Institut far Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral’e 38
70569 Stuttgart
Germany

Diplomarbeit Nr. 3493

Ein automatisches Verfahren zur Erzeugung
von lauffahigen TOSCA Service-Templates,
basierend auf DevOps-Artefakten

Shaojun Zhang
Studiengang: Informatik
Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Johannes Wettinger
begonnen am: 09.07.2013
beendet am: 08.01.2014

CR-Klassifikation: K6: D2.11; D2.13

Kurzfassung

In letzter Zeit wurden eine Reihe von Ansidtzen, Werkzeugen und Communities entwickelt,
um das aktuell viel diskutierte DevOps-Paradigma realisierbar zu machen. Prominente
Beispiele dafiir sind Chef, Puppet oder Juju. All diese Ansidtze verfolgen das Ziel,
wiederverwendbare Artefakte (Skripte und Konfigurationsdefinitionen) zu erstellen, zu
veroffentlichen und miteinander zu kombinieren (Orchestrierung), um damit durch einen
hohen Grad an Automatisierung ein effizientes Deployment und Management von Services
oder Applikationen in einer Cloud-Umgebung zu ermoglichen. Daher werden diese
Werkzeuge hdufig auch mit den Begriffen "Configuration Management Tooling" (Chef,
Puppet, etc.) oder "Service Orchestration Tooling" (Juju, etc.) bezeichnet. Das Hauptproblem
ist hierbei, dass die von den DevOps-Communities erstellten und verdffentlichten Artefakte
nicht portabel sind, weil sie durch proprietire Ansétze implementiert werden und damit von
einer ebenfalls proprietiren Laufzeitumgebung abhéngig sind. Das heil3t, dass diese Artefakte
sich nur mit den Werkzeugen verarbeiten lassen, mit denen sie erstellt wurden. Dadurch
weisen diese Artefakte einen sehr geringen Grad an Portabilitét auf.

Um das oben genannte Problem zu vermeiden, sind Standardisierungsbemiihungen im
Bereich des Cloud Computing von wichtiger Bedeutung. Die "Topology and Orchestration
Specification for Cloud Applications" (TOSCA) stellt einen Standardisierungsansatz dar, um
solche Artefakte auf eine portable Art und Weise zu erstellen, sodass durch deren
Orchestrierung portable Service-Templates entstehen konnen.

Ziel dieser Diplomarbeit ist die Entwicklung eines automatischen Verfahrens, um einsetzbare
TOSCA Service-Templates zu erzeugen, basierend auf existierenden von den hinter Juju und
Chef stehenden DevOps-Communities verdffentlichten Artefakten. Damit konnen diese
Artefakte und die TOSCA Service-Templates, die diese Artefakte verwenden, von jeder
TOSCA-konformen Laufzeitumgebung [65] verarbeitet werden.

Inhaltsverzeichnis

KUTZEASSUNZ. ...ttt ettt e st e st e e st e e sabeeesanee s 3
INhaltSVEIZEICANIS.eiiiiiiiiiiii e 5
T EINICITUNE .« ettt ettt et e et e et e e et e e sabaeesabeeesaneeeas 9
1.1 HINEETZIUNG. ...coiiiiiiiiieee ettt ettt et e s bt e e st e e essareeens 9
1.2 ProblemSTEIIUNG.ccoouviiiiiiiiiee ettt et e e s et e e e 12
1.3 Z1€1 O ATDEIL....coouiiiiiiieeeiiee ettt sttt et et 12
1.4 Struktur der ATDEIL........eeiiiiiiieee e 12
2 GIUNAIAZEN. ...ttt e ettt e e ettt e e s s bbb e e e ssabteeessnabbeeesannneeeas 15
2.0 CRET ettt sttt s 15
2.2 JUJUn ittt ettt e bt e e bt e e s bt e e st e e st e e e e beeesanee s 21
2.3 Topology and Orchestration Specification for Cloud Applications...........cccceevveennnee 28
3 Anforderungen an ein automatisches Verfahren.............ccocooviiiiiniiniiniecee 37
3.1 Abstraktion der Eigenheiten verschiedener DevOps-Ansatze.........c.ccceceeeveeueennnenne. 37
3.2 Grenzen und EInSChrankKungen........oc.ueeiiiiiiiiiiiiieieiiceeeeeeeee e 38
3.3 Modell-Transformation............coueiriiiiiiieeiiieeeeeee ettt e 38
4 Konzepte fiir ein automatisches Verfahren.............ccooiiiiiiiiiiceen 41
4.1 Erzeugung von TOSCA Node-Types aus bestehenden Chef-Artefakten................... 41
4.2 Erzeugung von TOSCA Node-Types aus bestechenden Juju-Artefakten.................... 49
4.3 Erzeugung von TOSCA Relationship-Types aus bestehenden Juju-Artefakten......... 51
4.4 Erzeugung von TOSCA Service-Templates.........oocvveiiviiiieiiniiiiiiiniieeeeiieeeeeieeeenn 56
5 Entwurf und Implementierung............occeeviieriiiiiiiieiieeceeeee et 61
5.1 AnforderungsanalysSe........cccevuieiieiiiiiiinieeee e 61
5.2 ENtWUurt des PrOtOtYPS...ccuviiereiieeiieeiiie ettt ettt et eitee e e e e e 62
5.3 Implementierung des PrOtOtyPS.......c.cooveiiieiiiniiiienieeee e 68
6 EVAUALION.eiiiiiiiiiiiee ettt ettt ettt e 79
6.1 Test der Funktionalitdt des Prototyps.....ccoouuieiiiiiiiiiiiiiieeieiiee e 79
6.2 Validieren VON CSARS......cooiiiiiiiieeeee et 80
7 Zusammenfassung und AUSBIICK.cooiiiiiiiiiii e 83

O A UV ETZEICHIIS ettt e e e e e e e e e e e e e e ae e e e e aeeeeeeaeeeenenans 85

ANNANG Lottt et e et e et e et e e e e e e s te e e et e e e nbeeetbeeetaeeeraeeenaeen 89
ANNANG 2.0 ettt et e et e s bt e e sb e e s b e e e nbee e e 92
ANNANG 3. ettt e et e et e st e e st e e st e e sbae e 94
ANNANG 4.t ettt e ettt e e tt e e s bt e e anbeeennbeeenbeeetreeereeeenaeens 95
EIKIATUNG. ...ttt ettt et e s bt e st e e sabee e 99

Abbildungsverzeichnis

Abbildung 2.1: Die vereinfachte Architektur von Chefccccoeviiiiiiiiiniicieeeeee, 16
Abbildung 2.2: Die Komponenten von Cookbooks "mysql" und "apache 2"...........c.ccue....... 18
Abbildung 2.3: Deployment mithilfe des Konfigurationsmanagementscccceeeerueennenne. 21
Abbildung 2.4: Ein Beispiel fiir die Struktur eines Charm...........ccccoecveveererienieneeieneenenens 23
Abbildung 2.5: Ein Bespiel fiir das Verzeichnis "hooks"..........ccccooveiniininiiniiienceeees 24
Abbildung 2.6: Die Datei "metadata.yaml" des Charm "WordPress"...........cccccevvveveniencennene 25
Abbildung 2.7: Die Datei "metadata.yaml" des Charm "MySQL".........cccceevvieriiriiienienieeinnns 26
Abbildung 2.8: Ein Bespiel fiir die Datei "config.yaml"..............ccoeviieiiiniiniiieieeieeeee, 27
Abbildung 2.9: Beispiel fiir die Require/Provide-Relation............cccoceveeniiieninniniienceene 28
Abbildung 2.10: Strukturelle Elemente eines Service-Template und ihrer Beziehungen........ 29
Abbildung 2.11: Beispiel flir einen Node-TyPe.......cccecieriieriieriieiieiieeieeie e eve e sve e 30
Abbildung 2.12: Die Struktur einer CSAR-DAtCI.........ccceevuieruieriiiiiieeie e eiee e 32
Abbildung 3.1: Beispiel fiir Modell-Transformation von Chef nach TOSCA.............cccc...... 39
Abbildung 3.2: Beispiel fiir Modell-Transformation von Juju nach TOSCA...........cccccevuenen. 40
Abbildung 4.1: Transparente Integration mit Hilfe eines Wrapper-Skripts........ccccceccevvenenncene 44
Abbildung 4.2: Beispiel fiir Erzeung vom TOSCA Node-Type aus Juju-Charm "MySQL"... 50
Abbildung 5.1: Eine grobe Ubersicht iiber die Komponenten des Prototyps.............cccceueee... 62
Abbildung 5.2: Die interne Struktur jeder Komponente.............c.eevvevviereenieeneenieenieenieeinens 64
Abbildung 5.3: Ablaufdiagramm der Komponente "Node-Type-Generator"........................... 65
Abbildung 5.4: Ablaufdiagramm der Komponente "Relationship-Type-Generator"............... 66
Abbildung 5.5: Ablaufdiagramm der Komponente "Service-Template-Generator"................ 67
Abbildung 5.6: Sequenzdiagramm fiir die Klasse "NodeTypeFromCookbook" 69
Abbildung 5.7: Sequenzdiagramm fiir die Klasse "RelationshipTypeFromCharms" 70
Abbildung 5.8: Sequenzdiagramm fiir die Klasse "ServiceTemplateFromType" 71

Abbildung 5.9: Klassendiagramm fiir das Java-Paket "org.tosca.meta"c.ccccevveervenuennnnne 72
Abbildung 6.1: Beispiel fiir das TOSCA Service-Template "WordPress-Service".................. 79
Abbildung 6.2: Ergebnis fiirs Validieren der CSAR "WordPress-Service"..........cccceevverueennee. 81

Ausschnittsverzeichnis

Ausschnitt 2.1:
Ausschnitt 4.1:
Ausschnitt 4.2:
Ausschnitt 4.3:
Ausschnitt 4.4:
Ausschnitt 4.5:
Ausschnitt 4.6:
Ausschnitt 4.7:
Ausschnitt 4.8:

Ausschnitt 4.9:

XML-Syntax eines TOSCA-Definitions-Dokuments...........ccoceeverienirncnnene 34
XML-Syntax flir den Capability=Type.......ccvveevrieriieirieriieiieeie et 42
XML-Syntax fiir das Chef-spezifische Artefact-Template...........cccccceeveenee. 45
XML-Syntax fir den Node-Type.......cccceeveriiiiiieniieiieeieeeeeee e 47
XML-Syntax fiir die Node-Type-Implementation...........ccccoceeveevenicneencnnene 48
XML-Syntax fiir das Artifact-Template vom Standard-Artifact-Type............ 53
XML-Syntax fiir den Relationship-Type.......cccccoveeveriiniininiiniiniieniceee, 54
XML-Syntax fiir die Relationship-Type-Implementation...............c.cccuene.e. 55
XML-Syntax fiir das Node-Template..........ccoceveeveriiiniininiiniiiciicnecicnene 57
XML-Syntax fiir das Relationship-Template...........cccoecveevieriieniienieeiieee, 58

Abkiirzungsverzeichnis

BPEL: Business Process Execution Language

BPMN: Business Process Model and Notation

CSAR: Cloud Service Archive

DSL: Domain-specific Language

TOSCA: Topology and Orchestration Specification for Cloud Applications

URI: Uniform Resource Identifier

URL: Uniform Resoure Locator

UUID: Universal Unique Identifier

WSDL: Web Services Description Language

XML: Extensible Markup Language

XSD: XML Schema Definition

1 Einleitung

1 Einleitung

Dieses Kapitel beschreibt die Einleitung der Diplomarbeit. Zunichst wird der Hintergrund des
Cloud-Service-Managements dargestellt und die Probleme von DevOps-Ansétzen sowie ihre
Losungen besprochen. Aus diesem Kontext heraus wird die Problemstellung und somit das
Ziel der Diplomarbeit spezifiziert. Am Ende der Einleitung wird eine Ubersicht iiber die
Struktur der Arbeit und die Beschreibungen des Kapitels prisentiert.

1.1 Hintergrund

Die Reduzierung der Kosten fiir das Infrastruktur- und Service-Management ist einer der
wichtigsten Aspekte von Cloud Computing, weil das traditionelle IT-Service-Management
aufwendig ist [1]. Dieses Ziel wird durch die Automatisierung des gesamten Managements
von Services in der Cloud erreicht. Das Management von Cloud-Services ist nicht auf das
Deployment und Stilllegen von Service-Instanzen beschrinkt. Dazu gehoren weitere
Managementaufgaben, die ausgefiihrt werden miissen, sobald eine bestimmte Service-Instanz
deployed wurde. Beispielsweise muss sich die Service-Instanz je nach der aktuellen
Arbeitsbelastung vergrofern und verkleinern. Zurzeit bieten viele Anbieter auf dem Gebiet
von Cloud Computing [2] [3] proprietire Angebote, mit denen die hochgradig skalierbaren
Applikationen und Services erstellt werden kdnnen. Diese kdnnen Infrastruktur-Angebote wie
Amazon Web Services [54] oder Plattform-Angebote wie Google App Engine [55] sein.
Auflerdem stellen Cloud-Anbieter auch proprietire Werkzeuge wie z.B. "CloudFormation"
und "Auto Scaling" von Amazon Web Services zur Verfligung, um das Management von
Applikationen und Services in der Cloud zu automatisieren. Die Lernkurve ist
vergleichsweise flach, weil diese Angebote und Werkzeuge einfach zu bedienen sind.

Wenn die Services immer komplexer werden, wird ihr Management jedoch zunehmend
schwieriger [4]. Es konnte sogar unmoglich sein, den Service von einem Cloud-Anbieter zu
einem anderen zu verschieben, weil noch Standards fehlen, die Portabilitit zu gewéhrleisten.
Das fiihrt zu "Vendor Lock-in" [5] und schlechter Verwaltbarkeit ("Manageability"). Bei der
Situation "Vendor Lock-in" ist Providerwechsel schwierig oder sogar unmdglich. Portabilitéit
ist sehr wichtig fiir die Services in der Cloud, um "Vendor Lock-in" zu verhindern. Zurzeit
sind viele Cloud-Services selbst portabel und konnen damit von einem Cloud-Anbieter zu
einem anderen verschoben werden. Aber es konnte fiir das Service-Management nicht
zutreffend sein. Das Management dieser Services wird oft auf das Provider-spezifische
Managementwerkzeug beschrinkt. Da das Managementwerkzeug unterschiedlich ist, konnte
sich die Art des Managements eines bestimmten Cloud-Service komplett dndern, das heif3t,
der Service konnte auf eine ganz unterschiedliche Weise verwaltet werden, wenn dieser
Service zu einem anderen Cloud-Anbieter verschoben wird. Darum ist Portabilitit unbedingt
erforderlich fiir die Services in der Cloud ist, vor allem, wenn es um das Service-Management
geht. Deshalb muss es garantiert sein, dass die Verwaltbarkeit von Services in der Cloud
verbessert wird, ohne auf die Portabilitit zu verzichten.

Bis heute zeigen die sogenannten DevOps-Ansétze [6] [7] [8] das fithrende Paradigma fiir das
effiziente Management von Services und Applikationen auf eine hochautomatisierte Weise.
Das urspriingliche Ziel dieser Methodologien ist es, die Entwickler und das Betriebspersonal

1 Einleitung

zusammenzubringen. Dieses Ziel wird hauptsdchlich durch die Automatisierung aller
Deployment- und Managementaufgaben erreicht.

In letzter Zeit haben sich eine Reihe von Ansétzen, Werkzeugen und Communities etabliert,
um das aktuell viel diskutierte DevOps-Paradigma realisierbar zu machen. Prominente
Beispiele dafiir sind Chef [14], Puppet [15] oder Juju [16]. All diese Ansétze verfolgen das
Ziel, wiederverwendbare Artefakte (Skripte und Konfigurationsdefinitionen) zu erstellen, zu
verdffentlichen und miteinander zu kombinieren (Orchestrierung), um damit durch einen
hohen Grad an Automatisierung ein effizientes Deployment und Management eines Service
oder einer Anwendung in einer Cloud-Umgebung zu ermdglichen. Daher werden diese
Werkzeuge hiufig auch mit den Begriffen Konfigurationsmanagementwerkzeug (Chef,
Puppet, etc.) oder Service-Orchestrierungswerkzeug (Juju, etc.) bezeichnet. Unter
Konfigurationsmanagement versteht man die Disziplin im Bereich des System- und
Infrastruktur-Managements, unterschiedliche Konfigurationen und deren Definitionen sauber
zu verwalten. Der Begriff Service-Orchestrierung meint im Kontext dieser Arbeit die
Moglichkeit, unterschiedliche Services (z.B. eine MySQL-Datenbank, ein Caching-System,
etc.) miteinander zu verbinden.

Konfigurationsmanagementwerkzeug

Ein Konfigurationsmanagementwerkzeug [4] [9] [10] wie z.B. Chef oder Puppet realisiert die
eigentliche Automatisierung. Demzufolge sind die entsprechenden Managementprozesse
zuverldssiger und kostengiinstiger im Gegensatz zur manuellen Durchfiihrung dieser Prozesse.
Folglich ist es viel einfacher, das initiale Deployment sowie das erneute Deployment von
Services in verschiedenen Umgebungen wie z.B. Entwicklung, Test und Produktion
durchzufiihren. Die Philosophie hinter der DevOps-Bewegung ist, agile Methodologien in die
Welt des IT-Infrastruktur- und IT-Service-Managements zu bringen [6]. Dies wird durch die
Implementierung des Konzepts "Infrastructure as Code" unter Verwendung eines
Konfigurationsmanagementwerkzeuges erreicht. Das Konzept basiert auf der Annahme, dass
fast jede Aktion auf der Infrastruktur-Management-Ebene programmatisch automatisiert
werden kann [11]. Folglich stellen die dieses Konzept implementierenden Produkte wie z.B.
Chef oder Puppet eine Skriptsprache oder eine DSL ("Domain-specific Language") zur
Verfligung, um plattformunabhingige Konfigurationsdefinitionen fiir das Deployment und
Management eines IT-Service zu erstellen und zu verwalten [4]. Natiirlich beschriankt sich das
Konfigurationsmanagement nicht auf die Implementierung von DevOps-Ansitzen. Das
Konzept von "Infrastructure as Code" zielt im Allgemeinen auf die Automatisierung und
Kostenreduktion von Service-Management. Dies sind wesentliche Teile des Cloud-
Computing-Paradigmas [12] [13].

Service-Orchestrierungswerkzeug

Orchestrierung beschreibt das Arrangieren, Koordinieren und Management von komplexen
Computersystemen, Middlewares und Services [56]. Bei der Service-Orchestrierung handelt
es sich um das automatische Deployment und Management eines Service auf eine bestimmte
Art und Weise. Wir gehen davon aus, dass die Struktur und das Managementverhalten eines
Service durch ein Service-Topologie-Modell, das aus mehreren Topologie-Modell-
Komponenten besteht, spezifiziert wird [1]. Als Beispiel konnten zwei Topologie-Modell-

Komponenten zu einem Topologie-Modell fiir das Deployment und Management einer Web-
10

1 Einleitung

Anwendung gehoren: ein Webserver "Apache" [51] und ein Datenbankserver "MySQL" [26].
Eine Topologie-Modell-Komponente enthélt Skripte, die normalerweise unter Verwendung
einer Skriptsprache wie Python oder Perl implementiert werden. Diese Skripte realisieren die
Managementaktionen wie z.B. das Deployment und die Aktualisierung seiner Komponenten,
die beziiglich einer Service-Instanz des bestimmten Topologie-Modells durchgefiihrt werden
konnen. Wir konzentrieren uns auf das Service-Deployment als eine der wichtigsten
Managementaufgaben, die auf den Topologie-Modellen basieren. Zurzeit gibt es bereits
vorhandene Topologie-Modell-Komponenten, die 6ffentlich zur Verfligung stehen. Diese
Topologie-Modell-Komponenten konnen verwendet werden, um das Deployment und
Management von Services in einer Cloud-Umgebung durchzufiihren. Ein prominentes
Beispiel dafiir ist Juju als ein Service-Orchestrierungswerkzeug. Durch Juju kénnen viele
Topologie-Modell-Komponenten erstellt werden. Jede solche Komponente kann mit einer
anderen Komponente kombiniert werden, um ein Service-Topologie-Modell zu erstellen.
Dieses Service-Topologie-Modell kann in einer Cloud-Umgebung instanziiert und verwaltet
werden. Der Kern einer Komponente ist eine Menge von Skripten, die das automatisierte
Management einer bestimmten Service-Instanz ermdglichen.

Der Ansatz "Konfigurationsmanagement" ist nicht geeignet fiir das Management von
komplexen Services. Es kann umstindlich und zeitaufwendig werden, eine grofe und
komplizierte Service-Topologie, die aus verschiedenen Maschinen besteht, unter Verwendung
eines Konfigurationsmanagementwerkzeuges zu verwalten. Auch die Infrastruktur fiir die
Versorgung einer iiblichen Web-Anwendung kann sehr schnell komplex werden, weil es
mehrere Technologien gibt, die erforderlich sind, um z.B. Lastverteilung ("Load Balancing"),
Zwischenspeichern ("Caching") und Volltextindexierung ("Full-Text Index") zu realisieren.
Um solche Infrastruktur zu spezifizieren, wird eine Menge "Infrastruktur-Code" erstellt.
Demzufolge ist es schwierig, die Code-Struktur sauber zu halten, denn es gibt kein
ganzheitliches Service-Modell im Hintergrund. Dieses Service-Modell enthélt die Service-
Topologie, die die Struktur eines Service, der instanziiert werden kann, bestimmt. Auflerdem
wird jede einzelne Anderung des "Infrastruktur-Codes" ein Risiko, weil es schwer ist, die
Folgen jener bestimmten Anderung abzuschitzen [9].

Im Gegensatz zum Konfigurationsmanagementwerkzeug beschreibt ein Service-
Orchestrierungswerkzeug ein Service-Topologie-Modell, mit dem das Deployment und
Management konkreter Service-Instanzen in einer Cloud-Umgebung bewerkstelligt werden
kann. Das Service-Orchestrierungswerkzeug ermdglicht den Modell-getriebenen
Managementansatz einer Topologie von Cloud-Services und Cloud-Applikationen. Aber die
Artefakte, die durch diese Werkzeuge erstellt wurden, lassen sich nur mit diesen Werkzeugen
verarbeiten. Beispielsweise konnen Juju-Artefakte nur mithilfe der Juju-Laufzeitumgebung, in
der sie erstellt wurden, ausgefiihrt und verarbeitet werden. Dadurch besitzen diese Artefakte
einen sehr geringen Grad an Portabilitéat.

Um solche oben genannten Probleme zu 16sen, gibt es bereits Standardisierungsbestrebungen
im Bereich des Modell-getriebenen Cloud-Managements, die sich auf die Portabilitdt des
Managements konzentrieren: Die "Topology and Orchestration Specification for Cloud
Applications" (TOSCA) [17] ist ein aktueller Standard, der durch eine Reihe von prominenten
Unternehmen in der Branche wie IBM, SAP und Hewlett-Packard unterstiitzt wird. TOSCA
ermOglicht die Spezifikation von portablen Service-Topologie-Modellen und portablen

11

1 Einleitung

Topologie-Modell-Komponenten, die von jeder TOSCA-konformen Cloud-Umgebung
deployed und verwaltet werden konnen. Allerdings spezifiziert TOSCA als ein Beispiel vom
Modell-getriebenen Cloud-Management nicht direkt, wie die "Lower-Level" Aktionen auf
einer virtuellen Maschine durchgefiihrt werden. Diese Aktionen sind z.B. die Ausfithrung von
Skripten, um eine bestimmte Software-Komponente auf einer virtuellen Maschine zu
installieren und zu konfigurieren. Deshalb ist es bedeutungsvoll, das
Konfigurationsmanagement mit dem Modell-getriebenen Cloud-Management zu integrieren,
um die Méngel der einzelnen Ansétze zu minimieren.

1.2 Problemstellung

Mit TOSCA konnten zwar die existierenden Probleme der DevOps-Werkzeuge gelost werden,
aber der FEinsatz von TOSCA hat momentan starke Einschrdnkungen, weil noch ein
entsprechendes Okosystem dafiir fehlt. Ein solches Okosystem besteht aus einer aktiven
Community, die die auf TOSCA basierenden Topologie-Modelle und Topologie-Modell-
Komponenten zur Verfligung stellt. Im Gegensatz zu TOSCA gibt es bereits die
entsprechenden Okosysteme fiir die DevOps-Werkzeuge. Zum Beispiel stellt die Juju-
Community mehr als hundert Topologie-Modell-Komponenten zur Verfiigung. Ebenso bietet
die Community fiir Chef auch viele Konfigurationsdefinitionen an. Solche von diesen
Communities verdffentlichten Artefakte sind wiederverwendbar und konnen als Open-
Source-Software verwendet werden.

1.3 Ziel der Arbeit

Das Ziel dieser Arbeit ist basierend auf existierenden von den hinter Juju und Chef stehenden
DevOps-Communities verdffentlichten Artefakten diese Artefakte selbst auf eine portable Art
und Weise zu verpacken, sodass durch deren Orchestrierung portable TOSCA-Artefakte
("Service-Templates") entstehen konnen. Basierend auf diesen TOSCA-Artefakten kann das
Deployment und Management konkreter Service-Instanzen in einer Cloud-Umgebung
bewerkstelligt werden, die eine dem TOSCA-Standard konforme Laufzeitumgebung [65] zur
Verfligung stellt.

Zu diesem Zweck soll ein automatisches Verfahren entwickelt werden. Mit diesem Verfahren
kénnen aus den von den DevOps-Communities verdffentlichten Artefakten die
entsprechenden TOSCA-Artefakte moglichst automatisch erstellt werden.

Zu den konkreten Aufgaben gehdren: (1) die Erzeugung von TOSCA Node-Types aus
bestehenden Chef-Artefakten, (2) die Erzeugung von TOSCA Relationship-Types aus
bestehenden Juju-Artefakten und (3) die Erzeugung von TOSCA Service-Templates durch die
Orchestrierung der Node-Types und Relationship-Types, die auf bestehenden Artefakten
basieren.

1.4 Struktur der Arbeit

Die Arbeit ist in mehrere Kapitel gegliedert. Auf die Einleitung folgt ein Grundlagenkapitel.
In diesem Grundlagenkapitel werden existierende Technologien wie Chef, Juju und TOSCA
beschrieben, die als Grundlage dieser Arbeit dienen.

12

1 Einleitung

Im dritten Kapitel werden die Anforderungen an das automatische Verfahren dargestellt. Ein
Beispiel ist die Abstraktion der Eigenheiten verschiedener DevOps-Ansétze (Chef, Juju, etc.).
Als das Ergebnis der Abstraktion wird ein Modell fiir jeden verschiedenen DevOps-Ansatz
generiert. Aullerdem wird besprochen, welche Grenzen und Einschrankungen es dafiir gibt.
Am Ende werden zwei Beispiele fiir die Modell-Transformation (Chef nach TOSCA und Juju
nach TOSCA) dargestellt.

Das vierte Kapitel beschreibt die Konzepte fiir das automatische Verfahren. Hier wird
ausfiihrlich besprochen, wie TOSCA Node-Types aus bestechenden Chef-Artefakten und
TOSCA Relationship-Types aus bestehenden Juju-Artefakten erstellt werden. Dariiber hinaus
wird im letzten Unterkapitel beschrieben, wie die TOSCA Service-Templates durch die
Orchestrierung der generierten Node-Types und Relationship-Types erzeugt werden.

Im flinften Kapitel werden der Entwurf und die Implementierung eines Prototyps zur
Evaluierung des automatischen Verfahrens présentiert. Damit soll gezeigt werden, dass die
Konzepte fiir das automatische Verfahren tatsichlich realisiert werden konnen. Das heil3t,
dass durch diesen entwickelten Prototyp die entsprechenden TOSCA Node-Types, TOSCA
Relationship-Types und TOSCA Service-Templates moglichst automatisch generiert werden
konnen.

Das sechste Kapitel zeigt die Evaluierung des automatischen Verfahrens durch den
entwickelten Prototyp. Die konkrete Evaluierungsarbeit besteht aus zwei Teilen: der Test der
Funktionalitit des Prototyps und die Uberpriifung der Korrektheit und Giiltigkeit von den mit
dem entwickelten Prototyp generierten CSAR-Dateien fiir TOSCA Service-Templates.

Kapitel 7 beinhaltet eine Zusammenfassung der Arbeit und einen kurzen Ausblick auf
mogliche weiterfithrende Arbeiten.

13

1 Einleitung

14

2 Grundlagen

2 Grundlagen

Dieses Kapitel soll dem Leser Grundlagen vermitteln, die zum Verstdndnis der Diplomarbeit
erforderlich sind. Drei Bereiche sind hierzu von besonderer Bedeutung. Im ersten
Unterkapitel werden zundchst wichtige Informationen iiber Chef als ein Beispiel des
Konfigurationsmanagementwerkzeuges gegeben. Unterkapitel 2.2 beschreibt wichtige Inhalte
iiber Juju als ein Beispiel des Service-Orchestrierungswerkzeuges. Im letzten Unterkapitel
wird TOSCA als ein aktueller Standard des Cloud-Service-Managements im Bereich des
Modell-getriebenen Cloud-Managements erldutert.

