Institut fiir Architektur von Anwendungssystemen

Universitat Stuttgart
Universitatsstraf3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3429

Modellierung von Scientific
Workflows mit Choreographien

Oliver Sonnauer

Studiengang: Softwaretechnik

Prifer: Jun.-Prof. Dr.-Ing Dimka Karastoyanova

Betreuer: Dipl.-Inf. Dipl.-Wirt. Ing. (FH) Karolina
Vukojevic

begonnen am: 06. November 2012

beendet am: 08.Mai 2013

CR-Klassifikation: D.1.7,D.2.11,H.4.1,1.3.4

Kurzfassung

Diese Arbeit beschiftigt sich mit der Konzeption eines grafischen Editors zur Modellierung
von Choreographien. Das BPEL4Chor Modell dient dabei als Grundlage. Mit dem Editor
soll es zudem moglich sein, ausfithrbare BPEL Prozesse aus der modellierten Choreographie
zu generieren. Anhand der Konzeption wird die Implementierung eines Prototyps fiir die
Eclipse Plattform vorgestellt. Dieser Prototyp wird mit dem Graphical Modeling Framework
realisiert.

Inhaltsverzeichnis

1 Einleitung 11
2 Verwandte Arbeiten 13
3 Grundlagen 14
3.1 Choreographien 14
3.2 BPEL e 15
3.3 BPEL4Chor. e 16
3.3.1 Participant Behavior Description 17

332 Topology 18

333 Grounding L 23

3.3.4 Von BPEL4Chor zu ausfithrbaren BPEL Prozessen 26

3.4 Model View Controller 27

4 Konzeption 29
4.1 Erster Ansatz 31
4.2 Zweiter Ansatz L 32
4.3 Dritter Ansatz L 33
4.4 Vierter Ansatz L 33
4.5 Choreographie Editor 34
4.5.1 Entwicklung des Chor Models 35

4.5.2 Chor Model Transformation 48

4.5.3 Generierung von BPEL Prozessen 65

4.5.4 GrafischesKonzept. 66

5 Implementierung 83
5.1 Verwendete Technologien 83
51.1 Eclipse 83

5.1.2 Eclipse Modeling Framework 86

5.1.3 Graphical Editing Framework 92

5.1.4 Graphical Modeling Framework 95

5.1.5 Xpand Template Language 104

5.1.6 BPEL4Chor2BPEL 105

52 ChorDesigner 108

521 EMFModelle 108
5.2.2 Graphical Definition Model 116
5.2.3 Tooling Definition Model 120
5.2.4 Mapping Definition Model 121
5.2.5 GMF Generator Model 134
5.2.6 Diagram Extensions 137
6 Zusammenfassung und Ausblick 146
Literaturverzeichnis 148

Abbildungsverzeichnis

3.1

3.2
3.3
34

3-5

37
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11

4.12
4.13
4.14
4.15
4.16

4.17
4.18

4.19

Auktionsszenario. Choreographie Beispiel modelliert als interaction model in

BPMN. Quelle: [DBo8] e 15
Die Artefakte von BPEL4Chor. Quelle: [DKLWog] 17
Topology XSD ([DK12b]) dargestellt als UML Modell 19
Auktionsszenario. Choreographie Beispiel modelliert als interconnection model

in BPMN. Quelle: [DKLWog] 21
Grounding XSD ([DK12a]) dargestellt als UML Modell 24
Das Grounding mit Verkniipfungen zu Topology und Participant Behavior

Description 25
Von BPEL4Chor zu ausfiihrbaren BPEL Prozessen [DKLWog] 27
Model View Controller Architekturmuster und das Zusammenspiel seiner Kom-

ponenten. Quelle: [LLoy] L 28
SimTech BPEL Designer mit leerer Prozessvorlage 32
BPMN Choreographie , Buchung eines Flugtickets”. Quelle: [DKLWo7y] 36
Choreographie ,,Buchung eines Flugtickets”. Konzeptionelles Modell 37
Vom Topology Model zum Chor Model 39
Chor Model mit Participants 40
Chor Model mit Participants und ForEach Losung 41
Chor Model mit CMessagelLink, CParticipantRef und CLinkable 43
Chor Model mit FlowActivityLink und Beziehungen 45
Chor Model mit CGrounding vt 47
Dokumentenfluss zwischen den Transformer und Builder Komponenten 49
Dokumentenfluss zwischen Komponenten fiir die Umwandlung zu ausfiihr-

baren Prozessen e 66
Konzept der Editor Oberfldche 70
CParticipant mitleerem Process, 71
Participants mit Aktivitdten, Message Links und einer Participant Referenz . . 72
Flow mit Aktivititen und FlowActivityLink Elementen 73
Elemente und Dialoge der base Kategorie von CParticipant und

CParticipantSet e 74
Elemente und Dialoge der participants Kategorie von CParticipantSet . .. 75
Elemente und Dialoge der base und participants Kategorien von CMessageLink 76
Elemente der base Kategorie von CParticipantRef 77

4.20

4.21
4.22

423

424

5.1
5.2
5.3
54

5-5
5.6

57

59
5.10

5.11
5.12
5-13
5-14
5-15
5.16

5-17
5.18

5-19
5.20
5.21
5.22
5-23
5-24
5-25
5.26
5.27

5.28

Elemente und Dialoge der correlations, base und messageExchanges Kategorien

VON PXOCESS . . . v v v i ittt e e e e ettt e e e e e e e e e
Elemente der base und groundings Kategorien von Choreography
Dialog fiir die Konfiguration von CMessageLinkGrounding Elementen . . .
Dialog fiir die Konfiguration von CorrelationSetGrounding und

CParticipantRefGrounding Elementen.
Elemente der base und iteration Kategorien von ForEach

Eclipse Platform Architektur. Quelle: [eclio]
Eclipse Workbench. (Grafik basiert auf der Quelle: [eclio]
Ecore Meta-Modell. (Grafik basiert auf der Quelle: [Ste11]
Laden von Resource Instanzen nach Bedarf. (Grafik basiert auf der Quelle:

[Ste11] o e e
JFace TreeViewer zeigt eine Chor Model Instanzan
Funktionsweise des ChopboxAnchor. Basiert auf Quelle: [GGog]
Grafische Darstellung der Modell Elemente in GEF durch EditParts
GMF Standard Werkzeuge in der Eclipse Toolbar
Property View mit den GMF Standard Tabs "Rulers & Grid" und Appereance"

Vorgehensweise bei der Erstellung eines GMF Editors mittels Tooling Frame-

work. Grafik basiert auf der Quelle: [ecld]
Graphical Definition Model fiir Node und Compartment
Graphical Definition Model fiur Diagram Label
Graphical Definition Model fur Connection
Tooling Definition Model mit zwei Creation Tools
Mapping Model zur Definition der Zeichenfldche des Editors
Mapping Model zur Definition eines, auf der Zeichenfldche des Editors, plat-

zierbaren Elements o o o
Xpand Template mit ;KAROUND» Erweiterung
Von einer Beschreibung eines Geschiftsprozess zu ausfiihrbaren BPEL Prozes-

sen. Quelle: [Reio7]
Ein- und Ausgaben der BPEL4ChorToBPEL Komponente. Quelle: [Reioy]
Topology Model als Ecore Modell
Chor Model als Ecore Modell
BPEL Testprozess e
Grafische Reprédsentation von CParticipant
Grafische Reprédsentation von CMessageLink
Tooling Definition Model und die Umsetzung im GEF Editor
Definition der Zeichenflache (Canvas) im Mapping Definition Model
Definition der Top Node Reference von CParticipant im Mapping Definition

Model e
Definition des Node Mapping von CParticipant im Mapping Definition

Model e

5-29
5-30
5-31

532
5-33
5-34
535

5.36
5.37

5.38
5.39
5.40

5.41
5.42
543
544

545

Definition des Label Mapping von CParticipant im Mapping Definition
Model e
Definition des Compartment Mapping von CParticipant im Mapping Defi-
nition Model
Erstellung zusétzlicher Instanzen beim Anlegen einer neuen CParticipant
Instanz
Definition von Process als Child Reference im Mapping Definition Model
Definition des Node Mapping von Process im Mapping Definition Model
Definition des Node Mapping von Sequence im Mapping Definition Model
Definition der rekursiven Child Reference von Sequence im Mapping Definiti-
onModel
Definition des Label Mapping von Sequence im Mapping Definition Model
Definition des Link Mapping von CMessageLink im Mapping Definition
Model e
Generierung von separaten EditParts fiir Compartments und Nodes
GMF Editor mit XYLayout und ListLayout
Abstdnde der Elemente in einem Compartment mittels Inset und Spacing
angepasst Lo
Verschiedene Routing Stiele fiir CMessageLink und FlowActivityLink . .
Konzept der propertyTabs und propertySections Extension points
Tabs und Sections der PropertyView von Invoke
Das createInstance Attribut im Ecore Modell wird tiber die propertySection
vom Benutzer verandert L L L
Einrichten eines neuen Mentis fiir die Menu Bar der Workbench

132

. 133

135
136
138

Tabellenverzeichnis

4.1 Verdnderung von Elementen durch die ,basic executable completion”

Verzeichnis der Listings

3.1
3.2
3-3

34

5.1
5.2
53
54
55
5.6
5.7
5.8
59

Topology Ausschnitt des Auktionsszenarios. Quelle: [DKLWog]
Participant mit Scope. Beispiel aus [Kop12]
Participant Behavior Description Auszug des Participant ,s”. Beispiel aus
[Kop12] oo
Umgeschriebene < ForEach » Aktivitdt, welche tiber ParticipantsSet ite-
riert. Quelle basiert auf: [Reio7] L oo

XSD Schema Element Definitionen vom Topology Model. Quelle: [DK12b]
XSD Schema Typ Definition von Topology. Quelle: [DK12b]
XSD Schema Typ Definition von Participant. Quelle: [DK12b]
XSD Schema Typ Definition von ExtensibleElements. Quelle: [OASoya]
XSD Schema Typ Definition von Process. Quelle: [OASoyza]
XSD Schema Typ Definition der Activity Gruppe. Quelle: [OASoya]
XSD Schema Typ Definition von Expression. Quelle: [OASoza]
PBD Model ECore Standard XMI Serialisierung
PBD Model ECore XML Serialisierung durch Transformation nach DOM

5.10 Generierter Java Code aus dem Figure Descriptor von CParticipant
5.11 Generierter Java Code aus dem Figure Descriptor von CMessageLink

Verzeichnis der Algorithmen

10

4.1
4.2
4.3

44
4.5

4.7
4.8
4.9
4.10
4.11
4.12

413
4.14
4.15
4.16

4.17
4.18

419

4.20

Generierung von Namen, allgemein fiir Chor Model Elemente
Erzeugt den QName fiir eine Participant Behavior Description
Findet das zugehorige Process Element, ausgehend von einem beliebigen
Element aus dem PBD Model,
Erzeugt einen QName fiir die gegebene Aktivitat
Erzeugt ein ParticipantType Element im Topology Model
Erzeugt den Namen eines ParticipantType Element im Topology Model
Erzeugt ein Participant Element im Topology Model
Erzeugt ein ParticipantSet Element im Topology Model
Erzeugt ein MessageLink Element im Topology Model
Erzeugt eine Topology Model Instanz aus dem gegebenen Chor Model
Erzeugt den QName fiir Topology aus dem Topology Model
Erzeugt ein MessageLink Element im Grounding Model
Erzeugt ein ParticipantRef Element im Grounding Model fiir gesetzte
participantRefs eines CMessageLink v v i v ...
Erzeugt ein ParticipantRef Element im Grounding Model fiir das gesetzte
bindSenderTo eines CMessageLink v v v v i i i i i i
Erzeugt Property Elemente im Grounding Model fiir alle property Ein-
trdge des CorrelationSet
Erzeugt Grounding Model Instanzen aus den spezifizierten CGrounding
Elementen im Chor Model,
getNormalizedName speziell fiir das FlowActivityLink Element
Erzeugt Link, Source und Target Elemente im PBD Model
Transformiert ein Topology Model Element mit all seinen Kind Elementen zu
einem DOM Dokument
Transformiert die Attribute des gegebenen Topology Model Elements, zu
Attributen des gegebenen DOM Elements

1 Einleitung

Das Exzellenzcluster Simulation Technology (SimTech)* befasst sich mit Multi-Skalen und
Multi-Physik Simulationsmethoden. Multi-Skalar bedeutet dabei, auf mehreren Skalierungs-
ebenen wie z.B. von der Zelle zum Gewebe iiber Knochen zum Skelett. Multi-Physik
bedeutet, dass mehrere Teilbereiche der Physik wie Thermodynamik oder Quantenmechanik
verwendet werden. Diese einzelnen Simulationen werden mit Hilfe der Workflowtechno-
logie, als einzelne Prozesse modelliert. Die Workflowtechnologie hat ihre Ursprung in der
Industrie, wo sie zur Automatisierung von Geschéftsprozessen verwendet wird. Workflows
fiir Geschiftsprozesse werden {iiblicherweise vom Management spezifiziert. Die IT-Abteilung
kiimmert sich dann um die technischen Details der Ausfiihrung. Haben sich diese Prozesse
etabliert, werden sie meistens nicht mehr abgeéndert. Im Rahmen der SimTech Projekte mo-
dellieren Wissenschaftler ihre Simulationen mit Hilfe von Workflows. Dabei ist es meistens
die selbe Person oder Personengruppe, welche die Workflows spezifizieren und ausfiihren.
Hinzu kommt noch die experimentelle Natur von Simulationen. Sie miissen bei der Ausfiih-
rung tiberwacht werden. Das Resultat wird evaluiert, darauf der Workflow angepasst und
erneut ausgefiihrt. Diese Kreislauf wiederholt sich sehr oft, was eine stindige Anpassung des
Prozesses zur Folge hat. Daher bezeichnet man die Workflows im wissenschaftlichen Kontext
als Scientific Workflows [TDGo6]. Diese Scientific Workflows, welche die einzelnen Simulationen
ausfiihren, sollen zu einer ganzheitlichen Simulation zusammengefiihrt werden. Betrachtet
man die einzelnen Simulationen als , Geschéftspartner”, so kann deren Zusammenwirken
als Choreographie beschrieben werden. Daher soll die SimTech Workflow Umgebung so
erweitert werden, dass Wissenschaftler Choreographien modellieren und diese ausfiihren
konnen. Als Modell fiir diese Choreographien soll die Beschreibungssprache BPEL4Chor
[KLo8] dienen.

Ziele dieser Arbeit

Es soll ein grafisches Werkzeug entwickelt werden, mit welchem sich Choreographien
modellieren lassen. Fiir diese grafischen Modelle soll einerseits die Moglichkeit bestehen,
BPEL4Chor Artefakte zu generieren und andererseits, ausfithrbare BPEL Prozesse mit
zugehorigen WSDL Dateien zu erzeugen.

Thttp://www.simtech.uni-stuttgart.de/

11

http://www.simtech.uni-stuttgart.de/

1 Einleitung

Gliederung

Kapitel 2 — Verwandte Arbeiten beschreibt andere Arbeiten, die sich ebenfalls mit dem Mo-
dellieren von Choreographien befassen.

Kapitel 3 — Grundlagen beschriebt die grundlegenden Dinge, die fiir das Verstandnis dieser
Arbeit wichtig sind und worauf diese aufbaut.

Kapitel 4 — Konzeption beschreibt diverse Ansitze, wie der grafische Editor realisiert werden
kann und geht dann detailliert auf den gewéhlten Ansatz ein.

Kapitel 5 — Implementierung befasst sich einerseits mit den verwendeten Technologien, die
zur Umsetzung des Editors benutzt werden und geht andererseits auf einige Details
der Implementierung ein.

Kapitel 6 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt mogliche weiterfiihrende Arbeiten vor.

12

2 Verwandte Arbeiten

In [DKL"08] wird beschrieben, wie Choreographien mit BPMN modelliert, und diese dann
zu BPEL4Chor Artefakten exportiert werden konnen. Die Modellierung erfolgt grafisch mit
dem Oryx Framework®. Dieses Framework ist in JavaScript realisiert und benutzt skalierbare
Vektorgrafiken (SVG) zur Darstellung der grafischen Elemente. Somit kann Oryx in einem
Web Browser ausgefiihrt werden. Es wurde durch ein Export Plugin erweitert, welches die
Transformation von BPMN zu BPEL4Chor durchfiihrt. Ein weiterer grafischer Editor, der das
modellieren von Choreographien unterstiitzt, ist der in Java implementierte Yaogiang BPMN
Editor*. In [FUMKo6] ist ein Eclipse Plugin beschrieben, welches einen modellbasierten An-
satz zur Verifizierung von Web Service Kompositionen und Choreographien realisiert. Dabei
werden Choreographien auf einfache Weise als UML Sequenzdiagramme dargestellt.

Thttp://bpt.hpi.uni-potsdam.de/Oryx/BPMN
2http://sourceforge.net/projects/bpmn/

13

http://bpt.hpi.uni-potsdam.de/Oryx/BPMN
http://sourceforge.net/projects/bpmn/

3 Grundlagen

Die Kenntnis der hier vorgestellten Grundlagen ist wichtig fiir das weitere Verstandnis dieser
Arbeit. Wir beschreiben Choreographien und BPEL nur kurz und gehen ausfiihrlich auf
BPEL4Chor ein. Wir gehen auflerdem auf das Model View Controller Architekturmuster ein,
da die meisten der verwendeten Technologien, sowie der Editor selbst, danach konstruiert
sind.

3.1 Choreographien

Die folgende Beschreibung basiert auf dem Artikel [KLo8]. Der Architekturstiel Service-
Oriented Architcture (SOA) basiert auf dem Service Paradigma. Ein Service ist eine Funktiona-
litat, welche tiber eine Netzwerkadresse zur Verfligung gestellt wird und immer erreichbar
ist [Ley10]. Wenn ein Geschéftsprozess durch Zusammenarbeit von vielen Services realisiert
wird, nennt man dies , Orchestrierung”. Eine Orchestrierung beschreibt die Interaktionen
mit Services aus dem Blickpunkt dieses einen Prozesses. Interagieren mehrere Prozesse
miteinander, so nennt man dies ,Choreographie”. Choreographien erfassen die Zusammen-
arbeit mehrerer Geschéftspartner aus einer globalen Sicht. Das Design von Choreographien
kann fiir die beteiligten Geschéftspartner sehr wichtig sein da sie, durch Abstimmung ihrer
Geschiftsprozesse, eventuelle Synergieeffekte finden und nutzen konnen. Die Herausfor-
derungen beim Design von Choreographien sind zum einen die Modellierung in einer
geeigneten Sprache wie z. B. BPMN oder BPEL4Chor. Zum anderen muss das Choreogra-
phie Modell auf Korrektheit tiberpriift werden kénnen. Es diirfen z. B. keinen Deadlocks
vorkommen und es muss immer ein Endzustand erreichbar sein. Im letzten Schritt muss
es eine Moglichkeit geben, die durch die Choreographie gegebene Semantik auf einzelne
Prozesse zu iibertragen, so dass diese ausgefiihrt werden konnen.

Um Choreographien zu modellieren gibt es zwei wesentliche Ansétze. Der interconnection
models Ansatz beschreibt die Teilnehmer einer Choreographie als abstrakte Prozesse. Ihr
Verhalten ist durch Aktivitiaten spezifiziert, welche fiir die Kommunikation relevant sind.
Andere prozessinterne Vorgdnge werden ausgeblendet. Die Kommunikationsaktivitdten
der einzelnen Teilnehmer sind miteinander verbunden und tauschen Nachrichten aus. Ein
Beispiel dazu sehen wir in Abbildung 3.4. Der interaction models Ansatz beschreibt nur
die Interaktionen der einzelnen Teilnehmer einer Choreographie. Hier sind die Teilnehmer
nicht als abstrakte Prozesse mit Aktivititen spezifiziert, da nur der Nachrichtenfluss im

14

3.2 BPEL

Seller

A iy

Auction crea- Auction creation Auction completion
! tion request | confirmation ! notification Delivery

&) — O S e
(—A/ Auctioning Service & /—{@7{@

T ;non @T [@; (@ymm
n details ack
\\\T]Jcatlon

Bidder —‘
[

Abbildung 3.1: Auktionsszenario. Choreographie Beispiel modelliert als interaction model in
BPMN. Quelle: [DBo8]

Vordergrund steht. Ein Beispiel dazu sehen wir in Abbildung 3.1. In beiden Abbildungen
ist ein Auktionsszenario modelliert, welches wir in Abschnitt 3.3.2 auf Seite 18 beschreiben
werden.

3.2 BPEL

Die Web Service Business Process Execution Language (WS-BPEL kurz: BPEL), spezifiziert in
[OASo7c], ist eine Sprache zur Beschreibung von Geschéftsprozessen. Diese BPEL Prozesse
benutzen die Schnittstellen von Web Services, um ihre Funktion zu realisieren. Wie in [Ley11]
beschrieben, aggregieren BPEL Prozesse Web Services. Sie sind selbst ebenfalls ein Web Ser-
vice, was BPEL zu einem rekursiven Aggregationsmodell macht. BPEL ist eine Kombination
aus der Graph basierten Sprache IBM WSFL, sowie der Kalkiil basierten Sprache MS XLANG.
Die Syntax ist in XML definiert. Die Hauptbestandteile eines BPEL Dokuments sind Partner
Links, Variables, Correlation Sets, Handlers und Activities. Ein Partner Link ist ein Kommunikati-
onskanal zwischen Prozess und einem Partner. Er verbindet maximal zwei WSDL Port Types.
Eine Variable ist ein persistenter Container fiir Daten. Ein Correlation Set ist eine Sammlung
von properties. Dies sind Werte um Prozessinstanzen eindeutig identifizieren zu konnen.
Sie sind in Nachrichten eingebettet und konnen somit unter den Kommunikationspartnern
ausgetauscht werden. Ein Handler regelt Ausnahmezustidnde, oder das Auftreten bestimmter

15

3 Grundlagen

Ereignisse in laufenden Prozessen. Mit Activities lassen sich Kontrollfluss und Web Service
Aufrufe definieren. Activities unterscheiden sich in Basisaktivititen und strukturierte Akti-
vitdten, welche andere Aktivititen beinhalten. Zu den Basisaktivitidten gehort < Invoke »,
mit welcher sich Web Service Aufrufe, sowohl synchron als auch asynchron, durchfiihren
lassen. Zu den strukturierten Aktivitidten gehort < Sequence », welche die in ihr platzierten
Aktivitdten in angegebener Reihenfolge ausfiihrt. Die strukturierte < Flow » Aktivitdt erlaubt
hingegen eine parallele, graphbasierte Ausfiihrung seiner Aktivitaten.

BPEL Prozesse konnen ausfiihrbar oder abstrakt sein. Abstrakte Prozesse sind teilweise
spezifizierte Prozesse, welche nicht zur Ausfiihrung bestimmt sind. Sie verstecken bewusst
Details und zeigen nur die wesentlichen Aspekte eines Geschéftsprozesses. Welche Aspekte
das sind, wird vom Prozessersteller je nach Anwendungsfall entschieden. Wie wir im folgen-
den Abschnitt sehen werden, verwendet BPEL4Chor abstrakte Prozesse zur Beschreibung
des Verhaltens der Teilnehmer einer Choreographie.

3.3 BPEL4Chor

Die folgenden Beschreibungen zu BPEL4Chor und seinen Artefakten basieren auf den
Artikeln [DKLWo7] und [DKLWog]. Andere Quellen werden gekennzeichnet. Wie wir in
Abschnitt 3.1 auf Seite 14 gesehen haben, gibt es die zwei Herangehensweisen interaction
models und interconnection models um Choreographien zu modellieren. BPEL4Chor basiert auf
letzterem. Der WS-BPEL Standard [OASoyc] spezifiziert abstrakte BPEL Prozesse. Die Syntax
dieser Prozesse ist in der "common base"[OASo7a] festgelegt. Diese "common base" gibt
zwar vor, welche BPEL Konstrukte erlaubt sind, doch fehlt dem modellierten Prozess eine
Semantik. Aus der Semantik geht hervor, fiir welchen Anwendungsfall der abstrakte Prozess
definiert wurde. Sie hilft uns die Intention dieses Prozesses zu verstehen, damit daraus eine
ausfiihrbare Variante erstellt werden kann. Um abstrakten Prozessen eine Semantik zu geben,
miissen Profile angegeben werden. Ein Profil definiert einerseits die zugelassenen BPEL
Konstrukte und andererseits eine "executable completion" fiir die abstrakten Prozesse, welche
zu diesem Profil gehoren. Eine "executable completion" ist eine Vorschrift, wie genau der
abstrakte Prozess zu einem ausfiihrbaren erweitert werden soll. Das Abstract Process Profile
for Observable Behavior Profil, definiert im WS-BPEL Standard, sowie dazu ein interconnection
layer in Form einer Topologie Beschreibung, ergeben zusammen das interconnection model
von BPEL4Chor. Durch die Verwendung von abstrakten Prozessen mit diesem Profil, ist
eine Entkopplung von WSDL Port Types, sowie eine Fokussierung auf die Kernbestandteile
einer Choreographie ndmlich Kommunikationsaktivitdten, Abhdngigkeiten des Verhaltens
der Teilnehmer und deren Vernetzung, moglich.

In Abbildung 3.2 sind die drei verschiedenen Artefakte von BPEL4Chor zu sehen. Die Partici-
pant Behavior Description Dokumente definieren den Kontrollfluss der einzelnen Aktivitdten,
welche zu einem bestimmten Teilnehmer gehoren und bestimmen dadurch sein Verhalten. Sie

16

3.3 BPEL4Chor

Participant Participant Declaration Message Links
Topology 5

i List of Participants : Connecting PBDs
Structural Aspects :

X
/7
// \\
AN

[Y N
Participant Behavior Participant Grounding

Descriptions (PBDs)

Technical Configuration
Observable Behavior

Abbildung 3.2: Die Artefakte von BPEL4Chor. Quelle: [DKLWo9]

sind als abstrakte BPEL Prozesse spezifiziert. Das Participant Topology Dokument beschreibt,
welche Teilnehmer es in einer Choreographie gibt und wie diese miteinander kommunizieren.
Die Kommunikation erfolgt tiber einen Nachrichtenaustausch zwischen Kommunikationsak-
tivitaten der einzelnen Teilnehmer. BPEL4Chor unterscheidet dabei die Kommunikations-
aktivitdten <« Invoke >, <Receive», <Reply > und den < OnMessage » Zweig aus < Pick ».
Die Participant Grounding Dokumente beschreiben die technischen bzw. WSDL spezifischen
Aspekte einer BPEL4Chor Choreographie. Somit kann eine Choreographie an verschiedene
WSDL Definitionen gebunden werden.

3.3.1 Participant Behavior Description

In diesem Dokument wird das Verhalten eines Teilnehmers spezifiziert. Der Kontrollfluss
zwischen den Kommunikationsaktivitdten bestimmt auch die Reihenfolge der Nachrich-
ten, welche sich die Teilnehmer untereinander senden. Als syntaktische Basis dient der
WS-BPEL Standard fiir abstrakte Prozesse. Die Eigenschaften der abstrakten Prozesse und
Einschrankungen durch Profile werden in [OASo7c]| genau beschrieben und hier nur zu-
sammenfassend erwdhnt. Abstrakte Prozesse bieten Opaque Erweiterungen. Diese Opaque
Konstrukte haben keine Semantik sondern zeigen explizit an, dass etwas bewusst wegge-
lassen wurde. So z.B. die < OpaqueActivity >, welche als Platzhalter fiir eine beliebige
BPEL Aktivitdat angegeben werden kann oder der reservierte String-Wert "##fopaque”, um
z.B. die Angabe von konkreten Variablen zu umgehen. Diese Basis ("common base"), spe-
zifiziert in [OASoya], wird durch das Abstract Process Profile for Observable Behavior Profil
eingeschrankt. Dieses Profil verfolgt das Ziel, Verhalten der Prozesse im Kontext von Web
Service Aufrufen zu definieren. Dabei sollen die Prozess internen Vorgidnge nach aufien

17

3 Grundlagen

hin versteckt und hauptsichlich die Kommunikation mit den Partnern beschrieben wer-
den. Diese Einschrankungen sind im WS-BPEL Standrad [OASoyc] definiert und schreiben
vor, dass < JoinCondition >, welches fiir Aktivitiaten in einem < Flow > verwendet wird,
das Attribut opague nicht benutzen darf. Die Verwendung der < Exit > Aktivitat ist eben-
falls nicht erlaubt. Die Attribute variable, inputVariable und outputVariable von
<Invoke >, <Receive>, <Reply >, < OnMessage » und <« OnEvent >, diirfen mit dem Wert
"##opaque" deklariert werden. Das selbe gilt auch fiir die Attribute part, toVariable
und fromVariable von <FromPart > sowie < ToPart >. Alle anderen Attribute diirfen
nicht mit dem Wert "##fopaque" deklariert werden. Des weiteren ist das < OpaqueFrom >
Konstrukt erlaubt, welches in der <« Copy » Anweisung der < Assign > Aktivitdt eingesetzt
werden kann. Von diesem Profil ausgehend, wurde das neue Profil Abstract Process Profile for
Participant Behavior Descriptions in [DKLWog] eingefiihrt, welches all dessen Eigenschaften
erbt, sowie zusitzliche Einschrankungen fiir die Kommunikationsaktivititen spezifiziert.
So diirfen diese Aktivitidten die Attribute partnerLink, port Type und operation nicht
benutzen, da sonst die Participant Behavior Description an eine WSDL gebunden wird. Des
weiteren wird das neue Attribut wsu:id fiir diese Aktivitdten eingefiihrt, um sie in den
MessageLink Elementen eindeutig referenzieren zu kénnen. Bei den <Receive > und
<Reply > Aktivititen muss zwingend das messageExchange Attribut gesetzt werden, um
die zugehorigen Paare kennzeichnen zu konnen. Die Paar Identifikation wére auch tiber
portType und operation moglich, da aber diese Attribute nicht erlaubt sind, fallt diese
Moglichkeit weg. CorrelationSets konnen ebenfalls in Participant Behavior Description
benutzt werden, miissen jedoch im properties Attribut auf nicht qualifizierte Namen
(NCName) eingeschrankt werden, da sonst eine Bindung zu PropertyAlias Elementen
aus der WSDL besteht.

3.3.2 Topology

In diesem Dokument werden die strukturellen Aspekte einer Choreographie beschrieben.
Dazu gehort die Angabe, welche Teilnehmer die Choreographie hat und wie viele es davon
gibt. Das Verhalten der einzelnen Teilnehmer wird festgelegt. Der Nachrichtenaustausch
wird durch Angaben definiert, wer mit wem kommuniziert und welche Aktivititen dafiir
verwendet werden. In Abbildung 3.3 ist die Topology anhand eines UML Modelles beschrieben,
welches auf Basis des Topology XSD Schemas [DK12b] entworfen wurde. Die Teilnehmer der
Choreographie werden durch Participant und ParticipantSet Elemente angegeben.
Das ParticipantSet wurde eingefiihrt, damit eine unbestimmte Anzahl von Teilnehmern
mit gleichem Verhalten modelliert werden kann. Ein Beispiel daftir wére bei einer Auktion,
die unbestimmte Menge an Bietern, welche ihre Gebote auf einen Gegenstand abgeben. Die
Konkrete Menge der Bieter ist erst zur Laufzeit bekannt und wird sich generell auch jedes mal
beim Ausfiithren dndern. Wenn die Anzahl der Teilnehmer zum Zeitpunkt des Modellierens
bekannt ist, werden diese Teilnehmer jeweils durch ein Participant Element angegeben.
Ein Beispiel dafiir wére ein Kdufer und ein Verkdufer. In Choreographien kann es haufig

18

3.3 BPEL4Chor

* messageLinks 1
top::MessageLink 1 top::Topology participantSets
name name
sender targetNamespace
senders participants 1
sendActivity
bindSenderTo ..
. 1 articipantTypes
receiver P P yp
receiveActivity
messageName
participantRefs
copyParticipantRefsTo
*
top::ParticipantType 1
name
participantBehaviorDescription
1
* *

*
top::Participant top::ParticipantSet
name * participantSets

type name
selects "
torEach forEach
t scope 0.1
scope * ype .
containment
0.1 participants
*

Abbildung 3.3: Topology XSD ([DK12b]) dargestellt als UML Modell

vorkommen, dass es eine bestimmte Anzahl von Teilnehmern mit gleichem Verhalten gibt
wie z. B. zwei Spediteure. Damit diese Konstellation exakter beschrieben werden kann, wurde
ein ParticipantType Element eingefiihrt. In BPEL4Chor gilt, dass jeder Teilnehmer einen
Typ hat und dieser sein Verhalten bestimmt. So sind z. B. die Teilnehmer Firma X und Firma
Y beide vom Typ Spediteur und haben somit das selbe Verhalten. Nachrichten tauschen die
Teilnehmer untereinander durch MessageLink Elemente aus. Ein MessageLink beschreibt
einen Kommunikationsweg vom Sender zum Empfianger.

In Abbildung 3.4 sehen wir eine Choreographie eines Auktionsszenarios, modelliert in
BPMN®™. Der Verkaufer (Seller Service) mochte Aktienanteile zum hdchsten Gebot verkaufen.

Thttp:/ /www.bpmn.org/

19

3 Grundlagen

Er beauftragt die Durchfiihrung einer Auktion bei einem Makler (Broker Service). Wenn die
Auktion startet, akzeptiert der Makler mehrere Gebote von unterschiedlichen Bietern (Bidder
Service). Ist die Auktion nach Ablauf einer Frist beendet, benachrichtigt der Makler den
Verkéufer iiber die Beendigung und den hochst bietenden Kéaufer {iber dessen Erfolg. Alle
anderen Kaufer werden vom Makler benachrichtigt, dass sie die Auktion verloren haben.
Damit ist die Aufgabe des Maklers erfiillt. Der Verkdufer schickt dem Hochstbieter die Zah-
lungsdetails und {ibertrdgt ihm die Aktienanteile. In Listing 3.1 sehen wir einen Ausschnitt
der Topology Beschreibung dieses Auktionsszenarios. Die Verkdufer und der Makler sind
jeweils als Participant in Zeile 8 und 9 modelliert. Die Menge der Bieter ist von der
Anzahl unbestimmt und zweigeteilt. Zum einen die Menge aller Bieter in Zeile 10 und, zum
anderen, die Menge der Bieter, welche die Auktion nicht gewonnen haben in Zeile 14. Wir
sehen, dass beide ParticipantSet Elemente Kind Elemente haben. Dies sind Teilnehmer
welche dieser Menge angehoren was ebenfalls bedeutet, dass sie auch das selbe Verhalten
(den selben ParticipantType) haben wie das Set, in welchem sie deklariert sind. In unse-
rem Beispiel ist der Participant "bidder" in Zeile 11, ein konkreter Teilnehmer, welcher
ein Gebot an den ausgewdhlten Makler "brokerService" abgibt. Diese Auswahl wird mit
dem selects Attribut getroffen. Der Participant "successfulBidder" in Zeile 12, ist der
Auktionsgewinner. Im anderen ParticipantSet "unsuccessfulBidders" aus Zeile 14, sehen
wir die Verwendung des forEach Attributs. Es verweist auf die < ForEach » Aktivitdt der
Participant Behavior Description des Maklers. Um die Idee dahinter zu verstehen, betrachten
wir noch einmal Abbildung 3.4. Hier sehen wir, dass der Makler alle Verlierer der Auktion
benachrichtigen muss (siehe "Send unsuccessful bid" Aktivitdt). In BPEL4Chor wird dies
durch Referenzieren einer < ForEach » Aktivitdt von einem ParticipantSet ausgedriickt.
Diese < ForEach » Aktivitat iteriert tiber alle Teilnehmer des Sets. Wir sehen in Listing 3.1,
dass das ParticipantSet aus Zeile 14 ein Kind Element (Zeile 15) hat, welches die selbe
<«ForEach » Aktivitat referenziert. Dieser Teilnehmer "currentBidder" reprasentiert den aktu-
ellen Schleifenwert in jeder Iteration und wird zur Benachrichtigung eines Auktionsverlierers
benutzt. Das bedeutet, pro Schleifendurchlauf eine Benachrichtigung. Die Definition des
Teilnehmers "currentBidder" ist notwendig, da er einen Kommunikationspartner darstellt.

