
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3421

Choreographie-basierte
Konsolidierung von BPEL

Prozessmodellen

Peter Debicki

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Sebastian Wagner

begonnen am: 16. August 2012

beendet am: 15. Februar 2013

CR-Klassifikation: H.4.1, K.1

Kurzfassung

Wagner et al. zeigen ein Konzept zur Choreographie-basierten Konsolidierung von Prozessmodellen.
Die vorliegende Diplomarbeit konkretisiert das technische Vorgehen in Form eines erweiterbaren Pro-
totyps. Als Eingabe dient eine BPEL4Chor Choreographie sowie die zugehörigen technischen Frag-
mente in Form von WSDL-Dateien. Die Kommunikationsmuster der Choreographieteilnehmer werden
anhand eines Katalogs von Konsolidierungsmustern analsysiert und in einen neuen ausführbaren
BPEL-Prozess zusammengeführt. Hierbei werden der ursprüngliche Kontrollfluss der Aktivitäten der
Choreographie sowie die Datenflussabhängigkeiten im neuen erzeugten BPEL-Prozess weitestgehend
erhalten. Je nach verwendetem Kommunikationsmuster, synchron oder asynchron, werden verschie-
dene Konsolidierungsoperationen an den teilnehmenden Aktivitäten durchgeführt. Das Ergebnis ist ein
BPEL-Prozess der eine äquivalente Kontroll- sowie Datenflusssemantik, wie die ursprüngliche Chore-
ographie besitzt, jedoch bezüglich Laufzeit und Speicherverbrauch eine optimierte Leistung aufweist.

 Seite 3

Inhalt

Abbildungsverzeichnis .. 7

Auflistungsverzeichnis .. 9

Tabellenverzeichnis ... 10

1 Einleitung .. 11

1.1 Ziele der vorliegenden Diplomarbeit ... 12

1.2 Kapitelübersicht und Aufbau .. 13

1.3 Motivation .. 13

1.4 Verwandte Arbeiten ... 13

1.5 Aufgabenstellung ... 14

2 Grundlagen und Technologien ... 15

2.1 Web Services .. 15

2.2 Web Services Business Process Execution Language 2.0 .. 17

2.2.1 Grundlegende Konzepte von WS-BPEL 2.0 ... 17

2.2.1.1 Abstrakte und ausführbare Prozesse .. 18

2.2.1.2 Basis Aktivitäten von WS-BPEL 2.0 .. 20

2.2.1.3 Strukturierte Aktivitäten von WS-BPEL 2.0 ... 21

2.2.1.4 Scopes und Handler ... 23

2.3 BPEL4Chor .. 24

2.3.1 Beispielchoreographie ... 25

2.4 Allen-Kalkül ... 27

3 Konsolidierung von BPEL4Chor-Choreographien ... 28

3.1 Zustandsmodell für WS-BPEL 2.0 Prozesse sowie Aktivitäten... 28

3.1.1 Prozess Instanz Zustandsmodell .. 28

3.1.2 Aktivitäts-Zustandsmodell .. 29

3.1.3 <scope>-Aktivitäts-Zustandsmodell .. 31

3.1.4 <invoke>-Aktivitäts-Zustandsmodell .. 34

3.1.5 Schleifen-Zustandsmodell ... 35

3.1.6 Link-Zustandsmodell ... 35

3.2 Formales Vorgehen bei der choreographiebasierten Konsolidierung von BPEL-Prozessen ... 36

3.2.1 Anlegen des konsolidierten BPEL-Prozesses .. 37

3.2.1.1 Übernehmen der Fault Handler in konsolidierten Prozess 39

3.2.2 Generierung des Kontrollflusses ... 40

3.2.2.1 Anpassung der join- und transitionCondition während der
Konsolidierung ... 50

3.2.2.2 Peer-Scope-Dependency Problematik ... 52

3.2.3 Generierung des Datenflusses ... 53

3.2.3.1 Voraussetzungen für den korrekten Datenfluss ... 56

3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets 58

 Seite 5

3.3 Taxonomie der Konsolidierungsmuster („Merge-Patterns“) .. 61

3.3.1 Asynchrone Merge-Patterns .. 61

3.3.1.1 AsyncPattern1.1... 62

3.3.1.2 AsyncPattern1.2... 65

3.3.1.3 AsyncPattern1.3... 66

3.3.1.4 AsyncPattern1.4... 68

3.3.1.5 AsyncPattern1.5... 68

3.3.1.6 AsyncPattern1.6... 69

3.3.1.7 AsyncPattern1.7 („Khalaf Split“) .. 70

3.3.1.8 AsyncPattern1.8 (Asynchrones n-zu-1 Senden auf <receive>) 72

3.3.1.9 AsyncPattern2.1... 74

3.3.1.10 AsyncPattern2.2 (Asynchrones n-zu-1 Senden auf <pick>)............................... 77

3.3.1.11 AsyncPattern2.3 (Asynchrones n-zu-1 Senden auf einen <onMessage>-Zweig)
 79

3.3.1.12 AsyncPattern3.0 („Non-Merge-Pattern-Async“) ... 81

3.3.2 Synchrone Merge-Patterns .. 85

3.3.2.1 SyncPattern1.1 ... 86

3.3.2.2 SyncPattern1.2 ... 87

3.3.2.3 SyncPattern1.3 ... 88

3.3.2.4 SyncPattern1.4 (Multiple <reply>-Aktivitäten) .. 89

3.3.2.5 SyncPattern1.5 (Sendende <invoke>-Aktivität innerhalb von Handlern) 91

3.3.2.6 SyncPattern2.1 (<onMessage>-Zweig als receiveActivity) 92

3.3.2.7 SyncPattern2.2 ... 93

3.3.2.8 SyncPattern2.3 ... 93

3.3.2.9 SyncPattern2.4 ... 93

3.3.2.10 SyncPattern3.0 („Non-Merge-Pattern-Sync“) ... 94

3.4 Vervollständigung der technischen Artefakte im neuen konsolidierten Prozess und Übernahme
der WSDLs .. 95

3.4.1 Einfügen der WSDL-Dateien per import-Statements .. 96

3.4.2 Anpassung der Korrelationsmengen bei mehreren initialen Startaktivitäten 96

3.4.3 Erzeugen und Hinzufügen der PartnerLinks für die nicht konsolidierten Message
Links aus NMML .. 97

3.4.4 Technische Vervollständigung der initialen Startaktivitäten sowie der inter-prozess
kommunizierenden ... 98

4 Implementierung ... 100

4.1 Eingesetzte Technologien ... 100

4.1.1 StAX .. 100

4.1.2 Eclipse IDE .. 100

4.1.3 Eclipse Modeling Framework (EMF).. 100

4.2 Vorgehen und Architektur .. 101

4.3 Erweiterbarkeit der Patterns ... 105

 Seite 6

5 Zusammenfassung und Ausblick .. 106

5.1 Ausblick ... 107

Literaturverzeichnis ... 108

Erklärung ... 112

Abbildungsverzeichnis

 1.1 Herstellung eines Sportwagens………………………………………………………... 12
 1.2 Versuchsaufbau in der Community Cloud.…………………………………………… 12
 1.3 BPEL4Chor Konsolidierung.………………………………………………………….. 14
 2.1 Inhalt einer WSDL-Datei……………………………………………………………… 16
 2.2 Aufbau eine SOAP-Nachricht………………………………………………………… 16
 2.3 Artefakte eines BPEL Prozesses………………………………………………………. 18
 2.4 Verbindung WSDL → BPEL…………………………………………………………. 18
 2.5 Kommunikationsmuster zwischen Prozesspartnern…………………………………... 19
 2.6 Externe Sicht eines Prozesses…………………………………………………………. 19
 2.7 Grundgerüst Computerkauf mit ausführbarer Vervollständigung…………………….. 19
 2.8 Links und ihre Semantik………………………………………………………………. 22
 2.9 BPEL4Chor Artefakte………………………………………………………………… 24
2.10 Choreographiebeispiel………………………………………………………………… 25
2.11 Die 13 Relationen des Allen-Kalküls…………………………………………………. 27
2.12 Vergleich der Kontrollflussrelationen zweier Beispielfragmente…………………….. 27
 3.1 Prozess Instanz Zustandsmodell………………………………………………………. 28
 3.2 Aktivitäts-Zustandsmodell…………………………………………………………….. 29
 3.3 <scope>-Aktivitäts-Zustandsmodell…………………………………………………. 31

 3.4 <invoke>-Aktivitäts-Zustandsmodell………………………………………………... 34
 3.5 Schleifen-Zustandsmodell…………………………………………………………….. 35
 3.6 Link-Zustandsmodell………………………………………………………………….. 35
3.61 Anlegen des konsolidierten BPEL-Prozesses…………………………………………. 37

3.61b Verändertes Fehlerverhalten in konsolidiertem Prozess………………………………. 39
3.61c Ein <catchAll>-Fault Handler mit einer <compensate>-Aktivität……………….. 40

3.7 Asynchrone Konsolidierung Variante 1………………………………………………. 42
 3.9 AsyncMerge Variante 1……………………………………………………………….. 43

 3.10 AsyncMerge Variante 1 Beispiel 2……………………………………………………. 43
 3.11 Vervielfachung der Links……………………………………………………………... 43
 3.12 Veränderter Kontrollfluss bei Variante 1……………………………………………... 44
 3.13 Propagieren des suppressJoinFailure-Attribut-Wertes………………………….. 45
 3.14 Asynchrone Konsolidierung Variante 2………………………………………………. 45
 3.15 AsyncMerge Variante 2……………………………………………………………….. 46

 Seite 7

3.16 Synchrone Konsolidierung Variante 1………………………………………………… 47
 3.17 SyncMerge Variante 1………………………………………………………………… 48
3.18a Variante 1 mit nur einer <assign>-Aktivität Teil 1…………………………………. 49

 3.18b Variante 1 mit nur einer <assign>-Aktivität Teil 2…………………………………. 49
 3.19 SyncMerge Variante 2………………………………………………………………… 50
 3.20 Übernahme der <source>-Elemente aus ursprünglichen Aktivitäten……………….. 51
 3.21 Anpassungen der joinCondition beim Konsolidieren……………………………... 52
3.22 Kontrollflussabhängigkeit zweier Scopes……………………………………………... 53

 3.23 Zyklus in Partnerscopeabhängkeiten………………………………………………….. 53
 3.24 Austausch der kommunizierenden Aktivitäten durch <assign>-Aktivitäten………... 54
 3.25 Optimierungen des Datenflusses im konsolidierten Prozess………………………….. 55
3.25b Race Condition………………………………………………………………………... 56
3.25c Behebung des Lost Update Problems…………………………………………………. 56
 3.26 Syntax einer Korrelationseigenschaft…………………………………………………. 58
 3.27 Verwendung mehrerer initialer Startaktivitäten………………………………………. 59

 3.28a Beispielfragmente aus Korrelationsbeispielchoreographie…………………………… 59
3.29 Anpassung der initiate-Attribute………………………………………………….. 61
3.30 Anwendung des Merge-Algorithmus…………………………………………………. 62
3.31 AsyncPattern1.1……………………………………………………………………….. 62
3.32 <invoke> mit FH und CH……………………………………………………………. 63

3.32b <empty>-Optimierung………………………………………………………………... 63
3.32c Fallbeispiele einiger <empty>-Optimierungen……………………………………….. 65
3.33 AsyncPattern1.2……………………………………………………………………….. 66
3.34 AsyncPattern1.3……………………………………………………………………….. 66
3.35 AsyncPattern1.4……………………………………………………………………….. 68
3.36 AsyncPattern1.5……………………………………………………………………….. 68
3.37 AsyncPattern1.6……………………………………………………………………….. 69
3.38 Erweiterung von <assign>-Aktivität a durch zusätzlichen <copy>-Block…………. 70
3.39 AsyncPattern1.7: Aufspalten eines Kontrollflusslinks………………………………... 70
3.40 AsyncPattern1.7 angewendet auf Cui’s Kontrollflusslinkfragmentierung……………. 71
3.41 n-zu-1 Senden sowie das zugehörige Topology-Fragment…………………………… 72
3.42 Anwendung des AsyncPattern1.1 auf mehrere Message Links……………………….. 72
3.43 Asynchrones n-zu-1 Senden…………………………………………………………... 73
3.44 Ergebnis der Konsolidierung des n-zu-1 AsyncPattern1.8……………………………. 73
3.45 AsyncPattern2.1 mit einem <onMessage>-Zweig…………………………………… 74
3.46 AsyncPattern2.1 mit Schutzvariable vpick_activated………………………………………. 76

 3.47 AsyncPattern2.1 mit einer <pick>-Aktivität mit weiteren <onMessage>-Zweigen... 76
3.48 Syntaktische Umwandlung eines <onAlarm>-Zweigs in eine <wait>-Aktivität……. 76
3.49 AsyncPattern2.1 für <pick>-Aktivität mit <onAlarm>-Zweig…………………….... 77

 Seite 8

3.50 AsyncPattern2.2 mit zwei sendenden PBDs…………………………………………... 77

3.51 AsyncPattern2.2 mit einem weiteren choreographie-extern kommunizierenden <on-
Message>-Zweig……………………………………………………………………... 78

3.52 AsyncPattern2.3 Konsolidierung einer Choreographie mit zwei sendenden PBDs auf
den gleichen <onMessage>-Zweig msg1 in <pick> p………………………………. 79

3.53 Konsolidierung einer Choreographie mit •p=∅ sowie createInstance=“yes“
von p mit Async-Pattern2.1…………………………………………………………… 80

3.54 Syntaktische Umformung eines <onMessage>-Zweigs in eine äquivalente <recei-
ve>-Aktivität………………………………………………………………………….. 81

3.55 AsyncPattern3.0 Muster………………………………………………………………. 82
3.56 Rekursive Untersuchung von par(s)…………………………………………………... 83

3.57 Sendende Aktivität <invoke> s und empfangende Aktivität <receive> r und eine
Konsolidierung ohne Kontrollflusslink……………………………………………….. 84

3.58 Sendende Aktivität <invoke> s und empfangende Aktivität <receive> r und eine
Konsolidierung ohne Kontrollflusslink mit zusätzlicher Variable vt………………….. 85

3.59 Anwendung des Merge-Algorithmus…………………………………………………. 86
3.60 SyncPattern1.1………………………………………………………………………… 86
3.62 SyncPattern1.2………………………………………………………………………… 88
3.63 SyncPattern1.3………………………………………………………………………… 88
3.64 SyncPattern1.4 mit zwei <reply>-Aktivitäten und einem Fault…………………….. 89
3.65 SyncPattern1.4 mit zwei <reply>-Aktivitäten………………………………………. 91
3.66 SyncPattern1.5………………………………………………………………………… 92
3.67 SyncPattern2.1………………………………………………………………………… 93
3.68 SyncPattern2.4………………………………………………………………………… 94
3.69 Hinzufügen der WSDL-imports in den konsolidierten Prozess……………………... 96

3.70
Hinzufügen der PartnerLinks sowie der technischen Attribute portType,
operation sowie partnerLink in die asynchron intra-prozess kommunizierenden
Aktivitäten……………………………………………………………………………..

97

3.71 Hinzufügen der technischen Artefakte bei synchron intra-prozess kommunizierenden
Aktivitäten…………………………………………………………………………….. 98

4.1 Schritte beim Vorgehen der Konsolidierung einer BPEL4Chor-Choreographie……... 101
4.2 Die mergeChoreography-Komponente und ihre Abhängigkeiten…………………….. 101

4.3a ChoreographyMerger-Klassendiagramm……………………………………………... 102

4.3b
Async- bzw. SyncMatcher sowie die Beziehungen zu den Async- bzw. SyncPatterns
und den entsprechenden Schnittstellen (Interfaces) und der abstrakten Klassse
MergePattern…………………………………………………………………………...

103

4.4 Sequenzdiagramm für das Auffinden der MergePatterns……………………………... 104

Auflistungsverzeichnis

2.1 PBD des Reisebüros…………………………………………………………………... 25
2.2 Participant Topology………………………………………………………………….. 25

 Seite 9

2.3 Participant Grounding…………………………………………………………………. 25
3.0 Kopieren der PBDs in neue <scope>-Aktivitäten des neuen BPEL-Prozesses……… 38
3.1 Pseudocode für Merge-Algorithmus…………………………………………………... 41

 3.2 Pseudocode asyncMerge-Methode Variante 1………………………………………... 42
3.3 Pseudocode asyncMerge-Methode Variante 2………………………………………... 46
3.4 Pseudocode syncMerge-Methode Variante 1…………………………………………. 48
3.5 Pseudocode <empty>-Optimierungsalgorithmus…………………………………….. 64
3.6 Pseudocode jc(act)-Funktion………………………………………………………….. 65
3.7 Pseudocode replaceVar (v1, v2, act)-Funktion………………………………………… 68
3.8 Pseudocode isActivityInHandler(ainvoke)-Funktion…………………………………….. 83

Tabellenverzeichnis

2.1 Die 13 Intervallrelationen und ihre Bedeutungen……………………………………... 27
3.1 Zustände und Übergänge des Prozess Instanz Modells……………………………….. 29
3.2 Zustände und Übergänge des Aktivitäts-Zustandsmodells……………………………. 31
3.3 Zustände und Übergänge des <scope>-Aktivitäts-Zustandsmodells………………… 34
3.4 Zustände und Übergänge des Link-Zustandsmodells…………………………………. 36
3.5 Notation für Funktionen und Mengen des Konsolidierungs-Algorithmus……………. 41

 3.6 Notation für Funktionen und Mengen des Konsolidierungs-Algorithmus (Erweiterun-
gen)……………………………………………………………………………………. 47

 Seite 10

1 Einleitung

Cloud-Computing [MT11] bietet Unternehmen neue Möglichkeiten zur Realisierung ihrer Geschäfts-
prozesse. Durch die Verlagerung von Teilen der Geschäftsprozesse in die Cloud reduziert sich der
Bedarf an firmeninternem, qualifiziertem technischem Knowhow zum Betrieb, der Wartung sowie
Pflege der IT-Ressourcen. Das Unternehmen kann sich wieder auf seine eigenen nicht IT-getriebenen
Geschäftsziele konzentrieren. So kann man mittlerweile in zahlreichen großen Unternehmen die Aus-
lagerung von Teilen der Geschäftsprozesse beobachten, wie z.B. der Gehaltsabrechnung oder Sup-
portprozessen. Ohne diese nicht wettbewerbsdifferenzierenden Teilprozesse kann sich das Unterneh-
men wieder auf sein Hauptgeschäft fokussieren. Hinzu kommen weitere Kostenvorteile, wie sie bei-
spielsweise das Pay-Per-Use Kostenmodell anbietet, bei dem das Unternehmen nur für die Kapazitä-
ten bezahlt, die auch effektiv genutzt werden. Man kann Parallelen zur Ablösung des Mainframes
durch die Client/Server Architektur in den 1980ern erkennen, die auf einen Bedarf nach einer be-
reichs- bzw. branchenorientierten organisatorischen Struktur zurückzuführen war.

Ein weiteres vielversprechendes Konzept des Cloud-Computing ist die Community Cloud [MT11]: Ein
Zusammenschluss von Unternehmen oder Organisationen der gleichen Branche mit dem Ziel, aus dem
Verbund ihrer Private Clouds [MT11] eine gemeinsame Nutzung der Infrastruktur zu ermöglichen. In
diesem Verbund können IT-Ressourcen dynamisch bereitgestellt (Elastizität), bedarfsgerecht abge-
rechnet (Pay-Per-Use) und durch Virtualisierung standardisiert werden. Durch die Nutzung der ge-
meinsamen Infrastruktur können die Kosten aller beteiligten Unternehmen gesenkt werden, da diese
unter den Mitgliedern der Community Cloud aufgeteilt werden. Zusätzlich kann die Community
Cloud Werkzeuge anbieten, die der Zusammenarbeit der Unternehmen dienen [WKL11], wie z.B.
Content Management Services.

Um eine möglichst effiziente Zusammenarbeit in der Community Cloud zu ermöglichen, müssen auch
die Geschäftsprozesse der beteiligten Unternehmen miteinander interagieren. Diese Interaktion kann
durch Choreographien der Geschäftsprozesse dargestellt werden, die den Kontroll- sowie Datenfluss
zwischen den Parteien modellieren. Natürlich wollen die Unternehmen die wettbewerbsdifferenzie-
renden Arbeitsabläufe ihrer Geschäftsprozesse auch in einem solchen Zusammenschluss nicht jeder-
mann zugänglich machen. Somit müssen zunächst die für eine Nutzung in der Community Cloud ge-
eigneten Prozessfragmente isoliert werden.

Wir wollen im folgenden Abschnitt anhand eines kleinen Szenarios für einen solchen Anwendungsfall
aus der Automobilbranche das Vorgehen skizzieren (vgl. [WKL11]). Abbildung 1.1 zeigt eine Chore-
ographie als BPMN 2.0 Collaboration Diagramm [OMG11] zwischen zwei Geschäftsprozessen zur
Herstellung eines Sportwagens. Der eine Prozess stellt den Arbeitsablauf auf Seiten des Autoherstel-
lers (AH) dar, der zweite den eines Zulieferers, der für die Herstellung des Motors zuständig ist (MH).
Zu Beginn bestellt der AH einen Motor beim MH. Anschließend entwickeln beide Beteiligten einen
Prototyp. Der AH einen Chassis-Prototyp und der MH einen Motorenprototyp. Diese Aktivitäten wer-
den durch die aufklappbaren Teilprozesse dargestellt. Nach der Entwicklung des Chassis sowie des
Motors wird letzterer an den AH geliefert, der in Zusammenarbeit mit Ingenieuren des MH einen ers-
ten Prototyp des Sportwagens baut. Nun wird der Prototyp in einer Versuchsreihe beim AH auf seine
Verkehrstauglichkeit geprüft. Hierzu können beispielsweise Versuche im Windkanal oder Crashtests
gehören. Die Ergebnisse dieser Versuchsreihe werden an den MH geschickt. Beide Parteien analysie-
ren die Ergebnisse und führen mögliche Optimierungen am Chassis und am Motor durch (dies ist in
der Abbildung nicht dargestellt). Anschließend wird die Versuchsreihe wiederholt. Nach Fertigstel-
lung der Versuchsreihen mit optimalen Ergebnissen, wird der Sportwagen hergestellt.
In diesem Herstellungsprozess testen und entwickeln beide Parteien den Prototyp beim MH. Um Inge-
nieuren beider Parteien einen möglichst effizienten Zugriff auf die IT Infrastruktur sowie den Zugang

 Seite 11

zu den Testergebnissen zu ermöglichen, entscheiden sich die Unternehmen die für die Entwicklung
sowie den Test des Sportwagenprototyps notwendigen IT Ressourcen in einer Community Cloud zu-
sammenzuschließen. Diese Prozessfragmente sind in Abbildung 1.1 mit einem roten Kasten hervorge-
hoben (AH2 sowie MH2). Die Community Cloud stellt hierfür eine Workflow Engine zur Verfügung.

Autohersteller

Chassis
entwickeln

Motorhersteller

Motor entwickeln

Motor
entwickeln

Motor liefern

Prototyp
des

Wagens
herstellen

Versuche
durchführen

Testresultate schicken

Chassis
Testergebnisse

auswerten

Motor
Testergebnisse

auswerten

Auswertung beendet

Sportwagen
herstellen

Motor
herstellen

 AH2 MH2

MH1

MH3

AH1

AH3

Autohersteller

Chassis
entwickeln

Prototyp
des

Wagens
herstellen

Versuche
durchführen

Sportwagen
herstellen

AH1_AH3

Motorhersteller

Motor
entwickeln

Motor
herstellen

MH1_MH3

Motor entwickeln

Motor liefern

Chassis
Testergebnisse

auswerten

Motor
Testergebnisse

auswerten

Versuchsreihe
starten

Versuchsreihe
starten

Versuchsreihe
beendet

Versuchsreihe
beendet

Community Cloud

AH2_MH2

 Abbildung 1.1 Herstellung eines Sportwagens Abbildung 1.2 Versuchsaufbau in der Community Cloud
 (vgl. [WKL11])

Da die beiden Parteien die Herstellungsprozesse ihrer jeweiligen spezifischen Produkte nicht füreinan-
der zugänglich machen wollen, werden diese vor Ort auf der unternehmenseigenen IT Infrastruktur
ausgeführt. Diese Prozessfragmente sind durch die vier Bereiche AH1, AH3, MH1 sowie MH3 darge-
stellt.
Abbildung 1.2 zeigt die Choreographie aus vorhergehendem Beispiel mit Einbeziehung einer Com-
munity Cloud: Die neuen Prozesse AH1_AH3 sowie M1_MH3 werden auf der unternehmenseigenen
IT Infrastruktur ausgeführt, die Prozessfragmente die für die gemeinsame Versuchsreihe zuständig
sind, wurden dagegen aus den ursprünglichen Geschäftsprozessen abgespalten („split“) und in einem
neuen Prozesse zusammengelegt („merged“), der in der Community Cloud bereitgestellt und betrieben
wird. Die vorliegende Diplomarbeit befasst sich mit dem konsolidieren oder zusammenlegen von Pro-
zessfragmenten, die in Form einer BPEL4Chor Choreographie (Abschnitt 2.3) vorliegen, zu einem
neuen ausführbaren Geschäftsprozess.

1.1 Ziele der vorliegenden Diplomarbeit
Das Ziel der vorliegenden Diplomarbeit ist die Erarbeitung und Umsetzung eines Konsolidierungsal-
gorithmus für BPEL4Chor [DKLW07] Choreographien sowie seiner anschließenden Implementierung
als Eclipse Plugin [ECL12]. Das Ergebnis dieser Konsolidierung soll ein bereitstellbarer sowie aus-
führbarer WS-BPEL 2.0 Prozess [OAS07] sein. Zusätzlich soll gezeigt werden, dass nach Anwendung

 Seite 12

der Konsolidierung der Daten- als auch der Kontrollfluss des neuen Prozesses dem der ursprünglichen
Choreographie weitestgehend entspricht.

1.2 Kapitelübersicht und Aufbau
In Kapitel 1 wurde zunächst ein kleines Beispiel eines praktischen Konsolidierungsfalls gegeben. An-
schließend wurden die Ziele der vorliegenden Diplomarbeit (1.1) verdeutlicht. Es folgt die Motivation
(1.3), die zu dieser Arbeit geführt hat sowie verwandte Arbeiten (1.4). Abschnitt 1.5 skizziert noch-
mals die Aufgabenstellung. Kapitel 2 geht auf die technischen Grundlagen ein, die zum Verständnis
dieser Arbeit notwendig sind. Abschnitt 2.1 erklärt hierfür die Web Service Grundlagen. Anschließend
stellt Abschnitt 2.2 den WS-BPEL 2.0 Standard vor, der zur Implementierung der hier vorgestellten
Geschäftsprozesse dient. Abschnitt 2.3 erklärt die WS-BPEL 2.0 Erweiterung BPEL4Chor, die zur
Implementierung von Geschäftsprozesschoreographien entwickelt wurde und Ausgangspunkt unseres
Konsolidierungsalgorithmus ist. Kapitel 3 zeigt das Vorgehen und die Überlegungen, die zum Konso-
lidierungsalgorithmus geführt haben. Kapitel 4 erläutert die technische Implementierung, die hierfür
eingesetzten Technologien sowie Frameworks. Kapitel 5 gibt eine kurze Zusammenfassung der Arbeit
und einen Ausblick auf laufende und mögliche Weiterentwicklungen der hier vorgestellten Konzepte.

1.3 Motivation
Die Beweggründe, die zu dieser Diplomarbeit geführt haben basieren auf der Idee eine BPEL4Chor
[DKLW07] Choreographie direkt ohne eine Zwischentransformation in andere Modelle, wie z.B. Er-
eignisgesteuerte Prozessketten (EPKs) [KNS92] oder Petri-Netze [PET62], in einen neuen ausführba-
ren WS-BPEL 2.0 [OAS07] Geschäftsprozess zu konsolidieren. Das Beispiel aus Abschnitt 1 liefert
hierfür ein praktisches Anwendungsszenario: Ein naiver Ansatz würde zunächst die beiden Geschäfts-
prozesse in die Prozessfragmente AH1, AH2, AH3, MH1, MH2 sowie MH3 zerlegen [CUI12]. Ohne
anschließende Konsolidierung würden dann AH1 und AH3 auf der IT Infrastruktur des Autoherstel-
lerunternehmens betrieben, MH1 sowie MH3 entsprechend auf der IT Infrastruktur des Motorherstel-
lerunternehmens. Die Prozesse AH2 sowie MH2 würden in der Community Cloud bereitgestellt. Dies
hätte mindestens sechs Prozessinstanzen zur Folge anstatt der ursprünglichen zwei. Durch Konsolidie-
rung können hier auf Seiten der Community Cloud Prozesse Kosten gespart werden, da Cloud Infra-
struktur Anbieter für gewöhnlich eine bedarfsgerechte (Pay-Per-Use) Kostenabrechnung anbieten.
Zusätzlich können ohne Konsolidierung Performanceeinbußen mit steigender Anzahl der Prozessin-
stanzen auf Seiten der beiden Unternehmen auftreten, beispielsweise im Hinblick auf die Workflow
Engines oder die benutzten Datenbanken.
Auf der technischen Seite wird durch die Konsolidierung zusätzlich die choroegraphieinterne Kom-
munikation zwischen den Parteien vermieden: Es ist keine Serialisierung und Deserialisierung der
SOAP-Nachrichten mehr notwendig, die Korrelation entfällt ebenfalls.

1.4 Verwandte Arbeiten
Das Beispiel aus Abschnitt 1 spaltet zunächst die ursprünglichen Geschäftsprozesse in verschiedene
miteinander kommunizierende Prozessfragmente auf. Cui’s [CUI12] Diplomarbeit zeigt hierfür einen
Ansatz der auf Arbeiten von Khalaf [KKL08][KL06] sowie Kopp et. al. basiert [KKL08]. Ein weiterer
Ansatz, der für die im Kapitel 3 vorgestellte Datenflussanalyse entnommen wurde basiert ebenfalls auf
Kopp et. al. [KKL08]. Die dort gezeigte Strategie der Datenflussanalyse bezieht die Nebenläufigkeit
von WS-BPEL 2.0 Prozessen sowie die Dead Path Elimination [OAS07] mit ein.

 Seite 13

Vorliegende Diplomarbeit mit dem Schwerpunkt der Konsolidierung von BPEL4Chor Choreogra-
phien basiert auf den Ansätzen aus Wagner et. al. [WKL11]. Verwandte Arbeiten befassen sich über-
wiegend mit dem Zusammenführen semantisch äquivalenter Prozesse. Mendling et. al. konsolidieren
in ihrer Arbeit [MS06] semantisch äquivalente Ereignisgesteuerte Prozessketten (EPKs) [KNS92].
Küster et. al. zeigen in ihrem Ansatz [KGF+08] die Möglichkeit Prozesse zusammenzuführen, die von
einem gemeinsamen Basisprozess abgeleitet wurden. Basis für das in [KGF+08] vorgestellte Vorgehen
ist eine Art Logbuch indem die Änderungsschritte festgehalten werden, die vom Basisprozess zu den
neuen Prozessen geführt haben. Sun et. al. stellen in [SKY06] ein Vorgehen zur Konsolidierung vor,
das auf Petri-Netzen [PET62] basiert. Im Gegensatz zu dem in der vorliegenden Diplomarbeit ver-
wendeten Vorgehen, müssen in [SKY06] die Stellen an denen die Prozesse zusammengeführt werden
manuell angeben werden.
Die hier verwendete Erweiterung von WS-BPEL 2.0 zur Modellierung von Choreographien wird in
[DKLW07] von Decker et. al. vorgestellt. Weitere Ausführungen sowie der Vergleich zu anderen
Choreographieerweiterungen sind in [DKLW09] von Decker et. al. zu finden. Barros et. al. [BDH05]
gehen in ihrer Arbeit auf die grundsätzlichen Interaktionsmuster zwischen Web Services ein.

1.5 Aufgabenstellung
Abbildung 1.3 zeigt die in dieser Diplomarbeit umgesetzte Aufgabenstellung: Das hier entwickelte
Eclipse Plugin [ECL12] nimmt eine BPEL4Chor Choreographie als Input (in Form einer ZIP-Datei),
analysiert die dort enthaltenen Prozessfragmente bezüglich ihrer Daten- und Kontrollflussabhängigkei-
ten und erzeugt einen ausführbaren WS-BPEL 2.0 Prozess mit der zugehörigen WSDL-Datei als Out-
put. Dieser konsolidierte Prozess ist auf jeder WS-BPEL 2.0 konformen BPEL-Engine bereitstell-
sowie ausführbar und besitzt eine weitestgehend gleiche Daten- und Kontrollflusssemantik, wie die
ursprüngliche BPEL4Chor Choreographie.

Eclipse Plugin

Merging
Modul

Daten- and
Kontrollfluss Analyse

Ausführbarer BPEL-
Prozess

WSDL des BPEL-
Prozesses

Choreographie.zip

BPEL4Chor Choreography

Participant
Topology

Strukturelle Aspekte

Participant Declaration

Liste der Teilnehmer

Message Links

Verbinden PBDs

Participant Behavior
Descriptions (PBDs)

Sichtbarer Kontroll- und Datenfluss

Participant Grounding

Technische Konfiguration

WSDLs der
PBDs

Abbildung 1.3 BPEL4Chor Konsolidierung: Eingabe für das Eclipse Merging Modul ist eine BPEL4Chor Choreographie
sowie die WSDL Dateien der enthaltenen Prozessfragmente, die Ausgabe ist ein neuer ausführbarer BPEL-Prozess sowie die
zu diesem gehörige WSDL Datei

 Seite 14

2 Grundlagen und Technologien

In diesem Kapitel werden die Technologien und Grundlagen vorgestellt, die zum Verständnis der
Konsolidierung von BPEL-Choreographien notwendig sind. Das Vorgehen in Kapitel 3 setzt voraus,
dass der Leser mit den hier vorgestellten Technologien vertraut ist. Zunächst werden die Ideen hinter
Web Services, Geschäftsprozessen sowie Geschäftsprozesschoreographien erklärt. Hierzu werden
auch die relevanten Spezifikationen der zugrundeliegenden Protokolle, wie beispielsweise SOAP
[W3C07], WS-BPEL [OAS07] sowie BPEL4Chor [DKLW07] erläutert. Auf die WS-BPEL 2.0
[OAS07] Spezifikation wird etwas detaillierter eingegangen, da diese für das Verständnis der Konsoli-
dierung einer BPEL4Chor-Choreographie essenziell ist.
Die vorgestellten Technologien und Konzepte werden nicht in voller Ausführlichkeit erklärt. Stattdes-
sen konzentrieren wir uns auf die Details, die für das Verständnis der Diplomarbeit von Nutzen sind,
ohne den Text mit zu vielen Kleinstdetails vollzustopfen. Den interessierten Lesern sei die referenzier-
te Literatur ans Herz gelegt.

2.1 Web Services
Web Services ermöglichen die Realisierung einer Service-Oriented Architecture (SOA) [WCL+05].
Web Services und die diese umgebenden Technologien werden vom World Wide Web Consortium
(W3C) gefördert. Die Grundlage einer SOA sind lose gekoppelte Service. Ein Service ist eine Soft-
ware Komponente, die über eine beliebige Netzwerktechnologie zur Verfügung gestellt wird. Dieser
Service kann anschließend von anderen Programmen verwendet und mit diesen kombiniert werden.
Ein Web Service stellt eine Schnittstelle zu einem Programm dar, welches die eigentliche Arbeit ver-
richtet und anschließend das Ergebnis über diesen Web Service zurückliefert, sofern es eines gibt.
Web Service sind zustandslos unterstützen jedoch auch zustandsbehaftete langläufige Konversationen.
Im Gegensatz zu anderen verteilten Technologien liegt der Vorteil von Web Services in der Tatsache,
dass sie auf veröffentlichten und akzeptierten Standards basieren anstatt auf proprietären Lösungen.
Diese Standards wurden in einem gemeinsamen Bestreben verschiedener Firmen erstellt und reflektie-
ren so die Bedürfnisse der Industrie. Bedürfnisse wie beispielsweise Sicherheit, Ausfallsicherheit und
Interoperabilität. Alle relevanten Standards im Bereich der Web Services basieren auf der Extensible
Markup Language (XML) [W3C12]. Diese reichen von der Definition der Schnittstellen über das
Format der transferierten Daten bis hin zu Quality of Service (QoS) Definitionen. Zwei der wichtigsten
Standards ist die Web Service Description Language (WSDL) [W3C01], die die Schnittstelle des Web
Service definiert sowie das Simple Object Access Protocol (SOAP) [W3C07], welches die verschick-
ten und empfangenen Nachrichten eines Web Services definiert als auch deren Bearbeitung entlang
des Nachrichtenkanals.

Wie in Abbildung 2.1 gezeigt enthält eine WSDL-Datei folgende Elemente, die hier kurz erläutert
werden:

• Types (nicht in der Abbildung): Definitionen der benötigten Datentypen

• Message: Abstrakte Beschreibungen der ausgetauschten Daten

• Operation: Abstrakte Beschreibungen der vom Service unterstützten Aktionen. Man kann
diese mit Methoden oder Funktionen vergleichen. Nachrichten bieten Eingabe- und Ausgabe-
daten für Operationen an.

 Seite 15

• PortType: Abstrakte Menge der vom Service angebotenen Operationen

• Binding: Definieren ein konkretes Protokoll, wie beispielsweise SOAP über HTTP [W3C07],
als auch die Datenformate der Nachrichten und Operationen eines PortType

• Port: Definieren die Adresse oder einen Verbindungspunkt zu dem Service, oftmals in Form
einer URI

• Service: Eine Sammlung von Ports

Da WS-BPEL 2.0 die Version 1.1 von WSDL benutzt bezieht sich folgende Arbeit auf diese.

PortType

Binding Message

Port Service
Bietet an

Nachrichtenformat

Operation
Unterstützt

Aufru
fm

ögli
ch

ke
it

Eingabe,
Ausgabe &

Fehler

Implementiert

Transport:
Formate & Protokolle

SOAP Envelope

SOAP Header
Header Block 1

Header Block n
...

SOAP Body
Body Sub-Element 1

Body Sub-Element n
...

Abbildung 2.1 Inhalt einer WSDL-Datei (vgl. [LEY10b]) Abbildung 2.2 Aufbau einer SOAP Nachricht (vgl.
 [LEY10b])

Abbildung 2.2 zeigt schematisch den Aufbau einer SOAP Nachricht mit den folgenden Elementen:

• SOAP Envelope: Dies ist das Wurzelelement der XML-Dokuments („Briefumschlag“). Es
enthält SOAP-Header sowie SOAP-Body Elemente.

• SOAP Header: Dies ist ein optionales Feld und muss bei Verwendung als erstes Feld im
SOAP-Envelope definiert werden. Die SOAP-Spezifikation definiert nicht den Inhalt eines
SOAP-Header. Der Header dient der Übertragung der Nutzdaten der Middleware, die für die
Übertragung der Nachricht zuständig ist. Hier können beispielsweise Informationen, die für
die sichere und ausfallfreie Übertragung der Nachricht relevant sind enthalten sein.

• SOAP Body: Dieser Teil enthält die eigentlichen Nutzdaten und muss in jeder Nachricht vor-
handen sein.

Web Services verwenden zur Kommunikation Nachrichten. Aus diesem Grunde werden alle Daten
zwischen Aufrufer und Aufgerufenem in Nachrichten verpackt. Abhängig vom gewählten Kommuni-
kationsmuster werden die Nachrichten entsprechend ausgetauscht. Die Definitionen der üblichen
Kommunikationsmuster können im Abschnitt 2.4 „Port Types“ der WSDL Spezifikation [W3C01]
nachgelesen werden. Die geläufigsten sind das Anfrage-Antwort Muster (Request-Response im Fol-
genden) bestehend aus einer Anfrage- sowie einer zugehörigen Antwortnachricht sowie das Einweg-
Muster (One-Way im Folgenden) bestehend aus nur einer aufrufenden Anfragenachricht.

 Seite 16

Ein Teil der Flexibilität, die man durch die Benutzung von Web Services erlangt, basiert auf der Tat-
sache, dass diese plattform- sowie transportunabhängig sind.

2.2 Web Services Business Process Execution Language 2.0
Die Web Services Business Process Execution Language 2.0, häufig auch als BPEL abgekürzt, oder
WS-BPEL ist eine XML-basierte Sprache zur Beschreibung von Geschäftsprozessen basierend auf
Web Services [WCL+05]. Da Web Services an sich keine Möglichkeit besitzen eine Logik zur Interak-
tion zu definieren wurde BPEL entwickelt. Sie erlaubt die Definition von Prozessen, die die Interakti-
onslogik als und mit Web Services erlauben. „WS-BPEL definiert ein Model und eine Grammatik zur
Beschreibung des Verhaltens eines Geschäftsprozesses basierend auf Interaktionen zwischen dem
Prozess und seinen Partnern“ [OAS07]. Der Kontrollfluss in einem BPEL Prozess ist explizit durch
die Kontrolllinks zwischen den Aktivitäten modelliert, während der Datenfluss implizit durch die Be-
nutzung der globalen und lokalen Variablen dargestellt wird. In BPEL werden die zu einem Prozess
gehörigen Daten standardmäßig durch XPath Ausdrücke [W3C99a] gelesen und verändert. Sie bietet
außerdem Parallelität sowie Death-Path-Elimination [OAS07] an. Seine Wurzeln hat BPEL in der
graphbasierten Sprache Web Services Flow Language (IBM WSFL [LEY01]) sowie der blockbasier-
ten Sprache XLANG (Microsoft XLANG [THA01]) und bietet hier eine hybride Alternative, da sie
fluss- sowie operatorbasierte Modellierung unterstützt [WCL+05].

2.2.1 Grundlegende Konzepte von WS-BPEL 2.0

Der folgende Abschnitt bezieht sich überwiegend auf die Spezifikation aus [OAS07]. Eine BPEL Pro-
zessbeschreibung besteht neben der WSDL Datei, die den Prozess nach Außen als Web Service zur
Verfügung stellt, aus der eigentlichen Definition in XML, die folgende Grundelemente enthält (siehe
Abbildung 3.3):

• Partner Links und Partner Link Types: Ein Partner Link stellt einen Kommunikationskanal
zwischen zwei Partnern dar. Eine Partner Link Definition beinhaltet einen Partner Link Type
und mindestens eine Rolle. Ein Partner Link Type beschreibt die Art des Nachrichtenaus-
tauschs den der Prozess als Service ausführt und wird durch die Definition der Rollen, die je-
der Service in der Interaktion einnimmt sowie durch die Spezifikation des Port Type, der
durch den Service zur Verfügung gestellt wird um entsprechende Nachrichten zu empfangen,
charakterisiert. Der Partner Link Type ist eine Erweiterung der WSDL. Abbildung 2.4 veran-
schaulicht den Zusammenhang zwischen WSDL und BPEL Definition.

• Variables: Ein Prozess empfängt, verändert und sendet Daten mithilfe von Variablen, die ei-
nen Teil des Laufzeitzustands des Prozesses speichern. Es gibt drei Möglichkeiten von Variab-
len: WSDL Message Type, XML Schema Type (Simple oder Complex) sowie XML Schema
Elemente. Der Inhalt von Nachrichten, die zwischen Prozesspartnern ausgetauscht werden,
wird im WSDL Message Type gespeichert.

• Correlation Sets: Correlation Sets dienen der Zuordnung einer Menge von Nachrichten zwi-
schen Partnern, die an einer Interaktion beteiligt sind. Da Geschäftsprozesse durch die Reprä-
sentation als Web Service zustandslos sind, benötigt die BPEL-Engine im Falle von mehreren
nebenläufigen Instanzen eines Prozesses eine Möglichkeit der Zuordnung der Nachrichten an
die entsprechende Instanz. Sie stellen eine Art Identifikationsschlüssel dar und sind nach ihrer
einmaligen Initialisierung unveränderlich über die ganze Kommunikation hinweg.

 Seite 17

• Handler: Ein BPEL Prozess kann zwei Arten von Handlern beinhalten um nach seiner Instan-
ziierung auf Fehlersituationen sowie eingehende Nachrichten oder mögliche zeitgesteuerte Er-
eignisse zu reagieren: Fault Handler (FH) sowie für die letzten beiden Fälle Event Handler
(EH). Im Abschnitt 2.2.1.4 wird die Bedeutung beider näher beleuchtet.

• Activity: Jeder Prozess muss mindestens eine Aktivität enthalten. Diese muss eine der aus
Ausschnitt 2.2.1.2 beschriebenen Basisaktivitäten sein, oder ein Verbund aus den Strukturier-
ten aus Abschnitt 2.2.1.3 sowie 2.2.1.4. Da der Life-Cycle eines BPEL Prozesses durch den
Empfang einer initialen Nachricht beginnt, muss dieser mindestens eine Aktivität des Typs
<receive> oder <pick> enthalten, welche das Attribut createInstance auf true gesetzt
hat.

Business Process
Partner Links

Variables

Correlation Sets

Handlers

Activity

BPEL

WSDL
inputMessage

outputMessage

portType
operation

partnerLinkType

role(s)
portType

Activity

partnerLink
portType
operation

partnerLink
name

partnerLinkType
myRole

partnerRole

Abbildung 2.3 Artefakte eines BPEL Prozesses Abbildung 2.4 Verbindung WSDL → BPEL
(vgl. [LEY10a])

2.2.1.1 Abstrakte und ausführbare Prozesse

WS-BPEL 2.0 erlaubt die Definition von ausführbaren sowie abstrakten Prozessen. Ausführbare Pro-
zesse müssen alle in der WS-BPEL 2.0 Spezifikation [OAS07] definierten Attribute sowie Aktivitäten
enthalten. In Verbindung mit ihren WSDL Dateien sind sie auf jeder standardkonformen BPEL-
Engine bereitstell- und voll ausführbar. Ein abstrakter Prozess ist ein partiell definierter Prozess, der
nicht ausführbar ist und verschiedene Details der konkreten operationalen Details, welche in den aus-
führbaren Prozessen enthalten sein müssen, unspezifiziert lässt [OAS07]. Da die im Abschnitt 2.3 be-
schriebene Erweiterung von WS-BPEL 2.0 auf abstrakten Prozessen basiert, werden diese hier etwas
genauer beschrieben.
Abstrakte Prozesse müssen als solche explizit deklariert werden. Sie bieten zwei Möglichkeiten um
operationale Details zu verstecken: Die Benutzung expliziter opaker Symbole („opaque tokens“) sowie
die Auslassung ganzer Artefakte. Ein abstrakter Prozess kann die gesamte Menge aller Artefakte, die
auch ein ausführbarer Prozess definiert, enthalten. Durch seine Deklaration als „abstract“ wird jedoch
angezeigt, dass weitere Schritte notwendig sind um ihn zu einem voll ausführbaren Prozess zu konver-
tieren. Hierzu wird dem interessierten Leser der Abschnitt „Executable Completion“ (ausführbare
Vervollständigung) der WS-BPEL 2.0 Spezifikation [OAS07] empfohlen. Es gibt verschiedene An-
wendungsgebiete für abstrakte Prozesse:

• Sollen Bedingungen und Einschränkungen für den Nachrichtenaustausch zwischen Interak-
tionspartner von Geschäftsprozessen aufgezeigt werden, so werden nur die Kommunikati-
onsmuster der einzelnen Partner angegeben und die internen Details der eigentlichen Pro-
zesse bezüglich Datenhaltung sowie Verarbeitung bleiben versteckt (Abbildung 2.5). Die in

 Seite 18

dieser Diplomarbeit verwendete Erweiterung von WS-BPEL 2.0 BPEL4Chor basiert auf
dem Abstract Process Profile for Observable Behavior (vgl. Abschnitt 13.3 aus [OAS07]).

