*
*

.
e

&
<

Q
A8
ol
ode?

9,99
OO
0000

OO0
L 2O
0,:,000

*
*

Institut fir Architektur von Anwendungssystemen
Universitat Stuttgart
UniversitatsstraBBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3454

REST Testbed

Nick Eisenbraun

Studiengang: Informatik

Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Florian Haupt
begonnen am: 04.02.2013

beendet am: 06.08.2013

CR-Klassifikation: C.2.4,D.2.1,D.2.5, D.2.11

Kurzfassung

Web Services, die gemafs dem Architekturstil REST entworfen werden, zeichnen sich durch
Eigenschaften wie Interoperabilitit, lose Kopplung, Wiederverwendbarkeit, Leistung und
Skalierbarkeit aus. In verteilten Systemen werden deswegen oft REST-basierte Web Services
eingesetzt. Verteilte Systeme haben hohere Fehleranfailligkeit als Standalone-Anwendungen
und diese Erkenntnis sollte beim Entwicklungsprozess durch ausreichende Testszenarien
berticksichtigt werden. Bei der Entwicklung von REST-basierten Client-Anwendungen wird
ein REST-basierter Web Service benotigt, um die Funktionalitdten der Client-Anwendung
zu testen. In dieser Diplomarbeit werden Anforderungen an ein Testbed zum Testen von
REST-basierten Client-Anwendungen gestellt. Es wird eine Architektur zu diesem Testbed
entworfen und anschliefiend ein Testbed prototypisch implementiert. Bei der Entwicklung
des Testbeds werden die Eigenschaften wie Erweiterbarkeit und Konfigurierbarkeit der
Funktionalititen des REST-basierten Web Services sichergestellt. Durch die berticksichtigte
Erweiterbarkeit kann das Testbed leicht um neue Funktionalitdten ergénzt werden. Die Konfi-
gurierbarkeit erlaubt das Anpassen der funktionalen und nicht-funktionalen Eigenschaften
des Testbeds, um die Erfiillbarkeit der an eine Client-Anwendung gestellten funktionalen
und nicht-funktionalen Anforderungen zu tiberpriifen.

Inhaltsverzeichnis

Abkiirzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis

1 Einleitung

1.1 Motivation
1.2 Aufgabenstellung
1.3 Eingrenzung . . .

1.4 Aufbau der Arbeit

2 Grundlagen

21 RESTund ROA e e e e e e
2.1.1 Geschichtliches
212 Ressourcen e e e
2.1.3 Architekturprinzipien o o L L
2.1.4 Sicherheit und Idempotenz
2.2 Software-Priiffung
221 PhasendesTestablaufs
2.2.2 Qualitdtssicherungsmafsnahmen
22.3 Prifungsverfahren o L oL
224 Regressionstest L oL L
2.3 Aspektorientierte Programmierung L.
231 Joinpoint
232 Pointcut e
233 Advice e e
234 Ausfithrungsreihenfolge

3 Verwandte Arbeiten
3.1 GENESIS
3.2 SOA4ALL

4 Anforderungen

4.1 Funktionale Anforderungen
42 Nicht-funktionale Anforderungen
4.3 Anwendungsfille und Anwendungsfall-Diagramm

44 Sequenzdiagramm

viii

ix

W NDNDN =

N o O O o

10
11
11
13
13
13
14
14
14
15
16

17
17
20

27
27
28
30
38

iii

Inhaltsverzeichnis

5 Konzept und Architektur 41
51 Plug-in-Konzept. 42
52 MVC-Konzept e 44
5.3 Datenmodell der Plug-in-Konfigurationen. 45

6 Design 49
6.1 Zentralisierter Container fiir Plug-ins 49
6.2 Views von Plug-in-Konfigurationen 51
6.3 Controller von Plug-in-Konfigurationen 51
6.4 Modelle von Plug-in-Konfigurationen 52
65 Plug-ins. 53

6.5.1 KonfigurationenvonPlug-ins. 53
6.5.2 Beobachter vonPlug-ins 53
6.5.3 Domainlogik vonPlug-ins 53

7 Implementierung 61

7.1 Konfigurationsverwaltung L L 61
7.1.1 Modell vom Model View Controller MVC)-Architekturmuster 61

7.1.2 Views vom MVC-Architekturmuster 62

7.1.3 Controller vom MVC-Architekturmuster 62

7.2 Validierung der Benutzereingaben 63
7.2.1 Validierung auf der Client-Anwendung 63

7.2.2 Validierung aufdem Testbed 64

7.3 BeobachtervonPlug-ins 64
74 Domainlogik vonPlug-ins 66
74.1 Protokollieren (Plug-in Logging) 67

7.4.2 HTTP-Statusmeldungen (Plug-in Responsecodes) 68

743 Autorisierung (Plug-in Authorization) 69

744 Ressourcen (Plug-in Resources) 69

74.5 Reprdsentationen (Plug-in Representation) 71

74.6 Caching (Plug-in Caching) 73

7.4.7 Cookies (Plug-in Cookies) 73

8 Zusammenfassung und Ausblick 75
Literaturverzeichnis 77

iv

Abklrzungsverzeichnis

AJDT Aspect] Development Tools

API Application Programming Interface

AOP Aspect-Oriented Programming

BAM Business Activity Monitoring

CRUD Create, Retrieve, Update, Delete

CSV Comma-Separated Values

ESB Enterprise Service Bus

GUI Graphical User Interface

GWT Google Web Toolkit

HATEOAS Hypermedia as the Engine of Application State
HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers
JAX-RS Java API for RESTful Web Services

JSON JavaScript Object Notation

LPML Literate Programming Markup Language
MIME Multipurpose Internet Mail Extensions

MVC Model View Controller

RDF Resource Description Framework

RFC Request for Comments

QoS Quality of Service

REST Representational State Transfer

ROA Resource-Oriented Architecture

SAWSDL Semantic Annotations for WSDL and XML Schema

SSL Secure Sockets Layer

Inhaltsverzeichnis

SOA Service-Oriented Architecture

SOA4ALL Service Oriented Architectures for All

SOAP Simple Object Access Protocol (deprecated)

UDDI Universal Description, Discovery and Integration
URI Uniform Resource Identifier

W3C World Wide Web Consortium

WADL Web Application Description Language

WSDL Web Services Description Language

XML eXtensible Markup Language

vi

Abbildungsverzeichnis

1.1

21
22

3.1
3.2

3.3
34
3.5

4.1
4.2

51
52
53
54
55

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
73
74
7.5

Uberblick iiber Komponenten des Testbeds 3
Testphasen im Software-Lebenszyklus 11
Semantischer Testablauf 12
Konzept von GENESIS2 18
Architektur von Service Oriented Architectures for All (SOA4ALL) mit inte-

griertenTools 20
Definition eines REST-basierten Web Service 22
Ressourcendefinition fiir ein REST-basiertes Web Service 23
Architektur von SOA4ALL 24
Anwendungsfall-Diagramm zum REST Testbed 30
Sequenzdiagramm zum REST Testbed 39
Systemarchitektur o 42
Abarbeitung vonPlug-ins Lo 44
MVC 45
Datenmodell der Plug-in-Konfigurationen 46
Szenario zum Modifizieren einer Plug-in-Konfiguration 47
Klassendiagramm zum Testbed 50
Auslesen von Plug-in-Konfigurationen tiber ConfigurationAPI 51
Modifizieren von Plug-in-Konfigurationen tiber ConfigurationAPI 52
Bearbeitung einer Hypertext Transfer Protocol (HTTP)-Anfrage tiber TestSer-

viceAPL 54
Klassendiagramm:Protokollierung von HTTP-Anfragen. 55
Klassendiagramm:Ressourcenzugriff 55
Klassendiagramm:Generierung von Reprédsentationen 56
Klassendiagramm:Autorisierung 57
Klassendiagramm:Cookies 57
Klassendiagramm:Steuerung von dem Caching-Verhalten der Client-Anwendung 58
Klassendiagramm:Simulation von HTTP-Statusmeldungen 59
Beobachter als Aspekt L L L 65
Schnittstelle fiir Ressourcen-Klassen 70
Ressourcen-Attribut o o 70
Reprdsentation in JSON-Format 72
Layoutin JSON-Format 72

vii

Abbildungsverzeichnis

7.6 Reprdsentationin XML-Format 73
7.7 Layoutin XML-Format, 73

viii

Tabellenverzeichnis

41 Anwendungsfall1.1. 31
42 Anwendungsfall1.2. L o 32
43 Anwendungsfall1.3. L L 32
44 Anwendungsfall2.1. 33
45 Anwendungsfall2.2.o L oo 33
46 Anwendungsfall2.3. L L o 34
47 Anwendungsfall2.4. L 35
48 Anwendungsfall25. 36
49 Anwendungsfall2.6. L o 36
410 Anwendungsfall2.7. 37
411 Anwendungsfall2.8. L o 37
412 Anwendungsfall29. L o Lo 38

X

1 Einleitung

Representational State Transfer (REST) Web Services stellen eine einfache Alternative zur
Realisierung von Web Services dar. Die Einfachheit bezieht sich dabei auf die Nutzung
von bekannten Standards wie HyperText Markup Language (HTML), eXtensible Markup
Language (XML), Uniform Resource Identifier (URI) und Multipurpose Internet Mail Ex-
tensions (MIME). Eine ressourcenorientierte Architektur (ROA) stellt eine konkrete REST-
konforme Architektur zur Umsetzung REST-konformer Web Services dar. Bei ROA stehen
Ressourcen im Mittelpunkt, die eindeutig identifizierbar und somit adressierbar sind. Alle
Ressourcen verfiigen iiber eine einheitliche Schnittstelle, die sich durch die Create, Retrieve,
Update, Delete (CRUD)-Operationen auszeichnet. Unter Verwendung von HTTP bei der
Implementierung von REST Web Services sind das die entsprechenden HTTP-Methoden.
Ressourcen konnen tiber verschiedene Reprasentationen in Formaten wie HTML, XML,
JavaScript Object Notation (JSON) etc. dargestellt werden. Unter Verwendung von Links in
Reprasentationen kann auf andere Ressourcen verwiesen werden, die in einer Beziehung zu
der betrachteten Ressource stehen (PZL08, S. 807). Eine weitere Eigenschaft von REST ist die
gute Skalierbarkeit im Web (Til11, S. 4). Legt man auf diese Eigenschaften Wert, so werden
REST Web Services bevorzugt eingesetzt.

Wie bei jeder Softwareentwicklung treten auch bei der Entwicklung von REST-basierten
Client-Anwendungen Schwierigkeiten auf. Bei Client/Server-Anwendungen besteht auf-
grund der Verteilung der Komponenten zusitzliche Fehleranfilligkeit (SW02, S. 17, 19). Ein
Netzwerk, tiber welches die verteilten Komponenten kommunizieren, kann iiberlastet oder
nicht verfiigbar sein. Die Anwendungen sollten auf verschiedene Fehlersituationen vorbe-
reitet sein und nicht nur auf das spezifizierte Verhalten. Es gibt verschiedene Verfahren, um
ein Anwendungssystem wéhrend ihres Lebenszyklus auf Fehler zu untersuchen. Um qualita-
tive Ergebnisse zu liefern, braucht man Testwerkzeuge zur Uberpriifung der funktionalen
und nicht-funktionalen Eigenschaften der in der Entwicklung befindender Anwendung. Um
eine Client-Anwendung zu testen, wird an erster Stelle eine Server-Anwendung vorausge-
setzt, mit der die Client-Anwendung kommunizieren soll. Genau darauf konzentriert sich
diese Diplomarbeit. Es soll ein konfigurierbares Testbed mit REST-basierten Web Services
zum Verifizieren der funktionalen und nicht-funktionalen Eigenschaften von REST-basierten
Client-Anwendungen entwickelt werden.

Unter Testbed wird hierbei eine Experimintierumgebung verstanden, die als Plattform zur
Forderung experimenteller Arbeitsweisen dient. Gemafs Institute of Electrical and Electronics
Engineers (IEEE) Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,
wird der Begriff Testbed mit einer Umgebung assoziiert, die Hardware, Instrumente, Simu-
latoren, Software-Tools und andere unterstiitzende Elemente zum Durchfithren von Tests
beinhaltet (IEE90).

1 Einleitung

1.1 Motivation

Das Testen ist ein bedeutsamer Teil der Softwareentwicklung. Die Entwicklung soll wahrend
des ganzen Entwicklungsprozesses kontinuierlich durch verschiedene Tests unterstiitzt wer-
den. Zu solchen Tests gehoren Modultest (Unit Test), Integrationstest etc. Fiir gewtinschte
Tests werden passende Web Services beziehungsweise Tools gebraucht, die oft erst spezi-
ell an eine einzelne Client-Anwendung zugeschnitten implementiert werden miissen. In
manchen Féllen konnte man auf eine neue Implementierung von REST-basierten Web Ser-
vices verzichten, indem man auf bereits vorhandene Implementierungen wie von einem
externen Service-Anbieter ausweicht. Diese sind jedoch oft mit Nutzungskosten oder an-
deren Limitierungen verbunden, was die Experimentierfreiheit deutlich einschrénkt. Ein
konfigurierbares REST Testbed unterstiitzt somit als Testwerkzeug bei der Entwicklung ei-
ner REST-basierten Client-Anwendung, ohne unnotige Einschrankungen, vor allem in den
fritheren Entwicklungsphasen, zu verursachen. Die entwickelten Komponenten in der Client-
Anwendung konnen auf diese Weise getestet, evaluiert sowie demonstriert werden. Dazu
muss ein Testbed umfassende Funktionalitdt bieten, konfigurierbar und beobachtbar sein.
Durch reproduzierbare Testszenarien genauso wie Simulation von Fehlerfillen kann das
Testbed bei dem Testprozess und somit bei der Suche nach Fehlverhalten die Tester und
Entwickler unterstiitzen.

1.2 Aufgabenstellung

In dieser Diplomarbeit sollen zundchst die bereits skizzierten Anforderungen aus dem Ab-
schnitt 1.1 an ein entsprechendes REST Testbed detailliert erhoben und aufbereitet werden.
Anschlieend soll ein Uberblick iiber bestehende Testbeds und ihre Anwendbarkeit auf
die vorliegende Problemstellung gegeben werden. Weiterhin soll ein Konzept sowie eine
Architektur eines REST Testbeds entworfen und anschlieffend prototypisch implementiert
werden.

1.3 Eingrenzung

Das Ziel dieser Diplomarbeit ist die Entwicklung eines konfigurierbaren REST Testbeds mit
umfassender Funktionalitat zum Testzweck. Dieser dient zur Uberpriifung der Erfiillbar-
keit von funktionalen und nicht-funktionalen Anforderungen, die an REST-basierte Client-
Anwendungen gestellt werden. Mit der Konfigurierbarkeit ist die Moglichkeit zum Steuern
von funktionalen beziehungsweise nicht-funktionalen Eigenschaften gemeint. Die Abbildung
1.1 zeigt Komponenten des Testbeds. Es werden zwei Schnittstellen zur Verfiigung gestellt.
Uber die Schnittstelle ConfigurationAPI sollen die funktionalen und nicht-funktionalen Ei-
genschaften des REST Testbeds angepasst und tiber die Schnittstelle TestServiceAPI sollen
die Ressourcen angefragt werden. Basierend auf der in Abschnitt 1.2 beschriebenen Pro-
blemstellung soll ein REST-basierter Web Service zum Testen von Client-Anwendungen die

1.4 Aufbau der Arbeit

Schnittstelle TestServiceAPI implementieren. Dabei sollen die {iber die Schnittstelle Configu-
rationAPI konfigurierten funktionalen und nicht-funktionalen Eigenschaften sich auf den
REST-basierten Web Service auswirken. Nach einer passenden Konfiguration aller im Testbed
vorhandenen funktionalen und nicht-funktionalen Eigenschaften an bestimmte Testfélle, kann
der REST-basierte Web Service zum Testen der Client-Anwendungssysteme in Anspruch
genommen werden.

REST Testbed
ConfigurationAPI Functional
Property 1
Functional
TestServiceAPI Property n

Abbildung 1.1: Uberblick iiber Komponenten des Testbeds

1.4 Aufbau der Arbeit

Der Rest der Ausarbeitung dieser Diplomarbeit ist wie folgt aufgebaut. Um das REST Test-
bed besser zu verstehen, bietet das Kapitel 2 einen Einblick in die Konzepte des REST-
Architekturstils, einiges an Grundwissen aus dem Bereich Software-Priifung und der aspek-
torientierten Programmierung. Kapitel 3 prasentiert einige verwandte Arbeiten, welche in
Bezug auf die Problemstellung von REST Testbed diskutiert werden. In Kapitel 4 werden
die an das zu entwickelnde REST Testbed gestellten Anforderungen detailliert erhoben
und aufbereitet. Aufbauend auf den Erkenntnissen aus Kapitel 3 und den Anforderungen
aus Kapitel 4 wird in Kapitel 5 ein Konzept ausgearbeitet. Zu diesem Konzept wird eine
komponentenbasierte Architektur zum REST Testbed mit den Erweiterungskomponenten
vorgeschlagen. Kapitel 6 widmet sich dem Design vom REST Testbed. In diesem Kapitel sind
die Klassendiagramme von dem komponentenbasierten Testbed sowie von den einzelnen
Erweiterungskomponenten zu finden. Die implementierungstechnischen Details zum REST
Testbed und den Erweiterungskomponenten sind in Kapitel 7 beschrieben. Das letzte Kapitel
beinhaltet eine Zusammenfassung dieser Diplomarbeit und gibt einen Uberblick iiber die
noch anstehende Verbesserungs- und Erweiterungsmoglichkeiten des REST Testbeds.

1 Einleitung

2 Grundlagen

Dieses Kapitel bietet einen Einblick in die Eigenschaften des REST-Architekturstils. Es wird
einiges an Grundwissen der Software-Priifung und der aspektorientierten Programmierung,
anhand einiger Konstrukte aus der aspektorientierten Sprache Aspekt], vermittelt.

2.1 REST und ROA

Representational State Transfer (REST) beschreibt einen Architekturstil von verteilten Anwen-
dungssystemen. Ressourcenorientierte Architektur (ROA) stellt eine konkrete REST-konforme
Architektur und somit eine Alternative zur Umsetzung REST-konformer Web Services dar.
Die Kernbestandteile von ROA sind Ressourcen, deren Namen und Représentationen genauso
wie Verweise zwischen Ressourcen. Zu den Eigenschaften von ROA gehoren Adressierbarkeit,
Zustandslosigkeit, Verbindungshaftigkeit und die einheitliche Schnittstelle. Auf die genannten
Bestandteile und Eigenschaften von ROA wird spiter in diesem Kapitel eingegangen.

REST- und SOAP-basierte Web Services sind zurzeit die gdngigsten Alternativen, die Web
Services zu realisieren, und je nach gestellten Anforderungen wird die eine oder andere
bevorzugt (Ric07, S. XIV-XV). Ein Unterschied zwischen REST und SOAP Web Services besteht
darin, wie die Dokumente tibertragen werden. Ein Beispiel von Web Services, die mit HTTP-
Protokoll umgesetzt sind, verdeutlicht diesen Unterschied. Bei REST Web Services werden
Dokumente in einen HTTP-Umschlag verpackt. SOAP Web Services verpacken Dokumente
in einen SOAP-Umschlag, der wiederum in einen HTTP-Umschlag verpackt wird (Ric07, S.
23).

Im Folgenden wird das Interesse voll und ganz den REST-konformen Web Services gewidmet.
Der Architekturstil REST ist vor allem wegen seiner Leichtgewichtigkeit fiir die Software-
Entwickler sehr attraktiv. Als ndchstes wird das geschichtliche Entstehen des Begriffs REST
erldutert und die REST-Prinzipien aufgefiihrt und diskutiert.

Es werden explizit einige Technologien wie HTTP, URI und XML genannt und fiir die Im-
plementierung von REST-konformen Web Services herangezogen. Diese erfiillen die an den
REST-Architekturstil gestellten Voraussetzungen. Dabei wird betont, dass es beim REST sich
um ein Architekturstil handelt und dieser grundsétzlich mit keiner Technologie verbunden
ist (Ric07, S. 89).

2.1.1 Geschichtliches

Der Begriff REST wurde von Roy Thomas Fielding im Jahr 2000 in seiner Dissertation Ar-
chitectural Styles and the Design of Network-based Software Architectures gepragt. Er verglich

2 Grundlagen

verschiedene Architekturen der verteilten Systeme auf deren Eigenschaften und definierte
REST als Folgerung seiner Forschungen. REST war eine Zusammenstellung von verschie-
denen Designkriterien (Ric07, S. XII-XIV,90). Im fiinften Kapitel seiner Dissertation hat er
den REST-Architekturstil durch weiter unten diskutierte Architekturprinzipien beschrieben
(Fie00).

2.1.2 Ressourcen

Wie bereits in Abschnitt 2.1 erwdhnt, gehort ROA zu den REST-konformen Architekturen
und konzentriert sich auf die Ressourcen. Ein Objekt oder Liste von Objekten, die mit einem
Modell beschrieben werden konnen, werden als Ressource interpretiert. Die Ressourcen
bekommen einen eigenen eindeutigen URI und werden dadurch adressierbar. Die Ressourcen
konnen und sollten auch Verweise auf andere Ressourcen beinhalten, mit denen sie in einer
Beziehung stehen (Ric07, S. 95). Dieses Prinzip der Verlinkung wird auch als Hypermedia as
the Engine of Application State bezeichnet. Eine weitere Eigenschaft einer Ressource ist deren
Représentationen. Fiir jede Ressource kann eine Menge von verschiedenen Reprasentationen
bereitgestellt werden, woraus man sich durch Content Negotiation auf eine Darstellung einigt.
Im weiteren Verlauf werden die oben angeschnittenen Eigenschaften von Ressourcen genauer
beschrieben (Fie00).

Identifizierbarkeit

Unter Ressourcen sind Objekte oder Listen von Objekten gemeint. Damit diese Objekte
beziehungsweise Listen von Objekten abrufbar sind, miissen sie adressierbar sein. Das hat
bei REST zur Folge, dass alle Ressourcen gemafs Request for Comments (RFC) 2396 (BL98)
einen URI besitzen. Mit URIs kénnen die Ressourcen global eindeutig identifiziert und somit
abrufbar gestaltet werden (Ric07, S. 92-97) (PZL08, S. 807).

Hypermedia as the Engine of Application State

Mit Hypermedia as the Engine of Application State (HATEOAS) werden die Verlinkungen
von Ressourcen assoziiert. Es wird nicht nur eine Représentation einer Ressource alleine vom
Server zum Client tibertragen, sondern auch Verlinkungen auf andere Ressourcen. Besteht bei
einer Ressource ein Zusammenhang mit anderen Ressourcen, so sollen der Reprasentation
zusétzlich die entsprechenden Links auf diese Ressourcen eingebettet werden. Diese zusitzli-
chen Informationen sind als Zustandsiibergdnge von dem Client zu interpretieren (Ric07, S.
106-109) (Fie08).

Reprasentationen

Die Reprasentation einer Ressource schliefst die Darstellung von Daten genauso wie deren
Metadaten ein. Bei der Benutzung des HTTP-Protokolls werden dazu MIME-Typen verwen-
det. Die wohl gangigsten Formate zur Reprasentation von Ressourcen sind HTML, XML und

2.1 REST und ROA

JSON. Bei der Inhaltsvereinbarung (Content Negotiation) zum Beispiel mit Hilfe des HTTP-
Headers bei der HTTP-Anfrage wird zwischen Client und Server tiber den bevorzugten
MIME-Typ zur Reprasentation der Ressource ausgehandelt (Fel10, S. 53-54) (Fie(00).

Selbstbeschreibende Nachrichten

Diese Eigenschaft ist die direkte Forderung der zustandslosen Kommunikation zwischen
Client und Server. Die zustandslose Kommunikation bedeutet, dass der Zustand der Inter-
aktion zwischen Client und Server nicht vom Server verwaltet wird. Deswegen sollen die
Nachrichten alle notwendigen Daten und Metadaten enthalten, um die gewtiinschte Aufgabe
erledigen zu konnen. Der Zustand einer Anwendung wird somit mit der Reprasentation der
Ressource beschrieben (BS07). Das hat zur Folge, dass der Inhalt der Nachrichten auch von
den Zwischenknoten auf dem Pfad zwischen Client und Server interpretiert werden kann.
Diese Eigenschaft ist auch wichtig, um dem Caching gerecht zu werden (Till1l, S. 144). Wenn
ein Zwischenknoten feststellen kann, dass eine angefragte Reprasentation einer Ressource
im Cache von diesem Knoten verfiigbar und noch aktuell ist, dann kann dieser Knoten diese
Reprasentation aus eigenem Cache dem Anfragesteller iibermitteln und somit den Server
entlasten.

2.1.3 Architekturprinzipien

Dem REST sind einige Designkriterien zu Grunde gelegt, die bei der Entwicklung von REST-
konformen Web Services zu beachten sind, um die Vorteile des Webs nutzen zu konnen
(Fie00). Diese Kriterien werden nun kurz vorgestellt.

Client-Server-Architektur

Durch die Standardisierung der Kommunikation werden Client und Server voneinander
entkoppelt. So konnen mehrere Clients die Dienste eines Servers in Anspruch nehmen. Der
Client spielt eine aktive Rolle bei diesem Konzept. Er kann eine Anfrage an den Server stellen.
Der Server ist dabei eine passive Komponente, die auf Anfragen des Clients wartet. Beim
Eintreffen der Anfragen werden entsprechende Prozeduren ausgefiihrt und dem Client die
angemessene Antwort geliefert. Dieses Prinzip tragt durch die Trennung der Angelegenheiten
der Benutzerschnittstelle von den Aufgaben der Datenhaltung zu der Portabilitdt des Clients
tiber mehrere Plattformen hinweg bei und auf dem Server wird die Skalierbarkeit durch die
Vereinfachung der Komponenten verbessert. Dadurch wird es moglich die Komponenten
voneinander unabhingig zu entwickeln (Fie00, S. 78).

Zustandslosigkeit

Prinzip der Zustandslosigkeit bezieht sich auf die zustandslose Kommunikation zwischen
Client und Server. Das bedeutet, dass einzelne Anfragen aus einer Sequenz der Anfragen

2 Grundlagen

an einen Server unabhingig voneinander erfolgen und somit als einzelne Transaktionen zu
betrachten sind. Fiir die Kommunikation verwendet REST das zustandslose HTTP-Protokoll.
Nach diesem Prinzip muss der Client nicht an einen bestimmten Server gebunden sein. Beim
Ausfall eines Servers kann der Client seine Arbeit einfach mit einem anderen Server mit einem
gleichen Dienst fortsetzen. Dieses Prinzip ermoglicht somit die Skalierbarkeit, tragt zu der
Einfachheit und der Transparenz bei (Ric07, S. 98-101) (Fie00) (PZL0S, S. 3).

