
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D-70569 Stuttgart

Diplomarbeit Nr. 3454

REST Testbed

Nick Eisenbraun

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Florian Haupt
begonnen am: 04.02.2013
beendet am: 06.08.2013

CR-Klassifikation: C.2.4, D.2.1, D.2.5, D.2.11

Kurzfassung

Web Services, die gemäß dem Architekturstil REST entworfen werden, zeichnen sich durch
Eigenschaften wie Interoperabilität, lose Kopplung, Wiederverwendbarkeit, Leistung und
Skalierbarkeit aus. In verteilten Systemen werden deswegen oft REST-basierte Web Services
eingesetzt. Verteilte Systeme haben höhere Fehleranfälligkeit als Standalone-Anwendungen
und diese Erkenntnis sollte beim Entwicklungsprozess durch ausreichende Testszenarien
berücksichtigt werden. Bei der Entwicklung von REST-basierten Client-Anwendungen wird
ein REST-basierter Web Service benötigt, um die Funktionalitäten der Client-Anwendung
zu testen. In dieser Diplomarbeit werden Anforderungen an ein Testbed zum Testen von
REST-basierten Client-Anwendungen gestellt. Es wird eine Architektur zu diesem Testbed
entworfen und anschließend ein Testbed prototypisch implementiert. Bei der Entwicklung
des Testbeds werden die Eigenschaften wie Erweiterbarkeit und Konfigurierbarkeit der
Funktionalitäten des REST-basierten Web Services sichergestellt. Durch die berücksichtigte
Erweiterbarkeit kann das Testbed leicht um neue Funktionalitäten ergänzt werden. Die Konfi-
gurierbarkeit erlaubt das Anpassen der funktionalen und nicht-funktionalen Eigenschaften
des Testbeds, um die Erfüllbarkeit der an eine Client-Anwendung gestellten funktionalen
und nicht-funktionalen Anforderungen zu überprüfen.

Inhaltsverzeichnis

Abkürzungsverzeichnis v

Abbildungsverzeichnis viii

Tabellenverzeichnis ix

1 Einleitung 1
1.1 Motivation . 2
1.2 Aufgabenstellung . 2
1.3 Eingrenzung . 2
1.4 Aufbau der Arbeit . 3

2 Grundlagen 5
2.1 REST und ROA . 5

2.1.1 Geschichtliches . 5
2.1.2 Ressourcen . 6
2.1.3 Architekturprinzipien . 7
2.1.4 Sicherheit und Idempotenz . 10

2.2 Software-Prüfung . 11
2.2.1 Phasen des Testablaufs . 11
2.2.2 Qualitätssicherungsmaßnahmen . 13
2.2.3 Prüfungsverfahren . 13
2.2.4 Regressionstest . 13

2.3 Aspektorientierte Programmierung . 14
2.3.1 Joinpoint . 14
2.3.2 Pointcut . 14
2.3.3 Advice . 15
2.3.4 Ausführungsreihenfolge . 16

3 Verwandte Arbeiten 17
3.1 GENESIS . 17
3.2 SOA4ALL . 20

4 Anforderungen 27
4.1 Funktionale Anforderungen . 27
4.2 Nicht-funktionale Anforderungen . 28
4.3 Anwendungsfälle und Anwendungsfall-Diagramm 30
4.4 Sequenzdiagramm . 38

iii

Inhaltsverzeichnis

5 Konzept und Architektur 41
5.1 Plug-in-Konzept . 42
5.2 MVC-Konzept . 44
5.3 Datenmodell der Plug-in-Konfigurationen . 45

6 Design 49
6.1 Zentralisierter Container für Plug-ins . 49
6.2 Views von Plug-in-Konfigurationen . 51
6.3 Controller von Plug-in-Konfigurationen . 51
6.4 Modelle von Plug-in-Konfigurationen . 52
6.5 Plug-ins . 53

6.5.1 Konfigurationen von Plug-ins . 53
6.5.2 Beobachter von Plug-ins . 53
6.5.3 Domainlogik von Plug-ins . 53

7 Implementierung 61
7.1 Konfigurationsverwaltung . 61

7.1.1 Modell vom Model View Controller (MVC)-Architekturmuster 61
7.1.2 Views vom MVC-Architekturmuster . 62
7.1.3 Controller vom MVC-Architekturmuster 62

7.2 Validierung der Benutzereingaben . 63
7.2.1 Validierung auf der Client-Anwendung 63
7.2.2 Validierung auf dem Testbed . 64

7.3 Beobachter von Plug-ins . 64
7.4 Domainlogik von Plug-ins . 66

7.4.1 Protokollieren (Plug-in Logging) . 67
7.4.2 HTTP-Statusmeldungen (Plug-in Responsecodes) 68
7.4.3 Autorisierung (Plug-in Authorization) 69
7.4.4 Ressourcen (Plug-in Resources) . 69
7.4.5 Repräsentationen (Plug-in Representation) 71
7.4.6 Caching (Plug-in Caching) . 73
7.4.7 Cookies (Plug-in Cookies) . 73

8 Zusammenfassung und Ausblick 75

Literaturverzeichnis 77

iv

Abkürzungsverzeichnis

AJDT AspectJ Development Tools

API Application Programming Interface

AOP Aspect-Oriented Programming

BAM Business Activity Monitoring

CRUD Create, Retrieve, Update, Delete

CSV Comma-Separated Values

ESB Enterprise Service Bus

GUI Graphical User Interface

GWT Google Web Toolkit

HATEOAS Hypermedia as the Engine of Application State

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers

JAX-RS Java API for RESTful Web Services

JSON JavaScript Object Notation

LPML Literate Programming Markup Language

MIME Multipurpose Internet Mail Extensions

MVC Model View Controller

RDF Resource Description Framework

RFC Request for Comments

QoS Quality of Service

REST Representational State Transfer

ROA Resource-Oriented Architecture

SAWSDL Semantic Annotations for WSDL and XML Schema

SSL Secure Sockets Layer

v

Inhaltsverzeichnis

SOA Service-Oriented Architecture

SOA4ALL Service Oriented Architectures for All

SOAP Simple Object Access Protocol (deprecated)

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WADL Web Application Description Language

WSDL Web Services Description Language

XML eXtensible Markup Language

vi

Abbildungsverzeichnis

1.1 Überblick über Komponenten des Testbeds . 3

2.1 Testphasen im Software-Lebenszyklus . 11
2.2 Semantischer Testablauf . 12

3.1 Konzept von GENESIS2 . 18
3.2 Architektur von Service Oriented Architectures for All (SOA4ALL) mit inte-

grierten Tools . 20
3.3 Definition eines REST-basierten Web Service 22
3.4 Ressourcendefinition für ein REST-basiertes Web Service 23
3.5 Architektur von SOA4ALL . 24

4.1 Anwendungsfall-Diagramm zum REST Testbed 30
4.2 Sequenzdiagramm zum REST Testbed . 39

5.1 Systemarchitektur . 42
5.2 Abarbeitung von Plug-ins . 44
5.3 MVC . 45
5.4 Datenmodell der Plug-in-Konfigurationen . 46
5.5 Szenario zum Modifizieren einer Plug-in-Konfiguration 47

6.1 Klassendiagramm zum Testbed . 50
6.2 Auslesen von Plug-in-Konfigurationen über ConfigurationAPI 51
6.3 Modifizieren von Plug-in-Konfigurationen über ConfigurationAPI 52
6.4 Bearbeitung einer Hypertext Transfer Protocol (HTTP)-Anfrage über TestSer-

viceAPI . 54
6.5 Klassendiagramm:Protokollierung von HTTP-Anfragen 55
6.6 Klassendiagramm:Ressourcenzugriff . 55
6.7 Klassendiagramm:Generierung von Repräsentationen 56
6.8 Klassendiagramm:Autorisierung . 57
6.9 Klassendiagramm:Cookies . 57
6.10 Klassendiagramm:Steuerung von dem Caching-Verhalten der Client-Anwendung 58
6.11 Klassendiagramm:Simulation von HTTP-Statusmeldungen 59

7.1 Beobachter als Aspekt . 65
7.2 Schnittstelle für Ressourcen-Klassen . 70
7.3 Ressourcen-Attribut . 70
7.4 Repräsentation in JSON-Format . 72
7.5 Layout in JSON-Format . 72

vii

Abbildungsverzeichnis

7.6 Repräsentation in XML-Format . 73
7.7 Layout in XML-Format . 73

viii

Tabellenverzeichnis

4.1 Anwendungsfall 1.1 . 31
4.2 Anwendungsfall 1.2 . 32
4.3 Anwendungsfall 1.3 . 32
4.4 Anwendungsfall 2.1 . 33
4.5 Anwendungsfall 2.2 . 33
4.6 Anwendungsfall 2.3 . 34
4.7 Anwendungsfall 2.4 . 35
4.8 Anwendungsfall 2.5 . 36
4.9 Anwendungsfall 2.6 . 36
4.10 Anwendungsfall 2.7 . 37
4.11 Anwendungsfall 2.8 . 37
4.12 Anwendungsfall 2.9 . 38

ix

1 Einleitung

Representational State Transfer (REST) Web Services stellen eine einfache Alternative zur
Realisierung von Web Services dar. Die Einfachheit bezieht sich dabei auf die Nutzung
von bekannten Standards wie HyperText Markup Language (HTML), eXtensible Markup
Language (XML), Uniform Resource Identifier (URI) und Multipurpose Internet Mail Ex-
tensions (MIME). Eine ressourcenorientierte Architektur (ROA) stellt eine konkrete REST-
konforme Architektur zur Umsetzung REST-konformer Web Services dar. Bei ROA stehen
Ressourcen im Mittelpunkt, die eindeutig identifizierbar und somit adressierbar sind. Alle
Ressourcen verfügen über eine einheitliche Schnittstelle, die sich durch die Create, Retrieve,
Update, Delete (CRUD)-Operationen auszeichnet. Unter Verwendung von HTTP bei der
Implementierung von REST Web Services sind das die entsprechenden HTTP-Methoden.
Ressourcen können über verschiedene Repräsentationen in Formaten wie HTML, XML,
JavaScript Object Notation (JSON) etc. dargestellt werden. Unter Verwendung von Links in
Repräsentationen kann auf andere Ressourcen verwiesen werden, die in einer Beziehung zu
der betrachteten Ressource stehen (PZL08, S. 807). Eine weitere Eigenschaft von REST ist die
gute Skalierbarkeit im Web (Til11, S. 4). Legt man auf diese Eigenschaften Wert, so werden
REST Web Services bevorzugt eingesetzt.

Wie bei jeder Softwareentwicklung treten auch bei der Entwicklung von REST-basierten
Client-Anwendungen Schwierigkeiten auf. Bei Client/Server-Anwendungen besteht auf-
grund der Verteilung der Komponenten zusätzliche Fehleranfälligkeit (SW02, S. 17, 19). Ein
Netzwerk, über welches die verteilten Komponenten kommunizieren, kann überlastet oder
nicht verfügbar sein. Die Anwendungen sollten auf verschiedene Fehlersituationen vorbe-
reitet sein und nicht nur auf das spezifizierte Verhalten. Es gibt verschiedene Verfahren, um
ein Anwendungssystem während ihres Lebenszyklus auf Fehler zu untersuchen. Um qualita-
tive Ergebnisse zu liefern, braucht man Testwerkzeuge zur Überprüfung der funktionalen
und nicht-funktionalen Eigenschaften der in der Entwicklung befindender Anwendung. Um
eine Client-Anwendung zu testen, wird an erster Stelle eine Server-Anwendung vorausge-
setzt, mit der die Client-Anwendung kommunizieren soll. Genau darauf konzentriert sich
diese Diplomarbeit. Es soll ein konfigurierbares Testbed mit REST-basierten Web Services
zum Verifizieren der funktionalen und nicht-funktionalen Eigenschaften von REST-basierten
Client-Anwendungen entwickelt werden.

Unter Testbed wird hierbei eine Experimintierumgebung verstanden, die als Plattform zur
Förderung experimenteller Arbeitsweisen dient. Gemäß Institute of Electrical and Electronics
Engineers (IEEE) Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,
wird der Begriff Testbed mit einer Umgebung assoziiert, die Hardware, Instrumente, Simu-
latoren, Software-Tools und andere unterstützende Elemente zum Durchführen von Tests
beinhaltet (IEE90).

1

1 Einleitung

1.1 Motivation

Das Testen ist ein bedeutsamer Teil der Softwareentwicklung. Die Entwicklung soll während
des ganzen Entwicklungsprozesses kontinuierlich durch verschiedene Tests unterstützt wer-
den. Zu solchen Tests gehören Modultest (Unit Test), Integrationstest etc. Für gewünschte
Tests werden passende Web Services beziehungsweise Tools gebraucht, die oft erst spezi-
ell an eine einzelne Client-Anwendung zugeschnitten implementiert werden müssen. In
manchen Fällen könnte man auf eine neue Implementierung von REST-basierten Web Ser-
vices verzichten, indem man auf bereits vorhandene Implementierungen wie von einem
externen Service-Anbieter ausweicht. Diese sind jedoch oft mit Nutzungskosten oder an-
deren Limitierungen verbunden, was die Experimentierfreiheit deutlich einschränkt. Ein
konfigurierbares REST Testbed unterstützt somit als Testwerkzeug bei der Entwicklung ei-
ner REST-basierten Client-Anwendung, ohne unnötige Einschränkungen, vor allem in den
früheren Entwicklungsphasen, zu verursachen. Die entwickelten Komponenten in der Client-
Anwendung können auf diese Weise getestet, evaluiert sowie demonstriert werden. Dazu
muss ein Testbed umfassende Funktionalität bieten, konfigurierbar und beobachtbar sein.
Durch reproduzierbare Testszenarien genauso wie Simulation von Fehlerfällen kann das
Testbed bei dem Testprozess und somit bei der Suche nach Fehlverhalten die Tester und
Entwickler unterstützen.

1.2 Aufgabenstellung

In dieser Diplomarbeit sollen zunächst die bereits skizzierten Anforderungen aus dem Ab-
schnitt 1.1 an ein entsprechendes REST Testbed detailliert erhoben und aufbereitet werden.
Anschließend soll ein Überblick über bestehende Testbeds und ihre Anwendbarkeit auf
die vorliegende Problemstellung gegeben werden. Weiterhin soll ein Konzept sowie eine
Architektur eines REST Testbeds entworfen und anschließend prototypisch implementiert
werden.

1.3 Eingrenzung

Das Ziel dieser Diplomarbeit ist die Entwicklung eines konfigurierbaren REST Testbeds mit
umfassender Funktionalität zum Testzweck. Dieser dient zur Überprüfung der Erfüllbar-
keit von funktionalen und nicht-funktionalen Anforderungen, die an REST-basierte Client-
Anwendungen gestellt werden. Mit der Konfigurierbarkeit ist die Möglichkeit zum Steuern
von funktionalen beziehungsweise nicht-funktionalen Eigenschaften gemeint. Die Abbildung
1.1 zeigt Komponenten des Testbeds. Es werden zwei Schnittstellen zur Verfügung gestellt.
Über die Schnittstelle ConfigurationAPI sollen die funktionalen und nicht-funktionalen Ei-
genschaften des REST Testbeds angepasst und über die Schnittstelle TestServiceAPI sollen
die Ressourcen angefragt werden. Basierend auf der in Abschnitt 1.2 beschriebenen Pro-
blemstellung soll ein REST-basierter Web Service zum Testen von Client-Anwendungen die

2

1.4 Aufbau der Arbeit

Schnittstelle TestServiceAPI implementieren. Dabei sollen die über die Schnittstelle Configu-
rationAPI konfigurierten funktionalen und nicht-funktionalen Eigenschaften sich auf den
REST-basierten Web Service auswirken. Nach einer passenden Konfiguration aller im Testbed
vorhandenen funktionalen und nicht-funktionalen Eigenschaften an bestimmte Testfälle, kann
der REST-basierte Web Service zum Testen der Client-Anwendungssysteme in Anspruch
genommen werden.

REST Testbed

ConfigurationAPI

TestServiceAPI

Functional

Property 1

Functional

Property n

Abbildung 1.1: Überblick über Komponenten des Testbeds

1.4 Aufbau der Arbeit

Der Rest der Ausarbeitung dieser Diplomarbeit ist wie folgt aufgebaut. Um das REST Test-
bed besser zu verstehen, bietet das Kapitel 2 einen Einblick in die Konzepte des REST-
Architekturstils, einiges an Grundwissen aus dem Bereich Software-Prüfung und der aspek-
torientierten Programmierung. Kapitel 3 präsentiert einige verwandte Arbeiten, welche in
Bezug auf die Problemstellung von REST Testbed diskutiert werden. In Kapitel 4 werden
die an das zu entwickelnde REST Testbed gestellten Anforderungen detailliert erhoben
und aufbereitet. Aufbauend auf den Erkenntnissen aus Kapitel 3 und den Anforderungen
aus Kapitel 4 wird in Kapitel 5 ein Konzept ausgearbeitet. Zu diesem Konzept wird eine
komponentenbasierte Architektur zum REST Testbed mit den Erweiterungskomponenten
vorgeschlagen. Kapitel 6 widmet sich dem Design vom REST Testbed. In diesem Kapitel sind
die Klassendiagramme von dem komponentenbasierten Testbed sowie von den einzelnen
Erweiterungskomponenten zu finden. Die implementierungstechnischen Details zum REST
Testbed und den Erweiterungskomponenten sind in Kapitel 7 beschrieben. Das letzte Kapitel
beinhaltet eine Zusammenfassung dieser Diplomarbeit und gibt einen Überblick über die
noch anstehende Verbesserungs- und Erweiterungsmöglichkeiten des REST Testbeds.

3

1 Einleitung

4

2 Grundlagen

Dieses Kapitel bietet einen Einblick in die Eigenschaften des REST-Architekturstils. Es wird
einiges an Grundwissen der Software-Prüfung und der aspektorientierten Programmierung,
anhand einiger Konstrukte aus der aspektorientierten Sprache AspektJ, vermittelt.

2.1 REST und ROA

Representational State Transfer (REST) beschreibt einen Architekturstil von verteilten Anwen-
dungssystemen. Ressourcenorientierte Architektur (ROA) stellt eine konkrete REST-konforme
Architektur und somit eine Alternative zur Umsetzung REST-konformer Web Services dar.
Die Kernbestandteile von ROA sind Ressourcen, deren Namen und Repräsentationen genauso
wie Verweise zwischen Ressourcen. Zu den Eigenschaften von ROA gehören Adressierbarkeit,
Zustandslosigkeit, Verbindungshaftigkeit und die einheitliche Schnittstelle. Auf die genannten
Bestandteile und Eigenschaften von ROA wird später in diesem Kapitel eingegangen.

REST- und SOAP-basierte Web Services sind zurzeit die gängigsten Alternativen, die Web
Services zu realisieren, und je nach gestellten Anforderungen wird die eine oder andere
bevorzugt (Ric07, S. XIV-XV). Ein Unterschied zwischen REST und SOAP Web Services besteht
darin, wie die Dokumente übertragen werden. Ein Beispiel von Web Services, die mit HTTP-
Protokoll umgesetzt sind, verdeutlicht diesen Unterschied. Bei REST Web Services werden
Dokumente in einen HTTP-Umschlag verpackt. SOAP Web Services verpacken Dokumente
in einen SOAP-Umschlag, der wiederum in einen HTTP-Umschlag verpackt wird (Ric07, S.
23).

Im Folgenden wird das Interesse voll und ganz den REST-konformen Web Services gewidmet.
Der Architekturstil REST ist vor allem wegen seiner Leichtgewichtigkeit für die Software-
Entwickler sehr attraktiv. Als nächstes wird das geschichtliche Entstehen des Begriffs REST
erläutert und die REST-Prinzipien aufgeführt und diskutiert.

Es werden explizit einige Technologien wie HTTP, URI und XML genannt und für die Im-
plementierung von REST-konformen Web Services herangezogen. Diese erfüllen die an den
REST-Architekturstil gestellten Voraussetzungen. Dabei wird betont, dass es beim REST sich
um ein Architekturstil handelt und dieser grundsätzlich mit keiner Technologie verbunden
ist (Ric07, S. 89).

2.1.1 Geschichtliches

Der Begriff REST wurde von Roy Thomas Fielding im Jahr 2000 in seiner Dissertation Ar-
chitectural Styles and the Design of Network-based Software Architectures geprägt. Er verglich

5

2 Grundlagen

verschiedene Architekturen der verteilten Systeme auf deren Eigenschaften und definierte
REST als Folgerung seiner Forschungen. REST war eine Zusammenstellung von verschie-
denen Designkriterien (Ric07, S. XII-XIV,90). Im fünften Kapitel seiner Dissertation hat er
den REST-Architekturstil durch weiter unten diskutierte Architekturprinzipien beschrieben
(Fie00).

2.1.2 Ressourcen

Wie bereits in Abschnitt 2.1 erwähnt, gehört ROA zu den REST-konformen Architekturen
und konzentriert sich auf die Ressourcen. Ein Objekt oder Liste von Objekten, die mit einem
Modell beschrieben werden können, werden als Ressource interpretiert. Die Ressourcen
bekommen einen eigenen eindeutigen URI und werden dadurch adressierbar. Die Ressourcen
können und sollten auch Verweise auf andere Ressourcen beinhalten, mit denen sie in einer
Beziehung stehen (Ric07, S. 95). Dieses Prinzip der Verlinkung wird auch als Hypermedia as
the Engine of Application State bezeichnet. Eine weitere Eigenschaft einer Ressource ist deren
Repräsentationen. Für jede Ressource kann eine Menge von verschiedenen Repräsentationen
bereitgestellt werden, woraus man sich durch Content Negotiation auf eine Darstellung einigt.
Im weiteren Verlauf werden die oben angeschnittenen Eigenschaften von Ressourcen genauer
beschrieben (Fie00).

Identifizierbarkeit

Unter Ressourcen sind Objekte oder Listen von Objekten gemeint. Damit diese Objekte
beziehungsweise Listen von Objekten abrufbar sind, müssen sie adressierbar sein. Das hat
bei REST zur Folge, dass alle Ressourcen gemäß Request for Comments (RFC) 2396 (BL98)
einen URI besitzen. Mit URIs können die Ressourcen global eindeutig identifiziert und somit
abrufbar gestaltet werden (Ric07, S. 92-97) (PZL08, S. 807).

Hypermedia as the Engine of Application State

Mit Hypermedia as the Engine of Application State (HATEOAS) werden die Verlinkungen
von Ressourcen assoziiert. Es wird nicht nur eine Repräsentation einer Ressource alleine vom
Server zum Client übertragen, sondern auch Verlinkungen auf andere Ressourcen. Besteht bei
einer Ressource ein Zusammenhang mit anderen Ressourcen, so sollen der Repräsentation
zusätzlich die entsprechenden Links auf diese Ressourcen eingebettet werden. Diese zusätzli-
chen Informationen sind als Zustandsübergänge von dem Client zu interpretieren (Ric07, S.
106-109) (Fie08).

Repräsentationen

Die Repräsentation einer Ressource schließt die Darstellung von Daten genauso wie deren
Metadaten ein. Bei der Benutzung des HTTP-Protokolls werden dazu MIME-Typen verwen-
det. Die wohl gängigsten Formate zur Repräsentation von Ressourcen sind HTML, XML und

6

2.1 REST und ROA

JSON. Bei der Inhaltsvereinbarung (Content Negotiation) zum Beispiel mit Hilfe des HTTP-
Headers bei der HTTP-Anfrage wird zwischen Client und Server über den bevorzugten
MIME-Typ zur Repräsentation der Ressource ausgehandelt (Fel10, S. 53-54) (Fie00).

Selbstbeschreibende Nachrichten

Diese Eigenschaft ist die direkte Forderung der zustandslosen Kommunikation zwischen
Client und Server. Die zustandslose Kommunikation bedeutet, dass der Zustand der Inter-
aktion zwischen Client und Server nicht vom Server verwaltet wird. Deswegen sollen die
Nachrichten alle notwendigen Daten und Metadaten enthalten, um die gewünschte Aufgabe
erledigen zu können. Der Zustand einer Anwendung wird somit mit der Repräsentation der
Ressource beschrieben (BS07). Das hat zur Folge, dass der Inhalt der Nachrichten auch von
den Zwischenknoten auf dem Pfad zwischen Client und Server interpretiert werden kann.
Diese Eigenschaft ist auch wichtig, um dem Caching gerecht zu werden (Til11, S. 144). Wenn
ein Zwischenknoten feststellen kann, dass eine angefragte Repräsentation einer Ressource
im Cache von diesem Knoten verfügbar und noch aktuell ist, dann kann dieser Knoten diese
Repräsentation aus eigenem Cache dem Anfragesteller übermitteln und somit den Server
entlasten.

2.1.3 Architekturprinzipien

Dem REST sind einige Designkriterien zu Grunde gelegt, die bei der Entwicklung von REST-
konformen Web Services zu beachten sind, um die Vorteile des Webs nutzen zu können
(Fie00). Diese Kriterien werden nun kurz vorgestellt.

Client-Server-Architektur

Durch die Standardisierung der Kommunikation werden Client und Server voneinander
entkoppelt. So können mehrere Clients die Dienste eines Servers in Anspruch nehmen. Der
Client spielt eine aktive Rolle bei diesem Konzept. Er kann eine Anfrage an den Server stellen.
Der Server ist dabei eine passive Komponente, die auf Anfragen des Clients wartet. Beim
Eintreffen der Anfragen werden entsprechende Prozeduren ausgeführt und dem Client die
angemessene Antwort geliefert. Dieses Prinzip trägt durch die Trennung der Angelegenheiten
der Benutzerschnittstelle von den Aufgaben der Datenhaltung zu der Portabilität des Clients
über mehrere Plattformen hinweg bei und auf dem Server wird die Skalierbarkeit durch die
Vereinfachung der Komponenten verbessert. Dadurch wird es möglich die Komponenten
voneinander unabhängig zu entwickeln (Fie00, S. 78).

