
Institute of Architecture of Application Systems
University of Stuttgart
Universittsstrae 38
D–70569 Stuttgart

Diplomarbeit Nr. 3472

Decision support for different
migration types of applications to

the Cloud

Mingzhu Xiu

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dr. Vasilios Andrikopoulos

Commenced: March.25, 2013

Completed: Semptember.24, 2013

CR-Classification: D.2.1, D.2.9, H.3.3, H.5.2

Abstract

Cloud computing brings many benefits to the enterprises who decide to migrate their
applications to the Cloud partially or completely. This thesis focuses on helping users
finding the most cost-efficient between different Cloud offerings which have similar fea-
tures. Data from several Cloud providers are collected and organized in order to imple-
ment a Cloud provider knowledge base exposed as a set of web services. These services
are validated against other similar systems and exposed as RESTful APIs. A decision
support system is built in this work based on these APIs and evaluated by an existing
use case with different migration plans.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition and Goal . 2
1.3 Outline . 2

2 Background 5
2.1 Fundamentals . 5
2.2 Migration-related Issues and Concerns . 6
2.3 Decision Support Systems for Cloud Migration 8
2.4 Cloud Services Cost Calculators . 10
2.5 Migration Decision Support System . 11
2.6 Summary . 12

3 Specification & Design 13
3.1 Requirements . 13
3.2 System Specification . 14
3.3 Cloud Provider Knowledge Base . 17
3.4 Decision Support Services . 19

3.4.1 Candidate Search Service . 19
3.4.2 Cost Calculator Service . 20

3.5 Decision Support System . 25
3.6 Summary . 36

4 Implementation 37
4.1 Cloud Provider Knowledge Base of Nefolog System 37
4.2 Services of Nefolog System Implementation 39
4.3 Decision Support Services of Nefolog System 43

4.3.1 Candidate Search Web Service . 43
4.3.2 Cost Calculator Web Service . 47

4.4 Decision Support System MiDSuS . 51
4.5 User Guide . 59

4.5.1 Selection of Migration Type . 59
4.5.2 Requirement Collection of Candidate Offerings 59
4.5.3 Selection of Candidate Offerings 60
4.5.4 Collection Requirements of Cost Calculator 60
4.5.5 Checking Results of Cost Calculator and Ranking 61

5 Evaluation 63
5.1 Nefolog Validation . 63
5.2 MiDSuS Evaluation . 68

v

6 Conclusions 71
6.1 Summary . 71
6.2 Future Work . 72

Appendix 75
A.1 Use Case of Applications on Cloud . 75

Bibliography 81

vi

List of Figures

1.1 Structure of Thesis . 3

2.1 Conceptual Model of Decision Support System for Cloud Migration [1] . . 8
2.2 Cloud Adoption Conceptual Framework [2] 9
2.3 Overview of CloudGenius Approach [3] . 10

3.1 Cloud Servers from Provider Rackspace Pricing Details [4] 14
3.2 Envisioned System Functionalities . 15
3.3 Modules of new System . 16
3.4 Entity-Relation Diagram of MDSS [5] . 17
3.5 Entity-Relation Diagram . 18
3.6 Details of Type I . 26
3.7 Candidate Requirements Details of Type I 27
3.8 Result of Candidate Search Details of Type I 28
3.9 Cost Requirements Details of Type I . 29
3.10 Results of Type I . 29
3.11 Details of Type II . 30
3.12 Candidate Requirements Details of Type II 31
3.13 Result of Candidate Search Details of Type II 32
3.14 Cost Requirements Details of Type II . 33
3.15 Results of Type II . 34
3.16 Details of Type III . 35
3.17 Details of Type IV . 35

4.1 Data model . 38
4.2 UML Classes Diagram of Nefolog . 41
4.3 User Interface of MiDSuS: Type I . 52
4.4 User Interface of MiDSuS: Type II . 52
4.5 Subdivision of MiDSuS . 53
4.6 User Interface: First Step of Type I . 55
4.7 User Interface: Second Step of Type I Candidate Search Step 56
4.8 User Interface: Third Step of Type I . 57
4.9 User Interface: Fourth Step of Type I . 58
4.10 User Interface: Fourth Step of Type I with Details 59

vii

List of Tables

2.1 Overview of Cost Calculators . 11

4.1 Overview of Service Types between MDSS and new System 39
4.2 Overview of Languages and Frameworks to Support Restful Web Services

System . 40
4.3 Resource URIs supported by Nefolog . 42
4.4 Decision Support Services URIs supported by Nefolog 43
4.5 Provenances of each Application Component in MiDSuS 54

5.1 Comparison of Candidate Offerings Search 64
5.2 Static Rate Test Comparing with PlanForCloud 65
5.3 Dynamic Rate Test 1 Comparing with PlanForCloud 66
5.4 Dynamic Rate Test 2 Comparing with PlanForCloud 67
5.5 Same Application with different Migration Types 68

A.1 Application Migration Use Cases . 75
A.2 Mapping of Application Migration Use Cases to Migration Types 76

ix

List of Algorithms

1 Candidate Search . 20
2 Cost Calculator . 22

xi

Listings

4.1 SQL Query Expression for Candidate Search Service 44
4.2 Candidate Search . 45
4.3 Default initial Values . 47
4.4 Dynamic Rate Situation . 48

xiii

1 Introduction

In this chapter, the motivation of this thesis is explained on both the business market
side and the development of IT technologies side. Based on technical practice, this
motivation is defined as a specific problem. In order to solve this problem, a feasible
solution is executed and described in the rest of this thesis.

1.1 Motivation

An enterprise which needs some support from IT technologies would face either a short-
age of resources or an over-investment problem during the enterprise’s growth and devel-
opment. From an economics perspective, enterprises desire to gain a maximum benefit
with least resources. In the past, people chose to solve those problems directly. They
bought advanced equipment to suit the business growth and employed more IT staff
for maintenance and update of this equipment locally. But for small or medium size
enterprises they may not have so many funds to achieve this update. They are also
less able to bear the risk of more investment. In other words, if the benefit did not
reach the expected goal after the investment, they could not afford a big loss. With
the help of Cloud computing, such enterprises do not worry about these apprehensions
any more. They have a new choice to solve their problems. The advantages of Cloud
computing are very obvious. There are a number of providers. Many Cloud services
are pay-as-you-use. Even if their desired services have many restrictions, they can also
find an appropriate alternative offering. Some large enterprises have even a collaborative
relationship with Cloud services providers. For example, currently the worldwide largest
software enterprise SAP has a collaborative alliance with Amazon Web Services (AWS).
The SAP customers can deploy their SAP solutions on Amazon EC2 instances which
are already certified by SAP [6].

During the development of Cloud computing market, more and more applications are
migrated to the Cloud. There are already many applications which are even developed
for the Cloud. This type of development solves some problems but brings also some new
problems.

Because of the different kind of Cloud services providers and different features of one
Cloud offering, there are various kinds of Cloud offerings with different pricings. How
to obtain a suitable offering is very important for consumers who want to use a Cloud
service, or who have already chosen a Cloud service but want to find a better one. They
need a system to provide candidate offerings which are selected according to available
information from the providers. If a Cloud service can achieve all the user’s requirements
with the lowest cost, it should be obviously considered as one of the best candidate offer-
ings. If additionally this migration type or migration process undertakes the minimum

1

1 Introduction

risk, it is also a good candidate offering. In [7] four migration types are defined. Type I
and Type II are partial migration while Type III and Type IV are completely migration.
In addition, Type I and Type III are migrated based on application components but
Type II and Type IV are based on application layer. The specific definitions of each
type are explained in Chapter 2 Section 2.1.

1.2 Problem Definition and Goal

In this thesis, a decision support system is built to help users to find an efficient offering
for their needs. In this system, the decision which Cloud offering(s) to use is based on
a comparison between the cost of suitable offerings. The system collects information
from two sides to support this comparison. One side is the users’ side which means
all requirements from users; the other side is the database side that summarizes all the
information from Cloud services providers.

From the users’ requirements, a migration type as defined in Chapter 2 (Section 2.1)
can be decided. With different migration type the selection result is different and it
undertakes different risk. In the application use case A.1, for example, the European
Space Agency process astronomic data which are summarized from one billion stars in
our galaxy [8] and migrated all their DBMS to the Cloud with VMs using Migration
Type III. Users can also determine which provider he trusts more. Furthermore, there
are some restrictions about the migrated component itself. More specifically, the user can
restrict the characteristics of the Cloud offering which he wants to rent and the usage
time or amount of this offering. These are the most basic conditions for the further
comparison.

From the providers’ information, the features and pricings of each offering can be sum-
marized together. The same offering with different features is divided into different
configurations. These features are for example the number of CPU cores, CPU speed,
storage capacities etc. Offerings are represented into cost calculation formulas by dif-
ferent parameters, although they may provide similar services. Simple Storage Service
(S3) from AWS, for example, has a cost calculation formula with 4 parameters. They
are: storage GB, put, copy, post, or list requests, glacier archive and restore requests,
and get and all other requests. Cloud Storage which provides the same service as S3
but is from Google has a formula with 2 parameters. Except from storage GB, it has
a transactions parameter to represent the pricing of this offering. The location of the
data-center is also a related parameter to separate offering into different pricing.

After that, comparisons are done between each candidate offering. According to users’
desires, offerings with the lowest costs are identified for the actual migration of their
application to the Cloud.

1.3 Outline

This thesis consists of 6 chapters. Figure 1.1 outlines the core chapters of this work.
After introducing the background of this thesis (Chapter 2), the system specification is

2 Decision support for different migration types of applications to the Cloud

1 Introduction

abstracted from the system requirements in Chapter 3. In addition, according to this
specification, a system is described to support all the requirements. In the system design
section, a Cloud provider knowledge base is discussed, in order to support all the decision
support services. These services, exposed as APIs, can be used in a decision support
system. The implementation of this decision support system is explained in Chapter
4. The Nefolog system is presented first. It contains all the decision support services
which are based on the Cloud provider knowledge base. Furthermore, a decision support
system called MiDSuS (Migration Decision Support System) is presented based on the
API supported by the Nefolog system. After that, the correctness and efficiency of these
two systems is checked in Chapter 5. The validation of Nefolog system is compared with
the results from PlanForCloud [9]. The evaluation of MiDSuS system is based on a case
study related to the migration of an existing application to the Cloud.

Figure 1.1: Structure of Thesis

Decision support for different migration types of applications to the Cloud 3

2 Background

In this chapter, an analysis of existing works is performed across several dimensions.
The result of this analysis shows that providing a decision support system for the Cloud
migration is essential.

2.1 Fundamentals

The definition of Cloud computing is a presentation of computing as a service for de-
livering ubiquitous, convenient and on-demand resource to customers and this service is
different to the traditional production definition [10]. Customers do not have to know
the design details of the technology infrastructure in the Cloud or need to have an un-
derstanding of the related knowledges. This service is based on the network to support
dynamic, scalable and virtualized resource. This new technology brings new opportuni-
ties and challenges in the IT field.

Current Cloud services are classified by three main service models, software as a service
(SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS) [11]. In the
SaaS model, this application software is referred as on-demand software. User does not
need to worry about the installation or management of the application. For example
Google Apps, user uses it through some clients. In PaaS model, Cloud providers deliver
platforms to application developers who want to develop their solutions on a Cloud
platform which normally contains operation system, database, web server, programming
language execution environment. Google App Engine (GAE) is a typical Cloud service
in PaaS model. In the most basic IaaS Model, providers provide some fundamental
resources with virtual machines which can help customers to deploy their own systems
on Cloud like AWS EC2.

After classifying these offerings by service models, application can be distributed by
migration types. An application can be distributed physically into different compo-
nents. Some components can composite an application layer with logical functionality.
In order to recognize whether the user distributes his application physically or logically
and whether the user attempts to migrate his application partially or completely, four
migration types have been proposed in [7].

• Type I
Replace one or more components of the application to the Cloud. It is the least
invasive and risk migration type. Some measures like configurations, rewiring and
adaptation should be done to fix the problems which may happen after replace-
ment.

5

2 Background

• Type II
Migrate a part of the application functionality like a set of architectural compo-
nents from one application layer to the Cloud. These components should have an
interconnection-relationship.

• Type III
Migrate the whole software stack of the application to the Cloud. Normally it is
based on virtualization of application and achievable by a number of VMs.

• Type IV
Migrate the application completely to the Cloud. It means that all the data layer
and business logic layer are re-engineered as a composition of Cloud services.

The applications use cases in Appendix A.1 show how these applications are organized
before and after migrating to the Cloud by different migration types in Table A.2. In
addition, these applications are marked by ”Y” to represent which Cloud offering(s) they
have chosen already and by ”A” to signify which Cloud offering(s) they could use as an
alternative, in Table A.1. These 4 types are enough to cover all the migration situations
in Appendix A.1. The same application component can be migrated to the Cloud with
different offerings in different migration types. For example, the payroll processing has
already been migrated to the Cloud with VMs. One of the migrated components is
DBMS. For the DBMS, user can also choose a database Cloud service instead of VM. It
should be noted that different migration types will bring different risks and difficulties
to the migration.

At present, it seems like that Cloud computing brings us so many benefits such as: it
is not so expensive; it reduces the IT support team; it allows management to scale his
enterprise with demand etc. How can we know whether we really get benefits from it
and how many they are? This problem actually is to estimate the total cost of one Cloud
project which is assumed that the components would be migrated to the Cloud with a set
of suitable offerings. So far, the cost of an offering is considered as the most important
criterion in this decision making process. Actually, there are also other decision factors,
for example, same migrated application components with different Cloud providers can
lead to different benefit and risk; security and compatibility of these Cloud services can
also be the criteria for making process; trust of user for one provider may also change
the decision etc.

2.2 Migration-related Issues and Concerns

From the previous discussion, if user wants to find an appropriate Cloud offering, a
set of decisions should be made at first. Furthermore, the relationships and influences
between each decision cannot be ignored either. These decisions call for a system to find
a trade-off between cost estimation and performance prediction. In this section, some

6 Decision support for different migration types of applications to the Cloud

2 Background

researches and works are studied to discuss which factors play an important role in this
decision making process.

In the research by Andrikopoulos et al. [1], a conceptual model of decision support
system is proposed (Figure 2.1) and described by two types of concepts, decision and
task. The decision concept consists of 4 actions (distribute application, select service
provider/offering, define multi-tenancy requirements and define elasticity strategy). The
transparent arrows in the figure mean that there are influences between each decisions.
The task concept consists of 7 activities (work load profiling, compliance assurance,
identification of security concerns, identification of acceptable QoS levels, performance
prediction, cost analysis and effort estimation). These tasks support these decisions
while these decisions depend also on these 7 tasks. According to the previous section, an
application can be distributed logically and physically by different migration types [7].
Different migration types bring different risks and troubles in follow-up work to user.
It is necessary to choose an appropriate way with the minimum risk. More and more
commentators accept multi-tenancy as a feature of Cloud computing. It means that
providers let multiple tenants to share a single version of software in order to reduce the
total costs of ownership (TCO). The elasticity strategy can be considered from horizontal
(more application instances) and vertical aspects (more computational resources). In the
task concept part, it can be seen in the figure that the application distribution can decide
performance prediction, effort estimation and cost analysis tasks in the meantime these
tasks can also in turn send feedbacks to application distribution decision. The rest three
decisions have similar situations as application distribution decision. It means that these
tasks are determined by decisions at the same time influence the decisions.

Another work presented in [12] discusses 4 sociable factors which should be treated
with carefully in decision making process. They are trust reputation management, risk
assessment, green assessment and cost and economical sustainability. Trust can be known
by reputation mechanisms [12]. It is an invisible presence but can be made aware from
some experiences in the past. If a Cloud services provider is in a blacklist which means
that he is a dishonest provider, user should be suggested by decision support system
that it is not safe to use this provider’s services. Risk is suggested to be considered
not traditionally but with the cost of reconfiguration and migration, the reliability of
Cloud services and also some other factors together [12]. As well as the risk which may
happen in application distribution, there are so many other unforeseen incidents. In the
research by Khajeh-Hosseini et al. [13], such incidents are proposed, like: IT staff has
low morale and sometimes is very anxious while department may make some changes in
his work or reduce staff number during migration; a major service interruption may lead
to an extensive outages, unavailability of services or data loss etc. All of these risks are
collected from five perspectives, security, technical, organizational, legal and financial.
Green assessment is a very common viewpoint in our daily life but it is proposed in
ICT industry until recently. From the environmental protection, green cloud computing
means that providers try to achieve the desired QoS with as low energy consumption as
possible.