Cache

Die bereits empfangenen Ressourcen konnen auf dem Client oder den Zwischenknoten auf
dem Pfad zum Server gespeichert werden. Wenn bei den angefragten Ressourcen, die sich
schon aus den alten Anfragen auf dem Client oder Zwischenknoten befinden, festgestellt wer-
den kann, dass diese immer noch aktuell sind, dann konnen diese von dem Client verwendet
werden. So kann der Server entlastet werden und man vermeidet unnétige Kommunikati-
onszeiten. Dieses Prinzip ermoglicht folglich gute Skalierbarkeit und verbessert die Effizienz
(Fie00, S. 79-81).

Einheitliche Schnittstelle

Unter der einheitlichen Schnittstelle werden die Ressourcen-Operationen verstanden. REST
ist nicht an das Web gebunden und héangt nicht von den HTTP-Methoden ab. Dennoch ist oft
die Rede von den Web Services, und deswegen werden gleich auch die Web-Technologien
hinzugezogen. Die Informationen beziiglich der Methoden auf die mit URIs adressierten
Ressourcen verbergen sich in der HTTP-Methode (Ric07, S. 90,101). Allgemein gesehen wird
bei einer einheitlichen Schnittstelle nach dem CRUD-Prinzip gearbeitet. Dabei steht CRUD fiir
die gebrauchlichsten Operationen beim REST: Create, Retrieve, Update und Delete (PZL08, S.
807). Diese einzelnen Operationen bezogen auf das Web entsprechen im engeren Sinne den
HTTP-Methoden POST, GET, PUT und DELETE (Fie09):

e Create (POST, PUT): Zum Erstellen einer neuen Ressource.
e Retrieve (GET): Zum Holen einer Représentation einer Ressource.
e Update (PUT): Zum Verandern von Eigenschaften einer Ressource.

e Delete (DELETE): Zum Loschen einer Ressource.

Die HTTP-Methoden PUT und POST konnen beide fiir das Erstellen einer neuen Ressource
verwendet werden. Es gibt aber eine Unterscheidung, wann die eine oder andere Methode
einzusetzen ist. Will man darauf Einfluss nehmen, welche URI die neue Ressource bekommen
soll, so ist die PUT-Methode zu verwenden. Uberlidsst man die Benennung der Ressource
dem Server, dann soll man die POST-Methode einsetzen (Ric07, S. 110-116) (Fie00, S. 81-82)
(Fie09).

Die POST-Methode hat auch eine andere Funktion, die aufSerhalb der Grenzen von REST
liegt. Bei der einheitlichen Schnittstelle stellen HTTP-Methoden die Methoden-Informationen

2.1 REST und ROA

dar. Es ist aber nicht immer moglich, die Methoden-Information in der HTTP-Methode zu
tibermitteln. Ein Beispiel dafiir sind Ressourcen-Reprasentationen in HTML-Format mit
HTML-Formularen. Ein HTML-Formular erlaubt nur die HTTP-Methoden GET und POST.
Die Methoden-Information zum Andern oder zum Loschen der Ressource muss in diesem
Fall auf eine andere Weise tibermittelt werden. Fiir solche Fille wird die POST-Methode zur
Ubertragung der Daten verwendet. Die Methoden-Information kann dabei im URI, HTTP-
Header oder Entity-Body kodiert sein. Die Methoden-Information befindet sich in diesem
Fall nicht in der HTTP-Methode und die Schnittstelle ist somit nicht mehr einheitlich. (Ric07,
S. 112-116)

Es gibt noch andere HTTP-Methoden, die weniger gebrduchlich sind (Ric07, S. 111-112):

e HEAD: Zum Holen der Metadaten beziehungsweise HTTP-Header einer Ressource.
e OPTIONS: Zum Priifen von unterstiitzten HTTP-Methoden einer Ressource.
e TRACE: Zum Debuggen von Proxys.

e CONNECT: Zum Weiterleiten von anderen Protokollen iiber einen HTTP-Proxy.

Die einheitliche Schnittstelle wird durch die Identifizierbarkeit der Ressourcen, Manipu-
lierbarkeit von Ressourcen iiber Reprasentationen, selbstbeschreibende Nachrichten und
HATEOAS ermoglicht (Fie00, S. 82). Die Ressourcen werden mithilfe von URIs eindeutig
identifiziert und sind somit adressierbar. So konnen die Reprdsentationen von Ressourcen
mit der GET-Methode angefragt werden. Die Reprédsentationen konnen Manipuliert und mit
der PUT-Methode an den Server geschickt werden, damit die Anderungen in die Ressourcen
auf dem Server einflieen. Mit der POST- oder PUT-Methode konnen mithilfe von URIs neue
Ressourcen angelegt und mit der DELETE-Methode geloscht werden. Die Reprédsentationen
von Ressourcen beinhalten alle Daten und Metadaten zur Erledigung der gewiinschten Auf-
gabe. Zu den Daten von Ressourcen gehodren auch Verlinkungen von Ressourcen. Uber diese
Links (URIs) kann der Ubergang zu anderen Ressourcen mit der GET-Methode erfolgen.

Layered System

Mit der Schichtenarchitektur eines Systems (Layered System) werden die Funktionalitdten
nach dem Abstraktionsgrad in hierarchische Schichten zerlegt. Die Kommunikation bei
dieser Architektur erfolgt nur zwischen benachbarten Schichten. Dabei ruft eine Schicht
die Funktionalitdten der direkt darunter liegender Schicht ab. Dafiir sind die Schnittstellen
bei jeder Schicht definiert, die nur der direkt dariiber liegender Schicht bekannt sind. Mit
der Schichtenarchitektur kann man gegen die Komplexitit bei grofien Systemen vorgehen.
Nachteile dabei sind die mit der Anzahl der steigenden Schichten ebenfalls steigenden
Latenzzeiten und Aufwand. Durch Caching der Daten auf den Zwischenknoten auf dem Pfad
vom Client zum Server kann jedoch eine Leistungssteigerung erzielt werden, welche die oben
genannten Nachteile in den Schatten stellt (Fie00, S. 82-84).

2 Grundlagen

Code On Demand

Ein weiteres optionales Designkriterium von REST ist Code On Demand. Repradsentationen
der Ressourcen kénnen auch Quellcode beziehungsweise ausfiihrbare Skripte beinhalten.
REST-basierten Anwendungen, die Code On Demand unterstiitzen, konnen somit durch die
Benutzung der Web Services in der Funktionalitdt erweitert werden. So konnen zum Beispiel
die Methoden zum Validieren von Benutzereingaben erst wihrend des Einsatzes von relevan-
ten Web Services der Client-Anwendung {ibertragen werden. Auf diese Weise wird ein Teil
der Funktionalitdten der Client-Anwendung auf dem Server gelagert. Die Client-Anwendung
wird um diese Funktionalitdten erst bei Bedarf erweitert (Fie00, S.84-85).

2.1.4 Sicherheit und Idempotenz

Es wurde bereits beschrieben, welche HTTP-Methoden zur Implementierung des CRUD-
Prinzips eingesetzt werden. Man kann jedoch diese Methoden auch falsch anwenden, was
mit Risiken oder Nachteilen verbunden ist. An dieser Stelle wird auf die Sicherheit und
Idempotenz eingegangen und erklért, wieso sie so wichtig sind.

Sicherheit

Bei richtigen Implementierung und Einsatz der GET-Methode diirfen keine Ressourcen
manipuliert werden. Diese HTTP-Methode ist nur fiir lesende Zugriffe gedacht. Der Client
sollte beim Verwenden dieser Methode bei den Anfragen keine Sorgen haben, irgendwas bei
dieser Anfrage zerstoren zu konnen. Die GET-Methode gehort zu den sicheren Methoden
von der Sicht des Clients und sollte deswegen auch so beim Server implementiert werden. In
der Praxis gibt es aber auch Nebeneffekte oder beabsichtigte Verdnderung der Ressourcen bei
dieser Methode vorzufinden. Es werden bei kleinen Nebeneffekten Log-Datei oder der Zahler
der Anfragen verdndert und bei einigen Web-Service-Anbietern funktioniert die komplette
Manipulation der Ressourcen basierend auf der GET-Methode. Die Nebeneffekte diirfen keine
gravierenden Verdnderungen von Ressourcen mit sich bringen und der Client sollte dafiir
auch nicht verantwortlich gemacht werden (Ric07, S. 116-118).

Idempotenz

Mit Idempotenz ist die Eigenschaft einer Operation festgelegt, bei welcher der Ressourcen-
zustand sich bei mehrfacher Anwendung der Operation nicht mehr dndert. So sollte nach
dem mehrfachen Anwenden der GET-, PUT- oder DELETE-Methoden der Ressourcenzustand
gleich der einmaliger Anwendung der Methode entsprechen. Dabei soll beachtet werden,
dass der Ressourcenstatus bei der PUT-Methode nicht mit relativen, sondern mit absoluten
Werten verdndert werden darf, um diese Bedingung zu erfiillen. Wenn ein Attributwert einer
Ressource 5 ist und man diesen Wert auf 2 setzen mochte, dann soll die Anderung mit dem
absoluten Wert 2 und nicht mit dem relativen Wert -3 erfolgen. In einem unzuverladssigen
Netzwerk kann eine Anderungsanfrage mehrfach empfangen werden. Die Anderung mit

10

2.2 Software-Priifung

einem relativen Wert wiirde bewirken, dass der Attributwert kleiner als 2 wird. Beim absolu-
ten Wert bleibt der Attributwert 2 auch beim mehrfachen Empfang der Anderungsanfrage.
Idempotenz ermoglicht zuverlassige HTTP-Anfragen tiber ein unzuverldssiges Netzwerk.
Bei ausstehender Antwort auf die HTTP-Anfrage, sei die verwendete Methode GET-, PUT-
oder DELETE, kann ohne weitere Sorgen eine erneute Anfrage abgeschickt werden (Ric07, S.
116-118).

2.2 Software-Prufung

Jedes in der Entwicklung befindende Anwendungssystem durchlduft verschiedene Testpha-
sen. Bei den Vorgehensmodellen wie Wasserfallmodell in Abbildung 2.1 sieht man unter-
schiedliche Phasen im Lebenszyklus einer Softwareanwendung. Bevor man zur nédchsten
Phase im Lebenszyklus tibergeht, wird die aktuelle Phase auf die Erfiillbarkeit tiberpriift. Die
Uberpriifung beinhaltet dariiber hinaus auch integrierten Testprozesse. Beim Aufdecken von
Fehlern kann man auch wieder zu der vorherigen Phase wechseln. Die Tests sind im Lebens-
zyklus einer Softwareanwendung sehr wichtig und sollen in jeder Phase des Lebenszyklus
durchgefiihrt werden (FLS07, S. 15-17).

Anforderungen
Software-
Anforderungen
'_ll
Entwurf
I
'_ll

Abbildung 2.1: Testphasen im Software-Lebenszyklus (FLS07, S. 16)

Die Software-Priifung ist ein sehr umfangreiches Thema und es gibt viele Methoden, Tech-
niken und Verfahren dazu. In diesem Abschnitt wird nur das Grundwissen der Software-
Priifung vermittelt und ein Verfahren fiir das automatisierte Testen préasentiert. Nachfolgend
wird auf die Phasen des Testablaufs eingegangen.

2.2.1 Phasen des Testablaufs

Mit Abbildung 2.2 wird der Zusammenhang der einzelnen Phasen eines Testprozesses gra-
phisch zum Ausdruck gebracht. In der Planungsphase wird festgelegt, was und in welchem

11

2 Grundlagen

Umfang getestet wird. Es wird der Aufwand geschitzt, die Termine festgelegt und die ausfiih-
rende Personen bestimmt. Weiterhin werden in dieser Phase Uberlegungen iiber das Ziel, Art
und Umfang der notwendigen Tests und auch tiber die erwarteten Ergebnisse gemacht. Nach
der Planungsphase erfolgt der Testablauf, indem Tests vorbereitet, ausgefiihrt und ausgewer-
tet werden. Die einzelnen Phasen des Testablaufs werden in den nachfolgenden Abschnitten
genauer beschrieben. Dem Testablauf folgt die Analyse des nach dem Testlauf erstellten Test-
berichts. Es werden die in dem Testbericht aufgefiihrten Fehler analysiert, die Riickschliisse
auf Verbesserungspotenzial in dem Entwicklungsprozess und auf Programmeinheiten zur

Uberarbeitung erlauben.

Testzyklus an einem
Testgegenstand

Ziel —_ e e e e T ~
iel, N
Umfang, / Tesworschrlft, Testprotokoll Testbericht\
Dokumentation l . U - l
Planung 1 Vorbereitung Ausfiihrung Auswertung) Analyse
\ /
e e e e e e e e e e S EE . EE . = — =

Abbildung 2.2: Semantischer Testablauf (FLS07, S. 37)

Testvorbereitung

Es werden geeignete Testfédlle abhdngig von der zu priifenden Funktionalitdt beziehungs-
weise funktionaler oder nicht-funktionaler Eigenschaft ausgewdhlt. Diese Testfdlle werden
spezifiziert, indem die erforderlichen Vorbedingungen beztiglich eines Priiflings und einer Te-
stumgebung definiert, die Eingabedaten und die erwarteten Ausgabedaten bestimmt werden.
Danach wird das Testgeschirr, wie Testdaten und Testwerkzeuge, bereitgestellt. Siehe dazu
Abbildung 2.2. Zum Schluss dieser Phase wird nun die Reihenfolge der Testfélle bestimmt.
Die Reihenfolge der zu bearbeitenden Testfalle ist optimal, wenn der Aufwand fiir die Umge-
staltungen der Testumgebung fiir alle zu bearbeitende Testfélle in der Summe, verglichen mit
dem Aufwand bei anderen Reihenfolgen, minimal ist (FLS07, S. 37-39).

Testausfiihrung

In dieser Phase werden alle Testfille, die in der Testvorbereitungsphase vorbereitet waren,
ausgefiihrt und dabei gewonnenen Ergebnisse aufgezeichnet. Am Ende der Testausfithrungs-
phase wird ein Testprotokoll, sieche Abbildung 2.2, angefertigt, welches die Daten tiber den
Priifling, die verwendeten Testfélle, das Testgeschirr und die Ergebnisse der Priifung beinhal-
tet (FLS07, S. 39-40).

Testauswertung

Protokollierten Testergebnisse werden ausgewertet, indem sie mit den spezifizierten erwarte-
ten Werten verglichen werden. Als Ergebnis der Testauswertungsphase wird ein Testbericht,

12

2.2 Software-Priifung

siehe Abbildung 2.2, erstellt. In ein Testbericht gehoren die Angaben zu den Testféllen, die
Schlussbewertungen und die Verweise auf relevante Dokumente. Testbericht bildet die Grund-
lage fiir die Fehlersuche und Fehlerbehebung (FLS07, S. 40).

2.2.2 QualitatssicherungsmaBnahmen

Software-Qualitdtssicherung zerféllt in drei Bereiche. Die organisatorische Mafinahmen, die
sich bei einem Projekt beziehungsweise Prozess mit der Steigerung der Erfolgsaussichten
beschiftigen, die konstruktive MafSnahmen, die sich auf die Vermeidung der Fehler konzen-
trieren, und die analytische Mafinahmen, die fiir das Auffinden von Fehlern zustandig sind.
Mit dem REST Testbed sollen bereits entwickelten und noch in der Entwicklung befindenden
REST-basierten Client-Anwendungen getestet werden, somit wurden die organisatorischen
und die konstruktiven Mafinahmen bereits getroffen. Bei der Qualitdtssicherung von REST-
basierten Client-Anwendungen mit dem REST Testbed steht das Priifen beziehungsweise
Finden von Fehlern im Vordergrund. Es findet also die Verifikation des entwickelten oder in
der Entwicklung befindenden Produktes statt (FLS07, S. 20) (Tie09, S. 471-472).

2.2.3 Priufungsverfahren

Bei der Softwarepriifung gibt es statische und dynamische Testverfahren. Die statischen
Verfahren beschiftigen sich mit der Analyse sowie Priifung von Systembeschreibungen
und sind nicht Teilaufgaben des REST Testbeds. Das REST Testbed unterstiitzt dynamische
Verfahren zur Software-Priifung. Die Clients sollen Anfragen mit vorgegebenen Daten an
den Server schicken. Wenn die Soll-Werte von einem Testergebnis noch nicht bekannt sind,
so kann der Test manuell vorbereitet, ausgefiihrt und ausgewertet werden. Sind Soll-Werte
bereits bekannt, so sollte man automatisierte Testfille erstellen, um Aufwand der Testabldufe
zu reduzieren. Durch Abweichungen des Ist-Wertes vom Soll-Wert kann auf diese Weise
Fehler aufgedeckt werden, die protokolliert und an das Entwicklungsteam weitergeleitet
werden sollen. Der Regressionstest ist ein sehr bekanntes automatisiertes Testverfahren, das
tur die wiederkehrenden Testabldufe eingesetzt wird (FLS07, S. 22-24).

2.2.4 Regressionstest

Die in der Entwicklung befindende Anwendung wird in zeitlichen Abstinden erneut getestet.
Zum einen werden neu implementierten Funktionalitdten mit neuen Testskripten iiberpriift,
zum anderen wird mit den alten Testskripten tiberpriift, ob nicht mit neuen Implementie-
rungen auch Bugs eingebaut wurden. Dabei werden bereits bekannte Soll-Ergebnisse von
den fritheren Tests, die als korrekt empfunden wurden, manifestiert und bei den Testldufen
herangezogen. Der so festgehaltene Soll-Wert wird in einem Testfall zum Vergleich mit dem
Ist-Wert genommen. Diese Testfédlle konnen dann tiberpriift werden, indem die Testskripte
von diesen Testfédllen automatisch nacheinander ausgefiihrt werden (FLS07, S. 31-33).

13

2 Grundlagen

2.3 Aspektorientierte Programmierung

Bei der Umsetzung des Testbeds wurde aspektorientierte Sprache Aspect] benutzt. Um die
Implementierung des Testbeds nachvollziehen zu kénnen, werden in folgenden Abschnitten
einige Konstrukte von Aspect] erldutert. Der Umfang der Einfiihrung in Aspect] wird kurz
gehalten und umfasst nur grundlegende Informationen zum Verstdndnis des Testbeds.

Die aspektorientierte Programmierung baut auf der objektorientierten Programmierung auf
und ermoglicht die Trennung der Geschiftslogik von den zusétzlichen Funktionalitdten. Auf
diese Weise kdnnen zum Beispiel die Bearbeitung der HTTP-Anfragen zum Auslesen der
Ressourcen um weitere Funktionalititen wie Logging oder Autorisierung erweitert werden.
Die zusitzlichen Funktionalitdten werden dabei in eigenem Modul gekapselt und der ur-
spriingliche Quellcode bleibt unberiihrt. Dieser Ansatz wird auch als Separation of Concerns
bezeichnet und kann gegen die steigende Komplexitédt bei wachsenden Systemen eingesetzt
werden. Durch die aspektorientierte Programmierung konnen Funktionalitdten, die sich sonst
der Modularisierung erfolgreich widersetzen und so tiber die verschiedenen Module in einem
System verteil sind, die sogenannten Crosscutting Concerns, modularisiert werden (Boh06, S.
7,14-15,17).

Ein Aspekt bei der aspektorientierten Programmierung ist die Erweiterung des Klassen-
Konzepts. Die Aspekte sind vergleichbar mit den Klassen bei der objektorientierten Program-
mierung, in denen zusitzlich zu dem gewohnlichen Java-Code weitere Sprachkonstrukte
definiert werden (Boh06, S. 25).

2.3.1 Joinpoint

Ein Joinpoint stellt ein Ereignis dar, das einen Punkt im Programm definiert, der einer Er-
weiterung oder Modifikation unterzogen werden soll. Zu den Joinpoints gehoren folgende
Ereignisse mit dem entsprechenden Schliisselwort in Aspect] (B6h06, S. 25):

e Aufruf einer Methode (call)
e Ausfiihren einer Methode (execution)

e Behandeln einer Exception (handler)

Zugriff auf eine Variable (set/get)

Initialisierung einer Klasse (staticinitialization/preinitialization/initialization)

2.3.2 Pointcut

Ein Pointcut stellt einen Sprachkonstrukt zum Vereinigen von Joinpoints. Es kénnen also meh-
rere durch die Verbindungspunkte definierten Ereignisse zu einer Menge zusammengefasst
werden. Dabei gibt es in Aspect] einige logische Operationen und Wildcards, die das Bilden
einer Joinpoint-Menge erlauben (Boh06, S. 25-26).

14

2.3 Aspektorientierte Programmierung

Wildcards (Boh06, S. 56-57):

e Pluszeichen (+): Vertritt alle Unterklassen beziehungsweise Schnittstellen des vorgege-
benen Typs

e Stern (*): Représentiert eine Folge beliebiger Zeichen (aufler dem Punkt)

e Zwei Punkte (..): Reprasentieren eine Folge beliebiger Zeichen (einschlieSlich dem
Punkt)

Logische Operationen (Boh06, S. 58-59):
e Vereinigung (| |): Zum Vereinigen von Ausdriicken
e Schnitt (&&): Zum Bilden einer Schnittmenge der Ausdriicke
e Verneinung (!): Zum Verneinen eines Ausdrucks

Der nachfolgende Beispiel zeigt eine praktische Anwendung von Joinpoints mit Wildcards
und logischen Operationen:

pointcut GET() : execution(* services.testing.get(..)) | | execution(* services.config.get(..));

In diesem Beispiel wird ein Pointcut GET() definiert. Dieser Jointcut wird ausgelost, wenn eine
get()-Methode der Klassen testing oder config im Paket services ausgefithrt wird. Die zwei Sterne
(*) in diesem Ausdruck stehen fiir beliebige Typen der Riickgabewerte. Die Doppelpunkte
(-.) weisen auf eine beliebige Anzahl der Ubergabeparameter der Methoden get(). Mit dem
ODER-Operator (| |) werden Joinpoint-Mengen der einzelnen execution-Ausdriicke zu einer
Menge vereinigt.

Eine Alternative fiir den beschriebenen Ausdruck konnte aber auch so aussehen:
pointcut GET(..) : execution(* services.*.get(..));

In diesem Fall steht anstatt des Namens einer Klasse ein Stern. Damit werden alle Klasse
im Paket services umfasst. Wenn es keine andren Klassen im Paket services existieren oder
zumindest keine Klassen mit der Methode get() gibt, dann sind die zwei beschriebenen
Pointcuts GET() 4quivalent.

2.3.3 Advice

Unter einem Advice versteht man eine Methode, die mit Auslosen eines definierten Ereig-
nisses im Programmcode beziehungsweise mit dem Erreichen eines Joinpoints, ausgefiihrt
werden soll. Dabei kann diese Methode auf unterschiedliche Weise ausgefiihrt werden (Boh06,
S. 26-27) (Kna07):

e before-Advice: Ausfithrung vor einem Joinpoint

e after-Advice: Ausfithrung nach einem Joinpoint

15

2 Grundlagen

Fiir ein Beispiel der praktischen Anwendung wird der bereits in Abschnitt 2.3.2 definierter
Jointcut GET() verwendet:

before() : GET() // todo;

Wenn ein Joinpoint des Pointcuts GET() ausgelost wird, dann wird vor der Ausfithrung der
get()-Methode (siehe Abschnitt 2.3.2) die an der Stelle // to do definierte Aktion ausgefiihrt.

2.3.4 Ausfiihrungsreihenfolge

Mit der Reihenfolge der Ausfiihrung kann die Beziehung zwischen den Aspekten festgelegt
werden. Die Zeile unten beschreibt einen Konstruktor, mit dem der Vorrang eines Aspekts
vor einem anderen Aspekt definiert werden kann:

define precedence: AspectPatternList

Definiert man eine Liste von Aspekten mit AspectPatternList, so haben links stehenden Aspek-
te aus der Liste Vorrang vor rechts stehenden Aspekten. Die before-Advices der Aspekte mit
dem hoheren Vorrang werden frither wie die before-Advices der Aspekte mit dem niedrigeren
Vorrang abgearbeitet. Die after-Advices der Aspekte mit dem hoheren Vorrang werden dage-
gen nach den after-Advices der Aspekte mit dem niedrigeren Vorrang ausgefiihrt. Mehrere
definierten Advices innerhalb eines Aspekts, die von der gleichen Art sind, werden in der
Reihenfolge deren Definition ausgefiihrt (Boh06, S. 150-155).

In Abschnitt 7.3 wird beispielhaft ein Aspekt in Bezug auf das Testbed demonstriert und
erkldrt, bei dem einige der oben beschriebenen Sprachkonstrukte sich wiederfinden. Man
wird dabei deutlicher das Zusammenspiel der einzelnen Sprachkonstrukte in einem Aspekt
in Verbindung zueinander verstehen konnen.

16

3 Verwandte Arbeiten

In diesem Kapitel werden die Arbeiten betrachtet, die sich mit Aufsetzen von Testumgebungen
befassen, die zum Testen von Web Service basierten Client-Anwendungen herangezogen
werden konnen. Die kurzen Beschreibungen von diesen Projekten gewédhren einen schnellen
Einblick in diese Arbeiten und es werden Aspekte angesprochen, die beim Vorhaben dieser
Diplomarbeit von Bedeutung sind. Die erste betrachtende Arbeit konzentriert sich primar
auf das Testen von SOAP-basierten Client-Anwendungen. Der zweite Projekt baut auf dem
ersten Projekt auf und bietet auch die Funktionalitdten zum Testen von REST-basierten Client-
Anwendungen. Beide Projekte weisen einige Ansitze auf, die bei der Entwicklung des REST
Testbeds von Interesse sind.