Zustandslosigkeit

Prinzip der Zustandslosigkeit bezieht sich auf die zustandslose Kommunikation zwischen
Client und Server. Das bedeutet, dass einzelne Anfragen aus einer Sequenz der Anfragen

7

2 Grundlagen

an einen Server unabhängig voneinander erfolgen und somit als einzelne Transaktionen zu
betrachten sind. Für die Kommunikation verwendet REST das zustandslose HTTP-Protokoll.
Nach diesem Prinzip muss der Client nicht an einen bestimmten Server gebunden sein. Beim
Ausfall eines Servers kann der Client seine Arbeit einfach mit einem anderen Server mit einem
gleichen Dienst fortsetzen. Dieses Prinzip ermöglicht somit die Skalierbarkeit, trägt zu der
Einfachheit und der Transparenz bei (Ric07, S. 98-101) (Fie00) (PZL08, S. 3).

Cache

Die bereits empfangenen Ressourcen können auf dem Client oder den Zwischenknoten auf
dem Pfad zum Server gespeichert werden. Wenn bei den angefragten Ressourcen, die sich
schon aus den alten Anfragen auf dem Client oder Zwischenknoten befinden, festgestellt wer-
den kann, dass diese immer noch aktuell sind, dann können diese von dem Client verwendet
werden. So kann der Server entlastet werden und man vermeidet unnötige Kommunikati-
onszeiten. Dieses Prinzip ermöglicht folglich gute Skalierbarkeit und verbessert die Effizienz
(Fie00, S. 79-81).

Einheitliche Schnittstelle

Unter der einheitlichen Schnittstelle werden die Ressourcen-Operationen verstanden. REST
ist nicht an das Web gebunden und hängt nicht von den HTTP-Methoden ab. Dennoch ist oft
die Rede von den Web Services, und deswegen werden gleich auch die Web-Technologien
hinzugezogen. Die Informationen bezüglich der Methoden auf die mit URIs adressierten
Ressourcen verbergen sich in der HTTP-Methode (Ric07, S. 90,101). Allgemein gesehen wird
bei einer einheitlichen Schnittstelle nach dem CRUD-Prinzip gearbeitet. Dabei steht CRUD für
die gebräuchlichsten Operationen beim REST: Create, Retrieve, Update und Delete (PZL08, S.
807). Diese einzelnen Operationen bezogen auf das Web entsprechen im engeren Sinne den
HTTP-Methoden POST, GET, PUT und DELETE (Fie09):

• Create (POST, PUT): Zum Erstellen einer neuen Ressource.

• Retrieve (GET): Zum Holen einer Repräsentation einer Ressource.

• Update (PUT): Zum Verändern von Eigenschaften einer Ressource.

• Delete (DELETE): Zum Löschen einer Ressource.

Die HTTP-Methoden PUT und POST können beide für das Erstellen einer neuen Ressource
verwendet werden. Es gibt aber eine Unterscheidung, wann die eine oder andere Methode
einzusetzen ist. Will man darauf Einfluss nehmen, welche URI die neue Ressource bekommen
soll, so ist die PUT-Methode zu verwenden. Überlässt man die Benennung der Ressource
dem Server, dann soll man die POST-Methode einsetzen (Ric07, S. 110-116) (Fie00, S. 81-82)
(Fie09).

Die POST-Methode hat auch eine andere Funktion, die außerhalb der Grenzen von REST
liegt. Bei der einheitlichen Schnittstelle stellen HTTP-Methoden die Methoden-Informationen

8

2.1 REST und ROA

dar. Es ist aber nicht immer möglich, die Methoden-Information in der HTTP-Methode zu
übermitteln. Ein Beispiel dafür sind Ressourcen-Repräsentationen in HTML-Format mit
HTML-Formularen. Ein HTML-Formular erlaubt nur die HTTP-Methoden GET und POST.
Die Methoden-Information zum Ändern oder zum Löschen der Ressource muss in diesem
Fall auf eine andere Weise übermittelt werden. Für solche Fälle wird die POST-Methode zur
Übertragung der Daten verwendet. Die Methoden-Information kann dabei im URI, HTTP-
Header oder Entity-Body kodiert sein. Die Methoden-Information befindet sich in diesem
Fall nicht in der HTTP-Methode und die Schnittstelle ist somit nicht mehr einheitlich. (Ric07,
S. 112-116)

Es gibt noch andere HTTP-Methoden, die weniger gebräuchlich sind (Ric07, S. 111-112):

• HEAD: Zum Holen der Metadaten beziehungsweise HTTP-Header einer Ressource.

• OPTIONS: Zum Prüfen von unterstützten HTTP-Methoden einer Ressource.

• TRACE: Zum Debuggen von Proxys.

• CONNECT: Zum Weiterleiten von anderen Protokollen über einen HTTP-Proxy.

Die einheitliche Schnittstelle wird durch die Identifizierbarkeit der Ressourcen, Manipu-
lierbarkeit von Ressourcen über Repräsentationen, selbstbeschreibende Nachrichten und
HATEOAS ermöglicht (Fie00, S. 82). Die Ressourcen werden mithilfe von URIs eindeutig
identifiziert und sind somit adressierbar. So können die Repräsentationen von Ressourcen
mit der GET-Methode angefragt werden. Die Repräsentationen können Manipuliert und mit
der PUT-Methode an den Server geschickt werden, damit die Änderungen in die Ressourcen
auf dem Server einfließen. Mit der POST- oder PUT-Methode können mithilfe von URIs neue
Ressourcen angelegt und mit der DELETE-Methode gelöscht werden. Die Repräsentationen
von Ressourcen beinhalten alle Daten und Metadaten zur Erledigung der gewünschten Auf-
gabe. Zu den Daten von Ressourcen gehören auch Verlinkungen von Ressourcen. Über diese
Links (URIs) kann der Übergang zu anderen Ressourcen mit der GET-Methode erfolgen.

Layered System

Mit der Schichtenarchitektur eines Systems (Layered System) werden die Funktionalitäten
nach dem Abstraktionsgrad in hierarchische Schichten zerlegt. Die Kommunikation bei
dieser Architektur erfolgt nur zwischen benachbarten Schichten. Dabei ruft eine Schicht
die Funktionalitäten der direkt darunter liegender Schicht ab. Dafür sind die Schnittstellen
bei jeder Schicht definiert, die nur der direkt darüber liegender Schicht bekannt sind. Mit
der Schichtenarchitektur kann man gegen die Komplexität bei großen Systemen vorgehen.
Nachteile dabei sind die mit der Anzahl der steigenden Schichten ebenfalls steigenden
Latenzzeiten und Aufwand. Durch Caching der Daten auf den Zwischenknoten auf dem Pfad
vom Client zum Server kann jedoch eine Leistungssteigerung erzielt werden, welche die oben
genannten Nachteile in den Schatten stellt (Fie00, S. 82-84).

9

2 Grundlagen

Code On Demand

Ein weiteres optionales Designkriterium von REST ist Code On Demand. Repräsentationen
der Ressourcen können auch Quellcode beziehungsweise ausführbare Skripte beinhalten.
REST-basierten Anwendungen, die Code On Demand unterstützen, können somit durch die
Benutzung der Web Services in der Funktionalität erweitert werden. So können zum Beispiel
die Methoden zum Validieren von Benutzereingaben erst während des Einsatzes von relevan-
ten Web Services der Client-Anwendung übertragen werden. Auf diese Weise wird ein Teil
der Funktionalitäten der Client-Anwendung auf dem Server gelagert. Die Client-Anwendung
wird um diese Funktionalitäten erst bei Bedarf erweitert (Fie00, S.84-85).

2.1.4 Sicherheit und Idempotenz

Es wurde bereits beschrieben, welche HTTP-Methoden zur Implementierung des CRUD-
Prinzips eingesetzt werden. Man kann jedoch diese Methoden auch falsch anwenden, was
mit Risiken oder Nachteilen verbunden ist. An dieser Stelle wird auf die Sicherheit und
Idempotenz eingegangen und erklärt, wieso sie so wichtig sind.

Sicherheit

Bei richtigen Implementierung und Einsatz der GET-Methode dürfen keine Ressourcen
manipuliert werden. Diese HTTP-Methode ist nur für lesende Zugriffe gedacht. Der Client
sollte beim Verwenden dieser Methode bei den Anfragen keine Sorgen haben, irgendwas bei
dieser Anfrage zerstören zu können. Die GET-Methode gehört zu den sicheren Methoden
von der Sicht des Clients und sollte deswegen auch so beim Server implementiert werden. In
der Praxis gibt es aber auch Nebeneffekte oder beabsichtigte Veränderung der Ressourcen bei
dieser Methode vorzufinden. Es werden bei kleinen Nebeneffekten Log-Datei oder der Zähler
der Anfragen verändert und bei einigen Web-Service-Anbietern funktioniert die komplette
Manipulation der Ressourcen basierend auf der GET-Methode. Die Nebeneffekte dürfen keine
gravierenden Veränderungen von Ressourcen mit sich bringen und der Client sollte dafür
auch nicht verantwortlich gemacht werden (Ric07, S. 116-118).

Idempotenz

Mit Idempotenz ist die Eigenschaft einer Operation festgelegt, bei welcher der Ressourcen-
zustand sich bei mehrfacher Anwendung der Operation nicht mehr ändert. So sollte nach
dem mehrfachen Anwenden der GET-, PUT- oder DELETE-Methoden der Ressourcenzustand
gleich der einmaliger Anwendung der Methode entsprechen. Dabei soll beachtet werden,
dass der Ressourcenstatus bei der PUT-Methode nicht mit relativen, sondern mit absoluten
Werten verändert werden darf, um diese Bedingung zu erfüllen. Wenn ein Attributwert einer
Ressource 5 ist und man diesen Wert auf 2 setzen möchte, dann soll die Änderung mit dem
absoluten Wert 2 und nicht mit dem relativen Wert -3 erfolgen. In einem unzuverlässigen
Netzwerk kann eine Änderungsanfrage mehrfach empfangen werden. Die Änderung mit

10

2.2 Software-Prüfung

einem relativen Wert würde bewirken, dass der Attributwert kleiner als 2 wird. Beim absolu-
ten Wert bleibt der Attributwert 2 auch beim mehrfachen Empfang der Änderungsanfrage.
Idempotenz ermöglicht zuverlässige HTTP-Anfragen über ein unzuverlässiges Netzwerk.
Bei ausstehender Antwort auf die HTTP-Anfrage, sei die verwendete Methode GET-, PUT-
oder DELETE, kann ohne weitere Sorgen eine erneute Anfrage abgeschickt werden (Ric07, S.
116-118).

2.2 Software-Prüfung

Jedes in der Entwicklung befindende Anwendungssystem durchläuft verschiedene Testpha-
sen. Bei den Vorgehensmodellen wie Wasserfallmodell in Abbildung 2.1 sieht man unter-
schiedliche Phasen im Lebenszyklus einer Softwareanwendung. Bevor man zur nächsten
Phase im Lebenszyklus übergeht, wird die aktuelle Phase auf die Erfüllbarkeit überprüft. Die
Überprüfung beinhaltet darüber hinaus auch integrierten Testprozesse. Beim Aufdecken von
Fehlern kann man auch wieder zu der vorherigen Phase wechseln. Die Tests sind im Lebens-
zyklus einer Softwareanwendung sehr wichtig und sollen in jeder Phase des Lebenszyklus
durchgeführt werden (FLS07, S. 15-17).

System-

Anforderungen

Software-

Anforderungen

Analyse

Programm-

Entwurf

Codierung

Test

Betrieb

Abbildung 2.1: Testphasen im Software-Lebenszyklus (FLS07, S. 16)

Die Software-Prüfung ist ein sehr umfangreiches Thema und es gibt viele Methoden, Tech-
niken und Verfahren dazu. In diesem Abschnitt wird nur das Grundwissen der Software-
Prüfung vermittelt und ein Verfahren für das automatisierte Testen präsentiert. Nachfolgend
wird auf die Phasen des Testablaufs eingegangen.

2.2.1 Phasen des Testablaufs

Mit Abbildung 2.2 wird der Zusammenhang der einzelnen Phasen eines Testprozesses gra-
phisch zum Ausdruck gebracht. In der Planungsphase wird festgelegt, was und in welchem

11

2 Grundlagen

Umfang getestet wird. Es wird der Aufwand geschätzt, die Termine festgelegt und die ausfüh-
rende Personen bestimmt. Weiterhin werden in dieser Phase Überlegungen über das Ziel, Art
und Umfang der notwendigen Tests und auch über die erwarteten Ergebnisse gemacht. Nach
der Planungsphase erfolgt der Testablauf, indem Tests vorbereitet, ausgeführt und ausgewer-
tet werden. Die einzelnen Phasen des Testablaufs werden in den nachfolgenden Abschnitten
genauer beschrieben. Dem Testablauf folgt die Analyse des nach dem Testlauf erstellten Test-
berichts. Es werden die in dem Testbericht aufgeführten Fehler analysiert, die Rückschlüsse
auf Verbesserungspotenzial in dem Entwicklungsprozess und auf Programmeinheiten zur
Überarbeitung erlauben.

Planung AnalyseVorbereitung Ausführung Auswertung

Ziel,

Umfang,

Dokumentation

Testbericht
Testvorschrift,

Testgeschirr
Testprotokoll

Testzyklus an einem

Testgegenstand

Abbildung 2.2: Semantischer Testablauf (FLS07, S. 37)

Testvorbereitung

Es werden geeignete Testfälle abhängig von der zu prüfenden Funktionalität beziehungs-
weise funktionaler oder nicht-funktionaler Eigenschaft ausgewählt. Diese Testfälle werden
spezifiziert, indem die erforderlichen Vorbedingungen bezüglich eines Prüflings und einer Te-
stumgebung definiert, die Eingabedaten und die erwarteten Ausgabedaten bestimmt werden.
Danach wird das Testgeschirr, wie Testdaten und Testwerkzeuge, bereitgestellt. Siehe dazu
Abbildung 2.2. Zum Schluss dieser Phase wird nun die Reihenfolge der Testfälle bestimmt.
Die Reihenfolge der zu bearbeitenden Testfälle ist optimal, wenn der Aufwand für die Umge-
staltungen der Testumgebung für alle zu bearbeitende Testfälle in der Summe, verglichen mit
dem Aufwand bei anderen Reihenfolgen, minimal ist (FLS07, S. 37-39).

Testausführung

In dieser Phase werden alle Testfälle, die in der Testvorbereitungsphase vorbereitet waren,
ausgeführt und dabei gewonnenen Ergebnisse aufgezeichnet. Am Ende der Testausführungs-
phase wird ein Testprotokoll, siehe Abbildung 2.2, angefertigt, welches die Daten über den
Prüfling, die verwendeten Testfälle, das Testgeschirr und die Ergebnisse der Prüfung beinhal-
tet (FLS07, S. 39-40).

Testauswertung

Protokollierten Testergebnisse werden ausgewertet, indem sie mit den spezifizierten erwarte-
ten Werten verglichen werden. Als Ergebnis der Testauswertungsphase wird ein Testbericht,

12

2.2 Software-Prüfung

siehe Abbildung 2.2, erstellt. In ein Testbericht gehören die Angaben zu den Testfällen, die
Schlussbewertungen und die Verweise auf relevante Dokumente. Testbericht bildet die Grund-
lage für die Fehlersuche und Fehlerbehebung (FLS07, S. 40).

2.2.2 Qualitätssicherungsmaßnahmen

Software-Qualitätssicherung zerfällt in drei Bereiche. Die organisatorische Maßnahmen, die
sich bei einem Projekt beziehungsweise Prozess mit der Steigerung der Erfolgsaussichten
beschäftigen, die konstruktive Maßnahmen, die sich auf die Vermeidung der Fehler konzen-
trieren, und die analytische Maßnahmen, die für das Auffinden von Fehlern zuständig sind.
Mit dem REST Testbed sollen bereits entwickelten und noch in der Entwicklung befindenden
REST-basierten Client-Anwendungen getestet werden, somit wurden die organisatorischen
und die konstruktiven Maßnahmen bereits getroffen. Bei der Qualitätssicherung von REST-
basierten Client-Anwendungen mit dem REST Testbed steht das Prüfen beziehungsweise
Finden von Fehlern im Vordergrund. Es findet also die Verifikation des entwickelten oder in
der Entwicklung befindenden Produktes statt (FLS07, S. 20) (Tie09, S. 471-472).

2.2.3 Prüfungsverfahren

Bei der Softwareprüfung gibt es statische und dynamische Testverfahren. Die statischen
Verfahren beschäftigen sich mit der Analyse sowie Prüfung von Systembeschreibungen
und sind nicht Teilaufgaben des REST Testbeds. Das REST Testbed unterstützt dynamische
Verfahren zur Software-Prüfung. Die Clients sollen Anfragen mit vorgegebenen Daten an
den Server schicken. Wenn die Soll-Werte von einem Testergebnis noch nicht bekannt sind,
so kann der Test manuell vorbereitet, ausgeführt und ausgewertet werden. Sind Soll-Werte
bereits bekannt, so sollte man automatisierte Testfälle erstellen, um Aufwand der Testabläufe
zu reduzieren. Durch Abweichungen des Ist-Wertes vom Soll-Wert kann auf diese Weise
Fehler aufgedeckt werden, die protokolliert und an das Entwicklungsteam weitergeleitet
werden sollen. Der Regressionstest ist ein sehr bekanntes automatisiertes Testverfahren, das
für die wiederkehrenden Testabläufe eingesetzt wird (FLS07, S. 22-24).

2.2.4 Regressionstest

Die in der Entwicklung befindende Anwendung wird in zeitlichen Abständen erneut getestet.
Zum einen werden neu implementierten Funktionalitäten mit neuen Testskripten überprüft,
zum anderen wird mit den alten Testskripten überprüft, ob nicht mit neuen Implementie-
rungen auch Bugs eingebaut wurden. Dabei werden bereits bekannte Soll-Ergebnisse von
den früheren Tests, die als korrekt empfunden wurden, manifestiert und bei den Testläufen
herangezogen. Der so festgehaltene Soll-Wert wird in einem Testfall zum Vergleich mit dem
Ist-Wert genommen. Diese Testfälle können dann überprüft werden, indem die Testskripte
von diesen Testfällen automatisch nacheinander ausgeführt werden (FLS07, S. 31-33).

13

2 Grundlagen

2.3 Aspektorientierte Programmierung

Bei der Umsetzung des Testbeds wurde aspektorientierte Sprache AspectJ benutzt. Um die
Implementierung des Testbeds nachvollziehen zu können, werden in folgenden Abschnitten
einige Konstrukte von AspectJ erläutert. Der Umfang der Einführung in AspectJ wird kurz
gehalten und umfasst nur grundlegende Informationen zum Verständnis des Testbeds.

Die aspektorientierte Programmierung baut auf der objektorientierten Programmierung auf
und ermöglicht die Trennung der Geschäftslogik von den zusätzlichen Funktionalitäten. Auf
diese Weise können zum Beispiel die Bearbeitung der HTTP-Anfragen zum Auslesen der
Ressourcen um weitere Funktionalitäten wie Logging oder Autorisierung erweitert werden.
Die zusätzlichen Funktionalitäten werden dabei in eigenem Modul gekapselt und der ur-
sprüngliche Quellcode bleibt unberührt. Dieser Ansatz wird auch als Separation of Concerns
bezeichnet und kann gegen die steigende Komplexität bei wachsenden Systemen eingesetzt
werden. Durch die aspektorientierte Programmierung können Funktionalitäten, die sich sonst
der Modularisierung erfolgreich widersetzen und so über die verschiedenen Module in einem
System verteil sind, die sogenannten Crosscutting Concerns, modularisiert werden (Böh06, S.
7,14-15,17).

Ein Aspekt bei der aspektorientierten Programmierung ist die Erweiterung des Klassen-
Konzepts. Die Aspekte sind vergleichbar mit den Klassen bei der objektorientierten Program-
mierung, in denen zusätzlich zu dem gewöhnlichen Java-Code weitere Sprachkonstrukte
definiert werden (Böh06, S. 25).

2.3.1 Joinpoint

Ein Joinpoint stellt ein Ereignis dar, das einen Punkt im Programm definiert, der einer Er-
weiterung oder Modifikation unterzogen werden soll. Zu den Joinpoints gehören folgende
Ereignisse mit dem entsprechenden Schlüsselwort in AspectJ (Böh06, S. 25):

• Aufruf einer Methode (call)

• Ausführen einer Methode (execution)

• Behandeln einer Exception (handler)

• Zugriff auf eine Variable (set/get)

• Initialisierung einer Klasse (staticinitialization/preinitialization/initialization)

2.3.2 Pointcut

Ein Pointcut stellt einen Sprachkonstrukt zum Vereinigen von Joinpoints. Es können also meh-
rere durch die Verbindungspunkte definierten Ereignisse zu einer Menge zusammengefasst
werden. Dabei gibt es in AspectJ einige logische Operationen und Wildcards, die das Bilden
einer Joinpoint-Menge erlauben (Böh06, S. 25-26).

14

2.3 Aspektorientierte Programmierung

Wildcards (Böh06, S. 56-57):

• Pluszeichen (+): Vertritt alle Unterklassen beziehungsweise Schnittstellen des vorgege-
benen Typs

• Stern (*): Repräsentiert eine Folge beliebiger Zeichen (außer dem Punkt)

• Zwei Punkte (..): Repräsentieren eine Folge beliebiger Zeichen (einschließlich dem
Punkt)

Logische Operationen (Böh06, S. 58-59):

• Vereinigung (||): Zum Vereinigen von Ausdrücken

• Schnitt (&&): Zum Bilden einer Schnittmenge der Ausdrücke

• Verneinung (!): Zum Verneinen eines Ausdrucks

Der nachfolgende Beispiel zeigt eine praktische Anwendung von Joinpoints mit Wildcards
und logischen Operationen:

pointcut GET() : execution(* services.testing.get(..)) || execution(* services.config.get(..));

In diesem Beispiel wird ein Pointcut GET() definiert. Dieser Jointcut wird ausgelöst, wenn eine
get()-Methode der Klassen testing oder config im Paket services ausgeführt wird. Die zwei Sterne
(*) in diesem Ausdruck stehen für beliebige Typen der Rückgabewerte. Die Doppelpunkte
(..) weisen auf eine beliebige Anzahl der Übergabeparameter der Methoden get(). Mit dem
ODER-Operator (||) werden Joinpoint-Mengen der einzelnen execution-Ausdrücke zu einer
Menge vereinigt.

Eine Alternative für den beschriebenen Ausdruck könnte aber auch so aussehen:

pointcut GET(..) : execution(* services.*.get(..));

In diesem Fall steht anstatt des Namens einer Klasse ein Stern. Damit werden alle Klasse
im Paket services umfasst. Wenn es keine andren Klassen im Paket services existieren oder
zumindest keine Klassen mit der Methode get() gibt, dann sind die zwei beschriebenen
Pointcuts GET() äquivalent.

2.3.3 Advice

Unter einem Advice versteht man eine Methode, die mit Auslösen eines definierten Ereig-
nisses im Programmcode beziehungsweise mit dem Erreichen eines Joinpoints, ausgeführt
werden soll. Dabei kann diese Methode auf unterschiedliche Weise ausgeführt werden (Böh06,
S. 26-27) (Kna07):

• before-Advice: Ausführung vor einem Joinpoint

• after-Advice: Ausführung nach einem Joinpoint

15

2 Grundlagen

Für ein Beispiel der praktischen Anwendung wird der bereits in Abschnitt 2.3.2 definierter
Jointcut GET() verwendet:

before() : GET() // to do ;

Wenn ein Joinpoint des Pointcuts GET() ausgelöst wird, dann wird vor der Ausführung der
get()-Methode (siehe Abschnitt 2.3.2) die an der Stelle // to do definierte Aktion ausgeführt.

2.3.4 Ausführungsreihenfolge

Mit der Reihenfolge der Ausführung kann die Beziehung zwischen den Aspekten festgelegt
werden. Die Zeile unten beschreibt einen Konstruktor, mit dem der Vorrang eines Aspekts
vor einem anderen Aspekt definiert werden kann:

define precedence: AspectPatternList

Definiert man eine Liste von Aspekten mit AspectPatternList, so haben links stehenden Aspek-
te aus der Liste Vorrang vor rechts stehenden Aspekten. Die before-Advices der Aspekte mit
dem höheren Vorrang werden früher wie die before-Advices der Aspekte mit dem niedrigeren
Vorrang abgearbeitet. Die after-Advices der Aspekte mit dem höheren Vorrang werden dage-
gen nach den after-Advices der Aspekte mit dem niedrigeren Vorrang ausgeführt. Mehrere
definierten Advices innerhalb eines Aspekts, die von der gleichen Art sind, werden in der
Reihenfolge deren Definition ausgeführt (Böh06, S. 150-155).

In Abschnitt 7.3 wird beispielhaft ein Aspekt in Bezug auf das Testbed demonstriert und
erklärt, bei dem einige der oben beschriebenen Sprachkonstrukte sich wiederfinden. Man
wird dabei deutlicher das Zusammenspiel der einzelnen Sprachkonstrukte in einem Aspekt
in Verbindung zueinander verstehen können.

16

3 Verwandte Arbeiten

In diesem Kapitel werden die Arbeiten betrachtet, die sich mit Aufsetzen von Testumgebungen
befassen, die zum Testen von Web Service basierten Client-Anwendungen herangezogen
werden können. Die kurzen Beschreibungen von diesen Projekten gewähren einen schnellen
Einblick in diese Arbeiten und es werden Aspekte angesprochen, die beim Vorhaben dieser
Diplomarbeit von Bedeutung sind. Die erste betrachtende Arbeit konzentriert sich primär
auf das Testen von SOAP-basierten Client-Anwendungen. Der zweite Projekt baut auf dem
ersten Projekt auf und bietet auch die Funktionalitäten zum Testen von REST-basierten Client-
Anwendungen. Beide Projekte weisen einige Ansätze auf, die bei der Entwicklung des REST
Testbeds von Interesse sind.