P1 R

SR

S

P2S

R

R

P3
R

S

R

R S

S

S

R

R

R

S

Abbildung 2.5 Kommunikationsmuster zwischen Prozesspartnern

• Eine externe Sicht auf den ausführbaren Prozess wird präsentiert, die genauen internen De-
tails bleiben verborgen. So können technische Details ausgeblendet werden oder beispiels-
weise firmeninterne Vorgehensbausteine geheim bleiben (Abbildung 2.6).

Ba
nk

Interner Prozess

Prüfe
Kontostand

Ermittle Daten
aus Firmen DB

Übermittle
Zahlung

Rechne Zinsen
ab Zeige Saldo an

Externe
Sicht

Prüfe
Kontostand

Übermittle
Zahlung Zeige Saldo an

Abbildung 2.6 Externe Sicht eines Prozesses

• Ein Gerüst für eine allgemeine oder bewährte Vorgehensweise wird erstellt in der später die
ausgelassenen Aktivitäten und Attribute für einen spezifischen Anwendungsfall hinzugefügt
werden (Abbildung 2.7).

<<
Ab

st
ra

ct
>>

Pr
oz

es
s C

om
pu

te
r

ka
uf

en

Anforderungen
an neuen Computer

erfassen

Foren nach Urteilen
durchsuchen

Preise vergleichen

Computer bestellen

Pr
oz

es
s C

om
pu

te
r

ka
uf

en

Anforderungen
an neuen Computer

erfassen

Foren nach Urteilen
durchsuchen Preise vergleichen

Computer bestellen

Freunde befragen

Mit Freunden Läden
besuchen

Kontostand prüfen

Rechner im Laden
holen

Ausführbare
Vervollständi-

gung

Abbildung 2.7 Grundgerüst Computerkauf mit ausführbarer Vervollständigung

 Seite 19

Der für diese Diplomarbeit relevante Anwendungsbereich von abstrakten Prozessen ist die Projektion
von Nachrichtenmustern zwischen den Kommunikationsteilnehmern. So entsteht eine externe Sicht
auf den Kontroll- und Datenfluss, die wir im Folgenden als Choreographie bezeichnen.

2.2.1.2 Basis Aktivitäten von WS-BPEL 2.0

BPEL bietet eine Fülle von Basisaktivitäten zur Daten- und Kontrollflusssteuerung an. Der folgende
Abschnitt beschreibt diese in kurzer Form. Für eine detaillierte Beschreibung sei hier auf die Spezifi-
kation verwiesen [OAS07].

Jede Aktivität besitzt zwei optionale Standard Attribute: Ein name Attribute sowie suppressJoin-
Failure. Letzteres gibt an ob ein joinFault unterdrückt werden soll, wenn dieser Auftritt (siehe hier-
zu Abschnitt 11.6 Parallel and Control Dependencies Processing – Flow der WS-BPEL 2.0 Spezifi-
kation [OAS07]). Zusätzlich besitzt jede Aktivität zwei Container <sources> und <targets>, die
die entsprechende Elemente <source> und <target> enthalten. Sie dienen der Kontrollflusssteue-
rung.

2.2.1.2.1 <invoke>
Mithilfe der <invoke>-Aktivität kann ein BPEL-Prozess einen anderen Prozess oder Web Service
aufrufen. Der Aufruf kann sowohl asynchron (One-Way) erfolgen, als auch synchron (Request-
Response). Im asynchronen Fall läuft der Kontrollfluss direkt nach dem Versenden weiter, im syn-
chronen dagegen wartet der aufrufende Prozess zuerst auf die Antwort bevor er im Kontrollfluss fort-
schreitet. Eine <invoke>-Aktivität kann eigene Compensation Handler und Fault Handler definieren.

2.2.1.2.2 <receive> und <reply>
Mittels der <receive>-Aktivität wartet ein Prozess auf das Eintreffen einer Nachricht. Ist diese Akti-
vität die erste im Kontrollfluss, so muss das Attribute createInstance=“yes“ gesetzt werden, da
hier der initiale Einstiegspunkt für den Prozesslebenszyklus ist. Mithilfe der <reply>-Akitvität kann
der Prozess eine Antwortnachricht auf eine zuvor empfangene <receive>-Nachricht (Request-
Response) senden. Die <reply>-Aktivität kann durch ein messageExchange-Attribut mit einer
<receive>-Aktivität assoziiert werden.

2.2.1.2.3 <assign>
Die <assign>-Aktivität erlaubt die Zuweisung von Daten an Variablen mithilfe von XPath-
Ausdrücken [W3C99a] bzw. die durch das expressionLanguage-Attribut des BPEL-Prozesses
definierte Sprache.

2.2.1.2.4 <validate>
Die <validate>-Aktivität wird zur Validierung von Variablen bezüglich der mit ihnen assoziierten
XML oder WSDL Datendefinitionen verwendet.

2.2.1.2.5 <throw>
Die <throw>-Aktivität wird zum Werfen einer Ausnahme innerhalb des BPEL-Prozesses verwendet.

2.2.1.2.6 <wait>
Die <wait>-Aktivität veranlasst einen BPEL-Prozess für eine definierte Zeitspanne oder bis zu einem
definierten Zeitpunkt zu warten.

 Seite 20

2.2.1.2.7 <empty>
Die <empty>-Aktivität macht effektiv nichts. Sie wird zur Synchronisation von nebenläufigen Aktivi-
täten verwendet oder wenn ein Fault gefangen und unterdrückt werden soll.

2.2.1.2.8 <extensionActivity>
BPEL erlaubt die Erweiterung der Spezifikation durch neue Aktivitäten. Die BPEL-Engine muss je-
doch in der Lage sein diese zu verstehen, ansonsten können diese wie eine <empty>-Aktivität ge-
handhabt werden.

2.2.1.2.9 <exit>
Die <exit>-Aktivität beendet augenblicklich die Instanz eines Prozesses.

2.2.1.2.10 <rethrow>
Der <rethrow>-Aktivität ermöglicht das Weiterreichen einer Ausnahme, aus einem Fault Handler
und nur aus einem solchen, an den ihn umgebenden Gültigkeitsbereich.

2.2.1.2.11 <compensate>
Die <compensate>-Aktivität veranlasst die Kompensation (siehe Abschnitt 2.2.1.4) aller erfolgreich
ausgeführter Subscopes. Sie darf nur innerhalb eines <catch>, <catchAll>, <compensation-
Handler> oder <terminationHandler> verwendet werden.

2.2.1.2.12 <compensateScope>
Die <compensateScope>-Aktivität veranlasst die Kompensation (siehe Abschnitt 2.2.1.4) eines
spezifischen erfolgreich ausgeführten Subscopes. Sie darf nur innerhalb eines <catch>, <catch-
All>, <compensationHandler> oder <terminationHandler> verwendet werden.

2.2.1.3 Strukturierte Aktivitäten von WS-BPEL 2.0

BPEL besitzt weiterhin strukturierte Aktivitäten, die sich aus den zuvor erläuterten Basisaktivitäten
zusammensetzen und so eine sequentielle oder parallele Ausführung erlauben.

2.2.1.3.1 <sequence>
Die <sequence>-Aktivität führt die in ihr aufgeführten Aktivitäten sequentiell aus. Die Reihenfolge
entspricht der Anordnung der Aktivitäten innerhalb des <sequence>-Elements.

2.2.1.3.2 <if>
Die <if>-Aktivität erlaubt die bedingte Ausführung von Aktivitäten. Die Aktivität besteht aus einer
Liste von einer oder mehreren Verzweigungen, die durch <if> und optionale <elseif>-Elemente
definiert sind, gefolgt von einem optionalen <else>-Zweig.

2.2.1.3.3 <while>
Die <while>-Aktivität erlaubt die wiederholte Ausführung der in ihr enthaltenen Aktivität. Die ent-
haltene Aktivität wird solange ausgeführt, wie die boolesche Bedingung (<condition>) zu Beginn
jeder Iteration wahr ist.

2.2.1.3.4 <repeatUntil>
Ähnlich der <while>-Aktivität erlaubt die <repeatUntil>-Aktivität die wiederholte Ausführung
der in ihr enthaltenen Aktivität. Die enthaltene Aktivität wird solange ausgeführt bis die angegebene

 Seite 21

boolesche Bedingung (<condition>) wahr wird. Im Gegensatz zur <while>-Aktivität führt die
<repeatUntil>-Aktivität die enthaltene Aktivität mindestens einmal aus.

2.2.1.3.5 <pick>
Die <pick>-Aktivität wartet auf das Eintreffen genau eines Ereignisses aus einer Menge von Ereig-
nissen und führt anschließend eine mit diesem assoziierte Aktivität aus. Nachdem ein Ereignis einge-
troffen ist, werden die restlichen verworfen. Ein solches Ereignis kann durch eine Nachricht (<onMes-
sage>) oder einen zeitlichen TimeOut (<onAlarm>) repräsentiert werden. Jede <pick>-Aktivität
muss mindestens ein <onMessage>-Ereignis enthalten.

2.2.1.3.6 <flow>
Die <flow>-Aktivität unterstützt Nebenläufigkeit und Synchronisation. Mithilfe der enthaltenen
<links> können Abhängigkeiten zwischen den eingeschlossenen Aktivitäten festgelegt werden.
Durch Angabe des <source>-Elements kann jede Aktivität der Ausgangspunkt eines Links werden.
Durch das entsprechende <target>-Element kann jede Aktivität zum Endpunkt eines Links werden.

Aktivität_1 Aktivität_3

Aktivität_2

Link2

Link1

…
<activity name=“Aktivität_1“>
 <sources>
 <source linkname=“Link1“>
 <transitionCondition>...</transitionCondition>
 </source>
 </sources>
</activity>
…
<activity name=“Aktivität_2“>
 <sources>
 <source linkname=“Link2“>
 <transitionCondition>...</transitionCondition>
 </source>
 </sources>
</activity>
…
<activity name=“Aktivität_3“>
 <targets>
 <joinCondition>...</joinCondition>
 <target linkname=“Link1“/>
 <target linkname=“Link2“/>
 </targets>
</activity>
…

Abbildung 2.8 Links und ihre Semantik

Abbildung 2.8 zeigt den Zusammenhang zwischen <links>, <targets> und <sources>: Sobald
Aktivität_1 beendet wurde, wird ihre optionale <transitionCondition> evaluiert. Ist keine ange-
geben so wird angenommen, dass sie zu true ausgewertet wird. Das Gleiche gilt für Aktivität_2 so-
wie Link2. Kommt die Ausführung zur Aktivität_3 so wird ihre optionale <joinCondition>, die für
beide <targets> gilt ausgewertet. Ist diese nicht vorhanden, so ist die implizite <joinCondition>
die Disjunktion von Link1 und Link2. Das optionale suppressJoinFailure-Attribut jeder Aktivität
gibt an, ob im Falle einer negativen Auswertung der <joinCondition> ein joinFailure-Fault
ausgelöst oder die Dead-Path-Elimination ausgeführt wird. Ist das Attribut nicht gesetzt, erbt die Ak-
tivität dieses von ihrer umgebenden Aktivität (vgl. Abschnitt 11.6.3 Dead-Path-Elimination der WS-
BPEL 2.0 Spezifikation [OAS07]).

2.2.1.3.7 <forEach>
Die <forEach>-Aktivität führt den in ihr enthaltenen <scope> genau N+1 mal aus, wobei N dem
Wert des <finalCounterValue> minus dem Wert des <startCounterValue> entspricht. Durch

 Seite 22

Angabe einer Abschlussbedingung (<completionCondition>) kann dieser Mechanismus schon vor
Beendigung der Gesamtanzahl der Durchläufe der Schleife durchbrochen werden. Wird das paral-
lel-Attribut auf „yes“ gesetzt, so werden die Schleifendurchläufe parallel ansonsten sequentiell aus-
geführt.

2.2.1.4 Scopes und Handler

Die <scope>-Aktivität bietet den in ihr enthaltenen Aktivitäten einen eigenen Gültigkeitsbereich mit
der Möglichkeit der Definition eigener Variablen, PartnerLinks, messageExchange-Attributen sowie
Handlern, die nur in diesem Kontext gültig sind. Gültigkeitsbereiche von Scopes können hierarchisch
verschachtelt sein, wobei der „root“-Kontext der BPEL-Prozess selbst ist. Im Gegensatz zum <pro-
cess>-Element können Scopes noch zusätzlich Compensation Handler (CH) sowie Termination
Handler (TH) enthalten.

2.2.1.4.1 Compensation Handler (CH)
Wurde eine <scope>-Aktivität erfolgreich beendet, so wird ihr Compensation Handler installiert. Die
im CH enthaltenen Aktivitäten werden ausgeführt, wenn es zu einer Kompensation (Compensation) in
einem übergeordneten Gültigkeitsbereich kommt, beispielsweise durch einen transaktionsbedingten
Rollback [KRL09].

2.2.1.4.2 Fault Handler (FH)
In jedem BPEL-Prozess und jeder <scope>-Aktivität können Fault Handler definiert werden. Mit
ihrer Hilfe können durch <throw>-Aktivitäten geworfene Ausnahmen abgefangen und bearbeitet
werden.

2.2.1.4.3 Termination Handler (TH)
<scope>-Aktivitäten können Termination Handler definieren, die im Falle einer erzwungenen Termi-
nierung oder einer Ausnahme noch vor den Fault Handlern ausgelöst werden. Wird kein TH explizit
definiert, so wird der Default Termination Handler installiert, der lediglich die Kompensation auslöst.
Ein TH darf keine Ausnahmen werfen.

2.2.1.4.4 Event Handler (EH)
Jeder BPEL-Prozess und jede <scope>-Aktivität kann optional Event Handler definieren, die aus
beliebig vielen <onEvent>- und <onAlarm>-Zweigen, jedoch aus mindestens einem von beiden,
bestehen können. Die Aktivität in diesen Zweigen muss eine <scope>-Aktivität sein, die durch Ein-
treten eines bestimmten Ereignisses ausgeführt wird. <onEvent>-Zweige werden durch das Eintreffen
einer bestimmten Nachricht, <onAlarm>-Zweige dagegen durch das Eintreffen eines TimeOuts ausge-
löst. Die Ausführung eines Event Handlers findet nebenläufig zur umgebenden <scope>-Aktivität
bzw. zum umgebenden BPEL-Prozess statt. Event Handler können auf die Daten der sie umgebenden
Gültigkeitsbereiche zugreifen.

2.2.1.4.5 Isolierte Scopes
<scope>-Aktivitäten bieten zusätzlich durch das isolated-Attribut Kontrolle über den nebenläufi-
gen Zugriff auf gemeinsame Ressourcen: Variablen, Partner Links sowie Kontrollfluss Links von
<flow>-Aktivitäten. Der interessierte Leser findet hierzu im Abschnitt 12.8 Isolated Scopes der WS-
BPEL 2.0 [OAS07] Spezifikation eine detaillierte Erläuterung der Funktionsweise.

 Seite 23

2.3 BPEL4Chor
Das folgende Kapitel basiert auf der Quelle [DKLW07]. WS-BPEL 2.0 eignet sich primär zur Or-
chestrierung aus Sicht eines einzelnen Prozessteilnehmers und weniger zur Darstellung einer Choreo-
graphie zwischen mehreren Geschäftsprozessen, die miteinander kommunizieren. Um eine globale
Sicht auf alle Teilnehmer, die an einer solchen Interaktion teilnehmen zu ermöglichen, wurde
BPEL4Chor entwickelt [DKLW07][DKLW09]. BPEL4Chor besteht aus drei verschiedenen Artefak-
ten auf die im folgenden Abschnitt anhand eines kleinen Beispiels näher eingegangen wird.

BPEL4Chor Choreography

Participant
topology

Strukturelle Aspekte

Participant Declaration

Liste der Teilnehmer

Message Links

Verbinden PBDs

Participant behavior
Descriptions (PBDs)

Sichtbarer Kontroll- & Datenfluss

Participant groundings

Technische Konfiguration

WSDLs der
PBDs

Abbildung 2.9 BPEL4Chor Artefakte (vgl. [DKLW07])

Abbildung 2.9 zeigt den Aufbau sowie die in einer BPEL4Chor Choreographie enthaltenen Artefakte:

1. Participant Behavior Description (PBD):
PBDs beschreiben den Kontrollfluss zwischen den Aktivitäten der teilnehmenden Prozesse ei-
ner Choreographie. Eine PBD kann derart abstrahiert sein, dass sie nur die nachrichtensende-
den- sowie empfangenden Aktivitäten enthält, aber auch alle Aktivitäten zwischen diesen. Der
in der vorliegenden Diplomarbeit beschriebene Konsolidierungsalgorithmus erhebt den An-
spruch einer möglichst vollständigen Beschreibung der PBDs um ein möglichst optimales Er-
gebnis zu liefern. So kann z.B. bei Benutzung einzelner opaker Aktivitäten keine Datenfluss-
analyse durchgeführt werden, da nicht sicher ist, dass diese Aktivitäten später möglicherwiese
durch <assign>-Aktivitäten ersetzt werden. WS-BPEL 2.0 definiert ein Profil für abstrakte
Prozesse, das Abstract Process Profile for Observable Behavior [OAS07], das die Benutzung
von Elementen, wie beispielsweise partnerLinks- oder operation-Attributen von nachrichten-
sendenden- und empfangenden Aktivitäten verbietet, um so eine Trennung von der techni-
schen Konfiguration in den WSDL-Dateien zu ermöglichen. Dieses Profil wird mit einigen
wenigen Änderungen für die PBDs verwendet: Ein zusätzliches Attribut wsu:id vom Typ
xsd:id wird in jede Aktivität, die an einer Kommunikation teilnimmt hinzugefügt, um eine
Identifikation der sendenden und empfangenden Aktivitäten in verschiedenen Interaktionsteil-
nehmern zu gewährleisten.

2. Participant Topology:
Die Participant Topology, im Folgenden kurz Topology genannt, beschreibt die Kommunika-
tion zwischen den Teilnehmern der Choreographie. Typen von Teilnehmern (Participants),
Teilnehmerreferenzen (Participant References) sowie Nachrichtenlinks (Message Links) wer-
den hier definiert. Jeder Teilnehmer ist mit einem Typ assoziiert sowie die Relationen zwi-
schen verschiedenen Teilnehmern definiert. Die Nachrichtenlinks beschreiben schließlich die

 Seite 24

Verbindung zwischen Kommunikationsaktivitäten in verschiedenen Teilnehmern. (Die Syntax
einer Topology ist in [KOP11b] zu finden.)

3. Participant Grounding:
Alle technischen Aspekte wurden aus den vorhergehenden Artefakten herausgenommen und
werden nun in dem Participant Grounding definiert. Web Service spezifische Port Types,
Operationen sowie XML Schema Typen sind hier spezifiziert. Die Verbindung mit der
WSDL-Definition wird hier realisiert. (Die Syntax eines Grounding ist in [KOP11a] zu fin-
den.)

2.3.1 Beispielchoreographie

Das folgende Beispiel ist [DKLW07] entnommen.

Kunde

Reise
planen

Reisebestel-
lung

übermitteln

Reisebüro

Preis
anfragen

Fluglinie

Preis
abrufen

Preis
anbieten

Fluglinie
auswählen

Tickets
bestellen

Reservierung
durchführen

Bestellung
bestätigen

Reiseplan
erstellen

Reiseplan
ausstellen

eTicket
ausstellen

Daten des
Kunden

<process name="reisebuero"
 targetNamespace="urn:buchung:reisebuero"
 abstractProcessProfile=
 "urn:HPI_IAAS:choreography:profile:2006/12">
 <sequence>
 <receive wsu:id="Erhalt_Reisebestellung"
 createInstance="yes" />
 <forEach wsu:id="Preis_Anfragen_FE" parallel="yes">
 <scope>
 <sequence>
 <invoke wsu:id="Preis_Anfragen" />
 <receive wsu:id="Preis_Erhalten" />
 </sequence>
 </scope>
 </forEach>
 <opaqueActivity name="Fluglinie_Auswaehlen" />
 <invoke wsu:id="Tickets_Bestellen" />
 <receive wsu:id="Erhalt_Bestellungsbestaetigung" />
 <opaqueActivity name="Reiseplan_Erstellen" />
 <invoke wsu:id="Reiseplan_Ausstellen" />
 </sequence>
</process>

Abbildung 2.10 Choreographiebeispiel (vgl. [DKLW07]) Auflistung 2.1 PBD des Reisebüros (vgl. [DKLW07])

<topology name="buchungstopology"
 targetNamespace="urn:buchung"
 xmlns:reisebuero="urn:buchung:reisebuero">
 <participantTypes>
 <participantType name="Reisebuero"
 participantBehaviorDescription="reisebuero:reisebuero" />
 <participantType name="Kunde" ... />
 <participantType name="Fluglinie" ... />
 </participantTypes>
 <participants>
 <participant name="kunde" type="Kunde" selects="reisebuero" />
 <participant name="reisebuero" type="Reisebureo" selects="fluglinien" />
 <participantSet name="fluglinien" type="Fluglinie"
 forEach="reisebuero:Preis_Anfragen_FE">
 <participant name="aktuelleFluglinie"
 forEach="reisebuero:Preis_Anfragen_FE" />
 <participant name="gewaehlteFluglinie" />
 </participantSet>
 </participants>
 <messageLinks>
 <messageLink name="reiseBestellungUebermittelnLink"
 sender="kunde"
 sendActivity="Reisebestellung_Uebermitteln"
 receiver="reisebuero"
 receiveActivity="Erhalt_Reisebestellung"
 messageName="reiseBestellung" />
 <!−− ... −−>
 <messageLink name="ticketsBestellenLink"
 sender="reisebuero"
 sendActivity="TicketsBestellen"
 receiver="gewaehlteFluglinie"
 receiveActivity="Erhalt_Bestellung"
 messageName="ticketBestellung"
 participantRefs="kunde" />
 <messageLink name="eTicketAusstellenLink"
 sender="gewaehlteFluglinie"
 sendActivity="eTicketAusstellen"
 receiver="kunde"
 receiveActivity="Erhalt_eTicket"
 messageName="eTicket" />
 </messageLinks>
</topology>

<grounding topology="top:buchungstopology"
 xmlns:top="urn:buchung" xmlns:...>
 <messageLinks>
 <messageLink name="reiseBestellungUebermittelnLink"
 portType="ag1:reiseBuero_pt"
 operation="getTripRequest" />
 <messageLink name="ticketsBestellenLink"
 portType="lhx:web_pt"
 operation="getOrder" />
 <!−− ... −−>
 </messageLinks>
 <participantRefs>
 <participantRef name="kunde"
 WSDLproperty="msgs:kundeProp" />
 </participantRefs>
</grounding>

 Auflistung 2.2 Participant Topology (vgl. [DKLW07]) Auflistung 2.3 Participant Grounding (vgl. [DKLW07])

Ein Kunde möchte einen Flug buchen und setzt sich hierzu mit einem Reisebüro in Verbindung. Das
Reisebüro kontaktiert daraufhin verschiedene Fluglinien, um angebotene Preise für die vom Kunden
gewünschten Flugdaten zu akquirieren. Nach eingegangenen Antworten der Fluglinien wählt das Rei-
sebüro die für den Kunden günstigste Alternative und bucht mit dessen Daten (Email-Adresse des
Kunden) einen Flug bei der Fluglinie mit den besten Konditionen. Die anderen Fluglinien beenden
nach einer gewissen Zeit das Warten auf eine mögliche Bestellung. Nach Bestätigung der Buchung

 Seite 25

durch die ausgewählte Fluglinie, sendet das Reisebüro dem Kunden einen Reiseplan und die Fluglinie
ein eTicket an Selbigen.
Auflistung 2.1 zeigt die PBD des beteiligten Reisebüros. Alle technischen Details wurden entfernt,
lediglich die kommunizierenden Aktivitäten werden in ihrem Kontrollfluss aufgezeigt. Auch der Vor-
gang des Auswählens der günstigsten Fluglinie sowie das Erzeugen des Reiseplans werden als opake
Aktivitäten dargestellt.
Auflistung 2.2 zeigt die Participant Topology für das Reisebuchungsbeispiel. Im Mittelpunkt dieses
Artefakts stehen die Message Links die miteinander kommunizierende Aktivitäten in verschiedenen
Choreographie Teilnehmern miteinander verbinden. Somit können die strukturellen Aspekte einer
Choreographie genau definiert werden. Auflistung 2.3 zeigt das Participant Grounding für das Beispiel
aus [DKLW07]. In diesem Artefakt werden die technischen Verbindungen zur WSDL definiert, die
dann die Choreographie Web-Service-spezifisch machen. Für den in dieser Diplomarbeit vorgestellten
Konsolidierungsalgorithmus sind vor allem die Message Links aus der Topology von zentraler Bedeu-
tung, da mit ihrer Hilfe die zu verbindenden Aktivitäten der zu konsolidierenden Teilnehmer definiert
werden. Für diese gelten die folgenden Regeln (vgl. [DKLW07]):

I. Nur eine <receive>-Aktivität, ein <onMessage>-Zweig oder eine <invoke>-Aktivität
sind für das receiveActivity-Attribut gültig. Falls eine output-Variable in der <invo-
ke>-Aktivität definiert wird, muss diese <invoke>-Aktivität als receiveActivity in ei-
nem anderen Message Link auftauchen. Angenommen ein Message Link l enthält ein <invo-
ke> i als sendActivity und ein <receive> r als receiveActivity. Falls r nicht mit ei-
ner <reply>-Aktivität y über ein messageExchange-Attribut assoziiert ist, darf das <in-
voke> i nicht als receiveActivity in einem anderen Message Link auftauchen.

II. <reply>- und <invoke>-Aktivitäten sind gültig als sendActivity in einem Message
Link. Nehmen wir i, r und y wie in I. definiert. Der Message Link, der y als sendActivity
enthält muss i als receiveActivity enthalten. Somit kann ein <reply> nur einem syn-
chronen Aufruf eines <invoke> antworten und nicht weiteren <invoke>-oder <receive>-
Aktivitäten oder einem <onMessage>-Zweig.

III. Jede <invoke>- und <reply>-Aktivität ist in genau einem Message Link die sendActivi-
ty. Ausgenommen hiervon sind Aktivitäten, die in eine Kommunikation mit Prozessen oder
Web Services involviert sind, die nicht in der Choreographie definiert sind. Daraus folgt:
Existieren mehrere <receive>-Aktivitäten für die gleiche <invoke>-oder <reply>-
Aktivität (z.B. durch Verzweigung auf der Empfängerseite), so müssen diese alle denselben
Bezeichner haben.

IV. Für jede <receive>-Aktivität und jeden <onMessage>-Zweig gibt es genau einen Message
Link der diese Aktivität bzw. diesen Zweig als receiveActivity enthält. Im Fall von meh-
reren sendenden Aktivitäten für ein <receive> (oder <onMessage>-Zweig) ist eine Menge
von Sendern im Message Link angegeben (senders-Attribut).

V. Falls das senders-Attribut im Message Link definiert ist, muss jeder der dort vorkommen-
den Sender vom gleichen Typ sein.

VI. Falls das senders-Attribut in einem Message Link l definiert ist und die <receive>-
Aktivität r ist mit einer <reply>-Aktivität p über ein messageExchange-Attribut assoziiert,
muss auch bindSenderTo im Link l definiert sein.

VII. Die Typen der Variablen von miteinander kommunizierenden Aktivitäten auf Sender- und
Empfängerseite müssen identisch sein.

 Seite 26

2.4 Allen-Kalkül

Das Allen-Kalkül, auch Allens Intervallalgebra genannt, ist eine Logik zur Repräsentation von zeitli-
chen Zusammenhängen. Sie definiert hierfür 13 Relationen mit denen es möglich ist alle möglichen
Zusammenhänge zwischen zwei Intervallen zu beschreiben (vgl. Abbildung 2.11).

A B

A<B
B>A

AmB
BmiA

A B

A○B
B○iA

B
A

AsB
BsiA

B
A

AfB
BfiA

B
A

AdB
BdiA

B
A

AeB

B
A

Abbildung 2.11 Die 13 Relationen des Allen-Kalküls

Tabelle 2.1 zeigt die Bedeutung der 13 Relationen aus Abbildung 2.11:

Intervallrelation Bedeutung

A<B A findet vor B statt
B>A B findet nach A statt
AmB A trifft B
BmiA B wird von A getroffen (i steht für invers)
A○B A überschneidet sich mit B
B○iA B wird von A überschnitten
AsB A fängt mit B an
BsiA invers zu AsB
AfB A hört mit B auf
BfiA invers zu AfB
AdB B findet während B statt
BdiA invers zu AdB
AeB A ist gleich B.

Tabelle 2.1 Die 13 Intervallrelationen und ihre Bedeutungen

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A1 A2 B1 B2

A1 < R <

A2 > R R

B1 R R <

B2 > R >

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4 AND

A1 A2 B1 B2

A1 < R <

A2 > R R

B1 R R <

B2 > R >

Abbildung 2.12 Vergleich der Kontrollflussrelationen zweier Beispielfragmente dargestellt als Intervallrelationen

Abbildung 2.12 zeigt zwei Beispielfragmente sowie die zugehörigen Intervallrelationen: Die Reihen
der Tabellen stehen für die linke Seite der Relation, die Spalten für die rechte Seite. Die grauen Felder
stehen für die leere Menge ∅ da eine Aktivität keine Intervallrelation zu sich selbst hat. R steht für die
Menge aller Relationen, somit gilt R={<, >, m, mi, ○, ○i, s, si, f, fi, d, di, e}. Aktivität A1 wird vor
Aktivität A2 ausgeführt (A1<A2), jeweils im linken als auch im rechten Fragment. Das gleiche gilt für
die Aktivitäten B1 sowie B2 (B1<B2). Wichtig an diesem Beispiel sind die Relationen zwischen A1
und B2 in beiden Fragmenten: Im linken wird zuerst A1 ausgeführt und nachdem <invoke> s eine
Nachricht an das empfangende <receive> r gesendet hat, wird B2 ausgeführt. Diese Kontrollfluss-
abhängigkeit wird im rechten Fragment durch eine <assign>-Aktivität a simuliert. Durch a wird B2
erst ausgeführt, wenn B1 und a ausgeführt wurden.

 Seite 27

3 Konsolidierung von BPEL4Chor-Choreographien

In diesem Kapitel werden wir das Vorgehen beim Konsolidieren einer BPEL4Chor-Choreographie
genauer erklären und einen Algorithmus hierfür präsentieren. Um zu zeigen, dass der so erzeugte neue
Prozess den gleichen Kontrollfluss, wie die ursprüngliche Choreographie hat, werden wir zunächst ein
Zustandsmodell einführen. Weidlich et. al. zeigen in ihrer Arbeit [WDW07] eine Möglichkeit der
Kompatibilitätsanalyse zwischen BPEL 2.0 Prozessen basierend auf dem π-Kalkül. Wagner et. al.
[WKL12] zeigen dagegen einen Ansatz zur Überprüfung der Konsolidierung von BPEL4Chor-
Choreographien, basierend auf dem Allen-Kalkül [AL83]. Im folgenden Kapitel werden wir den letz-
teren Ansatz verwenden.

3.1 Zustandsmodell für WS-BPEL 2.0 Prozesse sowie Aktivitäten

Der folgende Abschnitt veranschaulicht die möglichen Zustände eines WS-BPEL 2.0 Prozesses sowie
seiner involvierten Aktivitäten. Die hier vorgestellten Zustandsmodelle sind [KHK+11] entnommen.
Die Modelle wurden auf der Apache ODE Engine [AODE11] implementiert. Da Zustandsmodelle
nicht explizit durch die WS-BPEL 2.0 Spezifikation [OAS07] definiert werden, können die Zustände
einzelner BPEL-Engine Implementierungen abweichen. Die vorgestellten Modelle werden in UML
Zustandsdiagrammen [OMG10] dargestellt.
Das Zustandsmodell aus Abschnitt 3 Process State Model [KHK+11] wird hier nicht verwendet, da die
technischen Fähigkeiten einer BPEL-Engine zum Bereitstellen eines BPEL Prozesses oder seine Er-
setzung durch einen neuen für diese Arbeit nicht relevant sind.

3.1.1 Prozess Instanz Zustandsmodell

Abbildung 3.1 zeigt das Prozess Instanz Zustandsmodell, Tabelle 3.1 beschreibt die einzelnen Zustän-
de und ihre Übergangsbedingungen:

Instantiated Running Completing

Exiting

FaultingSuspended

(1) (2)

(4)

(12)

(13)

(11)

(6)(5)

(8)

(3)

(7)

(10)
(9)

Initial

Exited

Completed

Faulted

Abbildung 3.1 Prozess Instanz Zustandsmodell

Zustand Bedeutung Übergang Bedeutung

Initial Der Prozess wurde bereitgestellt und steht zur Instanziie-
rung bereit.

(1) Instanziierende Nachricht erfolgreich
erhalten.

 Seite 28

Instantiated Der Prozess wurde instanziiert. (2) Ausführung der Prozessinstanz hat begonnen.

Running Die Prozessinstanz wird ausge-
führt.

(3) Prozessinstanz wird in den Ruhemodus versetzt.

(5) Auftreten eines nichtbehandelten Fault während der Prozessaus-
führung.

(7) Prozessinstanz wird erfolgreich abgeschlossen.

(9) Prozessinstanz wird beendet. (Hier durch <exit>-Aktivität)

Exiting Die Prozessinstanz wird beendet.
(Hier durch <exit>-Aktivität)

(10) Prozessinstanz wird zur Wiederausführung angeregt.

(11) Prozessinstanz wird in Endzustand versetzt.

Suspended Die Prozessinstanz wurde in den
Ruhemodus versetzt. (Achtung:
Nicht in der WS-BPEL 2.0 Spezi-
fikation [OAS07] definiert.)

(4) Ausführung der Prozessinstanz wird wieder aufgenommen.

Completing Prozessinstanz wird erfolgreich
abgeschlossen.

(8) Prozessinstanz wird zur Wiederausführung angeregt.

(12) Prozessinstanz wird in Endzustand versetzt.

Faulting Ein Fault hat die Grenze der Pro-
zessinstanz erreicht. („root“-
Kontext)

(6) Prozessinstanz wird zur Wiederausführung angeregt.

(13) Prozessinstanz wird in Endzustand versetzt.

Exited Prozessinstanz wurde erfolgreich
beendet. (Hier durch <exit>-
Aktivität)

Completed Prozessinstanz wurde erfolgreich
beendet.

Faulted Prozessinstanz wurde aufgrund
eines Fault beendet.

Tabelle 3.1 Zustände und Übergänge des Prozess Instanz Modells

3.1.2 Aktivitäts-Zustandsmodell

Abbildung 3.2 zeigt das Aktivitäts-Zustandsmodell, Tabelle 3.2 beschreibt die einzelnen Zustände und
ihre Übergangsbedingungen:

Inactive Ready Executing Completing
(1) (3) (7) (10)

Waiting for
Propagation

Request

(2)
(6)

(5)

(12)

(9)

(4)

Initial

Dead Terminated

Completed

Faulted,
Fault Propageded

Faulted,
Fault Not

Propageded

(8)

(11)

(13)
(14)

(15)

Abbildung 3.2 Aktivitäts-Zustandsmodell

 Seite 29

Zustand Bedeutung Übergang Bedeutung

Initial Der initiale Zustand der Aktivität. Der
Übergang von von Initial zu Inactive ist
abhängig von der Implementierung der
BPEL-Engine (vgl. [KHK+11]).

(1) Die Aktivität wird vorbereitet.

Inactive Die Aktivität wird noch nicht ausgeführt,
sondern für die Ausführung vorbereitet.

(2) Dead-Path-Elimination wird angewendet.

(3) Aktivität wird in den Ready-Zustand versetzt.
Dies tritt ein sobald die Aktivität inaktiv ist,
alle eingehenden Links ausgewertet wurden
und die joinCondition=true ist.

(4) joinCondition=false und suppressJoin-
Failure=no.

(5) Prozess wird beendet (hier durch <exit>-
Aktivität) oder umschließende Vateraktivität
hat Fault geworfen.

Ready Die Aktivität steht zur Ausführung bereit. (6) Prozess wird beendet (hier durch <exit>-
Aktivität) oder umschließende Vateraktivität
hat Fault geworfen.

(7) Ausführung der Aktivität wird begonnen.

(8) Aktivität wird übersprungen.

Executing Die Aktivität wird ausgeführt. (9) joinCondition=false und suppressJoin-
Failure=no. Aktivität wirft einen Fault.

(10) Ausführung wird beendet.

(15) Prozess wird beendet (hier durch <exit>-
Aktivität) oder umschließende Vateraktivität
hat Fault geworfen.

Waiting for
Propagation

Request

Die Aktivität wartet auf weitere Anwei-
sungen, ob der Fault an den umschließen-
den Scope weitergereicht oder unter-
drückt (suppress) werden soll. Das
Weiterreichen ist das Standardverhalten
von BPEL.

(13) Den Fault an umschließenden Scope weiterrei-
chen.

(14) Den Fault wird verworfen und nicht an um-
schließenden Scope weitergereicht.

Completing Ausführung der Aktivität wird erfolgreich
abgeschlossen.

(11) Prozess wird beendet (hier durch <exit>-
Aktivität) oder umschließende Vateraktivität
hat Fault geworfen.

(12) Ausführung der Aktivität vollständig abschlie-
ßen und in Endzustand versetzen.

Dead Die Aktivität wurde durch Dead-Path-
Elemination in den Endzustand Dead
versetzt.

Terminated Die Aktivität wurde terminiert.

 Seite 30

Completed Die Ausführung der Aktivität wurde
erfolgreich beendet. In diesem Zustand
werden die ausgehenden Links der Akti-
vität ausgewertet.

Faulted, Fault
Propageded

Die Aktivität hat einen Fault geworfen
und diesen an umschließenden Scope
weitergereicht.

Faulted, Fault
Not Propage-

ded

Die Aktivität hat einen Fault geworfen,
diesen jedoch nicht an den umschließen-
den Scope weitergereicht.

Tabelle 3.2 Zustände und Übergänge des Aktivitäts-Zustandsmodells

3.1.3 <scope>-Aktivitäts-Zustandsmodell

Abbildung 3.3 zeigt das <scope>-Aktivitäts-Zustandsmodell, Tabelle 3.3 beschreibt die einzelnen
Zustände und ihre Übergangsbedingungen. Das <scope>-Aktivitäts-Zustandsmodell ist eine Erweite-
rung des Aktivitäts-Zustandsmodells.

Inactive Ready

Executing

Executing
 without Running
Event Handler(s)

Executing
 with Running

Event Handler(s)

Completing Completed

Compensation
Executing

Termination
Handling

Fault Handling
Waiting for

Propagation
Request

(12)

(16)

(9)

(13)

(14)

(15)

(23)

Initial

Dead

Terminated

Completed with Fault

Faulted,
Fault Propageded

Faulted,
Fault Not Propageded

Finished

Compensated

(1) (3)

(4)

(5)

(6)

(7)
(8)

(10)

(11)

(17)

(18)

(19)

(20)

(21)

(22)

(24)

(25)
(5a)

(5b)

(5c)

(5d)

(2b)

(2a)

Abbildung 3.3 <scope>-Aktivitäts-Zustandsmodell

Zustand Bedeutung Übergang Bedeutung

Initial Der initiale Zustand der Aktivität. Der Übergang von von Initial zu Inactive
ist abhängig von der Implementierung der BPEL-Engine (vgl. [KHK+11]).

(1) Die Aktivität wird
vorbereitet.

 Seite 31

Inactive Die Aktivität wird noch nicht ausgeführt,
sondern für die Ausführung vorbereitet.

(2a) Dead-Path-Elimination wird angewen-
det.

(2b) Prozess wird beendet (hier durch
<exit>-Aktivität).

(3) Aktivität wird in den Ready-Zustand
versetzt. Dies tritt ein sobald die Aktivi-
tät inaktiv ist, alle eingehenden Links
ausgewertet wurden und die joinCon-
dition=true ist.

(4) Prozess wird beendet (hier durch
<exit>-Aktivität) oder umschließende
Vateraktivität hat Fault geworfen. Kon-
trolle wird an <terminationHandler>
weitergereicht.

Ready Die Aktivität steht zur Ausführung bereit. (5) Ausführung der Aktivität wird begon-
nen.

(6) Prozess wird beendet (hier durch
<exit>-Aktivität) oder umschließende
Vateraktivität hat Fault geworfen.

(7) Prozess wird beendet (hier durch
<exit>-Aktivität) oder umschließende
Vateraktivität hat Fault geworfen. Kon-
trolle wird an <terminationHandler>
weitergereicht.

(8) Aktivität wird übersprungen.

Termination Handling Die <scope>-Aktivität führt ihren <ter-
minationHandler> aus.

(9) Aktivität wird terminiert.

Executing Executing
without Run-

ning Event
Handler(s)

Die <scope>-Aktivität wird ausgeführt.
Es sind keine Event Handler installiert.

(5a) Event Handler wird aufgrund eingehen-
der Nachricht installiert.

Executing
with Running
Event Han-

dler(s)

Ein Event Handler wurde durch eingehen-
de Nachricht installiert und wird parallel
zur <scope>-Aktivität ausgeführt.

(5b) Event Handler hat seine Ausführung
beendet.

(5c) Ein weiterer Event Handler wird auf-
grund eingehender Nachricht installiert.

(5d) Event Handler hat seine Ausführung
beendet. Weitere Event Handler werden
noch ausgeführt.

Executing Die <scope>-Aktivität wird ausgeführt. (10) Fault wurde während der Ausführung
einer Kindaktivität geworfen.

(11) Prozess wird beendet (hier durch
<exit>-Aktivität).

(12) Fault wurde während der Ausführung

 Seite 32

einer Kindaktivität geworfen.

(17) Ausführung wird beendet.

Completing Ausführung der Aktivität wird erfolgreich
abgeschlossen.

(18) Fault wurde während der Ausführung
einer Kindaktivität geworfen

(19) Prozess wird beendet (hier durch
<exit>-Aktivität).

(20) Fault wurde während der Ausführung
einer Kindaktivität geworfen.

(21) Ausführung der Aktivität vollständig
abschließen.

Completed Die Ausführung der Aktivität wurde er-
folgreich beendet. In diesem Zustand
werden die ausgehenden Links der Aktivi-
tät ausgewertet.

(22) Prozess wird beendet (hier durch
<exit>-Aktivität).

(23) <compensationHandler> wird aufge-
rufen (z.B. durch <compensateSco-
pe>).

(24) CH wurde nicht aufgerufen und Prozess-
instanz kommt in den Endzustand.

Compensation Executing Die <scope>-Aktivität wird kompensiert. (25) Kompensation wird beendet.

Fault Handling Die <scope>-Aktivität verarbeitet einen
aufgetretenen Fault.

(13) Fault wurde nicht verarbeitet oder wei-
tergereicht.

(16) Fault wurde verarbeitet und nicht wei-
tergereicht.

Waiting for Propagation
Request

Die Aktivität wartet auf weitere Anwei-
sungen, ob der Fault an den umschließen-
den Scope weitergereicht oder unterdrückt
(suppress) werden soll. Das Weiterrei-
chen ist das Standardverhalten von BPEL.

(14) Den Fault an den umschließenden Sco-
pe weiterreichen.

(15) Den Fault wird verworfen und nicht an
umschließenden Scope weitergereicht.

Dead Die Aktivität wurde durch Dead-Path-
Elemination in den Endzustand Dead
versetzt.

Terminated Die Aktivität wurde terminiert.

Finished Die <scope>-Aktivität kann nicht mehr
kompensiert werden. Prozessinstanz hat
Endzustand erreicht.

Compensated Der Scope wurde erfolgreich kompen-
siert.

Completed with Fault Ein Fault wurde in einem <faultHand-
ler> bearbeitet und nicht weitergereicht.

Faulted, Fault Propageded Die Aktivität hat einen Fault geworfen und
diesen an umschließenden Scope weiter-

 Seite 33

gereicht.

Faulted, Fault Not
Propageded

Die Aktivität hat einen Fault geworfen,
diesen jedoch nicht an den umschließen-
den Scope weitergereicht.

Tabelle 3.3 Zustände und Übergänge des <scope>-Aktivitäts-Zustandsmodells

3.1.4 <invoke>-Aktivitäts-Zustandsmodell

Abbildung 3.4 zeigt das <invoke>-Aktivitäts-Zustandsmodell. Die <invoke>-Aktivität kann explizi-
te Fault Handler sowie Compensation Handler definieren. Eine solche <invoke>-Aktivität ist seman-
tisch äquivalent zu einer <scope>-Aktivität, die eine <invoke>-Aktivität enthält [OAS07].

Inactive Ready

Executing

Preparing
Message

Completing Completed

Compensation
Executing

Fault Handling
Waiting for

Propagation
Request

Initial

Dead

Terminated

Completed with Fault

Faulted,
Fault Propageded

Faulted,
Fault Not Propageded

Finished

Compensated

Message
Prepared Invoking

Abbildung 3.4 <invoke>-Aktivitäts-Zustandsmodell

Die in Abbildung 3.4 dargestellten drei neuen Unterzustände innerhalb des Executing-Zustands haben
folgende Bedeutungen:

• Preparing Message:
Die zu versendende Nachricht wird vorbereitet.

• Message Prepared:
Die zu versendende Nachricht steht zum Versandt bereit.

• Invoking:
Der externe Service wird aufgerufen. Im synchronen Fall verbleibt die <invoke>-Aktivität
in diesem Zustand bis die reply-Nachricht erhalten wurde.

 Seite 34

3.1.5 Schleifen-Zustandsmodell

Abbildung 3.5 zeigt das Schleifen-Zustands-Modell für die sequenzielle <forEach>-, die <repeat-
Until>- sowie die <while>-Aktivität:

Inactive Ready

Initial

Executing

Execute Child Activity
and Evaluate Loop

Condition

Waiting for
Decision

Iteration
Complete

Waiting for
Propagation

Request

Completing

Terminated

Completed

Faulted,
Fault Propageded

Faulted,
Fault Not Propageded

Dead

Abbildung 3.5 Schleifen-Zustandsmodell

Die in Abbildung 3.5 dargestellten drei Unterzuständen des Executing-Zustands haben folgende Be-
deutungen:

• Execute Child Activity and Evaluate Loop:
Die Aktivität innerhalb der Schleife wird ausgeführt.

• Waiting for Decision:
Die Schleifen-Aktivität wartet auf das Ergebnis der Auswertung der Abbruchbedingung.

• Iteration Complete:
Die Iteration wurde beendet.

3.1.6 Link-Zustandsmodell

Abbildung 3.6 zeigt das Link-Zustandsmodell, Tabelle 3.4 beschreibt die einzelnen Zustände und ihre
Übergänge:

Initial

Undetermined Ready Evaluated

Waiting for
Propagation

Request

Faulted,
Fault Propageded

Faulted,
Fault Not Propageded

True

False
(4)

(5)

(6)

(7)

(8)
(1) (2) (3)

Abbildung 3.6 Link-Zustandsmodell

 Seite 35

Zustand Bedeutung Übergang Bedeutung

Initial Der Link wurde noch nicht instanziiert. (1) Der Link wird instanziiert.

Undetermined Der Status des Links wurde noch nicht
ausgewertet.

(2) Die Auswertung des Links wird begon-
nen.

Ready Der Link steht zur Auswertung bereit. (3) <transitionCondition> des Links
wird ausgewertet.

(4) Die Auswertung des Links hat zu einem
Fault geführt.

Evaluated Der Link wurde ausgewertet. (7) Der Linkstatus wird auf true gesetzt.

(8) Der Linkstatus wird auf false gesetzt.

Waiting for Propa-
gation Request

Ein Fehler ist während der Auswertung
aufgetreten.

(5) Den Fault an den umschließenden Scope
weiterreichen.

(6) Den Fault wird verworfen und nicht an
umschließenden Scope weitergereicht.

Faulted, Fault
Propageded

Die Auswertung des Links hat einen Fault
geworfen und diesen an den umschließen-
den Scope weitergereicht.