3.1 GENESIS

An der Universitat Wien wird schon seit 2008 im Bereich von SOA Testbeds geforscht. Dazu
wurden bereits mehrere Arbeiten veroffentlicht. Die Publikation GENESIS - A Framework
for Automatic Generation and Steering of Testbeds of ComplexWeb Services beschiftigt sich mit
dem Aufsetzen von Testbeds fiir serviceorientierte Architektur (SOA), die auf Basis von
SOAP-basierten Web Services umgesetzt wird. Dabei wird ein Framework namens GENESIS
prasentiert. Dieses Framework erlaubt die Spezifikation und das Steuern von Testbeds von
einem zentralisierten Front-End und die automatische Generierung von verteilten Testbeds
in Back-End. Die Funktionalitdt von SOAP-basierten Web Services kann bei GENESIS mit
Plug-ins erweitert werden (JTDOS).

SOA konzentriert sich
Mit GENESIS gelieferten Plug-ins:

e QOSPlugin: Simuliert die nicht-funktionalen Eigenschaften respektive die Quality of
Service (QoS)-Parameter

e BPELPlugin: Ausfiihrung von zusammengesetzten Prozessen innerhalb von Web Service
Operationen

e LogPlugin: Protokollieren von Web Service Aufrufen
e RegistryPlugin: UDDI-Registrierung von Web Services

Es kdnnen neue Web Service Beschreibungen angefertigt und einem Testbed zum Erstellen ei-
nes Web Services iibergeben werden. Die erstellten Web Services konnen vorhandene Plug-ins
in Anspruch nehmen, um verschiedene Verhalten zu simulieren. Durch das Simulieren von
QoS-Eigenschaften kann die Suche nach fehleranfilligen Komponenten unterstiitzt werden.

17

3 Verwandte Arbeiten

Das Verhalten des Testbeds in diesem Framework kann wahrend der Laufzeit verdandert
werden. Das Framework unterstiitzt automatisches Testen, indem die Parameter von Plug-ins
sich mit Hilfe einer Java API wihrend der Laufzeit verandern lassen. Bei der Publikation
Script-based Generation of Dynamic Testbeds for SOA geht es um die weitere Forschung im
gleichen Bereich und die Entwicklung der zweiten Version des Testbeds. Die Funktionalitat in
GENESIS2 wurde erweitert. Es kann nicht nur ein Testbed, sondern auch weitere Komponen-
ten wie Clients generiert werden. Dazu mussten jedoch das Konzept und die Architektur in
der zweiten Version tiberdacht und verdandert werden. Das Framework GENESIS2 wurde ge-
nerisch gehalten, um in der Zukunft eine Grundlage fiir die Forschung auch in den nicht-SOA
Bereichen zu bieten (JTDO08) (JD10).

Mit GENESIS2 gelieferten Plug-ins:
o WebServiceGenerator: Erstellt SOAP-basierte Web Services
e WebServicelnvoker: Ruft entfernte SOAP-basierte Web Services

e Calllnterceptor: Zur Bearbeitung von SOAP-basierten Aufrufen auf der Nachrichtene-
bene

e DataPropagator: Bietet eine automatisierte Replikation von den Daten und Funktionen
unter den Back-End-Hosts

e QOSEmulator: Emuliert die Quality of Service (QoS)-Eigenschaften
e SimpleRegistry: Zur globalen Registrierung und Abfrage von Web Services

e ClientGenerator: Zum Aufsetzen von Testbeds mit Standalone-Clients

Testbed
SOA/Workflow

Generated Web Services,
Clients,

Generated Registries / Brokers,

Testbed Dispatchers / Mediators,
Monitors,

Instances

etc.

Testbed
Control

Models

G2 Plugins

. Back-End
" Hosts
G2 Framework

Front-E|:1d Hosts

Abbildung 3.1: Konzept von GENESIS2 (GEN)

18

3.1 GENESIS

Abbildung 3.1 zeigt in einer Schichtendarstellung das Konzept von GENESIS2. In der Schicht
G2 Framework sind das Front-End-Host und die Back-End-Hosts dargestellt. Auf dem Front-
End-Host werden die Spezifikationen zu den Testbeds erstellt und in dieser Schicht findet auch
die Steuerung von Testbeds statt. Das kann nach der Empfehlung der GENESIS2-Entwickler
in der kompakten Skriptsprache Groovy erfolgen. Mithilfe der Spezifikationen werden auf
den Back-End-Hosts Testbed-Instanzen generiert. Diese Testbed-Instanzen findet man in
der Schicht Generated Testbed Instances. Die Schicht G2 Plugins verdeutlicht den modularen
Ansatz zur Realisierung von den Funktionalitdten basierend auf einem Plug-in-Konzept. In
der Schicht Testbed Control findet die individuelle Anpassung von den gewiinschten Plug-ins
bei einzelnen Testbed-Instanzen statt.

Laut der Publikation Script-based Generation of Dynamic Testbeds for SOA soll GENESIS2 auch
fiir REST-basierte Web Services geeignet sein. Es soll fiir dieses Vorhaben dann ein weiteres
Plug-in entwickelt werden, das fiir die Erstellung von REST-basierten Web Services zustdndig
ist. Des weiteren braucht man weitere Plug-ins fiir die Realisierung von funktionalen und
nicht-funktionalen Eigenschaften, die die Funktionalitdt von dem erstellten REST-basierten
Web Service erweitern wiirden. Im Unterschied zu GENESIS2 handelt es sich bei REST Test-
bed um die Erstellung eines Testbeds und nicht wie bei GENESIS2 um die automatische
Generierung von mehreren verteilten Testbeds. Die Spezifikation und die Steuerung der
Testbeds in GENESIS2 kann von einer entfernter Maschine durchgefiihrt werden, auf der
eventuell auch das zu testende Client-Anwendungssystem lauft. In diesem Fall ist es moglich
ein Test Framework aufzusetzen, das die Spezifikation, das Steuern von den Testbeds und
die Steuerung des zu testenden Client-Anwendungssystem zum Durchfithren von Testauf-
rufen in den Testfdllen verwalten konnte. Vor allem bei den Regressionstests werden solche
Testfélle erstellt, siehe auch Abschnitt 2.2.4. Die Spezifikation und Steuerung von Testbeds in
GENESIS? findet programmiertechnisch statt. Fiir einen programmierunfihigen Software-
Tester ist dieses Konzept nicht geeignet, denn es gibt keine Moglichkeit die Steuerung tiber
eine graphische Benutzeroberfliche durchzufiihren. Das komponentenbasierte Konzept von
GENESIS kann aber auch auf das REST Testbed angewandt werden. Durch die Plug-ins kann
die Funktionalitdt des REST Testbeds somit leicht erweitert werden.

Eine weitere Publikation der Universitdt Wien, die auf dem Framework GENESIS beziehungs-
weise GENESIS2 aufbaut und sich auf die aspektorientierte Programmierung konzentriert,
heifst Automating the Generation of Web Service Testbeds using AOP. Die aspektorientierte Pro-
grammierung AOP wird dabei dazu verwendet, um Aufrufe externer SOAP-basierter Web
Services wahrend der Laufzeit abzufangen. Dabei wird das empfangene WSDL-Spezifikation
analysiert und der beschriebene Web Service im Testbed generiert. Das WSDL-Dokument
wird manipuliert, so dass es auf das nun im Testbed befindende Duplikat vom Original-
Service verweist, und im Anschluss an die SOA weitergeleitet. Dabei werden Aufrufe der
externen Web Services simuliert, um Kosten oder weitere Limitierungen beim Testen zu
vermeiden (JD11).

In unserem Projekt brauchen wir zwar keine Aufrufe externer Web Services, und doch bie-
tet die AOP auch bei unserer Problemstellung einige Vorteile. Man kann eine Anwendung
auch ohne aspektorientierter Programmierung komponentenorientiert gestalten, jedoch ist
Aspect-Oriented Programming (AOP) ein sehr praktisches Konzept, das wir nutzen kon-
nen. Die Joinpoints, an denen Aspekte verwoben werden, bilden die Schnittstellen. Fiir die

19

3 Verwandte Arbeiten

Definition von einem Joinpoint siehe Abschnitt 2.3.1. So kann mittels Aspekt-Konstruktoren
die Funktionalitdt des Testbeds sehr komfortabel erweitert oder manipuliert werden, ohne
urspriinglichen Quellcode zu verdndern. Des weiteren lassen sich Crosscutting Concerns mit
AOP modularisieren, die sich mit anderen Programmierparadigmen der Modularisierung
erfolgreich entziehen, siehe auch Abschnitt 2.3.

3.2 SOA4ALL

Das Forschungsprojekt Service Oriented Architectures for All (SOA4ALL) konzentrierte sich
auf die Entwicklung eines vollwertigen webbasierten verteilten Systems namens SOA4ALL
Studio, siehe dazu Abbildung 3.2. Dieses Projekt begann im Jahr 2008 und erstreckte sich tiber
drei Jahre. Die Weiterentwicklung wird nicht mehr verfolgt und mittlerweile trifft man auf tote
Verweise in den Dokumentationen und auf der Webseite. Durch die Erstellung von konfigu-
rierbaren Testbeds zum Testen der entwickelten Komponenten soll der Entwicklungsprozess
mit SOA4ALL Studio unterstiitzt werden. Mit SOA4ALL Studio kénnen die entwickelten
Komponenten auf die funktionalen Eigenschaften und andere charakteristische Eigenschaften
wie Skalierbarkeit und Leistung, die sogenannten nicht-funktionalen Eigenschaften, validiert
werden. Die Infrastruktur von SOA4ALL Testbed basiert auf dem Projekt GENESIS. Das
Projekt GENESIS erfiillte bereits einige Anforderungen, die an SOA4ALL Studio gestellt
wurden, und wegen der Erweiterbarkeit mit Plug-ins bot GENESIS eine gute Grundlage fiir
den Entwicklungsstart von SOA4ALL Studio. Das SOA4ALL Studio ist aus den integrierten
Werkzeugen, englisch Tools, aufgebaut.

SOWER Process Editor

SWEET -Ox -Ox SPICES
i = F3 i = £

iServe Browser

S

Analysis Platform

=-0x

Linked Data
P

(

Analysis
Warehouse

(M0

iServe
Recommender
System

Abbildung 3.2: Architektur von SOA4ALL mit integrierten Tools (Atoa)

20

3.2 SOA4ALL

Die integrierten Tools sind nach Aufgabenbereichen, entsprechend der drei Phasen des
Lebenszyklus eines Services, in drei Segmente unterteilt. Sie bieten Unterstiitzung beim Losen
unterschiedlicher Aufgaben innerhalb der drei wichtigsten Phasen entlang des Lebenszyklus
eines Services.

Aufgabenbereiche des SOA4ALL Studio:

e Provisioning Platform: Die Bereitstellung von semantischen Services durch eine Be-
schreibung oder durch eine Zusammensetzung von existierenden Web Services.

e Consumption Platform: Das Auffinden und Aufrufen von Web Services.
e Analysis Platform: Die Analyse der Ausfithrung von Web Services.

Diesen drei Segmenten sind verschiedene Tools zugeordnet. Weiter unten sind die Tools
nach den oben genannten Segmenten aufgezahlt und es werden die Aufgabenbereiche der
jeweiligen Tools zusammengefasst. Die Aufgaben der Tools werden je nach Wichtigkeit im
Hinblick auf das REST Testbed mehr oder weniger detailliert beschrieben.

21

3 Verwandte Arbeiten

Komponenten von Provisioning Platform (Atoa):

e iServe: Eine Plattform zur Veroffentlichung von semantischen Beschreibungen von Web
Services als Linked Data. Bei Linked Data wird das Web fiir die Verbindung mit den
relevanten Daten benutzt.

e Process Editor (Composer): Eine Anwendung zur Modellierung von Prozessen und
zum Zusammensetzen von Prozessen aus den semantischen Beschreibungen von SOAP-
und REST-basierten Web Services mit der Modellierungssprache Literate Programming
Markup Language (LPML).

e SOWER: Dieser Editor ermdglicht die manuelle Beschreibung von SOAP-basierten Web
Services mit semantischen Informationen.

e SWEET (Semantic Web sErvice Editing Tool): Ein Editor zur Unterstiitzung der Erstel-
lung von semantischen Beschreibungen von den REST-basierten Web Services (Atoa).

Zur Erstellung von REST-basierten Web Services gibt es in SOA4ALL Studio zwei Schablonen.
Das SOA4ALL Studio benutzt bereits existierende Web Application Description Language
(WADL)-Spezifikationen von bekannten REST Application Programming Interface (API)-
Anbietern wie eBay REST API etc., um die notigen Elemente eines REST-basierten Web
Services zu erstellen. Abbildung 3.3 demonstrieren beispielhaft ein Fragment, in dem ein Link
auf eine WADL-Spezifikationen angegeben ist.

<gervicetemplates>
<gservice name="newsSearchServiceTemplate" type="REST">
<definition href="NewsSearchService.wadl">
</service>
</servicetemplates>

Abbildung 3.3: Definition eines REST-basierten Web Service (SKA109)

Nach der Erstellung eines REST-basierten Web Service werden die dazugehorigen Ressourcen
definiert. Abbildung 3.4 demonstriert beispielhaft eine praktische Anwendung.

Mit SWEET konnen die oben erkldrten Beschreibungen zur Erstellung von REST-basierten
Web Services iiber eine graphische Benutzeroberfliche sehr komfortabel erstellt werden.
Der Editor SWEET wird in zwei Versionen angeboten. Bei einer Version handelt es sich
um ein Plug-in mit abgespeckter Funktionalitat fiir den Webbrowser Firefox. Die andere
vollwertige Version wurde als ein Teil des Kernmoduls Dashboard entwickelt und kann tiber
einen beliebigen Webbrowser benutzt werden (Atoa) (SWE).

Zur Veroffentlichung und zum Auffinden von semantischen Beschreibungen von Web Ser-
vices wird iServe verwendet. Unterstiitzt werden semantische Beschreibungen von SOAP-
genauso wie REST-basierten Web Services. Dazu werden einige standardisierte Formate zur
Beschreibung von Web Services von den entsprechenden Plug-ins von iServe in ein eigenes
Format transformiert. Es werden Formate wie Semantic Annotations for WSDL and XML
Schema (SAWSDL) nach World Wide Web Consortium (W3C) (FL07), WSMO-Lite nach W3C
(FFK*10) zur semantischen Beschreibung von SOAP-basierten Web Services, MicroWSMO
zur Beschreibung von REST-basierten Web Services (LSST10) und teilweise OWL-S (MBH ' 04)

22

3.2 SOA4ALL

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/" >
<resource path="newsSearch" >
<method name="GET" id="search" >
<request>
<param name="appid" type="xsd:string" style="query" required="true" />
<param name="query" type="xsd:string" style="query" required="true" />
<param name="type" style="query" default="all" >
<option value="all" />
<option value="any" />
<option value="phrase" />
</param>
<param name="results" style="query" type="xsd:int" default="10" />
<param name="start" style="query" type="xsd:int" default="1" />
<param name="sort" style="query" default="rank" >
<option value="rank" />
<option value="date" />
</param>
<param name="language" style="query" type="xsd:string" />
</request>
<response>
<representation mediaType="application/xml" element="yn:ResultSet" />
<fault status="400" mediaType="application/xml" element="ya:Error" />
</response>
</method>
</resource>
</resources>

Abbildung 3.4: Ressourcendefinition fiir ein REST-basiertes Web Service (SKAT09)

unterstiitzt. Es stehen zwei Zugriffsmoglichkeiten auf iServe zur Verfiigung. Der Zugriff auf
die Funktionalitdten von iServe kann tiber die mit Google Web Toolkit (GWT) entwickelte
Anwendung namens iServe Browser oder iiber eine REST-basierte API erfolgen. Dabei bietet
die REST-basierte API eine HTML-Darstellung, welche eine benutzerfreundliche manuelle
Steuerung unterstiitzt, und eine Resource Description Framework (RDF)-basierte Darstellung
zur automatisierten Steuerung (iSe).

Komponenten von Consumption Platform (Atoa):

e anSWERS (a novel Semantic Web-enabled Recommender System): Ein wissensbasiertes
System, welches einem Benutzer anhand seines Benutzerprofils und Charakteristiken
der Web Services eine Empfehlung zur Nutzung eines ausgewédhlten Web Services
unterbreiten kann.

e LUF (Linked User Feedback): Der Service LUF sammelt Feedback zu den APIs, das in
Form einer Bewertung, der Kommentare und Markierungen von den Anwendungsbe-
nutzern entsteht.

e SPICES (Semantic Platform for the Interaction and Consumption of Enriched Services):
Ein Web-basiertes Tool fiir die Interaktion zwischen dem Endbenutzer und den SOAP-
beziehungsweise REST-basierten Web Services.

Mit SPICES konnen die mit dem oben erwéhnten Tool iServe hinterlegten Beschreibungen von
SOAP- und REST-basierten Web Services durchsucht werden. Die zugehorigen Web Services
konnen mit dem SPICES aufgerufen, bewertet und kommentiert werden.

Komponenten von Analysis Platform (Atoa):

e K-Analytics (Knowledge Analytics): Ein webbasiertes Tool zur Visualisierung von Linked
Data Services und Analysedaten.

23

3 Verwandte Arbeiten

e SENTINEL (A Semantic Business Process Monitoring Tool): Ein Tool, das den Stand
der Technik in Business Activity Monitoring (BAM) voranbringt, indem es extensiv die
Semantik-Technologien zum Unterstiitzen der Integritdt und Ableitung des Geschifts-
wissens aus den von IT-Systemen generierten Low-Level-Priifprotokollen benutzt.

Mit den Tools der Analysis Platform konnen die Prozesse beobachtet werden. Es sind unter-
schiedliche Metriken wie Zeitverzogerung, Aufruffrequenz, Leistung und Benutzerwahrneh-
mung definiert, die beim Bearbeiten von Prozessen festgehalten werden. Diese Daten sollen
den Testern beziehungsweise den Entwicklern helfen, kritische Komponenten zu finden.

Abbildung 3.5 zeigt die Architektur von SOA4ALL mit einzelnen Komponenten. Beim
SOA4ALL Studio sind die drei oben beschriebenen Plattformen abgebildet. Des weiteren
ist die Komponente User Management zum Verwalten von Benutzerprofilen dargestellt. Die
Informationen aus den Benutzerprofilen helfen bei der Suche nach gewiinschten Web Services
in iServe. Die Komponenten von SOA4ALL Studio konnen tiber graphische Benutzerschnitt-
stellen und auch iiber Service-Schnittstellen gesteuert werden. Der im Zentrum dargestellte

Enterprise Service Bus (ESB) dient als Infrastruktur-Dienstleister und Integrationsplattform.

_¥

/o)

SOA4ALL Studio

[Provisioning PIatformJ (Consumption Platform] (Analysis Platform]

+ I [RDF & WSMO Manipulation LibraryJ

(Graphical User Interface LibraryJ (SOA4ALL API]

Light-weight
Processes
and Mashups

Light-weight
Semantic
Web Services

Deployment SOA4ALL Services Cloud Monitort
v . onitoring
Ve

§ SOA4ALL API =
444444 g (Semantically Annotated) E
—] 0 2
= — ol Qg
: — —
—H H —
5 = a0 = T
1] 111
Execution Engine Reasoning Engine Service Ranking & Discovery Engine
Third-party Selection Engine Third-party
Traditional Traditional
RESTful Services SOA4ALL Infrastructural Services WSDL Services

Abbildung 3.5: Architektur von SOA4ALL (Atob)

Beim SOA4ALL handelt es sich um ein sehr umfangreiches Projekt, das drei Jahre dauerte
und bei dem viele Entwickler beteiligt waren. Es sind einige interessante Komponenten
und Ansédtze dabei zu finden, die auch beim REST Testbed berticksichtigt werden sollten.
Der Zugriff auf iServe kann entweder tiber einen graphischen Editor oder direkt tiber eine
REST-basierte API durchgefiihrt werden. Zum Konfigurieren der Plug-ins im REST Testbed

24

3.2 SOA4ALL

konnte ein graphischer Editor eine benutzerfreundliche Schnittstelle fiir die manuelle Konfi-
gurationsmoglichkeit darstellen. Eine REST-basierte API ist eine passende Schnittstelle fiir
das programmiertechnische Konfigurieren fiir automatisierte Konfigurationsoption. Beim
SOA4ALL werden zwei oben angegebene Fragmente (siehe Abbildungen 3.3 und 3.4) benutzt,
um ein REST-basiertes Web Service zu erstellen. Dabei wird zuerst anhand einer WADL-
Spezifikation ein Web Service erstellt und dann wird die zugehorige Ressource definiert. Beim
REST Testbed dagegen sollen die Web Services anhand des gegebenen Datenbestands, aus
dem die Ressourcen auszulesen sind, definiert werden. Zur Erstellung von Beschreibungen
von Web Service werden beim SOA4ALL Studio einige bekannte REST APIs wie eBay REST
API etc. benutzt. Das REST Testbed soll dagegen auf keinen bestimmten Datenbestand fixiert
sein. Die Funktionalitdt des REST Testbeds soll zum Benutzen verschiedener Datenquellen
wie Datenbanken, Comma-Separated Values (CSV)-Dateien, Web Service APIs etc. erweiterbar
sein. Der Ansatz zur Erstellung eines Web Services mittels einer semantischen Beschreibung,
wie in den oben angegebenen Fragmenten (siehe Abbildungen 3.3 und 3.4), kann also nicht
zum Losen der gleichen Aufgabe tibernommen werden. Dieser Ansatz kann aber bei der
vom REST Testbed bereitgestellter REST-basierter API zum Manipulieren von Parametern
der Plug-in-Konfigurationen angewandt werden.

25

3 Verwandte Arbeiten

26

4 Anforderungen

In diesem Kapitel werden alle an das zu entwickelnde REST Testbed gestellten Anforderungen
detailliert erhoben und aufbereitet, die bereits in Kapitel 1 teilweise angesprochen wurden.

Beim REST Testbed handelt es sich um eine Server-Anwendung, bei der zwei Schnittstellen,
englisch API, bereitgestellt werden sollen. Die Schnittstelle TestServiceAPI soll fiir die Ressour-
cenanfragen fiir die Client-Anwendung zu Testzwecken zur Verfiigung stehen. Die Schnitt-
stelle ConfigurationAPI soll fiir das Konfigurieren der funktionalen und nicht-funktionalen
Eigenschaften der Schnittstelle TestServiceAPI zustdndig sein (siehe Abbildung 1.1). Die API
zum Testen der Client-Anwendung soll nach den Konzepten aus Abschnitt 2.1 einen REST-
basierten Web Service darstellen, der sich geméf: der aktuellen Konfiguration entsprechend
verhalten soll. Die im Folgenden aufgelisteten funktionalen und nicht-funktionalen Eigen-
schaften sollen von dem REST Testbed abgedeckt werden.

4.1 Funktionale Anforderungen

Mit diesen funktionalen Eigenschaften sollen an die zu testende Client-Anwendung gestellten
funktionalen und nicht-funktionalen Anforderungen abgedeckt und getestet werden kénnen.
Jede dieser funktionalen Eigenschaften des REST Testbeds soll konfigurierbar sein. Man
soll sie aktivieren, konfigurieren und wieder deaktivieren konnen. Weiter unten sind die
funktionalen Eigenschaften aufgelistet, die das REST Testbed bereitstellen soll:

e Die iiber die Schnittstelle TestServiceAPI angefragten Ressourcen sollen aus einem reali-
tatsnahen Datenbestand ausgelesen werden. Die Datenbestands- genauso wie Berechti-
gungsparameter sollen konfigurierbar sein. Auch die URIs, mit denen die Ressourcen in
dem Datenbestand identifiziert werden, sollen definiert und einer Ressource zugeordnet
werden konnen. Das Testbed soll den Benutzern das Auslesen, Modifizieren, Loschen
und Anlegen von Datensdtzen in dem Datenbestand erlauben.

e Fiir jede Ressource sollen verschiedene Reprasentationen, etwa HTML nach der HTML
4.01 Spezifikation von W3C (RHJ99), XML in der Version 1.0 nach W3C (BPSM*08) und
JSON nach RFC 4627 (Cro06), von den Benutzern des Testbeds tiber die Schnittstelle
ConfigurationAPI explizit auswahlbar sein.

¢ Jede Anfrage soll protokolliert werden kénnen. Je nach gewtiinschtem Grad sollen un-
terschiedliche Informationen wie Zeitpunkt, Bearbeitungszeit der Anfragen etc. ins
Protokoll einflieffen. Die gesammelten Informationen sollen bei Bedarf persistent abge-
speichert werden und fiir Testbed-Benutzer fiir das spétere Einsehen zugénglich sein.
Der Testbed-Benutzer soll die Freiheit haben, tiber die Schnittstelle ConfigurationAPI, den

27

4 Anforderungen

Grad der Informationen und den Speicherort zum Ablegen der Protokolle zu bestimmen.
Dieses Protokoll soll die Entwickler der Client-Anwendung bei der Fehlersuche und
der Bewertung der Konzepte unterstiitzen.

e Der Testbed-Benutzer soll tiber die Schnittstelle ConfigurationAPI imstande sein, der
Client-Anwendung mitzuteilen, ein Cookie anzulegen. Dabei soll der Testbed-Benutzer
die Parameter des Cookie bestimmen kénnen. Die moglichen Parameter und deren
Anwendung sind in der Publikation RFC 6265, HITP State Management Mechanism,
(KM97) beschrieben.

e Des Weiteren soll der Testbed-Benutzer in der Lage sein, das Verhalten der Client-
Anwendung auf Cache-Nutzung zu testen. Deswegen sollen HTTP-Header, die sich auf
das Caching-Verhalten der Client-Anwendung auswirken kénnen, iiber die Schnittstelle
ConfigurationAPI gesetzt und manipuliert werden kénnen. Die fiir Caching zustandigen
HTTP-Header konnen dem Kapitel 13 der Publikation RFC 2616, Hypertext Transfer
Protocol — HTTP/1.1, (Fie09) entnommen werden.

e Es sollen verschiedene Verfahren, etwa wie HTTP-Authentifizierungsverfahren Basic
Access Authentication (HTTP Basic) und Digest Access Authentication (HTTP Digest), zur
Autorisierung der HTTP-Anfragen vom Testbed bereitgestellt werden. Die erforderli-
chen Parameter fiir die Authentifizierung der eingehenden HTTP-Anfragen sollen vom
Testbed-Benutzer tiber die Schnittstelle ConfigurationAPI konfigurierbar sein. Die oben
erwdhnten HTTP-Authentifizierungsverfahren sind in der Publikation RFC 2617, HTTP
Authentication: Basic and Digest Access Authentication, (FHBH"99) definiert.

e Die vom Testbed an die Client-Anwendung gelieferten HTTP-Statusmeldungen auf die
HTTP-Anfragen sollen simuliert werden konnen. Es sollen vom Testbed-Benutzer bei
Bedarf vorgegebene HTTP-Statusmeldungen der Serie 2xx, 3xx, 4xx oder 5xx erstellt
und an die Client-Anwendung geliefert werden. Dabei soll die Moglichkeit zum Fest-
legen eines Giiltigkeitsbereichs bestehen, binnen dessen die Konfiguration innerhalb
des Testbeds wirksam sein soll. Die HTTP-Statusmeldungen sind in Kapitel 10 der
Publikation RFC 2616, Hypertext Transfer Protocol - HI'TP/1.1, (Fie09) definiert.