Die MessageLink Elemente geben an, welche Teilnehmer untereinander kommunizieren.
Dabei wird keine Reihenfolge in der Topologie vorgegeben. Das sender Attribut gibt den
Participant an, welcher der Absender dieser Nachricht ist. Das senders Attribut hinge-
gen bedeutet dass jedes Kind Element eines ParticipantSet, diese Nachricht absenden
kann. Das receiver Attribut gibt an, welcher Participant diese Nachricht empfangen
soll. Die beiden Attribute sendActivity und receiveActivity geben jeweils die Akti-
vitdt aus der Participant Behavior Description an, welche absendet respektive empfangt. Die
Attribute bindSenderTo und participantRefs realisieren die sogenannte "link passing
mobility" was bedeutet, dass iiber MessageLinks Teilnehmerreferenzen vom Sender zum
Empfanger ausgetauscht werden konnen. Die Bekanntheit der Teilnehmer ist immer lokal
fiir jeden Prozess. Daher muss es die Moglichkeit geben Referenzen auszutauschen, da sonst
kein Antworten auf Nachrichten moglich wére. So kann z.B. ein Participant ,a”, der die

20

3.3 BPEL4Chor

Seller Service Bidder Service Broker Service

n
—————————— =

Send creation
confirmation

Send auction -
creation
request

Send bid

Bid |

Auction
over

|

] |:Foreach
unsuccessful
Send Grant stock bidder
payment N v
details options Send Issue +
grant ack payment I l
Send Send
unsuccessful completion
) A i tificati
(Grant ack bid m notification
! {Payment
y ¢ y o Send
@ @ successful bid

Message AND- XOR- Start Messgge Timeout Looped . Multi
Pool receive End event L instances
send task gateway gateway event event activity -
event activity

gateway

Abbildung 3.4: Auktionsszenario. Choreographie Beispiel modelliert als interconnection model

in BPMN. Quelle: [DKLWog]

21

3 Grundlagen

Listing 3.1 Topology Ausschnitt des Auktionsszenarios. Quelle: [DKLWog]

01 <topology name="topology" targetNamespace="urn:auction"

xmlns:sns="urn:auction:seller" ...>

02 <participantTypes>

03 <participantType name="Seller"
participantBehaviorDescription="sns:seller" />

04 <participantType name="BrokerService" ... />

05 <participantType name="Bidder" ... />

06 </participantTypes>

07 <participants>

08 <participant name="seller" type="Seller" selects="brokerService" />

09 <participant name="brokerService" type="BrokerService" />

10 <participantSet name="bidders" type="Bidder">

11 <participant name="bidder" selects="brokerService" />

12 <participant name="successfulBidder" />

13 </participantSet>

14 <participantSet name="unsuccessfulBidders" type="Bidder"
forEach="as:notifyUnsuccesfulBidders">

15 <participant name="currentBidder"
forEach="as:notifyUnsuccesfulBidders" />

16 </participantSet>

17 </participants>

18

19 </topology>

Referenz von ,,b” kennt, diese an Participant ,c¢” senden, indem das participantRefs
Attribut auf , b” verweist. Jetzt kennt ,,¢” die Referenz von ,b” und kann direkt mit die-
sem Participant kommunizieren. Das bindSenderTo Attribut hat die selbe Funktion,
nur dass hier der Absender die Selbstreferenz weiter gibt. Das Weitergeben von Referen-
zen (participantRefs und bindSenderTo) sowie das Selektieren (selects) fiihrt zur
Bindung der Teilnehmer an andere Teilnehmer.

In Abbildung 3.3 sehen wir, dass die Teilnehmer ein scope Attribut haben. Die Funktion
davon wird in [Kopi1z] beschrieben. Es verweist auf eine < Scope » Aktivitdt aus einer
Participant Behavior Description und bedeutet, dass dieser Teilnehmer nur innerhalb des
referenzierten < Scope » bekannt ist. Ein Anwendungsbeispiel dafiir ist in Listing 3.2 zu
sehen. Eine Menge von Bietern ,bidders” sendet eine Nachricht an einen Verkdufer ,s”.
Ein Teilnehmer aus der Bieter Menge ist ,b”, welcher die <« Scope » Aktivitdt ,, rcvScope”
referenziert. Uber das binSenderTo Attribut, wird die Referenz des Bieters ,,b” an den
Verkéufer ,s” {ibertragen. In Listing 3.3 sehen wir einen Ausschnitt der Participant Behavior
Description von Verkdufer ,s”. Die Referenz des Bieters ist nur innerhalb der < Scope >
Aktivitat ,rcvScope” bekannt. Der Verkdufer bekommt von jedem Bieter die selbe Art von
Nachricht, welche immer das jeweilige Gebot beinhaltet. Der Verkdufer muss also gleichartige
Nachrichten von unterschiedlichen Absendern unterscheiden und abspeichern, da er spater
das hochste Gebot auswihlen und den Hochstbieter benachrichtigen muss. Daher macht

22

3.3 BPEL4Chor

Listing 3.2 Participant mit Scope. Beispiel aus [Kop12]

01 <participants>

02 <participant name="s" type="Seller" />

03 <participantSet name="bidders" type="Bidder">

04 <participant name="b" scope="rcvScope" containment="must-add" />
05 </participantSet>

06 </participants>

07 <messageLinks>

08 <messagelLink senders="bidders" sendActivity="sendBid" bindSenderTo="b"
receiver="s" receiveActivity="receiveBid" messageName="Bid" />

09 </messagelLinks>

Listing 3.3 Participant Behavior Description Auszug des Participant ,s”. Beispiel aus
[Kop12]

01 <while>

02 <condition />

03 <scope name="rcvScope">

04 <pick><onMessage name="receiveBid" /> ... </pick>
05 </scope>

06 </while>

es Sinn, die Referenz auf den Absender und seine Nachricht nur innerhalb eines < Scope »
sichtbar zu machen, so dass die anderen Referenzen und Nachrichten nicht tiberschrieben
werden.

3.3.3 Grounding

In diesem Dokument werden die Web Service spezifischen Details fiir Topology und Parti-
cipant Behavior Description angegeben. Das Grounding ist notwendig, um aus Topology und
Participant Behavior Description ausfithrbare BPEL Prozesse zu erzeugen. Wir werden dar-
auf im ndchsten Abschnitt genauer eingehen. In Abbildung 3.5 ist das Grounding Model
anhand eines UML Modelles beschrieben, welches auf Basis des Grounding XSD Schemas
[DK12a] entworfen wurde. Abbildung 3.6 zeigt die Zusammenhénge von Grounding Mo-
del, Topology Model und Participant Behavior Description. Dabei bedeutet der Stereotyp
«becomes» an den einzelnen Kanten: ,wird zugeordnet zu”. Jeder MessageLink aus Topolo-
gy, muss einem MessageLink Eintrag im Grounding zugeordnet werden. MessageLinks
repréasentieren das Versenden und Konsumieren einer Nachricht. Sie werden mit einem
operation Attribut aus einer WSDL verkniipft. Dazu muss der gewiinschte port Type
angegeben werden, welcher diese operation anbietet. Uber das name Attribut, wird ei-
ne Verbindung zum entsprechenden MessageLink aus Topology hergestellt. Die Attribute
senders, expectedPortType, expectedOperation, mediator, offeredPortType
und of feredOperation sind zwar im Grounding Model definiert, werden aber bei der Um-

23

3 Grundlagen

1 grnd::Grounding properties

messagelinks 1

1 participantRefs

grnd::MessagelLink grnd::ParticipantRef grnd::Property

name name name
portType \WSDLproperty WSDLproperty
operation

senders
expectedPortType
expectedOperation
mediator
offeredPortType
offeredOperation

Abbildung 3.5: Grounding XSD ([DK12a]) dargestellt als UML Modell

wandlung zu ausfiihrbaren BPEL Prozessen nicht benutzt. Sie gehoren zum Thema "Message
Mediation". Wie in [DKLWo7] beschrieben, verkniipft das Grounding die in MessageLink
definierten Sende- und Empfangsaktivitat direkt mit WSDL Port Types und Opeartions. Diese
Verkniipfung sollte dynamisch, wie in [Kop12] S.111 beschrieben, von einem Enterprise
Service Bus erledigt werden, was bisher jedoch noch zur aktuellen Forschung gehort. Die
MessageLinks Attribute bindSenderTound participantRefs ("link passing mobility"
siehe 3.3.2 auf Seite 18) werden jeweils einem ParticipantRef Eintrag im Grounding
Model zugeordnet. Das name Attribut von ParticipantRef bezieht sich dabei auf das
entsprechende Attribut des zugehorigen Participant aus Topology. Das WSDLProperty
Attribut von ParticipantRef gibt an, wo sich ein bestimmtes Element in verschiedenen
WSDL Messages befindet. Da ausfiihrbare BPEL Prozesse Service Referenzen [OASo7b]
tiber Messages austauschen, kann mit der Angabe des WSDLProperty Attributs die ent-
sprechende Service Referenz, unabhédngig vom Message Type, in der eingehenden Message
gefunden werden. Die Werte des properties Attributs (eine Liste aus durch Leerzeichen
getrennten Werten) von CorrelationSet, miissen ebenfalls mit einem WSDLProperty
Attribut verbunden werden. Jedem Eintrag aus der properties Liste, wird im Grounding
Model ein Property Element zugeordnet.

24

3.3 BPEL4Chor

Grounding
1
Grounding
1
1
* % *
MessageLink ParticipantRef & - Property tf-------------———-—--—-—--— !
! |
7N 7N : «becomes» :
]
| | | :
| I : I
I | | |
| | | |
I | | |
| [| |
| ! | :
| '
I «becomes» «Ibecomes» : «becomes» :
| |
. S B :
] |
| : : I
| | | |
T | | :
Topology : ! ! PBD .
| |
I : : I
| |
I I
I |
Topology : BindSenderTo ParticipantRef BPEL Process :
I
i i
| I
| |
1 | 0.1 . 1 |
|
I i
* |
I
|
MessageLink L
* 1
I CorrelationSet Property
1 1 1.*

Abbildung 3.6: Das Grounding mit Verkniipfungen zu Topology und Participant Behavior
Description

25

3 Grundlagen

3.3.4 Von BPELA4Chor zu ausfiihrbaren BPEL Prozessen

Choreographien an sich konnen nicht ausgefiihrt werden. Sie dienen als Vertrag zwischen
Geschiftspartnern, wie diese miteinander interagieren um ihr Geschéftsziel zu erreichen.
Einen Choreographie ist eine Vorlage, aus welcher ausfiihrbare Geschiftsprozesse abgeleitet
werden konnen. Wenn wir eine BPEL4Chor Choreographie zu ausfiihrbaren BPEL Prozessen
transformieren wollen, miissen wir die in Abbildung 3.7 dargestellten Schritte durchfiihren.
Haben wir Topology und alle notigen Participant Behavior Description Dokumente spezifiziert,
miissen wir ein Grounding angeben. Dabei kann von zwei unterschiedlichen Situationen
ausgegangen werden. Entweder gibt es ein einziges Grounding, in welchem Fall sich alle
Partner auf die selben WSDL Port Types und Operations geeinigt haben oder, es gibt mehrere
Grounding Dokumente, wenn bestimmte Partner andere WSDL Konfigurationen benotigen.
Mit den Informationen aus Topology und Grounding, konnen die Participant Behavior Des-
cription Dokumente zu abstrakten BPEL Prozessen, welche zum Abstract Process Profile for
Observable Behavior Profile konform sind, automatisch generiert werden. Dieser Transfor-
mationsprozess besteht aus vier wesentlichen Schritten. Es miissen Partner Link Types und
Partner Links generiert werden. Sie geben an, welche Port Types respektive zum Senden und
Empfangen einer Nachricht verwendet werden. Das Abstract Process Profile for Observable Be-
havior Profil fordert diese Angaben. Da die beiden Konstrukte nun bekannt sind, miissen fiir
die Kommunikationsaktivitdten die Attribute partnerLink, portType und operation
anhand der im Grounding angegebenen Details gesetzt werden. Uber Message Links kénnen
Teilnehmerreferenzen ausgetauscht werden. BPEL kennt keine Teilnehmerreferenzen son-
dern Service Referenzen. Wie wir in Abbildung 3.6 sehen, wird jeder Teilnehmerreferenz
eine WSDL Property zugeordnet. Diese Property gibt an, in welchem Teil einer Nachricht
die passende Service Referenz zu finden ist. Diese Referenz muss in den entsprechenden
Partner Link kopiert werden. ParticipantSets sind Mengen von Teilnehmern. BPEL kennt
dieses Konstrukt nicht, weshalb eine Menge von Service Referenzen eingefiihrt werden muss.
Das WS-BPEL Schema fiir Service Referenzen [OASoyb] spezifiziert allerdings keine Menge
von Referenzen, weshalb diese als Sequenz von Referenzen zusétzlich deklariert werden
muss. Des weiteren kennt BPEL keine Iteration iiber ParticipantSets, sondern nur tiber
einen Zahlenwert. Daher miissen die betroffenen <« ForEach » Aktivitdten so umgeschrieben
werden, wie in Listing 3.4 zu sehen ist. Die < ForEach » Aktivitat iteriert {iber eine set
Variable, zu sehen in Zeile 3, welche alle Service Referenzen des urspriinglichen Sets hilt. In
den Zeilen 9 - 16 wurde eine neue < Assign > Aktivitdt eingeftigt, welche den aktuellen Wert
aus der set Variablen, in den verwendeten Partner Link kopiert. Die, nach diesem Transfor-
mationsprozess, entstandenen abstrakten BPEL Prozesse miissen nun mit den "executable
completion" Regeln des Abstract Process Profile for Observable Behavior Profils, zu ausfiihrbaren
Prozessen angereichert werden. Dies geschieht in einem manuellen Verfahren.

26

3.4 Model View Controller

BPEL4Chor Description

Descriptions Definitions

1

:

| Participant Automatic Abstract BPEL Manual

i Topology Transformation] Refinement

i - % Processes with ———————N| Executable BPEL
i / i References to Processes
i L o E > | WSDL Definitions

| articipant - !

|) Participant |

i Behavior Grounding 3 WSDL

i i

Abbildung 3.7: Von BPEL4Chor zu ausfiihrbaren BPEL Prozessen [DKLWog]

Listing 3.4 Umgeschriebene < ForEach » Aktivitdt, welche tiber ParticipantsSet iteriert.
Quelle basiert auf: [Reio7]

01 <forEach wsu_id="forEachl" counterName="i_forEachl">

02 <startCounterValue>0</startCounterValue>

03 <finalCounterValue>count ($set/)1</finalCounterValue>
04 <scope>

05 <partnerLinks>

06 <partnerLink name="xy" .../>

07 </partnerLinks>

08 <sequence>

09 <assign>

10 <copy>

11 <from variable="set">

12 <query>[$i_forEachl]</query>
13 </from>

14 <to partnerLink="xy" />

15 </copy>

16 </assign>

17 ..

18 </sequence>

19 </scope>

20 </forEach>

3.4 Model View Controller

Model View Controller (MVC) ist, wie in [LLoy] beschrieben, ein Architekturmuster zur
Trennung von Interaktion und Funktion. Es gliedert die danach realisierte Anwendung in drei
Komponenten. Die Model Komponente realisiert die fachliche Funktion einer Anwendung.
Sie kapselt Daten und stellt Methoden zur deren Manipulation zur Verfiigung. Die View
Komponente realisiert die grafische Reprasentation der Daten. Es kann mehrere verschiedene
View Komponenten fiir die selben Daten geben. Die Controller Komponente ist einer View
zugeordnet. Sie nimmt Benutzereingaben entgegen und veranlasst die nétigen Anderungen.
Hat die Aktion eines Benutzer z.B. zur Folge, dass eine View aktualisiert werden muss,

27

3 Grundlagen

View

\ 4

Controller

Veranderung der
Visualisierung

Informationen uber
Anderung

Aufruf von

Zugriff auf
Anwendungsfunktionen

darzustellende
Daten

Abbildung 3.8: Model View Controller Architekturmuster und das Zusammenspiel seiner
Komponenten. Quelle: [LLo7]

stofst der zugeordnete Controller die Aktualisierung der grafischen Reprasentation an. Fiihrt
der Benutzer eine Aktion aus, welche eine Anderung der Daten zu Folge hat, so ruft der
Controller die Manipulationsmethoden des Models auf. In Abbildung 3.8 ist die Interaktion
der drei Komponenten zu sehen. Die Aktionen des Benutzers welche Daten des Models
verdndern, haben auch eine Verdnderung der View zur Folge. Daher miissen sich alle Views,
welche das Model reprasentieren, bei diesem anmelden. Das Model fiihrt ein Register und
benachrichtigt alle registrierten Views bei Anderung seines Zustandes. Dieser Ablauf wird
als Change-update Mechanismus bezeichnet und bietet den Vorteil, das alle Views immer das
aktuelle Model reprasentieren. Da es auch fiir das selbe Model, mehrere View - Controller
Kombinationen geben kann, wird eine saubere Entkopplung der Komponenten erreicht.
So konnen View - Controller Kombinationen sogar zu Laufzeit ausgetauscht werden. Ein
Nachteil dieser Architektur ist, wenn sich das Model innerhalb sehr kurzer Zeitintervalle
verdndert. Dann kommt die Aktualisierung der View eventuell nicht mehr hinterher, da bei
jeder Anderung die Daten vom Model erneut angefragt werden miissen.

28

4 Konzeption

Das Ziel dieser Arbeit ist, ein Modellierungswerkzeug fiir Choreographien zu entwickeln.
Dabei soll es auch moglich sein, diese Choreographien in einer Workflowumgebung aus-
zufiihren. Um dies zu erreichen, miissen aus Choreographien zuerst lauffdhige Prozesse
generiert werden. Als Datenmodell haben wir BPEL4Chor gewihlt und damit auch abstrakte
BPEL Prozesse als Beschreibung des Verhaltens der Choreographie Teilnehmer. Wir haben
bereits in Abschnitt 3.3.4 auf Seite 26 gesehen, dass die automatische Generierung von
ausfithrbaren BPEL Prozessen sehr schwierig ist bzw. als manuell durchzufiihrender Schritt
angegeben wird. Daher sehen wir fiir diese Arbeit davon ab, Algorithmen zu entwickeln
die vollstandig spezifizierte und deploy fahige BPEL Prozesse erzeugen. Auch sehen wir
davon ab, fiir BPEL4Chor Choreographien die Participant Behavior Description als ausfiihrba-
ren Prozess zu modellieren da sonst das Grounding Konzept verworfen bzw. iibergangen
wird. Daher entscheiden wir uns fiir den Weg eine Choreographie zu modellieren, daraus
BPEL4Chor Artefakte zu exportieren um damit schliefslich BPEL Prozesse zu generieren.
Da unser Ziel ausfiihrbare BPEL Prozesse sind und wir von Participant Behavior Description
Dokumenten ausgehen, erzeugen wir zunédchst mit Hilfe der Komponente BPEL4ChorToBPEL
(siehe Abschnitt 5.1.6 auf Seite 105), abstrakte BPEL Prozesse welche zum Abstract Process
Profile for Observable Behavior konform sind und modifizieren diese an einigen Stellen um
ausfiihrbare Prozesse zu erhalten. Diese Modifikationen werden im BPEL Standard [OASo7c]
als , basic executable completion” bezeichnet und bestehen aus folgenden Schritten:

"I nach "executable"?

e Der Namespace des BPEL Prozesses dndert sich von "abstract
e Das abstractProcessProfile Attribut vom Process Element fillt weg.

e Alle Opaque Elemente, aufler diese welche implizit weggelassen wurden, miissen
durch ein ausfiihrbares Element ersetzt werden.

e Sollte es keine Start Aktivitdt geben (mit Attribut createInstance = "yes"), muss
eine geeignete hinzugefiigt werden.

e Partnerlink, Variable und Import Elemente miissen zum Process Element
hinzugefiigt werden.

"http://docs.oasis—open.org/wsbpel/2.0/process/abstract"
2"http://docs.oasis—open.org/wsbpel/2.0/process/executable"

29

http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
http://docs.oasis-open.org/wsbpel/2.0/process/executable"

4 Konzeption

Um diese Schritte zu realisieren, benutzen wir die bereits erwdhnte Komponente
BPEL4ChorToBPEL sowie die neu entworfene BasicExecutableCompletionTransformer (siehe
Abschnitt 4.5.3 auf Seite 65). In Tabelle 4.1 sind die Anderungsschritte und dazu die jeweilige

Komponente, welche diese durchfiihrt, angegeben.

Element Anderung Komponente
PartnerLink Neue PartnerLink Elemente fiir | BPEL4ChorToBPEL
<invoke>, <receive>, <reply>
und < onMessage >
Variable Neue Variable Elemente fiir | BPEL4ChorToBPEL
jedes <«forEach»> tiber ein
ParticipantSet
abstract Namespace executable Namespace BECT"
abstractProcessProfile | Entfernt BECT
<opaquelActivity> Ersetzt durch < empty > BECT
Variable Neue Variable Elemente fiir je- | BECT
de Opaque Variable in < invoke >,
<receiveys, <reply>
Wert der inputVariable | "portType_operation_message" | BECT
und outputVariable von
<invoke>
Wert der variable von | "portType_operation_message" | BECT
<receivesund <reply>
Wert der variable von | "portType_operation_message" | BECT
<onMessage»

Tabelle 4.1: Verdnderung von Elementen durch die , basic executable completion”

?BasicExecutableCompletionTransformer

Die Ersetzung der Opaque Variablen durch "port Type_operation_message" resultiert aus
der Uberlegung, da durch ein Grounding port Type und die verwendete operation im
jeweiligen MessageLink Element angegeben werden, die ausgetauschte Nachricht, welche
in der Variablen transportiert wird, abgeleitet werden kann. Durch die BPEL4ChorToBPEL
Komponente erhalten wir das fiir die Kommunikationsaktivitidt verwendete PartnerLink
Element, welches auf den verwendeten port Type verweist. Daher setzen wir den Namen
der Variablen aus den Werten der port Type und operation Attribute zusammen, da wir
genau wissen dass die Kommunizierenden Teilnehmer den angegebenen PartnerLink
benutzen. Den Typ der Variablen abzuleiten ist schwierig, da wir die Intention des Modellie-
rers nicht kennen. Daher wird der Typ nicht gesetzt. Was wir nicht durchfiihren kénnen ist

30

4.1 Erster Ansatz

die Ersetzung von < OpaqueFrom >, welches in der < Copy > Anweisung eingesetzt werden
kann, da wir ebenfalls nicht wissen, welche ausfiihrbare Variante von <« From > der Modellie-
rer vorsieht. Das <« FromPart » Konstrukt in < Receive >, <« Invoke >, <« OnMessage > und
<OnEvent » kann ebenfalls Opaque Variablen benutzen. Wir konnen auch diese Werte nicht
bestimmen, da wir nicht Wissen, wie die eingehende Multi-Part Message aussieht und in
welchem part der Message die Information Steht, welche in die Variable tovVariable
kopiert werden soll. Das selbe gilt analog auch fiir das < ToPart » Konstrukt in <Reply >
und < Invoke ».

In den folgenden vier Abschnitten stellen wir Ansdtze vor, wie sich der Choreographie
Editor realisieren lassen konnte. Wir werden uns fiir den Vierten Ansatz entscheiden und
stellen das Konzept ausfiihrlich in Abschnitt 4.5 auf Seite 34 vor.

4.1 Erster Ansatz

Eines der bestehenden Workflow Modellierungstools, welches in SimTech3 eingesetzt wird,
ist der BPEL Designer*. Der BPEL Designer ist ein grafischer Editor zu Modellierung von BPEL
Prozessen und wurde als Eclipse Plugin (siehe 5.1.1 auf Seite 83) realisiert. Als grundlegendes
Modell dient der WS-BPEL Standard, welcher mittels Eclipse Modeling Framework (siehe 5.1.2
auf Seite 86) modelliert wurde. Die grafische Reprasentation des Modells, ist mit dem
Graphical Editing Framework (siehe 5.1.3 auf Seite 92) realisiert worden. Wie in [Vukog]
beschrieben, ist der BPEL Designer fiir die SimTech spezifische Anforderung, Simulations
Workflows zu erstellen, so erweitert worden, das er den Modellierer iiber den gesamten
Lebenszyklus des Workflows hinweg unterstiitzt. Das bedeutet dass der Modellierer zuerst
seinen Prozess erstellt, dabei auf simulationsspezifische Aktivititen aus einem Katalog
zuriick greift, den Prozess ausfiihrt, tiberwacht und schliefilich die angezeigten Ergebnisse
auswerten kann.

In Abbildung 4.1 sehen wir die Oberflaiche des BPEL Designers. Er zeigt eine der Prozessvorla-
gen, welche benutzt werden kann um eine Simulation zu modellieren. Hier ist auch zu sehen,
dass der BPEL Designer zur Modellierung eines einzelnen BPEL Prozesses ausgelegt ist. Die
Zeichenfldche reprasentiert das Wurzelelement <« Process » eines BPEL Prozesses. Alle wei-
teren grafischen Elemente Reprasentationen der zum Prozess gehorenden BPEL Konstrukte.
In dieser Abbildung ist eine < Sequence > ("main") zu sehen und die darin enthaltene exten-
sion Aktivitdt « SimulationStartActivity > ("simulationStart"). Da wir Choreographien
modellieren wollen, miissten wir den BPEL Designer so erweitern, dass mehrere Prozesse
auf der Zeichenflache platziert, sowie Message Links zwischen Kommunikationsaktivitaten
gezogen werden konnten. Das Problem dabei ist, dass wir einen reinen Prozess Editor zu

3http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_modeling.php
4http://www.eclipse.org/bpel/

31

http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_modeling.php
http://www.eclipse.org/bpel/

4 Konzeption

2 testprocess.bpel &3 = O 5= Outline 2]
X 2 testprocess [@ Partner Links o
Initial fix Partner Links &% @ input

@ ReferenceVariables E

client \J Data Container References

b 4 @ Variables % — Data Source References
input @ Correlation Sets -
- r'_nam [¥) ReferenceVariables & 3% ! Ll d
(@) Data Container R... & % i& Palette &2 =
@ simulatienStart . -~
= Data Source Refe... % % [;; Selection Tool
T (@ Correlation Sets & % H". Marquee Tool
@ EﬁoMessage Exchan... 9 % || (=- Actions o0 3
Empty
A Tt I
(= Control2 0
@I
PN TR =
(2= Faults 0
Design | Source - it i
E Properties &2 [Z¢ Problems | ¥ Tasks = ¥ = 0

2 testprocess
Description Narme: testprocess

Detail .
2l Target namespace: http://de.ustutt.simtech

Join Behavior
Imperts
MNamespaces
Debug
Meta-Data

Documentation

Abbildung 4.1: SimTech BPEL Designer mit leerer Prozessvorlage

einem Choreographie Editor umbauen miissten. Wir wiirden eine Mischform kreieren, in
welcher keine saubere Trennung mehr besteht. Dazu miissen wir auch bedenken, dass die
Participant Behavior Description Dokumente abstrakte BPEL Prozesse sind. Wir laufen in die
Gefahr, abstrakte Prozesse mit ausfithrbaren in einem Editor Fenster zu mischen. Der BPEL
Designer Code ist sehr komplex und muss zuerst langwierig analysiert und verstanden
werden. Das zugrunde liegende EMF Modell des WS-BPEL Standards ist ungeeignet, um
Choreographien zu modellieren. Es muss mit BPEL4Chor erweitert bzw. verwoben werden.
Den Vorteil des grofSen Funktionsumfangs zum modellieren von BPEL Prozessen und die
SimTech spezifischen Erweiterungen behalten wir mit diesem Ansatz allerdings bei. Wir
entscheiden uns dennoch aus den genannten Griinden gegen die Erweiterung des BPEL
Designer zu einem Chor Designer

4.2 Zweiter Ansatz

Der zweite Ansatz ist dem ersten sehr dhnlich. Er unterscheidet sich aber in dem wesentlichen
Punkt, dass wir den Code BPEL Designers kopieren und so abandern, dass ein reiner
Choreographie Editor daraus resultiert. Wir hiatten damit zwei verschiedene Editoren mit

32

4.3 Dritter Ansatz

teilweise gemeinsamer Code Basis. Der Vorteil daran ware, dass der BPEL Designer weiterhin
ein eigenstdndiges Tool zum Modellieren von BPEL Prozessen bleibt und der neue Chor
Designer hingegen, ein eigenstindiges Tool zum modellieren von Choreographien. Die
Nachteile sind ebenfalls die Komplexitdt des vorhandenen Codes und Verdnderung des
vorhandenen EMF Modells. Zudem muss noch bedacht werden, dass der BPEL Designer
weiter entwickelt wird, was eine unter Umstdnden aufwendige Code Migration fiir den neu
erstellten Chor Designer zur Folge hat. Wir entscheiden uns, wegen der genannten Griinde,
gegen diesen Ansatz.

4.3 Dritter Ansatz

Wir haben bereits die Tendenz zu einem separaten Editor aus den ersten beiden Ansitzen
erortert, da wir es als Vorteil ansehen, Choreographie Editor und Prozess Editor zu trennen.
Wir erstellen von Grund auf einen neuen grafischen Editor, den Chor Designer, in welchem
wir abstrakte BPEL Prozesse importieren konnen. Diese abstrakten Prozesse werden zuvor
z.B. mit dem BPEL Designer oder einem anderen BPEL Tool modelliert. Im Chor Designer
muss alles ausgeblendet oder angepasst werden, was nicht zur Participant Behavior Description
konform ist. Es muss also fiir jeden importierten Prozess, eine Sicht auf den Quellprozess
erstellt werden. Zwischen den Kommunikationsaktivititen konnen dann Message Links
gezogen werden. Das Problem, welches sich daraus ergibt ist, dass sich die importierten
Quellprozesse dndern kénnen. Diese Anderungen miissen im Chor Designer automatisch
nachgezogen werden. Noch problematischer wére es, wenn im Chor Designer die importierten
Prozesse ebenfalls editierbar wiren. Wir hitten damit ein Synchronisationsproblem in
beide Richtungen. Im Modellierungsprozess neigt der Anwender dazu, schrittweise die
Choreographie zu erarbeiten. Mit diesem Ansatz miisste der Modellierer immer zwischen
den zwei Editoren hin und her Wechseln. Aus diesen Griinden entscheiden wir uns gegen
diesen Ansatz.

4.4 Vierter Ansatz

Wir erstellen einen neuen grafischen Editor, der speziell zum modellieren von Choreogra-
phien entworfen wird. Als Basis wird das BPEL4Chor Modell verwendet und ausgehen
davon ein Modell fiir den Editor konzipiert. Dabei wird der Editor so aufgebaut, dass
die Choreographie fiir den Anwender von Grund auf modellierbar ist. Das bedeutet, er
kann die Teilnehmer definieren, deren Verhalten modellieren und Message Links ziehen. Die
Modellierung des Verhaltens wird dabei nur auf die BPEL Konstrukte eingeschrankt, welche
zum Abstract Process Profile for Participant Behavior Descriptions konform sind. Der Editor
kann einerseits BPEL4Chor Artefakte exportieren und andererseits, nach Durchfithrung

33

4 Konzeption

einer Transformation, BPEL Prozesse erzeugen, welche dann mit anderen BPEL Tools wei-
ter bearbeitet werden konnen. Ein Nachteil dieses Ansatzes ist, dass die umfangreichen
Modellierungmoglichkeiten des BPEL Designers nicht in dieser Arbeit reproduziert werden
konnen. Wir erstellen diesen Editor ebenfalls als Eclipse Plugin, damit er zusammen mit dem
BPEL Designer in der selben Eclipse Workbench (siehe 5.1.1 auf Seite 86) ausgefiihrt werden
kann. Dadurch konnen beide Editoren in einer gemeinsamen Umgebung benutzt werden.
Aufgrund der tiberwiegenden Vorteile entscheiden wir uns fiir diesen Ansatz und erldutern
die Konzeption des Editors im folgenden Abschnitt.

4.5 Choreographie Editor

Bei der Entwicklung eines grafischen Editors fiir Choreographien, stellt sich die Frage nach
dem Modell. Wenn wir das BPEL4Chor Modell benutzen funktioniert dies einerseits nicht,
da das Modell nicht exakt dafiir geeignet ist, alle grafischen Elemente einer Choreographie
darzustellen. Warum dies so ist, werden wir im folgenden sehen. Andererseits wére es
nicht sinnvoll den Editor so zu konzipieren, dass er eine exakte grafische Reprasentation
der BPEL4Chor Artefakte anzeigt, da dazu ein XML Editor gentigt. Aufierdem bleibt das
Editor Modell somit eigenstdndig und wir erhalten uns die Moglichkeit, das Modell in ein
beliebiges anderes Modell zu transformieren. Allerdings eignet sich BPEL4Chor gut um
Choreographien zu beschreiben. Daher nehmen wir Ideen aus BPEL4Chor und bauen so
ein geeignetes Modell fiir den Editor auf. Dieses neue Modell nennen wir im folgenden
Chor Model. Zusaitzlich erstellen wir Komponenten zur Transformation vom Chor Model zu
BPEL4Chor. Dies ist beliebig fiir andere Modelle erweiterbar, da diese Komponenten nur
lose an den Editor gekoppelt sein sollen.

Bevor wir das Chor Model entwickeln, miissen wir zuerst feststellen, welche grafischen
Elemente fiir die Modellierung von Choreographien benotigt werden. Wir betrachten dazu
Abbildung 4.2, in welcher eine Beispiel Choreographie in BPMN modelliert wurde. Das
Beispiel stammt aus [DKLWo7]. Ein Reisender mochte ein Flug buchen und gibt dazu eine
Bestellung bei der Reiseagentur auf. Die Agentur nimmt die Bestellung entgegen und stellt
bei mehreren Fluglinien Preisanfragen. Die Fluglinien, welche ein Angebot abgeben mdochten,
senden ihren Preis der Agentur zu. Hat die Agentur alle Preise eingesammelt, bestimmt
diese den besten Preis, bestellt bei der entsprechenden Fluglinie ein Ticket und tibertragt
zusétzlich die Kontaktadresse des Reisenden. Die ausgewdhlte Fluglinie kann darauf das
Flugticket dem Reisenden zukommen lassen, alle andere Fluglinien warten bis der Timeout
erreicht wird und brechen ab. Die Agentur sendet dem Reisenden schliefilich noch den
Reiseplan.

Die Grafischen Elemente, welche wir Anhand von Abbildung 4.2 identifizieren kdnnen sind,
tiir jeden Teilnehmer der Choreographie ein Rechteck. Darin befinden sich die Aktivitédten,

34

4.5 Choreographie Editor

welche das Verhalten definieren. Nachrichtenaustausch wird mit Verbindungspfeilen darge-
stellt. Wenn wir diese Abbildung mit BPEL4Chor Artefakten beschreiben, dann entspricht
das, was wir hier sehen, dem Topology Dokument mit Participant, ParticipatSet, Message Links,
sowie den Inhalt der Participant Behavior Description aller Teilnehmer. Die Participant Types
sind implizit zu sehen. Jedes dufierste Rechteck entspricht einem Typ und gleichzeitig auch
dem Teilnehmer. Wiirde es z. B. zwei Agenturen als Teilnehmer geben und wiirden diese
Nachrichten untereinander austauschen, wiaren auch zwei Rechtecke mit dem selbem Inhalt
vorhanden. In [Steoy] wurde eine BPEL4Chor Beschreibung des BPMN Modells aus Abbil-
dung 4.2 generiert. Wir nehmen diese BPEL4Chor Artefakte als Grundlage und entwickeln,
zusammen mit dem BPMN Diagramm, ein grafisches Konzept dieser Choreographie. Das
Resultat ist in Abbildung 4.3 zu sehen.

