
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3429

Modellierung von Scientific
Workflows mit Choreographien

Oliver Sonnauer

Studiengang: Softwaretechnik

Prüfer: Jun.-Prof. Dr.-Ing Dimka Karastoyanova

Betreuer: Dipl.-Inf. Dipl.-Wirt. Ing. (FH) Karolina
Vukojevic

begonnen am: 06. November 2012

beendet am: 08. Mai 2013

CR-Klassifikation: D.1.7, D.2.11, H.4.1, I.3.4

Kurzfassung

Diese Arbeit beschäftigt sich mit der Konzeption eines grafischen Editors zur Modellierung
von Choreographien. Das BPEL4Chor Modell dient dabei als Grundlage. Mit dem Editor
soll es zudem möglich sein, ausführbare BPEL Prozesse aus der modellierten Choreographie
zu generieren. Anhand der Konzeption wird die Implementierung eines Prototyps für die
Eclipse Plattform vorgestellt. Dieser Prototyp wird mit dem Graphical Modeling Framework
realisiert.

2

Inhaltsverzeichnis

1 Einleitung 11

2 Verwandte Arbeiten 13

3 Grundlagen 14
3.1 Choreographien . 14

3.2 BPEL . 15

3.3 BPEL4Chor . 16

3.3.1 Participant Behavior Description . 17

3.3.2 Topology . 18

3.3.3 Grounding . 23

3.3.4 Von BPEL4Chor zu ausführbaren BPEL Prozessen 26

3.4 Model View Controller . 27

4 Konzeption 29
4.1 Erster Ansatz . 31

4.2 Zweiter Ansatz . 32

4.3 Dritter Ansatz . 33

4.4 Vierter Ansatz . 33

4.5 Choreographie Editor . 34

4.5.1 Entwicklung des Chor Models . 35

4.5.2 Chor Model Transformation . 48

4.5.3 Generierung von BPEL Prozessen . 65

4.5.4 Grafisches Konzept . 66

5 Implementierung 83
5.1 Verwendete Technologien . 83

5.1.1 Eclipse . 83

5.1.2 Eclipse Modeling Framework . 86

5.1.3 Graphical Editing Framework . 92

5.1.4 Graphical Modeling Framework . 95

5.1.5 Xpand Template Language . 104

5.1.6 BPEL4Chor2BPEL . 105

3

5.2 Chor Designer . 108

5.2.1 EMF Modelle . 108

5.2.2 Graphical Definition Model . 116

5.2.3 Tooling Definition Model . 120

5.2.4 Mapping Definition Model . 121

5.2.5 GMF Generator Model . 134

5.2.6 Diagram Extensions . 137

6 Zusammenfassung und Ausblick 146

Literaturverzeichnis 148

4

Abbildungsverzeichnis

3.1 Auktionsszenario. Choreographie Beispiel modelliert als interaction model in
BPMN. Quelle: [DB08] . 15

3.2 Die Artefakte von BPEL4Chor. Quelle: [DKLW09] 17

3.3 Topology XSD ([DK12b]) dargestellt als UML Modell 19

3.4 Auktionsszenario. Choreographie Beispiel modelliert als interconnection model
in BPMN. Quelle: [DKLW09] . 21

3.5 Grounding XSD ([DK12a]) dargestellt als UML Modell 24

3.6 Das Grounding mit Verknüpfungen zu Topology und Participant Behavior
Description . 25

3.7 Von BPEL4Chor zu ausführbaren BPEL Prozessen [DKLW09] 27

3.8 Model View Controller Architekturmuster und das Zusammenspiel seiner Kom-
ponenten. Quelle: [LL07] . 28

4.1 SimTech BPEL Designer mit leerer Prozessvorlage 32

4.2 BPMN Choreographie „Buchung eines Flugtickets“. Quelle: [DKLW07] 36

4.3 Choreographie „Buchung eines Flugtickets“. Konzeptionelles Modell 37

4.4 Vom Topology Model zum Chor Model . 39

4.5 Chor Model mit Participants . 40

4.6 Chor Model mit Participants und ForEach Lösung 41

4.7 Chor Model mit CMessageLink, CParticipantRef und CLinkable 43

4.8 Chor Model mit FlowActivityLink und Beziehungen 45

4.9 Chor Model mit CGrounding . 47

4.10 Dokumentenfluss zwischen den Transformer und Builder Komponenten 49

4.11 Dokumentenfluss zwischen Komponenten für die Umwandlung zu ausführ-
baren Prozessen . 66

4.12 Konzept der Editor Oberfläche . 70

4.13 CParticipant mit leerem Process . 71

4.14 Participants mit Aktivitäten, Message Links und einer Participant Referenz . . 72

4.15 Flow mit Aktivitäten und FlowActivityLink Elementen 73

4.16 Elemente und Dialoge der base Kategorie von CParticipant und
CParticipantSet . 74

4.17 Elemente und Dialoge der participants Kategorie von CParticipantSet . . . 75

4.18 Elemente und Dialoge der base und participants Kategorien von CMessageLink 76

4.19 Elemente der base Kategorie von CParticipantRef 77

5

4.20 Elemente und Dialoge der correlations, base und messageExchanges Kategorien
von Process . 78

4.21 Elemente der base und groundings Kategorien von Choreography 79

4.22 Dialog für die Konfiguration von CMessageLinkGrounding Elementen . . . 80

4.23 Dialog für die Konfiguration von CorrelationSetGrounding und
CParticipantRefGrounding Elementen . 81

4.24 Elemente der base und iteration Kategorien von ForEach 82

5.1 Eclipse Platform Architektur. Quelle: [ecl10] . 85

5.2 Eclipse Workbench. (Grafik basiert auf der Quelle: [ecl10] 87

5.3 Ecore Meta-Modell. (Grafik basiert auf der Quelle: [Ste11] 88

5.4 Laden von Resource Instanzen nach Bedarf. (Grafik basiert auf der Quelle:
[Ste11] . 89

5.5 JFace TreeViewer zeigt eine Chor Model Instanz an 91

5.6 Funktionsweise des ChopboxAnchor. Basiert auf Quelle: [GG09] 94

5.7 Grafische Darstellung der Modell Elemente in GEF durch EditParts 95

5.8 GMF Standard Werkzeuge in der Eclipse Toolbar 96

5.9 Property View mit den GMF Standard Tabs "Rulers & Grid" und Äppereance" 97

5.10 Vorgehensweise bei der Erstellung eines GMF Editors mittels Tooling Frame-
work. Grafik basiert auf der Quelle: [ecld] . 99

5.11 Graphical Definition Model für Node und Compartment 100

5.12 Graphical Definition Model für Diagram Label . 100

5.13 Graphical Definition Model für Connection . 101

5.14 Tooling Definition Model mit zwei Creation Tools 102

5.15 Mapping Model zur Definition der Zeichenfläche des Editors 103

5.16 Mapping Model zur Definition eines, auf der Zeichenfläche des Editors, plat-
zierbaren Elements . 103

5.17 Xpand Template mit «AROUND» Erweiterung 105

5.18 Von einer Beschreibung eines Geschäftsprozess zu ausführbaren BPEL Prozes-
sen. Quelle: [Rei07] . 107

5.19 Ein- und Ausgaben der BPEL4ChorToBPEL Komponente. Quelle: [Rei07] 107

5.20 Topology Model als Ecore Modell . 109

5.21 Chor Model als Ecore Modell . 114

5.22 BPEL Testprozess . 115

5.23 Grafische Repräsentation von CParticipant 117

5.24 Grafische Repräsentation von CMessageLink 119

5.25 Tooling Definition Model und die Umsetzung im GEF Editor 121

5.26 Definition der Zeichenfläche (Canvas) im Mapping Definition Model 122

5.27 Definition der Top Node Reference von CParticipant im Mapping Definition
Model . 124

5.28 Definition des Node Mapping von CParticipant im Mapping Definition
Model . 125

6

5.29 Definition des Label Mapping von CParticipant im Mapping Definition
Model . 126

5.30 Definition des Compartment Mapping von CParticipant im Mapping Defi-
nition Model . 127

5.31 Erstellung zusätzlicher Instanzen beim Anlegen einer neuen CParticipant
Instanz . 127

5.32 Definition von Process als Child Reference im Mapping Definition Model . . 129

5.33 Definition des Node Mapping von Process im Mapping Definition Model . . 130

5.34 Definition des Node Mapping von Sequence im Mapping Definition Model . 131

5.35 Definition der rekursiven Child Reference von Sequence im Mapping Definiti-
on Model . 132

5.36 Definition des Label Mapping von Sequence im Mapping Definition Model . 133

5.37 Definition des Link Mapping von CMessageLink im Mapping Definition
Model . 135

5.38 Generierung von separaten EditParts für Compartments und Nodes 136

5.39 GMF Editor mit XYLayout und ListLayout . 138

5.40 Abstände der Elemente in einem Compartment mittels Inset und Spacing
angepasst . 139

5.41 Verschiedene Routing Stiele für CMessageLink und FlowActivityLink . . 139

5.42 Konzept der propertyTabs und propertySections Extension points 140

5.43 Tabs und Sections der PropertyView von Invoke 141

5.44 Das createInstance Attribut im Ecore Modell wird über die propertySection
vom Benutzer verändert . 143

5.45 Einrichten eines neuen Menüs für die Menu Bar der Workbench 145

7

Tabellenverzeichnis

4.1 Veränderung von Elementen durch die „basic executable completion“ 30

8

Verzeichnis der Listings

3.1 Topology Ausschnitt des Auktionsszenarios. Quelle: [DKLW09] 22

3.2 Participant mit Scope. Beispiel aus [Kop12] 23

3.3 Participant Behavior Description Auszug des Participant „s“. Beispiel aus
[Kop12] . 23

3.4 Umgeschriebene ‹ForEach› Aktivität, welche über ParticipantSet ite-
riert. Quelle basiert auf: [Rei07] . 27

5.1 XSD Schema Element Definitionen vom Topology Model. Quelle: [DK12b] . . 110

5.2 XSD Schema Typ Definition von Topology. Quelle: [DK12b] 110

5.3 XSD Schema Typ Definition von Participant. Quelle: [DK12b] 110

5.4 XSD Schema Typ Definition von ExtensibleElements. Quelle: [OAS07a] . 111

5.5 XSD Schema Typ Definition von Process. Quelle: [OAS07a] 111

5.6 XSD Schema Typ Definition der Activity Gruppe. Quelle: [OAS07a] 112

5.7 XSD Schema Typ Definition von Expression. Quelle: [OAS07a] 112

5.8 PBD Model ECore Standard XMI Serialisierung 115

5.9 PBD Model ECore XML Serialisierung durch Transformation nach DOM 116

5.10 Generierter Java Code aus dem Figure Descriptor von CParticipant 118

5.11 Generierter Java Code aus dem Figure Descriptor von CMessageLink 120

9

Verzeichnis der Algorithmen

4.1 Generierung von Namen, allgemein für Chor Model Elemente 50

4.2 Erzeugt den QName für eine Participant Behavior Description 51

4.3 Findet das zugehörige Process Element, ausgehend von einem beliebigen
Element aus dem PBD Model . 51

4.4 Erzeugt einen QName für die gegebene Aktivität 51

4.5 Erzeugt ein ParticipantType Element im Topology Model 52

4.6 Erzeugt den Namen eines ParticipantType Element im Topology Model . 52

4.7 Erzeugt ein Participant Element im Topology Model 53

4.8 Erzeugt ein ParticipantSet Element im Topology Model 54

4.9 Erzeugt ein MessageLink Element im Topology Model 55

4.10 Erzeugt eine Topology Model Instanz aus dem gegebenen Chor Model 56

4.11 Erzeugt den QName für Topology aus dem Topology Model 57

4.12 Erzeugt ein MessageLink Element im Grounding Model 57

4.13 Erzeugt ein ParticipantRef Element im Grounding Model für gesetzte
participantRefs eines CMessageLink . 58

4.14 Erzeugt ein ParticipantRef Element im Grounding Model für das gesetzte
bindSenderTo eines CMessageLink . 58

4.15 Erzeugt Property Elemente im Grounding Model für alle property Ein-
träge des CorrelationSet . 59

4.16 Erzeugt Grounding Model Instanzen aus den spezifizierten CGrounding
Elementen im Chor Model . 60

4.17 getNormalizedName speziell für das FlowActivityLink Element 61

4.18 Erzeugt Link, Source und Target Elemente im PBD Model 62

4.19 Transformiert ein Topology Model Element mit all seinen Kind Elementen zu
einem DOM Dokument . 64

4.20 Transformiert die Attribute des gegebenen Topology Model Elements, zu
Attributen des gegebenen DOM Elements . 65

10

1 Einleitung

Das Exzellenzcluster Simulation Technology (SimTech)1 befasst sich mit Multi-Skalen und
Multi-Physik Simulationsmethoden. Multi-Skalar bedeutet dabei, auf mehreren Skalierungs-
ebenen wie z. B. von der Zelle zum Gewebe über Knochen zum Skelett. Multi-Physik
bedeutet, dass mehrere Teilbereiche der Physik wie Thermodynamik oder Quantenmechanik
verwendet werden. Diese einzelnen Simulationen werden mit Hilfe der Workflowtechno-
logie, als einzelne Prozesse modelliert. Die Workflowtechnologie hat ihre Ursprung in der
Industrie, wo sie zur Automatisierung von Geschäftsprozessen verwendet wird. Workflows
für Geschäftsprozesse werden üblicherweise vom Management spezifiziert. Die IT-Abteilung
kümmert sich dann um die technischen Details der Ausführung. Haben sich diese Prozesse
etabliert, werden sie meistens nicht mehr abgeändert. Im Rahmen der SimTech Projekte mo-
dellieren Wissenschaftler ihre Simulationen mit Hilfe von Workflows. Dabei ist es meistens
die selbe Person oder Personengruppe, welche die Workflows spezifizieren und ausführen.
Hinzu kommt noch die experimentelle Natur von Simulationen. Sie müssen bei der Ausfüh-
rung überwacht werden. Das Resultat wird evaluiert, darauf der Workflow angepasst und
erneut ausgeführt. Diese Kreislauf wiederholt sich sehr oft, was eine ständige Anpassung des
Prozesses zur Folge hat. Daher bezeichnet man die Workflows im wissenschaftlichen Kontext
als Scientific Workflows [TDG06]. Diese Scientific Workflows, welche die einzelnen Simulationen
ausführen, sollen zu einer ganzheitlichen Simulation zusammengeführt werden. Betrachtet
man die einzelnen Simulationen als „Geschäftspartner“, so kann deren Zusammenwirken
als Choreographie beschrieben werden. Daher soll die SimTech Workflow Umgebung so
erweitert werden, dass Wissenschaftler Choreographien modellieren und diese ausführen
können. Als Modell für diese Choreographien soll die Beschreibungssprache BPEL4Chor
[KL08] dienen.

Ziele dieser Arbeit

Es soll ein grafisches Werkzeug entwickelt werden, mit welchem sich Choreographien
modellieren lassen. Für diese grafischen Modelle soll einerseits die Möglichkeit bestehen,
BPEL4Chor Artefakte zu generieren und andererseits, ausführbare BPEL Prozesse mit
zugehörigen WSDL Dateien zu erzeugen.

1http://www.simtech.uni-stuttgart.de/

11

http://www.simtech.uni-stuttgart.de/

1 Einleitung

Gliederung

Kapitel 2 – Verwandte Arbeiten beschreibt andere Arbeiten, die sich ebenfalls mit dem Mo-
dellieren von Choreographien befassen.

Kapitel 3 – Grundlagen beschriebt die grundlegenden Dinge, die für das Verständnis dieser
Arbeit wichtig sind und worauf diese aufbaut.

Kapitel 4 – Konzeption beschreibt diverse Ansätze, wie der grafische Editor realisiert werden
kann und geht dann detailliert auf den gewählten Ansatz ein.

Kapitel 5 – Implementierung befasst sich einerseits mit den verwendeten Technologien, die
zur Umsetzung des Editors benutzt werden und geht andererseits auf einige Details
der Implementierung ein.

Kapitel 6 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt mögliche weiterführende Arbeiten vor.

12

2 Verwandte Arbeiten

In [DKL+
08] wird beschrieben, wie Choreographien mit BPMN modelliert, und diese dann

zu BPEL4Chor Artefakten exportiert werden können. Die Modellierung erfolgt grafisch mit
dem Oryx Framework1. Dieses Framework ist in JavaScript realisiert und benutzt skalierbare
Vektorgrafiken (SVG) zur Darstellung der grafischen Elemente. Somit kann Oryx in einem
Web Browser ausgeführt werden. Es wurde durch ein Export Plugin erweitert, welches die
Transformation von BPMN zu BPEL4Chor durchführt. Ein weiterer grafischer Editor, der das
modellieren von Choreographien unterstützt, ist der in Java implementierte Yaoqiang BPMN
Editor2. In [FUMK06] ist ein Eclipse Plugin beschrieben, welches einen modellbasierten An-
satz zur Verifizierung von Web Service Kompositionen und Choreographien realisiert. Dabei
werden Choreographien auf einfache Weise als UML Sequenzdiagramme dargestellt.

1http://bpt.hpi.uni-potsdam.de/Oryx/BPMN
2http://sourceforge.net/projects/bpmn/

13

http://bpt.hpi.uni-potsdam.de/Oryx/BPMN
http://sourceforge.net/projects/bpmn/

3 Grundlagen

Die Kenntnis der hier vorgestellten Grundlagen ist wichtig für das weitere Verständnis dieser
Arbeit. Wir beschreiben Choreographien und BPEL nur kurz und gehen ausführlich auf
BPEL4Chor ein. Wir gehen außerdem auf das Model View Controller Architekturmuster ein,
da die meisten der verwendeten Technologien, sowie der Editor selbst, danach konstruiert
sind.

3.1 Choreographien

Die folgende Beschreibung basiert auf dem Artikel [KL08]. Der Architekturstiel Service-
Oriented Architcture (SOA) basiert auf dem Service Paradigma. Ein Service ist eine Funktiona-
lität, welche über eine Netzwerkadresse zur Verfügung gestellt wird und immer erreichbar
ist [Ley10]. Wenn ein Geschäftsprozess durch Zusammenarbeit von vielen Services realisiert
wird, nennt man dies „Orchestrierung“. Eine Orchestrierung beschreibt die Interaktionen
mit Services aus dem Blickpunkt dieses einen Prozesses. Interagieren mehrere Prozesse
miteinander, so nennt man dies „Choreographie“. Choreographien erfassen die Zusammen-
arbeit mehrerer Geschäftspartner aus einer globalen Sicht. Das Design von Choreographien
kann für die beteiligten Geschäftspartner sehr wichtig sein da sie, durch Abstimmung ihrer
Geschäftsprozesse, eventuelle Synergieeffekte finden und nutzen können. Die Herausfor-
derungen beim Design von Choreographien sind zum einen die Modellierung in einer
geeigneten Sprache wie z. B. BPMN oder BPEL4Chor. Zum anderen muss das Choreogra-
phie Modell auf Korrektheit überprüft werden können. Es dürfen z. B. keinen Deadlocks
vorkommen und es muss immer ein Endzustand erreichbar sein. Im letzten Schritt muss
es eine Möglichkeit geben, die durch die Choreographie gegebene Semantik auf einzelne
Prozesse zu übertragen, so dass diese ausgeführt werden können.

Um Choreographien zu modellieren gibt es zwei wesentliche Ansätze. Der interconnection
models Ansatz beschreibt die Teilnehmer einer Choreographie als abstrakte Prozesse. Ihr
Verhalten ist durch Aktivitäten spezifiziert, welche für die Kommunikation relevant sind.
Andere prozessinterne Vorgänge werden ausgeblendet. Die Kommunikationsaktivitäten
der einzelnen Teilnehmer sind miteinander verbunden und tauschen Nachrichten aus. Ein
Beispiel dazu sehen wir in Abbildung 3.4. Der interaction models Ansatz beschreibt nur
die Interaktionen der einzelnen Teilnehmer einer Choreographie. Hier sind die Teilnehmer
nicht als abstrakte Prozesse mit Aktivitäten spezifiziert, da nur der Nachrichtenfluss im

14

3.2 BPEL

Seller

Auctioning Service

Bidder

Auction crea-
tion request

Auction creation
confirmation

Auction
begins

Bid Bid ack
Notifi-
cation

Auction completion
notification

Notifi-
cation

Delivery
notifi-
cation

Delivery
ack

Payment
details

Payment
ack

Auction
over

For each
unsuccessful
bidder

Abbildung 3.1: Auktionsszenario. Choreographie Beispiel modelliert als interaction model in
BPMN. Quelle: [DB08]

Vordergrund steht. Ein Beispiel dazu sehen wir in Abbildung 3.1. In beiden Abbildungen
ist ein Auktionsszenario modelliert, welches wir in Abschnitt 3.3.2 auf Seite 18 beschreiben
werden.

3.2 BPEL

Die Web Service Business Process Execution Language (WS-BPEL kurz: BPEL), spezifiziert in
[OAS07c], ist eine Sprache zur Beschreibung von Geschäftsprozessen. Diese BPEL Prozesse
benutzen die Schnittstellen von Web Services, um ihre Funktion zu realisieren. Wie in [Ley11]
beschrieben, aggregieren BPEL Prozesse Web Services. Sie sind selbst ebenfalls ein Web Ser-
vice, was BPEL zu einem rekursiven Aggregationsmodell macht. BPEL ist eine Kombination
aus der Graph basierten Sprache IBM WSFL, sowie der Kalkül basierten Sprache MS XLANG.
Die Syntax ist in XML definiert. Die Hauptbestandteile eines BPEL Dokuments sind Partner
Links, Variables, Correlation Sets, Handlers und Activities. Ein Partner Link ist ein Kommunikati-
onskanal zwischen Prozess und einem Partner. Er verbindet maximal zwei WSDL Port Types.
Eine Variable ist ein persistenter Container für Daten. Ein Correlation Set ist eine Sammlung
von properties. Dies sind Werte um Prozessinstanzen eindeutig identifizieren zu können.
Sie sind in Nachrichten eingebettet und können somit unter den Kommunikationspartnern
ausgetauscht werden. Ein Handler regelt Ausnahmezustände, oder das Auftreten bestimmter

15

3 Grundlagen

Ereignisse in laufenden Prozessen. Mit Activities lassen sich Kontrollfluss und Web Service
Aufrufe definieren. Activities unterscheiden sich in Basisaktivitäten und strukturierte Akti-
vitäten, welche andere Aktivitäten beinhalten. Zu den Basisaktivitäten gehört ‹Invoke›,
mit welcher sich Web Service Aufrufe, sowohl synchron als auch asynchron, durchführen
lassen. Zu den strukturierten Aktivitäten gehört ‹Sequence›, welche die in ihr platzierten
Aktivitäten in angegebener Reihenfolge ausführt. Die strukturierte ‹Flow› Aktivität erlaubt
hingegen eine parallele, graphbasierte Ausführung seiner Aktivitäten.

BPEL Prozesse können ausführbar oder abstrakt sein. Abstrakte Prozesse sind teilweise
spezifizierte Prozesse, welche nicht zur Ausführung bestimmt sind. Sie verstecken bewusst
Details und zeigen nur die wesentlichen Aspekte eines Geschäftsprozesses. Welche Aspekte
das sind, wird vom Prozessersteller je nach Anwendungsfall entschieden. Wie wir im folgen-
den Abschnitt sehen werden, verwendet BPEL4Chor abstrakte Prozesse zur Beschreibung
des Verhaltens der Teilnehmer einer Choreographie.

3.3 BPEL4Chor

Die folgenden Beschreibungen zu BPEL4Chor und seinen Artefakten basieren auf den
Artikeln [DKLW07] und [DKLW09]. Andere Quellen werden gekennzeichnet. Wie wir in
Abschnitt 3.1 auf Seite 14 gesehen haben, gibt es die zwei Herangehensweisen interaction
models und interconnection models um Choreographien zu modellieren. BPEL4Chor basiert auf
letzterem. Der WS-BPEL Standard [OAS07c] spezifiziert abstrakte BPEL Prozesse. Die Syntax
dieser Prozesse ist in der "common base"[OAS07a] festgelegt. Diese "common base" gibt
zwar vor, welche BPEL Konstrukte erlaubt sind, doch fehlt dem modellierten Prozess eine
Semantik. Aus der Semantik geht hervor, für welchen Anwendungsfall der abstrakte Prozess
definiert wurde. Sie hilft uns die Intention dieses Prozesses zu verstehen, damit daraus eine
ausführbare Variante erstellt werden kann. Um abstrakten Prozessen eine Semantik zu geben,
müssen Profile angegeben werden. Ein Profil definiert einerseits die zugelassenen BPEL
Konstrukte und andererseits eine "executable completion" für die abstrakten Prozesse, welche
zu diesem Profil gehören. Eine "executable completion" ist eine Vorschrift, wie genau der
abstrakte Prozess zu einem ausführbaren erweitert werden soll. Das Abstract Process Profile
for Observable Behavior Profil, definiert im WS-BPEL Standard, sowie dazu ein interconnection
layer in Form einer Topologie Beschreibung, ergeben zusammen das interconnection model
von BPEL4Chor. Durch die Verwendung von abstrakten Prozessen mit diesem Profil, ist
eine Entkopplung von WSDL Port Types, sowie eine Fokussierung auf die Kernbestandteile
einer Choreographie nämlich Kommunikationsaktivitäten, Abhängigkeiten des Verhaltens
der Teilnehmer und deren Vernetzung, möglich.

In Abbildung 3.2 sind die drei verschiedenen Artefakte von BPEL4Chor zu sehen. Die Partici-
pant Behavior Description Dokumente definieren den Kontrollfluss der einzelnen Aktivitäten,
welche zu einem bestimmten Teilnehmer gehören und bestimmen dadurch sein Verhalten. Sie

16

3.3 BPEL4Chor

Participant
Topology

Structural Aspects

Participant Behavior
Descriptions (PBDs)

Observable Behavior

Participant Grounding

Technical Configuration

Participant Declaration

List of Participants

Message Links

Connecting PBDs

Abbildung 3.2: Die Artefakte von BPEL4Chor. Quelle: [DKLW09]

sind als abstrakte BPEL Prozesse spezifiziert. Das Participant Topology Dokument beschreibt,
welche Teilnehmer es in einer Choreographie gibt und wie diese miteinander kommunizieren.
Die Kommunikation erfolgt über einen Nachrichtenaustausch zwischen Kommunikationsak-
tivitäten der einzelnen Teilnehmer. BPEL4Chor unterscheidet dabei die Kommunikations-
aktivitäten ‹Invoke›, ‹Receive›, ‹Reply› und den ‹OnMessage› Zweig aus ‹Pick›.
Die Participant Grounding Dokumente beschreiben die technischen bzw. WSDL spezifischen
Aspekte einer BPEL4Chor Choreographie. Somit kann eine Choreographie an verschiedene
WSDL Definitionen gebunden werden.

3.3.1 Participant Behavior Description

In diesem Dokument wird das Verhalten eines Teilnehmers spezifiziert. Der Kontrollfluss
zwischen den Kommunikationsaktivitäten bestimmt auch die Reihenfolge der Nachrich-
ten, welche sich die Teilnehmer untereinander senden. Als syntaktische Basis dient der
WS-BPEL Standard für abstrakte Prozesse. Die Eigenschaften der abstrakten Prozesse und
Einschränkungen durch Profile werden in [OAS07c] genau beschrieben und hier nur zu-
sammenfassend erwähnt. Abstrakte Prozesse bieten Opaque Erweiterungen. Diese Opaque
Konstrukte haben keine Semantik sondern zeigen explizit an, dass etwas bewusst wegge-
lassen wurde. So z. B. die ‹OpaqueActivity›, welche als Platzhalter für eine beliebige
BPEL Aktivität angegeben werden kann oder der reservierte String-Wert "##opaque", um
z. B. die Angabe von konkreten Variablen zu umgehen. Diese Basis ("common base"), spe-
zifiziert in [OAS07a], wird durch das Abstract Process Profile for Observable Behavior Profil
eingeschränkt. Dieses Profil verfolgt das Ziel, Verhalten der Prozesse im Kontext von Web
Service Aufrufen zu definieren. Dabei sollen die Prozess internen Vorgänge nach außen

17

3 Grundlagen

hin versteckt und hauptsächlich die Kommunikation mit den Partnern beschrieben wer-
den. Diese Einschränkungen sind im WS-BPEL Standrad [OAS07c] definiert und schreiben
vor, dass ‹JoinCondition›, welches für Aktivitäten in einem ‹Flow› verwendet wird,
das Attribut opaque nicht benutzen darf. Die Verwendung der ‹Exit› Aktivität ist eben-
falls nicht erlaubt. Die Attribute variable, inputVariable und outputVariable von
‹Invoke›, ‹Receive›, ‹Reply›, ‹OnMessage› und ‹OnEvent›, dürfen mit dem Wert
"##opaque" deklariert werden. Das selbe gilt auch für die Attribute part, toVariable
und fromVariable von ‹FromPart› sowie ‹ToPart›. Alle anderen Attribute dürfen
nicht mit dem Wert "##opaque" deklariert werden. Des weiteren ist das ‹OpaqueFrom›
Konstrukt erlaubt, welches in der ‹Copy› Anweisung der ‹Assign› Aktivität eingesetzt
werden kann. Von diesem Profil ausgehend, wurde das neue Profil Abstract Process Profile for
Participant Behavior Descriptions in [DKLW09] eingeführt, welches all dessen Eigenschaften
erbt, sowie zusätzliche Einschränkungen für die Kommunikationsaktivitäten spezifiziert.
So dürfen diese Aktivitäten die Attribute partnerLink, portType und operation nicht
benutzen, da sonst die Participant Behavior Description an eine WSDL gebunden wird. Des
weiteren wird das neue Attribut wsu:id für diese Aktivitäten eingeführt, um sie in den
MessageLink Elementen eindeutig referenzieren zu können. Bei den ‹Receive› und
‹Reply› Aktivitäten muss zwingend das messageExchange Attribut gesetzt werden, um
die zugehörigen Paare kennzeichnen zu können. Die Paar Identifikation wäre auch über
portType und operation möglich, da aber diese Attribute nicht erlaubt sind, fällt diese
Möglichkeit weg. CorrelationSets können ebenfalls in Participant Behavior Description
benutzt werden, müssen jedoch im properties Attribut auf nicht qualifizierte Namen
(NCName) eingeschränkt werden, da sonst eine Bindung zu PropertyAlias Elementen
aus der WSDL besteht.

3.3.2 Topology

In diesem Dokument werden die strukturellen Aspekte einer Choreographie beschrieben.
Dazu gehört die Angabe, welche Teilnehmer die Choreographie hat und wie viele es davon
gibt. Das Verhalten der einzelnen Teilnehmer wird festgelegt. Der Nachrichtenaustausch
wird durch Angaben definiert, wer mit wem kommuniziert und welche Aktivitäten dafür
verwendet werden. In Abbildung 3.3 ist die Topology anhand eines UML Modelles beschrieben,
welches auf Basis des Topology XSD Schemas [DK12b] entworfen wurde. Die Teilnehmer der
Choreographie werden durch Participant und ParticipantSet Elemente angegeben.
Das ParticipantSet wurde eingeführt, damit eine unbestimmte Anzahl von Teilnehmern
mit gleichem Verhalten modelliert werden kann. Ein Beispiel dafür wäre bei einer Auktion,
die unbestimmte Menge an Bietern, welche ihre Gebote auf einen Gegenstand abgeben. Die
Konkrete Menge der Bieter ist erst zur Laufzeit bekannt und wird sich generell auch jedes mal
beim Ausführen ändern. Wenn die Anzahl der Teilnehmer zum Zeitpunkt des Modellierens
bekannt ist, werden diese Teilnehmer jeweils durch ein Participant Element angegeben.
Ein Beispiel dafür wäre ein Käufer und ein Verkäufer. In Choreographien kann es häufig

18

3.3 BPEL4Chor

name
participantBehaviorDescription

top::ParticipantType

name
selects
forEach
scope
containment

top::Participant

name
forEach
scope

top::ParticipantSet

type

*

1

type

*

1

participants0..1

*

participantSets

0..1

*

name
sender
senders
sendActivity
bindSenderTo
receiver
receiveActivity
messageName
participantRefs
copyParticipantRefsTo

top::MessageLink

name
targetNamespace

top::Topology

participantTypes1

*

participants

1

*

participantSets

1

*

messageLinks 1*

Abbildung 3.3: Topology XSD ([DK12b]) dargestellt als UML Modell

vorkommen, dass es eine bestimmte Anzahl von Teilnehmern mit gleichem Verhalten gibt
wie z. B. zwei Spediteure. Damit diese Konstellation exakter beschrieben werden kann, wurde
ein ParticipantType Element eingeführt. In BPEL4Chor gilt, dass jeder Teilnehmer einen
Typ hat und dieser sein Verhalten bestimmt. So sind z. B. die Teilnehmer Firma X und Firma
Y beide vom Typ Spediteur und haben somit das selbe Verhalten. Nachrichten tauschen die
Teilnehmer untereinander durch MessageLink Elemente aus. Ein MessageLink beschreibt
einen Kommunikationsweg vom Sender zum Empfänger.