4.2 Nicht-funktionale Anforderungen

Die an das REST Testbed gestellten nicht-funktionalen Anforderungen, die bei der Architektur,
Design und Implementierung beriicksichtigt werden sollen, sind nachfolgend aufgelistet:

e Flexibilitdt: Das Verhalten des Testservices soll an die Bediirfnisse der Client-Anwendung
anpassbar sein. Somit soll der Testbed-Benutzer in der Lage sein, das Verhalten vom
Testbed durch das Aktivieren, Konfigurieren und Deaktivieren von funktionalen und
nicht-funktionalen Eigenschaften von der Schnittstelle TestServiceAPI zu steuern.

e Erweiterbarkeit: Die angestrebten funktionalen und nicht-funktionalen Eigenschaften
des Testbeds in dieser Diplomarbeit decken nur einen Bruchteil der Technologien ab.
Der Umfang des Testbeds soll leicht erweiterbar sein, beispielsweise durch das Hinzu-
fiigen neuer funktionaler oder nicht-funktionaler Eigenschaften. Deswegen sollen die

28

4.2 Nicht-funktionale Anforderungen

funktionale beziehungsweise nicht-funktionale Eigenschaften als Plug-ins beim REST
Testbed integriert werden.

Bedienbarkeit: Bei der Gestaltung der Konfigurationsschnittstelle ConfigurationAPI sol-
len die Moglichkeiten zur manuellen Manipulation von Parametern eines Plug-ins wie
zum Beispiel tiber eine graphische Benutzeroberfliche und das automatisierte Veran-
dern von Parametern wie zum Beispiel durch Ausfiihren der Skripte bertiicksichtigt
werden. Deshalb soll eine graphische Benutzerschnittstelle tiber einen Web-Browser fiir
die manuelle Konfiguration des REST Testbeds bereitgestellt werden. Zusétzlich zur
Beschreibung der Parameter soll bei falschen Benutzereingaben auch die Fehlerbeschrei-
bung dem Testbed-Benutzer mitgeteilt werden.

Technische Anforderungen: Das REST Testbed soll in der Programmiersprache Java
mithilfe der Spezifikation Java API for RESTful Web Services (JAX-RS) (HS07) realisiert
werden. Konkret wird Java in Version 6 verwendet. Als Webcontainer wird Apache
Tomcat benutzt.

29

4 Anforderungen

4.3 Anwendungsfalle und Anwendungsfall-Diagramm

Die Abbildung 4.1 beschreibt grob das zu entwickelnde System anhand von definierten
Anwendungsfillen. Das Testbed soll in der Lage sein, die Liste der verfiigbaren Plug-ins, wel-
che konfigurierbare funktionale und nicht-funktionale Eigenschaften darstellen, auszulesen
und dem Tester bekannt zu geben. Des Weiteren sollen manipulierbare Parameter einzelner
Plug-ins von dem Testbed ausgelesen und dem Tester mitgeteilt werden konnen. Das Test-
bed soll auch imstande sein, die vom Tester manipulierten Parameter-Werte eines Plug-ins
persistent zu {ibernehmen. Die oben beschriebenen Aufgaben sollen tiber die Schnittstelle
ConfigurationAPI unterstiitzt werden.

Mit der Schnittstelle TestServiceAPI sollen Plug-ins mit den geltenden Parametern der aktuellen
Konfiguration abgearbeitet werden, solange die Plug-ins aktiviert sind. Im Anwendungsfall-
Diagramm wird die Schnittstelle TestServiceAPI mit dem Anwendungsfall Resource anfragen
assoziiert. Die Anwendungsfille, die von dem Anwendungsfall Plug-in aufrufen abgeleitet
sind, beziehen sich auf die zu implementierende Plug-ins.

Rest Testbed

Liste der Plug-ins
anfragen

Tester Parameter eines

Plug-ins anfragen

Parameter eines
Plug-ins konfigurieren

Repésentation
generieren
«inherits» -
Autorisierung
. . Uberprifen
«inherits»

«inherits» .
Caching-Header
bearbeiten
<inherits»
Cookie-Header
bearbeiten

Ressource
identifizieren

«inherits»

Client

Ressource anfragen «extends»

<<Erweiterungspunkte>>
Plug-in aufrufen

AN

T
. - «Inhegrits» «InRerits»
{Wenn Plug-in aktiviert}
HTTP-Statusmeldung
HTTP-Anfrage simulieren
protokollieren

Abbildung 4.1: Anwendungsfall-Diagramm zum REST Testbed

Client-Anwendung

Zu testende
Anwendung

Die Anfragen an das Testbed konnen unter verschiedenen Bedingungen auch unterschiedliche
Verhaltensabldufe respektive Szenarien implizieren. Anwendungsfélle stellen eine Zusammen-
fassung verschiedener Szenarien unter deren Bedingungen dar (CDO08). Weiter unten werden

30

4.3 Anwendungsfille und Anwendungsfall-Diagramm

Anwendungsfille zur Liste der funktionalen Anforderungen aus Abschnitt 4.1 erstellt. Bei
der Nummerierung der Anwendungsfille ist Folgendes zu beachten. Die erste Zahl bezieht
sich auf die Schnittstelle, {iber welche die beschriebene Funktionalitdt zu erreichen ist. Bei
Nummern 1.x handelt es sich um die Schnittstelle ConfigurationAPI und bei 2.x geht es um die
Funktionalitdt der Schnittstelle TestServiceAPI. Gemafs der nicht-funktionalen Anforderung
der Erweiterbarkeit an das Testbed werden die konfigurierbaren Eigenschaften aus Abschnitt
4.1 weiter als Plug-ins bezeichnet.

Name und Nummerierung | Liste der Plug-ins anfragen 1.1

Beschreibung Die Liste der Namen aller verfiigbaren Plug-ins zur
Erweiterung der Funktionalitdt der Schnittstelle Test-
ServiceAPI iiber die Schnittstelle Configuration API an-
fordern.

Beteiligte Akteure Tester (T) und System (S)

Ausloser T hat Namen der Plug-ins angefragt.

Vorbedingungen -

Nachbedingung T hat Namen aller Plug-ins erhalten.

Standardablauf 1. T macht Anfrage nach den Namen der Plug-ins.
2. S liefert die Namen aller Plug-ins.

Erweiterungen -

Hinweis Diese Funktionalitét soll {iber die Schnittstelle Confi-
gurationAPI erreichbar sein.

Tabelle 4.1: Anwendungsfall 1.1: Liste der Plug-ins anfragen

31

4 Anforderungen

32

Name und Nummerierung

Parameter eines Plug-ins anfragen 1.2

Beschreibung

Die Parameter eines Plug-ins zur Erweiterung der
Funktionalitat der Schnittstelle TestServiceAPI iiber die
Schnittstelle ConfigurationAPI anfordern.

Beteiligte Akteure Tester (T) und System (S)

Ausloser T hat Parameter eines Plug-ins angefragt.

Vorbedingungen -

Nachbedingung T hat die Parameter des angefragten Plug-ins erhalten.

Standardablauf 1. T macht Anfrage nach den Parametern eines Plug-
ins.
2. S liefert die Liste der Parameter des gewiinschten
Plug-ins.

Erweiterungen -

Hinweis Diese Funktionalitit soll tiber die Schnittstelle Confi-

gurationAPI erreichbar sein.

Tabelle 4.2: Anwendungsfall 1.2: Parameter eines Plug-ins anfragen

Name und Nummerierung

Parameter eines Plug-ins konfigurieren 1.3

Beschreibung

Die Parameter eines Plug-ins zur Erweiterung der
Funktionalitdt der Schnittstelle TestServiceAPI wer-
den den Bediirfnissen vom Tester einer Client-
Anwendung angepasst.

Beteiligte Akteure

Tester (T) und System (S)

Ausloser

T fordert S die modifizierten Parameter eines Plug-ins
zu tibernehmen.

Vorbedingungen

Nachbedingung

Die von T eingegebenen Parameter sind konsistent
mit den von S {ibernommenen Parametern.

Standardablauf

1. T passt die Parameter zum gewtiinschten Plug-in an.
2. T fordert S zur Ubernahme der modifizierten Para-
meter.

3. S gibt positives Feedback iiber die tibernommenen
Parameter.

Erweiterungen

3a. S gibt negatives Feedback fiir die Ubernahme der
Parameter mit Hinweisen auf fehlerhafte Eingaben.
3al. T identifiziert die Ursache.

3a2. T beseitigt die Ursache.

3a3. T geht zum Schritt 2.

Hinweis

Diese Funktionalitit soll tiber die Schnittstelle Confi-
gurationAPI erreichbar sein.

Tabelle 4.3: Anwendungsfall 1.3: Parameter eines Plug-ins konfigurieren

4.3 Anwendungsfille und Anwendungsfall-Diagramm

Name und Nummerierung

Ressource anfragen 2.1

Beschreibung

Eine Anfrage nach einer Ressource an den Testservice
zum Testen der Client-Anwendung beziiglich der Er-
fillbarkeit der funktionalen und nicht-funktionalen
Anforderungen stellen.

Beteiligte Akteure Client-Anwendung (C) und System (S)

Ausloser C soll getestet werden.

Vorbedingungen Die Parameter der Plug-ins wurden an den aktuellen
Testfall angepasst.

Nachbedingung S hat die Anfrage bearbeitet und C hat darauf eine
Antwort bekommen.

Standardablauf 1. S bearbeitet die Anfrage mit der Behandlung der
Anwendungsfille, die von dem Anwendungsfall Plug-
in aufrufen abgeleitet sind.

2. S liefert C eine Antwort.
Erweiterungen -
Hinweis Diese Funktionalitit soll tiber die Schnittstelle TestSer-

viceAPI erreichbar sein.

Tabelle 4.4: Anwendungsfall 2.1: Ressource anfragen

Name und Nummerierung

Plug-in aufrufen 2.2

Beschreibung

Ein Plug-in zum Testen der Client-Anwendung beziig-
lich der Erfiillbarkeit einer funktionalen beziehungs-
weise nicht-funktionalen Anforderung aufrufen.

Beteiligte Akteure Client-Anwendung (C) und System (S)

Ausloser S ruft ein Plug-in auf.

Vorbedingungen Plug-in ist aktiviert.

Nachbedingung Plug-in wurde behandelt.

Standardablauf 1. S bearbeitet das Plug-in.

Erweiterungen -

Hinweis Diese Funktionalitét soll iiber die Schnittstelle TestSer-

viceAPI erreichbar sein.

Tabelle 4.5: Anwendungsfall 2.2: Plug-in aufrufen

33

4 Anforderungen

34

Name und Nummerierung

Ressource identifizieren 2.3

Beschreibung

Uberpriifung der Autorisierung des Zugriffs auf den
Datenbestand und gegebenenfalls die Identifizierung
der angefragten Ressource im Datenbestand.

Beteiligte Akteure

Client-Anwendung (C) und System (S)

Ausloser

Eine Ressource wurde von C angefragt.

Vorbedingungen

Plug-in zum Auslesen der Ressourcen aus einem Da-
tenbestand ist aktiviert.

Nachbedingung

Plug-in zum Auslesen der Ressourcen aus einem Da-
tenbestand wurde ausgefiihrt.

Standardablauf

1. S tiberpriift die Zugriffsberechtigung auf den Da-
tenbestand.
2. S identifiziert die Ressource.

Erweiterungen

2a. S stellt einen nicht-autorisierten Versuch des Zu-
griffs auf den Datenbestand.

2al. S teilt eine Fehlermeldung dem C mit.

2b. S kann die angefragte Ressource nicht identifizie-
ren.

2b1. S teilt eine Fehlermeldung dem C mit.

Hinweis

Diese Funktionalitidt soll tiber die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 1. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.6: Anwendungsfall 2.3: Ressource identifizieren

4.3 Anwendungsfille und Anwendungsfall-Diagramm

Name und Nummerierung

Représentation generieren 2.4

Beschreibung

Die Représentation der mit dem Anwendungsfall Res-
source identifizieren ausgelesener Ressource wird gene-
riert.

Beteiligte Akteure

Client-Anwendung (C) und System (S)

Ausloser

Eine Ressource wurde von C angefragt.

Vorbedingungen

Plug-in zum Generieren der Ressourcen-
Reprasentationen ist aktiviert. Die Ressource ist
aus dem Datenbestand ausgelesen.

Nachbedingung

Plug-in zum Generieren der Ressourcen-
Reprasentationen wurde ausgefiihrt.

Standardablauf

1. S vergleicht den gewiinschten Format zur Generie-
rung der Reprédsentation der Ressource mit den akti-
vierten Formaten.

2. S generiert die Reprasentation der entsprechenden
Ressource.

Erweiterungen

2a. S stellt eine Nicht-Ubereinstimmung der Formate.
2al. S teilt eine Fehlermeldung dem C mit.

Hinweis

Diese Funktionalitidt soll tiber die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 2. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.7: Anwendungsfall 2.4: Reprdsentation generieren

35

4 Anforderungen

36

Name und Nummerierung

Autorisierung tiberpriifen 2.5

Beschreibung

Die Autorisierung des Ressourcenaufrufs iiberpriifen

Beteiligte Akteure

Client-Anwendung (C) und System (S)

Ausloser

Eine Ressource wurde von C angefragt.

Vorbedingungen

Plug-in zum Uberpriifen der Autorisierung der Anfra-
gen ist aktiviert.

Nachbedingung

Plug-in zum Uberpriifen der Autorisierung der Anfra-
gen wurde ausgefiihrt.

Standardablauf

1. S vergleicht das gewiinschte Authentifizierungsver-
fahren mit dem eingestellten Authentifizierungsver-
fahren.

2.S stellt eine autorisierte HTTP-Anfrage fest.

Erweiterungen

1la. S stellt eine Abweichung des gewiinschten Authen-
tifizierungsverfahrens mit dem eingestellten Authen-
tifizierungsverfahren fest.

1al. S teilt eine Fehlermeldung dem C mit.

2a. S stellt eine nicht-autorisierte HTTP-Anfrage fest.
2al. S teilt eine Fehlermeldung dem C mit.

Hinweis

Diese Funktionalitit soll tiber die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 6. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.8: Anwendungsfall 2.5: Autorisierung tiberpriifen

Name und Nummerierung

HTTP-Statusmeldung simulieren 2.6

Beschreibung

Eine vorkonfigurierte Statusmeldung als Antwort auf
ankommende Anfragen simulieren.

Beteiligte Akteure Client-Anwendung (C) und System (S)

Ausloser Eine Ressource wurde von C angefragt.

Vorbedingungen Plug-in zum Simulieren von HTTP-Statusmeldungen
ist aktiviert.

Nachbedingung Plug-in zum Simulieren von HTTP-Statusmeldungen
wurde ausgefiihrt.

Standardablauf 1. S lief3t die Parameter der zu generierenden Status-
meldung.
1. S erstellt eine HTTP-Statusmeldung und schickt sie
an C.

Erweiterungen -

Hinweis Diese Funktionalitit soll {iber die Schnittstelle Test-

ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 7. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.9: Anwendungsfall 2.6: HTTP-Statusmeldung simulieren

4.3 Anwendungsfille und Anwendungsfall-Diagramm

Name und Nummerierung

Caching-Header bearbeiten 2.7

Beschreibung

Setzen der HTTP-Header zum Steuern des Verhaltens
der Client-Anwendung zur Nutzung von Cache.

Beteiligte Akteure Client-Anwendung (C) und System (S)

Ausloser Eine Ressource wurde von C angefragt.

Vorbedingungen Plug-in zum Setzen der Caching-Header ist aktiviert.

Nachbedingung Plug-in zum Setzen der Caching-Header wurde aus-
gefiihrt.

Standardablauf 1. S lief3t die vorkonfigurierten Parameter der HTTP-
Header zur Cache-Nutzung.
2. S erweitert die HTTP-Header der HTTP-Antwort
um weitere Header zur Cache-Nutzung.

Erweiterungen -

Hinweis Diese Funktionalitit soll {iber die Schnittstelle Test-

ServiceAP] erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 5. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.10: Anwendungsfall 2.7: Caching-Header bearbeiten

Name und Nummerierung

Cookie-Header bearbeiten 2.8

Beschreibung

Mitteilen der Cookies an die Client-Anwendung.

Beteiligte Akteure Client-Anwendung (C) und System (S)

Ausloser Eine Ressource wurde von C angefragt.

Vorbedingungen Plug-in zum Setzen der Cookie-Header ist aktiviert.

Nachbedingung Plug-in zum Setzen der Cookie-Header wurde ausge-
fiihrt.

Standardablauf 1. S lief3t die vorkonfigurierten Parameter der mitzu-
teilenden Cookies.
2. S erweitert die HTTP-Header der HTTP-Antwort
um weitere Header mit Cookies.

Erweiterungen -

Hinweis Diese Funktionalitit soll {iber die Schnittstelle Test-

ServiceAP] erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 4. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.11: Anwendungsfall 2.8: Cookie-Header bearbeiten

37

4 Anforderungen

Name und Nummerierung | HTTP-Anfrage protokollieren 2.9

Beschreibung Protokollieren der HTTP-Anfrage einer Ressource.

Beteiligte Akteure Client-Anwendung (C) und System (S)

Ausloser Eine Ressource wurde von C angefragt.

Vorbedingungen Plug-in zum Protokollieren der HTTP-Anfragen ist
aktiviert.

Nachbedingung Plug-in zum Protokollieren der HTTP-Anfragen wur-
de ausgefiihrt.

Standardablauf 1. S liefit die vorkonfigurierten Parameter zum Proto-

kollieren der HTTP-Anfragen.

2. S protokolliert die HTTP-Anfrage mit dem vorgege-
benen Informationsgrad in der voreingestellen Ausga-
bequelle.

Erweiterungen -
Hinweis Diese Funktionalitdt soll {iber die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 3. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.12: Anwendungsfall 2.9: HTTP-Anfrage protokollieren

4.4 Sequenzdiagramm

In der Abbildung 4.2 sind einige mogliche Abldufe beschrieben, um das Testbed besser zu
verstehen. Die Abldufe sind in einer logischen Reihenfolge von oben nach unten dargestellt,
diese ist jedoch nicht zwingend erforderlich. Wie am Anfang dieses Kapitels beschrieben,
kann der Benutzer tiber die Schnittstellen ConfigurationAPI und TestServiceAPI mit dem REST
Testbed kommunizieren. Auf dem Sequenzdiagramm sind vier unterschiedliche Hauptabladufe
zum Konfigurieren der Plug-ins und zu einem Testaufruf dargestellt. Bei der Initialisierung
des Testbeds werden auch alle Plug-ins initialisiert und in einer Liste abgelegt, auf welche
die Schnittstellen Configuration API und TestServiceAPI Zugriff haben. Wie die Verwaltung der
Liste der Plug-ins realisiert wird, ist zu diesem Zeitpunkt noch nicht festgelegt und ist auf
dem vorliegenden Diagramm nicht abgebildet.

Der dargestellte Ablauf dient dem Auslesen der Namen aller Plug-ins des Testbeds. Mit der
gestellten Anfrage getPluginNames() tiber die Schnittstelle ConfigurationAPI wird in der Confi-
gurationAPI aus der Liste der verfiigbaren Plug-ins von jedem Plug-in der Name ausgelesen
und die Liste der Namen aller Plug-ins wird an den Anfragesteller geschickt.

Der zweite Ablauf von oben beschreibt das Auslesen der Parameter einzelner Plug-ins. Dabei
muss der Name des gewiinschten Plug-ins tibergeben werden. Wird das gewtiinschte Plug-in
gefunden, dann werden alle Parameter dieses Plug-ins dem Client geliefert.

Bei dem dritten Ablauf von oben handelt es sich um das Uberschreiben alter Parameter eines
Plug-ins mit neuen Werten. Nachdem die Parameter von dem Plug-in iibernommen sind,

38

4.4 Sequenzdiagramm

:Client :ConfigurationAPI :TestServiceAPI :Plugin

T
|
|
|
|
|

I,__.

pluginNamenAnfragen()
I

fur jedes plug-in: nameAnfragen()
Il

1
: T
1

far jed'es plug-in:

pluginParameterAnfragen(name)

>

| U

t: parameterAnfragen(

>

[
I
:
|
I
|
|
I
:
)

T
wenn es plug-in <name> gi
|

|

|

I

|

|

|

T |
I I

| |

|
|
|

e |
wenn es plug-in <name> gibt: UbernehmeParameter(parameter)

-H

ressourceAnfragen(uri)

bei jedemﬂaktlivierten plug-in: pluginAusfuhren()
|) !

.......... 1)

Abbildung 4.2: Sequenzdiagramm zum REST Testbed

4 Anforderungen

werden sie auch persistent abgespeichert. So bleiben die Konfigurationen der Erweiterungen
auch tiber dem Neustart des Testbeds bestehen.

Die mittleren Abldaufe zum Auslesen und Anpassen der Parameter eines Plug-ins sollen fiir
alle verfiigbaren Plug-ins wiederholt werden. Danach ist das Testbed an ein bestimmtes
Testfall angepasst und der Testaufruf kann vorgenommen werden.

Der unterste Ablauf beschreibt den Aufruf des Testservices iiber die Schnittstelle TestServiceA-
PI. Dem Aufruf des Testservices folgt die Uberpriifung der einzelnen Plug-ins aus der Liste
der verfiigbaren Plug-ins in der TestServiceAPI nacheinander. Wird bei einem Plug-in festge-
stellt, dass sein Status auf Aktiviert konfiguriert ist, so wird dieses Plug-in bei der Bearbeitung
der Anfrage beziehungsweise der Erstellung der Antwort ausgefiihrt.

40

5 Konzept und Architektur

In diesem Kapitel wird auf das Zusammenwirken der einzelnen Komponenten der Archi-
tektur vom REST Testbed eingegangen. Es werden die relevanten Konzepte zur Gestaltung
des REST Testbeds dargelegt und das Datenmodell zur Verwaltung der Konfigurationen von
Plug-ins vorgestellt.

Beim REST Testbed handelt es sich um eine Web-Anwendung, die auf einem Server aus-
gefiihrt wird. Diese Tatsache impliziert die Verwendung des Client-Server-Konzepts. Das
Client-Server-Konzept bezieht sich primar auf die Unterteilung der Funktionalitdten in zwei
Zustandigkeitsbereiche und nicht in zwei Standorte. Der Client kann auf der gleichen Maschi-
ne laufen wie der Server. Wenn man die iiblichen Client/Server-Anwendungen von einem
Anwendungssystem betrachtet, so sind sie oft aufeinander zugeschnitten. Beim REST Testbed
soll durch die Konfigurierbarkeit der Plug-ins die Anpassung der Eigenschaften des Testbeds
an eine Client-Anwendung stattfinden. Es ist keine mehrfache Benutzung des Testbeds durch
mehrere Testbed-Benutzer, im Gegensatz zu den {iblichen Server-Anwendungen, vorgesehen,
denn die Konfiguration der mit den Plug-ins realisierten funktionalen und nicht-funktionalen
Eigenschaften muss durch einen Tester kontrolliert durchgefiihrt werden.

In Abbildung 5.1 wird die grobe Architektur vom REST Testbed, genauso wie die relevanten
Werkzeuge fiir die Konfiguration des Testbeds und fiir das Testen von Client-Anwendungen
skizziert. Die rechte Seite der Abbildung namens Testbed Server liefert einen groben Uberblick
tiber die Komponenten des REST Testbeds. Mit der linken Seite der Abbildung namens Client-
Side geht diese Abbildung tiber die Grenzen des REST Testbeds hinaus, hilft jedoch es besser
dem Testprozess zuzuordnen.

Mit Client-Side wird das zu testende Client-Anwendung mit moglichen Hilfsmitteln zum
Untersttitzen des Testvorgangs dargestellt. Die Aufgabenbereiche der Software-Komponenten
dieser Seite der Abbildung fallen nicht in die Zustéandigkeit dieser Diplomarbeit und werden
deswegen nicht im Detail erldutert. Die Komponente ConfigurationAPI stellt die Konfigurati-
onsschnittstelle fiir das Testbed dar. Uber unterschiedliche Reprisentationen von Konfigurati-
onsressourcen kann das Testbed beziehungsweise jedes einzelne Plug-in konfiguriert werden.
Dabei werden mit Client-Side zwei Arten der Konfiguration verdeutlicht. Die eine Art der
Konfiguration wird von dem Tester (Strichmdnnchen) iiber die graphische Benutzeroberfldche
(Configuraiton GUI) manuell durchgefiihrt. Die andere Art bezieht sich auf die automatisierte
Durchfiihrung der Konfiguration mittels eines Test-Skripts. Die Einstellungen von Plug-ins
werden in dem mit Plug-ins Configurations bezeichnetem Speicher persistent abgelegt. Auf
diese Weise konnen die Konfigurationen von Plug-ins auch bei einem Neustart des Servers
bestehen bleiben.

41

5 Konzept und Architektur

Client-Side Testbed
- - Configuration API Server) 3 q
Configuration R,: 2 Plugin Configurations
GUI ~
2O Test Script pig
\

Configuration

% RO> AP| Wrapper
Test Service API Plugin Components

R
<
N .
e Ry Plugin 1
g —O—

Client
Software

Plugin n

Ov

Abbildung 5.1: Die Architektur von dem Testbed
5.1 Plug-in-Konzept

Das REST Testbed basiert auf dem Plug-in-Konzept. Die Entwicklung des Testbeds kann da-
durch modular gestaltet werden, was auch die Erweiterbarkeit des Testbeds zusichert. Zu den
Kern-Plug-ins gehoren die Plug-ins zur Verwaltung von Ressourcen (siehe Anwendungsfall
2.3), zur Erstellung von Reprédsentationen von Ressourcen (sieche Anwendungsfall 2.4) und
zum Protokollieren von Aufrufen (sieche Anwendungsfall 2.9). Die anderen Plug-ins haben
oft Abhidngigkeiten beziiglich dieser drei Kern-Plug-ins, denn bei den meisten Aufrufen des
Testservices wird eine Ressource aus dem Datenbestand ausgelesen und die Représentation
von dieser Ressource an die Client-Anwendung geschickt. Dabei wird dieser Prozess ab der
Ankunft der Anfrage bis zum Abschicken der Antwort protokolliert. Die meisten weiteren
Plug-ins erweitern die Funktionalitit dieser Kern-Plug-ins (siehe Anwendungsfall 2.5, Anwen-
dungsfall 2.7 und Anwendungsfall 2.8). Die Ausnahmen bei dem oben beschriebenen Vorgang
bildet das Plug-in zum Simulieren einer HTTP-Statusmeldung (siehe Anwendungsfall 2.6),
welches keine Repréasentation und somit auch keine Ressource bendtigt.