3.1 GENESIS

An der Universität Wien wird schon seit 2008 im Bereich von SOA Testbeds geforscht. Dazu
wurden bereits mehrere Arbeiten veröffentlicht. Die Publikation GENESIS - A Framework
for Automatic Generation and Steering of Testbeds of ComplexWeb Services beschäftigt sich mit
dem Aufsetzen von Testbeds für serviceorientierte Architektur (SOA), die auf Basis von
SOAP-basierten Web Services umgesetzt wird. Dabei wird ein Framework namens GENESIS
präsentiert. Dieses Framework erlaubt die Spezifikation und das Steuern von Testbeds von
einem zentralisierten Front-End und die automatische Generierung von verteilten Testbeds
in Back-End. Die Funktionalität von SOAP-basierten Web Services kann bei GENESIS mit
Plug-ins erweitert werden (JTD08).

SOA konzentriert sich

Mit GENESIS gelieferten Plug-ins:

• QOSPlugin: Simuliert die nicht-funktionalen Eigenschaften respektive die Quality of
Service (QoS)-Parameter

• BPELPlugin: Ausführung von zusammengesetzten Prozessen innerhalb von Web Service
Operationen

• LogPlugin: Protokollieren von Web Service Aufrufen

• RegistryPlugin: UDDI-Registrierung von Web Services

Es können neue Web Service Beschreibungen angefertigt und einem Testbed zum Erstellen ei-
nes Web Services übergeben werden. Die erstellten Web Services können vorhandene Plug-ins
in Anspruch nehmen, um verschiedene Verhalten zu simulieren. Durch das Simulieren von
QoS-Eigenschaften kann die Suche nach fehleranfälligen Komponenten unterstützt werden.

17

3 Verwandte Arbeiten

Das Verhalten des Testbeds in diesem Framework kann während der Laufzeit verändert
werden. Das Framework unterstützt automatisches Testen, indem die Parameter von Plug-ins
sich mit Hilfe einer Java API während der Laufzeit verändern lassen. Bei der Publikation
Script-based Generation of Dynamic Testbeds for SOA geht es um die weitere Forschung im
gleichen Bereich und die Entwicklung der zweiten Version des Testbeds. Die Funktionalität in
GENESIS2 wurde erweitert. Es kann nicht nur ein Testbed, sondern auch weitere Komponen-
ten wie Clients generiert werden. Dazu mussten jedoch das Konzept und die Architektur in
der zweiten Version überdacht und verändert werden. Das Framework GENESIS2 wurde ge-
nerisch gehalten, um in der Zukunft eine Grundlage für die Forschung auch in den nicht-SOA
Bereichen zu bieten (JTD08) (JD10).

Mit GENESIS2 gelieferten Plug-ins:

• WebServiceGenerator: Erstellt SOAP-basierte Web Services

• WebServiceInvoker: Ruft entfernte SOAP-basierte Web Services

• CallInterceptor: Zur Bearbeitung von SOAP-basierten Aufrufen auf der Nachrichtene-
bene

• DataPropagator: Bietet eine automatisierte Replikation von den Daten und Funktionen
unter den Back-End-Hosts

• QOSEmulator: Emuliert die Quality of Service (QoS)-Eigenschaften

• SimpleRegistry: Zur globalen Registrierung und Abfrage von Web Services

• ClientGenerator: Zum Aufsetzen von Testbeds mit Standalone-Clients

G2 Framework

G2 Plugins

Testbed
Control

Generated
Testbed
Instances

Testbed
SOA/Workflow

Generated Web Services,
Clients,
Registries / Brokers,
Dispatchers / Mediators,
Monitors,
etc.

Plugin instances

Back-End
Hosts

Front-End Hosts

Models

Abbildung 3.1: Konzept von GENESIS2 (GEN)

18

3.1 GENESIS

Abbildung 3.1 zeigt in einer Schichtendarstellung das Konzept von GENESIS2. In der Schicht
G2 Framework sind das Front-End-Host und die Back-End-Hosts dargestellt. Auf dem Front-
End-Host werden die Spezifikationen zu den Testbeds erstellt und in dieser Schicht findet auch
die Steuerung von Testbeds statt. Das kann nach der Empfehlung der GENESIS2-Entwickler
in der kompakten Skriptsprache Groovy erfolgen. Mithilfe der Spezifikationen werden auf
den Back-End-Hosts Testbed-Instanzen generiert. Diese Testbed-Instanzen findet man in
der Schicht Generated Testbed Instances. Die Schicht G2 Plugins verdeutlicht den modularen
Ansatz zur Realisierung von den Funktionalitäten basierend auf einem Plug-in-Konzept. In
der Schicht Testbed Control findet die individuelle Anpassung von den gewünschten Plug-ins
bei einzelnen Testbed-Instanzen statt.

Laut der Publikation Script-based Generation of Dynamic Testbeds for SOA soll GENESIS2 auch
für REST-basierte Web Services geeignet sein. Es soll für dieses Vorhaben dann ein weiteres
Plug-in entwickelt werden, das für die Erstellung von REST-basierten Web Services zuständig
ist. Des weiteren braucht man weitere Plug-ins für die Realisierung von funktionalen und
nicht-funktionalen Eigenschaften, die die Funktionalität von dem erstellten REST-basierten
Web Service erweitern würden. Im Unterschied zu GENESIS2 handelt es sich bei REST Test-
bed um die Erstellung eines Testbeds und nicht wie bei GENESIS2 um die automatische
Generierung von mehreren verteilten Testbeds. Die Spezifikation und die Steuerung der
Testbeds in GENESIS2 kann von einer entfernter Maschine durchgeführt werden, auf der
eventuell auch das zu testende Client-Anwendungssystem läuft. In diesem Fall ist es möglich
ein Test Framework aufzusetzen, das die Spezifikation, das Steuern von den Testbeds und
die Steuerung des zu testenden Client-Anwendungssystem zum Durchführen von Testauf-
rufen in den Testfällen verwalten könnte. Vor allem bei den Regressionstests werden solche
Testfälle erstellt, siehe auch Abschnitt 2.2.4. Die Spezifikation und Steuerung von Testbeds in
GENESIS2 findet programmiertechnisch statt. Für einen programmierunfähigen Software-
Tester ist dieses Konzept nicht geeignet, denn es gibt keine Möglichkeit die Steuerung über
eine graphische Benutzeroberfläche durchzuführen. Das komponentenbasierte Konzept von
GENESIS kann aber auch auf das REST Testbed angewandt werden. Durch die Plug-ins kann
die Funktionalität des REST Testbeds somit leicht erweitert werden.

Eine weitere Publikation der Universität Wien, die auf dem Framework GENESIS beziehungs-
weise GENESIS2 aufbaut und sich auf die aspektorientierte Programmierung konzentriert,
heißt Automating the Generation of Web Service Testbeds using AOP. Die aspektorientierte Pro-
grammierung AOP wird dabei dazu verwendet, um Aufrufe externer SOAP-basierter Web
Services während der Laufzeit abzufangen. Dabei wird das empfangene WSDL-Spezifikation
analysiert und der beschriebene Web Service im Testbed generiert. Das WSDL-Dokument
wird manipuliert, so dass es auf das nun im Testbed befindende Duplikat vom Original-
Service verweist, und im Anschluss an die SOA weitergeleitet. Dabei werden Aufrufe der
externen Web Services simuliert, um Kosten oder weitere Limitierungen beim Testen zu
vermeiden (JD11).

In unserem Projekt brauchen wir zwar keine Aufrufe externer Web Services, und doch bie-
tet die AOP auch bei unserer Problemstellung einige Vorteile. Man kann eine Anwendung
auch ohne aspektorientierter Programmierung komponentenorientiert gestalten, jedoch ist
Aspect-Oriented Programming (AOP) ein sehr praktisches Konzept, das wir nutzen kön-
nen. Die Joinpoints, an denen Aspekte verwoben werden, bilden die Schnittstellen. Für die

19

3 Verwandte Arbeiten

Definition von einem Joinpoint siehe Abschnitt 2.3.1. So kann mittels Aspekt-Konstruktoren
die Funktionalität des Testbeds sehr komfortabel erweitert oder manipuliert werden, ohne
ursprünglichen Quellcode zu verändern. Des weiteren lassen sich Crosscutting Concerns mit
AOP modularisieren, die sich mit anderen Programmierparadigmen der Modularisierung
erfolgreich entziehen, siehe auch Abschnitt 2.3.

3.2 SOA4ALL

Das Forschungsprojekt Service Oriented Architectures for All (SOA4ALL) konzentrierte sich
auf die Entwicklung eines vollwertigen webbasierten verteilten Systems namens SOA4ALL
Studio, siehe dazu Abbildung 3.2. Dieses Projekt begann im Jahr 2008 und erstreckte sich über
drei Jahre. Die Weiterentwicklung wird nicht mehr verfolgt und mittlerweile trifft man auf tote
Verweise in den Dokumentationen und auf der Webseite. Durch die Erstellung von konfigu-
rierbaren Testbeds zum Testen der entwickelten Komponenten soll der Entwicklungsprozess
mit SOA4ALL Studio unterstützt werden. Mit SOA4ALL Studio können die entwickelten
Komponenten auf die funktionalen Eigenschaften und andere charakteristische Eigenschaften
wie Skalierbarkeit und Leistung, die sogenannten nicht-funktionalen Eigenschaften, validiert
werden. Die Infrastruktur von SOA4ALL Testbed basiert auf dem Projekt GENESIS. Das
Projekt GENESIS erfüllte bereits einige Anforderungen, die an SOA4ALL Studio gestellt
wurden, und wegen der Erweiterbarkeit mit Plug-ins bot GENESIS eine gute Grundlage für
den Entwicklungsstart von SOA4ALL Studio. Das SOA4ALL Studio ist aus den integrierten
Werkzeugen, englisch Tools, aufgebaut.

iServe

Linked Data
API

LUF

Linked Data
API

Log

Linked Data
API

Analysis
Warehouse

Linked Data
API

iServe Browser

SWEET

SOWER Process Editor

SPICES

Analysis Platform

Web

Recommender
System

Abbildung 3.2: Architektur von SOA4ALL mit integrierten Tools (Atoa)

20

3.2 SOA4ALL

Die integrierten Tools sind nach Aufgabenbereichen, entsprechend der drei Phasen des
Lebenszyklus eines Services, in drei Segmente unterteilt. Sie bieten Unterstützung beim Lösen
unterschiedlicher Aufgaben innerhalb der drei wichtigsten Phasen entlang des Lebenszyklus
eines Services.

Aufgabenbereiche des SOA4ALL Studio:

• Provisioning Platform: Die Bereitstellung von semantischen Services durch eine Be-
schreibung oder durch eine Zusammensetzung von existierenden Web Services.

• Consumption Platform: Das Auffinden und Aufrufen von Web Services.

• Analysis Platform: Die Analyse der Ausführung von Web Services.

Diesen drei Segmenten sind verschiedene Tools zugeordnet. Weiter unten sind die Tools
nach den oben genannten Segmenten aufgezählt und es werden die Aufgabenbereiche der
jeweiligen Tools zusammengefasst. Die Aufgaben der Tools werden je nach Wichtigkeit im
Hinblick auf das REST Testbed mehr oder weniger detailliert beschrieben.

21

3 Verwandte Arbeiten

Komponenten von Provisioning Platform (Atoa):

• iServe: Eine Plattform zur Veröffentlichung von semantischen Beschreibungen von Web
Services als Linked Data. Bei Linked Data wird das Web für die Verbindung mit den
relevanten Daten benutzt.

• Process Editor (Composer): Eine Anwendung zur Modellierung von Prozessen und
zum Zusammensetzen von Prozessen aus den semantischen Beschreibungen von SOAP-
und REST-basierten Web Services mit der Modellierungssprache Literate Programming
Markup Language (LPML).

• SOWER: Dieser Editor ermöglicht die manuelle Beschreibung von SOAP-basierten Web
Services mit semantischen Informationen.

• SWEET (Semantic Web sErvice Editing Tool): Ein Editor zur Unterstützung der Erstel-
lung von semantischen Beschreibungen von den REST-basierten Web Services (Atoa).

Zur Erstellung von REST-basierten Web Services gibt es in SOA4ALL Studio zwei Schablonen.
Das SOA4ALL Studio benutzt bereits existierende Web Application Description Language
(WADL)-Spezifikationen von bekannten REST Application Programming Interface (API)-
Anbietern wie eBay REST API etc., um die nötigen Elemente eines REST-basierten Web
Services zu erstellen. Abbildung 3.3 demonstrieren beispielhaft ein Fragment, in dem ein Link
auf eine WADL-Spezifikationen angegeben ist.

D:\Dropbox\Diplomarbeit\da_template\gfx\servicetemplate.xml Samstag, 22. Juni 2013 00:42

<servicetemplates>
<service name="newsSearchServiceTemplate" type="REST">

<definition href="NewsSearchService.wadl">
</service>

</servicetemplates>

-1-

Abbildung 3.3: Definition eines REST-basierten Web Service (SKA+09)

Nach der Erstellung eines REST-basierten Web Service werden die dazugehörigen Ressourcen
definiert. Abbildung 3.4 demonstriert beispielhaft eine praktische Anwendung.

Mit SWEET können die oben erklärten Beschreibungen zur Erstellung von REST-basierten
Web Services über eine graphische Benutzeroberfläche sehr komfortabel erstellt werden.
Der Editor SWEET wird in zwei Versionen angeboten. Bei einer Version handelt es sich
um ein Plug-in mit abgespeckter Funktionalität für den Webbrowser Firefox. Die andere
vollwertige Version wurde als ein Teil des Kernmoduls Dashboard entwickelt und kann über
einen beliebigen Webbrowser benutzt werden (Atoa) (SWE).

Zur Veröffentlichung und zum Auffinden von semantischen Beschreibungen von Web Ser-
vices wird iServe verwendet. Unterstützt werden semantische Beschreibungen von SOAP-
genauso wie REST-basierten Web Services. Dazu werden einige standardisierte Formate zur
Beschreibung von Web Services von den entsprechenden Plug-ins von iServe in ein eigenes
Format transformiert. Es werden Formate wie Semantic Annotations for WSDL and XML
Schema (SAWSDL) nach World Wide Web Consortium (W3C) (FL07), WSMO-Lite nach W3C
(FFK+10) zur semantischen Beschreibung von SOAP-basierten Web Services, MicroWSMO
zur Beschreibung von REST-basierten Web Services (LSS+10) und teilweise OWL-S (MBH+04)

22

3.2 SOA4ALL

D:\Dropbox\Diplomarbeit\da_template\gfx\resourcedefinition.xml Samstag, 22. Juni 2013 00:37

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/" >
<resource path="newsSearch" >

<method name="GET" id="search" >
<request>

<param name="appid" type="xsd:string" style="query" required="true" />
<param name="query" type="xsd:string" style="query" required="true" />
<param name="type" style="query" default="all" >

<option value="all" />
<option value="any" />
<option value="phrase" />

</param>
<param name="results" style="query" type="xsd:int" default="10" />
<param name="start" style="query" type="xsd:int" default="1" />
<param name="sort" style="query" default="rank" >

<option value="rank" />
<option value="date" />

</param>
<param name="language" style="query" type="xsd:string" />

</request>
<response>

<representation mediaType="application/xml" element="yn:ResultSet" />
<fault status="400" mediaType="application/xml" element="ya:Error" />

</response>
</method>

</resource>
</resources>

-1-

Abbildung 3.4: Ressourcendefinition für ein REST-basiertes Web Service (SKA+09)

unterstützt. Es stehen zwei Zugriffsmöglichkeiten auf iServe zur Verfügung. Der Zugriff auf
die Funktionalitäten von iServe kann über die mit Google Web Toolkit (GWT) entwickelte
Anwendung namens iServe Browser oder über eine REST-basierte API erfolgen. Dabei bietet
die REST-basierte API eine HTML-Darstellung, welche eine benutzerfreundliche manuelle
Steuerung unterstützt, und eine Resource Description Framework (RDF)-basierte Darstellung
zur automatisierten Steuerung (iSe).

Komponenten von Consumption Platform (Atoa):

• anSWERS (a novel Semantic Web-enabled Recommender System): Ein wissensbasiertes
System, welches einem Benutzer anhand seines Benutzerprofils und Charakteristiken
der Web Services eine Empfehlung zur Nutzung eines ausgewählten Web Services
unterbreiten kann.

• LUF (Linked User Feedback): Der Service LUF sammelt Feedback zu den APIs, das in
Form einer Bewertung, der Kommentare und Markierungen von den Anwendungsbe-
nutzern entsteht.

• SPICES (Semantic Platform for the Interaction and Consumption of Enriched Services):
Ein Web-basiertes Tool für die Interaktion zwischen dem Endbenutzer und den SOAP-
beziehungsweise REST-basierten Web Services.

Mit SPICES können die mit dem oben erwähnten Tool iServe hinterlegten Beschreibungen von
SOAP- und REST-basierten Web Services durchsucht werden. Die zugehörigen Web Services
können mit dem SPICES aufgerufen, bewertet und kommentiert werden.

Komponenten von Analysis Platform (Atoa):

• K-Analytics (Knowledge Analytics): Ein webbasiertes Tool zur Visualisierung von Linked
Data Services und Analysedaten.

23

3 Verwandte Arbeiten

• SENTINEL (A Semantic Business Process Monitoring Tool): Ein Tool, das den Stand
der Technik in Business Activity Monitoring (BAM) voranbringt, indem es extensiv die
Semantik-Technologien zum Unterstützen der Integrität und Ableitung des Geschäfts-
wissens aus den von IT-Systemen generierten Low-Level-Prüfprotokollen benutzt.

Mit den Tools der Analysis Platform können die Prozesse beobachtet werden. Es sind unter-
schiedliche Metriken wie Zeitverzögerung, Aufruffrequenz, Leistung und Benutzerwahrneh-
mung definiert, die beim Bearbeiten von Prozessen festgehalten werden. Diese Daten sollen
den Testern beziehungsweise den Entwicklern helfen, kritische Komponenten zu finden.

Abbildung 3.5 zeigt die Architektur von SOA4ALL mit einzelnen Komponenten. Beim
SOA4ALL Studio sind die drei oben beschriebenen Plattformen abgebildet. Des weiteren
ist die Komponente User Management zum Verwalten von Benutzerprofilen dargestellt. Die
Informationen aus den Benutzerprofilen helfen bei der Suche nach gewünschten Web Services
in iServe. Die Komponenten von SOA4ALL Studio können über graphische Benutzerschnitt-
stellen und auch über Service-Schnittstellen gesteuert werden. Der im Zentrum dargestellte
Enterprise Service Bus (ESB) dient als Infrastruktur-Dienstleister und Integrationsplattform.

SOA4ALL Services Cloud
(Semantic Spaces + ESB)Deployment

Component
Monitoring
Component

Consumption Platform Analysis PlatformProvisioning Platform

Graphical User Interface Library SOA4ALL API

User ManagementRDF & WSMO Manipulation Library

Light-weight
Semantic

Web Services

Third-party
Traditional

RESTful Services

Light-weight
Processes

and Mashups

Third-party
Traditional

WSDL Services

SOA4ALL Studio

SOA4ALL Infrastructural Services

Reasoning Engine Service Ranking &
Selection Engine

Discovery EngineExecution Engine

...

SOA4ALL API
(Semantically Annotated)

Abbildung 3.5: Architektur von SOA4ALL (Atob)

Beim SOA4ALL handelt es sich um ein sehr umfangreiches Projekt, das drei Jahre dauerte
und bei dem viele Entwickler beteiligt waren. Es sind einige interessante Komponenten
und Ansätze dabei zu finden, die auch beim REST Testbed berücksichtigt werden sollten.
Der Zugriff auf iServe kann entweder über einen graphischen Editor oder direkt über eine
REST-basierte API durchgeführt werden. Zum Konfigurieren der Plug-ins im REST Testbed

24

3.2 SOA4ALL

könnte ein graphischer Editor eine benutzerfreundliche Schnittstelle für die manuelle Konfi-
gurationsmöglichkeit darstellen. Eine REST-basierte API ist eine passende Schnittstelle für
das programmiertechnische Konfigurieren für automatisierte Konfigurationsoption. Beim
SOA4ALL werden zwei oben angegebene Fragmente (siehe Abbildungen 3.3 und 3.4) benutzt,
um ein REST-basiertes Web Service zu erstellen. Dabei wird zuerst anhand einer WADL-
Spezifikation ein Web Service erstellt und dann wird die zugehörige Ressource definiert. Beim
REST Testbed dagegen sollen die Web Services anhand des gegebenen Datenbestands, aus
dem die Ressourcen auszulesen sind, definiert werden. Zur Erstellung von Beschreibungen
von Web Service werden beim SOA4ALL Studio einige bekannte REST APIs wie eBay REST
API etc. benutzt. Das REST Testbed soll dagegen auf keinen bestimmten Datenbestand fixiert
sein. Die Funktionalität des REST Testbeds soll zum Benutzen verschiedener Datenquellen
wie Datenbanken, Comma-Separated Values (CSV)-Dateien, Web Service APIs etc. erweiterbar
sein. Der Ansatz zur Erstellung eines Web Services mittels einer semantischen Beschreibung,
wie in den oben angegebenen Fragmenten (siehe Abbildungen 3.3 und 3.4), kann also nicht
zum Lösen der gleichen Aufgabe übernommen werden. Dieser Ansatz kann aber bei der
vom REST Testbed bereitgestellter REST-basierter API zum Manipulieren von Parametern
der Plug-in-Konfigurationen angewandt werden.

25

3 Verwandte Arbeiten

26

4 Anforderungen

In diesem Kapitel werden alle an das zu entwickelnde REST Testbed gestellten Anforderungen
detailliert erhoben und aufbereitet, die bereits in Kapitel 1 teilweise angesprochen wurden.

Beim REST Testbed handelt es sich um eine Server-Anwendung, bei der zwei Schnittstellen,
englisch API, bereitgestellt werden sollen. Die Schnittstelle TestServiceAPI soll für die Ressour-
cenanfragen für die Client-Anwendung zu Testzwecken zur Verfügung stehen. Die Schnitt-
stelle ConfigurationAPI soll für das Konfigurieren der funktionalen und nicht-funktionalen
Eigenschaften der Schnittstelle TestServiceAPI zuständig sein (siehe Abbildung 1.1). Die API
zum Testen der Client-Anwendung soll nach den Konzepten aus Abschnitt 2.1 einen REST-
basierten Web Service darstellen, der sich gemäß der aktuellen Konfiguration entsprechend
verhalten soll. Die im Folgenden aufgelisteten funktionalen und nicht-funktionalen Eigen-
schaften sollen von dem REST Testbed abgedeckt werden.

4.1 Funktionale Anforderungen

Mit diesen funktionalen Eigenschaften sollen an die zu testende Client-Anwendung gestellten
funktionalen und nicht-funktionalen Anforderungen abgedeckt und getestet werden können.
Jede dieser funktionalen Eigenschaften des REST Testbeds soll konfigurierbar sein. Man
soll sie aktivieren, konfigurieren und wieder deaktivieren können. Weiter unten sind die
funktionalen Eigenschaften aufgelistet, die das REST Testbed bereitstellen soll:

• Die über die Schnittstelle TestServiceAPI angefragten Ressourcen sollen aus einem reali-
tätsnahen Datenbestand ausgelesen werden. Die Datenbestands- genauso wie Berechti-
gungsparameter sollen konfigurierbar sein. Auch die URIs, mit denen die Ressourcen in
dem Datenbestand identifiziert werden, sollen definiert und einer Ressource zugeordnet
werden können. Das Testbed soll den Benutzern das Auslesen, Modifizieren, Löschen
und Anlegen von Datensätzen in dem Datenbestand erlauben.

• Für jede Ressource sollen verschiedene Repräsentationen, etwa HTML nach der HTML
4.01 Spezifikation von W3C (RHJ99), XML in der Version 1.0 nach W3C (BPSM+08) und
JSON nach RFC 4627 (Cro06), von den Benutzern des Testbeds über die Schnittstelle
ConfigurationAPI explizit auswählbar sein.

• Jede Anfrage soll protokolliert werden können. Je nach gewünschtem Grad sollen un-
terschiedliche Informationen wie Zeitpunkt, Bearbeitungszeit der Anfragen etc. ins
Protokoll einfließen. Die gesammelten Informationen sollen bei Bedarf persistent abge-
speichert werden und für Testbed-Benutzer für das spätere Einsehen zugänglich sein.
Der Testbed-Benutzer soll die Freiheit haben, über die Schnittstelle ConfigurationAPI, den

27

4 Anforderungen

Grad der Informationen und den Speicherort zum Ablegen der Protokolle zu bestimmen.
Dieses Protokoll soll die Entwickler der Client-Anwendung bei der Fehlersuche und
der Bewertung der Konzepte unterstützen.

• Der Testbed-Benutzer soll über die Schnittstelle ConfigurationAPI imstande sein, der
Client-Anwendung mitzuteilen, ein Cookie anzulegen. Dabei soll der Testbed-Benutzer
die Parameter des Cookie bestimmen können. Die möglichen Parameter und deren
Anwendung sind in der Publikation RFC 6265, HTTP State Management Mechanism,
(KM97) beschrieben.

• Des Weiteren soll der Testbed-Benutzer in der Lage sein, das Verhalten der Client-
Anwendung auf Cache-Nutzung zu testen. Deswegen sollen HTTP-Header, die sich auf
das Caching-Verhalten der Client-Anwendung auswirken können, über die Schnittstelle
ConfigurationAPI gesetzt und manipuliert werden können. Die für Caching zuständigen
HTTP-Header können dem Kapitel 13 der Publikation RFC 2616, Hypertext Transfer
Protocol – HTTP/1.1, (Fie09) entnommen werden.

