Fakultat Informatik, Elektrotechnik und Informationstechnik
Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3421

Choreographie-basierte
Konsolidierung von BPEL
Prozessmodellen

Peter Debicki

Studiengang: Softwaretechnik

Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Sebastian Wagner
begonnen am: 16. August 2012

beendet am: 15. Februar 2013

CR-Klassifikation: H.4.1, KA1

Kurzfassung

Wagner et al. zeigen ein Konzept zur Choreographie-basierten Konsolidierung von Prozessmodellen.
Die vorliegende Diplomarbeit konkretisiert das technische VVorgehen in Form eines erweiterbaren Pro-
totyps. Als Eingabe dient eine BPEL4Chor Choreographie sowie die zugehorigen technischen Frag-
mente in Form von WSDL-Dateien. Die Kommunikationsmuster der Choreographieteilnehmer werden
anhand eines Katalogs von Konsolidierungsmustern analsysiert und in einen neuen ausfuhrbaren
BPEL-Prozess zusammengefuhrt. Hierbei werden der urspringliche Kontrollfluss der Aktivitdten der
Choreographie sowie die Datenflussabhéngigkeiten im neuen erzeugten BPEL-Prozess weitestgehend
erhalten. Je nach verwendetem Kommunikationsmuster, synchron oder asynchron, werden verschie-
dene Konsolidierungsoperationen an den teilnehmenden Aktivitaten durchgefuhrt. Das Ergebnis ist ein
BPEL-Prozess der eine &quivalente Kontroll- sowie Datenflusssemantik, wie die urspriingliche Chore-
ographie besitzt, jedoch beziiglich Laufzeit und Speicherverbrauch eine optimierte Leistung aufweist.

Seite 3

Inhalt

F AN o] o1 o [N a0 YT 2= ot o £SO SP 7

AUTTISTUNGSVEIZEICINIS ...ttt este e e s e seeene e e e 9

TabElIENVEIZEICRNIS ...t 10

1 BINIEIIUNG ..ottt n e 11

1.1 Ziele der vorliegenden Diplomarbeitc.cccviiiiiiieiic i 12

1.2 KapitelUbersicht Und AUTDAU.ccoiiiii e 13

1.3 MIOTIVALION .ttt bbbttt b bbbt 13

1.4 Verwandie ArDEITEN ..ot nee e 13

ST AU 0P Lo 1= 015 =1 1 V] Vo U S 14

2 Grundlagen und TECANOIOGIENcviiiiiiiec e 15

2.1 WWEBD SEIVICES. ...ttt b bbbttt bbb nn b 15

2.2 Web Services Business Process Execution Language 2.0.........cccocvveeveiieeieneseeiie e e, 17

221 Grundlegende Konzepte vVON WS-BPEL 2.0cccoiiieiiiiiiiiiieseeeees e 17

22.1.1 Abstrakte und ausflhrbare Prozesse.........ccoovviiiiiiiie s 18

2212 Basis Aktivitdten vOn WS-BPEL 2.0coociiiiiiieee e 20

2.2.1.3 Strukturierte Aktivitaten von WS-BPEL 2.0........cccooviviiiiiineeeeese e 21

22.14 SCOPES UNA HANGIEY ... 23

2.3 BPELACKROI ..ottt ettt nen s 24

231 BeispielChoreographieccoviiiiiii e 25

2.4 AEN-KAIKUL......oviiiieee ettt ettt bt e 27

3 Konsolidierung von BPEL4Chor-Choreographin...........ccoeoeiiiiiiiiiiineneeeeesese e 28

3.1 Zustandsmodell fir WS-BPEL 2.0 Prozesse sowie AKLIVItALEN............ccoerereiiniininine e 28

3.11 Prozess Instanz ZustandsmOdell............coovviviieiiiiee e 28

3.1.2 Aktivitats-Zustandsmodellcooeiiiiiiii e 29

3.1.3 <scope>-Aktivitats-Zustandsmodell.............coooiiiiiiiiiiii e 31

3.14 <invoke>-AKtivitats-ZustandsSmOdell..........ccoeiviieiiiiee e 34

3.1.5 Schleifen-ZustandSmOdellcooiiiiiiiiiiie e 35

3.1.6 Link-Zustandsmodell............ooo i 35

3.2 Formales Vorgehen bei der choreographiebasierten Konsolidierung von BPEL-Prozessen ... 36

3.2.1 Anlegen des konsolidierten BPEL-Prozesses............ccoouriiereieieiesiisineseseseeeeeens 37

3.2.1.1 Ubernehmen der Fault Handler in konsolidierten Prozess.........c..ccccceevevevennnne. 39

3.2.2 Generierung des KONEroHTIUSSEScovooiiiiiieiicsse e 40
3221 Anpassung der Join-und transitionCondition wahrend der

KONSOTAIEIUNG ...ttt 50

3.2.2.2 Peer-Scope-Dependency Problematik ..o 52

3.2.3 Generierung des DAteNFIUSSESccviirreiiiiieieieere e 53

3.2.3.1 Voraussetzungen flr den korrekten Datenfluss...........ccooevveveviieici s 56

3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets............. 58

Seite 5

3.3 Taxonomie der Konsolidierungsmuster (,,Merge-Patterns™).........cccvvvveveviiveiesvese e 61

3.3.1 ASYNCIoNe MErge-PatteINScocoviiiiiiieiereeee s 61
3311 ASYNCPAEINL. L. 62
3.3.1.2 F N[0 U1 (=] SRR 65
3.3.1.3 ASYNCPAEINL.S... .o 66
3314 ASYNCPAIEINL.A ...ttt re e e 68
3.3.15 ASYNCPAEINL.S.....ooiiiiiicc e 68
3.3.1.6 ASYNCPAIEINL.G.....eiieiiecieece e et ee s 69
3.3.1.7 AsyncPattern1.7 (,Khalaf SPHE™)cccooiiiiiiiee e 70
3.3.1.8 AsyncPatternl.8 (Asynchrones n-zu-1 Senden auf <receive>)cc...... 72
3.3.1.9 ASYNCPAIEINZ. L......ooiieiieee e 74
3.3.1.10 AsyncPattern2.2 (Asynchrones n-zu-1 Senden auf <pick>)........ccccocevvivennennn. 77
3.3.1.11 AsyncPattern2.3 (Asynchrones n-zu-1 Senden auf einen <onMessage>-Zweig)

79
3.3.1.12 AsyncPattern3.0 (,,Non-Merge-Pattern-Async™)........cccoevriiiniinininencceeens 81

3.3.2 SYNCroNe MErge-PatterNsccoiieiiiiie ettt sre e nre s 85
3.3.21 SYNCPAIEIMNL. ... e e 86
3.3.2.2 SYNCPAEEIMNL.2......c it e e e et sre e sre e e anes 87
3.3.23 SYNCPAIEIMNL. 3. e e 88
3.3.2.4 SyncPattern1.4 (Multiple <reply>-AKLVItaten)ccccceeeveieeie e 89
3.3.2.5 SyncPatternl1.5 (Sendende <invoke>-Aktivitdt innerhalb von Handlern) 91
3.3.2.6 SyncPattern2.1 (<onMessage>-Zweig als receiveActivity).............. 92
3.3.2.7 SYNCPAIEIMNZ. 2. ... e 93
3.3.2.8 SYNCPALIEINZ.3.. .ot be st e e ae e nreenrs 93
3.3.2.9 SYNCPAIEINZ.4 ... e e 93
3.3.2.10 SyncPattern3.0 (,,Non-Merge-Pattern-SYnc™)cccocvvvveveiieniieniesie e 94

3.4 Vervollstandigung der technischen Artefakte im neuen konsolidierten Prozess und Ubernahme
OEE VWSS ...ttt b bbbt bbbt bbb bttt b e bbb na e 95

34.1 Einfigen der WSDL-Dateien per Import-Statements............ccoocevveeneneeeneseene 96

3.4.2 Anpassung der Korrelationsmengen bei mehreren initialen Startaktivitaten................ 96

3.4.3 Erzeugen und Hinzufligen der PartnerLinks fiir die nicht konsolidierten Message

LINKS BUS NIMIML ...ttt bbbttt bbbt 97

3.4.4 Technische Vervollstdndigung der initialen Startaktivitdten sowie der inter-prozess

KOMMUNIZIEIBINTBN ...ttt e s te s e aeere et e steeseenbesaeeeesaeeneenneas 98

L gT o] (=T 0 L= 0 LT (1T OSSPSR 100

4.1 Eingesetzte TeChNOIOGIEN........cui ittt 100

A L1 SEAX et h £ Rt bRttt ettt bt ne st re e 100

4.1.2 ECHPSE IDE..... oottt ettt ae e ne e e 100

4.1.3 Eclipse Modeling Framework (EMF).........ccooviiiiiiii i 100

4.2 Vorgehen und ArChItEKIUN ..o 101
4.3 Erweiterbarkeit der PAtTEINSccoiiiiieieieisere e 105

Seite 6

5 Zusammenfassung und Ausblick

5.1 Ausblick
Literaturverzeichnis
Erklarung

Abbildungsverzeichnis

1.1
1.2
1.3
2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
2.9
2.10
211
2.12
3.1
3.2
3.3
3.4
3.5
3.6
3.61
3.61b
3.61c
3.7
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Herstellung eiNES SPOrtWAGENS. vue i ettt et et e v et e e e e ee e e e aeeans

Versuchsaufbau in der Community Cloud..............oooiiiiiii e,
BPELAChOr KonsoldIErUNg.e et e e e e e e e
INhalt €INEr WSDL-DAtel......cu ittt e e e e e e e
Aufbau eine SOAP-NaChIiCht. e e
Artefakie iNeS BPEL PrOZESSES.t ettt iet ittt et et e e e e
Verbindung WSDL — BPEL.......c.oiiiie e e e e e e
Kommunikationsmuster zwischen Prozesspartnern..........c.ccoeveveeeiiiiiieine e nennn,

EXIEINE SICNt BINES PrOZESSES. . . e ettt et et et e et e e et et e e

Grundgerist Computerkauf mit ausfiihrbarer Vervollstandigung..........................

LinKS UN Thre SEmMaNtiK. ...ttt e e e e e e e e e e e e e

BPEL4Chor Artefakte..
Choreographiebeispiel..

Die 13 Relationen des Allen-KalKuls.........covvr i e

Vergleich der KontrolIfl

ussrelationen zweier Beispielfragmente..........................

Prozess Instanz Zustandsmodell. e s
AKLIVITATS-ZUStandsmodell.o

<scope>-Aktivitats-Zustandsmodell.............coooiiii e

<invoke>-Aktivitats-Zustandsmodell.o

Schleifen-ZustandSmOdell. e e e

Link-Zustandsmodell...

Anlegen des konsolidierten BPEL-PrOzesses.ovviueriie e e,

Verandertes Fehlerverhalten in konsolidiertem Prozess.......ooveeee e iiiieiieiiiennns

Ein <catchAl I>-Fault

Handler mit einer <compensate>-Aktivitat....................

Asynchrone Konsolidierung Variante L..........ccooiiiiiii i,

AsyncMerge Variante 1
AsyncMerge Variante 1

BeiSpIBl 2. .

Vervielfachung der Links. e,

Veranderter Kontrollfluss bei Variante L......c.vvvr it e e e

Propagieren des suppressJoinFai lure-Attribut-Wertes...............cooviiin i

Asynchrone Konsolidierung Variante 2..........ccoiiii i e

AsyncMerge Variante 2

12
12
14
16
16
18
18
19
19
19
22
24
25
27
27
28
29
31
34
35
35
37
39
40
42
43
43
43
44
45
45
46

Seite 7

3.16
3.17
3.18a
3.18b
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.25b
3.25¢c
3.26
3.27
3.28a
3.29
3.30
3.31
3.32
3.32b
3.32c
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49

Synchrone Konsolidierung Variante 1...................ooveeeeee.

SYNCMErgE Variante L.ttt e e e et e e e e e e e ee e
Variante 1 mit nur einer <assign>-Aktivitat Teil 1.....................coo i,
Variante 1 mit nur einer <assign>-Aktivitat Teil 2...................ooco i,
SYNCMErGE VAITANTE 2. ...t e et e et e e e e e e e ee e
Ubernahme der <source>-Elemente aus urspriinglichen Aktivitaten....................
Anpassungen der joinCondition beim Konsolidieren................c.ccooeiii i
Kontrollflussabh&ngigkeit Zweier SCOPES.uvviriirie e,
Zyklus in Partnerscopeabh@ngkeiten..........coovniiii i,
Austausch der kommunizierenden Aktivitaten durch <assign>-Aktivitéten............
Optimierungen des Datenflusses im konsolidierten Prozess............c.ccoovviieviennnn
RACE CONAITION. .. .ce et e e e e e e et e e e et e e
Behebung des Lost Update Problems. ... e
Syntax einer Korrelationseigenschaft................coooii i,
Verwendung mehrerer initialer Startaktivitaten.....................c
Beispielfragmente aus Korrelationsbeispielchoreographie................c..oooveinn ..
Anpassung der initiate-Attribute............ocooii
Anwendung des Merge-Algorithmus. ...
ASYNCPAIIEIN L. L. .
<invoke> MItFH UNA CH....oooii e e
<eMPLY>-OPtIMIBIUNG. .. oot e e e e e e e e e e e
Fallbeispiele einiger <empty>-Optimierungen..........ccoiiieeiie e i eeeene
ASYNCPAIIEIN L. 2. .
AN NC P N L. 3. . o e e
ASYNCPAIIEIN L. . L
ASYNCP A O N L. S e
ASYNCPAIIEINL. . ..o
Erweiterung von <assign>-Aktivitat a durch zusatzlichen <copy>-Block.............
AsyncPatternl.7: Aufspalten eines Kontrollflusslinks................c.ocoooi i,
AsyncPatternl.7 angewendet auf Cui’s Kontrollflusslinkfragmentierung................
n-zu-1 Senden sowie das zugehdrige Topology-Fragment............ccooooviiiiiiinnnes
Anwendung des AsyncPattern1.1 auf mehrere Message Links.............cccoevvieninen,
ASYNChrones N-zuU-1 SENUeN. e e e e e e
Ergebnis der Konsolidierung des n-zu-1 AsyncPattern1.8...............coovvviieinnnen.
AsyncPattern2.1 mit einem <oNMesSage>-ZWeIQ..........veerenerineierneaenaeannnenn
AsyncPattern2.1 mit Schutzvariable Vpic activated:«« ««« v eeeevvenininieinniiiiiii e,

AsyncPattern2.1 mit einer <pick>-Aktivitat mit weiteren <onMessage>-Zweigen...

Syntaktische Umwandlung eines <onAlarm>-Zweigs in eine <wait>-Aktivitét.......

AsyncPattern2.1 fir <pick>-Aktivitdt mit <onAlarm>-Zweig

47
48
49
49
50
51
52
53
53
54
55
56
56
58
59
59
61
62
62
63
63
65
66
66
68
68
69
70
70
71
72
72
73
73
74
76
76

77

Seite 8

3.50

3.51

3.52

3.53

3.54

3.55
3.56

3.57

3.58

3.59
3.60
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69

3.70

3.71

41
4.2
4.3a

4.3b

4.4

AsyncPattern2.2 mit zwei sendenden PBDS..........cooviiiiiiiie e e e,

AsyncPattern2.2 mit einem weiteren choreographie-extern kommunizierenden <on-
oY= Vo T YT o[

AsyncPattern2.3 Konsolidierung einer Choreographie mit zwei sendenden PBDs auf
den gleichen <onMessage>-Zweig msgl in <pick>P.....coovvviiiiiiiiiiie i,

Konsolidierung einer Choreographie mit sp=¢ sowie createlnstance=*“yes‘
VON P MIt ASYNC-Pattern2. L.ttt e e e e e e e e

Syntaktische Umformung eines <onMessage>-Zweigs in eine aquivalente <recei -
VE>-AKEIVITAL. .. .ot

ASYNCPAITEIN3.0 MUSTEE ... e e e e e e e e e e e e e e e e
Rekursive Untersuchung VON Par(S).......ouuveveeon it e e e v

Sendende Aktivitat <invoke> s und empfangende Aktivitit <receive> r und eine
Konsolidierung ohne Kontrollflusslink..............c.ooiiii

Sendende Aktivitat <invoke> s und empfangende Aktivitit <receive> r und eine

Konsolidierung ohne Kontrollflusslink mit zusétzlicher Variable ve.......................
Anwendung des Merge-Algorithmus. ...
SYNCPAIIEINL. . .o e e e e e
R Y01 11 =] 1 0
SYNCPAIEINL. 3. e e e
SyncPatternl.4 mit zwei <reply>-Aktivitaten und einem Fault..........................
SyncPatternl.4 mit zwei <reply>-AKtiVItaten...............cooii i,
SYNC P A BN L. .. e e
0] 11 =] 1 0220
SYNCPAIIEINZ. 4. ..o e e e e e e
Hinzufugen der WSDL-imports in den konsolidierten Prozess................cc.coue..

Hinzufigen der PartnerLinks sowie der technischen Attribute portType,
operation sowie partnerLink in die asynchron intra-prozess kommunizierenden
N N - 1 o

Hinzufugen der technischen Artefakte bei synchron intra-prozess kommunizierenden
L L

Schritte beim Vorgehen der Konsolidierung einer BPEL4Chor-Choreographie.........
Die mergeChoreography-Komponente und ihre Abhangigkeiten..........................
ChoreographyMerger-Klassendiagramm.............ooii i e e

Async- bzw. SyncMatcher sowie die Beziehungen zu den Async- bzw. SyncPatterns
und den entsprechenden Schnittstellen (Interfaces) und der abstrakten Klassse
MEIQEPALIEIN. .. e

Sequenzdiagramm fur das Auffinden der MergePatterns...............ccoeeviviienennnn,

Auflistungsverzeichnis

2.1
2.2

PBD deS REISEDUIOS. .. .e. i
Participant TOPOIOQYv ettt e e e e e e e e e

77

78

79

80

81

82
83

84

85

86
86
88
88
89
91
92
93
94
96

97

98

101
101
102

103

Seite 9

2.3
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Participant GrOUNING.ov it e e et e e e e e e e e et e eeeens

Kopieren der PBDs in neue <scope>-Aktivitaten des neuen BPEL-Prozesses.........

Pseudocode fur Merge-Algorithmus..........oooi i e e

Pseudocode asyncMerge-Methode Variante 1..........coooiiiiiiiiiiii i

Pseudocode asyncMerge-Methode Variante 2..........cccooiiiiiiiiiii i e

Pseudocode syncMerge-Methode Variante 1...........ccoeiiiiii i,

Pseudocode <empty>-Optimierungsalgorithmus................cocoiiii i e,

Pseudocode je(act)-FUNKLION. ... e e e e e,

Pseudocode replaceVar (vq, Vo, act)-Funktion.............coooiiiii i,

Pseudocode isActivitylnHandler (ajnoke)-FUNKLiON. ..o

Tabellenverzeichnis

2.1
3.1
3.2
3.3
3.4
3.5

3.6

Die 13 Intervallrelationen und ihre Bedeutungen............coeiii i e,

Zustande und Ubergénge des Prozess Instanz Modells................cccoevveeeeeennnnn..,

Zustande und Ubergange des Aktivitats-Zustandsmodells...............cccoeevveenneenn..

Zustande und Ubergénge des <scope>-Aktivitats-Zustandsmodells.....................

Zustande und Ubergénge des Link-Zustandsmodells..................oooveeeeieiineeenns,

Notation fiir Funktionen und Mengen des Konsolidierungs-Algorithmus................

Notation fiir Funktionen und Mengen des Konsolidierungs-Algorithmus (Erweiterun-

25
38
41
42
46
48
64
65
68
83

27
29
31
34
36
41

Seite 10

1 Einleitung

Cloud-Computing [MT11] bietet Unternehmen neue Mdglichkeiten zur Realisierung ihrer Geschafts-
prozesse. Durch die Verlagerung von Teilen der Geschaftsprozesse in die Cloud reduziert sich der
Bedarf an firmeninternem, qualifiziertem technischem Knowhow zum Betrieb, der Wartung sowie
Pflege der IT-Ressourcen. Das Unternehmen kann sich wieder auf seine eigenen nicht IT-getriebenen
Geschaftsziele konzentrieren. So kann man mittlerweile in zahlreichen groRen Unternehmen die Aus-
lagerung von Teilen der Geschéftsprozesse beobachten, wie z.B. der Gehaltsabrechnung oder Sup-
portprozessen. Ohne diese nicht wettbewerbsdifferenzierenden Teilprozesse kann sich das Unterneh-
men wieder auf sein Hauptgeschaft fokussieren. Hinzu kommen weitere Kostenvorteile, wie sie bei-
spielsweise das Pay-Per-Use Kostenmodell anbietet, bei dem das Unternehmen nur fiir die Kapazita-
ten bezahlt, die auch effektiv genutzt werden. Man kann Parallelen zur Ablésung des Mainframes
durch die Client/Server Architektur in den 1980ern erkennen, die auf einen Bedarf nach einer be-
reichs- bzw. branchenorientierten organisatorischen Struktur zuriickzufiihren war.

Ein weiteres vielversprechendes Konzept des Cloud-Computing ist die Community Cloud [MT11]: Ein
Zusammenschluss von Unternehmen oder Organisationen der gleichen Branche mit dem Ziel, aus dem
Verbund ihrer Private Clouds [MT11] eine gemeinsame Nutzung der Infrastruktur zu ermdglichen. In
diesem Verbund kdnnen IT-Ressourcen dynamisch bereitgestellt (Elastizitat), bedarfsgerecht abge-
rechnet (Pay-Per-Use) und durch Virtualisierung standardisiert werden. Durch die Nutzung der ge-
meinsamen Infrastruktur kdnnen die Kosten aller beteiligten Unternehmen gesenkt werden, da diese
unter den Mitgliedern der Community Cloud aufgeteilt werden. Zusétzlich kann die Community
Cloud Werkzeuge anbieten, die der Zusammenarbeit der Unternehmen dienen [WKL11], wie z.B.
Content Management Services.

Um eine moglichst effiziente Zusammenarbeit in der Community Cloud zu ermdglichen, miissen auch
die Geschéftsprozesse der beteiligten Unternehmen miteinander interagieren. Diese Interaktion kann
durch Choreographien der Geschéftsprozesse dargestellt werden, die den Kontroll- sowie Datenfluss
zwischen den Parteien modellieren. Natirlich wollen die Unternehmen die wettbewerbsdifferenzie-
renden Arbeitsabléufe ihrer Geschéftsprozesse auch in einem solchen Zusammenschluss nicht jeder-
mann zugéanglich machen. Somit missen zunéchst die fir eine Nutzung in der Community Cloud ge-
eigneten Prozessfragmente isoliert werden.

Wir wollen im folgenden Abschnitt anhand eines kleinen Szenarios fiir einen solchen Anwendungsfall
aus der Automobilbranche das Vorgehen skizzieren (vgl. [WKL11]). Abbildung 1.1 zeigt eine Chore-
ographie als BPMN 2.0 Collaboration Diagramm [OMG11] zwischen zwei Geschéftsprozessen zur
Herstellung eines Sportwagens. Der eine Prozess stellt den Arbeitsablauf auf Seiten des Autoherstel-
lers (AH) dar, der zweite den eines Zulieferers, der fir die Herstellung des Motors zustandig ist (MH).
Zu Beginn bestellt der AH einen Motor beim MH. AnschlieRend entwickeln beide Beteiligten einen
Prototyp. Der AH einen Chassis-Prototyp und der MH einen Motorenprototyp. Diese Aktivitaten wer-
den durch die aufklappbaren Teilprozesse dargestellt. Nach der Entwicklung des Chassis sowie des
Motors wird letzterer an den AH geliefert, der in Zusammenarbeit mit Ingenieuren des MH einen ers-
ten Prototyp des Sportwagens baut. Nun wird der Prototyp in einer Versuchsreihe beim AH auf seine
Verkehrstauglichkeit geprift. Hierzu kdnnen beispielsweise Versuche im Windkanal oder Crashtests
gehoren. Die Ergebnisse dieser Versuchsreihe werden an den MH geschickt. Beide Parteien analysie-
ren die Ergebnisse und filhren mdgliche Optimierungen am Chassis und am Motor durch (dies ist in
der Abbildung nicht dargestellt). AnschlieBend wird die Versuchsreihe wiederholt. Nach Fertigstel-
lung der Versuchsreihen mit optimalen Ergebnissen, wird der Sportwagen hergestelit.

In diesem Herstellungsprozess testen und entwickeln beide Parteien den Prototyp beim MH. Um Inge-
nieuren beider Parteien einen maglichst effizienten Zugriff auf die IT Infrastruktur sowie den Zugang

Seite 11

zu den Testergebnissen zu ermdglichen, entscheiden sich die Unternehmen die fur die Entwicklung
sowie den Test des Sportwagenprototyps notwendigen IT Ressourcen in einer Community Cloud zu-
sammenzuschliel3en. Diese Prozessfragmente sind in Abbildung 1.1 mit einem roten Kasten hervorge-
hoben (AH2 sowie MH2). Die Community Cloud stellt hierfiir eine Workflow Engine zur Verfligung.

Autohersteller Motorhersteller Autohersteller Motorhersteller

CP AH1 MH1
lotor entwickeln

HFTRO

Motor
entwickeln

<A@
Motor liefern

Prototyp
des

() AH1_AH3 MH1_MH3

Chassis
entwickeln
[

Wagens
herstellen

Versuche
durchfiihren

Testresultate schicken

Chassis
Testergebnisse
auswerten

Motor
Testergebnisse
auswerten

\O Auswertung beendet O

Sportwagen Motor
herstellen herstellen

Abbildung 1.1 Herstellung eines Sportwagens Abbildung 1.2 Versuchsaufbau in der Community Cloud
(vgl. [WKL11])

Da die beiden Parteien die Herstellungsprozesse ihrer jeweiligen spezifischen Produkte nicht fireinan-
der zugéanglich machen wollen, werden diese vor Ort auf der unternehmenseigenen IT Infrastruktur
ausgefihrt. Diese Prozessfragmente sind durch die vier Bereiche AH1, AH3, MH1 sowie MH3 darge-
stellt.

Abbildung 1.2 zeigt die Choreographie aus vorhergehendem Beispiel mit Einbeziehung einer Com-
munity Cloud: Die neuen Prozesse AH1_AH3 sowie M1_MH3 werden auf der unternehmenseigenen
IT Infrastruktur ausgefuhrt, die Prozessfragmente die fur die gemeinsame Versuchsreihe zustandig
sind, wurden dagegen aus den urspringlichen Geschéftsprozessen abgespalten (,,split“) und in einem
neuen Prozesse zusammengelegt (,,merged*), der in der Community Cloud bereitgestellt und betrieben
wird. Die vorliegende Diplomarbeit befasst sich mit dem konsolidieren oder zusammenlegen von Pro-
zessfragmenten, die in Form einer BPEL4Chor Choreographie (Abschnitt 2.3) vorliegen, zu einem
neuen ausfiihrbaren Geschéftsprozess.

1.1 Ziele der vorliegenden Diplomarbeit

Das Ziel der vorliegenden Diplomarbeit ist die Erarbeitung und Umsetzung eines Konsolidierungsal-
gorithmus fiir BPEL4Chor [DKLWO07] Choreographien sowie seiner anschlieBenden Implementierung
als Eclipse Plugin [ECL12]. Das Ergebnis dieser Konsolidierung soll ein bereitstellbarer sowie aus-
fuhrbarer WS-BPEL 2.0 Prozess [OASO07] sein. Zusatzlich soll gezeigt werden, dass nach Anwendung

Seite 12

der Konsolidierung der Daten- als auch der Kontrollfluss des neuen Prozesses dem der urspriinglichen
Choreographie weitestgehend entspricht.

1.2 Kapiteliibersicht und Aufbau

In Kapitel 1 wurde zunéchst ein kleines Beispiel eines praktischen Konsolidierungsfalls gegeben. An-
schlieBend wurden die Ziele der vorliegenden Diplomarbeit (1.1) verdeutlicht. Es folgt die Motivation
(1.3), die zu dieser Arbeit gefuhrt hat sowie verwandte Arbeiten (1.4). Abschnitt 1.5 skizziert noch-
mals die Aufgabenstellung. Kapitel 2 geht auf die technischen Grundlagen ein, die zum Verstandnis
dieser Arbeit notwendig sind. Abschnitt 2.1 erklart hierfiir die Web Service Grundlagen. Anschlie3end
stellt Abschnitt 2.2 den WS-BPEL 2.0 Standard vor, der zur Implementierung der hier vorgestellten
Geschéftsprozesse dient. Abschnitt 2.3 erklart die WS-BPEL 2.0 Erweiterung BPEL4Chor, die zur
Implementierung von Geschéftsprozesschoreographien entwickelt wurde und Ausgangspunkt unseres
Konsolidierungsalgorithmus ist. Kapitel 3 zeigt das Vorgehen und die Uberlegungen, die zum Konso-
lidierungsalgorithmus gefuhrt haben. Kapitel 4 erldutert die technische Implementierung, die hierftr
eingesetzten Technologien sowie Frameworks. Kapitel 5 gibt eine kurze Zusammenfassung der Arbeit
und einen Ausblick auf laufende und mdégliche Weiterentwicklungen der hier vorgestellten Konzepte.

1.3 Motivation

Die Beweggriinde, die zu dieser Diplomarbeit gefiihrt haben basieren auf der Idee eine BPEL4Chor
[DKLWO7] Choreographie direkt ohne eine Zwischentransformation in andere Modelle, wie z.B. Er-
eignisgesteuerte Prozessketten (EPKs) [KNS92] oder Petri-Netze [PET62], in einen neuen ausfiihrba-
ren WS-BPEL 2.0 [OASOQ7] Geschaftsprozess zu konsolidieren. Das Beispiel aus Abschnitt 1 liefert
hierfir ein praktisches Anwendungsszenario: Ein naiver Ansatz wirde zunéchst die beiden Geschéfts-
prozesse in die Prozessfragmente AH1, AH2, AH3, MH1, MH2 sowie MH3 zerlegen [CUI12]. Ohne
anschlieende Konsolidierung wirden dann AH1 und AH3 auf der IT Infrastruktur des Autoherstel-
lerunternehmens betrieben, MH1 sowie MH3 entsprechend auf der IT Infrastruktur des Motorherstel-
lerunternehmens. Die Prozesse AH2 sowie MH2 wiirden in der Community Cloud bereitgestellt. Dies
hatte mindestens sechs Prozessinstanzen zur Folge anstatt der urspriinglichen zwei. Durch Konsolidie-
rung koénnen hier auf Seiten der Community Cloud Prozesse Kosten gespart werden, da Cloud Infra-
struktur Anbieter fur gewohnlich eine bedarfsgerechte (Pay-Per-Use) Kostenabrechnung anbieten.
Zusatzlich konnen ohne Konsolidierung Performanceeinbullen mit steigender Anzahl der Prozessin-
stanzen auf Seiten der beiden Unternehmen auftreten, beispielsweise im Hinblick auf die Workflow
Engines oder die benutzten Datenbanken.

Auf der technischen Seite wird durch die Konsolidierung zusétzlich die choroegraphieinterne Kom-
munikation zwischen den Parteien vermieden: Es ist keine Serialisierung und Deserialisierung der
SOAP-Nachrichten mehr notwendig, die Korrelation entfallt ebenfalls.

1.4 Verwandte Arbeiten

Das Beispiel aus Abschnitt 1 spaltet zunéchst die urspriinglichen Geschéftsprozesse in verschiedene
miteinander kommunizierende Prozessfragmente auf. Cui’s [CUI12] Diplomarbeit zeigt hierflr einen
Ansatz der auf Arbeiten von Khalaf [KKLO8][KLO06] sowie Kopp et. al. basiert [KKLO08]. Ein weiterer
Ansatz, der fir die im Kapitel 3 vorgestellte Datenflussanalyse entnommen wurde basiert ebenfalls auf
Kopp et. al. [KKLO08]. Die dort gezeigte Strategie der Datenflussanalyse bezieht die Nebenlaufigkeit
von WS-BPEL 2.0 Prozessen sowie die Dead Path Elimination [OASO07] mit ein.

Seite 13

Vorliegende Diplomarbeit mit dem Schwerpunkt der Konsolidierung von BPEL4Chor Choreogra-
phien basiert auf den Ansétzen aus Wagner et. al. [WKL11]. Verwandte Arbeiten befassen sich tber-
wiegend mit dem Zusammenfiihren semantisch &quivalenter Prozesse. Mendling et. al. konsolidieren
in ihrer Arbeit [MS06] semantisch &quivalente Ereignisgesteuerte Prozessketten (EPKs) [KNS92].
Kister et. al. zeigen in ihrem Ansatz [KGF'08] die Moglichkeit Prozesse zusammenzufiihren, die von
einem gemeinsamen Basisprozess abgeleitet wurden. Basis fiir das in [KGF08] vorgestellte Vorgehen
ist eine Art Logbuch indem die Anderungsschritte festgehalten werden, die vom Basisprozess zu den
neuen Prozessen gefuhrt haben. Sun et. al. stellen in [SKYO06] ein Vorgehen zur Konsolidierung vor,
das auf Petri-Netzen [PET62] basiert. Im Gegensatz zu dem in der vorliegenden Diplomarbeit ver-
wendeten VVorgehen, miissen in [SKYO06] die Stellen an denen die Prozesse zusammengefiihrt werden
manuell angeben werden.

Die hier verwendete Erweiterung von WS-BPEL 2.0 zur Modellierung von Choreographien wird in
[DKLWO7] von Decker et. al. vorgestellt. Weitere Ausfuhrungen sowie der Vergleich zu anderen
Choreographieerweiterungen sind in [DKLWO09] von Decker et. al. zu finden. Barros et. al. [BDHO05]
gehen in ihrer Arbeit auf die grundsétzlichen Interaktionsmuster zwischen Web Services ein.

1.5 Aufgabenstellung

Abbildung 1.3 zeigt die in dieser Diplomarbeit umgesetzte Aufgabenstellung: Das hier entwickelte
Eclipse Plugin [ECL12] nimmt eine BPEL4Chor Choreographie als Input (in Form einer ZIP-Datei),
analysiert die dort enthaltenen Prozessfragmente bezuglich ihrer Daten- und Kontrollflussabhangigkei-
ten und erzeugt einen ausfiihrbaren WS-BPEL 2.0 Prozess mit der zugehtrigen WSDL-Datei als Out-
put. Dieser konsolidierte Prozess ist auf jeder WS-BPEL 2.0 konformen BPEL-Engine bereitstell-
sowie ausfuhrbar und besitzt eine weitestgehend gleiche Daten- und Kontrollflusssemantik, wie die
urspringliche BPEL4Chor Choreographie.

Choreographie.zip

Eclipse Plugin
BPEL4Chor Choreography Ausfihrbarer BPEL-

Participant Prozess
Topology Merging I

-:> Modul -:> |

Daten- and !
Kontrollfluss Analyse WSDL des BPEL-

L L | wsbLsder Prozesses
PBDs

Participant Declaration Message Links

Verbinden PBDs

Liste der Teilnehmer

Strukturelle Aspekte

Abbildung 1.3 BPEL4Chor Konsolidierung: Eingabe fiir das Eclipse Merging Modul ist eine BPEL4Chor Choreographie
sowie die WSDL Dateien der enthaltenen Prozessfragmente, die Ausgabe ist ein neuer ausfiihrbarer BPEL-Prozess sowie die
zu diesem gehdrige WSDL Datei

Seite 14

2 Grundlagen und Technologien

In diesem Kapitel werden die Technologien und Grundlagen vorgestellt, die zum Verstandnis der
Konsolidierung von BPEL-Choreographien notwendig sind. Das Vorgehen in Kapitel 3 setzt voraus,
dass der Leser mit den hier vorgestellten Technologien vertraut ist. Zundchst werden die Ideen hinter
Web Services, Geschaftsprozessen sowie Geschéftsprozesschoreographien erkléart. Hierzu werden
auch die relevanten Spezifikationen der zugrundeliegenden Protokolle, wie beispielsweise SOAP
[W3C07], WS-BPEL [OASO7] sowie BPEL4Chor [DKLWO7] erldutert. Auf die WS-BPEL 2.0
[OASOQ7] Spezifikation wird etwas detaillierter eingegangen, da diese fur das Verstandnis der Konsoli-
dierung einer BPEL4Chor-Choreographie essenziell ist.

Die vorgestellten Technologien und Konzepte werden nicht in voller Ausfiihrlichkeit erklért. Stattdes-
sen konzentrieren wir uns auf die Details, die fur das Verstandnis der Diplomarbeit von Nutzen sind,
ohne den Text mit zu vielen Kleinstdetails vollzustopfen. Den interessierten Lesern sei die referenzier-
te Literatur ans Herz gelegt.

2.1 Web Services

Web Services ermdglichen die Realisierung einer Service-Oriented Architecture (SOA) [WCL'05].
Web Services und die diese umgebenden Technologien werden vom World Wide Web Consortium
(W3C) gefordert. Die Grundlage einer SOA sind lose gekoppelte Service. Ein Service ist eine Soft-
ware Komponente, die Uber eine beliebige Netzwerktechnologie zur Verfugung gestellt wird. Dieser
Service kann anschlieBend von anderen Programmen verwendet und mit diesen kombiniert werden.
Ein Web Service stellt eine Schnittstelle zu einem Programm dar, welches die eigentliche Arbeit ver-
richtet und anschlieBend das Ergebnis Uber diesen Web Service zurtickliefert, sofern es eines gibt.
Web Service sind zustandslos unterstiitzen jedoch auch zustandsbehaftete langlaufige Konversationen.
Im Gegensatz zu anderen verteilten Technologien liegt der Vorteil von Web Services in der Tatsache,
dass sie auf veroffentlichten und akzeptierten Standards basieren anstatt auf proprietaren Losungen.
Diese Standards wurden in einem gemeinsamen Bestreben verschiedener Firmen erstellt und reflektie-
ren so die Bedrfnisse der Industrie. Bedirfnisse wie beispielsweise Sicherheit, Ausfallsicherheit und
Interoperabilitat. Alle relevanten Standards im Bereich der Web Services basieren auf der Extensible
Markup Language (XML) [W3C12]. Diese reichen von der Definition der Schnittstellen tber das
Format der transferierten Daten bis hin zu Quality of Service (QoS) Definitionen. Zwei der wichtigsten
Standards ist die Web Service Description Language (WSDL) [W3CO01], die die Schnittstelle des Web
Service definiert sowie das Simple Object Access Protocol (SOAP) [W3CO07], welches die verschick-
ten und empfangenen Nachrichten eines Web Services definiert als auch deren Bearbeitung entlang
des Nachrichtenkanals.

Wie in Abbildung 2.1 gezeigt enthélt eine WSDL-Datei folgende Elemente, die hier kurz erléautert
werden:

o Types (nicht in der Abbildung): Definitionen der benétigten Datentypen

o Message: Abstrakte Beschreibungen der ausgetauschten Daten

e Operation: Abstrakte Beschreibungen der vom Service unterstiitzten Aktionen. Man kann
diese mit Methoden oder Funktionen vergleichen. Nachrichten bieten Eingabe- und Ausgabe-
daten fiir Operationen an.

Seite 15

o PortType: Abstrakte Menge der vom Service angebotenen Operationen

o Binding: Definieren ein konkretes Protokoll, wie beispielsweise SOAP (iber HTTP [W3C07],
als auch die Datenformate der Nachrichten und Operationen eines PortType

e Port: Definieren die Adresse oder einen Verbindungspunkt zu dem Service, oftmals in Form
einer URI

e Service: Eine Sammlung von Ports

Da WS-BPEL 2.0 die Version 1.1 von WSDL benutzt bezieht sich folgende Arbeit auf diese.

Unterstiitzt

PortType Operation

4 Eingabe,

Ausgabe & SOAP Envelope
Fehler

Transport:
Formate & Protokolle|

SOAP Header
. . Nachrichtenformat
Binding Message Header Block 1

Header Block n

Implementiert

SOAP Body
Body Sub-Element 1

Bietet an

Service

Body Sub-Element n

Abbildung 2.1 Inhalt einer WSDL-Datei (vgl. [LEY10b]) Abbildung 2.2 Aufbau einer SOAP Nachricht (vgl.
[LEY10Db])

Abbildung 2.2 zeigt schematisch den Aufbau einer SOAP Nachricht mit den folgenden Elementen:

e SOAP Envelope: Dies ist das Wurzelelement der XML-Dokuments (,,Briefumschlag®). Es
enthalt SOAP-Header sowie SOAP-Body Elemente.

e SOAP Header: Dies ist ein optionales Feld und muss bei Verwendung als erstes Feld im
SOAP-Envelope definiert werden. Die SOAP-Spezifikation definiert nicht den Inhalt eines
SOAP-Header. Der Header dient der Ubertragung der Nutzdaten der Middleware, die fiir die
Ubertragung der Nachricht zustandig ist. Hier konnen beispielsweise Informationen, die fiir
die sichere und ausfallfreie Ubertragung der Nachricht relevant sind enthalten sein.

e SOAP Body: Dieser Teil enthalt die eigentlichen Nutzdaten und muss in jeder Nachricht vor-
handen sein.

Web Services verwenden zur Kommunikation Nachrichten. Aus diesem Grunde werden alle Daten
zwischen Aufrufer und Aufgerufenem in Nachrichten verpackt. Abhéngig vom gewdahlten Kommuni-
kationsmuster werden die Nachrichten entsprechend ausgetauscht. Die Definitionen der ublichen
Kommunikationsmuster kénnen im Abschnitt 2.4 ,,Port Types®“ der WSDL Spezifikation [W3C01]
nachgelesen werden. Die geldufigsten sind das Anfrage-Antwort Muster (Request-Response im Fol-
genden) bestehend aus einer Anfrage- sowie einer zugehorigen Antwortnachricht sowie das Einweg-
Muster (One-Way im Folgenden) bestehend aus nur einer aufrufenden Anfragenachricht.

Seite 16

Ein Teil der Flexibilitat, die man durch die Benutzung von Web Services erlangt, basiert auf der Tat-
sache, dass diese plattform- sowie transportunabhéngig sind.

2.2 Web Services Business Process Execution Language 2.0

Die Web Services Business Process Execution Language 2.0, haufig auch als BPEL abgekdirzt, oder
WS-BPEL ist eine XML-basierte Sprache zur Beschreibung von Geschéftsprozessen basierend auf
Web Services [WCL*05]. Da Web Services an sich keine Mdglichkeit besitzen eine Logik zur Interak-
tion zu definieren wurde BPEL entwickelt. Sie erlaubt die Definition von Prozessen, die die Interakti-
onslogik als und mit Web Services erlauben. ,,WS-BPEL definiert ein Model und eine Grammatik zur
Beschreibung des Verhaltens eines Geschaftsprozesses basierend auf Interaktionen zwischen dem
Prozess und seinen Partnern® [OASO7]. Der Kontrollfluss in einem BPEL Prozess ist explizit durch
die Kontrolllinks zwischen den Aktivitaten modelliert, wéhrend der Datenfluss implizit durch die Be-
nutzung der globalen und lokalen Variablen dargestellt wird. In BPEL werden die zu einem Prozess
gehorigen Daten standardmaRig durch XPath Ausdriicke [W3C99a] gelesen und veréndert. Sie bietet
auflerdem Parallelitdt sowie Death-Path-Elimination [OASO7] an. Seine Wurzeln hat BPEL in der
graphbasierten Sprache Web Services Flow Language (IBM WSFL [LEYO01]) sowie der blockbasier-
ten Sprache XLANG (Microsoft XLANG [THAO01]) und bietet hier eine hybride Alternative, da sie
fluss- sowie operatorbasierte Modellierung unterstiitzt [WCL*05].

2.2.1 Grundlegende Konzepte von WS-BPEL 2.0

Der folgende Abschnitt bezieht sich Gberwiegend auf die Spezifikation aus [OASO7]. Eine BPEL Pro-
zessbeschreibung besteht neben der WSDL Datei, die den Prozess nach Aullen als Web Service zur
Verfugung stellt, aus der eigentlichen Definition in XML, die folgende Grundelemente enthélt (siehe
Abbildung 3.3):

e Partner Links und Partner Link Types: Ein Partner Link stellt einen Kommunikationskanal
zwischen zwei Partnern dar. Eine Partner Link Definition beinhaltet einen Partner Link Type
und mindestens eine Rolle. Ein Partner Link Type beschreibt die Art des Nachrichtenaus-
tauschs den der Prozess als Service ausfuhrt und wird durch die Definition der Rollen, die je-
der Service in der Interaktion einnimmt sowie durch die Spezifikation des Port Type, der
durch den Service zur Verfligung gestellt wird um entsprechende Nachrichten zu empfangen,
charakterisiert. Der Partner Link Type ist eine Erweiterung der WSDL. Abbildung 2.4 veran-
schaulicht den Zusammenhang zwischen WSDL und BPEL Definition.

e Variables: Ein Prozess empféngt, verandert und sendet Daten mithilfe von Variablen, die ei-
nen Teil des Laufzeitzustands des Prozesses speichern. Es gibt drei Méglichkeiten von Variab-
len: WSDL Message Type, XML Schema Type (Simple oder Complex) sowie XML Schema
Elemente. Der Inhalt von Nachrichten, die zwischen Prozesspartnern ausgetauscht werden,
wird im WSDL Message Type gespeichert.

e Correlation Sets: Correlation Sets dienen der Zuordnung einer Menge von Nachrichten zwi-
schen Partnern, die an einer Interaktion beteiligt sind. Da Geschéftsprozesse durch die Repré-
sentation als Web Service zustandslos sind, benétigt die BPEL-Engine im Falle von mehreren
nebenldaufigen Instanzen eines Prozesses eine Moglichkeit der Zuordnung der Nachrichten an
die entsprechende Instanz. Sie stellen eine Art Identifikationsschliissel dar und sind nach ihrer
einmaligen Initialisierung unveranderlich uber die ganze Kommunikation hinweg.

