Institut fiir Formale Methoden der Informatik
Universitdt Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Diplomarbeit Nr. 3457

Onboard Routenplanung auf
dem Smartphone

Stefan Biihler
Studiengang: Informatik
Priifer/in: Prof. Dr. Stefan Funke
Betreuer/in: Dipl.-Inf. Daniel Bahrdt
Beginn am: 2013-02-08
Beendet am: 2013-08-10

CR-Nummer: H.3.2,G22,H2.8

Inhaltsverzeichnis

1 Einleitung

4 Algorithmen
4.1 Knoten

1.1 Uberblick iiber die entwickelten Komponenten.
1.2 Gliederung L
2 Praliminarien
2.1 Dijkstra-Algorithmus o o oo
2.1.1 Definitionen L Lo
21.2 Algorithmus. o oo
213 Beispiel
2.1.4 Laufzeit
2.2 Contraction-Hierarchies
2.2.1 Erstellen einer Contraction-Hierarchy
222 Verwendung.
223 Coregraph
23 Radix-Heaps
231 Beispiel
3 Organisation der Daten
3.1 Ubersicht iiber die benétigten Daten
3.2 Gitter
3.3 Bindrformat
3.3.1 Metadaten
3.3.2 Geographische Positionen der Knoten
3.3.3 Kantenindizes fir dieKnoten.
334 Kantendaten
3.3.5 Erweiterte Kantendaten
3.4 Kompression.

suche e s

4.2 Laden der fiir Dijkstra benotigten Teilgraphen

4.3 Shortcut-Ersetzung

4.4 DarstellungdesWegs o
5 Androidanwendung ,,Offline ToureNPlaner*

51 Einstellungen L

52 Suche

11
11
13
13
13
14
15
16
18

23
23
25
25
26
27
27
28
28
28

31
31
31
34
35

41
41
41

Inhaltsverzeichnis

53 Routen e
6 Zusammenfassung und Ausblick
Abbildungsverzeichnis
Tabellenverzeichnis
Verzeichnis der Algorithmen

Literaturverzeichnis

47

49

49

50

51

1 Einleitung

Eine Welt ohne Routenplaner scheint heutzutage unvorstellbar. Sie haben den Atlas grofiten-
teils verdrangt, der meist nur noch als absolute Notlosung ein Schattendasein fristet.

Die Navigationsgerdte, die z. B. in Autos verbaut werden, haben dabei Karten fiir bestimmte
Bereiche (z. B. Deutschland, Europa, usw.) in ihrem lokalem Speicher. Weitere Bereiche und
Aktualisierungen werden normalerweise von den Herstellern angeboten, die sich ihre Daten
aber gut bezahlen lassen. So sind hédufig die Kartendaten eines Navigationsgerits ein paar
Jahre veraltet, da die Anwender sich das Geld fiir die Aktualisierungen gerne sparen.

Als Alternative gibt es im Internet verfiigbare Routenplaner (wie zum Beispiel https://
maps . google.com oder http://www.bing.com/maps/). Die meisten Smartphones und Tablets
werden mit bereits vorinstallierten Routenplaneranwendungen ausgeliefert, die auf solche
Dienste zuriickgreifen und dazu bei der Benutzung eine Internetverbindung voraussetzen.
Dafiir sind die Kartendaten meistens aktuell, und die Verwendung des Onlinedienstes an
sich ist kostenlos.

Allerdings steht aus Kostengriinden (fiir den Internettarif auf dem Gerit ganz allgemein
oder speziell auch im Ausland), aus Datenschutzgriinden (der verwendete Onlinedienst kann
das Verhalten einzelner Benutzer verfolgen) oder aus dem Grund, dass die Mobilfunknetz-
abdeckung den aktuellen Ort nicht oder nur mit geringer Bandbreite erfasst oder dass dem
verwendeten Gerit die Hardware dazu fehlt (z. B. Tablets, die nur einen WLAN-Adapter
haben), nicht immer eine ausreichende Internetverbindung zur Verfiigung.

Die Leistungsfahigkeit der mobilen Gerite ist jedoch gut genug, um Routenplaner komplett
offline zu betreiben (abgesehen von der Installation und Aktualisierungen). Mit maps-
forge [MFOa] existiert bereits ein Renderer, und mit osmfind [Bah12][OSMb] steht eine
fortschrittliche , Point-of-Interest“-Suche zur Verfiigung.

In dieser Arbeit wird nun eine Implementierung fiir die Berechnung von kiirzesten We-
gen vorgestellt, die auch auf Smartphones und Tablets auf groflen Wegenetzen (z. B. das
StrafSennetz von Deutschland) effizient arbeitet. In Kombination mit mapsforge und osm-
find entsteht damit eine Androidanwendung, die auch ohne Internetverbindung einen
Routenplaner anbietet.

Eine einfache Methode zum Berechnen von kiirzesten Wegen in Graphen ist der Dijkstra-
Algorithmus [Dij59]. Er muss dazu jedoch den kompletten Teilgraph um den Startknoten
absuchen, der sich im Suchradius befindet (siehe Abbildung 1.1); im Falle von Strafiengraphen
sind dies ungefdhr quadratisch viele Knoten in Relation zum Abstand von Start- und
Zielknoten. Auf Smartphones ist dies nicht nur ein Problem fiir die CPU, die die Daten

https://maps.google.com
https://maps.google.com
http://www.bing.com/maps/

1 Einleitung

verarbeiten muss, sondern bereits das Lesen des Graphen von einem Speichermedium
benotigt viel Zeit.

T T T T T T T T T T
9.00 9.05 9.10 9.15 9.20 9.00 9.05 9.10 9.15 9.20

lat
48.70 48.72 48.74 48.76 48.78 48.80

lon lon
(a) Dijkstra (b) contraction hierarchy

Abbildung 1.1: Suchrdume eines normalen Dijkstra und einer CH

Die Verwendung von , Contraction-Hierarchies” (CHs) [GSSDo8] ist deutlich effizienter. Die
Grofle des zur Berechnung eines kiirzesten Weges notigen Teilgraphs, auf den dann der
einfache Dijkstra-Algorithmus angewendet werden kann, hangt dabei nicht vom Abstand des
Start- und Zielknoten ab. Der entsprechende Teilgraph dazu kann relativ schnell komplett
eingelesen werden, anstatt Knoten erst dann zu laden, wenn sie benotigt werden.

Die vorgestellte Implementierung verwendet eine solche CH, um auf Androidsystemen einen
, Offline ToureNPlaner” (siehe Abbildung 1.2) zu implementieren. Die Implementierung
wurde auf Grundlage von OpenStreetMap-Daten [OSMa] programmiert, ist aber nicht an
diese gebunden. Alle Beispiele und Messwerte in diesem Dokument beziehen sich auf
OpenStreetMap-Daten fiir Deutschland von Anfang 2013. Der Strafiengraph enthélt nur von
Autos offiziell befahrbare Strafien.

1.1 Uberblick liber die entwickelten Komponenten

Die vorgestellte Implementierung kniipft an verschiedene bereits existierende Projekte an.
Teilweise wurden diese im Rahmen der Arbeit erweitert. Im Wesentlichen besteht die Imple-
mentierung aus zwei Anwendungen: der Androidanwendung ,Offline ToureNPlaner” und
der Hilfsanwendung ,CHConstructor”, die die benétigten Daten fiir die Androidanwendung
aufbereitet.

1.1 Uberblick Giber die entwickelten Komponenten

‘ Offline ToureNPlaner
ektrotechnische Institute = - = e
| nstif rrmgmémanlmmu Flngrslgshmg {

Un|vels\li«smmmmﬁmngfim Bereich Vaihingen \:

Distancer9:4:km Time: 9.9 min

Abbildung 1.2: ,Offline ToureNPlaner” Androidanwendung

Offline ToureNPlaner

Die Androidanwendung verwendet folgende Komponenten:

¢ Ein modifiziertes mapsforge Plugin [MFOb]. Das Plugin wird zum Rendern der Karte
verwendet. Die benotigten Kartendaten konnen von http://download.mapsforge.
org/ geladen werden.

e Fiir die Suche nach Koordinaten ausgehend von Ortsbeschreibungen wird das Javaplu-
gin von osmfind[OSMb] verwendet. osmfind verwendet das ,Java Native Interface”
(JNI) [JNI], da die eigentliche Implementierung in C++ programmiert wurde. Das
Plugin muss fiir jede Zielarchitektur extra kompiliert werden.

e Fiir die optionale Kompression der Straflendaten wurde xz-jni [XZ]] entworfen. Auch
xz-jni verwendet JNI, umd muss fiir jede Architektur extra kompiliert werden. xz-
jni unterstiitzt sowohl xz [LZM] und eine eigene Variante von DEFLATE [DEF] mit
Indextabelle.

e Das Laden der benétigten Teilgraphen auf Basis der CH-Daten, die mit Hilfe des
CHConstructors exportiert wurden, und die Suchen nach kiirzesten Wegen darin
wurde direkt in der Anwendung implementiert.

http://download.mapsforge.org/
http://download.mapsforge.org/

1 Einleitung

CHConstructor

CHConstructor [CHCa] ist ein Projekt der Abteilung Algorithmik des Institut fiir Formale
Methoden der Informatik an der Universitadt Stuttgart, das fiir diese Arbeit unter [CHCb]
um ein neues Exportformat erweitert wurde. CHConstructor wird z.B. auch fiir den On-
lineservice http://tourenplaner.informatik.uni-stuttgart.de verwendet, der von der
ToureNPlaner-Androidanwendung [TOU] verwendet wird.

Fiir das Erstellen der CH benotigt der CHConstructor einige Minuten und rund 20GB
Arbeitsspeicher auf einem Intel Core i7-3770 mit 3.40 GHz.

