
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3462

Visuelle Modellierung von
Screenflows

Timotheus Giuliani

Studiengang: Softwaretechnik

Prüfer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer: Dipl.-Inf. Dipl.-Wirt. Ing.(FH) Karolina
Vukojevic
Dr. Andreas Nauerz (IBM)

begonnen am: 28. Januar 2013

beendet am: 25. Juli 2013

CR-Klassifikation: H.4.1, H.5.2, H.5.3

Kurzfassung

Automatisierte Prozesse erfordern häufig Interaktionen mit Menschen. Für diese Human
Tasks werden in der Regel Benutzungsschnittstellen benötigt. Für die Umsetzung und
Bereitstellung von Benutzungsschnittstellen eignen sich Portale sehr gut. Im Portal werden
die einzelnen Human Tasks durch die Nutzung von Task Listen einer potenziellen Gruppe
an Nutzern zur Verfügung gestellt. Über die Task Liste wird in der Regel ein Human Task
einer entsprechenden Portalseite (Screen) zugeordnet.

Allerdings hat sich herausgestellt, dass eine einfache 1:1 Abbildung zwischen Human Tasks
und Portalseiten nicht immer ausreichend ist. Oft ergibt sich die Notwendigkeit, eine von
einem einzelnen Nutzer schnell zu prozessierende Abfolge von Human Tasks über mehrere
Screens abzuarbeiten. Es ist unnötig und unpraktikabel jeden dieser Screens auf einen
Human Task abzubilden, vor allem wenn die Prozessierung kurzlebig und kein Wechsel
zwischen Nutzern notwendig ist.

Als Lösung wurden Screenflows eingeführt, die es erlauben, eine Abfolge von Screens im
Portal deklarativ zu modellieren. Im Zusammenspiel mit einem Workflow kann nun die
Kontrolle für einen einzelnen Human Task an das Portal übergeben werden. Das Portal stellt
dann eine Abfolge von Screens, entsprechend des modellierten Screenflows, zur Verfügung.
Anschließend gibt es die Kontrolle an das Workflowsystem zurück. Diese Lösung erlaubt
eine Abbildung eines Human Tasks auf einen Screenflow.

Die Modellierung der Screenflows geschieht derzeit noch über komplexe XML-
Beschreibungen, welche für technisch nicht versierten Nutzer unverständlich sind.

In dieser Arbeit wird der Entwurf und die Entwicklung eines Modellierungswerkzeugs für
die visuelle Modellierung von Screenflows beschrieben. Es werden Konzepte vorgestellt,
welche für die Umsetzung einer geeigneten Lösung benötigt werden. Diese Konzepte wer-
den anschließend prototypisch in einem webbasierten Modellierungswerkzeug umgesetzt.
Abschießend werden die erarbeiteten Konzepte auf Modellierungswerkzeuge für Scientific
Workflows übertragen.

3

Inhaltsverzeichnis

1. Einleitung 9
1.1. Einführung und Motivation . 9

1.2. Ziele dieser Arbeit . 10

1.3. Gliederung . 11

2. Grundlagen 13
2.1. Workflows . 13

2.1.1. Business Workflows . 14

2.1.2. Interaktion von Workflows mit Menschen 16

2.1.3. Scientific Workflows . 16

2.2. Portale . 18

2.2.1. Portalspezifische Architektur . 20

2.2.2. Portlets und Portlet Container . 22

2.2.3. Portlet API . 23

2.3. Zusammenfassung . 25

3. Screenflows 27
3.1. Benutzungsschnittstellen mit Portalen . 27

3.2. Heutige Kommunikation zwischen Workflow- und Portalsystemen 28

3.3. Screenflows . 29

3.4. Screenflows als Teil von Workflows . 31

3.5. Zusammenfassung . 33

4. Verwandte Arbeiten 35
4.1. Theoretische Arbeiten . 35

4.2. Praktische Arbeiten . 36

4.3. Zusammenfassung . 40

5

5. Screenflow Manager 41
5.1. Terminologie . 41

5.2. Kernkomponenten . 42

5.3. Dialogdefinition . 45

5.4. Erweitertes Laden und Speichern . 50

5.5. Event Mapper . 50

5.6. Dynamische Ressource Endpoints . 51

5.7. Entwicklung von Screenflows . 53

5.8. Akteure und Rollen . 53

5.9. Zusammenfassung . 54

6. Konzept 55
6.1. Ausgangssituation . 55

6.2. Anforderungen . 55

6.3. Lösungsansatz . 59

6.3.1. Technische Integration . 59

6.3.2. Visuelle Integration . 61

6.3.3. Grafische Darstellung von Screenflows 63

6.3.4. Modellierungsprozess . 67

6.3.5. Grafische Umsetzung der Benutzungsschnittstelle 69

6.4. Zusammenfassung . 72

7. Implementierung 73
7.1. Clientseite . 74

7.1.1. JavaScript Frameworks . 74

7.1.2. Architektur der Clientseite . 76

7.2. Serverseite . 82

7.2.1. Architektur der Serverseite . 82

7.3. Zusammenfassung . 84

8. Übertragung der Konzepte 85
8.1. Screenflows und Scientific Workflows . 85

8.2. Übertragung der erarbeiten Konzepte auf Modellierungswerkzeuge für
Scientific Workflows . 86

8.3. Zusammenfassung . 89

9. Zusammenfassung und Ausblick 91

6

A. Anhang 95
A.1. Dialogdefinition . 95

A.2. Anwendungsfälle . 98

A.3. Mockups . 103

Abbildungsverzeichnis 142

Tabellenverzeichnis 143

Verzeichnis der Listings 144

Literaturverzeichnis 144

7

1. Einleitung

1.1. Einführung und Motivation

In den vergangenen Jahren haben sowohl Workflow- als auch Portaltechnologien zunehmend
an Bedeutung gewonnen. Workflowtechnologien werden unter anderem im Unternehmens-
umfeld eingesetzt, um wiederkehrende Prozesse zu modellieren, auszuführen und zu ana-
lysieren. Diese automatisierten Prozesse werden als Workflows (deutsch: Arbeitsabläufe)
bezeichnet. Durch die Ausdehnung dieser Technologie auf Prozesse in wissenschaftlichen
Bereichen entstand der Begriff Scientific Workflows [IEDM07]. Die Portaltechnologie wieder-
um bietet ihren Nutzern einen zentralen und persönlichen Zugang (Single Point of Access)
zu Diensten und Informationen [GK]. Portale integrieren dafür die heterogenen Systeme von
Informationslandschaften, aggregieren Informationen und stellen verschiedene Dienste und
Anwendungen über eine einheitliche Nutzungsschnittstelle zur Verfügung. Des Weiteren
können Portale eine Arbeitsumgebung durch zusätzliche Dienste und unterstützende Werk-
zeuge erweitern. Beispiele hierfür sind Werkzeuge für die Zusammenarbeit, Inhalts- und
Dokumentenverwaltung oder die Suche von Inhalten.

Die Zusammenführung beider Technologien liegt für Workflows nahe, bei denen Interak-
tionen mit Benutzern erforderlich sind. Sogenannte Human Tasks benötigen in der Regel
eine Benutzungsschnittstelle und Portale eigenen sich hervorragend für die Umsetzung von
Benutzungsschnittstellen. Daher werden Human Tasks häufig auf Portalseiten abgebildet.
Oft ergibt sich, auch innerhalb des Portals, die Notwendigkeit eine von einem einzelnen
Nutzer schnell zu prozessierende Abfolge von Schritten über mehrere sogenannte Screens
(Views) abzuarbeiten. Ein Screen ist ein möglicher Zustand des Inhalts einer dynamischen
Portalseite. In gewissen Situationen ist es unnötig und unpraktikabel jeden dieser Screens
durch einen eigenen Human Task zu beschreiben, da die Prozesse äußert kurzlebig sind oder
ein Wechsel zwischen unterschiedlichen Nutzern nicht notwendig ist. In solchen Situationen
gab es bisher zwei Möglichkeiten.
Erstens, komplexe Portlets zu entwickeln, welche den Prozess in ihrer Programmlogik ab-
bilden. Das hat jedoch den Nachteil, dass solche Portlets sehr unflexibel sind und kaum
wiederverwendet werden. Zusätzlich erfordert jede Änderung am Prozess eine Änderung
am Programmcode des Portlets.
Zweitens, mehrere simple Portlets zu entwickeln, welche jeweils einzelne Schritte des Prozess
abbilden. Bei diesem Ansatz fehlt jedoch eine Nutzerführung, sodass der Benutzer selbst zu
entscheiden hat, in welcher Reihenfolge die Portlets zu verwenden sind.

9

1. Einleitung

Das Buchen einer Reise auf einem öffentlichen Reiseportal ist ein mögliches Beispiel für
einen solchen Prozess. In der Regel legt der Kunde verschiedene Details zu seiner Reise
fest, bevor diese dann tatsächlich gebucht wird. Meist wird der Kunde dabei durch eine Art
Dialog geführt, in dem Details wie zum Beispiel das Reiseziel, das Reiseantrittsdatum, die
Hotelklasse und dergleichen abgefragt werden.

Der Lösungsansatz im IBM WebSphere Portal Server1 für dieses Problem ist die Einführung von
sogenannten Screenflows, welche es erlauben, eine Abfolge von Screens im Portal deklarativ
zu modellieren. Das hat den Vorteil, dass der Screenflow flexibel ist und schnell geändert
werden kann. Die verwendeten Portlets können spezifisch für eine Aufgabe entwickelt
werden, wodurch sie wiederverwendet werden können. Der Benutzer wird geführt, indem
er von Screen zu Screen geleitet wird. Im Zusammenspiel mit einem Screenflow kann ein
Workflow nun die Kontrolle für einen einzelnen Human Task an das Portal übergeben. Das
Portal stellt dann eine Abfolge von Screens, entsprechend des modellierten Screenflows, zur
Verfügung. Nachdem der Screenflow beendet ist, gibt der Screenflow die Kontrolle zurück
an das Workflowsystem. Die Lösung ermöglicht also die Abbildung eines Human Tasks auf
einen Screenflow.

Für herkömmliche Workflows existieren diverse Modellierungswerkzeuge, die es ermögli-
chen, den Workflow grafisch zu modellieren. Die Modellierung der Screenflows geschieht
derzeit jedoch noch über komplexe XML Beschreibungen, welche für den nicht technisch
versierten Nutzer unverständlich sind.

1.2. Ziele dieser Arbeit

Diese Arbeit entstand im Rahmen einer Diplomarbeit in Kooperation zwischen dem Institut
für die Architektur von Anwendungssystemen, im Bereich SimTech, der Universität Stuttgart
und dem Bereich WebSphere Development & Services, IBM Collaboration Solutions, in der
Abteilung XWebX Development der IBM Software Group.

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung eines grafischen
Modellierungswerkzeugs, mit dessen Hilfe Screenflows visuell modelliert werden können.
Im Fokus steht dabei die Entwicklung eines einfach und intuitiv zu bedienenden und
zugleich leistungsfähigen Werkzeuges. Dadurch sollen auch Modellierer, die keine Compu-
terexperten sind, in die Lage versetzt werden, Screenflows zu modellieren, an denen ein
Endnutzer später entlang geführt werden soll. Ferner soll erörtert werden, inwiefern sich die
gewonnen Erkenntnisse auf Modellierungswerkzeuge für Scientific Workflows übertragen
lassen.

1Für weitere Informationen zum IBM WebSphere Portal Server siehe http://www-03.ibm.com/software/
products/us/en/portalserver.

10

http://www-03.ibm.com/software/products/us/en/portalserver
http://www-03.ibm.com/software/products/us/en/portalserver

1.3. Gliederung

1.3. Gliederung

Nachdem die Motivation und die Aufgabenstellung für diese Arbeit vorgestellt wurden, soll
die folgende Gliederung einen Überblick über die weiteren Kapitel dieser Arbeit geben.
In Kapitel 2 werden die für diese Arbeit elementaren Technologien beschrieben. Der erste
Teil dieses Kapitels handelt von Prozessen und Workflows. Der zweite Teil des Kapitels
beschreibt die Portaltechnologie mit ihren einzelnen Bestandteilen.
In Kapitel 3 wird beschrieben, warum Workflows oft nicht ohne Interaktionen mit Men-
schen auskommen. Anschließend wird die heutige Kommunikation zwischen Workflow-
und Portalsystemen beschrieben. Danach wird das Konzept der Screenflows vorgestellt.
Als Letztes wird in diesem Kapitel beschrieben, wie Screenflows in Workflows verwendet
werden können und wie der Datenaustausch dabei stattfindet.
In Kapitel 4 werden zum Thema Screenflow verwandte Arbeiten vorgestellt. Der erste Teil
des Kapitels handelt von konzeptionellen Arbeiten. Der zweite Teil beschreibt anschließend
Arbeiten, die auch konkrete Implementierungen umfassen.
In Kapitel 5 wird der IBM UX Screenflow Manager vorgestellt, auf dem die Konzepte der
Arbeit aufbauen. In diesem Kapitel werden die grundlegenden Konzepte und Funktionswei-
sen des Screenflow Managers aufgezeigt. Anschließend werden alle Komponenten, die für
eine Screenflow Definition benötigt werden, aufgeführt.
Kapitel 6 bildet den Kern dieser Arbeit. Im ersten Abschnitt des Kapitels wird die Aus-
gangssituation geschildert. Anschließend werden die Anforderungen für das grafische
Modellierungswerkzeug aufgestellt. Danach wird der Lösungsansatz beschrieben, indem auf
die einzelnen Konzepte zur Lösung der Problematik eingegangen wird.
In Kapitel 7 wird die Umsetzung der in Kapitel 6 vorgestellten Konzepte beschrieben. Das
Kapitel besteht aus zwei Teilen, der Beschreibung der Clientseite und der Serverseite.
In Kapitel 8 werden die Konzepte aus Kapitel 6 auf Modellierungswerkzeuge für Scientific
Workflows übertragen. Zu Beginn des Kapitels werden Screenflows und Scientific Workflows
miteinander verglichen. Anschließend werden die erarbeiteten Konzepte auf den wissen-
schaftlichen Bereich übertragen.
In Kapitel 9 werden die Ergebnisse dieser Arbeit zusammengetragen und reflektiert. Ab-
schließend werden Anknüpfungspunkte für weiterführende Arbeiten empfohlen.

11

2. Grundlagen

Die für diese Arbeit wichtigsten Technologien sind Workflows und Portale. Screenflows
können sehr gut mit Workflows kombiniert werden. Screenflows eignen sich für Aktivitäten,
die menschliche Handlungen erfordern und dadurch eine Benutzungsschnittstelle benötigen.
Die Screenflows können einen Benutzer durch eine komplexe Benutzungsschnittstelle führen.
Die in dieser Arbeit vorgestellten Screenflows nutzen bei ihrer Umsetzung Portaltechnologien.
Dieses Kapitel beschreibt daher die Grundlagen der Workflow- und Portaltechnologien.
Weitere Informationen sind in der angeführten Referenzliteratur zu finden.

2.1. Workflows

Ein Prozess besteht aus einer Reihe von Aktivitäten, die für die Erfüllung einer bestimmten
Aufgabe ausgeführt werden müssen. Wenn der Ablauf des Prozesses mit sämtlichen Rah-
menbedingungen ausdrücklich vorgegeben ist, existiert für den Prozess ein Prozessmodell
[PP07].

In einem Unternehmen ist jedes Produkt das Ergebnis einer Ausführung von einer Reihe
von Aktivitäten. Geschäftsprozesse sind das wichtigste Instrument zur Organisation dieser
Aktivitäten. Gleichzeitig helfen sie ein besseres Verständnis über die Zusammenhänge der
Aktivitäten zu erlangen. In [Wes07] definiert Weske einen Geschäftsprozess wie folgt:

Definition 1 „Ein Geschäftsprozess besteht aus einer Menge von Aktivitäten, die in Abstimmung
auf eine organisatorische und technische Umgebung ausgeführt werden. Diese Aktivitäten erfüllen
gemeinsam das Unternehmensziel. Jeder Geschäftsprozess wird von einer einzigen Organisation
ausgeführt, aber möglicherweise interagiert er mit Geschäftsprozessen, die von anderen Organisationen
ausgeführt werden.“

Großmann und Koschek definieren einen Geschäftsprozess in [GK] folgendermaßen:

Definition 2 „Ein Geschäftsprozess ist eine Verfahrensanweisung zur Bearbeitung eines Geschäfts-
vorfalls. Er setzt sich zusammen aus einer Folge von geordneten, fachlich zusammenhängenden
Aktivitäten.
...
Geschäftsprozesse haben einen definierten Anfang, ausgelöst durch ein Ereignis, sowie ein festgelegtes
Ende. Zudem ist das Ergebnis des Geschäftsprozesses beschrieben.“

13

2. Grundlagen

Ein Geschäftsprozess besteht also aus einer Folge von Aktivitäten die ausgeführt werden,
um ein Unternehmensziel zu erreichen.

Um Prozesse wiederholt ausführen zu können, werden Prozessmodelle definiert, welche als
eine Art Vorlage für einen konkreten Prozess dienen. Leymann und Roller beschreiben das
Geschäftsprozessmodell in [LR00] wie folgt:

„Das Prozessmodell beschreibt die Struktur eines Geschäftsprozess in der realen Welt. Es de-
finiert alle möglichen Pfade durch den Geschäftsprozess, inklusive der Regeln, die definieren
welcher Pfad gewählt werden soll und alle Aktivitäten, die ausgeführt werden müssen.“

Weske definiert in [Wes07] ein Geschäftsprozessmodell folgendermaßen:

Definition 3 „Ein Geschäftsprozessmodell besteht aus einer Menge von Aktivitätsmodellen und
Ausführungsregeln zwischen ihnen.
... “

Das Aktivitätsmodell ist eine allgemeine Beschreibung einer konkreten Aktivität, wie es
das Prozessmodell für einen Prozess ist. Zusammengefasst beschreibt das Prozessmodell
eine Menge von Aktivitäten, die in einem Geschäftsprozess ausgeführt werden sowie das
Regelwerk für deren Ausführung.

Dient ein Geschäftsprozessmodell als Vorlage für einen Geschäftsprozess, wird der ausge-
führte Prozess als Prozessinstanz bezeichnet. Eine Prozessinstanz besteht aus einer Menge
von Werten, die den Ablauf innerhalb des Prozesspfads entscheiden. Eine Prozessinstanz
enthält eine Menge von Aktivitätsinstanzen [LR00]. Jedes Geschäftsprozessmodell ist eine
Vorlage für eine Menge von Prozessinstanzen und jedes Aktivitätsmodell eine Vorlage für
eine Menge von Aktivitätsinstanzen.

Die Aktivitäten eines Geschäftsprozesses können zu unterschiedlichen Graden automatisiert
sein. Dies reicht von Aktivitäten, die komplett ohne Computerunterstützung ausgeführt
werden, über Aktivitäten, die teilweise mit der Hilfe von Computern durchgeführt werden,
bis hin zu Aktivitäten, die vollautomatisch und autonom von Computersystemen ausgeführt
werden.

2.1.1. Business Workflows

Die Teile des Prozessmodells, die von einem Computer ausgeführt werden können, werden
als Workflow Modell (Arbeitsablaufmodell) bezeichnet. Aus einem Workflow Modell können
wie bei einem Geschäftsprozessmodell Instanzen erzeugt werden. Eine Instanz von einem
Workflow Modell wird als Workflow (Arbeitsablauf) bezeichnet. Abhängig vom Automati-
sierungsgrad des Geschäftsprozesses, umfasst das Workflow Modell nur einen Teil oder
das gesamte Prozessmodell [Wes07]. Abbildung 2.1 veranschaulicht den Zusammenhang
zwischen den Modellen und ihren Instanzen.

Weske gibt in [Wes07] für einen Workflow die folgende Definition an:

14

2.1. Workflows

Definition 4 „Ein Workflow ist die Automatisierung eines gesamten oder Teilgeschäftsprozesses,
durch den Dokumente, Informationen oder Aufgaben von einem Teilnehmer zu einem anderen anhand
einer Menge von Verfahrensregeln weitergegeben werden.“

Ein Workflow ist also ein durch einen Computer automatisierter (Teil-) Prozess.

Instanz

Prozess Workflow

Prozessmodell

Workflow Modell

Reale Welt Computer

Abbildung 2.1.: Zusammenhang von Prozessmodell, Workflow Modell, Prozess und Work-
flow [Wes07].

Um einen Workflow auszuführen, muss dieser definiert werden. Dafür existieren unter-
schiedliche Sprachen und Notationen. Ein Beispiel für eine solche Sprache ist die Business
Process Execution Language for Web Services (BPEL) [AAA+

07]. Dabei handelt es sich um eine
XML-basierte Sprache zur Beschreibung von Geschäftsprozessen, die durch die Verwendung
von Web Services1 die Aktivitäten des Prozesses abbildet.

Ein Workflow wird entweder durch eine dafür extra entwickelte Anwendung oder durch
eine generische Workflow Engine ausgeführt. Um den gesamten Workflow Prozess zu
strukturieren und zu verwalten, werden Workflow Management Systeme eingesetzt. Weske
definiert in [Wes07] ein Workflow Management System wie folgt:

Definition 5 „Ein Workflow Management System ist ein Softwaresystem, das durch die Nutzung
von Software Workflows definiert, erstellt und die Ausführung verwaltet. Diese führt es auf einer oder
mehrerer Workflow Engines aus, die dazu in der Lange sind, die Prozessdefinition zu interpretieren.
Es interagiert mit den Workflowteilnehmern und ruft benötigte IT-Werkzeuge und Anwendungen
auf.“

1Web Service: ist ein Softwaresystem das für Interaktionen über ein Netzwerk von Maschine zu Maschine
entworfen ist. Es besitzt ein Schnittstelle, die in einem maschinenlesbaren Format beschrieben ist (WSDL).
Andere Systeme interagieren mit dem Web Service in einer vorgeschrieben Art und Weise [WCL+

05].

15

2. Grundlagen

Ein Workflow Management System unterstützt somit alle Personen, die an einem Workflow
beteiligten sind. Von der Entwicklung des Workflows bis hin zu dessen Ausführung.

2.1.2. Interaktion von Workflows mit Menschen

Trotz der heutigen Möglichkeiten einen Prozess zu automatisieren, besteht in vielen Situa-
tionen die Notwendigkeit menschliche Nutzer in den Workflow mit einzubeziehen. Zum
Beispiel um zu entscheiden, wie sich ein automatisiertes System in einem Fehlerfall verhalten
soll [KDS+12]. In [ABD+

07] werden solche Prozesse als Human Centric Workflows bezeichnet.
Eine Aktivität in einem Workflow, die ein Mensch ausgeführt, wird als Human Task bezeich-
net. Ein Human Task erfordert die Beurteilungen, Fähigkeiten, Entscheidungen oder das
Urteilsvermögen eines am Prozess beteiligten Menschen. In der Regel wird die Aufgabe
durch eine menschliche Handlung erfüllt. Der Mensch entscheidet, wann die Aufgabe als
abgeschlossen gilt. Erst wenn die bearbeitete Aufgabe beendet ist, wird mit der nächsten
Aktivität im Prozess fortgefahren [ABD+

07]. Das Einbinden von Menschen in den Workflow
und die Zuordnung von Aufgaben an sie wird als Human Task Management bezeichnet.
Sogenannte Worklist oder Tasklist Anwendungen listen dem Benutzer die Aufgaben für die
Ausführung meist in einer grafischen Oberfläche auf [SDK10].
Die Organization for the Advancement of Structured Information Standards (OASIS)2 [OAS]
hat mit der Spezifikation WS-HumanTask [AAD+

07a] eine abstrakte Beschreibung für die
Interaktion von Workflows mit Menschen entwickelt. Der Standard wurde zum Beispiel in
BPEL4People [AAD+

07b] für den BPEL Standard umgesetzt.

2.1.3. Scientific Workflows

Workflows können in unterschiedlichen Bereichen eingesetzt werden. Neben den Business
Workflows, die im Unternehmensumfeld verwendet werden, wird die Workflow Technologie
zunehmend auch in wissenschaftlichen Bereichen eingesetzt. Diese Workflows werden dann
als Scientific Workflows bezeichnet.

Durch den Einsatz von Business Workflow Technologien im wissenschaftlichen Bereich,
können die Wissenschaftler von den erprobten und bewährten Konzepten der Business
Workflows profitieren. In [GSK+

11] beschreiben Leymann et al. die Vorteile der Verwendung
von Workflows im wissenschaftlichen Bereich. Zum Beispiel können die Wissenschaftler ihre
Ergebnisse und Daten über Services mit anderen Wissenschaftlern teilen. So können sie dann
mit Hilfe von Workflows die Ergebnisse (gemeinsam) analysieren. Workflows sind in der
Lage mit großen Mengen an Daten zu arbeiten. Gerade im wissenschaftlichen Bereichen fallen
oft große Datenmengen an, zum Beispiel durch die Messungen von Sensoren. Ein weiterer,

2Die Organization for the Advancement of Structured Information Standards (OASIS): OASIS ist ein
internationales, non-profit Konsortium, das sich mit der Standardisierung von IT Sicherheit, Cloud Computing,
SOA, Web Services, und anderen Technologien beschäftigt [OAS].

16

2.1. Workflows

wichtiger Punkt ist, dass Workflows in verteilten und heterogenen Umgebungen ausgeführt
werden können. Solche Umgebungen sind im wissenschaftlichen Bereich die Regel und
können bei einer Zusammenarbeit von verschiedenen Institutionen kaum verhindert werden.
Des Weiteren erlaubt die Automatisierung von Schritten beim Entwurfs und der Ausführung
der Workflows dem Wissenschaftler, sich auf seine Forschungen zu konzentrieren. Zusätzlich
ermöglichen Workflows unterschiedliche Verfahren zu Fehlerbehandlung.

Die Anforderungen an die Workflows unterscheiden sich in den Einsatzbereichen eines
Unternehmensumfeldes und eines wissenschaftlichen Bereiches. Daher müssen die Business
Workflows zusätzlich an die Bedürfnisse der Wissenschaftler angepasst werden.
Wissenschaftler sind meist keine Computerexperten und benötigen daher bedienerfreundli-
che Anwendungen. Während Business Workflows Management Systeme möglichst allgemein
gehalten werden, um unabhängig vom Geschäftsmodell und der Infrastruktur zu sein, sind
Scientific Workflows Management Systeme oft sehr spezifisch und auf einen Anwendungs-
bereich angepasst.
Der Lebenszyklus von Geschäftsprozessen im Business Process Management3 besteht aus
mehreren getrennten und wiederholbaren Phasen. Der Lebenszyklus besteht aus den Phasen
Modellierung, Deployment (Installation und Konfiguration), Ausführung, Überwachung
und Analyse von Workflows. Jede dieser Phasen wird von einer spezifischen Rolle bear-
beitet. Dazu existieren im Workflow Management System meist spezielle Werkzeuge. In
der Business Welt wird üblicherweise jede Rolle von einer anderen Person eingenommen.
Bei Scientific Workflows ist der Kreis der beteiligten Personen viel kleiner. Meist wird der
gesamte Lebenszyklus von einem Wissenschaftler bearbeitet. Daher müssen die Werkzeuge
für die Bearbeitung der Phasen einfach und möglichst miteinander integriert sein. Abbildung
2.2 stellt die Lebenszyklen von Business Workflows und Scientific Workflow gegenüber.

Ein Wissenschaftler hat in der Regel ein exploratives Vorgehen. Er führt einen Prozess
aus und beobachtet die Resultate. Unter Umständen unterbricht er die Ausführung und
ändert das Modell und führt das Modell erneut aus. Daher existiert im Lebenszyklus eines
wissenschaftlichen Prozesses eine Rücksprungmöglichkeit von der Ausführungs- zur Model-
lierungsphase [SK]. Außerdem ist das Deployment sehr technisch. Die Komplexität sollte
möglichst vor dem Wissenschaftler verborgen werden. Daher sind im Lebenszyklus eines
Scientific Workflows meist die Phasen Modellierung und Deployment zusammengefasst,
sodass der Wissenschaftler sich nicht um das Deployment sorgen muss.

Das Deployment von Workflows ist ein sehr technischer Schritt. Dabei wird das Prozess-
modell in eine ausführbare Repräsentation überführt. Wissenschaftler sind aber keine Com-
puterexperten und sind deshalb nicht in der Lage mit der Komplexität des Deployment
umzugehen. Daher werden Scientific Workflows meist ohne eine Deployment Phase ausge-
führt. Stattdessen führen die Wissenschaftler die Workflows oft direkt nach der Modellierung
aus. Das Deployment wird im Hintergrund automatisch ausgeführt. Bei diesem Vorgehen

3Business Process Management (BPM): Zu Business Process Management zählt das Abfragen, Analysieren,
Beobachten und Reparieren von Prozessen sowie Verwalten des Verlaufs ausgeführter Prozesse und deren
Ressourcen [LR00].

17

2. Grundlagen

Phase

user

Execution

Monitoring

Analysis Modeling

Deployment

Client/Employe

IT Specialist

Business
Specialist

Business
Analist

Administrator

(A)

Execution
and

Monitoring

Analysis
Modeling

and
Deployment

Scientist

(B)

Abbildung 2.2.: (A) Lebenszyklus Business Process Management; (B) Lebenszyklus Scientific
Workflow [SK].

nähern sich Wissenschaftler häufig durch Ausprobieren an eine ausführbare Lösung an [SK].
Auch wenn Business Workflows mittlerweile die Nutzung von Grids durch die Open Grid
Services Architecture (OGSA) [IUH+

05] und das Web Services Ressourcen-Framework
(WSRF) [Ban05] erlauben, haben Scientific Workflows meist zusätzliche Bedürfnisse an die
Arbeit mit Grids. Beispiele hierfür sind die Suche nach freien Ressourcen oder die Planung
von Ausführungen.
Beim Business Workflow Management dient das Monitoring der Überwachung des gesamten
Systemzustands. Im wissenschaftlichen Workflow Management ist es dagegen wichtig, dass
der Wissenschaftler den Fortschritt seiner Berechnungen beobachten kann [SDK10].

Ein Scientific Workflow kann wie folgt definiert werden:

Definition 6 Ein Scientific Workflow ist ein Workflow zur automatisierten Ausführung von Prozes-
sen im wissenschaftlichen Bereich. Diese Workflows sind auf die Anforderungen der Wissenschaftler
spezialisiert.