Seite 17

e Handler: Ein BPEL Prozess kann zwei Arten von Handlern beinhalten um nach seiner Instan-
ziierung auf Fehlersituationen sowie eingehende Nachrichten oder mégliche zeitgesteuerte Er-
eignisse zu reagieren: Fault Handler (FH) sowie flr die letzten beiden Falle Event Handler
(EH). Im Abschnitt 2.2.1.4 wird die Bedeutung beider naher beleuchtet.

e Activity: Jeder Prozess muss mindestens eine Aktivitat enthalten. Diese muss eine der aus
Ausschnitt 2.2.1.2 beschriebenen Basisaktivitaten sein, oder ein Verbund aus den Strukturier-
ten aus Abschnitt 2.2.1.3 sowie 2.2.1.4. Da der Life-Cycle eines BPEL Prozesses durch den
Empfang einer initialen Nachricht beginnt, muss dieser mindestens eine Aktivitat des Typs
<receive> oder <pick> enthalten, welche das Attribut createlnstance auf true gesetzt

hat.
[portType ¢ partnerLinkType «—
» operation
: WSDL [P
Business Process inputMessage role(s)«
Partner Links I outputMessage EortType
Variables I
Activity partnerLink
Correlation Sets - N
_I BPEL partnerLink ¢ *name
Handlers t— portType ¢ partnerLinkType ¢
_I »operation myRole e
partnerRole ¢

Activity I

Abbildung 2.3 Artefakte eines BPEL Prozesses
(vgl. [LEY10a])

Abbildung 2.4 Verbindung WSDL — BPEL

2.2.1.1 Abstrakte und ausfiihrbare Prozesse

WS-BPEL 2.0 erlaubt die Definition von ausfiihrbaren sowie abstrakten Prozessen. Ausfihrbare Pro-
zesse mussen alle in der WS-BPEL 2.0 Spezifikation [OAS07] definierten Attribute sowie Aktivitaten
enthalten. In Verbindung mit ihren WSDL Dateien sind sie auf jeder standardkonformen BPEL-
Engine bereitstell- und voll ausfiihrbar. Ein abstrakter Prozess ist ein partiell definierter Prozess, der
nicht ausfuhrbar ist und verschiedene Details der konkreten operationalen Details, welche in den aus-
flihrbaren Prozessen enthalten sein missen, unspezifiziert lasst [OAS07]. Da die im Abschnitt 2.3 be-
schriebene Erweiterung von WS-BPEL 2.0 auf abstrakten Prozessen basiert, werden diese hier etwas
genauer beschrieben.

Abstrakte Prozesse missen als solche explizit deklariert werden. Sie bieten zwei Mdglichkeiten um
operationale Details zu verstecken: Die Benutzung expliziter opaker Symbole (,,opaque tokens*) sowie
die Auslassung ganzer Artefakte. Ein abstrakter Prozess kann die gesamte Menge aller Artefakte, die
auch ein ausflhrbarer Prozess definiert, enthalten. Durch seine Deklaration als ,,abstract” wird jedoch
angezeigt, dass weitere Schritte notwendig sind um ihn zu einem voll ausfihrbaren Prozess zu konver-
tieren. Hierzu wird dem interessierten Leser der Abschnitt ,,[Executable Completion* (ausfihrbare
Vervollstandigung) der WS-BPEL 2.0 Spezifikation [OASQ07] empfohlen. Es gibt verschiedene An-
wendungsgebiete fiir abstrakte Prozesse:

e Sollen Bedingungen und Einschrankungen fiir den Nachrichtenaustausch zwischen Interak-
tionspartner von Geschaftsprozessen aufgezeigt werden, so werden nur die Kommunikati-
onsmuster der einzelnen Partner angegeben und die internen Details der eigentlichen Pro-
zesse bezlglich Datenhaltung sowie Verarbeitung bleiben versteckt (Abbildung 2.5). Die in

Seite 18

dieser Diplomarbeit verwendete Erweiterung von WS-BPEL 2.0 BPEL4Chor basiert auf
dem Abstract Process Profile for Observable Behavior (vgl. Abschnitt 13.3 aus [OASQ7]).

Abbildung 2.5 Kommunikationsmuster zwischen Prozesspartnern

Eine externe Sicht auf den ausfiihrbaren Prozess wird prasentiert, die genauen internen De-
tails bleiben verborgen. So kénnen technische Details ausgeblendet werden oder beispiels-
weise firmeninterne VVorgehensbausteine geheim bleiben (Abbildung 2.6).

Externe Priife Ubermittle ZeinERIHE an
Sicht Zahlung K

----- P Seo
> - ~

I .
Priife Ermittle Daten Ubermittle Rechne Zinsen ZeinSElS on
Kontostand aus Firmen DB Zahlung ab g

Interner Prozess

Bank

Abbildung 2.6 Externe Sicht eines Prozesses

Ein Gerdst flr eine allgemeine oder bewéhrte VVorgehensweise wird erstellt in der spéter die
ausgelassenen Aktivitdten und Attribute flr einen spezifischen Anwendungsfall hinzugefiigt
werden (Abbildung 2.7).

Anforderungen
an puter
erf

<<Abstract>>
Prozess Computer
kaufen

8un3
-Ipugls||oAIBA

aueqynysny

Prozess Computer
kaufen

Abbildung 2.7 Grundgeriist Computerkauf mit ausfuhrbarer Vervollstdéndigung

Seite 19

Der fiir diese Diplomarbeit relevante Anwendungsbereich von abstrakten Prozessen ist die Projektion
von Nachrichtenmustern zwischen den Kommunikationsteilnehmern. So entsteht eine externe Sicht
auf den Kontroll- und Datenfluss, die wir im Folgenden als Choreographie bezeichnen.

2.2.1.2 Basis Aktivitdten von WS-BPEL 2.0

BPEL bietet eine Fllle von Basisaktivitaten zur Daten- und Kontrollflusssteuerung an. Der folgende
Abschnitt beschreibt diese in kurzer Form. Fir eine detaillierte Beschreibung sei hier auf die Spezifi-
kation verwiesen [OASQ7].

Jede Aktivitat besitzt zwei optionale Standard Attribute: Ein name Attribute sowie suppressJoin-
Failure. Letzteres gibt an ob ein joinFault unterdriickt werden soll, wenn dieser Auftritt (siehe hier-
zu Abschnitt 11.6 Parallel and Control Dependencies Processing — Flow der WS-BPEL 2.0 Spezifi-
kation [OASO7]). Zusétzlich besitzt jede Aktivitat zwei Container <sources> und <targets>, die
die entsprechende Elemente <source> und <target> enthalten. Sie dienen der Kontrollflusssteue-
rung.

2.2.1.2.1 <invoke>

Mithilfe der <invoke>-Aktivitdt kann ein BPEL-Prozess einen anderen Prozess oder Web Service
aufrufen. Der Aufruf kann sowohl asynchron (One-Way) erfolgen, als auch synchron (Request-
Response). Im asynchronen Fall 1auft der Kontrollfluss direkt nach dem Versenden weiter, im syn-
chronen dagegen wartet der aufrufende Prozess zuerst auf die Antwort bevor er im Kontrollfluss fort-
schreitet. Eine <invoke>-Aktivitat kann eigene Compensation Handler und Fault Handler definieren.

2.2.1.2.2 <receive> und <reply>

Mittels der <receive>-Aktivitat wartet ein Prozess auf das Eintreffen einer Nachricht. Ist diese Akti-
vitat die erste im Kontrollfluss, so muss das Attribute createlnstance=*yes* gesetzt werden, da
hier der initiale Einstiegspunkt fur den Prozesslebenszyklus ist. Mithilfe der <reply>-Akitvitit kann
der Prozess eine Antwortnachricht auf eine zuvor empfangene <receive>-Nachricht (Request-
Response) senden. Die <reply>-Aktivitdt kann durch ein messageExchange-Attribut mit einer
<receive>-Aktivitat assoziiert werden.

2.2.1.2.3 <assign>

Die <assign>-Aktivitat erlaubt die Zuweisung von Daten an Variablen mithilfe von XPath-
Ausdriicken [W3C99a] bzw. die durch das expressionLanguage-Attribut des BPEL-Prozesses
definierte Sprache.

2.2.1.2.4 <validate>
Die <val idate>-Aktivitat wird zur Validierung von Variablen beziiglich der mit ihnen assoziierten
XML oder WSDL Datendefinitionen verwendet.

2.2.1.2.5 <throw>
Die <throw>-Aktivitat wird zum Werfen einer Ausnahme innerhalb des BPEL-Prozesses verwendet.

2.2.1.2.6 <wait>
Die <wait>-Aktivitat veranlasst einen BPEL-Prozess flr eine definierte Zeitspanne oder bis zu einem
definierten Zeitpunkt zu warten.

Seite 20

2.2.1.2.7 <empty>
Die <empty>-Aktivitat macht effektiv nichts. Sie wird zur Synchronisation von nebenldufigen Aktivi-
taten verwendet oder wenn ein Fault gefangen und unterdriickt werden soll.

2.2.1.2.8 <extensionActivity>
BPEL erlaubt die Erweiterung der Spezifikation durch neue Aktivitaten. Die BPEL-Engine muss je-

doch in der Lage sein diese zu verstehen, ansonsten kdnnen diese wie eine <empty>-Aktivitit ge-
handhabt werden.

2.2.1.2.9 <exit>
Die <exit>-Aktivitat beendet augenblicklich die Instanz eines Prozesses.

2.2.1.2.10<rethrow>
Der <rethrow>-Aktivitat ermoglicht das Weiterreichen einer Ausnahme, aus einem Fault Handler
und nur aus einem solchen, an den ihn umgebenden Giiltigkeitsbereich.

2.2.1.2.11<compensate>

Die <compensate>-Aktivitit veranlasst die Kompensation (siehe Abschnitt 2.2.1.4) aller erfolgreich
ausgefiihrter Subscopes. Sie darf nur innerhalb eines <catch>, <catchAll>, <compensation-
Handler> oder <terminationHandler> verwendet werden.

2.2.1.2.12<compensateScope>

Die <compensateScope>-Aktivitat veranlasst die Kompensation (siehe Abschnitt 2.2.1.4) eines
spezifischen erfolgreich ausgefiihrten Subscopes. Sie darf nur innerhalb eines <catch>, <catch-
All>, <compensationHandler> oder <terminationHandler> verwendet werden.

2.2.1.3 Strukturierte Aktivitdten von WS-BPEL 2.0

BPEL besitzt weiterhin strukturierte Aktivitaten, die sich aus den zuvor erlduterten Basisaktivitdten
zusammensetzen und so eine sequentielle oder parallele Ausfuihrung erlauben.

2.2.1.3.1 <sequence>
Die <sequence>-Aktivitat fuhrt die in ihr aufgefiihrten Aktivitaten sequentiell aus. Die Reihenfolge
entspricht der Anordnung der Aktivitaten innerhalb des <sequence>-Elements.

2.2.1.3.2 <if>

Die <if>-Aktivitét erlaubt die bedingte Ausfihrung von Aktivitaten. Die Aktivitat besteht aus einer
Liste von einer oder mehreren Verzweigungen, die durch <if> und optionale <elseif>-Elemente
definiert sind, gefolgt von einem optionalen <else>-Zweig.

2.2.1.3.3 <while>

Die <whi le>-Aktivitat erlaubt die wiederholte Ausfiihrung der in ihr enthaltenen Aktivitat. Die ent-
haltene Aktivitat wird solange ausgefiihrt, wie die boolesche Bedingung (<condition>) zu Beginn
jeder Iteration wahr ist.

2.2.1.3.4 <repeatUntil>
Ahnlich der <whi le>-Aktivitat erlaubt die <repeatuUnti I>-Aktivitit die wiederholte Ausfiihrung
der in ihr enthaltenen Aktivitat. Die enthaltene Aktivitat wird solange ausgefihrt bis die angegebene

Seite 21

boolesche Bedingung (<condition>) wahr wird. Im Gegensatz zur <while>-Aktivitat fuhrt die
<repeatunti I>-Aktivitat die enthaltene Aktivitat mindestens einmal aus.

2.2.1.3.5 <pick>

Die <pick>-Aktivitat wartet auf das Eintreffen genau eines Ereignisses aus einer Menge von Ereig-
nissen und fihrt anschlielend eine mit diesem assoziierte Aktivitat aus. Nachdem ein Ereignis einge-
troffen ist, werden die restlichen verworfen. Ein solches Ereignis kann durch eine Nachricht (<onMes-
sage>) oder einen zeitlichen TimeOut (<onAlarm>) reprasentiert werden. Jede <pick>-Aktivitat
muss mindestens ein <onMessage>-Ereignis enthalten.

2.2.1.3.6 <flow>

Die <flow>-Aktivitat unterstiitzt Nebenldufigkeit und Synchronisation. Mithilfe der enthaltenen
<links> kdnnen Abhéngigkeiten zwischen den eingeschlossenen Aktivitdten festgelegt werden.
Durch Angabe des <source>-Elements kann jede Aktivitit der Ausgangspunkt eines Links werden.
Durch das entsprechende <target>-Element kann jede Aktivitdt zum Endpunkt eines Links werden.

Aktivitat_1

Aktivitat_2

Aktivitat_3

<activity name=“Aktivitat_1“>
<sources>
<source linkname=“Link1*“>
» <transitionCondition>...</transitionCondition>
</source>
</sources>
</activity>
<activity name=“Aktivitat_2‘“>
<sources>
<source linkname=“Link2*“>
» <transitionCondition>...</transitionCondition>
</source>
</sources>
</activity>
<activity name=“Aktivitat 3>
<targets>
<joinCondition>...</joinCondition>*
<target linkname=“Link1“/>
<target linkname=*“Link2“/>
</targets>
</activity>

Abbildung 2.8 Links und ihre Semantik

Abbildung 2.8 zeigt den Zusammenhang zwischen <links>, <targets> und <sources>: Sobald
Aktivitat_1 beendet wurde, wird ihre optionale <transitionCondition> evaluiert. Ist keine ange-
geben so wird angenommen, dass sie zu true ausgewertet wird. Das Gleiche gilt fur Aktivitat 2 so-
wie Link2. Kommt die Ausfiihrung zur Aktivitat_3 so wird ihre optionale <joinCondition>, die fir
beide <targets> gilt ausgewertet. Ist diese nicht vorhanden, so ist die implizite <joinCondition>
die Disjunktion von Link1 und Link2. Das optionale suppressJoinFai lure-Attribut jeder Aktivitat
gibt an, ob im Falle einer negativen Auswertung der <joinCondition> ein joinFai lure-Fault
ausgeldst oder die Dead-Path-Elimination ausgefuhrt wird. Ist das Attribut nicht gesetzt, erbt die Ak-
tivitat dieses von ihrer umgebenden Aktivitat (vgl. Abschnitt 11.6.3 Dead-Path-Elimination der WS-
BPEL 2.0 Spezifikation [OAS07]).

2.2.1.3.7 <forEach>
Die <forEach>-Aktivitat fuhrt den in ihr enthaltenen <scope> genau N+1 mal aus, wobei N dem

Wert des <finalCounterValue> minus dem Wert des <startCounterValue> entspricht. Durch

Seite 22

Angabe einer Abschlussbedingung (<completionCondition>) kann dieser Mechanismus schon vor
Beendigung der Gesamtanzahl der Durchléufe der Schleife durchbrochen werden. Wird das paral -
lel-Attribut auf ,,yes‘ gesetzt, so werden die Schleifendurchldufe parallel ansonsten sequentiell aus-
gefiihrt.

2.2.1.4 Scopes und Handler

Die <scope>-Aktivitat bietet den in ihr enthaltenen Aktivitaten einen eigenen Gultigkeitsbereich mit
der Mdglichkeit der Definition eigener Variablen, PartnerLinks, messageExchange-Attributen sowie
Handlern, die nur in diesem Kontext gultig sind. Gultigkeitsbereiche von Scopes kénnen hierarchisch
verschachtelt sein, wobei der ,,root“-Kontext der BPEL-Prozess selbst ist. Im Gegensatz zum <pro-
cess>-Element kdnnen Scopes noch zusatzlich Compensation Handler (CH) sowie Termination
Handler (TH) enthalten.

2.2.1.4.1 Compensation Handler (CH)

Wurde eine <scope>-Aktivitat erfolgreich beendet, so wird ihr Compensation Handler installiert. Die
im CH enthaltenen Aktivitaten werden ausgefiihrt, wenn es zu einer Kompensation (Compensation) in
einem Ubergeordneten Giltigkeitsbereich kommt, beispielsweise durch einen transaktionsbedingten
Rollback [KRL09].

2.2.1.4.2 Fault Handler (FH)

In jedem BPEL-Prozess und jeder <scope>-Aktivitat kénnen Fault Handler definiert werden. Mit
ihrer Hilfe kénnen durch <throw>-Aktivitdten geworfene Ausnahmen abgefangen und bearbeitet
werden.

2.2.1.4.3 Termination Handler (TH)

<scope>-Aktivitaten kénnen Termination Handler definieren, die im Falle einer erzwungenen Termi-
nierung oder einer Ausnahme noch vor den Fault Handlern ausgelést werden. Wird kein TH explizit
definiert, so wird der Default Termination Handler installiert, der lediglich die Kompensation auslost.
Ein TH darf keine Ausnahmen werfen.

2.2.1.4.4 Event Handler (EH)

Jeder BPEL-Prozess und jede <scope>-Aktivitat kann optional Event Handler definieren, die aus
beliebig vielen <onEvent>- und <onAlarm>-Zweigen, jedoch aus mindestens einem von beiden,
bestehen konnen. Die Aktivitat in diesen Zweigen muss eine <scope>-Aktivitét sein, die durch Ein-
treten eines bestimmten Ereignisses ausgefiihrt wird. <onEvent>-Zweige werden durch das Eintreffen
einer bestimmten Nachricht, <onAlarm>-Zweige dagegen durch das Eintreffen eines TimeOuts ausge-
lost. Die Ausfiihrung eines Event Handlers findet nebenldufig zur umgebenden <scope>-Aktivitat
bzw. zum umgebenden BPEL-Prozess statt. Event Handler kdnnen auf die Daten der sie umgebenden
Gultigkeitsbereiche zugreifen.

2.2.1.4.5 Isolierte Scopes

<scope>-Aktivitaten bieten zusatzlich durch das isolated-Attribut Kontrolle tiber den nebenlaufi-
gen Zugriff auf gemeinsame Ressourcen: Variablen, Partner Links sowie Kontrollfluss Links von
<Flow>-Aktivitaten. Der interessierte Leser findet hierzu im Abschnitt 12.8 Isolated Scopes der WS-
BPEL 2.0 [OASO07] Spezifikation eine detaillierte Erlauterung der Funktionsweise.

Seite 23

2.3 BPEL4Chor

Das folgende Kapitel basiert auf der Quelle [DKLWO07]. WS-BPEL 2.0 eignet sich primar zur Or-
chestrierung aus Sicht eines einzelnen Prozessteilnehmers und weniger zur Darstellung einer Choreo-
graphie zwischen mehreren Geschéftsprozessen, die miteinander kommunizieren. Um eine globale
Sicht auf alle Teilnehmer, die an einer solchen Interaktion teilnehmen zu ermdglichen, wurde
BPELA4Chor entwickelt [DKLWO7][DKLWOQ09]. BPEL4Chor besteht aus drei verschiedenen Artefak-
ten auf die im folgenden Abschnitt anhand eines kleinen Beispiels naher eingegangen wird.

BPEL4Chor Choreography

Participant

Participant Declaration Message Links
topology

Liste der Teilnehmer Verbinden PBDs
Strukturelle Aspekte

Participant behavior Participant groundings
Descriptions (PBDs) pante 6 || WsDLsder
PBDs

Technische Konfiguration

Sichtbarer Kontroll- & Datenfluss —

Abbildung 2.9 BPEL4Chor Artefakte (vgl. [DKLWO07])

Abbildung 2.9 zeigt den Aufbau sowie die in einer BPEL4Chor Choreographie enthaltenen Artefakte:

1. Participant Behavior Description (PBD):

PBDs beschreiben den Kontrollfluss zwischen den Aktivitaten der teilnehmenden Prozesse ei-
ner Choreographie. Eine PBD kann derart abstrahiert sein, dass sie nur die nachrichtensende-
den- sowie empfangenden Aktivitaten enthélt, aber auch alle Aktivitaten zwischen diesen. Der
in der vorliegenden Diplomarbeit beschriebene Konsolidierungsalgorithmus erhebt den An-
spruch einer moglichst vollstandigen Beschreibung der PBDs um ein mdglichst optimales Er-
gebnis zu liefern. So kann z.B. bei Benutzung einzelner opaker Aktivitaten keine Datenfluss-
analyse durchgefiihrt werden, da nicht sicher ist, dass diese Aktivitaten spater moglicherwiese
durch <assign>-Aktivitéten ersetzt werden. WS-BPEL 2.0 definiert ein Profil fiir abstrakte
Prozesse, das Abstract Process Profile for Observable Behavior [OAS07], das die Benutzung
von Elementen, wie beispielsweise partnerLinks- oder operation-Attributen von nachrichten-
sendenden- und empfangenden Aktivitdten verbietet, um so eine Trennung von der techni-
schen Konfiguration in den WSDL-Dateien zu ermdglichen. Dieses Profil wird mit einigen
wenigen Anderungen fir die PBDs verwendet: Ein zusatzliches Attribut wsu:id vom Typ
xsd:id wird in jede Aktivitat, die an einer Kommunikation teilnimmt hinzugefuigt, um eine
Identifikation der sendenden und empfangenden Aktivitaten in verschiedenen Interaktionsteil-
nehmern zu gewéhrleisten.

2. Participant Topology:
Die Participant Topology, im Folgenden kurz Topology genannt, beschreibt die Kommunika-
tion zwischen den Teilnehmern der Choreographie. Typen von Teilnehmern (Participants),
Teilnehmerreferenzen (Participant References) sowie Nachrichtenlinks (Message Links) wer-
den hier definiert. Jeder Teilnehmer ist mit einem Typ assoziiert sowie die Relationen zwi-
schen verschiedenen Teilnehmern definiert. Die Nachrichtenlinks beschreiben schlieflich die

Seite 24

Verbindung zwischen Kommunikationsaktivitaten in verschiedenen Teilnehmern. (Die Syntax
einer Topology ist in [KOP11b] zu finden.)

3. Participant Grounding:
Alle technischen Aspekte wurden aus den vorhergehenden Artefakten herausgenommen und
werden nun in dem Participant Grounding definiert. Web Service spezifische Port Types,
Operationen sowie XML Schema Typen sind hier spezifiziert. Die Verbindung mit der
WSDL-Definition wird hier realisiert. (Die Syntax eines Grounding ist in [KOP11a] zu fin-
den.)

2.3.1 Beispielchoreographie

Das folgende Beispiel ist [DKLWO07] entnommen.

Kunde Reisebiro Fluglinie
- — () - o) R
7 7 <process name="reisebuero™
A targetNamespace="urn:buchung:reisebuero™
(oo J abstractProcessProfile=
"'urn:HPI_IAAS:choreography:profile:2006/12">

<sequence>
<receive wsu:id="Erhalt_Reisebestellung”
createlnstance="yes" />
<forEach wsu:id="Preis_Anfragen_FE" parallel="yes">
<scope>
<sequence>
<invoke wsu:id="Preis_Anfragen" />

[}
J

— J
-

<receive wsu:id="Preis_Erhalten” />
</sequence>
</scope>
</forEach>
<opaqueActivity name="Fluglinie_Auswaehlen" />
<invoke wsu:id="Tickets_Bestellen” />
<receive wsu:id="Erhalt_Bestellungsbestaetigung” />
<opaqueActivity name="Reiseplan_Erstellen” />
<invoke wsu:id="Reiseplan_Ausstellen” />
</sequence>
</process>

[

E=---1-

Abbildung 2.10 Choreographiebeispiel (vgl. [DKLWO07]) Auflistung 2.1 PBD des Reisebiiros (vgl. [DKLWO07])

<topology name="buchungstopology"
‘targetNamespace="urn:buchung"
xmlns:reisebuero="urn:buchung:reisebuero™>
<participantTypes>
<participantType name="Reisebuero™
participantBehaviorDescription="reisebuero:reisebuero” />
<participantType name="Kunde" ... />
<participantType name="Fluglinie” ... />
</participantTypes>
<participants>
<participant name="kunde" type="Kunde" selects="reisebuero” />
<participant name="reisebuero” type="Reisebureo” selects="fluglinien" />
<participantSet name="fluglinien” type="Fluglinie"
forEach="reisebuero:Preis_Anfragen_FE">
<participant name="aktuelleFluglinie”
forEach="reisebuero:Preis_Anfragen_FE" />
<participant name="gewaehlteFluglinie” />
</participantSet>
</participants>
<messageLinks>
<messageLink name="reiseBestellungUebermittelnLink"
sender="kunde"
‘Reisebestel lung_Uebermitteln™

receiveActivity="Erhalt_Reisebestellung"

messageName="reiseBestel lung" /> <grounding t ~top-buch _

St o2 - tob="urn-b o _ e

<messageLink name="ticketsBestellenLink" :x;g;ggﬁ;ng:—b“w“"g xninsz--->
sender="reisebuero™ > . . .
sendActivity="TicketsBestellen" ° '"E""aT?f re > el lungUebermitteInL ink
receiver="gewaehlteFluglinie"” s:;:aing ﬁgei;:zsgegzggzgt/>
receiveActivity="Erhalt_Bestel lung" i rip o
messageName="ticketBestel lung" <messageLln7N am?— tlckstsBestel lenLink'
participantRefs="kunde" /> portType="1Ihx:web_pt

<messageLink name="eTicketAusstellenLink" operation="getOrder" />
sender="gewaehlteFluglinie™ <t-- cee =
sendActivity="eTicketAusstellen" </messageLinks>
receivel de’ <participantRefs>
receive ty="Erhalt_eTicket" <participantRef name="kunde"
messageName="eTicket" /> WSDLproperty="msgs:kundeProp" />

</messageLinks> </participantRefs>
</topology> </grounding>

Auflistung 2.2 Participant Topology (vgl. [DKLWO07]) Auflistung 2.3 Participant Grounding (vgl. [DKLWO07])

Ein Kunde mdéchte einen Flug buchen und setzt sich hierzu mit einem Reisebiro in Verbindung. Das
Reiseblro kontaktiert daraufhin verschiedene Fluglinien, um angebotene Preise fiir die vom Kunden
gewiinschten Flugdaten zu akquirieren. Nach eingegangenen Antworten der Fluglinien wéhlt das Rei-
sebiiro die fur den Kunden glinstigste Alternative und bucht mit dessen Daten (Email-Adresse des
Kunden) einen Flug bei der Fluglinie mit den besten Konditionen. Die anderen Fluglinien beenden
nach einer gewissen Zeit das Warten auf eine mogliche Bestellung. Nach Bestétigung der Buchung

Seite 25

durch die ausgewéhlte Fluglinie, sendet das Reisebiiro dem Kunden einen Reiseplan und die Fluglinie
ein eTicket an Selbigen.

Auflistung 2.1 zeigt die PBD des beteiligten Reiseburos. Alle technischen Details wurden entfernt,
lediglich die kommunizierenden Aktivitaten werden in ihrem Kontrollfluss aufgezeigt. Auch der Vor-
gang des Auswahlens der gtinstigsten Fluglinie sowie das Erzeugen des Reiseplans werden als opake
Aktivitaten dargestellt.

Auflistung 2.2 zeigt die Participant Topology fiir das Reisebuchungsbeispiel. Im Mittelpunkt dieses
Artefakts stehen die Message Links die miteinander kommunizierende Aktivitdten in verschiedenen
Choreographie Teilnehmern miteinander verbinden. Somit kénnen die strukturellen Aspekte einer
Choreographie genau definiert werden. Auflistung 2.3 zeigt das Participant Grounding fiir das Beispiel
aus [DKLWO7]. In diesem Artefakt werden die technischen Verbindungen zur WSDL definiert, die
dann die Choreographie Web-Service-spezifisch machen. Fiir den in dieser Diplomarbeit vorgestellten
Konsolidierungsalgorithmus sind vor allem die Message Links aus der Topology von zentraler Bedeu-
tung, da mit ihrer Hilfe die zu verbindenden Aktivitaten der zu konsolidierenden Teilnehmer definiert
werden. Fur diese gelten die folgenden Regeln (vgl. [DKLWO7]):

I. Nur eine <receive>-Aktivitit, ein <onMessage>-Zweig oder eine <invoke>-Aktivitat
sind fur das receiveActivity-Attribut giltig. Falls eine output-Variable in der <invo-
ke>-Aktivitat definiert wird, muss diese <invoke>-Aktivitat als receiveActivity in ei-
nem anderen Message Link auftauchen. Angenommen ein Message Link I enthdlt ein <invo-
ke> i als sendActivity und ein <receive> r als receiveActivity. Falls r nicht mit ei-
ner <reply>-Aktivitat y Giber ein messageExchange-Attribut assoziiert ist, darf das <in-
voke> i nicht als receiveActivity in einem anderen Message Link auftauchen.

Il. <reply>- und <invoke>-Aktivitaten sind glltig als sendActivity in einem Message
Link. Nehmen wir i, r und y wie in I. definiert. Der Message Link, der y als sendActivity
enthadlt muss i als receiveActivity enthalten. Somit kann ein <reply> nur einem syn-
chronen Aufruf eines <invoke> antworten und nicht weiteren <invoke>-oder <receive>-
Aktivitaten oder einem <onMessage>-Zweig.

1. Jede <invoke>- und <reply>-Aktivitét ist in genau einem Message Link die sendActivi-
ty. Ausgenommen hiervon sind Aktivitaten, die in eine Kommunikation mit Prozessen oder
Web Services involviert sind, die nicht in der Choreographie definiert sind. Daraus folgt:
Existieren mehrere <receive>-Aktivititen fur die gleiche <invoke>-oder <reply>-
Aktivitat (z.B. durch Verzweigung auf der Empfangerseite), so missen diese alle denselben
Bezeichner haben.

IV. Fir jede <receive>-Aktivitit und jeden <onMessage>-Zweig gibt es genau einen Message
Link der diese Aktivitat bzw. diesen Zweig als receiveActivity enthélt. Im Fall von meh-
reren sendenden Aktivitaten flir ein <receive> (oder <onMessage>-Zweig) ist eine Menge
von Sendern im Message Link angegeben (senders-Attribut).

V. Falls das senders-Attribut im Message Link definiert ist, muss jeder der dort vorkommen-
den Sender vom gleichen Typ sein.

VI. Falls das senders-Attribut in einem Message Link | definiert ist und die <receive>-
Aktivitat r ist mit einer <reply>-Aktivitét p (ber ein messageExchange-Attribut assoziiert,
muss auch bindSenderTo im Link | definiert sein.

VII. Die Typen der Variablen von miteinander kommunizierenden Aktivitaten auf Sender- und
Empfangerseite mussen identisch sein.

Seite 26

2.4 Allen-Kalkiil

Das Allen-Kalkiil, auch Allens Intervallalgebra genannt, ist eine Logik zur Repréasentation von zeitli-
chen Zusammenhéngen. Sie definiert hierfir 13 Relationen mit denen es mdglich ist alle méglichen
Zusammenhange zwischen zwei Intervallen zu beschreiben (vgl. Abbildung 2.11).

A<B AmB AoB AsB AfB AdB AeB
B>A BmiA BoiA BsiA BfiA BdiA
A A A A A
é} «—> A{L} B B B B B
<« «—> —> —> —

Abbildung 2.11

Die 13 Relationen des Allen-Kalkiils

Tabelle 2.1 zeigt die Bedeutung der 13 Relationen aus Abbildung 2.11:

Intervallrelation Bedeutung
A<B A findet vor B statt
B>A B findet nach A statt
AmB A trifft B
BmiA B wird von A getroffen (i steht fir invers)
AoB A (iberschneidet sich mit B
BoiA B wird von A Gberschnitten
AsB A fangt mit B an
BsiA invers zu AsB
AfB A hort mit B auf
BfiA invers zu AfB
AdB B findet wahrend B statt
BdiA invers zu AdB
AeB A ist gleich B.

Tabelle 2.1 Die 13 Intervallrelationen und ihre Bedeutungen

)

3

3]

4]

()
[oke },19[%6;9%
(=)

)
@
N

—/

Abbildung 2.12 Vergleich der Kontrollflussrelationen zweier Beispielfragmente dargestellt als Intervallrelationen

Abbildung 2.12 zeigt zwei Beispielfragmente sowie die zugehdrigen Intervallrelationen: Die Reihen
der Tabellen stehen fur die linke Seite der Relation, die Spalten fiir die rechte Seite. Die grauen Felder
stehen fir die leere Menge @ da eine Aktivitat keine Intervallrelation zu sich selbst hat. R steht fiir die
Menge aller Relationen, somit gilt R={<, >, m, mi, o, oi, s, si, f, fi, d, di, e}. Aktivitdt A1 wird vor
Aktivitat A2 ausgefiihrt (A1<A2), jeweils im linken als auch im rechten Fragment. Das gleiche gilt fur
die Aktivitdten B1 sowie B2 (B1<B2). Wichtig an diesem Beispiel sind die Relationen zwischen Al
und B2 in beiden Fragmenten: Im linken wird zuerst Al ausgefuhrt und nachdem <invoke> s eine
Nachricht an das empfangende <receive> r gesendet hat, wird B2 ausgefiihrt. Diese Kontrollfluss-
abhangigkeit wird im rechten Fragment durch eine <assign>-Aktivitat a simuliert. Durch a wird B2
erst ausgefuhrt, wenn B1 und a ausgefthrt wurden.

Seite 27

3 Konsolidierung von BPEL4Chor-Choreographien

In diesem Kapitel werden wir das Vorgehen beim Konsolidieren einer BPEL4Chor-Choreographie
genauer erklaren und einen Algorithmus hierfur présentieren. Um zu zeigen, dass der so erzeugte neue
Prozess den gleichen Kontrollfluss, wie die urspriingliche Choreographie hat, werden wir zunéchst ein
Zustandsmodell einfuhren. Weidlich et. al. zeigen in ihrer Arbeit [WDWO07] eine Mdglichkeit der
Kompatibilitatsanalyse zwischen BPEL 2.0 Prozessen basierend auf dem n-Kalkil. Wagner et. al.
[WKL12] zeigen dagegen einen Ansatz zur Uberpriifung der Konsolidierung von BPEL4Chor-
Choreographien, basierend auf dem Allen-Kalkil [AL83]. Im folgenden Kapitel werden wir den letz-
teren Ansatz verwenden.

3.1 Zustandsmodell fiir WS-BPEL 2.0 Prozesse sowie Aktivititen

Der folgende Abschnitt veranschaulicht die mdglichen Zustinde eines WS-BPEL 2.0 Prozesses sowie
seiner involvierten Aktivitaten. Die hier vorgestellten Zustandsmodelle sind [KHK*11] entnommen.
Die Modelle wurden auf der Apache ODE Engine [AODE11] implementiert. Da Zustandsmodelle
nicht explizit durch die WS-BPEL 2.0 Spezifikation [OASO7] definiert werden, kdnnen die Zustande
einzelner BPEL-Engine Implementierungen abweichen. Die vorgestellten Modelle werden in UML
Zustandsdiagrammen [OMG10] dargestellt.

Das Zustandsmodell aus Abschnitt 3 Process State Model [KHK*11] wird hier nicht verwendet, da die
technischen Fahigkeiten einer BPEL-Engine zum Bereitstellen eines BPEL Prozesses oder seine Er-
setzung durch einen neuen fir diese Arbeit nicht relevant sind.

3.1.1 Prozess Instanz Zustandsmodell

Abbildung 3.1 zeigt das Prozess Instanz Zustandsmodell, Tabelle 3.1 beschreibt die einzelnen Zustéin-
de und ihre Ubergangsbedingungen:

(11)
®

Exited

(€] @ (12)
HlnstantiatedHRunning <—— Completing)—b@

Completed

Initial ®)

A 4

(13)

Faulting

Faulted

Abbildung 3.1 Prozess Instanz Zustandsmodell

Zustand Bedeutung Ubergang Bedeutung

Der Prozess wurde bereitgestellt und steht zur Instanziie- 1) Instanziierende Nachricht erfolgreich
rung bereit. erhalten.

Initial

Seite 28

Instantiated | Der Prozess wurde instanziiert. (2) | Ausfuhrung der Prozessinstanz hat begonnen.
Running Die Prozessinstanz wird ausge- | (3) | Prozessinstanz wird in den Ruhemodus versetzt.
fahrt.
(5) | Auftreten eines nichtbehandelten Fault wéhrend der Prozessaus-
fuhrung.
(7) | Prozessinstanz wird erfolgreich abgeschlossen.
(9) | Prozessinstanz wird beendet. (Hier durch <exit>-Aktivitat)
Exiting Die Prozessinstanz wird beendet. | (10) | Prozessinstanz wird zur Wiederausfihrung angeregt.
(Hier durch <exit>-Aktivitat)
(11) | Prozessinstanz wird in Endzustand versetzt.
Suspended | Die Prozessinstanz wurde in den | (4) | Ausfiihrung der Prozessinstanz wird wieder aufgenommen.
Ruhemodus versetzt. (Achtung:
Nicht in der WS-BPEL 2.0 Spezi-
fikation [OASOQ7] definiert.)
Completing | Prozessinstanz wird erfolgreich | (8) | Prozessinstanz wird zur Wiederausfiihrung angeregt.
abgeschlossen.
(12) | Prozessinstanz wird in Endzustand versetzt.
Faulting Ein Fault hat die Grenze der Pro- | (6) | Prozessinstanz wird zur Wiederausfihrung angeregt.
zessinstanz erreicht. (,,root*-
Kontext) (13) | Prozessinstanz wird in Endzustand versetzt.
Exited Prozessinstanz wurde erfolgreich
beendet. (Hier durch <exit>-
Aktivitét)
Completed | Prozessinstanz wurde erfolgreich
beendet.
Faulted Prozessinstanz wurde aufgrund

eines Fault beendet.

Tabelle 3.1 Zustande und Ubergénge des Prozess Instanz Modells

3.1.2 Aktivitats-Zustandsmodell

Abbildung 3.2 zeigt das Aktivitats-Zustandsmodell, Tabelle 3.2 beschreibt die einzelnen Zustande und
ihre Ubergangsbedingungen:

Initial

@)

®)

Terminated

Completing

@®)

® Faulted,

Fault Pr

(Waiting for \ Faulted,
@ Fault Not
Request (13) (19) Propageded

Abbildung 3.2 Aktivitats-Zustandsmodell

Seite 29

Zustand

Bedeutung

Ubergang

Bedeutung

Initial Der initiale Zustand der Aktivitat. Der () Die Aktivitat wird vorbereitet.
Ubergang von von Initial zu Inactive ist
abhéngig von der Implementierung der
BPEL-Engine (vgl. [KHK+11]).
Inactive Die Aktivitdt wird noch nicht ausgefiihrt, 2 Dead-Path-Elimination wird angewendet.
sondern fir die Ausfiihrung vorbereitet.
?3) Aktivitat wird in den Ready-Zustand versetzt.
Dies tritt ein sobald die Aktivitat inaktiv ist,
alle eingehenden Links ausgewertet wurden
und die joinCondition=true ist.
4) joinCondition=false und suppressJoin-
Failure=no.
(5) Prozess wird beendet (hier durch <exit>-
Aktivitat) oder umschlieBende Vateraktivitat
hat Fault geworfen.

Ready Die Aktivitat steht zur Ausfiihrung bereit. (6) Prozess wird beendet (hier durch <exit>-
Aktivitdt) oder umschlieBende Vateraktivitét
hat Fault geworfen.

)] Ausfiihrung der Aktivitat wird begonnen.
(8) Aktivitat wird Gbersprungen.
Executing Die Aktivitat wird ausgefunhrt. 9) joinCondition=false und suppressJoin-
Fai lure=no. Aktivitat wirft einen Fault.
(10) Ausfiihrung wird beendet.
(15) Prozess wird beendet (hier durch <exit>-
Aktivitdt) oder umschlieBende Vateraktivitét
hat Fault geworfen.
Waiting for Die Aktivitdt wartet auf weitere Anwei- (13) Den Fault an umschlieBenden Scope weiterrei-
Propagation | sungen, ob der Fault an den umschlieRen- chen.
Request den Scope weitergereicht oder unter-
drickt (suppress) werden soll. Das (14) Den Fault wird verworfen und nicht an um-
Weiterreichen ist das Standardverhalten schlieRenden Scope weitergereicht.
von BPEL.
Completing Ausflihrung der Aktivitat wird erfolgreich (112) Prozess wird beendet (hier durch <exit>-
abgeschlossen. Aktivitdt) oder umschlieRende Vateraktivitét
hat Fault geworfen.
(12) Ausfiihrung der Aktivitat vollstandig abschlie-
Ren und in Endzustand versetzen.
Dead Die Aktivitdt wurde durch Dead-Path-
Elemination in den Endzustand Dead
versetzt.
Terminated Die Aktivitat wurde terminiert.

Seite 30

Completed Die Ausfuhrung der Aktivitait wurde
erfolgreich beendet. In diesem Zustand
werden die ausgehenden Links der Akti-
Vitat ausgewertet.

Faulted, Fault | Die Aktivitat hat einen Fault geworfen
Propageded und diesen an umschliefenden Scope
weitergereicht.

Faulted, Fault | Die Aktivitdt hat einen Fault geworfen,
Not Propage- | diesen jedoch nicht an den umschlieRen-
ded den Scope weitergereicht.

Tabelle 3.2 Zustiande und Ubergange des Aktivitéits-Zustandsmodells

3.1.3 <scope>-Aktivitats-Zustandsmodell

Abbildung 3.3 zeigt das <scope>-Aktivitats-Zustandsmodell, Tabelle 3.3 beschreibt die einzelnen
Zustande und ihre Ubergangsbedingungen. Das <scope>-Aktivitats-Zustandsmodell ist eine Erweite-
rung des Aktivitats-Zustandsmodells.

(2b) Terminated
s Y. N
- o J
(19)
Dead @) (22)
o Termination
>\ Handling
] =
(8)
2a) (10) } Finished
(.) (24)
Executing Completing Completed
a7 (21)
5¢,
(5¢) 23)
@ Inactive ® Read ©) x
y Executlng Executing Compensation) (25)
Initial wnhout Running with Running Executing
Evem Handler s) Event Handler(s)
Compensated
5d
L (5d) (20)
(12
— v
Waiting for N
Propagation |« Fault Handling |« ~
Request (13)
(14) (16)

Faulted,
Fault Propageded

Completed with Fault

Faulted,
Fault Not Propageded

Abbildung 3.3 <scope>-Aktivitats-Zustandsmodell

Zustand Bedeutung Ubergang Bedeutung
Initial | Der initiale Zustand der Aktivitat. Der Ubergang von von Initial zu Inactive Q) Die Aktivitdt wird
ist abhéngig von der Implementierung der BPEL-Engine (vgl. [KHK+11]). vorbereitet.

Seite 31

Inactive Die Aktivitat wird noch nicht ausgefiihrt, | (2a) | Dead-Path-Elimination wird angewen-
sondern fiir die Ausfiihrung vorbereitet. det.

(2b) | Prozess wird beendet (hier durch
<exit>-Aktivitat).

(3) | Aktivitdt wird in den Ready-Zustand
versetzt. Dies tritt ein sobald die Aktivi-
tat inaktiv ist, alle eingehenden Links
ausgewertet wurden und die joinCon-
dition=true ist.

(4) | Prozess wird beendet (hier durch
<exit>-Aktivitdt) oder umschlieRende
Vateraktivitat hat Fault geworfen. Kon-
trolle wird an <terminationHandler>
weitergereicht.

Ready Die Aktivitat steht zur Ausfiihrung bereit. (5) | Ausfuhrung der Aktivitdt wird begon-
nen.

(6) | Prozess wird beendet (hier durch
<exit>-Aktivitdt) oder umschlielende
Vateraktivitat hat Fault geworfen.

(7) | Prozess wird beendet (hier durch
<exit>-Aktivitdt) oder umschlielende
Vateraktivitat hat Fault geworfen. Kon-
trolle wird an <terminationHandler>
weitergereicht.

(8) | Aktivitat wird Gbersprungen.

Termination Handling Die <scope>-Aktivitat fuhrt ihren <ter- | (9) | Aktivitét wird terminiert.
minationHandler> aus.
Executing Executing Die <scope>-Aktivitat wird ausgefihrt. | (5a) | Event Handler wird aufgrund eingehen-
without Run- | Es sind keine Event Handler installiert. der Nachricht installiert.
ning Event
Handler(s)
Executing Ein Event Handler wurde durch eingehen- | (5b) | Event Handler hat seine Ausflihrung
with Running | de Nachricht installiert und wird parallel beendet.
Event Han- | zur <scope>-Aktivitat ausgefihrt.
dler(s) (5¢) | Ein weiterer Event Handler wird auf-
grund eingehender Nachricht installiert.

(5d) | Event Handler hat seine Ausfilhrung
beendet. Weitere Event Handler werden
noch ausgefiihrt.

Executing Die <scope>-Aktivitat wird ausgefiihrt. (10) | Fault wurde wahrend der Ausfiihrung
einer Kindaktivitat geworfen.

(11) | Prozess wird beendet (hier durch
<exit>-Aktivitat).

(12) | Fault wurde wahrend der Ausfiihrung

Seite 32

einer Kindaktivitat geworfen.

(17) | Ausflihrung wird beendet.
Completing Ausflihrung der Aktivitat wird erfolgreich | (18) | Fault wurde wéhrend der Ausfilhrung
abgeschlossen. einer Kindaktivitat geworfen
(19) | Prozess wird beendet (hier durch
<exit>-Aktivitat).
(20) | Fault wurde wahrend der Ausfilhrung
einer Kindaktivitat geworfen.
(21) | Ausfihrung der Aktivitdt vollstandig
abschlieRen.
Completed Die Ausfiihrung der Aktivitat wurde er- | (22) | Prozess wird beendet (hier durch
folgreich beendet. In diesem Zustand <exit>-Aktivitat).
werden die ausgehenden Links der Aktivi-
tat ausgewertet. (23) | <compensationHandler> wird aufge-
rufen (z.B. durch <compensateSco-
pe>).
(24) | CH wurde nicht aufgerufen und Prozess-
instanz kommt in den Endzustand.
Compensation Executing | Die <scope>-Aktivitat wird kompensiert. | (25) | Kompensation wird beendet.
Fault Handling Die <scope>-Aktivitat verarbeitet einen | (13) | Fault wurde nicht verarbeitet oder wei-
aufgetretenen Fault. tergereicht.
(16) | Fault wurde verarbeitet und nicht wei-
tergereicht.
Waiting for Propagation | Die Aktivitat wartet auf weitere Anwei- | (14) | Den Fault an den umschlieRenden Sco-
Request sungen, ob der Fault an den umschlieRen- pe Weiterreichen.
den Scope weitergereicht oder unterdriickt
(suppress) werden soll. Das Weiterrei- | (15) [Den Fault wird verworfen und nicht an
chen ist das Standardverhalten von BPEL. umschlieRenden Scope Weitergereicht.
Dead Die Aktivitdit wurde durch Dead-Path-
Elemination in den Endzustand Dead
versetzt.
Terminated Die Aktivitat wurde terminiert.
Finished Die <scope>-Aktivitdt kann nicht mehr
kompensiert werden. Prozessinstanz hat
Endzustand erreicht.
Compensated Der Scope wurde erfolgreich kompen-

siert.

Completed with Fault

Ein Fault wurde in einem <faultHand-
ler> bearbeitet und nicht weitergereicht.