2.1 Chef

Chef ist ein "Cloud-Infrastructure-Automation-Framework" und wird entwickelt, um die
Vorteile des Konfigurationsmanagements zur Infrastruktur zu bringen. Chef erleichtert das
Deployment von Servern und Applikationen auf jedem physischen, virtuellen oder Cloud-
Standort, unabhédngig von der Grofe der Infrastruktur [18]. Chef stiitzt sich auf abstrakte
Konfigurationsdefinitionen ("Cookbooks" und "Recipes"), die in Ruby [35] geschrieben und
wie Source-Codes verwaltet werden. Jede Konfigurationsdefinition beschreibt, wie ein
bestimmter Teil der Infrastruktur erstellt und verwaltet werden sollte. Chef benutzt dann diese
Konfigurationsdefinitionen auf Servern und Applikationen, wodurch eine vollstindig
automatisierte Infrastruktur verwirklicht wird. Beim Deployment eines neuen Knotens ist das
Einzige, was Chef wissen muss, welche Konfigurationsdefinitionen zur Anwendung kommen.

2.1.1 Architektur

In diesem Unterkapitel wird eine Einfithrung zur Architektur von Chef gegeben. Es werden
die grundlegenden Funktionen von den wichtigen Komponenten einer Chef-Organisation
(Client/Server-Umgebung) [18] erldutert. AuBerdem wird besprochen, wie diese
Komponenten bei der Verwendung von Chef zur Verwaltung der Infrastruktur miteinander
kommunizieren.

Die Abbildung 2.1 zeigt die wichtigen Komponenten einer Chef-Organisation und die
Beziehungen zwischen diesen Komponenten. Diese Komponenten arbeiten zusammen, um
dem Chef die Informationen und Anweisungen anzubieten. Chef benétigt diese Informationen
und Anweisungen, um seine Arbeit ausfithren zu kdnnen. Chef besteht aus drei wesentlichen
Komponenten: einem Server, einem (oder mehreren) Knoten ("Nodes") und mindestens einer
Workstation.

Nodes

Eine Chef-Organisation besteht aus einer beliebigen Kombination von physischen, virtuellen
und Cloud-basierten Knoten. Ein Cloud-basierter Knoten wird in einer externen Cloud-
basierten Service gehostet, wie z.B. Amazon Virtual Private Cloud [57], OpenStack [58],
Rackspace [59], Google Compute Engine [60] oder Windows Azure [61]. Wenn die Instanzen
auf Cloud-basierten Services erstellt werden, wird Chef fiir das Deployment und
Konfigurieren dieser Instanzen verwendet. Ein virtueller Knoten ist eine Maschine, die nur als
eine Software-Implementation lduft. Aber ansonsten verhdlt sie sich dhnlich wie eine
physische Maschine. Ein physischer Knoten ist normalerweise ein physischer Server, der

15

2 Grundlagen

durch einen Chef-Client konfiguriert wird und mit einem Netzwerk verbunden ist. Das heifit,
dass jeder Knoten einen Chef-Client enthalten und durch ein Netzwerk mit einem Chef-Server
kommunizieren kann. Der Chef-Client fiihrt die verschiedenen Infrastruktur-
Automatisierungsaufgaben durch, die jeder Knoten bendtigt. Die wichtigen Aufgaben eines
Chef-Clients sind z.B. (1) Registrierung und Authentifizierung des Knoten mit dem Chef-
Server, (2) Laden aller erforderlichen Cookbooks, welche die Recipes, die Attributes und alle
anderen Abhéngigkeiten ("Dependencies") enthalten, und (3) Unternehmen der geeigneten
und erforderlichen Maflnahmen zum Konfigurieren des Knotens.

NODES

[= e e e e e ;
1 CHEF SERVER 7"h. E
: Tara D B :
I PoNeeede : chef client V|rtual
: policy ! --and / or --
|
: s, | |
: o,
1 1
i ,
: i ~-7 1 chef client
i h I
1 Enterprise Server node object : physica
| : --and / or --
! I
: I
I cookbooks : :
e - - - - chef client C|°Ud

I I
1t WORKSTATION [s] 1
I N — I
I N mre I
H I
I ! I
. I
: settings —
I
: |
: knife : chef-repo
: cookbooks :
I

Abbildung 2.1: Die vereinfachte Architektur von Chef [18]

Chef-Workstations

Eine Chef-Workstation ist ein Computer, auf dem das Software "Knife" installiert ist. Knife
wird zum Synchronisieren mit dem Chef-Repository und zur Interaktion mit einem einzelnen
Chef-Server verwendet. Die wichtigen Aufgaben einer Chef-Workstation sind z.B. (1)
Entwicklung von Cookbooks und Recipes unter Verwendung von Ruby, (2) Synchronisierung
vom Chef-Repository mit einem Versionsverwaltungssystem ("Version Control System"), (3)
Hochladen der Konfigurationsdateien vom Chef-Repository zum Chef-Server mithilfe von

16

2 Grundlagen

Knife, (4) Definieren von Rollen ("Roles") und (5) Interaktion mit den Knoten, wenn es
erforderlich ist, wie z.B. Durchfithrung einer Bootstrap-Operation. Eine Rolle versammelt
verschiedene Recipes, um eine bestimmte Darstellung vom Knoten zu bilden. Beispielsweise
kénnen Rollen die Arten von den Knoten definieren, wie z.B. "Webserver" oder
"Datenbankserver" [21]. Ein bestimmter Knoten kann keine oder mehrere Rollen haben.
Recipes konnen mit einer oder mehreren Rollen verbunden sein. Dieser Mechanismus
ermoglicht es, Recipes mit Knoten zu verbinden, ohne sie direkt zuzuweisen [20].

Zwei wichtigen Komponenten der Workstations sind Knife und Repository. Knife ist ein
Kommandozeilen-Werkzeug, das eine Schnittstelle zwischen einem lokalen Chef-Repository
und einem Chef-Server zur Verfligung stellt. Unter Verwendung von Knife verwalten die
Benutzer z.B. Knoten, Cookbooks, Recipes, Rollen sowie Cloud-Ressourcen und Installation
von Chef-Client etc. Das Chef-Repository ist der Speicherort, in dem einige Datenobjekte wie
z.B. Cookbooks, Rollen und Konfigurationsdateien gespeichert werden. Das Chef-Repository
befindet sich auf einer Workstation und sollte mit einem Versionsverwaltungssystem wie z.B.
Git [19] synchronisiert werden. Alle Daten im Chef-Repository sollten wie Source-Code
behandelt werden. Knife wird zum Hochladen von Daten aus dem Chef-Repository auf den
Chef-Server verwendet. Nach dem Hochladen werden diese Daten von Chef verwendet, um
alle Knoten zu verwalten. Diese Knoten sind auf dem Chef-Server registriert. Auflerdem
verwendet Chef diese Daten, um sicherzustellen, dass die richtigen Cookbooks, Rollen und
andere Einstellungen korrekt auf den Knoten angewendet werden.

Chef-Server

Der Chef-Server fungiert als ein Zentrum fiir die Konfigurationsdaten der Infrastruktur. Er
speichert die Daten wie z.B. die Cookbooks, die Rollen und die Metadaten, welche fiir das
Konfigurieren der Knoten erforderlich sind. Die Metadaten beschreiben jeden registrierten
Knoten, der durch den Chef-Client verwaltet wird. Die Knoten verwenden den Chef-Client,
um den Server um die Konfigurationsdetails wie z.B. Recipes, Templates und File-
Distributions zu bitten. Der Chef-Client fithrt dann mdglichst viel Konfigurationsarbeit auf
den Knoten selbst und nicht auf dem Server aus.

Verwendungsmodi von Chef

Es gibt zwei Verwendungsmodi von Chef: (1) Chef-Solo: Chef-Solo ist eine Open-Source-
Version des Chef-Clients und ermdglicht die Verwendung von Cookbooks auf den Knoten,
ohne auf einen Server zuzugreifen. Chef-Solo wird auf dem Knoten lokal ausgefiihrt und
erfordert, dass sich ein Cookbook und alle seine Abhingigkeiten ("Dependencies") auf
derselben physischen Festplatte des Knotens befinden. (2) Chef Client und Chef Server: Chef-
Client ist ein Chef-Agent, der wie Chef-Solo auf dem Knoten lokal ausgefiihrt wird. Chef-
Client verbindet sich mit einem Chef-Server und erfdhrt vom Server, welche Cookbooks und
Ressourcen auf dem lokalen Knoten durchgefiihrt werden.

2.1.2 Cookbooks

Cookbooks sind die grundlegenden Einheiten der Verteilung ("Distribution") in Chef und die

Art, wie Chef-Benutzer die Konfigurationsinformation verpacken, verteilen und gemeinsam

benutzen. Sie kapselt alle Ressourcen ein, die zur Automatisierung der Infrastruktur benotigt

werden. So ist es ganz einfach, den anderen Chef-Benutzern solche Ressourcen zur
17

2 Grundlagen

Verfiigung zu stellen. Sie enthalten Recipes, Attribut-Dateien, Templates und andere
Konfigurationsartefakte. Wenn Chef-Client ausgefiihrt wird, werden die in der Run-Liste
aufgelisteten Recipes zusammen mit den anderen Inhalten in dem Cookbook, das diese
Recipes enthilt, zum Knoten iibertragen. Diese Recipes werden dann auf dem Knoten
verwendet, damit der Knoten richtig konfiguriert werden kann. Normalerweise enthilt ein
Cookbook die notwendigen Informationen zum Konfigurieren eines einzelnen Service oder
eines einzelnen Teils des Systems. Beispielsweise konnte ein Cookbook "Users" [62] fiir das
Konfigurieren von Benutzern den Zugang zum System besitzen und ein Cookbook "Apache"
[52] den Apache-Webserver konfigurieren. Cookbooks kénnen von jedem Benutzer mit
grundlegenden Fiahigkeiten im Bereich der Programmierung erstellt werden. Dariiber hinaus
konnen die Cookbooks geschrieben werden, ohne die Details iiber eine Zielumgebung fiir das
Deployment zu speichern. Dies bedeutet, dass diese Cookbooks zwischen verschiedenen
Organisationen und Unternehmen wiederverwendet werden konnen. Benutzer haben bereits
mehr als 300 Cookbooks auf der Chef-Community-Website verdffentlicht und zur Verfiigung
gestellt. Deshalb konnen Sie direkt mit den vorhandenen Cookbooks die Services und die
Applikationen auf Ihrer Maschine installieren und konfigurieren, ohne ein neues Cookbook
schreiben zu miissen. Abbildung 2.2 zeigt zwei Beispiele, welche Komponenten die
Cookbooks "mysql" und "apache 2" besitzen und wie die Inhalte von diesen Cookbooks
aussehen.

mysql apache2

& attributes & attributes

— libraries — definitions

V‘.‘ recipes V‘.‘ files

E templates E recipes

] cHANGELOG.md [templates

[I README.md [| CHANGELOG.md

[| metadata.rb [| README.md
(]

metadata.rb

Abbildung 2.2: Die Komponenten von Cookbooks "mysql" und "apache 2"

Attributes - Ein Attribut ist ein spezifisches Detail zu einem Knoten, wie z.B. eine IP-
Adresse, ein Hostname, eine Portnummer und so weiter. Attribute werden vom Chef-Client
verwendet, um den Zustand des Knotens zu erfahren. Ein Attribut kann in einem Cookbook
(oder einem Recipe) definiert und dann zum Uberschreiben ("Override") der
Standardeinstellungen ("Default Settings") auf einem Knoten verwendet werden.

Recipes - Ein Recipe ist das grundlegendste Konfigurationselement. Ein Recipe muss alle
erforderlichen Ressourcen fiir das Konfigurieren eines Systems definieren und wird in einem

18

2 Grundlagen

Cookbook gespeichert. AuBBerdem muss ein Recipe zu einer Run-Liste hinzugefiigt werden,
bevor sie durch den Chef-Client verwendet werden kann. Die Recipes werden immer in der
gleichen Reihenfolge ausgefiihrt, wie sie in einer Run-Liste aufgelistet werden.

Definitions - Eine Definition wird verwendet, um neue Ressourcen zu erstellen, indem eine
oder mehrere existierenden Ressourcen aneinandergefiigt werden.

Files - Cookbooks werden haufig auf mehreren Plattformen ausgefiihrt und oft aufgefordert,
eine spezielle Datei zu einer speziellen Plattform zu transportieren. Eine Datei-Distribution ist
eine spezielle Art der Ressource, die einem Cookbook mitteilt, wie die Dateien verteilt
werden.

Libraries - Eine Library ermoglicht die Verwendung von beliebigen Ruby-Codes in einem
Cookbook dadurch, entweder indem die vom Chef-Client verwendeten Klassen erweitert
werden oder eine neue Klasse direkt implementiert wird.

Templates - Ein Template ist eine mit der Markup-Sprache geschriebene Datei, die Ruby-
Anweisungen verwendet, um komplexe Konfigurationsszenarien zu 16sen.

Metadata - Eine Metadata-Datei wird verwendet, um sicherzustellen, dass jedes Cookbook
zu jedem Knoten richtig und ordnungsgemil deployed wird. Da die Metadata-Datei in einem
Cookbook sehr wichtig fiir diese Arbeit ist, wird sie im ndchsten Unterkapitel ausfiihrlich
besprochen.

Der Chef-Client verwendet nicht nur Ruby als Referenzsprache fiir die Erstellung von
Cookbooks und die Definition von Recipes sondern auch eine erweiterbare DSL fiir spezielle
Ressourcen. Eine angemessene Menge von Ressourcen steht dem Chef-Client zur Verfiigung.
Diese ist ausreichend, um die Tiblichsten Infrastruktur-Automatisierungsszenarien zu
unterstiitzen. Diese DSL kann jedoch auch erweitert werden, wenn zusétzliche Ressourcen
und Féhigkeiten benotigt werden.

2.1.3 Metadaten

Fiir jedes Cookbook muss eine kleine Menge von Metadaten spezifiziert werden. Diese
Metadaten werden in einer Datei namens "metadata.rb" gespeichert. Diese Datei
"metadata.rb" befindet sich im Wurzelverzeichnis jedes Cookbook. Die Inhalte der Datei
"metadata.rb" bieten dem Server einige Hinweise an, damit die Cookbooks auf jedem Knoten
richtig eingesetzt werden. Aullerdem weisen sie den Server darauf hin, welche Cookbooks auf
einem gegebenen Knoten eingesetzt werden sollten. Die Datei "metadata.rb" wird fiir ein
automatisiertes System zur Entdeckung und Installation von Cookbooks wesentlich sein.

Eine Datei "metadata.rb" wird automatisch erstellt, wenn ein Cookbook unter Verwendung
von Knife erstellt wird. Die Datei "metadata.rb" wird nie direkt interpretiert, sondern zuerst
vom Server kompiliert und als JSON-Daten in der Datei namens "metadata.json" gespeichert.
Die JavaScript Object Notation (JSON) [63] ist ein kompaktes Datenformat in fiir Mensch
und Maschine einfach lesbarer Textform zum Zweck des Datenaustauschs zwischen
Anwendungen. Diese JSON-Datei ist die echte Metadaten-Datei und wird beim Hochladen
des Cookbook oder beim Ausfiihren des Befehls "knife cookbook metadata" generiert. Die
Datei "metadata.json" kann direkt bearbeitet werden, wenn temporire Anderungen

19

2 Grundlagen

vorgenommen werden miissen. Jedes nachfolgenden Hochladen oder jede Aktion, die die
Datei "metadata.rb" generiert, wird dazu fiihren, dass die vorhandene Datei "metadata.json"
mit der neu generierten Datei "metadata.rb" iiberschrieben wird. Deshalb sollte jede
erforderliche permanente Anderung an Metadaten nur in der Datei "metadata.rb"
vorgenommen werden.

Im Folgenden werden einige Abschnitte, die fiir diese Arbeit sehr wichtig sind, in der Datei
"metadata.rb" beschrieben.

Name - Der Name eines Cookbook.

Description - Eine kurze Beschreibung eines Cookbook und seiner Funktionalitit.
Recipe - Eine kurze Beschreibung fiir ein Recipe.

Supports - zeigt, welche Plattformen das Cookbook unterstiitzt.

Depends - zeigt, dass ein Cookbook eine Abhingigkeit ("Dependency") von anderen
Cookbook mit der Versionsnummer besitzt. Das Cookbook mit dem passenden Namen und
der passenden Version muss auf dem Server existieren und bei der Ausfiihrung von Chef-
Client zum Knoten iibertragen werden. Es ist sehr wichtig, dass der Abschnitt "depends"
korrekte Daten enthidlt. Wenn diese Daten nicht korrekt sind, ist der Chef-Client nicht in der
Lage, die Konfiguration des Systems erfolgreich durchzufiihren.

Attribute - Die Liste der Attribute, die fiir das Konfigurieren eines Cookbook erforderlich
sind. Der Name eines Attributs ist erforderlich und die anderen sind optional, wie z.B.
"display name" (der Name, der in der Benutzeroberfliche angezeigt wird), "description" (eine
kurze Beschreibung), "type" (der Typ von Wert, entweder "String" oder "Array") und
"default" (Default-Wert des Attributs) etc.

2.1.4 Bestehende Defizite und Zusammenfassung

Chef als ein Konfigurationsmanagementwerkzeug implementiert das Konzept "Infrastructure
as Code". Durch Chef kann man die plattformunabhéngigen Konfigurationsdefinitionen wie
z.B. Cookbooks und Recipes erstellen und verwalten, um das automatisierte Deployment und
Management eines Service oder einer Anwendung zu ermoglichen. Aber fiir das Management
von komplexen Services ist Chef nicht praktisch. Als ein Beispiel zeigt Abbildung 2.3, wie
das Deployment von Sugar [22] als ein Service in der Cloud unter Verwendung von Chef
ermOglicht wird. Sugar ist ein Web-basiertes Customer-Relationship-Management-System
und steht als Open-Source-Software 6ffentlich zur Verfiigung.

Fiir das tatsdchliche Deployment von Sugar werden zwei virtuellen Maschinen bereitgestellt.
Auf einer Maschine werden durch die automatische Ausfiihrung der Artefakte der Apache-
Webserver, das PHP-Modul und die Sugar-Applikation installiert und konfiguriert. Der
MySQL-Server und die Sugar-Datenbank werden auf der anderen Maschine installiert und
konfiguriert. Um das Deploment zu beenden wird die Applikation mit der Datenbank
verbunden. Alle diese Aktionen werden durch die Ausfiihrung der entsprechenden
Konfigurationsdefinitionen wie z.B. Cookbooks und Recipes implementiert. Das heif3t, dass
eine groBe Menge Chef-Codes erstellt werden miissen, um solche Infrastruktur zu

20

2 Grundlagen

spezifizieren. Dadurch ist es schwierig, die Code-Struktur sauber zu halten. AuBerdem
konnen keine expliziten Beziehungen zwischen diesen Konfigurationsdefinitionen definiert
werden, da es kein ganzheitliches Service-Modell dafiir gibt. Solches Service-Modell enthilt
die Service-Topologie, die die ganze Struktur fiir das Deployment von Sugar bestimmt.
Daraus folgt, dass es umstdndlich und zeitaufwendig werden kann, einen groBen und
komplizierten Service, der aus verschiedenen Maschinen besteht, unter Verwendung von Chef
zu verwalten.

Install and con-
figure Apache,

Install and con-

figure MySQL,
Sugar database

PHP, Sugar app.,
database conn.

Virtual Machine Virtual Machine

Abbildung 2.3: Deployment mithilfe des Konfigurationsmanagements [20]

Chef ist ein beliebtes Konfigurationsmanagementprodukt. Seine Open-Source-Version ist
offentlich verfiigbar und kann kostenlos genutzt werden. Konfigurationsdefinitionen in Chef
nennt man Recipes. Sie sind grundsitzlich die in einer DSL geschriebenen Skripte zur
Darstellung des Ziel-Zustands eines Systems [4]. Ein oder mehrere Recipes sind in einem
Cookbook gebiindelt. AuBler Cookbooks konnen Rollen definiert werden, um die Arten der
Knoten zu spezifizieren. Durch eine Rolle kann beispielsweise ein Knoten zu einem
Webserver konfiguriert werden. Der Chef-Server speichert alle Cookbooks und Rollen.
Dariiber hinaus verwaltet die Server-Komponente eine Run-Liste fiir jeden registrierten
Knoten. Der Chef-Client wird auf jedem Knoten ausgefiihrt, um den Chef-Server zu
verbinden. Eine bestimmte Run-Liste weist Recipes und Rollen einem Knoten zu. Zur
Ausfiihrung der Recipes ist der Chef-Server nicht erforderlich. AuBer dem Client/Server-
Modus steht auch ein Chef-Solo-Modus zur Verfiigung. Unter Verwendung dieses Modus
kann der Chef-Client die Recipes direkt auf dem Knoten ausfiihren, ohne sich mit einem
Chet-Server zu kommunizieren [9].

2.2 Juju

Juju zielt darauf ab, ein Service-Deployment- und Orchestrierungswerkzeug zu sein, das die
Zusammenarbeit zwischen den Services sowie die einfache Verwaltung dieser Services
ermoglicht. Verschiedene Service-Entwickler kdnnen mit Juju Services selbststindig erstellen
und die Kommunikation von diesen Services durch ein einfaches Konfigurationsprotokoll
koordinieren. Dann konnen die Service-Benutzer die Services von verschiedenen Service-
Entwicklern nehmen und sie sehr komfortabel in einer Umgebung bereitstellen. Das Ergebnis
ist, dass mehrere Maschinen und Komponenten transparent zusammenarbeiten kdnnen, um
die angeforderten Services zur Verfiigung zu stellen.

21

2 Grundlagen

2.2.1 Arbeitsweise

In diesem Unterkapitel wird beschrieben, wie man mit Juju durch einfache Befehlen Services
deployen kann. Auf die Installation und die Konfiguration von Juju folgt es, eine Bootstrap-
Umgebung einzurichten. Sie ist eine Instanz in der Cloud und wird von Juju verwendet, um
Services zu deployen und verwalten. In der Praxis wird das Einrichten einer Bootstrap-
Umgebung durch einen einfachen Juju-Befehl "juju bootstrap" automatisch implementiert.
Falls eine solche Bootstrap-Umgebung erfolgreich aufgebaut wurde, kdnnen wir jetzt durch
einige einfachen Juju-Befehle die Services deployen, verwalten und von auBen zugreifbar zu
machen. Ein kleines Beispiel fiir das Deployment des Service "WordPress" [25] zum Aufbau
und zur Pflege eines Weblogs wird hier gegeben. Im Beispiel werden zuerst zwei Services
"WordPress" und "MySQL" installiert und konfiguriert. Dann wird ein Beziehung
"WordPress verbindet mit MySQL" zwischen diesen zwei Services aufgebaut. SchlieBlich
wird der Service "WordPress" von auBlen zugreifbar gemacht. All diese Arbeiten werden in
Juju nur mit vier einfachen Juju-Befehlen erledigt. Zu Beginn deployen wir die Services
"WordPress" und "MySQL" durch die Juju-Befehle "juju deploy wordpress" und "juju deploy
mysql". Dann wird der Service "WordPress" durch den Juju-Befehl "juju add-relation
wordpress mysql" mit dem Service "MySQL" verbunden. Am Ende wird der Juju-Befehl
"juju expose wordpress" verwendet, um den Service “WordPress” von aullen zugreifbar zu
machen. Mit diesem kleinen Beispiel kann man verstehen, dass man nur einige Juju-Befehle
einzugeben braucht, um Services zu deployen und zu verwalten. Allerdings muss man
beachten, dass ein Juju-Befehl nicht direkt die tatsdchlichen Arbeiten fiir das Deployment und
die Verwaltung von Services implementiert, sondern er informiert Juju iiber den Zustand, in
dem sich die Umgebung befindet. Die tatsdchlichen Arbeiten werden durch das System in der
vorher eingerichteten Bootstrap-Umgebung erledigt.

222 Juju Charm

Juju verwendet Charms, um Softwares, sogenannte Services zu deployen. Charms definieren,
wie sich Services integrieren (Relation von Services) und wie ihre Service-Einheiten auf
Ereignisse in der verteilten Umgebung reagieren. Ein Service in Juju ist eine Anwendung oder
eine Gruppe von Anwendungen und kann als eine einzelne Komponente verwendet werden.
In der Regel konnen sich mehrere Services miteinander kombinieren, um einen komplexeren
Service aufzubauen. Als ein Beispiel konnte "WordPress" als ein Service eingesetzt werden.
Um seine Aufgaben korrekt zu verrichten, konnte "WordPress" mit einem Service
"Datenbank" und einem Service "Load-Balancer" kommunizieren. Eine Service-Instanz in
Juju besitzt zu Beginn genau eine Service-Einheit. Es konnen jedoch weitere Service-
Einheiten zu dieser Instanz hinzugefiigt werden, um z.B. Skalierbarkeit zu ermdglichen. Alle
Service-Einheiten fiir einen bestimmten Service nutzen gemeinsam dasselbe Charm, dieselben
Beziehungen und dieselbe Konfiguration, die vom Benutzer bereitgestellt werden.
Beispielsweise kann eine MySQL-Datenbank-Instanz zu Beginn genau eine Service-Einheit
(eine virtuelle Maschine) besitzen. Spiter konnen dann weitere Service-Einheiten (weitere
virtuelle Maschinen) zu dieser Instanz hinzugefiigt und mit der urspriinglichen Service-
Einheit verkniipft werden. Ein Charm stellt die Definition des Service zur Verfiigung. Zur
Definition gehdren auch seine Metadaten, die Abhéngigkeiten von anderen Services, die
notwendigen Pakete sowie die Logik fiir die Verwaltung der Anwendung. In Abbildung 2.4
wird ein Beispiel fiir die Struktur eines Charm dargestellt.

22

2 Grundlagen

—
config.yaml
-
copyright
—

revision

Abbildung 2.4: Ein Beispiel fiir die Struktur eines Charm

Normalerweise enthédlt jedes Charm ein Verzeichnis namens "hooks" und eine
"metadata.yaml" Datei. Manche Charms enthalten noch eine "config.yaml" Datei. Details
werden in den folgenden Unterkapiteln besprochen.

2.2.2.1 Das Verzeichnis "hooks”

In dem Verzeichnis "hooks" gibt es viele Dateien. Jede dieser Dateien wird als "Hook"
bezeichnet. Die Hooks in einem Charm sind auf einem Ubuntu-Server ausfiihrbare Dateien
und konnen unter Verwendung von einer beliebigen Skriptsprache oder Programmiersprache
geschrieben werden. Juju verwendet die Hooks, um eine Service-Einheit iiber die
Verdnderungen in ihrem Lebenszyklus oder in der verteilten Umgebung zu benachrichtigen.
Ein fiir eine Service-Einheit laufender Hook kann diese Umgebung tiberpriifen. Auflerdem
kann es die gewiinschten lokalen Anderungen auf der Maschine, wo sich dieser Hook befindet,
vornehmen sowie die Einstellung der Relation dndern.

In der Regel gibt es in Bezug auf den Lebenszyklus einer Service-Einheit folgende Hooks:
"install", "config-changed", "start" und "stop". Der Hook "install" wird zur Installation einer
Service-Einheit verwendet und nur einmal ausgefiihrt, bevor alle anderen Hooks aufgerufen
werden. Der Hook "config-changed" wird immer unmittelbar nach der Ausfithrung des Hooks
"install" ausgefiihrt. Aulerdem wird er auch verwendet, wenn sich die Service-Konfiguration
dndert. Der Hook "start" wird ausgefiihrt, wenn die Service-Einheit gestartet wird. Dagegen
wird der Hook "stop" ausgefiihrt, wenn die Service-Einheit gestoppt wird. Es kdnnen noch
weitere Hooks verwendet werden, die als "Relation-Hook" bezeichnet und nach der
Ausfiihrung des Hooks "start" und vor der Ausfithrung des Hooks "stop" ausgefiihrt werden.

Sie werden auf jeder Service-Einheit aufgerufen, wenn eine Relation hergestellt oder geéndert
23

2 Grundlagen

wird. Es gibt vier Arten Relation-Hooks. Der Hook "<relation name>-relation-joined" wird
ausgefiihrt, wenn eine entfernte Service-Einheit an der Beziehung teilnimmt. Der Hook
"<relation name>-relation-changed" wird ausgefiihrt, wenn eine entfernte Service-Einheit an
der Beziehung teilnimmt oder seine Beziehungseinstellungen dndert. Der Hook "<relation
name>-relation-departed" wird ausgefiihrt, wenn eine entfernte Service-Einheit eine
Beziehung verldsst. Dies konnte passieren, wenn die Service-Einheit entfernt wurde, sein
Service zerstort wurde oder die Beziehung zwischen diesem Service und dem entfernten
Service entfernt wurde. Der Hook "<relation name>-relation-broken" bezieht sich auf die
Beziehung selbst und wird ausgefiihrt, sobald die lokale Service-Einheit bereit ist, die
Beziechung selbst zu verlassen. Diese Service-Einheit kann dann alle
Konfigurationsinformationen iiber diese Bezichung beseitigen.