In Abbildung 3.4 sehen wir eine Choreographie eines Auktionsszenarios, modelliert in
BPMN1. Der Verkäufer (Seller Service) möchte Aktienanteile zum höchsten Gebot verkaufen.

1http://www.bpmn.org/

19

3 Grundlagen

Er beauftragt die Durchführung einer Auktion bei einem Makler (Broker Service). Wenn die
Auktion startet, akzeptiert der Makler mehrere Gebote von unterschiedlichen Bietern (Bidder
Service). Ist die Auktion nach Ablauf einer Frist beendet, benachrichtigt der Makler den
Verkäufer über die Beendigung und den höchst bietenden Käufer über dessen Erfolg. Alle
anderen Käufer werden vom Makler benachrichtigt, dass sie die Auktion verloren haben.
Damit ist die Aufgabe des Maklers erfüllt. Der Verkäufer schickt dem Höchstbieter die Zah-
lungsdetails und überträgt ihm die Aktienanteile. In Listing 3.1 sehen wir einen Ausschnitt
der Topology Beschreibung dieses Auktionsszenarios. Die Verkäufer und der Makler sind
jeweils als Participant in Zeile 8 und 9 modelliert. Die Menge der Bieter ist von der
Anzahl unbestimmt und zweigeteilt. Zum einen die Menge aller Bieter in Zeile 10 und, zum
anderen, die Menge der Bieter, welche die Auktion nicht gewonnen haben in Zeile 14. Wir
sehen, dass beide ParticipantSet Elemente Kind Elemente haben. Dies sind Teilnehmer
welche dieser Menge angehören was ebenfalls bedeutet, dass sie auch das selbe Verhalten
(den selben ParticipantType) haben wie das Set, in welchem sie deklariert sind. In unse-
rem Beispiel ist der Participant "bidder" in Zeile 11, ein konkreter Teilnehmer, welcher
ein Gebot an den ausgewählten Makler "brokerService" abgibt. Diese Auswahl wird mit
dem selects Attribut getroffen. Der Participant "successfulBidder" in Zeile 12, ist der
Auktionsgewinner. Im anderen ParticipantSet "unsuccessfulBidders" aus Zeile 14, sehen
wir die Verwendung des forEach Attributs. Es verweist auf die ‹ForEach› Aktivität der
Participant Behavior Description des Maklers. Um die Idee dahinter zu verstehen, betrachten
wir noch einmal Abbildung 3.4. Hier sehen wir, dass der Makler alle Verlierer der Auktion
benachrichtigen muss (siehe "Send unsuccessful bid" Aktivität). In BPEL4Chor wird dies
durch Referenzieren einer ‹ForEach› Aktivität von einem ParticipantSet ausgedrückt.
Diese ‹ForEach› Aktivität iteriert über alle Teilnehmer des Sets. Wir sehen in Listing 3.1,
dass das ParticipantSet aus Zeile 14 ein Kind Element (Zeile 15) hat, welches die selbe
‹ForEach› Aktivität referenziert. Dieser Teilnehmer "currentBidder" repräsentiert den aktu-
ellen Schleifenwert in jeder Iteration und wird zur Benachrichtigung eines Auktionsverlierers
benutzt. Das bedeutet, pro Schleifendurchlauf eine Benachrichtigung. Die Definition des
Teilnehmers "currentBidder" ist notwendig, da er einen Kommunikationspartner darstellt.

Die MessageLink Elemente geben an, welche Teilnehmer untereinander kommunizieren.
Dabei wird keine Reihenfolge in der Topologie vorgegeben. Das sender Attribut gibt den
Participant an, welcher der Absender dieser Nachricht ist. Das senders Attribut hinge-
gen bedeutet dass jedes Kind Element eines ParticipantSet, diese Nachricht absenden
kann. Das receiver Attribut gibt an, welcher Participant diese Nachricht empfangen
soll. Die beiden Attribute sendActivity und receiveActivity geben jeweils die Akti-
vität aus der Participant Behavior Description an, welche absendet respektive empfängt. Die
Attribute bindSenderTo und participantRefs realisieren die sogenannte "link passing
mobility" was bedeutet, dass über MessageLinks Teilnehmerreferenzen vom Sender zum
Empfänger ausgetauscht werden können. Die Bekanntheit der Teilnehmer ist immer lokal
für jeden Prozess. Daher muss es die Möglichkeit geben Referenzen auszutauschen, da sonst
kein Antworten auf Nachrichten möglich wäre. So kann z. B. ein Participant „a“, der die

20

3.3 BPEL4Chor

Auction
beginsBid

Unsucessful
bid

Successful
bid

Payment
details

Grant ack

Grant

Creation
confirmation

Completion
notification

Payment

Auction creation
request

Bid ack

For each
unsuccessful
bidder

Seller Service Broker Service

Send creation
confirmation

Send bid
ack

Send
completion
notification

Send
successful bid

Bidder Service

Send
grant ack

Issue
payment

Send auction
creation
request

Send
payment
details

Grant stock
options

Send bid

Auction
over

Send
unsuccessful

bid

Pool
Message
send task

AND-
gateway

Event-
based

gateway

XOR-
gateway

Start
event

Message
receive
event

Timeout
event

End event
Looped
activity

Multi
instances

activity

Abbildung 3.4: Auktionsszenario. Choreographie Beispiel modelliert als interconnection model
in BPMN. Quelle: [DKLW09]

21

3 Grundlagen

Listing 3.1 Topology Ausschnitt des Auktionsszenarios. Quelle: [DKLW09]
01 <topology name="topology" targetNamespace="urn:auction"

xmlns:sns="urn:auction:seller" ...>
02 <participantTypes>
03 <participantType name="Seller"

participantBehaviorDescription="sns:seller" />
04 <participantType name="BrokerService" ... />
05 <participantType name="Bidder" ... />
06 </participantTypes>
07 <participants>
08 <participant name="seller" type="Seller" selects="brokerService" />
09 <participant name="brokerService" type="BrokerService" />
10 <participantSet name="bidders" type="Bidder">
11 <participant name="bidder" selects="brokerService" />
12 <participant name="successfulBidder" />
13 </participantSet>
14 <participantSet name="unsuccessfulBidders" type="Bidder"

forEach="as:notifyUnsuccesfulBidders">
15 <participant name="currentBidder"

forEach="as:notifyUnsuccesfulBidders" />
16 </participantSet>
17 </participants>
18 ...
19 </topology>

Referenz von „b“ kennt, diese an Participant „c“ senden, indem das participantRefs
Attribut auf „b“ verweist. Jetzt kennt „c“ die Referenz von „b“ und kann direkt mit die-
sem Participant kommunizieren. Das bindSenderTo Attribut hat die selbe Funktion,
nur dass hier der Absender die Selbstreferenz weiter gibt. Das Weitergeben von Referen-
zen (participantRefs und bindSenderTo) sowie das Selektieren (selects) führt zur
Bindung der Teilnehmer an andere Teilnehmer.

In Abbildung 3.3 sehen wir, dass die Teilnehmer ein scope Attribut haben. Die Funktion
davon wird in [Kop12] beschrieben. Es verweist auf eine ‹Scope› Aktivität aus einer
Participant Behavior Description und bedeutet, dass dieser Teilnehmer nur innerhalb des
referenzierten ‹Scope› bekannt ist. Ein Anwendungsbeispiel dafür ist in Listing 3.2 zu
sehen. Eine Menge von Bietern „bidders“ sendet eine Nachricht an einen Verkäufer „s“.
Ein Teilnehmer aus der Bieter Menge ist „b“, welcher die ‹Scope› Aktivität „rcvScope“
referenziert. Über das binSenderTo Attribut, wird die Referenz des Bieters „b“ an den
Verkäufer „s“ übertragen. In Listing 3.3 sehen wir einen Ausschnitt der Participant Behavior
Description von Verkäufer „s“. Die Referenz des Bieters ist nur innerhalb der ‹Scope›
Aktivität „rcvScope“ bekannt. Der Verkäufer bekommt von jedem Bieter die selbe Art von
Nachricht, welche immer das jeweilige Gebot beinhaltet. Der Verkäufer muss also gleichartige
Nachrichten von unterschiedlichen Absendern unterscheiden und abspeichern, da er später
das höchste Gebot auswählen und den Höchstbieter benachrichtigen muss. Daher macht

22

3.3 BPEL4Chor

Listing 3.2 Participant mit Scope. Beispiel aus [Kop12]
01 <participants>
02 <participant name="s" type="Seller" />
03 <participantSet name="bidders" type="Bidder">
04 <participant name="b" scope="rcvScope" containment="must-add" />
05 </participantSet>
06 </participants>
07 <messageLinks>
08 <messageLink senders="bidders" sendActivity="sendBid" bindSenderTo="b"

receiver="s" receiveActivity="receiveBid" messageName="Bid" />
09 </messageLinks>

Listing 3.3 Participant Behavior Description Auszug des Participant „s“. Beispiel aus
[Kop12]
01 <while>
02 <condition />
03 <scope name="rcvScope">
04 <pick><onMessage name="receiveBid" /> ... </pick>
05 </scope>
06 </while>

es Sinn, die Referenz auf den Absender und seine Nachricht nur innerhalb eines ‹Scope›
sichtbar zu machen, so dass die anderen Referenzen und Nachrichten nicht überschrieben
werden.

3.3.3 Grounding

In diesem Dokument werden die Web Service spezifischen Details für Topology und Parti-
cipant Behavior Description angegeben. Das Grounding ist notwendig, um aus Topology und
Participant Behavior Description ausführbare BPEL Prozesse zu erzeugen. Wir werden dar-
auf im nächsten Abschnitt genauer eingehen. In Abbildung 3.5 ist das Grounding Model
anhand eines UML Modelles beschrieben, welches auf Basis des Grounding XSD Schemas
[DK12a] entworfen wurde. Abbildung 3.6 zeigt die Zusammenhänge von Grounding Mo-
del, Topology Model und Participant Behavior Description. Dabei bedeutet der Stereotyp
«becomes» an den einzelnen Kanten: „wird zugeordnet zu“. Jeder MessageLink aus Topolo-
gy, muss einem MessageLink Eintrag im Grounding zugeordnet werden. MessageLinks
repräsentieren das Versenden und Konsumieren einer Nachricht. Sie werden mit einem
operation Attribut aus einer WSDL verknüpft. Dazu muss der gewünschte portType
angegeben werden, welcher diese operation anbietet. Über das name Attribut, wird ei-
ne Verbindung zum entsprechenden MessageLink aus Topology hergestellt. Die Attribute
senders, expectedPortType, expectedOperation, mediator, offeredPortType
und offeredOperation sind zwar im Grounding Model definiert, werden aber bei der Um-

23

3 Grundlagen

grnd::Grounding

name
portType
operation
senders
expectedPortType
expectedOperation
mediator
offeredPortType
offeredOperation

grnd::MessageLink

name
WSDLproperty

grnd::ParticipantRef

name
WSDLproperty

grnd::Property

messageLinks

1

*

participantRefs1

*

properties

1

*

Abbildung 3.5: Grounding XSD ([DK12a]) dargestellt als UML Modell

wandlung zu ausführbaren BPEL Prozessen nicht benutzt. Sie gehören zum Thema "Message
Mediation". Wie in [DKLW07] beschrieben, verknüpft das Grounding die in MessageLink
definierten Sende- und Empfangsaktivität direkt mit WSDL Port Types und Opeartions. Diese
Verknüpfung sollte dynamisch, wie in [Kop12] S.111 beschrieben, von einem Enterprise
Service Bus erledigt werden, was bisher jedoch noch zur aktuellen Forschung gehört. Die
MessageLinks Attribute bindSenderTo und participantRefs ("link passing mobility"
siehe 3.3.2 auf Seite 18) werden jeweils einem ParticipantRef Eintrag im Grounding
Model zugeordnet. Das name Attribut von ParticipantRef bezieht sich dabei auf das
entsprechende Attribut des zugehörigen Participant aus Topology. Das WSDLProperty
Attribut von ParticipantRef gibt an, wo sich ein bestimmtes Element in verschiedenen
WSDL Messages befindet. Da ausführbare BPEL Prozesse Service Referenzen [OAS07b]
über Messages austauschen, kann mit der Angabe des WSDLProperty Attributs die ent-
sprechende Service Referenz, unabhängig vom Message Type, in der eingehenden Message
gefunden werden. Die Werte des properties Attributs (eine Liste aus durch Leerzeichen
getrennten Werten) von CorrelationSet, müssen ebenfalls mit einem WSDLProperty
Attribut verbunden werden. Jedem Eintrag aus der properties Liste, wird im Grounding
Model ein Property Element zugeordnet.

24

3.3 BPEL4Chor

Grounding

Topology PBD

Grounding

MessageLink

1

*

Property

1

*

ParticipantRef

1

*

BPEL Process

«becomes»

CorrelationSet

1

*

Property

1 1..*

Topology

MessageLink

1

*

BindSenderTo ParticipantRef

1

0..1

1

*

«becomes» «becomes» «becomes»

Abbildung 3.6: Das Grounding mit Verknüpfungen zu Topology und Participant Behavior
Description

25

3 Grundlagen

3.3.4 Von BPEL4Chor zu ausführbaren BPEL Prozessen

Choreographien an sich können nicht ausgeführt werden. Sie dienen als Vertrag zwischen
Geschäftspartnern, wie diese miteinander interagieren um ihr Geschäftsziel zu erreichen.
Einen Choreographie ist eine Vorlage, aus welcher ausführbare Geschäftsprozesse abgeleitet
werden können. Wenn wir eine BPEL4Chor Choreographie zu ausführbaren BPEL Prozessen
transformieren wollen, müssen wir die in Abbildung 3.7 dargestellten Schritte durchführen.
Haben wir Topology und alle nötigen Participant Behavior Description Dokumente spezifiziert,
müssen wir ein Grounding angeben. Dabei kann von zwei unterschiedlichen Situationen
ausgegangen werden. Entweder gibt es ein einziges Grounding, in welchem Fall sich alle
Partner auf die selben WSDL Port Types und Operations geeinigt haben oder, es gibt mehrere
Grounding Dokumente, wenn bestimmte Partner andere WSDL Konfigurationen benötigen.
Mit den Informationen aus Topology und Grounding, können die Participant Behavior Des-
cription Dokumente zu abstrakten BPEL Prozessen, welche zum Abstract Process Profile for
Observable Behavior Profile konform sind, automatisch generiert werden. Dieser Transfor-
mationsprozess besteht aus vier wesentlichen Schritten. Es müssen Partner Link Types und
Partner Links generiert werden. Sie geben an, welche Port Types respektive zum Senden und
Empfangen einer Nachricht verwendet werden. Das Abstract Process Profile for Observable Be-
havior Profil fordert diese Angaben. Da die beiden Konstrukte nun bekannt sind, müssen für
die Kommunikationsaktivitäten die Attribute partnerLink, portType und operation
anhand der im Grounding angegebenen Details gesetzt werden. Über Message Links können
Teilnehmerreferenzen ausgetauscht werden. BPEL kennt keine Teilnehmerreferenzen son-
dern Service Referenzen. Wie wir in Abbildung 3.6 sehen, wird jeder Teilnehmerreferenz
eine WSDL Property zugeordnet. Diese Property gibt an, in welchem Teil einer Nachricht
die passende Service Referenz zu finden ist. Diese Referenz muss in den entsprechenden
Partner Link kopiert werden. ParticipantSets sind Mengen von Teilnehmern. BPEL kennt
dieses Konstrukt nicht, weshalb eine Menge von Service Referenzen eingeführt werden muss.
Das WS-BPEL Schema für Service Referenzen [OAS07b] spezifiziert allerdings keine Menge
von Referenzen, weshalb diese als Sequenz von Referenzen zusätzlich deklariert werden
muss. Des weiteren kennt BPEL keine Iteration über ParticipantSets, sondern nur über
einen Zahlenwert. Daher müssen die betroffenen ‹ForEach› Aktivitäten so umgeschrieben
werden, wie in Listing 3.4 zu sehen ist. Die ‹ForEach› Aktivität iteriert über eine set
Variable, zu sehen in Zeile 3, welche alle Service Referenzen des ursprünglichen Sets hält. In
den Zeilen 9 - 16 wurde eine neue ‹Assign› Aktivität eingefügt, welche den aktuellen Wert
aus der set Variablen, in den verwendeten Partner Link kopiert. Die, nach diesem Transfor-
mationsprozess, entstandenen abstrakten BPEL Prozesse müssen nun mit den "executable
completion" Regeln des Abstract Process Profile for Observable Behavior Profils, zu ausführbaren
Prozessen angereichert werden. Dies geschieht in einem manuellen Verfahren.

26

3.4 Model View Controller

Participant
Topology

Participant
Behavior

Descriptions

Participant
Grounding

BPEL4Chor Description

WSDL
Definitions

Automatic
Transformation Executable BPEL

Processes

Manual
Refinement

Abstract BPEL
Processes with
References to

WSDL Definitions

Abbildung 3.7: Von BPEL4Chor zu ausführbaren BPEL Prozessen [DKLW09]

Listing 3.4 Umgeschriebene ‹ForEach› Aktivität, welche über ParticipantSet iteriert.
Quelle basiert auf: [Rei07]
01 <forEach wsu_id="forEach1" counterName="i_forEach1">
02 <startCounterValue>0</startCounterValue>
03 <finalCounterValue>count($set/)1</finalCounterValue>
04 <scope>
05 <partnerLinks>
06 <partnerLink name="xy" .../>
07 </partnerLinks>
08 <sequence>
09 <assign>
10 <copy>
11 <from variable="set">
12 <query>[$i_forEach1]</query>
13 </from>
14 <to partnerLink="xy" />
15 </copy>
16 </assign>
17 ...
18 </sequence>
19 </scope>
20 </forEach>

3.4 Model View Controller

Model View Controller (MVC) ist, wie in [LL07] beschrieben, ein Architekturmuster zur
Trennung von Interaktion und Funktion. Es gliedert die danach realisierte Anwendung in drei
Komponenten. Die Model Komponente realisiert die fachliche Funktion einer Anwendung.
Sie kapselt Daten und stellt Methoden zur deren Manipulation zur Verfügung. Die View
Komponente realisiert die grafische Repräsentation der Daten. Es kann mehrere verschiedene
View Komponenten für die selben Daten geben. Die Controller Komponente ist einer View
zugeordnet. Sie nimmt Benutzereingaben entgegen und veranlasst die nötigen Änderungen.
Hat die Aktion eines Benutzer z. B. zur Folge, dass eine View aktualisiert werden muss,

27

3 Grundlagen

Controller View

Model

Aufruf von
Anwendungsfunktionen

Informationen über
Änderung Zugriff auf

darzustellende
Daten

Veränderung der
Visualisierung

Abbildung 3.8: Model View Controller Architekturmuster und das Zusammenspiel seiner
Komponenten. Quelle: [LL07]

stößt der zugeordnete Controller die Aktualisierung der grafischen Repräsentation an. Führt
der Benutzer eine Aktion aus, welche eine Änderung der Daten zu Folge hat, so ruft der
Controller die Manipulationsmethoden des Models auf. In Abbildung 3.8 ist die Interaktion
der drei Komponenten zu sehen. Die Aktionen des Benutzers welche Daten des Models
verändern, haben auch eine Veränderung der View zur Folge. Daher müssen sich alle Views,
welche das Model repräsentieren, bei diesem anmelden. Das Model führt ein Register und
benachrichtigt alle registrierten Views bei Änderung seines Zustandes. Dieser Ablauf wird
als Change-update Mechanismus bezeichnet und bietet den Vorteil, das alle Views immer das
aktuelle Model repräsentieren. Da es auch für das selbe Model, mehrere View - Controller
Kombinationen geben kann, wird eine saubere Entkopplung der Komponenten erreicht.
So können View - Controller Kombinationen sogar zu Laufzeit ausgetauscht werden. Ein
Nachteil dieser Architektur ist, wenn sich das Model innerhalb sehr kurzer Zeitintervalle
verändert. Dann kommt die Aktualisierung der View eventuell nicht mehr hinterher, da bei
jeder Änderung die Daten vom Model erneut angefragt werden müssen.

28

4 Konzeption

Das Ziel dieser Arbeit ist, ein Modellierungswerkzeug für Choreographien zu entwickeln.
Dabei soll es auch möglich sein, diese Choreographien in einer Workflowumgebung aus-
zuführen. Um dies zu erreichen, müssen aus Choreographien zuerst lauffähige Prozesse
generiert werden. Als Datenmodell haben wir BPEL4Chor gewählt und damit auch abstrakte
BPEL Prozesse als Beschreibung des Verhaltens der Choreographie Teilnehmer. Wir haben
bereits in Abschnitt 3.3.4 auf Seite 26 gesehen, dass die automatische Generierung von
ausführbaren BPEL Prozessen sehr schwierig ist bzw. als manuell durchzuführender Schritt
angegeben wird. Daher sehen wir für diese Arbeit davon ab, Algorithmen zu entwickeln
die vollständig spezifizierte und deploy fähige BPEL Prozesse erzeugen. Auch sehen wir
davon ab, für BPEL4Chor Choreographien die Participant Behavior Description als ausführba-
ren Prozess zu modellieren da sonst das Grounding Konzept verworfen bzw. übergangen
wird. Daher entscheiden wir uns für den Weg eine Choreographie zu modellieren, daraus
BPEL4Chor Artefakte zu exportieren um damit schließlich BPEL Prozesse zu generieren.
Da unser Ziel ausführbare BPEL Prozesse sind und wir von Participant Behavior Description
Dokumenten ausgehen, erzeugen wir zunächst mit Hilfe der Komponente BPEL4ChorToBPEL
(siehe Abschnitt 5.1.6 auf Seite 105), abstrakte BPEL Prozesse welche zum Abstract Process
Profile for Observable Behavior konform sind und modifizieren diese an einigen Stellen um
ausführbare Prozesse zu erhalten. Diese Modifikationen werden im BPEL Standard [OAS07c]
als „basic executable completion“ bezeichnet und bestehen aus folgenden Schritten:

• Der Namespace des BPEL Prozesses ändert sich von "abstract"1 nach "executable"2

• Das abstractProcessProfile Attribut vom Process Element fällt weg.

• Alle Opaque Elemente, außer diese welche implizit weggelassen wurden, müssen
durch ein ausführbares Element ersetzt werden.

• Sollte es keine Start Aktivität geben (mit Attribut createInstance = "yes"), muss
eine geeignete hinzugefügt werden.

• PartnerLink, Variable und Import Elemente müssen zum Process Element
hinzugefügt werden.

1"http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
2"http://docs.oasis-open.org/wsbpel/2.0/process/executable"

29

http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
http://docs.oasis-open.org/wsbpel/2.0/process/executable"

4 Konzeption

Um diese Schritte zu realisieren, benutzen wir die bereits erwähnte Komponente
BPEL4ChorToBPEL sowie die neu entworfene BasicExecutableCompletionTransformer (siehe
Abschnitt 4.5.3 auf Seite 65). In Tabelle 4.1 sind die Änderungsschritte und dazu die jeweilige
Komponente, welche diese durchführt, angegeben.

Element Änderung Komponente
PartnerLink Neue PartnerLink Elemente für

‹invoke›, ‹receive›, ‹reply›
und ‹onMessage›

BPEL4ChorToBPEL

Variable Neue Variable Elemente für
jedes ‹forEach› über ein
ParticipantSet

BPEL4ChorToBPEL

abstract Namespace executable Namespace BECTa

abstractProcessProfile Entfernt BECT
‹opaqueActivity› Ersetzt durch ‹empty› BECT
Variable Neue Variable Elemente für je-

de Opaque Variable in ‹invoke›,
‹receive›, ‹reply›

BECT

Wert der inputVariable
und outputVariable von
‹invoke›

"portType_operation_message" BECT

Wert der variable von
‹receive› und ‹reply›

"portType_operation_message" BECT

Wert der variable von
‹onMessage›

"portType_operation_message" BECT

Tabelle 4.1: Veränderung von Elementen durch die „basic executable completion“

aBasicExecutableCompletionTransformer

Die Ersetzung der Opaque Variablen durch "portType_operation_message" resultiert aus
der Überlegung, da durch ein Grounding portType und die verwendete operation im
jeweiligen MessageLink Element angegeben werden, die ausgetauschte Nachricht, welche
in der Variablen transportiert wird, abgeleitet werden kann. Durch die BPEL4ChorToBPEL
Komponente erhalten wir das für die Kommunikationsaktivität verwendete PartnerLink
Element, welches auf den verwendeten portType verweist. Daher setzen wir den Namen
der Variablen aus den Werten der portType und operation Attribute zusammen, da wir
genau wissen dass die Kommunizierenden Teilnehmer den angegebenen PartnerLink
benutzen. Den Typ der Variablen abzuleiten ist schwierig, da wir die Intention des Modellie-
rers nicht kennen. Daher wird der Typ nicht gesetzt. Was wir nicht durchführen können ist

30

4.1 Erster Ansatz

die Ersetzung von ‹OpaqueFrom›, welches in der ‹Copy› Anweisung eingesetzt werden
kann, da wir ebenfalls nicht wissen, welche ausführbare Variante von ‹From› der Modellie-
rer vorsieht. Das ‹FromPart› Konstrukt in ‹Receive›, ‹Invoke› , ‹OnMessage› und
‹OnEvent› kann ebenfalls Opaque Variablen benutzen. Wir können auch diese Werte nicht
bestimmen, da wir nicht Wissen, wie die eingehende Multi-Part Message aussieht und in
welchem part der Message die Information Steht, welche in die Variable toVariable
kopiert werden soll. Das selbe gilt analog auch für das ‹ToPart› Konstrukt in ‹Reply›
und ‹Invoke›.

In den folgenden vier Abschnitten stellen wir Ansätze vor, wie sich der Choreographie
Editor realisieren lassen könnte. Wir werden uns für den Vierten Ansatz entscheiden und
stellen das Konzept ausführlich in Abschnitt 4.5 auf Seite 34 vor.

4.1 Erster Ansatz

Eines der bestehenden Workflow Modellierungstools, welches in SimTech3 eingesetzt wird,
ist der BPEL Designer4. Der BPEL Designer ist ein grafischer Editor zu Modellierung von BPEL
Prozessen und wurde als Eclipse Plugin (siehe 5.1.1 auf Seite 83) realisiert. Als grundlegendes
Modell dient der WS-BPEL Standard, welcher mittels Eclipse Modeling Framework (siehe 5.1.2
auf Seite 86) modelliert wurde. Die grafische Repräsentation des Modells, ist mit dem
Graphical Editing Framework (siehe 5.1.3 auf Seite 92) realisiert worden. Wie in [Vuk09]
beschrieben, ist der BPEL Designer für die SimTech spezifische Anforderung, Simulations
Workflows zu erstellen, so erweitert worden, das er den Modellierer über den gesamten
Lebenszyklus des Workflows hinweg unterstützt. Das bedeutet dass der Modellierer zuerst
seinen Prozess erstellt, dabei auf simulationsspezifische Aktivitäten aus einem Katalog
zurück greift, den Prozess ausführt, überwacht und schließlich die angezeigten Ergebnisse
auswerten kann.

In Abbildung 4.1 sehen wir die Oberfläche des BPEL Designers. Er zeigt eine der Prozessvorla-
gen, welche benutzt werden kann um eine Simulation zu modellieren. Hier ist auch zu sehen,
dass der BPEL Designer zur Modellierung eines einzelnen BPEL Prozesses ausgelegt ist. Die
Zeichenfläche repräsentiert das Wurzelelement ‹Process› eines BPEL Prozesses. Alle wei-
teren grafischen Elemente Repräsentationen der zum Prozess gehörenden BPEL Konstrukte.
In dieser Abbildung ist eine ‹Sequence› ("main") zu sehen und die darin enthaltene exten-
sion Aktivität ‹SimulationStartActivity› ("simulationStart"). Da wir Choreographien
modellieren wollen, müssten wir den BPEL Designer so erweitern, dass mehrere Prozesse
auf der Zeichenfläche platziert, sowie Message Links zwischen Kommunikationsaktivitäten
gezogen werden könnten. Das Problem dabei ist, dass wir einen reinen Prozess Editor zu

3http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_modeling.php
4http://www.eclipse.org/bpel/

31

http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/project_modeling.php
http://www.eclipse.org/bpel/

4 Konzeption

Abbildung 4.1: SimTech BPEL Designer mit leerer Prozessvorlage

einem Choreographie Editor umbauen müssten. Wir würden eine Mischform kreieren, in
welcher keine saubere Trennung mehr besteht. Dazu müssen wir auch bedenken, dass die
Participant Behavior Description Dokumente abstrakte BPEL Prozesse sind. Wir laufen in die
Gefahr, abstrakte Prozesse mit ausführbaren in einem Editor Fenster zu mischen. Der BPEL
Designer Code ist sehr komplex und muss zuerst langwierig analysiert und verstanden
werden. Das zugrunde liegende EMF Modell des WS-BPEL Standards ist ungeeignet, um
Choreographien zu modellieren. Es muss mit BPEL4Chor erweitert bzw. verwoben werden.
Den Vorteil des großen Funktionsumfangs zum modellieren von BPEL Prozessen und die
SimTech spezifischen Erweiterungen behalten wir mit diesem Ansatz allerdings bei. Wir
entscheiden uns dennoch aus den genannten Gründen gegen die Erweiterung des BPEL
Designer zu einem Chor Designer

4.2 Zweiter Ansatz

Der zweite Ansatz ist dem ersten sehr ähnlich. Er unterscheidet sich aber in dem wesentlichen
Punkt, dass wir den Code BPEL Designers kopieren und so abändern, dass ein reiner
Choreographie Editor daraus resultiert. Wir hätten damit zwei verschiedene Editoren mit

32

4.3 Dritter Ansatz

teilweise gemeinsamer Code Basis. Der Vorteil daran wäre, dass der BPEL Designer weiterhin
ein eigenständiges Tool zum Modellieren von BPEL Prozessen bleibt und der neue Chor
Designer hingegen, ein eigenständiges Tool zum modellieren von Choreographien. Die
Nachteile sind ebenfalls die Komplexität des vorhandenen Codes und Veränderung des
vorhandenen EMF Modells. Zudem muss noch bedacht werden, dass der BPEL Designer
weiter entwickelt wird, was eine unter Umständen aufwendige Code Migration für den neu
erstellten Chor Designer zur Folge hat. Wir entscheiden uns, wegen der genannten Gründe,
gegen diesen Ansatz.

4.3 Dritter Ansatz

Wir haben bereits die Tendenz zu einem separaten Editor aus den ersten beiden Ansätzen
erörtert, da wir es als Vorteil ansehen, Choreographie Editor und Prozess Editor zu trennen.
Wir erstellen von Grund auf einen neuen grafischen Editor, den Chor Designer, in welchem
wir abstrakte BPEL Prozesse importieren können. Diese abstrakten Prozesse werden zuvor
z. B. mit dem BPEL Designer oder einem anderen BPEL Tool modelliert. Im Chor Designer
muss alles ausgeblendet oder angepasst werden, was nicht zur Participant Behavior Description
konform ist. Es muss also für jeden importierten Prozess, eine Sicht auf den Quellprozess
erstellt werden. Zwischen den Kommunikationsaktivitäten können dann Message Links
gezogen werden. Das Problem, welches sich daraus ergibt ist, dass sich die importierten
Quellprozesse ändern können. Diese Änderungen müssen im Chor Designer automatisch
nachgezogen werden. Noch problematischer wäre es, wenn im Chor Designer die importierten
Prozesse ebenfalls editierbar wären. Wir hätten damit ein Synchronisationsproblem in
beide Richtungen. Im Modellierungsprozess neigt der Anwender dazu, schrittweise die
Choreographie zu erarbeiten. Mit diesem Ansatz müsste der Modellierer immer zwischen
den zwei Editoren hin und her Wechseln. Aus diesen Gründen entscheiden wir uns gegen
diesen Ansatz.