4.5.1 Entwicklung des Chor Models

Alle grafischen Elemente, welche wir im Editor platzieren wollen, realisieren wir im Chor
Model als eine eigene Entitit bzw. Klasse. Diese Entscheidung miissen wir schon an dieser
Stelle treffen, da wir den Editor mittels GMF (siehe 5.1.4 auf Seite 95) realisieren werden.
Dessen Tooling Komponente (siehe 5.1.4 auf Seite 98) realisiert ein Mapping von grafischen
Elementen auf Modell Klassen. Die Tooling Komponente basiert auf dem Konzept dass es
im Datenmodell des Editors ein Wurzelelement gibt, welches die Zeichenfldche reprasentiert.
Dieses Wurzelelement muss alle Entitdten referenzieren, welche als grafische Reprédsentation
auf dieser Zeichenfldche platziert werden. Die platzierbaren Entititen sind Teilnehmer
(Participant und ParticipantSet), Nachrichtenlinks (Message Links), Teilnehmer Referenzen,
welche iiber die Nachrichtenlinks versendet werden (Paticipant Referenzen) und BPEL
Aktivitaten. Dazu kommen noch die Links zwischen Aktivitidten innerhalb eines < Flow »
Containers. Die BPEL Aktivitidten der Participant Behavior Description realisieren wir in
einem vom Chor Model separaten PBD Model. Die Teilnehmerklassen des Chor Model,
referenzieren die Prozess Klasse des PBD Model. Wir verhindert damit eine komplette
Integration des PBD Model ins Chor Model. Umgekehrte Referenzen von PBD Model
auf Chor Model moéchten wir vermeiden, da sonst die beiden Modelle in gegenseitiger
Abhéngigkeit stehen. Es miissten, bei der Transformation (siehe Abschnitt 4.5.2 auf Seite 48)
vom PBD Model, Ausnahmebehandlungen eingebaut werden, damit referenzierte Elemente
aus dem Chor Model nicht Teil der XML Serialisierung des PBD Model werden. Als Beispiel
wire eine Referenz von ForEach auf ParticipantSet denkbar um die Iteration tiber
dieses Set zu modellieren. Genau dies mochten wir vermeiden und geben im Verlauf des
folgenden Abschnitts, eine andere Losung dafiir an.

35

4 Konzeption

Abbildung 4.2: BPMN Choreographie , Buchung eines Flugtickets”. Quelle: [DKLWo7]

Participants

Zunichst schauen wir uns das Topology Model an, welches in Abschnitt 3.3.2 auf Seite 18
erldutert und in Abbildung 3.3 dargestellt wurde. Hier werden mehrere ParticipantType
Elemente definiert. Diese wiederum verweisen auf die in einem anderen Dokument de-
finierte Participant Behavior Description. Im folgenden reden wir oft tiber Participant
und ParticipantSet Elemente, daher bezeichnen wir beide als participant(s). Ein par-
ticipant hat genau einen ParticipantType. Allerdings konnen mehrere participants auf
den selben ParticipantType verweisen. Wiirden wir also den Ansatz verfolgen, fiir
jeden ParticipantType ein grafisches Element darzustellen, liefen wir in ein Problem

36

Traveler

Travel Agency

Airline

5

[Plan trip]

Submit trip

order

(N

Request price

Retrieve price

Traveler— | |
rence

Make
reservation

Confirm order

Create itinerary

(Issue itinerary

{ Issue eTicket

4.5 Choreographie Editor

' Agency ' Traveler

sequence sequence
\/Receive invokation:1 |« :1 /InvokeinvokeAgencyzlz
forEach:2 Airline Geceive getltinerary:13 |«
scope sequence #/Receive geteTicket:lél\\
D

[Invoke requestPrice:4 :2-

—N/Receive invokation:8
—o/ Invoke sendPrice:9
\/ Receive getPrice:5 <t .3J_

pick

name:6

\/InvokeorderTicket:G\ ..=.4—| M 10
»| oniviessage:

/—
(- Invoke Issueltinerary:7
-

\/Invoke sendeTicket:11/

o

Abbildung 4.3: Choreographie ,,Buchung eines Flugtickets”. Konzeptionelles Modell

wenn mehrere participants des gleichen Typs miteinander kommunizieren. Dann hitten die
MessageLinks als Quelle und Ziel das selbe grafische Element, was fiir die Darstellung
einer Kommunikation zwischen mehreren Partnern ungeeignet wére. Daher wihlen wir fiir
alle participants eine eigenes grafisches Element.

Jeder participant hat ein Verhalten, welches in der zugehorigen Participant Behavior Description
beschrieben ist. Dieses Dokument wird durch den ParticipantType referenziert. Wir
mochten die Moglichkeit haben, das Verhalten im selben Editor zu modellieren. Daher
miissen die Elemente des PBD Model an einen sinnvollen Ort im Editor platziert werden
konnen und zwar auch so, dass sich die Kommunikationsaktivitdten gut durch Pfeile, welche
die MessageLinks reprdsentieren, verbinden lassen. Da wir aber ParticipantType nicht
grafisch darstellen, muss jeder participant direkt auf seine Participant Behavior Description
verweisen. Im Chor Model verweisen wir auf das Process Element des PBD Model. Die
Aktivitdten platzieren wir innerhalb der grafischen Darstellung der participants um auszu-
driicken, dass dieser participant das modellierte Verhalten hat. Dies fiihrt allerdings dazu,
dass wir eine Konvention beziiglich der Typisierung treffen miissen. Wir entscheiden uns
dafiir, fiir jeden participant automatisch eine neue Participant Behavior Description mit anzu-
legen. Selbst, wenn mehrere participants das selbe Verhalten haben. Wir kénnten dies auch

37

4 Konzeption

anders realisieren, indem wir die Typisierung beibehalten. So wiirde z. B. beim Erstellen
eines participants A, ein neuer Typ T4 mit angelegt werden. Fiir diesem Typ wiirden wir das
Verhalten mittels BPEL Aktivitdten modellieren. Doch laufen wir dann in ein Problem, wenn
wir einen weiteren participant B des selben Typs T4 erstellen wollen. Wir miissten zuerst eine
Auswahl des Typs anbieten, bevor wir B im Editor platzieren kénnen. Angenommen, wir
hétten diese Auswahl. Fiigen wir dann z. B. B eine Aktivitdt hinzu, dndert sich T4 was zur
Folge hat, dass sich auch das Verhalten von A mit &ndert. Der Editor muss diese Anderungen
tiir alle participants des selben Typs synchronisieren. Wir erdrtern die Typisierung fiir diese
Arbeit nicht weiter aber stellen die Betrachtung dieser Moglichkeit in Aussicht fiir eine
zukiinftige Erweiterung. In Abbildung 4.4 ist zu sehen, wie wir participants im Chor Model
darstellen. Zwecks besserer Abgrenzung zum Topology Model, nennen wir die participants
im Chor Model CParticipant und CParticipantSet.

Es ist wichtig, dass wir Participant und ParticipantSet Elemente grafisch unter-
schiedlich darstellen, da das ParticipantSet eine Menge von Teilnehmern angibt, wel-
che von ihrer Anzahl zur Designzeit nicht bekannt sind. MessageLink Elemente von
Participant zu ParticipantSet stellen eine 1 : 1 Kommunikation dar, was ebenfalls
grafisch angedeutet werden sollte. Was beide Elemente gemeinsam haben ist das name Attri-
but sowie eine Referenz auf ParticipantType. Die ParticipantSet Elemente konnen
Kind Elemente haben welche wiederum entweder Participant oder ParticipantSet
Elemente sind. Hier ist also eine Verschachtlung moglich. Von einer grafischen Darstellung
der Kind Elemente eines ParticipantSet sehen wir ab, dennoch muss es eine Moglichkeit
geben sie zu modellieren, da diese Elemente Quelle oder Ziel eines MessageLink sein
konnen. Das Topology Model sieht aufserdem die Moglichkeit zur Restriktion der parti-
cipants auf eine < Scope » Aktivitdt vor, was beide Elemente ebenfalls gemeinsam haben.
Fiir alle Gemeinsamkeiten fiithren wir, wie in Abbildung 4.5 zu sehen, das neue Element
CParticipantCommon ein, von welchem CParticipant sowie CParticipantSet er-
ben. Das containment Attribut von Participant wird als PContainment Datentyp
ins Chor Model tibernommen. Participant Elemente haben zudem noch ein selects
Attribut, welches Participant oder ParticipantSet Elemente referenzieren kann. Im
Chor Model referenzieren wir damit CParticipantCommon Elemente.

38

4.5 Choreographie Editor

Participant

Topology

ParticipantType

PBD

* 1 1 1
1
*
ParticipantSet
Choreography CParticipantSet
1 *
1 1
* 1
CParticipant Process
1 1

Abbildung 4.4: Vom Topology Model zum Chor Model

39

4 Konzeption

chor::Choreography

1 participants
*
* chor::CParticipantCommon process pbd::Process
name : String
scope : Scope
1 1
«extends»
*
-selects chor::CParticipant chor::CParticipantSet| |participantSets
* 0.1
* 0.1 participants

Abbildung 4.5: Chor Model mit Participants

Die <« ForEach » Aktivitdten des PBD Model konnen tiber ein ParticipantSet iterieren.
Im Topology Model haben ParticipantSet und Participant ein forEach Attribut
wobei fiir letztere das setzen dieses Attributes nur Sinn macht, wenn sie innerhalb eines
ParticipantSet mit forEach Attribut sind. Im Chor Model drehen wir das Ganze um
und geben dem Modellierer bei der <« ForEach » Aktivitit die Moglichkeit, anzugeben {iber
welches Set iteriert werden soll und welches Kind Element die Referenz auf den aktuellen
Wert im Schleifendurchlauf hilt. Wir erweitern allerdings nicht die <« ForEach > Aktivitat
im PBD Model, sondern definieren das neue Element ForEachIterationSpec, wie in
Abbildung 4.6 zu sehen. Dieses Element referenziert CParticipant als iteratorValue,
CParticipantsSet als iteratorSet und schliellich die zugehorige < ForEach » Aktivitat
selbst. Mit dieser Losung ist es ebenfalls moglich und auch richtig, dass mehrere < ForEach »
Aktivititen das selbe CParticipantSet referenzieren konnen. Dabei ist lediglich als Mo-
dellierer darauf zu achten, dass in jeder ForEachIterationSpec immer unterschiedliche
CParticipant Kind Elemente des selben Sets, als iteratorvalue angegeben werden.

40

4.5 Choreographie Editor

chor::Choreography

forEachlterationSpecs
1 participants
*
chor::CParticipantCommon process pbd::Process
name : String
scope : Scope
1 1
1 activity
«extends»
1
chor::CParticipant chor::CParticipantSet pbd::Activity
selects : CParticipantCommon participants : CParticipant
participantSets : CParticipantSet
1
1 «extends»
0.1 iteratorValue
chor::ForEachlterationSpec iteratorSet
pbd::ForEach
* 0..1

0.1 forEach

Abbildung 4.6: Chor Model mit Participants und ForEach Losung

Message Links

Die MessageLink Elemente aus dem Topology Model geben mit ihren Attributen
sendActivity und receiveActivity jeweils Quelle und Ziel des Links an. Fiir die
Umsetzung im Chor Model betrachten wir Abbildung 4.7. Fiir MessageLink wird ein
CMessageLink Element eingefiihrt, welches ebenfalls die selben Attribute bekommt. Wir

41

4 Konzeption

konnten mit sendActivity und receiveActivity jeweils Aktivititen des PBD Mo-
del referenzieren, doch miissten wir dann beim Link setzen entsprechende Priifungen
vornehmen, da Links nur zwischen den Kommunikationsaktivitiaten erlaubt sind, sowie
zusétzlich noch der < OnMessage > Zweig der <Pick > Aktivitdt. Daher fithren wir das
neue Element CLinkable ein und referenzieren mit den Attributen sendActivity und
receiveActivity jeweils darauf. Diejenigen Elemente aus dem PBD Model welche ver-
linkt werden diirfen, erben von besagtem Element, die anderen nicht. Wir miissen allerdings
noch Priifungen durchfithren um zu bestimmen, ob ein Link tatsdchlich zwischen zwei
CLinkable Elementen gezogen werden darf. Die Bedingungen sind in [DKLWo7] beschrie-
ben.

Das Attribut participantRefs libernehmen wir ebenfalls, referenzieren aber damit ein
neues Element CParticipantRef. Die Einfiihrung dieses neuen Elements ist notwendig,
da wir Participant Referenzen grafisch darstellen wollen. Das CParticipantRef Ele-
ment referenziert dann schliefflich den eigentlichen CParticipant, wessen Referenz iiber
diesen CMessageLink ausgetauscht werden soll. Das Attribut bindSenderTo referenziert
im Chor Model den CParticipant, welcher der Sender ist. Falls der CMessageLink
von einem CParticipant ausgeht, ist es die Selbstreferenz, bei CParticipantsSet ist
es eines der Kind Elemente. Die Attribute sender und receiver referenzieren jeweils
einen CParticipant, da Absender und Empfianger konkrete Teilnehmer sein miissen
und nicht eine Menge von Teilnehmern. Fiir den Fall, dass alle Kind Elemente eines
CParticipantSet Absender sein konnen, gibt es das senders Attribut, welches folg-
lich cParticipantSet referenziert. Die Attribute sender, senders, receiver und
bindSenderTo von CMessageLink sind in Abbildung 4.7, zwecks besserer Ubersicht, nicht
als Assoziationen dargestellt. Dies gilt auch fiir die Assoziationen von Choroegraphy.

42

4.5 Choreographie Editor

chor::Choreography

participants : CParticipantCommon
messagelinks : CMessagelink
participantRefs : CParticipantRef

chor::CParticipantCommon process pbd::Process
name : String
scope : Scope
1 1
1 activity
«extends»
participant * 1 ‘ 1
chor::CParticipantRef chor::CParticipant chor::CParticipantSet pbd::Activity
selects : CParticipantCommon participants : CParticipant
participantSets : CParticipantSet
* ﬁ}extends»
pbd::Invoke pbd::Receive pbd::Reply pbd::Pick
«extends» 1
participantRefs chor::CMessageLink
—{name : String *
* sender : CParticipant
senders : CParticipantSet dActivit N
receiver : CParticipant sendaActivity pbd::CLinkable | «extends» |pPbd::OnMessage
bindSenderTo : CParticipant
* 1
* receiveActivity 1

Abbildung 4.7: Chor Model mit CMessageLink, CParticipantRef und CLinkable

Links im Flow Container

Die < Flow » Aktivitdt, definiert im WS-BPEL Standard [OASoyc], erlaubt graphbasierten
Kontrollfluss der modellierten Aktivitaten. Wir mochten in unserem Editor die Aktivitaten
im Flow Container platzieren und mit Kanten bzw. Links Verbinden. Dazu betrachten wir
Abbildung 4.8. Das PBD Model stellt Link Elemente bereit, welche von der < F1ow > Aktivitdt
referenziert werden. Diese Link Elemente haben jeweils ein name Attribut. Die Basisklasse

43

4 Konzeption

Activity, von welcher alle BPEL Aktivitdten erben, erlaubt die Angabe von Targets und
Sources. Somit konnen sich alle Aktivitidten untereinander verlinken. Target und Source
Elemente verweisen mit ihren 1inkName Attributen auf das name Attribut des Link Ele-
ments. Zusitzlich bietet Source noch die Angabe einer TransitionCondition und fiir
alle Target Elemente zusammen, lédsst sich eine JoinCondition angeben. Diese Elemente
stehen uns zur Verfligung, sind aber eher unpraktisch um einen Link zwischen zwei Aktivi-
taten nach unseren Voraussetzungen grafisch darzustellen. Wir fiihren im Chor Model das
neue Element FlowActivityLink ein. Mitden sourceActivity und targetActivity
Attributen verweisen wir auf Activity aus dem PBD Model. Das name Attribut bezeichnet
den Namen dieses Links und mit dem transitionCondition Attribut verweisen wir auf
das entsprechende TransitionCondition Element aus PBD Model. Die JoinCondition
konnen wir an jede Aktivitdt setzen, welche eine benétigt. Dazu erstellen wir, falls nicht
schon vorhanden, eine neue Instanz des Targets Containers und referenzieren mit dessen
joinCondition Attribut auf die entsprechende JoinCondition Instanz. Somit konnen
nun Links zwischen Aktivitdten gezogen werden. Allerdings miissen wir bei der Transforma-
tion bedenken, die entsprechenden Elemente Target, Source und Link des PBD Model,
aus dem FlowActivityLink Element zu generieren.

44

4.5 Choreographie Editor

transitionCondition

chor::Choreography

flowActivityLinks

name : String

participants

pbd::TransitionCondition

Abbildung 4.8: Chor Model mit FlowActivityLink und Beziehungen

Grounding

hor::FlowActivityLink . .
chor-TowActivitytin chor::CParticipantCommon process bd::Process
sourceActivity : Activity name : String pba::
targetActivity : Activity scope : Scope
1 1
_] 1 activity
* flow 1
pbd::Activity targets pbd::Targets
4[> joinCondition : JoinCondition
1 1
«extends»
sources 1 1 target
* *
pbd::Flow -links pbd::Link pbd::Source pbd::Target
> name : String
1 *
1 transitionCondition
1

Wie wir im Abschnitt 3.3 auf Seite 16 erldutert haben ist es fiir eine BPEL4Chor Cho-
reographie notwendig, ein Grounding anzugeben um BPEL Prozesse aus der Choreo-
graphie zu generieren. Wir iibernehmen den Grounding Mechanismus fiir unser Chor

45

4 Konzeption

Model und fiithren das neue Element CGrounding ein, welches fiir ein spezifisches Groun-
ding steht. Das Grounding Model sieht MessageLink, ParticipantRef und Property
Elemente vor. Diese Elemente muss es auch fiir unser CGrounding geben, daher fiih-
ren wir die Elemente CMessagelLinkGrounding, CParticipantRefGrounding und
CorrelationSetGrounding ein, wie in Abbildung 4.9 zu sehen ist.

Das cMessagelink Attribut von CMessagelLinkGrounding referenziert das CMessageLink
Element, welches mit einem Grounding verkniipft werden soll. Das port Type Attribut gibt
den gewdhlten Port Type aus einer WSDL an. Dies wird als "Qualified Name" angegeben, da-
her verwenden wir einen passenden Datentyp QName bestehend aus den Teilen Namespace
URI, localPart und prefix. Das operation Attribut gibt die WSDL Operation an und das
bSToWSDLProperty Attribut gibt die WSDL Property als QName fiir das bindSenderTo
Attribut an. Es muss nur gesetzt werden, wenn bindSenderTo auch im referenzierten
CMessageLink angegeben wurde.

Das cParticipantRef Attribut von CParticipantRefGrounding referenziert das
CParticiapntRef Element, welches mit diesem Grounding verkniipft werden soll.
Das wSDLProperty Attribut gibt die WSDL Property als QName fiir das referenzierte
CParticiapntRef Element an.

Fir CorrelationSetGrounding miissen wir noch ein weiteres Element einfiihren da im
PBD Model das properties Attribut von CorrelationSet eine Liste von Werten, welche
durch Leerzeichen getrennt sind, enthilt. Jedem Eintrag muss ein QName im Grounding
zugeordnet werden. Wir fithren das Element PropertyGrounding im Chor Model ein.
Ein Element davon verkniipft genau einen properties Eintrag, mit einem QName. Das
propertyName Attribut von PropertyGrounding gibt den Namen von einem Eintrag
aus dem properties Attribut von CorrelationSet an, welche mit diesem Grounding
verkniipft werden soll. Das WSDLProperty Attribut gibt die WSDL Property als QName an,
mit welcher propertyName verkniipft werden soll.

Das correlationSet Attribut von CorrelationSetGrounding referenziert das
CorreltationSet aus dem PBD Model, welchen mit diesem Grounding verkniipft wer-
den soll. Das propertyGroundings referenziert fiir jeden Eintrag aus dem properties
Attribut des referenzierten CorrelationSet, ein PropertyGrounding Element.

4.5 Choreographie Editor

participantRefs

chor::CMessagelink

-name : String
-sender : CParticipant

chor::CParticipantRef

cMessageLink

-senders : CParticipantSet

é

-receiver : CParticipant
-bindSenderTo : CParticipant

A

1

messageLinks 1

chor::Choreography

1 groundings

chor::CGrounding

cMessagel|nkGroundings

*

chor::CMessageLinkGrounding

-portType : QName
-operation : String
-bSToWSDLProperty : QName

pbd::Process

correlationSets 1

correlationSetGroundings

1 cParticipantRefGroundings

pbd::CorrelationSet

-properties : String
-name : String

chor::CParticipantRefGrounding

chor::CorrelationSetGrounding

-WSDLProperty : QName

cParticipantRef *

Abbildung 4.9: Chor Model mit CGrounding

1 propertyGroundings

chor::PropertyGrounding

-propertyName : String
-WSDLProperty : QName

correlationSet

47

4 Konzeption

4.5.2 Chor Model Transformation

Wir haben im Abschnitt 4.5.1 auf Seite 35 besprochen, wie das Datenmodell fiir den Editor
aufgebaut ist. Wir konnen nun Choreographien modellieren und mochten jetzt die Moglich-
keit haben, das Chor Model in ein anderes Modell zu transformieren. Da uns in dieser Arbeit
nur BPEL4Chor und BPEL Prozesse interessieren, geben wir hier ein Konzept zur Generie-
rung der BPEL4Chor Artefakte, sowie eine anschlieffende Transformation zu BPEL Prozessen
an. Wir entscheiden uns hier, die Artefakte im Speicher als Document Object Model (DOM)
[WLHaoo] zu représentieren und serialisieren sie darauf in XML Dokumente zur Speiche-
rung auf einem Datentrdger. DOM Dokumente haben den Vorteil, dass die Daten in einer
Baumstruktur repréasentiert werden und viele Methoden zur einfachen Navigation durch den
Baum bereits durch das Framework gestellt werden. Zur Generierung von BPEL Prozessen
benutzen wir zudem noch die bereits existierende Komponente BPEL4ChorToBPEL, welche
in Abschnitt 5.1.6 auf Seite 105 beschrieben wird. Diese Komponente fordert als Eingaben
ebenfalls DOM Dokumente, von daher scheint uns hier DOM die richtige und zugleich
praktische Wahl zu sein.

Generierung der BPEL4Chor Artefakte

Durch das Modellieren mit dem Editor erzeugen wir das Chor Model, welches auch mehrere
Instanzen des PBD Model iiber das process Attribut von CParticipantCommon refe-
renziert. Die aktuelle Instanz des Chor Model dient also als Eingabe fiir die Transformer
Komponente. An dieser Stelle definieren wir die Termini Transformer und Builder. Transformer
Komponenten erzeugen DOM Objekte, Builder Komponenten erzeugen Modell Objekte. In
Abbildung 4.10 ist der Dokumentenfluss zwischen den einzelnen Komponenten dargestellt.
Da wir vom Chor Model ausgehen, miissen wir Topology Model und Grounding Model
Instanzen zuerst erzeugen. PBD Model Instanzen sind vom Chor Model referenziert und
werden durch Modellierung der participants mit seinen Aktivititen erzeugt. Wie wir in
Abschnitt 4.5.1 auf Seite 43 besprochen haben, miissen wir allerdings fiir die Links zwischen
den Aktivitdten in einem < F1ow >, das PBD Model mit den entsprechenden Daten anreichern.
Das bedeutet, dass wir zusitzliche Instanzen von Modell Objekten bilden. Wir benétigen die
Builder Komponenten TopologyBuilder, GroundingBuilder und FlowBuilder. Nachdem uns die
Modell Instanzen vorliegen, transformieren wir diese zu DOM Dokumenten. Dafiir benotigen
wir die Transformer Komponenten TopologyTransformer, GroundingTransformer, PBDTransformer
sowie den umfassenden ChoreographyTransformer, der den Transformationsprozess durchfiihrt
und die anderen Komponenten in der richtigen Reihenfolge, mit den passenden Eingaben,
aufruft.

Wir stellen als nédchstes die Algorithmen der Builder Komponenten vor. Als allgemeine
Konvention fiir die Notation gilt, dass die tiefer gestellten Bezeichnungen pbd, top, grnd oder
chor jeweils die Modellzugehorigkeit der Elemente kennzeichnen. Dabei gehoren die mit pbd

48

4.5 Choreographie Editor

Chor Editor

ChoreographyTransformer

— — — —| Chor (Model) ’»referencesf

PBD (Model)

Chor (Model) -

GroundingBuilder

Topology QName

Grounding (Model)

GroundingTransformer

Grounding (DOM)

TopologyBuilder

Topology (Model)

TopologyTransformer

L

+ — — | PBD (Model)

FlowBuilder

PBD (Model)
7| with Flow Links

PBDTransformer

— — - Topology (DOM)

PBD (DOM)

Abbildung 4.10: Dokumentenfluss zwischen den Transformer und Builder Komponenten

gekennzeichneten Elemente zum PBD Model, top zum Topology Model, grnd zum Grounding
Model und chor zum Chor Model. Der Doppelpunkt wird zur Typisierung von Variablen
verwendet, wie z.B. e : Choreography,,, bedeutet: Variable e vom Typ Choreography aus
dem ., Chor Model. Mehrwertige Attribute, Referenzen auf mehrere Elemente und Listen
behandeln wir als Mengen wie z.B. M = {cml|cml : CMessageLink,, } fiir die Menge aller
CMessageLink Elemente des Chor Model. Die Variable chormodel ist global fiir alle Builder
verfiigbar und halt die Instanz der Choreography Klasse.

49

4 Konzeption

Gemeinsame Algorithmen

Die Builder Komponenten bendtigen vor allem einheitliche Schemen zur Namensgenerierung
von Elementen da Topology Model und Grounding Model entweder QNames oder NCNames
verwenden um auf andere Elemente zu verweisen. Unser Quellmodell ist das Chor Model,
in welchem wir stattdessen Referenzen benutzen daher brauchen wir eine Methode, die
einerseits den Namen eines Chor Model Elements zuriick gibt und andererseits miissen wir
den Fall abfangen, wenn der Name nicht gesetzt wurde. Dazu fithren wir die Hilfsmethode
getNormalizedName ein. Der Algorithmus 4.1 zeigt, wie Namen fiir CParticipantCommon,
Choreography, CMessageLink und Process erzeugt werden. Wir definieren zudem
noch die Methode classname(), welche den Klassennamen des gegeben Elements zurtick gibt
wie z. B. bei Ubergabe von CMessageLink, wiirde "cMessageLink" zuriick gegeben werden.
Wir hingen an den Namen noch zusétzlich einen Hash Code an welcher die Speicheradresse
der Instanz zurtick gibt. Dies sorgt dafiir, dass die Elemente eindeutig benannt werden.

Da die Elemente vom PBD Model bzw. BPEL in einer Baumstruktur angeordnet sind,
konnen wir davon ausgehen dass es Moglichkeiten gibt, zwischen den Knoten zu navigieren.
Wir konnen also Kind- und Elternknoten bestimmen. Daftir definieren wir die Funktion
parentOf (), welche vom tibergebenen Element den Elternknoten zuriick gibt oder null,
falls es keinen gibt. Die Funktion typeOf () gibt den Instanz Typ des gegebenen Elements
zuriick. Als Beispiel wire der Wert von typeOf(a : Activity,pq) gleich Invokepys, wenn a
eine Instanz von Invoke ist. In Algorithmus 4.3 bestimmen wir das Process Element von
einem beliebigen Element aus PBD Model (Element ;) ausgehend.

Der Algorithmus 4.4 erzeugt einen QName fiir die gegebene Aktivitdt. Dieser QName setzt
sich aus dem Namespace des zugehorigen Process Elements und dem id Attribut der
Aktivitdat zusammen. Deshalb benétigen wir die Process Instanz, in welcher diese Aktivitat
definiert ist. Diese Instanz finden wir mit Algorithmus 4.3.

Algorithmus 4.1 Generierung von Namen, allgemein fiir Chor Model Elemente

procedure GETNORMALIZEDNAME(e : CParticipantCommoncpe, V € @ Process,pg V e
Choreography o, V e : CMessageLink ;)
name : String < e.name
if name = null then
name < classname(e)
name < name—+ ‘_"+e.hashCode
end if
return name
end procedure

50

4.5 Choreographie Editor

Algorithmus 4.2 Erzeugt den QName fiir eine Participant Behavior Description
procedure BUILDPBDQNAME(p : Process pq)
pbdQName : QName <—new QName
processName : String <~ GETNORMALIZEDNAME(p)
pbdQName.namespacellRI < p.targetNamespace
pbdQName.local Part <— processName
pbdQName.prefix < lowerCase(processName)
return pbdQName
end procedure

Algorithmus 4.3 Findet das zugehorige Process Element, ausgehend von einem beliebigen

Element aus dem PBD Model
procedure DEDUCEPROCESS(e : Element ,pq)

p : Element
parentElement : Element ,; < parentOf (e)
while parentElement # null do
if typeOf (parentElement) = Process,, then
p < parentElement
break
end if
parentElement <— parentO f (parentElement)
end while
return p
end procedure

Algorithmus 4.4 Erzeugt einen QName fiir die gegebene Aktivitit

procedure BUILDACTIVITYQNAME(a : Activity,pq)
activityQName : QName <—new QName
p : Process,ps <~ DEDUCEPROCESS(a)
pbdQName <—BUILDPBDQNAME(p)
activityQName.namespacelRI < pbdQName.namespacelRI
activityQName.local Part < a.id
activityQName.prefix <— pbdQName.prefix
return activityQName

end procedure

51

4 Konzeption

TopologyBuilder Algorithmen

Mit Algorithmus 4.5 erzeugen wir ParticipantType Elemente. Fiir die Erstel-
lung des name Attributs benutzten wir den Algorithmus 4.6, da wir den Typ Na-
men auch bei Participant und ParticipantSet korrekt setzen miissen. Das
participantBehaviorDescription Attribut ist ein QName, welchen wir mit Algo-
rithmus 4.2 erzeugen, und verweist auf das entsprechende externe Participant Behavior
Description Dokument. Fiir jeden ParticipantType erhohen wir einen Zdhler und hdngen
den Wert dem name Attribut an. Somit ist gewédhrleistet dass die Namen, selbst bei gleicher
Benennung unterschiedlicher Typen, eindeutig sind.

Mit Algorithmus 4.7 erzeugen wir einen Participant im Topology Model. Das forEach
Attribut ist ein QName und verweist auf die Aktivitat der zugehorigen Participant Behavior
Description. Das selbe gilt auch fiir scope. Wir erzeugen diesen QName mit Algorithmus 4.4.
ParticipantSet und MessageLink Elemente erzeugen wir mit den Algorithmen 4.9
und 4.8. Der Startpunkt des TopologyBuilders ist in Algorithmus 4.10 realisiert. Er erzeugt aus
dem Chor Model ein Topology Dokument.

Algorithmus 4.5 Erzeugt ein ParticipantType Element im Topology Model

procedure CREATEPARTICIPANTTYPE(p : Process ypq)

pt : ParticipantTypeo, < new ParticipantTypeyop,
// processld : Integer ist hier eine globale Variable

pt.name <—CREATETYPENAME(p, processid)
pt.participant Behavior Description <—BUILDPBDQNAME(p)
processld <— processld + 1
return pt

end procedure

Algorithmus 4.6 Erzeugt den Namen eines Participant Type Element im Topology Model
procedure CREATETYPENAME(p : Process g, processld : Integer)
processName : String <—GETNORMALIZEDNAME(p)
// processld : Integer ist hier eine lokale Variable
processName < processName+'_'+processld+’_ type’
return processName
end procedure

52

4.5 Choreographie Editor

Algorithmus 4.7 Erzeugt ein Participant Element im Topology Model
procedure CREATEPARTICIPANT(cp : CParticipant ;)
p : Participant;,, <— new Participanti,,
p.name <—GETNORMALIZEDNAME(cp)
// process ist null, wenn cp ein Kind Element eines Sets ist

if cp.process # null then
p.type <—CREATETYPENAME(cp.process)
end if
// F =A{f|f : ForEachlterationSpec,, }
F <= chormodel.forEachlterationSpecs
forall f € 7 do
if f.iteratorValue # null A f.iteratorValue = cp then
p.forEach <—BUILDACTIVITYQNAME(f. forEach)
end if
end for
if cp.scope # null then
p.scope <—BUILDACTIVITYQNAME(cp.scope)
end if
// C = {c|c : CParticipantCommon,,, }
C < cp.selects
forall c € C do
name : String <~GETNORMALIZEDNAME(c)
p.selects U {name}
end for
p.containment <— cp.containment
return p
end procedure

53

4 Konzeption

Algorithmus 4.8 Erzeugt ein ParticipantSet Element im Topology Model

procedure CREATEPARTICIPANTSET(cpSet : CParticipantSet ;)

pSet : ParticipantSety,, <— new ParticipantSet,,
pSet.name <—GETNORMALIZEDNAME(cpSet)
// process ist null, wenn cpSet ein Kind Element eines Sets ist
if cpSet.process # null then
pSet.type <—CREATETYPENAME(cpSet.process)
end if
/! F = {f|f : ForEachlterationSpec.,, }
F < chormodel.forEachlterationSpecs
forall f € 7 do
if f.iteratorSet # null A f.iteratorSet = cpSet then
name : QName <—BUILDACTIVITYQNAME(f . forEach)
pSet.forEach U {name}
end if
end for
if cpSet.scope # null then
pSet.scope <—BUILDACTIVITYQNAME(cpSet.scope)
end if
// P = {child|child : CParticipant ., }
P < cpSet.participants
for all child € P do
p : Participant;y, < CREATEPARTICIPANT(child)
pSet.participants U {p}
end for
// S8 = {child|child : CParticipantSet,, }
S < cpSet.participantSets
for all child € S do
// rekursiver Aufruf
s : ParticipantSety,, <~ CREATEPARTICIPANTSET(child)
pSet.participantSets U {s}
end for
return pSet

end procedure

54

4.5 Choreographie Editor

Algorithmus 4.9 Erzeugt ein MessageLink Element im Topology Model

procedure CREATEMESSAGELINK(cml : CMessageLink ;)

ml : MessageLinky,, <— new MessageLink;,)p
ml.name <—GETNORMALIZEDNAME(cml)
ml.send Activity <— cml.send Activity.id
ml.recieve Activity <— cml.receive Activity.id
if cml.sender # null then

ml.sender < GETNORMALIZEDNAME(cml.sender)
end if
if cml.senders # null then

ml.senders U { GETNORMALIZEDNAME(cml.senders) }
end if
ml.receiver < GETNORMALIZEDNAME(cml.receiver)
ml.messageName <— cml.messageName

// R = {refl|ref : CParticipantRe fpo, }

R <« cml.participantRefs
forall ref € R do

if ref.participant # null then

name : String <~GETNORMALIZEDNAME(ref.participant)
ml.participantRefs U {name}

end if
end for
if cml.bindSenderTo # null then

ml.bindSenderTo <~ GETNORMALIZEDNAME(cml.bindSenderTo)
end if
return ml

end procedure

55

4 Konzeption

Algorithmus 4.10 Erzeugt eine Topology Model Instanz aus dem gegebenen Chor Model
procedure BUILD
top : Topologyiop <— new Toplogyiop
top.targetNamespace <— chormodel.target Namespace
name : String <—GETNORMALIZEDNAME(chomodel)
top.name < name~+"Topology”

// C = {c|c : CParticipantCommon , }
C <= chormodel.participants
forall c € C do
pType : ParticipantTypeyop < CREATEPARTICIPANTTYPE(C. process)
top.participantTypes U { pType}
if typeOf(c) = CParticipant ,, then
p : Participant;,, <~ CREATEPARTICIPANT(C)
top.participants U {p}
else if typeOf(c) = CParticipantSet ,, then
pSet : ParticipantSety,, <~ CREATEPARTICIPANTSET(C)
top.participants U {pSet }
end if
end for
// M = {cml|cml : CMessageLink o, }
M < chormodel .messageLinks
for all cml € M do
ml : MessageLinky,, <~ CREATEMESSAGELINK(cml)
top.messageLinks U {ml}
end for
return fop
end procedure

GroundingBuilder Algorithmen

Das Grounding Model referenziert das entsprechende Topology Model als QName, daher
benétigen wir eine Methode um den QName von Topology zu erzeugen. In Algorithmus 4.11
ist die Vorgehensweise zu sehen. Mit den Algorithmus 4.12 erzeugen wir ein MessageLink
Element im Grounding Model. Der Algorithmus 4.13 erzeugt ein ParticipantRef Ele-
ment fiir einen Eintrag aus dem participantRefs Attribut eines CMessageLink und
Algorithmus 4.14 erledigt das selbe fiir das bindSenderTo Attribut. Fiir alle properties
Eintrdge eines CorrelationSet, miissen wir jeweils ein Property Element im Grounding
Model erzeugen, was mit Algorithmus 4.15 durchgefiihrt wird. Der Startpunkt des Groun-
dingBuilders ist in Algorithmus 4.16 realisiert. Er erzeugt fiir alle CGrounding Elemente des
Chor Model jeweils ein eigenes Grounding.