• Es sollen verschiedene Verfahren, etwa wie HTTP-Authentifizierungsverfahren Basic
Access Authentication (HTTP Basic) und Digest Access Authentication (HTTP Digest), zur
Autorisierung der HTTP-Anfragen vom Testbed bereitgestellt werden. Die erforderli-
chen Parameter für die Authentifizierung der eingehenden HTTP-Anfragen sollen vom
Testbed-Benutzer über die Schnittstelle ConfigurationAPI konfigurierbar sein. Die oben
erwähnten HTTP-Authentifizierungsverfahren sind in der Publikation RFC 2617, HTTP
Authentication: Basic and Digest Access Authentication, (FHBH+99) definiert.

• Die vom Testbed an die Client-Anwendung gelieferten HTTP-Statusmeldungen auf die
HTTP-Anfragen sollen simuliert werden können. Es sollen vom Testbed-Benutzer bei
Bedarf vorgegebene HTTP-Statusmeldungen der Serie 2xx, 3xx, 4xx oder 5xx erstellt
und an die Client-Anwendung geliefert werden. Dabei soll die Möglichkeit zum Fest-
legen eines Gültigkeitsbereichs bestehen, binnen dessen die Konfiguration innerhalb
des Testbeds wirksam sein soll. Die HTTP-Statusmeldungen sind in Kapitel 10 der
Publikation RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, (Fie09) definiert.

4.2 Nicht-funktionale Anforderungen

Die an das REST Testbed gestellten nicht-funktionalen Anforderungen, die bei der Architektur,
Design und Implementierung berücksichtigt werden sollen, sind nachfolgend aufgelistet:

• Flexibilität: Das Verhalten des Testservices soll an die Bedürfnisse der Client-Anwendung
anpassbar sein. Somit soll der Testbed-Benutzer in der Lage sein, das Verhalten vom
Testbed durch das Aktivieren, Konfigurieren und Deaktivieren von funktionalen und
nicht-funktionalen Eigenschaften von der Schnittstelle TestServiceAPI zu steuern.

• Erweiterbarkeit: Die angestrebten funktionalen und nicht-funktionalen Eigenschaften
des Testbeds in dieser Diplomarbeit decken nur einen Bruchteil der Technologien ab.
Der Umfang des Testbeds soll leicht erweiterbar sein, beispielsweise durch das Hinzu-
fügen neuer funktionaler oder nicht-funktionaler Eigenschaften. Deswegen sollen die

28

4.2 Nicht-funktionale Anforderungen

funktionale beziehungsweise nicht-funktionale Eigenschaften als Plug-ins beim REST
Testbed integriert werden.

• Bedienbarkeit: Bei der Gestaltung der Konfigurationsschnittstelle ConfigurationAPI sol-
len die Möglichkeiten zur manuellen Manipulation von Parametern eines Plug-ins wie
zum Beispiel über eine graphische Benutzeroberfläche und das automatisierte Verän-
dern von Parametern wie zum Beispiel durch Ausführen der Skripte berücksichtigt
werden. Deshalb soll eine graphische Benutzerschnittstelle über einen Web-Browser für
die manuelle Konfiguration des REST Testbeds bereitgestellt werden. Zusätzlich zur
Beschreibung der Parameter soll bei falschen Benutzereingaben auch die Fehlerbeschrei-
bung dem Testbed-Benutzer mitgeteilt werden.

• Technische Anforderungen: Das REST Testbed soll in der Programmiersprache Java
mithilfe der Spezifikation Java API for RESTful Web Services (JAX-RS) (HS07) realisiert
werden. Konkret wird Java in Version 6 verwendet. Als Webcontainer wird Apache
Tomcat benutzt.

29

4 Anforderungen

4.3 Anwendungsfälle und Anwendungsfall-Diagramm

Die Abbildung 4.1 beschreibt grob das zu entwickelnde System anhand von definierten
Anwendungsfällen. Das Testbed soll in der Lage sein, die Liste der verfügbaren Plug-ins, wel-
che konfigurierbare funktionale und nicht-funktionale Eigenschaften darstellen, auszulesen
und dem Tester bekannt zu geben. Des Weiteren sollen manipulierbare Parameter einzelner
Plug-ins von dem Testbed ausgelesen und dem Tester mitgeteilt werden können. Das Test-
bed soll auch imstande sein, die vom Tester manipulierten Parameter-Werte eines Plug-ins
persistent zu übernehmen. Die oben beschriebenen Aufgaben sollen über die Schnittstelle
ConfigurationAPI unterstützt werden.

Mit der Schnittstelle TestServiceAPI sollen Plug-ins mit den geltenden Parametern der aktuellen
Konfiguration abgearbeitet werden, solange die Plug-ins aktiviert sind. Im Anwendungsfall-
Diagramm wird die Schnittstelle TestServiceAPI mit dem Anwendungsfall Resource anfragen
assoziiert. Die Anwendungsfälle, die von dem Anwendungsfall Plug-in aufrufen abgeleitet
sind, beziehen sich auf die zu implementierende Plug-ins.

Parameter eines

Plug-ins konfigurieren

Tester

Rest Testbed

Ressource anfragen

<<Erweiterungspunkte>>

Plug-in aufrufen

Liste der Plug-ins

anfragen

Plug-in aufrufen

«extends»

{Wenn Plug-in aktiviert}

Parameter eines

Plug-ins anfragen

Ressource

identifizieren

Autorisierung

überprüfen

Caching-Header

bearbeiten

Cookie-Header

bearbeiten

HTTP-Statusmeldung

simulierenHTTP-Anfrage

protokollieren

Repäsentation

generieren

«inherits»
«inherits»

«inherits»

«inherits»

«inherits»

«inherits»«inherits»

Client-Anwendung

Zu testende

Anwendung

Client

Abbildung 4.1: Anwendungsfall-Diagramm zum REST Testbed

Die Anfragen an das Testbed können unter verschiedenen Bedingungen auch unterschiedliche
Verhaltensabläufe respektive Szenarien implizieren. Anwendungsfälle stellen eine Zusammen-
fassung verschiedener Szenarien unter deren Bedingungen dar (CD08). Weiter unten werden

30

4.3 Anwendungsfälle und Anwendungsfall-Diagramm

Anwendungsfälle zur Liste der funktionalen Anforderungen aus Abschnitt 4.1 erstellt. Bei
der Nummerierung der Anwendungsfälle ist Folgendes zu beachten. Die erste Zahl bezieht
sich auf die Schnittstelle, über welche die beschriebene Funktionalität zu erreichen ist. Bei
Nummern 1.x handelt es sich um die Schnittstelle ConfigurationAPI und bei 2.x geht es um die
Funktionalität der Schnittstelle TestServiceAPI. Gemäß der nicht-funktionalen Anforderung
der Erweiterbarkeit an das Testbed werden die konfigurierbaren Eigenschaften aus Abschnitt
4.1 weiter als Plug-ins bezeichnet.

Name und Nummerierung Liste der Plug-ins anfragen 1.1
Beschreibung Die Liste der Namen aller verfügbaren Plug-ins zur

Erweiterung der Funktionalität der Schnittstelle Test-
ServiceAPI über die Schnittstelle ConfigurationAPI an-
fordern.

Beteiligte Akteure Tester (T) und System (S)
Auslöser T hat Namen der Plug-ins angefragt.
Vorbedingungen -
Nachbedingung T hat Namen aller Plug-ins erhalten.
Standardablauf 1. T macht Anfrage nach den Namen der Plug-ins.

2. S liefert die Namen aller Plug-ins.
Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle Confi-

gurationAPI erreichbar sein.

Tabelle 4.1: Anwendungsfall 1.1: Liste der Plug-ins anfragen

31

4 Anforderungen

Name und Nummerierung Parameter eines Plug-ins anfragen 1.2
Beschreibung Die Parameter eines Plug-ins zur Erweiterung der

Funktionalität der Schnittstelle TestServiceAPI über die
Schnittstelle ConfigurationAPI anfordern.

Beteiligte Akteure Tester (T) und System (S)
Auslöser T hat Parameter eines Plug-ins angefragt.
Vorbedingungen -
Nachbedingung T hat die Parameter des angefragten Plug-ins erhalten.
Standardablauf 1. T macht Anfrage nach den Parametern eines Plug-

ins.
2. S liefert die Liste der Parameter des gewünschten
Plug-ins.

Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle Confi-

gurationAPI erreichbar sein.

Tabelle 4.2: Anwendungsfall 1.2: Parameter eines Plug-ins anfragen

Name und Nummerierung Parameter eines Plug-ins konfigurieren 1.3
Beschreibung Die Parameter eines Plug-ins zur Erweiterung der

Funktionalität der Schnittstelle TestServiceAPI wer-
den den Bedürfnissen vom Tester einer Client-
Anwendung angepasst.

Beteiligte Akteure Tester (T) und System (S)
Auslöser T fordert S die modifizierten Parameter eines Plug-ins

zu übernehmen.
Vorbedingungen -
Nachbedingung Die von T eingegebenen Parameter sind konsistent

mit den von S übernommenen Parametern.
Standardablauf 1. T passt die Parameter zum gewünschten Plug-in an.

2. T fordert S zur Übernahme der modifizierten Para-
meter.
3. S gibt positives Feedback über die übernommenen
Parameter.

Erweiterungen 3a. S gibt negatives Feedback für die Übernahme der
Parameter mit Hinweisen auf fehlerhafte Eingaben.
3a1. T identifiziert die Ursache.
3a2. T beseitigt die Ursache.
3a3. T geht zum Schritt 2.

Hinweis Diese Funktionalität soll über die Schnittstelle Confi-
gurationAPI erreichbar sein.

Tabelle 4.3: Anwendungsfall 1.3: Parameter eines Plug-ins konfigurieren

32

4.3 Anwendungsfälle und Anwendungsfall-Diagramm

Name und Nummerierung Ressource anfragen 2.1
Beschreibung Eine Anfrage nach einer Ressource an den Testservice

zum Testen der Client-Anwendung bezüglich der Er-
füllbarkeit der funktionalen und nicht-funktionalen
Anforderungen stellen.

Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser C soll getestet werden.
Vorbedingungen Die Parameter der Plug-ins wurden an den aktuellen

Testfall angepasst.
Nachbedingung S hat die Anfrage bearbeitet und C hat darauf eine

Antwort bekommen.
Standardablauf 1. S bearbeitet die Anfrage mit der Behandlung der

Anwendungsfälle, die von dem Anwendungsfall Plug-
in aufrufen abgeleitet sind.
2. S liefert C eine Antwort.

Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle TestSer-

viceAPI erreichbar sein.

Tabelle 4.4: Anwendungsfall 2.1: Ressource anfragen

Name und Nummerierung Plug-in aufrufen 2.2
Beschreibung Ein Plug-in zum Testen der Client-Anwendung bezüg-

lich der Erfüllbarkeit einer funktionalen beziehungs-
weise nicht-funktionalen Anforderung aufrufen.

Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser S ruft ein Plug-in auf.
Vorbedingungen Plug-in ist aktiviert.
Nachbedingung Plug-in wurde behandelt.
Standardablauf 1. S bearbeitet das Plug-in.
Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle TestSer-

viceAPI erreichbar sein.

Tabelle 4.5: Anwendungsfall 2.2: Plug-in aufrufen

33

4 Anforderungen

Name und Nummerierung Ressource identifizieren 2.3
Beschreibung Überprüfung der Autorisierung des Zugriffs auf den

Datenbestand und gegebenenfalls die Identifizierung
der angefragten Ressource im Datenbestand.

Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Auslesen der Ressourcen aus einem Da-

tenbestand ist aktiviert.
Nachbedingung Plug-in zum Auslesen der Ressourcen aus einem Da-

tenbestand wurde ausgeführt.
Standardablauf 1. S überprüft die Zugriffsberechtigung auf den Da-

tenbestand.
2. S identifiziert die Ressource.

Erweiterungen 2a. S stellt einen nicht-autorisierten Versuch des Zu-
griffs auf den Datenbestand.
2a1. S teilt eine Fehlermeldung dem C mit.
2b. S kann die angefragte Ressource nicht identifizie-
ren.
2b1. S teilt eine Fehlermeldung dem C mit.

Hinweis Diese Funktionalität soll über die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 1. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.6: Anwendungsfall 2.3: Ressource identifizieren

34

4.3 Anwendungsfälle und Anwendungsfall-Diagramm

Name und Nummerierung Repräsentation generieren 2.4
Beschreibung Die Repräsentation der mit dem Anwendungsfall Res-

source identifizieren ausgelesener Ressource wird gene-
riert.

Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Generieren der Ressourcen-

Repräsentationen ist aktiviert. Die Ressource ist
aus dem Datenbestand ausgelesen.

Nachbedingung Plug-in zum Generieren der Ressourcen-
Repräsentationen wurde ausgeführt.

Standardablauf 1. S vergleicht den gewünschten Format zur Generie-
rung der Repräsentation der Ressource mit den akti-
vierten Formaten.
2. S generiert die Repräsentation der entsprechenden
Ressource.

Erweiterungen 2a. S stellt eine Nicht-Übereinstimmung der Formate.
2a1. S teilt eine Fehlermeldung dem C mit.

Hinweis Diese Funktionalität soll über die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 2. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.7: Anwendungsfall 2.4: Repräsentation generieren

35

4 Anforderungen

Name und Nummerierung Autorisierung überprüfen 2.5
Beschreibung Die Autorisierung des Ressourcenaufrufs überprüfen
Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Überprüfen der Autorisierung der Anfra-

gen ist aktiviert.
Nachbedingung Plug-in zum Überprüfen der Autorisierung der Anfra-

gen wurde ausgeführt.
Standardablauf 1. S vergleicht das gewünschte Authentifizierungsver-

fahren mit dem eingestellten Authentifizierungsver-
fahren.
2.S stellt eine autorisierte HTTP-Anfrage fest.

Erweiterungen 1a. S stellt eine Abweichung des gewünschten Authen-
tifizierungsverfahrens mit dem eingestellten Authen-
tifizierungsverfahren fest.
1a1. S teilt eine Fehlermeldung dem C mit.
2a. S stellt eine nicht-autorisierte HTTP-Anfrage fest.
2a1. S teilt eine Fehlermeldung dem C mit.

Hinweis Diese Funktionalität soll über die Schnittstelle Test-
ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 6. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.8: Anwendungsfall 2.5: Autorisierung überprüfen

Name und Nummerierung HTTP-Statusmeldung simulieren 2.6
Beschreibung Eine vorkonfigurierte Statusmeldung als Antwort auf

ankommende Anfragen simulieren.
Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Simulieren von HTTP-Statusmeldungen

ist aktiviert.
Nachbedingung Plug-in zum Simulieren von HTTP-Statusmeldungen

wurde ausgeführt.
Standardablauf 1. S ließt die Parameter der zu generierenden Status-

meldung.
1. S erstellt eine HTTP-Statusmeldung und schickt sie
an C.

Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle Test-

ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 7. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.9: Anwendungsfall 2.6: HTTP-Statusmeldung simulieren

36

4.3 Anwendungsfälle und Anwendungsfall-Diagramm

Name und Nummerierung Caching-Header bearbeiten 2.7
Beschreibung Setzen der HTTP-Header zum Steuern des Verhaltens

der Client-Anwendung zur Nutzung von Cache.
Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Setzen der Caching-Header ist aktiviert.
Nachbedingung Plug-in zum Setzen der Caching-Header wurde aus-

geführt.
Standardablauf 1. S ließt die vorkonfigurierten Parameter der HTTP-

Header zur Cache-Nutzung.
2. S erweitert die HTTP-Header der HTTP-Antwort
um weitere Header zur Cache-Nutzung.

Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle Test-

ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 5. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.10: Anwendungsfall 2.7: Caching-Header bearbeiten

Name und Nummerierung Cookie-Header bearbeiten 2.8
Beschreibung Mitteilen der Cookies an die Client-Anwendung.
Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Setzen der Cookie-Header ist aktiviert.
Nachbedingung Plug-in zum Setzen der Cookie-Header wurde ausge-

führt.
Standardablauf 1. S ließt die vorkonfigurierten Parameter der mitzu-

teilenden Cookies.
2. S erweitert die HTTP-Header der HTTP-Antwort
um weitere Header mit Cookies.

Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle Test-

ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 4. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.11: Anwendungsfall 2.8: Cookie-Header bearbeiten

37

4 Anforderungen

Name und Nummerierung HTTP-Anfrage protokollieren 2.9
Beschreibung Protokollieren der HTTP-Anfrage einer Ressource.
Beteiligte Akteure Client-Anwendung (C) und System (S)
Auslöser Eine Ressource wurde von C angefragt.
Vorbedingungen Plug-in zum Protokollieren der HTTP-Anfragen ist

aktiviert.
Nachbedingung Plug-in zum Protokollieren der HTTP-Anfragen wur-

de ausgeführt.
Standardablauf 1. S ließt die vorkonfigurierten Parameter zum Proto-

kollieren der HTTP-Anfragen.
2. S protokolliert die HTTP-Anfrage mit dem vorgege-
benen Informationsgrad in der voreingestellen Ausga-
bequelle.

Erweiterungen -
Hinweis Diese Funktionalität soll über die Schnittstelle Test-

ServiceAPI erreichbar sein. Dieser Anwendungsfall
bezieht sich auf die 3. funktionale Eigenschaft aus Ab-
schnitt 4.1

Tabelle 4.12: Anwendungsfall 2.9: HTTP-Anfrage protokollieren

4.4 Sequenzdiagramm

In der Abbildung 4.2 sind einige mögliche Abläufe beschrieben, um das Testbed besser zu
verstehen. Die Abläufe sind in einer logischen Reihenfolge von oben nach unten dargestellt,
diese ist jedoch nicht zwingend erforderlich. Wie am Anfang dieses Kapitels beschrieben,
kann der Benutzer über die Schnittstellen ConfigurationAPI und TestServiceAPI mit dem REST
Testbed kommunizieren. Auf dem Sequenzdiagramm sind vier unterschiedliche Hauptabläufe
zum Konfigurieren der Plug-ins und zu einem Testaufruf dargestellt. Bei der Initialisierung
des Testbeds werden auch alle Plug-ins initialisiert und in einer Liste abgelegt, auf welche
die Schnittstellen ConfigurationAPI und TestServiceAPI Zugriff haben. Wie die Verwaltung der
Liste der Plug-ins realisiert wird, ist zu diesem Zeitpunkt noch nicht festgelegt und ist auf
dem vorliegenden Diagramm nicht abgebildet.

Der dargestellte Ablauf dient dem Auslesen der Namen aller Plug-ins des Testbeds. Mit der
gestellten Anfrage getPluginNames() über die Schnittstelle ConfigurationAPI wird in der Confi-
gurationAPI aus der Liste der verfügbaren Plug-ins von jedem Plug-in der Name ausgelesen
und die Liste der Namen aller Plug-ins wird an den Anfragesteller geschickt.

Der zweite Ablauf von oben beschreibt das Auslesen der Parameter einzelner Plug-ins. Dabei
muss der Name des gewünschten Plug-ins übergeben werden. Wird das gewünschte Plug-in
gefunden, dann werden alle Parameter dieses Plug-ins dem Client geliefert.

Bei dem dritten Ablauf von oben handelt es sich um das Überschreiben alter Parameter eines
Plug-ins mit neuen Werten. Nachdem die Parameter von dem Plug-in übernommen sind,

38

4.4 Sequenzdiagramm

:TestServiceAPI :Plugin:ConfigurationAPI:Client

pluginNamenAnfragen()

für jedes plug-in: nameAnfragen()

pluginParameterAnfragen(name)

wenn es plug-in <name> gibt: parameterAnfragen()

wenn es plug-in <name> gibt: übernehmeParameter(parameter)

pluginParameterKonfigurieren(name, parameter)

ressourceAnfragen(uri)

bei jedem aktivierten plug-in: pluginAusführen()

für jedes plug-in:

Abbildung 4.2: Sequenzdiagramm zum REST Testbed

39

4 Anforderungen

werden sie auch persistent abgespeichert. So bleiben die Konfigurationen der Erweiterungen
auch über dem Neustart des Testbeds bestehen.

Die mittleren Abläufe zum Auslesen und Anpassen der Parameter eines Plug-ins sollen für
alle verfügbaren Plug-ins wiederholt werden. Danach ist das Testbed an ein bestimmtes
Testfall angepasst und der Testaufruf kann vorgenommen werden.

Der unterste Ablauf beschreibt den Aufruf des Testservices über die Schnittstelle TestServiceA-
PI. Dem Aufruf des Testservices folgt die Überprüfung der einzelnen Plug-ins aus der Liste
der verfügbaren Plug-ins in der TestServiceAPI nacheinander. Wird bei einem Plug-in festge-
stellt, dass sein Status auf Aktiviert konfiguriert ist, so wird dieses Plug-in bei der Bearbeitung
der Anfrage beziehungsweise der Erstellung der Antwort ausgeführt.

40

5 Konzept und Architektur

In diesem Kapitel wird auf das Zusammenwirken der einzelnen Komponenten der Archi-
tektur vom REST Testbed eingegangen. Es werden die relevanten Konzepte zur Gestaltung
des REST Testbeds dargelegt und das Datenmodell zur Verwaltung der Konfigurationen von
Plug-ins vorgestellt.

Beim REST Testbed handelt es sich um eine Web-Anwendung, die auf einem Server aus-
geführt wird. Diese Tatsache impliziert die Verwendung des Client-Server-Konzepts. Das
Client-Server-Konzept bezieht sich primär auf die Unterteilung der Funktionalitäten in zwei
Zuständigkeitsbereiche und nicht in zwei Standorte. Der Client kann auf der gleichen Maschi-
ne laufen wie der Server. Wenn man die üblichen Client/Server-Anwendungen von einem
Anwendungssystem betrachtet, so sind sie oft aufeinander zugeschnitten. Beim REST Testbed
soll durch die Konfigurierbarkeit der Plug-ins die Anpassung der Eigenschaften des Testbeds
an eine Client-Anwendung stattfinden. Es ist keine mehrfache Benutzung des Testbeds durch
mehrere Testbed-Benutzer, im Gegensatz zu den üblichen Server-Anwendungen, vorgesehen,
denn die Konfiguration der mit den Plug-ins realisierten funktionalen und nicht-funktionalen
Eigenschaften muss durch einen Tester kontrolliert durchgeführt werden.

In Abbildung 5.1 wird die grobe Architektur vom REST Testbed, genauso wie die relevanten
Werkzeuge für die Konfiguration des Testbeds und für das Testen von Client-Anwendungen
skizziert. Die rechte Seite der Abbildung namens Testbed Server liefert einen groben Überblick
über die Komponenten des REST Testbeds. Mit der linken Seite der Abbildung namens Client-
Side geht diese Abbildung über die Grenzen des REST Testbeds hinaus, hilft jedoch es besser
dem Testprozess zuzuordnen.

Mit Client-Side wird das zu testende Client-Anwendung mit möglichen Hilfsmitteln zum
Unterstützen des Testvorgangs dargestellt. Die Aufgabenbereiche der Software-Komponenten
dieser Seite der Abbildung fallen nicht in die Zuständigkeit dieser Diplomarbeit und werden
deswegen nicht im Detail erläutert. Die Komponente ConfigurationAPI stellt die Konfigurati-
onsschnittstelle für das Testbed dar. Über unterschiedliche Repräsentationen von Konfigurati-
onsressourcen kann das Testbed beziehungsweise jedes einzelne Plug-in konfiguriert werden.
Dabei werden mit Client-Side zwei Arten der Konfiguration verdeutlicht. Die eine Art der
Konfiguration wird von dem Tester (Strichmännchen) über die graphische Benutzeroberfläche
(Configuraiton GUI) manuell durchgeführt. Die andere Art bezieht sich auf die automatisierte
Durchführung der Konfiguration mittels eines Test-Skripts. Die Einstellungen von Plug-ins
werden in dem mit Plug-ins Configurations bezeichnetem Speicher persistent abgelegt. Auf
diese Weise können die Konfigurationen von Plug-ins auch bei einem Neustart des Servers
bestehen bleiben.

41

5 Konzept und Architektur

Client-Side

Test Script

Client

Software

Testbed

Server

Plugin Components

Plugin Configurations

Configuration

API Wrapper

Configuration API

Test Service API

R

R

R

R R

Configuration

GUI

R

R

R
Plugin 1

Plugin n

R

Plug-in 1 Plug-in n

Abbildung 5.1: Die Architektur von dem Testbed

5.1 Plug-in-Konzept

Das REST Testbed basiert auf dem Plug-in-Konzept. Die Entwicklung des Testbeds kann da-
durch modular gestaltet werden, was auch die Erweiterbarkeit des Testbeds zusichert. Zu den
Kern-Plug-ins gehören die Plug-ins zur Verwaltung von Ressourcen (siehe Anwendungsfall
2.3), zur Erstellung von Repräsentationen von Ressourcen (siehe Anwendungsfall 2.4) und
zum Protokollieren von Aufrufen (siehe Anwendungsfall 2.9). Die anderen Plug-ins haben
oft Abhängigkeiten bezüglich dieser drei Kern-Plug-ins, denn bei den meisten Aufrufen des
Testservices wird eine Ressource aus dem Datenbestand ausgelesen und die Repräsentation
von dieser Ressource an die Client-Anwendung geschickt. Dabei wird dieser Prozess ab der
Ankunft der Anfrage bis zum Abschicken der Antwort protokolliert. Die meisten weiteren
Plug-ins erweitern die Funktionalität dieser Kern-Plug-ins (siehe Anwendungsfall 2.5, Anwen-
dungsfall 2.7 und Anwendungsfall 2.8). Die Ausnahmen bei dem oben beschriebenen Vorgang
bildet das Plug-in zum Simulieren einer HTTP-Statusmeldung (siehe Anwendungsfall 2.6),
welches keine Repräsentation und somit auch keine Ressource benötigt.