2.2. Portale

Portale haben in den vergangen Jahren einen bedeutenden Stellenwert als Technologie im
Bereich der Informationsbereitstellung erlangt. Sie entstanden Ende der 90er Jahre aus der
Not heraus das das World Wide Web rasant und unkontrolliert wuchs. Nutzer des Internets
benötigten Hilfe diese Flut an Informationen zu filtern, um für sie relevante Informationen
zu erhalten. Einige Online-Dienst Anbieter erkannten diesen Problem und stellen auf ihren
Web Seiten gezielte Informationen und Dienste bereit. Diese Seiten konnten die Nutzern
dann als Ausgangspunkt bei ihrer Suche nutzen. Eine kontextbezogene Vorauswahl sollte die
Informationsüberflutung der Nutzer verhindern. [GK] Großmann und Koschek definieren
ein Portal wie folgt:

18

2.2. Portale

Definition 7 „Ein Portal ist ein zentraler und persönlicher Einstieg (Single Point of Access) in
die Informationswelt des Internet oder Intranet, von dem aus Verbindungen zu den relevanten
Informationen und Diensten hergestellt werden können.“

Ein Portal ist eine Webanwendung, die als Präsentationsschicht für Informationssysteme
dient. Portale werden dazu verwendet, Inhalte aus unterschiedlichen Anwendungen und
Informationsquellen auf einer Seite zusammenzuführen. Zusätzlich bieten sie häufig eine
personalisierte Auswahl und Darstellung der Informationen sowie eine vereinheitlichte
Anmeldung und Authentifizierung bei den beteiligten Systemen an [Kus05].

Portale können anhand von diversen Kriterien klassifiziert werden. In [GK] wird eine Klassi-
fikation anhand des Fokus (horizontal und vertikal) und des Nutzerkreises durchgeführt. Ein
horizontales Portal dient als Plattform für verschiedene Anwendungen. Es besitzt ein breites
Informationsangebot. Ein horizontales Portal richtet sich an keine spezifische Zielgruppe. Ein
Beispiel für ein horizontales Portal ist Google4. Ein vertikales Portal verfügt über eine spezielle
Auswahl von Anwendungen oder Funktionen. Der Funktionsumfang eines vertikalen Portals
ist spezialisiert auf die Anforderungen der Zielgruppe, für die es bereit gestellt wird. Ein
Beispiel für ein vertikales Portal ist ein Portal für die Abwicklung von Projekten in einem
Unternehmen. Ein offenes Portal ist für jeden Benutzer zugänglich. Auf ein geschlossenes
Portal hat nur eine definierte Benutzergruppe Zugriff. Sowohl das offene Portal als auch das
geschlossene Portal können über das Internet oder ein Intranet verfügbar sein.

Anhand dieser Kriterien leiten Großmann und Koschek vier Klassen von Portalen ab. Abbil-
dung 2.3 zeigt eine Matrix mit diesen vier Klassen.

Prozess-
orientiertes

Unternehmensportal
Konsumentenportal

Themenportal
Anwendungs-
orientiertes

Unternehmensportal

geschlossen offen

v
e
rt
ik
a
l

h
o
ri
zo
n
ta
l

Abbildung 2.3.: Klassifikation von Portalen nach Fokus(horizontal, vertikal) und Nutzer-
kreis(offen, geschlossen) [GK].

4Google: http://www.google.com

19

http://www.google.com

2. Grundlagen

„Ein prozessorientiertes Unternehmensportal stellt einer geschlossenen Benutzergruppe die
(automatisierten) Geschäftsprozesse des Unternehmens in einer einheitlichen Ablaufum-
gebung zur Verfügung“ [GK]. Das anwendungsorientiertes Unternehmensportal integriert die
Anwendungen und Datenbestände eines Unternehmens über die Benutzungsoberfläche des
Portals [GK]. Ein Konsumentenportal ist öffentlich zugänglich und stellt Informationen und
Dienste zur Verfügung. Es richtet sich aber an keine spezielle Zielgruppe. Das Themenportal
ist wie das Konsumentenportal öffentlich zugänglich. Allerdings sind die Anwendungen
und Dienste, die in dieser Klasse von Portalen angeboten werden, auf einen bestimmten
Nutzerkreis ausgelegt [Weg02].

Portale stellen heutzutage eine breite Palette an Diensten bereit.
Anpassung an den Nutzer: dabei erkennt das Portal einen Benutzer und stellt spezifische In-
halte für diesen bereit. Die Inhaltszusammenführung dient dazu, Inhalte aus unterschiedlichen
Quellen im Portal einheitlich zusammenzustellen. Die Inhalte werden dann meist in ver-
schiedenen Ausgabeformaten angeboten. Durch Single Sign On muss der Benutzer am Portal
nur einmal authentifiziert werden, um alle darin enthalten Anwendungen nutzen zu können.
Unterstützung verschiedener Geräte: das Portal kann Inhalte in Abhängigkeit des verwendeten
Endgerätes über verschiedene Kommunikationskanäle bereitstellen. Portal Administration:
die Inhalte des Portals können über einen Administrationsbereich angepasst werden. Der
Bereich spannt sich von der Erstellung von Benutzergruppen bis hin zum Look and Feel
der Inhalte. Portal Benutzerverwaltung: über die der Zugang zu dem Portal verwaltet werden
kann. Abhängig vom Portalsystem kann ein Portal so nur bestimmten Nutzern zugänglich
gemacht werden [Weg02].

2.2.1. Portalspezifische Architektur

Ein Portal kann von unterschiedlichen Blickpunkten betrachtet werden: aus der Sicht eines
Portalnutzers, der auf Inhalte zugreift, die ihm im Portal zur Verfügung gestellt werden, aus
der Sicht des Content Providers, der Inhalte für einen Portalnutzer bereitstellt sowie aus der
Sicht eines Portlet Entwicklers der die Anwendungen entwickelt, die für die Bereitstellung
der Inhalte im Portal benötigt werden [Pro11]. Im Folgenden wird näher auf die Sicht des
Entwicklers eingegangen.

Für die Komposition von Inhalten verwendet ein Portal eine Reihe von Komponenten. Die
Inhalte eines Portals werden in Portalseiten bereitgestellt. Abbildung 2.4 beschreibt den
Aufbau einer Portalseite. Die Inhalte der Portalseiten von Portlets generiert. Nauerz definiert
in [Dr.12] wie folgt:

Definition 8 „Ein Portlet ist eine Komponente (eine Anwendung) die Inhalte darstellt und Zugriff
auf Dienste und Informationen liefert. Portlet Anwendungen sind Bündel von zusammengehörigen
Portlets und Ressourcen, welche zusammengepackt sind. Alle Portlets die zusammen gepackt sind,
teilen einen gemeinsamen Kontext, der Ressourcen wie Bildern, Konfigurationsdateien und Klassen
beinhaltet.“

20

2.2. Portale

<Portlet Titel>

<Portlet Inhalt>

<Portlet Titel>

<Portlet Inhalt>

<Portlet Titel>

<Portlet Inhalt>

<Portlet Titel>

<Portlet Inhalt>

Titel &
Kontrollelemente

Portlet
Fragment

Portlet
Window

Portalseite

Abbildung 2.4.: Aufbau einer Portalseite [Hep08].

Ein Portlet erzeugt keine vollständige Antwort sondern nur Markup Fragmente aus zum
Beispiel HTML oder XML. Diese Fragmente werden häufig von der Portal Engine um einen
Titel und Steuerelemente erweitert. Das Ergebnis wird als Portlet Window bezeichnet. Die
Inhalte des Portlet Windows können sich abhängig von dem Client Request ändern. Portlet
Windows werden in Portalseiten eingebettet. Die Portalseite dient zur Aggregation der
Portlet Inhalte [Hep08]. Nauerz definiert eine Portalseite in [Dr.12] folgendermaßen:

Definition 9 „Eine (Portal)Seite stellt Inhalte dar. Eine Seite kann aus einem oder mehreren Portlets
bestehen.
...
In vielen Fällen definiert der Portal Administrator den Aufbau der Seite.
...“

Die fertige Portalseite wird nach der Erstellung als Antwort an den Client zurück gesendet.
Abbildung 2.5 veranschaulicht diesen Prozess.

21

2. Grundlagen

A

B C

D

Client Device

Portal
Server

Portlet
Container

Portlet A

Portlet B

Portlet C

Portlet D

Po
rt

a
ls

e
it

e
Po

rt
le

t
W

in
d

o
w

Abbildung 2.5.: Aggregation der Portlet Inhalte [Hep08].

Ein Portal besteht in der Regel aus mehreren Portalseiten, durch die ein Benutzer navigieren
kann. Damit eine Navigation zwischen den Portalseiten möglich ist, müssen die Portalseiten
miteinander verbunden werden. Nauerz hat dafür in [Dr.12] folgende Definition:

Definition 10 „ Ein Navigationsmodell repräsentiert die Beziehung zwischen einzelnen Portalseiten
und definiert somit die in der Regel hierarchische, Navigationsstruktur des gesamten Web Portals.“

2.2.2. Portlets und Portlet Container

Portale werden oft als JEE5 Anwendungen entwickelt. In JEE werden die Komponenten in
speziellen Containern innerhalb des Application Servern bereitgestellt. Ein Container ist eine
spezielle Laufzeitumgebung für die Komponenten, in der spezielle Dienste bereitstellt sind.
Portlets werden zum Beispiel im Portlet Container ausgeführt. Der Portlet Container ist eine
Erweiterung der Servlet Containers Spezifikation [Mor09].

Definition 11 Ein Portlet Container führt Portlets aus und stellt ihnen die benötigte Laufzeitum-
gebung zur Verfügung. Ein Portlet Container verwaltet die Instanzen und den Lebenszyklus von
Portlets.

Die Portlet API beschreibt die Schnittstelle zwischen einem Portlet und dem Portlet Container.
Neben der Portlet API muss das Portal dem Portlet weitere Dienste bereitstellen. Beispiel

5JEE (Java Plattform, Enterprise Edition): Ist eine Spezifikation für eine Middelwarearchitektur [DS]. Weitere
Informationen können unter http://www.oracle.com/technetwork/java/javaee gefunden werden.

22

http://www.oracle.com/technetwork/java/javaee

2.2. Portale

hierfür sind Dienste für das Persistieren von Daten oder das Abfragen von Benutzerinfor-
mationen. Diese Dienste stellt das Portal über das Portal Service Interface zur Verfügung.
Abbildung 2.6 veranschaulicht den Aufbau einer Portal Server Anwendung.

Portal-
engine

Portal Service Interface

Anwendung

Inhalt

Persistence
Service

User
Information

Service

Dispatcher

PortletPortlet

Servlet
Request

Servlet
Response

Portlet
Request

Portlet
Response

Portlet
Interface

Portlet
Invocation
Interface

Abbildung 2.6.: Komponenten Portal Anwendung [Weg02].

Eine Portal Anwendung ist als Servlet implementiert. Ein Servlet ist eine Anwendung die An-
fragen von einem Client entgegennehmen und beantworten kann. Die Portal Engine nimmt
die Servlet Anfragen vom Servlet Container entgegen. Die Anfragen transformiert sie im
Anschluss in einen Portlet Request. Ein Portlet Request beinhaltet zusätzliche Informationen,
die für die weitere Verarbeitung von den Portlets benötigt werden. Der Portlet Request wird
dann über den Dispatcher (deutsch: Disponent) an die entsprechenden Portlets verteilt. Die
Portlets werden im Portlet Container ausgeführt und über die Portlet API angesprochen. Die
Portlets können während sie ausgeführt werden über das Portal Service Interface auf Dienste
des Portals zugreifen. Nachdem alle Portlets ausgeführt wurden, fügt die Portal Engine die
Antworten aller Portlets zusammen und sendet sie an den Client zurück [Weg02].

2.2.3. Portlet API

Die Portlet API ist durch den Java Specification Request6
168 und 286 spezifiziert. Die Spezi-

fikation [Hep08] dient als Standard für die Implementierung des Java Portlet Containers
und Portlets. Durch diesen Standard können Portlets herstellerunabhängig und portierbar
entwickelt werden [Weg02]. Dies ermöglicht eine Interoperabilität von Portlets auf unter-
schiedlichen Portal Servern.

6Java Specification Requests (JSR): ist die Beschreibung von geplanten und fertigen Spezifikationen für die
Java Plattform. Die Spezifikationsanfragen werden vom Java Community Process (JCP) http://jsp.org,
einer Gemeinschaft für die Entwicklung von Java Standards, verwaltet.

23

http://jsp.org

2. Grundlagen

Die Portlet API beschreibt die Request und Response Objekte, welche die Anfrage an das
Portlet und dessen Antwort beinhalten. Des Weiteren beschreibt die Portlet API den Portlet
Lebenszyklus. Der Lebenszyklus ist durch die Portlet Schnittstelle abgebildet. Jedes Portlet
muss diese Schnittstelle implementieren. Der Portal Container führt die Portlets anhand der
Phasen des Lebenszyklus aus. Der Portlet Lebenszyklus beginnt mit der Initialisierung des
Portlets. Anschließend verarbeitet das Portlet eingehende Anfragen (Requsts). Wenn das
Portlet nicht mehr benötigt wird, wird es beendet und entfernt [Kus05].

Abbildung 2.7 veranschaulicht die Phasen des Portlet Lebenszyklus

Container Portlet

Init

processAction

processEvent

render

serveRessource

destroy

Abbildung 2.7.: Lebenszyklus eines Portlets [Hep08].

Die ini Methode dient für mögliche Instanzierungen innerhalb des Portlets. Sie wird bei
der Instantiierung des Portlets vom Portlet Container aufgerufen. Die processAction und die
render Methode dienen für die Verarbeitung von Nutzeranfragen. Während processAction für
Anfragen vorgesehen ist, die den Zustand des Portlets verändern, dient die render Methode
der Erzeugung des Inhaltsfragments. Die processEvent Methode dient der Verarbeitung von
Ereignissen, die zwischen Portlets gesendet werden können. Diese Methode ist im JSR
286 zur Portlet Spezifikation hinzugekommen. Wird die processAction Methode aufgerufen,
führt der Portal Container auch die processEvent und render Methoden aller Portlets auf der
Portalseite aus. So ist es möglich, dass Portlets sich untereinander Ereignisse senden.
Die serveResource Methode liefert weitere Ressourcen wie z.B. Bilder, die im Inhaltsfragment
benötigt werden. Um Ressourcen auszuliefern, kann die Methode zu jedem Zeitpunkt

24

2.3. Zusammenfassung

ausgeführt werden (solange das Portlet existiert), ohne das Portlet neu rendern zu müssen.
Daher kann diese Methode auch für asynchrone Aufrufe an das Portlet genutzt werden.
Wenn das Portlet nicht mehr benötigt wird, wird vom Portal Container die destory Methode
aufgerufen. In ihr können Aufräumarbeiten implementiert werden [Hep08].

2.3. Zusammenfassung

In diesem Kapitel wurden die für diese Arbeit wichtigsten Technologien, Workflows und
Portale, vorgestellt. Ein Prozess ist eine Ausführung von Aktivitäten, um eine definiertes Ziel
zu erreichen. Sind die Aktivitäten und Rahmenbedienungen für die Erreichung des Ziels
definiert, folgt der Prozess einem Prozessmodell. Prozesse müssen nicht automatisiert sein.
Wird ein Prozess teilweise oder ganz durch Computerunterstützung ausgeführt, wird dieser
als Workflow bezeichnet. Prozesse die zur Erreichung von Unternehmenszielen eingesetzt
werden, werden als Geschäftsprozesse Prozesse bezeichnet. Workflows im Unternehmen-
sumfeld werden als Business Workflows bezeichnet. Auch im wissenschaftlichen Bereich
werden Prozesse eingesetzt. Die automatisierten Prozesse werden in diesem Bereich als
Scientific Workflows bezeichnet. Zwischen Business Workflows und Scientific Workflows
existieren Anforderungen, die sich überschneiden, zum Beispiel das Arbeiten mit großen
Datenmengen. Dennoch existieren auch Anforderungen, bei denen sich Business Workflows
und Scientific Workflows unterscheiden. Ein Beispiel hierfür ist der Prozess Lebenszyklus.
Während an einem Business Workflow eine ganze Reihe an Personen arbeiten (Workflow
Modellierer, IT Experte, Benutzer, Analyst), arbeitet an einem Scientific Workflow meist nur
ein Wissenschaftler.
Sowohl in Geschäfts- als auch in wissenschaftlichen Prozessen sind Interaktionen mit einem
Benutzer erforderlich, zum Beispiel im Falle eines Fehlers. Aktivitäten, die aus solchen
Interaktionen bestehen, werden als Human Tasks bezeichnet.

Portale sind Webanwendungen, die für die Integration von Informationssystemen entwickelt
wurden. Sie dienen als zentraler Zugangspunkt und sind an den Benutzer anpassbar. Portale
können anhand verschiedener Kriterien klassifiziert werden. Zum Beispiel anhand des Fokus
(horizontal, vertikal). Ein horizontales Portal besitzt ein breites Informationsangebot, ein
vertikales Portal ein spezifisches Informationsangebot. Eine anderes Möglichkeit ist die
Klassifizierung nach der Benutzergruppe (offen, geschlossen). Ein Portal kann öffentlich
zugänglich sein, dann handelt es sich um ein offenes Portal. Wenn das Portal nur für eine
ausgewählten Benutzergruppe zugänglich ist, handelt es sich um ein geschlossenes Portal.
Ein Portal besteht in der Regel aus mehrere Portalseiten. Eine Portalseite enthält ein oder
mehrere Portlet Windows. Ein Portlet Window enthält die Inhalte (Fragmente), die von
einem Portlet generiert werden. Ein Portlet ist eine Anwendung, die Inhalte darstellt und
Zugriff auf Dienste und Informationen liefert. Portlets werden in einem Portal Container
ausgeführt. Die Schnittstelle zwischen Portlet und Portlet Container ist standardisiert.

25

3. Screenflows

Wie im Kapitel Grundlagen beschrieben, sind auch in automatisierten Prozessen häufig noch
(immer) menschliche Handlungen erforderlich. Diese werden als Human Tasks bezeichnet.
Beispiele für Human Tasks sind unter anderem die Eingabe von Daten, die für den Prozess
benötigt werden oder die Entscheidung, wie sich ein automatisiertes System im Fehlerfall
verhalten soll. Für die Interaktion mit einem Benutzer, sind Benutzungsschnittstellen erfor-
derlich. Im Kapitel Grundlagen wurde beschrieben, dass ein Portal als Präsentationsschicht
für Informationssysteme dient. Portale sind daher ein geeignetstes Mittel für die Umsetzung
von Benutzungsschnittstellen.

3.1. Benutzungsschnittstellen mit Portalen

Der Einsatz von Portalen für die Umsetzung von Benutzungsschnittstellen hat zahlreiche
Vorteile. Benutzungsschnittstellen die auf Basis der Portaltechnologie erstellt werden, sind
plattformunabhängig. Sie können auf allen Systemen verwendet werden, die einen Web-
browser besitzen. Eine Voraussetzung hierfür ist natürlich, dass die Inhalte der verwendeten
Portlets auf HTML aufgebaut sind.
Portale ermöglichen es, komplexe Benutzungsschnittstellen zu erstellen. Je nach Bedarf
können Entwickler unterschiedliche Technologien bei der Umsetzung verwenden. So lassen
sich von einfachen HTML Formularen bis hin zur komplexen Webanwendungen mit einem
Portlet realisieren.
Über die im Portal vorhanden Werkzuge können Benutzungsschnittstellen und Benutzer
verwaltet werden. Durch eine Benutzerverwaltung innerhalb des Portal Servers kann die
Authentifizierung und die Autorisierung der Benutzer geregelt werden. Ein Administrator
ist für die Vergabe von Rollen und einzelnen Rechten verantwortlich. So kann der Zugriff
auf die einzelnen Benutzungsschnittstellen durch die dafür vorgesehenen Nutzergruppen
gesteuert werden.
Über das Portal kann auch ein einheitliches Erscheinungsbild der Benutzungsschnittstellen
hergestellt werden. Das sogenannte Look and Feel kann vom Portal Administrator für das
gesamte Portal eingestellt werden. Änderungen des Look and Feels können meist mit wenig
Aufwand vorgenommen werden.
Wie in Kapitel 2 beschrieben, dient ein Portal als zentraler Zugangspunkt und häufig zur
Integration von Anwendungen. Die Benutzer können so das Portal als zentrale Arbeitsum-
gebung nutzen, in der alle benötigten Anwendungen über Portlets bereitgestellt werden.
Die verfügbaren Anwendungen können so bei Bedarf mit dem Workflowsystem verbunden
werden [SLWM07].

27

3. Screenflows

3.2. Heutige Kommunikation zwischen Workflow- und
Portalsystemen

Ein häufig eingesetztes Konzept für die Interaktion zwischen Workflowsystem und Benut-
zern, ist die sogenannte Task List. In einer Task List werden die Human Tasks aufgelistet,
die von einer potenziellen Gruppe von Benutzern abgearbeitet werden können. Wählt ei-
ner der Benutzer den Human Task zur Bearbeitung aus, wird ihm die dafür vorgesehene
Benutzungsschnittstelle angezeigt.

In Portalen kommt dieses Konzept häufig zum Einsatz. In Abbildung 3.1 wird das Zusammen-
spiel zwischen einer Workflow Engine, Task List Portlet und Task Page veranschaulicht.

Task API

Task Page

Task List Portlet

HT HT HTHT HT

Task Process
Portlet

Support
Portlet

5

1

3

2 4

Workflow Engine

Portal

Abbildung 3.1.: Interaktion zwischen Workflow Engine und Task List Portlet.

Um die (Human) Tasks (deutsch Aufgaben) für einen Benutzer im Task List Portlet an-
zuzeigen, ruft das Task List Portlet alle vorhanden Human Tasks (HT) für den aktuellen
Benutzer von der Task API des Workflowsystems ab (Polling) (1). Nachdem ein Task vom
Benutzer angenommen (claim) wurde, wird der Taskname zu einem Link. Durch das Flo-
gen (anklicken) des Links wird das für den Task definierte Portlet (Task Process Portlet)

28

3.3. Screenflows

instanziiert. Während diesem Aufruf übergibt das Task List Portlet dem Portlet die ID des
Human Task. Bei seiner Initiierung kann das Portlet alle benötigten Daten von der Task API,
des Workflowsystems abfragen (2). Nachdem die Initiierung abgeschlossen ist, wird der
Benutzer auf eine Portalseite (Task Page) für die Bearbeitung des Tasks weitergeleitet (3).
Die Portalseite enthält das initiierte Portlet, das für die Bearbeitung des konkreten Tasks
vorgesehen ist. Zusätzlich kann sie noch weitere Portlets (Support Portlet) enthalten, die den
Benutzer bei der Bearbeitung des Tasks unterstützen. Beispiele hierfür sind ein Kalender
Portlet oder ein Portlet, das dem Benutzer das Abfragen von Kundendaten ermöglicht.
Nachdem die Benutzungsschnittstelle vollständig geladen ist, kann der Benutzer mir der
Bearbeitung des Tasks beginnen. Wenn der Benutzer die Bearbeitung des Tasks abgeschlossen
hat, werden die Ergebnisdaten über die Task API an den Prozess übergeben (4). Der Prozess
kann danach mit der Verarbeitung fortfahren. Nachdem die Ergebnisdaten übertragen wur-
den, wird der Benutzer zurück zur Task List geleitet (5). Dort kann er dann den nächsten
Task für die Bearbeitung auswählen [SLWM07]. Durch die Verwendung einer Task List für
die Interaktion von Menschen mit einem Workflow werden Human Tasks auf Task Pages
abgebildet.

Abbildung 3.2 veranschaulicht einen beispielhaften Ablauf einer Abarbeitung von drei
Human Tasks mit Hilfe einer Task List. Erst greift die Task List aus die Task API zu.
Anschließend werden nacheinander die Portlets A, B und C für die Bearbeitung der Human
Tasks instanziiert.

3.3. Screenflows

Häufig wollen Modellierer von Geschäftsprozessen nicht jeden Human Task separat im
Prozessmodell modellieren. Insbesondere dann nicht, wenn sie wissen, dass mehrere auf-
einander folgende Tasks vom selben Benutzer ausgeführt werden. In so einem Fall ist es
überflüssig, den Benutzer für jeden seiner Tasks erneut auf die Task Page zu leiten. Zusätz-
lich ist es für den Benutzer unkomfortabel, jeden dieser Tasks explizit aus der Task List
auszuwählen (häufige Weiterleitungen zur Task List).

Um Prozesse mit Portlets abzubilden, existieren zwei Möglichkeiten. Erstens, das Schreiben
eines komplexen Portlets, welches die gesamte Prozesslogik enthält. Bei diesem Ansatz kann
der Nutzer durch den gesamten Prozess innerhalb des Portlets geführt werden. Nachteilig ist
jedoch, dass bei jeder Änderung des Prozesses der Quellcode des Portlets angepasst werden
muss. Zusätzlich ist das entwickelte Portlet durch den definierten Prozess sehr spezifisch
und kann so selten wiederverwendet werden.
Zweitens, das Schreiben von mehreren einfachen, feingranularen Portlets, die gemeinsam
den Prozess abbilden. Die einzelnen Portlets eignen sich so hervorragend für die Wieder-
verwendung. Allerdings fehlt bei diesem Ansatz eine Führung des Benutzers durch den
Prozess. Es fehlt eine zentrale Komponente, die den Ablauf definiert. Die Reihenfolge in der
die Portlets ausgeführt werden müssen, bleibt dem Benutzer überlassen.

Der Screenflow Manager vereint die Vorteile beider Ansätze. Er erlaubt es, einfache und fein-
granulare Portlets zu verwenden, die dann deklarativ als Screenflow miteinander verbunden

29

3. Screenflows

Task API Task API Portlet A Portlet B Portlet C

Asynchroner Aufruf

Synchroner Aufruf

Legende:

Abbildung 3.2.: Sequenzdiagramm der Ausführung von drei Human Tasks mit einer Task
List.

werden. Ein Screenflow besteht aus einer Abfolge von Portalseiten, welche die miteinander
verbundenen Portlets enthalten. Der Screenflow wird über die Screenflow Definition beschrie-
ben. Sie definiert alle beteiligten Portlets und beschreibt alle Transitionen zwischen ihnen.
In Abbildung 3.3 wird das Zusammenspiel dieser Komponenten veranschaulicht. Weitere
Details können im Kapitel Screenflow Manager nachgelesen werden.

30

3.4. Screenflows als Teil von Workflows

Portlet
Screenflow

Screenflow
Manager

P1 P2 Pn

Screenflow
Definition

Abbildung 3.3.: Komponenten eines Screenflows.

3.4. Screenflows als Teil von Workflows

In Erweiterung dessen, was im vorhergehenden Abschnitt beschrieben ist, dass durch den
Einsatz der Portal Technologie Human Tasks auf Task Pages abgebildet werden können,
existiert mit dem Screenflow Manager die Möglichkeit, Human Tasks auf ganze Sequenzen
von Task Pages (Screenflows) abzubilden.

Eine Möglichkeit Screenflows in den Workflow mit einzubinden, ist die Verwendung einer
modifizierten Task List. Diese stellt statt einzelner Human Tasks, eine Liste von Screenflows
bereit. Der Screenflow substituiert dann mehrere aufeinanderfolgende Human Tasks, die
vom gleichen Benutzer abzuarbeiten sind. Durch das Klicken auf einen Listeneintrag wird
von dem modifizierten Task List Portlet ein spezielles Startereignis gesendet. Dadurch wird
der Screenflow Manager benachrichtigt, eine Instanz des definierten den Screenflows zu
starten. Das Startereignis beinhaltet die ID des Human Tasks. Diese speichert der Screenflow
Manager im Dialog Context1.

Wie bei einem herkömmlichen Task List Portlet tauschen die am Screenflow beteiligten
Portlets Daten mit dem Workflowsystem aus. Dabei sind unterschiedliche Ansätze möglich.
Ein Ansatz ist, dass das erste Portlet alle benötigten Daten aus dem Human Task lädt und
im Dialog Context abspeichert. Alle weiteren Portlets greifen dann auf den Dialog Context
zu, um mit den Daten zu arbeiten. Das letzte Portlet gibt dann alle Ergebnisse an das
Workflowsystem zurück und schließt den Human Task ab.

1Dialog Context: Der Dialog Context ist ein temporärer Speicher für die Screenflows. Weitere Informationen
zum Dialog Context können im Kapitel Screenflow Manager nachgelesen werden.

31

3. Screenflows

Eine weitere Möglichkeit ist, statt das erste und das letzte Portlet für die Kommunikation
mit dem Workflow System zu nutzen, Event Mapper Klassen2 einzusetzen. Diese können nach
dem Auftreten des Startereignisses die Daten für den Human Task aus dem Workflowsystem
lesen und im Dialog Context ablegen. Die am Screenflow beteiligten Portlets greifen dann nur
auf den Dialog Context zu. Nachdem der Screenflow abgeschlossen ist und das Endereignis
vom letzten Portlet ausgelöst wird, gibt eine weitere Event Mapper Klasse die Daten an das
Workflowsystem zurück und beendet den Human Task.
Noch ein weiterer Ansatz wäre, dass jedes Portlet selbst für das Lesen und Schreiben
der Daten mit dem Workflowsystem verantwortlich ist. Dabei würde dann erst das letzte
Portlet den Human Task als abgeschlossen markieren. Dieser Ansatz wird in Abbildung 3.4
veranschaulicht. Es ist auch eine Mischung aus den zuvor vorgestellten Ansätzen möglich.
Dabei kommuniziert nur eine Teilmenge der am Screenflow beteiligten Portlets mit dem
Workflowsystem. Portlets oder Event Mapper, die mit dem Workflowsystem kommunizieren,
können auf den Dialog Context zugreifen, um die ID des Human Tasks zu erhalten und
andere Daten miteinander auszutauschen.

Workflowsystem

Screenflow Manager

Task List Portlet

ST HT HT

Screenflow

1

2

ST = System Task

HT = Human Task

Legende:

Abbildung 3.4.: Interaktion zwischen Workflow Engine und Screenflow.

2Event Mapper Klasse: Durch eine Event Mapper Klasse kann Code für die Transformation von Ereignissen
ausgeführt werden. In diesem Kontext wird der Code für das Auslesen und Schreiben der Daten mit
Workflowsystem verwendet werden. Weitere Informationen zu den Event Mappern können im Kapitel
Screenflow Manager gefunden werden.