56

4.5 Choreographie Editor

Algorithmus 4.11 Erzeugt den QName fiir Topology aus dem Topology Model

procedure BUILDTOPOLOGYQNAME
topQName : QName <—new QName
chorName : String <—GETNORMALIZEDNAME(chormodel)
topQName.namespacelRI < chormodel.targetNamespace
topQName.local Part <— chorName+"Topology’
topQName.prefix < +'top’
return topQName

end procedure

Algorithmus 4.12 Erzeugt ein MessageLink Element im Grounding Model

procedure CREATEMESSAGELINK(cmlg : CMessageLinkGrounding jo,)
ml : MessageLinkg,,q <— new MessageLinkg,,q
mlQName : QName < new QName
topQName : QName <-BUILDTOPOLOGYQNAME
mlQName.namespacelRI < topQName.namespacelRI
mlQName.local Part <~ GETNORMALIZEDNAME(cmlg.cMessageLink)
mlQName.prefix <— topQName.prefix
ptQName <— cmlg.portType
if ptQName # null A ptQName.local Part # null then

ml.portType <— ptQName

end if
ml.operation <— cmlg.operation
return ml

end procedure

57

4 Konzeption

Algorithmus 4.13 Erzeugt ein ParticipantRef Element im Grounding Model fiir gesetzte
participantRefs eines CMessagelLink
procedure CREATEPARTICIPANTREF(cPrefg : CParticipantRefGrounding joy)
pRef : ParticipantRef o4 < new ParticipantRef g4
p : CParticipant ., <— cPrefg.cParticipantRef .participant
if p # null then
name : String <~GETNORMALIZEDNAME(p)
pRef.name < name
end if
wsdIPropQName : QName < cPrefg.WSDLProperty
if wsdlPropQName # null AN wsdlPropQName.local Part # null then
pRef WSDLProperty < wsdlPropQName
end if
return pRef
end procedure

Algorithmus 4.14 Erzeugt ein ParticipantRef Element im Grounding Model fiir das
gesetzte bindSenderTo eines CMessageLink
procedure CREATEPARTICIPANTREF(cmlg : CMessageLinkGrounding joy)
pRef : ParticipantRef 4 < new ParticipantRef g4
p : CParticipant .y, <— cmlg.cMessageLink.bindSenderTo
if p # null then
pRef.name <~GETNORMALIZEDNAME(p)
end if
wsdlPropQName : QName < cmlg.bSToWSDLProperty
if wsdlPropQName # null A wsdlPropQName.local Part # null then
pRef . WSDLProperty < wsdlPropQName
end if
return pRef
end procedure

58

4.5 Choreographie Editor

Algorithmus 4.15 Erzeugt Property Elemente im Grounding Model fiir alle property
Eintrdge des CorrelationSet
procedure CREATEPROPERTIES(cSetg : CorrelationSet Groundingcpor)
propertyList : List <— new List
corrSet : CorrelationSet ypg < cSetg.correlationSet
process : Process,pq <~ DEDUCEPROCESS(corrSet)
pbdQName : QName <—BUILDPBDQNAME(process)
// P = {pglpg : PropertyGroundinge, }

P < cSetg.propertyGroundings

for all pg € P do
propQName.namespaceURI < pbdQName.namespaceURI
propQName.local Part < pg.propertyName
propQName.prefix <— pbdQName.prefix
prop : Propertyeng <— new Propertyqerng
prop.name <— propQName
wsdIPropQName : QName < pg.WSDLProperty
if wsdlPropQName # null A wsdlPropQName.local Part # null then

prop.WSDLProperty < wsdlPropQName

end if
propertyList U {prop}

end for

return propertyList

end procedure

59

4 Konzeption

Algorithmus 4.16 Erzeugt Grounding Model Instanzen aus den spezifizierten CGrounding

Elementen im Chor Model
procedure BUILD

grndList : List <— new List

/] G ={cglcg : CGrounding.,, }
G <« chormodel.groundings
forall cg € G do
grnd : Groundingg,ug < new Groundinggpmg
grnd.topology <—BUILDTOPOLOGYQNAME
// M = {cmlg|cmlg : CMessageLinkGroundingy, }
M < cg.cMessageLinkGroundings
for all cmlg € M do
ml : MessageLinkqy, < CREATEMESSAGELINK(cmlg)
grnd.messageLinks U {ml}
if cmlg.cMessageLink.bindSenderTo # null then
pRef : ParticipantRef;q < CREATEPARTICIPANTREF(cmlg)
grnd.participantRefs U {pRef}
end if
end for
// P = {cPrefg|cPrefg : CParticipantRe f Grounding o, }
P < cg.cParticipantRe f Groundings
for all cPrefg € P do
pRef : ParticipantRefq;,q < CREATEPARTICIPANTREF(cPref Q)
grnd.participantRefs U {pRef}
end for
// C = {cSetg|cSetg : CorrelationSetGroundingco, }
C < cg.correlationSetGroundings
for all cSetg € C do
/! £ = {prop|prop : Propertygrq}
L < CREATEPROPERTIES(cSetG)
for all prop € £ do
grnd.properties U {prop}
end for
end for
grndList U {grnd}
end for
return grndList
end procedure

60

4.5 Choreographie Editor

FlowBuilder Algorithmen

Fiir das FlowActivityLink Element aus Chor Model, generieren wir den Namen passend
zum < Flow > Kontext, da dieser Name fiir das Link Element gesetzt wird. In Algorith-
mus 4.17 ist die Vorgehensweise zu sehen.

Fiir jedes FlowActvitiyLink Element miissen einerseits die Source und Target Ele-
mente der Quell- und Zielaktivitdt erzeugt werden und andererseits, ein Link Element
im richtigen Flow Container erzeugt werden. Den Flow Container finden wir mit der
parentOf () Funktion denn fiir jede Aktivitdt in einem < Flow > gilt, dass der direkte Elternk-
noten der Container sein muss. Daher reicht die einmalige Anwendung von parentOf () auf
die sourceActivity bzw. targetActivity.

Algorithmus 4.17 getNormalizedName speziell fiir das FlowActivityLink Element

procedure GETNORMALIZEDNAME(e : FlowActivityLinkj,,)
name : String < e.name
sourceld : String < e.sourceActivity.id
targetld : String < e.target Activity.id
if name = null then
name <'link_‘+sourceld+’_to_‘+targetld+’_‘+e.hashCode
end if
return name
end procedure

61

4 Konzeption

Algorithmus 4.18 Erzeugt Link, Source und Target Elemente im PBD Model

procedure BUILD
// L = {clink|clink : FlowActivityLink g, }
L < chormodel. flow ActivityLinks
for all clink € L do
srcActivity : Activity,pg < clink.sourceActivity
tgtActivity : Activityppy < clink.target Activity
src : Sourceppy <— New Sourcepy,
src.linkName < GETNORMALIZEDNAME(clink)
src.transitionCondition < clink.transitionCondition
src Activity.sources U {src}
tgt : Targetypg <— new Target pg
tgt.linkName <—GETNORMALIZEDN AME(clink)
tgt Activity.targets U {tgt}
srcFlow : Flowypg < null
tgtFlow : Flow,pg < null
parentElement : Element y,; < parentOf(srcActivity)
if typeOf (parentElement) # null A\ parentElement = Flow,;; then
srcFlow <— parentElement
end if
parentElement <— parentOf (tgt Activity)
if typeOf (parentElement) # null A\ parentElement = Flow,;; then
tgtFlow <— parentElement
end if
// srcActivity und tgtActivity beide im selben Flow Container
if srcFlow # null A tgtFlow # null A\ srcFlow = tgtFlow then
link : Linkypg <— new Link,pq
link.name <—GETNORMALIZEDNAME(clink)
// srcFlow und tgtFlow sind die gleiche Instanz
srcFlow.links U {link}
end if
end for
end procedure

Transformer Algorithmen

Als Beispiel sehen wir in Algorithmus 4.19 das Vorgehen bei der Transformation vom
Topology Model zum DOM Dokument. Diese Vorgehensweise ist fiir jedes unserer Model-
le analog. Wir brauchen Zugriff auf die Metadaten aller Modellelemente und definieren
daher die Methoden attributesOf (), valueOf (), valuesOf (), nameOf () und referencesOf ().

62

4.5 Choreographie Editor

attributesOf () gibt die Menge aller Attribute des {ibergebenen Modell Elements zurtick.
In unseren Modellen (Topology Model, Grounding Model und PBD Model) konnen Attri-
bute einen bestimmten Datentyp haben oder auf andere Modell Elemente referenzieren.
Daher benétigen wir die Methode referencesOf (), welche die Menge aller referenzierten
Elemente zuriickgibt. Der Wert eines Attributes kann entweder einfach oder mehrwertig
sein. Die Methode isMultiValued() gibt true zuriick, falls es sich um ein mehrwertiges
Attribut handelt wie z.B. selects von Participant, sonst false. Mit valueOf () bekom-
men wir den gesetzten Wert eines Attributes zurtick oder null, falls nicht gesetzt. Fiir den
Fall eines mehrwertigen Attributs, benutzen wir valuesOf() und bekommen eine Menge
zuriick oder ebenfalls null, falls nicht gesetzt. Wenden wir valueOf () bzw. valuesOf () auf
Referenzattribute an, ist das Verhalten analog nur dass die referenzierten Modell Elemente
zuriickgegeben werden. Mit der Methode nameO f () bekommen wir den Namen des gegeben
Elements zuriick. Ubergeben wir z. B. das Attribut selects, gibt nameOf(selects) den
Wert "selects" zuriick. Die Methode classname() haben wir bereits in Abschnitt 4.5.2 auf
Seite 52 definiert.

63

4 Konzeption

Algorithmus 4.19 Transformiert ein Topology Model Element mit all seinen Kind Elementen
zu einem DOM Dokument
procedure MODELTODOM(doc : Document 3oy, parentElement : Element y,,,, model Element :
Elementyop)
elementName : String <— classname(model Element)
element : Element,,, < doc.createElement (elementName)
// Wenn parentElement null ist, dann ist element das Wurzelelement
if parentElement = null then
doc.appendChild(element)
else
parentElement.appendChild(element)
end if
HANDLEATTRIBUTES(doc, element, model Element)
/! RuodelElement = {ref|ref ist Referenz von model Element }
RinodelElement <— referencesO f(model Element)
for all 1"€f € RmodelElement do
if valueOf (ref) # null V valuesOf (ref) # null then
if isMultiValued(ref) then
Vief < valuesOf (ref)
for all value € V,.y do
MODELTODOM(doc, element, value)
end for
else
MODELTODOM(doc, element, valueOf (ref))
end if
end if
end for
end procedure

64

4.5 Choreographie Editor

Algorithmus 4.20 Transformiert die Attribute des gegebenen Topology Model Elements, zu
Attributen des gegebenen DOM Elements
procedure HANDLEATTRIBUTES(doc : Document ,,,, element : Element,,,, model Element :
Elementyop)

/] AmodelElement = {a]a ist Attribut von model Element }
AsnodelElement < attributesO f (model Element)
foralla € AmodelElement do
if valueOf (a) # null \ valuesOf (a) # null then
domAttribute : Attrg,, < doc.create Attribute(nameOf (a))
attribValue : String
if isMultiValued(a) then
// V4 = {value|value ist Wert des Attributs a}
V, < valuesOf (a)
for all value € V, do
attribValue < attribValue + value+"
end for
dom Attribute.setValue(attribValue)
else
attribValue < valueOf (a)
dom Attribute.setValue(attribValue)
end if
element.set AttributeNode(dom Attribute)
end if
end for
end procedure

4.5.3 Generierung von BPEL Prozessen

Nachdem wir das Chor Model in die einzelnen DOM Dokumente, wie in Abschnitt 4.5.2 auf
Seite 48 besprochen, transformiert haben, konnen wir diese Dokumente in BPEL Prozesse um-
wandeln. Dazu benutzen wir die bereits entwickelte Komponente BPEL4ChorToBPEL [Li1o0],
auf welche wir in Abschnitt 5.1.6 auf Seite 105 genauer eingehen. Das Ergebnis dieser Kom-
ponente sind abstrakte BPEL Prozesse mit zugehorigen WSDL Definitionen, welche ebenfalls
als DOM Dokumente vorliegen. Um ausfiihrbare BPEL Prozesse als Endresultat zu erhalten,
setzen wir noch einen weiteren Schritt dahinter und fithren die Komponente BasicExecutable-
CompletionTransformer ein, welche die abstrakten BPEL Prozesse als Eingabe bekommt und
eine ,basic executable completion” durchfiihrt. In Abbildung 4.11 sehen wir die Komponen-
ten und deren Dokumentenfluss. Der ChorToBPELTransformer stellt die Rahmenkomponente
dar, welche die DOM Dokumente aus dem Transformationsschritt an die BPEL4ChorToBPEL
und BasicExecutableCompletionTransformer verteilt. Die von BPEL4ChorToBPEL ausgegebenen

65

4 Konzeption

Topology (DOM)

ChorToBPELTransformer

: Str—————— Grounding (DOM)

— BPEL4Chor2BPEL

PBD (DOM)

BasicExecutableCompletionTransformer

WSDL (File) T - Abstract BPEL (DOM) ﬁ ————— Executable BPEL (File) ﬁ

BPELDesigner

Abbildung 4.11: Dokumentenfluss zwischen Komponenten fiir die Umwandlung zu aus-
fiihrbaren Prozessen

WSDL Dokumente schreiben wir auf den Datentrdger in den passenden Projektordner. Die
BPEL Dokumente senden wir an den BasicExecutableCompletionTransformer, welcher die Schrit-
te, gelistet in Tabelle 4.1, durchfiihrt. Zuletzt werden die modifizierten BPEL Dokumente
ebenfalls auf den Datentrdger geschrieben und konnen letztendlich mit dem BPEL Designer
weiter bearbeitet werden.

4.5.4 Grafisches Konzept

In Abschnitt 4.5.1 auf Seite 35 haben wir das Datenmodell fiir den Editor vorgestellt, welches
wir nun visualisieren. In Abbildung 4.12 ist die Editor Oberfliche zu sehen. Der mittle-
re Teil wird zur Darstellung der Elemente benutzt und in der Palette befinden sich die
Werkzeuge dafiir. Im unteren Bereich befindet sich die Property View, welche fiir das ak-
tuell selektierte Element die Eigenschaften anzeigt. Uber diese Property View lassen sich
viele Einstellungen vornehmen, die nicht durch die Werkzeuge in der Palette eingestellt

66

4.5 Choreographie Editor

werden konnen. Dabei sind die Einstellungen immer spezifisch fiir das gerade selektier-
te Element und werden durch Tabs in verschiedene Kategorien eingeteilt. In der Toolbar
befinden sich Funktionen Laden, Speichern, Exportieren und Transformieren. Mit Hilfe
der Werkzeuge konnen wir nun die Komponenten unserer Choreographie modellieren.
Wir haben im Abschnitt 4.5.1 auf Seite 35 die Konvention getroffen dass alle grafischen
Elemente, welche wir im Editor platzieren, eine eigene Entitdt bzw. Klasse im Chor Model
sind was wir hier nun ausnutzen, denn fiir jede Entitit gibt es ein Werkzeug in der Palette.
In Abbildung 4.13 wurde ein CParticipant mit seinem zugehorigen Process Element
platziert, welches zundchst keine Aktivitdten beinhaltet. In Abbildung 4.14 haben wir ein
CParticipantSet Element dazu platziert sowie Aktivitdten mit den entsprechenden Werk-
zeugen modelliert. Die CMessageLink Elemente zwischen den Kommunikationsaktivitaten
wurde ebenfalls gezogen und dazu noch ein CParticipantRef Element platziert, welches
auf diesen CMessageLink zeigt, tiber welchen es ausgetauscht wird. Die Zugehorigkeit die-
ser Referenz zu seinem CMessageLink kann nur tiber die Property View eingestellt werden.
Abbildung 4.15 zeigt einen CParticipant mit seinem Process und einer Flow Aktivitat.
Darin sind weitere Aktivitdten platziert, zwischen welchen FlowActivityLink Elemente
gezogen wurden.

Als nédchstes betrachten wir die grafischen Elemente der Property View. In Abbildung 4.16
sehen wir die Inhalte der base Kategorie von CParticipant und CParticipantSet sowie
die aufrufbaren Dialoge durch Betidtigung der Buttons. Im Textfeld "name:" ldsst sich der
Wert des name Attributes einstellen. Die Combobox "scope:" zeigt eine dropdown Liste
aller verfiigbaren Scope Aktivitdten dieser Choreographie. Generell gilt fiir alle folgenden
Abbildungen von Property View Elementen, dass Felder mit einem Pfeil nach unten immer
Comboboxen darstellen. Das "selects:" Feld ist eine Liste von selektierten CParticipant
bzw. CParticipantSet Elementen. Eintrdge konnen {iber den "add" Button hinzugefiigt
werden. Dabei 6ffnet sich der Dialog, auf welchen der vom Button ausgehende Pfeil ver-
weist. Dieser "Participants” Dialog zeigt eine Liste aller verfligbaren CParticipant und
CParticipantSet Elemente dieser Choreographie mit Ausnahme des aktuell selektierten
Elements. Durch Auswahl eines Eintrages und Klick des "select" Buttons, wird dieser Eintrag
in die "selects:" Liste iibernommen.

Abbildung 4.17 zeit die Inhalte der participants Kategorie von CParticipantSet. In die
"participants:” Liste lassen sich tiber den "add" Button neue Elemente hinzufiigen. Bei
Klick auf diesen Button, offnet sich der "Create new Participant" Dialog, tiber welchen
sich das name Attribut einstellen lasst. Bei Klick auf den "save:" Button, wird ein neues
CParticipant Element erstellt und der "participants:" Liste hinzugefiigt. Die Eigenschaften
dieses neuen Eintrages lassen sich iiber den "configure selection:" Button einstellen. Durch
Klick darauf offnet sich der "participant” Dialog. Die Inhalte und Funktionen dieses Dialogs
sind identisch zu denen der base Kategorie von CParticiapnt nur dass sich zusétzlich
noch der Wert des containment Attributes einstellen lasst.

67

4 Konzeption

Die Inhalte der base und participants Kategorien von CMessageLink sehen wir in Abbil-
dung 4.18. In der base Kategorie ist im Feld "name:", der eindeutige Name fiir diesen
Link einstellbar. Mit "messageName:" ldsst sich ein zusatzlicher Name fiir diesen Link
vergeben. Die participants Kategorie zeigt die Elemente zum Einstellen von "sender:", "sen-
ders:", "receiver:" und "bindSenderTo:" wobei dies alles Comboboxen sind. Die Eintrage der
dropdown Liste von "bindSenderTo:" zeigt entweder nur den CParticipant, den dieser
CMessageLink als "sender:" hat oder, im Fall dass "sender:" ein CParticipantSet ist, alle
CParticipant Kind Elemente. Der "ParticipantRef List:" konnen Eintrage tiber den "add"
Button hinzugefiigt werden wobei der zugehorige Dialog natiirlich nur auswéhlbare Eintrage

zeigt, wenn CParticipantRef Elemente in dieser Choreographie platziert wurden.

Abbildung 4.19 zeigt die Inhalte der base Kategorie von CParticipantRef. Die Combobox
"participant:" enthélt eine Liste von allen CParticipant Elementen dieser Choreographie
womit die zu tibertragende Referenz festgelegt werden kann. Zudem lésst sich fiir diese
Referenz noch ein zusédtzlicher Name vergeben.

Abbildung 4.20 zeigt die base Kategorie der Process Elemente, in welche sich die
name und targetNamespace Attribute des Prozesses festlegen lassen. Unter correlati-
ons und messageExchanges konnen jeweils tiber den "add" Button neue CorrelationSet
bzw. MessageExchange Elemente angelegt werden. Das properties Attribut eines
CorrelationSet Elements ldsst sich durch Auswahl eines Elementes in der "Correla-
tionSets:" Liste im Textfeld "properties:" editieren. Fiir die Scope Aktivitét gibt es ebenfalls
correlations und messageExchanges Kategorien die analog funktionieren.

Die Inhalte der base und groundings Kategorien von Choreography sehen wir in Abbil-
dung 4.21. Die base Kategorie beinhaltet die selbe Funktionalitidt wie diese von Process.
Unter der groundings Kategorie konnen mit dem "add" Button neue CGrounding Elemente
fiir diese Choreographie angelegt werden. Wird ein Eintrag der "groundings:" Liste selektiert,
konnen fiir die in dieser Choreographie definierten CMessageLink, CorrelationSet
und CParticipantRef Elemente, groundings konfiguriert werden. Dafiir 6ffnet sich beim
Klick auf den jeweiligen "configure" Button der entsprechende Dialog. In Abbildung 4.22
konnen fiir alle modellieren CMessageLink Elemente, welche in der "MessageLinks:"
Liste aufgefiihrt sind, CMessageLinkGrounding Elemente angelegt werden. Selektiert
man einen Eintrag der "MessageLinks:" Liste konnen rechts, in der "Configure messa-
geLink.name" Gruppe, die grounding spezifischen Angaben fiir diesen selektieren Link
gesetzt, und mit dem "save" Button abgespeichert werden. Dabei wird entweder ein neues
CMessageLinkGrounding Element angelegt oder, falls schon vorhanden, die neuen Wer-
te fiir das bereits bestehende tibernommen. Abbildung 4.23 zeigt die beiden Dialoge fiir
CorrelationSet und CParticipantRef Elemente. Fiir letzteres ist die Funktionalitat
dem Dialog fiir CMessageLink Elemente dquivalent. Der Dialog fiir CorrelationSet
beinhaltet die zusétzliche Liste "Properties of correlationSet.name", worin alle Eintrdge des
properties Attributes untereinander gelistet werden. Dies ist notwendig, da fiir jeden
Eintrag ein eigenes Grounding angegeben werden muss. Selektiert man also einen Eintrag

68

4.5 Choreographie Editor

dieser Liste, kann das entsprechende PropertyGrounding Elemente dafiir angelegt bzw.
abgedndert werden.

Die Inhalte der base Kategorie sind fiir alle Aktivitdten gleich. Sie beinhalten "name:" und
"id:" Felder zum editieren der entsprechenden Attribute. Je nach Aktivitdt kommen aber noch
spezifische Elemente hinzu wie z. B. fiir ForEach eine Checkbox fiir parallele Ausfiihrung. In
Abbildung 4.24 sind die Elemente der base und iteration Kategorien von ForEach zu sehen. In
der iteration Kategorie sind in der "Iterator Set:" Combobox alle CParticipantSet Elemente
dieser Choreographie gelistet. Die "Iterator Value:" Combobox beinhaltet alle CParticipant
Kind Elemente des ausgewdhlten CParticipantSet Elements der anderen Combobox. Fiir
Invoke, Receive, Reply und OnMessage gibt es jeweils noch die variables Kategorie, in
welcher sich eine Checkbox zum setzen der Opaque Variable befindet. Ebenfalls gemeinsam
haben sie die correlations Kategorie, in welcher sich bereits definierte CorrelationSet
Elemente dieser Aktivitit zuweisen lassen. Fiir Receive, Reply und OnMessage existiert
zusétzlich noch die messageExchanges Kategorie, in welcher sich eine Combobox mit allen in
Process definierten MessageExchange Elementen befindet. Diese dropdown Liste enthalt
zusitzlich noch MessageExchange Elemente, welche im dieser Aktivitét tibergeordneten
Scope definiert sind.

69

ol

Toolbar

‘ save H saveAs ‘ ‘ load export ‘ ‘ transform

|
/

e

Palette

Choreography

Participant

ParticipantSet

MessageLink

ParticipantRef

Activities

standard activity

structured activity

il

Property Vie

i il

tabl

tab2

tab3

Abbildung 4.12: Konzept der Editor Oberflache

uondazuoy| ¥

1/

Toolbar

Participant.name

Process.name

Participant aus Palette selektiert und in
Editorfenster platziert

Palette

Choreography
Participant
ParticipantSet
MessageLink

ParticipantRef

Activities

standard activity

structured activity

b

P
Property View

tabl

tab2

tab3

Abbildung 4.13: CParticipant mit leerem Process

Joyp3 aiydesboaioyd G

¢l

Toolbar

P
Participant.name

Process.name

structured activity

standard activity (wsu:id)

U

structured activity
(wsu:id)

&

standard activity (wsu:id) <€

standard activity (wsu:id)

name:id

ParticipantSet.name

PRef

Process.name

structured activity

standard activity (wsu:id)

structured activity
(wsu:id)

P standard activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

L

)
)

standard activity (wsu:id)

Palette

Choreography

Participant
ParticipantSet
MessageLink

ParticipantRef

Activities

standard activity

structured activity

b

Property View

tabl

tab2

tab3

Abbildung 4.14: Participants mit Aktivitdten, Message Links und einer Participant Referenz

uondazuoy| ¥

€L

Toolbar

Participant.name

Process.name

Flow

standard activity (wsu:id)

standard activity (wsu:id)

structured activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

-l

Palette

Choreography

Participant
ParticipantSet
MessageLink

ParticipantRef

Activities

Flow

FlowActivityLink

Activity

1L

P
Property View

tabl

tab2

tab3

Abbildung 4.15: F1ow mit Aktivititen und FlowActivityLink Elementen

Joyp3 aiydesboaioyd G

4 Konzeption

(o
Participant
base
participant(Set)_name
scope:‘ scope_name @‘
(oo
ParticipantSet)

base name: participant_name

participants

scope: ‘ scope_name @‘

Participants

A

participant(Set)_name
participant(Set)_name

select

Abbildung 4.16: Elemente und Dialoge der base Kategorie von CParticipant und
CParticipantSet

74

4.5 Choreographie Editor

-
ParticipantSet

base .
participants:

participants

add

participant_1

participant_2
configure selection

Participant

participant(Set)_name

name: ‘ participant_name ‘ selects: participant(Set)_name (add)

scope: ‘ scope_name ‘

containment: ‘ containment_option @ ‘

Participants

A

participant(Set)_name
participant(Set)_name

\ 4

Create new Participant

name: ‘ < save >

select

Abbildung 4.17: Elemente und Dialoge der participants Kategorie von CParticipantsSet

75

4 Konzeption

(MessageLink

participants

name: ‘ unique name (referenced by grounding) ‘

messageName: ‘ xyzMessage ‘

Messagelink
participants
sender: ‘ participant_name @‘ senders: participantSet_name @
base]
receiver: ‘ participant_name @‘
ParticipantRef List:
bindSenderTo: ‘ participant_name ‘
- dd
@ ParticipantRef.name a
v

ParticipantRefs

participantRef_name
participantRef_name

select

Abbildung 4.18: Elemente und Dialoge der base und participants Kategorien von
CMessageLink

4.5 Choreographie Editor

Ve
ParticipantRef

base

participant: Participant.name @

name: name

Abbildung 4.19: Elemente der base Kategorie von CParticipantRef

77

4 Konzeption

Process
correlations
Name: ‘ name ‘
messageExchanges
TargetNamespace: http://www.examplel.com
r//
Process
correlations
base CorrelationSets: properties of selected entry
add Ao
messageExchanges correlationSet.name Properties: PropertyNamel PropertyName2 ...
Create new CorrelationSet <
name: ‘ < save)
Process
correlations
MessageExchanges:

base

add
messageExchanges messageExchange.name

Create new MessageExchange

name: ‘ C save >

A

Abbildung 4.20: Elemente und Dialoge der correlations, base und messageExchanges Kategorien
von Process

78

4.5 Choreographie Editor

y
(
Choreography
base ‘ ‘
name: name
groundings
targetNamespace: ‘ namespace_uri ‘
,/"
Choreography
groundings: Groundings Configuration
groundings
. add
grounding.name
grounding.name Messagelink Groundings:
CorrelationSet Groundings:
ParticipantRef Groundings:
y
Create new Grounding l
name: ‘ C save)

Abbildung 4.21: Elemente der base und groundings Kategorien von Choreography

79

4 Konzeption

Messagelink Groundings (grounding.name)

. Configure messagelink.name
MessageLinks:

messagelLink.name PortType BindSenderTo
messagelLink.name
messagelink.name
NS_URI: ns_uri NS_URL: ns_uri
Localpart: localpart Localpart: localpart
Prefix: prefix Prefix: prefix

o
Operation: operation | save

Abbildung 4.22: Dialog fiir die Konfiguration von CMessageLinkGrounding Elementen

8o

4.5 Choreographie Editor

CorrelationSets:

CorrelationSet Groundings (grounding.name)

Properties of correlationSet.name:

correlationSet.name
correlationSet.name
correlationSet.name

Propertynamel
Propertyname2

Configure propertyname

WSDLProperty

NS_URI:

Localpart:
Prefix: prefix

save

ParticipantRefs:

participantRef.name
participantRef.name
participantRef.name

ParticipantRef Groundings (grounding.name)

Configure participantRef.name

WSDLProperty
NS_URI:
Localpart:
Prefix: prefix

o)

Abbildung 4.23: Dialog fiir die Konfiguration von CorrelationSetGrounding und

CParticipantRefGrounding Elementen

81

4 Konzeption

ForEach
base
id: ‘ id ‘
iteration
name: ‘ name ‘
parallel:
ForEach
iteratorSet: ‘ participantSet.name@‘
iteration
iteratorValue: ‘ participant.name @‘

Abbildung 4.24: Elemente der base und iteration Kategorien von ForEach

82

5 Implementierung

Wir haben uns dafiir entschieden, den Choreographie Editor als Eclipse Plugin zu realisieren.
Dies liegt zum einen daran, dass der BPEL Designer ebenfalls als Eclipse Plugin realisiert
wurde und dieser nach wie vor zum Bearbeiten der BPEL Prozesse verwendet wird —
andererseits bietet die Eclipse Platform diverse Frameworks und vorgefertigte Komponenten
um einen grafischen Editor schneller und einfacher zu entwickeln, als wenn alles von Grund
auf neu implementiert werden mdiisste. Im Folgenden betrachten wir zuerst die Technologien,
welche zur Implementierung benutzt werden und schauen uns dann einige Details an, wie
diese zum Einsatz kommen.

5.1 Verwendete Technologien

Die Technologien werden im folgenden eher zusammenfassend, mit Schwerpunkt auf die in
der Implementierung verwendeten Features, beschrieben.

5.1.1 Eclipse

Die Folgenden Beschreibungen zu Eclipse und seinen Komponenten basieren auf dem Buch
[Ste11] von Steinberg und der Eclipse Dokumentation fiir Version 3.6 [ecl10], welche wir fiir
die Implementierung benutzen.

Eclipse ist eine Open Source Integrationsplattform fiir Softwaretools sowie eine Entwicklungs-
umgebung fiir Java. Das Kernprojekt bietet ein generisches Framework fiir die Integration
dieser Tools und andere Projekte erweitern dieses Framework um spezifische Tools und
Entwicklungsumgebungen zu erstellen. Die Projekte in Eclipse sind in Java implementiert
und laufen damit auf allen Betriebssystemen, zu welchen es Java Virtual Machines gibt.
Eclipse besteht aus vielen Projekten wobei die Hauptbestandteile in den Projekten Eclipse
Project, Modeling Project, Tools Project und Technology Project realisiert sind.

Das Eclipse Project unterstiitzt die Entwicklung einer Plattform oder eines Frameworks und ist
in vier Unterprojekte aufgeteilt, die zusammen alle Features bieten um Eclipse basierte Tools
zu entwickeln. Equinox ist das Projekt, welche das Komponentenmodell, auf welchem Eclipse

83

5 Implementierung

basiert, zur Verfiigung stellt. Es implementiert die OSGi R4 core Framework Spezifikation®.
Das Platform Projekt bietet Frameworks und Services fiir die Integration von Tools und die
Entwicklung von Anwendungen und wurde auf Basis der OSGi Service Platform implemen-
tiert. Die Java Development Tools bieten eine umfangreiche Java Entwicklungsumgebung und
werden selbst zur Entwicklung des Eclipse Project benutzt. Um die Entwicklung von Plugins
in Eclipse zu unterstiitzen, bietet das Plug-in Development Environment Projekt unter anderem
verschiedene Editoren und Mechanismen zu Registrierung von Plugin Erweiterungen.

Das Modeling Project bietet modellbasierte Entwicklungstechnologien die als Basis das Eclipse
Modeling Framework (EMF, siehe 5.1.2 auf Seite 86) haben. Weitere Technologien, welche
auf EMF aufbauen sind Model Transformationen, Datenbankintegration und die Gene-
rierung von grafischen Editoren. Somit bietet dieses Projekt fiir unsere Implementierung
die zentralen Technologien, welche noch durch das Graphical Editing Framework (GEF,
siehe Abschnitt 5.1.3 auf Seite 92) und das Graphical Modeling Framework (GMF, siehe
Abschnitt 5.1.4 auf Seite 95) aus dem Tools Project erganzt werden.

Im Technology Project landen Unterprojekte welche experimenteller Natur sind und noch am
Anfang stehen. Sollten sie sich weiterentwickeln und reifen, werden sie in andere Projekte
verschoben.

In Abbildung 5.1 sehen wir die Architektur der Eclipse Platform und ihre Strukturierung
in Subsysteme. Das Help System definiert sogenannte Extension points, auf welche wir
gleich eingehen werden, um Benutzerhilfen zu realisieren und Team bietet Verwaltung und
Versionierung von Ressourcen fiir Programmierung im Team.

Plugins

Komponenten werden in Eclipse , Plugin” (Bundle in OSGi) genannt und die Platform besteht
selber aus mehreren Plugins. Sie ist verantwortlich fiir das Installieren, Entfernen, Auffinden
("discovering") und Ausfiihren von Plugins ohne das Eclipse neu gestartet werden muss.
Diese Plugin Einheiten beinhalten alles was notig ist, um die darin realisierte Komponente
auszufiihren. Neben dem obligatorischem Java Code sind unter anderem zwei Manifest
Dateien enthalten, welche wir fiir unsere Implementierung anpassen miissen. Im Plugin
Unterordner META-INF befindet sich die MANIFEST.MF Datei, welche unter anderem
das Plugin identifiziert und Abhdngigkeiten definiert. Dazu gehoren die Abhédngigkeiten
von anderen Plugins und die exportierten Pakete sprich, diese Pakete, welche fiir andere
Plugins sichtbar sind und damit auch von jenen importiert werden konnen. Dies ist fiir
unsere Implementierung zentral, da wir die Editor Komponente aus mehreren Plugins
realisieren werden. Die zweite Manifest Datei befindet sich im Plugin Wurzelverzeichnis
und ist mit plugin.xml benannt. Hier werden zum einen Extension points Definiert welche

http://www.osgi.org/Specifications/HomePage

84

http://www.osgi.org/Specifications/HomePage

5.1 Verwendete Technologien

/Eclipse Platform
workbench \‘::..

{ JFace \
SWT)

[Workspace

‘Platform Runtime

Java
Development
Tooling

(JDT)

Plug-in
Developer

Environment
(PDE)

Eclipse SDK

Abbildung 5.1: Eclipse Platform Architektur. Quelle: [ecl10]

beschreiben, was fiir eine Funktionalitdt dieses Plugin anderen Plugins zur Verfiigung stellt
und zum anderen Extensions, welche die von anderen Plugins zur Verfiigung gestellten
Funktionalitdten benutzen. Extension points und Extensions funktionieren sozusagen Hand in
Hand und erlauben den Plugins sich untereinander beliebig zu kombinieren.

