Institut flr Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3462

Visuelle Modellierung von
Screenflows

Timotheus Giuliani

Studiengang: Softwaretechnik

Prufer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer: Dipl.-Inf. Dipl.-Wirt. Ing.(FH) Karolina
Vukojevic

Dr. Andreas Nauerz (IBM)

begonnen am: 28.Januar 2013

beendet am: 25.4uli 2013

CR-Klassifikation: H.4.1,H.5.2, H.5.3

Kurzfassung

Automatisierte Prozesse erfordern haufig Interaktionen mit Menschen. Fiir diese Human
Tasks werden in der Regel Benutzungsschnittstellen benétigt. Fiir die Umsetzung und
Bereitstellung von Benutzungsschnittstellen eignen sich Portale sehr gut. Im Portal werden
die einzelnen Human Tasks durch die Nutzung von Task Listen einer potenziellen Gruppe
an Nutzern zur Verfiigung gestellt. Uber die Task Liste wird in der Regel ein Human Task
einer entsprechenden Portalseite (Screen) zugeordnet.

Allerdings hat sich herausgestellt, dass eine einfache 1:1 Abbildung zwischen Human Tasks
und Portalseiten nicht immer ausreichend ist. Oft ergibt sich die Notwendigkeit, eine von
einem einzelnen Nutzer schnell zu prozessierende Abfolge von Human Tasks iiber mehrere
Screens abzuarbeiten. Es ist unnotig und unpraktikabel jeden dieser Screens auf einen
Human Task abzubilden, vor allem wenn die Prozessierung kurzlebig und kein Wechsel
zwischen Nutzern notwendig ist.

Als Losung wurden Screenflows eingefiihrt, die es erlauben, eine Abfolge von Screens im
Portal deklarativ zu modellieren. Im Zusammenspiel mit einem Workflow kann nun die
Kontrolle fiir einen einzelnen Human Task an das Portal iibergeben werden. Das Portal stellt
dann eine Abfolge von Screens, entsprechend des modellierten Screenflows, zur Verfiigung.
AnschliefSend gibt es die Kontrolle an das Workflowsystem zurtick. Diese Losung erlaubt
eine Abbildung eines Human Tasks auf einen Screenflow.

Die Modellierung der Screenflows geschieht derzeit noch iiber komplexe XML-
Beschreibungen, welche fiir technisch nicht versierten Nutzer unverstdandlich sind.

In dieser Arbeit wird der Entwurf und die Entwicklung eines Modellierungswerkzeugs fiir
die visuelle Modellierung von Screenflows beschrieben. Es werden Konzepte vorgestellt,
welche fiir die Umsetzung einer geeigneten Losung benotigt werden. Diese Konzepte wer-
den anschlieflend prototypisch in einem webbasierten Modellierungswerkzeug umgesetzt.
Abschiefsend werden die erarbeiteten Konzepte auf Modellierungswerkzeuge fiir Scientific
Workflows iibertragen.

Inhaltsverzeichnis

1. Einleitung
1.1. Einfithrung und Motivation
1.2. Ziele dieser Arbeit
1.3. Gliederung

2. Grundlagen
2.1. Workflows e e
2.1.1. Business Workflows
2.1.2. Interaktion von Workflows mit Menschen
2.1.3. Scientific Workflows
2.2. Portale e e
2.2.1. Portalspezifische Architektur
2.2.2. Portlets und Portlet Container
2.23. Portlet APL.
2.3. Zusammenfassung

3. Screenflows
3.1. Benutzungsschnittstellen mit Portalen
3.2. Heutige Kommunikation zwischen Workflow- und Portalsystemen
3.3. Screenflows
3.4. Screenflows als Teil von Workflows
3.5. Zusammenfassung

4. Verwandte Arbeiten
4.1. Theoretische Arbeiten
4.2. Praktische Arbeiten
4.3. Zusammenfassung

. Screenflow Manager 41

5.1. Terminologie 41
5.2. Kernkomponenten 42
5.3. Dialogdefinition L L 45
5.4. Erweitertes Laden und Speichern, 50
55. BEvent Mapper 50
5.6. Dynamische Ressource Endpoints 51
5.7. Entwicklung von Screenflows o 0oL, 53
58 Akteureund Rollen o Lo o 53
5.9. Zusammenfassung 54
. Konzept 55
6.1. Ausgangssituation L Lo 55
6.2. Anforderungen 55
6.3. Losungsansatz e 59
6.3.1. Technische Integration 59
6.3.2. Visuelle Integration. 61
6.3.3. Grafische Darstellung von Screenflows 63
6.3.4. Modellierungsprozess 67
6.3.5. Grafische Umsetzung der Benutzungsschnittstelle 69
6.4. Zusammenfassung 72
. Implementierung 73
7.1. Clientseite e 74
7.1.1. JavaScript Frameworks. o oo oL 74
7.1.2. Architektur der Clientseite 76
7.2, Serverseite e e e e e e 82
7.2.1. Architektur der Serverseite o 0oL 82
7.3. Zusammenfassung 84
. Ubertragung der Konzepte 85
8.1. Screenflows und Scientific Workflows 85
8.2. Ubertragung der erarbeiten Konzepte auf Modellierungswerkzeuge fiir
Scientific Workflows 86
8.3. Zusammenfassung e 89

. Zusammenfassung und Ausblick 91

A. Anhang
A.1. Dialogdefinition L
A.2. Anwendungsfélle L L Lo
A3z . Mockups

Abbildungsverzeichnis
Tabellenverzeichnis
Verzeichnis der Listings

Literaturverzeichnis

143

144

144

1. Einleitung

1.1. Einfihrung und Motivation

In den vergangenen Jahren haben sowohl Workflow- als auch Portaltechnologien zunehmend
an Bedeutung gewonnen. Workflowtechnologien werden unter anderem im Unternehmens-
umfeld eingesetzt, um wiederkehrende Prozesse zu modellieren, auszufiihren und zu ana-
lysieren. Diese automatisierten Prozesse werden als Workflows (deutsch: Arbeitsabldufe)
bezeichnet. Durch die Ausdehnung dieser Technologie auf Prozesse in wissenschaftlichen
Bereichen entstand der Begriff Scientific Workflows [IEDMo7]. Die Portaltechnologie wieder-
um bietet ihren Nutzern einen zentralen und personlichen Zugang (Single Point of Access)
zu Diensten und Informationen [GK]. Portale integrieren dafiir die heterogenen Systeme von
Informationslandschaften, aggregieren Informationen und stellen verschiedene Dienste und
Anwendungen {iber eine einheitliche Nutzungsschnittstelle zur Verfiigung. Des Weiteren
konnen Portale eine Arbeitsumgebung durch zusitzliche Dienste und unterstiitzende Werk-
zeuge erweitern. Beispiele hierfiir sind Werkzeuge fiir die Zusammenarbeit, Inhalts- und
Dokumentenverwaltung oder die Suche von Inhalten.

Die Zusammenfiihrung beider Technologien liegt fiir Workflows nahe, bei denen Interak-
tionen mit Benutzern erforderlich sind. Sogenannte Human Tasks bendtigen in der Regel
eine Benutzungsschnittstelle und Portale eigenen sich hervorragend fiir die Umsetzung von
Benutzungsschnittstellen. Daher werden Human Tasks hédufig auf Portalseiten abgebildet.
Oft ergibt sich, auch innerhalb des Portals, die Notwendigkeit eine von einem einzelnen
Nutzer schnell zu prozessierende Abfolge von Schritten tiber mehrere sogenannte Screens
(Views) abzuarbeiten. Ein Screen ist ein moglicher Zustand des Inhalts einer dynamischen
Portalseite. In gewissen Situationen ist es unnotig und unpraktikabel jeden dieser Screens
durch einen eigenen Human Task zu beschreiben, da die Prozesse dufsert kurzlebig sind oder
ein Wechsel zwischen unterschiedlichen Nutzern nicht notwendig ist. In solchen Situationen
gab es bisher zwei Moglichkeiten.

Erstens, komplexe Portlets zu entwickeln, welche den Prozess in ihrer Programmlogik ab-
bilden. Das hat jedoch den Nachteil, dass solche Portlets sehr unflexibel sind und kaum
wiederverwendet werden. Zusétzlich erfordert jede Anderung am Prozess eine Anderung
am Programmcode des Portlets.

Zweitens, mehrere simple Portlets zu entwickeln, welche jeweils einzelne Schritte des Prozess
abbilden. Bei diesem Ansatz fehlt jedoch eine Nutzerfithrung, sodass der Benutzer selbst zu
entscheiden hat, in welcher Reihenfolge die Portlets zu verwenden sind.

1. Einleitung

Das Buchen einer Reise auf einem offentlichen Reiseportal ist ein mogliches Beispiel fiir
einen solchen Prozess. In der Regel legt der Kunde verschiedene Details zu seiner Reise
fest, bevor diese dann tatsdchlich gebucht wird. Meist wird der Kunde dabei durch eine Art
Dialog gefiihrt, in dem Details wie zum Beispiel das Reiseziel, das Reiseantrittsdatum, die
Hotelklasse und dergleichen abgefragt werden.

Der Losungsansatz im IBM WebSphere Portal Server* tiir dieses Problem ist die Einfiihrung von
sogenannten Screenflows, welche es erlauben, eine Abfolge von Screens im Portal deklarativ
zu modellieren. Das hat den Vorteil, dass der Screenflow flexibel ist und schnell gedndert
werden kann. Die verwendeten Portlets konnen spezifisch fiir eine Aufgabe entwickelt
werden, wodurch sie wiederverwendet werden konnen. Der Benutzer wird gefiihrt, indem
er von Screen zu Screen geleitet wird. Im Zusammenspiel mit einem Screenflow kann ein
Workflow nun die Kontrolle fiir einen einzelnen Human Task an das Portal {ibergeben. Das
Portal stellt dann eine Abfolge von Screens, entsprechend des modellierten Screenflows, zur
Verfligung. Nachdem der Screenflow beendet ist, gibt der Screenflow die Kontrolle zuriick
an das Workflowsystem. Die Losung ermdglicht also die Abbildung eines Human Tasks auf
einen Screenflow.

Fiir herkdmmliche Workflows existieren diverse Modellierungswerkzeuge, die es ermogli-
chen, den Workflow grafisch zu modellieren. Die Modellierung der Screenflows geschieht
derzeit jedoch noch tiber komplexe XML Beschreibungen, welche fiir den nicht technisch
versierten Nutzer unverstiandlich sind.

1.2. Ziele dieser Arbeit

Diese Arbeit entstand im Rahmen einer Diplomarbeit in Kooperation zwischen dem Institut
fiir die Architektur von Anwendungssystemen, im Bereich SimTech, der Universitat Stuttgart
und dem Bereich WebSphere Development & Services, IBM Collaboration Solutions, in der
Abteilung XWebX Development der IBM Software Group.

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung eines grafischen
Modellierungswerkzeugs, mit dessen Hilfe Screenflows visuell modelliert werden kénnen.
Im Fokus steht dabei die Entwicklung eines einfach und intuitiv zu bedienenden und
zugleich leistungsfahigen Werkzeuges. Dadurch sollen auch Modellierer, die keine Compu-
terexperten sind, in die Lage versetzt werden, Screenflows zu modellieren, an denen ein
Endnutzer spéter entlang gefiihrt werden soll. Ferner soll erortert werden, inwiefern sich die
gewonnen Erkenntnisse auf Modellierungswerkzeuge fiir Scientific Workflows tibertragen
lassen.

'Fiir weitere Informationen zum IBM WebSphere Portal Server siehe http://www-03.ibm.com/software/
products/us/en/portalserver.

10

http://www-03.ibm.com/software/products/us/en/portalserver
http://www-03.ibm.com/software/products/us/en/portalserver

1.3. Gliederung

1.3. Gliederung

Nachdem die Motivation und die Aufgabenstellung fiir diese Arbeit vorgestellt wurden, soll
die folgende Gliederung einen Uberblick iiber die weiteren Kapitel dieser Arbeit geben.

In Kapitel 2 werden die fiir diese Arbeit elementaren Technologien beschrieben. Der erste
Teil dieses Kapitels handelt von Prozessen und Workflows. Der zweite Teil des Kapitels
beschreibt die Portaltechnologie mit ihren einzelnen Bestandteilen.

In Kapitel 3 wird beschrieben, warum Workflows oft nicht ohne Interaktionen mit Men-
schen auskommen. Anschlieffend wird die heutige Kommunikation zwischen Workflow-
und Portalsystemen beschrieben. Danach wird das Konzept der Screenflows vorgestellt.
Als Letztes wird in diesem Kapitel beschrieben, wie Screenflows in Workflows verwendet
werden konnen und wie der Datenaustausch dabei stattfindet.

In Kapitel 4 werden zum Thema Screenflow verwandte Arbeiten vorgestellt. Der erste Teil
des Kapitels handelt von konzeptionellen Arbeiten. Der zweite Teil beschreibt anschliefiend
Arbeiten, die auch konkrete Implementierungen umfassen.

In Kapitel 5 wird der IBM UX Screenflow Manager vorgestellt, auf dem die Konzepte der
Arbeit aufbauen. In diesem Kapitel werden die grundlegenden Konzepte und Funktionswei-
sen des Screenflow Managers aufgezeigt. Anschlieflend werden alle Komponenten, die fiir
eine Screenflow Definition bendttigt werden, aufgefiihrt.

Kapitel 6 bildet den Kern dieser Arbeit. Im ersten Abschnitt des Kapitels wird die Aus-
gangssituation geschildert. Anschlielend werden die Anforderungen fiir das grafische
Modellierungswerkzeug aufgestellt. Danach wird der Losungsansatz beschrieben, indem auf
die einzelnen Konzepte zur Losung der Problematik eingegangen wird.

In Kapitel 7 wird die Umsetzung der in Kapitel 6 vorgestellten Konzepte beschrieben. Das
Kapitel besteht aus zwei Teilen, der Beschreibung der Clientseite und der Serverseite.

In Kapitel 8 werden die Konzepte aus Kapitel 6 auf Modellierungswerkzeuge fiir Scientific
Workflows iibertragen. Zu Beginn des Kapitels werden Screenflows und Scientific Workflows
miteinander verglichen. AnschliefSend werden die erarbeiteten Konzepte auf den wissen-
schaftlichen Bereich tibertragen.

In Kapitel 9 werden die Ergebnisse dieser Arbeit zusammengetragen und reflektiert. Ab-
schlieffend werden Ankniipfungspunkte fiir weiterfithrende Arbeiten empfohlen.

11

2. Grundlagen

Die fiir diese Arbeit wichtigsten Technologien sind Workflows und Portale. Screenflows
konnen sehr gut mit Workflows kombiniert werden. Screenflows eignen sich fiir Aktivitdten,
die menschliche Handlungen erfordern und dadurch eine Benutzungsschnittstelle benotigen.
Die Screenflows konnen einen Benutzer durch eine komplexe Benutzungsschnittstelle fiihren.
Die in dieser Arbeit vorgestellten Screenflows nutzen bei ihrer Umsetzung Portaltechnologien.
Dieses Kapitel beschreibt daher die Grundlagen der Workflow- und Portaltechnologien.
Weitere Informationen sind in der angefiihrten Referenzliteratur zu finden.

2.1. Workflows

Ein Prozess besteht aus einer Reihe von Aktivitdten, die fiir die Erfiillung einer bestimmten
Aufgabe ausgefiihrt werden miissen. Wenn der Ablauf des Prozesses mit samtlichen Rah-
menbedingungen ausdriicklich vorgegeben ist, existiert fiir den Prozess ein Prozessmodell
[PPo7].

In einem Unternehmen ist jedes Produkt das Ergebnis einer Ausfithrung von einer Reihe
von Aktivitaten. Geschiftsprozesse sind das wichtigste Instrument zur Organisation dieser
Aktivitaten. Gleichzeitig helfen sie ein besseres Verstandnis tiber die Zusammenhéange der
Aktivitdten zu erlangen. In [Wesoy] definiert Weske einen Geschaftsprozess wie folgt:

Definition 1 , Ein Geschiiftsprozess besteht aus einer Menge von Aktivititen, die in Abstimmung
auf eine organisatorische und technische Umgebung ausgefiihrt werden. Diese Aktivititen erfiillen
gemeinsam das Unternehmensziel. Jeder Geschiiftsprozess wird von einer einzigen Organisation
ausgefiihrt, aber moglicherweise interagiert er mit Geschiiftsprozessen, die von anderen Organisationen
ausgefiihrt werden.”

Grofimann und Koschek definieren einen Geschéftsprozess in [GK] folgendermafien:

Definition 2 , Ein Geschiiftsprozess ist eine Verfahrensanweisung zur Bearbeitung eines Geschiifts-
vorfalls. Er setzt sich zusammen aus einer Folge von geordneten, fachlich zusammenhingenden
Aktivititen.

Geschiiftsprozesse haben einen definierten Anfang, ausgelost durch ein Ereignis, sowie ein festgelegtes
Ende. Zudem ist das Ergebnis des Geschiiftsprozesses beschrieben.”

13

2. Grundlagen

Ein Geschiftsprozess besteht also aus einer Folge von Aktivititen die ausgefiihrt werden,
um ein Unternehmensziel zu erreichen.

Um Prozesse wiederholt ausfithren zu konnen, werden Prozessmodelle definiert, welche als
eine Art Vorlage fiir einen konkreten Prozess dienen. Leymann und Roller beschreiben das
Geschiftsprozessmodell in [LRoo] wie folgt:

,Das Prozessmodell beschreibt die Struktur eines Geschiftsprozess in der realen Welt. Es de-
finiert alle moglichen Pfade durch den Geschiftsprozess, inklusive der Regeln, die definieren
welcher Pfad gewdhlt werden soll und alle Aktivitdten, die ausgefiihrt werden miissen.”

Weske definiert in [Weso7] ein Geschéftsprozessmodell folgendermafSen:

Definition 3 , Ein Geschiftsprozessmodell besteht aus einer Menge von Aktivititsmodellen und
Ausfiihrungsregeln zwischen ihnen.

Das Aktivititsmodell ist eine allgemeine Beschreibung einer konkreten Aktivitdt, wie es
das Prozessmodell fiir einen Prozess ist. Zusammengefasst beschreibt das Prozessmodell
eine Menge von Aktivitdten, die in einem Geschéftsprozess ausgefiihrt werden sowie das
Regelwerk fiir deren Ausfiihrung.

Dient ein Geschiftsprozessmodell als Vorlage fiir einen Geschaftsprozess, wird der ausge-
fithrte Prozess als Prozessinstanz bezeichnet. Eine Prozessinstanz besteht aus einer Menge
von Werten, die den Ablauf innerhalb des Prozesspfads entscheiden. Eine Prozessinstanz
enthélt eine Menge von Aktivitdtsinstanzen [LRoo]. Jedes Geschiftsprozessmodell ist eine
Vorlage fiir eine Menge von Prozessinstanzen und jedes Aktivitdtsmodell eine Vorlage fiir
eine Menge von Aktivitdtsinstanzen.

Die Aktivitdten eines Geschéftsprozesses konnen zu unterschiedlichen Graden automatisiert
sein. Dies reicht von Aktivitdten, die komplett ohne Computerunterstiitzung ausgefiihrt
werden, tiber Aktivitdten, die teilweise mit der Hilfe von Computern durchgefiihrt werden,
bis hin zu Aktivitdten, die vollautomatisch und autonom von Computersystemen ausgefiihrt
werden.

2.1.1. Business Workflows

Die Teile des Prozessmodells, die von einem Computer ausgefiihrt werden kénnen, werden
als Workflow Modell (Arbeitsablaufmodell) bezeichnet. Aus einem Workflow Modell kénnen
wie bei einem Geschiftsprozessmodell Instanzen erzeugt werden. Eine Instanz von einem
Workflow Modell wird als Workflow (Arbeitsablauf) bezeichnet. Abhingig vom Automati-
sierungsgrad des Geschiaftsprozesses, umfasst das Workflow Modell nur einen Teil oder
das gesamte Prozessmodell [Weso7]. Abbildung 2.1 veranschaulicht den Zusammenhang
zwischen den Modellen und ihren Instanzen.

Weske gibt in [Wesoy] fiir einen Workflow die folgende Definition an:

14

2.1. Workflows

Definition 4 , Ein Workflow ist die Automatisierung eines gesamten oder Teilgeschiiftsprozesses,
durch den Dokumente, Informationen oder Aufgaben von einem Teilnehmer zu einem anderen anhand
einer Menge von Verfahrensregeln weitergegeben werden.”

Ein Workflow ist also ein durch einen Computer automatisierter (Teil-) Prozess.

Grad der Automatisierung

Prozessmodell <>
()
Reale Welt Computer
Workflow Modell
\‘ 'l
- J
\‘ 'l
Instanz /

! Corton—>
Prozess w

Abbildung 2.1.: Zusammenhang von Prozessmodell, Workflow Modell, Prozess und Work-
flow [Weso7].

Um einen Workflow auszufiithren, muss dieser definiert werden. Dafiir existieren unter-
schiedliche Sprachen und Notationen. Ein Beispiel fiir eine solche Sprache ist die Business
Process Execution Language for Web Services (BPEL) [AAA T o07]. Dabei handelt es sich um eine
XML-basierte Sprache zur Beschreibung von Geschéftsprozessen, die durch die Verwendung
von Web Services' die Aktivitdaten des Prozesses abbildet.

Ein Workflow wird entweder durch eine dafiir extra entwickelte Anwendung oder durch
eine generische Workflow Engine ausgefiihrt. Um den gesamten Workflow Prozess zu
strukturieren und zu verwalten, werden Workflow Management Systeme eingesetzt. Weske
definiert in [Weso7] ein Workflow Management System wie folgt:

Definition 5 , Ein Workflow Management System ist ein Softwaresystem, das durch die Nutzung
von Software Workflows definiert, erstellt und die Ausfiihrung verwaltet. Diese fiihrt es auf einer oder
mehrerer Workflow Engines aus, die dazu in der Lange sind, die Prozessdefinition zu interpretieren.
Es interagiert mit den Workflowteilnehmern und ruft benotigte IT-Werkzeuge und Anwendungen

[luj:,“

"Web Service: ist ein Softwaresystem das fiir Interaktionen tiber ein Netzwerk von Maschine zu Maschine
entworfen ist. Es besitzt ein Schnittstelle, die in einem maschinenlesbaren Format beschrieben ist (WSDL).
Andere Systeme interagieren mit dem Web Service in einer vorgeschrieben Art und Weise [WCLo5].

15

2. Grundlagen

Ein Workflow Management System unterstiitzt somit alle Personen, die an einem Workflow
beteiligten sind. Von der Entwicklung des Workflows bis hin zu dessen Ausfiihrung.

2.1.2. Interaktion von Workflows mit Menschen

Trotz der heutigen Moglichkeiten einen Prozess zu automatisieren, besteht in vielen Situa-
tionen die Notwendigkeit menschliche Nutzer in den Workflow mit einzubeziehen. Zum
Beispiel um zu entscheiden, wie sich ein automatisiertes System in einem Fehlerfall verhalten
soll [KDS"12]. In [ABD"07] werden solche Prozesse als Human Centric Workflows bezeichnet.
Eine Aktivitdt in einem Workflow, die ein Mensch ausgefiihrt, wird als Human Task bezeich-
net. Ein Human Task erfordert die Beurteilungen, Fahigkeiten, Entscheidungen oder das
Urteilsvermdgen eines am Prozess beteiligten Menschen. In der Regel wird die Aufgabe
durch eine menschliche Handlung erfiillt. Der Mensch entscheidet, wann die Aufgabe als
abgeschlossen gilt. Erst wenn die bearbeitete Aufgabe beendet ist, wird mit der néachsten
Aktivitit im Prozess fortgefahren [ABD ™ o7]. Das Einbinden von Menschen in den Workflow
und die Zuordnung von Aufgaben an sie wird als Human Task Management bezeichnet.
Sogenannte Worklist oder Tasklist Anwendungen listen dem Benutzer die Aufgaben fiir die
Ausfithrung meist in einer grafischen Oberflache auf [SDK10].

Die Organization for the Advancement of Structured Information Standards (OASIS)* [OAS]
hat mit der Spezifikation WS-HumanTask [AAD " o7a] eine abstrakte Beschreibung fiir die
Interaktion von Workflows mit Menschen entwickelt. Der Standard wurde zum Beispiel in
BPEL4People [AAD " oyb] fiir den BPEL Standard umgesetzt.

2.1.3. Scientific Workflows

Workflows konnen in unterschiedlichen Bereichen eingesetzt werden. Neben den Business
Workflows, die im Unternehmensumfeld verwendet werden, wird die Workflow Technologie
zunehmend auch in wissenschaftlichen Bereichen eingesetzt. Diese Workflows werden dann
als Scientific Workflows bezeichnet.

Durch den Einsatz von Business Workflow Technologien im wissenschaftlichen Bereich,
konnen die Wissenschaftler von den erprobten und bewidhrten Konzepten der Business
Workflows profitieren. In [GSK ™ 11] beschreiben Leymann et al. die Vorteile der Verwendung
von Workflows im wissenschaftlichen Bereich. Zum Beispiel konnen die Wissenschaftler ihre
Ergebnisse und Daten iiber Services mit anderen Wissenschaftlern teilen. So kénnen sie dann
mit Hilfe von Workflows die Ergebnisse (gemeinsam) analysieren. Workflows sind in der
Lage mit grofien Mengen an Daten zu arbeiten. Gerade im wissenschaftlichen Bereichen fallen
oft grofie Datenmengen an, zum Beispiel durch die Messungen von Sensoren. Ein weiterer,

2Die Organization for the Advancement of Structured Information Standards (OASIS): OASIS ist ein
internationales, non-profit Konsortium, das sich mit der Standardisierung von IT Sicherheit, Cloud Computing,
SOA, Web Services, und anderen Technologien beschiftigt [OAS].

16

2.1. Workflows

wichtiger Punkt ist, dass Workflows in verteilten und heterogenen Umgebungen ausgefiihrt
werden konnen. Solche Umgebungen sind im wissenschaftlichen Bereich die Regel und
konnen bei einer Zusammenarbeit von verschiedenen Institutionen kaum verhindert werden.
Des Weiteren erlaubt die Automatisierung von Schritten beim Entwurfs und der Ausfithrung
der Workflows dem Wissenschaftler, sich auf seine Forschungen zu konzentrieren. Zusatzlich
ermoglichen Workflows unterschiedliche Verfahren zu Fehlerbehandlung.

Die Anforderungen an die Workflows unterscheiden sich in den Einsatzbereichen eines
Unternehmensumfeldes und eines wissenschaftlichen Bereiches. Daher miissen die Business
Workflows zusétzlich an die Bediirfnisse der Wissenschaftler angepasst werden.
Wissenschaftler sind meist keine Computerexperten und benotigen daher bedienerfreundli-
che Anwendungen. Wihrend Business Workflows Management Systeme moglichst allgemein
gehalten werden, um unabhingig vom Geschéftsmodell und der Infrastruktur zu sein, sind
Scientific Workflows Management Systeme oft sehr spezifisch und auf einen Anwendungs-
bereich angepasst.

Der Lebenszyklus von Geschidftsprozessen im Business Process Management? besteht aus
mehreren getrennten und wiederholbaren Phasen. Der Lebenszyklus besteht aus den Phasen
Modellierung, Deployment (Installation und Konfiguration), Ausfithrung, Uberwachung
und Analyse von Workflows. Jede dieser Phasen wird von einer spezifischen Rolle bear-
beitet. Dazu existieren im Workflow Management System meist spezielle Werkzeuge. In
der Business Welt wird tiblicherweise jede Rolle von einer anderen Person eingenommen.
Bei Scientific Workflows ist der Kreis der beteiligten Personen viel kleiner. Meist wird der
gesamte Lebenszyklus von einem Wissenschaftler bearbeitet. Daher miissen die Werkzeuge
fiir die Bearbeitung der Phasen einfach und moglichst miteinander integriert sein. Abbildung
2.2 stellt die Lebenszyklen von Business Workflows und Scientific Workflow gegentiber.

Ein Wissenschaftler hat in der Regel ein exploratives Vorgehen. Er fiihrt einen Prozess
aus und beobachtet die Resultate. Unter Umstdnden unterbricht er die Ausfithrung und
dndert das Modell und fiihrt das Modell erneut aus. Daher existiert im Lebenszyklus eines
wissenschaftlichen Prozesses eine Riicksprungmoglichkeit von der Ausfiihrungs- zur Model-
lierungsphase [SK]. Aufierdem ist das Deployment sehr technisch. Die Komplexitit sollte
moglichst vor dem Wissenschaftler verborgen werden. Daher sind im Lebenszyklus eines
Scientific Workflows meist die Phasen Modellierung und Deployment zusammengefasst,
sodass der Wissenschaftler sich nicht um das Deployment sorgen muss.

Das Deployment von Workflows ist ein sehr technischer Schritt. Dabei wird das Prozess-
modell in eine ausfithrbare Reprasentation tiberfiihrt. Wissenschaftler sind aber keine Com-
puterexperten und sind deshalb nicht in der Lage mit der Komplexitdt des Deployment
umzugehen. Daher werden Scientific Workflows meist ohne eine Deployment Phase ausge-
tithrt. Stattdessen fithren die Wissenschaftler die Workflows oft direkt nach der Modellierung
aus. Das Deployment wird im Hintergrund automatisch ausgefiihrt. Bei diesem Vorgehen

3Business Process Management (BPM): Zu Business Process Management zédhlt das Abfragen, Analysieren,
Beobachten und Reparieren von Prozessen sowie Verwalten des Verlaufs ausgefiihrter Prozesse und deren
Ressourcen [LRoo].

17

2. Grundlagen

Business

Business Specialist

Analist v\ 4 /, A

Analysis Modelin Modelin

\ r T i
_user, Monitoring Deployment ., [Deployment

Scientist

/
Administrator =~ IT Specialist .
Execution Execution
and
Client/Employe Monitoring
(A) (B)

Abbildung 2.2.: (A) Lebenszyklus Business Process Management; (B) Lebenszyklus Scientific
Workflow [SK].

ndhern sich Wissenschaftler hdaufig durch Ausprobieren an eine ausfiihrbare Losung an [SK].
Auch wenn Business Workflows mittlerweile die Nutzung von Grids durch die Open Grid
Services Architecture (OGSA) [TUH"05] und das Web Services Ressourcen-Framework
(WSRF) [Banos] erlauben, haben Scientific Workflows meist zuséatzliche Bediirfnisse an die
Arbeit mit Grids. Beispiele hierfiir sind die Suche nach freien Ressourcen oder die Planung
von Ausfiithrungen.

Beim Business Workflow Management dient das Monitoring der Uberwachung des gesamten
Systemzustands. Im wissenschaftlichen Workflow Management ist es dagegen wichtig, dass
der Wissenschaftler den Fortschritt seiner Berechnungen beobachten kann [SDK1o0].

Ein Scientific Workflow kann wie folgt definiert werden:

Definition 6 Ein Scientific Workflow ist ein Workflow zur automatisierten Ausfiithrung von Prozes-
sen im wissenschaftlichen Bereich. Diese Workflows sind auf die Anforderungen der Wissenschaftler
spezialisiert.

2.2. Portale

Portale haben in den vergangen Jahren einen bedeutenden Stellenwert als Technologie im
Bereich der Informationsbereitstellung erlangt. Sie entstanden Ende der goer Jahre aus der
Not heraus das das World Wide Web rasant und unkontrolliert wuchs. Nutzer des Internets
benotigten Hilfe diese Flut an Informationen zu filtern, um fiir sie relevante Informationen
zu erhalten. Einige Online-Dienst Anbieter erkannten diesen Problem und stellen auf ihren
Web Seiten gezielte Informationen und Dienste bereit. Diese Seiten konnten die Nutzern
dann als Ausgangspunkt bei ihrer Suche nutzen. Eine kontextbezogene Vorauswahl sollte die
Informationstiberflutung der Nutzer verhindern. [GK] Grofimann und Koschek definieren
ein Portal wie folgt:

18

2.2. Portale

Definition 7 ,,Ein Portal ist ein zentraler und personlicher Einstieg (Single Point of Access) in
die Informationswelt des Internet oder Intranet, von dem aus Verbindungen zu den relevanten
Informationen und Diensten hergestellt werden konnen.”

Ein Portal ist eine Webanwendung, die als Prasentationsschicht fiir Informationssysteme
dient. Portale werden dazu verwendet, Inhalte aus unterschiedlichen Anwendungen und
Informationsquellen auf einer Seite zusammenzufiihren. Zusétzlich bieten sie haufig eine
personalisierte Auswahl und Darstellung der Informationen sowie eine vereinheitlichte
Anmeldung und Authentifizierung bei den beteiligten Systemen an [Kusos].

Portale kbnnen anhand von diversen Kriterien klassifiziert werden. In [GK] wird eine Klassi-
fikation anhand des Fokus (horizontal und vertikal) und des Nutzerkreises durchgefiihrt. Ein
horizontales Portal dient als Plattform fiir verschiedene Anwendungen. Es besitzt ein breites
Informationsangebot. Ein horizontales Portal richtet sich an keine spezifische Zielgruppe. Ein
Beispiel fiir ein horizontales Portal ist Google*. Ein vertikales Portal verfiigt iiber eine spezielle
Auswahl von Anwendungen oder Funktionen. Der Funktionsumfang eines vertikalen Portals
ist spezialisiert auf die Anforderungen der Zielgruppe, fiir die es bereit gestellt wird. Ein
Beispiel fiir ein vertikales Portal ist ein Portal fiir die Abwicklung von Projekten in einem
Unternehmen. Ein offenes Portal ist fiir jeden Benutzer zugdnglich. Auf ein geschlossenes
Portal hat nur eine definierte Benutzergruppe Zugriff. Sowohl das offene Portal als auch das
geschlossene Portal konnen {iber das Internet oder ein Intranet verfiigbar sein.

Anhand dieser Kriterien leiten GrofSmann und Koschek vier Klassen von Portalen ab. Abbil-
dung 2.3 zeigt eine Matrix mit diesen vier Klassen.

© Prozess-
c . .
S orientiertes Konsumentenportal
2| Unternehmensportal
= Anwendungs-
% orientiertes Themenportal
> | Unternehmensportal
geschlossen offen

Abbildung 2.3.: Klassifikation von Portalen nach Fokus(horizontal, vertikal) und Nutzer-
kreis(offen, geschlossen) [GK].

