit/s. In den nachfolgenden
Messungen erreichten die Sender mit iperf eine maximale Bandbreite von etwa 800 MBit/s,
was 100 MB/s entspricht.

Alle aufgeführten Übertragungszeiten sind in Mikrosekunden gemessen. Dazu existiert jeweils
ein weiteres Java-Programm für den Sender und den Empfänger. Aufgrund der Ungenauig-
keit zwischen den Uhren auf den Endsystemen wird die Paketumlaufzeit (Round Trip Time)
gemessen und die Übertragungszeit angenähert, indem die Rücksendezeit abgezogen wird.
Dazu schickt das Sender-Programm ein Datagramm über einen UDP-Socket an eine Multi-
castadresse. Das Gegenstück am Empfänger tritt zuvor einer über die Kommandozeile defi-
nierten Multicastadresse bei und schickt das Paket unverzüglich an den Sender zurück. Dieser
kann nun wiederum die Zeitdifferenz für diesen Weg messen. Da bei Multicast die proaktiv
berechneten Routen jeweils nur vom Sender zu den Empfängern gültig sind, wird die Antwort
außerhalb des SDN-Testbeds zurückgeschickt. Aus diesem Grund können sich die Pfade für
Hin- und Rückweg stark unterscheiden. Deshalb wurde die Paketumlaufzeit des Rückweges
ebenfalls gemessen und die zugehörige Übertragungszeit mit der Hälfte angenähert. Übertra-
gungen außerhalb des Testbeds an die selbe physikalische Maschine wiesen eine Verzögerung
von durchschnittlich 420µs auf, während die Datagramme an die jeweils andere Maschine etwa
600µs benötigten. Die Datagrammgröße wird analog zu den Durchsatzmessungen mit 1470
Byte gewählt. Die nachfolgend aufgelisteten Übertragungszeitmessungen sind Mittelwerte aus
mehreren hundert Messungen. Der erste Messwert wurde dabei verworfen, da er einen stark
erhöhten Wert bei der Rücksendung aufgewiesen hat.

73

6.2.1 Auswertung für quellenbasierte Multicastbäume (KMB)

Zu Beginn soll das Netz im lastfreien Fall untersucht werden. Abbildung 6.3 (oben) zeigt die
Übertragungszeiten von quellenbasierten Multicastbäumen abhängig von der Gruppengröße,
die mittels KMB berechnet wurden. Im unteren Diagramm sind die zugehörigen Durchsatz-
messungen zu sehen. Die Maschine vm11-1 agiert hierbei als Sender für eine ansteigende Zahl
vom Empfängern. Der betrachtete Empfänger ist vm12-4, d.h. es wird die längst mögliche
Strecke zwischen 2 Maschinen untersucht. Dabei muss beachtet werden, dass, obwohl hier 8
Hosts unterstützt werden, die effektive Anzahl an Sendern und Empfänger nur 4 beträgt. Der
Grund hierfür ist, dass der Controller lediglich ToR-Switches verwaltet und deshalb jeweils
zwei Hosts gemeinsam behandelt. Somit fallen hier stets zwei VMs auf einen gemeinsamen
Multicastbaum zusammen.

0

1

2

3

4

5

6

7

8

9

10

11

1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950

1 2 3 4

Sw
it

ch
an

za
h

l

Ü
b

e
rt

ra
gu

n
gs

ze
it

 in
 µ

s

Gruppengröße

Laufzeit (vm11-1 nach vm12-4) Anzahl Switches

0

1

2

3

4

5

6

7

8

9

10

11

750

755

760

765

770

775

780

785

790

795

800

805

810

1 2 3 4

Sw
it

ch
an

za
h

l

D
u

rc
h

sa
tz

 in
 M

b
it

/s

Gruppengröße

Durchsatz (vm11-1 nach vm12-4) Anzahl Switches

Abbildung 6.3: Latenz und Durchsatz eines mit KMB berechneten Baumes abhängig von der
Gruppengröße

Die Messwerte aus Abbildung 6.3 (oben) zeigen eine Übertragungszeit von 1460µs für eine
Gruppengröße von 1. In diesem Fall degeneriert der Multicastbaum zu einer Unicast-Route,
die den kürzesten Pfad nach Dijkstra darstellt. Auf diesem Pfad liegen 5 Open-vSwitches (rote
Kurve), was eine Verzögerungszeit von etwa 300µs pro Switch nahelegt. Zusätzlich dürfte
durch das Umschreiben der Senderadresse die Verzögerungszeit an den ToR-Switches etwas
höher liegen, als bei einem Switch in der Mitte des Netzes. Bei einer Gruppengröße von 2 wählt
der Algorithmus für den Empfänger vm12-4 einen weniger optimalen Pfad, was sich in einer
verlängerten Übertragungszeit wiederspiegelt. Das gleiche gilt auch für die Gruppengrößen 3
und 4. Der Durchsatz aus Bild 6.3 (unten) ist dabei weitestgehend konstant. Da keine weitere
Last auf dem Netz liegt, kann die volle Bandbreite von rund 800MBit/s erreicht werden.

74

Die Messwerte für die restlichen Empfänger sind in Tabelle 6.1 gezeigt. Es handelt sich um
Übertragungszeiten bei voller Gruppengröße für den Baum aus 6.1 (rechts). Auffällig ist der
hohe Wert für den Empfänger vm11-2, da zwischen dem Sender und dem Empfänger faktisch
nur ein Switch liegt. Eine Erklärung hierfür könnte die Tatsache sein, dass der ToR-Switch
hier sowohl als Sender- und Empfänger-Switch agiert. Dies bringt zusätzlichen Overhead
am Switch mit sich. Außerdem könnten die Einflüsse der Virtualisierung beim Senden und
Empfangen zu einer höheren Verzögerungzeit beitragen. Allerdings konnte dieses Phänomen
im Rahmen dieser Diplomarbeit nicht eindeutig erklärt werden.

Empfänger Laufzeit Switches
vm12-4 1886µs 7
vm12-1 1404µs 5
vm11-3 1114µs 3
vm11-2 692µs 1

vm11-1
10.2.11.11

vm12-1
10.2.12.11

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

vm11-2
10.2.11.22

vm11-3
10.2.11.33

vm11-4
10.2.11.44

vm12-2
10.2.12.22

vm12-3
10.2.12.33

vm12-4
10.2.12.44

Tabelle 6.1: Übertragungszeiten aller Empfänger für einen quellenbasierten Baum mit dem
Sender vm11-1

Im Fall eines belasteten Netzwerkes sind vor allem das Load-Balancing und der direkt davon
abhängige Durchsatz von Relevanz. Diese Faktoren werden in Relation zu der Anzahl akti-
ver Multicastgruppen untersucht. Abhängig davon wie viele Kanten im Netz belastet oder
ausgelastet sind, wird bei einer Gruppenänderung mit KMB ein Multicastbaum berechnet,
der eine möglichst unbelastete, als auch kurze Route bevorzugt. Der Faktor α, aus Kapitel 4
Gleichung 4.3, der das Verhältnis zwischen Bandbreite und Entfernung bei der Kantenge-
wichtsberechnung bestimmt, wird für die nachfolgenden Tests mit α = 0.5 vorbelegt. Somit
werden von KMB sowohl kürzere Wege als auch gering belastete Kanten im Verhältnis eins
zu eins mit einbezogen.

