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1 Einleitung

Eine Welt ohne Routenplaner scheint heutzutage unvorstellbar. Sie haben den Atlas größten-
teils verdrängt, der meist nur noch als absolute Notlösung ein Schattendasein fristet.

Die Navigationsgeräte, die z. B. in Autos verbaut werden, haben dabei Karten für bestimmte
Bereiche (z. B. Deutschland, Europa, usw.) in ihrem lokalem Speicher. Weitere Bereiche und
Aktualisierungen werden normalerweise von den Herstellern angeboten, die sich ihre Daten
aber gut bezahlen lassen. So sind häufig die Kartendaten eines Navigationsgeräts ein paar
Jahre veraltet, da die Anwender sich das Geld für die Aktualisierungen gerne sparen.

Als Alternative gibt es im Internet verfügbare Routenplaner (wie zum Beispiel https://
maps.google.com oder http://www.bing.com/maps/). Die meisten Smartphones und Tablets
werden mit bereits vorinstallierten Routenplaneranwendungen ausgeliefert, die auf solche
Dienste zurückgreifen und dazu bei der Benutzung eine Internetverbindung voraussetzen.
Dafür sind die Kartendaten meistens aktuell, und die Verwendung des Onlinedienstes an
sich ist kostenlos.

Allerdings steht aus Kostengründen (für den Internettarif auf dem Gerät ganz allgemein
oder speziell auch im Ausland), aus Datenschutzgründen (der verwendete Onlinedienst kann
das Verhalten einzelner Benutzer verfolgen) oder aus dem Grund, dass die Mobilfunknetz-
abdeckung den aktuellen Ort nicht oder nur mit geringer Bandbreite erfasst oder dass dem
verwendeten Gerät die Hardware dazu fehlt (z. B. Tablets, die nur einen WLAN-Adapter
haben), nicht immer eine ausreichende Internetverbindung zur Verfügung.

Die Leistungsfähigkeit der mobilen Geräte ist jedoch gut genug, um Routenplaner komplett
offline zu betreiben (abgesehen von der Installation und Aktualisierungen). Mit maps-
forge [MFOa] existiert bereits ein Renderer, und mit osmfind [Bah12][OSMb] steht eine
fortschrittliche „Point-of-Interest“-Suche zur Verfügung.

In dieser Arbeit wird nun eine Implementierung für die Berechnung von kürzesten We-
gen vorgestellt, die auch auf Smartphones und Tablets auf großen Wegenetzen (z. B. das
Straßennetz von Deutschland) effizient arbeitet. In Kombination mit mapsforge und osm-
find entsteht damit eine Androidanwendung, die auch ohne Internetverbindung einen
Routenplaner anbietet.

Eine einfache Methode zum Berechnen von kürzesten Wegen in Graphen ist der Dijkstra-
Algorithmus [Dij59]. Er muss dazu jedoch den kompletten Teilgraph um den Startknoten
absuchen, der sich im Suchradius befindet (siehe Abbildung 1.1); im Falle von Straßengraphen
sind dies ungefähr quadratisch viele Knoten in Relation zum Abstand von Start- und
Zielknoten. Auf Smartphones ist dies nicht nur ein Problem für die CPU, die die Daten
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1 Einleitung

verarbeiten muss, sondern bereits das Lesen des Graphen von einem Speichermedium
benötigt viel Zeit.

(a) Dijkstra (b) contraction hierarchy

Abbildung 1.1: Suchräume eines normalen Dijkstra und einer CH

Die Verwendung von „Contraction-Hierarchies“ (CHs) [GSSD08] ist deutlich effizienter. Die
Größe des zur Berechnung eines kürzesten Weges nötigen Teilgraphs, auf den dann der
einfache Dijkstra-Algorithmus angewendet werden kann, hängt dabei nicht vom Abstand des
Start- und Zielknoten ab. Der entsprechende Teilgraph dazu kann relativ schnell komplett
eingelesen werden, anstatt Knoten erst dann zu laden, wenn sie benötigt werden.

Die vorgestellte Implementierung verwendet eine solche CH, um auf Androidsystemen einen
„Offline ToureNPlaner“ (siehe Abbildung 1.2) zu implementieren. Die Implementierung
wurde auf Grundlage von OpenStreetMap-Daten [OSMa] programmiert, ist aber nicht an
diese gebunden. Alle Beispiele und Messwerte in diesem Dokument beziehen sich auf
OpenStreetMap-Daten für Deutschland von Anfang 2013. Der Straßengraph enthält nur von
Autos offiziell befahrbare Straßen.

1.1 Überblick über die entwickelten Komponenten

Die vorgestellte Implementierung knüpft an verschiedene bereits existierende Projekte an.
Teilweise wurden diese im Rahmen der Arbeit erweitert. Im Wesentlichen besteht die Imple-
mentierung aus zwei Anwendungen: der Androidanwendung „Offline ToureNPlaner“ und
der Hilfsanwendung „CHConstructor“, die die benötigten Daten für die Androidanwendung
aufbereitet.
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1.1 Überblick über die entwickelten Komponenten

Abbildung 1.2: „Offline ToureNPlaner“ Androidanwendung

Offline ToureNPlaner

Die Androidanwendung verwendet folgende Komponenten:

• Ein modifiziertes mapsforge Plugin [MFOb]. Das Plugin wird zum Rendern der Karte
verwendet. Die benötigten Kartendaten können von http://download.mapsforge.

org/ geladen werden.

• Für die Suche nach Koordinaten ausgehend von Ortsbeschreibungen wird das Javaplu-
gin von osmfind[OSMb] verwendet. osmfind verwendet das „Java Native Interface“
(JNI) [JNI], da die eigentliche Implementierung in C++ programmiert wurde. Das
Plugin muss für jede Zielarchitektur extra kompiliert werden.

• Für die optionale Kompression der Straßendaten wurde xz-jni [XZJ] entworfen. Auch
xz-jni verwendet JNI, umd muss für jede Architektur extra kompiliert werden. xz-
jni unterstützt sowohl xz [LZM] und eine eigene Variante von DEFLATE [DEF] mit
Indextabelle.

• Das Laden der benötigten Teilgraphen auf Basis der CH-Daten, die mit Hilfe des
CHConstructors exportiert wurden, und die Suchen nach kürzesten Wegen darin
wurde direkt in der Anwendung implementiert.
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1 Einleitung

CHConstructor

CHConstructor [CHCa] ist ein Projekt der Abteilung Algorithmik des Institut für Formale
Methoden der Informatik an der Universität Stuttgart, das für diese Arbeit unter [CHCb]
um ein neues Exportformat erweitert wurde. CHConstructor wird z. B. auch für den On-
lineservice http://tourenplaner.informatik.uni-stuttgart.de verwendet, der von der
ToureNPlaner-Androidanwendung [TOU] verwendet wird.

Für das Erstellen der CH benötigt der CHConstructor einige Minuten und rund 20GB
Arbeitsspeicher auf einem Intel Core i7-3770 mit 3.40 GHz.

1.2 Gliederung

Die Arbeit ist in folgende Kapitel aufgeteilt: in Kapitel 2 werden die grundlegenden Algo-
rithmen für die Kürzeste-Wege-Suche vorgestellt. Kapitel 3 beschreibt die Struktur der Daten
auf der SD-Karte; diese ist die Grundlage dafür, dass die Algorithmen aus Kapitel 4 die
Daten effizient verarbeiten können. In Kapitel 5 wird dann die fertige Androidanwendung
präsentiert.

8

http://tourenplaner.informatik.uni-stuttgart.de


2 Präliminarien

In diesem Kapitel werden die grundlegenden Algorithmen und Strukturen für die Suchen
nach kürzesten Wegen vorgestellt, die in der Implementierung verwendet werden.

2.1 Dijkstra-Algorithmus

Der Dijkstra-Algorithmus ist das Standardverfahren für die Kürzeste-Wege-Suche, und wird
auch für CHs benötigt.

Zunächst benötigen wir einige Definitionen für Graphen als Grundlage:

2.1.1 Definitionen

Definition 2.1. Sei G = (V, E, δ), E ⊆ V ×V, δ : E→ R, dann heißt G gerichteter, kantengewich-
teter Graph mit Knoten V und durch δ gewichtete Kanten E.