4+Google: http://wuw.google.com

19

http://www.google.com

2. Grundlagen

,Bin prozessorientiertes Unternehmensportal stellt einer geschlossenen Benutzergruppe die
(automatisierten) Geschéftsprozesse des Unternehmens in einer einheitlichen Ablaufum-
gebung zur Verfligung” [GK]. Das anwendungsorientiertes Unternehmensportal integriert die
Anwendungen und Datenbestdande eines Unternehmens {iber die Benutzungsoberfldche des
Portals [GK]. Ein Konsumentenportal ist 6ffentlich zugéanglich und stellt Informationen und
Dienste zur Verfligung. Es richtet sich aber an keine spezielle Zielgruppe. Das Themenportal
ist wie das Konsumentenportal 6ffentlich zuganglich. Allerdings sind die Anwendungen
und Dienste, die in dieser Klasse von Portalen angeboten werden, auf einen bestimmten
Nutzerkreis ausgelegt [Wegoz2].

Portale stellen heutzutage eine breite Palette an Diensten bereit.

Anpassung an den Nutzer: dabei erkennt das Portal einen Benutzer und stellt spezifische In-
halte fiir diesen bereit. Die Inhaltszusammenfiihrung dient dazu, Inhalte aus unterschiedlichen
Quellen im Portal einheitlich zusammenzustellen. Die Inhalte werden dann meist in ver-
schiedenen Ausgabeformaten angeboten. Durch Single Sign On muss der Benutzer am Portal
nur einmal authentifiziert werden, um alle darin enthalten Anwendungen nutzen zu kénnen.
Unterstiitzung verschiedener Geriite: das Portal kann Inhalte in Abhédngigkeit des verwendeten
Endgerites iiber verschiedene Kommunikationskanile bereitstellen. Portal Administration:
die Inhalte des Portals konnen tiiber einen Administrationsbereich angepasst werden. Der
Bereich spannt sich von der Erstellung von Benutzergruppen bis hin zum Look and Feel
der Inhalte. Portal Benutzerverwaltung: iber die der Zugang zu dem Portal verwaltet werden
kann. Abhédngig vom Portalsystem kann ein Portal so nur bestimmten Nutzern zuganglich
gemacht werden [Wegoz].

2.2.1. Portalspezifische Architektur

Ein Portal kann von unterschiedlichen Blickpunkten betrachtet werden: aus der Sicht eines
Portalnutzers, der auf Inhalte zugreift, die ihm im Portal zur Verfiigung gestellt werden, aus
der Sicht des Content Providers, der Inhalte fiir einen Portalnutzer bereitstellt sowie aus der
Sicht eines Portlet Entwicklers der die Anwendungen entwickelt, die fiir die Bereitstellung
der Inhalte im Portal benotigt werden [Pro11]. Im Folgenden wird nédher auf die Sicht des
Entwicklers eingegangen.

Fiir die Komposition von Inhalten verwendet ein Portal eine Reihe von Komponenten. Die
Inhalte eines Portals werden in Portalseiten bereitgestellt. Abbildung 2.4 beschreibt den
Aufbau einer Portalseite. Die Inhalte der Portalseiten von Portlets generiert. Nauerz definiert
in [Dr.12] wie folgt:

Definition 8 , Ein Portlet ist eine Komponente (eine Anwendung) die Inhalte darstellt und Zugriff
auf Dienste und Informationen liefert. Portlet Anwendungen sind Biindel von zusammengehorigen
Portlets und Ressourcen, welche zusammengepackt sind. Alle Portlets die zusammen gepackt sind,
teilen einen gemeinsamen Kontext, der Ressourcen wie Bildern, Konfigurationsdateien und Klassen
beinhaltet.”

20

2.2. Portale

<Portlet Titel> OO® H Titel &

Kontrollelemente

Portlet
Fragment

A

<Portlet Inhalt>
Portlet
Window

[¢—Portalseite

<Portlet Titel> OISy <Portlet Titel> ©e®
<Portlet Inhalt> <Portlet Inhalt>
<Portlet Titel> ©eR®
<Portlet Inhalt>

Abbildung 2.4.: Aufbau einer Portalseite [Hepo8].

Ein Portlet erzeugt keine vollstandige Antwort sondern nur Markup Fragmente aus zum
Beispiel HTML oder XML. Diese Fragmente werden hiufig von der Portal Engine um einen
Titel und Steuerelemente erweitert. Das Ergebnis wird als Portlet Window bezeichnet. Die
Inhalte des Portlet Windows konnen sich abhédngig von dem Client Request @ndern. Portlet
Windows werden in Portalseiten eingebettet. Die Portalseite dient zur Aggregation der
Portlet Inhalte [Hepo8]. Nauerz definiert eine Portalseite in [Dr.12] folgendermafSen:

Definition 9 , Eine (Portal)Seite stellt Inhalte dar. Eine Seite kann aus einem oder mehreren Portlets
bestehen.

In vielen Fiillen definiert der Portal Administrator den Aufbau der Seite.

“

Die fertige Portalseite wird nach der Erstellung als Antwort an den Client zuriick gesendet.
Abbildung 2.5 veranschaulicht diesen Prozess.

21

2. Grundlagen

- X M\ S
fCIlent DewceN
s I{ A — <+«—(Portlet A
[e]
©
S B C Portal [¥—| Portlet [+ (PortletB
k] Server Container
E | — <+«—(Portlet C
D «— <«—(Portlet D

et
3
©
£ J \ J \ J
[a

Abbildung 2.5.: Aggregation der Portlet Inhalte [Hepo8].

Ein Portal besteht in der Regel aus mehreren Portalseiten, durch die ein Benutzer navigieren
kann. Damit eine Navigation zwischen den Portalseiten mdglich ist, miissen die Portalseiten
miteinander verbunden werden. Nauerz hat dafiir in [Dr.12] folgende Definition:

Definition 10 ,, Ein Navigationsmodell repriisentiert die Beziehung zwischen einzelnen Portalseiten
und definiert somit die in der Regel hierarchische, Navigationsstruktur des gesamten Web Portals.”

2.2.2. Portlets und Portlet Container

Portale werden oft als JEE> Anwendungen entwickelt. In JEE werden die Komponenten in
speziellen Containern innerhalb des Application Servern bereitgestellt. Ein Container ist eine
spezielle Laufzeitumgebung fiir die Komponenten, in der spezielle Dienste bereitstellt sind.
Portlets werden zum Beispiel im Portlet Container ausgefiihrt. Der Portlet Container ist eine
Erweiterung der Servlet Containers Spezifikation [Morog].

Definition 11 Ein Portlet Container fiihrt Portlets aus und stellt ihnen die benotigte Laufzeitum-
gebung zur Verfiigung. Ein Portlet Container verwaltet die Instanzen und den Lebenszyklus von
Portlets.

Die Portlet API beschreibt die Schnittstelle zwischen einem Portlet und dem Portlet Container.
Neben der Portlet API muss das Portal dem Portlet weitere Dienste bereitstellen. Beispiel

5JEE (Java Plattform, Enterprise Edition): Ist eine Spezifikation fiir eine Middelwarearchitektur [DS]. Weitere
Informationen konnen unter http://www.oracle.com/technetwork/java/javaee gefunden werden.

22

http://www.oracle.com/technetwork/java/javaee

2.2. Portale

hierfiir sind Dienste fiir das Persistieren von Daten oder das Abfragen von Benutzerinfor-
mationen. Diese Dienste stellt das Portal tiber das Portal Service Interface zur Verfiigung.
Abbildung 2.6 veranschaulicht den Aufbau einer Portal Server Anwendung.

Servlet Portlet
Request Request Portlet
Invocation
+<—— |engine| <
: — , Interface |Inhalt
Servlet Portlet Dispatcher «—
Response Response Portlet [Anwendung]
| Portal Service Interface |
. User
Persistence :
. Information
Service)
Service

Abbildung 2.6.: Komponenten Portal Anwendung [Wegoz].

Eine Portal Anwendung ist als Servlet implementiert. Ein Servlet ist eine Anwendung die An-
fragen von einem Client entgegennehmen und beantworten kann. Die Portal Engine nimmt
die Servlet Anfragen vom Servlet Container entgegen. Die Anfragen transformiert sie im
Anschluss in einen Portlet Request. Ein Portlet Request beinhaltet zusétzliche Informationen,
die fiir die weitere Verarbeitung von den Portlets benotigt werden. Der Portlet Request wird
dann tiber den Dispatcher (deutsch: Disponent) an die entsprechenden Portlets verteilt. Die
Portlets werden im Portlet Container ausgefiihrt und tiber die Portlet API angesprochen. Die
Portlets konnen wéhrend sie ausgefiihrt werden iiber das Portal Service Interface auf Dienste
des Portals zugreifen. Nachdem alle Portlets ausgefiihrt wurden, fiigt die Portal Engine die
Antworten aller Portlets zusammen und sendet sie an den Client zurtick [Wegoz2].

2.2.3. Portlet API

Die Portlet API ist durch den Java Specification Request® 168 und 286 spezifiziert. Die Spezi-
fikation [Hepo8] dient als Standard fiir die Implementierung des Java Portlet Containers
und Portlets. Durch diesen Standard konnen Portlets herstellerunabhédngig und portierbar
entwickelt werden [Wegoz]. Dies ermoglicht eine Interoperabilitdt von Portlets auf unter-
schiedlichen Portal Servern.

®Java Specification Requests (JSR): ist die Beschreibung von geplanten und fertigen Spezifikationen fiir die
Java Plattform. Die Spezifikationsanfragen werden vom Java Community Process (JCP) http://jsp.org,
einer Gemeinschaft fiir die Entwicklung von Java Standards, verwaltet.

23

http://jsp.org

2. Grundlagen

Die Portlet API beschreibt die Regquest und Response Objekte, welche die Anfrage an das
Portlet und dessen Antwort beinhalten. Des Weiteren beschreibt die Portlet API den Portlet
Lebenszyklus. Der Lebenszyklus ist durch die Portlet Schnittstelle abgebildet. Jedes Portlet
muss diese Schnittstelle implementieren. Der Portal Container fiihrt die Portlets anhand der
Phasen des Lebenszyklus aus. Der Portlet Lebenszyklus beginnt mit der Initialisierung des
Portlets. Anschlieflend verarbeitet das Portlet eingehende Anfragen (Requsts). Wenn das
Portlet nicht mehr benétigt wird, wird es beendet und entfernt [Kusos].

Abbildung 2.7 veranschaulicht die Phasen des Portlet Lebenszyklus

Container Portlet
i i
— |
L
Init >
L
——
processAction >
processEvent
>
render >
L
——

serveRessource >

H

destroy

|
|
|

Abbildung 2.7.: Lebenszyklus eines Portlets [Hepo8].

Die ini Methode dient fiir mogliche Instanzierungen innerhalb des Portlets. Sie wird bei
der Instantiierung des Portlets vom Portlet Container aufgerufen. Die processAction und die
render Methode dienen fiir die Verarbeitung von Nutzeranfragen. Wahrend processAction fiir
Anfragen vorgesehen ist, die den Zustand des Portlets verdndern, dient die render Methode
der Erzeugung des Inhaltsfragments. Die processEvent Methode dient der Verarbeitung von
Ereignissen, die zwischen Portlets gesendet werden koénnen. Diese Methode ist im JSR
286 zur Portlet Spezifikation hinzugekommen. Wird die processAction Methode aufgerufen,
fiihrt der Portal Container auch die processEvent und render Methoden aller Portlets auf der
Portalseite aus. So ist es moglich, dass Portlets sich untereinander Ereignisse senden.

Die serveResource Methode liefert weitere Ressourcen wie z.B. Bilder, die im Inhaltsfragment
benotigt werden. Um Ressourcen auszuliefern, kann die Methode zu jedem Zeitpunkt

24

2.3. Zusammenfassung

ausgefiihrt werden (solange das Portlet existiert), ohne das Portlet neu rendern zu miissen.
Daher kann diese Methode auch fiir asynchrone Aufrufe an das Portlet genutzt werden.
Wenn das Portlet nicht mehr benétigt wird, wird vom Portal Container die destory Methode
aufgerufen. In ihr konnen Aufraumarbeiten implementiert werden [Hepo8].

2.3. Zusammenfassung

In diesem Kapitel wurden die fiir diese Arbeit wichtigsten Technologien, Workflows und
Portale, vorgestellt. Ein Prozess ist eine Ausfithrung von Aktivitdten, um eine definiertes Ziel
zu erreichen. Sind die Aktivititen und Rahmenbedienungen fiir die Erreichung des Ziels
definiert, folgt der Prozess einem Prozessmodell. Prozesse miissen nicht automatisiert sein.
Wird ein Prozess teilweise oder ganz durch Computerunterstiitzung ausgefiihrt, wird dieser
als Workflow bezeichnet. Prozesse die zur Erreichung von Unternehmenszielen eingesetzt
werden, werden als Geschiftsprozesse Prozesse bezeichnet. Workflows im Unternehmen-
sumfeld werden als Business Workflows bezeichnet. Auch im wissenschaftlichen Bereich
werden Prozesse eingesetzt. Die automatisierten Prozesse werden in diesem Bereich als
Scientific Workflows bezeichnet. Zwischen Business Workflows und Scientific Workflows
existieren Anforderungen, die sich tiberschneiden, zum Beispiel das Arbeiten mit grofien
Datenmengen. Dennoch existieren auch Anforderungen, bei denen sich Business Workflows
und Scientific Workflows unterscheiden. Ein Beispiel hierfiir ist der Prozess Lebenszyklus.
Wihrend an einem Business Workflow eine ganze Reihe an Personen arbeiten (Workflow
Modellierer, IT Experte, Benutzer, Analyst), arbeitet an einem Scientific Workflow meist nur
ein Wissenschaftler.

Sowohl in Geschifts- als auch in wissenschaftlichen Prozessen sind Interaktionen mit einem
Benutzer erforderlich, zum Beispiel im Falle eines Fehlers. Aktivititen, die aus solchen
Interaktionen bestehen, werden als Human Tasks bezeichnet.

Portale sind Webanwendungen, die fiir die Integration von Informationssystemen entwickelt
wurden. Sie dienen als zentraler Zugangspunkt und sind an den Benutzer anpassbar. Portale
konnen anhand verschiedener Kriterien klassifiziert werden. Zum Beispiel anhand des Fokus
(horizontal, vertikal). Ein horizontales Portal besitzt ein breites Informationsangebot, ein
vertikales Portal ein spezifisches Informationsangebot. Eine anderes Moglichkeit ist die
Klassifizierung nach der Benutzergruppe (offen, geschlossen). Ein Portal kann 6ffentlich
zugdnglich sein, dann handelt es sich um ein offenes Portal. Wenn das Portal nur fiir eine
ausgewdhlten Benutzergruppe zuginglich ist, handelt es sich um ein geschlossenes Portal.
Ein Portal besteht in der Regel aus mehrere Portalseiten. Eine Portalseite enthdlt ein oder
mehrere Portlet Windows. Ein Portlet Window enthilt die Inhalte (Fragmente), die von
einem Portlet generiert werden. Ein Portlet ist eine Anwendung, die Inhalte darstellt und
Zugriff auf Dienste und Informationen liefert. Portlets werden in einem Portal Container
ausgefiihrt. Die Schnittstelle zwischen Portlet und Portlet Container ist standardisiert.

25

3. Screenflows

Wie im Kapitel Grundlagen beschrieben, sind auch in automatisierten Prozessen haufig noch
(immer) menschliche Handlungen erforderlich. Diese werden als Human Tasks bezeichnet.
Beispiele fiir Human Tasks sind unter anderem die Eingabe von Daten, die fiir den Prozess
benotigt werden oder die Entscheidung, wie sich ein automatisiertes System im Fehlerfall
verhalten soll. Fiir die Interaktion mit einem Benutzer, sind Benutzungsschnittstellen erfor-
derlich. Im Kapitel Grundlagen wurde beschrieben, dass ein Portal als Prasentationsschicht
fiir Informationssysteme dient. Portale sind daher ein geeignetstes Mittel fiir die Umsetzung
von Benutzungsschnittstellen.

3.1. Benutzungsschnittstellen mit Portalen

Der Einsatz von Portalen fiir die Umsetzung von Benutzungsschnittstellen hat zahlreiche
Vorteile. Benutzungsschnittstellen die auf Basis der Portaltechnologie erstellt werden, sind
plattformunabhidngig. Sie konnen auf allen Systemen verwendet werden, die einen Web-
browser besitzen. Eine Voraussetzung hierfiir ist natiirlich, dass die Inhalte der verwendeten
Portlets auf HTML aufgebaut sind.

Portale ermoglichen es, komplexe Benutzungsschnittstellen zu erstellen. Je nach Bedarf
konnen Entwickler unterschiedliche Technologien bei der Umsetzung verwenden. So lassen
sich von einfachen HTML Formularen bis hin zur komplexen Webanwendungen mit einem
Portlet realisieren.

Uber die im Portal vorhanden Werkzuge konnen Benutzungsschnittstellen und Benutzer
verwaltet werden. Durch eine Benutzerverwaltung innerhalb des Portal Servers kann die
Authentifizierung und die Autorisierung der Benutzer geregelt werden. Ein Administrator
ist fiir die Vergabe von Rollen und einzelnen Rechten verantwortlich. So kann der Zugriff
auf die einzelnen Benutzungsschnittstellen durch die daftir vorgesehenen Nutzergruppen
gesteuert werden.

Uber das Portal kann auch ein einheitliches Erscheinungsbild der Benutzungsschnittstellen
hergestellt werden. Das sogenannte Look and Feel kann vom Portal Administrator fiir das
gesamte Portal eingestellt werden. Anderungen des Look and Feels kénnen meist mit wenig
Aufwand vorgenommen werden.

Wie in Kapitel 2 beschrieben, dient ein Portal als zentraler Zugangspunkt und haufig zur
Integration von Anwendungen. Die Benutzer kénnen so das Portal als zentrale Arbeitsum-
gebung nutzen, in der alle benttigten Anwendungen {iiber Portlets bereitgestellt werden.
Die verfiigbaren Anwendungen kénnen so bei Bedarf mit dem Workflowsystem verbunden
werden [SLWMo7].

27

3. Screenflows

3.2. Heutige Kommunikation zwischen Workflow- und
Portalsystemen

Ein héufig eingesetztes Konzept fiir die Interaktion zwischen Workflowsystem und Benut-
zern, ist die sogenannte Task List. In einer Task List werden die Human Tasks aufgelistet,
die von einer potenziellen Gruppe von Benutzern abgearbeitet werden kénnen. Wihlt ei-
ner der Benutzer den Human Task zur Bearbeitung aus, wird ihm die dafiir vorgesehene
Benutzungsschnittstelle angezeigt.

In Portalen kommt dieses Konzept hdufig zum Einsatz. In Abbildung 3.1 wird das Zusammen-
spiel zwischen einer Workflow Engine, Task List Portlet und Task Page veranschaulicht.

Workflow Engine

O——O—@O—

Task API
A A A
©)

E Task List Portlet Portal .
® |G

A\ 4 !
X (Task Page N
: @ |@ :
X Task Process Support
X Portlet Portlet :
X & o

Abbildung 3.1.: Interaktion zwischen Workflow Engine und Task List Portlet.

Um die (Human) Tasks (deutsch Aufgaben) fiir einen Benutzer im Task List Portlet an-
zuzeigen, ruft das Task List Portlet alle vorhanden Human Tasks (HT) fiir den aktuellen
Benutzer von der Task API des Workflowsystems ab (Polling) (1). Nachdem ein Task vom
Benutzer angenommen (claim) wurde, wird der Taskname zu einem Link. Durch das Flo-
gen (anklicken) des Links wird das fiir den Task definierte Portlet (Task Process Portlet)

28

3.3. Screenflows

instanziiert. Wahrend diesem Aufruf {ibergibt das Task List Portlet dem Portlet die ID des
Human Task. Bei seiner Initiierung kann das Portlet alle benétigten Daten von der Task API,
des Workflowsystems abfragen (2). Nachdem die Initiierung abgeschlossen ist, wird der
Benutzer auf eine Portalseite (Task Page) fiir die Bearbeitung des Tasks weitergeleitet (3).
Die Portalseite enthélt das initiierte Portlet, das fiir die Bearbeitung des konkreten Tasks
vorgesehen ist. Zuséatzlich kann sie noch weitere Portlets (Support Portlet) enthalten, die den
Benutzer bei der Bearbeitung des Tasks unterstiitzen. Beispiele hierfiir sind ein Kalender
Portlet oder ein Portlet, das dem Benutzer das Abfragen von Kundendaten ermoglicht.
Nachdem die Benutzungsschnittstelle vollstindig geladen ist, kann der Benutzer mir der
Bearbeitung des Tasks beginnen. Wenn der Benutzer die Bearbeitung des Tasks abgeschlossen
hat, werden die Ergebnisdaten iiber die Task API an den Prozess iibergeben (4). Der Prozess
kann danach mit der Verarbeitung fortfahren. Nachdem die Ergebnisdaten tibertragen wur-
den, wird der Benutzer zuriick zur Task List geleitet (5). Dort kann er dann den nédchsten
Task fiir die Bearbeitung auswahlen [SLWMoy]. Durch die Verwendung einer Task List fiir
die Interaktion von Menschen mit einem Workflow werden Human Tasks auf Task Pages
abgebildet.

Abbildung 3.2 veranschaulicht einen beispielhaften Ablauf einer Abarbeitung von drei
Human Tasks mit Hilfe einer Task List. Erst greift die Task List aus die Task API zu.
Anschlielend werden nacheinander die Portlets A, B und C fiir die Bearbeitung der Human
Tasks instanziiert.

3.3. Screenflows

Héufig wollen Modellierer von Geschiftsprozessen nicht jeden Human Task separat im
Prozessmodell modellieren. Insbesondere dann nicht, wenn sie wissen, dass mehrere auf-
einander folgende Tasks vom selben Benutzer ausgefiihrt werden. In so einem Fall ist es
uiberfliissig, den Benutzer fiir jeden seiner Tasks erneut auf die Task Page zu leiten. Zusatz-
lich ist es fiir den Benutzer unkomfortabel, jeden dieser Tasks explizit aus der Task List
auszuwdhlen (hdufige Weiterleitungen zur Task List).

Um Prozesse mit Portlets abzubilden, existieren zwei Moglichkeiten. Erstens, das Schreiben
eines komplexen Portlets, welches die gesamte Prozesslogik enthilt. Bei diesem Ansatz kann
der Nutzer durch den gesamten Prozess innerhalb des Portlets gefiihrt werden. Nachteilig ist
jedoch, dass bei jeder Anderung des Prozesses der Quellcode des Portlets angepasst werden
muss. Zusétzlich ist das entwickelte Portlet durch den definierten Prozess sehr spezifisch
und kann so selten wiederverwendet werden.

Zweitens, das Schreiben von mehreren einfachen, feingranularen Portlets, die gemeinsam
den Prozess abbilden. Die einzelnen Portlets eignen sich so hervorragend fiir die Wieder-
verwendung. Allerdings fehlt bei diesem Ansatz eine Fiithrung des Benutzers durch den
Prozess. Es fehlt eine zentrale Komponente, die den Ablauf definiert. Die Reihenfolge in der
die Portlets ausgefiihrt werden miissen, bleibt dem Benutzer tiberlassen.

Der Screenflow Manager vereint die Vorteile beider Ansétze. Er erlaubt es, einfache und fein-
granulare Portlets zu verwenden, die dann deklarativ als Screenflow miteinander verbunden

29

3. Screenflows

Task API Task API Portlet A Portlet B Portlet C

-

A

-

A

A

F___

A

A

.___4

______________._____.____-___+

Legende:
Asynchroner Aufruf ———>
Synchroner Aufruf ~——p

Abbildung 3.2.: Sequenzdiagramm der Ausfiithrung von drei Human Tasks mit einer Task
List.

werden. Ein Screenflow besteht aus einer Abfolge von Portalseiten, welche die miteinander
verbundenen Portlets enthalten. Der Screenflow wird tiber die Screenflow Definition beschrie-
ben. Sie definiert alle beteiligten Portlets und beschreibt alle Transitionen zwischen ihnen.
In Abbildung 3.3 wird das Zusammenspiel dieser Komponenten veranschaulicht. Weitere
Details konnen im Kapitel Screenflow Manager nachgelesen werden.

30

3.4. Screenflows als Teil von Workflows

Portlet PL | | P2 | J pn
Screenflow
A A A
\ 4 \ 4 \ 4
Screenflow Screenflow
Definition . Manager

Abbildung 3.3.: Komponenten eines Screenflows.

3.4. Screenflows als Teil von Workflows

In Erweiterung dessen, was im vorhergehenden Abschnitt beschrieben ist, dass durch den
Einsatz der Portal Technologie Human Tasks auf Task Pages abgebildet werden kdnnen,
existiert mit dem Screenflow Manager die Moglichkeit, Human Tasks auf ganze Sequenzen
von Task Pages (Screenflows) abzubilden.

Eine Moglichkeit Screenflows in den Workflow mit einzubinden, ist die Verwendung einer
modifizierten Task List. Diese stellt statt einzelner Human Tasks, eine Liste von Screenflows
bereit. Der Screenflow substituiert dann mehrere aufeinanderfolgende Human Tasks, die
vom gleichen Benutzer abzuarbeiten sind. Durch das Klicken auf einen Listeneintrag wird
von dem modifizierten Task List Portlet ein spezielles Startereignis gesendet. Dadurch wird
der Screenflow Manager benachrichtigt, eine Instanz des definierten den Screenflows zu
starten. Das Startereignis beinhaltet die ID des Human Tasks. Diese speichert der Screenflow
Manager im Dialog Context*.

Wie bei einem herkommlichen Task List Portlet tauschen die am Screenflow beteiligten
Portlets Daten mit dem Workflowsystem aus. Dabei sind unterschiedliche Ansidtze moglich.
Ein Ansatz ist, dass das erste Portlet alle benttigten Daten aus dem Human Task ladt und
im Dialog Context abspeichert. Alle weiteren Portlets greifen dann auf den Dialog Context
zu, um mit den Daten zu arbeiten. Das letzte Portlet gibt dann alle Ergebnisse an das
Workflowsystem zuriick und schliefst den Human Task ab.

'Dialog Context: Der Dialog Context ist ein temporarer Speicher fiir die Screenflows. Weitere Informationen
zum Dialog Context konnen im Kapitel Screenflow Manager nachgelesen werden.

31

3. Screenflows

Eine weitere Moglichkeit ist, statt das erste und das letzte Portlet fiir die Kommunikation
mit dem Workflow System zu nutzen, Event Mapper Klassen* einzusetzen. Diese konnen nach
dem Auftreten des Startereignisses die Daten fiir den Human Task aus dem Workflowsystem
lesen und im Dialog Context ablegen. Die am Screenflow beteiligten Portlets greifen dann nur
auf den Dialog Context zu. Nachdem der Screenflow abgeschlossen ist und das Endereignis
vom letzten Portlet ausgelost wird, gibt eine weitere Event Mapper Klasse die Daten an das
Workflowsystem zuriick und beendet den Human Task.

Noch ein weiterer Ansatz wére, dass jedes Portlet selbst fiir das Lesen und Schreiben
der Daten mit dem Workflowsystem verantwortlich ist. Dabei wiirde dann erst das letzte
Portlet den Human Task als abgeschlossen markieren. Dieser Ansatz wird in Abbildung 3.4
veranschaulicht. Es ist auch eine Mischung aus den zuvor vorgestellten Ansidtzen moglich.
Dabei kommuniziert nur eine Teilmenge der am Screenflow beteiligten Portlets mit dem
Workflowsystem. Portlets oder Event Mapper, die mit dem Workflowsystem kommunizieren,
konnen auf den Dialog Context zugreifen, um die ID des Human Tasks zu erhalten und
andere Daten miteinander auszutauschen.

Screenflow Manager

Task List Portlet Screenflow

o\
\

\ | /
Workflowsystem
&\ —®

ST = System Task
HT = Human Task

Abbildung 3.4.: Interaktion zwischen Workflow Engine und Screenflow.

*Event Mapper Klasse: Durch eine Event Mapper Klasse kann Code fiir die Transformation von Ereignissen
ausgefiihrt werden. In diesem Kontext wird der Code fiir das Auslesen und Schreiben der Daten mit
Workflowsystem verwendet werden. Weitere Informationen zu den Event Mappern kénnen im Kapitel
Screenflow Manager gefunden werden.

32

3.5. Zusammenfassung

3.5. Zusammenfassung

Human Tasks sind Aktivitdten in einem Workflow, die menschliche Handlungen erfordern.
Fiir die Interaktion mit Menschen werden Benutzungsschnittstellen benotigt. Portale eig-
nen sich sehr gut fiir die Umsetzung von Benutzungsschnittstellen. Ein sehr verbreitetes
Konzept fiir die Bearbeitung von Human Tasks basiert auf der Nutzung von Task Listen.
Diese listen dem Benutzer alle Human Tasks auf, die von ihm bearbeitet werden sollen. Es
existieren jedoch Situationen, in denen ein Prozessmodellierer nicht fiir jede Aktivitat, die
vom selben Benutzer ausgefiihrt wird einen Human Task im Prozessmodell definieren will.
Hier wird dann der Teilprozess auf der Ebene der Benutzungsschnittstelle abgebildet. Um
die Portlets, die fiir die Abarbeitung solcher Human Tasks verwendet werden, dennoch
wiederverwendbar zu machen und eine Fithrung des Benutzers zu ermoglichen, wurde das
Konzept des Screenflow Managers entwickelt. Der Screenflow Manager kann einen Benutzer
durch eine definierte Abfolge von Portalseiten und Portlets leiten. Eine solche Abfolge wird
als Screenflow bezeichnet. Ein Screenflows kann dazu eingesetzt werden, um einen Human
Task auf einer Sequenz von Portalseiten abzubilden.

33

4. Verwandte Arbeiten

Nachdem im vorhergehenden Kapitel das Konzept der Screenflows vorgestellt wurde,
handelt dieses Kapitel von verwandten Arbeiten aus diesem Bereich. Der Fokus dabei liegt
auf webbasierten Screenflow- oder Dialogkontrollsystemen. Die auswéhlten Arbeiten haben
einen theoretischen oder praktischen Bezug zu diesem Thema.

4.1. Theoretische Arbeiten

Bei den theoretischen Arbeiten handelt es sich um Arbeiten, welche lediglich Konzepte ohne
konkrete Implementierung beschreiben. Arbeiten welche auch konkrete Implementierungen
umfassen, werden anschliefend im Abschnitt 4.2 beleuchtet.

Modellierung webbasierter Dialog Flows fiir eine automatische Dialogkontrolle

In [BGo4] stellen Book und Gruhn ein auf MVC" basiertes Konzept fiir die Implementierung
einer Dialogflusskontrolle vor. In webbasierten Anwendungen ist die Dialogkontrolllogik
meist in der Prasentations- oder der Anwendungslogik enthalten. Dies erschwert die Kontrol-
le bei komplexen Dialogen und verhindert eine Wiederverwendung der plattformunabhangi-
gen Anwendungslogik, da verschiedene Gerate meist unterschiedliche Anzeigemechanismen
verwenden. Um diese Probleme zu l6sen und eine stindige Reimplementierung der Kon-
trolllogik zu vermeiden, wird in dem Paper eine Losung namens Dialog Control Framework
vorgestellt. Das Framework kann unabhéngig von der Prasentations- und der Businessschicht
mehrere Dialog Flows (Screenflows) verwalten. Es verwendet fiir die Dialogspezifikation
eine fiir diesen Zweck entwickelte Dialogflussnotation. Mit deren Hilfe kann ein Dialog Graph
erstellt werden. Dieser wird dann in ein maschinenlesbares Format iibertragen. Dieses Mo-
dell kann kann dann in ein objektorientiertes Dialogflussmodell transformiert werden, welches
dann dem Framework zur Laufzeit zur Verfiigung steht. Durch diese Vorgehensweise wird
im Framework die Dialogkontrolle automatisiert, sodass sich die Entwickler auf Aufgaben
wie die Entwicklung der Anwendungslogik, die Gestaltung der Prasentationsschicht und
die Flow Definition konzentrieren kénnen.

IMVC: Steht fiir Model, View und Controller. Dabei handelt es sich um ein Entwurfsmuster, welches die
Benutzungsschnittstelle von der Anwendungslogik entkoppelt, wodurch die Wiederverwendbarkeit und
Flexibilitat erhoht wird [GHJV96].

35

4. Verwandte Arbeiten

Das in dem Paper vorgestellte Dialog Control Framework soll zwar eine grafische Notation
tir die Dialogdefinition verwenden, es wird jedoch nicht ndher spezifiziert, welche Werk-
zeuge fiir die Modellierung existieren und wie ein Dialog Graph in ein maschinenlesbares
Format transformiert wird. Es ist zwar generell eine unabhéngige Definition von Screenflows
moglich, es fehlen aber die grafischen Modellierungswerkzeuge, die vor allem von technisch
nicht versierten Nutzern benotigt werden.

Java BluePrints

Die Java BluePrints [Ora] sind eine Sammlung von Werken, die eine Ubersicht tiber die
Hauptmerkmale der JEE Plattform geben und dabei dem Leser das JEE Programmiermodell
ndher bringen. In [Ktoo] stellen Kassem et al. eine Beispielanwendung namens Java Pet Store
zur Veranschaulichung der JEE Technologie vor.

Der Java Pet Store ist eine Onlineshop Anwendung, welche verschiedene Bereiche im E-
Business abdeckt. Der Shop besteht aus einer webbasierten Benutzungsschnittstelle, tiber die
Kunden ihre Einkdufe im Shop tédtigen konnen. Einer Schnittstelle fiir eine Administrations-
anwendung, welche es den Shop Administratoren erlaubt die Bestellungen der Kunden zu
verwalten und das Inventar im Shop zu pflegen. Und schliefilich einer Business-to-Business
Schnittstelle, tiber die der Shop mit seinen Lieferanten kommunizieren kann.

Ein besonderes Interesse im Zusammenhang mit dieser Arbeit besteht am webbasierten Teil
der Shop Anwendung. Genauer, an der Architektur der Dialogkontrolle. Beim Design der
Anwendung wurde darauf Wert gelegt, die einzelnen Screens voneinander zu entkoppeln,
sodass der Shop leicht erweitert oder verdndert werden kann. Dazu wurde eine Komponente
namens ScreenflowManager eingefiihrt. Der ScreenflowManager ist als Zustandsautomat®
(endlicher Automat) aufgebaut, der anhand der momentan angezeigten Seite des Shops und
in Abhéngigkeit von der Nutzerinteraktion die Folgeseite ermittelt. Die Uberginge sind in
der ScreenflowManager Klasse fest kodiert. Das macht die Anwendung unflexibel.

Der in dieser Arbeit verwendete Screenflow Manager erlaubt im Gegensatz zum Screen-
flow Manager des Pet Shops, eine deklarative Beschreibung der Abldufe in einer
plattformunabhédngigen Beschreibungssprache. Dies hat den Vorteil, dass die Anwendung
fiir eine Anderung eines Ablaufs nicht neu kompiliert werden muss.