Faulted, Fault Not
Propageded

Die Auswertung des Links hat einen Fault
geworfen und diesen nicht an den um-
schließenden Scope weitergereicht.

True Der Linkstatus ist true.

False Der Linkstatus ist false.

Tabelle 3.4 Zustände und Übergänge des Link-Zustandsmodells

3.2 Formales Vorgehen bei der choreographiebasierten Konsolidierung
von BPEL-Prozessen

Der folgende Abschnitt beschreibt das Vorgehen beim Konsolidieren der BPEL4Chor-Choreographie.

Definition 3.2.1: PBD ist die Menge der in einer BPEL4Chor-Choreographie enthaltenen PBDs (Par-
ticipant Behavior Descriptions). Jede PBD ist durch einen QName eindeutig bezeichnet.

Definition 3.2.2: PT ist die Menge der in einer Topology enthaltenen Participant Types. Jeder Partici-
pant Type ist durch einen NCName eindeutig bezeichnet. Durch das Attribut participantBehavi-
orDescription, das einen QName darstellt, wird die Verbindung zur zugehörigen PBD hergestellt.

Definition 3.2.3: P ist die Menge der in einer Topology enthaltenen Participants sowie Participant
Sets. Jeder Participant sowie jedes Participant Set ist durch einen NCName eindeutig bezeichnet.

 Seite 36

Durch das Attribut type, das einen NCName darstellt, wird die Verbindung zum zugehörigen Partici-
pant Type hergestellt.

Definition 3.2.4: ML ist die Menge der in einer Topology enthaltenen Message Links. Jeder Message
Link ist durch einen NCName eindeutig bezeichnet.

Definition 3.2.5: Als choreographie-intern kommunizierende Aktivitäten bezeichnen wir alle senden-
den und empfangenden Paare von Aktivitäten, die ihre Kommunikation auf die Choreographie be-
schränken.

Die Menge PBD erhalten wir, indem wir die gegebene Choreographie entpacken und die dort enthal-
tenen PBDs als abstrakte BPEL-Prozesse einlesen. Die Mengen PT, P sowie ML erhalten wir durch
Einlesen der Topology-Datei aus der Choreographie.

3.2.1 Anlegen des konsolidierten BPEL-Prozesses

Bevor wir die eigentliche Konsolidierung durchführen, überführen wir zunächst die PBDs der Choreo-
graphie in einen neuen ausführbaren BPEL-Prozess. Hierzu wird ein neuer leerer BPEL-Prozess ange-
legt in den anschließend eine <flow>-Aktivität eingefügt wird. In diese <flow>-Aktivität werden nun
alle PBDs als neue <scope>-Aktivitäten eingefügt, inklusive ihrer Variablen, MessageExchanges,
CorrelationSets (Korrelationsmengen), Event Handler sowie Fault Handler. Wir verwenden hier eine
<flow>-Aktivität um die Parallelität der ursprünglichen Choreographie in den neuen <scope>-Akti-
vitäten beizubehalten. Abbildung 3.61 zeigt dies anhand einiger schematischer Beispielfragmente: Die
Choreographie enthält die drei PBDs PBD1, PBD2 sowie PBD3, die samt ihrer enthaltenen Daten-
sowie Kontrollflusselemente in den neuen Prozess ProcessMerged kopiert werden. Diese kommuni-
zieren über die drei Message Links ml1, ml2 sowie ml3 miteinander. Auflistung 3.0 zeigt die algorith-
mischen Schritte beim Kopieren der PBDs in den neuen ausführbaren Prozess ProcessMerged.

ProcessMerged

PBD1 PBD2 PBD3

Sequence

Receive1

Assign1

Assign2

Flow

Assign1

Reply1 Invoke1

Flow

Assign1

Assign2 Invoke1

Invoke2 Assign3

FH EH

Schritt 1
MergedFlow

ScopePBD3 FH EH

Invoke1

Receive1 Receive1

ScopePBD1

Sequence

Receive1

Assign1

Assign2

Invoke1

ScopePBD2

Flow

Assign1

Reply1 Invoke1

Receive1

Flow

Assign1

Assign2 Invoke1

Invoke2 Assign3

Receive1

ml1

ml2
ml3

name=“ml1“ sender=“PBD1“ receiver=“PBD2“
sendActivity=“Invoke1“ receiveActivity=“Receive1“
messageName=“msg1“

name=“ml2“ sender=“PBD2“ receiver=“PBD1“
sendActivity=“Reply1“ receiveActivity=“Invoke1“
messageName=“msg1“

name=“ml3“ sender=“PBD2“ receiver=“PBD3“
sendActivity=“Invoke1“ receiveActivity=“Receive1“
messageName=“msg2“

Abbildung 3.61 Anlegen des konsolidierten BPEL-Prozesses aus PBDs der ursprünglichen Choreographie (nicht dar-
gestellt sind die Datenelemente Variablen, MessageExchanges sowie CorrelationSets)

Tabelle 3.4b erklärt die in Auflistung 3.0 verwendeten Funktionen:

 Seite 37

Notation Definition

createNewBPELProcess(name) Funktion die einen neuen leeren BPEL Prozess mit dem Namen name
zurückliefert

createNewActivity(actType, actName) Funktion die eine neue Aktivität vom Typ actType und dem Namen
actName zurückliefert

copyMessageExchanges(act1, act2)
Funktion die alle MessageExchanges aus Aktivität act1 nach act2
kopiert (act1 sowie act2 können vom Typ <scope> oder <process>
sein)

copyCorrelationSets(act1, act2)
Funktion die alle CorrelationSets aus Aktivität act1 nach act2
kopiert (act1 sowie act2 können vom Typ <scope> oder <process>
sein)

copyVariables(act1, act2) Funktion die alle Variables aus Aktivität act1 nach act2 kopiert
(act1 sowie act2 können vom Typ <scope> oder <process> sein)

copyFaultHandlers(act1, act2) Funktion die alle FHs aus Aktivität act1 nach act2 kopiert (act1 sowie
act2 können vom Typ <scope> oder <process> sein)

copyEventHandlers(act1, act2) Funktion die alle EHs aus Aktivität act1 nach act2 kopiert (act1 sowie
act2 können vom Typ <scope> oder <process> sein)

copyActivity(act1, act2) Funktion die Aktivität act1 sowie alle Subaktivitäten nach act2 kopiert

createNPCatchAllFH(act)
Funktion die neuen <catchAll>-Fault Handler in Aktivität act anlegt,
der nur eine <compensate>-Aktivität enthält (NP steht für „Non-
Propagating“ vgl. Abschnitt 3.2.1.1)

hasCatchAllFH(act) Funktion die überprüft ob Aktivität act einen <catchAll>-Fault
Handler definiert

Tabelle 3.4b Notation für Funktionen und Mengen des Konsolidierungs-Algorithmus

Auflistung 3.0 Kopieren der PBDs in neue <scope>-Aktivitäten des neuen BPEL-Prozesses

(1) MergedProcess = CreateNewBPELProcess(„ProcessMerged“)

 // Erzeuge neuen leeren BPEL Prozess

(2) MergedProcess.setActivity(CreateNewActivity(<flow>, „MergedFlow“))

 // Erzeuge neue <flow>-Aktivität mit dem Namen „MergedFlow“

(3) foreach (pbd in PBD) do

(4) newScope = CreateNewActivity(<scope>, „Scope“+pbd.name) // Lege neue <scope>-Aktivität an

(5) copyMessageExchanges(pbd, newScope) // Kopiere MessageExchanges aus pbd in neue

 // <scope>-Aktivität

(6) copyCorrelationSets(pbd, newScope) // Kopiere CorrelationSets aus pbd in neue <scope>-Aktivität

(7) copyVariables(pbd, newScope) // Kopiere Variablen aus pbd in neue <scope>-Aktivität

(8) copyFaultHandlers(pbd, newScope) // Kopiere FaultHandler aus pbd in neue <scope>-Aktivität

(9) if (not hasCatchAllFaultHandler(pbd)) // Falls pbd keine <catchAll>-Fault Handler hat

(10) createNPCatchAllFH(newScope) // Lege neuen „Non-Propagating“-<catchAll>-FH an

(11) fi

(12) copyEventHandler(pbd, newScope) // Kopiere EventHandler aus pbd in neue <scope>-Aktivität

(13) copyActivity(pbd, newScope) // Kopiere Aktivität (und alle Subaktivitäten) aus pbd in neue

 // <scope>-Aktivität

(14) MergedProcess.getActivity().add(newScope) // Füge neue <scope>-Aktivität in <flow>-Aktivität ein

(15) od

 Seite 38

Da es sich bei den PBDs um abstrakte BPEL-Prozesse handelt und technische Eigenschaften, wie bei-
spielsweise die PartnerLinks nicht in den kommunizierenden Aktivitäten enthalten sind, müssen
diese nach der Generierung des Kontroll- sowie Datenflusses in den neuen ausführbaren BPEL-
Prozess aus der Grounding-Datei übernommen werden (vgl. Abschnitt 3.4). Doch zunächst folgt in
den nächsten beiden Abschnitten die Beschreibung der Generierung des Daten- sowie Kontrollflusses
aus den Message Links.

3.2.1.1 Übernehmen der Fault Handler in konsolidierten Prozess

Beim Übertragen der ursprünglichen PBDs in den neuen konsolidierten Prozess in Form neuer <sco-
pe>-Aktivitäten müssen wir darauf achten, dass mögliche nicht gefangene Faults aus den <scope>-
Aktivitäten nicht in den Prozessscope durchdringen, da diese den Ablauf des gesamten Prozesses
beinflussen können (Zeile 9-11 Auflistung 3.0). Diese hätte eine veränderte Ausführungssemantik des
konsolidierten Prozesses um Vergleich zur ursprünglichen Choreographie zur Folge.

ProcessMerged

MergedFlow

ScopePBD3 FH EHScopePBD1

Sequence

Receive1

Assign1

Assign2

Invoke1

ScopePBD2

Flow

Assign1

Reply1 Invoke1

Receive1

Flow

Assign1

Assign2 Invoke1

Invoke2 Assign3

Receive1

ProcessMerged

MergedFlow

ScopePBD3 FH EHScopePBD1

Sequence

Receive1

Assign1

Assign2

Invoke1

ScopePBD2

Flow

Assign1

Reply1 Invoke1

Receive1

Flow

Assign1

Assign2 Invoke1

Invoke2 Assign3

Receive1

Eingang Msg

ScopePBD2 erhält Nach-
richt und instanziiert Pro-
cessMerged.

Fault in
 Assign1

ProcessMerged

MergedFlow

ScopePBD3 FH EHScopePBD1

Sequence

Receive1

Assign1

Assign2

Invoke1

ScopePBD2

Flow

Assign1

Reply1 Invoke1

Receive1

Flow

Assign1

Assign2 Invoke1

Invoke2 Assign3

Receive1 Fault wird
weitergeleitet

Fault wirkt sich auf gesam-
ten ProcessMerged aus.

ProcessMerged

MergedFlow

ScopePBD3 FH EHScopePBD1

Sequence

Receive1

Assign1

Assign2

Invoke1

ScopePBD2

Flow

Assign1

Reply1 Invoke1

Receive1

Flow

Assign1

Assign2 Invoke1

Invoke2 Assign3

Receive1

<compensate>

Abbildung 3.61b Verändertes Fehlerverhalten in konsolidiertem Prozess durch nicht gefangenen Fault

Abbildung 3.61b skizziert das Problem der nicht gefangenen Faults: Nachdem die drei PBDs PBD1,
PBD2 und PBD3 in die <scope>-Aktivitäten ScopePBD1, ScopePBD2 sowie ScopePBD3 des kon-
solidierten Prozesses ProcessMerged kopiert wurden, erhält ScopePBD2 eine Nachricht und instanzi-
iert den Prozess. Anschließend tritt ein Fehler in der <assign>-Aktivität Assign1 auf und ein Fault
wird ausgelöst. In PBD2 würde dieser Fehler lediglich bis zum Prozessscope gelangen und dort den
Prozess terminieren, falls er nicht zuvor aufgefangen wurde. Im konsoldierten Prozess dagegen wirkt
sich ein solcher möglicher Fehler auf den gesamten Prozessscope von ProcessMerged aus und termi-
niert im ungünstigsten Fall auch die beiden anderen <scope>-Aktivitäten ScopePBD1 sowie Scope-
PBD2. Um einem solchen veränderten Fehlerverhalten entgegenzuwirken, werden die zu konsolidie-
renden PBDs der Choreographie auf <catchAll>-Zweige in den Fault Handlern untersucht, die jeden
nicht in einem separaten <catch>-Zweig definierten Fault auffangen. Existieren solche Zweige
bereits müssen keine Änderungen vorgenommen werden, andernfalls wird in die neue <scope>-Akti-

 Seite 39

vität ein neuer <catchAll>-Handler hinzugefügt, der lediglich eine <compensate>-Aktivität und
keine <rethrow>-Aktivität enthält (vgl. [OAS07] Abschnitt 12.5.1 Default FCT-Handlers).

FH <catchAll> <catchAll>
 <compensate />
</catchAll>

Compensate XML-Syntax

FH <catchAll>

Compensate

Rethrow

Abbildung 3.61c Ein <catchAll>-Fault Handler mit einer <compensate>-Aktivität sowie die entsprechende XML-
Syntax

3.2.2 Generierung des Kontrollflusses

Die grundlegende Idee zur Generierung des expliziten Kontrollflusses im konsolidierten Prozess
basieren auf der Überlegung den ehemaligen Nachrichtenfluss zwischen den Teilnehmern der Choreo-
graphie mit Hilfe des Austauschs der nachrichtenversendenden- bzw. empfangenden Aktivitäten durch
Synchronisationsaktivitäten zu emulieren. Wir werden hierzu <assign>- sowie <empty>-Aktivitäten
verwenden. Der folgende Abschnitt beschreibt das korrekte Einbinden dieser Aktivitäten in den
Kontrollfluss und der Abschnitt 3.2.2 zeigt welche Daten durch die neuen <assign>-Aktivitäten ko-
piert werden.

Zuerst werden wir einige grundsätzliche Funktionen und Mengen definieren (vgl. Tabelle 3.5), deren
genaue Implementierungen im Kapitel 4 gezeigt werden.

Notation Definition

null Steht für die leere Menge ∅
pbd(name) Funktion die aus der Menge PBD die PBD mit dem QName name liefert
var(x,name) Funktion die aus der PBD mit dem Namen name die Variable x liefert
out(a) Funktion die zu einer gegebenen Aktivität a die Menge aller ausgehenden Links liefert
in(a) Funktion die zu einer gegebenen Aktivität a die Menge aller eingehenden Links liefert

tc(l,a) Funktion die zu einem gegebenen ausgehenden Link l einer Aktivität a die
transitionCondition liefert

jc(a) Funktion die zu einer gegebenen Aktivität a die joinCondition liefert

prel(a) Funktion die zu einer gegebenen Aktivität a die Menge aller Vorgängeraktivitäten
zurückliefert, die mit dieser über die eingehenden Links verbunden sind

succl(a) Funktion die zu einer gegebenen Aktivität a die Menge aller Nachfolgeraktivitäten
zurückliefert, die mit dieser über die ausgehenden Links verbunden sind

pre(a)
Funktion die zu einer gegebenen Aktivität a die Menge der Vorgängeraktivitäten
zurückliefert, die nicht per eingehende Links mit dieser verbunden sind, jedoch vor
Beginn von a beendet sein müssen

succ(a)
Funktion die zu einer gegebenen Aktivität a die Menge der Nachfolgeraktivitäten
zurückliefert, die nicht per ausgehende Links mit dieser verbunden sind, jedoch nach
dem Beenden von a ausgeführt werden

typeof(a)

Funktion die zu einer gegebenen Aktivität a deren Aktivitätstyp zurückliefert (mögliche
Aktivitätstypen sind hier: <invoke>, <receive>, <reply>, <assign>,
<validate>, <throw>, <wait>, <empty>, <exit>, <extensionActivity>,
<rethrow>, <compensate>, <compensateScope>, <sequence>, <if>, <while>,
<repeatUntil>, <pick>, <flow>, <forEach>, <scope>, <process>)

par(a)

Funktion die zu einer gegebenen Aktivität a die umgebende Aktivität zurückliefert
(Mögliche Typen sind hier: <scope>, <flow>, <sequence>, <if>, <while>,
<repeatUntil>, <pick>, <forEach>, CompensationHandler (CH),
TerminationHandler (TH), EventHandler (EH), FaultHandler (FH), <process>)

getSendActivity(ml) Funktion die zu einem gegebenen Message Link ml aus der Menge ML die senden-de
Aktivität liefert

 Seite 40

getReceiveActivity(ml) Funktion die zu einem gegebenen Message Link ml aus der Menge ML die empfangen-
de Aktivität liefert

isInvokeAsync(inv) Funktion die zu einer gegebenen <invoke>-Aktivität inv prüft, ob diese asynchron
kommuniziert (sie definiert nur die inputVariable)

isInvokeSync(inv) Funktion die zu einer gegebenen <invoke>-Aktivität inv prüft, ob diese synchron
kommuniziert (sie definiert input- als auch outputVariable)

createSource(l,a) Funktion die zu einem gegebenen Link l und einer gegebenen Aktivität a in a eine neue
<source> für diesen Link anlegt

createTarget(l,a) Funktion die zu einem gegebenen Link l und einer gegebenen Aktivität a in a einen
neuen <target> für diesen Link anlegt

connector(a,b) Funktion die zu zwei gegebenen Aktivitäten a und b den von a ausgehenden und in b
eingehenden Link zurückliefert

setJC(act, jc) Funktion die in der gegebenen Aktivität act die <joinCondition> jc setzt

replaceVar(v1, v2, a) Funktion die alle Vorkommen der Variable v1 durch v2 in Aktivität a und allen Nachfol-
geraktivitäten ersetzt.

Tabelle 3.5 Notation für Funktionen und Mengen des Konsolidierungs-Algorithmus (Erweiterungen)

Auflistung 3.1 Pseudocode für Merge-Algorithmus

Anmerkungen zum Pseudocode aus Auflistung 3.1:
(1): Falls s eine <reply>-Aktivität ist, überspringe den Message Link ml: Der Message Link ml be-
zieht sich auf eine <reply>-Aktivität einer synchronen <invoke>-Aktivität (vgl. Abschnitt 2.3.1
Regel II. der Message Links), die zwei Message Links mit letzterer verbindet. Ein Message Link ent-
hält hierbei die <invoke>-Aktivität als sendende Aktivität und der hier gefundene selbige als emp-
fangende. Die <invoke>-Aktivität wird nur dann behandelt, wenn sie als sendende Aktivität definiert
wurde.
(2): Falls s eine asynchrone <invoke>-Aktivität ist, diese also nur die inputVariable definiert,
liegt ein asynchrones Kommunikationsmuster vor. Für diesen Fall werden wir nun zwei Konsolidie-
rungsvarianten vorstellen.

Variante 1: Wir entfernen s und r und fügen eine neue <assign>-Aktivität a ein. Die eingehenden
Links von s werden zu den eingehenden Links von a (vgl. Abbildung 3.7). Die Menge der eingehen-

(1) foreach (ml in ML) do

(2) s = getSendActivity(ml) // sendenden Aktivität

(3) r = getReceiveActivity(ml) // empfangende Aktivität

(4) if (typeof(s) == <reply>) // (1)

(5) continue // fahre mit nächstem Message Link fort

(6) fi

(7) if (typeof(s) == <invoke> && isInvokeAsync(s)) // Wir haben einen asynchronen <invoke>-Aufruf

(8) asyncMerge(s, r) // (2)

(9) fi

(10) if (typeof(s) == <invoke> && isInvokeSync(s)) // Wir haben einen synchronen <invoke>-Aufruf

(11) syncMerge(s, r) // (3)

(12) fi

(13)od

 Seite 41

den Links von r wird zu der Menge der eingehenden Links der Nachfolgeaktivitäten von r (hier B2)
hinzugefügt. Die Menge der ausgehenden Links von s und r wird zur Menge der ausgehenden Links
von a. Die joinConditions der Nachfolgeaktivitäten von r sind die Konjunktion der zuvor in r ein-
gehenden Links (hier l3) sowie der aus r ausgehenden und in diese Aktivitäten eingehenden Links
(hier l4). Auflistung 3.2 zeigt den Pseudocode für die asyncMerge-Methode.

A1

Invoke
s

A2

B1

Receive
r

B2

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4

l1

l2

l3

l4 AND

ml

 Abbildung 3.7 Asynchrone Konsolidierung Variante 1

 Auflistung 3.2 Pseudocode asyncMerge-Methode Variante 1

Variante 1 verwendet hier nur eine <assign>-Aktivität und verzichtet auf eine synchronisierende
<empty>-Aktivität auf der Empfängerseite. Wir wollen kurz anhand des Allen-Kalküls [AL83] zei-
gen, dass der Kontrollfluss der ursprünglichen simplen Beispielchoreographie aus Abbildung 3.7 er-
halten bleibt und anschließend auf die Problematik eingehen, die mit dieser Variante einhergeht.
Abbildung 3.9 zeigt die Intervallrelationen vor und nach der Anwendung der Variante 1 des Konsoli-

(1) asyncMerge(s, r)

(2) begin

(3) a = createNewActivity(<assign>, „a”) // Erzeuge neue <assign>-Aktivität a

(4) succsR = succl(r) + succ(r)

(5) foreach (act in succsR) do

(6) inActFromR = connector(r,act)

(7) foreach (l in in(r)) do

(8) createTarget(l, act)

(9) setJC(act, (l AND inActFromR) + (jc(act) != null ? OR jc(act) : null))

 // Setze joinConditions

(10) od

(12) od

(13) foreach (l in in(s)) do

(14) createTarget(l, a)

(15) od

(16) foreach (l in out(s)) do

(17) createSource(l, a)

(18) od

(19) foreach (l in out(r)) do

(20) createSource(l, a)

(21) od

(22) remove(s) // Entferne s

(23) remove(r) // Entferne r
(24)end

 Seite 42

dierungsalgorithmus für asynchrone <invoke>-Aktivitäten. Da die beiden Tabellen gleich sind, bleibt
der Kontrollfluss der ursprünglichen Choroegraphiefragmente in diesem simplen Beispiel erhalten.

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A1 A2 B1 B2

A1 < R <

A2 > R R

B1 R R <

B2 > R >

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4 AND

A1 A2 B1 B2

A1 < R <

A2 > R R

B1 R R <

B2 > R >

Abbildung 3.9 AsyncMerge Variante 1: Die Beispielfragmente aus Variante 1 sowie die dazugehörige Intervallrelationen
vor und nach der Konsolidierung.

In der ursprünglichen Choreographie wird auf der sendenden Seite zuerst A1 ausgefürt und anschlie-
ßend <invoke> s und dann A2. Auf der Empfängerseite wird zuerst B1 ausgeführt und nach dem Er-
halt der Nachricht in <receive> r B2. Im konsolidierten Fragment der rechten Seite bleibt diese Kon-
trollflussabhängigkeit erhalten: Zuerst wird A1 ausgeführt und anschließend <assign> a und dann
A2. B2 wird erst ausgeführt nachdem B1 und a ausgeführt wurden.
Wir haben jetzt jedoch ein etwas komplexeres Beispiel, bei dem es mit der vorherigen Variante zu
Problemen bzw. Änderungen des Kontrollflusses kommt.

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A3

l5

A4

l6

A5

l7

B3

B4

l8

l9

Assign
a

A1A3 A4

l5
l1

l6

A2A5

l2l7

B1 B3

B2 B4

l4

l9

l3

l8l3n
l8n

Jc(B2) = (l4 AND (l3 OR l8))
Jc(B4) = (l9 AND (l3n OR l8n))

 Abbildung 3.10 AsyncMerge Variante 1 Beispiel 2

Abbildung 3.10 zeigt ein erweitertes Beispiel für die Variante 1 des asynchronen Konsolidierungsalgo-
rithmus. Im Gegensatz zum ersten simplen Beispiel müssen hier weitere Links hinzugefügt werden um
die ehemals in die empfangende Aktivität r eingehenden Links für ihre Nachfolgeaktivitäten zur Ver-
fügung zu stellen (die Links l3n sowie l8n). Je mehr Nachfolgeaktivitäten r besitzt, umso mehr neue
Verlinkungen müssen hergestellt und die entsprechenden joinConditions angepasst werden (vgl.
Abbildung 3.11).

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A3

l5

A4

l6

A5

l7

B3

B4

l8

l9

Assign
a

A1A3 A4

l5
l1

l6

A2A5

l2l7

B1 B3

B2 B4

l4

l9

l3
l8

l3n

l8n

Jc(B2) = (l4 AND (l3 OR l8))
Jc(B4) = (l9 AND (l3n OR l8n))
Jc(B5) = (l10 AND (l3n3 OR l8n2))

B5

l10

B5

l10

l3n2

l8n2

 Abbildung 3.11 Vervielfachung der Links

 Seite 43

A1

Invoke
s

A2

B1

Receive
r

B2

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4

l1

l2

l3

l4 AND

ml

r.suppressJoinFailure = no
B2.suppressJoinFailure = yes

B2.suppressJoinFailure = yes

Ausführung

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

r.suppressJoinFailure = no
B2.suppressJoinFailure = yes

joinCondition=false

bpel:joinFailure

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4 AND

B2.suppressJoinFailure = yes

joinCondition=false

Dead-Path-Elimination

 Abbildung 3.12 Veränderter Kontrollfluss bei Variante 1

Das eigentliche Problem stellt jedoch der hier veränderte Kontrollfluss dar, wenn wir uns das Attribut
suppressJoinFailure anschauen: Angenommen die <receive>-Aktivität r aus dem ersten Bei-
spiel aus Abbildung 3.7 hat das Attribut suppressJoinFailure auf „no“ gesetzt. Das Vorgehen
zum Evaluieren der von Aktivität B1 ausgehenden und in Aktivität r eingehenden Links sieht folgen-
dermaßen aus (vgl. WS-BPEL 2.0 Spezifikation [OAS07] Abschnitt 11.6.2 Link Semantics):

1. Sobald Aktivität B1 beendet und kein Fault an den umschließenden Scope weitergereicht
wurde, werden die transitionConditions der ausgehenden Links evaluiert. Dies ist der
Übergang aus dem Completing-Zustand zum Completed-Zustand des Aktivitäts-
Zustandsmodells aus Abschnitt 3.1.2. Nun werden die ausgehenden Links (hier l3) instanziiert
und evaluiert. Wird keine explizite transitionCondition angegeben, so wird der Link zu
true evaluiert (dargestellt durch den Übergang von Undetermined → Ready → Evaluated
aus dem Link-Zustandsmodell Abschnitt 3.1.6).

2. Für jede Aktivität, die eingehende Links von B1 hat (hier r) wird überprüft, ob diese Aktivität
für die Ausführung bereitsteht. Dies wird durch den Zustandsübergang von Initial → Inactive
im Aktivitäts-Zustandsmodell dargestellt. Trifft dies zu, so wird die joinCondition von r
ausgewertet. Ist das Ergebnis true so wird r ausgeführt (dargestellt durch den Übergang
Inactive → Ready → Executing im Aktivitäts-Zustandsmodell). Bei einer Auswertung zu
false wird jedoch ein bpel:joinFailure-Fault geworfen, da wir das Attribut suppress-
JoinFailure auf „no“ gesetzt haben und somit keine Dead-Path-Elimination durchgeführt
wird (dargestellt durch den Übergang Executing → Waiting For Propagation Request).

Wenden wir jetzt unsere Variante 1 der Konsolidierung an, so wird der Kontrollfluss verändert. Dies
veranschaulicht Abbildung 3.12.
Ein naiver Lösungsansatz für dieses Problem wäre das Attribut suppressJoinFailure der Nach-
folgeraktivitäten von r auf „no“ zu setzen, doch auch dies führt zu einer Veränderung des Kontroll-

 Seite 44

flusses, wenn z.B. die Nachfolgeraktivitäten noch andere Vorgängeraktivitäten haben. Abbildung 3.13
veranschaulicht diesen Sachverhalt:

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

r.suppressJoinFailure = no
B2.suppressJoinFailure = yes

B3

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4 AND

B2.suppressJoinFailure = no
Jc(B2)=(l3 AND l3) OR l5

B3

l5

l5

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

r.suppressJoinFailure = no
B2.suppressJoinFailure = yes

B3

l5

joinCondition=false

Dead-Path-Elimination

A1

A2

B1

B2

Assign
a

l1

l2

l3

l4 AND

B2.suppressJoinFailure = no
Jc(B2)=(l3 AND l3) OR l5

B3

l5

joinCondition=false

bpel:joinFailure

Ausführung

Abbildung 3.13 Propagieren des suppressJoinFailure-Attribut-Wertes an Nachfolgeaktivitäten von r

Um die zuvor beschriebenen Probleme der Konsolidierung der Variante 1 zu vermeiden werden wir
jetzt die zweite Variante vorstellen:

Variante 2: Wir entfernen s und r und fügen eine neue <assign>-Aktivität a sowie eine neue <emp-
ty>-Aktivität b auf der empfangenden Seite ein. Die eingehenden Links von s werden zu den eingeh-
enden Links von a. Die ausgehenden Links von s werden zu den ausgehenden Links von a. Entsprech-
endes gilt für die Empfängerseite: Die eingehenden Links von r werden zu den eingehenden Links
von b und die ausgehenden von r zu den ausgehenden von b. Abbildung 3.14 zeigt dies an einem
simplen Beispiel. Um den Kontrollfluss der beiden Fragmente herzustellen, fügen wir einen neuen
Link (hier l5) ausgehend von a und eingehend in b ein. Die joinCondition von b ist die Konjunk-
tion der eingehenden Links l3 und l5 für den Fall, dass noch keine joinCondition gesetzt wurde. Ist
bereits eine joinCondition vorhanden, so wird diese per Konjunktion mit dem neuen Link l5 kom-
biniert (vgl. Abschnitt 3.2.2.1.2 <targets> und ihre <joinCondition>). Mit dieser Variante ent-
fällt die Vervielfachung der Links in den Nachfolgeaktivitäten von r, wie sie bei der Variante 1 auf-
tritt. Auch das Problem des veränderten Kontrollflusses durch das Propagieren des suppressJoin-
Failure-Attributs entfällt, da die neue <empty>-Aktivität b dessen Wert nun von der ursprünglichen
<receive>-Aktivität r übernimmt.

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A1

Assign
a

A2

B1

Empty
b

B2

l1

l2

l3

l4

l5 AND

Abbildung 3.14 Asynchrone Konsolidierung Variante 2

 Seite 45

Auflistung 3.3 Pseudocode asyncMerge-Methode Variante 2

Auflistung 3.3 zeigt den Pseudocode für die Variante 2 des asynchronen Konsolidierungsalgorithmus.
Hierzu sei angemerkt, dass dieser nur einen ersten Überblick über die nötigen Schritte geben soll und
noch nicht vollständig ist. Wir werden ihn im Verlauf des Kapitels vervollständigen und besonders das
genaue Definieren der neuen joinConditions sowie auf den Einfluss der umschließenden Aktivi-
täten und Gültigkeitsbereiche der sendenden und empfangenden Aktivitäten eingehen. Zusätzlich wird
das Behandeln der CorrelationSets beim Konsolidieren gezeigt (vgl. Abschnitt 3.2.3.2).
Abbildung 3.15 zeigt die Intervallrelationen vor und nach der Anwendung der Variante 2 des Konsoli-
dierungsalgorithmus für asynchrone <invoke>-Aktivitäten. Die Kontrollflussrelation in der ursprüng-
lichen Situation auf der linken Seite ist identisch mit der in Abbildung 3.9. Durch das Hinzufügen der
<empty>-Aktivität b im konsolidierten Prozess wird die empfangende <receive>-Aktivität r emu-
liert und der Wert des suppressJoinFailure-Attributs dieser in b übernommen.

A1 A2 B1 B2

A1 < R <

A2 > R R

B1 R R <

B2 > R >

A1 A2 B1 B2

A1 < R <

A2 > R R

B1 R R <

B2 > R >

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A1

Assign
a

A2

B1

Empty
b

B2

l1

l2

l3

l4

l5 AND

Abbildung 3.15 AsyncMerge Variante 2: Die Beispielfragmente aus Variante 2 sowie die dazugehörige Intervallrelationen
vor und nach der Konsolidierung.

(1) asyncMerge(s, r)

(2) begin

(3) a = createNewActivity(<assign>, „a“) // Erzeuge neue <assign>-Aktivität

(4) b = createNewActivity(<empty>, „b“) // Erzeuge neue <empty>-Aktivität

(5) foreach (l in in(s)) do

(6) createTarget(l, a)

(7) od

(8) foreach (l in out(s)) do

(9) createSource(l, a)

(10) od

(11) foreach (l in in(r)) do

(12) createTarget(l, b)

(13) od

(14) foreach (l in out(r)) do

(15) createSource(l, b)

(16) od
(17) nl = new Link()

(18) createSource(nl, a)

(19) createTarget(nl, b)

(20) setJC(b,(nl AND jc(r))) // Setze joinCondition

(21) remove(r) // Entferne r

(22) remove(s) // Entferne s

(23) end

 Seite 46

Nun werden wir den Algorithmus aus Auflistung 3.1 für das Konsolidieren einer synchronen <in-
voke>-Aktivität zeigen:
(3): Falls s eine synchrone <invoke>-Aktivität ist, diese also input- als auch outputVariable de-
finiert, existiert eine zusätzlicher Link ml‘ für die zugehörige <reply>-Aktivität. In diesem Link ist s
die empfangende Aktivität und eine <reply>-Aktivität y die sendende (vgl. Abschnitt 2.3.1 Regel II.
der Message Links). Somit liegt ein synchrones Kommunikationsmuster vor. Für diesen Fall werden
wir nun ebenfalls zwei Konsolidierungsvarianten vorstellen.

A1

Invoke
s

A2

B1

Receive
r

B2

Reply
y

B3

ml

m
l‘

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1

l2

l3

l4

l5

l6

l1 l3

l4

l5

l6l2

 Abbildung 3.16 Synchrone Konsolidierung Variante 1

Variante 1: Eine neue <assign>-Aktivität a wird hinzugefügt und s, r und y werden entfernt. Wie in
Abbildung 3.16 gezeigt, wird die <reply>-Aktivität y durch eine neue <assign>-Aktivität a‘ ersetzt.
Analog zum asynchronen Fall, wird die Menge der eingehenden Links und die entsprechenden join-
Conditions von s und r in einer Konjunktion zu a hinzugefügt. Die ausgehenden Links müssen je-
doch anders als im asynchronen Fall bearbeitet werden: Die <receive>-Aktivität r wird beendet so-
bald die Nachricht der <invoke>-Aktivität s empfangen wurde. Somit werden die ausgehenden Links
von r zu den ausgehenden Links von a. Die <invoke>-Aktivität s wird beendet sobald die Nachricht
der <reply>-Aktivität y empfangen wurde, daher werden die ausgehenden Links von s und y zu den
ausgehenden Links von a‘ hinzugefügt. Die eingehenden Links von y werden zu den eingehenden
Links von a‘.

Notation Definition

findReplyML(inv,pbd)
Funktion die zu einer gegebenen <invoke>-Aktivität inv und einer gegebenen PBD
pbd den Message Link aus der Menge ML liefert, in dem inv die empfangende Aktivität
ist und pbd die sendende PBD zu dieser

getPBD(a) Funktion die zu einer gegebenen Aktivität a die PBD liefert in der diese Aktivität
enthalten ist

 Tabelle 3.6 Notation für Funktionen und Mengen des Konsolidierungs-Algorithmus (Erweiterungen)

(1) syncMerge(s, r)

(2) begin

(3) a = createNewActivity(<assign>, „a“) // Erzeuge neue <assign>-Aktivität a

(4) a’ = createNewActivity(<assign>, „a’“) // Erzeuge neue <assign>-Aktivität a‘

(5) replyML = findReplyML(s, getPBD(r))

(6) y = getSendActivity(replyML)

(7) foreach (l in in(r)) do

(8) createTarget(l, a)

(9) od

 Seite 47

Auflistung 3.4 Pseudocode syncMerge-Methode Variante 1

Auflistung 3.4 zeigt den Pseudocode für die Variante 1 des synchronen Konsolidierungsalgorithmus.
Wir wollen nun zeigen, dass der Kontrollfluss der ursprünglichen Choreographiefragmente gleich dem
des neuen Prozessmodell ist. Hierfür verwenden wir wieder die bekannten Intervallrelationen (vgl.
Abbildung 3.17). In den Fragmenten der ursprünglichen Choreographie auf der linken Seite wird zu-
erst A1 ausgeführt und anschließend <invoke> s. Im Gegensatz zum asynchronen Fall wird der Kon-
trollfluss vor A2 nun blockiert bis die Anwortnachricht von <reply> y erhalten wurde. Im konsoli-
dierten Fragment auf der rechten Seite emulieren wird die Kontrollflussabhängigkeit zwischen A1,
<invoke> s sowie <receive> r durch eine <assign>-Aktivität a. B2 wird erst ausgeführt, wenn A1,
B1 sowie a ausgeführt wurden. y wird durch eine weitere <assign>-Aktivität a‘ ersetzt nach deren
Beendigung der Kontrollfluss, wie in der ursprünglichen Choreographie, in A2 und B3 fortgesetzt
wird.

A1

Invoke
s

A2

B1

Receive
r

B2

Reply
y

B3

ml

m
l‘

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1

l2

l3

l4

l5

l6

l1 l3

l4

l5

l6l2

A1 A2 B1 B2

A1 < R <

A2 > > >

B1 R < <

B2 > < >

B3

<

R

<

<

B3 > R > >

A1 A2 B1 B2

A1 < R <

A2 > > >

B1 R < <

B2 > < >

B3

<

R

<

<

B3 > R > >

Abbildung 3.17 SyncMerge Variante 1: Die Beispielfragmente aus Variante 1 sowie die dazugehörige Intervallrelationen
vor und nach der Konsolidierung. Die Reihen der Tabellen stehen für die linke Seite der Relation, die Spalten für die rechte
Seite. „<“ sowie „>“ stehen für die zeitlichen Relationen „vor“ bzw. „nach“ (vgl. Abbildung 3.8). „R“ steht für alle mög-
lichen Relationen (<, >, m,mi, ○, ○i, s, si, f, fi, d, di, e).

Bei dieser Variante tritt ein ähnliches Problem, wie auch schon bei der Variante 1 der asynchronen
Konsolidierung auf: Wir verschmelzen hier die beiden kommunizierenden Aktivitäten s und r zu einer
neuen <assign>-Aktivität a. Angenommen s hat das suppressJoinFailure-Attribut auf „yes“

(10) foreach (l in in(s)) do

(11) createTarget(l, a)

(12) od

(13) foreach (l in in(a)) do

(14) setJC(a, (l + (jc(a) != null ? AND jc(a) : null))) // Setze joinCondition von a

(15) od

(16) foreach (l in out(s)) do

(17) createSource(l, a’)

(18) od

(19) foreach (l in out(y)) do

(20) createSource(l, a’)

(21) od

(22) setJC(a’, jc(y)) // joinCondition von y nach a’ übernehmen

(23) remove(s) // Entferne s

(24) remove(r) // Entferne r

(25) remove(y) // Entferne y

(26) end

 Seite 48

gesetzt r jedoch auf „no“. Welchen Wert soll nun für dieses Attribut in a gesetzt werden ohne den
ursprünglichen Kontrollfluss zu verändern? Weiterhin besteht die Möglichkeit, dass s einen
Compensation sowie Fault Handler definieren kann (vgl. WS-BPEL 2.0 Spezifikation [OAS07]
Abschnitt 10.3 Invoking Web Service Operations – Invoke). Auf diese Variante der <invoke>-
Aktivität werden wir im Abschnitt 3.3 eingehen.
Die Abbildungen 3.18a sowie 3.18b zeigen die Problematik am Beispiel unserer Fragmente:

Ausführung

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1 l3

l4

l5

l6l2

a.suppressJoinFailure = no

bpel:joinFailure

joinCondition=false

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1 l3

l4

l5

l6l2

a.suppressJoinFailure = yes

joinCondition=false

Dead-Path-Elimination

A1

Invoke
s

A2

B1

Receive
r

B2

Reply
y

B3

ml

m
l‘

l1

l2

l3

l4

l5

l6

s.suppressJoinFailure = yes
r.suppressJoinFailure = no

joinCondition=false

Dead-Path-Elimination

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1 l3

l4

l5

l6l2

a.suppressJoinFailure = no

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1 l3

l4

l5

l6l2

a.suppressJoinFailure = yes

A1

Invoke
s

A2

B1

Receive
r

B2

Reply
y

B3

ml

m
l‘

l1

l2

l3

l4

l5

l6

s.suppressJoinFailure = yes
r.suppressJoinFailure = no

1a) 1b) 1c)

2a) 2b) 2c)

Abbildung 3.18a Variante 1 mit nur einer <assign>-Aktivität

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1 l3

l4

l5

l6l2

a.suppressJoinFailure = no

joinCondition=false

bpel:joinFailure

A1

A2

B1

B2

B3

Assign
a

Assign
a‘

AND
l1 l3

l4

l5

l6l2

a.suppressJoinFailure = yes

joinCondition=false

Dead-Path-Elimination

A1

Invoke
s

A2

B1

Receive
r

B2

Reply
y

B3

ml

m
l‘

l1

l2

l3

l4

l5

l6

s.suppressJoinFailure = yes
r.suppressJoinFailure = no

joinCondition=false

bpel:joinFailure

3a) 3b) 3c)

Abbildung 3.18b Variante 1 mit nur einer <assign>-Aktivität: 1a) Zeigt die Prozessfragmente in der ursprünglichen
Choreographie, 1b) zeigt das Ergebnis nach der Konsolidierung mit Variante 1 und dem Setzen des suppressJoin-
Failure-Attributs auf „yes“, 1c) zeigt das Ergebnis nach der Konsolidierung mit Variante 1 und dem Setzen des sup-
pressJoinFailure-Attributs auf „no“. 2a) zeigt den Kontrollfluss bei Ausführung der ursprünglichen Choreographie und
der Auswertung des Links l2 zu false: Die Dead-Path-Elimination wird durchgeführt. 2b) zeigt den Kontrollfluss bei
Ausführung von 1b) und der Auswertung des Links l2 zu false: Auch hier wird die Dead-Path-Elimination durchgeführt.
2c) zeigt den Kontrollfluss von 1c) mit selbigen Bedingungen: Hier wird jedoch eine bpel:joinFailure an die Umgebung
propagiert. 3a) zeigt der Kontrollfluss der ursprünglichen Choreographie bei Auswertung des Links l3 zu false: Auf der
Empfängerseite wird ein bpel:joinFailure an die Umgebung propagiert, wogegen in 3b) die Dead-Path-Elimination
durchgeführt wird. 3c) hat wieder denselben Kontrollfluss, wie die ursprünglichen Choreographiefragmente.

Variante 2: Zwei neue <assign>-Aktivitäten a und a‘ werden hinzugefügt und s, r und y werden
entfernt. Zusätzlich wird eine synchronisierende <empty>-Aktivität auf der Empfängerseite für r ein-

 Seite 49

gefügt. Die eingehenden Links von r werden zu den eingehenden Links von b. Wie in Abbildung 3.19
gezeigt, wird die <reply>-Aktivität y durch eine neue <assign>-Aktivität a‘ ersetzt. Die eingeh-
enden Links von s werden zu den eingehenden Links von a. Ein neuer Link wird ausgehend von a und
eingehend in b hinzugefügt. Die <receive>-Aktivität r wird beendet sobald die Anfragenachricht der
<invoke>-Aktivität s empfangen wurde. Somit werden die ausgehenden Links von r zu den ausgeh-
enden Links von b. Die eingehenden Links von y werden zu den eingehenden Links von a‘. Die
<invoke>-Aktivität s wird beendet sobald die Nachricht der <reply>-Aktivität y empfangen wurde,
daher werden die ausgehenden Links von s und y zu den ausgehenden Links von a‘ hinzugefügt.

A1

Invoke
s

A2

B1

Receive
r

B2

Reply
y

B3

ml

m
l‘

l1

l2

l3

l4

l5

l6

A1

Assign
a

A2

B1

Empty
b

B2

Assign
a‘

B3

l1

l2

l3

l4

l5

l6

l7 AND
A1 A2 B1 B2

A1 < R <

A2 > > >

B1 R < <

B2 > < >

B3

<

R

<

<

B3 > R > >

A1 A2 B1 B2

A1 < R <

A2 > > >

B1 R < <

B2 > < >

B3

<

R

<

<

B3 > R > >

Abbildung 3.19 SyncMerge Variante 2: Die Beispielfragmente aus Variante 2 sowie die dazugehörige Intervallrelationen
vor und nach der Konsolidierung. Die Reihen der Tabellen stehen für die linke Seite der Relation, die Spalten für die rechte
Seite. „<“ sowie „>“ stehen für die zeitlichen Relationen „vor“ bzw. „nach“ (vgl. Abbildung 3.8). „R“ steht für alle mög-
lichen Relationen (<, >, m,mi, ○, ○i, s, si, f, fi, d, di, e).

Wir werden in der vorliegenden Arbeit die Variante 2 für das synchrone Konsolidieren verwenden und
diese im Verlauf des Kapitels, parallel zur Variante 2 des asynchronen Konsolidierungsalgorithmus,
schrittweise verfeinern.
Der folgende Unterabschnitt beschreibt das genaue Vorgehen beim Setzen der join- sowie transi-
tionConditions während der Konsolidierung. Daraufhin werden wir auf das Problem der Peer-
Scope-Dependency [OAS07] eingehen, auf das wir mit unserem vorliegenden Ansatz treffen werden.
Abschnitt 3.2.2 Generierung des Datenflusses erläutert die konkreten Details die bei Einfügen der
neuen <assign>-Aktivitäten beachtet werden müssen.

3.2.2.1 Anpassung der join- und transitionCondition während der Konsolidierung

In WS-BPEL 2.0 besitzt jede Aktivität die optionalen Standardelemente <sources> und <targets>
mit denen diese Synchronisationsbeziehungen über Links herstellen kann (vgl. Abbildung 2.8). Die
dort verwendeten Links müssen in einer umschließenden <flow>-Aktivität deklariert werden.

3.2.2.1.1 <sources> und ihre <transitionCondition>s

Jedes <source>-Element kann eine optionale transitionCondition definieren. Diese wird im
Completed-Zustand der Aktivität ausgewertet (vgl. Abschnitt 3.1.2 Aktivitäts-Zustandsmodell). Sie
muss in der durch das expressionLanguage-Attribut spezifizierten Sprache des BPEL-Prozesses
vorliegen. Wir fordern für spätere Analysezwecke unseres Konsolidierungsalgorithmus, dass diese die
Standardsprache XPath 1.0 [W3C99a] ist. Wird keine angegeben, so wird angenommen, dass der Link
des zugehörigen <source>-Elements zu true gewertet wird. In unseren Konsolidierungsalgorithmen
für asynchrone sowie synchrone Kommunikationsmuster aus dem vorangegangenem Abschnitt
werden die ausgehenden Links sowie die zugehörigen transitionConditions der ursprünglichen
sendenden und empfangenden Aktivitäten in die neuen <assign>-sowie <empty>-Aktivitäten beim
Erstellen der neuen Sourcen (createSource(l,a)-Funktion) übernommen. Wird eine neuer Link zwi-

 Seite 50

schen der <assign>-Aktivität und der entsprechenden synchronisierenden <empty>-Aktivität hinzu-
gefügt, so müssen wir hier keine explizite transitionCondition angeben. Dieser Link emuliert die
Nachrichtenflussrelation durch eine Kontrollflussrelation. Abbildung 3.20 zeigt diesen Zusammen-
hang.