Abbildung 6.4 zeigt die durch KMB berechneten Multicastbäume (in Rot) bei einer steigenden
Anzahl von Gruppen im Netz. Diese Gruppen besitzen jeweils einen Empfänger und senden
gleichzeitig einen konstanten Datenstrom von 370 Mbit/s (schwarze Pfeile). Die Gruppen-
kommunikation beschränkt sich hierbei auf die Maschinen vm11-3, vm11-4, vm12-2, vm12-3,
um die Testergebnisse nicht durch Überlastung eines Sender- oder Empfängerhosts zu be-
einflussen. Der rot gefärbte Multicastbaum soll nun Daten von vm11-1 nach vm12-4 senden.
Er wird in den Bildern 6.4 stets zuletzt berechnet und soll so die Wegwahl des Routingalgo-
rithmus bei steigender Vorbelastung der Kanten demonstrieren. Die Berechnungsreihenfolge
der anderen Bäume entspricht der Reihenfolge von Bild 6.4.a bis 6.4.d, wobei pro Bild ein
weiterer Baum hinzukommt. Bis zu einer Gruppenanzahl von mindestens 3 weiteren Gruppen
(Teilbilder 6.4.a bis 6.4.c) ist KMB in der Lage, für den roten Baum eine Route zu finden,

75

die nur unbelastete Kanten nutzt. Sobald 4 verschiedene Gruppen gleichzeitig senden, ist dies
nicht mehr möglich und zwei Kanten überlappen sich mit dem gelb gekennzeichneten Baum
in 6.4.d.

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

a) b)

c) d)

Abbildung 6.4: Load-Balancing bei quellenbasierten Bäumen in Abhängigkeit der Gruppen-
anzahl unter Last. Jeder schwarze und gelbe Pfeil symbolisiert eine Auslastung von 370Mbit/s
für die zugehörige Kante.

Für den in Teilbild 6.4.d gezeigten Fall, mit insgesamt 4 aktiven Multicastgruppen, wird nun
der Durchsatz des roten Baumes untersucht. Dieser sendet dabei mit der vollen Bandbreite
von 800 Mbit/s. Die Ergebnisse sind in Abbildung 6.5 (unten) zu sehen. Alle schwarz ge-
kennzeichneten Bäume senden dabei einmal nicht (0 Mbit/s) sowie einmal mit 370 Mbit/s,
während der gelbe Baum nun eine variable Bandbreite aufweist. Bis zu einer Senderate von
100 MBit/s bzw. 200 MBit/s ist für beide Kurven kein nennenswerter Abfall des Durchsat-
zes zu verzeichnen. Durch die Überlappungen zwischen den zwei betrachteten Bäumen tritt
jedoch bei höheren Senderaten eine Überlast auf, woraufhin Pakete verloren gehen. Während
in der Kurve für 0 Mbit/s für geringe Senderaten noch die volle Bandbreite erreicht wird,
ist diese für die Messungen mit 370 Mbit/s zu Beginn bereits deutlich reduziert. Dies könnte
auf die Virtualisierung zurückzuführen sein, da die einzelnen Hosts lediglich durch 2 physi-
kalische Rechner realisiert sind. Bei einer Sendeleistung von 500 MBit/s ist der Durchsatz
um 62% bzw. 71% abgefallen und hält sich anschließend bei einem Wert von 475 Mbit/s. Die
Übertragungszeiten 6.5 (oben) zeigen einen leicht ansteigenden Trend bei höherer Leistungs-
auslastung. Der Maximalwert für die 370 Mbit/s Kurve liegt mit 1728µs insgesamt 180µs
über dem Startwert. Die Werte für die 0 Mbit/s Kurve liegen im Schnitt 358µs darunter.

76

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900

0 10 100 200 250 300 400 500 800

Ü
b

e
rt

ra
gu

n
gs

ze
it

 in
 µ

s

Senderate in Mbit/s

vm11-1 nach vm12-4 (0 Mbit/s) vm11-1 nach vm12-4 (370 Mbit/s)

450

475

500

525

550

575

600

625

650

675

700

725

750

775

800

825

0 10 100 200 250 300 400 500 800

D
u

rc
h

sa
tz

 in
 M

b
it

/s

Senderate in Mbit/s

vm11-1 nach vm12-4 (0 Mbit/s) vm11-1 nach vm12-4 (370 Mbit/s)

Abbildung 6.5: Latenz und Durchsatz des roten Baumes in Abhängigkeit der Senderate des
gelben Baumes aus Abbildung 6.4.d

Für die Messung der Übertragungszeiten zu allen anderen Empfängern wird der rote Baum
aus Abbildung 6.4.d zur vollen Gruppengröße, die alle 4 Empfänger umfasst, erweitert. Abbil-
dung 6.6 zeigt den Vergleich zwischen einem komplett unbelasteten Netz sowie für vorbelastete
Netze mit Senderaten von 370Mbit/s und 800Mbit/s für sämtliche in Abbildung 6.4.d vorhan-
denen Multicastbäume. Die Messung erfolgt wieder zwischen vm11-1 als Sender und jeweils 4
Empfänger-VMs, verteilt über die vorhandenen ToR-Switches. Im unbelasteten Fall hängt die
Verzögerungszeit vor allem von der Länge des Pfades ab, wofür pro Switch etwa 300µs benö-
tigt werden. Senden alle 4 parallel existierenden Bäume mit einer Rate von 370 Mbit/s oder
800 Mbit/s, ist eine erhöhte Übertragungszeit aufgrund von insgesamt drei Kantenüberlap-
pungen zu den Empfängern vm12-1 und vm12-4 festzustellen. Der im Vergleich stark erhöhte
Wert für vm12-1 ist aufgrund der hohen Überlast zwischen ToR-Switch und Host zu erklären,
da diese Maschine der Empfänger für alle vier aktiven Multicastbäume darstellt. Somit tritt
dort bereits bei einer Rate von 370 Mbit/s eine starke Überlast mit Paketverlust auf, während
sich dies für vm12-4 erst bei einer Senderate von 800Mbit/s auswirkt.

77

500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

vm11-2 vm11-3 vm12-1 vm12-4

Ü
b

e
rt

ra
gu

n
gs

ze
it

 in
 µ

s

Empfänger VM

Übertragungszeit (unbelastetes Netz) Übertragungszeit (370 Mbit/s) Übertragungszeit (800 Mbit/s)

Abbildung 6.6: Verzögerungszeiten für verschiedene Sender im un- und vorbelasteten Netz-
werk

6.2.2 Auswertung für Shared-Trees

Um Datagramme über einen Shared-Tree verschicken zu können, werden die Pakete zuerst
über eine Unicast-Route an den Rendezvous-Knoten geschickt. Die Pfadlänge und die daraus
resultierenden Übertragungszeiten hängen vom Sender ab, da der Rendezvous-Knoten nur
bezüglich der Empfängergruppe und nicht nach den Sendern optimiert wird.

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

vm11-1 vm11-3 vm12-1 vm12-4

Ü
be

rt
ra

gu
ng

sz
ei

t i
n

µs

Sender-VM

Gruppengröße 1 Gruppengröße 2 Gruppengröße 3 Gruppengröße 4

0

1

2

3

4

5

6

vm11-1 vm11-3 vm12-1 vm12-4

A
nz

ah
l S

w
it

ch
es

Gruppengröße

Gruppengrößen 1 und 2 Gruppengröße 3 und 4

Abbildung 6.7: Übertragungszeit und Anzahl der Switches eines Shared-Trees, inklusive den
Unicast-Routen, in Abhängigkeit vom Senderknoten und der Gruppengröße.