4.2. Praktische Arbeiten

Bei den praktischen Arbeiten handelt es sich um Frameworks, welche die Entwickler bei der
Erstellung von Webanwendungen in Bezug auf Screenflows unterstiitzen. Die Frameworks
werden in Open Source Projekten entwickelt.

2Zustandsautomat: Ein Zustandsautomat (endlicher Automat) ist ein Modell fiir ein System, das aus einer
endlichen Anzahl an Zustinden beseht. Ein Zustand enthélt die Informationen, tiber die bisherigen Eingaben
und tiber die Eingaben die notwendig sind um einen Zustandswechsel in einen Folgezustand zu erreichen

[JRJoz].

36

4.2. Praktische Arbeiten

Spring Web Flow

Spring Web Flow3 ist ein Bestandteil des quelloffenen, Java basierten Spring Frameworks*.
Ein Web Flow dient der Steuerung von Abldufen und der Kontrolle des Flusses durch die
grafische Benutzungsschnittstelle einer Webapplikation. Fiir die Trennung zwischen der
Préasentations- und der Anwendungslogik baut Spring Web Flow auf das Spring Web MVC
Framework auf.

Ein Web Flow kapselt eine Reihe von Schritten, die in verschiedenen Szenarien ausgefiihrt
werden konnen. Web Flows sind in sich abgeschlossen definiert, wodurch die Wiederver-
wendung von Teilen der Anwendung innerhalb der Anwendung und in anderen Projekten
moglich wird. In Spring Web Flow besteht ein Web Flow aus einer Menge von Zustdanden.
Dabei reprdsentiert ein Zustand einen Punkt im Fluss, an dem eine Aktion ausgefiihrt wird.
Jeder Zustand hat eine oder mehrere Transitionen, die einen Ubergang in einen Folgezustand
darstellen. Eine Transition wird durch ein Ereignis ausgelost. Ein Ubergang in einen Folge-
zustand endet meist in einer neuen Ansicht fiir den Benutzer, tiber die er mit dem System
interagieren kann. Wahrend der Interaktion werden Ereignisse generiert. Diese generierten
Ereignisse konnen dann zu neuen Ubergéngen fiihren, wodurch eine Art Navigation durch
die Benutzungsschnittstellen entsteht.

Ein Web Flow kann mittels einer XML-basierten Sprache, der Flow Definition Language,
beschrieben werden. Die wichtigsten Sprachelemente sind der View-State, die Transition und
der End-State. Das View-State Element reprasentiert einen Schritt im Web Flow und wird mit
einem Template verkniipft, welches fiir die Darstellung der Ansicht zustandig ist. Mittels
dem Transition Element lassen sich Ereignisse, die in der Regel im View-State generiert
werden, mit Zustandsiibergdngen verbinden. Durch den resultierenden ﬂbergangsgraphen
entsteht ein Navigationspfad zwischen den verschieden View-States. Durch das End-State
Element kénnen Endzustinde im Fluss definiert werden [DVG™].

Spring bietet fiir die eigene Entwicklungsumgebung Spring IDE ein Werkzeug namens
Spring IDE Web Flow Editor an, welches es ermdoglicht, Spring Web Flows wéahrend der
Designzeit grafisch zu visualisieren und zu modellieren.

Die Konzepte des Spring Web Flows haben grofie Ahnlichkeit zu den in dieser Arbeit
verwendeten Screenflows. Im Gegensatz zur Spring Web Flow Editor Implementierung
ermoglicht das in dieser Arbeit entstandene Modellierungswerkzeug eine Modellierung der
Screenflows zur Laufzeit.

3Weitere Informationen zu Spring Web Flow kénnen unter http://www.springsource.org/spring-web-flow
gefunden werden.
4Die Webseite des Spring Framework ist unter http://www.springsource.org zu finden.

37

http://www.springsource.org/spring-web-flow
http://www.springsource.org

4. Verwandte Arbeiten

RIFE

RIFES ist ein in Java implementiertes Framework fiir die Entwicklung von Webanwendungen
mit einer breiten Palette an mitgelieferten Werkzeugen. Ziel des Projektes ist die Unter-
stiitzung der Entwickler von Java basierten Webanwendungen. Dabei wurde besonders
darauf Wert gelegt, dass alle Arbeitsschritte wahrend des Entwicklungszyklus voneinander
getrennt werden konnen, damit verantwortlichen Personen sich optimal auf ihre Aufgaben
konzentrieren konnen.

Von den zahlreichen Funktionen die RIFE bietet, ist im Zusammenhang mit dieser Arbeit
besonders das Konzept des Anwendungsflusses von Interesse. RIFE trennt dabei Anwen-
dungslogik von der Ablaufsteuerung. Durch die Verwendung von Flow und Data Links kann
ein Ablauf und Kontrollfluss zwischen den einzelnen Seiten einer Webanwendung hergestellt
werden. Um Elemente in RIFE miteinander zu verbinden, gibt es die sogenannten Flow Links.
Damit Elemente verbunden werden konnen, miissen sie einen Eingang oder einen Ausgang
bereitstellen. Der Ausgang eines Elements ist dann der Startpunkt eines Flow Links und der
Eingang eines weiteren Elements der Endpunkt. Dabei konnen die Elemente auch reflexiv
sein, also einen Flow Link auf sich selbst haben. Um auch Daten zwischen den Elementen
austauschen zu konnen, miissen sogenannte Data Links erstellt werden. Hierfiir ist es erfor-
derlich, dass in der Elementdefinition Dateneingdnge und Datenausgange festgelegt werden.
Der Data Link verbindet dann einen Datenausgang eines Elements mit dem Dateneingang
eines Zielelementes [Como6].

Durch die Flow und Data Links stellt RIFE den Entwicklern ein dhnlich méachtiges Werkzeug
zur Entwicklung von Screen Flows zur Seite wie den Screenflow Manager aus dieser Arbeit.
Das Framework bietet fiir die Flow Definition jedoch kein grafisches Modellierungswerkzeug.
Zusatzlich sind auf der RIFE Projektseite schon seit lingerer Zeit keine Aktivitdten mehr
festzustellen, sodass die Zukunft des Projekts fraglich ist.

Apache Cocoon

Apache Cocoon® ist ein Framework, das auf Basis von XML Dokumenten die Erstellung von
Webseiten und Publikationslosungen? ermoglicht. Das Cocoon Projekt basiert selbst auf
einer Reihe anderer Apache Projekte. Fiir die grundlegende Architektur von Cocoon wurde
zum Beispiel das Apache Projekt Avalon® herangezogen, welches die Entwicklung von
komponentenorientierter Software unterstiitzt. Cocoon ist in Java programmiert und kann
lokal oder als Servlet ausgefiihrt werden. Innerhalb eines Servlet Containers kann Cocoon
auf ankommende Requests reagieren. Cocoon ermoglicht es mittels der Basiskomponenten

5Weitere Informationen zu RIFE konnen unter http://rifers.org gefunden werden.

6Weitere Informationen zu Apache Cocoon kénnen unter http://cocoon.apache.org gefunden werden.

7 Publikationslésung: Herausgabe von Inhalten in unterschiedlichen Formaten fiir verschiedene Medienkanile
und Endgerite.

8Informationen zu Apache Avalon konnen unter http://avalon.apache.org gefunden werden.

38

http://rifers.org
http://cocoon.apache.org
http://avalon.apache.org

4.2. Praktische Arbeiten

auch ohne Java Programmierung Applikationen zu erstellen. Cocoon richtet sich an Entwick-
ler, die umfangreiche Webanwendungen entwickeln wollen, bei denen Layout und Logik
voneinander getrennt sind und welche in verschiedenen Formaten zur Verfiigung gestellt
werden sollen.

Das Kernkonzept in Cocoon ist eine Pipeline, die vom Request bis zur Auslieferung der Daten
durchlaufen wird. Eine auf Cocoon beruhende Anwendung besteht in der Regel aus einer
Menge dieser Pipelines, die jeweils eine Anfrage verarbeiten und als Ergebnis ein Dokument,
meist eine HTML-Datei, als Antwort zuriickliefern. Ein XML-Datenstrom durchlduft inner-
halb einer Pipeline die drei Phasen® Generierung, Transformation und Serialisierung. Der
Pipeline Ansatz erlaubt es, verschiedene Komponenten auf eine einfache Weise zu verbinden.
Die verschieden Pipelines werden in der Sitemap, einer zentralen Konfigurationsdatei von
Cocoon definiert. Jeder Ablauf einer einzelnen Pipeline ist durch die Definition innerhalb der
Sitemap bestimmt. Fine Pipeline basiert auf einer Kette von verschiedenen Komponenten,
die entweder aus dem Basisumfang von Cocoon oder aus Eigenentwicklungen stammen
konnen. Eigene Komponenten konnen durch eine entsprechende Konfigurierung in die
Sitemap aufgenommen werden [Heeo7].

Fir die Dialogkontrolle verwendet Cocoon Flowscripts (JavaScript) und Javaflows (Java),
dessen Ausfithrung mit Hilfe des Continuations'® Konzept persistiert wird. Die Flowscripts
bzw. die Javaflows haben Zugriff auf die Request Parameter und die Anwendungslogik. Sie
nehmen den Request entgegen, starten die notigen Funktionen in der Anwendungslogik und
entscheiden am Ende, welche Seite als nidchstes an den Client (Browser) zuriickgeliefert wird.
Durch den Einsatz von Continuations muss der Ubergang zwischen den einzelnen Webseiten
einer Anwendung innerhalb der Flowscripts und Javaflows nicht als Zustandsautomat
modelliert werden [Apa12].

Die Verwendung des Continuations Konzept vereinfacht die Implementierung des Flow
Managers und erleichtert die Lesbarkeit des Codes. Jedoch macht die Definition des Flows

9 Cocoon Pipeline: In der ersten der Pipeline steht der Generator, der Daten einliest und diese bei Bedarf auch
in XML Daten transformiert. AnschliefSend schickt der Generator die einzelnen XML-Tags als SAX Events
(SAX = Simple API for XML) durch die Pipeline. Meist folgt in der zweiten Phase der Pipeline auf den
Generator, ein Transformator. Ein Transformator wird durch SAX-Ereignisse ausgelost und ist dann in der
Lage, auf diese Events zu reagieren und mit den tibergebenen XML-Daten zu arbeiten. Ein Transformator
kann XML-Tags in den Datenstrom einfiigen beziehungsweise entfernen oder den Inhalt auf eine andere
Art und Weise manipulieren. Eine Pipeline kann mehrere Transformatoren nutzen. Ein Transformator ist
auch in der Lage, Tags fiir nachfolgenden Transformatoren zu generieren. In der letzten der drei Phasen
agiert der Serialisierer. Der Serialisierer sorgt dafiir, dass die XML-Daten in ein Format umgewandelt werden,
welches der Empfanger benttigt. Durch die Verwendung von XSLT-Stylesheets lassen sich eine Vielzahl von
Formaten wie zum Beispiel HTML, WML oder PDF erzeugen [Heeoy].

Continuation: Eine Continuation (Fortsetzung) ist eine Funktion, die das Ergebnis der Ausfiihrung des
restlichen Programms von einem Zustand aus beschreibt [Loc12]. Das Programm kann an einer definierten
Codepassage unterbrochen werden. Dabei wird der aktuelle Zustand des Speichers gesichert. Zu einem
spateren Zeitpunkt kann das Programm dann an dieser Codepassage mit dem vorherigen Kontext fortgesetzt
werden. Das Continuations Konzept stammt urspriinglich aus der funktionalen Programmierung. Es ermog-
licht eine Art prozeduralen Ablauf des Programm. Des Weiteren bietet das Konzept eine gute Basis fiir die
Erstellung einer Flusskontrolle, da mit den vorhanden Informationen leicht ein Folgezustand ermittelt oder
ein urspriinglicher Zustand wiederhergestellt werden kann.

10

39

4. Verwandte Arbeiten

innerhalb der Flowscripts oder Javaflows die Entwicklung unflexibel. Die Vermischung der
Kontrolllogik des Programmablauf mit der Kontrolllogik der Screenflows fiihrt zu einer
hoheren Kopplung und der Screenflow ist fiir den Entwickler in der Regel nicht direkt
ersichtlich. Wie schon die meisten vorhergehenden Arbeiten bietet Cocoon auch keine
unterstiitzenden Werkzeuge fiir die Modellierung des Screenflows an.

4.3. Zusammenfassung

Nachdem zu dieser Arbeit verwandte Arbeiten vorgestellt wurden, kann zusammengefasst
gesagt werden, dass alle vorgestellten Arbeiten die Umsetzung eines Screenflows ermogli-
chen. Alle haben dabei das Ziel, die Wiederverwendbarkeit von Komponenten zu erhohen,
mehr Flexibilitdt zu bieten und den Entwicklern die Arbeit mit ihren rollenspezifischen Auf-
gaben zu erleichtern. Beziiglich ihrer Umsetzung bestehen jedoch gewisse Unterschiede, die
in Tabelle 4.1 noch einmal aufgelistet sind. Die Kriterien sind dabei, ob der Flow deklarativ
oder imperativ definiert wird, auf welcher Basis der Screenflow Manager implementiert
wurde und letztlich, ob im Kontext des Ablaufs Daten zwischen den Screens ausgetauscht
werden konnen.

Arbeit Flow Definition | Screenflow Management | Kontextdaten
Dialog Control Framework deklarativ Endlicher Automat keine
Java BluePrints imperativ Endlicher Automat keine
Spring Web Flow deklarativ Endlicher Automat keine
RIFE deklarativ Endlicher Automat Data Links
Apache Cocoon imperativ Continuation Continuation

Tabelle 4.1.: Unterschiedliche Umsetzung von Screenflows in verwandten Arbeiten.

Spring Web Flow bietet als einzige Losung ein grafisches Modellierungswerkzeug fiir die
Screenflow Definition. Keine der in diesem Kapitel vorgestellten Arbeiten bietet ein grafisches
Modellierungswerkzeug, das eine Modellierung wéhrend der Laufzeit erlaubt.

40

5. Screenflow Manager

Ausgefiihrt werden die in Kapitel 3 vorgestellten Screenflows von einem Screenflow Manager.
Der im folgenden vorgestellte IBM UX Screenflow Manager ist eine Erweiterung fiir den
IBM WebSphere Portal Server. Als Quelle diente die technischen Dokumentation des IBM
UX Screenflow Manager [DL13].

5.1. Terminologie

Bei einem Screenflow Manager handelt es sich um eine Technologie, mit deren Hilfe Be-
nutzungsschnittstellenartefakte miteinander verbunden werden kéonnen, um Endbenutzer
durch eine Folge von Screens zu fiihren. Eine solche Abfolge von Screens wird als Screenflow
oder Dialog bezeichnet. Ein Screenflow kann aus einem oder vielen Schritten bestehen.
Ein einzelner Schritt in einem Screenflow wird als Subdialog bezeichnet. Im Portalumfeld
reprasentiert ein Subdialog eine Portalseite oder ein Portlet. Ein Portlet kann wiederum eine
Reihe von Portlet Windows darstellen. Abbildung 5.1 stellt den Zusammenhang zwischen
einem Dialogschrit (Subdialog), einer Portalseite und einem Portlet dar.

Subdialg

A 4

A 4

Screenflow

Portalseite \

Portal Portlet \\

Portlet Inhalte

Abbildung 5.1.: Beispiel fiir einen Subdialog in einem Screenflow.

41

5. Screenflow Manager

Uber Transitionen werden die Ubergénge zwischen den einzelnen Subdialogen definiert. Der
Screenflow Manager kann dadurch entscheiden, wie er den Benutzer von einem Subdialog
zum nédchsten leitet bzw. wie er von einem Schritt im Screenflow zum néchsten routen muss.
Der aktuell aktive Schritt im Screenflow legt fest, welchen Subdialog der Benutzer zu diesem
Zeitpunkt angezeigt bekommt.

5.2. Kernkomponenten

Der Kern des IBM UX Screenflow Manager besteht aus drei Komponenten. Deren Zusam-
menspiel wird in Abbildung 5.2 veranschaulicht.

QName QName
POFtlet Pl » P2 » Pn
Screenflow
Y Y A
d[z dfz 93 I3 0% ¢[8
5 516 S B8 5 5
ol o|f ol o|f ol o|f

Dialog
Controller

QName,
QName,

&
l

Dialog Context

Dialog Modell I
O—0O

Dialog Context Segment
= Dialoginstanz

Abbildung 5.2.: Kernkomponenten des IBM UX Screenflow Manager.

Der Dialog Controller (DC) arbeitet als generische Komponente, die beliebige Ereignisse
innerhalb eines Zustandsiibergang senden und empfangen kann. Normalerweise tauschen
Portlets JSR 286 Ereignisse untereinander aus. Der Dialog Controller kann diese Ereignisse
abfangen und dient dann als Vermittler zwischen der Quelle und dem Ziel. Bei einem
Zustandswechsel empfangt der Dialog Controller das Ereignis, welches von der Quelle
gesendet wird. Damit kann der Dialog Contoller das Dialog Modell nach dem n&chsten
Schritt im Screenflow fragen. Im Anschluss kann der Controller Daten im Dialog Context
ablegen und anfordern. Als Letztes sendet er dann das vom Dialog Modell festgelegte
Ereignis mit den aus dem Dialog Context geladenen Daten an das Ziel.

42

5.2. Kernkomponenten

Das Dialog Modell (DM) verhilt sich wie ein endlicher Zustandsautomat. Es hat die Informa-
tionen iiber die Transitionen, die in Abhédngigkeit des aktiven Schritts im Screenflow und
Ereignis moglich sind. Es beschreibt welche Portlets als Quelle (Source) und welche Portlets
oder Portalseiten als Ziel (Target) definiert sind und was fiir Ereignisse sie miteinander
austauschen. Die Portalseiten und Portlets werden anhand ihres eindeutigen Namens, den
Unique Name, identifiziert. Weitere Details sind im Abschnitt Dialogdefinition beschrieben.

Der Dialog Context (DCX) dient dem Screenflow Manager als fliichtiger Speicher. Er spei-
chert Kontextinformationen, die von einem Subdialog an einen nachfolgenden Subdialog
weitergegeben werden. Alle Daten von einem Subdialog, die der Dialog Controller im Dialog
Context ablegt, sind im Anschluss fiir alle nachfolgenden Subdialoge verfiigbar. Fiir jede
Dialoginstanz wird ein sogenanntes Dialog Context Segment angelegt, in dem die Daten
aus der konkreten Dialoginstanz abgelegt werden. Das Dialog Context Segment existiert nur
solange wie die Dialoginstanz existiert (oder die Session'). Der Dialog Context ist ein asso-
ziatives Datenfeld” , auf dessen Inhalte {iber den sogenannten DCX-Key zugegriffen werden
kann. Weitere Details sind im Abschnitt erweitertes Laden und Speichern zu finden.

Portletl Portlet2 Dialog Controller Dialog Modell Dialog Context
1 1 1
1 1
1

D ©) i .

A
©
y
___| I

v

Legende:
Asynchroner Aufruf ———>
Synchroner Aufruf ~—p

Abbildung 5.3.: Sequenzdiagramm eines Zustandsiibergangs im Screenflow Manager.

TSession: HTTP ist als zustandsloses Protokoll implementiert, was bedeutet, dass sich der Server nach dem
Verbindungsabbau im selben Zustand befindet wie vor dem Verbindungsaufbau. Das hat zur Folge, dass alle
Informationen tiber die Anfrage fiir den Server verloren gehen. Ein bewéhrtes Mittel ist die Verwendung
einer Session (deutsch Sitzung). Dabei wird ein Cookie auf der Clientseite abgelegt, in dem die Zustands-
informationen enthalten sind. Das Cookie wird dann bei jeder Anfrage an den Server mitgesendet [Heioz].

2Assoziatives Datenfeld: Ein assoziatives Datenfeld ist eine Datenstruktur bei der jedem gespeicherten Wert

ein eindeutiger Schliissel zugewiesen wird. Uber den Schliissel kann in der Datenstruktur sehr effizient nach
Werten gesucht werden [MS].

43

5. Screenflow Manager

Abbildung 5.3 veranschaulicht den Ablauf eines Zustandsiibergangs innerhalb des Screenflow
Managers. Portlet1 sendet das Ereignis e1 an das Portletz und der Dialog Controller fangt
dieses Ereignis e1 ab (1). AnschliefSend fragt der Dialog Controller das Dialog Modell, ob
eine Transition existiert, dessen Quelle ein Ereignis e1 sendet (2). Existiert eine entsprechende
Transition mit einer entsprechenden Quelle im Dialog Modell, erhilt der Dialog Controller
das Ziel und das Ereignis, an das er weiterleiten soll (3). In diesem Fall das Portlet2 und
das Ereignis e2. Danach legt der Dialog Controller die Nutzdaten von Ereignis e1 im
Dialog Context unter dem DCX-Key ke1 ab (4). Anschlieflend 1ddt der Dialog Controller die
Nutzdaten, die mittels Ereignis ez iibertragen werden sollen, mit dem DCX-Key ke2 aus dem
Dialog Context (5). Die Nutzdaten konnen aus einem beliebigen vorhergehenden Schritt
stammen. Letztlich leitet der Dialog Controller das Ereignis e2 an Portlet2 weiter (6).

Weitere Komponenten

Die Moglichkeiten einer parallelen Verarbeitung von Screenflows durch den Benutzer sind
beschrankt. In einem einzelnen Browser Tab kann nur eine Instanz eines Screenflows auf
einmal ausgefiihrt werden. Um mehrere Instanzen parallel zu auszufiihren, miissen diese
in unterschiedlichen Browser Tabs gestartet werden. Es gilt die Regel: ein Screenflow pro
Browser Tab. Als Alternative dazu erlaubt der IBM UX Screenflow Manager einen Screenflow
zu unterbrechen und zu einem spateren Zeitpunkt weiter zu bearbeiten. Alle unterbrochen
Screenflows konnen im Dialog Stack (DS) eingesehen werden. Von dort aus lassen sich
die Screenflows an der zuvor unterbrochen Position fortsetzen. Der Screenflow Manager
unterbricht einen laufenden Screenflow automatisch, wenn im selben Browsers Tab ein
weiterer Screenflow gestartet wird.

Der Dialog State Display ermoglicht es dem Benutzer wihrend der Ausfithrung eines Screen-
flows seine aktuelle Position im Dialog anzuzeigen. So kann er ablesen, wie viele Dialog-
schritte er schon abgearbeitet hat und welche Schritte noch vor ihm liegen. Das Dialog State
Display visualisiert dem Benutzer die Struktur des Screenflows in einem Graphen und hebt
dabei die aktuelle Position im Dialog hervor. Des Weiteren kann der Benutzer iiber das
Dialog State Display zwischen den einzelnen Dialogschritten springen. Zusétzlich kann der
Benutzer einen gerade ausgefiihrten Screenflow iiber das Dialog State Display abbrechen
oder wie zuvor erwdhnt unterbrechen.

Benutzungsschnittstellenartefakte

Der Screenflow Manager verwendet JSR 286 Ereignisse, um einen ausgeldsten Zustands-
tibergang zu erkennen und um Daten zwischen den Subdialogen auszutauschen. Alle
Benutzungsschnittstellenartefakte, die in den Screenflow integriert werden sollen, miissen
JSR 286 Ereignisse senden oder empfangen kénnen. Das bedeutet, dass die Portlets so
entwickelt werden miissen, dass sie die Java Portlet Spezifikation 2.0 [Hepo8] erfiillen. Fiir

44

5.3. Dialogdefinition

Formulare und Widgets bedeutet dies, dass ein Portlet als Wrapper-Klasse3 verwendet
werden muss.

Damit ein Portlet Ereignisse senden und empfangen kann, miissen die Ereignisse in der
portlet.xml* definiert werden. Des Weiteren miissen die Methoden, um eingehende Ereignisse
zu verarbeiten oder Ereignisse zu senden, im Quelltext des Portlet implementiert werden.

5.3. Dialogdefinition

Der folgende Abschnitt beschreibt die wichtigsten Elemente der Dialogdefinition, die fiir
die Modellierung eines Screenflows notwendig sind. Die Dialogdefinition dient dem Dialog
Modell fiir die Erstellung des endlichen Zustandsautomaten. Eine komplette Dialogdefinition
fiir einen Screenflow, der einen Reisebuchungsprozess beschreibt, befindet sich im Anhang
unter A.1.

Dialog

Innerhalb eines dialog Elements sind alle Artefakte eines Dialogs enthalten. Dazu gehoren
alle Ressourcen und alle Transitionen die festlegen, wie der Benutzer durch den Dialog
geleitet wird (siehe Abschnitt Transition Endpoints und Abschnitt Transitionen). Eine Dialog-
definition muss einen eindeutigen Namen besitzen. Im Beispiel der Auflistung 5.1 werden
zwei Portlets (Zeile 3-8) und zwei Transitionen (Zeile 9-14) im Dialog festgelegt.

3 Wrapper-Klasse: Ein Adapter, auch Wrapper genannt, dient dazu, eine Schnittstelle in eine andere zu tiber-
setzen. Durch den Adapter konnen Klassen trotz inkompatibler Schnittstellen miteinander kommunizieren
[GH]JV96].

4 portlet.xml: Die Datei portlet.xml ist einer von zwei Deployment Descriptoren einer Portletanwendung. Darin
werden Ressourcen fiir das Portlet spezifiziert [Hepo§8].

45

5. Screenflow Manager

Listing 5.1 Dialogdefinition: Ausschnitt einer Definition eines Dialogs mit zwei Portlets und
zwei Transitionen [DL13].

1 <dialog-set>
2 <dialog name="dialogl">

3 <transition-endpoint name="portletl">
4

5 </transition-endpoint>

6 <transition-endpoint name="portlet2">
7

8 </transition-endpoint>

9 <transition>

10 e

11 </transition>

12 <transition>

13

14 </transition>

15 </dialog>
16 </dialog-set>

Transition Endpoints

Alle Ressourcen eines Screenflows, die als Quelle oder Ziel an einer Transition beteiligt sind,
werden als Transition Endpoints bezeichnet. Uber das transition-endpoint Element konnen
Portalseiten und Portlets als Ressourcen eingebunden werden. Diese konnen, wie bereits
zuvor beschrieben, auch Formulare und Widgets enthalten. Jede Ressource muss dabei mit
einem eindeutigen Namen identifiziert werden. Die Auflistung in 5.2 zeigt die Definition
eines Transition Endpoints, der ein Portlet referenziert (Zeile 2-10).

Listing 5.2 Dialogdefinition: Ausschnitt einer Definition eines transition-endpoint Elements
[DL13].

1 <dialog name="dialogl">

2 <transition-endpoint name="portletl">
3 <localedata locale="en">

4 <title>Subdialog 1</title>

5 <description>This is a subdialog</description>
6 </localedata>

7 <resource uniquename="uniquename.portletl"/>

8 <invocation type="static"/>

9

10 </transition-endpoint>

Titel und Beschreibung

Portlets und Portalseiten konnen normalerweise nur einen Titel und eine Beschreibung
pro Sprache besitzen. Wenn Ressourcen mehrfach versendet werden, kann es dadurch

46

5.3. Dialogdefinition

zu dem Problem kommen, dass der Titel und die Beschreibung nicht in den Kontext
passen. Angenommen ein Kalenderportlet soll fiir eine Reisebuchungsanwendung sowohl
fiir die Auswahl des Abflugdatum in einem Dialogschritt als auch fiir die Auswahl des
Riickflugdatum in einem spiteren Dialogschritt verwendet werden. Hier stellt sich die Frage,
wie der Titel und die Beschreibung fiir das Portlet zu wéhlen sind, damit es fiir den Benutzer
klar ist, wann er das Abflugdatum und wann das Riickflugdatum auswéhlen muss.

Zur Losung dieses Problem konnen im transition-endpoint Element fiir jede Ressource ein
Titel und eine Beschreibung pro Sprache definiert werden. Der definierte Titel und die
Beschreibung ersetzen dann im zugehorigen Dialogschritt und im Dialog State Display den
Titel und die Beschreibung der Ressource. Es ist absolut valide zwei Transition Endpoints
zu definieren, die zwar dieselbe Ressource referenzieren, aber unterschiedliche Titel und
Beschreibungen erhalten. Sind kein Title oder keine Beschreibung im Transition Endpoint fiir
die entsprechende Sprache definiert, verwendet der Screenflow Manager den urspriinglichen
Title oder Beschreibung der referenzierten Ressource. In Auflistung 5.3 werden kontextab-
hingig der Title und die Beschreibung fiir ein Kalenderportlet fiir die Sprachen Deutsch und
Englisch definiert (Zeile 3-10 und Zeile 15-22).

Listing 5.3 Dialogdefinition: Ausschnitt einer Definition von Title und Beschreibung eines
Portlets in unterschiedlichen Kontexten [DL13].

1 <dialog name="dialogl">

2 <transition-endpoint name="calendar.leave">
3 <localedata locale="en">

4 <title>Date to leave</title>

5 <description>Please specify the date to leave</description>

6 </localedata>

7 <localedata locale="de">

8 <title>Abreisedatum</title>

9 <description>Bitte geben Sie Ihr Abreisedatum an</description>

10 </localedata>

11 <resource uniquename="uniquename.calendar"/>

12 <invocation type="static"/>

13 </transition-endpoint>

14 <transition-endpoint name="calendar.return">

15 <localedata locale="en">

16 <title>Date to return</title>

17 <description>Please specify the date to return</description>
18 </localedata>

19 <localedata locale="de">

20 <title>Rckreisedatum</title>

21 <description>Bitte geben Sie Ihr Rckreisedatum an</description>
22 </localedata>

23 <resource uniquename="uniquename.calendar"/>

24 <invocation type="static"/>

25 </transition-endpoint>

26

47

5. Screenflow Manager

Transitionen

Eine Transition beschreibt einen Ubergang von einem Dialogschritt zum nichsten. Abbildung
5.4 veranschaulicht alle Bestandteile einer Transition von einem Portlets A zu Portlet B. Eine
Transition besteht aus zwei Teilen, einer Quelle (Source) und einem Ziel (Target). Quellen
und Ziele beinhalten Tupel aus Referenzen zu Transition Endpoints und Ereignissen. Die
Quelle ist der Ausgangspunkt einer Transition.

Transition

A Source Target B
Event Event

Transition Dialog Transition
Endpoint Controler Endpoint

Abbildung 5.4.: Beispielhafte Darstellung einer Transition im Screenflow zwischen zwei
Portlets A und B.

In einer Quelle darf nur eine Referenz auf einen Transition Endpoint existieren, der auf ein
Portlet zeigen muss. Die Restriktion ergibt sich daraus, dass Portalseiten keine Ereignisse
senden konnen. Die Referenz des Quell Transition Endpoint darf nur mit einem Ereignis
verbunden werden. Um deterministisch zu sein, darf innerhalb aller Transitionen eine
Kombination aus Transition Endpoint und Ereignis nur einmal fiir eine Quelle verwendet
werden. Wenn das definierte Ereignis von dem Transition Endpoint gesendet wird, wird die
Transition aktiv. Das Ziel repréasentiert den Folgezustand. Im Ziel diirfen mehrere Transition
Endpoints referenziert werden, die sowohl auf Portalseiten als auch auf Portlets referenzieren
konnen. Folgende Kombinationen von Transition Endpoints sind bei der Definition des Ziels
moglich:

e Ein einzelnes Portlet

e Eine einzelne Portalseite

e Mehrere Portlets

e Mehrere Portlets und eine Portalseite

Ist eine Portalseite als Ziel Transition Endpoint definiert, wird das ankommende Ereignis
an alle Portlets verteilt, die auf der Portalseite vorhanden sind. Im Falle dass mehrere
Portlets oder mehrere Portlets und eine Portalseite als Ziel referenziert werden, muss dafiir
Sorge getragen werden, dass alle Portlets auf der entsprechenden Portalseite enthalten sind.
Zu jedem Ziel Transition Endpoint konnen jeweils ein oder mehrere Ereignisse definiert
werden.

Das Beispiel in Auflistung 5.4 demonstriert die Definition zweier Transitionen. Die erste
Transition hat ein Portlet (Zeile 8-12) als Ziel und die zweite Transition eine Portalseite (Zeile
20-24).

48

5.3. Dialogdefinition

Listing 5.4 Dialogdefinition: Ausschnitt einer Definition von zwei Transitionen mit Portlet
bzw. Portalseite als Ziel [DL13].

2 <transition>
<source>

3
4 <transition-endpoint nameref="portletl">
5 <event gname="el"/>

6 </transition-endpoint>

7 </source>

8 <target>

9 <transition-endpoint nameref="portlet2">
10 <event gname="e2"/>

11 </transition-endpoint>

12 </target>

13 </transition>
14 <transition>

15 <source>

16 <transition-endpoint nameref="portletl">
17 <event gname="e3"/>

18 </transition-endpoint>

19 </source>

20 <target>

21 <transition-endpoint nameref="page2">

22 <event gname="e4"/>

23 </transition-endpoint>

24 </target>

25 </transition>
26

Nicht jede Transition in der Dialogdefinition kann eine neue Dialoginstanz starten oder
einen laufenden Dialog beenden. Das hat den Grund, dass sonst nicht entscheidbar ist, wie
in gewissen Situationen weiter vorzugehen ist. Wenn zum Beispiel jede Transition einen
Dialog starten kann, ist es nicht immer entscheidbar, wann eine Transition als Ubergang
in den ndchsten Dialogschritt und wann sie die Instantiierung einer neuen Dialoginstanz
startet. Wenn keine Dialoginstanz existiert, ist dies zwar noch entscheidbar, nicht aber wenn
bereits die Dialoginstanz ausgefiihrt wird. Daher muss fiir Start- und Endtransitionen das
transition Element mit einem speziellen Attribut erweitert werden. Fiir eine Starttransition
ist es das Attribut type mit dem Wert start und bei einer Endtransition das Attribut type mit
dem Wert end vorgesehen. Jeder Dialog muss mindestens eine Start- und mindestens eine
Endtransition besitzen. Auflistung 5.5 zeigt einen Ausschnitt der Definition einer Start- und
einer Endtransition (Zeile 2 und 5).

Die Sonderformen der Start- und Endtransitionen mit ihren zugehorigen speziellen Ereig-
nissen sind nicht Teil dieser Arbeit und werden daher nicht weiter ausgefiihrt. Ein solches
spezielles Ereignis kann zum Beispiel dafiir definiert werden, um zu bestimmen, wie es nach
dem Ende eines Dialoges weitergehen soll.

49

5. Screenflow Manager

Listing 5.5 Dialogdefinition: Ausschnitt der Definition einer Start- und Endtransition [DL13].