In dieser Arbeit werden nur endliche Graphen betrachtet, d. h. V endlich und damit zwangs-
läufig auch E endlich. Zudem sind die Kantengewichte nie negativ, d. h. ∀e ∈ E : δ(e) ≥ 0.

Definition 2.2. In einem Graph G = (V, E, δ) heißt p = v1 → v2 → . . .→ vn ∈ V+ Weg von v1
nach vn, wenn ∀i ∈ {1, 2, . . . , n− 1} : (vi, vi+1) ∈ E. Die Weglänge l(p) := ∑n−1

i=1 δ(vi, vi+1) ist
die Summe aller durchlaufener Kantengewichte.

Ein kürzester Weg von a nach b hat minimale Weglänge; existiert mindestens ein Weg von a nach b,
so existiert auch ein kürzester Weg (es gibt nur endlich viele Wege ohne Zyklen . . . xv1 . . . vnx . . .,
und Zyklen können immer entfernt werden ohne den Weg zu verlängern).

d(a, b) :=

{
l(p) ∃kürzester Weg p von a nach b

∞ wenn kein solches p existiert

Definition 2.3. Existiert für alle Knoten a und b ein Weg von a nach b, so heißt G stark zusammen-
hängend.
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2 Präliminarien

Algorithmus 2.1 Dijkstra-Algorithmus
1: function findShortestPath(a, b)
2: p← new PriorityQueue()
3: C ← {a}
4: . dist(v): Länge des bisher kürzesten gefundenen Weges von a nach v
5: . Wenn v ∈ C dann ist d(a, v) = dist(v) die Länge des kürzesten Weges von a nach v
6: . prev(v): Vorgänger von v auf dem bisher kürzesten gefundenen Weg von a nach v
7: dist : V 7→ R, prev : V 7→ V
8: ∀v : dist(v)← ⊥, prev(v)← ⊥
9: dist(a)← 0

10: foreach n in {n|(a, n) ∈ E} do
11: if n /∈ C then
12: dist(n)← δ(a, n), prev(n)← a
13: Insert(p, Element(key← dist(n), value← n))
14: end if
15: end
16: while b /∈ C do
17: if IsEmpty(p) then
18: return . Es existiert kein Weg von a nach b
19: end if
20: v← DeleteMin(p)
21: C ← C ∪ {v}
22: foreach n in {n|(v, n) ∈ E} do
23: if n /∈ C ∧ (dist(n) = ⊥∨ dist(n) > dist(v) + δ(v, n) then
24: d← dist(n)
25: dist(n)← dist(v) + δ(v, n), prev(n)← v
26: if d = ⊥ then
27: Insert(p, Element(key← dist(n), value← n))
28: else
29: DecreaseKey(p, Element(key← d, value← n), dist(n))
30: end if
31: end if
32: end
33: end while
34: . Rekonstruktion des Weges
35: p← b : V+, v← b
36: while v 6= a do
37: v← prev(v)
38: p← (v→ p)
39: end while
40: return (p, dist(b)) . gefundener kürzester Weg und dessen Länge
41: end function
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2.1 Dijkstra-Algorithmus

2.1.2 Algorithmus

Um den kürzesten Weg von a nach b zu suchen, baut der Dijkstra-Algorithmus (siehe
Algorithmus 2.1) eine Menge C von Knoten v auf, für die d(a, v) bereits bekannt ist. Am
Anfang ist C = {a}, da d(a, a) = 0. Dann sucht er wiederholt einen Knoten v /∈ C mit
∃c ∈ C : (c, v) ∈ E und d(a, c) + δ(c, v) minimal. Für einen solchen Knoten gilt d(a, v) =
d(a, c) + δ(c, v) (andere Wege nach v müssten über andere Knoten außerhalb von C gehen,
die nicht kürzer sein können), darum kann er der Menge C hinzugefügt werden.

Der Algorithmus bricht ab, wenn er b in C aufgenommen hat oder keine weiteren Knoten
erreicht werden können.

Um den kürzesten Weg auszugeben, kann bei der Aufnahme von v in C zu v der verwendete
Knoten c gespeichert werden. Damit kann nach erfolgreicher Suche von b rückwärts der
kürzeste Weg rekonstruiert werden.

Die von C erreichbaren Knoten, die nicht in C liegen, werden üblicherweise in einer Priority-
Queue gespeichert, um den Knoten v schnell zu finden. Die Priority-Queue kann eine
besondere Monotonieeigenschaft verwenden: es werden nur Schlüssel einfügt, die mindes-
tens so groß wie das zuletzt entnommene Element sind. In Abschnitt 2.3 wird dazu die
Radix-Heap Struktur vorgestellt, die eine solche Priority-Queue implementiert, wenn die
Kantengewichte alle ganzzahlig sind, d. h. δ(V) ⊆N≥0.
Wenn ein Knoten v in C eingefügt wird, müssen alle Kanten von v aus betrachtet werden.
Wenn dabei neue Wege oder neue bekannte kürzeste Wege zu Knoten gefunden werden,
müssen die Einträge in der Priority-Queue entsprechend angepasst werden.

2.1.3 Beispiel

In folgendem Graph wird der kürzeste Weg von a1 nach a6 gesucht. Die Knoten a1, a2
und a3 sind bereits in C aufgenommen. Die Priority-Queue enthält nun alle direkt von C
erreichbaren Knoten, die nicht bereits in C sind; dies sind a4 und a5 mit den Schlüsseln 5
(der Weg von a1 aus ist 5 lang, der Weg über a3 ist länger) und 6 (a5 ist von C nur über a2
direkt erreichbar).

a1

a2

a3

a4

a5

a6

2

4

5

4

2

2

4

2
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2 Präliminarien

Das minimale Element in der Priority-Queue ist also a4 mit Schlüssel 5, und wird in der
nächsten Runde in C aufgenommen. Außerdem wird als Vorgänger von a4 auf dem kürzesten
Weg von a1 nach a4 der Knoten a1 gespeichert, und d(a1, a4) = 5:

a1

a2

a3

a4

a5

a6

2

4

5

4

4

2

2

2

Dabei wird der Knoten a6 mit Schlüssel 9 in die Priority-Queue aufgenommen, da er von
a4 ∈ C erreichbar ist. a5 ist nun auch über a4 erreichbar, aber der neue Weg ist nicht kürzer
wie der bereits bekannte.

Jetzt ist das minimale Element in der Priority-Queue der Knoten a5 mit Schlüssel 6, und
wird in C aufgenommen:

a1

a2

a3

a4

a5

a6

2

4

5

4

2

4

2

2

Der Knoten a6 wird in der Priority-Queue nun verkleinert auf den Schlüssel 8, da über
a5 ∈ C nun ein neuer kürzerer Weg bekannt ist. Nach der Aufnahme von a6 als letzten
Knoten in C ist der kürzeste Weg von a1 nach a6 fertig berechnet:
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2.2 Contraction-Hierarchies

a1

a2

a3

a4

a5

a6

4

5

2

2

4

2

4

2

Der kürzeste Weg a1a2a5a6 von a1 nach a6 mit Länge 8.

2.1.4 Laufzeit

Alle von a erreichbaren Knoten v mit d(a, v) < d(a, b) sind am Ende in C gespeichert. Bei
Suchen auf einem Straßennetz sind das also alle Knoten innerhalb des Kreises um a mit
Radius d(a, b), also im Schnitt quadratisch viele Knoten in Bezug auf den Abstand d(a, b).

Insbesondere wenn zwischen a und b eine Stadt mit vielen kleinen Nebenstraßen auftaucht,
durchsucht Dijkstra die komplette Stadt - es könnte ja sein, dass es mittendrin mit einem
„Tunnel“ eine schnelle Direktverbindung zum Ziel gibt.

Mit einer normalen Priority-Queue liegt die Laufzeit in O(|E|+ |V| · log |V|), wobei nur die
Knoten und Kanten gezählt werden müssen, die auch besucht werden, d. h. die am Ende
von C aus erreichbaren Knoten und Kanten.