Beim REST Testbed wurden verschiedene Technologien beziehungsweise Standards zum
Realisieren von funktionalen und nicht-funktionalen Eigenschafen eingesetzt. Diese Eigen-
schaften können genauso, nach den Bedürfnissen, mit anderen Technologien beziehungsweise
Standards bewerkstelligt werden. Zum Autorisieren der Anfragen werden nach den gestell-
ten Anforderungen die Verfahren Basic Access Authentication und Digest Access Authentication
eingesetzt. Wenn bei der Client-Anwendung ein anderes Verfahren zum Autorisieren der
Anfragen verwendet wird, so soll das REST Testbed um dieses Verfahren erweitert wer-
den. Weiteres Beispiel liefert die Generierung der Repräsentationen von Ressourcen. Viele
Client-Anwendungen arbeiten mit einer spezifischen Formatierung der Repräsentationen
von Ressourcen. Um solche Client-Anwendung zu testen, soll das REST Testbed um die
Generierung von Repräsentation mit der entsprechenden Formatierung erweitert werden.
Die Entkopplung der einzelnen Komponenten des Testbeds wirkt sich in diesem Fall sehr

42

5.1 Plug-in-Konzept

positiv auf die Erweiterbarkeit des REST Testbeds aus. Das Plug-in-Konzept erweist sich
für diese und viele andere Fälle als sehr praktischer Ansatz bei der Entwicklung. Das Test-
bed lässt sich mit diesem Konzept leichter um neue Funktionalitäten, die zum Testen einer
Client-Anwendung benötigt werden, erweitern.

Es wird zwischen folgenden Komponenten bei einem Plug-in unterschieden:

• Beobachter: Zum Definieren der Ereignisse, nach deren Erscheinung die Domainlogik
abgearbeitet wird

• Domainlogik: Die implementierte Domainlogik, mit der sich das Plug-in beschäftigt

• Konfiguration: Zum Parametrisieren von Operationen der Domainlogik

Der Kern des REST Testbeds besteht aus der Verwaltung von Plug-in-Konfigurationen und
dem Auslösen von Ereignissen zum Ausführen von Plug-ins. Die antreffenden Anfragen
auf dem REST Testbed über die Schnittstellen TestServiceAPI lösen Ereignisse aus. Bei den
Ereignissen handelt es sich um den Anfang und das Ende der Ausführung der in der Schnitt-
stelle TestServiceAPI definierten Methoden. Wenn ein Ereignis, das heißt Bearbeitungsstart
oder -ende einer Methode der Schnittstelle TestServiceAPI, ausgelöst wird und es gibt einen
Beobachter eines Plug-ins, welches auf dieses Ereignis wartet, dann wird die entsprechende
Domainlogik mit Hinzunahme der konfigurierbaren Parametern aus der Konfiguration dieses
Plug-ins abgearbeitet. Einige Plug-ins müssen den anderen Plug-ins vorgeschaltet werden.
Das ist der Fall bei dem Plug-in Authorization, das die Autorisierung der Anfrage vor der
eigentlichen Bearbeitung überprüfen muss. Einige Plug-ins müssen erst auf die Abarbeitung
anderer Plug-ins warten, bevor sie ausgeführt werden. Das Plug-in Caching kann erst dann ein
Entity-Tag berechnen, wenn der Inhalt der HTTP-Antwort bereits erstellt wurde. Bei anderen
Plug-ins wie Logging müssen einige Operationen unmittelbar nach dem Antreffen der Anfra-
ge und andere unmittelbar vor dem Abschicken der HTTP-Antwort durchgeführt werden.
Dementsprechend soll ein Plug-in zustande sein, deren Methoden zu zwei unterschiedlichen
Zeiten der Bearbeitung einer HTTP-Anfrage ausführen zu können.

Die Beobachter nehmen Ereignisse wahr. Wenn ein erwartetes Ereignis von einem Beobachter
festgestellt wird, dann wird die zugehörige Domainlogik ausgeführt. Bei den Beobachtern
wird die Reihenfolge der Ausführung definiert. Abhängig davon, ob das Ereignis den Anfang
oder das Ende der Bearbeitung der TestServiceAPI-Operation signalisiert, ändert sich die
Reihenfolge der Anwendung der Domainlogik von den Plug-ins bei der Bearbeitung einer
HTTP-Anfrage. Wenn es sich um das Start-Ereignis handelt, dann werden die nach dem
Vorrang sortierten Plug-ins, angefangen mit dem Plug-in mit dem höchsten Vorrang, nachein-
ander ausgeführt. Wenn es jedoch um das Ende-Ereignis geht, dann wird die umgekehrte
Reihenfolge der Ausführung von Plug-ins verglichen mit der Reihenfolge bei dem Start-
Ereignis verwendet. Ein Plug-in mit dem höchsten Vorrang vor anderen bekannten Plug-ins
wird beim Start-Ereignis also vor allen anderen Plug-ins und im Falle des Ende-Ereignisses als
Letzter ausgeführt. Abbildung 5.2 stellt den Ablauf der Ausführung von Plug-ins graphisch
dar.

Eine Anwendung, das nach dem Plug-in-Konzept entwickelt wurde, kann leichter in der
Funktionalität erweitert werden. Durch die Modularisierung beim Plug-in-Konzept kann die
Anwendung in unterschiedliche Module nach den Zuständigkeitsbereichen aufgeteilt werden.

43

5 Konzept und Architektur

Ausführen des Plug-ins

[Plug-in ist aktiviert]

[Plug-in ist deaktiviert]

Start beim Beobachten des Anfang-Ereignisses

Lesen der Plug-in-Konfiguration

Auswahl eines Plug-ins mit dem niedrigsten Vorrang

[keine weiteren Plug-ins

zu bearbeiten]

[weitere Plug-ins

zu bearbeiten]

Aus der Liste der noch nicht bearbeiteten Plug-ins

Ausführen des Plug-ins

[Plug-in ist aktiviert]

[Plug-in ist deaktiviert]

Start beim Beobachten des Ende-Ereignisses

Lesen der Plug-in-Konfiguration

Auswahl eines Plug-ins mit dem höchsten Vorrang

[keine weiteren Plug-ins

zu bearbeiten]

[weitere Plug-ins

zu bearbeiten]

Abbildung 5.2: Abarbeitung von Plug-ins

Die Trennung der Module nach den Zuständigkeitsbereichen verringert die Komplexität bei
der Weiterentwicklung und Fehlersuche.

5.2 MVC-Konzept

Bei der Umsetzung des Testbeds wird das Model View Controller (MVC)-Konzept angewandt.
Bei diesem Konzept handelt es sich um eine Vorschrift zur Strukturierung einer Software-
Entwicklung in drei Komponenten. Die Komponente Model beinhaltet dabei Daten und die
notwendige Kernfunktionalität zur Verwaltung dieser Daten. Zu jeder Komponente Model
kann es mehrere Views geben. Die Komponente View ist für die Darstellung der Daten aus
einem Model zuständig. Die Komponente Controller sorgt dafür, dass die Änderungen in der
View der Daten eines Models sich auch auf die Daten dieses Model auswirken. Zur automati-
schen Benachrichtigung der Views über Änderungen in den Daten wird beim MVC-Konzept
der Entwurfsmuster Beobachter in Models verwendet (PBG04, S. 212) (HR02, 248-251). Auf die
Benachrichtigung und somit das Entwurfsmuster Beobachter wird jedoch verzichtet. Diese Ei-
genschaft des vollwertigen Konzepts von MVC bringt beim REST Testbed keine Vorteile, denn
die Konfiguration von den Plug-ins muss durch den Tester unter selbstständiger Kontrolle
durchgeführt werden. Abbildung 5.3 zeigt die Komponenten des MVC-Architekturmusters.

44

5.3 Datenmodell der Plug-in-Konfigurationen

Model View

Controller

Anfrage der aktuellen

Konfiguration

Anfrage der Darstellung

(Modifikation)

der aktuellen Konfiguration

Modifikation der aktuellen

Konfiguration

Abbildung 5.3: Model-View-Controller (HR02, S. 249)

Gemäß der Anforderungen sollen beim REST Testbed die Möglichkeiten zum manuellen
und automatisierten Konfigurieren der Plug-ins berücksichtigt werden. Es können dafür
verschiedene Repräsentationen von Konfigurationen verwendet werden. Bei diesen zwei Dar-
stellungsformen handelt es sich um weiter unten beschriebene Views aus dem MVC-Konzept.
Nach diesem Konzept bleibt das Testbed um weitere Darstellungen der Konfigurationsdaten
leicht erweiterbar.

Beim Testen der Client-Anwendung werden Testressourcen über die Schnittstelle TestSer-
viceAPI abgerufen. Dabei werden aktuelle Konfigurationen der Plug-ins überprüft und die
entsprechenden Plug-ins für die Bearbeitung der Anfrage und zur Erstellung der Antwort
mit vorgegebenen Parametern aus der ausgelesener Konfiguration aktiviert oder deaktiviert.
Den Konfigurationen der Plug-ins ist eine definierte Struktur vorgegeben, die im Abschnitt
5.3 beschrieben wird. Dieses Datenmodell ist dabei der Komponente Model aus dem bereits
erwähnten Model View Controller zugeordnet.

Bei der Entwicklung des REST Testbeds sollen zwei Ausgabeformate, und somit zwei View-
Alternativen gemäß Abschnitt 4.1 realisiert werden. Das eine Ausgabeformat muss für das
manuelle und das andere für das automatisierte Konfigurieren der Plug-ins gut geeignet sein.
Mit dem MVC-Konzept kann das REST Testbed leicht um weitere Views erweitert werden,
denn dieses Konzept impliziert diese Eigenschaft. Der Controller ist für die Übernahme
von Modifikation der Konfigurationen von Plug-ins, genauso wie für das Bereitstellen der
Hinweise auf fehlerhafte Eingaben an die Views, zuständig.

5.3 Datenmodell der Plug-in-Konfigurationen

Für die Beschreibung einer Konfiguration eines Plug-ins vom REST Testbed wird das in
Abbildung 5.4 skizzierte Datenmodell verwendet. Diese Beschreibungen sollen persistent
abgespeichert werden, um beim Neustarten des REST Testbeds die Plug-ins nicht erneut
konfigurieren zu müssen.

Den Ausgangspunkt in dieser Abbildung stellt die Komponente Plug-in Configuration dar.
Diese Komponente soll die Charakteristik einer konfigurierbaren funktionalen Eigenschaft,
wie in Abschnitt 4.1 angegeben, beschreiben. Dabei soll jedes Plug-in einen eindeutigen

45

5 Konzept und Architektur

-name : String

-enabled : Boolean

-desc : String

Plug-in Configuration -name : String

-desc : String

-type : String

-value : String

-error : String

Parameter

1 *

-name : String

-desc : String

-type : Type

-enabled : String

Group

1 *

+simplechoice

+multiplechoice

«enumeration»

Type

-name : String

-desc : String

Variant

1 *

Abbildung 5.4: Datenmodell der Plug-in-Konfigurationen

Namen besitzen, um die einzelnen Plug-ins voneinander unterscheiden zu können. Das
Attribut enabled sagt darüber aus, ob die Domainlogik vom entsprechenden Plug-in beim
Bearbeiten der Operationen von TestServiceAPI abgearbeitet werden soll oder nicht. Das
Attribut desc liefert die Beschreibung des Plug-ins, zu dem die Konfiguration gehört. Die
Komponente Plug-in Configuration kann mehrere Komponenten Group haben, die wiederum
mehrere Komponenten Variant besitzen können.

Eine Gruppe (Group) kann einem der zwei Typen zugeordnet werde. Der Typ multiplechoice
erlaubt das voneinander unabhängige Aktivieren der Realisierungsvarianten (Variant). Der
Typ singlechoice erlaubt das Aktivieren nur einer einzigen Realisierungsvariante einer gegebe-
nen Gruppe. Das Attribut enabled der Komponente Group liefert dabei die Liste der aktivierten
Realisierungsvarianten. Für eine angefragte Ressource kann das REST Testbed verschiedene
Repräsentationen (zum Beispiel HTML- und XML-Repräsentation) generieren. In dem Fall
kann sich der Client für eine oder mehrere Repräsentationen entscheiden. Deswegen handelt
es sich dabei um eine Gruppe vom Typ multiplechoice. Bei der Autorisierung wird nur ein
Verfahren zur Authentifizierung (zum Beispiel HTTP Basic oder HTTP Digest) festgelegt, so
das der Client keine Wahlmöglichkeiten hat. In diesem Fall wird für die gegebene Gruppe der
Typ singlechoice verwendet. Die Variable desc soll eine Beschreibung der jeweiligen Gruppe
bereitstellen.

Die Menge der Realisierungsvarianten beziehungsweise die Realisierung der funktionalen
oder nicht-funktionalen Eigenschaft eines Plug-ins wird in Abbildung mit der Komponente
Variant dargestellt. Jede Realisierungsvariante muss einen eindeutigen Namen besitzen, um
die einzelnen Varianten voneinander zu unterscheiden. Das Attribut desc soll durch eine
Beschreibung der Realisierungsvarianten eine unterstützende Funktion bei der Auswahl der
Varianten übernehmen. Jede Realisierungsvariante ist einer Gruppe Group zugeordnet und
besitzt eine bestimmte Anzahl von benötigten Parametern.

Die Parameter einer Realisierungsvariante sind zum Parametrisieren der entsprechenden
Realisierungsvariante gedacht. Die in den Attributen value gehaltenen Werte der einzelnen
Parameter lassen sich über die Schnittstelle ConfigurationAPI verändern. Somit können die

46

5.3 Datenmodell der Plug-in-Konfigurationen

Werte der Parameter je nach Testfall angepasst werden. Mit dem Testfall kann dabei das Testen
einer funktionalen oder nicht-funktionalen Eigenschaft einer Client-Anwendung gemeint
sein. Jeder Parameter besitzt einen eindeutigen Namen in der jeweiligen Variante und einen
Typ. Das Attribut type beinhaltet die Bezeichnung des in dem Plug-in definierten Validierer
von dem Attribut value des gleichen Parameters. Zu jedem Attribut value jedes Parameters soll
ein Validierer bereitgestellt werden. Im Falle einer manuellen Konfiguration eines Plug-ins
mit Hilfe einer graphischen Benutzeroberfläche sollen die Benutzereingaben beziehungsweise
die Attribute value von Parametern clientseitig auf die Korrektheit überprüft werden. Das
Attribut desc soll eine knappe und aussagekräftige Beschreibung des Parameters liefern. Die
Beschreibungen der Parameter und die Benutzung der Validierer sollen die Benutzerfreund-
lichkeit beziehungsweise Bedienbarkeit beim manuellen Konfigurieren, vor allem über eine
Graphical User Interface (GUI), den Testbed-Benutzer unterstützen. Die vom Client übermit-
telten Parameter sollen auch auf dem Server validiert werden. Über eventuell auftretende
serverseitige Fehler und deren Ursache kann der Client über das Attribut error informiert
werden. Im Gegensatz zu den anderen Attributen wird das Attribut error nicht persistent
abgespeichert.

ServerClient

Plug-inKonfigurationAnfragen()

Plug-inKonfigurationSenden()

Erstellen der

Repräsentation

der angefragten

Plug-in-Konfiguration

Übernahme der

modifizierten

Parameter

und

Erstellen der

Repräsentation

der modifizierten

Plug-in-Konfiguration

Anfragen

Modifitieren der

Parameter

Repräsentation

der aktuellen

Plug-in-Konfiguration

mit/ohne

Fehlerbeschreibungen

Repräsentation

der aktuellen

Plug-in-Konfiguration

Abbildung 5.5: Szenario zum Modifizieren einer Plug-in-Konfiguration

Abbildung 5.5 beschreibt ein mögliches Szenario beim Manipulieren einer Plug-in-Konfigu-
ration nach dem oben beschriebenen Datenmodell. Der Testbed-Benutzer fragt den aktuellen
Zustand einer Plug-in-Konfiguration über eine Client-Anwendung an. Der Server gene-
riert anhand einer Instanz nach dem Datenmodell der Plug-in-Konfigurationen die Reprä-

47

5 Konzept und Architektur

sentation der entsprechenden Plug-in-Konfiguration und übermittelt diese an die Client-
Anwendung. Der Testbed-Benutzer führt nach eigenen Bedürfnissen Änderungen in der Plug-
in-Konfiguration, indem die Werte des Attributs value in der vorliegenden Repräsentation ver-
ändert werden. Mit den in den Attributen type gelieferten Werten hat die Client-Anwendung
die Möglichkeit die Benutzereingaben zu überprüfen und den Testbed-Benutzer über falsche
Benutzereingaben zu informieren. Es ist auch sinnvoll, dass die Client-Anwendung das
Absenden der neuen Werte verhindert, wenn die Benutzereingaben fehlerhaft sind. Wenn
die modifizierten Werte an den Server abgeschickt und dort empfangen wurden, so sollten
diese Werte auch auf dem Server genauer überprüft werden. Können die modifizierten Werte
nicht übernommen werden, dann sollte in das Attribut error zu dem fehlerhaften Parame-
ter die Fehlerbeschreibung geschrieben werden. Der Wert des Attributs error kann dann
in die Repräsentation der Plug-in-Konfiguration eingearbeitet und an den Client geschickt
werden.

48

6 Design

Mithilfe von Klassen- und Sequenzdiagrammen wird in diesem Kapitel das Design des REST
Testbeds präsentiert. Dabei werden Zuständigkeitsbereiche der in Kapitel 5 vorgestellten
Komponenten Plug-in, Model, View und Controller besser erklärt und es wird ein Konstrukt
zum Verwalten der Konfigurationen und der Domainlogik von Plug-ins vorgestellt. Es wird
darauf hingewiesen, dass in den Klassendiagrammen dieses Kapitels zugunsten der besseren
Übersichtlichkeit nicht alle Attribute und Methoden bei den angegebenen Klassen aufgelistet
sind.

6.1 Zentralisierter Container für Plug-ins

Wie bereits in Abschnitt 5.1 erwähnt, besteht ein Plug-in aus den Komponenten Beobachter,
Konfiguration und Domainlogik. Zur Verwaltung der Domainlogik und der Konfigurationen
von Plug-ins wird ein Konstrukt benutzt, das als ein zentralisierter Container zur Verfügung
steht. Eine Plug-in-Konfiguration wird als Modell nach dem MVC-Architekturmuster reali-
siert, siehe dazu Abschnitt 5.2, und wird von den Komponenten wie Views und Controllern
des MVC-Architekturmusters genauso wie von der Domainlogik der Plug-ins verwendet. Es
wird sicher gestellt, dass es nur eine Instanz des Containers im REST Testbed gibt, auf die
verschiedene Komponenten zugreifen können. Dafür kommt das Entwurfsmuster Singleton
(Einzelstück) zum Einsatz. Das Singleton-Entwurfsmuster garantiert, dass es nur eine Einzel-
instanz der Klasse PluginContainer gibt, und bietet einen globalen Zugriffspunkt auf diese
Einzelinstanz. Mit diesem Entwurfsmuster wird es möglich nur eine Instanz der Klasse zum
Verwalten einer Konfiguration von jedem Plug-in zu erstellen. Dasselbe gilt auch für die
Instanzen der Klassen der Domainlogik von verfügbaren Plug-ins.

Die Klasse PluginContainer in Abbildung 6.1 realisiert das beschriebene Architekturmuster
Singleton und bietet den Komponenten des REST Testbeds einen globalisierten Zugriff auf die
Domainlogik von verfügbare Plug-ins und deren Konfigurationen. Weiterhin ist durch die
Möglichkeit eines globalisierten Zugriffs auf die Plug-in-Konfigurationen über PluginContainer
kein erneutes Auslesen der Konfigurationsdateien notwendig. Die erneuten Zugriffe auf
die Plug-in-Parameter erfolgen deswegen schneller. Das Verwalten von zum Beispiel zwei
Instanzen der Konfigurationen einer Konfigurationsdatei würde Synchronisation erfordern,
die eine zusätzliche Fehlerquelle darstellen würde. Das bleibt durch die Anwendung des
beschriebenen Entwurfsmusters erspart.

49

6 Design

1

*

+getPluginList(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

+getPlugin(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

+putPlugin(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein xmlParam) : Response

+postPlugin(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein formParam) : Response

ConfigurationAPI

+get(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

+head(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

+put(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

+post(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

+delete(ein request : HttpServletRequest, ein/aus response : HttpServletResponse) : Response

TestServiceAPI

1

*

HtmlConfigResponseBuilder XmlConfigResponseBuilder

*

1

-request : HttpServletRequest

-response : HttpServletResponse

PluginObserver

1

*

1 1

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

1
*

+getName()

+getFilepath()

+isEnabled()

+enable()

+getGroup(ein name : String) : PluginGroup

+getGroups() : PluginGroupList

+save()

-name : String

-filepath : String

-enabled : Boolean

-groups : PluginGroupList

PluginConfig

+getName() : String

+getDesc() : String

+getType() : String

+getEnabled() : StringList

+setEnabled(ein enabled : StringList)

+getVariant() : PluginVariant

+getVariants() : PluginVariantList

-name : String

-desc : String

-type : String

-enabled : StringList

-variants : PluginVariantList

PluginGroup

1 *

1

1

+getPluginConfigList()

+getPluginConfig(ein plugin : String)

ConfigResponseBuilderInterface

1

*

1

*

+updateConfig(ein plugin : String, ein params : Object)

ConfigControllerInterface

*

1

HtmlConfigController XmlConfigController

+getName() : String

+getDesc() : String

-name : String

-desc : String

PluginVariant

1

*

-Singleton()

+getInstance() : PluginContainer

+addPluginDomainlogic(ein/aus instance : PluginDomainlogic)

+addPluginConfig(ein instance : PluginConfig)

+getPluginDomainlogic() : PluginDomainlogic

+getPluginConfig() : PluginConfig

-instance : PluginContainer

-logicList

-configList

PluginContainer

+getName() : String

+getValue() : String

+getDesc() : String

+getType() : String

+getError() : String

+setName(ein name : String)

+setValue(ein value : String)

+setDesc(ein desc : String)

+setType(ein type : String)

+setError(ein error : String)

+name : String

+value : String

-desc : String

+type : String

-error : String

PluginParameter

Abbildung 6.1: Klassendiagramm zum Testbed

50

6.2 Views von Plug-in-Konfigurationen

6.2 Views von Plug-in-Konfigurationen

Die Schnittstelle ConfigResponseBuilderInterface in Abbildung 6.1 schreibt die Methoden vor,
welche von den Klassen Html- und XmlConfigResponseBuilder zu implementieren sind. Die
Klassen Html- und XmlConfigResponseBuilder sind für die Erstellung der Repräsentationen
respektive Views von Plug-in-Konfigurationen aus den Instanzen der Klassen PluginConfig,
PluginGroup, PluginVariant und PluginParameter zuständig. Die Methode getPluginConfigList()
liefert eine View, welche die Namen der verfügbaren Plug-in-Konfigurationen beinhaltet. Bei
der Methode getPluginConfig(plugin) wird eine View mit den Werten der angefragten Plug-in-
Konfiguration generiert und geliefert. Das Sequenzdiagramm 6.2 stellt eine mögliche Inter-
aktion der Komponenten bei der Anfrage einer Repräsentation einer Plug-in-Konfiguration
über die Schnittstelle ConfigurationAPI dar. Mit der Methode getPluginConfig(name) wird der
XmlConfigResponseBuilder zum Erstellen einer Repräsentation einer Plug-in-Konfiguration
veranlasst. Der XmlConfigResponseBuilder fragt beim PluginContainer die gewünschte Plug-in-
Konfiguration (PluginConfig) an und liest deren Parameter zum Erstellen der Präsentation.
Aus der Domainlogik werden die clientseitigen Validierer der entsprechenden Parameter
entnommen und der erstellenden Repräsentation hinzugefügt. Die erstellte Repräsentation
der angefragten Plug-in-Konfiguration wird darauf dem Client übermittelt.

:PluginContainer:ConfigurationAPI :XmlConfigResponseBuilder :PluginConfig

getPluginConfig(name)

getPluginConfig(name)

parameter x needed: readParameters(x)

Erstellen einer

Repräsentation

einer

Konfiguration

eines Plug-ins

PluginDomainlogic

getJsValidators()

getPluginDomainlogic(name)

Abbildung 6.2: Auslesen von Plug-in-Konfigurationen über ConfigurationAPI

6.3 Controller von Plug-in-Konfigurationen

Die Benutzereingaben werden mit den Controller-Klassen, welche die Schnittstelle ConfigCon-
trollerInterface implementieren, in die Plug-in-Konfigurationen übernommen (siehe Abbildung
6.1). Die zu übernehmenden Parameter einer Plug-in-Konfiguration werden der Methode
updateConfig() als Parameter übergeben. Diagramm 6.3 beschreibt eine mögliche Interaktion
zwischen Komponenten beim Übernehmen der Benutzereingaben beziehungsweise neuen

51

6 Design

Parametern in eine Plug-in-Konfiguration. Die Methode updateConfig(name, params), wel-
cher Benutzereingaben mitgeteilt werden, fragt die zu modifizierende Plug-in-Konfiguration
(PluginConfig) und die Domainlogik implementierende Klasse beim PluginContainer an. Die
Parameter der mitgeteilten Plug-in-Konfiguration werden dann nach der Überprüfung mit
den isValid(..)-Methoden der Domainlogik vom XmlConfigController aktualisiert. Danach kann
eine Repräsentation der aktualisierten Plug-in-Konfiguration wie in Abbildung 6.2 dargestellt
generiert werden und dem Client übermittelt werden.