Decision support for different migration types of applications to the Cloud 7

2 Background

Figure 2.1: Conceptual Model of Decision Support System for Cloud Migration [1]

2.3 Decision Support Systems for Cloud Migration

In this section some existing decision support systems are introduced. Each system is
implemented based on cost estimation. Several other factors are also considered.

Khajeh-Hosseini et al. [2] developed the Cloud Adoption Toolkit to support decision
making. This toolkit contains a collection of tools which focus on both cost calculation
and socio-technique. The conceptual framework of this toolkit is shown in Figure 2.2.
Decision maker starts from technology suitability. This technology suitability analysis is
built by a checklist in the table of Figure 2.2 which contains 12 questions in 8 technology
characteristics. If it is found suitable for the user’s work, the next step is to analyze either
cost of Cloud services in a public Cloud or cost of energy in his private Cloud. The cost
is calculated with the help of a UML deployment diagram which models the deployment
of his system on Cloud. At the same time, the stakeholder impact analysis is also done
to evaluate the socio-political benefits and risks. The weighted average of benefits and
risks which are summarized from some case studies in the research by Khajeh-Hosseini
et al. [13] can be calculated and are shown in two radar graphs in Figure 2.2. After
these two analyses, if his work is found viable, it goes to the responsibility modelling.
This modelling is to check the operational viability of his work. Then the last step is to
implement his work in the Cloud.

The second decision support system is called CloudGenius which presented in the work

8 Decision support for different migration types of applications to the Cloud

2 Background

Figure 2.2: Cloud Adoption Conceptual Framework [2]

by Menzel et al. [3]. In Figure 2.3, the approach is illustrated. It is a continual and
evolutionary migration process. First of all, the decision between Cloud and no Cloud
is achieved by a (MC2)2 framework whose structure is on the top right of this figure.
If Cloud infrastructure is viable, this system goes to the core part called CloudGenius
migration process which is shown in bottom right of this figure. In the beginning of this
migration process, the goal and preferences of the user should be set up. After that,
VM image evaluation and Cloud services evaluation are implemented in parallel. These
two evaluation methods are implemented by the (MC2)2 framework which uses Analytic
Hierarchy Process (AHP) reducing decision modelling effort instead of Analytic Network
Process (ANP). Then the user receives the results which contain some suggestions of VM
image and infrastructure. A best combination between Cloud image and Cloud service
is selected to achieve this migration. The final step is to make a loop of this making
process with some other alternative requirements until the user is satisfied with the
solution. This migration process will stop if no more Cloud application is needed. It
means that this application is migrated to the Cloud successfully.

Decision support for different migration types of applications to the Cloud 9

2 Background

Figure 2.3: Overview of CloudGenius Approach [3]

2.4 Cloud Services Cost Calculators

The information about one Cloud service contains the service features, usage conditions,
pricing and some other related works. In order to help a user to have a clear understand-
ing of his project or his migrated application cost, it is easy to find a cost calculator on
some providers’ official website. There are also several other developers who focus on
Cloud services cost calculator of several different Cloud services providers but they do
not provide any Cloud services themselves.

Table 2.1 is used to show a general introduction of some cost calculators. The first
three rows contain cost calculators for Cloud services which are provided by the Cloud
provider itself. All of them provide the calculator which can make a hybrid calculation
among their offerings and the combination of each offering is selected by user. The last
two websites can help the user to calculate his migrated application with some available
Cloud providers. PlanForCloud supports a relative all-round system to help user to

10 Decision support for different migration types of applications to the Cloud

2 Background

Table 2.1: Overview of Cost Calculators

Cloud Services
Cost Calculator

Service(s) Cloud Provider(s) Considered

Amazon Web
Services Simple
Monthly Calculator
[14]

EC2, S3, RDS, DynamoDB,
SimpleDB, VPC, Redshift, SQS,
SES, SNS, SWF, Glacier,
CloudFront, ElasticCache,
CloudWatch, CloudSearch, Direct
Connect, Route 53, Elastic
MapReduce

AWS

Windows Azure
Pricing Calculator
[15]

web sites, virtual machines, mobile
services, cloud services, data
management

Windows Azure

Rackspace Cloud
Calculator [16]

Cloud Servers, Cloud Files, Load
Balancers

Rackspace

PlanForCloud [9]
Compute, Relational Database,
NoSQL Database, Block Storage,
Object Storage, Archival Storage

AWS, Rackspace, Google,
Windows Azure, SoftLayer, HP
Cloud

Cloudorado [17] IaaS

Atlantic.Net, M5 Cloud Hosting,
eApps, CloudSigma, AWS,
elastichosts, e24cloud, GoGrid,
Linode, JoyentCloud, Ninefold,
Server Mule, zettagrid, bitrefinery,
VPS.NET, StratoGen, Rackspace,
GIGENET, exoscale, SunGard,
Dimension Data, vCloud Express

calculate his whole project. In addition, it can calculate the trend of a project cost in a
certain term with some defined usage patterns. It contains many different geographical
areas of server data centers. It includes more services than Cloudorado which has only
IaaS. Cloudorado on the other hand provides a calculator with a lot of Cloud providers.
It offers simple mode and advanced mode. In advanced mode, user can also choose more
than one server to migrate his application at the same time the data transfer between
each server should be considered.

2.5 Migration Decision Support System

The current work is a continuation and is based on MDSS which is developed by Song
[5] in early 2013. In this section, the work of MDSS is explained in detail.

MDSS consists of a database, data handler and user interface. The database called Cloud
provider knowledge base contains 2 providers, Google and Windows Azure and works
on SQL Server 2008. Each provider contains a set of offerings and according to various
performance characteristics with different values an offering can be divided into several
configurations. In the database, 16 features are summarized for each offering. Pricing of

Decision support for different migration types of applications to the Cloud 11

2 Background

each offering is represented by a formula with multi-parameters. These pricing formulas
are collected by different locations and different usage amounts. After explaining the
information which is collected from the providers, the developer defined also 5 service
types to organize these offerings from system side.

The data handler contains two main functions, offerings matcher and costs calculator.
The offerings matcher function is implemented by a comparison between user’s require-
ments and the data in the database. These user’s requirements should include: which
service type is migrated to the Cloud; which offering user prefers to choose; which perfor-
mances the Cloud offering should have according to user’s demands. The costs calculator
is achieved by calculating the pricing formula with certain values which are assigned by
user. A user can also choose his desired data center location and usage pattern with a
certain rate in a fixed period of time.

All these requirements both for offerings matcher and for costs calculator are given on
the first page of MDSS UI. The results are listed in the second page with configurations,
locations, details, providers, costs, sums and parameters. In the end of each row in this
list, there is a button called ”Info”. With this button, user can get more information
concerning this configuration’s performance characteristics and a graph of cost in each
month. In the bottom of this page, there’s a drop down list to select a parameter to
rank. The Ranking result is shown in the third page.

2.6 Summary

Knowledge of service models and migration types are set up as foundation in this work.
As studying some researches about decision support for Cloud migration, a number of
factors are introduced and should be considered in making process. Furthermore, two
existing decision support system are illustrated step by step. If all these factors are
considered, the decision making process may be separated by amount of evaluations and
comparisons. A mature decision support system should be generated by a long-term
data collection and based on a lot of migration practices. An attempt to build a decision
support system is done by Song. In his work, he introduced a system called MDSS which
achieves to a trade-off between cost and performances. The composition and operation
of MDSS are summarized in this chapter.

12 Decision support for different migration types of applications to the Cloud

3 Specification & Design

This chapter focuses on extracting requirements and presenting the specification and de-
sign of a decision support system for Cloud migration. To complete all the requirements
a decision support system is established which is based on some RESTful APIs. These
APIs are working with a database named Cloud providers knowledge base. This knowl-
edge base summaries information of several Cloud services providers. The information
is about features and pricings of each offering.

3.1 Requirements

Cloud service is a better solution for a private consumer or an enterprise to expand the
service coverage area or to reduce the IT support team members or the calculation time
of big data processing. It is reliable, flexible and scalable. Besides these characteristics,
some of these Cloud services are pay-as-you-use. It is an efficient way to reduce the cost.
In today’s market, there are a few providers which provide a variety of Cloud services.
It means that there are many different available offerings for consumer to achieve his
strict requirements about the cost, the provider or even the data center from which to
be served.

In Figure 3.1, the shown provider is Rackspace and this Cloud offering is Cloud Servers.
It supports VMs with different performance on different operating system with different
database manager. In addition, the pricing for each configuration is different. Higher
performance has a little more expensive price than the lower one. For one single provider,
it has already many different configurations. For many providers, the possible options
are larger. Consumer spends too much time on choosing a practical and cost-effective
Cloud offering among them. Supporting the user in this task is perceived as this work’s
goal. A decision support system is built to help consumer to find a set of suitable
offerings quickly and directly.

As a whole system, a friendly user interface should be developed. It will support a con-
crete and intuitive interaction for user. A comparison between the initial application and
migrated application is necessary to help user to choose an appropriate migration type.
The migration types are already explained in Section 2.1. Choosing the appropriate mi-
gration type can reduce the risk during migrating to the Cloud and save investments.

It should be considered as the first step for an application which would like to be migrated
to the Cloud. Second step, a description of application will be asked for. Actually, the
definition of service type is described more obviously and directly by the application
components and application layers. After that it’s time for the initial requirements
part. The requirements may contain which provider user wants to choose, which kind

13

3 Specification & Design

Figure 3.1: Cloud Servers from Provider Rackspace Pricing Details [4]

of performances he hopes the Cloud service has, how long he wants to use this services,
etc.

All these requirements will be collected and transferred to the data processing part. This
system will search for several candidate offerings which could reach or even exceed the
demands of user in all offerings. For each candidate offering, the service cost and data
transfer between this offering and local or another offering will be calculated with the
help of cost formulas with multiple parameters whose values are already given as initial
conditions. The total cost is a sum of the usage amount of the service, cost of data
transfer and the upfront of this service. User can also know the trends of the total cost
by giving different usage patterns in order to decide which offering is worthy to utilize
during a long-term plan.

3.2 System Specification

The envisioned functionalities of the system are illustrated using a Use Case diagram in
Figure 3.2. It is abstracted from the requirements in Section 3.1. All the requirements
of user are separated into 3 parts. The first is to Select Application Description. It is
used to determine the appropriate migration types. The second is to Enter Candidate
Requirements. It provides finer initial values for candidate offerings search like provider
name and service type which is based on the migrated components. Using these re-
quirements and necessary data from the database the candidate offerings can be found.
According to the user’s desire a number of candidate offerings can be selected to get
concrete evaluations of these offerings’ costs. The third is Enter Cost Requirements. For

14 Decision support for different migration types of applications to the Cloud

3 Specification & Design

different configurations the calculation variables are different. These optional evaluation
variables are collected by a service in backend. With the help of these requirements
and cost formulas from database the costs and cost trends can be calculated. All these
results can be returned and visualized for the user. There are also several sorts of Rank-
ings to help the user to have a better view of the costs, update dates or data centers
comparisons.

Figure 3.2: Envisioned System Functionalities

Extending the work in [5], this new system is composed of two main parts. One is called
Cloud Services as back-end of the system while the other is called Cloud Migration as
front-end of the system. Cloud Services part is built up by web services and database.
It implements the offerings matcher and costs calculator functionality. Cloud Migration
part is a web application part which is based on the Cloud Services part. It contains UI
components and some logic behind it which is used to transfer data between front-end
and back-end.

As it can be seen in Figure 3.3, the consumer can give his requirements in the web
application which is called Decision Support System in Figure 3.3. In the Decision
Support System, there is a description of the consumer’s application and the components
which are meant to be migrated on the Cloud. Consumers can choose one Cloud services
provider or all of them. After some necessary values are ready for the data processing
part, it’s time to begin candidate offerings search then the system works about offerings’
cost calculation. All these requirements are considered as requests to web services. Many
web services are built to support this system. One of them is to look for the candidate
offerings. Another one is to calculate the total cost of offerings and the trends of this
cost in the each following month. This search and calculation part is called Decision
Support Services in Figure 3.3. All the necessary data are stored and retrieved from the
Cloud Provider Knowledge Base. After that the responses of this service are sent back
to the consumer and displayed through the web application.

Decision support for different migration types of applications to the Cloud 15

3 Specification & Design

Figure 3.3: Modules of new System

The knowledge base is expanded based on the previous knowledge base in MDSS while
the functions of data handler are transplanted as services in the new system. The
similar parts will therefore not be described again; only the different part will be given
an account here. More specifically:

• Interaction
The UI of this work is different from MDSS. It will support consumer to complete
his selection from 4 migration types not only from service types. In addition, for
each type all the necessary initial conditions will be given in a table, in order to
help consumer to clearly see which components his application contains and which
one or ones he wants to migrate to the Cloud. Instead of choosing the service types
in MDSS, this system separates all the service types into application components
and collects them into different service types for Type I & III and into different
application layer for Type II & IV. He does not need to choose which Cloud offering
he wants to use but to choose which Cloud provider. This way supports consumer
to get more apposite available offerings than in MDSS.

• Web Service instead of Function
All the functions in MDSS will be transplanted to the new system as restful web
services. A platform-independent and program language-independent system is a
goal for this work. All the services can be put in a WAR file in the end and run
on any platform. The 2 main functions in MDSS, offerings matcher and costs cal-
culator, will be changed into candidate search service and cost calculator service,
respectively. Some algorithms will be kept while others will be overridden. But
the general idea is identical.

• Data
There are more providers covered than MDSS, 6 (Google, Windows Azure, Ama-
zon Web Services, Hp Cloud, Rackspace and Flexiscale) instead of 2 (Google and
Windows Azure). More providers mean more service types of an application and
more factors of calculating a total cost and even more process time of one service.
A refinement and reworking of service types must be done to make a better or-
ganization among all the offerings in the knowledge base. Cost of data transfer
between two offerings or between offering and local will be considered as one factor.
In addition, upfront costs of one Cloud service cannot be ignored. The definition

16 Decision support for different migration types of applications to the Cloud

3 Specification & Design

of location in MDSS will be changed to geographical area and a definition of zone
will be added into the Knowledge Base in order to make a better partition for
different provider’s Cloud service which is from different data-center. In the data
collection, the pricing of the Cloud services from the provider Flexiscale1 is differ-
ent. During the processing of costs calculator, the provider Flexiscale should be
separately treated with.

3.3 Cloud Provider Knowledge Base

This knowledge base refines and extends the equivalent base from MDSS. Figure 3.4
shows the Entity-Relation diagram of the MDSS’s database while Figure 3.5 shows the
new Entity-Relation diagram. All the MDSS’s basic entities are information included
in the new ER diagram. At the same time, some more information has been added to
supply the users with more possibilities when they intend to utilize the Cloud services.

Figure 3.4: Entity-Relation Diagram of MDSS [5]

In Figure 3.4, there are six main entities and relationships among them. The providers’
information is abstracted as the Provider entity and it has a one-to-many relationship
with the Offering entity which is also classified by the Service Type entity. One offering

1http://www.flexiscale.com/products/flexiscale/

Decision support for different migration types of applications to the Cloud 17

http://www.flexiscale.com/products/flexiscale/

3 Specification & Design

Figure 3.5: Entity-Relation Diagram

may supply more configurations that are sorted by different performance. The cost of
each configuration is calculated by some variables according to different location and
usage amount.