Ein Beispiel fiir das Verzeichnis "hooks" des Charm "MySQL" [26] wird in Abbildung 2.5
gezeigt. In dieser Abbildung werden nicht alle Hooks fiirs Charm "MySQL" gezeigt, sondern
die einigen typischen Hooks. Der Hook "install" wird zur Installation des Service "MySQL"
verwendet. Der Hook "config-changed" wird nach der Ausfiihrung des Hooks "install" zum
Konfigurieren des Service "MySQL" ausgefiihrt. Der Hook "start" wird zum Starten einer
Service-Einheit "MySQL" ausgefiihrt und der Hook "stop" wird verwendet, um eine Service-
Einheit "MySQL" zu beenden.

hooks
—
R
db-relation-broken
e
db-relation-joined
e
install
R
start
e
config-changed
AR
stop
s

Abbildung 2.5: Ein Bespiel fiir das Verzeichnis "hooks"

24

2 Grundlagen

In diesem Verzeichnis "hooks" gibt es noch zwei Relation-Hooks "db-relation-joined" und
"db-relation-broken". Der Hook "db-relation-joined" wird aufgerufen, wenn eine Beziehung -
z.B. eine Datenbankverbindung - zu einer Service-Einheit hinzugefiigt wird. Der Hook "db-
relation-broken" wird aufgerufen, wenn die Beziehung entfernt wird. Dabei wird die Service-
Einheit die Konfigurationsinformationen zur Datenbankverbindung 16schen.

2.2.2.2 Die Datei "metadata.yaml”

Die Datei "metadata.yaml" ist eine YAML-Datei. YAML [24] ist eine einfache Markup-
Sprache zur Datenserialisierung, die sowohl gut von Menschen lesbar sein soll als auch
vollautomatisch von Maschinen verarbeitbar ist. Diese Datei befindet sich im
Wurzelverzeichnis eines Charm und beschreibt das Charm. Wir nehmen das Charm
"WordPress" [25] als Beispiel. Seine "metadata.yaml" Datei wird teilweise in Abbildung 2.6
dargestellt.

4 N

name: wordpress
summary: "WordPress is a full featured web blogging tool, this charm deploys it."
maintainer: Marco Ceppi
description: |
This will install and setup WordPress optimized to run in the cloud. This install,
in particular, will place Ngnix and php-fpm configured to scale horizontally with
Nginx's reverse proxy
requires:
db:
interface: mysql
provides:
website:
interface: http

Abbildung 2.6: Die Datei "metadata.yaml" des Charm "WordPress"

Diese Datei "metadata.yaml" deklariert ein Charm mit dem Namen "WordPress". Die ersten
vier Abschnitte geben folgende Informationen iiber dieses Charm an: den Namen des Charm,
die Information iiber den Ersteller des Charm, eine kurze und eine lange Beschreibung.

Der Abschnitt "provides" beschreibt, welche Services das Charm "WordPress" tatsdchlich zur
Verfiigung stellt. Das Charm "WordPress" ist ein Web-basierter Service der Blogging-
Plattform, der ein einfaches Interface "http" zur Verfiigung stellt. Der hier angegebene Name
"website" ist ein lokaler Beziehungsname ("Relation-Name") und identifiziert diese
Beziehung eindeutig innerhalb des Charm "WordPress". Und das Interface "http" wird von
den anderen Charms verwendet, wenn sie eine Beziehung mit diesem Charm herstellen
wollen. Juju tberpriift Interfaces, wenn Juju versucht, festzustellen, ob zwei Services
miteinander verkniipft werden kénnen.

Der Abschnitt "requires" beschreibt, welche Services das Charm "WordPress" braucht. Fiir
das Charm "WordPress" wird eine Beziehung mit einer Datenbank definiert. Diese Beziehung
wird lokal "db" genannt und besitzt das Interface "mysql". Durch das Uberpriifen der
Metadaten des Charm "MySQL" erfdhrt Juju, dass dieses Charm die Fahigkeit einer
Datenbank mit dem Interface "mysql" zur Verfiigung stellt. Das hei3t, dass eine Beziehung
zwischen den Charms "WordPress" und "MySQL" mit dem gleichen Interface "mysql"

25

2 Grundlagen

implizit hergestellt werden kann. Ein Beispiel fiir die Datei "metadata.yaml" des Charm
"MySQL" wird teilweise in Abbildung 2.7 gezeigt.

[name: mysq|
summary: MySQL is a fast, stable and true multi-user, multi-threaded SQL
database
maintainer: Marco Ceppi
description: |
MySQL is a fast, stable and true multi-user, multi-threaded SQL database
server. SQL (Structured Query Language) is the most popular database query
language in the world. The main goals of MySQL are speed, robustness and
ease of use.
provides:
db:
interface: mysq|
peers:
cluster:
interface: mysql-ha
requires:
slave:
interface: mysql-oneway-replication

Abbildung 2.7: Die Datei "metadata.yaml" des Charm "MySQL"

Der Abschnitt "provides" beschreibt, dass das Charm "MySQL" die Fahigkeit einer
Datenbank zur Verfligung stellt. Der lokale Beziehungsname ist "db" und das Interface
"mysql" wird beispielsweise vom Charm "WordPress" verwendet, wenn "WordPress" eine
Beziehung mit dem Charm "MySQL" herstellen will. AuBBerdem wird der Abschnitt "peers" in
der Datei "metadata.yaml" vom Charm "MySQL" definiert, der im Unterkapitel 2.2.3
besprochen wird.

2.2.2.3 Die Datei "config.yaml”

Die Datei "config.yaml" befindet sich auch im Wurzelverzeichnis eines Charm. In dieser
Datei werden einige Konfigurationsoptionen definiert, auf die das Charm zugreift. Diese
Konfigurationsdaten beschreiben, wie ein Service konfiguriert wird. Charms erlauben nur, die
Konfigurationsoptionen zu bearbeiten, die von dem Ersteller des Charm explizit definiert
werden. Diese Optionen werden nicht nur fiir eine bestimmte Service-Einheit oder Beziehung
verwendet, sondern fiir den gesamten Service. Beispielsweise konnen wir mit dem Charm
"WordPress einen Service namens "myblog" deployen. Dieser Service konnte eine Option
"blog-title" definieren. Diese Option kontrolliert den Titel des zu verdffentlichenden Blogs.
Die Anderungen an dieser Option gelten fiir alle Service-Einheiten, die zu einer bestimmten
Service-Instanz des Service "myblog" gehoren. Dabei wird ein entsprechender Hook auf jeder
von diesen Service-Einheiten aufgerufen.

In Abbildung 2.8 wird gezeigt, wie eine "config.yaml" Datei aussieht. Jede Option enthilt
eine lesbare Beschreibung und einen optionalen Default-Wert "default". Zusétzlich kann
moglicherweise ein Typ "type" spezifiziert werden. Alle Optionen haben einen Default-Typ
von 'string'. Er bedeutet, dass sein Wert nur als eine Text-Zeichenfolge behandelt wird.
Andere giiltige Optionen sind 'int' und 'float'.

26

2 Grundlagen

4 D
options:

port:
default: 80
type: int
description: Port to listen on
admin-email:
#type: stris implied
default: null
description: Email address for the site administrator

Abbildung 2.8: Ein Bespiel fiir die Datei "config.yaml"

2.2.3 Relation in Juju

Dieses Unterkapitel beschiftigt sich mit den Beziehungen zwischen Services in Juju. Eine
Bezeihung wird normalerweise in Juju als "Relation" bezeichnet. Deshalb wird das Wort
"Relation" in diesem Unterkapitel verwendet. In der Datei "metadata.yaml" konnte es drei
Abschnitte "provides", "requires" und "peers" geben. Ein Beispiel dafiir wurde in Abbildung
2.7 gegeben. Die drei Abschnitte definieren die verschiedenen Relationen, an den das Charm
teilnehmen wird. Relationen in Juju haben drei Haupteigenschaften: ein Interface, eine Art
und einen Namen. Das Relation-Interface ist ein eindeutiger Name, durch den die Service-
Einheiten unter Verwendung von ihren jeweiligen Hooks die Informationen austauschen
konnen. Solange der Name identisch ist, bedeutet das, dass die Charms auf eine kompatible
Art und Weise geschrieben wurden. Deshalb darf die Relation durch das gleiche Interface
hergestellt werden. Relationen mit verschiedenen Interfaces kdnnen nicht hergestellt werden.
Die Relation-Art informiert dariiber, ob eine Service-Einheit, die das gegebene Charm
deployed, als ein "Provider", ein "Requirer" oder ein "Peer" in der Relation dienen wird.
Providers und Requirers ergédnzen sich gegenseitig. Folglich kann ein Service, der ein
Interface zur Verfiigung stellt, eine Relation besitzen. Diese Relation wird nur mit dem
Service, der das gleiche Interface braucht, hergestellt und umgekehrt. Peer-Relationen werden
zwischen den Service-Einheiten innerhalb eines Service, der diese Relation deklariert,
automatisch hergestellt. Das dient dazu, diese Service-Einheiten zusammenzubinden, um
Master und Slaves, Ringe oder andere strukturelle Organisation, die die zugrunde liegende
Software unterstiitzt, aufzubauen. Der Relation-Name identifiziert die entsprechende Relation
innerhalb des Charm eindeutig. Auflerdem erlaubt er, dass ein einzelnes Charm (und Service
und Service-Einheiten, die das Charm benutzen) mehrere Relationen mit dem gleichen
Interface aber zu unterschiedlichen Zwecken hat. Dieser Identifizierer (Relation-Name) wird
in Hook-Namen verwendet. In Abbildung 2.9 wird ein Beispiel fiir die Require/Provide-
Relation in Juju gezeigt. Wenn dieses Service-Modell realisiert wird, wird Juju alle Service-
Einheiten des Service "WordPress" dariiber informieren, dass eine Relation mit den
jeweiligen Service-Einheiten des Service "MySQL" hergestellt wurde. Dieses Ereignis wird
dadurch mitgeteilt, dass die entsprechenden Hooks mithilfe der lokalen Relation-Namen auf
beiden Service-Einheiten aufgerufen werden. Falls die Verbindung zwischen den Services
"WordPress" und "MySQL" im Beispiel getriggert wird, werden die Hooks "db-relation-

27

2 Grundlagen

joined, db-relation-changed" auf der WordPress-Seite aufgerufen. Entsprechende Hooks
"server-relation-joined" und '"server-relation-changed" werden auf der MySQL-Seite
aufgerufen.

Charm Charm
WordPress MySQL
requires: provides:
interface: mysq| interface: mysq|
name: db name: server

Abbildung 2.9: Beispiel fiir die Require/Provide-Relation

2.2.4 Bestehende Defizite und Zusammenfassung

Juju als ein Service-Orchestrierungswerkzeug ermdoglicht das Modell-getriebene Cloud-
Management. Die Juju-Community verdffentlicht mehr als einhundert Topologie-Modell-
Komponenten als Open-Source-Software. Diese Komponenten sind gemeinsam nutzbar und
wiederverwendbar und werden als "Charms" bezeichnet. Ein Charm enthélt in der Regel
Shell- oder Python-Skripte. Diese Skripte werden verwendet, um das automatische
Management einer bestimmten Service-Instanz zu ermdglichen. Ein Charm kann mit einem
anderen Charm kombiniert werden, um ein Service-Topologie-Modell zu erstellen. Dieses
Service-Topologie-Modell kann in der Cloud-Umgebung instanziiert und verwaltet werden.
Dariiber hinaus konnen die Beziehungen zwischen den Service-Instanzen hergestellt werden.

Beziiglich der Portabilitit gibt es jedoch starke Einschrinkungen, weil die Juju-Artefakte nur
mithilfe der Juju-Laufzeitumgebung ausgefiihrt und verarbeitet werden kdnnen. Das bedeutet,
dass die von der Juju-Community zur Verfiigung gestellten Charms nur durch die Juju-Engine
verarbeitet werden konnen. AuBBerdem beschrinken die Skripte in Charms die Portabilitdt auf
zwei Arten: (1) Die Skripte verwenden eine Reihe von Befehlen und Umgebungsvariablen,
die auf jeder von Juju verwalteten virtuellen Maschine verfiigbar sind. (2) Die Skripte werden
so designt, dass sie nur auf Ubuntu-Linux ausgefiihrt werden konnen. Infolgedessen misslingt
ihre Ausfiihrung auf den anderen Linux-Varianten und den anderen Plattformen.

2.3 Topology and Orchestration Specification for Cloud Applications

Cloud Computing [3] kann wertvoller werden, wenn die (semi-)automatische Erstellung und
Verwaltung von Cloud-Services auf der Anwendungsschicht in den verschiedenen Cloud-
Umgebungen eingesetzt werden kann. Somit kdnnen die Services interoperabel bleiben. Die
TOSCA-Spezifikation [17] stellt eine Sprache zur Verfiigung, die die Service-Komponenten
und ihre Beziehungen mithilfe einer Service-Topologie ("Service-Topology") beschreibt.
AuBerdem bietet diese Sprache noch die Beschreibung der Verwaltungsprozeduren an, welche
die Services mittels Orchestrierungsprozesse ("Orchestration-Processes") erstellen, dndern
und terminieren. In TOSCA werden diese Prozesse als Pliane [29] [44] [45] bezeichnet. Die
Kombination von Topologie und Orchestrierung in einem Service-Template beschreibt, was

28

2 Grundlagen

unter Deployments in verschiedenen Umgebungen bendtigt wird. Das Ziel ist das
interoperable Deployment von Cloud-Services und ihrer Verwaltung wihrend des gesamten
Lebenszyklus zu ermoglichen, wenn die Applikationen in unterschiedlichen Cloud-
Umgebungen deployed werden.

2.3.1 Einfiihrung

Unter Verwendung von TOSCA kann eine Service-Topologie modelliert werden. So wird ein
portables, ausfiihrbares Service-Modell erstellt werden. AuBBerdem beinhaltet dieses Service-
Modell alle seine Teile, aus denen es besteht und wird verwendet, um die Service-Instanzen in
der Cloud zu deployen und zu verwalten [29]. Bevor TOSCA eingefiihrt wurde, hatte sich die
Forschung auf die Migration der Services von einer Cloud-Umgebung zu einer anderen
konzentriert, ohne die Portabilitdt von Managementaspekte zu berticksichtigen [30] [31].

Das Metamodell von TOSCA ist technisch durch eine XML-Schema-Definition spezifiziert.
Es legt die Struktur eines Service-Template fest. Die wichtigen Teile zur Beschreibung einer
Service-Topologie in einem Service-Template sind: Node-Types, Relationship-Types und das
Topology-Template. Dies wird in Abbildung 2.10 dargestellt.

Service Template

/ Topology Template Node Types \
7 Node Type 5
f \ Capability Definitions
' type for g r-'eh
Relationship e §
Template /' N\, " E Requiremefit Definitions V’)
i Relationship Types
i (", Relationship Type
t | type for % %
e g
Node E o
Template - Plans L
==
J 5 L

NS

Abbildung 2.10: Strukturelle Elemente eines Service-Template und ihrer Beziechungen [17]

S

Node-Types repriasentieren die Komponenten, die im Topology-Template verwendet werden.
Ein einzelner Node-Type, wie z.B. "Datenbankserver", kann als ein Node-Template im
Topology-Template einmal oder mehrmals instanziiert werden. Relationship-Types, wie z.B.
"Hosted-On", konnen als Relationship-Templates im Topology-Template instanziiert werden,
um die Beziehung zwischen zwei bestimmten Node-Templates darzustellen. Das Topology-
Template definiert die tatsichliche topologische Struktur eines IT-Service. Es besteht aus
Node-Templates und Relationship-Templates.

Abbildung 2.11 zeigt ein Beispiel fiir einen Node-Type, der eine Datenbankserver-
Komponente definiert. Ein Node-Type kann die Definitionen der beliebigen Eigenschaften
29

2 Grundlagen

wie z.B. "Benutzername" und "Passwort" besitzen. Diese Eigenschaften werden explizit
definiert und an einen bestimmten Node-Type angehingt. Node-Templates konnen konkrete
Werte fiir diese Eigenschaften definieren. Dariiber hinaus kann ein Node-Type die Interfaces
besitzen. Ein bestimmtes Interface stellt die Operationen zur Verfligung, die die
Moglichkeiten zur Interaktion eines Knotens des angegebenen Node-Type definieren. Wir
gehen davon aus, dass ein beliebiger Node-Type ein Lebenszyklus-Interface besitzt, das
mindestens zwei Operationen zur Verfiigung stellt, wie z.B. den Knoten eines bestimmten
Node-Type zu erstellen und zu terminieren. Bis jetzt ist die Definition des Node-Type
abstrakt und zeigt noch nicht, wie eine Operation implementiert wird. So konnen ein oder
mehrere konkrete Implementation-Artifacts mit einer Operation verkniipft werden. Ein
solches Implementation-Artifact wird durch die Definition eines Artifact-Template innerhalb
des Service-Template erstellt. Dann kann das Artifact-Template als ein Implementation-
Artifact an mindestens eine Operation angehéngt werden. Eine Implementierung fiir die
Operation "create" kann beispielsweise ein Unix-Shell-Skript zur Installation des
Datenbankservers sein. Dariiber hinaus kann ein anderes Skript an dieselbe Operation
angehingt werden. Das Skript konnte die entsprechenden Aktionen auf Windows-basierten
Systemen ausfiihren. Das Anhdngen mehrerer Implementation-Artifacts an einer bestimmten
Operation verbessert die Portabilitit des Service-Template, da die Operation auf
verschiedenen Plattformen ausgefiihrt werden kann. Die Definition von Relationship-Types
ist dhnlich wie die Definition von Node-Types.

Properties Node Type Interfaces Operations Impl.

| Artifacts
‘ Llfe- __Create j
Username | '
Database Server Cyce Terrinate Shell
\ 3 i
Password I Scr|pt

Abbildung 2.11: Beispiel fiir einen Node-Type [20]

TOSCA konzentriert sich nicht nur auf die Spezifizierung der Service-Topologie. Pline
konnen definiert werden, um den gesamten Lebenszyklus einer Anwendung wie z.B.
Deployment, Wartung und Termination zu unterstiitzen. Diese Pline konnen unter
Verwendung der Sprachen wie z.B. BPMN [27] oder BPEL [28] definiert werden. Im
Rahmen dieser Arbeit sind die Plidne nicht wichtig. Diese Arbeit konzentriert sich auf das
Topologie-Modell.

Alle Dateien wie z.B. Skripte, ausfiihrbare Dateien oder Programme und Pléne, die innerhalb
des Service-Template referenziert werden, werden zusammen mit dem Service-Template in
ein Cloud-Service-Archiv (CSAR) eingebaut. Das CSAR ist komplett “self-contained”. Das
heif3t, dass das CSAR alles zum Deployment und Management eines Cloud-Service beinhaltet.
Dieser Cloud-Service wird durch das Service-Template spezifiziert und dieses Service-
Template ist auch in der entsprechenden CSAR-Datei eingebaut. Die Software, die die
CSARs verarbeiten kann, wird als TOSCA-Laufzeitumgebung (TOSCA-Container) [65]
bezeichnet.

30

2 Grundlagen

2.3.2 Service-Templates und Artifacts

Ein Artefakt reprisentiert den Inhalt, der zur Realisierung eines Deployment benotigt wird. Es
kann eine ausfiihrbare Datei (z.B. ein Skript, ein ausfiihrbares Programm, ein Image), eine
Konfigurationsdatei, eine Datendatei oder etwas (z.B. eine Library), das fiir die Ausfithrung
von anderen ausfiihrbaren Dateien benétigt wird, sein. Artefakte konnen verschiedene Arten,
z.B. EJBs oder Python-Skripte sein. Der Inhalt eines Artefakts hidngt von seiner Art ab.
Normalerweise werden deskriptive Metadaten auch zusammen mit dem Artefakt zur
Verfligung stehen. Diese Metadaten konnten erforderlich sein, um das Artefakt korrekt zu
verarbeiten, z.B. durch die Beschreibung der entsprechenden Ausfiihrungsumgebung. TOSCA
unterscheidet zwei Arten von Artefakten: Implementation-Artifacts und Deployment-Artifacts.

Ein Implementation-Artifact reprasentiert die ausfithrbare Datei einer Operation eines Node-
Type, und ein Deployment-Artifact reprisentiert die ausfithrbare Datei fiir die
Materialisierung von Instanzen eines Knoten. Der grundlegende Unterschied zwischen
Implementation-Artifacts und Deployment-Artifacts ist: (1) der Zeitpunkt, wann das Artefakt
deployed wird, und (2) durch welche Entitit und wohin das Artefakt deployed wird.

Die Operationen eines Node-Type fiihren die Verwaltungsaktionen auf dem Node-Type oder
auf den Instanzen des Node-Type durch. Die Implementierungen dieser Operationen kdnnen
als Implementation-Artifacts zur Verfiigung gestellt werden. Folglich miissen die
Implementation-Artifacts der entsprechenden Operationen in der Verwaltungsumgebung
deployed werden, bevor jede Verwaltungsoperation gestartet werden kann. Mit anderen
Worten muss eine TOSCA-konforme Umgebung in der Lage sein, die Typen der
Implementation-Artifacts zu verarbeiten. Diese Artifact-Types werden zum Ausfiihren dieser
Verwaltungsoperationen bendtigt. Eine solche Verwaltungsoperation konnte beispielsweise
die Instanziierung eines Node-Type sein.

Fiir die Instanziierung eines Node-Type wird benétigt, dass die Deployment-Artifacts in der
verwalteten Ziel-Umgebung zur Verfligung stehen. Zu diesem Zweck unterstiitzt ein TOSCA-
Container eine Reihe von Arten der Deployment-Artifacts, die er verarbeiten kann. Ein
Service-Template, das Implementation- oder Deployment-Artifacts von nicht-unterstiitzten
Typen enthélt, kann durch den Container nicht verarbeitet werden.

2.3.3 Requirements and Capabilities

TOSCA kann die Anforderungen ("Requirements") und Fahigkeiten ("Capabilities") von
Komponenten eines Service bestimmten. Beispielsweise hdngt eine Komponente von einem
Feature ab, das von einer anderen Komponente zur Verfligung gestellt wird. Oder eine
Komponente besitzt eine bestimmte Anforderung an die Hosting-Umgebung wie z.B. fiir die
Allokation von bestimmten Ressourcen.

Anforderungen und Fihigkeiten werden unter Verwendung von Requirement-Definitions und
Capability-Definitions in Node-Types modelliert. Requirement-Types und Capability-Types
werden als wiederverwendbare Einheiten definiert, sodass diese Definitionen im
Zusammenhang mit verschiedenen Node-Types verwendet werden konnen. Beispielsweise
konnte ein Requirement-Type "DatabaseConnectionRequirement” definiert werden, um die
Anforderung eines Klienten fiir eine Datenbankverbindung zu beschreiben. Dieser
Requirement-Type kann dann fiir alle Arten von Node-Types wiederverwendet werden.

31

2 Grundlagen

Beispielsweise reprisentieren solche Node-Types, dass eine Applikation eine Verbindung zu
einem Datenbankserver benotigt.

Node-Templates, die die entsprechende Node-Types mit Requirement-Definitions oder
Capability-Definitions besitzen, enthalten die Darstellungen von den jeweiligen
Anforderungen und Fihigkeiten mit spezifischem Inhalt zum jeweiligen Node-Template.
Beispielsweise stellt die in einem Node-Template représentierte Anforderung konkrete Werte
fir die im Requirement-Type definierten Eigenschaften zur Verfiigung, wihrend die
Requirement-Types nur die Metadaten der Anforderung darstellen. Dariiber hinaus kdnnen
Anforderungen und Féhigkeiten von Node-Templates in einem Topology-Template unter
Verwendung von Relationship-Templates optional verbunden werden, um anzuzeigen, dass
eine bestimmte Anforderung eines Knotens durch eine von einem anderen Knoten zur
Verfligung gestellte Fahigkeit erfiillt wird.

234 TOSCA Cloud Service ARchive (CSAR)

Um in einer bestimmten Umgebung die Durchfiihrung und die Verwaltung des Lebenszyklus
einer Cloud-Anwendung zu unterstiitzen, miissen alle entsprechenden Artefakte in dieser
Umgebung verfiigbar sein. Das heifit, dass neben dem Service-Template der Cloud-
Anwendung die Deployment-Artifacts und die Implementation-Artifacts in dieser Umgebung
verfligbar sein miissen. Um die Verfiigbarkeit von allen genannten Elementen zu garantieren,
definiert diese Spezifikation ein entsprechendes Archiv-Format namens Cloud-Service-
Archive (CSAR). Abbildung 2.12 zeigt die Struktur einer CSAR-Datei.

r.-/ TOSCA-Metadata
E/ Definitions

Abbildung 2.12: Die Struktur einer CSAR-Datei
32

2 Grundlagen

Ein CSAR ist eine Zipdatei, die mindestens zwei Verzeichnisse enthélt: "TOSCA-Metadata"
und "Definitions". Darliber hinaus konnen andere Verzeichnisse in einer CSAR-Datei
enthalten sein, d.h., der Ersteller einer CSAR-Datei hat die Freiheit, die Inhalte einer CSAR-
Datei und die Strukturierung dieser Inhalte den Cloud-Anwendungen entsprechend zu
definieren.

Das Verzeichnis "TOSCA-Metadata" enthilt die Metadaten, welche die anderen Inhalte der
CSAR-Datei beschreiben. Diese Metadaten werden als "TOSCA-Metadatei" bezeichnet.
Diese Datei besitzt den Dateinamen "TOSCA.meta".

Das Verzeichnis "Definitions" enthilt ein oder mehrere TOSCA-Definitions-Dokumente
(Dateiendung ".tosca"). Diese Definitions-Dateien enthalten in der Regel Definitionen
beziiglich der Cloud-Anwendung des CSAR. Dariiber hinaus kann eine CSAR-Datei nur die
Definition der Elemente fiir Wiederverwendung in anderen Kontexten enthalten.
Beispielsweise konnte eine CSAR-Datei verwendet werden, um eine Reihe von Node-Types
und Relationship-Types mit ihren jeweiligen Implementierungen zu verpacken, die dann von
Service-Templates in anderen CSAR-Dateien verwendet werden konnen. In den Fillen, wo
eine komplette Cloud-Anwendung in einer CSAR-Datei verpackt ist, muss eins der TOSCA-
Definitions-Dokumente im Verzeichnis "Definitions" eine Definition fiir Service-Template
enthalten, die die Struktur und das Verhalten der Cloud-Anwendung definiert.

2.3.5 TOSCA-Definitions-Dokument

Alle Elemente, die zum Definieren eines TOSCA Service-Template nétig sind, wie z.B.
Node-Type-Definitionen, Relationship-Type-Definitionen sowie Service-Templates selbst,
sind Teil eines TOSCA-Definitions-Dokuments. Dieses Unterkapitel beschreibt die
allgemeine Struktur eines TOSCA-Definitions-Dokuments.

Der XML-Ausschnitt 2.1 beschreibt ein Pseudo-Schema, das die XML-Syntax eines TOSCA-
Definitions-Dokuments definiert. Im Folgenden werden nur die wichtigen Elemente
besprochen, die diese Arbeit betreffen.

"?7" bedeutet ein optionales Element oder Attribut.

"*" bedeutet null oder mehrere Elemente bzw. Attribute.
"+" bedeutet ein oder mehrere Elemente bzw. Attribute.
e

bedeutet Auswéhlen. Zum Beispiel zeigt "ajb" eine Wahl zwischen "a" und "b".

"(" und ")" werden verwendet, um den Rahmen der Operatoren "?", "*" "+" und "|"
anzugeben.

Definitions: Das Element ist das Wurzelelement eines TOSCA-Definitions-Dokuments.

Import: Das Element deklariert eine Abhéngigkeit von externen TOSCA-Definitionen, XML-
Schema-Definitionen oder WSDL-Definitionen. Eine beliebige Anzahl von Elementen Import
konnten als Kindelemente des Elements Definitions erscheinen.

33

2 Grundlagen

ServiceTemplate: Das Element spezifiziert ein komplettes Service-Template fiir eine Cloud-
Anwendung. Ein Service-Template enthilt eine Definition des Topology-Template der Cloud-
Anwendung sowie eine beliebige Anzahl von Plénen. Innerhalb des Service-Template kdnnen
alle Typ-Definitionen wie z.B. Node-Types und Relationship-Types verwendet werden. Diese
Typ-Definitionen werden in demselben oder im importierten Definitions-Dokument definiert.

01 <Definitions id="xs:ID"

02 name="xs:string"?

03 targetNamespace="xs:anyURI">

04

05 <Extensions>

06 <Extension namespace="xs:anyURI"

07 mustUnderstand="yes|no"?/> +

08 </Extensions> ?

09

10 <Import namespace="xs:anyURI"?

11 location="xs:anyURI"?

12 importType="xs:anyURI" /> *

13

14 <Types>

15 <xs:schema .../> *

16 </Types> ?