2.2 Contraction-Hierarchies

2.2.1 Erstellen einer Contraction-Hierarchy

Die Grundlage für das Erstellen einer Contraction-Hierarchy (CH) ist eine Ordnung auf den
Knoten. Das Ziel ist, dass höhere Knoten in der Ordnung zentrale Knotenpunkte darstellen,
über die viele kürzeste Wege laufen, während die niedrigen Knoten die Details des Graphen
darstellen. Der Algorithmus fängt dann von unten in der Ordnung an, und kontrahiert die
Knoten. Der nächste Knoten in der Ordnung wird dabei meistens erst dann festgelegt, wenn
die vorigen bereits kontrahiert wurden, eine Heuristik wählt dabei aus welcher Knoten als
nächstes kommt. Das Ziel einer Heuristik sollte sein, die Anzahl der Knoten und insbesondere
Kanten in den Aufwärts- bzw. Abwärtsgraphen (siehe unten) klein zu halten. Für weitere
Details einer solchen Heuristik sei auf [GSSD08] und die CHConstructor-Implementierung
(siehe Abschnitt 1.1) verwiesen.
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2 Präliminarien

u

v

w

a b

a + b

Für die Kontraktion eines Knotens v werden alle Wege p = u→ v→ w betrachtet, für die
v < u, v < w gilt. Ist p ein kürzester Weg von u nach w, so wird ein neue Kante von u nach
w mit dem Gewicht l(p) eingefügt, falls die Kante nicht bereits existiert und gleich lang ist.
Eine solche neue Kante heißt „Shortcut“.

Der nach Kontraktion aller Knoten entstandene Graph ist dann die Contraction-Hierarchy.

Für Wege in der CH kann jeder verwendete Shortcut durch den zugrunde liegenden Weg
p ersetzt werden (siehe auch Abschnitt 4.3), ohne die Länge des Weges zu verändern.
Nach endlich vielen Schritten enthält ein Weg dann keine Shortcuts mehr, also haben die
eingefügten Shortcuts keinen Einfluss auf die Länge der kürzesten Wege in dem Graph.

2.2.2 Verwendung

Wenn nun in einem kürzesten Weg p ein Teilweg u→ v→ w mit v < u < w oder v < w < u
auftaucht, so kann dieses Teilstück durch u→ w ersetzt werden, denn u→ v→ w ist auch
ein kürzester Weg von u nach w, und nach Kontraktion von v muss es eine direkte Kante
von u nach w geben mit Gewicht l(u→ v→ w). Da durch eine solche Ersetzung der Weg
um einen Knoten kürzer wird, sind nur endliche viele solcher Ersetzungen möglich.

Sei nun h der größte Knoten in dem Weg p (dieser kann nie bei einer Ersetzung verloren
gehen), so kann p durch endlich viele Ersetzungen in einen Weg pch der Form a1 → . . .→
an = h = bm → . . .→ b1 transformiert werden, wobei sowohl die ai als auch die bi monoton
aufsteigend sortiert sind:

a1

a2

an−1

h
bm−1

b2

b1

Definition 2.4.
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2.2 Contraction-Hierarchies

• Aufwärtskanten von v: Eup(v) := {(v, w) ∈ E | v < w}

• Abwärtskanten zu v: Edown(v) := {(w, v) ∈ E | v < w}

• Aufwärtsgraph von v: E∗up(v) := Eup(v) ∪
⋃

(v,w)∈Eup(v)
E∗up(w)

• Abwärtsgraph zu v: E∗down(v) := Edown(v) ∪
⋃

(w,v)∈Edown(v)
E∗down(w)

Nun kann der transformierte Weg pch bereits in E∗up(a1) ∪ E∗down(b1) gefunden werden, d. h.
für die Suche nach einem kürzesten Weg von a nach b genügt der Teilgraph E∗up(a)∪ E∗down(b).
Durch Ersetzung der Shortcuts kann danach wieder der dazugehörige kürzeste Weg im
Originalgraph gefunden werden.

2.2.3 Coregraph

Die Aufwärts- bzw. Abwärtsgraphen für verschiedene Knoten enthalten einen sehr großen
Teil aller höheren Knoten. Es bietet sich an, ab einem bestimmten Knoten c beim Erstellen
der CH die Knoten nicht mehr zu kontrahieren [Sch13]. Die Knoten v ≥ c bilden dabei den
Coregraphen C (mit den Kanten {(v, w) ∈ G | v, w ≥ c}), ihre Ordnung untereinander spielt
keine Rolle. Falls ein kürzester Weg p durch den Coregraphen geht, kann er zu einem Weg
pch′ der Form a1 → . . .→ an = c1 → . . .→ ck → bm → . . .→ b1 transformiert werden, wobei
ai und bi wieder aufsteigend sortiert sind und ci ≥ Knoten im Coregraph sind.

a1

a2

an−1

c1 ck

bm−1

b2

b1

Coregraph

Definition 2.5.

• Aufwärtsgraph ohne Core von v: E′∗up(v) :=


∅ wenn v ∈ C

Eup(v) ∪
⋃

(v,w)∈Eup(v)
E′∗up(w) wenn v /∈ C
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2 Präliminarien

• Abwärtsgraph ohne Core zu v: E′∗down(v) :=

∅ wenn v ∈ C

Edown(v) ∪
⋃

(w,v)∈Edown(v)
E′∗down(w) wenn v /∈ C

pch′ kann nun in E′∗up(a1) ∪ E′∗down(b1) ∪ C gefunden werden; wenn p nicht durch den Co-
regraph geht, so funktioniert obige Transformation, und pch kann in E′∗up(a1) ∪ E′∗down(b1)
gefunden werden. Für die Suche nach einem kürzesten Weg von a nach b genügt also der
Teilgraph E′∗up(a) ∪ E′∗down(b) ∪ C.

Die Aufwärts- bzw. Abwärtsgraphen ohne Core sind dabei (je nach Wahl von c) deutlich
kleiner, dafür wird der Coregraph natürlich auch größer. Das Einlesen des Coregraphen
von langsamem Speicher ist dabei jedoch deutlich schneller (er kann im Gegensatz zu den
Aufwärts- bzw. Abwärtsgraphen in einem Stück gelesen werden), und er kann für mehrere
Suchen in schnellerem Speicher gehalten werden (solange er nicht zu groß wird).

2.3 Radix-Heaps

Eine Priority-Queue bietet normalerweise folgende Operationen:

• Insert: Fügt ein neues Element ein

• DecreaseKey: Verkleinert ein bereits vorhandenes Element

• DeleteMin: Entfernt das kleinste Element und gibt es zurück

• IsEmpty: Testet ob die Priority-Queue leer ist

Für den Dijkstra-Algorithmus aus Abschnitt 2.1.2 besteht ein Element aus zwei Teilen:

• Einer positiven Ganzzahl als „Schlüssel“, nach dem sortiert wird

• Einem zugeordneten Wert für den Knoten

Im Radix-Heap[AMOT90] werden die Elemente in Buckets einsortiert; jeder Bucket bekommt
dabei ein Intervall von Schlüsseln zugewiesen. Die Intervalle werden mit wachsendem Ab-
stand zum zuletzt entfernten Element exponentiell größer und sind aufsteigend sortiert. Das
minimale Element befindet sich also in dem ersten nicht leeren Bucket. Es kann kein Element
eingefügt werden, das kleiner als das zuletzt entfernte Element ist; dieselbe Einschränkung
gilt für die DecreaseKey-Operation: das verkleinerte Element darf nicht kleiner als das zuletzt
entfernte Element sein.

Beim Entfernen des minimalen Elements müssen die anderen Elemente aus dem Bucket, in
dem das minimale Element war, neu einsortiert werden. Die Intervallzuordnung muss aber so
gewählt werden, dass die anderen Buckets weiter hinten unverändert bleiben. Damit bewegt
sich jedes Element beim neu einsortieren weiter nach vorne in der Liste von Buckets.

Algorithmus 2.2 (eine Variante nach [Sø]) verwendet für die Bucketzuordnung den Index
des größten unterschiedlichen Bits (Zählung ab 1, 0 für keinen Unterschied) zum zuletzt
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2.3 Radix-Heaps

(a) Dijkstra-Suchraum (b) Knoten im Coregraph

(c) Besuchte Knoten in der CH (d) Knoten im Aufwärts- bzw Abwärtsgraph

Abbildung 2.1: Suchräume für kürzeste Wege-Suche von Stuttgart nach Berlin
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2 Präliminarien

entfernten Element. Alle Schlüssel im gleichen Bucket i haben also für Bits ≥ i die gleichen
Werte; nämlich für Bits > i die gleichen Werte wie im zuletzt entfernten Element und, für
i ≥ 1, das i. Bit negiert . Durch diese Methode gibt es je nach Bitmuster des zuletzt entfernten
Elements einige Buckets, deren Intervalle vor dem zuletzt entferntem Element liegen; diese
bleiben leer. Ohne diese nicht verwendbaren Intervalle sind die Intervalle dann wie gefordert
aufsteigend sortiert.