It can be seen in Figure 3.5, the six main entities are kept. The Cost entity is divided
into three parts. The reason is that there are three factors which are not independent
on each other but can affect the final cost. One of these factors is the upfront cost of
using the service. It is only required by Amazon Web Service (AWS) offerings. MDSS
does not include the AWS provider, so it does not have this entity. Another factor is the
price of data transfer. MDSS also considers this cost but only as a single service type.
In this work, the data transfer is considered as a part of the cost calculation, because
there must be some data which transfer in or out from a cloud service. The last part
is the pricing of the Cloud service as provided in MDSS. These three factors have a
one-to-many relationship with the Cost entity. To make a final cost estimate, a sum of
these three parts must be done.

There’s a special provider in this new system, Flexiscale. The cost calculation for this
provider is related to the number of units which the configuration utilizes and not to a

18 Decision support for different migration types of applications to the Cloud

3 Specification & Design

fixed price. It has a one-to-one relationship with the Configuration entity and can be
represented by a one-to-many relationship with the Variable entity.

The location of the new system is specific to each geographical area that related to all the
providers. The areas are classified to several zones. The two entities have a one-to-many
relationship.

3.4 Decision Support Services

To achieve these requirements which were already mentioned in Section 3.1 there are
many possible solutions. A web application which is based on web services has been de-
termined to be the more appropriate design which fits the system specification described
in the previous.

In this work, we choose web service and abandon the use of functions which have been
developed in MDSS. Beside the ease of interoperation with a Web-based system, there
are also some other reasons to explain this decision.

Web service is platform-independent and program language-independent. It means that
the client side can be programmed in C++ and running under Windows, while the server
side is programmed in Java and running under Linux. In other words, what the client
side looks like is not important in this work. The task is about the server side and
developing it with web services is easier for the next developer who wants to continue
this work later.

In short, all the resources in Figure 3.5 should be identified by URIs. The 2 deci-
sion support functions are transformed into decision support services. The consumer’s
requirements are transported to the server side through the query part of URI. The
appropriate results are returned back in 2 standard representations, XML and JSON.

Before a search or a calculation starts, the initial conditions must be checked whether it
is in the range. If not, an error message will be returned back and new initial conditions
should be given.

3.4.1 Candidate Search Service

The candidate search service in [5] is called offering matcher. The filter has been
separated by the numerical-performance characteristics and non-numerical-performance
characteristics. In the new system, the non-numerical-performance characteristics con-
tain performance characteristics of operating system, software licence and I/O (it is
described by providers with low, moderate, high and very high); the rest of the perfor-
mance characteristics are numerical-performance characteristics. The necessary perfor-
mance characteristics for one configuration are given to consumer before he starts the
candidate searching. Except all the requirements which are defined by the consumer,
the rest of the performance characteristics which are also defined by providers are not
considered in the matching process.

Decision support for different migration types of applications to the Cloud 19

3 Specification & Design

Under the consideration of the expansion of database the algorithm of candidate search
service is modified from the offering matcher algorithm in MDSS. It is showed in in
Algorithm 1. The data type of a few parameters is HashMap class instead of List class
in MDSS. HashMap class is used to implement a mapping between key and value. It
is easy to search and compare with another value of the same key. But it has also some
disadvantages that the sequence of one map is unfixed and for one key there can be only
one value. It means if one key maps to more than one values, the class List could be used
otherwise the last value will be overridden all the previous values. The input parameter
is Mp. It’s a collection of the requirements from the URI query part. The parameter
Mc is identified by the configuration id as key and maps to a performances-list called
Lcp as value which contains all the performances of this configuration. Lcp is received
by a database sql query search. Then comparing each performance of Lcp with Mp, if
the performances are the same or Lcp’s value is bigger than Mp’s, this configuration is a
candidate configuration. Otherwise the configuration id will be deleted from Mc.

Algorithm 1 Candidate Search

1: procedure candidateSearch(Mp)
2: Mc := SQLquery(Mp(”servicetype”),Mp(”offering”),Mp(”provider”));
3: for each c ∈Mc do
4: Lcp := Mc(c);
5: for each p ∈ Lp do
6: if ¬Mp(p) = NULL then
7: if ¬Lcp(p) = NULL then
8: if p = ”os” ∨ p = ”io” ∨ p = ”licence” then
9: if ¬Lcp(p) = Mp(p) then

10: remove c from Mc;
11: break;
12: end if
13: else
14: if Lcp(p) < Mp(p) then
15: remove c from Mc;
16: break;
17: end if
18: end if
19: end if
20: end if
21: end for
22: end for
23: end procedure

3.4.2 Cost Calculator Service

In the cost calculator service part, the algorithm is completely changed with respect of
the cost calculation algorithm of MDSS. The specific reasons for this change are listed
in the following:

20 Decision support for different migration types of applications to the Cloud

3 Specification & Design

• In MDSS, for the static unit-price the initial condition for no input-value is a de-
fault value (1); for the dynamic unit-price the initial condition is the minimum and
maximum consumption in every amount range and a list of costs was shown to
consumer. An appropriate default value should be re-defined. This value should
be at least help consumer to get a general idea of the cost of this service. For
static unit-price the initial value is 5000 except the time value. If this service is
calculated by hour, the initial value is 500. In addition, the utilization time of a
Cloud service is 10 months as default. For dynamic unit-price the initial vale of
no input-value is the maximum consumption of the biggest amount range.

• Some new providers are added to the new knowledge base, so the cost calculator
should contain all the situations for each provider. There are 2 special providers,
Amazon Web Services and Flexiscale. If the provider is Amazon Web Services,
the variable which is used to separate the usage amount range should be processed
carefully. Because only for the provider AWS, there is upfront for some Cloud
services and it is charged per 1 year or 3 years. It means this variable’s unit is
maybe ”Hour” but the unit of usage amount range is ”Year” or ”Month”. There
should be a unit-transformation for the ”Hour” unit and a check-process for the
value of ”Hour” variable which cannot be more than 730 hours per month. If the
provider is Flexiscale, the usage amount is a formula with multiple variables that
the result is static according to pricing table. The pricing is divided into different
tariff by the amount of units.

• The cost calculator is divided into static-calculator and dynamic-calculator. The
static-calculator part is relatively straightforward; the dynamic-calculator part
however requires additional logic. The formula’s usage amount range should be
checked always as long as the variable value changes. So all the results which are
selected by user’s requirements are retained whether the minimum or maximum
values of these cost formulas does not reach the requirement. If the cost formula is
determined by a fixed rang as what has been done in MDSS, there may be mistakes
when the value of the dynamic variable is out of range.

• The total cost consists of service usage amount cost, data transfer cost and upfront.
Before adding these 3 parts together, the condition should be checked whether they
stay at the same data-center. Especially, if the service data-center is worldwide
but the data transfer data-center is in EU, the total cost should be calculated
differently. The result is built up by 2 parts, service cost with data transfer cost
in EU and service cost without data transfer in other geographical areas.

Actually, the process method of all the providers except Flexiscale is using the same
idea, but what are mentioned above must be treated with carefully and all the possible
situations should be included in the implementation part. The provider Flexiscale is a
dynamic unit-price but for the usage amount not for the cost calculation formula.

Decision support for different migration types of applications to the Cloud 21

3 Specification & Design

Algorithm 2 Cost Calculator

1: procedure costcalculator(id,Mv,Mcd,Mp,months)
2: servicec := 0;
3: upfrontc := 0;
4: datatransferc = 0;
5: Lc := SQLquery(id);
6: Mc := SQLquery(id);
7: Lv := getV ars(Lc);
8: Mv := unitCheck(Mv);
9: for index = 0→ Size(Lc) do

10: cid := Lc(index);
11: Lp := Mc(cid);
12: if ¬Flexiscale then
13: if staticunit− price then
14: upfrontc := Upfront(cid,Mv);
15: servicec := costCalculator(formula,Mv);
16: datatransferc := dataTransfer(cid,Mv);
17: if static− rate then
18: servicec,datatransferc,upfrontc do not change for each month;
19: else
20: if month < max(Mp) then
21: month := max(Mp);
22: end if
23: for i = 1→ month do
24: for each vp ∈Mp do
25: if i ∈Mp(vp) then
26: Mv(vp) := Mv ∗ (1 + rate/100);
27: Mv := unitCheck(Mv);
28: end if
29: end for
30: servicec := costCalculator(formula(cid),Mv)
31: datatransferc := dataTransfer(cid,Mv);
32: end for
33: end if
34: else
35: get min, max from Lp;
36: v := the variable which identifies the usage amount range;
37: if ¬(Mv(v) < max ∧Mv(v) > min) then
38: for start := 0→ Size(Lc) do
39: cid := Lc(start);
40: Lp := Mc(cid);
41: get new min, max from Lp;
42: if Mv(v) < max ∧Mv(v) > min then
43: get new cid;
44: index := start;
45: break;
46: end if
47: end for
48: end if

22 Decision support for different migration types of applications to the Cloud

3 Specification & Design

49: upfrontc := Upfront(cid,Mv);
50: servicec := costCalculator(formula(cid),Mv);
51: datatransferc := dataTransfer(cid,Mv);
52: if static− rate then
53: servicec,datatransferc,upfrontc do not change for each month;
54: else
55: if month < max(Mp) then
56: month := max(Mp);
57: end if
58: for i = 1→ month do
59: for each vp ∈Mp do
60: if i ∈Mp(vp) then
61: Mv(vp) := Mv ∗ (1 + rate/100);
62: Mv := unitCheck(Mv);
63: if vp(name) = v(name) then
64: if ¬(Mv(vp) < max ∧Mv(vp) > min) then
65: for start := 1→ Size(Lc) do
66: cid := Lc(start);
67: Lp := Mc(cid);
68: get new min, max from Lp;
69: if Mv(vp) < max ∧Mv(vp) > min then
70: get new cid;
71: break;
72: end if
73: end for
74: end if
75: end if
76: end if
77: end for
78: upfrontc := Upfront(cid,Mv);
79: servicec := costCalculator(formula(cid),Mv);
80: datatransferc := dataTransfer(cid,Mv);
81: end for
82: end if
83: end if
84: else
85: get min, max from Lp;
86: valueu := UsageamountCalculator(formula(cid),Mv);
87: if ¬(valueu < max ∧ valueu > min) then
88: for start := 0→ Size(Lc) do
89: cid := Lc(start);
90: Lp := Mc(cid);
91: get new min, max from Lp;
92: if value < max ∧ value > min then
93: get new cid;
94: index := start;
95: break;
96: end if
97: end for

Decision support for different migration types of applications to the Cloud 23

3 Specification & Design

98: end if
99: servicec :=cost value in Lp;
100: datatransferc := dataTransfer(cid,Mv);
101: if static− rate then
102: servicec,datatransferc,upfrontc do not change for each month;
103: else
104: if month < max(Mp) then
105: month := max(Mp);
106: end if
107: for i = 1→ month do
108: for each vp ∈Mp do
109: if i ∈Mp(vp) then
110: Mv(vp) := Mv ∗ (1 + rate/100);
111: Mv := unitCheck(Mv);
112: end if
113: end for
114: valueu := UsageamountCalculator(formula(cid),Mv);
115: if ¬(valueu < max ∧ valueu > min) then
116: for start := 1→ Size(Lc) do
117: cid := Lc(start);
118: Lp := Mc(cid);
119: get new min, max from Lp;
120: if value < max ∧ value > min then
121: get new cid;
122: break;
123: end if
124: end for
125: end if
126: servicec :=cost value in Lp;
127: datatransferc := dataTransfer(cid,Mv);
128: end for
129: end if
130: end if
131: end for
132: end procedure

24 Decision support for different migration types of applications to the Cloud

3 Specification & Design

The details of how to realize this algorithm are illustrated in Algorithm 2. This al-
gorithm will be explained from 2 parts, initial conditions (line2 − line8) and concrete
steps (line9 − the end). Concrete steps is separated into 2 sub-parts, the provider is
Flexiscale (line84 − line130) and other providers (line12 − line83). Furthermore the
sub-part of other providers consists of static unit-price (line13 − line33) and dynamic
unit-price (line34− line83). For each unit-price situation, static rate and dynamic rate
are considered.

There are 5 input data which are id, Mv, Mcd, Mp and month. id is the configuration’s
id. Mv is the start values which are given by consumer through the URI query part.
Mcd is a mapping between coefficient id and a list of data transfer ids. Mp is a mapping
between necessary variable for cost formula calculation and a list of [start, end, rate]s
which are from the URI query part with usage pattern parameter. months is the utility
time of this offering. Additionally, some initial values are retrieved with the help of
SQLquery() method and getV ars() method. The SQLquery() method is to find all the
coefficient ids in a list assistance of SQL database query. Lc is a list of coefficient ids
and Mc is a mapping between coefficient id and a list which is built up by a collection of
values and each index’s meaning is cost formula, location id, zone id, usage amount id,
minimum value and maximum value. The location id and zone id are used later to check
whether there is a restriction of geographical area while the usage amount id is used
later to identify whether this cost formula is a static unit-price or dynamic unit-price.
Lv is a list of all the necessary variables for this configuration’s cost formula to calculate.
Besides this initial conditions, there are two maximum-usage methods, unitCheck() and
dataTransfer(). unitCheck() method is used to control which variable is over range,
e.g. ”Hour” is bigger than 730. dataTransfer() is to calculate the data transfer cost if
this configuration has a data transfer cost.

The static rate means the value is not changed. In other words, there’s no input value
of usage pattern. The rate is changed by usage pattern which are given by consumer
with the help of URI query part. In the dynamic rate, if the variable is the one which
has a usage amount range, its value should be checked whether it still satisfies the range
after the new value is calculated. If not, the new range should be found. As long as the
value is changed, the following step must be unitCheck() method.

For the provider Flexiscale, it is an obvious dynamic unit-price situation. But for each
range the coefficient cost value is fixed, the usage amount is a cost formula. It is different
with different input values. The result of the formula is compared with the minimum
and maximum of the range. If it is in the range, the coefficient cost value is the cost of
this offering. If not, a new range will be searched in order to get a new coefficient cost
value.

3.5 Decision Support System

In this section, the envisioned Decision Support System is described through a series of
User Interfaces. Balsamiq Mockups2 is used to build these user interfaces. All the UIs

2http://balsamiq.com/

Decision support for different migration types of applications to the Cloud 25

http://balsamiq.com/

3 Specification & Design

are summarized by the following figures. These figures are combined with some tables
and buttons. Tables are used to described an application or some requirements while
buttons are working with submitting information together and sometimes it will start a
new page to collect more information.

Migration Type I and Migration Type II are interpreted in this section. All the necessary
requirements of Type I are listed in Figure 3.6, Figure 3.7, Figure 3.8 and Figure 3.9.
In general, the user has to provide input to the system by answering one or more of the
following questions:

1. Which component/components his application contains.

2. Which component/components he wants to migrate/replace to the Cloud.

3. Which Cloud service provider he prefers.

4. Which performance characteristics of his Cloud offering he hopes to constrain.

5. Which configurations among all the candidate offerings he wants a cost calculation
for.

6. How long he wants to rent this offering.

7. Where he wants to his data-center to be located.

8. Which usage variables should be assigned with specific values.

9. What kind of trend among these variables is.

Figure 3.6: Details of Type I

26 Decision support for different migration types of applications to the Cloud

3 Specification & Design

Generally, if the user finishes answering these questions, it means he has already found
these offerings which he wants. The concrete implementation of Type I is explained
as follows: in the beginning, user answers the first three questions above as shown
in Figure 3.6. These three questions can be thought as application description like
what was talked in Figure 3.2 of Section 3.2. In Type I, this application description
is collected by different components of one application. In this example, the existing
application components are web server, resizable compute, big data workload, RDBMS
and raw block level storage. Two of these components are attempted to migrated to the
Cloud, they are resizable compute component and raw block level storage component.
Obviously, resizable compute component belongs to infrastructure service type while raw
block level storage is in the block storage service. The providers for these components
are selected by ”Any of them”. It means the user wants to get all these appropriate
offerings but does not care about their providers.