Workspace

Alle Eclipse Plugins arbeiten mit Dateien und Ordnern, jedoch werden diese zu Ressourcen
durch die Workspace API abstrahiert. Eines dieser Ressourcen ist der Projekt Ordner, welcher
der Top-Level Container jedes Eclipse Projekts ist und Workspace genannt wird. An jeder
Ressource konnen Listener registriert werden, mit denen Anderungen an dieser Ressource
tiberwacht werden. Es ist aufiferdem damit moglich beliebige Aktionen auszuldsen, sollte
sich eine Ressource verandert haben. Ein Beispiel dafiir ist die standardméfsiige Aktion, dass
in Java Projekten bei Anderung und anschlieSender Speicherung einer Quellcode Datei, der
Java Compiler neu aufgerufen wird [Shao4]. Wir machen uns die Workspace API fiir die
Export- und Transformationsfunktion (siehe Abschnitt 4.5.2 auf Seite 48) zu nutze, wenn wir
die transformierten Modelle in den Projektordner schreiben.

85

5 Implementierung

Workbench

Die Workbench ist die Benutzeroberfliche von Eclipse. In Abbildung 5.2 sehen wir die
einzelnen Elemente eines Workbench Fensters, von welchen mehrere geoffnet werden konnen,
wobei jedes dieser Fenster ein abgeschlossener Bereich aus Editors und Views ist. Innerhalb
des Workbench Fensters befindet sich die Page, welche zur Gruppierung der einzelnen Teile
dient. Mochte man visuelle Inhalte der Workbench hinzufiigen, kann dies in Form von Editors
und Views realisiert werden. Views werden tiblicherweise zur Navigation durch hierarchische
Daten verwendet wie z. B. der Package Explorer im linken Bereich der Abbildung 5.2 oder
die Properties View im unteren Bereich, zum Anzeigen von Eigenschafen eines Objektes aus
dem Editor. Editors werden dazu benutzt um Inhalte von Objekten anzuzeigen, verdndern
und abzuspeichern wie z.B. Java Dateien im Java Editor oder natiirlich auch unser Chor
Model im Choreographie Editor. Menu Bar und Tool Bar gehdren zum Workbench Fenster und
konnen beliebig mit Aktionen erweitert werden, die entweder nur fiir den gerade aktiven
Editor oder auch global verfiigbar sind.

Die grafischen Komponenten der Views und Editors — wie z. B. Textfelder, Buttons, Listen usw.—
werden mit dem Standard Widget Toolkit (SWT) realisiert. SWT ist eine betriebssystemunabhan-
gige Grafikbibliothek welche immer auf die nativen Widgets des Systems zuriickgreift, aufier
wenn dieses keine Implementierung dafiir bereit hilt, in welchem Fall das betroffene Widget
emuliert wird. Das JFace Toolkit erweitert SWT indem es, unter anderem fiir SWT Widgets
wie Tabellen, spezielle Viewer Klassen bereit stellt, welche das Anzeigen und synchronisieren
von Daten vereinfachen. In unserer Implementierung benutzen wir, fiir die Widgets der
Property View und Dialoge, nur SWT.

5.1.2 Eclipse Modeling Framework

Die folgenden Beschreibungen basieren auf dem EMF Buch [Ste11] von Steinberg. Das
Eclipse Modeling Framework (EMF) ist ein Framework und Programmcode Generator welches
erlaubt, ein Modell — ausgehend von Java Interfaces, XML, UML Dateien oder direkt von
Hand - zu erzeugen und davon eine passende Implementierung sowie einen Editor dafiir
zu generieren. Typischerweise werden fiir grofiere Anwendungen zuerst Modelle erstellt
welche das was die Anwendung kann, in abstrakter Form darstellen. Diese Modelle miissen,
fir die Realisierung der Anwendung, angereichert und in Programmcode umgesetzt wer-
den. Der EMF Codegenerator automatisiert den Schritt der Programmcode Erzeugung zu
einem gewissen Grad, weshalb EMF als ein Schritt in Richtung Model Driven Architecture®
gesehen werden kann. EMF Modelle sind im wesentlichen vergleichbar mit UML Klassen-
diagrammen indem sie ein vereinfachtes Modell der Klassen und Daten einer Anwendung

2http://www.omg.org/mda/

86

http://www.omg.org/mda/

5.1 Verwendete Technologien

Menu Bar Editor Tool Bar

DRI s o o Gl - e
File Edit Diagram MNavigate Search Project Rund ChorDisgramiditor Window Help
(il [&’ Jave [4- Plug-in Deve... | [Resource
Tahoma 9 | B gy | B B ol R
F-rO-Q- HGr - BO F AR TR R
[# Package 52 35 Plug-ins| = O3 |[[d] booking.chor_diagram & = 0[5 outline 3 5l »+ -0
5@ e~ = v
1= chortest o =
(= booking_export ¥ Agency
(2 bosking_transform & agency O @iy @
5] bosking.chor - 4 CMessageLink
4 main:
[@) booking.chor_diagram 2l| 4 cParicipant
receivel
5 chorTest2 + - o CParigipantser
ParticipantBeha... &
ot (= ParticipantBeha
+ 3 4 Sequence
scope
B 4 Scope
4 maim: Tk
requestPriceid
+ req Pa— (= Pick ®
4 Pick
+ getPricess - 4 OnMessage
+ pame3 4 Onalym
(= Flow P
4 orderTicket6 & Flow
aj = v 4 FlowActivityLink
1 Properties 2 == =08
= Choreography
Rulers & Grid name: booking
Appearance targetNamespace: urnichor
Groundings
Base

AN /

Page Niews

Abbildung 5.2: Eclipse Workbench. (Grafik basiert auf der Quelle: [ecl10]

reprasentieren. Um ein Modell in EMF zu beschreiben, wird das Ecore Meta-Modell beno-
tigt welches, in einer vereinfachten Version zwecks Ubersichtlichkeit, in Abbildung 5.3 zu
sehen ist. EClass reprédsentiert eine Klasse mit Namen und mehreren Attributen sowie
Referenzen. EAt t ribute reprasentiert ein Attribut welches einen Namen und einen Typ hat.
EReference reprdsentiert ein Ende einer Assoziation zwischen Klassen, hat einen Namen
und einen Referenztyp, welcher wiederum eine Klasse ist. EAttribute und EReference
erben beide von ESt ructualFeature (in der Abbildung nicht dargestellt), was Attribute
und Referenzen zu Features einer Klasse generalisiert. Fiir ein Feature kann eine Multipli-
zitdt angegeben werden um mehrwertige Attribute und Referenzen realisieren zu konnen.
EDataType reprdsentiert den Datentyp eines Attributes welcher entweder primitiv, wie
z.B. int oder ein Objekttyp wie z.B. java.util.Date, sein kann. Wurde das gewiinschte
Modell in Ecore modelliert, kann Java Code daraus generiert werden. Fiir jede EClass Entitét
wird ein Java Interface generiert und dazu eine passende Klasse, welche dieses Interface
implementiert. Dieser Ansatz ist eine Designentscheidung der EMF Entwickler und hat zu-

87

5 Implementierung

EClass eAttributes EAttribute eAttributeType EDataType
name : String name : String
0..* 1
eReferenceType 1
eReferences EReference

name : String
containment : Boolean

0..*

Abbildung 5.3: Ecore Meta-Modell. (Grafik basiert auf der Quelle: [Ste11]

dem den Vorteil, dass auch Mehrfachvererbung modelliert werden kann. Da eine Java Klasse
immer nur von einer Klasse erben, jedoch mehrere Inferfaces implementieren kann, wird so
das Problem der direkten Mehrfachvererbung (extends) geltst. Jedes dieser generierten
Inferfaces erbt von EObject und bringt dadurch Methoden mit, welche Zugriff auf das
Meta-Modell gewdhren, was vom Funktionsprinzip her der Java Reflection API3 entspricht.
In der folgenden Auflistung, sehen wir einige der wichtigen Methoden von EObject und
deren Funktion.

eClass() gibt von der Objekt Instanz, die Instanz des Meta-Objekts EClass zuriick.

eContainer() und eRessource geben von der Objekt Instanz, die Instanz des referenzierten
Objekts zuriick. eContainer gibt nur Referenz zuriick, falls containment = true gesetzt
wurde.

eGet() und eSet() bieten Zugriff auf Getter und Setter Methoden der Objekt Instanz.
elsSet() tberpriift, ob ein Wert in dieser Instanz gesetzt ist.

elUnset() entfernt den gesetzten Wert in dieser Instanz. Der Wert wird dabei entweder auf
null oder, falls definiert, auf den Standardwert gesetzt.

Instanzen von EMF Modelle konnen einfach persistent gemacht werden, indem Resource
und ResourceSet benutzt wird. Eine Resource reprisentiert einen physischen Speicherort
wie z.B. eine Datei. ResourceSet ist eine Sammlung von Resource Instanzen, die alle
zusammengehoren oder sich untereinander referenzieren. ResourceSet unterstiitzt auch
das Laden von Referenzen nach Bedarf, d.h. sie werden erst in den Speicher geladen,
wenn sie vom Aufrufenden bendtigt werden. Solange die Referenz nicht benétigt wird,

3http://docs.oracle.com/javase/6/docs/technotes/guides/reflection/index.html

88

http://docs.oracle.com/javase/6/docs/technotes/guides/reflection/index.html

5.1 Verwendete Technologien

ResourceSet

lade resource 1

7777777777777777 > uri 1 | resource 1
/uri 2 | resource 2

-
-
4
(

s

O Q O O QQ
Or—2d

Resource 1 Resource 2

Abbildung 5.4: Laden von Resource Instanzen nach Bedarf. (Grafik basiert auf der Quelle:
[Ste11]

werden sogenannte Stellvertreter (proxies) geladen und erst bei Bedarf das konkrete Objekt
aufgelost. In Abbildung 5.4 ist diese Funktionsweise dargestellt. Ein Client Programm ladt
Resource 1, welche Referenzen — dargestellt durch Pfeile ausgehend von den Knoten — auf
Resource 2 beinhaltet. Sobald der Client diese Referenzen benétigt, veranlasst Resource 1 beim
zugehorigen ResourceSet, das Nachladen von Resource 2.

Eine weitere zentrale Eigenschaft von EMF ist, dass alle generierten Modell Klassen das
Observer Entwurfsmuster# realisieren. Dies ist essentiell um einen Editor nach dem MVC
Architekturmuster (siehe Abschnitt 3.4 auf Seite 27) zu realisieren. Das Observer Entwurfs-
muster wird durch ein Not i fier Interface realisiert, von welchem EOb ject erbt und somit
die Registrierung von Observern sowie deren Benachrichtigung erlaubt. Observer werden in
EMF Adapter genannt, da diese in EMF weitaus mehr als simple Observer sind, die nur auf Zu-
standsdnderungen reagieren. Adapter konnen zusatzliche Funktionen fiir ihre beobachteten
Objekte bereitstellen, wie wir im folgenden Abschnitt sehen werden, ohne von diesen erben
zu miissen. Sie konnen sich an eine EOb ject Instanz mittels eAdapters().add() Methode
registrieren. Der generierte Code hélt noch zwei weitere wichtige Klassen bereit. Zum einen
eine Factory Klasse (realisiert das Factory Entwurfsmuster’) um die Modellobjekte zu
erzeugen und zum anderen eine Package Klasse, welche einfachen Zugriff auf die Ecore

4http://www.oodesign.com/observer—pattern.html
5http://www.oodesign.com/factory-pattern.html

89

http://www.oodesign.com/observer-pattern.html
http://www.oodesign.com/factory-pattern.html

5 Implementierung

Metadaten ermoglicht. Der Generierte Code wird zudem als Eclipse Plugin erzeugt und
kann somit leicht von anderen Plugins verwendet werden.

Neben dem Ecore Meta-Modell gibt es das Generator Modell, welches alle Informationen
beinhaltet, wie genau der Code generiert werden soll. So kann unter anderem festgelegt
werden, in welchem Ordner bzw. Paket die Klassen abgelegt werden. Diese Information ist
nicht relevant fiir das Datenmodell, muss aber trotzdem irgendwo abgespeichert werden.
Die Trennung in zwei Modelle erlaubt das erneute Generieren des Codes, ohne das Ecore
Modell anpassen zu miissen.

EMF.Edit

EMEEdit verbindet EMF mit der Eclipse Benutzeroberfliche (Eclipse UI Framework). Es
hilft uns, einen grafischen Editor fiir unser Chor Model zu implementieren indem es Funk-
tionen zur Darstellung und Bearbeitung des Modells bereitstellt. Es unterstiitzt aufierdem
das modifizieren von Modellobjekten nach dem Command Entwurfsmuster®. Der EMF.Edit
Code lasst sich ebenfalls iiber das Generator Modell erzeugen. Um den EMFE.Edit Code zu
verstehen, erldutern wir zuerst die grundlegende Funktionsweise des Eclipse UI Frameworks.
In Abbildung 5.5 sehen wir eine Instanz des Chor Model in einem JFace TreeViewer zusam-
men mit der Property View von CParticipant. Jede JFace Viewer Klasse hat einen content
provider, der ein spezifisches Interface (TreeViewer benutzt ITreeContentProvider)
implementiert, um die anzuzeigenden Objekte bereitzustellen sowie einen label provider
um den Anzeigetext sowie ein Icon der Objekte zuriickgibt. In Abbildung 5.5 wurde das
Wurzelobjekt Choreography dem TreeViewer iibergeben. Der Viewer ruft drauf getText()
und getImage() des label providers auf, um den Text (,,Choreography booking”) und das Icon
(Choreography hat hier keines, dessen Kind Elemente hingegen schon) anzuzeigen. Als
nichstes wird getChildren() vom Content Provider aufgerufen um die Kind Elemente (im
Ecore Modell containment = true gesetzt) zu bekommen. Der ganze Prozess wiederholt sich
nun rekursiv, bis alle Objekte dargestellt sind.

Die Property View befiillt sich tiber den Property Source Provider des selektierten Objekts —
in Abbildung 5.5 ist CParticipant selektiert — indem zuerst getPropertySource() aufge-
rufen wird. Darauf wird die Property Source von CParticipant zuriick gegeben worauf
mit getPropertyDescriptors() eine Liste aller Property Descriptors (hier: Containment, Name,
Scope und Selects) zuriickgegeben wird. Uber diese Property Descriptors lassen sich
schlieSlich die Werte editieren. EME.Edit generiert eine Implementierung fiir content provi-
der, label provider, property source provider, property source und property descriptor vereint im
sogenannten Item Provider. Fiir jede Ecore Klasse wird ein Item Provider generiert. Fiir unser
Chor Model wiren dies ChoreographylItemProvider, CParticipantItemProvider,

6http ://www.oodesign.com/command-pattern.html

90

http://www.oodesign.com/command-pattern.html

5.1 Verwendete Technologien

g My.chor &2

™ Resource Set
il platform:/resource/choredit/My.chor

Choreography bocking

4 CParticipant Traveler
4 Process traveler

4 CParticipant Set Airline_Set_1
4 Process Airline
4 CParticipant current_airline

Selection | Parent | List| Tree| Table | Tree with Columns

El Properties &3

Property Value
Containment 'S add-if- not-exists
Mame '= Traveler
Scope
Selects # CParticipant current_airline

Abbildung 5.5: [Face TreeViewer zeigt eine Chor Model Instanz an

usw.. Diese Item Provider werden als Adapter realisiert um einerseits die Observer Funktion
zu erfiillen und andererseits um beliebige Implementierungen fiir Interfaces von Editoren
und Views bereit zu stellen. Es ist aufierdem moglich, Item Provider zu erstellen, welche nicht
Adapter tir ein Modellobjekt sind. Somit konnen Sichten auf EMF Objekte erstellt werden,
was etwas dem ,Sichten” Konzept aus dem Datenbank Bereich &hnelt. Die Item Provider
bieten zusédtzlich noch die Moglichkeit zur Erzeugung von Commands tiber eine Command
Factory und erfiillen die Observer Funktion, indem sie Benachrichtigungen an Viewer Klassen
weiterleiten.

Das Command basierte Editieren von EMF Objekten wird exzessiv von GMF (siehe 5.1.4
auf Seite 95) generierten Editoren benutzt und beinhaltet unter anderem ein automatisches
riickgdngig ("undo") machen und wiederherstellen ("redo"). EMF bietet ein Command Fra-
mework, welches sich aus zwei Bereichen zusammensetzt. Einerseits der allgemeine Teil
(Common Command Framework), der unabhédngig von EMFEEdit benutzt werden kann und
andererseits der EMFE.Edit spezifische Teil, basierend auf EObject. Wir werfen hier nur
einen kurzen Blick auf das Command Framework, welches ausfiihrlich in Kapitel 3, des
Buches von Steinberg [Ste11] erldutert wird. Command ist das Basisinterface des Common
Command Frameworks und alle Commands implementieren dieses. Die wichtigsten Methoden
sind execute() zum Ausfithren, undo und redo respektive zum riickgédngig machen oder
wiederherstellen. Bevor ein Command ausgefiihrt werden kann, wird es mit canExecute()

91

5 Implementierung

auf Ausfiihrbarkeit getestet. Die Ausfiihrbarkeit kann somit kontextabhangig erlaubt oder
verboten werden. Komplexe Commands kénnen Anderungen verursachen, die nicht durch
ein simples undo riickgéngig gemacht werden konnen weil zu viele Dinge verandert wurden.
Deshalb kann mit canUndo() eine Priifung davor geschoben werden. Fiir die Realisierung
von zusammengesetzten Commands — dies sind Commands, welche andere Commands als
Voraussetzung haben — kann mit getResult() das Ergebnis des Ausfithrung geholt werden
und mit getAf fectedObjects() eine Liste aller betroffenen Objekte des letzten execute(), undo
oder redo Aufrufes. Der CommandStack ist das Interface fiir einen Stapel, auf welchem
mehrere Commands hintereinander ausgefiihrt, riickgdngig gemacht oder wiederhergestellt
werden konnen. GMF Editoren machen auch davon intensiven Gebrauch, weshalb wir dieses
Interface hier erwahnen. Im Folgenden listen wir die EMFE.Edit spezifischen Commands auf,
welche wir in der Implementierung bendtigen.

e AddCommand fligt ein oder mehrere Objekte zu einem mehrwertigen Feature eines
EObJject hinzu.

e SetCommand setzt den Wert eines Attributes oder Referenz von einem EObject.

e DeleteCommand entfernt ein EObject von seinem Elterncontainer und 16scht alle
Referenzen, welche auf dieses Objekt zeigen.

e RemoveCommand entfernt ein oder mehrere Objekte vom einem mehrwertigen Feature
eines EOb ject.

Wenn ein Editor Commands zur Manipulation der Modellobjekte benutzen mochte, muss
eine Editing Domain benutzt werden, tiber welche die Commands erzeugt werden kon-
nen. Die Editing Domain verwaltet den Command Stapel und bietet Zugriff auf das EMF
ResourcesSet, in welchem sich alle zu editierenden Objekte befinden. Um an die Editing
Domain eines EObJject zu kommen starten wir bei der von EMF bereitgestellten Klasse
AdapterFactoryEditingDomain. Entweder wird ein passender Adapter — welcher den
Typ IEditingDomainProvider unterstiitzt — gefunden oder, falls es einen solchen Adap-
ter nicht gibt, kann tiber das ResourcesSet, zu welchem das EOb ject gehort, ebenfalls die
Editing Domain gefunden werden.

5.1.3 Graphical Editing Framework

Die folgenden Beschreibungen basieren auf dem Buch von Gronback [GGog]. Wir gehen hier
nur oberfldchlich auf dieses Framework ein, da wir es nicht explizit benutzen. Es besteht
aus den zwei Plugins Draw2d, welches eine Erweiterung zu SWT darstellt indem es Zeichen-
funktionen und Layout Funktionalitdten bietet und GEF, welches ein MVC Framework fiir
grafische Editoren darstellt.

92

5.1 Verwendete Technologien

Draw2d Plugin

Den zentralen Teil von Drawzd bilden die Figures, was Komponenten zur grafischen Darstel-
lung sind. Sie konnen aus weiteren Kind Figures zusammengesetzt sein, welche innerhalb
der Begrenzung der Eltern Figure gezeichnet, und mit einem Layout Manager angeordnet
werden. Weitere Moglichkeiten von Figures sind das Registrieren von Listeners, welche z. B.
auf Mausklicks reagieren oder die Berechnung, ob ein Punkt innerhalb der Figure liegt oder
nicht. Neben Figures gibt es noch die Moglichkeit Text darzustellen, was in Labels realisiert
wird. Gezeichnet wird nach einer bestimmten Strategie. Zuerst werden die Eigenschaften
der Figure und seinen Kind Elementen festgelegt wie z.B. Schriftart, Vordergrund- und
Hintergrundfarbe. Diese Eigenschaften stellen den aktuellen Grafikzustand dar, welcher
abgespeichert wird. Dann wird die Figure selbst gezeichnet wozu unter anderem die Um-
randung ("bounding box") und die Hintergrundfarbe gehort. Als ndchstes wird die "client
area" gezeichnet. Dies ist die Flache innerhalb der Figure, worauf dessen Kind Elemente
gezeichnet werden. An dieser Stelle wird auch "clipping" durchgefiihrt was verhindert, dass
Teile der Grafik auf nicht erlaubten Stellen erscheinen. Nun werden die Kind Elemente auf
die "client area" gezeichnet und zuletzt alle Dekorationen, welche tiber den Kind Elementen
erscheinen sollen. Figures sind in einer Baumstruktur zusammengesetzt. Dieser Baum wird
mittels Tiefensuche traversiert, was eine Zeichnung in Reihenfolge der Z-Koordinate zur
Folge hat. Das bedeutet, dass die Figure, welche am weitesten ,unten” liegt, zuerst gezeichnet
wird. Die Anderen werden dartiiber gezeichnet. Draw2d bietet aufSerdem noch Connections.
Dies sind Verbinder, bestehend aus einer Linie zwischen zwei Punkten. Sogenannte Anker
(ConnectionAnchor) bestimmen, wie genau sich die Endpunkte der Linie mit Quell- und
Zielobjekt verbinden sollen. In Abbildung 5.6 ist der ChopboxAnchor zu sehen, welcher die
Verankerung an den Schnittpunkt von Linie und Umrandung der Figure setzt. Schliefdlich
lasst sich noch der Verlauf der Linie zwischen Anfangs und Endpunkt iiber einen Router
(ConnectionRouter) bestimmen. So kann der Verlauf zwischen den zwei Punkten z. B.
grade sein oder auch mehrere Zwischenpunkte haben, an welchen der Verlauf seine Richtung
um neunzig Grad dndert.

GEF Plugin

Dieses Plugin bietet die Funktionalitdt ein Datenmodell mit Figures, {iber Eingabegerite wie
z.B. Maus oder Tastatur, in einer Eclipse Workbench zu editieren. Es ist eine Implementierung
der MVC Architektur in welcher der View Teil durch das Drawzd Plugin, der Model Teil
durch EMF und der Controller Teil durch das GEF Plugin realisiert ist. In den EditPart
Klassen werden die Controller fiir die Modell Elemente realisiert. Ihre Aufgabe ist einerseits,
Eingaben des Benutzers entgegen zu nehmen und das Model zu aktualisieren und anderer-
seits, die View iiber die Anderungen am Modell zu informieren. In Abbildung 5.7 sehen
wir einen groben Uberblick, wie GEF seine Modell Elemente grafisch darstellt. Fiir jedes
dieser Modell Elemente muss ein EditPart erstellt werden. Die grafische Reprédsentation

93

5 Implementierung

()
(<)
NN
~
~
~
~ o Figure
~
~ i
AN
AN —
X~)
AN
Refernez Punkt 7
Anker
(Schnittpunkt) Mittelpunkt

Abbildung 5.6: Funktionsweise des ChopboxAnchor. Basiert auf Quelle: [GGog]

des Elements wird {tiber die Figure bestimmt, welche in diesem EditPart instanziiert
wird. Die EditPartFactory ist zustindig fiir die Instanziierung des richtigen EditPart
zum zugehorigen Modell Element und setzt auch die entsprechende Referenz, so dass jede
EditPart Instanz sein Modell Element kennt. Diese EditPartFactory wird am Viewer
registriert, so dass dieser die entsprechenden Figure Instanzen zeichnen kann.

Jeder EditPart Klasse referenziert eine Menge von EditPolicy Klassen, welche das
Verhalten des Controllers implementieren. Die Idee ist, dass EditPart Klassen das Durch-
fithren der Aufgaben, die anstehen wenn der Benutzer etwas editiert hat, an EditPolicy
Klassen delegieren. Diese Aufteilung erlaubt es, dass sich EditPart Klassen verschiedene
EditPolicy Klassen untereinander teilen kénnen. So kann ein bestimmtes Verhalten von
mehreren EditPart Klassen benutzt werden. EditPolicy Klassen werden, bei der Instan-
ziierung einer EditPart Klasse, ,installiert”. Dabei wird jeder Klasse eine Rolle zugewiesen.
Rollen sind einfache Schliisselwerte die es erlauben, EditPolicy Klassen auszuzeichnen
bzw. zu identifizieren. So gibt es z. B. die Rolle LAYOUT_ROLE welche eine EditPolicy so
auszeichnet, dass diese fiir bestimmte Layout Aufgaben wie z. B. Skalieren oder Positionieren
zustandig ist. Durch diese Schliisselwerte kann so von einem EditPart die gerade installier-
te EditPolicy fiir Layout Aufgaben abgefragt werden, ohne den konkreten Klassennamen
zu kennen.

Wenn wir ein grafisches Modell in einem Editor erstellen, interagieren wir mit diesem {tiber
Eingabegerite. GEF abstrahiert alle Interaktionen mit dem Editor durch eine Request Klasse.
Eine Request Instanz kapselt alle Informationen, welche die EditPart Klassen benétigen,
um ihre Funktionen auszufiihren. Mochte der Benutzer z. B. ein neues Element erstellen,
lost diese Aktion ein Request aus. Der EditPart, welcher den Request versteht und an
der Erstellung des Elements beteiligt ist, wird aufgerufen und gibt das passende Command

94

5.1 Verwendete Technologien

EditPart
Factory

A 4
Model EditParts Viewer

L\ El = < kil — — — EditPart E1

\ 4

Figure A

\ E2 €~ — = — — — - — — EditPart E2

@(——— —_— e il EditPart E3

Abbildung 5.7: Grafische Darstellung der Modell Elemente in GEF durch EditParts

\ 4

Figure B

) 4

Figure C

zuriick, welches diesen Request durchfithren kann. Commands sind dafiir zustdandig das,
dem Editor zugrunde liegende Datenmodell abzuédndern. GEF und EMF benutzen jeweils
ihre eigenes Command Framework. GMF bietet dafiir eine Vereinheitlichung.

5.1.4 Graphical Modeling Framework

Die folgenden Beschreibungen basieren auf dem Buch von Gronback [GGog]. GMF entstand
aus dem bestreben einen grafischen Editor, basierend auf GEF, mit EMF zu verbinden. Es
besteht aus den zwei Hauptkomponenten Runntime und Tooling Framework. Die Runntime
verbindet EMF mit GEF indem sie Services und APIs bereit stellt. Das Tooling Framework bietet
einen modellbasierten Ansatz um grafische Elemente zu definieren, passende Werkzeuge zur
Benutzung dieser Elemente zu erstellen, sowie ein "Mapping" um die grafischen Elemente
auf Elemente eines zugrunde liegendes Datenmodells abzubilden. Das Tooling Framework
ist eine Sammlung von Modellen, aus welchen ein grafischer Editor generiert werden kann,
der die GMF Runntime benutzt.

95

5 Implementierung

A
|
o

"7 «—m
711
“«—0

Segoe UI 'lg '|B I | A& F~

|d] My.chor_diagram £2

+ P1 4 P2
< pl_process < p2_process
4 main: 4 main:
4 invil B rec:2

4 name:mll

Abbildung 5.8: GMF Standard Werkzeuge in der Eclipse Toolbar

GMF Runntime

Die Runntime baut auf GEF auf und bietet eine Menge von wiederverwendbaren Kom-
ponenten fiir die Erstellung von grafischen Editoren. Dazu gehoren unter anderem die
Standardwerkzeuge in der Eclipse Toolbar, welche in Abbildung 5.8 zu sehen sind. Mit
Werkzeug A ldsst sich der Router Stiel eines selektieren Verbinders (in unseren Beipiel der
Message Link "ml1") zwischen "rectilinear”" und "oblique" hin und her wechseln. Im Modus
"rectilinear", sind die Verbinder mit Punkten ausgestattet, an welchen die Linie eine neunzig
Grad Wendung nimmt. Im Modus "oblique" sind die Verbinder gerade bzw. direkt zwischen
Anfangs- und Endpunkt. Mit Werkzeug B konnen alle Elemente im Editor selektiert werden.
Werkzeug C ordnet alle Elemente neu an, wiahrend Werkzeug D alle Elemente vertikal an
der linken Kante ausrichtet. Werkzeug E skaliert alle selektierten Elemente auf eine passende
Grofse, wobei fiir jedes Element die minimale und bevorzugte Grofse berticksichtigt wird. Die
Werkzeuge F blenden die Labels an Verbindern ein oder aus. In unserem Beispiel wire dies
das Label "name:ml1". Werkzeug G erlaubt das Zoomen der Elemente. Die Ansicht kann
vergroflert, verkleinert oder automatisch so angepasst werden, dass alle Elemente moglichst
in die sichtbare Zeichenfldche passen.

Eine weite Komponente der Runntime sind die Standard Tabs "Rulers & Grid" sowie "Apper-
eance" in der Property View, welche — je nach selektiertem Editor Element — angezeigt werden.
In Abbildung 5.9 sehen wir die Inhalte vom "Rulers & Grid" Tab. Hierbei sind das Lineal
("Show Ruler"), sowie die Gitterpunkte ("Show Grid") aktiviert. Unter dem "Appereance"
Tab finden wir Funktionen wie den Text der Editor Elemente Fett oder Kursiv darzustellen
und Textfarbe sowie Flachenfiillung anzugeben.

96

5.1 Verwendete Technologien

|d] My.chor_diagram 2

R R R R [R I
: 4 P1 4 P2
N 4 pl_process 4+ p2_process
o 4 main: 4 main:
4 imel < rec

< namemll

El Properties &3

= Choreography

Rulers & Grid Display Measurement
Appearance ¥| Show Ruler Ruler Units | Centimeters ~
= | Show Grid
Groundings . .
- Grid In Front Grid Spacing 0,132
ase

Grid Li'i /] Snap To Grid
Color | & Snap To Shapes

Style | Spaced Dot = Restore Defaults

Abbildung 5.9: Property View mit den GMF Standard Tabs "Rulers & Grid" und "Appereance”

Die Runntime bietet zudem die Moglichkeit, das grafische Modell mit Informationen wie
Position und Grofse der Elemente, eingefdarbte Bereiche, Schriftarten usw. abzuspeichern. Zu-
satzlich kann das grafische Modell noch als reines Datenmodell, ohne besagte Informationen,
abgespeichert werden. Ein weiterer Teil der Runntime ist eine Service Schicht ("service layer").
Das Service Konzept sieht einen oder mehrere Anbieter vor, welche bestimmte Dienste der
Anwendung anbieten. Einer dieser Services ist der ViewService, der fiir die Erstellung von
View Klassen zustdandig ist. View Klassen sind in GMF die tibergeordneten Klassen aller
grafischen Elemente, die auf der Zeichenflache dargestellt werden. Sie halten ebenfalls eine
Referenz auf ihr zugeordnetes EMF Modell Element. Die Menge aller View Klassen bilden
ebenfalls ein EMF Modell. Wichtig ist hier die Unterscheidung. Der GMF Editor wird zum
editieren eines Datenmodells benutzt, was in unserm Anwendungsfall dem Chor Model
entspricht. Der Editor selbst hat aber sein eigenes, internes Editor Modell, zu welchem Infor-
mationen wie Position und Aussehen von grafischen Elementen gehoren. Der ViewService
hat einen ViewProvider, der iiber den viewProviders? Extension point registriert wird. Er

7org.eclipse.gmf.runtime.diagram.core.viewProviders

97

5 Implementierung

stellt die Methoden zur Erstellung der grafischen Elemente bereit. Diese Elemente kénnen
entweder vom Typ diagram, node oder edge sein. Das diagram Element ist das Wurzelelement
sprich, die Zeichenfldche, in welcher die anderen Elementtypen platziert werden. Die edge
Elemente sind Verbinder und node die tibrigen Elemente, zwischen denen Verbinder gezogen
werden konnen. Ein weiterer Service ist der EditPartService welcher benutzt wird, um die
EditParts zu erstellen. Der zugehérige EditPartProvider, registriert im editpartProviders®
Extension point, ersetzt die bereits besprochene EditPartFactory des GEF Plugins. GMF
Editoren, welche tiber GMF Tooling (siehe ndchsten Abschnitt) modelliert und generiert
werden, benutzen immer ViewProvider und EditPartProvider.

GMF Tooling

In Abbildung 5.10 sehen wir das Vorgehen anhand eines BPMN Diagramms, welche Schritte
notwendig sind, um einen GMF Editor mittels Tooling Framework zu erstellen. Wir starten
mit der mit der Erstellung eines Domain Modells was hier unserer EMF Realisierung vom
Chor Model entspricht. Dann erstellen wir das Graphical Definition Model, in welchem wir die
grafische Représentation der darzustellenden Elemente festlegen. In Abbildung 5.11 ist eine
vereinfachte Darstellung dieses Modells zu sehen. Als Konvention gilt, dass die gestrichelten
Pfeile ,referenziert” bedeuten und die durchgehenden Pfeile ,,ist Elternknoten von”. Das
Wurzelelement ist der Canvas Knoten, welchem wir einen Namen geben, da wir diesen
spater im Mapping Model referenzieren. Zuerst definieren wir einen oder mehrere Figure
Gallery Knoten unter welchen wir zusammengehorende Figure Descriptor Knoten gruppieren.
Diese Knoten legen das Aussehen eines Elementes fest. Das Aussehen definieren wir mit
grafischen Komponenten wie hier in unserem Beispiel ein Rechteck, welches ein Label sowie
ein weiteres Rechteck mit dem Namen "(Compartment)" beinhaltet. Fiir die Konten, auf
welche von aufierhalb des Figure Descriptors zugegriffen werden soll, miissen Child Access
Knoten angelegt werden. In unserem Beispiel gewdhren wir Zugriff auf das Label und
das "(Compartment)" Rechteck. Haben wir alle Figure Descriptors festgelegt, definieren wir
die Elemente welche unser Editor (Diagram) auf seiner Zeichenfliche (Canvas) darstellen
soll. Ein Diagrammelement referenziert ein Figure Descriptor Knoten wobei auch mehrere
Diagrammelemente den selben Figure Descriptor Knoten referenzieren konnen. Nodes sind
die Diagrammelemente, mit denen wir modellieren und welche keine Verbinder sind. In
unserem Beispiel referenzieren wir mit der Node den gewiinschten Figure Descriptor und
bestimmen somit das Aussehen dieser Node. Compartments sind Container Elemente, die
andere Nodes aufnehmen. Sie sind ein Konstrukt, um eine verschachtelte Darstellung von
Nodes zu erreichen. Wir miissen fiir jedes Compartment festlegen, an welcher Stelle genau die
aufgenommenen Nodes auf der Zeichenflache platziert werden sollen. In unserem Beispiel
werden die Nodes im "(Compartment)" Rechteck des referenzierten Figure Descriptors platziert.

8org.eclipse.gmf.runtime.diagram.ui.editpartProviders

98

5.1 Verwendete Technologien

Domain Model |
)

]

*.ecore

Y
GMF Projekt Graphical Definition + Mapping Model d
' ~)
4 * gmfmap

*.gmfgraph
|)
Generator Model 4 D
D .