1.2 Gliederung

Die Arbeit ist in folgende Kapitel aufgeteilt: in Kapitel 2 werden die grundlegenden Algo-
rithmen fiir die Kiirzeste-Wege-Suche vorgestellt. Kapitel 3 beschreibt die Struktur der Daten
auf der SD-Karte; diese ist die Grundlage dafiir, dass die Algorithmen aus Kapitel 4 die
Daten effizient verarbeiten konnen. In Kapitel 5 wird dann die fertige Androidanwendung
prasentiert.

http://tourenplaner.informatik.uni-stuttgart.de

2 Praliminarien

In diesem Kapitel werden die grundlegenden Algorithmen und Strukturen fiir die Suchen
nach kiirzesten Wegen vorgestellt, die in der Implementierung verwendet werden.

2.1 Dijkstra-Algorithmus

Der Dijkstra-Algorithmus ist das Standardverfahren fiir die Kiirzeste-Wege-Suche, und wird
auch fiir CHs benotigt.

Zunichst benotigen wir einige Definitionen fiir Graphen als Grundlage:

2.1.1 Definitionen

Definition 2.1. Sei G = (V,E,d),E CV x V,6: E — R, dann heifit G gerichteter, kantengewich-
teter Graph mit Knoten V und durch é gewichtete Kanten E.

In dieser Arbeit werden nur endliche Graphen betrachtet, d.h. V endlich und damit zwangs-
laufig auch E endlich. Zudem sind die Kantengewichte nie negativ, d.h. Ve € E : é(e) > 0.

Definition 2.2. In einem Graph G = (V,E,§) heifit p = v1 — v — ... = v, € V' Weg von vy
nach vy, wenn Vi € {1,2,...,n—1} : (v;,v;41) € E. Die Weglinge I(p) := Z’-Z:_ll 3(v;,vi41) ist
die Summe aller durchlaufener Kantengewichte.

Ein kiirzester Weg von a nach b hat minimale Weglinge; existiert mindestens ein Weg von a nach b,
so existiert auch ein kiirzester Weg (es gibt nur endlich viele Wege ohne Zyklen ...xvy ... v,x ...,
und Zyklen konnen immer entfernt werden ohne den Weg zu verlingern).

d(a,b) := {Z(P) Jkiirzester Weg p von a nach b

oo wenn kein solches p existiert

Definition 2.3. Existiert fiir alle Knoten a und b ein Weg von a nach b, so heifit G stark zusammen-
hingend.

2 Préaliminarien

Algorithmus 2.1 Dijkstra-Algorithmus

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37
38:
39:
40:
41:

function FINDSHORTESTPATH(a, b)

p < new PriorityQueue()
C <« {a}
> dist(v): Lange des bisher kiirzesten gefundenen Weges von a nach v
> Wenn v € C dann ist d(a,v) = dist(v) die Lange des kiirzesten Weges von a nach v
> prev(v): Vorganger von v auf dem bisher kiirzesten gefundenen Weg von a nach v
dist: V= R,prev:V +V
Vo : dist(v) < L, prev(v) < L
dist(a) < 0
foreach n in {n|(a,n) € E} do
if n ¢ C then
dist(n) < é(a,n), prev(n) < a
Insert(p, Element(key < dist(n),value < n))
end if
end
while b Z C do
if ISEmpty(p) then
return > Es existiert kein Weg von a nach b
end if
v < DeleteMin(p)
C+ CuU{v}
foreach n in {n|(v,n) € E} do
if n ¢ CA (dist(n) = L Vvdist(n) > dist(v) + 6(v, n) then
d « dist(n)
dist(n) < dist(v) + 6(v,n), prev(n) « v
if d = 1 then
Insert(p, Element(key < dist(n), value < n))
else
DecreaseKey(p, Element(key < d, value <— n), dist(n))
end if
end if
end
end while
> Rekonstruktion des Weges
p<b:VTo+b
while v # a do
v < prev(v)
p(v—p)
end while
return (p,dist(D)) > gefundener kiirzester Weg und dessen Lange

end function

10

2.1 Dijkstra-Algorithmus

2.1.2 Algorithmus

Um den kiirzesten Weg von a nach b zu suchen, baut der Dijkstra-Algorithmus (siehe
Algorithmus 2.1) eine Menge C von Knoten v auf, fiir die d(a,v) bereits bekannt ist. Am
Anfang ist C = {a}, da d(a,a) = 0. Dann sucht er wiederholt einen Knoten v ¢ C mit
dc € C: (c,v) € E und d(a,c) + é(c,v) minimal. Fiir einen solchen Knoten gilt d(a,v) =
d(a,c) +6(c,v) (andere Wege nach v miissten iiber andere Knoten auflerhalb von C gehen,
die nicht kiirzer sein konnen), darum kann er der Menge C hinzugefiigt werden.

Der Algorithmus bricht ab, wenn er b in C aufgenommen hat oder keine weiteren Knoten
erreicht werden konnen.

Um den kiirzesten Weg auszugeben, kann bei der Aufnahme von v in C zu v der verwendete
Knoten c gespeichert werden. Damit kann nach erfolgreicher Suche von b riickwérts der
kiirzeste Weg rekonstruiert werden.

Die von C erreichbaren Knoten, die nicht in C liegen, werden tiblicherweise in einer Priority-
Queue gespeichert, um den Knoten v schnell zu finden. Die Priority-Queue kann eine
besondere Monotonieeigenschaft verwenden: es werden nur Schliissel einftigt, die mindes-
tens so grofs wie das zuletzt entnommene Element sind. In Abschnitt 2.3 wird dazu die
Radix-Heap Struktur vorgestellt, die eine solche Priority-Queue implementiert, wenn die
Kantengewichte alle ganzzahlig sind, d.h. (V) C Nx,.

Wenn ein Knoten v in C eingefiigt wird, miissen alle Kanten von v aus betrachtet werden.
Wenn dabei neue Wege oder neue bekannte kiirzeste Wege zu Knoten gefunden werden,
miissen die Eintrdge in der Priority-Queue entsprechend angepasst werden.

2.1.3 Beispiel

In folgendem Graph wird der kiirzeste Weg von a; nach as gesucht. Die Knoten a3, a»
und a3 sind bereits in C aufgenommen. Die Priority-Queue enthélt nun alle direkt von C
erreichbaren Knoten, die nicht bereits in C sind; dies sind a4 und a5 mit den Schliisseln 5
(der Weg von a; aus ist 5 lang, der Weg {iber a3 ist langer) und 6 (a5 ist von C nur iiber a;
direkt erreichbar).

11

2 Préaliminarien

Das minimale Element in der Priority-Queue ist also a4 mit Schliissel 5, und wird in der
ndchsten Runde in C aufgenommen. Aufierdem wird als Vorganger von a4 auf dem kiirzesten
Weg von a; nach a4 der Knoten a; gespeichert, und d(a;,as4) = 5:

Dabei wird der Knoten a¢ mit Schliissel g in die Priority-Queue aufgenommen, da er von
ay € C erreichbar ist. as ist nun auch tiiber a4 erreichbar, aber der neue Weg ist nicht kiirzer
wie der bereits bekannte.

Jetzt ist das minimale Element in der Priority-Queue der Knoten as mit Schliissel 6, und
wird in C aufgenommen:

Der Knoten a¢ wird in der Priority-Queue nun verkleinert auf den Schliissel 8, da tiber
a5 € C nun ein neuer kiirzerer Weg bekannt ist. Nach der Aufnahme von a4 als letzten
Knoten in C ist der kiirzeste Weg von a; nach a¢ fertig berechnet:

12

2.2 Contraction-Hierarchies

Der kiirzeste Weg a1a2a5a, von a; nach as mit Lange 8.

2.1.4 Laufzeit

Alle von a erreichbaren Knoten v mit d(a,v) < d(a,b) sind am Ende in C gespeichert. Bei
Suchen auf einem Strafiennetz sind das also alle Knoten innerhalb des Kreises um a mit
Radius d(a, b), also im Schnitt quadratisch viele Knoten in Bezug auf den Abstand d(a, b).

Insbesondere wenn zwischen a und b eine Stadt mit vielen kleinen Nebenstrafien auftaucht,
durchsucht Dijkstra die komplette Stadt - es konnte ja sein, dass es mittendrin mit einem
,Tunnel” eine schnelle Direktverbindung zum Ziel gibt.

Mit einer normalen Priority-Queue liegt die Laufzeit in O(|E| + |V| - log|V|), wobei nur die
Knoten und Kanten gezdhlt werden miissen, die auch besucht werden, d.h. die am Ende
von C aus erreichbaren Knoten und Kanten.

2.2 Contraction-Hierarchies

2.2.1 Erstellen einer Contraction-Hierarchy

Die Grundlage fiir das Erstellen einer Contraction-Hierarchy (CH) ist eine Ordnung auf den
Knoten. Das Ziel ist, dass hohere Knoten in der Ordnung zentrale Knotenpunkte darstellen,
tiber die viele kiirzeste Wege laufen, wiahrend die niedrigen Knoten die Details des Graphen
darstellen. Der Algorithmus fangt dann von unten in der Ordnung an, und kontrahiert die
Knoten. Der nidchste Knoten in der Ordnung wird dabei meistens erst dann festgelegt, wenn
die vorigen bereits kontrahiert wurden, eine Heuristik wihlt dabei aus welcher Knoten als
nichstes kommt. Das Ziel einer Heuristik sollte sein, die Anzahl der Knoten und insbesondere
Kanten in den Aufwirts- bzw. Abwirtsgraphen (siehe unten) klein zu halten. Fiir weitere
Details einer solchen Heuristik sei auf [GSSDo8] und die CHConstructor-Implementierung
(siehe Abschnitt 1.1) verwiesen.

13

2 Préaliminarien

Fiir die Kontraktion eines Knotens v werden alle Wege p = u — v — w betrachtet, fiir die
v <u,v < w gilt. Ist p ein kiirzester Weg von u nach w, so wird ein neue Kante von u nach
w mit dem Gewicht [(p) eingefiigt, falls die Kante nicht bereits existiert und gleich lang ist.
Eine solche neue Kante heif3t ,Shortcut”.

Der nach Kontraktion aller Knoten entstandene Graph ist dann die Contraction-Hierarchy.