Afterwards all the possible performance characteristics are collected by a new window
in Figure 3.7. Before user enters his new requirements, more than one performance have
already been determined in the application description step. As what is said above, they
are the service type and provider. In Figure 3.7 for infrastructure service type, a set of

Figure 3.7: Candidate Requirements Details of Type I

performances are entered by user. In this example, 4 features are give. CPU cores is 8;
CPU speed is 1.2 GHz; RAM of this offering is 10 GB; Operating system is Windows.
As long as these necessary performances are entered, the candidate search service can

Decision support for different migration types of applications to the Cloud 27

3 Specification & Design

be started.

All the candidate configurations will be listed in a new page like in Figure 3.8. It’s time

Figure 3.8: Result of Candidate Search Details of Type I

for user to answer the fifth question. Namely, he should select some offerings from all
the candidate offerings in Figure 3.8. At the same time, the last four questions will be
settled in Figure 3.9. Some evaluate variables’ values are entered. In this example, the
basic value of Hour variable is 240 hours, the basic value of storage is 500 GB. If there are
also some other variables which are necessary during the cost formula calculation, some
default values should be defined in such situation. The specific values will be talked in
implementation chapter. In the dynamic rate situation, the Hour variable is increased
by 15% between the second month and the 6th month and decreased by −20% between
the 10th month and the 12th month; the storage variable is increased by 20% between
the first month and the 5th month. So far all the questions are already answered. Now

28 Decision support for different migration types of applications to the Cloud

3 Specification & Design

Figure 3.9: Cost Requirements Details of Type I

it’s time to calculate the costs. All these results are showed in Figure 3.10. Use the

Figure 3.10: Results of Type I

details button, a trend of each offering’s cost is displayed on the same page. There also
some other functions can be done, like sorts all the information by update date, data
center or cost. With this Ranking result user can directly see which one is the best one.

Decision support for different migration types of applications to the Cloud 29

3 Specification & Design

The other example is about migrating to the Cloud with Type II. In Figure 3.11, all
application components are classified into three layers. We focus only on a three layer
application architecture in this work. These three layers are presentation layer, business
layer and data layer [18]. Among these defined components in this work there is also
a cross layer. All application components which is defined in Figure 3.6 is generalized

Figure 3.11: Details of Type II

in different layer in Figure 3.11. The implementation of Type II is similar as what was
introduced in Migration Type I. But in one layer there may be more than one service
type. In this example, the data layer is chosen to migrate to the Cloud. In this layer
this application contains RDBMS component and raw block level storage. It means the
SQL database service type and block storage service type are ready to migrate.

30 Decision support for different migration types of applications to the Cloud

3 Specification & Design

In Figure 3.12, the performances of both service types are entered. On SQL database
side, user needs a Cloud offering which has 4 virtual cores with 10 GB of local instance
storage and MySQL. On block storage side, user has only one requirement that instance
storage is at least 1000 GB.

Figure 3.12: Candidate Requirements Details of Type II

As a result, in Figure 3.13 there are two set of configurations. The one on the left of this
figure is about the SQL database service type and the other one which is on the right
side is about the block storage service type. The first five configurations are chosen in
order to make a cost comparison.

Decision support for different migration types of applications to the Cloud 31

3 Specification & Design

Figure 3.13: Result of Candidate Search Details of Type II

32 Decision support for different migration types of applications to the Cloud

3 Specification & Design

Figure 3.14: Cost Requirements Details of Type II

The initial value are entered in Figure 3.14. In this example, user only entered two values
for the SQL database, no value for the block storage. It means he cares only about the
cost comparison of SQL database’s configurations. The usage variable has a value of 400
hours and storage variable has a value of 10000 GB. After setting the evaluate variables’
values the cost calculations of each selected configuration are shown in Figure 3.15. It is
a long list whose same configuration has different cost with different data center. User
can click details button to get more information about one configuration’s cost in months
and also the necessary variables’ values of this cost calculation.

Decision support for different migration types of applications to the Cloud 33

3 Specification & Design

Figure 3.15: Results of Type II

34 Decision support for different migration types of applications to the Cloud

3 Specification & Design

The starting UI pages for Type II, Type III and Type IV are shown in Figure 3.11, Figure
3.16 and Figure 3.17. For these three types only the main tables are given. The details

Figure 3.16: Details of Type III

Figure 3.17: Details of Type IV

steps for requirements collection and results calculation are similar as Type I. With the
help of Figure 3.7 and Figure 3.9 the candidate requirements and cost requirements are
determined as these initial conditions for the APIs. In addition with the requirements
from the type table all the requirements collections are finished like what is represented in
use case Figure 3.2. As discussed in Section 2.1, the most fundamental difference among
these 4 types is either a migration between the application components or a migration
of a whole application layer. In other word, whether there is a functionality relationship
between each components is what distinguishes each migration type. Migration Type

Decision support for different migration types of applications to the Cloud 35

3 Specification & Design

III is a specific classification of Type I. Both of them collect application descriptions
from different components. In Figure 3.6 and Figure 3.16, it can be seen that some
application components are defined. There are several components for each service
type. These definitions are collected and summarized from the Cloud services providers.
Migration Type III is a complete migration type of Type I. But there is only one offering
can be chosen to complete Migration Type III that is VMs offering.

Type IV is a special classification of Type II. They all collect requirements from different
layer. In this work as mentioned above, an application is structured as a three-layered
application. The components between each layer are collected in cross-layer. In Type
IV, it can choose any offering which user wants except the VMs offering, because it
is already included in Type III. It should be careful that Type IV is also a complete
migration type. It means with Type III and Type IV application can be migrated to
the Cloud completely. Actually, in today’s market, there is not so many applications
which are migrates with Type IV, because using this migration type there are very
higher risks and much more troubles than other particular migration types. Generally
speaking, people prefer to choose Type III rather than Type IV, when they have to
consider a complete migration situation. Type III is the most frequent choice. It is easy
to understand and operate with the application. In Appendix A.1 there is only a little
size use case of Cloud migration, but Type III has a large proportion. Compare with
Type IV, only one use case is given.

3.6 Summary

In this chapter, a concrete structure of this work is explained. From the available
information, a set of requirements are identified as a direction to build this new system.
The specification is abstracted from these requirements and illustrated as a Use Case
diagram. According to these foundations, we choose to use some web services to complete
the data handler part of the new system instead of the previous functions in MDSS,
because it is easy to re-use in future works. As a basic support part a database named
Cloud providers knowledge base is built which is expanded from the database of MDSS.
This new database includes all the available costs of one offering and a more refined
service types. It contains as many data centers of each provider as possible in order to
help user to have a better knowledge of each offering. Actually, all these preparations
are done as the foundation for a decision support system. The further system completes
the migration tasks completely. It helps user from the migration type on until the costs
of each selected candidate offerings are calculated. All of this searching and calculating
are based on those web APIs envisioned in the previous step.

36 Decision support for different migration types of applications to the Cloud

4 Implementation

In this chapter, the implantations of the system designed in the previous section is pre-
sented. Two systems are actually built in this work. One is called Nefolog, it composed
by database and a set of web restful services. The other is called MiDSuS, it is the
decision support system which realized the tasks of migration decision. MiDSuS uses
the RESTful APIs which are offered by Nefolog to implement a web application.

4.1 Cloud Provider Knowledge Base of Nefolog System

As in MDSS, the Cloud Provider Knowledge Base was implemented as a relational
database on the basis of the Entity-Relation diagram shown in Figure 3.5.

However, in MDSS, Microsoft SQL Server was used, a non-open source solution with
strict licensing requirements. In order to get more scalability and save development and
licensing costs, it decided to realize the database with an open source software solution.
The PostgreSQL RDBMS1 solution was chosen for this purpose.

PostgreSQL is released under the PostgreSQL license and is free. It is developed by the
PostgreSQL Global Development Group. This database system is very similar to the
other database systems because it implements data queries by using SQL language, too.
These data are linked through the foreign key together and exist as a series of tables.
The PostgreSQL main advantage relative to other competitors is its programmability.

Figure 4.1 presents the data model of the new system. This database consists of 16
entities. In the provider entity, the numbers of providers is increased from 2 to 6.
Except from Windows Azure and Google, it also includes Amazon Web Services, HP
Cloud, Rackspace and Flexiscale. So the number of offerings is increased from 18 to
51 and these offerings contain 520 configurations with 472 performances. It’s almost 4
times as large as before. The 5 previously available service types are separated into 12
types. A comparison of the two service types tables is shown in Table 4.1. This more
fine-granular classification for the service type allows users to find an appropriate Cloud
service much more directly and quickly.

For the identification of matching offerings, the general idea is similar to MDSS. Through
the performancemapping entity the user knows which performance he should submit if
the service type is already chosen. The performancemapping entity is a collection of
the performances which are not null and separated by the service types. It means the
system can compare each configuration according to the performances between users
require and the provider provides.

1http://www.postgresql.org/

37

http://www.postgresql.org/

4 Implementation

Figure 4.1: Data model

38 Decision support for different migration types of applications to the Cloud

4 Implementation

Table 4.1: Overview of Service Types between MDSS and new System

Service Types from MDSS New Service Types

Application
Application

Web Site

Data -

Storage

SQL Database

NoSQL Database

Block Storage

Object Storage

Archival Storage

Caching

Infrastructure Infrastructure

Software -

- Monitoring

- Network

- DNS

On the cost calculator side, different parameters (location, zone or amount of usage)
can lead to a number of different costs for the same factors (upfront, data transfer or
coefficient) which was separated from the final cost. There are 15 geographical areas
included and they belong to 7 zones. The 3 factors are seen as 3 coefficients of the
final cost. Users need to submit the usage time and the GB of data transfer in order to
achieve the cost calculation. The final cost table has a total of 21856 combinations with
3686 upfront costs, 185 costs of data transfer and 4733 prices of configurations. There is
also a problem which must be advertent before the programming of web services starts.
Usually it is possible that there are more than one parameter for one cost calculator
formula. Some formulas are separated by different usage amount. It means that the
parameter which is decided the formula should be indicated and set in the first position
in order to make the formula filter much easier. The special provider Flexiscale has 18
configurations and they are priced on units. It means the system supplies the cost of
this provider’s service through the amount of units. There are 11 prices of buying units.
It has a one-to-one relationship with the Configuration entity.

4.2 Services of Nefolog System Implementation

The new system is a restful web services system and is named Nefolog. An open-source
software Java EE has been chosen to build it instead of Microsoft Visual Studio 2010.
Restlet Framework is selected to achieve these RESTful APIs.

Decision support for different migration types of applications to the Cloud 39

4 Implementation

Table 4.2: Overview of Languages and Frameworks to Support Restful Web Services
System

Framework Language

Jersey Java

Restlet Java

Django Python

Spring Java

Konstrukt PHP

Recess PHP

Rails Ruby

There are some many program languages and corresponding frameworks that can build
up a restful web services system. From the Table 4.2 some of the available framework
are presented.

In fact Python with Django is a simple way, because Python is easy to learn even for a
beginner and the framework of a restful web services system on Django is uncomplicated.
But finally Python was not chosen. It is a problem about trend and popularity. A restful
web services in Java is so common in the market and examples are everywhere. It does
not mean that Python is not a trend or not popular, but more people learn Java as a
first language of OOP. In other words, Java is more familiar to people than Python. On
PHP side, there are so many different kinds of PHP versions and for different version the
syntax is different. It is hard for others to continue this work later or even could bring
them some new unnecessary troubles. When program language is determined, the next
problem is about suitable framework. Restlet is probably the first REST framework
and is available in market from 2005. Comparing with Jersey and Spring Restlet is a
lightweight framework and provides some low-level REST support. All of them support
both server side and client side. There is no conclusive evidence that Restlet is better
or Jersey is better. Restlet was therefore chosen for the implementation as a matter of
personal preference.

There are many tutorials in [19] on how to build RESTful API. There are 2 types of
REST resources, collection resource and instance resource. By definition, a collection
resource is always a plural form of a word and means a data collection; an instance
resource is a singular form of a word and means one from of this collection. We can use
a Restlet component as a container of Restlet applications or Servlet engine.

In this work, all the resources identified by URIs and have 2 representations such as XML
data and JSON data. The Restlet applications are developed under separate URI paths.
Servlet engine which is considered as a component to contain all these applications and
provides the server HTTP connector is chosen to finish this work, because we hope to
use this project finally under no base URI path, it means finally a package of this Servlet

40 Decision support for different migration types of applications to the Cloud

4 Implementation

project will be done as a WAR file. With this WAR file this project will run in any other
environments by rebuilding the provider knowledge base from a database backup file.

Each resource is built up by two classes, a ServerResource class and a class which
is used to implement the representations. A Representation instance is used to for
both XML representation and JSON representation. Class DomRepresentation is a
XMLRepresentation class, so our XML representation is bases on a DOM document.
Class JsonRepresentation is a WriteRepresentation class, so this JSON representation
is based on a JSON document. Then an Application class is created. With the help of
a Restlet class a Router object is initialized to create some attach instances and assigns
each attach to a ServerResource class.

Figure 4.2: UML Classes Diagram of Nefolog

In Figure 4.2, the UML classes diagram is given to have an overview of the whole Nefolog

Decision support for different migration types of applications to the Cloud 41

4 Implementation

system. As last paragraph mentioned, each resource is implemented by two classes. The
classes which inherit their specifications from class ServerResource are connected by
Router objects in the class which inherit from class Application. The operations between
database and services are done by the class ConnUtil and called in classes which extend
from ServerResource. In addition, there is a class called ErrorMessage which is used
to warn the user when an error occurred. For example, the configuration id is not in the
offering which user typed in the URI.

Table 4.3: Resource URIs supported by Nefolog

URI XML/JSON Content
(...=http : //localhost : 8080/nefolog)

.../serviceTypes
service types

URI of each service type

.../serviceTypes/{serviceTypeName}s

offerings of the service type

URI of each offering

provider of the offering

URI of the provider

.../providers
providers

URI of each provider

.../providers/{providerName}

offerings of the provider

URI of each offering

service type of the offering

URI of the service type

.../offerings

offerings

URI of each offering

provider of the offering

URI of the provider

service type of the offering

URI of the service type

.../offerings/{offeringName}
configurations

URI of each configuration

.../offerings/{offeringName}
necessary performances

/configuration {configId} default value of each performance

All the supported by the Nefolog system URIs are listed in Table 4.3 and Table 4.4. The
system name nefolog is used as root directory. All these services are hosted on Tomcat
and PostgreSQL. Each URI has a mapping to 2 representations. The contents of these
representations are the same. The outline of each URI’s XML/JSON contents can be
seen in Table 4.3.

42 Decision support for different migration types of applications to the Cloud

4 Implementation

4.3 Decision Support Services of Nefolog System

In Table 4.4 the decision support services are given. The usability of these two services
is according to the query part of the URI. Different result will be showed as XML or
JSON with different query part. The consumer could first get initial information about
how one service is processed and which parameters should be known before running this
service.

Table 4.4: Decision Support Services URIs supported by Nefolog

URI XML/JSON Content
(...=http : //localhost : 8080/nefolog)

.../candidateSearch performances

.../candidateSearch?all

service types

URI of each service type

offerings of the service type

URI of the offering

necessary performances of the offer-
ing

maximum value of the performance
among all the configurations

.../candidateSearch?{query}
configurations

URI of each configuration

.../costCalculator variables

.../costCalculator?configid = {id} necessary variables of the configu-
ration

.../costCalculator?{query}

update time of the configuration

initial condition

total cost of each geographical area

upfront cost

total service cost

service cost per month

total data transfer cost

data transfer cost per month

4.3.1 Candidate Search Web Service

As what was discussed in Section 3.4.1 and according to the Algorithm 1 two classes are
created to achieve it, class CandidateParams and class CandidateParamsResource.

Decision support for different migration types of applications to the Cloud 43

4 Implementation

CandidateParams is used to finish the representations part. In this work two represen-
tations are needed. CandidateParamsResource is used to solve such problems which
should connect to the database and interact with URI. CandidateParamsResource class
is a ServerResource class. The method candidateSearch() in Listing 4.2 is a concrete
solution.