<transition type="start">

</transition>
<transition type="end">

</transition>

[B NS T S P

5.4. Erweitertes Laden und Speichern

Der IBM UX Screenflow Manager unterstiitzt zwei Mechanismen, um zueinander inkompati-
ble Portlets miteinander zu kommunizieren, ohne dass deren Quellcode gedndert werden
muss. Sind lediglich die Namen der auszutauschenden Ereignisse unterschiedlich, kann dies
durch die Verwendung der sogenannten DCX-Keys korrigiert werden. Miissen dagegen die
Daten der Ereignisse transformiert werden, sind dazu Event Mapper notig, die im nachfol-
genden Abschnitt 5.5 vorgestellt werden.

Mit Hilfe des DCX-Keys kann bestimmt werden, wie die Daten im Dialog Context abgelegt
werden sollen, nachdem ein Portlet ein Ereignis sendet und wie Daten aus dem Dialog Con-
text gelesen werden, um sie an das nédchste Ziel zu senden. Die Kontrolle dafiir tibernimmt
der Dialog Controller. Wird kein DCX-Key festgelegt, wird der QName des Ereignisses
stattdessen verwendet. Alle Daten, die aus einem Subdialog im Dialog Context abgelegt
werden, sind fiir die nachfolgen Subdialoge zugreifbar.

Angenommen zwei Portlets sind Teil eines Screenflows. Portlet1 sendet das Ereignis mit
dem QName ID und Portlet2 erwartet ein Ereignis mit dem QName UserID. Ohne Hilfs-
mittel konnen die beiden Portlets nicht miteinander kommunizieren, da die QNames nicht
tibereinstimmen. Durch die Verwendung des DCX-Key ID kann Portlet2 dazu veranlasst
werden, die Daten von dem Ereignis mit dem QName ID aus dem Dialog Context zu lesen.
Alternativ kann durch den Einsatz von DCX-Key UserID Portlet1 dazu veranlasst werden,
die Daten unter dem DCX-Key UserID im Dialog Context abzuspeichern. Die Auflistung 5.6
zeigt einen Ausschnitt fiir den Fall, das Portlet1 die Daten des Ereignis mit dem QName ID
unter dem DCX-Key userID im Dialog Context ablegt (Zeile 5). Dadurch kann Portlet2 die
Daten lesen (Zeile 10).

5.5. Event Mapper

In komplexeren Situationen ist es oft nicht ausreichend, den Ereignisnamen zwischen zwei
Ereignissen anzupassen. Stattdessen ist es erforderlich, die Daten zwischen den inkompati-
blen Ereignissen zu transformieren. Fiir solche Situationen konnen dem Screenflow Manager
sogenannte Event Mapper zur Verfiigung gestellt werden.

50

5.6. Dynamische Ressource Endpoints

Listing 5.6 Dialogdefinition: Ausschnitt der Definition einer Transition in der die Daten des
gesendeten Ereignis unter einem anderen DCX-Key abgelegt werden [DL13].

1 e
2 <tramnsition>

3 <source>

4 <transition-endpoint nameref="portletl">
5 <event gname="ID" dcx-key="userID"/>

6 </transition-endpoint>

7 </source>

8 <target>

9 <transition-endpoint nameref="portlet2">
10 <event gname="userID"/>

11 </transition-endpoint>

12 </target>

13 </transition>

Es stehen zwei Typen von Event Mapper zur Verfiigung:

Der PayloadToContextMapper: er kann die Daten eines Ereignisses bearbeiten, die eine Quelle
gesendet hat, bevor diese im Dialog Context abgelegt werden. Dadurch lassen sich sowohl
der Name des DCX-Key unter dem die Daten abgelegt werden als auch die Daten selbst, fiir
alle Transition Endpoints, die anschlieffend auf diese Daten zugreifen, verandern.

Der ContextToPayloadMapper: er kann die Daten eines Ereignisses bearbeiten, die an ein Ziel
weitergeleitet werden, nachdem diese aus dem Dialog Context geladen werden. Dadurch
bleiben die Daten innerhalb des Dialog Context in ihrem Ursprungszustand und werden nur
fiir den entsprechenden Ziel Transition Endpoint verdndert. Auch bei diesem Event Mapper
lassen sich DCX-Key und die Daten selbst d&ndern.

Mapper haben vollen Zugriff auf das Dialog Context Segment der aktuell bearbeiteten
Dialoginstanz sowie auf die gerade gesendeten Daten. So sind auch sehr komplexe und
dialogiibergreifende Transformationen méglich. Uber den DCX-Key kann gesteuert werden,
auf welche Daten im Dialog Context zugegriffen werden soll. Die Mapper miissen in Java
implementiert und vor ihrer Verwendung auf dem Portal Server installiert werden. Der
Ausschnitt aus Auflistung 5.7 zeigt die Definition einer Transition, in der ein ContextTo-
PayloadMapper verwendet wird (Zeile 10). Der Mapper erhdlt als Eingabe die Daten des
DCX-Key ID.

5.6. Dynamische Ressource Endpoints

Der IBM UX Screenflow Manager unterstiitzt zusitzlich zu den statischen Ressourcen
auch das Instantiieren von dynamischen Ressourcen. Dafiir verwendet er eine Funktion
namens Dynamic Ul Management [IBM]. Durch das Dynamic Ul Management lassen sich
fliichtige Kopien von Portalseiten und Portlets zur Laufzeit erstellen. Der Vorteil einer solchen
dynamischen Kopie ist, dass von einem Portlet oder einer Portalseite mehrere Instanzen
parallel betrieben werden konnen (in unterschiedlichen Browser Tabs oder tiber den Dialog

51

5. Screenflow Manager

Listing 5.7 Dialogdefinition: Ausschnitt der Definition einer Transition die einen ContextTo-
PayloadMapper verwendet [DL13].

1 e
2 <transition>

3 <source>

4 <transition-endpoint nameref="portletl">

5 <event gname="ID"/>

6 </transition-endpoint>

7 </source>

8 <target>

9 <transition-endpoint nameref="portlet2">

10 <event gname="userID" dcx-key="ID" mapper-class="myPackage.myMapper"/>
11 </transition-endpoint>

12 </target>

13 </transition>

Stack), ohne dass die Inhalte aus den unterschiedlichen Instanzen gegenseitig tiberschrieben
werden.

Die dynamische Kopie einer Portalseite ist in der Regel das Abbild einer Templateseite. Die
Templateseite wird auch als Base Page bezeichnet und die dynamische Kopie kann als
eine Art Schnappschuss der Base Page gesehen werden. Die dynamische Kopie enthilt alle
Portlets, die sich auf der Base Page befinden, einschliefilich der gesamten Einstellungen.
Wird eine dynamische Kopie einer Portalseite angelegt, muss diese unter einem sogenannten
Extension Node eingefiigt werden. Der Extension Node ist ein spezielles Konstrukt, um
eine dynamische Kopie in das Navigationsmodell (siehe Kapitel 2) der Webanwendung
aufzunehmen.

Die dynamische Kopie eines Portlets ist die Kopie der Portletdefinition. Dynamische Portlets
konnen nur zu einer Dynamischen Page hinzugefiigt werden. Das bedeutet: wenn eine
dynamische Kopie eines Portlets erzeugt wird, muss vorher eine leere dynamische Kopie
einer Portalseite erzeugt werden, auf der das Portlet eingebettet werden kann.

Wihrend der Verarbeitung eines Dialoges konnen einzelne Subdialoge entweder statisch
oder dynamisch sein. Wird eine Transition aktiv, die auf einen Transition Endpoint zeigt, der
eine dynamische Kopie ist, muss der Screenflow Manager die Kopie erst instantiieren und
unter dem entsprechenden Extension Node einhdngen, bevor er den Benutzer auf die Seite
weiterleiten kann. Dynamische Ressourcen werden automatisch entfernt, wenn sie nicht
mehr benotigt werden.

Ob eine Ressource dynamisch gestartet werden soll, kann iiber die Dialogdefinition gesteuert
werden. Hier kann auch festgelegt werden unter welchem Extention Node die dynamische
Kopie hinzugefiigt werden soll. Das Beispiel in der Auflistung 5.8 zeigt die Definition eines
statischen Portlets (Zeile 4), eines dynamischen Portlets (Zeile 8) und einer dynamischen
Portalseite (Zeile 12) als Ressource Endpoint, die unter dem Extension Node extensionNode1
eingehdngt werden.

52

5.7. Entwicklung von Screenflows

Listing 5.8 Dialogdefinition: Ausschnitt der Definition eines statischen und zwei dynami-
schen Ressource Endpoints.

<transition-endpoint name="portletl">

<resource uniquename="uniquename.portletl"/>

<invocation type="static"/>
</transition-endpoint>
<transition-endpoint name="portlet2">

<resource uniquename="uniquename.portlet2"/>

<invocation type="dynamic" extension-node="extensionNodel"/>
</transition-endpoint>
<transition-endpoint name="pagel'">

<resource uniquename="uniquename.pagel"/>

<invocation type="dynamic" extension-node="extensionNodel"/>
</transition-endpoint>

O N U AW N R

HoR R AR
A~ W N = 0O

5.7. Entwicklung von Screenflows

Fiir die Entwicklung eines Screenflows sind die folgenden Schritte notig. Erstens, die Entwick-
lung der benétigten Benutzungsschnittstellenartefakte, in der Regel Portlets. Diese senden
und empfangen JSR 286 Ereignisse, aus der Java Portlet Spezifikation 2.0. Alle Artefakte
zusammen ergeben den spéteren Screenflow. Zweitens, die Erstellung einer Dialogdefinition,
in der alle Verbindungen zwischen Benutzungsschnittstellenartefakten festgelegt werden.
Die Definition kann sowohl Artefakte aus Schritt 1 als auch bereits vorhandene Artefakte
enthalten. Drittens, die Installation der neuen Benutzungsschnittstellenartefakte und der
Dialogdefinition.

5.8. Akteure und Rollen

Bei der Entwicklung von Screenflows lassen sich die Aufgaben auf drei Arten von Akteuren
oder Rollen aufteilen.

e Dem Entwickler von Portlets und Portalseiten: er erstellt die Benutzungsschnittstellen-
artefakte. Dabei kann es sich um einen Mitarbeiter oder um Drittanbieter handeln.

e Dem Dialogmodellierer: er erstellt den Screenflow, indem er die Benutzungsschnittstel-
lenartefakte zusammenfiigt. Er hat das Wissen iiber den zu modellierenden Prozess
und benétigt fiir seine Arbeit keine Programmierkenntnisse.

e Dem Administrator: er administriert den Portal Server, installiert neue Benutzungs-
schnittstellenartefakte und neue Dialogdefinitionen.

53

5. Screenflow Manager

5.9. Zusammenfassung

Der IBM UX Screenflow Manager erlaubt es, einen Benutzer durch einen Dialog (Screenflow),
bestehend aus Portlets und Portalseiten, zu fiihren. Die Kernkomponenten des Screenflow
Managers sind der Dialog Controller, das Dialog Modell und der Dialog Context. Der Dialog
Controller leitet den Benutzer durch den Dialog anhand des Dialog Modells. Daten die
Dialoge miteinander austauschen, werden im Dialog Context temporér abgelegt.

Das Dialog Modell wird in der Dialogdefinition festgelegt. Die wichtigsten Komponenten
der Dialogdefinition sind Transition Endpoints und Transitionen. Ein Transition Endpoint
reprasentiert eine Portalseite oder ein Portlet. Eine Transition definiert in einem Dialog einen
Ubergang von einem Transition Endpoint zu einem anderen.

Die zwischen den Dialogschritten ausgetauschten Ereignisse miissen hdufig angepasst
werden. Je nach Situation eignet sich dafiir ein gednderter DCX-Key oder ein Event Mapper.
Neben statischen Ressourcen kann der Screenflow Manager auch dynamische Ressourcen
referenzieren. Diese existieren nur tempordr, solange sie benotigt werden.

54

6. Konzept

Nachdem im letzten Kapitel die Konzepte und Funktionsweise des Screenflow Manager
vorgestellt wurden, widmet sich dieses Kapitel der Entwicklung eines grafisches Modellie-
rungswerkzeug fiir Screenflows.

6.1. Ausgangssituation

Bisher miissen Modellierer einen Screenflow fiir den IBM UX Screenflow Manager in einer
XML-basierten Auszeichnungssprache definieren. Fiir die Definition eines Screenflows muss
der Modellierer die eindeutigen Namen der Portlets und Portalseiten kennen, welche Teil
des Screenflows sein sollen. Dies sind jedoch Daten, die vom Portal Server intern verwaltet
werden. Fiir einen Portalnutzer sind diese Daten nicht direkt zugénglich. Bei einem grofsen
Screenflow kann es fiir einen Modellierer schwierig werden, aus der Definition den exakten
Ablauf des Screenflows abzulesen.

Dieses Kapitel stellt daher Konzepte fiir die Entwicklung eines Modellierungswerkzeugs
vor, welches auch einen technisch nicht versierten Modellierer in die Lage versetzt, einen
Screenflow grafisch zu modellieren. Das Modellierungswerkzeug setzt auf dem IBM UX
Screenflow Manager auf.

Die genauen Anforderungen an das Modellierungswerkzeug werden im nachfolgenden
Abschnitt festgelegt.

6.2. Anforderungen

Im folgenden Abschnitt werden die Anforderungen aufgelistet, die fiir die Erstellung eines
grafischen Modellierungswerkzeugs fiir Screenflows notwendig sind. Die Anforderungen
basieren auf dem in Kapitel Screenflow Manager vorgestellten Screenflow Manager.

Funktionale Anforderungen

Die folgenden funktionalen Anforderungen lassen sich direkt aus der Funktionalitédt des
Screenflow Managers ableiten.

55

6. Konzept

Dialogdefinition erstellen Zu den elementarsten Bestandteilen eines Screenflows gehort
die Dialogdefinition. Sie bildet den Rahmen fiir alle Elemente eines Screenflows. Wenn der
Modellierer einen Screenflow erstellen will, muss er in die Lage versetzt werden, eine neue
Dialogdefinition zu erstellen.

Dialogdefinition konfigurieren Um eine Dialogdefinition exakt identifizieren zu kénnen,
muss sie einen eindeutigen Namen erhalten. Zusétzlich kann der Modellierer einer Dialogde-
finition einen Titel und eine Beschreibung mitgeben. So kann zum Beispiel eine detaillierte
Beschreibung zum Screenflow angegeben werden. Um diese Eigenschaften bearbeiten zu
konnen, ist es notwendig, eine Dialogdefinition konfigurieren zu konnen.

Dialogartefakte hinzufiigen Wie bereit beschrieben besteht ein Screenflow aus einer Reihe
von Screens. Das Modellierungswerkzeug muss es dem Modellierer ermoglichen, Portalseiten
und Portlets auszuwéhlen, um diese dem Screenflow als Transition Endpoint hinzuzuftigen.
Die hinzugefiigten Transition Endpoints miissen fiir den Modellierer visuell dargestellt
werden.

Dialogartefakte konfigurieren Jeder Transition Endpoint kann mit zusétzlichen Eigenschaf-
ten ausgestattet werden. Dies erfordert, dass der Modellierer ein Dialogartefakt konfigurieren
kann. Er muss fiir den Transition Endpoint fiir alle unterstiitzen Sprachen einen Titel und
eine Beschreibung eingeben konnen, die im entsprechenden Dialogschritt den Originalen-
Titel und -Beschreibung des Transition Endpoints substituieren. Des Weiteren muss der
Modellierer die Moglichkeit besitzen festzulegen, ob der Transition Endpoint statisch oder
als dynamische Kopie geladen werden soll. Im Falle dass der Modellierer eine dynamische
Kopie verwendet, muss er fiir den Transition Endpoint einen Extension Node angeben
koénnen.

Transition definieren Um einen Ubergang im Screenflow von einem Subdialog zum néchs-
ten zu modellieren, werden Transitionen eingesetzt. Eine Transition beschreibt den Ubergang
von einem Quell Transition Endpoint zu einem Ziel Transition Endpoint. Das Modellierungs-
werkzeug muss dem Modellierer ein Mittel bereitstellen, mit dem er Transitionen erstellen
kann.

Transitionen konfigurieren Der Screenflow Manager benétigt fiir jede Transition die An-
gabe eines Ereignisses, welches die Transition aktiviert, wenn es vom Quell Transition
Endpoint gesendet wird und die Definition des Ereignisses, das der Ziel Transition Endpoint
erwartet. Der Modellierer muss mit dem Modellierungswerkzeug diese Ereignisse fiir jede
Transition vergeben konnen. In Erweiterung dazu muss der Modellierer die DCX-Keys fiir
die Ereignisse, die von dem Quell und Ziel Transition Endpoint der Transition gesendet
werden, anpassen kénnen. Dafiir benétigt er im Modellierungswerkzeug eine Eingabemog-
lichkeit der DCX-Keys. Auch die Zuweisung eines PayloadToContextMappers und eines

56

6.2. Anforderungen

ContentToPayloadMappers, fiir die Transformation der Ereignisse einer Transition muss
das Modellierungswerkzeug ermoglichen. Letztlich muss der Modellierer noch bei jeder
Transition markieren konnen, ob es sich hierbei um eine Start- oder Endtransition handelt,
die den Screenflow startet oder beendet.

Zusétzlich haben sich die folgenden funktionalen Anforderungen aus Gesprachen mit den
Entwicklern des Screenflow Managers und aus Designmeetings entwickelt.

Dialogdefinition speichern Nachdem der Modellierer den Modellierungsprozess abge-
schlossen hat, muss er in der Lage sein, den modellierten Dialog zu speichern. Das Modellie-
rungswerkzeug muss die Eingabe eines eindeutigen Namens sowie die Eingabe eines Titels
und einer Beschreibung fiir den Dialog unterstiitzen.

Liste der vorhanden Dialogdefinitionen anzeigen Das Modellierungswerkzeug muss dem
Modellierer alle vorhanden Dialogdefinitionen auflisten konnen. Von dieser Liste aus soll
der Modellierer eine Reihe von Operationen auf die Dialogdefinitionen anwenden kénnen.
Die moglichen Operationen werden in den nachfolgenden Punkten beschrieben.

Dialogdefinition anzeigen Die aus der vorhergehenden Anforderung aufgelisteten Dialog-
definitionen miissen von Modellierer eingesehen werden kénnen. Dafiir muss das Modellie-
rungswerkzeug eine vorhandene Dialogdefinition 6ffnen konnen, damit sie vom Modellierer
betrachtet werden kann.

Dialogdefinition bearbeiten Neben dem Offnen muss das Modellierungswerkzeug auch
das Bearbeiten von Dialogdefinitionen erlauben. Eine getffnete Dialogdefinition muss vom
Modellierer verdndert und unter dem gleichen oder einem neuen Namen abgespeichert
werden kénnen.

Dialogdefinition kopieren Der Modellierer muss aus einer Vorlage, zum Beispiel durch das
Klonen einer vorhanden Dialogdefinition, eine neue Dialogdefinition erstellen konnen. Auf
die neu erstellten Dialogdefinitionen sollen dann die selben Operationen anwendbar sein
wie auf die bereits vorhanden. Das Modellierungswerkzeug muss daher das Kopieren von
Dialogdefinitionen beherrschen.

Dialogdefinition 16schen Dialogdefinitionen die nicht weiter bendtigt werden, miissen
aus dem System geloscht werden konnen. Das Modellierungswerkzeug sollte daher die
Moglichkeit bieten eine oder mehrere ausgewdhlte Dialogdefinitionen zu 16schen.

57

6. Konzept

Dialogdefinition exportieren Um Dialogdefinitionen auflerhalb des Portal Servers zu spei-
chern und um die Dialogdefinitionen zwischen unterschiedlichen Servern austauschen zu
konnen, besteht die Anforderung an das Modellierungswerkzeug, eine Funktion fiir das
Exportieren von Dialogdefinition bereitzustellen. Mittels dieser Funktion soll der Modellierer
beliebige Dialogdefinitionen exportieren konnen.

Dialogdefinition importieren Im Zuge der vorhergehenden Anforderung, muss das Model-
lierungswerkzeug eine exportierte Dialogdefinition auch in ein System landen zu kénnen.
Der Modellierer muss in die Lage versetzt werden, den Pfad zu einer exportierten Dialogde-
finition angeben zu kénnen, um diese zu den bestehenden Dialogdefinitionen in dem Portal
Server zu laden.

Nichtfunktionale Anforderungen

Neben den funktionalen Anforderungen existieren auch nichtfunktionale Anforderungen,
die sich aus der Aufgabenstellung aus Kapitel 1 und Gesprachen mit den Entwicklern
des Screenflow Managers ergeben. Das Modellierungswerkzeug soll fiir den Modellierer
einfach und intuitiv zu bedienen sein. Zusétzlich soll das Modellierungswerkzeug fiir neue
Funktionen einfach zu erweitern sein. Des Weiteren soll die grafische Oberflache fliissig
bedient werden konnen.

Anwendungsfalle

Aus den funktionalen Anforderungen lassen sich Anwendungsfille formulieren. Sie beschrei-
ben aus der Sicht eines Aufsenstehenden, welche Akteure beteiligt sind, wie sie mit dem
System interagieren und was das System dabei leisten soll. Jeder Anwendungsfall beschreibt
das Systemverhalten fiir eine spezielle Situation. Anwendungsfille konnen dabei helfen,
einen Prototypen zu entwickeln, Testfdlle fiir das System zu spezifizieren, die Entwicklung
zu planen und die Benutzerdokumentation zu erstellen [PPo7]. Im Anhang A.2 befinden
sich die Anwendungsfille fiir die oben beschrieben Anforderungen.

58

6.3. Losungsansatz

6.3. Losungsansatz

Wie die Anforderungen aus dem letzten Abschnitt einzeln umgesetzt werden kénnen, wird
im Folgenden beschrieben. Das Vorgehen dabei ist Top Down vom Generellen ins Detail.

6.3.1. Technische Integration

Dieser Absatz beschreibt, wie das Modellierungswerkzeug in die vorhandene Architektur
integriert werden kann. Da der gesamte Screenflow Manager auf die Verwendung im Portal
ausgelegt ist, liegt es nahe, auch das Modellierungswerkzeug als Portlet umzusetzen. Auf
diese Weise kann der Screenflow Manager, der bereits das Dialog State Display Portlet und
das Dialog Stack Portlet (siehe Kapitel 5) mitbringt, einfach um den grafischen Modellierer er-
weitert werden. Abbildung 6.1 veranschaulicht die Integration des Modellierungswerkzeugs
in den Portalkontext.

/~ PortalServer \

Portiets

Screenflow Manager
Engine API

Graphical Screenflow Modeller) :

Custom Portlets Dlalog State Display Dlalog Stack

Portal Services Interface
K Portlet API GBM UX Screenflow Manager APy- REELLELEL

-

~N

Application Server
&Portlet Container) (Servlet Container) (Persistenz API)
9,

e ~N Transition Endpoints
We b S erver Transitions
Dialogs
\ J

Abbildung 6.1.: Integration des Modellierungswerkzeugs in die Portal Architektur.

Als Portlet hat das Modellierungswerkzeug, das in der Grafik als Graphical Screenflow Modeller
bezeichnet ist, direkten Zugriff auf die API des Screenflow Managers. Zusétzlich kann es
alle benotigen Daten, von den am Screenflow beteiligten Portlets und Portalseiten, direkt
iiber die IBM Service API vom Portal Server abfragen. Als Portlet ist das Modellierungs-
werkzeug plattformunabhédngig und kann auf jedem System verwendet werden, das einen
grafischen Browser bietet. Zusatzlich bietet dies fiir den Modellierer den Vorteil, dass das
Werkzeug im Portal integriert ist und er so nur eine Anwendung (den Browser) benétigt,

59

6. Konzept

um den Screenflow zu entwickeln und zu testen. Da alle Komponenten fiir den zu model-
lierenden Screenflow bereit im Portal zur Verfiigung stehen, ermoglicht dieser Ansatz eine
Modellierung zur Laufzeit.

Client Side Server Side

(; A

Graphical Screenflow Modeller - Rich-Client

Graphical Screenflow Modeller
Portal Service Interface

Portlet serverside code

HTTP &

|
L

UX Screeflow Manager

Internet

Abbildung 6.2.: Client-Server Modell des Modellierungswerkzeugs (Portlet).

Abbildung 6.2 zeigt die mehrschichtige Architektur der Web-Anwendung, die sich aus der
Implementierung als Portlet ergibt. Die Prasentationsschicht des Portlets beschrankt sich
auf die Auslieferung des Rich-Clients an die Clientseite. Der Rich-Client kommuniziert
dann tiber HTTP-Aufrufe von der Clientseite aus mit der Anwendungsschicht des Portlets.
Die Anwendungsschicht verarbeitet die Aufrufe und involviert bei Bedarf die entsprechen-
den Dienste, um auf die Screenflow Manager API zuzugreifen oder um Details tiber die
Portlets und Portalseiten des Screenflows abzufragen. Die entsprechenden Daten liefert die
Anwendungsschicht dann an die Clientseite zuriick, wo sie vom Modellierungswerkzeug
weiter verarbeitet werden. Die Logik fiir die Darstellung des Screenflows befindet sich im
Rich-Client und benétigt keine Kommunikation mit der Anwendungslogik im Portlet. So
kommt die Anwendung mit wenig Kommunikation aus.

Die Entscheidung das Modellierungswerkzeug als Portlet zu entwickeln, ldsst sich wie folgt
begriinden. Der Screenflow Manager kann so um die Mdoglichkeit einer grafischen Model-
lierung erweitert werden. Als Portlet ldsst sich die Anwendung einfach in die bestehende
Architektur integrieren. Die Benutzungsschnittstelle des Modellierungswerkzeug kann ohne
Aufwand ins Portal eingebettet werden. Eine alternative Umsetzung zum Beispiel als externe
Anwendung kam daher nicht in Betracht.

60

6.3. Losungsansatz

6.3.2. Visuelle Integration

Dieser Abschnitt beschreibt, wie das Modellierungswerkzeug visuell in das Portal integriert
wird. Fiir die Platzierung der Benutzungsschnittstelle werden zwei Moglichkeiten in Betracht
gezogen. Das Ziel bei der Auswahl war eine fiir den Modellierer optimale Losung zu finden,
sodass er den Modellierungsprozess am einfachsten ausfithren kann.

Platzierung in der Werkzeugleiste Der IBM WebSphere Portal Server besitzt eine Werkzeu-
gleiste, welche bei Bedarf vom oberen Rand des Bildschirms herunter geklappt werden kann.
Die erste mogliche Losung ist, das Modellierungswerkzeug in die Portal Werkzeugleiste
zu integrieren. Die Werkzeugleiste behilt alle Inhalte auch bei einem Seitenwechsel im
Portal. Das Ziel bei der Integration des Modellierungswerkzeug in die Werkzeugleiste ist,
dass der Modellierer wie gewohnt im Portal umhernavigieren kann, um sich Artefakte
auszuwihlen, die er dem Screenflow hinzuftigen mochte. Die gewiinschten Artefakte kann
er dann per Drag and Drop in das Modellierungswerkzeug ziehen, wo sie dann als Modell
dargestellt werden. Einzelne Portlets konnen direkt von der entsprechenden Portalseite in
das Modellierungswerkzeug gezogen werden. Eine Portalseite kann der Modellierer aus
der Navigationsleiste in die Fliche des Modellierungswerkzeug ziehen. Dabei werden dann
alle Portlets, die sich auf der gewdhlten Portalseite befinden, dem grafischen Modellierer
hinzugefiigt. Da ein Portlet immer in einer Portalseite enthalten sein muss, wird implizit
auch die zugehorige Portalseite referenziert.

@) [©OQ)
<+) <+)

0000) AN

,
J
~
J
~
J
~
J

—

,_
—J
— ——
—J

|
1l

\
_— J |

Abbildung 6.3.: Modellierungswerkzeug in der Werkzeugleiste. Links einfacher Modus,
rechts erweiterter Modus.

Da der Platz auf dem Bildschirm begrenzt ist, erhdlt das Portlet in der Werkzeugleiste zwei
Modi. Einen einfachen und einen erweiterten Modus, sieche Abbildung 6.3 links der einfache
Modus und rechts der erweiterte Modus. Im einfachen Modus wird das Portlet in seiner Hohe
beschrankt und das Modell der Artefakte komprimiert angezeigt. Dadurch sind nur wenig
Bildschirminhalte von der Werkzeugleiste verdeckt. Dies verhilft dem Modellierer zu mehr
Ubersicht und erleichtert das Drag and Drop mit den Artefakten. Nachdem die Auswahl der

61

6. Konzept

Artefakte abgeschlossen ist, kann das Portlet fiir den restlichen Modellierungsprozess im
erweiterten Modus angezeigt werden. Dabei ist das Portlet dann in voller Grofle dargestellt
und das Modell des Screenflows expandiert.

Platzierung als eigenstéandiges Portlet Die andere mogliche Losung ist das Modellierungs-
werkzeug als eigenstdandiges Portlet in einer Portalseite zu integrieren. Das Werkzeug konnte
zum Beispiel im Administrationsbereich eingebunden werden. Da der Modellierer bei einem
eigenstandigen Portlet nicht umhernavigieren kann um Dialogartefakte auszuwéhlen, muss
das Portlet dafiir eine Liste aller Ressourcen zur Verfiigung stellen. Von dort aus kann der
Modellierer die gewiinschten Artefakte in die Modellierungsfldche ziehen, wo er weiter mit
ihnen arbeiten kann. Abbildung 6.4 veranschaulicht den Ansatz in einer eigenen Portalseite.
Links im Bild ist die Liste der vorhanden Ressourcen angedeutet, der rechte Teil des Bildes
ist fiir die Modellierungsflache fiir die Screenflows vorgesehen.

PER)

Pagel
P1
Er
P3

Page2 () ()
P1
P2

~
J
~
J

Page4
Pl

—
- JL
)
—
—
- JL

Page3

P1
P2
P3
P4

|

1l

Abbildung 6.4.: Modellierungswerkzeug in eigener Portalseite.

Auswahl Letztlich wurde entschieden das Portlet in die Werkzeugleiste des Portals zu
integrieren. Das Modellierungswerkzeug als eigenstandiges Portlet in eine Portalseite einzu-
betten hat zwar den Vorteil, dass Modellierer den Screenflow von einem zentralen Punkt
aus entwickeln kann, ohne dass er wie beim alternativen Ansatz umhernavigieren muss, um
die Artefakte fiir den Screenflow zusammenzusuchen. Gerade aber das Navigieren zu den
entsprechenden Portalseiten war bei der Entscheidung ausschlaggebend, da der Modellierer
so die potenziellen Artefakte direkt sehen kann. Ahnlich wie bei einem Onlineshop die
Artikel in den Einkaufswagen gelegt werden, wihlt der Modellierer seine gewiinschten
Artefakte aus und zieht sie in die Werkzeugleiste. Dieses ist ein sehr intuitives Vorgehen.
Werden die Ressourcen in einer Liste bereitgestellt, muss der Modellierer alle Namen der
Artefakte kennen, die er dem Dialog hinzufiigen mochte. Aufierdem haben grofse Listen das
Problem, dass sie schnell uniibersichtlich werden konnen.

62

6.3. Losungsansatz

6.3.3. Grafische Darstellung von Screenflows

Dieser Abschnitt beschreibt, wie ein Screenflow im Modellierungswerkzeug grafisch repra-
sentiert wird. Dafiir wurden mehrere mogliche Diagramme entwickelt. Diagramme nutzen
die Aussagekraft von Bildern und sind daher ein gutes Mittel zur Veranschaulichung von
Abldufen. Sie sind in der Regel schnell und einfach zu verstehen und kénnen auch von
Personen gelesen werden, die nicht alle Details kennen [USAos5].

Gerade Graphen werden hédufig dazu eingesetzt, Abldufe von Prozessen visuell darzustellen.
Beispiele hierfiir sind unter anderen BPMN [OMG11] im Bereich der Geschaftsprozesse oder
den UML Zustands- und Flussdiagrammen [OMGos], die in der Programmentwicklung das
Verhalten von Systemen veranschaulichen.

Auch das grafische Modellierungswerkzeug soll fiir die Modellierung der Screenflows einen
Graphen verwenden. Es existieren viele Moglichkeiten, wie ein Prozessgraph fiir einen
Screenflow gestaltet werden kann. Im Folgenden werden vier mogliche Ansitze betrachtet.
Die zugehorigen Beispielgraphen stellen das folgende Szenario dar. Es besteht aus zwei
Portalseiten, die jeweils 3 Portlets enthalten. Portalseite PS; beinhaltet die Portlets A, B
und C wahrend Portalseite PS, die Portlets D, E und F enthélt. A sendet ein Ereignis an B.
B sendet ein Ereignis an C und ein weiteres an PS;, was einem Broadcast an D, E und F
entspricht. C und F senden beide jeweils ein Ereignis an E. Abbildung 6.5 veranschaulicht
die Transitionen des Beispielszenarios. Fiir eine bessere Ubersieht sind die Transitionen mit
Nummern beschriftet.

A—>B
B—>C
B —<*> PS,(D,E,F)
C>E
F<>E

Abbildung 6.5.: Transitionen des Beispielszenarios fiir die grafische Darstellung von Screen-
flows.

Verschachtelter Graph Dieser Ansatz verwendet zwei Knotentypen, einen fiir die Dar-
stellung der Portalseiten (grofie Knoten) und einen fiir die Reprédsentation von Portlets
(kleine Knoten). Ein Knoten fiir eine Portalseite beinhaltet alle Portlets (kleine Knoten), die
sich auf der reprasentierten Portalseite befinden. Jeder dieser Knoten enthilt einen Teil des
gesamten Graphen. Zur Verbindung der Knoten sind drei Arten von Kanten erlaubt. Erstens,
Kanten zwischen den Portlets innerhalb einer Portalseiten. Zweitens, Kanten zwischen den
Portlets aus unterschiedlichen Portalseiten. Und drittens, Kanten von einem Portlet zu einer
Portalseiten, was einen Broadcast an alle Portlets innerhalb der Portalseite reprasentiert.
Abbildung 6.6 stellt das obige Szenario mit den zwei Portalseiten und den sechs Portlets als
verschachtelten Graphen dar.

63

6. Konzept

N T g
C 1 F

. J . J

Abbildung 6.6.: Beispielszenario mit verschachteltem Graphen.