Fiir Wege in der CH kann jeder verwendete Shortcut durch den zugrunde liegenden Weg
p ersetzt werden (siehe auch Abschnitt 4.3), ohne die Lange des Weges zu verdandern.
Nach endlich vielen Schritten enthélt ein Weg dann keine Shortcuts mehr, also haben die
eingefiigten Shortcuts keinen Einfluss auf die Lange der kiirzesten Wege in dem Graph.

2.2.2 Verwendung

Wenn nun in einem kiirzesten Weg p ein Teilweg u — v — wmitv < u < woderv < w < u
auftaucht, so kann dieses Teilstiick durch 1 — w ersetzt werden, denn u — v — w ist auch
ein kiirzester Weg von u nach w, und nach Kontraktion von v muss es eine direkte Kante
von u# nach w geben mit Gewicht /(# — v — w). Da durch eine solche Ersetzung der Weg
um einen Knoten kiirzer wird, sind nur endliche viele solcher Ersetzungen moglich.

Sei nun h der grofite Knoten in dem Weg p (dieser kann nie bei einer Ersetzung verloren
gehen), so kann p durch endlich viele Ersetzungen in einen Weg p., der Forma; — ... —
a, = h=b, — ... — by transformiert werden, wobei sowohl die a; als auch die b; monoton

aufsteigend sortiert sind:

Definition 2.4.

~

14

2.2 Contraction-Hierarchies

o Aufwiirtskanten von v: E,;(v) (v,w) € E|v<w}

(0) := {(v,
o Abwiirtskanten zu v: Ejopn (v) 1= {(w,v) € E | v < w}
o Aufwirtsgraph von v: Ej,(v) := Eyp(0) U U Ejp(w)

(v,w)EEup(v)
o Abwirtsgraph zu v: Ej . (v) := Egopn(v) U U Ej (@)
(wrv) €Edown (U
Nun kann der transformierte Weg p.;, bereits in Ej,(a1) U E},,,(b1) gefunden werden, d.h.
fiir die Suche nach einem kiirzesten Weg von a nach b gentigt der Teilgraph Ej,(a) UE],, (b).
Durch Ersetzung der Shortcuts kann danach wieder der dazugehdrige kiirzeste Weg im
Originalgraph gefunden werden.

2.2.3 Coregraph

Die Aufwiérts- bzw. Abwaértsgraphen fiir verschiedene Knoten enthalten einen sehr grofsen
Teil aller hoheren Knoten. Es bietet sich an, ab einem bestimmten Knoten ¢ beim Erstellen
der CH die Knoten nicht mehr zu kontrahieren [Sch13]. Die Knoten v > ¢ bilden dabei den
Coregraphen C (mit den Kanten {(v,w) € G | v,w > c}), ihre Ordnung untereinander spielt
keine Rolle. Falls ein kiirzester Weg p durch den Coregraphen geht, kann er zu einem Weg
Pey der Formay — ... = a, =c1 — ... = ¢ — by — ... — by transformiert werden, wobei
a; und b; wieder aufsteigend sortiert sind und ¢; > Knoten im Coregraph sind.

Coregraph

Definition 2.5.

% wenn v € C
o Aufwirtsgraph ohne Core von v: E;/,(v) := Eup(v) U U E(w) wennov ¢ C
(v,w)E€Eup(v) F

15

2 Préaliminarien

%) wennov € C

o Abwirtsgraph ohne Core zu v: Elf | (v) := Esouwn(9) U U Elr () wennv ¢ C

(w,0) €E goun (v
Pew kann nun in Ej (a1) U Ejf , (b1) U C gefunden werden; wenn p nicht durch den Co-
regraph geht, so funktioniert obige Transformation, und p., kann in Ej,(a1) U Ef , (b1)
gefunden werden. Fiir die Suche nach einem kiirzesten Weg von a nach b geniigt also der
Teilgraph E/,(a) UE (b) UC.

up down

Die Aufwirts- bzw. Abwértsgraphen ohne Core sind dabei (je nach Wahl von c) deutlich
kleiner, dafiir wird der Coregraph natiirlich auch grofler. Das Einlesen des Coregraphen
von langsamem Speicher ist dabei jedoch deutlich schneller (er kann im Gegensatz zu den
Aufwirts- bzw. Abwiértsgraphen in einem Stiick gelesen werden), und er kann fiir mehrere
Suchen in schnellerem Speicher gehalten werden (solange er nicht zu grofs wird).

2.3 Radix-Heaps

Eine Priority-Queue bietet normalerweise folgende Operationen:

o Insert: Fiigt ein neues Element ein
e DecreaseKey: Verkleinert ein bereits vorhandenes Element
e DeleteMin: Entfernt das kleinste Element und gibt es zuriick

o IsEmpty: Testet ob die Priority-Queue leer ist

Fiir den Dijkstra-Algorithmus aus Abschnitt 2.1.2 besteht ein Element aus zwei Teilen:
e Einer positiven Ganzzahl als ,Schliissel”, nach dem sortiert wird
e Einem zugeordneten Wert fiir den Knoten

Im Radix-Heap[AMOT9o] werden die Elemente in Buckets einsortiert; jeder Bucket bekommt
dabei ein Intervall von Schliisseln zugewiesen. Die Intervalle werden mit wachsendem Ab-
stand zum zuletzt entfernten Element exponentiell grofler und sind aufsteigend sortiert. Das
minimale Element befindet sich also in dem ersten nicht leeren Bucket. Es kann kein Element
eingefiigt werden, das kleiner als das zuletzt entfernte Element ist; dieselbe Einschrankung
gilt fiir die DecreaseKey-Operation: das verkleinerte Element darf nicht kleiner als das zuletzt
entfernte Element sein.

Beim Entfernen des minimalen Elements miissen die anderen Elemente aus dem Bucket, in
dem das minimale Element war, neu einsortiert werden. Die Intervallzuordnung muss aber so
gewdhlt werden, dass die anderen Buckets weiter hinten unverdndert bleiben. Damit bewegt
sich jedes Element beim neu einsortieren weiter nach vorne in der Liste von Buckets.

Algorithmus 2.2 (eine Variante nach [Se]) verwendet fiir die Bucketzuordnung den Index
des grofsten unterschiedlichen Bits (Zdhlung ab 1, o fiir keinen Unterschied) zum zuletzt

16

2.3 Radix-Heaps

lat

(b) Knoten im Coregraph

52
1

51
Il

lat

50
1

49
Il

lon
lon

(c) Besuchte Knoten in der CH (d) Knoten im Aufwiérts- bzw Abwértsgraph

Abbildung 2.1: Suchrdume fiir kiirzeste Wege-Suche von Stuttgart nach Berlin

17

2 Préaliminarien

entfernten Element. Alle Schliissel im gleichen Bucket i haben also fiir Bits > i die gleichen
Werte; namlich fiir Bits > i die gleichen Werte wie im zuletzt entfernten Element und, fiir
i > 1, das i. Bit negiert . Durch diese Methode gibt es je nach Bitmuster des zuletzt entfernten
Elements einige Buckets, deren Intervalle vor dem zuletzt entferntem Element liegen; diese
bleiben leer. Ohne diese nicht verwendbaren Intervalle sind die Intervalle dann wie gefordert
aufsteigend sortiert.

Wenn nun das néchste kleinste Element entfernt wird, so liegt es in einem bestimmten
Bucket i. Alle Buckets davor miissen leer sein, da es sonst nicht das kleinste Element ist.
Die Intervalle der Buckets danach dndern sich nicht, da fiir j > i das j-te Bit im entfernten
Element den gleichen Wert hat wie im davor entfernten Element. Wenn das kleinste Element
nicht in Bucket o lag, so werden alle Elemente aus dem Bucket i in Buckets davor eingeordnet,
da nur Bits kleiner i sich von dem kleinsten Element unterscheiden konnen.

2.3.1 Beispiel

Wenn das zuletzt entfernte Element 10110, = 22 ist, so ergibt sich folgende Zuordnung der
Intervalle auf die Buckets:

Index Intervall Intervallgrofie

o 10110,(22) 1

1 10111,(23) 1

2 10100, ...10101,(20...21) 2

3 10000, ...100115(16...19) 4

4 11000...111115(24...31) 8

5 00000;...01111,(0...15) 16

6 100000;...1111115(32...63) 32

i 26—1)...21-1 2 —1)

Die Buckets 2, 3 und 5 (entsprechen den Positionen der ,1”-Bits in 10110,) werden nicht
verwendet, da ihre Intervalle vor 22 liegen. Die verbleibenden Intervalle beginnen bei
22,23,24,32,64,

Damit kénnte der Radix-Heap folgendermafien aussehen:

18

2.3 Radix-Heaps

Algorithmus 2.2 Radix-Heaps

struct Element is

1:
2: key : unsignedinteger
3: value : object
4: end
5: struct RadixHeap is
6: last_key : unsigned integer < 0
7: > Jeder ,Bucket” ist ein dynamisches Array von Elementen.
8: > Schliissel in buckets|i] unterscheiden sich von last_key im (i — 1)-ten Bit
9: > und moglicherweise in kleineren Bits, und gar nicht fiir i = 0.
10: > Schliissel innerhalb eines Buckets buckets|i] unterscheiden sich hochstens
11: > in den Bits 0 bis i — 2, und decken damit ein Intervall der Grofe 2max(0i=1) g}
122 buckets : Element]][]
13: end
14: function BuCKETINDEX(heap, key)
15: if heap.last_key = key then
16: return 0
17: end if
18 return 1+ |logy(heap.last_key xor key) |
19: end function
20: procedure INSERT(heap, element)
21: bucket < BucketIndex(heap, element.key)
22: Append (buckets[bucket|, element)
23: end procedure
24: procedure DECREASEKEY(heap, oldelement, newkey)
25 oldbucket < BucketIndex(heap, oldkey)
26: newbucket <— BucketIndex(heap, newkey)
272 RemoveValue(buckets[oldbucket], oldelement)
28: Insert(heap, Element(key < newkey, value <— oldelement.value))
29: end procedure
30: function DELETEMIN(heap)
31 bucket <— min{i | Length(buckets[i]) > 0}
32: if bucket # 0 then
33: heap.last_key <— min{e.key | e € buckets[bucket]}
34 foreach e in buckets[bucket| do
35: > Elemente landen in Buckets mit kleinerem Index
36: > Die kleinsten Elemente landen in Bucket o, eins davon wird unten entfernt
37: Insert(heap, e)
38: end
39: Clear (buckets|bucket])
40: end if
41 element < RemoveLast(buckets[0])
42 return element
43: end function
44 function IsEMrTY(heap)

450 return A\{Length(b) =0 | b € buckets}
46: end function

19

2 Préaliminarien

last_key = 22 0 —'

4—29 25 [26 |

6 —42 [49 [51 |

Wenn nun ein Element mit Schliissel 31 eingefiigt wird, wird es einfach im richtigen Bucket
angehdngt. Die Reihenfolge innerhalb eines Buckets spielt keine Rolle:

last_key = 22 0 —'

4—29 25 [26 31 |

6—42 [49 [51 |

Das kleinste Element ist im ersten nicht leeren Bucket; in diesem Fall das Element 25 in
Bucket 4. Beim Entfernen dieses Elements werden die anderen Elemente aus Bucket 4 auf
die Buckets o bis 3 neu sortiert.