32

3.5. Zusammenfassung

3.5. Zusammenfassung

Human Tasks sind Aktivitäten in einem Workflow, die menschliche Handlungen erfordern.
Für die Interaktion mit Menschen werden Benutzungsschnittstellen benötigt. Portale eig-
nen sich sehr gut für die Umsetzung von Benutzungsschnittstellen. Ein sehr verbreitetes
Konzept für die Bearbeitung von Human Tasks basiert auf der Nutzung von Task Listen.
Diese listen dem Benutzer alle Human Tasks auf, die von ihm bearbeitet werden sollen. Es
existieren jedoch Situationen, in denen ein Prozessmodellierer nicht für jede Aktivität, die
vom selben Benutzer ausgeführt wird einen Human Task im Prozessmodell definieren will.
Hier wird dann der Teilprozess auf der Ebene der Benutzungsschnittstelle abgebildet. Um
die Portlets, die für die Abarbeitung solcher Human Tasks verwendet werden, dennoch
wiederverwendbar zu machen und eine Führung des Benutzers zu ermöglichen, wurde das
Konzept des Screenflow Managers entwickelt. Der Screenflow Manager kann einen Benutzer
durch eine definierte Abfolge von Portalseiten und Portlets leiten. Eine solche Abfolge wird
als Screenflow bezeichnet. Ein Screenflows kann dazu eingesetzt werden, um einen Human
Task auf einer Sequenz von Portalseiten abzubilden.

33

4. Verwandte Arbeiten

Nachdem im vorhergehenden Kapitel das Konzept der Screenflows vorgestellt wurde,
handelt dieses Kapitel von verwandten Arbeiten aus diesem Bereich. Der Fokus dabei liegt
auf webbasierten Screenflow- oder Dialogkontrollsystemen. Die auswählten Arbeiten haben
einen theoretischen oder praktischen Bezug zu diesem Thema.

4.1. Theoretische Arbeiten

Bei den theoretischen Arbeiten handelt es sich um Arbeiten, welche lediglich Konzepte ohne
konkrete Implementierung beschreiben. Arbeiten welche auch konkrete Implementierungen
umfassen, werden anschließend im Abschnitt 4.2 beleuchtet.

Modellierung webbasierter Dialog Flows für eine automatische Dialogkontrolle

In [BG04] stellen Book und Gruhn ein auf MVC1 basiertes Konzept für die Implementierung
einer Dialogflusskontrolle vor. In webbasierten Anwendungen ist die Dialogkontrolllogik
meist in der Präsentations- oder der Anwendungslogik enthalten. Dies erschwert die Kontrol-
le bei komplexen Dialogen und verhindert eine Wiederverwendung der plattformunabhängi-
gen Anwendungslogik, da verschiedene Geräte meist unterschiedliche Anzeigemechanismen
verwenden. Um diese Probleme zu lösen und eine ständige Reimplementierung der Kon-
trolllogik zu vermeiden, wird in dem Paper eine Lösung namens Dialog Control Framework
vorgestellt. Das Framework kann unabhängig von der Präsentations- und der Businessschicht
mehrere Dialog Flows (Screenflows) verwalten. Es verwendet für die Dialogspezifikation
eine für diesen Zweck entwickelte Dialogflussnotation. Mit deren Hilfe kann ein Dialog Graph
erstellt werden. Dieser wird dann in ein maschinenlesbares Format übertragen. Dieses Mo-
dell kann kann dann in ein objektorientiertes Dialogflussmodell transformiert werden, welches
dann dem Framework zur Laufzeit zur Verfügung steht. Durch diese Vorgehensweise wird
im Framework die Dialogkontrolle automatisiert, sodass sich die Entwickler auf Aufgaben
wie die Entwicklung der Anwendungslogik, die Gestaltung der Präsentationsschicht und
die Flow Definition konzentrieren können.

1MVC: Steht für Model, View und Controller. Dabei handelt es sich um ein Entwurfsmuster, welches die
Benutzungsschnittstelle von der Anwendungslogik entkoppelt, wodurch die Wiederverwendbarkeit und
Flexibilität erhöht wird [GHJV96].

35

4. Verwandte Arbeiten

Das in dem Paper vorgestellte Dialog Control Framework soll zwar eine grafische Notation
für die Dialogdefinition verwenden, es wird jedoch nicht näher spezifiziert, welche Werk-
zeuge für die Modellierung existieren und wie ein Dialog Graph in ein maschinenlesbares
Format transformiert wird. Es ist zwar generell eine unabhängige Definition von Screenflows
möglich, es fehlen aber die grafischen Modellierungswerkzeuge, die vor allem von technisch
nicht versierten Nutzern benötigt werden.

Java BluePrints

Die Java BluePrints [Ora] sind eine Sammlung von Werken, die eine Übersicht über die
Hauptmerkmale der JEE Plattform geben und dabei dem Leser das JEE Programmiermodell
näher bringen. In [Kt00] stellen Kassem et al. eine Beispielanwendung namens Java Pet Store
zur Veranschaulichung der JEE Technologie vor.
Der Java Pet Store ist eine Onlineshop Anwendung, welche verschiedene Bereiche im E-
Business abdeckt. Der Shop besteht aus einer webbasierten Benutzungsschnittstelle, über die
Kunden ihre Einkäufe im Shop tätigen können. Einer Schnittstelle für eine Administrations-
anwendung, welche es den Shop Administratoren erlaubt die Bestellungen der Kunden zu
verwalten und das Inventar im Shop zu pflegen. Und schließlich einer Business-to-Business
Schnittstelle, über die der Shop mit seinen Lieferanten kommunizieren kann.
Ein besonderes Interesse im Zusammenhang mit dieser Arbeit besteht am webbasierten Teil
der Shop Anwendung. Genauer, an der Architektur der Dialogkontrolle. Beim Design der
Anwendung wurde darauf Wert gelegt, die einzelnen Screens voneinander zu entkoppeln,
sodass der Shop leicht erweitert oder verändert werden kann. Dazu wurde eine Komponente
namens ScreenflowManager eingeführt. Der ScreenflowManager ist als Zustandsautomat2

(endlicher Automat) aufgebaut, der anhand der momentan angezeigten Seite des Shops und
in Abhängigkeit von der Nutzerinteraktion die Folgeseite ermittelt. Die Übergänge sind in
der ScreenflowManager Klasse fest kodiert. Das macht die Anwendung unflexibel.

Der in dieser Arbeit verwendete Screenflow Manager erlaubt im Gegensatz zum Screen-
flow Manager des Pet Shops, eine deklarative Beschreibung der Abläufe in einer
plattformunabhängigen Beschreibungssprache. Dies hat den Vorteil, dass die Anwendung
für eine Änderung eines Ablaufs nicht neu kompiliert werden muss.

4.2. Praktische Arbeiten

Bei den praktischen Arbeiten handelt es sich um Frameworks, welche die Entwickler bei der
Erstellung von Webanwendungen in Bezug auf Screenflows unterstützen. Die Frameworks
werden in Open Source Projekten entwickelt.

2Zustandsautomat: Ein Zustandsautomat (endlicher Automat) ist ein Modell für ein System, das aus einer
endlichen Anzahl an Zuständen beseht. Ein Zustand enthält die Informationen, über die bisherigen Eingaben
und über die Eingaben die notwendig sind um einen Zustandswechsel in einen Folgezustand zu erreichen
[JRJ02].

36

4.2. Praktische Arbeiten

Spring Web Flow

Spring Web Flow3 ist ein Bestandteil des quelloffenen, Java basierten Spring Frameworks4.
Ein Web Flow dient der Steuerung von Abläufen und der Kontrolle des Flusses durch die
grafische Benutzungsschnittstelle einer Webapplikation. Für die Trennung zwischen der
Präsentations- und der Anwendungslogik baut Spring Web Flow auf das Spring Web MVC
Framework auf.

Ein Web Flow kapselt eine Reihe von Schritten, die in verschiedenen Szenarien ausgeführt
werden können. Web Flows sind in sich abgeschlossen definiert, wodurch die Wiederver-
wendung von Teilen der Anwendung innerhalb der Anwendung und in anderen Projekten
möglich wird. In Spring Web Flow besteht ein Web Flow aus einer Menge von Zuständen.
Dabei repräsentiert ein Zustand einen Punkt im Fluss, an dem eine Aktion ausgeführt wird.
Jeder Zustand hat eine oder mehrere Transitionen, die einen Übergang in einen Folgezustand
darstellen. Eine Transition wird durch ein Ereignis ausgelöst. Ein Übergang in einen Folge-
zustand endet meist in einer neuen Ansicht für den Benutzer, über die er mit dem System
interagieren kann. Während der Interaktion werden Ereignisse generiert. Diese generierten
Ereignisse können dann zu neuen Übergängen führen, wodurch eine Art Navigation durch
die Benutzungsschnittstellen entsteht.

Ein Web Flow kann mittels einer XML-basierten Sprache, der Flow Definition Language,
beschrieben werden. Die wichtigsten Sprachelemente sind der View-State, die Transition und
der End-State. Das View-State Element repräsentiert einen Schritt im Web Flow und wird mit
einem Template verknüpft, welches für die Darstellung der Ansicht zuständig ist. Mittels
dem Transition Element lassen sich Ereignisse, die in der Regel im View-State generiert
werden, mit Zustandsübergängen verbinden. Durch den resultierenden Übergangsgraphen
entsteht ein Navigationspfad zwischen den verschieden View-States. Durch das End-State
Element können Endzustände im Fluss definiert werden [DVG+].

Spring bietet für die eigene Entwicklungsumgebung Spring IDE ein Werkzeug namens
Spring IDE Web Flow Editor an, welches es ermöglicht, Spring Web Flows während der
Designzeit grafisch zu visualisieren und zu modellieren.

Die Konzepte des Spring Web Flows haben große Ähnlichkeit zu den in dieser Arbeit
verwendeten Screenflows. Im Gegensatz zur Spring Web Flow Editor Implementierung
ermöglicht das in dieser Arbeit entstandene Modellierungswerkzeug eine Modellierung der
Screenflows zur Laufzeit.

3Weitere Informationen zu Spring Web Flow können unter http://www.springsource.org/spring-web-flow
gefunden werden.

4Die Webseite des Spring Framework ist unter http://www.springsource.org zu finden.

37

http://www.springsource.org/spring-web-flow
http://www.springsource.org

4. Verwandte Arbeiten

RIFE

RIFE5 ist ein in Java implementiertes Framework für die Entwicklung von Webanwendungen
mit einer breiten Palette an mitgelieferten Werkzeugen. Ziel des Projektes ist die Unter-
stützung der Entwickler von Java basierten Webanwendungen. Dabei wurde besonders
darauf Wert gelegt, dass alle Arbeitsschritte während des Entwicklungszyklus voneinander
getrennt werden können, damit verantwortlichen Personen sich optimal auf ihre Aufgaben
konzentrieren können.

Von den zahlreichen Funktionen die RIFE bietet, ist im Zusammenhang mit dieser Arbeit
besonders das Konzept des Anwendungsflusses von Interesse. RIFE trennt dabei Anwen-
dungslogik von der Ablaufsteuerung. Durch die Verwendung von Flow und Data Links kann
ein Ablauf und Kontrollfluss zwischen den einzelnen Seiten einer Webanwendung hergestellt
werden. Um Elemente in RIFE miteinander zu verbinden, gibt es die sogenannten Flow Links.
Damit Elemente verbunden werden können, müssen sie einen Eingang oder einen Ausgang
bereitstellen. Der Ausgang eines Elements ist dann der Startpunkt eines Flow Links und der
Eingang eines weiteren Elements der Endpunkt. Dabei können die Elemente auch reflexiv
sein, also einen Flow Link auf sich selbst haben. Um auch Daten zwischen den Elementen
austauschen zu können, müssen sogenannte Data Links erstellt werden. Hierfür ist es erfor-
derlich, dass in der Elementdefinition Dateneingänge und Datenausgänge festgelegt werden.
Der Data Link verbindet dann einen Datenausgang eines Elements mit dem Dateneingang
eines Zielelementes [Com06].

Durch die Flow und Data Links stellt RIFE den Entwicklern ein ähnlich mächtiges Werkzeug
zur Entwicklung von Screen Flows zur Seite wie den Screenflow Manager aus dieser Arbeit.
Das Framework bietet für die Flow Definition jedoch kein grafisches Modellierungswerkzeug.
Zusätzlich sind auf der RIFE Projektseite schon seit längerer Zeit keine Aktivitäten mehr
festzustellen, sodass die Zukunft des Projekts fraglich ist.

Apache Cocoon

Apache Cocoon6 ist ein Framework, das auf Basis von XML Dokumenten die Erstellung von
Webseiten und Publikationslösungen7 ermöglicht. Das Cocoon Projekt basiert selbst auf
einer Reihe anderer Apache Projekte. Für die grundlegende Architektur von Cocoon wurde
zum Beispiel das Apache Projekt Avalon8 herangezogen, welches die Entwicklung von
komponentenorientierter Software unterstützt. Cocoon ist in Java programmiert und kann
lokal oder als Servlet ausgeführt werden. Innerhalb eines Servlet Containers kann Cocoon
auf ankommende Requests reagieren. Cocoon ermöglicht es mittels der Basiskomponenten

5Weitere Informationen zu RIFE können unter http://rifers.org gefunden werden.
6Weitere Informationen zu Apache Cocoon können unter http://cocoon.apache.org gefunden werden.
7 Publikationslösung: Herausgabe von Inhalten in unterschiedlichen Formaten für verschiedene Medienkanäle

und Endgeräte.
8Informationen zu Apache Avalon können unter http://avalon.apache.org gefunden werden.

38

http://rifers.org
http://cocoon.apache.org
http://avalon.apache.org

4.2. Praktische Arbeiten

auch ohne Java Programmierung Applikationen zu erstellen. Cocoon richtet sich an Entwick-
ler, die umfangreiche Webanwendungen entwickeln wollen, bei denen Layout und Logik
voneinander getrennt sind und welche in verschiedenen Formaten zur Verfügung gestellt
werden sollen.

Das Kernkonzept in Cocoon ist eine Pipeline, die vom Request bis zur Auslieferung der Daten
durchlaufen wird. Eine auf Cocoon beruhende Anwendung besteht in der Regel aus einer
Menge dieser Pipelines, die jeweils eine Anfrage verarbeiten und als Ergebnis ein Dokument,
meist eine HTML-Datei, als Antwort zurückliefern. Ein XML-Datenstrom durchläuft inner-
halb einer Pipeline die drei Phasen9 Generierung, Transformation und Serialisierung. Der
Pipeline Ansatz erlaubt es, verschiedene Komponenten auf eine einfache Weise zu verbinden.
Die verschieden Pipelines werden in der Sitemap, einer zentralen Konfigurationsdatei von
Cocoon definiert. Jeder Ablauf einer einzelnen Pipeline ist durch die Definition innerhalb der
Sitemap bestimmt. Eine Pipeline basiert auf einer Kette von verschiedenen Komponenten,
die entweder aus dem Basisumfang von Cocoon oder aus Eigenentwicklungen stammen
können. Eigene Komponenten können durch eine entsprechende Konfigurierung in die
Sitemap aufgenommen werden [Hee07].

Für die Dialogkontrolle verwendet Cocoon Flowscripts (JavaScript) und Javaflows (Java),
dessen Ausführung mit Hilfe des Continuations10 Konzept persistiert wird. Die Flowscripts
bzw. die Javaflows haben Zugriff auf die Request Parameter und die Anwendungslogik. Sie
nehmen den Request entgegen, starten die nötigen Funktionen in der Anwendungslogik und
entscheiden am Ende, welche Seite als nächstes an den Client (Browser) zurückgeliefert wird.
Durch den Einsatz von Continuations muss der Übergang zwischen den einzelnen Webseiten
einer Anwendung innerhalb der Flowscripts und Javaflows nicht als Zustandsautomat
modelliert werden [Apa12].

Die Verwendung des Continuations Konzept vereinfacht die Implementierung des Flow
Managers und erleichtert die Lesbarkeit des Codes. Jedoch macht die Definition des Flows

9 Cocoon Pipeline: In der ersten der Pipeline steht der Generator, der Daten einliest und diese bei Bedarf auch
in XML Daten transformiert. Anschließend schickt der Generator die einzelnen XML-Tags als SAX Events
(SAX = Simple API for XML) durch die Pipeline. Meist folgt in der zweiten Phase der Pipeline auf den
Generator, ein Transformator. Ein Transformator wird durch SAX-Ereignisse ausgelöst und ist dann in der
Lage, auf diese Events zu reagieren und mit den übergebenen XML-Daten zu arbeiten. Ein Transformator
kann XML-Tags in den Datenstrom einfügen beziehungsweise entfernen oder den Inhalt auf eine andere
Art und Weise manipulieren. Eine Pipeline kann mehrere Transformatoren nutzen. Ein Transformator ist
auch in der Lage, Tags für nachfolgenden Transformatoren zu generieren. In der letzten der drei Phasen
agiert der Serialisierer. Der Serialisierer sorgt dafür, dass die XML-Daten in ein Format umgewandelt werden,
welches der Empfänger benötigt. Durch die Verwendung von XSLT-Stylesheets lassen sich eine Vielzahl von
Formaten wie zum Beispiel HTML, WML oder PDF erzeugen [Hee07].

10 Continuation: Eine Continuation (Fortsetzung) ist eine Funktion, die das Ergebnis der Ausführung des
restlichen Programms von einem Zustand aus beschreibt [Loc12]. Das Programm kann an einer definierten
Codepassage unterbrochen werden. Dabei wird der aktuelle Zustand des Speichers gesichert. Zu einem
späteren Zeitpunkt kann das Programm dann an dieser Codepassage mit dem vorherigen Kontext fortgesetzt
werden. Das Continuations Konzept stammt ursprünglich aus der funktionalen Programmierung. Es ermög-
licht eine Art prozeduralen Ablauf des Programm. Des Weiteren bietet das Konzept eine gute Basis für die
Erstellung einer Flusskontrolle, da mit den vorhanden Informationen leicht ein Folgezustand ermittelt oder
ein ursprünglicher Zustand wiederhergestellt werden kann.

39

4. Verwandte Arbeiten

innerhalb der Flowscripts oder Javaflows die Entwicklung unflexibel. Die Vermischung der
Kontrolllogik des Programmablauf mit der Kontrolllogik der Screenflows führt zu einer
höheren Kopplung und der Screenflow ist für den Entwickler in der Regel nicht direkt
ersichtlich. Wie schon die meisten vorhergehenden Arbeiten bietet Cocoon auch keine
unterstützenden Werkzeuge für die Modellierung des Screenflows an.

4.3. Zusammenfassung

Nachdem zu dieser Arbeit verwandte Arbeiten vorgestellt wurden, kann zusammengefasst
gesagt werden, dass alle vorgestellten Arbeiten die Umsetzung eines Screenflows ermögli-
chen. Alle haben dabei das Ziel, die Wiederverwendbarkeit von Komponenten zu erhöhen,
mehr Flexibilität zu bieten und den Entwicklern die Arbeit mit ihren rollenspezifischen Auf-
gaben zu erleichtern. Bezüglich ihrer Umsetzung bestehen jedoch gewisse Unterschiede, die
in Tabelle 4.1 noch einmal aufgelistet sind. Die Kriterien sind dabei, ob der Flow deklarativ
oder imperativ definiert wird, auf welcher Basis der Screenflow Manager implementiert
wurde und letztlich, ob im Kontext des Ablaufs Daten zwischen den Screens ausgetauscht
werden können.

Arbeit Flow Definition Screenflow Management Kontextdaten
Dialog Control Framework deklarativ Endlicher Automat keine
Java BluePrints imperativ Endlicher Automat keine
Spring Web Flow deklarativ Endlicher Automat keine
RIFE deklarativ Endlicher Automat Data Links
Apache Cocoon imperativ Continuation Continuation

Tabelle 4.1.: Unterschiedliche Umsetzung von Screenflows in verwandten Arbeiten.

Spring Web Flow bietet als einzige Lösung ein grafisches Modellierungswerkzeug für die
Screenflow Definition. Keine der in diesem Kapitel vorgestellten Arbeiten bietet ein grafisches
Modellierungswerkzeug, das eine Modellierung während der Laufzeit erlaubt.

40

5. Screenflow Manager

Ausgeführt werden die in Kapitel 3 vorgestellten Screenflows von einem Screenflow Manager.
Der im folgenden vorgestellte IBM UX Screenflow Manager ist eine Erweiterung für den
IBM WebSphere Portal Server. Als Quelle diente die technischen Dokumentation des IBM
UX Screenflow Manager [DL13].

5.1. Terminologie

Bei einem Screenflow Manager handelt es sich um eine Technologie, mit deren Hilfe Be-
nutzungsschnittstellenartefakte miteinander verbunden werden können, um Endbenutzer
durch eine Folge von Screens zu führen. Eine solche Abfolge von Screens wird als Screenflow
oder Dialog bezeichnet. Ein Screenflow kann aus einem oder vielen Schritten bestehen.
Ein einzelner Schritt in einem Screenflow wird als Subdialog bezeichnet. Im Portalumfeld
repräsentiert ein Subdialog eine Portalseite oder ein Portlet. Ein Portlet kann wiederum eine
Reihe von Portlet Windows darstellen. Abbildung 5.1 stellt den Zusammenhang zwischen
einem Dialogschrit (Subdialog), einer Portalseite und einem Portlet dar.

Portalseite

Portlet

Screenflow

Portal

Portlet

Portlet Inhalte

Subdialg

Abbildung 5.1.: Beispiel für einen Subdialog in einem Screenflow.

41

5. Screenflow Manager

Über Transitionen werden die Übergänge zwischen den einzelnen Subdialogen definiert. Der
Screenflow Manager kann dadurch entscheiden, wie er den Benutzer von einem Subdialog
zum nächsten leitet bzw. wie er von einem Schritt im Screenflow zum nächsten routen muss.
Der aktuell aktive Schritt im Screenflow legt fest, welchen Subdialog der Benutzer zu diesem
Zeitpunkt angezeigt bekommt.

5.2. Kernkomponenten

Der Kern des IBM UX Screenflow Manager besteht aus drei Komponenten. Deren Zusam-
menspiel wird in Abbildung 5.2 veranschaulicht.

Portlet
Screenflow

Dialog
Controller

Dialog Modell

Dialog Context Segment
= Dialoginstanz

Dialog Context

P1 P2 Pn

Abbildung 5.2.: Kernkomponenten des IBM UX Screenflow Manager.

Der Dialog Controller (DC) arbeitet als generische Komponente, die beliebige Ereignisse
innerhalb eines Zustandsübergang senden und empfangen kann. Normalerweise tauschen
Portlets JSR 286 Ereignisse untereinander aus. Der Dialog Controller kann diese Ereignisse
abfangen und dient dann als Vermittler zwischen der Quelle und dem Ziel. Bei einem
Zustandswechsel empfängt der Dialog Controller das Ereignis, welches von der Quelle
gesendet wird. Damit kann der Dialog Contoller das Dialog Modell nach dem nächsten
Schritt im Screenflow fragen. Im Anschluss kann der Controller Daten im Dialog Context
ablegen und anfordern. Als Letztes sendet er dann das vom Dialog Modell festgelegte
Ereignis mit den aus dem Dialog Context geladenen Daten an das Ziel.

42

5.2. Kernkomponenten

Das Dialog Modell (DM) verhält sich wie ein endlicher Zustandsautomat. Es hat die Informa-
tionen über die Transitionen, die in Abhängigkeit des aktiven Schritts im Screenflow und
Ereignis möglich sind. Es beschreibt welche Portlets als Quelle (Source) und welche Portlets
oder Portalseiten als Ziel (Target) definiert sind und was für Ereignisse sie miteinander
austauschen. Die Portalseiten und Portlets werden anhand ihres eindeutigen Namens, den
Unique Name, identifiziert. Weitere Details sind im Abschnitt Dialogdefinition beschrieben.

Der Dialog Context (DCX) dient dem Screenflow Manager als flüchtiger Speicher. Er spei-
chert Kontextinformationen, die von einem Subdialog an einen nachfolgenden Subdialog
weitergegeben werden. Alle Daten von einem Subdialog, die der Dialog Controller im Dialog
Context ablegt, sind im Anschluss für alle nachfolgenden Subdialoge verfügbar. Für jede
Dialoginstanz wird ein sogenanntes Dialog Context Segment angelegt, in dem die Daten
aus der konkreten Dialoginstanz abgelegt werden. Das Dialog Context Segment existiert nur
solange wie die Dialoginstanz existiert (oder die Session1). Der Dialog Context ist ein asso-
ziatives Datenfeld2 , auf dessen Inhalte über den sogenannten DCX-Key zugegriffen werden
kann. Weitere Details sind im Abschnitt erweitertes Laden und Speichern zu finden.

1

2

3

4

5

6

Asynchroner Aufruf

Synchroner Aufruf

Legende:

Portlet1 Portlet2 Dialog Controller Dialog Modell Dialog Context

Abbildung 5.3.: Sequenzdiagramm eines Zustandsübergangs im Screenflow Manager.

1Session: HTTP ist als zustandsloses Protokoll implementiert, was bedeutet, dass sich der Server nach dem
Verbindungsabbau im selben Zustand befindet wie vor dem Verbindungsaufbau. Das hat zur Folge, dass alle
Informationen über die Anfrage für den Server verloren gehen. Ein bewährtes Mittel ist die Verwendung
einer Session (deutsch Sitzung). Dabei wird ein Cookie auf der Clientseite abgelegt, in dem die Zustands-
informationen enthalten sind. Das Cookie wird dann bei jeder Anfrage an den Server mitgesendet [Hei02].

2Assoziatives Datenfeld: Ein assoziatives Datenfeld ist eine Datenstruktur bei der jedem gespeicherten Wert
ein eindeutiger Schlüssel zugewiesen wird. Über den Schlüssel kann in der Datenstruktur sehr effizient nach
Werten gesucht werden [MS].

43

5. Screenflow Manager

Abbildung 5.3 veranschaulicht den Ablauf eines Zustandsübergangs innerhalb des Screenflow
Managers. Portlet1 sendet das Ereignis e1 an das Portlet2 und der Dialog Controller fängt
dieses Ereignis e1 ab (1). Anschließend fragt der Dialog Controller das Dialog Modell, ob
eine Transition existiert, dessen Quelle ein Ereignis e1 sendet (2). Existiert eine entsprechende
Transition mit einer entsprechenden Quelle im Dialog Modell, erhält der Dialog Controller
das Ziel und das Ereignis, an das er weiterleiten soll (3). In diesem Fall das Portlet2 und
das Ereignis e2. Danach legt der Dialog Controller die Nutzdaten von Ereignis e1 im
Dialog Context unter dem DCX-Key ke1 ab (4). Anschließend lädt der Dialog Controller die
Nutzdaten, die mittels Ereignis e2 übertragen werden sollen, mit dem DCX-Key ke2 aus dem
Dialog Context (5). Die Nutzdaten können aus einem beliebigen vorhergehenden Schritt
stammen. Letztlich leitet der Dialog Controller das Ereignis e2 an Portlet2 weiter (6).

Weitere Komponenten

Die Möglichkeiten einer parallelen Verarbeitung von Screenflows durch den Benutzer sind
beschränkt. In einem einzelnen Browser Tab kann nur eine Instanz eines Screenflows auf
einmal ausgeführt werden. Um mehrere Instanzen parallel zu auszuführen, müssen diese
in unterschiedlichen Browser Tabs gestartet werden. Es gilt die Regel: ein Screenflow pro
Browser Tab. Als Alternative dazu erlaubt der IBM UX Screenflow Manager einen Screenflow
zu unterbrechen und zu einem späteren Zeitpunkt weiter zu bearbeiten. Alle unterbrochen
Screenflows können im Dialog Stack (DS) eingesehen werden. Von dort aus lassen sich
die Screenflows an der zuvor unterbrochen Position fortsetzen. Der Screenflow Manager
unterbricht einen laufenden Screenflow automatisch, wenn im selben Browsers Tab ein
weiterer Screenflow gestartet wird.

Der Dialog State Display ermöglicht es dem Benutzer während der Ausführung eines Screen-
flows seine aktuelle Position im Dialog anzuzeigen. So kann er ablesen, wie viele Dialog-
schritte er schon abgearbeitet hat und welche Schritte noch vor ihm liegen. Das Dialog State
Display visualisiert dem Benutzer die Struktur des Screenflows in einem Graphen und hebt
dabei die aktuelle Position im Dialog hervor. Des Weiteren kann der Benutzer über das
Dialog State Display zwischen den einzelnen Dialogschritten springen. Zusätzlich kann der
Benutzer einen gerade ausgeführten Screenflow über das Dialog State Display abbrechen
oder wie zuvor erwähnt unterbrechen.

Benutzungsschnittstellenartefakte

Der Screenflow Manager verwendet JSR 286 Ereignisse, um einen ausgelösten Zustands-
übergang zu erkennen und um Daten zwischen den Subdialogen auszutauschen. Alle
Benutzungsschnittstellenartefakte, die in den Screenflow integriert werden sollen, müssen
JSR 286 Ereignisse senden oder empfangen können. Das bedeutet, dass die Portlets so
entwickelt werden müssen, dass sie die Java Portlet Spezifikation 2.0 [Hep08] erfüllen. Für

44

5.3. Dialogdefinition

Formulare und Widgets bedeutet dies, dass ein Portlet als Wrapper-Klasse3 verwendet
werden muss.

Damit ein Portlet Ereignisse senden und empfangen kann, müssen die Ereignisse in der
portlet.xml4 definiert werden. Des Weiteren müssen die Methoden, um eingehende Ereignisse
zu verarbeiten oder Ereignisse zu senden, im Quelltext des Portlet implementiert werden.

5.3. Dialogdefinition

Der folgende Abschnitt beschreibt die wichtigsten Elemente der Dialogdefinition, die für
die Modellierung eines Screenflows notwendig sind. Die Dialogdefinition dient dem Dialog
Modell für die Erstellung des endlichen Zustandsautomaten. Eine komplette Dialogdefinition
für einen Screenflow, der einen Reisebuchungsprozess beschreibt, befindet sich im Anhang
unter A.1.

Dialog

Innerhalb eines dialog Elements sind alle Artefakte eines Dialogs enthalten. Dazu gehören
alle Ressourcen und alle Transitionen die festlegen, wie der Benutzer durch den Dialog
geleitet wird (siehe Abschnitt Transition Endpoints und Abschnitt Transitionen). Eine Dialog-
definition muss einen eindeutigen Namen besitzen. Im Beispiel der Auflistung 5.1 werden
zwei Portlets (Zeile 3-8) und zwei Transitionen (Zeile 9-14) im Dialog festgelegt.

3 Wrapper-Klasse: Ein Adapter, auch Wrapper genannt, dient dazu, eine Schnittstelle in eine andere zu über-
setzen. Durch den Adapter können Klassen trotz inkompatibler Schnittstellen miteinander kommunizieren
[GHJV96].