4.4 Vierter Ansatz

Wir erstellen einen neuen grafischen Editor, der speziell zum modellieren von Choreogra-
phien entworfen wird. Als Basis wird das BPEL4Chor Modell verwendet und ausgehen
davon ein Modell für den Editor konzipiert. Dabei wird der Editor so aufgebaut, dass
die Choreographie für den Anwender von Grund auf modellierbar ist. Das bedeutet, er
kann die Teilnehmer definieren, deren Verhalten modellieren und Message Links ziehen. Die
Modellierung des Verhaltens wird dabei nur auf die BPEL Konstrukte eingeschränkt, welche
zum Abstract Process Profile for Participant Behavior Descriptions konform sind. Der Editor
kann einerseits BPEL4Chor Artefakte exportieren und andererseits, nach Durchführung

33

4 Konzeption

einer Transformation, BPEL Prozesse erzeugen, welche dann mit anderen BPEL Tools wei-
ter bearbeitet werden können. Ein Nachteil dieses Ansatzes ist, dass die umfangreichen
Modellierungmöglichkeiten des BPEL Designers nicht in dieser Arbeit reproduziert werden
können. Wir erstellen diesen Editor ebenfalls als Eclipse Plugin, damit er zusammen mit dem
BPEL Designer in der selben Eclipse Workbench (siehe 5.1.1 auf Seite 86) ausgeführt werden
kann. Dadurch können beide Editoren in einer gemeinsamen Umgebung benutzt werden.
Aufgrund der überwiegenden Vorteile entscheiden wir uns für diesen Ansatz und erläutern
die Konzeption des Editors im folgenden Abschnitt.

4.5 Choreographie Editor

Bei der Entwicklung eines grafischen Editors für Choreographien, stellt sich die Frage nach
dem Modell. Wenn wir das BPEL4Chor Modell benutzen funktioniert dies einerseits nicht,
da das Modell nicht exakt dafür geeignet ist, alle grafischen Elemente einer Choreographie
darzustellen. Warum dies so ist, werden wir im folgenden sehen. Andererseits wäre es
nicht sinnvoll den Editor so zu konzipieren, dass er eine exakte grafische Repräsentation
der BPEL4Chor Artefakte anzeigt, da dazu ein XML Editor genügt. Außerdem bleibt das
Editor Modell somit eigenständig und wir erhalten uns die Möglichkeit, das Modell in ein
beliebiges anderes Modell zu transformieren. Allerdings eignet sich BPEL4Chor gut um
Choreographien zu beschreiben. Daher nehmen wir Ideen aus BPEL4Chor und bauen so
ein geeignetes Modell für den Editor auf. Dieses neue Modell nennen wir im folgenden
Chor Model. Zusätzlich erstellen wir Komponenten zur Transformation vom Chor Model zu
BPEL4Chor. Dies ist beliebig für andere Modelle erweiterbar, da diese Komponenten nur
lose an den Editor gekoppelt sein sollen.

Bevor wir das Chor Model entwickeln, müssen wir zuerst feststellen, welche grafischen
Elemente für die Modellierung von Choreographien benötigt werden. Wir betrachten dazu
Abbildung 4.2, in welcher eine Beispiel Choreographie in BPMN modelliert wurde. Das
Beispiel stammt aus [DKLW07]. Ein Reisender möchte ein Flug buchen und gibt dazu eine
Bestellung bei der Reiseagentur auf. Die Agentur nimmt die Bestellung entgegen und stellt
bei mehreren Fluglinien Preisanfragen. Die Fluglinien, welche ein Angebot abgeben möchten,
senden ihren Preis der Agentur zu. Hat die Agentur alle Preise eingesammelt, bestimmt
diese den besten Preis, bestellt bei der entsprechenden Fluglinie ein Ticket und überträgt
zusätzlich die Kontaktadresse des Reisenden. Die ausgewählte Fluglinie kann darauf das
Flugticket dem Reisenden zukommen lassen, alle andere Fluglinien warten bis der Timeout
erreicht wird und brechen ab. Die Agentur sendet dem Reisenden schließlich noch den
Reiseplan.

Die Grafischen Elemente, welche wir Anhand von Abbildung 4.2 identifizieren können sind,
für jeden Teilnehmer der Choreographie ein Rechteck. Darin befinden sich die Aktivitäten,

34

4.5 Choreographie Editor

welche das Verhalten definieren. Nachrichtenaustausch wird mit Verbindungspfeilen darge-
stellt. Wenn wir diese Abbildung mit BPEL4Chor Artefakten beschreiben, dann entspricht
das, was wir hier sehen, dem Topology Dokument mit Participant, ParticipatSet, Message Links,
sowie den Inhalt der Participant Behavior Description aller Teilnehmer. Die Participant Types
sind implizit zu sehen. Jedes äußerste Rechteck entspricht einem Typ und gleichzeitig auch
dem Teilnehmer. Würde es z. B. zwei Agenturen als Teilnehmer geben und würden diese
Nachrichten untereinander austauschen, wären auch zwei Rechtecke mit dem selbem Inhalt
vorhanden. In [Ste07] wurde eine BPEL4Chor Beschreibung des BPMN Modells aus Abbil-
dung 4.2 generiert. Wir nehmen diese BPEL4Chor Artefakte als Grundlage und entwickeln,
zusammen mit dem BPMN Diagramm, ein grafisches Konzept dieser Choreographie. Das
Resultat ist in Abbildung 4.3 zu sehen.

4.5.1 Entwicklung des Chor Models

Alle grafischen Elemente, welche wir im Editor platzieren wollen, realisieren wir im Chor
Model als eine eigene Entität bzw. Klasse. Diese Entscheidung müssen wir schon an dieser
Stelle treffen, da wir den Editor mittels GMF (siehe 5.1.4 auf Seite 95) realisieren werden.
Dessen Tooling Komponente (siehe 5.1.4 auf Seite 98) realisiert ein Mapping von grafischen
Elementen auf Modell Klassen. Die Tooling Komponente basiert auf dem Konzept dass es
im Datenmodell des Editors ein Wurzelelement gibt, welches die Zeichenfläche repräsentiert.
Dieses Wurzelelement muss alle Entitäten referenzieren, welche als grafische Repräsentation
auf dieser Zeichenfläche platziert werden. Die platzierbaren Entitäten sind Teilnehmer
(Participant und ParticipantSet), Nachrichtenlinks (Message Links), Teilnehmer Referenzen,
welche über die Nachrichtenlinks versendet werden (Paticipant Referenzen) und BPEL
Aktivitäten. Dazu kommen noch die Links zwischen Aktivitäten innerhalb eines ‹Flow›
Containers. Die BPEL Aktivitäten der Participant Behavior Description realisieren wir in
einem vom Chor Model separaten PBD Model. Die Teilnehmerklassen des Chor Model,
referenzieren die Prozess Klasse des PBD Model. Wir verhindert damit eine komplette
Integration des PBD Model ins Chor Model. Umgekehrte Referenzen von PBD Model
auf Chor Model möchten wir vermeiden, da sonst die beiden Modelle in gegenseitiger
Abhängigkeit stehen. Es müssten, bei der Transformation (siehe Abschnitt 4.5.2 auf Seite 48)
vom PBD Model, Ausnahmebehandlungen eingebaut werden, damit referenzierte Elemente
aus dem Chor Model nicht Teil der XML Serialisierung des PBD Model werden. Als Beispiel
wäre eine Referenz von ForEach auf ParticipantSet denkbar um die Iteration über
dieses Set zu modellieren. Genau dies möchten wir vermeiden und geben im Verlauf des
folgenden Abschnitts, eine andere Lösung dafür an.

35

4 Konzeption

Traveler Travel Agency Airline

Plan trip

Submit trip
order

Request price

Select airline

Order tickets

Issue itinerary

Create itinerary

Quote price

Make
reservation

Confirm order

Issue eTicket

Retrieve price

Traveler
reference

Abbildung 4.2: BPMN Choreographie „Buchung eines Flugtickets“. Quelle: [DKLW07]

Participants

Zunächst schauen wir uns das Topology Model an, welches in Abschnitt 3.3.2 auf Seite 18

erläutert und in Abbildung 3.3 dargestellt wurde. Hier werden mehrere ParticipantType
Elemente definiert. Diese wiederum verweisen auf die in einem anderen Dokument de-
finierte Participant Behavior Description. Im folgenden reden wir oft über Participant
und ParticipantSet Elemente, daher bezeichnen wir beide als participant(s). Ein par-
ticipant hat genau einen ParticipantType. Allerdings können mehrere participants auf
den selben ParticipantType verweisen. Würden wir also den Ansatz verfolgen, für
jeden ParticipantType ein grafisches Element darzustellen, liefen wir in ein Problem

36

4.5 Choreographie Editor

Agency

sequence

forEach:2 Airline

sequencescope

Traveler

sequence

pick

onMessage:10

Invoke sendPrice:9

Invoke sendeTicket:11

Receive invokation:8Invoke requestPrice:4

Receive getPrice:5

Receive invokation:1

Invoke orderTicket:6

Invoke IssueItinerary:7

Invoke invokeAgency:12

Receive getItinerary:13

Receive geteTicket:14

name:1

name:2

name:3

name:4

name:5

name:6

Abbildung 4.3: Choreographie „Buchung eines Flugtickets“. Konzeptionelles Modell

wenn mehrere participants des gleichen Typs miteinander kommunizieren. Dann hätten die
MessageLinks als Quelle und Ziel das selbe grafische Element, was für die Darstellung
einer Kommunikation zwischen mehreren Partnern ungeeignet wäre. Daher wählen wir für
alle participants eine eigenes grafisches Element.

Jeder participant hat ein Verhalten, welches in der zugehörigen Participant Behavior Description
beschrieben ist. Dieses Dokument wird durch den ParticipantType referenziert. Wir
möchten die Möglichkeit haben, das Verhalten im selben Editor zu modellieren. Daher
müssen die Elemente des PBD Model an einen sinnvollen Ort im Editor platziert werden
können und zwar auch so, dass sich die Kommunikationsaktivitäten gut durch Pfeile, welche
die MessageLinks repräsentieren, verbinden lassen. Da wir aber ParticipantType nicht
grafisch darstellen, muss jeder participant direkt auf seine Participant Behavior Description
verweisen. Im Chor Model verweisen wir auf das Process Element des PBD Model. Die
Aktivitäten platzieren wir innerhalb der grafischen Darstellung der participants um auszu-
drücken, dass dieser participant das modellierte Verhalten hat. Dies führt allerdings dazu,
dass wir eine Konvention bezüglich der Typisierung treffen müssen. Wir entscheiden uns
dafür, für jeden participant automatisch eine neue Participant Behavior Description mit anzu-
legen. Selbst, wenn mehrere participants das selbe Verhalten haben. Wir könnten dies auch

37

4 Konzeption

anders realisieren, indem wir die Typisierung beibehalten. So würde z. B. beim Erstellen
eines participants A, ein neuer Typ TA mit angelegt werden. Für diesem Typ würden wir das
Verhalten mittels BPEL Aktivitäten modellieren. Doch laufen wir dann in ein Problem, wenn
wir einen weiteren participant B des selben Typs TA erstellen wollen. Wir müssten zuerst eine
Auswahl des Typs anbieten, bevor wir B im Editor platzieren können. Angenommen, wir
hätten diese Auswahl. Fügen wir dann z. B. B eine Aktivität hinzu, ändert sich TA was zur
Folge hat, dass sich auch das Verhalten von A mit ändert. Der Editor muss diese Änderungen
für alle participants des selben Typs synchronisieren. Wir erörtern die Typisierung für diese
Arbeit nicht weiter aber stellen die Betrachtung dieser Möglichkeit in Aussicht für eine
zukünftige Erweiterung. In Abbildung 4.4 ist zu sehen, wie wir participants im Chor Model
darstellen. Zwecks besserer Abgrenzung zum Topology Model, nennen wir die participants
im Chor Model CParticipant und CParticipantSet.

Es ist wichtig, dass wir Participant und ParticipantSet Elemente grafisch unter-
schiedlich darstellen, da das ParticipantSet eine Menge von Teilnehmern angibt, wel-
che von ihrer Anzahl zur Designzeit nicht bekannt sind. MessageLink Elemente von
Participant zu ParticipantSet stellen eine 1 : n Kommunikation dar, was ebenfalls
grafisch angedeutet werden sollte. Was beide Elemente gemeinsam haben ist das name Attri-
but sowie eine Referenz auf ParticipantType. Die ParticipantSet Elemente können
Kind Elemente haben welche wiederum entweder Participant oder ParticipantSet
Elemente sind. Hier ist also eine Verschachtlung möglich. Von einer grafischen Darstellung
der Kind Elemente eines ParticipantSet sehen wir ab, dennoch muss es eine Möglichkeit
geben sie zu modellieren, da diese Elemente Quelle oder Ziel eines MessageLink sein
können. Das Topology Model sieht außerdem die Möglichkeit zur Restriktion der parti-
cipants auf eine ‹Scope› Aktivität vor, was beide Elemente ebenfalls gemeinsam haben.
Für alle Gemeinsamkeiten führen wir, wie in Abbildung 4.5 zu sehen, das neue Element
CParticipantCommon ein, von welchem CParticipant sowie CParticipantSet er-
ben. Das containment Attribut von Participant wird als PContainment Datentyp
ins Chor Model übernommen. Participant Elemente haben zudem noch ein selects
Attribut, welches Participant oder ParticipantSet Elemente referenzieren kann. Im
Chor Model referenzieren wir damit CParticipantCommon Elemente.

38

4.5 Choreographie Editor

Topology

ParticipantType

1

*

PBD

1 1

Participant

* 1

Choreography

CParticipant

1

*

Process

1 1

ParticipantSet

1

*

CParticipantSet

1 *

1

1

Abbildung 4.4: Vom Topology Model zum Chor Model

39

4 Konzeption

chor::Choreography

name : String
scope : Scope

chor::CParticipantCommon

chor::CParticipant chor::CParticipantSet

pbd::Process

participants1

*

process

1 1

«extends»

*

-selects

*

participants0..1*

participantSets

0..1

*

Abbildung 4.5: Chor Model mit Participants

Die ‹ForEach› Aktivitäten des PBD Model können über ein ParticipantSet iterieren.
Im Topology Model haben ParticipantSet und Participant ein forEach Attribut
wobei für letztere das setzen dieses Attributes nur Sinn macht, wenn sie innerhalb eines
ParticipantSet mit forEach Attribut sind. Im Chor Model drehen wir das Ganze um
und geben dem Modellierer bei der ‹ForEach› Aktivität die Möglichkeit, anzugeben über
welches Set iteriert werden soll und welches Kind Element die Referenz auf den aktuellen
Wert im Schleifendurchlauf hält. Wir erweitern allerdings nicht die ‹ForEach› Aktivität
im PBD Model, sondern definieren das neue Element ForEachIterationSpec, wie in
Abbildung 4.6 zu sehen. Dieses Element referenziert CParticipant als iteratorValue,
CParticipantSet als iteratorSet und schließlich die zugehörige ‹ForEach› Aktivität
selbst. Mit dieser Lösung ist es ebenfalls möglich und auch richtig, dass mehrere ‹ForEach›
Aktivitäten das selbe CParticipantSet referenzieren können. Dabei ist lediglich als Mo-
dellierer darauf zu achten, dass in jeder ForEachIterationSpec immer unterschiedliche
CParticipant Kind Elemente des selben Sets, als iteratorValue angegeben werden.

40

4.5 Choreographie Editor

chor::Choreography

name : String
scope : Scope

chor::CParticipantCommon

selects : CParticipantCommon

chor::CParticipant

participants : CParticipant
participantSets : CParticipantSet

chor::CParticipantSet

«extends»

participants1

*

pbd::Process

pbd::Activity

pbd::ForEach

process

1 1

activity1

1

«extends»

chor::ForEachIterationSpec

1

iteratorValue0..1

iteratorSet

0..1

1

forEach0..1
1

forEachIterationSpecs

*

Abbildung 4.6: Chor Model mit Participants und ForEach Lösung

Message Links

Die MessageLink Elemente aus dem Topology Model geben mit ihren Attributen
sendActivity und receiveActivity jeweils Quelle und Ziel des Links an. Für die
Umsetzung im Chor Model betrachten wir Abbildung 4.7. Für MessageLink wird ein
CMessageLink Element eingeführt, welches ebenfalls die selben Attribute bekommt. Wir

41

4 Konzeption

könnten mit sendActivity und receiveActivity jeweils Aktivitäten des PBD Mo-
del referenzieren, doch müssten wir dann beim Link setzen entsprechende Prüfungen
vornehmen, da Links nur zwischen den Kommunikationsaktivitäten erlaubt sind, sowie
zusätzlich noch der ‹OnMessage› Zweig der ‹Pick› Aktivität. Daher führen wir das
neue Element CLinkable ein und referenzieren mit den Attributen sendActivity und
receiveActivity jeweils darauf. Diejenigen Elemente aus dem PBD Model welche ver-
linkt werden dürfen, erben von besagtem Element, die anderen nicht. Wir müssen allerdings
noch Prüfungen durchführen um zu bestimmen, ob ein Link tatsächlich zwischen zwei
CLinkable Elementen gezogen werden darf. Die Bedingungen sind in [DKLW07] beschrie-
ben.

Das Attribut participantRefs übernehmen wir ebenfalls, referenzieren aber damit ein
neues Element CParticipantRef. Die Einführung dieses neuen Elements ist notwendig,
da wir Participant Referenzen grafisch darstellen wollen. Das CParticipantRef Ele-
ment referenziert dann schließlich den eigentlichen CParticipant, wessen Referenz über
diesen CMessageLink ausgetauscht werden soll. Das Attribut bindSenderTo referenziert
im Chor Model den CParticipant, welcher der Sender ist. Falls der CMessageLink
von einem CParticipant ausgeht, ist es die Selbstreferenz, bei CParticipantSet ist
es eines der Kind Elemente. Die Attribute sender und receiver referenzieren jeweils
einen CParticipant, da Absender und Empfänger konkrete Teilnehmer sein müssen
und nicht eine Menge von Teilnehmern. Für den Fall, dass alle Kind Elemente eines
CParticipantSet Absender sein können, gibt es das senders Attribut, welches folg-
lich CParticipantSet referenziert. Die Attribute sender, senders, receiver und
bindSenderTo von CMessageLink sind in Abbildung 4.7, zwecks besserer Übersicht, nicht
als Assoziationen dargestellt. Dies gilt auch für die Assoziationen von Choroegraphy.

42

4.5 Choreographie Editor

name : String
scope : Scope

chor::CParticipantCommon
pbd::Processprocess

1 1

pbd::Activity

activity1

1

pbd::Invoke pbd::Receive pbd::Reply pbd::Pick

pbd::OnMessagepbd::CLinkable

name : String
sender : CParticipant
senders : CParticipantSet
receiver : CParticipant
bindSenderTo : CParticipant

chor::CMessageLink

«extends»

1

*

«extends»

«extends»

sendActivity

* 1

receiveActivity* 1

selects : CParticipantCommon

chor::CParticipant

«extends»

participants : CParticipant
participantSets : CParticipantSet

chor::CParticipantSetchor::CParticipantRef

participant * 1

*

participantRefs

*

participants : CParticipantCommon
messageLinks : CMessageLink
participantRefs : CParticipantRef

chor::Choreography

Abbildung 4.7: Chor Model mit CMessageLink, CParticipantRef und CLinkable

Links im Flow Container

Die ‹Flow› Aktivität, definiert im WS-BPEL Standard [OAS07c], erlaubt graphbasierten
Kontrollfluss der modellierten Aktivitäten. Wir möchten in unserem Editor die Aktivitäten
im Flow Container platzieren und mit Kanten bzw. Links Verbinden. Dazu betrachten wir
Abbildung 4.8. Das PBD Model stellt Link Elemente bereit, welche von der ‹Flow› Aktivität
referenziert werden. Diese Link Elemente haben jeweils ein name Attribut. Die Basisklasse

43

4 Konzeption

Activity, von welcher alle BPEL Aktivitäten erben, erlaubt die Angabe von Targets und
Sources. Somit können sich alle Aktivitäten untereinander verlinken. Target und Source
Elemente verweisen mit ihren linkName Attributen auf das name Attribut des Link Ele-
ments. Zusätzlich bietet Source noch die Angabe einer TransitionCondition und für
alle Target Elemente zusammen, lässt sich eine JoinCondition angeben. Diese Elemente
stehen uns zur Verfügung, sind aber eher unpraktisch um einen Link zwischen zwei Aktivi-
täten nach unseren Voraussetzungen grafisch darzustellen. Wir führen im Chor Model das
neue Element FlowActivityLink ein. Mit den sourceActivity und targetActivity
Attributen verweisen wir auf Activity aus dem PBD Model. Das name Attribut bezeichnet
den Namen dieses Links und mit dem transitionCondition Attribut verweisen wir auf
das entsprechende TransitionCondition Element aus PBD Model. Die JoinCondition
können wir an jede Aktivität setzen, welche eine benötigt. Dazu erstellen wir, falls nicht
schon vorhanden, eine neue Instanz des Targets Containers und referenzieren mit dessen
joinCondition Attribut auf die entsprechende JoinCondition Instanz. Somit können
nun Links zwischen Aktivitäten gezogen werden. Allerdings müssen wir bei der Transforma-
tion bedenken, die entsprechenden Elemente Target, Source und Link des PBD Model,
aus dem FlowActivityLink Element zu generieren.

44

4.5 Choreographie Editor

chor::Choreography

sourceActivity : Activity
targetActivity : Activity
name : String

chor::FlowActivityLink

name : String
scope : Scope

chor::CParticipantCommon

participants1

*

flowActivityLinks

1

*

pbd::Processprocess

1 1

pbd::Activity

activity1
1

pbd::Flow

name : String

pbd::Link pbd::Source pbd::Target-links

1 *

joinCondition : JoinCondition

pbd::Targets

*

sources 1

targets

1 1

target1

*

«extends»

flow*

1

pbd::TransitionCondition

transitionCondition1

1

transitionCondition

1

1

Abbildung 4.8: Chor Model mit FlowActivityLink und Beziehungen

Grounding

Wie wir im Abschnitt 3.3 auf Seite 16 erläutert haben ist es für eine BPEL4Chor Cho-
reographie notwendig, ein Grounding anzugeben um BPEL Prozesse aus der Choreo-
graphie zu generieren. Wir übernehmen den Grounding Mechanismus für unser Chor

45

4 Konzeption

Model und führen das neue Element CGrounding ein, welches für ein spezifisches Groun-
ding steht. Das Grounding Model sieht MessageLink, ParticipantRef und Property
Elemente vor. Diese Elemente muss es auch für unser CGrounding geben, daher füh-
ren wir die Elemente CMessageLinkGrounding, CParticipantRefGrounding und
CorrelationSetGrounding ein, wie in Abbildung 4.9 zu sehen ist.

Das cMessageLink Attribut von CMessageLinkGrounding referenziert das CMessageLink
Element, welches mit einem Grounding verknüpft werden soll. Das portType Attribut gibt
den gewählten Port Type aus einer WSDL an. Dies wird als "Qualified Name" angegeben, da-
her verwenden wir einen passenden Datentyp QName bestehend aus den Teilen Namespace
URI, localPart und prefix. Das operation Attribut gibt die WSDL Operation an und das
bSToWSDLProperty Attribut gibt die WSDL Property als QName für das bindSenderTo
Attribut an. Es muss nur gesetzt werden, wenn bindSenderTo auch im referenzierten
CMessageLink angegeben wurde.

Das cParticipantRef Attribut von CParticipantRefGrounding referenziert das
CParticiapntRef Element, welches mit diesem Grounding verknüpft werden soll.
Das WSDLProperty Attribut gibt die WSDL Property als QName für das referenzierte
CParticiapntRef Element an.

Für CorrelationSetGrounding müssen wir noch ein weiteres Element einführen da im
PBD Model das properties Attribut von CorrelationSet eine Liste von Werten, welche
durch Leerzeichen getrennt sind, enthält. Jedem Eintrag muss ein QName im Grounding
zugeordnet werden. Wir führen das Element PropertyGrounding im Chor Model ein.
Ein Element davon verknüpft genau einen properties Eintrag, mit einem QName. Das
propertyName Attribut von PropertyGrounding gibt den Namen von einem Eintrag
aus dem properties Attribut von CorrelationSet an, welche mit diesem Grounding
verknüpft werden soll. Das WSDLProperty Attribut gibt die WSDL Property als QName an,
mit welcher propertyName verknüpft werden soll.

Das correlationSet Attribut von CorrelationSetGrounding referenziert das
CorreltationSet aus dem PBD Model, welchen mit diesem Grounding verknüpft wer-
den soll. Das propertyGroundings referenziert für jeden Eintrag aus dem properties
Attribut des referenzierten CorrelationSet, ein PropertyGrounding Element.

46

4.5 Choreographie Editor

chor::Choreography

chor::CGrounding

-portType : QName
-operation : String
-bSToWSDLProperty : QName

chor::CMessageLinkGrounding

-WSDLProperty : QName

chor::CParticipantRefGrounding chor::CorrelationSetGrounding

-propertyName : String
-WSDLProperty : QName

chor::PropertyGrounding

groundings1

*

-name : String
-sender : CParticipant
-senders : CParticipantSet
-receiver : CParticipant
-bindSenderTo : CParticipant

chor::CMessageLink

chor::CParticipantRef

*

participantRefs

*

messageLinks 1

*

cMessageLinkGroundings

1

*
cParticipantRefGroundings1

*

correlationSetGroundings

1

*

1

cMessageLink

*

1

cParticipantRef *

pbd::Process

-properties : String
-name : String

pbd::CorrelationSet

*

correlationSets 1

1

correlationSet

*

propertyGroundings1

*

Abbildung 4.9: Chor Model mit CGrounding

47

4 Konzeption

4.5.2 Chor Model Transformation

Wir haben im Abschnitt 4.5.1 auf Seite 35 besprochen, wie das Datenmodell für den Editor
aufgebaut ist. Wir können nun Choreographien modellieren und möchten jetzt die Möglich-
keit haben, das Chor Model in ein anderes Modell zu transformieren. Da uns in dieser Arbeit
nur BPEL4Chor und BPEL Prozesse interessieren, geben wir hier ein Konzept zur Generie-
rung der BPEL4Chor Artefakte, sowie eine anschließende Transformation zu BPEL Prozessen
an. Wir entscheiden uns hier, die Artefakte im Speicher als Document Object Model (DOM)
[WLHa00] zu repräsentieren und serialisieren sie darauf in XML Dokumente zur Speiche-
rung auf einem Datenträger. DOM Dokumente haben den Vorteil, dass die Daten in einer
Baumstruktur repräsentiert werden und viele Methoden zur einfachen Navigation durch den
Baum bereits durch das Framework gestellt werden. Zur Generierung von BPEL Prozessen
benutzen wir zudem noch die bereits existierende Komponente BPEL4ChorToBPEL, welche
in Abschnitt 5.1.6 auf Seite 105 beschrieben wird. Diese Komponente fordert als Eingaben
ebenfalls DOM Dokumente, von daher scheint uns hier DOM die richtige und zugleich
praktische Wahl zu sein.

Generierung der BPEL4Chor Artefakte

Durch das Modellieren mit dem Editor erzeugen wir das Chor Model, welches auch mehrere
Instanzen des PBD Model über das process Attribut von CParticipantCommon refe-
renziert. Die aktuelle Instanz des Chor Model dient also als Eingabe für die Transformer
Komponente. An dieser Stelle definieren wir die Termini Transformer und Builder. Transformer
Komponenten erzeugen DOM Objekte, Builder Komponenten erzeugen Modell Objekte. In
Abbildung 4.10 ist der Dokumentenfluss zwischen den einzelnen Komponenten dargestellt.
Da wir vom Chor Model ausgehen, müssen wir Topology Model und Grounding Model
Instanzen zuerst erzeugen. PBD Model Instanzen sind vom Chor Model referenziert und
werden durch Modellierung der participants mit seinen Aktivitäten erzeugt. Wie wir in
Abschnitt 4.5.1 auf Seite 43 besprochen haben, müssen wir allerdings für die Links zwischen
den Aktivitäten in einem ‹Flow›, das PBD Model mit den entsprechenden Daten anreichern.
Das bedeutet, dass wir zusätzliche Instanzen von Modell Objekten bilden. Wir benötigen die
Builder Komponenten TopologyBuilder, GroundingBuilder und FlowBuilder. Nachdem uns die
Modell Instanzen vorliegen, transformieren wir diese zu DOM Dokumenten. Dafür benötigen
wir die Transformer Komponenten TopologyTransformer, GroundingTransformer, PBDTransformer
sowie den umfassenden ChoreographyTransformer, der den Transformationsprozess durchführt
und die anderen Komponenten in der richtigen Reihenfolge, mit den passenden Eingaben,
aufruft.

Wir stellen als nächstes die Algorithmen der Builder Komponenten vor. Als allgemeine
Konvention für die Notation gilt, dass die tiefer gestellten Bezeichnungen pbd, top, grnd oder
chor jeweils die Modellzugehörigkeit der Elemente kennzeichnen. Dabei gehören die mit pbd

48

4.5 Choreographie Editor

Chor Editor

ChoreographyTransformer

TopologyBuilderGroundingBuilder

PBDTransformerTopologyTransformerGroundingTransformer

Topology (DOM)Grounding (DOM)

Chor (Model)

Grounding (Model) Topology (Model)

PBD (Model)references

PBD (DOM)

PBD (Model)
Chor (Model)

Topology QName
FlowBuilder

PBD (Model)
with Flow Links

Abbildung 4.10: Dokumentenfluss zwischen den Transformer und Builder Komponenten

gekennzeichneten Elemente zum PBD Model, top zum Topology Model, grnd zum Grounding
Model und chor zum Chor Model. Der Doppelpunkt wird zur Typisierung von Variablen
verwendet, wie z. B. e : Choreographychor bedeutet: Variable e vom Typ Choreography aus
dem chor Chor Model. Mehrwertige Attribute, Referenzen auf mehrere Elemente und Listen
behandeln wir als Mengen wie z. B.M = {cml|cml : CMessageLinkchor} für die Menge aller
CMessageLink Elemente des Chor Model. Die Variable chormodel ist global für alle Builder
verfügbar und hält die Instanz der Choreography Klasse.

49

4 Konzeption

Gemeinsame Algorithmen

Die Builder Komponenten benötigen vor allem einheitliche Schemen zur Namensgenerierung
von Elementen da Topology Model und Grounding Model entweder QNames oder NCNames
verwenden um auf andere Elemente zu verweisen. Unser Quellmodell ist das Chor Model,
in welchem wir stattdessen Referenzen benutzen daher brauchen wir eine Methode, die
einerseits den Namen eines Chor Model Elements zurück gibt und andererseits müssen wir
den Fall abfangen, wenn der Name nicht gesetzt wurde. Dazu führen wir die Hilfsmethode
getNormalizedName ein. Der Algorithmus 4.1 zeigt, wie Namen für CParticipantCommon,
Choreography, CMessageLink und Process erzeugt werden. Wir definieren zudem
noch die Methode classname(), welche den Klassennamen des gegeben Elements zurück gibt
wie z. B. bei Übergabe von CMessageLink, würde "cMessageLink" zurück gegeben werden.
Wir hängen an den Namen noch zusätzlich einen Hash Code an welcher die Speicheradresse
der Instanz zurück gibt. Dies sorgt dafür, dass die Elemente eindeutig benannt werden.