Wenn nun das nächste kleinste Element entfernt wird, so liegt es in einem bestimmten
Bucket i. Alle Buckets davor müssen leer sein, da es sonst nicht das kleinste Element ist.
Die Intervalle der Buckets danach ändern sich nicht, da für j > i das j-te Bit im entfernten
Element den gleichen Wert hat wie im davor entfernten Element. Wenn das kleinste Element
nicht in Bucket 0 lag, so werden alle Elemente aus dem Bucket i in Buckets davor eingeordnet,
da nur Bits kleiner i sich von dem kleinsten Element unterscheiden können.

2.3.1 Beispiel

Wenn das zuletzt entfernte Element 101102 = 22 ist, so ergibt sich folgende Zuordnung der
Intervalle auf die Buckets:

Index Intervall Intervallgröße
0 101102(22) 1

1 101112(23) 1

2 101002 . . . 101012(20 . . . 21) 2

3 100002 . . . 100112(16 . . . 19) 4

4 110002 . . . 111112(24 . . . 31) 8

5 000002 . . . 011112(0 . . . 15) 16

6 1000002 . . . 1111112(32 . . . 63) 32

. . .
i 2(i− 1) . . . 2i − 1 2(i− 1)

Die Buckets 2, 3 und 5 (entsprechen den Positionen der „1“-Bits in 101102) werden nicht
verwendet, da ihre Intervalle vor 22 liegen. Die verbleibenden Intervalle beginnen bei
22, 23, 24, 32, 64, . . ..

Damit könnte der Radix-Heap folgendermaßen aussehen:
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2.3 Radix-Heaps

Algorithmus 2.2 Radix-Heaps
1: struct Element is
2: key : unsignedinteger
3: value : object
4: end
5: struct RadixHeap is
6: last_key : unsigned integer← 0
7: . Jeder „Bucket“ ist ein dynamisches Array von Elementen.
8: . Schlüssel in buckets[i] unterscheiden sich von last_key im (i− 1)-ten Bit
9: . und möglicherweise in kleineren Bits, und gar nicht für i = 0.

10: . Schlüssel innerhalb eines Buckets buckets[i] unterscheiden sich höchstens
11: . in den Bits 0 bis i− 2, und decken damit ein Intervall der Größe 2max(0,i−1) ab
12: buckets : Element[][]
13: end
14: function BucketIndex(heap, key)
15: if heap.last_key = key then
16: return 0
17: end if
18: return 1 + blog2(heap.last_key xor key)c
19: end function
20: procedure Insert(heap, element)
21: bucket← BucketIndex(heap, element.key)
22: Append(buckets[bucket], element)
23: end procedure
24: procedure DecreaseKey(heap, oldelement, newkey)
25: oldbucket← BucketIndex(heap, oldkey)
26: newbucket← BucketIndex(heap, newkey)
27: RemoveValue(buckets[oldbucket], oldelement)
28: Insert(heap, Element(key← newkey, value← oldelement.value))
29: end procedure
30: function DeleteMin(heap)
31: bucket← min{i | Length(buckets[i]) > 0}
32: if bucket 6= 0 then
33: heap.last_key← min{e.key | e ∈ buckets[bucket]}
34: foreach e in buckets[bucket] do
35: . Elemente landen in Buckets mit kleinerem Index
36: . Die kleinsten Elemente landen in Bucket 0, eins davon wird unten entfernt
37: Insert(heap, e)
38: end
39: Clear(buckets[bucket])
40: end if
41: element← RemoveLast(buckets[0])
42: return element
43: end function
44: function IsEmpty(heap)
45: return

∧{Length(b) = 0 | b ∈ buckets}
46: end function
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2 Präliminarien

last_key = 22 0

1

2

3

4 29 25 26

5

6 42 49 51

Wenn nun ein Element mit Schlüssel 31 eingefügt wird, wird es einfach im richtigen Bucket
angehängt. Die Reihenfolge innerhalb eines Buckets spielt keine Rolle:

last_key = 22 0

1

2

3

4 29 25 26 31

5

6 42 49 51

Das kleinste Element ist im ersten nicht leeren Bucket; in diesem Fall das Element 25 in
Bucket 4. Beim Entfernen dieses Elements werden die anderen Elemente aus Bucket 4 auf
die Buckets 0 bis 3 neu sortiert.

Zuerst die neuen Intervallgrenzen (ab Bucket 5 ändern sich diese nicht), danach der neue
Radix-Heap.
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2.3 Radix-Heaps

Index Intervall Intervallgröße
0 110012(25) 1

1 110002(24) 1

2 110102 . . . 110112(26 . . . 27) 2

3 111002 . . . 111112(28 . . . 31) 4

4 100002 . . . 101112(16 . . . 23) 8

last_key = 25 0

1

2 26

3 29 31

4

5

6 42 49 34 51

Für die DecreaseKey-Operation muss das alte Element im alten Bucket entfernt werden, und
dann entsprechend dem neuen Schlüssel neu eingefügt werden. Wenn also das Element 49
auf 27 verkleinert wird, könnte folgender Radix-Heap entstehen:

last_key = 25 0

1

2 26 27

3 29 31

4

5

6 42 51 34

Um die Anzahl der Speicherzugriffe zu verringern, kann in einem Bucket das zu löschende
Element durch das letzte Element ersetzt werden, anstatt alle Folgeelemente um eins zu
verschieben; die Reihenfolge der Elemente innerhalb eines Buckets spielt keine Rolle.
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3 Organisation der Daten

In diesem Kapitel soll nun das Binärformat erläutert werden. Dazu wird erst ein Über-
blick über die Daten gegeben, die zu speichern sind. Dann wird die Anordnung der Daten
beschrieben, für die ein spezielles Gitter verwendet wird, und danach die konkrete Binärre-
präsentation. Letzendlich wird die Auswirkung einer optionalen Kompression der Daten
untersucht.

3.1 Übersicht über die benötigten Daten

Zur Beschreibung des CH-Graphen werden folgende Eingabedaten für die Knoten und
Kanten benötigt:

• Knoten

– Geographische Lage (Längen- und Breitengrad)

– Rang in der CH-Ordnung

• Kanten

– Referenz auf den Startknoten

– Referenz auf den Zielknoten

– Kantengewicht für die kürzeste Wege-Suche (z. B. die Reisezeit)

– Euklidische Länge des Weges (für Shortcuts: die Summe der abgekürzten Wege)

– Für Shortcuts: Referenz auf die zwei durch diesen Shortcut abgekürzten Kanten

Die Knoten werden nun auf Blöcke verteilt (siehe nächster Abschnitt), jeder Knoten wird
also durch Blocknummer und Index innerhalb eines Blockes identifiziert.

Die Kanten werden dem niedrigeren Knoten zugewiesen (haben beide Knoten einer Kante
denselben Rang, so sind die Knoten im Coregraph; die Kante wird dann dem Startknoten
zugewiesen). Jeder Knoten hat dann ihm zugewiesene ausgehende bzw. eingehende Kanten
(Knoten im Coregraph werden keine eingehende Kanten zugewiesen). Diese Zuweisung
erfolgt in Hinblick auf das Auslesen des Aufwärts- bzw. Abwärtsgraphen: für jeden Knoten
sind nur die Kanten interessant, die in der CH nach oben gehen.
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3 Organisation der Daten

Knoten Koord. 1. ausg. Kante 1. eing. Kante Kante Gewicht Knoten
(B, 0) (lon, lat) X + 0 X + 2 X + 0 4 (102, 4)

X + 1 10 (1943, 6)
X + 2 7 (374, 24)

(B, 1) (lon, lat) X + 3 X + 7 X + 3 2 (102, 4)
. . .

X + k 40 (583, 42)
⊥ ⊥ X + k + 1 ⊥ [X + k + 1] ⊥ ⊥

(a) Knoten mit Kantenzuordnung
Kante Eukl. Abstand SC: 1. Kante SC: 2. Kante SC: Knoten
X + 0 100

X + 1 150 823 9781 (0, 12)
X + 2 150

X + 3 50

. . .
X + k 400 413 132 (1, 39)

(b) Euklidische Länge und Shortcutdaten für Kanten

Abbildung 3.1: Beispiel: Knoten eines Blocks mit zugewiesenen Kanten

Nun werden die zugewiesenen Kanten für die Knoten eines Blockes hintereinander an-
geordnet. Für jeden Knoten kommen zuerst die ausgehenden und dann die eingehenden
zugewiesenen Kanten.