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A1

Assign
a

A2

B1

Empty
b

B2

l1

l2

l3

l4

l5 AND

<invoke name“s“ …>
 <sources>
 <source linkname=“l2“>
 <transitionCondition>XPath-Ausdruck1</transitionCondition>
 </source>
 </sources>
…
</invoke>
…
<receive name=“r“ …>
 <sources>
 <source linkname=“l4“>
 <transitionCondition>XPath-Ausdruck2</transitionCondition>
 </source>
 </sources>
…
</receive>

<assign name“a“ …>
 <sources>
 <source linkname=“l2“>
 <transitionCondition>XPath-Ausdruck1</transitionCondition>
 </source>
 <source linkname=“l5“/>
 </sources>
…
</assign>
…
<empty name=“b“ …>
 <sources>
 <source linkname=“l4“>
 <transitionCondition>XPath-Ausdruck2</transitionCondition>
 </source>
 </sources>
…
</empty>

Abbildung 3.20 Übernahme der <source>-Elemente aus ursprünglichen Aktivitäten

3.2.2.1.2 <targets> und ihre <joinCondition>

Das <targets>-Element kann eine optionale joinCondition für alle ihre enthaltenen <target>-
Elemente definieren. Diese wird im Ready-Zustand der Aktivität ausgewertet (vgl. Abschnitt 3.1.2
Aktivitäts-Zustandsmodell). Wird keine explizite joinCondition angegeben so ist das Ergebnis der
Auswertung die Disjunktion über alle Status der in den <target>-Elementen definierten Links. In
unseren Konsolidierungsalgorithmen für asynchrone sowie synchrone Kommunikationsmuster aus
dem vorangegangenem Abschnitt werden die eingehenden Links sowie die zugehörige join-
Condition, falls vorhanden, der ursprünglichen sendenden und empfangenden Aktivitäten in die
neuen <assign>-sowie <empty>-Aktivitäten beim Erstellen der neuen Targets (createTarget(l,a)-
Funktion) übernommen. Im Gegensatz zu den <sources> müssen wir hier jedoch beim Anlegen des
neuen Links zwischen <assign>- und synchronisierender <empty>-Aktivität darauf achten, dass die
logische Semantik der ursprünglichen joinCondition erhalten bleibt und mit dem neuen Link per
Konjunktion verbunden wird. Haben wir beispielsweise mehrere eingehende Links und keine explizite
joinCondition, so muss trotzdem sichergestellt werden, dass die ODER-Semantik auch in der
neuen Konjunktion gültig ist. Abbildung 3.21 veranschaulicht diesen Sachverhalt.

 Seite 51

A1

Invoke
s

A2

B1

Receive
r

B2

l1

l2

l3

l4

ml

A1

Assign
a

A2

B1

Empty
b

B2

l1

l2

l3

l4

l5 AND

Explizite JoinCondition:

<receive name=“r“ …>
 <targets>
 <joinCondition>
 XPath-Ausdruck1
 </joinCondition>
 <target linkname=“l3“/>
 </targets>
…
</receive>

Implizite JoinCondition:

<receive name=“r“ …>
 <targets>
 <target linkname=“l3“/>
 </targets>
…
</receive>

Explizite JoinCondition:

<empty name=“b“ …>
 <targets>
 <joinCondition>
 $l5 AND XPath-Ausdruck1
 </joinCondition>
 <target linkname=“l3“/>
 <target linkname=“l5“/>
 </targets>
…
</empty>

Implizite JoinCondition:

<empty name=“b“ …>
 <targets>
 <joinCondition>
 $l5 AND $l3
 </joinCondition>
 <target linkname=“l3“/>
 <target linkname=“l5“/>
 </targets>
…
</empty>

Receive
r

l1

l2

l3

Explizite JoinCondition:

<receive name=“r“ …>
 <targets>
 <joinCondition>
 $l1 AND NOT ($l2 OR $l3)
 </joinCondition>
 <target linkname=“l1“/>
 <target linkname=“l2“/>
 <target linkname=“l3“/>
 </targets>
…
</receive>

Implizite JoinCondition:

<receive name=“r“ …>
 <targets>
 <target linkname=“l1“/>
 <target linkname=“l2“/>
 <target linkname=“l3“/>
 </targets>
…
</receive>

Empty
b

l1

l2

l3

Explizite JoinCondition:

<empty name=“b“ …>
 <targets>
 <joinCondition>
 $l4 AND ($l1 AND NOT ($l2 OR $l3))
 </joinCondition>
 <target linkname=“l1“/>
 <target linkname=“l2“/>
 <target linkname=“l3“/>
 <target linkname=“l4“/>
 </targets>
…
</empty>

Implizite JoinCondition:

<empty name=“b“ …>
 <targets>
 <joinCondition>
 $l4 AND ($l1 OR $l2 OR $l3)
 </joinCondition>
 <target linkname=“l1“/>
 <target linkname=“l2“/>
 <target linkname=“l3“/>
 <target linkname=“l3“/>
 </targets>
…
</empty>

AND
l4

Abbildung 3.21 Anpassungen der joinCondition beim Konsolidieren: Das obere Modell zeigt das Anpassen der
joinCondition an den Choreographiefragmenten im asynchronen Fall. Das untere Modell zeigt das Anpassen der
joinCondition bei mehreren targets. Ist eine joinCondition vorhanden so wird diese per Konjunktion mit dem neuen
eingehenden target-Link verbunden. Gibt es keine, muss darauf geachtet werden die standardmäßige ODER-Semantik der
ursprünglichen target-Links in die Konjunktion einzubinden.

3.2.2.2 Peer-Scope-Dependency Problematik

Definition 3.2.6 (Control Dependency vgl. [OAS07]): Gibt es eine Abhängigkeit zwischen einer Akti-
vität a und einer Aktivität b aufgrund einer Link Verbindung innerhalb einer <flow>-Aktivität oder
der Reihenfolge innerhalb einer <sequence>-Aktivität, so dass Aktivität a vor der Ausführung von
Aktivität b beendet sein muss, sprechen wir von einer Kontrollflussabhängigkeit (Control Depen-
dency).

Definition 3.2.7 (Peer-Scopes vgl. [OAS07]): Zwei Scopes s1 und s2 heißen Partnerscopes (Peer-
Scopes), wenn sich beide innerhalb desselben unmittelbar umgebenden Scopes bzw. Root-Scope des
BPEL-Prozesses befinden.

Definition 3.2.8 (Scope-Controlled-Set vgl. [OAS07]): Eine Aktivität a ist innerhalb der Menge der
scope-gesteuerten Aktivitäten des Scopes s, falls a der Scope s selbst oder eine innerhalb s eingschlos-
sene Aktivität ist.

Definition 3.2.9 (Peer-Scope Dependency vgl. [OAS07]): Falls s1 und s2 Partnerscopes sind und es
gibt eine Aktivität b in der Menge der scope-gesteuerten Aktivitäten von s2 sowie eine Aktivität a in

 Seite 52

der Menge der scope-gesteuerten Aktivitäten von s1, so dass b eine Kontrollflussabhängigkeit auf a
hat, besitzt s2 eine direkte Partnerscopeabhängigkeit auf s1. Die Partnerscopeabhängigkeitsrelation ist
die transitive Hülle der direkten Partnerscopeabhängigkeitsrelation.

Die Regel 1 des WS-BPEL 2.0 Standards [OAS07] aus dem Abschnitt 12.5.2 Default Compensation
Order schreibt vor, dass zwei Scopes a und b, von denen b eine Kontrollflussabhängigkeit auf a hat,
im Fall einer Kompensierungsausführung nach der erfolgreichen Ausführung beider Scopes, der Com-
pensation Handler von b vor dem von a ausgeführt werden muss. Abbildung 3.22 verdeutlicht diesen
Zusammenhang.

Scope c

Scope a

A1

CH1 Scope b

B1

CH2

C1

FH

l1 l2 l3

Ausführung
von C1

Scope c

Scope a

A1

CH1 Scope b

B1

CH2

C1

FH

l1 l2 l3

Kontrollflussabhängigkeit

Abbildung 3.22 Kontrollflussabhängigkeit zweier Scopes und die Auswirkung auf das Compensation Handler Verhal-
ten: Scope a sowie Scope b wurden erfolgreich ausgeführt und die Compensation Handler CH1 und CH2 installiert. Wäh-
rend der Ausführung von Aktivität C1 tritt ein Fault auf der die Kompensation aktiviert. Durch die Kontrollflussabhängigkeit
bedingt durch den Link l2 muss CH2 vor CH1 ausgeführt werden.

Die Regel 2 des WS-BPEL 2.0 Standards [OAS07][SA00082] verbietet Zyklen in Partnerscopeabhän-
gigkeiten. Somit sind zwei Scopes s1 und s2 von denen jeweils s1 eine Partnerscopeabhängigkeit auf
s2 und s2 eine auf s1 hat verboten (vgl. Abbildung 3.23).
Um die zuvor in diesem Kapitel erarbeiteten Vorgehen zur Konsolidierung von synchronen sowie
asynchronen Kommunikationsmustern zu ermöglichen werden wir in der vorliegenden Diplomarbeit
die Regel 2 auflockern und erlauben Zyklen in Partnerscopeabhängigkeiten. Zukünftige und laufende
Arbeiten werden hierzu eine angemessene Lösung liefern.
Die in dieser Arbeit zum Testen der erzeugten konsolidierten Prozesse verwendeten BPEL-Engines
Apache ODE in Version 1.3.5 [AODE11] sowie bpel-g in Version 5.3 [BPLG12] erlauben zusätzlich
die Ausführung von Prozessen mit Zyklen in Partnerscopeabhängigkeiten.

Prozess1

Scope a

A1

Invoke

A2

A2

Prozess2

Scope b

B1

Receive

B2

B3

Reply

ml‘

ml
l1

l2

l3

l4

l5

l6

l7

Konsolidierung

Prozess1_2_Merged

Scope a

A1

Assign

A2

A2

l1

l2

l3

Scope b

B1

Empty

B2

B3

Assign

l4

l5

l6

l7

ln

Verletzung der Regel 2:

Scope a hat direkte Partner-
scopeabhängigkeit auf Scope
b (ln), Scope b eine auf Scope
a (l2).

Abbildung 3.23 Zyklus in Partnerscopeabhängkeiten: Wird im konsolidierten Beispiel auf der rechten Seite in der
Aktivität A2 eine Fault geworfen und verursacht die Ausführung einer Kompensation, so wird, bedingt durch die Kontroll-
flussabhängigkeit aufgrund des Links l2, zunächst der Compensation Handler von Scope a ausgeführt und anschließend der
von Scope b. Doch dieser hat wieder eine Kontrollflussabhängigkeit mit Scope a, bedingt durch den Link ln.

3.2.3 Generierung des Datenflusses

Im vorangegangenen Abschnitt wurden die sendenden Aktivitäten durch <assign>-Aktivitäten er-
setzt, um auf diese Weise die korrekte Synchronisation der ursprünglichen beiden Prozessmodelle im

 Seite 53

neuen konsolidierten Prozessmodell zu gewährleisten. Neben der Synchronisation des Kontrollflusses
werden die neuen <assign>-Aktivitäten zum Transformieren des ehemaligen Nachrichtenflusses in
einen Datenfluss verwendet. Vor der Konsolidierung werden die zu versendenden Nachrichten in einer
Variablen gespeichert. Wir nennen diese Variable im Folgenden vs. Die Nachricht wird anschließend
übertragen, empfangen und in einer anderen Variable des empfangenden Prozesses gespeichert. Im
Folgenden sei diese Variable vr. Um den Nachrichtenaustausch in einen Datenaustausch umzuwandeln
stehen uns zwei Varianten zu Verfügung:

1. Wir kopieren den Inhalt der Variable vs in die Variable vr.

2. Wir ersetzen jedes Vorkommen von vr nach dem Erhalt der Nachricht durch vs.

Nehmen wir zum Beispiel an, der Teilnehmer PBD1 sendet die Variable varInit über den Message
Link ml1 in Form der Nachricht msg1, die der Empfänger PBD2 in der Variablen varReceiveInit spei-
chert. Somit sehen die kommunizierenden Nachrichten hierfür folgendermaßen aus:
s: <invoke inputVariable=“varInit“>
r: <receive variable=“varReceiveInit“>

Benutzen wir die erste Variante so kopiert die neue <assign>-Aktivität varInit nach varReceiveInit
Diese Variante verhindert das Überschreiben von Daten, da die beiden Variablen vs und vr immer ge-
trennt behandelt werden und der ehemalige Nachrichtenaustausch durch ein Kopieren der Daten von vs
nach vr emuliert wird. Abbildung 3.24 veranschaulicht das Vorgehen anhand des asynchronen sowie
des synchronen Falls mit zugehöriger <reply>-Aktivität.

Prozess_PBD1_PBD2_Merged
PBD1

Invoke
s

PBD2

Receive
r

ml1

<assign name=“a“>
 <copy>
 <from variable=“varInit“/>
 <to variable=“varReceiveInit“/>
 </copy>
</assign>

<invoke name=“s“
 inputVariable=“varInit“>
 …
</invoke>

<receive name=“r“
 variable=“varReceiveInit“>
 …
</receive>

Scope PBD1

Assign
a

Scope PBD2

Empty
b

PBD1

Invoke
s

PBD2

Receive
r

ml1

<invoke name=“s“
 inputVariable=“varInit“
 outputVaribale=“varReply“>
 …
</invoke>

<receive name=“r“
 variable=“varReceiveInit“>
 …
</receive>

Reply
y

m
l2

<reply name=“y“
 variable=“varReplyOut“>
 …
</reply>

Prozess_PBD1_PBD2_Merged

Scope PBD1

Assign
a

Scope PBD2

Empty
b

Assign
a‘

<assign name=“a“>
 <copy>
 <from variable=“varInit“/>
 <to variable=“varReceiveInit“/>
 </copy>
</assign>

<assign name=“a‘“>
 <copy>
 <from variable=“varReplyOut“/>
 <to variable=“varReply“/>
 </copy>
</assign>

Abbildung 3.24 Austausch der kommunizierenden Aktivitäten durch <assign>-Aktivitäten im konsolidierten Pro-
zess: Die obere Abbildung zeigt den Austausch der sendenden <invoke>- sowie der empfangenden <receive>-Aktivität
durch die neue <assign>-Aktivität und das Kopieren der Variablen im asynchronen Fall. Die untere Abbildung zeigt den
entsprechenden Austausch der <invoke>-und <reeive>-Aktivitäten sowie der <reply>-Aktivität durch zwei neue
<assign>-Aktivitäten im synchronen Fall.

Der Nachteil der ersten Variante ist die Tatsache, dass die Daten nach der <assign>-Aktivität doppelt
gespeichert werden. Im Falle komplexer oder großer Datenstrukturen kann dies zu Performanceeinbu-
ßen führen. Die zweite Variante bietet hier eine Alternative: Anstatt die Daten von vs nach vr zu kopie-
ren, werden alle Zugriffe auf vr durch vs ersetzt. Die <assign>-Aktivität kann durch eine <empty>-
Aktivität ersetzt werden, die lediglich zum Synchronisieren der Links eingesetzt wird. Problematisch
wird die zweite Variante jedoch wenn vs nach dem Datenaustausch erneut verändert wird: Die zuvor
unabhängigen Variablen sind nun durch eine einzelne ersetzt worden. Dies hat zur Folge, dass sich die

 Seite 54

Änderungen von vs auf das Verhalten der lesenden und schreibenden Aktivitäten sowie join- und
transitionConditons auswirken, die zuvor vr verwendet haben. Das Problem ist als das Lost Up-
date Problem bekannt (vgl. [BN09]). Um dieser ungewollten Änderung des Datenflusses entgegenzu-
wirken verwenden wir zunächst die erste Variante und ermitteln anschließend den expliziten Daten-
fluss, wie von Kopp et al. in [KKL08] gezeigt. Gibt es keine nachfolgenden schreibenden Zugriffe auf
vs, die auf die <receive>-Aktivität folgen, ersetzen wir alle Zugriffe von vr durch Zugriffe auf vs.
Anschließend ersetzen wir die <assign>-Aktivität durch eine <empty>-Aktivität. Der Algorithmus
zum Analysieren des Datenflusses sowie dem anschließenden möglichen Ersetzen der <assign>-
Aktivitäten wird in Kapitel 4 Implementierung beschrieben.

PBD1

Invoke
s

PBD2

Receive
r

ml1
vs vr

Prozess_PBD1_PBD2_Merged

Scope PBD1

 Assign
a

Scope PBD2

Empty
b

vs
vr

Act
pvrAktivität die aus vr

liest Act
pvr

Prozess_PBD1_PBD2_Merged

Scope PBD1

Empty
a

Scope PBD2

Empty
b

Act
pvs

PBD1

Invoke
s

PBD2

Receive
r

ml1
vs vr

Prozess_PBD1_PBD2_Merged

Scope PBD1

 Assign
a

Scope PBD2

Empty
b

vs
vr

Act
pvrAktivität die in vr

schreibt Act
pvr

Prozess_PBD1_PBD2_Merged

Scope PBD1

Empty
a

Scope PBD2

Empty
b

Act
pvs

a) b)tc(l1,p) = vr.amount < 1000

l1

l1 l1

tc(l1,p) = vs.amount < 1000

PBD1

Invoke
s

PBD2

Receive
r

ml1
vs vr

Act
pvr

l1

Act
qvs

Act
tvs

c)

PBD1

Invoke
s

PBD2

Receive
r

ml1

Reply
y

m
l2

vs
vo

vr

vb

Prozess_PBD1_PBD2_Merged

Scope PBD1

 Assign
a

Scope PBD2

Empty
b

 Assign
a‘

vs
vr

vb
vo

Prozess_PBD1_PBD2_Merged

Scope PBD1

Empty
a

Scope PBD2

Empty
b

Empty
a‘

Act
pvr

Act
pvs

d)

v

v

aus v wird gelesen

in v wird geschrieben

Abbildung 3.25 Optimierungen des Datenflusses im konsolidierten Prozess

Abbildung 3.25 zeigt die möglichen Optimierungen des Datenflusses nach Anwendung des Analyse-
algorithmus:
Abbildung 3.25 a): Nachdem der Konsolidierungsalgorithmus für asynchrone Kommunikation ange-
wendet wurde, folgt die Analyse des Datenflusses. Dieser muss überprüfen ob auf der ehemals senden-
den Seite in vs schreibende Aktivitäten, die auf die neue <assign>-Aktivitäten a folgen, Verwendung
finden. Dies beinhaltet auch Aktivitäten die z.B. in einem parallelen <flow>-Zweig der <assign>-
Aktivität a schreibenden Zugriff auf vs haben. Hierbei können folgende Aktivitäten schreibenden
Zugriff ausüben: <assign>s, synchrone <invoke>s, <receive>s sowie <pick>s.
Diese Überprüfung muss auch auf der ehemaligen Empfängerseite nach der neuen <empty>-Aktivität
b sowie möglichen parallelen Kontrollflusszweigen stattfinden, da es sonst durch das Ersetzen von vr
durch vs zu Seiteneffekten auf der ehemaligen Senderseite kommt. Wurden keine möglichen
schreibenden Aktivitäten gefunden, so werden alle Vorkommen von vr durch vs ersetzt. Hierbei
müssen auch die entsprechenden transitionCondition-XPath-Ausdrücke entsprechend angepasst
werden.
Abbildung 3.25 b): In diesem Beispielfragment darf die Ersetzung von vr durch vs nicht angewendet
werden, da sonst der Datenfluss von Scope PBD1 durch Seiteneffekte der Aktivität p verändert wird.
Abbildung 3.25 c): Auch in diesem Beispielfragment darf es zu keiner Ersetzung kommen, da vs in
einer Aktivität q eines parallelen Kontrollflusszweigs von PBD1 sowie einer Nachfolgeaktivität t der
<invoke>-Aktivität s beschrieben wird.
Abbildung 3.25 d): Das Beispielfragment zeigt das optimale Einsparungspotenzial von Kopiervor-
gängen im synchronen Fall. Die zwei <assign>-Aktivitäten a sowie a‘ können durch zwei synchroni-
sierende <empty>-Aktivitäten ersetzt werden.

 Seite 55

3.2.3.1 Voraussetzungen für den korrekten Datenfluss

Die im vorherigen Abschnitt beschriebene Methode zur Generierung des Datenflusses setzt voraus,
dass der sendende Kommunikationsteilnehmer den empfangenden nicht „überholt“. Somit sollte das
Ergebnis des Datenflusses vor und nach dem senden der Daten nicht durch Wettlaufsituationen (Race
Conditions) bedingt sein. Der WS-BPEL 2.0 Standard definiert hierzu (vgl. [OAS07] Seite 92): „…
Während der Ausführung eines Geschäftsprozesses können Wettlaufsituationen auftreten. Nachrich-
ten, die für eine bestimmte Prozessinstanz bestimmt sind können eintreffen bevor die empfangende
<receive>-Aktivität aktiviert wurde. […] Prozess Engines KÖNNEN verschiedene Mechanismen zur
Behandlung einer solchen Wettlaufsituation anwenden. […]“

Abbildung 3.25b zeigt eine solche Wettlaufsitua-
tion an einem Beispielfragment mit zwei kom-
munizierenden PBDs PBD1 und PBD2. Hierbei
ist •s=prel(s)+pre(s) die Menge aller direkten
Vorgängeraktivität von s, s•=succl(s)+succ(s)
die Menge aller direkten Nachfolgeraktivitäten
von s, •r= prel(r)+pre(r) die Menge aller direk-
ten Vorgängeraktivitäten von r, mit der <as-
sign>-Aktivität Assign_•r∈ •r sowie r•=
succl(r)+succ(r) die Menge aller direkten Nach-
folgeraktivitäten von r. Die rechte Seite zeigt den

konsolidierten Prozess nach Anwendung des AsyncPattern1.1 aus Abschnitt 3.3.1.1. Wenn nun in der
linken Beispielchoreographie die sendende Aktivität s die Nachricht vs schickt bevor die <receive>-
Aktivität r aktiviert wurde, ist das Ergebnis der Verarbeitung dieser Nachricht in PBD2 implementie-
rungsabhängig. Sie kann verworfen oder in eine Warteschlange eingereiht werden (vgl. [LEY10a]).
Derselbe Ablauf hat im rechten konsolidierten Prozess ProzessMerged unter denselben Bedingungen
einen möglichen Datenverlust zur Folge: Die <assign>-Aktivität a wird ausgeführt bevor Scope_-
PBD2 die <assign>-Aktivität Assign_•r aktiviert. Da die <receive>-Aktivität r durch eine syn-
chronisierende <empty>-Aktivität b ersetzt wurde, wird vr im Datenfluss nach Assign_•r nichtmehr
neu gelesen. Wenn jetzt Assign_•r einen Wert in vr schreibt (hier mit 1 dargestellt) nachdem a ausge-
führt wurde, ist das Ergebnis von vs verloren (Lost Update). Einen ähnlichen problematischen Fall
stellt folgender Ablauf dar: Assign_•r hat seine Ausführung beendet und den Wert 1 nach vr geschrie-
ben. Im selben Moment schreibt a vs nach vr und überschreibt nun den Wert 1. Nun wird der von As-
sign_•r ausgehende und in b eingehende Link ausgewertet. Hat dieser eine transitionCondition,
die vr verwendet, so ist auch in diesem Fall die Kontrollflusssemantik verändert worden.

PBD2PBD1

•s

Invoke
s

s•

Assign
•r

 Receive
r

r•

mlvs vr

vs vr

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Assign
a

s•

Assign
•r

Assign
b

r•

vs
vm

vrvs

vr

1
vr

1

vm

vm
vr

Abbildung 3.22c Behebung des Lost Update Problems durch Hinzufügen neuer Nachrichtenvariable vm

PBD2PBD1

•s

Invoke
s

s•

Assign
•r

 Receive
r

r•

mlvs vr

vs vr

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Assign
a

s•

Assign
•r

Empty
b

r•

vs
vr

vr

vs

vr

1
vr

1

Abbildung 3.25b Race Condition

 Seite 56

Abbildung 3.25c zeigt eine Alternative zur Lösung des Lost Update Problems: Anstatt durch eine syn-
chronisierende <empty>-Aktivität wird r nun durch eine <assign>-Aktivität ersetzt. Zusätzlich hier-
zu wurde eine neue Nachrichtenvariable vm eingeführt, die den ursprünglichen Datenfluss emuliert.
Somit bleiben die Änderungen von vr auch im Falle einer Wettlaufsituation unabhängig von möglichen
vorhergehenden schreibenden Aktivitäten (Assign_•r). Die in den folgenden Abschnitten beschriebe-
nen Konsolidierungsalgorithmen setzen jedoch Choreographien ohne derartige Wettlaufsituationen
voraus.

 Seite 57

3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets

PBDs können, genau wie ausführbare BPEL-Prozesse auch, Korrelationsmengen (CorrelationSets) zur
korrekten Zuordnung von Nachrichten an die an einer Kommunikation teilnehmenden Instanzen von
Prozessen verwenden. Während der Konsolidierung kommt es jedoch vor, dass einige der
Korrelationsmengen obsolet werden, da diese zur Zuordnung von Nachrichten an die korrekte
Prozessinstanz dienen und wir den Nachrichtenfluss in einen expliziten Kontrollfluss aus
Kombinationen aus <assign>- und <empty>-Aktivitäten umwandeln. Dies trifft jedoch nicht auf die
Korrelationsmengen zu, die in nicht-choreographie-intern kommunizierenden Aktivitäten verwendet
werden, also solchen die mit choreographie-externen Partnern in Verbindung stehen. Leider deckt die
vorliegende Arbeit nicht alle Kommunikationsmuster der an einer Choreographie teilnehmenden Part-
ner vollständig ab, hierzu gehören z.B. kommunizierende Aktivitäten innerhalb von Schleifen und
Event Handlern, sodass einige Aktivitäten auch nach der Konsolidierung an einem prozessinternen
Nachrichtenaustausch beteiligt sind und wir daher auch hier nicht alle Korrelationsmengen entfernen
können.
Für die technischen Details zur Definition einer Korrelationsmenge sei dem Leser [OAS07] emp-
fohlen. Wir werden das genaue Vorgehen der Anpassung der in der Choreographie definierten und im
später konsolidierten Prozess verwendeten Korrelationsmengen im Kapitel 4 Implementierung genauer
beschreiben. Da wir keine neuen Korrelationsmengen einführen, sondern lediglich auf die schon
definierten zugreifen bzw. diese im optimalen Fall sogar entfernen können, zeigt Abbildung 3.26 die
wichtigsten Attribute bei der Verwendung einer Eigenschaft einer Korrelationsmenge.

<correlations>
 <correlation set=“NCName“
 initiate=“yes|join|no“?
 pattern=“request|response|request-response“? />+
</correlations>

Gibt an, dass Konversation initiiert
bzw. geleitet wird. Die Konversation
darf noch nicht existieren.

Falls die Konversation noch nicht
existiert, wird sie initiiert.

Die Aktivität, die diese Korrelations-
eigenschaft verwendet, folgt einer
Konversation die bereits existieren
muss.

Abbildung 3.26 Syntax einer Korrelationseigenschaft (vgl. [LEY10a])

Korrelationseigenschaften werden nur von kommunizierenden Aktivitäten verwendet. Zu diesen ge-
hören: <invoke>-, <receive>- sowie <reply>-Aktivitäten als auch die <onMessage>-Zweige
einer <pick>-Aktivität und die <onEvent>-Zweige eines Event Handler. Da wir keine neuen Kom-
munikationsaktivitäten einführen, sondern vorhandene choreographie-intern kommunizierende durch
<assign>- und synchronisierende <empty>-Aktivitäten ersetzen, müssen wir lediglich bei choreo-
graphie-extern kommunizierenden Aktivitäten in manchen Fällen das initiate-Attribut anpassen.
Das pattern-Attribut, das im Falle synchroner Kommunikation die Korrelationsmenge mit den
eingehenden, ausgehenden oder beiden Nachrichten assoziiert, wird nicht verändert.
Wir werden im Folgenden einige kleine Beispielkonversationen modellieren um das Anpassen der
Korrelationseigenschaften in choreographie-extern kommunizierenden Aktivitäten genauer zu verdeut-
lichen.

3.2.3.2.1 Mehrere initiale Startaktivitäten

Eine initiale Startaktivität ist die Startaktivität, die die Instanziierung einer Prozess Instanz auslöst.
Dies kann eine <receive>- oder eine <pick>-Aktivität sein, die das createInstance-Attribut auf
„yes“ gesetzt hat. Bei der Konsolidierung kann es vorkommen, dass zwei oder mehrere ehemals
unabhängige PBDs, die jeweils alle eine initiale Startaktivität enthalten, in den neuen verschmolzenen
Prozess überführt werden. Verwenden diese Aktivitäten zusätzlich Korrelationsmengen, so müssen sie
im neuen konsolidierten Prozess mindestens eine gemeinsame Korrelationsmenge benutzen. Hierzu
definiert die WS-BPEL 2.0 Spezifikation folgende Regel (vgl. [SA00075] in [OAS07]): „Wenn ein
Prozess mehrere Startaktivitäten mit Korrelationsmengen beinhaltet, so müssen diese Aktivitäten
mindestens eine gemeinsame Korrelationsmenge verwenden. Diese gemeinsamen Korrelationsmengen
müssen zusätzlich das initiate-Attribut auf „join“ gesetzt haben.“

 Seite 58

ProcessMerged

PBD1 PBD2

Sequence

Receive1

Assign1

Assign2

Flow

Assign1

Reply1 Invoke1

Invoke1

Receive1

ml1

ml2

<receive>- (oder <pick>-)Aktivität
mit createInstance=“yes“

Scope_PBD1 Scope_PBD2

Sequence

Receive1

Assign1

Assign2

Flow

Assign1

Assign
a' Invoke1

Assign
a

Empty
b

PBD1 PBD2

Sequence

Receive1

Assign1

Assign2

Flow

Receive2

Reply1 Invoke1

Invoke1

Receive1

ml1
ml2

<receive>- (oder <pick>-)Aktivität
mit createInstance=“yes“

ProcessMerged

Scope_PBD1 Scope_PBD2

Sequence

Receive1

Assign1

Assign2

Flow

Empty
b

Assign
a' Invoke1

Assign
a

Receive1

Abbildung 3.27 Verwendung mehrerer initialer Startaktivitäten bei Teilnehmern einer Choreographie: Die linken
Beispielfragmente zeigen eine Choreographie mit zwei PBDs, die beide eine initiale Startaktivität beinhalten. In PBD1 wird
die Instanziierung durch eine externe Nachricht ausgelöst, in PBD2 dagegen durch eine Nachricht, die über den MessageLink
ml1 von PBD1 gesendet wird. Die rechten Beispielfragmente zeigen eine ähnliche Choreographie, in der jedoch die Instanzi-
ierung beider PBDs durch externe Nachrichten ausgelöst wird.

Abbildung 3.27 veranschaulicht die Zusammenhänge der initialen Startaktivitäten und der Auswir-
kungen bei Benutzung von Korrelationsmengen im konsolidierten Prozess: In der linken Beispiel-
choreographie besitzen beiden Teilnehmer initiale Startaktivitäten, die zusätzlich (nicht im Bild
dargestellt) die beiden Korrelationsmengen corSet1 (PBD1) sowie corSet2 (PBD2) verwenden.
Nach der Konsolidierung werden diese übernommen, müssen jedoch nicht angepasst werden, da der
Lebenszyklus des Teilnehmers PBD2 direkt an den Lebenszyklus des Teilnehmers PBD1 gekoppelt
ist. PBD2 wird über den Message Link ml1 und nicht über eine externe Nachricht instanziiert wird. In
diesem einfachen Fall kann sogar das corSet2 aus dem neuen konsolidierten Prozess Process-
Merged entfernt werden.
Im rechten Beispiel liegt eine ähnliche Konfiguration vor: Auch hier besitzen beide Teilnehmer initiale
Startaktivitäten und verwenden die beiden Korrelationsmengen (nicht im Bild dargestellt) corSet1
(PBD1) sowie corSet2 (PBD2) in diesen Aktivitäten. Im Gegensatz zum linken Beispiel wird jedoch
die Instanziierung beider Teilnehmer durch externe Nachrichten ausgelöst. Daher muss in diesem Fall
eine neue Korrelationsmenge eingeführt werden, da im konsolidierten Prozess nun zwei durch externe
Nachrichten ausgelöste instanziierende Startaktivitäten vorliegen, die Korrelationsmengen verwenden
(vgl. zuvor definierte Regel der WS-BPEL 2.0 Spezifikation [OAS07] für das Verwenden mehrerer
initialer Startaktivitäten). Wir werden hierzu eine neue Korrelationseigenschaft einführen und diese in
den konsolidierten Startaktivitäten sowie den dort verwendeten Nachrichten einfügen.

…
<properties>
 <property name=“correlProperty1“ WSDLProperty=“cns:correlProperty1“/>
 <property name=“correlProperty2“ WSDLProperty=“cns:correlProperty2“/>
</properties>
…

…
<vprop:property name="correlProperty1" type="xsd:string"/>
…
<vprop:propertyAlias messageType="tns:PBD1RequestMessage"
 part="correlation" propertyName="tns:correlProperty1"/>
…
<wsdl:message name="PBD1RequestMessage">
 <wsdl:part name="status" type="xsd:string"/>
 <wsdl:part name="correlation" type="xsd:string"/>
</wsdl:message>
…

…
<variables>
 <variable messageType="ns:PBD1RequestMessage" name="input"/>
 …
</variables>
…
<correlationSets>
 <correlationSet name="corSet1" properties="ns:correlProperty1"/>
</correlationSets>
…
<receive name="Receive1" variable="input" createInstance="yes"
 wsu:id="a2F6">
 …
 <correlations>
 <correlation initiate="yes" set="corSet1"/>
 </correlations>
</receive>
…

…
<vprop:property name="correlProperty2" type="xsd:int"/>
…
<vprop:propertyAlias messageType="tns:PBD2RequestMessage"
 part="correlation" propertyName="tns:correlProperty2"/>
…
<wsdl:message name="PBD2RequestMessage">
 <wsdl:part name="userName" type="xsd:string"/>
 <wsdl:part name="grade" type="xsd:string"/>
 <wsdl:part name="correlation" type="xsd:int"/>
</wsdl:message>
…

…
<variables>
 <variable messageType="ns:PBD2RequestMessage" name="input"/>
 …
</variables>
…
<correlationSets>
 <correlationSet name="corSet2" properties="ns:correlProperty2"/>
</correlationSets>
…
<receive name="Receive1" variable="input" createInstance="yes"
 wsu:id="ghU9">
 …
 <correlations>
 <correlation initiate="yes" set="corSet2"/>
 </correlations>
</receive>
…

grounding.xml

pbd1.wsdl pbd2.wsdl

pbd1.pbd pbd2.pbd

Abbildung 3.28a Beispielfragmente aus Korrelationsbeispielchoreographie: Fragmente aus den beiden PBDs des rechten
Beispiels aus Abbildung 3.27 im Zusammenspiel mit den verwendeten Korrelationsmengen.

 Seite 59

…
<vprop:property name="correlProperty1" type="xsd:string"/>
<vprop:property name="correlProperty2" type="xsd:int"/>
<vprop:property name="commonInitCorrelProperty" type="xsd:string"/>
…
<vprop:propertyAlias messageType="tns:PBD1RequestMessage"
 part="correlation" propertyName="tns:correlProperty1"/>
<vprop:propertyAlias messageType="tns:PBD2RequestMessage"
 part="correlation" propertyName="tns:correlProperty2"/>
<vprop:propertyAlias messageType="tns:PBD1RequestMessage"
 part="commonCorrel" propertyName="tns:commonInitCorrelProperty"/>
<vprop:propertyAlias messageType="tns:PBD2RequestMessage"
 part="commonCorrel" propertyName="tns:commonInitCorrelProperty"/>
…
<wsdl:message name="PBD1RequestMessage">
 <wsdl:part name="status" type="xsd:string"/>
 <wsdl:part name="correlation" type="xsd:string"/>
 <wsdl:part name="commonCorrel" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="PBD2RequestMessage">
 <wsdl:part name="userName" type="xsd:string"/>
 <wsdl:part name="grade" type="xsd:string"/>
 <wsdl:part name="correlation" type="xsd:int"/>
 <wsdl:part name="commonCorrel" type="xsd:string"/>
</wsdl:message>
…

…
<variables>
 <variable messageType="ns:PBD1RequestMessage" name="inputPBD1"/>
 <variable messageType="ns:PBD2RequestMessage" name="inputPBD2"/>
 …
</variables>
…
<correlationSets>
 <correlationSet name="corSet1" properties="ns:correlProperty1"/>
 <correlationSet name="corSet2" properties="ns:correlProperty2"/>
 <correlationSet name="commonCorSet" properties="ns:commonInitCorrelProperty"/>
</correlationSets>
…
<scope name="Scope_PBD1">
…
 <receive name="Receive1" variable="inputPBD1" createInstance="yes" …>
 …
 <correlations>
 <correlation initiate="yes" set="corSet1"/>
 <correlation initiate="join" set="commonCorSet"/>
 </correlations>
 </receive>
…
</scope>
…
<scope name="Scope_PBD2">
…
 <receive name="Receive1" variable="inputPBD2" createInstance="yes" …>
 …
 <correlations>
 <correlation initiate="yes" set="corSet2"/>
 <correlation initiate="join" set="commonCorSet"/>
 </correlations>
 </receive>
…
</scope>
…

processmerged.wsdl

processmerged.bpel

Abbildung 3.28b Die konsolidierte Beispielchoreographie: Das Ergebnis der Konsolidierung mit angepassten Korre-
lationsmengen in den initialen Startaktivitäten.

Abbildung 3.28a sowie Abbildung 3.28b zeigen die Anpassungen der Korrelationsmengen- und eigen-
schaften der rechten Beispielchoreographie aus Abbildung 3.27: Die ursprünglichen technischen Infor-
mationen aus den beiden WSDL-Dateien pbd1.wsdl sowie pbd2.wsdl wurden in die neue pro-
cessmerged.wsdl-Datei des konsolidierten Prozesses übernommen. Zu den bereits verwendeten
Korrelationseigenschaften correlProperty1 sowie correlProperty2 wurde die neue gemein-
same commonInitCorrelProperty hinzugefügt um der Regel für multiple initiale Startaktivitäten
der WS-BPEL 2.0 Spezifikation gerecht zu werden. Diese wurde ebenfalls in die von den Startaktivi-
täten verwendeten Nachrichten sowie als neue Korrelationsmengen in den <receive>-Aktivitäten des
BPEL-Prozesses (processmerged.bpel) eingefügt.

3.2.3.2.2 Anpassung der Korrelationsmengen in choreographie-extern kommunizieren-
den Aktivitäten

Enthalten die zu konsolidierenden Choreographien zusätzlich Korrelationsmengen, die in den choreo-
graphie-extern kommunizierenden Aktivitäten verwendet werden, so müssen diese in einigen Fällen
angepasst werden um die korrekte Initialisierung der Konversationen zu gewährleisten. Abbildung
3.29 zeigt einige Beispielfragmente sowie die notwendigen Anpassungen bei der Konsolidierung:
Abbildung 3.29a): Die beiden Prozesse P1 und P2 sind über die Message Links ml1, ml2 sowie ml3 an
einer choreographie-internen Kommunikation beteiligt. Die sendende Aktivität S1 von P1 verwendet
hierbei die Korrelationsmengen corSet1, corSet2 sowie corSet3 und initialisiert corSet2 und corSet3,
da corSet1 bereits in R1 von P1 initialisiert wurde. Auf der Empfängerseite P2 werden corSet1 sowie
corset2 in R1 initialisiert und anschließend corSet3 in der Antwortaktivität S1 der synchronen
Kommunikation, die ml1 und ml2 repräsentieren. In den beiden darauffolgenden Aktivitäten S2 von P1
sowie R2 von P2 sind bereits alle drei Korrelationsmengen initialisiert. In diesem simplen Bespiel
entfällt die Anpassung des initiate-Attributs, da die Korrelationsmengen corSet2 sowie corSet3 nur
für choreographie-interne Kommunikation verwendet werden und nach der Ersetzung der
ursprünglichen kommunizierenden Aktivitäten (S1 von P1, R1 von P2, S1 von P2, S2 von P1 sowie R2
von P2) durch die entsprechenden <assign>- und <empty>-Aktivitäten (A1, A2, A3, E1 sowie E2)
obsolet werden.
Abbildung 3.29b): Es liegt eine ähnliche Konfiguration wie in a) vor, doch zusätzlich wird eine aus-
gehende Nachricht in S3 von P1 bereitgestellt. Diese sendende Aktivität verwendet die Korrelations-
mengen corSet1, corSet2 sowie corSet3. Durch die Konsolidierung wird die corSet2 und corSet3 ini-
tialisierende Aktivität S1 von P1 durch A1 ersetzt. Um die beiden Korrelationsmengen korrekt initiali-
siert in die gesendete Nachricht von S3 zu überführen muss das initiate-Attribut dieser Aktivität für

 Seite 60

corSet2 sowie corSet3 auf join (oder yes) geändert werden.
Abbildung 3.29c): Die dargestellte Beispielchoreographie (dargestellt durch die Fragmente P1 und P2)
kommuniziert mit den externen Prozesspartnern PExt1 sowie PExt2 über die empfangende Aktivität R1
von P1 und die sendenden Aktivitäten S1 von P2, S2 und S3 von P1 sowie S3 von P2. Durch die Konso-
lidierung entfallen die corSet3 und corSet4 initialisierenden Aktivitäten S1 von P1 sowie S2 von P2,
die durch die <assign>-Aktivitäten A1 und A2 ersetzt wurden. Nun muss wieder sichergestellt wer-
den, dass die Korrelationsmengen corSet3 und corSet4 korrekt initialisiert an PExt1 sowie PExt2 ver-
sendet werden. Zu diesem Zweck müssen die initiate-Attribute von S2 sowie S3 im konsolidierten
Prozess entsprechend angepasst werden. In diesem Fall verwenden wir initiate=“join“, da nicht
sicher ist, ob zunächst S2 oder S3 ausgeführt werden.

P1_P2

Choreographie

P2P1

S1

R1 R1

S1

S2 R2

P1_P2

A1

R1 E1

A2

A3 E2

R1 R2 R3

S1 S2 S3

S1

Empfangende Aktivitäten

Sendende Aktivitäten

Sendende Aktivität, die Korrela-
tionsmengen corSet1, corSet2
sowie corSet3 verwendet. cor-
Set1 ist bereits initialisiert
(initiate=“no“), corSet2 &
corSet3 werden initialisiert
(initiate=“yes“).

ml1

ml2

ml3

P2P1

S1

R1 R1

S1

S2 R2

S3

P1_P2

A1

R1 E1

A2

A3 E2

S3

ml1

ml2

ml3

PExt1

S1

R2

R3

P1
R1

S1

S2

S3

P2

S1

R1

R2

S2

S3

PExt2

R1

R2

ml1
ml2

R1

PExt1

S1

R2

R3

R1

A1

S2

S13

S1

R1

E1

A2

S3

PExt2

R1

R2

R1

a) b)

c)

Verwendung von Korrelationsmengen
corSet1, corSet2, corSet3 sowie cor-
Set4.
corSet1 sowie corSet3 sind bereits ini-
tialisiert (initiate=“no“), corSet2 und
corSet4 werden initialisiert (initi-
ate=“yes“ oder initiate=“join“).

Abbildung 3.29 Anpassung der initiate-Attribute in den choreographie-extern kommunizierenden Aktivitäten

3.3 Taxonomie der Konsolidierungsmuster („Merge-Patterns“)

Der folgende Abschnitt zeigt die vom Konsolidierungsalgorithmus verwendeten Muster, im Folgenden
Merge-Patterns genannt, die zum Auffinden der verschiedenen Senden/Empfangen-Paare und an-
schließendem Ersetzen durch Synchronisations-Aktivitäten verwendet werden.

3.3.1 Asynchrone Merge-Patterns

Die asynchronen Merge-Patterns sind charakterisiert durch eine sendende und eine empfangende Akti-
vität, die über einen Message Link miteinander kommunizieren. Als sendende Aktivität steht in BPEL
für den asynchronen Fall hierfür die <invoke>-Aktivität zur Verfügung. Als empfangende Aktivi-
täten kommen <receive>-Aktivitäten, <onMessage>-Zweige der <pick>-Aktivität sowie <on-
Event>-Zweige der Event Handler einer <scope>-Aktivität oder des Prozess-Scopes in Frage. Wir
werden nun die asynchronen Merge-Patterns ausgehend von den Allgemeinen hin zu den speziellen
mit besonderen Umgebungsbedingungen präsentieren. Die Idee zum Auffinden des passenden Merge-
Patterns basiert auf dem Iterationsalgorithmus aus Auflistung 3.1, der nach dem Kopieren der ur-
sprünglichen PBDs in neue <scope>-Aktivitäten die Message Links aus der Topology untersucht und
das passende Konsolidierungsmuster liefert. Abbildung 3.30 zeigt den schematischen Aufbau dieses
Vorgehens. Es wird jedoch auch Fälle geben in denen es kein passendes Merge-Pattern gibt. In diesem
Fall werden die kommunizierenden Aktivitäten nicht ersetzt. Da es sich anschließend um intra-
Prozess-kommunizierende Aktivitäten handelt, teilen wir der verwendeten BPEL-Engine stattdessen
mit das SOAP-Message-Handling in diesen Fällen zu umgehen (SOAP-Bypassing). Die verwendeten

 Seite 61

BPEL-Engines Apache ODE [AODE11] sowie bpel-g [BPLG12] bieten hierfür spezielle
Konfigurationsoptionen an, die beim Bereitstellen gesetzt werden. Wir werden diese am Ende des
Abschnitts kurz vorstellen.

MatcherList

name=“ml“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“r“ messageName=“msg1“

PBD2PBD1

•s

Invoke
s

s•

•r

 Receive
r

r•

l1

l2

l3

l4

ml

AsyncMatcher1.1

AsyncMatcher1.2

AsyncMatcher1.3

AsyncMatcher1.4

AsyncMatcher1.5

AsyncMatcher1.6

AsyncMatcher1.7

AsyncMatcher1.8

AsyncMatcher1.9
...

AsyncPattern1.1

AsyncPattern1.2

AsyncPattern1.3

AsyncPattern1.4

AsyncPattern1.5

AsyncPattern1.6

AsyncPattern1.7

AsyncPattern1.8

AsyncPattern1.9
...

Pattern match(ml) { … }

Beim Auffinden einer asynchronen <invoke>-Aktivität als
sendActivity in einem Message Link aus der Topology
wird die Liste der Async-Matcher nach einem passenden
Muster durchsucht und bei einem Fund das passende
Merge-Pattern zurückgeliefert. Wird kein passendes Muster
gefunden verbleiben die kommunizierenden Aktivitäten (hier
<invoke> s sowie <receive> r) im neuen konsolidierten
Prozess und werden im letzten Schritt als intra-Prozess-
kommunizierende (mit Hilfe eines SOAP-Bypassing-Attributs
im Deployment-Deskriptor) Aktivitäten markiert.

Abbildung 3.30 Anwendung des Merge-Algorithmus: Für jeden asynchron kommunizierenden Link wird die Liste der be-
kannten AsyncMatcher nach einem Muster durchsucht und im Falle einer Übereinstimmung das entsprechende AsyncPattern
zurückgeliefert.

3.3.1.1 AsyncPattern1.1

Das AsyncPattern1.1 ist das einfachste Merge-Pattern und basiert auf den Überlegungen aus der Vari-
ante 2 der asynchronen Kommunikationsmuster aus Abschnitt 3.2.2. Die sendende <invoke>-Aktivi-
tät als auch die empfangende <receive>-Aktivität können Vorgänger- sowie Nachfolgeaktivitäten im
Kontrollfluss haben.