* gmftool

Tooling Definition

A

Diagram Plug-In

Abbildung 5.10: Vorgehensweise bei der Erstellung eines GMF Editors mittels Tooling Fra-
mework. Grafik basiert auf der Quelle: [ecld]

Hier sehen wir auch, warum wir zuvor ein Child Access Knoten fiir dieses Rechteck definiert
haben, ndmlich um es hier referenzieren zu konnen. Damit unser definiertes Label auch auf
der Zeichenfldche erscheint, miissen wir ein Diagram Label Knoten definieren, welchen wir
optional auch mit einem Icon dekorieren kénnen. Dies ist in Abbildung 5.12 zu sehen. Wir
mochten, dass unser Diagram Label das Label des referenzierten Figures Descriptors anzeigt
und verweisen deshalb auf den entsprechenden Child Access Knoten. In Abbildung 5.13
sehen wir die notigen Knoten fiir die Definition eines Verbinders. Zuerst muss wieder ein
Figure Descriptor Knoten erstellt werden. Der Verbinder wird hier als Linie mit Ankerpunkten
an jedem Ende (Polyline Connection) dargestellt und soll ein Label haben, fiir welches wir
wieder einen Child Access Knoten definieren. Damit wir Nodes auf der Zeichenflache auch
Verbinden konnen, legen wir ein Connection Knoten an und bestimmen sein Aussehen durch
die entsprechende Figures Descriptor Referenz. Das Diagram Label bendtigen wir zur Anzeige
des Labels und setzen die entsprechenden Referenzen.

Um die Diagrammelemente erstellen und auf der Zeichenfliche des Editors platzieren
zu konnen, benotigen wir Werkzeuge, welche wir im Tooling Definition Model festlegen. In

99

5 Implementierung

Canvas
I v
Rectangle
— > Rectangle > Label €
x X
—» Figure Gallery P Figure Descriptor +— : |
A f —» Child Access +— — — -Figured :
|
[|
| '
> Node — — — —Figure | I
| — Child Accesss t— — — — — — — — — Figure — 4
I
| f
Fig.ure |
9 Compartment — — — — — — — |
———————— -Accessor — — — —
Abbildung 5.11: Graphical Definition Model fiir Node und Compartment
Canvas
> Rectangle Label
A
—» Figure Gallery ¥» Figure Descriptor +— :
+ > Child Access — — — -Figured
| 5
—» Diagram Label — — — — . Figure — l |
——————— Accessor— — — — —

Abbildung 5.12: Graphical Definition Model fiir Diagram Label

100

5.1 Verwendete Technologien

Canvas

Polyline
A . A
- Connection 4 pabel
—)» Figure Gallery ¥ Figure Descriptor +— T
» i L — — _Fi J
A A > Child Access Figure
I
. A
— > Connection +— — — -Figure-! | |
| I
| I
| I
Figure |
—» Diagram Label — — — — — — & |
—————————— Accessor- — —

Abbildung 5.13: Graphical Definition Model fiir Connection

Abbildung 5.14 ist ein vereinfachtes Beispiel zu sehen. Das Wurzelelement ist der Tool Registry
Knoten unter welchem wir einen Palette Knoten definieren und benennen, so dass wir im
Mapping Model darauf referenzieren konnen. Die aktuelle GMF Version, zum Zeitpunkt
dieser Arbeit, unterstiitzt nur Elemente fiir die Palette. Mit dem Creation Tool Knoten legen
wir fest, dass es einen Eintrag in der Palette mit dem hier festgelegten Namen und Icon geben
soll. Die eigentliche Funktionalitdt erhélt das Werkzeug erst spater durch das Mapping Model,
auf welches wir gleich eingehen werden. Wir kdnnen diese Werkzeuge zusétzlich noch in
Gruppen, durch Erstellung von Tool Groups, einteilen um zusammengehorige Werkzuge
optisch voneinander abzugrenzen. Neben den Creation Tools, lassen sich noch vorgefertigte
Standard Tools definieren die Funktionalititen wie Selektion und Zoom mitbringen. In
unserem Beispiel besteht die Palette aus einer Tool Group mit zwei Creation Tools.

Haben wir die bisher besprochenen Modelle angelegt, bringen wir sie alle im Mapping Model
zusammen. Das Mapping Model ist das Herzstiick vom Tooling Framework und erlaubt die
Erstellung eines oder mehrerer Generator Models, aus welchem letztendlich der Editor Code
generiert wird. Die Elemente des Graphical Definition Model werden hier mit den Elementen
des Domain Modells verkntipft und die passenden Elemente des Tooling Definition Model
zugewiesen. In Abbildung 5.15 sehen wir ein vereinfachtes Beispiel, wie die Zeichenfldche
eines Editors definiert werden kann. Das Wurzelelement des Mapping Model ist der Mapping
Knoten. Darunter definieren wir den Canvas Mapping Knoten und legen zuerst fest, wie wir

101

5 Implementierung

Tool Registry

L Palette
L Tool Group

Creation Tool 1

Creation Tool 2

Abbildung 5.14: Tooling Definition Model mit zwei Creation Tools

unsere Elemente darstellen mochten indem wir auf den Canvas Knoten aus dem Graphical
Definition Model verweisen. Dann miissen wir angeben, mit welchen Werkzeugen wir unsere
Elemente erstellen mochten und verweisen dazu auf den Palette Knoten aus dem Tooling
Definition Model. Zuletzt miissen wir das Domain Element bestimmen, welches alle model-
lierbaren Elemente beinhaltet. Im EMF Modell muss dazu das Wurzelelement fiir all seine
ausgehenden Referenzen containment = true setzen.

Im néchsten Schritt definieren wir die Elemente, welche direkt auf der Zeichenfldche platziert
werden konnen. Dazu betrachten wir Abbildung 5.16. Der Top Node Reference Knoten verweist
auf eine containment = true Referenz des Wurzelelements aus dem Domain Modell, welches
wir auch schon im Canvas Mapping Knoten festgelegt haben. Mit dem Node Mapping Knoten
verweisen wir auf das entsprechende Domain Modell Element, welches diese Referenz
vorgibt. In unserem Beispiel referenziert "Root Element"auf "Element 1". Dann legen wir
aus Aussehen von "Element 1" fest, indem wir auf die gewiinschte Node aus dem Graphical
Definition Model verweisen. Zuletzt miissen wir noch angeben, mit welchem Werkzeug eine
Instanz von "Element 1" erstellt werden soll. Dazu verweisen wir auf das gewtinschte Creation
Tool aus dem Tooling Definition Model.

Haben wir das Mapping Model komplett ausgearbeitet, konnen wir ein Generator Model
daraus erstellen. Das Generator Model erlaubt uns auf die Code Generierung gewissen
Einfluss zu nehmen wie z.B. an welchen Ort, unter welchen Namen der Code auf dem

102

5.1 Verwendete Technologien

Mapping Model Graphical Definition Tooling Definition Domain Model

Mapping Canvas Tool Registry Ecore

| Palette
v :
| __Diagram Canvas IA \ 4
Canvas Mapping m — — — — — — — - palette—m — — — — — 4
_________ Domain Model- — — — — — — — > Root Element

Abbildung 5.15: Mapping Model zur Definition der Zeichenfldche des Editors

Mapping Model Graphical Definition Tooling Definition Domain Model
Mapping Canvas Tool Group Ecore
\ 4 \ 4 L Creation Tool 1
Top Node . Root Element _—
| Reference Rodell IA :
I
| + I Containment
| | | rootElement.element1
'
| ! : A
I A 4 I Ly Element1 lq—! |
| — — —Diagram Node I I
Node Mappingl — — — — — — — — — — — — Tool — — — —l A I
! |
[| |
I | |
. T T T T T T T T T T T T T Elementr - — — — — — — — — — — — — |
| I

Abbildung 5.16: Mapping Model zur Definition eines, auf der Zeichenfliche des Editors,
platzierbaren Elements

103

5 Implementierung

Datentrdger abgelegt werden soll. Die Code Generierung basiert auf Code Schablonen
(Templates), welche in der Xpand Template Language (siehe 5.1.5) definiert sind. Wir konnen,
durch Anpassung der Schablonen, Einfluss auf den generierten Code nehmen. Dazu miissen
wir die gewiinschten Schablonen, welche wir anpassen wollen, aus dem GMF eigenen
org.eclipse.gmf.codegen Plugin in unseren GMF Projektordner in die selbe Ordner-
struktur kopieren. Die Ordnerstruktur dient als Namespace der Schablonen. Wir betrachten
dies genauer im nédchsten Abschnitt.

5.1.5 Xpand Template Language

Die folgenden Beschreibungen basieren auf dem Buch von Gronback [GGog]. In der Modell-
basierten Softwareentwicklung kommt es oft vor, dass wir Modelle definieren und daraus
z.B. Programmcode, Datenbankschemen oder auch Dokumentation generieren wollen. Wir
benotigen also Model-to-Text Transformationen und genau dafiir existiert das M2T Eclipse
Projekt, welches Technologie daftir bereitstellt. Java Emitter Templates (JET) und Xpand sind
die zwei Hauptkomponenten diese Projekts. Auf JET gehen wir hier nicht niher ein, da wir
es nicht direkt verwenden. Xpand wird exzessiv von GMF benutzt, um den Editor Code zu er-
zeugen. Xpand Templates sind einfache Textdateien. Programminstruktionen stehen zwischen
wZeichen. Text, der nicht zwischen diesen Zeichen steht, wir direkt in die resultierende Text-
datei kopiert. Das erste Element einer Xpand Template ist das «<IMPORT» Element. Hiermit
lassen sich gewtiinschten Meta Modelle importieren, auf wessen Elemente dann zugegriffen
werden kann. Das Konzept von «IMPORT» ist dem import Statement aus Java gleich. In
den Xpand Templates des GMF Generator Models, sieht das «IMPORT» Statement so aus:
«IMPORT "http://www.eclipse.org/gmf/2009/GenModel"». Das ndchste Hauptelement ist
der «DEFINE» Block. Hier definieren wir ein Fragment, welches bei der Ausfiithrung der
Template ausgewertet und in der Ausgabe an eine bestimmten Stelle platziert wird. Ein
«DEFINE» Block hat einen Namen, eine optionale Parameterliste und eine FOR Klausel, in
welcher wir das Meta Modell Element angeben, auf welches «DEFINE» angewendet wird.
Das «<EXPAND» Statement stellt einen Methodenaufruf dar. Es verweist auf ein anderes
«DEFINE» Statement, um der Kontrollfluss der Template Ausfithrung auf diesen Block um-
zulenken. Xpand bietet noch weitaus mehr Konstrukte, doch fiir unsere Implementierung ist
nur das <kxAROUND>» Statement interessant, denn es erlaubt uns die vorhandenen Templates
nur an bestimmten Stellen zu erweitern, statt diese komplett iiberschreiben bzw. ersetzen zu
miissen. Das <AROUND» Statement realisiert Aspekt orientierte Eingriffsmoglichkeiten in
den Code. Wir konnen damit gezielt ein vordefiniertes «DEFINE» Statement durch eigene
Logik ersetzen. In Abbildung 5.17 sehen wir ein Beispiel. Links ist die templateX.xpt aus
dem org.eclipse.gmf.codegen Projekt mir ihrem Namespace path/to/template
zu sehen. Diese Template hat drei «DEFINE» Statements. Wir mochten in unserem Bei-
spielprojekt my . gmf.project nur «DEFINE» B durch eigene Logik ersetzen, A und C
sollen unverandert bleiben. Dazu kopieren wir die Template in unseren Projektordner und
ergdnzen den Namespace mit "aspects", wie Rechts in der Abbildung dargestellt. Dann

104

5.1 Verwendete Technologien

org.eclipse.gmf.codegen my.gmf.project
path/to/template/templateX.xpt aspects/path/to/template/templateX.xpt
c//
| DEFINEA

N

»| AROUNDB |
\

~

| DEFINEB

(C

DEFINE C

Abbildung 5.17: Xpand Template mit k<AROUND» Erweiterung

16schen wir alles aus der Template raus, bis auf das «<DEFINE» B Statement. Wir ersetzen
dann «DEFINE» durch <kAROUND» und schreiben eigene Instruktionen auf. Dies bewirkt
schliefilich, dass «<DEFINE» A, <AROUND» B und «DEFINE» C ausgefiihrt werden.

5.1.6 BPEL4Chor2BPEL

Die Konzeptionelle Arbeit fiir diese Komponente wird in [Reioy] beschrieben. Sie bietet eine
automatische Transformation von BPEL4Chor Artefakten zu abstrakten BPEL Prozessen.
In Abbildung 5.18 sehen wir eine Ubersicht. Wir beginnen mit einer Beschreibung eines
Geschiftsprozesses. Dies kann z.B. eine Choreographie Beschreibung in BPMN sein. In
Schritt 1 modellieren wir diese Choreographie in BPEL4Chor. Schritt 2 transformiert die
BPEL4Chor Artefakte zu abstrakten BPEL Prozessen. In Schritt 3 werden diese Prozesse,
durch eine manuell durchgefiihrte "executable completion”, zu ausfiithrbaren BPEL Prozessen
angereichert und, in Schritt 4, auf einem Workflowsystem ausgefiihrt. Schritt 1 fithren wir mit
unserem Choreographie Editor durch. Wie wir bereits in Kapitel 4 auf Seite 29 besprochen
haben, kann unser Editor BPEL4Chor Artefakte aus dem grafischen Modell erzeugen. Fiir
Schritt 2 benutzen wir die BPEL4ChorToBPEL Komponente. Schritt 3 wird zu einem sehr
kleinen Teil in der BasicExecutableCompletionTransformer Komponente realisiert. Den tibrigen

105

5 Implementierung

Teil miissen wir manuell, mit dem BPEL Designer durchfiihren, welcher uns dazu noch
Schritt 4 ermoglicht.

Die BPEL4ChorToBPEL Komponente muss fiir alle Kommunikationsaktivitdten partnerLink,
portType und operation Attribute sowie die zugehorigen Deklarationen der Partner

Link Elemente erzeugen. Die NCNames im properties Attribut von CorrelationsSet,
miissen durch QNames ersetzt werden. In Topology kann definiert werden, dass eine

«ForEach > Aktivitit iiber ein ParticipantSet iterieren soll. Dies ist in BPEL unzu-
lassig. Fiir jede dieser < ForEach » Aktivitdten, muss die Anzahl der Iterationen durch

<startCounterValue > und < finalCounterValue > festgelegt werden. Fiir jeden BPEL

Prozess miissen WSDLs mit Partner Link Types angelegt werden. Fiir die Umsetzung der

"link passing mobility" (siehe Abschnitt 3.3.2 auf Seite 18) miisste auf Empfangerseite eine

<assign> Aktivitit angelegt werden, welche die endpoint reference in das partnerRole

Attribut des Partner Links kopiert. Diese Funktionalitat ist konzeptionell angedacht, jedoch

nicht in die Transformation integriert worden. In Abbildung 5.19 sehen wir die Ein- und

Ausgaben der Komponente. Zuerst wird die Topology analysiert und dabei alle relevanten

Daten zur Durchfiihrung der Transformation gesammelt. Dann wird das Grounding analysiert

und damit die gesammelten Daten erweitert. Schliefilich werden alle Participant Behavior

Description Dokumente zu abstrakten BPEL Prozessen umgewandelt. Die fehlenden Informa-
tionen werden aus den gesammelten Daten hergeleitet. Zusitzlich sieht die Komponente die

Eingabe von WSDL Dokumenten vor, in welchen Property und Property Alias fiir Correlation

Sets sowie Endpoint References fiir jedes Participant Behavior Description Dokument angegeben

sind. In der Ausgabe werden die WSDLs mit Partner Link Types erweitert.

Eine Implementierung dieses Konzepts wurde in [Li1o] erstellt. Diese Implementierung
benutzen wir unverdndert fiir diese Arbeit. Die Konzeption sieht zwar Eingaben von WSDL
Dateien vor, doch wurde in der Implementierung darauf verzichtet. In der Ausgabe wird
fiir jeden BPEL Prozess, ein WSDL Dokument mit Partner Link Types erzeugt. Die restlichen
Elemente miissen danach ergianzt werden. Dazu kann der BPEL Designer unterstiitzend
benutzt werden.

106

5.1 Verwendete Technologien

i 1: modeling
business
choreography BPEL4Chor
process ACl
description description

2: grounding +

transformation
WS-BPEL gﬁi:;f; Zilt WS-BPEL
Abstract » Executable
Processes Processes
4: execution

Implementation

Abbildung 5.18: Von einer Beschreibung eines Geschiftsprozess zu ausfithrbaren BPEL
Prozessen. Quelle: [Reio7]

BPEL4Chor choreography

Participant BPEL
topology Abstract
\ Processes
Transformation
PBDs - Part|0|pant
groundings
WSDL
definitions
WSDL
definitions

Abbildung 5.19: Ein- und Ausgaben der BPEL4ChorToBPEL Komponente. Quelle: [Reioy]

107

5 Implementierung

5.2 Chor Designer

In diesem Abschnitt beschreiben wir, wie die vorgestellten Technologien zum Einsatz kom-
men, um unseren Choreographie Editor umzusetzen. Wir gehen hier nur auf wesentliche
Aspekte der Realisierung ein. In Anlehnung an den BPEL Designer, nennen wir unseren
Choreographie Editor Chor Designer

5.2.1 EMF Modelle

Wie wir in der Konzeption in Abschnitt 4.5.1 auf Seite 35 besprochen haben, arbeiten
wir mit den vier Datenmodellen Topology Model, Grounding Model, PBD Model und
Chor Model. Wir realisieren diese Modelle in EMF. Dabei verwenden wir keine Import
Funktion, sondern modellieren diese von Hand. Topology Model [DK12b] und Grounding
Model [DK12a] stehen bereits als XSD Dateien zur Verfiigung. Das PBD Model erstellen wir
aus dem WS-BPEL Standard "abstract common base" [OASo7a] der als XSD vorliegt, und
berticksichtigen dabei die in Abschnitt 3.3.1 auf Seite 17 besprochenen Einschrankungen, so
dass das Ecore Modell zum Abstract Process Profile for Participant Behavior Descriptions passt.
Als Beispiel beschreiben wir die Modellierung des Topology Model. Die Modellierung des
Grounding Model ist analog. Fiir das PBD Model verfahren wir zum grofiten Teil gleich, bis
auf einige Ausnahmen auf welche wir in Abschnitt 5.2.1 auf der ndchsten Seite eingehen.
Das Chor Model modellieren wir leicht abweichend vom der Konzeption und gehen darauf
in Abschnitt 5.2.1 auf Seite 112 ein.

Topology Model

In Abbildung 5.20 sehen wir das Topology Model in Ecore modelliert. Wir erstellen die
topology.ecore Datei und belegen die Attribute des EPackage Knoten mit den Wer-
ten Name="topology", Ns Prefix="top"und Ns URI="urn:HPI_IAAS:choreography:
schemas:choreography:topology:2006/12". Dann definieren wir fiir die XSD Ele-
mente mit Typ Attribut, welche in Listing 5.1 dargestellt sind, jeweils eine EClass. In
Listing 5.2 sehen wir die XSD Schema Typ Definition vom topology Element. Aus Zeile 7
und 8 machen wir EAtt ribute Eintrdge wobei wir die XSD Attribute t ype="xs : NCName"
und type="xs:anyURI" als EString Datentyp iibernehmen. use="required" reali-
sieren wir mit den EMF Properties Upper Bound=Lower Bound="1". Die Zeilen 3 - 5
werden als EReference angelegt und verweisen auf die entsprechenden EClass Eintrédge.
Fiir die restlichen XSD Eintrdge verfahren wir analog, weisen hier aber noch auf drei Beson-
derheiten hin. In Listing 5.3 sehen wir die XSD Schema Typ Definition vom Participant
Element. Wir realisieren den Typ type="xs:QName" als EDataType, womit wir die Java
Klasse javax.xml.namespace.QName reprdsentieren. Den Datentyp des Elements aus
Zeile 7 realisieren wir als EEnum mit den entsprechenden Werten aus den Zeilen 10 - 12.

108

urn:HPI_IAAS:choreography:schemas:choreography:topology:2006/12
urn:HPI_IAAS:choreography:schemas:choreography:topology:2006/12

5.2 Chor Designer

4 5| platform:/resourceforg.eclipse.bpeldchor.model/model/topology.ecore
4 f# topology
4 [Topology 4 [Messagelink

T name: EString

T targetMamespace : EString

G+ participantTypes : ParticipantTypes
G+ participants : Participants

5+ messagelinks : Messagelinks
ParticipantType

T name: EString

T participantBehaviorDescription : QMame
o processLanguage @ EString
Participant

T name: EString

o type: EString

. selects : EString

= forEach : QMame

« H
« H

= name: EString

= sender: EString

5, senders : EString

= sendfctivity | EString

= bindSenderTo : EString

T receiver: EString

o receivelctivity @ EString

T messageMame : EString

=L participantRefs : EString

=, copyParticipantRefsTo : EString
ParticipantTypes

=t participantType : ParticipantType
Messagelinks

=t messagelink : Messagelink

o scope: QMame

= containment : Containment
Containment

= addifnotexists = 0

= mustadd =1

= required = 2

ParticipantSet

T name: EString

o type: EString

= forBach : QName

o scope: QMame

5t participantSet : ParticipantSet
5= participant : Participant

g

Participants
5= participant : Participant
= participantSet : ParticipantSet

Abbildung 5.20: Topology Model als Ecore Modell

Mehrwertige Attribute, wie z. B. in Zeile 4, realisieren wir durch setzen der EMF Property
Upper Bound= —1.

PBD Model

Bei der Umsetzung vom PBD Model gibt es einige Besonderheiten, welche in der Ausdrucks-
weise von XSD liegen. Wir kdnnen in einem Ecore Modell nicht alles exakt so umsetzen, wie
es in einer XSD vorgegeben ist. In Listing 5.4 sehen wir die XSD Schema Typ Definition
vom ExtensibleElements Element. BPEL ist eine erweiterbare Sprache, was hier mit

109

5 Implementierung

Listing 5.1 XSD Schema Element Definitionen vom Topology Model. Quelle: [DK12b]

01 <xs:element name="topology" type="tTopology" />

02 <xs:element name="participantTypes" type="tParticipantTypes" />
03 <xs:element name="participantType" type="tParticipantType" />
04 <xs:element name="participants" type="tParticipants" />

05 <xs:element name="participant" type="tParticipant" />

06 <xs:element name="participantSet" type="tParticipantSet" />

07 <xs:element name="messagelLinks" type="tMessageLinks" />

08 <xs:element name="messagelLink" type="tMessageLink" />

Listing 5.2 XSD Schema Typ Definition von Topology. Quelle: [DK12b]

01 <xs:complexType name="tTopology">

02 <xXs:sequence>

03 <xs:element ref="participantTypes" minOccurs="1" maxOccurs="1" />

04 <xs:element ref="participants" minOccurs="1" maxOccurs="1" />

05 <xs:element ref="messageLinks" minOccurs="1" maxOccurs="1" />

06 </xs:sequence>

07 <xs:attribute name="name" type="xs:NCName" use="required" />

08 <xs:attribute name="targetNamespace" type="xs:anyURI" use="required" />

09 </xs:complexType>

Listing 5.3 XSD Schema Typ Definition von Participant. Quelle: [DK12b]

01 <xs:complexType name="tParticipant">

02 <xs:attribute name="name" type="xs:NCName" use="required" />
03 <xs:attribute name="type" type="xs:NCName" use="optional" />
04 <xs:attribute name="selects" type="NCNames" />

05 <xs:attribute name="forEach" type="xs:QName" />

06 <xs:attribute name="scope" type="xs:QName" />

07 <xs:attribute name="containment" use="optional" default="add-if-not-exists">
08 <xs:simpleType>

09 <xs:restriction base="xs:string">

10 <xs:enumeration value="required" />

11 <xs:enumeration value="must-add" />

12 <xs:enumeration value="add-if-not-exists" />

13 </xs:restriction>

14 </xs:simpleType>

15 </xs:attribute>

16 </xs:complexType>

110

5.2 Chor Designer

Listing 5.4 XSD Schema Typ Definition von ExtensibleElements. Quelle: [OASo7a]

01 <xsd:complexType name="tExtensibleElements">

02 e

03 <xsd:sequence>

04 <xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>

05 <xsd:any namespace="##other" processContents="1lax" minOccurs="0"
maxOccurs="unbounded" />

06 </xsd:sequence>

07 <xsd:anyAttribute namespace="##other" processContents="lax"/>

08 </xsd:complexType>

Listing 5.5 XSD Schema Typ Definition von Process. Quelle: [OASo7a]

01 <xsd:complexType name="tProcess">

02 <xsd:complexContent>

03 <xsd:extension base="tExtensibleElements">
04 <xsd:sequence>

05 ..

06 <xsd:group ref="activity" minOccurs="0"/>
07

diesem Element realisiert wird. Fast alle BPEL Elemente erben von diesem Element. Zeile 5
macht sich das any Element® zu nutze, mit welchem sich beliebige Elemente hinzuftigen
lassen, die nicht im BPEL Schema deklariert sind. Genau die selbe Erweiterbarkeit wird
fir Attribute, in Zeile 7, mit dem anyAttribute Element™ erreicht. Wir setzen dies in
Ecore so um, dass fiir anyAttribute ein mehrwertiges EAttribute mit dem Datentyp
EJavaObject, und fiir any, eine mehrwertige EReference mit EObject als Typ erstellt
wird. Bei der Serialisierung des Ecore Modelles muss fiir diese spezielle Umsetzung eine
extra Behandlung entworfen werden, um syntaktisch korrektes XML zu erzeugen. Fiir unsere
Implementierung verzichten wir auf die Erweiterbarkeit von BPEL.

Eine weitere Besonderheit ist in Listing 5.5, bei der Definition vom Process Element zu
sehen. Wir wissen das BPEL Prozesse immer nur eine Aktivitdat haben konnen. Dies wird
hier im XSD Schema, in Zeile 6, durch Referenzierung eines Group Elements erreicht. Dazu
sehen wir uns Listing 5.6 an. Hier sehen wir die Gruppendefinition von Activity. Was dies
zum Ausdruck bringen soll ist, dass diese eine Act ivity, referenziert von Process, immer
nur ein Eintrag aus dieser Gruppe sein darf. Das heifst entweder Empty oder Flow oder
Sequence oder usw.. In Ecore setzen wir dies ganz simpel damit um, dass Process eine
EReference auf Activity hat, sowie alle konkreten Aktivitidten von Activity erben.

Fir die Umsetzung des Expression Elements betrachten wir Listing 5.7. Hier wird
ebenfalls anyAttribute und any benutzt, jedoch gibt es hier einen Unterschied zum

http://www.w3schools.com/schema/schema_complex_any.asp
Ohttp://www.w3schools.com/schema/schema_complex_anyattribute.asp

111

http://www.w3schools.com/schema/schema_complex_any.asp
http://www.w3schools.com/schema/schema_complex_anyattribute.asp

5 Implementierung

Listing 5.6 XSD Schema Typ Definition der Activity Gruppe. Quelle: [OASo7a]

<xsd:group name="activity">

<xsd:choice>
<xsd:element ref="empty"/>
<xsd:element ref="flow"/>
<xsd:element ref="sequence"/>

Listing 5.7 XSD Schema Typ Definition von Expression. Quelle: [OASoya]

01 <xsd:complexType name="tExpression" mixed="true">

02 <xsd:sequence>

03 <xsd:any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
04 </xsd:sequence>

05 <xsd:attribute name="expressionLanguage" type="xsd:anyURI"/>

06 <xsd:anyAttribute namespace="##other" processContents="lax"/>

07 </xsd:complexType>

ExtensibleElements Element welcher, in Zeile 1, im mixed="true""* Attribut liegt. Dies
bedeutet, dass das Expression Element weitere Attribute, Elemente und auch Text, in
gemischter Form beinhalten kann. Wir realisieren dies in Ecore indem wir die Query EClass
mit einem weiteren Attribut body vom Typ EJavaOb ject versehen. Bei der Serialisierung
muss dafiir eine extra Behandlung eingebaut werden.

Chor Model

Bei der Konzeption in Abschnitt 4.5.1 auf Seite 35 haben wir das Chor Model so definiert, dass
das Wurzelelement Choreography in einer 1 : n Beziehung mit CParticipantCommon —
der Generalisierung von CParticipant und CParticipantSet — steht (sieche dazu Ab-
bildung 4.5). Dies @ndern wir in unserer Ecore Umsetzung, welche in Abbildung 5.21 zu
sehen ist, so ab, dass wir direkt von Choreography eine mehrwertige EReference auf
jeweils CParticipant und CParticipantSet setzen. Der Griinde dafiir sind ein verein-
fachter Zugriff beim Lesen der Modellinstanz. Hier sparen wir uns die Priifung mit dem
Java Operator instanceof, ob CParticipantCommon eine Instanz von CParticipant
oder CParticipantsSet ist. Der andere Grund liegt in einer Feststellung, welche eventuell
auf einen Fehler im generierten GMF Code zurtick zu fiihren ist. Zieht man im generieren
GMF Editor einen Message Link zwischen zwei Aktivititen welche zu unterschiedlichen
Participants gehoren, wird die Connection doppelt dargestellt sprich zwei Pfeile, statt nur
einem, erscheinen auf der Zeichenfldche. Die Ursache dafiir ist unbekannt bzw. lies sich in

Thttp://www.w3schools.com/schema/schema_complex_mixed.asp

112

http://www.w3schools.com/schema/schema_complex_mixed.asp

5.2 Chor Designer

dieser Arbeit nicht herausfinden. Eine sichere Losung besteht darin, von Choreography
direkt auf CParticipant und CParticipantSet zu referenzieren. Die urspriingliche
Idee war sogar, alle ausgehenden Referenzen von Choreography auf eine abstrakte Klasse
ChoreographyElement zu legen, von welcher alle anderen Klassen erben sollten. Dies
erzeuge jedoch den selben Fehler.

Eine weitere Besonderheit liegt in der Standard Serialisierung von EME. Der gene-
rierte GMF Editor benutzt diese um das Chor Model zu serialisieren und auf dem
Datentrdger abzuspeichern. Jedoch kennt EMF keine generische Serialisierung von
javax.xml.namespace.QName'?, welche als Datentyp unter anderem fiir das port Type
Attribut von CMessageLinkGrounding in Frage kommt. Daher haben wir eine neue Klasse
COname eingefiihrt, welche die drei Attribute von QName namespaceURI, localPart
und prefix libernimmt.

Serialisierung

EMF serialisiert Ecore Modelle standardméfsig in Form von XMI'3 , da wir aber beim Export
des Chor Model syntaktisch korrekte BPEL4Chor Artefakte benttigen, miissen wir fiir eine
XML Serialisierung sorgen. Um das Problem zu verdeutlichen, betrachten wir in Abbil-
dung 5.22 einen BPEL Testprozess und in Listing 5.8 die zugehdrige Standard Serialisierung
der PBD Model Ecore Instanz. Der < process » Wurzelknoten ist syntaktisch korrekt, nur bei
den Aktivitdten liegt kein korrektes BPEL mehr vor, da hier <activity > mit Referenz auf
den konkreten Typ (xsi:type=. . .) angegeben wird. Des weiteren benotigen wir Ausnah-
mebehandlungen von Elementen wie Expression, da sonst die Seriealisierung das body
Attribut auch tatsdchlich als Attribut ausgibt. Ein Beispiel wére die < for » Expression,
welche auf folgende Art serialisiert werden wiirde: <« for body=. .. >. Korrekt wire aber:
<for»>... «/for>. Daher implementieren wir ein eigenen Algorithmus zur Transformation
des Ecore Modells in einen DOM Baum, wie wir es bereits in Abschnitt 4.5.2 auf Seite 50
besprochen haben. Das Resultat ist, nach XML Serialisierung des DOM Baumes, syntaktisch
korrektes BPEL, wie es in Listing 5.9 zu sehen ist.

2http://www.eclipse.org/forums/index.php?t=msg&th=126150/
3XML Metadata Interchange

113

http://www.eclipse.org/forums/index.php?t=msg&th=126150/

5 Implementierung

|=| platform:/resource/org.eclipse.bpeldchor.meodel/model/chor.ecore

f## chor
EH Choreography
T name: EString
T targetMamespace: EString
= participants : CParticipant
= participantSets : CParticipantSet
= messagelinks : CMessagelLink
= participantRefs : CParticipantRef
= flowhctivityLinks @ FlowActivityLink
= groundings : CGrounding
= forBachlterationSpecs @ ForEachlterationSpec
H CMessagelink
=+ sendActivity : Clinkable
= receivefctivity : Clinkable
=t participantRefs : CParticipantRef
=+ hindSenderTo : CParticipant
=+ sender : CParticipant
=+ senders : CParticipantSet
=+ receiver : CParticipant
= messageMame: EString
= name: EString
H CParticipantRef
=+ participant : CParticipant
T name: EString
H FlowhctivityLink
=+ sourcefctivity @ Activity
=+ targetActivity @ Activity
= name: EString
= transitionCondition : TransiticnCendition
H CParticipantCommon
T name: EString
=+ scope: Scope
= process : Process
H CParticipant -> CParticipantCommon
= containment : PContainment
=t selects: CParticipantCommon
H CParticipantSet -» CParticipantCommon
=t participants : CParticipant
=t participantSets : CParticipantSet

B

m

g

Abbildung 5.21: Chor Model als Ecore Modell

114

CGrounding

T name: EString

= cMessagelinkGroundings | CMessagelinkGrounding
= comrrelationSetGroundings ¢« CorrelationSetGrounding
= cParticipantRefGroundings : CParticipantRefGrounding
CorrelationSetGrounding

=+ correlationet : Correlation5et

= propertyGroundings : PropertyGrounding
PropertyGrounding

o propertyMame : EString

=+ WSDLProperty : CQName
CMessagelinkGrounding

= cMessagelink : CMessagelink

= portType : COMName

= operation : EString

= bSToWSDLProperty : CQMName
CParticipantRefGrounding

=+ cParticipantRef : CParticipantRef

= WSDLProperty : CQName

PContainment

= addifnotexists = 0

= mustadd =1

= required = 2

CQMName

= nsRI: EString

T localPart : EString

= prefix : EString

ForBachlterationSpec

=+ iteratorSet : CParticipantSet

=+ iteratorValue: CParticipant

= forEach : ForEach

5.2 Chor Designer

f testProcess \
sequence

(/ invoke

scope \

sequence

opaqueActivity

receive

reply

empty

Jat

Abbildung 5.22: BPEL Testprozess

Listing 5.8 PBD Model ECore Standard XMI Serialisierung

01 <pbd:Process xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

name="testProcess" ...>

02 <pbd:activity xsi:type="pbd:Sequence">

03 <pbd:activity xsi:type="pbd:Invoke" outputVariable="##opaque"/>

04 <pbd:activity xsi:type="pbd:Scope" name="testScope">

05 <pbd:activity xsi:type="pbd:Sequence">

06 <pbd:activity xsi:type="pbd:OpaquelActivity" name="testOpaque"/>

07 <pbd:activity xsi:type="pbd:Receive" variable="##opaque"
messageExchange="msgExA" />

08 <pbd:activity xsi:type="pbd:Reply" variable="##opaque"
messageExchange="msgExA" />

09 </pbd:activity>

10 </pbd:activity>

11 <pbd:activity xsi:type="pbd:Empty" name="emptyActivity"/>

12 </pbd:activity>

13 </pbd:Process>

115

5 Implementierung

Listing 5.9 PBD Model ECore XML Serialisierung durch Transformation nach DOM

01 <process name="testProcess" ...>

02 <sequence>

03 <invoke outputVariable="##opaque"/>

04 <scope name="testScope">

05 <sequence>

06 <opaqueActivity name="testOpaque"/>

07 <receive messageExchange="msgExA" variable="##opaque"/>
08 <reply messageExchange="msgExA" variable="##opaque"/>
09 </sequence>

10 </scope>

11 <empty name="emptyActivity"/>

12 </sequence>

13 </process>

5.2.2 Graphical Definition Model

In diesem Modell definieren wir das Aussehen unserer Modellelemente. In Abbildung 5.23
sehen wir im linken Teil das Konzept, wie wir CParticipant Elemente darstellen. Ein
dufleres Rechteck mit zwei inneren Rechtecken. Das obere Rechteck beinhaltet ein Label,
welches den Namen des Participants darstellt. Das untere Rechteck stellt die Zeichenfla-
che dar, in welcher wir das zugehorige Process Element platzieren wollen. Im rechten
Teil der Abbildung 5.23 sehen wir den Figure Descriptor des Graphical Definition Mo-
del. Fiir die Platzierung der inneren Rechtecke und des Labels verwenden wir Layout
Manager. Das duflerste Rechteck wird mit einem BorderLayout versehen. Das innere
Rechteck (CParticipantNameFigure), welches das Label beinhaltet , platzieren wir in
Norden (BEGINNING) und das andere Rechteck (CParticipantCompartmentFigure)
platzieren wir in der Mitte (CENTER). Das Label platzieren wir, mittels FlowLayout, im
CParticipantNameFigure Rechteck. Die Nummern am rechten Rand der Abbildung
verweisen auf die Code Zeilen in Listing 5.10, welches den resultierenden Java Code darstellt,
der aus diesem Figure Descriptor generiert wird. Das Design der anderen Elemente ist diesem
hier sehr dhnlich. Fiir die Elemente, welche keine verschachtelten Elemente darstellen wie
z.B. Invoke, Receive, Reply usw. sprich, alle nicht strukturierten Aktivititen, benotigen
wir kein Rechteck fiir das Compartment. Lediglich Verbinder haben ein gédnzlich anderes
Design.