Da beim Erstellen der Aufwärts- bzw. Abwärtsgraphen der niedrigere Knoten der Kante
bereits bekannt ist (über diesen wird die Kante gefunden), genügt es, den jeweils anderen
Knoten zu speichern. Bei der Ersetzung der Shortcutkanten fehlt dann aber der kontrahierte
Knoten, darum muss dieser für Shortcutkanten gespeichert werden.

Für jeden Knoten muss nur der Index der ersten ausgehenden bzw. eingehenden Kante
gespeichert werden, der Index der jeweils letzten Kante ergibt sich aus dem Startindex der
nächsten Kantenliste. Am Ende eines Blocks wird dann zusätzlich ein abschließender Index
für die Kantenliste des Blocks benötigt.

Jeder Knoten und jede Kante haben eine fixe Größe (Kanten, die keine Shortcuts sind,
haben speziell markierte Einträge für die Shortcutdaten). Für jede Datei ist die Anzahl der
Knoten pro Block fest, also haben auch alle Blöcke die gleiche Größe; für jeden Block wird
gespeichert, wie viele Knoteneinträge tatsächlich verwendet werden. Darum kann direkt aus
Blocknummer und Index innerhalb des Blocks bzw. Kantennummer die Position der Daten
in der Datei direkt ohne Nachschlagen in einem Index berechnet werden.
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3.2 Gitter

3.2 Gitter

Um den Start- bzw. Zielknoten mit Hilfe der jeweiligen geographischen Lage zu finden,
werden die Knoten in einem Gitter abgespeichert. Da höhere Knoten bzw. deren Kanten
beim Aufbau der Aufwärts- bzw. Abwärtsgraphen öfters benötigt werden, sollten diese
jedoch möglichst nahe beieinander liegen. Darum wird für verschiedene Rangintervalle ein
eigenes Gitter verwendet, wobei die höheren Gitter gröber auflösen; jede Gitterzelle liegt
dabei komplett in einer Gitterzelle in der Ebene darüber. Von oben betrachtet werden also
Zellen auf dem Weg nach unten weiter unterteilt.

Wenn für eine Gitterzelle Knoten auf einer höheren Ebene im gleichen Raster liegen, so
verweist die Gitterzelle auf die niedrigste Gitterzelle darüber, in der ein solcher Knoten
enthalten ist. So können von einer Gitterzelle auf der untersten Ebene aus alle Knoten
gefunden werden, deren geographische Lage sich darin befindet (auf höheren Ebenen sind
auch Knoten dabei, die in der untersten Ebene in Zellen daneben liegen).

Eine Gitterzelle wird dann in mehrere Blöcke zerlegt, wobei auch die einzelnen Blöcke
wieder einfach verkettet sind. Der letzte Block einer Gitterzelle zeigt dann auf den ersten
Block der nächsten Gitterzelle; jeder Block zeigt also auf einen Nachfolgeblock oder keinen,
aber mehrere Blöcke können auf denselben Folgeblock zeigen.

Die Knoten aus dem Coregraphen liegen in einer eigenen Ebene, die über allen andere liegt,
und belegen die Blöcke am Ende, d. h. es gibt einen Blockindex, so dass alle Blöcke ab diesem
Index nur Knoten aus dem Coregraphen enthalten. Die Kanten für diese Blöcke müssen in
der gleichen Reihenfolge am Ende der Kantenliste liegen. Damit kann der Coregraph sehr
einfach und schnell eingelesen werden.

Für jede Zelle in der untersten Ebene existiert genau ein Block, der als Einstieg dient; die
Zellen werden dazu einfach durchnummeriert, und die Zellnummer wird als Blocknummer
verwendet. Nur die Daten des untersten Gitters (Eckkoordinaten und Gitterdimension)
werden gespeichert, um die Zellnummer für den Einstieg berechnen zu können. Alle Knoten,
die geographisch in einer Zelle auf der untersten Ebene liegen (aber eventuell tatsächlich
in Gitterzellen darüber gespeichert wurden), sind von dem Block der Zellnummer aus
auffindbar (siehe Abschnitt 4.1).

3.3 Binärformat

Alle Daten werden als 32-Bit Ganzzahl (Big-Endian, d. h. das höchstwertigste Byte zuerst)
gespeichert. Die Geokoordinaten werden in 10−7 ◦ auf die nächste Ganzzahl gerundet.

Eine Datei besteht aus fünf aufeinander folgenden Abschnitten, die unten genauer beschrie-
ben werden. Jeder Abschnitt ist dabei an 4 KiByte Blöcken ausgerichtet.

Durch die Aufteilung der Daten für Knoten und Kanten liegen die Daten, die im jeweiligen
Schritt benötigt werden, dichter beieinander, und es werden weniger Daten gelesen, die nicht
benötigt werden.
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1 2

3 4

56 4
23

1

5

6

1

2

3

4

5 6

Gitterzelle 1 benötigt zwei Blöcke, Zelle 2 nur einen und Zelle 3 drei Blöcke. Gitterzelle 5 enthält
Knoten, die von den Position her in den Zellen 1, 2 und 3 liegen, darum zeigt der jeweils letzte Block
dieser Zellen auf den ersten Block der Zelle 5. Zelle 4 ist auf der Ebene von Zelle 5 leer, und kann
darum direkt auf Zelle 6 zeigen.
Alle Knoten, die im Bereich der Zelle 1 aber auf evtl. höherem Level (d. h. in Block 5 oder 6) liegen,
sind vom ersten Block der Zelle 1 aus erreichbar.

Abbildung 3.2: Beispiel: Gitterzerlegung in Blöcke

3.3.1 Metadaten

• Zwei speziell gewählten Zahlen (4348474F16 und 6666545016), die sich in ASCII Reprä-
sentation als „CHGOffTP“ lesen. Durch diese Zahlen kann mit großer Wahrschein-
lichkeit ausgeschlossen werden, dass unbeabsichtigt eine anders formatierte Datei
eingelesen wird.

• Eine Versionsnummer für das Format (1)

• Die Eckdaten für das unterste Gitter:

– Längengrad für die linke Kante

– Breitengrad für die untere Kante

– Breite einer Zelle
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3.3 Binärformat

– Höhe einer Zelle

– Anzahl der Zellen pro Zeile

– Anzahl der Zellen pro Spalte

• Maximale Anzahl von Knoten pro Block (daraus ergibt sich der Platzbedarf eines
Blockes)

• Anzahl der Blöcke in der Datei (jede Zelle benötigt einen Startblock, danach können
weitere kommen)

• Index des ersten Coreblocks

• Anzahl der Kanten

3.3.2 Geographische Positionen der Knoten

Für jeden Block:

• Index des nächsten Blocks (oder −1)

• Anzahl der gültigen Einträge in diesem Block

• Für jeden gültigen Eintrag:

– Längengrad

– Breitengrad

• Die ungültigen Einträge werden mit Nullen aufgefüllt.

3.3.3 Kantenindizes für die Knoten

Für jeden Block:

• Platzhalter (0)

• Für jeden Knoten (keine Spezialbehandlung für ungültige Einträge):

– Index der ersten ausgehenden Kante

– Index der ersten eingehenden Kante

• Index der Kante nach der letzten eingehenden Kante des letzten Knotens.
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3.3.4 Kantendaten

Für jede Kante:

• Knoten. Für ausgehende Kanten der Zielknoten, für eingehende der Startknoten.

• Kantengewicht (Reisezeit gerundet in 9
325 s)

3.3.5 Erweiterte Kantendaten

Für jede Kante:

• Länge des nach Reisezeit kürzesten Weges in m

• Für Shortcuts: (ansonsten mit −1 aufgefüllt)

– Erste ersetzte Kante

– Zweite ersetzte Kante

– Kontrahierter Knoten

3.4 Kompression

Die so erstellte Datei ist für das Straßennetz von Deutschland 2 GByte groß; mit xz [LZM]
lässt sich die Datei auf 360 MByte komprimieren. Da die Datei aber nicht am Stück gelesen
wird, muss die Kompression blockweise erfolgen, d. h. es werden mehrere Stellen benötigt,
von denen an dekomprimiert werden kann (die Zuordnung von Positionen in der unkompri-
mierten Datei und den Einstiegsstellen in der komprimierten Datei wird in einer Indextabelle
gespeichert).