17

18 (

19 <ServiceTemplate> ... </ServiceTemplate>

20 |

21 <NodeType> ... </NodeType>

22 |

23 <NodeTypeImplementation> ... </NodeTypelImplementation>

24 |

25 <RelationshipType> ... </RelationshipType>

26 |

27 <RelationshipTypeImplementation>...
</RelationshipTypeImplementation>

28 |

29 <RequirementType> ... </RequirementType>

30 |

31 <CapabilityType> ... </CapabilityType>

32 |

33 <ArtifactType> ... </ArtifactType>

34 |

35 <ArtifactTemplate> ... </ArtifactTemplate>

36 |

37 <PolicyType> ... </PolicyType>

38 |

39 <PolicyTemplate> ... </PolicyTemplate>

40) +

41

42 </Definitions>

Ausschnitt 2.1: XML-Syntax eines TOSCA-Definitions-Dokuments

NodeType: Das Element spezifiziert einen Typ des Knotens, der als ein Typ fiir die Node-
Templates eines Service-Template referenziert werden kann.

34

2 Grundlagen

NodeTypelmplementation: Das Element spezifiziert die Implementierung des Verwaltbarkeit-
Verhaltens ("Manageability Behavior") eines Node-Type, der als ein Typ der Node-Templates
eines Service-Template referenziert werden kann.

RelationshipType: Das Element spezifiziert einen Typ der Beziehung ("Relationship"), der als
ein Typ fiir die Relationship-Templates eines Service-Template referenziert werden kann.

RelationshipTypelmplementation: Das Element spezifiziert die Implementierung des
Verwaltbarkeit-Verhaltens ("Manageability Behavior") eines Relationship-Type, der als ein
Typ der Relationship-Templates eines Service-Template referenziert werden kann.

RequirementType: Das Element spezifiziert einen Typ der Anforderung ("Requirement"), der
in den entsprechenden Node-Types deklariert wird.

CapabilityType: Das Element spezifiziert einen Typ der Féhigkeit ("Capability"), der in den
entsprechenden Node-Types deklariert wird.

ArtifactType: Das Element spezifiziert einen Typ des Artefakts, das innerhalb eines Service-
Template verwendet wird. Beispielsweise konnten Artifact-Types die Anwendungsmodule
(z.B. die Dateien mit der Dateiendung ".war" oder ".ear"), die Betriebssystem-Pakete (z.B.
RPMs) oder die Image-Dateien von virtuellen Maschinen (z.B. die Dateien mit der
Dateiendung ".ova") sein.

ArtifactTemplate: Das Element spezifiziert ein Template, das ein Artefakt beschreibt. Dieses
Artefakt wird durch Teile eines Service-Template referenziert. Beispielsweise konnte das
installierbare Artefakt fiir einen Anwendungsserver als ein Artifact-Template definiert werden.

Ein TOSCA-Definitions-Dokument muss mindestens eines der Elemente ServiceTemplate,
NodeType, NodeTypelmplementation, RelationshipType, RelationshipTypelmplementation,
RequirementType, CapabilityType, ArtifactType, ArtifactTemplate, PolicyType, oder
PolicyTemplate definieren. Es kann aber beliebig viele dieser Elemente in einer beliebigen
Reihenfolge definieren.

Diese Technik unterstiitzt eine modulare Definition von Service-Templates. Beispielsweise
kann ein Definitions-Dokument nur die Definitionen von Node-Type und Relationship-Type
enthalten, die dann in ein anderes Definitions-Dokument importiert werden kénnen. Das
zweite Definitions-Dokument definiert dann nur ein Service-Template und verwendet die
importierten Node-Types und Relationship-Types. Ebenso konnen Node-Type-Properties in
separaten XML-Schema-Definitions-Dokumenten definiert werden, die bei dem Definieren
eines Node-Type importiert und referenziert werden.

35

2 Grundlagen

36

3 Anforderungen an ein automatisches Verfahren

3 Anforderungen an ein automatisches Verfahren

Die Hauptaufgabe der Arbeit ist die Entwicklung eines Verfahrens, mit dem aus den von den
DevOps-Communities verdffentlichten Artefakten die entsprechenden TOSCA Service-
Templates moglichst automatisch erstellt werden konnen. Solche Artefakte konnen durch
verschiedene DevOps-Ansitze erstellt werden. Im Grundlagenkapitel wurden zwei Beispiele
fiir die DevOps-Ansitze dargestellt: Chef (Unterkapitel 2.1) und Juju (Unterkapitel 2.2). Da
diese Werkzeuge wie Chef und Juju eigene Eigenheiten besitzen, werden die Artefakte auf
verschiedene Art und Weise generiert. Das heif3t, dass die inneren Strukturen dieser Artefakte
unterschiedlich sind. Wegen der Unterschiede dieser DevOps-Ansitze ergeben sich jedoch
viele Schwierigkeiten bei der Entwicklung des Verfahrens. Deshalb wird eine hauptsidchliche
Anforderung an das Verfahren gestellt, die Eigenheiten verschiedener Ansétze wie Chef und
Juju sowie ihre Artefakte zu abstrahieren, um diese Unterschiede verbergen zu konnen.
AuBerdem folgen daraus zwei Anforderungen: (1) Das Verfahren zur Erzeugung von
TOSCA-NodeTypes, Relationship-Types und Service-Templates soll moglichst
vollautomatisch sein. (2) Verschiedene Artefakttypen sollen miteinander kombiniert werden.
Beispielsweise konnen sich zwei TOSCA Node-Types in einem Topology-Template
kombinieren lassen. Ein Node-Type wurde aus einem Juju-Charm "WordPress" generiert und
beinhaltet das Charm. Der andere wurde aus einem Chef-Cookbook "mysql" generiert und
beinhaltet das Cookbook. Im Folgenden wird die Haupanforderung ausfiihrlich vorgestellt.

3.1 Abstraktion der Eigenheiten verschiedener DevOps-Ansitze

Um ein automatisches Verfahren zu ermdglichen, werden zwei Abstraktion-Arten besprochen:
Prozessabstraktion und Datenabstraktion. Die Prozessabstraktion bedeutet im Rahmen dieser
Arbeit die Abbildung der FElemente der Quelle auf die Elemente des Zieles. Die
Voraussetzung fiir die Abbildung ist, die dquivalenten Elemente zwischen der Quelle und dem
Ziel zu finden. Damit wird garantiert, dass ein entsprechendes Ziel-Element aus einem
bestimmten Quelle-Element generiert werden kann. In unserem Fall sind die Quellen die
Artefakte (z.B. Chef-Cookbooks und Juju-Charms), die von verschiedenen DevOps-Ansdtzen
erstellt werden. Das Ziel ist ein TOSCA Service-Template. Die Hauptaufgabe fiir die
sogenannte Prozessabstraktion ist, die Elemente aus Chef- oder Juju-Artefakten zu den
Elementen im TOSCA Service-Template zu transformieren. Die konkreten Konzepte dafiir
werden im Kaptiel 4 ausfiihrlich dargestellt.

Die Datenabstraktion bedeutet im Rahmen dieser Arbeit, durch Datenkapselung komplexe
Objekte abstrakt darzustellen. Die konkrete Aufgabe besteht darin, die komplexe Struktur der
von den DevOps-Ansitzen erstellten Artefakte zu modellieren. Im Grundlagenkapitel werden
zwei verschiedene DevOps-Ansitze (Chef als ein Konfigurationsmanagementwerkzeug und
Juju als ein Service-Orchestrierungswerkzeug) vorgestellt. Durch diese Ansétze konnen die
Artefakte von verschiedenen Typen generiert werden. Um die Unterschiede dieser Artefakte
verbergen zu konnen, werden diese Artefakte abstrahiert. Das Ergebnis der Abstraktion ist,
dass fiir jeden Artefakttyp ein entsprechendes abstraktes Modell generiert wird. Folglich
findet die Transformation von diesen Artefakten in TOSCA Service-Templates auf einer
abstrakten Modell-Ebene statt. Die Modell-Transformation von den DevOps-Anétzen (Chef
und Juju) hin zu TOSCA wird im Unterkapitel 3.3 ausfiihrlich erldutert.

37

3 Anforderungen an ein automatisches Verfahren

3.2 Grenzen und Einschrinkungen

Im letzten Unterkapitel wurde die Anforderung an das automatische Verfahren dargestellt.
Das heiflt, dass die Eigenheiten verschiedener DevOps-Ansitze abstrahiert werden, um ihre
Unterschiede zu verbergen. So konnen die abstrakten Modelle fiir die verschiedenen DevOps-
Ansitze erstellt werden. Dabei kdnnen einige Einschrinkungen entstehen. Die Transformation
zwischen zwei Modellen ist tatsdchlich die Transformation zwischen den &dquivalenten
Komponenten in zwei Modellen. Falls zwei Modelle das dhnliche Metamodell besitzen, das
heiflt, dass sie die dhnliche Struktur besitzen und all ihre Komponenten dquivalent sind, dann
ist es moglich, durch ein automatisches Verfahren die Modell-Transformation zu erméglichen.
Beispielsweise hat Juju als ein Service-Orchestrierungswerkzeug das dhnliche Metamodell
wie TOSCA. Deshalb kann eine dquivalente Modell-Transformation zwischen Juju und
TOSCA einfach ermdglicht werden. Falls zwei Modelle kein dhnliches Metamodell besitzen,
das heif3t, dass es vielleicht in einem Modell ein dquivalenter Teil fehlt, dann wird die Modell-
Transformation mithilfe eines automatischen Verfahrens beschrinkt. Beispielsweise werden
keine Beziehungen zwischen den Chef-Cookbooks explizit definiert. Deshalb konnen Chef-
Cookbooks durch ein automatisches Verfahren zu Relationship-Types im TOSCA Service-
Template nicht transformiert werden. Im folgenden Unterkapitel werden zwei Beispiele fiir
die Modell-Transformation beschrieben.

3.3 Modell-Transformation

Dieses Unterkapitel befasst sich mit zwei Beispielen fiir die Modell-Transformation. Zuerst
wird die Modell-Transformation von Chef als ein Konfigurationsmanagementwerkzeug nach
TOSCA dargestellt. Dann wird die Modell-Transformation von Juju als ein Service-
Orchestrierungswerkzeug nach TOSCA besprochen.

3.3.1 Modell-Transformation von Chef nach TOSCA

Aus den vorigen Inhalten wissen wir, dass TOSCA zur Realisierung vom Modell-getriebenen
Cloud-Management verwendet wird, indem das Service-Topologie-Modell ("Service-
Template") auf einer hoheren Ebene spezifiziert wird. Solche Service-Topologie-Modelle von
TOSCA spezifizieren grundsitzlich die Graphen. Diese Graphen bestehen aus den Knoten
und den Beziehungen zwischen den Knoten, um die ganze Struktur flir das Deployment eines
Service zu bestimmen. In TOSCA werden die Beziechungen und die Knoten als separate
Topologie-Modell-Komponenten explizit modelliert. Um dies genauer zu formulieren,
beschreibt eine solche Spezifikation das Topology-Template, die Node-Types und die
Relationship-Types. Dariiber hinaus miissen die Implementation-Artifacts auf der unteren
Ebene an die Operationen von Node-Types und Relationship-Types angehingt werden, um
die Funktionalitdt dieser Operationen wie die Installierung und die Konfiguration einer
bestimmten Software-Komponente zu realisieren. Aber TOSCA konzentriert sich nicht auf
die Aspekte der unteren Ebene, wie z.B. die Implementation-Artifacts auf der unteren Ebene.
Der geradlinige Ansatz ist, Shell-Skripte zu implementieren, um die Software-Komponenten
zu installieren und zu konfigurieren. Da Shell-Skripte fiir die Ausfilhrung der einfachen
Aufgaben auf einer spezifischen Plattform verwendet werden sollen, wire eine
plattformunabhingige Skriptsprache wie Python oder Ruby eine bessere Wahl, um die
portablen Artefakte zu erstellen.

38

3 Anforderungen an ein automatisches Verfahren

Chef als ein beliebtes Konfigurationsmanagementwerkzeug kann diesen Schwachpunkt
ausgleichen. Fiir Chef gibt es schon viele Konfigurationsdefinitionen wie z.B. Cookbooks fiir
den Apache-Webserver und den MySQL-Datenbankserver, die bereits verfligbar sind, um
viele Software-Komponenten zu installieren und zu konfigurieren. Da diese
Konfigurationsdefinitionen durch die plattformunabhéngige Skriptsprache "Ruby" und eine
interne DSL geschrieben werden, sind sie portabel und konnen als die Implementation-
Artifacts auf der unteren Ebene von TOSCA dienen. Aulerdem konnen keine expliziten
Beziehungen zwischen diesen Konfigurationsdefinitionen definiert werden, da es kein
ganzheitliches Service-Topologie-Modell in Chef gibt. Folglich muss nur ein Schritt
durchgefiihrt ~werden, um die von der Chef-Community verdffentlichten
Konfigurationsdefinitionen zu den TOSCA-konformen Topologie-Modell-Komponenten zu
verwandeln. Aus jedem Chef-Cookbook muss ein Node-Type in TOSCA generiert werden.
Die Relationship-Types konnen jedoch in TOSCA nicht erzeugt werden, weil die
entsprechenden Beziehungen zwischen den Cookbooks in Chef fehlen. In Abbildung 3.1 wird
ein Beispiel fiir die Modell-Transformation von Chef nach TOSCA gezeigt.

ﬂ

Cookbook > Node Type
“WordPress"”) “WordPress”

7

~
Cookbook — Node Type

llMySQLI’ llMySQLII
P

Abbildung 3.1: Beispiel fiir Modell-Transformation von Chef nach TOSCA

In diesem Besipiel wird dargestellt, dass aus den Chef-Cookbooks "Web-Applikation" und
"Datenbankserver" zwei entsprechende Node-Types generiert werden, die die Knoten in
einem TOSCA Topologie-Modell reprasentieren. Aus der Beziehung "Die Web-Applikation
verbindet sich mit dem MySQL-Datenbankserver" wird kein Relationship-Type erzeugt, die
die entsprechende Beziehung in einem TOSCA Topologie-Modell représentieren kann. Der
Grund dafiir ist, dass in Chef keine Beziehung zwischen diesen zwei Cookbooks explizit
definiert wird. Auch wenn eine solche Beziehung zwischen ihnen implizit existieren konnte,
ist es ziemlich schwierig, aus dieser Beziehung ein entsprechender TOSCA Relationship-
Type zu generieren.

3.3.2 Modell-Transformation von Juju nach TOSCA
Aus dem Grundlagenkapitel wissen wir, dass die Juju-Community mehr als einhundert
Topologie-Modell-Komponenten als Open-Source-Software zur Verfligung stellt. Eine solche
Komponente wird ein "Charm" genannt und kann mit einer anderen Komponente kombiniert
werden, um ein Service-Topologie-Modell zu erstellen. Dieses Service-Topologie-Modell
kann in der Cloud-Umgebung instanziiert und verwaltet werden. Das heif3t, dass Juju als ein
beliebtes Service-Orchestrierungswerkzeug das dhnliche Metamodell wie TOSCA hat und das
Modell-getriebene Cloud-Management ermoglicht. Im Grunde spezifizieren die Topologie-
39

3 Anforderungen an ein automatisches Verfahren

Modelle von TOSCA und Juju die Graphen. Diese Graphen bestehen aus den Knoten und den
Beziehungen ("Relations") zwischen den Knoten, um die Struktur eines Cloud-Service zu
definieren. In TOSCA werden die Beziehungen und die Knoten als separate Topologie-
Modell-Komponenten explizit modelliert, wahrend Juju nur die Knoten als Topologie-
Modell-Komponenten spezifiziert. Folglich miissen zwei wichtige Schritte durchgefiihrt
werden, um die von der Juju-Community verdffentlichten Topologie-Modell-Komponenten
zu den TOSCA-konformen Topologie-Modell-Komponenten zu verwandeln [1]. (1) Aus
jedem Juju-Charm muss eine TOSCA-konforme Topologie-Modell-Komponente generiert
werden. Demzufolge kann jeder Knoten, der mit Juju modelliert werden kann, auch mit
TOSCA modelliert werden. Die Beziehungen zwischen diesen Knoten konnen jedoch in
TOSCA nicht modelliert werden, weil die entsprechenden Topologie-Modell-Komponenten
fehlen. (2) Deshalb miissen zusétzliche TOSCA-konformen Topologie-Modell-Komponenten
aus jeder Beziehung, die mit Juju implizit modelliert werden kann, generiert werden. In
Abbildung 3.2 wird ein Beispiel fiir die Modell-Transformation von Juju nach TOSCA
gezeigt.

Node Type

“WordPress”
Charm) /

“WordPress”

| |
1
connects to :

——p | Relationship Type
v “ConnectsTo”

Charm “MySQL”

\

Node Type
uMySQLlI

Abbildung 3.2: Beispiel fiir Modell-Transformation von Juju nach TOSCA

In diesem Beispiel wird dargestellt, dass aus den Juju-Charms "WordPress" und "MySQL"
zwei entsprechende Topologie-Modell-Komponenten generiert werden. Diese Topologie-
Modell-Komponenten reprédsentieren die Knoten in einem TOSCA Topologie-Modell
("Service-Topology"). Aus der Relation "Die WordPress-Applikation verbindet mit dem
MySQL-Datenbankserver", die in Juju implizit modelliert werden kann, wird eine separate
Topologie-Modell-Komponente erzeugt, die die entsprechende Beziehung in einem TOSCA
Topologie-Modell reprédsentieren kann.

40

4 Konzepte fiir ein automatisches Verfahren

4 Konzepte fiir ein automatisches Verfahren

In diesem Kapitel werden die Konzepte fiir das automatische Verfahren vorgestellt, mit dem
die TOSCA Service-Templates aus den von den DevOps-Communities verdffentlichten
Artefakten automatisch generiert werden. Zu den konkreten Konzepten gehoren das Konzept
fiir die Erzeugung von TOSCA Node-Types aus bestehenden Chef-Artefakten, das Konzept
fiir die Erzeugung von TOSCA Relationship-Types aus bestehenden Juju-Artefakten und das
Konzept fiir die Erzeugung von TOSCA Service-Templates durch die Orchestrierung der
generierten Node-Types und Relationship-Types.

4.1 Erzeugung von TOSCA Node-Types aus bestehenden Chef-Artefakten

Dieses Unterkapitel beschéftigt sich mit dem Konzept fiir die Generierung von TOSCA Node-
Types aus Chef-Artefakten. Im Folgenden wird beschrieben, wie die Abbildung der Elemente
in einem Chef-Cookbook zu den Elementen in einem TOSCA-Definitions-Dokument fiir
einen Node-Type realisiert wird. Die Idee ist, die dquivalenten Elemente zwischen ihnen zu
finden. Zuerst wird durch die Attribute, die in der Matadatei namens "metadata.rb" in einem
Cookbook definiert werden, ein entsprechendes Dokument fiir die Node-Type-Properties
erzeugt. Dann wird durch die anderen Informationen in dieser Matadatei ein entsprechendes
TOSCA-Definitions-Dokument flir einen Node-Type generiert. Schlieflich wird die
entsprechende CSAR-Datei erzeugt, die alle notwendigen Dokumente und Artefakte enthalt.

411 Erzeugung des Node-Type-Properties-Dokuments

In einem Cookbook oder in einem Recipe kdnnen Attribute definiert werden. Ein Attribut ist
eine bestimmte Information iiber den Knoten, wie z.B. ein Hostname, eine IP-Adresse, eine
Netzwerk-Schnittstelle, ein Dateisystem, die Anzahl der Klienten, die ein auf einem Knoten
laufender Service akzeptieren, und so weiter. Wenn ein Cookbook wéhrend des Chef-Runs
geladen wird, werden diese Attribute mit den Attributen verglichen, die bereits auf dem
Knoten vorhanden sind. Wenn die Cookbook-Attribute die hohere Prioritdt als die Default-
Attribute haben, wird Chef die Werte der neuen Attribute auf dem Knoten verwenden.

Ein TOSCA Node-Type kann durch die Node-Type-Properties die Eigenschaften (die in
Abbildung 2.10 dargestellten "Properties") einer Software-Komponente definieren. Diese
Eigenschaften werden verwendet, um die Informationen {iber eine Service-Instanz zu
speichern: die statische Information (z.B. die Hardware-Spezifikation einer virtuellen
Maschine) und die Laufzeit-Information (z.B. die IP-Adresse). Die Node-Type-Properties
konnen in separaten XML-Schema-Definitionen definiert werden, die beim Definieren eines
Node-Type importiert werden.

Es gibt eine bestimmte Beziehung zwischen den Eigenschaften des TOSCA Node-Type und
den Attributen des Chef-Cookbook. Fiir eine Interface-Operation des Node-Type wird ein
entsprechendes Artifact-Template als ein Implementation-Artifact referenziert. In unserem
Fall wird hier ein Artifact-Template des Chef-spezifischen Artifact-Type aufgerufen. Fiir die
Ausfiihrung eines Chef-spezifischen Artifact-Template werden die Werte der Attribute im
Cookbook benétigt. Um das zu verwirklichen, konnen die Eigenschaften des Node-Type (die
Node-Type-Properties) zu Cookbook-Attributen abgebildet werden. Deshalb kann aus den
Attributen in der Metadatei eines Cookbook ein entsprechendes Node-Type-Properties-

41

4 Konzepte fiir ein automatisches Verfahren

Dokument generiert werden. Das Dokument besitzt die Dateiendung ".xsd" (XML Schema
Definition) und wird zum Definieren der Struktur fiir ein XML-Element verwendet. Das
XML-Element definiert die Struktur der Node-Type-Properties. Ein Beispiel fiir das Node-
Type-Properties-Dokument, das aus den Attributen des Cookbook "mysql" generiert wurde,
wird im Anhang 1 présentiert.

4.1.2 Erzeugung von Requirement-Types und Capability-Types

Ein Requirement-Type ist eine wiederverwendbare Entitit, die eine Art Anforderung
("Requirement") beschreibt. Ein Node-Type kann deklarieren, solche Anforderungen (die in
Abbildung 2.10 dargestellten "Requirement Definitions") zu besitzen. Beispielsweise kann ein
Requirement-Type fiir eine Datenbankverbindung definiert werden. Verschiedene Node-
Types (z.B. ein Node-Type fiir eine Web-Anwendung) konnen deklarieren, eine Anforderung
fiir eine Datenbankverbindung zu besitzen.

Ein Capability-Type ist eine wiederverwendbare Entitdt, die eine Art Fahigkeit ("Capability")
beschreibt. Ein Node-Type kann deklarieren, solche Fahigkeiten (die in Abbildung 2.10
dargestellten "Capability Definitions") bereitstellen zu konnen. Beispielsweise kann ein
Capability-Type fiir einen Datenbankserver definiert werden. Verschiedene Node-Types (z.B.
ein Node-Type fiir eine Datenbank) kénnen deklarieren, die Fihigkeit eines Datenbankservers
zur Verfiigung zu stellen. Im Grunde legen die Requirement-Types die Anforderungen an
einen Node-Type fest. Im Gegensatz dazu definieren die Capability-Types die Fahigkeiten,
die ein Node-Type zur Verfiigung stellen kann.

Wir wissen, dass ein Chef-Cookbook alle erforderlichen Informationen und Ressourcen fiir
die Konfiguration eines Service oder einer Applikation enthdlt. Das heiflt, dass aus einem
Cookbook genau eine konkrete Fihigkeit, wie z.B. einen MySQL-Datenbankserver zu
konfigurieren, verwirklicht werden kann. Die Anforderungen kénnen jedoch nicht genauer im
TOSCA Topologie-Modell beschrieben werden. Der Grund dafiir ist, dass sich ein Cookbook
auf der unteren Ebene im TOSCA Topologie-Modell befindet und als ein Implementation-
Artifact fiir eine Interface-Operation eines TOSCA Node-Type verwendet wird. Deshalb kann
nur ein entsprechender Capability-Type aus einem Chef-Cookbook generiert wird.

Der XML-Ausschnitt 4.1 zeigt ein Beispiel fiir den Capability-Type beziiglich des Chef-
Cookbook "mysql".

01 <CapabilityType name="mysqgl"
02 targetNamespace="http://community.opscode.com/cookbooks/

03 mysqgl/capabilites"/>

Ausschnitt 4.1: XML-Syntax fiir den Capability-Type

Der aus dem Cookbook "mysql" generierten Node-Type stellt genau eine Fahigkeit "mysql"
zur Verfligung. Folglich wird ein entsprechender Capability-Type names "mysql" generiert.

4.1.3 Erzeugung von Artifact-Types und Artifact-Templates

Die Erzeugung von Artifact-Types und Artifact-Templates ist eine sehr wichtige Aufgabe fiir
diese Arbeit, um aus Chef-Cookbooks die entsprechenden TOSCA Node-Types zu generieren.
Artifact-Types sind wiederverwendbare Entititen und definieren Typen von Artifact-

42

4 Konzepte fiir ein automatisches Verfahren

Templates. Diese Artifact-Templates dienen als Deployment-Artifacts fiir Node-Templates
oder als Implementation-Artifacts fiir die Interface-Operationen von Node-Types und
Relationship-Types. In unserem Fall wird hier ein Artifact-Template als Implementation-
Artifact fiir die Interface-Operationen eines Node-Type referenziert. Das Artifact-Template
definiert in der Regel die Werte der Eigenschaften innerhalb des Elements Properties.
AulBerdem stellt normalerweise ein Artifact-Template eine Referenz oder mehrere Referenzen
auf das tatsdchliche Artefakt selbst zur Verfiigung. Es kann eine Datei in der CSAR-Datei
sein, welche das gesamte Service-Template enthélt. Es kann auch an einem entfernten Ort wie
einem FTP-Server verfiigbar sein.

Im Folgenden wird dargestellt, wie die Artifact-Templates und die entsprechenden Artifact-
Types aus Chef-Cookbooks generiert werden. Das heif3it, wie die Chef-Cookbooks als die
Implementation-Artifacts in ein TOSCA Service-Topologie-Modell integriert werden. Es gibt
zwel verschiedene Ansidtze [20] zur Einbettung von Chef-Cookbooks in ein Service-
Topologie-Modell: die direkte Integration und die transparente Integration.

4.1.3.1 Die direkte Integration

Der direkte Ansatz zur Einbettung von Chef-Cookbooks in ein Service-Template ist, einen
Chef-spezifischen Artifact-Type zu definieren, welche der Struktur der Artefakte "Chef-
Cookbooks" entspricht. AuBerdem konnen die Implementation-Artifacts des Chef-
spezifischen Artifact-Type von einer beliebigen TOSCA-Laufzeitumgebung bearbeitet
werden. Beliebige Typen von Implementation-Artifacts konnen durch das Erstellen einer
entsprechenden XML-Schema-Definition definiert werden. Eine TOSCA-Laufzeitumgebung,
die ein Service-Template mit diesen Implementation-Artifacts verarbeitet, muss den
entsprechenden Artifact-Type verstehen. Das heiflit, dass die TOSCA-Laufzeitumgebung den
Chef-spezifischen Artifact-Type verstehen muss, um die entsprechenden Implementation-
Artifacts verarbeiten zu kénnen.

Ein Artifact-Template wird innerhalb eines TOSCA Service-Template definiert und kann
dann als ein Implementation-Artifact fiir eine bestimmte Operation referenziert werden.
Durch den direkten Integrationsansatz konnen hier Chef-spezifische Artifact-Templates
erzeugt werden. Die TOSCA-Laufzeitumgebung muss den Inhalt des Chef-spezifischen
Artifact-Template (insbesondere den Inhalt des Elements ChefArtifactProperties) verstehen,
um die entsprechenden Aktionen durchfiihren zu kénnen. Das Element ChefArtifactProperties
wird in der XML-Schema-Definition (in der Datei "ChefArtifact.xsd") fiir den Chef-
spezifischen Artifact-Type definiert und verwendet, um die Struktur der Chef-spezifischen
Artifact-Type-Properties zu definieren. Die Datei "ChefArtifact.xsd" wird im Anhang 4
prasentiert. Alle Chef-bezogenen Informationen wie das Mapping von Node-Type-Properties
zu Cookbook-Attributen und die Run-Liste, in der die erforderlichen Recipes fiir die
Konfiguration eines Service oder einer Anwendung gelistet sind, werden im Element
ChefArtifactProperties definiert.

4.1.3.2 Die transparente Integration

Chef-Cookbooks konnen auch auf eine transparente Weise unter Verwendung des Standard-
Artifact-Type "Script Artifact" [64] in ein Service-Topologie-Modell eingebettet werden. Die
Artefakte des Type "Script Artifact" konnen von einer beliebigen TOSCA-Laufzeitumgebung
verarbeitet werden. Folglich muss die TOSCA-Laufzeitumgebung die Implementation-

43

4 Konzepte fiir ein automatisches Verfahren

Artifacts der spezifischen Artifact-Types wie die Chef-spezifische Artefakte nicht verstehen.
Dieser transparente Integrationsansatz kann in der Praxis durch die Erstellung der Wrapper-
Skripte realisiert werden. Wrapper-Skripte konnen das Konfigurationsmanagementwerkzeug
mit entsprechenden Parametern aufrufen, um auf die Konfigurationsdefinitionen in
Cookbooks zu verweisen.