Dieser Ansatz hat den Vorteil, das die Knoten einen dhnlichen Aufbau besitzen wie Portal-
seiten mit ihren Portlets. So erhidlt der Modellierer eine gewisse Vertrautheit zu dem Modell.
Der Modellierer kann auf einen Blick sehen, wie die Zugehorigkeit der Portlets zu ihrer
Portalseite ist. Bei einem Broadcast ist nur eine Kante notwendig, anstatt dass fiir jedes
beteiligte Portlet eine Kante gezogen werden muss. Bei jedem Kantentiibergang kann sofort
abgelesen werden auf welcher Portalseite sich der Endbenutzer dann befinden wird.

Freier Graph Dieser Ansatz, verzichtet auf die explizite Darstellung von Portalseiten. Eine
Transition auf eine Portalseite, also der Broadcast an alle darin enthalten Portlets, wird
durch entsprechende Kanten an alle beteiligten Knoten dargestellt. Durch den Verzicht
auf die Darstellung der Portalseiten, kommt dieser Ansatz mit nur einer Knotenart aus. In
Abbildung 6.7 wird das vorher beschriebene Szenario als freier Graph abgebildet.

Abbildung 6.7.: Beispielszenario mit freiem Graphen.
Von Vorteil ist, dass der Graph beliebig angeordnet werden kann. Nachteilig ist jedoch, dass

ohne eine Reprasentation der Portalseiten fiir einen Broadcast jedes Portlet explizit mit einer
Kante verbunden werden muss. Darunter kann auch schnell die Lesbarkeit leiden. Fiir den

64

6.3. Losungsansatz

Modellierer ist auch nicht ersichtlich, welche Portlets sich gemeinsam auf einer Portalseite
befinden.

Freier Graph mit zwei Knotenarten Dieser Ansatz ist eine Kombination aus Ansatz 1 und
2. Hierbei handelt es sich zwar um einen freien Graphen, es existieren jedoch zwei Arten
von Knoten. Ahnlich wie beim Ansatz mit dem verschachtelten Graphen existiert eine Art
von Knoten fiir die Portlets und eine fiir die Portalseiten. Der Unterschied ist jedoch, dass
die Knoten fiir die Portalseiten keine Untergraphen enthalten. Dennoch reprasentiert eine
Kante zu einem solchen Knoten einen Broadcast an alle Portlets, die auf der reprasentierten
Portalseite enthalten sind. Sendet ein Portlet aus der betreffenden Portalseite nach diesem
Broadcast ein Ereignis, wird die Kante abgehend vom Knoten der Portalseite dargestellt
(Kante 5). Ansonsten wird das Portlet als eigenstandiger Knoten dargestellt.

Grafik 6.8 veranschaulicht das obige Szenario mit dem freien Graphen und seinen zwei

Knotentypen.
LA B}

Abbildung 6.8.: Beispielszenario mit freiem Graphen mit zwei Knotentypen.

Dieser Ansatz hat gegeniiber dem vorhergehenden Graphen den Vorteil, dass ein Broadcast
sofort abgelesen werden kann. Nachteilig ist jedoch, dass bei Kanten die von einem Knoten
wegfiihren, der sich innerhalb einer Portalseite befindet, der Ursprung nicht sofort ersichtlich
ist (Kante 5, F — E).

Freier Graph mit Multi-Knotenmenge Dieser Ansatz ist eine Erweiterung des zuvor vorge-
stellten freien Graphen. Auch bei diesem Ansatz wird auf die Darstellung von Portalseiten
komplett verzichtet. In Erweiterung zum Graphen des zweiten Ansatzes konnen bei die-
sem Graphen die Knoten der Portlets jedoch mehrfach vorkommen. Zusétzlich besteht
die Regel, dass jeder Knoten maximal eine eingehende und maximal eine ausgehende
Kante besitzen darf. In Abbildung 6.9 wird das Beispielszenario durch einen Graphen mit
Multi-Knotenmenge dargestellt.

65

6. Konzept

Abbildung 6.9.: Beispielszenario mit freiem Graphen mit Multi-Knotenmenge.

Vorteilhaft bei diesem Graphen ist, dass er eine Leserichtung besitzt. Er kann von links
nach rechts gelesen werden. Alle moglichen Pfade in einem Screenflow kdnnen sofort
abgelesen werden. Das hat jedoch gleichzeitig den Nachteil, dass die Graphen schnell sehr
grofs werden. Auch Broadcasts konnen nur schwer vom Graphen abgelesen werden. Des
Weiteren ermoglicht der Graph keine Modellierung von Zyklen, die fiir Riickspriinge auf
einen vorherigen Subdialog erforderlich sein kénnen.

Auswahl Fiir die Darstellung der Screenflows wurde der verschachtelte Graph gewihlt.
Dieser Ansatz eignet sich am besten fiir diesen Zweck. Die Graphen aus dem zweiten und
vierten Ansatz haben den Nachteil, dass die Erstellung von Broadcasts fiir den Modellierer
unkomfortabel sind, da er jeden beteiligen Knoten explizit verbinden muss. Zusétzlich sind
Broadcasts bei diesen beiden Ansdtzen praktisch nicht von anderen Ereignissen zu unter-
scheiden. Eine ungiinstige Positionierung der Knoten kann dieses Problem noch verstiarken.
Der Ansatz mit dem freien Graphen mit Multi-Knotenmenge kann zusatzlich keine Zyklen
darstellen, die eventuell bei Riickspriingen notig sind. Ansatz drei, der freie Graph mit zwei
Knotentypen, steht dem verschachtelten Graphen bei der Darstellung von Broadcasts in
nichts nach. Dieser Ansatz weist jedoch Schwichen bei der Darstellung von Transitionen auf.
Transitionen von Knoten, die zuvor an einem Broadcast beteiligt waren, kénnen der Quelle
nicht mehr zugeordnet werden (F — E). Da diese Transition am Knoten der Portalseite
dargestellt wird, ist es nicht ersichtlich von welchem Knoten die Transition ausging.

Aus der Sicht eines Modellierers eignet sich daher besonders der verschachtelte Graph fiir
die Darstellung der Screenflows.

66

6.3. Losungsansatz

6.3.4. Modellierungsprozess

Dieser Abschnitt beschreibt, wie sich der Modellierungsprozess gestaltetet. Dafiir werden
die einzelnen Aktivitdten, die ein Modellierer im Modellierungswerkzeug durchfithren muss,
aufgelistet.

Artefakte hinzufligen Waihrend dieser Aktivitat fiigt der Modellierer dem Graphen die
gewtinschten Artefakte hinzu. Dafiir navigiert er zur gewtiinschten Portalseite und zieht
das entsprechende Artefakt per Drag and Drop in das Modellierungswerkzeug in der
Werkzeugleiste. Das Modellierungswerkzeug fligt daraufhin das Artefakt umgehend dem
Graphen hinzu. Damit der Modellierer nicht durch die Werkzeugleiste bei der Auswahl
gehindert wird, ist sie, wie bereit im Abschnitt Visuelle Integration beschrieben, komprimiert
dargestellt.

Transitionen hinzufiigen Waihrend dieser Aktivitat verbindet der Modellierer die Artefakte
miteinander. Dazu zieht er im Graphen, von einem Knoten zum anderen, eine Kante. Der
Knoten von dem die Aktivitdt aus beginnt, wird als Quelle der Transition verwendet. Der
Knoten an dem die Aktivitiat endet als das Ziel. Das Verbinden der Artefakte mit einer Kante
definiert lediglich welche Transition Endpoints an der Transition beteiligt sind und wer von
ihnen die Quelle oder das Ziel ist. Zusitzlich miissen noch weitere Eigenschaften wie zum
Beispiel das auszutauschende Ereignis festgelegt werden. Dies geschieht in der néchsten
Aktivitat.

Ereignisse der Transitionen festlegen Waihrend dieser Aktivitit spezifiziert der Modellie-
rer die Eigenschaften einer Transition. Dazu muss die entsprechende Transition ausgewahlt
sein. Eine Transition kann der Modellierer mit der Maus auswéhlen oder iiber die vorhanden
Transitionen iterieren. Im angezeigten Dialog kann der Modellierer auswihlen, welches von
den potenziell moglichen Ereignisse von der Quelle fiir diese Transition gesendet werden soll
und welches der potenziell moglichen Ereignisse das Ziel entgegen nehmen soll. Zusétzlich
kann der Modellierer fiir das Ereignis von der Quelle und dem Ziel einen Aliasnamen
vergeben, unter dem die Nutzdaten des Ereignis im Dialog Context abgelegt oder geladen
werden soll. Um gegebenenfalls ein Ereignis zu transformieren, kann der Modellierer aus
den vorhanden Event Mappern (siehe Kapitel 5) einen PayloadToContextMapper fiir die
Quelle und einen ContextToPayloadMapper fiir das Ziel auswihlen. Schliefslich kann der
Modellierer noch auswéhlen, ob es sich um eine Start- oder Endtransition handelt. Bei
dieser Auswahl handelt es sich um ein exklusives Oder. Beide Optionen konnen nicht gleich-
zeitig gewdhlt werden. Wird keine der beiden Optionen gewihlt, wird die Transition als
gewohnliche Transition behandelt. Nur die Transitionen, fiir die Eigenschaften spezifiziert
sind, werden vom Modellierungswerkzeug in die Dialogdefinition aufgenommen. Das blofie
Verbinden von Transition Endpoints reicht dafiir nicht aus.

67

6. Konzept

Eigenschaften fiir den Screenflow festlegen Waéahrend dieser Aktivitit vergibt der Mo-
dellierer globale Eigenschaften fiir den Screenflow. Im angezeigten Dialog kann er einen
Standard Extension Node definieren, der dann als Voreinstellung fiir alle dynamischen
Kopien (siehe Kapitel 5) gesetzt ist.

Eigenschaften fiir die Portalseiten festlegen Waihrend dieser Aktivitat legt der Modellierer
erweiterte Eigenschaften fiir eine Portalseite fest. Dazu muss die entsprechende Portalseite
ausgewdhlt sein. Eine Portalseite kann der Modellierer mit der Maus auswéhlen oder iiber
die vorhanden Portalseite iterieren. Der Modellierer kann dann im angezeigten Dialog fiir die
Portalseite, fiir jede unterstiitze Sprache einen Titel und eine Beschreibung festlegen. Diese
substituieren dann den originalen Titel und Beschreibung der Portalseite im entsprechenden
Dialogschritt. Des Weiteren legt der Modellierer hier fest, ob die Portalseite als dynamische
Kopie oder statisch geladen werden soll. Dazu muss er einen Haken unter dynamische
Kopie setzen. Im Falle, dass er die dynamische Kopie wihlt, kann hier auch den zugehorigen
Extension Node angeben. Wenn der Modellierer bei den Eigenschaften des Screenflow bereits
einen Standard Extension Node vergeben hat, ist dieser hier voreingestellt.

Eigenschaften fiir die Portlets festlegen Waihrend dieser Aktivitit legt der Modellierer
zusdtzliche Eigenschaften fiir die einzelnen Portlets fest. Das entsprechende Portlet muss
dafiir ausgewdhlt sein. Ein Portlet kann der Modellierer mit der Maus auswihlen oder iiber
die vorhanden Portlets iterieren. Der Modellierer kann dann im angezeigten Dialog fiir
das Portlet fiir jede unterstiitze Sprache einen Titel und eine Beschreibung festlegen. Diese
substituieren dann den originalen Titel und Beschreibung des Portlets im entsprechenden
Dialogschritt. Im angezeigten Dialog kann der Modellierer wihlen, ob das Portlet als dyna-
mische Kopie in den Screenflow eingebunden werden soll. Dazu muss er den Haken fiir die
dynamische Kopie setzen. Im Fall, dass der Modellierer diese Option aktiviert, muss er eine
dynamische Kopie einer Portalseite (Template) angeben, in der das Portlet eingebettet wird.
Zusitzlich kann er einen Extension Node spezifizieren. Hat der Modellierer einen Extension
Node bereits in den Eigenschaften des Screenflow festgelegt, ist dieser hier voreingestellt.

Testen Wihrend dieser Aktivitat kann der Modellierer den Screenflow testen. Diese Ak-
tivitdt ist jedoch nicht Bestandteil dieser Arbeit. Es ist jedoch vorstellbar, dass bei dieser
Aktivitiat der Ablauf des Screenflows vom Modellierer simuliert wird.

Dialogdefinition speichern Wihrend dieser Aktivitidt speichert der Modellierer den zu-
vor definierten Screenflow im System. Dazu muss er einen eindeutigen Namen fiir den
Screenflow festlegen. Alternativ kann der Modellierer auch den Screenflow als XML-Datei ex-
portieren, um ihn lokal abzulegen oder um ihn an jemanden weiterzugeben. Der exportierte
Screenflow kann dann zum Beispiel auf einem anderen System gedffnet werden.

68

6.3. Losungsansatz

Gefiihrter Modellierungsprozess

Um den Modellierer optimal bei der Ausfithrung dieser Aktivititen zu unterstiitzen, wird er
im Modellierungswerkzeug schrittweise durch einen vordefinierten Modellierungsprozess
gefiihrt. Dem Modellierer werden dabei immer nur die Werkzeuge eingeblendet, welche fiir
die aktuelle Aktivitdt im entsprechenden Prozessschritt notwendig sind. Ist eine Aktivitat
abgeschlossen, kann er zum néchsten Prozessschritt wechseln. Durch dieses Vorgehen kann
der Modellierer den Screenflow Schritt fiir Schritt entwickeln. In welchem Prozessschritt er
sich gerade befindet, wird ihm {iber eine Navigationsleiste angezeigt, die sich im oberen
Bereich des Modellierungswerkzeug befindet und die den aktiven Prozessschritt hervorhebt.
Abbildung 6.13 veranschaulicht diese Navigationsleiste. Trotz dieses vordefinierten Prozesses
kann der Modellierer bei Bedarf zwischen den einzelnen Aktivitdten springen, indem er
in der Navigationsleiste die entsprechende Aktivitdt auswéahlt. Des Weiteren bietet dieser
Ansatz die Moglichkeit, die Eingaben des Modellierers in jedem Prozessschritt zu validieren.
Einen Wechsel in den nidchsten Prozessschritt konnte so lange verhindert werden, bis alle
Eingaben vorhanden sind.

Eine Alternative ist im Modellierungswerkzeug auf eine Benutzerfithrung zu verzichten.
In diesem Fall stehen dem Modellierer zu jedem Zeitpunkt alle Werkzeuge zur Verfiigung.
Der Modellierer muss dann selbst entscheiden, welche Aktivititen durchzufiihren sind
und in welcher Reihenfolge er diese dann durchfiihrt. Dies erfordert jedoch eine gewisse
Erfahrungen vom ihm. Ein vordefinierter Prozess eignet sich fiir alle Arten von Anwender.
Technisch weniger versierte konnen sich Schritt fiir Schritt durch den Modellierungsprozess
fithren lassen, wihrend fortgeschrittene Benutzer nicht benétigte Schritte iiberspringen.

6.3.5. Grafische Umsetzung der Benutzungsschnittstelle

Die im vorhergehenden Absatz beschrieben Aktivitdten erfordern jeweils eine Interaktion
mit der Benutzungsschnittstelle. Die dazu notwendigen Dialoge und Anzeigen werden in
diesem Abschnitt kurz vorgestellt.

Dialog fiir die Festlegung der Ereignisse einer Transition Dieser Dialog dient dem Model-
lierer zur Konfiguration der Ereignisse einer Transition. Abbildung 6.13 zeigt eine Skizze des
Dialogs. Uber den Dialog wird der Quelle und dem Ziel ein Ereignis zugewiesen. Fiir die
Quelle werden alle Ereignisse in einer Auswahl bereit gestellt, die der Transition Endpoint
senden kann. Das selbe gilt fiir das Ziel, wo alle Ereignisse aufgelistet werden, die der
Transition Endpoint empfangen kann. Zusétzlich kann der Modellierer einen Aliasnamen
vergeben, unter dem die Nutzdaten des Ereignisses gespeichert oder geladen werden sollen.
Zusétzlich bietet der Dialog eine Auswahl von allen vorhanden Event Mapper fiir die Er-
eignistransformation. Uber zwei Kontrollkistchen kann der Modellierer festlegen, ob die
Transition eine Start- oder Endtransition ist. Von den Kéastchen kann maximal nur eines
aktiviert werden. Zwei Buttons im unteren Bereich des Dialogs erlauben dem Modellierer
tiber die vorhandenen Transitionen zu iterieren.

69

6. Konzept

(Ereignisse der Transition X)

- Quelle - Ziel

[Ereignis ¥ [Ereignis [¥
Alias Alias
]]

1
1

[Event Mapper [v]| [Event Mapper [v]|
\ J

Abbildung 6.10.: Dialog zur Definition der Eigenschaften einer Transition.

Dialog fiir globale Eigenschaften des Screenflows Uber diesen Dialog werden Eigenschaf-
ten festgelegt, die den gesamten Screenflow betreffen. Der Modellierer kann im Dialog einen
Extension Node festlegen, der dann bei allen Transition Endpoints voreingestellt wird, die als
dynamische Kopie in den Screenflow eingebunden sind. Ein voreingestellter Extension Node
kann bei jedem Transition Endpoint angepasst werden, siehe Dialog fiir die Eigenschaften
einer Portalseite und Dialog fiir die Eigenschaften eines Portlet. Abbildung 6.11 skizziert
diesen Dialog.

(Eigenschaften des Screenflows X))

Extension Node
[]

Abbildung 6.11.: Dialog zur Definition der globalen Eigenschaften des Screenflows.

Dialog fiir die Eigenschaften einer Portalseite Durch diesen Dialog werden die Eigenschaf-
ten einer Portalseite definiert. In Abbildung 6.12 ist ein moglicher Dialog abgebildet. Der
Dialog teilt sich in zwei Rubriken auf, die durch Tabs getrennt sind. In der ersten Rubrik kann
der Modellierer fiir die Portalseite einen Title und eine Beschreibung fiir jede unterstiitzte
Sprache vergeben. Die Eingabefelder sind untereinander aufgelistet, um eine schnelle und
einfache Eingabe der Daten zu ermdglichen. In der zweiten Rubrik kann der Modellierer
tiber ein Kontrollkdstchen wihlen, ob die Portalseite als dynamische Kopie in den Screen-
flow eingebunden werden soll. Ist das Kontrollkdstchen aktiviert, kann der Modellierer
ein Template und ein Extension Node festlegen. Wenn in den globalen Eigenschaften ein
Extension Node gesetzt ist, ist dieser in diesem Dialog im Extension Node Eingabefeld
bereits eingetragen. Der voreingestellte Extension Node kann jedoch gedndert werden. Zwei
Buttons im unteren Bereich des Dialogs erlauben dem Modellierer iiber die vorhandenen
Portalseiten zu iterieren.

70

6.3. Losungsansatz

N\

(Eigenschaften der Portalseite x) (Eigenschaften der Portalseite X

_| Title and Decription \] Dynamic Copy \ | Title and Decription \| Dynamic Copy \
- English
Title
L | o Dynamic Copy
Description |-Template —
l— Extension Node —|
| <Vorherige] [n&chste> | | <vorherige] [nachste> |

Abbildung 6.12.: Dialog zur Definition der Eigenschaften einer Portalseite.

Dialog fiir die Eigenschaften eines Portlet In diesem Dialog werden die Eigenschaften
eines Portlets konfiguriert. Der Dialog ist identisch zum Dialog fiir die Konfiguration
der Eigenschaften einer Portalseite. Wie der vorherige Dialog fiir die Eigenschaften einer
Portalseite besteht auch dieser Dialog aus zwei Rubriken, die durch Tabs getrennt sind. In
der ersten Rubrik kann der Modellierer fiir das Portlet einen Title und eine Beschreibung
fiir jede unterstiitzte Sprache vergeben. Die Eingabefelder werden wie im vorherigen Dialog
untereinander angeordnet. In der zweiten Rubrik besitzt der Dialog ein Kontrollkédstchen,
iiber das der Modellierer festlegt, ob das Portlet als dynamische Kopie in den Screenflow
eingebunden wird. Nach Aktivierung dieser Option kann der Modellierer der dynamischen
Kopie ein Template und einen Extension Node zuweisen. Wenn in den globalen Eigenschaften
ein Extension Node gesetzt ist, ist dieser in diesem Dialog im Extension Node Eingabefeld
bereits eingetragen. Der voreingestellte Extension Node kann jedoch gedndert werden. Zwei
Buttons im unteren Bereich des Dialogs erlauben dem Modellierer tiber die vorhandenen
Portlets zu iterieren.

Navigationsleiste fiir den Modellierungsprozess Der Modellierungsprozess ist in mehrere
Aktivitaten aufgeteilt. Jede dieser Aktivitdten entspricht einem Schritt im Modellierungs-
prozess. Eine Navigationsleiste, wie in Abbildung 6.13 dargestellt, soll dem Modellierer
visualisieren, in welchem Prozessschritt des Modellierungsprozess er sich gerade befindet.
Zusétzlich kann der Modellierer iiber die Navigationsleiste zwischen verschieden Aktivitaten
hin und her wechseln.

Defi Event Define Define Define Test Save
Add Artefacts Y 10 . global Page Portlet st o
ransttions i Properties Properties Properties creentiow Export

Abbildung 6.13.: Navigationsleiste fiir den Modellierungsprozess.

71

6. Konzept

Entwurf der Benutzungsschnittstelle

Fiir den Entwurf der Benutzungsschnittstelle wurden Mockups® gezeichnet. Diese Mockups
wurden in Designmeetings validiert und schrittweise weiterentwickelt. Die endgtiltige
Fassung der Mockups ist im Anhang A.3 zu finden.

6.4. Zusammenfassung

Aufgrund des zugrundeliegenden Screenflow Managers bestehen eine Reihe von Anfor-
derungen, die ein grafisches Modellierungswerkzeug erfiillen muss, um einen Screenflow
zu definieren. Zusétzlich bestehen noch Anforderungen, die von den Entwicklern des
Screenflow Managers an das Modellierungswerkzeug gestellt wurden. Der préasentierte
Losungsansatz stellt eine mogliche Losung fiir ein grafisches Modellierungswerkzeug fiir
Screenflows vor. Das Modellierungswerkzeug wird als Portlet implementiert, um optimal in
das Gesamtkonzept des Screenflow Managers integriert zu werden. Innerhalb des Portals
wird das Modellierungswerkzeug in die Werkzeugleiste eingebettet, um dem Modellierer
ein moglichst intuitives Arbeiten bei der Auswahl der am Screenflow beteiligten Artefakte
zu ermoglichen. Das Portlet hat zwei Modi. Einen vereinfachten Modus fiir die Auswahl
der Artefakte und einen erweiterten Modus fiir den restlichen Modellierungsprozess. Ne-
ben der Auswahl der Artefakte besteht der Modellierungsprozess aus einer Reihe weiterer
Aktivitdten, die notwendig sind, um alle Informationen fiir eine Dialogdefinition zusammen-
zutragen. Um dem Modellierer das Vorgehen zu vereinfachen, sind die Aktivitdten in einem
vordefinierten Modellierungsprozess festgelegt, durch den der Modellierer gefiihrt wird. Fur
jede Aktivitdt im entsprechenden Prozessschritt werden nur die notwendigen Werkzeuge
bereitgestellt. In welchem Prozessschritt des Modellierungsprozess er sich befindet, wird
ihm {tiber eine extra Navigationsleiste angezeigt, die den aktuellen Schritt optisch hervorhebt.
Die feste Reihenfolge kann der Modellierer umgehen, indem er in der Navigationsleiste zu
einer anderen Aktivitdt wechselt.

"Mockup: Als Mockup wird ein mafistabstreues Modell bezeichnet. Gerade bei der Entwicklung von grafischen
Oberflichen werden Mockups in der Entwurfsphase verwendet.

72

7. Implementierung

Nachdem nun die Konzepte fiir das Modellierungswerkzeug vorgestellt wurden, beschreibt
dieses Kapitel die konkrete Implementierung. Die Implementierung des Portlets teilt sich in
zwei Bereiche auf: Erstens die Clientseite, die in JavaScript, HTML und CSS implementiert ist
und im Browser des Nutzers ausgefiihrt wird. Sie wird durch das Aufrufen des Portlets in
der Werkzeugleiste an den Browser iibertragen. Zweitens die Serverseite, die in Java imple-
mentiert ist und innerhalb des Portal Servers ausgefiihrt wird. Clientseite und Serverseite
kommunizieren tiber HTTP-Aufrufe miteinander.

Abbildung 7.1 stellt die Architektur mit den Komponenten des Portlets auf der Server-
und Clientseite und ihren Beziehungen dar. Die einzelnen Komponenten werden in den
folgenden Abschnitten detailliert beschrieben.

Client Side Server Side
(H)
H - \
Object Property Template 5
indi . c
(Model) | ®ins | (View) 5 N
Drag & Drop f, g 2
Events S])
@ o T v
Event 58 o I}
. £9 =9 t
Listener g k-] [
— 2 20 <
o ov <
Controller Event Handler [~ -
1] 9
o= L 2
g 2
g 9 [}
w2]
— w —
(L] ©
2o t
< 0 [<]
H Qo E -8
. . (o]
Diagram Controller - XMLHttpRequest = Portlet Ressource G (=]
< H o
Controller Event Handler 2 (asynchron) H Request
Logic § H
HttpRequest = Portlet Action
) (synchron) E Request
N : J
UX Screeflow Manager

Internet

Abbildung 7.1.: Detailliertes Client-Server Modell des Modellierungswerkzeug (Portlet).

73

7. Implementierung

7.1. Clientseite

Die Clientseite besteht, wie zuvor erwdhnt, aus JavaScript, HTML und CSS. Um die Entwick-
lung zu beschleunigen und um eine moglichst browserunabhédngige Anwendung zu erhalten,
wurden die folgenden JavaScript Frameworks bei der Implementierung verwendet.

7.1.1. JavaScript Frameworks

Fiir die Implementierung der Clientseite des Modellierungswerkzeugs wurden die JavaScript
Frameworks Dojo Toolkit' und IBM ILOG Dojo Diagrammer* verwendet. Abbildung 7.2 veran-
schaulicht den Aufbau und die Abhingigkeiten der Frameworks.

Screenflow Modeller

J ; Graphical Screenflow Modeller
Diagrammer
H
| | — " . .
DojoX o i IBM ILOG Dojo Diagrammer
ijit
uil Core
Dojo Toolkit
Base

Abbildung 7.2.: Abhédngigkeiten der JavaScript Frameworks [Mato8].

Als Basis fiir die Implementierung wird das Dojo Toolkit eingesetzt. Auf dem Dojo Toolkit
baut der IBM ILOG Dojo Diagrammer auf. Das Modellierungswerkzeug wiederum nutzt
Module und Klassen aus beide Frameworks fiir die Umsetzung.

Dojo Toolkit

Das Dojo Toolkit ist ein JavaScript Framework, das eine browserunabhingige Entwicklung
von JavaScript Anwendungen ermoglicht. Dojo ist sehr modular aufgebaut. Der Kern von
Dojo ist nur wenige Kilobyte grofi. Weitere benttigte Module konnen wahrend der Laufzeit

"Weitere Informationen zum Dojo Toolkit kénnen unter http://dojotoolkit.org gefunden werden.

*Weitere Informationen zum IBM ILOG Dojo Diagrammer koénnen unter http://pic.dhe.ibm.com/
infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/
Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.
html gefunden werden.

74

http://dojotoolkit.org
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html

7.1. Clientseite

dynamisch nachgeladen werden. Abbildung 7.2 veranschaulicht die Beziehungen der ele-
mentaren Komponenten von Dojo. In der Implementierung wird das Dojo Toolkit in der
Version 1.8 verwendet.

Base Der Kernel von Dojo ist ein Bestandteil der Base. Er bildet die Basis des gesamten
Toolkits. Zum Kernel gehort unter anderem das Packaging System, das es erlaubt, Module
wahrend der Laufzeit nachzuladen. Des Weiteren bietet die Base Werkzeuge, die unter ande-
rem fiir die Unterstiitzung von Ajax3 und diversen Operationen auf dem DOM* verwendet
werden konnen. Elemente, die direkt zur Base gehoren, liegen direkt im dojo Namespace
[Mato8].

Core Zu Core zdhlen Elemente, die zwar haufig genutzt werden, aber nicht allgemein genug
sind, um zu Base zu gehoren. Beispiele hierfiir sind Funktionen fiir das Parsen von Widgets,
die erweiterten Animationseffekte, das Drag and Drop oder die Internationalisierung (i18n).
Elemente die zu Core zdhlen, befinden sich in untergeordneten Namespaces von Base wie
zum Beispiel dojo.fx, dojo.io oder dojo.data [Mato8].

Dijit Das Wort Dijit beinhaltet die beiden Worter Dojo und Widget. Dijits sind fertige
Komponenten, die aus JavaScript, HTML und CSS bestehen und direkt in die Webanwendung
eingefiigt werden konnen. Dijjits setzen direkt auf der Funktionalitit von Core auf. Die
vorhanden Dijjits lassen sich grob in drei Klassen einteilen. Allzweck Widgets, zu denen
beispielsweise Fortschrittsbalken zdhlen, Layout Widgets fiir die Anordnung von Elementen
wie zum Beispiel Tab Container und Oberflichen Widgets mit Elementen wie Schaltfldchen
oder dhnlichem. Dijits befinden sich im Namensraum dijit [Mato8].

DojoX DojoX steht fiir Dojo Extensions und enthélt eine Sammlung von Dojo Modulen, die
in keine der zuvor erwdhnten Komponenten passen. Ein Beispiel fiir ein solches Modul ist
das DojoX GFX Modul, das eine API fiir die Erstellung von 2D Vektorgraphiken bereitstellt.
Die in DojoX enthalten Module gewédhrleisten nicht dieselbe Stabilitit wie Module aus
Base oder Core. Aus diesem Grund enthilt jedes Teilprojekt eine Beschreibung iiber seinen
aktuellen Zustand und mogliche Ausnahmen und Probleme. Module aus DojoX sind dem
Namespace dojox untergeordnet [Mato§].

3Asynchronous JavaScript and XML (Ajax): ist eine Losung fiir die asynchrone Kommunikation zwischen
einem Browser und einem Server. Dadurch kénnen Seiteninhalte dynamisch (nach-)geladen werden, ohne
die gesamte Seite neu laden zu miissen [Anto8].

4DOM: Document Object Model: Das Document Object Model ist eine plattform- and sprachneutrale Schnitt-
stelle, um dynamisch auf den Inhalt, die Struktur und das Aussehen von Dokumenten zuzugreifen und diese
zu manipulieren [W3C].

75

7. Implementierung

Util Util enthélt Werkzeuge fiir das Arbeiten mit JavaScript Code. Unter anderem enthalt
Util Werkzeuge fiir die Codekomprimierung und das Erstellen von benutzerdefinierten Dojo
Versionen. Ein weiterer Bestandteil von Util ist ein Testframework fiir automatisierte Unit
Tests zur Qualitdtssicherung [Mato8].

IBM ILOG Dojo Diagrammer

Der IBM ILOG Dojo Diagrammer ist ein von der IBM entwickeltes JavaScript Framework fiir die
Erstellung und Darstellung von Graphen. Der IBM ILOG Dojo Diagrammer baut auf diversen
Dojo Modulen auf. Dazu zdhlt unter anderem das Dojox GFX Modul, das ein API fiir die
Erstellung von 2D Vektorgraphiken zur Verftigung stellt und Dojo Data fiir die Nutzung eines
Data Stores, in dem Graphen vordefiniert werden konnen. Abbildung 7.2 veranschaulicht
den Aufbau auf dem Dojo Toolkit. Der ILOG Dojo Diagrammer stellt fiir die Darstellung der
Graphen ein Widget bereit, das sogenannte Diagramm (englisch diagram). Fiir den Aufbau
des Graphen stellt der Diagrammer unterschiedliche Graphelemente zur Verfiigung, deren
Erscheinungsbild iiber sogenannte Templates festgelegt ist. Diese Templates konnen bei
Bedarf angepasst oder ausgetauscht werden. Fiir eine optimierte Darstellung des Graphen
und dessen Elemente, stellt das Framework zahlreiche Algorithmen zur Verfiigung, sodass
die Graphen automatisiert angeordnet werden konnen. Der IBM ILOG Dojo Diagrammer
wird in mehreren webbasierten IBM Produkten eingesetzt und mit dem Feature Pack for Web
2.0 and Mobile fiir den IBM WebSphere Application Server ausgeliefert.

7.1.2. Architektur der Clientseite

Die Clientseite ist nach dem Entwurfsmuster MVC implementiert. Die Basis ist das Diagramm
aus dem IBM ILOG Dojo Diagrammer mit seinen Funktionen. Das Framework stellt ein
Datenmodell (Model) fiir die Graphelemente bereit, dessen Objekte mit einer grafischen
Reprasentation verbunden sind (View). Der DiagramController (Controller) koordiniert die
Erstellung der Graphelemente. In Abbildung 7.3 werden die Klassen anhand ihrer Rolle der
MVC-Architektur dargestellt.

Darstellung

Fiir die Darstellung verwendet das Modellierungswerkzeug die Klasse DiagramEditor als
Container fiir den Graphen. Sie ist eine Spezifizierung der Diagram Klasse des IBM ILOG
Dojo Diagrammer. Der DiagramEditor enthélt bereits Funktionen fiir das Bearbeiten von
Graphen, wie zum Beispiel das Verbinden von Knoten. Der DiagramEditor wurde in der Im-
plementierung so erweitert, dass die Werkzeuge fiir die Aktivitaten im Modellierungsprozess,
aktiviert und deaktiviert werden kénnen. Zusétzlich wurden gewisse Schnittstellen nach
auflen zuganglich gemacht, damit der DiagramEditor iiber den DiagramController gesteuert
werden kann.

76

7.1. Clientseite

Link Swimlane Node

Diagram Metadata Dialog

N

NN

External Event Listener Backend

I
I
I
I
I
I
I
I
I
I
|
DiagramController :
I
I
I
I
I
I
I
I
I
I
I
I

Legende:
Kontrollfluss _—

Abbildung 7.3.: Klassendiagramm der Clientseite, geordnet anhand der Rollen in der MVC-
Architektur.

Fiir die Gestaltung des Graphen werden die Klassen Swimlane, Node und Link verwen-
det, die alle von der Klasse GraphElement abstammen. Abbildung 7.4 veranschaulicht die
Vererbungshierarchie der Graphelemente und ihre Abhédngigkeit zur Diagram Klasse.