Zuerst die neuen Intervallgrenzen (ab Bucket 5 dndern sich diese nicht), danach der neue
Radix-Heap.

20

2.3 Radix-Heaps

Index Intervall

Intervallgrofie

11001,(25)
11000, (24)
11010,...110115(26...27)
11100,...111115(28...31)
100005 . ..10111,(16...23)

~ W N B O

last_key = 25

A, N R R

6— 42 [49 [34 [51 |

Fiir die DecreaseKey-Operation muss das alte Element im alten Bucket entfernt werden, und
dann entsprechend dem neuen Schliissel neu eingefiigt werden. Wenn also das Element 49
auf 27 verkleinert wird, konnte folgender Radix-Heap entstehen:

last_key = 25

-
-

2
3—f29 [31 |

5|
6—42 |51 [34 |

Um die Anzahl der Speicherzugriffe zu verringern, kann in einem Bucket das zu 19schende
Element durch das letzte Element ersetzt werden, anstatt alle Folgeelemente um eins zu
verschieben; die Reihenfolge der Elemente innerhalb eines Buckets spielt keine Rolle.

21

3 Organisation der Daten

In diesem Kapitel soll nun das Binarformat erliutert werden. Dazu wird erst ein Uber-
blick tiber die Daten gegeben, die zu speichern sind. Dann wird die Anordnung der Daten
beschrieben, fiir die ein spezielles Gitter verwendet wird, und danach die konkrete Bindrre-
prasentation. Letzendlich wird die Auswirkung einer optionalen Kompression der Daten
untersucht.

3.1 Ubersicht iiber die benétigten Daten

Zur Beschreibung des CH-Graphen werden folgende Eingabedaten fiir die Knoten und
Kanten benétigt:

e Knoten
— Geographische Lage (Langen- und Breitengrad)
- Rang in der CH-Ordnung

e Kanten

Referenz auf den Startknoten

Referenz auf den Zielknoten

Kantengewicht fiir die kiirzeste Wege-Suche (z. B. die Reisezeit)

Euklidische Lange des Weges (fiir Shortcuts: die Summe der abgekiirzten Wege)

Fiir Shortcuts: Referenz auf die zwei durch diesen Shortcut abgekiirzten Kanten

Die Knoten werden nun auf Blocke verteilt (siehe ndchster Abschnitt), jeder Knoten wird
also durch Blocknummer und Index innerhalb eines Blockes identifiziert.

Die Kanten werden dem niedrigeren Knoten zugewiesen (haben beide Knoten einer Kante
denselben Rang, so sind die Knoten im Coregraph; die Kante wird dann dem Startknoten
zugewiesen). Jeder Knoten hat dann ihm zugewiesene ausgehende bzw. eingehende Kanten
(Knoten im Coregraph werden keine eingehende Kanten zugewiesen). Diese Zuweisung
erfolgt in Hinblick auf das Auslesen des Aufwarts- bzw. Abwirtsgraphen: fiir jeden Knoten
sind nur die Kanten interessant, die in der CH nach oben gehen.

23

3 Organisation der Daten

Knoten Koord. 1. ausg. Kante 1. eing. Kante | Kante Gewicht Knoten
(B, 0) (lon, Iat) X420 X+2 X+0 4 (102, 4)
X+1 10 (1943, 6)
X+2 7 (374, 24)
(B, 1) (lon, lat) X +3 X+7 X+3 2 (102, 4)
X+k 40 (583, 42)
1 1 X+k+1 I [X+k+1] L 1

(a) Knoten mit Kantenzuordnung
Kante Eukl. Abstand SC: 1. Kante SC: 2. Kante SC: Knoten

X+0 100

X+1 150 823 9781 (o, 12)
X+2 150

X+3 50

X+k 400 413 132 (1, 39)

(b) Euklidische Lange und Shortcutdaten fiir Kanten

Abbildung 3.1: Beispiel: Knoten eines Blocks mit zugewiesenen Kanten

Nun werden die zugewiesenen Kanten fiir die Knoten eines Blockes hintereinander an-
geordnet. Fiir jeden Knoten kommen zuerst die ausgehenden und dann die eingehenden
zugewiesenen Kanten.

Da beim Erstellen der Aufwiérts- bzw. Abwértsgraphen der niedrigere Knoten der Kante
bereits bekannt ist (iiber diesen wird die Kante gefunden), geniigt es, den jeweils anderen
Knoten zu speichern. Bei der Ersetzung der Shortcutkanten fehlt dann aber der kontrahierte
Knoten, darum muss dieser fiir Shortcutkanten gespeichert werden.

Fiir jeden Knoten muss nur der Index der ersten ausgehenden bzw. eingehenden Kante
gespeichert werden, der Index der jeweils letzten Kante ergibt sich aus dem Startindex der
néchsten Kantenliste. Am Ende eines Blocks wird dann zusitzlich ein abschliefSfender Index
fiir die Kantenliste des Blocks benotigt.

Jeder Knoten und jede Kante haben eine fixe Grofie (Kanten, die keine Shortcuts sind,
haben speziell markierte Eintrédge fiir die Shortcutdaten). Fiir jede Datei ist die Anzahl der
Knoten pro Block fest, also haben auch alle Blocke die gleiche Grofse; fiir jeden Block wird
gespeichert, wie viele Knoteneintrdge tatsdchlich verwendet werden. Darum kann direkt aus
Blocknummer und Index innerhalb des Blocks bzw. Kantennummer die Position der Daten
in der Datei direkt ohne Nachschlagen in einem Index berechnet werden.

24

3.2 Gitter

3.2 Gitter

Um den Start- bzw. Zielknoten mit Hilfe der jeweiligen geographischen Lage zu finden,
werden die Knoten in einem Gitter abgespeichert. Da hohere Knoten bzw. deren Kanten
beim Aufbau der Aufwiérts- bzw. Abwértsgraphen o6fters benotigt werden, sollten diese
jedoch moglichst nahe beieinander liegen. Darum wird fiir verschiedene Rangintervalle ein
eigenes Gitter verwendet, wobei die hoheren Gitter grober auflosen; jede Gitterzelle liegt
dabei komplett in einer Gitterzelle in der Ebene dartiiber. Von oben betrachtet werden also
Zellen auf dem Weg nach unten weiter unterteilt.

Wenn fiir eine Gitterzelle Knoten auf einer hoheren Ebene im gleichen Raster liegen, so
verweist die Gitterzelle auf die niedrigste Gitterzelle dariiber, in der ein solcher Knoten
enthalten ist. So konnen von einer Gitterzelle auf der untersten Ebene aus alle Knoten
gefunden werden, deren geographische Lage sich darin befindet (auf hoheren Ebenen sind
auch Knoten dabei, die in der untersten Ebene in Zellen daneben liegen).

Eine Gitterzelle wird dann in mehrere Blocke zerlegt, wobei auch die einzelnen Blocke
wieder einfach verkettet sind. Der letzte Block einer Gitterzelle zeigt dann auf den ersten
Block der nédchsten Gitterzelle; jeder Block zeigt also auf einen Nachfolgeblock oder keinen,
aber mehrere Blocke konnen auf denselben Folgeblock zeigen.

Die Knoten aus dem Coregraphen liegen in einer eigenen Ebene, die iiber allen andere liegt,
und belegen die Blocke am Ende, d. h. es gibt einen Blockindex, so dass alle Blocke ab diesem
Index nur Knoten aus dem Coregraphen enthalten. Die Kanten fiir diese Blocke miissen in
der gleichen Reihenfolge am Ende der Kantenliste liegen. Damit kann der Coregraph sehr
einfach und schnell eingelesen werden.

Fiir jede Zelle in der untersten Ebene existiert genau ein Block, der als Einstieg dient; die
Zellen werden dazu einfach durchnummeriert, und die Zellnummer wird als Blocknummer
verwendet. Nur die Daten des untersten Gitters (Eckkoordinaten und Gitterdimension)
werden gespeichert, um die Zellnummer fiir den Einstieg berechnen zu kénnen. Alle Knoten,
die geographisch in einer Zelle auf der untersten Ebene liegen (aber eventuell tatsdchlich
in Gitterzellen dariiber gespeichert wurden), sind von dem Block der Zellnummer aus
auffindbar (siehe Abschnitt 4.1).

3.3 Binarformat

Alle Daten werden als 32-Bit Ganzzahl (Big-Endian, d. h. das hochstwertigste Byte zuerst)
gespeichert. Die Geokoordinaten werden in 107 ° auf die niachste Ganzzahl gerundet.

Eine Datei besteht aus fiinf aufeinander folgenden Abschnitten, die unten genauer beschrie-
ben werden. Jeder Abschnitt ist dabei an 4 KiByte Blocken ausgerichtet.

Durch die Aufteilung der Daten fiir Knoten und Kanten liegen die Daten, die im jeweiligen
Schritt benotigt werden, dichter beieinander, und es werden weniger Daten gelesen, die nicht
bendtigt werden.