Da die Elemente vom PBD Model bzw. BPEL in einer Baumstruktur angeordnet sind,
können wir davon ausgehen dass es Möglichkeiten gibt, zwischen den Knoten zu navigieren.
Wir können also Kind- und Elternknoten bestimmen. Dafür definieren wir die Funktion
parentO f (), welche vom übergebenen Element den Elternknoten zurück gibt oder null,
falls es keinen gibt. Die Funktion typeO f () gibt den Instanz Typ des gegebenen Elements
zurück. Als Beispiel wäre der Wert von typeO f (a : Activitypbd) gleich Invokepbd, wenn a
eine Instanz von Invoke ist. In Algorithmus 4.3 bestimmen wir das Process Element von
einem beliebigen Element aus PBD Model (Elementpbd) ausgehend.

Der Algorithmus 4.4 erzeugt einen QName für die gegebene Aktivität. Dieser QName setzt
sich aus dem Namespace des zugehörigen Process Elements und dem id Attribut der
Aktivität zusammen. Deshalb benötigen wir die Process Instanz, in welcher diese Aktivität
definiert ist. Diese Instanz finden wir mit Algorithmus 4.3.

Algorithmus 4.1 Generierung von Namen, allgemein für Chor Model Elemente
procedure getNormalizedName(e : CParticipantCommonchor ∨ e : Processpbd ∨ e :
Choreographychor ∨ e : CMessageLinkchor)

name : String← e.name
if name = null then

name← classname(e)
name← name+ ‘_‘+e.hashCode

end if
return name

end procedure

50

4.5 Choreographie Editor

Algorithmus 4.2 Erzeugt den QName für eine Participant Behavior Description
procedure buildPBDQName(p : Processpbd)

pbdQName : QName←new QName
processName : String←getNormalizedName(p)
pbdQName.namespaceURI ← p.targetNamespace
pbdQName.localPart← processName
pbdQName.pre f ix ← lowerCase(processName)
return pbdQName

end procedure

Algorithmus 4.3 Findet das zugehörige Process Element, ausgehend von einem beliebigen
Element aus dem PBD Model

procedure deduceProcess(e : Elementpbd)
p : Elementpbd
parentElement : Elementpbd ← parentO f (e)
while parentElement 6= null do

if typeO f (parentElement) = Processpbd then
p← parentElement
break

end if
parentElement← parentO f (parentElement)

end while
return p

end procedure

Algorithmus 4.4 Erzeugt einen QName für die gegebene Aktivität
procedure buildActivityQName(a : Activitypbd)

activityQName : QName←new QName
p : Processpbd ←deduceProcess(a)
pbdQName←buildPBDQName(p)
activityQName.namespaceURI ← pbdQName.namespaceURI
activityQName.localPart← a.id
activityQName.pre f ix ← pbdQName.pre f ix
return activityQName

end procedure

51

4 Konzeption

TopologyBuilder Algorithmen

Mit Algorithmus 4.5 erzeugen wir ParticipantType Elemente. Für die Erstel-
lung des name Attributs benutzten wir den Algorithmus 4.6, da wir den Typ Na-
men auch bei Participant und ParticipantSet korrekt setzen müssen. Das
participantBehaviorDescription Attribut ist ein QName, welchen wir mit Algo-
rithmus 4.2 erzeugen, und verweist auf das entsprechende externe Participant Behavior
Description Dokument. Für jeden ParticipantType erhöhen wir einen Zähler und hängen
den Wert dem name Attribut an. Somit ist gewährleistet dass die Namen, selbst bei gleicher
Benennung unterschiedlicher Typen, eindeutig sind.

Mit Algorithmus 4.7 erzeugen wir einen Participant im Topology Model. Das forEach
Attribut ist ein QName und verweist auf die Aktivität der zugehörigen Participant Behavior
Description. Das selbe gilt auch für scope. Wir erzeugen diesen QName mit Algorithmus 4.4.
ParticipantSet und MessageLink Elemente erzeugen wir mit den Algorithmen 4.9
und 4.8. Der Startpunkt des TopologyBuilders ist in Algorithmus 4.10 realisiert. Er erzeugt aus
dem Chor Model ein Topology Dokument.

Algorithmus 4.5 Erzeugt ein ParticipantType Element im Topology Model
procedure createParticipantType(p : Processpbd)

pt : ParticipantTypetop ← new ParticipantTypetop

// processId : Integer ist hier eine globale Variable
pt.name←createTypeName(p, processId)
pt.participantBehaviorDescription←buildPBDQName(p)
processId← processId + 1
return pt

end procedure

Algorithmus 4.6 Erzeugt den Namen eines ParticipantType Element im Topology Model
procedure createTypeName(p : Processpbd, processId : Integer)

processName : String←getNormalizedName(p)
// processId : Integer ist hier eine lokale Variable

processName← processName+‘_‘+processId+‘_ type‘
return processName

end procedure

52

4.5 Choreographie Editor

Algorithmus 4.7 Erzeugt ein Participant Element im Topology Model
procedure createParticipant(cp : CParticipantchor)

p : Participanttop ← new Participanttop

p.name←getNormalizedName(cp)
// process ist null, wenn cp ein Kind Element eines Sets ist

if cp.process 6= null then
p.type←createTypeName(cp.process)

end if
// F = { f | f : ForEachIterationSpecchor}

F ← chormodel. f orEachIterationSpecs
for all f ∈ F do

if f .iteratorValue 6= null ∧ f .iteratorValue = cp then
p. f orEach←buildActivityQName(f . f orEach)

end if
end for
if cp.scope 6= null then

p.scope←buildActivityQName(cp.scope)
end if

// C = {c|c : CParticipantCommonchor}
C ← cp.selects
for all c ∈ C do

name : String←getNormalizedName(c)
p.selects ∪ {name}

end for
p.containment← cp.containment
return p

end procedure

53

4 Konzeption

Algorithmus 4.8 Erzeugt ein ParticipantSet Element im Topology Model
procedure createParticipantSet(cpSet : CParticipantSetchor)

pSet : ParticipantSettop ← new ParticipantSettop

pSet.name←getNormalizedName(cpSet)
// process ist null, wenn cpSet ein Kind Element eines Sets ist

if cpSet.process 6= null then
pSet.type←createTypeName(cpSet.process)

end if
// F = { f | f : ForEachIterationSpecchor}

F ← chormodel. f orEachIterationSpecs
for all f ∈ F do

if f .iteratorSet 6= null ∧ f .iteratorSet = cpSet then
name : QName←buildActivityQName(f . f orEach)
pSet. f orEach ∪ {name}

end if
end for
if cpSet.scope 6= null then

pSet.scope←buildActivityQName(cpSet.scope)
end if

// P = {child|child : CParticipantchor}
P ← cpSet.participants
for all child ∈ P do

p : Participanttop ←createParticipant(child)
pSet.participants ∪ {p}

end for
// S = {child|child : CParticipantSetchor}

S ← cpSet.participantSets
for all child ∈ S do

// rekursiver Aufruf
s : ParticipantSettop ←createParticipantSet(child)
pSet.participantSets ∪ {s}

end for
return pSet

end procedure

54

4.5 Choreographie Editor

Algorithmus 4.9 Erzeugt ein MessageLink Element im Topology Model
procedure createMessageLink(cml : CMessageLinkchor)

ml : MessageLinktop ← new MessageLinktop

ml.name←getNormalizedName(cml)
ml.sendActivity← cml.sendActivity.id
ml.recieveActivity← cml.receiveActivity.id
if cml.sender 6= null then

ml.sender ←getNormalizedName(cml.sender)
end if
if cml.senders 6= null then

ml.senders ∪ {getNormalizedName(cml.senders)}
end if
ml.receiver ←getNormalizedName(cml.receiver)
ml.messageName← cml.messageName

// R = {re f |re f : CParticipantRe fchor}
R ← cml.participantRe f s
for all re f ∈ R do

if re f .participant 6= null then
name : String←getNormalizedName(re f .participant)
ml.participantRe f s ∪ {name}

end if
end for
if cml.bindSenderTo 6= null then

ml.bindSenderTo ←getNormalizedName(cml.bindSenderTo)
end if
return ml

end procedure

55

4 Konzeption

Algorithmus 4.10 Erzeugt eine Topology Model Instanz aus dem gegebenen Chor Model
procedure build

top : Topologytop ← new Toplogytop

top.targetNamespace← chormodel.targetNamespace
name : String←getNormalizedName(chomodel)
top.name← name+‘Topology‘

// C = {c|c : CParticipantCommonchor}
C ← chormodel.participants
for all c ∈ C do

pType : ParticipantTypetop ←createParticipantType(c.process)
top.participantTypes ∪ {pType}
if typeO f (c) = CParticipantchor then

p : Participanttop ←createParticipant(c)
top.participants ∪ {p}

else if typeO f (c) = CParticipantSetchor then
pSet : ParticipantSettop ←createParticipantSet(c)
top.participants ∪ {pSet}

end if
end for

//M = {cml|cml : CMessageLinkchor}
M ← chormodel.messageLinks
for all cml ∈ M do

ml : MessageLinktop ←createMessageLink(cml)
top.messageLinks ∪ {ml}

end for
return top

end procedure

GroundingBuilder Algorithmen

Das Grounding Model referenziert das entsprechende Topology Model als QName, daher
benötigen wir eine Methode um den QName von Topology zu erzeugen. In Algorithmus 4.11

ist die Vorgehensweise zu sehen. Mit den Algorithmus 4.12 erzeugen wir ein MessageLink
Element im Grounding Model. Der Algorithmus 4.13 erzeugt ein ParticipantRef Ele-
ment für einen Eintrag aus dem participantRefs Attribut eines CMessageLink und
Algorithmus 4.14 erledigt das selbe für das bindSenderTo Attribut. Für alle properties
Einträge eines CorrelationSet, müssen wir jeweils ein Property Element im Grounding
Model erzeugen, was mit Algorithmus 4.15 durchgeführt wird. Der Startpunkt des Groun-
dingBuilders ist in Algorithmus 4.16 realisiert. Er erzeugt für alle CGrounding Elemente des
Chor Model jeweils ein eigenes Grounding.

56

4.5 Choreographie Editor

Algorithmus 4.11 Erzeugt den QName für Topology aus dem Topology Model
procedure buildTopologyQName

topQName : QName←new QName
chorName : String←getNormalizedName(chormodel)
topQName.namespaceURI ← chormodel.targetNamespace
topQName.localPart← chorName+‘Topology‘
topQName.pre f ix ← +‘top‘
return topQName

end procedure

Algorithmus 4.12 Erzeugt ein MessageLink Element im Grounding Model
procedure createMessageLink(cmlg : CMessageLinkGroundingchor)

ml : MessageLinkgrnd ← new MessageLinkgrnd
mlQName : QName← new QName
topQName : QName←buildTopologyQName

mlQName.namespaceURI ← topQName.namespaceURI
mlQName.localPart←getNormalizedName(cmlg.cMessageLink)
mlQName.pre f ix ← topQName.pre f ix
ptQName← cmlg.portType
if ptQName 6= null ∧ ptQName.localPart 6= null then

ml.portType← ptQName
end if
ml.operation← cmlg.operation
return ml

end procedure

57

4 Konzeption

Algorithmus 4.13 Erzeugt ein ParticipantRef Element im Grounding Model für gesetzte
participantRefs eines CMessageLink

procedure createParticipantRef(cPre f g : CParticipantRe f Groundingchor)
pRe f : ParticipantRe fgrnd ← new ParticipantRe fgrnd
p : CParticipantchor ← cPre f g.cParticipantRe f .participant
if p 6= null then

name : String←getNormalizedName(p)
pRe f .name← name

end if
wsdlPropQName : QName← cPre f g.WSDLProperty
if wsdlPropQName 6= null ∧ wsdlPropQName.localPart 6= null then

pRe f .WSDLProperty← wsdlPropQName
end if
return pRe f

end procedure

Algorithmus 4.14 Erzeugt ein ParticipantRef Element im Grounding Model für das
gesetzte bindSenderTo eines CMessageLink

procedure createParticipantRef(cmlg : CMessageLinkGroundingchor)
pRe f : ParticipantRe fgrnd ← new ParticipantRe fgrnd
p : CParticipantchor ← cmlg.cMessageLink.bindSenderTo
if p 6= null then

pRe f .name←getNormalizedName(p)
end if
wsdlPropQName : QName← cmlg.bSToWSDLProperty
if wsdlPropQName 6= null ∧ wsdlPropQName.localPart 6= null then

pRe f .WSDLProperty← wsdlPropQName
end if
return pRe f

end procedure

58

4.5 Choreographie Editor

Algorithmus 4.15 Erzeugt Property Elemente im Grounding Model für alle property
Einträge des CorrelationSet

procedure createProperties(cSetg : CorrelationSetGroundingchor)
propertyList : List← new List
corrSet : CorrelationSetpbd ← cSetg.correlationSet
process : Processpbd ←deduceProcess(corrSet)
pbdQName : QName←buildPBDQName(process)

// P = {pg|pg : PropertyGroundingchor}
P ← cSetg.propertyGroundings
for all pg ∈ P do

propQName.namespaceURI ← pbdQName.namespaceURI
propQName.localPart← pg.propertyName
propQName.pre f ix ← pbdQName.pre f ix
prop : Propertygrnd ← new Propertygrnd
prop.name← propQName
wsdlPropQName : QName← pg.WSDLProperty
if wsdlPropQName 6= null ∧ wsdlPropQName.localPart 6= null then

prop.WSDLProperty← wsdlPropQName
end if
propertyList ∪ {prop}

end for
return propertyList

end procedure

59

4 Konzeption

Algorithmus 4.16 Erzeugt Grounding Model Instanzen aus den spezifizierten CGrounding
Elementen im Chor Model

procedure build

grndList : List← new List
// G = {cg|cg : CGroundingchor}

G ← chormodel.groundings
for all cg ∈ G do

grnd : Groundinggrnd ← new Groundinggrnd
grnd.topology←buildTopologyQName

//M = {cmlg|cmlg : CMessageLinkGroundingchor}
M ← cg.cMessageLinkGroundings
for all cmlg ∈ M do

ml : MessageLinkgrnd ←createMessageLink(cmlg)
grnd.messageLinks ∪ {ml}
if cmlg.cMessageLink.bindSenderTo 6= null then

pRe f : ParticipantRe fgrnd ←createParticipantRef(cmlg)
grnd.participantRe f s ∪ {pRe f }

end if
end for

// P = {cPre f g|cPre f g : CParticipantRe f Groundingchor}
P ← cg.cParticipantRe f Groundings
for all cPre f g ∈ P do

pRe f : ParticipantRe fgrnd ←createParticipantRef(cPre f g)
grnd.participantRe f s ∪ {pRe f }

end for
// C = {cSetg|cSetg : CorrelationSetGroundingchor}

C ← cg.correlationSetGroundings
for all cSetg ∈ C do

// L = {prop|prop : Propertygrnd}
L ←createProperties(cSetG)
for all prop ∈ L do

grnd.properties ∪ {prop}
end for

end for
grndList ∪ {grnd}

end for
return grndList

end procedure

60

4.5 Choreographie Editor

FlowBuilder Algorithmen

Für das FlowActivityLink Element aus Chor Model, generieren wir den Namen passend
zum ‹Flow› Kontext, da dieser Name für das Link Element gesetzt wird. In Algorith-
mus 4.17 ist die Vorgehensweise zu sehen.

Für jedes FlowActvitiyLink Element müssen einerseits die Source und Target Ele-
mente der Quell- und Zielaktivität erzeugt werden und andererseits, ein Link Element
im richtigen Flow Container erzeugt werden. Den Flow Container finden wir mit der
parentO f () Funktion denn für jede Aktivität in einem ‹Flow› gilt, dass der direkte Elternk-
noten der Container sein muss. Daher reicht die einmalige Anwendung von parentO f () auf
die sourceActivity bzw. targetActivity.

Algorithmus 4.17 getNormalizedName speziell für das FlowActivityLink Element
procedure getNormalizedName(e : FlowActivityLinkchor)

name : String← e.name
sourceId : String← e.sourceActivity.id
targetId : String← e.targetActivity.id
if name = null then

name←‘link_‘+sourceId+‘_to_‘+targetId+‘_‘+e.hashCode
end if
return name

end procedure

61

4 Konzeption

Algorithmus 4.18 Erzeugt Link, Source und Target Elemente im PBD Model
procedure build

// L = {clink|clink : FlowActivityLinkchor}
L ← chormodel. f lowActivityLinks
for all clink ∈ L do

srcActivity : Activitypbd ← clink.sourceActivity
tgtActivity : Activitypbd ← clink.targetActivity
src : Sourcepbd ← new Sourcepbd
src.linkName←getNormalizedName(clink)
src.transitionCondition← clink.transitionCondition
srcActivity.sources ∪ {src}
tgt : Targetpbd ← new Targetpbd
tgt.linkName←getNormalizedName(clink)
tgtActivity.targets ∪ {tgt}
srcFlow : Flowpbd ← null
tgtFlow : Flowpbd ← null
parentElement : Elementpbd ← parentO f (srcActivity)
if typeO f (parentElement) 6= null ∧ parentElement = Flowpbd then

srcFlow← parentElement
end if
parentElement← parentO f (tgtActivity)
if typeO f (parentElement) 6= null ∧ parentElement = Flowpbd then

tgtFlow← parentElement
end if

// srcActivity und tgtActivity beide im selben Flow Container
if srcFlow 6= null ∧ tgtFlow 6= null ∧ srcFlow = tgtFlow then

link : Linkpbd ← new Linkpbd
link.name←getNormalizedName(clink)

// srcFlow und tgtFlow sind die gleiche Instanz
srcFlow.links ∪ {link}

end if
end for

end procedure

Transformer Algorithmen

Als Beispiel sehen wir in Algorithmus 4.19 das Vorgehen bei der Transformation vom
Topology Model zum DOM Dokument. Diese Vorgehensweise ist für jedes unserer Model-
le analog. Wir brauchen Zugriff auf die Metadaten aller Modellelemente und definieren
daher die Methoden attributesO f (), valueO f (), valuesO f (), nameO f () und re f erencesO f ().

62

4.5 Choreographie Editor

attributesO f () gibt die Menge aller Attribute des übergebenen Modell Elements zurück.
In unseren Modellen (Topology Model, Grounding Model und PBD Model) können Attri-
bute einen bestimmten Datentyp haben oder auf andere Modell Elemente referenzieren.
Daher benötigen wir die Methode re f erencesO f (), welche die Menge aller referenzierten
Elemente zurückgibt. Der Wert eines Attributes kann entweder einfach oder mehrwertig
sein. Die Methode isMultiValued() gibt true zurück, falls es sich um ein mehrwertiges
Attribut handelt wie z. B. selects von Participant, sonst f alse. Mit valueO f () bekom-
men wir den gesetzten Wert eines Attributes zurück oder null, falls nicht gesetzt. Für den
Fall eines mehrwertigen Attributs, benutzen wir valuesO f () und bekommen eine Menge
zurück oder ebenfalls null, falls nicht gesetzt. Wenden wir valueO f () bzw. valuesO f () auf
Referenzattribute an, ist das Verhalten analog nur dass die referenzierten Modell Elemente
zurückgegeben werden. Mit der Methode nameO f () bekommen wir den Namen des gegeben
Elements zurück. Übergeben wir z. B. das Attribut selects, gibt nameO f (selects) den
Wert "selects" zurück. Die Methode classname() haben wir bereits in Abschnitt 4.5.2 auf
Seite 52 definiert.

63

4 Konzeption

Algorithmus 4.19 Transformiert ein Topology Model Element mit all seinen Kind Elementen
zu einem DOM Dokument

procedure modelToDOM(doc : Documentdom, parentElement : Elementdom, modelElement :
Elementtop)

elementName : String← classname(modelElement)
element : Elementdom ← doc.createElement(elementName)

// Wenn parentElement null ist, dann ist element das Wurzelelement
if parentElement = null then

doc.appendChild(element)
else

parentElement.appendChild(element)
end if

handleAttributes(doc, element, modelElement)
// RmodelElement = {re f |re f ist Referenz von modelElement}

RmodelElement ← re f erencesO f (modelElement)
for all re f ∈ RmodelElement do

if valueO f (re f) 6= null ∨ valuesO f (re f) 6= null then
if isMultiValued(re f) then
Vre f ← valuesO f (re f)
for all value ∈ Vre f do

modelToDOM(doc, element, value)
end for

else
modelToDOM(doc, element, valueO f (re f))

end if
end if

end for
end procedure

64

4.5 Choreographie Editor

Algorithmus 4.20 Transformiert die Attribute des gegebenen Topology Model Elements, zu
Attributen des gegebenen DOM Elements

procedure handleAttributes(doc : Documentdom, element : Elementdom, modelElement :
Elementtop)

// AmodelElement = {a|a ist Attribut von modelElement}
AmodelElement ← attributesO f (modelElement)
for all a ∈ AmodelElement do

if valueO f (a) 6= null ∨ valuesO f (a) 6= null then
domAttribute : Attrdom ← doc.createAttribute(nameO f (a))
attribValue : String
if isMultiValued(a) then

// Va = {value|value ist Wert des Attributs a}
Va ← valuesO f (a)
for all value ∈ Va do

attribValue← attribValue + value+“
end for
domAttribute.setValue(attribValue)

else
attribValue← valueO f (a)
domAttribute.setValue(attribValue)

end if
element.setAttributeNode(domAttribute)

end if
end for

end procedure

4.5.3 Generierung von BPEL Prozessen

Nachdem wir das Chor Model in die einzelnen DOM Dokumente, wie in Abschnitt 4.5.2 auf
Seite 48 besprochen, transformiert haben, können wir diese Dokumente in BPEL Prozesse um-
wandeln. Dazu benutzen wir die bereits entwickelte Komponente BPEL4ChorToBPEL [Li10],
auf welche wir in Abschnitt 5.1.6 auf Seite 105 genauer eingehen. Das Ergebnis dieser Kom-
ponente sind abstrakte BPEL Prozesse mit zugehörigen WSDL Definitionen, welche ebenfalls
als DOM Dokumente vorliegen. Um ausführbare BPEL Prozesse als Endresultat zu erhalten,
setzen wir noch einen weiteren Schritt dahinter und führen die Komponente BasicExecutable-
CompletionTransformer ein, welche die abstrakten BPEL Prozesse als Eingabe bekommt und
eine „basic executable completion“ durchführt. In Abbildung 4.11 sehen wir die Komponen-
ten und deren Dokumentenfluss. Der ChorToBPELTransformer stellt die Rahmenkomponente
dar, welche die DOM Dokumente aus dem Transformationsschritt an die BPEL4ChorToBPEL
und BasicExecutableCompletionTransformer verteilt. Die von BPEL4ChorToBPEL ausgegebenen

65

4 Konzeption

ChorToBPELTransformer

BPEL4Chor2BPEL

Abstract BPEL (DOM) Executable BPEL (File)WSDL (File)

BasicExecutableCompletionTransformer

BPELDesigner

Topology (DOM)

Grounding (DOM)

PBD (DOM)

Abbildung 4.11: Dokumentenfluss zwischen Komponenten für die Umwandlung zu aus-
führbaren Prozessen

WSDL Dokumente schreiben wir auf den Datenträger in den passenden Projektordner. Die
BPEL Dokumente senden wir an den BasicExecutableCompletionTransformer, welcher die Schrit-
te, gelistet in Tabelle 4.1, durchführt. Zuletzt werden die modifizierten BPEL Dokumente
ebenfalls auf den Datenträger geschrieben und können letztendlich mit dem BPEL Designer
weiter bearbeitet werden.

4.5.4 Grafisches Konzept

In Abschnitt 4.5.1 auf Seite 35 haben wir das Datenmodell für den Editor vorgestellt, welches
wir nun visualisieren. In Abbildung 4.12 ist die Editor Oberfläche zu sehen. Der mittle-
re Teil wird zur Darstellung der Elemente benutzt und in der Palette befinden sich die
Werkzeuge dafür. Im unteren Bereich befindet sich die Property View, welche für das ak-
tuell selektierte Element die Eigenschaften anzeigt. Über diese Property View lassen sich
viele Einstellungen vornehmen, die nicht durch die Werkzeuge in der Palette eingestellt

66

4.5 Choreographie Editor

werden können. Dabei sind die Einstellungen immer spezifisch für das gerade selektier-
te Element und werden durch Tabs in verschiedene Kategorien eingeteilt. In der Toolbar
befinden sich Funktionen Laden, Speichern, Exportieren und Transformieren. Mit Hilfe
der Werkzeuge können wir nun die Komponenten unserer Choreographie modellieren.
Wir haben im Abschnitt 4.5.1 auf Seite 35 die Konvention getroffen dass alle grafischen
Elemente, welche wir im Editor platzieren, eine eigene Entität bzw. Klasse im Chor Model
sind was wir hier nun ausnutzen, denn für jede Entität gibt es ein Werkzeug in der Palette.
In Abbildung 4.13 wurde ein CParticipant mit seinem zugehörigen Process Element
platziert, welches zunächst keine Aktivitäten beinhaltet. In Abbildung 4.14 haben wir ein
CParticipantSet Element dazu platziert sowie Aktivitäten mit den entsprechenden Werk-
zeugen modelliert. Die CMessageLink Elemente zwischen den Kommunikationsaktivitäten
wurde ebenfalls gezogen und dazu noch ein CParticipantRef Element platziert, welches
auf diesen CMessageLink zeigt, über welchen es ausgetauscht wird. Die Zugehörigkeit die-
ser Referenz zu seinem CMessageLink kann nur über die Property View eingestellt werden.
Abbildung 4.15 zeigt einen CParticipant mit seinem Process und einer Flow Aktivität.
Darin sind weitere Aktivitäten platziert, zwischen welchen FlowActivityLink Elemente
gezogen wurden.

Als nächstes betrachten wir die grafischen Elemente der Property View. In Abbildung 4.16

sehen wir die Inhalte der base Kategorie von CParticipant und CParticipantSet sowie
die aufrufbaren Dialoge durch Betätigung der Buttons. Im Textfeld "name:" lässt sich der
Wert des name Attributes einstellen. Die Combobox "scope:" zeigt eine dropdown Liste
aller verfügbaren Scope Aktivitäten dieser Choreographie. Generell gilt für alle folgenden
Abbildungen von Property View Elementen, dass Felder mit einem Pfeil nach unten immer
Comboboxen darstellen. Das "selects:" Feld ist eine Liste von selektierten CParticipant
bzw. CParticipantSet Elementen. Einträge können über den "add" Button hinzugefügt
werden. Dabei öffnet sich der Dialog, auf welchen der vom Button ausgehende Pfeil ver-
weist. Dieser "Participants" Dialog zeigt eine Liste aller verfügbaren CParticipant und
CParticipantSet Elemente dieser Choreographie mit Ausnahme des aktuell selektierten
Elements. Durch Auswahl eines Eintrages und Klick des "select" Buttons, wird dieser Eintrag
in die "selects:" Liste übernommen.

Abbildung 4.17 zeit die Inhalte der participants Kategorie von CParticipantSet. In die
"participants:" Liste lassen sich über den "add" Button neue Elemente hinzufügen. Bei
Klick auf diesen Button, öffnet sich der "Create new Participant" Dialog, über welchen
sich das name Attribut einstellen lässt. Bei Klick auf den "save:" Button, wird ein neues
CParticipant Element erstellt und der "participants:" Liste hinzugefügt. Die Eigenschaften
dieses neuen Eintrages lassen sich über den "configure selection:" Button einstellen. Durch
Klick darauf öffnet sich der "participant" Dialog. Die Inhalte und Funktionen dieses Dialogs
sind identisch zu denen der base Kategorie von CParticiapnt nur dass sich zusätzlich
noch der Wert des containment Attributes einstellen lässt.

67

4 Konzeption

Die Inhalte der base und participants Kategorien von CMessageLink sehen wir in Abbil-
dung 4.18. In der base Kategorie ist im Feld "name:", der eindeutige Name für diesen
Link einstellbar. Mit "messageName:" lässt sich ein zusätzlicher Name für diesen Link
vergeben. Die participants Kategorie zeigt die Elemente zum Einstellen von "sender:", "sen-
ders:", "receiver:" und "bindSenderTo:" wobei dies alles Comboboxen sind. Die Einträge der
dropdown Liste von "bindSenderTo:" zeigt entweder nur den CParticipant, den dieser
CMessageLink als "sender:" hat oder, im Fall dass "sender:" ein CParticipantSet ist, alle
CParticipant Kind Elemente. Der "ParticipantRef List:" können Eintrage über den "add"
Button hinzugefügt werden wobei der zugehörige Dialog natürlich nur auswählbare Eintrage
zeigt, wenn CParticipantRef Elemente in dieser Choreographie platziert wurden.

Abbildung 4.19 zeigt die Inhalte der base Kategorie von CParticipantRef. Die Combobox
"participant:" enthält eine Liste von allen CParticipant Elementen dieser Choreographie
womit die zu übertragende Referenz festgelegt werden kann. Zudem lässt sich für diese
Referenz noch ein zusätzlicher Name vergeben.

Abbildung 4.20 zeigt die base Kategorie der Process Elemente, in welche sich die
name und targetNamespace Attribute des Prozesses festlegen lassen. Unter correlati-
ons und messageExchanges können jeweils über den "add" Button neue CorrelationSet
bzw. MessageExchange Elemente angelegt werden. Das properties Attribut eines
CorrelationSet Elements lässt sich durch Auswahl eines Elementes in der "Correla-
tionSets:" Liste im Textfeld "properties:" editieren. Für die Scope Aktivität gibt es ebenfalls
correlations und messageExchanges Kategorien die analog funktionieren.

Die Inhalte der base und groundings Kategorien von Choreography sehen wir in Abbil-
dung 4.21. Die base Kategorie beinhaltet die selbe Funktionalität wie diese von Process.
Unter der groundings Kategorie können mit dem "add" Button neue CGrounding Elemente
für diese Choreographie angelegt werden. Wird ein Eintrag der "groundings:" Liste selektiert,
können für die in dieser Choreographie definierten CMessageLink, CorrelationSet
und CParticipantRef Elemente, groundings konfiguriert werden. Dafür öffnet sich beim
Klick auf den jeweiligen "configure" Button der entsprechende Dialog. In Abbildung 4.22

können für alle modellieren CMessageLink Elemente, welche in der "MessageLinks:"
Liste aufgeführt sind, CMessageLinkGrounding Elemente angelegt werden. Selektiert
man einen Eintrag der "MessageLinks:" Liste können rechts, in der "Configure messa-
geLink.name" Gruppe, die grounding spezifischen Angaben für diesen selektieren Link
gesetzt, und mit dem "save" Button abgespeichert werden. Dabei wird entweder ein neues
CMessageLinkGrounding Element angelegt oder, falls schon vorhanden, die neuen Wer-
te für das bereits bestehende übernommen. Abbildung 4.23 zeigt die beiden Dialoge für
CorrelationSet und CParticipantRef Elemente. Für letzteres ist die Funktionalität
dem Dialog für CMessageLink Elemente äquivalent. Der Dialog für CorrelationSet
beinhaltet die zusätzliche Liste "Properties of correlationSet.name", worin alle Einträge des
properties Attributes untereinander gelistet werden. Dies ist notwendig, da für jeden
Eintrag ein eigenes Grounding angegeben werden muss. Selektiert man also einen Eintrag

68

4.5 Choreographie Editor

dieser Liste, kann das entsprechende PropertyGrounding Elemente dafür angelegt bzw.
abgeändert werden.

Die Inhalte der base Kategorie sind für alle Aktivitäten gleich. Sie beinhalten "name:" und
"id:" Felder zum editieren der entsprechenden Attribute. Je nach Aktivität kommen aber noch
spezifische Elemente hinzu wie z. B. für ForEach eine Checkbox für parallele Ausführung. In
Abbildung 4.24 sind die Elemente der base und iteration Kategorien von ForEach zu sehen. In
der iteration Kategorie sind in der "Iterator Set:" Combobox alle CParticipantSet Elemente
dieser Choreographie gelistet. Die "Iterator Value:" Combobox beinhaltet alle CParticipant
Kind Elemente des ausgewählten CParticipantSet Elements der anderen Combobox. Für
Invoke, Receive, Reply und OnMessage gibt es jeweils noch die variables Kategorie, in
welcher sich eine Checkbox zum setzen der Opaque Variable befindet. Ebenfalls gemeinsam
haben sie die correlations Kategorie, in welcher sich bereits definierte CorrelationSet
Elemente dieser Aktivität zuweisen lassen. Für Receive, Reply und OnMessage existiert
zusätzlich noch die messageExchanges Kategorie, in welcher sich eine Combobox mit allen in
Process definierten MessageExchange Elementen befindet. Diese dropdown Liste enthält
zusätzlich noch MessageExchange Elemente, welche im dieser Aktivität übergeordneten
Scope definiert sind.