Beim REST Testbed wurden verschiedene Technologien beziehungsweise Standards zum
Realisieren von funktionalen und nicht-funktionalen Eigenschafen eingesetzt. Diese Eigen-
schaften konnen genauso, nach den Bed{irfnissen, mit anderen Technologien beziehungsweise
Standards bewerkstelligt werden. Zum Autorisieren der Anfragen werden nach den gestell-
ten Anforderungen die Verfahren Basic Access Authentication und Digest Access Authentication
eingesetzt. Wenn bei der Client-Anwendung ein anderes Verfahren zum Autorisieren der
Anfragen verwendet wird, so soll das REST Testbed um dieses Verfahren erweitert wer-
den. Weiteres Beispiel liefert die Generierung der Reprédsentationen von Ressourcen. Viele
Client-Anwendungen arbeiten mit einer spezifischen Formatierung der Représentationen
von Ressourcen. Um solche Client-Anwendung zu testen, soll das REST Testbed um die
Generierung von Reprasentation mit der entsprechenden Formatierung erweitert werden.
Die Entkopplung der einzelnen Komponenten des Testbeds wirkt sich in diesem Fall sehr

42

5.1 Plug-in-Konzept

positiv auf die Erweiterbarkeit des REST Testbeds aus. Das Plug-in-Konzept erweist sich
fiir diese und viele andere Félle als sehr praktischer Ansatz bei der Entwicklung. Das Test-
bed lasst sich mit diesem Konzept leichter um neue Funktionalitdten, die zum Testen einer
Client-Anwendung benotigt werden, erweitern.

Es wird zwischen folgenden Komponenten bei einem Plug-in unterschieden:

e Beobachter: Zum Definieren der Ereignisse, nach deren Erscheinung die Domainlogik
abgearbeitet wird

e Domainlogik: Die implementierte Domainlogik, mit der sich das Plug-in beschéftigt
e Konfiguration: Zum Parametrisieren von Operationen der Domainlogik

Der Kern des REST Testbeds besteht aus der Verwaltung von Plug-in-Konfigurationen und
dem Auslosen von Ereignissen zum Ausfiihren von Plug-ins. Die antreffenden Anfragen
auf dem REST Testbed tiber die Schnittstellen TestServiceAPI 16sen Ereignisse aus. Bei den
Ereignissen handelt es sich um den Anfang und das Ende der Ausfiihrung der in der Schnitt-
stelle TestServiceAPI definierten Methoden. Wenn ein Ereignis, das heifit Bearbeitungsstart
oder -ende einer Methode der Schnittstelle TestServiceAPI, ausgelost wird und es gibt einen
Beobachter eines Plug-ins, welches auf dieses Ereignis wartet, dann wird die entsprechende
Domainlogik mit Hinzunahme der konfigurierbaren Parametern aus der Konfiguration dieses
Plug-ins abgearbeitet. Einige Plug-ins miissen den anderen Plug-ins vorgeschaltet werden.
Das ist der Fall bei dem Plug-in Authorization, das die Autorisierung der Anfrage vor der
eigentlichen Bearbeitung tiberpriifen muss. Einige Plug-ins miissen erst auf die Abarbeitung
anderer Plug-ins warten, bevor sie ausgefiihrt werden. Das Plug-in Caching kann erst dann ein
Entity-Tag berechnen, wenn der Inhalt der HTTP-Antwort bereits erstellt wurde. Bei anderen
Plug-ins wie Logging miissen einige Operationen unmittelbar nach dem Antreffen der Anfra-
ge und andere unmittelbar vor dem Abschicken der HTTP-Antwort durchgefiihrt werden.
Dementsprechend soll ein Plug-in zustande sein, deren Methoden zu zwei unterschiedlichen
Zeiten der Bearbeitung einer HTTP-Anfrage ausfiihren zu konnen.

Die Beobachter nehmen Ereignisse wahr. Wenn ein erwartetes Ereignis von einem Beobachter
festgestellt wird, dann wird die zugehorige Domainlogik ausgefiihrt. Bei den Beobachtern
wird die Reihenfolge der Ausfiihrung definiert. Abhdngig davon, ob das Ereignis den Anfang
oder das Ende der Bearbeitung der TestServiceAPI-Operation signalisiert, andert sich die
Reihenfolge der Anwendung der Domainlogik von den Plug-ins bei der Bearbeitung einer
HTTP-Anfrage. Wenn es sich um das Start-Ereignis handelt, dann werden die nach dem
Vorrang sortierten Plug-ins, angefangen mit dem Plug-in mit dem hdchsten Vorrang, nachein-
ander ausgefiihrt. Wenn es jedoch um das Ende-Ereignis geht, dann wird die umgekehrte
Reihenfolge der Ausfithrung von Plug-ins verglichen mit der Reihenfolge bei dem Start-
Ereignis verwendet. Ein Plug-in mit dem hochsten Vorrang vor anderen bekannten Plug-ins
wird beim Start-Ereignis also vor allen anderen Plug-ins und im Falle des Ende-Ereignisses als
Letzter ausgefiihrt. Abbildung 5.2 stellt den Ablauf der Ausfithrung von Plug-ins graphisch
dar.

Eine Anwendung, das nach dem Plug-in-Konzept entwickelt wurde, kann leichter in der
Funktionalitdt erweitert werden. Durch die Modularisierung beim Plug-in-Konzept kann die
Anwendung in unterschiedliche Module nach den Zustandigkeitsbereichen aufgeteilt werden.

43

5 Konzept und Architektur

Start beim Beobachten des Anfang-Ereignisses ﬁ Start beim Beobachten des Ende-Ereignisses ﬁ

$ Aus der Liste der noch nicht bearbeiteten Plug-ins ﬁ $
— ~
- ~
=~ ~

C\uswahl eines Plug-ins mit dem hdchsten Vorrang >[Auswahl eines Plug-ins mit dem niedrigsten Vorrang

E_esen der PIug-in-KonfiguratiorD E_esen der PIug-in-KonfiguratiorD

B B

[Plug-in ist aktiviert] [Plug-in ist aktiviert]

Ausfuhren des Plug-ins Ausfiihren des Plug-ins

hd N

[keine weiteren Plug-ins [keine weiteren Plug-ins
zu bearbeiten] zu bearbeiten]

[weitere Plug-ins

zu bearbeiten] [Plug-in ist deaktiviert] [weitere Plug-ins

[Plug-in ist deaktiviert] zu bearbeiten]

Abbildung 5.2: Abarbeitung von Plug-ins

Die Trennung der Module nach den Zustdandigkeitsbereichen verringert die Komplexitat bei
der Weiterentwicklung und Fehlersuche.

5.2 MVC-Konzept

Bei der Umsetzung des Testbeds wird das Model View Controller (MVC)-Konzept angewandt.
Bei diesem Konzept handelt es sich um eine Vorschrift zur Strukturierung einer Software-
Entwicklung in drei Komponenten. Die Komponente Model beinhaltet dabei Daten und die
notwendige Kernfunktionalitidt zur Verwaltung dieser Daten. Zu jeder Komponente Model
kann es mehrere Views geben. Die Komponente View ist fiir die Darstellung der Daten aus
einem Model zustindig. Die Komponente Controller sorgt dafiir, dass die Anderungen in der
View der Daten eines Models sich auch auf die Daten dieses Model auswirken. Zur automati-
schen Benachrichtigung der Views iiber Anderungen in den Daten wird beim MVC-Konzept
der Entwurfsmuster Beobachter in Models verwendet (PBG04, S. 212) (HR02, 248-251). Auf die
Benachrichtigung und somit das Entwurfsmuster Beobachter wird jedoch verzichtet. Diese Ei-
genschaft des vollwertigen Konzepts von MVC bringt beim REST Testbed keine Vorteile, denn
die Konfiguration von den Plug-ins muss durch den Tester unter selbststandiger Kontrolle
durchgefiihrt werden. Abbildung 5.3 zeigt die Komponenten des MVC-Architekturmusters.

44

5.3 Datenmodell der Plug-in-Konfigurationen

Model View

Anfrage der aktuellen
Konfiguration

Anfrage der Darstellung
(Modifikation)
der aktuellen Konfiguration

Modifikation der aktuellen
Konfiguration

Controller

Abbildung 5.3: Model-View-Controller (HR02, S. 249)

Gemifs der Anforderungen sollen beim REST Testbed die Moglichkeiten zum manuellen
und automatisierten Konfigurieren der Plug-ins berticksichtigt werden. Es konnen dafiir
verschiedene Représentationen von Konfigurationen verwendet werden. Bei diesen zwei Dar-
stellungsformen handelt es sich um weiter unten beschriebene Views aus dem MVC-Konzept.
Nach diesem Konzept bleibt das Testbed um weitere Darstellungen der Konfigurationsdaten
leicht erweiterbar.

Beim Testen der Client-Anwendung werden Testressourcen iiber die Schnittstelle TestSer-
viceAPI abgerufen. Dabei werden aktuelle Konfigurationen der Plug-ins tiberpriift und die
entsprechenden Plug-ins fiir die Bearbeitung der Anfrage und zur Erstellung der Antwort
mit vorgegebenen Parametern aus der ausgelesener Konfiguration aktiviert oder deaktiviert.
Den Konfigurationen der Plug-ins ist eine definierte Struktur vorgegeben, die im Abschnitt
5.3 beschrieben wird. Dieses Datenmodell ist dabei der Komponente Model aus dem bereits
erwahnten Model View Controller zugeordnet.

Bei der Entwicklung des REST Testbeds sollen zwei Ausgabeformate, und somit zwei View-
Alternativen gemafs Abschnitt 4.1 realisiert werden. Das eine Ausgabeformat muss fiir das
manuelle und das andere fiir das automatisierte Konfigurieren der Plug-ins gut geeignet sein.
Mit dem MVC-Konzept kann das REST Testbed leicht um weitere Views erweitert werden,
denn dieses Konzept impliziert diese Eigenschaft. Der Controller ist fiir die Ubernahme
von Modifikation der Konfigurationen von Plug-ins, genauso wie fiir das Bereitstellen der
Hinweise auf fehlerhafte Eingaben an die Views, zustandig.

5.3 Datenmodell der Plug-in-Konfigurationen

Fiir die Beschreibung einer Konfiguration eines Plug-ins vom REST Testbed wird das in
Abbildung 5.4 skizzierte Datenmodell verwendet. Diese Beschreibungen sollen persistent
abgespeichert werden, um beim Neustarten des REST Testbeds die Plug-ins nicht erneut
konfigurieren zu miissen.

Den Ausgangspunkt in dieser Abbildung stellt die Komponente Plug-in Configuration dar.
Diese Komponente soll die Charakteristik einer konfigurierbaren funktionalen Eigenschaft,
wie in Abschnitt 4.1 angegeben, beschreiben. Dabei soll jedes Plug-in einen eindeutigen

45

5 Konzept und Architektur

Parameter
Plug-in Configuration Group -
9 9 “hame - Strin Variant -name : String
-name : String) 9 -desc : String

-enabled : Boolean ‘_-desc.: String @ —["ame: Stiing @ —————-type : String
: 9 -error : String

«enumeration»
Type

+simplechoice

+multiplechoice

Abbildung 5.4: Datenmodell der Plug-in-Konfigurationen

Namen besitzen, um die einzelnen Plug-ins voneinander unterscheiden zu kénnen. Das
Attribut enabled sagt dariiber aus, ob die Domainlogik vom entsprechenden Plug-in beim
Bearbeiten der Operationen von TestServiceAPI abgearbeitet werden soll oder nicht. Das
Attribut desc liefert die Beschreibung des Plug-ins, zu dem die Konfiguration gehort. Die
Komponente Plug-in Configuration kann mehrere Komponenten Group haben, die wiederum
mehrere Komponenten Variant besitzen kénnen.

Eine Gruppe (Group) kann einem der zwei Typen zugeordnet werde. Der Typ multiplechoice
erlaubt das voneinander unabhiangige Aktivieren der Realisierungsvarianten (Variant). Der
Typ singlechoice erlaubt das Aktivieren nur einer einzigen Realisierungsvariante einer gegebe-
nen Gruppe. Das Attribut enabled der Komponente Group liefert dabei die Liste der aktivierten
Realisierungsvarianten. Fiir eine angefragte Ressource kann das REST Testbed verschiedene
Reprasentationen (zum Beispiel HTML- und XML-Repréasentation) generieren. In dem Fall
kann sich der Client fiir eine oder mehrere Reprasentationen entscheiden. Deswegen handelt
es sich dabei um eine Gruppe vom Typ multiplechoice. Bei der Autorisierung wird nur ein
Verfahren zur Authentifizierung (zum Beispiel HTTP Basic oder HTTP Digest) festgelegt, so
das der Client keine WahImoglichkeiten hat. In diesem Fall wird fiir die gegebene Gruppe der
Typ singlechoice verwendet. Die Variable desc soll eine Beschreibung der jeweiligen Gruppe
bereitstellen.

Die Menge der Realisierungsvarianten beziehungsweise die Realisierung der funktionalen
oder nicht-funktionalen Eigenschaft eines Plug-ins wird in Abbildung mit der Komponente
Variant dargestellt. Jede Realisierungsvariante muss einen eindeutigen Namen besitzen, um
die einzelnen Varianten voneinander zu unterscheiden. Das Attribut desc soll durch eine
Beschreibung der Realisierungsvarianten eine unterstiitzende Funktion bei der Auswahl der
Varianten iibernehmen. Jede Realisierungsvariante ist einer Gruppe Group zugeordnet und
besitzt eine bestimmte Anzahl von bendtigten Parametern.

Die Parameter einer Realisierungsvariante sind zum Parametrisieren der entsprechenden
Realisierungsvariante gedacht. Die in den Attributen value gehaltenen Werte der einzelnen
Parameter lassen sich tiber die Schnittstelle ConfigurationAPI verandern. Somit konnen die

46

5.3 Datenmodell der Plug-in-Konfigurationen

Werte der Parameter je nach Testfall angepasst werden. Mit dem Testfall kann dabei das Testen
einer funktionalen oder nicht-funktionalen Eigenschaft einer Client-Anwendung gemeint
sein. Jeder Parameter besitzt einen eindeutigen Namen in der jeweiligen Variante und einen
Typ. Das Attribut type beinhaltet die Bezeichnung des in dem Plug-in definierten Validierer
von dem Attribut value des gleichen Parameters. Zu jedem Attribut value jedes Parameters soll
ein Validierer bereitgestellt werden. Im Falle einer manuellen Konfiguration eines Plug-ins
mit Hilfe einer graphischen Benutzeroberflache sollen die Benutzereingaben beziehungsweise
die Attribute value von Parametern clientseitig auf die Korrektheit tiberpriift werden. Das
Attribut desc soll eine knappe und aussagekréftige Beschreibung des Parameters liefern. Die
Beschreibungen der Parameter und die Benutzung der Validierer sollen die Benutzerfreund-
lichkeit beziehungsweise Bedienbarkeit beim manuellen Konfigurieren, vor allem iiber eine
Graphical User Interface (GUI), den Testbed-Benutzer unterstiitzen. Die vom Client iibermit-
telten Parameter sollen auch auf dem Server validiert werden. Uber eventuell auftretende
serverseitige Fehler und deren Ursache kann der Client iiber das Attribut error informiert
werden. Im Gegensatz zu den anderen Attributen wird das Attribut error nicht persistent
abgespeichert.

Client Server

Plug-inKonfigurationAnfragen()
Anfragen >
Erstellen der
Reprasentation
der angefragten
Repréasentation Plug-in-Konfiguration
K—--— deraktuellen |- ———-
Plug-in-Konfiguration :
T I
| |
. I
I
Modifitieren der |
Parameter !
|
Plug-inKonfigurationSenden() | Ubernahme der B
> modifizierten
Parameter
Repréasentation und
der aktuellen
P Plug-in-Konfiguration o Erste'l.len der_
h Reprasentation
mitfohne : der modifizierten
L Fehlerbeschreibungen I . . .
i I Plug-in-Konfiguration
| |
| |

Abbildung 5.5: Szenario zum Modifizieren einer Plug-in-Konfiguration

Abbildung 5.5 beschreibt ein mogliches Szenario beim Manipulieren einer Plug-in-Konfigu-
ration nach dem oben beschriebenen Datenmodell. Der Testbed-Benutzer fragt den aktuellen
Zustand einer Plug-in-Konfiguration tiber eine Client-Anwendung an. Der Server gene-
riert anhand einer Instanz nach dem Datenmodell der Plug-in-Konfigurationen die Repra-

47

5 Konzept und Architektur

sentation der entsprechenden Plug-in-Konfiguration und tibermittelt diese an die Client-
Anwendung. Der Testbed-Benutzer fiihrt nach eigenen Bediirfnissen Anderungen in der Plug-
in-Konfiguration, indem die Werte des Attributs value in der vorliegenden Reprasentation ver-
andert werden. Mit den in den Attributen type gelieferten Werten hat die Client-Anwendung
die Moglichkeit die Benutzereingaben zu tiberpriifen und den Testbed-Benutzer iiber falsche
Benutzereingaben zu informieren. Es ist auch sinnvoll, dass die Client-Anwendung das
Absenden der neuen Werte verhindert, wenn die Benutzereingaben fehlerhaft sind. Wenn
die modifizierten Werte an den Server abgeschickt und dort empfangen wurden, so sollten
diese Werte auch auf dem Server genauer iiberpriift werden. Kénnen die modifizierten Werte
nicht iibernommen werden, dann sollte in das Attribut error zu dem fehlerhaften Parame-
ter die Fehlerbeschreibung geschrieben werden. Der Wert des Attributs error kann dann
in die Représentation der Plug-in-Konfiguration eingearbeitet und an den Client geschickt
werden.

48

6 Design

Mithilfe von Klassen- und Sequenzdiagrammen wird in diesem Kapitel das Design des REST
Testbeds prasentiert. Dabei werden Zustdndigkeitsbereiche der in Kapitel 5 vorgestellten
Komponenten Plug-in, Model, View und Controller besser erklart und es wird ein Konstrukt
zum Verwalten der Konfigurationen und der Domainlogik von Plug-ins vorgestellt. Es wird
darauf hingewiesen, dass in den Klassendiagrammen dieses Kapitels zugunsten der besseren
Ubersichtlichkeit nicht alle Attribute und Methoden bei den angegebenen Klassen aufgelistet
sind.

6.1 Zentralisierter Container fur Plug-ins

Wie bereits in Abschnitt 5.1 erwdhnt, besteht ein Plug-in aus den Komponenten Beobachter,
Konfiguration und Domainlogik. Zur Verwaltung der Domainlogik und der Konfigurationen
von Plug-ins wird ein Konstrukt benutzt, das als ein zentralisierter Container zur Verfiigung
steht. Eine Plug-in-Konfiguration wird als Modell nach dem MVC-Architekturmuster reali-
siert, siehe dazu Abschnitt 5.2, und wird von den Komponenten wie Views und Controllern
des MVC-Architekturmusters genauso wie von der Domainlogik der Plug-ins verwendet. Es
wird sicher gestellt, dass es nur eine Instanz des Containers im REST Testbed gibt, auf die
verschiedene Komponenten zugreifen konnen. Dafiir kommt das Entwurfsmuster Singleton
(Einzelstiick) zum FEinsatz. Das Singleton-Entwurfsmuster garantiert, dass es nur eine Einzel-
instanz der Klasse PluginContainer gibt, und bietet einen globalen Zugriffspunkt auf diese
Einzelinstanz. Mit diesem Entwurfsmuster wird es moglich nur eine Instanz der Klasse zum
Verwalten einer Konfiguration von jedem Plug-in zu erstellen. Dasselbe gilt auch fiir die
Instanzen der Klassen der Domainlogik von verfiigbaren Plug-ins.

Die Klasse PluginContainer in Abbildung 6.1 realisiert das beschriebene Architekturmuster
Singleton und bietet den Komponenten des REST Testbeds einen globalisierten Zugriff auf die
Domainlogik von verfiigbare Plug-ins und deren Konfigurationen. Weiterhin ist durch die
Moglichkeit eines globalisierten Zugriffs auf die Plug-in-Konfigurationen tiber PluginContainer
kein erneutes Auslesen der Konfigurationsdateien notwendig. Die erneuten Zugriffe auf
die Plug-in-Parameter erfolgen deswegen schneller. Das Verwalten von zum Beispiel zwei
Instanzen der Konfigurationen einer Konfigurationsdatei wiirde Synchronisation erfordern,
die eine zusétzliche Fehlerquelle darstellen wiirde. Das bleibt durch die Anwendung des
beschriebenen Entwurfsmusters erspart.

49

6 Design

TestServiceAPI PluginConfig
-name : String
+get(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response -filepath : String
+head(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response * -enabled : Boq]ean _
+put(ein request : HttpServletRequest, ein/aus response : HitpServletResponse) : Response -groups : PluginGrouplList
+post(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response +getName()
+delete(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response +getFilepath()
1 |+isEnabled()
+enable()

1 +getGroup(ein name : String) : PluginGroup
+getGroups() : PluginGroupList
+save()

1 *
1 1 1 .
*
PluginContainer PluginObserver PluginGroup
-instance : PluginContainer * |request: HitpServietRequest St
-logicList -response : HttpServletResponse -game o ring
A -desc : String
-configList type : String
-Singleton())) -enabled : StringList
+getinstance() : PluginContainer 1 1 -variants : PluginVariantList
+addPluginDomainlogic(ein/aus instance : PluginDomainlogic) +getName() : String
+addPluginConfig(ein instance : PluginConfig) PluginDomainlogicinterface +getDesc() : String
+getPluginDomainlogic() : PluginDomainlogic +getType() : String
+getPluginConfig() : PluginConfig _ __ _ _ +getEnabled() : StringList
*| [tisvalid(ein group : PluginGroup) : String +setEnabled(ein enabled : StringList)
+isValid(ein variant : PluginVariant) : String - K - .

1 N S . . +getVariant() : PluginVariant
+isValid(ein parameter : PluginParameter) : String +getvariants() : PluginVariantList
+getJsValidators() : HashMap<name, JsValidator> 9]

1 1
PluginVariant
ConfigurationAPI , [name: String
-desc : String
— - +getName() : String
+getPluginList(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response +getDesc() : String

+getPlugin(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response
+putPlugin(ein request : HitpServletRequest, ein/aus response : HttpServletResponse, ein xmlParam) : Response
+postPlugin(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein formParam) : Response 1

1 1

PluginParameter

,— +name : String
+value : String

ConfigResponseBuilderinterface ConfigControllerinterface -desc : String
+type : String
i igLi -error : Strini
+getPluginConfigList)) +updateConfig(ein plugin : String, ein params : Object) g -
+getPluginConfig(ein plugin : String) +getName() : String

+getValue() : String
+getDesc() : String
+getType() : String
+getError() : String
+setName(ein name : String)
+setValue(ein value : String)
+setDesc(ein desc : String)
+setType(ein type : String)
+setError(ein error : String)

HtmIConfigResponseBuilder| [XmIConfigResponseBuilder| [HtmlConfigController| [XmlIConfigController

Abbildung 6.1: Klassendiagramm zum Testbed

50

6.2 Views von Plug-in-Konfigurationen

6.2 Views von Plug-in-Konfigurationen

Die Schnittstelle ConfigResponseBuilderInterface in Abbildung 6.1 schreibt die Methoden vor,
welche von den Klassen Html- und XmlConfigResponseBuilder zu implementieren sind. Die
Klassen Html- und XmlConfigResponseBuilder sind fiir die Erstellung der Représentationen
respektive Views von Plug-in-Konfigurationen aus den Instanzen der Klassen PluginConfig,
PluginGroup, PluginVariant und PluginParameter zustandig. Die Methode getPluginConfigList()
liefert eine View, welche die Namen der verfiigbaren Plug-in-Konfigurationen beinhaltet. Bei
der Methode getPluginConfig(plugin) wird eine View mit den Werten der angefragten Plug-in-
Konfiguration generiert und geliefert. Das Sequenzdiagramm 6.2 stellt eine mogliche Inter-
aktion der Komponenten bei der Anfrage einer Représentation einer Plug-in-Konfiguration
tiber die Schnittstelle ConfigurationAPI dar. Mit der Methode getPluginConfig(name) wird der
XmlConfigResponseBuilder zum Erstellen einer Reprasentation einer Plug-in-Konfiguration
veranlasst. Der XmlConfigResponseBuilder fragt beim PluginContainer die gewiinschte Plug-in-
Konfiguration (PluginConfig) an und liest deren Parameter zum Erstellen der Préasentation.
Aus der Domainlogik werden die clientseitigen Validierer der entsprechenden Parameter
entnommen und der erstellenden Reprédsentation hinzugefiigt. Die erstellte Reprasentation
der angefragten Plug-in-Konfiguration wird darauf dem Client {ibermittelt.

:ConfigurationAP| :XmlConfigResponseBuilder :PluginContainer :PluginConfig PluginDomainlogic

|
|
getPluginConfig(name) |
|

|
|
|
}
getPluginConfig(name) }
|

>

Erstellen einer
Repréasentation
einer
Konfiguration
eines Plug-ins

ittt =

Abbildung 6.2: Auslesen von Plug-in-Konfigurationen tiber Configuration API

6.3 Controller von Plug-in-Konfigurationen

Die Benutzereingaben werden mit den Controller-Klassen, welche die Schnittstelle ConfigCon-
trollerInterface implementieren, in die Plug-in-Konfigurationen iibernommen (siehe Abbildung
6.1). Die zu tibernehmenden Parameter einer Plug-in-Konfiguration werden der Methode
updateConfig() als Parameter {ibergeben. Diagramm 6.3 beschreibt eine mégliche Interaktion
zwischen Komponenten beim Ubernehmen der Benutzereingaben beziehungsweise neuen

51

6 Design

Parametern in eine Plug-in-Konfiguration. Die Methode updateConfig(name, params), wel-
cher Benutzereingaben mitgeteilt werden, fragt die zu modifizierende Plug-in-Konfiguration
(PluginConfig) und die Domainlogik implementierende Klasse beim PluginContainer an. Die
Parameter der mitgeteilten Plug-in-Konfiguration werden dann nach der Uberpriifung mit
den isValid(..)-Methoden der Domainlogik vom XmlIConfigController aktualisiert. Danach kann
eine Reprdsentation der aktualisierten Plug-in-Konfiguration wie in Abbildung 6.2 dargestellt
generiert werden und dem Client iibermittelt werden.