Abbildung 3.31 zeigt die Beschaffenheit der zwei Teilneh-
mer des AsyncPattern1.1 sowie die Änderungen bei der
Konsolidierung: PBD1 kommuniziert per <invoke>-Akti-
vität s mit der <receive>-Aktivität r in PBD2. Beide Akti-
vitäten haben Vorgänger- als auch Nachfolgeraktivitäten im
Kontrollfluss. •s bezeichnet hier die Menge aller direkten
Vorgängeraktivitäten von s, s• die Menge aller direkten
Nachfolgeraktivitäten von s. Entsprechend steht •r für die
Menge aller direkten Vorgängeraktivitäten von r, r• für die
Menge aller direkten Nachfolgeraktivitäten von r. Es gilt

hierbei •s=prel(s)+pre(s), s•=succl(s)+succ(s), •r=prel(r)+pre(r) und r•=succl(r)+succ(r) (vgl. Ta-
belle 3.5). Wir ersetzen im konsolidierten Prozess s durch die <assign>-Aktivität a, die vs an vr zu-
weist. Da vr im Scope Scope_PBD2 definiert wurde und nur dort sichtbar ist, müssen wir hierzu vr in
den globalen Prozessscope verschieben. Hierbei müssen wir aufpassen, dass es nicht schon eine glo-
bale Variable mit demselben Namen gibt. Ist dies der Fall benennen wir vr in vr‘ um und ändern alle
Verweise von vr in Scope_PBD2 sowie a auf vr‘. Der neue Kontrollflusslink ln, der nun a mit der
synchronisierenden <empty>-Aktivität b verbindet, wird zu den Links in der <flow>-Aktivität des
konsolidierten Prozesses hinzugefügt. Auch hier muss wieder auf mögliche Namenskollisionen geprüft
werden. Wie in den Abschnitten 3.2.2.1.1 sowie 3.2.2.1.2 erläutert, müssen die <transitionCon-
dition>s von a nicht angepasst werden, jedoch die <joinCondition> von b im Falle anderer ein-
gehender Links als ln.

3.3.1.1.1 <invoke> mit FHs und CHs

WS-BPEL 2.0 erlaubt die direkte Definition von Compensation sowie Fault Handlern innerhalb einer
<invoke>-Aktivität. Eine solche <invoke>-Aktivität ist semantisch äquivalent zu einer <scope>-

PBD2PBD1

•s

Invoke
s

s•

•r

 Receive
r

r•

mlvs vr

vs vr

ProzessMerged

Flow <links>ln</links>
Scope_PBD2Scope_PBD1

•s

Assign
a

s•

•r

Empty
b

r•

ln AND

vs
vr

vr

vr

vs

Abbildung 3.31 AsyncPattern1.1

 Seite 62

Aktivität, die diese <invoke>-Aktivität enthält und die den CH sowie die FHs dieser definiert. Sie
trägt denselben Namen, wie die enthaltene <invoke>-Aktivität.
Abbildung 3.32 zeigt das Beispiel aus dem Async-
Pattern1.1 mit einem solchen <invoke> und die nötigen
Anpassungen für das Konsolidierungsmuster: Im neuen
konsolidierten Prozess ProzessMerged wird nun eine neue
<scope>-Aktivität s definiert, die die neue <assign>-
Aktivität a umschließt und die FHs sowie den CH von
<invoke> s enthält. Zusätzlich werden die eingehenden
Links von <invoke> s zu den eingehenden Links von
<scope> s (hier l1) und die ausgehenden Links von
<invoke> s zu den ausgehenden Links von <scope> s
(hier l2).

3.3.1.1.2 <empty>-Optimierer

Wie in Abschnitt 3.2.2 beschrieben, gibt es in der Variante eins der Konsolidierung asynchroner Kom-
munikationsmuster die Möglichkeit auch die synchronisierende <empty>-Aktivität zu entfernen. Der
folgende Abschnitt beschreibt eine Optimierungsfunktion, die unter bestimmten Bedingungen den
Kontrollfluss des konsolidierten Prozesses so anpasst, dass wir auf das <empty> verzichten können.
Hierzu werden wir einige der Funktionen aus Tabelle 3.5 definieren.

Abbildung 3.32b zeigt das Ergebnis der Optimierung nach
Ausführung des Algorithmus. Um mögliche bpel:join-
Failure-Faults nicht zu unterdrücken, setzen wir voraus,
dass in b suppressJoinFailure auf „yes“ gesetzt ist.
Wir werden im Optimierungsschritt die <transition-
Condition>s sowie <joinCondition>s der Vorgänger
sowie Nachfolgeraktivitäten von b anpassen und neue Links

in diesen anlegen um den Kontrollfluss mit dem ursprünglichen identisch zu halten. Hierbei gilt wie-
der: •b=prel(b)+pre(b), b•=succl(b)+succ(b), mit a∈ prel(b).

(1) optimizeEmpty(actempty)
(2) begin
(3) if (actempty.suppressJoinFailure == ”yes”)
(4) if (size(prel(actEmpty))>0 || size(succl(actEmpty))>0)
(5) foreach (succAct in actEmpty•) do
(6) Link e2succ = connector(actempty, succAct)
(7) TC tcsuccAct = tc(e2succ, actEmpty)
(8) JC jcsuccAct = jc(succAct)
(9) JC jcEmpty = jc(actempty)
(10) foreach (preAct in •actEmpty) do
(11) Link pre2e = connector(preAct, actempty)
(12) TC tcpreAct = tc(pre2e, preAct)
(13) Link newLink = createLink(preAct)
(14) Source newSource = createSource(newLink, preAct)
(15) if (tcsuccAct ≠ null || tcpreAct ≠ null)
(16) newSource.tc = combine(tcsuccAct, tcpreAct)
(17) fi
(18) removeSource(pre2e, preAct)
(19) Target newTarget = createTarget(newLink, succAct)
(20) if (jcEmpty == null)

PBD2PBD1

•s

Invoke
s

s•

•r

 Receive
r

r•

mlvs vr

vs vr

ProzessMerged

Flow <links>ln</links>
Scope_PBD2Scope_PBD1

•s

s•

•r

Empty
b

r•

l1 ln
AND

vr

vr

vs

FH CH Scope s FH CH

Assign
a

vs
vr

l1

l2 l2

Abbildung 3.32 <invoke> mit FH und CH

•a

Assign
a

a•

•b

Empty
b

b•

•a

a•

•b

b•

Assign
a

Abbildung 3.32b <empty>-Optimierung

 Seite 63

Auflistung 3.5 Pseudocode <empty>-Optimierungsalgorithmus

Auflistung 3.5 zeigt den Pseudocode für den Optimierungsalgorithmus für <empty>-Aktivitäten.
Nach Eingabe einer <empty>-Aktivität (actEmpty) wird geprüft ob die Dead-Path-Elimination für diese
Aktivität gesetzt wurde (Zeile 3). Anschließend werden für alle Nachfolgeraktivitäten in actEmpty•
folgende Schritte durchgeführt: Wir ermitteln den Link e2succ, der succAct und actEmpty verbindet (Zeile
5). Handelt es sich bei succAct um eine Aktivität aus succ(actEmpty), die nicht per Link mit actEmpty ver-
bunden ist, so bleibt dieser Link leer. Daraufhin speichern wir, falls vorhanden, die <transition-
Condition> dieses Links in tcsuccAct, die <joinCondition> von succAct in jcsuccAct sowie die <join-
Condition> von actEmpty in jcEmpty (Zeilen 6-8), da wir sie in den nächsten Schritten zu neuen kombi-
nierten <joinCondition> sowie <transitionCondition>s transformieren. In der folgenden
Schleife (Zeilen 10-25) kombinieren wir die <transitionCondition>s aller Vorgängeraktivitäten
von actEmpty (•actEmpty) mit den <transitionCondition>s des Links, der actEmpty mit succAct
verbindet, falls vorhanden. So stellen wir sicher, dass die <transitionCondition>s von actEmpty in
die Vorgängeraktivitäten übertragen werden und der ursprüngliche Kontrollfluss erhalten bleibt.
Anschließend wird ein neuer Link mit Ausgang in preAct und Eingang in succAct und der kombinierten
<transitionCondition> aus tcsuccAct und tcpreAct angelegt. Hierzu werden tcsuccAct und tcpreAct per
UND-Verknüpfung miteinander verbunden (Zeile 15 combine(tcsuccAct, tcpreAct)). Besitzt actEmpty keine
eingehenden Links und ist jcEmpty somit leer, ersetzen wir alle Vorkommen von e2succ in jcsuccAct durch
den neuen Link newLink (Zeile 21). Andernfalls wird die <joinCondition> jcEmpty angepasst, indem
der alte Link pre2e durch den neuen newLink im XPath-Ausdruck ersetzt wird (Zeile 23 replace-
Link(pre2e, newLink, jcEmpty)). Nachdem alle Aktivitäten aus •actEmpty angepasst wurden, wird die neue
<joinCondition> jcNew von succAct angelegt. Existiert kein Link e2succ, der actEmpty mit succAct
verbindet, so ist jcNew die UND-Verknüpfung aus jcEmpty und jcSuccAct (Zeile 28). Andernfalls werden alle
Vorkommen des Links e2succ mit der neuen kombinierten jcEmpty <joinCondition> in jcsuccAct
ersetzt (Zeile 30 replaceLinkWithJC(e2succ, jcEmpty, jcsuccAct)). Nach erfolgreicher Zusammenführung
der Vorgänger- und Nachfolgeraktivitäten von actEmpty im Kontrollfluss, wird actEmpty entfernt. Sei
m=size(actEmpty•) die Anzahl der Aktivitäten in actEmpty• und n=size(•actEmpty) die Anzahl der Aktivi-
täten in •actEmpty, dann müssen wir in unserem Optimierungsalgorithmus n*m neue Links anlegen.
Auflistung 3.6 zeigt den Pseudocode für das Ermitteln der <joinCondition> einer Aktivität. Hierzu
wird lediglich geprüft, ob es eine explizite <joinCondition> in dieser Aktivität gibt, ansonsten
werden die eingehenden Links der <targets> per ODER-Verknüpfung miteinander kombiniert
(implizite <joinCondition>).

(21) jcsuccAct = replaceLink(e2succ, newLink, jcsuccAct)
(22) else
(23) jcEmpty = replaceLink(pre2e, newLink, jcEmpty)
(24) fi
(25) od
(26) JC jcNew = null
(27) if (e2succ == null)
(28) jcNew = combine(jcEmpty, jcsuccAct)
(29) else
(30) jcNew = replaceLinkWithJC(e2succ, jcEmpty, jcsuccAct)
(31) fi
(32) setJC(succAct, jcNew)
(33) removeTarget(e2succ, succAct)
(34) od
(35) fi
(36) remove(actempty)
(37) fi
(38) end

 Seite 64

Auflistung 3.6 Pseudocode jc(act)-Funktion

Seq
A1

E

A2

A3

A4

l1

l2

Seq
A1

A2

A3

A4

ln1
ln2ln3

ln4

prel(E) = { A3 }, pre(E) = { A1 },
•E = prel(E) + pre(E),
succl(E) = { A4 }, succ(E) = { A2 },
E• = succl(E) + succ(E)

tc(l1, A3) = $paycheck.amount > 50
tc(l2, E) = $account.balance > 500
jc(E) = $l1
jc(A4) = $l2

tc(ln1, A1) = $account.balance > 500
tc(ln2, A3) = ($account.balance > 500) AND
 ($paycheck.amount > 50)
tc(ln4, A3) = $paycheck.amount > 50
jc(A2) = $ln4
jc(A4) = $ln2

Seq
A1

E

A2

A4

l1 l2

prel(E) = { A3, A4 }, pre(E) = { A1 },
•E = prel(E) + pre(E),
succl(E) = { A5 }, succ(E) = { A2 },
E• = succl(E) + succ(E)

tc(l1, A3) = tc1
tc(l2, A4) = tc2
tc(l3, E) = tc3
jc(E) = $l1 OR $l2
jc(A5) = $l3 AND $x
jc(A2) = $y

tc(ln1, A3) = tc1 AND tc3
tc(ln4, A3) = tc1
tc(ln2, A1) = tc3
tc(ln3, A4) = tc2 AND tc3
tc(ln6, A4) = tc2
jc(A5) = $x AND ($ln1 OR $ln3)
jc(A2) = $y AND ($ln4 OR $ln6)

A3

A5

l3x
y

Seq
A1

A2

A4A3

A5

x
y

ln1
ln2 ln3ln4 ln5

ln6

Seq
A1

E

A2

l1

Seq
A1

A2

ln1

prel(E) = {}, pre(E) = { A1 },
•E = prel(E) + pre(E),
succl(E) = { A2 }, succ(E) = {},
E• = succl(E) + succ(E)

tc(l1, E) = tc1
jc(A2) = $l1

tc(ln1, A1) = tc1
jc(A2) = $ln1

Seq
A1

E

A2

l1

A3

l2

Seq
A1

A2

ln1

A3

ln2

prel(E) = {}, pre(E) = { A1 },
•E = prel(E) + pre(E),
succl(E) = { A2, A3 }, succ(E) = {},
E• = succl(E) + succ(E)

tc(l1, E) = tc1
tc(l2, E) = tc2
jc(A2) = $l1
jc(A3) = $l2 OR $x

x x

tc(ln1, A1) = tc1
tc(ln2, A1) = tc2
jc(A2) = $ln1
jc(A3) = $ln2 OR $x

Seq
A1

E

A2

l1

A3

x

Seq
A1

A2

ln1

A3

x

ln2

prel(E) = {}, pre(E) = { A1 },
•E = prel(E) + pre(E),
succl(E) = { A3 }, succ(E) = { A2 },
E• = succl(E) + succ(E)

tc(l1, E) = tc1
jc(A2) = $x
jc(A3) = $l1

tc(ln1, A1) = tc1
jc(A2) = $x
jc(A3) = $ln1

Abbildung 3.32c Fallbeispiele einiger <empty>-Optimierungen

 Abbildung 3.32c zeigt den Optimierungsalgorithmus an einigen simplen Beispielfragmenten.

3.3.1.2 AsyncPattern1.2

Das AsyncPattern1.2 stellt eine Spezialisierung des AsyncPattern1.1 dar, mit der Bedingung, dass für
die Menge r•=∅ gilt, es somit keine Nachfolgeaktivitäten auf die empfangende Aktivität gibt. Abbil-
dung 3.33 zeigt einige Beispielfragmente einer Choreographie mit der gegebenen Ausgangssituation.

(1) JC jc(act)
(2) begin
(3) JC jc = null
(4) if (act.jc ≠ null)
(5) return act.jc
(6) else
(7) for (i = 0; i < size(act.<targets>); i++) do
(8) jc += “$” + act.<targets>[i]
(9) jc = (i < (size(act.<targets>)-1) ? jc + “ OR “ : jc)
(10) od
(11) fi
(12) return jc
(13) end

 Seite 65

PBD2PBD1

•s

Invoke
s

s•

•r

 Receive
r

mlvs vr

vs vr

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Empty
a

s•

•r

Empty
b

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Empty
a

s•

•r

a) b)

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

s•

•r

c)

Abbildung 3.33 AsyncPattern1.2

Gegeben sind zwei PBDs PBD1 und PBD2 die über einen Message Link ml miteinander kommunizie-
ren. Da in PBD2 keine Nachfolgeaktivitäten auf die <receive>-Aktivität r folgen, wird hier die Zu-
weisung von vs an vr obsolet, da die Daten von vr in PBD2 nichtmehr verwendet werden. Stattdessen
ersetzen wir s und r durch zwei synchronisierende <empty>-Aktivitäten a und b wie in a) gezeigt. Ist
zusätzlich für r das suppressJoinFailure-Attribut auf „yes“ gesetzt, so können wir r vollständig
entfernen (b)). Andernfalls würden wir einen möglichen bpel:joinFailure-Fault unterdrücken. c)
zeigt eine weitere Optimierung für den Fall, dass auch für s das suppressJoinFailure-Attribut auf
„yes“ gesetzt ist: Nach Anwendung des <empty>-Optimierungsalgorithmus aus Abschnitt 3.3.1.1.2
wurde auch die s ersetzende <empty>-Aktivität a entfernt und der Kontrollfluss zwischen •s sowie s•
zusammengeführt.

3.3.1.3 AsyncPattern1.3

Das AsyncPattern1.3 ist ein weiterer Spezialfall des AsyncPattern1.1. Im Gegensatz zum AsyncPat-
tern1.2 gilt hier nun: s•=∅ gilt, es existieren somit keine weiteren Nachfolgeaktivitäten auf die sen-
dende. Abbildung 3.34 zeigt das Kommunikationsmuster an einem Beispielfragment.

PBD2PBD1

•s

Invoke
s

•r

 Receive
r

r•

mlvs vr

vs vr

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s •r

Empty
b

r•

vr

vs

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s •r

r•

vr

vs

ProzessMerged

Flow <links>ln<links>
Scope_PBD2Scope_PBD1

•s •r

Empty
b

r•

vr

vs

vs

ln

Ersetzen aller Vorkommen
von vr durch vS

Empty
a

Abbildung 3.34 AsyncPattern1.3

Gegeben sind die beiden PBDs PBD1 und PBD2. Da PBD1 die Daten von vs nicht mehr verwendet,
wird bei der Konsolidierung s durch die synchronisierende <empty>-Aktivität a ersetzt und r durch
die <empty>-Aktivität b. Da wir hier auf die Datenzuweisung von vs an vr durch die übliche
<assign>-Aktivität, die s ersetzt, verzichtet haben, werden wir nun ausgehend von b alle Nach-
folgeaktivitäten untersuchen und alle Vorkommen von vr durch vs ersetzen. vs wird zusätzlich in den
Prozessscope übertragen. Auflistung 3.7 zeigt den Pseudocode für das Ersetzen der Variablen. Zur
Übersichtlichkeit und um den Umfang der vorliegenden Arbeit nicht zu sprengen, wurde auf Imple-
mentierungsdetails verzichtet. Diese werden im Kapitel 4 Implementierung genauer beschrieben.
Nachdem vr durch vs in Scope_PBD2 ersetzt wurde, führen wir den <empty>-Optimierungsalgorith-
mus für a und b aus und können im Optimalfall (beide suppressJoinFailure-Attribute sind auf
„yes“ gesetzt) beide Synchronisationsaktivitäten entfernen (Abbildung 3.34 rechte Fragmente).

 Seite 66

(1) replaceVar(vr, vs, act)
(2) begin
(3) foreach (source in act.<sources>) do
(4) if (source.tc ≠ null)
(5) replaceVariableInXPathExpr(vr, vs, source.tc)
(6) fi
(7) od
(8) if (typeof(act) == <invoke>)
(9) … ersetze alle Vorkommen von vr durch vs in inputVariable und outputVariable, <from-
(10) Parts>, <toParts>, <compensationHandler>, Fault Handler sowie allen Unteraktivitäten
(11) (Rekursion) …
(12) fi
(13) if (typeof(act) == <receive>)
(14) … ersetze alle Vorkommen von vr durch vs in variable oder <fromParts> …
(15) fi
(16) if (typeof(act) == <reply>)
(17) … ersetze alle Vorkommen von vr durch vs in variable oder <toParts> …
(18) fi
(19) if (typeof(act) == <assign>)
(20) … ersetze alle Vorkommen von vr durch vs in allen <copy>s → from-specs sowie to-specs
(21) mit variable und expressionLanguage …
(22) fi
(23) if (typeof(act) == <validate>)
(24) … ersetze alle Vorkommen von vr durch vs in variable …
(25) fi
(26) if (typeof(act) == <sequence> || typeof(act) == <flow>)
(27) foreach (subAct in act.activities) do
(28) replaceVariable(vr, vs, subAct)
(29) od
(30) fi
(31) if (typeof(act) == <if>)
(32) … ersetze alle Vorkommen von vr durch vs in condition, allen <elseif>s und <else> sowie
(33) allen enthaltenen Unteraktivitäten (Rekursion) …
(34) fi
(35) if (typeof(act) == <while> || typeof(act) == <repeatUntil>)
(36) replaceVariableInXPathExpr(vr, vs, act.<condition>)
(37) replaceVariable(vr, vs, act.activity)
(38) fi
(39) if (typeof(act) == <pick>)
(40) … ersetze alle Vorkommen von vr durch vs in allen <onMessage> sowie <onAlarm>-Zweigen
(41) sowie Unteraktivitäten (Rekursion) …
(42) fi
(43) if (typeof(act) == <forEach>)
(44) … ersetze alle Vorkommen von vr durch vs in startCounterValue-, finalCounterValue-,
(45) completionCondition-expressions sowie der enthaltenen <scope>-Aktivität (Rekursion) …
(46) fi
(47) if (typeof(act) == <scope>)
(48) … überprüfe ob eine Variable vr definiert wurde (diese überdeckt die ursprüngliche Variable vr),
(49) wenn nicht, ersetze alle Vorkommen von vr durch vs in allen CHs, FHs, EHs, THs sowie der
(50) Unteraktivität (Rekursion)
(51) fi

 Seite 67

Auflistung 3.7 Pseudocode replaceVar(v1, v2, act)-Funktion

Das AsyncPattern1.3 setzt voraus, dass es keine parallelen schreibenden oder lesenden Aktivitäten im
sendenden Prozess gibt, die nach der Ausführung von s vs verwenden, da vs nach der Konsolidierung
im empfangenden Prozessfragment (Scope_PBD2) verändert werden kann (vgl. Abbildung 3.25).

3.3.1.4 AsyncPattern1.4

Das AsyncPattern1.4 ist charakterisiert durch eine leere Menge an direkten Nachfolgeaktivitäten von s
sowie r, es gilt somit r•=∅ und s•=∅. Abbildung 3.35 zeigt ein Beispielfragment zweier miteinander
kommunizierender Prozessfragmente, die ein solches Muster enthalten.

PBD2PBD1

•s

Invoke
s

•r

 Receive
r

mlvs vr

vs vr

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Empty
a

•r

Empty
b

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s •r

Abbildung 3.35 AsyncPattern1.4

Da beide Choreographieteilnehmerfragmente PBD1 sowie PBD2 die Daten nach der Kommunikation
nicht mehr verwenden, entfällt das Zuweisen von vs an vr per <assign>-Aktivität. Ist zusätzlich die
Dead-Path-Elimination (beide suppressJoinFailure-Attribute sind auf „yes“ gesetzt) für s und r
aktiviert, können die synchronisierenden <empty>-Aktivitäten a und b ebenfalls entfernt werden.

3.3.1.5 AsyncPattern1.5

Das AsyncPattern1.5 ist ein Kommunikationsmuster bei dem es keine direkten Vorgängeraktivitäten
auf die empfangende <receive>-Aktivität gibt. Daher ist das createInstance-Attribut der em-
pfangenden <receive>-Aktivität auf „yes“ gesetzt und es gilt •r=∅. Abbildung 3.36 zeigt das
AsyncPattern1.5 an einem Beispielfragment zweier kommunizierender PBDs.

PBD1 und PBD2 kommunizieren über einen Message Link
ml miteinander. Hierbei ist jedoch PBD1 der Initiator von
PBD2 (•r=∅). Da die <receive>-Aktivität r keine di-
rekten Vorgängeraktivitäten besitzt kann in diesem Fall auf
eine synchronisierende <empty>-Aktivität verzichtet wer-
den. s wird durch eine <assign>-Aktivität a ersetzt, die vs
nach vr kopiert. Zusätzlich muss der Kontrollfluss zwischen
Scope_PBD1 mit dem von Scope_PBD2 verbunden werden.
Hierzu werden alle ausgehenden Links von r, inklusive
möglicher <transitionCondition>s zu den ausgehen-

(52) foreach (succAct in act•) do
(53) replaceVariable(vr, vs, succAct)
(54) od
(55) end

PBD2

PBD1

•s

Invoke
s

s•

 Receive
r

r•

mlvs vr

vs

vr

ProzessMerged

Flow

Scope_PBD2

Scope_PBD1

•s

Assign
a

s• r•

vs
vr

vr

vr

vs

Abbildung 3.36 AsyncPattern1.5

 Seite 68

den Links von a hinzugefügt und in die Prozess-<flow>-Aktivität übertragen. Existieren keine
ausgehenden Links, es gilt somit succl(r)=∅, wird ein neuer Link ln (nicht abgebildet) ausgehend von
a und eingehend in die Nachfolgeraktivität succ(r) hinzugefügt.

3.3.1.6 AsyncPattern1.6

Das AsyncPattern1.6 ist eine weitere Spezialisierung des AsyncPattern1.1. Im Gegensatz zu diesem
überprüft es zusätzlich, ob es in den direkten Nachfolgeraktivitäten der sendenden <invoke>-Aktivi-
tät s weitere asynchrone <invoke>-Aktivitäten gibt, die choreographie-intern kommunizieren. Hierzu
untersucht es die übrigen Message Links aus ML und kann die involvierten <invoke>-Aktivitäten zu
einer neuen <assign>-Aktivität mit mehreren atomaren <copy>-Blöcken zusammenführen und an-
schließend den Kontrollfluss synchronisieren. Dieses Verfahren wird sukzessiv für die direkten Nach-
folgeaktivitäten durchgeführt.

PBD2PBD1

•s1

Invoke
s1

s3•

 Receive
r1

r2•

ml1vs1 vr1

vs1 vr1

Invoke
s2

vs2

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Assign
a

s3•

•r1

Empty
b

r2•

vs1
vr1

vr1

vr1

•r1

 Receive
r2

vr2

vs2 vr2

ml2

PBD3

•r

 Receive
r

r•

vr

vr

Invoke
s3

vs3

vs3

ml3

vs1 vs2 vs3

Invoke
s2

vs2

Invoke
s3

vs3

vr2

 Receive
r2

vr2

Scope_PBD3

•r

 Receive
r

r•

vr3

vr3

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Assign
a

s3•

•r1

Empty
b

r2•

vs1
vr1

vr1

vs1 vs2 vs3

Invoke
s3

vs3

vr2

 Empty
c

Scope_PBD3

•r

 Receive
r

r•

vr3

vr3

vr2

vr2

vs2

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s

Assign
a

s3•

•r1

Empty
b

r2•

vs1
vr1

vr1

vs1 vs2 vs3

 Empty
c

Scope_PBD3

•r

Empty
d

r•

vr3

vr2

vr2

vs2

vr3

vs3

vr3

Abbildung 3.37 AsyncPattern1.6

Abbildung 3.37 zeigt die drei Beispielsfragmente einer Choreographie in denen ein solches Kom-
munikationsmuster auftritt. Die drei PBDs PBD1, PBD2 sowie PBD3 kommunizieren über die drei
Message Links ml1, ml2 und ml3 miteinander. Nachdem die PBDs in die entsprechenden <scope>-
Aktivitäten im neuen konsolidierten Prozess ProzessMerged kopiert wurden, untersucht der Algo-
rithmus die Message Links. In der asynchronen Kommunikation zwischen PBD1 und PBD2,
dargestellt durch den Message Link ml1 und die <invoke>-Aktivität s1 in PBD1 sowie die <re-
ceive>-Aktivität r1 in PBD2, wird nun das AsyncPattern1.1 angewendet und anschließend die direk-
ten Nachfolgeaktivitäten von s1 in s1•=succl(s1)+succ(s1) untersucht: Hierbei findet sich erneut eine
asynchrone choreographie-intern kommunizierende <invoke>-Aktivität s2, dargestellt durch den
Message Link ml2. Nun werden folgende Bedingungen für s2 überprüft:

1. Liegt s2 in succl(s1) überprüfen wir zunächst, ob s1 und s2 die gleichen Werte für das
suppressJoinFailure-Attribute enthalten. Sind diese verschieden, bricht der Algorith-
mus ab und der nächste Message Link wird untersucht andernfalls wird überprüft, ob es eine
explizite Kontrollflussabhängigkeit durch eine <transitionCondition> gibt, für den
entsprechenden, beide Aktivitäten verbindenden Link. Ist dies der Fall, so bricht der
Algorithmus ab, da erst zur Laufzeit entschieden werden kann ob eine <transition-
Condition> zu wahr ausgewertet wird (vgl. [BFG05]) und wir bei einer Zusammen-
führung beider Aktivitäten den Kontrollfluss verändern würden. So könnte es sein, dass vor
der Zusammenführung die Auswertung der <transitionCondition> von s1 die Aus-
führung von s2 verhindert. Liegt keine <transitionCondition> für diesen Link vor wird
untersucht, ob s2 weitere eingehende Links besitzt (<targets>). Ist dies der Fall bricht der
Algorithmus ab. Würden wir diese zu den eingehenden Links der aus AsyncPattern1.1 für
die s1 ersetzende <assign>-Aktivität a hinzufügen, so wäre der Kontrollfluss von a
abhängig von den Vorgängeraktivitäten von s2 aus prel(s2). Sind beide vorhergehenden

 Seite 69

Überprüfungen negativ, so wird anschließend überprüft, ob s1 und s2 in derselben <scope>-
Aktivität liegen, da wir ansonsten durch eine Zusammenführung den Kontrollfluss
verändern würden. Dies wäre beispielsweise dann der Fall, wenn s1 in einem <scope> mit
einem Compensation Handler liegt, der nach der Zusammenführung erst nach Beendigung
von s2 installiert werden würde.

2. Liegt s2 in succ(s1) überprüfen wir, ob s1 und s2 die gleichen Werte für das suppressJoin-
Failure-Attribute enthalten. Anschließend wird geprüft, ob s2 eingehende Links besitzt
(<targets>). Ist dies der Fall bricht der Algorithmus ab, da wir durch Zusammenführung
beider Aktivitäten einen veränderten Kontrollfluss zur Folge hätten. Nun wird überprüft ob
s1 und s2 in derselben <scope>-Aktivität liegen.

Wurden die vorhergehenden Überprüfungen bestanden so werden s1 und s2 in die <assign>-Aktivität
a zusammengeführt, indem eine neuer <copy>-Block für das Kopieren der Variable vs2 nach vr2 zu
dem schon vorhandenen <copy>-Block hinzugefügt wird. Abbildung 3.38 zeigt einen solchen
<copy>-Block.

<assign name=“a‘“>
 <copy>
 <from variable=“vs1“/>
 <to variable=“vr1“/>
 </copy>
</assign>

<assign name=“a‘“>
 <copy>
 <from variable=“vs1“/>
 <to variable=“vr1“/>
 </copy>
 <copy>
 <from variable=“vs2“/>
 <to variable=“vr2“/>
 </copy>
</assign>

Abbildung 3.38 Erweiterung von <assign>-Aktivität a durch zusätzlichen <copy>-Block

Nachdem s1 und s2 in a zusammengeführt wurden, werden die <sources> von s2, falls vorhanden,
inklusive <transitionCondition>s zu a hinzugefügt und der Algorithmus wiederholt die Überprü-
fung in den direkten Nachfolgeraktivitäten s2• (Abbildung 3.37 dritte Iteration). Im Optimalfall kön-
nen die <empty>-Aktivitäten b, c und d nach Anwendung des <empty>-Optimierers auch hier ent-
fernt werden (nicht dargestellt).

3.3.1.7 AsyncPattern1.7 („Khalaf Split“)

In ihrer Dissertation [KHA08] beschreibt Khalaf eine Methode zum Aufspalten eines Kontrollfluss-
links über Prozessgrenzen hinweg. Das AsyncPattern1.7 erkennt solche Kommunikationsmuster und
stellt den ursprünglichen Kontrollfluss im konsolidierten Prozess wieder her. Abbildung 3.39 zeigt die
Idee hinter dem Fragmentierungsvorgang von Khalaf.

Prozess_Original
tc Aufspalten

PBD1
Scope

FH bpel:joinFailure

tc

A B

A Invoke A‘

Invoke A‘‘

PBD2

Receive B‘ Bvs1

vs2

vr
vrml1

ml2
AsyncPattern1.7

ProzessMerged
Scope_PBD1

A

Scope_PBD2

Btc

l1

l1l1
l1

Abbildung 3.39 Aufspalten eines Kontrollflusslinks (vgl. [KHA08]) und anschließendes Konsolidieren mit AsyncPat-
tern1.7

Im unfragmentierten Prozess Prozess_Original sind die beiden Aktivitäten A und B über einen Link
miteinander verbunden. Für diesen Link gilt die <transitionCondition> tc(l1, A)=tc. Der Kon-
trollflusslink wird nach Khalaf folgendermaßen aufgespalten: Um den Status der <transition-
Condition> tc aus PBD1 nach PBD2 zu übertragen wird der Kontrollfluss in einen Nachrichtenfluss
transformiert. Hierzu wird eine <scope>-Aktivität mit einem Fault Handler zum Auffangen des
bpel:joinFailure-Faults hinzugefügt. In dieser <scope>-Aktivität befindet sich eine <invoke>-
Aktivität A‘, die das suppressJoinFailure-Attribute auf „no“ gesetzt hat und die Variable vs1 mit
dem Standardwert „true“ verwendet. Zusätzlich enthält der Fault Handler eine <invoke>-Aktivität
A‘‘, die Variable vs2 mit dem Standardwert „false“ verwendet. Beide <invoke>-Aktivitäten kom-

 Seite 70

munizieren mit derselben <receive>-Aktivität B‘ in PBD2 über die beiden Message Links ml1 sowie
ml2. Je nach Auswertung der <transitionCondition> tc zur Laufzeit, sendet entweder A‘ oder im
bpel:joinFailure-Fault Fall A‘‘. Die Empfängerseite PBD2 erhält den Wert des ehemaligen
Kontrollflusslinks in der Variablen vr und wertet diese in der <transitionCondition> tc(l2, B‘)=
“vr=true()“ aus. Da der Link zwischen B‘ und B im fragmentierten Prozess PBD2 weiterhin l1 heißt,
muss die <joinCondition> von B nicht angepasst werden.
In seiner Diplomarbeit [CUI12] setzt Cui diesen Fragmentierungsvorgang um. Wir werden AsyncPat-
tern1.7 so konstruieren, dass dieses das dort gezeigte Fragmentierungsmuster erkennt und den ur-
sprünglichen Kontrollfluss wiederherstellt.

PBD1
Scope

FH bpel:joinFailure

A
PBD2

Receive B‘ Bvr

Sequence suppressJoinFailure=“no“

Assign
a

true()
vs

Invoke A‘ vs

Sequence

 Assign
b

false()
vs

Invoke A‘‘ vs

l1

vs

vr

l1ml1

ml2

ProzessMerged

Flow <links>l1<links>
Scope_PBD1

A

Scope_PBD1

Bl1

Abbildung 3.40 AsyncPattern1.7 angewendet auf Cui’s Kontrollflusslinkfragmentierung (vgl. [CUI12])

Abbildung 3.40 zeigt die Umsetzung der Kontrollflusslinkfragmentierung nach Cui mit anschließender
Konsolidierung mit AsyncPattern1.7. Für das AsyncPattern1.7 sucht der Konsolidierungsalgorithmus
nach zwei Message Links aus ML ml1 und ml2, die beide die gleiche <receive>-Aktivität,
beispielswese B‘, als receiveActivity enthalten. Zusätzlich befinden sich die beiden <invoke>-
Aktivitäten, z.B. A‘ und A‘‘, in derselben PBD. Jetzt wird überprüft, ob sich jeweils A‘ sowie A‘‘ als
zweite Aktivität innerhalb einer <sequence>-Aktivität befinden (typeof(par(A‘)=<sequence> sowie
typeof(par(A‘‘))=<sequence>). Trifft dies zu wird überprüft, ob die Vorgängeraktivität beider
<invoke>s eine <assign>-Aktivität ist. Diese <assign>-Aktivität weist in einem Fall den festen
Wert „true()“, sei diese a, im anderen Fall „false()“, sei diese b, an die von der <invoke>-
Aktivität verwendete Variable vs zu. Anschließend wird überprüft, ob die <sequence>-Aktivität, die
a enthält innerhalb einer <scope>-Aktivität (typeof(par(par(A‘)))=<scope>) mit einem Fault
Handler für den bpel:joinFailure-Fault liegt und das suppressJoinFailure-Attribut auf „no“
gesetzt hat. Zusätzlich darf diese Aktivität nur einen eingehenden Link haben, sei dieser hier l1. Die
<sequence>-Aktivität, die b enthält muss in diesem Fault Handler enthalten sein (typeof(par(
par(A‘‘)))=<catch faultName="bpel:joinFailure">). Beide Sequenzen dürfen nur die zuvor
erwähnten <assign>- und <invoke>-Aktivitäten enthalten. Wurden alle vorherigen Muster erkannt,
wird die Empfängerseite überprüft: Die <receive>-Aktivität, sei diese hier B‘, enthält nur einen
ausgehenden Link, der denselben Namen, wie der in die <sequence>-Aktivität von A‘ eingehende
besitzt (l1). Zusätzlich prüft die <transitionCondition> dieses Links den Wert der empfangenen
Variable vr auf „true“ (tc(l1, B‘)=“vr=true()“).
Wurden alle zuvor genannten Bedingungen im sendenden und empfangenden Fragment positiv
überprüft, so wird das Konsolidierungsmuster angewendet und der Kontrollfluss der beiden PBDs im
neuen Prozess ProzessMerged zusammengeführt. Hierzu wird die <scope>-Aktivität in Scope_PBD1
entfernt sowie die <receive>-Aktivität in Scope_PBD2. Anschließend wird der Link l1, der zuvor in
Scope_PBD1 sowie Scope_PBD2 enthalten war in die Prozess-<flow>-Aktivität übertragen. Da auf
Sender sowie Empfängerseite derselbe Linkname l1 während der Fragmentierung verwendet wurde,
müssen bei der Konsolidierung keine Anpassungen an der <joinCondition> von B durchgeführt
werden.
Das von Cui in [CUI12] implementierte Fragmentierungsmuster für Kontrollflusslinks lässt sich auch
ohne eine <sequence>-Aktivität innerhalb der <scope>-Aktivität auf der sendenden Seite
realisieren, beispielsweise durch zwei Variablen, die nur einmal zu Beginn des Prozesses mit „true“
und „false“ initialisiert werden (vtrue und vfalse). Der gezeigte Erkennungs- und Konsolidierungsalgo-
rithmus ist hierfür leicht anpassbar.

 Seite 71

3.3.1.8 AsyncPattern1.8 (Asynchrones n-zu-1 Senden auf <receive>)

Das AsyncPattern1.8 dient dem Aufspüren und anschließendem Konsolidieren einer n-zu-1 Kommuni-
kation innerhalb einer BPEL4Chor Choreographie. Hierbei können mehrere Choreographieteilnehmer
Nachrichten zu einem anderen einzelnen Teilnehmer senden. Dieses Muster wird durch mehrere
verschiedene Message Links aus ML mit jeweils derselben receiveActivity repräsentiert, wobei
im Gegensatz zu AsyncPattern1.7 die sendActivity in verschiedenen PBDs enthalten ist.
Abbildung 3.41 zeigt ein solches Beispiel und die zugehörigen Message Links in der Topology.

PBD2PBD1

•s1

Invoke
s1

s1•

•r

 Receive
r

r•

ml1vs vr

vs vr

PBD3

•s2

Invoke
s2

s2•

vs

vs

ml2

<participants>
 <participant name="PBD2" type="Receiver" />
 <participant name="PBD1" type="Sender“ />
 <participant name="PBD3" type="Sender“ />
</participants>
<messageLinks>
 <messageLink sender="PBD1" sendActivities="s1" receiver="PBD2"
 receiveActivity="r" name="ml1"/>
 <messageLink sender="PBD3" sendActivities="s2" receiver="PBD2"
 receiveActivity="r" name="ml2"/>
</messageLinks>

Abbildung 3.41 n-zu-1 Senden sowie das zugehörige Topology-Fragment

Um ein korrektes Verbinden des Kontrollflusses zwischen den sendenden und den empfangenden
Choreographieteilnehmern zu gewährleisten, müssen wir unseren Ansatz aus AsyncPattern1.1 etwas
verändern. Wenn wir in diesem Beispiel das AsyncPattern1.1 auf die drei Teilnehmer und die zwei
Message Links anwenden kann es passieren, dass Informationen überschrieben werden.

PBD2PBD1

•s1

Invoke
s1

s1•

•r

 Receive
r

r•

ml1vs1 vr

vs1 vr

PBD3

•s2

Invoke
s2

s2•

vs2

vs2

ml2

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s1

Assign
a

s1•

•r

Empty
b

r•

vs1
vr

vr

vr

vs1

Scope_PBD3

•s2

Invoke
s2

s2•

vs2

vs2

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s1

Assign
a

s1•

•r

Empty
b

r•

vs1
vr

vr

vs1

Scope_PBD3

•s2

Assign
c

s2•

vs2

vs2

vr

Abbildung 3.42 Anwendung des AsyncPattern1.1 auf mehrere Message Links mit gleicher <receive>-Aktivität

Abbildung 3.42 zeigt die Beispielchoreographie mit den drei PBDs PBD1, PBD2 und PBD3. PBD1
und PBD3 senden jeweils beide auf die gleiche <receive>-Aktivität r in PBD2. Nach sukzessiver
Anwendung des AsyncPattern1.1 wird zunächst s1 in PBD1 durch eine <assign>-Aktivität a ersetzt,
die vs1 nach vr kopiert, sowie r durch eine synchronisierende <empty>-Aktivität b. Anschließend wird
s2 in PBD3 durch eine <assign>-Aktivität c ersetzt, die vs2 nach vr kopiert. Da sich nun vr im
globalen Prozessscope befindet, kann es passieren, dass zunächst vs1 nach vr kopiert wird, falls
Scope_PBD1 im Ablauf schneller voranschreitet und anschließend nochmals Scope_PBD2 vs2 nach vr
kopiert und die Daten von vs1 überschreibt. Zusätzlich kommt das Problem des veränderten Kontroll-
flusses hinzu: In der ursprünglichen Choreographie sendet beispielsweise s1 aus PBD1 eine Nachricht
an r in PBD2 und nach Erhalt dieser läuft PBD2 weiter. In der konsolidierten muss jedoch <empty> b
auch nachdem vs1 nach vr kopiert wurde auf das Aktivieren den Kontrollflusslinks aus c in
Scope_PBD3 warten, wodurch eine andere Synchronisierung der Abläufe stattfindet als in der
Choreographie.
Eine Lösung für das erste Problem des Überschreibens der Daten in vr wäre das Einführen einer
weiteren temporären Variable vm zum emulieren des Datenflusses wie in Abschnitt 3.2.3.1 beschrie-
ben. Je nach unterliegender Struktur der Daten von vs und vr kann dieser zusätzliche Kopiervorgang
jedoch auf Kosten der Performance gehen. Stattdessen werden wir einen Ansatz wählen, der zwar eine

 Seite 72

zusätzliche Variable vr-written verwendet, die jedoch lediglich als eine Art Schutzvariable (Guard Varia-
ble) dient, um zu signalisieren, ob vr bereits durch eine der beiden <assign>-Aktivitäten a oder c be-
schrieben wurde und als Datentyp xsd:boolean verwendet sowie bei der Deklaration inline mit
false initialisiert wird (vgl. WS-BPEL 2.0 Spezifikation [OAS07] Abschnitt 8.1 Variables). Diese
Variable wird in einer <if>-Aktivität verwendet, die das ursprüngliche s1 ersetzende <assign> a
umgibt.

Abbildung 3.43 zeigt die Anwendung der <if>-Aktivität in
Verbindung mit der neuen Schutzvariable vr-written: Die
<assign>-Aktivitäten a und c wurden durch einen neuen
<copy>-Block erweitert, der noch vor dem Kopieren der
Variable vs1 bzw. vs2 nach vr den Wert der Schutzvariable vr-

written auf true setzt. Die <assign>-Aktivitäten sind nun
beide von einer <if>-Aktivität umgeben, die jeweils nur
dann die enthaltene Aktivität ausführt, wenn vr-written noch
nicht beschrieben wurde (vr-written=false). Andernfalls
werden a und c nicht aktiviert und der Kontrollfluss schreitet
in Scope_PBD1 sowie Scope_PBD2 weiter voran. Der
Kontrollflusslink zwischen a und b sowie c und b wird auch
bei negativer Auswertung der <if>-condition und
anschließender Auslassung von a bzw. c zu false evaluiert.
Der hier dargestellte Ansatz löst zwar das Problem des
Überschreibens der Daten von vr, doch leider bleibt auch
hier der Ablauf von Scope_PBD2 von den beiden anderen
Scope_PBD1 sowie Scope_PBD3 abhängig, da b weiterhin
erst ausgeführt wird wenn beide Kontrollflusslinks aus a als
auch c aktiviert wurden. Wir werden nun die <receive> r

ersetzende <empty>-Aktivität b so anpassen, dass diese bereits nach Aktivierung nur einer der beiden
Kontrollflusslinks ausgeführt wird. Hierzu ersetzen wir b durch eine <scope>-Aktivität, die einen
Fault Handler für den bpel:joinFailure-Fault enthält mit einer leeren <empty>-Aktivität. Zusätz-
lich enthält der <scope> für jeden der beiden Kontrollflusslinks von a und c, seien diese l1 und l2,
eine <empty>-Aktivität deren suppressJoinFailure-Attribut auf „no“ gesetzt ist. Die <join-
Condition>s der beiden <empty>-Aktivitäten sind einmal „not $l1“ sowie entsprechend für l2
„not $l2“. Wird nun einer der beiden Links aktiviert, so wirft die entsprechende <empty>-Aktivität
einen bpel:joinFailure-Fault der im Fault Handler des <scope> aufgefangen wird. Da dieser nur
eine <empty>-Aktivität enthält, wird Scope_PBD2 direkt nach diesem weiter ausgeführt. Wird nun
auch der andere Link aktiviert, so hat dieser keine Auswirkung mehr auf den Kontrollfluss von
Scope_PBD2, da der <scope>, der die beiden <empty>-Aktivitäten enthält, bereits einen Fault
geworfen hat. Abbildung 3.44 zeigt das Ergebnis dieses Vorgehens an der Beispielchoreographie.

PBD2PBD1

•s1

Invoke
s1

s1•

•r

 Receive
r

r•

ml1vs1 vr

vs1 vr

PBD3

•s2

Invoke
s2

s2•

vs2

vs2

ml2

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s1

s1•

•r

r•

vr

vs1

Scope_PBD3

•s2

s2•

vs2

Vr-written→ false()

if
not Vr-written

Assign
a

vs1
vr

Vr-written

true()

if
not Vr-written

Assign
c

vs2
vr

Vr-written

true()

Scope

Flow fl

FH bpel:joinFailure
Empty

d

Empty
b‘

Empty
c‘

Abbildung 3.44 Ergebnis der Konsolidierung des n-zu-1 AsyncPattern1.8

ProzessMerged

Flow
Scope_PBD2Scope_PBD1

•s1

s1•

•r

Empty
b

r•

vr

vs1

Scope_PBD3

•s2

s2•

vs2

Vr-written→ false()

if
not Vr-written

Assign
a

vs1
vr

Vr-written

true()

if
not Vr-written

Assign
c

vs2
vr

Vr-written

true()

Abbildung 3.43 Asynchrones n-
zu-1 Senden

 Seite 73

Sei sendActs die Menge aller zur <receive>-Aktivität r sendenden Aktivitäten (im vorherigen Bei-
spiel gilt somit sendActs = { PBD1→s1, PBD3→s2 }). Diese Menge wird ermittelt indem über alle
noch nicht behandelten Message Links aus ML iteriert wird und diejenigen gesucht werden, die auf
dieselbe <receive>-Aktivität r aus jeweils verschiedenen PBDs senden (Participants der Topo-
logy). Die Participants müssen dabei nicht zwangsweise vom selben ParticipantType sein.
Anschließend wird die empfangende Aktivität r durch die zuvor erwähnte <scope>-Aktivität, sei
diese hier b, ersetzt. b enthält eine <flow>-Aktivität fl. Besitzt r eingehende und ausgehende Links, so
werden diese in b übertragen. Hierbei werden die eingehenden Links von r (<targets>), inklusive
der <joinCondition>, zu den eingehenden Links der neuen <scope>-Aktivität b. Die ausgehenden
Links (<sources>) von r, inklusive <transitionCondition>s, werden zu den ausgehenden Links
von b. Zusätzlich wird für jede Aktivität in sendActs eine neue synchronisierende <empty>-Aktiviät
in fl hinzugefügt (mit suppressJoinFailure=“no“). Nun wird jede Aktivität aus sendActs durch
eine <if>-Aktivität ifs-r ersetzt, wie im Beispiel aus Abbildung 3.44, und eine Schutzvariable vr-written
im Prozessscope des konsolidierten Prozesses eingeführt, die per inline-Deklaration mit false
initialisiert wird. Die eingehenden Links der ehemaligen sendActs-Aktivität werden zu den
eingehenden Links der neuen <if>-Aktivität, inklusive <joinCondition>. Selbiges gilt für die
ausgehenden Links und deren <transitionCondition>s. Die in ifs-r enthaltene neue <assign>-
Aktivität (mit den <copy>-Blöcken zum Kopieren von „true()“ nach vr-written sowie vs nach vr) wird
mit der entsprechenden <empty>-Aktivität in b mit einem Kontrollflusslink lnew verbunden. Anschlie-
ßend wird die <joinCondition> dieser <empty>-Aktivität auf „not $lnew“ gesetzt (jc(b‘)=“not
$lnew1“ sowie jc(c‘)=“not $lnew2“).