69

4
K

onzeptionPalette

Choreography

Activities

Toolbar

Property View

save saveAs export transform

ParticipantRef

standard activity

structured activity

...

Participant

MessageLink

ParticipantSet

load

tab2

tab3

tab1

Transformiert modellierte Choreography zu
executable BPEL Prozessen

Editor Fläche

Alle Chor Konstrukte

Alle modellierbaren
BPEL Aktivitäten

Individuelle Eigenschaften eines
selektierten Elements

aktiver Tab

Exportiert modellierte Choreoraphy zu
BPEL4Chor Artefakten

Abbildung 4.12: Konzept der Editor Oberfläche

7
0

4.5
C

horeographie
E

ditor

Participant.name

Process.name

Toolbar

Palette

Choreography

Activities

Property View

ParticipantRef

standard activity

structured activity

...

Participant

MessageLink

ParticipantSet

tab2

tab3

tab1

Participant aus Palette selektiert und in
Editorfenster platziert

Abbildung 4.13: CParticipant mit leerem Process7
1

4
K

onzeptionParticipant.name

Process.name

ParticipantSet.name

Process.name

Toolbar

Palette

Choreography

Activities

Property View

PRef

structured activity

standard activity (wsu:id)

structured activity
(wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

structured activity

standard activity (wsu:id)

structured activity
(wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

ParticipantRef

standard activity

structured activity

...

Participant

MessageLink

ParticipantSet

tab2

tab3

tab1

name:id

name:id

Abbildung 4.14: Participants mit Aktivitäten, Message Links und einer Participant Referenz

7
2

4.5
C

horeographie
E

ditor
Palette

Choreography

Activities

Participant.name

Process.name

Toolbar

Property View

ParticipantRef

Flow

FlowActivityLink

Activity

Participant

MessageLink

ParticipantSet

Flow

standard activity (wsu:id)

structured activity (wsu:id)

...

standard activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

standard activity (wsu:id)

tab2

tab3

tab1

Abbildung 4.15: Flow mit Aktivitäten und FlowActivityLink Elementen7
3

4 Konzeption

Participant

ParticipantSet

Participants

base
name: participant_name selects: participant(Set)_name

participant(Set)_name
...

add

participants

base
name: participant_name

participant(Set)_name
participant(Set)_name

...

select

scope: scope_name

scope: scope_name

Abbildung 4.16: Elemente und Dialoge der base Kategorie von CParticipant und
CParticipantSet

74

4.5 Choreographie Editor

ParticipantSet

Participant

Create new Participant

Participants

base
participants:

participant_1
participant_2
...

add
participants

containment_optioncontainment:

name: participant_name

scope: scope_name

selects: participant(Set)_name
participant(Set)_name

...

add

configure selection

name: save

participant(Set)_name
participant(Set)_name

...

select

Abbildung 4.17: Elemente und Dialoge der participants Kategorie von CParticipantSet

75

4 Konzeption

MessageLink

MessageLink

ParticipantRefs

base

participants
sender: participant_name

receiver: participant_name

senders: participantSet_name

bindSenderTo: participant_name

participants

base
name: unique name (referenced by grounding)

messageName: xyzMessage

add
ParticipantRef.name

...

ParticipantRef List:

participantRef_name
participantRef_name

...

select

Abbildung 4.18: Elemente und Dialoge der base und participants Kategorien von
CMessageLink

76

4.5 Choreographie Editor

ParticipantRef

base
participant: Participant.name

name: name

Abbildung 4.19: Elemente der base Kategorie von CParticipantRef

77

4 Konzeption

Process

Process

Process

Create new MessageExchange

Create new CorrelationSet

base

messageExchanges

correlations

correlations

messageExchanges

base

add
correlationSet.name

...

CorrelationSets: properties of selected entry

Properties: PropertyName1 PropertyName2 ...

Name: name

TargetNamespace: http://www.example1.com

correlations

base

messageExchanges
add

messageExchange.name
...

MessageExchanges:

name: save

name: save

Abbildung 4.20: Elemente und Dialoge der correlations, base und messageExchanges Kategorien
von Process

78

4.5 Choreographie Editor

Choreography

Choreography

Create new Grounding

groundings

base
name: name

targetNamespace: namespace_uri

base

Groundings Configuration
groundings

groundings:

grounding.name
grounding.name

...

add

MessageLink Groundings: configure

CorrelationSet Groundings: configure

ParticipantRef Groundings: configure

name: save

Abbildung 4.21: Elemente der base und groundings Kategorien von Choreography

79

4 Konzeption

MessageLink Groundings (grounding.name)

Configure messageLink.name

BindSenderTomessageLink.name
messageLink.name
messageLink.name

...

MessageLinks:

save

PortType

ns_uriNS_URI:

Localpart: localpart

Prefix: prefix

ns_uri

localpart

NS_URI:

Localpart:

Prefix: prefix

Operation: operation

Abbildung 4.22: Dialog für die Konfiguration von CMessageLinkGrounding Elementen

80

4.5 Choreographie Editor

CorrelationSet Groundings (grounding.name)

Configure propertyname

WSDLProperty

ParticipantRef Groundings (grounding.name)

Configure participantRef.name

WSDLProperty

correlationSet.name
correlationSet.name
correlationSet.name

...

CorrelationSets:

Propertyname1
Propertyname2

...

Properties of correlationSet.name:

save

ns_uri

localpart

NS_URI:

Localpart:

Prefix: prefix

participantRef.name
participantRef.name
participantRef.name

...

ParticipantRefs:

save

ns_uri

localpart

NS_URI:

Localpart:

Prefix: prefix

Abbildung 4.23: Dialog für die Konfiguration von CorrelationSetGrounding und
CParticipantRefGrounding Elementen

81

4 Konzeption

ForEach

ForEach

iteration

base
id:

name: name

id

Xparallel:

base

iteration
iteratorSet:

iteratorValue: participant.name

participantSet.name

Abbildung 4.24: Elemente der base und iteration Kategorien von ForEach

82

5 Implementierung

Wir haben uns dafür entschieden, den Choreographie Editor als Eclipse Plugin zu realisieren.
Dies liegt zum einen daran, dass der BPEL Designer ebenfalls als Eclipse Plugin realisiert
wurde und dieser nach wie vor zum Bearbeiten der BPEL Prozesse verwendet wird –
andererseits bietet die Eclipse Platform diverse Frameworks und vorgefertigte Komponenten
um einen grafischen Editor schneller und einfacher zu entwickeln, als wenn alles von Grund
auf neu implementiert werden müsste. Im Folgenden betrachten wir zuerst die Technologien,
welche zur Implementierung benutzt werden und schauen uns dann einige Details an, wie
diese zum Einsatz kommen.

5.1 Verwendete Technologien

Die Technologien werden im folgenden eher zusammenfassend, mit Schwerpunkt auf die in
der Implementierung verwendeten Features, beschrieben.

5.1.1 Eclipse

Die Folgenden Beschreibungen zu Eclipse und seinen Komponenten basieren auf dem Buch
[Ste11] von Steinberg und der Eclipse Dokumentation für Version 3.6 [ecl10], welche wir für
die Implementierung benutzen.

Eclipse ist eine Open Source Integrationsplattform für Softwaretools sowie eine Entwicklungs-
umgebung für Java. Das Kernprojekt bietet ein generisches Framework für die Integration
dieser Tools und andere Projekte erweitern dieses Framework um spezifische Tools und
Entwicklungsumgebungen zu erstellen. Die Projekte in Eclipse sind in Java implementiert
und laufen damit auf allen Betriebssystemen, zu welchen es Java Virtual Machines gibt.
Eclipse besteht aus vielen Projekten wobei die Hauptbestandteile in den Projekten Eclipse
Project, Modeling Project, Tools Project und Technology Project realisiert sind.

Das Eclipse Project unterstützt die Entwicklung einer Plattform oder eines Frameworks und ist
in vier Unterprojekte aufgeteilt, die zusammen alle Features bieten um Eclipse basierte Tools
zu entwickeln. Equinox ist das Projekt, welche das Komponentenmodell, auf welchem Eclipse

83

5 Implementierung

basiert, zur Verfügung stellt. Es implementiert die OSGi R4 core Framework Spezifikation1.
Das Platform Projekt bietet Frameworks und Services für die Integration von Tools und die
Entwicklung von Anwendungen und wurde auf Basis der OSGi Service Platform implemen-
tiert. Die Java Development Tools bieten eine umfangreiche Java Entwicklungsumgebung und
werden selbst zur Entwicklung des Eclipse Project benutzt. Um die Entwicklung von Plugins
in Eclipse zu unterstützen, bietet das Plug-in Development Environment Projekt unter anderem
verschiedene Editoren und Mechanismen zu Registrierung von Plugin Erweiterungen.

Das Modeling Project bietet modellbasierte Entwicklungstechnologien die als Basis das Eclipse
Modeling Framework (EMF, siehe 5.1.2 auf Seite 86) haben. Weitere Technologien, welche
auf EMF aufbauen sind Model Transformationen, Datenbankintegration und die Gene-
rierung von grafischen Editoren. Somit bietet dieses Projekt für unsere Implementierung
die zentralen Technologien, welche noch durch das Graphical Editing Framework (GEF,
siehe Abschnitt 5.1.3 auf Seite 92) und das Graphical Modeling Framework (GMF, siehe
Abschnitt 5.1.4 auf Seite 95) aus dem Tools Project ergänzt werden.

Im Technology Project landen Unterprojekte welche experimenteller Natur sind und noch am
Anfang stehen. Sollten sie sich weiterentwickeln und reifen, werden sie in andere Projekte
verschoben.

In Abbildung 5.1 sehen wir die Architektur der Eclipse Platform und ihre Strukturierung
in Subsysteme. Das Help System definiert sogenannte Extension points, auf welche wir
gleich eingehen werden, um Benutzerhilfen zu realisieren und Team bietet Verwaltung und
Versionierung von Ressourcen für Programmierung im Team.

Plugins

Komponenten werden in Eclipse „Plugin“ (Bundle in OSGi) genannt und die Platform besteht
selber aus mehreren Plugins. Sie ist verantwortlich für das Installieren, Entfernen, Auffinden
("discovering") und Ausführen von Plugins ohne das Eclipse neu gestartet werden muss.
Diese Plugin Einheiten beinhalten alles was nötig ist, um die darin realisierte Komponente
auszuführen. Neben dem obligatorischem Java Code sind unter anderem zwei Manifest
Dateien enthalten, welche wir für unsere Implementierung anpassen müssen. Im Plugin
Unterordner META-INF befindet sich die MANIFEST.MF Datei, welche unter anderem
das Plugin identifiziert und Abhängigkeiten definiert. Dazu gehören die Abhängigkeiten
von anderen Plugins und die exportierten Pakete sprich, diese Pakete, welche für andere
Plugins sichtbar sind und damit auch von jenen importiert werden können. Dies ist für
unsere Implementierung zentral, da wir die Editor Komponente aus mehreren Plugins
realisieren werden. Die zweite Manifest Datei befindet sich im Plugin Wurzelverzeichnis
und ist mit plugin.xml benannt. Hier werden zum einen Extension points Definiert welche

1http://www.osgi.org/Specifications/HomePage

84

http://www.osgi.org/Specifications/HomePage

5.1 Verwendete Technologien

Abbildung 5.1: Eclipse Platform Architektur. Quelle: [ecl10]

beschreiben, was für eine Funktionalität dieses Plugin anderen Plugins zur Verfügung stellt
und zum anderen Extensions, welche die von anderen Plugins zur Verfügung gestellten
Funktionalitäten benutzen. Extension points und Extensions funktionieren sozusagen Hand in
Hand und erlauben den Plugins sich untereinander beliebig zu kombinieren.

Workspace

Alle Eclipse Plugins arbeiten mit Dateien und Ordnern, jedoch werden diese zu Ressourcen
durch die Workspace API abstrahiert. Eines dieser Ressourcen ist der Projekt Ordner, welcher
der Top-Level Container jedes Eclipse Projekts ist und Workspace genannt wird. An jeder
Ressource können Listener registriert werden, mit denen Änderungen an dieser Ressource
überwacht werden. Es ist außerdem damit möglich beliebige Aktionen auszulösen, sollte
sich eine Ressource verändert haben. Ein Beispiel dafür ist die standardmäßige Aktion, dass
in Java Projekten bei Änderung und anschließender Speicherung einer Quellcode Datei, der
Java Compiler neu aufgerufen wird [Sha04]. Wir machen uns die Workspace API für die
Export- und Transformationsfunktion (siehe Abschnitt 4.5.2 auf Seite 48) zu nutze, wenn wir
die transformierten Modelle in den Projektordner schreiben.

85

5 Implementierung

Workbench

Die Workbench ist die Benutzeroberfläche von Eclipse. In Abbildung 5.2 sehen wir die
einzelnen Elemente eines Workbench Fensters, von welchen mehrere geöffnet werden können,
wobei jedes dieser Fenster ein abgeschlossener Bereich aus Editors und Views ist. Innerhalb
des Workbench Fensters befindet sich die Page, welche zur Gruppierung der einzelnen Teile
dient. Möchte man visuelle Inhalte der Workbench hinzufügen, kann dies in Form von Editors
und Views realisiert werden. Views werden üblicherweise zur Navigation durch hierarchische
Daten verwendet wie z. B. der Package Explorer im linken Bereich der Abbildung 5.2 oder
die Properties View im unteren Bereich, zum Anzeigen von Eigenschafen eines Objektes aus
dem Editor. Editors werden dazu benutzt um Inhalte von Objekten anzuzeigen, verändern
und abzuspeichern wie z. B. Java Dateien im Java Editor oder natürlich auch unser Chor
Model im Choreographie Editor. Menu Bar und Tool Bar gehören zum Workbench Fenster und
können beliebig mit Aktionen erweitert werden, die entweder nur für den gerade aktiven
Editor oder auch global verfügbar sind.

Die grafischen Komponenten der Views und Editors – wie z. B. Textfelder, Buttons, Listen usw.–
werden mit dem Standard Widget Toolkit (SWT) realisiert. SWT ist eine betriebssystemunabhän-
gige Grafikbibliothek welche immer auf die nativen Widgets des Systems zurückgreift, außer
wenn dieses keine Implementierung dafür bereit hält, in welchem Fall das betroffene Widget
emuliert wird. Das JFace Toolkit erweitert SWT indem es, unter anderem für SWT Widgets
wie Tabellen, spezielle Viewer Klassen bereit stellt, welche das Anzeigen und synchronisieren
von Daten vereinfachen. In unserer Implementierung benutzen wir, für die Widgets der
Property View und Dialoge, nur SWT.

5.1.2 Eclipse Modeling Framework

Die folgenden Beschreibungen basieren auf dem EMF Buch [Ste11] von Steinberg. Das
Eclipse Modeling Framework (EMF) ist ein Framework und Programmcode Generator welches
erlaubt, ein Modell – ausgehend von Java Interfaces, XML, UML Dateien oder direkt von
Hand – zu erzeugen und davon eine passende Implementierung sowie einen Editor dafür
zu generieren. Typischerweise werden für größere Anwendungen zuerst Modelle erstellt
welche das was die Anwendung kann, in abstrakter Form darstellen. Diese Modelle müssen,
für die Realisierung der Anwendung, angereichert und in Programmcode umgesetzt wer-
den. Der EMF Codegenerator automatisiert den Schritt der Programmcode Erzeugung zu
einem gewissen Grad, weshalb EMF als ein Schritt in Richtung Model Driven Architecture2

gesehen werden kann. EMF Modelle sind im wesentlichen vergleichbar mit UML Klassen-
diagrammen indem sie ein vereinfachtes Modell der Klassen und Daten einer Anwendung

2http://www.omg.org/mda/

86

http://www.omg.org/mda/

5.1 Verwendete Technologien

ViewsPage

Editor Tool BarMenu Bar

Abbildung 5.2: Eclipse Workbench. (Grafik basiert auf der Quelle: [ecl10]

repräsentieren. Um ein Modell in EMF zu beschreiben, wird das Ecore Meta-Modell benö-
tigt welches, in einer vereinfachten Version zwecks Übersichtlichkeit, in Abbildung 5.3 zu
sehen ist. EClass repräsentiert eine Klasse mit Namen und mehreren Attributen sowie
Referenzen. EAttribute repräsentiert ein Attribut welches einen Namen und einen Typ hat.
EReference repräsentiert ein Ende einer Assoziation zwischen Klassen, hat einen Namen
und einen Referenztyp, welcher wiederum eine Klasse ist. EAttribute und EReference
erben beide von EStructualFeature (in der Abbildung nicht dargestellt), was Attribute
und Referenzen zu Features einer Klasse generalisiert. Für ein Feature kann eine Multipli-
zität angegeben werden um mehrwertige Attribute und Referenzen realisieren zu können.
EDataType repräsentiert den Datentyp eines Attributes welcher entweder primitiv, wie
z. B. int oder ein Objekttyp wie z. B. java.util.Date, sein kann. Wurde das gewünschte
Modell in Ecore modelliert, kann Java Code daraus generiert werden. Für jede EClass Entität
wird ein Java Interface generiert und dazu eine passende Klasse, welche dieses Interface
implementiert. Dieser Ansatz ist eine Designentscheidung der EMF Entwickler und hat zu-

87

5 Implementierung

EClass

name : String

EAttribute

name : String

EDataType

EReference

name : String
containment : Boolean

eAttributes

0..*

eAttributeType

1

eReferences

0..*

eReferenceType 1

Abbildung 5.3: Ecore Meta-Modell. (Grafik basiert auf der Quelle: [Ste11]

dem den Vorteil, dass auch Mehrfachvererbung modelliert werden kann. Da eine Java Klasse
immer nur von einer Klasse erben, jedoch mehrere Inferfaces implementieren kann, wird so
das Problem der direkten Mehrfachvererbung (extends) gelöst. Jedes dieser generierten
Inferfaces erbt von EObject und bringt dadurch Methoden mit, welche Zugriff auf das
Meta-Modell gewähren, was vom Funktionsprinzip her der Java Reflection API3 entspricht.
In der folgenden Auflistung, sehen wir einige der wichtigen Methoden von EObject und
deren Funktion.

eClass() gibt von der Objekt Instanz, die Instanz des Meta-Objekts EClass zurück.

eContainer() und eRessource geben von der Objekt Instanz, die Instanz des referenzierten
Objekts zurück. eContainer gibt nur Referenz zurück, falls containment = true gesetzt
wurde.

eGet() und eSet() bieten Zugriff auf Getter und Setter Methoden der Objekt Instanz.

eIsSet() überprüft, ob ein Wert in dieser Instanz gesetzt ist.

eUnset() entfernt den gesetzten Wert in dieser Instanz. Der Wert wird dabei entweder auf
null oder, falls definiert, auf den Standardwert gesetzt.

Instanzen von EMF Modelle können einfach persistent gemacht werden, indem Resource
und ResourceSet benutzt wird. Eine Resource repräsentiert einen physischen Speicherort
wie z. B. eine Datei. ResourceSet ist eine Sammlung von Resource Instanzen, die alle
zusammengehören oder sich untereinander referenzieren. ResourceSet unterstützt auch
das Laden von Referenzen nach Bedarf, d.h. sie werden erst in den Speicher geladen,
wenn sie vom Aufrufenden benötigt werden. Solange die Referenz nicht benötigt wird,

3http://docs.oracle.com/javase/6/docs/technotes/guides/reflection/index.html

88

http://docs.oracle.com/javase/6/docs/technotes/guides/reflection/index.html

5.1 Verwendete Technologien

uri 1 | resource 1
uri 2 | resource 2

lade resource 2

Resource 1 Resource 2

ResourceSet

lade resource 1
Client

Abbildung 5.4: Laden von Resource Instanzen nach Bedarf. (Grafik basiert auf der Quelle:
[Ste11]

werden sogenannte Stellvertreter (proxies) geladen und erst bei Bedarf das konkrete Objekt
aufgelöst. In Abbildung 5.4 ist diese Funktionsweise dargestellt. Ein Client Programm lädt
Resource 1, welche Referenzen – dargestellt durch Pfeile ausgehend von den Knoten – auf
Resource 2 beinhaltet. Sobald der Client diese Referenzen benötigt, veranlasst Resource 1 beim
zugehörigen ResourceSet, das Nachladen von Resource 2.

Eine weitere zentrale Eigenschaft von EMF ist, dass alle generierten Modell Klassen das
Observer Entwurfsmuster4 realisieren. Dies ist essentiell um einen Editor nach dem MVC
Architekturmuster (siehe Abschnitt 3.4 auf Seite 27) zu realisieren. Das Observer Entwurfs-
muster wird durch ein Notifier Interface realisiert, von welchem EObject erbt und somit
die Registrierung von Observern sowie deren Benachrichtigung erlaubt. Observer werden in
EMF Adapter genannt, da diese in EMF weitaus mehr als simple Observer sind, die nur auf Zu-
standsänderungen reagieren. Adapter können zusätzliche Funktionen für ihre beobachteten
Objekte bereitstellen, wie wir im folgenden Abschnitt sehen werden, ohne von diesen erben
zu müssen. Sie können sich an eine EObject Instanz mittels eAdapters().add() Methode
registrieren. Der generierte Code hält noch zwei weitere wichtige Klassen bereit. Zum einen
eine Factory Klasse (realisiert das Factory Entwurfsmuster5) um die Modellobjekte zu
erzeugen und zum anderen eine Package Klasse, welche einfachen Zugriff auf die Ecore

4http://www.oodesign.com/observer-pattern.html
5http://www.oodesign.com/factory-pattern.html

89

http://www.oodesign.com/observer-pattern.html
http://www.oodesign.com/factory-pattern.html

5 Implementierung

Metadaten ermöglicht. Der Generierte Code wird zudem als Eclipse Plugin erzeugt und
kann somit leicht von anderen Plugins verwendet werden.

Neben dem Ecore Meta-Modell gibt es das Generator Modell, welches alle Informationen
beinhaltet, wie genau der Code generiert werden soll. So kann unter anderem festgelegt
werden, in welchem Ordner bzw. Paket die Klassen abgelegt werden. Diese Information ist
nicht relevant für das Datenmodell, muss aber trotzdem irgendwo abgespeichert werden.
Die Trennung in zwei Modelle erlaubt das erneute Generieren des Codes, ohne das Ecore
Modell anpassen zu müssen.

EMF.Edit

EMF.Edit verbindet EMF mit der Eclipse Benutzeroberfläche (Eclipse UI Framework). Es
hilft uns, einen grafischen Editor für unser Chor Model zu implementieren indem es Funk-
tionen zur Darstellung und Bearbeitung des Modells bereitstellt. Es unterstützt außerdem
das modifizieren von Modellobjekten nach dem Command Entwurfsmuster6. Der EMF.Edit
Code lässt sich ebenfalls über das Generator Modell erzeugen. Um den EMF.Edit Code zu
verstehen, erläutern wir zuerst die grundlegende Funktionsweise des Eclipse UI Frameworks.
In Abbildung 5.5 sehen wir eine Instanz des Chor Model in einem JFace TreeViewer zusam-
men mit der Property View von CParticipant. Jede JFace Viewer Klasse hat einen content
provider, der ein spezifisches Interface (TreeViewer benutzt ITreeContentProvider)
implementiert, um die anzuzeigenden Objekte bereitzustellen sowie einen label provider
um den Anzeigetext sowie ein Icon der Objekte zurückgibt. In Abbildung 5.5 wurde das
Wurzelobjekt Choreography dem TreeViewer übergeben. Der Viewer ruft drauf getText()
und getImage() des label providers auf, um den Text („Choreography booking“) und das Icon
(Choreography hat hier keines, dessen Kind Elemente hingegen schon) anzuzeigen. Als
nächstes wird getChildren() vom Content Provider aufgerufen um die Kind Elemente (im
Ecore Modell containment = true gesetzt) zu bekommen. Der ganze Prozess wiederholt sich
nun rekursiv, bis alle Objekte dargestellt sind.

Die Property View befüllt sich über den Property Source Provider des selektierten Objekts –
in Abbildung 5.5 ist CParticipant selektiert – indem zuerst getPropertySource() aufge-
rufen wird. Darauf wird die Property Source von CParticipant zurück gegeben worauf
mit getPropertyDescriptors() eine Liste aller Property Descriptors (hier: Containment, Name,
Scope und Selects) zurückgegeben wird. Über diese Property Descriptors lassen sich
schließlich die Werte editieren. EMF.Edit generiert eine Implementierung für content provi-
der, label provider, property source provider, property source und property descriptor vereint im
sogenannten Item Provider. Für jede Ecore Klasse wird ein Item Provider generiert. Für unser
Chor Model wären dies ChoreographyItemProvider, CParticipantItemProvider,

6http://www.oodesign.com/command-pattern.html

90

http://www.oodesign.com/command-pattern.html

5.1 Verwendete Technologien

Abbildung 5.5: JFace TreeViewer zeigt eine Chor Model Instanz an

usw.. Diese Item Provider werden als Adapter realisiert um einerseits die Observer Funktion
zu erfüllen und andererseits um beliebige Implementierungen für Interfaces von Editoren
und Views bereit zu stellen. Es ist außerdem möglich, Item Provider zu erstellen, welche nicht
Adapter für ein Modellobjekt sind. Somit können Sichten auf EMF Objekte erstellt werden,
was etwas dem „Sichten“ Konzept aus dem Datenbank Bereich ähnelt. Die Item Provider
bieten zusätzlich noch die Möglichkeit zur Erzeugung von Commands über eine Command
Factory und erfüllen die Observer Funktion, indem sie Benachrichtigungen an Viewer Klassen
weiterleiten.

Das Command basierte Editieren von EMF Objekten wird exzessiv von GMF (siehe 5.1.4
auf Seite 95) generierten Editoren benutzt und beinhaltet unter anderem ein automatisches
rückgängig ("undo") machen und wiederherstellen ("redo"). EMF bietet ein Command Fra-
mework, welches sich aus zwei Bereichen zusammensetzt. Einerseits der allgemeine Teil
(Common Command Framework), der unabhängig von EMF.Edit benutzt werden kann und
andererseits der EMF.Edit spezifische Teil, basierend auf EObject. Wir werfen hier nur
einen kurzen Blick auf das Command Framework, welches ausführlich in Kapitel 3, des
Buches von Steinberg [Ste11] erläutert wird. Command ist das Basisinterface des Common
Command Frameworks und alle Commands implementieren dieses. Die wichtigsten Methoden
sind execute() zum Ausführen, undo und redo respektive zum rückgängig machen oder
wiederherstellen. Bevor ein Command ausgeführt werden kann, wird es mit canExecute()

91

5 Implementierung

auf Ausführbarkeit getestet. Die Ausführbarkeit kann somit kontextabhängig erlaubt oder
verboten werden. Komplexe Commands können Änderungen verursachen, die nicht durch
ein simples undo rückgängig gemacht werden können weil zu viele Dinge verändert wurden.
Deshalb kann mit canUndo() eine Prüfung davor geschoben werden. Für die Realisierung
von zusammengesetzten Commands – dies sind Commands, welche andere Commands als
Voraussetzung haben – kann mit getResult() das Ergebnis des Ausführung geholt werden
und mit getA f f ectedObjects() eine Liste aller betroffenen Objekte des letzten execute(), undo
oder redo Aufrufes. Der CommandStack ist das Interface für einen Stapel, auf welchem
mehrere Commands hintereinander ausgeführt, rückgängig gemacht oder wiederhergestellt
werden können. GMF Editoren machen auch davon intensiven Gebrauch, weshalb wir dieses
Interface hier erwähnen. Im Folgenden listen wir die EMF.Edit spezifischen Commands auf,
welche wir in der Implementierung benötigen.

• AddCommand fügt ein oder mehrere Objekte zu einem mehrwertigen Feature eines
EObject hinzu.

• SetCommand setzt den Wert eines Attributes oder Referenz von einem EObject.

• DeleteCommand entfernt ein EObject von seinem Elterncontainer und löscht alle
Referenzen, welche auf dieses Objekt zeigen.

• RemoveCommand entfernt ein oder mehrere Objekte vom einem mehrwertigen Feature
eines EObject.

Wenn ein Editor Commands zur Manipulation der Modellobjekte benutzen möchte, muss
eine Editing Domain benutzt werden, über welche die Commands erzeugt werden kön-
nen. Die Editing Domain verwaltet den Command Stapel und bietet Zugriff auf das EMF
ResourceSet, in welchem sich alle zu editierenden Objekte befinden. Um an die Editing
Domain eines EObject zu kommen starten wir bei der von EMF bereitgestellten Klasse
AdapterFactoryEditingDomain. Entweder wird ein passender Adapter – welcher den
Typ IEditingDomainProvider unterstützt – gefunden oder, falls es einen solchen Adap-
ter nicht gibt, kann über das ResourceSet, zu welchem das EObject gehört, ebenfalls die
Editing Domain gefunden werden.

5.1.3 Graphical Editing Framework

Die folgenden Beschreibungen basieren auf dem Buch von Gronback [GG09]. Wir gehen hier
nur oberflächlich auf dieses Framework ein, da wir es nicht explizit benutzen. Es besteht
aus den zwei Plugins Draw2d, welches eine Erweiterung zu SWT darstellt indem es Zeichen-
funktionen und Layout Funktionalitäten bietet und GEF, welches ein MVC Framework für
grafische Editoren darstellt.

92

5.1 Verwendete Technologien

Draw2d Plugin

Den zentralen Teil von Draw2d bilden die Figures, was Komponenten zur grafischen Darstel-
lung sind. Sie können aus weiteren Kind Figures zusammengesetzt sein, welche innerhalb
der Begrenzung der Eltern Figure gezeichnet, und mit einem Layout Manager angeordnet
werden. Weitere Möglichkeiten von Figures sind das Registrieren von Listeners, welche z. B.
auf Mausklicks reagieren oder die Berechnung, ob ein Punkt innerhalb der Figure liegt oder
nicht. Neben Figures gibt es noch die Möglichkeit Text darzustellen, was in Labels realisiert
wird. Gezeichnet wird nach einer bestimmten Strategie. Zuerst werden die Eigenschaften
der Figure und seinen Kind Elementen festgelegt wie z. B. Schriftart, Vordergrund- und
Hintergrundfarbe. Diese Eigenschaften stellen den aktuellen Grafikzustand dar, welcher
abgespeichert wird. Dann wird die Figure selbst gezeichnet wozu unter anderem die Um-
randung ("bounding box") und die Hintergrundfarbe gehört. Als nächstes wird die "client
area" gezeichnet. Dies ist die Fläche innerhalb der Figure, worauf dessen Kind Elemente
gezeichnet werden. An dieser Stelle wird auch "clipping" durchgeführt was verhindert, dass
Teile der Grafik auf nicht erlaubten Stellen erscheinen. Nun werden die Kind Elemente auf
die "client area" gezeichnet und zuletzt alle Dekorationen, welche über den Kind Elementen
erscheinen sollen. Figures sind in einer Baumstruktur zusammengesetzt. Dieser Baum wird
mittels Tiefensuche traversiert, was eine Zeichnung in Reihenfolge der Z-Koordinate zur
Folge hat. Das bedeutet, dass die Figure, welche am weitesten „unten“ liegt, zuerst gezeichnet
wird. Die Anderen werden darüber gezeichnet. Draw2d bietet außerdem noch Connections.
Dies sind Verbinder, bestehend aus einer Linie zwischen zwei Punkten. Sogenannte Anker
(ConnectionAnchor) bestimmen, wie genau sich die Endpunkte der Linie mit Quell- und
Zielobjekt verbinden sollen. In Abbildung 5.6 ist der ChopboxAnchor zu sehen, welcher die
Verankerung an den Schnittpunkt von Linie und Umrandung der Figure setzt. Schließlich
lässt sich noch der Verlauf der Linie zwischen Anfangs und Endpunkt über einen Router
(ConnectionRouter) bestimmen. So kann der Verlauf zwischen den zwei Punkten z. B.
grade sein oder auch mehrere Zwischenpunkte haben, an welchen der Verlauf seine Richtung
um neunzig Grad ändert.