First of all, we should have a parameter called inputPerformance map. It contains
all the requirements from consumer. After that, we should have comparison values
which can get from knowledge base. The database SQL query expression is in Listing
4.1. A parameter configIDWithPerformanceList in CandidateParams class is set to
summarize all the necessary data from database in a list according to a configuration id.
This list has to be set in a special sequence. Because of the character of Map class we
can compare these requirements with the help of a sequence of keys list. These keys list
has a name perform. perform is set at the beginning of Listing 4.2. Obviously, it is a
special sequence for indexes of a list.

The comparison process is uncomplicated. We reject all the data which are smaller than
the required values and collect the remaining data as the result of this service.

Listing 4.1: SQL Query Expression for Candidate Search Service

1 String sql="";

2 if(this.inputPerformance_map.get("servicetype")!=null){

3 sql=" and servicetype.type=’"+this.inputPerformance_map.get("

servicetype")+"’";

4 if(this.inputPerformance_map.get("provider")!=null){

5 sql=sql+" and provider.provider=’"+this.inputPerformance_map.get("

provider")+"’";

6 if(this.inputPerformance_map.get("offering")!=null){

7 sql=sql+" and offering.offering=’"+this.inputPerformance_map.get("

offering")+"’";

8 }

9 }

10 else{

11 if(this.inputPerformance_map.get("offering")!=null){

12 sql=sql+" and offering.offering=’"+this.inputPerformance_map.get("

offering")+"’";

13 }

14 }

15 }

16 else{

17 if(this.inputPerformance_map.get("provider")!=null){

18 sql=sql+" and provider.provider=’"+this.inputPerformance_map.get("

provider")+"’";

19 if(this.inputPerformance_map.get("offering")!=null){

20 sql=sql+" and offering.offering=’"+this.inputPerformance_map.get("

offering")+"’";

21 }

22 }

23 else{

24 if(this.inputPerformance_map.get("offering")!=null){

25 sql=sql+" and offering.offering=’"+this.inputPerformance_map.get("

offering")+"’";

26 }

27 }

28 }

44 Decision support for different migration types of applications to the Cloud

4 Implementation

29 sql="select configuration.configid , performance .* , configuration.

configuration ,offering.offering , provider.provider from servicetype ,

offering , performance , configuration , provider where servicetype.

typeid=offering.typeid and offering.providerid=provider.providerid

and offering.offeringid=configuration.offeringid and configuration.

performanceid=performance.performanceid"+sql;

Listing 4.2: Candidate Search

1 public Map <String ,String > candidateSearch () throws SQLException{

2 Map <String ,String > result_map=new HashMap <String ,String >();

3 for(int i=3;i<this.all_query_list.size();i++){

4 result.setPerformance(this.all_query_list.get(i));

5 }

6 Connection conn=ConnUtil.getConn ();

7 conn.setAutoCommit(false);

8 // ****************** Listing 4.1*******************//

9 Statement stmt=null;

10 ResultSet rs=null;

11 stmt=conn.createStatement ();

12 rs=stmt.executeQuery(sql);

13 while(rs.next()){

14 List <String > temp=new LinkedList <String >();

15 String configid=rs.getString (1);

16 if(rs.getString (2)!=null){

17 temp.add(rs.getString (3));

18 temp.add(rs.getString (4));

19 temp.add(rs.getString (5));

20 temp.add(rs.getString (6));

21 temp.add(rs.getString (7));

22 temp.add(rs.getString (8));

23 temp.add(rs.getString (9));

24 temp.add(rs.getString (10));

25 temp.add(rs.getString (11));

26 temp.add(rs.getString (12));

27 temp.add(rs.getString (13));

28 temp.add(rs.getString (14));

29 temp.add(rs.getString (15));

30 temp.add(rs.getString (16));

31 temp.add(rs.getString (17));

32 temp.add(rs.getString (18));

33 }

34 result.setConfigName(configid ,rs.getString (19));

35 result.setOfferingName(configid , rs.getString (20));

36 result.setProviderName(configid ,rs.getString (21));

37 result.setConfigIDWithPerformanceList(configid , temp);

38 }

39 conn.commit ();

40 conn.close ();

41 Set <Entry <String , List <String >>> set_configIDWithPerformanceList=

result.getConfigIDWithPerformanceList ().entrySet ();

42 Iterator <Entry <String , List <String >>> it_configIDWithPerformanceList=

set_configIDWithPerformanceList.iterator ();

43 while(it_configIDWithPerformanceList.hasNext ()){

44 Entry <String , List <String >> entry_configIDWithPerformanceList=

it_configIDWithPerformanceList.next();

45 List <String > performanceList=new LinkedList <String >();

46 performanceList=entry_configIDWithPerformanceList.getValue ();

Decision support for different migration types of applications to the Cloud 45

4 Implementation

47 Iterator <String > it_list=performanceList.iterator ();

48 Iterator <String > it_perform=result.getPerformance ().iterator ();

49 while(it_list.hasNext () && it_perform.hasNext ()){

50 String text_list=it_list.next();//value of one parameter

51 String text_perform=it_perform.next();// the parameter

52 if(this.inputPerformance_map.get(text_perform)!=null){

53 if(text_perform.equals("os") || text_perform.equals("io") ||

text_perform.equals("licence")){

54 if(text_list !=null){

55 if(text_perform.equals("io")){//there are 4 values of io

performance , low , moderate , high and very high.

56 if(this.inputPerformance_map.get(text_perform).equals("very

high")){

57 if(! text_list.equals(this.inputPerformance_map.get(

text_perform))){

58 it_configIDWithPerformanceList.remove ();

59 break;

60 }

61 }else if(this.inputPerformance_map.get(text_perform).equals

("high")){

62 if(text_list.equals("low") || text_list.equals("moderate"

)){

63 it_configIDWithPerformanceList.remove ();

64 break;

65 }

66 }else if(this.inputPerformance_map.get(text_perform).equals

("moderate")){

67 if(text_list.equals("low")){

68 it_configIDWithPerformanceList.remove ();

69 break;

70 }

71 }

72 }else if(! text_list.equals(this.inputPerformance_map.get(

text_perform))){

73 it_configIDWithPerformanceList.remove ();

74 break;

75 }

76 }

77 }

78 else if(text_list !=null){

79 if(Double.valueOf(text_list)<Double.valueOf(this.

inputPerformance_map.get(text_perform))){

80 it_configIDWithPerformanceList.remove ();

81 break;

82 }

83 }

84 }

85 }

86 }

87 Iterator <String > it=result.getConfigIDWithPerformanceList ().keySet ().

iterator ();

88 while(it.hasNext ()){

89 String id=it.next();

90 result_map.put(id,result.getConfigName ().get(id));

91 }

92 return result_map;

93 }

46 Decision support for different migration types of applications to the Cloud

4 Implementation

4.3.2 Cost Calculator Web Service

The cost calculator service works with the help of configuration id. Classes CostResource
and Cost are created to realize this cost calculation task.

After doing the SQL database query search, some necessary data are obtained. As what
was discussed in Section 3.4.2, the amount range is not considered as a restriction. The
one restriction is a configuration id and the other restriction is a geographical area id, if
consumer requires the data-center.

Before starting to calculate, the initial values of all the necessary variables are given. If
not, some default values should be complemented as a part of initial conditions. The
default value of ”Hour” is 500; the default value of ”month” is 10; the other default
values are 5000, e.g. ”GB”, ”GBExternalNetworkEgress” etc. These default values are
not depending on each configuration, because a comparison should be made in the same
initial condition, otherwise the comparison between each cost result makes no sense. The
concrete process can be seen in Listing 4.3. All information about the initial variables
is inserted in a Map instance called varsList additional. Its key is implemented by a
list which contains the value of this variable and a Boolean parameter. This Boolean
parameter represents whether this value is from consumer or from the system. Although
the consumer does not know the default value for each variable, with the help of this
Boolean parameter all the initial conditions will be shown at the returned data. In that
case, the consumer will know clearly how the result can be calculated.

Listing 4.3: Default initial Values

1 Iterator <String > i_var_list=this.varsList.iterator ();

2 while(i_var_list.hasNext ()){

3 String insert_string=i_var_list.next();

4 List <String > insert_list=new LinkedList <String >();

5 if(this.query_vars.get(insert_string)==null){

6 if(insert_string.equals("Hour")){

7 this.query_vars.put(insert_string , "500");

8 insert_list.add("500");

9 }

10 else if(insert_string.equals("Month")){

11 this.month =10;

12 this.query_vars.put(insert_string , "10");

13 insert_list.add("10");

14 }

15 else{

16 this.query_vars.put(insert_string , "5000");

17 insert_list.add("5000");

18 }

19 insert_list.add("false");

20 }

21 else{

22 insert_list.add(this.query_vars.get(insert_string));

23 insert_list.add("true");

24 }

25 this.varsList_additional.put(insert_string , insert_list);

26 }

Decision support for different migration types of applications to the Cloud 47

4 Implementation

There are two Boolean parameters, IsAmazon and IsF lexiscale. They are used to
divide this method into 3 directions. One is that the provider is AWS; another one
is that the provider is Flexiscale and the last one is that the provider is not AWS or
Flexiscale. For each direction, the program idea is the same. One direction will also split
into 2 branches. They are static unit-price and dynamic unit-price. For the dynamic
unit-price, how to identify a cost formula with different usage amount range is very
important. One unit-price situation can also be separated into 2 rates, static rate and
dynamic rate. A Boolean parameter doMonthsCost is used to implement this partition
of rate. For the dynamic rate, how to calculate the change rate for each month and each
variable is very complicated and should be treated carefully. All the possible situations
should be considered. E.g. a variable is changed not from 1th month on but later; there
is a change time overlapping for two variables; a variable is changed with different rate
in different times, etc. A dynamic unit-price situation with a dynamic rate is a very
complicated situation. For each changed value a range check must be done. A for loop
is used to find a new limit range. If the trend of this variable is increased, the loop
will continue in normal sequence. If the trend is decreased, this loop will continue in
reverse order. The following parameters are created for this situation. First one is a
HashMap instance pattern map. It is used to map each variable as key to its values
for each month in a list varvalue month as value. Second one is coststring list. Its use
is to collect cost formulas for each month. The last one is data dataid. It contains all
the data transfer id for each month. The implementation of this situation is in Listing
4.4.

Listing 4.4: Dynamic Rate Situation

1 if(Integer.valueOf(e_list.get (0).get (0))!=1){

2 for(int index =1;index <Integer.valueOf(e_list.get (0).get (0));index ++){

3 varvalue_month.add(temp_cost);

4 coststring_list.add(costString);

5 data_dataid.add(data_ids);

6 }

7 }

8 else{

9 varvalue_month.add(temp_cost);

10 coststring_list.add(costString);

11 data_dataid.add(data_ids);

12 step =1;

13 }

14 for(int index=Integer.valueOf(e_list.get (0).get (0))+step;index <= Integer.

valueOf(e_list.get (0).get (1));index ++){

15 double rate=Double.valueOf(e_list.get (0).get (2));

16 temp_cost=temp_cost *(1+(rate /100));

17 if(e_pattern.getKey ().equals("Hour")){

18 if(temp_cost >730){

19 temp_cost =730;

20 }

21 }

22 if(e_pattern.getKey ().equals(compare_var)){

23 if(!(temp_cost <=max && temp_cost >=min)){

24 if(rate >=0){

25 for(int start=varsList_index;start <varsList.size();start ++){

26 min=Double.valueOf(coeff_map.get(String.valueOf(varsList.get(

start))).get(4));

27 max=Double.valueOf(coeff_map.get(String.valueOf(varsList.get(

48 Decision support for different migration types of applications to the Cloud

4 Implementation

start))).get(5));

28 if(temp_cost <=max && temp_cost >=min){

29 coefficientid=varsList.get(start);

30 data_ids=this.coeff_datatransferList.get(coefficientid);

31 costString=coeff_map.get(String.valueOf(varsList.get(start)))

.get(0);

32 varsList_index=start;

33 break;

34 }

35 }

36 }else{

37 for(int start=varsList_index;start >=0; start --){

38 min=Double.valueOf(coeff_map.get(String.valueOf(varsList.get(

start))).get(4));

39 max=Double.valueOf(coeff_map.get(String.valueOf(varsList.get(

start))).get(5));

40 if(temp_cost <=max && temp_cost >=min){

41 coefficientid=varsList.get(start);

42 data_ids=this.coeff_datatransferList.get(coefficientid);

43 costString=coeff_map.get(String.valueOf(varsList.get(start)))

.get(0);

44 varsList_index=start;

45 break;

46 }

47 }

48 }

49 }

50 }

51 varvalue_month.add(temp_cost);

52 coststring_list.add(costString);

53 data_dataid.add(data_ids);

54 }

55 for(int i=1;i<e_list.size();i++){

56 if(Integer.valueOf(e_list.get(i).get (0))-Integer.valueOf(e_list.get(i

-1).get(1))!=1){

57 for(int index=Integer.valueOf(e_list.get(i-1).get (1))+1;index <

Integer.valueOf(e_list.get(i).get (0));index ++){

58 varvalue_month.add(temp_cost);

59 coststring_list.add(costString);

60 data_dataid.add(data_ids);

61 }

62 for(int index=Integer.valueOf(e_list.get(i).get (0));index <=

Integer.valueOf(e_list.get(i).get (1));index ++){

63 double rate=Double.valueOf(e_list.get(i).get (2));

64 temp_cost=temp_cost *(1+(rate /100));

65 if(e_pattern.getKey ().equals("Hour")){

66 if(temp_cost >730){

67 temp_cost =730;

68 }

69 }

70 if(e_pattern.getKey ().equals(compare_var)){

71 if(!(temp_cost <=max && temp_cost >=min)){

72 if(rate >=0){

73 for(int start=varsList_index;start <varsList.size();start ++){

74 min=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (4));

75 max=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (5));

Decision support for different migration types of applications to the Cloud 49

4 Implementation

76 if(temp_cost <=max && temp_cost >=min){

77 coefficientid=varsList.get(start);

78 data_ids=this.coeff_datatransferList.get(coefficientid);

79 costString=coeff_map.get(String.valueOf(varsList.get(

start))).get(0);

80 varsList_index=start;

81 break;

82 }

83 }

84 }else{

85 for(int start=varsList_index;start >=0; start --){

86 min=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (4));

87 max=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (5));

88 if(temp_cost <=max && temp_cost >=min){

89 coefficientid=varsList.get(start);

90 data_ids=this.coeff_datatransferList.get(coefficientid);

91 costString=coeff_map.get(String.valueOf(varsList.get(

start))).get(0);

92 varsList_index=start;

93 break;

94 }

95 }

96 }

97 }

98 }

99 varvalue_month.add(temp_cost);

100 coststring_list.add(costString);

101 data_dataid.add(data_ids);

102 }

103 }

104 else{

105 for(int index=Integer.valueOf(e_list.get(i).get (0));index <=

Integer.valueOf(e_list.get(i).get (1));index ++){

106 double rate=Double.valueOf(e_list.get(i).get (2));

107 temp_cost=temp_cost *(1+(rate /100));

108 if(e_pattern.getKey ().equals("Hour")){

109 if(temp_cost >730){

110 temp_cost =730;

111 }

112 }

113 if(e_pattern.getKey ().equals(compare_var)){

114 if(!(temp_cost <=max && temp_cost >=min)){

115 if(rate >=0){

116 for(int start=varsList_index;start <varsList.size();start ++){

117 min=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (4));

118 max=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (5));

119 if(temp_cost <=max && temp_cost >=min){

120 coefficientid=varsList.get(start);

121 data_ids=this.coeff_datatransferList.get(coefficientid);

122 costString=coeff_map.get(String.valueOf(varsList.get(

start))).get(0);

123 varsList_index=start;

124 break;

125 }

50 Decision support for different migration types of applications to the Cloud

4 Implementation

126 }

127 }else{

128 for(int start=varsList_index;start >=0; start --){

129 min=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (4));

130 max=Double.valueOf(coeff_map.get(String.valueOf(varsList.

get(start))).get (5));

131 if(temp_cost <=max && temp_cost >=min){

132 coefficientid=varsList.get(start);

133 data_ids=this.coeff_datatransferList.get(coefficientid);

134 costString=coeff_map.get(String.valueOf(varsList.get(

start))).get(0);

135 varsList_index=start;

136 break;

137 }

138 }

139 }

140 }

141 }

142 varvalue_month.add(temp_cost);

143 coststring_list.add(costString);

144 data_dataid.add(data_ids);

145 }

146 }

147 }

148 if(Integer.valueOf(e_list.get(e_list.size() -1).get (1))<month){

149 for(int index=Integer.valueOf(e_list.get(e_list.size() -1).get (1))+1;

index <=month;index ++){

150 varvalue_month.add(temp_cost);

151 coststring_list.add(costString);

152 data_dataid.add(data_ids);

153 }

154 }

4.4 Decision Support System MiDSuS

This decision support system named MiDSuS is built up by a web application interface
with RESTful APIs which were already done in Nefolog system. The web application
interface supports a friendly interaction between users and system.