78

Abbildung 6.7 (oben) beleuchtet die Übertragungszeiten in einem Shared-Tree an den festen
Empfänger vm12-3 in Abhängigkeit des Senders und der Gruppengröße. Bei einer Größe von
1 degeneriert der Multicastbaum zur Unicast-Kommunikation und das Ergebnis unterscheidet
sich nicht von KMB aus Abschnitt 6.2.1. In diesem Fall weist eine Kommunikation ausgehend
von vm11-1 die höchste Übertragungszeit auf, da der Pfad mit 5 Switches am längsten ist.
Ein Datagramm von vm12-1 oder vm12-4 muss dagegen nur einen Switch durchqueren. Ab ei-
ner Gruppengröße von 3 wird einer der beiden Core-Switches als Rendezvous-Knoten gewählt.
Dadurch verlängert sich auch der Pfad zu vm12-1 bzw. vm12-4 auf jeweils 5 Zwischenschritte,
was so auch eine verlängerte Übertragungszeit mit sich bringt. Die Längen aller Pfade abhän-
gig der Gruppengröße sind in 6.7 (unten) zu sehen. Sie beinhalten sowohl die Unicast-Route
zum Rendezvous-Knoten als auch die eigentliche Verteilung entlang des Baumes.

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

a) b)

c) d)

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:70:2c

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:70:30

Abbildung 6.8: Wahl des Rendezvous-Knoten bei ansteigender Gruppengröße eines Shared-
Trees für die Messungen aus Abbildung 6.7.

Die Bäume der verschiedenen Größen sind in Abbildung 6.8 gezeigt. Dabei ist der Multicast-
baum und der Rendezvous-Knoten stets rot und die Unicast-Routen, abhängig vom Sender,
jeweils in einer anderer Farbe gekennzeichnet. Abbildung 6.8.a zeigt, dass der Rendezvous-
Knoten bei einer Gruppengröße von 1 mit dem Empfängerknoten zusammenfällt. Sind 2
Empfänger vorhanden, wird der nächstliegende Zwischenknoten als Rendezvous-Knoten ge-
wählt, was hier dem Switch 25:90:93:97:9c entspricht. Ab einer Größe von 3 findet sich der
Rendezvous-Knoten dann auf der Ebene der Core-Switches.

Nachfolgend wird das Netz im belasteten Zustand betrachtet. Abbildung 6.9 zeigt die Über-
tragungszeit und den Durchsatz von vm11-1 an alle Empfänger in Abhängigkeit der Grup-
penanzahl. Diese Gruppen haben eine feste Größe von 2 Empfängern und senden ausgehend
von vm11-4 parallel mit einer Datenrate von 370 Mbit/s. In den Bildern 6.10.a bis 6.10.d sind
die zugehörigen Bäume in aufsteigender Reihenfolge zur Gruppenanzahl zu sehen. Der rote
Baum sendet mit voller Bandbreite. Er entspricht dabei immer der Gruppe, für die die Mes-
sung zu Grunde liegt. Eine dazu gehörige Unicast-Route zum Rendezvous-Knoten ist orange

79

dargestellt. Die Belastung einer Kante von 370 Mbit/s durch einen anderen Multicastbaum
oder dessen zugehörige Unicast-Route ist durch einen schwarzen Pfeil gekennzeichnet. Um
das Load-Balancing zu demonstrieren, wurde der rote Baum stets zuletzt berechnet.

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100

0 1 2 3 4

Ü
be

rt
ra

gu
ng

sz
ei

t
in

 µ
s

Gruppenanzahl

Laufzeit vm11-3 Laufzeit vm12-1 Laufzeit vm12-4

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

0 1 2 3 4

D
ur

ch
sa

tz
 in

 M
bi

t/
s

Gruppenanzahl

Durchsatz vm11-3 Durchsatz vm12-1 Durchsatz vm12-4

Abbildung 6.9: Latenz und Durchsatz eines Shared-Trees bei steigender Gruppenanzahl.

Die Ergebnisse nach 6.9 (unten) zeigen, dass mit steigender Gruppenanzahl die Wahrschein-
lichkeit, eine vorbelastete Kante zu belegen, stark ansteigt. Für den Empfänger vm11-3 kann
ab einer Anzahl von 4 Gruppen eine Kantenüberlappung nicht mehr vermieden werden. Für
vm12-2 und vm12-4 findet bereits bei einer Gruppenanzahl von 2 eine Doppelbelegung statt.
Bei einer Größe von 4 müssen diese sich bereits eine Leitung mit 2 anderen Sendern teilen,
wodurch der Durchsatz um mehr als ein Drittel einbricht. Betrachtet man vm12-1, dann fällt
der Durchsatz schon bei einer Gruppenanzahl von 1 stark ab. Grund hierfür ist, dass vm12-1
neben vm11-1 als Empfänger für alle im Moment sendenden Multicastgruppen agiert. Das hat
zur Folge, dass eine Überlast auf der Leitung zwischen ToR-Switch und Host auftritt. So ist be-
reits bei einer Gruppengröße von 2 diese Kante komplett ausgelastet und der Durchsatz bricht
um mehr als die Hälfte ein. Allgemein ist zu beobachten, dass durch die längeren Wege eines
Shared-Trees, im Gegensatz zu quellenbasierten Bäumen, auch mehr Kantenüberlappungen
auftreten, was sich durch einen schlechteren Durchsatz äußert. Die Übertragungszeiten aus
6.9 (oben) zeigen das ausgehend von der Durchsatzbetrachtung erwartete Verhalten. Steigen-
de Last führt zu höheren Zeiten sowie einer Abweichung von vm12-1 ab einer Gruppenanzahl
von 4 aufgrund der Überlast zwischen ToR-Switch und Host.

80

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

a) b)

c) d)

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
93:96:a8

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
93:97:9c

25:90:
94:6d:a8

25:90:
94:70:34

25:90:
94:70:2c

25:90:
94:6d:74

25:90:
94:6d:84

25:90:
94:70:8c

25:90:
93:96:00

25:90:
94:70:30

25:90:
94:70:34

25:90:
93:96:a8

25:90:
94:70:2c

25:90:
93:97:9c

25:90:
94:6d:a8

Abbildung 6.10: Load-Balancing in Abhängigkeit der Gruppenanzahl unter Last für die Mes-
sungen aus Abbildung 6.9

6.2.3 Vergleich der Routingalgorithmen für dynamische Gruppen

Während in den vorangegangenen Messungen keine Änderungs-Events zur Laufzeit betrachtet
wurden, soll nun die Performanz der Routingalgorithmen bei plötzlich auftretenden Gruppen-
änderungen untersucht werden. Dafür dient ein Baum mit 2 Empfängern als Ausgangsgruppe.
Gemessen wird der Durchsatz zwischen vm11-1 und vm12-4 während der Neueinrichtung der
Routen. Abbildung 6.11 zeigt die Ergebnisse in Abhängigkeit des Routingalgorithmus und
den Änderungen pro Sekunde. Änderungen treten innerhalb einer Zeitspanne von 10 Sekun-
den in einer festen Reihenfolge auf, wobei vm12-4 der einzige statische Empfänger im Baum
darstellt. Zuerst treten die restlichen Empfänger der Gruppe bei, woraufhin 2 weitere diese
wieder verlassen. Dieser Vorgang wird dann mit verschiedenen VMs wiederholt.