Faulted, Fault Propageded

Die Aktivitat hat einen Fault geworfen und
diesen an umschlieenden Scope weiter-

Seite 33

gereicht.

Faulted, Fault Not Die Aktivitdt hat einen Fault geworfen,
Propageded diesen jedoch nicht an den umschlieRen-
den Scope weitergereicht.

Tabelle 3.3 Zustande und Ubergénge des <scope>-Aktivitits-Zustandsmodells

3.1.4 <invoke>-Aktivitits-Zustandsmodell

Abbildung 3.4 zeigt das <invoke>-Aktivitats-Zustandsmodell. Die <invoke>-Aktivitat kann explizi-
te Fault Handler sowie Compensation Handler definieren. Eine solche <invoke>-Aktivitat ist seman-
tisch aquivalent zu einer <scope>-Aktivitat, die eine <invoke>-Aktivitat enthalt [OASO7].

Terminated

O

‘ Finished

-
Executing '_. C ing »f compl 4) @
Compensation
Executing

Compensated

Inactive

Preparing
Message

Message
Prepared

Initial Invoking

|

Waiting for
Prc i

Fault Handling
Request

Faulted,
Fault Propageded

Completed with Fault

Faulted,
Fault Not Propageded

Abbildung 3.4 <invoke>-Aktivitats-Zustandsmodell

Die in Abbildung 3.4 dargestellten drei neuen Unterzustéande innerhalb des Executing-Zustands haben
folgende Bedeutungen:

e Preparing Message:
Die zu versendende Nachricht wird vorbereitet.

e Message Prepared:
Die zu versendende Nachricht steht zum Versandt bereit.

e Invoking:
Der externe Service wird aufgerufen. Im synchronen Fall verbleibt die <invoke>-Aktivitat
in diesem Zustand bis die reply-Nachricht erhalten wurde.

Seite 34

3.1.5 Schleifen-Zustandsmodell

Abbildung 3.5 zeigt das Schleifen-Zustands-Modell fiir die sequenzielle <forEach>-, die <repeat-
Unti I>- sowie die <whi le>-Aktivitét:

Dead Terminated

O

Executing

Execute Child Activity
and Evaluate Loop
Waiting for Iteration
Decision Complete
Waiting for

Propagation
Request

|

Completed

Faulted,
Fault Propageded

Faulted,
Fault Not Propageded

Abbildung 3.5 Schleifen-Zustandsmodell

Die in Abbildung 3.5 dargestellten drei Unterzustdnden des Executing-Zustands haben folgende Be-
deutungen:

e Execute Child Activity and Evaluate Loop:
Die Aktivitét innerhalb der Schleife wird ausgefthrt.

e Waiting for Decision:
Die Schleifen-Aktivitat wartet auf das Ergebnis der Auswertung der Abbruchbedingung.

e [teration Complete:
Die Iteration wurde beendet.

3.1.6 Link-Zustandsmodell

Abbildung 3.6 zeigt das Link-Zustandsmodell, Tabelle 3.4 beschreibt die einzelnen Zustande und ihre
Ubergange:

@) True

(1) @) 3)
.—>(Undetermined H Ready HEvaluated ®)

Initial

False

4)

A 4

— 5
F\’/:/:g;gg“figg ®) Faulted,
Requast Fault Propageded

(6)
Faulted,
Fault Not Propageded

Abbildung 3.6 Link-Zustandsmodell

Seite 35

Zustand

Bedeutung

Ubergang

Bedeutung

Initial Der Link wurde noch nicht instanziiert. () Der Link wird instanziiert.
Undetermined Der Status des Links wurde noch nicht 2 Die Auswertung des Links wird begon-
ausgewertet. nen.
Ready Der Link steht zur Auswertung bereit. 3) <transitionCondition> des Links
wird ausgewertet.
4) Die Auswertung des Links hat zu einem
Fault gefiihrt.
Evaluated Der Link wurde ausgewertet. @) Der Linkstatus wird auf true gesetzt.
(8) Der Linkstatus wird auf false gesetzt.
Waiting for Propa- | Ein Fehler ist wahrend der Auswertung (5) Den Fault an den umschlieRenden Scope
gation Request aufgetreten. weiterreichen.
(6) Den Fault wird verworfen und nicht an

umschlielenden Scope weitergereicht.

Faulted, Fault
Propageded

Die Auswertung des Links hat einen Fault
geworfen und diesen an den umschlie3en-
den Scope weitergereicht.

Faulted, Fault Not

Die Auswertung des Links hat einen Fault

Propageded geworfen und diesen nicht an den um-
schlieBenden Scope weitergereicht.
True Der Linkstatus ist true.
False Der Linkstatus ist false.

Tabelle 3.4 Zustande und Ubergange des Link-Zustandsmodells

3.2 Formales Vorgehen bei der choreographiebasierten Konsolidierung
von BPEL-Prozessen

Der folgende Abschnitt beschreibt das VVorgehen beim Konsolidieren der BPEL4Chor-Choreographie.

Definition 3.2.1: PBD ist die Menge der in einer BPEL4Chor-Choreographie enthaltenen PBDs (Par-
ticipant Behavior Descriptions). Jede PBD ist durch einen QName eindeutig bezeichnet.

Definition 3.2.2: PT ist die Menge der in einer Topology enthaltenen Participant Types. Jeder Partici-
pant Type ist durch einen NCName eindeutig bezeichnet. Durch das Attribut participantBehavi-
orDescription, das einen QName darstellt, wird die Verbindung zur zugehdrigen PBD hergestellt.

Definition 3.2.3: P ist die Menge der in einer Topology enthaltenen Participants sowie Participant
Sets. Jeder Participant sowie jedes Participant Set ist durch einen NCName eindeutig bezeichnet.

Seite 36

Durch das Attribut type, das einen NCName darstellt, wird die Verbindung zum zugehdrigen Partici-
pant Type hergestellt.

Definition 3.2.4: ML ist die Menge der in einer Topology enthaltenen Message Links. Jeder Message
Link ist durch einen NCName eindeutig bezeichnet.

Definition 3.2.5: Als choreographie-intern kommunizierende Aktivitaten bezeichnen wir alle senden-
den und empfangenden Paare von Aktivitaten, die ihre Kommunikation auf die Choreographie be-
schranken.

Die Menge PBD erhalten wir, indem wir die gegebene Choreographie entpacken und die dort enthal-
tenen PBDs als abstrakte BPEL-Prozesse einlesen. Die Mengen PT, P sowie ML erhalten wir durch
Einlesen der Topology-Datei aus der Choreographie.

3.2.1 Anlegen des konsolidierten BPEL-Prozesses

Bevor wir die eigentliche Konsolidierung durchfiihren, tberflihren wir zunéchst die PBDs der Choreo-
graphie in einen neuen ausfiihrbaren BPEL-Prozess. Hierzu wird ein neuer leerer BPEL-Prozess ange-
legt in den anschlielend eine <Flow>-Aktivitét eingeflgt wird. In diese <Flow>-Aktivitat werden nun
alle PBDs als neue <scope>-Aktivititen eingefligt, inklusive ihrer Variablen, MessageExchanges,
CorrelationSets (Korrelationsmengen), Event Handler sowie Fault Handler. Wir verwenden hier eine
<Flow>-Aktivitdt um die Parallelitat der urspriinglichen Choreographie in den neuen <scope>-Akti-
vitaten beizubehalten. Abbildung 3.61 zeigt dies anhand einiger schematischer Beispielfragmente: Die
Choreographie enthdlt die drei PBDs PBD1, PBD2 sowie PBD3, die samt ihrer enthaltenen Daten-
sowie Kontrollflusselemente in den neuen Prozess ProcessMerged kopiert werden. Diese kommuni-
zieren Uber die drei Message Links ml1, ml2 sowie mI3 miteinander. Auflistung 3.0 zeigt die algorith-
mischen Schritte beim Kopieren der PBDs in den neuen ausfiihrbaren Prozess ProcessMerged.

PBD1 PBD2 PBD3 ‘ FH H EH ‘

Flow

Receivel 7 Receivel Receivel

4

| Aosient @Qi ’
%) S

Invokel &

Assignl

Invoke2 Assign3
ProcessMerged

Assign2

v
@
a
c
@
>
a
®

MergedFlow

ScopePBD1 ScopePBD2 ScopepBD3_ | M

name="ml1* sender=*PBD1* receiver=*PBD2*
sendActivity="“Invokel* receiveActivity=“Receivel* Sequence Flow Flow
messageName=*“msg1*“ [wwm1 [M&Mlj
O =

Receivel

—

+
[Ass\'gnlj

Y

Invokel Assignl

—/

name=“ml2* sender=*“PBD2*“ receiver=“PBD1*
sendActivity="Replyl* receiveActivity=“Invokel*

messageName=*msg1*
O oo =

fnvoke2

Assignl

Assign2

name=“ml3*“ sender=“PBD2*“ receiver=“PBD3* \\
sendActivity="“Invokel* receiveActivity=“Receivel*

messageName=*“msg2*
O =

7

Abbildung 3.61 Anlegen des konsolidierten BPEL-Prozesses aus PBDs der urspriinglichen Choreographie (nicht dar-
gestellt sind die Datenelemente Variablen, MessageExchanges sowie CorrelationSets)

Tabelle 3.4b erklart die in Auflistung 3.0 verwendeten Funktionen:

Seite 37

Notation Definition

Funktion die einen neuen leeren BPEL Prozess mit dem Namen name
createNewBPELProcess(name) suriickliefert
Funktion die eine neue Aktivitdt vom Typ actType und dem Namen
actName zurlckliefert
Funktion die alle MessageExchanges aus Aktivitat actl nach act2

createNewActivity(actType, actName)

copyMessageExchanges(actl, act?) kopiert (actl sowie act2 kdnnen vom Typ <scope> oder <process>
sein)
Funktion die alle CorrelationSets aus Aktivitdt actl nach act2
copyCorrelationSets(actl, act2) kopiert (actl sowie act2 kdnnen vom Typ <scope> oder <process>
sein)

Funktion die alle variables aus Aktivitat actl nach act2 kopiert
(actl sowie act2 kénnen vom Typ <scope> oder <process> sein)
Funktion die alle FHs aus Aktivitat actl nach act2 kopiert (actl sowie
act2 kbénnen vom Typ <scope> oder <process> sein)

Funktion die alle EHs aus Aktivitat actl nach act2 kopiert (actl sowie
act2 koénnen vom Typ <scope> oder <process> sein)

copyVariables(actl, act2)

copyFaultHandlers(actl, act?)

copyEventHandlers(actl, act2)

copyActivity(actl, act2) Funktion die Aktivitét actl sowie alle Subaktivitaten nach act2 kopiert
Funktion die neuen <catchAl I>-Fault Handler in Aktivitat act anlegt,
createNPCatchAllFH(act) der nur eine <compensate>-Aktivitat enthdlt (NP steht fir ,Non-

Propagating” vgl. Abschnitt 3.2.1.1)

Funktion die Uberprift ob Aktivitdit act einen <catchAll>-Fault
Handler definiert

Tabelle 3.4b Notation fiir Funktionen und Mengen des Konsolidierungs-Algorithmus

hasCatchAllIFH(act)

(1) MergedProcess = CreateNewBPELProcess(,ProcessMerged*)

(2) MergedProcess.setActivity(CreateNewActivity(<flow>, ,MergedFlow"))

(3) foreach (pbdin PBD) do
(4) newScope = CreateNewActivity(<scope>, ,Scope“+pbd.name)

(5) copyMessageExchanges(pbd, newScope)

(6) copyCorrelationSets(pbd, newScope)
(7) copyVariables(pbd, newScope)

(8) copyFaultHandlers(pbd, newScope)
(9) if (not hasCatchAllFaultHandler(pbd))
(10) createNPCatchAllIFH(newScope)
(11) fi

(12) copyEventHandler(pbd, newScope)
(13) copyActivity(pbd, newScope)

(14) MergedProcess.getActivity().add(newScope)
(15) od

Auflistung 3.0 Kopieren der PBDs in neue <scope>-Aktivitaten des neuen BPEL-Prozesses

Seite 38

Da es sich bei den PBDs um abstrakte BPEL-Prozesse handelt und technische Eigenschaften, wie bei-
spielsweise die PartnerLinks nicht in den kommunizierenden Aktivititen enthalten sind, missen
diese nach der Generierung des Kontroll- sowie Datenflusses in den neuen ausfilhrbaren BPEL-
Prozess aus der Grounding-Datei ibernommen werden (vgl. Abschnitt 3.4). Doch zunéchst folgt in
den néchsten beiden Abschnitten die Beschreibung der Generierung des Daten- sowie Kontrollflusses
aus den Message Links.

3.2.1.1 Ubernehmen der Fault Handler in konsolidierten Prozess

Beim Ubertragen der urspriinglichen PBDs in den neuen konsolidierten Prozess in Form neuer <sco-
pe>-Aktivitdten missen wir darauf achten, dass mégliche nicht gefangene Faults aus den <scope>-
Aktivitaten nicht in den Prozessscope durchdringen, da diese den Ablauf des gesamten Prozesses
beinflussen kdnnen (Zeile 9-11 Auflistung 3.0). Diese hatte eine verdnderte Ausfiihrungssemantik des
konsolidierten Prozesses um Vergleich zur urspriinglichen Choreographie zur Folge.

e
mocessMerged \ GocessMerged \
mergedFlow \ mergedFlow \
@opePBDl\ ScopePBD2 \ ScopePBDS\iﬂi éopePBDl\ ScopePBD2 \ ScopePBD3M\i
Flow o Flow Sequence Flow Flow

\' Receivel | Receivel

\/ J

Assignl
-

7
Feot

Receivel

(=)
A 2 | kel " A 1
ScopePBD2 erhilt Nach- Ssien

Receivel | Receive1 | Receivel

Eingang Msg

Invokel

Assignl

Invokel

Assignl

Assignl

. . richt und instanziiert Pro- .
Assign2 Invoke2 Assign3 Assign2 Invoke2 Assign3
¢ ¢ cessMerged. € €
[eomarsate |
_ < .
GocessMerged \ ‘/ProcessMerged \
. A
mergedFlow mergedFlow

) R
GopePBDl\ @opePBDz ;’4 \ Scopepsoa\iﬂi

7y
Sequence Flow £ V([Flow

\
éopePBDl\ ‘/S/CrprePBDZK,,V’ ,;‘,4‘\\ Sc0pePBD3\l“i

Sequence

Flow

Fault wird
weitergeleitet

Receivel Receivel

Receivel | Receive1 |f Receivel

| e

o

o) || o))) ()| [rowrmsnaurgmn | G0 G))
A\ 24 ——

ten ProcessMerged aus.
Invoke2 pssign? Invoke2

P
Invokel Assignl Invokel L Assignl =
v

Assign2

Abbildung 3.61b Verandertes Fehlerverhalten in konsolidiertem Prozess durch nicht gefangenen Fault

Abbildung 3.61b skizziert das Problem der nicht gefangenen Faults: Nachdem die drei PBDs PBD1,
PBD2 und PBD3 in die <scope>-Aktivitaten ScopePBD1, ScopePBD2 sowie ScopePBD3 des kon-
solidierten Prozesses ProcessMerged kopiert wurden, erhélt ScopePBD2 eine Nachricht und instanzi-
iert den Prozess. AnschlieRend tritt ein Fehler in der <assign>-Aktivitat Assignl auf und ein Fault
wird ausgeldst. In PBD2 wirde dieser Fehler lediglich bis zum Prozessscope gelangen und dort den
Prozess terminieren, falls er nicht zuvor aufgefangen wurde. Im konsoldierten Prozess dagegen wirkt
sich ein solcher mdglicher Fehler auf den gesamten Prozessscope von ProcessMerged aus und termi-
niert im unginstigsten Fall auch die beiden anderen <scope>-Aktivitaten ScopePBD1 sowie Scope-
PBD2. Um einem solchen verdnderten Fehlerverhalten entgegenzuwirken, werden die zu konsolidie-
renden PBDs der Choreographie auf <catchAl 1>-Zweige in den Fault Handlern untersucht, die jeden
nicht in einem separaten <catch>-Zweig definierten Fault auffangen. Existieren solche Zweige
bereits miissen keine Anderungen vorgenommen werden, andernfalls wird in die neue <scope>-Akti-

Seite 39

vitat ein neuer <catchAll>-Handler hinzugefigt, der lediglich eine <compensate>-Aktivitat und
keine <rethrow>-Aktivitat enthélt (vgl. [OAS07] Abschnitt 12.5.1 Default FCT-Handlers).

Y

Abbildung 3.61c Ein <catchAl I>-Fault Handler mit einer <compensate>-Aktivitat sowie die entsprechende XML-
Syntax

FH <catchAll>

<catchAll>
<compensate />
</catchAll>

Compensate

FH <catchAll>

(i

3.2.2 Generierung des Kontrollflusses

Die grundlegende Idee zur Generierung des expliziten Kontrollflusses im konsolidierten Prozess
basieren auf der Uberlegung den ehemaligen Nachrichtenfluss zwischen den Teilnehmern der Choreo-
graphie mit Hilfe des Austauschs der nachrichtenversendenden- bzw. empfangenden Aktivitaten durch
Synchronisationsaktivitaten zu emulieren. Wir werden hierzu <assign>- sowie <empty>-Aktivitaten
verwenden. Der folgende Abschnitt beschreibt das korrekte Einbinden dieser Aktivitdten in den
Kontrollfluss und der Abschnitt 3.2.2 zeigt welche Daten durch die neuen <assign>-Aktivitaten ko-
piert werden.

Zuerst werden wir einige grundsétzliche Funktionen und Mengen definieren (vgl. Tabelle 3.5), deren
genaue Implementierungen im Kapitel 4 gezeigt werden.

Notation Definition

null Steht flr die leere Menge g
pbd(name) Funktion die aus der Menge PBD die PBD mit dem QName name liefert
var(x,name) Funktion die aus der PBD mit dem Namen name die Variable x liefert
out(a) Funktion die zu einer gegebenen Aktivitdt a die Menge aller ausgehenden Links liefert
in(a) Funktion die zu einer gegebenen Aktivitat a die Menge aller eingehenden Links liefert
c(l,a) Funktion die zu einem .gegebenen ausgehenden Link | einer Aktivitdit a die
' transitionCondition liefert
jc(a) Funktion die zu einer gegebenen Aktivitdt a die joinCondition liefert
prel(a) Fur!.ktio.n die 2u ei.ner. gegeﬂbenen. Alftivitat a die. Menge aller Vprgangeraktivitaten
zurickliefert, die mit dieser iber die eingehenden Links verbunden sind
sucel(a) Fur!.ktio.n die 2u eiper_ geggpenen_ Aktivitat a die .Menge aller Na_chfolgeraktivitéten
zuriickliefert, die mit dieser iber die ausgehenden Links verbunden sind
Funktion die zu einer gegebenen Aktivitdt a die Menge der Vorgangeraktivitaten
pre(a) zuriickliefert, die nicht per eingehende Links mit dieser verbunden sind, jedoch vor
Beginn von a beendet sein miissen
Funktion die zu einer gegebenen Aktivitdt a die Menge der Nachfolgeraktivitaten
succ(a) zuruckliefert, die nicht per ausgehende Links mit dieser verbunden sind, jedoch nach
dem Beenden von a ausgefiihrt werden
Funktion die zu einer gegebenen Aktivitat a deren Aktivitatstyp zurtckliefert (mdgliche
Aktivitatstypen sind hier: <invoke>, <receive>, <reply> <assign>,
typeof(a) <validate>, <throw>, <wait> <empty> <exit> <extensionActivity>,
<rethrow>, <compensate>, <compensateScope>, <sequence>, <if>, <while>,
<repeatuntil>, <pick>, <flow>, <forEach>, <scope>, <process>)
Funktion die zu einer gegebenen Aktivitdt a die umgebende Aktivitat zuriickliefert
par(a) (Mdgliche Typen sind hier: <scope>, <flow>, <sequence_>, <if>, <while>,
<repeatUntil>, <pick>, <forEach>, CompensationHandler (CH),
TerminationHandler (TH), EventHandler (EH), FaultHandler (FH), <process>)
getSendActivity(ml) Fun_kt.iQ.n (_jie zu einem gegebenen Message Link ml aus der Menge ML die senden-de
Aktivitét liefert

Seite 40

Funktion die zu einem gegebenen Message Link ml aus der Menge ML die empfangen-

getReceiveActivityml) | 4o ajivitat liefert

Funktion die zu einer gegebenen <invoke>-Aktivitat inv prift, ob diese asynchron

IsinvokeAsync(inv) kommuniziert (sie definiert nur die inputVariable)

Funktion die zu einer gegebenen <invoke>-Aktivitat inv prift, ob diese synchron

IsinvokeSync(inv) kommuniziert (sie definiert input- als auch outputvariable)

Funktion die zu einem gegebenen Link | und einer gegebenen Aktivitét a in a eine neue

createSource(l,a) <source> flr diesen Link anlegt

Funktion die zu einem gegebenen Link | und einer gegebenen Aktivitdt a in a einen

createTarget(l,a) neuen <target> flr diesen Link anlegt

Funktion die zu zwei gegebenen Aktivitaten a und b den von a ausgehenden und in b

connector(a,b) eingehenden Link zurickliefert

setJC(act, jc) Funktion die in der gegebenen Aktivitat act die <joinCondition> jc setzt

Funktion die alle Vorkommen der Variable v, durch v, in Aktivitat a und allen Nachfol-

replacevar(vy, vz, a) geraktivitdten ersetzt.

Tabelle 3.5 Notation fiir Funktionen und Mengen des Konsolidierungs-Algorithmus (Erweiterungen)

(1) foreach (mlin ML) do
(2) s =getSendActivity(ml)
(38) r=getReceiveActivity(ml)

(4) if (typeof(s) == <reply>)
(5) continue
®) fi

(7) if (typeof(s) == <invoke> && islnvokeAsync(s))
(8) asyncMerge(s, r)
9 fi

(10) if (typeof(s) == <invoke> && islnvokeSync(s))
(12) syncMerge(s, r)

(12) fi

(13)od

Auflistung 3.1 Pseudocode fur Merge-Algorithmus

Anmerkungen zum Pseudocode aus Auflistung 3.1:

(1): Falls s eine <reply>-Aktivitat ist, Uberspringe den Message Link ml: Der Message Link ml be-
zieht sich auf eine <reply>-Aktivitat einer synchronen <invoke>-Aktivitat (vgl. Abschnitt 2.3.1
Regel Il. der Message Links), die zwei Message Links mit letzterer verbindet. Ein Message Link ent-
hélt hierbei die <invoke>-Aktivitat als sendende Aktivitat und der hier gefundene selbige als emp-
fangende. Die <invoke>-Aktivitat wird nur dann behandelt, wenn sie als sendende Aktivitat definiert
wurde.

(2): Falls s eine asynchrone <invoke>-Aktivitét ist, diese also nur die inputVariable definiert,
liegt ein asynchrones Kommunikationsmuster vor. Fir diesen Fall werden wir nun zwei Konsolidie-
rungsvarianten vorstellen.

Variante 1: Wir entfernen s und r und fligen eine neue <assign>-Aktivitit a ein. Die eingehenden
Links von s werden zu den eingehenden Links von a (vgl. Abbildung 3.7). Die Menge der eingehen-

Seite 41

den Links von r wird zu der Menge der eingehenden Links der Nachfolgeaktivitaten von r (hier B2)
hinzugefugt. Die Menge der ausgehenden Links von s und r wird zur Menge der ausgehenden Links
von a. Die joinConditions der Nachfolgeaktivitaten von r sind die Konjunktion der zuvor in r ein-
gehenden Links (hier 13) sowie der aus r ausgehenden und in diese Aktivitdten eingehenden Links
(hier 14). Auflistung 3.2 zeigt den Pseudocode flr die asyncMerge-Methode.

ml
Invoke O-- -

Abbildung 3.7 Asynchrone Konsolidierung Variante 1

(1) asyncMerge(s, 1)

(2) begin

(3) a=createNewActivity(<assign>, ,a")
(4) succsR = succl(r) + succ(r)

(5) foreach (actin succsR) do

(6) inActFromR = connector(r,act)

©) foreach (l'in in(r)) do

(8) createTarget(l, act)

9) setJC(act, (I AND inActFromR) + (jc(act) != null ? OR jc(act) : null))
(10) od

(12) od

(13) foreach (linin(s)) do
(14) createTarget(l, a)
(15) od

(216) foreach (I in out(s)) do
17) createSource(l, a)
(18) od

(19) foreach (lin out(r)) do
(20) createSource(l, a)
(21) od

(22) remove(s)

(23) remove(r)

(24)end

Auflistung 3.2 Pseudocode asyncMerge-Methode Variante 1

Variante 1 verwendet hier nur eine <assign>-Aktivitdt und verzichtet auf eine synchronisierende
<empty>-Aktivitat auf der Empfangerseite. Wir wollen kurz anhand des Allen-Kalkdls [AL83] zei-
gen, dass der Kontrollfluss der urspriinglichen simplen Beispielchoreographie aus Abbildung 3.7 er-
halten bleibt und anschliefend auf die Problematik eingehen, die mit dieser Variante einhergeht.
Abbildung 3.9 zeigt die Intervallrelationen vor und nach der Anwendung der Variante 1 des Konsoli-

Seite 42

dierungsalgorithmus fiir asynchrone <invoke>-Aktivitaten. Da die beiden Tabellen gleich sind, bleibt
der Kontrollfluss der urspriinglichen Choroegraphiefragmente in diesem simplen Beispiel erhalten.

) G
S gt
[n2 [52]

Abbildung 3.9 AsyncMerge Variante 1: Die Beispielfragmente aus Variante 1 sowie die dazugehdrige Intervallrelationen
vor und nach der Konsolidierung.

In der urspriinglichen Choreographie wird auf der sendenden Seite zuerst Al ausgefiirt und anschlie-
Rend <invoke> s und dann A2. Auf der Empfangerseite wird zuerst B1 ausgefuhrt und nach dem Er-
halt der Nachricht in <receive> r B2. Im konsolidierten Fragment der rechten Seite bleibt diese Kon-
trollflussabhangigkeit erhalten: Zuerst wird Al ausgefuhrt und anschliefend <assign> a und dann
A2. B2 wird erst ausgefuhrt nachdem B1 und a ausgefthrt wurden.

Wir haben jetzt jedoch ein etwas komplexeres Beispiel, bei dem es mit der vorherigen Variante zu
Problemen bzw. Anderungen des Kontrollflusses kommt.

Jc(B2) = (14 AND (I3 OR I8))
Jc(B4) = (19 AND (I3n OR I8n))

Abbildung 3.10 AsyncMerge Variante 1 Beispiel 2

Abbildung 3.10 zeigt ein erweitertes Beispiel fiir die Variante 1 des asynchronen Konsolidierungsalgo-
rithmus. Im Gegensatz zum ersten simplen Beispiel miissen hier weitere Links hinzugefuigt werden um
die ehemals in die empfangende Aktivitat r eingehenden Links fur ihre Nachfolgeaktivitaten zur Ver-
fiigung zu stellen (die Links 13n sowie 18n). Je mehr Nachfolgeaktivititen r besitzt, umso mehr neue
Verlinkungen mussen hergestellt und die entsprechenden joinConditions angepasst werden (vgl.
Abbildung 3.11).

() (o) ()

Jc(B2) = (14 AND (I3 OR 18))
Jc(B4) = (19 AND (I3n OR 18n))
Jc(B5) = (110 AND (I3n3 OR [8n2))

Abbildung 3.11 Vervielfachung der Links

Seite 43

r.suppressjoinFailure = no ‘ B2.suppressloinFailure = yes
B2.suppressJoinFailure = yes

(]

‘ joinCondition=false ‘

ml
. e

AND

| Dead—Path—EIimination‘

r.suppressloinFailure = no ‘ B2.suppressloinFailure = yes
B2.suppressloinFailure = yes

Abbildung 3.12 Veranderter Kontrollfluss bei Variante 1

Das eigentliche Problem stellt jedoch der hier verédnderte Kontrollfluss dar, wenn wir uns das Attribut
suppressJoinFai lure anschauen: Angenommen die <receive>-Aktivitat r aus dem ersten Bei-
spiel aus Abbildung 3.7 hat das Attribut suppressJoinFailure auf ,,no" gesetzt. Das Vorgehen
zum Evaluieren der von Aktivitdt B1 ausgehenden und in Aktivitat r eingehenden Links sieht folgen-
dermafen aus (vgl. WS-BPEL 2.0 Spezifikation [OAS07] Abschnitt 11.6.2 Link Semantics):

1. Sobald Aktivitat B1 beendet und kein Fault an den umschlieBenden Scope weitergereicht
wurde, werden die transitionConditions der ausgehenden Links evaluiert. Dies ist der
Ubergang aus dem Completing-Zustand zum Completed-Zustand des Aktivitats-
Zustandsmodells aus Abschnitt 3.1.2. Nun werden die ausgehenden Links (hier 13) instanziiert
und evaluiert. Wird keine explizite transitionCondition angegeben, so wird der Link zu
true evaluiert (dargestellt durch den Ubergang von Undetermined — Ready — Evaluated
aus dem Link-Zustandsmodell Abschnitt 3.1.6).

2. Fur jede Aktivitat, die eingehende Links von B1 hat (hier r) wird Gberprift, ob diese Aktivitat
fiir die Ausfuhrung bereitsteht. Dies wird durch den Zustandsiibergang von Initial — Inactive
im Aktivitats-Zustandsmodell dargestellt. Trifft dies zu, so wird die joinCondition von r
ausgewertet. Ist das Ergebnis true so wird r ausgefiihrt (dargestellt durch den Ubergang
Inactive — Ready — Executing im Aktivitats-Zustandsmodell). Bei einer Auswertung zu
false wird jedoch ein bpel : joinFai lure-Fault geworfen, da wir das Attribut suppress-
JoinFailure auf ,,no“ gesetzt haben und somit keine Dead-Path-Elimination durchgefihrt
wird (dargestellt durch den Ubergang Executing — Waiting For Propagation Request).

Wenden wir jetzt unsere Variante 1 der Konsolidierung an, so wird der Kontrollfluss veréndert. Dies
veranschaulicht Abbildung 3.12.

Ein naiver Ldsungsansatz fur dieses Problem ware das Attribut suppressJoinFailure der Nach-
folgeraktivitdten von r auf ,,no* zu setzen, doch auch dies fuhrt zu einer Veranderung des Kontroll-

Seite 44

flusses, wenn z.B. die Nachfolgeraktivititen noch andere VVorgangeraktivititen haben. Abbildung 3.13
veranschaulicht diesen Sachverhalt:

ml
Invoke - -- |

r.suppressloinFailure = no
B2.suppressloinFailure = yes

| S

Al B1 ‘ joinCondition=false

] Bl
[sz }m{D[Recewe] . #

r.suppressloinFailure = no B2.suppressloinFailure = no
B2.suppressJoinFailure = yes Jc(B2)=(I13 AND I3) OR I5

B2.suppressloinFailure = no
Jc(B2)=(I3 AND I3) OR I5

‘ joinCondition=false ‘

Abbildung 3.13 Propagieren des suppressJoinFai lure-Attribut-Wertes an Nachfolgeaktivitaten von r

Um die zuvor beschriebenen Probleme der Konsolidierung der Variante 1 zu vermeiden werden wir
jetzt die zweite Variante vorstellen:

Variante 2: Wir entfernen s und r und fligen eine neue <assign>-Aktivitit a sowie eine neue <emp-
ty>-Aktivitat b auf der empfangenden Seite ein. Die eingehenden Links von s werden zu den eingeh-
enden Links von a. Die ausgehenden Links von s werden zu den ausgehenden Links von a. Entsprech-
endes gilt fur die Empféangerseite: Die eingehenden Links von r werden zu den eingehenden Links
von b und die ausgehenden von r zu den ausgehenden von b. Abbildung 3.14 zeigt dies an einem
simplen Beispiel. Um den Kontrollfluss der beiden Fragmente herzustellen, figen wir einen neuen
Link (hier 15) ausgehend von a und eingehend in b ein. Die joinCondition von b ist die Konjunk-
tion der eingehenden Links 13 und I5 flr den Fall, dass noch keine joinCondition gesetzt wurde. Ist
bereits eine joinCondition vorhanden, so wird diese per Konjunktion mit dem neuen Link I5 kom-
biniert (vgl. Abschnitt 3.2.2.1.2 <targets> und ihre <joinCondition>). Mit dieser Variante ent-
fallt die Vervielfachung der Links in den Nachfolgeaktivitdten von r, wie sie bei der Variante 1 auf-
tritt. Auch das Problem des veranderten Kontrollflusses durch das Propagieren des suppressJoin-
Fai lure-Attributs entfallt, da die neue <empty>-Aktivitat b dessen Wert nun von der urspriinglichen
<receive>-Aktivitat r Ubernimmt.

Abbildung 3.14 Asynchrone Konsolidierung Variante 2

Seite 45

(1) asyncMerge(s, 1)
(2) begin

(5) foreach (Iinin(s)) do
(6) createTarget(l, a)

(7) od

(8) foreach (Iin out(s)) do
9) createSource(l, a)
(10) od

(11) foreach (linin(r)) do
(12) createTarget(l, b)
(13) od

(14) foreach (lin out(r)) do
(15) createSource(l, b)

(16) od
(17) nl=new Link()

(18) createSource(nl, a)
(19) createTarget(nl, b)
(20) setIC(b,(nl AND jc(r)))
(21) remove(r)

(22) remove(s)

(23) end

(3) a=createNewActivity(<assign>, ,a"“)

(4) b =createNewActivity(<empty>, ,b")

Auflistung 3.3 Pseudocode asyncMerge-Methode Variante 2

Auflistung 3.3 zeigt den Pseudocode fir die Variante 2 des asynchronen Konsolidierungsalgorithmus.
Hierzu sei angemerkt, dass dieser nur einen ersten Uberblick iiber die nétigen Schritte geben soll und
noch nicht vollstandig ist. Wir werden ihn im Verlauf des Kapitels vervollstdndigen und besonders das
genaue Definieren der neuen joinConditions sowie auf den Einfluss der umschlieBenden Aktivi-
taten und Glltigkeitsbereiche der sendenden und empfangenden Aktivitaten eingehen. Zusatzlich wird
das Behandeln der CorrelationSets beim Konsolidieren gezeigt (vgl. Abschnitt 3.2.3.2).
Abbildung 3.15 zeigt die Intervallrelationen vor und nach der Anwendung der Variante 2 des Konsoli-
dierungsalgorithmus fiir asynchrone <invoke>-Aktivitaten. Die Kontrollflussrelation in der urspriing-
lichen Situation auf der linken Seite ist identisch mit der in Abbildung 3.9. Durch das Hinzufuigen der
<empty>-Aktivitdt b im konsolidierten Prozess wird die empfangende <receive>-Aktivitit r emu-
liert und der Wert des suppressJoinFai lure-Attributs dieser in b Gbernommen.

() (o)

Invoke mi Receive
s r

) ()

Abbildung 3.15 AsyncMerge Variante 2: Die Beispielfragmente aus Variante 2 sowie die dazugehérige Intervallrelationen

vor und nach der Konsolidierung.

Seite 46

Nun werden wir den Algorithmus aus Auflistung 3.1 fiir das Konsolidieren einer synchronen <in-
voke>-Aktivitat zeigen:

(3): Falls s eine synchrone <invoke>-Aktivitat ist, diese also input- als auch outputvariable de-
finiert, existiert eine zusatzlicher Link ml* fir die zugehérige <reply>-Aktivitat. In diesem Link ist s
die empfangende Aktivitat und eine <reply>-Aktivitat y die sendende (vgl. Abschnitt 2.3.1 Regel II.
der Message Links). Somit liegt ein synchrones Kommunikationsmuster vor. Fir diesen Fall werden
wir nun ebenfalls zwei Konsolidierungsvarianten vorstellen.

Abbildung 3.16 Synchrone Konsolidierung Variante 1

Variante 1: Eine neue <assign>-Aktivitat a wird hinzugeflgt und s, r und y werden entfernt. Wie in
Abbildung 3.16 gezeigt, wird die <reply>-Aktivitdt y durch eine neue <assign>-Aktivitat a‘ ersetzt.
Analog zum asynchronen Fall, wird die Menge der eingehenden Links und die entsprechenden join-
Conditions von s und r in einer Konjunktion zu a hinzugefugt. Die ausgehenden Links missen je-
doch anders als im asynchronen Fall bearbeitet werden: Die <receive>-Aktivitat r wird beendet so-
bald die Nachricht der <invoke>-Aktivitat s empfangen wurde. Somit werden die ausgehenden Links
von r zu den ausgehenden Links von a. Die <invoke>-Aktivitat s wird beendet sobald die Nachricht
der <reply>-Aktivitit y empfangen wurde, daher werden die ausgehenden Links von s und y zu den
ausgehenden Links von a“ hinzugefiigt. Die eingehenden Links von y werden zu den eingehenden
Links von a“.

Notation Definition

Funktion die zu einer gegebenen <invoke>-Aktivitat inv und einer gegebenen PBD
findReplyML(inv,pbd) | pbd den Message Link aus der Menge ML liefert, in dem inv die empfangende Aktivitat
ist und pbd die sendende PBD zu dieser

Funktion die zu einer gegebenen Aktivitat a die PBD liefert in der diese Aktivitat

getPBD(a) enthalten ist

Tabelle 3.6 Notation fiir Funktionen und Mengen des Konsolidierungs-Algorithmus (Erweiterungen)

(1) syncMerge(s, 1)

(2) begin

(3) a=createNewActivity(<assign>, ,a"“)
(4) a =createNewActivity(<assign>, ,a")
(5) replyML = findReplyML(s, getPBD(r))
(6) vy =getSendActivity(replyML)

(7) foreach (linin(r)) do

(8) createTarget(l, a)

9 od

Seite 47

(20) foreach (I'inin(s)) do
(112) createTarget(l, a)
(12) od

(13) foreach (linin(a)) do
(14) setJC(a, (I + (jc(a) != null ? AND jc(a) : null)))
(15) od

(26) foreach (Iin out(s)) do
a7) createSource(l, a’)
(18) od

(19) foreach (lin out(y)) do
(20) createSource(l, a’)
(21) od

(22) setdC(a’, jc(y))

(23) remove(s)

(24) remove(r)

(25) remove(y)

(26) end

Auflistung 3.4 Pseudocode syncMerge-Methode Variante 1

Auflistung 3.4 zeigt den Pseudocode fiir die Variante 1 des synchronen Konsolidierungsalgorithmus.
Wir wollen nun zeigen, dass der Kontrollfluss der urspriinglichen Choreographiefragmente gleich dem
des neuen Prozessmodell ist. Hierfur verwenden wir wieder die bekannten Intervallrelationen (vgl.
Abbildung 3.17). In den Fragmenten der urspriinglichen Choreographie auf der linken Seite wird zu-
erst Al ausgefiihrt und anschlieBend <invoke> s. Im Gegensatz zum asynchronen Fall wird der Kon-
trollfluss vor A2 nun blockiert bis die Anwortnachricht von <reply> y erhalten wurde. Im konsoli-
dierten Fragment auf der rechten Seite emulieren wird die Kontrollflussabhangigkeit zwischen Al,
<invoke> s sowie <receive> r durch eine <assign>-Aktivitat a. B2 wird erst ausgefihrt, wenn Al,
B1 sowie a ausgefihrt wurden. y wird durch eine weitere <assign>-Aktivitat a‘ ersetzt nach deren
Beendigung der Kontrollfluss, wie in der urspringlichen Choreographie, in A2 und B3 fortgesetzt
wird.

ml
. o

Abbildung 3.17 SyncMerge Variante 1: Die Beispielfragmente aus Variante 1 sowie die dazugehdrige Intervallrelationen
vor und nach der Konsolidierung. Die Reihen der Tabellen stehen fiir die linke Seite der Relation, die Spalten fir die rechte
Seite. ,,<“ sowie ,,>* stehen flir die zeitlichen Relationen ,\vor“ bzw. ,,nach“ (vgl. Abbildung 3.8). ,,R“ steht fir alle mdg-
lichen Relationen (<, >, m,mi, o, oi, s, si, f, fi, d, di, e).

Bei dieser Variante tritt ein &hnliches Problem, wie auch schon bei der Variante 1 der asynchronen
Konsolidierung auf: Wir verschmelzen hier die beiden kommunizierenden Aktivitdten s und r zu einer
neuen <assign>-Aktivitdt a. Angenommen s hat das suppressJoinFai lure-Attribut auf ,yes*

Seite 48

gesetzt r jedoch auf ,,no*. Welchen Wert soll nun fur dieses Attribut in a gesetzt werden ohne den
urspringlichen Kontrollfluss zu verédndern? Weiterhin besteht die Mdoglichkeit, dass s einen
Compensation sowie Fault Handler definieren kann (vgl. WS-BPEL 2.0 Spezifikation [OASQ7]
Abschnitt 10.3 Invoking Web Service Operations — Invoke). Auf diese Variante der <invoke>-
Aktivitat werden wir im Abschnitt 3.3 eingehen.

Die Abbildungen 3.18a sowie 3.18b zeigen die Problematik am Beispiel unserer Fragmente:

1a) s.suppressJoinFailure = yes 1b) a.suppressloinFailure = yes 1c) a.suppressloinFailure = no
r.suppressJoinFailure = no
joinCondition=false joinCondition=false joinCondition=false

.
AND

Dead-Path-Elimination

.
) aND
£

Dead-Path-Elimination

12>~
= P
[A2] (S]
22) 20 2
r.suppressloinFailure = no
Abbildung 3.18a Variante 1 mit nur einer <assign>-Aktivitat
joinCondition=false jomCond\t\un fa\sc JolnCondltlon falsc
' ”'>i Receive «_ ‘ assign Jll Dead-Path-Elimination ‘ Awsh bpel:joinFailure
__a
Iz 5
p

[e
e
/I
‘ Assign ‘
_a J
2=
s N e
| a2 [N
N J N J

s.suppressJo.mFa.lIure syes 3b) a.suppressloinFailure = yes 3C) a.suppressloinFailure = no
r.suppressJoinFailure = no

3a)

Abbildung 3.18b Variante 1 mit nur einer <assign>-Aktivitat: 1a) Zeigt die Prozessfragmente in der urspringlichen
Choreographie, 1b) zeigt das Ergebnis nach der Konsolidierung mit Variante 1 und dem Setzen des suppressJoin-
Failure-Attributs auf ,,yes“, 1c) zeigt das Ergebnis nach der Konsolidierung mit Variante 1 und dem Setzen des sup-
pressJoinFai lure-Attributs auf ,,no“. 2a) zeigt den Kontrollfluss bei Ausfilhrung der urspriinglichen Choreographie und
der Auswertung des Links 12 zu false: Die Dead-Path-Elimination wird durchgefiihrt. 2b) zeigt den Kontrollfluss bei
Ausfiihrung von 1b) und der Auswertung des Links 12 zu false: Auch hier wird die Dead-Path-Elimination durchgefiihrt.
2c¢) zeigt den Kontrollfluss von 1c) mit selbigen Bedingungen: Hier wird jedoch eine bpel - joinFai lure an die Umgebung
propagiert. 3a) zeigt der Kontrollfluss der urspriinglichen Choreographie bei Auswertung des Links 13 zu false: Auf der
Empféngerseite wird ein bpel - joinFailure an die Umgebung propagiert, wogegen in 3b) die Dead-Path-Elimination
durchgefiuhrt wird. 3c) hat wieder denselben Kontrollfluss, wie die urspriinglichen Choreographiefragmente.

Variante 2: Zwei neue <assign>-Aktivitdten a und a‘ werden hinzugefugt und s, r und y werden
entfernt. Zusatzlich wird eine synchronisierende <empty>-Aktivitat auf der Empfangerseite fir r ein-

Seite 49

gefiigt. Die eingehenden Links von r werden zu den eingehenden Links von b. Wie in Abbildung 3.19
gezeigt, wird die <reply>-Aktivitdt y durch eine neue <assign>-Aktivitit a‘ ersetzt. Die eingeh-
enden Links von s werden zu den eingehenden Links von a. Ein neuer Link wird ausgehend von a und
eingehend in b hinzugefiigt. Die <receive>-Aktivitat r wird beendet sobald die Anfragenachricht der
<invoke>-Aktivitidt s empfangen wurde. Somit werden die ausgehenden Links von r zu den ausgeh-
enden Links von b. Die eingehenden Links von y werden zu den eingehenden Links von a‘. Die
<invoke>-Aktivitat s wird beendet sobald die Nachricht der <reply>-Aktivitat y empfangen wurde,
daher werden die ausgehenden Links von s und y zu den ausgehenden Links von a‘ hinzugefigt.

ml
Invoke - -

Abbildung 3.19 SyncMerge Variante 2: Die Beispielfragmente aus Variante 2 sowie die dazugehdrige Intervallrelationen
vor und nach der Konsolidierung. Die Reihen der Tabellen stehen fiir die linke Seite der Relation, die Spalten fir die rechte
Seite. ,,<“ sowie ,,>* stehen flir die zeitlichen Relationen ,vor“ bzw. ,,nach“ (vgl. Abbildung 3.8). ,,R“ steht fir alle mdg-
lichen Relationen (<, >, m,mi, o, oi, s, si, f, fi, d, di, e).

Wir werden in der vorliegenden Arbeit die Variante 2 flr das synchrone Konsolidieren verwenden und
diese im Verlauf des Kapitels, parallel zur Variante 2 des asynchronen Konsolidierungsalgorithmus,
schrittweise verfeinern.

Der folgende Unterabschnitt beschreibt das genaue Vorgehen beim Setzen der join- sowie transi-
tionConditions wahrend der Konsolidierung. Daraufhin werden wir auf das Problem der Peer-
Scope-Dependency [OAS07] eingehen, auf das wir mit unserem vorliegenden Ansatz treffen werden.
Abschnitt 3.2.2 Generierung des Datenflusses erlautert die konkreten Details die bei Einflgen der
neuen <assign>-Aktivitaten beachtet werden missen.

3.2.2.1 Anpassung der join- und transitionCondition wdhrend der Konsolidierung

In WS-BPEL 2.0 besitzt jede Aktivitat die optionalen Standardelemente <sources> und <targets>
mit denen diese Synchronisationsbeziehungen tber Links herstellen kann (vgl. Abbildung 2.8). Die
dort verwendeten Links mussen in einer umschlielenden <flow>-Aktivitat deklariert werden.