Die Swimlane Klasse reprasentiert eine Portalseite. Diese Klasse wurde von der Basisklasse
abgewandelt, um das Erscheinungsbild und gewisse Funktionen auf die Bediirfnisse des
Modellierungswerkzeugs anzupassen. Beispielsweise wurde in der grafischen Reprasentation
die Schaltflache fiir das Minimieren der Swimlane entfernt. Des Weiteren wurde eine neue
Schaltflache hinzugefiigt, {iber die alle Portlets einer Portalseite eingeblendet werden konnen.
Eine Swimlane ist ein Teilgraph und beinhaltet Knoten, die aus Objekten der Node Klasse
bestehen. Diese symbolisieren die Portlets, welche in der Portalseite enthalten sind, die durch
die Swimlane dargestellt wird. Die Link Klasse reprasentiert die Transitionen im Graphen.
Sie verbinden die einzelnen Graphelemente miteinander.

77

7. Implementierung

GraphElement

Node Link

SubGraph [@———— DiagramEditor
A

Swimlane

Abbildung 7.4.: Klassendiagramm der Graphelemente (Hierarchie).

DiagramController

Die DiagramController Klasse implementiert die Anwendungslogik des Modellierungswerk-
zeugs auf der Clientseite. Der Controller ist unter anderem fiir das Hinzufiigen von Gra-
phelementen zustindig. Wenn der Externe Event Listner ein Ereignis empfangt, das per
Drag and Drop ein Portlet oder eine Portalseite dem Modellierungswerkzeug hinzugefiigt
wurde, wird der DiagramController benachrichtigt. Weitere Details werden im folgenden
Abschnitt Externer Event Listener beschrieben. Zusatzlich ist der DiagramController fiir das
Umschalten zwischen den Schritten im Modellierungsprozess zustdndig. Dazu versetzt der
DiagramController das Diagramm in einen Ausgangszustand, von dem aus er dann die ent-
sprechenden Werkzeuge aktiviert, die im korrespondierenden Modellierungsprozessschritt
benotigt werden. Fiir jeden Schritt im Modellierungsprozess stellt der DiagramController
eine Methode bereit, um in den entsprechenden Schritt zu wechseln. Ein Beispiel hierfiir ist
die Methode setAddArtifactsState, durch deren Aufruf das Diagramm in den vereinfachten
Modus tibergeht und der Benutzer dem Graphen Artefakte hinzufiigen kann.

Externer Event Listener

Dieser Event Listener reagiert auf die Drag and Drop Ereignisse, die vom Portal gesendet
werden, wenn ein Portlet oder eine Portalseite in das Modellierungswerkzeug gezogen wird.
Innerhalb des Portals wird das HTML5 Attribut dragable eingesetzt, um bei Portlets und
Portalseiten das Drag and Drop zu aktivieren. Die Ereignisse, die bei einer Drag and Drop
Aktion dann gesendet werden, sind HTML5 Drag and Drop Ereignisse, die sich von den
Drag and Drop Ereignissen im ILOG Dojo Diagrammer unterscheiden. Der externe Event
Listener empfangt diese Ereignisse und benachrichtigt den DiagramController. Dabei muss

78

7.1. Clientseite

er den Portal Drag and Drop Contract einhalten. Das bedeutet: er reagiert auf die Ereignis
und kann die enthaltenen Daten interpretieren, wie es durch den Contract festlegt ist. Der
vollstandige Ablauf wird in Abbildung 7.5 dargestellt.

BackendImpl
| (Dojo:xhr) | Portlet ‘
T

| Browser | | External Event Listener | | Diagram | |DiagramControIIer| | Backend |
T

1
I
ondrop:dropHandler() |
addArtifactByUID() 1
’J ;E:I resolvePage()

]________

] xhr()
> Ll

rbateTemplateShape() _n_‘< addArtifactCallback()
< i
i
1
1
1
I

[a)

Legende:
Asynchroner Aufruf ———>

Synchroner Aufruf ~———p
Rickgabe = emeeeeeeeq] »

Abbildung 7.5.: Verarbeitung eines externen Drag and Drop Ereignisses im Modellierungs-
werkzeug (Portalseite oder Portlet hinzuftigen).

Nachdem das Element, das hinzugefiigt werden soll, in dem Modellierungswerkzeug ab-
gesetzt (Drop) wurde, sendet der Browser ein ondrop Ereignis. Der Externe Event Listener
empfangt das Ereignis und ruft die dafiir definierte dropHandler Methode auf. Die dropHandler
Methode liest die Unique Names aus dem Ereignis aus und gibt diese an die AddArtifact-
ByUID Methode des DiagramControllers weiter. Der DiagramController ruft in der Backend
Schnittstelle die Methode resolvePage auf, um die zugehorige Portalseite mit allen darin
eingebetteten Portlets zu erhalten. Der Aufruf ans Backend geschieht iiber die Backend
Implementierung PortletBackend. In diesem Fall wird dazu das Dojo Modul xhr verwendet,
das einen XMLHttpRequest> an das Portlet im Portal Server sendet. Der Aufruf des xhr
geschieht asynchron, damit, wahrend die Abfrage auf der Serverseite ausgefiihrt wird, das
Modellierungswerkzeug nicht blockiert und der Modellierer wahrenddessen weiter arbeiten
kann. Nach der Bearbeitung im Portal Server wird das Ergebnis im JSON® Format zuriick-
gesendet. Das xhr Modul ruft dann das AddArtefactCallback im DiagramController auf. Das
Callback startet daraufhin die createTemplateShape Methode des ILOG Dojo Diagrammer
Diagramms, wodurch die entsprechenden Knoten im Graphen erstellt werden.

Damit die Anwendung nicht an diese Implementierung des Event Listeners gebunden ist,
ist dieser als eigenstdndige Komponente implementiert. Durch diese Trennung kann die
Implementierung einfach durch eine andere ersetzt werden.

5XMLHttpRequest: Bei dem XMLHttpRequest handelt es sich um eine API fiir den Datenaustausch zwischen
einem Client und einem Server. Das W3C arbeitet derzeit an einem Standard [ASH12].

6JavaScript Object Notation (JSON): JSON ist ein sprachunabhingiges Dateiformat zur Beschreibung von
Daten. Weitere Informationen konnen unter http://json.org gefunden werden.

79

http://json.org

7. Implementierung

Backend

Der Backend Namespace beinhaltet vier Klassen.

Die _AbstractBackend definiert alle Methoden die eine Backend Implementierung zur Verfii-
gung stellen muss. Alle Klassen, die diese Schnittstelle bereitstellen soll, erben von dieser
abstrakten Klasse. Da Dojo kein Mittel fiir das definieren von abstrakten Klassen bereitstellt,
wird dieses Verhalten durch den folgenden Ansatz simuliert: Methoden die als abstrakt
definiert werden sollen, beinhalten im Methodenrumpf lediglich die Ausgabe einer Fehlermel-
dung, zum Beispiel , Fehler! Methode <METHODEN NAME> wurde nicht implementiert!”.
Klassen die von dieser Klasse erben, miissen daher die entsprechenden Methoden tiber-
schreiben, um die Ausgabe dieser Fehlermeldung zu unterbinden.

Um das Modellierungswerkzeug bei einem Aufruf einer Methode nicht zu blockieren, finden
die Aufrufe asynchron statt. Dazu muss der aufgerufen Methode ein Callback iibergeben
werden, welches nach der Ausfithrung dieser Methode aufgerufen werden kann.

Die Klasse PortletBackend ist eine mogliche Implementierung fiir die Kommunikation mit
dem Portlet auf dem Portal Server. Dazu nutzt die PortletBackend Klasse das Dojo xhr
Modul. Dariiber konnen XMLHttpRequest an das Portlet gesendet werden, um Methoden des
Portlets auf der Serverseite aufzurufen. Das PortletBackend erbt von der _AbstractBackend
Klasse.

Die Klasse DummyBackend ist ein Testtreiber um das Systemverhalten zu testen, ohne dass
eine Verbindung zum Portal Server erforderlich ist. In diesem Fall sind die Riickgabewerte der
Methoden statisch definiert. Das DummyBackend erbt von der _AbstractBackend Klasse.

Die Backend Klasse ist fiir die Abstraktion der konkreten Implementierung zustandig. Sie
wird bei allen Klassen fiir die Aufrufe des Backend verwendet und agiert als Vermittler
zwischen der aufrufenden Komponente und der eigentlichen Implementierung. Welche Im-
plementierung verwendet werden soll, wird in dieser Klasse festgelegt. Fiir eine Umstellung
vom DummyBackend zum PortletBackend muss lediglich eine Zeile im Quelltext der Backend
Klasse gedandert werden.

Dialoge

Fiir die Darstellung der Dialoge wird das Dojo Modul Dijit.Dialog verwendet. Dieses Modul
stellt ein Widget bereit, das einen leeren Dialog implementiert. Dieser Dialog kann dann
mittels weiterer Widgets und HTML-Elementen erweitert werden. Fiir die Gestaltung, In-
itialisierung und Steuerung des Widgets, ist fiir jeden benétigten Dialog eine eigene Dialog
Klasse implementiert, zum Beispiel fiir die Definition der Ereignisse einer Transition (Event
Mapping Dialog). Dabei handelt es sich um eine Controller Klasse fiir den Dialog. Diese
Klasse enthilt eine Referenz auf den eigentlichen Dialog (Djjit.Dialog). Der DiagramController
instantiiert bei Bedarf diese Klasse und registriert deren Event Handler im Diagramm. Damit
kann auf die entsprechenden Ereignisse wie zum Beispiel das Klicken auf eine Transition
reagiert werden. Das Diagramm ruft dann beim FEintreten eines solchen Ereignisses die
registrierte Methode in der Dialogklasse auf. In Abbildung 7.6 ist das Klassendiagramm

8o

7.1. Clientseite

der Dialogklassen abgebildet. Zur Veranschaulichung sind in der Abbildung die Beziehun-
gen des Dialogs fiir die Festlegung der Ereignisse einer Transition hervorgehoben (Dicke
Linien).

1 [
ILOG Dojo Diagrammer Diagram |<> I Screenflow Property Dialog l—

\ 1

| ILOG Dojo Diagrammer Link K> Event Mapping Dialog

‘I

Diagram Controller |
E—

2> 2
\—<>| ILOG Dojo Diagrammer Node |<>—| Portlet Porperty Dialog |—0| Dijit.Dialog |

H ILOG Dojo Diagrammer Swimlane K>

Page Porperty Dialog
o

Abbildung 7.6.: Klassendiagramm der Dialogklassen mit ihren Abhéingigkeiten.

Einstellungen, die im Dialog definiert werden, werden tiber die Metadaten Implementierung
direkt im Datenmodell des Diagramms und der Graphelemente abgelegt. Auf die Implemen-
tierung fiir die Metadaten wird im folgenden Abschnitt genauer eingegangen. Abbildung
7.7 zeigt den fertigen Dialog fiir die Definition von Ereignissen.

Event Mapping Porperties

—Source: —Target:
—Source Event:——— —Target Event:
MNone v MNone v

—Source Event Alias: —Target Event Alias:

—Ewvent Mapper Class:—— —Event Mapper Class:——
MNone v MNone v
last next

Abbildung 7.7.: Bildschirmfoto des konkret implementierten Dialogs fiir das Festlegen der
Eigenschaften einer Transition.

81

7. Implementierung

Erweiterung des Datenmodells

Fiir das Speichern der fiir den Screenflow relevanten Daten, wird das Datenmodell der
grafischen Elemente (Diagram, Swimlane, Node und Link) erweitert. Dazu ist das Metadata
Modul zustandig. Das Modul bietet eine einheitliche API fiir das Laden und Speichern
von Daten in das Datenmodell der grafischen Elemente. Das Modul erstellt innerhalb des
Datenmodells ein Objekt namens _metaData, in dem dann alle Daten als Schliissel-Wert-Paare
abgelegt werden. Durch die API ist der Zugriff auf diese Daten einheitlich implementiert.
Im folgenden wird auf die Erweiterung des Serialisierers und Deserialisierers eingegangen,
die notwendig ist, damit auch die Metadaten gesichert werden konnen.

Serialisierung und Deserialisierung

Das Diagram des IBM ILOG Dojo Diagrammer verfiigt bereits iiber eine Serialisierungs-
und Deserialisierungsfunktionalitit. Diese wird unter anderem dafiir eingesetzt, den Zustand
eines Objektes fiir das Riickgédngigmachen von Anderungen (undo) zu speichern. Die
DiagramSerializer Klasse serialisiert und deserialisiert nur die Daten des Datenmodells, die
fiir die Wiederherstellung des Graphen und der Graphelemente unbedingt nétig sind. Daher
wurde eine neue Klasse vom DiagramSerializer abgeleitet und erweitert. Dadurch kénnen
auch die Metadaten aus dem Datenmodell serialisiert und deserialisiert werden. Der Zugriff
auf die Metadaten geschieht mit der Hilfe des Metadata Moduls. Zuséatzlich wurde das
Diagramm erweitert, sodass auf den Serialisierer und Deserialisierer auch tiber den Dialog
Controller zugegriffen werden kann.

7.2. Serverseite

Die Serverseite hat zwei Zustandigkeitsbereiche. Sie ist fiir die Bearbeitung der Anfragen
zustdndig, die von der Clientseite gesendet werden. Die Anfragen werden tiiber einen
asynchronen URL Request an das Portlet gesendet. Zu den Anfragen gehdren Abfragen iiber
die Details von Portalseiten und Portlets, aber auch das Persistieren des Screenflows im Portal
Server. Des Weiteren wird durch die Serverseite der Zustand des Modellierungswerkzeugs
(Serialisierung des Graphen) tiber die Session verwaltet. Zusitzlich wird durch die Serverseite
der aktuelle Prozessschritt des Modellierungsprozess gesetzt. Dazu wird iiber ein Action-
Request der gewiinschte Prozessschritt als Parameter an die Serverseite {ibermittelt.

Aus zeitlichen Griinden war es nicht moglich die Serverseite des Modellierungswerkzeug zu
implementieren. Im Folgenden werden daher nur die moglichen Konzepte einer Implemen-
tierung beschrieben.

82

7.2. Serverseite

7.2.1. Architektur der Serverseite

Auf der Serverseite ist die Architektur in zwei Schichten eingeteilt. Eine Schicht fiir die
Anwendungslogik, die auf der Serverseite fiir die Bearbeitung von Anfragen aus der Client-
seite zustdndig ist und auf die Dienste und Schnittstellen des Portal Servers zugreift (Java
Klasse) sowie eine Prasentationsschicht die fiir die Auslieferung des Rich-Clients an den
Client verantwortlich ist (JSP).

Zustandsilibergange

Ein Zustandswechsel im Modellierungsprozess wird durch einen Action-Request an das
Portlet eingeleitet. Bei einem Action-Request handelt es sich um einen Aufruf einer speziellen
URL, die im Portlet als Action-URL definiert ist (siehe Kapitel Grundlagen). Dieser URL wird
ein Parameter mitgegeben, der den gewtinschten Folgezustand des Modellierungsprozess
enthélt. Durch den Aufruf der Action URL wird im Portlet die Methode processAction
aufgerufen. In dieser Methode kann {iiber das ActionRequest Objekt auf die {ibergeben
Parameter zugegriffen werden. Die processAction Methode hat lediglich die Aufgabe den
Prozessschritt auszulesen und diesen an die Java Server Page (JSP) weiterzugeben, aus der
die HTML Repréasentation des Portlets generiert wird. Bei der Interpretation der JSP wird der
Parameter (Zustand des Modellierungsprozess) im JavaScript Code dem DiagramController
als Parameter hinzugeftigt. Durch die Interpretation des JavaScripts im Browser wechselt
das Modellierungswerkzeug in den angeforderten Schritt des Modellierungsprozess. Der
aktuelle Prozessschritt ist durch dieses Vorgehen immer in der aktuellen URL codiert. URLs
ohne Parameter fithren zum ersten Schritt im Modellierungsprozess. Abbildung 7.8 zeigt
den Ablauf eines Wechsels in einen anderen Modellierungsprozessschritts.

Client | | Portal | Portlet
T T

I I
I I
——_ActionRequest o
L

processAction() o
L

i
I

-

Legende:

Synchroner Aufruf ~——p
Rickgabe = memeeeee] »

Abbildung 7.8.: Sequenzdiagramm eines Schrittwechsels im Modellierungsprozess.

7. Implementierung

Verarbeitung der Client Anfragen

Uber die serverResource Methode bietet das Portlet einen Mechanismus, Anfragen an das
Portlet zu senden, ohne dass vom Portal die Seite neu geladen wird. So lassen sich Res-
sourcen bereit stellen oder asynchrone Clientanfragen iiber Ajax beantworten. Abbildung
7.5 veranschaulicht den Ablauf eines asynchronen Aufrufs an das Portlet. Dieser Mecha-
nismus wird ausgenutzt, um Abfragen von der Clientseite des Modellierungswerkzeugs
an die Serverseite zu senden. Uber die serverResource Methode kénnen die Parameter aus
der aufgerufenen URL ausgewertet werden. Die Parameter werden dann dazu verwendet,
Methodenaufrufe im Portal Server auszufiihren, zum Beispiel um die Unique Names der
Portlets zu erhalten, die in einer Portalseite enthalten sind. Das Ergebnis der Ausfithrung
wird dann an die Clientseite zuriickgesendet.

7.3. Zusammenfassung

Das Modellierungswerkzeug ist als Portlet implementiert. Die Anwendung basiert auf einer
Client-Server Architektur.

Die Clientseite: die aus JavaScript, HTML und CSS besteht und die Serverseite, die in
Java implementiert ist. Fiir die Implementierung der Clientseite werden die JavaScript
Frameworks Dojo Toolkit und der IBM ILOG Dojo Diagrammer verwendet. Die Clientseite
folgt dem Entwurfsmuster MVC. Das Model und der Grofteil der View sind durch die IBM
ILOG Dojo Diagrammer Komponenten umgesetzt. Des Weiteren werden Dojo Dialoge in
der View verwendet. Zusatzlich sind der Controller und sonstige Hilfsklassen auf Basis vom
Dojo Toolkit entwickelt.

Die Serverseite liefert zu Beginn der Session das Modellierungswerkzeug (Clientseite) an
den Client aus. Anschiefsend dient das Portlet der Bearbeitung von Anfragen, die von der
Clientseite an den Portal Server gesendet werden. Auch die Verwaltung des aktuellen Schritts
im Modellierungsprozess ist im Portlet auf der Serverseite implementiert.

8. Ubertragung der Konzepte

Im folgenden Kapitel wird der zweite Teil der Aufgabenstellung aus dem Einleitungskapitel
behandelt. Dazu werden die in Kapitel 6 erarbeiten Konzepte fiir Modellierungswerkzeuge
von Screenflows auf Modellierungswerkzeuge von Scientific Workflows {ibertragen.

8.1. Screenflows und Scientific Workflows

Screenflows und Scientific Workflows kénnen nicht direkt miteinander verglichen werden,
da sie fiir unterschiedliche Zwecke entwickelt wurden. Screenflows wurden fiir das Routing
von Benutzern durch Screens entwickelt. Im Gegensatz dazu dienen Scientific Workflows der
Ausfiihrung von Aufgaben. Wahrend Screenflows ausschliefilich der Interaktion mit dem
Benutzer dienen, haben Scientific Workflows in der Regel genau das gegenteilige Ziel. Sie
sind meist auf eine massive Datenverarbeitung ausgelegt. Interaktionen mit dem Benutzer
sind wéahrend der Ausfithrung nur fiir Ausnahmesituationen vorgesehen. Wahrend bei
Scientific Workflows der Wissenschaftler meist an allen Phasen des Lebenszyklus eines
Scientific Workflows arbeitet, ist bei Screenflows der Modellierer lediglich fiir die Model-
lierung des Screenflows zustindig. Ausgefiihrt wird ein Screenflows im Normalfall vom
Endnutzer. Screenflows sind fiir eine kurze Ausfithrung ausgelegt. Ein Screenflow muss
innerhalb der Giiltigkeitsdauer einer Browser Session ausgefiihrt werden. Langere Prozesse
miissen durch eine Workflow Engine ausgefiihrt werden. Scientific Workflows dagegen
konnen kurze oder langldufige Prozesse sein. Bei Screenflows wird der Zustand des Dialog
Modells nicht persistiert. Das bedeutet, dass der Screenflow erneut ausgefiihrt werden muss,
wenn der Browser wihrend der Ausfiithrung geschlossen wird. Dabei konnen Eingaben
verloren gehen. Aktivitaten die bis zu diesem Zeitpunkt ausgefiihrt wurden, werden nicht
riickgdngig gemacht. Im Gegensatz dazu konnen Scientific Workflows Techniken wie zum
Beispiel Transaktionen einsetzen, um immer einen konsistenten Zustand zu gewéahrleisten.
Der Screenflow Manager erlaubt keine Deklaration von Bedingungen in seinem Modell.
Das Routing anhand von definierten Bedingungen muss iiber die verwendeten Portlets
implementiert werden. Eine Workflow Engine ist dazu jedoch in der Lage. Screenflows
unterstiitzen innerhalb eines Browser Tabs keine Parallelitit. Ein Mensch kann zu einem
Zeitpunkt auch nur mit einem Screenflow aktiv interagieren. Im Gegensatz dazu ist bei den
Scientific Workflows fiir eine massive Datenverarbeitung Parallelitdt sogar sehr wichtig.

Neben den Unterschieden zwischen Screenflows und Scientific Workflows kénnen auch
Gemeinsamkeiten identifiziert werden. Zum Beispiel ist sowohl der Modellierer der Screen-
flows als auch der Wissenschaftler, der Scientific Workflows modelliert, in der Regel kein
Computerexperte.

8. Ubertragung der Konzepte

Trotz der teilweise groflen Unterschiede konnen Teile der erarbeiten Konzepte, die fiir ein Mo-
dellierungswerkzeug fiir Screenflows entwickelt wurden, auf Modellierungswerkzeuge fiir
Scientific Workflows tibertragen werden. Dies wird im folgenden Abschnitt beschrieben.

8.2. Ubertragung der erarbeiten Konzepte auf
Modellierungswerkzeuge fir Scientific Workflows

Eines der grundlegenden Konzepte fiir das Modellierungswerkzeug von Screenflows ist die
Implementierung als Portlet. Dieses Konzept eignet sich auch gut fiir die Entwicklung von
Modellierungswerkzeugen fiir Scientific Workflows. Da ein Wissenschaftler in der Regel alle
Phasen des Business Process Lifecycles bearbeitet, konnten die Werkzeuge fiir die einzelnen
Phasen als Portlets implementiert werden. Die einzelnen Portlets konnten dann tiber das
Portal zu einer zusammenhéangenden Oberfldche integriert werden. Zusétzlich konnten Port-
lets fiir spezifische Anforderungen entwickelt werden, die dann den Wissenschaftlern nach
dem Baukastenprinzip zur Verfligung stehen. Der Wissenschaftler kann so die Benutzungs-
schnittstelle nach den eigenen Bediirfnissen erweitern. Es wire zum Beispiel vorstellbar, ein
Portlet fiir die Visualisierung von Simulationsdaten bereitzustellen. Durch Technologien wie
JavaScript oder WebGL" konnten sehr komplexe Modelle und Darstellungen im Browser
visualisiert werden. So konnte ein generisches Scientific Workflow Management System,
basierend auf einem Portal, aufgebaut werden. Die grafische Oberfliche kann dabei an die
einzelnen Bediirfnisse der Wissenschaftler angepasst werden.

(I

[PEE) ©OQ)
<+) <+)

Workflow: Workflow: Simulation

OW% og: ?/
XXXXXXXXXXXXXXXXXXX XX
XXXXXXXXXX XXX XXX XXX XX
: XXXXXXXXXXXX XXX XXX XXX
Process PrOgreSS' XXXXXXXXXXXXXXXXXXXXX
Instanz 1 | 97%] XXXXXXXXXXKXXXKXXXXX %

S XXXXXXXXXXXXXXXXXXXXX
Instanz 2 | | 10% XXXKXXXXXXKKXXXXXXXKX
Instanz 3 [500/1, XXXXXXXXXXXXXXXXXXXXX
Instanz 4 0%

L JL JL

L

Abbildung 8.1.: Beispielhafte Darstellung eines Scientific Portals, das fiir die unterschiedli-
chen Bediirfnisse von Wissenschaftlern angepasst wird.

"WebGL: Eine OpenGL Implementierung fiir Webanwendungen. OpenGL ist ein Standard zur Entwicklung
von 2D und 3D Anwendungen. Weitere Informationen zu OpenGL kénnen unter http://www.opengl.org
gefunden werden.

86

http://www.opengl.org

8.2. Ubertragung der erarbeiten Konzepte auf Modellierungswerkzeuge fiir Scientific Workflows

Abbildung 8.1 veranschaulicht beispielhaft den Aufbau eines solchen Portals. Jedes Fenster
stellt dabei ein, individuell fiir einen Wissenschaftler, speziell angepasstes (Scientific) Portal
dar. Das linke Beispiel besteht aus einem Portlet fiir die grafische Modellierung und Ausfiih-
rung eines Scientific Workflows sowie einem Portlet zur Bobachtung des Prozessfortschritts.
Das rechte Beispiel beseht aus drei Portlets: Einem fiir die Ausfiihrung eines Scientific
Workflows, einem fiir die Auflistung der Log-Daten und einem fiir die Visualisierung der
Simulationsdaten.

Durch die Verwendung der Portal Technologie kann eine N-Tier Architektur verwendet
werden, deren Komplexitét fiir den Wissenschaftler verborgen bleibt. Abbildung 8.2 veran-
schaulicht beispielhaft den Aufbau einer solchen Anwendung.

Client Brower

Scientific Portal

. Graphical Ressource . .
Monitor Simulation
Portlet Modeller Browser Portlet

Portlet Portlet

Application Server

Workflow Portal Sonstige
Engine Server Funktionen

Service Service Service

Ressource Ressource

Abbildung 8.2.: Beispielhafte Darstellung der Komponenten einer N-Tier Architektur, mit
dem Portal als Benutzungsschnittstelle.

Das Portal dient als Prasentationsschicht. Die Benutzungsschnittstelle ist so plattformun-
abhingig und es kann ortsungebunden darauf zugegriffen werden. Dies ist besonders bei
den heterogenen Systemen, wie sie im wissenschaftlichen Bereich vorkommen, von Vorteil.
Auf dem Application Server wird in diesem Beispiel das Portal und die Workflow Engine
ausgefiihrt. Der Application Server bildet die Anwendungsschicht. Die Workflow Engine
konnte aber auch auf einem anderen System ausgefiihrt werden. Der Application Server

8. Ubertragung der Konzepte

dient neben der Ausfithrung des Portal Servers auch der Integration der Portalanwendung
mit allen anderen Ressourcen und Diensten.

Das Einbetten des Modellierungswerkzeugs in die Werkzeugleiste des Portals, wie es fiir
das Modellierungswerkzeug fiir die Screenflows vorgeschlagen wurde, eignet sich nicht fiir
Scientific Workflows. Die Artefakte des Prozessmodells eines Scientific Workflows sind keine
Elemente der grafischen Benutzungsschnittstelle. Der Modellierer muss daher nicht im Portal
navigieren, um dem Prozessmodell die Komponenten hinzuzufiigen. In die Werkzeugleiste
des Portals konnten jedoch Werkzeuge aufgenommen werden, die oft von Wissenschaftlern
benotigt werden. Vorstellbar wiren auch Portlets fiir das Anzeigen von Statusinformationen
oder zur Beobachtung des Prozessvorschritts.

Das Konzept fiir die grafische Darstellung von Screenflows kann nicht direkt fiir eine gra-
fische Reprasentation von Scientific Workflows verwendet werden. Scientific Workflows
sind viel umfangreicher und komplexer als Screenflows. Dennoch kann von dem Konzept
tibernommen werden, dass eine grafische Représentation die Komplexitit einer Prozessmo-
dellierung reduzieren kann. Wissenschaftler sind keine Computerexperten, daher ist eine
Modellierung des Workflows in einer textbasierten Sprache, wie zum Beispiel XML, in der
Regel zu komplex. Durch die Verwendung einer geeigneten grafischen Notation konnte
diese Komplexitdt vor dem Modellierer verborgen werden.

Bei der Entwicklung einer grafischen Notation sind zwei Ansédtze moglich.

Erstens, das Entwickeln einer unabhdngigen Notation, die mit Hilfe einer Transformation
in eine Prozessausfiihrungssprache wie zum Beispiel BPEL transformiert wird. Die aus der
Transformation resultierende Prozessausfithrungssprache kann dann von einer Workflow
Engine ausgefiihrt werden. Die Notation wird mit Hilfe von Transformationsregeln in die
spezifische Prozessausfithrungssprache tiberfiihrt. Abbildung 8.3 veranschaulicht dieses
Prinzip. In der Abbildung soll eine Transformation von einer grafischen Notation nach
BPEL dargestellt werden. Dieser Ansatz hat den Vorteil, dass die Notation unabhidngig von

Scientific Workflow
Notation

v Transformationsregeln
Transformation von Scientific Workflow
Notation nach BPLE

v

‘ BPLE Modell ’

Abbildung 8.3.: Prinzip einer Transformation von einem grafisch reprasentierten Scientific
Workflow in ein BPEL Modell.

der eingesetzten Workflow Engine ist. Zusédtzlich konnen so verschiedene Notationen fiir
unterschiedliche Anforderungen entwickelt werden. Fiir eine neue Notation miissen dann
lediglich die Transformationsregeln angepasst werden. Das unterliegende System miisste
aber nicht gedndert werden. Nachteilig ist, dass die Entwicklung eines solchen Ansatzes
komplex ist und dass bei jeder Anderung des Modells eine Transformation vor der Ausfiih-
rung vorgenommen werden muss.

88

8.3. Zusammenfassung

Der zweite Ansatz ist die Entwicklung einer Notation die von einer Workflow Engine in-
terpretiert werden kann. Das wiirde bedeuten, dass auch die verwendete Workflow Engine
erweitert oder selbst implementiert werden miisste. In diesem Fall wire die Notation eng an
die Workflow Engine gekoppelt.

Obwohl sich die Modellierungsprozesse von Screenflows und Scientific Workflows unter-
scheiden, kann das Konzept eines vordefinierten Modellierungsprozess, durch den der
Modellierer gefiihrt wird, auf Scientific Workflows tibertragen werden. Eine Benutzerfiih-
rung bietet sich immer an, wenn ein unerfahrener Benutzer ein System bedienen soll. Dies
verbessert die Bedienbarkeit der Anwendung. Zuséitzlich kann in jedem Prozessschritt
tiberpriift werden, ob die benétigten Daten vorliegen und korrekt sind. Wie bei dem Model-
lierungswerkzeug fiir Screenflows konnen dem Wissenschaftler immer nur die Werkzeuge
zur Verfiigung gestellt werden, die er fiir die aktuelle Prozessphase benotigt.

8.3. Zusammenfassung

Screenflows und Scientific Workflows konnen nicht direkt miteinander verglichen werden.
Sie wurden fiir unterschiedliche Aufgaben entwickelt. Dennoch konnen Teile der Konzepte,
die in dieser Arbeit fiir Modellierungswerkzeug fiir Screenflows entwickelt wurden, auf
Modellierungswerkzeuge fiir Scientific Workflows {ibertragen werden.

Die Portal Technologie eignet sich sehr gut fiir Benutzungsoberflachen von Scientific Work-
flows. Die Werkzeuge fiir die Bearbeitung des Prozesslebenszyklus konnen als Portlet
implementiert und an einer zentralen Stelle miteinander integriert werden. Zusétzlich kon-
nen noch weitere benotigte Werkzeuge so zur Verfiigung gestellt werden. Des Weiteren
kann die Oberfldche des Scientific Portals an die Bediirfnisse des Wissenschaftlers angepasst
werden.

Fiir Scientific Workflows eignet sich das Konzept, das Modellierungswerkzeug in die Werk-
zeugleiste zu integrieren, nicht. Dies liegt daran, dass Wissenschaftler nicht im Portal umher
navigieren miissen, um Artefakte des Portals dem Workflow Modell hinzuzufiigen.

Durch die Verwendung einer grafischen Notation kann die Komplexitidt des unterliegenden
Workflow Systems vor dem technisch weniger versierten Wissenschaftler verborgen werden.
Durch geeignete Transformationstechniken kann die Notation in eine beliebige Prozess-
ausfithrungssprache umgewandelt werden. Dadurch ist die Notation von der verwendeten
Workflow Engine entkoppelt.

Die Verwendung eines vordefinierten Modellierungsprozesses, fiir Scientific Workflows, er-
moglicht auch technisch nicht versierten Wissenschaftlern das Modellieren von Workflows.

9. Zusammenfassung und Ausblick

Das Ziel dieser Arbeit war die Modellierung und Entwicklung eines grafischen Model-
lierungswerkzeugs fiir Screenflows. Des Weiteren sollten die erarbeiteten Konzepte auf
Modellierungswerkzeuge von Scientific Workflows tibertragen werden.

Zunichst wurde mit der Recherche und Einarbeitung der wichtigsten Technologien begon-
nen. In diesem Zuge wurde auch eine Recherche nach verwandten Arbeiten betrieben. Nach
der Klarung der Rahmenbesinnungen wurde die Anforderungen an das Modellierungs-
werkzeug aufgestellt. Diese wurden hauptsédchlich von der Screenflow Definition und in
Gespréachen mit den Entwicklern erarbeitet. Der darauf folgende Hauptteil konzentrierte
sich auf die Entwicklung der Konzepte fiir das Modellierungswerkzeug. Dabei wurden
Entwiirfe fiir die grafische Benutzungsschnittstelle (Mockups) und die Architektur des
Modellierungswerkzeugs entwickelt.

Zu den wichtigsten Konzepten, die erarbeite wurden, zdhlt die Entwicklung des Model-
lierungswerkzeugs als Portlet, sowie das Einbetten des entwickelten Portlets in die Werk-
zeugleiste des Portals. Dies ermoglicht eine Modellierung der Screenflows zur Laufzeit.
Des Weiteren die Definition eines Modellierungsprozesses, an dem der Modellierer der
Screenflows wihrend der Modellierung gefiihrt wird und letztlich eine geeignete grafische
Reprasentation fiir die Screenflows.

Die entwickelten Konzepte galt es anschlieffend im praktischen Teil der Arbeit prototy-
pisch umzusetzen. Dafiir wurde eine Webanwendung entwickelt. Fiir deren Umsetzung
wurden JavaScript Frameworks eingesetzt, mit dessen Hilfe die Entwicklung der Clientseite
stattgefunden hat. Vor der Verwendung der Frameworks, musste deren Eignung tiberpriift
werden. Nach der Implementierung wurde als letzter Teil dieser Arbeit erdrtert, inwieweit
die erarbeiteten Konzepte auf Modellierungswerkzeuge fiir Scientific Workflows tibertragen
werden konnen.

Das Ergebnis dieser Arbeit sind Konzepte und Entwiirfe fiir die Umsetzung eines Mo-
dellierungswerkzeugs fiir die visuelle Modellierung von Screenflows. Zusitzlich wurde
prototypisch ein grofier Teil der webbasierten Clientseite des Modellierungswerkzeugs
umgesetzt.