Neben KMB und Shared-Tree werden auch KMB im simple-Mode und iGA als Vergleichs-
möglichkeiten herangezogen. Im simple-Mode werden die berechneten Routen ohne Abgleich
mit dem vorher existierenden Baum auf Datenebene installiert. Existierende Kanten können
somit nicht wiederverwendet werden. Dafür ist der Rechenaufwand aber um einiges geringer.
Weiterhin soll iGA als Stellvertreter für inkrementelle Algorithmen dienen, bei denen keine
Neuberechnung stattfindet, sondern ein vorher existierender Baum modifiziert wird. Dadurch
werden die Flow-Änderungen auf Datenebene minimiert.

Da sämtliche Algorithmen zu Beginn auf KMB beruhen, zeigt sich in Abbildung 6.11 bei 0.1
Änderungen/s für alle Kurven ein leichter Paketverlust, der auf der initialen Neueinrichtung
der Routen beruht. Signifikante Unterschiede sind erst ab einer Änderungsrate von 0.3 zu
erkennen. Die Möglichkeit alte Routen bei KMB beizubehalten, erweist sich bei steigender
Änderungszahl gegenüber des reduzierten Rechenaufwandes von KMB im simple-Mode als

81

730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810

0 0,1 0,2 0,3 0,4 0,5

D
u

rc
h

sa
tz

 in
 M

b
it

/s

Gruppenänderungen/s

KMB (simple) KMB (normal) Shared-Tree iGA

Abbildung 6.11: Vergleich der Routingalgorithmen abhängig von der Anzahl der Gruppenän-
derungen

signifikanter Vorteil. Daraus lässt sich schließen, dass die Einrichtung der Routen auf Date-
nebene zeitkritischer ist, als eine erhöhte Rechenzeit im Controller. Die Neueinrichtung eines
Shared-Trees hingegen hat im Test die größten Paketverluste zu verzeichnen, was sich in einer
Reduzierung des Durchsatzes wiederspiegelt. Der Grund hierfür ist vor allem auf die komplet-
te Neueinrichtung der Unicast-Routen beim Wechsel des Rendezvous-Knoten zurückzuführen.
Das beste Ergebnis liefert erwartungsgemäß iGA. Jedoch fällt der Unterschied zu KMB relativ
gering aus. Es überwiegen deshalb klar die Vorteile einer besseren Routenwahl durch KMB,
weshalb der inkrementelle Ansatz in dieser Arbeit nicht weiter verfolgt wurde.

6.2.4 Overhead bezogen auf die Flow-Tabellen-Größe

Während ein Shared-Tree in der Routenwahl und der Performance bei Gruppenänderungen
eindeutig schlechtere Ergebnisse liefert, liegt der Vorteil in der reduzierten Flowanzahl auf
Datenebene. Bei einem drohenden Tabellenüberlauf findet deshalb ein Wechsel des Routin-
galgorithmus statt. Der Anstieg der Tabelleneinträge in Abhängigkeit der Gruppenanzahl
ist in Abbildung 6.12 dargestellt. Die Kurven zeigen die durchschnittliche sowie die maxi-
male Anzahl aller Flows über sämtliche Switches im Netz bei der Verwendung von KMB
(rote Kurven) und Shared-Tree (grüne Kurven). Im Vergleich benötigen quellenbasierte Bäu-
me, für dieselbe Multicastgruppe, das 1, 6-fache an Flow-Einträgen als ein entsprechender
Shared-Tree. Die maximale Anzahl von Flows in einem Switch wächst für KMB im Test um 5
Einträge pro Multicastgruppe, die durchschnittliche Anzahl um etwa 2.4 Einträge pro Switch.
Im Vergleich dazu wächst ein Shared-Tree nur um 3 Einträge in der Maximums-Kurve sowie
um durchschnittlich 1.7 Einträge pro Switch. Diese Werte Verhalten sich jedoch nicht immer
linear. Die Flowanzahl ist abhängig von der Wegwahl des Routingalgorithmus. Längere We-
ge führen demnach auch zu mehr Flow-Einträgen. Für die fünfte Multicastgruppe in diesem
Beispiel wählt KMB aufgrund der Kantenauslastung einen leicht verlängerten Weg, was die
durchschnittliche Anzahl an Tabelleneinträge von den erwarteten 13 auf 13.3 erhöht. Das
erklärt die leichte Krümmung der Kurve aus Abbildung 6.12.

82

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1 2 3 4 5

Ta
b

e
lle

n
e

in
tr

äg
e

Gruppenanzahl

Shared Tree (Max) Shared Tree (Mittel) KMB (Max) KMB (Mittel)

Abbildung 6.12: Anzahl der maximalen und durchschnittlichen Tabelleneinträge auf Datene-
bene abhängig von der Gruppenanzahl

6.2.5 Ausfallbetrachtung

Zuletzt wird die Robustheit des Systems untersucht. Falls ein Switch- oder Leitungsausfall
auftritt, wird dieses Ereignis an die Routingkontrolle gemeldet. Diese führt eine Neuberech-
nung der betroffenen Multicastbäume oder Unicast-Routen aus. Der Durchsatz ist dabei durch
die Zeit, die das Controllerprogramm benötigt, um den Ausfall zu erkennen sowie durch die
Berechnung und Einrichtung der neuen Routen bestimmt. Letzteres wurde bereits im Rah-
men von Gruppenänderungen untersucht. Die Verzögerungszeit, vom Auftritt eines Ausfalles
bis hin zur eigentlichen Neuberechnung, wurde mit durchschnittlich 9.67 Sekunden gemessen.
Innerhalb dieser Zeitspanne treten Paketverluste für die betroffenen und im Moment aktiven
Multicastgruppen auf.

Für diesen Test wird ein Multicastbaum eingerichtet, der über den Switch mit der DPID
„25:90:94:6d:74“ verläuft. Anschließend wird eine Firewall-Regel aktiviert, mit der man Ver-
bindungen zum Controller für diesen Switch blockiert. Gleichzeitig werden alle zugehörigen
Einträge in der Flow-Table gelöscht. Der TopologyListener meldet daraufhin den Ausfall und
die Ausfallbehandlung des Multicastdienstes bestimmt alle in Folge dessen ausgefallenen Lei-
tungen. Anschließend werden sämtliche eingerichteten Bäume nach Überlappungen mit einer
ausgefallenen Kante durchsucht und an die Routenberechnung weitergegeben. Die Kantenge-
wichte werden zuvor auf unendlich gesetzt, um eine Neubelegung dieser Kanten zu verhindern
und dabei nicht auf den nächsten Aktualisierungszyklus der Netzzustandsverwaltung warten
zu müssen.