This frontend interface is developed in JSP environment and used JS, CSS, JAVA and
HTML together. The main page contains 5 subpages, one introduction subpage and
4 migration types’ projects subpages. In each Migration Type, there are 4 inner sub-
pagers to achieve actually 4 steps to find the final offerings. These 4 steps are the first
step collection of candidate offerings’ requirements, the second step search candidate
offerings, the third step collection of cost calculation’s requirements and the last step
calculation of each configuration’s cost.

Decision support for different migration types of applications to the Cloud 51

4 Implementation

As discussed in Section 3.5, the decision process starts from the selection of migration
types. Figure 4.3 and Figure 4.4 show the user interfaces of first two types. In these

Figure 4.3: User Interface of MiDSuS: Type I

Figure 4.4: User Interface of MiDSuS: Type II

two figures it can be seen that either service types or application layers are divided by
some application components.

52 Decision support for different migration types of applications to the Cloud

4 Implementation

Figure 4.5: Subdivision of MiDSuS

Figure 4.5 explains the mappings between application components and service types,
application components and application layer. In this figure, one application is divided
into 3 layers. In each layer, there is at least one mapped service type. Besides these 3
layers, there is also a cross layer. This layer contains the service types which support
networking between layers and monitoring of components across layers. In each service
type, at least one application component is defined. It helps users more easily to find
the mapping between their migrated components and service types. Some of these
application components are defined by the Cloud services providers. Some are from the
applications use case in Appendix A.1. All the defined application components in Figure
4.5 are listed with their provenances in Table 4.5. Actually, if the migrated components
or application layers are identified, it means the service types are identified.

Decision support for different migration types of applications to the Cloud 53

4 Implementation

Table 4.5: Provenances of each Application Component in MiDSuS

Application Component Reference

Web Server gumi [20] Holiday Extras [21]

Software Component Logistics & Project Management [8] Astronomic Data
Processing [8] Essex County Council [22]

Application Server Payroll Processing [8] Ice.com [23]

Resizable Compute Capac-
ity

HP Cloud Compute [24]

Big Data Workload ”Big” data processing [25] HP Cloud Compute [24]

Failure Resilient Applica-
tion

AWS EC2 [26]

Testing Application Application testing [25]

RDBMS -

Distributed Database AWS DynamoDB [27]

Caching System -

Raw Block Level Storage HP Cloud Block Storage [28] AWS EBS [29]

Expandable File System HP Cloud Block Storage [28]

Media Data Windows Azure Blob Storage [30]

Backup Data AWS Glacier [31]

Archival Data AWS Glacier [31]

In order to have a better idea about inner 4 steps in each migration type, the selection
process of Type I is chosen to explain as an example. In Figure 4.3 whose tasks are to
select an appropriate migration type and the desired provider, the migrated application
components are resizable compute capacity which belongs to infrastructure service type
and RDBMS which belongs to SQL database service type. At the same time user chooses
AWS provider for RDBMS component.

54 Decision support for different migration types of applications to the Cloud

4 Implementation

After Figure 4.3, system runs to the first inner page which is called the first step of Type
I to collect the user’s requirements of offerings’ performances in Figure 4.6. Following

Figure 4.6: User Interface: First Step of Type I

the selection of previous page, components which are from two service types are ready to
be migrated to the Cloud. In addition, user can use ”Add” button to increase any per-
formances with certain values while use ”Delete” button in the end of each performance
row to decrease the performance in this row. In this example, some non-numerical and
numerical performances for both service types are entered. Then system goes to the
candidate search step.

In Figure 4.7, the candidate offerings with providers are listed and with the help of
”Info” button user can have a complete look of this configuration. In this example, the
first candidate configuration of infrastructure service type has 8 CPU cores with 2.6 GHz
CPU speed and 52 GB of memory, 3540 GB of local storage instance, and 99.95% SLA.
User selects first 5 configurations of each service type to calculate the costs.

Decision support for different migration types of applications to the Cloud 55

4 Implementation

Figure 4.7: User Interface: Second Step of Type I Candidate Search Step

56 Decision support for different migration types of applications to the Cloud

4 Implementation

Figure 4.8: User Interface: Third Step of Type I

In Figure 4.8, system starts to collect the requirements of cost calculation. User can also
use ”Add” button to increase requirement variables with certain values and use ”Delete”
button to decrease one row. This design idea is similar as the first step design. The usage
variables of the tables in Figure 4.8 are generally separated into static rate and dynamic
rate. The infrastructure service type has a usage variable called ”usage pattern”. This
variable means that a variable will be changed during a period time with a certain rate
(this rate cannot be zero). This situation is called dynamic rate. The other service type
SQL database is no ”usage pattern” variable, so it is in static rate which means rate is
equal to zero. In this situation, cost calculator will also calculate each month cost with
invariant rate. It is important to say one more time that these necessary usage variables
which should be valued in the beginning but here no-values from the user have default
values which has already been talked in Section 4.3.2.

After the third step which collects all the necessary information, system comes to the
last step in Figure 4.9 which gives the results of this migrated application. Clicking the
”Details” button user can see the trend of this configuration in each month, the usage
variables in this cost calculation and the features of this offerings. The Figure 4.10 shows
the details of the first offering. User can also use the ”Ranking” drop down list to choose
a parameter to make a ranking. This helps user to have a better look which candidate
offering(s) is the most worthy to invest.

Decision support for different migration types of applications to the Cloud 57

4 Implementation

Figure 4.9: User Interface: Fourth Step of Type I

58 Decision support for different migration types of applications to the Cloud

4 Implementation

Figure 4.10: User Interface: Fourth Step of Type I with Details

4.5 User Guide

This MiDSuS system works according to user’s migrated application, some requirements
of the available Cloud offerings’ performances and some restrictions of usage variables’
values.

4.5.1 Selection of Migration Type

The relationships of each migration type are dispersed in this work, e.g.: definitions
of each type are in Section 2.1; identical and different parts of each two types are
explained in Section 3.5 and also in the section above. Figure 4.5 show a clear division
of an application and with the help of this figure migration types based on application
components are like Figure 4.3 while migration types based on application layers are like
Figure 4.4.

4.5.2 Requirement Collection of Candidate Offerings

The requirements are collected by a set of performance parameters. All the available
parameters are summarized by a drop down list in Figure 4.6. The addition and delete
operations are achieved by button to get a dynamic table. The descriptions and units
of some commonly used parameters are explained in the following:

• CPU Core: number of virtual cores

Decision support for different migration types of applications to the Cloud 59

4 Implementation

• CPU Speed: speed of CPU with GHz

• Memory: size of RAM with GB

• IO: I/O performance with 4 values (very high, high, moderate and low)

• Storage: local disk with GB

• SLA: Service-Level Agreement with a [0, 1] value

• Licence: software licence with 5 values (MySQL, Oracle, SQLServer, SQLWeb and
SQLStandard)

• Platform: 32 or 64 -bit

• OS: operating system with 3 values (Linux, Windows and Enterprise Linux)

When entering the non-numerical performance characteristics (IO, Licence, OS), user
should be aware that the values are case sensitive. About the no-value performance
parameter on both the database side and the user side, it is thought as default that this
performance satisfies the requirement.

4.5.3 Selection of Candidate Offerings

According to the requirements in the above section, all the candidate offerings with
corresponding provider are listed in a table in Figure 4.7. With the ”Info” button user
can see a table with all the information about this offering’s performances. Furthermore,
a set of offerings are selected by the check box to be calculated in next steps. This is
the first filter of candidate offerings.

4.5.4 Collection Requirements of Cost Calculator

The cost calculator uses a cost formula with multiple parameters to calculate the cost.
These parameters should be provided by user in Figure 4.8. If there is no input value,
some default values are set up for all parameters. In Figure 4.8, all the usage variables
are summarized in a drop down list and user can use ”Add” and ”Delete” button to
control the number of variables. The default values are talked in Section 4.3.2. If the
parameter is ”Hour”, the default value is 500 hours per month and the input value should
not be more than 730 hours per month; if the parameter is ”month”, the default value
is 10 months; All of the other parameters have a same default value of 5000. As said in
last section parameter ”usage pattern” is used to set up a dynamic rate situation. The
form of this parameter should be treated carefully. This variable should be valued in
a form like (Hour, start = 2, end = 6, rate = −20), it means the variable ”Hour” will
decreased between the second month and the sixth month with a rate value −20%. User
can add such ”usage pattern” as many times as he wants.

60 Decision support for different migration types of applications to the Cloud

4 Implementation

4.5.5 Checking Results of Cost Calculator and Ranking

Figure 4.9 shows the results page of MiDSuS. It collects results of each offering together
in a table and at the end of each row there is a control button called ”Details” to
see the cost trends in each month, the information about usage variables and a list of
performance characteristics of this offering. User can also use Ranking drop down list
to check a ranking with update date, data center, total cost, upfront cost, service cost
or data transfer cost. With the help of ranking user can know which is the cheapest or
which is the newest. These results will support a better comparison for user to make a
correct decision.

Decision support for different migration types of applications to the Cloud 61

5 Evaluation

In this chapter, a set of tests is used to validate these web services in Nefolog. Especially
for the candidate search service and cost calculator service, the results of them are
compared with the results which are calculated by some other available decision support
systems. Some use cases in Appendix A.1 are migrated to the Cloud with different
migration types in MiDSuS in order to demonstrate that with MiDSuS user can find the
best cost for his migration project.

5.1 Nefolog Validation

In Nefolog system, the two decision support services are candidate search service and
cost calculator service. The available decision support systems among several Cloud
providers with cost calculator are PlanForCloud [9] and Cloudorado [17] which have
already been discussed in Section 2.4.

The candidate search service begins with requirements collection. These requirements
contain all the available features. There are totally 16 features in Cloud provider knowl-
edge base of Nefolog. However, PlanForCloud and Cloudorado do not support as many
features as Nefolog. In PlanForCloud system, only during the selection of server and
database user has chances to enter his requirements to control the search results. In
addition, Cloudorado system supports only IaaS Cloud service search with 4 features.
In order to have a valid comparison between each other, an infrastructure service type
with CPU cores and size of RAM is chosen as an example to migrate to the Cloud.
The provider data bases of both systems have several same providers. After considering
Nefolog system with PlanForCloud and Cloudorado from features of services and the
status of data bases perspectives, a set of requirements is set as following:

• Service Type = Infrastructure

• CPU Core ≥ 8

• RAM ≥ 8GB

• Provider = AWS or Rackspace

The results of each system are listed in Table 5.1. Comparing the results of Nefolog
with PlanForCloud, they present exactly the same search results of provider AWS but
the light, medium and heavy utilization reserved instance of AWS EC2 are separated
by different offering names in Nefolog while these different reserved instance types are
selected in purchase option step in PlanForCloud. In addition, the results of provider
Rackspace are almost the same. Both of them have a Cloud offering called 30GB, but

63

5 Evaluation

Table 5.1: Comparison of Candidate Offerings Search

Provider Nefolog PlanForCloud Cloudorado

Amazon Web
Services

m1.xlarge

m1.xlarge (Standard,
light, medium, heavy)

Standard Extra Large
m1.xlarge light utilization

m1.xlarge medium utilization

m1.xlarge heavy utilization

m2.2xlarge

m2.2xlarge (Standard,
light, medium, heavy)

-
m2.2xlarge light utilization

m2.2xlarge medium utilization

m2.2xlarge heavy utilization

m2.4xlarge

m2.4xlarge (Standard,
light, medium, heavy)

-
m2.4xlarge light utilization

m2.4xlarge medium utilization

m2.4xlarge heavy utilization

m3.xlarge

m3.xlarge (Standard,
light, medium, heavy)

Standard Second
Generation Extra Large

m3.xlarge light utilization

m3.xlarge medium utilization

m3.xlarge heavy utilization

m3.2xlarge

m3.2xlarge (Standard,
light, medium, heavy)

Standard Second
Generation Double Extra
Large

m3.2xlarge light utilization

m3.2xlarge medium utilization

m3.2xlarge heavy utilization

cc1.4xlarge

cc1.4xlarge (Standard,
light, medium, heavy)

Cluster Compute
Quadruple Extra Large

cc1.4xlarge light utilization

cc1.4xlarge medium utilization

cc1.4xlarge heavy utilization

cc2.8xlarge

cc2.8xlarge (Standard,
light, medium, heavy)

-
cc2.8xlarge light utilization

cc2.8xlarge medium utilization

cc2.8xlarge heavy utilization

cg1.4xlarge

cg1.4xlarge (Standard,
light, medium, heavy)

-
cg1.4xlarge light utilization

cg1.4xlarge medium utilization

cg1.4xlarge heavy utilization

cr1.8xlarge

cr1.8xlarge (Standard,
light, medium, heavy)

-
cr1.8xlarge light utilization

cr1.8xlarge medium utilization

cr1.8xlarge heavy utilization

hi1.4xlarge

hi1.4xlarge (Standard,
light, medium, heavy)

-
hi1.4xlarge light utilization

hi1.4xlarge medium utilization

hi1.4xlarge heavy utilization

hs1.8xlarge

hs1.8xlarge (Standard,
light, medium, heavy)

-
hs1.8xlarge light utilization

hs1.8xlarge medium utilization

hs1.8xlarge heavy utilization

Rackspace 30GB (Windows)

30GB (Windows, Linux)
server

30 GB RAM Instance
30GB (Linux)

30GB (Windows+SQL Standard)

30GB (Windows+SQL Web)

30GB (Enterprise Linux)

64 Decision support for different migration types of applications to the Cloud

5 Evaluation

Nefolog includes 5 combinations of different operating systems and licences while Plan-
ForCloud contains only the option of operating systems. Comparing with Cloudorado,
the results of Cloudrado do not cover all the Cloud offerings but only some standard
offerings. Furthermore, the CUP core calculator is different from the other two systems.
As a result of these deficiencies, Cloudorado is not to be considered in the comparison
of Nefolog evaluation.

It can be seen from results of comparison with Nefolog and PlanForCloud that the results
of candidate offerings search service in Nefolog cover all the results of PlanForCloud and
even more. It means this candidate search service supports a sufficient, useful and
practical result.

Table 5.2: Static Rate Test Comparing with PlanForCloud

URI:http : //localhost : 8080/nefolog/costCalculation?configid = 122&Hour = 240&Month = 15

&i/oOperation = 5000&GBStorage = 5000&GBExternalNetworkEgress = 50000

Provider Amazon Web Service

Offering RDS

Configuration Large Medium Utilization Reserved Instance Multi-AZ Deployment

Upfront cost once Service per Month Data transfer per Month

Location Nefolog PlanForCloud Nefolog PlanForCloud Nefolog PlanForCloud

Oregon $2000 $2000 $1052.80 $1052.9 $4800 $4807.08

SaoPaulo $3780 $3780 $1987.84 $1987.98 $11700 $11704.55

N.California $2000 $2000 $1167.68 $1167.79 $4800 $4807.08

Tokyo $2100 $2100 $1278.24 $1278.36 $8330 $8340.12

Singapore $2000 $2000 $1167.68 $1167.79 $7900 $7909.41

Ireland $2000 $2000 $1167.68 $1167.79 $4800 $4807.08

NorthernVirginia $2000 $2000 $1052.80 $1052.9 $4800 $4807.08

Sydney $2000 $2000 $1167.68 $1167.79 $7900 $7909.41

After that, the cost calculator service should also be evaluated too and compared with
PlanForCloud. 3 test cases which were recorded on the end of June 2013 are implemented
in order to cover all the situations of cost calculator. The different situation is cause of
different rates of usage variable, static rate and dynamic rate.