Je kleiner die Blöcke, desto schneller ist der Zugriff, wenn nicht am Stück gelesen wird.
Allerdings sinkt die Kompressionsrate mit kleineren Blöcken.

Mit einer Blockgröße von 64 KiByte lässt sich die Datei mit xz auf 409 MByte und mit
DEFLATE [DEF] auf 640 MByte komprimieren.

In Tabelle 3.1 und Abbildung 3.3 sind Testläufe für verschiedene Strecken mit den verschie-
denen Kompressionsoptionen und ohne dargestellt.

Die Unterstützung der ausgewählten Kompressionsformate (xz und eine Variante von
DEFLATE mit Indextabelle) ist nicht in Java implementiert, sondern in C++ und wird über
Java Native Interface (JNI) eingebunden.
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3.4 Kompression

Abbildung 3.3: Durchschnittliche Zeit aus 5 Läufen (nach einem Lauf für den Cache) in ms
für verschiedene Strecken
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1. Lauf 2. Lauf 3. Lauf 4. Lauf 5. Lauf 6. Lauf (jeweils in ms)
Strecke 1 Informatikgebäude→ Stuttgart HBF

48.7456169 ◦N 9.1070623 ◦W → 48.7831573 ◦N 9.1816587 ◦W
unkomprimiert 1606 88 58 53 51 50

DEFLATE 2172 291 291 288 298 308

xz 3229 1794 1735 1809 1734 1735

Strecke 2 Informatikgebäude -> Karlsruhe
48.7456169 ◦N 9.1070623 ◦W → 49.0107460 ◦N 8.4040517 ◦W

unkomprimiert 3334 89 86 85 92 87

DEFLATE 3912 561 554 552 553 554

xz 4129 3213 3203 3206 3207 3214

Strecke 3 Informatikgebäude -> München
48.7456169 ◦N 9.1070623 ◦W → 48.1370124 ◦N 11.5758237 ◦W

unkomprimiert 5396 254 258 260 251 249

DEFLATE 5213 1271 1262 1255 1256 1260

xz 7974 7052 7094 7052 7049 7054

Strecke 4 Informatikgebäude -> Berlin
48.7456169 ◦N 9.1070623 ◦W → 52.5199928 ◦N 13.4385576 ◦W

unkomprimiert 9094 325 325 324 322 322

DEFLATE 6650 2383 1890 1888 1889 1897

xz 11453 10827 10817 10835 10805 10848

Strecke 5 Informatikgebäude -> Hamburg
48.7456169 ◦N 9.1070623 ◦W → 53.5438613 ◦N 10.0104999 ◦W

unkomprimiert 335 325 324 324 329 322

DEFLATE 1896 1905 1916 1891 1920 1918

xz 10803 10788 10788 10784 10815 10913

Strecke 6 Aachen -> Berlin
50.7773246 ◦N 6.0779156 ◦W → 52.5199928 ◦N 13.4385576 ◦W

unkomprimiert 2882 153 153 155 156 16

DEFLATE 2183 921 905 906 905 92

xz 5461 5221 5217 5219 5221 522

Je nach vorhergehender Nutzung ist der 1. Lauf wenig aussagekräftig.

Tabelle 3.1: Messdaten für Testläufe mit verschiedenen Kompressionen
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4 Algorithmen

In diesem Kapitel werden nun einige zentrale Algorithmen beschrieben, die die in Kapitel 3

beschriebenen Daten einlesen bzw. verarbeiten. Die grundlegenden Algorithmen für die
Wegsuche sind bereits in Kapitel 2 vorgestellt worden. Im letzten Abschnitt 4.4 werden
Optimierungen für die Darstellung gefundener Wege gezeigt.

4.1 Knotensuche

Algorithmus 4.1 wird zum Finden des zu Geokoordinaten nächstgelegenen Knotens ver-
wendet. Liegen die Geokoordinaten innerhalb des Gitters in einer nicht leeren Gitterzelle, so
ist das Ergebnis korrekt.Andernfalls sucht der Algorithmus von einer zufälligen Position aus
in Richtung des Ziels nach einem passenden Knoten. Die Suche bricht ab, sobald auf diesem
Weg leere Gitterzellen gefunden werden.

Der Algorithmus geht dazu eine Menge von Blöcken durch. Wenn ein Block auf einen
weiteren Block zeigt, so wird auch dieser verarbeitet. Da mehrere Blöcke auf denselben Block
zeigen können, merkt sich der Algorithmus, welche Blöcke er schon durchsucht hat, damit
jeder Block höchstens einmal durchsucht wird. Aus allen Knoten, die beim Durchsuchen
der Blöcke angetroffen werden, wird derjenige ausgewählt, der der gesuchten Position am
nächsten kommt.

Der Algorithmus startet mit dem ersten Block der Gitterzelle, die entweder die gesuchte
Position enthält oder ihr am nächsten kommt. Wenn er von dort aus keinen Knoten findet,
wird der erste Block des Coregraphen geladen. Jedes Mal, wenn ein neuer Knoten gefun-
den wurde, werden anschließend die Nachbarblöcke der Zelle des gefundenen Knotens
durchsucht (siehe Abbildung 4.1).

4.2 Laden der für Dijkstra benötigten Teilgraphen

Wie in Abschnitt 2.2.3 beschrieben, wird für die Suche des kürzesten Weges von a nach b
der Aufwärtsgraph von a und der Abwärtsgraph zu b, jeweils ohne Coregraph, und der
Coregraph benötigt.

Algorithmus 4.2 beschreibt das Laden des Auf- bzw. Abwärtsgraphen. Um langsames
Springen in der Datei zu vermeiden, wird die aktuelle Liste der zu ladenden Knoten sortiert
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Algorithmus 4.1 Algorithmus zum Finden des zu einer Position nächstgelegenen Knotens
1: function FindPoint(point)
2: . Der Iterator durchläuft alle Knoten aus einem Block und lädt automatisch den
3: . Folgeblock. Er bricht ab, wenn er einen Block nach einem Aufruf von continueWith
4: . nochmal trifft. Es wird also kein Knoten mehrmals geladen.
5: i← new NodeGeoIterator
6: nodeID ← −1, nodeDist← ∞
7: nodePoint← point . noch kein Knoten, wähle Zielposition als Basis
8: loop
9: lastNodeID ← nodeID

10: . Suche ausgehend von aktuellem Knoten
11: gridx ← clip([0 . . . grid.width− 1], (nodePoint.x− grid.basex)/grid.cellWidth)
12: gridy← clip([0 . . . grid.height− 1], (nodePoint.y− grid.basey)/grid.cellHeight)
13: base← gridy · grid.width + gridx
14: i.continueWith(base)
15: while i.next() do
16: d← ‖i.nodePoint− point‖
17: if d < nodeDist then
18: nodeDist← d, nodePoint← i.nodePoint, nodeID ← i.nodeID
19: end if
20: end while
21: if nodeID 6= lastNodeID then
22: next . Neuen Knoten gefunden. Starte Suche von dessen Position aus neu.
23: end if
24: if nodeID = −1 then
25: . Kein Knoten gefunden. Wähle zufälligen Knoten und starte von dort
26: . Der Algorithmus konvergiert dann Richtung Zielposition,
27: . solange keine Löcher (leere Blöcke) dazwischen die Suche beenden.
28: nodeID ← 0, nodePoint← nodes[0].point
29: next
30: end if
31: . Siehe Fortsetzung. . .

und dann der Reihenfolge nach abgearbeitet. Erst wenn die sortierte Liste leer ist, wird eine
neue sortierte Liste erstellt.