Die gemessene Zeit von 9.67 Sekunden wird hauptsächlich durch die Zykluszeit der LLDP-
Anfragen bestimmt. Bei Floodlight beträgt sie initial 15 Sekunden. Erhält der Controller für
eine Verbindungsleitung keine LLDP-Nachricht mehr, resultiert dies in einem Link-Down-
Ereignis. Aufgrund der Größenordnung dieser Erkennungszeit ist die Zeit für die Neube-

83

rechnung und Einrichtung im betrachteten Testumfeld vernachlässigbar gering. Daraus kann
geschlossen werden, dass diese Zeitspanne von 15 Sekunden, unabhängig vom gewählten Rou-
tingalgorithmus, eine obere Schranke für die Ausfallerkennung darstellt. Durch das Herabset-
zen der Zykluszeit wäre eine schnellere Reaktion bei Ausfällen zu erwarten. Jedoch führt dies
zu einer Erhöhung der Packet_In-Nachrichten am Controller. Die zusätzliche Controllerlast
ist dann stark von der Größe des vorliegenden Netzes abhängig. Falls der Ausfall einer Ver-
bindung zu einem Port-Down-Ereignis führt, muss Floodlight nicht auf die LLDP-Antworten
warten und registriert den Ausfall, ohne Verzögerung, sofort. In diesem Fall gleicht die Durch-
satzbetrachtung der, für die Gruppenänderungen.

6.2.6 Fazit

Die Ergebnisse aus den vorangegangenen Abschnitten zeigen, dass die Verzögerungszeiten
eines Shared-Trees aufgrund längerer Pfade im Mittel höher sind als für einen quellbasierten
Baum. Die Länge hängt stark von der Wahl des Rendezvous-Knoten und somit von der
Anzahl und Position der Empfänger ab. Allgemein konnte eine Verzögerungszeit von 300µs
pro Switch festgestellt werden. Unabhängig vom Routingalgorithmus beträgt die gemessene
Verzögerungszeit bei einem Ausfall vertretbare 9.67 Sekunden.

Der Durchsatz wird vor allem durch die Lastverteilung bestimmt. Auch hier hat KMB den
Vorteil, bessere Wege zu finden und reduziert dadurch die Wahrscheinlichkeit einer Überlast
auf den Kanten. Bei Shared-Trees führen Umwege über den Rendezvous-Knoten und der
höhere Änderungsaufwand für die Unicastrouten zu verschlechtertem Durchsatzverhalten.
Die Vorteile liegen wiederum in der geringeren Anzahl der Tabelleneinträge, die in der Flow-
Table für die Einrichtung nötig sind. Somit eignet sich ein Shared-Tree besonders dann, wenn
der Tabellenplatz knapp wird und ein Überlauf droht.

Die im Zuge der Evaluation durchgeführten Tests implizieren, dass der Multicastdienst durch-
aus in der Praxis Anwendung finden kann. Die ermittelten Verzögerungszeiten zeigen, dass
selbst mit virtualisierter Hardware ein performanter Datenaustausch in OpenFlow-basierten
Netzen möglich ist. Außerdem spiegeln die im Zuge der Durchsatzmessungen dargelegten Load
Balancing Eigenschaften eine gute Ausnutzung heutiger Datencenter-Topologien wieder. Dies,
in Zusammenhang mit der hohen Flexibilität und der Optimierung der Routingalgorithmen,
könnten in Zukunft ein auschlaggebendes Argument für die Integration von SDN-basierten
Diensten in Rechnernetze darstellen.

84

7 Zusammenfassung und Ausblick

In diesem Kapitel werden in 7.1 die vorherigen Abschnitte zusammengefasst und das Erreichen
der Ziele dieser Diplomarbeit bewertet. Anschließend wird in Abschnitt 7.2 ein Ausblick auf
zukünftige Arbeiten gegeben.

7.1 Zusammenfassung

Das Ziel dieser Arbeit war die Konzeption und Implementierung eines OpenFlow-basierten
IP-Multicast-Dienstes für Datenzentren. Dieser sollte den Kriterien aus Kapitel 3.3 bezüglich
der Skalierbarkeit, Effizienz, Robustheit und Integration genügen und ein möglichst optimales
Routing auf einer globalen Netzwerksicht realisieren. Waren bisherige Multicastlösungen fast
ausschließlich verteilt implementiert, bietet das Software defined Networking (SDN) einen
zentralisierten Ansatz, der für ein neuartiges Multicast-Routing ausgenutzt werden kann. In
Kapitel 4 wurden im Zuge einer Konzeption konkrete Prozesse herausgearbeitet, die für einen
zentralen Multicastdienst umgesetzt werden müssen. Eine Untersuchung des Steinerbaum-
problems resultierte in der Auswahl der Heuristik KMB zur Realisierung eines verbesserten
aber trotzdem skalierbaren Routings. Für eine gleichmäßige Lastverteilung im Datencenter-
netzwerk wurde eine Routingmetrik, bestehend aus einer gewichteten Summe aus Bandbreite
und Entfernung, bevorzugt. Die Auswertung hat gezeigt, dass so eine gute Lastverteilung
erreicht wird, ohne einen komplexeren Routingalgorithmus implementieren zu müssen. Dabei
ist es durch proaktive Einrichtung der Routen, sowie durch den Vergleich bestehender Bäu-
me bei Gruppenänderungen gelungen, eine effiziente Routeneinrichtung zu realisieren und
die Controllerverzögerung als potentiellen Flaschenhals zu reduzieren. Zusätzlich ermögli-
chen effiziente Datenstrukturen basierend auf Hash-Tabellen einen schnellen Zugriff auf die
verschiedenen Controllerinformationen wie Multicastgruppen, eingerichtete Routen, IGMP-
Zählerwerte und die kantengewichtete Netztopologie. Skalierbarkeitsprobleme bezüglich der
Flow-Einträge in den Switches werden durch einen Shared-Tree Algorithmus, auf den wäh-
rend der Laufzeit gewechselt werden kann, vorgebeugt. Der Multicastdienst ist außerdem in
der Lage, Topologieänderungen und insbesondere Leitungs- und Switchausfälle zu erkennen
und die eingerichteten Routen automatisch umzuleiten. Sowohl bei Gruppen- als auch Topo-
logieänderungen zeigten die Testergebnisse Paketverluste in vertretbarem Umfang. Für die
Verwaltung der Gruppen im Controllerprogramm wird IGMP implementiert. Dabei ist der
Multicastdienst in der Lage sowohl IGMPv1, IGMPv2, als auch IGMPv3 Nachrichten zu
verarbeiten und kann somit ohne weiteres in bestehende OpenFlow-Netze integriert werden.

85

Die erarbeitete Konzeption wurde anschließend in Kapitel 5 als Erweiterung für den SDN-
Controller Floodlight in Java implementiert. Prozesse, die im Zuge der Konzeption herausgear-
beitet wurden, konnten eins zu eins in Floodlight-Module übernommen werden. Als wichtigste
Datenstruktur kam die ConcurrentHashMap zum Einsatz. Sie ermöglicht einen schnellen und
uneingeschränkten parallelen Zugriff auf die gespeicherten Controllerinformationen. Damit
plötzlich auftretende Ereignisse wie Topologie- oder Gruppenänderungen schnell an die Rou-
tenberechnung gemeldet werden können, wurde für die Kommunikation zwischen den Modulen
auf das Observer-Pattern zurückgegriffen.