3.3.1.9 AsyncPattern2.1

Neben der <receive>-Aktivität bietet WS-BPEL 2.0 auch die <pick>-Aktivität zum Empfangen
von Nachrichten an. Diese muss mindestens einen <onMessage>-Zweig zum Empfangen enthalten
und kann optionale zeitbasierte <onAlarm>-Zweige definieren. Ist zusätzlich das createInstance-
Attribut auf „yes“ gesetzt, dürfen nur <onMessage>-Zweige enthalten sein. Wurde eine der in den
<onMessage>-Zweigen enthaltenen Aktivitäten durch Eingang einer entsprechenden Nachricht
aktiviert bzw. einer der zeitbasierten <onAlarm>-Zweig durch Eintreten eines zeitlichen Ereignisses,
so müssen die verbliebenen Zweige deaktiviert werden. Das AsyncPattern2.1 dient dem Erkennen und
Konsolidieren von choreographie-internen Kommunikationen mit einem <onMessage>-Zweig einer
<pick>-Aktivität als empfangende Aktivität. Da die <onMessage>-Zweige kein name-Attribut
besitzen wurde in BPEL4Chor der wsu:id-Bezeichner eingeführt, der zum Identifizieren eines
solchen Zweiges als receiveActivity in einem Message Link aus ML dient.

Abbildung 3.45 AsyncPattern2.1 mit einem <onMessage>-Zweig zum Empfang einer Nachricht eines choreographie-
internen Senders

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s

Invoke
s

s•

•p

p•

ml1vs

vs

vr

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr

ProzessMerged

Flow

Scope_PBD1

•s

s•

vs

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr Vpick_activated→ false()

Assign
avs

vr

Sequence

FH xxx:pickFailure2

A2

 Receive
msg2

throw
xxx:pickFailure2

 Seite 74

Abbildung 3.45 zeigt ein Beispielfragment einer Choreographie mit zwei kommunizierenden PBDs.
PBD1 sendet eine Nachricht an den <onMessage>-Zweig msg1 der <pick>-Aktivität p in PBD2.
Sobald diese Nachricht empfangen wurde, schreitet PBD2 mit der Ausführung der Aktivitäten in p•=
succ(p)+succl(p) voran. Wir werden nun den Konsolidierungsvorgang genauer beschreiben, der zu
dem Ergebnis auf der rechten Seite der Abbildung 3.45 führt.
Zunächst findet der Erkennungsalgorithmus einen Message Link ml1 aus ML der einen <onMes-
sage>-Zweig einer <pick>-Aktivität als receiveActivity enthält (in unserem Fall msg1).
Nachdem die beiden PBDs in ihre neuen <scope>-Aktivitäten im neuen konsoldierten Prozess
ProzessMerged kopiert wurden, wird die sendende Aktivität s durch eine <assign>-Aktivität a
ersetzt, die vs nach vr kopiert. vr wurde zuvor aus Scope_PBD2 in den Prozessscope übertragen, damit
Scope_PBD1 Zugriff auf diese hat. Nun wird die <pick>-Aktivität p durch eine neue <scope>-
Aktivität Scope_Pick ersetzt. Hierbei werden die eingehenden Links und ihre <joinCondition> von
p zu den eingehenden Links von Scope_Pick und entsprechend die ausgehenden Links und ihre
möglichen expliziten <transitionCondition>s. Scope_Pick wird folgendermaßen aufgebaut: Eine
neue <flow>-Aktivität Flow_Pick wird hinzugefügt. Zusätzlich wird eine <throw>-Aktivität einge-
fügt, die einen neuen benutzerdefinierten Fault wirft, in diesem Fall nennen wir ihn xxx:Pick-
Failure1. Dieser ist über einen Kontrollflusslink mit der <assign>-Aktivität a verbunden. An-
schließend fügen wir einen Fault Handler in die Scope_Pick-Aktivität hinzu, der den zuvor definierten
xxx:PickFailure1-Fault auffängt. Dieser Fault Handler enthält die Aktivität A1, die zuvor mit
msg1 assoziiert war. Damit sichergestellt wird, dass der <scope> Scope_Pick auch beim Empfang
einer choreographie-externen Nachricht, die zuvor den <onMessage>-Zweig msg2 von p aktivieren
konnte, deaktiviert wird, ersetzen wir p und msg2 durch eine neue <receive>-Aktivität msg2, die
sich in einer <sequence>-Aktivitäten vor einer weiteren <throw>-Aktivität befindet. Diese
<throw>-Aktivität wirft einen weiteren benutzerdefinierten Fault xxx:PickFailure2, welcher über
einen Fault Handler von Scope_Pick aufgefangen wird. Dieser Fault Handler enthält wiederum die
Aktivität A2, die zuvor im <onMessage>-Zweig msg2 enthalten war. Wir emulieren die <pick>-
Aktivität durch eine <scope>-Aktivität, die entsprechend der ersten empfangenen Nachricht den
passenden Fault Handler mit den zuvor in den <onMessage>-Zweigen enthaltenen Aktivitäten
ausführt. Diese Ersetzung von <pick>-Aktivitäten lässt sich auf weitere enthaltene <onMessage>-
Zweige erweitern, indem weitere benutzerdefinierte Faults innerhalb der neuen <scope>-Aktivitäten
hinzugefügt werden. Zur Laufzeit werden zunächst die Aktivitäten aus •p ausgeführt und sobald der
Kontrollfluss Scope_Pick aktiviert, wird entweder die <assign>-Aktivität a ausgeführt, die daraufhin
den Scope_Pick durch das Werfen des xxx:PickFailure1 deaktiviert und den entsprechenden Fault
Handler mit der enthaltenen Aktivität A1 ausführt oder eine eingehende Nachricht wird über die
<receive>-Aktivität msg2 empfangen, die entsprechendes mit dem hierfür vorgesehenen Fault
Handler xxx:PickFailure2 durchführt. Kommt es hier zu einer Wettlaufsituation zwischen a und
msg2 ist die Ausführung implementierungsabhängig, wie auch schon der WS-BPEL 2.0 Standard für
die ursprüngliche <pick>-Aktivität definiert (vgl. [OAS07] Abschnitt 11.5).
Die vorher beschriebene Konsolidierungsvariante hat jedoch noch ein ähnliches Problem, wie in
AsyncPattern1.8 geschildert: Wir deaktivieren zwar den Kontrollfluss in Scope_Pick nach Aktivierung
des entsprechenden Kontrollflusslinks aus <assign> a oder durch den Empfang einer Nachricht in
msg2, es kann jedoch vorkommen, dass msg2 eine Nachricht empfängt den Scope_Pick deaktiviert a
jedoch weiterhin vs nach vr kopiert und dies möglicherweise einen nicht gewünschten Nebeneffekt auf
Scope_PBD2 hat (Lost Update Problem). Um dieses Problem zu verhindern werden wir ähnlich der
Lösung für AsyncPattern1.8 eine Schutzvariable vpick_activated in den Prozessscope einführen, die per
inline-Deklaration mit false initialisiert wird. Zusätzlich wird a durch eine Kombination aus einer
<if>-Aktivität sowie einer in dieser enthaltenen <assign>-Aktivität ersetzt. Um sicherzustellen, dass
die <if>-Aktivität nur dann ausgeführt wird, wenn vpick_activated auf false gesetzt ist, fügen wir
weiterhin vor die <throw>-Aktivität für den benutzerdefinierten Fault xxx:PickFailure2 eine
weitere <assign>-Aktivität hinzu, die vpick_activated auf true setzt, sobald msg2 eine Nachricht
empfängt. Dieses Vorgehen lässt sich auf weitere choreographie-extern kommunizierende
<onMessage>-Zweige aus p erweitern, indem die entsprechenden <sequence>-Aktivitäten in
Scope_Pick angepasst werden. Abbildung 3.46 zeigt die angepasste Konsolidierung der Beispielfrag-
mente aus Abbildung 3.45.

 Seite 75

Abbildung 3.46 AsyncPattern2.1 mit Schutzvariable vpick_activated zur Vermeidung des Lost Update Problems

Abbildung 3.47 AsyncPattern2.1 mit einer <pick>-Aktivität mit weiteren <onMessage>-Zweigen (hier msg3)

Abbildung 3.47 zeigt die Anwendung des AsyncPattern2.1 auf eine <pick>-Aktivität mit einem
weiteren <onMessage>-Zweig msg3: Eine weitere <receive>-Aktivität wird hinzugefügt, die msg3
ersetzt und nach der Zuweisung von true an die Schutzvariable vpick_activated einen benutzerdefinierten
Fault xxx:PickFailure3 wirft, der im dafür vorgesehenen Handler von Scope_Pick aufgefangen
wird und die ursprüngliche Aktivität A3 ausführt.
Zu den schon gezeigten <onMessage>-Zweigen bietet die <pick>-Aktivität <onAlarm>-Zweige, die
nach Ablauf einer gegebenen Zeitperiode oder Erreichen eines entsprechenden Zeitpunkts die
enthaltene Aktivität ausführen. Da wir in unserem Konsolidierungsvorgang die <pick>-Aktivität
durch eine <scope>-Aktivität mit entsprechendem emulierendem Verhalten nachbauen, müssen wir
im Falle eines definierten <onAlarm>-Zweigs auch diesen in den <scope> integrieren. Hierzu
werden wir zu den vorhandenen <receive>/<throw>-Kombinationen innerhalb des Flow_Pick eine
<wait>-Aktivität mit anschließender <throw>-Aktivität einfügen und erneut einen benutzerdefi-
nierten Fault Handler zum Scope_Pick hinzufügen, der die Aktivität des ursprünglichen <onAlarm>-
Zweigs enthält.
<onAlarm>
 (
 <for expressionLanguage="anyURI"?>duration-expr</for>
 |
 <until expressionLanguage="anyURI"?>deadline-expr</until>
)
 activity
</onAlarm>

<wait standard-attributes>
 standard-elements
 (
 <for expressionLanguage="anyURI"?>duration-expr</for>
 |
 <until expressionLanguage="anyURI"?>deadline-expr</until>
)
</wait>

Abbildung 3.48 Syntaktische Umwandlung eines <onAlarm>-Zweigs in eine <wait>-Aktivität (vgl. [OAS07])

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s

Invoke
s

s•

•p

p•

ml1vs

vs

vr

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr

ProzessMerged

Flow

Scope_PBD1

•s

s•

vs

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr Vpick_activated→ false()

if
not Vpick_activated

Assign
avs

vr

Sequence

 Receive
msg2

throw
xxx:pickFailure2

Assign
b

true()
Vpick_activated

FH xxx:pickFailure2

A2

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s

Invoke
s

s•

•p

p•

ml1vs

vs

vr

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr

ProzessMerged

Flow

Scope_PBD1

•s

s•

vs

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr Vpick_activated→ false()

if
not Vpick_activated

Assign
avs

vr

onMessage wsu:id=“msg3“

A3

Sequence

 Receive
msg2

throw
xxx:pickFailure2

Assign
b

true()
Vpick_activated

Sequence

 Receive
msg3

throw
xxx:pickFailure3

Assign
c

true()
Vpick_activated

FH xxx:pickFailure2

A2

FH xxx:pickFailure3

A3

 Seite 76

Abbildung 3.48 zeigt die syntaktische Umwandlung eines <onAlarm>-Zweigs in eine entsprechende
<wait>-Aktivität. Die enthaltene Aktivität des <onAlarm>-Zweigs wird bei der Konsolidierung in
den entsprechenden Fault Handler von Scope_Pick übertragen.

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s

Invoke
s

s•

•p

p•

ml1vs

vs

vr

 Pick p

onMessage wsu:id=“msg1“ onAlarm
<until>Zeitpunkt</until>

A1 A2

vr

ProzessMerged

Flow

Scope_PBD1

•s

s•

vs

Scope_PBD2

Scope_Pick
Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr Vpick_activated→ false()

if
not Vpick_activated

Assign
avs

vr

Sequence

throw
xxx:pickFailure2

Assign
b

true()
Vpick_activated

 Wait
 <until>
 Zeitpunkt
 </until>

FH xxx:pickFailure2

A2

Abbildung 3.49 AsyncPattern2.1 für <pick>-Aktivität mit <onAlarm>-Zweig

Abbildung 3.49 zeigt die Anwendung des AsyncPattern2.1 auf eine Beispielchoreographie mit einem
<onAlarm>-Zweig im <pick> p der Empfängerseite PBD2. A2 wurde in den Fault Handler für den
benutzerdefinierten xxx:PickFailure2-Fault von Scope_Pick übertragen. Die <until>-Bedingung
ist nun in der neuen <wait>-Aktivität enthalten. Die gleiche Umwandlung funktioniert auch für
<for>-Ausdrücke innerhalb des <onAlarm>-Zweigs.

3.3.1.10 AsyncPattern2.2 (Asynchrones n-zu-1 Senden auf <pick>)

Das AsyncPattern2.2 ist eine Spezialisierung des AsyncPattern2.1 mit der Besonderheit, dass hier
mehrere Choreographieteilnehmer auf dieselbe <pick>-Aktivität, jedoch verschiedene <onMes-
sage>-Zweige dieser, eines anderen Choreographieteilnehmers asynchron Nachrichten senden.
Hierzu untersucht der Mustererkennungsalgorithmus beim Fund eines <onMessage>-Zweigs als
receiveActivity in einem Message Link zusätzlich die anderen noch nicht konsolidierten Message
Links aus ML auf eine receiveActivity mit der wsu:id eines der anderen <onMessage>-Zweige
der entsprechenden <pick>-Aktivität.

Abbildung 3.50 AsyncPattern2.2 mit zwei sendenden PBDs auf zwei <onMessage>-Zweige einer <pick>-Aktivität

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s1“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s1

Invoke
s1

s1•

•p

p•

ml1vs1

vs1

vr1

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr1

ProzessMerged

Flow

Scope_PBD1

•s1

s1•

vs1

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr1

throw
xxx:pickFailure2

Vpick_activated→ false()

if
not Vpick_activated

Assign
a

vs1
vr1

true()
Vpick_activated

vr2

vr2

PBD3

•s2

Invoke
s2

s2•

vs2

vs2

ml2

name=“ml2“ sender=“PBD3“ receiver=“PBD2“ sendActivity=“s2“
receiveActivity=“msg2“ messageName=“message2“

vr2

FH xxx:pickFailure2

A2

Scope_PBD3

•s2

s2•

vs2

if
not Vpick_activated

Assign
b

vs2
vr2

true()
Vpick_activated

 Seite 77

Abbildung 3.50 zeigt die Anwendung des AsyncPattern2.2 auf drei miteinander kommunizierende
PBDs PBD1, PBD2 sowie PBD3. Die Konsolidierung erfolgt analog zu AsyncPattern2.1, indem die
<pick>-Aktivität p durch die Scope_Pick Aktivität mit den benutzerdefinierten Faults für jeden
konsolidierten <onMessage>-Zweig ersetzt wird. Im Gegensatz zu AsyncPattern2.1 wird die Zuwei-
sung des true in die vpick_activated Schutzvariable jedoch bereits in den beiden <assign>-Aktivitäten a
und b durchgeführt um zu verhindern, dass sobald einer der beiden ehemals sendenden Aktivitäten
aktiviert wird, die entsprechend andere keine Werte mehr in die empfangende Variable kopiert (vr1
bzw. vr2), da in der ursprünglichen Choreographie die <pick>-Aktivität ebenfalls bei Eingang einer
Nachricht in den entsprechenden <onMessage>-Zweig deaktiviert wird. Dies sichert auch einen
korrekten Kontroll- und Datenfluss falls die beiden <onMessage>-Zweige dieselbe Variable vr ver-
wenden.

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s1“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s1

Invoke
s1

s1•

•p

p•

ml1vs1

vs1

vr1

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr1

ProzessMerged

Flow

Scope_PBD1

•s1

s1•

vs1

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr1

throw
xxx:pickFailure2

Vpick_activated→ false()

if
not Vpick_activated

Assign
a

vs1
vr1

true()
Vpick_activated

vr2

vr2

PBD3

•s2

Invoke
s2

s2•

vs2

vs2

onMessage wsu:id=“msg3“

A3

ml2

name=“ml2“ sender=“PBD3“ receiver=“PBD2“ sendActivity=“s2“
receiveActivity=“msg2“ messageName=“message2“

vr2

FH xxx:pickFailure2

A2

Scope_PBD3

•s2

s2•

vs2

if
not Vpick_activated

Assign
b

vs2
vr2

true()
Vpick_activated

FH xxx:pickFailure3

A3

Sequence

 Receive
msg3

throw
xxx:pickFailure3

Assign
c

true()
Vpick_activated

Abbildung 3.51 AsyncPattern2.2 mit einem weiteren choreographie-extern kommunizierenden <onMessage>-Zweig
msg3 in <pick> p sowie das Ergebnis der Konsolidierung

Abbildung 3.51 zeigt die vorhergehende Konsolidierung der drei PBDs mit einem weiteren choreo-
graphie-extern kommunizierenden <onMessage>-Zweig in der <pick>-Aktivität p. Hierbei wird die
gleiche Kombination aus <receive>/<throw>-Aktivitäten sowie entsprechendem Fault Handler für
msg3 eingesetzt, wie in AsyncPattern2.1. Sind weiterhin <onAlarm>-Zweige definiert, so werden
diese analog zu AsyncPattern2.1 in die neue Scope_Pick Aktivität konsolidiert (vgl. Abbildung 3.49).

 Seite 78

3.3.1.11 AsyncPattern2.3 (Asynchrones n-zu-1 Senden auf einen <onMessage>-Zweig)

Das AsyncPattern2.3 dient dem Erkennen und anschließendem Konsolidieren einer BPEL4Chor
Choreographie, in der mehrere verschiedene PBDs auf den gleichen <onMessage>-Zweig einer
anderen PBD Nachrichten asynchron senden. Hierzu müssen die vorhergehenden AsyncPattern2.1
sowie AsyncPattern2.3 erweitert werden, um im Falle einer möglichen Wettlaufsituation den Kontroll-
sowie Datenfluss im konsolidierten Prozess mit der ursprünglichen Choreographie synchron zu halten.

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s1“
receiveActivity=“msg1“ messageName=“message1“

PBD1

•s1

Invoke
s1

s1•

•p

p•

ml1vs1

vs1

vr

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr

PBD3

•s2

Invoke
s2

s2•

vs2

vs2

ml2

name=“ml2“ sender=“PBD3“ receiver=“PBD2“ sendActivity=“s2“
receiveActivity=“msg1“ messageName=“message2“

ProzessMerged

Flow

Scope_PBD1

•s1

s1•

vs1

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

•p

p•

vr

throw
xxx:pickFailure1

Vpick_activated→ false()

if
not Vpick_activated

Assign
a

vs1
vr

true()
Vpick_activated

Scope_PBD3

•s2

s2•

vs2

if
not Vpick_activated

Assign
b

vs2
vr

true()
Vpick_activated

Sequence

 Receive
msg2

throw
xxx:pickFailure2

Assign
c

true()
Vpick_activated

FH xxx:pickFailure2

A2

Abbildung 3.52 AsyncPattern2.3 Konsolidierung einer Choreographie mit zwei sendenden PBDs auf den gleichen
<onMessage>-Zweig msg1 in <pick> p

Abbildung 3.52 zeigt Beispielfragmente einer Choreographie mit zwei sendenden PBDs PBD1 sowie
PBD3. Beiden senden Nachrichten auf den gleichen <onMessage>-Zweig msg1 in der <pick>-
Aktivität p von PBD2. Um dieses Muster zu erkennen sucht der Algorithmus nach weiteren Message
Links aus ML, die als receiveActivity den gleichen <onMessage>-Zweig der entsprechenden
<pick>-Aktivität enthalten, wie der bereits behandelte. Die Konsolidierung erfolgt analog zu
AsyncPattern2.2 mit dem Unterschied, dass die beiden <throw>-Aktivitäten, die per Kontrollflusslink
mit den neuen <assign>-Aktivitäten a und b verbunden sind, nun denselben benutzerdefinierten
Fault werfen (xxx:PickFailure2). Sind weitere choreographie-extern kommunizierende <onMes-

 Seite 79

sage>-Zweige bzw. <onAlarm>-Zweige enthalten, werden diese analog zu AsyncPattern2.1 konsoli-
diert.

3.3.1.11.1 Asynchrones Senden auf initiale <pick>-Aktivität (•p=∅)

Die AsyncPattern2.1-2.3 lassen sich auch in dem Fall anwenden, wenn die empfangende <pick>-
Aktivität p keine Vorgängeraktivitäten besitzt: es gilt somit •p=∅ und zusätzlich ist das createIn-
stance-Attribut auf „yes“ gesetzt (daher dürfen keine <onAlarm>-Zweige enthalten sein). Nehmen
wir das Beispiel aus Abbildung 3.45 und verändern es nun so, dass •p=∅ gilt und das create-
Instance-Attribut entsprechend gesetzt wird (createInstance=“yes“). Die einzige Änderung am
Konsolidierungsalgorithmus ist das Übernehmen des createInstance-Attributs für die
<receive>-Aktivitäten, die die choreographie-extern kommunizierenden <onMessage>-Zweige im
neuen <scope> Scope_Pick ersetzen. Abbildung 3.53 zeigt die Änderung an der Beispielchoreo-
graphie. Sei rpbd1_init eine initiale <receive>-oder <pick>-Vorgängeraktivität von <invoke> s in
PBD1. Diese Aktivität muss existieren, da sonst die Choreographie nicht korrekt ist (jeder BPEL-
Prozess muss mindestens eine initiale <receive>-oder <pick>-Aktivität besitzen, vgl. [OAS07]
Abschnitt 5.5 The Lifecycle of an Executable Business Process). Das gleiche gilt für PBD2 und wird
durch <pick> p erfüllt. Im konsolidierten Prozess ProzessMerged wird p durch die bekannte
Scope_Pick Aktivität ersetzt und die choreographie-extern kommunizierenden <onMessage>-Zweige
durch entsprechende <receive>-Aktivitäten, in unserem Beispiel msg2 mit dem aus p übernomme-
nen createInstance-Attribut. Je nachdem welche Aktivität, sei es rpbd1_init oder msg2, die initiale
Nachricht zuerst empfängt, erzeugt diese eine neue Prozessinstanz von ProzessMerged und die
nächsten eintreffenden Nachrichten für rpbd1_init bzw. msg2 werden mit dieser Instanz korreliert. Hätte
die in Abbildung 3.53 dargestellte <throw>-Aktivität, die den benutzerdefinierten Fault xxx:Pick-
Failure1 wirft, keine Kontrollflussabhängigkeit auf <assign> a in Scope_PBD1 so wäre der kon-
solidierte Prozess fehlerhaft. Kommunizieren alle <onMessage>-Zweige nur choreographie-intern,
wird die Initiierung von Scope_PBD2 durch die sendenden PBDs gesteuert. Im Gegensatz zu
AsyncPattern1.5 werden wir deshalb kein gesondertes Erkennungs- und Konsolidierungsmuster für
den Fall •p=∅ einführen, sondern lediglich das createInstance-Attribut von p für die choreo-
graphie-extern kommunizierenden <receive>-Aktivitäten übernehmen, wie im unterem Beispiel
msg2.

Abbildung 3.53 Konsolidierung einer Choreographie mit •p=∅ sowie createInstance=“yes“ von p mit Async-
Pattern2.1

PBD2

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“msg1“ messageName=“message1“

PBD1

rpbd1_init

Invoke
s

s• p•

ml1vs

vs

vr

 Pick p createInstance=“yes“

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

A1 A2

vr

ProzessMerged

Flow

Scope_PBD1

rpbd1_init

s•

vs

Scope_PBD2

Scope_Pick

Flow_Pick

FH xxx:pickFailure1

A1

throw
xxx:pickFailure1

p•

vr Vpick_activated→ false()

if
not Vpick_activated

Assign
avs

vr

<throw> muss Kontrollflussabhängigkeit auf
<receive>/<pick>-Aktivität mit create-

Instance=“yes“ besitzen, da erste Aktivität

Sequence

 Receive
msg2

throw
xxx:pickFailure2

Assign
c

true()
Vpick_activated

FH xxx:pickFailure2

A2

createInstance=“yes“

 Seite 80

3.3.1.11.2 Syntaktische Transformation eines <onMessage>-Zweigs in eine <receive>-
Aktivität

Der folgende kleine Abschnitt soll die syntaktische Transformation eines <onMessage>-Zweigs in
eine äquivalente <receive>-Aktivität veranschaulichen. Hierzu sei angemerkt, dass die in einer PBD
enthaltenen kommunizierenden Aktivitäten (<invoke>, <receive>, <reply>, <pick> sowie <on-
Event>) die technischen Attribute partnerLink, portType sowie operation nicht verwenden
dürfen. Stattdessen werden diese über die Grounding-Datei der Choreographie sowie die für die
Eingabe der Konsolidierung notwendigen WSDL-Dateien bereitgestellt. Wir werden diese Attribute
erst nach der Konsolidierung des Daten- und Kontrollflusses in der neuen WSDL-Datei für den
konsolidierten Prozess zusammenführen und in die verbliebenen intra- sowie inter-Prozess
kommunizierenden Aktivitäten im Prozess ProzessMerged einfügen. Die intra-Prozess
kommunizierenden Aktivitäten sind hierbei diejenigen, die zwar vor der Konsolidierung
choreographie-intern kommunizieren, für die es jedoch keine passenden Merge-Patterns gibt und diese
daher nach der Konsolidierung rekursiv mit dem eigenen Prozess kommunizieren. Die inter-Prozess
kommunizierenden Aktivitäten sind dagegen diejenigen, die nach der Konsolidierung für andere
Prozesse oder Web Services zur Kommunikation zur Verfügung stehen. Abbildung 3.54
veranschaulicht die Transformation eines <onMessage>-Zweigs einer <pick>-Aktivität in eine
äquivalente <receive>-Aktivität, anhand der XML-Syntaxen (vgl. [OAS07]).

<pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partnerLink="NCName"
 portType="QName"?
 operation="NCName"
 variable="BPELVariableName"?
 messageExchange="NCName"?>+
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"? />+
 </correlations>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName" />+
 </fromParts>
 activity
 </onMessage>
 …
</pick>

<receive partnerLink="NCName"
 portType="QName"?
 operation="NCName"
 variable="BPELVariableName"?
 createInstance="yes|no"?
 messageExchange="NCName"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"? />+
 </correlations>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName" />+
 </fromParts>
</receive>

partnerLink, portType sowie operation werden in den
Aktivitäten der PBD nicht verwendet, sondern erst nach der
Konsolidierung aus der Grounding-Datei sowie den entsprech-
enden WSDL-Dateien der BPEL4Chor-Choreographie in die
verbliebenen kommunizierenden Aktivitäten übertragen.

Choreographie.zip

BPEL4Chor Choreography

Participant
Topology

Strukturelle Aspekte

Participant Declaration

Liste der Teilnehmer

Message Links

Verbinden PBDs

Participant Behavior
Descriptions (PBDs)

Sichtbarer Kontroll- und Datenfluss

Participant Grounding

Technische Konfiguration

WSDLs der
PBDs

Abbildung 3.54 Syntaktische Umformung eines <onMessage>-Zweigs in eine äquivalente <receive>-Aktivität: Der
wsu:id-Bezeichner des <onMessage>-Zweigs (nicht abgebildet) wird zum name-Attribut der <receive>-Aktivität,
das createInstance-Attribut der umschließenden <pick>-Aktivität wird in das neue <receive> übernommen. Erst
nach der Konsolidierung werden die technischen Attribute partnerLink, portType sowie operation aus der Groun-
ding-Datei sowie den entsprechenden WSDL-Dateien der BPEL4Chor-Choreographie übernommen und in die kom-
munizierenden Aktivitäten übertragen.

3.3.1.12 AsyncPattern3.0 („Non-Merge-Pattern-Async“)

Das AsyncPattern3.0 stellt eine besondere Form der Merge-Patterns dar: Da wir in der vorliegenden
Arbeit nicht alle möglichen Kombinationen und Konstellationen aus einer asynchron sendenden und

 Seite 81

einer entsprechenden empfangenden Aktivität erkennen und konsolidieren, wird das AsyncPattern3.0
eingeführt um diese Sonderfälle bzw. nicht implementierten Kommunikationsmuster abzufangen und
gesondert zu behandeln.
Sei PBD1 eine PBD die über den Message Link ml aus ML mit einer weiteren PBD PBD2 kommuni-
ziert. Trifft nun der hier erwähnte Erkennungsalgorithmus auf ein nicht-konsolidierbares asynchrones
Kommunikationsmuster so gibt es folgende Möglichkeiten der Bearbeitung einer solchen Situation:

1. Der Algorithmus bricht ab und signalisiert per Fehlermeldung, dass die vorliegende BPEL4-
Chor-Choreographie ein nicht konsolidierbares Muster enthält und beendet die Verarbeitung.
Diese Variante hat den Nachteil, dass selbst wenn die Choreographie andere konsolidierbare
Muster enthält, diese ebenfalls verworfen werden.

2. Der Algorithmus speichert den betroffenen Message Link ml in einer speziellen Liste NMML
(Non-Mergeable-Message-Links) für nicht konsolidierbare Muster und fährt mit der Erken-
nung und Konsolidierung der verbleibenden Message Links aus ML fort. Diese Liste enthält
alle choreographie-intern kommunizierenden Message Links, deren Aktivitäten nach der
Untersuchung aller verbliebenen Message Links als intra-Prozess kommunizierende
Aktivitäten im neuen konsolidierten Prozess konfiguriert werden. Wie in Abschnitt 3.3.1
erwähnt, bieten die beiden verwendeten BPEL-Engines Apache ODE [AODE11] sowie bpel-
g [BPLG12] spezielle Konfigurationsoptionen an um diese rekursiven Aufrufe ohne SOAP-
Message-Handling zu optimieren.

Wir werden in der vorliegenden Arbeit die zweite Variante verwenden um die bereits implementierten
Merge-Patterns anwenden zu können. Zusätzlich kann der Katalog der Merge-Patterns durch zukün-
ftige Erweiterungen auch die noch nicht umsetzbaren Muster konsolidierbar machen.
In den folgenden Unterabschnitten werden die Kombinationen und Konstellationen aus sendender und
empfangender Aktivität erläutert in denen das AsyncPattern3.0 den betreffenden Message Link ml
erkennt und in die Liste NMML einfügt.

3.3.1.12.1 <onEvent>-Zweig (EH) als empfangende Aktivität

In einem Message Link ml einer BPEL4Chor-Choreographie kann auch die wsu:id eines Event
Handlers eines BPEL-Prozesses bzw. einer <scope>-Aktivität (<onEvent>-Zweig) als receive-
Activity auftreten. Ein solcher <onEvent>-Zweig steht dann zur Verfügung sobald der diesem
Event Handler zugehörige BPEL-Prozess instanziiert bzw. die entsprechende <scope>-Aktivität
aktiviert wurde. Er wird aktiviert sobald eine entsprechende Nachricht eingegangen ist und erlaubt die
mehrfache nebenläufige Ausführung der in ihm enthaltenen <scope>-Aktivität bei Eintreffen
mehrerer dieser Nachrichten. Die in dieser Arbeit implementierten Konsolidierungsmuster unter-
stützen keine Event Handler als receiveActivity, daher wird ein solcher Message Link ml der
eine wsu:id eines solchen <onEvent>-Zweigs enthält in die Liste NMML eingefügt und die Kom-
munikation der enthaltenen sendActivity sowie des Event Handlers nach Untersuchung der
verbliebenen Message Links aus ML in eine intra-Prozess kommunizierende umgewandelt.

PBD2

PBD1

Invoke
s

Scope
sc

ml

name=“ml“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“eh1“ messageName=“message1“

EH wsu:id=“eh1“

A1

PBD2

PBD1

Invoke
s

ml
EH wsu:id=“eh1“

A2

A1

Abbildung 3.55 AsyncPattern3.0 Muster: <onEvent>-Zweig als receiveActivity in einem MessageLink ml

 Seite 82

3.3.1.12.2 Sendende <invoke>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)

Befindet sich die sendende <invoke>-Aktivität s vor der Konsolidierung der Choreographie in einem
<onEvent>- oder <onAlarm>-Zweig eines Event Handlers bzw. einem Compensation Handler
(CH→<compensationHandler>) einer <scope>-Aktivität, so hätten die zuvor vorgestellten
Merge-Patterns einen Kontrollflusslink zur Folge der ausgehend von der s ersetzenden Aktivität das
umgebende Konstrukt (EH oder CH) verlässt. Dies ist durch den WS-BPEL 2.0 Standard verboten
(vgl. SA00070 [OAS07]). Ein Link darf niemals in einen CH oder EH eintreten bzw. von diesem aus-
gehen und darf nur nach Deklaration innerhalb einer <flow>-Aktivität, die sich selbst in diesem
Handler befindet, in einem solchen verwendet werden. Daher werden wir solche Konfigurationen
verbieten und falls eine derartige choreographie-intern kommunizierende <invoke>-Aktivität s als
sendActivity in einem Message Link ml aus ML gefunden wird, den entsprechenden Message Link
in die Liste NMML übertragen. Zu diesem Zweck wird die Funktion isActivityInHandler(ainvoke)
eingeführt, die für eine gegebene Aktivität ainvoke prüft, ob sich diese innerhalb eines EHs oder CHs be-
findet (Auflistung 3.8).

Auflistung 3.8 Pseudocode isActivityInHandler(ainvoke)-Funktion

Hierbei wird das s-enthaltende Modellkonstrukt par(s)
untersucht, ob es ein <process>-, <compensation-
Handler>- oder <eventHandler>-Konstrukt ist
(vgl. Abbildung 3.56). Trifft dies zu bricht die
Funktion ab und prüft das entsprechende Konstrukt auf
den gesuchten Typ. Ansonsten fährt die Funktion mit
dem par(s) enthaltenden Konstrukt par(par(s)) fort, bis
der Prozessscope erreicht wurde. Da die Aktivitäten in
BPEL blockstrukturiert sind, bricht diese Überprüfung
spätestens hier ab.

Befindet sich s dagegen in einem Termination Handler (TH→<terminationHandler>) bzw. einem
Fault Handler (FH→<catch>,<catchAll>), so ist der ausgehenden Kontrollflusslink zulässig, da für
THs und FHs nur ausgehende Links zulässig sind und wir davon ausgehen können, dass die
vorliegende PBD kein s enthält, das rekursiv in einen diesem Handler zugehörigen <scope> bzw.
<process> sendet, da dieser bereits einen Fault geworfen hat oder in einem entsprechendem
Konstrukt enthalten ist.

(1) boolean isActivityInHandler(sinvoke)
(2) begin
(3) while ((typeof(sinvoke) ≠ <process>) && (typeof(sinvoke) ≠ <eventHandler>)
(4) && (typeof(sinvoke) ≠ <compensationHandler>)) do
(5) sinvoke = par(sinvoke)
(6) od
(7) if (typeof(sinvoke) == <process>)
(8) return false
(9) else
(10) return true
(11) fi
(12) end

Cont3

Cont2

Cont1

Invoke
s

par(s) = Cont1

par(par(s)) = Cont2

par(par(par(s))) = Cont3

Abbildung 3.56 Rekursive Untersuchung von par(s)

 Seite 83

3.3.1.12.3 Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH,
TH, FH)

Für die empfangende <receive>- oder <pick>-Aktivität r gilt dagegen: Befindet sich r innerhalb
eines EHs, CHs, FHs oder THs, so wird der entsprechende Message Link ml aus ML, der diese
Aktivität als receiveActivity enthält, in die Liste NMML übertragen, da SA00070 sowie SA00071
des WS-BPEL 2.0 Standards [OAS07] eingehende Links in jegliche Art der vier Handler verbieten.

3.3.1.12.4 Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen

Befindet sich die sendende <invoke>-Aktivität s und/oder die empfangende <receive>/<pick>-
Aktivität r eines Message Links ml aus ML innerhalb einer Schleife lp (typeof(lp) ∈ {<while>, <re-
peatUntil>, <forEach>}) so wird dieser Message Link ml, der s als sendActivity und/oder r als
receiveActivity enthält in die Liste NMML übertragen, da SA00070 eingehende als auch ausgeh-
ende Kontrollflusslinks in einer Schleife verbietet und wir mit den zuvor erwähnten Konsolidierungs-
mustern einen neuen synchronisierenden Kontrollflusslink einfügen, der den Nachrichtenaustausch
zwischen s und r emuliert.
In ihrer Arbeit [KHA08] beschreibt Khalaf eine Methode der Synchronisation von fragmentierten
Schleifen über Prozessgrenzen hinweg mithilfe des WS-Coordination Protokolls [OAS07b]. Wie zu
Anfang bereits erwähnt, ist das Ziel dieser Arbeit einen ausführbaren BPEL-Prozess ohne jegliche
Zusatzfragmente externer Koordinations- und Synchronisationsprotokolle als Konsolidierung einer
BPEL4Chor-Choreographie bereitzustellen, daher werden wir auf diesen Ansatz verzichten. Ein
weiterer möglicher Ansatz wäre eine Transformation des konsolidierten Prozesses bei Auftreten einer
Schleife lp als umgebende Aktivität von s und/oder r in einen äquivalenten Prozess der die WS-BPEL
Extension for Sub-Process (BPEL-SPE [KKL+05]) nutzt, doch auch hier wird eine Unterstützung
dieser Erweiterung durch die verwendete BPEL-Engine vorausgesetzt und unsere Vorgabe des
Verzichts externer Protokolle gebrochen. Zukünftige Arbeiten werden hierfür eine adäquate Lösung
liefern können.
Eine mögliche jedoch nicht in der vorliegenden Arbeit implementierte Lösungsalternative
veranschaulicht Abbildung 3.57. Die beiden PBDs PBD1 sowie PBD2 kommunizieren über die sen-
dende <invoke>-Aktivität s und die empfangende <receive>-Aktivität r miteinander.

ml

PBD1
vs

While

•s

Invoke
s

s•

vs

condition1

PBD2
vr

While

•r

 Receive
r

r•

vr

condition2

ProzessMerged

Flow

Scope_PBD1
vs

vr Vr_written→ false()

While
condition1

•s

Assign
avs

vr

true()
Vr_written

s•

Scope_PBD1

While
condition2

•r

r•

Sequence

While
not Vr_written

Empty
c

Assign
b

false()
Vr_written

Abbildung 3.57 Sendende Aktivität <invoke> s und empfangende Aktivität <receive> r und eine Konsolidierung
ohne Kontrollflusslink

 Seite 84

Beide Aktivitäten befinden sich jeweils innerhalb einer <while>-Schleife. Eine mögliche Konsoli-
dierung ohne Kontrollflusslink zwischen den beiden Schleifen im neuen ProzessMerged basiert erneut
auf Schutzvariablen: s wird durch eine <assign>-Aktivität a ersetzt, die vs nach vr kopiert und an-
schließend den Wert der zuvor inline-initialisierten Schutzvariable vr_written auf true setzt. Auf der
Empfängerseite wird r durch eine <sequence>-Aktivität ersetzt, sei diese hier seq, die eine weitere
<while>-Schleife sowie eine <assign>-Aktivität b enthält. Die <while>-Schleife beinhaltet
lediglich eine <empty>-Aktivität c und wartet bis die Variable vr_written mit true beschrieben wurde
(Polling). Anschließend setzt sie diese in b wieder auf false und fährt mit dem Kontrollfluss nach
der ursprünglichen Aktivität r fort (r•). Hierbei kann es jedoch passieren, dass die Werte von vr bei
einem erneuten Schleifendurchlauf der sendenden <while>-Aktivität überschrieben werden, falls die
beiden Schleifen nicht synchron laufen.

ml

PBD1
vs

While

•s

Invoke
s

s•

vs

condition1

PBD2
vr

While

•r

 Receive
r

r•

vr

condition2

ProzessMerged

Flow

Scope_PBD1
vs

vt Vt_written→ false()

While
condition1

•s

Assign
avs

vt

true()
Vt_written

s•

Scope_PBD1

While
condition2

•r

r•

Sequence

While
not Vt_written

Empty
c

Assign
b

false()
Vt_written

vt
vr

vr

Abbildung 3.58 Sendende Aktivität <invoke> s und empfangende Aktivität <receive> r und eine Konsolidierung
ohne Kontrollflusslink mit zusätzlicher Variable vt

Abbildung 3.58 zeigt eine Erweiterung der zuvor erwähnten Variante mit einer zusätzlichen Variable
vt: a kopiert nun vs nach vt, die b nach vr kopiert wird. Auch hier kann es jedoch passieren, dass wenn
beispielsweise die <while>-Schleife in Scope_PBD2 langsamer läuft als die <while>-Schleife in
Scope_PBD1 noch nicht nach vr kopierte Werte von vt durch neue Werte von vs überschrieben werden.
Eine weitere mögliche Lösung für dieses Problem wäre beispielsweise eine komplexe Variable vt, die
aus einer Liste von vs-Variablen besteht und in a durch einen speziellen doXslTransform-Aufruf mit
vs-Variablen befüllt wird und aus der b jeweils das letzte Element dieser Liste nach vr kopiert (vgl.
[OAS07] doXslTransform-Beispiel im Abschnitt 8.4 Assignment, Iterative document construction).

3.3.2 Synchrone Merge-Patterns

Die synchronen Merge-Patterns sind analog zu den asynchronen charakterisiert durch eine sendende
und eine empfangende Aktivität, die über einen Message Link miteinander kommunizieren. Als
sendende Aktivität steht in BPEL für den synchronen Fall hierfür die <invoke>-Aktivität zur Ver-
fügung. Als empfangende Aktivitäten kommen <receive>-Aktivitäten, <onMessage>-Zweige der
<pick>-Aktivität sowie <onEvent>-Zweige der Event Handler einer <scope>-Aktivität oder des
Prozess-Scopes in Frage. Zusätzlich zum sendenden Message Link mlSend existiert im synchronen Fall
noch ein weiterer Message Link mlReply indem die sendenden <invoke>-Aktivität s als receive-
Activity definiert ist und eine <reply>-Aktivität y als sendActivity. Analog zu den asynchro-

 Seite 85

nen Merge-Patterns werden wir in diesem Abschnitt zunächst die allgemeinen Konsolidierungsmuster
und anschließend die speziellen mit besonderen Umgebungsbedingungen vorstellen. Auch bei den
synchronen Merge-Patterns wird es Fälle geben, in denen wir kein passendes Konsolidierungsmuster
liefern können, daher verbleiben auch hier die kommunizierenden Aktivitäten im neuen konsolidierten
Prozess und werden am Ende zu intra-Prozess kommunizierenden konfiguriert. Analog zu den asyn-
chronen werden wir hierfür beim Fund einer solchen Kombination aus mlSend und mlReply die entsprech-
enden Message Links in die Liste NMML übertragen. Abbildung 3.59 zeigt den schematischen Aufbau
der Suche nach einem passenden Merge-Pattern für die beiden Message Links mlSend und mlReply analog
zum asynchronen Fall.

PBD2

PBD1

•s

Invoke
s

s•

•r

Receive
r

r••y

Reply
y

y•

mlSend

MatcherList

name=“mlSend“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“r“ messageName=“msg1“

SyncMatcher1.1

SyncMatcher1.2

SyncMatcher1.3

SyncMatcher1.4

SyncMatcher1.5

SyncMatcher1.6

SyncMatcher1.7

SyncMatcher1.8

SyncMatcher1.9
...

SyncPattern1.1

SyncPattern1.2

SyncPattern1.3

SyncPattern1.4

SyncPattern1.5

SyncPattern1.6

SyncPattern1.7

SyncPattern1.8

SyncPattern1.9
...

Pattern match(mlSend, mlReply) { … }

Beim Auffinden einer synchronen <invoke>-Aktivität als
sendActivity in einem Message Link mlSend sowie des pas-
senden mlReply der diese Aktivität als receiveActivity ent-
hält wird die Liste der Sync-Matcher nach einem passenden
Muster durchsucht und bei einem Fund das passende
Merge-Pattern zurückgeliefert. Wird kein passendes Muster
gefunden verbleiben die kommunizierenden Aktivitäten (hier
<invoke> s, <receive> r sowie <reply> y) im neuen kon-
solidierten Prozess und werden im letzten Schritt als intra-
Prozess-kommunizierende Aktivitäten markiert (mit Hilfe
eines SOAP-Bypassing-Attributs im Deployment-Deskriptor).

mlReply

name=“mlReply“ sender=“PBD2“ receiver=“PBD1“ sendActivity=“y“
receiveActivity=“s“ messageName=“msg2“

Abbildung 3.59 Anwendung des Merge-Algorithmus: Für jedes Paar synchron kommunizierender Links mlSend sowie
mlReply wird die Liste der bekannten SyncMatcher nach einem Muster durchsucht und im Falle einer Übereinstimmung das
entsprechende SyncPattern zurückgeliefert.

3.3.2.1 SyncPattern1.1

Das SyncPattern1.1 ist das einfachste synchrone Merge-Pattern und basiert auf den Überlegungen aus
der Variante 2 der synchronen Kommunikationsmuster aus Abschnitt 3.2.2. Abbildung 3.60 zeigt eine
Beispielchoreographie in der die beiden PBDs PBD1 sowie PBD2 über die beiden Message Links
mlSend und mlReply synchron miteinander kommunizieren.