Die Repräsentation des Graphen im Speicher ist darauf ausgelegt, zu einem Knoten ausge-
hende Kanten auszugeben. Mit diesem Graphen berechnet der Dijkstra-Algorithmus (siehe
Abschnitt 2.1.2) den kürzesten Weg von a nach b. Der Kantenindex wird benötigt um danach
Shortcut-Kanten der CH im gefundenen Weg zu ersetzen.
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4.2 Laden der für Dijkstra benötigten Teilgraphen

Algorithmus 4.1 Algorithmus zum Finden des zu einer Position nächstgelegenen Knotens
(Fortsetzung)
32: . Da nodeID = lastNodeID ist base der Startblock für nodePoint
33: . Suche auch in benachbarten Zellen (d. h. von deren Startblock aus),
34: . da an Zellenrändern Knoten aus der Nachbarzelle näher liegen können.
35: foreach block in Startblöcken der Nachbarzellen von base do
36: i.continueWith(block)
37: while i.next() do
38: d← ‖i.nodePoint− point‖
39: if d < nodeDist then
40: nodeDist← d, nodePoint← i.nodePoint, nodeID ← i.nodeID
41: end if
42: end while
43: end
44: if nodeID = lastNodeID then
45: . Keinen besseren Knoten gefunden - beende Suche
46: break
47: end if
48: end loop
49: end function

s

a
b

c
d

Bei der Suche nach dem nächstgelegen Knoten zu s wird zuerst der Knoten a gefunden. Es
kann aber in Nachbarzellen Knoten geben, die näher an s liegen - darum müssen auch diese

durchsucht werden.

Abbildung 4.1: Zellübergreifende Suche von Knoten
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4 Algorithmen

Algorithmus 4.2 Laden des Auf- bzw. Abwärtsgraph von bzw. zu einem Knoten
1: function loadGraph(node, edgeDirection)
2: graph← new Graph()
3: todo ← ∅
4: if block_no(node) < f irstCoreBlock then . Coregraph wird separat geladen
5: todo ← todo ∪ {node}
6: end if
7: while todo 6= ∅ do
8: run← sort(todo), todo ← ∅
9: foreach n in run do

10: foreach (edgePeer, edgeDist, edgeID) in up_edges(n, edgeDirection) do
11: if edgeDirection = OUT then

12: graph← graph ∪ {n edgeDist−−−−→
edgeID

edgePeer}

13: else

14: graph← graph ∪ {edgePeer
edgeDist−−−−→
edgeID

n}

15: end if
16: if block_no(edgePeer) < f irstCoreBlock then
17: todo ← todo ∪ {edgePeer}
18: end if
19: end
20: end
21: end while
22: end function

4.3 Shortcut-Ersetzung

Zur Darstellung des Weges müssen die Shortcuts in dem Weg, der vom Dijkstra-Algorithmus
in der Contraction-Hierarchy gefunden wurde, durch die ursprünglichen Kanten ersetzt
werden. Auf das Ersetzen eines Shortcuts könnte verzichtet werden, wenn der Shortcut weit
genug weg vom aktuell dargestellten Kartenausschnitt entfernt ist, so dass keine Ersetzung
in den Kartenausschnitt reichen kann. Auch wenn die euklidische Länge des vom Shortcut
abgekürzten Weges klein genug ist, so dass die Ersetzung in der aktuellen Zoomstufe in der
Darstellung nur geringen oder gar keinen Einfluss hat, könnte die Ersetzung eines Shortcuts
entfallen (siehe auch Abschnitt 4.4).

Zur Ersetzung wird der Weg stückweise zu einem neuen Weg; eine Kante wird vom Anfang
des alten Weges entfernt, evtl. wiederholt ersetzt (bei jeder Ersetzung wird eine weite-
re Kante vor den alten Weg gesetzt), und ans Ende des neuen Weges angehängt (siehe
Abbildung 4.2).
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4.4 Darstellung des Wegs

x y
fertiger Weg noch zu bearbeitender Weg

(a)

x y

(b)

x

z

y

(c)

Wenn (x, y) kein Shortcut ist oder nicht ersetzt werden soll, wird die Kante direkt
übernommen und, falls weitere Kanten kommen, die nächste Kante betrachtet (b).

Ansonsten wird der Shortcut (x, y) ersetzt durch die ursprünglichen Kanten (x, z) und
(z, y). Die Kante (z, y) wird dazu vor den noch zu bearbeitenden Weg gehängt, und (x, z)

wird als nächste Kante betrachtet (c).

Abbildung 4.2: Durchlaufen der Wegkanten zur Shortcut-Ersetzung

4.4 Darstellung des Wegs

Für die Darstellung des Weges sind nicht alle Knotenpunkte notwendig. Zum einen können
Punkte aussortiert werden, wenn sie keine Verbindung in den aktuell angezeigten Karten-
ausschnitt haben, zum andern können Knoten, die bezüglich der aktuellen Zoomstufe nahe
genug an Nachbarknoten liegen, weggelassen werden.

Im Folgenden wird angenommen, dass der anzeigte Kartenausschnitt ein an den Koordina-
tenachsen ausgerichtetes Rechteck ist, da auch der mapsforge-Renderer nur diesen Modus
verwendet. Im Falle einer gedrehten Karte könnte als Kartenausschnitt das begrenzende
Rechteck des gedrehten Kartenausschnitts verwendet werden.

Algorithmus 4.3 beschreibt die Berechnung, ab welcher Zoomstufe (und darüber) ein Weg-
punkt für die Darstellung verwendet werden soll. Die Entscheidung, ob ein Knoten auf der
Zoomstufe lvl bereits sichtbar sein muss (Zeile 31 in Algorithmus 4.3), ist in Abbildung 4.3
visualisiert.

Um nur den Teil des Weges zu zeichnen, der im aktuellen Kartenausschnitt zu sehen ist,
wird ein Binärbaum erstellt, in dem jeder Knoten für einen Teilweg steht; wenn ein Knoten
Kindknoten hat, so ist dieses Intervall die Vereinigung der Intervalle der Kindknoten, die sich
dabei überlappen. Um diesen Baum zu erstellen wird rekursiv der Weg solange halbiert, bis
ein Teilweg weniger als 6 Wegpunkte hat. Bei der Aufteilung wird am mittleren Wegpunkt
geteilt, der dann in beide Teilwege aufgenommen wird. Für diese Teilwege werden dann
die begrenzenden Rechtecke (parallel zum Koordinatensystem) berechnet und mit dem
Intervall zusammen im Baumknoten gespeichert. Da der Weg für die Ausgabe geglättet wird,
werden die Intervalle nach dem Berechnen der begrenzenden Rechtecke um den vorigen
und um den nächsten Wegpunkt erweitert, sofern ein solcher existiert, da die Richtung des
Folgewegstücks Einfluss auf die Glättung hat (siehe Algorithmus 4.4).
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4 Algorithmen

Zum Darstellen eines Wegknotens wird geprüft, wie der aktuelle Kartenausschnitt zum
begrenzenden Rechteck liegt (siehe Abbildung 4.4). Sind sie disjunkt, so gibt es nicht zu
zeichnen; liegt das Rechteck komplett im Kartenausschnitt, oder hat der Knoten keine
Kindknoten, werden alle Wegknoten gezeichnet – wobei in der Mitte des Weges Knoten, die
auf der aktuellen Zoomstufe nicht sichtbar sind, ausgelassen werden. Ansonsten wird die
Prozedur rekursiv mit den Kindknoten wiederholt.

lvl

prevLevel

previous

current

?

next

Wenn sowohl der Abstand d(previous, current) als auch d(current, next) auf der Zoomstufe
lvl klein genug sind, ist der Wegknoten current auf der Zoomstufe lvl nicht mehr sichtbar.
Wenn mindestens ein Abstand zu groß ist, wird der Knoten auf die Zoomstufe lvl gehoben.