GEF Plugin

Dieses Plugin bietet die Funktionalität ein Datenmodell mit Figures, über Eingabegeräte wie
z. B. Maus oder Tastatur, in einer Eclipse Workbench zu editieren. Es ist eine Implementierung
der MVC Architektur in welcher der View Teil durch das Draw2d Plugin, der Model Teil
durch EMF und der Controller Teil durch das GEF Plugin realisiert ist. In den EditPart
Klassen werden die Controller für die Modell Elemente realisiert. Ihre Aufgabe ist einerseits,
Eingaben des Benutzers entgegen zu nehmen und das Model zu aktualisieren und anderer-
seits, die View über die Änderungen am Modell zu informieren. In Abbildung 5.7 sehen
wir einen groben Überblick, wie GEF seine Modell Elemente grafisch darstellt. Für jedes
dieser Modell Elemente muss ein EditPart erstellt werden. Die grafische Repräsentation

93

5 Implementierung

Refernez Punkt

Anker
(Schnittpunkt) Mittelpunkt

Figure

Abbildung 5.6: Funktionsweise des ChopboxAnchor. Basiert auf Quelle: [GG09]

des Elements wird über die Figure bestimmt, welche in diesem EditPart instanziiert
wird. Die EditPartFactory ist zuständig für die Instanziierung des richtigen EditPart
zum zugehörigen Modell Element und setzt auch die entsprechende Referenz, so dass jede
EditPart Instanz sein Modell Element kennt. Diese EditPartFactory wird am Viewer
registriert, so dass dieser die entsprechenden Figure Instanzen zeichnen kann.

Jeder EditPart Klasse referenziert eine Menge von EditPolicy Klassen, welche das
Verhalten des Controllers implementieren. Die Idee ist, dass EditPart Klassen das Durch-
führen der Aufgaben, die anstehen wenn der Benutzer etwas editiert hat, an EditPolicy
Klassen delegieren. Diese Aufteilung erlaubt es, dass sich EditPart Klassen verschiedene
EditPolicy Klassen untereinander teilen können. So kann ein bestimmtes Verhalten von
mehreren EditPart Klassen benutzt werden. EditPolicy Klassen werden, bei der Instan-
ziierung einer EditPart Klasse, „installiert“. Dabei wird jeder Klasse eine Rolle zugewiesen.
Rollen sind einfache Schlüsselwerte die es erlauben, EditPolicy Klassen auszuzeichnen
bzw. zu identifizieren. So gibt es z. B. die Rolle LAYOUT_ROLE welche eine EditPolicy so
auszeichnet, dass diese für bestimmte Layout Aufgaben wie z. B. Skalieren oder Positionieren
zuständig ist. Durch diese Schlüsselwerte kann so von einem EditPart die gerade installier-
te EditPolicy für Layout Aufgaben abgefragt werden, ohne den konkreten Klassennamen
zu kennen.

Wenn wir ein grafisches Modell in einem Editor erstellen, interagieren wir mit diesem über
Eingabegeräte. GEF abstrahiert alle Interaktionen mit dem Editor durch eine Request Klasse.
Eine Request Instanz kapselt alle Informationen, welche die EditPart Klassen benötigen,
um ihre Funktionen auszuführen. Möchte der Benutzer z. B. ein neues Element erstellen,
löst diese Aktion ein Request aus. Der EditPart, welcher den Request versteht und an
der Erstellung des Elements beteiligt ist, wird aufgerufen und gibt das passende Command

94

5.1 Verwendete Technologien

ViewerEditParts

EditPart E1

EditPart E2

EditPart E3

Model

E1

E2

E3

EditPart
Factory

Figure A

Figure B

Figure C

Abbildung 5.7: Grafische Darstellung der Modell Elemente in GEF durch EditParts

zurück, welches diesen Request durchführen kann. Commands sind dafür zuständig das,
dem Editor zugrunde liegende Datenmodell abzuändern. GEF und EMF benutzen jeweils
ihre eigenes Command Framework. GMF bietet dafür eine Vereinheitlichung.

5.1.4 Graphical Modeling Framework

Die folgenden Beschreibungen basieren auf dem Buch von Gronback [GG09]. GMF entstand
aus dem bestreben einen grafischen Editor, basierend auf GEF, mit EMF zu verbinden. Es
besteht aus den zwei Hauptkomponenten Runntime und Tooling Framework. Die Runntime
verbindet EMF mit GEF indem sie Services und APIs bereit stellt. Das Tooling Framework bietet
einen modellbasierten Ansatz um grafische Elemente zu definieren, passende Werkzeuge zur
Benutzung dieser Elemente zu erstellen, sowie ein "Mapping" um die grafischen Elemente
auf Elemente eines zugrunde liegendes Datenmodells abzubilden. Das Tooling Framework
ist eine Sammlung von Modellen, aus welchen ein grafischer Editor generiert werden kann,
der die GMF Runntime benutzt.

95

5 Implementierung

A B C D E F G

Abbildung 5.8: GMF Standard Werkzeuge in der Eclipse Toolbar

GMF Runntime

Die Runntime baut auf GEF auf und bietet eine Menge von wiederverwendbaren Kom-
ponenten für die Erstellung von grafischen Editoren. Dazu gehören unter anderem die
Standardwerkzeuge in der Eclipse Toolbar, welche in Abbildung 5.8 zu sehen sind. Mit
Werkzeug A lässt sich der Router Stiel eines selektieren Verbinders (in unseren Beipiel der
Message Link "ml1") zwischen "rectilinear" und "oblique" hin und her wechseln. Im Modus
"rectilinear", sind die Verbinder mit Punkten ausgestattet, an welchen die Linie eine neunzig
Grad Wendung nimmt. Im Modus "oblique" sind die Verbinder gerade bzw. direkt zwischen
Anfangs- und Endpunkt. Mit Werkzeug B können alle Elemente im Editor selektiert werden.
Werkzeug C ordnet alle Elemente neu an, während Werkzeug D alle Elemente vertikal an
der linken Kante ausrichtet. Werkzeug E skaliert alle selektierten Elemente auf eine passende
Größe, wobei für jedes Element die minimale und bevorzugte Größe berücksichtigt wird. Die
Werkzeuge F blenden die Labels an Verbindern ein oder aus. In unserem Beispiel wäre dies
das Label "name:ml1". Werkzeug G erlaubt das Zoomen der Elemente. Die Ansicht kann
vergrößert, verkleinert oder automatisch so angepasst werden, dass alle Elemente möglichst
in die sichtbare Zeichenfläche passen.

Eine weite Komponente der Runntime sind die Standard Tabs "Rulers & Grid" sowie "Apper-
eance" in der Property View, welche – je nach selektiertem Editor Element – angezeigt werden.
In Abbildung 5.9 sehen wir die Inhalte vom "Rulers & Grid" Tab. Hierbei sind das Lineal
("Show Ruler"), sowie die Gitterpunkte ("Show Grid") aktiviert. Unter dem "Appereance"
Tab finden wir Funktionen wie den Text der Editor Elemente Fett oder Kursiv darzustellen
und Textfarbe sowie Flächenfüllung anzugeben.

96

5.1 Verwendete Technologien

Abbildung 5.9: Property View mit den GMF Standard Tabs "Rulers & Grid" und "Appereance"

Die Runntime bietet zudem die Möglichkeit, das grafische Modell mit Informationen wie
Position und Größe der Elemente, eingefärbte Bereiche, Schriftarten usw. abzuspeichern. Zu-
sätzlich kann das grafische Modell noch als reines Datenmodell, ohne besagte Informationen,
abgespeichert werden. Ein weiterer Teil der Runntime ist eine Service Schicht ("service layer").
Das Service Konzept sieht einen oder mehrere Anbieter vor, welche bestimmte Dienste der
Anwendung anbieten. Einer dieser Services ist der ViewService, der für die Erstellung von
View Klassen zuständig ist. View Klassen sind in GMF die übergeordneten Klassen aller
grafischen Elemente, die auf der Zeichenfläche dargestellt werden. Sie halten ebenfalls eine
Referenz auf ihr zugeordnetes EMF Modell Element. Die Menge aller View Klassen bilden
ebenfalls ein EMF Modell. Wichtig ist hier die Unterscheidung. Der GMF Editor wird zum
editieren eines Datenmodells benutzt, was in unserm Anwendungsfall dem Chor Model
entspricht. Der Editor selbst hat aber sein eigenes, internes Editor Modell, zu welchem Infor-
mationen wie Position und Aussehen von grafischen Elementen gehören. Der ViewService
hat einen ViewProvider, der über den viewProviders7 Extension point registriert wird. Er

7org.eclipse.gmf.runtime.diagram.core.viewProviders

97

5 Implementierung

stellt die Methoden zur Erstellung der grafischen Elemente bereit. Diese Elemente können
entweder vom Typ diagram, node oder edge sein. Das diagram Element ist das Wurzelelement
sprich, die Zeichenfläche, in welcher die anderen Elementtypen platziert werden. Die edge
Elemente sind Verbinder und node die übrigen Elemente, zwischen denen Verbinder gezogen
werden können. Ein weiterer Service ist der EditPartService welcher benutzt wird, um die
EditParts zu erstellen. Der zugehörige EditPartProvider, registriert im editpartProviders8

Extension point, ersetzt die bereits besprochene EditPartFactory des GEF Plugins. GMF
Editoren, welche über GMF Tooling (siehe nächsten Abschnitt) modelliert und generiert
werden, benutzen immer ViewProvider und EditPartProvider.

GMF Tooling

In Abbildung 5.10 sehen wir das Vorgehen anhand eines BPMN Diagramms, welche Schritte
notwendig sind, um einen GMF Editor mittels Tooling Framework zu erstellen. Wir starten
mit der mit der Erstellung eines Domain Modells was hier unserer EMF Realisierung vom
Chor Model entspricht. Dann erstellen wir das Graphical Definition Model, in welchem wir die
grafische Repräsentation der darzustellenden Elemente festlegen. In Abbildung 5.11 ist eine
vereinfachte Darstellung dieses Modells zu sehen. Als Konvention gilt, dass die gestrichelten
Pfeile „referenziert“ bedeuten und die durchgehenden Pfeile „ist Elternknoten von“. Das
Wurzelelement ist der Canvas Knoten, welchem wir einen Namen geben, da wir diesen
später im Mapping Model referenzieren. Zuerst definieren wir einen oder mehrere Figure
Gallery Knoten unter welchen wir zusammengehörende Figure Descriptor Knoten gruppieren.
Diese Knoten legen das Aussehen eines Elementes fest. Das Aussehen definieren wir mit
grafischen Komponenten wie hier in unserem Beispiel ein Rechteck, welches ein Label sowie
ein weiteres Rechteck mit dem Namen "(Compartment)" beinhaltet. Für die Konten, auf
welche von außerhalb des Figure Descriptors zugegriffen werden soll, müssen Child Access
Knoten angelegt werden. In unserem Beispiel gewähren wir Zugriff auf das Label und
das "(Compartment)" Rechteck. Haben wir alle Figure Descriptors festgelegt, definieren wir
die Elemente welche unser Editor (Diagram) auf seiner Zeichenfläche (Canvas) darstellen
soll. Ein Diagrammelement referenziert ein Figure Descriptor Knoten wobei auch mehrere
Diagrammelemente den selben Figure Descriptor Knoten referenzieren können. Nodes sind
die Diagrammelemente, mit denen wir modellieren und welche keine Verbinder sind. In
unserem Beispiel referenzieren wir mit der Node den gewünschten Figure Descriptor und
bestimmen somit das Aussehen dieser Node. Compartments sind Container Elemente, die
andere Nodes aufnehmen. Sie sind ein Konstrukt, um eine verschachtelte Darstellung von
Nodes zu erreichen. Wir müssen für jedes Compartment festlegen, an welcher Stelle genau die
aufgenommenen Nodes auf der Zeichenfläche platziert werden sollen. In unserem Beispiel
werden die Nodes im "(Compartment)" Rechteck des referenzierten Figure Descriptors platziert.

8org.eclipse.gmf.runtime.diagram.ui.editpartProviders

98

5.1 Verwendete Technologien

GMF Projekt

Domain Model

Graphical Definition

Tooling Definition

Mapping Model

Generator Model

Diagram Plug-In

*.ecore

*.gmfgraph

*.gmftool

*.gmfmap

*.gmfgen

Abbildung 5.10: Vorgehensweise bei der Erstellung eines GMF Editors mittels Tooling Fra-
mework. Grafik basiert auf der Quelle: [ecld]

Hier sehen wir auch, warum wir zuvor ein Child Access Knoten für dieses Rechteck definiert
haben, nämlich um es hier referenzieren zu können. Damit unser definiertes Label auch auf
der Zeichenfläche erscheint, müssen wir ein Diagram Label Knoten definieren, welchen wir
optional auch mit einem Icon dekorieren können. Dies ist in Abbildung 5.12 zu sehen. Wir
möchten, dass unser Diagram Label das Label des referenzierten Figures Descriptors anzeigt
und verweisen deshalb auf den entsprechenden Child Access Knoten. In Abbildung 5.13

sehen wir die nötigen Knoten für die Definition eines Verbinders. Zuerst muss wieder ein
Figure Descriptor Knoten erstellt werden. Der Verbinder wird hier als Linie mit Ankerpunkten
an jedem Ende (Polyline Connection) dargestellt und soll ein Label haben, für welches wir
wieder einen Child Access Knoten definieren. Damit wir Nodes auf der Zeichenfläche auch
Verbinden können, legen wir ein Connection Knoten an und bestimmen sein Aussehen durch
die entsprechende Figures Descriptor Referenz. Das Diagram Label benötigen wir zur Anzeige
des Labels und setzen die entsprechenden Referenzen.

Um die Diagrammelemente erstellen und auf der Zeichenfläche des Editors platzieren
zu können, benötigen wir Werkzeuge, welche wir im Tooling Definition Model festlegen. In

99

5 Implementierung

Canvas

Figure Gallery Figure Descriptor

Rectangle
Rectangle

(Compartment)
Label

Child Access

Child Access

Figure

Figure
Node Figure

Compartment

Figure

Accessor

Abbildung 5.11: Graphical Definition Model für Node und Compartment

Canvas

Figure Gallery Figure Descriptor

Rectangle Label

Child Access Figure

Diagram Label Figure

Accessor

Abbildung 5.12: Graphical Definition Model für Diagram Label

100

5.1 Verwendete Technologien

Canvas

Figure Gallery Figure Descriptor

Polyline
Connection

Label

Child Access Figure

Connection Figure

Diagram Label
Figure

Accessor

Abbildung 5.13: Graphical Definition Model für Connection

Abbildung 5.14 ist ein vereinfachtes Beispiel zu sehen. Das Wurzelelement ist der Tool Registry
Knoten unter welchem wir einen Palette Knoten definieren und benennen, so dass wir im
Mapping Model darauf referenzieren können. Die aktuelle GMF Version, zum Zeitpunkt
dieser Arbeit, unterstützt nur Elemente für die Palette. Mit dem Creation Tool Knoten legen
wir fest, dass es einen Eintrag in der Palette mit dem hier festgelegten Namen und Icon geben
soll. Die eigentliche Funktionalität erhält das Werkzeug erst später durch das Mapping Model,
auf welches wir gleich eingehen werden. Wir können diese Werkzeuge zusätzlich noch in
Gruppen, durch Erstellung von Tool Groups, einteilen um zusammengehörige Werkzuge
optisch voneinander abzugrenzen. Neben den Creation Tools, lassen sich noch vorgefertigte
Standard Tools definieren die Funktionalitäten wie Selektion und Zoom mitbringen. In
unserem Beispiel besteht die Palette aus einer Tool Group mit zwei Creation Tools.

Haben wir die bisher besprochenen Modelle angelegt, bringen wir sie alle im Mapping Model
zusammen. Das Mapping Model ist das Herzstück vom Tooling Framework und erlaubt die
Erstellung eines oder mehrerer Generator Models, aus welchem letztendlich der Editor Code
generiert wird. Die Elemente des Graphical Definition Model werden hier mit den Elementen
des Domain Modells verknüpft und die passenden Elemente des Tooling Definition Model
zugewiesen. In Abbildung 5.15 sehen wir ein vereinfachtes Beispiel, wie die Zeichenfläche
eines Editors definiert werden kann. Das Wurzelelement des Mapping Model ist der Mapping
Knoten. Darunter definieren wir den Canvas Mapping Knoten und legen zuerst fest, wie wir

101

5 Implementierung

Tool Registry

Palette

Tool Group

Creation Tool 1

Creation Tool 2

Abbildung 5.14: Tooling Definition Model mit zwei Creation Tools

unsere Elemente darstellen möchten indem wir auf den Canvas Knoten aus dem Graphical
Definition Model verweisen. Dann müssen wir angeben, mit welchen Werkzeugen wir unsere
Elemente erstellen möchten und verweisen dazu auf den Palette Knoten aus dem Tooling
Definition Model. Zuletzt müssen wir das Domain Element bestimmen, welches alle model-
lierbaren Elemente beinhaltet. Im EMF Modell muss dazu das Wurzelelement für all seine
ausgehenden Referenzen containment = true setzen.

Im nächsten Schritt definieren wir die Elemente, welche direkt auf der Zeichenfläche platziert
werden können. Dazu betrachten wir Abbildung 5.16. Der Top Node Reference Knoten verweist
auf eine containment = true Referenz des Wurzelelements aus dem Domain Modell, welches
wir auch schon im Canvas Mapping Knoten festgelegt haben. Mit dem Node Mapping Knoten
verweisen wir auf das entsprechende Domain Modell Element, welches diese Referenz
vorgibt. In unserem Beispiel referenziert "Root Element"auf "Element 1". Dann legen wir
aus Aussehen von "Element 1" fest, indem wir auf die gewünschte Node aus dem Graphical
Definition Model verweisen. Zuletzt müssen wir noch angeben, mit welchem Werkzeug eine
Instanz von "Element 1" erstellt werden soll. Dazu verweisen wir auf das gewünschte Creation
Tool aus dem Tooling Definition Model.

Haben wir das Mapping Model komplett ausgearbeitet, können wir ein Generator Model
daraus erstellen. Das Generator Model erlaubt uns auf die Code Generierung gewissen
Einfluss zu nehmen wie z. B. an welchen Ort, unter welchen Namen der Code auf dem

102

5.1 Verwendete Technologien

Ecore

Root Element

Mapping

Canvas Mapping

Tool Registry

Palette

Palette
Domain Model

Canvas

Diagram Canvas

Graphical Definition Tooling Definition Domain ModelMapping Model

Abbildung 5.15: Mapping Model zur Definition der Zeichenfläche des Editors

Ecore

Root Element

Mapping Canvas

Graphical Definition Tooling Definition Domain ModelMapping Model

Element 1

Containment
rootElement.element1

Top Node
Reference

Node Mapping 1

Element

Node 1

Diagram Node

Tool Group

Creation Tool 1

Tool

Containment Feature

Abbildung 5.16: Mapping Model zur Definition eines, auf der Zeichenfläche des Editors,
platzierbaren Elements

103

5 Implementierung

Datenträger abgelegt werden soll. Die Code Generierung basiert auf Code Schablonen
(Templates), welche in der Xpand Template Language (siehe 5.1.5) definiert sind. Wir können,
durch Anpassung der Schablonen, Einfluss auf den generierten Code nehmen. Dazu müssen
wir die gewünschten Schablonen, welche wir anpassen wollen, aus dem GMF eigenen
org.eclipse.gmf.codegen Plugin in unseren GMF Projektordner in die selbe Ordner-
struktur kopieren. Die Ordnerstruktur dient als Namespace der Schablonen. Wir betrachten
dies genauer im nächsten Abschnitt.

5.1.5 Xpand Template Language

Die folgenden Beschreibungen basieren auf dem Buch von Gronback [GG09]. In der Modell-
basierten Softwareentwicklung kommt es oft vor, dass wir Modelle definieren und daraus
z. B. Programmcode, Datenbankschemen oder auch Dokumentation generieren wollen. Wir
benötigen also Model-to-Text Transformationen und genau dafür existiert das M2T Eclipse
Projekt, welches Technologie dafür bereitstellt. Java Emitter Templates (JET) und Xpand sind
die zwei Hauptkomponenten diese Projekts. Auf JET gehen wir hier nicht näher ein, da wir
es nicht direkt verwenden. Xpand wird exzessiv von GMF benutzt, um den Editor Code zu er-
zeugen. Xpand Templates sind einfache Textdateien. Programminstruktionen stehen zwischen
«»Zeichen. Text, der nicht zwischen diesen Zeichen steht, wir direkt in die resultierende Text-
datei kopiert. Das erste Element einer Xpand Template ist das «IMPORT» Element. Hiermit
lassen sich gewünschten Meta Modelle importieren, auf wessen Elemente dann zugegriffen
werden kann. Das Konzept von «IMPORT» ist dem import Statement aus Java gleich. In
den Xpand Templates des GMF Generator Models, sieht das «IMPORT» Statement so aus:
«IMPORT "http://www.eclipse.org/gmf/2009/GenModel"». Das nächste Hauptelement ist
der «DEFINE» Block. Hier definieren wir ein Fragment, welches bei der Ausführung der
Template ausgewertet und in der Ausgabe an eine bestimmten Stelle platziert wird. Ein
«DEFINE» Block hat einen Namen, eine optionale Parameterliste und eine FOR Klausel, in
welcher wir das Meta Modell Element angeben, auf welches «DEFINE» angewendet wird.
Das «EXPAND» Statement stellt einen Methodenaufruf dar. Es verweist auf ein anderes
«DEFINE» Statement, um der Kontrollfluss der Template Ausführung auf diesen Block um-
zulenken. Xpand bietet noch weitaus mehr Konstrukte, doch für unsere Implementierung ist
nur das «AROUND» Statement interessant, denn es erlaubt uns die vorhandenen Templates
nur an bestimmten Stellen zu erweitern, statt diese komplett überschreiben bzw. ersetzen zu
müssen. Das «AROUND» Statement realisiert Aspekt orientierte Eingriffsmöglichkeiten in
den Code. Wir können damit gezielt ein vordefiniertes «DEFINE» Statement durch eigene
Logik ersetzen. In Abbildung 5.17 sehen wir ein Beispiel. Links ist die templateX.xpt aus
dem org.eclipse.gmf.codegen Projekt mir ihrem Namespace path/to/template
zu sehen. Diese Template hat drei «DEFINE» Statements. Wir möchten in unserem Bei-
spielprojekt my.gmf.project nur «DEFINE» B durch eigene Logik ersetzen, A und C
sollen unverändert bleiben. Dazu kopieren wir die Template in unseren Projektordner und
ergänzen den Namespace mit "aspects", wie Rechts in der Abbildung dargestellt. Dann

104

5.1 Verwendete Technologien

DEFINE A

DEFINE B

DEFINE C

AROUND B

path/to/template/templateX.xpt aspects/path/to/template/templateX.xpt

org.eclipse.gmf.codegen my.gmf.project

Abbildung 5.17: Xpand Template mit «AROUND» Erweiterung

löschen wir alles aus der Template raus, bis auf das «DEFINE» B Statement. Wir ersetzen
dann «DEFINE» durch «AROUND» und schreiben eigene Instruktionen auf. Dies bewirkt
schließlich, dass «DEFINE» A, «AROUND» B und «DEFINE» C ausgeführt werden.

5.1.6 BPEL4Chor2BPEL

Die Konzeptionelle Arbeit für diese Komponente wird in [Rei07] beschrieben. Sie bietet eine
automatische Transformation von BPEL4Chor Artefakten zu abstrakten BPEL Prozessen.
In Abbildung 5.18 sehen wir eine Übersicht. Wir beginnen mit einer Beschreibung eines
Geschäftsprozesses. Dies kann z. B. eine Choreographie Beschreibung in BPMN sein. In
Schritt 1 modellieren wir diese Choreographie in BPEL4Chor. Schritt 2 transformiert die
BPEL4Chor Artefakte zu abstrakten BPEL Prozessen. In Schritt 3 werden diese Prozesse,
durch eine manuell durchgeführte "executable completion", zu ausführbaren BPEL Prozessen
angereichert und, in Schritt 4, auf einem Workflowsystem ausgeführt. Schritt 1 führen wir mit
unserem Choreographie Editor durch. Wie wir bereits in Kapitel 4 auf Seite 29 besprochen
haben, kann unser Editor BPEL4Chor Artefakte aus dem grafischen Modell erzeugen. Für
Schritt 2 benutzen wir die BPEL4ChorToBPEL Komponente. Schritt 3 wird zu einem sehr
kleinen Teil in der BasicExecutableCompletionTransformer Komponente realisiert. Den übrigen

105

5 Implementierung

Teil müssen wir manuell, mit dem BPEL Designer durchführen, welcher uns dazu noch
Schritt 4 ermöglicht.

Die BPEL4ChorToBPEL Komponente muss für alle Kommunikationsaktivitäten partnerLink,
portType und operation Attribute sowie die zugehörigen Deklarationen der Partner
Link Elemente erzeugen. Die NCNames im properties Attribut von CorrelationSet,
müssen durch QNames ersetzt werden. In Topology kann definiert werden, dass eine
‹ForEach› Aktivität über ein ParticipantSet iterieren soll. Dies ist in BPEL unzu-
lässig. Für jede dieser ‹ForEach› Aktivitäten, muss die Anzahl der Iterationen durch
‹startCounterValue› und ‹finalCounterValue› festgelegt werden. Für jeden BPEL
Prozess müssen WSDLs mit Partner Link Types angelegt werden. Für die Umsetzung der
"link passing mobility" (siehe Abschnitt 3.3.2 auf Seite 18) müsste auf Empfängerseite eine
‹assign› Aktivität angelegt werden, welche die endpoint reference in das partnerRole
Attribut des Partner Links kopiert. Diese Funktionalität ist konzeptionell angedacht, jedoch
nicht in die Transformation integriert worden. In Abbildung 5.19 sehen wir die Ein- und
Ausgaben der Komponente. Zuerst wird die Topology analysiert und dabei alle relevanten
Daten zur Durchführung der Transformation gesammelt. Dann wird das Grounding analysiert
und damit die gesammelten Daten erweitert. Schließlich werden alle Participant Behavior
Description Dokumente zu abstrakten BPEL Prozessen umgewandelt. Die fehlenden Informa-
tionen werden aus den gesammelten Daten hergeleitet. Zusätzlich sieht die Komponente die
Eingabe von WSDL Dokumenten vor, in welchen Property und Property Alias für Correlation
Sets sowie Endpoint References für jedes Participant Behavior Description Dokument angegeben
sind. In der Ausgabe werden die WSDLs mit Partner Link Types erweitert.

Eine Implementierung dieses Konzepts wurde in [Li10] erstellt. Diese Implementierung
benutzen wir unverändert für diese Arbeit. Die Konzeption sieht zwar Eingaben von WSDL
Dateien vor, doch wurde in der Implementierung darauf verzichtet. In der Ausgabe wird
für jeden BPEL Prozess, ein WSDL Dokument mit Partner Link Types erzeugt. Die restlichen
Elemente müssen danach ergänzt werden. Dazu kann der BPEL Designer unterstützend
benutzt werden.

106

5.1 Verwendete Technologien

business
process

description

BPEL4Chor
description

WS-BPEL
Abstract

Processes

1: modeling
choreography

WS-BPEL
Executable
Processes

Implementation

2: grounding +
transformation

3: internal
refinement

4: execution

Abbildung 5.18: Von einer Beschreibung eines Geschäftsprozess zu ausführbaren BPEL
Prozessen. Quelle: [Rei07]

PBDs
Participant
groundings

Participant
topology

BPEL
Abstract

Processes

WSDL
definitions

BPEL4Chor choreography

Transformation

WSDL
definitions

Abbildung 5.19: Ein- und Ausgaben der BPEL4ChorToBPEL Komponente. Quelle: [Rei07]

107

5 Implementierung

5.2 Chor Designer

In diesem Abschnitt beschreiben wir, wie die vorgestellten Technologien zum Einsatz kom-
men, um unseren Choreographie Editor umzusetzen. Wir gehen hier nur auf wesentliche
Aspekte der Realisierung ein. In Anlehnung an den BPEL Designer, nennen wir unseren
Choreographie Editor Chor Designer

5.2.1 EMF Modelle

Wie wir in der Konzeption in Abschnitt 4.5.1 auf Seite 35 besprochen haben, arbeiten
wir mit den vier Datenmodellen Topology Model, Grounding Model, PBD Model und
Chor Model. Wir realisieren diese Modelle in EMF. Dabei verwenden wir keine Import
Funktion, sondern modellieren diese von Hand. Topology Model [DK12b] und Grounding
Model [DK12a] stehen bereits als XSD Dateien zur Verfügung. Das PBD Model erstellen wir
aus dem WS-BPEL Standard "abstract common base" [OAS07a] der als XSD vorliegt, und
berücksichtigen dabei die in Abschnitt 3.3.1 auf Seite 17 besprochenen Einschränkungen, so
dass das Ecore Modell zum Abstract Process Profile for Participant Behavior Descriptions passt.
Als Beispiel beschreiben wir die Modellierung des Topology Model. Die Modellierung des
Grounding Model ist analog. Für das PBD Model verfahren wir zum größten Teil gleich, bis
auf einige Ausnahmen auf welche wir in Abschnitt 5.2.1 auf der nächsten Seite eingehen.
Das Chor Model modellieren wir leicht abweichend vom der Konzeption und gehen darauf
in Abschnitt 5.2.1 auf Seite 112 ein.

Topology Model

In Abbildung 5.20 sehen wir das Topology Model in Ecore modelliert. Wir erstellen die
topology.ecore Datei und belegen die Attribute des EPackage Knoten mit den Wer-
ten Name="topology", Ns Prefix="top"und Ns URI="urn:HPI_IAAS:choreography:
schemas:choreography:topology:2006/12". Dann definieren wir für die XSD Ele-
mente mit Typ Attribut, welche in Listing 5.1 dargestellt sind, jeweils eine EClass. In
Listing 5.2 sehen wir die XSD Schema Typ Definition vom topology Element. Aus Zeile 7
und 8 machen wir EAttribute Einträge wobei wir die XSD Attribute type="xs:NCName"
und type="xs:anyURI" als EString Datentyp übernehmen. use="required" reali-
sieren wir mit den EMF Properties Upper Bound=Lower Bound="1". Die Zeilen 3 - 5
werden als EReference angelegt und verweisen auf die entsprechenden EClass Einträge.
Für die restlichen XSD Einträge verfahren wir analog, weisen hier aber noch auf drei Beson-
derheiten hin. In Listing 5.3 sehen wir die XSD Schema Typ Definition vom Participant
Element. Wir realisieren den Typ type="xs:QName" als EDataType, womit wir die Java
Klasse javax.xml.namespace.QName repräsentieren. Den Datentyp des Elements aus
Zeile 7 realisieren wir als EEnum mit den entsprechenden Werten aus den Zeilen 10 - 12.

108

urn:HPI_IAAS:choreography:schemas:choreography:topology:2006/12
urn:HPI_IAAS:choreography:schemas:choreography:topology:2006/12

5.2 Chor Designer

Abbildung 5.20: Topology Model als Ecore Modell

Mehrwertige Attribute, wie z. B. in Zeile 4, realisieren wir durch setzen der EMF Property
Upper Bound= −1.