TOSCA Runtime (Target Node
Environment | | T
copy | |Wrapper call 1
] Script Chef Client

Abbildung 4.1: Transparente Integration mithilfe eines Wrapper-Skripts [20]

Abbildung 4.1 zeigt, wie die Wrapper-Skripte verwendet werden, um die Operationen auf
einem Target-Knoten unter Verwendung von Chef durchzufiihren. Erstens kopiert die
TOSCA-Laufzeitumgebung das entsprechende Wrapper-Skript zu dem Target-Knoten und
triggert dann die Ausfiihrung des Wrapper-Skripts. Zusitzliche Dateien, die filir die
Ausfiihrung des Wrapper-Skripts erforderlich sind, werden auch zu den Target-Knoten
kopiert. Zweitens ruft das Wrapper-Skript den Chef-Client. Diese Wrapper-Skripte konnen als
die Implementation-Artifacts des Typs "Script Artifact" in das TOSCA Topologie-Modell
eingebettet werden.

Einige Einschrinkungen sind im Wrapper-Skript fest kodiert, wie z.B. die Konfiguration des
Chef-Client, der die Konfigurationsdefinitionen in Cookbooks verarbeitet, die Run-Liste
sowie das Mapping von Eigenschaften. Alle Chef-bezogenen Informationen sind im Wrapper-
Skript versteckt. Das fiihrt zum Verlust von Flexibilitdt, die Konfigurationsdefinitionen zu
verarbeiten, weil die TOSCA-Laufzeitumgebung nicht versteht, was in einem Wrapper-Skript
geschieht. Sie kann nicht kontrollieren, wie das Wrapper-Skript seine Arbeit ausfiihrt.
Dariiber hinaus ist es schwer, die Wrapper-Skripte portabel zu machen.

4.1.3.3 Der bevorzugte Ansatz

Fiir den zweiten Integrationsansatz sind die Chef-Spezifika des Artifact-Template fiir die
TOSCA-Laufzeitumgebung vollstindig transparent. Die Laufzeit-Implementierung muss
nichts liber Chef wissen. Alle notwendigen Aktionen zur Realisierung des Artefakts sind
jedoch im Wrapper-Skript fest kodiert. Die TOSCA-Laufzeitumgebung hat wenig Flexibilitét
bei der Durchfithrung der entsprechenden Aktionen. Die Mappings von Eigenschaften und
Parametern miissen im Wrapper-Skript versteckt sein. Im Gegensatz dazu sind fiir den
direkten Integrationsansatz diese Mappings im Artifact-Template explizit definiert. AuBerdem
wird kein Chef-Client bei dem direkten Ansatz aufgerufen. Deshalb wird der direkte
Integrationsansatz in Bezug auf Chef in dieser Arbeit bevorzugt.

Der XML-Ausschnitt 4.2 zeigt ein Beispiel fiir ein Chef-spezifisches Artifact-Template, das
einen MySQL-Datenbankserver installiert und konfiguriert. Das Beispiel zeigt die Struktur
eines Artifact-Template aus einem Chef-spezifischen Artifact-Type.

44

4 Konzepte fiir ein automatisches Verfahren

01 <ArtifactTemplate 1d="322de67d-721b-4ab5-aed4f-a280076496c2"

02 xmlns:artifacts="http://docs.oasis-open.org/

03 tosca/ns/2011/12/Artifacts™"

02 type="artifacts:ChefArtifact">

03 <Properties>

04 <artifacts:ChefArtifactProperties

05 xmlns:artifacts="http://docs.ocasis-open.org/

06 tosca/ns/2011/12/Artifacts">

07 <Cookbooks>

08 <Cookbook name="build-essential"

09 location="/files/chef/cookbooks/build-essential.zip"/>
10 <Cookbook name="openssl"

11 location="/files/chef/cookbooks/openssl.zip"/>
12 <Cookbook name="mysqgl"

13 location="/files/chef/cookbooks/mysqgl.zip"/>
14 </Cookbooks>

15 <Mappings>

16 <PropertyMapping property="/mysql/server root password"
17 cookbookAttribute="mysqgl/server root password"
18 mode="input" />

19 ..

20 </Mappings>

21 <RunList>

22 <Include>

23 <RunListEntry cookbookName="mysqgl" recipeName="server"/>
24 </Include>

25 </RunList>

26 </artifacts:ChefArtifactProperties>

27 </Properties>

28 <ArtifactReferences>

29 <ArtifactReference reference="/files/chef/cookbooks/">
30 <Include pattern="build-essential.zip"/>

31 <Include pattern="openssl.zip"/>

32 <Include pattern="mysqgl.zip"/>

33 </ArtifactReference>

34 </ArtifactReferences>

35 </ArtifactTemplate>

Ausschnitt 4.2: XML-Syntax fiir das Chef-spezifische Artefact-Template

Das Element ArtifactTemplate besitzt zwei Attribute: id und type. Das Attribut id spezifiziert
einen eindeutigen Bezeichner fiir dieses bestimmte Artifact-Template innerhalb des Service-
Template. Das Attribut type spezifiziert den Artifact-Type. Der Inhalt des Elements
Properties ist Chef-spezifisch. Die Struktur des Elements ChefArtifactProperties kann unter
Verwendung einer XML-Schema-Definition definiert werden. Sie enthélt die folgenden Teile:

45

4 Konzepte fiir ein automatisches Verfahren

Cookbooks: Jedes Cookbook, das zur Realisierung eines bestimmten Artifact-Template
erforderlich ist, wird durch ein Element Cookbook referenziert. Eingeschlossen werden hier
die Cookbooks, die innerhalb der Run-Liste direkt referenziert werden, sowie die Cookbooks,
von denen die in der Run-Liste referenzierten Cookbooks abhingig sind. Diese Cookbooks
werden durch die Abschnitte "depends" in der Metadatei eines Cookbook gezeigt.

Mappings: Werte der Node-Type-Properties konnen zu Cookbook-Attributen durch das
Element PropertyMapping abgebildet werden. Das Attribut propertyPath enthélt einen
XPath-Ausdruck, der auf eine bestimmte FEigenschaft verweist. Das Attribut
cookbookAttribute wird verwendet, um auf das entsprechende Cookbook-Attribut zu
referenzieren. Das Attribut mode spezifiziert die Richtung des Mapping und besitzt zwei
Werte "input" und "output". Der Wert "input" bedeutet, dass der Wert der Eigenschaft zum
Cookbook-Attribut zugeordnet wird, bevor die Chef-Recipes ausgefiihrt werden. Der Wert
"output" ordnet das Cookbook-Attribut zur Eigenschaft zu, nachdem die Chef-Recipes
ausgefiihrt werden.

RunList: Im Wesentlichen definiert ein Chef-spezifisches Artifact-Template, welche Recipes
in der entsprechenden Run-Liste gezeigt werden. Das Element RunList enthdlt ein
Kindelement Include. Das Element Include besteht aus mindestens einem Element
RunListEntry, das auf Recipes verweist. Die Recipes in der Run-Liste werden in der
angegebenen Reihenfolge ausgefiihrt. In der Metadatei eines Cookbook werden viele Recipes
durch die Abschnitte "recipe" gezeigt. Ein oder mehrere Recipes kdnnen ausgewihlt und zur
Run-Liste hinzugefiigt werden.

Das Element ArtifactReferences enthélt einen Verweis oder mehrere Verweise auf die Dateien,
die in die CSAR-Datei gelegt werden und fiir die Verarbeitung des Artefakts notwendig sind.
Im Beispiel wird das Cookbook "mysql" referenziert. AuBerdem werden noch zwei
Cookbooks "build-essential" und "openssl" referenziert, von denen das Cookbook "mysql"
abhingig ist.

4.1.4 Erzeugung von Node-Type und Node-Type-Implementation

Ein Node-Type ist eine wiederverwendbare Entitét, die den Typ eines Node-Template oder
von mehreren Node-Templates definiert. Das Element NodeType beziiglich eines Chef-
Cookbook besteht aus den folgenden Elementen: PropertiesDefinition, CapabilityDefinition
und Interfaces.

Der XML-Ausschnitt 4.3 zeigt ein Beispiel fiir einen Node-Type beziiglich des Chef-
Cookbook "mysql".

In dem Unterkapitel 4.1.1 wird beschrieben, dass aus den Attributen in der Metadatei eines
Cookbook ein entsprechendes Node-Type-Properties-Dokument generiert werden kann.
Durch das Element PropertiesDefinition kann die Struktur der Eigenschaften des Node-Type
wie z.B. seine Konfiguration und sein Zustand mittels XML-Schema spezifiziert werden. In
unserem Fall besitzt das Element PropertiesDefinition das Attribut element, das den Namen
eines XML-Elements angibt. Dieses XML-Element definiert die Struktur der Node-Type-
Properties.

46

4 Konzepte fiir ein automatisches Verfahren

Unterkapitel 4.1.2 zeigt, dass die aus Chef-Cookbooks generierten Node-Types keine
Anforderungen haben. Fiir jeden aus einem Chef-Cookbook generierten Node-Type sollte
genau eine Fihigkeit generiert werden. Das Element CapabilityDefinition definiert eine
bestimmte Fahigkeit, die der Node-Type zur Verfiigung stellen kann. Durch das Attribut
capabilityType kann der entsprechende Capability-Type identifiziert werden. Fiir das
Cookbook "mysql" hat beispielsweise der entsprechende Node-Type "MySQL" genau eine
Féhigkeit "mysql".

01 <NodeType name="mysgl nodetype"

02 targetNamespace="http://community.opscode.com/cookbooks">
03 <PropertiesDefinition

04 xmlns:properties="http://community.opscode.com/

05 cookbooks/mysgl/nodetype properties"
06 element="properties:mysql-properties"/>

07 <CapabilityDefinitions>

08 <CapabilityDefinition name="mysgl"

09 xmlns:capabilites="http://community.opscode.com/
10 cookbooks/mysgl/capabilites"
11 capabilityType="capabilites:mysqgl"

12 lowerBound="0" upperBound="unbounded" />

13 </CapabilityDefinitions>

14 <Interfaces>

15 <Interface

16 name="http://docs.oasis-open.org/

17 tosca/ns/2011/12/interfaces/server">

18 <Operation name="create"/>

19 </Interface>

20 </Interfaces>

21 </NodeType>

Ausschnitt 4.3: XML-Syntax fiir den Node-Type

Die Funktionen, die auf (einer Instanz von) einem entsprechenden Node-Template
durchgefiihrt werden koénnen, werden durch die Interfaces des Node-Type definiert. Das
Element Interfaces enthilt die Definitionen der Operationen, die auf (Instanzen von) dem
Node-Type durchgefiihrt werden konnen. Beispielsweise werden die Operationen wie z.B.
"install", "start", "stop" verwendet, um in der TOSCA-Umgebung den Lebenszyklus eines
Service oder einer Anwendung durchzufiihren und zu verwalten. Aber Chef befindet sich auf
der Ebene von Implementation-Artifacts in TOSCA. Es gibt bei Chef keine solchen
Lebenszyklus-Operationen. Um das Deployment eines aus einem Chef-Cookbook generierten
CSAR zu ermdglichen, wird eine Lebenszyklus-Operation "create" fiir jeden Node-Type im
Element Interface definiert. Implementation-Artifacts zur Installierung und Konfigurierung
der entsprechenden Software-Komponenten werden an diese Operation "create" angehéingt.

Eine Node-Type-Implementation beschreibt den ausfiihrbaren Code, der einen spezifischen
Node-Type implementiert. Die Node-Type-Implementation stellt eine Sammlung von
ausfiihrbaren Dateien oder Programmen zur Verfiigung, welche die Interface-Operationen
eines Node-Type (auch bekannt als Implementation-Artifacts) implementieren. Auflerdem

47

4 Konzepte fiir ein automatisches Verfahren

stellt sie eine Sammlung von ausfiihrbaren Dateien oder Programmen zur Verfiigung, die
notig sind, um die Instanzen von Node-Templates (auch bekannt als Deployment-Artifacts) zu
erstellen. Diese ausfiihrbaren Dateien oder Programme werden als separate Artifact-
Templates definiert und von den Implementation-Artifacts und den Deployment-Artifacts
einer Node-Type-Implementation referenziert.

Der XML-Ausschnitt 4.4 zeigt ein Beispiel fiir eine Node-Type-Implementation, die das
Chef-spezifische Artifact-Template (dargestellt in Unterkapitel 4.1.3.3) mit der Interface-
Operation "create" im aus dem Chef-Cookbook "mysql" generierten Node-Type verkniipfen
kann.

01 <NodeTypelmplementation

02 xmlns:cookbooks="http://community.opscode.com/cookbooks"
03 name="mysql nodetypeimplementation"

04 targetNamespace="http://community.opscode.com/cookbooks"
05 nodeType="cookbooks:mysgl nodetype">

06 <RequiredContainerFeatures>

07 <RequiredContainerFeature

08 feature="redhat |amazon|centos|debian|ubuntu| freebsd|
09 mac_os x|scientific|suse|windows"/>

10 </RequiredContainerFeatures>

11 <ImplementationArtifacts>

12 <ImplementationArtifact name="create"

13 xmlns:artifacts="http://docs.oasis-open.org/

14 tosca/ns/2011/12/Artifacts"

15 xmlns:mysgl="http://community.opscode.com/

16 cookbooks/mysgl/nodetype"

17 interfaceName="http://docs.ocasis-open.org/

18 tosca/ns/2011/12/interfaces/server"
19 operationName="create"

20 artifactType="artifacts:ChefArtifact"

21 artifactRef="mysqgl:322de67d-721b-4ab5-ae4f-a280076496¢c2"/>
22 </ImplementationArtifacts>

23 </NodeTypelImplementation>

Ausschnitt 4.4: XML-Syntax fiir die Node-Type-Implementation

Im Fall des aus dem Chef-Cookbook "mysql" generierten Node-Type wird ein entsprechendes
Implementation-Artifact fiir die Operation "create" durch das Element ImplementationArtifact
definiert. Dieses Element hat die folgenden Attribute: name, artifactType, artifactRef,
interfaceName und operationName. Das Attribut name spezifiziert den Namen des Artefakts.
Das Attribut artifactType spezifiziert den Typ des Artefakts. Das optionale Attribut
artifactRef enthdlt einen Namen, der ein Artifact-Template als ein Implementation-Artifact
identifiziert. Der Wert des Attributs artifactRef entspricht dem Wert des Attributs id im
Artifact-Template (dargestellt in Unterkapitel 4.1.3.3). Das optionale Attribut interfaceName
spezifiziert den Namen des Interface und entspricht dem Interface-Namen im entsprechenden
Node-Type. Das optionale Attribut operationName spezifiziert den Namen der Operation und
referenziert die Interface-Operation "create" im entsprechenden Node-Type. AuBerdem kann
48

4 Konzepte fiir ein automatisches Verfahren

die Node-Type-Implementation das Element RequiredContainerFeatures besitzen. Dieses
Element spezifiziert die Hinweise fiir einen TOSCA-Container, dass er eine Implementierung,
die einer bestimmten Umgebung entspricht, richtig auswihlen kann.

4.1.5 Erzeugung der entsprechenden CSAR-Datei

Aus dem Grundlagenkapitel wissen wir, dass eine TOSCA CSAR-Datei erstellt werden muss,
um die Verfiigbarkeit aller Elemente fiir eine Cloud-Anwendung in einer TOSCA-konformen
Umgebung zu garantieren. Diese CSAR-Datei enthilt alle erforderlichen Elemente fiir die
Cloud-Anwendung. Im Fall von Chef gehdren zu solchen Elementen das Node-Type-
Properties-Dokument, das TOSCA-Definitions-Dokument fiir den Node-Type, die TOSCA-
Metadatei "TOSCA.meta" sowie alle erforderlichen Artefakte wie z.B. Cookbooks und
Recipes. Aullerdem gibt es die Mdglichkeit, dass ein Cookbook von den anderen Cookbooks
abhéngig ist, welche auch in der Matadatei definiert werden. Solche Cookbooks miissen auch
zu der aus diesem Cookbook generierten CSAR-Datei integriert werden. Beispielsweise wird
in der Metadatei des Cookbook "mysql" definiert, dass dieses Cookbook von zwei anderen
Cookbooks "openssl" und "build-essential" abhéingig ist. Diese Cookbooks miissen auch zu
der aus dem Cookbook "mysql" generierten CSAR-Datei integriert werden. Wenn die
Ausfithrung von Cookbooks "openssl" und "build-essential" auch von den anderen
Cookbooks abhéngig ist, dann miissen diese entsprechenden Cookbooks in die CSAR-Datei
integriert werden. Im Fall des Cookbook "mysql" werden nur die drei Cookbooks "mysql",
"openssl" und "build-essential" in die CSAR-Datei integriert, weil die Cookbooks "openssl"
und "build-essential" von keinem Cookbook abhéngig sind.

4.2 Erzeugung von TOSCA Node-Types aus bestehenden Juju-Artefakten

In diesem Unterkapitel wird das Konzept fiir die Generierung von TOSCA Node-Types aus
Juju-Artefakten kurz dargestellt. Die Erzeugung von TOSCA Node-Types aus Juju-
Artefakten gehort nicht zum Rahmen dieser Arbeit. Es wird hier besprochen, damit die Leser
das Konzept filir die Generierung von TOSCA Relationship-Types aus Juju-Artefakten besser
verstehen konnen. Im Folgenden wird durch eine Abbildung dargestellt, wie ein TOSCA
Node-Type aus einem Juju-Charm generiert wird. In der Abbildung 4.2 gibt es einige
gestrichelten Linien, die zeigen, dass durch eine Datei in einem Charm eine entsprechende
Datei fiir eine TOSCA CSAR-Datei generiert werden kann.

Als erster Schritt wird durch die YAML-Datei namens "config" im Charm ein entsprechendes
Node-Type-Properties-Dokument erzeugt. Einige Konfigurationsoptionen wie z.B. eine IP-
Adresse oder eine Netzwerk-Schnittstelle werden in dieser YAML-Datei definiert und vom
Charm benutzt, um die Informationen iiber eine Service-Instanz zu speichern. Solche
Konfigurationsoptionen entsprechen den Eigenschaften ("Properties") des TOSCA Node-
Type. Eine Hook-Datei wird hier in einem Artefakt-Template definiert und als ein konkretes
Implementation-Artifact fiir eine Interface-Operation des Node-Type aufgerufen. Fiir die
Ausfihrung eines Hooks werden die Werte der Konfigurationsoptionen bendtigt. Deshalb
brauchen wir ein Node-Type-Properties-Dokument, in dem die entsprechenden Eigenschaften
fiir die Ausfithrung dieser "Hook" Artefakt-Templates definiert werden. Die Node-Type-
Properties konnen in separaten XML-Schema-Definitionen definiert werden, die beim
Definieren eines Node-Type importiert werden. Es gibt noch die Mdglichkeit, dass es keine

49

4 Konzepte fiir ein automatisches Verfahren

YAML-Datei "config" im Charm gibt. Das bedeutet, dass kein entprechendes Node-Type-
Properties-Dokument generiert werden muss.

——

/Juju-Charm “mysql” R
S s |
config.yaml I
= |
' I
“install” “start” I ee |
skript skript
P 4 p 4 | I
N ' J !
| |
| I
| / TOSCA Node-Type “mysql” v \
|

' 1 Requirements
. | &capabilities ,.__!

Lebenszyklus-Interface

_________ Skrlpt Operation Skrlpt Operation
|nsta||” “start”
V

- /

Abbildung 4.2: Beispiel fiir Erzeung vom TOSCA Node-Type aus Juju-Charm "MySQL"

Der zweite Schritt ist die Generierung eines TOSCA-Definitions-Dokuments fiir einen Node-
Type. Zuerst konnen durch die Informationen iiber die Abschnitte "requires" und "provides"
in der Datei "metadata.yaml" vom Charm die entsprechenden Elemente RequirementType und
CapabilityType fir das TOSCA-Definitions-Dokument generiert werden. AuBBerdem kdnnen
die entsprechenden Elemente ArtifactType und ArtifactTemplate fiir die Interface-Operationen
fiir den Lebenszyklus eines Cloud-Service erzeugt werden, wenn in dem Verzeichnis "hooks"
die Dateien wie z.B. "install", "start" und "stop" vorhanden sind. Hier wird ein Standard-
Artifact-Type "Script-Artifact" definiert. Die Artefakte des Typs “Script-Artifact” kdnnen von
einer beliebigen TOSCA-Laufzeitumgebung verarbeitet werden. Um die tatsdchlichen Hooks
aufzurufen, werden die zusitzlichen Wrapper-Skripte als die tatsdchlichen Artifact-Templates
vom Typ "Script-Artifact" erstellt. Der Grund dafiir ist, dass nicht bekannt ist, in welcher
Skriptsprache diese Hook-Dateien implementiert wurden. Bei TOSCA muss man definieren,
um welche Art von Skript (z.B. Shell oder Python) es sich handelt. Deswegen braucht man
die zusitzliche Datei "install.sh" als ein Wrapper-Skript, um die Hook-Datei "install"
aufzurufen. Dasselbe gilt auch fiir "start" und "stop" [20]. Schlieflich werden durch die
vorher erzeugten FElemente die entsprechenden Elemente NodeType und
NodeTypelmplementation generiert. Das Element NodeType beziiglich Juju besteht aus den
folgenden Elementen: PropertiesDefinition, RequirementDefinition, CapabilityDefinition und
Interfaces. Durch das Element PropertiesDefinition kann ein XML-Element angegeben
werden, welches die Struktur der Node-Type-Properties definiert. Die Elemente
RequirementDefinition und CapabilityDefinition konnen durch die entsprechenden Elemente
RequirementType und CapabilityType generiert werden. Es gibt bei Juju die Lebenszyklus-

50

4 Konzepte fiir ein automatisches Verfahren

Operationen wie z.B. "install", "start" und "stop". Um das Deployment eines aus Juju
generierten CSAR zu ermoglichen, muss jede Lebenszyklus-Operation im Element Interface
im Node-Type definiert werden. Solche Operationen werden verwendet, um in der TOSCA-
Umgebung den Lebenszyklus eines Service oder einer Anwendung zu verwalten. Eine Node-
Type-Implementation implementiert einen entsprechenden Node-Type. Das Element
NodeTypelmplementation kann durch das Element ImplementationArtifact die Verweise auf
die konkreten Artifact-Templates fiir die Lebenszyklus-Operationen im Node-Type definieren.
Auflerdem kann das Element RequiredContainerFeatures den Hinweis fiir den TOSCA-
Container spezifizieren, dass die Hooks aus Juju als die konkreten Artifact-Templates nur
unter Ubuntu-Linux ausgefiihrt werden kénnen.

Ergidnzung zum zweiten Schritt: Moglicherweise konnte es den Abschnitt "peers" in der Datei
"metadata.yaml" gegeben. Dieser Abschnitt definiert in Juju eine Art Relation "Peer-Relation".
Da die Peer-Relationen zwischen den Service-Einheiten innerhalb eines Service automatisch
hergestellt werden, kann fiir die Peer-Relation ein Peers-Interface im entsprechenden Node-
Type generiert werden. Das heiflt, dass aus dem Abschnitt "peers" ein Interface namens
"peers" generiert werden kann. Das Interface "peers" wird wie das Lebenszyklus-Interface als
ein Element im Element NodeType definiert. Die Elemente, auf die sich das Inferface "peers"
bezieht, sind die Elemente ArtifactType, ArtifactTemplate, Interface (im Element NodeType)
und ImplementationArtifact (im Element NodeTypelmplementation). Das Konzept fiir die
Generierung vom Peers-Interface ist genauso wie das Konzept fiir die Generierung vom
Lebenszyklus-Interface, das oben besprochen wurde.

Als letzter Schritt muss eine entsprechende CSAR-Datei generiert werden. Diese Datei enthélt
die vorher generierten Node-Type-Properties-Dokument und TOSCA-Definitions-Dokument
fiir den Node-Type sowie die TOSCA-Metadatei "TOSCA.meta". AuBlerdem muss sie alle
originale Dateien (alle Hooks und die anderen Dateien) in der Charm-Datei enthalten. Diese
Dateien werden noch als die entsprechenden Artefakte verwendet, um in der TOSCA-
Umgebung den Lebenszyklus eines Service oder einer Anwendung zu verwalten. Wo sich
diese Dateien in der CSAR-Datei befinden sollen, kann der Ersteller der CSAR-Datei selbst
entscheiden. In unserem Fall werden sie alle in dem Verzeichnis "Files" gespeichert.

4.3 Erzeugung von TOSCA Relationship-Types aus bestehenden Juju-
Artefakten

Dieses Unterkapitel beschiftigt sich mit dem Konzept fiir die Generierung von TOSCA
Relationship-Types aus Juju-Artefakten. Aus dem Grundlagenkapitel wissen wir, dass es in
Juju zwei Arten von Beziehungen gibt: Peer-Relation und Require/Provide-Relation. Da sich
die Peer-Relation nur auf ein einzelnes Charm bezieht, kann fiir die Peer-Relation ein
Interface namens "peers" im entsprechenden TOSCA Node-Type generiert werden. Das
konkrete Konzept dafiir wurde in Unterkapitel 4.2 besprochen. Im Folgenden wird
beschrieben, wie ein TOSCA Relationship-Type aus der Beziehung zwischen zwei Juju-
Charms generiert wird. Diese Beziehung wird in Juju implizit definiert und als
"Require/Provide-Relation" bezeichnet. Das heif3t, wie die Abbildung der Elemente in zwei
Juju-Charms mit einer bestimmten Beziehung zu den Elementen in einem TOSCA-
Definitions-Dokument fiir einen Relationship-Type realisiert wird. Die Idee ist, die
dquivalenten Elemente zwischen ihnen zu finden. Zuerst wird ein entsprechendes TOSCA-

51

4 Konzepte fiir ein automatisches Verfahren

Definitions-Dokument fiir einen Relationship-Type generiert. Zu diesem Dokument gehoren
die Definitionen der Elemente ArtifactType, ArtifactTemplate, RelationshipType und
RelationshipTypelmplementation. Dann wird die entsprechende CSAR-Datei erzeugt, die alle
notwendigen Dokumente und Artefakte enthélt.

4.3.1 Erzeugung von Artifact-Types und Artifact-Templates

Artifact-Types sind wiederverwendbare Entititen und definieren Typen von Artifact-
Templates. Im Fall von Juju wird hier das Artifact-Template als Implementation-Artifact fiir
die Interface-Operationen des Relationship-Type referenziert. Die tatsdchlichen Artefakte, auf
die das Artifact-Template verweist, sind die sogenannten Relation-Hooks. Die in Hooks
definierten Skripte verwenden eine Reihe von Befehlen und Umgebungsvariablen, die nur auf
der von Juju verwalteten virtuellen Maschine verfiigbar sind. Diese Einschrinkung kann
durch das Erzeugen von Wrapper-Skripten ausgeglichen werden. Diese Wrapper-Skripte
bereiten die Ausfiihrungsumgebung vor und rufen dann die tatsdchlichen Skripte in Juju-
Charms auf. Folglich muss die TOSCA-Laufzeitumgebung die Implementation-Artifacts der
spezifischen Artifact-Types wie die Juju-Artefakte nicht verstehen. Das heiflit, dass die
Laufzeit-Implementierung von TOSCA nichts iiber Juju wissen muss: z.B. in welcher
Skriptsprache diese Hook-Dateien implementiert wurden. Dieser Ansatz wird als transparente
Integration bezeichnet und in Unterkapitel 4.1.4.2 ausfiihrlich erldutert.

Zuerst wird ein Standard-Artifact-Type "Script Artifact" definiert. Die Artefakte des Typs
"Script Artifact" kdnnen von einer beliebigen TOSCA-Laufzeitumgebung verarbeitet werden.
Dann werden die zusdtzlichen Wrapper-Skripte erstellt, um die tatsédchlichen Relation-Hooks
aufzurufen. Ein Beispiel ist, dass sich die Anwendung "WordPress" mit dem Datenbankserver
"MySQL" verbindet. Aus dem Abschnitt "requires" in der Datei "metadata.yaml" im Charm
"WordPress" erfihrt man, dass die Anwendung "WordPress" eine Verbindung mit dem
Datenbankserver "MySQL" bendtigt. Der Beziehungsname ist "db" und der Interface-Name
ist "mysql". Der Beziehungsname wird verwendet, um die entsprechenden Hooks zu finden:
"db-relation-changed", "db-relation-departed" und "db-relation-broken". Ebenso erfihrt man
aus dem Abschnitt "provides" in der Datei "metadata.yaml" im Charm "MySQL", dass dieses
Charm eine Verbindung mit dem Datenbankserver "MySQL" zur Verfligung stellt. Der
Beziehungsname ist "db" und der Interface-Name ist "mysql". Der Bezichungsname wird
verwendet, um die entsprechenden Hooks zu finden: "db-relation-joined" und "db-relation-
broken". Der Interface "mysql" bezeugt, dass eine Beziehung zwischen des Charm
"WordPress" und des Charm "MySQL" entstehen kann. Wenn "WordPress" mit "MySQL"
verbunden ist, werden die Hooks "db-relation-changed", "db-relation-departed" und "db-
relation-broken" auf der WordPress-Seite aufgerufen. Entsprechende Hooks "db-relation-
joined" und "db-relation-broken" werden auf der MySQL-Seite aufgerufen. Als Ergebnis wird
fiir jedes Relation-Hook eine entsprechende Wrapper-Datei erstellt. Diese Wrapper-Dateien
konnen unter Verwendung der Implementation-Artifacts des Typs "Script Artifact" in das
TOSCA Topologie-Modell eingebettet werden.