:PluginContainer:ConfigurationAPI :XmlConfigController :PluginConfig

parameter x changed: updateParameter(x)

updateConfig(name, params)

getPluginConfig(name)

Der Ablauf beim

Erstellen einer

Repräsentation

einer Konfiguration

eines Plug-ins

(siehe Abbildung 6.2)

getPluginConfig(name)

Aufnehmen

von empfangen

Parametern in

die Konfiguration

des entsprechenden

Plug-in

PluginDomainlogic

getPluginDomainlogic(name)

for every changed parametr x: isValid(x)

Abbildung 6.3: Modifizieren von Plug-in-Konfigurationen über ConfigurationAPI

6.4 Modelle von Plug-in-Konfigurationen

Bei der Klasse PluginConfig mit den Klassen PluginGroup, PluginVariant und PluginPara-
meter in Abbildung 6 handelt es sich um die Realisierung des Datenmodells für Plug-in-
Konfigurationen, die im Abschnitt 5.3 beschrieben ist.

Um das MVC-Konzept deutlicher zu machen, werden betroffene Klassen den einzelnen
Komponenten der Model-View-Controller-Architektur zugeordnet. Die Klassen PluginConfig,
PluginGroup, PluginVariant und PluginParameter gehören der Komponente Model an. Die
Klassen, welche die Schnittstelle ConfigResponseBuilderInterface implementieren, stellen Views
dar. Und die Klassen zum Manipulieren der Plug-in-Konfigurationen, welche die Schnittstelle
ConfigControllerInterface implementieren, sind dem Controller zugeordnet.

52

6.5 Plug-ins

6.5 Plug-ins

Wie oben bereits erwähnt, besteht ein Plug-in aus einem Beobachter, einer Domainlogik und
einer Konfiguration. Im Folgenden werden die Domainlogik der einzelnen Plug-ins vorgestellt
und die Aufgaben der Plug-in-Konfigurationen genauso wie Beobachtern erklärt.

6.5.1 Konfigurationen von Plug-ins

Eine Konfiguration eines Plug-ins ist auch ein Modell nach dem MVC-Konzept (siehe Ab-
schnitt 6.4). Eine Plug-in-Konfiguration beinhaltet konfigurierbare Parameter, die zum Parame-
trisieren der Methoden der Domainlogik beim Bearbeiten der HTTP-Anfragen herangezogen
werden (siehe auch Abschnitt 6.4).

6.5.2 Beobachter von Plug-ins

Über die Schnittstelle TestServiceAPI werden die HTTP-Anfragemethoden HEAD, GET, PUT,
POST und DELETE abgefangen. Bei der Klasse PluginObserver handelt es sich um die in
Abschnitt 5.1 beschriebenen Beobachter. Ein Beobachter erwartet die oben genannten HTTP-
Anfragen und ist Teil von jedem Plug-in. Wenn von einem Beobachter ein erwartetes Ereignis
wahrgenommen wird, dann wendet er gemäß der aktuellen Plug-in-Konfiguration die Do-
mainlogik vom Plug-in zur Bearbeitung der HTTP-Anfrage an. Wenn gleichzeitig zwei oder
mehrere Beobachter auf ein Ereignis reagieren, so werden die zugehörigen Plug-ins in der
definierten Reihenfolge abgearbeitet. Das Konzept der Reihenfolge der Bearbeitung von
Plug-ins ist in Abschnitt 5.1 beschrieben. Außerdem übernehmen die Beobachter die Aufgabe
der Instanziierung der Domainlogik und der Konfiguration eines Plug-ins. Der Beobachter
soll genauso diese Instanzen im PluginContainer ablegen, damit andere Komponenten diese
Instanzen erreichen können ohne die Klassen erneut instanziieren zu müssen.

Sequenzdigramm 6.4 zeigt die Interaktion der Komponenten vom Testbed beim Abarbeiten
der Domainlogik eines Plug-ins bei der Bearbeitung einer HTTP-Anfrage über die Schnittstelle
TestServiceAPI. Ein Beobachter (PluginObserver) stellt ein erwartetes Ereignis fest. Im Regelfall
handelt es sich bei den erwarteten Ereignissen um die Aufrufe einer definierten Methode
der Schnittstelle TestServiceAPI. Der Beobachter überprüft daraufhin, ob die Domainlogik
(Domainlogic) gemäß aktueller Plug-in-Konfiguration (PluginConfig) abgearbeitet werden
soll. Wenn die Domainlogik abgearbeitet wird, dann wird die Plug-in-Konfiguration für die
Parametrisierung der Methoden zur Bearbeitung der Domainlogik benutzt. Dieser Ablauf
wird für alle Beobachter wiederholt, wenn mehrere Beobachter auf das gleiche Ereignis
reagieren.

6.5.3 Domainlogik von Plug-ins

Dieser Abschnitt widmet sich der Domainlogik einzelner Plug-ins, mit denen funktionale
Anforderungen an das Testbed aus Abschnitt 4.1 abgedeckt werden. Die Domainlogik wird

53

6 Design

:PluginConfig:TestServiceAPI :PluginObserver :PluginDomainlogic

parameter x needed: readParameter(x)

doDomainLogic()

Bearbeitung

einer

HTTP-Anfrage

bei einem

Testaufruf

Ein Ereignis

wurde ausgelöst,

auf welches

PluginObserver

wartet

isEnabled()

Abbildung 6.4: Bearbeitung einer HTTP-Anfrage über TestServiceAPI

mit der die Schnittstelle PluginDomainlogicInterface implementierenden Klasse und zusätzlich
anderen in der Verbindung mit dieser Klasse stehenden Komponenten eines Plug-ins imple-
mentiert. Die Methoden isValid(..) und getJsValidators() werden als Teil der Domainlogik von
den Plug-ins implementiert (siehe dazu Abbildung 6.1). Diese Methoden sollen die Benut-
zereingaben für Plug-in-Konfigurationen überprüfen und im Fehlerfall eine entsprechende
Meldung erstellen. Die Methode getJsValidators() soll Validierer zur clientseitigen Überprü-
fung der Benutzereingaben liefern und die Methoden isValid(..) sollen für die serverseitige
Überprüfung der Benutzereingaben zuständig sein.

Protokollieren (Plug-in Logging)

Das Protokollieren der Bearbeitung von HTTP-Anfragen (siehe Anwendungsfall 2.9) wird
vom Plug-in Logging übernommen. Über das Attribut level in Abbildung 6.5 wird dem Logger
die Stufe der Informationsdetails vermittelt. Der Logger soll unterschiedliche Ausgabequellen
wie die Konsole und eine Textdatei für das persistente Abspeichern unterstützen. Die beschrie-
benen Eigenschaften wie die Stufe der Informationsdetails und die Ausgabequelle werden
in der Methode initialize() dem Logger mitgeteilt. Für das Berechnen der Bearbeitungszeit
einer HTTP-Anfrage wird das Hilfsattribut processingStart verwendet, welches sich die Zeit
zu Beginn der Bearbeitung merken soll. Die Berechnung der Bearbeitungszeit umfasst die
Zeiten der Bearbeitung einzelner Plug-ins. Das Plug-in Logging startet von allen Plug-ins als
Erstes und endet als Letztes. Somit hat es die Möglichkeit die Gesamtzeit der Abarbeitung
aller Plug-ins zu erfassen.

Ressourcen (Plug-in Resources)

Die Aufgabe dieses Plug-ins ist die Verwaltung der Ressourcen in den vorgesehenen Daten-
quellen (siehe Anwendungsfall 2.3). Die bestehenden Ressourcen sollen mit diesem Plug-in

54

6.5 Plug-ins

-initialize()

-level : Integer

-logfile : String

-logger : Logger

-processingStart : Long

-processingStop : Long

Logging

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

Abbildung 6.5: Protokollierung von HTTP-Anfragen

gemäß Anforderungen aus Abschnitt 4.1 ausgelesen, manipuliert, gelöscht genauso wie neue
Datensätze angelegt werden können. Einige Plug-ins benötigen die ausgelesene Ressource
zur Bearbeitung deren Domainlogik. Die Attribute der Ressourcen werden zum Beispiel für
die Erstellung der Repräsentationen gebraucht, die im Plug-in Representation stattfindet. Des-
wegen werden die Attribute der Ressourcen in einer Instanz der Klasse Resource abgelegt. Die
Benutzung der Klasse Resource soll bei jeder Implementierung zum Verwalten von Ressourcen
in beliebiger Datenquelle stattfinden (siehe dazu auch Abbildung 6.5.3). Die aus den Daten-
quellen, zum Beispiel Datenbank, extrahierte Ressource zum Bearbeiten der Anfrage soll bis
zur nächsten Anfrage in der Instanz der Klasse Resources zwischengelagert werde. Wenn
andere Plug-ins zur Abarbeitung deren Domainlogik die mit diesem Plug-in ausgelesene
Ressource brauchen, dann sollen diese Plug-ins auf die Instanz der Klasse Resources zugreifen
und die Ressource mit der Methode getResource() auslesen können. Eine Ressource besteht
aus Attributen, die einen Namen name, eventuell einen Wert value und möglicherweise einen
Verweis link auf andere Ressourcen beinhalten. Zusätzlich wird auch der Datentyp vom Wert
value im Attribut festgehalten. Die Bekanntgabe des Typs eines Attributs ist vor allem für die
Bearbeitung der Ressourcenattribute von der Client-Anwendung von Vorteil.

+getResource() : Resource

-resource : Resource

-databaseManager

Resources

+addAttribute(ein attribute : ResourceAttribute)

+getAttributes() : ResourceAttributeList

-attributes : ResourceAttributeList

Resource

1 1

+getName() : String

+getValue() : String

+getLink() : String

+getType() : String

+setName(ein name : String)

+setValue(ein value : String)

+setLink(ein link : String)

+setType(ein type : String)

-name : String

-value : String

-link : String

-type : String

ResourceAttribute

1
*

-schema : String

-user : String

-password : String

DatabaseManager

1
1

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

Abbildung 6.6: Ressourcenzugriff

55

6 Design

Repräsentationen (Plug-in Representation)

Das Plug-in Representation beschäftigt sich mit der Generierung der Repräsentationen von Res-
sourcen genauso wie Extraktion der Ressourcen-Attribute aus den empfangenen HTTP-PUT-
und HTTP-POST-Anfragen (siehe Anwendungsfall 2.4). Dieses Plug-in soll laut gestellten An-
forderungen in Abschnitt 4.1 die Generierung der Repräsentation von Ressourcen in HTML-,
XML- und JSON-Format unterstützen und dementsprechend auch Ressourcen-Attribute den
empfangenen Repräsentationen der Ressourcen entnehmen können. Für die Generierung der
Ressourcen-Repräsentationen sind die Klassen zuständig, welche die Schnittstelle Response-
BuilderInterface implementieren. Die Extraktion der Ressourcen-Attribute bei empfangenen
Repräsentationen übernehmen die Schnittstelle RequestReaderInterface implementierenden
Klassen. Die Instanz der Klasse Resource, welche die Attribute der angefragten Ressource
beinhaltet, kann dem Plug-in Resources aus dem PluginContainer entnommen werden. Einige
Plug-ins brauchen die von diesem Plug-in generierte Repräsentation der angefragten Res-
source zur Bearbeitung deren Domainlogik. Der Inhalt der HTTP-Antwort beziehungsweise
die Repräsentation der angefragten Ressource wird zum Beispiel für die Berechnung des
ETag-Headers vom Plug-in Caching gebraucht. Deswegen wird die generierte Repräsentation
von der Methode generate() jeder Klasse, welche die Schnittstelle ResponseBuilderInterface
implementiert, an die Instanz der Klasse Representation übermittelt. Die Repräsentation der
angefragten Ressource soll während der Bearbeitung einer HTTP-Anfrage im Attribut respon-
seContent zwischengespeichert bleiben, um anderen Plug-ins zur Verfügung zu stehen (siehe
dazu Abbildung 6.5.3).

+getResponseContent() : String

+generate(ein request : HttpServletRequest, ein response : HttpServletResponse, ein resource : Resource)

-responseContent : String

Representation

+generate(ein request : HttpServletRequest, ein response : HttpServletResponse, ein resource : Resource) : String

ResponseBuilderInterface

XmlResponseBuilderJsonResponseBuilderHtmlResponseBuilder

*

1

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

HtmlRequestReader JsonRequestReader XmlRequestReader

RequestReaderInterface

1

1

1

1

1

1

Abbildung 6.7: Generierung von Repräsentationen

Autorisierung (Plug-in Authorization)

Für die Überprüfung der Autorisierung der HTTP-Anfragen (siehe Anwendungsfall 2.5) ist
das Plug-in Authorization zuständig. Gemäß der Anforderungen aus Abschnitt 4.1 werden

56

6.5 Plug-ins

die Verfahren HTTP Basic und HTTP Digest realisiert. Die Klassen HTTPBasic und HTTPDi-
gest implementieren die Schnittstelle AuthorizationInterface. Diese Schnittstelle schreibt den
Klassen HTTPBasic und HTTPDigest vor, die Methode isAuthorized() zu implementieren.
Diese Methode soll anhand der mit der HTTP-Anfrage empfangenen HTTP-Header und
der in der Plug-in-Konfiguration vorliegenden Parameter entscheiden, ob die empfangenen
HTTP-Anfragen bearbeitet werden dürfen.

+isAuthorized() : Boolean

AuthorizationInterface

HttpBasic

HttpDigest

Authorization

1

*

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

Abbildung 6.8: Autorisierung

Cookies (Plug-in Cookies)

Mit diesem Plug-in können neue Cookies über die Methode addCookie() angelegt und der
HTTP-Antwort angehängt werden (siehe Anwendungsfall 2.8). Weiterhin besteht die Möglich-
keit die mit der HTTP-Anfrage empfangenen Cookies zu löschen oder mit der HTTP-Antwort
zurück an den Client zu schicken. Mit der Methode deleteAll() sollen alle empfangenen Coo-
kies gelöscht werden. Die Methode delete() löscht nur die Cookies, deren Namen in der
übergebenen Liste vorkommen. Die Methode deleteAllExcept() sorgt dafür, dass alle Cookies,
bis auf bestimmte Ausnahmen, gelöscht werden. Die Liste der Ausnahmen wird in einer Liste
als Parameter dieser Methode übergeben. Die Attribute der anzulegenden Cookies genauso
wie die Liste der Cookies zum Löschen und zum Zurückschicken sollen der Konfiguration
des Plug-ins Cookies entnommen werden.

+deleteAll()

+delete(ein cookies : CookieList)

+deleteAllExcept(ein cookies : CookieList)

+addCookie(ein name : String, ein value : String, ein comment : String, ein domain : String, ein maxAge : Integer, ein path : String, ein version : Integer)

Cookies

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

Abbildung 6.9: Cookies

57

6 Design

Caching (Plug-in Caching)

Zur Steuerung des Verhaltens der Client-Anwendung bezüglich Cache (siehe Anwendungsfall
2.7) wird das Plug-in Caching eingesetzt. Dieses Plug-in verwaltet HTTP-Header, welche die
Benutzung von Cache in der Client-Anwendung bewirken können. Anhand der vom Testbed
geschickten HTTP-Header entscheidet die Client-Anwendung, ob sie den Cache benutzt
oder nicht. Die Klasse Caching stellt Methoden zur Verfügung, welche die HTTP-Header mit
gewünschten Werten versorgen. Die Bezeichnungen der Methoden wurden entsprechend
der Bezeichnung von den HTTP-Headern in der HTTP-1.1-Spezifikation (Fie09, Kapitel 13)
gewählt. Die gewünschten HTTP-Header mit deren Werten sind der Konfiguration des Plug-
ins Caching zu entnehmen.

+setExpires(ein response : HttpServletResponse, ein time : DateTime)

+setETag(ein response : HttpServletResponse, ein time : DateTime)

+setLastModified(ein response : HttpServletResponse, ein time : DateTime)

+setCacheControlNoCache(ein response : HttpServletResponse, ein enable : Boolean)

+setCacheControlPrivate(ein response : HttpServletResponse, ein enable : Boolean)

+setCacheControlMaxAge(ein response : HttpServletResponse, ein sec : Integer)

Caching

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

Abbildung 6.10: Steuerung von dem Caching-Verhalten der Client-Anwendung

HTTP-Statusmeldungen (Plug-in Responsecodes)

Zum Simulieren von HTTP-Statusmeldungen (siehe Anwendungsfall 2.6) steht das Plug-in
Responsecodes zur Verfügung. Es sollen gemäß gestellter Anforderungen in Abschnitt 4.1
alle HTTP-Statusmeldungen simulierbar sein, die in der Publikation HTTP-1.1-Spezifikation
(Fie09, Kapitel 10) definiert sind. Die Methoden zum Simulieren der HTTP-Statusmeldungen
sind entsprechend der Benennung der HTTP-1.1-Spezifikation bezeichnet und können somit
leicht der Beschreibung in der Spezifikation zugeordnet werden. Die zu simulierende HTTP-
Statusmeldung und eventuelle Parameter sollen den definierten Methoden aus der aktuellen
Konfiguration des Plug-ins Responsecodes übergeben werden.

58

6.5 Plug-ins

+sendOk(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendCreated(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendAccepted(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+...()

+sendTemporaryRedirect(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein url : String)

+sendBadRequest(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendUnauthorized(ein request : HttpServletRequest, ein/aus response : HttpServletResponse, ein challenge : String)

+...()

+sendServiceUnavailable(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendGatewayTimeOut(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

+sendHttpVersionNotSupported(ein request : HttpServletRequest, ein/aus response : HttpServletResponse)

Responsecodes

+isValid(ein group : PluginGroup) : String

+isValid(ein variant : PluginVariant) : String

+isValid(ein parameter : PluginParameter) : String

+getJsValidators() : HashMap<name, JsValidator>

PluginDomainlogicInterface

Abbildung 6.11: Simulation von HTTP-Statusmeldungen

59

6 Design

60

7 Implementierung

In diesem Abschnitt wird auf die Implementierung der Komponenten des Testbeds eingegan-
gen. Es wird die Implementierung der Konfigurationen, der Beobachter, der Domainlogik
und weiterer Komponenten erklärt.

Die Schnittstellen ConfigurationAPI und TestServiceAPI in Abbildung 6.1 wurden mit Jersey
(Ora) in der Version 1.14, Referenzimplementierung der Spezifikation JAX-RS 1.1 (HS07),
implementiert. Über die Schnittstelle TestServceAPI werden Testanfragen zum Testen einer
Client-Anwendung getätigt und über die Schnittstelle ConfigurationAPI findet die Verwaltung
der Plug-in Konfigurationen statt.

7.1 Konfigurationsverwaltung

Für die Verwaltung von Plug-in-Konfigurationen wurde in Abschnitt 5.2 beschriebenes
MVC-Architekturmuster angewandt. Nachfolgend wird die Implementierung der drei Kom-
ponenten des MVC-Musters genauer betrachtet.

7.1.1 Modell vom MVC-Architekturmuster

Die Komponente Modell des MVC-Musters entspricht dem Modell für Plug-in-Konfigurationen
aus Abschnitt 5.3. Das Modell ist dafür zuständig, die Werte der Plug-in-Konfigurationen
zu verwalten. Mit den Klassen PluginConfig, PluginGroup, PluginVariant und PluginParameter
aus Abbildung 6.1 wird das in Abbildung 5.4 dargestellte Modell implementiert. Diese
Klassen sind auch für die Verwaltung von Plug-in-Konfigurationsdateien implementiert, die in
XML-Formaten vorliegen. Mithilfe dieser XML-Dateien werden die Plug-in-Konfigurationen
persistent abgespeichert. Das in Abschnitt 5.3 beschriebene Modell wird mit zwei Dateien
je Plug-in realisiert. In einer Datei werden konfigurierbare Parameter verwaltet, die zum
Parametrisieren der Domainlogik von Plug-ins verwendet werden. Die andere Datei beinhaltet
beschreibende Daten respektive Meta-Daten der konfigurierbaren Parametern.

Die Dateien, welche zum persistenten Abspeichern der Plug-in-Konfiguration dienen, sollen
von jedem Plug-in bereitgestellt werden. Die Werte dieser Dateien werden nach dem Auslesen
in den Instanzen der Klassen PluginConfig, PluginGroup, PluginVariant und PluginParameter
(siehe Abbildung 6.1) im Arbeitsspeicher gehalten, sodass das Auslesen der Konfigurations-
dateien bei erneuten HTTP-Anfragen keine weiteren Latenzen durch das Auslesen verursacht.
Die Klasse PluginConfig steht gemäß Modell für Plug-in-Konfigurationen aus Abschnitt 5.3 für
die Komponente Plug-in Configuration in Abbildung 5.4. Die Bezeichnungen der Klassen für

61

7 Implementierung

andere Komponenten wurden gemäß der Bezeichnungen der Komponenten in Abbildung 5.4
gewählt.

Zum Festhalten der Werte von Plug-in-Konfigurationen wurde bei der Implementierung der
Klassen PluginConfig, PluginGroup, PluginVariant und PluginParameter ein Datentyp einge-
setzt, welcher die Positionierung der eingefügten Elemente beibehält. Für die graphische
Darstellung von Plug-in-Konfigurationen ist es von Vorteil die Konfigurationsdateien der
Plug-ins passend zu strukturieren. Die Repräsentationen von Plug-in-Konfigurationen kön-
nen benutzerfreundlicher gestaltet werden, indem die Positionierung der Elemente in den
Konfigurationsdateien auf die Repräsentation dieser Konfigurationen übernommen wird.

Der Zugriff auf die Konfigurationsdateien tritt wieder auf, wenn einige Werte in den Instanzen
der Klassen PluginConfig, PluginGroup, PluginVariant und beziehungsweise oder PluginParame-
ter über die Schnittstelle ConfigurationAPI verändert wurden und in den Konfigurationsdateien
persistent abgespeichert werden sollen.

7.1.2 Views vom MVC-Architekturmuster

Die Views nach dem MVC-Muster stellen die Repräsentationen der Plug-in-Konfigurationen
beziehungsweise die oben beschriebene Modell-Instanzen dar. Für die Gestaltung der Reprä-
sentationen wurde das Konzept Hypermedia as the Engine of Application State aus Abschnitt 2.1.2
angewandt. Im Wurzelelement befindet sich die Liste mit den Namen der verfügbaren Plug-
ins, die aus den dazugehörigen Konfigurationsdateien ausgelesen werden. Jedem Namen
wird ein Link zugeordnet, welcher auf die entsprechende Plug-in-Konfiguration verweist.
Folgt man dem Link mit der HTTP-GET-Methode, so bekommt man die Repräsentation der
jeweiligen Plug-in-Konfiguration.

Es wurden zwei Views implementiert: HtmlConfigResponseBuilder und XmlConfigResponse-
Builder. Mit der Klasse XmlConfigResponseBuilder werden die Repräsentationen der Plug-in-
Konfigurationen in XML-Format generiert. Die Klasse HtmlConfigResponseBuilder sorgt für die
Generierung der Plug-in-Konfigurationen in HTML-Format. Für HTML-Repräsentationen
wurde das HTML-Formular verwendet, um die Plug-in-Konfiguration mit einem Web-
Browser ohne weitere Tools manuell bearbeiten zu können.

7.1.3 Controller vom MVC-Architekturmuster

Die modifizierten Repräsentationen werden an einen Controller gemäß dem MVC-Muster über-
geben. Es sind zwei Controller implementiert: XmlConfigController und HtmlConfigController,
siehe Abbildung 6.1. Abhängig vom Format, in dem die über die Schnittstelle ConfigurationAPI
empfangene Plug-in-Repräsentation vorliegt, wird einer der beiden Controller verwendet. Die
konfigurierbaren Werte aus einer Repräsentation können vom Testbed-Benutzer verändert
und dann mit der HTTP-Methode POST beziehungsweise PUT an das REST Testbed abge-
schickt werden. Für die XML-Repräsentationen der Plug-in-Konfigurationen wurde dafür
gemäß der HTTP-1.1-Spezifikation (Fie09) die vorgesehene HTTP-PUT-Methode verwendet.
Für die HTML-Repräsentation musste auf die HTTP-POST-Methode ausgewichen werden,

62

7.2 Validierung der Benutzereingaben

denn für die Übertragung der modifizierten Werte der HTML-Repräsentation wird das HTML-
Formular benutzt, das nur die HTTP-Methoden GET und POST unterstützt. Ein Controller
übernimmt die mit der POST- beziehungsweise PUT-Methode übertragenen neuen Werte für
die Plug-in-Konfiguration im fehlerfreien Fall und liefert die aktualisierte Repräsentation der
Plug-in-Konfiguration an die Client-Anwendung. Beim Auftreten eines Fehlers liefert der
Controller die Repräsentation der Plug-in-Konfiguration mit den Fehlerbeschreibungen für
die nicht übernommenen Werten an die Client-Anwendung. Die Fehlerbeschreibung wird im
zusätzlich angehängten error-Attribut des Parameters übertragen, siehe auch Abschnitt 5.3.

7.2 Validierung der Benutzereingaben

Der Testbed-Benutzer führt Anpassungen an den Plug-in-Konfigurationen über die Schnitt-
stelle ConfigurationAPI durch. Dabei können die Benutzereingaben fehlerhaft sein. Die Validie-
rung der Benutzereingaben kann von der Client-Anwendung und vom Testbed gewährleistet
werden. In Domainlogik-Klassen von Plug-ins, welche die Schnittstelle PluginDomainlogicIn-
terface implementieren, werden die Methoden zum Validieren von Benutzereingaben definiert,
siehe dazu Abbildung 6.1. Bei der Methode getJsValidators() handelt es sich um Validierer,
welche für die Validierung der Benutzereingaben auf der Client-Anwendung gedacht sind.
Die Methoden isValid() überprüfen die Benutzereingaben auf dem Testbed.

7.2.1 Validierung auf der Client-Anwendung

Die type-Attribute der Parameter in den Konfigurationsdateien der Plug-ins, siehe dazu
Abschnitt 5.3, werden dazu verwendet, um die Benutzereingaben von der Client-Anwendung
validieren zu können. Für diesen Zweck wird JavaScript eingesetzt, denn JavaScript kann
von den Webbrowsern und genauso von den Eigenentwicklungen unter Verwendung von
zusätzlichen JavaScript-Interpreter ausgeführt werden.