In Abbildung 5.24 sehen wir im linken Teil das Konzept, wie wir CMessageLink Elemente
darstellen. Verbinder haben immer eine Quelle und ein Ziel und wir ,, dekorieren” nur
die Zielseite. Diese Dekoration wird als Pfeil dargestellt. Zudem soll es noch ein Label
geben, welches den Namen des Message Links anzeigt. Im rechten Teil der Abbildung 5.24
ist der Figure Descriptor zu sehen, sowie die Definition des Pfeils in Form einer Polygon
Beschreibung. Die Linie selbst ist als Polyline Connection definiert was zum einen spezielle
Linie ist, welche durch mehrere Punkte — zwischen Anfangs und Endpunkt — gezogen wird

116

5.2 Chor Designer

und zum anderen eine Connection, wie wir sie bereits in Abschnitt 5.1.3 auf Seite 92 vorgestellt
haben. Uber die Property Target Decoration konnen wir die Pfeildekoration zuweisen
welche wir, separat von diesem Figure Descriptor, als Polygon Beschreibung definieren. Die
Polygon Beschreibung besteht aus einer Punktliste und wird so gelesen, wie es schematisch
Abbildung 5.24 dargestellt ist. Die Leserichtung ist gegen den Uhrzeigersinn und beginnt
mit Punkt (x,y) = (0,0), geht dann zu (—2,2), tiber (—2, —2) wieder zuriick zu (0,0). Somit
erhalten wir ein geschlossenes Dreieck mit schwarzer Hintergrundfarbe (Background:
black). Am rechten Rand der Abbildung sind die Code Zeilen aus Listing 5.11 zu sehen,

welche den zugehorigen Java Code zeigen.

Konzept Graphical Definition Model
// \ < Figure Descriptor CParticipantFigure
“ Labe ‘ ¢ Rounded Rectangle CParticipantFigure
e ™~ <+ Border Layout

< Rounded Rectangle CParticipantMameFigure
<+ Border Layout Data BEGINMIMNG
<= Flow Layout false
< Label CParticipantMame
4 Rounded Rectangle CParticipantCompartrmentFigure
< Border Layout Data CENTER
\ <= Child Access getFigureCParticipantMame
\ <+ Child Access getFigureCParticipantCompartmentFigure

Abbildung 5.23: Grafische Représentation von CParticipant

6,7
13

15
17,19
21,23
25
27
2,30
3,34

117

5 Implementierung

Listing 5.10 Generierter Java Code aus dem Figure Descriptor von CParticipant

01 public class CParticipantFigure extends RoundedRectangle {

02 private WrappingLabel fFigureCParticipantName;

03 private RoundedRectangle fFigureCParticipantCompartmentFigure;

04

05 public CParticipantFigure () {

06 BorderLayout layoutThis = new BorderLayout () ;

07 this.setLayoutManager (layoutThis) ;

08 Ce

09 createContents () ;

10 }

11

12 private void createContents () {

13 RoundedRectangle cParticipantNameFigureO = new RoundedRectangle () ;
14

15 this.add(cParticipantNameFigureO, BorderLayout.TOP);

16

17 FlowLayout layoutCParticipantNameFigureO = new FlowLayout ();

18 Ce

19 cParticipantNameFigure(O.setLayoutManager (layoutCParticipantNameFigureO) ;
20

21 fFigureCParticipantName = new WrappingLabel () ;

22 Ce

23 cParticipantNameFigureO.add (fFigureCParticipantName) ;

24

25 fFigureCParticipantCompartmentFigure = new RoundedRectangle () ;
26 Ce

27 this.add (fFigureCParticipantCompartmentFigure, BorderLayout.CENTER) ;
28 }

29

30 public WrappingLabel getFigureCParticipantName () {

31 return fFigureCParticipantName;

32 }

33

34 public RoundedRectangle getFigureCParticipantCompartmentFigure () {
35 return fFigureCParticipantCompartmentFigure;

36 }

37 }

118

5.2 Chor Designer

Konzept

Target

Polyline .
y Decoration

Graphical Definition Model

<+ Figure Descriptor CMessagelinkFigure
<= Polyline Connection CMessagelinkFigure
4= Label CMessagelinkMame
<= Child Access getFigureCMessagelinkMame

4+ Polygon Decoration ClosedMediumArrow
<= Background: black
<+ 0.0)
+ (-42)
+ (-2-2)
4+ (0.0)

B
| 2

-2,-2

0,0

Abbildung 5.24: Grafische Reprédsentation von CMessageLink

11,13
3,30

17
19

21
22

23
24

119

5 Implementierung

Listing 5.11 Generierter Java Code aus dem Figure Descriptor von CMessageLink

01 public class CMessagelLinkFigure extends PolylineConnectionEx {

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 }

private WrappingLabel fFigureCMessageLinkName;

public CMessageLinkFigure () {

createContents () ;

setTargetDecoration (createTargetDecoration());
}
private void createContents () {

fFigureCMessageLinkName = new WrappingLabel () ;

this.add (fFigureCMessageLinkNamnme) ;

private RotatableDecoration createTargetDecoration() {
PolygonDecoration df = new PolygonDecoration();
df.setFill (true);
df.setBackgroundColor (ColorConstants.black);
PointList pl = new PointList ();

pl.addPoint (getMapMode () .DPtoLP (0), getMapMode () .DPtoLP (0));

pl.addPoint (getMapMode () .DPtoLP (-2), getMapMode () .DPtoLP (2));

pl.addPoint (getMapMode () .DPtoLP (-2), getMapMode () .DPtolLP (-2));
(

pl.addPoint (getMapMode () .DPtoLP
df.setTemplate (pl);

0), getMapMode () .DPtoLP (0)) ;
return df;

public WrappingLabel getFigureCMessageLinkName () {
return fFigureCMessageLinkName;

5.2.3 Tooling Definition Model

In diesem Modell definieren wir fiir alle Elemente, welche wir auf der Zeichenfliche des
Editors platzieren, unsere Werkzeuge. In Abbildung 5.25 ist im linken Teil das Modell zu
sehen und im rechten Teil, das Resultat im generierten Editor. Wir definieren Tool Groups um
optisch die zusammengehorenden Werkzeuge zu gruppieren. Jede Gruppe hat die Property
Collapsible= true, so dass jede einzeln ein-, oder ausgeblendet werden kann. Fiir jedes
Creation Tool lasst sich zudem ein Icon festlegen. In dieser Abbildung haben wir die Standard
Icons verwendet. Im oberen Bereich der Palette sind Selektion und Zoom Tools zu sehen,
welche standardméfiig von GMF generiert werden. Der generierte Java Code befindet sich in
der ChorPaletteFactory (wir haben im Tooling Definition Model unsere Palette ,chorPa-

120

5.2 Chor Designer

lette”genannt) welche Instanzen von org.eclipse.gef.palette.PaletteContainer
fiir jede Tool Group und Instanzen von org.eclipse.gef.palette.ToolEntry fiir jedes
Creation Tool erzeugt.

Tooling Definition Model GMF Editor

% Tool Registry % Palette [
Palette chorPalette

4 Tool Group Choreography heao
<= Creation Tool CMEssageLirﬂc\> [=- Choreography &
< Creation Tool CParticipant

< Creation Tool CParticipantSet -
< Creation Tool CParticipantRef 4 CParticipant

4 Tool Group ParticipantBehaviorDescription \ < CParticipantSet

< CMessagelink

<= Creation Tool Sequence 4 CParticipantRef
<= Creation Tool Scope

4 Creation Tool Invoke [= ParticipantBehavicrDescription <
<= Creation Tool Receive 4 Sequence
< Creation Tool Reply 4 Scope
< Creation Tool Opaguelctivity + Tnvok
< Creation Tool ForEach nveks
4 Tool Group Pick < Receive
< Creation Tool Pick <4 Reply
< Creation Tool OnMessage 4 OpaqueActivity
< Creation Tool Ondlarm
4 Tool Group Flow + Forkach
<= Creation Tool Flo = Pick s
4 Creation Tool FlowActniisLink 4 Pick
< OnMessage
< OnAlarm
= Flow el
4 Flow

<+ FlowhActivityLink

Abbildung 5.25: Tooling Definition Model und die Umsetzung im GEF Editor

5.2.4 Mapping Definition Model

In diesem Modell verbinden wir alle anderen Modelle miteinander und definieren somit
unseren Editor. Die visuelle Reprasentation der Zeichenfldche ist das Canvas Element des

121

5 Implementierung

2 @ platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 4 Mapping

] Top Node Reference <participants:CParticipant/CParticipant>
] Top Node Reference <participantSets:CParticipantSet/CParticipantSet>
] Top Node Reference <participantRefs:CParticipantRef/CParticipantRef>
< Link Mapping <CMessageLink{CMessageLink.sendActivity:CLinkable-> CMessageLink
< Link Mapping <FlowActivityLink{FlowActivityLink.sourceActivity:Activity-> FlowActivi
< Link Mapping <{CMessagelink.participantRefs:CParticipantRef}/CParticipantRefLink>
[Canvas Mapping

Selection | Parent| List| Tree| Table | Tree with Columns

{2 Problems | @ Javadoc @) Declaration | = Properties &2 E Console

Property Value
Domain meta information
Domain Model # chor
Element B Choreography
Misc
Menu Contributions
Palette © Palette chorPalette

Toolbar Contributions
Visual representation

Diagram Canvas <4 Canvas chor
& platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfgraph

4 Canvas chor <

22 platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmftool
% Tool Registry
£ Palette chorPalette

=] platform:/resource/org.eclipse.bpeldchor.
chor
 Choreography

Abbildung 5.26: Definition der Zeichenflache (Canvas) im Mapping Definition Model

Graphical Definition Model, unter welchem wir alle Reprdsentationen unserer Elemente fest-
gelegt haben. Das zugehorige Wurzelelement aus dem Chor Model ist die Choreography
Klasse und unsere Werkzeuge haben wir in der chorPalette im Tooling Definition Model
definiert. In Abbildung 5.26 sehen wir das Canvas Mapping Element mit seinen Properties
und den Modellen, auf welche wir verweisen. Im folgenden beschreiben wir einen Teil der
Mappings von CParticipant, Process und CMessageLink. Das Mapping der restlichen

Elemente verlduft Analog.

122

5.2 Chor Designer

CParticipant Mapping Definition

CParticipant Elemente platzieren wir direkt auf der Zeichenflache. Das Wurzelelement
der Zeichenfldche ist das Choreography Element. CParticipant Elemente werden von
diesem referenziert. Im Mapping Definition Model werden Referenzen, vom Wurzelelement
ausgehend, als Top Node Reference bezeichnet. In Abbildung 5.27 sehen wir die Definition
der Top Node Reference. Mit dem Attribut Containment Feature verweisen wir auf die
entsprechende EReference von Choreography. Mit dieser Definition haben wir festge-
legt, dass alle Instanzen von CParticipant zur Choreography Zeichenflicheninstanz
gehoren und auch dort gesammelt werden. Nachdem die Referenz definiert ist, miissen wir
festlegen, wie die Instanzen erstellt werden, wie sie aussehen und was fiir Eigenschaften
diese haben sollen. Dies machen wir mit dem Node Mapping Element und betrachten dazu
Abbildung 5.28. Mit dem Element Attribut legen wir das Ecore Element fest, welches wir
hier modellieren wollen. Zudem muss es zur iibergeordneten Node Reference passen, wes-
halb hier auch nur CParticipant angegeben werden kann. Mittels Diagram Node Attribut
geben wir das Aussehen von CParticipant an, welches wir zuvor schon im Graphical
Definition Model festgelegt haben. Wir mochten Instanzen von CParticipant iiber die
Palette erstellen, daher verweisen wir auf unser bereits definiertes Creation Tool aus dem
Tooling Definition Model. Das name Attribut von CParticipant soll auch auf der Zei-
chenfliache erscheinen und zudem editierbar sein. Um dies zu erreichen, definieren wir ein
Feature Label Mapping wie in Abbildung 5.29 zu sehen ist. Mit dem Attribut Features to
display geben wir das zugehorige Ecore Attribut an. In unserem Fall ist dies das name
Attribut aus CParticipantCommon. Mittels Diagram Label Attribut geben wir noch das
entsprechende Aussehen an und verweisen auf das passende Diagram Label Element aus dem
Graphical Definition Model. Mit dem Edit Method Attribut ldsst sich festlegen, wie der
vom Benutzer eingegebene Text vom GMF Editor analysiert werden soll und mit dem View
Method Attribut wird festgelegt, wie das Label auf der Zeichenflache dargestellt wird [ecla].
MESSAGE_FORMAT bedeutet dabei, dass das Format von java.text .MessageFormat be-
stimmt wird [ecla]. Wir werden spater, beim Mapping von Aktivitidten, genauer darauf
eingehen. Mittels Child Reference Knoten konnen wir ausgehende Referenzen vom tibergeord-
neten Node Mapping Element, in unserem Fall CParticipant, modellieren. CParticipant
hat eine Referenz auf Process und wir mochten diesen mit all seinen verschachtelten Ak-
tivitdten innerhalb von CParticipant darstellen. Grafisch haben wir schon fiir diese
Moglichkeit gesorgt, indem wir ein Compartment im Graphical Definition Model dafiir er-
stellt haben. Wir miissen im Mapping definieren, welche Instanzen in diesem Compartment
platziert werden diirfen. Dazu definieren wir ein Compartment Mapping Element, wie in
Abbildung 5.30 zu sehen ist. Mittels Children Attribut bestimmen wir alle Referenzen,
welche in diesem Compartment aufgenommen werden. In unserem Fall ist dies nur die
Referenz auf Process. Das passende Aussehen bzw. die Definition, wo genau innerhalb
der CParticipant Reprdsentation die Process Reprasentation dargestellt werden soll,

123

5 Implementierung

[platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 Mapping
21 Top Node Reference <participants:CParticipant/CParticipant>
I'T Node Mapping <CParticipant/CParticipant>
Feature Seq Initializer< CParticipant(process)>
Ab Feature Label Mapping false
K] Child Reference <process:Process/Process>
B Compartment Mapping <CParticipantProcessCompartment>

Selection | Parent | List| Tree | Table Tree with Columns

(2 Problems | @ Javadoc \54/ Declaration | £ Properties &3 El Console

Property Value

Child IT Node Mapping <CParticipant/CParticipant>
Children Feature
Containment Feature §3 Choreography.participants:CParticipant

| platform:/resource/org.eclipse.bpeldchor.model/model/chor.ecore
chor
E Choreography
7 Choreography.name:EString
Z Choreography.targetNamespace:EString
&2 Choreography.participants:CParticipant

Abbildung 5.27: Definition der Top Node Reference von CParticipant im Mapping Defini-
tion Model

bestimmen wir mittels Verweis auf das Compartment Element aus dem Graphical Definition
Model.

Wir haben in der Konzeption in Abschnitt 4.5.1 auf Seite 35 die Entscheidung getroffen,
dass jeder Participant, bei seiner Erstellung, einen eigenen Prozess hat. Dies realisieren wir,
indem wir bei jeder Instanz von CParticipant auch gleich eine neue Instanz von Process
mit anlegen. Da es zudem seltenst der Fall ist, dass ein Prozess insgesamt nur aus einer
einzelnen Aktivitit besteht, legen wir auch eine neue Instanz von Sequence mit an. Dieses
Verhalten konnen wir mittels Feature Seq Initializer Element, wie in Abbildung 5.31 zu sehen,
modellieren. Wir beschreiben nacheinander die nummerierten Zeilen in dieser Abbildung. In
Zeile 1 definieren wir, dass die neue Process Instanz von CParticipant aus referenziert
und abgelegt wird. Zeile 2 erstellt eine neue Instanz von Process. In Zeile 8 definieren
wir, dass bei dieser Instanziierung das Attribut abstractProcessProfile mittels Wert
aus Zeile g initialisiert wird. In Zeile 4 geben wir an dass, im Zuge der Instanziierung von
Process, die neue Sequence Instanz von Process als Activity referenziert wird. In
Zeile 5 erstellen wir eine neue Instanz von Sequence und in Zeile 6 initialisieren wir das
Attribut name mit dem Wert aus Zeile 7.

124

5.2 Chor Designer

B platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 Mapping
2] Top Node Reference <participants:CParticipant/CParticipant>
I'T Node Mapping <CParticipant/CParticipant>
% Feature Seq Initializer< CParticipant(process)>
Ab Feature Label Mapping false
)11 Child Reference <process:Process/Process>
B Compartment Mapping <CParticipantProcessCompartment>
Selection [Parent| Lisﬁ Tree{ Table| Tree with Columnsl

(2. Problems l @ Javadoc [@) Declaration ‘D Properties %\E Console

Property Value

Domain meta information
Element B CParticipant -> CParticipantCommon

Misc

Visual representation
Appearance Style
Context Menu
Diagram Node <4 Node CParticipant (CParticipantFigure)
Tool < Creation Tool CParticipant

22 platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmftool
4 Tool Registry

© Palette chorPalette
<4 Tool Group Choreography
<4 Creation Tool CMessagelink
<4 Creation Tool CParticipant

& platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfgraph
< Canvas chor
<> Figure Gallery choreography
<> Figure Gallery pbd
< Figure Gallery deco
<4 Node CParticipant (CParticipantFigure)

|=] platform:/resource/org.eclipse.bpeldchor.model/model/chor.ecor
chor

E Choreography

E CMessagelink

E CParticipantRef

B FlowActivityLink

E CParticipantCommon

E CParticipant -> CParticipantCommon

Abbildung 5.28: Definition des Node Mapping von CParticipant im Mapping Definition
Model

125

5 Implementierung

B platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 Mapping
)] Top Node Reference <participants:CParticipant/CParticipant>
IT Node Mapping <CParticipant/CParticipant>
4 Feature Seq Initializer<CParticipant(process)>
Ab Feature Label Mapping false
)] Child Reference <process:Process/Process>
B Compartment Mapping <CParticipantProcessCompartment>

Selection { Parent| List[Tree| Table{ Tree with Columns{

(2 Problems] @ Javadoc H__@) Declaration]D Properties SS\E Console

Property Value
Domain meta information
Features to display T CParticipantCommon.name:EString

Features to edit
Misc
Diagram Label < Diagram Label CParticipantName
Read Only vk false
Visual representation
Edit Method
Editor Pattern
Edit Pattern
View Method
View Pattern

=

MESSAGE_FORMAT

=

(1T (1L (1T (111 U1

MESSAGE_FORMAT

o = =

& platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfgraph
4 < Canvas chor
> <4 Figure Gallery choreography
> < Figure Gallery pbd
> < Figure Gallery deco
<4 Node CParticipant (CParticipantFiaure)

> < Diagram Label CMessagelinkName
<4 Diagram Label CParticipantName

|5 platform:/resource/org.eclipse.bpeldchor.model/model/chor.ecore
chor

£ Choreography

 CMessagelink

E CParticipantRef

E FlowActivityLink

E CParticipantCommon
2 CParticipantCommon.name:EString
= CParticipantCommon.scope:Scope
= CParticipantCommon.process:Process

[CParticipant -> CParticipantCommon

Abbildung 5.29: Definition des Label Mapping von CParticipant im Mapping Definition
Model

126

5.2 Chor Designer

[platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 Mapping
2 Top Node Reference <participants:CParticipant/CParticipant>
I'T Node Mapping <CParticipant/CParticipant>
4 Feature Seq Initializer< CParticipant(process)>
Ab Feature Label Mapping false
)] Child Reference <process:Process/Process>
B Compartment Mapping <CParticipantProcessCompartment>
Selection | Parent | List | Tree| Table‘ Tree with Columns |

LL Problems | @ Javadoc '[& Declaration I] Properties 53 E Console'[

Property Value
Misc
Children)] Child Reference <process:Process/Process>
Visual representation
Compartment <4 Compartment CParticipantProcessCompartment (CParticipantFigure)

& platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfgraph
4 < Canvas chor

< Figure Gallery choreography

<4 Figure Gallery pbd

< Figure Gallery deco

<4 Node CParticipant (CParticipantFigure)

<4 Compartment CParticipantProcessCompartment (CParticipantFigure)

Abbildung 5.30: Definition des Compartment Mapping von CParticipant im Mapping
Definition Model

4 |] Top Node Reference <participants:CParticipant/CParticipant>
4 [T Node Mapping <CParticipant/CParticipant>
1 4 < Feature SeqInitializer<CParticipant(process)>
2 4 < Reference New Element Spec<process:= new Process[1]>
3 4 < Feature Seq Initializer<new Process(activity,abstractProcessProfile)>
4 4 < Reference New Element Spec<activity:= new Activity[1]>
5 4 < Feature Seq Initializer<new Sequence(name)>
6 4 < Feature Value Spec<name:= "main">
7 4 Value Expression "main”
8 4 < Feature Value Spec<abstractProcessProfile:= "urn:HPI_IAAS:choreography:profile:2006/12">
9 4 Value Expression "urn:HPI_IAAS:choreography:profile:2006/12"

Abbildung 5.31: Erstellung zusédtzlicher Instanzen beim Anlegen einer neuen
CParticipant Instanz

127

5 Implementierung

Process Mapping Definition

Ein Process Element wird innerhalb des Compartments von CParticipant bzw.
CParticipantSet platziert. Daher modellieren wir Process nicht als Top Node Refe-
rence sondern als Child Reference von CParticipant, wie in Abbildung 5.32 zu sehen ist.
Mit dem Compartment Attribut bestimmen wir das Compartment von CParticipant, in
welchem diese Process Referenz dargestellt werden soll. Die entsprechende Referenz von
CParticipantCommon auf Process, legen wir im Containment Feature Attribut fest.
Jetzt miissen wir das Aussehen und die zugehorige Ecore Klasse von Process im Node
Mapping festlegen. Dies ist in Abbildung 5.33 zu sehen. Wir benétigen fiir die Process
Instanzen allerdings kein Creation Tool, da der Benutzer nicht die Moglichkeit haben soll,
welche zu erzeugen. Ebenfalls definieren wieder ein Compartment Mapping, in welchem die
Sequence Aktivitit platziert wird und legen eine Child Reference an, welche auf die von
Process ausgehende Activity Referenz zeigt.

Activity Mapping Definition

In Abbildung 5.34 sehen wir das Node Mapping von Sequence. Wie zuvor auch legen wir
Aussehen, Ecore Klasse und Creation Tool fest. Da eine Sequence beliebig viele Aktivititen
aufnehmen kann, miissen wir fiir jede Aktivitit eine Child Reference und jeweils darunter
das passende Node Mapping angeben. Wichtig ist hierbei, dass wir im ganzen Mapping
Definition Model jede Ecore Klasse nur einmal in einem Node Mapping definieren, jedoch
mit mehreren Child Reference Elementen vorhandene Node Mapping Elemente referenzieren
konnen. So ist Sequence eine Aktivitdt und kann sich somit selber beliebig oft verschachtelt
enthalten. Wir definieren folglich unterhalb des Node Mapping von Sequence, eine Child
Reference auf sich selbst. Dies ist in Abbildung 5.35 zu sehen. Mittels Referenced Child
Attribut verweisen wir, rekursiv, auf das bereits vorhandene Node Mapping Element von
Sequence und haben damit eine beliebig tiefe Verschachtlung erreicht. Die anderen Child
Reference Elemente von Scope bis Flow definieren wir wie gehabt, jeweils mit einem eigenen
Node Mapping Element. Bei Scope, Flow und den tibrigen verschachtelbaren Elementen,
machen wir uns wieder das Referenced Child Attribut zu nutze. Haben wir auf diese
Art Process komplett durch modelliert, miissen wir das ganze nicht nochmal neu fiir
CParticipantsSet definieren, sondern verweisen mit Referenced Child auf das bereits
definierte Node Mapping Element von Process.

Wie bereits schon erwdhnt, betrachten wir noch einmal ein Feature Label Mapping. Abbil-
dung 5.36 zeigt das Mapping des Namen Labels von Invoke, welches fiir alle Aktivitdten
analog definiert ist. Diesmal mochten wir im Label die zwei Ecore Attribute name und id
anzeigen. Mittels View Pattern definieren wir, wie genau aus den Attributen, welche in
Features to display eingetragen sind, der Label Text auf der Zeichenfliche zusammen
gesetzt wird. {0} bezieht sich dabei auf das erste Attribut, in unserem Beispiel name und

128

5.2 Chor Designer

B platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 Mapping
)1 Top Node Reference <participants:CParticipant/CParticipant>
I Node Mapping <CParticipant/CParticipant>
4 Feature Seq Initializer< CParticipant(process)>
Ab Feature Label Mapping false
)] Child Reference <process:Process/Process>
IT Node Mapping <Process/Process>
Ab Feature Label Mapping false
)] Child Reference <activity:Sequence/Sequence>
B Compartment Mapping <ProcessActivityCompartment>
Selection | Parent | List| Tree | Table | Tree with Columns|

{2 Problems | @ Javadoc @) Declaration | =] Properties £3 El Console

Property Value
Child IT Node Mapping <Process/Process>
Children Feature
Compartment B Compartment Mapping <CParticipantProcessCompartment>
Containment Feature = CParticipantCommon.process:Process

Referenced Child

|=) platform:/resource/org.eclipse.bpeldchor.model/model/chor.ecore
4 # chor

Choreography

CMessagelink

CParticipantRef

FlowActivityLink
CParticipantCommon

2 CParticipantCommon.name:EString

(0 0D 0D 00 0D

= CParticipantCommon.scope:Scope
= CParticipantCommon.process:Process

Abbildung 5.32: Definition von Process als Child Reference im Mapping Definition Model

{1} demnach auf das zweite, id. Diese beiden Attribute sollen durch ein ":" Zeichen getrennt
sein. Der daraus resultierende Text sieht dann z.B. so aus: "xy : 1". Mittels Edit Pattern
geben wir an, wie der vom Benutzer eingegebene Text analysiert werden soll und mittels
Editor Pattern beschreiben wir, wie sich das Label vom Benutzer editieren lasst. In
unserem Beispiel konnen wir name und id editieren, jedoch nicht ":" entfernen.

129

5 Implementierung

B platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
< Mapping
)1 Top Node Reference <participants:CParticipant/CParticipant>
[T Node Mapping <CParticipant/CParticipant>

4 Feature Seq Initializer<CParticipant(process)>

Ab Feature Label Mapping false

)1 Child Reference <process:Process/Process>

I'T Node Mapping <Process/Process>

Ab Feature Label Mapping false
)1 Child Reference <activity:Sequence/Sequence>
B Compartment Mapping <ProcessActivityCompartment>

Selection [Parentl List| Tree| Table} Tree with Columnsl

;R Problems[@ Javadoc [[Q) Declaration ‘{D Properties 225 Console
Property Value
Domain meta information
Element E Process -> ExtensibleElements
Misc
Visual representation
Appearance Style
Context Menu

Diagram Node <4 Node Process (ProcessFigure)
Tool

& platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfgraph
< Canvas chor
<> Figure Gallery choreography
<4 Figure Gallery pbd
< Figure Gallery deco
<4 Node CParticipant (CParticipantFigure)
<4 Node CParticipantSet (CParticipantSetFigure)
<4 Node CParticipantRef (CParticipantRefFigure)
<4 Node Process (ProcessFigure)

|5] platform:/resource/org.eclipse.bpeldchor.model/model/pbd.ecore
pbd
E ExtensibleElements
E Documentation
E Process -> ExtensibleElements

Abbildung 5.33: Definition des Node Mapping von Process im Mapping Definition Model

130

5.2 Chor Designer

4 B platform:/resource/org.eclipse.bpeld chor.gmf/model/chor.gmfmap

4 4 Mapping

4 K] Top Node Reference <participants:CParticipant/CParticipant>
4 [77 Node Mapping <CParticipant/CParticipant>
> < Feature Seq Initializer<CParticipant(process)>
Ab Feature Label Mapping false
4 1 Child Reference <process:Process/Process>
4 [T7 Node Mapping <Process/Process>
Ab Feature Label Mapping false
4 1] Child Reference <activity:Sequence/Sequence>

4 |IT Node Mapping <Sequence/Sequence> |

ab

3]
P 3|
P 3|
P 3|
P 3|
P 3|
B 3|
P 3|
P 3|

=]

Feature Label Mapping false

Child Reference <activity:Sequence/Sequence>

Child Reference <activity:Scope/Scope>

Child Reference <activity:Invoke/Invoke>

Child Reference <activity:Receive/Receive>

Child Reference <activity:Reply/Reply>

Child Reference <activity:OpaqueActivity/OpaqueActivity>
Child Reference <activity:Pick/Pick>

Child Reference <activity:ForEach/ForEach>

Child Reference <activity:Flow/Flow>

Compartment Mapping <SequenceActivityCompartment>

Selection { Parent{ List‘ Tree{ Table{ Tree with Columns{

{2/ Problems I @ Javadoc ‘@) Declaration I £ Properties 331\,_1»5 Console']

Property Value

Domain meta information

Element [Sequence -> Activity

Misc

Visual representation
Appearance Style
Context Menu

Diagram Node <4 Node Sequence (SequenceFigure)
Tool <4 Creation Tool Sequence

Abbildung 5.34: Definition des Node Mapping von Sequence im Mapping Definition Model

131

5 Implementierung

B platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
4 Mapping
)] Top Node Reference <participants:CParticipant/CParticipant>
IT Node Mapping <CParticipant/CParticipant>
4 Feature Seq Initializer< CParticipant(process)>
Ab Feature Label Mapping false
)1 Child Reference <process:Process/Process>
I'T Node Mapping <Process/Process>
Ab Feature Label Mapping false
)] Child Reference <activity:Sequence/Sequence>
IT Node Mapping <Sequence/Sequence>
Ab Feature Label Mapping false
)1 Child Reference <activity:Sequence/Sequence>
)] Child Reference <activity:Scope/Scope>
) Child Reference <activity:Invoke/Invoke>
»] Child Reference <activity:Receive/Receive>
)] Child Reference <activity:Reply/Reply>
] Child Reference <activity:OpaqueActivity/OpaqueActivity>
) Child Reference <activity:Pick/Pick>
)] Child Reference <activity:ForEach/ForEach>
»] Child Reference <activity:Flow/Flow>
B Compartment Mapping <SequenceActivityCompartment>

Selection Paren\| List| Tree| Table | Tree with Columns |

(2 Problems l @ \evadoc I@ Declaration ‘] Properties 2\ E Console]

Property Value
Child IT Node Mapping <Sequence/Sequence>
Children Feature
Compartment B Compartment Mapping <SequenceActivityCompartment>
Containment Feature & Sequence.activity:Activity
Referenced Child IT Node Mapping <Sequence/Sequence>

Abbildung 5.35: Definition der rekursiven Child Reference von Sequence im Mapping Defi-
nition Model

132

5.2 Chor Designer

B platform:/resource/org.eclipse.bpeldchor.gmf/model/chor.gmfmap
< Mapping
2] Top Node Reference <participants:CParticipant/CParticipant>
IT Node Mapping <CParticipant/CParticipant>
4 Feature Seq Initializer< CParticipant(process)>
Ab Feature Label Mapping false
)] Child Reference <process:Process/Process>
I'T Node Mapping <Process/Process>
Ab Feature Label Mapping false
)] Child Reference <activity:Sequence/Sequence>
IT Node Mapping <Sequence/Sequence>
Ab Feature Label Mapping false
)1 Child Reference <activity:Sequence/Sequence>
)] Child Reference <activity:Scope/Scope>
)] Child Reference <activity:Invoke/Invoke>
I'T Node Mapping <Invoke/Invoke>
Ab Feature Label Mapping false

Selection | Parent | List| Tree | Table | Tree with Columns

{2 Problems | @ Javadoc @) Declaration | =] Properties £3 El Console

Property Value

Domain meta information
Features to display = Activity.name:EString, Activity.id:EString
Features to edit

Misc
Diagram Label < Diagram Label InvokeName
Read Only vk false

Visual representation
Edit Method *= MESSAGE_FORMAT
Editor Pattern = {0k{1}
Edit Pattern = {0k{1}
View Method *= MESSAGE_FORMAT
View Pattern o= {0k{1}

Abbildung 5.36: Definition des Label Mapping von Sequence im Mapping Definition Model

CMessageLink Mapping Definition

Zum modellieren von Verbindern benétigen wir Link Mapping Elemente. Diese konnen nur
auf Top Node Reference Ebene definiert werden d. h., direkt auf der Zeichenfliche und nicht et-
wa in einem Compartment. In Abbildung 5.37 sehen wir das Link Mapping von CMe s sageLink.
Containment Feature und Element werden wie gehabt definiert indem sie auf die ent-
sprechenden Elemente aus dem Ecore Modell verweisen. Source Feature und Target
Feature sind exklusive Attribute fiir Link Mapping Elemente in welchen sich festlegen ldsst,

133

5 Implementierung

welche Ecore Referenzen Quelle und Ziel des Verbinders sein sollen. In unserem Fall sind
das die CMessageLink Attribute sendActivity und receiveActivity, welche jeweils
die Kommunikationsaktivitdten referenzieren. Uber Diagram Link und Tool legen wir
wieder Aussehen und das Creation Tool fest, mit welchen die Verbinder erstellt werden. Mit
dieser Modellierung konnen wir allerdings alle Kommunikationsaktivititen untereinander
verbinden, was auch unzuldssige bzw. unsinnige Verbindungen erlaubt wie z. B. Receive
zu Receive oder Receive als Quelle und Reply als Ziel. Auch kdonnten wir zwei Kom-
munikationsaktivitdten im selben Prozess miteinander verbinden. Um dieses Problem zu
16sen, gib es die Moglichkeit Link Constraints anzugeben. Wir definieren ein Constraint in
Java Code, mit welchem wir priifen ob ein Verbinder erstellt werden darf oder nicht. Der
GMF Generator kopiert dann den hier angegeben Code in die entsprechende Priifmethode,
welche jedes mal ausgefiihrt wird, wenn der Benutzer einen Verbinder anlegt oder verandert.
Die Code Logik ist so aufgebaut dass wir zuerst Priifen, ob Quell- und Zielaktivitat zu
unterschiedlichen Prozessinstanzen gehoren. Sollte dies der Fall sein, fahren wir fort und
Priifen, ob Quelle und Ziel in einer erlaubten Konstellation auftreten. Sind alle Priifungen
erfolgreich, kann der Benutzer den Verbinder erstellen.