4 portlet.xml: Die Datei portlet.xml ist einer von zwei Deployment Descriptoren einer Portletanwendung. Darin
werden Ressourcen für das Portlet spezifiziert [Hep08].

45

5. Screenflow Manager

Listing 5.1 Dialogdefinition: Ausschnitt einer Definition eines Dialogs mit zwei Portlets und
zwei Transitionen [DL13].
1 <dialog-set>
2 <dialog name="dialog1">
3 <transition-endpoint name="portlet1">
4 ...
5 </transition-endpoint>
6 <transition-endpoint name="portlet2">
7 ...
8 </transition-endpoint>
9 <transition>

10 ...
11 </transition>
12 <transition>
13 ...
14 </transition>
15 </dialog>
16 </dialog-set>

Transition Endpoints

Alle Ressourcen eines Screenflows, die als Quelle oder Ziel an einer Transition beteiligt sind,
werden als Transition Endpoints bezeichnet. Über das transition-endpoint Element können
Portalseiten und Portlets als Ressourcen eingebunden werden. Diese können, wie bereits
zuvor beschrieben, auch Formulare und Widgets enthalten. Jede Ressource muss dabei mit
einem eindeutigen Namen identifiziert werden. Die Auflistung in 5.2 zeigt die Definition
eines Transition Endpoints, der ein Portlet referenziert (Zeile 2-10).

Listing 5.2 Dialogdefinition: Ausschnitt einer Definition eines transition-endpoint Elements
[DL13].
1 <dialog name="dialog1">
2 <transition-endpoint name="portlet1">
3 <localedata locale="en">
4 <title>Subdialog 1</title>
5 <description>This is a subdialog</description>
6 </localedata>
7 <resource uniquename="uniquename.portlet1"/>
8 <invocation type="static"/>
9 ...

10 </transition-endpoint>
11 ...

Titel und Beschreibung

Portlets und Portalseiten können normalerweise nur einen Titel und eine Beschreibung
pro Sprache besitzen. Wenn Ressourcen mehrfach versendet werden, kann es dadurch

46

5.3. Dialogdefinition

zu dem Problem kommen, dass der Titel und die Beschreibung nicht in den Kontext
passen. Angenommen ein Kalenderportlet soll für eine Reisebuchungsanwendung sowohl
für die Auswahl des Abflugdatum in einem Dialogschritt als auch für die Auswahl des
Rückflugdatum in einem späteren Dialogschritt verwendet werden. Hier stellt sich die Frage,
wie der Titel und die Beschreibung für das Portlet zu wählen sind, damit es für den Benutzer
klar ist, wann er das Abflugdatum und wann das Rückflugdatum auswählen muss.

Zur Lösung dieses Problem können im transition-endpoint Element für jede Ressource ein
Titel und eine Beschreibung pro Sprache definiert werden. Der definierte Titel und die
Beschreibung ersetzen dann im zugehörigen Dialogschritt und im Dialog State Display den
Titel und die Beschreibung der Ressource. Es ist absolut valide zwei Transition Endpoints
zu definieren, die zwar dieselbe Ressource referenzieren, aber unterschiedliche Titel und
Beschreibungen erhalten. Sind kein Title oder keine Beschreibung im Transition Endpoint für
die entsprechende Sprache definiert, verwendet der Screenflow Manager den ursprünglichen
Title oder Beschreibung der referenzierten Ressource. In Auflistung 5.3 werden kontextab-
hängig der Title und die Beschreibung für ein Kalenderportlet für die Sprachen Deutsch und
Englisch definiert (Zeile 3-10 und Zeile 15-22).

Listing 5.3 Dialogdefinition: Ausschnitt einer Definition von Title und Beschreibung eines
Portlets in unterschiedlichen Kontexten [DL13].
1 <dialog name="dialog1">
2 <transition-endpoint name="calendar.leave">
3 <localedata locale="en">
4 <title>Date to leave</title>
5 <description>Please specify the date to leave</description>
6 </localedata>
7 <localedata locale="de">
8 <title>Abreisedatum</title>
9 <description>Bitte geben Sie Ihr Abreisedatum an</description>

10 </localedata>
11 <resource uniquename="uniquename.calendar"/>
12 <invocation type="static"/>
13 </transition-endpoint>
14 <transition-endpoint name="calendar.return">
15 <localedata locale="en">
16 <title>Date to return</title>
17 <description>Please specify the date to return</description>
18 </localedata>
19 <localedata locale="de">
20 <title>Rckreisedatum</title>
21 <description>Bitte geben Sie Ihr Rckreisedatum an</description>
22 </localedata>
23 <resource uniquename="uniquename.calendar"/>
24 <invocation type="static"/>
25 </transition-endpoint>
26 ...

47

5. Screenflow Manager

Transitionen

Eine Transition beschreibt einen Übergang von einem Dialogschritt zum nächsten. Abbildung
5.4 veranschaulicht alle Bestandteile einer Transition von einem Portlets A zu Portlet B. Eine
Transition besteht aus zwei Teilen, einer Quelle (Source) und einem Ziel (Target). Quellen
und Ziele beinhalten Tupel aus Referenzen zu Transition Endpoints und Ereignissen. Die
Quelle ist der Ausgangspunkt einer Transition.

A

Transition
Endpoint

Dialog
Controler

Transition

Transition
Endpoint

BSource
Event

Target
Event

Routing

Abbildung 5.4.: Beispielhafte Darstellung einer Transition im Screenflow zwischen zwei
Portlets A und B.

In einer Quelle darf nur eine Referenz auf einen Transition Endpoint existieren, der auf ein
Portlet zeigen muss. Die Restriktion ergibt sich daraus, dass Portalseiten keine Ereignisse
senden können. Die Referenz des Quell Transition Endpoint darf nur mit einem Ereignis
verbunden werden. Um deterministisch zu sein, darf innerhalb aller Transitionen eine
Kombination aus Transition Endpoint und Ereignis nur einmal für eine Quelle verwendet
werden. Wenn das definierte Ereignis von dem Transition Endpoint gesendet wird, wird die
Transition aktiv. Das Ziel repräsentiert den Folgezustand. Im Ziel dürfen mehrere Transition
Endpoints referenziert werden, die sowohl auf Portalseiten als auch auf Portlets referenzieren
können. Folgende Kombinationen von Transition Endpoints sind bei der Definition des Ziels
möglich:

• Ein einzelnes Portlet

• Eine einzelne Portalseite

• Mehrere Portlets

• Mehrere Portlets und eine Portalseite

Ist eine Portalseite als Ziel Transition Endpoint definiert, wird das ankommende Ereignis
an alle Portlets verteilt, die auf der Portalseite vorhanden sind. Im Falle dass mehrere
Portlets oder mehrere Portlets und eine Portalseite als Ziel referenziert werden, muss dafür
Sorge getragen werden, dass alle Portlets auf der entsprechenden Portalseite enthalten sind.
Zu jedem Ziel Transition Endpoint können jeweils ein oder mehrere Ereignisse definiert
werden.

Das Beispiel in Auflistung 5.4 demonstriert die Definition zweier Transitionen. Die erste
Transition hat ein Portlet (Zeile 8-12) als Ziel und die zweite Transition eine Portalseite (Zeile
20-24).

48

5.3. Dialogdefinition

Listing 5.4 Dialogdefinition: Ausschnitt einer Definition von zwei Transitionen mit Portlet
bzw. Portalseite als Ziel [DL13].
1 ...
2 <transition>
3 <source>
4 <transition-endpoint nameref="portlet1">
5 <event qname="e1"/>
6 </transition-endpoint>
7 </source>
8 <target>
9 <transition-endpoint nameref="portlet2">

10 <event qname="e2"/>
11 </transition-endpoint>
12 </target>
13 </transition>
14 <transition>
15 <source>
16 <transition-endpoint nameref="portlet1">
17 <event qname="e3"/>
18 </transition-endpoint>
19 </source>
20 <target>
21 <transition-endpoint nameref="page2">
22 <event qname="e4"/>
23 </transition-endpoint>
24 </target>
25 </transition>
26 ...

Nicht jede Transition in der Dialogdefinition kann eine neue Dialoginstanz starten oder
einen laufenden Dialog beenden. Das hat den Grund, dass sonst nicht entscheidbar ist, wie
in gewissen Situationen weiter vorzugehen ist. Wenn zum Beispiel jede Transition einen
Dialog starten kann, ist es nicht immer entscheidbar, wann eine Transition als Übergang
in den nächsten Dialogschritt und wann sie die Instantiierung einer neuen Dialoginstanz
startet. Wenn keine Dialoginstanz existiert, ist dies zwar noch entscheidbar, nicht aber wenn
bereits die Dialoginstanz ausgeführt wird. Daher muss für Start- und Endtransitionen das
transition Element mit einem speziellen Attribut erweitert werden. Für eine Starttransition
ist es das Attribut type mit dem Wert start und bei einer Endtransition das Attribut type mit
dem Wert end vorgesehen. Jeder Dialog muss mindestens eine Start- und mindestens eine
Endtransition besitzen. Auflistung 5.5 zeigt einen Ausschnitt der Definition einer Start- und
einer Endtransition (Zeile 2 und 5).

Die Sonderformen der Start- und Endtransitionen mit ihren zugehörigen speziellen Ereig-
nissen sind nicht Teil dieser Arbeit und werden daher nicht weiter ausgeführt. Ein solches
spezielles Ereignis kann zum Beispiel dafür definiert werden, um zu bestimmen, wie es nach
dem Ende eines Dialoges weitergehen soll.

49

5. Screenflow Manager

Listing 5.5 Dialogdefinition: Ausschnitt der Definition einer Start- und Endtransition [DL13].
1 ...
2 <transition type="start">
3 ...
4 </transition>
5 <transition type="end">
6 ...
7 </transition>
8 ...

5.4. Erweitertes Laden und Speichern

Der IBM UX Screenflow Manager unterstützt zwei Mechanismen, um zueinander inkompati-
ble Portlets miteinander zu kommunizieren, ohne dass deren Quellcode geändert werden
muss. Sind lediglich die Namen der auszutauschenden Ereignisse unterschiedlich, kann dies
durch die Verwendung der sogenannten DCX-Keys korrigiert werden. Müssen dagegen die
Daten der Ereignisse transformiert werden, sind dazu Event Mapper nötig, die im nachfol-
genden Abschnitt 5.5 vorgestellt werden.
Mit Hilfe des DCX-Keys kann bestimmt werden, wie die Daten im Dialog Context abgelegt
werden sollen, nachdem ein Portlet ein Ereignis sendet und wie Daten aus dem Dialog Con-
text gelesen werden, um sie an das nächste Ziel zu senden. Die Kontrolle dafür übernimmt
der Dialog Controller. Wird kein DCX-Key festgelegt, wird der QName des Ereignisses
stattdessen verwendet. Alle Daten, die aus einem Subdialog im Dialog Context abgelegt
werden, sind für die nachfolgen Subdialoge zugreifbar.

Angenommen zwei Portlets sind Teil eines Screenflows. Portlet1 sendet das Ereignis mit
dem QName ID und Portlet2 erwartet ein Ereignis mit dem QName UserID. Ohne Hilfs-
mittel können die beiden Portlets nicht miteinander kommunizieren, da die QNames nicht
übereinstimmen. Durch die Verwendung des DCX-Key ID kann Portlet2 dazu veranlasst
werden, die Daten von dem Ereignis mit dem QName ID aus dem Dialog Context zu lesen.
Alternativ kann durch den Einsatz von DCX-Key UserID Portlet1 dazu veranlasst werden,
die Daten unter dem DCX-Key UserID im Dialog Context abzuspeichern. Die Auflistung 5.6
zeigt einen Ausschnitt für den Fall, das Portlet1 die Daten des Ereignis mit dem QName ID
unter dem DCX-Key userID im Dialog Context ablegt (Zeile 5). Dadurch kann Portlet2 die
Daten lesen (Zeile 10).

5.5. Event Mapper

In komplexeren Situationen ist es oft nicht ausreichend, den Ereignisnamen zwischen zwei
Ereignissen anzupassen. Stattdessen ist es erforderlich, die Daten zwischen den inkompati-
blen Ereignissen zu transformieren. Für solche Situationen können dem Screenflow Manager
sogenannte Event Mapper zur Verfügung gestellt werden.

50

5.6. Dynamische Ressource Endpoints

Listing 5.6 Dialogdefinition: Ausschnitt der Definition einer Transition in der die Daten des
gesendeten Ereignis unter einem anderen DCX-Key abgelegt werden [DL13].
1 ...
2 <transition>
3 <source>
4 <transition-endpoint nameref="portlet1">
5 <event qname="ID" dcx-key="userID"/>
6 </transition-endpoint>
7 </source>
8 <target>
9 <transition-endpoint nameref="portlet2">

10 <event qname="userID"/>
11 </transition-endpoint>
12 </target>
13 </transition>
14 ...

Es stehen zwei Typen von Event Mapper zur Verfügung:
Der PayloadToContextMapper: er kann die Daten eines Ereignisses bearbeiten, die eine Quelle
gesendet hat, bevor diese im Dialog Context abgelegt werden. Dadurch lassen sich sowohl
der Name des DCX-Key unter dem die Daten abgelegt werden als auch die Daten selbst, für
alle Transition Endpoints, die anschließend auf diese Daten zugreifen, verändern.
Der ContextToPayloadMapper: er kann die Daten eines Ereignisses bearbeiten, die an ein Ziel
weitergeleitet werden, nachdem diese aus dem Dialog Context geladen werden. Dadurch
bleiben die Daten innerhalb des Dialog Context in ihrem Ursprungszustand und werden nur
für den entsprechenden Ziel Transition Endpoint verändert. Auch bei diesem Event Mapper
lassen sich DCX-Key und die Daten selbst ändern.

Mapper haben vollen Zugriff auf das Dialog Context Segment der aktuell bearbeiteten
Dialoginstanz sowie auf die gerade gesendeten Daten. So sind auch sehr komplexe und
dialogübergreifende Transformationen möglich. Über den DCX-Key kann gesteuert werden,
auf welche Daten im Dialog Context zugegriffen werden soll. Die Mapper müssen in Java
implementiert und vor ihrer Verwendung auf dem Portal Server installiert werden. Der
Ausschnitt aus Auflistung 5.7 zeigt die Definition einer Transition, in der ein ContextTo-
PayloadMapper verwendet wird (Zeile 10). Der Mapper erhält als Eingabe die Daten des
DCX-Key ID.

5.6. Dynamische Ressource Endpoints

Der IBM UX Screenflow Manager unterstützt zusätzlich zu den statischen Ressourcen
auch das Instantiieren von dynamischen Ressourcen. Dafür verwendet er eine Funktion
namens Dynamic UI Management [IBM]. Durch das Dynamic UI Management lassen sich
flüchtige Kopien von Portalseiten und Portlets zur Laufzeit erstellen. Der Vorteil einer solchen
dynamischen Kopie ist, dass von einem Portlet oder einer Portalseite mehrere Instanzen
parallel betrieben werden können (in unterschiedlichen Browser Tabs oder über den Dialog

51

5. Screenflow Manager

Listing 5.7 Dialogdefinition: Ausschnitt der Definition einer Transition die einen ContextTo-
PayloadMapper verwendet [DL13].
1 ...
2 <transition>
3 <source>
4 <transition-endpoint nameref="portlet1">
5 <event qname="ID"/>
6 </transition-endpoint>
7 </source>
8 <target>
9 <transition-endpoint nameref="portlet2">

10 <event qname="userID" dcx-key="ID" mapper-class="myPackage.myMapper"/>
11 </transition-endpoint>
12 </target>
13 </transition>
14 ...

Stack), ohne dass die Inhalte aus den unterschiedlichen Instanzen gegenseitig überschrieben
werden.

Die dynamische Kopie einer Portalseite ist in der Regel das Abbild einer Templateseite. Die
Templateseite wird auch als Base Page bezeichnet und die dynamische Kopie kann als
eine Art Schnappschuss der Base Page gesehen werden. Die dynamische Kopie enthält alle
Portlets, die sich auf der Base Page befinden, einschließlich der gesamten Einstellungen.
Wird eine dynamische Kopie einer Portalseite angelegt, muss diese unter einem sogenannten
Extension Node eingefügt werden. Der Extension Node ist ein spezielles Konstrukt, um
eine dynamische Kopie in das Navigationsmodell (siehe Kapitel 2) der Webanwendung
aufzunehmen.

Die dynamische Kopie eines Portlets ist die Kopie der Portletdefinition. Dynamische Portlets
können nur zu einer Dynamischen Page hinzugefügt werden. Das bedeutet: wenn eine
dynamische Kopie eines Portlets erzeugt wird, muss vorher eine leere dynamische Kopie
einer Portalseite erzeugt werden, auf der das Portlet eingebettet werden kann.

Während der Verarbeitung eines Dialoges können einzelne Subdialoge entweder statisch
oder dynamisch sein. Wird eine Transition aktiv, die auf einen Transition Endpoint zeigt, der
eine dynamische Kopie ist, muss der Screenflow Manager die Kopie erst instantiieren und
unter dem entsprechenden Extension Node einhängen, bevor er den Benutzer auf die Seite
weiterleiten kann. Dynamische Ressourcen werden automatisch entfernt, wenn sie nicht
mehr benötigt werden.

Ob eine Ressource dynamisch gestartet werden soll, kann über die Dialogdefinition gesteuert
werden. Hier kann auch festgelegt werden unter welchem Extention Node die dynamische
Kopie hinzugefügt werden soll. Das Beispiel in der Auflistung 5.8 zeigt die Definition eines
statischen Portlets (Zeile 4), eines dynamischen Portlets (Zeile 8) und einer dynamischen
Portalseite (Zeile 12) als Ressource Endpoint, die unter dem Extension Node extensionNode1

eingehängt werden.

52

5.7. Entwicklung von Screenflows

Listing 5.8 Dialogdefinition: Ausschnitt der Definition eines statischen und zwei dynami-
schen Ressource Endpoints.
1 ...
2 <transition-endpoint name="portlet1">
3 <resource uniquename="uniquename.portlet1"/>
4 <invocation type="static"/>
5 </transition-endpoint>
6 <transition-endpoint name="portlet2">
7 <resource uniquename="uniquename.portlet2"/>
8 <invocation type="dynamic" extension-node="extensionNode1"/>
9 </transition-endpoint>

10 <transition-endpoint name="page1">
11 <resource uniquename="uniquename.page1"/>
12 <invocation type="dynamic" extension-node="extensionNode1"/>
13 </transition-endpoint>
14 ...

5.7. Entwicklung von Screenflows

Für die Entwicklung eines Screenflows sind die folgenden Schritte nötig. Erstens, die Entwick-
lung der benötigten Benutzungsschnittstellenartefakte, in der Regel Portlets. Diese senden
und empfangen JSR 286 Ereignisse, aus der Java Portlet Spezifikation 2.0. Alle Artefakte
zusammen ergeben den späteren Screenflow. Zweitens, die Erstellung einer Dialogdefinition,
in der alle Verbindungen zwischen Benutzungsschnittstellenartefakten festgelegt werden.
Die Definition kann sowohl Artefakte aus Schritt 1 als auch bereits vorhandene Artefakte
enthalten. Drittens, die Installation der neuen Benutzungsschnittstellenartefakte und der
Dialogdefinition.

5.8. Akteure und Rollen

Bei der Entwicklung von Screenflows lassen sich die Aufgaben auf drei Arten von Akteuren
oder Rollen aufteilen.

• Dem Entwickler von Portlets und Portalseiten: er erstellt die Benutzungsschnittstellen-
artefakte. Dabei kann es sich um einen Mitarbeiter oder um Drittanbieter handeln.

• Dem Dialogmodellierer: er erstellt den Screenflow, indem er die Benutzungsschnittstel-
lenartefakte zusammenfügt. Er hat das Wissen über den zu modellierenden Prozess
und benötigt für seine Arbeit keine Programmierkenntnisse.

• Dem Administrator: er administriert den Portal Server, installiert neue Benutzungs-
schnittstellenartefakte und neue Dialogdefinitionen.

53

5. Screenflow Manager

5.9. Zusammenfassung

Der IBM UX Screenflow Manager erlaubt es, einen Benutzer durch einen Dialog (Screenflow),
bestehend aus Portlets und Portalseiten, zu führen. Die Kernkomponenten des Screenflow
Managers sind der Dialog Controller, das Dialog Modell und der Dialog Context. Der Dialog
Controller leitet den Benutzer durch den Dialog anhand des Dialog Modells. Daten die
Dialoge miteinander austauschen, werden im Dialog Context temporär abgelegt.
Das Dialog Modell wird in der Dialogdefinition festgelegt. Die wichtigsten Komponenten
der Dialogdefinition sind Transition Endpoints und Transitionen. Ein Transition Endpoint
repräsentiert eine Portalseite oder ein Portlet. Eine Transition definiert in einem Dialog einen
Übergang von einem Transition Endpoint zu einem anderen.
Die zwischen den Dialogschritten ausgetauschten Ereignisse müssen häufig angepasst
werden. Je nach Situation eignet sich dafür ein geänderter DCX-Key oder ein Event Mapper.
Neben statischen Ressourcen kann der Screenflow Manager auch dynamische Ressourcen
referenzieren. Diese existieren nur temporär, solange sie benötigt werden.

54

6. Konzept

Nachdem im letzten Kapitel die Konzepte und Funktionsweise des Screenflow Manager
vorgestellt wurden, widmet sich dieses Kapitel der Entwicklung eines grafisches Modellie-
rungswerkzeug für Screenflows.

6.1. Ausgangssituation

Bisher müssen Modellierer einen Screenflow für den IBM UX Screenflow Manager in einer
XML-basierten Auszeichnungssprache definieren. Für die Definition eines Screenflows muss
der Modellierer die eindeutigen Namen der Portlets und Portalseiten kennen, welche Teil
des Screenflows sein sollen. Dies sind jedoch Daten, die vom Portal Server intern verwaltet
werden. Für einen Portalnutzer sind diese Daten nicht direkt zugänglich. Bei einem großen
Screenflow kann es für einen Modellierer schwierig werden, aus der Definition den exakten
Ablauf des Screenflows abzulesen.

Dieses Kapitel stellt daher Konzepte für die Entwicklung eines Modellierungswerkzeugs
vor, welches auch einen technisch nicht versierten Modellierer in die Lage versetzt, einen
Screenflow grafisch zu modellieren. Das Modellierungswerkzeug setzt auf dem IBM UX
Screenflow Manager auf.

Die genauen Anforderungen an das Modellierungswerkzeug werden im nachfolgenden
Abschnitt festgelegt.

6.2. Anforderungen

Im folgenden Abschnitt werden die Anforderungen aufgelistet, die für die Erstellung eines
grafischen Modellierungswerkzeugs für Screenflows notwendig sind. Die Anforderungen
basieren auf dem in Kapitel Screenflow Manager vorgestellten Screenflow Manager.

Funktionale Anforderungen

Die folgenden funktionalen Anforderungen lassen sich direkt aus der Funktionalität des
Screenflow Managers ableiten.

55

6. Konzept

Dialogdefinition erstellen Zu den elementarsten Bestandteilen eines Screenflows gehört
die Dialogdefinition. Sie bildet den Rahmen für alle Elemente eines Screenflows. Wenn der
Modellierer einen Screenflow erstellen will, muss er in die Lage versetzt werden, eine neue
Dialogdefinition zu erstellen.

Dialogdefinition konfigurieren Um eine Dialogdefinition exakt identifizieren zu können,
muss sie einen eindeutigen Namen erhalten. Zusätzlich kann der Modellierer einer Dialogde-
finition einen Titel und eine Beschreibung mitgeben. So kann zum Beispiel eine detaillierte
Beschreibung zum Screenflow angegeben werden. Um diese Eigenschaften bearbeiten zu
können, ist es notwendig, eine Dialogdefinition konfigurieren zu können.

Dialogartefakte hinzufügen Wie bereit beschrieben besteht ein Screenflow aus einer Reihe
von Screens. Das Modellierungswerkzeug muss es dem Modellierer ermöglichen, Portalseiten
und Portlets auszuwählen, um diese dem Screenflow als Transition Endpoint hinzuzufügen.
Die hinzugefügten Transition Endpoints müssen für den Modellierer visuell dargestellt
werden.

Dialogartefakte konfigurieren Jeder Transition Endpoint kann mit zusätzlichen Eigenschaf-
ten ausgestattet werden. Dies erfordert, dass der Modellierer ein Dialogartefakt konfigurieren
kann. Er muss für den Transition Endpoint für alle unterstützen Sprachen einen Titel und
eine Beschreibung eingeben können, die im entsprechenden Dialogschritt den Originalen-
Titel und -Beschreibung des Transition Endpoints substituieren. Des Weiteren muss der
Modellierer die Möglichkeit besitzen festzulegen, ob der Transition Endpoint statisch oder
als dynamische Kopie geladen werden soll. Im Falle dass der Modellierer eine dynamische
Kopie verwendet, muss er für den Transition Endpoint einen Extension Node angeben
können.

Transition definieren Um einen Übergang im Screenflow von einem Subdialog zum nächs-
ten zu modellieren, werden Transitionen eingesetzt. Eine Transition beschreibt den Übergang
von einem Quell Transition Endpoint zu einem Ziel Transition Endpoint. Das Modellierungs-
werkzeug muss dem Modellierer ein Mittel bereitstellen, mit dem er Transitionen erstellen
kann.

Transitionen konfigurieren Der Screenflow Manager benötigt für jede Transition die An-
gabe eines Ereignisses, welches die Transition aktiviert, wenn es vom Quell Transition
Endpoint gesendet wird und die Definition des Ereignisses, das der Ziel Transition Endpoint
erwartet. Der Modellierer muss mit dem Modellierungswerkzeug diese Ereignisse für jede
Transition vergeben können. In Erweiterung dazu muss der Modellierer die DCX-Keys für
die Ereignisse, die von dem Quell und Ziel Transition Endpoint der Transition gesendet
werden, anpassen können. Dafür benötigt er im Modellierungswerkzeug eine Eingabemög-
lichkeit der DCX-Keys. Auch die Zuweisung eines PayloadToContextMappers und eines

56

6.2. Anforderungen

ContentToPayloadMappers, für die Transformation der Ereignisse einer Transition muss
das Modellierungswerkzeug ermöglichen. Letztlich muss der Modellierer noch bei jeder
Transition markieren können, ob es sich hierbei um eine Start- oder Endtransition handelt,
die den Screenflow startet oder beendet.

Zusätzlich haben sich die folgenden funktionalen Anforderungen aus Gesprächen mit den
Entwicklern des Screenflow Managers und aus Designmeetings entwickelt.

Dialogdefinition speichern Nachdem der Modellierer den Modellierungsprozess abge-
schlossen hat, muss er in der Lage sein, den modellierten Dialog zu speichern. Das Modellie-
rungswerkzeug muss die Eingabe eines eindeutigen Namens sowie die Eingabe eines Titels
und einer Beschreibung für den Dialog unterstützen.

Liste der vorhanden Dialogdefinitionen anzeigen Das Modellierungswerkzeug muss dem
Modellierer alle vorhanden Dialogdefinitionen auflisten können. Von dieser Liste aus soll
der Modellierer eine Reihe von Operationen auf die Dialogdefinitionen anwenden können.
Die möglichen Operationen werden in den nachfolgenden Punkten beschrieben.

Dialogdefinition anzeigen Die aus der vorhergehenden Anforderung aufgelisteten Dialog-
definitionen müssen von Modellierer eingesehen werden können. Dafür muss das Modellie-
rungswerkzeug eine vorhandene Dialogdefinition öffnen können, damit sie vom Modellierer
betrachtet werden kann.

Dialogdefinition bearbeiten Neben dem Öffnen muss das Modellierungswerkzeug auch
das Bearbeiten von Dialogdefinitionen erlauben. Eine geöffnete Dialogdefinition muss vom
Modellierer verändert und unter dem gleichen oder einem neuen Namen abgespeichert
werden können.

Dialogdefinition kopieren Der Modellierer muss aus einer Vorlage, zum Beispiel durch das
Klonen einer vorhanden Dialogdefinition, eine neue Dialogdefinition erstellen können. Auf
die neu erstellten Dialogdefinitionen sollen dann die selben Operationen anwendbar sein
wie auf die bereits vorhanden. Das Modellierungswerkzeug muss daher das Kopieren von
Dialogdefinitionen beherrschen.

Dialogdefinition löschen Dialogdefinitionen die nicht weiter benötigt werden, müssen
aus dem System gelöscht werden können. Das Modellierungswerkzeug sollte daher die
Möglichkeit bieten eine oder mehrere ausgewählte Dialogdefinitionen zu löschen.

57

6. Konzept

Dialogdefinition exportieren Um Dialogdefinitionen außerhalb des Portal Servers zu spei-
chern und um die Dialogdefinitionen zwischen unterschiedlichen Servern austauschen zu
können, besteht die Anforderung an das Modellierungswerkzeug, eine Funktion für das
Exportieren von Dialogdefinition bereitzustellen. Mittels dieser Funktion soll der Modellierer
beliebige Dialogdefinitionen exportieren können.

Dialogdefinition importieren Im Zuge der vorhergehenden Anforderung, muss das Model-
lierungswerkzeug eine exportierte Dialogdefinition auch in ein System landen zu können.
Der Modellierer muss in die Lage versetzt werden, den Pfad zu einer exportierten Dialogde-
finition angeben zu können, um diese zu den bestehenden Dialogdefinitionen in dem Portal
Server zu laden.

Nichtfunktionale Anforderungen

Neben den funktionalen Anforderungen existieren auch nichtfunktionale Anforderungen,
die sich aus der Aufgabenstellung aus Kapitel 1 und Gesprächen mit den Entwicklern
des Screenflow Managers ergeben. Das Modellierungswerkzeug soll für den Modellierer
einfach und intuitiv zu bedienen sein. Zusätzlich soll das Modellierungswerkzeug für neue
Funktionen einfach zu erweitern sein. Des Weiteren soll die grafische Oberfläche flüssig
bedient werden können.

Anwendungsfälle

Aus den funktionalen Anforderungen lassen sich Anwendungsfälle formulieren. Sie beschrei-
ben aus der Sicht eines Außenstehenden, welche Akteure beteiligt sind, wie sie mit dem
System interagieren und was das System dabei leisten soll. Jeder Anwendungsfall beschreibt
das Systemverhalten für eine spezielle Situation. Anwendungsfälle können dabei helfen,
einen Prototypen zu entwickeln, Testfälle für das System zu spezifizieren, die Entwicklung
zu planen und die Benutzerdokumentation zu erstellen [PP07]. Im Anhang A.2 befinden
sich die Anwendungsfälle für die oben beschrieben Anforderungen.