Die Instanzen der Klasse JsValidator beinhalten zwei String-Attribute. Bei einem String han-
delt es sich um eine JavaScript-Methode und bei dem anderen um einen Kommentar. Die
JavaScript-Methode soll die Benutzereingaben validieren, indem einige Bedingungen über-
prüft werden. Wenn die Bedingungen nicht erfüllt sind, dann soll der definierte Kommentar
einen Hinweis zur Unterstützung der korrekten Benutzereingabe liefern.

Für HTML-Repräsentationen von Plug-in-Konfigurationen wurde die JavaScript-Bibliothek
JQuery (jQua) mit dem JQuery Validation Plugin (jQub) eingesetzt. Die definierten JavaScript-
Methoden mit den jeweiligen Kommentaren werden in die HTML-Repräsentationen integriert.
Wenn der Testbed-Benutzer Eingaben macht, werden diese Werte vom JQuery Validation Plugin
überprüft. Erst nach der erfolgreichen Validierung können die aktualisierten Werte an das
Testbed übermittelt werden. Wenn die Validierung nicht erfolgreich verläuft, dann werden
die definierten Kommentare bei den Eingabefeldern mit fehlerhaften Eingaben eingeblendet.
Diese Kommentare sollen den Testbed-Benutzer dabei unterstützen, die fehlerhaften Eingaben
zu korrigieren.

63

7 Implementierung

Im Fall einer XML-Repräsentation werden die JavaScript-Validierer mit dem jeweiligen Kom-
mentar mit der Repräsentation der Plug-in-Konfiguration mitgeliefert und stehen somit für
eigene Umsetzung der clientseitigen Validierung zur Verfügung.

7.2.2 Validierung auf dem Testbed

Die empfangenen Benutzereingaben werden auf dem Testbed validiert, bevor sie in die Plug-
in-Konfigurationen übernommen werden. Die Validierung auf dem Testbed findet mit Hilfe
von isValid(..)-Methoden der Domainlogik von Plug-ins statt. Die drei isValid(..)-Methoden
werden zum Validieren von den Instanzen der Klassen PluginGroup, PluginVariant und Plu-
ginParameter verwendet. Wenn die Validierung erfolgreich verläuft, dann liefern die isValid()-
Methoden null. In einem Fehlerfall liefern die Methoden eine Textnachricht mit dem Hinweis
auf die fehlerhafte Benutzereingabe. Diese Textnachricht wird im error-Attribut des fehlerhaf-
ten Parameters (PluginParameter) eingetragen, daraufhin in die betroffene Repräsentation der
Plug-in-Konfiguration eingearbeitet und an die Client-Anwendung übermittelt.

7.3 Beobachter von Plug-ins

Die Beobachter im REST Testbed werden nach der aspektorientierten Programmierung mit
Hilfe der Java-Erweiterung AspectJ Development Tools (AJDT) (Ecl) implementiert. Bei im-
plementierten Beobachter-Komponenten handelt es sich folglich um Aspekte, siehe dazu
Abschnitt 2.3. In einem Aspekt kann ein Pointcut (Schnittpunkt) definiert werden. Als Pointcut
wird eine oder mehrere Methoden der Schnittstellen ConfigurationAPI und TestserviceAPI ge-
wählt. Als Advice (Empfehlung) reichen bei den aktuellen Aspekten die Konstrukte before und
after aus. Die Beschreibungen der Konstrukte sind in Abschnitt 2.3 nachzulesen. Abbildung
7.1 zeigt ein beispielhaftes Aspekt mit den Konstrukten, die bei der Implementierung der
Beobachter verwendet wurden.

Es werden Pointcuts init(), ConfigurationAPIMethod() und TestServiceAPIGet() definiert. Die
Advice-Konstrukte before und after von den Pointcuts legen den Ausführungspunkt für die in
den Advice-Konstrukten definierten Aktionen fest. Wenn die Methode get() der Schnittstelle
TestServiceAPI aufgerufen wird (TestServiceAPI.get()), so wird vor der Bearbeitung der get()-
Methode, die an der Stelle to do before ’get’ definierte Aktion ausgeführt. Danach folgt die
Bearbeitung der get()-Methode. Die an der Stelle to do after ’get’ definierte Aktion wird nach der
Bearbeitung der get()-Methode ausgeführt. Das Pointcut für die Schnittstelle ConfigurationAPI
reagiert auf alle Methoden (ConfigurationAPI.*()) und vor der Ausführung der aufgerufenen
Methode wird die an der Stelle to do before definierte Aktion ausgeführt.

Der Konstruktor dieses Aspekts wird bei der Instanziierung ausgeführt. Die Instanziierung
der Aspekte erfolgt jedoch erst beim Feststellen der Ausführung der in den Pointcuts angegebe-
nen Joinpoints. Für die Definition von einem Joinpoint lese man Abschnitt 2.3. Manche Aspekte
benötigen aber keine Joinpoints zu der Schnittstelle ConfigurationAPI. Zur Zeit eines Aufrufs
einer Plug-in-Konfiguration von solchen Aspekten ist der Konstruktor noch nicht ausgeführt
worden und die gewünschte Plug-in-Konfiguration kann sich noch nicht im PluginContainer

64

7.3 Beobachter von Plug-ins

D:\Dropbox\Diplomarbeit\da_template\gfx\aspect.java Mittwoch, 10. Juli 2013 10:47

public aspect AspectB {

declare precedence : LoggingA, LoggingB, LoggingC;

public AspectB(){
// Instantiate domainlogic and configuration of associated plug-in
// and put this instances into pluginContainer.

}

pointcut init() : execution(ConfigurationAPI.new(..)) ||

execution(TestServiceAPI.new(..));

before() : init() {}

pointcut ConfigurationAPIMethod():
execution(* ConfigurationAPI.*(..));

before(): ConfigurationAPIMethod() {

// to do before
}

pointcut ConfigurationAPIGet(HttpServletRequest request,
HttpServletResponse response):

execution(* TestServiceAPI.get(..)) && args(request, response);

before(HttpServletRequest request, HttpServletResponse response):
TestServiceAPIGet(request, response) {

// to do before 'get'
}

after(HttpServletRequest request, HttpServletResponse response):
TestServiceAPIGet(request, response) {

// to do after 'get'
}

}

-1-

Abbildung 7.1: Beobachter als Aspekt

65

7 Implementierung

befinden. Außer Aspekten werden die Plug-in-Konfigurationen auch von anderen Komponen-
ten wie Views und Controller genutzt. Um diesen Komponenten die Plug-in-Konfigurationen
mithilfe des PluginContainers bereitzustellen, muss jeder Aspekt das Pointcut init() beinhalten.
Das Pointcut init() sorgt alleine nur dafür, dass bei erster HTTP-Anfrage über Configfuratio-
nAPI oder TestServiceAPI alle Aspekte initialisiert werden. Die Konstruktoren von Aspekten
erstellen die Instanzen der Domainlogik und der Konfigurationen von Plug-ins. Diese In-
stanzen werden anschließend im PluginContainer abgelegt und stehen somit auch anderen
Komponenten des Testbeds zur Verfügung.

Mit dem Konstruktor declare precenence wird die Reihenfolge der Ausführung von Advices von
Aspekten definiert, die gleiche Joinpoints haben. Im gezeigten Aspekt AspectB wird definiert,
dass der Aspekt AspectA Vorrang vor dem Aspekt AspectB hat. Der Aspekt AspectB hat
wiederum Vorrang vor dem Aspekt AspectC. Die Reihenfolge der Ausführung kann bei den
Aspekten auch mehrfach durch verschiedene Aspekte angegeben werden, darf aber nicht
widersprüchlich sein.

Bei der Annahme, dass in den Aspekten AspectA und AspectC die Methode get() der Schnittstel-
le TestServiceAPI auch einem Pointcut zugeordnet wäre und auch die Before- und After-Advices
für diesen Pointcut definiert wären, wird die HTTP-Anfrage in folgender Reihenfolge abgear-
beitet. Zuerst wird die definierte Aktion vom Before-Advice des TestServiceAPIGet-Pointcuts
vom Aspekt AspectA, dann vom Aspekt AspectB und danach vom Aspekt AspectC abgearbei-
tet. Danach folgt die Bearbeitung der angefragten Methode get(). Nach der Ausführung der
get()-Methode werden die after-Advices der betrachteten Aspekte bearbeitet. Für die Durch-
führungen der Aktionen der after-Advices wird die umgekehrte Reihenfolge der Aspekte
zur Ausführung der before-Advices angewandt. Es wird die Aktion vom after-Advice des
TestServiceAPIGet-Pointcuts vom Aspekt AspectC, dann vom Aspekt AspectB und danach vom
Aspekt AspectA ausgeführt.

7.4 Domainlogik von Plug-ins

Die entwickelten Plug-ins sind nachfolgend in einer Liste mit absteigendem Vorrang bei der
Bearbeitung angegeben. Bei den Beschreibungen wird mit dem Bearbeiten der Plug-ins das
Anwenden der Domainlogik der Plug-ins angedeutet.

• 1. Logging: Das Plug-in mit dem höchsten Vorrang. Alle anderen Plug-ins können
den Logger des Plug-ins Logging zum Protokollieren der Bearbeitung verwenden. Bei
dem Before-Advice wird die empfangene HTTP-Anfrage und mit dem After-Advice die
abgeschickte HTTP-Antwort protokolliert.

• 2. Responsecodes: Mit diesem Plug-in werden HTTP-Statusmeldungen simuliert. Dieses
Plug-in hat zweithöchsten Vorrang und wird mit dem Before-Advice abgearbeitet, denn
bis auf das Protokollieren der Bearbeitung vor diesem Plug-in sind keine weiteren
Bearbeitungen nötig. Wenn dieses Plug-in aktiviert ist, dann folgt keine Abarbeitung der
weiteren Plug-ins (siehe dazu Abschnitt 7.4.2). Die nachfolgenden Plug-ins verwenden
wie dieses Plug-in nur die Before-Advices.

66

7.4 Domainlogik von Plug-ins

• 3. Authorization: Die Abarbeitung dieses Plug-ins findet nur statt, wenn das Plug-in
Responsecodes deaktiviert ist.

• 4. Resources: Vor der Bearbeitung dieses Plug-ins muss die Protokollierung und die
Überprüfung der Autorisierung der HTTP-Anfrage stattgefunden haben.

• 5. Representation: Bei diesem Plug-in werden die Repräsentationen von Ressourcen
generiert. Die Ressource muss vor der Bearbeitung dieses Plug-ins von dem Plug-in
Resources aus einer Ressourcenquelle ausgelesen sein und zur Verfügung stehen. Somit
hat das Plug-in Resources Vorrang vor dem Plug-in Representation.

• 6. Caching: Dieses Plug-in braucht in manchen Fällen, wie für die Berechnung des
Entity-Tag, die Repräsentation der angefragten Ressource. Folglich hat das Plug-in
Representation Vorrang vor dem Plug-in Caching.

• 7. Cookies: Vor der Ausführung dieses Plug-ins muss das Logging und die Autorisierung
der HTTP-Anfrage durchgeführt worden sein. Somit hätte man dieses Plug-in auch bis
zur Stelle 4 vorschieben können.

7.4.1 Protokollieren (Plug-in Logging)

Für das Protokollieren der Bearbeitung der HTTP-Anfragen wurde das Framework log4j
(Apa) eingesetzt. Die zu protokollierenden Meldungen können verschiedenen Kategorien
zugeordnet werde: DEBUG, INFO, WARN, ERROR und FATAL. Das folgende Beispiel zeigt
die Verwendung des Frameworks log4j:

import org.apache.log4j.Logger;
Logger logger = Logger.getRootLogger();
logger.info(“Root logger created.“);

Bei der Ausgabe der protokollierten Meldungen kann der Informationsumfang gefiltert
werden:

logger.setLevel(Level.INFO);

Es sind sieben Stufen des Informationsumfangs definiert, die weiter unten aufgelistet sind.
Die Stufen sind nach unten in aufsteigender Reihenfolge der Wichtigkeit angegeben. Bei der
Wahl einer Wichtigkeitsstufe werden alle Meldungen der gewählten Stufe genauso wie aller
Stufen mit der höherer Wichtigkeit, in den aktivierten Ausgabequellen ausgegeben (Gup05).
Die Stufe der zu protokollierenden Meldungen wird über die Schnittstelle ConfigurationAPI
festgelegt.

Kategorien der Meldungen in log4j:

• ALL: Alle Meldungen werden ausgegeben. Keine Filterung.

• TRACE: Kommentare.

• DEBUG: Informationen für die Fehlersuche.

• INFO: Informationen zum regulären Programmablauf.

67

7 Implementierung

• WARN: Warnhinweise.

• ERROR: Fehler, die abgefangen werden.

• FATAL: Kritische Fehler, die zum Programmabbruch führen.

• OFF: Keine Ausgabe der Meldungen.

Beim Framework log4j können mehrere Ausgabequellen mittels Appender aktiviert werden,
in welchen die protokollierten Meldungen ausgegeben werden (Gup05). Beim REST Testbed
wurden ConsoleAppender für die Ausgabe in der Console und FileAppender für das persis-
tente Abspeichern der Meldungen in einer Datei gewählt. Im folgenden Beispiel wird beim
Framework log4j eine Konsole als Ausgabequelle aktiviert.

import org.apache.log4j.ConsoleAppender;
ConsoleAppender consoleAppender = new ConsoleAppender();
logger.addAppender(consoleAppender);

Die Appender Console und FileAppender können über die Schnittstelle ConfigurationAPI ein-
und ausgeschaltet werden. Auch die Bezeichnung von der Datei zum persistenten Abspei-
chern der protokollierten Meldungen kann über die Schnittstelle ConfigurationAPI angepasst
werden. Wenn die Bezeichnung der Datei dem Testbed-Benutzer bekannt ist, dann kann er
auf dessen Inhalt mit einer HTTP-GET-Anfragen zugreifen.

7.4.2 HTTP-Statusmeldungen (Plug-in Responsecodes)

Zum Simulieren von HTTP-Statusmeldungen wurde die Klasse WebApplicationException
aus dem Paket javax.ws.rs.WebApplicationException eingesetzt. Die HTTP-Statusmeldungen
werden als Ausnahmefall generiert. Folgendes Beispiel zeigt eine Zeile aus dem Quellcode
zum Simulieren der HTTP-Statusmeldung einer temporär verschobener Ressource:

import javax.ws.rs.WebApplicationException.WebApplicationException;
throw new WebApplicationException(Response.status(307).build());

Bei einigen HTTP-Statusmeldungen sollen spezifischen Header gesetzt werden. Bei der oben
angegebenen Statusmeldung verlangt die HTTP-1.1-Spezifikation das Setzen des HTTP-Header
Location, das auf den neuen Ort der angefragten Ressource verweist. Dies wird mit folgendem
Befehl realisiert:

response.addHeader(“Location“, “http://...“);

Bei der Instanz response handelt es sich um die vom Web Service bereitgestellte Instanz der
Klasse HttpServletResponse. Die benötigten HTTP-Header müssen auf diese Weise vor der
Generierung der HTTP-Statusmeldung gesetzt werden.

Welche HTTP-Statusmeldung mit welchen HTTP-Header generiert werden soll, wird aus
der Konfiguration des Plug-ins Responsecodes ausgelesen. Der Testbed-Benutzer kann diese
Konfiguration über die Schnittstelle ConfigurationAPI nach Bedarf anpassen.

68

7.4 Domainlogik von Plug-ins

7.4.3 Autorisierung (Plug-in Authorization)

Für die Überprüfung der Autorisierung von HTTP-Anfragen existieren viele standardisierte
Verfahren. Bei dem REST Testbed wurden die Verfahren HTTP Basic und HTTP Digest im-
plementiert. Der Austausch der Daten zur Überprüfung der Autorisierung erfolgt zwischen
dem Client und Server mittels HTTP-Header. Wenn das Plug-in Authorization aktiviert ist,
dann wird die HTTP-Anfrage auf den HTTP-Header untersucht, welches die Daten zur Über-
prüfung der Autorisierung beinhaltet. Bei den beiden oben angegebenen Verfahren wird
das HTTP-Header Authorization verwendet. Im folgenden Beispiel wird das HTTP-Header
Authorization der HTTP-Anfrage entnommen:

String auth = request.getHeader(“Authorization“);

Bei der Instanz response handelt es sich um die vom Web Service bereitgestellte Instanz der
Klasse HttpServletRequest. Alle Daten zum Anwenden des aktivierten Authentifizierungs-
verfahrens können dem Attribut auth extrahiert werden. Wenn der Authorization-Header
bei der HTTP-Anfrage nicht gesetzt ist oder das Authentifizierungsverfahren anhand der
mitgelieferten Daten auf eine unautorisierte HTTP-Anfrage schließt, dann wird eine HTTP-
Statusmeldung mit den für den Client notwendigen Daten abgeschickt. In diesem Fall handelt
es sich um HTTP-Header WWW-Authenticate. Das Beispiel unten zeigt die beschriebene
HTTP-Antwort für das Verfahren HTTP Basic:

response.addHeader(“WWW-Authenticate“, “Basic realm=\“testbed\““);
ResponseBuilder builder = Response.status(Status.UNAUTHORIZED);
throw new WebApplicationException(builder.build());

Es wird die in Abschnitt 7.4.2 beschriebene Klasse WebApplicationException eingesetzt. Dem
HTTP-Header WWW-Authenticate müssen alle für das Authentifizierungsverfahren benötigten
Daten übergeben werden, damit die Client-Anwendung zum angefragten Authentifizierungs-
verfahren eine HTTP-Anfrage mit dem korrekt aufgebauten HTTP-Header Authorization
erstellen kann.

7.4.4 Ressourcen (Plug-in Resources)

Mit dem Plug-in Resources werden die Ressourcen in einem Datenbestand verwaltet. Als
Datenquelle wurde im Testbed die relationale Datenbank verwendet. Es sind einige Me-
thoden zum Verwalten der Daten in einer relationalen Datenbank implementiert, die den
Grundbedarf für die Interaktion zwischen dem Testbed und einer relationalen Datenbank
abdecken.

Die Klassen zum Verwalten von Ressourcen in einem bestimmten Datenbestand implemen-
tieren die Schnittstelle Resource, siehe dazu Abbildung 7.2. Mit der Methode get() werden
die Attribute einer Ressource aus einer Datenquelle ausgelesen und in der Liste abgespei-
chert. Die Methode put() sorgt dafür, dass die modifizierten Werte der Ressourcen-Attribute
auch in die Datenquelle übernommen werden. Mit der Methode post() werden die mit der
HTTP-Anfrage erhaltenen Ressourcen-Attribute dazu verwendet, um eine neue Ressource

69

7 Implementierung

in der aktivierten Datenquelle anzulegen. Die delete-Methode löscht eine Ressource aus der
aktuellen Datenquelle.D:\Dropbox\Diplomarbeit\da_template\gfx\resource.java Mittwoch, 10. Juli 2013 11:29

public interface Resource {

public String getId();

public void head(HttpServletRequest request);

public ResourceAttribute[] get(HttpServletRequest request);

public void put(HttpServletRequest request);

public void post(HttpServletRequest request);

public void delete(HttpServletRequest request);

}

-1-

Abbildung 7.2: Schnittstelle für Ressourcen-Klassen

Die Attribute einer Ressource werden in einer Liste mit den Instanzen der Klasse Attribute
hinterlegt. Abbildung 7.3 zeigt einen Ausschnitt der Klasse ResourceAttribute. Ein Ressourcen-
Attribut hat einen Namen (name) und eventuell kann es zusätzlich einen Verweis (link) auf
eine andere Ressource enthalten. Weiterhin kann ein Ressourcen-Attribut einen Wert (value)
besitzen, der möglicherweise modifiziert werden darf. Die Attribut-Werte (value) sind von
einem bestimmten Typ (type), bei der Bekanntheit dessen die Validierung der Attribut-Werte
außerhalb der Datenquelle erleichtert wird.

D:\Dropbox\Diplomarbeit\da_template\gfx\attribute.java Mittwoch, 10. Juli 2013 11:32

public class ResourceAttribute {

private String name;
private String value;
private String link;
private String type;

...

}

-1-

Abbildung 7.3: Ressourcen-Attribut

Mittels Mapping-Operationen werden die durch die URIs angefragten Ressourcen bestimmt.
Die Mapping-Tabelle kann vom Testbed-Benutzer verwaltet werden. Eine Ressource, die
unter einer URI verfügbar ist, kann nach der Manipulation der Mapping-Tabelle unter einer
anderen URI zur Verfügung stehen. Die Mapping-Tabelle ist in der Plug-in-Konfiguration
realisiert. Dazu werden die Instanzen der Klasse PluginParameter erstellt (siehe Abbildung
6.1). Das Attribut name der Klasse PluginParameter bekommt eine Bezeichnung, mit der
eine Ressource aus der aktivierten Datenquelle assoziiert wird. Bei der implementierten
Datenbankverwaltung kann das der Name einer Tabelle sein, falls mit der Ressource eine
Tabelle gemeint ist. Das Attribut value nimmt einen auf die URI schließenden Ausdruck an.
Es könnte nach der implementierten Logik zum Beispiel der Tabellen-Name als Erweite-
rung der URI der Ressourcen-Schnittstelle sein. Wenn die URI der Ressourcen-Schnittstelle
http://localhost:8080/testbed/resources und der Tabellen-Name customers ist, dann wird mit

70

7.4 Domainlogik von Plug-ins

der URI http://localhost:8080/testbed/resources/customers mit der HTTP-GET-Methode
die Repräsentation der Datenbank-Tabelle namens customers angefragt.

Der Ansatz der dynamischen Zuordnung der URIs zu den Ressourcen mithilfe einer Mapping-
Tabelle hat auch einen Nachteil. Es werden auch Anfragen von der Testservice-Schnittstelle
abgefangen, für die keine Ressourcen existieren. Das Überprüfen der Existenz der Ressourcen
fällt in diesem Fall nicht in den Bereich des Jersey Frameworks. Die ankommenden Anfragen
beim Testserviceaufruf werden erst in der eigenen Implementierung auf das Vorhandensein
der angefragten Ressourcen überprüft. Die fehlende Überprüfung der Existenz von Ressour-
cen im Jersey Framework führt dazu, dass Jersey die WADL-Spezifikation nicht erstellen
kann.

Das URI-Schema erlaubt nicht alle Zeichen. Deswegen wird für die Erstellung der Ausschnit-
te der URIs, die in der Mapping-Tabelle festgelegt werden, die Klasse java.net.URLEncoder
verwendet. Mit dieser Klasse können einige nicht URI-konforme Ausdrücke durch das Erset-
zen der unzulässigen Zeichen in URI-konforme Ausdrücke überführt werden. Wenn es den
Methoden dieser Klasse nicht gelingt, wird der Testbed-Benutzer darauf hingewiesen.

Von der Komponente zum Verwalten von Ressourcen in einer relationalen Datenbank werden
auch Funktionen zum Verwalten der Mapping-Tabelle geliefert. Durch den Wechsel der
Datenquelle soll auch die Mapping-Tabelle neu erstellt werden. Wird eine Abweichung der
in der aktuellen Mapping-Tabelle festgehaltenen Ressourcen zu den Ressourcen von der
aktuellen Datenquelle festgestellt, so wird die Mapping-Tabelle aktualisiert. Dies erfolgt
mithilfe der zur Verwaltung der Mapping-Tabelle bereitgestellten Funktionen, welche die
Mapping-Tabelle mit den definierten Standardwerten füllen. Die Ressourcen-Bezeichnungen
bleiben danach fest. Die Ressourcen-URIs können vom Testbed-Benutzer verändert werden.
Die Funktionen zum Anpassen der Mapping-Tabelle an die Ressourcenquellen müssen von
jeder Komponente zum Verwalten dieser bestimmten Datenquelle geliefert werden.

7.4.5 Repräsentationen (Plug-in Representation)

Die mit dem Plug-in Resources ausgelesene Ressource mit der Liste der Attribute, siehe dazu
Abschnitt 7.4.4, wird vom Plug-in Representation verwendet. Die Liste der Attribute bildet die
Grundlage für die Generierung einer Repräsentation dieser Ressource. Es wurden Klassen zur
Generierung der Repräsentationen in Formaten HTML, XML und JSON namens HtmlRespon-
seBuilder, XmlResponseBuilder und JsonResponseBuilder implementiert (siehe dazu Abbildung
6.7). Die ankommenden HTTP-Anfragen werden auf das HTTP-Header Accept untersucht.
Wenn im HTTP-Header Accept das angegebene Repräsentationsformat der Ressourcen auch
vom Testbed unterstützt wird, dann wird die Repräsentation der angefragten Ressource im
gewünschten Format generiert und an die Client-Anwendung geschickt. Die implementierten
Formate können über die Schnittstelle ConfigurationAPI de- und aktiviert werden. Wenn eine
HTTP-Anfrage empfangen wird, die eine Repräsentation der Ressource in einem auf dem
Testbed deaktivierten Format verlangt, dann wird eine HTTP-Statusmeldung über das nicht
akzeptierte Format abgeschickt.

71

7 Implementierung

Abbildung 7.4 zeigt die Klasse zur Generierung von Repräsentationen der Ressourcen in JSON-
Format. Die Klassen JsonFactory und JsonGenerator kommen aus dem Paket org.codehaus.jackson.
Abbildung 7.5 demonstriert beispielhaft das Layout der mit der Klasse JsonResponseBuilder
erstellten Repräsentation einer Ressource mit zwei Attributen.