The results in Table 5.2 which is calculated in the static rate situation are listed with the
results of PlanForCloud together. The information in URI means that the configuration
id is equals to 122; the usage hour is 240 hours per month; the I/O operation number
is 5000; the storage size is 5000GB; the data transfer out from this offering is 50000
GB per month; the total usage time is 15 months. From the database, it can be known
that this offering is a relational database service which is provided by AWS and it is
a large medium utilization reserved instance multi-AZ deployment. This offering has 8

Decision support for different migration types of applications to the Cloud 65

5 Evaluation

different locations of data center. Because of the static rate the cost of each month stays
the same, so only the upfront cost, service cost and data transfer cost are essential to
be compared with different locations. Comparing with upfront cost, both of them have
the exactly same result. Comparing with service cost, the maximum difference is $0.14
in SaoPaulo among different locations and the ratio of this difference is about 0.007%.
Comparing with data transfer cost, the maximum different is $10.12 in Tokyo and the
ratio is about 0.12%. Generally speaking, the difference between two systems is tiny
and not over 0.2%. This difference maybe occurs during the identification of different
usage amount ranges. To describe this difference clearly, for example in data transfer
cost calculation, the cost in Nefolog is a little smaller than in PlanForCloud. It is known
from the provider that the data transfer out from RDS offering is free in the first 1 GB.
After that, it should be charged. Maybe PlanForCloud does not remove this free part.
Therefore PlanForCloud has a little higher price than Nefolog.

Table 5.3: Dynamic Rate Test 1 Comparing with PlanForCloud

URI:http : //localhost : 8080/nefolog/costCalculation?configid = 467

&GB = 5000&Month = 5&usage pattern = (GB, start = 1, end = 12, rate = 20),

(GBExternalNetworkEgress, start = 1, end = 12, rate = −10)

Provider rackspace

Offering Cloud Files

Configuration Cloud Files

Location:
Upfront cost once Service per Month Data transfer per Month

worldwide Nefolog PlanForCloud Nefolog PlanForCloud Nefolog PlanForCloud

1th Month $0 $0 $460.00 - $600.00 -

2th Month - - $572.5 $572.74 $540.0 $540.0

3th Month - - $713.13 $713.41 $486.0 $486.0

4th Month - - $888.91 $889.18 $437.4 $437.4

5th Month - - $1108.63 $1108.96 $393.66 $393.72

6th Month - - $1383.29 $1383.55 $354.29 $354.36

7th Month - - $1726.61 $1726.90 $318.86 $318.96

8th Month - - $2155.77 $2156.02 $286.98 $287.048

9th Month - - $2692.21 $2692.51 $258.28 $258.36

10th Month - - $3362.76 $3363.01 $232.45 $232.56

11th Month - - $4200.95 $4201.27 $209.21 $209.28

12th Month - - $5207.65 $5213.92 $188.29 $188.40

In the dynamic rate situation, 2 test cases are implemented to make sure that Nefolog
system has also valid results in other providers excepted AWS. Table 5.3 shows the results
of provider Rackspace while Table 5.4 shows the results of provider Hp Cloud. The usage
patterns in PlanForCloud are fixed. It means that user can choose only the given usage

66 Decision support for different migration types of applications to the Cloud

5 Evaluation

patterns with special variables. Because of this special rule, the usage patterns of the fist
test case in Table 5.3 contains the trends of GB and GBExternalNetworkEgress. GB is
increased by 20% from the first month to 12th month and GBExternalNetworkEgress is
decreased by 10% from the first month to 12th month. The location of Cloud Files’ data
center is worldwide. The comparisons between two systems are listed by each month.
Although the requirement month is 5 months but the total month in usage pattern is 12
months, the final calculated month chooses the longer one. The comparison of upfront
cost is similar and the result is that there is no upfront cost of the Cloud Files. The
results of service cost are almost the same. The biggest difference is $6.27 in the 12th
month and the ratio is about 0.12%. The difference of comparison results of data transfer
cost is relatively small. The maximum one is $0.11 in the 9th month and also in the 12th
month and the ratio is about 0.058%. Table 5.4 is implemented with the same method
like what did in the first test case. This offering called Object Storage is provided by
Hp Cloud and also has no upfront cost with a worldwide data center location. The
maximum difference of service cost is $0.08 in the 3th month and the 4th month with a
ratio of 0.015%. The results of data transfer cost are exactly the same.

Table 5.4: Dynamic Rate Test 2 Comparing with PlanForCloud

URI:http : //localhost : 8080/nefolog/costCalculation?configid = 444&GBStorage = 5000

&Month = 5&usage pattern = (GBStorage, start = 1, end = 12, rate = 10)

Provider Hp Cloud

Offering Object Storage

Configuration Object Storage

Location:
Upfront cost once Service per Month Data transfer per Month

worldwide Nefolog PlanForCloud Nefolog PlanForCloud Nefolog PlanForCloud

1th Month $0 $0 $450.01 - $599.88 -

2th Month - - $495.01 $495.00 $599.88 $599.88

3th Month - - $544.51 $544.59 $599.88 $599.88

4th Month - - $598.96 $599.04 $599.88 $599.88

5th Month - - $658.85 $658.89 $599.88 $599.88

6th Month - - $724.73 $724.77 $599.88 $599.88

7th Month - - $797.21 $797.22 $599.88 $599.88

8th Month - - $876.93 $876.96 $599.88 $599.88

9th Month - - $964.62 $964.62 $599.88 $599.88

10th Month - - $1061.08 $1061.10 $599.88 $599.88

11th Month - - $1167.19 $1167.21 $599.88 $599.88

12th Month - - $1283.91 $1283.94 $599.88 $599.88

It can be seen from the results that the maximum ratio of difference between Nefolog
and PlanForCloud is smaller than 1%. It means that these two systems have an almost

Decision support for different migration types of applications to the Cloud 67

5 Evaluation

similar cost result. Although there could also be some deviations between the cost result
which is calculated by the provider itself and the cost results from these two systems,
the results of Nefolog can be thought as the closest results as the exact ones.

5.2 MiDSuS Evaluation

The MiDSuS evaluation is realized by estimating the cost of re-migrating an application
in Appendix A.1 with different migration types in order to demonstrate that with the
help of MiDSuS user can find the best cost of his migration project.

The application payroll processing which has been migrated to the Cloud with Migration
Type III already is chosen as a test case here. This application contains one application
component and one DBMS and all of them are migrated to the Cloud with 5 VMs. In this
test case, Migration Type IV is chosen for this application instead of Type III. The data
layer and business layer are migrated to the Cloud. Specifically, the application server
and RDBMS are selected to migrate to the Cloud with any of the available providers.

Table 5.5: Same Application with different Migration Types

Migration
Types

Type III Type IV

Requirements

For application: CPU cores = 8, RAM = 8 GB, I/O =
high, OS = Windows, App = 1000; Hour = 240 hours,
Storage = 1000 GB, Month = 1
For DBMS: CPU cores = 8, RAM = 8 GB, I/O = high,
Storage = 1000 GB, OS = Windows; Hour = 240 hours,
Storage = 1000 GB, Month = 1

Cloud
Offerings

VM for
application
server

VM for
DBMS

application
server

RDBMS

Total Cost
Range

$768 - $14900 $1196.8 - $7658.17

Cost Range $153.6 - $2980.0 $153.6 - $2980.0 $230.4 - $1620.6 $275.2 - $1175.77

Minimum
Cost

xlarge by
Windows
Azure

xlarge by
Windows
Azure

xlarge by
Windows
Azure

xlarge
on-demand
standard
deployment
by AWS

Maximum
Cost

Server8-8 by
Flexiscale

Server8-8 by
Flexiscale

xlarge search
instance by
AWS

sql Database
by Windows
Azure

The results of these two migrations are listed in Table 5.5. There are more than 40
candidate offerings for each migration type. Only the minimum and maximum costs are

68 Decision support for different migration types of applications to the Cloud

5 Evaluation

listed in this table with their offering’s names and providers. Because the details of this
payroll processing migration are not known, a set of requirements is identified casually
but must be kept the same all the time during both of these migration types. The
requirements of both candidate offerings search and cost calculator are listed in Table
5.5. Comparing with Type III and Type IV, it can be seen that with the same budget
user can choose either VMs services or corresponding Cloud services. Even he chooses
a corresponding Cloud offering, the result could not be over budget. In addition, user
can also know the total minimum cost of his whole project between different migration
types from the table. But it should be not forgotten that with different migration types
the risks and any other problems during each migration process are not considered in
MiDSuS. All the results are presented from the effective cost’s respective that with the
help of MiDSuS user can find the most effective cost and minimum cost of the whole
project among different offerings combinations easily and directly. Furthermore, if user
has a favorite provider or location of data center, MiDSuS is more helpful.

Decision support for different migration types of applications to the Cloud 69

6 Conclusions

6.1 Summary

Some small or medium size enterprises who may have to face a shortage of funds or weak
of against the loss during investment focus on Cloud services to reduce the cost and risks.
In addition, more and more providers support various Cloud services in order to satisfy
more customers’ requirements. A migration decision support system which focuses on
finding a trade-off between cost evaluation and performances prediction among these
different Cloud services is very necessary to help user to find an efficient Cloud service.

First of all, some related works and researches are discussed as foundation in order to
get a general understanding of the state of decision support for Cloud migration. There
are many factors from both user side and provider side that can influence the final
decision. It is clear to see that the decision process consists of many decisions according
to comparisons between user’s requirements and offerings’ information. All these related
decision support systems which were mentioned in this work focus on the performances
comparisons and effective costs comparisons.

More specifically, this work is based on a foundational system called MDSS which
achieved the match offerings selection and cost calculations with an interaction between
user and system. The system discussed in this work is aimed to implement these func-
tionalities as web APIs which are exposed as web services. These decision support
services which are collected in a system called Nefolog achieve tasks such as candidate
offerings search and total cost calculations. Nefolog works in conjunction with a Cloud
provider knowledge base. This Cloud provider knowledge base contains more providers
and more service types than MDSS. The functions which were already done in MDSS
are re-engineered as services in Nefolog. As a result, the offerings matcher function is
transplanted to Nefolog with a little change while the costs calculator function is com-
pletely rewritten. Each service in Nefolog has two representations, XML and JSON data
format with related information.

Furthermore, these APIs can be used in a migration decision support system to achieve
the data handler part which was implemented in MDSS. In this work, a migration
decision support system called MiDSuS is implemented to support the decision making
process. The frontend of MiDSuS is a friendly user interface which is built on JSP with
Servlet. The migration project starts from migration type’ selection. The migrated
application is distributed by different migration types into application components or
application layers. After that, the system collects the user’s requirements of candidate
offerings’ search and a web service is used to achieve this search and lists all the candidate
offerings with providers and performance information back to user. Next, the system
summarized the user’s requirements of usage amount of certain variables. With the

71

6 Conclusions

help of the cost calculator web service, all the results which contains update dates,
geographical areas of data center, total costs, upfront costs, service costs, data transfer
costs and trends of costs in each month are calculated and summed for each configuration
option. A user can use a type of ranking to decide which offering(s) is the appropriate
one for him.

To validate the correctness and viability of Nefolog and MiDSuS, the results of Ne-
folog are compared with costs by PlanForCloud under the same input. To evaluate the
MiDSuS, a use case in Appendix A.1 is implemented by different migration types and
comparing with each type to demonstrate that with the help of MiDSuS user can find
the effective cost for his migration project.

In the meantime, there are also some deficiencies and necessary improvements needed
of MiDSuS. All these limitations and improvement suggestions are summarized in the
following section and some of them may be useful and helpful for the future work.

6.2 Future Work

Firstly, the MiDSuS system lacks a dedicated knowledge base management system. It
is known that technology is developing inconceivably fast. In order to meet customers’
needs and survive in the competition, Cloud providers would provide much more fa-
vorable service pricing to get more customers from the other providers. For example,
some providers launch free try events in a short time, if user selects these providers in
that time, the cost will be lower than usually. In this case, the pricings of these Cloud
offerings are changed often. If this decision support system is hoped to get a valid and
valuable result, all data in database must be updated to the latest.

Secondly, there are various Cloud offerings in the market now that cover almost all
service types. In future work, with the growth of database, more and more offerings will
be increased into the database, the service types should be refined to get a more detailed
management. The meticulous classification of services is essential. It supports more
comparability with each offering which belongs to the same service type and provides
more choices to user to select.

Thirdly, this system collects 16 performance characteristics for each offering to support
a comparison with user’s requirements. Actually, there are many other features which
can be thought as a performance in this system. These features may not be abstracted
directly, for example, trust, risk, etc. In addition, some of these features may play
different roles with different users. For example, a user wants to choose a provider and
he cares about what degree of risk the offerings have rather than what degree of trust
reputation this provider is; but another one may be want to choose a good reputation
provider in order to make sure that all his investments and stored data are in a safety
statement. An additional design of this system should be considered that user’s desires
can also influenced the result of the decision and sometimes it may be stronger than
the numerical information comparisons. This design should be built on a lot of data
collections and case studies which focus on finding a way to represent these abstract
features.

72 Decision support for different migration types of applications to the Cloud

A Conclusions

Fourthly, it can be considered that the desired performance characteristics as expressed
by the user as requirements can also be dynamic [5]. It means that the storage capacities
could be increased or decreased in each month. In the candidate offerings’ requirements
collection step of the further system, a requirement called also usage pattern can be
added to expand this requirements collection into a dynamic situation.

Fifthly, MiDSuS system is now searching and calculating without login step. It means
that the search results and calculation results of this user cannot be saved in this system.
These results are refreshed and deleted after the migrated project is finished. It is better
to add a login step in order to help user to compare with all his migrated projects with
customized name and select the best one among them.

Finally, in the cost calculation step, MiDSuS suffers in performance time. It depends
on the number of configurations. The calculation time for each normal configuration is
2 seconds (this configuration has only one data center) to 5 seconds (this configuration
has more than one geographical areas of data center). It means the more configuration
user selects the more slowly system runs. A solution is possible that each selected
configurations can be assigned with one thread. It means that system could calculate
each configuration’s cost parallelly. In MDSS, the trend of cost is shown in a diagram
with spline. It is more clearly than a list in MiDSuS which contains costs of each month.
It can be improved by the further work.