PBD Model

Bei der Umsetzung vom PBD Model gibt es einige Besonderheiten, welche in der Ausdrucks-
weise von XSD liegen. Wir können in einem Ecore Modell nicht alles exakt so umsetzen, wie
es in einer XSD vorgegeben ist. In Listing 5.4 sehen wir die XSD Schema Typ Definition
vom ExtensibleElements Element. BPEL ist eine erweiterbare Sprache, was hier mit

109

5 Implementierung

Listing 5.1 XSD Schema Element Definitionen vom Topology Model. Quelle: [DK12b]
01 <xs:element name="topology" type="tTopology" />
02 <xs:element name="participantTypes" type="tParticipantTypes" />
03 <xs:element name="participantType" type="tParticipantType" />
04 <xs:element name="participants" type="tParticipants" />
05 <xs:element name="participant" type="tParticipant" />
06 <xs:element name="participantSet" type="tParticipantSet" />
07 <xs:element name="messageLinks" type="tMessageLinks" />
08 <xs:element name="messageLink" type="tMessageLink" />

Listing 5.2 XSD Schema Typ Definition von Topology. Quelle: [DK12b]
01 <xs:complexType name="tTopology">
02 <xs:sequence>
03 <xs:element ref="participantTypes" minOccurs="1" maxOccurs="1" />
04 <xs:element ref="participants" minOccurs="1" maxOccurs="1" />
05 <xs:element ref="messageLinks" minOccurs="1" maxOccurs="1" />
06 </xs:sequence>
07 <xs:attribute name="name" type="xs:NCName" use="required" />
08 <xs:attribute name="targetNamespace" type="xs:anyURI" use="required" />
09 </xs:complexType>

Listing 5.3 XSD Schema Typ Definition von Participant. Quelle: [DK12b]
01 <xs:complexType name="tParticipant">
02 <xs:attribute name="name" type="xs:NCName" use="required" />
03 <xs:attribute name="type" type="xs:NCName" use="optional" />
04 <xs:attribute name="selects" type="NCNames" />
05 <xs:attribute name="forEach" type="xs:QName" />
06 <xs:attribute name="scope" type="xs:QName" />
07 <xs:attribute name="containment" use="optional" default="add-if-not-exists">
08 <xs:simpleType>
09 <xs:restriction base="xs:string">
10 <xs:enumeration value="required" />
11 <xs:enumeration value="must-add" />
12 <xs:enumeration value="add-if-not-exists" />
13 </xs:restriction>
14 </xs:simpleType>
15 </xs:attribute>
16 </xs:complexType>

110

5.2 Chor Designer

Listing 5.4 XSD Schema Typ Definition von ExtensibleElements. Quelle: [OAS07a]
01 <xsd:complexType name="tExtensibleElements">
02 ...
03 <xsd:sequence>
04 <xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
05 <xsd:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
06 </xsd:sequence>
07 <xsd:anyAttribute namespace="##other" processContents="lax"/>
08 </xsd:complexType>

Listing 5.5 XSD Schema Typ Definition von Process. Quelle: [OAS07a]
01 <xsd:complexType name="tProcess">
02 <xsd:complexContent>
03 <xsd:extension base="tExtensibleElements">
04 <xsd:sequence>
05 ...
06 <xsd:group ref="activity" minOccurs="0"/>
07 ...

diesem Element realisiert wird. Fast alle BPEL Elemente erben von diesem Element. Zeile 5
macht sich das any Element9 zu nutze, mit welchem sich beliebige Elemente hinzufügen
lassen, die nicht im BPEL Schema deklariert sind. Genau die selbe Erweiterbarkeit wird
für Attribute, in Zeile 7, mit dem anyAttribute Element10 erreicht. Wir setzen dies in
Ecore so um, dass für anyAttribute ein mehrwertiges EAttribute mit dem Datentyp
EJavaObject, und für any, eine mehrwertige EReference mit EObject als Typ erstellt
wird. Bei der Serialisierung des Ecore Modelles muss für diese spezielle Umsetzung eine
extra Behandlung entworfen werden, um syntaktisch korrektes XML zu erzeugen. Für unsere
Implementierung verzichten wir auf die Erweiterbarkeit von BPEL.

Eine weitere Besonderheit ist in Listing 5.5, bei der Definition vom Process Element zu
sehen. Wir wissen das BPEL Prozesse immer nur eine Aktivität haben können. Dies wird
hier im XSD Schema, in Zeile 6, durch Referenzierung eines Group Elements erreicht. Dazu
sehen wir uns Listing 5.6 an. Hier sehen wir die Gruppendefinition von Activity. Was dies
zum Ausdruck bringen soll ist, dass diese eine Activity, referenziert von Process, immer
nur ein Eintrag aus dieser Gruppe sein darf. Das heißt entweder Empty oder Flow oder
Sequence oder usw.. In Ecore setzen wir dies ganz simpel damit um, dass Process eine
EReference auf Activity hat, sowie alle konkreten Aktivitäten von Activity erben.

Für die Umsetzung des Expression Elements betrachten wir Listing 5.7. Hier wird
ebenfalls anyAttribute und any benutzt, jedoch gibt es hier einen Unterschied zum

9http://www.w3schools.com/schema/schema_complex_any.asp
10http://www.w3schools.com/schema/schema_complex_anyattribute.asp

111

http://www.w3schools.com/schema/schema_complex_any.asp
http://www.w3schools.com/schema/schema_complex_anyattribute.asp

5 Implementierung

Listing 5.6 XSD Schema Typ Definition der Activity Gruppe. Quelle: [OAS07a]
<xsd:group name="activity">

...
<xsd:choice>

<xsd:element ref="empty"/>
<xsd:element ref="flow"/>
<xsd:element ref="sequence"/>
...

Listing 5.7 XSD Schema Typ Definition von Expression. Quelle: [OAS07a]
01 <xsd:complexType name="tExpression" mixed="true">
02 <xsd:sequence>
03 <xsd:any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
04 </xsd:sequence>
05 <xsd:attribute name="expressionLanguage" type="xsd:anyURI"/>
06 <xsd:anyAttribute namespace="##other" processContents="lax"/>
07 </xsd:complexType>

ExtensibleElements Element welcher, in Zeile 1, im mixed="true"11 Attribut liegt. Dies
bedeutet, dass das Expression Element weitere Attribute, Elemente und auch Text, in
gemischter Form beinhalten kann. Wir realisieren dies in Ecore indem wir die Query EClass
mit einem weiteren Attribut body vom Typ EJavaObject versehen. Bei der Serialisierung
muss dafür eine extra Behandlung eingebaut werden.

Chor Model

Bei der Konzeption in Abschnitt 4.5.1 auf Seite 35 haben wir das Chor Model so definiert, dass
das Wurzelelement Choreography in einer 1 : n Beziehung mit CParticipantCommon –
der Generalisierung von CParticipant und CParticipantSet – steht (siehe dazu Ab-
bildung 4.5). Dies ändern wir in unserer Ecore Umsetzung, welche in Abbildung 5.21 zu
sehen ist, so ab, dass wir direkt von Choreography eine mehrwertige EReference auf
jeweils CParticipant und CParticipantSet setzen. Der Gründe dafür sind ein verein-
fachter Zugriff beim Lesen der Modellinstanz. Hier sparen wir uns die Prüfung mit dem
Java Operator instanceof, ob CParticipantCommon eine Instanz von CParticipant
oder CParticipantSet ist. Der andere Grund liegt in einer Feststellung, welche eventuell
auf einen Fehler im generierten GMF Code zurück zu führen ist. Zieht man im generieren
GMF Editor einen Message Link zwischen zwei Aktivitäten welche zu unterschiedlichen
Participants gehören, wird die Connection doppelt dargestellt sprich zwei Pfeile, statt nur
einem, erscheinen auf der Zeichenfläche. Die Ursache dafür ist unbekannt bzw. lies sich in

11http://www.w3schools.com/schema/schema_complex_mixed.asp

112

http://www.w3schools.com/schema/schema_complex_mixed.asp

5.2 Chor Designer

dieser Arbeit nicht herausfinden. Eine sichere Lösung besteht darin, von Choreography
direkt auf CParticipant und CParticipantSet zu referenzieren. Die ursprüngliche
Idee war sogar, alle ausgehenden Referenzen von Choreography auf eine abstrakte Klasse
ChoreographyElement zu legen, von welcher alle anderen Klassen erben sollten. Dies
erzeuge jedoch den selben Fehler.

Eine weitere Besonderheit liegt in der Standard Serialisierung von EMF. Der gene-
rierte GMF Editor benutzt diese um das Chor Model zu serialisieren und auf dem
Datenträger abzuspeichern. Jedoch kennt EMF keine generische Serialisierung von
javax.xml.namespace.QName12, welche als Datentyp unter anderem für das portType
Attribut von CMessageLinkGrounding in Frage kommt. Daher haben wir eine neue Klasse
CQname eingeführt, welche die drei Attribute von QName namespaceURI, localPart
und prefix übernimmt.

Serialisierung

EMF serialisiert Ecore Modelle standardmäßig in Form von XMI13 , da wir aber beim Export
des Chor Model syntaktisch korrekte BPEL4Chor Artefakte benötigen, müssen wir für eine
XML Serialisierung sorgen. Um das Problem zu verdeutlichen, betrachten wir in Abbil-
dung 5.22 einen BPEL Testprozess und in Listing 5.8 die zugehörige Standard Serialisierung
der PBD Model Ecore Instanz. Der ‹process› Wurzelknoten ist syntaktisch korrekt, nur bei
den Aktivitäten liegt kein korrektes BPEL mehr vor, da hier ‹activity› mit Referenz auf
den konkreten Typ (xsi:type=...) angegeben wird. Des weiteren benötigen wir Ausnah-
mebehandlungen von Elementen wie Expression, da sonst die Seriealisierung das body
Attribut auch tatsächlich als Attribut ausgibt. Ein Beispiel wäre die ‹for› Expression,
welche auf folgende Art serialisiert werden würde: ‹for body=...›. Korrekt wäre aber:
‹for›... ‹/for›. Daher implementieren wir ein eigenen Algorithmus zur Transformation
des Ecore Modells in einen DOM Baum, wie wir es bereits in Abschnitt 4.5.2 auf Seite 50

besprochen haben. Das Resultat ist, nach XML Serialisierung des DOM Baumes, syntaktisch
korrektes BPEL, wie es in Listing 5.9 zu sehen ist.

12http://www.eclipse.org/forums/index.php?t=msg&th=126150/
13XML Metadata Interchange

113

http://www.eclipse.org/forums/index.php?t=msg&th=126150/

5 Implementierung

Abbildung 5.21: Chor Model als Ecore Modell

114

5.2 Chor Designer

testProcess

sequence

invoke

scope

empty

sequence

opaqueActivity

receive

reply

Abbildung 5.22: BPEL Testprozess

Listing 5.8 PBD Model ECore Standard XMI Serialisierung
01 <pbd:Process xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

name="testProcess" ...>
02 <pbd:activity xsi:type="pbd:Sequence">
03 <pbd:activity xsi:type="pbd:Invoke" outputVariable="##opaque"/>
04 <pbd:activity xsi:type="pbd:Scope" name="testScope">
05 <pbd:activity xsi:type="pbd:Sequence">
06 <pbd:activity xsi:type="pbd:OpaqueActivity" name="testOpaque"/>
07 <pbd:activity xsi:type="pbd:Receive" variable="##opaque"

messageExchange="msgExA"/>
08 <pbd:activity xsi:type="pbd:Reply" variable="##opaque"

messageExchange="msgExA"/>
09 </pbd:activity>
10 </pbd:activity>
11 <pbd:activity xsi:type="pbd:Empty" name="emptyActivity"/>
12 </pbd:activity>
13 </pbd:Process>

115

5 Implementierung

Listing 5.9 PBD Model ECore XML Serialisierung durch Transformation nach DOM
01 <process name="testProcess" ...>
02 <sequence>
03 <invoke outputVariable="##opaque"/>
04 <scope name="testScope">
05 <sequence>
06 <opaqueActivity name="testOpaque"/>
07 <receive messageExchange="msgExA" variable="##opaque"/>
08 <reply messageExchange="msgExA" variable="##opaque"/>
09 </sequence>
10 </scope>
11 <empty name="emptyActivity"/>
12 </sequence>
13 </process>

5.2.2 Graphical Definition Model

In diesem Modell definieren wir das Aussehen unserer Modellelemente. In Abbildung 5.23

sehen wir im linken Teil das Konzept, wie wir CParticipant Elemente darstellen. Ein
äußeres Rechteck mit zwei inneren Rechtecken. Das obere Rechteck beinhaltet ein Label,
welches den Namen des Participants darstellt. Das untere Rechteck stellt die Zeichenflä-
che dar, in welcher wir das zugehörige Process Element platzieren wollen. Im rechten
Teil der Abbildung 5.23 sehen wir den Figure Descriptor des Graphical Definition Mo-
del. Für die Platzierung der inneren Rechtecke und des Labels verwenden wir Layout
Manager. Das äußerste Rechteck wird mit einem BorderLayout versehen. Das innere
Rechteck (CParticipantNameFigure), welches das Label beinhaltet , platzieren wir in
Norden (BEGINNING) und das andere Rechteck (CParticipantCompartmentFigure)
platzieren wir in der Mitte (CENTER). Das Label platzieren wir, mittels FlowLayout, im
CParticipantNameFigure Rechteck. Die Nummern am rechten Rand der Abbildung
verweisen auf die Code Zeilen in Listing 5.10, welches den resultierenden Java Code darstellt,
der aus diesem Figure Descriptor generiert wird. Das Design der anderen Elemente ist diesem
hier sehr ähnlich. Für die Elemente, welche keine verschachtelten Elemente darstellen wie
z. B. Invoke, Receive, Reply usw. sprich, alle nicht strukturierten Aktivitäten, benötigen
wir kein Rechteck für das Compartment. Lediglich Verbinder haben ein gänzlich anderes
Design.

In Abbildung 5.24 sehen wir im linken Teil das Konzept, wie wir CMessageLink Elemente
darstellen. Verbinder haben immer eine Quelle und ein Ziel und wir „dekorieren“ nur
die Zielseite. Diese Dekoration wird als Pfeil dargestellt. Zudem soll es noch ein Label
geben, welches den Namen des Message Links anzeigt. Im rechten Teil der Abbildung 5.24

ist der Figure Descriptor zu sehen, sowie die Definition des Pfeils in Form einer Polygon
Beschreibung. Die Linie selbst ist als Polyline Connection definiert was zum einen spezielle
Linie ist, welche durch mehrere Punkte – zwischen Anfangs und Endpunkt – gezogen wird

116

5.2 Chor Designer

und zum anderen eine Connection, wie wir sie bereits in Abschnitt 5.1.3 auf Seite 92 vorgestellt
haben. Über die Property Target Decoration können wir die Pfeildekoration zuweisen
welche wir, separat von diesem Figure Descriptor, als Polygon Beschreibung definieren. Die
Polygon Beschreibung besteht aus einer Punktliste und wird so gelesen, wie es schematisch
Abbildung 5.24 dargestellt ist. Die Leserichtung ist gegen den Uhrzeigersinn und beginnt
mit Punkt (x, y) = (0, 0), geht dann zu (−2, 2), über (−2,−2) wieder zurück zu (0, 0). Somit
erhalten wir ein geschlossenes Dreieck mit schwarzer Hintergrundfarbe (Background:
black). Am rechten Rand der Abbildung sind die Code Zeilen aus Listing 5.11 zu sehen,
welche den zugehörigen Java Code zeigen.

Label

Konzept Graphical Definition Model

1

6,7

13

15

17,19

21,23

25

27

2,30

3,34

Abbildung 5.23: Grafische Repräsentation von CParticipant

117

5 Implementierung

Listing 5.10 Generierter Java Code aus dem Figure Descriptor von CParticipant

01 public class CParticipantFigure extends RoundedRectangle {
02 private WrappingLabel fFigureCParticipantName;
03 private RoundedRectangle fFigureCParticipantCompartmentFigure;
04
05 public CParticipantFigure() {
06 BorderLayout layoutThis = new BorderLayout();
07 this.setLayoutManager(layoutThis);
08 ...
09 createContents();
10 }
11
12 private void createContents() {
13 RoundedRectangle cParticipantNameFigure0 = new RoundedRectangle();
14 ...
15 this.add(cParticipantNameFigure0, BorderLayout.TOP);
16
17 FlowLayout layoutCParticipantNameFigure0 = new FlowLayout();
18 ...
19 cParticipantNameFigure0.setLayoutManager(layoutCParticipantNameFigure0);
20
21 fFigureCParticipantName = new WrappingLabel();
22 ...
23 cParticipantNameFigure0.add(fFigureCParticipantName);
24
25 fFigureCParticipantCompartmentFigure = new RoundedRectangle();
26 ...
27 this.add(fFigureCParticipantCompartmentFigure, BorderLayout.CENTER);
28 }
29
30 public WrappingLabel getFigureCParticipantName() {
31 return fFigureCParticipantName;
32 }
33
34 public RoundedRectangle getFigureCParticipantCompartmentFigure() {
35 return fFigureCParticipantCompartmentFigure;
36 }
37 }

118

5.2 Chor Designer

Konzept

Label

0,0

-2,2

-2,-2

Graphical Definition Model

Polyline
Target

Decoration

1

11,13

3,30

17

19

21

22

23

24

Abbildung 5.24: Grafische Repräsentation von CMessageLink

119

5 Implementierung

Listing 5.11 Generierter Java Code aus dem Figure Descriptor von CMessageLink

01 public class CMessageLinkFigure extends PolylineConnectionEx {
02
03 private WrappingLabel fFigureCMessageLinkName;
04
05 public CMessageLinkFigure() {
06 createContents();
07 setTargetDecoration(createTargetDecoration());
08 }
09
10 private void createContents() {
11 fFigureCMessageLinkName = new WrappingLabel();
12 ...
13 this.add(fFigureCMessageLinkName);
14 }
15
16 private RotatableDecoration createTargetDecoration() {
17 PolygonDecoration df = new PolygonDecoration();
18 df.setFill(true);
19 df.setBackgroundColor(ColorConstants.black);
20 PointList pl = new PointList();
21 pl.addPoint(getMapMode().DPtoLP(0), getMapMode().DPtoLP(0));
22 pl.addPoint(getMapMode().DPtoLP(-2), getMapMode().DPtoLP(2));
23 pl.addPoint(getMapMode().DPtoLP(-2), getMapMode().DPtoLP(-2));
24 pl.addPoint(getMapMode().DPtoLP(0), getMapMode().DPtoLP(0));
25 df.setTemplate(pl);
26 ...
27 return df;
28 }
29
30 public WrappingLabel getFigureCMessageLinkName() {
31 return fFigureCMessageLinkName;
32 }
33 }

5.2.3 Tooling Definition Model

In diesem Modell definieren wir für alle Elemente, welche wir auf der Zeichenfläche des
Editors platzieren, unsere Werkzeuge. In Abbildung 5.25 ist im linken Teil das Modell zu
sehen und im rechten Teil, das Resultat im generierten Editor. Wir definieren Tool Groups um
optisch die zusammengehörenden Werkzeuge zu gruppieren. Jede Gruppe hat die Property
Collapsible= true, so dass jede einzeln ein-, oder ausgeblendet werden kann. Für jedes
Creation Tool lässt sich zudem ein Icon festlegen. In dieser Abbildung haben wir die Standard
Icons verwendet. Im oberen Bereich der Palette sind Selektion und Zoom Tools zu sehen,
welche standardmäßig von GMF generiert werden. Der generierte Java Code befindet sich in
der ChorPaletteFactory (wir haben im Tooling Definition Model unsere Palette „chorPa-

120

5.2 Chor Designer

lette“genannt) welche Instanzen von org.eclipse.gef.palette.PaletteContainer
für jede Tool Group und Instanzen von org.eclipse.gef.palette.ToolEntry für jedes
Creation Tool erzeugt.

Tooling Definition Model GMF Editor

Abbildung 5.25: Tooling Definition Model und die Umsetzung im GEF Editor

5.2.4 Mapping Definition Model

In diesem Modell verbinden wir alle anderen Modelle miteinander und definieren somit
unseren Editor. Die visuelle Repräsentation der Zeichenfläche ist das Canvas Element des

121

5 Implementierung

Abbildung 5.26: Definition der Zeichenfläche (Canvas) im Mapping Definition Model

Graphical Definition Model, unter welchem wir alle Repräsentationen unserer Elemente fest-
gelegt haben. Das zugehörige Wurzelelement aus dem Chor Model ist die Choreography
Klasse und unsere Werkzeuge haben wir in der chorPalette im Tooling Definition Model
definiert. In Abbildung 5.26 sehen wir das Canvas Mapping Element mit seinen Properties
und den Modellen, auf welche wir verweisen. Im folgenden beschreiben wir einen Teil der
Mappings von CParticipant, Process und CMessageLink. Das Mapping der restlichen
Elemente verläuft Analog.

122

5.2 Chor Designer

CParticipant Mapping Definition

CParticipant Elemente platzieren wir direkt auf der Zeichenfläche. Das Wurzelelement
der Zeichenfläche ist das Choreography Element. CParticipant Elemente werden von
diesem referenziert. Im Mapping Definition Model werden Referenzen, vom Wurzelelement
ausgehend, als Top Node Reference bezeichnet. In Abbildung 5.27 sehen wir die Definition
der Top Node Reference. Mit dem Attribut Containment Feature verweisen wir auf die
entsprechende EReference von Choreography. Mit dieser Definition haben wir festge-
legt, dass alle Instanzen von CParticipant zur Choreography Zeichenflächeninstanz
gehören und auch dort gesammelt werden. Nachdem die Referenz definiert ist, müssen wir
festlegen, wie die Instanzen erstellt werden, wie sie aussehen und was für Eigenschaften
diese haben sollen. Dies machen wir mit dem Node Mapping Element und betrachten dazu
Abbildung 5.28. Mit dem Element Attribut legen wir das Ecore Element fest, welches wir
hier modellieren wollen. Zudem muss es zur übergeordneten Node Reference passen, wes-
halb hier auch nur CParticipant angegeben werden kann. Mittels Diagram Node Attribut
geben wir das Aussehen von CParticipant an, welches wir zuvor schon im Graphical
Definition Model festgelegt haben. Wir möchten Instanzen von CParticipant über die
Palette erstellen, daher verweisen wir auf unser bereits definiertes Creation Tool aus dem
Tooling Definition Model. Das name Attribut von CParticipant soll auch auf der Zei-
chenfläche erscheinen und zudem editierbar sein. Um dies zu erreichen, definieren wir ein
Feature Label Mapping wie in Abbildung 5.29 zu sehen ist. Mit dem Attribut Features to
display geben wir das zugehörige Ecore Attribut an. In unserem Fall ist dies das name
Attribut aus CParticipantCommon. Mittels Diagram Label Attribut geben wir noch das
entsprechende Aussehen an und verweisen auf das passende Diagram Label Element aus dem
Graphical Definition Model. Mit dem Edit Method Attribut lässt sich festlegen, wie der
vom Benutzer eingegebene Text vom GMF Editor analysiert werden soll und mit dem View
Method Attribut wird festgelegt, wie das Label auf der Zeichenfläche dargestellt wird [ecla].
MESSAGE_FORMAT bedeutet dabei, dass das Format von java.text.MessageFormat be-
stimmt wird [ecla]. Wir werden später, beim Mapping von Aktivitäten, genauer darauf
eingehen. Mittels Child Reference Knoten können wir ausgehende Referenzen vom übergeord-
neten Node Mapping Element, in unserem Fall CParticipant, modellieren. CParticipant
hat eine Referenz auf Process und wir möchten diesen mit all seinen verschachtelten Ak-
tivitäten innerhalb von CParticipant darstellen. Grafisch haben wir schon für diese
Möglichkeit gesorgt, indem wir ein Compartment im Graphical Definition Model dafür er-
stellt haben. Wir müssen im Mapping definieren, welche Instanzen in diesem Compartment
platziert werden dürfen. Dazu definieren wir ein Compartment Mapping Element, wie in
Abbildung 5.30 zu sehen ist. Mittels Children Attribut bestimmen wir alle Referenzen,
welche in diesem Compartment aufgenommen werden. In unserem Fall ist dies nur die
Referenz auf Process. Das passende Aussehen bzw. die Definition, wo genau innerhalb
der CParticipant Repräsentation die Process Repräsentation dargestellt werden soll,

123

5 Implementierung

Abbildung 5.27: Definition der Top Node Reference von CParticipant im Mapping Defini-
tion Model

bestimmen wir mittels Verweis auf das Compartment Element aus dem Graphical Definition
Model.

Wir haben in der Konzeption in Abschnitt 4.5.1 auf Seite 35 die Entscheidung getroffen,
dass jeder Participant, bei seiner Erstellung, einen eigenen Prozess hat. Dies realisieren wir,
indem wir bei jeder Instanz von CParticipant auch gleich eine neue Instanz von Process
mit anlegen. Da es zudem seltenst der Fall ist, dass ein Prozess insgesamt nur aus einer
einzelnen Aktivität besteht, legen wir auch eine neue Instanz von Sequence mit an. Dieses
Verhalten können wir mittels Feature Seq Initializer Element, wie in Abbildung 5.31 zu sehen,
modellieren. Wir beschreiben nacheinander die nummerierten Zeilen in dieser Abbildung. In
Zeile 1 definieren wir, dass die neue Process Instanz von CParticipant aus referenziert
und abgelegt wird. Zeile 2 erstellt eine neue Instanz von Process. In Zeile 8 definieren
wir, dass bei dieser Instanziierung das Attribut abstractProcessProfile mittels Wert
aus Zeile 9 initialisiert wird. In Zeile 4 geben wir an dass, im Zuge der Instanziierung von
Process, die neue Sequence Instanz von Process als Activity referenziert wird. In
Zeile 5 erstellen wir eine neue Instanz von Sequence und in Zeile 6 initialisieren wir das
Attribut name mit dem Wert aus Zeile 7.

124

5.2 Chor Designer

Abbildung 5.28: Definition des Node Mapping von CParticipant im Mapping Definition
Model

125

5 Implementierung

Abbildung 5.29: Definition des Label Mapping von CParticipant im Mapping Definition
Model

126

5.2 Chor Designer

Abbildung 5.30: Definition des Compartment Mapping von CParticipant im Mapping
Definition Model

Abbildung 5.31: Erstellung zusätzlicher Instanzen beim Anlegen einer neuen
CParticipant Instanz

127

5 Implementierung

Process Mapping Definition

Ein Process Element wird innerhalb des Compartments von CParticipant bzw.
CParticipantSet platziert. Daher modellieren wir Process nicht als Top Node Refe-
rence sondern als Child Reference von CParticipant, wie in Abbildung 5.32 zu sehen ist.
Mit dem Compartment Attribut bestimmen wir das Compartment von CParticipant, in
welchem diese Process Referenz dargestellt werden soll. Die entsprechende Referenz von
CParticipantCommon auf Process, legen wir im Containment Feature Attribut fest.
Jetzt müssen wir das Aussehen und die zugehörige Ecore Klasse von Process im Node
Mapping festlegen. Dies ist in Abbildung 5.33 zu sehen. Wir benötigen für die Process
Instanzen allerdings kein Creation Tool, da der Benutzer nicht die Möglichkeit haben soll,
welche zu erzeugen. Ebenfalls definieren wieder ein Compartment Mapping, in welchem die
Sequence Aktivität platziert wird und legen eine Child Reference an, welche auf die von
Process ausgehende Activity Referenz zeigt.

Activity Mapping Definition

In Abbildung 5.34 sehen wir das Node Mapping von Sequence. Wie zuvor auch legen wir
Aussehen, Ecore Klasse und Creation Tool fest. Da eine Sequence beliebig viele Aktivitäten
aufnehmen kann, müssen wir für jede Aktivität eine Child Reference und jeweils darunter
das passende Node Mapping angeben. Wichtig ist hierbei, dass wir im ganzen Mapping
Definition Model jede Ecore Klasse nur einmal in einem Node Mapping definieren, jedoch
mit mehreren Child Reference Elementen vorhandene Node Mapping Elemente referenzieren
können. So ist Sequence eine Aktivität und kann sich somit selber beliebig oft verschachtelt
enthalten. Wir definieren folglich unterhalb des Node Mapping von Sequence, eine Child
Reference auf sich selbst. Dies ist in Abbildung 5.35 zu sehen. Mittels Referenced Child
Attribut verweisen wir, rekursiv, auf das bereits vorhandene Node Mapping Element von
Sequence und haben damit eine beliebig tiefe Verschachtlung erreicht. Die anderen Child
Reference Elemente von Scope bis Flow definieren wir wie gehabt, jeweils mit einem eigenen
Node Mapping Element. Bei Scope, Flow und den übrigen verschachtelbaren Elementen,
machen wir uns wieder das Referenced Child Attribut zu nutze. Haben wir auf diese
Art Process komplett durch modelliert, müssen wir das ganze nicht nochmal neu für
CParticipantSet definieren, sondern verweisen mit Referenced Child auf das bereits
definierte Node Mapping Element von Process.

Wie bereits schon erwähnt, betrachten wir noch einmal ein Feature Label Mapping. Abbil-
dung 5.36 zeigt das Mapping des Namen Labels von Invoke, welches für alle Aktivitäten
analog definiert ist. Diesmal möchten wir im Label die zwei Ecore Attribute name und id
anzeigen. Mittels View Pattern definieren wir, wie genau aus den Attributen, welche in
Features to display eingetragen sind, der Label Text auf der Zeichenfläche zusammen
gesetzt wird. {0} bezieht sich dabei auf das erste Attribut, in unserem Beispiel name und

128

5.2 Chor Designer

Abbildung 5.32: Definition von Process als Child Reference im Mapping Definition Model

{1} demnach auf das zweite, id. Diese beiden Attribute sollen durch ein ":" Zeichen getrennt
sein. Der daraus resultierende Text sieht dann z. B. so aus: "xy : 1". Mittels Edit Pattern
geben wir an, wie der vom Benutzer eingegebene Text analysiert werden soll und mittels
Editor Pattern beschreiben wir, wie sich das Label vom Benutzer editieren lässt. In
unserem Beispiel können wir name und id editieren, jedoch nicht ":" entfernen.

129

5 Implementierung

Abbildung 5.33: Definition des Node Mapping von Process im Mapping Definition Model

130

5.2 Chor Designer

Abbildung 5.34: Definition des Node Mapping von Sequence im Mapping Definition Model

131

5 Implementierung

Abbildung 5.35: Definition der rekursiven Child Reference von Sequence im Mapping Defi-
nition Model

132

5.2 Chor Designer

Abbildung 5.36: Definition des Label Mapping von Sequence im Mapping Definition Model

CMessageLink Mapping Definition

Zum modellieren von Verbindern benötigen wir Link Mapping Elemente. Diese können nur
auf Top Node Reference Ebene definiert werden d. h., direkt auf der Zeichenfläche und nicht et-
wa in einem Compartment. In Abbildung 5.37 sehen wir das Link Mapping von CMessageLink.
Containment Feature und Element werden wie gehabt definiert indem sie auf die ent-
sprechenden Elemente aus dem Ecore Modell verweisen. Source Feature und Target
Feature sind exklusive Attribute für Link Mapping Elemente in welchen sich festlegen lässt,

133

5 Implementierung

welche Ecore Referenzen Quelle und Ziel des Verbinders sein sollen. In unserem Fall sind
das die CMessageLink Attribute sendActivity und receiveActivity, welche jeweils
die Kommunikationsaktivitäten referenzieren. Über Diagram Link und Tool legen wir
wieder Aussehen und das Creation Tool fest, mit welchen die Verbinder erstellt werden. Mit
dieser Modellierung können wir allerdings alle Kommunikationsaktivitäten untereinander
verbinden, was auch unzulässige bzw. unsinnige Verbindungen erlaubt wie z. B. Receive
zu Receive oder Receive als Quelle und Reply als Ziel. Auch könnten wir zwei Kom-
munikationsaktivitäten im selben Prozess miteinander verbinden. Um dieses Problem zu
lösen, gib es die Möglichkeit Link Constraints anzugeben. Wir definieren ein Constraint in
Java Code, mit welchem wir prüfen ob ein Verbinder erstellt werden darf oder nicht. Der
GMF Generator kopiert dann den hier angegeben Code in die entsprechende Prüfmethode,
welche jedes mal ausgeführt wird, wenn der Benutzer einen Verbinder anlegt oder verändert.
Die Code Logik ist so aufgebaut dass wir zuerst Prüfen, ob Quell- und Zielaktivität zu
unterschiedlichen Prozessinstanzen gehören. Sollte dies der Fall sein, fahren wir fort und
Prüfen, ob Quelle und Ziel in einer erlaubten Konstellation auftreten. Sind alle Prüfungen
erfolgreich, kann der Benutzer den Verbinder erstellen.