:ConfigurationAPI :XmlIConfigController :PluginContainer :PluginConfig PluginDomainlogic

i i

|

updateConfig(name, params)
1

getPluginConfig(name)

Aufnehmen

von empfangen
Parametern in

die Konfiguration
des entsprechenden
Plug-in

K- 5
getPluginDomainlogic(name)
|

getPluginConfig(name)

Der Ablauf beim
Erstellen einer
Reprasentation

einer Konfiguration
eines Plug-ins

(siehe Abbildung 6.2)

-
|
|
|
|
|
|
|
|
|

Abbildung 6.3: Modifizieren von Plug-in-Konfigurationen tiber ConfigurationAPI

6.4 Modelle von Plug-in-Konfigurationen

Bei der Klasse PluginConfig mit den Klassen PluginGroup, PluginVariant und PluginPara-
meter in Abbildung 6 handelt es sich um die Realisierung des Datenmodells fiir Plug-in-
Konfigurationen, die im Abschnitt 5.3 beschrieben ist.

Um das MVC-Konzept deutlicher zu machen, werden betroffene Klassen den einzelnen
Komponenten der Model-View-Controller-Architektur zugeordnet. Die Klassen PluginConfig,
PluginGroup, PluginVariant und PluginParameter gehoren der Komponente Model an. Die
Klassen, welche die Schnittstelle ConfigResponseBuilderInterface implementieren, stellen Views
dar. Und die Klassen zum Manipulieren der Plug-in-Konfigurationen, welche die Schnittstelle
ConfigControllerInterface implementieren, sind dem Controller zugeordnet.

52

6.5 Plug-ins

6.5 Plug-ins

Wie oben bereits erwéhnt, besteht ein Plug-in aus einem Beobachter, einer Domainlogik und
einer Konfiguration. Im Folgenden werden die Domainlogik der einzelnen Plug-ins vorgestellt
und die Aufgaben der Plug-in-Konfigurationen genauso wie Beobachtern erklért.

6.5.1 Konfigurationen von Plug-ins

Eine Konfiguration eines Plug-ins ist auch ein Modell nach dem MVC-Konzept (sieche Ab-
schnitt 6.4). Eine Plug-in-Konfiguration beinhaltet konfigurierbare Parameter, die zum Parame-
trisieren der Methoden der Domainlogik beim Bearbeiten der HTTP-Anfragen herangezogen
werden (siehe auch Abschnitt 6.4).

6.5.2 Beobachter von Plug-ins

Uber die Schnittstelle TestServiceAPI werden die HTTP-Anfragemethoden HEAD, GET, PUT,
POST und DELETE abgefangen. Bei der Klasse PluginObserver handelt es sich um die in
Abschnitt 5.1 beschriebenen Beobachter. Ein Beobachter erwartet die oben genannten HTTP-
Anfragen und ist Teil von jedem Plug-in. Wenn von einem Beobachter ein erwartetes Ereignis
wahrgenommen wird, dann wendet er gemaf3 der aktuellen Plug-in-Konfiguration die Do-
mainlogik vom Plug-in zur Bearbeitung der HTTP-Anfrage an. Wenn gleichzeitig zwei oder
mehrere Beobachter auf ein Ereignis reagieren, so werden die zugehorigen Plug-ins in der
definierten Reihenfolge abgearbeitet. Das Konzept der Reihenfolge der Bearbeitung von
Plug-ins ist in Abschnitt 5.1 beschrieben. Auflerdem tibernehmen die Beobachter die Aufgabe
der Instanziierung der Domainlogik und der Konfiguration eines Plug-ins. Der Beobachter
soll genauso diese Instanzen im PluginContainer ablegen, damit andere Komponenten diese
Instanzen erreichen konnen ohne die Klassen erneut instanziieren zu miissen.

Sequenzdigramm 6.4 zeigt die Interaktion der Komponenten vom Testbed beim Abarbeiten
der Domainlogik eines Plug-ins bei der Bearbeitung einer HTTP-Anfrage tiber die Schnittstelle
TestServiceAPI. Ein Beobachter (PluginObserver) stellt ein erwartetes Ereignis fest. Im Regelfall
handelt es sich bei den erwarteten Ereignissen um die Aufrufe einer definierten Methode
der Schnittstelle TestServiceAPI. Der Beobachter tiberpriift daraufhin, ob die Domainlogik
(Domainlogic) gemafs aktueller Plug-in-Konfiguration (PluginConfig) abgearbeitet werden
soll. Wenn die Domainlogik abgearbeitet wird, dann wird die Plug-in-Konfiguration fiir die
Parametrisierung der Methoden zur Bearbeitung der Domainlogik benutzt. Dieser Ablauf
wird fiir alle Beobachter wiederholt, wenn mehrere Beobachter auf das gleiche Ereignis
reagieren.

6.5.3 Domainlogik von Plug-ins

Dieser Abschnitt widmet sich der Domainlogik einzelner Plug-ins, mit denen funktionale
Anforderungen an das Testbed aus Abschnitt 4.1 abgedeckt werden. Die Domainlogik wird

53

6 Design

:TestServiceAPI| :PluginObserver :PluginDomainlogic :PluginConfig

Ein Ereignis B

wurde ausgelost,
I auf welches

PluginObserver isEnabled|
wartet

Bearbeitung
einer
HTTP-Anfrage
bei einem
Testaufruf

e _____________________ L

Abbildung 6.4: Bearbeitung einer HTTP-Anfrage tiber TestServiceAPI

mit der die Schnittstelle PluginDomainlogicInterface implementierenden Klasse und zusétzlich
anderen in der Verbindung mit dieser Klasse stehenden Komponenten eines Plug-ins imple-
mentiert. Die Methoden isValid(..) und get]sValidators() werden als Teil der Domainlogik von
den Plug-ins implementiert (siehe dazu Abbildung 6.1). Diese Methoden sollen die Benut-
zereingaben fiir Plug-in-Konfigurationen iiberpriifen und im Fehlerfall eine entsprechende
Meldung erstellen. Die Methode get]sValidators() soll Validierer zur clientseitigen Uberprii—
fung der Benutzereingaben liefern und die Methoden isValid(..) sollen fiir die serverseitige
Uberpriifung der Benutzereingaben zustindig sein.

Protokollieren (Plug-in Logging)

Das Protokollieren der Bearbeitung von HTTP-Anfragen (siehe Anwendungsfall 2.9) wird
vom Plug-in Logging ibernommen. Uber das Attribut level in Abbildung 6.5 wird dem Logger
die Stufe der Informationsdetails vermittelt. Der Logger soll unterschiedliche Ausgabequellen
wie die Konsole und eine Textdatei fiir das persistente Abspeichern unterstiitzen. Die beschrie-
benen Eigenschaften wie die Stufe der Informationsdetails und die Ausgabequelle werden
in der Methode initialize() dem Logger mitgeteilt. Fiir das Berechnen der Bearbeitungszeit
einer HTTP-Anfrage wird das Hilfsattribut processingStart verwendet, welches sich die Zeit
zu Beginn der Bearbeitung merken soll. Die Berechnung der Bearbeitungszeit umfasst die
Zeiten der Bearbeitung einzelner Plug-ins. Das Plug-in Logging startet von allen Plug-ins als
Erstes und endet als Letztes. Somit hat es die Moglichkeit die Gesamtzeit der Abarbeitung
aller Plug-ins zu erfassen.

Ressourcen (Plug-in Resources)

Die Aufgabe dieses Plug-ins ist die Verwaltung der Ressourcen in den vorgesehenen Daten-
quellen (siehe Anwendungsfall 2.3). Die bestehenden Ressourcen sollen mit diesem Plug-in

54

6.5 Plug-ins

PluginDomainlogicInterface Logging
-level : Integer
-logfile : String
+isValid(ein group : PluginGroup) : String Q7-Iogger : Logger
+isValid(ein variant : PluginVariant) : String -processingStart : Long
+isValid(ein parameter : PluginParameter) : String -processingStop : Long
+getJsValidators() : HashMap<name, JsValidator> Cnitalize()

Abbildung 6.5: Protokollierung von HTTP-Anfragen

gemdfl Anforderungen aus Abschnitt 4.1 ausgelesen, manipuliert, geloscht genauso wie neue
Datensitze angelegt werden konnen. Einige Plug-ins benétigen die ausgelesene Ressource
zur Bearbeitung deren Domainlogik. Die Attribute der Ressourcen werden zum Beispiel fiir
die Erstellung der Représentationen gebraucht, die im Plug-in Representation stattfindet. Des-
wegen werden die Attribute der Ressourcen in einer Instanz der Klasse Resource abgelegt. Die
Benutzung der Klasse Resource soll bei jeder Implementierung zum Verwalten von Ressourcen
in beliebiger Datenquelle stattfinden (siehe dazu auch Abbildung 6.5.3). Die aus den Daten-
quellen, zum Beispiel Datenbank, extrahierte Ressource zum Bearbeiten der Anfrage soll bis
zur ndchsten Anfrage in der Instanz der Klasse Resources zwischengelagert werde. Wenn
andere Plug-ins zur Abarbeitung deren Domainlogik die mit diesem Plug-in ausgelesene
Ressource brauchen, dann sollen diese Plug-ins auf die Instanz der Klasse Resources zugreifen
und die Ressource mit der Methode getResource() auslesen konnen. Eine Ressource besteht
aus Attributen, die einen Namen name, eventuell einen Wert value und moglicherweise einen
Verweis link auf andere Ressourcen beinhalten. Zusétzlich wird auch der Datentyp vom Wert
value im Attribut festgehalten. Die Bekanntgabe des Typs eines Attributs ist vor allem fiir die
Bearbeitung der Ressourcenattribute von der Client-Anwendung von Vorteil.

1 1
PluginDomainlogicinterface [ﬁ
Resources Resource
+isValid(ein group : PluginGroup) : String Q*_resource : Resource -attributes : ResourceAttributeList
+isValid(ein variant : PluginVariant) : String -databaseManager +addAttribute(ein attribute : ResourceAttribute)
+isValid(ein parameter : PluginParameter) : String +getResource() : Resource +getAttributes() : ResourceAttributeList
+getJsValidators() : HashMap<name, JsValidator>
1 ! ! *
DatabaseManager ResourceAttribute
-schema : String -name : String
-user : String -value : String
-password : String -link : String
-type : String
+getName() : String

+getValue() : String
+getLink() : String
+getType() : String
+setName(ein name : String)
+setValue(ein value : String)
+setLink(ein link : String)
+setType(ein type : String)

Abbildung 6.6: Ressourcenzugriff

55

6 Design

Repréasentationen (Plug-in Representation)

Das Plug-in Representation beschéftigt sich mit der Generierung der Représentationen von Res-
sourcen genauso wie Extraktion der Ressourcen-Attribute aus den empfangenen HTTP-PUT-
und HTTP-POST-Anfragen (siehe Anwendungsfall 2.4). Dieses Plug-in soll laut gestellten An-
forderungen in Abschnitt 4.1 die Generierung der Reprasentation von Ressourcen in HTML-,
XML- und JSON-Format unterstiitzen und dementsprechend auch Ressourcen-Attribute den
empfangenen Représentationen der Ressourcen entnehmen konnen. Fiir die Generierung der
Ressourcen-Reprasentationen sind die Klassen zustdndig, welche die Schnittstelle Response-
BuilderInterface implementieren. Die Extraktion der Ressourcen-Attribute bei empfangenen
Reprasentationen iibernehmen die Schnittstelle RequestReaderInterface implementierenden
Klassen. Die Instanz der Klasse Resource, welche die Attribute der angefragten Ressource
beinhaltet, kann dem Plug-in Resources aus dem PluginContainer entnommen werden. Einige
Plug-ins brauchen die von diesem Plug-in generierte Reprasentation der angefragten Res-
source zur Bearbeitung deren Domainlogik. Der Inhalt der HTTP-Antwort beziehungsweise
die Représentation der angefragten Ressource wird zum Beispiel fiir die Berechnung des
ETag-Headers vom Plug-in Caching gebraucht. Deswegen wird die generierte Reprasentation
von der Methode generate() jeder Klasse, welche die Schnittstelle ResponseBuilderInterface
implementiert, an die Instanz der Klasse Representation tibermittelt. Die Repradsentation der
angefragten Ressource soll wihrend der Bearbeitung einer HTTP-Anfrage im Attribut respon-
seContent zwischengespeichert bleiben, um anderen Plug-ins zur Verfiigung zu stehen (siehe
dazu Abbildung 6.5.3).

ResponseBuilderinterface

+generate(ein request : HttpServletRequest, ein response : HitpServletResponse, ein resource : Resource) : String N
HtmIResponseBuilder JsonResponseBuilder XmlIResponseBuilder
1 1 1
1 1 1
HtmIRequestReader JsonRequestReader XmlIRequestReader

RequestReaderInterface

Abbildung 6.7: Generierung von Reprasentationen

Autorisierung (Plug-in Authorization)

Fiir die Uberpriifung der Autorisierung der HTTP-Anfragen (siche Anwendungsfall 2.5) ist
das Plug-in Authorization zustandig. Gemaf; der Anforderungen aus Abschnitt 4.1 werden

56

6.5 Plug-ins

die Verfahren HTTP Basic und HTTP Digest realisiert. Die Klassen HTTPBasic und HTTPDi-
gest implementieren die Schnittstelle AuthorizationInterface. Diese Schnittstelle schreibt den
Klassen HTTPBasic und HTTPDigest vor, die Methode isAuthorized() zu implementieren.
Diese Methode soll anhand der mit der HTTP-Anfrage empfangenen HTTP-Header und
der in der Plug-in-Konfiguration vorliegenden Parameter entscheiden, ob die empfangenen
HTTP-Anfragen bearbeitet werden dtirfen.

Authorization

PluginDomainlogicinterface

+isValid(ein group : PluginGroup) : String
+isValid(ein variant : PluginVariant) : String 1 HttpBasic
+isValid(ein parameter : PluginParameter) : String

*
+getJsValidators() : HashMap<name, JsValidator>
AuthorizationInterface

+isAuthorized() : Boolean

HttpDigest

Abbildung 6.8: Autorisierung

Cookies (Plug-in Cookies)

Mit diesem Plug-in konnen neue Cookies tiber die Methode addCookie() angelegt und der
HTTP-Antwort angehidngt werden (siehe Anwendungsfall 2.8). Weiterhin besteht die Moglich-
keit die mit der HTTP-Anfrage empfangenen Cookies zu loschen oder mit der HTTP-Antwort
zuriick an den Client zu schicken. Mit der Methode deleteAll() sollen alle empfangenen Coo-
kies geloscht werden. Die Methode delete() 16scht nur die Cookies, deren Namen in der
tibergebenen Liste vorkommen. Die Methode deleteAllExcept() sorgt dafiir, dass alle Cookies,
bis auf bestimmte Ausnahmen, geloscht werden. Die Liste der Ausnahmen wird in einer Liste
als Parameter dieser Methode tibergeben. Die Attribute der anzulegenden Cookies genauso
wie die Liste der Cookies zum Loschen und zum Zuriickschicken sollen der Konfiguration
des Plug-ins Cookies entnommen werden.

+isValid(ein group : PluginGroup) : String
+isValid(ein variant : PluginVariant) : String
+isValid(ein parameter : PluginParameter) : String
+getJsValidators() : HashMap<name, JsValidator>

Cookies

+deleteAll()

+delete(ein cookies : CookieList)

+deleteAllExcept(ein cookies : CookieList)

+addCookie(ein name : String, ein value : String, ein comment : String, ein domain : String, ein maxAge : Integer, ein path : String, ein version : Integer)

Abbildung 6.9: Cookies

57

6 Design

Caching (Plug-in Caching)

Zur Steuerung des Verhaltens der Client-Anwendung beztiglich Cache (siehe Anwendungsfall
2.7) wird das Plug-in Caching eingesetzt. Dieses Plug-in verwaltet HTTP-Header, welche die
Benutzung von Cache in der Client-Anwendung bewirken konnen. Anhand der vom Testbed
geschickten HTTP-Header entscheidet die Client-Anwendung, ob sie den Cache benutzt
oder nicht. Die Klasse Caching stellt Methoden zur Verfiigung, welche die HTTP-Header mit
gewiinschten Werten versorgen. Die Bezeichnungen der Methoden wurden entsprechend
der Bezeichnung von den HTTP-Headern in der HTTP-1.1-Spezifikation (Fie09, Kapitel 13)
gewdhlt. Die gewiinschten HTTP-Header mit deren Werten sind der Konfiguration des Plug-
ins Caching zu entnehmen.

Caching
PluginDomainlogicinterface
+setExpires(ein response : HitpServletResponse, ein time : DateTime)
+isValid(ein group : PluginGroup) : String q7+setETag(ein response : HttpServletResponse, ein time : DateTime)
+isValid(ein variant : PluginVariant) : String +setLastModified(ein response : HttpServletResponse, ein time : DateTime)
+isValid(ein parameter : PluginParameter) : String +setCacheControlNoCache(ein response : HttpServletResponse, ein enable : Boolean)
+getJsValidators() : HashMap<name, JsValidator> +setCacheControlPrivate(ein response : HttpServletResponse, ein enable : Boolean)
+setCacheControlMaxAge(ein response : HttpServletResponse, ein sec : Integer)

Abbildung 6.10: Steuerung von dem Caching-Verhalten der Client-Anwendung

HTTP-Statusmeldungen (Plug-in Responsecodes)

Zum Simulieren von HTTP-Statusmeldungen (siehe Anwendungsfall 2.6) steht das Plug-in
Responsecodes zur Verfligung. Es sollen gemaf3 gestellter Anforderungen in Abschnitt 4.1
alle HTTP-Statusmeldungen simulierbar sein, die in der Publikation HTTP-1.1-Spezifikation
(Fie09, Kapitel 10) definiert sind. Die Methoden zum Simulieren der HTTP-Statusmeldungen
sind entsprechend der Benennung der HTTP-1.1-Spezifikation bezeichnet und kénnen somit
leicht der Beschreibung in der Spezifikation zugeordnet werden. Die zu simulierende HTTP-
Statusmeldung und eventuelle Parameter sollen den definierten Methoden aus der aktuellen
Konfiguration des Plug-ins Responsecodes {ibergeben werden.

58

6.5 Plug-ins

PluginDomainlogicinterface

+isValid(ein group : PluginGroup) : String
+isValid(ein variant : PluginVariant) : String
+isValid(ein parameter : PluginParameter) : String
+getJsValidators() : HashMap<name, JsValidator>

Responsecodes

+sendOk(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendCreated(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendAccepted(ein request : HttpServletRequest, ein/aus response : HitpServletResponse)

+..0)

+sendTemporaryRedirect(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein url : String)
+sendBadRequest(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)
+sendUnauthorized(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein challenge : String)
+..0)

+sendServiceUnavailable(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)
+sendGatewayTimeOut(ein request : HttpServietRequest, ein/aus response : HitpServletResponse)
+sendHttpVersionNotSupported(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

Abbildung 6.11: Simulation von HTTP-Statusmeldungen

59

6 Design

60

7 Implementierung

In diesem Abschnitt wird auf die Implementierung der Komponenten des Testbeds eingegan-
gen. Es wird die Implementierung der Konfigurationen, der Beobachter, der Domainlogik
und weiterer Komponenten erklart.

Die Schnittstellen ConfigurationAPI und TestServiceAPI in Abbildung 6.1 wurden mit Jersey
(Ora) in der Version 1.14, Referenzimplementierung der Spezifikation JAX-RS 1.1 (HS07),
implementiert. Uber die Schnittstelle TestServceAPI werden Testanfragen zum Testen einer
Client-Anwendung getdtigt und tiber die Schnittstelle ConfigurationAPI findet die Verwaltung
der Plug-in Konfigurationen statt.

7.1 Konfigurationsverwaltung

Fiir die Verwaltung von Plug-in-Konfigurationen wurde in Abschnitt 5.2 beschriebenes
MVC-Architekturmuster angewandt. Nachfolgend wird die Implementierung der drei Kom-
ponenten des MVC-Musters genauer betrachtet.

7.1.1 Modell vom MVC-Architekturmuster

Die Komponente Modell des MVC-Musters entspricht dem Modell fiir Plug-in-Konfigurationen
aus Abschnitt 5.3. Das Modell ist dafiir zustdandig, die Werte der Plug-in-Konfigurationen
zu verwalten. Mit den Klassen PluginConfig, PluginGroup, PluginVariant und PluginParameter
aus Abbildung 6.1 wird das in Abbildung 5.4 dargestellte Modell implementiert. Diese
Klassen sind auch fiir die Verwaltung von Plug-in-Konfigurationsdateien implementiert, die in
XML-Formaten vorliegen. Mithilfe dieser XML-Dateien werden die Plug-in-Konfigurationen
persistent abgespeichert. Das in Abschnitt 5.3 beschriebene Modell wird mit zwei Dateien
je Plug-in realisiert. In einer Datei werden konfigurierbare Parameter verwaltet, die zum
Parametrisieren der Domainlogik von Plug-ins verwendet werden. Die andere Datei beinhaltet
beschreibende Daten respektive Meta-Daten der konfigurierbaren Parametern.

Die Dateien, welche zum persistenten Abspeichern der Plug-in-Konfiguration dienen, sollen
von jedem Plug-in bereitgestellt werden. Die Werte dieser Dateien werden nach dem Auslesen
in den Instanzen der Klassen PluginConfig, PluginGroup, PluginVariant und PluginParameter
(siehe Abbildung 6.1) im Arbeitsspeicher gehalten, sodass das Auslesen der Konfigurations-
dateien bei erneuten HTTP-Anfragen keine weiteren Latenzen durch das Auslesen verursacht.
Die Klasse PluginConfig steht gemafs Modell fiir Plug-in-Konfigurationen aus Abschnitt 5.3 fiir
die Komponente Plug-in Configuration in Abbildung 5.4. Die Bezeichnungen der Klassen fiir

61

7 Implementierung

andere Komponenten wurden gemifs der Bezeichnungen der Komponenten in Abbildung 5.4
gewdhlt.

Zum Festhalten der Werte von Plug-in-Konfigurationen wurde bei der Implementierung der
Klassen PluginConfig, PluginGroup, PluginVariant und PluginParameter ein Datentyp einge-
setzt, welcher die Positionierung der eingefiigten Elemente beibehilt. Fiir die graphische
Darstellung von Plug-in-Konfigurationen ist es von Vorteil die Konfigurationsdateien der
Plug-ins passend zu strukturieren. Die Reprasentationen von Plug-in-Konfigurationen kon-
nen benutzerfreundlicher gestaltet werden, indem die Positionierung der Elemente in den
Konfigurationsdateien auf die Reprédsentation dieser Konfigurationen tibernommen wird.

Der Zugriff auf die Konfigurationsdateien tritt wieder auf, wenn einige Werte in den Instanzen
der Klassen PluginConfig, PluginGroup, PluginVariant und beziehungsweise oder PluginParame-
ter tiber die Schnittstelle Configuration API verandert wurden und in den Konfigurationsdateien
persistent abgespeichert werden sollen.

7.1.2 Views vom MVC-Architekturmuster

Die Views nach dem MVC-Muster stellen die Reprasentationen der Plug-in-Konfigurationen
beziehungsweise die oben beschriebene Modell-Instanzen dar. Fiir die Gestaltung der Repra-
sentationen wurde das Konzept Hypermedia as the Engine of Application State aus Abschnitt 2.1.2
angewandt. Im Wurzelelement befindet sich die Liste mit den Namen der verfiigbaren Plug-
ins, die aus den dazugehorigen Konfigurationsdateien ausgelesen werden. Jedem Namen
wird ein Link zugeordnet, welcher auf die entsprechende Plug-in-Konfiguration verweist.
Folgt man dem Link mit der HTTP-GET-Methode, so bekommt man die Reprasentation der
jeweiligen Plug-in-Konfiguration.

Es wurden zwei Views implementiert: HtmlConfigResponseBuilder und XmlConfigResponse-
Builder. Mit der Klasse XmlConfigResponseBuilder werden die Reprasentationen der Plug-in-
Konfigurationen in XML-Format generiert. Die Klasse HtmlConfigResponseBuilder sorgt fiir die
Generierung der Plug-in-Konfigurationen in HTML-Format. Fiir HTML-Reprasentationen
wurde das HTML-Formular verwendet, um die Plug-in-Konfiguration mit einem Web-
Browser ohne weitere Tools manuell bearbeiten zu konnen.

7.1.3 Controller vom MVC-Architekturmuster

Die modifizierten Reprasentationen werden an einen Controller gemafs dem MVC-Muster tiber-
geben. Es sind zwei Controller implementiert: XmlConfigController und HtmlConfigController,
siehe Abbildung 6.1. Abhédngig vom Format, in dem die tiber die Schnittstelle Configuration API
empfangene Plug-in-Reprasentation vorliegt, wird einer der beiden Controller verwendet. Die
konfigurierbaren Werte aus einer Reprédsentation konnen vom Testbed-Benutzer verdandert
und dann mit der HTTP-Methode POST beziehungsweise PUT an das REST Testbed abge-
schickt werden. Fiir die XML-Repréasentationen der Plug-in-Konfigurationen wurde dafiir
gemdfd der HTTP-1.1-Spezifikation (Fie09) die vorgesehene HTTP-PUT-Methode verwendet.
Fiir die HTML-Reprasentation musste auf die HTTP-POST-Methode ausgewichen werden,

62

7.2 Validierung der Benutzereingaben

denn fiir die Ubertragung der modifizierten Werte der HTML-Reprasentation wird das HTML-
Formular benutzt, das nur die HTTP-Methoden GET und POST unterstiitzt. Ein Controller
tibernimmt die mit der POST- beziehungsweise PUT-Methode {ibertragenen neuen Werte fiir
die Plug-in-Konfiguration im fehlerfreien Fall und liefert die aktualisierte Reprasentation der
Plug-in-Konfiguration an die Client-Anwendung. Beim Auftreten eines Fehlers liefert der
Controller die Représentation der Plug-in-Konfiguration mit den Fehlerbeschreibungen fiir
die nicht iibernommenen Werten an die Client-Anwendung. Die Fehlerbeschreibung wird im
zusitzlich angehédngten error-Attribut des Parameters {ibertragen, siehe auch Abschnitt 5.3.