25

3 Organisation der Daten

1 2
3 4
T i
6 5
1 1
2 I
3 |
4 %

Gitterzelle 1 benotigt zwei Blocke, Zelle 2 nur einen und Zelle 3 drei Blocke. Gitterzelle 5 enthiilt
Knoten, die von den Position her in den Zellen 1, 2 und 3 liegen, darum zeigt der jeweils letzte Block
dieser Zellen auf den ersten Block der Zelle 5. Zelle 4 ist auf der Ebene von Zelle 5 leer, und kann
darum direkt auf Zelle 6 zeigen.

Alle Knoten, die im Bereich der Zelle 1 aber auf evtl. hoherem Level (d. h. in Block 5 oder 6) liegen,
sind vom ersten Block der Zelle 1 aus erreichbar.

Abbildung 3.2: Beispiel: Gitterzerlegung in Blocke

3.3.1 Metadaten

o Zwei speziell gewdhlten Zahlen (4348474F;s und 6666545015), die sich in ASCII Repra-
sentation als ,, CHGOSfTP” lesen. Durch diese Zahlen kann mit grofler Wahrschein-
lichkeit ausgeschlossen werden, dass unbeabsichtigt eine anders formatierte Datei
eingelesen wird.

e Eine Versionsnummer fiir das Format (1)
e Die Eckdaten fiir das unterste Gitter:

- Langengrad fiir die linke Kante

- Breitengrad fiir die untere Kante

— Breite einer Zelle

26

3.3 Binarformat

— Hohe einer Zelle
— Anzahl der Zellen pro Zeile
— Anzahl der Zellen pro Spalte

Maximale Anzahl von Knoten pro Block (daraus ergibt sich der Platzbedarf eines
Blockes)

Anzahl der Blocke in der Datei (jede Zelle benétigt einen Startblock, danach konnen
weitere kommen)

Index des ersten Coreblocks

Anzahl der Kanten

3.3.2 Geographische Positionen der Knoten

Fiir jeden Block:

e Index des nédchsten Blocks (oder —1)
e Anzahl der giiltigen Eintrdge in diesem Block
e Fiir jeden giiltigen Eintrag;:

- Langengrad

— Breitengrad

¢ Die ungiiltigen Eintrdge werden mit Nullen aufgefiillt.

3.3.3 Kantenindizes fiir die Knoten

Fiir jeden Block:
e Platzhalter (0)
e Fiir jeden Knoten (keine Spezialbehandlung fiir ungiiltige Eintrdge):
— Index der ersten ausgehenden Kante
— Index der ersten eingehenden Kante

¢ Index der Kante nach der letzten eingehenden Kante des letzten Knotens.

27

3 Organisation der Daten

3.3.4 Kantendaten

Fiir jede Kante:

e Knoten. Fiir ausgehende Kanten der Zielknoten, fiir eingehende der Startknoten.

e Kantengewicht (Reisezeit gerundet in 53=s)

3.3.5 Erweiterte Kantendaten

Fiir jede Kante:

e Linge des nach Reisezeit kiirzesten Weges in m
e Fiir Shortcuts: (ansonsten mit —1 aufgefiillt)

— Erste ersetzte Kante

— Zweite ersetzte Kante

— Kontrahierter Knoten

3.4 Kompression

Die so erstellte Datei ist fiir das Straffennetz von Deutschland 2 GByte grofs; mit xz [LZM]
lasst sich die Datei auf 360 MByte komprimieren. Da die Datei aber nicht am Stiick gelesen
wird, muss die Kompression blockweise erfolgen, d. h. es werden mehrere Stellen benétigt,
von denen an dekomprimiert werden kann (die Zuordnung von Positionen in der unkompri-
mierten Datei und den Einstiegsstellen in der komprimierten Datei wird in einer Indextabelle
gespeichert).

Je kleiner die Blocke, desto schneller ist der Zugriff, wenn nicht am Stiick gelesen wird.
Allerdings sinkt die Kompressionsrate mit kleineren Blocken.

Mit einer Blockgrofie von 64 KiByte ldsst sich die Datei mit xz auf 409 MByte und mit
DEFLATE [DEF] auf 640 MByte komprimieren.

In Tabelle 3.1 und Abbildung 3.3 sind Testldufe fiir verschiedene Strecken mit den verschie-
denen Kompressionsoptionen und ohne dargestellt.

Die Unterstiitzung der ausgewédhlten Kompressionsformate (xz und eine Variante von
DEFLATE mit Indextabelle) ist nicht in Java implementiert, sondern in C++ und wird iiber
Java Native Interface (JNI) eingebunden.

28

3.4 Kompression

= B unkomprimiert
S - @ DEFLATE
A B xz
=
= B
=
oo
=
=R
=]
[{w]
w
E
=
o
=]
=t
=
o _]
]
o
C' —
1 2 3 4 5 6

Strecke

Abbildung 3.3: Durchschnittliche Zeit aus 5 Laufen (nach einem Lauf fiir den Cache) in ms
fir verschiedene Strecken

29

3 Organisation der Daten

1. Lauf 2. Lauf 3.Lauf 4.Lauf »5.Lauf 6.Lauf (jeweilsin ms)

Strecke 1 Informatikgebiaude — Stuttgart HBF

48.7456169 °N 9.1070623 °W — 48.7831573 °N 9.1816587 °W
unkomprimiert 1606 88 58 53 51 50
DEFLATE 2172 291 291 288 298 308
Xz 3229 1794 1735 1809 1734 1735
Strecke 2 Informatikgebiaude -> Karlsruhe

48.7456169 °N 9.1070623 °W — 49.0107460 °N 8.4040517 “W
unkomprimiert 3334 89 86 85 92 87
DEFLATE 3912 561 554 552 553 554
XZ 4129 3213 3203 3206 3207 3214
Strecke 3 Informatikgebiude -> Miinchen

48.7456169 °N 9.1070623 °W — 48.1370124°N 11.5758237 °W
unkomprimiert 5396 254 258 260 251 249
DEFLATE 5213 1271 1262 1255 1256 1260
Xz 7974 7052 7994 7052 7049 7954
Strecke 4 Informatikgebiude -> Berlin

48.7456169 °N 9.1070623 °W — 52.5199928 °N 13.4385576 °W
unkomprimiert 9094 325 325 324 322 322
DEFLATE 6650 2383 1890 1888 1889 1897
XZ 11453 10827 10817 10835 10805 10848
Strecke 5 Informatikgebiaude -> Hamburg

48.7456169 °N 9.1070623 °W — 53.5438613 °N 10.0104999 °W
unkomprimiert 335 325 324 324 329 322
DEFLATE 1896 1905 1916 1891 1920 1918
XZ 10803 10788 10788 10784 10815 10913
Strecke 6 Aachen -> Berlin

50.7773246 °N 6.0779156 °W — 52.5199928 °N 13.4385576 °W
unkomprimiert 2882 153 153 155 156 16
DEFLATE 2183 921 905 906 905 92
XZ 5461 5221 5217 5219 5221 522

Je nach vorhergehender Nutzung ist der 1. Lauf wenig aussagekriftig.

Tabelle 3.1: Messdaten fiir Testldufe mit verschiedenen Kompressionen

30

4 Algorithmen

In diesem Kapitel werden nun einige zentrale Algorithmen beschrieben, die die in Kapitel 3
beschriebenen Daten einlesen bzw. verarbeiten. Die grundlegenden Algorithmen fiir die
Wegsuche sind bereits in Kapitel 2 vorgestellt worden. Im letzten Abschnitt 4.4 werden
Optimierungen fiir die Darstellung gefundener Wege gezeigt.

4.1 Knotensuche

Algorithmus 4.1 wird zum Finden des zu Geokoordinaten nédchstgelegenen Knotens ver-
wendet. Liegen die Geokoordinaten innerhalb des Gitters in einer nicht leeren Gitterzelle, so
ist das Ergebnis korrekt. Andernfalls sucht der Algorithmus von einer zufélligen Position aus
in Richtung des Ziels nach einem passenden Knoten. Die Suche bricht ab, sobald auf diesem
Weg leere Gitterzellen gefunden werden.

Der Algorithmus geht dazu eine Menge von Blocken durch. Wenn ein Block auf einen
weiteren Block zeigt, so wird auch dieser verarbeitet. Da mehrere Blocke auf denselben Block
zeigen konnen, merkt sich der Algorithmus, welche Blocke er schon durchsucht hat, damit
jeder Block hochstens einmal durchsucht wird. Aus allen Knoten, die beim Durchsuchen
der Blocke angetroffen werden, wird derjenige ausgewdhlt, der der gesuchten Position am
ndchsten kommt.

Der Algorithmus startet mit dem ersten Block der Gitterzelle, die entweder die gesuchte
Position enthilt oder ihr am ndchsten kommt. Wenn er von dort aus keinen Knoten findet,
wird der erste Block des Coregraphen geladen. Jedes Mal, wenn ein neuer Knoten gefun-
den wurde, werden anschlieffend die Nachbarblocke der Zelle des gefundenen Knotens
durchsucht (siehe Abbildung 4.1).

4.2 Laden der flr Dijkstra bendtigten Teilgraphen

Wie in Abschnitt 2.2.3 beschrieben, wird fiir die Suche des kiirzesten Weges von a4 nach b
der Aufwirtsgraph von a und der Abwiértsgraph zu b, jeweils ohne Coregraph, und der
Coregraph benétigt.