Schließlich wurde der Dienst auf dem in Kapitel 6.1 vorgestellten Testbed evaluiert. Die
Testumgebung spiegelt einen Ausschnitt aus einer realistischen Fat-Tree Topologie wieder.
Dabei wurden Open-vSwitches verwendet. Die Ergebnisse haben gezeigt, dass die Verzöge-
rungszeiten einer Route bei etwa 300µs pro Switch liegen und der Durchsatz in einem lastfreien
Netz annähernd die maximale Bandbreite erreicht. Wobei beachtet werden muss, dass es sich
bei diesen Werten um virtuelle Switches handelt. Eine Evaluierung auf realer Hardware war
zum Zeitpunkt dieser Diplomarbeit nicht möglich. Trotzdem kann geschlussfolgert werden,
dass der hier beleuchtete Ansatz für einen Multicastdienst auf OpenFlow-Basis eine gute und
vor allem flexible Alternative zu bestehenden Multicastunterstützungen in Datencenternetzen
gesehen werden kann.

7.2 Zukünfige Arbeiten

Zum Zeitpunkt dieser Arbeit unterstützen der Floodlight Controller und die hier verwen-
dete virtualisierte Hardware nur den OpenFlow Standard 1.0. Für eine saubere Umsetzung
von Multicasting auf einem OpenFlow-Switch, sollte dieser jedoch mindestens Version 1.1.0
unterstützen. Der Grund hierfür liegt in der fehlenden Umsetzung der Group-Tables, die es
erlauben würden ein Paket über mehrere Ports zu senden. Aus diesem Grund beruht die
Konzeption dieser Arbeit bereits auf Version 1.3, obwohl die beschriebene Implementierung
in Kapitel 5 auf Version 1.0 basiert. Eine Implementierung und Test mit Group-Table Unter-
stützung war während dieser Diplomarbeit nicht möglich und sollte Gegenstand zukünftiger
Untersuchungen sein.

Zusätzlich sind Verbesserungen des hier erarbeiteten Multicastdienstes denkbar, die auf einer
feineren Unterscheidung der Hostgeräte basieren und somit eine zielgenauere Auslieferung
bieten können. Während die hier vorgestellte Lösung darauf verzichtet, einzelne Hosts zu ver-
walten, könnte dies jedoch einen zusätzlichen Gewinn an Performance auf Datenschicht mit
sich bringen. Außerdem wäre eine Behandlung von IGMPv3-Reports, bei denen der Emp-
fänger selbst bestimmen kann von welchen Sendern Multicastnachrichten ausgeliefert werden
sollen, möglich.

Als Erweiterung ist es außerdem vorstellbar, IGMP durch eine entsprechende auf OpenFlow
zugeschnitte Lösung zu ersetzen. Entsprechende Vorschlänge wurden von Marcondes et al.
[MSG+12] für IPTV-Anwendungen aufgegriffen. Die Autoren kommen zu dem Schluss, dass
IGMP bei hoher Gruppendynamik einen großen Einfluss auf die Verzögerung hat. Der Nachteil
ist allerdings, dass eine entsprechende Anpassung der Hosts nötig sein wird. Damit kann der
Dienst nicht mehr so einfach in ein bestehendes OpenFlow-Netzwerk integriert werden.

86

Zusätzlich muss angemerkt werden, dass sich die hier vorgestellte Lösung auf einen SDN-
Controller reduziert. Um die Verfügbarkeit zu erhöhen, könnten zukünftige Arbeiten ein ver-
teiltes Controllerprogramm anstreben. Das würde das Risiko, dass der Controller ein Single-
Point-of-Failure darstellt reduzieren und könnte die Controller-Last in großen Netzwerken
noch weiter verringern.

87

Literaturverzeichnis

[AFLV08] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. In ACM SIGCOMM Computer Communication Review,
volume 38, pages 63–74. ACM, 2008.

[AFM92] S. Armstrong, A. Freier, and K. Marzullo. Multicast transport protocol. Techni-
cal report, RFC 1301, Internet Engineering Task Force, February 1992. Available
from http://www. rfc-editor. org/rfc/rfc1301. txt, 1992.

[AFRR+10] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera:
Dynamic flow scheduling for data center networks. In Proceedings of the 7th
USENIX conference on Networked systems design and implementation, pages
19–19, 2010.

[ANS+05] A. Adams, J. Nicholas, W. Siadak, et al. Protocol independent multicast-dense
mode (PIM-DM): Protocol specification (revised). IETF, RFC 3973, 2005.

[BBAL+11] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, and O. Cherkaoui. Openflow
supporting inter-domain virtual machine migration. In Wireless and Optical
Communications Networks (WOCN), 2011 Eighth International Conference on,
pages 1–7. IEEE, 2011.

[BBB07] Z. Begic, M. Bolic, and H. Bajric. Centralized versus distributed replication
model for multicast replication. In ELMAR, 2007, pages 187–191. IEEE, 2007.

[BC97] P. Berman and C. Coulston. On-line algorithms for Steiner tree problems. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of compu-
ting, pages 344–353. ACM, 1997.

[BFC93] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT). ACM
SIGCOMM Computer Communication Review, 23(4):85–95, 1993.

[BO10a] Marcos LP Bueno and Gina MB Oliveira. Pareto-Based Optimization of Multi-
cast Flows with QoS and Traffic Engineering Requirements. In Network Com-
puting and Applications (NCA), 2010 9th IEEE International Symposium on,
pages 257–260. IEEE, 2010.

[BO10b] M.L.P. Bueno and G.M.B. Oliveira. Multicast flow routing: Evaluation of heuri-
stics and multiobjective evolutionary algorithms. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

89

[Brü07] Dieter Brümmerhoff. Finanzwissenschaft -. Oldenbourg Verlag, München, 9.
vollst. überarb. u. erw. edition, 2007.

[CB04] Jorge Crichigno and Benjamín Barán. Multiobjective multicast routing algo-
rithm for traffic engineering. In Computer Communications and Networks, 2004.
ICCCN 2004. Proceedings. 13th International Conference on, pages 301–306.
IEEE, 2004.

[CDK+02] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet group
management protocol, version 3. 2002.

[CHZ+11] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and A.V. Vasilakos. Survey on
routing in data centers: insights and future directions. Network, IEEE, 25(4):6–
10, 2011.

[CKS06] M.J. Christensen, K. Kimball, and F. Solensky. Considerations for Internet
group management protocol (IGMP) and multicast listener discovery (MLD)
snooping switches. 2006.

[Clo53] C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, 32(2):406–424, 1953.

[CMPS02] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and applicability
statements for internet standard management framework. RFC3410, IETF,
December, 2002.

[Coo06] Stephen Cook. The P versus NP problem. The millennium prize problems,
page 86, 2006.

[CW98] JS Crawford and AG Waters. Heuristics for ATM Multicast Routing. ATM’98
Sixth IFIP Wokshop on Performance Modelling and Evaluation of ATM Net-
works. Participants Proceedings: Tutorial Papers, page 5, 1998.

[DFH99] S. Deering, W. Fenner, and B. Haberman. Multicast listener discovery (MLD)
for IPv6. Technical report, RFC 2710, October, 1999.

[Die08] Tim Dierks. The transport layer security (TLS) protocol version 1.2. IETF,
RFC 5246, 2008.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[DL93] M. Doar and I. Leslie. How bad is naive multicast routing? In INFOCOM’93.
Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Networking: Foundation for the Future, IEEE, pages 82–
89. IEEE, 1993.