Decision support for different migration types of applications to the Cloud 73

Appendix

A.1 Use Case of Applications on Cloud

Table A.1: Application Migration Use Cases

Service Type

Application U
se

C
a
se

D
o
c
u
m
e
n
ta

ti
o
n

A
p

p
li

ca
ti

on

W
eb

S
it

e

S
Q

L
D

B

N
oS

Q
L

D
B

B
lo

ck
S

to
ra

ge

O
b

je
ct

S
to

ra
ge

A
rc

h
iv

e
S

to
ra

ge

C
ac

h
in

g

In
fr

as
tr

u
ct

u
re

M
on

it
or

in
g

N
et

w
or

k

D
N

S

Payroll Process-
ing

[8] A A A A Y

Logistics &
Project Manage-
ment

[8] Y Y A A A

Central Govern-
ment Services

[8] A Y

Local Govern-
ment Services

[8] Y Y

Astronomic Data
Processing

[8] Y Y Y A

Application test-
ing

[25] Y

Application con-
tingency

[25] Y A

”Big” data pro-
cessing

[25] A Y

Abaca [32] Y

Banro [33] Y Y

75

A Appendix

Table A.1 – continued from previous page

Service Type

Application U
se

C
a
se

D
o
c
u
m
e
n
ta

ti
o
n

A
p

p
li

ca
ti

on

W
eb

S
it

e

S
Q

L
D

B

N
oS

Q
L

D
B

B
lo

ck
S

to
ra

g
e

O
b

je
ct

S
to

ra
ge

A
rc

h
iv

e
S

to
ra

ge

C
a
ch

in
g

In
fr

a
st

ru
ct

u
re

M
o
n

it
or

in
g

N
et

w
or

k

D
N

S

Global Blue [34] Y Y

gumi [20] Y Y Y

HashCube [35] Y Y

Holiday Extras [21] Y

HostedFTP [36] Y Y Y

Hotelogix [37] A Y Y Y

ibay365 [38] Y Y

Ice.com [23] Y Y Y Y

Infostrada Sports
Group

[39] Y Y Y Y

Data Mining [40] Y

Walsh Group [41] Y

Essex County
Council

[22] Y

Kaggle [42] Y Y

Table A.2: Mapping of Application Migration Use Cases to Migration Types

Application Initial Topology Migrated Topology Migration
Type

Payroll Process-
ing

1 Application
& 1 DBMS

1 Application in 4VMs
(concurrent); 1 DBMS
in 1 VM

III

76 Decision support for different migration types of applications to the Cloud

A Appendix

Table A.2 – continued from previous page

Application Initial Topology Migrated Topology Migration
Type

Logistics &
Project Manage-
ment

a combination
of Quickbooks and
spreadsheets

1 client-side applica-
tion; data in GAE data-
store

I

Central Govern-
ment Services

back office systems &
front office systems

1 Cloud infrastructure
built on a private net-
work

I

Local Govern-
ment Services

1800 local governments,
each has its own servers
and IT staff

internal tasks and some
data in the private
Cloud; other data
locally

I

Astronomic Data
Processing

AGIS software &
DBMS

1 DBMS in 1 VM;
AGIS in VMs; Storage
in 5 Cloud-based stor-
age volumes

III

Application test-
ing

VM locally VM in Cloud I/III

Application con-
tingency

main site contingency can be pro-
cessed by cloud infras-
tructure

I

”Big” data pro-
cessing

massive amounts of
data

parallel processing can
be done by the Cloud
servers/services which
based on tools for big
data tasks

I/II

Abaca servers locally Amazon EC2 for com-
puting power to solve
the requesets for highly-
efficient spam filter

I

Banro ERP & workflow sys-
tems & email systems
& data warehouse & re-
porting tools

8 full-time instances
ranging from m1.small
to m2.2xlarge as an
offshore data center
solution; Amazon S3 as
offsite backups

I

Global Blue products system web site and develop-
ment environments are
hosted on Cloud

I

Decision support for different migration types of applications to the Cloud 77

A Appendix

Table A.2 – continued from previous page

Application Initial Topology Migrated Topology Migration
Type

gumi Web server & database
server

all services on AWS; lo-
cal static images store

I/II

HashCube Website’s traffic on
Amazon EC2; customer
and user information
on Amazon S3

I

Holiday Extras 10 quad core blade
web servers & 2 1-TB
MySQL databases on
the back-end

12 web servers; 1 Ama-
zon RDS; a small num-
ber of memcached in-
stances; 10 ELBs

I

HostedFTP web-based file sharing
system in several co-
location facilities

customer files on S3;
website and database on
EC2; codebase on EBS

IV

Hotelogix 2 Amazon EC2 in-
stances with Amazon
CloudWatch; 1 EBS;
local instance store

I/II

ibay365 database, web services
and cache on EC2;
users’ products and
images on S3; Elastic
Load Balancing

I/II

Ice.com 1 e-commerce system
including 1 new web
store application & 1
ERP system & 1 CMS
& 1 BI platform

e-commerce site & mo-
bile site & ERP &
CMS & BI systems &
social loyalty program
on EC2, backed up on
EBS; static HTML &
images & backups on
S3; CloudWatch to de-
liver information on the
company’s servers and
data

I/II

78 Decision support for different migration types of applications to the Cloud

A Appendix

Table A.2 – continued from previous page

Application Initial Topology Migrated Topology Migration
Type

Infostrada Sports
Group

2 EC2 for admin ma-
chines & web nodes;
EBS for local data stor-
age; S3 for static con-
tent; CloudWatch for
delivering

I/II

Data Mining substantial hardware VM III

Walsh Group 100 physical servers in
Chicago data center &
24 in regional offices &
200 at job sites

150 VMs across 10 data
center; server count
from 324 to 262

III

Essex County
Council

application on Mi-
crosoft Excel spread-
sheet software

application on SQL
Database

I

Kaggle application code on
cloud services; blob
storage

I

Decision support for different migration types of applications to the Cloud 79

Bibliography

[1] V. Andrikopoulos, S. Strauch, and F. Leymann, “Decision support for application
migration to the cloud: Challenges and vision,” in Proceedings of the 3rd Interna-
tional Conference on Cloud Computing and Service Science, CLOSER 2013, 8-10
May 2013, Aachen, Germany, pp. 149–155, SciTePress, 2013.

[2] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and I. Sommerville, “The cloud
adoption toolkit: supporting cloud adoption decisions in the enterprise,” Software:
Practice and Experience, vol. 42, no. 4, pp. 447–465, 2012.

[3] M. Menzel and R. Ranjan, “Cloudgenius: decision support for web server cloud
migration,” in Proceedings of the 21st international conference on World Wide Web,
pp. 979–988, ACM, 2012.

[4] Rackspace, “Cloud servers infrastructure hosting - rackspace cloud servers.” http:

//www.rackspace.com/cloud/servers/, August 2013.

[5] Zhe Song, “A decision support system for application migration to the cloud,” 2013.

[6] SAP, AWS, “Sap and amazon web services.” http://aws.amazon.com/sap/, 2013.

[7] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt applications
for the cloud environment,” Computing, vol. 95, no. 6, pp. 493–535, 2013.

[8] Cloud Computing Use Case Discussion Group, “Cloud computing use
case.” http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_

Whitepaper-4_0.pdf, July 2010.

[9] RightScale, “Free cloud cost calculator from rightscale.” http://www.

planforcloud.com/index.html, 2012.

[10] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud computing synopsis
and recommendations,” NIST special publication, vol. 800, p. 146, 2012.

[11] S. K. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for comparing and
ranking cloud services,” in Utility and Cloud Computing (UCC), 2011 Fourth IEEE
International Conference on, pp. 210–218, IEEE, 2011.

[12] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sir-
vent, J. Guitart, R. M. Badia, K. Djemame, et al., “Optimis: A holistic approach
to cloud service provisioning,” Future Generation Computer Systems, vol. 28, no. 1,
pp. 66–77, 2012.

[13] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Teregowda, “Decision sup-
port tools for cloud migration in the enterprise,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on, pp. 541–548, IEEE, 2011.

81

http://www.rackspace.com/cloud/servers/
http://www.rackspace.com/cloud/servers/
http://aws.amazon.com/sap/
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://www.planforcloud.com/index.html
http://www.planforcloud.com/index.html

A Bibliography

[14] AWS, “Amazon web services simple monthly calculator.” http://calculator.s3.

amazonaws.com/calc5.html, 2013.

[15] Microsoft, “Windows azure pricing calculator — cloud offers — cloud pricing.”
http://www.windowsazure.com/en-us/pricing/calculator/, 2013.

[16] Rackspace Cloud, “Open cloud computing, cloud hosting, cloud storage by
rackspace.” http://www.rackspace.com/calculator/, 2013.

[17] Cloudorado, “Cloud computing price comparison — cloudorado.” http://www.

cloudorado.com/.

[18] M. Fowler, Patterns of enterprise application architecture. Addison-Wesley Long-
man Publishing Co., Inc., 2002.

[19] J. Louvel, T. Templier, and T. Boileau, Restlet in Action: Developing RESTful Web
APIs in Java. Manning, 2012.

[20] AWS, “Gumi case study.” http://aws.amazon.com/solutions/case-studies/

gumi-english/.

[21] AWS, “Holiday extras case study.” http://aws.amazon.com/solutions/

case-studies/holiday-extras/, February 2012.

[22] Essex County Council, “Microsoft case study : Windows azure.” http://www.

microsoft.com/casestudies/Windows-Azure/Essex-County-Council/Schools

-Adopt-Innovative-Cloud-Solution-for-Secure-Access-to-Critical-Data/

710000000675, August 2012.

[23] AWS, “Ice.com case study.” http://aws.amazon.com/solutions/case-studies/

ice/, January 2013.

[24] HP, “Hp cloud compute — hp cloud services.” https://www.hpcloud.com/

products/cloud-compute, 2013.

[25] TechRepublic, “Top cloud use case.” http://www.techrepublic.com/blog/

the-enterprise-cloud/top-cloud-use-cases/, September 2012.

[26] AWS, “Amazon elastic compute cloud (amazon ec2), cloud computing servers.”
http://aws.amazon.com/ec2/, 2013.

[27] AWS, “Amazon dynamodb.” http://aws.amazon.com/dynamodb/, 2013.

[28] HP, “Hp cloud block storage — hp cloud services.” https://www.hpcloud.com/

products/block-storage, 2013.

[29] AWS, “Aws — amazon elastic block store (ebs) - persistent storage.” http://aws.

amazon.com/ebs/, 2013.

[30] Microsoft, “Data management - features.” http://www.windowsazure.com/

en-us/services/data-management/, 2013.

[31] AWS, “Amazon glacier.” http://aws.amazon.com/glacier/, 2013.

[32] AWS, “Abaca case study.” http://aws.amazon.com/solutions/case-studies/

abaca/.

82 Decision support for different migration types of applications to the Cloud

http://calculator.s3.amazonaws.com/calc5.html
http://calculator.s3.amazonaws.com/calc5.html
http://www.windowsazure.com/en-us/pricing/calculator/
http://www.rackspace.com/calculator/
http://www.cloudorado.com/
http://www.cloudorado.com/
http://aws.amazon.com/solutions/case-studies/gumi-english/
http://aws.amazon.com/solutions/case-studies/gumi-english/
http://aws.amazon.com/solutions/case-studies/holiday-extras/
http://aws.amazon.com/solutions/case-studies/holiday-extras/
http://www.microsoft.com/casestudies/Windows-Azure/Essex-County-Council/Schools
http://www.microsoft.com/casestudies/Windows-Azure/Essex-County-Council/Schools
-Adopt-Innovative-Cloud-Solution-for-Secure-Access-to-Critical-Data/710000000675
-Adopt-Innovative-Cloud-Solution-for-Secure-Access-to-Critical-Data/710000000675
http://aws.amazon.com/solutions/case-studies/ice/
http://aws.amazon.com/solutions/case-studies/ice/
https://www.hpcloud.com/products/cloud-compute
https://www.hpcloud.com/products/cloud-compute
http://www.techrepublic.com/blog/the-enterprise-cloud/top-cloud-use-cases/
http://www.techrepublic.com/blog/the-enterprise-cloud/top-cloud-use-cases/
http://aws.amazon.com/ec2/
http://aws.amazon.com/dynamodb/
https://www.hpcloud.com/products/block-storage
https://www.hpcloud.com/products/block-storage
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://www.windowsazure.com/en-us/services/data-management/
http://www.windowsazure.com/en-us/services/data-management/
http://aws.amazon.com/glacier/
http://aws.amazon.com/solutions/case-studies/abaca/
http://aws.amazon.com/solutions/case-studies/abaca/

A Bibliography

[33] AWS, “Banro corporation study.” http://aws.amazon.com/solutions/

case-studies/abaca/, June 2012.

[34] AWS, “Global blue case study.” http://aws.amazon.com/solutions/

case-studies/global-blue/, March 2012.

[35] AWS, “Hashcube case study.” http://aws.amazon.com/solutions/

case-studies/hashcube/, April 2011.

[36] AWS, “Hostedftp case study.” http://aws.amazon.com/solutions/

case-studies/hostedftp/.

[37] AWS, “Hotelogix case study.” http://aws.amazon.com/solutions/

case-studies/hotelogix/, July 2011.

[38] AWS, “ibay365 case study.” http://aws.amazon.com/solutions/case-studies/

ibay365/, March 2012.

[39] AWS, “Infostrada sports study.” http://aws.amazon.com/solutions/

case-studies/infostrada-sports-group/, March 2013.

[40] Cloud Computing Use Case Discussion Group, “Moving to the cloud.” http://

cloudusecases.org/Moving_to_the_Cloud.pdf, February 2011.

[41] Walsh Group, “Microsoft case study : Windows server
2008 r2 datacenter.” http://www.microsoft.com/casestudies/

Windows-Server-2008-R2-Datacenter/Walsh-Group/Construction-Firm

-Builds-On-Demand-IT-Infrastructure-with-Private-Cloud-Computing/

200000000081, February 2012.

[42] Kaggle, “Microsoft case study : Windows azure.” http://www.

microsoft.com/casestudies/Windows-Azure/Kaggle/Company-Creates

-Crowdsourcing-Platform-in-the-Cloud-to-Solve-Complex-Problems/

710000001040, July 2012.

Decision support for different migration types of applications to the Cloud 83

http://aws.amazon.com/solutions/case-studies/abaca/
http://aws.amazon.com/solutions/case-studies/abaca/
http://aws.amazon.com/solutions/case-studies/global-blue/
http://aws.amazon.com/solutions/case-studies/global-blue/
http://aws.amazon.com/solutions/case-studies/hashcube/
http://aws.amazon.com/solutions/case-studies/hashcube/
http://aws.amazon.com/solutions/case-studies/hostedftp/
http://aws.amazon.com/solutions/case-studies/hostedftp/
http://aws.amazon.com/solutions/case-studies/hotelogix/
http://aws.amazon.com/solutions/case-studies/hotelogix/
http://aws.amazon.com/solutions/case-studies/ibay365/
http://aws.amazon.com/solutions/case-studies/ibay365/
http://aws.amazon.com/solutions/case-studies/infostrada-sports-group/
http://aws.amazon.com/solutions/case-studies/infostrada-sports-group/
http://cloudusecases.org/Moving_to_the_Cloud.pdf
http://cloudusecases.org/Moving_to_the_Cloud.pdf
http://www.microsoft.com/casestudies/Windows-Server-2008-R2-Datacenter/Walsh-Group/Construction-Firm
http://www.microsoft.com/casestudies/Windows-Server-2008-R2-Datacenter/Walsh-Group/Construction-Firm
-Builds-On-Demand-IT-Infrastructure-with-Private-Cloud-Computing/200000000081
-Builds-On-Demand-IT-Infrastructure-with-Private-Cloud-Computing/200000000081
http://www.microsoft.com/casestudies/Windows-Azure/Kaggle/Company-Creates
http://www.microsoft.com/casestudies/Windows-Azure/Kaggle/Company-Creates
-Crowdsourcing-Platform-in-the-Cloud-to-Solve-Complex-Problems/710000001040
-Crowdsourcing-Platform-in-the-Cloud-to-Solve-Complex-Problems/710000001040

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Ort, Datum, Unterschift

85

	Introduction
	Motivation
	Problem Definition and Goal
	Outline

	Background
	Fundamentals
	Migration-related Issues and Concerns
	Decision Support Systems for Cloud Migration
	Cloud Services Cost Calculators
	Migration Decision Support System
	Summary

	Specification & Design
	Requirements
	System Specification
	Cloud Provider Knowledge Base
	Decision Support Services
	Candidate Search Service
	Cost Calculator Service

	Decision Support System
	Summary

	Implementation
	Cloud Provider Knowledge Base of Nefolog System
	Services of Nefolog System Implementation
	Decision Support Services of Nefolog System
	Candidate Search Web Service
	Cost Calculator Web Service

	Decision Support System MiDSuS
	User Guide
	Selection of Migration Type
	Requirement Collection of Candidate Offerings
	Selection of Candidate Offerings
	Collection Requirements of Cost Calculator
	Checking Results of Cost Calculator and Ranking

	Evaluation
	Nefolog Validation
	MiDSuS Evaluation

	Conclusions
	Summary
	Future Work

	Appendix
	Use Case of Applications on Cloud

	Bibliography