7.2 Validierung der Benutzereingaben

Der Testbed-Benutzer fithrt Anpassungen an den Plug-in-Konfigurationen tiber die Schnitt-
stelle ConfigurationAPI durch. Dabei konnen die Benutzereingaben fehlerhaft sein. Die Validie-
rung der Benutzereingaben kann von der Client-Anwendung und vom Testbed gewidhrleistet
werden. In Domainlogik-Klassen von Plug-ins, welche die Schnittstelle PluginDomainlogicln-
terface implementieren, werden die Methoden zum Validieren von Benutzereingaben definiert,
siehe dazu Abbildung 6.1. Bei der Methode getJsValidators() handelt es sich um Validierer,
welche fiir die Validierung der Benutzereingaben auf der Client-Anwendung gedacht sind.
Die Methoden isValid() iiberpriifen die Benutzereingaben auf dem Testbed.

7.2.1 Validierung auf der Client-Anwendung

Die type-Attribute der Parameter in den Konfigurationsdateien der Plug-ins, siehe dazu
Abschnitt 5.3, werden dazu verwendet, um die Benutzereingaben von der Client-Anwendung
validieren zu konnen. Fiir diesen Zweck wird JavaScript eingesetzt, denn JavaScript kann
von den Webbrowsern und genauso von den Eigenentwicklungen unter Verwendung von
zusétzlichen JavaScript-Interpreter ausgefiihrt werden.

Die Instanzen der Klasse JsValidator beinhalten zwei String-Attribute. Bei einem String han-
delt es sich um eine JavaScript-Methode und bei dem anderen um einen Kommentar. Die
JavaScript-Methode soll die Benutzereingaben validieren, indem einige Bedingungen {tiber-
priift werden. Wenn die Bedingungen nicht erfiillt sind, dann soll der definierte Kommentar
einen Hinweis zur Unterstiitzung der korrekten Benutzereingabe liefern.

Fiir HTML-Représentationen von Plug-in-Konfigurationen wurde die JavaScript-Bibliothek
JQuery (jQua) mit dem JQuery Validation Plugin (jQub) eingesetzt. Die definierten JavaScript-
Methoden mit den jeweiligen Kommentaren werden in die HTML-Reprasentationen integriert.
Wenn der Testbed-Benutzer Eingaben macht, werden diese Werte vom JQuery Validation Plugin
tiberpriift. Erst nach der erfolgreichen Validierung konnen die aktualisierten Werte an das
Testbed tibermittelt werden. Wenn die Validierung nicht erfolgreich verlauft, dann werden
die definierten Kommentare bei den Eingabefeldern mit fehlerhaften Eingaben eingeblendet.
Diese Kommentare sollen den Testbed-Benutzer dabei unterstiitzen, die fehlerhaften Eingaben
zu korrigieren.

63

7 Implementierung

Im Fall einer XML-Représentation werden die JavaScript-Validierer mit dem jeweiligen Kom-
mentar mit der Reprasentation der Plug-in-Konfiguration mitgeliefert und stehen somit fiir
eigene Umsetzung der clientseitigen Validierung zur Verfiigung.

7.2.2 Validierung auf dem Testbed

Die empfangenen Benutzereingaben werden auf dem Testbed validiert, bevor sie in die Plug-
in-Konfigurationen {ibernommen werden. Die Validierung auf dem Testbed findet mit Hilfe
von isValid(..)-Methoden der Domainlogik von Plug-ins statt. Die drei isValid(..)-Methoden
werden zum Validieren von den Instanzen der Klassen PluginGroup, PluginVariant und Plu-
ginParameter verwendet. Wenn die Validierung erfolgreich verlauft, dann liefern die isValid()-
Methoden null. In einem Fehlerfall liefern die Methoden eine Textnachricht mit dem Hinweis
auf die fehlerhafte Benutzereingabe. Diese Textnachricht wird im error-Attribut des fehlerhaf-
ten Parameters (PluginParameter) eingetragen, daraufhin in die betroffene Représentation der
Plug-in-Konfiguration eingearbeitet und an die Client-Anwendung {ibermittelt.

7.3 Beobachter von Plug-ins

Die Beobachter im REST Testbed werden nach der aspektorientierten Programmierung mit
Hilfe der Java-Erweiterung Aspect] Development Tools (AJDT) (Ecl) implementiert. Bei im-
plementierten Beobachter-Komponenten handelt es sich folglich um Aspekte, siehe dazu
Abschnitt 2.3. In einem Aspekt kann ein Pointcut (Schnittpunkt) definiert werden. Als Pointcut
wird eine oder mehrere Methoden der Schnittstellen ConfigurationAPI und TestserviceAPI ge-
wihlt. Als Advice (Empfehlung) reichen bei den aktuellen Aspekten die Konstrukte before und
after aus. Die Beschreibungen der Konstrukte sind in Abschnitt 2.3 nachzulesen. Abbildung
7.1 zeigt ein beispielhaftes Aspekt mit den Konstrukten, die bei der Implementierung der
Beobachter verwendet wurden.

Es werden Pointcuts init(), ConfigurationAPIMethod() und TestServiceAPIGet() definiert. Die
Advice-Konstrukte before und after von den Pointcuts legen den Ausfithrungspunkt fiir die in
den Advice-Konstrukten definierten Aktionen fest. Wenn die Methode get() der Schnittstelle
TestServiceAPI aufgerufen wird (TestServiceAPI.get()), so wird vor der Bearbeitung der get()-
Methode, die an der Stelle to do before "get” definierte Aktion ausgefiihrt. Danach folgt die
Bearbeitung der get()-Methode. Die an der Stelle fo do after ‘get” definierte Aktion wird nach der
Bearbeitung der get()-Methode ausgefiihrt. Das Pointcut fiir die Schnittstelle Configuration API
reagiert auf alle Methoden (ConfigurationAPIL.*()) und vor der Ausfithrung der aufgerufenen
Methode wird die an der Stelle to do before definierte Aktion ausgefiihrt.

Der Konstruktor dieses Aspekts wird bei der Instanziierung ausgefiihrt. Die Instanziierung
der Aspekte erfolgt jedoch erst beim Feststellen der Ausfiihrung der in den Pointcuts angegebe-
nen Joinpoints. Fiir die Definition von einem Joinpoint lese man Abschnitt 2.3. Manche Aspekte
bendtigen aber keine Joinpoints zu der Schnittstelle ConfigurationAPI. Zur Zeit eines Aufrufs
einer Plug-in-Konfiguration von solchen Aspekten ist der Konstruktor noch nicht ausgefiihrt
worden und die gewtinschte Plug-in-Konfiguration kann sich noch nicht im PluginContainer

64

7.3 Beobachter von Plug-ins

public aspect AspectB {
declare precedence : LoggingZA, LoggingB, LoggingC;

public AspectB() {
// Instantiate domainlogic and configuration of associated plug-in
// and put this instances into pluginContainer.

}

pointcut init() : execution(ConfigurationAPI.new(..)) ||
execution(TestServiceAPI.new(..));

before() : init() {}

pointcut ConfigurationAPIMethod() :
execution (* ConfigurationAPI.*(..));

before(): ConfigurationAPIMethod() {
// to do before
}

pointcut ConfigurationAPIGet (HttpServletRequest request,
HttpServletResponse response) :
execution (* TestServiceAPI.get(..)) && args(request, response);

before (HttpServletRequest request, HttpServletResponse response) :
TestServiceAPIGet (request, response) {
// to do before 'get'

}

after (HttpServletRequest request, HttpServletResponse response) :
TestServiceAPIGet (request, response) {
// to do after 'get'

Abbildung 7.1: Beobachter als Aspekt

65

7 Implementierung

befinden. Aufier Aspekten werden die Plug-in-Konfigurationen auch von anderen Komponen-
ten wie Views und Controller genutzt. Um diesen Komponenten die Plug-in-Konfigurationen
mithilfe des PluginContainers bereitzustellen, muss jeder Aspekt das Pointcut init() beinhalten.
Das Pointcut init() sorgt alleine nur dafiir, dass bei erster HTTP-Anfrage tiber Configfuratio-
nAPI oder TestServiceAPI alle Aspekte initialisiert werden. Die Konstruktoren von Aspekten
erstellen die Instanzen der Domainlogik und der Konfigurationen von Plug-ins. Diese In-
stanzen werden anschlieflend im PluginContainer abgelegt und stehen somit auch anderen
Komponenten des Testbeds zur Verfiigung.

Mit dem Konstruktor declare precenence wird die Reihenfolge der Ausfiihrung von Advices von
Aspekten definiert, die gleiche Joinpoints haben. Im gezeigten Aspekt AspectB wird definiert,
dass der Aspekt AspectA Vorrang vor dem Aspekt AspectB hat. Der Aspekt AspectB hat
wiederum Vorrang vor dem Aspekt AspectC. Die Reihenfolge der Ausfiihrung kann bei den
Aspekten auch mehrfach durch verschiedene Aspekte angegeben werden, darf aber nicht
widerspriichlich sein.

Bei der Annahme, dass in den Aspekten AspectA und AspectC die Methode get() der Schnittstel-
le TestServiceAPI auch einem Pointcut zugeordnet wére und auch die Before- und After-Advices
fur diesen Pointcut definiert wéren, wird die HTTP-Anfrage in folgender Reihenfolge abgear-
beitet. Zuerst wird die definierte Aktion vom Before-Advice des TestService APIGet-Pointcuts
vom Aspekt AspectA, dann vom Aspekt AspectB und danach vom Aspekt AspectC abgearbei-
tet. Danach folgt die Bearbeitung der angefragten Methode get(). Nach der Ausfithrung der
get()-Methode werden die after-Advices der betrachteten Aspekte bearbeitet. Fiir die Durch-
fithrungen der Aktionen der after-Advices wird die umgekehrte Reihenfolge der Aspekte
zur Ausfithrung der before-Advices angewandt. Es wird die Aktion vom after-Advice des
TestServiceAPIGet-Pointcuts vom Aspekt AspectC, dann vom Aspekt AspectB und danach vom
Aspekt AspectA ausgefiihrt.

7.4 Domainlogik von Plug-ins

Die entwickelten Plug-ins sind nachfolgend in einer Liste mit absteigendem Vorrang bei der
Bearbeitung angegeben. Bei den Beschreibungen wird mit dem Bearbeiten der Plug-ins das
Anwenden der Domainlogik der Plug-ins angedeutet.

e 1. Logging: Das Plug-in mit dem hochsten Vorrang. Alle anderen Plug-ins konnen
den Logger des Plug-ins Logging zum Protokollieren der Bearbeitung verwenden. Bei
dem Before-Advice wird die empfangene HTTP-Anfrage und mit dem After-Advice die
abgeschickte HTTP-Antwort protokolliert.

e 2. Responsecodes: Mit diesem Plug-in werden HTTP-Statusmeldungen simuliert. Dieses
Plug-in hat zweithdchsten Vorrang und wird mit dem Before-Advice abgearbeitet, denn
bis auf das Protokollieren der Bearbeitung vor diesem Plug-in sind keine weiteren
Bearbeitungen notig. Wenn dieses Plug-in aktiviert ist, dann folgt keine Abarbeitung der
weiteren Plug-ins (siehe dazu Abschnitt 7.4.2). Die nachfolgenden Plug-ins verwenden
wie dieses Plug-in nur die Before-Advices.

66

7.4 Domainlogik von Plug-ins

e 3. Authorization: Die Abarbeitung dieses Plug-ins findet nur statt, wenn das Plug-in
Responsecodes deaktiviert ist.

e 4. Resources: Vor der Bearbeitung dieses Plug-ins muss die Protokollierung und die

Uberpriifung der Autorisierung der HTTP-Anfrage stattgefunden haben.

e 5. Representation: Bei diesem Plug-in werden die Reprasentationen von Ressourcen
generiert. Die Ressource muss vor der Bearbeitung dieses Plug-ins von dem Plug-in
Resources aus einer Ressourcenquelle ausgelesen sein und zur Verfiigung stehen. Somit
hat das Plug-in Resources Vorrang vor dem Plug-in Representation.

e 6. Caching: Dieses Plug-in braucht in manchen Fillen, wie fiir die Berechnung des
Entity-Tag, die Reprédsentation der angefragten Ressource. Folglich hat das Plug-in
Representation Vorrang vor dem Plug-in Caching.

e 7.Cookies: Vor der Ausfiihrung dieses Plug-ins muss das Logging und die Autorisierung
der HTTP-Anfrage durchgefiihrt worden sein. Somit hiatte man dieses Plug-in auch bis
zur Stelle 4 vorschieben konnen.

7.4.1 Protokollieren (Plug-in Logging)

Fiir das Protokollieren der Bearbeitung der HTTP-Anfragen wurde das Framework log4j
(Apa) eingesetzt. Die zu protokollierenden Meldungen kénnen verschiedenen Kategorien
zugeordnet werde: DEBUG, INFO, WARN, ERROR und FATAL. Das folgende Beispiel zeigt
die Verwendung des Frameworks log4;:

import org.apache.log4j.Logger;
Logger logger = Logger.getRootLogger();
logger.info(“Root logger created.”);

Bei der Ausgabe der protokollierten Meldungen kann der Informationsumfang gefiltert
werden:

logger.setLevel(Level. INFO);

Es sind sieben Stufen des Informationsumfangs definiert, die weiter unten aufgelistet sind.
Die Stufen sind nach unten in aufsteigender Reihenfolge der Wichtigkeit angegeben. Bei der
Wahl einer Wichtigkeitsstufe werden alle Meldungen der gewéhlten Stufe genauso wie aller
Stufen mit der hoherer Wichtigkeit, in den aktivierten Ausgabequellen ausgegeben (Gup05).
Die Stufe der zu protokollierenden Meldungen wird iiber die Schnittstelle ConfigurationAPI
festgelegt.

Kategorien der Meldungen in log4;:
e ALL: Alle Meldungen werden ausgegeben. Keine Filterung.
e TRACE: Kommentare.
e DEBUG: Informationen fiir die Fehlersuche.

e INFO: Informationen zum reguldren Programmablauf.

67

7 Implementierung

WARN: Warnhinweise.

ERROR: Fehler, die abgefangen werden.

FATAL: Kritische Fehler, die zum Programmabbruch fiihren.
e OFF: Keine Ausgabe der Meldungen.

Beim Framework log4j konnen mehrere Ausgabequellen mittels Appender aktiviert werden,
in welchen die protokollierten Meldungen ausgegeben werden (Gup05). Beim REST Testbed
wurden ConsoleAppender fiir die Ausgabe in der Console und FileAppender fiir das persis-
tente Abspeichern der Meldungen in einer Datei gewéhlt. Im folgenden Beispiel wird beim
Framework log4j eine Konsole als Ausgabequelle aktiviert.

import org.apache.log4j.ConsoleAppender;
ConsoleAppender consoleAppender = new ConsoleAppender();
logger.add Appender(consoleAppender);

Die Appender Console und FileAppender konnen tiber die Schnittstelle Configuration API ein-
und ausgeschaltet werden. Auch die Bezeichnung von der Datei zum persistenten Abspei-
chern der protokollierten Meldungen kann tiber die Schnittstelle ConfigurationAPI angepasst
werden. Wenn die Bezeichnung der Datei dem Testbed-Benutzer bekannt ist, dann kann er
auf dessen Inhalt mit einer HTTP-GET-Anfragen zugreifen.

7.4.2 HTTP-Statusmeldungen (Plug-in Responsecodes)

Zum Simulieren von HTTP-Statusmeldungen wurde die Klasse WebApplicationException
aus dem Paket javax.ws.rs.WebApplicationException eingesetzt. Die HTTP-Statusmeldungen
werden als Ausnahmefall generiert. Folgendes Beispiel zeigt eine Zeile aus dem Quellcode
zum Simulieren der HTTP-Statusmeldung einer temporir verschobener Ressource:

import javax.ws.rs.WebApplicationException.WebApplicationException;
throw new WebApplicationException(Response.status(307).build());

Bei einigen HTTP-Statusmeldungen sollen spezifischen Header gesetzt werden. Bei der oben
angegebenen Statusmeldung verlangt die HTTP-1.1-Spezifikation das Setzen des HTTP-Header
Location, das auf den neuen Ort der angefragten Ressource verweist. Dies wird mit folgendem
Befehl realisiert:

response.addHeader(“Location”, “http://...”);

Bei der Instanz response handelt es sich um die vom Web Service bereitgestellte Instanz der
Klasse HttpServletResponse. Die benotigten HTTP-Header miissen auf diese Weise vor der
Generierung der HTTP-Statusmeldung gesetzt werden.

Welche HTTP-Statusmeldung mit welchen HTTP-Header generiert werden soll, wird aus
der Konfiguration des Plug-ins Responsecodes ausgelesen. Der Testbed-Benutzer kann diese
Konfiguration tiber die Schnittstelle ConfigurationAPI nach Bedarf anpassen.

68

7.4 Domainlogik von Plug-ins

7.4.3 Autorisierung (Plug-in Authorization)

Fiir die Uberpriifung der Autorisierung von HTTP-Anfragen existieren viele standardisierte
Verfahren. Bei dem REST Testbed wurden die Verfahren HTTP Basic und HTTP Digest im-
plementiert. Der Austausch der Daten zur Uberpriifung der Autorisierung erfolgt zwischen
dem Client und Server mittels HTTP-Header. Wenn das Plug-in Authorization aktiviert ist,
dann wird die HTTP-Anfrage auf den HTTP-Header untersucht, welches die Daten zur Uber-
priffung der Autorisierung beinhaltet. Bei den beiden oben angegebenen Verfahren wird
das HTTP-Header Authorization verwendet. Im folgenden Beispiel wird das HTTP-Header
Authorization der HTTP-Anfrage entnommen:

String auth = request.getHeader(“Authorization”);

Bei der Instanz response handelt es sich um die vom Web Service bereitgestellte Instanz der
Klasse HttpServletRequest. Alle Daten zum Anwenden des aktivierten Authentifizierungs-
verfahrens konnen dem Attribut auth extrahiert werden. Wenn der Authorization-Header
bei der HTTP-Anfrage nicht gesetzt ist oder das Authentifizierungsverfahren anhand der
mitgelieferten Daten auf eine unautorisierte HTTP-Anfrage schliefst, dann wird eine HTTP-
Statusmeldung mit den fiir den Client notwendigen Daten abgeschickt. In diesem Fall handelt
es sich um HTTP-Header WWW-Authenticate. Das Beispiel unten zeigt die beschriebene
HTTP-Antwort fiir das Verfahren HTTP Basic:

response.addHeader(“WWW-Authenticate”, “Basic realm=\"testbed \“*);
ResponseBuilder builder = Response.status(Status. UNAUTHORIZED);
throw new WebApplicationException(builder.build());

Es wird die in Abschnitt 7.4.2 beschriebene Klasse WebApplicationException eingesetzt. Dem
HTTP-Header WWW-Authenticate miissen alle fiir das Authentifizierungsverfahren benotigten
Daten iibergeben werden, damit die Client-Anwendung zum angefragten Authentifizierungs-
verfahren eine HTTP-Anfrage mit dem korrekt aufgebauten HTTP-Header Authorization
erstellen kann.

7.4.4 Ressourcen (Plug-in Resources)

Mit dem Plug-in Resources werden die Ressourcen in einem Datenbestand verwaltet. Als
Datenquelle wurde im Testbed die relationale Datenbank verwendet. Es sind einige Me-
thoden zum Verwalten der Daten in einer relationalen Datenbank implementiert, die den
Grundbedarf fiir die Interaktion zwischen dem Testbed und einer relationalen Datenbank
abdecken.

Die Klassen zum Verwalten von Ressourcen in einem bestimmten Datenbestand implemen-
tieren die Schnittstelle Resource, siehe dazu Abbildung 7.2. Mit der Methode get() werden
die Attribute einer Ressource aus einer Datenquelle ausgelesen und in der Liste abgespei-
chert. Die Methode put() sorgt dafiir, dass die modifizierten Werte der Ressourcen-Attribute
auch in die Datenquelle tibernommen werden. Mit der Methode post() werden die mit der
HTTP-Anfrage erhaltenen Ressourcen-Attribute dazu verwendet, um eine neue Ressource

69

7 Implementierung

in der aktivierten Datenquelle anzulegen. Die delete-Methode 16scht eine Ressource aus der
aktuellen Datenquelle.

public interface Resource {
public String getId();
public void head(HttpServletRequest request);
public ResourceAttribute[] get (HttpServletRequest request);
public void put (HttpServletRequest request);
public void post (HttpServletRequest request);

public void delete(HttpServletRequest request);

Abbildung 7.2: Schnittstelle fiir Ressourcen-Klassen

Die Attribute einer Ressource werden in einer Liste mit den Instanzen der Klasse Attribute
hinterlegt. Abbildung 7.3 zeigt einen Ausschnitt der Klasse ResourceAttribute. Ein Ressourcen-
Attribut hat einen Namen (name) und eventuell kann es zusitzlich einen Verweis (link) auf
eine andere Ressource enthalten. Weiterhin kann ein Ressourcen-Attribut einen Wert (value)
besitzen, der moglicherweise modifiziert werden darf. Die Attribut-Werte (value) sind von
einem bestimmten Typ (type), bei der Bekanntheit dessen die Validierung der Attribut-Werte
aufierhalb der Datenquelle erleichtert wird.

public class ResourceAttribute {

private String name;
private String value;
private String link;
private String type;

Abbildung 7.3: Ressourcen-Attribut

Mittels Mapping-Operationen werden die durch die URIs angefragten Ressourcen bestimmt.
Die Mapping-Tabelle kann vom Testbed-Benutzer verwaltet werden. Eine Ressource, die
unter einer URI verfiigbar ist, kann nach der Manipulation der Mapping-Tabelle unter einer
anderen URI zur Verfiigung stehen. Die Mapping-Tabelle ist in der Plug-in-Konfiguration
realisiert. Dazu werden die Instanzen der Klasse PluginParameter erstellt (siehe Abbildung
6.1). Das Attribut name der Klasse PluginParameter bekommt eine Bezeichnung, mit der
eine Ressource aus der aktivierten Datenquelle assoziiert wird. Bei der implementierten
Datenbankverwaltung kann das der Name einer Tabelle sein, falls mit der Ressource eine
Tabelle gemeint ist. Das Attribut value nimmt einen auf die URI schlielenden Ausdruck an.
Es konnte nach der implementierten Logik zum Beispiel der Tabellen-Name als Erweite-
rung der URI der Ressourcen-Schnittstelle sein. Wenn die URI der Ressourcen-Schnittstelle
http:/ /localhost:8080/testbed /resources und der Tabellen-Name customers ist, dann wird mit

70

7.4 Domainlogik von Plug-ins

der URI http:/ /localhost:8080/testbed / resources/customers mit der HTTP-GET-Methode
die Représentation der Datenbank-Tabelle namens customers angefragt.

Der Ansatz der dynamischen Zuordnung der URIs zu den Ressourcen mithilfe einer Mapping-
Tabelle hat auch einen Nachteil. Es werden auch Anfragen von der Testservice-Schnittstelle
abgefangen, fiir die keine Ressourcen existieren. Das Uberpriifen der Existenz der Ressourcen
tallt in diesem Fall nicht in den Bereich des Jersey Frameworks. Die ankommenden Anfragen
beim Testserviceaufruf werden erst in der eigenen Implementierung auf das Vorhandensein
der angefragten Ressourcen iiberpriift. Die fehlende Uberpriifung der Existenz von Ressour-
cen im Jersey Framework fiihrt dazu, dass Jersey die WADL-Spezifikation nicht erstellen
kann.

Das URI-Schema erlaubt nicht alle Zeichen. Deswegen wird fiir die Erstellung der Ausschnit-
te der URIs, die in der Mapping-Tabelle festgelegt werden, die Klasse java.net.URLEncoder
verwendet. Mit dieser Klasse konnen einige nicht URI-konforme Ausdriicke durch das Erset-
zen der unzuldssigen Zeichen in URI-konforme Ausdriicke iiberfithrt werden. Wenn es den
Methoden dieser Klasse nicht gelingt, wird der Testbed-Benutzer darauf hingewiesen.

Von der Komponente zum Verwalten von Ressourcen in einer relationalen Datenbank werden
auch Funktionen zum Verwalten der Mapping-Tabelle geliefert. Durch den Wechsel der
Datenquelle soll auch die Mapping-Tabelle neu erstellt werden. Wird eine Abweichung der
in der aktuellen Mapping-Tabelle festgehaltenen Ressourcen zu den Ressourcen von der
aktuellen Datenquelle festgestellt, so wird die Mapping-Tabelle aktualisiert. Dies erfolgt
mithilfe der zur Verwaltung der Mapping-Tabelle bereitgestellten Funktionen, welche die
Mapping-Tabelle mit den definierten Standardwerten fiillen. Die Ressourcen-Bezeichnungen
bleiben danach fest. Die Ressourcen-URIs konnen vom Testbed-Benutzer verandert werden.
Die Funktionen zum Anpassen der Mapping-Tabelle an die Ressourcenquellen miissen von
jeder Komponente zum Verwalten dieser bestimmten Datenquelle geliefert werden.

7.4.5 Reprasentationen (Plug-in Representation)

Die mit dem Plug-in Resources ausgelesene Ressource mit der Liste der Attribute, siehe dazu
Abschnitt 7.4.4, wird vom Plug-in Representation verwendet. Die Liste der Attribute bildet die
Grundlage fiir die Generierung einer Reprdsentation dieser Ressource. Es wurden Klassen zur
Generierung der Reprasentationen in Formaten HTML, XML und JSON namens HtmlIRespon-
seBuilder, XmIResponseBuilder und JsonResponseBuilder implementiert (siehe dazu Abbildung
6.7). Die ankommenden HTTP-Anfragen werden auf das HTTP-Header Accept untersucht.
Wenn im HTTP-Header Accept das angegebene Représentationsformat der Ressourcen auch
vom Testbed unterstiitzt wird, dann wird die Représentation der angefragten Ressource im
gewiinschten Format generiert und an die Client-Anwendung geschickt. Die implementierten
Formate konnen tiber die Schnittstelle ConfigurationAPI de- und aktiviert werden. Wenn eine
HTTP-Anfrage empfangen wird, die eine Reprasentation der Ressource in einem auf dem
Testbed deaktivierten Format verlangt, dann wird eine HTTP-Statusmeldung tiber das nicht
akzeptierte Format abgeschickt.