58

6.3. Lösungsansatz

6.3. Lösungsansatz

Wie die Anforderungen aus dem letzten Abschnitt einzeln umgesetzt werden können, wird
im Folgenden beschrieben. Das Vorgehen dabei ist Top Down vom Generellen ins Detail.

6.3.1. Technische Integration

Dieser Absatz beschreibt, wie das Modellierungswerkzeug in die vorhandene Architektur
integriert werden kann. Da der gesamte Screenflow Manager auf die Verwendung im Portal
ausgelegt ist, liegt es nahe, auch das Modellierungswerkzeug als Portlet umzusetzen. Auf
diese Weise kann der Screenflow Manager, der bereits das Dialog State Display Portlet und
das Dialog Stack Portlet (siehe Kapitel 5) mitbringt, einfach um den grafischen Modellierer er-
weitert werden. Abbildung 6.1 veranschaulicht die Integration des Modellierungswerkzeugs
in den Portalkontext.

Application Server
Portlet Container Servlet Container

Portal Services Interface

Portal Server

Persistenz API

IBM UX Screenflow Manager API
Portlet API

Graphical Screenflow Modeller

Dialog StackDialog State DisplayCustom Portlets

Transition Endpoints
Transitions
Dialogs

Portlets

Legende:

Screenflow Manager
Engine API

Screenflow Modeller
Portlet

Abbildung 6.1.: Integration des Modellierungswerkzeugs in die Portal Architektur.

Als Portlet hat das Modellierungswerkzeug, das in der Grafik als Graphical Screenflow Modeller
bezeichnet ist, direkten Zugriff auf die API des Screenflow Managers. Zusätzlich kann es
alle benötigen Daten, von den am Screenflow beteiligten Portlets und Portalseiten, direkt
über die IBM Service API vom Portal Server abfragen. Als Portlet ist das Modellierungs-
werkzeug plattformunabhängig und kann auf jedem System verwendet werden, das einen
grafischen Browser bietet. Zusätzlich bietet dies für den Modellierer den Vorteil, dass das
Werkzeug im Portal integriert ist und er so nur eine Anwendung (den Browser) benötigt,

59

6. Konzept

um den Screenflow zu entwickeln und zu testen. Da alle Komponenten für den zu model-
lierenden Screenflow bereit im Portal zur Verfügung stehen, ermöglicht dieser Ansatz eine
Modellierung zur Laufzeit.

G
ra

p
h

ic
a
l
S

c
re

e
n

fl
o
w

 M
o
d

e
ll
e
r

P
o
rt

le
t

s
e
rv

e
rs

id
e
 c

o
d

e

UX Screeflow Manager

Client Side Server Side

Graphical Screenflow Modeller - Rich-Client

HTTP

P
o
rt

a
l
S

e
rv

ic
e
 I

n
te

rf
a
c
e

Internet

Abbildung 6.2.: Client-Server Modell des Modellierungswerkzeugs (Portlet).

Abbildung 6.2 zeigt die mehrschichtige Architektur der Web-Anwendung, die sich aus der
Implementierung als Portlet ergibt. Die Präsentationsschicht des Portlets beschränkt sich
auf die Auslieferung des Rich-Clients an die Clientseite. Der Rich-Client kommuniziert
dann über HTTP-Aufrufe von der Clientseite aus mit der Anwendungsschicht des Portlets.
Die Anwendungsschicht verarbeitet die Aufrufe und involviert bei Bedarf die entsprechen-
den Dienste, um auf die Screenflow Manager API zuzugreifen oder um Details über die
Portlets und Portalseiten des Screenflows abzufragen. Die entsprechenden Daten liefert die
Anwendungsschicht dann an die Clientseite zurück, wo sie vom Modellierungswerkzeug
weiter verarbeitet werden. Die Logik für die Darstellung des Screenflows befindet sich im
Rich-Client und benötigt keine Kommunikation mit der Anwendungslogik im Portlet. So
kommt die Anwendung mit wenig Kommunikation aus.

Die Entscheidung das Modellierungswerkzeug als Portlet zu entwickeln, lässt sich wie folgt
begründen. Der Screenflow Manager kann so um die Möglichkeit einer grafischen Model-
lierung erweitert werden. Als Portlet lässt sich die Anwendung einfach in die bestehende
Architektur integrieren. Die Benutzungsschnittstelle des Modellierungswerkzeug kann ohne
Aufwand ins Portal eingebettet werden. Eine alternative Umsetzung zum Beispiel als externe
Anwendung kam daher nicht in Betracht.

60

6.3. Lösungsansatz

6.3.2. Visuelle Integration

Dieser Abschnitt beschreibt, wie das Modellierungswerkzeug visuell in das Portal integriert
wird. Für die Platzierung der Benutzungsschnittstelle werden zwei Möglichkeiten in Betracht
gezogen. Das Ziel bei der Auswahl war eine für den Modellierer optimale Lösung zu finden,
sodass er den Modellierungsprozess am einfachsten ausführen kann.

Platzierung in der Werkzeugleiste Der IBM WebSphere Portal Server besitzt eine Werkzeu-
gleiste, welche bei Bedarf vom oberen Rand des Bildschirms herunter geklappt werden kann.
Die erste mögliche Lösung ist, das Modellierungswerkzeug in die Portal Werkzeugleiste
zu integrieren. Die Werkzeugleiste behält alle Inhalte auch bei einem Seitenwechsel im
Portal. Das Ziel bei der Integration des Modellierungswerkzeug in die Werkzeugleiste ist,
dass der Modellierer wie gewohnt im Portal umhernavigieren kann, um sich Artefakte
auszuwählen, die er dem Screenflow hinzufügen möchte. Die gewünschten Artefakte kann
er dann per Drag and Drop in das Modellierungswerkzeug ziehen, wo sie dann als Modell
dargestellt werden. Einzelne Portlets können direkt von der entsprechenden Portalseite in
das Modellierungswerkzeug gezogen werden. Eine Portalseite kann der Modellierer aus
der Navigationsleiste in die Fläche des Modellierungswerkzeug ziehen. Dabei werden dann
alle Portlets, die sich auf der gewählten Portalseite befinden, dem grafischen Modellierer
hinzugefügt. Da ein Portlet immer in einer Portalseite enthalten sein muss, wird implizit
auch die zugehörige Portalseite referenziert.

Abbildung 6.3.: Modellierungswerkzeug in der Werkzeugleiste. Links einfacher Modus,
rechts erweiterter Modus.

Da der Platz auf dem Bildschirm begrenzt ist, erhält das Portlet in der Werkzeugleiste zwei
Modi. Einen einfachen und einen erweiterten Modus, siehe Abbildung 6.3 links der einfache
Modus und rechts der erweiterte Modus. Im einfachen Modus wird das Portlet in seiner Höhe
beschränkt und das Modell der Artefakte komprimiert angezeigt. Dadurch sind nur wenig
Bildschirminhalte von der Werkzeugleiste verdeckt. Dies verhilft dem Modellierer zu mehr
Übersicht und erleichtert das Drag and Drop mit den Artefakten. Nachdem die Auswahl der

61

6. Konzept

Artefakte abgeschlossen ist, kann das Portlet für den restlichen Modellierungsprozess im
erweiterten Modus angezeigt werden. Dabei ist das Portlet dann in voller Größe dargestellt
und das Modell des Screenflows expandiert.

Platzierung als eigenständiges Portlet Die andere mögliche Lösung ist das Modellierungs-
werkzeug als eigenständiges Portlet in einer Portalseite zu integrieren. Das Werkzeug könnte
zum Beispiel im Administrationsbereich eingebunden werden. Da der Modellierer bei einem
eigenständigen Portlet nicht umhernavigieren kann um Dialogartefakte auszuwählen, muss
das Portlet dafür eine Liste aller Ressourcen zur Verfügung stellen. Von dort aus kann der
Modellierer die gewünschten Artefakte in die Modellierungsfläche ziehen, wo er weiter mit
ihnen arbeiten kann. Abbildung 6.4 veranschaulicht den Ansatz in einer eigenen Portalseite.
Links im Bild ist die Liste der vorhanden Ressourcen angedeutet, der rechte Teil des Bildes
ist für die Modellierungsfläche für die Screenflows vorgesehen.

Page1

P1
P2
P3
P4

Page2

P1

Page4

Page3

P1
P2

P1
P2
P3

Abbildung 6.4.: Modellierungswerkzeug in eigener Portalseite.

Auswahl Letztlich wurde entschieden das Portlet in die Werkzeugleiste des Portals zu
integrieren. Das Modellierungswerkzeug als eigenständiges Portlet in eine Portalseite einzu-
betten hat zwar den Vorteil, dass Modellierer den Screenflow von einem zentralen Punkt
aus entwickeln kann, ohne dass er wie beim alternativen Ansatz umhernavigieren muss, um
die Artefakte für den Screenflow zusammenzusuchen. Gerade aber das Navigieren zu den
entsprechenden Portalseiten war bei der Entscheidung ausschlaggebend, da der Modellierer
so die potenziellen Artefakte direkt sehen kann. Ähnlich wie bei einem Onlineshop die
Artikel in den Einkaufswagen gelegt werden, wählt der Modellierer seine gewünschten
Artefakte aus und zieht sie in die Werkzeugleiste. Dieses ist ein sehr intuitives Vorgehen.
Werden die Ressourcen in einer Liste bereitgestellt, muss der Modellierer alle Namen der
Artefakte kennen, die er dem Dialog hinzufügen möchte. Außerdem haben große Listen das
Problem, dass sie schnell unübersichtlich werden können.

62

6.3. Lösungsansatz

6.3.3. Grafische Darstellung von Screenflows

Dieser Abschnitt beschreibt, wie ein Screenflow im Modellierungswerkzeug grafisch reprä-
sentiert wird. Dafür wurden mehrere mögliche Diagramme entwickelt. Diagramme nutzen
die Aussagekraft von Bildern und sind daher ein gutes Mittel zur Veranschaulichung von
Abläufen. Sie sind in der Regel schnell und einfach zu verstehen und können auch von
Personen gelesen werden, die nicht alle Details kennen [USA05].
Gerade Graphen werden häufig dazu eingesetzt, Abläufe von Prozessen visuell darzustellen.
Beispiele hierfür sind unter anderen BPMN [OMG11] im Bereich der Geschäftsprozesse oder
den UML Zustands- und Flussdiagrammen [OMG05], die in der Programmentwicklung das
Verhalten von Systemen veranschaulichen.

Auch das grafische Modellierungswerkzeug soll für die Modellierung der Screenflows einen
Graphen verwenden. Es existieren viele Möglichkeiten, wie ein Prozessgraph für einen
Screenflow gestaltet werden kann. Im Folgenden werden vier mögliche Ansätze betrachtet.
Die zugehörigen Beispielgraphen stellen das folgende Szenario dar. Es besteht aus zwei
Portalseiten, die jeweils 3 Portlets enthalten. Portalseite PS1 beinhaltet die Portlets A, B
und C während Portalseite PS2 die Portlets D, E und F enthält. A sendet ein Ereignis an B.
B sendet ein Ereignis an C und ein weiteres an PS2, was einem Broadcast an D, E und F
entspricht. C und F senden beide jeweils ein Ereignis an E. Abbildung 6.5 veranschaulicht
die Transitionen des Beispielszenarios. Für eine bessere Übersieht sind die Transitionen mit
Nummern beschriftet.

A

B

E

C

F

B

B

C E

PS (D,E,F)2

1

2

3

4

5

Abbildung 6.5.: Transitionen des Beispielszenarios für die grafische Darstellung von Screen-
flows.

Verschachtelter Graph Dieser Ansatz verwendet zwei Knotentypen, einen für die Dar-
stellung der Portalseiten (große Knoten) und einen für die Repräsentation von Portlets
(kleine Knoten). Ein Knoten für eine Portalseite beinhaltet alle Portlets (kleine Knoten), die
sich auf der repräsentierten Portalseite befinden. Jeder dieser Knoten enthält einen Teil des
gesamten Graphen. Zur Verbindung der Knoten sind drei Arten von Kanten erlaubt. Erstens,
Kanten zwischen den Portlets innerhalb einer Portalseiten. Zweitens, Kanten zwischen den
Portlets aus unterschiedlichen Portalseiten. Und drittens, Kanten von einem Portlet zu einer
Portalseiten, was einen Broadcast an alle Portlets innerhalb der Portalseite repräsentiert.
Abbildung 6.6 stellt das obige Szenario mit den zwei Portalseiten und den sechs Portlets als
verschachtelten Graphen dar.

63

6. Konzept

A

B

C

D

E

F

1

3

4
2 5

Abbildung 6.6.: Beispielszenario mit verschachteltem Graphen.

Dieser Ansatz hat den Vorteil, das die Knoten einen ähnlichen Aufbau besitzen wie Portal-
seiten mit ihren Portlets. So erhält der Modellierer eine gewisse Vertrautheit zu dem Modell.
Der Modellierer kann auf einen Blick sehen, wie die Zugehörigkeit der Portlets zu ihrer
Portalseite ist. Bei einem Broadcast ist nur eine Kante notwendig, anstatt dass für jedes
beteiligte Portlet eine Kante gezogen werden muss. Bei jedem Kantenübergang kann sofort
abgelesen werden auf welcher Portalseite sich der Endbenutzer dann befinden wird.

Freier Graph Dieser Ansatz, verzichtet auf die explizite Darstellung von Portalseiten. Eine
Transition auf eine Portalseite, also der Broadcast an alle darin enthalten Portlets, wird
durch entsprechende Kanten an alle beteiligten Knoten dargestellt. Durch den Verzicht
auf die Darstellung der Portalseiten, kommt dieser Ansatz mit nur einer Knotenart aus. In
Abbildung 6.7 wird das vorher beschriebene Szenario als freier Graph abgebildet.

A B

C E

F

D

1

3

4

2 5

3

3

Abbildung 6.7.: Beispielszenario mit freiem Graphen.

Von Vorteil ist, dass der Graph beliebig angeordnet werden kann. Nachteilig ist jedoch, dass
ohne eine Repräsentation der Portalseiten für einen Broadcast jedes Portlet explizit mit einer
Kante verbunden werden muss. Darunter kann auch schnell die Lesbarkeit leiden. Für den

64

6.3. Lösungsansatz

Modellierer ist auch nicht ersichtlich, welche Portlets sich gemeinsam auf einer Portalseite
befinden.

Freier Graph mit zwei Knotenarten Dieser Ansatz ist eine Kombination aus Ansatz 1 und
2. Hierbei handelt es sich zwar um einen freien Graphen, es existieren jedoch zwei Arten
von Knoten. Ähnlich wie beim Ansatz mit dem verschachtelten Graphen existiert eine Art
von Knoten für die Portlets und eine für die Portalseiten. Der Unterschied ist jedoch, dass
die Knoten für die Portalseiten keine Untergraphen enthalten. Dennoch repräsentiert eine
Kante zu einem solchen Knoten einen Broadcast an alle Portlets, die auf der repräsentierten
Portalseite enthalten sind. Sendet ein Portlet aus der betreffenden Portalseite nach diesem
Broadcast ein Ereignis, wird die Kante abgehend vom Knoten der Portalseite dargestellt
(Kante 5). Ansonsten wird das Portlet als eigenständiger Knoten dargestellt.
Grafik 6.8 veranschaulicht das obige Szenario mit dem freien Graphen und seinen zwei
Knotentypen.

A B

C E

1 3

4

2
5

Abbildung 6.8.: Beispielszenario mit freiem Graphen mit zwei Knotentypen.

Dieser Ansatz hat gegenüber dem vorhergehenden Graphen den Vorteil, dass ein Broadcast
sofort abgelesen werden kann. Nachteilig ist jedoch, dass bei Kanten die von einem Knoten
wegführen, der sich innerhalb einer Portalseite befindet, der Ursprung nicht sofort ersichtlich
ist (Kante 5, F → E).

Freier Graph mit Multi-Knotenmenge Dieser Ansatz ist eine Erweiterung des zuvor vorge-
stellten freien Graphen. Auch bei diesem Ansatz wird auf die Darstellung von Portalseiten
komplett verzichtet. In Erweiterung zum Graphen des zweiten Ansatzes können bei die-
sem Graphen die Knoten der Portlets jedoch mehrfach vorkommen. Zusätzlich besteht
die Regel, dass jeder Knoten maximal eine eingehende und maximal eine ausgehende
Kante besitzen darf. In Abbildung 6.9 wird das Beispielszenario durch einen Graphen mit
Multi-Knotenmenge dargestellt.

65

6. Konzept

A B

D

E

C E

F E

1

4

2

5

3

3

3

Abbildung 6.9.: Beispielszenario mit freiem Graphen mit Multi-Knotenmenge.

Vorteilhaft bei diesem Graphen ist, dass er eine Leserichtung besitzt. Er kann von links
nach rechts gelesen werden. Alle möglichen Pfade in einem Screenflow können sofort
abgelesen werden. Das hat jedoch gleichzeitig den Nachteil, dass die Graphen schnell sehr
groß werden. Auch Broadcasts können nur schwer vom Graphen abgelesen werden. Des
Weiteren ermöglicht der Graph keine Modellierung von Zyklen, die für Rücksprünge auf
einen vorherigen Subdialog erforderlich sein können.

Auswahl Für die Darstellung der Screenflows wurde der verschachtelte Graph gewählt.
Dieser Ansatz eignet sich am besten für diesen Zweck. Die Graphen aus dem zweiten und
vierten Ansatz haben den Nachteil, dass die Erstellung von Broadcasts für den Modellierer
unkomfortabel sind, da er jeden beteiligen Knoten explizit verbinden muss. Zusätzlich sind
Broadcasts bei diesen beiden Ansätzen praktisch nicht von anderen Ereignissen zu unter-
scheiden. Eine ungünstige Positionierung der Knoten kann dieses Problem noch verstärken.
Der Ansatz mit dem freien Graphen mit Multi-Knotenmenge kann zusätzlich keine Zyklen
darstellen, die eventuell bei Rücksprüngen nötig sind. Ansatz drei, der freie Graph mit zwei
Knotentypen, steht dem verschachtelten Graphen bei der Darstellung von Broadcasts in
nichts nach. Dieser Ansatz weist jedoch Schwächen bei der Darstellung von Transitionen auf.
Transitionen von Knoten, die zuvor an einem Broadcast beteiligt waren, können der Quelle
nicht mehr zugeordnet werden (F → E). Da diese Transition am Knoten der Portalseite
dargestellt wird, ist es nicht ersichtlich von welchem Knoten die Transition ausging.
Aus der Sicht eines Modellierers eignet sich daher besonders der verschachtelte Graph für
die Darstellung der Screenflows.

66

6.3. Lösungsansatz

6.3.4. Modellierungsprozess

Dieser Abschnitt beschreibt, wie sich der Modellierungsprozess gestaltetet. Dafür werden
die einzelnen Aktivitäten, die ein Modellierer im Modellierungswerkzeug durchführen muss,
aufgelistet.

Artefakte hinzufügen Während dieser Aktivität fügt der Modellierer dem Graphen die
gewünschten Artefakte hinzu. Dafür navigiert er zur gewünschten Portalseite und zieht
das entsprechende Artefakt per Drag and Drop in das Modellierungswerkzeug in der
Werkzeugleiste. Das Modellierungswerkzeug fügt daraufhin das Artefakt umgehend dem
Graphen hinzu. Damit der Modellierer nicht durch die Werkzeugleiste bei der Auswahl
gehindert wird, ist sie, wie bereit im Abschnitt Visuelle Integration beschrieben, komprimiert
dargestellt.

Transitionen hinzufügen Während dieser Aktivität verbindet der Modellierer die Artefakte
miteinander. Dazu zieht er im Graphen, von einem Knoten zum anderen, eine Kante. Der
Knoten von dem die Aktivität aus beginnt, wird als Quelle der Transition verwendet. Der
Knoten an dem die Aktivität endet als das Ziel. Das Verbinden der Artefakte mit einer Kante
definiert lediglich welche Transition Endpoints an der Transition beteiligt sind und wer von
ihnen die Quelle oder das Ziel ist. Zusätzlich müssen noch weitere Eigenschaften wie zum
Beispiel das auszutauschende Ereignis festgelegt werden. Dies geschieht in der nächsten
Aktivität.

Ereignisse der Transitionen festlegen Während dieser Aktivität spezifiziert der Modellie-
rer die Eigenschaften einer Transition. Dazu muss die entsprechende Transition ausgewählt
sein. Eine Transition kann der Modellierer mit der Maus auswählen oder über die vorhanden
Transitionen iterieren. Im angezeigten Dialog kann der Modellierer auswählen, welches von
den potenziell möglichen Ereignisse von der Quelle für diese Transition gesendet werden soll
und welches der potenziell möglichen Ereignisse das Ziel entgegen nehmen soll. Zusätzlich
kann der Modellierer für das Ereignis von der Quelle und dem Ziel einen Aliasnamen
vergeben, unter dem die Nutzdaten des Ereignis im Dialog Context abgelegt oder geladen
werden soll. Um gegebenenfalls ein Ereignis zu transformieren, kann der Modellierer aus
den vorhanden Event Mappern (siehe Kapitel 5) einen PayloadToContextMapper für die
Quelle und einen ContextToPayloadMapper für das Ziel auswählen. Schließlich kann der
Modellierer noch auswählen, ob es sich um eine Start- oder Endtransition handelt. Bei
dieser Auswahl handelt es sich um ein exklusives Oder. Beide Optionen können nicht gleich-
zeitig gewählt werden. Wird keine der beiden Optionen gewählt, wird die Transition als
gewöhnliche Transition behandelt. Nur die Transitionen, für die Eigenschaften spezifiziert
sind, werden vom Modellierungswerkzeug in die Dialogdefinition aufgenommen. Das bloße
Verbinden von Transition Endpoints reicht dafür nicht aus.

67

6. Konzept

Eigenschaften für den Screenflow festlegen Während dieser Aktivität vergibt der Mo-
dellierer globale Eigenschaften für den Screenflow. Im angezeigten Dialog kann er einen
Standard Extension Node definieren, der dann als Voreinstellung für alle dynamischen
Kopien (siehe Kapitel 5) gesetzt ist.

Eigenschaften für die Portalseiten festlegen Während dieser Aktivität legt der Modellierer
erweiterte Eigenschaften für eine Portalseite fest. Dazu muss die entsprechende Portalseite
ausgewählt sein. Eine Portalseite kann der Modellierer mit der Maus auswählen oder über
die vorhanden Portalseite iterieren. Der Modellierer kann dann im angezeigten Dialog für die
Portalseite, für jede unterstütze Sprache einen Titel und eine Beschreibung festlegen. Diese
substituieren dann den originalen Titel und Beschreibung der Portalseite im entsprechenden
Dialogschritt. Des Weiteren legt der Modellierer hier fest, ob die Portalseite als dynamische
Kopie oder statisch geladen werden soll. Dazu muss er einen Haken unter dynamische
Kopie setzen. Im Falle, dass er die dynamische Kopie wählt, kann hier auch den zugehörigen
Extension Node angeben. Wenn der Modellierer bei den Eigenschaften des Screenflow bereits
einen Standard Extension Node vergeben hat, ist dieser hier voreingestellt.

Eigenschaften für die Portlets festlegen Während dieser Aktivität legt der Modellierer
zusätzliche Eigenschaften für die einzelnen Portlets fest. Das entsprechende Portlet muss
dafür ausgewählt sein. Ein Portlet kann der Modellierer mit der Maus auswählen oder über
die vorhanden Portlets iterieren. Der Modellierer kann dann im angezeigten Dialog für
das Portlet für jede unterstütze Sprache einen Titel und eine Beschreibung festlegen. Diese
substituieren dann den originalen Titel und Beschreibung des Portlets im entsprechenden
Dialogschritt. Im angezeigten Dialog kann der Modellierer wählen, ob das Portlet als dyna-
mische Kopie in den Screenflow eingebunden werden soll. Dazu muss er den Haken für die
dynamische Kopie setzen. Im Fall, dass der Modellierer diese Option aktiviert, muss er eine
dynamische Kopie einer Portalseite (Template) angeben, in der das Portlet eingebettet wird.
Zusätzlich kann er einen Extension Node spezifizieren. Hat der Modellierer einen Extension
Node bereits in den Eigenschaften des Screenflow festgelegt, ist dieser hier voreingestellt.

Testen Während dieser Aktivität kann der Modellierer den Screenflow testen. Diese Ak-
tivität ist jedoch nicht Bestandteil dieser Arbeit. Es ist jedoch vorstellbar, dass bei dieser
Aktivität der Ablauf des Screenflows vom Modellierer simuliert wird.

Dialogdefinition speichern Während dieser Aktivität speichert der Modellierer den zu-
vor definierten Screenflow im System. Dazu muss er einen eindeutigen Namen für den
Screenflow festlegen. Alternativ kann der Modellierer auch den Screenflow als XML-Datei ex-
portieren, um ihn lokal abzulegen oder um ihn an jemanden weiterzugeben. Der exportierte
Screenflow kann dann zum Beispiel auf einem anderen System geöffnet werden.

68

6.3. Lösungsansatz

Geführter Modellierungsprozess

Um den Modellierer optimal bei der Ausführung dieser Aktivitäten zu unterstützen, wird er
im Modellierungswerkzeug schrittweise durch einen vordefinierten Modellierungsprozess
geführt. Dem Modellierer werden dabei immer nur die Werkzeuge eingeblendet, welche für
die aktuelle Aktivität im entsprechenden Prozessschritt notwendig sind. Ist eine Aktivität
abgeschlossen, kann er zum nächsten Prozessschritt wechseln. Durch dieses Vorgehen kann
der Modellierer den Screenflow Schritt für Schritt entwickeln. In welchem Prozessschritt er
sich gerade befindet, wird ihm über eine Navigationsleiste angezeigt, die sich im oberen
Bereich des Modellierungswerkzeug befindet und die den aktiven Prozessschritt hervorhebt.
Abbildung 6.13 veranschaulicht diese Navigationsleiste. Trotz dieses vordefinierten Prozesses
kann der Modellierer bei Bedarf zwischen den einzelnen Aktivitäten springen, indem er
in der Navigationsleiste die entsprechende Aktivität auswählt. Des Weiteren bietet dieser
Ansatz die Möglichkeit, die Eingaben des Modellierers in jedem Prozessschritt zu validieren.
Einen Wechsel in den nächsten Prozessschritt könnte so lange verhindert werden, bis alle
Eingaben vorhanden sind.

Eine Alternative ist im Modellierungswerkzeug auf eine Benutzerführung zu verzichten.
In diesem Fall stehen dem Modellierer zu jedem Zeitpunkt alle Werkzeuge zur Verfügung.
Der Modellierer muss dann selbst entscheiden, welche Aktivitäten durchzuführen sind
und in welcher Reihenfolge er diese dann durchführt. Dies erfordert jedoch eine gewisse
Erfahrungen vom ihm. Ein vordefinierter Prozess eignet sich für alle Arten von Anwender.
Technisch weniger versierte können sich Schritt für Schritt durch den Modellierungsprozess
führen lassen, während fortgeschrittene Benutzer nicht benötigte Schritte überspringen.

6.3.5. Grafische Umsetzung der Benutzungsschnittstelle

Die im vorhergehenden Absatz beschrieben Aktivitäten erfordern jeweils eine Interaktion
mit der Benutzungsschnittstelle. Die dazu notwendigen Dialoge und Anzeigen werden in
diesem Abschnitt kurz vorgestellt.

Dialog für die Festlegung der Ereignisse einer Transition Dieser Dialog dient dem Model-
lierer zur Konfiguration der Ereignisse einer Transition. Abbildung 6.13 zeigt eine Skizze des
Dialogs. Über den Dialog wird der Quelle und dem Ziel ein Ereignis zugewiesen. Für die
Quelle werden alle Ereignisse in einer Auswahl bereit gestellt, die der Transition Endpoint
senden kann. Das selbe gilt für das Ziel, wo alle Ereignisse aufgelistet werden, die der
Transition Endpoint empfangen kann. Zusätzlich kann der Modellierer einen Aliasnamen
vergeben, unter dem die Nutzdaten des Ereignisses gespeichert oder geladen werden sollen.
Zusätzlich bietet der Dialog eine Auswahl von allen vorhanden Event Mapper für die Er-
eignistransformation. Über zwei Kontrollkästchen kann der Modellierer festlegen, ob die
Transition eine Start- oder Endtransition ist. Von den Kästchen kann maximal nur eines
aktiviert werden. Zwei Buttons im unteren Bereich des Dialogs erlauben dem Modellierer
über die vorhandenen Transitionen zu iterieren.

69

6. Konzept

Ereignisse der Transition

Quelle

Ereignis

Event Mapper

Alias

Ziel

Ereignis

Event Mapper

Alias

vorherige nächste

Abbildung 6.10.: Dialog zur Definition der Eigenschaften einer Transition.

Dialog für globale Eigenschaften des Screenflows Über diesen Dialog werden Eigenschaf-
ten festgelegt, die den gesamten Screenflow betreffen. Der Modellierer kann im Dialog einen
Extension Node festlegen, der dann bei allen Transition Endpoints voreingestellt wird, die als
dynamische Kopie in den Screenflow eingebunden sind. Ein voreingestellter Extension Node
kann bei jedem Transition Endpoint angepasst werden, siehe Dialog für die Eigenschaften
einer Portalseite und Dialog für die Eigenschaften eines Portlet. Abbildung 6.11 skizziert
diesen Dialog.

Eigenschaften des Screenflows

Extension Node

Abbildung 6.11.: Dialog zur Definition der globalen Eigenschaften des Screenflows.

Dialog für die Eigenschaften einer Portalseite Durch diesen Dialog werden die Eigenschaf-
ten einer Portalseite definiert. In Abbildung 6.12 ist ein möglicher Dialog abgebildet. Der
Dialog teilt sich in zwei Rubriken auf, die durch Tabs getrennt sind. In der ersten Rubrik kann
der Modellierer für die Portalseite einen Title und eine Beschreibung für jede unterstützte
Sprache vergeben. Die Eingabefelder sind untereinander aufgelistet, um eine schnelle und
einfache Eingabe der Daten zu ermöglichen. In der zweiten Rubrik kann der Modellierer
über ein Kontrollkästchen wählen, ob die Portalseite als dynamische Kopie in den Screen-
flow eingebunden werden soll. Ist das Kontrollkästchen aktiviert, kann der Modellierer
ein Template und ein Extension Node festlegen. Wenn in den globalen Eigenschaften ein
Extension Node gesetzt ist, ist dieser in diesem Dialog im Extension Node Eingabefeld
bereits eingetragen. Der voreingestellte Extension Node kann jedoch geändert werden. Zwei
Buttons im unteren Bereich des Dialogs erlauben dem Modellierer über die vorhandenen
Portalseiten zu iterieren.