D:\Dropbox\Diplomarbeit\da_template\gfx\jsonresponsebuilder.java Samstag, 8. Juni 2013 16:41

public class JSONResponseBuilder {

public void generate(HttpServletRequest request,
HttpServletResponse response, Resource resource) throws Exception {

response.setContentType("application/json");
JsonFactory f = new JsonFactory();
JsonGenerator g = f.createJsonGenerator(response.getOutputStream());
g.writeStartObject();
g.writeStringField("resource", resource.getId());
g.writeObjectFieldStart("attributes");
for (Attribute a : resource.get(request, response)) {

g.writeFieldName(a.getName());
g.writeStartObject();
g.writeStringField("value", a.getValue());
g.writeStringField("link", a.getLink());
g.writeStringField("type", a.getType());
g.writeEndObject();

}

g.writeEndObject();
g.writeEndObject();
g.close();

}

}

-1-

Abbildung 7.4: Repräsentation in JSON-Format
D:\Dropbox\Diplomarbeit\da_template\gfx\jsonresponselayout.json Samstag, 8. Juni 2013 18:35

{
 "resource": "http://...resourceid/",
 "attributes": {
 "name-1": {
 "value": "value-1",
 "link": "http://...link1/",
 "type": "type-1"
 },
 "name-2": {
 "value": "value-2",
 "link": "http://...link-2/",
 "type": "type-2"
 }
 }
}

-1-

Abbildung 7.5: Layout in JSON-Format

Die Klasse XmlResponseBuilder zur Generierung der Repräsentation in XML-Format zeigt
Abbildung 7.6. Auch wie beim JSON-Format wird in Abbildung 7.7 beispielhaft das Layout
der XML-Repräsentation einer Ressource mit zwei Attributen demonstriert.

Die Klasse HtmlResponseBuilder zur Generierung der Ressourcen-Repräsentationen in HTML-
Format wurde nach dem gleichen Ansatz wie die Klasse XmlResponseBuilder implementiert
und wird hier daher nicht präsentiert. Die so erstellten Repräsentationen werden bis zur
nächsten HTTP-Anfrage zwischengespeichert, um anderen Plug-ins zur Verfügung zu ste-
hen.

72

7.4 Domainlogik von Plug-insD:\Dropbox\Diplomarbeit\da_template\gfx\jsonresponsebuilder.java Samstag, 8. Juni 2013 16:41

public class JSONResponseBuilder {

public void generate(HttpServletRequest request,
HttpServletResponse response, Resource resource) throws Exception {

response.setContentType("application/json");
JsonFactory f = new JsonFactory();
JsonGenerator g = f.createJsonGenerator(response.getOutputStream());
g.writeStartObject();
g.writeStringField("resource", resource.getId());
g.writeObjectFieldStart("attributes");
for (Attribute a : resource.get(request, response)) {

g.writeFieldName(a.getName());
g.writeStartObject();
g.writeStringField("value", a.getValue());
g.writeStringField("link", a.getLink());
g.writeStringField("type", a.getType());
g.writeEndObject();

}

g.writeEndObject();
g.writeEndObject();
g.close();

}

}

-1-

Abbildung 7.6: Repräsentation in XML-Format
D:\Dropbox\Diplomarbeit\da_template\gfx\xmlresponselayout.xml Samstag, 8. Juni 2013 18:23

<resource xlink:href="http://...resourceid/">
<name-1 xlink:href="http://...link-1/" type="type-1">value-1</name-1>
<name-2 xlink:href="http://...link-2/" type="type-1">value-2</name-2>

</resource>

-1-

Abbildung 7.7: Layout in XML-Format

7.4.6 Caching (Plug-in Caching)

Zum Steuern des Verhaltens der Client-Anwendung bezüglich der Verwendung von Ca-
ching können bestimmte HTTP-Header der HTTP-Antwort angehängt werden. Beim Plug-in
Caching kann zum Beispiel Entity-Tag aktiviert werden. Für die Berechnung des Entity-Tag
wird die vom Plug-in Representation zwischengespeicherte Repräsentation der Ressource
herangezogen. Die zu setzenden Attribute für andere HTTP-Header werden aus der Plug-in-
Konfiguration ausgelesen, die der Testbed-Benutzer beim Aktivieren der jeweiligen HTTP-
Header angegeben haben muss. Das Setzen der HTTP-Header erfolgt wie schon in Abschnit-
ten 7.4.2 und 7.4.3 demonstriert wurde.

7.4.7 Cookies (Plug-in Cookies)

Vom Testbed-Benutzer können Cookies mit dem Plug-in Cookies definiert werden. Die defi-
nierten Cookies werden mit der Klasse javax.servlet.http.Cookie erstellt:

Cookie cookie = new Cookie(“name“, “value“);
cookie.setComment(“comment“);
cookie.setDomain(“/“);
cookie.setMaxAge(10);
cookie.setPath(“/testbed“);

73

7 Implementierung

cookie.setVersion(1);
cookie.setSecure(false);

Die in der HTTP-Anfrage enthaltene Cookies werden automatisch der HTTP-Antwort ange-
hängt. Um das zu verhindern, wird das maximale Alter der unerwünschten Cookies auf Null
gesetzt:

Cookie[] cookies = request.getCookies();
for (Cookie cookie : cookies) {

cookie.setMaxAge(0);
}

Es werden drei verschiedene Methoden zum Behandeln von Cookies, die mit der HTTP-
Anfrage empfangen werden, bereitgestellt. Die eine implementierte Methode sorgt dafür, dass
alle empfangenen Cookies nach dem oben beschriebenen Verfahren gelöscht werden. Die zwei-
te implementierte Methode löscht nur die Cookies, deren Namen in der Plug-in-Konfiguration
eingetragen sind. Die dritte Alternative löscht alle Cookies bis auf die Ausnahmen, deren
Namen in der Plug-in-Konfiguration angegeben sind.

74

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Testbed zum Testen von REST-basierten Client-Anwendungen ent-
wickelt. Die funktionalen Anforderungen an das Testbed aus Abschnitt 4.1 sind mit Plug-ins
realisiert. Dadurch wird das Testbed modular gehalten, was in Bezug auf Umfang, Kom-
plexität und Erweiterbarkeit des Testbeds von Vorteil ist. Die Konfiguration der Plug-ins
kann manuell mithilfe eines Webbrowsers mit der dafür vorgesehener HTML-Repräsentation
erfolgen. Für das automatisierte Konfigurieren der Plug-ins steht die dafür besser geeignete
XML-Repräsentation zur Verfügung. Die konfigurierten Parameter sind nach dem Modifizie-
ren sofort wirksam und werden von den Plug-ins eingesetzt, ohne das Testbed neu starten zu
müssen. Es wurden folgende Plug-ins implementiert:

• Resources: Liest, löscht, modifiziert Ressourcen in einer Datenquelle und legt neue
Ressourcen an. Als Datenquelle wurde eine relationale Datenbank verwendet. Die
Zuordnung von URIs zu Ressourcen wird in einer Tabelle gehalten, die ein Testbed-
Benutzer an eigene Bedürfnisse anpassen kann.

• Logging: Die HTTP-Anfragen und -Antworten genauso wie deren Bearbeitungen kön-
nen auf dem Testbed persistent protokolliert werden. Die Testbed-Benutzer können auf
das Protokoll mithilfe eines Web Services zugreifen. Dadurch bekommt der Testbed-
Benutzer die nötige Unterstützung zum Auffinden der Fehlerquellen bei Unzulänglich-
keiten im Verhalten der getesteten Client-Anwendung.

• Autorization: Das Plug-in zum Autorisieren der HTTP-Anfragen unterstützt die Authen-
tifikationsverfahren Basic Access Authentication und Digest Access Authentication.

• Representation: Damit können Repräsentationen von Ressourcen in HTML-, XML- und
JSON-Format erstellt werden.

• HTTP-Statusmeldungen: Mit der Simulation von HTTP-Statusmeldungen kann das
implementierte Verhalten der Client-Anwendungen mit dem gemäß der HTTP-1.1-
Spezifikation beschriebenen Verhalten verglichen werden.

• Cookies: Durch die Möglichkeit zum Setzen der Cookies in den HTTP-Antworten kann
die Funktionalitäten von Client-Anwendungen überprüft werden, die sich mit der
Verwaltung von Cookies beschäftigen.

• Caching: Die Client-Anwendungen, die Vorteile von Caching nutzen, können darauf
getestet werden, ob die HTTP-Anfragen beziehungsweise -Antworten zum erwarteten
Verhalten bezüglich der Cache-Nutzung führen.

Es wurden Funktionalitäten beim REST Testbed mit Plug-ins realisiert, die bereits ein breites
Spektrum an Testszenarien abdecken. Es können mit dem Testbed somit einige Testfälle an
den zu testenden Client-Anwendungen bezüglich der Erfüllbarkeit der funktionalen und

75

8 Zusammenfassung und Ausblick

nicht-funktionalen Anforderungen überprüft werden. Bei der Architektur wurde mit dem
Plug-in-Konzept dafür gesorgt, dass das Testbed erweiterbar ist. Somit kann der Umfang
des Testbeds nach Bedarf um weitere Bereiche durch neue Plug-ins ergänzt werden. Im
folgenden Ausblick werden nun einige dieser möglichen Plug-in-Ergänzungen diskutiert
beziehungsweise empfohlen.

Wegen dem Ansatz der dynamischen Zuordnung von URIs zu Ressourcen kann keine WADL-
Spezifikation vom Jersey Framework erstellt werden, siehe Abschnitt 7.4.4. Wenn es die
Möglichkeit bestehen soll, dass eine Client-Anwendung ein Web Service automatisiert anhand
der WADL-Beschreibung benutzt, dann ist die Entwicklung eines weiteren Plug-ins zur
Generierung der WADL-Beschreibung der Testservice-Schnittstelle erforderlich.

Für das automatisierte Konfigurieren der Plug-ins kann die XML-Repräsentation eingesetzt
werden. Die XML-Repräsentation ist für die eigenen Entwicklungen von Konfigurations-
werkzeugen zum REST Testbed besser geeignet als die HTML-Repräsentation. Unter der
Benutzung der XML-Repräsentation kann ein Wrapper für die Konfigurationsschnittstelle des
REST Testbeds entwickelt werden. Ein Wrapper für die Konfigurationsschnittstelle würde es
ermöglichen, die Konfiguration der Plug-ins im REST Testbed elegant durchzuführen. Der Be-
nutzer dieses Wrappers würde von der XML-Repräsentation nichts mitbekommen. Die Logik
zum Verwalten der konfigurierbaren Werte von Plug-ins würde im Wrapper versteckt bleiben.
Durch die Bereitstellung dieses Wrappers würden sich der Aufwand und die Fehlerquellen,
die beim Erstellen eines Testfalls entstehen, enorm reduzieren.

Durch Erweiterung der Funktionalität vom Plug-in Resources können andere Ressourcen-
quellen wie CSV-, XML-Dateien sowie Web Services implementiert werden. Die Client-
Anwendungen erfordern meist spezifische Darstellungen von Ressourcen, sodass die mit dem
Testbed gelieferten Repräsentationen nur selten geeignet wären. Die Implementierungen von
beispielhaften Repräsentationen des Plug-ins Representation können herangezogen werden,
um eine eigene Implementierung zur Erstellung von passenden Repräsentationen der Res-
sourcen schnell zu bewerkstelligen. Das Plug-in Autorization kann durch weitere Verfahren
wie OAuth und OAuth2 erweitert werden. Das REST Testbed unterstützt HTTP- und die
Hypertext Transfer Protocol Secure (HTTPS)-Anfragen. Daher steht auch einer Erweiterung
dieses Plug-ins um eine Authentifizierung durch ein Secure Sockets Layer (SSL)-Zertifikat
nichts im Weg.

76

Literaturverzeichnis

[Apa] APACHE SOFTWARE FOUNDATION: Apache Log4j 2. http://logging.apache.
org/log4j/2.x/. http://logging.apache.org/log4j/2.x/

[Atoa] ATOS RESEARCH & INNOVATION: SOA4ALL Studio - Projektseite. http:
//technologies.kmi.open.ac.uk/soa4all-studio/. http://technologies.
kmi.open.ac.uk/soa4all-studio/

[Atob] ATOS RESEARCH & INNOVATION: SOA4SOA - Enabling a Web of billions of serveces.
http://www.soa4all.eu/. http://www.soa4all.eu/

[BL98] BERNERS-LEE, T.: Uniform Resource Identifiers (URI) / MIT. Version: 1998.
http://www.rfc-archive.org/getrfc.php?rfc=2396. 1998. – RFC 2396

[Böh06] BÖHM, Oliver: Aspektorientierte Programmierung mit AspectJ 5: Einsteigen in AspectJ
und AOP. Dpunkt.Verlag GmbH, 2006. – ISBN 9783898643306

[BPSM+08] BRAY, Tim ; PAOLI, Jean ; SPERBERG-MCQUEEN, C. M. ; MALER, Eve ; YER-
GEAU, François: Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recommendation. http://www.w3.org/TR/REC-xml/. Version: November 2008

[BS07] BAYER, Thomas ; SOHN, Dirk M.: Eine Einführung: REST Web Ser-
vices. In: T3N Magazin 8. Ausgabe (2007). http://t3n.de/magazin/
rest-web-services-einfuhrung-219976/

[CD08] COCKBURN, A. ; DIETERLE, R.: Use Cases effektiv erstellen. mitp-Verlag, 2008 (mitp
bei Redline). – ISBN 9783826617966

[Cro06] CROCKFORD, Douglas: The application/json Media Type for JavaScript Object
Notation (JSON) / IETF. 2006. – RFC 4627

[Ecl] ECLIPSE FOUNDATION, INC.: AJDT: AspectJ Development Tools. http://www.
eclipse.org/ajdt/. http://www.eclipse.org/ajdt/

[Fel10] FELIPE, L.O.: Design and Development of a REST-based Web Service Platform for
Applications Integration, UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC),
Diplomarbeit, 2010

[FFK+10] FENSEL, Dieter ; FISCHER, Florian ; KOPECKÝ, Jacek ; KRUMMENACHER, Re-
to ; LAMBERT, Dave ; VITVAR, Tomas: WSMO-Lite: Lightweight Semantic Des-
criptions for Services on the Web. W3C Recommendation. http://www.w3.org/
Submission/2010/SUBM-WSMO-Lite-20100823/. Version: August 2010

77

http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://technologies.kmi.open.ac.uk/soa4all-studio/
http://www.soa4all.eu/
http://www.soa4all.eu/
http://www.rfc-archive.org/getrfc.php?rfc=2396
http://www.w3.org/TR/REC-xml/
http://t3n.de/magazin/rest-web-services-einfuhrung-219976/
http://t3n.de/magazin/rest-web-services-einfuhrung-219976/
http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/

Literaturverzeichnis

[FHBH+99] FRANKS, J. ; HALLAM-BAKER, P. ; HOSTETLER, J. ; LAWRENCE, S. ; LEACH,
P. ; LUOTONEN, A. ; STEWART, L.: HTTP Authentication: Basic and Digest
Access Authentication / Internet Engineering Task Force. Version: June 1999.
http://www.rfc-editor.org/rfc/rfc2617.txt. 1999. – RFC 2617

[Fie00] FIELDING, Roy: Architectural styles and the design of network-based software archi-
tectures, University of California, Irvine, Diss., 2000. http://www.ics.uci.edu/
~fielding/pubs/dissertation/fielding_dissertation.pdf. – S. 76-106

[Fie08] FIELDING, Roy: REST APIs must be hypertext-driven. (2008). http://roy.gbiv.
com/untangled/2008/rest-apis-must-be-hypertext-driven

[Fie09] FIELDING, Roy ; NETWORK WORKING GROUP (Hrsg.): Hypertext Transfer Protocol
– HTTP/1.1. Network Working Group, 2009. http://www.w3.org/Protocols/
rfc2616/rfc2616.html

[FL07] FARRELL, Joel ; LAUSEN, Holger: Semantic Annotations for WSDL and XML
Schema / World Wide Web Consortium. Version: 2007. http://www.w3.org/
TR/sawsdl/. 2007. – W3C Working Draft

[FLS07] FRÜHAUF, K. ; LUDEWIG, J. ; SANDMAYR, H.: Software-Prüfung: Eine Anleitung
zum Test und zur Inspektion. 6. Auflage. vdf, Hochschulverlag an der ETH Zürich,
2007 (vdf-Lehrbuch Informatik). – ISBN 9783728130594

[GEN] GENESIS - PROJEKTSEITE: GENESIS - Generating SOA Testbed Instrastruc-
tures. http://www.infosys.tuwien.ac.at/prototypes/Genesis/Genesis_
index.html

[Gup05] GUPTA, S.: Pro Apache Log4j. Apress, 2005 (ITPro collection). – ISBN
9781430200345

[HR02] HORN, E. ; REINKE, T.: Softwarearchitektur und Softwarebauelemente: eine Einführung
für Softwarearchitekten. Hanser, 2002. – ISBN 9783446213005

[HS07] HADLEY, Marc ; SANDOZ, Paul: JAX-RS: The Java API for RESTful Web Services.
Java Specification Request (JSR) 311, Oktober 2007

[IEE90] IEEE COMPUTER SOCIETY. STANDARDS COORDINATING COMMITTEE AND IN-
STITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS AND IEEE STANDARDS

BOARD: I.E.E.E. Standard Glossary of Software Engineering Terminology. The Institu-
te, 1990 (IEEE Std). – ISBN 9781559370677

[iSe] ISERVE - PROJEKTSEITE: iServe - Where Linked Data Meets Services. http://iserve.
kmi.open.ac.uk/

[JD10] JUSZCZYK, Lukasz ; DUSTDAR, Schahram: Script-based generation of dynamic
testbeds for soa. In: ICWS, IEEE Computer Society, 2010

[JD11] JUSZCZYK, Lukasz ; DUSTDAR, Schahram: Automating the Generation of Web
Service Testbeds Using AOP. In: ZAVATTARO, Gianluigi (Hrsg.) ; SCHREIER, Ulf

78

http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.infosys.tuwien.ac.at/prototypes/Genesis/Genesis_index.html
http://www.infosys.tuwien.ac.at/prototypes/Genesis/Genesis_index.html
http://iserve.kmi.open.ac.uk/
http://iserve.kmi.open.ac.uk/

Literaturverzeichnis

(Hrsg.) ; PAUTASSO, Cesare (Hrsg.): ECOWS, IEEE Computer Society, 2011. –
ISBN 978–1–4577–1532–7, S. 143-150

[jQua] JQUERY - PROJEKTSEITE: jQuery. http://jquery.com/. http://jquery.com/

[jQub] JQUERY VALIDATION PLUGIN - PROJEKTSEITE: jQuery Validation Plugin. http:
//jqueryvalidation.org/

[JTD08] JUSZCZYK, Lukasz ; TRUONG, Hong L. ; DUSTDAR, Schahram: GENESIS - A
Framework for Automatic Generation and Steering of Testbeds of ComplexWeb
Services. In: ICECCS, IEEE Computer Society, 2008. – ISBN 0–7695–3139–3, S.
131-140

[KM97] KRISTOL, D. ; MONTULLI, L.: HTTP State Management Mechanism. RFC 2109 (Pro-
posed Standard). http://www.ietf.org/rfc/rfc2109.txt. Version: February
1997 (Request for Comments). – Abgelöst durch RFC 2965

[Kna07] KNABE, Christoph: Aspektorientierte Programmierung mit AspectJ 5.
http://public.beuth-hochschule.de/~knabe/fach/ats/AOP-Skript.pdf.
Version: 2007

[LSS+10] LAMPE, Ulrich ; SCHULTE, Stefan ; SIEBENHAAR, Melanie ; SCHULLER, Dieter ;
STEINMETZ, Ralf: Adaptive matchmaking for RESTful services based on hRESTS
and MicroWSMO. In: BINDER, Walter (Hrsg.) ; SCHULDT, Heiko (Hrsg.): WEWST,
ACM, 2010 (ACM International Conference Proceeding Series). – ISBN 978–1–
4503–0238–8, S. 10-17

[MBH+04] MARTIN, David ; BURSTEIN, Mark ; HOBBS, Jerry ; LASSILA, Ora ; MCDERMOTT,
Drew ; MCILRAITH, Sheila ; NARAYANAN, Srini ; PAOLUCCI, Massimo ; PARSIA,
Bijan ; PAYNE, Terry R. ; SIRIN, Evren ; SRINIVASAN, Naveen ; SYCARA, Katia:
OWL-S: Semantic Markup for Web Services. (2004). http://eprints.ecs.soton.
ac.uk/12687/

[Ora] ORACLE AMERICA, INC.: Jersey: RESTful Web Services in Java. https://jersey.
java.net/. https://jersey.java.net/

[PBG04] POSCH, T. ; BIRKEN, K. ; GERDOM, M.: Basiswissen Softwarearchitektur. dpunkt-
Verlag, 2004. – ISBN 9783898642705

[PZL08] PAUTASSO, Cesare ; ZIMMERMANN, Olaf ; LEYMANN, Frank: RESTful Web
Services vs. “Big“ Web Services: Making the Right Architectural Decision. In:
WWW ’08: Proceeding of the 17th international conference on World Wide Web. New
York : ACM, 2008 (Proceedings of the 17th international conference on World
Wide Web), S. 805-814

[RHJ99] RAGGETT, Dave ; HORS, Arnaud L. ; JACOBS, Ian: HTML 4.01 Specification. W3C
Recommendation. http://www.w3.org/TR/html4. Version: December 1999

[Ric07] RICHARDSON, Leonard: Web Services mit REST. O’Reilly Verlag GmbH & Co. KG,
2007. – ISBN 978–3897217270

79

http://jquery.com/
http://jquery.com/
http://jqueryvalidation.org/
http://jqueryvalidation.org/
http://www.ietf.org/rfc/rfc2109.txt
http://public.beuth-hochschule.de/~knabe/fach/ats/AOP-Skript.pdf
http://eprints.ecs.soton.ac.uk/12687/
http://eprints.ecs.soton.ac.uk/12687/
https://jersey.java.net/
https://jersey.java.net/
https://jersey.java.net/
http://www.w3.org/TR/html4

Literaturverzeichnis

[SKA+09] SCHREDER, Bernhard ; KRUMMENACHER, Reto ; ABELS, Sven ; PARIENTE, Tomás
; RICHARDSON, Marc ; VILLA, Matteo ; DI MATTEO, Giovanni: D1.5.2 Se-
tup SOA4All Testbeds. http://www.soa4all.eu/pdocs/deliverables/D1.5.2+
SETUP+SOA4ALL+TESTBEDS.PDF. Version: 2009. – Work Package: WP1 - SOA4All
Runtime,

[SW02] SNEED, H.M. ; WINTER, M.: Testen objektorientierter Software.: Das Praxishandbuch
für den Test objektorientierter Client/Server-Systeme. Hanser Fachbuchverlag, 2002. –
ISBN 9783446218208

[SWE] SWEET - PROJEKTSEITE: SWEET - Semantic Web sErvice Editing Tool. http:
//sweet.kmi.open.ac.uk/

[Tie09] TIEMEYER, E.: Handbuch IT-Management: Konzepte, Methoden, Lösungen und Ar-
beitshilfen für die Praxis. 3. Auflage. Hanser Fachbuchverlag, 2009. – ISBN
9783446418424

[Til11] TILKOV, S.: REST und HTTP: Einsatz der Architektur des Web für Integrationsszena-
rien. 2. Auflage. Dpunkt.Verlag GmbH, 2011. – ISBN 9783898647328

Alle URLs wurden zuletzt am 02.08.2013 geprüft.

80

http://www.soa4all.eu/pdocs/deliverables/D1.5.2+SETUP+SOA4ALL+TESTBEDS.PDF
http://www.soa4all.eu/pdocs/deliverables/D1.5.2+SETUP+SOA4ALL+TESTBEDS.PDF
http://sweet.kmi.open.ac.uk/
http://sweet.kmi.open.ac.uk/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Stuttgart, 06.08.2013 ——————————–
(Nick Eisenbraun)

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Einleitung
	Motivation
	Aufgabenstellung
	Eingrenzung
	Aufbau der Arbeit

	Grundlagen
	REST und ROA
	Geschichtliches
	Ressourcen
	Architekturprinzipien
	Sicherheit und Idempotenz

	Software-Prüfung
	Phasen des Testablaufs
	Qualitätssicherungsmaßnahmen
	Prüfungsverfahren
	Regressionstest

	Aspektorientierte Programmierung
	Joinpoint
	Pointcut
	Advice
	Ausführungsreihenfolge

	Verwandte Arbeiten
	GENESIS
	SOA4ALL

	Anforderungen
	Funktionale Anforderungen
	Nicht-funktionale Anforderungen
	Anwendungsfälle und Anwendungsfall-Diagramm
	Sequenzdiagramm

	Konzept und Architektur
	Plug-in-Konzept
	MVC-Konzept
	Datenmodell der Plug-in-Konfigurationen

	Design
	Zentralisierter Container für Plug-ins
	Views von Plug-in-Konfigurationen
	Controller von Plug-in-Konfigurationen
	Modelle von Plug-in-Konfigurationen
	Plug-ins
	Konfigurationen von Plug-ins
	Beobachter von Plug-ins
	Domainlogik von Plug-ins

	Implementierung
	Konfigurationsverwaltung
	Modell vom MVC-Architekturmuster
	Views vom MVC-Architekturmuster
	Controller vom MVC-Architekturmuster

	Validierung der Benutzereingaben
	Validierung auf der Client-Anwendung
	Validierung auf dem Testbed

	Beobachter von Plug-ins
	Domainlogik von Plug-ins
	Protokollieren (Plug-in Logging)
	HTTP-Statusmeldungen (Plug-in Responsecodes)
	Autorisierung (Plug-in Authorization)
	Ressourcen (Plug-in Resources)
	Repräsentationen (Plug-in Representation)
	Caching (Plug-in Caching)
	Cookies (Plug-in Cookies)

	Zusammenfassung und Ausblick
	Literaturverzeichnis