Abbildung 4.3: Entscheidung, ob ein Knoten auf einer kleineren Zoomstufe angezeigt wer-
den soll
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4.4 Darstellung des Wegs

Algorithmus 4.3 Berechnen der Zoomstufen ab denen Wegpunkte für die Darstellung
verwendet werden

1: function PointsZoomLevel(points)
2: . Die Punkte in points liegen bereits als Pixelkoordinaten für Zoomstufe 0 vor;
3: . jede Zoomstufe vergrößert das Bild um Faktor 2.
4: prevLevel ← 32 . Zoomstufe ab der immer alles angezeigt wird
5: zoomMinPixels← 16
6:
7: count← length(points)
8: . Am Anfang sind alle Punkte nur im „höchsten“ Level sichtbar
9: ∀0 ≤ i < count : visibleZoomLevel[i]← prevLevel

10: . Start und Ende sind aber immer sichtbar
11: visibleZoomLevel[0]← 0, visibleZoomLevel[count− 1]← 0
12: . Berechne für einige Zoomstufen lvl, welche Punkte aus der vorigen Zoomstufe
13: . sichtbar bleiben müssen, da sie zu weit weg von Nachbarpunkten liegen.
14: foreach lvl in { 20, 16, 14, 12, 8, 4, 0 } do
15: . Der Abstand wird für die Zoomstufe prevLevel − 1 berechnet
16: zoom← 2prevLevel−1

17: . Durchlaufe alle sichtbaren Knoten der Zoomstufe prevLevel mit Nachbarknoten
18: . previous ist allerdings der Vorgängerpunkt auf Zoomstufe lvl
19: previous← 0 . Punkt 0 ist immer sichtbar
20: next← 1
21: . Bricht ab bei next = count− 1 da visibleZoomLevel[count− 1] = 0
22: while visibleZoomLevel[next] > prevLevel do
23: next← next + 1
24: end while
25: while next < count− 1 do
26: current← next, next← next + 1
27: while visibleZoomLevel[next] > prevLevel do
28: next← next + 1
29: end while
30: if ‖points[current], points[previous]‖ · zoom ≥ zoomMinPixels
31: ∨‖points[current], points[next]‖ · zoom ≥ zoomMinPixels then
32: . current muss auch auf Zoomstufe lvl sichtbar sein
33: visibleZoomLevel[current]← lvl
34: previous← current
35: end if
36: . Andernfalls verschwindet current ab dieser Zoomstufe und darunter.
37: . previous ist dann auch in der nächsten Runde der Vorgänger auf Stufe lvl
38: end while
39: prevLevel ← lvl
40: end
41: return visibleZoomLevel
42: end function
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4 Algorithmen

(a) disjunkt: es wird nichts gezeichnet

(b) Weg komplett im Kartenausschnitt: der komplette Weg wird gezeichnet

(c) anderweitige Überlappung: Teilwege werden einzeln geprüft. Wenn keine weitere Aufteilung
vorhanden ist, wird der komplette Weg gezeichnet

Abbildung 4.4: Mögliche Lagen der begrenzenden Rechtecke zum dargestellten Kartenaus-
schnitt
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4.4 Darstellung des Wegs

Algorithmus 4.4 Erstellen des Baums mit begrenzenden Rechtecken für Teilwege
1: struct TreeNode is
2: f irst, last
3: boundingBox
4: child1, child2
5: end
6: function CreateNode(points, f irst, last)
7: if last - first > 4 then
8: mid← b( f irst + last)/2c
9: c1← CreateNode(points, f irst, mid), c2← CreateNode(points, mid, last)

10: return TreeNode(first← min{c1. f irst, c2. f irst}, last← max{c1. f irst, c2. f irst},
11: boundingBox← merge(c1.boundingBox, c2.boundingBox),
12: child1← c1, child2← c2)
13: end if
14: return TreeNode(first← max{0, f irst− 1}, last← min{count− 1, last + 1},
15: boundingBox← getboundingbox{points[i] | f irst ≤ i ≤ last},
16: child1←null, child2←null)
17: end function
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5 Androidanwendung „Offline ToureNPlaner“

In diesem Kapitel werden die verschiedenen Funktionen der Androidanwendung gezeigt.
Die Darstellung der Karte reagiert auf die üblichen Gesten zum Zoomen und Bewegen der
Karte. Mit einem langen Druck auf die Karte lassen sich zuerst der Ziel- und dann der
Startpunkt setzen. Beide können mit „Drag’n’Drop“ auf der Karte verschoben werden, und
mit einem Klick auf das „Mülleimer“-Symbol entfernt werden.

Die gesetzten Punkte werden von der Anwendung automatisch auf den nächst gelegenen
Wegpunkt verschoben (siehe Abschnitt 4.1).

5.1 Einstellungen

Zur Inbetriebnahme der Anwendung müssen zuerst die gewünschten Daten auf das An-
droidgerät geladen werden. Danach werden im „Settings“-Dialog die Pfade zu den Dateien
auf dem Gerät konfiguriert (siehe Abbildung 5.1). Wenn auf dem Androidgerät auch der
„OI File Manager“ [OIF] installiert ist, können die Dateien und Verzeichnisse mit Hilfe eines
Dialogs ausgewählt werden (siehe Abbildung 5.2).

5.2 Suche

In Abbildung 5.3 ist eine Beispielsuche zu sehen. Wenn ein Ergebnis ausgewählt wird, wird
der entsprechende Ort auf der Karte als Ziel ausgewählt. Die Suche reagiert so schnell wie
möglich auf jede Änderung der Eingabe; allerdings kann eine laufende Suche nur nach
Rückgabe einer Zeile unterbrochen werden (dies ist eine Limitierung in osmfind [OSMb]),
bevor eine neue Suche gestartet wird.

5.3 Routen

Wenn GPS aktiviert ist (siehe Abbildung 5.4), und kein manueller Startpunkt gesetzt wur-
de oder die Ansicht auf die GPS-Position zentriert ist (zweiter Knopf von rechts in der
Menüleiste), wird als Startpunkt die GPS-Position verwendet (siehe Abbildung 5.5).
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5 Androidanwendung „Offline ToureNPlaner“

Abbildung 5.1: „Offline ToureNPlaner“ Einstellungen

Abbildung 5.2: „Offline ToureNPlaner“ Verzeichnisauswahl
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5.3 Routen

Abbildung 5.3: „Offline ToureNPlaner“ Suche

Abbildung 5.4: „Offline ToureNPlaner“ Menü
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5 Androidanwendung „Offline ToureNPlaner“

Abbildung 5.5: „Offline ToureNPlaner“ Verwendung der GPS-Position

Abbildung 5.6: „Offline ToureNPlaner“ Route mit gesetztem Start- und Endpunkt
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5.3 Routen

Der Startpunkt kann auch manuell gesetzt werden, um z. B. größere Routen unabhängig vom
aktuellen Standort zu planen, oder falls auf dem Androidgerät keine GPS-Ortung verfügbar
ist (siehe Abbildung 5.6).
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6 Zusammenfassung und Ausblick

Mit dem „Offline ToureNPlaner“ steht ein brauchbarer Routenplaner für Androidgeräte
zur Verfügung, der ohne Internetverbindung auskommt. Das Suchen des kürzesten Wegs
ist schnell, lediglich für lange Strecken ist für das Ersetzen der Shortcutkanten ein paar
Sekunden Geduld erforderlich. Durch die Integration von mapsforge als Kartenrenderer, der
zwar bei kleinen Zoomstufen etwas langsam ist, dafür aber mit sehr kompakten Kartendaten
auskommt, und osmfind als „Point-of-Interest“-Suche entstand eine Androidanwendung,
die sich auf Reisen aber auch im täglichen Leben einsetzen lässt.

Ausblick

Um die kürzeste Wege-Suche zu beschleunigen, könnte das Ersetzen der Shortcuts nur
soweit vorgenommen werden, wie, abhängig von dem aktuell dargestellten Kartenausschnitt
und der Displayauflösung, für eine grobe Darstellung notwendig ist (siehe Abschnitt 4.3). In
einem zweiten Schritt kann dann im Hintergrund die komplette Ersetzung vorgenommen
werden, um auf Änderungen schnell reagieren zu können.

Interessant wäre auch eine Erweiterung auf mehrere Fortbewegungsmethoden; in der ak-
tuellen Implementierung ist in einem Graph nur eine Methode gespeichert, z. B. für ein
normales Auto, für das je nach Straßentyp eine bestimmte Fortbewegungsgeschwindigkeit
angenommen wird. Dies könnte ergänzt werden um Wege und Zeiten für Fahrradfahrer und
Fußgänger, oder spezielle Einschränkungen wie „Auto, aber nicht schneller als 80 km/h“.

Für den Einsatz zur echten Navigation fehlt eine Darstellung, und teilweise auch die Daten,
die auf die konkrete Umgebung eingeht. So fehlt das Einblenden von Hinweisen „Im nächsten
Kreisverkehr die 3. Ausfahrt“ oder „in 100m in die Straße Richtung ... einbiegen“, das
Vorlesen dieser Hinweise durch eine „Text-To-Speech“-Software und die visuelle Umsetzung
dazu, d. h. Schrägansicht auf die Karte und eine Orientierung der Karte, so dass „Oben“ auf
der Karte dem Blick nach vorne entspricht.
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