Algorithmus 4.2 beschreibt das Laden des Auf- bzw. Abwértsgraphen. Um langsames
Springen in der Datei zu vermeiden, wird die aktuelle Liste der zu ladenden Knoten sortiert

31

4 Algorithmen

Algorithmus 4.1 Algorithmus zum Finden des zu einer Position ndchstgelegenen Knotens

e S S S S W

=
e

NN
2Q

W W N NNNNNNN
228 N R W N

e XN AR N

: function FINDPOINT(point)

> Der Iterator durchlauft alle Knoten aus einem Block und ladt automatisch den

> Folgeblock. Er bricht ab, wenn er einen Block nach einem Aufruf von continueWith

> nochmal trifft. Es wird also kein Knoten mehrmals geladen.
i < new NodeGeolterator
nodelD < —1,nodeDist < o

nodePoint < point > noch kein Knoten, wihle Zielposition als Basis

loop

lastNodelD < nodel D
> Suche ausgehend von aktuellem Knoten
gridx < clip([0... grid.width — 1], (nodePoint.x — grid.basey)/ grid.cellWidth)
gridy < clip([0...grid.height — 1], (nodePoint.y — grid.base,)/grid.cellHeight)
base < gridy - grid.width + gridx
i.continueWith(base)
while i.next() do

d < |li.nodePoint — point||

if d < nodeDist then

nodeDist <+ d,nodePoint + i.nodePoint, nodelD < i.nodelD

end if
end while
if nodelD # lastNodelD then

next > Neuen Knoten gefunden. Starte Suche von dessen Position aus neu.

end if

if nodeID = —1 then
> Kein Knoten gefunden. Wihle zufélligen Knoten und starte von dort
> Der Algorithmus konvergiert dann Richtung Zielposition,
> solange keine Locher (leere Blocke) dazwischen die Suche beenden.
nodelD <« 0,nodePoint < nodes[0].point
next

end if

> Siehe Fortsetzung. ..

und dann der Reihenfolge nach abgearbeitet. Erst wenn die sortierte Liste leer ist, wird eine
neue sortierte Liste erstellt.

Die Repréasentation des Graphen im Speicher ist darauf ausgelegt, zu einem Knoten ausge-
hende Kanten auszugeben. Mit diesem Graphen berechnet der Dijkstra-Algorithmus (siehe
Abschnitt 2.1.2) den kiirzesten Weg von a nach b. Der Kantenindex wird benétigt um danach
Shortcut-Kanten der CH im gefundenen Weg zu ersetzen.

32

4.2 Laden der fir Dijkstra bendtigten Teilgraphen

Algorithmus 4.1 Algorithmus zum Finden des zu einer Position ndchstgelegenen Knotens
(Fortsetzung)

32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

> Da nodel D = lastNodelD ist base der Startblock fiir nodePoint
> Suche auch in benachbarten Zellen (d. h. von deren Startblock aus),
> da an Zellenrdndern Knoten aus der Nachbarzelle nédher liegen kénnen.
foreach block in Startblocken der Nachbarzellen von base do
i.continueWith(block)
while i.next() do
d < |li.nodePoint — point||
if d < nodeDist then
nodeDist < d,nodePoint + i.nodePoint, nodelD < i.nodelD
end if
end while
end
if nodelD = lastNodelD then
> Keinen besseren Knoten gefunden - beende Suche
break
end if

end loop

49: end function

oC

L 27}

Bei der Suche nach dem néchstgelegen Knoten zu s wird zuerst der Knoten a gefunden. Es
kann aber in Nachbarzellen Knoten geben, die ndher an s liegen - darum miissen auch diese

durchsucht werden.

Abbildung 4.1: Zelliibergreifende Suche von Knoten

33

4 Algorithmen

Algorithmus 4.2 Laden des Auf- bzw. Abwirtsgraph von bzw. zu einem Knoten

1: function LOADGRAPH(n0de, edgeDirection)

2 graph < new Graph()

3 todo < @

4 if block_no(node) < firstCoreBlock then > Coregraph wird separat geladen
5 todo < todo U {node}

6 end if

7 while todo # @ do

8 run <— sort(todo), todo <— @

9: foreach n in run do
10: foreach (edgePeer,edgeDist,edgelD) in up_edges(n, edgeDirection) do
11 if edgeDirection = OUT then

edgeDist
12: graph < graph U {n ——— edgePeer}
edgelD
13: else
14 graph < graph U {edgePeer cageDisL n}
edgelD

15: end if

16: if block_no(edgePeer) < firstCoreBlock then
17: todo < todo U {edgePeer}

18: end if

19: end

20: end

21 end while

22: end function

4.3 Shortcut-Ersetzung

Zur Darstellung des Weges miissen die Shortcuts in dem Weg, der vom Dijkstra-Algorithmus
in der Contraction-Hierarchy gefunden wurde, durch die urspriinglichen Kanten ersetzt
werden. Auf das Ersetzen eines Shortcuts konnte verzichtet werden, wenn der Shortcut weit
genug weg vom aktuell dargestellten Kartenausschnitt entfernt ist, so dass keine Ersetzung
in den Kartenausschnitt reichen kann. Auch wenn die euklidische Lange des vom Shortcut
abgekiirzten Weges klein genug ist, so dass die Ersetzung in der aktuellen Zoomstufe in der
Darstellung nur geringen oder gar keinen Einfluss hat, konnte die Ersetzung eines Shortcuts
entfallen (siehe auch Abschnitt 4.4).

Zur Ersetzung wird der Weg stiickweise zu einem neuen Weg; eine Kante wird vom Anfang
des alten Weges entfernt, evtl. wiederholt ersetzt (bei jeder Ersetzung wird eine weite-
re Kante vor den alten Weg gesetzt), und ans Ende des neuen Weges angehidngt (siehe
Abbildung 4.2).

34

4.4 Darstellung des Wegs

()

Wenn (x,y) kein Shortcut ist oder nicht ersetzt werden soll, wird die Kante direkt
tibernommen und, falls weitere Kanten kommen, die ndchste Kante betrachtet (b).
Ansonsten wird der Shortcut (x,y) ersetzt durch die urspriinglichen Kanten (x,z) und
(z,y). Die Kante (z,y) wird dazu vor den noch zu bearbeitenden Weg gehingt, und (x, z)
wird als nachste Kante betrachtet (c).

Abbildung 4.2: Durchlaufen der Wegkanten zur Shortcut-Ersetzung

4.4 Darstellung des Wegs

Fiir die Darstellung des Weges sind nicht alle Knotenpunkte notwendig. Zum einen kénnen
Punkte aussortiert werden, wenn sie keine Verbindung in den aktuell angezeigten Karten-
ausschnitt haben, zum andern kénnen Knoten, die beziiglich der aktuellen Zoomstufe nahe
genug an Nachbarknoten liegen, weggelassen werden.

Im Folgenden wird angenommen, dass der anzeigte Kartenausschnitt ein an den Koordina-
tenachsen ausgerichtetes Rechteck ist, da auch der mapsforge-Renderer nur diesen Modus
verwendet. Im Falle einer gedrehten Karte konnte als Kartenausschnitt das begrenzende
Rechteck des gedrehten Kartenausschnitts verwendet werden.

Algorithmus 4.3 beschreibt die Berechnung, ab welcher Zoomstufe (und dariiber) ein Weg-
punkt fiir die Darstellung verwendet werden soll. Die Entscheidung, ob ein Knoten auf der
Zoomstufe [vl bereits sichtbar sein muss (Zeile 31 in Algorithmus 4.3), ist in Abbildung 4.3
visualisiert.

Um nur den Teil des Weges zu zeichnen, der im aktuellen Kartenausschnitt zu sehen ist,
wird ein Bindrbaum erstellt, in dem jeder Knoten fiir einen Teilweg steht; wenn ein Knoten
Kindknoten hat, so ist dieses Intervall die Vereinigung der Intervalle der Kindknoten, die sich
dabei tiberlappen. Um diesen Baum zu erstellen wird rekursiv der Weg solange halbiert, bis
ein Teilweg weniger als 6 Wegpunkte hat. Bei der Aufteilung wird am mittleren Wegpunkt
geteilt, der dann in beide Teilwege aufgenommen wird. Fiir diese Teilwege werden dann
die begrenzenden Rechtecke (parallel zum Koordinatensystem) berechnet und mit dem
Intervall zusammen im Baumknoten gespeichert. Da der Weg fiir die Ausgabe geglattet wird,
werden die Intervalle nach dem Berechnen der begrenzenden Rechtecke um den vorigen
und um den ndchsten Wegpunkt erweitert, sofern ein solcher existiert, da die Richtung des
Folgewegstiicks Einfluss auf die Glattung hat (siehe Algorithmus 4.4).

35

4 Algorithmen

Zum Darstellen eines Wegknotens wird gepriift, wie der aktuelle Kartenausschnitt zum
begrenzenden Rechteck liegt (sieche Abbildung 4.4). Sind sie disjunkt, so gibt es nicht zu
zeichnen; liegt das Rechteck komplett im Kartenausschnitt, oder hat der Knoten keine
Kindknoten, werden alle Wegknoten gezeichnet — wobei in der Mitte des Weges Knoten, die
auf der aktuellen Zoomstufe nicht sichtbar sind, ausgelassen werden. Ansonsten wird die
Prozedur rekursiv mit den Kindknoten wiederholt.

previous ?
ol f------ el Sl

current
prevLevel

Wenn sowohl der Abstand d(previous, current) als auch d(current, next) auf der Zoomstufe
lvl klein genug sind, ist der Wegknoten current auf der Zoomstufe /vl nicht mehr sichtbar.
Wenn mindestens ein Abstand zu grof ist, wird der Knoten auf die Zoomstufe /v! gehoben.

Abbildung 4.3: Entscheidung, ob ein Knoten auf einer kleineren Zoomstufe angezeigt wer-
den soll

36

4.4 Darstellung des Wegs

Algorithmus 4.3 Berechnen der Zoomstufen ab denen Wegpunkte fiir die Darstellung
verwendet werden

1: function POINTSZOOMLEVEL(points)

2!