70

6.3. Lösungsansatz

English

Description

Eigenschaften der Portalseite

vorherige nächste

Title

Title and DecriptionTitle and Decription Dynamic Copy

Eigenschaften der Portalseite

vorherige nächste

Template

Title and DecriptionTitle and Decription Dynamic Copy

Extension Node

Dynamic Copy

Abbildung 6.12.: Dialog zur Definition der Eigenschaften einer Portalseite.

Dialog für die Eigenschaften eines Portlet In diesem Dialog werden die Eigenschaften
eines Portlets konfiguriert. Der Dialog ist identisch zum Dialog für die Konfiguration
der Eigenschaften einer Portalseite. Wie der vorherige Dialog für die Eigenschaften einer
Portalseite besteht auch dieser Dialog aus zwei Rubriken, die durch Tabs getrennt sind. In
der ersten Rubrik kann der Modellierer für das Portlet einen Title und eine Beschreibung
für jede unterstützte Sprache vergeben. Die Eingabefelder werden wie im vorherigen Dialog
untereinander angeordnet. In der zweiten Rubrik besitzt der Dialog ein Kontrollkästchen,
über das der Modellierer festlegt, ob das Portlet als dynamische Kopie in den Screenflow
eingebunden wird. Nach Aktivierung dieser Option kann der Modellierer der dynamischen
Kopie ein Template und einen Extension Node zuweisen. Wenn in den globalen Eigenschaften
ein Extension Node gesetzt ist, ist dieser in diesem Dialog im Extension Node Eingabefeld
bereits eingetragen. Der voreingestellte Extension Node kann jedoch geändert werden. Zwei
Buttons im unteren Bereich des Dialogs erlauben dem Modellierer über die vorhandenen
Portlets zu iterieren.

Navigationsleiste für den Modellierungsprozess Der Modellierungsprozess ist in mehrere
Aktivitäten aufgeteilt. Jede dieser Aktivitäten entspricht einem Schritt im Modellierungs-
prozess. Eine Navigationsleiste, wie in Abbildung 6.13 dargestellt, soll dem Modellierer
visualisieren, in welchem Prozessschritt des Modellierungsprozess er sich gerade befindet.
Zusätzlich kann der Modellierer über die Navigationsleiste zwischen verschieden Aktivitäten
hin und her wechseln.

Define
global

Properties
Add Artefacts

Define
Transitions

Event
Mapping

Define
Page

Properties

Define
Portlet

Properties

Test
Screenflow

Save
and

Export

Abbildung 6.13.: Navigationsleiste für den Modellierungsprozess.

71

6. Konzept

Entwurf der Benutzungsschnittstelle

Für den Entwurf der Benutzungsschnittstelle wurden Mockups1 gezeichnet. Diese Mockups
wurden in Designmeetings validiert und schrittweise weiterentwickelt. Die endgültige
Fassung der Mockups ist im Anhang A.3 zu finden.

6.4. Zusammenfassung

Aufgrund des zugrundeliegenden Screenflow Managers bestehen eine Reihe von Anfor-
derungen, die ein grafisches Modellierungswerkzeug erfüllen muss, um einen Screenflow
zu definieren. Zusätzlich bestehen noch Anforderungen, die von den Entwicklern des
Screenflow Managers an das Modellierungswerkzeug gestellt wurden. Der präsentierte
Lösungsansatz stellt eine mögliche Lösung für ein grafisches Modellierungswerkzeug für
Screenflows vor. Das Modellierungswerkzeug wird als Portlet implementiert, um optimal in
das Gesamtkonzept des Screenflow Managers integriert zu werden. Innerhalb des Portals
wird das Modellierungswerkzeug in die Werkzeugleiste eingebettet, um dem Modellierer
ein möglichst intuitives Arbeiten bei der Auswahl der am Screenflow beteiligten Artefakte
zu ermöglichen. Das Portlet hat zwei Modi. Einen vereinfachten Modus für die Auswahl
der Artefakte und einen erweiterten Modus für den restlichen Modellierungsprozess. Ne-
ben der Auswahl der Artefakte besteht der Modellierungsprozess aus einer Reihe weiterer
Aktivitäten, die notwendig sind, um alle Informationen für eine Dialogdefinition zusammen-
zutragen. Um dem Modellierer das Vorgehen zu vereinfachen, sind die Aktivitäten in einem
vordefinierten Modellierungsprozess festgelegt, durch den der Modellierer geführt wird. Für
jede Aktivität im entsprechenden Prozessschritt werden nur die notwendigen Werkzeuge
bereitgestellt. In welchem Prozessschritt des Modellierungsprozess er sich befindet, wird
ihm über eine extra Navigationsleiste angezeigt, die den aktuellen Schritt optisch hervorhebt.
Die feste Reihenfolge kann der Modellierer umgehen, indem er in der Navigationsleiste zu
einer anderen Aktivität wechselt.

1Mockup: Als Mockup wird ein maßstabstreues Modell bezeichnet. Gerade bei der Entwicklung von grafischen
Oberflächen werden Mockups in der Entwurfsphase verwendet.

72

7. Implementierung

Nachdem nun die Konzepte für das Modellierungswerkzeug vorgestellt wurden, beschreibt
dieses Kapitel die konkrete Implementierung. Die Implementierung des Portlets teilt sich in
zwei Bereiche auf: Erstens die Clientseite, die in JavaScript, HTML und CSS implementiert ist
und im Browser des Nutzers ausgeführt wird. Sie wird durch das Aufrufen des Portlets in
der Werkzeugleiste an den Browser übertragen. Zweitens die Serverseite, die in Java imple-
mentiert ist und innerhalb des Portal Servers ausgeführt wird. Clientseite und Serverseite
kommunizieren über HTTP-Aufrufe miteinander.
Abbildung 7.1 stellt die Architektur mit den Komponenten des Portlets auf der Server-
und Clientseite und ihren Beziehungen dar. Die einzelnen Komponenten werden in den
folgenden Abschnitten detailliert beschrieben.

G
ra

p
h

ic
a
l
S

c
re

e
n

fl
o
w

 M
o
d

e
ll
e
r

P
o
rt

le
t

s
e
rv

e
rs

id
e
 c

o
d

e

UX Screeflow Manager

Client Side Server Side

P
o
rt

a
l
S

e
rv

ic
e
 I

n
te

rf
a
c
e

Internet

Object
(Model)

Template
(View)

Controller Event Handler

Event
Listener

Property
Binding

Drag & Drop
Events

Diagram Controller

B
a
ck

e
n

d
E
x
te

rn
a
l
E
v
e
n

t
Li

st
e
n

e
r

(D
ra

g
 &

 D
ro

p
)

Event HandlerController
Logic

XMLHttpRequest
(asynchron)

Portlet Ressource
Request

HttpRequest
(synchron)

Portlet Action
Request

Abbildung 7.1.: Detailliertes Client-Server Modell des Modellierungswerkzeug (Portlet).

73

7. Implementierung

7.1. Clientseite

Die Clientseite besteht, wie zuvor erwähnt, aus JavaScript, HTML und CSS. Um die Entwick-
lung zu beschleunigen und um eine möglichst browserunabhängige Anwendung zu erhalten,
wurden die folgenden JavaScript Frameworks bei der Implementierung verwendet.

7.1.1. JavaScript Frameworks

Für die Implementierung der Clientseite des Modellierungswerkzeugs wurden die JavaScript
Frameworks Dojo Toolkit1 und IBM ILOG Dojo Diagrammer2 verwendet. Abbildung 7.2 veran-
schaulicht den Aufbau und die Abhängigkeiten der Frameworks.

DojoX Dijit

Base

Core

Diagrammer

Util

Screenflow Modeller

Dojo Toolkit

IBM ILOG Dojo Diagrammer

Graphical Screenflow Modeller

Abbildung 7.2.: Abhängigkeiten der JavaScript Frameworks [Mat08].

Als Basis für die Implementierung wird das Dojo Toolkit eingesetzt. Auf dem Dojo Toolkit
baut der IBM ILOG Dojo Diagrammer auf. Das Modellierungswerkzeug wiederum nutzt
Module und Klassen aus beide Frameworks für die Umsetzung.

Dojo Toolkit

Das Dojo Toolkit ist ein JavaScript Framework, das eine browserunabhängige Entwicklung
von JavaScript Anwendungen ermöglicht. Dojo ist sehr modular aufgebaut. Der Kern von
Dojo ist nur wenige Kilobyte groß. Weitere benötigte Module können während der Laufzeit

1Weitere Informationen zum Dojo Toolkit können unter http://dojotoolkit.org gefunden werden.
2Weitere Informationen zum IBM ILOG Dojo Diagrammer können unter http://pic.dhe.ibm.com/
infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/
Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.
html gefunden werden.

74

http://dojotoolkit.org
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.web2mobile.ilog.dojo.diagrammer.help/Content/Visualization/Documentation/Dojo/Dojo_Diagrammer/_pubskel/ps_dojo_diagrammer_ic2.html

7.1. Clientseite

dynamisch nachgeladen werden. Abbildung 7.2 veranschaulicht die Beziehungen der ele-
mentaren Komponenten von Dojo. In der Implementierung wird das Dojo Toolkit in der
Version 1.8 verwendet.

Base Der Kernel von Dojo ist ein Bestandteil der Base. Er bildet die Basis des gesamten
Toolkits. Zum Kernel gehört unter anderem das Packaging System, das es erlaubt, Module
während der Laufzeit nachzuladen. Des Weiteren bietet die Base Werkzeuge, die unter ande-
rem für die Unterstützung von Ajax3 und diversen Operationen auf dem DOM4 verwendet
werden können. Elemente, die direkt zur Base gehören, liegen direkt im dojo Namespace
[Mat08].

Core Zu Core zählen Elemente, die zwar häufig genutzt werden, aber nicht allgemein genug
sind, um zu Base zu gehören. Beispiele hierfür sind Funktionen für das Parsen von Widgets,
die erweiterten Animationseffekte, das Drag and Drop oder die Internationalisierung (i18n).
Elemente die zu Core zählen, befinden sich in untergeordneten Namespaces von Base wie
zum Beispiel dojo.fx, dojo.io oder dojo.data [Mat08].

Dijit Das Wort Dijit beinhaltet die beiden Wörter Dojo und Widget. Dijits sind fertige
Komponenten, die aus JavaScript, HTML und CSS bestehen und direkt in die Webanwendung
eingefügt werden können. Dijits setzen direkt auf der Funktionalität von Core auf. Die
vorhanden Dijits lassen sich grob in drei Klassen einteilen. Allzweck Widgets, zu denen
beispielsweise Fortschrittsbalken zählen, Layout Widgets für die Anordnung von Elementen
wie zum Beispiel Tab Container und Oberflächen Widgets mit Elementen wie Schaltflächen
oder ähnlichem. Dijits befinden sich im Namensraum dijit [Mat08].

DojoX DojoX steht für Dojo Extensions und enthält eine Sammlung von Dojo Modulen, die
in keine der zuvor erwähnten Komponenten passen. Ein Beispiel für ein solches Modul ist
das DojoX GFX Modul, das eine API für die Erstellung von 2D Vektorgraphiken bereitstellt.
Die in DojoX enthalten Module gewährleisten nicht dieselbe Stabilität wie Module aus
Base oder Core. Aus diesem Grund enthält jedes Teilprojekt eine Beschreibung über seinen
aktuellen Zustand und mögliche Ausnahmen und Probleme. Module aus DojoX sind dem
Namespace dojox untergeordnet [Mat08].

3Asynchronous JavaScript and XML (Ajax): ist eine Lösung für die asynchrone Kommunikation zwischen
einem Browser und einem Server. Dadurch können Seiteninhalte dynamisch (nach-)geladen werden, ohne
die gesamte Seite neu laden zu müssen [Ant08].

4DOM: Document Object Model: Das Document Object Model ist eine plattform- and sprachneutrale Schnitt-
stelle, um dynamisch auf den Inhalt, die Struktur und das Aussehen von Dokumenten zuzugreifen und diese
zu manipulieren [W3C].

75

7. Implementierung

Util Util enthält Werkzeuge für das Arbeiten mit JavaScript Code. Unter anderem enthält
Util Werkzeuge für die Codekomprimierung und das Erstellen von benutzerdefinierten Dojo
Versionen. Ein weiterer Bestandteil von Util ist ein Testframework für automatisierte Unit
Tests zur Qualitätssicherung [Mat08].

IBM ILOG Dojo Diagrammer

Der IBM ILOG Dojo Diagrammer ist ein von der IBM entwickeltes JavaScript Framework für die
Erstellung und Darstellung von Graphen. Der IBM ILOG Dojo Diagrammer baut auf diversen
Dojo Modulen auf. Dazu zählt unter anderem das Dojox GFX Modul, das ein API für die
Erstellung von 2D Vektorgraphiken zur Verfügung stellt und Dojo Data für die Nutzung eines
Data Stores, in dem Graphen vordefiniert werden können. Abbildung 7.2 veranschaulicht
den Aufbau auf dem Dojo Toolkit. Der ILOG Dojo Diagrammer stellt für die Darstellung der
Graphen ein Widget bereit, das sogenannte Diagramm (englisch diagram). Für den Aufbau
des Graphen stellt der Diagrammer unterschiedliche Graphelemente zur Verfügung, deren
Erscheinungsbild über sogenannte Templates festgelegt ist. Diese Templates können bei
Bedarf angepasst oder ausgetauscht werden. Für eine optimierte Darstellung des Graphen
und dessen Elemente, stellt das Framework zahlreiche Algorithmen zur Verfügung, sodass
die Graphen automatisiert angeordnet werden können. Der IBM ILOG Dojo Diagrammer
wird in mehreren webbasierten IBM Produkten eingesetzt und mit dem Feature Pack for Web
2.0 and Mobile für den IBM WebSphere Application Server ausgeliefert.

7.1.2. Architektur der Clientseite

Die Clientseite ist nach dem Entwurfsmuster MVC implementiert. Die Basis ist das Diagramm
aus dem IBM ILOG Dojo Diagrammer mit seinen Funktionen. Das Framework stellt ein
Datenmodell (Model) für die Graphelemente bereit, dessen Objekte mit einer grafischen
Repräsentation verbunden sind (View). Der DiagramController (Controller) koordiniert die
Erstellung der Graphelemente. In Abbildung 7.3 werden die Klassen anhand ihrer Rolle der
MVC-Architektur dargestellt.

Darstellung

Für die Darstellung verwendet das Modellierungswerkzeug die Klasse DiagramEditor als
Container für den Graphen. Sie ist eine Spezifizierung der Diagram Klasse des IBM ILOG
Dojo Diagrammer. Der DiagramEditor enthält bereits Funktionen für das Bearbeiten von
Graphen, wie zum Beispiel das Verbinden von Knoten. Der DiagramEditor wurde in der Im-
plementierung so erweitert, dass die Werkzeuge für die Aktivitäten im Modellierungsprozess,
aktiviert und deaktiviert werden können. Zusätzlich wurden gewisse Schnittstellen nach
außen zugänglich gemacht, damit der DiagramEditor über den DiagramController gesteuert
werden kann.

76

7.1. Clientseite

Model

Swimlane NodeLink

View

Template Dijit.Diagram

Controller

DiagramController

Dialog

Backend

Metadata

External Event Listener

Diagram

Legende:

Kontrollfluss

Abbildung 7.3.: Klassendiagramm der Clientseite, geordnet anhand der Rollen in der MVC-
Architektur.

Für die Gestaltung des Graphen werden die Klassen Swimlane, Node und Link verwen-
det, die alle von der Klasse GraphElement abstammen. Abbildung 7.4 veranschaulicht die
Vererbungshierarchie der Graphelemente und ihre Abhängigkeit zur Diagram Klasse.

Die Swimlane Klasse repräsentiert eine Portalseite. Diese Klasse wurde von der Basisklasse
abgewandelt, um das Erscheinungsbild und gewisse Funktionen auf die Bedürfnisse des
Modellierungswerkzeugs anzupassen. Beispielsweise wurde in der grafischen Repräsentation
die Schaltfläche für das Minimieren der Swimlane entfernt. Des Weiteren wurde eine neue
Schaltfläche hinzugefügt, über die alle Portlets einer Portalseite eingeblendet werden können.
Eine Swimlane ist ein Teilgraph und beinhaltet Knoten, die aus Objekten der Node Klasse
bestehen. Diese symbolisieren die Portlets, welche in der Portalseite enthalten sind, die durch
die Swimlane dargestellt wird. Die Link Klasse repräsentiert die Transitionen im Graphen.
Sie verbinden die einzelnen Graphelemente miteinander.

77

7. Implementierung

GraphElement

DiagramEditor

Link

Swimlane

SubGraph

Node

Abbildung 7.4.: Klassendiagramm der Graphelemente (Hierarchie).

DiagramController

Die DiagramController Klasse implementiert die Anwendungslogik des Modellierungswerk-
zeugs auf der Clientseite. Der Controller ist unter anderem für das Hinzufügen von Gra-
phelementen zuständig. Wenn der Externe Event Listner ein Ereignis empfängt, das per
Drag and Drop ein Portlet oder eine Portalseite dem Modellierungswerkzeug hinzugefügt
wurde, wird der DiagramController benachrichtigt. Weitere Details werden im folgenden
Abschnitt Externer Event Listener beschrieben. Zusätzlich ist der DiagramController für das
Umschalten zwischen den Schritten im Modellierungsprozess zuständig. Dazu versetzt der
DiagramController das Diagramm in einen Ausgangszustand, von dem aus er dann die ent-
sprechenden Werkzeuge aktiviert, die im korrespondierenden Modellierungsprozessschritt
benötigt werden. Für jeden Schritt im Modellierungsprozess stellt der DiagramController
eine Methode bereit, um in den entsprechenden Schritt zu wechseln. Ein Beispiel hierfür ist
die Methode setAddArtifactsState, durch deren Aufruf das Diagramm in den vereinfachten
Modus übergeht und der Benutzer dem Graphen Artefakte hinzufügen kann.

Externer Event Listener

Dieser Event Listener reagiert auf die Drag and Drop Ereignisse, die vom Portal gesendet
werden, wenn ein Portlet oder eine Portalseite in das Modellierungswerkzeug gezogen wird.
Innerhalb des Portals wird das HTML5 Attribut dragable eingesetzt, um bei Portlets und
Portalseiten das Drag and Drop zu aktivieren. Die Ereignisse, die bei einer Drag and Drop
Aktion dann gesendet werden, sind HTML5 Drag and Drop Ereignisse, die sich von den
Drag and Drop Ereignissen im ILOG Dojo Diagrammer unterscheiden. Der externe Event
Listener empfängt diese Ereignisse und benachrichtigt den DiagramController. Dabei muss

78

7.1. Clientseite

er den Portal Drag and Drop Contract einhalten. Das bedeutet: er reagiert auf die Ereignis
und kann die enthaltenen Daten interpretieren, wie es durch den Contract festlegt ist. Der
vollständige Ablauf wird in Abbildung 7.5 dargestellt.

Browser External Event Listener Diagram DiagramController Backend
BackendImpl

(Dojo:xhr)
Portlet

ondrop:dropHandler()
addArtifactByUID()

resolvePage()
xhr()

addArtifactCallback()
createTemplateShape()

Asynchroner Aufruf

Synchroner Aufruf

Legende:

Rückgabe

Abbildung 7.5.: Verarbeitung eines externen Drag and Drop Ereignisses im Modellierungs-
werkzeug (Portalseite oder Portlet hinzufügen).

Nachdem das Element, das hinzugefügt werden soll, in dem Modellierungswerkzeug ab-
gesetzt (Drop) wurde, sendet der Browser ein ondrop Ereignis. Der Externe Event Listener
empfängt das Ereignis und ruft die dafür definierte dropHandler Methode auf. Die dropHandler
Methode liest die Unique Names aus dem Ereignis aus und gibt diese an die AddArtifact-
ByUID Methode des DiagramControllers weiter. Der DiagramController ruft in der Backend
Schnittstelle die Methode resolvePage auf, um die zugehörige Portalseite mit allen darin
eingebetteten Portlets zu erhalten. Der Aufruf ans Backend geschieht über die Backend
Implementierung PortletBackend. In diesem Fall wird dazu das Dojo Modul xhr verwendet,
das einen XMLHttpRequest5 an das Portlet im Portal Server sendet. Der Aufruf des xhr
geschieht asynchron, damit, während die Abfrage auf der Serverseite ausgeführt wird, das
Modellierungswerkzeug nicht blockiert und der Modellierer währenddessen weiter arbeiten
kann. Nach der Bearbeitung im Portal Server wird das Ergebnis im JSON6 Format zurück-
gesendet. Das xhr Modul ruft dann das AddArtefactCallback im DiagramController auf. Das
Callback startet daraufhin die createTemplateShape Methode des ILOG Dojo Diagrammer
Diagramms, wodurch die entsprechenden Knoten im Graphen erstellt werden.

Damit die Anwendung nicht an diese Implementierung des Event Listeners gebunden ist,
ist dieser als eigenständige Komponente implementiert. Durch diese Trennung kann die
Implementierung einfach durch eine andere ersetzt werden.

5XMLHttpRequest: Bei dem XMLHttpRequest handelt es sich um eine API für den Datenaustausch zwischen
einem Client und einem Server. Das W3C arbeitet derzeit an einem Standard [ASH12].

6JavaScript Object Notation (JSON): JSON ist ein sprachunabhängiges Dateiformat zur Beschreibung von
Daten. Weitere Informationen können unter http://json.org gefunden werden.

79

http://json.org

7. Implementierung

Backend

Der Backend Namespace beinhaltet vier Klassen.

Die _AbstractBackend definiert alle Methoden die eine Backend Implementierung zur Verfü-
gung stellen muss. Alle Klassen, die diese Schnittstelle bereitstellen soll, erben von dieser
abstrakten Klasse. Da Dojo kein Mittel für das definieren von abstrakten Klassen bereitstellt,
wird dieses Verhalten durch den folgenden Ansatz simuliert: Methoden die als abstrakt
definiert werden sollen, beinhalten im Methodenrumpf lediglich die Ausgabe einer Fehlermel-
dung, zum Beispiel „Fehler! Methode <METHODEN NAME> wurde nicht implementiert!“.
Klassen die von dieser Klasse erben, müssen daher die entsprechenden Methoden über-
schreiben, um die Ausgabe dieser Fehlermeldung zu unterbinden.
Um das Modellierungswerkzeug bei einem Aufruf einer Methode nicht zu blockieren, finden
die Aufrufe asynchron statt. Dazu muss der aufgerufen Methode ein Callback übergeben
werden, welches nach der Ausführung dieser Methode aufgerufen werden kann.

Die Klasse PortletBackend ist eine mögliche Implementierung für die Kommunikation mit
dem Portlet auf dem Portal Server. Dazu nutzt die PortletBackend Klasse das Dojo xhr
Modul. Darüber können XMLHttpRequest an das Portlet gesendet werden, um Methoden des
Portlets auf der Serverseite aufzurufen. Das PortletBackend erbt von der _AbstractBackend
Klasse.

Die Klasse DummyBackend ist ein Testtreiber um das Systemverhalten zu testen, ohne dass
eine Verbindung zum Portal Server erforderlich ist. In diesem Fall sind die Rückgabewerte der
Methoden statisch definiert. Das DummyBackend erbt von der _AbstractBackend Klasse.

Die Backend Klasse ist für die Abstraktion der konkreten Implementierung zuständig. Sie
wird bei allen Klassen für die Aufrufe des Backend verwendet und agiert als Vermittler
zwischen der aufrufenden Komponente und der eigentlichen Implementierung. Welche Im-
plementierung verwendet werden soll, wird in dieser Klasse festgelegt. Für eine Umstellung
vom DummyBackend zum PortletBackend muss lediglich eine Zeile im Quelltext der Backend
Klasse geändert werden.

Dialoge

Für die Darstellung der Dialoge wird das Dojo Modul Dijit.Dialog verwendet. Dieses Modul
stellt ein Widget bereit, das einen leeren Dialog implementiert. Dieser Dialog kann dann
mittels weiterer Widgets und HTML-Elementen erweitert werden. Für die Gestaltung, In-
itialisierung und Steuerung des Widgets, ist für jeden benötigten Dialog eine eigene Dialog
Klasse implementiert, zum Beispiel für die Definition der Ereignisse einer Transition (Event
Mapping Dialog). Dabei handelt es sich um eine Controller Klasse für den Dialog. Diese
Klasse enthält eine Referenz auf den eigentlichen Dialog (Dijit.Dialog). Der DiagramController
instantiiert bei Bedarf diese Klasse und registriert deren Event Handler im Diagramm. Damit
kann auf die entsprechenden Ereignisse wie zum Beispiel das Klicken auf eine Transition
reagiert werden. Das Diagramm ruft dann beim Eintreten eines solchen Ereignisses die
registrierte Methode in der Dialogklasse auf. In Abbildung 7.6 ist das Klassendiagramm

80

7.1. Clientseite

der Dialogklassen abgebildet. Zur Veranschaulichung sind in der Abbildung die Beziehun-
gen des Dialogs für die Festlegung der Ereignisse einer Transition hervorgehoben (Dicke
Linien).

Page Porperty Dialog

ILOG Dojo Diagrammer Diagram

Dijit.DialogILOG Dojo Diagrammer Node

Diagram Controller

Portlet Porperty Dialog

Event Mapping DialogILOG Dojo Diagrammer Link

ILOG Dojo Diagrammer Swimlane

Screenflow Property Dialog

Abbildung 7.6.: Klassendiagramm der Dialogklassen mit ihren Abhängigkeiten.

Einstellungen, die im Dialog definiert werden, werden über die Metadaten Implementierung
direkt im Datenmodell des Diagramms und der Graphelemente abgelegt. Auf die Implemen-
tierung für die Metadaten wird im folgenden Abschnitt genauer eingegangen. Abbildung
7.7 zeigt den fertigen Dialog für die Definition von Ereignissen.

Abbildung 7.7.: Bildschirmfoto des konkret implementierten Dialogs für das Festlegen der
Eigenschaften einer Transition.

81

7. Implementierung

Erweiterung des Datenmodells

Für das Speichern der für den Screenflow relevanten Daten, wird das Datenmodell der
grafischen Elemente (Diagram, Swimlane, Node und Link) erweitert. Dazu ist das Metadata
Modul zuständig. Das Modul bietet eine einheitliche API für das Laden und Speichern
von Daten in das Datenmodell der grafischen Elemente. Das Modul erstellt innerhalb des
Datenmodells ein Objekt namens _metaData, in dem dann alle Daten als Schlüssel-Wert-Paare
abgelegt werden. Durch die API ist der Zugriff auf diese Daten einheitlich implementiert.
Im folgenden wird auf die Erweiterung des Serialisierers und Deserialisierers eingegangen,
die notwendig ist, damit auch die Metadaten gesichert werden können.

Serialisierung und Deserialisierung

Das Diagram des IBM ILOG Dojo Diagrammer verfügt bereits über eine Serialisierungs-
und Deserialisierungsfunktionalität. Diese wird unter anderem dafür eingesetzt, den Zustand
eines Objektes für das Rückgängigmachen von Änderungen (undo) zu speichern. Die
DiagramSerializer Klasse serialisiert und deserialisiert nur die Daten des Datenmodells, die
für die Wiederherstellung des Graphen und der Graphelemente unbedingt nötig sind. Daher
wurde eine neue Klasse vom DiagramSerializer abgeleitet und erweitert. Dadurch können
auch die Metadaten aus dem Datenmodell serialisiert und deserialisiert werden. Der Zugriff
auf die Metadaten geschieht mit der Hilfe des Metadata Moduls. Zusätzlich wurde das
Diagramm erweitert, sodass auf den Serialisierer und Deserialisierer auch über den Dialog
Controller zugegriffen werden kann.

7.2. Serverseite

Die Serverseite hat zwei Zuständigkeitsbereiche. Sie ist für die Bearbeitung der Anfragen
zuständig, die von der Clientseite gesendet werden. Die Anfragen werden über einen
asynchronen URL Request an das Portlet gesendet. Zu den Anfragen gehören Abfragen über
die Details von Portalseiten und Portlets, aber auch das Persistieren des Screenflows im Portal
Server. Des Weiteren wird durch die Serverseite der Zustand des Modellierungswerkzeugs
(Serialisierung des Graphen) über die Session verwaltet. Zusätzlich wird durch die Serverseite
der aktuelle Prozessschritt des Modellierungsprozess gesetzt. Dazu wird über ein Action-
Request der gewünschte Prozessschritt als Parameter an die Serverseite übermittelt.

Aus zeitlichen Gründen war es nicht möglich die Serverseite des Modellierungswerkzeug zu
implementieren. Im Folgenden werden daher nur die möglichen Konzepte einer Implemen-
tierung beschrieben.

82

7.2. Serverseite

7.2.1. Architektur der Serverseite

Auf der Serverseite ist die Architektur in zwei Schichten eingeteilt. Eine Schicht für die
Anwendungslogik, die auf der Serverseite für die Bearbeitung von Anfragen aus der Client-
seite zuständig ist und auf die Dienste und Schnittstellen des Portal Servers zugreift (Java
Klasse) sowie eine Präsentationsschicht die für die Auslieferung des Rich-Clients an den
Client verantwortlich ist (JSP).

Zustandsübergänge

Ein Zustandswechsel im Modellierungsprozess wird durch einen Action-Request an das
Portlet eingeleitet. Bei einem Action-Request handelt es sich um einen Aufruf einer speziellen
URL, die im Portlet als Action-URL definiert ist (siehe Kapitel Grundlagen). Dieser URL wird
ein Parameter mitgegeben, der den gewünschten Folgezustand des Modellierungsprozess
enthält. Durch den Aufruf der Action URL wird im Portlet die Methode processAction
aufgerufen. In dieser Methode kann über das ActionRequest Objekt auf die übergeben
Parameter zugegriffen werden. Die processAction Methode hat lediglich die Aufgabe den
Prozessschritt auszulesen und diesen an die Java Server Page (JSP) weiterzugeben, aus der
die HTML Repräsentation des Portlets generiert wird. Bei der Interpretation der JSP wird der
Parameter (Zustand des Modellierungsprozess) im JavaScript Code dem DiagramController
als Parameter hinzugefügt. Durch die Interpretation des JavaScripts im Browser wechselt
das Modellierungswerkzeug in den angeforderten Schritt des Modellierungsprozess. Der
aktuelle Prozessschritt ist durch dieses Vorgehen immer in der aktuellen URL codiert. URLs
ohne Parameter führen zum ersten Schritt im Modellierungsprozess. Abbildung 7.8 zeigt
den Ablauf eines Wechsels in einen anderen Modellierungsprozessschritts.