71

7 Implementierung

Abbildung 7.4 zeigt die Klasse zur Generierung von Représentationen der Ressourcen in JSON-
Format. Die Klassen JsonFactory und JsonGenerator kommen aus dem Paket org.codehaus.jackson.
Abbildung 7.5 demonstriert beispielhaft das Layout der mit der Klasse JsonResponseBuilder
erstellten Reprédsentation einer Ressource mit zwei Attributen.

public class JSONResponseBuilder {

public void generate(HttpServletRequest request,
HttpServletResponse response, Resource resource) throws Exception {

response.setContentType ("application/json");
JsonFactory f = new JsonFactory();

JsonGenerator g = f.createJsonGenerator (response.getOutputStream());
g.writeStartObject();

g.writeStringField("resource", resource.getId());
g.writeObjectFieldStart("attributes");

for (Attribute a : resource.get (request, response)) {
.writeFieldName (a.getName());
.writeStartObject();
.writeStringField("value", a.getValue());
.writeStringField("1link", a.getLink());
.writeStringField("type", a.getType());
.writeEndObject () ;

QQQQQQ

}
g.writeEndObject();
g.writeEndObject () ;
g.close();

Abbildung 7.4: Reprasentation in [SON-Format

{

"resource": "http://...resourceid/",
"attributes": {
"name-1": {
"value": "value-1",
"link": "http://...link1l/",
n type n : n type - 1 n
},
"name-2": {
"value": "value-2",
"link": "http://...link-2/",
n type" s type_zn

}
}
}

Abbildung 7.5: Layout in JSON-Format

Die Klasse XmlResponseBuilder zur Generierung der Reprasentation in XML-Format zeigt
Abbildung 7.6. Auch wie beim JSON-Format wird in Abbildung 7.7 beispielhaft das Layout
der XML-Représentation einer Ressource mit zwei Attributen demonstriert.

Die Klasse HtmlResponseBuilder zur Generierung der Ressourcen-Reprasentationen in HTML-
Format wurde nach dem gleichen Ansatz wie die Klasse XmIResponseBuilder implementiert
und wird hier daher nicht prasentiert. Die so erstellten Reprdsentationen werden bis zur
ndchsten HTTP-Anfrage zwischengespeichert, um anderen Plug-ins zur Verfiigung zu ste-
hen.

72

7.4 Domainlogik von Plug-ins

public class JSONResponseBuilder {

public void generate (HttpServletRequest request,
HttpServletResponse response, Resource resource) throws Exception {

response.setContentType ("application/json");

JsonFactory f = new JsonFactory();

JsonGenerator g = f.createdsonGenerator (response.getOutputStream());

g.writeStartObject();

g.writeStringField("resource", resource.getId());

g.writeObjectFieldStart("attributes");

for (Attribute a : resource.get (request, response)) {
g.writeFieldName (a.getName());

.writeStartObject () ;

.writeStringField("value", a.getValue());

.writeStringField("1link", a.getLink());

.writeStringField("type", a.getType());

.writeEndObject () ;

QQQQQ

}
g.writeEndObject () ;
g.writeEndObject () ;
g.close();

Abbildung 7.6: Reprasentation in XML-Format

<resource xlink:href="http://...resourceid/">
<name-1 xlink:href="http://...link-1/" type="type-1">value-1</name-1>
<name-2 xlink:href="http://...link-2/" type="type-1">value-2</name-2>
</resource>

Abbildung 7.7: Layout in XML-Format

7.4.6 Caching (Plug-in Caching)

Zum Steuern des Verhaltens der Client-Anwendung beziiglich der Verwendung von Ca-
ching kénnen bestimmte HTTP-Header der HTTP-Antwort angehdngt werden. Beim Plug-in
Caching kann zum Beispiel Entity-Tag aktiviert werden. Fiir die Berechnung des Entity-Tag
wird die vom Plug-in Representation zwischengespeicherte Repréasentation der Ressource
herangezogen. Die zu setzenden Attribute fiir andere HTTP-Header werden aus der Plug-in-
Konfiguration ausgelesen, die der Testbed-Benutzer beim Aktivieren der jeweiligen HTTP-
Header angegeben haben muss. Das Setzen der HTTP-Header erfolgt wie schon in Abschnit-
ten 7.4.2 und 7.4.3 demonstriert wurde.

7.4.7 Cookies (Plug-in Cookies)

Vom Testbed-Benutzer kénnen Cookies mit dem Plug-in Cookies definiert werden. Die defi-
nierten Cookies werden mit der Klasse javax.servlet.http.Cookie erstellt:

“ U

Cookie cookie = new Cookie(“name”, “value”);
cookie.setComment(“comment”);
cookie.setDomain(“/*);

cookie.setMaxAge(10);
cookie.setPath(“/testbed”);

73

7 Implementierung

cookie.setVersion(1);
cookie.setSecure(false);

Die in der HTTP-Anfrage enthaltene Cookies werden automatisch der HTTP-Antwort ange-
hiangt. Um das zu verhindern, wird das maximale Alter der unerwiinschten Cookies auf Null
gesetzt:

Cookie[] cookies = request.getCookies();
for (Cookie cookie : cookies) {
cookie.setMaxAge(0);

}

Es werden drei verschiedene Methoden zum Behandeln von Cookies, die mit der HTTP-
Anfrage empfangen werden, bereitgestellt. Die eine implementierte Methode sorgt dafiir, dass
alle empfangenen Cookies nach dem oben beschriebenen Verfahren geloscht werden. Die zwei-
te implementierte Methode 16scht nur die Cookies, deren Namen in der Plug-in-Konfiguration
eingetragen sind. Die dritte Alternative 16scht alle Cookies bis auf die Ausnahmen, deren
Namen in der Plug-in-Konfiguration angegeben sind.

74

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Testbed zum Testen von REST-basierten Client-Anwendungen ent-
wickelt. Die funktionalen Anforderungen an das Testbed aus Abschnitt 4.1 sind mit Plug-ins
realisiert. Dadurch wird das Testbed modular gehalten, was in Bezug auf Umfang, Kom-
plexitat und Erweiterbarkeit des Testbeds von Vorteil ist. Die Konfiguration der Plug-ins
kann manuell mithilfe eines Webbrowsers mit der dafiir vorgesehener HTML-Repréasentation
erfolgen. Fiir das automatisierte Konfigurieren der Plug-ins steht die dafiir besser geeignete
XML-Représentation zur Verfiigung. Die konfigurierten Parameter sind nach dem Modifizie-
ren sofort wirksam und werden von den Plug-ins eingesetzt, ohne das Testbed neu starten zu
miissen. Es wurden folgende Plug-ins implementiert:

e Resources: Liest, 16scht, modifiziert Ressourcen in einer Datenquelle und legt neue
Ressourcen an. Als Datenquelle wurde eine relationale Datenbank verwendet. Die
Zuordnung von URIs zu Ressourcen wird in einer Tabelle gehalten, die ein Testbed-
Benutzer an eigene Bediirfnisse anpassen kann.

e Logging: Die HTTP-Anfragen und -Antworten genauso wie deren Bearbeitungen kon-
nen auf dem Testbed persistent protokolliert werden. Die Testbed-Benutzer kénnen auf
das Protokoll mithilfe eines Web Services zugreifen. Dadurch bekommt der Testbed-
Benutzer die nétige Unterstiitzung zum Auffinden der Fehlerquellen bei Unzuldnglich-
keiten im Verhalten der getesteten Client-Anwendung.

o Autorization: Das Plug-in zum Autorisieren der HTTP-Anfragen unterstiitzt die Authen-
tifikationsverfahren Basic Access Authentication und Digest Access Authentication.

o Representation: Damit konnen Reprasentationen von Ressourcen in HTML-, XML- und
JSON-Format erstellt werden.

e HTTP-Statusmeldungen: Mit der Simulation von HTTP-Statusmeldungen kann das
implementierte Verhalten der Client-Anwendungen mit dem gemafs der HTTP-1.1-
Spezifikation beschriebenen Verhalten verglichen werden.

e Cookies: Durch die Moglichkeit zum Setzen der Cookies in den HTTP-Antworten kann
die Funktionalitdten von Client-Anwendungen {iiberpriift werden, die sich mit der
Verwaltung von Cookies beschiftigen.

e Caching: Die Client-Anwendungen, die Vorteile von Caching nutzen, konnen darauf
getestet werden, ob die HTTP-Anfragen beziehungsweise -Antworten zum erwarteten
Verhalten beziiglich der Cache-Nutzung fiihren.

Es wurden Funktionalitdten beim REST Testbed mit Plug-ins realisiert, die bereits ein breites
Spektrum an Testszenarien abdecken. Es konnen mit dem Testbed somit einige Testfille an
den zu testenden Client-Anwendungen beziiglich der Erfiillbarkeit der funktionalen und

75

8 Zusammenfassung und Ausblick

nicht-funktionalen Anforderungen tiberpriift werden. Bei der Architektur wurde mit dem
Plug-in-Konzept dafiir gesorgt, dass das Testbed erweiterbar ist. Somit kann der Umfang
des Testbeds nach Bedarf um weitere Bereiche durch neue Plug-ins erganzt werden. Im
folgenden Ausblick werden nun einige dieser moglichen Plug-in-Ergdnzungen diskutiert
beziehungsweise empfohlen.

Wegen dem Ansatz der dynamischen Zuordnung von URIs zu Ressourcen kann keine WADL-
Spezifikation vom Jersey Framework erstellt werden, siehe Abschnitt 7.4.4. Wenn es die
Moglichkeit bestehen soll, dass eine Client-Anwendung ein Web Service automatisiert anhand
der WADL-Beschreibung benutzt, dann ist die Entwicklung eines weiteren Plug-ins zur
Generierung der WADL-Beschreibung der Testservice-Schnittstelle erforderlich.

Fiir das automatisierte Konfigurieren der Plug-ins kann die XML-Reprasentation eingesetzt
werden. Die XML-Représentation ist fiir die eigenen Entwicklungen von Konfigurations-
werkzeugen zum REST Testbed besser geeignet als die HTML-Reprasentation. Unter der
Benutzung der XML-Repréasentation kann ein Wrapper fiir die Konfigurationsschnittstelle des
REST Testbeds entwickelt werden. Ein Wrapper fiir die Konfigurationsschnittstelle wiirde es
ermoglichen, die Konfiguration der Plug-ins im REST Testbed elegant durchzufiihren. Der Be-
nutzer dieses Wrappers wiirde von der XML-Représentation nichts mitbekommen. Die Logik
zum Verwalten der konfigurierbaren Werte von Plug-ins wiirde im Wrapper versteckt bleiben.
Durch die Bereitstellung dieses Wrappers wiirden sich der Aufwand und die Fehlerquellen,
die beim Erstellen eines Testfalls entstehen, enorm reduzieren.

Durch Erweiterung der Funktionalitdt vom Plug-in Resources konnen andere Ressourcen-
quellen wie CSV-, XML-Dateien sowie Web Services implementiert werden. Die Client-
Anwendungen erfordern meist spezifische Darstellungen von Ressourcen, sodass die mit dem
Testbed gelieferten Reprasentationen nur selten geeignet wiren. Die Implementierungen von
beispielhaften Reprasentationen des Plug-ins Representation konnen herangezogen werden,
um eine eigene Implementierung zur Erstellung von passenden Reprédsentationen der Res-
sourcen schnell zu bewerkstelligen. Das Plug-in Autorization kann durch weitere Verfahren
wie OAuth und OAuth2 erweitert werden. Das REST Testbed unterstiitzt HTTP- und die
Hypertext Transfer Protocol Secure (HTTPS)-Anfragen. Daher steht auch einer Erweiterung
dieses Plug-ins um eine Authentifizierung durch ein Secure Sockets Layer (SSL)-Zertifikat
nichts im Weg.

76

Literaturverzeichnis

[Apa] APACHE SOFTWARE FOUNDATION: Apache Log4j 2. http://logging.apache.
org/log4j/2.x/. http://logging.apache.org/log4j/2.x/

[Atoa] ATOS RESEARCH & INNOVATION: SOA4ALL Studio - Projektseite. http:
//technologies.kmi.open.ac.uk/soa4all-studio/. http://technologies.
kmi.open.ac.uk/soa4all-studio/

[Atob] ATOS RESEARCH & INNOVATION: SOA4SOA - Enabling a Web of billions of serveces.
http://www.soad4all.eu/. http://www.soadall.eu/

[BL98] BERNERS-LEE, T.: Uniform Resource Identifiers (URI) / MIT. Version: 1998.
http://www.rfc-archive.org/getrfc.php?rfc=2396. 1998. — RFC 2396

[Boh06] BOHM, Oliver: Aspektorientierte Programmierung mit Aspect] 5: Einsteigen in Aspect]
und AOP. Dpunkt.Verlag GmbH, 2006. — ISBN 9783898643306

[BPSM108] BRAY, Tim ; PAOLI, Jean ; SPERBERG-MCQUEEN, C. M. ; MALER, Eve ; YER-
GEAU, Frangois: Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recommendation. http://www.w3.org/TR/REC-xml/. Version: November 2008

[BSO07] BAYER, Thomas ; SOHN, Dirk M.: Eine Einfithrung: REST Web Ser-
vices. In: T3N Magazin 8. Ausgabe (2007). http://t3n.de/magazin/
rest-web-services-einfuhrung-219976/

[CD08] COCKBURN, A.; DIETERLE, R.: Use Cases effektiv erstellen. mitp-Verlag, 2008 (mitp
bei Redline). — ISBN 9783826617966

[Cro06] CROCKFORD, Douglas: The application/json Media Type for JavaScript Object
Notation (JSON) / IETE. 2006. — RFC 4627

[Ecl] ECLIPSE FOUNDATION, INC.: AJDT: Aspect] Development Tools. http://www.
eclipse.org/ajdt/. http://www.eclipse.org/ajdt/

[Fel10] FELIPE, L.O.: Design and Development of a REST-based Web Service Platform for
Applications Integration, UNIVERSITAT POLITECNICA DE CATALUNYA (UPC),
Diplomarbeit, 2010

[FFK*10] FENSEL, Dieter ; FISCHER, Florian ; KOPECKY, Jacek ; KRUMMENACHER, Re-
to ; LAMBERT, Dave ; VITVAR, Tomas: WSMO-Lite: Lightweight Semantic Des-
criptions for Services on the Web. W3C Recommendation. http://www.w3.org/
Submission/2010/SUBM-WSMO-Lite-20100823/. Version: August 2010

77

http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://www.soa4all.eu/
http://www.soa4all.eu/
http://www.rfc-archive.org/getrfc.php?rfc=2396
http://www.w3.org/TR/REC-xml/
http://t3n.de/magazin/rest-web-services-einfuhrung-219976/
http://t3n.de/magazin/rest-web-services-einfuhrung-219976/
http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/

Literaturverzeichnis

[FHBH'99] FRANKS, J. ; HALLAM-BAKER, P. ; HOSTETLER, J. ; LAWRENCE, S. ; LEACH,
P. ; LUOTONEN, A. ; STEWART, L.: HTTP Authentication: Basic and Digest
Access Authentication / Internet Engineering Task Force. Version: June 1999.
http://www.rfc-editor.org/rfc/rfc2617.txt. 1999. — RFC 2617

[FieO0] FIELDING, Roy: Architectural styles and the design of network-based software archi-
tectures, University of California, Irvine, Diss., 2000. http://www.ics.uci.edu/
~fielding/pubs/dissertation/fielding_dissertation.pdf. - S.76-106

[Fie08] FIELDING, Roy: REST APIs must be hypertext-driven. (2008). http://roy.gbiv.
com/untangled/2008/rest-apis-must-be-hypertext-driven

[Fie09] FIELDING, Roy ; NETWORK WORKING GROUP (Hrsg.): Hypertext Transfer Protocol
— HTTP/1.1. Network Working Group, 2009. http://www.w3.org/Protocols/
rfc2616/rfc2616.html

[FLO7] FARRELL, Joel ; LAUSEN, Holger: Semantic Annotations for WSDL and XML
Schema / World Wide Web Consortium. Version:2007. http://www.w3.org/
TR/sawsdl/. 2007. - W3C Working Draft

[FLS07] FRUHAUF, K. ; LUDEWIG, J. ; SANDMAYR, H.: Software-Priifung: Eine Anleitung
zum Test und zur Inspektion. 6. Auflage. vdf, Hochschulverlag an der ETH Ziirich,
2007 (vdf-Lehrbuch Informatik). — ISBN 9783728130594

[GEN] GENESIS - PROJEKTSEITE: GENESIS - Generating SOA Testbed Instrastruc-
tures. http://www.infosys.tuwien.ac.at/prototypes/Genesis/Genesis_
index.html

[Gup05] GUPTA, S.: Pro Apache Log4j. Apress, 2005 (ITPro collection). — ISBN
9781430200345

[HRO2] HORN, E. ; REINKE, T.: Softwarearchitektur und Softwarebauelemente: eine Einfiihrung
fiir Softwarearchitekten. Hanser, 2002. — ISBN 9783446213005

[HS07] HADLEY, Marc ; SANDOZ, Paul: JAX-RS: The Java API for RESTful Web Services.
Java Specification Request (JSR) 311, Oktober 2007

[IEE90] IEEE COMPUTER SOCIETY. STANDARDS COORDINATING COMMITTEE AND IN-
STITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS AND IEEE STANDARDS
BOARD: LE.E.E. Standard Glossary of Software Engineering Terminology. The Institu-
te, 1990 (IEEE Std). — ISBN 9781559370677

[iSe] ISERVE - PROJEKTSEITE: iServe - Where Linked Data Meets Services. http://iserve.
kmi.open.ac.uk/

[JD10] Juszczyk, Lukasz ; DUSTDAR, Schahram: Script-based generation of dynamic
testbeds for soa. In: ICWS, IEEE Computer Society, 2010

[JD11] JuszczyK, Lukasz ; DUSTDAR, Schahram: Automating the Generation of Web
Service Testbeds Using AOP. In: ZAVATTARO, Gianluigi (Hrsg.) ; SCHREIER, Ulf

78

http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.infosys.tuwien.ac.at/prototypes/Genesis/Genesis_index.html
http://www.infosys.tuwien.ac.at/prototypes/Genesis/Genesis_index.html
http://iserve.kmi.open.ac.uk/
http://iserve.kmi.open.ac.uk/

Literaturverzeichnis

(Hrsg.) ; PAUTASSO, Cesare (Hrsg.): ECOWS, IEEE Computer Society, 2011. —
ISBN 978-1-4577-1532-7, S. 143-150

[[Qua] JQUERY - PROJEKTSEITE: jQuery. http://jquery.com/. http://jquery.com/

[[Qub] JQUERY VALIDATION PLUGIN - PROJEKTSEITE: jQuery Validation Plugin. http:
//jqueryvalidation.org/

[JTD08] JuszcCzYK, Lukasz ; TRUONG, Hong L. ; DUSTDAR, Schahram: GENESIS - A
Framework for Automatic Generation and Steering of Testbeds of ComplexWeb
Services. In: ICECCS, IEEE Computer Society, 2008. — ISBN 0-7695-3139-3, S.
131-140

[KM97] KRISTOL, D.; MONTULLI, L.: HTTP State Management Mechanism. RFC 2109 (Pro-
posed Standard). http://www.ietf.org/rfc/rfc2109.txt. Version:February
1997 (Request for Comments). — Abgelost durch RFC 2965

[Kna07] KNABE, Christoph: Aspektorientierte Programmierung mit Aspect] 5.
http://public.beuth-hochschule.de/~knabe/fach/ats/AOP-Skript.pdf.
Version: 2007

[LSS™10] LAMPE, Ulrich ; SCHULTE, Stefan ; SIEBENHAAR, Melanie ; SCHULLER, Dieter ;
STEINMETZ, Ralf: Adaptive matchmaking for RESTful services based on hRESTS
and MicroWSMO. In: BINDER, Walter (Hrsg.) ; SCHULDT, Heiko (Hrsg.): WEWST,
ACM, 2010 (ACM International Conference Proceeding Series). — ISBN 978-1-
4503-0238-8, S. 10-17

[MBH"04] MARTIN, David ; BURSTEIN, Mark ; HOBBS, Jerry ; LASSILA, Ora ; MCDERMOTT,
Drew ; MCILRAITH, Sheila ; NARAYANAN, Srini ; PAOLUCCI, Massimo ; PARSIA,
Bijan ; PAYNE, Terry R. ; SIRIN, Evren ; SRINIVASAN, Naveen ; SYCARA, Katia:
OWL-S: Semantic Markup for Web Services. (2004). http://eprints.ecs.soton.
ac.uk/12687/

[Ora] ORACLE AMERICA, INC.: Jersey: RESTful Web Services in Java. https://jersey.
java.net/. https://jersey.java.net/

[PBG04] PoscH, T. ; BIRKEN, K. ; GERDOM, M.: Basiswissen Softwarearchitektur. dpunkt-
Verlag, 2004. — ISBN 9783898642705

[PZL08] PAUTASSO, Cesare ; ZIMMERMANN, Olaf ; LEYMANN, Frank: RESTful Web
Services vs. “Big” Web Services: Making the Right Architectural Decision. In:
WWW ’08: Proceeding of the 17th international conference on World Wide Web. New
York : ACM, 2008 (Proceedings of the 17th international conference on World
Wide Web), S. 805-814

[RHJ99] RAGGETT, Dave ; HORS, Arnaud L. ; JACOBS, lan: HTML 4.01 Specification. W3C
Recommendation. http://www.w3.org/TR/html4. Version: December 1999

[Ric07] RICHARDSON, Leonard: Web Services mit REST. O’Reilly Verlag GmbH & Co. KG,
2007. — ISBN 978-3897217270

79

http://jquery.com/
http://jquery.com/
http://jqueryvalidation.org/
http://jqueryvalidation.org/
http://www.ietf.org/rfc/rfc2109.txt
http://public.beuth-hochschule.de/~knabe/fach/ats/AOP-Skript.pdf
http://eprints.ecs.soton.ac.uk/12687/
http://eprints.ecs.soton.ac.uk/12687/
https://jersey.java.net/
https://jersey.java.net/
https://jersey.java.net/
http://www.w3.org/TR/html4

Literaturverzeichnis

[SKA*09] SCHREDER, Bernhard ; KRUMMENACHER, Reto ; ABELS, Sven ; PARIENTE, Tomé&s
; RICHARDSON, Marc ; VILLA, Matteo ; DI MATTEO, Giovanni: D1.5.2 Se-
tup SOA4All Testbeds. http://www.soa4all.eu/pdocs/deliverables/D1.5.2+
SETUP+SOA4ALL+TESTBEDS . PDF. Version:2009. — Work Package: WP1 - SOA4All
Runtime,

[SWO02] SNEED, H.M. ; WINTER, M.: Testen objektorientierter Software.: Das Praxishandbuch
fiir den Test objektorientierter Client/Server-Systeme. Hanser Fachbuchverlag, 2002. —
ISBN 9783446218208

[SWE] SWEET - PROJEKTSEITE: SWEET - Semantic Web sErvice Editing Tool. http:
//sweet.kmi.open.ac.uk/

[Tie09] TIEMEYER, E.: Handbuch IT-Management: Konzepte, Methoden, Losungen und Ar-
beitshilfen fiir die Praxis. 3. Auflage. Hanser Fachbuchverlag, 2009. — ISBN
9783446418424

[Til11] TiLKOV, S.: REST und HTTP: Einsatz der Architektur des Web fiir Integrationsszena-
rien. 2. Auflage. Dpunkt.Verlag GmbH, 2011. — ISBN 9783898647328

Alle URLs wurden zuletzt am 02.08.2013 gepriift.

80

http://www.soa4all.eu/pdocs/deliverables/D1.5.2+SETUP+SOA4ALL+TESTBEDS.PDF
http://www.soa4all.eu/pdocs/deliverables/D1.5.2+SETUP+SOA4ALL+TESTBEDS.PDF
http://sweet.kmi.open.ac.uk/
http://sweet.kmi.open.ac.uk/

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemafs aus anderen Werken iibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Priifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstandig verdffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Stuttgart, 06.08.2013
(Nick Eisenbraun)

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Einleitung
	Motivation
	Aufgabenstellung
	Eingrenzung
	Aufbau der Arbeit

	Grundlagen
	REST und ROA
	Geschichtliches
	Ressourcen
	Architekturprinzipien
	Sicherheit und Idempotenz

	Software-Prüfung
	Phasen des Testablaufs
	Qualitätssicherungsmaßnahmen
	Prüfungsverfahren
	Regressionstest

	Aspektorientierte Programmierung
	Joinpoint
	Pointcut
	Advice
	Ausführungsreihenfolge

	Verwandte Arbeiten
	GENESIS
	SOA4ALL

	Anforderungen
	Funktionale Anforderungen
	Nicht-funktionale Anforderungen
	Anwendungsfälle und Anwendungsfall-Diagramm
	Sequenzdiagramm

	Konzept und Architektur
	Plug-in-Konzept
	MVC-Konzept
	Datenmodell der Plug-in-Konfigurationen

	Design
	Zentralisierter Container für Plug-ins
	Views von Plug-in-Konfigurationen
	Controller von Plug-in-Konfigurationen
	Modelle von Plug-in-Konfigurationen
	Plug-ins
	Konfigurationen von Plug-ins
	Beobachter von Plug-ins
	Domainlogik von Plug-ins

	Implementierung
	Konfigurationsverwaltung
	Modell vom MVC-Architekturmuster
	Views vom MVC-Architekturmuster
	Controller vom MVC-Architekturmuster

	Validierung der Benutzereingaben
	Validierung auf der Client-Anwendung
	Validierung auf dem Testbed

	Beobachter von Plug-ins
	Domainlogik von Plug-ins
	Protokollieren (Plug-in Logging)
	HTTP-Statusmeldungen (Plug-in Responsecodes)
	Autorisierung (Plug-in Authorization)
	Ressourcen (Plug-in Resources)
	Repräsentationen (Plug-in Representation)
	Caching (Plug-in Caching)
	Cookies (Plug-in Cookies)

	Zusammenfassung und Ausblick
	Literaturverzeichnis