3.2.2.1.1 <sources> und ihre <transitionCondition>s

Jedes <source>-Element kann eine optionale transitionCondition definieren. Diese wird im
Completed-Zustand der Aktivitat ausgewertet (vgl. Abschnitt 3.1.2 Aktivitats-Zustandsmodell). Sie
muss in der durch das expressionLanguage-Attribut spezifizierten Sprache des BPEL-Prozesses
vorliegen. Wir fordern fiir spatere Analysezwecke unseres Konsolidierungsalgorithmus, dass diese die
Standardsprache XPath 1.0 [W3C99a] ist. Wird keine angegeben, so wird angenommen, dass der Link
des zugehdrigen <source>-Elements zu true gewertet wird. In unseren Konsolidierungsalgorithmen
fir asynchrone sowie synchrone Kommunikationsmuster aus dem vorangegangenem Abschnitt
werden die ausgehenden Links sowie die zugehdrigen transitionConditions der urspringlichen
sendenden und empfangenden Aktivitaten in die neuen <assign>-sowie <empty>-Aktivitaten beim
Erstellen der neuen Sourcen (createSource(l,a)-Funktion) Gbernommen. Wird eine neuer Link zwi-

Seite 50

schen der <assign>-Aktivitat und der entsprechenden synchronisierenden <empty>-Aktivitét hinzu-
gefligt, so mussen wir hier keine explizite transitionCondition angeben. Dieser Link emuliert die
Nachrichtenflussrelation durch eine Kontrollflussrelation. Abbildung 3.20 zeigt diesen Zusammen-
hang.

<invoke name*s‘ .>

<sources>
Al B1 <source linkname=*“12‘“>
<transitionCondition>XPath-Ausdruckl</transitionCondition>

1 </source>
< </sources>

i mi "
Invoke (>Celve </invoke>
s
12 —
<sources>
A2 <source linkname=*“14*“>
<transitionCondition>XPath-Ausdruck2</transitionCondition>

</source>
</sources>

U‘

</receive>

<assign name“a“ .>
<sources>
<source linkname=*12“>
<transitionCondition>XPath-Ausdruckl</transitionCondition>

@
@

1 </source>
< :\AND <source linkname=*“15%“/>
</sources>
Ass |gn mpty
b </assign>
l2 < e
empty name=“b* ..>

<sources>

Gt

A B2 <source linkname=*“14*“>
<transitionCondition>XPath-Ausdruck2</transitionCondition>
</source>
</sources>
</empty>

Abbildung 3.20 Ubernahme der <source>-Elemente aus urspriinglichen Aktivitaten

3.2.2.1.2 <targets> und ihre <joinCondition>

Das <targets>-Element kann eine optionale joinCondition fir alle ihre enthaltenen <target>-
Elemente definieren. Diese wird im Ready-Zustand der Aktivitat ausgewertet (vgl. Abschnitt 3.1.2
Aktivitats-Zustandsmodell). Wird keine explizite joinCondition angegeben so ist das Ergebnis der
Auswertung die Disjunktion Uber alle Status der in den <target>-Elementen definierten Links. In
unseren Konsolidierungsalgorithmen fiir asynchrone sowie synchrone Kommunikationsmuster aus
dem vorangegangenem Abschnitt werden die eingehenden Links sowie die zugehérige join-
Condition, falls vorhanden, der urspriinglichen sendenden und empfangenden Aktivitdten in die
neuen <assign>-sowie <empty>-Aktivitaten beim Erstellen der neuen Targets (createTarget(l,a)-
Funktion) Ubernommen. Im Gegensatz zu den <sources> mussen wir hier jedoch beim Anlegen des
neuen Links zwischen <assign>- und synchronisierender <empty>-Aktivitdt darauf achten, dass die
logische Semantik der urspriinglichen joinCondition erhalten bleibt und mit dem neuen Link per
Konjunktion verbunden wird. Haben wir beispielsweise mehrere eingehende Links und keine explizite
joinCondition, so muss trotzdem sichergestellt werden, dass die ODER-Semantik auch in der
neuen Konjunktion giltig ist. Abbildung 3.21 veranschaulicht diesen Sachverhalt.

Seite 51

Explizite JoinCondition:
Explizite JoinCondition: <empty name=“b* .>
R <targets>
<receive name=“r* .> <joinCondition>
<targets> $15 AND XPath-Ausdruckl
<joinCondition> </joinCondition>
P 5 _XF_’ath—Al_JSl_irLlel <target linkname=*13*“/>
</joinCondition> <target linkname=“15*“/>
y <target linkname=“13“/> </targets>
. - > /rargets>
s r R </empty>
</receive>
12 14 . . .
Implizite JoinCondition:
. <empty name=“b*“ ..>
<receive name=“r* .> <targets>
<targets> <joinCondition>
<target linkname="13“/> $15 AND $I3
</targets> </joinCondition>
. <target linkname=*“13*“/>
</receive> <target linkname=*“15*“/>
</targets>
</empty>
Explizite JoinCondition: Explizite JoinCondition:
<receive name=“r* .> <empty name=“b* .>
<targets> <targets>
<joinCondition> <joinCondition>
$11 AND NOT ($12 OR $13) $14 AND ($11 AND NOT ($12 OR $13))
</joinCondition> </joinCondition>

<target linkname=*“11*“/>
<target linkname=*“12*“/>
<target linkname=*“13*“/>

<target linkname=“11“/>
<target linkname: /
<target linkname=

/>

</targets> <target linkname="‘14“/>
. </targets>
Receive </receive>
r . . - </empty>
Implizite JoinCondition:
Implizite JoinCondition:
<receive name=“r* .>
<targets> <empty name=“b* .>
<target linkname="“11“/> <targets>
<target linkname="“12“/> <joinCondition>
<target linkname=“13*“/> $14 AND ($11 OR $I12 OR $13)
</targets> </joinCondition>
<target linkname=*“11“/>
</receive> <target linkname=“12“/>

<target linkname=*“13“/>
<target linkname=*“13“/>
</targets>

</empty>

Abbildung 3.21 Anpassungen der joinCondition beim Konsolidieren: Das obere Modell zeigt das Anpassen der
joinCondition an den Choreographiefragmenten im asynchronen Fall. Das untere Modell zeigt das Anpassen der
joinCondition bei mehreren targets. Ist eine joinCondition vorhanden so wird diese per Konjunktion mit dem neuen
eingehenden target-Link verbunden. Gibt es keine, muss darauf geachtet werden die standardméRige ODER-Semantik der
urspringlichen target-Links in die Konjunktion einzubinden.

3.2.2.2 Peer-Scope-Dependency Problematik

Definition 3.2.6 (Control Dependency vgl. [OAS07]): Gibt es eine Abhangigkeit zwischen einer Akti-
vitdt a und einer Aktivitat b aufgrund einer Link Verbindung innerhalb einer <flow>-Aktivitét oder
der Reihenfolge innerhalb einer <sequence>-Aktivitét, so dass Aktivitat a vor der Ausfiihrung von
Aktivitat b beendet sein muss, sprechen wir von einer Kontrollflussabhéngigkeit (Control Depen-
dency).

Definition 3.2.7 (Peer-Scopes vgl. [OAS07]): Zwei Scopes sl und s2 heien Partnerscopes (Peer-
Scopes), wenn sich beide innerhalb desselben unmittelbar umgebenden Scopes bzw. Root-Scope des
BPEL-Prozesses befinden.

Definition 3.2.8 (Scope-Controlled-Set vgl. [OASO07]): Eine Aktivitat a ist innerhalb der Menge der
scope-gesteuerten Aktivititen des Scopes s, falls a der Scope s selbst oder eine innerhalb s eingschlos-
sene Aktivitat ist.

Definition 3.2.9 (Peer-Scope Dependency vgl. [OASO07]): Falls s1 und s2 Partnerscopes sind und es
gibt eine Aktivitat b in der Menge der scope-gesteuerten Aktivitaten von s2 sowie eine Aktivitat a in

Seite 52

der Menge der scope-gesteuerten Aktivitaten von sl, so dass b eine Kontrollflussabhangigkeit auf a
hat, besitzt s2 eine direkte Partnerscopeabhéngigkeit auf s1. Die Partnerscopeabhangigkeitsrelation ist
die transitive Hulle der direkten Partnerscopeabhéngigkeitsrelation.

Die Regel 1 des WS-BPEL 2.0 Standards [OASO07] aus dem Abschnitt 12.5.2 Default Compensation
Order schreibt vor, dass zwei Scopes a und b, von denen b eine Kontrollflussabhéngigkeit auf a hat,
im Fall einer Kompensierungsausfihrung nach der erfolgreichen Ausfiihrung beider Scopes, der Com-
pensation Handler von b vor dem von a ausgefuhrt werden muss. Abbildung 3.22 verdeutlicht diesen
Zusammenhang.

Kontrollflussabhangigkeit

Scope ¢

Scope ¢

Scope a M

CHL [} fogemsancnaen

Scope a

Ausfiihrung

Abbildung 3.22 Kontrollflussabhangigkeit zweier Scopes und die Auswirkung auf das Compensation Handler Verhal-
ten: Scope a sowie Scope b wurden erfolgreich ausgefiihrt und die Compensation Handler CH1 und CH2 installiert. Wéh-
rend der Ausfuhrung von Aktivitat C1 tritt ein Fault auf der die Kompensation aktiviert. Durch die Kontrollflussabhdngigkeit
bedingt durch den Link 12 muss CH2 vor CH1 ausgefiihrt werden.

Die Regel 2 des WS-BPEL 2.0 Standards [OASO7][SA00082] verbietet Zyklen in Partnerscopeabhén-
gigkeiten. Somit sind zwei Scopes s1 und s2 von denen jeweils sl eine Partnerscopeabhangigkeit auf
s2 und s2 eine auf s1 hat verboten (vgl. Abbildung 3.23).

Um die zuvor in diesem Kapitel erarbeiteten VVorgehen zur Konsolidierung von synchronen sowie
asynchronen Kommunikationsmustern zu ermdglichen werden wir in der vorliegenden Diplomarbeit
die Regel 2 auflockern und erlauben Zyklen in Partnerscopeabhéngigkeiten. Zukinftige und laufende
Arbeiten werden hierzu eine angemessene Ldsung liefern.

Die in dieser Arbeit zum Testen der erzeugten konsolidierten Prozesse verwendeten BPEL-Engines
Apache ODE in Version 1.3.5 [AODE11] sowie bpel-g in Version 5.3 [BPLG12] erlauben zusétzlich
die Ausflihrung von Prozessen mit Zyklen in Partnerscopeabhangigkeiten.

Prozessl Prozess2 Prozessl_2_Merged

Scope a Scope b Scope a Scope b

11

Verletzung der Regel 2:

Scope a hat direkte Partner-
scopeabhangigkeit auf Scope
b (In), Scope b eine auf Scope
a(/2).

Konsolidierung

Assign

A2

Abbildung 3.23 Zyklus in Partnerscopeabhéngkeiten: Wird im konsolidierten Beispiel auf der rechten Seite in der
Aktivitat A2 eine Fault geworfen und verursacht die Ausfilhrung einer Kompensation, so wird, bedingt durch die Kontroll-
flussabhangigkeit aufgrund des Links 12, zundchst der Compensation Handler von Scope a ausgefiihrt und anschlieRend der
von Scope b. Doch dieser hat wieder eine Kontrollflussabhéngigkeit mit Scope a, bedingt durch den Link In.

3.2.3 Generierung des Datenflusses

Im vorangegangenen Abschnitt wurden die sendenden Aktivititen durch <assign>-Aktivitaten er-
setzt, um auf diese Weise die korrekte Synchronisation der urspriinglichen beiden Prozessmodelle im

Seite 53

neuen konsolidierten Prozessmodell zu gewéhrleisten. Neben der Synchronisation des Kontrollflusses
werden die neuen <assign>-Aktivitdten zum Transformieren des ehemaligen Nachrichtenflusses in
einen Datenfluss verwendet. VVor der Konsolidierung werden die zu versendenden Nachrichten in einer
Variablen gespeichert. Wir nennen diese Variable im Folgenden v;. Die Nachricht wird anschlielend
Ubertragen, empfangen und in einer anderen Variable des empfangenden Prozesses gespeichert. Im
Folgenden sei diese Variable v,. Um den Nachrichtenaustausch in einen Datenaustausch umzuwandeln
stehen uns zwei Varianten zu Verfligung:

1. Wir kopieren den Inhalt der Variable vs in die Variable v..
2. Wir ersetzen jedes Vorkommen von v, nach dem Erhalt der Nachricht durch v;.

Nehmen wir zum Beispiel an, der Teilnehmer PBD1 sendet die Variable varlnit Gber den Message
Link mI1 in Form der Nachricht msgl, die der Empféanger PBD2 in der Variablen varReceivelnit spei-
chert. Somit sehen die kommunizierenden Nachrichten hierfur folgendermafien aus:

S: <invoke inputVariable="“varlnit*“>

r: <receive variable="“varReceivelnit*“>

Benutzen wir die erste Variante so kopiert die neue <assign>-Aktivitat varlnit nach varReceivelnit
Diese Variante verhindert das Uberschreiben von Daten, da die beiden Variablen vs und v, immer ge-
trennt behandelt werden und der ehemalige Nachrichtenaustausch durch ein Kopieren der Daten von v;
nach v, emuliert wird. Abbildung 3.24 veranschaulicht das Vorgehen anhand des asynchronen sowie
des synchronen Falls mit zugehdriger <rep ly>-Aktivitat.

<invoke name=*s*
inputvariable=“varinit“>

Prozess_PBD1_PBD2_Merged

<assign name=“a‘“>
<C0py>

PBD1 PBD2 </invoke>
" njl} > Scope PD1 i 3 <from variable="varinit“/>
s r <receive name=“r* Assign <to variable=*“varReceivelnit“/>
variable=*“varReceivelnit*“> a </copy>

</assign>
</receive>

<invoke name=*s*

inputvariable=“varinit*

outputvaribale="varReply“> Prozess_PBD1_PBD2_Merged <assign name="a>

<C0py>
</invoke> <from variable=“varlnit“/>

Scope PBD1 Scopy <to variable=*“varReceivelnit“/>
~ Assign </(_:opy>
<receive name=*“r* a </assign>

PBD1
Invoke
s R

variable=*“varReceivelnit*“>

<assign name=“‘a“‘‘>
<copy>
<from variable="varReplyOut*“/>
<to variable="“varReply*“/>
</copy>
</assign>

</receive>

<reply name=“y* a’

variable="“varReplyOut*>

</réply>

Abbildung 3.24 Austausch der kommunizierenden Aktivitaten durch <assign>-Aktivitdaten im konsolidierten Pro-
zess: Die obere Abbildung zeigt den Austausch der sendenden <invoke>- sowie der empfangenden <receive>-Aktivitat
durch die neue <assign>-Aktivitat und das Kopieren der Variablen im asynchronen Fall. Die untere Abbildung zeigt den
entsprechenden Austausch der <invoke>-und <reeive>-Aktivititen sowie der <reply>-Aktivitdt durch zwei neue
<assign>-Aktivitaten im synchronen Fall.

Der Nachteil der ersten Variante ist die Tatsache, dass die Daten nach der <assign>-Aktivitat doppelt
gespeichert werden. Im Falle komplexer oder grof3er Datenstrukturen kann dies zu Performanceeinbu-
Ren flihren. Die zweite Variante bietet hier eine Alternative: Anstatt die Daten von v, nach v, zu kopie-
ren, werden alle Zugriffe auf v, durch v ersetzt. Die <assign>-Aktivitdt kann durch eine <empty>-
Aktivitét ersetzt werden, die lediglich zum Synchronisieren der Links eingesetzt wird. Problematisch
wird die zweite Variante jedoch wenn v nach dem Datenaustausch erneut verandert wird: Die zuvor
unabhangigen Variablen sind nun durch eine einzelne ersetzt worden. Dies hat zur Folge, dass sich die

Seite 54

Anderungen von v auf das Verhalten der lesenden und schreibenden Aktivititen sowie join- und
transitionConditons auswirken, die zuvor v, verwendet haben. Das Problem ist als das Lost Up-
date Problem bekannt (vgl. [BN09]). Um dieser ungewollten Anderung des Datenflusses entgegenzu-
wirken verwenden wir zunéchst die erste Variante und ermitteln anschliefend den expliziten Daten-
fluss, wie von Kopp et al. in [KKLO08] gezeigt. Gibt es keine nachfolgenden schreibenden Zugriffe auf
vs, die auf die <receive>-Aktivitat folgen, ersetzen wir alle Zugriffe von v, durch Zugriffe auf vi.
AnschlieBend ersetzen wir die <assign>-Aktivitit durch eine <empty>-Aktivitat. Der Algorithmus
zum Analysieren des Datenflusses sowie dem anschlieBenden mdoglichen Ersetzen der <assign>-
Aktivitaten wird in Kapitel 4 Implementierung beschrieben.

Prozess_PBD1_PBD2_Merged Prozess_PBD1_PBD2_Merged

ScopeiPBD1 || ScopeiPBD2
i Assign Empty
Wl a b

’ y PBD2

/1
Empty

) b

b aus v wird gelesen

[in v wird geschrieben

Abbildung 3.25 Optimierungen des Datenflusses im konsolidierten Prozess

Abbildung 3.25 zeigt die méglichen Optimierungen des Datenflusses nach Anwendung des Analyse-
algorithmus:

Abbildung 3.25 a): Nachdem der Konsolidierungsalgorithmus fur asynchrone Kommunikation ange-
wendet wurde, folgt die Analyse des Datenflusses. Dieser muss Uberpriifen ob auf der ehemals senden-
den Seite in v, schreibende Aktivitaten, die auf die neue <assign>-Aktivitaten a folgen, Verwendung
finden. Dies beinhaltet auch Aktivitdten die z.B. in einem parallelen <flow>-Zweig der <assign>-
Aktivitat a schreibenden Zugriff auf vs haben. Hierbei kdnnen folgende Aktivitdten schreibenden
Zugriff ausiiben: <assign>s, synchrone <invoke>s, <receive>s sowie <pick>s.

Diese Uberpriifung muss auch auf der enemaligen Empfangerseite nach der neuen <empty>-Aktivitit
b sowie moglichen parallelen Kontrollflusszweigen stattfinden, da es sonst durch das Ersetzen von v,
durch v; zu Seiteneffekten auf der ehemaligen Senderseite kommt. Wurden keine moglichen
schreibenden Aktivitdten gefunden, so werden alle Vorkommen von v, durch vs ersetzt. Hierbei
mussen auch die entsprechenden transitionCondition-XPath-Ausdriicke entsprechend angepasst
werden.

Abbildung 3.25 b): In diesem Beispielfragment darf die Ersetzung von v, durch v nicht angewendet
werden, da sonst der Datenfluss von Scope PBD1 durch Seiteneffekte der Aktivitat p verandert wird.
Abbildung 3.25 c): Auch in diesem Beispielfragment darf es zu keiner Ersetzung kommen, da vs in
einer Aktivitat q eines parallelen Kontrollflusszweigs von PBD1 sowie einer Nachfolgeaktivitét t der
<invoke>-Aktivitét s beschrieben wird.

Abbildung 3.25 d): Das Beispielfragment zeigt das optimale Einsparungspotenzial von Kopiervor-
gangen im synchronen Fall. Die zwei <assign>-Aktivititen a sowie a‘ kdnnen durch zwei synchroni-
sierende <empty>-Aktivitaten ersetzt werden.

Seite 55

3.2.3.1 Voraussetzungen fiir den korrekten Datenfluss

Die im vorherigen Abschnitt beschriebene Methode zur Generierung des Datenflusses setzt voraus,
dass der sendende Kommunikationsteilnehmer den empfangenden nicht ,,iberholt”. Somit sollte das
Ergebnis des Datenflusses vor und nach dem senden der Daten nicht durch Wettlaufsituationen (Race
Conditions) bedingt sein. Der WS-BPEL 2.0 Standard definiert hierzu (vgl. [OASO07] Seite 92): ,,...
Wahrend der Ausfiihrung eines Geschaftsprozesses kdnnen Wettlaufsituationen auftreten. Nachrich-
ten, die flr eine bestimmte Prozessinstanz bestimmt sind kénnen eintreffen bevor die empfangende
<receive>-Aktivitat aktiviert wurde. [...] Prozess Engines KONNEN verschiedene Mechanismen zur
Behandlung einer solchen Wettlaufsituation anwenden. [...]*

Abbildung 3.25b zeigt eine solche Wettlaufsitua-

[l_%jozessMerged
Flow tion an einem Beispielfragment mit zwei kom-
o o i scope- P02 munizierenden PBDs PBD1 und PBD2. Hierbei

. GASfign . iASfig" ist es=prel(s)+pre(s) die Menge aller direkten

Vorgéngeraktivitat von s, se=succl(s)+succ(s)
[Imke%}] Receive] Assign] f [Empty] die Menge aller direkten Nachfolgeraktivitaten

r von s, er= prel(r)+pre(r) die Menge aller direk-

1 1 ten Vorgangeraktivitaten von r, mit der <as-
@ @ [S_j u sign>-Aktivitdt Assign_er& er sowie re=
succl(r)+succ(r) die Menge aller direkten Nach-

Abbildung 3.25b Race Condition folgeraktivitaten von r. Die rechte Seite zeigt den
konsolidierten Prozess nach Anwendung des AsyncPattern1.1 aus Abschnitt 3.3.1.1. Wenn nun in der
linken Beispielchoreographie die sendende Aktivitét s die Nachricht v schickt bevor die <receive>-
Aktivitat r aktiviert wurde, ist das Ergebnis der Verarbeitung dieser Nachricht in PBD2 implementie-
rungsabhéngig. Sie kann verworfen oder in eine Warteschlange eingereiht werden (vgl. [LEY10a]).
Derselbe Ablauf hat im rechten konsolidierten Prozess ProzessMerged unter denselben Bedingungen
einen mdglichen Datenverlust zur Folge: Die <assign>-Aktivitat a wird ausgefiihrt bevor Scope_-
PBD2 die <assign>-Aktivitadt Assign_er aktiviert. Da die <receive>-Aktivitat r durch eine syn-
chronisierende <empty>-Aktivitat b ersetzt wurde, wird v, im Datenfluss nach Assign_er nichtmehr
neu gelesen. Wenn jetzt Assign_er einen Wert in v, schreibt (hier mit 1 dargestellt) nachdem a ausge-
fuhrt wurde, ist das Ergebnis von v verloren (Lost Update). Einen &hnlichen problematischen Fall
stellt folgender Ablauf dar: Assign_er hat seine Ausfiihrung beendet und den Wert 1 nach v, geschrie-
ben. Im selben Moment schreibt a v nach v, und Gberschreibt nun den Wert 1. Nun wird der von As-
sign_er ausgehende und in b eingehende Link ausgewertet. Hat dieser eine transitionCondition,
die v, verwendet, so ist auch in diesem Fall die Kontrollflusssemantik verandert worden.

ll&_mj:lozessMerged
Flow
PBD1 PBD2 Scope_PBD1 /Scope_PBDZ\
[v] vl

v
os Assign o5 Assign
[] @ or] [] @ or
Invoke W"’l’ﬁ Receive Assign v Assign
s r b

ola 1)

J N N

)

Abbildung 3.22c Behebung des Lost Update Problems durch Hinzufligen neuer Nachrichtenvariable v,

Seite 56

Abbildung 3.25c¢ zeigt eine Alternative zur Lésung des Lost Update Problems: Anstatt durch eine syn-
chronisierende <empty>-Aktivitat wird r nun durch eine <assign>-Aktivitat ersetzt. Zusatzlich hier-
zu wurde eine neue Nachrichtenvariable v, eingeflhrt, die den urspriinglichen Datenfluss emuliert.
Somit bleiben die Anderungen von v, auch im Falle einer Wettlaufsituation unabhangig von maglichen
vorhergehenden schreibenden Aktivitaten (Assign_er). Die in den folgenden Abschnitten beschriebe-
nen Konsolidierungsalgorithmen setzen jedoch Choreographien ohne derartige Wettlaufsituationen
voraus.

Seite 57

3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets

PBDs konnen, genau wie ausfiihrbare BPEL-Prozesse auch, Korrelationsmengen (CorrelationSets) zur
korrekten Zuordnung von Nachrichten an die an einer Kommunikation teilnehmenden Instanzen von
Prozessen verwenden. Wahrend der Konsolidierung kommt es jedoch vor, dass einige der
Korrelationsmengen obsolet werden, da diese zur Zuordnung von Nachrichten an die korrekte
Prozessinstanz dienen und wir den Nachrichtenfluss in einen expliziten Kontrollfluss aus
Kombinationen aus <assign>- und <empty>-Aktivitdten umwandeln. Dies trifft jedoch nicht auf die
Korrelationsmengen zu, die in nicht-choreographie-intern kommunizierenden Aktivititen verwendet
werden, also solchen die mit choreographie-externen Partnern in Verbindung stehen. Leider deckt die
vorliegende Arbeit nicht alle Kommunikationsmuster der an einer Choreographie teilnehmenden Part-
ner vollstdndig ab, hierzu gehdren z.B. kommunizierende Aktivitten innerhalb von Schleifen und
Event Handlern, sodass einige Aktivitdten auch nach der Konsolidierung an einem prozessinternen
Nachrichtenaustausch beteiligt sind und wir daher auch hier nicht alle Korrelationsmengen entfernen
kénnen.

Fur die technischen Details zur Definition einer Korrelationsmenge sei dem Leser [OASO7] emp-
fohlen. Wir werden das genaue VVorgehen der Anpassung der in der Choreographie definierten und im
spater konsolidierten Prozess verwendeten Korrelationsmengen im Kapitel 4 Implementierung genauer
beschreiben. Da wir keine neuen Korrelationsmengen einfiihren, sondern lediglich auf die schon
definierten zugreifen bzw. diese im optimalen Fall sogar entfernen kénnen, zeigt Abbildung 3.26 die
wichtigsten Attribute bei der Verwendung einer Eigenschaft einer Korrelationsmenge.

Gibt an, dass Konversation initiiert Die Aktivitat, die diese Korrelations-

bzw. geleitet wird. Die Konversation <correlations> eigenschaft verwendet, folgt einer

darf noch nicht existieren. <correlation set="“NCName* Konversation die bereits existieren
initiate=""yes|join|no*“? muss.

pattern=“request]response|request-response“? />+

Falls die Konversation noch nicht =
</correlations>

existiert, wird sie initiiert.

Abbildung 3.26 Syntax einer Korrelationseigenschaft (vgl. [LEY10a])

Korrelationseigenschaften werden nur von kommunizierenden Aktivitaten verwendet. Zu diesen ge-
héren: <invoke>-, <receive>- sowie <reply>-Aktivitidten als auch die <onMessage>-Zweige
einer <pick>-Aktivitit und die <onEvent>-Zweige eines Event Handler. Da wir keine neuen Kom-
munikationsaktivitaten einfihren, sondern vorhandene choreographie-intern kommunizierende durch
<assign>- und synchronisierende <empty>-Aktivititen ersetzen, missen wir lediglich bei choreo-
graphie-extern kommunizierenden Aktivitaten in manchen Fallen das initiate-Attribut anpassen.
Das pattern-Attribut, das im Falle synchroner Kommunikation die Korrelationsmenge mit den
eingehenden, ausgehenden oder beiden Nachrichten assoziiert, wird nicht verandert.

Wir werden im Folgenden einige kleine Beispielkonversationen modellieren um das Anpassen der
Korrelationseigenschaften in choreographie-extern kommunizierenden Aktivitaten genauer zu verdeut-
lichen.

3.2.3.2.1 Mehrere initiale Startaktivitaten

Eine initiale Startaktivitat ist die Startaktivitat, die die Instanziierung einer Prozess Instanz auslost.
Dies kann eine <receive>- oder eine <pick>-Aktivitét sein, die das create Instance-Attribut auf
»yes" gesetzt hat. Bei der Konsolidierung kann es vorkommen, dass zwei oder mehrere ehemals
unabhéngige PBDs, die jeweils alle eine initiale Startaktivitat enthalten, in den neuen verschmolzenen
Prozess uberfuhrt werden. Verwenden diese Aktivitaten zusétzlich Korrelationsmengen, so missen sie
im neuen konsolidierten Prozess mindestens eine gemeinsame Korrelationsmenge benutzen. Hierzu
definiert die WS-BPEL 2.0 Spezifikation folgende Regel (vgl. [SA00075] in [OASOQ7]): ,,Wenn ein
Prozess mehrere Startaktivitdten mit Korrelationsmengen beinhaltet, so missen diese Aktivitaten
mindestens eine gemeinsame Korrelationsmenge verwenden. Diese gemeinsamen Korrelationsmengen
mussen zusatzlich das initiate-Attribut auf ,,join* gesetzt haben.*

Seite 58

Abbildung 3.27 Verwendung mehrerer initialer Startaktivitdten bei Teilnehmern einer Choreographie: Die linken
Beispielfragmente zeigen eine Choreographie mit zwei PBDs, die beide eine initiale Startaktivitat beinhalten. In PBD1 wird
die Instanziierung durch eine externe Nachricht ausgeldst, in PBD2 dagegen durch eine Nachricht, die iber den MessageLink
mi1 von PBD1 gesendet wird. Die rechten Beispielfragmente zeigen eine &hnliche Choreographie, in der jedoch die Instanzi-
ierung beider PBDs durch externe Nachrichten ausgeldst wird.

Abbildung 3.27 veranschaulicht die Zusammenhénge der initialen Startaktivitdten und der Auswir-
kungen bei Benutzung von Korrelationsmengen im konsolidierten Prozess: In der linken Beispiel-
choreographie besitzen beiden Teilnehmer initiale Startaktivitaten, die zusétzlich (nicht im Bild
dargestellt) die beiden Korrelationsmengen corSetl (PBD1) sowie corSet2 (PBD2) verwenden.
Nach der Konsolidierung werden diese Gibernommen, miissen jedoch nicht angepasst werden, da der
Lebenszyklus des Teilnehmers PBD2 direkt an den Lebenszyklus des Teilnehmers PBD1 gekoppelt
ist. PBD2 wird Uber den Message Link ml1 und nicht Uber eine externe Nachricht instanziiert wird. In
diesem einfachen Fall kann sogar das corSet2 aus dem neuen konsolidierten Prozess Process-
Merged entfernt werden.

Im rechten Beispiel liegt eine &hnliche Konfiguration vor: Auch hier besitzen beide Teilnehmer initiale
Startaktivitaten und verwenden die beiden Korrelationsmengen (nicht im Bild dargestellt) corSet1
(PBD1) sowie corSet2 (PBD2) in diesen Aktivitaten. Im Gegensatz zum linken Beispiel wird jedoch
die Instanziierung beider Teilnehmer durch externe Nachrichten ausgeldst. Daher muss in diesem Fall
eine neue Korrelationsmenge eingefihrt werden, da im konsolidierten Prozess nun zwei durch externe
Nachrichten ausgeldste instanziierende Startaktivitaten vorliegen, die Korrelationsmengen verwenden
(vgl. zuvor definierte Regel der WS-BPEL 2.0 Spezifikation [OASOQ7] fiir das Verwenden mehrerer
initialer Startaktivititen). Wir werden hierzu eine neue Korrelationseigenschaft einfiihren und diese in
den konsolidierten Startaktivitaten sowie den dort verwendeten Nachrichten einfugen.

grounding.xml

<properties>
—{— <property name=“correlPropertyl* WSDLProperty="cns:correlPropertyl“/>

<property name=*correlProperty2“ WSDLProperty="cns:correlProperty2/>—__
</properties> \\
(\
|
pbdl.wsdl \ pbd2.wsdl
¥ . ¥
| <vprop:property name="correlPropertyl” type="xsd:string"/> <vprop:property name="correlProperty2" type="xsd:int"/>—_
2<vprop:propertyAlias messageType="tns:PBD1RequestMessage" <vprop:propertyAlias messageType="tns:PBD2RequestMessage"
part="correlation™ propertyName="tns:correlPropertyl"/> part="correlation” propertyName="tns:correlProperty2"/>\
\ B)
<wsdl:message name="PBD1RequestMessage"> <wsdl:message name="PBD2RequestMessage’> /
\<wsdl:part name="status" type="xsd:string"/> <wsdl:part name="userName' type="xsd:string"/>
| *<wsdl:part name="correlation" type="xsd:string"/> <wsdl:part name="grade" type='xsd:string"/>
— </wsdl :message> <wsdl:part name="correlation” type="xsd:int"/><«—"
/ </wsdl :message> ~
/
/
/
|
[
\ \
\ | pbdl.phd pbd2.pbd J‘
\
[\evariables>) <variables>
A cvariable messageType="ns:PBD1Requesthessage” name="input’/> <variable messageType="ns:PBD2Requestiessage” name="input’/><
/ i . \
‘:<Ivar|ables> </variables> \
\
@rrelation§ets> . <correlationSets> ‘
<correl§u0n$et name="corSetl" properties="ns:correlPropertyl"/> <correlationSet name="corSet2" properlies:"ns:correlPropertyZ"/>‘
correlationSets> </correlationSets> \
“‘<receiVl_e name="Receivel™ variable="input" createlnstance="yes" <receive name="Receivel” variable="input" createlnstance="yes"
\ wsu: id="a2F6"> wsu: id="ghu9">
\fcorrelation§> o <correlations> —
—<correlation initiate="yes" set="corSet1"/> <correlation initiate="yes" set="corSet2"/>«——
</correlations> </correlations>
</receive> </receive>

Abbildung 3.28a Beispielfragmente aus Korrelationsbeispielchoreographie: Fragmente aus den beiden PBDs des rechten
Beispiels aus Abbildung 3.27 im Zusammenspiel mit den verwendeten Korrelationsmengen.

Seite 59

processmerged.bpel

<variables>
_»<variable messageType="ns:PBD1Requestlessage” name="inputPBD1"/>

ﬂ —»<variable messageType="ns:PBD2RequestMessage" name="inputPBD2"/>
processmerged.wst y

</variables>

| <vprop:property name="correlPropertyl” type=
/<\/pr0p property name= cmrelPropertyz type="x
vprop:property name="commonlinitCorrelProperty’

<correlationSets>
> <correlationSet name="corSetl" properties="

ns:correlPropertyl"/>———_
—><correlationSet name= ol

¥<vprop:propert

part="corre
/\<vpmp propert;

‘ ~><correlationSet name="commonCor

| </correlationSets> | »\\
[

/| <scope name="Scope_PBD1"> / N

" propertyN
messageTyy

<receive name="Receivel™ variable="inputPBD1" createlnstance="yes" ..>

<correlations> ~ ~
i / <correlation initiate="y ="corSetl’ / — - | |
N <wsdi: name="PBD1RequestMessage"> — </co‘r‘rlell(a:iv§|:s‘! initiate="jc =" rset’/>«— I
(‘ <wsdl:part name="status" type="xsd: strlng /> </roceives /
\: sdl:part name="correlation” type="xsd:st /> /
dl:part name="commonCorrel” type
\ </wsdl :message>

_— </scope>

<scope name="Scope_PBD2">) /

<wsdl:part name="grade" type="xsd:
\ <wsdl: part name="correlation" type="x
rt name="commonCorrel* type="
</usdl: message>

<receive name="Receivel” variable="inputPBD2" createlnstance="yes" .>
g"/ —
<correlations> _—
<(nrr9|dl|(m initiate="yes" set= "corset2’ / «~ _—
orrelation initiate="join" set rset/: &**”""”'
</correlations>
</receive>

-

</scope>

Abbildung 3.28b Die konsolidierte Beispielchoreographie: Das Ergebnis der Konsolidierung mit angepassten Korre-
lationsmengen in den initialen Startaktivitaten.

Abbildung 3.28a sowie Abbildung 3.28b zeigen die Anpassungen der Korrelationsmengen- und eigen-
schaften der rechten Beispielchoreographie aus Abbildung 3.27: Die urspriinglichen technischen Infor-
mationen aus den beiden WSDL-Dateien pbdl.wsdl sowie pbd2.wsdl wurden in die neue pro-
cessmerged.wsdl-Datei des konsolidierten Prozesses Ubernommen. Zu den bereits verwendeten
Korrelationseigenschaften correlPropertyl sowie correlProperty2 wurde die neue gemein-
same commonlInitCorrelProperty hinzugefugt um der Regel fur multiple initiale Startaktivitaten
der WS-BPEL 2.0 Spezifikation gerecht zu werden. Diese wurde ebenfalls in die von den Startaktivi-
taten verwendeten Nachrichten sowie als neue Korrelationsmengen in den <receive>-Aktivitaten des
BPEL-Prozesses (processmerged . bpel) eingeflgt.

3.2.3.2.2 Anpassung der Korrelationsmengen in choreographie-extern kommunizieren-
den Aktivitdten

Enthalten die zu konsolidierenden Choreographien zusatzlich Korrelationsmengen, die in den choreo-
graphie-extern kommunizierenden Aktivitdten verwendet werden, so miissen diese in einigen Féallen
angepasst werden um die korrekte Initialisierung der Konversationen zu gewéhrleisten. Abbildung
3.29 zeigt einige Beispielfragmente sowie die notwendigen Anpassungen bei der Konsolidierung:
Abbildung 3.29a): Die beiden Prozesse P1 und P2 sind lber die Message Links ml1, ml2 sowie mI3 an
einer choreographie-internen Kommunikation beteiligt. Die sendende Aktivitat S1 von P1 verwendet
hierbei die Korrelationsmengen corSetl, corSet2 sowie corSet3 und initialisiert corSet2 und corSet3,
da corSetl bereits in R; von P1 initialisiert wurde. Auf der Empféangerseite P2 werden corSetl sowie
corset2 in Ry initialisiert und anschlielend corSet3 in der Antwortaktivitdt S; der synchronen
Kommunikation, die ml1 und mi2 reprasentieren. In den beiden darauffolgenden Aktivitaten S, von P1
sowie R, von P2 sind bereits alle drei Korrelationsmengen initialisiert. In diesem simplen Bespiel
entféallt die Anpassung des initiate-Attributs, da die Korrelationsmengen corSet2 sowie corSet3 nur
fir choreographie-interne Kommunikation verwendet werden und nach der Ersetzung der
urspriinglichen kommunizierenden Aktivitaten (S; von P1, R; von P2, S; von P2, S, von P1 sowie R,
von P2) durch die entsprechenden <assign>- und <empty>-Aktivitaten (A;, A, As, E1 sowie Ey)
obsolet werden.

Abbildung 3.29b): Es liegt eine dhnliche Konfiguration wie in a) vor, doch zusatzlich wird eine aus-
gehende Nachricht in S3 von P1 bereitgestellt. Diese sendende Aktivitat verwendet die Korrelations-
mengen corSetl, corSet2 sowie corSet3. Durch die Konsolidierung wird die corSet2 und corSet3 ini-
tialisierende Aktivitat S; von P1 durch A; ersetzt. Um die beiden Korrelationsmengen korrekt initiali-
siert in die gesendete Nachricht von S; zu Uberfiihren muss das initiate-Attribut dieser Aktivitat flr

Seite 60

corSet2 sowie corSet3 auf join (oder yes) gedndert werden.

Abbildung 3.29c¢): Die dargestellte Beispielchoreographie (dargestellt durch die Fragmente P1 und P2)
kommuniziert mit den externen Prozesspartnern Pg,; sowie Pgy, Uber die empfangende Aktivitat R,
von P1 und die sendenden Aktivitaten S; von P2, S, und S; von P1 sowie S; von P2. Durch die Konso-
lidierung entfallen die corSet3 und corSet4 initialisierenden Aktivitaten S; von P1 sowie S, von P2,
die durch die <assign>-Aktivitdten A; und A, ersetzt wurden. Nun muss wieder sichergestellt wer-
den, dass die Korrelationsmengen corSet3 und corSet4 korrekt initialisiert an Pgyy Sowie Pgy, ver-
sendet werden. Zu diesem Zweck missen die initiate-Attribute von S, sowie S; im konsolidierten
Prozess entsprechend angepasst werden. In diesem Fall verwenden wir initiate=*“join*, da nicht
sicher ist, ob zunéchst S, oder S; ausgefiihrt werden.

Empfangende Aktivitdten

@@@ Sendende Aktivitaten
Sendende Aktivitat, die Korrela-

tionsmengen corSetl, corSet2
sowie corSet3 verwendet. cor-
Setl ist bereits initialisiert
(initiate="no*), corSet2 &
corset3 werden initialisiert
(initiate="yes“).

Verwendung von Korrelationsmengen
corSetl, corSet2, corSet3 sowie cor-
Set4.
corSetl sowie corSet3 sind bereits ini-
tialisiert (initiate="no*), corSet2 und
corSet4 werden initialisiert (initi-
ate="yes* oder initiate="join*).

Abbildung 3.29 Anpassung der initiate-Attribute in den choreographie-extern kommunizierenden Aktivitaten

3.3 Taxonomie der Konsolidierungsmuster (,Merge-Patterns“)

Der folgende Abschnitt zeigt die vom Konsolidierungsalgorithmus verwendeten Muster, im Folgenden
Merge-Patterns genannt, die zum Auffinden der verschiedenen Senden/Empfangen-Paare und an-
schlieRendem Ersetzen durch Synchronisations-Aktivitaten verwendet werden.

3.3.1 Asynchrone Merge-Patterns

Die asynchronen Merge-Patterns sind charakterisiert durch eine sendende und eine empfangende Akti-
vitat, die Uber einen Message Link miteinander kommunizieren. Als sendende Aktivitét steht in BPEL
fir den asynchronen Fall hierfir die <invoke>-Aktivitat zur Verfugung. Als empfangende Aktivi-
tdten kommen <receive>-Aktivitdten, <onMessage>-Zweige der <pick>-Aktivitdt sowie <on-
Event>-Zweige der Event Handler einer <scope>-Aktivitat oder des Prozess-Scopes in Frage. Wir
werden nun die asynchronen Merge-Patterns ausgehend von den Allgemeinen hin zu den speziellen
mit besonderen Umgebungsbedingungen prasentieren. Die Idee zum Auffinden des passenden Merge-
Patterns basiert auf dem Iterationsalgorithmus aus Auflistung 3.1, der nach dem Kopieren der ur-
sprunglichen PBDs in neue <scope>-Aktivitaten die Message Links aus der Topology untersucht und
das passende Konsolidierungsmuster liefert. Abbildung 3.30 zeigt den schematischen Aufbau dieses
Vorgehens. Es wird jedoch auch Félle geben in denen es kein passendes Merge-Pattern gibt. In diesem
Fall werden die kommunizierenden Aktivitdten nicht ersetzt. Da es sich anschlieBend um intra-
Prozess-kommunizierende Aktivitaten handelt, teilen wir der verwendeten BPEL-Engine stattdessen
mit das SOAP-Message-Handling in diesen Féllen zu umgehen (SOAP-Bypassing). Die verwendeten

Seite 61

BPEL-Engines Apache ODE [AODE11l] sowie bpel-g [BPLG12] bieten hierfir spezielle
Konfigurationsoptionen an, die beim Bereitstellen gesetzt werden. Wir werden diese am Ende des
Abschnitts kurz vorstellen.

v
Pattern match(ml) { ... }
<

T MatcherList Beim Auffinden einer asynchronen <invoke>-Aktivitdt als
AsyncMatcherL.l H----{ AsyncPatten1.1 sendActivity in einem Message Link aus der Topology
AsyncMatcherl.2 H----| AsyncPattern1.2 wird die Liste der Async-Matcher nach einem passenden
AsyncMatcherL.3 H----] AsyncPattern13 Muster durchsucht und bei einem Fund das passende
AsyncMatcher1.4 H----| AsyncPatternl4 Merge-Pattern zuriickgeliefert. Wird kein passendes Muster
AsyncMatcherl.5 H----| AsyncPatternl.s gefunden verbleiben die kommunizierenden Aktivitaten (hier
AsyncMatcher.6 H----{ Asyncpatten1.6 <invoke> s sowie <receive> r) im neuen konsolidierten
‘AsyncMatcher1.7 H----] Asyncpattern1.7 Prozess und werden im letzten Schritt als intra-Prozess-

i - AsyncPattern1.8 kommunizierende (mit Hilfe eines SOAP-Bypassing-Attributs
im Deployment-Deskriptor) Aktivitaten markiert.

name=“ml* sender=“PBD1“ receiver=“PBD2“ sendActivity="s*
receiveActivity="r* messageName=“msgl‘

=>

Abbildung 3.30 Anwendung des Merge-Algorithmus: Fur jeden asynchron kommunizierenden Link wird die Liste der be-
kannten AsyncMatcher nach einem Muster durchsucht und im Falle einer Ubereinstimmung das entsprechende AsyncPattern
zuriickgeliefert.

3.3.1.1 AsyncPatternl.1

Das AsyncPatternl.1 ist das einfachste Merge-Pattern und basiert auf den Uberlegungen aus der Vari-
ante 2 der asynchronen Kommunikationsmuster aus Abschnitt 3.2.2. Die sendende <invoke>-Aktivi-
tat als auch die empfangende <receive>-Aktivitit kdnnen Vorgénger- sowie Nachfolgeaktivitaten im
Kontrollfluss haben.

prpressiierged Abbildung 3.31 zeigt die Beschaffenheit der zwei Teilneh-
rovamsncmme 1| mer des AsyncPatternl.1 sowie die Anderungen bei der

Scope_PBD1 Scope_PBD2
[l]

Konsolidierung: PBD1 kommuniziert per <invoke>-Akti-
vitat s mit der <receive>-Aktivitat r in PBD2. Beide Akti-
"_oenl o vitdten haben Vorganger- als auch Nachfolgeraktivitaten im
Kontrollfluss. es bezeichnet hier die Menge aller direkten
Vorgéangeraktivitdten von s, se die Menge aller direkten
Nachfolgeraktivitaten von s. Entsprechend steht er fiir die
Abbildung 331 Asyﬁ Menge aller di_rekten Vorgéngeraktiv_itéfiten von r, re fir d_ie
) ' Menge aller direkten Nachfolgeraktivitaten von r. Es gilt
hierbei es=prel(s)+pre(s), se=succl(s)+succ(s), er=prel(r)+pre(r) und re=succl(r)+succ(r) (vgl. Ta-
belle 3.5). Wir ersetzen im konsolidierten Prozess s durch die <assign>-Aktivitét a, die vs an v, zu-
weist. Da v, im Scope Scope_PBD?2 definiert wurde und nur dort sichtbar ist, missen wir hierzu v, in
den globalen Prozessscope verschieben. Hierbei missen wir aufpassen, dass es nicht schon eine glo-
bale Variable mit demselben Namen gibt. Ist dies der Fall benennen wir v; in v, um und &ndern alle
Verweise von v, in Scope_PBD2 sowie a auf v... Der neue Kontrollflusslink In, der nun a mit der
synchronisierenden <empty>-Aktivitat b verbindet, wird zu den Links in der <flow>-Aktivitat des
konsolidierten Prozesses hinzugefugt. Auch hier muss wieder auf mégliche Namenskollisionen gepriift
werden. Wie in den Abschnitten 3.2.2.1.1 sowie 3.2.2.1.2 erldutert, mussen die <transitionCon-
dition>s von a nicht angepasst werden, jedoch die <joinCondition> von b im Falle anderer ein-
gehender Links als In.

o5

v;]Assign
v o

s

3.3.1.1.1 <invoke> mit FHs und CHs

WS-BPEL 2.0 erlaubt die direkte Definition von Compensation sowie Fault Handlern innerhalb einer
<invoke>-Aktivitit. Eine solche <invoke>-Aktivitat ist semantisch &quivalent zu einer <scope>-

Seite 62

Aktivitat, die diese <invoke>-Aktivitat enthalt und die den CH sowie die FHs dieser definiert. Sie
tragt denselben Namen, wie die enthaltene <invoke>-Aktivitat.