5.2.5 GMF Generator Model

Haben wir unseren Editor im Mapping Definition Model spezifiziert, konnen wir das Ge-
nerator Model daraus erzeugen. Diese Modell erlaubt uns einige Einstellung beziiglich der
Editor Codegenerierung. Wir gehen hier nur auf ein paar Einstellungen ein welche wir, ab-
weichend von der Standard Einstellung, definieren miissen. Die Platzierung von grafischen
Elementen wird durch Layout Manager geregelt. Elemente innerhalb von Compartments
konnen anhand von zwei verschiedenen Layout Managern verwaltet werden. Zum einen
das ListLayout, welches eine feste Position der Elemente vorgibt und keine Verschiebung
oder Skalierung erlaubt und, zum anderen, das XYLayout, welches freie Positionierung,
Verschiebung und Skalierung ermoglicht [GGog]. Es gibt keine Moglichkeit, einen ande-
ren Layout Manager iiber das Graphical Definition Model vorzugeben. Dies liegt an der
Besonderheit, dass fiir Compartments und Nodes separate EditParts generiert werden. In
Abbildung 5.38 stellen wir, am Beispiel vom Process Element, diesen Zusammenhang sche-
matisch dar. Im Graphical Definition Model legen wir das Aussehen fest. Aktivitaten sollen
im Rechteck ProcessCompartmentFigure dargestellt werden, welches Teil der grafischen
Représentation von Process ist. Im Generator Modell werden aus Node Mapping Process und
Compartment Mapping zwei verschiedene EditParts erstellt. ProcessEditPart generiert sein
Aussehen anhand dem Figure Descritor Code. ProcessActivtyCompartmentEditPart
erhdlt ein vom GMF vordefiniertes Aussehen durch ResizableCompartmentFigure.
Wiirden wir im Graphical Definition Model am ProcessCompartmentFigure Rechteck
z.B. einen BorderLayout Layout Manager festlegen, hitte dies keine Auswirkung auf die
Platzierung von Aktivititen im ProcessActivityCompartment.

134

5.2 Chor Designer

[platform:/resource/org.eclipse.bpeld chor.gmf/model/chor.gmfmap
4 Mapping
] Top Node Reference <participants:CParticipant/CParticipant>
2] Top Node Reference <participantSets:CParticipantSet/CParticipantSet>
K] Top Node Reference <participantRefs:CParticipantRef/CParticipantRef>
< Link Mapping <CMessagelink{CMessageLink.sendActivity:CLinkable->
Ab Feature Label Mapping false
<4 Link Constraints
<4 Constraint if (source != null && target != null)...
Selection [Parent{ Lisﬂ Tree} Table{ Tree with Columns{

(2. Problems ‘ @ Javadoc l@) Declaration ‘) Properties 52 E Console
Property Value
Domain meta information
Containment Feature
Element
Source Feature
Target Feature
Misc
Visual representation
Appearance Style
Context Menu
Diagram Link
Tool

&% Choreography.messageLinks:CMessageLink
H CMessageLink

= CMessagelink.sendActivity:CLinkable
= CMessagelink.receiveActivity:CLinkable

<> Connection CMessagelink
<4 Creation Tool CMessagelink

|5 platform:/resource/org.eclipse.breldchor.model/model/chor.ecore
chor

4 [Choreography

& Choreography.messagelinks:CMessagelink
E CMessagelink

= CMessagelink.sendActivity:CLinkable

= CMessagelink.receiveActivity:CLinkable

Abbildung 5.37: Definition des Link Mapping von CMessageLink im Mapping Definition

Model

135

5 Implementierung

Mapping Definition Model Generator Model

Node Mapping Process ProcessEditPart

ProcessFigure

P Activi
3o [e e rocess. cté\gittyp(;(:;npartment

ResizableCompartmentFigure

Compartment
ProcessActivityCompartment

\ 4
I
I

Figure Descriptor
ProcessFigure

Rectangle ProcessFigure

Rectangle
ProcessCompartmentFigure

Abbildung 5.38: Generierung von separaten EditParts fiir Compartments und Nodes

136

5.2 Chor Designer

Wir verwenden nur fiir Aktivitdten innerhalb von Flow das XLLayout, fiir die ande-
ren grafischen Elemente, in welchen wir verschachtelte Darstellungen erlauben, benut-
zen wir das ListLayout. Dies ist in Abbildung 5.39 dargestellt. Wir setzen fiir alle
CompartmentEditPart Klassen, das Property Attribut List Layout im Generator Mo-
del auf true aufSer fiir das CompartmentEditPart von Flow, da wir dort eine freie Posi-
tionierung der Aktivititen erlauben wollen. Da jedoch ListLayouts standardmaflig die
Elemente recht eng aneinander platzieren und wir dies nicht im Graphical Definition Model
beeinflussen konnen, miissen wir in den generierten Code eingreifen. Daftir machen wir
uns die, in Abschnitt 5.1.5 auf Seite 104 besprochenen, Xpand Templates zu nutze. Wir
passen die Code Generierung fiir alle CompartmentEditParts an. Dazu kopieren wir
die vorhandene CompartmentEditPart.xpt Template aus dem org.eclipse.gmf.codegen
Plugin und passen nur das createFigure () «DEFINE» Statement mittels <AROUND»
an. Mittels «IF» Statement konnen wir das CompartmentEditPart von Flow von der An-
passung ausschliefien. In Abbildung 5.40 sehen wir die Auswirkungen der Anpassung. Wir
haben Einschiibe (Insets) an allen Seiten (TOP, BOTTOM, LEFT, RIGHT) des Compartments
hinzugefiigt und den Abstand zwischen den einzelnen Elementen (Spacing) vergrofiert.

Eine weitere Verwendung einer Xpand Template haben wir fiir die EditParts von Ver-
bindern. Verbinder konnen unterschiedlich zwischen Anfangs- und Endpunkt verlaufen.
Wir haben bereits in Abschnitt 5.1.4 auf Seite 95 von Routern gesprochen. In Abbil-
dung 5.41 ist zu sehen, dass wir unterschiedliche Routing Stiele fiir CMessageLink und
FlowActivityLink verwenden. Der von GMF generierten Editoren globale Stiel fiir alle
Verbinder ist "oblique", also eine gerade Linie zwischen Quelle und Ziel. Dies verwenden wir
fiir FlowActivityLinks. Fiir CMessageLink mochten wir allerdings Linien mit neunzig
Grad Wendepunkten benutzen, was dem Routing Stiel "rectilinear" entspricht. Dazu miissen
wir den EditPart fiir CMessageLink, wie in [eclc] beschrieben, so anpassen dass bei jeder
Erstellung eines Verbinders, der gewtiinschte Routing Stiel gesetzt wird. Wir kopieren dafiir
die LinkEditPart.xpt Template aus dem org.eclipse.gmf.codegen Plugin und passen
nur das createConnectionFigure () «DEFINE» Statement mittels kxAROUND» an.

Haben wir das Generator Model nach unseren wiinschen eingestellt, konnen wir den
eigentlich Java Code fiir den Editor generieren. GMF erstellt dazu ein neues Plugin Projekt
und legt den Code darin in einer vordefinierten Struktur ab.

5.2.6 Diagram Extensions

Wir mochten den generierten Editor Code mit eigenen Property Views und Eclipse Com-
mands erweitern. Dazu greifen wir nicht in den generierten Editor Code ein, oder rei-
chern das Plugin mit neuen Klassen an, sondern erstellen ein weiteres Plugin Projekt,
in welchem wir alle Erweiterungen definieren. Der Editor wird, in unserem Fall, im
org.eclipse.bpeldchor.diagram Plugin abgelegt, die Erweiterungen erstellen wir
im org.eclipse.bpel4chor.diagram.extensions Plugin.

137

5 Implementierung

{d] My.chor_diagram &3

4 P1 4 P2
< process < process
4 main: 4 main:
< invoke:l <4 flow:3
< receive:2 < receive:d

T¢ oab T 4 oas
4 oa7

<4 oa8

ListLayout

XYLayout

Abbildung 5.39: GMF Editor mit XYLayout und ListLayout

Property Views

Wir erstellen, auf Basis des grafischen Konzepts aus Abschnitt 4.5.4 auf Seite 66, unsere
Property View Elemente. Dazu machen wir uns die Eclipse Extension points propertyTabs'™
und propertySections’ nutze, welche wir im Manifest unseres Plugins einstellen. Die
Funktionsweise dieser Plugins ist schematisch, anhand eines Beispiels, in Abbildung 5.42
dargestellt. Mittels propertyTabs definieren wir alle Tabs, welche unserm Editor zu
Verfiigung stehen sollen. In diesem Beispiel sind das T1, T2 und T3. Der Inhalt eines Tabs,
besteht aus einer oder wahlweise mehreren Sektionen, welche wir im propertySections
Extension point definieren. In unserem Beispiel sind das S1 - S4. Sektionen werden ihren

Horg.eclipse.ui.views.properties.tabbed.propertyTabs
'Sorg.eclipse.ui.views.properties.tabbed.propertySections

138

5.2 Chor Designer

[d) My.chor_diagram §3

4 P1 Inset TOP
< process
<4 main:
i3 Spacing
—4 invoke:l =
b I
Y / < receive:2 1)
P \
V3 Inset RIGHT
7/
7/
Ve
7/
Compartment

Inset BOTTOM

Inset LEFT

Abbildung 5.40: Abstinde der Elemente in einem Compartment mittels Inset und Spacing
angepasst

[d) My.chor_diagram £3

4 P1
<4 process 4 P2
P moi 4 process
4 main:
<4 invoke:l
4 flow:3
<4 receive:2
4 namemll P4 receive:d
< o0a:b 4 oa:5
< oa7
4 oa8

Routing Stiel: Oblique

Routing Stiel: Rectilinear (default)

Abbildung 5.41: Verschiedene Routing Stiele fiir CMessageLink und FlowActivityLink

139

5 Implementierung

propertyTabs propertySections filter

T2 tab S2

T3 afterSection

Abbildung 5.42: Konzept der propertyTabs und propertySections Extension points

Tabs, in welchen sie erscheinen sollen, zugewiesen. Im Beispiel erscheint S1 in T1. S2 und
S3 erscheinen in T2, wobei S2 vor S3 dargestellt wird. Diese visuelle Ordnung ldsst sich
mit dem afterSection Attribut definieren. Sektion S4 erscheint schliefflich in Tab T3. In
grafischen Editoren selektieren wir Elemente auf der Zeichenfldche. Bei dieser Selektion wird
bestimmt, welche Tabs und Sektionen zu diesem Element angezeigt werden. Dies konnen
wir mit Filtern steuern, welches Java Klassen sind, die das IFilter Interface, bereitgestellt
durch das JFace Framework, implementieren. Jede Sektion kann auf einen Filter verweisen.
In unserem Beispiel wird Sektion S1 und der zugehorige Tab T1 nur dann angezeigt, wenn
das selektiere Element den Filter F1 passiert. Sektion Sz und der zugehorige Tab T2 werden
immer bei jedem Element angezeigt, da kein Filter definiert wurde. Sektion S3 erscheint nur
auf Tab T1, wenn das selektierte Element Filter F2 passiert. Sektion S4 und Tab T3 werden
nur angezeigt, wenn das selektierte Element Filter F2 passiert. Wir konnen also einen Filter,
mehreren Sektionen zuweisen. Tabs erscheinen nur, wenn sie mindestens eine Sektion haben
und, falls ein Filter dafiir definiert wurde, das selektierte Element den Filter passiert.

In Abbildung 5.43 sehen wir die Property View eines selektierten Receive Elements. Der "Ap-
pereance" Tab kommt vom generierten Editor Code und ist ein Standardfeature von GME. Die
tibrigen Tabs sind von uns definiert und entsprechen jenen, aus unserem grafischen Konzept
in Abschnitt 4.5.4 auf Seite 66. Die Sektionen des gerade aktiven "Base" Tabs sind, zur Her-
vorhebung, eingerahmt. Die obere Sektion ist die ActivityBaseSection, welche fiir alle
Aktivitdten erscheint. Die untere Sektion ist die PickReceiveCreateInstanceSection,
welche nur fiir Receive und Pick erscheint. Alle Sektionen, die wir implementieren, erben

140

5.2 Chor Designer

T Properties 3

< Receive

Appearance name: invokation

Variables i 8

MessageExchanges

. createlnstance: es -
Correlations Y

Base

propertyTab propertySections
Abbildung 5.43: Tabs und Sections der PropertyView von Invoke

von der vorgegebenen Klasse AbstractPropertySection. Wie in [Hunog] beschrieben,
miissen die Sektionen die drei Methoden createControls(), setInput() und refresh() imple-
mentieren. Diese Methode werden vom Eclipse Framework aufgerufen, wenn ein Element
im Editor selektiert wurde. In createControls() erstellen wir die grafischen Komponenten,
welche auf diese Sektion angezeigt werden. Durch setInput() erhalten wir das selektierte
Element und refresh() wird vom Framework aufgerufen, falls der Inhalt dieser Sektion
erneuert werden muss. Die ist z.B. der Fall, wenn der Benutzer am gerade selektierten
Element etwas verdndert.

Uber die Property View fiihren wir Anderungen der aktuellen Instanz unseres Chor Model
durch. GMF benutzt dazu im Hintergrund EMFEEdit und damit auch das Command basierte
Editieren von EMF Objekten, wie wir bereits in Abschnitt 5.1.2 auf Seite go besprochen
haben. Alle Elemente sind also Teil einer Editing Domain wobei GMF die transaktionsbasierte
Editing Domain vom EMF verwendet. Wie in [IBMo7] beschrieben, ist diese in der Klasse
TransactionalEditingDomain realisiert und verwaltet mehrere, gleichzeitige Zugrif-
fe auf ein Objekt. Wir verwenden daher die vom EMF Framework bereitgestellte Klasse
TransactionUtil und dort, die statische Methode getEditingDomain() um fiir ein gege-
benes Objekt, die passende Editing Domain zu finden. Haben wir die Editing Domain, konnen
wir diverse Command Instanzen erstellen um damit Anderungen auf dem Chor Model durch-
fithren. In Abbildung 5.44 sehen wir einen groben Uberblick, wie der Editor mit Property
View, die propertyTabs und propertySections Extension points sowie das zugrunde liegende
Ecore Modell zusammen hangen. Wir veranschaulichen grob, anhand des Receive Elements,
wie das createInstance Attribut tiber die propertySection vom Benutzer verdndert werden
kann. Im linken, oberen Bereich sehen wir dem GMF Editor. Es wurde ein Process Element
mit einem Receive Element modelliert. Selektiert der Benutzer dieses, werden die definier-
ten Extension points aktiv. Der ReceivePickTypeFilter stellt ein Receive Element fest
und ldsst es passieren. Darauf kann die PickReceiveCreateInstanceSection Sektion

141

5 Implementierung

im base Tab angezeigt werden. Der Benutzer verdndert den Wert von createInstance
tiber das ComboBox Widget. Darauf hin wird, fiir den Benutzer nicht sichtbar, die Editing
Doamin von Receive bestimmt, ein neue SetCommand Instanz angelegt, der vom Benutzer
verdnderte Wert eingetragen und ausgefiihrt. Durch Ausfiihrung wird das zugrunde liegende
Ecore Modell am entsprechenden createInstance Attribut abgedndert.

Eclipse Commands

Wir haben im Abschnitt 4.5.2 auf Seite 48 besprochen, dass wir aus dem Chor Model
einerseits BPEL4Chor Artefakte und andererseits BPEL Prozesse generieren mochten. Die
dazu benotigen Komponenten rufen wir aus dem Editor mittels Eclipse Commands auf, welche
nicht mit EMF/GMF Commands verwechselt werden sollten. Eclipse Commands werden dazu
benutzt, dass der Benutzer Aktionen tiber die Workbench ausfithren kann. Wie in [Vog12]
beschrieben, benutzen wir fiir die Commands den org.eclipse.ui.commands Extension
point sowie den org.eclipse.ui.menus Extension point, zur Platzierung der Commands
in einem Menii der Menu Bar (als Referenz siehe Abbildung 5.2). Zuerst definieren wir
die zwei Commands "Export" und "Transform". Diesen Commands weisen wir jeweils eine
eindeutige id sowie Command Hanlder zu, welche die Logik enthalten, die beim Auslésen
der Commands ausgefiihrt werden soll. Command Handler sind Java Klassen, welche das
vom Eclipse Framework bereitgestellte IHandler Interface implementieren. Wir benutzen
fiir unsere Command Handler die bereits definierte AbstractHandler Klasse, welche die
wichtigsten Methoden von IHandler implementiert. Wir miissen lediglich die execute()
Methode implementieren in welcher wir bestimmen, was beim Ausfiihren passiert. Haben
wir beide Commands definiert, mochten wir diese dem Benutzer tiber die Menu Bar der
Workbench zur Verfiigung stellen. Dazu betrachten wir Abbildung 5.45. Im Manifest unseres
generierten Editors finden wir die id, welche diesen Editor eindeutig auszeichnet. Dies
ist notwendig, da in Eclipse mehrere Editoren gleichzeitig benutzt werden kénnen. Die
Commands und das neue Menti, welches wir "ChorDiagramEditor" nennen, definieren wir im
Manifest unseres Diagram Extensions Plugins. Wir benutzen den menus'® Extension point,
definieren eine menuContribution und legen fest, dass das neue Menii in der Menu Bar —
dem Hauptmenti der Workbench — angezeigt werden soll. Dies erreichen wir mit dem Wert
"menu:org.eclipse.ui.main.menu". Jetzt konnen wir den Namen des Meniis festlegen, indem
wir ein menu Knoten definieren und ihn mit "ChorDiagramEditor" belegen. Diesem menu
Knoten fiigen wir nun zwei Commands hinzu, indem wir weitere Command Knoten anlegen,
sie entsprechend dem gewiinschten Anzeigenamen benennen und auf die id unseres, bereits
unter org.eclipse.ui.commands, definierten Commands verweisen. Fiihren wir nun
Eclipse aus, ist das "ChorDiagramEditor" Menii immer sichtbar, selbst wenn unser Editor
nicht geoffnet — oder sogar ein anderer Editor geladen ist. Dies miissen wir unterbinden, da

6org.eclipse.ui.menus

142

5.2 Chor Designer

GMF Editor Plugin
Plugin Extensions
/ baseTab
process Property View i
baseTab B 3 B
I PickReceiveCreatelnstanceSection I
createlnstance yes @
t
| ReceivePick
| TypeFilter
1
execute command
I
L I
[
3 I
9]
> SetCommand _
g I
o
& |
N\ |
I
|
new value
Ecore Model

—

| process

activity /

| receive

. createlnstance -
attribute

Abbildung 5.44: Das createInstance Attribut im Ecore Modell wird iiber die propertySec-
tion vom Benutzer verdandert

143

5 Implementierung

dieses Menii nur zu unserem Editor gehort. Wir erreichen diese Einschrankung, indem wir
die Funktionen des Platform Expression Framework Plugins nutzen, welche in [ecle] beschrieben
sind. Wir schranken die Sichtbarkeit des "ChorDiagramEditor" Meniis ein, indem wir einen
"visibleWhen" Knoten definieren. Dann benutzen wir die vom Framework bereitgestellte
Variable "activeEditorld, welche die id des gerade Aktiven Editors der Workbench beinhaltet,
und priifen mit dem "equals"Knoten auf Ubereinstimmung mit der id unseres Editors.

144

5.2 Chor Designer

Chor Editor Manifest

org.eclipse.ui.editors

Chor Diagram Editing (editor) ——)»(id € — — — — — — — — — — — — — — —

Editor extensions Manifest

I

I

I

|

I

I

I

org.eclipse.ui.commands org.eclipse.ui.menus I
I

I

(i - Transf < (|
[Lansionm < menuContribution menu:org.eclipse.ui.main.menu) |
| I
I e id ' Export |
| > ChorDiagramEditor | |
| (menu) |
| I I
I e Export Choreography | I
| (command) [|
| I
L - Transform Choreography | |
(command) I~ I

I

Plugin Platform Expression Framework |

I

org.eclipse.core.expressions > |
visibleWhen o |

I

I

activeEditorld <€ [

I

I

» equals ————— =

Abbildung 5.45: Einrichten eines neuen Mentis fiir die Menu Bar der Workbench

145

6 Zusammenfassung und Ausblick

Wir haben in Kapitel 4 ein Konzept fiir einen grafischen Editor zum Modellieren von
Choreographien erarbeitet. Dabei haben wir mehrere Ansétze in Betracht gezogen und durch
Vor- und Nachteile abgewiégt, welchen Weg wir verfolgen wollen. Wir haben uns, beim
Design des Editors, an dem bereits existierenden Prozesseditor BPEL Designer orientiert.
Auch mussten wir Einschrankungen Treffen wie z. B. das Weglassen der von BPEL4Chor
verwendeten Teilnehmertypisierung. Wir haben ein Modell fiir den Editor erarbeitet und
Algorithmen zur Transformation in BPEL4Chor Artefakte angegeben. Uber die bereits
vorhandene Komponente BPE4ChorToBPEL, konnten wir aus den BPEL4Chor Artefakten
abstrakte BPEL Prozesse generieren. Durch weitere kleine Anpassungen konnten wir einen
kleinen Schritt in Richtung ausfiihrbare Prozesse gehen. Doch mussten wir feststellen, dass
die automatische Durchfiihrung einer "executable completion" eine sehr komplexe Aufgabe
ist.

Fiir die Implementierung des Chor Designers in Kapitel 5, haben wir einige Technologien des
Eclipse Projekts benutzt. EMF zum erstellen der Modelle, GMF zum realisieren des Editors.
Wir haben, durch die Benutzung von GME, einen Model Driven Architecture Ansatz verwendet
und damit Programmcode generiert. Den generierten Code haben wir durch von Hand
erstellten Code ergdnzt, um so unser Konzept exakt umsetzen zu konnen. Wir mussten den
Funktionsumfang des Editors einschréanken, um den zeitlich begrenzen Rahmen fiir diese
Arbeit einzuhalten. Dies resultierte im Weglassen der Modellierungmoglichkeiten einiger
BPEL Konstrukte, sowie vielen programmatischen Hilfestellungen, welche der BPEL Designer
im Gegensatz leistet. Weitere Abstriche wurden in der Useability des Editors, sowie der grafi-
schen Reprasentation der Elemente gemacht. Hier besteht zwar noch Verbesserungspotential,
doch kann man abschliefiend sagen, dass die Ziele dieser Arbeit erreicht wurden. Wir geben
im Folgenden einen kleinen Ausblick iiber méglichen Anpassungen und Erweiterungen des
Chor Designers, die uns wichtig erscheinen.

Ausblick

Eine weiterfithrende Arbeit konnte sich mit der grafischen Darstellung befassen welche
generell tiberarbeitet werden sollte. Es sollten z. B. die Reprasentation der strukturierten
Aktivitdten wie < Sequence > oder < Flow > verbessert werden. Bei der < Flow » Aktivitat
verhdlt sich das Layout im Compartment, bei der Platzierung von Aktivitdten, nicht ganz wie

146

gewiinscht. Das Compartment sollte sich so vergrofsern, dass die Platzierung der Aktivitdten
leicht fallt. Zurzeit vergrofert sich das Compartment nur minimal, so dass bei der Platzierung
einer Aktivitdt zu weit am Rand, eine Scrollbar eingeblendet wird. Dies kann den Benutzer
verwirren. Aktivititen in einer < Sequence » sollten in Flussrichtung mit Pfeilen verbunden
werden.

Zum Abschluss dieser Arbeit konnen die Basis Aktivitdten < Invoke >, < Receive >, <Reply >
und < OpaqueActivity > modelliert werden. Von den strukturierten ist die Modellie-
rung von < Sequence», < Scope», <Pick»> und <Flow> moglich. Fiir <Process » kon-
nen < CorrelationSets > und < MessageExchanges > angegeben werden. Variablen von
< Invoke>», <Receives, <Reply > und <« OnMessage > konnen nur Opaque gesetzt werden.
Eine weiterfiihrende Arbeit sollte alle restlichen BPEL Konstrukte fiir abstrakte Prozesse
erganzen. Dazu gehoren unter anderem <Assign>, «While>, < If> usw.. Im Participant
Behavior Description EMF Modell sind bereits alle erlaubten Konstrukte modelliert.

Es ist zwar moglich BPEL4Chor Artefakte zu exportieren doch wére auch vorstellbar, bereits
vorhandene zu Importieren. Eine weiterfithrende Arbeit konnte einen Komponente entwerfen,
welche BPEL4Chor Artefakte einliest und Instanzen der zugehorigem EMF Modelle erzeugt.
Aus diesen EMF Modellen kann dann eine Instanz des Chor Model zusammengebaut
werden. Um dieses Chor Model im Editor anzeigen zu konnen, muss allerdings erst erforscht
werden, wie sich daraus die GMF Runtime Notation [eclb] generieren ldsst. Diese Beinhaltet
unter anderem die grafischen Elemente mit ihren Positionsdaten. Man konnte noch einen
Schritt weiter gehen indem wir BPEL Prozesse als Ausgangsbasis nehmen. Mit der bereits
vorhandenen Komponente BPELToBPEL4Chor, spezifiziert in [Steoy], konnen wir daraus
BPEL4Chor Artefakte generieren. So konnte man einen Import von mehreren BPEL Prozessen
in den Choreographie Editor realisieren.

Wir hatten in Kapitel 4 besprochen, dass wir die BPEL4Chor Teilnehmertypisierung weg
lassen. Eine weiterfithrende Arbeit konnte jedoch ein Konzept dafiir entwickeln und die
Typisierung einbauen. Es wiren z.B. Prozessschablonen, abrufbar aus einem zentralen
Repository, denkbar. Wenn wir einen Blick auf den SimTech BPEL Designer und seine
angebundenen Komponenten werfen, kommt eventuell die Fragmento' Komponente als
Repository in Frage.

Wir kénnen mit unserem Editor Choreographien modellieren, doch konnen wir diese nicht
direkt aus dem Editor heraus Ausfiihren. Diese Einschrankung resultiert aus dem notwendi-
gen Zwischenschritt, dass zuerst ausfithrbare BPEL Prozesse erzeugt werden miissen, dies
aber nicht ohne weiteres bewerkstelligt werden kann. Eine weiterfiihrende Arbeit konnte
ein Konzept entwickeln, wie sich die "executable completion" von BPEL Prozessen, wel-
che konform zum Abstract Process Profile for Observable Behavior Profil sind, automatisieren
lasst.

Thttp://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/source.htm

147

http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/source.htm

Literaturverzeichnis

[DBo8]

[DK12a]

[DK12b]

[DKL"08]

[DKLWo7]

[DKLWoo9]

[ecla]

[eclb]

[eclc]

148

G. Decker, A. Barros. Interaction modeling using BPMN. In Business Process
Management Workshops, S. 208—219. Springer, 2008. (Zitiert auf den Seiten 5
und 15)

G. Decker, O. Kopp. Grounding XSD Schema, 2012. URL
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/
BPEL4Chor%20schema/grounding.xsd. (Zitiert auf den Seiten 5, 23, 24
und 108)

G. Decker, O. Kopp. Topology XSD Schema, 2012. URL https://
github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%
20schema/topology.xsd. (Zitiert auf den Seiten 5, 9, 18, 19, 108 und 110)

G. Decker, O. Kopp, F. Leymann, K. Pfitzner, M. Weske. Modeling service
choreographies using BPMN and BPEL4Chor. In Advanced Information Systems
Engineering, S. 79-93. Springer, 2008. (Zitiert auf Seite 13)

G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for
modeling choreographies. In Web Services, 2007. ICWS 2007. IEEE International
Conference on, S. 296—303. IEEE, 2007. (Zitiert auf den Seiten 5, 16, 24, 34, 36
und 42)

G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: From specifica-
tion to execution. Data & Knowledge Engineering, 68(10):946—972, 2009. (Zitiert
auf den Seiten 5, 9, 16, 17, 18, 21, 22 und 27)

eclipse.org. GMF Labels. Wiki. URL http://wiki.eclipse.org/GMF_
Labels. (Zitiert auf Seite 123)

eclipse.org. GMF Runtime API Specification. URL http://help.
eclipse.org/galileo/index. jsp?topic=/org.eclipse.gmf.doc/
reference/api/runtime/org/eclipse/gmf/runtime/notation/
package—summary.html. (Zitiert auf Seite 147)

eclipse.org. Graphical Modeling Framework Tips. URL http://wiki.
eclipse.org/GMF/Tips. (Zitiert auf Seite 137)

https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/grounding.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/grounding.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/topology.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/topology.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/topology.xsd
http://wiki.eclipse.org/GMF_Labels
http://wiki.eclipse.org/GMF_Labels
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://wiki.eclipse.org/GMF/Tips
http://wiki.eclipse.org/GMF/Tips

Literaturverzeichnis

[ecld]

[ecle]

[eclio]

[FUMKo6]

[GGog]

[Hunoo]

[IBMo7]

[KLo8]

[Kop12]

[Ley1o0]

[Ley11]

[Lizo]

eclipse.org. Graphical Modeling Framework Tutorial. URL http://wiki.
eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1.
(Zitiert auf den Seiten 6 und 99)

eclipse.org. Platform Expression Framework. URL http://wiki.eclipse.
org/Platform Expression_Framework. (Zitiert auf Seite 144)

eclipse.org. Platform Plug-in Developer Guide, 2010. URL http://help.
eclipse.org/helios/index. jsp. (Zitiert auf den Seiten 6, 83, 85 und 87)

H. Foster, S. Uchitel, J. Magee, J. Kramer. LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In Proceedings of the
28th international conference on Software engineering, S. 771-774. 2006. (Zitiert auf
Seite 13)

R. C. Gronback, R. C. Gronback. Eclipse modeling project: a domain-specific language
toolkit. Addison-Wesley, Upper Saddle River, NJ, 1. print. Auflage, 2009. (Zitiert
auf den Seiten 6, 92, 94, 95, 104 und 134)

A. Hunter. The Eclipse Tabbed Properties View, 2009. URL
http://www.eclipse.org/articles/Article-Tabbed-Properties/
tabbed_properties_view.html. (Zitiert auf Seite 141)

IBM. Eclipse EMF Model Transaction Development Guide, 2007.
URL http://www.linuxtopia.org/online_books/eclipse_
documentation/eclipse_emf_model_transaction_developer_
guide/topic/org.eclipse.emf.transaction.doc/references/
overview/eclipse_emf_model_transaction_domains.html. (Zitiert
auf Seite 141)

O. Kopp, F. Leymann. Choreography design using WS-BPEL. Data Engineering,
31(2):31-34, 2008. (Zitiert auf den Seiten 11 und 14)

O. Kopp. BPEL4Chor - ohne Cross-Partner-Scopes, 2012. (Zitiert auf den Seiten 9,
22, 23 und 24)

FE. Leymann. Architectural Diagrams and Styles, 2010. Vorlesungsunterlagen von
Grundlagen der Architektur von Anwendungssystemen. (Zitiert auf Seite 14)

F. Leymann. BPEL: Web Service Business Process Execution Language, 2011.
Vorlesungsunterlagen von Workflow Management 1. (Zitiert auf Seite 15)

C. Li. An Editing Environment for BPEL4Chor Cross-Partner Scopes. Diplomarbeit,
Universitat Stuttgart, Fakultdt Informatik, Elektrotechnik und Informationstech-
nik, Germany, 2010. (Zitiert auf den Seiten 65 und 106)

149

http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
http://wiki.eclipse.org/Platform_Expression_Framework
http://wiki.eclipse.org/Platform_Expression_Framework
http://help.eclipse.org/helios/index.jsp
http://help.eclipse.org/helios/index.jsp
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html

Literaturverzeichnis

[LLo7]

[OASo7a]

[OASo7b]

[OASo7c]

[Reio7]

[Shaog]

[Steo7]

[Ste11]

[TDGo6]

[Vogi2]

[Vukog]

[WLHaoo]

J. Ludewig, H. Lichter. Software-Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt-Verl., Heidelberg, 1. Auflage, 2007. (Zitiert auf den Seiten 5, 27
und 28)

OASIS. Abstract BPEL Common Base, 2007. URL http://docs.
oasis—-open.org/wsbpel/2.0/0S/process/abstract/ws-bpel_
abstract_common_base.xsd. (Zitiert auf den Seiten 9, 16, 17, 108, 111
und 112)

OASIS. Schema for Service Reference, 2007. URL http://docs.ocasis-open.
org/wsbpel/2.0/0S/serviceref/ws-bpel_serviceref.xsd. (Zitiert
auf den Seiten 24 und 26)

OASIS. Web Services Business Process Execution Language Version 2.0,
2007. URL http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.
0-0S.pdf. (Zitiert auf den Seiten 15, 16, 17, 18, 29 und 43)

P. Reimann. Generating BPEL Processes from a BPEL4Chor Description. Studi-
enarbeit 2100, Institute of Architecture of Application Systems, 2007. (Zitiert auf
den Seiten 6, 9, 27, 105 und 107)

S. Shavor. Eclipse: Anwendungen und Plug-Ins mit Java entwickeln. Addison-Wesley,
Miinchen, 2004. (Zitiert auf Seite 85)

T. Steinmetz. Generierung einer BPEL4Chor-Beschreibung aus BPEL-Prozessen.
Studienarbeit 2101, Institut fiir Architektur von Anwendungssystemen, 2007.
(Zitiert auf den Seiten 35 und 147)

D. Steinberg. EMF: Eclipse modeling framework. Addison-Wesley, Upper Saddle
River, NJ, 2. ed., rev. and updated, 2. printing Auflage, 2011. (Zitiert auf den
Seiten 6, 83, 86, 88, 89 und 91)

L. J. Taylor, E. Deelman, D. B. Gannon. Workflows for e-Science: scientific workflows
for grids. Springer, 2006. (Zitiert auf Seite 11)

L. Vogel. Eclipse Commands Tutorial, 2012. URL http://www.vogella.com/
articles/EclipseCommands/article.html. (Zitiert auf Seite 142)

K. Vukojevic. Architektur eines Workflow-Frameworks zur graphischen Erstel-
lung und Ausfithrung von Simulationsexperimenten. Studienarbeit 2217, Institut
tiir Architektur von Anwendungssystemen, 2009. (Zitiert auf Seite 31)

L. Wood, A. Le Hors, et al. Document Object Model (DOM) Level 1 Specification
(Second Edition). Technischer Bericht, W3C, 2000. URL http://www.w3.0rg/
TR/2000/WD-DOM-Level-1-20000929/. (Zitiert auf Seite 48)

Alle URLs wurden zuletzt am 03. 05. 2013 gepriift.

150

http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/serviceref/ws-bpel_serviceref.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/serviceref/ws-bpel_serviceref.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.vogella.com/articles/EclipseCommands/article.html
http://www.vogella.com/articles/EclipseCommands/article.html
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméfS aus anderen Wer-
ken {ibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschift

	1 Einleitung
	2 Verwandte Arbeiten
	3 Grundlagen
	3.1 Choreographien
	3.2 BPEL
	3.3 BPEL4Chor
	3.3.1 Participant Behavior Description
	3.3.2 Topology
	3.3.3 Grounding
	3.3.4 Von BPEL4Chor zu ausführbaren BPEL Prozessen

	3.4 Model View Controller

	4 Konzeption
	4.1 Erster Ansatz
	4.2 Zweiter Ansatz
	4.3 Dritter Ansatz
	4.4 Vierter Ansatz
	4.5 Choreographie Editor
	4.5.1 Entwicklung des Chor Models
	4.5.2 Chor Model Transformation
	4.5.3 Generierung von BPEL Prozessen
	4.5.4 Grafisches Konzept

	5 Implementierung
	5.1 Verwendete Technologien
	5.1.1 Eclipse
	5.1.2 Eclipse Modeling Framework
	5.1.3 Graphical Editing Framework
	5.1.4 Graphical Modeling Framework
	5.1.5 Xpand Template Language
	5.1.6 BPEL4Chor2BPEL

	5.2 Chor Designer
	5.2.1 EMF Modelle
	5.2.2 Graphical Definition Model
	5.2.3 Tooling Definition Model
	5.2.4 Mapping Definition Model
	5.2.5 GMF Generator Model
	5.2.6 Diagram Extensions

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