PBD2

PBD1

•s

Invoke
 s

s•

•r

 Receive
 r

r••y

Reply
y

y•

mlSend

mlReply

vSend
vReply

vSend vReply

vReceive

vReceive

vBack

vBack

ProzessMerged

Flow
Scope_PBD1

•s

Assign
 a

s•

vSend

vSend vReply

vReceive

Scope_PBD2

•r

Empty
b

r••y

Assign
 a‘

y•

vReceive

vBack

vBack

vReply

vReceivevReply

ProzessMerged

Flow
Scope_PBD1

•s

vSend vReply

Scope_PBD2

•r

Empty
b

r••y

Assign
 a‘

y•

vReceive

vBack

vBack

vReply

vReceivevReply

s•

a) b)

Sequence

Assign
 a

Empty
c

vSend
vReceive

Abbildung 3.60 SyncPattern1.1

 Seite 86

Die Beschaffenheit der beiden PBDs ist ähnlich der Beispielfragmente des AsyncPattern1.1: PBD1
kommuniziert über die synchrone <invoke>-Aktivität s mit der <receive>-Aktivität r in PBD2. Im
Gegensatz zum asynchronen Fall ist s im synchronen Fall jedoch blockierend. Der Ablauf des Kon-
trollflusses in PBD1 schreitet erst voran wenn s die Antwort aus PBD2 erhalten hat. Hierzu besitzt es
zusätzlich zu der zu sendenden Variable vSend die Variable vReply, in der die eintreffende Antwort ge-
speichert wird. •s=prel(s)+pre(s) bezeichnet hier wieder die Menge der direkten Vorgängeraktivitäten
von s, s•=succl(s)+succ(s) analog hierzu die Menge der direkten Nachfolgeraktivitäten von s. Ent-
sprechend steht •r=prel(r)+pre(r) für die Menge der direkten Vorgängeraktivitäten von r. Zusätzlich
zu r gibt es im synchronen Fall jedoch noch eine antwortsendende <reply>-Aktivität y, die auf s
sendet. Daher ist s einmal als sendActivity in mlSend vertreten und ein weiteres Mal in mlReply als
receiveActivity. Auf der Empfängerseite bezeichnet r••y=succl(r)+succ(r)+r••+…+••y+
prel(y)+pre(y) die Menge aller direkten Nachfolgeaktivitäten von r, die auf einem direkten Kontroll-
flusspfad zu y liegen sowie alle direkten Vorgängeraktivitäten von y. y•=succl(y)+succ(y) steht für die
Menge aller direkten Nachfolgeaktivitäten der antwortsendenden Aktivität y. Zusätzlich definieren wir
noch r••y=succl(r)+succ(r)+r••+…+••y als die Menge aller direkten Nachfolgeaktivitäten von r, die
nicht auf einem direkten Kontrollflusspfad zu y liegen.
Parallel zu AsyncPattern1.1 ersetzen wir wieder s durch eine <assign>-Aktivität a, die vSend nach
vReceive kopiert. Da vReceive in Scope_PBD2 definiert wurde und nur dort sichtbar ist, müssen wir diese
Variable wieder in den Prozessscope verschieben. Im Falle eines Namenskonfliktes muss vReceive
wieder umbenannt werden (vgl. AsyncPattern1.1). Zusätzlich wird ein neuer Kontrollflusslink ausgeh-
end von a und eingehend in die r ersetzende <empty>-Aktivität b in der <flow>-Aktivität des konso-
lidierten Prozesses hinzugefügt (vgl. AsyncPattern1.1). Bis hier können wir den Ersetzungsmecha-
nismus von s und r aus dem AsyncPattern1.1 wiederverwenden. Anschließend müssen wir jedoch
auch die <reply>-Aktivität y durch eine neue <assign>-Aktivität a‘ ersetzen. Diese kopiert die Ant-
wortvariable aus vBack nach vReply. Da auch vReply analog zu vReceive nur in Scope_PBD1 sichtbar ist,
verschieben wir auch diese Variable in den Prozessscope. Wir emulieren hier das Senden der Antwort
von y nach s durch a‘ und müssen nun wieder den Kontrollfluss in die Nachfolgeaktivitäten aus s•
wiederherstellen. Hierzu bieten sich, je nach Konfiguration der ausgehenden Kanten von s, zwei
Varianten an:
a): Gibt es ausgehende Kanten von s (<sources> mit <targets> in succl(s)) und besitzen diese
explizite <transitionCondition>s, deren XPath-Ausdrücke möglicherweise auf Variablen aus
Scope_PBD1 lesend zugreifen, so müssen wir zunächst die entsprechenden Variablen in Scope_PBD2
sichtbar machen, da wir in dieser Variante alle <sources> aus s inklusive ihrer expliziten <tran-
sitionCondition>s zu den <sources> von a‘ hinzufügen. Gibt es keine expliziten <transi-
tionCondition>s, so übernehmen wir alle <sources> nach a‘ und fügen für jeden Aktivität ssucc(s)
aus succ(s) einen weiteren Kontrollflusslink von a‘ nach ssucc(s) hinzu.
b): In dieser Variante ersetzen wir s durch eine <sequence>-Aktivität seq, die a und zusätzlich noch
eine synchronisierende <empty>-Aktivität c enthält. Alle <targets> und ihre <joinCondition>
von s werden zu den <targets> von seq, ebenso alle <sources> und ihre <transitionCon-
dition>s. Hier benötigen wir nur noch einen Kontrollflusslink von a‘ nach c.
Wir werden im folgenden Kapitel die Variante b) für die synchronen Fälle verwenden.

3.3.2.2 SyncPattern1.2

Das SyncPattern1.2 ist ähnlich dem AsyncPattern1.5 aufgebaut: Die empfangende <receive>-
Aktivität r besitzt keine direkten Vorgängeraktivitäten. Daher ist auch hier das createInstance-
Attribut von r auf „yes“ gesetzt und es gilt •r=∅. Abbildung 3.62 zeigt das SyncPattern1.2 an einem
Beispielfragment zweier kommunizierender PBDs. PBD1 und PBD2 kommunizieren synchron über
die beiden Message Links mlSend sowie mlReply (s→r, y→s) miteinander. Hierbei ist jedoch PBD1 der
Initiator von PBD2 (•r=∅). Da die <receive>-Aktivität r keine direkten Vorgängeraktivitäten besitzt
kann in diesem Fall auf eine synchronisierende <empty>-Aktivität verzichtet werden. s wird durch die
<sequence>-Aktivität seq aus Variante b) des SyncPattern1.1 ersetzt. seq enthält die <assign>-

 Seite 87

Aktivität a, die vSend nach vReceive kopiert sowie eine synchronisierende <empty>-Aktivität c. Zusätzlich
muss der Kontrollfluss zwischen Scope_PBD1 mit dem von Scope_PBD2 verbunden werden. Hierzu
werden alle ausgehenden Links von r, inklusive möglicher <transitionCondition>s zu den aus-
gehenden Links von a hinzugefügt und in die Prozess-<flow>-Aktivität übertragen. Existieren keine
ausgehenden Links, es gilt somit succl(r)=∅, wird ein neuer Link ln (nicht abgebildet) ausgehend von
a und eingehend in die Nachfolgeraktivität succ(r) hinzugefügt. Der Kontrollfluss zwischen a‘ (zuvor
y) und c wird wie in SyncPattern1.1 hergestellt.

PBD2PBD1

•s

Invoke
 s

s•

 Receive
 r

r••y

Reply
y

y•

mlSend

mlReply

vSend
vReply

vSend vReply

vReceive

vReceive

vBack

vBack

ProzessMerged

Flow
Scope_PBD1

•s

vSend vReply

Scope_PBD2

r••y

Assign
 a‘

y•

vReceive

vBack

vBack

vReply

vReceivevReply

s•

Sequence

Assign
 a

Empty
c

vSend
vReceive

Abbildung 3.62 SyncPattern1.2

3.3.2.3 SyncPattern1.3

Das SyncPattern1.3 ist charakterisiert durch eine leere Menge an Nachfolgeraktivitäten der synchro-
nen <invoke>-Aktivität s, es gilt somit s•=∅. Da die sendende PBD die Daten aus der Antwortnach-
richt von s nicht mehr verwendet, werden wir die antwortsendende <reply>-Aktivität y durch eine
synchronisierende <empty>-Aktivität ersetzen.

PBD2

PBD1

•s

Invoke
 s

•r

 Receive
 r

r••y

Reply
y

y•

mlSend

mlReply

vSend
vReply

vSend vReply

vReceive

vReceive

vBack

vBack

ProzessMerged

Flow
Scope_PBD1

•s

Assign
 a

vSend

vSend vReply

vReceive

Scope_PBD2

•r

Empty
b

r••y

Empty
c

y•

vReceive vBack

vReceive

ProzessMerged

Flow
Scope_PBD1

•s

Assign
 a

vSend

vSend vReply

vReceive

Scope_PBD2

•r

Empty
b

r••y

y•

vBack

vReceive

Abbildung 3.63 SyncPattern1.3

Abbildung 3.63 zeigt die Fragmente einer Beispielchoreographie mit zwei synchron miteinander kom-
munizierenden PBDs PBD1 sowie PBD2, die über die beiden Message Links mlSend sowie mlReply ver-
bunden sind. Anstatt s in Scope_PBD1 durch die bekannte <sequence>-Aktivität seq zu ersetzen,

 Seite 88

benötigen wir in dieser Konstellation nur eine s ersetzende <assign>-Aktivität a, die vSend nach vReceive
kopiert und per Kontrollflusslink mit der entsprechenden synchronisierenden r ersetzenden <empty>-
Aktivität b in Scope_PBD2 verbunden ist. Anschließend wir y durch eine synchronisierende
<empty>-Aktivität c ersetzt, die im günstigsten Fall bei Anwendung des <empty>-Optimierers aus
Abschnitt 3.3.1.1.2 ebenfalls entfällt. Der Kontrollfluss zwischen r••y und y• wird danach direkt
verbunden (rechtes Ergebnis der Konsolidierung).

3.3.2.4 SyncPattern1.4 (Multiple <reply>-Aktivitäten)

Wie in Abschnitt 3.3.1.1.1 beschrieben ist es möglich, dass eine <invoke>-Aktivität s direkt Com-
pensation sowie Fault Handler definiert. Im synchronen Fall können so über die Antwortnachricht
mögliche Faults signalisiert und entsprechend in s behandelt werden (vgl. [OAS07] Abschnitt 10.4).
Abbildung 3.64 zeigt die Bespielfragmente einer BPEL4Chor-Choreographie in der die beiden PBDs
PBD1 sowie PBD2 synchron miteinander kommunizieren und die sendende Aktivität s zusätzlich
Fault sowie Compensation Handler definiert.

Abbildung 3.64 SyncPattern1.4 mit zwei <reply>-Aktivitäten und einem Fault

PBD1 sendet über die synchrone <invoke>-Aktivität s Nachrichten an die <receive>-Aktivität r in
PBD2. Dieser Teil der Kommunikation wird über der Message Link mlSend aus ML repräsentiert.
Zusätzlich definiert s einen Compensation Handler mit der Akivität A2 sowie einen Fault Handler für
den WSDL-Fault xxx:Fault1 mit der Aktivität A1. Im synchronen Fall können in WS-BPEL 2.0
direkt Fault Handler für WSDL-Faults in einer <invoke>-Aktivität definiert werden, die den
entsprechenden Fault aus der Nachricht der antwortsendenden <reply>-Aktivität abfangen und
verarbeiten. Jeder dieser Faults wird über einen QName identifiziert, der aus dem Namespace des
entsprechenden Port Types sowie einem Fault Namen besteht. PBD2 antwortet entweder über die
<reply>-Aktivität y, dargestellt über den Message Link mlReply aus ML, oder über die <reply>-
Aktivität z im Fault Handler von PBD2, dargestellt über den Message Link mlReplyFault aus ML. Der

PBD2

PBD1

•s

s•

•r

 Receive
 r

r••y

Reply
y

y•

mlSend

mlReply

vSend vReply

vReceive

vReceive

vBack1

vBack1

ProzessMerged

Flow
Scope_PBD1

•s

vSend vReply

Scope_PBD2

•r

Empty
b

r••y

Assign
 a‘

y•

vReceive

vBack1

vBack1

vReply

vReceivevReply

s•

Invoke
s

vSend
vReply

FH xxx:Fault1

A1
CH

A2

FH bpel:joinFailure

Reply
 z

vBack2

vBack2

xxx:Fault1mlReplyFault

name=“mlSend“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“r“ messageName=“msg1“

name=“mlReply“ sender=“PBD2“ receiver=“PBD1“ sendActivity=“y“
receiveActivity=“s“ messageName=“msg2“

name=“mlReplyFault“ sender=“PBD2“ receiver=“PBD1“ sendActivity=“z“
receiveActivity=“s“ messageName=“msg3“

Scope s
Sequence seq

Flow fl

throw
xxx:Fault1

throw
xxx:FaultExit

Assign
 a

vSend
vReceive

FH xxx:Fault1

A1
CH

A2

FH xxx:FaultExit

Empty
c

FH bpel:joinFailure

Assign
 aFault

vBack2
vReply

vBack2

 Seite 89

Erkennungsalgorithmus für das SyncPattern1.4 sucht bei jedem Auftreten einer synchronen
Kommunikation neben dem sendenden Message Link aus ML (hier mlSend) nach dem antwortenden in
dem s die receiveActivity ist (hier mlReply) sowie nach weiteren MessageLinks in denen s ebenfalls
als receiveActivity auftritt (hier mlReplyFault). Ist in einer der entsprechenden antwortsendenden
<reply>-Aktivitäten das faultName-Attribut definiert, so handelt es sich im eine WSDL-Fault sen-
dende Antwortaktivität. Im konsolidierten Prozess ProzessMerged wird nun <invoke> s in
Scope_PBD1 durch eine <scope>-Aktivität s ersetzt, in die der Compensation Handler mit A2 kopiert
wird. s enthält wieder eine <sequence>-Aktivität seq. seq umfasst eine <assign>-Aktivität a, die
vSend nach vReceive kopiert und per ausgehenden Kontrollflusslink mit der <receive> r ersetzenden syn-
chronisierenden <empty>-Aktivität b in Scope_PBD2 verbunden ist (vgl. Standardfall in Sync-
Pattern1.1). Da wir nun zwei mögliche antwortsendende Aktivitäten ersetzen müssen, y und z, wird
seq aus SyncPattern1.1 erweitert: Anstatt einer synchronisierenden <empty>-Aktivität c, die per ein-
gehenden Kontrollflusslink mit der <reply> y ersetzenden <assign>-Aktivität verbunden ist,
müssen wir nun dafür sorgen, dass nach dem Eintreffen verschiedener sich gegenseitig ausschlie-
ßender Antwortnachrichten der Kontrollfluss mit s• korrekt synchronisiert wird. Hierzu ersetzen wir
zunächst y und z durch die entsprechenden <assign>-Aktivitäten a‘ sowie aFault, die im ersten Fall
vBack1 nach vReply sowie im Fehlerfall vBack2 nach vReply kopieren (vgl. analog Ersetzen der <reply>-
Aktivität in SyncPattern1.1-1.2). Als Nachfolgeaktivität von a wird nun eine <flow>-Aktivität fl in
seq erzeugt, die zwei <throw>-Aktivitäten enthält. Wir wandeln nun in <scope> s den ursprüng-
lichen WSDL-Fault xxx:Fault1 in einen benutzerdefinierten gleichnamigen Fault um, der im Feh-
lerfall von einem entsprechenden Fault Handler in s aufgefangen wird. Dieser Fault Handler enthält
A1. Ein weiterer Fault Handler behandelt den benutzerdefinierten Fault xxx:FaultExit, der die
<empty>-Aktivität c enthält. a‘ wird nun per ausgehenden und in die xxx:FaultExit werfende
<throw>-Aktivität eingehenden Kontrollflusslink verbunden. Entsprechend wird aFault mit der
xxx:Fault1 werfenden <throw>-Aktivität verbunden.
Zur Laufzeit werden zunächst die Aktivitäten in •s von Scope_PBD1 ausgeführt und anschließend s.
a kopiert vSend nach vReceive und setzt anschließend den Kontrollfluss in Scope_PBD2 fort. Nachdem
hier die Aktivitäten in •r ausgeführt wurden, schreitet die Ausführung mit b und anschließend r••y
voran. Tritt hier ein bpel:joinFailure-Fault auf, wird dieser im entsprechenden Fault Handler von
Scope_PBD2 gefangen und aFault kopiert vBack2 nach vReply. Tritt ein Fehler auf der nicht gefangen wird,
so war die PBD schon vor der Konsolidierung fehlerhaft und hätte einen bpel:missingReply-Fault
hervorgerufen. Nachdem aFault beendet wurde, schreitet der Kontrollfluss mit der <throw>-Aktivität
voran, die den benutzerdefinierten Fault xxx:Fault1 wirft. Dieser wird im entsprechenden Fault
Handler von s aufgefangen und Aktivität A1 wird ausgeführt. Anschließend wird s beendet und die
ausgehenden Links von s werden ausgewertet, falls nicht succl(s)=∅ gilt. Danach folgen die Aktivi-
täten aus s•. Tritt kein Fehler auf so kopiert a‘ vBack1 nach vReply und der Kontrollfluss schreitet nach
Auswertung der ausgehenden Links von a‘ mit der Ausführung der Aktivitäten aus y• sowie parallel
der <throw>-Aktivität, die den benutzerdefinierten Fault xxx:FaultExit wirft in Scope_PBD1
voran. Dieser wird im entsprechenden Fault Handler von s aufgefangen und s anschließend beendet.
Die anschließende Ausführung erfolgt analog zum Fehlerfall. Mit dem gezeigten Erkennungs- und
Ersetzungsmechanismus lassen sich alle ursprünglichen WSDL-Fault werfenden <reply>-Aktivitäten
in entsprechende Kombinationen aus <assign>- und <throw>-Aktivitäten im neuen <scope> s
umwandeln und der Kontrollfluss wird entsprechend per Links zwischen diesen verbunden. Der
eingeführte benutzerdefinierte Fault xxx:FaultExit mit <empty>-Aktivität im entsprechenden
Fault Handler von s dient nur zum Beenden des entsprechenden <scope> und anschließender Weiter-
führung des Kontrollflusses in s•.
Neben der Möglichkeit mehrerer <reply>-Aktivitäten für s bedingt durch WSDL-Faults, kann eine
derartige Konstellation auch durch Verzweigungen im Kontrollfluss in der antwortsendenden PBD
entstehen. Abbildung 3.65 zeigt einen solchen Fall. Die beiden PBDs aus vorigem Beispiel kommu-
nizieren synchron miteinander. Der Übersichtlichkeit halber wurde auf Fault sowie Compensation
Handler in s verzichtet, das vorgestellte Konsolidierungsmuster ist jedoch auch in Kombination mit
dem zuvor erklärten auf solche <invoke>-Aktivitäten anwendbar. Auf die <receive>-Aktivität r
folgt eine synchronisierende <empty>-Aktivität c, die je nach Auswertung der <transition-
Condition>s ihrer ausgehenden Links den Kontrollfluss in <reply> y1 oder y2 fortsetzt.

 Seite 90

Abbildung 3.65 SyncPattern1.4 mit zwei <reply>-Aktivitäten

Die Konsolidierung erfolgt analog zum vorherigen Beispiel nur das hier in der <flow>-Aktivität fl für
jede der beiden y1 sowie y2 ersetzenden <assign>-Aktivitäten a‘ und a‘‘ eine <throw>-Aktivität für
das Werfen des benutzerdefinierten Faults xxx:FaultExit hinzugefügt wird, die per Kontrollfluss-
link jeweils mit a‘ bzw. a‘‘ verbunden wird. Mit diesem Fault Mechanismus wird das Warten auf die
Auswertung der beiden Links zwischen a‘ bzw. a‘‘ und entsprechender <throw>-Aktivität umgangen.
Sobald eine der beiden <assign>-Aktivitäten ausgeführt wurde, wird <scope> s im Anschluß
beendet und der Kontrollfluss schreitet in den Aktivitäten s• voran.

3.3.2.5 SyncPattern1.5 (Sendende <invoke>-Aktivität innerhalb von Handlern)

Befindet sich die synchron kommunizierende <invoke>-Aktivität s innerhalb eines Handlers (FH→
Fault Handler, CH→Compensation Handler, TH→Termination Handler, EH→Event Handler), so bie-
tet das SyncPattern1.5 in bestimmten Konstellationen der empfangende PBD eine Möglichkeit der
Konsolidierung. Wie schon im AsyncPattern3.0 erklärt dürfen Links mit Ursprung in FHs sowie THs
nur ausgehend und in CHs sowie EHs weder ein- noch ausgehend sein. Da im synchronen Fall von s
die Ausführung der Nachfolgeraktivitäten solange blockiert wird bis die Antwortnachricht eingegan-
gen ist und wir bei den vorangegangenen synchronen Konsolidierungsmustern den Kontrollfluss in die
empfangende und antwortsendende PBD leiten und wieder herausführen, können wir diese in den
Kontrollfluss der Aktivitäten, die sich in einem Handler befinden integrieren. Abbildung 3.66 zeigt die
Beispielfragmente einer Choreographie sowie die Konsolidierung, die diese Idee umsetzt. Die
synchrone <invoke>-Aktivität s befindet sich innerhalb eines Handlers (FH, CH, TH oder EH). Diese
sendet Nachrichten an die <receive>-Aktivität r in der PBD PBD2. PBD2 schickt die Antwort-
nachricht per <reply>-Aktivität y an s. Wichtig an dieser Konfiguration ist, dass r keine Vorgänger-
aktivitäten hat somit das createInstance-Attribut auf „yes“ gesetzt ist und dass y keine Nachfol-
geraktivitäten hat (•r=∅ sowie y•=∅). Zusätzlich muss gelten, dass es nur Nachfolgeaktivitäten von r
gibt, die auf einem direkten Pfad zu y liegen und keine weiteren (r••y=∅). Da s den Kontrollfluss in
der empfangenden PBD PBD2 initiert und dieser nach dem Senden der Antwortnachricht in y wieder
beendet wird, erzeugen wir im neuen konsolidierten Prozess im Handler der s enthält eine <flow>-
Aktivität fl in die wir s•, s sowie •s inklusive aller zugehörigen Kontrollflussrelationen hineinkopie-
ren. Anschließend wir Scope_PBD2 in fl kopiert und die Aktivitäten s, r und y werden durch dieselben

PBD2

PBD1

•s

Invoke
 s

s•

•r

 Receive
 r

Empty
c

Reply
y1

y1•

mlSend

m
lReply1

vSend
vReply

vSend vReply

vReceive

vReceive

vBack1

vBack1

•y1

vBack2

Reply
y2

y2•

vBack2

•y2

m
lReply2

<empty name=“c“>
…
 <sources>
 <source linkname=“l1“>
 <transitionCondition>
 vReceive.amount < 100
 </transitionCondition>
 </source>
 <source linkname=“l2“>
 <transitionCondition>
 vReceive.amount > 100
 </transitionCondition>
 </source>
 </sources>
</empty>

l1 l2

ProzessMerged

Flow
Scope_PBD1

•s

vSend vReply

vReceivevReply

s•

Scope s
Sequence seq

Flow fl

throw
xxx:FaultExit

Assign
 a

vSend
vReceive

FH xxx:FaultExit

Empty
d

throw
xxx:FaultExit

Scope_PBD2

•r

Empty
c

y1•

vReceive vBack1

•y1

vBack2

y2•

•y2

l1 l2

Empty
b

Assign
 a‘

vBack1
vReply

Assign
 a‘‘

vBack2
vReply

 Seite 91

Aktivitäten, wie schon in SyncPattern1.1 ersetzt (s durch <assign> a, r durch <empty> b sowie y
durch <assign> a‘) und der Kontrollfluss wird per Links entsprechend hergestellt. Da in der ursprün-
glichen Choreographie s solange blockiert bis die Antwort aus y eintrifft, haben wir auf diese Weise
den ursprünglichen Kontrollfluss erhalten. Hätte r noch Vorgänger, so würde der Handler nach dem
inkludieren von Scope_PBD2 einen anderen Kontrollfluss haben und könnte erst ausgeführt werden,
nachdem alle Vorgängeraktivitäten beendet wurden. Hätte y Nachfolger, so wäre der Handler auch
nach a‘ noch aktiv und der Kontrollfluss wäre abhängig von diesen Nachfolgeaktivitäten. Gäbe es
Nachfolgeraktivitäten von r die auf keinem direkten Pfad zu y liegen, so könnten diese den
Kontrollfluss des Handlers nach dem Konsolidieren ebenfalls verändern, da in der ursprünglichen
Choreographie die Aktivitäten in s• direkt nach Erhalt der Antwortnachricht ausgeführt werden und
der Handler anschließend beendet wird unabhängig von möglichen parallelen Aktivitäten in r••y.
Auch hier wird zusätzlich auf das Vorhandensein eines <catchAll>-Fault Handlers geprüft und bei
Bedarf ein neuer mit einer <compensate>-Aktivität angelegt, um alle möglichen Faults, die nicht in
Scope_PBD2 gefangen werden am Durchdringen in den Handler zu hindern. Der Compensation Hand-
ler wird mit einer <empty>-Aktivität e1 definiert. Dies hat folgenden Grund: Ein Prozessscope hat
keinen CH und Scope_PBD2 ersetzt den Prozessscope der ehemaligen PBD PBD2. Würden wir
keinen derartigen CH definieren, so würde während der Ausführung automatisch ein Default-CH
installiert werden und könnte den ursprünglichen Kontrollfluss verändern (vgl. [OAS07] Abschnitt
12.5.1 Default Fault, Compensation, and Termination Handlers).

FH | CH | EH | TH

PBD2

 Receive
 r

r••y

Reply
y

mlSend

mlReply

vReceive

vReceive vBack
FH | CH | EH | TH

•s

Invoke
 s

s•

vSend
vReply

Flow fl

•s

s•

Scope_PBD2
vReceive vBack

r••y

Sequence

Assign
 a

Empty
c

vSend
vReceive

Empty
b

Assign
 a‘

vBack
vReply

FH <catchAll>

Compensate
CH

Empty
e1

vBack

Abbildung 3.66 SyncPattern1.5

3.3.2.6 SyncPattern2.1 (<onMessage>-Zweig als receiveActivity)

Das SyncPattern2.1 stellt einen Spezialfall des SyncPattern1.1 dar, indem statt einer <receive>-
Aktivität r ein <onMessage>-Zweig einer <pick>-Aktivität p als receiveActivity im Message
Link mlSend aus ML definiert wurde. In diesem Fall kann es passieren, dass die Antwort aufgrund einer
Deaktivierung der entsprechenden Aktivität p durch eine zuvor eintreffende Nachricht eines anderen
<onMessage>-Zweigs dieser ausbleibt. Der Kontrollfluss bleibt in diesem Fall in der sendenden Akti-
vität s hängen. Abbildung 3.67 zeigt die Fragmente einer Beispielchoreographie zweier PBDs PBD1
und PBD2, die über eine synchrone <invoke>-Aktivität s in PBD1, einen <onMessage>-Zweig mit
der wsu:id msg1 einer <pick>-Aktivität p sowie eine <reply>-Aktivität y in PBD2 miteinander
kommunizieren. Das Ersetzen von p durch eine entsprechende <scope>-Aktivität Scope_Pick erfolgt
analog zu AsyncPattern2.1. Die s ersetzende <sequence>-Aktivität auf der ehemaligen Senderseite
wird um eine a umgebende <if>-Aktivität erweitert. a wird nur ausgeführt, wenn p noch nicht
aktiviert wurde (vgl. AsyncPattern2.1 mit Schutzvariable vpick_activated). y wird durch die übliche
<assign>-Aktivität a‘ ersetzt und mit einem ausgehenden Kontrollflusslink mit c verbunden. Wird
bei der Ausführung <receive> msg2 durch eine eingehende Nachricht aktiviert bevor a ausgeführt

 Seite 92

wurde und im Anschluss den entsprechenden benutzerdefinierten Fault xxx:FaultExit geworfen
hat, so bleibt der Kontrollfluss bei der Ausführung der <sequence>-Akivität in Scope_PBD1 hängen,
wie in der ursprünglichen Choreographie. Dieses Konsolidierungsmuster lässt sich auch im Fall
weiterer <onMessage>- bzw. möglicher <onAlarm>-Zweige einsetzen (vgl. AsyncPattern2.1) sowie
entsprechend beim Auftreten mehrerer Choreographieteilnehmer die auf verschiedene <onMessage>-
Zweige von p senden (vgl. AsyncPattern2.2 sowie AsyncPattern2.3).

PBD2 •p

 Pick p

onMessage wsu:id=“msg1“ onMessage wsu:id=“msg2“

•y A2

PBD1

•s

Invoke
 s

s•

vSend
vReply

vSend vReply vReceive vBack

vReceive

p•

Reply
y

mlSend

vBack

mlReply

y•

ProzessMerged

Flow

Scope_PBD1

•s

s•

Scope_PBD2

Scope_Pick
Flow_Pick

FH xxx:pickFailure1

throw
xxx:pickFailure1

•p

p•

Vpick_activated→ false()

vSend

vReceive

vBack

Sequence

Empty
c

if
not Vpick_activated

Assign
 a

vSend
vReceive

•y

Assign
 a‘

vBack
vReply

y•

vReply

Sequence

 Receive
msg2

throw
xxx:pickFailure2

Assign
b

true()
Vpick_activated

FH xxx:pickFailure2

A2

Abbildung 3.67 SyncPattern2.1

3.3.2.7 SyncPattern2.2

Das SyncPattern2.2 stellt den Sonderfall dar, dass •p=∅ gilt und das createInstance-Attribut auf
„yes“ gesetzt ist. Hierbei erfolgt die Konsolidierung analog zu SyncPattern2.1 mit dem Unterschied,
dass die <receive>-Aktivitäten im Scope_Pick den Wert des createInstance-Attributs von p
erben (vgl. AsyncPattern2.3).

3.3.2.8 SyncPattern2.3

Gilt wie im SyncPattern1.3 s•=∅ und wird ein <onMessage>-Zweig einer <pick>-Aktivität p auf
Empfängerseite eingesetzt, so können wir auch hier die s ersetzende <sequence>-Aktivität durch
eine <assign>-Aktivität austauschen, die lediglich vSend nach vReceive kopiert, da die Daten der Ant-
wortnachricht nicht mehr verwendet werden. p wird analog zu SyncPattern2.1 mit einer entsprech-
enden <scope>-Aktivität ersetzt und y durch eine synchronisierende <empty>-Aktivität (vgl. Sync-
Pattern1.3).

3.3.2.9 SyncPattern2.4

Das SyncPattern2.4 erkennt und konsolidiert die synchronen Kommunikationsmuster, in denen s auf p
sendet und gleichzeitig mehrere mögliche <reply>-Aktivitäten vorliegen. Somit gibt es einen
Message Link mlSend mit s als sendActivity und die wsu:id eines <onMessage>-Zweigs von p als
receiveActivity und mehrere weitere Message Links mlReply1-n bzw. mlReplyFault mit verschiedenen
<reply>-Aktivitäten y1-yn als sendActivity und jeweils s als receiveActivity. Wir werden in
folgendem Unterabschnitt nur die Änderungen an der s ersetzenden Aktivität vorstellen, da die
<reply>-Aktivitäten im antwortsendenden <scope>, wie schon zuvor, durch entsprechende

 Seite 93

<assign>-Aktivitäten, die jeweils vBack nach vReply kopieren, ausgetauscht werden (vgl. SyncPat-
tern1.4).

Scope s
Sequence seq

Flow fl

throw
xxx:Fault1

throw
xxx:FaultExit

FH xxx:Fault1

A1
CH

A2

FH xxx:FaultExit

Empty
c

Invoke
s

vSend
vReply

FH xxx:Fault1

A1
CH

A2

if
not Vpick_activated

Assign
 a

vSend
vReceive

Abbildung 3.68 SyncPattern2.4

Abbildung 3.68 skizziert anhand von Beispielfragmenten das Ersetzen der synchron kommunizie-
renden <invoke>-Aktivität s, die auf einen <onMessage>-Zweig einer <pick>-Aktivität sendet
(nicht abgebildet) und eine Antwortnachricht von mehreren möglichen <reply>-Aktivitäten (eben-
falls nicht abgebildet) erhält. s wird, wie in SyncPattern1.4, durch eine <scope>-Aktivität s ausge-
tauscht, die wiederum eine <sequence>-Aktivität seq enthält. Im Gegensatz zum SyncPattern1.4 ist
nun die <assign>-Aktivität a durch die <if>-Aktivität zur Überprüfung der Schutzvariable
vpick_activated umgeben, da hier auf einen <onMessage>-Zweig gesendet wird (vgl. SyncPattern2.1). Wie
in SyncPattern1.4 wird auch hier eine weitere <flow>-Aktivität fl in seq hinzugefügt, die für mögliche
WSDL-Fault sendende <reply>-Aktivitäten jeweils eine <throw>-Aktivität enthält. Diese wirft den
entsprechenden umgewandelten benutzerdefinierten Fault. Für jede <reply>-Aktivität, die ohne Fault
antwortet ist eine <throw>-Aktivität enthalten. Diese wirft den benutzderdefinierten Fault
xxx:FaultExit, der s beendet und die Ausführung der Aktivitäten in s• bewirkt. Im gezeigten Bei-
spiel gibt es somit eine <reply>-Aktivität y, die in der ursprünglichen Choreographie ohne Fault
antwortet und eine weitere yFault, die den WSDL-Fault xxx:Fault1 zurückliefert.

3.3.2.10 SyncPattern3.0 („Non-Merge-Pattern-Sync“)

Analog zum AsyncPattern3.0 fängt das SyncPattern3.0 die synchronen Kommunikationsmuster ab, die
nicht durch einen der zuvor erwähnten Erkennungs- und Konsolidierungsmechanismen ersetzt werden
können bzw. das Ziel zukünftiger Erweiterungen des Algorithmenkatalogs sind. Trifft der
Erkennunsalgorithmus auf ein hier genanntes Muster, so werden die entsprechenden Message Links
aus ML in die Liste NMML hinzugefügt (vgl. AsyncPattern3.0) und die betreffenden Aktivitäten im
Anschluss in intra-prozess kommunizierende umgewandelt.

3.3.2.10.1 <onEvent>-Zweig (EH) als empfangende Aktivität

Da wir in der vorliegenden Arbeit die Konsolidierung synchroner Kommunikationen in denen <on-
Event>-Zweige eines EHs als receiveActivity auftauchen nicht unterstützen, wird der entsprech-
ende Message Link mlSend aus ML in die Liste NMML übertragen. Zusätzlich suchen wir für die send-
Activity s von mlSend nach weiteren antwortsendenden Message Links, die s als receiveActivity
enthalten und übertragen diese ebenfalls in NMML. Dieser Schritt ist notwendig, da bei synchroner
Kommunikation immer mindestens ein antwortsendender Message Link mlReply vorliegen muss und
wir von einer korrekten BPEL4Chor-Choreographie als Eingabe ausgehen.

 Seite 94

3.3.2.10.2 Sendende <invoke>-Aktivität innerhalb von Handlern (EH, FH, TH, CH)

Befindet sich die synchron kommunizierende <invoke>-Aktivität s eines Message Links mlSend inner-
halb eines EH, FH, TH oder CH und es gilt zusätzlich für die empfangende <receive>-Aktivität r
sowie die möglichen antwortsendenden <reply>-Aktivität y1-yn der entsprechenden Message Links
mlReply1-mlReplyn •r≠∅ und/oder y1•≠∅ oder y2•≠∅ oder … yn•≠∅, dass heisst r hat Vorgängeraktivitäten
und mindestens eine der Aktivitäten y1-yn haben Nachfolger im Kontrollfluss, so werden alle an der
Kommunikation involvierten Message Links in NMML übertragen. Zusätzlich müssen alle Aktivitäten
aus r• auf einem direkten, nichtverzweigenden Pfad zu den jeweiligen <reply>-Aktivitäten y1-yn lie-
gen (r••y1=∅,…, r••yn=∅). Andernfalls können wir das SyncPattern1.5 anwenden.
Handelt es sich bei der empfangenden Aktivität um den <onMessage>-Zweig einer <pick>-Aktivi-
tät, so werden ebenfalls alle an der Kommunikation involvierten Message Links in NMML übertragen.

3.3.2.10.3 Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH,
TH, FH)

Für die empfangende <receive>- oder <pick>-Aktivität r gilt analog zu Abschnitt 3.3.1.12.3 der
Asynchronen Merge-Patterns: Befindet sich r innerhalb eines EHs, CHs, FHs oder THs, so wird der
entsprechende Message Link mlSend aus ML, der diese Aktivität als receiveActivity enthält, in die
Liste NMML übertragen, da SA00070 sowie SA00071 des WS-BPEL 2.0 Standards [OAS07]
eingehende Links in jegliche Art der vier Handler verbieten. Zusätzlich werden alle antwortsendenden
Message Links mlReply1-mlReplyn, die die sendActivity s aus mlSend als receiveActivity enthalten
ebenfalls in NMML übertragen.

3.3.2.10.4 Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen

Analog zu Abschnitt 3.3.1.12.4 der asynchronen Merge-Patterns werden sendende und empfangende
Aktivitäten, die sich innerhalb von Schleifen befinden nicht konsolidiert und verbleiben als intra-
prozess kommunizierende im Prozess. Wird ein Message Link mlSend entdeckt dessen sendActivity
s und/oder receiveActivtiy r sich innerhalb einer Schleife befinden, wird er in die Liste NMML
übertragen. Anschließend werden alle antwortsendenden Message Links mlReply1-mlReplyn, die s als re-
ceiveActivity enthalten ebenfalls in NMML übertragen.

3.4 Vervollständigung der technischen Artefakte im neuen konsolidierten
Prozess und Übernahme der WSDLs

Nachdem alle Message Links aus ML behandelt und die entsprechenden konsolidierbaren Kombi-
nationen aus kommunizierenden Aktivitäten durch die jeweiligen Konstrukte ersetzt wurden, müssen
die technischen Informationen in den verbliebenen kommunizierenden Aktivitäten durch Analyse der
Topology, Grounding sowie den zugehörigen WSDL-Dateien in den neuen konsolidierten Prozess
übernommen werden. Hierzu gehört das Anlegen der entsprechenden partnerLinks, das Hinzufügen
dieser sowie des operation- und portType-Attributs in die jeweiligen Aktivitäten, als auch die
Anpassung der Korrelationsmengen im Falle mehrerer initialer Startaktivitäten (vgl. Abschnitt
3.2.3.2.1 Mehrere initiale Startaktivitäten). Zusätzlich werden die vorhandenen WSDL-Dateien als
imports in den Prozess eingefügt. Ein weiterer Optimierungsschritt zukünftiger Arbeiten könnte das
Verschmelzen der WSDL-Dateien zu einer einzigen sein. Da dieser strukturelle Aspekt jedoch keine
Auswirkungen auf die Laufzeit des ausführbaren Prozesses hat, belassen wir die technischen Informa-

 Seite 95

tionen in den jeweiligen WSDL-Dateien und binden dieses stattdessen über mehrere import-State-
ments in den BPEL-Prozess ein.

3.4.1 Einfügen der WSDL-Dateien per import-Statements

Für jede PBD der Choreographie ist eine entsprechende WSDL-Datei vorhanden, die nun per import-
Statement in den konsolidierten BPEL-Prozess hinzugefügt wird.

<process name=“prozessMerged“
 targetNamespace=“http://www.iaas.uni-stuttgart.de“
 xmlns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable“>

 <!-- Globale KommunikationsVariablen -->
 <variables>
 <variable name=“msg1“ messageType=“ns:PBD1InvMessage“/>
 <variable name=“msg2“ messageType=“ns:PBD2InvMessage“/>
 <variable name=“msg3“ messageType=“ns:PBD2InfoMessage“/>
 <variable name=“msg4“ messageType=“ns:PBD3ErrorMessage“/>
 …
 </variables>
 …
</process>

prozessMerged.bpel

<process name=“prozessMerged“
 targetNamespace=“http://www.iaas.uni-stuttgart.de“
 xmlns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable“
 xmlns:pbd1=“http://BPEL4Chor/pbd1“
 xmlns:pbd2=“http://BPEL4Chor/pbd2“
 xmlns:pbd3=“http://BPEL4Chor/pbd3“>

 <import namespace=“http://BPEL4Chor/pbd1“ location="pbd1.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/"/>
 <import namespace=“http://BPEL4Chor/pbd2“ location="pbd2.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/"/>
 <import namespace=“http://BPEL4Chor/pbd3“ location="pbd3.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/"/>

 <!-- Globale KommunikationsVariablen -->
 <variables>
 <variable name=“msg1“ messageType=“pbd1:PBD1InvMessage“/>
 <variable name=“msg2“ messageType=“pbd2:PBD2InvMessage“/>
 <variable name=“msg3“ messageType=“pbd2:PBD2InfoMessage“/>
 <variable name=“msg4“ messageType=“pbd3:PBD3ErrorMessage“/>
 …
 </variables>
 …
</process>

prozessMerged.bpel

Abbildung 3.69 Hinzufügen der WSDL-imports in den konsolidierten Prozess

Abbildung 3.69 veranschaulicht die Schritte beim Hinzufügen der imports: Die drei WSDL-Dateien
werden in den neuen Prozess ProzessMerged eingefügt sowie die Namespace-Präfixe der
entsprechenden globalen Variablen angepasst. Diese Variablen sind beim Konsolidieren durch
Übertragen der an einer Kommunikation teilnehmenden Daten durch das entsprechende Merge-Pattern
in den globalen Prozessscope entstanden (vReceive, vReply, etc.). Anschließend werden alle Namespace-
Präfixe in den involvierten <scope>-Aktivitäten ebenfalls an den jeweiligen Namespace angepasst
(Alle Deklarationen innerhalb Scope_PBD1, …, Scope_PBDn).

3.4.2 Anpassung der Korrelationsmengen bei mehreren initialen Startaktivitäten

Nun untersuchen wir die ersten Aktivitäten im Kontrollfluss in Scope_PBD1-Scope_PBDn des
konsolidierten Prozesses. Handelt es sich um <receive>s oder <pick>s mit dem auf yes gesetzten
createInstance-Attribut und befinden sich in mehr als einer der Scope_PBD1-Scope_PBDn-Akti-
vitäten derartige initiale Aktivitäten, so müssen wir, wie in Abschnitt 3.2.3.2.1 beschrieben, die Nach-
richten der dort verwendeten Variablen um eine gemeinsame Korrelationsmenge erweitern.
Angenommen in den beiden <scope>-Aktivitäten Scope_PBD1 sowie Scope_PBD2 des konsolidier-
ten Prozesses ProzessMerged befinden sich jeweils zwei initiale <receive>-Aktivitäten r1 und r2,
wobei r1 die Variable inputPBD1 vom messageType pbd1:PBD1RequestMessage und r2 die Va-
riable inputPBD2 vom messageType pbd2:PBD2RequestMessage verwendet (die Variablen kön-
nen hier auch beide denselben Namen haben, da diese in verschiedenen <scope>s deklariert wurden).
Nun werden die entsprechenden Messages in den beiden WSDL-Dateien pbd1.wsdl sowie pbd2.wsdl
erweitert: In beiden Messages wird ein neuer wsdl:part mit dem Namen commonCorrelProperty
vom Typ xsd:string hinzugefügt sowie die entsprechenden property-Eigenschaften definiert
(vprop:property und vprop:propertyAlias vgl. Abbildung 3.28b). Anschließend werden diese
propertys zu den Korrelationsmengen von r1 und r2 hinzugefügt und das initiate-Attribut beider
wird auf „join“ gesetzt.

 Seite 96

3.4.3 Erzeugen und Hinzufügen der PartnerLinks für die nicht konsolidierten
Message Links aus NMML

Da die vorliegende Arbeit nicht alle vorkommenden Kommunikationsmuster- und Konstellationen in
Merge-Patterns umsetzt, kann es vorkommen, dass einige der choreographie-intern kommunizierenden
Aktivitäten der Message Links aus ML nicht durch die entsprechenden Synchronisationsaktivitäten
ersetzt werden und die entsprechenden Message Links in NMML übertragen werden. Nun müssen
diese Aktivitäten zu intra-prozess kommunizierenden im konsoldidierten Prozess ProzessMerged um-
gewandelt werden. Hierzu werden wir die Message Links aus NMML mit den entsprechenden zugehö-
rigen Message Links aus der Grounding-Datei abgleichen und die technischen Informationen (port-
Type sowie operation) aus der WSDL-Datei der PBD in die PartnerLinks sowie die involvierten
Aktivitäten einfügen. Wir zeigen zunächst den Fall für asynchron intra-prozess kommunizierende
Aktivitäten und die entsprechenden Message Links. Diese sind dadurch charakterisiert, dass ihre
sendActivity s in keinem weiteren Message Link als receiveActivity auftaucht.

Abbildung 3.70 Hinzufügen der PartnerLinks sowie der technischen Attribute portType, operation sowie part-
nerLink in die asynchron intra-prozess kommunizierenden Aktivitäten

Abbildung 3.70 veranschaulicht das Vorgehen an einem Beispiel: Die beiden Aktivitäten s und r ver-
bleiben nach der Konsolidierung als intra-prozess kommunizierende im Prozess ProzessMerged.
Nachdem der Message Link ml1 aus NMML mit dem zugehörigen ml1 aus der Grounding-Datei

name=“ml1“ portType=“ns1:s2rPType“ operation=“sendOperation“

name=“ml1“ sender=“PBD1“ receiver=“PBD2“ sendActivity=“s“
receiveActivity=“r“ messageName=“msg1“

Message Link ml1 aus Topology sowie der zugehörige Message Link ml1 aus der
Grounding mit den entsprechenden technischen Angaben aus der WSDL-Datei

<definitions name="pbd2" xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
 xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.iaas.uni-stuttgart.de"
 targetNamespace="http://www.iaas.uni-stuttgart.de">
 …
 <plnk:partnerLinkType name="pbd12pbd2PLT">
 <plnk:role name="pbd12pbd2Role" portType="tns:s2rPType"/>
 </plnk:partnerLinkType>
 …
 <portType name="s2rPType">
 <operation name="sendOperation">
 <input message="tns:pbd2invMessage"/>
 </operation>
 </portType>
 …
</definitions>

pbd2.wsdl

<process name=“prozessMerged“
 targetNamespace=“http://www.iaas.uni-stuttgart.de“
 xmlns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable“
 xmlns:pbd1=“http://BPEL4Chor/pbd1“
 xmlns:pbd2=“http://BPEL4Chor/pbd2“
 xmlns:pbd3=“http://BPEL4Chor/pbd3“>
 …
 <flow>
 …
 <scope name=“Scope_PBD1“>
 …
 <invoke name=“s“ inputVariable=“vs“>
 …
 </invoke>
 …
 </scope>
 …
 <scope name=“Scope_PBD2“>
 …
 <receive name=“r“ variable=“vr“>
 …
 </receive>
 …
 </scope>
 …
 </flow>
</process>

prozessMerged.bpel

<process name=“prozessMerged“
 targetNamespace=“http://www.iaas.uni-stuttgart.de“
 xmlns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable“
 xmlns:pbd1=“http://BPEL4Chor/pbd1“
 xmlns:pbd2=“http://BPEL4Chor/pbd2“
 xmlns:pbd3=“http://BPEL4Chor/pbd3“>
 …
 <flow>
 …
 <scope name=“Scope_PBD1“>
 …
 <partnerLink name="pbd1pbd2PLS"
 partnerLinkType="pbd2:pbd12pbd2PLT"
 partnerRole="pbd12pbd2Role"/>
 <invoke name=“s“ partnerLink=“pbd1pbd2PLS“
 portType=“pbd2:s2rPType“
 operation=“sendOperation“
 inputVariable=“vs“>
 …
 </invoke>
 …
 </scope>
 …
 <scope name=“Scope_PBD2“>
 …
 <partnerLink name="pbd1pbd2PLR"
 partnerLinkType="pbd2:pbd12pbd2PLT"
 myRole="pbd12pbd2Role"/>
 <receive name=“r“ partnerLink=“pbd1pbd2PLR“
 portType=“pbd2:s2rPType“
 operation=“sendOperation“
 variable=“vr“>
 …
 </receive>
 …
 </scope>
 …
 </flow>
</process>

prozessMerged.bpel

 Seite 97

abgeglichen und die zugehörigen technischen Artefakte in der WSDL-Datei ausfindig gemacht
wurden, werden zwei neue PartnerLinks in den beiden <scope>s Scope_PBD1 sowie Scope_PBD2
mit den passenden partnerLinkTypes angelegt und die technischen Attribute portType, opera-
tion und partnerLink in die beiden Aktivitäten s und r eingefügt. Dieses Vorgehen wird für alle
verbleibenden asynchron intra-prozess kommunizierende Message Links aus NMML wiederholt und
die entsprechenden Artefakte angelegt und in die beteiligten Aktivitäten hinzugefügt.
Für die synchron intra-prozess kommunizierenden Aktivitäten s, r und y müssen mindestens zwei
Message Links mlSend sowie mlReply aus NMML untersucht und die entsprechenden Artefakte hinzuge-
fügt werden (vgl. Abbildung 3.71).

name=“mlSend“ portType=“ns1:s2rPType“ operation=“sendOperation“

name=“mlSend“ sender=“PBD1“ receiver=“PBD2“
sendActivity=“s“ receiveActivity=“r“ messageName=“msg1“

Message Links mlSend und mlReply aus Topology sowie die zugehörigen Message
Links mlSend und mlReply aus der Grounding mit den entsprechenden technischen
Angaben aus der WSDL-Datei

<definitions name="pbd2" xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
 xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.iaas.uni-stuttgart.de"
 targetNamespace="http://www.iaas.uni-stuttgart.de">
 …
 <plnk:partnerLinkType name="pbd12pbd2PLT">
 <plnk:role name="pbd12pbd2Role" portType="tns:s2rPType"/>
 </plnk:partnerLinkType>
 …
 <portType name="s2rPType">
 <operation name="sendOperation">
 <input message="tns:pbd2invMessage"/>
 <output message="tns:pbd2replMessage"/>
 </operation>
 </portType>
 …
</definitions>

pbd2.wsdl

<process name=“prozessMerged“
 targetNamespace=“http://www.iaas.uni-stuttgart.de“
 xmlns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable“
 xmlns:pbd1=“http://BPEL4Chor/pbd1“
 xmlns:pbd2=“http://BPEL4Chor/pbd2“
 xmlns:pbd3=“http://BPEL4Chor/pbd3“>
 …
 <flow>
 …
 <scope name=“Scope_PBD1“>
 …
 <invoke name=“s“ inputVariable=“vSend“
 outputVariable=“vReply“>
 …
 </invoke>
 …
 </scope>
 …
 <scope name=“Scope_PBD2“>
 …
 <receive name=“r“ variable=“vReceive“>
 …
 </receive>
 …
 <reply name=“y“ variable=“vBack“>
 …
 </reply>
 </scope>
 …
 </flow>
</process>

prozessMerged.bpel

<process name=“prozessMerged“
 targetNamespace=“http://www.iaas.uni-stuttgart.de“
 xmlns=“http://docs.oasis-open.org/wsbpel/2.0/process/executable“
 xmlns:pbd1=“http://BPEL4Chor/pbd1“
 xmlns:pbd2=“http://BPEL4Chor/pbd2“
 xmlns:pbd3=“http://BPEL4Chor/pbd3“>
 …
 <flow>
 …
 <scope name=“Scope_PBD1“>
 …
 <partnerLink name="pbd1pbd2PLS"
 partnerLinkType="pbd2:pbd12pbd2PLT"
 partnerRole="pbd12pbd2Role"/>
 <invoke name=“s“ partnerLink=“pbd1pbd2PLS“
 portType=“pbd2:s2rPType“
 operation=“sendOperation“
 inputVariable=“vSend“
 outputVariable=“vReply“>
 …
 </invoke>
 …
 </scope>
 …
 <scope name=“Scope_PBD2“>
 …
 <partnerLink name="pbd1pbd2PLR"
 partnerLinkType="pbd2:pbd12pbd2PLT"
 myRole="pbd12pbd2Role"/>
 <receive name=“r“ partnerLink=“pbd1pbd2PLR“
 portType=“pbd2:s2rPType“
 operation=“sendOperation“
 variable=“vReceive“>
 …
 </receive>
 …
 <reply name=“y“ partnerLink=“pbd1pbd2PLR“
 portType=“pbd2:s2rPType“
 operation=“sendOperation“
 variable=“vBack“>
 …
 </reply>
 …
 </scope>
 …
 </flow>
</process>

prozessMerged.bpel

name=“mlReply“ sender=“PBD2“ receiver=“PBD1“
sendActivity=“y“ receiveActivity=“s“ messageName=“msg2“

name=“mlReply“ portType=“ns1:s2rPType“ operation=“sendOperation“

Abbildung 3.71 Hinzufügen der technischen Artefakte bei synchron intra-prozess kommunizierenden Aktivitäten

3.4.4 Technische Vervollständigung der initialen Startaktivitäten sowie der
inter-prozess kommunizierenden

Da eine BPEL4Chor-Choreographie und die in der Grounding-Datei definierten Message-Links nur
die choreographie-intern kommunizierenden Aktivitätenpaare mit technischen Artefakten assoziiert,
müssen in einem letzten Vervollständigungsschritt die initialen <receive>- oder <pick>-Aktivitäten
sowie die möglichen antwortsendenden des neuen konsolidierten Prozesses manuell vervollständigt
werden (Hinzufügen der PartnerLinks sowie der partnerLink-, operation-, portType-Attri-

 Seite 98

bute). Dies gilt auch für die ursprünglich choreographie-extern kommunizierenden Aktivitäten, die
nun im konsolidierten Prozess als inter-prozess kommunizierende vorliegen.