Abbildung 3.32 zeigt das Beispiel aus dem Async-
Pattern1.1 mit einem solchen <invoke> und die nétigen
Anpassungen fir das Konsolidierungsmuster: Im neuen
konsolidierten Prozess ProzessMerged wird nun eine neue
<scope>-Aktivitat s definiert, die die neue <assign>-
Aktivitdt a umschlielt und die FHs sowie den CH von
<invoke> s enthélt. Zusatzlich werden die eingehenden
Links von <invoke> s zu den eingehenden Links von
<scope> s (hier 11) und die ausgehenden Links von
<invoke> s zu den ausgehenden Links von <scope> $

ProzessMerged
8

Flow <links>In</links>
Scope_PBD1 mzmpej’BDZ

11
[FHICH]
Assign
a
12

(=)

Abbildung 3.32 <invoke> mit FH und CH

(hier 12).

3.3.1.1.2 <empty>-Optimierer

Wie in Abschnitt 3.2.2 beschrieben, gibt es in der Variante eins der Konsolidierung asynchroner Kom-
munikationsmuster die Mdglichkeit auch die synchronisierende <empty>-Aktivitat zu entfernen. Der
folgende Abschnitt beschreibt eine Optimierungsfunktion, die unter bestimmten Bedingungen den
Kontrollfluss des konsolidierten Prozesses so anpasst, dass wir auf das <empty> verzichten kénnen.
Hierzu werden wir einige der Funktionen aus Tabelle 3.5 definieren.

Assign
a

Abbildung 3.32b <empty>-Optimierung

Abbildung 3.32b zeigt das Ergebnis der Optimierung nach
Ausfihrung des Algorithmus. Um mdgliche bpel :join-
Fai lure-Faults nicht zu unterdriicken, setzen wir voraus,
dass in b suppressJoinFailure auf ,yes* gesetzt ist.
Wir werden im Optimierungsschritt die <transition-
Condition>s sowie <joinCondition>s der Vorganger
sowie Nachfolgeraktivititen von b anpassen und neue Links

in diesen anlegen um den Kontrollfluss mit dem urspringlichen identisch zu halten. Hierbei gilt wie-
der: eb=prel(b)+pre(b), be=succl(b)+succ(b), mit acprel(b).

(1) optimizeEmpty(actempty)

(2) begin

(3) if (acCtempty-SuppressJoinFailure == "yes”)

4) if ('size(prel(actempty))>0 || size(succl(actempty))>0)

5) foreach (succact in actempry®) do

(6) Link e2succ = connector(actempty, SUCCAct)

@) TC tCsuccact = tc(e2succ, actempty)

(8) JC jCsuccact = jc(SUCCAct)

9) JC jCempry = jc(actempry)

(20) foreach (preact in *actempyy) dO

(12) Link pre2e = connector(preact, aCtempty)

(12) TC tCpreact = tc(pre2e, preacy)

(13) Link newLink = createLink(preact)

(14) Source newSource = createSource(newLink, preac)
(15) if (tCsuccact # null || tCpreact # null’)

(16) newSource.tc = combine(tCsuccact, tCpreact)

a7) fi

(18) removeSource(pre2e, preac)

(29) Target newTarget = createTarget(newLink, succact)
(20) if (jCempty ==null)

Seite 63

(21) jCsuccact = replaceLink(e2succ, newLink, jCsuccact)
(22) else

(23) jCempty = replaceLink(pre2e, newLink, jCempty)
(24) fi

(25) od

(26) JC jCnew = null

(27) if (e2succ ==null)

(28) jcnew = combine(jCempty, jCsuccact)

(29) else

(30) jcnew = replaceLinkWithJC(e2succ, jCempty, JCsuccAct)
(31) fi

(32) setJC(succact, jCnew)

(33) removeTarget(e2succ, SUCCact)

(34) od

(35) fi

(36) remove(actempty)

B37) fi

(38) end

Auflistung 3.5 Pseudocode <empty>-Optimierungsalgorithmus

Auflistung 3.5 zeigt den Pseudocode fur den Optimierungsalgorithmus flir <empty>-Aktivitaten.
Nach Eingabe einer <empty>-Aktivitét (aCtgny,) Wird gepriift ob die Dead-Path-Elimination fir diese
Aktivitat gesetzt wurde (Zeile 3). AnschlieRend werden fur alle Nachfolgeraktivitaten in actgmpy®
folgende Schritte durchgefuihrt: Wir ermitteln den Link e2succ, der succae; und actemyy, verbindet (Zeile
5). Handelt es sich bei succae um eine Aktivitdt aus succ(actgmpy), die nicht per Link mit actgpyy, ver-
bunden ist, so bleibt dieser Link leer. Daraufhin speichern wir, falls vorhanden, die <transition-
Condition> dieses Links in tCsyccact, die <joinCondition> vVON SUCCa iN jCoyccact SOWIE die <join-
Condition> von aCtgmyy IN jCempry (Zeilen 6-8), da wir sie in den nachsten Schritten zu neuen kombi-
nierten <joinCondition> sowie <transitionCondition>s transformieren. In der folgenden
Schleife (Zeilen 10-25) kombinieren wir die <transitionCondition>s aller Vorgéngeraktivitaten
VON aCtgmpy (*aCtempy) MIit den <transitionCondition>s des Links, der actgmy, Mit SUCCa
verbindet, falls vorhanden. So stellen wir sicher, dass die <transitionCondition>s von aCtgnyy in
die Vorgéngeraktivitaten tbertragen werden und der urspriingliche Kontrollfluss erhalten bleibt.
AnschlieBend wird ein neuer Link mit Ausgang in prea und Eingang in succae; und der kombinierten
<transitionCondition> aus tCyceact UNA tCyrenct angelegt. Hierzu werden tCyccact UNA tCorenct PEX
UND-Verknlpfung miteinander verbunden (Zeile 15 combine(tCsyccact; tCpreact)). BeSitzt actemyy keine
eingehenden Links und ist jcempy, SOMIt leer, ersetzen wir alle Vorkommen von €2succ in jCgyccact durch
den neuen Link newLink (Zeile 21). Andernfalls wird die <joinCondition> jCenyyy angepasst, indem
der alte Link pre2e durch den neuen newLink im XPath-Ausdruck ersetzt wird (Zeile 23 replace-
Link(pre2e, newLink, jCempy)). Nachdem alle Aktivitaten aus eactenyy angepasst wurden, wird die neue
<joinCondition> jCy VON SUCCa; angelegt. Existiert kein Link e2succ, der acCtgmyy, Mit SUCCa«
verbindet, so ist jCnew die UND-Verknipfung aus jCempryy Und jCsyceact (Z€ile 28). Andernfalls werden alle
Vorkommen des Links e2succ mit der neuen kombinierten jCempy <joinCondition> in jCeccact
ersetzt (Zeile 30 replaceLinkWithJC(e2succ, jCempty, JCsuccact))- Nach erfolgreicher Zusammenfiihrung
der Vorgénger- und Nachfolgeraktivitdten von actemyy im Kontrollfluss, wird actgny, entfernt. Sei
m=size(acCtempy®) die Anzahl der Aktivitaten in actgmpyy® und n=size(*actemyy) die Anzahl der Aktivi-
taten in eactgny,, dann missen wir in unserem Optimierungsalgorithmus n*m neue Links anlegen.
Auflistung 3.6 zeigt den Pseudocode fur das Ermitteln der <joinCondition> einer Aktivitat. Hierzu
wird lediglich gepruft, ob es eine explizite <joinCondition> in dieser Aktivitat gibt, ansonsten
werden die eingehenden Links der <targets> per ODER-Verknupfung miteinander kombiniert
(implizite <joinCondition>).

Seite 64

(1) JCjc(act)

(2) begin

(3) JCjc=null

(4) if (act.jc#null)
(5) return act.jc

(6) else
@) for (i=0; i< size(act.<targets>); i++) do
(8) jc +="“$" + act.<targets>[i]
9 jc = (i < (size(act.<targets>)-1) ? jc+ “OR “:jc)
(10) od
(11) fi
(12) returnijc
(23) end
Auflistung 3.6 Pseudocode jc(act)-Funktion
Seq Seq Seq Seq

n4 1n2/In5 1

n2 2 In1
In4

X x s
(&) |9 (a2 (&) (&

® |® ®®|® 9o

<

e

prel(E) ={ Az}, pre(E) ={A; }, te(In, A;) = Saccount.balance > 500 prel(E) = { As, As}, pre(E) ={ A, }, te(In1, Az) = tc1 AND tc3
oE = prel(E) + pre(E), te(In2, As) = (Saccount.balance > 500) AND oE = prel(E) + pre(E), te(Ind, As) = tcl
succl(E) = { Ay}, succ(E) ={A; }, ($paycheck.amount > 50) succl(E) = { As}, succ(E) ={ A, }, te(In2, A;) = tc3
Ee = succl(E) + succ(E) tc(In4, As) = Spaycheck.amount > 50 Ee = succl(E) + succ(E) te(In3, A;) = tc2 AND tc3
Jje(Az) =$In4 tc(In6, Ay) = tc2
tc(l1, As) = Spaycheck.amount > 50 Je(Aq) =$In2 te(l1, As) = tcl Jje(As) =$x AND ($In1 OR $In3)
tc(l2, E) = Saccount.balance > 500 te(l2, Ag) = tc2 JjelAz) =Sy AND (S$In4 OR $In6)
je(E) =311 tc(l3, E) =tc3
je(Ay) =312 je(E) =$I10R $I2
je(As) =313 AND $x
je(A:) =Sy

Seq Seq Seq Seq Seq

In1 In2
In1 I In2
1 1 2 X X [} % %
() @) e @®| ®

g
(0]
o

prel(E) = {}, pre(E) ={ A; }, te(Inl, A;) = tcl prel(E) = {}, pre(E) ={ A }, te(Ini, A;) = tcl prel(E) = {}, pre(E) ={ A }, te(in1, Ay) = tcl
*E = prel(E) + pre(E), je(A;) =$Inl *E = prel(E) + pre(E), te(In2, A;) = tc2 oE = prel(E) + pre(E), jo(A) =%x
succl(E) = { Az}, succ(E) =}, succl(E) = { Ay As}, succ(E) = {}, je(Az) =3Il succl(E) = { As}, succ(E) = { Az}, je(As) =3Il
Ee = succl(E) + succ(E) Ee =succl(E) + succ(E) Jc(As) =$In2 OR $x Ee = succl(E) + succ(E)
te(l1, E) =tcl te(l1, E) =tcl te(l1, E) =tcl
jelA;) =SI1 tc(l2, E) =tc2 je(A;) =%x

je(A:) =511 jelAs) =31

je(As) =312 OR $x

Abbildung 3.32¢ Fallbeispiele einiger <empty>-Optimierungen

Abbildung 3.32c zeigt den Optimierungsalgorithmus an einigen simplen Beispielfragmenten.

3.3.1.2 AsyncPattern1.2

Das AsyncPatternl.2 stellt eine Spezialisierung des AsyncPatternl.1 dar, mit der Bedingung, dass fur
die Menge re=¢g gilt, es somit keine Nachfolgeaktivitaten auf die empfangende Aktivitat gibt. Abbil-
dung 3.33 zeigt einige Beispielfragmente einer Choreographie mit der gegebenen Ausgangssituation.

Seite 65

ProzessMerged ProzessMerged

Flow Flow
Scope_PBD1 Scope_PBD2 Scope_PBD1 Scope_PBD2 ProzessMerged

ml i
A\ Recelve
r

Empty
b

a) b) c)

Abbildung 3.33 AsyncPatternl.2

Gegeben sind zwei PBDs PBD1 und PBD2 die (ber einen Message Link ml miteinander kommunizie-
ren. Da in PBD2 keine Nachfolgeaktivitaten auf die <receive>-Aktivitét r folgen, wird hier die Zu-
weisung von v an v, obsolet, da die Daten von v, in PBD2 nichtmehr verwendet werden. Stattdessen
ersetzen wir s und r durch zwei synchronisierende <empty>-Aktivitaten a und b wie in a) gezeigt. Ist
zusétzlich flr r das suppressJoinFai lure-Attribut auf ,,yes* gesetzt, so kénnen wir r vollstandig
entfernen (b)). Andernfalls wiirden wir einen moglichen bpel : joinFai lure-Fault unterdriicken. c)
zeigt eine weitere Optimierung flr den Fall, dass auch fiir s das suppressJoinFai lure-Attribut auf
»yes“ gesetzt ist: Nach Anwendung des <empty>-Optimierungsalgorithmus aus Abschnitt 3.3.1.1.2
wurde auch die s ersetzende <empty>-Aktivitat a entfernt und der Kontrollfluss zwischen es sowie se
zusammengefiihrt.

3.3.1.3 AsyncPattern1.3
Das AsyncPattern1.3 ist ein weiterer Spezialfall des AsyncPatternl.1. Im Gegensatz zum AsyncPat-

tern1.2 gilt hier nun: se=¢ qilt, es existieren somit keine weiteren Nachfolgeaktivitaten auf die sen-
dende. Abbildung 3.34 zeigt das Kommunikationsmuster an einem Beispielfragment.

&ozessMerged

Flow
Scope_PBD1

ﬁozessMerged

Ersetzen aller Vorkommen
von v, durch vg

Abbildung 3.34 AsyncPatternl.3

Gegeben sind die beiden PBDs PBD1 und PBD2. Da PBD1 die Daten von v, nicht mehr verwendet,
wird bei der Konsolidierung s durch die synchronisierende <empty>-Aktivitdt a ersetzt und r durch
die <empty>-Aktivitdt b. Da wir hier auf die Datenzuweisung von vs an v, durch die 0bliche
<assign>-Aktivitdt, die s ersetzt, verzichtet haben, werden wir nun ausgehend von b alle Nach-
folgeaktivitaten untersuchen und alle Vorkommen von v, durch vs ersetzen. vs wird zusétzlich in den
Prozessscope Ubertragen. Auflistung 3.7 zeigt den Pseudocode fiir das Ersetzen der Variablen. Zur
Ubersichtlichkeit und um den Umfang der vorliegenden Arbeit nicht zu sprengen, wurde auf Imple-
mentierungsdetails verzichtet. Diese werden im Kapitel 4 Implementierung genauer beschrieben.
Nachdem v, durch v in Scope_PBD?2 ersetzt wurde, filhren wir den <empty>-Optimierungsalgorith-
mus fur a und b aus und kénnen im Optimalfall (beide suppressJoinFai lure-Attribute sind auf
»yes" gesetzt) beide Synchronisationsaktivitaten entfernen (Abbildung 3.34 rechte Fragmente).

Seite 66

@

@

©)

4

®)

(6)

™

®

©

(10)
(11)
12)
(13)
(14)
(15)
(16)
17
(18)
(19)
(20)
(1)
(22)
(23)
(24)
(25)
(26)
@7)
(28)
(29)
(30)
(1)
(32)
(33)
(34)
(35)
(36)
@37
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(61)

replaceVar(v;, vs, act)
begin

foreach (source in act.<sources>) do

if (source.tc # null’)
replaceVariableInXPathExpr(v;, vs, source.tc)

fi

od

if (typeof(act) == <invoke>)
... ersetze alle Vorkommen von v; durch vs in inputVvariable und outputVariable, <from-
Parts>, <toParts>, <compensationHandler>, Fault Handler sowie allen Unteraktivitaten
(Rekursion) ...

fi

if (typeof(act) == <receive>)
... ersetze alle Vorkommen von v; durch vs in variable oder <fromParts> ...

fi

if (typeof(act) == <reply>)
... ersetze alle Vorkommen von v, durch vs in variable oder <toParts> ...

fi

if (typeof(act) == <assign>)
... ersetze alle Vorkommen von v, durch vs in allen <copy>s — from-specs sowie to-specs
mit variable und expressionLanguage ...

fi

if (typeof(act) == <validate>)
... ersetze alle Vorkommen von v, durch vs in variable ...

fi

if (typeof(act) == <sequence> || typeof(act) == <Flow>)
foreach (subac in act.activities) do

replaceVariable(vr, Vs, Subact)

od

fi

if (typeof(act) ==<if>)
... ersetze alle Vorkommen von v, durch vs in condition, allen <elseif>s und <else> sowie
allen enthaltenen Unteraktivitaten (Rekursion) ...

fi

if (typeof(act) == <while> || typeof(act) == <repeatUntil>)
replaceVariableInXPathExpr(v;, Vs, act.<condition>)
replaceVariable(vy, vs, act.activity)

fi

if (typeof(act) == <pick>)
... ersetze alle Vorkommen von v; durch vs in allen <onMessage> sowie <onAlarm>-Zweigen
sowie Unteraktivitdten (Rekursion) ...

fi

if (typeof(act) == <forEach>)
... ersetze alle Vorkommen von v, durch vs in startCounterValue-, finalCounterValue-,
completionCondition-expressions sowie der enthaltenen <scope>-Aktivitat (Rekursion) ...

fi

if (typeof(act) == <scope>)
... Uberpriife ob eine Variable v; definiert wurde (diese Uiberdeckt die urspriingliche Variable v;),
wenn nicht, ersetze alle Vorkommen von v; durch vs in allen CHs, FHs, EHs, THs sowie der
Unteraktivitat (Rekursion)

fi

Seite 67

(52) foreach (succac in acte) do

(53) replaceVariable(vy, vs, succact)
(54) od
(55) end

Auflistung 3.7 Pseudocode replaceVar(vy, vy, act)-Funktion

Das AsyncPatternl.3 setzt voraus, dass es keine parallelen schreibenden oder lesenden Aktivitaten im
sendenden Prozess gibt, die nach der Ausflihrung von s v verwenden, da v, nach der Konsolidierung
im empfangenden Prozessfragment (Scope_PBD?2) verédndert werden kann (vgl. Abbildung 3.25).

3.3.1.4 AsyncPattern1.4

Das AsyncPatternl.4 ist charakterisiert durch eine leere Menge an direkten Nachfolgeaktivititen von s
sowie r, es gilt somit re=¢ und se=¢. Abbildung 3.35 zeigt ein Beispielfragment zweier miteinander
kommunizierender Prozessfragmente, die ein solches Muster enthalten.

ProzessMerged

ProzessMerged

Flow
Scope_PBD1 Scope_PBD2

ml i
Invoke[y}| ™ Sy Receive
s r

Abbildung 3.35 AsyncPatternl.4

Da beide Choreographieteilnehmerfragmente PBD1 sowie PBD2 die Daten nach der Kommunikation
nicht mehr verwenden, entféllt das Zuweisen von vs an v, per <assign>-Aktivitat. Ist zusatzlich die
Dead-Path-Elimination (beide suppressJoinFai lure-Attribute sind auf ,,yes* gesetzt) fir s und r
aktiviert, koénnen die synchronisierenden <empty>-Aktivitdten a und b ebenfalls entfernt werden.

3.3.1.5 AsyncPattern1.5

Das AsyncPatternl1.5 ist ein Kommunikationsmuster bei dem es keine direkten Vorgangeraktivitaten
auf die empfangende <receive>-Aktivitat gibt. Daher ist das createlnstance-Attribut der em-
pfangenden <receive>-Aktivitidt auf ,yes* gesetzt und es gilt er=g. Abbildung 3.36 zeigt das
AsyncPatternl.5 an einem Beispielfragment zweier kommunizierender PBDs.

PBD1 und PBD2 kommunizieren (ber einen Message Link

ml miteinander. Hierbei ist jedoch PBD1 der Initiator von
sere-ro0t PBD2 (er=g). Da die <receive>-Aktivitit r keine di-

rekten VVorgéangeraktivitaten besitzt kann in diesem Fall auf
eine synchronisierende <empty>-Aktivitat verzichtet wer-
den. s wird durch eine <assign>-Aktivitat a ersetzt, die v;
nach v, kopiert. Zusatzlich muss der Kontrollfluss zwischen
Scope_PBD1 mit dem von Scope_PBD2 verbunden werden.
Hierzu werden alle ausgehenden Links von r, inklusive
Abbildung 3.36 AsyncPattern1.5 mdoglicher <transitionCondition>s zu den ausgehen-

[v]
) . .>
r

Seite 68

den Links von a hinzugefiigt und in die Prozess-<flow>-Aktivitat (bertragen. Existieren keine
ausgehenden Links, es gilt somit succl(r)=4, wird ein neuer Link In (nicht abgebildet) ausgehend von
a und eingehend in die Nachfolgeraktivitét succ(r) hinzugefugt.

3.3.1.6 AsyncPatternl.6

Das AsyncPatternl.6 ist eine weitere Spezialisierung des AsyncPatternl.1. Im Gegensatz zu diesem
uberprift es zusatzlich, ob es in den direkten Nachfolgeraktivitaten der sendenden <invoke>-Aktivi-
tat s weitere asynchrone <invoke>-Aktivitaten gibt, die choreographie-intern kommunizieren. Hierzu
untersucht es die Ubrigen Message Links aus ML und kann die involvierten <invoke>-Aktivitdten zu
einer neuen <assign>-Aktivitdt mit mehreren atomaren <copy>-Bldcken zusammenfiihren und an-
schliellend den Kontrollfluss synchronisieren. Dieses Verfahren wird sukzessiv fiir die direkten Nach-
folgeaktivitaten durchgefihrt.

Empty
d

Abbildung 3.37 AsyncPatternl.6

Abbildung 3.37 zeigt die drei Beispielsfragmente einer Choreographie in denen ein solches Kom-
munikationsmuster auftritt. Die drei PBDs PBD1, PBD2 sowie PBD3 kommunizieren Uber die drei
Message Links ml1, mI2 und mI3 miteinander. Nachdem die PBDs in die entsprechenden <scope>-
Aktivitadten im neuen konsolidierten Prozess ProzessMerged kopiert wurden, untersucht der Algo-
rithmus die Message Links. In der asynchronen Kommunikation zwischen PBD1 und PBD2,
dargestellt durch den Message Link mll und die <invoke>-Aktivitat s; in PBD1 sowie die <re-
ceive>-Aktivitit ry in PBD2, wird nun das AsyncPatternl.1 angewendet und anschlieBend die direk-
ten Nachfolgeaktivitdten von s; in s;e=succl(s;)+succ(s;) untersucht: Hierbei findet sich erneut eine
asynchrone choreographie-intern kommunizierende <invoke>-Aktivitit s,, dargestellt durch den
Message Link ml2. Nun werden folgende Bedingungen fur s, Uberprift:

1. Liegt s, in succl(s;) Uberprifen wir zundchst, ob s; und s, die gleichen Werte flr das
suppressJoinFai lure-Attribute enthalten. Sind diese verschieden, bricht der Algorith-
mus ab und der ndchste Message Link wird untersucht andernfalls wird Gberprift, ob es eine
explizite Kontrollflussabhéngigkeit durch eine <transitionCondition> gibt, fur den
entsprechenden, beide Aktivitdten verbindenden Link. Ist dies der Fall, so bricht der
Algorithmus ab, da erst zur Laufzeit entschieden werden kann ob eine <transition-
Condition> zu wahr ausgewertet wird (vgl. [BFGO5]) und wir bei einer Zusammen-
fuhrung beider Aktivitaten den Kontrollfluss verdndern wirden. So konnte es sein, dass vor
der Zusammenfiihrung die Auswertung der <transitionCondition> von s; die Aus-
flhrung von s, verhindert. Liegt keine <transitionCondition> fiir diesen Link vor wird
untersucht, ob s, weitere eingehende Links besitzt (<targets>). Ist dies der Fall bricht der
Algorithmus ab. Wirden wir diese zu den eingehenden Links der aus AsyncPatternl1.1 fiir
die s; ersetzende <assign>-Aktivitdt a hinzufiigen, so ware der Kontrollfluss von a
abhéngig von den Vorgéngeraktivitaten von s, aus prel(sy). Sind beide vorhergehenden

Seite 69

Uberpriifungen negativ, so wird anschlieBend iiberpriift, ob s, und s, in derselben <scope>-
Aktivitat liegen, da wir ansonsten durch eine Zusammenfihrung den Kontrollfluss
verandern wirden. Dies wére beispielsweise dann der Fall, wenn s; in einem <scope> mit
einem Compensation Handler liegt, der nach der Zusammenfiihrung erst nach Beendigung
von s, installiert werden wiirde.

2. Liegts, insucc(s;) uberpriifen wir, ob s; und s, die gleichen Werte fur das suppressJoin-
Fai lure-Attribute enthalten. Anschliefend wird gepruft, ob s, eingehende Links besitzt
(<targets>). Ist dies der Fall bricht der Algorithmus ab, da wir durch Zusammenfiihrung
beider Aktivitaten einen veranderten Kontrollfluss zur Folge hétten. Nun wird tberprift ob
s; und s, in derselben <scope>-Aktivitat liegen.

Wurden die vorhergehenden Uberpriifungen bestanden so werden s, und s, in die <assiign>-Aktivitat
a zusammengefihrt, indem eine neuer <copy>-Block fiir das Kopieren der Variable vs, nach v, zu
dem schon vorhandenen <copy>-Block hinzugefiigt wird. Abbildung 3.38 zeigt einen solchen
<copy>-Block.

<assign name=“a“‘>
<copy>
<assign name=*a‘*> <from variable="vg"/>
<copy> <to variable="v,,"/>
<from variable="vs,“/> </copy>
<to variable="v“/> <copy>
</copy> <from variable="v,"/>
</assign> <to variable="v."“/>
</copy>
</assign>

Abbildung 3.38 Erweiterung von <assign>-Aktivitat a durch zusatzlichen <copy>-Block

Nachdem s; und s, in a zusammengefiihrt wurden, werden die <sources> von s,, falls vorhanden,
inklusive <transitionCondition>s zu a hinzugefiigt und der Algorithmus wiederholt die Uberprii-
fung in den direkten Nachfolgeraktivitaten s, (Abbildung 3.37 dritte Iteration). Im Optimalfall kon-
nen die <empty>-Aktivitaten b, ¢ und d nach Anwendung des <empty>-Optimierers auch hier ent-
fernt werden (nicht dargestellt).

3.3.1.7 AsyncPattern1.7 (,Khalaf Split“)

In ihrer Dissertation [KHAOQ8] beschreibt Khalaf eine Methode zum Aufspalten eines Kontrollfluss-
links Uber Prozessgrenzen hinweg. Das AsyncPatternl.7 erkennt solche Kommunikationsmuster und
stellt den urspriinglichen Kontrollfluss im konsolidierten Prozess wieder her. Abbildung 3.39 zeigt die
Idee hinter dem Fragmentierungsvorgang von Khalaf.

PBD1 PBD2 ProzessMerged

Scope_PBD1 Scope_PBD2
tc
A
)

Scope

Prozess_Original A tcll Invoke A’) f[l/il?i v, 7 n ‘
Invoke A“ gy

Abbildung 3.39 Aufspalten eines Kontrollflusslinks (vgl. [KHAO08]) und anschlieBendes Konsolidieren mit AsyncPat-
ternl.7

Im unfragmentierten Prozess Prozess_Original sind die beiden Aktivitdten A und B Uber einen Link
miteinander verbunden. Fir diesen Link gilt die <transitionCondition> tc(l1, A)=tc. Der Kon-
trollflusslink wird nach Khalaf folgendermalien aufgespalten: Um den Status der <transition-
Condition> tc aus PBD1 nach PBD2 zu Ubertragen wird der Kontrollfluss in einen Nachrichtenfluss
transformiert. Hierzu wird eine <scope>-Aktivitdt mit einem Fault Handler zum Auffangen des
bpel : joinFai lure-Faults hinzugefiigt. In dieser <scope>-Aktivitat befindet sich eine <invoke>-
Aktivitat A*, die das suppressJoinFai lure-Attribute auf ,,no" gesetzt hat und die Variable vy mit
dem Standardwert ,,true” verwendet. Zusatzlich enthalt der Fault Handler eine <invoke>-Aktivitait
A‘“, die Variable vy, mit dem Standardwert ,,false* verwendet. Beide <invoke>-Aktivitaten kom-

Seite 70

munizieren mit derselben <receive>-Aktivitit B* in PBD2 (iber die beiden Message Links ml1 sowie
ml2. Je nach Auswertung der <transitionCondition> tc zur Laufzeit, sendet entweder A* oder im
bpel :joinFailure-Fault Fall A*‘. Die Empféngerseite PBD2 erhélt den Wert des ehemaligen
Kontrollflusslinks in der Variablen v, und wertet diese in der <transitionCondition> tc(l2, B*)=
“v,=true()** aus. Da der Link zwischen B* und B im fragmentierten Prozess PBD2 weiterhin 11 heif3t,
muss die <joinCondition> von B nicht angepasst werden.

In seiner Diplomarbeit [CUI12] setzt Cui diesen Fragmentierungsvorgang um. Wir werden AsyncPat-
ternl.7 so konstruieren, dass dieses das dort gezeigte Fragmentierungsmuster erkennt und den ur-
sprunglichen Kontrollfluss wiederherstellt.

PBD1
[w] Scope
Sequence suppressJoinFai lure="no*
11 -
A Assign
ProzessMerged
‘ & (e
N b v,
nvoke A” [u} !(Receive 8 Flow <links>/I<links>
g
FH bpel - joinFai lure . 4 S ope_PBD1 s ope_PBD1
Sequence //‘;\')
|false()] Assign
[v.] b L,
.
.
.
Invoke A” [v.Js

Abbildung 3.40 AsyncPatternl.7 angewendet auf Cui’s Kontrollflusslinkfragmentierung (vgl. [CU112])

Abbildung 3.40 zeigt die Umsetzung der Kontrollflusslinkfragmentierung nach Cui mit anschlieBender
Konsolidierung mit AsyncPatternl.7. Fir das AsyncPattern1.7 sucht der Konsolidierungsalgorithmus
nach zwei Message Links aus ML mll und ml2, die beide die gleiche <receive>-Aktivitit,
beispielswese B, als receiveActivity enthalten. Zusétzlich befinden sich die beiden <invoke>-
Aktivitaten, z.B. A* und A*‘, in derselben PBD. Jetzt wird Uberprift, ob sich jeweils A* sowie A** als
zweite Aktivitat innerhalb einer <sequence>-Aktivitat befinden (typeof(par(A‘)=<sequence> sowie
typeof(par(A*‘))=<sequence>). Trifft dies zu wird Uberprift, ob die Vorgéngeraktivitat beider
<invoke>s eine <assign>-Aktivitat ist. Diese <assign>-Aktivitat weist in einem Fall den festen
Wert ,, true(Q", sei diese a, im anderen Fall ,, false()", sei diese b, an die von der <invoke>-
Aktivitat verwendete Variable vs zu. Anschliefend wird Uberprift, ob die <sequence>-Aktivitét, die
a enthalt innerhalb einer <scope>-Aktivitat (typeof(par(par(A‘)))=<scope>) mit einem Fault
Handler flr den bpel : joinFai lure-Fault liegt und das suppressJoinFai lure-Attribut auf ,,no"
gesetzt hat. Zusétzlich darf diese Aktivitat nur einen eingehenden Link haben, sei dieser hier 11. Die
<sequence>-Aktivitat, die b enthdlt muss in diesem Fault Handler enthalten sein (typeof(par(
par(A‘‘)))=<catch faultName="bpel:joinFailure">). Beide Sequenzen dirfen nur die zuvor
erwéhnten <assign>- und <invoke>-Aktivitaten enthalten. Wurden alle vorherigen Muster erkannt,
wird die Empfangerseite Uberprift: Die <receive>-Aktivitat, sei diese hier B*, enthélt nur einen
ausgehenden Link, der denselben Namen, wie der in die <sequence>-Aktivitat von A* eingehende
besitzt (11). Zusatzlich prift die <transitionCondition> dieses Links den Wert der empfangenen
Variable v, auf ,,true” (tc(I11, B*)="v,=true()*).

Wurden alle zuvor genannten Bedingungen im sendenden und empfangenden Fragment positiv
Uberprift, so wird das Konsolidierungsmuster angewendet und der Kontrollfluss der beiden PBDs im
neuen Prozess ProzessMerged zusammengefuhrt. Hierzu wird die <scope>-Aktivitat in Scope_PBD1
entfernt sowie die <receive>-Aktivitdt in Scope_PBD2. AnschlieRend wird der Link I1, der zuvor in
Scope_PBD1 sowie Scope_PBD?2 enthalten war in die Prozess-<flow>-Aktivitat Ubertragen. Da auf
Sender sowie Empfangerseite derselbe Linkname |1 wéhrend der Fragmentierung verwendet wurde,
mussen bei der Konsolidierung keine Anpassungen an der <joinCondition> von B durchgefiihrt
werden.

Das von Cui in [CUI12] implementierte Fragmentierungsmuster fur Kontrollflusslinks 1&sst sich auch
ohne eine <sequence>-Aktivitat innerhalb der <scope>-Aktivitdit auf der sendenden Seite
realisieren, beispielsweise durch zwei Variablen, die nur einmal zu Beginn des Prozesses mit ,,true*
und ,,False” initialisiert werden (Vi Und Viase). Der gezeigte Erkennungs- und Konsolidierungsalgo-
rithmus ist hierfur leicht anpassbar.

Seite 71

3.3.1.8 AsyncPattern1.8 (Asynchrones n-zu-1 Senden auf <receive>)

Das AsyncPattern1.8 dient dem Aufsplren und anschlieendem Konsolidieren einer n-zu-1 Kommuni-
kation innerhalb einer BPEL4Chor Choreographie. Hierbei kdnnen mehrere Choreographieteilnehmer
Nachrichten zu einem anderen einzelnen Teilnehmer senden. Dieses Muster wird durch mehrere
verschiedene Message Links aus ML mit jeweils derselben receiveActivity reprasentiert, wobei
im Gegensatz zu AsyncPatternl.7 die sendActivity in verschiedenen PBDs enthalten ist.
Abbildung 3.41 zeigt ein solches Beispiel und die zugehdrigen Message Links in der Topology.

<participants>
PBDI PBD2 PBD3 <participant name="PBD2" type="Receiver" />
Z 2 Z <participant name="PBD1" type="Sender” />
<participant name="PBD3" type="Sender” />
</participants>
<messagelinks>
<messagelink sender="PBD1" sendActivities="s," receiver="PBD2"
receiveActivity="r" name="ml1"/>
<messagelink sender="PBD3" sendActivities="s," receiver="PBD2"
receiveActivity="r" name="ml2"/>
</messageLinks>

mi1
-

Abbildung 3.41 n-zu-1 Senden sowie das zugehdrige Topology-Fragment

Um ein korrektes Verbinden des Kontrollflusses zwischen den sendenden und den empfangenden
Choreographieteilnehmern zu gewahrleisten, missen wir unseren Ansatz aus AsyncPatternl.1l etwas
veréndern. Wenn wir in diesem Beispiel das AsyncPattern1.1 auf die drei Teilnehmer und die zwei
Message Links anwenden kann es passieren, dass Informationen tiberschrieben werden.

ProzessMerged ozessMerged
fggessiere fpressiere

Flow Flow
Scope_PBD1 Scope_PBD2 Scope_PBD3 Scope_PBD1 Scope_PBD2 Scope_PBD3
d vd 2] vd

4]
v Assign
Wl ¢

mi1 i m
[Invoke%> 77£>@Rece\ve miz| \nvoke% %Assign] [Invoke%
1 r sz
a S2
- . -

PBD1 PBD2 PBD3
vl [w] v

N

Abbildung 3.42 Anwendung des AsyncPatternl.1 auf mehrere Message Links mit gleicher <receive>-Aktivitat

Abbildung 3.42 zeigt die Beispielchoreographie mit den drei PBDs PBD1, PBD2 und PBD3. PBD1
und PBD3 senden jeweils beide auf die gleiche <receive>-Aktivitat r in PBD2. Nach sukzessiver
Anwendung des AsyncPattern1.1 wird zundchst s; in PBD1 durch eine <assign>-Aktivitét a ersetzt,
die vy nach v, kopiert, sowie r durch eine synchronisierende <empty>-Aktivitat b. Anschliefend wird
s, in PBD3 durch eine <assign>-Aktivitdt ¢ ersetzt, die vy, nach v, kopiert. Da sich nun v, im
globalen Prozessscope befindet, kann es passieren, dass zundchst vs; nach v, kopiert wird, falls
Scope_PBD1 im Ablauf schneller voranschreitet und anschlieBend nochmals Scope_PBD2 vs, nach v,
kopiert und die Daten von vy, Uberschreibt. Zusétzlich kommt das Problem des verdnderten Kontroll-
flusses hinzu: In der urspriinglichen Choreographie sendet beispielsweise s; aus PBD1 eine Nachricht
an r in PBD2 und nach Erhalt dieser lauft PBD2 weiter. In der konsolidierten muss jedoch <empty> b
auch nachdem vg; nach v, kopiert wurde auf das Aktivieren den Kontrollflusslinks aus c in
Scope_PBD3 warten, wodurch eine andere Synchronisierung der Abldufe stattfindet als in der
Choreographie.

Eine Losung fir das erste Problem des Uberschreibens der Daten in v, ware das Einfiihren einer
weiteren temporaren Variable v, zum emulieren des Datenflusses wie in Abschnitt 3.2.3.1 beschrie-
ben. Je nach unterliegender Struktur der Daten von v und v, kann dieser zusatzliche Kopiervorgang
jedoch auf Kosten der Performance gehen. Stattdessen werden wir einen Ansatz wéhlen, der zwar eine

Seite 72

zusétzliche Variable vi.wriven VErwendet, die jedoch lediglich als eine Art Schutzvariable (Guard Varia-
ble) dient, um zu signalisieren, ob v, bereits durch eine der beiden <assign>-Aktivititen a oder c be-
schrieben wurde und als Datentyp xsd:boolean verwendet sowie bei der Deklaration inline mit
false initialisiert wird (vgl. WS-BPEL 2.0 Spezifikation [OAS07] Abschnitt 8.1 Variables). Diese
Variable wird in einer <if>-Aktivitit verwendet, die das urspriingliche s; ersetzende <assign> a
umgibt.

- Abbildung 3.43 zeigt die Anwendung der <if>-Aktivitét in

p
el Verbindung mit der neuen Schutzvariable Vigigen: Die
//Flow L . \\ <assign>-Aktivitdten a und ¢ wurden durch einen neuen

Scope_FEDI Scope.PeD2 > i <copy>-Block erweitert, der noch vor dem Kopieren der

[.,] [.] Variable v5; bzw. v, nach v, den Wert der Schutzvariable v,.
written aUT true setzt. Die <assign>-Aktivitaten sind nun

beide von einer <if>-Aktivitdt umgeben, die jeweils nur

dann die enthaltene Aktivitdt ausfihrt, wenn Viiwen NOCh

Empty
Assign [b] Assign nicht beschrieben wurde (Viwieen=False). Andernfalls
a werden a und ¢ nicht aktiviert und der Kontrollfluss schreitet

c
true() rue()
r-written|
s

A~ j @ el in Scope_PBD1 sowie Scope PBD2 weiter voran. Der

i Kontrollflusslink zwischen a und b sowie ¢ und b wird auch
bei negativer Auswertung der <if>-condition und
anschlieRender Auslassung von a bzw. ¢ zu false evaluiert.
Der hier dargestellte Ansatz 16st zwar das Problem des
\ /) Uberschreibens der Daten von v,, doch leider bleibt auch
~ hier der Ablauf von Scope_PBD2 von den beiden anderen
Abbildung 3.43 Asynchrones n- Scope_PBD1 sowie Scope_PBD3 abhingig, da b weiterhin
zu-1Senden erst ausgefiihrt wird wenn beide Kontrollflusslinks aus a als
auch c aktiviert wurden. Wir werden nun die <receive> r
ersetzende <empty>-Aktivitat b so anpassen, dass diese bereits nach Aktivierung nur einer der beiden
Kontrollflusslinks ausgefiihrt wird. Hierzu ersetzen wir b durch eine <scope>-Aktivitét, die einen
Fault Handler fiir den bpel - joinFai lure-Fault enthélt mit einer leeren <empty>-Aktivitat. Zusatz-
lich enthalt der <scope> fir jeden der beiden Kontrollflusslinks von a und c, seien diese 11 und 12,
eine <empty>-Aktivitdt deren suppressJoinFailure-Attribut auf ,,no* gesetzt ist. Die <join-
Condition>s der beiden <empty>-Aktivitaten sind einmal ,,not $11“ sowie entsprechend fiir 12
»hot $12“ Wird nun einer der beiden Links aktiviert, so wirft die entsprechende <empty>-Aktivitat
einen bpel : joinFai lure-Fault der im Fault Handler des <scope> aufgefangen wird. Da dieser nur
eine <empty>-Aktivitat enthalt, wird Scope_PBD?2 direkt nach diesem weiter ausgefiihrt. Wird nun
auch der andere Link aktiviert, so hat dieser keine Auswirkung mehr auf den Kontrollfluss von
Scope_PBD2, da der <scope>, der die beiden <empty>-Aktivitdten enthdlt, bereits einen Fault
geworfen hat. Abbildung 3.44 zeigt das Ergebnis dieses Vorgehens an der Beispielchoreographie.

—
o

ProzessMerged

[V Vit falsel

Flow

Scope_PBD1 Scope_PBD2 Scope_PBD3

PBD1 PBD2 PBD3

(=) @[I] (=)
[Invsclyke%ff‘ll)@Recreive r;v{{{ Invske%
ololc

FH bpel - joinFai lure

Empty
d

I
)

Abbildung 3.44 Ergebnis der Konsolidierung des n-zu-1 AsyncPatternl1.8

Seite 73

Sei sendActs die Menge aller zur <receive>-Aktivitat r sendenden Aktivitdten (im vorherigen Bei-
spiel gilt somit sendActs = { PBD1—s,, PBD3—s, }). Diese Menge wird ermittelt indem Uber alle
noch nicht behandelten Message Links aus ML iteriert wird und diejenigen gesucht werden, die auf
dieselbe <receive>-Aktivitat r aus jeweils verschiedenen PBDs senden (Participants der Topo-
logy). Die Participants missen dabei nicht zwangsweise vom selben ParticipantType sein.
AnschlieRend wird die empfangende Aktivitdt r durch die zuvor erwéhnte <scope>-Aktivitat, sei
diese hier b, ersetzt. b enthalt eine <Flow>-Aktivitat fl. Besitzt r eingehende und ausgehende Links, so
werden diese in b Ubertragen. Hierbei werden die eingehenden Links von r (<targets>), inklusive
der <joinCondition>, zu den eingehenden Links der neuen <scope>-Aktivitit b. Die ausgehenden
Links (<sources>) von r, inklusive <transitionCondition>s, werden zu den ausgehenden Links
von b. Zuséatzlich wird fur jede Aktivitét in sendActs eine neue synchronisierende <empty>-Aktiviat
in fl hinzugeflgt (mit suppressJoinFailure=*“no*). Nun wird jede Aktivitat aus sendActs durch
eine <if>-Aktivitét if;, ersetzt, wie im Beispiel aus Abbildung 3.44, und eine Schutzvariable Vy.yriten
im Prozessscope des konsolidierten Prozesses eingeflhrt, die per inline-Deklaration mit false
initialisiert wird. Die eingehenden Links der ehemaligen sendActs-Aktivitdt werden zu den
eingehenden Links der neuen <if>-Aktivitat, inklusive <joinCondition>. Selbiges gilt fiir die
ausgehenden Links und deren <transitionCondition>s. Die in ifs, enthaltene neue <assign>-
Aktivitat (mit den <copy>-Blécken zum Kopieren von ,,true()“ nach Viriten SOWie v nach v;) wird
mit der entsprechenden <empty>-Aktivitat in b mit einem Kontrollflusslink |.., verbunden. Anschlie-
Rend wird die <joinCondition> dieser <empty>-Aktivitat auf ,not $I,.," gesetzt (jc(b*)="“not
Slnens”* SOWIE jC(C)="not $lcu2").

3.3.1.9 AsyncPattern2.1

Neben der <receive>-Aktivitdt bietet WS-BPEL 2.0 auch die <pick>-Aktivitdt zum Empfangen
von Nachrichten an. Diese muss mindestens einen <onMessage>-Zweig zum Empfangen enthalten
und kann optionale zeitbasierte <onAlarm>-Zweige definieren. Ist zusatzlich das createlnstance-
Attribut auf ,,yes" gesetzt, diirfen nur <onMessage>-Zweige enthalten sein. Wurde eine der in den
<onMessage>-Zweigen enthaltenen Aktivitdten durch Eingang einer entsprechenden Nachricht
aktiviert bzw. einer der zeitbasierten <onAlarm>-Zweig durch Eintreten eines zeitlichen Ereignisses,
so mussen die verbliebenen Zweige deaktiviert werden. Das AsyncPattern2.1 dient dem Erkennen und
Konsolidieren von choreographie-internen Kommunikationen mit einem <onMessage>-Zweig einer
<pick>-Aktivitdt als empfangende Aktivitdt. Da die <onMessage>-Zweige kein name-Attribut
besitzen wurde in BPEL4Chor der wsu: id-Bezeichner eingeflihrt, der zum Identifizieren eines
solchen Zweiges als receiveActivity in einem Message Link aus ML dient.

ProzessMerged

1] Vyick_actvatea> false()

PBD2

Oﬁg
K R
S

Pick p

Message wsu: id="msg1*

onMessage wsu: id="msg2*

|

Inv@i mi1 4
s
Al

@

name="“ml1“ sender="“PBD1“ receiver=“PBD2“ sendActivity="s*
receiveActivity="“msgl“ messageName=*“messagel‘

Flow

Scope_PBD1
[v]

Assign
vl g

Scope_PBD2

Scope_Pick

FH xoc:pickFai lurel

FH xxx:pickFailure2

A2

Flow_Pick

(P

Sequence

Receive
msg2

throw throw
xxx:pickFailurel xxx:pickFailure2

Abbildung 3.45 AsyncPattern2.1 mit einem <onMessage>-Zweig zum Empfang einer Nachricht eines choreographie-

internen Senders

Seite 74

Abbildung 3.45 zeigt ein Beispielfragment einer Choreographie mit zwei kommunizierenden PBDs.
PBD1 sendet eine Nachricht an den <onMessage>-Zweig msgl der <pick>-Aktivitat p in PBD2.
Sobald diese Nachricht empfangen wurde, schreitet PBD2 mit der Ausfuhrung der Aktivitaten in pe=
succ(p)+succl(p) voran. Wir werden nun den Konsolidierungsvorgang genauer beschreiben, der zu
dem Ergebnis auf der rechten Seite der Abbildung 3.45 fuhrt.