10:
11:
12:
13:
14:
15:
16:
17
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
20:
30:
31:
32:
33:
34
35:
36:
37
38:
39:
40:
41:

> Die Punkte in points liegen bereits als Pixelkoordinaten fiir Zoomstufe o vor;

> jede Zoomstufe vergrofiert das Bild um Faktor 2.

prevLevel < 32 > Zoomstufe ab der immer alles angezeigt wird
zoomMinPixels < 16

count <— length(points)
> Am Anfang sind alle Punkte nur im ,,hochsten” Level sichtbar
V0 < i < count : visibleZoomLevel[i] <— prevLevel
> Start und Ende sind aber immer sichtbar
visibleZoomLevel[0] < 0, visibleZoomLevel [count — 1] < 0
> Berechne fiir einige Zoomstufen /vl, welche Punkte aus der vorigen Zoomstufe
> sichtbar bleiben miissen, da sie zu weit weg von Nachbarpunkten liegen.
foreach vl in { 20, 16, 14, 12, 8, 4, 0 } do
> Der Abstand wird fiir die Zoomstufe prevLevel — 1 berechnet
7001 — zprevLevelfl
> Durchlaufe alle sichtbaren Knoten der Zoomstufe prevLevel mit Nachbarknoten
> previous ist allerdings der Vorgangerpunkt auf Zoomstufe [vl
previous < 0 > Punkt o ist immer sichtbar
next <1
> Bricht ab bei next = count — 1 da visibleZoomLevel [count — 1] = 0
while visibleZoomLevel [next] > prevLevel do
next < next +1
end while
while next < count —1 do
current < next,next < next +1
while visibleZoomLevel [next] > prevLevel do
next < next +1
end while
if || points[current], points[previous||| - zoom > zoomMinPixels
V|| points|current|, points[next||| - zoom > zoomMinPixels then
> current muss auch auf Zoomstufe /vl sichtbar sein
visibleZoomLevel [current] < lvl
previous — current
end if
> Andernfalls verschwindet current ab dieser Zoomstufe und darunter.
> previous ist dann auch in der ndchsten Runde der Vorgéanger auf Stufe [vl
end while
prevLevel < vl
end
return visibleZoomLevel

42: end function

37

4 Algorithmen

(a) disjunkt: es wird nichts gezeichnet

(b) Weg komplett im Kartenausschnitt: der komplette Weg wird gezeichnet

I

(c) anderweitige Uberlappung: Teilwege werden einzeln gepriift. Wenn keine weitere Aufteilung
vorhanden ist, wird der komplette Weg gezeichnet

Abbildung 4.4: Mogliche Lagen der begrenzenden Rechtecke zum dargestellten Kartenaus-
schnitt

38

4.4 Darstellung des Wegs

Algorithmus 4.4 Erstellen des Baums mit begrenzenden Rechtecken fiir Teilwege

struct TreeNode is

1:

2: first,last

3 boundingBox

s childl,child2

5. end

6: function CREATENODE(points, first,last)

7: if last - first > 4 then

8: mid < | (first + last) /2|

o: cl < CreateNode(points, first,mid),c2 <— CreateNode(points, mid, last)
10: return TreeNode(first <— min{cl.first, c2.first},last <— max{cl.first,c2.first},
11 boundingBox < merge(cl.boundingBox, c2.boundingBox),
12: childl < c1,child2 « ¢2)
13: end if
14: return TreeNode(first - max{0, first — 1},last < min{count — 1, last + 1},
15: boundingBox <— getboundingbox{points|i| | first <i < last},
16: child1 <+—null, child2 +—null)

17: end function

39

5 Androidanwendung ,,Offline ToureNPlaner

In diesem Kapitel werden die verschiedenen Funktionen der Androidanwendung gezeigt.
Die Darstellung der Karte reagiert auf die tiblichen Gesten zum Zoomen und Bewegen der
Karte. Mit einem langen Druck auf die Karte lassen sich zuerst der Ziel- und dann der
Startpunkt setzen. Beide konnen mit , Drag’'n’'Drop” auf der Karte verschoben werden, und
mit einem Klick auf das , Miilleimer”-Symbol entfernt werden.

Die gesetzten Punkte werden von der Anwendung automatisch auf den néchst gelegenen
Wegpunkt verschoben (siehe Abschnitt 4.1).

5.1 Einstellungen

Zur Inbetriebnahme der Anwendung miissen zuerst die gewtiinschten Daten auf das An-
droidgerdt geladen werden. Danach werden im , Settings”-Dialog die Pfade zu den Dateien
auf dem Gerét konfiguriert (siehe Abbildung 5.1). Wenn auf dem Androidgerait auch der
,OI File Manager” [OIF] installiert ist, konnen die Dateien und Verzeichnisse mit Hilfe eines
Dialogs ausgewdhlt werden (siehe Abbildung 5.2).

5.2 Suche

In Abbildung 5.3 ist eine Beispielsuche zu sehen. Wenn ein Ergebnis ausgewdahlt wird, wird
der entsprechende Ort auf der Karte als Ziel ausgewahlt. Die Suche reagiert so schnell wie
moglich auf jede Anderung der Eingabe; allerdings kann eine laufende Suche nur nach
Riickgabe einer Zeile unterbrochen werden (dies ist eine Limitierung in osmfind [OSMb]),
bevor eine neue Suche gestartet wird.

5.3 Routen

Wenn GPS aktiviert ist (siehe Abbildung 5.4), und kein manueller Startpunkt gesetzt wur-
de oder die Ansicht auf die GPS-Position zentriert ist (zweiter Knopf von rechts in der
Mentileiste), wird als Startpunkt die GPS-Position verwendet (siehe Abbildung 5.5).

41

5 Androidanwendung ,Offline ToureNPlaner”

Q Offline ToureNPlaner

FILE LOCATIONS (SEE ABOUT SECTION FOR DOWNLOAD LINKS)

Path to the mapsforge map file
8 mulat ineToureNPlaner/germany.map

Path to the graph file
/st /emulat ineToureNPlaner/graph.bin

Path to the directory containing the search database
/emulat OfflineToureNPlaner/germany-osmfind

storage emulated ineToureNPlaner germany-osmfind

This folder is e

Select current directory

[~

Abbildung 5.2: ,Offline ToureNPlaner” Verzeichnisauswahl

42

rttemberg, R

5.3 Routen

vald

Q informatik stuttg

Abbildung 5.3: ,Offline ToureNPlaner” Suche

Q Offline ToureNPlaner

Biisnau

Distance: 25.1 km Time: 17.

Abbildung 5.4: ,Offline ToureNPlaner” Menti

@

Activate GPS

Settings

Sonnenberg”
v

{
/
I

/

f

Mohringen Bahnhof

R

43

5 Androidanwendung ,Offline ToureNPlaner”

O Offline ToureNPlaner

—— T
Perouse Gebersheim
I

. |y HaUsen “weilimdorf

g ¢

Aiihlhausen Heimsheim b \ Gehenbi.ihlwnlf/busch’-
- 5 Leonberg ——Bergheirfi
2) G
hningen — Ramtel,
Hausen an der Wiirm - ,_'. Eltingen
= / 3 "‘-h..‘-.,
/ # ;
& / ! b Botnang b 5
Malmsheim / " 2 - §- J/Stuttg,a\n
= ”) N
Merklingen T Rennmgz.}- Y \ 3
- i Warmbronn) ol Stuttgart-Sid
4 H ¥ Z L) /,‘ &
A N, ¥ o~ 82
/ ')" E = & e . o Rohracker.
1zheim /]\ o 3 Biisnau a 3
a v / Degerloch .
. > ¥ ' 5 s Sillenbuch
A L ¥ N f\: p
)| N % A s PP S
¥ N, X / Riedenberg ™.
o “A.“ ,"', Vaihingef\/ S L I\i
s, - ? —
Ostelsheim Schafhausen S g ARl Asemwald
| Maichingen e Al < Birkach ~
Grafenau (Wiirttemberg) X BuriSwanytl, ™ I
= })| Lo S Steckfeld
Doffingen N | Fasanenhofi . Hohenheim
Sindelfingen = o W et S
A 3 L . / oberalch\ei'l) e
T > -
Gechingen) Darmgheim l a8 7z Musberg K :

a5),

Distance: 24.9 km-Time: 17.8 min

Abbildung 5.5: ,Offline ToureNPlaner” Verwendung der GPS-Position

O Offline ToureNPlaner

¢/ Wolfsburg Potsdam
Osnabriick Brunswick D
Bielefeld ' | yd
Paderborn .,"' Cottbus
Gelsenkirchen .~ Géttingen 4
ri7Hagen Kassel Leipzig
Neussr e ¥ | ;
Leve;!(ysgn X Erflrt r" ’ .Dre§den
Aachen “Bopn . .] {——Chemnitz
7 Gieflen 4
Koblenz y {
Frankfurt.am-Main', / Fi
Triér '-paimStadtW_ﬁrzburg ‘,.'
\ Yot Erlangen
Kaiserslautern W 4
Saarbriicken Heilbiomamt"" |
f 1 Regensburg

Distance: 643.4 km Time: 5 h 29 min

Abbildung 5.6: , Offline ToureNPlaner” Route mit gesetztem Start- und Endpunkt

44

5.3 Routen

Der Startpunkt kann auch manuell gesetzt werden, um z. B. grofiere Routen unabhidngig vom
aktuellen Standort zu planen, oder falls auf dem Androidgerit keine GPS-Ortung verfiigbar
ist (siehe Abbildung 5.6).

45

6 Zusammenfassung und Ausblick

Mit dem ,,Offline ToureNPlaner” steht ein brauchbarer Routenplaner fiir Androidgerate
zur Verfiigung, der ohne Internetverbindung auskommt. Das Suchen des kiirzesten Wegs
ist schnell, lediglich fiir lange Strecken ist fiir das Ersetzen der Shortcutkanten ein paar
Sekunden Geduld erforderlich. Durch die Integration von mapsforge als Kartenrenderer, der
zwar bei kleinen Zoomstufen etwas langsam ist, dafiir aber mit sehr kompakten Kartendaten
auskommt, und osmfind als ,Point-of-Interest”-Suche entstand eine Androidanwendung,
die sich auf Reisen aber auch im tdglichen Leben einsetzen lasst.

Ausblick

Um die kiirzeste Wege-Suche zu beschleunigen, konnte das Ersetzen der Shortcuts nur
soweit vorgenommen werden, wie, abhidngig von dem aktuell dargestellten Kartenausschnitt
und der Displayauflosung, fiir eine grobe Darstellung notwendig ist (sieche Abschnitt 4.3). In
einem zweiten Schritt kann dann im Hintergrund die komplette Ersetzung vorgenommen
werden, um auf Anderungen schnell reagieren zu kénnen.