Portal Portlet JSPClient

ActionRequest
processAction()

render()
dispatch()

Legende:

Synchroner Aufruf

Rückgabe

Abbildung 7.8.: Sequenzdiagramm eines Schrittwechsels im Modellierungsprozess.

83

7. Implementierung

Verarbeitung der Client Anfragen

Über die serverResource Methode bietet das Portlet einen Mechanismus, Anfragen an das
Portlet zu senden, ohne dass vom Portal die Seite neu geladen wird. So lassen sich Res-
sourcen bereit stellen oder asynchrone Clientanfragen über Ajax beantworten. Abbildung
7.5 veranschaulicht den Ablauf eines asynchronen Aufrufs an das Portlet. Dieser Mecha-
nismus wird ausgenutzt, um Abfragen von der Clientseite des Modellierungswerkzeugs
an die Serverseite zu senden. Über die serverResource Methode können die Parameter aus
der aufgerufenen URL ausgewertet werden. Die Parameter werden dann dazu verwendet,
Methodenaufrufe im Portal Server auszuführen, zum Beispiel um die Unique Names der
Portlets zu erhalten, die in einer Portalseite enthalten sind. Das Ergebnis der Ausführung
wird dann an die Clientseite zurückgesendet.

7.3. Zusammenfassung

Das Modellierungswerkzeug ist als Portlet implementiert. Die Anwendung basiert auf einer
Client-Server Architektur.
Die Clientseite: die aus JavaScript, HTML und CSS besteht und die Serverseite, die in
Java implementiert ist. Für die Implementierung der Clientseite werden die JavaScript
Frameworks Dojo Toolkit und der IBM ILOG Dojo Diagrammer verwendet. Die Clientseite
folgt dem Entwurfsmuster MVC. Das Model und der Großteil der View sind durch die IBM
ILOG Dojo Diagrammer Komponenten umgesetzt. Des Weiteren werden Dojo Dialoge in
der View verwendet. Zusätzlich sind der Controller und sonstige Hilfsklassen auf Basis vom
Dojo Toolkit entwickelt.
Die Serverseite liefert zu Beginn der Session das Modellierungswerkzeug (Clientseite) an
den Client aus. Anschießend dient das Portlet der Bearbeitung von Anfragen, die von der
Clientseite an den Portal Server gesendet werden. Auch die Verwaltung des aktuellen Schritts
im Modellierungsprozess ist im Portlet auf der Serverseite implementiert.

84

8. Übertragung der Konzepte

Im folgenden Kapitel wird der zweite Teil der Aufgabenstellung aus dem Einleitungskapitel
behandelt. Dazu werden die in Kapitel 6 erarbeiten Konzepte für Modellierungswerkzeuge
von Screenflows auf Modellierungswerkzeuge von Scientific Workflows übertragen.

8.1. Screenflows und Scientific Workflows

Screenflows und Scientific Workflows können nicht direkt miteinander verglichen werden,
da sie für unterschiedliche Zwecke entwickelt wurden. Screenflows wurden für das Routing
von Benutzern durch Screens entwickelt. Im Gegensatz dazu dienen Scientific Workflows der
Ausführung von Aufgaben. Während Screenflows ausschließlich der Interaktion mit dem
Benutzer dienen, haben Scientific Workflows in der Regel genau das gegenteilige Ziel. Sie
sind meist auf eine massive Datenverarbeitung ausgelegt. Interaktionen mit dem Benutzer
sind während der Ausführung nur für Ausnahmesituationen vorgesehen. Während bei
Scientific Workflows der Wissenschaftler meist an allen Phasen des Lebenszyklus eines
Scientific Workflows arbeitet, ist bei Screenflows der Modellierer lediglich für die Model-
lierung des Screenflows zuständig. Ausgeführt wird ein Screenflows im Normalfall vom
Endnutzer. Screenflows sind für eine kurze Ausführung ausgelegt. Ein Screenflow muss
innerhalb der Gültigkeitsdauer einer Browser Session ausgeführt werden. Längere Prozesse
müssen durch eine Workflow Engine ausgeführt werden. Scientific Workflows dagegen
können kurze oder langläufige Prozesse sein. Bei Screenflows wird der Zustand des Dialog
Modells nicht persistiert. Das bedeutet, dass der Screenflow erneut ausgeführt werden muss,
wenn der Browser während der Ausführung geschlossen wird. Dabei können Eingaben
verloren gehen. Aktivitäten die bis zu diesem Zeitpunkt ausgeführt wurden, werden nicht
rückgängig gemacht. Im Gegensatz dazu können Scientific Workflows Techniken wie zum
Beispiel Transaktionen einsetzen, um immer einen konsistenten Zustand zu gewährleisten.
Der Screenflow Manager erlaubt keine Deklaration von Bedingungen in seinem Modell.
Das Routing anhand von definierten Bedingungen muss über die verwendeten Portlets
implementiert werden. Eine Workflow Engine ist dazu jedoch in der Lage. Screenflows
unterstützen innerhalb eines Browser Tabs keine Parallelität. Ein Mensch kann zu einem
Zeitpunkt auch nur mit einem Screenflow aktiv interagieren. Im Gegensatz dazu ist bei den
Scientific Workflows für eine massive Datenverarbeitung Parallelität sogar sehr wichtig.

Neben den Unterschieden zwischen Screenflows und Scientific Workflows können auch
Gemeinsamkeiten identifiziert werden. Zum Beispiel ist sowohl der Modellierer der Screen-
flows als auch der Wissenschaftler, der Scientific Workflows modelliert, in der Regel kein
Computerexperte.

85

8. Übertragung der Konzepte

Trotz der teilweise großen Unterschiede können Teile der erarbeiten Konzepte, die für ein Mo-
dellierungswerkzeug für Screenflows entwickelt wurden, auf Modellierungswerkzeuge für
Scientific Workflows übertragen werden. Dies wird im folgenden Abschnitt beschrieben.

8.2. Übertragung der erarbeiten Konzepte auf
Modellierungswerkzeuge für Scientific Workflows

Eines der grundlegenden Konzepte für das Modellierungswerkzeug von Screenflows ist die
Implementierung als Portlet. Dieses Konzept eignet sich auch gut für die Entwicklung von
Modellierungswerkzeugen für Scientific Workflows. Da ein Wissenschaftler in der Regel alle
Phasen des Business Process Lifecycles bearbeitet, könnten die Werkzeuge für die einzelnen
Phasen als Portlets implementiert werden. Die einzelnen Portlets könnten dann über das
Portal zu einer zusammenhängenden Oberfläche integriert werden. Zusätzlich könnten Port-
lets für spezifische Anforderungen entwickelt werden, die dann den Wissenschaftlern nach
dem Baukastenprinzip zur Verfügung stehen. Der Wissenschaftler kann so die Benutzungs-
schnittstelle nach den eigenen Bedürfnissen erweitern. Es wäre zum Beispiel vorstellbar, ein
Portlet für die Visualisierung von Simulationsdaten bereitzustellen. Durch Technologien wie
JavaScript oder WebGL1 könnten sehr komplexe Modelle und Darstellungen im Browser
visualisiert werden. So könnte ein generisches Scientific Workflow Management System,
basierend auf einem Portal, aufgebaut werden. Die grafische Oberfläche kann dabei an die
einzelnen Bedürfnisse der Wissenschaftler angepasst werden.

Log:

XxxxXXXxXXxxXxxxxxxXx
xxXXXxXXxXxxXxxXXxXxx
xXXxxXXxXxxXxxXxXXXXx
xxxXxxXXxxxXXxXxxXXxX
XXXXxXxXxXXxxXXXXXXX
XXXxXXXxxXXXxXXxxXxxx
xXXxXXXxXXxxxXXXXXXxX
XxXxXXXxXXXxxxXxxxXXX

SimulationWorkflow:

Instanz 1

Instanz 3

Instanz 4

Instanz 2

97%

10%

50%

0%

Process Progress:

Workflow:

Abbildung 8.1.: Beispielhafte Darstellung eines Scientific Portals, das für die unterschiedli-
chen Bedürfnisse von Wissenschaftlern angepasst wird.

1WebGL: Eine OpenGL Implementierung für Webanwendungen. OpenGL ist ein Standard zur Entwicklung
von 2D und 3D Anwendungen. Weitere Informationen zu OpenGL können unter http://www.opengl.org
gefunden werden.

86

http://www.opengl.org

8.2. Übertragung der erarbeiten Konzepte auf Modellierungswerkzeuge für Scientific Workflows

Abbildung 8.1 veranschaulicht beispielhaft den Aufbau eines solchen Portals. Jedes Fenster
stellt dabei ein, individuell für einen Wissenschaftler, speziell angepasstes (Scientific) Portal
dar. Das linke Beispiel besteht aus einem Portlet für die grafische Modellierung und Ausfüh-
rung eines Scientific Workflows sowie einem Portlet zur Bobachtung des Prozessfortschritts.
Das rechte Beispiel beseht aus drei Portlets: Einem für die Ausführung eines Scientific
Workflows, einem für die Auflistung der Log-Daten und einem für die Visualisierung der
Simulationsdaten.

Durch die Verwendung der Portal Technologie kann eine N-Tier Architektur verwendet
werden, deren Komplexität für den Wissenschaftler verborgen bleibt. Abbildung 8.2 veran-
schaulicht beispielhaft den Aufbau einer solchen Anwendung.

Client Brower

Service ServiceService

Ressource Ressource

Application Server

Workflow
Engine

Portal
Server

Sonstige
Funktionen

Scientific Portal

Monitor
Portlet

Graphical
Modeller
Portlet

Simulation
Portlet

Ressource
Browser
Portlet

Abbildung 8.2.: Beispielhafte Darstellung der Komponenten einer N-Tier Architektur, mit
dem Portal als Benutzungsschnittstelle.

Das Portal dient als Präsentationsschicht. Die Benutzungsschnittstelle ist so plattformun-
abhängig und es kann ortsungebunden darauf zugegriffen werden. Dies ist besonders bei
den heterogenen Systemen, wie sie im wissenschaftlichen Bereich vorkommen, von Vorteil.
Auf dem Application Server wird in diesem Beispiel das Portal und die Workflow Engine
ausgeführt. Der Application Server bildet die Anwendungsschicht. Die Workflow Engine
könnte aber auch auf einem anderen System ausgeführt werden. Der Application Server

87

8. Übertragung der Konzepte

dient neben der Ausführung des Portal Servers auch der Integration der Portalanwendung
mit allen anderen Ressourcen und Diensten.

Das Einbetten des Modellierungswerkzeugs in die Werkzeugleiste des Portals, wie es für
das Modellierungswerkzeug für die Screenflows vorgeschlagen wurde, eignet sich nicht für
Scientific Workflows. Die Artefakte des Prozessmodells eines Scientific Workflows sind keine
Elemente der grafischen Benutzungsschnittstelle. Der Modellierer muss daher nicht im Portal
navigieren, um dem Prozessmodell die Komponenten hinzuzufügen. In die Werkzeugleiste
des Portals könnten jedoch Werkzeuge aufgenommen werden, die oft von Wissenschaftlern
benötigt werden. Vorstellbar wären auch Portlets für das Anzeigen von Statusinformationen
oder zur Beobachtung des Prozessvorschritts.

Das Konzept für die grafische Darstellung von Screenflows kann nicht direkt für eine gra-
fische Repräsentation von Scientific Workflows verwendet werden. Scientific Workflows
sind viel umfangreicher und komplexer als Screenflows. Dennoch kann von dem Konzept
übernommen werden, dass eine grafische Repräsentation die Komplexität einer Prozessmo-
dellierung reduzieren kann. Wissenschaftler sind keine Computerexperten, daher ist eine
Modellierung des Workflows in einer textbasierten Sprache, wie zum Beispiel XML, in der
Regel zu komplex. Durch die Verwendung einer geeigneten grafischen Notation könnte
diese Komplexität vor dem Modellierer verborgen werden.
Bei der Entwicklung einer grafischen Notation sind zwei Ansätze möglich.
Erstens, das Entwickeln einer unabhängigen Notation, die mit Hilfe einer Transformation
in eine Prozessausführungssprache wie zum Beispiel BPEL transformiert wird. Die aus der
Transformation resultierende Prozessausführungssprache kann dann von einer Workflow
Engine ausgeführt werden. Die Notation wird mit Hilfe von Transformationsregeln in die
spezifische Prozessausführungssprache überführt. Abbildung 8.3 veranschaulicht dieses
Prinzip. In der Abbildung soll eine Transformation von einer grafischen Notation nach
BPEL dargestellt werden. Dieser Ansatz hat den Vorteil, dass die Notation unabhängig von

Scientific Workflow
Notation

Transformation

BPLE Modell

Transformationsregeln
von Scientific Workflow

Notation nach BPLE

Abbildung 8.3.: Prinzip einer Transformation von einem grafisch repräsentierten Scientific
Workflow in ein BPEL Modell.

der eingesetzten Workflow Engine ist. Zusätzlich können so verschiedene Notationen für
unterschiedliche Anforderungen entwickelt werden. Für eine neue Notation müssen dann
lediglich die Transformationsregeln angepasst werden. Das unterliegende System müsste
aber nicht geändert werden. Nachteilig ist, dass die Entwicklung eines solchen Ansatzes
komplex ist und dass bei jeder Änderung des Modells eine Transformation vor der Ausfüh-
rung vorgenommen werden muss.

88

8.3. Zusammenfassung

Der zweite Ansatz ist die Entwicklung einer Notation die von einer Workflow Engine in-
terpretiert werden kann. Das würde bedeuten, dass auch die verwendete Workflow Engine
erweitert oder selbst implementiert werden müsste. In diesem Fall wäre die Notation eng an
die Workflow Engine gekoppelt.

Obwohl sich die Modellierungsprozesse von Screenflows und Scientific Workflows unter-
scheiden, kann das Konzept eines vordefinierten Modellierungsprozess, durch den der
Modellierer geführt wird, auf Scientific Workflows übertragen werden. Eine Benutzerfüh-
rung bietet sich immer an, wenn ein unerfahrener Benutzer ein System bedienen soll. Dies
verbessert die Bedienbarkeit der Anwendung. Zusätzlich kann in jedem Prozessschritt
überprüft werden, ob die benötigten Daten vorliegen und korrekt sind. Wie bei dem Model-
lierungswerkzeug für Screenflows können dem Wissenschaftler immer nur die Werkzeuge
zur Verfügung gestellt werden, die er für die aktuelle Prozessphase benötigt.

8.3. Zusammenfassung

Screenflows und Scientific Workflows können nicht direkt miteinander verglichen werden.
Sie wurden für unterschiedliche Aufgaben entwickelt. Dennoch können Teile der Konzepte,
die in dieser Arbeit für Modellierungswerkzeug für Screenflows entwickelt wurden, auf
Modellierungswerkzeuge für Scientific Workflows übertragen werden.
Die Portal Technologie eignet sich sehr gut für Benutzungsoberflächen von Scientific Work-
flows. Die Werkzeuge für die Bearbeitung des Prozesslebenszyklus können als Portlet
implementiert und an einer zentralen Stelle miteinander integriert werden. Zusätzlich kön-
nen noch weitere benötigte Werkzeuge so zur Verfügung gestellt werden. Des Weiteren
kann die Oberfläche des Scientific Portals an die Bedürfnisse des Wissenschaftlers angepasst
werden.
Für Scientific Workflows eignet sich das Konzept, das Modellierungswerkzeug in die Werk-
zeugleiste zu integrieren, nicht. Dies liegt daran, dass Wissenschaftler nicht im Portal umher
navigieren müssen, um Artefakte des Portals dem Workflow Modell hinzuzufügen.
Durch die Verwendung einer grafischen Notation kann die Komplexität des unterliegenden
Workflow Systems vor dem technisch weniger versierten Wissenschaftler verborgen werden.
Durch geeignete Transformationstechniken kann die Notation in eine beliebige Prozess-
ausführungssprache umgewandelt werden. Dadurch ist die Notation von der verwendeten
Workflow Engine entkoppelt.
Die Verwendung eines vordefinierten Modellierungsprozesses, für Scientific Workflows, er-
möglicht auch technisch nicht versierten Wissenschaftlern das Modellieren von Workflows.

89

9. Zusammenfassung und Ausblick

Das Ziel dieser Arbeit war die Modellierung und Entwicklung eines grafischen Model-
lierungswerkzeugs für Screenflows. Des Weiteren sollten die erarbeiteten Konzepte auf
Modellierungswerkzeuge von Scientific Workflows übertragen werden.

Zunächst wurde mit der Recherche und Einarbeitung der wichtigsten Technologien begon-
nen. In diesem Zuge wurde auch eine Recherche nach verwandten Arbeiten betrieben. Nach
der Klärung der Rahmenbesinnungen wurde die Anforderungen an das Modellierungs-
werkzeug aufgestellt. Diese wurden hauptsächlich von der Screenflow Definition und in
Gesprächen mit den Entwicklern erarbeitet. Der darauf folgende Hauptteil konzentrierte
sich auf die Entwicklung der Konzepte für das Modellierungswerkzeug. Dabei wurden
Entwürfe für die grafische Benutzungsschnittstelle (Mockups) und die Architektur des
Modellierungswerkzeugs entwickelt.

Zu den wichtigsten Konzepten, die erarbeite wurden, zählt die Entwicklung des Model-
lierungswerkzeugs als Portlet, sowie das Einbetten des entwickelten Portlets in die Werk-
zeugleiste des Portals. Dies ermöglicht eine Modellierung der Screenflows zur Laufzeit.
Des Weiteren die Definition eines Modellierungsprozesses, an dem der Modellierer der
Screenflows während der Modellierung geführt wird und letztlich eine geeignete grafische
Repräsentation für die Screenflows.

Die entwickelten Konzepte galt es anschließend im praktischen Teil der Arbeit prototy-
pisch umzusetzen. Dafür wurde eine Webanwendung entwickelt. Für deren Umsetzung
wurden JavaScript Frameworks eingesetzt, mit dessen Hilfe die Entwicklung der Clientseite
stattgefunden hat. Vor der Verwendung der Frameworks, musste deren Eignung überprüft
werden. Nach der Implementierung wurde als letzter Teil dieser Arbeit erörtert, inwieweit
die erarbeiteten Konzepte auf Modellierungswerkzeuge für Scientific Workflows übertragen
werden können.

Das Ergebnis dieser Arbeit sind Konzepte und Entwürfe für die Umsetzung eines Mo-
dellierungswerkzeugs für die visuelle Modellierung von Screenflows. Zusätzlich wurde
prototypisch ein großer Teil der webbasierten Clientseite des Modellierungswerkzeugs
umgesetzt.

91

9. Zusammenfassung und Ausblick

Ausblick

Das Konzept des Screenflow Managers innerhalb des Portals ist eine vielversprechende
Technologie. Screenflows können auch eingesetzt werden, um Abläufe im Portal ohne ein
Workflowsystem zu modellieren. Sie sind leichtgewichtiger als Workflows und werden direkt
im Portal Server ausgeführt. Es ist keine extra Installation eines Workflowsystems für deren
Ausführung notwendig. Durch Umsetzung der erarbeiteten Konzepte und einer Fertigstel-
lung des Modellierungswerkzeugs, würde eine Lösung existieren, um die sehr flexiblen
Screenflows schnell und einfach an dynamische Prozesse von Kunden anzupassen.

Anknüpfungspunkte an die Arbeit

Die erarbeiteten Konzepte ermöglichen eine rudimentäre Umsetzung des Modellierungs-
werkzeugs. Im Rahmen der Arbeit wurden nur die für die Modellierung notwendigsten
Funktionen betrachtet. Eine Erweiterung der Konzepte ist daher durchaus vorstellbar. Im
Folgenden werden mögliche Anknüpfungspunkte an diese Arbeit vorgestellt.

Für den Modellierungsprozess wurde eine Phase Test Screenflow vorgestellt. Diese war
jedoch nicht Teil dieser Arbeit. Für einen Modellierer kann der Test oder die Simulation
eines Screenflows jedoch sehr von Nutzen sein. Für eine Umsetzung ergeben sich folgende
Fragestellungen. Wie sollte ein Test oder eine Simulation von einem Screenflow gestaltet
werden? Wie kann der Test oder die Simulation ausgeführt werden, da in der Regel Eingaben
erforderlich sind und Systeme im Hintergrund diese Eingaben verarbeiten? Wie lässt sich ein
Test oder eine Simulation eines Screenflows in das Modellierungswerkzeug integrieren?

Ein anderer Anknüpfungspunkt basiert darauf, dass die Screenflows derzeit über keine
Fehlerbehandlung verfügen. Es wäre jedoch wünschenswert, im Fehlerfall einen Benutzer auf
eine definierte Fehlerseite zu leiten. Eine Arbeit könnte sich mit der Entwicklung und der Um-
setzung einer Fehlerbehandlung im Screenflow Manager und dem Modellierungswerkzeug
befassen.

Auch die Einführung von Validierungsregeln innerhalb des Screenflows wäre denkbar. Mit
Hilfe der Regeln könnte zum Beispiel überprüft werden, ob der Screenflow in einem defi-
nierten Dialogschritt alle benötigten Daten im Dialog Context vorliegen hat. Nur in diesem
Fall würde der Screenflow weiter prozessiert werden. In der Arbeit könnte die Erweiterung
des Dialog Modells, des Screenflow Managers und die entsprechende Adaptierung des
Modellierungswerkzeugs behandelt werden.

Auch das Routing der Screenflows bietet Erweiterungsmöglichkeiten. Derzeit wird das Rou-
ting im Screenflow Manager anhand des aktuellen Dialogschritts und einem eingetretenen
Ereignis entschieden. Dieses Konzept könnte erweitert werden, sodass auch die transportier-
ten Daten in den Ereignissen beim Routing miteinbezogen werden. Alternativ könnte auch
eine Schnittstelle für ein externes regelbasiertes Entscheidungssystem implementiert werden.
Im Zusammenhang mit dieser Aufgabenstellung müsste der Screenflow Manager und das
Modellierungswerkzeug um die entsprechende Funktionalität erweitert werden.

92

Ein weiterer möglicher Anknüpfungspunkt ist der Export von Screenflows. Eine Screenflow
Definition kann mit den vorgestellten Konzepten als XML-Datei exportiert werden, um sie in
einem anderen System zu importieren. Damit der Screenflow auf diesem System ausgeführt
werden kann, müssen alle Artefakte des Screenflows auf dem System vorhanden sein.
Eine weiterführende Arbeit könnte sich mit der Entwicklung eines Konzepts beschäftigen,
das es einem Screenflow Modellierer erlaubt, einen Screenflows mit allen zugehörigen
Komponenten zu exportieren. Der exportierte Screenflow sollte dann anschießend auf einem
anderen System ausführbar sein, auch wenn Teile des Screenflows vor dem Import nicht auf
dem System installiert waren.

93

A. Anhang

A.1. Dialogdefinition

Die folgende Dialogdefinition beschreibt einen Screenflow für einen Reisebuchungsprozess.
Der Screenflow beginnt mit einem Portlet für die Auswahl des Reiseziels. Im darauffolgenden
Schritt kann der Benutzer ein Hotel buchen. Danach kann der Benutzer einen Mietwagen
auswählen. Zum Schluss erhält der Benutzer eine Zusammenfassung der Buchung.

Listing A.1 Dialogdefinition für einen Reisebuchungsprozess.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <request xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type=""

xsi:noNamespaceSchemaLocation="PCM_1.0.xsd">
3 <portal action="update">
4 <dialog-set>
5 <dialog name="Travel Booking Dialog">
6 <transition-endpoint name="portlet.pcm.demo.travelRequest">
7 <localedata locale="en">
8 <title>Travel Request</title>
9 <description>Travel Request</description>

10 </localedata>
11 <resource uniquename="portlet.pcm.demo.travelRequest" />
12 <invocation type="static" />
13 </transition-endpoint>
14 <transition-endpoint name="portlet.pcm.demo.flightBooking">
15 <localedata locale="en">
16 <title>Flight Booking</title>
17 <description>Flight Booking</description>
18 </localedata>
19 <resource uniquename="portlet.pcm.demo.flightBooking" />
20 <invocation type="static" />
21 </transition-endpoint>
22 <transition-endpoint name="portlet.pcm.demo.hotelBooking">
23 <localedata locale="en">
24 <title>Hotel Booking</title>
25 <description>Hotel Booking</description>
26 </localedata>
27 <resource uniquename="portlet.pcm.demo.hotelBooking" />
28 <invocation type="static" />
29 </transition-endpoint>
30 <transition-endpoint name="portlet.pcm.demo.carBooking">
31 <localedata locale="en">
32 <title>Car Booking</title>

95

A. Anhang

33 <description>Car Booking</description>
34 </localedata>
35 <resource uniquename="portlet.pcm.demo.carBooking" />
36 <invocation type="static" />
37 </transition-endpoint>
38 <transition-endpoint name="portlet.pcm.demo.travelSummary">
39 <localedata locale="en">
40 <title>Travel Summary</title>
41 <description>Travel Summary</description>
42 </localedata>
43 <resource uniquename="portlet.pcm.demo.travelSummary" />
44 <invocation type="static" />
45 </transition-endpoint>
46

47 <transition type="start">
48 <source>
49 <transition-endpoint nameref="portlet.pcm.demo.travelRequest">
50 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"

dcx-key="travelRequest" />
51 </transition-endpoint>
52 </source>
53 <target>
54 <transition-endpoint nameref="portlet.pcm.demo.flightBooking">
55 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"

dcx-key="travelRequest" />
56 </transition-endpoint>
57 </target>
58 </transition>
59 <transition>
60 <source>
61 <transition-endpoint nameref="portlet.pcm.demo.flightBooking">
62 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}flightBooking"

dcx-key="flightBooking" />
63 </transition-endpoint>
64 </source>
65 <target>
66 <transition-endpoint nameref="portlet.pcm.demo.hotelBooking">
67 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"

dcx-key="travelRequest" />
68 </transition-endpoint>
69 </target>
70 </transition>
71 <transition>
72 <source>
73 <transition-endpoint nameref="portlet.pcm.demo.hotelBooking">
74 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}hotelBooking"

dcx-key="hotelBooking" />
75 </transition-endpoint>
76 </source>
77 <target>
78 <transition-endpoint nameref="portlet.pcm.demo.carBooking">
79 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelRequest"

dcx-key="travelRequest" />
80 </transition-endpoint>
81 </target>

96

A.1. Dialogdefinition

82 </transition>
83 <transition>
84 <source>
85 <transition-endpoint nameref="portlet.pcm.demo.carBooking">
86 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}carBooking"

dcx-key="carBooking" />
87 </transition-endpoint>
88 </source>
89 <target>
90 <transition-endpoint nameref="portlet.pcm.demo.travelSummary">
91 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}travelSummary"

mapper-class="com.ibm.wps.portlet.mapper.TravelSummaryMapper" />
92 </transition-endpoint>
93 </target>
94 </transition>
95 <transition type="end">
96 <source>
97 <transition-endpoint nameref="portlet.pcm.demo.travelSummary">
98 <event qname="{http://portal.ibm.com/dialogmanager/pcm/demo}done" />
99 </transition-endpoint>

100 </source>
101 <target>
102 <transition-endpoint nameref="portlet.pcm.demo.travelRequest">
103 <event

qname="{http://www.ibm.com/xmlns/prod/websphere/portal/v6.1.0/portal-pcm}EndDialog"
/>

104 </transition-endpoint>
105 </target>
106 </transition>
107 </dialog>
108 </dialog-set>
109 </portal>
110 </request>

97

A. Anhang

A.2. Anwendungsfälle

Im Folgenden werden die Anwendungsfälle aufgestellt, welche sich aus den Anforderungen
aus dem Kapitel 6. Konzept ergeben.

Name: Dialogdefinition erstellen
Ziel: Der Modellierer kann eine neue Dialogdefinition erstellen.
Akteure: Modellierer
Vorbedingung: Der Modellierer bekommt die Liste der vorhanden

Dialogdefinitionen angezeigt.
Ablauf: Der Modellierer öffnet das Modellierungswerkzeug.
Nachbedingung: Alle Aktivitäten im Modellierungswerkzeug werden in der

Dialogdefinition gespeichert.

Tabelle A.1.: Anwendungsfall: Dialogdefinition erstellen

Name: Dialogdefinition konfigurieren
Ziel: Der Modellierer kann die Dialogdefinitionen konfigurieren.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat den Dialog für die Konfiguration der

Dialogdefinition geöffnet.
Ablauf: 1. Der Modellierer vergibt einen eindeutigen Namen für die

Dialogdefinition.
2. Der Modellierer legt einen Titel und eine Beschreibung fest.

Nachbedingung: Nachdem der Modellierer den Dialog verlässt, sind die
Änderungen in der Dialogdefinition übernommen.

Tabelle A.2.: Anwendungsfall: Dialogdefinition konfigurieren

98

A.2. Anwendungsfälle

Name: Artefakte hinzufügen
Ziel: Der Modellierer kann dem Screenflow Dialogartefakte

hinzufügen.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat die Portalseite, die dem Screenflow

hinzugefügt werden soll, geöffnet.
Ablauf: Der Modellierer zieht die Portalseite oder Portlets, die sich auf

ihr befinden, in das Modellierungswerkzeug.
Nachbedingung: Der hinzugefügte Transition Endpoint wird im

Modellierungswerkzeug visuell dargestellt.

Tabelle A.3.: Anwendungsfall: Artefakt hinzufügen

Name: Dialogartefakt konfigurieren
Ziel: Der Modellierer kann die Dialogartefakte konfigurieren.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat den Dialog für die Konfiguration eines

Artefakts geöffnet.
Ablauf: 1. Der Modellierer legt einen Titel und eine Beschreibung in

unterschiedlichen Sprachen fest.
2. Der Modellierer wählt, ob das Artefakt als dynamische Kopie

instantiiert werden soll.
2.1 Der Modellierer gibt einen Extension Node an.

Nachbedingung: Nachdem der Modellierer den Dialog verlässt, sind die
Änderungen in der Dialogdefinition übernommen.

Tabelle A.4.: Anwendungsfall: Dialogartefakt konfigurieren

Name: Transition definieren
Ziel: Der Modellierer kann Transitionen zwischen Dialogartefakten

definieren.
Akteure: Modellierer
Vorbedingung: Im Modellierungswerkzeug befindet sich mindestens ein

Dialogartefakt.
Ablauf: Der Modellierer zieht eine Verbindung von einem Dialogartefakt

zu einem anderen oder zu demselben.
Nachbedingung: Nachdem der Modellierer (zwei) Dialogartefakte miteinander

verbunden hat, existiert die Transition (ohne definierte Ereignisse)
in der Dialogdefinition.