Der XML-Ausschnitt 4.5 zeigt ein Beispiel fiir ein Artifact-Template des Typs "Script
Artifact" beziiglich eines Wrappers, der das tatsdchliche Relation-Hook "db-relation-joined"
im Charm "MySQL" aufruft.

52

4 Konzepte fiir ein automatisches Verfahren

01 <ArtifactTemplate 1d="cc449a07-8218-4b37-9e01-3e833d5bd09%b"

02 xmlns:artifacts="http://docs.ocasis-open.org/

03 tosca/ns/2011/12/Artifacts"

02 type="artifacts:ScriptArtifact">

03 <Properties>

04 <artifacts:ScriptArtifactProperties

05 xmlns:artifacts="http://docs.ocasis-open.org/

06 tosca/ns/2011/12/Artifacts>

07 <ScriptLanguage>sh</ScriptLanguage>

08 <PrimaryScript>

09 Files/charm mysgl/tosca scripts/db-relation-joined.sh
10 </PrimaryScript>

11 </artifacts:ScriptArtifactProperties>

12 </Properties>

13 <ArtifactReferences>

14 <ArtifactReference reference="Files/charm mysgl/tosca scripts/">
15 <Include pattern="db-relation-joined.sh"/>

16 </ArtifactReference>

17 </ArtifactReferences>

18 </ArtifactTemplate>

Ausschnitt 4.5: XML-Syntax fiir das Artifact-Template vom Standard-Artifact-Type

Der Inhalt des Elements ScriptArtifactProperties beschrinkt sich auf einige generische
Metadaten in Bezug auf das entsprechende Skript. Das Element ScriptArtifactProperties wird
in der XML-Schema-Definition [64] (in der Datei "ScriptArtifact.xsd") fiir den Standard-
Artifact-Type definiert und verwendet, um die Struktur der Eigenschaften des Standard-
Artifact-Type zu definieren. Die Datei "ScriptArtifact.xsd" wird im Anhang 3 présentiert. Alle
Juju-bezogenen Informationen werden im Wrapper-Skript "db-relation-joined.sh" versteckt.
Folglich sind die Juju-Spezifika des Artifact-Template vollstindig transparent fiir die
TOSCA-Laufzeitumgebung. Das heilit, dass die Laufzeit-Implementierung nichts tiber Juju
wissen muss.

4.3.2 Erzeugung von Relationship-Type und Relationship-Type-Implementation
Ein Relationship-Type ist eine wiederverwendbare Entitét, die den Typ eines Relationship-
Template oder von mehreren Relationship-Templates definiert. Das Element
RelationshipType beziliglich zwei Juju-Charms besteht aus den folgenden Elementen:
Sourcelnterfaces, Targetlnterfaces, ValidSource und ValidTarget. Die Operationen, die auf
(einer Instanz von) einem Relationship-Template durchgefiihrt werden kdnnen, werden durch
die Interfaces des Relationship-Type definiert. Es gibt zwei Arten Interfaces fiir den
Relationship-Type: Source-Interfaces und Target-Interfaces. Das Element Sourcelnterfaces
enthédlt die Definitionen der Interfaces. Diese Interfaces konnen auf der Quelle einer
Beziehung durchgefiihrt werden. Ebenso werden die Interfaces, die im Element
Targetinterfaces definiert werden, auf dem Ziel der Beziehung durchgefiihrt werden. Die
Definitionen dieser Interfaces werden in Form von verschachtelten Elementen Inferface
angegeben. Der Inhalt des Elements [Interface ist dhnlich wie der Inhalt des Elements
53

4 Konzepte fiir ein automatisches Verfahren

Interface im Node-Type (Unterkapitel 4.1.4). Das Element ValidSource spezifiziert den Typ
des Objektes, das als Quelle fiir Beziechungen zuldssig ist. Ebenso spezifiziert das Element
ValidTarget den Typ des Objektes, das als Ziel fiir Beziechungen zuldssig ist. Der Typ der
Quelle und der Typ des Zieles miissen miteinander iibereinstimmen. Das heif3t, dass der Typ
des Zieles ein Node-Type sein muss, wenn der Typ der Quelle ein Node-Type ist.
Anderenfalls muss der Typ des Zieles ein Capability-Type sein, wenn der Typ der Quelle ein
Requirement-Type ist. AuBerdem muss dieser Capability-Type mit dem Capability-Type, der
im Attribut requiredCapabilityType des entsprechenden FElements RequirementType
spezifiziert wird, iibereinstimmen.

Der XML-Ausschnitt 4.6 zeigt ein Beispiel fiir den Relationship-Type "ConnectsTo"
beziiglich zwei Services "WordPress " und "MySQL" und entspricht dem Beispiel, das im
letzten Unterkapitel dargestellt wurde.

01 <RelationshipType name="ConnectsTo"

02 targetNamespace="http://jujucharms.com/charms/relations">
03 <Sourcelnterfaces>

04 <Interface name="http://jujucharms.com/charms/wordpress">
05 <Operation name="db-relation-changed"/>

06 <Operation name="db-relation-departed"/>

07 <Operation name="db-relation-broken"/>

08 </Interface>

09 </Sourcelnterfaces>

10 <TargetInterfaces>

11 <Interface name="http://jujucharms.com/charms/mysql">

12 <Operation name="db-relation-joined"/>

13 <Operation name="db-relation-broken"/>

14 </Interface>

15 </TargetInterfaces>

16 <ValidSource xmlns:charm="http://jujucharms.com/charms"

17 typeRef="charm:wordpress"/>

18 <ValidTarget xmlns:charm="http://jujucharms.com/charms"

19 typeRef="charm:mysql" />

20 </RelationshipType>

Ausschnitt 4.6: XML-Syntax fiir den Relationship-Type

Der Relationship-Type definiert den Typ der Beziehung "ConnectsTo". Das Element
ValidSource spezifiziert durch das Attribut typeRef, dass der Typ der Quelle dieser Beziehung
der Node-Type "WordPress" ist. Ebenso spezifiziert das Element ValidTarget, dass der Typ
des Zieles dieser Beziehung der Node-Type "MySQL" ist. Das Element Interface im Element
Sourcelnterfaces definiert die Operationen "db-relation-changed", "db-relation-departed" und
"db-relation-broken", die auf der Quelle "WordPress" dieser Beziehung aufgerufen werden,
um diese Beziehung zu verwalten und zu beenden. Ebenso definiert das Element /nferface im
Element Targetinterfaces die Operationen "db-relation-joined" und "db-relation-broken", die
auf dem Ziel "MySQL" dieser Beziehung aufgerufen werden, um diese Beziehung
herzustellen und zu beenden.

54

4 Konzepte fiir ein automatisches Verfahren

Eine Relationship-Type-Implementation beschreibt den ausfiihrbaren Code, der einen
spezifischen Relationship-Type implementiert. Die Relationship-Type-Implementation stellt
auch eine Sammlung von ausfiihrbaren Dateien oder Programmen zur Verfiigung, welche die
Interface-Operationen eines Relationship-Type implementieren. Diese ausfithrbaren Dateien
oder Programme werden als separate Artifact-Templates definiert und von den
Implementation-Artifacts einer Relationship-Type-Implementation referenziert. Im Fall von
aus Juju-Charms generierten Relationship-Types wird ein entsprechendes Implementation-
Artifact fiir jede Interface-Operation durch das Element ImplementationArtifact definiert.
Beispielsweise werden im Relationship-Type "MySQL" die Operation "db-relation-joined"
(an einer Verbindung mit dem Datenbankserver teilzunehmen) und die Operation "db-
relation-broken" (eine Verbindung mit dem Datenbankserver zu verlassen) definiert.

Der XML-Ausschnitt 4.7 zeigt ein Beispiel flir eine Relationship-Type-Implementation, die
das Artifact-Template (dargestellt in Ausschnitt 4.5) vom Typ "Script Artifact" mit der
Operation "db-relation-joined" vom Target-Interface im aus den Juju-Charms "WordPress"
und "MySQL" generierten Relationship-Type verkniipfen kann.

01 <RelationshipTypeImplementation

02 xmlns:relation="http://jujucharms.com/charms/relations"

03 name="ConnectsTo relationshiptypeimplementation"

04 targetNamespace="http://jujucharms.com/charms/relations"
05 relationshipType="relation:ConnectsTo relationshiptype">
06 <RequiredContainerFeatures>

07 <RequiredContainerFeature

08 feature="http://jujucharms.com/platform/ubuntu"/>

09 </RequiredContainerFeatures>

10 <ImplementationArtifacts>

11

12 <ImplementationArtifact name="mysgl-db-relation-joined"

13 xmlns:artifacts="http://docs.oasis-open.org/

14 tosca/ns/2011/12/Artifacts"

15 xmlns:ConnectsTo="http://jujucharms.com/charms/

16 precise/ConnectsTo/relationshiptype"
17 interfaceName="http://jujucharms.com/charms/mysqgl"

18 operationName="db-relation-joined"

19 artifactType="artifacts:ScriptArtifact"

20 artifactRef="ConnectsTo:cc449%9a07-...-9e01-3e833d5bd0%b" />
21

22 </RelationshipTypeImplementation>

Ausschnitt 4.7: XML-Syntax fiir die Relationship-Type-Implementation

Das Element [ImplementationArtifact hat die folgenden Attribute: name, artifactType,
artifactRef, interfaceName und operationName. Das Attribut name spezifiziert den Namen
des Artefakts. Das Attribut artifactType spezifiziert den Typ des Artefakts. Das optionale
Attribut artifactRef enthélt einen Namen, der ein Artifact-Template als ein Implementation-
Artifact identifiziert. Der Wert des Attributs artifactRef entspricht dem Wert des Attributs id

im Artifact-Template (dargestellt in Ausschnitt 4.5). Das optionale Attribut interfaceName
55

4 Konzepte fiir ein automatisches Verfahren

spezifiziert den Namen des Interface und entspricht dem Interface-Namen im entsprechenden
Relationship-Type. Das optionale Attribut operationName spezifiziert den Namen der
Operation und referenziert die Operation "db-relation-joined" fiir das Target-Interface im
entsprechenden Relationship-Type. AuBBerdem kann das Element RequiredContainerFeatures
den Hinweis fiir einen TOSCA-Container spezifizieren, dass die Hooks aus Juju als die
konkreten Artefakte nur unter Ubuntu-Linux ausgefiihrt werden konnen.

4.3.3 Erzeugung der entsprechenden CSAR-Datei

SchlieBlich muss eine TOSCA CSAR-Datei generiert werden. In unserem Fall enthélt diese
CSAR-Datei alle erforderlichen Elemente fiir die Beziehung zwischen zwei Services oder
Anwendungen. Zu solchen Elementen gehoren das TOSCA-Definitions-Dokument fiir den
Relationship-Type, die TOSCA-Metadatei "TOSCA.meta" sowie alle erforderlichen Artefakte.
Diese Artefakte sind die originalen Dateien (alle Hooks und die anderen Dateien) in den
Charm-Dateien. Sie werden noch als die entsprechenden Artefakte aufgerufen werden, um in
der TOSCA-Umgebung den Lebenszyklus einer Beziehung zwischen zwei Services oder
Anwendungen zu verwalten. Wo sich diese Dateien in der CSAR-Datei befinden sollen, kann
der Ersteller der CSAR-Datei selbst entscheiden. In unserem Fall werden sie alle in dem
Verzeichnis "Files" gespeichert.

4.4 Erzeugung von TOSCA Service-Templates

Dieses Unterkapitel beschiftigt sich mit dem Konzept fiir die Generierung von TOSCA
Service-Templates durch Orchestrierung der Node-Types und Relationship-Types, die auf
bestehenden Chef- oder Juju-Artefakten basieren. Um genauer auszudriicken, werden diese
Node-Types und Relationship-Types aus Chef-Cookbooks und Juju-Charms mittels der in
Unterkapitel 4.1, 4.2 und 4.3 dargestellten Konzepte generiert. Zuerst wird ein entsprechendes
TOSCA-Definitions-Dokument fiir ein Service-Template generiert. Ein Service-Template
besteht in der Regel aus zwei wichtigen Teilen: Topology-Template und Pldne. Da sich diese
Arbeit nicht auf die Pldne konzentriert, wird nur das Konzept fiir die Erzeugung des Element
TopologyTemplate besprochen. Dieses Dokument enthélt eine Reihe von Definitionen fiir die
Elemente Import und die Definition des Elements 7opologyTemplate. Das Element
TopologyTemplate besteht aus einer Reihe der Elemente NodeTemplate und
RelationshipTemplate. SchlieBlich wird die entsprechende CSAR-Datei fiir das Service-
Template erzeugt, die alle notwendigen Dokumente und Artefakte enthilt.

4.4.1 Erzeugung der Elemente Import

Durch das Element /mport konnen die externen Dokumente fiir die TOSCA-Definitionen, die
XML-Schema-Definitionen oder die WSDL-Definitionen ins Service-Template importiert
werden. Da die bestehenden Node-Types und Relationship-Types verwendet werden, um das
entsprechende Service-Template zu erzeugen, werden die TOSCA-Definitions-Dokumente
fiir die entsprechenden Node-Types und Relationship-Types importiert. Durch jeden
importierten Node-Type kann ein entsprechendes Node-Template im Service-Template
generiert werden. Dasselbe gilt auch fiir die Generierung von Relationship-Templates.

Im Folgenden wird beschrieben, wie ein TOSCA Topology-Template generiert wird. Das
Element TopologyTemplate spezifiziert die gesamte Struktur der Cloud-Anwendung, die
durch das Service-Template definiert wird. Es werden die Komponenten, aus denen diese

Cloud-Anwendung besteht, und die Beziehungen zwischen diesen Komponenten definiert.
56

4 Konzepte fiir ein automatisches Verfahren

Die Komponenten eines Service werden als Node-Templates bezeichnet und die Beziehungen
zwischen diesen Komponenten werden als Relationship-Templates bezeichnet. Als Néchstes
wird ausfiihrlich beschrieben, wie die Node-Templates und die Relationship-Templates
erzeugt werden.

4.4.2 Erzeugung von Node-Templates

Ein entsprechendes Node-Template wird durch einen importierten Node-Type generiert. Das
Element NodeTemplate spezifiziert eine bestimmte Komponente, die als ein Bestandteil in der
Cloud-Anwendung verwendet wird. Sein Attribut fype verweist auf den Node-Type, der den
Typ des Node-Template spezifiziert. Das Element NodeTemplate besteht aus den folgenden
Elementen: Properties, Requirements und Capabilities.

Der XML-Ausschnitt 4.8 zeigt ein Beispiel fiir ein Node-Template vom Node-Type
"WordPress", der aus dem Charm "WordPress" generiert wurde.

01 <NodeTemplate name="wordpress nodeTemplate"

02 id="wordpress nodeTemplate"

03 xmlns:nodeType="http://jujucharms.com/charms"

04 type="nodeType:wordpress nodetype">

05 <Properties>

06 <wordpress-properties>

07 <tuning>single</tuning>

08 <debug>no</debug>

09 <engine>nginx</engine>

10 </wordpress-properties>

11 </Properties>

12 <Requirements>

13 <Requirement name="db" id="wordpress db"

14 xmlns:requirementType="http://jujucharms.com/interfaces"
15 type="requirementType:mysql" />

16 <Requirement name="nfs" id="wordpress nfs"

17 xmlns:requirementType="http://jujucharms.com/interfaces"
18 type="requirementType:mount" />

19 <Requirement name="cache" id="wordpress cache"

20 xmlns:requirementType="http://jujucharms.com/interfaces"
21 type="requirementType:memcache" />

22 </Requirements>

23 <Capabilities>

24 <Capability name="website" id="wordpress website"

25 xmlns:capabilityType="http://jujucharms.com/interfaces"
26 type="capabilityType:http"/>

27 </Capabilities>

28 </NodeTemplate>

Ausschnitt 4.8: XML-Syntax fiir das Node-Template

Das Element Properties spezifiziert die Ausgangswerte ("Initial Values") fiir die
Eigenschaften des Node-Type (die Node-Type-Properties). Die Ausgangswerte werden durch

57

4 Konzepte fiir ein automatisches Verfahren

ein Instanz-Dokument des XML-Schemas der entsprechenden Node-Type-Properties
spezifiziert. Nicht allen Eigenschaften des Node-Type konnen die Ausgangswerte zugewiesen
werden. Das heil3it, dass einige Elemente oder Attribute in der Instanz, die das Element
Properties zur Verfiigung stellt, moglicherweise verloren gehen. Sobald das definierte Node-
Template instanziiert wurde, muss sich die XML-Darstellung der Eigenschaften des Node-
Type durch die assoziierte XML-Schema-Definition validieren lassen. Bei der Generierung
von Node-Types aus Chef- oder Juju-Artefakten wird auch das entsprechende Node-Type-
Properties-Dokument erzeugt. Dieses Dokument ist eine XML-Datei mit der Dateiendung
".xsd" und speichert die XML-Schema-Definition. Dieses XML-Schema definiert die Struktur
von XML-Dokumenten (XML-Instanzen) und ermoglicht eine Validierung. Im Beispiel wird
die XML-Instanz (das Element wordpress-properties) als Inhalt des Elements Properties
verwendet. Diese XML-Instanz wurde durch das Node-Type-Properties-Dokument erzeugt,
das durch die Datei "config.yaml" im Charm "WordPress" generiert wurde.

Das Element Requirements enthilt eine Liste der Anforderungen fiir das Node-Template.
Diese Liste entspricht der Liste der Anforderungsdefinitionen des Node-Type, der im Attribut
type des Node-Template spezifiziert wird. Das heif3it, dass eine Anforderung fiir das Node-
Template durch eine entsprechende Anforderungsdefinition des Node-Type erzeugt werden
kann. Jede Anforderung wird in einem separaten verschachtelten Element Requirement
spezifiziert.

Das Element Capabilities enthélt eine Liste der Fihigkeiten fiir das Node-Template. Diese
Liste entspricht der Liste der Fahigkeitsdefinitionen des Node-Type, der im Attribut fype des
Node-Template spezifiziert wird. Das heift, dass eine Fihigkeit fiir das Node-Template durch
eine entsprechende Féhigkeitsdefinition des Node-Type erzeugt werden kann. Jede Féahigkeit
wird in einem separaten verschachtelten Element Capability spezifiziert.

4.4.3 Erzeugung von Relationship-Templates

Ein entsprechendes Relationship-Template wird durch einen importierten Relationship-Type
generiert. Das Element RelationshipTemplate spezifiziert eine bestimmte Beziehung zwischen
den Komponenten der Cloud-Anwendung. Sein Attribut fype verweist auf den Relationship-
Type, der den Typ des Relationship-Template definiert. Das Element RelationshipTemplate
besteht aus den folgenden Elementen: SourceElement und TargetElement.

Der XML-Ausschnitt 4.9 zeigt ein Beispiel fiir ein Relationship-Template vom Relationship-
Type "ConnectsTo", der aus zwei Charms "WordPress" und "MySQL" generiert wurde.

01 <RelationshipTemplate name="ConnectsTo relationshipTemplate"

02 id="ConnectsTo relationshipTemplate"

03 xmlns:relationshipType="http://jujucharms.com/charms/relations"
04 type="relationshipType:ConnectsTo relationshiptype">

05 <SourceElement ref="wordpress nodeTemplate"/>

06 <TargetElement ref="mysql nodeTemplate"/>

07 </RelationshipTemplate>

Ausschnitt 4.9: XML-Syntax fiir das Relationship-Template

58

4 Konzepte fiir ein automatisches Verfahren

Das Element SourceElement spezifiziert die Quelle der Beziehung, die durch das aktuelle
Relationship-Template dargestellt wird. Ebenso spezifiziert das Element TargetElement das
Ziel dieser Beziehung. Im Fall, dass ein Node-Type als giiltige Quelle im Relationship-Type
definiert wird, muss ein Node-Template des entsprechenden Node-Type im Element
SourceElement referenziert werden. Dasselbe gilt auch fiir das Element TargetElement. Im
Beispiel referenziert das Element SourceElement das Node-Template "WordPress", wihrend
das Element TargetElement das Node-Template "MySQL" referenziert.

4.4.4 Erzeugung der entsprechenden CSAR-Datei

Als letzter Schritt wird eine TOSCA CSAR-Datei fiir das Service-Template generiert. Diese
CSAR-Datei enthilt nicht nur das generierte TOSCA-Definitions-Dokument fiir das Service-
Template sondern auch alle importierten TOSCA-Definitions-Dokumente fiir Node-Types
und Relationship-Types sowie die Node-Type-Properties-Dokumente fiir die entsprechenden
Node-Types. AuBlerdem beinhaltet sie die TOSCA-Metadatei "TOSCA.meta" und alle
erforderlichen Artefakte wie z.B. Chef-Cookboks, Juju-Charms und andere Ressourcen. Diese
Dateien werden in unserem Fall in dem Verzeichnis "Files" gespeichert und als tatsdchliche
Artefakte verwendet, um die entsprechenden Services oder Anwendungen und die
Beziehungen zwischen ihnen zu verwalten.

59

4 Konzepte fiir ein automatisches Verfahren

60

5 Entwurf und Implementierung

5 Entwurf und Implementierung

In Kapitel 4 wurden die Konzepte fiir das automatische Verfahren zur Erzeugung von TOSCA
Service-Templates aus den Chef- und Juju-Artefakten dargestellt. Um diese Konzepte zu
evaluieren, wird ein Prototyp entwickelt, mit dem sich alle 6ffentlich zuginglichen Chef- und
Juju-Artefakte in CSARs verwenden lassen konnen. In diesem Kapitel werden zuerst die
Analyse und der Entwurf des Prototyps besprochen. Darauf folgt die Beschreibung der
Implementierung des Prototyps.

5.1 Anforderungsanalyse

Vor dem Entwurf des Prototyps miissen die Anforderungen an den Prototyp analysiert werden.
In diesem Unterkapitel wird zunichst auf die funktionalen Anforderungen an den Prototyp
eingegangen. Darauf folgt eine Beschreibung der nicht-funktionalen Anforderungen.
SchlieBlich werden zusétzliche Funktionalititen des Prototyps dargestellt.

5.1.1 Funktionale Anforderungen
Die funktionalen Anforderungen an den Prototyp werden in diesem Unterkapitel erldutert.
Der Prototyp soll folgende Anforderungen erfiillen:

Eine TOSCA CSAR-Datei fiir den Node-Type soll durch eine URL als Eingabe des Prototyps
erzeugt werden. Die URL lokalisiert eine Ressource wie z. B. ein Chef-oder ein Juju-Artefakt.
Neben dem TOSCA-Definitions-Dokument fiir den Node-Type und dem entsprechenden
Node-Type-Properties-Dokument soll diese generierte CSAR-Datei noch alle entsprechenden
Chef- oder Juju-Artefakte enthalten. Diese Arbeit konzentriert sich nur auf die Erzeugung von
TOSCA Node-Types aus Chef-Artefakten. Die Erzeugung von TOSCA Node-Types aus Juju-
Artefakten wurde in der Studienarbeit "Vorlagen flir das Deployment von Services und
Applikationen in der Cloud" [33] dargestellt.

Eine TOSCA CSAR-Datei fiir den Relationship-Type soll durch zwei URLs als Eingabe des
Prototyps erzeugt werden. Jede URL lokalisiert in diesem Fall ein Juju-Artefakt. AuBBerdem
muss garantiert werden, dass eine implizite Beziehung zwischen diesen zwei Juju-Artefakten
bestehen soll. Neben dem TOSCA-Definitions-Dokument fiir den Relationship-Type soll
diese CSAR-Datei noch alle entsprechenden Juju-Artefakte enthalten.

Eine TOSCA CSAR-Datei fiir das Service-Template soll durch eine Reihe von Node-Types
und Relationship-Types als Eingabe des Prototyps erzeugt werden. Diese Node-Types und
Relationship-Types sollen durch den entwickelten Prototyp aus bestehenden Chef- oder Juju-
Artefakten erzeugt werden. Neben den TOSCA-Definitions-Dokumenten fiir die Node-Types,
die Relationship-Types und das Service-Template sowie den Node-Type-Properties-
Dokumenten soll diese CSAR-Datei noch alle entsprechenden Chef- oder Juju-Artefakte
enthalten.

5.1.2 Nicht-funktionale Anforderungen

Neben den funktionalen Aspekten sollen die folgenden nicht-funktionalen Anforderungen
erfiillt werden. Der Prototyp soll in Java implementiert werden und sich als JAR-Datei
verpacken lassen, sodass er als Library einfach in anderen Java-Projekten verwendet werden

61

5 Entwurf und Implementierung

kann. Die Komponenten des Prototyps sollen lose gekoppelt werden, um die Erweiterung des
Prototyps und den Austausch der verschiedenen Teile fiir neue Implementierungen zu
erleichtern.

5.1.3 Zusitzliche Funktionalititen des Prototyps

Der Prototyp soll auBerdem zusidtzliche Funktionen erfiillen: Beispielsweise kann ein
entsprechendes Artefakt durch eine URL zu einem Repository heruntergeladen werden, das
ein Chef- oder Juju-Artefakt enthdlt. AuBerdem sollen auch die Operationen zu einem Ordner
zur Verfiigung gestellt werden. Dazu gehoren das Suchen einer Datei in einem Ordner durch
einen gegebenen Namen, das Auflisten der Inhalte in einem Ordner, das Kopieren der Inhalte
von einem Ordner zu einem anderen und das Packen eines Ordners zu einer Zipdatei.

5.2 Entwurf des Prototyps

Dieses Unterkapitel geht auf den Entwurf des Prototyps ein. Es wird zunédchst die allgemeine
Architektur des Prototyps dargestellt. Diese Architektur zeigt wichtige Komponenten, aus
denen der Prototyp besteht. Darauf folgt die interne Struktur jeder Komponente. Diese interne
Struktur zeigt die notwendigen Teilkomponenten innerhalb jeder Komponente. Schlielich
wird beschrieben, in welcher Reihenfolge die Teilkomponenten innerhalb jeder Komponente
ausgefiihrt werden.

5.2.1 Architektur des Prototyps

Dieses Unterkapitel beschreibt die funktionale Architektur des Prototyps. Der zu
entwickelnde Prototyp besteht aus drei wichtigen Komponenten. Die Funktion, die von jeder
Komponente implementiert wird, entspricht jeder der funktionalen Anforderungen
(Unterkapitel 5.1.1). Eine grobe Ubersicht iiber die Komponenten des Prototyps wird in
Abbildung 5.1 gezeigt. Dies sind die Komponenten "Node-Type-Generator", "Relationship-
Type-Generator" und "Service-Template-Generator". Diese drei Komponenten arbeiten
unabhingig voneinander und realisieren jeweils eigene Funktionen.

TOSCA-CSAR-Generator

Node-Type-Generator

Eingabe: URL zu einem Ausgabe: TOSCA-konforme

Repasitory; das ein oeler i i Cloud Service Archive (CSARs
mehrere Artefakte enthilt. Relationship-Type-Generator ()

Service-Template-Generator

Abbildung 5.1: Eine grobe Ubersicht iiber die Komponenten des Prototyps

Die Aufgabe des "Node-Type-Generator" ist aus einem Chef- oder Juju-Artefakt eine TOSCA
CSAR-Datei fiir den Node-Type zu erzeugen. Zu den Aufgaben dieser Komponente gehoren
(1) das Herunterladen eines Chef- oder Juju-Artefakts durch eine entsprechende URL, (2) die

62

5 Entwurf und Implementierung

Erzeugung des Node-Type-Properties-Dokuments, (3) die Erzeugung des TOSCA-
Definitions-Dokuments fiir den Node-Type und (4) das Packen aller notwendigen Dokumente
und Ressourcen (z.B. Cookbooks und Recipes von Chef sowie Charms und Hooks von Juju)
zu der generierten CSAR-Datei. Die Eingabe dieser Komponente ist eine URL, die sich mit
einem Repository (z.B. GIT [19] und Bazaar [47]) verbindet, das ein Chef-Cookbook oder
Juju-Charm enthélt. Die Ausgabe dieser Komponente ist eine TOSCA CSAR-Datei fiir den
entsprechenden Node-Type.

Die Aufgabe des "Relationship-Type-Generator" ist aus zwei Juju-Artefakten mit einer
impliziten Beziehung eine TOSCA CSAR-Datei fiir den Relationship-Type zu erzeugen. Zu
den Aufgaben dieser Komponente gehoren (1) das Herunterladen von Juju-Artefakten durch
zwei entsprechende URLs, (2) die Erzeugung des TOSCA-Definitions-Dokuments fiir den
Relationship-Type und (3) das Packen aller notwendigen Dokumente und Ressourcen wie z.B.
Charms und Hooks von Juju zu der generierten CSAR-Datei. Die Eingabe dieser Komponente
ist zwei URLs. Jede URL verbindet sich mit einem Repository, das ein Juju-Charm enthilt.
AuBlerdem soll eine Beziehung zwischen diesen zwei Juju-Charms bestehen. Die Ausgabe
dieser Komponente ist eine TOSCA CSAR-Datei fiir den entsprechenden Relationship-Type.