Zunéachst findet der Erkennungsalgorithmus einen Message Link mll aus ML der einen <onMes-
sage>-Zweig einer <pick>-Aktivitdt als receiveActivity enthdlt (in unserem Fall msgl).
Nachdem die beiden PBDs in ihre neuen <scope>-Aktivititen im neuen konsoldierten Prozess
ProzessMerged kopiert wurden, wird die sendende Aktivitdt s durch eine <assign>-Aktivitat a
ersetzt, die vs nach v, kopiert. v, wurde zuvor aus Scope_PBD?2 in den Prozessscope Ubertragen, damit
Scope_PBD1 Zugriff auf diese hat. Nun wird die <pick>-Aktivitdt p durch eine neue <scope>-
Aktivitat Scope_Pick ersetzt. Hierbei werden die eingehenden Links und ihre <joinCondition> von
p zu den eingehenden Links von Scope_Pick und entsprechend die ausgehenden Links und ihre
mdoglichen expliziten <transitionCondition>s. Scope_Pick wird folgendermaRen aufgebaut: Eine
neue <Flow>-Aktivitdt Flow_Pick wird hinzugefugt. Zusatzlich wird eine <throw>-Aktivitat einge-
fligt, die einen neuen benutzerdefinierten Fault wirft, in diesem Fall nennen wir ihn xxx:Pick-
Failurel. Dieser ist Uber einen Kontrollflusslink mit der <assign>-Aktivitat a verbunden. An-
schlielend flgen wir einen Fault Handler in die Scope_Pick-Aktivitat hinzu, der den zuvor definierten
xxx :PickFailurel-Fault auffangt. Dieser Fault Handler enthdlt die Aktivitat Al, die zuvor mit
msgl assoziiert war. Damit sichergestellt wird, dass der <scope> Scope_Pick auch beim Empfang
einer choreographie-externen Nachricht, die zuvor den <onMessage>-Zweig msg2 von p aktivieren
konnte, deaktiviert wird, ersetzen wir p und msg2 durch eine neue <receive>-Aktivitdt msg2, die
sich in einer <sequence>-Aktivititen vor einer weiteren <throw>-Aktivitat befindet. Diese
<throw>-Aktivitat wirft einen weiteren benutzerdefinierten Fault xxx:PickFailure2, welcher tber
einen Fault Handler von Scope_Pick aufgefangen wird. Dieser Fault Handler enthélt wiederum die
Aktivitat A2, die zuvor im <onMessage>-Zweig msg2 enthalten war. Wir emulieren die <pick>-
Aktivitat durch eine <scope>-Aktivitat, die entsprechend der ersten empfangenen Nachricht den
passenden Fault Handler mit den zuvor in den <onMessage>-Zweigen enthaltenen Aktivitdten
ausflihrt. Diese Ersetzung von <pick>-Aktivitaten lasst sich auf weitere enthaltene <onMessage>-
Zweige erweitern, indem weitere benutzerdefinierte Faults innerhalb der neuen <scope>-Aktivitaten
hinzugefugt werden. Zur Laufzeit werden zundchst die Aktivitaten aus ep ausgefiihrt und sobald der
Kontrollfluss Scope_Pick aktiviert, wird entweder die <assign>-Aktivitat a ausgefihrt, die daraufhin
den Scope_Pick durch das Werfen des xxx:PickFai lurel deaktiviert und den entsprechenden Fault
Handler mit der enthaltenen Aktivitdt Al ausfiihrt oder eine eingehende Nachricht wird Uber die
<receive>-Aktivitdit msg2 empfangen, die entsprechendes mit dem hierfir vorgesehenen Fault
Handler xxx:PickFailure2 durchfiihrt. Kommt es hier zu einer Wettlaufsituation zwischen a und
msg?2 ist die Ausfihrung implementierungsabhéngig, wie auch schon der WS-BPEL 2.0 Standard fiir
die urspriingliche <pick>-Aktivitat definiert (vgl. [OASQ07] Abschnitt 11.5).

Die vorher beschriebene Konsolidierungsvariante hat jedoch noch ein &hnliches Problem, wie in
AsyncPattern1.8 geschildert: Wir deaktivieren zwar den Kontrollfluss in Scope_Pick nach Aktivierung
des entsprechenden Kontrollflusslinks aus <assign> a oder durch den Empfang einer Nachricht in
msg2, es kann jedoch vorkommen, dass msg2 eine Nachricht empféngt den Scope_Pick deaktiviert a
jedoch weiterhin v nach v, kopiert und dies méglicherweise einen nicht gewlnschten Nebeneffekt auf
Scope_PBD?2 hat (Lost Update Problem). Um dieses Problem zu verhindern werden wir dhnlich der
Losung fur AsyncPattern1.8 eine Schutzvariable Vpic acivaed 1N den Prozessscope einflihren, die per
inline-Deklaration mit false initialisiert wird. Zusatzlich wird a durch eine Kombination aus einer
<if>-Aktivitat sowie einer in dieser enthaltenen <assign>-Aktivitét ersetzt. Um sicherzustellen, dass
die <if>-Aktivitat nur dann ausgefihrt wird, wenn Vyie acivaes @UF False gesetzt ist, fugen wir
weiterhin vor die <throw>-Aktivitdt fur den benutzerdefinierten Fault xxx:PickFailure2 eine
weitere <assign>-Aktivitat hinzu, die Vpia aciivaes aUF true setzt, sobald msg2 eine Nachricht
empfangt. Dieses Vorgehen lasst sich auf weitere choreographie-extern kommunizierende
<onMessage>-Zweige aus p erweitern, indem die entsprechenden <sequence>-Aktivitdten in
Scope_Pick angepasst werden. Abbildung 3.46 zeigt die angepasste Konsolidierung der Beispielfrag-
mente aus Abbildung 3.45.

Seite 75

ProzessMerged
Flow
PBD2 Scope_PBD1 Scope_PBD2
(] v
n FH xxx:pickFailurel || FH xxx:pickFailure2
Al A2
Scope_Pick
Pick -
mi1 P Flow_Pick Sequence
Pr—=-- 2 Message wsu: id="msgl* ||| onMessage wsu: id="msg2 Receive
msg2
Assign
true()|
— Vet actvated]
throw throw
name=“ml1* sender=“PBD1*“ receiver="“PBD2* sendActivity="s* se xxx:pickFailurel)|\ Jooc:pickFailure2
receiveActivity=“msgl“ messageName="“messagel‘
e - —

Abbildung 3.46 AsyncPattern2.1 mit Schutzvariable Vyie. activaea ZUr Vermeidung des Lost Update Problems

PBD2
v

ProzessMerged
el Vi oetiotes> false()

Flow

Scope_PBD1
v

Scope_PBD2

1)

Pick p

onMessage wsu: id:“msga“?

A2

== Message wsu: id“msgi"TonMessage wsu: id:"msgz"ﬁ
v,

name="“ml1“ sender="“PBD1*“ receiver="PBD2“ sendActivity="s“

Scope_Pick

Flow_Pick

Sequence

Receive
msg2

“
I
equence
Receive
msg3

Vpick_activotet

S
[xxx

throw

pickFail

df
ur o'}]

receiveActivity=“msgl* messageName=“messagel‘

Abbildung 3.47 AsyncPattern2.1 mit einer <pick>-Aktivitat mit weiteren <onMessage>-Zweigen (hier msg3)

Abbildung 3.47 zeigt die Anwendung des AsyncPattern2.1 auf eine <pick>-Aktivitdt mit einem
weiteren <onMessage>-Zweig msg3: Eine weitere <receive>-Aktivitat wird hinzugefigt, die msg3
ersetzt und nach der Zuweisung von true an die Schutzvariable Vi acivaea €IN€N benutzerdefinierten
Fault xxx:PickFailure3 wirft, der im daflr vorgesehenen Handler von Scope_Pick aufgefangen
wird und die urspringliche Aktivitat A3 ausfihrt.

Zu den schon gezeigten <onMessage>-Zweigen bietet die <pick>-Aktivitdt <onAlarm>-Zweige, die
nach Ablauf einer gegebenen Zeitperiode oder Erreichen eines entsprechenden Zeitpunkts die
enthaltene Aktivitat ausfiihren. Da wir in unserem Konsolidierungsvorgang die <pick>-Aktivitat
durch eine <scope>-Aktivitat mit entsprechendem emulierendem Verhalten nachbauen, missen wir
im Falle eines definierten <onAlarm>-Zweigs auch diesen in den <scope> integrieren. Hierzu
werden wir zu den vorhandenen <receive>/<throw>-Kombinationen innerhalb des Flow_Pick eine
<wait>-Aktivitdt mit anschlieRender <throw>-Aktivitat einfligen und erneut einen benutzerdefi-
nierten Fault Handler zum Scope_Pick hinzufiigen, der die Aktivitat des urspriinglichen <onAlarm>-
Zweigs enthélt.

<onAlarm> <wait standard-attributes>

standard-elements
<for expressionlLanguage="anyURI"?>duration-expr</for> (¢

<for expressionLanguage="anyURI"?>duration-expr</for>
<until expressionlLanguage="anyURI"?>deadline-expr</until>

) <until expressionLanguage="anyURI"?>deadline-expr</until>
activity
</onAlarm> </wait>

Abbildung 3.48 Syntaktische Umwandlung eines <onAlarm>-Zweigs in eine <wait>-Aktivitat (vgl. [OAS07])

Seite 76

Abbildung 3.48 zeigt die syntaktische Umwandlung eines <onAlarm>-Zweigs in eine entsprechende
<wait>-Aktivitit. Die enthaltene Aktivitat des <onAlarm>-Zweigs wird bei der Konsolidierung in
den entsprechenden Fault Handler von Scope_Pick Ubertragen.

ProzessMerged
(] Vo arnorea> false()

Flow
PBD2 Scope_PBD1 Scope,PsDz FH xoocpickrailurel || FH xocpickrai lure
2 v
())
Scope_Pick
Flow_pPick

Sequence

Wait

by M2

<ul

onMessage wsu: id="msgl*

o if

not Vyick_activated

Assign
AR]
[v.]
Vyick_octivted]

throw throw
name=“ml1*“ sender=“PBD1“ receiver="“PBD2“ sendActivity="s* oo pickFai lurel J\\ J0oc:pickFai lure2

receiveActivity="msgl“ messageName="“messagel*
N - —

Abbildung 3.49 AsyncPattern2.1 fiir <pick>-Aktivitat mit <onAlarm>-Zweig

Pick p
onAlarm
<until>Zeitpunkt</until>

</until>
(" Assign

[true()]

Abbildung 3.49 zeigt die Anwendung des AsyncPattern2.1 auf eine Beispielchoreographie mit einem
<onAlarm>-Zweig im <pick> p der Empfangerseite PBD2. A2 wurde in den Fault Handler fiir den
benutzerdefinierten xxx: PickFai lure2-Fault von Scope_Pick Ubertragen. Die <unti I1>-Bedingung
ist nun in der neuen <wait>-Aktivitat enthalten. Die gleiche Umwandlung funktioniert auch fur
<For>-Ausdricke innerhalb des <onAlarm=>-Zweigs.

3.3.1.10 AsyncPattern2.2 (Asynchrones n-zu-1 Senden auf <pick>)

Das AsyncPattern2.2 ist eine Spezialisierung des AsyncPattern2.1 mit der Besonderheit, dass hier
mehrere Choreographieteilnehmer auf dieselbe <pick>-Aktivitit, jedoch verschiedene <onMes-
sage>-Zweige dieser, eines anderen Choreographieteilnehmers asynchron Nachrichten senden.
Hierzu untersucht der Mustererkennungsalgorithmus beim Fund eines <onMessage>-Zweigs als
receiveActivity in einem Message Link zusatzlich die anderen noch nicht konsolidierten Message
Links aus ML auf eine receiveActivity mit der wsu: id eines der anderen <onMessage>-Zweige
der entsprechenden <pick>-Aktivitat.

ged
Vv Vo s False()]

Flow

PBD2

=

Pick p
i i1y LonMessage wsu: id="nsg1[lonMessage usu: id="nsg2"
n
‘ ‘

Scope_PBD1 Scope_PBD2 Scope_PBD3
[l d

Scope_Pick

Flow_Pick

name=“ml1“ sender=“PBD1“ receiver=“PBD2*“ sendActivity="s;*
receiveActivity="msgl“ messageName=‘“messagel*

name=“mI2* sender=*“PBD3“ receiver=“PBD2*“ sendActivity="s,*
receiveActivity=“msg2“ messageName=‘“message2‘

Abbildung 3.50 AsyncPattern2.2 mit zwei sendenden PBDs auf zwei <onMessage>-Zweige einer <pick>-Aktivitét

Seite 77

Abbildung 3.50 zeigt die Anwendung des AsyncPattern2.2 auf drei miteinander kommunizierende
PBDs PBD1, PBD2 sowie PBD3. Die Konsolidierung erfolgt analog zu AsyncPattern2.1, indem die
<pick>-Aktivitdt p durch die Scope_Pick Aktivitdt mit den benutzerdefinierten Faults fir jeden
konsolidierten <onMessage>-Zweig ersetzt wird. Im Gegensatz zu AsyncPattern2.1 wird die Zuwei-
sung des true in die Vpie aciivates SChutzvariable jedoch bereits in den beiden <assign>-Aktivitaten a
und b durchgefiihrt um zu verhindern, dass sobald einer der beiden ehemals sendenden Aktivititen
aktiviert wird, die entsprechend andere keine Werte mehr in die empfangende Variable kopiert (v,
bzw. vy,), da in der urspringlichen Choreographie die <pick>-Aktivitat ebenfalls bei Eingang einer
Nachricht in den entsprechenden <onMessage>-Zweig deaktiviert wird. Dies sichert auch einen
korrekten Kontroll- und Datenfluss falls die beiden <onMessage>-Zweige dieselbe Variable v, ver-
wenden.

PBD1 PBD3
PBD2 v
v

mi1

s,

Invoke
2

Sz®

L7

"

name=“ml1*“ sender="“PBD1*“ receiver="“PBD2“ sendActivity="s;*
receiveActivity="msgl*“ messageName="messagel*

name=“ml2*“ sender="“PBD3*“ receiver="“PBD2*“ sendActivity="s,"
receiveActivity="msg2“ messageName="“message2‘

ProzessMerged
Ol Vs s>)]

Flow

Scope_PBD1

Scope_Pick

Scope_PBD2
FH xxx:-pickFailurel

FH xooc:pickFai lure2

A2

|

FH xxx:pickFailure3

A3

Flow_Pick
if

Assign

Sequence

Receive
msg3

Assign

true()|

Vﬂlck,acllvnrzrl

Scope_PBD3

if
not Viick activated

Assign

b
true()|
Vpick_activated
v
vz

throw throw throw
xxx:pickFailurel J\\ xxx:pickFailure3 xxx:pickFai lure2

Abbildung 3.51 AsyncPattern2.2 mit einem weiteren choreographie-extern kommunizierenden <onMessage>-Zweig
msg3 in <pick> p sowie das Ergebnis der Konsolidierung

Abbildung 3.51 zeigt die vorhergehende Konsolidierung der drei PBDs mit einem weiteren choreo-
graphie-extern kommunizierenden <onMessage>-Zweig in der <pick>-Aktivitat p. Hierbei wird die
gleiche Kombination aus <receive>/<throw>-Aktivititen sowie entsprechendem Fault Handler fiir
msg3 eingesetzt, wie in AsyncPattern2.1. Sind weiterhin <onAlarm>-Zweige definiert, so werden
diese analog zu AsyncPattern2.1 in die neue Scope_Pick Aktivitat konsolidiert (vgl. Abbildung 3.49).

Seite 78

3.3.1.11 AsyncPattern2.3 (Asynchrones n-zu-1 Senden auf einen <onMessage>-Zweig)

Das AsyncPattern2.3 dient dem Erkennen und anschlieendem Konsolidieren einer BPEL4Chor
Choreographie, in der mehrere verschiedene PBDs auf den gleichen <onMessage>-Zweig einer
anderen PBD Nachrichten asynchron senden. Hierzu mussen die vorhergehenden AsyncPattern2.1
sowie AsyncPattern2.3 erweitert werden, um im Falle einer moglichen Wettlaufsituation den Kontroll-
sowie Datenfluss im konsolidierten Prozess mit der urspriinglichen Choreographie synchron zu halten.

o
x
o
w

PBD1
PBD2

[v]

- pickp.-~~ RN
Invoke ,,”L/Q nMessage wsu: id="msg1l“ fronMessage wsu: id="msg2“ e Invo%
S1 173 Sz
Al A2
510 pe 55

name=“ml1“ sender=“PBD1* receiver=“PBD2* sendActivity="s;*
receiveActivity="“msgl“ messageName=“messagel‘

gl

name=“ml2*“ sender="“PBD3*“ receiver=“PBD2“ sendActivity="s,"
receiveActivity=“msgl“ messageName="message2‘

ProzessMerged
el Vi actvatea False()
Flow
Scope_PBD1 Scope_PBD3
@ pe_ Scope_PBD2 n FH xxx:pickFailurel [FH xxx:pickFailure2 pe
Al A2
Scope_Pick
Flow_Pick
Sequence
Receive
msg2 if
-
Assign
Assign Assign
a true() b
[true() Vpick_activated| ftrue()
Vpick_activated| ,—\ f Vpick_activated|
%I throw throw throw ﬁ
- xxxzpickFailurel)\ soocpickFaiture2)| xooc:pickFailurel -
51°
" — o ——

Abbildung 3.52 AsyncPattern2.3 Konsolidierung einer Choreographie mit zwei sendenden PBDs auf den gleichen
<onMessage>-Zweig msgl in <pick> p

Abbildung 3.52 zeigt Beispielfragmente einer Choreographie mit zwei sendenden PBDs PBD1 sowie
PBD3. Beiden senden Nachrichten auf den gleichen <onMessage>-Zweig msgl in der <pick>-
Aktivitat p von PBD2. Um dieses Muster zu erkennen sucht der Algorithmus nach weiteren Message
Links aus ML, die als receiveActivity den gleichen <onMessage>-Zweig der entsprechenden
<pick>-Aktivitidt enthalten, wie der bereits behandelte. Die Konsolidierung erfolgt analog zu
AsyncPattern2.2 mit dem Unterschied, dass die beiden <throw>-Aktivitaten, die per Kontrollflusslink
mit den neuen <assign>-Aktivitdten a und b verbunden sind, nun denselben benutzerdefinierten
Fault werfen (xxx:PickFailure2). Sind weitere choreographie-extern kommunizierende <onMes-

Seite 79

sage>-Zweige bzw. <onAlarm>-Zweige enthalten, werden diese analog zu AsyncPattern2.1 konsoli-
diert.

3.3.1.11.1 Asynchrones Senden auf initiale <pick>-Aktivitat (ep=0)

Die AsyncPattern2.1-2.3 lassen sich auch in dem Fall anwenden, wenn die empfangende <pick>-
Aktivitat p keine Vorgangeraktivitaten besitzt: es gilt somit ep=¢g und zusétzlich ist das createln-
stance-Attribut auf ,,yes” gesetzt (daher durfen keine <onAlarm>-Zweige enthalten sein). Nehmen
wir das Beispiel aus Abbildung 3.45 und verandern es nun so, dass ep=¢ qilt und das create-
Instance-Attribut entsprechend gesetzt wird (create Instance="yes*). Die einzige Anderung am
Konsolidierungsalgorithmus ist das Ubernehmen des createlnstance-Attributs fiir die
<receive>-Aktivitaten, die die choreographie-extern kommunizierenden <onMessage>-Zweige im
neuen <scope> Scope_Pick ersetzen. Abbildung 3.53 zeigt die Anderung an der Beispielchoreo-
graphie. Sei ryar_init €iN€ initiale <receive>-oder <pick>-Vorgangeraktivitdt von <invoke> s in
PBD1. Diese Aktivitat muss existieren, da sonst die Choreographie nicht korrekt ist (jeder BPEL-
Prozess muss mindestens eine initiale <receive>-oder <pick>-Aktivitat besitzen, vgl. [OAS07]
Abschnitt 5.5 The Lifecycle of an Executable Business Process). Das gleiche gilt fur PBD2 und wird
durch <pick> p erflllt. Im konsolidierten Prozess ProzessMerged wird p durch die bekannte
Scope_Pick Aktivitat ersetzt und die choreographie-extern kommunizierenden <onMessage>-Zweige
durch entsprechende <receive>-Aktivitaten, in unserem Beispiel msg2 mit dem aus p tibernomme-
nen createlnstance-Attribut. Je nachdem welche Aktivitat, sei s rppq inie 0Oder msg2, die initiale
Nachricht zuerst empfangt, erzeugt diese eine neue Prozessinstanz von ProzessMerged und die
nachsten eintreffenden Nachrichten fur rpq inie bzZW. msg2 werden mit dieser Instanz korreliert. Hatte
die in Abbildung 3.53 dargestellte <throw>-Aktivitat, die den benutzerdefinierten Fault xxx:Pick-
Fai lurel wirft, keine Kontrollflussabhangigkeit auf <assign> a in Scope_PBD1 so ware der kon-
solidierte Prozess fehlerhaft. Kommunizieren alle <onMessage>-Zweige nur choreographie-intern,
wird die Initilerung von Scope PBD2 durch die sendenden PBDs gesteuert. Im Gegensatz zu
AsyncPatternl1.5 werden wir deshalb kein gesondertes Erkennungs- und Konsolidierungsmuster fir
den Fall ep=g@ einflihren, sondern lediglich das createlnstance-Attribut von p fiir die choreo-
graphie-extern kommunizierenden <receive>-Aktivitaten Ubernehmen, wie im unterem Beispiel
msg2.

ProzessMerged
(] Vit ccmerea False)]
Flow
@copeﬁPBDl Scope_PBD2 FH xxx:pickFailurel || FH xxx:pickFailure2
Scope_Pick A2
Pap2 Fpbda_init
[w] Flow_Pick Seauence
Pick p createlnstance="yes" Receive
Message wsu: id="msgl* ||| onMessage wsu: id="msg2* /if B msg2
v
Assign
N\
Al A2 Assign
a
pe N J - —=
N — throw
pickFailurel
name=“ml1*“ sender=“PBD1“ receiver=“PBD2“ sendActivity="“s* o
receiveActivity="msgl“ messageName=*“messagel*
O mmmm R

[createlnstance="yes"|

<throw> muss Kontrollflussabhdngigkeit auf
<receive>/<pick>-Aktivitat mit create-
Instance="‘yes* besitzen, da erste Aktivitat

Abbildung 3.53 Konsolidierung einer Choreographie mit ep=¢ sowie createlnstance="yes* von p mit Async-
Pattern2.1

Seite 80

3.3.1.11.2 Syntaktische Transformation eines <onMessage>-Zweigs in eine <receive>-
Aktivitat

Der folgende kleine Abschnitt soll die syntaktische Transformation eines <onMessage>-Zweigs in
eine aquivalente <receive>-Aktivitat veranschaulichen. Hierzu sei angemerkt, dass die in einer PBD
enthaltenen kommunizierenden Aktivititen (<invoke>, <receive>, <reply>, <pick> sowie <on-
Event>) die technischen Attribute partnerLink, portType sowie operation nicht verwenden
dirfen. Stattdessen werden diese Uber die Grounding-Datei der Choreographie sowie die fur die
Eingabe der Konsolidierung notwendigen WSDL-Dateien bereitgestellt. Wir werden diese Attribute
erst nach der Konsolidierung des Daten- und Kontrollflusses in der neuen WSDL-Datei flr den

konsolidierten Prozess zusammenfiihren und in die verbliebenen intra- sowie inter-Prozess
kommunizierenden Aktivititen im Prozess ProzessMerged einfugen. Die intra-Prozess
kommunizierenden Aktivitdten sind hierbei diejenigen, die zwar vor der Konsolidierung

choreographie-intern kommunizieren, fiir die es jedoch keine passenden Merge-Patterns gibt und diese
daher nach der Konsolidierung rekursiv mit dem eigenen Prozess kommunizieren. Die inter-Prozess
kommunizierenden Aktivitdten sind dagegen diejenigen, die nach der Konsolidierung fur andere
Prozesse oder Web Services zur Kommunikation zur Verfligung stehen. Abbildung 3.54
veranschaulicht die Transformation eines <onMessage>-Zweigs einer <pick>-Aktivitdt in eine
aquivalente <receive>-Aktivitat, anhand der XML-Syntaxen (vgl. [OAS07]).

<pick @reatelnstance:"yeslno"?
standard-elements

<onMessage |partnerLink=""NCName""

dard=

Choreographie.zip

portType="QName"?
operation="NCName"

BPEL4Chor Choreography

variable="BPELVariableName"?
messageExchange="NCName"*?>+

Participant

Participant Declaration Message Links

<correlations>?

<correlation set="NCName" initiate="yes|join|no"? />+

</correlations>

\ Strukturelle Aspekte

Topology

Liste der Teilnehmer

Verbinden PBDs

\ 7
\ ,

N
N

<fromParts>? 4 N
<fromPart part="NCName' toVariable="BPELVariableName" />+ ‘ Participant Behavior -)
</fromParts> | Descriptions (PBDs) _] Participant Grounding | wspts der
activity | PBDs
| Technische
</onMeSSage> “‘ Sichtbarer Kontroll- und Datenfluss
</pick>

| <receive|partnerLink="NCName"

portType="QName"?

operation="NCName"
variable="BP ariableNa
messageexchange= NCName: 2
standard-attributes>
standard-elements
<correlations>?

<correlation set="NCName" initiate="yes|join|no"? />+
</correlations>
<fromParts>?

<fromPart part="NCName"™ toVariable=""BPELVariableName™ />+
</fromParts>
</receive>

partnerLink, portType sowie operation werden in den
Aktivitdten der PBD nicht verwendet, sondern erst nach der
Konsolidierung aus der Grounding-Datei sowie den entsprech-
enden WSDL-Dateien der BPEL4Chor-Choreographie in die
verbliebenen kommunizierenden Aktivitaten libertragen.

Abbildung 3.54 Syntaktische Umformung eines <onMessage>-Zweigs in eine dquivalente <receive>-Aktivitat: Der
wsu: id-Bezeichner des <onMessage>-Zweigs (nhicht abgebildet) wird zum name-Attribut der <receive>-Aktivitét,
das create Instance-Attribut der umschlieRenden <pick>-Aktivitat wird in das neue <receive> libernommen. Erst
nach der Konsolidierung werden die technischen Attribute partnerLink, portType sowie operation aus der Groun-
ding-Datei sowie den entsprechenden WSDL-Dateien der BPEL4Chor-Choreographie tibernommen und in die kom-
munizierenden Aktivitaten Ubertragen.

3.3.1.12 AsyncPattern3.0 (,Non-Merge-Pattern-Async”)

Das AsyncPattern3.0 stellt eine besondere Form der Merge-Patterns dar: Da wir in der vorliegenden
Arbeit nicht alle méglichen Kombinationen und Konstellationen aus einer asynchron sendenden und

Seite 81

einer entsprechenden empfangenden Aktivitat erkennen und konsolidieren, wird das AsyncPattern3.0
eingeflhrt um diese Sonderfélle bzw. nicht implementierten Kommunikationsmuster abzufangen und
gesondert zu behandeln.

Sei PBD1 eine PBD die iber den Message Link ml aus ML mit einer weiteren PBD PBD2 kommuni-
ziert. Trifft nun der hier erwdhnte Erkennungsalgorithmus auf ein nicht-konsolidierbares asynchrones
Kommunikationsmuster so gibt es folgende Mdéglichkeiten der Bearbeitung einer solchen Situation:

1. Der Algorithmus bricht ab und signalisiert per Fehlermeldung, dass die vorliegende BPEL4-
Chor-Choreographie ein nicht konsolidierbares Muster enthalt und beendet die Verarbeitung.
Diese Variante hat den Nachteil, dass selbst wenn die Choreographie andere konsolidierbare
Muster enthélt, diese ebenfalls verworfen werden.

2. Der Algorithmus speichert den betroffenen Message Link ml in einer speziellen Liste NMML
(Non-Mergeable-Message-Links) fur nicht konsolidierbare Muster und fahrt mit der Erken-
nung und Konsolidierung der verbleibenden Message Links aus ML fort. Diese Liste enthalt
alle choreographie-intern kommunizierenden Message Links, deren Aktivitdten nach der
Untersuchung aller verbliebenen Message Links als intra-Prozess kommunizierende
Aktivitaten im neuen konsolidierten Prozess konfiguriert werden. Wie in Abschnitt 3.3.1
erwéhnt, bieten die beiden verwendeten BPEL-Engines Apache ODE [AODE11] sowie bpel-
g [BPLG12] spezielle Konfigurationsoptionen an um diese rekursiven Aufrufe ohne SOAP-
Message-Handling zu optimieren.

Wir werden in der vorliegenden Arbeit die zweite Variante verwenden um die bereits implementierten
Merge-Patterns anwenden zu konnen. Zusatzlich kann der Katalog der Merge-Patterns durch zukin-
ftige Erweiterungen auch die noch nicht umsetzbaren Muster konsolidierbar machen.

In den folgenden Unterabschnitten werden die Kombinationen und Konstellationen aus sendender und
empfangender Aktivitat erlautert in denen das AsyncPattern3.0 den betreffenden Message Link ml
erkennt und in die Liste NMML einfligt.

3.3.1.12.1 <onEvent>-Zweig (EH) als empfangende Aktivitait

In einem Message Link ml einer BPEL4Chor-Choreographie kann auch die wsu:id eines Event
Handlers eines BPEL-Prozesses bzw. einer <scope>-Aktivitidt (<onEvent>-Zweig) als receive-
Activity auftreten. Ein solcher <onEvent>-Zweig steht dann zur Verfigung sobald der diesem
Event Handler zugehérige BPEL-Prozess instanziiert bzw. die entsprechende <scope>-Aktivitat
aktiviert wurde. Er wird aktiviert sobald eine entsprechende Nachricht eingegangen ist und erlaubt die
mehrfache nebenldufige Ausflhrung der in ihm enthaltenen <scope>-Aktivitat bei Eintreffen
mehrerer dieser Nachrichten. Die in dieser Arbeit implementierten Konsolidierungsmuster unter-
stitzen keine Event Handler als receiveActivity, daher wird ein solcher Message Link ml der
eine wsu: id eines solchen <onEvent>-Zweigs enthélt in die Liste NMML eingefiigt und die Kom-
munikation der enthaltenen sendActivity sowie des Event Handlers nach Untersuchung der
verbliebenen Message Links aus ML in eine intra-Prozess kommunizierende umgewandelt.

name=“ml** sender="PBD1* receiver=“PBD2* sendActivity="s*
receiveActivity="“ehl“ messageName=*“messagel*

Abbildung 3.55 AsyncPattern3.0 Muster: <onEvent>-Zweig als receiveActivity in einem MessageLink ml

Seite 82

3.3.1.12.2 Sendende <invoke>-Aktivitiat innerhalb von Handlern (EH, CH, TH, FH)

Befindet sich die sendende <invoke>-Aktivitét s vor der Konsolidierung der Choreographie in einem
<onEvent>- oder <onAlarm>-Zweig eines Event Handlers bzw. einem Compensation Handler
(CH—<compensationHandler>) einer <scope>-Aktivitdt, so hétten die zuvor vorgestellten
Merge-Patterns einen Kontrollflusslink zur Folge der ausgehend von der s ersetzenden Aktivitat das
umgebende Konstrukt (EH oder CH) verlésst. Dies ist durch den WS-BPEL 2.0 Standard verboten
(vgl. SA00070 [OASO7]). Ein Link darf niemals in einen CH oder EH eintreten bzw. von diesem aus-
gehen und darf nur nach Deklaration innerhalb einer <flow>-Aktivitat, die sich selbst in diesem
Handler befindet, in einem solchen verwendet werden. Daher werden wir solche Konfigurationen
verbieten und falls eine derartige choreographie-intern kommunizierende <invoke>-Aktivitéit s als
sendActivity in einem Message Link ml aus ML gefunden wird, den entsprechenden Message Link
in die Liste NMML ubertragen. Zu diesem Zweck wird die Funktion isActivitylnHandler(ainoke)
eingeflhrt, die fur eine gegebene Aktivitat a0 Pruft, ob sich diese innerhalb eines EHs oder CHs be-
findet (Auflistung 3.8).

(1) boolean isActivityinHandler(Sinvoke)
(2) begin
®3) while ((typeof(Sinvoke) # <process>) && (typeof(Sinvoke) # <eventHandler>)
(4) && (typeof(Sinvoke) # <compensationHandler>)) do
(5) Sinvoke = par(sinvoke)
(6) od
©) if (typeof(Sinvoke) == <process>)
(8) return false
9) else
(20) return true
(1) fi
(12) end
Auflistung 3.8 Pseudocode isActivitylnHandler(ajnyoke)-Funktion
Hierbei wird das s-enthaltende Modellkonstrukt par(s)
SR O . -
Cont3 untersucht, ob es ein <process>-, <compensation-
| partpar(par(s))) = Cont3 | Handler>- oder <eventHandler>-Konstrukt ist
[par(par(s)) = Cont2 | (vgl. Abbildung 3.56). Trifft dies zu bricht die
cont1 Funktion ab und pruft das entsprechende Konstrukt auf
— parfs) = Contl den gesuchten Typ. Ansonsten fahrt die Funktion mit
s dem par(s) enthaltenden Konstrukt par(par(s)) fort, bis
der Prozessscope erreicht wurde. Da die Aktivitaten in

~~_ — - - - - " I
BPEL blockstrukturiert sind, bricht diese Uberpriifung
Abbildung 3.56 Rekursive Untersuchung von par(s) spétestens hier ab

Befindet sich s dagegen in einem Termination Handler (TH—<terminationHandler>) bzw. einem
Fault Handler (FH—<catch>,<catchAl I>), so ist der ausgehenden Kontrollflusslink zul&ssig, da fur
THs und FHs nur ausgehende Links zuldssig sind und wir davon ausgehen konnen, dass die
vorliegende PBD kein s enthélt, das rekursiv in einen diesem Handler zugehdrigen <scope> bzw.
<process> sendet, da dieser bereits einen Fault geworfen hat oder in einem entsprechendem
Konstrukt enthalten ist.

Seite 83

3.3.1.12.3 Empfangende <receive>/<pick>-Aktivitat innerhalb von Handlern (EH, CH,
TH, FH)

Fir die empfangende <receive>- oder <pick>-Aktivitét r gilt dagegen: Befindet sich r innerhalb
eines EHs, CHs, FHs oder THSs, so wird der entsprechende Message Link ml aus ML, der diese
Aktivitat als receiveActivity enthélt, in die Liste NMML (bertragen, da SA00070 sowie SA00071
des WS-BPEL 2.0 Standards [OASOQ7] eingehende Links in jegliche Art der vier Handler verbieten.

3.3.1.12.4 Sendende und/oder empfangende Aktivititen innerhalb von Schleifen

Befindet sich die sendende <invoke>-Aktivitat s und/oder die empfangende <receive>/<pick>-
Aktivitat r eines Message Links ml aus ML innerhalb einer Schleife Ip (typeof(lp) € {<while>, <re-
peatuntil>, <forEach>}) so wird dieser Message Link ml, der s als sendActivity und/oder r als
receiveActivity enthélt in die Liste NMML (bertragen, da SA00070 eingehende als auch ausgeh-
ende Kontrollflusslinks in einer Schleife verbietet und wir mit den zuvor erwéhnten Konsolidierungs-
mustern einen neuen synchronisierenden Kontrollflusslink einftigen, der den Nachrichtenaustausch
zwischen s und r emuliert.

In ihrer Arbeit [KHAO8] beschreibt Khalaf eine Methode der Synchronisation von fragmentierten
Schleifen Uber Prozessgrenzen hinweg mithilfe des WS-Coordination Protokolls [OASO07b]. Wie zu
Anfang bereits erwahnt, ist das Ziel dieser Arbeit einen ausfiihrbaren BPEL-Prozess ohne jegliche
Zusatzfragmente externer Koordinations- und Synchronisationsprotokolle als Konsolidierung einer
BPEL4Chor-Choreographie bereitzustellen, daher werden wir auf diesen Ansatz verzichten. Ein
weiterer moglicher Ansatz ware eine Transformation des konsolidierten Prozesses bei Auftreten einer
Schleife Ip als umgebende Aktivitat von s und/oder r in einen dquivalenten Prozess der die WS-BPEL
Extension for Sub-Process (BPEL-SPE [KKL'05]) nutzt, doch auch hier wird eine Unterstiitzung
dieser Erweiterung durch die verwendete BPEL-Engine vorausgesetzt und unsere Vorgabe des
Verzichts externer Protokolle gebrochen. Zukinftige Arbeiten werden hierfur eine adaquate Losung
liefern kénnen.

Eine mogliche jedoch nicht in der vorliegenden Arbeit implementierte Ldsungsalternative
veranschaulicht Abbildung 3.57. Die beiden PBDs PBD1 sowie PBD2 kommunizieren uber die sen-
dende <invoke>-Aktivitat s und die empfangende <receive>-Aktivitat r miteinander.

(ProzessMered h
4 M
Flow
Ve ~ Ve ~ /Scope_PBDl\ /Scope_PBDl N
Dl D2 o
Ve A
- ~ -~ ~ /While O\ (While D\

While O While O

Sequence

Abbildung 3.57 Sendende Aktivitit <invoke> s und empfangende Aktivitdt <receive> r und eine Konsolidierung
ohne Kontrollflusslink

Seite 84

Beide Aktivitaten befinden sich jeweils innerhalb einer <whi le>-Schleife. Eine mdgliche Konsoli-
dierung ohne Kontrollflusslink zwischen den beiden Schleifen im neuen ProzessMerged basiert erneut
auf Schutzvariablen: s wird durch eine <assign>-Aktivitat a ersetzt, die vs nach v, kopiert und an-
schlieend den Wert der zuvor inline-initialisierten Schutzvariable Vv, writen auf true setzt. Auf der
Empfangerseite wird r durch eine <sequence>-Aktivitét ersetzt, sei diese hier seq, die eine weitere
<while>-Schleife sowie eine <assign>-Aktivitit b enthélt. Die <while>-Schleife beinhaltet
lediglich eine <empty>-Aktivitat ¢ und wartet bis die Variable v, yriten Mit true beschrieben wurde
(Polling). AnschlieBend setzt sie diese in b wieder auf false und fahrt mit dem Kontrollfluss nach
der urspriinglichen Aktivitat r fort (re). Hierbei kann es jedoch passieren, dass die Werte von v, bei
einem erneuten Schleifendurchlauf der sendenden <whi Ie>-Aktivitét (iberschrieben werden, falls die
beiden Schleifen nicht synchron laufen.

ProzessMerged h

Flow

~

Scope_PBDl\ /Scope_PBDl 0
[v]

Y Y
PBD1 %DZ

~

While O\ /While (9]
condition2

Sequence

TN condition1
0 While ©

=
EX
o

o

r

v
Inv@ _ml - Receive
s r

8

%
)

©
@

Abbildung 3.58 Sendende Aktivitat <invoke> s und empfangende Aktivitdt <receive> r und eine Konsolidierung
ohne Kontrollflusslink mit zusatzlicher Variable v,

Abbildung 3.58 zeigt eine Erweiterung der zuvor erwdhnten Variante mit einer zusatzlichen Variable
v a kopiert nun v nach v, die b nach v, kopiert wird. Auch hier kann es jedoch passieren, dass wenn
beispielsweise die <while>-Schleife in Scope PBD2 langsamer lauft als die <while>-Schleife in
Scope_PBD1 noch nicht nach v, kopierte Werte von v; durch neue Werte von v; Uberschrieben werden.
Eine weitere mdgliche Lésung fir dieses Problem ware beispielsweise eine komplexe Variable v, die
aus einer Liste von vs-Variablen besteht und in a durch einen speziellen doXslTransform-Aufruf mit
vs-Variablen befiillt wird und aus der b jeweils das letzte Element dieser Liste nach v, kopiert (vgl.
[OASQ7] doXsITransform-Beispiel im Abschnitt 8.4 Assignment, Iterative document construction).

3.3.2 Synchrone Merge-Patterns

Die synchronen Merge-Patterns sind analog zu den asynchronen charakterisiert durch eine sendende
und eine empfangende Aktivitat, die Uber einen Message Link miteinander kommunizieren. Als
sendende Aktivitat steht in BPEL fir den synchronen Fall hierfir die <invoke>-Aktivitat zur Ver-
fligung. Als empfangende Aktivitaten kommen <receive>-Aktivititen, <onMessage>-Zweige der
<pick>-Aktivitdt sowie <onEvent>-Zweige der Event Handler einer <scope>-Aktivitit oder des
Prozess-Scopes in Frage. Zusétzlich zum sendenden Message Link mlseg existiert im synchronen Fall
noch ein weiterer Message Link mlgey, indem die sendenden <invoke>-Aktivitat s als receive-
Activity definiert ist und eine <reply>-Aktivitat y als sendActivity. Analog zu den asynchro-

Seite 85

nen Merge-Patterns werden wir in diesem Abschnitt zunédchst die allgemeinen Konsolidierungsmuster
und anschlieRend die speziellen mit besonderen Umgebungsbedingungen vorstellen. Auch bei den
synchronen Merge-Patterns wird es Félle geben, in denen wir kein passendes Konsolidierungsmuster
liefern konnen, daher verbleiben auch hier die kommunizierenden Aktivitaten im neuen konsolidierten
Prozess und werden am Ende zu intra-Prozess kommunizierenden konfiguriert. Analog zu den asyn-
chronen werden wir hierfur beim Fund einer solchen Kombination aus mlgeng und mlgeyy, die entsprech-
enden Message Links in die Liste NMML (bertragen. Abbildung 3.59 zeigt den schematischen Aufbau
der Suche nach einem passenden Merge-Pattern fir die beiden Message Links mlseng und mlgey, analog
zum asynchronen Fall.

A\
PBD2 ‘ Pattern matgh(mlsend, rplpepw){)

- Beim Auffinden einer synchronen <invoke>-Aktivitdt als
MatcherList N

sendActivity in einem Message Link mls.,; sowie des pas-
SyncMatcherl.1 ----1 SyncPatternl.1 . o - o

senden mige,y, der diese Aktivitat als receiveActivity ent-
SyncMatcher1.2 f{----1 SyncPatternl1.2 = . A A
SyneMatcheris He---[SyncPatternis hélt wird die Liste der Sync-Matcher nach einem passenden

- - Muster durchsucht und bei einem Fund das passende

SyncMatcherl.4 {----1 SyncPatternl.4 N X R .

Merge-Pattern zurtickgeliefert. Wird kein passendes Muster
SyncMatcherl.5 f{----{ SyncPatternl.5)] . L .

gefunden verbleiben die kommunizierenden Aktivitaten (hier
SyncMatcherl.6 {----{ SyncPatternl.6 - K N . I X K

< > < > < > -
SyncMatcherl1.7 ----1 SyncPatternl.7 Ir_“/_o €> 5, <recerve I’SOWIE. reply y) Im_neuen_ on

solidierten Prozess und werden im letzten Schritt als intra-

N SyncPattern1.8 . o)) |
Prozess-kommunizierende Aktivitditen markiert (mit Hilfe

eines SOAP-Bypassing-Attributs im Deployment-Deskriptor).

end’ sender=“PBD1* receiver="PBD2“ sendActivity="s*
ity="r*“ messageName="“msgl‘

Abbildung 3.59 Anwendung des Merge-Algorithmus: Fiir jedes Paar synchron kommunizierender Links mlgg, sowie
Mlgepyy Wird die Liste der bekannten SyncMatcher nach einem Muster durchsucht und im Falle einer Ubereinstimmung das
entsprechende SyncPattern zuriickgeliefert.

3.3.2.1 SyncPatternl.1

Das SyncPattern1.1 ist das einfachste synchrone Merge-Pattern und basiert auf den Uberlegungen aus
der Variante 2 der synchronen Kommunikationsmuster aus Abschnitt 3.2.2. Abbildung 3.60 zeigt eine
Beispielchoreographie in der die beiden PBDs PBD1 sowie PBD2 (iber die beiden Message Links
Mlseng UNd Mlgepy Synchron miteinander kommunizieren.

ProzessMerged ProzessMerged
—F -
PBD2 Flow, Flow,
Vaeceie] Vaack]
Scope_PBD1 Scope_PBD1 Scope_PBD2

Empty
c

a) b)

Abbildung 3.60 SyncPatternl.1

Seite 86

Die Beschaffenheit der beiden PBDs ist &hnlich der Beispielfragmente des AsyncPatternl.1: PBD1
kommuniziert Uber die synchrone <invoke>-Aktivitat s mit der <receive>-Aktivitit r in PBD2. Im
Gegensatz zum asynchronen Fall ist s im synchronen Fall jedoch blockierend. Der Ablauf des Kon-
trollflusses in PBD1 schreitet erst voran wenn s die Antwort aus PBD2 erhalten hat. Hierzu besitzt es
zusatzlich zu der zu sendenden Variable vse,g die Variable vgeyy, in der die eintreffende Antwort ge-
speichert wird. es=prel(s)+pre(s) bezeichnet hier wieder die Menge der direkten VVorgangeraktivitaten
von s, se=succl(s)+succ(s) analog hierzu die Menge der direkten Nachfolgeraktivitdten von s. Ent-
sprechend steht er=prel(r)+pre(r) fir die Menge der direkten VVorgangeraktivitaten von r. Zusétzlich
zu r gibt es im synchronen Fall jedoch noch eine antwortsendende <reply>-Aktivitdt y, die auf s
sendet. Daher ist s einmal als sendActivity in mls,y vertreten und ein weiteres Mal in mlgey als
receiveActivity. Auf der Empfangerseite bezeichnet reey=succl(r)+succ(r)+ree+...+eey+
prel(y)+pre(y) die Menge aller direkten Nachfolgeaktivitaten von r, die auf einem direkten Kontroll-
flusspfad zu y liegen sowie alle direkten VVorgangeraktivitaten von y. ye=succl(y)+succ(y) steht flr die
Menge aller direkten Nachfolgeaktivitaten der antwortsendenden Aktivitéat y. Zusatzlich definieren wir
noch reay=succl(r)+succ(r)+ree+...+aay als die Menge aller direkten Nachfolgeaktivitaten von r, die
nicht auf einem direkten Kontrollflusspfad zu y liegen.