91

9. Zusammenfassung und Ausblick

Ausblick

Das Konzept des Screenflow Managers innerhalb des Portals ist eine vielversprechende
Technologie. Screenflows konnen auch eingesetzt werden, um Abldufe im Portal ohne ein
Workflowsystem zu modellieren. Sie sind leichtgewichtiger als Workflows und werden direkt
im Portal Server ausgefiihrt. Es ist keine extra Installation eines Workflowsystems fiir deren
Ausfithrung notwendig. Durch Umsetzung der erarbeiteten Konzepte und einer Fertigstel-
lung des Modellierungswerkzeugs, wiirde eine Losung existieren, um die sehr flexiblen
Screenflows schnell und einfach an dynamische Prozesse von Kunden anzupassen.

Ankntlipfungspunkte an die Arbeit

Die erarbeiteten Konzepte ermoglichen eine rudimentdre Umsetzung des Modellierungs-
werkzeugs. Im Rahmen der Arbeit wurden nur die fiir die Modellierung notwendigsten
Funktionen betrachtet. Eine Erweiterung der Konzepte ist daher durchaus vorstellbar. Im
Folgenden werden mogliche Ankniipfungspunkte an diese Arbeit vorgestellt.

Fiir den Modellierungsprozess wurde eine Phase Test Screenflow vorgestellt. Diese war
jedoch nicht Teil dieser Arbeit. Fiir einen Modellierer kann der Test oder die Simulation
eines Screenflows jedoch sehr von Nutzen sein. Fiir eine Umsetzung ergeben sich folgende
Fragestellungen. Wie sollte ein Test oder eine Simulation von einem Screenflow gestaltet
werden? Wie kann der Test oder die Simulation ausgefiihrt werden, da in der Regel Eingaben
erforderlich sind und Systeme im Hintergrund diese Eingaben verarbeiten? Wie ldsst sich ein
Test oder eine Simulation eines Screenflows in das Modellierungswerkzeug integrieren?

Ein anderer Ankntipfungspunkt basiert darauf, dass die Screenflows derzeit tiber keine
Fehlerbehandlung verfiigen. Es wire jedoch wiinschenswert, im Fehlerfall einen Benutzer auf
eine definierte Fehlerseite zu leiten. Eine Arbeit konnte sich mit der Entwicklung und der Um-
setzung einer Fehlerbehandlung im Screenflow Manager und dem Modellierungswerkzeug
befassen.

Auch die Einfithrung von Validierungsregeln innerhalb des Screenflows wire denkbar. Mit
Hilfe der Regeln konnte zum Beispiel tiberpriift werden, ob der Screenflow in einem defi-
nierten Dialogschritt alle benétigten Daten im Dialog Context vorliegen hat. Nur in diesem
Fall wiirde der Screenflow weiter prozessiert werden. In der Arbeit konnte die Erweiterung
des Dialog Modells, des Screenflow Managers und die entsprechende Adaptierung des
Modellierungswerkzeugs behandelt werden.

Auch das Routing der Screenflows bietet Erweiterungsmoglichkeiten. Derzeit wird das Rou-
ting im Screenflow Manager anhand des aktuellen Dialogschritts und einem eingetretenen
Ereignis entschieden. Dieses Konzept kdnnte erweitert werden, sodass auch die transportier-
ten Daten in den Ereignissen beim Routing miteinbezogen werden. Alternativ konnte auch
eine Schnittstelle fiir ein externes regelbasiertes Entscheidungssystem implementiert werden.
Im Zusammenhang mit dieser Aufgabenstellung miisste der Screenflow Manager und das
Modellierungswerkzeug um die entsprechende Funktionalitdt erweitert werden.

92

Ein weiterer moglicher Ankniipfungspunkt ist der Export von Screenflows. Eine Screenflow
Definition kann mit den vorgestellten Konzepten als XML-Datei exportiert werden, um sie in
einem anderen System zu importieren. Damit der Screenflow auf diesem System ausgefiihrt
werden kann, miissen alle Artefakte des Screenflows auf dem System vorhanden sein.
Eine weiterfiithrende Arbeit konnte sich mit der Entwicklung eines Konzepts beschéftigen,
das es einem Screenflow Modellierer erlaubt, einen Screenflows mit allen zugehorigen
Komponenten zu exportieren. Der exportierte Screenflow sollte dann anschiefsend auf einem
anderen System ausfithrbar sein, auch wenn Teile des Screenflows vor dem Import nicht auf
dem System installiert waren.

93

A. Anhang

A.1. Dialogdefinition

Die folgende Dialogdefinition beschreibt einen Screenflow fiir einen Reisebuchungsprozess.
Der Screenflow beginnt mit einem Portlet fiir die Auswahl des Reiseziels. Im darauffolgenden
Schritt kann der Benutzer ein Hotel buchen. Danach kann der Benutzer einen Mietwagen
auswdéhlen. Zum Schluss erhilt der Benutzer eine Zusammenfassung der Buchung.

Listing A.1 Dialogdefinition fiir einen Reisebuchungsprozess.

1 <?xml version="1.0" encoding="UTF-8"7>

> <request xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type=""
xsi:noNamespaceSchemalocation="PCM_1.0.xsd">

3 <portal action="update">

4 <dialog-set>

5 <dialog name="Travel Booking Dialog">

6 <transition-endpoint name="portlet.pcm.demo.travelRequest">

7 <localedata locale="en">

8 <title>Travel Request</title>

9 <description>Travel Request</description>

10 </localedata>

11 <resource uniquename="portlet.pcm.demo.travelRequest" />
12 <invocation type="static" />

13 </transition-endpoint>

14 <transition-endpoint name="portlet.pcm.demo.flightBooking">
15 <localedata locale="en">

16 <title>Flight Booking</title>

17 <description>Flight Booking</description>

18 </localedata>

19 <resource uniquename="portlet.pcm.demo.flightBooking" />
20 <invocation type="static" />

21 </transition-endpoint>

22 <transition-endpoint name="portlet.pcm.demo.hotelBooking">
23 <localedata locale="en">

24 <title>Hotel Booking</title>

25 <description>Hotel Booking</description>

26 </localedata>

27 <resource uniquename="portlet.pcm.demo.hotelBooking" />
28 <invocation type="static" />

29 </transition-endpoint>

30 <transition-endpoint name="portlet.pcm.demo.carBooking">
31 <localedata locale="en">

32 <title>Car Booking</title>

95

Anhang

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55

56
57
58
59
60
61
62

63
64
65
66
67

68
69
70
71
72
73
74

75
76
77
78
79

8o
81

96

<description>Car Booking</description>
</localedata>
<resource uniquename="portlet.pcm.demo.carBooking" />
<invocation type="static" />
</transition-endpoint>
<transition-endpoint name="portlet.pcm.demo.travelSummary">
<localedata locale="en">
<title>Travel Summary</title>
<description>Travel Summary</description>
</localedata>
<resource uniquename="portlet.pcm.demo.travelSummary" />
<invocation type="static" />
</transition-endpoint>

<transition type="start">
<source>
<transition-endpoint nameref="portlet.pcm.demo.travelRequest">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"
dcx-key="travelRequest" />
</transition-endpoint>
</source>
<target>
<transition-endpoint nameref="portlet.pcm.demo.flightBooking">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"
dcx-key="travelRequest" />
</transition-endpoint>
</target>
</transition>
<transition>
<source>
<transition-endpoint nameref="portlet.pcm.demo.flightBooking">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}flightBooking"
dcx-key="flightBooking" />
</transition-endpoint>
</source>
<target>
<transition-endpoint nameref="portlet.pcm.demo.hotelBooking">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"
dcx-key="travelRequest" />
</transition-endpoint>
</target>
</transition>
<transition>
<source>
<transition-endpoint nameref="portlet.pcm.demo.hotelBooking">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}thotelBooking"
dcx-key="hotelBooking" />
</transition-endpoint>
</source>
<target>
<transition-endpoint nameref="portlet.pcm.demo.carBooking">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"
dcx-key="travelRequest" />
</transition-endpoint>
</target>

A.1. Dialogdefinition

82
83
84
85
86

87
88
89
90
91

92
93
94
95
96
97
98
99

100

104
105
106
107
108

109

</transition>
<transition>
<source>
<transition-endpoint nameref="portlet.pcm.demo.carBooking">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}carBooking"
dcx-key="carBooking" />
</transition-endpoint>
</source>
<target>
<transition-endpoint nameref="portlet.pcm.demo.travelSummary">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelSummary"
mapper-class="com.ibm.wps.portlet.mapper.TravelSummaryMapper" />
</transition-endpoint>
</target>
</transition>
<transition type="end">
<source>
<transition-endpoint nameref="portlet.pcm.demo.travelSummary">
<event gname="{http://portal.ibm.com/dialogmanager/pcm/demo}done" />
</transition-endpoint>
</source>
<target>
<transition-endpoint nameref="portlet.pcm.demo.travelRequest">
<event
gname="{http://www.ibm.com/xmlns/prod/websphere/portal/v6.1.0/portal-pcm}EndDialog"
/>
</transition-endpoint>
</target>
</transition>
</dialog>
</dialog-set>
</portal>
</request>

97

A. Anhang

A.2. Anwendungsfalle

Im Folgenden werden die Anwendungsfille aufgestellt, welche sich aus den Anforderungen
aus dem Kapitel 6. Konzept ergeben.

Name: Dialogdefinition erstellen

Ziel: Der Modellierer kann eine neue Dialogdefinition erstellen.

Akteure: Modellierer

Vorbedingung: | Der Modellierer bekommt die Liste der vorhanden
Dialogdefinitionen angezeigt.

Ablauf: Der Modellierer 6ffnet das Modellierungswerkzeug.

Nachbedingung: | Alle Aktivititen im Modellierungswerkzeug werden in der
Dialogdefinition gespeichert.

Tabelle A.1.: Anwendungsfall: Dialogdefinition erstellen

Name: Dialogdefinition konfigurieren
Ziel: Der Modellierer kann die Dialogdefinitionen konfigurieren.
Akteure: Modellierer

Vorbedingung: | Der Modellierer hat den Dialog fiir die Konfiguration der
Dialogdefinition geoffnet.

Ablauf: 1. Der Modellierer vergibt einen eindeutigen Namen fiir die
Dialogdefinition.

2. Der Modellierer legt einen Titel und eine Beschreibung fest.

Nachbedingung: | Nachdem der Modellierer den Dialog verldsst, sind die

Anderungen in der Dialogdefinition {ibernommen.

Tabelle A.2.: Anwendungsfall: Dialogdefinition konfigurieren

A.2. Anwendungsfalle

Name: Artefakte hinzufiigen

Ziel: Der Modellierer kann dem Screenflow Dialogartefakte
hinzuftigen.

Akteure: Modellierer

Vorbedingung: | Der Modellierer hat die Portalseite, die dem Screenflow
hinzugefiigt werden soll, geoffnet.

Ablauf: Der Modellierer zieht die Portalseite oder Portlets, die sich auf
ihr befinden, in das Modellierungswerkzeug.

Nachbedingung: | Der hinzugefiigte Transition Endpoint wird im

Modellierungswerkzeug visuell dargestellt.

Tabelle A.3.: Anwendungsfall: Artefakt hinzuftigen

Name: Dialogartefakt konfigurieren
Ziel: Der Modellierer kann die Dialogartefakte konfigurieren.
Akteure: Modellierer
Vorbedingung: | Der Modellierer hat den Dialog fiir die Konfiguration eines
Artefakts geoffnet.
Ablauf: 1. Der Modellierer legt einen Titel und eine Beschreibung in
unterschiedlichen Sprachen fest.
2. Der Modellierer wahlt, ob das Artefakt als dynamische Kopie
instantiiert werden soll.
2.1 Der Modellierer gibt einen Extension Node an.
Nachbedingung: | Nachdem der Modellierer den Dialog verldsst, sind die

Anderungen in der Dialogdefinition iibernommen.

Tabelle A.4.: Anwendungsfall: Dialogartefakt konfigurieren

Name: Transition definieren

Ziel: Der Modellierer kann Transitionen zwischen Dialogartefakten
definieren.

Akteure: Modellierer

Vorbedingung: | Im Modellierungswerkzeug befindet sich mindestens ein
Dialogartefakt.

Ablauf: Der Modellierer zieht eine Verbindung von einem Dialogartefakt
zu einem anderen oder zu demselben.

Nachbedingung: | Nachdem der Modellierer (zwei) Dialogartefakte miteinander

verbunden hat, existiert die Transition (ohne definierte Ereignisse)
in der Dialogdefinition.

Tabelle A.5.: Anwendungsfall: Transition definieren

99

A. Anhang

Name: Transition konfigurieren
Ziel: Der Modellierer kann Transitionen konfigurieren.
Akteure: Modellierer
Vorbedingung: | Der Modellierer hat eine Transition getffnet und der Dialog fiir
das Konfigurieren der Transition wird ihm angezeigt.
Ablauf: 1. Der Modellierer wahlt fiir den Quell Transition Endpoint ein
Ereignis.
2. Der Modellierer wihlt fiir den Ziel Transition Endpoint ein
Ereignis.

3. Optional wéahlt der Modellierer fiir den Quell Transition
Endpoint einen DCX-Key.

4. Optional wahlt der Modellierer fiir den Ziel Transition
Endpoint einen DCX-Key.

5. Optional wahlt der Modellierer einen
PayloadToContextMappers.

6. Optional wahlt der Modellierer einen
ContentToPayloadMapper.

7. Optional markiert der Modellierer die Transition als
Starttransition oder Endtransition.

Nachbedingung: | Nachdem der Modellierer den Dialog verldsst, sind die
Anderungen in der Dialogdefinition {ibernommen.

Tabelle A.6.: Anwendungsfall: Transition konfigurieren

Name: Liste der Dialogdefinitionen anzeigen

Ziel: Der Modellierer kann eine Liste der vorhanden
Dialogdefinitionen anzeigen.

Akteure: Modellierer

Vorbedingung: | Der Modellierer hat das Modellierungswerkzeug geoffnet.

Ablauf: Der Modellierer wéhlt den Button Dialogdefinitionen anzeigen.

Nachbedingung: | Der Modellierer bekommt die Liste der vorhanden
Dialogdefinitionen angezeigt.

Tabelle A.7.: Anwendungsfall: Liste der Dialogdefinitionen anzeigen

100

A.2. Anwendungsfalle

Name: Dialogdefinition anzeigen

Ziel: Der Modellierer kann eine Dialogdefinition anzeigen.

Akteure: Modellierer

Vorbedingung: Der Modellierer hat das Modellierungswerkzeug gedffnet und
bekommt die Liste der Dialogdefinitionen angezeigt.

Ablauf: Der Modellierer wahlt eine Dialogdefinition aus der Liste.

Nachbedingung: | Die auswahlte Dialogdefinition wird angezeigt.

Tabelle A.8.: Anwendungsfall: Dialogdefinition anzeigen

Name: Dialogdefinition bearbeiten

Ziel: Der Modellierer kann eine Dialogdefinition bearbeiten.

Akteure: Modellierer

Vorbedingung: Der Modellierer hat das Modellierungswerkzeug gedffnet und
bekommt die ausgewihlte Dialogdefinition angezeigt.

Ablauf: Der Modellierer bearbeitet den Graphen oder konfiguriert
Artefakte.

Nachbedingung: | Die Anderungen werden in der Dialogdefinition gespeichert.

Tabelle A.9.: Anwendungsfall: Dialogdefinition bearbeiten

Name: Dialogdefinition kopieren
Ziel: Der Modellierer kann eine Dialogdefinition aus einer Vorlage
(Template) erstellen.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat die Liste der Dialogdefinitionen geoffnet.
Ablauf: 1. Der Modellierer wéhlt eine Dialogdefinition aus der Liste.
2. Die Dialogdefinition wird geoffnet.
3. Anschieflend kann er die Dialogdefinition unter einem neuen
Namen speichern.
Nachbedingung: | Die neue Dialogdefinition ist gespeichert.

Tabelle A.10.: Anwendungsfall: Dialogdefinition kopieren

101

A. Anhang

Name: Dialogdefinition speichern

Ziel: Der Modellierer kann eine oder mehrere Dialogdefinitionen
speichern.

Akteure: Modellierer

Vorbedingung: | Der Modellierer hat die Dialogdefinition getffnet.

Ablauf: Der Modellierer klickt den Speichern-Button.

Nachbedingung: | Die Dialogdefinition ist gespeichert und kann im Modellierungs-
werkzeug angezeigt werden.

Tabelle A.11.: Anwendungsfall: Dialogdefinition speichern

Name: Dialogdefinition exportieren

Ziel: Der Modellierer kann eine Dialogdefinition exportieren.
Akteure: Modellierer

Vorbedingung: Der Modellierer hat die Dialogdefinition geoffnet.

Ablauf: Der Modellierer klickt den Export-Button.

Nachbedingung: | Die Dialogdefinition wird im Modellierungswerkzeug angezeigt.

Tabelle A.12.: Anwendungsfall: Dialogdefinition exportieren

Name: Dialogdefinition importieren

Ziel: Der Modellierer kann eine Dialogdefinition importieren.
Akteure: Modellierer

Vorbedingung: | Der Modellierer hat das Modellierungswerkzeug geoffnet.
Ablauf: Der Modellierer klickt den Import-Button.

Nachbedingung: | Die Dialogdefinition wird im Modellierungswerkzeug angezeigt.

Tabelle A.13.: Anwendungsfall: Dialogdefinition importieren

Name: Dialogdefinition 16schen

Ziel: Der Modellierer kann eine oder mehrere Dialogdefinitionen
loschen.

Akteure: Modellierer

Vorbedingung: Der Modellierer hat die Liste der Dialogdefinitionen geoffnet.

Ablauf: 1. Der Modellierer wéhlt eine Dialogdefinition aus der Liste.
2. Der Modellierer klickt den Loschen-Button.

Nachbedingung: | Die gewdhlte Dialogdefinition wurde geldscht.

Tabelle A.14.: Anwendungsfall: Dialogdefinition 16schen

102

A.3. Mockups

A.3. Mockups

Die folgenden Mockups wurden mit dem Wireframing Tool Balsamiq® erstellt. Die Mockups
wurden wihrend des Entwicklungsprozesses in mehreren Iterationen entwickelt. Die folgen-
den Mockups zeigen den Stand aus der letzten Iteration.

Die Mockups fiithren den Betrachter durch den Modellierungsprozess eines Screenflows. Da-
bei veranschaulichen die Mockups die geplanten Funktionen des Modellierungswerkzeugs.
Zu Beginn werden im Modellierungswerkzeug ein Portlet und eine Portalseite hinzugeftigt.
Anschlieffend werden Transitionen definiert und Ereignisse dafiir festgelegt. Danach folgen
die Konfigurationsdialoge fiir den Screenflow, die Portalseiten und die Portlets. Daraufhin
folgt der Test des Screenflows, der jedoch nicht niher spezifiziert ist. Anschlieffend wird der
Screen zum Speichern oder Exportieren des Screenflows angezeigt.

IWeite Informationen zu Balsamiq konnen unter http://balsamiq.com gefunden werden.
q p q g

103

http://balsamiq.com

A. Anhang

— i
s
-]
Q
o
L=3
-
w
=
2
2
L+
=T
=
w
w
=
o
T
<
@
b=
[+]
a
5
S
£
o
[+1
£
el
~
3
3
= Q
&
= g
<3 ai
o
x g
)
: &
= | <
@
[ad] 9
O — &

Abbildung A.1.: Dieses Mockup veranschaulicht den Inhalt der Portalseite A. Sie beinhaltet
das Portlet A.

104

A.3. Mockups

) @&)

User | Actions | Logout |® Q, search

User has opened the toolbar

Portlet A

Preview Screenflow Manager

Project

Explorer

Sitemap

c E> x Q {http://ibm portal
Page
Page A | Page B | Page C

Create
IBM

Abbildung A.2.: Dieses Mockup veranschaulicht den Inhalt der Portalseite A. Zusitzlich ist
die Werkzeugleiste des Portals heruntergeklappt.

105

A. Anhang

User | Actions | Logout |® Q search

A Web Page

-
T
o
<o
c
A=
x
z
=
- o~
E o
S 3
@ 5
a
=
&
a
]
2
2
a
5 ps b
E - 2 @
2 2 E o
£ . T T
£ E [[+
- w
=
1 Q
H g 2
— E -4
P &
<3 |a
m |
@ .
x 8 e
O | . -
] <
1 [
o 1] 2
[&] — o

Abbildung A.3.: Dieses Mockup veranschaulicht den Inhalt der Portalseite B. Sie beinhaltet
die Portlet B.1, B.2 und B.3.

106

A.3. Mockups

suonisuDl] auyag _

Mojjuaaung pooT _

sjojdwa] ppy |

el

sipaddo | Je(epol dwig 2y
uoyIng 1260UD|| MO|JUS2.OG BU) P2192(8s SOY JBS()

Jl8pojy Sjdwig

>

v
Jeboup)y mojjusaing mainalg 198lold Jedodxg dowsyg ebog epau)

C

jer0d W/ Y) G X Au ﬂv

Abbildung A.4.: Dieses Mockup veranschaulicht das Modellierungswerkzeug im einfachen

Modus. Der einfache Modus dient dazu, Dialogartefakte hinzuzuftigen.

107

A. Anhang

suoljIsuDI| Sulya(] _

Mojjussung proT _

sjo|dwa) ppy

A/

Jojiwis joo| s1eliod pup sabod [puod asaym uoisiaa paljdwis © ul sj2(iod pub sabog [pliod sMoys [JeEpoly 2duig ay|
ydob mojjuaa1os ay) 0 $12(1Jod pup sabod [Dlod PPD 0} JBSN 24} SMO|D PUD JDGIO0) BY) Ul $181S2 [() J|I2POj Sjdwis 24|

v

') SPOj PEpUSIXT 1) 0] YIIIMS UDD
J3sN 3y} 'uoing sUONISUDI] BUYSQ SY) SBAD

J8]]2pojy jdwig

v
JB0DUD)| MOjUSRIDS MelABld Joslold Jelojdx] doweyg ety @joaln

[o120d way /iy G X Au ﬂv

Abbildung A.5.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-

zeugleiste im einfachen Modus und zeit, wie der Benutzer in den erweiter-

ten Modus wechseln kann.

108

A.3. Mockups

Add Template
| Load Screenflow
| Define Transitions

A Web Page
Drag & Drop portal pages or portlets into the Simple Modeller Ul on toolbar

Preview Screenflow Manager

Project

Explerer

Page Sitemap

CJ ED x Q {http://ibm portal

Create

Simple Modeller

Abbildung A.6.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und beschreibt, dass Portlets und Portal-
seiten per Drag and Drop in das Modellierungswerkzeug gezogen werden
konnen.

109

A. Anhang

)
Add Template
| Load Screenflow
| Define Transitions

A Web Page

Preview Screenflow Manager
After draging a portal page or a portlet into this area, it appears in the Simple Modeller as a node.

5
@
<4
a
K]
5 | s
al | 5
g | s
al | 2
=] | w
]
g
] | §
=l g
I
<B|a
x $ |z
a |3
& 2
e 1%
=
| 2]e
5 1E
w

Abbildung A.7.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und beschreibt, an welcher Stelle die Portlets
und die Portalseiten dem Modellierungswerkzeug hinzugefiigt werden.

110

A.3. Mockups

Add Template
| Load Screenflow
| Define Transitions

A Web Page

Drag & Drop a portlet into the Simple Modeller UL

N
[
L=
o
c
o
=
2
34
§
g |
w
5
g
a
%
8
4
a
K]
5l | &
al | 5
ol | s
al | £
=] | w
™
=
Zl | §
=) | g
2
<3| >
x o
a |3
& 2
s 1%
=
O | 2|E
5 1E
w

Abbildung A.8.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und das Hinzuftigen eines Portlets (Portlet
A).

111

A. Anhang

Add Template
| Load Screenflow
| Define Transitions

A Web Page

Preview Screenflow Manager

Project

Explorer

Page Sitemap

G E> x Q {http://ibm portal

Create

After droging the portlet into this area, it appears in the Simple Modeller as a node

Page A

Simple Modeller

Abbildung A.9.:

112

Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und die hinzugefiigte Portalseite des Port-
lets A. Ein Portlet muss immer in einer Portalseite enthalten sein. Da das
Modellierungswerkzeug im einfachen Modus ist, wird die {ibergeordnete
Portalseite des hinzugefiigten Portlets angezeigt.

A.3. Mockups

oy §
w
AIAIE
stz s
HIHIE
p— SRl e
r—(},’:
Bhzlls
'{0"‘6
e 1 1=
<<
-
@
o
o
c
o
b
24
3
5
w
=
[
a
Il
kN
3
= (4]
s @
g | - 7
gl | &]
o =
el | 2 < 5
=1 D @ o
=}] w [=)]
=
8 &
2l | &
=] 2
2
<3 |5
xX o
o |8
) 2
o |2
=
| 8]E
S5 | E
W

Abbildung A.10.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus auf der Portalseite B.

113

A. Anhang

)
Add Template
| Load Screenflow
| Define Transitions

A Web Page

Darg another portal page into to the Simple Modeller Ul

.
o
L=
Qo
[
o
b4
z
54
3
3
w
s
[
a
S
k1
3
L L]
E @
= | = T
gl | & 7]
o -
el | & < 5
=1 B [\1] [
=] | w (=]
]
2 &
Zl | §
=R
2
<B|a
x $ |z
a |8
& 2
N
5 |2
| 2]e
S5 | E
w

Abbildung A.11.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und das Hinzuftigen einer Portalseite
(Portalseite B).

114

A.3. Mockups

Add Template
| Load Screenflow
| Define Transitions

A Web Page

Preview Screenflow Manager

Page B

Project
A mentiont the portlet and the portal page look similar in the Simple Modeller UL

~

Portlet B2

Explerer

Page A

Page Sitemap

CJ ED x Q {http://ibm portal

Create

Simple Modeller

Abbildung A.12.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus, die Portalseite des Portlets A und die neu
hinzugefiigte Portalseite B.

115

A. Anhang

@
)
s
P

)
Add Template
Define Transitions

= After clicking the Define Transiton Button

the Extended Modeller Ul appears.

A Web Page

.
o
L=
Qo
[
o
b4
24
3
3
w
3 o
: 3
a =]
a
S
k1
3
L L]
= @
51 | & 3
Q.'o— g
el | & < 5
=1 B [\1] [
=] | w =)
]
2 &
Zl | §
— | =
2
<B|a
x $ |z
a |8
& 2
e |5
5 |2
| 2]e
S|E
w

Abbildung A.13.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus, vor dem Wechsel in den néchsten Schritt
des Modellierungsprozess (Define Transitions).

116

A.3. Mockups

Guiddo)y juang

S190J11Y PPY

'sje(iod ay) sjuasaidal sapou pajsau ay|
‘gabod |puod ay) sjussaudal sapou Big ay)
'sydoub pajseu so sioaddo [J8|@pojy 2jdwig ay) wol) sapou ay |

~

a O
£1d 1=ndod
29 12od
1'g ¥@pJod v 1910d
g @bo4 v @bogq

Mojjussiog aApg

MojusaIDg 183]

sanadoig auyeq

Buiddop, juaa] £120)IY PRY

youpes B ®_ 1nobo] _ suonoy

»sn

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.14.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-

zeugleiste im erweiterten Modus, nach dem Wechsel in den Prozessschritt
Define Transitions. Neben dem expandierten Graphen wird auch die Navi-

gationsleiste angezeigt.

117

SO0y PPY

Guiddo)y juang

ssesoid 3y} Ul 2s0yd IXSU/ISE| BY) ©) YOJIMS UDS JSSN SU) SUSHING SIY) UM

g a
£d 19Hod
¢'d¥=od
L'g12pdod ¥ 19)1od
1 aboy v abog

‘@soyd ay) uo Bunpoie Aq asoyd Aioayiqio o
o) ul dwnl o) 2|qo s1 J@sn aip up sasoyd xIs oyul payds si ssasoud ay|
Mojjussuss o mc.c;wv Jo ssasoud ay) ybnouyy pepinb si1 Jesn ey

N

S120)IY PPY

MO|JUS2UDS BADS A MOuBBUIG 153] A sanuadolg auyag A Guiddopy juang

youvas b e_ noBo _ suonay —)_mH

@ L [o120d way /iy G X AU ﬂV

A. Anhang

zeugleiste im erweiterten Modus, in dem Prozessschritt Define Transitions.
Zusitzlich werden die Buttons fiir den Wechsel in den vorhergehenden

oder folgenden Schritt des Modellierungsprozesses beschrieben.

Abbildung A.15.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-

118

A.3. Mockups

Guiddo)y juang

¥ 19)1od

v @bogq

S190J11Y PPY

W]

\ £819pod

‘abod |o1iod © Ul B|gojIAD 24D JOY) S1S(0d |0 MOYS 0}

1N J3|[Spojy 2Y) 010} UDD 128N 34 'XOGHISYD (I MOYS SYI YA
¢'d¥=od
L'g1epdod

g @bo4
MO|JUS2UDg 2ADT Mojusauog 182] ganiadolg auyaq Buiddop, juaa]

£120)IY PRY

youpes B ®_ 1nobo] _ suonoy

»sn

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.16.: Dieses Mockup veranschaulicht und beschreibt den Show All Button. Mit

diesem Button kann der Modellierer alle Portlets einer Portalseite einblen-

).

den (auch die Portlets, die zuvor nicht explizit hinzugefiigt wurden

119

A. Anhang

Guiddo)y juang

suUsWSE 3y)

SO0y PPY

LY

MO|JUSBIDS BU) SPISUI UoNISULY) © sjuasaldal ydoub sy ui abpa vy

PRI2BUUCT 2JD SIUBWS|S By} JUBWRR Jayjoup uo 26pa ay) Buidosp Jely

s8pou pajsau pup juauod aup abpa ay) Joj 1sabio)

192uucs o) sabpa Boip o) Jasn 2y} Mo|Io Yoiym sioaddo se|Gupiy 2y © 12)i0d © JBA0 BSNOW UQD
—

—

£d 19Hod

¢'d¥=od

3

g @bo4 v @bogq

MOUSRUDG BADS MO|JURBIDG 152 sanJedolgd auyaq Buiddo)y jusag $190JIlY PRY
yoioas b e_ noBo _ suonay | Jesn —)_mH
@ L [o120d way /iy G X AU ﬂV
a6od q3M v

Knoten (erstellen einer Transition). Das Werkzeug wird durch beriihren
eines Knotens angezeigt. Dabei handelt es sich um vier Dreiecke, die um

Abbildung A.17.: Dieses Mockup veranschaulicht das Werkzeug fiir das Verbinden von
den entsprechenden Knoten dargestellt werden.

120

A.3. Mockups

BSuiddo)y jusng

]

£ 1=ndod

g 1epdod

— \

Lg1epiog”

¥ 19[1od

g @boyg

v @b6ogq

12640) pPRAISSp 2Y) 0) 22UN0S S} WOJ) SUoNHISUDL) Bosp UpD Jesn Sy

MOjJuSRIDG 3ADS

MojjusaIng 183]

sanuadoid auyeq

Buiddop, juaag

S)90J11Y PPy,

£120)IY PRY

youvas H ®_ noboT) _ SUonIY

88

gl

1p110d Wql/ /A1y) G x G ﬂv

Abbildung A.18.: Dieses Mockup veranschaulicht den Graphen nach dem Verbinden der
beiden Knoten.

121

A. Anhang

A Web Page

O @ x Q {http://ibm portal

IBM

User | Actions | Logout |® Q se

z 2

5 a

z g

! z

3 §
>

g &

w

2

c

H

O

1]

g

%

K]

>

w
K]
2
v
(=%
-
a
L]
£
&
o
(=]
o
£
[=%
a
Q
=
=
c
&
[
2 O
Lo B — o ©
g%g m m [} o
i - P -
2«28 |& o 9 (e
] (<] = = T
E=Shthel a S S S
21% a a a
gttt
Soo
mﬁ.ﬁ
S EE
w 00
gu_LL
&
/ O
<|| <
sl @
=
Q 13
afl &

Add Artifacts

o
-]
[}
2
T
=<
o
o
<

Abbildung A.19.: Dieses Mockup veranschaulicht den Graphen nach der Erstellung weiterer

122

Transitionen. Dabei werden alle mdglichen Arten von Transitionen dar-
gestellt. Eine Transition zwischen Portlets auf derselben Portalseite, eine
Transition zwischen Portlets auf unterschiedlichen Portalseiten und eine
Transition zwischen einem Portlet und einer Portalseite (Broadcast).

A.3. Mockups

Buiddoy yuang

(Buiddoyy juan3g) asoyd xau ay) o) seob Jasn) -

]

£d 1°9Hod

v

¢'d¥=od

L'g1epdod

g @bo4

¥ 19)1od

Mojjussiog aApg Mojusaug

Vo3

sanadoig auyeq

Buiddop, juaa]

v @bogq

S190J11Y PPY

£120)IY PRY

youpes B ®_ 1nobo] _ suonoy

»sn

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.20.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem

Wechsel in den ndchsten Schritt des Modellierungsprozess (Event Map-

ping).

123

A. Anhang

sanJadold suyag

&) >

On 1i| |[EC]|
50|10 Jaddo)y Juaag 50|10 Jaddo)y Juaa]

r ELTRIEYE | gcm._ﬁu r SOI[y JUSAT B2UN0G
A _ves]

aonog =

» sanuadolg Buiddoly juaag

'BSNOW 24} YIIM WSY) 192[28 JO UCHING IXSN U} DIA SUCHISUDI) 3U) JSAO S)0J3)1 UDD JasN By
uollisucd) ysoe Jo) saiuadolg Buiddoly Juaag sy auysp o)

SUOIISUCU) PRUSP 24} JBA0 2)0I2) JaSN aY) 28Dy Buiddol Juanl ay) apisu]

-

O

£d 19Hod

v

¢'d¥=od

L'g 1=2pJod

SUCIISUD| SUlS(]

N

v 12104

g @bo4

v @bogq

MO|JUS2UDS BADS A MOuBBUIG 153] A sanuadolg auyag ‘ suoiisuRl] auyaq A S120)IY PPY

youpes B e_ 1nobo] _ suonoy

Wg1

[o120d way /iy G X AU _ﬁV

Abbildung A.21.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem

Wechsel in den Prozessschritt Event Mapping. Zusitzlich zeigt es den Dia-
log fiir das Festlegen der Eigenschaften einer Transition. In dem Mockup

ist die entsprechende Transition (blau) hervorgehoben.