Die Aufgabe des "Service-Template-Generator" ist aus einer Reihe von TOSCA-Definitions-
Dokumenten fiir Node-Types und Relationship-Types eine TOSCA CSAR-Datei fiir das
Service-Template zu erzeugen. Diese TOSCA-Definitions-Dokumente fiir Node-Types und
Relationship-Types werden von den obengenannten Komponenten generiert und hier als
Eingabe verwendet. Die wichtige Aufgabe dieser Komponente ist die Erzeugung des TOSCA-
Definitions-Dokuments fiir das Service-Template. AuBerdem miissen alle notwendigen
Ressourcen (z.B. Cookbooks und Recipes von Chef sowie Charms und Charms von Juju) und
Dokumente in die generierte CSAR-Datei als Zipdatei gepackt werden. Zu den Dokumenten
gehoren die als Eingabe importierten TOSCA-Definitions-Dokumente fiir Node-Types und
Relationship-Types, das generierte TOSCA-Definitions-Dokument fiir das Service-Template
sowie die entsprechenden Node-Type-Properties-Dokumente. Die FEingabe dieser
Komponente ist eine Reihe von TOSCA-Definitions-Dokumenten fiir Node-Types und
Relationship-Types. Die Ausgabe dieser Komponente ist eine TOSCA CSAR-Datei fiir das
entsprechende Service-Template.

5.2.2 Interne Struktur der Komponenten

In Unterkapitel 5.2.1 wurden die allgemeine Architektur des Prototyps und ihre wichtigen
Komponenten vorgestellt. In diesem Unterkapitel wird die interne Struktur der einzelnen
Komponente beschrieben. Diese Struktur zeigt, welche Teilkomponenten die einzelne
Komponente besitzen muss, um ihre Funktionen erledigen zu konnen. Die Teilkomponenten
unterscheiden sich in zwei Arten: Kernkomponenten und Hilfskomponenten.

Abbildung 5.2 zeigt eine grobe Ubersicht iiber die interne Struktur jeder Komponente des
Prototyps. Jede Komponente besteht aus zwei Kernkomponenten (Metamodell-Generator und
Metamodell-Converter) und anderen Hilfskomponenten (Downloader, FileUtils, XSD-/XML-
Generator und ZIP-File-Handler).

63

5 Entwurf und Implementierung

Metamodell- Downloader XSD-/XML-

Generator Generator

Metamodell- . i ZIP-File-
FileUtils
Converter Handler

Abbildung 5.2: Die interne Struktur jeder Komponente

Die Kernkomponente "Metamodell-Generator" liest das Chef- oder Juju-Artefakt ein,
analysiert es und generiert daraus das entsprechende Metamodell. Unter Metamodell versteht
man im Rahmen dieser Arbeit ein abstraktes Objekt, in dem alle Elemente der Artefakte wie
z.B. Chef-Cookbooks, Juju-Charms und TOSCA-Definitions-Dokumente auf eine abstrakte
Art und Weise gespeichert werden konnen. Es werden drei Metamodell-Arten definiert:
Cookbook-Metamodell fiir ein Chef-Cookbook, Charm-Metamodell fiir ein Juju-Charm und
TOSCA-Metamodell fiir ein TOSCA-Definitions-Dokument. Das Cookbook-Metamodell
dient zum Speichern von Elementen eines Chef-Cookbook. Dasselbe gilt auch fiir das Charm-
Metamodell und das TOSCA-Metamodell. Diese Kernkomponente besitzt drei
Funktionseinheiten: Cookbook-Ruby-Reader, Charm-YAML-Reader und TOSCA-XML-
Reader. Der Cookbook-Ruby-Reader bekommt die Metadatei "metadata.rb" im Chef-
Cookbook tibergeben und liefert als Ausgabe ein entsprechendes Cookbook-Metamodell. Der
Charm-YAML-Reader liest die Metadatei "metadata.yaml" im Juju-Charm ein und generiert
ein entsprechendes Charm-Metamodell. Der TOSCA-XML-Reader bekommt ein TOSCA-
Definitions-Dokument fiir den Node-Type oder den Relationship-Type iibergeben und liefert
als Ausgabe ein entsprechendes TOSCA-Metamodell.

Die Kernkomponente "Metamodell-Converter" konvertiert ein Metamodell oder mehrere
Metamodelle zu einem anderen Metamodell. Diese Kernkomponente besitzt drei
Funktionseinheiten: Cookbook-Metamodell-Converter, Charm-Metamodell-Converter und
TOSCA-Metamodell-Converter. Der Cookbook-Metamodell-Converter fiir den Node-Type-
Generator bekommt ein Cookbook-Metamodell iibergeben und liefert als Ausgabe ein
entsprechendes TOSCA-Metamodell fiir einen Node-Type. Der Charm-Metamodell-
Converter fiir den Node-Type-Generator liest ein Charm-Metamodell ein und generiert ein
entsprechendes TOSCA-Metamodell fiir einen Node-Type. Im anderen Fall bekommt der
Charm-Metamodell-Converter fiir den Relationship-Type-Generator zwei Charm-
Metamodelle iibergeben und liefert als Ausgabe ein entsprechendes TOSCA-Metamodell fiir
einen Relationship-Type. Der TOSCA-Metamodell-Converter bekommt eine Reihe von
TOSCA-Metamodellen fiir Node-Types und Relationship-Types iibergeben und liefert als
Ausgabe ein entsprechendes TOSCA-Metamodell fiir ein Service-Template. Das TOSCA-
Metamodell dient zum Speichern von XML-Elementen eines TOSCA-Definitions-Dokuments.

64

5 Entwurf und Implementierung

Neben diesen Kernkomponenten besitzt jede Komponente noch einige notwendigen
Hilfskomponenten. Beispielsweise kann die Hilfskomponente "Downloader" ein
entsprechendes Artefakt wie z.B. ein Chef-Cookbook oder ein Juju-Charm durch eine
angegebene URL zu einem Repository herunterladen, das dieses Artefakt enthélt. Die
Komponente "Service-Template-Generator" enthilt jedoch diese Hilfskomponente nicht, weil
sie nicht die Chef- oder Juju-Artefakte sondern die TOSCA-Definitions-Dokumente fiir
Node-Types und Relationship-Types verarbeitet. Die Funktion der Hilfskomponente "XSD-
/XML-File-Generator" ist eine XSD- oder XML-Datei zu generieren. In unserem Fall kann
der XML-File-Generator durch ein TOSCA-Metamodell ein entsprechendes TOSCA-
Definitions-Dokument erzeugen. Wenn ein TOSCA-Metamodell die Elemente fiir die Node-
Type-Properties enthélt, kann der XSD-File-Generator durch dieses TOSCA-Metamodell ein
entsprechendes XML-Schema-Definitions-Dokument generieren. Auflerdem stellt die
Hilfskomponente "FileUtils" die Operationen zu einem Ordner zur Verfiigung. Dazu gehdren
das Suchen einer Datei in einem Ordner durch einen gegebenen Datei-Namen, das Auflisten
der Inhalte in einem Ordner und das Kopieren der Inhalte von einem Ordner zu einem anderen.
Und die Hilfskomponente "ZIP-File-Handler" kann einen Ordner zu einer Zipdatei packen.

5.2.3 Die Funktionsweise der Komponenten

In diesem Unterkapitel wird die Funktionsweise jeder Komponente des Prototyps beschrieben.
Die Teilkomponenten jeder Komponente werden in sequenzieller Reihenfolge ausgefiihrt.
Auflerdem wird die Ausgabe einer Teilkomponente als Eingabe der ndchsten Teilkomponente
verwendet. Zur Ubersichtlichkeit werden einige Schritte in den folgenden Abbildungen
weggelassen. Beispielsweise muss eine TOSCA-Metadatei "TOSCA.meta" fiir jede CSAR-
Datei generiert werden. Dariiber hinaus miissen alle entsprechenden Dokumente und
Ressourcen (z.B. Chef-Cookbooks und Juju-Charms) zur CSAR-Datei gezippt werden. In den
folgenden Abbildungen repréisentiert der Kreis die Prozedur, die ausgefiihrt wird, die
Rechtecke vor und nach dem Kreis die Ein- und Ausgabe.

5.2.3.1 Die Funktionsweise der Komponente "Node-Type-Generator”

In Abbildung 5.3 wird ein vereinfachtes Ablaufdiagramm gezeigt. Das Ablaufdiagramm stellt
die Funktionsweise der Teilkomponenten innerhalb der Komponente "Node-Type-Generator"
fiir Chef dar. Die Funktionsweise wird in 4 Schritten beschrieben.

1 AN

k k-
URL |—{download |— |metadata.rb Cookboo

Metamodell

D
XML-File |~

TOSCA-
Metamodell

DN
XSD-File a

Abbildung 5.3: Ablaufdiagramm der Komponente "Node-Type-Generator"

65

5 Entwurf und Implementierung

Schritt 1: Der Downloader lddt ein Chef-Cookbook durch eine angegebene URL herunter. Die
Metadatei "metadata.rb" im heruntergeladenen Chef-Cookbook kann als Eingabe des
Cookbook-Ruby-Readers verwendet werden.

Schritt 2: Der Cookbook-Ruby-Reader liest die Metadatei "metadata.rb" im Chef-Cookbook
ein und generiert ein entsprechendes Cookbook-Metamodell. Das daraus erzeugte Cookbook-
Metamodell wird als Eingabe des Cookbook-Metamodell-Converters verwendet.

Schritt 3: Der Cookbook-Metamodell-Converter bekommt ein Cookbook-Metamodell
iibergeben. Das Cookbook-Metamodell wird durch eine Reihe von Transformationsregeln zu
einem entsprechenden TOSCA-Metamodell fiir den Node-Type konvertiert. Diese
Transformationsregeln sollen dem Konzept zur Erzeugung von Node-Types aus Chef-
Artefakten (Unterkapitel 4.1) entsprechen. Das daraus erzeugte TOSCA-Metamodell wird als
Eingabe des XSD-/XML-File-Generators verwendet.

Schritt 4: Der XML-File-Generator bekommt ein TOSCA-Metamodell fiir den Node-Type
iibergeben und kann dieses TOSCA-Metamodell in ein entsprechendes TOSCA-Definitions-
Dokument schreiben. Wenn die Elemente fiir Node-Type-Properties im TOSCA-Metamodell
vorhanden sind, wird durch den XSD-File-Generator ein entsprechendes Node-Type-
Properties-Dokument generiert.

5.2.3.2 Die Funktionsweise der Komponente "Relationship-Type-Generator”

In Abbildung 5.4 wird ein vereinfachtes Ablaufdiagramm gezeigt. Das Ablaufdiagramm stellt
die Funktionsweise der Teilkomponenten innerhalb der Komponente "Relationship-Type-
Generator" fiir Juju dar. Die Funktionsweise wird in 4 Schritten beschrieben.

URL1 “metadata. Charm-
\ 1 | vyaml \ /Metamodell\
download
URL2 «"(“*va | “metadata. ‘."{ "~.\ Charm- ‘,¢(
yaml” Metamodell
N
XML-File -] TOSCA- |
Metamodell

e~ JRL1: Charm 1
+ = = g URL2: Charm 2

Abbildung 5.4: Ablaufdiagramm der Komponente "Relationship-Type-Generator"

Schritt 1: Durch den Downloader kénnen zwei Juju-Charms durch zwei angegebene URLs
heruntergeladen werden. Zwischen diesen zwei Juju-Charms soll eine implizite Beziehung
bestehen, aus der ein entsprechender Relationship-Type generiert werden kann. Die
Metadateien "metadata.yaml" in den zwei heruntergeladenen Juju-Charms konnen als Eingabe
des Charm-YAML-Readers verwendet werden.

66

5 Entwurf und Implementierung

Schritt 2: Der Charm-YAML-Reader kann durch das Lesen von zwei Metadateien
"metadata.yaml" in Juju-Charms zwei entsprechende Charm-Metamodelle generieren. Die
daraus erzeugten Charm-Metamodelle werden als Eingabe des Charm-Metamodell-
Converters verwendet.

Schritt 3: Der Charm-Metamodell-Converter bekommt zwei Charm-Metamodelle als Eingabe.
Diese zwei Charm-Metamodelle werden durch eine Reihe von Transformationsregeln zu
einem entsprechenden TOSCA-Metamodell fiir den Relationship-Type konvertiert. Diese
Transformationsregeln sollen dem Konzept zur Erzeugung von Relationship-Types aus Juju-
Artefakten (Unterkapitel 4.3) entsprechen. Das daraus erzeugte TOSCA-Metamodell wird als
Eingabe des XML-File-Generators verwendet.

Schritt 4: Der XML-File-Generator bekommt ein TOSCA-Metamodell fiir den Relationship-
Type tbergeben und kann dieses TOSCA-Metamodell in ein entsprechendes TOSCA-
Definitions-Dokument schreiben.

5.2.3.3 Die Funktionsweise der Komponente "Service-Template-Generator”

In Abbildung 5.5 wird ein vereinfachtes Ablaufdiagramm gezeigt. Das Ablaufdiagramm stellt
die Funktionsweise der Teilkomponenten innerhalb der Komponente "Service-Template-
Generator" dar. Die Funktionsweise wird in 3 Schritten beschrieben.

T

XML-File Metamodel
\ >
- MTtOSCﬁ: T XML-File
etamode
L “-a| TOSCA- |.-
XML-File Metamodell

g TOSCA-Definitions-Dokumente fiir Node-Types

+ = = - TOSCA-Definitions-Dokumente fiir Relationship-Types

Abbildung 5.5: Ablaufdiagramm der Komponente "Service-Template-Generator"

Schritt 1: Der TOSCA-XML-Reader liest eine Reihe von TOSCA-Definitions-Dokumenten
fir Node-Types und Relationship-Types ein und generiert eine Reihe von TOSCA-
Metamodellen fiir Node-Types und Relationship-Types. Die daraus erzeugten TOSCA-
Metamodelle werden als Eingabe des TOSCA-Metamodell-Converters verwendet.

Schritt 2: Der TOSCA-Metamodell-Converter bekommt eine Reihe von TOSCA-
Metamodellen fiir Node-Types und Relationship-Types iibergeben. Diese TOSCA-
Metamodelle werden durch eine Reihe von Transformationsregeln zu einem entsprechenden
TOSCA-Metamodell fiir das Service-Template konvertiert. Diese Transformationsregeln
sollen dem Konzept zur Erzeugung von Service-Templates (Unterkapitel 4.4) entsprechen.
Das daraus erzeugte TOSCA-Metamodell wird als Eingabe des XML-File-Generators
verwendet.

Schritt 3: Der XML-File-Generator bekommt ein TOSCA-Metamodell fiir das Service-
Template iibergeben und es kann in ein entsprechendes TOSCA-Definitions-Dokument
geschrieben werden.

67

5 Entwurf und Implementierung

5.3 Implementierung des Prototyps

In den folgenden Abschnitten wird die Implementierung des Prototyps ausfiihrlich
beschrieben. Es werden drei Java-Pakete '"org.tosca.csar", "org.tosca.meta" und
"org.tosca.util" entwickelt. In diesen Paketen werden die verschiedenen Schnittstellen und
ihre Implementierungsklassen sowie die Methoden in den Klassen implementiert. Im
Folgenden werden die drei Pakete in Details besprochen. Zur Ubersichtlichkeit werden die
Parameter der Methoden weggelassen.

5.3.1 Das Paket "org.tosca.csar"

Im Java-Paket "org.tosca.csar" werden drei Schnittstellen zur Erzeugung von CSAR-Dateien
definiert. Diese Schnittstellen sind "INodeTypeGenerator", "IRelationshipTypeGenerator"
und "IServiceTemplateGenerator". AuBerdem werden zur Ubersichtlichkeit zwei letzen
Schritte in den folgenden drei Abbildungen weggelassen. Nachdem das entsprechende
TOSCA-Definitions-Dokument generiert wurde, wird die TOSCA-Metadatei "TOSCA.meta"
durch Aufruf der Methode "generate" der Klasse "MetaFileGenerator" generiert. Schlielich
wird die Methode "generate" der Klasse "ZIPFileGenerator" aufgerufen, um alle generierten
Dokumente (z.B. das Node-Type-Properties-Dokument, das TOSCA-Definitions-Dokument
fiir den Node-Type, den Relationship-Type und das Service-Template sowie die TOSCA-
Metadatei) und alle entsprechenden Artefakte (z.B. Chef-Cookbooks und Juju-Charms) zu
einer CSAR-Datei zu zippen.

5.3.1.1 Die Schnittstelle "INodeTypeGenerator”

In der Schnittstelle "INodeTypeGenerator" wird eine abstrakte Methode "generate" definiert,
um eine CSAR-Datei fiir den Node-Type zu generieren. Die Implementierungsklassen dieser
Schnittstelle konnten die Klassen "NodeTypeFromCookbook" und "NodeTypeFromCharm"
sein. Die Implementierung der Klasse "NodeTypeFromCharm" wurde in der Studienarbeit
"Vorlagen fiir das Deployment von Services und Applikationen in der Cloud" [33] dargestellt.
In dieser Arbeit beschiftigen wir uns nur mit der Implementierung der Klasse
"NodeTypeFromCookbook".

NodeTypeFromCookbook

Die Klasse "NodeTypeFromCookbook" implementiert die Schnittstelle
"INodeTypeGenerator" und iiberschreibt die abstrakte Methode "generate". Diese Methode
wird verwendet, um eine TOSCA CSAR-Datei fiir den Node-Type aus einem Chef-Cookbook
zu generieren. Diese Methode bendétigt einen Eingabeparameter "csar location" vom Typ
"java.lang.String". Dieser Eingabeparameter zeigt, wo die generierte CSAR-Datei ausgegeben
werden soll. Als Ausgabe liefert diese Methode eine entsprechende CSAR-Datei fiir den
Node-Type. In Abbildung 5.6 wird ein vereinfachtes Pseudo-Sequenzdiagramm fiir die
Methode “generate” dargestellt. Im ersten Schritt ruft die Methode "generate" die Methode
"read" der Klasse "MetamodelFromCookbook" auf. Die Methode "read" liest die Metadatei
"metadata.rb" im Chef-Cookbook ein und liefert als Ausgabe ein Objekt der Klasse
"CookbookMetamodel". Im zweiten Schritt wird die Methode "convert" der Klasse
"CookbookToTosca" aufgerufen. Die Methode "convert" bekommt das generierte
CookbookMetamodel-Objekt iibergeben und liefert als Ausgabe ein Objekt der Klasse
"TOSCAMetamodel".

68

5 Entwurf und Implementierung

NodeTypeFromCookbook MetamodelFromCookbook CookbookToTOSCA XSDGenerator XMLGenerator
— read() i : |
Schritt 1 H | ! !
’ CookbookMetamodel” ! ! !
convert() 5 | :
. > | i
Schritt 2 "TOSCAMetamodel” ! :
DR : :
generate() | |
> :
Schritt 3 Node-Type-Properties-Dokument H E
L Rt e R DL |
generate() :
Schritt 4 >
chritt TOSCA-Definitions-Dokument fiir den Node-Type H
‘_ ___

Abbildung 5.6: Sequenzdiagramm fiir die Klasse "NodeTypeFromCookbook"

Wenn die Elemente fiir die Node-Type-Properties im TOSCAMetamodel-Objekt vorhanden
ist, wird als dritter Schritt die Methode "generate" der Klasse "XSDGenerator" aufgerufen,
um ein entsprechendes Node-Type-Properties-Dokument zu generieren. Andernfalls kann der
dritte Schritt ignoriert. Durch das generierte TOSCAMetamodel-Objekt generiert als letzter
Schritt die Methode "generate" der Klasse "XMLGenerator" ein TOSCA-Definitions-
Dokument fiir den Node-Type.

5.3.1.2 Die Schnittstelle "IRelationshipTypeGenerator”

In der Schnittstelle "IRelationshipTypeGenerator" wird eine abstrakte Methode "generate"
definiert, um eine TOSCA CSAR-Datei fiir den Relationship-Type zu erzeugen. Die Klasse
"RelationshipTypeFromCharms" ist die einzige Implementierungsklasse dieser Schnittstelle.

RelationshipTypeFromCharms

Die Klasse "RelationshipTypeFromCharms" implementiert die Schnittstelle
"IRelationshipTypeGenerator" und iiberschreibt die abstrakte Methode "generate". Diese
Methode wird verwendet, um eine TOSCA CSAR-Datei fiir den Relationship-Type aus zwei
Juju-Charms mit einer bestimmten Beziehung zu generieren. Diese Methode benétigt einen
Eingabeparameter "csar_location" vom Typ "java.lang.String". Dieser Eingabeparameter zeigt,
wo die generierte CSAR-Datei ausgegeben werden soll. Als Ausgabe liefert diese Methode
eine entsprechende CSAR-Datei fiir den Relationship-Type. In Abbildung 5.7 wird ein
vereinfachtes Pseudo-Sequenzdiagramm fiir die Methode ‘“generate” dargestellt. Im ersten
Schritt ruft die Methode "generate" die Methode "read" der Klasse "MetamodelFromCharm"
auf. Die Methode "read" liest die Metadatei "metadata.yaml" im Juju-Charm ein und liefert
als Ausgabe ein Objekt der Klasse "CharmMetamodel". Da es zwei Juju-Charms gibt, wird

69

5 Entwurf und Implementierung

die Methode "read" zweimal aufgerufen. Deshalb werden zwei CharmMetamodel-Objekte
generiert.

RelationshipTypeFromCharms MetamodelFromCharm CharmToTOSCA XMLGenerator

. read() -
-

”CharmMetamodel 1”

Schritt 1 SV

convert()

>
Schritt 2 “"TOSCAMetamodel” H

generate()

Schritt 3 >H

TOSCA-Definitions-Dokument fiir den Relationship-Type

Abbildung 5.7: Sequenzdiagramm fiir die Klasse "RelationshipTypeFromCharms"

Im zweiten Schritt wird die Methode "convert" der Klasse "CharmToTOSCA" aufgerufen.
Die Methode "convert" bekommt zwei generierten CharmMetamodel-Objekte tibergeben und
liefert als Ausgabe ein Objekt der Klasse "TOSCAMetamodel". Durch das generierte
TOSCAMetamodel-Objekt generiert als letzter Schritt die Methode "generate" der Klasse
"XMLGenerator" ein TOSCA-Definitions-Dokument fiir den Relationship-Type.

5.3.1.3 Die Schnittstelle "IServiceTemplateGenerator”

In der Schnittstelle "IServiceTemplateGenerator" wird eine abstrakte Methode "generate"
definiert, um eine TOSCA CSAR-Datei fiir das Service-Template zu erzeugen. Die Klasse
"ServiceTemplateFromTypes" ist die einzige Implementierungsklasse dieser Schnittstelle.

ServiceTemplateFromTypes

Die Klasse "ServiceTemplateFromTypes" implementiert die Schnittstelle
"IServiceTemplateGenerator" und {iberschreibt die abstrakte Methode "generate". Diese
Methode wird verwendet, um eine TOSCA CSAR-Datei fiir das Service-Template aus einer
Reihe von TOSCA-Definitions-Dokumenten fiir Node-Types und Relationship-Types zu
generieren. Diese Methode bendétigt einen Eingabeparameter "csar location" vom Typ
"java.lang.String". Dieser Eingabeparameter zeigt, wo die generierte CSAR-Datei ausgegeben
werden soll. Als Ausgabe liefert diese Methode eine entsprechende CSAR-Datei fiir das
Service-Template. Die TOSCA-Definitions-Dokumente fiir Node-Types und Relationship-
Types konnen wir durch die Konstruktormethode "ServiceTemplateFromTypes" bekommen.

70

5 Entwurf und Implementierung

In Abbildung 5.8 wird ein vereinfachtes Pseudo-Sequenzdiagramm fiir die Methode
"generate" dargestellt.

ServiceTemplateFromType MetamodelFromTOSCA TOSCAToTOSCA XMLGenerator

read() : :

Schritt 1 i |

“TOSCAMetamodel” ! :

convert() : :

. > :

Schritt 2 “TOSCAMetamodel” i

i ittt !

generate() :

>

Schritt 3 TOSCA-Definitions-Dokument fiir das Service-Template |:|
4 ___

Abbildung 5.8: Sequenzdiagramm fiir die Klasse "ServiceTemplateFromType"

Im ersten Schritt ruft die Methode "generate" fiir jedes TOSCA-Definitions-Dokument einmal
die Methode "read" der Klasse "MetamodelFromTOSCA" auf. Das heilit, dass der erste
Schritt im Késtchen in der Abbildung mehrmals wiederholt wird. Diese Methode "read" liest
ein TOSCA-Definitions-Dokument ein und liefert ein Objekt der Klasse "TOSCAMetamodel”
als Ausgabe. Wir instanziieren zwei Objekte vom Typ "java.util.List". Ein Objekt dient zum
Speichern der generierten TOSCAMetamodel-Objekte fiir Node-Types. Das andere dient zum
Speichern der generierten TOSCAMetamodel-Objekte fiir Relationship-Types. Im zweiten
Schritt wird die Methode "convert" der Klasse "TOSCAToTOSCA" aufgerufen. Die Methode
"convert" bekommt einen Service-Namen vom Typ "java.lang.String" fiir das Service-
Template und zwei generierten Objekte vom Typ "java.util.List" iibergeben und liefert als
Ausgabe ein Objekt der Klasse "TOSCAMetamodel". Durch das generierte
TOSCAMetamodel-Objekt generiert als letzter Schritt die Methode "generate" der Klasse
"XMLGenerator" ein TOSCA-Definitions-Dokument fiir das Service-Template.

5.3.2 Das Paket "org.tosca.meta"

In Abbildung 5.9 wird ein Klassendiagramm ohne Methoden und Attributen fiir das Java-
Paket "org.tosca.meta" dargestellt. In dieserm Paket werden drei Schnittstellen und ihre
Implementierungsklassen definiert. Die Implementierungsklassen der Schnittstelle
"IMetamodel" konnten die Klasse "TOSCAMetamodel", "CookbookMetamodel" und
"CharmMetamodel" sein. Die Implementierungsklassen der Schnittstelle
"IMetamodelGenerator" konnten die Klassen "MetamodelFromCookbook",
"MetamodelFromCharm" und "MetamodelFromTOSCA" sein. Die Implementierungsklassen
der Schnittstelle "IMetamodelConverter" konnten die Klassen "CookbookToTOSCA",
"CharmToTOSCA" und "TOSCAToTOSCA" sein.

71

5 Entwurf und Implementierung

org. tosca. meta

<< interface>> << interface>>
IMetamodelGenerator IMetamodelConverter
A A

[
i i e

MetamodelFromCookbook | [MetamodelFromCharm | | MetamodelFromTOSCA | [CookbookToTOSCA| | CharmToTOSCA TOSCAToTOSCA

1
<< interface>>
IMetamodel org. tosca. meta. cookbook
____________ A s
' . i 1
CookbookMetamodel CharmkMetamodel TOSCAMetamodel org. tosca. meta. charm

1

org. tosca. meta. elements

Abbildung 5.9: Klassendiagramm fiir das Java-Paket "org.tosca.meta"

AuBlerdem werden im Paket "org.tosca.meta" noch drei Pakete definiert. Diese Pakete sind
"org.tosca.meta.charm”, "org.tosca.meta.cookbook" und "org.tosca.meta.elements". Details
werden in den folgenden Unterkapiteln besprochen.

5.3.2.1 Die Schnittstelle "IMetamodel”

In der Schnittstelle "IMetamodel" wird keine Methode definiert. Es wird nur gezeigt, dass
eine Klasse als Metamodell verwendet wird, wenn diese Klasse diese Schnittstelle
implementiert.

TOSCAMetamodel

Die Klasse "TOSCAMetamodel" implementiert die Schnittstelle "IMetamodel". Diese Klasse
enthédlt als Attribute alle Elemente im TOSCA-Definitions-Dokument. Diese Elemente
werden durch die entsprechenden Klassen definiert. Beispielsweise konnen die Elemente
Definitions, Import, RequirementType, CapabilityType, ArtifactType, ArtifactTemplate,
NodeType NodeTypelmplementation, RelationshipType und Relationship Typelmplementation
durch die Klassen "TDefinitions", "TImport", "TRequirementType", "TCapabilityType",
"TArtifactType", "TArtifactTemplate", "TNodeType", "TNodeTypelmplementation",
"TRelationshipType" und "TRelationshipTypelmplementation" definiert werden. Zur
Generierung dieser Klassen wird die JAXB-Technologie [34] benutzt. JAXB ist die
Abkiirzung von "Java Architecture for XML Binding" und ist eine Programmschnittstelle in
Java, die es ermoglicht, Daten aus einer XML-Schema-Instanz heraus automatisch an Java-
Klassen zu binden, und diese Java-Klassen aus einem XML-Schema heraus zu generieren
[42]. So konnen die entsprechenden Java-Klassen aus dem TOSCA-Schema [17] heraus
generiert und im Java-Paket "org.tosca.meta.eclements" gespeichert werden. Auflerdem besitzt
die Klasse "TOSCAMetamodel" noch ein Attribut "propertiesXSD" der Klasse

72

5 Entwurf und Implementierung

"TPropertiesXSD". Die Klasse "TPropertiesXSD" wird manuell geschrieben und im Java-
Paket "org.tosca.meta.elements" gespeichert. Sie dient zur Generierung eines Node-Type-
Properties-Dokuments. Durch ein Objekt der Klasse "TOSCAMetamodel" kann ein
entsprechendes TOSCA-Definitions-Dokument generiert werden.