90

[Dür12] F. Dürr. Towards Cloud-assisted Software-defined Networking. Technical report,
Institute for Parallel and Distributed Systems (IPVS), Universität Stuttgart,
2012.

[Edm67] Jack Edmonds. Optimum branchings. Journal of Research of the National
Bureau of Standards B, 71:233–240, 1967.

[Fen97] W.C. Fenner. Internet group management protocol, version 2. RFC 2236, 1997.

[FHKH06] B. Fenner, M. Handley, I. Kouvelas, and H. Holbrook. Protocol independent
multicast-sparse mode (PIM-SM): protocol specification (revised). 2006.

[flo] Floodlight. http://floodlight.openflowhub.org/. [Online; Zugriff
08.01.2013].

[Fou12] Open Networking Foundation. Software-defined Networking: The New Norm
for Networks. ONF, 2012.

[FT87] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

[GC08] John F Gantz and Christopher Chute. The diverse and exploding digital univer-
se: An updated forecast of worldwide information growth through 2011. IDC,
2008.

[GKP+08] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shen-
ker. NOX: towards an operating system for networks. ACM SIGCOMM Com-
puter Communication Review, 38(3):105–110, 2008.

[goo] 100Gbps and beyond: What lies ahead in the world of networ-
king. http://arstechnica.com/information-technology/2013/02/
100gbps-and-beyond-what-lies-ahead-in-the-world-of-networking/2/.
[Online; Zugriff 15.03.2013].

[Gui] I. Guis. The SDN Gold Rush To The Northbound
API. http://www.sdncentral.com/guest-blog-posts/
the-sdn-gold-rush-to-the-northbound-api/2012/11/. [Online; Zugriff
08.01.2013].

[IBM] IBM. Programmable Network Controller. http://www-03.ibm.com/systems/
networking/software/pnc/index.html. [Online; Zugriff 08.01.2013].

[IW91] M. Imase and B.M. Waxman. Dynamic Steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991.

[KMB81] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta
informatica, 15(2):141–145, 1981.

91

http://floodlight.openflowhub.org/
http://arstechnica.com/information-technology/2013/02/100gbps-and-beyond-what-lies-ahead-in-the-world-of-networking/2/
http://arstechnica.com/information-technology/2013/02/100gbps-and-beyond-what-lies-ahead-in-the-world-of-networking/2/
http://www.sdncentral.com/guest-blog-posts/the-sdn-gold-rush-to-the-northbound-api/2012/11/
http://www.sdncentral.com/guest-blog-posts/the-sdn-gold-rush-to-the-northbound-api/2012/11/
http://www-03.ibm.com/systems/networking/software/pnc/index.html
http://www-03.ibm.com/systems/networking/software/pnc/index.html

[Kos10] Arie Koster. Graphs and Algorithms in Communication Networks - Studies in
Broadband, Optical, Wireless, and Ad Hoc Networks. Springer, Berlin, Heidel-
berg, 2010.

[KP99] S. Keshav and S. Paul. Centralized multicast. In Network Protocols,
1999.(ICNP’99) Proceedings. Seventh International Conference on, pages 59–
68. IEEE, 1999.

[KPP93] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos. Multicast routing for multi-
media communication. Networking, IEEE/ACM Transactions on, 1(3):286–292,
1993.

[KRT99] J. Kleinberg, Y. Rabani, and É. Tardos. Fairness in routing and load balancing.
In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages
568–578. IEEE, 1999.

[Kru56] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–
50, 1956.

[KSIT11] H. Kudou, M. Shimamura, T. Ikenaga, and M. Tsuru. Effects of routing gra-
nularity on communication performance in OpenFlow networks. In Communi-
cations, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim
Conference on, pages 590–595. IEEE, 2011.

[KSS12] D. Kotani, K. Suzuki, and H. Shimonishi. A design and implementation of Open-
Flow Controller handling IP multicast with Fast Tree Switching. In Applications
and the Internet (SAINT), 2012 IEEE/IPSJ 12th International Symposium on,
pages 60–67. IEEE, 2012.

[Kui02] Kuipers, Fernando and Van Mieghem, Piet. Mamcra: a constrained-based mul-
ticast routing algorithm. Comput. Commun., 25(8):802–811, May 2002.

[KWE+11] James Kempf, Scott Whyte, Jonathan Ellithorpe, Peyman Kazemian, Mart
Haitjema, Neda Beheshti, Stephen Stuart, and Howard Green. OpenFlow MPLS
and the open source label switched router. In Proceedings of the 23rd Interna-
tional Teletraffic Congress, pages 8–14. ITCP, 2011.

[Leh] Lehrstuhl für Informatik - RWTH AACHEN. Datenstrukturen und Algorith-
men. http://www.stormware-computer.de/script/kapitel_4_1.pdf. [On-
line; Zugriff 28.04.2013].

[Lei85] C.E. Leiserson. Fat-trees: universal networks for hardware-efficient supercom-
puting. Computers, IEEE Transactions on, 100(10):892–901, 1985.

[lld05] IEEE Standard Local and Metropolitan Area Networks. Station and Media
Access Control Connectivity Discovery. IEEE Std 802.1AB-2005, pages 0_1
-158, 2005.

92

http://www.stormware-computer.de/script/kapitel_4_1.pdf

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[Meh88] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in
graphs. Information Processing Letters, 27(3):125–128, 1988.

[Moy94] J. Moy. Multicast Extensions to OSPF. SRI Network Information Center, 1994.

[MSG+12] C.A.C. Marcondes, T.P.C. Santos, A.P. Godoy, C.C. Viel, and C.A.C. Teixei-
ra. CastFlow: Clean-slate multicast approach using in-advance path processing
in programmable networks. In Computers and Communications (ISCC), 2012
IEEE Symposium on, pages 000094–000101. IEEE, 2012.

[MYLSP07] I. Martinez-Yelmo, D. Larrabeiti, I. Soto, and P. Pacyna. Multicast traffic
aggregation in MPLS-based VPN networks. Communications Magazine, IEEE,
45(10):78–85, 2007.

[Net] Big Switch Networks. Big Network Controller. http://www.bigswitch.com/
products/big-network-controller/. [Online; Zugriff 08.01.2013].

[NMPF+09] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-tolerant
layer 2 data center network fabric. In ACM SIGCOMM Computer Communi-
cation Review, volume 39, pages 39–50. ACM, 2009.

[NNDKB08] D. Nace, L. Nhat Doan, O. Klopfenstein, and A. Bashllari. Max–min fairness
in multi-commodity flows. Computers & Operations Research, 35(2):557–573,
2008.

[ONF] Open Networking Foundation - ONF. https://www.opennetworking.org/.
[Online; Zugriff 23.05.2013].

[Onl] Chip Online. OpenFlow als Quasi-Standard fu-
er SDN. http://business.chip.de/artikel/
Software-definierte-Netze-Der-Weg-aus-der-Netzwerk-Krise-3_
59100735.html. [Online; Zugriff 08.01.2012].

[OP05] C.A.S. Oliveira and P.M. Pardalos. A survey of combinatorial optimization
problems in multicast routing. Computers & Operations Research, 32(8):1953–
1981, 2005.

[P+11] B. Pfaff et al. OpenFlow Switch Specification Version 1.1.0 Implemented (Wire
Protocol 0x02), 2011.

[P+12] B. Pfaff et al. OpenFlow Switch Specification Version 1.3.0 Implemented (Wire
Protocol 0x04), 2012.