Tabelle A.5.: Anwendungsfall: Transition definieren

99

A. Anhang

Name: Transition konfigurieren
Ziel: Der Modellierer kann Transitionen konfigurieren.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat eine Transition geöffnet und der Dialog für

das Konfigurieren der Transition wird ihm angezeigt.
Ablauf: 1. Der Modellierer wählt für den Quell Transition Endpoint ein

Ereignis.
2. Der Modellierer wählt für den Ziel Transition Endpoint ein

Ereignis.
3. Optional wählt der Modellierer für den Quell Transition

Endpoint einen DCX-Key.
4. Optional wählt der Modellierer für den Ziel Transition

Endpoint einen DCX-Key.
5. Optional wählt der Modellierer einen

PayloadToContextMappers.
6. Optional wählt der Modellierer einen

ContentToPayloadMapper.
7. Optional markiert der Modellierer die Transition als

Starttransition oder Endtransition.
Nachbedingung: Nachdem der Modellierer den Dialog verlässt, sind die

Änderungen in der Dialogdefinition übernommen.

Tabelle A.6.: Anwendungsfall: Transition konfigurieren

Name: Liste der Dialogdefinitionen anzeigen
Ziel: Der Modellierer kann eine Liste der vorhanden

Dialogdefinitionen anzeigen.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat das Modellierungswerkzeug geöffnet.
Ablauf: Der Modellierer wählt den Button Dialogdefinitionen anzeigen.
Nachbedingung: Der Modellierer bekommt die Liste der vorhanden

Dialogdefinitionen angezeigt.

Tabelle A.7.: Anwendungsfall: Liste der Dialogdefinitionen anzeigen

100

A.2. Anwendungsfälle

Name: Dialogdefinition anzeigen
Ziel: Der Modellierer kann eine Dialogdefinition anzeigen.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat das Modellierungswerkzeug geöffnet und

bekommt die Liste der Dialogdefinitionen angezeigt.
Ablauf: Der Modellierer wählt eine Dialogdefinition aus der Liste.
Nachbedingung: Die auswählte Dialogdefinition wird angezeigt.

Tabelle A.8.: Anwendungsfall: Dialogdefinition anzeigen

Name: Dialogdefinition bearbeiten
Ziel: Der Modellierer kann eine Dialogdefinition bearbeiten.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat das Modellierungswerkzeug geöffnet und

bekommt die ausgewählte Dialogdefinition angezeigt.
Ablauf: Der Modellierer bearbeitet den Graphen oder konfiguriert

Artefakte.
Nachbedingung: Die Änderungen werden in der Dialogdefinition gespeichert.

Tabelle A.9.: Anwendungsfall: Dialogdefinition bearbeiten

Name: Dialogdefinition kopieren
Ziel: Der Modellierer kann eine Dialogdefinition aus einer Vorlage

(Template) erstellen.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat die Liste der Dialogdefinitionen geöffnet.
Ablauf: 1. Der Modellierer wählt eine Dialogdefinition aus der Liste.

2. Die Dialogdefinition wird geöffnet.
3. Anschießend kann er die Dialogdefinition unter einem neuen

Namen speichern.
Nachbedingung: Die neue Dialogdefinition ist gespeichert.

Tabelle A.10.: Anwendungsfall: Dialogdefinition kopieren

101

A. Anhang

Name: Dialogdefinition speichern
Ziel: Der Modellierer kann eine oder mehrere Dialogdefinitionen

speichern.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat die Dialogdefinition geöffnet.
Ablauf: Der Modellierer klickt den Speichern-Button.
Nachbedingung: Die Dialogdefinition ist gespeichert und kann im Modellierungs-

werkzeug angezeigt werden.

Tabelle A.11.: Anwendungsfall: Dialogdefinition speichern

Name: Dialogdefinition exportieren
Ziel: Der Modellierer kann eine Dialogdefinition exportieren.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat die Dialogdefinition geöffnet.
Ablauf: Der Modellierer klickt den Export-Button.
Nachbedingung: Die Dialogdefinition wird im Modellierungswerkzeug angezeigt.

Tabelle A.12.: Anwendungsfall: Dialogdefinition exportieren

Name: Dialogdefinition importieren
Ziel: Der Modellierer kann eine Dialogdefinition importieren.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat das Modellierungswerkzeug geöffnet.
Ablauf: Der Modellierer klickt den Import-Button.
Nachbedingung: Die Dialogdefinition wird im Modellierungswerkzeug angezeigt.

Tabelle A.13.: Anwendungsfall: Dialogdefinition importieren

Name: Dialogdefinition löschen
Ziel: Der Modellierer kann eine oder mehrere Dialogdefinitionen

löschen.
Akteure: Modellierer
Vorbedingung: Der Modellierer hat die Liste der Dialogdefinitionen geöffnet.
Ablauf: 1. Der Modellierer wählt eine Dialogdefinition aus der Liste.

2. Der Modellierer klickt den Löschen-Button.
Nachbedingung: Die gewählte Dialogdefinition wurde gelöscht.

Tabelle A.14.: Anwendungsfall: Dialogdefinition löschen

102

A.3. Mockups

A.3. Mockups

Die folgenden Mockups wurden mit dem Wireframing Tool Balsamiq1 erstellt. Die Mockups
wurden während des Entwicklungsprozesses in mehreren Iterationen entwickelt. Die folgen-
den Mockups zeigen den Stand aus der letzten Iteration.
Die Mockups führen den Betrachter durch den Modellierungsprozess eines Screenflows. Da-
bei veranschaulichen die Mockups die geplanten Funktionen des Modellierungswerkzeugs.
Zu Beginn werden im Modellierungswerkzeug ein Portlet und eine Portalseite hinzugefügt.
Anschließend werden Transitionen definiert und Ereignisse dafür festgelegt. Danach folgen
die Konfigurationsdialoge für den Screenflow, die Portalseiten und die Portlets. Daraufhin
folgt der Test des Screenflows, der jedoch nicht näher spezifiziert ist. Anschließend wird der
Screen zum Speichern oder Exportieren des Screenflows angezeigt.

1Weite Informationen zu Balsamiq können unter http://balsamiq.com gefunden werden.

103

http://balsamiq.com

A. Anhang

Abbildung A.1.: Dieses Mockup veranschaulicht den Inhalt der Portalseite A. Sie beinhaltet
das Portlet A.

104

A.3. Mockups

Abbildung A.2.: Dieses Mockup veranschaulicht den Inhalt der Portalseite A. Zusätzlich ist
die Werkzeugleiste des Portals heruntergeklappt.

105

A. Anhang

Abbildung A.3.: Dieses Mockup veranschaulicht den Inhalt der Portalseite B. Sie beinhaltet
die Portlet B.1, B.2 und B.3.

106

A.3. Mockups

Abbildung A.4.: Dieses Mockup veranschaulicht das Modellierungswerkzeug im einfachen
Modus. Der einfache Modus dient dazu, Dialogartefakte hinzuzufügen.

107

A. Anhang

Abbildung A.5.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und zeit, wie der Benutzer in den erweiter-
ten Modus wechseln kann.

108

A.3. Mockups

Abbildung A.6.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und beschreibt, dass Portlets und Portal-
seiten per Drag and Drop in das Modellierungswerkzeug gezogen werden
können.

109

A. Anhang

Abbildung A.7.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und beschreibt, an welcher Stelle die Portlets
und die Portalseiten dem Modellierungswerkzeug hinzugefügt werden.

110

A.3. Mockups

Abbildung A.8.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und das Hinzufügen eines Portlets (Portlet
A).

111

A. Anhang

Abbildung A.9.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und die hinzugefügte Portalseite des Port-
lets A. Ein Portlet muss immer in einer Portalseite enthalten sein. Da das
Modellierungswerkzeug im einfachen Modus ist, wird die übergeordnete
Portalseite des hinzugefügten Portlets angezeigt.

112

A.3. Mockups

Abbildung A.10.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus auf der Portalseite B.

113

A. Anhang

Abbildung A.11.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus und das Hinzufügen einer Portalseite
(Portalseite B).

114

A.3. Mockups

Abbildung A.12.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus, die Portalseite des Portlets A und die neu
hinzugefügte Portalseite B.

115

A. Anhang

Abbildung A.13.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im einfachen Modus, vor dem Wechsel in den nächsten Schritt
des Modellierungsprozess (Define Transitions).

116

A.3. Mockups

Abbildung A.14.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im erweiterten Modus, nach dem Wechsel in den Prozessschritt
Define Transitions. Neben dem expandierten Graphen wird auch die Navi-
gationsleiste angezeigt.

117

A. Anhang

Abbildung A.15.: Dieses Mockup veranschaulicht das Modellierungswerkzeug in der Werk-
zeugleiste im erweiterten Modus, in dem Prozessschritt Define Transitions.
Zusätzlich werden die Buttons für den Wechsel in den vorhergehenden
oder folgenden Schritt des Modellierungsprozesses beschrieben.

118

A.3. Mockups

Abbildung A.16.: Dieses Mockup veranschaulicht und beschreibt den Show All Button. Mit
diesem Button kann der Modellierer alle Portlets einer Portalseite einblen-
den (auch die Portlets, die zuvor nicht explizit hinzugefügt wurden).

119

A. Anhang

Abbildung A.17.: Dieses Mockup veranschaulicht das Werkzeug für das Verbinden von
Knoten (erstellen einer Transition). Das Werkzeug wird durch berühren
eines Knotens angezeigt. Dabei handelt es sich um vier Dreiecke, die um
den entsprechenden Knoten dargestellt werden.

120

A.3. Mockups

Abbildung A.18.: Dieses Mockup veranschaulicht den Graphen nach dem Verbinden der
beiden Knoten.

121

A. Anhang

Abbildung A.19.: Dieses Mockup veranschaulicht den Graphen nach der Erstellung weiterer
Transitionen. Dabei werden alle möglichen Arten von Transitionen dar-
gestellt. Eine Transition zwischen Portlets auf derselben Portalseite, eine
Transition zwischen Portlets auf unterschiedlichen Portalseiten und eine
Transition zwischen einem Portlet und einer Portalseite (Broadcast).

122

A.3. Mockups

Abbildung A.20.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem
Wechsel in den nächsten Schritt des Modellierungsprozess (Event Map-
ping).

123

A. Anhang

Abbildung A.21.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem
Wechsel in den Prozessschritt Event Mapping. Zusätzlich zeigt es den Dia-
log für das Festlegen der Eigenschaften einer Transition. In dem Mockup
ist die entsprechende Transition (blau) hervorgehoben.

124

A.3. Mockups

Abbildung A.22.: Dieses Mockup veranschaulicht das Zuweisen eines Ereignisses für den
Quell Transition Endpoint der Transition.

125

A. Anhang

Abbildung A.23.: Dieses Mockup veranschaulicht das Zuweisen eines Ereignisses für den
Ziel Transition Endpoint der Transition.

126

A.3. Mockups

Abbildung A.24.: Dieses Mockup veranschaulicht die Möglichkeit einen Aliasnamen (DCX-
Key) für das Quell- und Zielereignis zu wählen.

127

A. Anhang

Abbildung A.25.: Dieses Mockup veranschaulicht die Auswahl einer Event Mapper Klasse
(ContentToPayloadMapper) für das Zielereignis.

128

A.3. Mockups

Abbildung A.26.: Dieses Mockup veranschaulicht das Wechseln zur nächsten Transition
über den next Button.

129

A. Anhang

Abbildung A.27.: Dieses Mockup veranschaulicht den Dialog für das Festlegen der Eigen-
schaften für die nächste Transition.

130

A.3. Mockups

Abbildung A.28.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem
Wechsel in den nächsten Schritt des Modellierungsprozesses (Define Pro-
perties).

131

A. Anhang

Abbildung A.29.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem
Wechsel in den Prozessschritt Define Proterties. Zusätzlich zeigt das
Mockup den Dialog für das Festlegen der Eigenschaften eines Screenflows.
Hier kann der Modellierer einen Standard Extension Node vergeben.

132

A.3. Mockups

Abbildung A.30.: Dieses Mockup veranschaulicht den Dialog für das Festlegen der Eigen-
schaften einer Portalseite. Der Dialog besteht aus zwei Tabs. Im Title and
Description Tab werden dem Modellierer Eingabefelder für einen Titel und
eine Beschreibung für jede unterstütze Sprache untereinander aufgelistet.
In diesem Mockup sind die Eingabefelder für die Sprache Englisch zu
sehen. 133

A. Anhang

Abbildung A.31.: Dieses Mockup veranschaulicht den Dialog für das Festlegen der Eigen-
schaften einer Portalseite. In diesem Mockup sind die Eingabefelder für
die Sprache Deutsch zu sehen.

134

A.3. Mockups

Abbildung A.32.: Dieses Mockup veranschaulicht den Dialog für das Festlegen der Eigen-
schaften einer Portalseite. Der Dialog besteht aus zwei Tabs. Im Dynamic
Copy Tab kann der Modellierer wählen das die Portalseite dynamisch
geladen werden soll.

135

A. Anhang

Abbildung A.33.: Dieses Mockup veranschaulicht den Dialog für das Festlegen der Eigen-
schaften eines Portlets. Der Dialog ist vom Aufbau identisch zum Dialog
für das Festlegen der Eigenschaften einer Portalseite. Auf diesem Mockup
wird das Title and Description Tab dargestellt.

136

A.3. Mockups

Abbildung A.34.: Dieses Mockup veranschaulicht den Dialog für das Festlegen der Eigen-
schaften eines Portlets. Auf diesem Mockup wird das Dynamic Copy Tab
dargestellt.

137

A. Anhang

Abbildung A.35.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem
Wechsel in den nächsten Schritt des Modellierungsprozesses (Define Pro-
perties).

138

A.3. Mockups

Abbildung A.36.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem
Wechsel in den Prozessschritt Test Screenflow. Das Testen von Screenflows
ist nicht Teil dieser Arbeit.

139

A. Anhang

Abbildung A.37.: Dieses Mockup veranschaulicht das Modellierungswerkzeug vor dem
Wechsel in den nächsten Schritt des Modellierungsprozesses (Save Screen-
flow).

140

A.3. Mockups

Abbildung A.38.: Dieses Mockup veranschaulicht das Modellierungswerkzeug nach dem
Wechsel in den Prozessschritt Save Screenflow. Zusätzlich werden ein Ein-
gabefeld angezeigt wo der Modellierer einen Namen für den Screenflow
vergeben kann, sowie ein Deploy und ein Save Button.

141

Abbildungsverzeichnis

2.1. Zusammenhang von Prozessmodell, Workflow Modell, Prozess und Workflow. 15

2.2. Lebenszyklus eines Business Workflows und eines Scientific Workflows. 18

2.3. Klassifikation von Portalen nach Fokus und Nutzerkreis. 19

2.4. Aufbau einer Portalseite. 21

2.5. Aggregation der Portlet Inhalte. 22

2.6. Komponenten Portal Anwendung. 23

2.7. Lebenszyklus eines Portlets. 24

3.1. Interaktion zwischen Workflow Engine und Task List Portlet. 28

3.2. Sequenzdiagramm der Ausführung von drei Human Tasks mit einer Task List. 30

3.3. Komponenten eines Screenflows. 31

3.4. Interaktion zwischen Workflow Engine und Screenflow. 32

5.1. Beispiel für einen Subdialog in einem Screenflow. 41

5.2. Kernkomponenten des IBM UX Screenflow Manager. 42

5.3. Sequenzdiagramm eines Zustandsübergangs im Screenflow Manager. 43

5.4. Beispielhafte Darstellung einer Transition im Screenflow zwischen zwei Port-
lets A und B. 48

6.1. Integration des Modellierungswerkzeugs in die Portal Architektur. 59

6.2. Client-Server Modell des Modellierungswerkzeugs (Portlet). 60

6.3. Modellierungswerkzeug in der Werkzeugleiste. 61

6.4. Modellierungswerkzeug in eigener Portalseite. 62

6.5. Transitionen des Beispielszenarios für die grafische Darstellung von Screenflows. 63

6.6. Beispielszenario mit verschachteltem Graphen. 64

6.7. Beispielszenario mit freiem Graphen. 64

6.8. Beispielszenario mit freiem Graphen mit zwei Knotentypen. 65

6.9. Beispielszenario mit freiem Graphen mit Multi-Knotenmenge. 66

6.10. Dialog zur Definition der Eigenschaften einer Transition. 70

6.11. Dialog zur Definition der globalen Eigenschaften des Screenflows. 70

6.12. Dialog zur Definition der Eigenschaften einer Portalseite. 71

6.13. Navigationsleiste für den Modellierungsprozess. 71

7.1. Detailliertes Client-Server Modell des Modellierungswerkzeug (Portlet). 73

7.2. Dojo Komponenten. 74

7.3. Klassendiagramm der Clientseite, geordnet anhand der Rollen in der MVC-
Architektur. 77

142

7.4. Klassendiagramm der Graphelemente (Hierarchie). 77

7.5. Verarbeitung eines externen Drag and Drop Ereignisses im Modellierungs-
werkzeug (Portalseite oder Portlet hinzufügen). 79

7.6. Klassendiagramm der Dialogklassen mit ihren Abhängigkeiten. 81

7.7. Bildschirmfoto des konkret implementierten Dialogs für das Festlegen der
Eigenschaften einer Transition. 81

7.8. Sequenzdiagramm eines Schrittwechsels im Modellierungsprozess. 83

8.1. Beispielhafte Darstellung eines Scientific Portals. 86

8.2. Beispielhafte Darstellung der Komponenten einer N-Tier Architektur, mit dem
Portal als Benutzungsschnittstelle. 87

8.3. Prinzip einer Transformation von einem grafisch repräsentierten Scientific
Workflow in ein BPEL Modell. 88

A.1. - A.38. Mockups für das Modellierungswerkzeug. 104

Tabellenverzeichnis

4.1. Unterschiedliche Umsetzung von Screenflows in verwandten Arbeiten. 40

A.1. Anwendungsfall: Dialogdefinition erstellen . 98

A.2. Anwendungsfall: Dialogdefinition konfigurieren 98

A.3. Anwendungsfall: Artefakt hinzufügen . 99

A.4. Anwendungsfall: Dialogartefakt konfigurieren 99

A.5. Anwendungsfall: Transition definieren . 99

A.6. Anwendungsfall: Transition konfigurieren . 100

A.7. Anwendungsfall: Liste der Dialogdefinitionen anzeigen 100

A.8. Anwendungsfall: Dialogdefinition anzeigen . 101

A.9. Anwendungsfall: Dialogdefinition bearbeiten . 101

A.10.Anwendungsfall: Dialogdefinition kopieren . 101

A.11.Anwendungsfall: Dialogdefinition speichern . 102

A.12.Anwendungsfall: Dialogdefinition exportieren 102

A.13.Anwendungsfall: Dialogdefinition importieren 102

A.14.Anwendungsfall: Dialogdefinition löschen . 102

143

Verzeichnis der Listings

5.1. Dialogdefinition: Ausschnitt einer Definition eines Dialogs mit zwei Portlets
und zwei Transitionen. 46

5.2. Dialogdefinition: Ausschnitt einer Definition eines transition-endpoint Elements. 46

5.3. Dialogdefinition: Ausschnitt einer Definition von Title und Beschreibung eines
Portlets in unterschiedlichen Kontexten. 47

5.4. Dialogdefinition: Ausschnitt einer Definition von zwei Transitionen mit Portlet
bzw. Portalseite als Ziel. 49

5.5. Dialogdefinition: Ausschnitt der Definition einer Start- und Endtransition. . . 50

5.6. Dialogdefinition: Ausschnitt der Definition einer Transition in der die Daten
des gesendeten Ereignis unter einem anderen DCX-Key abgelegt werden. . . . 51

5.7. Dialogdefinition: Ausschnitt der Definition einer Transition die einen Context-
ToPayloadMapper verwendet. 52

5.8. Dialogdefinition: Ausschnitt der Definition eines statischen und zwei dynami-
schen Ressource Endpoints. 53

Literaturverzeichnis

[AAA+
07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, A. E. Mark Ford,

Y. Goland, A. Guízar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu. Web Services Business
Process Execution Language, 2007.

[AAD+
07a] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. König,

F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. Web Services Human
Task (WS-HumanTask), 2007.

[AAD+
07b] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. König,

F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. WS-BPEL Extension for
People (BPEL4People), 2007.

144

Literaturverzeichnis

[ABD+
07] N. Ayachitula, M. Buco, Y. Diao, S. Maheswaran, R. Pavuluri, L. Shwartz,

C. Ward. IT service management automation – A hybrid methodology to
integrate and orchestrate collaborative human centric and automation centric
workflows. 2007.

[Ant08] Anthony T. Holdener. Ajax: The Definitive Guide. O’Reilly, 2008. ISBN: 978-0-59-
652838-6.

[Apa12] Apache Software Foundation. Apache Cocoon - Control Flow, 2012. URL http:
//cocoon.apache.org/2.1/userdocs/flow/.

[ASH12] J. Aubourg, J. Song, Hallvord R. M. Steen. XMLHttpRequest, 2012. URL
http://www.w3.org/TR/XMLHttpRequest.

[Ban05] T. Banks. Web Services Resource Framework (WSRF). Organization for the
Advancement of Structured Information Standards, 1 Auflage, 2005. URL
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf.

[BG04] M. Book, V. Gruhn. Modeling Web-Based Dialog Flows for Automatic Dialog
Control. In 19th IEEE International Conference on Automated Software Engineering
(ASE 2004) [Kt00], S. 100–109.

[Com06] R. W. Community. RIFE Users Guide - Creating a more advanced RIFE application,
2006. URL http://rifers.org/wiki/display/RIFE/GuideNumberguess.html.

[DL13] Dr. Andreas Nauerz, S. Liesche. IBM UX Screen Flow Manager Documentation.
IBM WebSphere Portal, 2013. [Internes Dokument].

[Dr.12] Dr. Andreas Nauerz. Adapting and Recommending Content and Expertise in Highly
Collaborative Web Portals. Dr. Hut, 2012. ISBN:978-3843905756.

[DS] L. DeMichiel, B. Shannon. Java Platform, Enterprise Edition (Java EE) Specifica-
tion.

[DVG+] K. Donald, E. Vervaet, J. Grelle, S. Andrews, R. Stoyanchev. Spring Web Flow
Reference Guide. Spring, 2.0.9 Auflage. URL http://static.springsource.org/
spring-webflow/docs/2.0.x/reference/html/index.html.

[GHJV96] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Entwurfsmuster, Band 5. Addison-
Wesley, 1996. ISBN 3-8273-1862-9.

[GK] M. Großmann, H. Koschek. Unternehmensportale. Springer. ISBN: 978-1-84-
628519-6.

[GSK+
11] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, M. Reiter. Guide to

e-Science, Kapitel Conventional Workflow Technology for Scientific Simulation.
Springer, 2011. ISBN: 978-0-85729-438-8.

[Hee07] S. Heesen. Cocoon - XML-basierte Webentwicklung Schritt für Schritt. Open Source
Press, München, 2007. ISBN: 978-3-93-751455-0.

[Hei02] M. Hein. TCP/IP, Band 6. mitp-Verlag, 2002. ISBN: 3-8266-4094-2.

145

http://cocoon.apache.org/2.1/userdocs/flow/
http://cocoon.apache.org/2.1/userdocs/flow/
http://www.w3.org/TR/XMLHttpRequest
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://rifers.org/wiki/display/RIFE/GuideNumberguess.html
http://static.springsource.org/spring-webflow/docs/2.0.x/reference/html/index.html
http://static.springsource.org/spring-webflow/docs/2.0.x/reference/html/index.html

Literaturverzeichnis

[Hep08] S. Hepper. Java Portlet Specification, 2008.

[IBM] IBM. Dynamic UI Management. URL http://publib.boulder.ibm.com/
infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_
cpts.html.

[IEDM07] Ian J. Taylor, Ewa Deelmann, Dennis B. Gannon, Matthew Shields. Workflows
for e-Science. Springer, 2007. ISBN:978-1-84-628519-6.

[IUH+
05] I. Foster Argonne, U. Chicago, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,

A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell,
J. Von Reich. The Open Grid Services Architecture, 1 Auflage, 2005. URL http:
//www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf.

[JRJ02] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Einführung in die Automa-
tentheorie, Formale Sprachen und Komplexität, Band 2. Addison-Wesley Longman
Verlag, 2002. ISBN: 978-3827370204.

[KDS+12] D. Karastoyanova, D. Dentsas, D. Schumm, M. Sonntag, L. Sun, K. Vukoje-
vic. Service-based Integration of Human Users in Workflow-driven Scientific
Experiments. 2012.

[Kt00] N. Kassem, the Enterprise Team. Designing Enterprise Applications with the
JavaTM 2 Platform, Enterprise Edition. 2000.

[Kus05] T. Kussmaul. DIe Java-Portlet-Spezifikation. JavaSPEKTRUM, 3, 2005.

[Loc12] A. Lochbihler. Semantik von Programmiersprachen. Lehrstuhl für Programmierpa-
radigmen, Karlsruher Institut für Technologie, 2012. ISBN: 978-3-54-015163-0.

[LR00] F. Laymann, D. Roller. Production Workflow Concepts and Techniques. Prentice-Hall,
Inc., Upper Saddle River, New Jersey, 2000. ISBN: 978-0-13-021753-0.

[Mat08] Mathew A. Russell. Dojo - The Definitive Guide. O’Reilly, 1 Auflage, 2008. ISBN:
978-0-596-51648-2.

[Mor09] R. Mordani. Java Servlet Specification, 2009.

[MS] K. Mehlhorn, P. Sanders. Algorithms and Data Structures. Springer. ISBN
978-3-54-077977-3.

[OAS] OASIS. Organization for the Advancement of Structured Information Standards.
URL https://www.oasis-open.org/.

[OMG05] OMG. Unified Modeling Language (UML), 2005. URL http://www.omg.org/
spec/UML/.

[OMG11] OMG. Business Process Model and Notation (BPMN), 2011. URL http://www.
omg.org/spec/BPMN/2.0/.

[Ora] Oracle. Java BluePrints - Webseite. URL http://www.oracle.com/technetwork/
java/javaee/blueprints/index.html.

146

http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_cpts.html
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_cpts.html
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r1/topic/com.ibm.wp.ent.doc_v6101/dev/wpsdynui_cpts.html
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
https://www.oasis-open.org/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.oracle.com/technetwork/java/javaee/blueprints/index.html
http://www.oracle.com/technetwork/java/javaee/blueprints/index.html

Literaturverzeichnis

[PP07] Prof. Dr. rer. nat. Jochen Ludewig, Prof. Dr. rer nat. Horst Lichter. Software
Engineering. dpubkt.verlag, 2007. ISBN: 978-3898642682.

[Pro11] Prof. Dr. Frank Leymann. Vorlesung - Web Services. Institut für Architektur von
Anwendungssystemen (IAAS) Universität Stuttgart, 2011.

[SDK10] M. Sonntag, F. L. Dimka Karastoyanova. The missing features of workflow
systems for scientific computations. 2010.

[SK] M. Sonntag, D. Karastoyanova. Next generation interactive scientific experimen-
ting based on the workflow technology.

[SLWM07] L. Shankar, D. Lee, M. Wynn-Mackenzie. Building a human task-
centric business process with WebSphere Process Server. IBM, 2007. URL
http://www.ibm.com/developerworks/websphere/library/techarticles/
0702_shankar/0702_shankar.html.

[USA05] Urs B. Meyer, Simone E. Creux, Andrea K. Weber Marin. Grafische Methoden der
Prozessanalyse. Carl Hanser Verlag GmbH & Co. KG, 1 Auflage, 2005. ISBN:
978-3446400412.

[W3C] W3C. Document Object Model. URL http://www.w3.org/DOM/.

[WCL+
05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, Donald F. Ferguson. Web

Services Platform Architecture. Prentice Hall, 2005. ISBN: 978-0131488748.

[Weg02] C. Wege. Portal Server Pechnology. 2002.

[Wes07] M. Weske. Business Process Management - Concepts, Languages, Architectures.
Springer, 2007. ISBN: 978-3-540-73521-2.

Alle URLs wurden zuletzt am 10. 07. 2013 geprüft.

147

http://www.ibm.com/developerworks/websphere/library/techarticles/0702_shankar/0702_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_shankar/0702_shankar.html
http://www.w3.org/DOM/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschift

	1 Einleitung
	1.1 Einführung und Motivation
	1.2 Ziele dieser Arbeit
	1.3 Gliederung

	2 Grundlagen
	2.1 Workflows
	2.1.1 Business Workflows
	2.1.2 Interaktion von Workflows mit Menschen
	2.1.3 Scientific Workflows

	2.2 Portale
	2.2.1 Portalspezifische Architektur
	2.2.2 Portlets und Portlet Container
	2.2.3 Portlet API

	2.3 Zusammenfassung

	3 Screenflows
	3.1 Benutzungsschnittstellen mit Portalen
	3.2 Heutige Kommunikation zwischen Workflow- und Portalsystemen
	3.3 Screenflows
	3.4 Screenflows als Teil von Workflows
	3.5 Zusammenfassung

	4 Verwandte Arbeiten
	4.1 Theoretische Arbeiten
	4.2 Praktische Arbeiten
	4.3 Zusammenfassung

	5 Screenflow Manager
	5.1 Terminologie
	5.2 Kernkomponenten
	5.3 Dialogdefinition
	5.4 Erweitertes Laden und Speichern
	5.5 Event Mapper
	5.6 Dynamische Ressource Endpoints
	5.7 Entwicklung von Screenflows
	5.8 Akteure und Rollen
	5.9 Zusammenfassung

	6 Konzept
	6.1 Ausgangssituation
	6.2 Anforderungen
	6.3 Lösungsansatz
	6.3.1 Technische Integration
	6.3.2 Visuelle Integration
	6.3.3 Grafische Darstellung von Screenflows
	6.3.4 Modellierungsprozess
	6.3.5 Grafische Umsetzung der Benutzungsschnittstelle

	6.4 Zusammenfassung

	7 Implementierung
	7.1 Clientseite
	7.1.1 JavaScript Frameworks
	7.1.2 Architektur der Clientseite

	7.2 Serverseite
	7.2.1 Architektur der Serverseite

	7.3 Zusammenfassung

	8 Übertragung der Konzepte
	8.1 Screenflows und Scientific Workflows
	8.2 Übertragung der erarbeiten Konzepte auf Modellierungswerkzeuge für Scientific Workflows
	8.3 Zusammenfassung

	9 Zusammenfassung und Ausblick
	A Anhang
	A.1 Dialogdefinition
	A.2 Anwendungsfälle
	A.3 Mockups

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Listings
	Literaturverzeichnis