124

A.3. Mockups

sanJadold suyag

>

(o] J

ON]

280|0) Joddoly yuaa]

ﬂ ELTRUEY= REL VLT u

2500 Jaddo) Juaa] =

JIUsAS ISP
Duens wigrep

—l r Yiuenewqrep _

'\ giuens wqrap
Dd\l Yiusnewgrep

12bin| =

T aounog =

»

\ saiuadolg Buiddely 1uang

‘p21sI| 240 USIISUDS D Ul
panjoaul ApDa[D 1D JoY) SjuUSAS By BUIpnjoxa 13(1Jog S0unog Sy wol)
paliWe 2q UDD JOY) SIUSAS ||D 'BDUN0G Joj Xog UoNIS[2g JuSsATd 2y Bunpip Ja)y

MOjJuSRIDG 3ADS

MojjusaIng 183]

sanuadoid auyeq

]

£ 1=ndod

¥

g 1epdod

1'g 19)}od

SUGIISUDI| SUlS(]

"

g @boyg

¥ 19[1od

v @b6ogq

suonisunl| auyaq

£120)IY PRY

youvas H ®_ noboT) _ SUonIY

88

gl

1p110d Wql/ /A1y) G x G ﬂv

Abbildung A.22.: Dieses Mockup veranschaulicht das Zuweisen eines Ereignisses fiir den
Quell Transition Endpoint der Transition.

125

A. Anhang

sanJadold suyag

(o] |

80|10 Joddopy yuaag =

Huens wqrap
Qusaswgrsp
Duenswqrep

EC]

50|10 Jaddo)y Juaa]

ﬂ SOIy Juan] w...:__..owu

V)USAS WGISp

120in| =

_br wiusnswaqrap |

aounog =

t

saiuadoly Buiddoly juaag

/

‘P21SI| 24D UCIISUDS) D Ul paAjoAul ApDaujD
2.0 oY) sjusas ay) Buipnjoxe jepJod 196.0) By} Wolj panIDel Bq UDD
10Y) s1uSAe o 186U0) Joj ¥og uonoejes JuaAd Byl BunpID Sl

SUGIISUDI| SUlS(]

m] a
£g 19/od
29 19jod /
L'd 12ndod A V 13104
g @boyg v @b6ogq

MOJUS2UDG BADS A MOjuBaU2g 153| A sansadold auyaq ‘ suonisuRl] auyaQ A

$120)IY PPY

youoas B @_ 1nobo _ suonoY

Wgl

CoC

jopedwql/:d1y) G X AU _ﬁv

Abbildung A.23.: Dieses Mockup veranschaulicht das Zuweisen eines Ereignisses fiir den
Ziel Transition Endpoint der Transition.

126

A.3. Mockups

sanJadold suyag

>

(126uo]) papoo| Jo (22un0g) paiols 151 projfod JuBAe By yoiym Japun
awou 2y} sjondiuow O} 2|0 I J3SN 2] SOIfY JUSAT 22UN0S 3Y) YIM

ON]

280|0) Joddoly yuaa]

T]

2800 Jaddo)y Juaa]

_I sDijy jusag 126D _,u

r SOIy Juan] ..w...:__..owu

Wiuens wgrep

aounog =

'PESN 51 BWONI 1USAS 3} JINDJSp 34| IX3uon Bojpig ay) ul

saiuadolg Buiddely 1uang

MOjJuSRIDG 3ADS

MojjusaIng 183]

sanuadoid auyeq

]

£ 1=ndod

¥

g 1epdod

1'g 19)}od

SUGIISUDI| SUlS(]

"

¥ 19[1od

g @boyg

v @b6ogq

suonisunl| auyaq

£120)IY PRY

youvas H ®_ noboT) _ SUonIY

88

gl

1p110d Wql/ /A1y) G x G ﬂv

Abbildung A.24.: Dieses Mockup veranschaulicht die Moglichkeit einen Aliasnamen (DCX-

Key) fiir das Quell- und Zielereignis zu wahlen.

127

A. Anhang

gladdowwqrwoes

sanJadold suyag

Jladdowwgrwos
giaddowwgruos

SUGIISUDI| SUlS(]

gladdow wqrwoes
{iaddowwgrwos
gladdowwqrwes

' Zladdowwqrwes

a W |1addow wqrwoes

(o]

80|10 Joddopy yuaag

$50|0) Jaddo)y Ewsml_

18A] BUN0g u

'181] @Yy ul ssaddo sagso|) Jaddopy jusag
paussiBal |0 Xoq UoIDS|@s ay) Uo BuDIp a1y 1x2jucn Bojpig 2y) wuoj
(19610]) Buipoo| J8)jo Jo (82in0g) BuIO}S JOAS] JUSA® UD jo poojfod sy FlUsAsWqsp

WLIOJSUD) O) S| 81 JISN Sy) §80|7) JSddD)) JUSAT UD JO UOIDS[SS 3Y) YIIM

a2inog =
iy S

|
—X saiuadoly Buiddoly juaag u 0
£'d 19dod
'3 ¥90d /
/
L'd 1=pa0d v 19104
g abog v abog
MOJJUS210G 2ADS Mojjusauog 153 saiJadoid 2unaQ suoljIsuD] 2uleg $190)IY PRY
youoas H @ _ noboT) _ suonoy | Jesn —)_mH

CoC

jopedwql/:d1y) G X AU _ﬁv

Abbildung A.25.: Dieses Mockup veranschaulicht die Auswahl einer Event Mapper Klasse
(ContentToPayloadMapper) fiir das Zielereignis.

128

A.3. Mockups

o
saluadold suyaq N suonisuy| aulya(
a a
"UONISUDL) XBU BY) 0) SBUD)IMS _ E| _I— _ ﬂ| :
4930 By '1xau GunpI A9 8sD|Q) Jaddp)y Jusng 8sp|0) Jaddpyy Juang
LJ
_I ELTRUETS gwm._o_,u r Sol|y JusAg ..wo__...owu
(4] viweng]
———— S0JN0G ™
» saiuadolg Buiddely 1uang u U
£'d 19dod
2'3 ¥90d /
N
L'g \dod ¥ 19iJod
g abog v @bog
MO[JuU2240G 2ADT Mojjusaog 182| gansadolg auyaq suoljisunl] suyag S190)IUY PRY
youvas H @ _ noboT) _ suonoy | Jesn —)_mH
jer0d W/ Y) G X AU _ﬁv
8604 g9M

Abbildung A.26.: Dieses Mockup veranschaulicht das Wechseln zur nidchsten Transition

tber den next Button.

129

A. Anhang

SUGIISUDI| SUlS(]

sanJadold suyag

On 1i| |[EC]
80|70 Joddopy yuaag 50|10 Jaddo)y Juaa]
o

_I SOy JusAg gwm._o_,u r SOI[Y JUSAT SUNO!

A _veers]

schaften fiir die nichste Transition.

aaunog =
» saiuadoly Buiddoly juaag u 0
£'d 19dod
'3 ¥90d /
/
L'd 1=pa0d v 19104
g abog v abog
MOJJUS210G 2ADS Mojjusauog 153 saiJadoid 2unaQ suoljIsuD] 2uleg $190)IY PRY
youoas H @ _ noboT) _ suonoy | Jesn —)_mH
Q L [eriod wqy//dny) G X AU _ﬁV

Abbildung A.27.: Dieses Mockup veranschaulicht den Dialog fiir das Festlegen der Eigen-

130

A.3. Mockups

sanadold 2UijH

(o]

On]
(sansadoid auyaq) asoyd 1xau 550 Jaddoly juang

ay) o) saob Jasn) L

r ELTRIEYE | gcm._ﬁu

r SOI[y JUBAT S2UNO!

]

J
gs0|0) Jaddoyy Ewsml—
o

SUCIISUD| SUlS(]

sonog =
» sanuadolg Buiddoly 1uaag O 0
£1d 1=ndod
29 12od /
o
1'g ¥@pJod v 1910d
g abog v @bog
MO|JUS2UDg 2ADT Mojusauog 182] ganiadolg auyaq suoijsuDl] aulaq

£120)IY PRY

youoes b ®_ noboT _ suonoy | Jesn

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.28.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem

Wechsel in den nédchsten Schritt des Modellierungsprozesses (Define Pro-

perties).

131

A. Anhang

MOJJUSIDS 189]

(apoN co;cwuxu

/ uonobinon _

Guiddo)y Juan

saijiadold MojusaIg

MojjuRus 24U ay) Joj Addo Joy)
sanJadosd Aj1oads UpD Jasn ay) ‘[oqolo ‘Bsoydgns 1Sl ay) U]
'sasoyd gns ¢ ojul panyjds s1 8soy4 senuadold suyag sy

'3

12)led

Mojjusaiog A0S MOjuSBIDG 188)

g g
£d 19Hod
¢'d¥=od /
L'g 1=2pJod a v 19104
g @bo4 v @bogq
Guiddopy juang suUoIISUDI) aulaq S120)IY PPY

youoes h e_ noboT _ suonay | Jesn

Wg1

[o120d way /iy G X AU _ﬁV

Abbildung A.29.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem

Wechsel in den Prozessschritt Define Proterties. Zusitzlich zeigt das

Mockup den Dialog fiir das Festlegen der Eigenschaften eines Screenflows.

Hier kann der Modellierer einen Standard Extension Node vergeben.

132

A.3. Mockups

MOJJUSIDS 189]

abog siyy Joj uondussag swog

Guiddo)y Juan

Guryoio Ag sabod ay) Jano souell ups sy abod |olod yooa Joj

uondussag
— v 260g
- L
ys6uz =] @]
(Anoo o..Eochafh._o:a_._uawD puD 3L _I
£'d19od
» sanJadolg abog
* Z2'd¥9od
‘@snow ay) yum abod oyiveds o /
Bunoajes Aq Jo Bojpig sansadold ay) ul uong 1xaN ay) I_l_
1'g 190d ¥ 19)1od
saiadoid £yoads upo Jesn ay) asoydgns puosas ayy uf
* g @bo4 v @bogq
12)ied 109019
Buiddop, juaa] suoijsuDl] aulaq £120)IY PRY

Mojjussiog aApg MojusaIDg 183]

youpes B ®_ 1nobo] _ suonoy

»sn

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.30.: Dieses Mockup veranschaulicht den Dialog fiir das Festlegen der Eigen-

schaften einer Portalseite. Der Dialog besteht aus zwei Tabs. Im Title and

Description Tab werden dem Modellierer Eingabefelder fiir einen Titel und

eine Beschreibung fiir jede unterstiitze Sprache untereinander aufgelistet.
In diesem Mockup sind die Eingabefelder fiir die Sprache Englisch zu

sehen.

133

A. Anhang

MOJJUSIDS 189]

UON2BS 1X3U 2U) 0) ||0498 UDD Jasn By
‘sipaddo uondussap puo apn

Joy p|y yndul ue abonBup| pauoddns Yooa Jod aueg asalp Jn) Bungieiyosseg aulg
| — uondussag

v .s_..wﬂ
spiL

UBULISE) =

Guiddo)y Juan

(Anoo o._Eocthh._o:a_._uawn_ puD 3L _I

x

saijadoid abog

12)ied

Mojjusaiog A0S MOjuSBIDG 188)

109019

g g
£d 19Hod
¢'d¥=od /
L'g 1=2pJod a v 19104
g @bo4 v @bogq
Guiddopy juang suUoIISUDI) aulaq S120)IY PPY

youoes h @_ noboT _ suonay | Jesn

Wg1

[o120d way /iy G X AU _ﬁV

Abbildung A.31.: Dieses Mockup veranschaulicht den Dialog fiir das Festlegen der Eigen-

schaften einer Portalseite. In diesem Mockup sind die Eingabefelder fiir

die Sprache Deutsch zu sehen.

134

A.3. Mockups

MOJJUSIDS 189]

(apon .._n.,.,:.zw.,,xmu

_ v @6og
apdwe]

Adog snweukg [

Guiddo)y Juan

/;.Mﬂoo 2lwpuiQ r__o._.n_toman puo &L _

x

Adoo owoudp © aq pnoys abod
ayy) Apoads upo Jasn ay) qu) AdoD fwouig ey ug

12)ied

Mojjussiog aApg

MojusaIDg 183]

sanJadolg abog

109019

W] a
£d 1°9Hod
¢'d¥=od /
L'g1epdod a ¥ 19)1od
g @bo4 v @bogq
Buiddop, juaa] suoijsuDl] aulaq £120)IY PRY

youpes B ®_ 1nobo] _ suonoy

»sn

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.32.: Dieses Mockup veranschaulicht den Dialog fiir das Festlegen der Eigen-

schaften einer Portalseite. Der Dialog besteht aus zwei Tabs. Im Dynamic
Copy Tab kann der Modellierer wihlen das die Portalseite dynamisch

geladen werden soll.

135

A. Anhang

MOJJUSIDS 189]

Al

.]

UON2BS 1X3U 24) 0) ||0498 UDD Jasn By
‘sipaddo uondussap puo apn

Joj pfelj Indul uo s6pnBup| palioddns Yooe Joj ayeg asaip Jny Bungieyosag auig
s1 8123 ‘sepiediog 960 B4} Y} 40) SY e |, duosaq

v .s_..wﬂ
spiL

UBULISE) =

Guiddo)y Juan

(Anoo o._Eocthh._o:a_._uawn_ puD 3L _I

x sanJadold 12140

%.

BSNOW 34} YIIm

18)1od o uoioajes Aq Jo uonng 1xap sy Busip Aq si8fllod o
Jano @pie)l up2 Jasn ay) ‘sabod |oiod By Joy ayin si9(llod @y)
Joy sanuadosd ayy £yoads uos Jasn ay) asoydgns 1S By} UQ

+

109019

Mojjusaiog A0S MOjuSBIDG 188)

g g
£d 19Hod
¢'d¥=od /
L'g 1=2pJod a v 19104
g @bo4 v @bogq
Guiddopy juang suUoIISUDI) aulaq S120)IY PPY

youoes h @_ noboT _ suonay | Jesn

Wg1

[o120d way /iy G X AU _ﬁV

Abbildung A.33.: Dieses Mockup veranschaulicht den Dialog fiir das Festlegen der Eigen-

schaften eines Portlets. Der Dialog ist vom Aufbau identisch zum Dialog
fiir das Festlegen der Eigenschaften einer Portalseite. Auf diesem Mockup

wird das Title and Description Tab dargestellt.

136

A.3. Mockups

MOJJUSIDS 189]

(apoN .._n.,.,:.zw.,,xmu
_ v @6og
apdwe]

Adog snweukg [

/.__Eoo a1weuig Z.__o._.n_toman puo api] _

» sanJadold 1)Jog

]

£d 1°9Hod

v

¢'d¥=od

L'g1epdod

Guiddo)y Juan

"

¥ 19)1od

g @bo4

v @bogq

109019
MO|JUS2UDg 2ADT A Mojusauog 182] Buiddop, juaa] A suoijisuDl] aulaQ] A £120)IY PRY

youpes B ®_ 1nobo] _ suonoy

Wal

101.0d Wqy//2dny) G x G ﬂv

137

schaften eines Portlets. Auf diesem Mockup wird das Dynamic Copy Tab

Abbildung A.34.: Dieses Mockup veranschaulicht den Dialog fiir das Festlegen der Eigen-
dargestellt.

A. Anhang

(mojusaussg 193]) asoyd

1x8u ay) o 5206 Jasn

(apoN .._n.,.,:.zw.,,xmu
_ \y 2604
aojdws]

Adop sweukq [

\ Adog aouAg Trco._.n_tomon puo a1 _

x

sanJadold 12140

Guiddo)y Juan

a O
£1d 12dod
29 12dod /
L'g 1=nJod a V 19104
g @bo4 v @bogq

109019
MO|JUS2UDS BADS A MOuBBUIG 153] Guiddopy juang

suonisuo| suyeqg

S120)IY PPY

youpes B @_ 1nobo] _ suonoy

Wg1

[o120d way /iy G X AU _ﬁV

Abbildung A.35.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem

Wechsel in den nédchsten Schritt des Modellierungsprozesses (Define Pro-

perties).

138

A.3. Mockups

MO|JUSIDG BADG

MO|JUS2UDS Y] D|NWIS UDD JBSn aY) ‘Bsoyd sIy) apisu]

0

£d 1°9Hod

v

¢'d¥=od

L'g1epdod

sanJadold sulya(

"

g @bo4

¥ 19)1od

v @bogq

MO|JUS2UDg 2ADT ‘ salsadold suya(q A Buiddop, juaa] A suoijsuDl] aulaq A £120)IY PRY

youpes B ®_ 1nobo] _ suonoy

Wal

101.0d Wqy//2dny) G x G ﬂv

Abbildung A.36.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem

Wechsel in den Prozessschritt Test Screenflow. Das Testen von Screenflows

ist nicht Teil dieser Arbeit.

139

A. Anhang

(mousaiog anog) asoyd
180 8y} 01 8806 Josn |

Mojjusaiog A0S

O

£d 19Hod

v

¢'d¥=od

L'g 1=2pJod

sanJadold sulya(

N

g @bo4

v 19104

v @bogq

sanuadolg auyag A Guiddopy juang A suUoIISUDI) aulaq A S120)IY PPY

youpes B @_ 1nobo] _ suonoy

»sn

Wg1

[o120d way /iy G X AU _ﬁV

Abbildung A.37.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem

Wechsel in den nédchsten Schritt des Modellierungsprozesses (Save Screen-

flow).

140

A.3. Mockups

User | Actions | Logout |® Q se

A Web Page

The user can deploy the screenflow directly by clicking the Deploy Screenflow Button

or export the Screenflow to XML by clicking the Export XML Button

<+

| Deploy Screenflow]l Export XML]

I—_Screenflow Unige Name

Add Artifacts > Define Transitions > Event Mapping > Define Properties > Test Sereenflow ,

est Screenflow

O Q x Q {http://ibm portal

IBM

Abbildung A.38.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem
Wechsel in den Prozessschritt Save Screenflow. Zusétzlich werden ein Ein-
gabefeld angezeigt wo der Modellierer einen Namen fiir den Screenflow
vergeben kann, sowie ein Deploy und ein Save Button.

141

Abbildungsverzeichnis

142

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

3.1.
3.2.
3.3.
3.4.

5.1.
5.2.
5.3.
5.4.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

6.8.
6.9.
6.10.
6.11.
6.12.
6.13.

7.1.
7.2.
7-3

Zusammenhang von Prozessmodell, Workflow Modell, Prozess und Workflow. 15

Lebenszyklus eines Business Workflows und eines Scientific Workflows. 18
Klassifikation von Portalen nach Fokus und Nutzerkreis. 19
Aufbau einer Portalseite. o L oo 21
Aggregation der Portlet Inhalte. 22
Komponenten Portal Anwendung. 23
Lebenszyklus eines Portlets. 24
Interaktion zwischen Workflow Engine und Task List Portlet. 28
Sequenzdiagramm der Ausfithrung von drei Human Tasks mit einer Task List. 30
Komponenten eines Screenflows., .. 31
Interaktion zwischen Workflow Engine und Screenflow. 32
Beispiel fiir einen Subdialog in einem Screenflow. 41
Kernkomponenten des IBM UX Screenflow Manager. 42
Sequenzdiagramm eines Zustandsiibergangs im Screenflow Manager. 43
Beispielhafte Darstellung einer Transition im Screenflow zwischen zwei Port-

lets Aund B. L 48
Integration des Modellierungswerkzeugs in die Portal Architektur. 59
Client-Server Modell des Modellierungswerkzeugs (Portlet). 60
Modellierungswerkzeug in der Werkzeugleiste. 61
Modellierungswerkzeug in eigener Portalseite. 62
Transitionen des Beispielszenarios fiir die grafische Darstellung von Screenflows. 63
Beispielszenario mit verschachteltem Graphen. 64
Beispielszenario mit freiem Graphen. 64
Beispielszenario mit freiem Graphen mit zwei Knotentypen. 65
Beispielszenario mit freiem Graphen mit Multi-Knotenmenge. 66
Dialog zur Definition der Eigenschaften einer Transition. 70
Dialog zur Definition der globalen Eigenschaften des Screenflows. 70
Dialog zur Definition der Eigenschaften einer Portalseite. 71
Navigationsleiste fiir den Modellierungsprozess. 71
Detailliertes Client-Server Modell des Modellierungswerkzeug (Portlet). 73
Dojo Komponenten. 74
Klassendiagramm der Clientseite, geordnet anhand der Rollen in der MVC-

Architektur. 77

7.4. Klassendiagramm der Graphelemente (Hierarchie). 77
7.5. Verarbeitung eines externen Drag and Drop Ereignisses im Modellierungs-
werkzeug (Portalseite oder Portlet hinzuftigen). 79
7.6. Klassendiagramm der Dialogklassen mit ihren Abhdngigkeiten. 81
7.7. Bildschirmfoto des konkret implementierten Dialogs fiir das Festlegen der
Eigenschaften einer Transition. 81
7.8. Sequenzdiagramm eines Schrittwechsels im Modellierungsprozess. 83
8.1. Beispielhafte Darstellung eines Scientific Portals. 86
8.2. Beispielhafte Darstellung der Komponenten einer N-Tier Architektur, mit dem
Portal als Benutzungsschnittstelle. 87
8.3. Prinzip einer Transformation von einem grafisch repréasentierten Scientific
Workflow in ein BPEL Modell. 88
A.1. - A38. Mockups fiir das Modellierungswerkzeug. 104

Tabellenverzeichnis

4.1. Unterschiedliche Umsetzung von Screenflows in verwandten Arbeiten. 40
A.1. Anwendungsfall: Dialogdefinition erstellen 98
A.2. Anwendungsfall: Dialogdefinition konfigurieren 98
A.3. Anwendungsfall: Artefakt hinzufiigen 99
A.4. Anwendungsfall: Dialogartefakt konfigurieren 99
A.5. Anwendungsfall: Transition definieren. 99
A.6. Anwendungsfall: Transition konfigurieren 100
A.7. Anwendungsfall: Liste der Dialogdefinitionen anzeigen 100
A.8. Anwendungsfall: Dialogdefinition anzeigen 101
A.9. Anwendungsfall: Dialogdefinition bearbeiten 101
A.10.Anwendungsfall: Dialogdefinition kopieren. 101
A.11.Anwendungsfall: Dialogdefinition speichern 102
A.12. Anwendungsfall: Dialogdefinition exportieren 102
A.13.Anwendungsfall: Dialogdefinition importieren 102
A.14.Anwendungsfall: Dialogdefinition 16schen 102

143

Verzeichnis der Listings

5.2.
53

5.4.

5-5-
5.6.

57

5.8.

. Dialogdefinition: Ausschnitt einer Definition eines Dialogs mit zwei Portlets

und zwei Transitionen. Lo 46
Dialogdefinition: Ausschnitt einer Definition eines transition-endpoint Elements. 46
Dialogdefinition: Ausschnitt einer Definition von Title und Beschreibung eines

Portlets in unterschiedlichen Kontexten. 47
Dialogdefinition: Ausschnitt einer Definition von zwei Transitionen mit Portlet
bzw. Portalseite als Ziel. L L 49
Dialogdefinition: Ausschnitt der Definition einer Start- und Endtransition. . . 50
Dialogdefinition: Ausschnitt der Definition einer Transition in der die Daten
des gesendeten Ereignis unter einem anderen DCX-Key abgelegt werden. . . . 51
Dialogdefinition: Ausschnitt der Definition einer Transition die einen Context-
ToPayloadMapper verwendet. L. 52
Dialogdefinition: Ausschnitt der Definition eines statischen und zwei dynami-
schen Ressource Endpoints. 53

Literaturverzeichnis

[AAATo7] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, A. E. Mark Ford,

Y. Goland, A. Guizar, N. Kartha, C. K. Liu, R. Khalaf, D. Kénig, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu. Web Services Business
Process Execution Language, 2007.

[AAD"oya] A.Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Kénig,

F. Leymann, R. Miiller, G. Pfau, K. Plosser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. Web Services Human
Task (WS-HumanTask), 2007.

[AAD"o7b] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Kénig,

144

F. Leymann, R. Miiller, G. Pfau, K. Plosser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidst, I. Trickovic, A. Yiu, M. Zeller. WS-BPEL Extension for
People (BPEL4People), 2007.

Literaturverzeichnis

[ABD"07]

[Anto8]

[Apa12]

[ASH12]

[Banos]

[BGo4]

[Como6b]

[DL13]

[Dr.12]

[DS]

[DVGT]

[GHJV96]

[GK]

[GSKT11]

[Heeo7]

[Heioz2]

N. Ayachitula, M. Buco, Y. Diao, S. Maheswaran, R. Pavuluri, L. Shwartz,
C. Ward. IT service management automation — A hybrid methodology to
integrate and orchestrate collaborative human centric and automation centric
workflows. 2007.

Anthony T. Holdener. Ajax: The Definitive Guide. O’Reilly, 2008. ISBN: 978-0-59-
652838-6.

Apache Software Foundation. Apache Cocoon - Control Flow, 2012. URL http:
//cocoon.apache.org/2.1/userdocs/flow/.

J. Aubourg, J. Song, Hallvord R. M. Steen. XMLHttpRequest, 2012. URL
http://www.w3.org/TR/XMLHttpRequest.

T. Banks. Web Services Resource Framework (WSRF). Organization for the
Advancement of Structured Information Standards, 1 Auflage, 2005. URL
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf.

M. Book, V. Gruhn. Modeling Web-Based Dialog Flows for Automatic Dialog
Control. In 19th IEEE International Conference on Automated Software Engineering
(ASE 2004) [Ktoo], S. 100-109.

R. W. Community. RIFE Users Guide - Creating a more advanced RIFE application,
2006. URL http://rifers.org/wiki/display/RIFE/GuideNumberguess.html.

Dr. Andreas Nauerz, S. Liesche. IBM UX Screen Flow Manager Documentation.
IBM WebSphere Portal, 2013. [Internes Dokument].

Dr. Andreas Nauerz. Adapting and Recommending Content and Expertise in Highly
Collaborative Web Portals. Dr. Hut, 2012. ISBN:978-3843905756.

L. DeMichiel, B. Shannon. Java Platform, Enterprise Edition (Java EE) Specifica-
tion.

K. Donald, E. Vervaet, J. Grelle, S. Andrews, R. Stoyanchev. Spring Web Flow
Reference Guide. Spring, 2.0.9 Auflage. URL http://static.springsource.org/
spring-webflow/docs/2.0.x/reference/html/index.html.

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Entwurfsmuster, Band 5. Addison-
Wesley, 1996. ISBN 3-8273-1862-9.

M. Grofimann, H. Koschek. Unternehmensportale. Springer. ISBN: 978-1-84-
628519-6.

K. Gorlach, M. Sonntag, D. Karastoyanova, F. Leymann, M. Reiter. Guide to
e-Science, Kapitel Conventional Workflow Technology for Scientific Simulation.
Springer, 2011. ISBN: 978-0-85729-438-8.

S. Heesen. Cocoon - XML-basierte Webentwicklung Schritt fiir Schritt. Open Source
Press, Miinchen, 2007. ISBN: 978-3-93-751455-0.

M. Hein. TCP/IP, Band 6. mitp-Verlag, 2002. ISBN: 3-8266-4094-2.

145

http://cocoon.apache.org/2.1/userdocs/flow/
http://cocoon.apache.org/2.1/userdocs/flow/
http://www.w3.org/TR/XMLHttpRequest
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://rifers.org/wiki/display/RIFE/GuideNumberguess.html
http://static.springsource.org/spring-webflow/docs/2.0.x/reference/html/index.html
http://static.springsource.org/spring-webflow/docs/2.0.x/reference/html/index.html

Literaturverzeichnis

[Hepo8]
[IBM]
[IEDMo7]

[TUH " 05]

[JRJoz]

[KDS*12]

[Ktoo]

[Kusos]

[Loc12]
[LRoo]
[Mato8]

[Morog]
[MS]

[OAS]
[OMGos]
[OMG11]

[Ora]

146

S. Hepper. Java Portlet Specification, 2008.

IBM. Dynamic UI Management. URL http://publib.boulder.ibm.com/
infocenter/wpdoc/v6rl/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_
cpts.html.

Ian J. Taylor, Ewa Deelmann, Dennis B. Gannon, Matthew Shields. Workflows
for e-Science. Springer, 2007. ISBN:978-1-84-628519-6.

I. Foster Argonne, U. Chicago, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell,
J. Von Reich. The Open Grid Services Architecture, 1 Auflage, 2005. URL http:
//www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf.

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Einfiihrung in die Automa-
tentheorie, Formale Sprachen und Komplexitiit, Band 2. Addison-Wesley Longman
Verlag, 2002. ISBN: 978-3827370204.

D. Karastoyanova, D. Dentsas, D. Schumm, M. Sonntag, L. Sun, K. Vukoje-
vic. Service-based Integration of Human Users in Workflow-driven Scientific
Experiments. 2012.

N. Kassem, the Enterprise Team. Designing Enterprise Applications with the
JavaTM 2 Platform, Enterprise Edition. 2000.

T. Kussmaul. Dle Java-Portlet-Spezifikation. JavaSPEKTRUM, 3, 2005.

A. Lochbihler. Semantik von Programmiersprachen. Lehrstuhl fiir Programmierpa-
radigmen, Karlsruher Institut fiir Technologie, 2012. ISBN: 978-3-54-015163-0.

E. Laymann, D. Roller. Production Workflow Concepts and Techniques. Prentice-Hall,
Inc., Upper Saddle River, New Jersey, 2000. ISBN: 978-0-13-021753-0.

Mathew A. Russell. Dojo - The Definitive Guide. O'Reilly, 1 Auflage, 2008. ISBN:
978-0-596-51648-2.

R. Mordani. Java Servlet Specification, 2009.
K. Mehlhorn, P. Sanders. Algorithms and Data Structures. Springer. ISBN
978-3-54-077977-3-

OASIS. Organization for the Advancement of Structured Information Standards.
URL https://www.oasis-open.org/.

OMG. Unified Modeling Language (UML), 2005. URL http://www.omg.org/
spec/UML/.

OMBG. Business Process Model and Notation (BPMN), 2011. URL http://www.
omg.org/spec/BPMN/2.0/.

Oracle. Java BluePrints - Webseite. URL http://www.oracle.com/technetwork/
java/javaee/blueprints/index.html.

http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_cpts.html
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_cpts.html
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_cpts.html
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
https://www.oasis-open.org/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.oracle.com/technetwork/java/javaee/blueprints/index.html
http://www.oracle.com/technetwork/java/javaee/blueprints/index.html

Literaturverzeichnis

[PPoy] Prof. Dr. rer. nat. Jochen Ludewig, Prof. Dr. rer nat. Horst Lichter. Software
Engineering. dpubkt.verlag, 2007. ISBN: 978-3898642682.

[Pro11] Prof. Dr. Frank Leymann. Vorlesung - Web Services. Institut fiir Architektur von
Anwendungssystemen (IAAS) Universitdt Stuttgart, 2011.

[SDK10] M. Sonntag, F. L. Dimka Karastoyanova. The missing features of workflow
systems for scientific computations. 2010.

[SK] M. Sonntag, D. Karastoyanova. Next generation interactive scientific experimen-
ting based on the workflow technology.

[SLWMoy] L. Shankar, D. Lee, M. Wynn-Mackenzie. Building a human task-
centric business process with WebSphere Process Server. 1BM, 2007. URL
http://www.ibm.com/developerworks/websphere/library/techarticles/
0702_shankar/0702_shankar.html.

[USAos5] Urs B. Meyer, Simone E. Creux, Andrea K. Weber Marin. Grafische Methoden der
Prozessanalyse. Carl Hanser Verlag GmbH & Co. KG, 1 Auflage, 2005. ISBN:

978-3446400412.
[W3C] W3C. Document Object Model. URL http://www.w3.org/DOM/.

[WCL*o05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, Donald F. Ferguson. Web
Services Platform Architecture. Prentice Hall, 2005. ISBN: 978-0131488748.

[Wego2] C. Wege. Portal Server Pechnology. 2002.

[Weso7] M. Weske. Business Process Management - Concepts, Languages, Architectures.
Springer, 2007. ISBN: 978-3-540-73521-2.

Alle URLs wurden zuletzt am 10. 07. 2013 gepriift.

147

http://www.ibm.com/developerworks/websphere/library/techarticles/0702_shankar/0702_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_shankar/0702_shankar.html
http://www.w3.org/DOM/

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf; aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
veroffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschift

	1 Einleitung
	1.1 Einführung und Motivation
	1.2 Ziele dieser Arbeit
	1.3 Gliederung

	2 Grundlagen
	2.1 Workflows
	2.1.1 Business Workflows
	2.1.2 Interaktion von Workflows mit Menschen
	2.1.3 Scientific Workflows

	2.2 Portale
	2.2.1 Portalspezifische Architektur
	2.2.2 Portlets und Portlet Container
	2.2.3 Portlet API

	2.3 Zusammenfassung

	3 Screenflows
	3.1 Benutzungsschnittstellen mit Portalen
	3.2 Heutige Kommunikation zwischen Workflow- und Portalsystemen
	3.3 Screenflows
	3.4 Screenflows als Teil von Workflows
	3.5 Zusammenfassung

	4 Verwandte Arbeiten
	4.1 Theoretische Arbeiten
	4.2 Praktische Arbeiten
	4.3 Zusammenfassung

	5 Screenflow Manager
	5.1 Terminologie
	5.2 Kernkomponenten
	5.3 Dialogdefinition
	5.4 Erweitertes Laden und Speichern
	5.5 Event Mapper
	5.6 Dynamische Ressource Endpoints
	5.7 Entwicklung von Screenflows
	5.8 Akteure und Rollen
	5.9 Zusammenfassung

	6 Konzept
	6.1 Ausgangssituation
	6.2 Anforderungen
	6.3 Lösungsansatz
	6.3.1 Technische Integration
	6.3.2 Visuelle Integration
	6.3.3 Grafische Darstellung von Screenflows
	6.3.4 Modellierungsprozess
	6.3.5 Grafische Umsetzung der Benutzungsschnittstelle

	6.4 Zusammenfassung

	7 Implementierung
	7.1 Clientseite
	7.1.1 JavaScript Frameworks
	7.1.2 Architektur der Clientseite

	7.2 Serverseite
	7.2.1 Architektur der Serverseite

	7.3 Zusammenfassung

	8 Übertragung der Konzepte
	8.1 Screenflows und Scientific Workflows
	8.2 Übertragung der erarbeiten Konzepte auf Modellierungswerkzeuge für Scientific Workflows
	8.3 Zusammenfassung

	9 Zusammenfassung und Ausblick
	A Anhang
	A.1 Dialogdefinition
	A.2 Anwendungsfälle
	A.3 Mockups

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Listings
	Literaturverzeichnis