93

http://www.bigswitch.com/products/big-network-controller/
http://www.bigswitch.com/products/big-network-controller/
https://www.opennetworking.org/
http://business.chip.de/artikel/Software-definierte-Netze-Der-Weg-aus-der-Netzwerk-Krise-3_59100735.html
http://business.chip.de/artikel/Software-definierte-Netze-Der-Weg-aus-der-Netzwerk-Krise-3_59100735.html
http://business.chip.de/artikel/Software-definierte-Netze-Der-Weg-aus-der-Netzwerk-Krise-3_59100735.html

[Pac] Hewlet Packard. Virtual Application Networks SDN Controller. http://
h17007.www1.hp.com/us/en/solutions/technology/van/index.aspx. [On-
line; Zugriff 08.01.2013].

[Plu82] D. Plummer. Ethernet Address Resolution Protocol: Or converting network
protocol addresses to 48. bit Ethernet address for transmission on Ethernet
hardware. 1982.

[Pos80] J. Postel. User datagram protocol. Isi, RFC 768, 1980.

[Pos81] J. Postel. Transmission control protocol. RFC 793, 1981.

[PPX98] J.C. Pasquale, G.C. Polyzos, and G. Xylomenos. The multimedia multicasting
problem. Multimedia Systems, 6(1):43–59, 1998.

[Pri57] R.C. Prim. Shortest connection networks and some generalizations. Bell system
technical journal, 36(6):1389–1401, 1957.

[Pro02] H Proemel. The Steiner tree problem : a tour through graphs, algorithms, and
complexity. Vieweg, Braunschweig, 2002.

[PZH05] M. Piechowiak, P. Zwierzykowski, and S. Hanczewski. Performance Analysis
of Multicast Heuristic Algorithms. In Third International Working Conference
on Performance Modelling and Evaluation of Heterogeneous Networks, page 41.
Citeseer, 2005.

[RES06] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting IP multicast. Com-
puter Communication Review, 36(4):15, 2006.

[Rey02] J. Reynolds. Assigned numbers: RFC 1700 (on-line database). 2002.

[RMSRM99] S. Raghavan, G. Manimaran, and C. Siva Ram Murthy. A rearrangeable algo-
rithm for the construction of delay-constrained dynamic multicast trees. Net-
working, IEEE/ACM Transactions on, 7(4):514–529, 1999.

[SFL+98] T. Speakman, D. Farinacci, S. Lin, A. Tweedly, N. Bhaskar, R. Edmonstone,
K. Johnson, R. Sumanasekera, L. Vicisano, J. Gemmell, et al. Pragmatic general
multicast. InternetDraft, August, 1998.

[Spe09] OpenFlow Switch Specification. OpenFlow Switch Specification Version 1.0.0
Implemented (Wire Protocol 0x01), 2009.

[Tar06] Robert E Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 2006.

[TH00] D. Thaler and C. Hopps. Multipath issues in unicast and multicast next-hop
selection. Technical report, RFC 2991, November, 2000.

94

http://h17007.www1.hp.com/us/en/solutions/technology/van/index.aspx
http://h17007.www1.hp.com/us/en/solutions/technology/van/index.aspx

[TMJ12] F. Tichy, T Moschny, and A. Jannesari. Netzwerk-Kenngroessen und -
Topologien, 2012. Universität Karlsruhe.

[TW12] Andrew S. Tanenbaum and Prof. David J. Wetherall. Computernetzwerke. Pear-
son Studium, Muenchen, 5. aktualisierte auflage edition, 2012.

[Uni] Stanford University. Beacon. https://openflow.stanford.edu/display/
Beacon/Home. [Online; Zugriff 01.03.2013].

[VC10] L. Vegoda and M. Cotton. IANA Guidelines for IPv4 Multicast Address Assi-
gnments. 2010.

[Wax88] B.M. Waxman. Routing of multipoint connections. Selected Areas in Commu-
nications, IEEE Journal on, 6(9):1617 –1622, dec 1988.

[WDP88a] D. Waitzman, SE Deering, and C. Partridge. Distance vector multicast routing
protocol. 1988.

[WDP88b] David Waitzman, SE Deering, and C Partridge. Distance vector multicast rou-
ting protocol. 1988.

[Wik] Wikipedia. Traffic engineering — Wikipedia, the free encyclopedia. [Online;
Zugriff 28.04.2013].

[Wit99] Ralph Wittmann. Multicast: Protokolle und Anwendungen. Dpunkt, Heidelberg,
1999.

[WVK+01] B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd, and M. Luby.
Reliable multicast transport building blocks for one-to-many bulk-data transfer.
RFC3048, January, 1947, 2001.

[WY93] J. Westbrook and D. Yan. Greedy algorithms for the on-line Steiner tree and
generalized Steiner problems. Algorithms and Data Structures, pages 622–633,
1993.

[Yas06] S. Yasukawa. Signaling Requirements for Point-to-Multipoint Traffic-
Engineered MPLS Label Switched Paths (LSPs). 2006.

[ZLT01] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm, 2001.

95

https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen

benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen Quellen habe ich

nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 21. Mai 2013 _____________________

	Abbildungsverzeichnis
	Einleitung
	Motivation
	Aufbau dieser Arbeit

	Grundlagen
	Multicast-Adressierung und Gruppenverwaltung
	IP-Multicast im OSI-Schichtenmodell
	Adressierung
	Gruppenverwaltung mit IGMP

	Multicast-Routing
	Verteilbäume
	Metriken

	Global optimierte Wegfindung
	Das Steinerbaumproblem
	QoS und Multimetriken

	Software Defined Networking
	SDN-Architektur

	OpenFlow
	OpenFlow-Switches
	OpenFlow-Protokoll

	Verwandte Arbeiten

	Anforderungen und Systemmodell
	Problemstellung
	Systemmodell
	Anforderungen an einen OpenFlow-basierten Multicast-Dienst im Datencenter

	Konzeption eines OpenFlow-basierten Multicast-Dienstes
	Systemarchitektur
	Kommunikation mit der Datenschicht und Nachrichtenfilterung
	Netzstrukturverwaltung
	Netzzustandsverwaltung
	Ermitteln der Netzstatistiken
	Überlauf- und Ausfallkontrolle
	Berechnung der Kantengewichte
	Datenstruktur

	Gruppenverwaltung
	IGMP über OpenFlow
	Datenstruktur
	Verarbeitung von IGMP-Nachrichten im Controller

	Routenverwaltung
	Datenstruktur

	Routenberechnung und Flow-Modifikation
	Proaktives vs. reaktives Routing
	Routingkontrolle
	Routing-Algorithmen
	Flow-Modifikation

	Multicast-Implementierung in Floodlight
	Floodlight OpenFlow-Controller
	Erweiterung von Floodlight um einen Multicastdienst

	Evaluierung
	Versuchsaufbau
	Testverfahren
	Auswertung für quellenbasierte Multicastbäume (KMB)
	Auswertung für Shared-Trees
	Vergleich der Routingalgorithmen für dynamische Gruppen
	Overhead bezogen auf die Flow-Tabellen-Größe
	Ausfallbetrachtung
	Fazit

	Zusammenfassung und Ausblick
	Zusammenfassung
	Zukünfige Arbeiten

	Literaturverzeichnis