Parallel zu AsyncPatternl.l ersetzen wir wieder s durch eine <assign>-Aktivitat a, die Vseng Nach
VReceive KOPiert. Da Vreeeive IN Scope_PBD2 definiert wurde und nur dort sichtbar ist, missen wir diese
Variable wieder in den Prozessscope verschieben. Im Falle eines Namenskonfliktes muss Vgeceive
wieder umbenannt werden (vgl. AsyncPatternl1.1). Zusatzlich wird ein neuer Kontrollflusslink ausgeh-
end von a und eingehend in die r ersetzende <empty>-Aktivitat b in der <Flow>-Aktivitdt des konso-
lidierten Prozesses hinzugefiigt (vgl. AsyncPattern1.1). Bis hier kdnnen wir den Ersetzungsmecha-
nismus von s und r aus dem AsyncPatternl.1 wiederverwenden. Anschliefend missen wir jedoch
auch die <reply>-Aktivitat y durch eine neue <assign>-Aktivitdt a‘* ersetzen. Diese kopiert die Ant-
wortvariable aus Vgac Nach Vgepy. Da auch Veepy analog zu Veeeeive NUr in Scope_PBD1 sichtbar ist,
verschieben wir auch diese Variable in den Prozessscope. Wir emulieren hier das Senden der Antwort
von y nach s durch a‘ und missen nun wieder den Kontrollfluss in die Nachfolgeaktivitdten aus se
wiederherstellen. Hierzu bieten sich, je nach Konfiguration der ausgehenden Kanten von s, zwei
Varianten an:

a): Gibt es ausgehende Kanten von s (<sources> mit <targets> in succl(s)) und besitzen diese
explizite <transitionCondition>s, deren XPath-Ausdricke mdglicherweise auf Variablen aus
Scope_PBD1 lesend zugreifen, so miussen wir zundchst die entsprechenden Variablen in Scope_PBD2
sichtbar machen, da wir in dieser Variante alle <sources> aus s inklusive ihrer expliziten <tran-
sitionCondition>s zu den <sources> von a‘ hinzufiigen. Gibt es keine expliziten <transi-
tionCondition>s, so tibernehmen wir alle <sources> nach a* und fuigen flr jeden Aktivitét Sgcc)
aus succ(s) einen weiteren Kontrollflusslink von a* nach Sg) hinzu.

b): In dieser Variante ersetzen wir s durch eine <sequence>-Aktivitat seq, die a und zusatzlich noch
eine synchronisierende <empty>-Aktivitat c enthélt. Alle <targets> und ihre <joinCondition>
von s werden zu den <targets> von seq, ebenso alle <sources> und ihre <transitionCon-
dition>s. Hier benétigen wir nur noch einen Kontrollflusslink von a“ nach c.

Wir werden im folgenden Kapitel die Variante b) fir die synchronen Félle verwenden.

3.3.2.2 SyncPatternl.2

Das SyncPatternl.2 ist &hnlich dem AsyncPatternl.5 aufgebaut: Die empfangende <receive>-
Aktivitat r besitzt keine direkten Vorgéangeraktivitaten. Daher ist auch hier das createlnstance-
Attribut von r auf ,,yes* gesetzt und es gilt er=g. Abbildung 3.62 zeigt das SyncPattern1.2 an einem
Beispielfragment zweier kommunizierender PBDs. PBD1 und PBD2 kommunizieren synchron tber
die beiden Message Links mlseng SOwie Mlgeyy (S—t, y—s) miteinander. Hierbei ist jedoch PBD1 der
Initiator von PBD2 (er=¢). Da die <receive>-Aktivitat r keine direkten VVorgangeraktivitaten besitzt
kann in diesem Fall auf eine synchronisierende <empty>-Aktivitét verzichtet werden. s wird durch die
<sequence>-Aktivitat seq aus Variante b) des SyncPatternl.1 ersetzt. seq enthélt die <assign>-

Seite 87

Aktivitat a, die Vseng NACh Vreceive KOpiert sowie eine synchronisierende <empty>-Aktivitét c. Zusétzlich
muss der Kontrollfluss zwischen Scope_PBD1 mit dem von Scope_PBD2 verbunden werden. Hierzu
werden alle ausgehenden Links von r, inklusive méglicher <transitionCondition>s zu den aus-
gehenden Links von a hinzugefiigt und in die Prozess-<flow>-Aktivitét tbertragen. Existieren keine
ausgehenden Links, es gilt somit succl(r)=¢, wird ein neuer Link In (nicht abgebildet) ausgehend von
a und eingehend in die Nachfolgeraktivitit succ(r) hinzugefiigt. Der Kontrollfluss zwischen a* (zuvor
y) und ¢ wird wie in SyncPatternl1.1 hergestellt.

/ProzessMerged D
WaclVaccn
(Core N

Flow

Scope_PBD1

Beodwer] | ——

Scope_PBD2

A

Sequence

Veerd ASSIEN
Receivel O/
Empty
c
/
N

AN

-

Abbildung 3.62 SyncPatternl.2

3.3.2.3 SyncPatternl.3

Das SyncPatternl.3 ist charakterisiert durch eine leere Menge an Nachfolgeraktivitaten der synchro-
nen <invoke>-Aktivitat s, es gilt somit se=¢. Da die sendende PBD die Daten aus der Antwortnach-
richt von s nicht mehr verwendet, werden wir die antwortsendende <reply>-Aktivitat y durch eine

synchronisierende <empty>-Aktivitat ersetzen.

ProzessMerged

N ProzessMerged
Flow

Scope_PBD1

Flow

Scope_PBD1
[Vieor)

Abbildung 3.63 SyncPatternl.3

Abbildung 3.63 zeigt die Fragmente einer Beispielchoreographie mit zwei synchron miteinander kom-
munizierenden PBDs PBD1 sowie PBD2, die Uber die beiden Message Links mlseqg SOWie Mlgepy, Ver-
bunden sind. Anstatt s in Scope_PBD1 durch die bekannte <sequence>-Aktivitat seq zu ersetzen,

Seite 88

benotigen wir in dieser Konstellation nur eine s ersetzende <assign>-Aktivitat a, die Vseng NACh Vreceive
kopiert und per Kontrollflusslink mit der entsprechenden synchronisierenden r ersetzenden <empty>-
Aktivitat b in Scope_PBD2 verbunden ist. AnschlieBend wir y durch eine synchronisierende
<empty>-Aktivitit c ersetzt, die im ginstigsten Fall bei Anwendung des <empty>-Optimierers aus
Abschnitt 3.3.1.1.2 ebenfalls entféallt. Der Kontrollfluss zwischen reey und ye wird danach direkt
verbunden (rechtes Ergebnis der Konsolidierung).

3.3.2.4 SyncPattern1.4 (Multiple <reply>-Aktivititen)

Wie in Abschnitt 3.3.1.1.1 beschrieben ist es mdglich, dass eine <invoke>-Aktivitat s direkt Com-
pensation sowie Fault Handler definiert. Im synchronen Fall kénnen so ber die Antwortnachricht
mdogliche Faults signalisiert und entsprechend in s behandelt werden (vgl. [OASO07] Abschnitt 10.4).
Abbildung 3.64 zeigt die Bespielfragmente einer BPEL4Chor-Choreographie in der die beiden PBDs
PBD1 sowie PBD2 synchron miteinander kommunizieren und die sendende Aktivitat s zusatzlich
Fault sowie Compensation Handler definiert.

FH bpel : joinFai lure) ProzessMerged FH bpel : joinFai lur¢]
Reply
MigeplyFoult _ _ |t y: Ve ASSigN
TR xxx:Faultl] 7 Flow Fault
o i S
/ PBD2 Scope_PBD1
Vsenduetzr]
Waecene] Vaaca] Vaeaid] .

PBD1

FH xxx:Faultl

CH

()

FH xxx:Faultl

Invoke

name="“mlse " sender=“PBD1*“ receiver=“PBD2“ sendActivity="s*
receiveActivity="r* messageName=“msgl“

Abbildung 3.64 SyncPatternl.4 mit zwei <reply>-Aktivitdten und einem Fault

PBD1 sendet tber die synchrone <invoke>-Aktivitat s Nachrichten an die <receive>-Aktivitat r in
PBD2. Dieser Teil der Kommunikation wird tber der Message Link mlseq aus ML représentiert.
Zusétzlich definiert s einen Compensation Handler mit der Akivitat A2 sowie einen Fault Handler fir
den WSDL-Fault xxx:Faultl mit der Aktivitdt Al. Im synchronen Fall kénnen in WS-BPEL 2.0
direkt Fault Handler fir WSDL-Faults in einer <invoke>-Aktivitit definiert werden, die den
entsprechenden Fault aus der Nachricht der antwortsendenden <reply>-Aktivitdt abfangen und
verarbeiten. Jeder dieser Faults wird Uber einen QName identifiziert, der aus dem Namespace des
entsprechenden Port Types sowie einem Fault Namen besteht. PBD2 antwortet entweder Uber die
<reply>-Aktivitat y, dargestellt tber den Message Link mlgey, aus ML, oder Uber die <reply>-
Aktivitat z im Fault Handler von PBD2, dargestellt tiber den Message Link Mlgepiyraur aus ML. Der

Seite 89

Erkennungsalgorithmus fur das SyncPatternl.4 sucht bei jedem Auftreten einer synchronen
Kommunikation neben dem sendenden Message Link aus ML (hier mlse,q) nach dem antwortenden in
dem s die receiveActivity ist (hier mlgeyy,) sowie nach weiteren MessageLinks in denen s ebenfalls
als receiveActivity auftritt (hier mlgepyraur). ISt in einer der entsprechenden antwortsendenden
<reply>-Aktivitaten das faultName-Attribut definiert, so handelt es sich im eine WSDL-Fault sen-
dende Antwortaktivitat. Im konsolidierten Prozess ProzessMerged wird nun <invoke> s in
Scope_PBD1 durch eine <scope>-Aktivitat s ersetzt, in die der Compensation Handler mit A2 kopiert
wird. s enthdlt wieder eine <sequence>-Aktivitat seq. seq umfasst eine <assign>-Aktivitit a, die
Vsend NACH Vreceive KOpiert und per ausgehenden Kontrollflusslink mit der <receive> r ersetzenden syn-
chronisierenden <empty>-Aktivitdt b in Scope_PBD2 verbunden ist (vgl. Standardfall in Sync-
Patternl.1). Da wir nun zwei mogliche antwortsendende Aktivitaten ersetzen missen, y und z, wird
seq aus SyncPatternl.1 erweitert: Anstatt einer synchronisierenden <empty>-Aktivitét c, die per ein-
gehenden Kontrollflusslink mit der <reply> y ersetzenden <assign>-Aktivitat verbunden ist,
mussen wir nun dafiir sorgen, dass nach dem Eintreffen verschiedener sich gegenseitig ausschlie-
Render Antwortnachrichten der Kontrollfluss mit se korrekt synchronisiert wird. Hierzu ersetzen wir
zunachst y und z durch die entsprechenden <assign>-Aktivitaten a* sowie a™", die im ersten Fall
Vgack1 NACH Vgepy SOWie im Fehlerfall vgae, Nach veeyy kopieren (vgl. analog Ersetzen der <reply>-
Aktivitat in SyncPattern1.1-1.2). Als Nachfolgeaktivitdt von a wird nun eine <flow>-Aktivitét fl in
seq erzeugt, die zwei <throw>-Aktivititen enthalt. Wir wandeln nun in <scope> s den urspring-
lichen WSDL-Fault xxx:Faultl in einen benutzerdefinierten gleichnamigen Fault um, der im Feh-
lerfall von einem entsprechenden Fault Handler in s aufgefangen wird. Dieser Fault Handler enthalt
Al. Ein weiterer Fault Handler behandelt den benutzerdefinierten Fault xxx:FaultExit, der die
<empty>-Aktivitdt ¢ enthdlt. a* wird nun per ausgehenden und in die xxx:FaultExit werfende
<throw>-Aktivitdt eingehenden Kontrollflusslink verbunden. Entsprechend wird a™" mit der
xxx :Faultl werfenden <throw>-Aktivitat verbunden.

Zur Laufzeit werden zundchst die Aktivitaten in es von Scope_PBD1 ausgefuhrt und anschlieend s.
a kopiert Vseng NAch Veeeeive UNd Setzt anschlielfend den Kontrollfluss in Scope_PBD2 fort. Nachdem
hier die Aktivitaten in er ausgefiihrt wurden, schreitet die Ausfiihrung mit b und anschlielend reey
voran. Tritt hier ein bpel - joinFai lure-Fault auf, wird dieser im entsprechenden Fault Handler von
Scope_PBD?2 gefangen und afault kopiert Vgacko NACh Vrepyy. Tritt ein Fehler auf der nicht gefangen wird,
so war die PBD schon vor der Konsolidierung fehlerhaft und hétte einen bpel :missingReply-Fault
hervorgerufen. Nachdem a™" beendet wurde, schreitet der Kontrollfluss mit der <throw>-Aktivitat
voran, die den benutzerdefinierten Fault xxx:Faultl wirft. Dieser wird im entsprechenden Fault
Handler von s aufgefangen und Aktivitdt A1 wird ausgefiihrt. AnschlieBend wird s beendet und die
ausgehenden Links von s werden ausgewertet, falls nicht succl(s)=¢ gilt. Danach folgen die Aktivi-
taten aus se. Tritt kein Fehler auf so kopiert @“ Vgaca Nach Veepy und der Kontrollfluss schreitet nach
Auswertung der ausgehenden Links von a‘ mit der Ausfilhrung der Aktivitaten aus ye sowie parallel
der <throw>-Aktivitat, die den benutzerdefinierten Fault xxx:FaultExit wirft in Scope PBD1
voran. Dieser wird im entsprechenden Fault Handler von s aufgefangen und s anschlieend beendet.
Die anschlieRende Ausfiihrung erfolgt analog zum Fehlerfall. Mit dem gezeigten Erkennungs- und
Ersetzungsmechanismus lassen sich alle urspringlichen WSDL-Fault werfenden <rep ly>-Aktivititen
in entsprechende Kombinationen aus <assign>- und <throw>-Aktivitdten im neuen <scope> s
umwandeln und der Kontrollfluss wird entsprechend per Links zwischen diesen verbunden. Der
eingeflihrte benutzerdefinierte Fault xxx:FaultExit mit <empty>-Aktivitdt im entsprechenden
Fault Handler von s dient nur zum Beenden des entsprechenden <scope> und anschlieBender Weiter-
fiihrung des Kontrollflusses in se.

Neben der Mdglichkeit mehrerer <reply>-Aktivitaten fir s bedingt durch WSDL-Faults, kann eine
derartige Konstellation auch durch Verzweigungen im Kontrollfluss in der antwortsendenden PBD
entstehen. Abbildung 3.65 zeigt einen solchen Fall. Die beiden PBDs aus vorigem Beispiel kommu-
nizieren synchron miteinander. Der Ubersichtlichkeit halber wurde auf Fault sowie Compensation
Handler in s verzichtet, das vorgestellte Konsolidierungsmuster ist jedoch auch in Kombination mit
dem zuvor erklarten auf solche <invoke>-Aktivitdten anwendbar. Auf die <receive>-Aktivitit r
folgt eine synchronisierende <empty>-Aktivitat c, die je nach Auswertung der <transition-
Condi tion>s ihrer ausgehenden Links den Kontrollfluss in <reply>y; oder y, fortsetzt.

Seite 90

ProzessMerged
Vaeg

Flow

Scope_PBD1
Vsenduegzr]

el

48
e

<empty name=‘‘c‘*>

<sources>
<source linkname=*“11“>
<transitionCondition>
Vreceive-amount < 100
</transitionCondition>
</source>
<source linkname=*12*“>
<transitionCondition>
VReceive-amount > 100

- /de’“lw

</transitionCondition>
</source>
</sources>
</empty>

Abbildung 3.65 SyncPatternl.4 mit zwei <reply>-Aktivitéten

Die Konsolidierung erfolgt analog zum vorherigen Beispiel nur das hier in der <flow>-Aktivitat fl fir
jede der beiden y; sowie y, ersetzenden <assign>-Aktivitaten a‘ und a‘‘ eine <throw>-Aktivitat fur
das Werfen des benutzerdefinierten Faults xxx:FaultExit hinzugefigt wird, die per Kontrollfluss-
link jeweils mit a* bzw. a*“ verbunden wird. Mit diesem Fault Mechanismus wird das Warten auf die
Auswertung der beiden Links zwischen a‘ bzw. a*“ und entsprechender <throw>-Aktivitat umgangen.
Sobald eine der beiden <assign>-Aktivitdten ausgefiihrt wurde, wird <scope> s im Anschlul}
beendet und der Kontrollfluss schreitet in den Aktivitaten se voran.

3.3.2.5 SyncPatternl.5 (Sendende <invoke>-Aktivitit innerhalb von Handlern)

Befindet sich die synchron kommunizierende <invoke>-Aktivitdt s innerhalb eines Handlers (FH—
Fault Handler, CH—Compensation Handler, TH—Termination Handler, EH—Event Handler), so bie-
tet das SyncPatternl.5 in bestimmten Konstellationen der empfangende PBD eine Mdglichkeit der
Konsolidierung. Wie schon im AsyncPattern3.0 erklart dirfen Links mit Ursprung in FHs sowie THs
nur ausgehend und in CHs sowie EHs weder ein- noch ausgehend sein. Da im synchronen Fall von s
die Ausfiihrung der Nachfolgeraktivitaten solange blockiert wird bis die Antwortnachricht eingegan-
gen ist und wir bei den vorangegangenen synchronen Konsolidierungsmustern den Kontrollfluss in die
empfangende und antwortsendende PBD leiten und wieder herausfilhren, kénnen wir diese in den
Kontrollfluss der Aktivitaten, die sich in einem Handler befinden integrieren. Abbildung 3.66 zeigt die
Beispielfragmente einer Choreographie sowie die Konsolidierung, die diese ldee umsetzt. Die
synchrone <invoke>-Aktivitét s befindet sich innerhalb eines Handlers (FH, CH, TH oder EH). Diese
sendet Nachrichten an die <receive>-Aktivitit r in der PBD PBD2. PBD2 schickt die Antwort-
nachricht per <reply>-Aktivitit y an s. Wichtig an dieser Konfiguration ist, dass r keine VVorganger-
aktivitdten hat somit das createlnstance-Attribut auf ,,yes* gesetzt ist und dass y keine Nachfol-
geraktivitaten hat (er=¢ sowie ye=g). Zusatzlich muss gelten, dass es nur Nachfolgeaktivitaten von r
gibt, die auf einem direkten Pfad zu y liegen und keine weiteren (reey=g). Da s den Kontrollfluss in
der empfangenden PBD PBD?2 initiert und dieser nach dem Senden der Antwortnachricht in y wieder
beendet wird, erzeugen wir im neuen konsolidierten Prozess im Handler der s enthélt eine <flow>-
Aktivitat fl in die wir se, s sowie s inklusive aller zugehorigen Kontrollflussrelationen hineinkopie-
ren. AnschlieRend wir Scope_PBD?2 in fl kopiert und die Aktivitaten s, r und y werden durch dieselben

Seite 91

Aktivitaten, wie schon in SyncPatternl.1 ersetzt (s durch <assign> a, r durch <empty> b sowie y
durch <assign> a‘) und der Kontrollfluss wird per Links entsprechend hergestellt. Da in der urspriin-
glichen Choreographie s solange blockiert bis die Antwort aus y eintrifft, haben wir auf diese Weise
den ursprunglichen Kontrollfluss erhalten. Hatte r noch Vorganger, so wirde der Handler nach dem
inkludieren von Scope_PBD?2 einen anderen Kontrollfluss haben und kdnnte erst ausgefihrt werden,
nachdem alle Vorgangeraktivitaten beendet wurden. Hatte y Nachfolger, so ware der Handler auch
nach a‘ noch aktiv und der Kontrollfluss wére abhéngig von diesen Nachfolgeaktivitaten. Gébe es
Nachfolgeraktivitdten von r die auf keinem direkten Pfad zu y liegen, so konnten diese den
Kontrollfluss des Handlers nach dem Konsolidieren ebenfalls verédndern, da in der urspriinglichen
Choreographie die Aktivitdten in se direkt nach Erhalt der Antwortnachricht ausgefiihrt werden und
der Handler anschlieBend beendet wird unabhéngig von mdglichen parallelen Aktivitaten in resy.
Auch hier wird zusétzlich auf das Vorhandensein eines <catchAl I>-Fault Handlers geprift und bei
Bedarf ein neuer mit einer <compensate>-Aktivitat angelegt, um alle méglichen Faults, die nicht in
Scope_PBD?2 gefangen werden am Durchdringen in den Handler zu hindern. Der Compensation Hand-
ler wird mit einer <empty>-Aktivitat e; definiert. Dies hat folgenden Grund: Ein Prozessscope hat
keinen CH und Scope_PBD2 ersetzt den Prozessscope der ehemaligen PBD PBD2. Wirden wir
keinen derartigen CH definieren, so wirde wéhrend der Ausfuhrung automatisch ein Default-CH
installiert werden und konnte den urspriinglichen Kontrollfluss verédndern (vgl. [OAS07] Abschnitt
12.5.1 Default Fault, Compensation, and Termination Handlers).

FH|CH|EH | TH

/Flow fl FH <catchAll>

FH|CH|EH|TH

Sequence

CH
Assign

[Veeceive][Viacd
(] Empty Empty
b &
a
Empty
C

Abbildung 3.66 SyncPatternl.5

3.3.2.6 SyncPattern2.1 (<onMessage>-Zweig als receiveActivity)

Das SyncPattern2.1 stellt einen Spezialfall des SyncPatternl.1 dar, indem statt einer <receive>-
Aktivitat r ein <onMessage>-Zweig einer <pick>-Aktivitat p als receiveActivity im Message
Link mlseng aus ML definiert wurde. In diesem Fall kann es passieren, dass die Antwort aufgrund einer
Deaktivierung der entsprechenden Aktivitat p durch eine zuvor eintreffende Nachricht eines anderen
<onMessage>-Zweigs dieser ausbleibt. Der Kontrollfluss bleibt in diesem Fall in der sendenden Akti-
vitat s hdngen. Abbildung 3.67 zeigt die Fragmente einer Beispielchoreographie zweier PBDs PBD1
und PBD2, die Uber eine synchrone <invoke>-Aktivitit s in PBD1, einen <onMessage>-Zweig mit
der wsu:id msgl einer <pick>-Aktivitdt p sowie eine <reply>-Aktivitdt y in PBD2 miteinander
kommunizieren. Das Ersetzen von p durch eine entsprechende <scope>-Aktivitat Scope_Pick erfolgt
analog zu AsyncPattern2.1. Die s ersetzende <sequence>-Aktivitat auf der ehemaligen Senderseite
wird um eine a umgebende <if>-Aktivitat erweitert. a wird nur ausgefuhrt, wenn p noch nicht
aktiviert wurde (vgl. AsyncPattern2.1 mit Schutzvariable Vpic activated)- Y Wird durch die Gbliche
<assign>-Aktivitat a‘ ersetzt und mit einem ausgehenden Kontrollflusslink mit ¢ verbunden. Wird
bei der Ausfiihrung <receive> msg2 durch eine eingehende Nachricht aktiviert bevor a ausgefihrt

Seite 92

wurde und im Anschluss den entsprechenden benutzerdefinierten Fault xxx:FaultExit geworfen
hat, so bleibt der Kontrollfluss bei der Ausfiihrung der <sequence>-Akivitat in Scope_PBD1 héngen,
wie in der urspriinglichen Choreographie. Dieses Konsolidierungsmuster lasst sich auch im Fall
weiterer <onMessage>- bzw. mdglicher <onAlarm>-Zweige einsetzen (vgl. AsyncPattern2.1) sowie
entsprechend beim Auftreten mehrerer Choreographieteilnehmer die auf verschiedene <onMessage>-
Zweige von p senden (vgl. AsyncPattern2.2 sowie AsyncPattern2.3).

ProzessMerged
WaccenelVaeon] Ve achared - false()

Flow

Scope_PBD1 Scope_PBD2 i ilure
- = FH xxx:pickrailurel || FHxxx:pickFailure2
n
.
o

Scope_Pick
Flow_Pick

)

Pick p
nMessage wsu: id="msgl* ||| onMessage wsu: id="msg2‘
o0 Waeceivel
()

Sequence
Receive
msg2

Assign)

ftrue()
Voick octveted]

throw throw
xxx:pickFailurel J{ xoo:pickFailure2

Abbildung 3.67 SyncPattern2.1

3.3.2.7 SyncPattern2.2

Das SyncPattern2.2 stellt den Sonderfall dar, dass ep=¢ gilt und das create Instance-Attribut auf
»yes" gesetzt ist. Hierbei erfolgt die Konsolidierung analog zu SyncPattern2.1 mit dem Unterschied,
dass die <receive>-Aktivitaten im Scope_Pick den Wert des createlnstance-Attributs von p
erben (vgl. AsyncPattern2.3).

3.3.2.8 SyncPattern2.3

Gilt wie im SyncPattern1.3 se=¢ und wird ein <onMessage>-Zweig einer <pick>-Aktivitat p auf
Empfangerseite eingesetzt, so kénnen wir auch hier die s ersetzende <sequence>-Aktivitat durch
eine <assign>-Aktivitat austauschen, die lediglich Vseng Nach Veeeeive Kopiert, da die Daten der Ant-
wortnachricht nicht mehr verwendet werden. p wird analog zu SyncPattern2.1 mit einer entsprech-
enden <scope>-Aktivitat ersetzt und y durch eine synchronisierende <empty>-Aktivitat (vgl. Sync-
Patternl.3).

3.3.2.9 SyncPattern2.4

Das SyncPattern2.4 erkennt und konsolidiert die synchronen Kommunikationsmuster, in denen s auf p
sendet und gleichzeitig mehrere mdgliche <reply>-Aktivitadten vorliegen. Somit gibt es einen
Message Link mlse,g mit s als sendActivity und die wsu: id eines <onMessage>-Zweigs von p als
receiveActivity und mehrere weitere Message Links Mlgepyy1-n DZW. Mlgepiyraur Mit verschiedenen
<reply>-Aktivitaten y;-y, als sendActivity und jeweils s als receiveActivity. Wir werden in
folgendem Unterabschnitt nur die Anderungen an der s ersetzenden Aktivitat vorstellen, da die
<reply>-Aktivitdten im antwortsendenden <scope>, wie schon zuvor, durch entsprechende

Seite 93

<assign>-Aktivitdten, die jeweils Vg« Nach vgeyy kopieren, ausgetauscht werden (vgl. SyncPat-
ternl.4).

FH xxx:FaultExit

FH xxx:Faultl CH
Empty
(scopes | @ (42)
Scope s

Gequenceseq \
N
if
FH xxx:Faultl | CH [0t Vi activated]
.) = e Assign L —
Invoke VseniRS a
Vs

NS

(Flowﬂ
throw throw
Xxx:Faultl) | xxx:FaultExit
————

Abbildung 3.68 SyncPattern2.4

Abbildung 3.68 skizziert anhand von Beispielfragmenten das Ersetzen der synchron kommunizie-
renden <invoke>-Aktivitdt s, die auf einen <onMessage>-Zweig einer <pick>-Aktivitat sendet
(nicht abgebildet) und eine Antwortnachricht von mehreren moglichen <reply>-Aktivitaten (eben-
falls nicht abgebildet) erhélt. s wird, wie in SyncPatternl.4, durch eine <scope>-Aktivitét s ausge-
tauscht, die wiederum eine <sequence>-Aktivitat seq enthélt. Im Gegensatz zum SyncPatternl.4 ist
nun die <assign>-Aktivitit a durch die <if>-Aktivitit zur Uberpriifung der Schutzvariable
Vpick_activated UM@eben, da hier auf einen <onMessage>-Zweig gesendet wird (vgl. SyncPattern2.1). Wie
in SyncPattern1.4 wird auch hier eine weitere <flow>-Aktivitét fl in seq hinzugefigt, die fir mogliche
WSDL-Fault sendende <reply>-Aktivitaten jeweils eine <throw>-Aktivitat enthalt. Diese wirft den
entsprechenden umgewandelten benutzerdefinierten Fault. Fir jede <reply>-Aktivitét, die ohne Fault
antwortet ist eine <throw>-Aktivitdt enthalten. Diese wirft den benutzderdefinierten Fault
xxx :FaultExit, der s beendet und die Ausfiihrung der Aktivitaten in se bewirkt. Im gezeigten Bei-
spiel gibt es somit eine <reply>-Aktivitdt y, die in der urspringlichen Choreographie ohne Fault
antwortet und eine weitere Yeqy, die den WSDL-Fault xxx: Faultl zurlckliefert.

3.3.2.10 SyncPattern3.0 (,,Non-Merge-Pattern-Sync*)

Analog zum AsyncPattern3.0 fangt das SyncPattern3.0 die synchronen Kommunikationsmuster ab, die
nicht durch einen der zuvor erwahnten Erkennungs- und Konsolidierungsmechanismen ersetzt werden
kénnen bzw. das Ziel zuklnftiger Erweiterungen des Algorithmenkatalogs sind. Trifft der
Erkennunsalgorithmus auf ein hier genanntes Muster, so werden die entsprechenden Message Links
aus ML in die Liste NMML hinzugefiigt (vgl. AsyncPattern3.0) und die betreffenden Aktivitdten im
Anschluss in intra-prozess kommunizierende umgewandelt.

3.3.2.10.1 <onEvent>-Zweig (EH) als empfangende Aktivitat

Da wir in der vorliegenden Arbeit die Konsolidierung synchroner Kommunikationen in denen <on-
Event>-Zweige eines EHs als receiveActivity auftauchen nicht unterstiitzen, wird der entsprech-
ende Message Link mlseng aus ML in die Liste NMML Ubertragen. Zusétzlich suchen wir fur die send-
Activity s von mlse,g nach weiteren antwortsendenden Message Links, die s als receiveActivity
enthalten und Ubertragen diese ebenfalls in NMML. Dieser Schritt ist notwendig, da bei synchroner
Kommunikation immer mindestens ein antwortsendender Message Link mlgey, vorliegen muss und
wir von einer korrekten BPEL4Chor-Choreographie als Eingabe ausgehen.

Seite 94

3.3.2.10.2 Sendende <invoke>-Aktivitat innerhalb von Handlern (EH, FH, TH, CH)

Befindet sich die synchron kommunizierende <invoke>-Aktivitét s eines Message Links mlsg,q inner-
halb eines EH, FH, TH oder CH und es gilt zusatzlich fir die empfangende <receive>-Aktivitat r
sowie die moglichen antwortsendenden <reply>-Aktivitat y;-y, der entsprechenden Message Links
Mlgepty1-Mlgepiyn *r#Z und/oder y,e# 7 oder y,e#Z oder ... y,*#7, dass heisst r hat Vorgangeraktivitaten
und mindestens eine der Aktivitaten y;-y, haben Nachfolger im Kontrolifluss, so werden alle an der
Kommunikation involvierten Message Links in NMML (bertragen. Zusétzlich missen alle Aktivititen
aus re auf einem direkten, nichtverzweigenden Pfad zu den jeweiligen <reply>-Aktivitaten y;-y, lie-
gen (resy;=g,..., resy,=¢7). Andernfalls kdnnen wir das SyncPattern1.5 anwenden.

Handelt es sich bei der empfangenden Aktivitdt um den <onMessage>-Zweig einer <pick>-Aktivi-
tat, so werden ebenfalls alle an der Kommunikation involvierten Message Links in NMML (bertragen.

3.3.2.10.3 Empfangende <receive>/<pick>-Aktivitiat innerhalb von Handlern (EH, CH,
TH, FH)

Fir die empfangende <receive>- oder <pick>-Aktivitat r gilt analog zu Abschnitt 3.3.1.12.3 der
Asynchronen Merge-Patterns: Befindet sich r innerhalb eines EHs, CHs, FHs oder THs, so wird der
entsprechende Message Link mlg,g aus ML, der diese Aktivitat als receiveActivity enthdlt, in die
Liste NMML (bertragen, da SA00070 sowie SA00071 des WS-BPEL 2.0 Standards [OASOQ7]
eingehende Links in jegliche Art der vier Handler verbieten. Zusatzlich werden alle antwortsendenden
Message Links Mlgepiy1-Mlgepiyn, die die sendActivity s aus mlsnq als receiveActivity enthalten
ebenfalls in NMML Ubertragen.

3.3.2.10.4 Sendende und/oder empfangende Aktivititen innerhalb von Schleifen

Analog zu Abschnitt 3.3.1.12.4 der asynchronen Merge-Patterns werden sendende und empfangende
Aktivitaten, die sich innerhalb von Schleifen befinden nicht konsolidiert und verbleiben als intra-
prozess kommunizierende im Prozess. Wird ein Message Link mlse,g entdeckt dessen sendActivity
s und/oder receiveActivtiy r sich innerhalb einer Schleife befinden, wird er in die Liste NMML
ubertragen. AnschlieBend werden alle antwortsendenden Message Links mlgegiya-Mlgepiyn, di€ s als re-
ceiveActivity enthalten ebenfalls in NMML Ubertragen.

3.4 Vervollstindigung der technischen Artefakte im neuen konsolidierten
Prozess und Ubernahme der WSDLs

Nachdem alle Message Links aus ML behandelt und die entsprechenden konsolidierbaren Kombi-
nationen aus kommunizierenden Aktivitaten durch die jeweiligen Konstrukte ersetzt wurden, miissen
die technischen Informationen in den verbliebenen kommunizierenden Aktivitaten durch Analyse der
Topology, Grounding sowie den zugehdrigen WSDL-Dateien in den neuen konsolidierten Prozess
tbernommen werden. Hierzu gehort das Anlegen der entsprechenden partnerLinks, das Hinzufiigen
dieser sowie des operation- und portType-Attributs in die jeweiligen Aktivitaten, als auch die
Anpassung der Korrelationsmengen im Falle mehrerer initialer Startaktivitaten (vgl. Abschnitt
3.2.3.2.1 Mehrere initiale Startaktivitaten). Zusatzlich werden die vorhandenen WSDL-Dateien als
imports in den Prozess eingefiigt. Ein weiterer Optimierungsschritt zukiinftiger Arbeiten kénnte das
Verschmelzen der WSDL-Dateien zu einer einzigen sein. Da dieser strukturelle Aspekt jedoch keine
Auswirkungen auf die Laufzeit des ausfuhrbaren Prozesses hat, belassen wir die technischen Informa-

Seite 95

tionen in den jeweiligen WSDL-Dateien und binden dieses stattdessen Uber mehrere import-State-
ments in den BPEL-Prozess ein.

3.4.1 Einfiigen der WSDL-Dateien per import-Statements

Fir jede PBD der Choreographie ist eine entsprechende WSDL-Datei vorhanden, die nun per import-
Statement in den konsolidierten BPEL-Prozess hinzugefigt wird.

prozessMerged.bpel

<process name=‘“prozessMerged*
targetNamespace=“http://www. iaas.uni-stuttgart.de*

xmIns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable*

prozessMerged.bpel xmins:pbd1=*http://BPEL4Chor/pbd1*
- " xmIns:pbd2="“http://BPEL4Chor/pbhd2*
<process name="prozessierged xmlIns:pbd3=*http://BPEL4Chor/pbd3*>

targetNamespace=“http://www. iaas.uni-stuttgart.de*

xmIns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable*“> <import namespace="http://BPEL4Chor/pbd1l® location="pbd1.wsdl"

importType="http://schemas.xmlsoap.org/wsd1/"/>

<import namespace=“http://BPEL4Chor/pbd2* location="pbd2._wsdl"
importType="http://schemas.xmlsoap.org/wsd1/"/>

<import namespace=“http://BPEL4Chor/pbhd3* location="pbd3.wsdl"
importType="http://schemas.xmlsoap.org/wsdl1/"/>

<!-- Globale Kommunikationsvariablen -->

<variables>
<variable name=“msgl“ messageType=“ns:PBDlInvMessage*/>
<variable name=“msg2“ messageType=“ns:PBD2InvMessage“/>
<variable name=*“msg3“ messageType=“ns:PBD2InfoMessage*/>

<variable name=“msg4“ messageType=“ns:PBD3ErrorMessage“/> <1-_ Globale Kommunikationsvariablen —->

<variables>
<variable name=“msgl“ messageType=“pbdl:PBD1InvMessage*/>
<variable name=“msg2“ messageType="“pbd2:PBD2InvMessage*/>
</process> <variable name=“msg3*“ messageType=*pbd2:PBD2InfoMessage“/>
<variable name=“msg4*“ messageType=*“pbd3:PBD3ErrorMessage*/>

</variables>

</variables>

</process>

Abbildung 3.69 Hinzufligen der WSDL-imports in den konsolidierten Prozess

Abbildung 3.69 veranschaulicht die Schritte beim Hinzufiigen der imports: Die drei WSDL-Dateien
werden in den neuen Prozess ProzessMerged eingefiigt sowie die Namespace-Préfixe der
entsprechenden globalen Variablen angepasst. Diese Variablen sind beim Konsolidieren durch
Ubertragen der an einer Kommunikation teilnehmenden Daten durch das entsprechende Merge-Pattern
in den globalen Prozessscope entstanden (Vgeceives Vreply, €1C.). Anschliefend werden alle Namespace-
Préafixe in den involvierten <scope>-Aktivitdten ebenfalls an den jeweiligen Namespace angepasst
(Alle Deklarationen innerhalb Scope_PBD1, ..., Scope_PBDn).

3.4.2 Anpassung der Korrelationsmengen bei mehreren initialen Startaktivitaten

Nun untersuchen wir die ersten Aktivitdten im Kontrollfluss in Scope PBD1-Scope PBDn des
konsolidierten Prozesses. Handelt es sich um <receive>s oder <pick>s mit dem auf yes gesetzten
createlnstance-Attribut und befinden sich in mehr als einer der Scope_PBD1-Scope_PBDn-Akti-
vitaten derartige initiale Aktivitaten, so missen wir, wie in Abschnitt 3.2.3.2.1 beschrieben, die Nach-
richten der dort verwendeten Variablen um eine gemeinsame Korrelationsmenge erweitern.
Angenommen in den beiden <scope>-Aktivitidten Scope_PBD1 sowie Scope_PBD?2 des konsolidier-
ten Prozesses ProzessMerged befinden sich jeweils zwei initiale <receive>-Aktivitaten r; und r»,
wobei r; die Variable inputPBD1 vom messageType pbdl:PBD1RequestMessage und r, die Va-
riable inputPBD2 vom messageType pbd2:PBD2RequestMessage verwendet (die Variablen kon-
nen hier auch beide denselben Namen haben, da diese in verschiedenen <scope>s deklariert wurden).
Nun werden die entsprechenden Messages in den beiden WSDL-Dateien pbdl.wsdl sowie pbd2.wsdl
erweitert: In beiden Messages wird ein neuer wsdl - part mit dem Namen commonCorrelProperty
vom Typ xsd:string hinzugefligt sowie die entsprechenden property-Eigenschaften definiert
(vprop:property und vprop:propertyAlias vgl. Abbildung 3.28b). Anschlielend werden diese
propertys zu den Korrelationsmengen von r; und r, hinzugefiigt und das initiate-Attribut beider
wird auf ,,join“ gesetzt.

Seite 96

3.4.3 Erzeugen und Hinzufiigen der PartnerLinks fiir die nicht konsolidierten
Message Links aus NMML

Da die vorliegende Arbeit nicht alle vorkommenden Kommunikationsmuster- und Konstellationen in
Merge-Patterns umsetzt, kann es vorkommen, dass einige der choreographie-intern kommunizierenden
Aktivitaten der Message Links aus ML nicht durch die entsprechenden Synchronisationsaktivitaten
ersetzt werden und die entsprechenden Message Links in NMML (bertragen werden. Nun miissen
diese Aktivitaten zu intra-prozess kommunizierenden im konsoldidierten Prozess ProzessMerged um-
gewandelt werden. Hierzu werden wir die Message Links aus NMML mit den entsprechenden zugeho-
rigen Message Links aus der Grounding-Datei abgleichen und die technischen Informationen (port-
Type sowie operation) aus der WSDL-Datei der PBD in die PartnerLinks sowie die involvierten
Aktivitaten einfligen. Wir zeigen zundchst den Fall fir asynchron intra-prozess kommunizierende
Aktivitaten und die entsprechenden Message Links. Diese sind dadurch charakterisiert, dass ihre
sendActivity s in keinem weiteren Message Link als receiveActivity auftaucht.

pbd2.wsdl

<definitions name="pbd2" xmlns="http://schemas.xmlsoap.org/wsdl/*
xmIns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap"
xmIns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop™
name=“ml1*“ sender="“PBD1“ receiver="PBD2“ sendActivity="s* xmIns:xsd="http://ww.w3.0rg/2001/XMLSchema"
receiveActivity="r* messageName="msg1* xmins:tns="http://www. iaas.uni-stuttgart.de"
O = targetNamespace="http://www. iaas.uni-stuttgart.de">

<plInk:partnerLinkType name="pbd12pbd2PLT">
<plInk:role name=" pbdlZpbdZRole /ﬁorq‘ﬁyge="tns:52rPTyge"/>
</plnk partnerLinkType> e \
- - | \
,,, N — <p0rtType name-LSZrPTXE />/ ‘\
<operation—names''sendOperation"> \
<input message="tns: pbd2|nvMessage /> |

</operation>

Message Link m/1 aus Topology sowie der zugehdrige Message Link m/1 aus der </portType> “ |

Grounding mit den entsprechenden technischen Angaben aus der WSDL-Datei E
</definitions> |

prozessMerged.bpel “ |

<process name=‘“‘prozessMerged*
targetNamespace="http://www.iaas. unl—snuttgart‘de
xmIns=*“http://docs.oasis-open. org/wsbpqllz Olprocess/executable
xmlIns:pbdl="http://BPEL4Chor/pbdl* | ‘\
xmlIns:pbd2="“http://BPEL4Chor/pbd2* | |
xmlIns:pbd3=*“http://BPEL4Chor/pbd3*>

prozessMerged.bpel <Flow> “
. |

<process name=‘“‘prozessMerged* <scope name=‘“‘Scope_PBD1“>
targetNamespace=“http://www.iaas.uni-stuttgart.de*
xmIns="http://docs.oasis-open.org/wsbpel/2.0/process/executable* <partnerLink name="pbdlpbd2PLS" *
xmins:pbdl="http://BPELAChor/pbd1* partnerLinkType="pbd2: pbdlZpbdZPLT‘
xmlins:pbd2="http://BPEL4Chor/pbd2* partnerRole ‘pbd12pbd2Role™/>
xmlIns:pbd3="http://BPEL4Chor/pbd3*> =*s* partnerLink=" pbdlpbdQPLS

portType="“ pbdz s2rPType* |
operation="*sendOperation*

<flow>
inputvariable="vs*“>
<scope name=‘‘Scope_PBD1">
</invoke>
<invoke name=*“s* inputVariable="v¢“>
</scope>

</invoke> .
<scope name=‘‘Scope_PBD2>
</scope> /
<partnerLink name="pbdlpbd2PLR" v
<scope name=‘‘Scope_PBD2"> partnerLinkType="pbd2:pbd12pbd2PLT"
myRole="pbd12pbd2Role"/>

<receive name=“r* partnerLink="pbdlpbd2PLR*
portType=“pbd2:s2rPType*
operation="sendOperation*

</ receive>
variable=*v,“>
</scope>
</receive>
</flow>
</process> </scope>

</flow>

</process>

Abbildung 3.70 Hinzufligen der PartnerLinks sowie der technischen Attribute portType, operation sowie part-
nerLink in die asynchron intra-prozess kommunizierenden Aktivitaten

Abbildung 3.70 veranschaulicht das VVorgehen an einem Beispiel: Die beiden Aktivititen s und r ver-
bleiben nach der Konsolidierung als intra-prozess kommunizierende im Prozess ProzessMerged.
Nachdem der Message Link mll aus NMML mit dem zugehoérigen mll aus der Grounding-Datei

Seite 97

abgeglichen und die zugehdrigen technischen Artefakte in der WSDL-Datei ausfindig gemacht
wurden, werden zwei neue PartnerLinks in den beiden <scope>s Scope_PBD1 sowie Scope_PBD2
mit den passenden partnerLinkTypes angelegt und die technischen Attribute portType, opera-
tion und partnerLink in die beiden Aktivitdten s und r eingefiigt. Dieses VVorgehen wird fiir alle
verbleibenden asynchron intra-prozess kommunizierende Message Links aus NMML wiederholt und
die entsprechenden Artefakte angelegt und in die beteiligten Aktivitaten hinzugeftgt.

Fur die synchron intra-prozess kommunizierenden Aktivitdten s, r und y missen mindestens zwei
Message Links mlseng Sowie mlgeyy aus NMML untersucht und die entsprechenden Artefakte hinzuge-
fiigt werden (vgl. Abbildung 3.71).

pbd2.wsdl

<definitions name="pbd2" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmIns:plInk="http://docs.oasis-open.org/wsbpel/2.0/plInktype"

name=“mlse.* sender="“PBD1“ receiver=“PBD2*
sendActivity=“s“ receiveActivity="“r* messageName=*“msgl*

o > xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap*

» “ » " ~ » B xmIns:vprop="http://docs.oasis-open.org/wsbpel/2_0/varprop™
name="mlpep1,** Sender=“pBD2* receiver="PBD1 xmins:xsd="http://ww.w3.0rg/2001/XMLSchema"
sendActivity="y* receiveActivity="s" messageName="msg2* xmIns:tns="http://www.iaas.uni-stuttgart.de"
,,, ~

targetNamespace="http://www.iaas.uni-stuttgart.de'>

<plInk:partnerLinkType name="pbd12pbd2PLT">
<plInk:role name="pbd12pbd2Role" portType="tns:s2rPType"/>
</plnk:partnerLinkType>

<portType name="s2rPType'>
<operation name="sendOperation*>
<input message=""tns:pbd2invMessage'/>
<output message=""tns:pbd2replMessage"/>
Message Links mlseng und mlge,, aus Topology sowie die zugehorigen Message </operation>
Links mlseng und migey, aus der Grounding mit den entsprechenden technischen </portType>
Angaben aus der WSDL-Datei

</definitions>

prozessMerged.bpel

<process name=‘“‘prozessMerged‘
targetNamespace=“http://www.iaas.uni-stuttgart.de*
xmIns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable*
xmlIns:pbdl="http://BPEL4Chor/pbd1*
xmlIns:pbd2=“http://BPEL4Chor/pbd2‘
xmlns:pbd3=“http://BPEL4Chor/pbd3‘>

prozessMerged.bpel

<process name=“prozessMerged*
targetNamespace=“http://www. iaas.uni-stuttgart.de*
xmIns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable*

<flow>

<scope name=‘‘Scope_PBD1*“>
xmlIns:pbdl=*http://BPEL4Chor/pbd1*
xmlns:pbd2=“http://BPEL4Chor/pbd2‘
xmlns:pbd3=“http://BPEL4Chor/pbd3‘>

<partnerLink name="pbdlpbd2PLS"
partnerLinkType="pbd2:pbd12pbd2PLT"
partnerRole="pbd12pbd2Role"/>

<invoke name=*‘s*“ partnerLink="pbdlpbd2PLS*
portType=“pbd2:s2rPType**
operation="“sendOperation*
inputvariable="vsenq*
outputvVariable="Veepy“>

<flow>
<scope name=*‘Scope_PBD1*“>

<invoke name=*‘s*“ inputVariable="vseq*
outputVariable="veepy“>
</invoke>

</invoke>
</scope>

</scope> .
<scope name=‘‘Scope_PBD2*“>

<scope name=*‘Scope_PBD2‘>
<partnerLink name="pbdlpbd2PLR"

partnerLinkType="pbd2:pbd12pbd2PLT"
myRole="pbd12pbd2Role"/>

<receive name=“r* partnerLink="“pbdlpbd2PLR*
portType="pbd2:s2rPType*
operation="sendOperation*
variable="Vgeceive*>

<receive name="r* variable="Vgeceive'>
</receive>
<reply name=*y* variable="vga‘>

</reply> .
P </receive>

</scope>
</flow> <reply _nramef::y;dg?r;n;l;unEz“pbdlpbdzPLR“
</process> portType="pl :s2rPType’

operation="“sendOperation*
variable="“vg,*>

</reply>
</scope>

</flow>
</process>

Abbildung 3.71 Hinzufiigen der technischen Artefakte bei synchron intra-prozess kommunizierenden Aktivitaten

3.4.4 Technische Vervollstindigung der initialen Startaktivititen sowie der
inter-prozess kommunizierenden

Da eine BPEL4Chor-Choreographie und die in der Grounding-Datei definierten Message-Links nur
die choreographie-intern kommunizierenden Aktivitatenpaare mit technischen Artefakten assoziiert,
mussen in einem letzten Vervollstdndigungsschritt die initialen <receive>- oder <pick>-Aktivititen
sowie die mdéglichen antwortsendenden des neuen konsolidierten Prozesses manuell vervollstandigt
werden (Hinzufligen der PartnerLinks sowie der partnerLink-, operation-, portType-Attri-

Seite 98

bute). Dies gilt auch flr die urspriinglich choreographie-extern kommunizierenden Aktivitaten, die
nun im konsolidierten Prozess als inter-prozess kommunizierende vorliegen.