5.2.5 GMF Generator Model

Haben wir unseren Editor im Mapping Definition Model spezifiziert, können wir das Ge-
nerator Model daraus erzeugen. Diese Modell erlaubt uns einige Einstellung bezüglich der
Editor Codegenerierung. Wir gehen hier nur auf ein paar Einstellungen ein welche wir, ab-
weichend von der Standard Einstellung, definieren müssen. Die Platzierung von grafischen
Elementen wird durch Layout Manager geregelt. Elemente innerhalb von Compartments
können anhand von zwei verschiedenen Layout Managern verwaltet werden. Zum einen
das ListLayout, welches eine feste Position der Elemente vorgibt und keine Verschiebung
oder Skalierung erlaubt und, zum anderen, das XYLayout, welches freie Positionierung,
Verschiebung und Skalierung ermöglicht [GG09]. Es gibt keine Möglichkeit, einen ande-
ren Layout Manager über das Graphical Definition Model vorzugeben. Dies liegt an der
Besonderheit, dass für Compartments und Nodes separate EditParts generiert werden. In
Abbildung 5.38 stellen wir, am Beispiel vom Process Element, diesen Zusammenhang sche-
matisch dar. Im Graphical Definition Model legen wir das Aussehen fest. Aktivitäten sollen
im Rechteck ProcessCompartmentFigure dargestellt werden, welches Teil der grafischen
Repräsentation von Process ist. Im Generator Modell werden aus Node Mapping Process und
Compartment Mapping zwei verschiedene EditParts erstellt. ProcessEditPart generiert sein
Aussehen anhand dem Figure Descritor Code. ProcessActivtyCompartmentEditPart
erhält ein vom GMF vordefiniertes Aussehen durch ResizableCompartmentFigure.
Würden wir im Graphical Definition Model am ProcessCompartmentFigure Rechteck
z. B. einen BorderLayout Layout Manager festlegen, hätte dies keine Auswirkung auf die
Platzierung von Aktivitäten im ProcessActivityCompartment.

134

5.2 Chor Designer

Abbildung 5.37: Definition des Link Mapping von CMessageLink im Mapping Definition
Model

135

5 Implementierung

Node Mapping Process

Figure Descriptor
ProcessFigure

Rectangle ProcessFigure

Rectangle
ProcessCompartmentFigure

Node Process

Compartment
ProcessActivityCompartment

Compartment Mapping

ProcessEditPart

ProcessActivityCompartment
EditPart

ProcessFigure

Generator

Generator

Mapping Definition Model Generator Model

ResizableCompartmentFigure

Graphical Definition Model

Abbildung 5.38: Generierung von separaten EditParts für Compartments und Nodes

136

5.2 Chor Designer

Wir verwenden nur für Aktivitäten innerhalb von Flow das XLLayout, für die ande-
ren grafischen Elemente, in welchen wir verschachtelte Darstellungen erlauben, benut-
zen wir das ListLayout. Dies ist in Abbildung 5.39 dargestellt. Wir setzen für alle
CompartmentEditPart Klassen, das Property Attribut List Layout im Generator Mo-
del auf true außer für das CompartmentEditPart von Flow, da wir dort eine freie Posi-
tionierung der Aktivitäten erlauben wollen. Da jedoch ListLayouts standardmäßig die
Elemente recht eng aneinander platzieren und wir dies nicht im Graphical Definition Model
beeinflussen können, müssen wir in den generierten Code eingreifen. Dafür machen wir
uns die, in Abschnitt 5.1.5 auf Seite 104 besprochenen, Xpand Templates zu nutze. Wir
passen die Code Generierung für alle CompartmentEditParts an. Dazu kopieren wir
die vorhandene CompartmentEditPart.xpt Template aus dem org.eclipse.gmf.codegen
Plugin und passen nur das createFigure() «DEFINE» Statement mittels «AROUND»
an. Mittels «IF» Statement können wir das CompartmentEditPart von Flow von der An-
passung ausschließen. In Abbildung 5.40 sehen wir die Auswirkungen der Anpassung. Wir
haben Einschübe (Insets) an allen Seiten (TOP,BOTTOM,LEFT,RIGHT) des Compartments
hinzugefügt und den Abstand zwischen den einzelnen Elementen (Spacing) vergrößert.

Eine weitere Verwendung einer Xpand Template haben wir für die EditParts von Ver-
bindern. Verbinder können unterschiedlich zwischen Anfangs- und Endpunkt verlaufen.
Wir haben bereits in Abschnitt 5.1.4 auf Seite 95 von Routern gesprochen. In Abbil-
dung 5.41 ist zu sehen, dass wir unterschiedliche Routing Stiele für CMessageLink und
FlowActivityLink verwenden. Der von GMF generierten Editoren globale Stiel für alle
Verbinder ist "oblique", also eine gerade Linie zwischen Quelle und Ziel. Dies verwenden wir
für FlowActivityLinks. Für CMessageLink möchten wir allerdings Linien mit neunzig
Grad Wendepunkten benutzen, was dem Routing Stiel "rectilinear" entspricht. Dazu müssen
wir den EditPart für CMessageLink, wie in [eclc] beschrieben, so anpassen dass bei jeder
Erstellung eines Verbinders, der gewünschte Routing Stiel gesetzt wird. Wir kopieren dafür
die LinkEditPart.xpt Template aus dem org.eclipse.gmf.codegen Plugin und passen
nur das createConnectionFigure() «DEFINE» Statement mittels «AROUND» an.

Haben wir das Generator Model nach unseren wünschen eingestellt, können wir den
eigentlich Java Code für den Editor generieren. GMF erstellt dazu ein neues Plugin Projekt
und legt den Code darin in einer vordefinierten Struktur ab.

5.2.6 Diagram Extensions

Wir möchten den generierten Editor Code mit eigenen Property Views und Eclipse Com-
mands erweitern. Dazu greifen wir nicht in den generierten Editor Code ein, oder rei-
chern das Plugin mit neuen Klassen an, sondern erstellen ein weiteres Plugin Projekt,
in welchem wir alle Erweiterungen definieren. Der Editor wird, in unserem Fall, im
org.eclipse.bpel4chor.diagram Plugin abgelegt, die Erweiterungen erstellen wir
im org.eclipse.bpel4chor.diagram.extensions Plugin.

137

5 Implementierung

Abbildung 5.39: GMF Editor mit XYLayout und ListLayout

Property Views

Wir erstellen, auf Basis des grafischen Konzepts aus Abschnitt 4.5.4 auf Seite 66, unsere
Property View Elemente. Dazu machen wir uns die Eclipse Extension points propertyTabs14

und propertySections15 nutze, welche wir im Manifest unseres Plugins einstellen. Die
Funktionsweise dieser Plugins ist schematisch, anhand eines Beispiels, in Abbildung 5.42

dargestellt. Mittels propertyTabs definieren wir alle Tabs, welche unserm Editor zu
Verfügung stehen sollen. In diesem Beispiel sind das T1, T2 und T3. Der Inhalt eines Tabs,
besteht aus einer oder wahlweise mehreren Sektionen, welche wir im propertySections
Extension point definieren. In unserem Beispiel sind das S1 - S4. Sektionen werden ihren

14org.eclipse.ui.views.properties.tabbed.propertyTabs
15org.eclipse.ui.views.properties.tabbed.propertySections

138

5.2 Chor Designer

Abbildung 5.40: Abstände der Elemente in einem Compartment mittels Inset und Spacing
angepasst

Abbildung 5.41: Verschiedene Routing Stiele für CMessageLink und FlowActivityLink

139

5 Implementierung

propertyTabs

T1

T2

T3

propertySections

S1

S2

S3

S4

tab

tab

tab

tab

F1

filter

F2

afterSection

Abbildung 5.42: Konzept der propertyTabs und propertySections Extension points

Tabs, in welchen sie erscheinen sollen, zugewiesen. Im Beispiel erscheint S1 in T1. S2 und
S3 erscheinen in T2, wobei S2 vor S3 dargestellt wird. Diese visuelle Ordnung lässt sich
mit dem afterSection Attribut definieren. Sektion S4 erscheint schließlich in Tab T3. In
grafischen Editoren selektieren wir Elemente auf der Zeichenfläche. Bei dieser Selektion wird
bestimmt, welche Tabs und Sektionen zu diesem Element angezeigt werden. Dies können
wir mit Filtern steuern, welches Java Klassen sind, die das IFilter Interface, bereitgestellt
durch das JFace Framework, implementieren. Jede Sektion kann auf einen Filter verweisen.
In unserem Beispiel wird Sektion S1 und der zugehörige Tab T1 nur dann angezeigt, wenn
das selektiere Element den Filter F1 passiert. Sektion S2 und der zugehörige Tab T2 werden
immer bei jedem Element angezeigt, da kein Filter definiert wurde. Sektion S3 erscheint nur
auf Tab T1, wenn das selektierte Element Filter F2 passiert. Sektion S4 und Tab T3 werden
nur angezeigt, wenn das selektierte Element Filter F2 passiert. Wir können also einen Filter,
mehreren Sektionen zuweisen. Tabs erscheinen nur, wenn sie mindestens eine Sektion haben
und, falls ein Filter dafür definiert wurde, das selektierte Element den Filter passiert.

In Abbildung 5.43 sehen wir die Property View eines selektierten Receive Elements. Der "Ap-
pereance" Tab kommt vom generierten Editor Code und ist ein Standardfeature von GMF. Die
übrigen Tabs sind von uns definiert und entsprechen jenen, aus unserem grafischen Konzept
in Abschnitt 4.5.4 auf Seite 66. Die Sektionen des gerade aktiven "Base" Tabs sind, zur Her-
vorhebung, eingerahmt. Die obere Sektion ist die ActivityBaseSection, welche für alle
Aktivitäten erscheint. Die untere Sektion ist die PickReceiveCreateInstanceSection,
welche nur für Receive und Pick erscheint. Alle Sektionen, die wir implementieren, erben

140

5.2 Chor Designer

Abbildung 5.43: Tabs und Sections der PropertyView von Invoke

von der vorgegebenen Klasse AbstractPropertySection. Wie in [Hun09] beschrieben,
müssen die Sektionen die drei Methoden createControls(), setInput() und re f resh() imple-
mentieren. Diese Methode werden vom Eclipse Framework aufgerufen, wenn ein Element
im Editor selektiert wurde. In createControls() erstellen wir die grafischen Komponenten,
welche auf diese Sektion angezeigt werden. Durch setInput() erhalten wir das selektierte
Element und re f resh() wird vom Framework aufgerufen, falls der Inhalt dieser Sektion
erneuert werden muss. Die ist z. B. der Fall, wenn der Benutzer am gerade selektierten
Element etwas verändert.

Über die Property View führen wir Änderungen der aktuellen Instanz unseres Chor Model
durch. GMF benutzt dazu im Hintergrund EMF.Edit und damit auch das Command basierte
Editieren von EMF Objekten, wie wir bereits in Abschnitt 5.1.2 auf Seite 90 besprochen
haben. Alle Elemente sind also Teil einer Editing Domain wobei GMF die transaktionsbasierte
Editing Domain vom EMF verwendet. Wie in [IBM07] beschrieben, ist diese in der Klasse
TransactionalEditingDomain realisiert und verwaltet mehrere, gleichzeitige Zugrif-
fe auf ein Objekt. Wir verwenden daher die vom EMF Framework bereitgestellte Klasse
TransactionUtil und dort, die statische Methode getEditingDomain() um für ein gege-
benes Objekt, die passende Editing Domain zu finden. Haben wir die Editing Domain, können
wir diverse Command Instanzen erstellen um damit Änderungen auf dem Chor Model durch-
führen. In Abbildung 5.44 sehen wir einen groben Überblick, wie der Editor mit Property
View, die propertyTabs und propertySections Extension points sowie das zugrunde liegende
Ecore Modell zusammen hängen. Wir veranschaulichen grob, anhand des Receive Elements,
wie das createInstance Attribut über die propertySection vom Benutzer verändert werden
kann. Im linken, oberen Bereich sehen wir dem GMF Editor. Es wurde ein Process Element
mit einem Receive Element modelliert. Selektiert der Benutzer dieses, werden die definier-
ten Extension points aktiv. Der ReceivePickTypeFilter stellt ein Receive Element fest
und lässt es passieren. Darauf kann die PickReceiveCreateInstanceSection Sektion

141

5 Implementierung

im base Tab angezeigt werden. Der Benutzer verändert den Wert von createInstance
über das ComboBox Widget. Darauf hin wird, für den Benutzer nicht sichtbar, die Editing
Doamin von Receive bestimmt, ein neue SetCommand Instanz angelegt, der vom Benutzer
veränderte Wert eingetragen und ausgeführt. Durch Ausführung wird das zugrunde liegende
Ecore Modell am entsprechenden createInstance Attribut abgeändert.

Eclipse Commands

Wir haben im Abschnitt 4.5.2 auf Seite 48 besprochen, dass wir aus dem Chor Model
einerseits BPEL4Chor Artefakte und andererseits BPEL Prozesse generieren möchten. Die
dazu benötigen Komponenten rufen wir aus dem Editor mittels Eclipse Commands auf, welche
nicht mit EMF/GMF Commands verwechselt werden sollten. Eclipse Commands werden dazu
benutzt, dass der Benutzer Aktionen über die Workbench ausführen kann. Wie in [Vog12]
beschrieben, benutzen wir für die Commands den org.eclipse.ui.commands Extension
point sowie den org.eclipse.ui.menus Extension point, zur Platzierung der Commands
in einem Menü der Menu Bar (als Referenz siehe Abbildung 5.2). Zuerst definieren wir
die zwei Commands "Export" und "Transform". Diesen Commands weisen wir jeweils eine
eindeutige id sowie Command Hanlder zu, welche die Logik enthalten, die beim Auslösen
der Commands ausgeführt werden soll. Command Handler sind Java Klassen, welche das
vom Eclipse Framework bereitgestellte IHandler Interface implementieren. Wir benutzen
für unsere Command Handler die bereits definierte AbstractHandler Klasse, welche die
wichtigsten Methoden von IHandler implementiert. Wir müssen lediglich die execute()
Methode implementieren in welcher wir bestimmen, was beim Ausführen passiert. Haben
wir beide Commands definiert, möchten wir diese dem Benutzer über die Menu Bar der
Workbench zur Verfügung stellen. Dazu betrachten wir Abbildung 5.45. Im Manifest unseres
generierten Editors finden wir die id, welche diesen Editor eindeutig auszeichnet. Dies
ist notwendig, da in Eclipse mehrere Editoren gleichzeitig benutzt werden können. Die
Commands und das neue Menü, welches wir "ChorDiagramEditor" nennen, definieren wir im
Manifest unseres Diagram Extensions Plugins. Wir benutzen den menus16 Extension point,
definieren eine menuContribution und legen fest, dass das neue Menü in der Menu Bar –
dem Hauptmenü der Workbench – angezeigt werden soll. Dies erreichen wir mit dem Wert
"menu:org.eclipse.ui.main.menu". Jetzt können wir den Namen des Menüs festlegen, indem
wir ein menu Knoten definieren und ihn mit "ChorDiagramEditor" belegen. Diesem menu
Knoten fügen wir nun zwei Commands hinzu, indem wir weitere Command Knoten anlegen,
sie entsprechend dem gewünschten Anzeigenamen benennen und auf die id unseres, bereits
unter org.eclipse.ui.commands, definierten Commands verweisen. Führen wir nun
Eclipse aus, ist das "ChorDiagramEditor" Menü immer sichtbar, selbst wenn unser Editor
nicht geöffnet – oder sogar ein anderer Editor geladen ist. Dies müssen wir unterbinden, da

16org.eclipse.ui.menus

142

5.2 Chor Designer

process

receive

baseTab

PickReceiveCreateInstanceSection

ReceivePick
TypeFilter

process

receive

activity
name

createInstance

...

attribute

attribute

attribute

SetCommand

new value

Ec
o

re
 M

o
d

el

baseTab

createInstance yes

Property View

GMF Editor
Plugin

execute command

Plugin
Extensions

Ecore Model

Abbildung 5.44: Das createInstance Attribut im Ecore Modell wird über die propertySec-
tion vom Benutzer verändert

143

5 Implementierung

dieses Menü nur zu unserem Editor gehört. Wir erreichen diese Einschränkung, indem wir
die Funktionen des Platform Expression Framework Plugins nutzen, welche in [ecle] beschrieben
sind. Wir schränken die Sichtbarkeit des "ChorDiagramEditor" Menüs ein, indem wir einen
"visibleWhen" Knoten definieren. Dann benutzen wir die vom Framework bereitgestellte
Variable "activeEditorId, welche die id des gerade Aktiven Editors der Workbench beinhaltet,
und prüfen mit dem "equals"Knoten auf Übereinstimmung mit der id unseres Editors.

144

5.2 Chor Designer

Platform Expression Framework

org.eclipse.ui.editors

Chor Diagram Editing (editor)

Chor Editor Manifest

Editor extensions Manifest

org.eclipse.ui.menus

menuContribution

id

menu:org.eclipse.ui.main.menu

visibleWhen

activeEditorId

equals

org.eclipse.core.expressions

Plugin

ChorDiagramEditor
(menu)

Export Choreography
(command)

Transform Choreography
(command)

id

id

org.eclipse.ui.commands

Transform

Export

Abbildung 5.45: Einrichten eines neuen Menüs für die Menu Bar der Workbench

145

6 Zusammenfassung und Ausblick

Wir haben in Kapitel 4 ein Konzept für einen grafischen Editor zum Modellieren von
Choreographien erarbeitet. Dabei haben wir mehrere Ansätze in Betracht gezogen und durch
Vor- und Nachteile abgewägt, welchen Weg wir verfolgen wollen. Wir haben uns, beim
Design des Editors, an dem bereits existierenden Prozesseditor BPEL Designer orientiert.
Auch mussten wir Einschränkungen Treffen wie z. B. das Weglassen der von BPEL4Chor
verwendeten Teilnehmertypisierung. Wir haben ein Modell für den Editor erarbeitet und
Algorithmen zur Transformation in BPEL4Chor Artefakte angegeben. Über die bereits
vorhandene Komponente BPE4ChorToBPEL, konnten wir aus den BPEL4Chor Artefakten
abstrakte BPEL Prozesse generieren. Durch weitere kleine Anpassungen konnten wir einen
kleinen Schritt in Richtung ausführbare Prozesse gehen. Doch mussten wir feststellen, dass
die automatische Durchführung einer "executable completion" eine sehr komplexe Aufgabe
ist.

Für die Implementierung des Chor Designers in Kapitel 5, haben wir einige Technologien des
Eclipse Projekts benutzt. EMF zum erstellen der Modelle, GMF zum realisieren des Editors.
Wir haben, durch die Benutzung von GMF, einen Model Driven Architecture Ansatz verwendet
und damit Programmcode generiert. Den generierten Code haben wir durch von Hand
erstellten Code ergänzt, um so unser Konzept exakt umsetzen zu können. Wir mussten den
Funktionsumfang des Editors einschränken, um den zeitlich begrenzen Rahmen für diese
Arbeit einzuhalten. Dies resultierte im Weglassen der Modellierungmöglichkeiten einiger
BPEL Konstrukte, sowie vielen programmatischen Hilfestellungen, welche der BPEL Designer
im Gegensatz leistet. Weitere Abstriche wurden in der Useability des Editors, sowie der grafi-
schen Repräsentation der Elemente gemacht. Hier besteht zwar noch Verbesserungspotential,
doch kann man abschließend sagen, dass die Ziele dieser Arbeit erreicht wurden. Wir geben
im Folgenden einen kleinen Ausblick über möglichen Anpassungen und Erweiterungen des
Chor Designers, die uns wichtig erscheinen.

Ausblick

Eine weiterführende Arbeit könnte sich mit der grafischen Darstellung befassen welche
generell überarbeitet werden sollte. Es sollten z. B. die Repräsentation der strukturierten
Aktivitäten wie ‹Sequence› oder ‹Flow› verbessert werden. Bei der ‹Flow› Aktivität
verhält sich das Layout im Compartment, bei der Platzierung von Aktivitäten, nicht ganz wie

146

gewünscht. Das Compartment sollte sich so vergrößern, dass die Platzierung der Aktivitäten
leicht fällt. Zurzeit vergrößert sich das Compartment nur minimal, so dass bei der Platzierung
einer Aktivität zu weit am Rand, eine Scrollbar eingeblendet wird. Dies kann den Benutzer
verwirren. Aktivitäten in einer ‹Sequence› sollten in Flussrichtung mit Pfeilen verbunden
werden.

Zum Abschluss dieser Arbeit können die Basis Aktivitäten ‹Invoke›, ‹Receive›, ‹Reply›
und ‹OpaqueActivity› modelliert werden. Von den strukturierten ist die Modellie-
rung von ‹Sequence›, ‹Scope›, ‹Pick› und ‹Flow› möglich. Für ‹Process› kön-
nen ‹CorrelationSets› und ‹MessageExchanges› angegeben werden. Variablen von
‹Invoke›, ‹Receive›, ‹Reply› und ‹OnMessage› können nur Opaque gesetzt werden.
Eine weiterführende Arbeit sollte alle restlichen BPEL Konstrukte für abstrakte Prozesse
ergänzen. Dazu gehören unter anderem ‹Assign›, ‹While›, ‹If› usw.. Im Participant
Behavior Description EMF Modell sind bereits alle erlaubten Konstrukte modelliert.

Es ist zwar möglich BPEL4Chor Artefakte zu exportieren doch wäre auch vorstellbar, bereits
vorhandene zu Importieren. Eine weiterführende Arbeit könnte einen Komponente entwerfen,
welche BPEL4Chor Artefakte einliest und Instanzen der zugehörigem EMF Modelle erzeugt.
Aus diesen EMF Modellen kann dann eine Instanz des Chor Model zusammengebaut
werden. Um dieses Chor Model im Editor anzeigen zu können, muss allerdings erst erforscht
werden, wie sich daraus die GMF Runtime Notation [eclb] generieren lässt. Diese Beinhaltet
unter anderem die grafischen Elemente mit ihren Positionsdaten. Man könnte noch einen
Schritt weiter gehen indem wir BPEL Prozesse als Ausgangsbasis nehmen. Mit der bereits
vorhandenen Komponente BPELToBPEL4Chor, spezifiziert in [Ste07], können wir daraus
BPEL4Chor Artefakte generieren. So könnte man einen Import von mehreren BPEL Prozessen
in den Choreographie Editor realisieren.

Wir hatten in Kapitel 4 besprochen, dass wir die BPEL4Chor Teilnehmertypisierung weg
lassen. Eine weiterführende Arbeit könnte jedoch ein Konzept dafür entwickeln und die
Typisierung einbauen. Es wären z. B. Prozessschablonen, abrufbar aus einem zentralen
Repository, denkbar. Wenn wir einen Blick auf den SimTech BPEL Designer und seine
angebundenen Komponenten werfen, kommt eventuell die Fragmento1 Komponente als
Repository in Frage.

Wir können mit unserem Editor Choreographien modellieren, doch können wir diese nicht
direkt aus dem Editor heraus Ausführen. Diese Einschränkung resultiert aus dem notwendi-
gen Zwischenschritt, dass zuerst ausführbare BPEL Prozesse erzeugt werden müssen, dies
aber nicht ohne weiteres bewerkstelligt werden kann. Eine weiterführende Arbeit könnte
ein Konzept entwickeln, wie sich die "executable completion" von BPEL Prozessen, wel-
che konform zum Abstract Process Profile for Observable Behavior Profil sind, automatisieren
lässt.

1http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/source.htm

147

http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/source.htm

Literaturverzeichnis

[DB08] G. Decker, A. Barros. Interaction modeling using BPMN. In Business Process
Management Workshops, S. 208–219. Springer, 2008. (Zitiert auf den Seiten 5

und 15)

[DK12a] G. Decker, O. Kopp. Grounding XSD Schema, 2012. URL
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/
BPEL4Chor%20schema/grounding.xsd. (Zitiert auf den Seiten 5, 23, 24

und 108)

[DK12b] G. Decker, O. Kopp. Topology XSD Schema, 2012. URL https://
github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%
20schema/topology.xsd. (Zitiert auf den Seiten 5, 9, 18, 19, 108 und 110)

[DKL+
08] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, M. Weske. Modeling service

choreographies using BPMN and BPEL4Chor. In Advanced Information Systems
Engineering, S. 79–93. Springer, 2008. (Zitiert auf Seite 13)

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for
modeling choreographies. In Web Services, 2007. ICWS 2007. IEEE International
Conference on, S. 296–303. IEEE, 2007. (Zitiert auf den Seiten 5, 16, 24, 34, 36

und 42)

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: From specifica-
tion to execution. Data & Knowledge Engineering, 68(10):946–972, 2009. (Zitiert
auf den Seiten 5, 9, 16, 17, 18, 21, 22 und 27)

[ecla] eclipse.org. GMF Labels. Wiki. URL http://wiki.eclipse.org/GMF_
Labels. (Zitiert auf Seite 123)

[eclb] eclipse.org. GMF Runtime API Specification. URL http://help.
eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/
reference/api/runtime/org/eclipse/gmf/runtime/notation/
package-summary.html. (Zitiert auf Seite 147)

[eclc] eclipse.org. Graphical Modeling Framework Tips. URL http://wiki.
eclipse.org/GMF/Tips. (Zitiert auf Seite 137)

148

https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/grounding.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/grounding.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/topology.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/topology.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor%20schema/topology.xsd
http://wiki.eclipse.org/GMF_Labels
http://wiki.eclipse.org/GMF_Labels
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/reference/api/runtime/org/eclipse/gmf/runtime/notation/package-summary.html
http://wiki.eclipse.org/GMF/Tips
http://wiki.eclipse.org/GMF/Tips

Literaturverzeichnis

[ecld] eclipse.org. Graphical Modeling Framework Tutorial. URL http://wiki.
eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1.
(Zitiert auf den Seiten 6 und 99)

[ecle] eclipse.org. Platform Expression Framework. URL http://wiki.eclipse.
org/Platform_Expression_Framework. (Zitiert auf Seite 144)

[ecl10] eclipse.org. Platform Plug-in Developer Guide, 2010. URL http://help.
eclipse.org/helios/index.jsp. (Zitiert auf den Seiten 6, 83, 85 und 87)

[FUMK06] H. Foster, S. Uchitel, J. Magee, J. Kramer. LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In Proceedings of the
28th international conference on Software engineering, S. 771–774. 2006. (Zitiert auf
Seite 13)

[GG09] R. C. Gronback, R. C. Gronback. Eclipse modeling project: a domain-specific language
toolkit. Addison-Wesley, Upper Saddle River, NJ, 1. print. Auflage, 2009. (Zitiert
auf den Seiten 6, 92, 94, 95, 104 und 134)

[Hun09] A. Hunter. The Eclipse Tabbed Properties View, 2009. URL
http://www.eclipse.org/articles/Article-Tabbed-Properties/
tabbed_properties_view.html. (Zitiert auf Seite 141)

[IBM07] IBM. Eclipse EMF Model Transaction Development Guide, 2007.
URL http://www.linuxtopia.org/online_books/eclipse_
documentation/eclipse_emf_model_transaction_developer_
guide/topic/org.eclipse.emf.transaction.doc/references/
overview/eclipse_emf_model_transaction_domains.html. (Zitiert
auf Seite 141)

[KL08] O. Kopp, F. Leymann. Choreography design using WS-BPEL. Data Engineering,
31(2):31–34, 2008. (Zitiert auf den Seiten 11 und 14)

[Kop12] O. Kopp. BPEL4Chor - ohne Cross-Partner-Scopes, 2012. (Zitiert auf den Seiten 9,
22, 23 und 24)

[Ley10] F. Leymann. Architectural Diagrams and Styles, 2010. Vorlesungsunterlagen von
Grundlagen der Architektur von Anwendungssystemen. (Zitiert auf Seite 14)

[Ley11] F. Leymann. BPEL: Web Service Business Process Execution Language, 2011.
Vorlesungsunterlagen von Workflow Management 1. (Zitiert auf Seite 15)

[Li10] C. Li. An Editing Environment for BPEL4Chor Cross-Partner Scopes. Diplomarbeit,
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstech-
nik, Germany, 2010. (Zitiert auf den Seiten 65 und 106)

149

http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
http://wiki.eclipse.org/Platform_Expression_Framework
http://wiki.eclipse.org/Platform_Expression_Framework
http://help.eclipse.org/helios/index.jsp
http://help.eclipse.org/helios/index.jsp
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html
http://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_emf_model_transaction_developer_guide/topic/org.eclipse.emf.transaction.doc/references/overview/eclipse_emf_model_transaction_domains.html

Literaturverzeichnis

[LL07] J. Ludewig, H. Lichter. Software-Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt-Verl., Heidelberg, 1. Auflage, 2007. (Zitiert auf den Seiten 5, 27

und 28)

[OAS07a] OASIS. Abstract BPEL Common Base, 2007. URL http://docs.
oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_
abstract_common_base.xsd. (Zitiert auf den Seiten 9, 16, 17, 108, 111

und 112)

[OAS07b] OASIS. Schema for Service Reference, 2007. URL http://docs.oasis-open.
org/wsbpel/2.0/OS/serviceref/ws-bpel_serviceref.xsd. (Zitiert
auf den Seiten 24 und 26)

[OAS07c] OASIS. Web Services Business Process Execution Language Version 2.0,
2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.pdf. (Zitiert auf den Seiten 15, 16, 17, 18, 29 und 43)

[Rei07] P. Reimann. Generating BPEL Processes from a BPEL4Chor Description. Studi-
enarbeit 2100, Institute of Architecture of Application Systems, 2007. (Zitiert auf
den Seiten 6, 9, 27, 105 und 107)

[Sha04] S. Shavor. Eclipse: Anwendungen und Plug-Ins mit Java entwickeln. Addison-Wesley,
München, 2004. (Zitiert auf Seite 85)

[Ste07] T. Steinmetz. Generierung einer BPEL4Chor-Beschreibung aus BPEL-Prozessen.
Studienarbeit 2101, Institut für Architektur von Anwendungssystemen, 2007.
(Zitiert auf den Seiten 35 und 147)

[Ste11] D. Steinberg. EMF: Eclipse modeling framework. Addison-Wesley, Upper Saddle
River, NJ, 2. ed., rev. and updated, 2. printing Auflage, 2011. (Zitiert auf den
Seiten 6, 83, 86, 88, 89 und 91)

[TDG06] I. J. Taylor, E. Deelman, D. B. Gannon. Workflows for e-Science: scientific workflows
for grids. Springer, 2006. (Zitiert auf Seite 11)

[Vog12] L. Vogel. Eclipse Commands Tutorial, 2012. URL http://www.vogella.com/
articles/EclipseCommands/article.html. (Zitiert auf Seite 142)

[Vuk09] K. Vukojevic. Architektur eines Workflow-Frameworks zur graphischen Erstel-
lung und Ausführung von Simulationsexperimenten. Studienarbeit 2217, Institut
für Architektur von Anwendungssystemen, 2009. (Zitiert auf Seite 31)

[WLHa00] L. Wood, A. Le Hors, et al. Document Object Model (DOM) Level 1 Specification
(Second Edition). Technischer Bericht, W3C, 2000. URL http://www.w3.org/
TR/2000/WD-DOM-Level-1-20000929/. (Zitiert auf Seite 48)

Alle URLs wurden zuletzt am 03. 05. 2013 geprüft.

150

http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/serviceref/ws-bpel_serviceref.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/serviceref/ws-bpel_serviceref.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.vogella.com/articles/EclipseCommands/article.html
http://www.vogella.com/articles/EclipseCommands/article.html
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschift

	1 Einleitung
	2 Verwandte Arbeiten
	3 Grundlagen
	3.1 Choreographien
	3.2 BPEL
	3.3 BPEL4Chor
	3.3.1 Participant Behavior Description
	3.3.2 Topology
	3.3.3 Grounding
	3.3.4 Von BPEL4Chor zu ausführbaren BPEL Prozessen

	3.4 Model View Controller

	4 Konzeption
	4.1 Erster Ansatz
	4.2 Zweiter Ansatz
	4.3 Dritter Ansatz
	4.4 Vierter Ansatz
	4.5 Choreographie Editor
	4.5.1 Entwicklung des Chor Models
	4.5.2 Chor Model Transformation
	4.5.3 Generierung von BPEL Prozessen
	4.5.4 Grafisches Konzept

	5 Implementierung
	5.1 Verwendete Technologien
	5.1.1 Eclipse
	5.1.2 Eclipse Modeling Framework
	5.1.3 Graphical Editing Framework
	5.1.4 Graphical Modeling Framework
	5.1.5 Xpand Template Language
	5.1.6 BPEL4Chor2BPEL

	5.2 Chor Designer
	5.2.1 EMF Modelle
	5.2.2 Graphical Definition Model
	5.2.3 Tooling Definition Model
	5.2.4 Mapping Definition Model
	5.2.5 GMF Generator Model
	5.2.6 Diagram Extensions

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