Interessant wire auch eine Erweiterung auf mehrere Fortbewegungsmethoden; in der ak-
tuellen Implementierung ist in einem Graph nur eine Methode gespeichert, z. B. fiir ein
normales Auto, fiir das je nach Straffentyp eine bestimmte Fortbewegungsgeschwindigkeit
angenommen wird. Dies konnte erganzt werden um Wege und Zeiten fiir Fahrradfahrer und
Fufiganger, oder spezielle Einschrankungen wie ,,Auto, aber nicht schneller als 8o km/h".

Fiir den Einsatz zur echten Navigation fehlt eine Darstellung, und teilweise auch die Daten,
die auf die konkrete Umgebung eingeht. So fehlt das Einblenden von Hinweisen , Im néachsten
Kreisverkehr die 3. Ausfahrt” oder ,in 10om in die StrafSe Richtung ... einbiegen”, das
Vorlesen dieser Hinweise durch eine , Text-To-Speech”-Software und die visuelle Umsetzung
dazu, d. h. Schragansicht auf die Karte und eine Orientierung der Karte, so dass ,Oben” auf
der Karte dem Blick nach vorne entspricht.

47

Abbildungsverzeichnis

1.1
1.2

2.1

3.1
3.2
33

4.1
4.2
43

44

5.1
5.2
53
5-4
5-5
5.6

Suchrdume eines normalen Dijkstraund einerCH 6
,Offline ToureNPlaner” Androidanwendung 7
Suchrdaume fiir kiirzeste Wege-Suche von Stuttgart nach Berlin 17
Beispiel: Knoten eines Blocks mit zugewiesenen Kanten 24
Beispiel: Gitterzerlegung in Blocke, 26
Durchschnittliche Zeit aus 5 Laufen (nach einem Lauf fiir den Cache) in ms

fiir verschiedene Streckeno Lo L 29
Zelliibergreifende Suche vonKnoten, 33
Durchlaufen der Wegkanten zur Shortcut-Ersetzung 35
Entscheidung, ob ein Knoten auf einer kleineren Zoomstufe angezeigt werden

soll o 36
Mogliche Lagen der begrenzenden Rechtecke zum dargestellten Kartenausschnitt 38
,Offline ToureNPlaner” Einstellungen 42
,Offline ToureNPlaner” Verzeichnisauswahl 42
,Offline ToureNPlaner” Suche, 43
,Offline ToureNPlaner” Menti 43
,Offline ToureNPlaner” Verwendung der GPS-Position 44
,Offline ToureNPlaner” Route mit gesetztem Start- und Endpunkt 44

Tabellenverzeichnis

3.1

Messdaten fiir Testldufe mit verschiedenen Kompressionen 30

49

Verzeichnis der Algorithmen

Verzeichnis der Algorithmen

50

2.1
2.2

4.1
4.1

4.2
43

44

Dijkstra-Algorithmuso
Radix-Heaps

Algorithmus zum Finden des zu einer Position nidchstgelegenen Knotens . . .
Algorithmus zum Finden des zu einer Position nidchstgelegenen Knotens

(Fortsetzung)
Laden des Auf- bzw. Abwartsgraph von bzw. zu einem Knoten
Berechnen der Zoomstufen ab denen Wegpunkte fiir die Darstellung verwen-

detwerden
Erstellen des Baums mit begrenzenden Rechtecken fiir Teilwege

Literaturverzeichnis

[AMOTo9o] R. K. Ahuja, K. Mehlhorn, J. Orlin, R. E. Tarjan. Faster algorithms for the shortest

[Bahi2]

[CHCa]

[CHCDb]

[DEF]

[Dijs9]

[GSSDo8]

[JNT]

[LZM]

[MFEQOa]
[MFODb]

[OIF]

[OSMa]

path problem.]. ACM, 37(2):213—223, 1990. doi:10.1145/77600.77615. URL
http://doi.acm.org/10.1145/77600.77615. (Zitiert auf Seite 16)

D. Bahrdt. Multimodale Bereichsanfragen im Kontext von Routenplanern. Diplom-
arbeit, Universitdt Stuttgart, Fakultdt Informatik, Elektrotechnik und Informati-
onstechnik, Germany, 2012. URL http://www2.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3326&engl=0. (Zitiert auf Seite 5)

CHConstructor. https://github.com/ToureNPlaner/CHConstructor. (Zitiert
auf Seite 8)

Fiir Offline ToureNPlaner erweiterter CHConstructor. https://github.com/
stbuehler/CHConstructor. (Zitiert auf Seite 8)

DEFLATE. https://tools.ietf.org/html/rfc1951. (Zitiert auf den Seiten 7
und 28)

E. Dijkstra. A note on two problems in connection with graphs. Numeri-
sche Mathematik, 1:269—271, 1959. URL http://www.bibsonomy.org/bibtex/
2a0cbd6£680048146£2898942717a%abe/wvdaalst. (Zitiert auf Seite 5)

R. Geisberger, P. Sanders, D. Schultes, D. Delling. Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In C. C. McGeoch,
Herausgeber, WEA, Band 5038 von Lecture Notes in Computer Science, S. 319-333.
Springer, 2008. (Zitiert auf den Seiten 6 und 13)

Java Native Interface Specification. http://docs.oracle.com/javase/7/docs/
technotes/guides/jni/spec/jniTOC.html. (Zitiert auf Seite 7)

Lempel-Ziv—-Markov chain algorithm. http://www.7-zip.org/sdk.html. (Zi-
tiert auf den Seiten 7 und 28)

mapsforge. https://code.google.com/p/mapsforge/. (Zitiert auf Seite 5)

Modifiziertes mapsforge-Plugin fiir [TOU]. https://github.com/
tourenplaner/mapsforge-fork. (Zitiert auf Seite 7)

Androidanwendung OI File Manager. https://play.google.com/store/apps/
details?id=org.openintents.filemanager. (Zitiert auf Seite 41)

OpenStreetMap. http://www.openstreetmap.org/. (Zitiert auf Seite 6)

51

http://doi.acm.org/10.1145/77600.77615
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3326&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3326&engl=0
https://github.com/ToureNPlaner/CHConstructor
https://github.com/stbuehler/CHConstructor
https://github.com/stbuehler/CHConstructor
https://tools.ietf.org/html/rfc1951
http://www.bibsonomy.org/bibtex/2a0cbd6f680048146f2898942717a9a5e/wvdaalst
http://www.bibsonomy.org/bibtex/2a0cbd6f680048146f2898942717a9a5e/wvdaalst
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://www.7-zip.org/sdk.html
https://code.google.com/p/mapsforge/
https://github.com/tourenplaner/mapsforge-fork
https://github.com/tourenplaner/mapsforge-fork
https://play.google.com/store/apps/details?id=org.openintents.filemanager
https://play.google.com/store/apps/details?id=org.openintents.filemanager
http://www.openstreetmap.org/

Literaturverzeichnis

[OSMDb]

[Sch13]

[Se]

[TOU]

[XZ]]

osmfind: Offline OpenStreetMap text search. http://cgit.funroll-loops.de/
osmfind/. (Zitiert auf den Seiten 5, 7 und 41)

N. Schnelle. Distributed Shortest-Path Computation. Bachelorarbeit: Uni-
versitdt Stuttgart, Institut fiir Formale Methoden der Informatik, Algo-
rithmik, 2013. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=BCLR-0020&engl=0. (Zitiert auf Seite 15)

Seren Sandmann Pedersen. The Radix Heap. http://ssp.impulsetrain.com/
2013-05-25_The_Radix_Heap.html. (Zitiert auf Seite 16)

ToureNPlaner-Androidanwendung. https://play.google.com/store/apps/
details?id=de.uni.stuttgart.informatik.ToureNPlaner. (Zitiert auf den Sei-
ten 8 und 51)

xz-jni Implementierung. https://github.com/stbuehler/xz-jni. (Zitiert auf
Seite 7)

Alle URLs wurden zuletzt am 6. 8. 2013 gepriift.

52

http://cgit.funroll-loops.de/osmfind/
http://cgit.funroll-loops.de/osmfind/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BCLR-0020&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BCLR-0020&engl=0
http://ssp.impulsetrain.com/2013-05-25_The_Radix_Heap.html
http://ssp.impulsetrain.com/2013-05-25_The_Radix_Heap.html
https://play.google.com/store/apps/details?id=de.uni.stuttgart.informatik.ToureNPlaner
https://play.google.com/store/apps/details?id=de.uni.stuttgart.informatik.ToureNPlaner
https://github.com/stbuehler/xz-jni

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	Inhaltsverzeichnis
	1 Einleitung
	1.1 Überblick über die entwickelten Komponenten
	1.2 Gliederung

	2 Präliminarien
	2.1 Dijkstra-Algorithmus
	2.1.1 Definitionen
	2.1.2 Algorithmus
	2.1.3 Beispiel
	2.1.4 Laufzeit

	2.2 Contraction-Hierarchies
	2.2.1 Erstellen einer Contraction-Hierarchy
	2.2.2 Verwendung
	2.2.3 Coregraph

	2.3 Radix-Heaps
	2.3.1 Beispiel

	3 Organisation der Daten
	3.1 Übersicht über die benötigten Daten
	3.2 Gitter
	3.3 Binärformat
	3.3.1 Metadaten
	3.3.2 Geographische Positionen der Knoten
	3.3.3 Kantenindizes für die Knoten
	3.3.4 Kantendaten
	3.3.5 Erweiterte Kantendaten

	3.4 Kompression

	4 Algorithmen
	4.1 Knotensuche
	4.2 Laden der für Dijkstra benötigten Teilgraphen
	4.3 Shortcut-Ersetzung
	4.4 Darstellung des Wegs

	5 Androidanwendung „Offline ToureNPlaner“
	5.1 Einstellungen
	5.2 Suche
	5.3 Routen

	6 Zusammenfassung und Ausblick
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Algorithmen
	Literaturverzeichnis