 Seite 99

4 Implementierung

In folgendem Kapitel werden wir die zur Umsetzung des Eclipse-Plugins zur Konsolidierung verwen-
deten Technologien sowie die Architektur der Implementierung kurz vorstellen.

4.1 Eingesetzte Technologien
Die eingesetzten Frameworks und Technologien wurden mit dem zum Zeitpunkt der Fertigstellung der
vorliegenden Diplomarbeit neusten verfügbaren JDK 1.7.0.13 (Java Development Kit) sowohl in der
32-Bit als auch in der 64-Bit Variante implementiert und getestet.

4.1.1 StAX

Streaming API for XML (StAX) ist ein Application Programming Interface (API), um XML-Dateien
aus Java zu verarbeiten. Es bietet einen Mittelweg zwischen dem Einlesen einer XML-Datei in eine
Baumstruktur, wie beispielsweise das DOM (Document Object Model), und dem ereignisbasierten in
dem ein Ereignis beim Auffinden eines XML-Elements in der lesenden Java-Anwendung ausgelöst
wird, wie es beispielsweise SAX (Simple API for XML) unterstützt. StAX bietet stattdessen eine Cur-
sor-basierte Variante, in der sich die Anwendung bei Bedarf über einen beweglichen Zeiger die ent-
sprechenden Daten vom unterliegenden Parser in Form von String-Objekten holt ohne das gesamte
XML-Dokument einlesen zu müssen. Zusätzlich bietet es eine Iteratorvariante in der die gelesenen
Daten in Form von Objekten, die von der Klasse XMLEvent abgeleitet sind, der Anwendung zur Ver-
fügung gestellt werden. Das von Cui in [CUI12] implementierte BPEL4Chor-Model wurde mit Hilfe
von StAX um das Einlesen der Topology- sowie Grounding-Datei in das von ihm entwickelte BPEL4-
Chor-Modell-Format erweitert.

4.1.2 Eclipse IDE

Die Eclipse IDE [ECL12] ist eine integrierte Entwicklungsumgebung, die mit dem Schwerpunkt der
Unterstützung zur Java-Entwicklung konzipiert wurde und mittlerweile durch ihre Erweiterbarkeit für
viele weitere verschiedene Entwicklungsaufgaben eingesetzt wird. Für Eclipse steht eine Vielzahl an
quelloffenen als auch kommerziellen Erweiterungen (Plug-Ins) zur Verfügung. Das in der vorliegen-
den Arbeit entwickelte Konsolidierungsplugin wurde mit und für die Eclipse IDE Java EE Version 4.2
Service Release 1 entwickelt und getestet.

4.1.3 Eclipse Modeling Framework (EMF)

Das Eclipse Modeling Framework [EEMF12] ist ein Framework zur Generierung von Java-Code aus
strukturierten Datenmodellen. Der generierte Code kann Instanzen eines Modells erzeugen, verändern,
einlesen, validieren sowie serialisieren. Das EMF wird zum Einlesen, Transformieren sowie anschlie-
ßendem Serialisieren der PBDs einer BPEL4Chor-Choreographie in einen ausführbaren BPEL-Prozess
verwendet. Hierzu wird das EMF-Modell für BPEL-Artefakte [EBPELM] verwendet um eine
möglichst einfache Navigierbarkeit innerhalb einer PBD sowie den entsprechenden Teilen im neuen
konsolidierten Prozess während der Transformation zu gewährleisten.

 Seite
100

4.2 Vorgehen und Architektur

Schritt 1

Einlesen der Daten aus
Choreographie.zip-Datei
(PBDs, Topology, Groun-
ding)

Schritt 2

Anlegen eines leeren
BPEL-Prozesses Prozess-
Merged und Kopieren
der PBDs in die neuen
<scope>-Aktivitäten

Schritt 3

Untersuchung der Mes-
sage Links aus ML und
Anwendung der Sync-
bzw. AsyncMatcher so-
wie der entsprechenden
Sync- bzw. AsyncPat-
terns

Technische Vervollstän-
digung der intra-prozess
kommunizierenden Akti-
vitäten (automatisch)
sowie der inter-prozess
kommunizierenden (ma-
nuell)

Schritt 4

Abbildung 4.1 Schritte beim Vorgehen der Konsolidierung einer BPEL4Chor-Choreographie

Abbildung 4.1 fasst die Schritte beim Vorgehen der Konsolidierung einer BPEL4Chor-Choreographie
nochmals zusammen: Zunächst wird die Choreographie-Zip-Datei eingelesen und in den entsprechen-
den Datenstrukturen gespeichert. Diese enthält die beteiligten PBDs, die Topology- sowie die Groun-
ding-Datei. Anschließend wird ein neuer BPEL-Prozess ProzessMerged angelegt und die PBDs
werden mit allen Daten in <scope>-Aktivitäten in diesen Prozess kopiert. Nach diesem Schritt folgt
die eigentliche Konsolidierung, in dem die Message Links aus ML nach ihrem Kommunikationsmuster
untersucht werden und der entsprechende Async- bzw. SyncMatcher mit dem passenden Async- bzw.
SyncPattern angewendet wird. Gibt es für einen Message Link ml kein passendes Konsolidierungs-
muster, so wird ml in die Liste NMML (Non-Mergeable-Message-Links) übertragen. Als letzter Schritt
folgt die automatische technische Vervollständigung der intra-prozess kommunizierenden Aktivitäten
im ProzessMerged, die durch die Message Links aus NMML identifiziert werden. Hierzu werden die
technischen Konfigurationen der beteiligten Aktivitäten über die Message Links der Grounding-Datei
mit den entsprechenden Informationen aus den jeweiligen WSDL-Dateien assoziiert. Die technischen
Konfigurationen der inter-prozess kommunizierenden Aktivitäten im ProzessMerged müssen manuell
erfolgen, da hierzu keine Assoziationen in der Grounding-Datei vorliegen (Diese enthält nur Angaben
zu den choreographie-intern kommunizierenden Aktivitäten, die über die Message Links verbunden
sind). Zu diesen Aktivitäten gehören die initialen Startaktivitäten, die den Lebenszyklus des neuen
Prozesses ProzessMerged anstoßen, mögliche antwortsendende Aktivitäten, die dem Aufrufer entspre-
chende Nachrichten senden sowie die ehemals choreographie-extern kommunizierenden Aktivitäten,
die nun inter-prozess kommunizierende sind.

org.bpel4chor.mergeChoroegraphy

org.bpel4chor.modelChoreographyPackage

StAX

ChoreographyMerger

de.uni_stuttgart.iaas.bpel.model.utilities

use

CommunicationMatcher

use

org.eclipse.bpel.model org.eclipse.wst.wsdlorg.eclipse.emf

<<interface>>
SyncMatcher

<<interface>>
AsyncMatcher

use

AsyncMatcher1.1

AsyncMatcher1.2

AsyncMatcher1.3

use

AsyncMatcher3.0

AsyncPattern1.1

AsyncPattern1.2

AsyncPattern1.3

AsyncPattern3.0

use

use

use

use

SyncMatcher1.1

SyncMatcher1.2

SyncMatcher1.3

SyncMatcher3.0

SyncPattern1.1

SyncPattern1.2

SyncPattern1.3

SyncPattern3.0

use

use

use

use

stellt bereit

benötigt

Choreographie
verschmelzen

Choreographie.zip

Abbildung 4.2 Die mergeChoreography-Komponente und ihre Abhängigkeiten

 Seite
101

Abbildung 4.2 zeigt die für die Konsolidierung implementierte Komponente und ihre Abhängigkeiten
zu anderen Komponenten: Die Komponente mergeChoreography bietet die Schnittstelle mergeCho-
reography an, die zum Konsolidieren einer BPEL4Chor-Choreographie dient. Die für die Konsoli-
dierung benötigten Daten stellt eine Choreographie-Zip-Datei dar, die die entsprechenden PBDs, die
Topology- sowie die Grounding-Datei enthält. Die Daten werden aus der Zip-Datei eingelesen und in
der Komponente ChoreographyPackage gespeichert. Diese verwendet das von Cui in [CUI12] entwi-
ckelte und implementierte BPEL4Chor-Modell (org.bpel4chor.model), das wiederum zum Einlesen
und Ausgeben des Modells StAX als API verwendet. Zusätzlich verwendet das ChoreographyPackage
die in de.uni_stuttgart.iaas.bpel.model.utilities implementierten Hilfsmethoden zum Traversieren und
Analysieren von BPEL-, PBD- sowie der zugehörigen WSDL-Dateien. Diese Hilfsmethoden basieren
wiederum auf dem Eclipse BPEL-Modell (org.eclipse.bpel.model), das seinerseits auf dem EMF sowie
dem Eclipse Web Standard WSDL Tools basiert (org.eclipse.wst.wsdl). Nachdem die Daten aus der
Zip-Datei eingelesen wurden, wird die ChoreographyMerger-Komponente zum Anlegen des neuen
BPEL-Prozesses ProzessMerged im ChoroegraphyPackage sowie dem anschließenden Analysieren
der Message Links aus ML verwendet. Diese benutzt hierfür die Komponente CommunicationMat-
cher, die je nach Kommunikationsmuster des betrachteten Message Links aus ML die Liste der Async-
Matcher-Schnittstelle-implementierenden Klassen im asnychronen Fall oder die Liste der SyncMat-
cher-Schnittstelle-implementierenden Klassen im synchronen Fall traversiert und das passendste Mer-
ge-Pattern für diesen Message Link zurückliefert. Jede SyncMatcher- bzw. AsyncMatcher-Imple-
mentierungsklasse bietet hierfür ein eigenes Sync- bzw. AsyncPattern zur Konsolidierung an. Wird das
Async- bzw. SyncPattern3.0 als Merge-Pattern gefunden, so wird der Message Link im asynchronen
bzw. werden die Message Links im synchronen Fall in die Liste NMML übertragen.

-asyncMatcher : List<AsyncMatcher>
-syncMatcher : List<SyncMatcher>

CommunicationMatcher

ChoreographyMerger
-topology : Topology
-grounding : Grounding
-wsdls : List<WSDL>
-pbds : List<Process>
-mergedProcess : Process
-nmml : List<MLink>

ChoreographyPackage

11

1

1

merge()

MergePattern
{abstract}

-prelS : Set<Activity>
-preS : Activity
-s : Activity
-succlS : Set<Activity>
-succS : Activity
-prelR : Set<Activity>
-preR : Activity
-r : Activity
-succlR : Set<Activity>
-succR : Activity

MLEnvironment

1 .. *

1

evaluate()

Condition

match(ml : MLink) : MergePattern

<<interface>>
AsyncMatcher

match(mlSend : MLink, mlReply : MLink) : MergePattern

<<interface>>
SyncMatcher

1

1 .. *

1

1 .. *

evaluateConditions(conds : List<Condition>) : List<boolean>

<<interface>>
Evaluator

1 .. *

1 .. *

1

1

Abbildung 4.3a ChoreographyMerger-Klassendiagramm und die von dieser genutzten Klassen aus dem Paket
org.bpel4chor.mergeChoreography

 Seite
102

AsyncMatcher1.1

AsyncMatcher1.2

AsyncMatcher1.3

<<interface>>
AsyncMatcher

MergePattern
{abstract}

AsyncMatcher3.0

AsyncPattern1.1

AsyncPattern1.2

AsyncPattern1.3

AsyncPattern1.3

<<interface>>
Evaluator

<<interface>>
SyncMatcher

SyncMatcher1.1

SyncMatcher1.2

SyncMatcher1.3

SyncMatcher3.0

SyncPattern1.1

SyncPattern1.2

SyncPattern1.3

SyncPattern3.0

1 1

1

1

1

1

1

1

1

1

Abbildung 4.3b Async- bzw. SyncMatcher sowie die Beziehungen zu den Async- bzw. SyncPatterns und den entspre-
chenden Schnittstellen (Interfaces) und der abstrakten Klassse MergePattern

Abbildung 4.3a zeigt das Klassendiagramm des ChoreographyMerger sowie das Zusammenspiel mit
den anderen Klassen in der Komponente org.bpel4chor.mergeChoreography. Der ChoreographyMer-
ger enthält eine Instanz des ChoreographyPackage, welches die Daten der eingelesen BPEL4Chor-
Choreographie sowie den neuen mergedProzess beinhaltet. Diese Daten werden vom Communication-
Matcher verwendet, der über die in der Topology enthaltenen Message Links iteriert und je nach asyn-
chronem oder synchronem Kommunikationsmuster die Liste der asyncMatcher bzw. syncMatcher
nach einem passendem Erkennungsmuster untersucht. Die Liste asyncMatcher enthält Klassen, die das
AsyncMatcher-Interface implementieren, welches zusätzlich das Evaluator-Interface erweitert. Das
Evaluator-Interface hat folgende Funktion: Es kann vorkommen, dass ein Kommunikationsmuster, das
in einem Message Link und den involvierten PBDs sowie Aktivitäten verwendet wird durch die
Erkennungsmuster mehrerer Matcher erkannt wird. So ist zum Beispiel das AsyncPattern1.2 ein Spe-
zialfall des AsyncPattern1.1, daher könnten hier beide Matcher angewendet werden. Jedoch ist das
AsyncPattern1.2 durch die zusätzliche Bedingung definiert, dass für die Menge r•=∅ gilt, es somit
keine Nachfolgeaktivitäten auf die empfangende Aktivität gibt. Daher enthält jeder Matcher die
zusätzliche Methode evaluateConditions, die eine Liste aus booleschen Bedingungen als Eingabe er-
hält und eine Liste der Übereinstimmungen als boolesche Ergebniswerte zurückliefert. Je mehr Bedin-
gungen eine derartige Eingabeliste enthält umso länger ist die Liste der Ergebniswerte der Analyse.
Sind alle Werte der Ergebnisliste true und ist die Liste länger als die entsprechende Liste aller mögli-
chen weiteren Erkennungsmusters, so ist der Matcher der passendste für diesen Message Link. Der ge-
fundene Matcher liefert anschließend ein Async- bzw. SyncPattern zurück, das die merge-Methode der
abstrakten Klasse MergePattern implementiert. Die Klasse MergePattern enthält eine, im asynchronen
Fall, oder mehrere, im synchronen Fall, Instanzen der Klasse MLEnvironment, die Mengen aller umge-
benden Aktivitäten der kommunizierenden eines Message Links beinhaltet. Hierzu gehören die Men-
gen: prelS→Die Menge aller Vorgängeraktivitäten der sendenden Aktivität s, die mit dieser über die
eingehenden Links verbunden sind, succlS→Die Menge aller Nachfolgeraktivitäten der sendenden
Aktivität s, die mit dieser über die ausgehenden Links verbunden sind, preS→Die direkte Vorgänger-
aktivität von s, die nicht über einen eingehenden Link mit s verbunden ist, deren Ausführung jedoch
vor der Aktivierung von s beendet sein muss, succS→Die direkte Nachfolgeraktivität von s, die nicht
über einen ausgehenden Link mit s verbunden ist, die jedoch erst nach der Ausführung von s aktiviert

 Seite
103

wird sowie prelR, succlR, preR und succR mit den entsprechenden Eigenschaften für die empfangende
Aktivität r. Diese Mengen und Aktivitäten werden für die anschließende strukturelle Transformation
mit den MergePatterns benötigt.
Abbildung 4.3b zeigt die implementierten Async- bzw. SyncMatcher sowie die zugehörigen Async-
bzw. SyncPattern und ihre Ableitungs- und Implementierungsbeziehungen zu den Interfaces sowie der
abstrakten Klasse MergePattern.

:ChoreographyPackage:ChoreographyMerger :CommunicationMatcher

getTopology().getMessageLinks()

Schleife [forEach ml in List<MLink>]
match(ml)

Result = isMLinkAsync(ml)

getMessageLinks()

List<MLink>

[async]

[sync]

alt
Schleife [forEach asyncMatcher in List<asyncMatcher>]

asyncMatcher.match(ml)

asyncMatcher.evaluateConditions()

[asyncMatcher instanceof AsyncMatcher3.0 && true]alt

addMLink2NMML(ml)

AsyncPattern

AsyncPattern.merge()

Schleife [forEach syncMatcher in List<syncMatcher>]

syncMatcher.match(mlSend, mlReply)

syncMatcher.evaluateConditions()

[SyncMatcher instanceof SyncMatcher3.0 && true]alt

addMLinks2NMML(mlSend, mlReply)

SyncPattern

SyncPattern.merge()

merge()

Abbildung 4.4 Sequenzdiagramm für das Auffinden der MergePatterns für die Message Links aus ML

Abbildung 4.4 zeigt das Sequenzdiagramm der Suche über die verfügbaren Erkennungsmuster in den
Async- bzw. SyncMatchern für die Message Links aus ML: Je nach Kommunikationsmuster eines je-
den Message Links ml, asynchron oder synchron, wird die entsprechende Liste der Matcher durchlau-
fen und die Erkennungsmuster überprüft. Wird ein Erkennungsmuster der „Non-Mergeable-Pattern-
Async/Sync“ entdeckt (Async- bzw. SyncPattern3.0) so wird der entsprechende Message Link in die
Liste NMML eingefügt. Andernfalls wird das passendste MergePattern zurückgeliefert und dieses an-
schließend über den Aufruf der merge-Methode angewendet.

 Seite
104

4.3 Erweiterbarkeit der Patterns

Eines der Ziele der vorliegenden Diplomarbeit war den Katalog der Async- sowie SyncPattern erwei-
terbar zu entwerfen und zu implementieren. Durch die Kombination aus den Matcher-Schnittstellen
implementierenden Erkennungsmusterklassen sowie den zugehörigen Ableitungen der MergePattern-
Klasse muss hierfür für neue Muster jeweils eine entsprechende Matcher-Klasse sowie das zugehörige
MergePattern je nach Kommunikationsmuster (asynchron oder synchron) implementiert werden. Die
vorliegende Arbeit und die zugehörige Implementierung sind derart konfiguriert, dass neue Matcher-
Klassen, die im Paket org.bpel4chor.mergechoreography.matcher.communication.async/sync gespei-
chert werden, automatisch vom CommunicationMatcher geladen werden. Werden neue Patterns für
bestimmte Konfigurationen und Konstellationen, die durch die beiden Non-Mergeable-Pattern-Async/
Sync“ (Async- bzw. SyncPattern3.0) abgefangen werden implementiert, so müssen zusätzlich die Be-
dingungen dieser aus der Liste der Conditions der entsprechenden Matcher entfernt werden, da der
Async- bzw. SyncMatcher3.0 in der jeweiligen Liste des CommunicationMatcher als erstes Element
eingefügt wird, um so beim Auffinden eines entsprechenden Musters die nicht konsolidierbaren Mes-
sage Links direkt in NMML einzufügen.

 Seite
105

5 Zusammenfassung und Ausblick

Das Ziel der vorliegenden Diplomarbeit war die Implementierung und Erweiterung der in [WKL11]
vorgestellten Konzepte zur Konsolidierung einer BPEL4Chor-Choreographie in Form eines Eclipse-
Plugins. Ausgangsbasis und Eingabe hierfür ist eine BPEL4Chor-Choreographie [DKLW07] mit den
entsprechenden Fragmenten: Die PBDs, die den Kontroll- und Datenfluss modellieren, die Topology-
Datei, die über die ParticipantTypes sowie die Participants die Verbindung zu den PBDs her-
stellt und die Kommunikation der beteiligten Teilnehmer in Form von Message Links darstellt sowie
die Grounding-Datei, die technische Artefakte über die jeweiligen Message Links und die involvierten
Aktivitäten mit den zusätzlichen Informationen aus den WSDL-Dateien assoziiert. Das Ergebnis der
Konsolidierung ist ein ausführbarer BPEL-Prozess, der die gleiche Kontrollflusssemantik der ursprün-
glichen Choreographie beibehält, jedoch die choroegraphie-intern kommunizierenden Aktivitäten
durch Kombinationen aus entsprechenden Kopier- und Synchronisationaktivitäten ersetzt, um so eine
bessere Laufzeitperformance im Hinblick auf die Anzahl der verwendeten Prozessinstanzen sowie
einen reduzierten Kommunikationsaufwand durch das Vermeiden des SOAP-Messaging zu gewährlei-
sten.

In Kapitel 3 wurde hierfür das Vorgehen beim Konsolidieren genauer erklärt: Zunächst wird die
BPEL4Chor-Choreographie und die zugehörigen WSDL-Dateien mit den technischen Artefakten ein-
gelesen und in den entsprechenden Datenstrukturen gespeichert. Anschließend wird ein neuer leerer
BPEL-Prozess angelegt und die PBDs inklusive aller enthaltener Datenstrukturen in neue <scope>-
Aktivitäten in diesen Prozess kopiert (Abschnitt 3.2.1 Anlegen des konsolidierten BPEL-Prozesses).
Im darauffolgenden Abschnitt wurde die Idee zur Generierung des Kontrollflusses im neuen konsoli-
dierten Prozess aus den ursprünglichen PBDs und ihrer Kommunikationsbeziehungen erklärt (Ab-
schnitt 3.2.2 Generierung des Kontrollflusses). Hierzu wurden für die asynchrone sowie die synchrone
Kommunikation jeweils zwei Varianten vorgestellt und die jeweiligen Vor- und Nachteile aufgezeigt
und nachgewiesen, dass die Kontrollflussrelationen nach der Konsolidierung erhalten bleiben. Zu-
sätzlich wurden die Anpassungen aufgezeigt, die an den <transitionCondition>s sowie den
<joinCondition>s der beteiligten Aktivitäten durchgeführt werden müssen.
In Abschnitt 3.2.3 Generierung des Datenflusses wurde die Idee der Ersetzung der choreographie-in-
tern kommunizierenden Aktivitäten durch entsprechende Kombinationen aus <assign>- und syn-
chronisierenden <empty>-Aktivitäten zur Emulierung des ursprünglichen Nachrichtenflusses vorge-
stellt sowie die Auswirkungen der Konsolidierung auf die involvierten Korrelationsmengen (Abschnitt
3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets).
Im Abschnitt 3.3 Taxonomie der Konsolidierungsmuster („Merge-Patterns“) wurden die Erkennungs-
und Konsolidierungmuster für asynchron sowie synchron kommunizierende Aktivitätenpaare vorge-
stellt. Hierzu wurden zunächst die asynchronen Merge-Patterns ausgehend von den Allgemeinen hin
zu den Speziellen präsentiert (Abschnitt 3.3.1 Asynchrone Merge-Patterns AsyncPattern1.1-AsyncPat-
tern3.0) und anschließend entsprechend die synchronen Merge-Patterns (Abschnitt 3.3.2 Synchrone
Merge-Patterns SyncPattern1.1-SyncPattern3.0).
In Abschnitt 3.4 Vervollständigung der technischen Artefakte im neuen konsolidierten Prozess und
Übernahme der WSDLs wurden die Schritte vorgestellt, die zum Konfigurieren des neuen ausführ-
baren Prozesses notwendig sind.

Im Kapitel 4 Implementierung wurden die in der Umsetzung verwendeten Technologien und Frame-
works kurz beschrieben sowie ein Überblick über die Architektur des Eclipse-Plugins gegeben. Zu-
sätzlich wurde der Aspekt der Erweiterbarkeit in Bezug auf die hier implementierte Lösung erläutert
und Einstiegspunkte in der Architektur für mögliche Anpassungen der bereits vorhandenen sowie neu-
er Merge-Patterns aufgezeigt.

 Seite
106

5.1 Ausblick

Die in dieser Arbeit nicht behandelten Konsolidierungmuster sind Ziel zukünftiger Arbeiten. Hierzu
gehören die asynchronen Kommunikationsmuster zwischen choreographie-intern kommunizierenden
Partnern, die durch das AsyncPattern3.0 abgefangen werden und nach der Konsolidierung als intra-
prozess kommunizierende Aktivitätenpaare vorliegen:

<onEvent>-Zweige einer <scope>-Aktivität oder des Prozessscope: Wie in Abschnitt 3.3.1.12.1 be-
schrieben, kann auch die wsu:id eines <onEvent>-Zweigs als receiveActivity in einem Mes-
sage Link ml aus ML auftauchen.

Asynchron kommunizierende <invoke>-Aktivität innerhalb von Handlern (EH, CH, FH, TH):
Abschnitt 3.3.1.12.2 zeigt die nicht implementierten Fälle in denen sich die asynchron kommunizie-
rende <invoke>-Aktivität s innerhalb von CHs oder EHs befindet. Auch das Auftreten einer solchen
Konstellation von s als sendActivity in ml wird in dieser Arbeit nicht konsolidiert. Eine Ausnahme
bilden hier die FHs sowie THs, da diese ausgehende Links enthalten dürfen, jedoch nur solche, die
nicht in den zugehörigen <scope> zeigen.

Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH, FH, TH): Abschnitt
3.3.1.12.3 zeigt die Fälle in denen sich die receiveActivity r, die entweder eine <receive>-Akti-
vität oder ein <onMessage>-Zweig einer <pick>-Aktivität sein kann, innerhalb eines Handlers befin-
det. Diese Fälle werden aus den gleichen Gründen wie im vorherigen Abschnitt nicht konsolidiert mit
dem Zusatz, dass auch FHs und THs nicht behandelt werden, da diese keine eingehenden Links
enthalten dürfen.

Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen: Befinden sich die receiveAc-
tivity und/oder die sendActivity innerhalb einer Schleife, so werden diese Aktivitäten ebenfalls
als intra-prozess kommunizierende in den neuen konsolidierten Prozess übernommen (vgl. Abschnitt
3.3.1.12.4)

Für die synchron kommunizierenden Partner einer Choreographie gelten dieselben Voraussetzungen
für die Konsolidierung der entsprechenden Aktivitäten bzw. die Übernahme dieser als intra-prozess
kommunizierende in den neuen konsolidierten Prozess. Die durch das SyncPattern3.0 abgefangenen
Fälle beinhalten die in Abschnitt 3.3.2.10 erwähnten Konstellationen.

 Seite
107

Literaturverzeichnis

[AL83] J.F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM Volume 26 Issue 11. pp. 832-843, Nov. 1983.

[AODE11] Apache ODE. BPEL 1.1 und WS-BPEL 2.0 konforme OpenSource BPEL-Engine.
Online: http://ode.apache.org/ .

[BDH05] A. Barros, M. Dumas, A. H. M. T. Hofstede. Service Interaction Patterns. In W.M.P.
van der Aalst, editor, Proceedings of the 3rd International Conference on Business Pro-
cess Management (BPM 2005), volume 3649 of Lecture Notes in Computer Science,
pp. 302-318. Springer-Verlag.

[BFG05] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. In
Proceedings of the twentyfourth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems – PODS ’05, pages 25–36. ACM, 2005.
doi:10.1145/1065167.1065172.

[BN09] P.A. Bernstein, E. Newcomer. Principles of Transaction Processing for the Systems
Professional. 2nd ed. Morgan Kaufmann, 2009.

[BPLG12] bpel-g. BPEL 1.1 und WS-BPEL 2.0 konforme OpenSource BPEL-Engine. Online:
http://code.google.com/p/bpel-g/ .

[CUI12] D. Cui. Splitting BPEL Processes. Diplomarbeit, Universität Stuttgart, Institut für Ar-
chitektur von Anwendungssystemen, Deutschland. Online: http://elib.uni-
stuttgart.de/opus/volltexte/2012/7605

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for Model-
ing Choreographies. pp. 296–303, 2007. doi:10.1109/ICWS.2007.59.

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: From specification
to execution. volume 68, pp. 946–972. Elsevier Science Publishers, 2009.
doi:10.1016/j.datak.2009.04.003.

[DKP07] G. Decker, O. Kopp, F. Puhlmann. Service Referrals in BPEL-based Choreographies.
Proceedings of the 2nd European Young Researchers Workshop on Service Oriented
Computing (YR-SOC 2007). pp. 25-30, 2007.

[DP02] D. Davis and M. P. Parashar. Latency performance of SOAP Implementations.
CCGRID '02 Proceedings of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid. pp. 407, IEEE, 2002.

[EBPELM] Eclipse BPEL Model. Online: http://www.eclipse.org/bpel/developers/model.php .

[EBPL12] Eclipse BPEL Designer. Eclipse BPEL Designer Plug-In, Version 1.0.2. 2012. Online:
http://www.eclipse.org/bpel/ .

[ECL12] Eclipse IDE. Eclipse Entwicklungsumgebung, Version 4.2 (Juno) sowie Version 3.7
(Indigo). Online: http://www.eclipse.org .

[EEMF12] Eclipse EMF. Eclipse Modeling Framework. Online:

 Seite
108

http://ode.apache.org/
http://code.google.com/p/bpel-g/
http://elib.uni-stuttgart.de/opus/volltexte/2012/7605
http://elib.uni-stuttgart.de/opus/volltexte/2012/7605
http://www.eclipse.org/bpel/developers/model.php
http://www.eclipse.org/bpel/
http://www.eclipse.org/

http://www.eclipse.org/modeling/emf/ .

[KGF+08] J. Küster, C. Gerth, A. Förster, G. Engels. A tool for process merging in business-driven
development. In Proceedings of the Forum at the CAiSE, 2008. Online: http://ceur-
ws.org/Vol-344/paper23.pdf .

[KHA08] R. Khalaf. Supporting business process fragmentation while maintaining operational
semantics: a BPEL perspective. Doctoral thesis, University of Suttgart, Factulty of
Computer Science, Electrical Engineering, and Information Technology, Germany,
2008.

[KHK+11] O. Kopp, S. Henke, D. Karastoyanova, R. Khalaf, F. Leymann, M. Sonntag, T. Stein-
metz, T. Unger, B. Wetzstein. An Event Model for WS-BPEL 2.0. Report 2011, Univer-
sität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Techni-
scher Bericht Informatik.

[KKL+05] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen, P.
Schmidt, I. Trickovic. WS-BPEL Extension for Sub-Processes – BPEL-SPE. A Joint
White Paper by IBM and SAP, September 2005. Online:
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf .

[KKL08] O. Kopp, R. Khalaf, F. Leymann. Deriving Explicit Data Links in WS-BPEL Processes.
In IEEE International Conference on Services Computing. IEEE, 2008.

[KL06] R. Khalaf, F. Leymann. Role-based Decomposition of Business Processes using BPEL.
In International Conference on Web Services (ICWS 2006), pp. 770–780. IEEE Com-
puter Society, 2006. doi:10.1109/ICWS.2006.56.

[KNS92] G. Keller, M. Nüttgens, A.-W. Scheer. Semantische Prozeßmodellierung auf der
Grundlage Ereignisgesteuerter Prozeßketten (EPK).Veröffentlichungen des Instituts für
Wirtschaftsinformatik (IWi),Universität des Saarlandes, Heft 89. Januar 1992.

[KOP11a] O. Kopp. Grounding Syntax. Email, 2011.

[KOP11b] O. Kopp. Topology Syntax. Email, 2011.

[KRL09] R. Khalaf, D. Roller, F. Leymann. Revisiting the Behavior of Fault and Compensation
Handlers in WS-BPEL. On the Move to Meaningful Internet Systems: OTM 2009. R.
Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 286–303.
Springer Berlin Heidelberg 2009. doi: 10.1007/978-3-642-05148-7_20.

[LEN11] J. Lenhard. A Pattern-based Analysis of WS-BPEL and Windows Workflow. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 88, Bamberg Uni-
versity, March 2011. ISSN 0937-3349.

[LEY01] F. Leymann. Web Services Flow Language (WSFL 1.0). 22 Mai 2001. Online:
http://xml.coverpages.org/wsfl.html

[LEY10a] F. Leymann. Workflow Management I (Vorlesung). Universität Stuttgart: 2010.

[LEY10b] F. Leymann. Web Services I (Vorlesung). Universität Stuttgart: 2010.

 Seite
109

http://www.eclipse.org/modeling/emf/
http://ceur-ws.org/Vol-344/paper23.pdf
http://ceur-ws.org/Vol-344/paper23.pdf
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf
http://xml.coverpages.org/wsfl.html

[MS06] J. Mendling, C. Simon. Business process design by view integration. J. Eder, S. Dustdar
et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 55–64, 2006. Springer-Verlag
Berlin Heidelberg. Online: http://mendling.com/publications/06-BPD.pdf .

[MT11] P. Mell, T. Grance. The NIST Definition of Cloud Computing. National Institute of
Standards and Technology, vol. 53, no. 6, p. 50, September 2011. Online:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf .

[NCG04] A. Ng, S. Chen, and P. Greenfield. An Evaluation of Contemporary Commercial SOAP
Implementations. In AWSA, 2004.

[OAS07] OASIS. Web Service Business Process Execution Language Version 2.0, 11 April 2007.
Online: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf .

[OAS07b] OASIS. Web Services Coordination (WS-Coordination) Version 1.1, 16 April 2007.
Online: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec.pdf .

[OESB12] OpenESB. OpenESB (vormals SUN OpenESB) OpenSource ESB, Version 2.2. ESB mit
BPEL-Engine (jedoch nicht vollständig WS-BPEL 2.0 konform, da keine Links unter-
stützt werden) sowie Netbeans 6.7.1 IDE mit BPEL-Designer. Online:
http://logicoy.com/ESB.php .

[OMG10] OMG. Unified Modeling Language (OMG UML), Superstructure, V2.3. Object Man-
agement Group, May 2010. Online: http://www.omg.org/spec/UML/2.3/

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0. Januar 2011. Onli-
ne: http://www.omg.org/spec/BPMN/2.0/PDF .

[PET62] Petri, C.A. Kommunikation mit Automaten. Dissertation. Bonn: Institut für Instrumen-
telle Mathematik, Schriften des IIM Nr. 2, 1962. Online: http://www.informatik.uni-
hamburg.de/TGI/mitarbeiter/profs/petri/doc/Petri-diss-de-d.pdf .

[SKY06] S. Sun, A. Kumar, J. Yen. Merging workflows: A new perspective on connecting busi-
ness processes. Decision Support Systems, vol. 42, no. 2, pp. 844–858, 2006. doi:
10.1016/j.dss.2005.07.001.

[THA01] S. Thatte. XLANG: Web Services for Business Process Design. 6 Juni 2001. Online:
http://xml.coverpages.org/xlang.html

[W3C01] W3C. Web Services Description Language (WSDL) Version 1.1, 15. März 2001. Onli-
ne: http://www.w3.org/TR/wsdl .

[W3C05] W3C. Web Services Choreography Description Language Version 1.0, 9. November
2005. Online: http://www.w3.org/TR/ws-cdl-10/ .

[W3C07] W3C. SOAP Version 1.2. 27. April 2007. Online: http://www.w3.org/TR/soap12-part1/
.

[W3C12] W3C. Extensible Markup Language (XML). Online: http://www.w3.org/XML/ .

[W3C99a] W3C. XML Path Language (XPath) Version 1.0. 16. November 1999. Online:
http://www.w3.org/TR/xpath/ .

 Seite
110

http://mendling.com/publications/06-BPD.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://logicoy.com/ESB.php
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/Petri-diss-de-d.pdf
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/Petri-diss-de-d.pdf
http://xml.coverpages.org/xlang.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/XML/
http://www.w3.org/TR/xpath/

[W3C99b] W3C. XSL Transformations (XSLT) Version 1.0. 16 November 1999. Online:
http://www.w3.org/TR/xslt .

[WADH03] P. Wohed, W.M.P. van der Alst, M. Dumas, A. H. M. T. Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In Proceedings of the 2003
International Conference on Conceptual Modeling (ER). pp. 200-215, 2003. doi:
10.1007/b13244.

[WCL+05] S,Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web Services Plat-
form Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, 2005. pp 3–126 S. – ISBN 0131488740

[WDW07] M. Weidlich, G. Decker, M. Weske. Efficient Analysis of BPEL 2.0 Processes Using π-
Calculus. apscc, pp.266-274, The 2nd IEEE Asia-Pacific Service Computing Confer-
ence (APSCC 2007), 2007. doi: 10.1109/APSCC.2007.36.

[WKL11] S. Wagner, O. Kopp, F. Leymann. Towards Choreography-based Process Distribution
In The Cloud. Proceedings of the 2011 IEEE International Conference on Cloud Com-
puting and Intelligence Systems. pp. 490-494, 2011. doi:10.1109/CCIS.2011.6045116.

[WKL12] S. Wagner, O. Kopp, F. Leymann. Towards Verification of Process Merge Patterns
with Allen’s Interval Algebra. Proceedings of the 4th Central-European Workshop on
Services and their Composition (ZEUS 2012). pp. 1-8, 2012.

 Seite
111

http://www.w3.org/TR/xslt

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen benutzt zu
haben. Wörtliche und sinngemäße Übernahmen aus anderen Quellen habe ich nach bestem Wissen
und Gewissen als solche kenntlich gemacht.

Stuttgart, den 15. Februar 2013 _____________________

 Seite
112

	Abbildungsverzeichnis
	Auflistungsverzeichnis
	Tabellenverzeichnis
	1 Einleitung
	1.1 Ziele der vorliegenden Diplomarbeit
	1.2 Kapitelübersicht und Aufbau
	1.3 Motivation
	1.4 Verwandte Arbeiten
	1.5 Aufgabenstellung

	2 Grundlagen und Technologien
	2.1 Web Services
	2.2 Web Services Business Process Execution Language 2.0
	2.2.1 Grundlegende Konzepte von WS-BPEL 2.0
	2.2.1.1 Abstrakte und ausführbare Prozesse
	2.2.1.2 Basis Aktivitäten von WS-BPEL 2.0
	2.2.1.2.1 <invoke>
	2.2.1.2.2 <receive> und <reply>
	2.2.1.2.3 <assign>
	2.2.1.2.4 <validate>
	2.2.1.2.5 <throw>
	2.2.1.2.6 <wait>
	2.2.1.2.7 <empty>
	2.2.1.2.8 <extensionActivity>
	2.2.1.2.9 <exit>
	2.2.1.2.10 <rethrow>
	2.2.1.2.11 <compensate>
	2.2.1.2.12 <compensateScope>

	2.2.1.3 Strukturierte Aktivitäten von WS-BPEL 2.0
	2.2.1.3.1 <sequence>
	2.2.1.3.2 <if>
	2.2.1.3.3 <while>
	2.2.1.3.4 <repeatUntil>
	2.2.1.3.5 <pick>
	2.2.1.3.6 <flow>
	2.2.1.3.7 <forEach>

	2.2.1.4 Scopes und Handler
	2.2.1.4.1 Compensation Handler (CH)
	2.2.1.4.2 Fault Handler (FH)
	2.2.1.4.3 Termination Handler (TH)
	2.2.1.4.4 Event Handler (EH)
	2.2.1.4.5 Isolierte Scopes

	2.3 BPEL4Chor
	2.3.1 Beispielchoreographie

	2.4 Allen-Kalkül

	3 Konsolidierung von BPEL4Chor-Choreographien
	3.1 Zustandsmodell für WS-BPEL 2.0 Prozesse sowie Aktivitäten
	3.1.1 Prozess Instanz Zustandsmodell
	3.1.2 Aktivitäts-Zustandsmodell
	3.1.3 <scope>-Aktivitäts-Zustandsmodell
	3.1.4 <invoke>-Aktivitäts-Zustandsmodell
	3.1.5 Schleifen-Zustandsmodell
	3.1.6 Link-Zustandsmodell

	3.2 Formales Vorgehen bei der choreographiebasierten Konsolidierung von BPEL-Prozessen
	3.2.1 Anlegen des konsolidierten BPEL-Prozesses
	3.2.1.1 Übernehmen der Fault Handler in konsolidierten Prozess

	3.2.2 Generierung des Kontrollflusses
	3.2.2.1 Anpassung der join- und transitionCondition während der Konsolidierung
	3.2.2.1.1 <sources> und ihre <transitionCondition>s
	3.2.2.1.2 <targets> und ihre <joinCondition>

	3.2.2.2 Peer-Scope-Dependency Problematik

	3.2.3 Generierung des Datenflusses
	3.2.3.1 Voraussetzungen für den korrekten Datenfluss
	3.2.3.2 Auswirkungen der Konsolidierung auf die verwendeten CorrelationSets
	3.2.3.2.1 Mehrere initiale Startaktivitäten
	3.2.3.2.2 Anpassung der Korrelationsmengen in choreographie-extern kommunizieren-den Aktivitäten

	3.3 Taxonomie der Konsolidierungsmuster („Merge-Patterns“)
	3.3.1 Asynchrone Merge-Patterns
	3.3.1.1 AsyncPattern1.1
	3.3.1.1.1 <invoke> mit FHs und CHs
	3.3.1.1.2 <empty>-Optimierer

	3.3.1.2 AsyncPattern1.2
	3.3.1.3 AsyncPattern1.3
	3.3.1.4 AsyncPattern1.4
	3.3.1.5 AsyncPattern1.5
	3.3.1.6 AsyncPattern1.6
	3.3.1.7 AsyncPattern1.7 („Khalaf Split“)
	3.3.1.8 AsyncPattern1.8 (Asynchrones n-zu-1 Senden auf <receive>)
	3.3.1.9 AsyncPattern2.1
	3.3.1.10 AsyncPattern2.2 (Asynchrones n-zu-1 Senden auf <pick>)
	3.3.1.11 AsyncPattern2.3 (Asynchrones n-zu-1 Senden auf einen <onMessage>-Zweig)
	3.3.1.11.1 Asynchrones Senden auf initiale <pick>-Aktivität (•p=∅)
	3.3.1.11.2 Syntaktische Transformation eines <onMessage>-Zweigs in eine <receive>-Aktivität

	3.3.1.12 AsyncPattern3.0 („Non-Merge-Pattern-Async“)
	3.3.1.12.1 <onEvent>-Zweig (EH) als empfangende Aktivität
	3.3.1.12.2 Sendende <invoke>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)
	3.3.1.12.3 Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)
	3.3.1.12.4 Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen

	3.3.2 Synchrone Merge-Patterns
	3.3.2.1 SyncPattern1.1
	3.3.2.2 SyncPattern1.2
	3.3.2.3 SyncPattern1.3
	3.3.2.4 SyncPattern1.4 (Multiple <reply>-Aktivitäten)
	3.3.2.5 SyncPattern1.5 (Sendende <invoke>-Aktivität innerhalb von Handlern)
	3.3.2.6 SyncPattern2.1 (<onMessage>-Zweig als receiveActivity)
	3.3.2.7 SyncPattern2.2
	3.3.2.8 SyncPattern2.3
	3.3.2.9 SyncPattern2.4
	3.3.2.10 SyncPattern3.0 („Non-Merge-Pattern-Sync“)
	3.3.2.10.1 <onEvent>-Zweig (EH) als empfangende Aktivität
	3.3.2.10.2 Sendende <invoke>-Aktivität innerhalb von Handlern (EH, FH, TH, CH)
	3.3.2.10.3 Empfangende <receive>/<pick>-Aktivität innerhalb von Handlern (EH, CH, TH, FH)
	3.3.2.10.4 Sendende und/oder empfangende Aktivitäten innerhalb von Schleifen

	3.4 Vervollständigung der technischen Artefakte im neuen konsolidierten Prozess und Übernahme der WSDLs
	3.4.1 Einfügen der WSDL-Dateien per import-Statements
	3.4.2 Anpassung der Korrelationsmengen bei mehreren initialen Startaktivitäten
	3.4.3 Erzeugen und Hinzufügen der PartnerLinks für die nicht konsolidierten Message Links aus NMML
	3.4.4 Technische Vervollständigung der initialen Startaktivitäten sowie der inter-prozess kommunizierenden

	4 Implementierung
	4.1 Eingesetzte Technologien
	4.1.1 StAX
	4.1.2 Eclipse IDE
	4.1.3 Eclipse Modeling Framework (EMF)

	4.2 Vorgehen und Architektur
	4.3 Erweiterbarkeit der Patterns

	5 Zusammenfassung und Ausblick
	5.1 Ausblick

	Literaturverzeichnis
	Erklärung