Seite 99

4 Implementierung

In folgendem Kapitel werden wir die zur Umsetzung des Eclipse-Plugins zur Konsolidierung verwen-
deten Technologien sowie die Architektur der Implementierung kurz vorstellen.

4.1 Eingesetzte Technologien

Die eingesetzten Frameworks und Technologien wurden mit dem zum Zeitpunkt der Fertigstellung der
vorliegenden Diplomarbeit neusten verfugbaren JDK 1.7.0.13 (Java Development Kit) sowohl in der
32-Bit als auch in der 64-Bit Variante implementiert und getestet.

4.1.1 StAX

Streaming API for XML (StAX) ist ein Application Programming Interface (API), um XML-Dateien
aus Java zu verarbeiten. Es bietet einen Mittelweg zwischen dem Einlesen einer XML-Datei in eine
Baumstruktur, wie beispielsweise das DOM (Document Object Model), und dem ereignisbasierten in
dem ein Ereignis beim Auffinden eines XML-Elements in der lesenden Java-Anwendung ausgel6st
wird, wie es beispielsweise SAX (Simple API for XML) unterstiitzt. StAX bietet stattdessen eine Cur-
sor-basierte Variante, in der sich die Anwendung bei Bedarf Uber einen beweglichen Zeiger die ent-
sprechenden Daten vom unterliegenden Parser in Form von String-Objekten holt ohne das gesamte
XML-Dokument einlesen zu miissen. Zuséatzlich bietet es eine Iteratorvariante in der die gelesenen
Daten in Form von Objekten, die von der Klasse XMLEvent abgeleitet sind, der Anwendung zur Ver-
fligung gestellt werden. Das von Cui in [CUI12] implementierte BPEL4Chor-Model wurde mit Hilfe
von StAX um das Einlesen der Topology- sowie Grounding-Datei in das von ihm entwickelte BPEL4-
Chor-Modell-Format erweitert.

4.1.2 Eclipse IDE

Die Eclipse IDE [ECL12] ist eine integrierte Entwicklungsumgebung, die mit dem Schwerpunkt der
Unterstutzung zur Java-Entwicklung konzipiert wurde und mittlerweile durch ihre Erweiterbarkeit fiir
viele weitere verschiedene Entwicklungsaufgaben eingesetzt wird. Fur Eclipse steht eine Vielzahl an
guelloffenen als auch kommerziellen Erweiterungen (Plug-Ins) zur Verfugung. Das in der vorliegen-
den Arbeit entwickelte Konsolidierungsplugin wurde mit und fiir die Eclipse IDE Java EE Version 4.2
Service Release 1 entwickelt und getestet.

4.1.3 Eclipse Modeling Framework (EMF)

Das Eclipse Modeling Framework [EEMF12] ist ein Framework zur Generierung von Java-Code aus
strukturierten Datenmodellen. Der generierte Code kann Instanzen eines Modells erzeugen, verandern,
einlesen, validieren sowie serialisieren. Das EMF wird zum Einlesen, Transformieren sowie anschlie-
Rendem Serialisieren der PBDs einer BPEL4Chor-Choreographie in einen ausfiihrbaren BPEL-Prozess
verwendet. Hierzu wird das EMF-Modell fir BPEL-Artefakte [EBPELM] verwendet um eine
moglichst einfache Navigierbarkeit innerhalb einer PBD sowie den entsprechenden Teilen im neuen
konsolidierten Prozess wahrend der Transformation zu gewahrleisten.

Seite

100

4.2 Vorgehen und Architektur

Untersuchung der Mes- Technische Vervollstdn-
Einlesen der Daten aus Anlegen eines leeren sage Links aus ML und digung dfer. |ntra—prozes§
L X BPEL-Prozesses Prozess- Anwendung der Sync- kommunizierenden Akti-
Choreographie.zip-Datei . o .
Merged und Kopieren bzw. AsyncMatcher so- vitditen (automatisch)
(PBDs, Topology, Groun- N . . .
- der PBDs in die neuen wie der entsprechenden sowie der inter-prozess
e <scope>-Aktivitaten Sync- bzw. AsyncPat- kommunizierenden (ma-
terns nuell)

Abbildung 4.1 Schritte beim Vorgehen der Konsolidierung einer BPEL4Chor-Choreographie

Abbildung 4.1 fasst die Schritte beim Vorgehen der Konsolidierung einer BPEL4Chor-Choreographie
nochmals zusammen: Zundchst wird die Choreographie-Zip-Datei eingelesen und in den entsprechen-
den Datenstrukturen gespeichert. Diese enthélt die beteiligten PBDs, die Topology- sowie die Groun-
ding-Datei. Anschliefend wird ein neuer BPEL-Prozess ProzessMerged angelegt und die PBDs
werden mit allen Daten in <scope>-Aktivitaten in diesen Prozess kopiert. Nach diesem Schritt folgt
die eigentliche Konsolidierung, in dem die Message Links aus ML nach ihrem Kommunikationsmuster
untersucht werden und der entsprechende Async- bzw. SyncMatcher mit dem passenden Async- bzw.
SyncPattern angewendet wird. Gibt es fur einen Message Link ml kein passendes Konsolidierungs-
muster, so wird ml in die Liste NMML (Non-Mergeable-Message-Links) tbertragen. Als letzter Schritt
folgt die automatische technische Vervollstandigung der intra-prozess kommunizierenden Aktivitaten
im ProzessMerged, die durch die Message Links aus NMML identifiziert werden. Hierzu werden die
technischen Konfigurationen der beteiligten Aktivitaten Gber die Message Links der Grounding-Datei
mit den entsprechenden Informationen aus den jeweiligen WSDL-Dateien assoziiert. Die technischen
Konfigurationen der inter-prozess kommunizierenden Aktivitaten im ProzessMerged miissen manuell
erfolgen, da hierzu keine Assoziationen in der Grounding-Datei vorliegen (Diese enthalt nur Angaben
zu den choreographie-intern kommunizierenden Aktivitdten, die Uber die Message Links verbunden
sind). Zu diesen Aktivitdten gehoren die initialen Startaktivitaten, die den Lebenszyklus des neuen
Prozesses ProzessMerged anstolRen, mogliche antwortsendende Aktivitaten, die dem Aufrufer entspre-
chende Nachrichten senden sowie die ehemals choreographie-extern kommunizierenden Aktivitaten,
die nun inter-prozess kommunizierende sind.

—O stellt bereit

org.eclipse.emf 3 | }—@-{ org.eclipse.bpel.model | }@{ org.eclipse.wst.wsdl 2] ‘

—C benétigt ‘ de.uni_stuttgart.iaas.bpel.model.utilities =_| ‘
StAX 2|
org.bpeldchor.mergeChoroegraphy | 6

use
ChoreographyMerger E >{ Ch kag E O—{ org.bpel4chor.model$j ‘

use

CommunicationMatcher 2_|

Choreographie
verschmelzen

Choreographie.zip

use use

AsyncPattern1.1% | <= AsyncMatcher1.1 & | |- SyncPattern1.15 | [<---—- SyncMatcher1.13] |

use H use i

AsyncPattern1.23 | K AsyncMatcherl.2 8 | (- ' SyncPattern1.2 5 | [<---- SyncMatcher1.23 | {-/|

use | use |

AsyncPattern1.32 | % —————— { AsyncMatcher1.3 2| } ——————— ‘ SyncPattern1.3 3 | % —————— { SyncMatcher1.32 | }
use use

‘ AsyncPattern3.0%_| [<----- { AsyncMatcher3.0 £ _| } ———————— ‘ SyncPattern3.05 | % ————— { SyncMatcher3.02 | }——f

Abbildung 4.2 Die mergeChoreography-Komponente und ihre Abhé&ngigkeiten

Seite

101

Abbildung 4.2 zeigt die fur die Konsolidierung implementierte Komponente und ihre Abhangigkeiten
zu anderen Komponenten: Die Komponente mergeChoreography bietet die Schnittstelle mergeCho-
reography an, die zum Konsolidieren einer BPEL4Chor-Choreographie dient. Die fiir die Konsoli-
dierung benétigten Daten stellt eine Choreographie-Zip-Datei dar, die die entsprechenden PBDs, die
Topology- sowie die Grounding-Datei enthélt. Die Daten werden aus der Zip-Datei eingelesen und in
der Komponente ChoreographyPackage gespeichert. Diese verwendet das von Cui in [CUI12] entwi-
ckelte und implementierte BPEL4Chor-Modell (org.bpel4chor.model), das wiederum zum Einlesen
und Ausgeben des Modells StAX als API verwendet. Zusétzlich verwendet das ChoreographyPackage
die in de.uni_stuttgart.iaas.bpel.model.utilities implementierten Hilfsmethoden zum Traversieren und
Analysieren von BPEL-, PBD- sowie der zugehtrigen WSDL-Dateien. Diese Hilfsmethoden basieren
wiederum auf dem Eclipse BPEL-Modell (org.eclipse.bpel.model), das seinerseits auf dem EMF sowie
dem Eclipse Web Standard WSDL Tools basiert (org.eclipse.wst.wsdl). Nachdem die Daten aus der
Zip-Datei eingelesen wurden, wird die ChoreographyMerger-Komponente zum Anlegen des neuen
BPEL-Prozesses ProzessMerged im ChoroegraphyPackage sowie dem anschlieBenden Analysieren
der Message Links aus ML verwendet. Diese benutzt hierfir die Komponente CommunicationMat-
cher, die je nach Kommunikationsmuster des betrachteten Message Links aus ML die Liste der Async-
Matcher-Schnittstelle-implementierenden Klassen im asnychronen Fall oder die Liste der SyncMat-
cher-Schnittstelle-implementierenden Klassen im synchronen Fall traversiert und das passendste Mer-
ge-Pattern fur diesen Message Link zuriickliefert. Jede SyncMatcher- bzw. AsyncMatcher-Imple-
mentierungsklasse bietet hierfir ein eigenes Sync- bzw. AsyncPattern zur Konsolidierung an. Wird das
Async- bzw. SyncPattern3.0 als Merge-Pattern gefunden, so wird der Message Link im asynchronen
bzw. werden die Message Links im synchronen Fall in die Liste NMML tbertragen.

MLEnvironment ChoreographyPackage
-prelS : Set<Activity> 1 1 -topology : Topology
-presS : Activity ChoreographyMerger -grounding : Grounding
-s : Activity -wsdls : List<WSDL>
-succlS : Set<Activity> 1 -pbds : List<Process>
-succS : Activity -mergedProcess : Process
-prelR : Set<Activity> -nmml : List<MLink>
-preR : Activity 1
-r : Activity o
-succlR : Set<Activity> CommunicationMatcher
-succR : Activity

1% -asyncMatcher : List<AsyncMatcher>
- -syncMatcher : List<SyncMatcher>
1 1
1 1..% 1..%
MergePattern <<interface>> <<interface>>
{abstract} 1 AsyncMatcher SyncMatcher
1
merge() match(ml : MLink) : MergePattern match(mliSend : MLink, mIReply : MLink) : MergePattern
<<interface>> 1+ i,
Evaluator . Condition
1" evaluat
evaluateConditions(conds : List<Condition>) : List<boolean> evaluate()

Abbildung 4.3a ChoreographyMerger-Klassendiagramm und die von dieser genutzten Klassen aus dem Paket
org.bpel4chor.mergeChoreography

Seite

102

<<interface>>
Evaluator

<<interface>>
SyncMatcher

<<interface>> 1 MergePattern 1
AsyncMatcher {abstract}

L] AsyncMatcher1.1

AsyncPattern1.1

-1 AsyncMatcher1.2

AsyncPattern1.2

-1 AsyncMatcher1.3

-1 AsyncMatcher3.0

AsyncPattern1.3

SyncPattern1.1

SyncMatcher1.1

SyncPattern1.2

SyncMatcherl.2 -

SyncPattern1.3

AsyncPattern1.3

SyncMatcherl.3 -

SyncPattern3.0

SyncMatcher3.0 -

Abbildung 4.3b Async- bzw. SyncMatcher sowie die Beziehungen zu den Async- bzw. SyncPatterns und den entspre-
chenden Schnittstellen (Interfaces) und der abstrakten Klassse MergePattern

Abbildung 4.3a zeigt das Klassendiagramm des ChoreographyMerger sowie das Zusammenspiel mit
den anderen Klassen in der Komponente org.bpel4chor.mergeChoreography. Der ChoreographyMer-
ger enthalt eine Instanz des ChoreographyPackage, welches die Daten der eingelesen BPEL4Chor-
Choreographie sowie den neuen mergedProzess beinhaltet. Diese Daten werden vom Communication-
Matcher verwendet, der Uber die in der Topology enthaltenen Message Links iteriert und je nach asyn-
chronem oder synchronem Kommunikationsmuster die Liste der asyncMatcher bzw. syncMatcher
nach einem passendem Erkennungsmuster untersucht. Die Liste asyncMatcher enthélt Klassen, die das
AsyncMatcher-Interface implementieren, welches zusétzlich das Evaluator-Interface erweitert. Das
Evaluator-Interface hat folgende Funktion: Es kann vorkommen, dass ein Kommunikationsmuster, das
in einem Message Link und den involvierten PBDs sowie Aktivitaten verwendet wird durch die
Erkennungsmuster mehrerer Matcher erkannt wird. So ist zum Beispiel das AsyncPatternl.2 ein Spe-
zialfall des AsyncPatternl.1, daher kénnten hier beide Matcher angewendet werden. Jedoch ist das
AsyncPattern1.2 durch die zusétzliche Bedingung definiert, dass fur die Menge re=¢ gilt, es somit
keine Nachfolgeaktivitdten auf die empfangende Aktivitidt gibt. Daher enthélt jeder Matcher die
zusétzliche Methode evaluateConditions, die eine Liste aus booleschen Bedingungen als Eingabe er-
halt und eine Liste der Ubereinstimmungen als boolesche Ergebniswerte zuriickliefert. Je mehr Bedin-
gungen eine derartige Eingabeliste enthdlt umso langer ist die Liste der Ergebniswerte der Analyse.
Sind alle Werte der Ergebnisliste true und ist die Liste langer als die entsprechende Liste aller mogli-
chen weiteren Erkennungsmusters, so ist der Matcher der passendste fur diesen Message Link. Der ge-
fundene Matcher liefert anschlieRend ein Async- bzw. SyncPattern zuriick, das die merge-Methode der
abstrakten Klasse MergePattern implementiert. Die Klasse MergePattern enthélt eine, im asynchronen
Fall, oder mehrere, im synchronen Fall, Instanzen der Klasse MLEnvironment, die Mengen aller umge-
benden Aktivitaten der kommunizierenden eines Message Links beinhaltet. Hierzu gehdren die Men-
gen: prelS—Die Menge aller VVorgéngeraktivitaten der sendenden Aktivitat s, die mit dieser Uber die
eingehenden Links verbunden sind, succlS—Die Menge aller Nachfolgeraktivititen der sendenden
Aktivitat s, die mit dieser Uber die ausgehenden Links verbunden sind, preS—Die direkte Vorgénger-
aktivitat von s, die nicht Gber einen eingehenden Link mit s verbunden ist, deren Ausfiihrung jedoch
vor der Aktivierung von s beendet sein muss, succS—Die direkte Nachfolgeraktivitit von s, die nicht
uber einen ausgehenden Link mit s verbunden ist, die jedoch erst nach der Ausfuhrung von s aktiviert

Seite

103

wird sowie prelR, succlR, preR und succR mit den entsprechenden Eigenschaften fir die empfangende
Aktivitat r. Diese Mengen und Aktivitdten werden flr die anschlieBende strukturelle Transformation
mit den MergePatterns bendtigt.
Abbildung 4.3b zeigt die implementierten Async- bzw. SyncMatcher sowie die zugehdrigen Async-
bzw. SyncPattern und ihre Ableitungs- und Implementierungsbeziehungen zu den Interfaces sowie der
abstrakten Klasse MergePattern.

:ChoreographyMerger :CommunicationMatcher :ChoreographyPackage
. merge()

getMessagelinks()

Y

—

]
getTopology().getMessagelLinks()

List<MLink>

»
Result = isMLinkAsync(ml)

Schleife [forEach asyncMatcher in List<asyncMatcher>y
[async] [

Schleife [forEach ml in List<MLink>]

match(ml)

alt

asyncMatcher.match(ml)
|

<
-«

|
asyncMatcher.evaluateConditions()

- ‘
<

alt) [asyncMatcher instanceof AsyncMatcher3.0 && true]

addMLink2NMML(ml)

AsyncPattern
[AsyncPattern.merge()

Schleife [forEach syncMatcher in List<syncMatcher>]/
[

[sync]

|
syncMatcher.match(mlSend, mIReply)
|

-t
%

|
syncMatcher.evaluateConditions()

< |

|
alt /] [SyncMatcher instanceof SyncMatcher3.0 && true]

addMLinks2NMML(mISend, mIReply)

SyncPattern

[SyncPattern.merge()

Abbildung 4.4 Sequenzdiagramm fur das Auffinden der MergePatterns fiir die Message Links aus ML

Abbildung 4.4 zeigt das Sequenzdiagramm der Suche uber die verfligharen Erkennungsmuster in den
Async- bzw. SyncMatchern fur die Message Links aus ML: Je nach Kommunikationsmuster eines je-
den Message Links ml, asynchron oder synchron, wird die entsprechende Liste der Matcher durchlau-
fen und die Erkennungsmuster Gberprift. Wird ein Erkennungsmuster der ,,Non-Mergeable-Pattern-
Async/Sync* entdeckt (Async- bzw. SyncPattern3.0) so wird der entsprechende Message Link in die
Liste NMML eingefugt. Andernfalls wird das passendste MergePattern zuriickgeliefert und dieses an-
schlielend Gber den Aufruf der merge-Methode angewendet.

Seite

104

4.3 Erweiterbarkeit der Patterns

Eines der Ziele der vorliegenden Diplomarbeit war den Katalog der Async- sowie SyncPattern erwei-
terbar zu entwerfen und zu implementieren. Durch die Kombination aus den Matcher-Schnittstellen
implementierenden Erkennungsmusterklassen sowie den zugehdrigen Ableitungen der MergePattern-
Klasse muss hierfiir fiir neue Muster jeweils eine entsprechende Matcher-Klasse sowie das zugehdrige
MergePattern je nach Kommunikationsmuster (asynchron oder synchron) implementiert werden. Die
vorliegende Arbeit und die zugehdrige Implementierung sind derart konfiguriert, dass neue Matcher-
Klassen, die im Paket org.bpel4chor.mergechoreography.matcher.communication.async/sync gespei-
chert werden, automatisch vom CommunicationMatcher geladen werden. Werden neue Patterns fiir
bestimmte Konfigurationen und Konstellationen, die durch die beiden Non-Mergeable-Pattern-Async/
Sync* (Async- bzw. SyncPattern3.0) abgefangen werden implementiert, so mussen zusétzlich die Be-
dingungen dieser aus der Liste der Conditions der entsprechenden Matcher entfernt werden, da der
Async- bzw. SyncMatcher3.0 in der jeweiligen Liste des CommunicationMatcher als erstes Element
eingefligt wird, um so beim Auffinden eines entsprechenden Musters die nicht konsolidierbaren Mes-
sage Links direkt in NMML einzufiigen.

Seite

105

5 Zusammenfassung und Ausblick

Das Ziel der vorliegenden Diplomarbeit war die Implementierung und Erweiterung der in [WKL11]
vorgestellten Konzepte zur Konsolidierung einer BPEL4Chor-Choreographie in Form eines Eclipse-
Plugins. Ausgangsbasis und Eingabe hierfir ist eine BPEL4Chor-Choreographie [DKLWO7] mit den
entsprechenden Fragmenten: Die PBDs, die den Kontroll- und Datenfluss modellieren, die Topology-
Datei, die Uber die ParticipantTypes sowie die Participants die Verbindung zu den PBDs her-
stellt und die Kommunikation der beteiligten Teilnehmer in Form von Message Links darstellt sowie
die Grounding-Datei, die technische Artefakte tber die jeweiligen Message Links und die involvierten
Aktivitaten mit den zusétzlichen Informationen aus den WSDL-Dateien assoziiert. Das Ergebnis der
Konsolidierung ist ein ausfiihrbarer BPEL-Prozess, der die gleiche Kontrollflusssemantik der ursprin-
glichen Choreographie beibehalt, jedoch die choroegraphie-intern kommunizierenden Aktivitaten
durch Kombinationen aus entsprechenden Kopier- und Synchronisationaktivitaten ersetzt, um so eine
bessere Laufzeitperformance im Hinblick auf die Anzahl der verwendeten Prozessinstanzen sowie
einen reduzierten Kommunikationsaufwand durch das Vermeiden des SOAP-Messaging zu gewahrlei-
sten.

In Kapitel 3 wurde hierfiir das Vorgehen beim Konsolidieren genauer erkléart: Zunéachst wird die
BPEL4Chor-Choreographie und die zugehorigen WSDL-Dateien mit den technischen Artefakten ein-
gelesen und in den entsprechenden Datenstrukturen gespeichert. Anschlieend wird ein neuer leerer
BPEL-Prozess angelegt und die PBDs inklusive aller enthaltener Datenstrukturen in neue <scope>-
Aktivitaten in diesen Prozess kopiert (Abschnitt 3.2.1 Anlegen des konsolidierten BPEL-Prozesses).
Im darauffolgenden Abschnitt wurde die Idee zur Generierung des Kontrollflusses im neuen konsoli-
dierten Prozess aus den urspriinglichen PBDs und ihrer Kommunikationsbeziehungen erklért (Ab-
schnitt 3.2.2 Generierung des Kontrollflusses). Hierzu wurden fur die asynchrone sowie die synchrone
Kommunikation jeweils zwei Varianten vorgestellt und die jeweiligen Vor- und Nachteile aufgezeigt
und nachgewiesen, dass die Kontrollflussrelationen nach der Konsolidierung erhalten bleiben. Zu-
sétzlich wurden die Anpassungen aufgezeigt, die an den <transitionCondition>s sowie den
<joinCondition>s der beteiligten Aktivitdten durchgefuhrt werden missen.

In Abschnitt 3.2.3 Generierung des Datenflusses wurde die Idee der Ersetzung der choreographie-in-
tern kommunizierenden Aktivitaten durch entsprechende Kombinationen aus <assign>- und syn-
chronisierenden <empty>-Aktivitdten zur Emulierung des urspriinglichen Nachrichtenflusses vorge-
stellt sowie die Auswirkungen der Konsolidierung auf die involvierten Korrelationsmengen (Abschnitt
3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets).

Im Abschnitt 3.3 Taxonomie der Konsolidierungsmuster (,,Merge-Patterns*) wurden die Erkennungs-
und Konsolidierungmuster fiir asynchron sowie synchron kommunizierende Aktivitatenpaare vorge-
stellt. Hierzu wurden zunéchst die asynchronen Merge-Patterns ausgehend von den Allgemeinen hin
zu den Speziellen présentiert (Abschnitt 3.3.1 Asynchrone Merge-Patterns AsyncPatternl.1-AsyncPat-
tern3.0) und anschlielend entsprechend die synchronen Merge-Patterns (Abschnitt 3.3.2 Synchrone
Merge-Patterns SyncPatternl.1-SyncPattern3.0).

In Abschnitt 3.4 Vervollstandigung der technischen Artefakte im neuen konsolidierten Prozess und
Ubernahme der WSDLs wurden die Schritte vorgestellt, die zum Konfigurieren des neuen ausfiihr-
baren Prozesses notwendig sind.

Im Kapitel 4 Implementierung wurden die in der Umsetzung verwendeten Technologien und Frame-
works kurz beschrieben sowie ein Uberblick iiber die Architektur des Eclipse-Plugins gegeben. Zu-
satzlich wurde der Aspekt der Erweiterbarkeit in Bezug auf die hier implementierte Lésung erlautert
und Einstiegspunkte in der Architektur fir mogliche Anpassungen der bereits vorhandenen sowie neu-
er Merge-Patterns aufgezeigt.

Seite

106

5.1 Ausblick

Die in dieser Arbeit nicht behandelten Konsolidierungmuster sind Ziel zukinftiger Arbeiten. Hierzu
gehoren die asynchronen Kommunikationsmuster zwischen choreographie-intern kommunizierenden
Partnern, die durch das AsyncPattern3.0 abgefangen werden und nach der Konsolidierung als intra-
prozess kommunizierende Aktivitatenpaare vorliegen:

<onEvent>-Zweige einer <scope>-Aktivitit oder des Prozessscope: Wie in Abschnitt 3.3.1.12.1 be-
schrieben, kann auch die wsu: id eines <onEvent>-Zweigs als receiveActivity in einem Mes-
sage Link ml aus ML auftauchen.

Asynchron kommunizierende <invoke>-Aktivitit innerhalb von Handlern (EH, CH, FH, TH):
Abschnitt 3.3.1.12.2 zeigt die nicht implementierten Félle in denen sich die asynchron kommunizie-
rende <invoke>-Aktivitat s innerhalb von CHs oder EHs befindet. Auch das Auftreten einer solchen
Konstellation von s als sendActivity in ml wird in dieser Arbeit nicht konsolidiert. Eine Ausnahme
bilden hier die FHs sowie THSs, da diese ausgehende Links enthalten durfen, jedoch nur solche, die
nicht in den zugehdrigen <scope> zeigen.

Empfangende <receive>/<pick>-Aktivitat innerhalb von Handlern (EH, CH, FH, TH): Abschnitt
3.3.1.12.3 zeigt die Falle in denen sich die receiveActivity r, die entweder eine <receive>-Akti-
vitat oder ein <onMessage>-Zweig einer <pick>-Aktivitét sein kann, innerhalb eines Handlers befin-
det. Diese Falle werden aus den gleichen Grinden wie im vorherigen Abschnitt nicht konsolidiert mit
dem Zusatz, dass auch FHs und THs nicht behandelt werden, da diese keine eingehenden Links
enthalten ddrfen.

Sendende und/oder empfangende Aktivitaten innerhalb von Schleifen: Befinden sich die receiveAc-
tivity und/oder die sendActivity innerhalb einer Schleife, so werden diese Aktivitaten ebenfalls
als intra-prozess kommunizierende in den neuen konsolidierten Prozess Gibernommen (vgl. Abschnitt
3.3.1.12.4)

Fur die synchron kommunizierenden Partner einer Choreographie gelten dieselben Voraussetzungen
fiir die Konsolidierung der entsprechenden Aktivitaten bzw. die Ubernahme dieser als intra-prozess
kommunizierende in den neuen konsolidierten Prozess. Die durch das SyncPattern3.0 abgefangenen
Félle beinhalten die in Abschnitt 3.3.2.10 erwéhnten Konstellationen.

Seite

107

Literaturverzeichnis

[AL83]

[AODE11]

[BDHO5]

[BFGO5]

[BNO9]

[BPLG12]

[CUIL2]

[DKLWO7]

[DKLWO09]

[DKPO7]

[DP02]

[EBPELM]

[EBPL12]

[ECL12]

[EEMF12]

J.F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM Volume 26 Issue 11. pp. 832-843, Nov. 1983.

Apache ODE. BPEL 1.1 und WS-BPEL 2.0 konforme OpenSource BPEL-Engine.
Online: http://ode.apache.org/ .

A. Barros, M. Dumas, A. H. M. T. Hofstede. Service Interaction Patterns. In W.M.P.
van der Aalst, editor, Proceedings of the 3rd International Conference on Business Pro-
cess Management (BPM 2005), volume 3649 of Lecture Notes in Computer Science,
pp. 302-318. Springer-Verlag.

M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. In
Proceedings of the twentyfourth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems - PODS ’05, pages 25-36. ACM, 2005.
d0i:10.1145/1065167.1065172.

P.A. Bernstein, E. Newcomer. Principles of Transaction Processing for the Systems
Professional. 2nd ed. Morgan Kaufmann, 20009.

bpel-g. BPEL 1.1 und WS-BPEL 2.0 konforme OpenSource BPEL-Engine. Online:
http://code.google.com/p/bpel-g/ .

D. Cui. Splitting BPEL Processes. Diplomarbeit, Universitat Stuttgart, Institut fir Ar-
chitektur ~ von Anwendungssystemen, Deutschland. Online: http://elib.uni-
stuttgart.de/opus/volltexte/2012/7605

G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for Model-
ing Choreographies. pp. 296-303, 2007. doi:10.1109/ICWS.2007.59.

G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: From specification
to execution. volume 68, pp. 946-972. Elsevier Science Publishers, 2009.
doi:10.1016/j.datak.2009.04.003.

G. Decker, O. Kopp, F. Puhlmann. Service Referrals in BPEL-based Choreographies.
Proceedings of the 2nd European Young Researchers Workshop on Service Oriented
Computing (YR-SOC 2007). pp. 25-30, 2007.

D. Davis and M. P. Parashar. Latency performance of SOAP Implementations.
CCGRID '02 Proceedings of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid. pp. 407, IEEE, 2002.

Eclipse BPEL Model. Online: http://www.eclipse.org/bpel/developers/model.php .

Eclipse BPEL Designer. Eclipse BPEL Designer Plug-In, Version 1.0.2. 2012. Online:
http://www.eclipse.org/bpel/ .

Eclipse IDE. Eclipse Entwicklungsumgebung, Version 4.2 (Juno) sowie Version 3.7
(Indigo). Online: http://www.eclipse.org .

Eclipse EMF. Eclipse Modeling Framework. Online:

Seite

108

http://ode.apache.org/
http://code.google.com/p/bpel-g/
http://elib.uni-stuttgart.de/opus/volltexte/2012/7605
http://elib.uni-stuttgart.de/opus/volltexte/2012/7605
http://www.eclipse.org/bpel/developers/model.php
http://www.eclipse.org/bpel/
http://www.eclipse.org/

[KGF*08]

[KHAO8]

[KHK*11]

[KKL*05]

[KKLOS]

[KLO6]

[KNS92]

[KOP11a]
[KOP11b]

[KRLO9]

[LEN11]

[LEYO01]

[LEY10a]

[LEY10b]

http://www.eclipse.org/modeling/emf/ .

J. Kiister, C. Gerth, A. Forster, G. Engels. A tool for process merging in business-driven
development. In Proceedings of the Forum at the CAISE, 2008. Online: http://ceur-
ws.org/VVol-344/paper23.pdf .

R. Khalaf. Supporting business process fragmentation while maintaining operational
semantics: a BPEL perspective. Doctoral thesis, University of Suttgart, Factulty of
Computer Science, Electrical Engineering, and Information Technology, Germany,
2008.

O. Kopp, S. Henke, D. Karastoyanova, R. Khalaf, F. Leymann, M. Sonntag, T. Stein-
metz, T. Unger, B. Wetzstein. An Event Model for WS-BPEL 2.0. Report 2011, Univer-
sitdt Stuttgart, Fakultat Informatik, Elektrotechnik und Informationstechnik, Techni-
scher Bericht Informatik.

M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen, P.
Schmidt, 1. Trickovic. WS-BPEL Extension for Sub-Processes — BPEL-SPE. A Joint
White Paper by IBM and SAP, September 2005. Online:
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf .

0. Kopp, R. Khalaf, F. Leymann. Deriving Explicit Data Links in WS-BPEL Processes.
In IEEE International Conference on Services Computing. IEEE, 2008.

R. Khalaf, F. Leymann. Role-based Decomposition of Business Processes using BPEL.
In International Conference on Web Services (ICWS 2006), pp. 770-780. IEEE Com-
puter Society, 2006. doi:10.1109/ICWS.2006.56.

G. Keller, M. Nuttgens, A.-W. Scheer. Semantische ProzeBmodellierung auf der
Grundlage Ereignisgesteuerter ProzelRketten (EPK).Verdffentlichungen des Instituts fiir
Wirtschaftsinformatik (IWi),Universitat des Saarlandes, Heft 89. Januar 1992.

0. Kopp. Grounding Syntax. Email, 2011.
0. Kopp. Topology Syntax. Email, 2011.

R. Khalaf, D. Roller, F. Leymann. Revisiting the Behavior of Fault and Compensation
Handlers in WS-BPEL. On the Move to Meaningful Internet Systems: OTM 2009. R.
Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 286-303.
Springer Berlin Heidelberg 2009. doi: 10.1007/978-3-642-05148-7_20.

J. Lenhard. A Pattern-based Analysis of WS-BPEL and Windows Workflow. Bamberger
Beitrége zur Wirtschaftsinformatik und Angewandten Informatik Nr. 88, Bamberg Uni-
versity, March 2011. ISSN 0937-3349.

F. Leymann. Web Services Flow Language (WSFL 1.0). 22 Mai 2001. Online:
http://xml.coverpages.org/wsfl.html

F. Leymann. Workflow Management | (Morlesung). Universitat Stuttgart: 2010.

F. Leymann. Web Services | (Vorlesung). Universitét Stuttgart: 2010.

Seite

109

http://www.eclipse.org/modeling/emf/
http://ceur-ws.org/Vol-344/paper23.pdf
http://ceur-ws.org/Vol-344/paper23.pdf
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf
http://xml.coverpages.org/wsfl.html

[MS06]

[MT11]

[NCG04]

[0AS07]

[OASO7b]

[OESB12]

[OMG10]

[OMG11]

[PET62]

[SKYO06]

[THAO1]

[W3C01]

[W3CO05]

[W3CO07]

[W3C12]

[W3C99a]

J. Mendling, C. Simon. Business process design by view integration. J. Eder, S. Dustdar
et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 55-64, 2006. Springer-Verlag
Berlin Heidelberg. Online: http://mendling.com/publications/06-BPD.pdf .

P. Mell, T. Grance. The NIST Definition of Cloud Computing. National Institute of
Standards and Technology, vol. 53, no. 6, p. 50, September 2011. Online:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf .

A. Ng, S. Chen, and P. Greenfield. An Evaluation of Contemporary Commercial SOAP
Implementations. In AWSA, 2004.

OASIS. Web Service Business Process Execution Language Version 2.0, 11 April 2007.
Online: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf .

OASIS. Web Services Coordination (WS-Coordination) Version 1.1, 16 April 2007.
Online: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec.pdf .

OpenESB. OpenESB (vormals SUN OpenESB) OpenSource ESB, Version 2.2. ESB mit
BPEL-Engine (jedoch nicht vollstandig WS-BPEL 2.0 konform, da keine Links unter-
stitzt werden) sowie Netbeans 6.7.1 IDE mit BPEL-Designer. Online:
http://logicoy.com/ESB.php .

OMG. Unified Modeling Language (OMG UML), Superstructure, V2.3. Object Man-
agement Group, May 2010. Online: http://www.omg.org/spec/UML/2.3/

OMG. Business Process Model and Notation (BPMN) Version 2.0. Januar 2011. Onli-
ne: http://www.omg.org/spec/BPMN/2.0/PDF .

Petri, C.A. Kommunikation mit Automaten. Dissertation. Bonn: Institut fiir Instrumen-
telle Mathematik, Schriften des 1IM Nr. 2, 1962. Online: http://www.informatik.uni-
hamburg.de/TGI/mitarbeiter/profs/petri/doc/Petri-diss-de-d.pdf .

S. Sun, A. Kumar, J. Yen. Merging workflows: A new perspective on connecting busi-
ness processes. Decision Support Systems, vol. 42, no. 2, pp. 844-858, 2006. doi:
10.1016/j.dss.2005.07.001.

S. Thatte. XLANG: Web Services for Business Process Design. 6 Juni 2001. Online:
http://xml.coverpages.org/xlang.html

W3C. Web Services Description Language (WSDL) Version 1.1, 15. Mérz 2001. Onli-
ne: http://www.w3.org/TR/wsdl .

W3C. Web Services Choreography Description Language Version 1.0, 9. November
2005. Online: http://www.w3.org/TR/ws-cdI-10/ .

W3C. SOAP Version 1.2. 27. April 2007. Online: http://www.w3.org/TR/soap12-partl/

Wa3C. Extensible Markup Language (XML). Online: http://www.w3.0rg/XML/ .

W3C. XML Path Language (XPath) Version 1.0. 16. November 1999. Online:
http://www.w3.org/TR/xpath/ .

Seite

110

http://mendling.com/publications/06-BPD.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://logicoy.com/ESB.php
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/Petri-diss-de-d.pdf
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/Petri-diss-de-d.pdf
http://xml.coverpages.org/xlang.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/XML/
http://www.w3.org/TR/xpath/

[W3C99b]

[WADHO3]

[WCL*05]

[WDWO07]

[WKL11]

[WKL12]

W3C. XSL Transformations (XSLT) Version 1.0. 16 November 1999. Online:
http://www.w3.org/TR/xslt .

P. Wohed, W.M.P. van der Alst, M. Dumas, A. H. M. T. Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In Proceedings of the 2003
International Conference on Conceptual Modeling (ER). pp. 200-215, 2003. doi:
10.1007/b13244.

S,Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web Services Plat-
form Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, 2005. pp 3-126 S. — ISBN 0131488740

M. Weidlich, G. Decker, M. Weske. Efficient Analysis of BPEL 2.0 Processes Using z-
Calculus. apscc, pp.266-274, The 2nd IEEE Asia-Pacific Service Computing Confer-
ence (APSCC 2007), 2007. doi: 10.1109/APSCC.2007.36.

S. Wagner, O. Kopp, F. Leymann. Towards Choreography-based Process Distribution
In The Cloud. Proceedings of the 2011 IEEE International Conference on Cloud Com-
puting and Intelligence Systems. pp. 490-494, 2011. doi:10.1109/CCIS.2011.6045116.

S. Wagner, O. Kopp, F. Leymann. Towards Verification of Process Merge Patterns

with Allen’s Interval Algebra. Proceedings of the 4th Central-European Workshop on
Services and their Composition (ZEUS 2012). pp. 1-8, 2012.

Seite

111

http://www.w3.org/TR/xslt

Erklarung

Hiermit versichere ich, diese Arbeit selbststandig verfasst und nur die angegebenen Quellen benutzt zu
haben. Wortliche und sinngemaRe Ubernahmen aus anderen Quellen habe ich nach bestem Wissen
und Gewissen als solche kenntlich gemacht.

Stuttgart, den 15. Februar 2013

Seite

112

	Abbildungsverzeichnis
	Auflistungsverzeichnis
	Tabellenverzeichnis
	1 Einleitung
	1.1 Ziele der vorliegenden Diplomarbeit
	1.2 Kapitelübersicht und Aufbau
	1.3 Motivation
	1.4 Verwandte Arbeiten
	1.5 Aufgabenstellung

	2 Grundlagen und Technologien
	2.1 Web Services
	2.2 Web Services Business Process Execution Language 2.0
	2.2.1 Grundlegende Konzepte von WS-BPEL 2.0
	2.2.1.1 Abstrakte und ausführbare Prozesse
	2.2.1.2 Basis Aktivitäten von WS-BPEL 2.0
	2.2.1.2.1 <invoke>
	2.2.1.2.2 <receive> und <reply>
	2.2.1.2.3 <assign>
	2.2.1.2.4 <validate>
	2.2.1.2.5 <throw>
	2.2.1.2.6 <wait>
	2.2.1.2.7 <empty>
	2.2.1.2.8 <extensionActivity>
	2.2.1.2.9 <exit>
	2.2.1.2.10 <rethrow>
	2.2.1.2.11 <compensate>
	2.2.1.2.12 <compensateScope>

	2.2.1.3 Strukturierte Aktivitäten von WS-BPEL 2.0
	2.2.1.3.1 <sequence>
	2.2.1.3.2 <if>
	2.2.1.3.3 <while>
	2.2.1.3.4 <repeatUntil>
	2.2.1.3.5 <pick>
	2.2.1.3.6 <flow>
	2.2.1.3.7 <forEach>

	2.2.1.4 Scopes und Handler
	2.2.1.4.1 Compensation Handler (CH)
	2.2.1.4.2 Fault Handler (FH)
	2.2.1.4.3 Termination Handler (TH)
	2.2.1.4.4 Event Handler (EH)
	2.2.1.4.5 Isolierte Scopes

	2.3 BPEL4Chor
	2.3.1 Beispielchoreographie

	2.4 Allen-Kalkül

	3 Konsolidierung von BPEL4Chor-Choreographien
	3.1 Zustandsmodell für WS-BPEL 2.0 Prozesse sowie Aktivitäten
	3.1.1 Prozess Instanz Zustandsmodell
	3.1.2 Aktivitäts-Zustandsmodell
	3.1.3 <scope>-Aktivitäts-Zustandsmodell
	3.1.4 <invoke>-Aktivitäts-Zustandsmodell
	3.1.5 Schleifen-Zustandsmodell
	3.1.6 Link-Zustandsmodell

	3.2 Formales Vorgehen bei der choreographiebasierten Konsolidierung von BPEL-Prozessen
	3.2.1 Anlegen des konsolidierten BPEL-Prozesses
	3.2.1.1 Übernehmen der Fault Handler in konsolidierten Prozess

	3.2.2 Generierung des Kontrollflusses
	3.2.2.1 Anpassung der join- und transitionCondition während der Konsolidierung
	3.2.2.1.1 <sources> und ihre <transitionCondition>s
	3.2.2.1.2 <targets> und ihre <joinCondition>

	3.2.2.2 Peer-Scope-Dependency Problematik

	3.2.3 Generierung des Datenflusses
	3.2.3.1 Voraussetzungen für den korrekten Datenfluss
	3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets
	3.2.3.2.1 Mehrere initiale Startaktivitäten
	3.2.3.2.2 Anpassung der Korrelationsmengen in choreographie-extern kommunizieren-den Aktivitäten

	3.3 Taxonomie der Konsolidierungsmuster („Merge-Patterns“)
	3.3.1 Asynchrone Merge-Patterns
	3.3.1.1 AsyncPattern1.1
	3.3.1.1.1 <invoke> mit FHs und CHs
	3.3.1.1.2 <empty>-Optimierer

	3.3.1.2 AsyncPattern1.2
	3.3.1.3 AsyncPattern1.3
	3.3.1.4 AsyncPattern1.4
	3.3.1.5 AsyncPattern1.5
	3.3.1.6 AsyncPattern1.6
	3.3.1.7 AsyncPattern1.7 („Khalaf Split“)
	3.3.1.8 AsyncPattern1.8 (Asynchrones n-zu-1 Senden auf <receive>)
	3.3.1.9 AsyncPattern2.1
	3.3.1.10 AsyncPattern2.2 (Asynchrones n-zu-1 Senden auf <pick>)
	3.3.1.11 AsyncPattern2.3 (Asynchrones n-zu-1 Senden auf einen <onMessage>-Zweig)
	3.3.1.11.1 Asynchrones Senden auf initiale <pick>-Aktivität (•p=∅)
	3.3.1.11.2 Syntaktische Transformation eines <onMessage>-Zweigs in eine <receive>-Aktivität

	3.3.1.12 AsyncPattern3.0 („Non-Merge-Pattern-Async“)
	3.3.1.12.1 <onEvent>-Zweig (EH) als empfangende Aktivität
	3.3.1.12.2 Sendende <invoke>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)
	3.3.1.12.3 Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)
	3.3.1.12.4 Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen

	3.3.2 Synchrone Merge-Patterns
	3.3.2.1 SyncPattern1.1
	3.3.2.2 SyncPattern1.2
	3.3.2.3 SyncPattern1.3
	3.3.2.4 SyncPattern1.4 (Multiple <reply>-Aktivitäten)
	3.3.2.5 SyncPattern1.5 (Sendende <invoke>-Aktivität innerhalb von Handlern)
	3.3.2.6 SyncPattern2.1 (<onMessage>-Zweig als receiveActivity)
	3.3.2.7 SyncPattern2.2
	3.3.2.8 SyncPattern2.3
	3.3.2.9 SyncPattern2.4
	3.3.2.10 SyncPattern3.0 („Non-Merge-Pattern-Sync“)
	3.3.2.10.1 <onEvent>-Zweig (EH) als empfangende Aktivität
	3.3.2.10.2 Sendende <invoke>-Aktivität innerhalb von Handlern (EH, FH, TH, CH)
	3.3.2.10.3 Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)
	3.3.2.10.4 Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen

	3.4 Vervollständigung der technischen Artefakte im neuen konsolidierten Prozess und Übernahme der WSDLs
	3.4.1 Einfügen der WSDL-Dateien per import-Statements
	3.4.2 Anpassung der Korrelationsmengen bei mehreren initialen Startaktivitäten
	3.4.3 Erzeugen und Hinzufügen der PartnerLinks für die nicht konsolidierten Message Links aus NMML
	3.4.4 Technische Vervollständigung der initialen Startaktivitäten sowie der inter-prozess kommunizierenden

	4 Implementierung
	4.1 Eingesetzte Technologien
	4.1.1 StAX
	4.1.2 Eclipse IDE
	4.1.3 Eclipse Modeling Framework (EMF)

	4.2 Vorgehen und Architektur
	4.3 Erweiterbarkeit der Patterns

	5 Zusammenfassung und Ausblick
	5.1 Ausblick

	Literaturverzeichnis
	Erklärung