CookbookMetamodel

Die Klasse "CookbookMetamodel" implementiert die Schnittstelle "[Metamodel". In dieser
Klasse werden alle Informationen z.B. "recipes", "dependencies" und "attribute" in der Datei
"metadata.rb" in einem Chef-Cookbook gespeichert. Fiir jede Information wird eine
entsprechende Klasse erstellt. Dies sind die Klassen "Recipe", "Dependency" und "Attribute"
und werden im Java-Paket "org.tosca.meta.cookbook" gespeichert. Durch ein Objekt der
Klasse "CookbookMetamodel" kann ein entsprechendes Objekt der Klasse
"TOSCAMetamodel" generiert werden.

CharmMetamodel

Die Klasse "CharmMetamodel" implementiert die Schnittstelle "[Metamodel". In dieser
Klasse werden alle Informationen z.B. "requires", "provides" und "peers" in der Datei
"metadata.yaml" in einem Juju-Charm gespeichert. Fiir jede Information wird eine
entsprechende Klasse erstellt. Dies sind die Klassen "Require", "Provide" und "Peer" und
werden im Java-Paket "org.tosca.meta.charm" gespeichert. Durch ein Objekt der Klasse
"CharmMetamodel" kann ein entsprechendes Objekt der Klasse "TOSCAMetamodel”
generiert werden.

5.3.2.2 Die Schnittstelle "IMetamodel Generator "’

In der Schnittstelle "IMetamodelGenerator" wird eine abstrakte Methode "read" definiert, um
ein entsprechendes Metamodell aus Metadaten eines Artefakts zu erzeugen. Beispielsweise
kann diese Methode ein entsprechendes Cookbook- oder Charm-Metamodell aus der Datei
"matadata.rb" in einem Chef-Cookbook oder aus der Datei "matadata.yaml" in einem Juju-
Charm generieren. AuBlerdem kann durch diese Methode ein entsprechendes TOSCA-
Metamodell aus einem TOSCA-Definitions-Dokument fiir den Node-Type oder den
Relationship-Type erzeugt werden.

MetamodelFromCookbook

Die Klasse "MetamodelFromCookbook" implementiert die Schnittstelle
"IMetamodelGenerator" und tiberschreibt die Methode "read". Diese Methode wird verwendet,
um ein Objekt der Klasse "CookbookMetamodel" aus der Datei "metadata.rb" in einem Chef-
Cookbook zu generieren. Die Datei "metadata.rb" konnen wir durch die Konstruktormethode
"MetamodelFromCookbook" bekommen. Als Ausgabe liefert diese Methode ein
CookbookMetamodel-Objekt. Da Chef von der Skriptsprache Ruby implementiert wurde,
konnen wir die Ruby-Skripte benutzen, um die Datei "metadata.rb" einfacher zu lesen und zu
analysieren. Um den Aufruf der Ruby-Skripte in der Java-Laufzeitumgebung zu realisieren,
haben wir uns fiir JRuby [36] entschieden. Der Grund dafiir ist, dass JRuby eine
Implementierung eines Ruby-Interpreters in Java ist und die Interaktion von Java und Ruby in
beiden Richtungen ermdglicht. Damit ermdglicht JRuby die Nutzung von Ruby als eine
alternative Sprache fiir die Java-Laufzeitumgebung [37]. Wir erstellen eine JRuby-Datei

73

5 Entwurf und Implementierung

namens "metaparser.rb". Diese Datei enthidlt die Ruby-Skripte zum Lesen der Inhalte der
Datei "metadata.rb" eines Chef-Cookbook und liefert als Ausgabe ein Objekt der Klasse
"CookbookMetamodel". Im Anhang 2 wird die Datei "metaparser.rb" prasentiert. Zuerst
erstellen wir eine Instanz der Klasse "java.script.ScriptEngine" fiir JRuby. Durch diese
Instanz kann die Datei "metaparser.rb" aufgerufen werden. Um dies zu realisieren, miissen die
JAR-Dateien "jsr223.jar" und "jruby-1.7.4" in die Java-Laufzeitumgebung importiert werden.

MetamodelFromCharm

Die Klasse "MetamodelFromCharm" implementiert die Schnittstelle "IMetamodelGenerator"
und iiberschreibt die Methode "read". Diese Methode wird verwendet, um ein Objekt der
Klasse "CharmMetamodel" aus der Datei "metadata.yaml" und der Datei "config.yaml" (wenn
sie vorhanden ist) in einem Juju-Charm zu generieren. Die Dateien "metadata.rb" und
"config.yaml kénnen wir durch die Konstruktormethode "MetamodelFromCharm" bekommen.
Als Ausgabe liefert diese Methode ein CharmMetamodel-Objekt. Zu den konkreten Arbeiten
gehoren, (1) die YAML-Datei zu lesen und zu analysieren, (2) die Inhalte der YAML-Datei in
den abstrakten Objekten zu speichern und (3) die abstrakten Objekte zu einem
CharmMetamodel-Objekt zu transformieren. Fiir die Implementierung dieser Arbeiten werden
drei Klassen "YamlModel", "YamlModelList" und "YamlReader" verwendet. Die ersten zwei
Klassen dienen zum Speichern der Inhalte in einer YAML-Datei. Die letzte Klasse dient zum
Lesen und Analysieren einer YAML-Datei. Dabei wird eine YAML-Software von
Drittanbietern verwendet: SnakeYAML [41] ist ein YAML-Parser fiir Programmiersprache
"Java" und bekannt dafiir, dass er ein kompletter YAMLI1.1-Parser ist. Durch SnakeYAML
kann die YAML-Datei einfach gelesen und analysiert werden. Die konkrete Implementierung
dieser drei Klassen wurde in der Studienarbeit "Vorlagen fiir das Deployment von Services
und Applikationen in der Cloud" [33] dargestellt.

MetamodelFromTOSCA

Die Klasse "MetamodelFromTOSCA" implementiert die Schnittstelle
"IMetamodelGenerator" und tiberschreibt die Methode "read". Diese Methode wird verwendet,
um ein Objekt der Klasse "TOSCAMetamodel" aus einem TOSCA-Definitions-Dokument zu
generieren. Das TOSCA-Definitions-Dokument kénnen wir durch die Konstruktormethode
"MetamodelFromTOSCA" bekommen. Als Ausgabe liefert diese Methode ein
TOSCAMetamodel-Objekt. Die konkrete Arbeit ist, jedes XML-Element im TOSCA-
Definitions-Dokument als ein entsprechendes Objekt im TOSCAMetamodel-Objekt zu
speichern. Durch JAXB konnen die XML-Elemente in einem TOSCA-Definitions-Dokument
zu den entsprechenden Objekten transformiert werden.

5.3.2.3 Die Schnittstelle "IMetamodel Converter”

In der Schnittstelle "IMetamodelConverter" werden drei abstrakten Methoden "convert"
definiert. Die Methode mit einem Parameter dient dazu, ein Cookbook- oder Charm-
Metamodell zu einem TOSCA-Metamodell fiir einen Node-Type zu konvertieren. Die
Methode mit zwei Parametern dient dazu, zwei Charm-Metamodelle zu einem TOSCA-
Metamodell fiir einen Relationship-Type zu konvertieren. Die Methode mit drei Parametern
dient dazu, eine Reihe von TOSCA-Metamodellen fiir Node-Types und Relationship-Types
zu einem TOSCA-Metamodell fiir ein Service-Template zu konvertieren.

74

5 Entwurf und Implementierung

CookbookToTOCSA

Die Klasse "CookbookToTOCSA" implementiert die Schnittstelle "IMetamodelConverter"
und iiberschreibt drei abstrakten Methoden "convert". In den Methoden mit mehreren
Parametern werden keine Codes geschrieben und NULL wird zuriickgegeben. Die Methode
mit einem Parameter bekommt ein CookbookMetamodel-Objekt iibergeben und liefert als
Ausgabe ein TOSCAMetamodel-Objekt fiir einen Node-Type. Der Kern dieser Methode ist,
durch die entsprechenden Transformationsregeln ein Cookbook-Metamodell zu einem
TOSCA-Metamodell zu konvertieren. Diese Regeln miissen dem Konzept (Unterkapitel 4.1)
fiir die Erzeugung von TOSCA Node-Types aus Chef-Artefakten entsprechen.

Zuerst wird ein Objekt der Klasse "TOSCAMetamodel" zum Speichern der XML-Elemente in
einem TOSCA-Definitions-Dokument instanziiert. Wenn das CookbookMetamodel-Objekt
ein Objekt der Klasse "java.util.List" zum Speichern der Cookbook-Attribute enthilt, kann ein
Objekt der Klasse "TPropertiesXSD" erzeugt werden. Das generierte Objekt enthilt die XSD-
Elemente zur Erzeugung eines Node-Type-Properties-Dokuments und wird im
TOSCAMetamodel-Objekt gespeichert. Diese XSD-Elemente werden durch Domd4j [38]
erzeugt. Dom4j ist eine in der Programmiersprache Java geschriebene Open-Source-
Programmierschnittstelle fiir den Zugriff und die Verarbeitung von XML-Dokumenten [39].
Dabei muss ein Objekt der Klasse "TImport" zum Importieren des generierten Node-Type-
Properties-Dokuments in das entsprechende TOSCA-Definitions-Dokument fiir den Node-
Type erzeugt. Dieses Objekt wird dann im TOSCAMetamodel-Objekt gespeichert.

Auflerdem konnen durch das CookbookMetamodel-Objekt die folgenden Elemente erzeugt
werden: Definitions, CapabilityType, ArtifactType, ArtifactTemplate, NodeType und
NodeTypelmplementation. Jedes Element kann durch die Instanziierung eines Objektes der
entsprechenden Klasse implementiert werden. Beispielsweise kann das Element NodeType
durch das Erzeugen eines Objektes der Klasse "TNodeType" implementiert werden. Dasselbe
gilt auch fiir die Generierung von anderen Elementen. Diese generierten Objekte werden auch
im TOSCAMetamodel-Objekt gespeichert. Da die Erzeugung der Elemente auf gleiche Art
und Weise implementiert wird, werden wir als Beispiel nur die Implementierung der
Elemente ArtifactType und ArtifactTemplate beschreiben.

In Unterkapitel 4.1.3 wird besprochen, dass der direkte Ansatz verwendet wird, um die Chef-
Cookbooks in ein Service-Template einzubetten. Deswegen erzeugen wir durch die Klasse
"TArtifactType" das Element ArtifactType namens "ChefArtifact", welche der Struktur der
Chef-Artefakte entspricht. Beim Erzeugen des Elements ArtifactTemplate benutzen wir einen
unverdnderlichen Universally Unique Identifier (UUID) [40] als ein Wert des Attributs id des
Elements ArtifactTemplate. Ein UUID als ein Standard fiir Identifikatoren beschreibt einen
128-Bit-Wert und wird verwendet, um Informationen eindeutig kennzeichnen zu konnen. Hier
dient ein UUID dazu, ein Artifact-Template eindeutig zu identifizieren. Der Inhalt des
Kindelements Properties ist Chef-spezifisch. Folglich brauchen wir ein Element
ChefArtifactProperties als Inhalt des Element Properties. Durch die JAXB-Technologie kann
die Klasse "ChefArtifactProperties" aus der XML-Schema-Datei "ChefArtifact.xsd" heraus
generiert und im Java-Paket "org.tosca.meta.eclements" gespeichert werden. Die Klasse
"ChefArtifactProperties" enthilt als Attribute alle Elemente wie z.B. Cookbook, Mappings
und Runlist, die in der Datei "ChefArtifact.xsd" definiert sind. Die Generierung des Elements

75

5 Entwurf und Implementierung

ChefArtifactProperties und seiner Kindelemente Cookbooks, Mappings und RunList wird
durch die Klasse "TChefArtifactProperties" implementiert. Dann wird das Element
ChefArtifactProperties als ein Objekt der Klasse "JAXBElement" zum Element Properties
hinzugefiigt.

CharmToTOCSA

Die Klasse "CharmToTOCSA" implementiert die Schnittstelle "IMetamodelConverter" und
iiberschreibt drei Methoden "convert". In der Methode mit drei Parametern werden keine
Codes geschrieben und NULL wird zuriickgegeben. Die Methode mit einem Parameter
bekommt ein CharmMetamodel-Objekt libergeben und liefert als Ausgabe ein Objekt von der
Klasse "TOSCAMetamodel" fiir einen Node-Type. Der Kern dieser Methode ist, durch die
entsprechenden Transformationsregeln ein Charm-Metamodell zu einem TOSCA-Metamodell
zu konvertieren. Diese Regeln miissen dem Konzept (Unterkapitel 4.2) fiir die Erzeugung von
TOSCA Node-Types aus Juju-Artefakten entsprechen. Die konkrete Implementierung dieser
Methode wurde in der Studienarbeit "Vorlagen fiir das Deployment von Services und
Applikationen in der Cloud" [33] dargestellt. In dieser Diplomarbeit beschiftigen wir uns nur
mit der Implementierung der Methode mit zwei Parametern. Diese Methode bekommt zwei
CharmMetamodel-Objekte tlibergeben und liefert als Ausgabe ein Objekt von der Klasse
"TOSCAMetamodel" fiir einen Relationship-Type. Der Kern dieser Methode ist, durch die
entsprechenden Transformationsregeln zwei Charm-Metamodelle zu einem TOSCA-
Metamodell zu konvertieren. Diese Regeln miissen dem Konzept (Unterkapitel 4.3) fiir die
Erzeugung von TOSCA Relationship-Types aus zwei Juju-Artefakten entsprechen.

Zuerst wird ein Objekt der Klasse "TOSCAMetamodel" zum Speichern der XML-Elemente in
einem TOSCA-Definitions-Dokument instanziiert. Dann konnen durch diese zwei
CharmMetamodel-Objekte die folgenden Elemente erzeugt werden: Definitions, ArtifactType,
ArtifactTemplate, RelationshipType und RelationshipTypelmplementation. Jedes Element
kann durch die Instanziierung eines Objektes der entsprechenden Klasse implementiert
werden. Beispielsweise kann das Element RelationshipType durch das Erzeugen eines
Objektes der Klasse "TRelationshipType" implementiert werden. Dasselbe gilt auch fiir die
Generierung von anderen Elementen. Diese generierten Objekte werden auch im
TOSCAMetamodel-Objekt gespeichert. Da die Erzeugung der Elemente auf gleiche Art und
Weise implementiert wird, werden wir als Beispiel nur die Implementierung der Elemente
ArtifactType und ArtifactTemplate beschreiben.

In Unterkapitel 4.3.1 wird besprochen, dass Juju-Charms auf eine transparente Art und Weise
unter Verwendung des Standard-Artifact-Type "Script Artifact" in ein Service-Template
eingebettet werden. Deswegen erzeugen wir zuerst durch die Klasse "TArtifactType" das
Element ArtifactType namens "ScriptArtifact". Dann muss festgelegt werden, welche
Relation-Hooks zur Herstellung der entsprechenden Beziehung aufgerufen werden. Fiir diese
Relation-Hooks miissen die zusétzlichen Wrapper-Dateien erstellt werden, um diesen
transparenten Ansatz zu realisieren. Folglich muss fiir jede Wrapper-Datei ein Artifact-
Template vom Standard-Artifact-Type "Script Artifact" generiert werden. Beim Erzeugen des
Elements ArtifactTemplate benutzen wir einen UUID, um das Artifact-Template eindeutig zu
identifizieren. Der Inhalt seines Kindelements Properties ist vom Standard-Artifact-Type

76

5 Entwurf und Implementierung

"Script Artifact". Folglich brauchen wir ein Element ScriptArtifactProperties als Inhalt des
Element Properties. Durch die JAXB-Technologie kann die entsprechende Klasse
"ScriptArtifactProperties" aus der XML-Schema-Datei "ScriptArtifact.xsd" heraus generiert
und im Java-Paket '"org.tosca.meta.elements" gespeichert werden. Die Klasse
"ScriptArtifactProperties" enthilt als Attribute alle Elemente wie z.B. ScriptLanguage und
PrimaryScript, die in der Datei "ScriptArtifact.xsd" definiert sind. Die Generierung des
Elements ScriptArtifactProperties und seiner Kindelemente ScriptLanguage und
PrimaryScript wird durch die Klasse "ScriptArtifactProperties" implementiert. Schlielich
wird das Element ScriptArtifactProperties als ein Objekt der Klasse "JAXBElement" zum
Element Properties hinzugefiigt.

TOSCAToTOCSA

Die Klasse "TOSCAToTOCSA" implementiert die Schnittstelle "[MetamodelConverter" und
iiberschreibt drei Methoden "convert". In den Methoden mit einem und zwei Parametern
werden keine Codes geschrieben und NULL wird zuriickgegeben. Die Methode mit drei
Parametern bekommt einen Service-Namen vom Typ "java.lang.String" fiir das Service-
Template und zwei Objekte vom Typ "java.util.List" iibergeben und liefert als Ausgabe ein
Objekt der Klasse "TOSCAMetamodel" fiir ein Service-Template. Ein Eingabe-Objekt dient
zum Speichern der TOSCAMetamodel-Objekte fiir Node-Types. Das andere dient zum
Speichern der TOSCAMetamodel-Objekte flir Relationship-Types. Der Kern dieser Methode
ist, durch die entsprechenden Transformationsregeln die TOACA-Metamodelle fiir Node-
Types und Relationship-Types zu einem TOSCA-Metamodell fiir ein Service-Tempate zu
konvertieren. Diese Regeln miissen dem Konzept (Unterkapitel 4.4) fiir die Erzeugung von
TOSCA Service-Templates durch Orchestrierung der Node-Types und Relationship-Types
entsprechen.

Zuerst wird ein Objekt der Klasse "TOSCAMetamodel" zum Speichern der XML-Elemente in
einem TOSCA-Definitions-Dokument fiir ein Service-Template instanziiert. Dann werden die
XML-Elemente Definition, ServiceTemplate und TopologyTemplate generiert. Aullerdem
konnen durch zwei Eingabe-Objekte eine Reihe der folgenden Elemente erzeugt werden:
Import, NodeTemplate und RelationshipTemplate. Beispielsweise konnen die Elemente
Import und NodeTemplate durch ein TOSCAMetamodel-Objekt fiir einen Node-Type erzeugt
werden. Dasselbe gilt auch fir die Generierung der Elemente RelationshipTemplate. Diese
Elemente konnen durch die Instanziierung der Objekte der entsprechenden Klassen
"Definitions", "TServiceTemplate", "TTopologyTemplate" "TImport", "TNodeTemplate" und
"TRelationshipTemplate" implementiert werden. Diese generierten Objekte werden auch im
TOSCAMetamodel-Objekt fiir das Service-Template gespeichert.

5.3.3 Das Paket "org.tosca.util"

Im Java-Paket "org.tosca.util" werden einige Klassen fiir die Hilfefunktionen des Prototyps
implementiert. In der Klasse "Downloader" werden zwei Methoden "git" und "bazaar"
definiert, die zum Herunterladen der verschiedenen Artefakte dienen. Da Chef-Artefakte in
einem Offentlichen GIT Repository auf GitHub [46] hinterlegt werden, wird die Methode "git"
zum Herunterladen der Chef-Artefakte durch eine entsprechende URL als Eingabe verwendet.
Ebenso wird die Methode "bazaar" zum Herunterladen der Juju-Artefakte verwendet, da sie in
einem Offentlichen Bazaar [47] Repository auf Lauchpad [48] aufbewahrt werden.

77

5 Entwurf und Implementierung

Die Klasse "XSDGenerator" dient zur Generierung einer XSD-Datei (in unserem Fall, eines
Node-Type-Properties-Dokuments). Zuerst wird ein XML-Dokument durch die Methode
"createDocument" der Klasse "org.dom4j.DocumentHelper" erzeugt. Dieses XML-Dokument
dient zum Speichern aller entsprechenden XML-Elemente fiir das TOSCA Node-Type-
Properties-Dokument. Dann miissen das Wurzelelement und seine Kindelemente zu diesem
Dokument hinzugefiigt werden. SchlieBlich wird dieses Dokument durch die Methode "write"
der Klasse "org.dom4j.io. XMLWriter" in eine XSD-Datei geschrieben. Um diese Klassen zu
verwenden, muss die JAR-Datei "dom4j-1.6.1" in die Java-Laufzeitumgebung importiert
werden.

Die Klasse "XMLGenerator" dient zur Generierung einer XML-Datei (in unserem Fall, eines
TOSCA-Definition-Dokuments). Zuerst wird eine JAXBContext-Instanz durch die Methode
"newlnstance" der Klasse "JAXBContext" erstellt, um die Funktion "marschall" in
JAXBContext verwenden zu konnen. Diese Methode bekommt als Eingabe im Rahmen dieser
Arbeit den Paket-Namen "org.tosca.meta.elements" vom Typ "java.lang.String". Dieses Paket
"org.tosca.meta.clements" enthélt alle Java-Klassen, die durch die JAXB-Technologie aus
dem TOSCA-Schema [17] generiert wurden. Dann wird ein Objekt der Klasse "Definitions"
durch die Methode "createDefinitions" der Klasse "org.tosca.meta.elements.ObjectFactory”
erzeugt. Dieses Objekt ist das Wurzelelement eines TOSCA-Definitions-Dokuments und die
anderen entsprechenden Elemente miissen zum Wurzelelement hinzugefiigt werden.
Schlieflich wird das Wurzelelement durch die Methode "marshal" der Klasse
"javax.xml.bind.Marshaller" in eine XML-Datei geschrieben.

Die Klasse "MetaFileGenerator" dient zur Generierung der Metadatei "TOSCA.meta". Die
Methode "generate" in dieser Klasse bekommt zwei Pfadnamen vom Typ "java.lang.String"
iibergeben. Der erste Pfadname zeigt, wo sich der Ordner fiir ein TOSCA-Artefakt befindet.
Der zweite zeigt, wo die zu generierende Metadatei "TOSCA.meta" ausgegeben werden sollte.
Die konkrete Implementierung ist, dass ein Objekt der Klasse "java.lang.StringBuffer" durch
die Klasse "java.io.FileOutputStream" in eine Datei vom Typ "java.io.File" geschrieben wird.
Dasselbe gilt auch fiir die Klasse "WrapperFileGenerator" zur Generierung der Wrapper-Datei.

Die Klasse "FileUtils" stellt die Operationen zum Ordner zur Verfligung, z.B. nach einer
Datei zu suchen, alle Dateinamen und Pfadnamen aufzulisten und einen Ordner sowie die
Inhalte im Ordner zu einem anderen Ordner zu kopieren. Dazu wird das Java-Paket "java.io"
verwendet. Die Klasse "ZIPFileGenerator" dient dazu, einen Ordner zu einer Zipdatei zu
komprimieren. Dazu wird das Java-Paket "java.util.zip" verwendet. Die konkrete
Implementierung dieser zwei Klassen wurde in der Studienarbeit "Vorlagen fiir das
Deployment von Services und Applikationen in der Cloud" [33] dargestellt.

78

6 Evaluation

6 Evaluation

Um die in Kapitel 4 beschriebenen Konzepte zu evaluieren, wurde ein Prototyp entwickelt.
Mit dem entwickelten Prototyp koénnen die entsprechenden TOSCA Service-Templates aus
den Chef- und Juju-Artefakten erzeugt werden. In Kapitel 5 werden der Entwurf und die
Implementierung dieses Prototyps dargestellt und es wurde gezeigt, dass der Prototyp drei
wichtigen Aufgaben erledigen kann. Zu den konkreten Aufgaben gehoren die Erzeugung von
TOSCA Node-Types aus Chef-Cookbooks oder Juju-Charms, die Erzeugung von TOSCA
Relationship-Types aus zwei Juju-Charms und die Erzeugung von TOSCA Service-Templates
aus diesen generierten Node-Types und Relationship-Types. Im Folgenden werden die
Konzepte mittels des entwickelten Prototyps anhand eines Beispiels liberpriift. Die Aufgabe
der Evaluierung besteht aus zwei Teilen: (1) Zuerst werden die Funktionalitdt des Prototyps
getestet. Das heif3it, dass die CSARs durch den entwickelten Prototyp automatisch generiert
werden konnen; (2) dann werden die generierten CSARs validiert.

6.1 Test der Funktionalitit des Prototyps

Zum Testen der Funktionalitdt des entwickelten Prototyps wird in Abbildung 6.1 ein Beispiel
fiir ein TOSCA Service-Template namens "WordPress-Service" gegeben. Dieses Service-
Template besteht aus drei Knoten "WordPress", "MySQL" und "Apache2" und zwei
Beziehungen "ConnectsTo" und "HostedOn".

Web-Applikation

WordPress
hosted on / \connects to
Applikationsserver Datenbank
Apache 2 MySQL

Abbildung 6.1: Beispiel fiir das TOSCA Service-Template "WordPress-Service"

Zuerst wird mittels der Komponente "Node-Type-Generator" des Prototyps ein Node-Type
fir die Applikationsserver "Apache 2" aus einem entsprechenden Chef-Cookbook
automatisch generiert. In diesem Fall ist die Eingabe des Prototyps die URL, die sich mit dem
Repository fiir das Chef-Cookbook "apache 2" verbindet. Auf gleiche automatische Art und
Weise konnen mithilfe des Prototyps die Node-Types fiir die Applikation "WordPress" und
die Datenbank "MySQL" aus den entsprechenden Juju-Charms automatisch erzeugt werden.
Hierbei sind die Eingaben die URLs, die auf das Repository fiir Juju-Charms "WordPress"
und "MySQL" verweisen. Das Ziel fiir die Verwendung von verschiedenen Typen der

79

6 Evaluation

Artefakte wie Chef-Cookbooks und Juju-Charms ist, zu ermoglichen, dass verschiedene
Artefakttypen miteinander kombiniert werden konnen. Fiir die Beziehung "ConnectsTo"
zwischen der Applikation "WordPress" und des Datenbankservers "MySQL" kann die
Komponente "Relationship-Type-Generator" des Prototyps ein entsprechender Relationship-
Type aus den Juju-Charms "WordPress" und "MySQL" automatisch generieren werden. Der
einzige Teil fiir das Service-Template, den ich manuell implementiert habe, ist der
Relationship-Type fiir die Beziehung "HostedOn". Das entsprechende TOSCA-Definitions-
Dokument fiir diesen Relationship-Type enthélt zwei Elemente ValidSource und ValidTarget.
Sie spezifizieren die Typen der Quelle und des Zieles der Beziehung "HostedOn". In unserem
Fall spezifiziert das Element ValidSource den Node-Type "WordPress", wihrend das Element
ValidTarget den Node-Type "Apache 2" spezifiziert. SchlieBlich kann die Komponente
"Service-Template-Generator" des Prototyps durch diese generierten Node-Types und
Relationship-Types die entsprechende TOSCA CSAR-Datei fiir das Service-Template
"WordPress-Service" automatisch generieren. Neben den Node-Types und Relationship-
Types sowie dem Service-Template selbst enthdlt diese CSAR-Datei auch alle notwendigen
Artefakte (Cookbooks und Recipes von Chef sowie Charms und Hooks von Juju).

6.2 Validieren von CSARs

In Unterkapitel 6.1 wurde dargestellt, dass durch den entwickelten Prototyp die TOSCA
CSAR-Datei fiir das Service-Template "WordPress-Service" automatisch generiert werden
kann. In dieser CSAR-Datei lassen sich alle entsprechenden Chef- und Juju-Artefakte
verwenden. In diesem Unterkapitel werden die Korrektheit und die Giiltigkeit dieser CSAR-
Datei gepriift, damit basierend auf diesem Service-Template das Deployment und
Management der konkreten Service-Instanzen in einer Cloud-Umgebung verwirklicht werden
kann. Die Voraussetzung dafiir ist, dass diese Cloud-Umgebung eine dem TOSCA-Standard
konforme Laufzeitumgebung zur Verfiigung stellen muss. Zum Validieren dieser CSAR-
Datei wurde das Werkzeug "Winery" [49] verwendet. Winery [50] ist eine webbasierte
Umgebung und wird verwendet, um TOSCA-Topologien und Pline grafisch zu modellieren.
Diese Umgebung enthilt eine Komponente zur Verwaltung von Types und Templates. Mit
dieser Komponente konnen alle in der TOSCA-Spezifikation definierten Elemente erstellt und
verarbeitet werden. Alle Informationen werden in einem Repository gespeichert. Dieses
Repository ist dafiir verantwortlich, CSARs zu importieren und zu exportieren.

Zuerst wurde diese CSAR-Datei zum Werkzeug "Winery" importiert. Nachdem der Import
der CSAR-Datei erfolgreich durchgefiihrt wurde, haben wir als Ergebnis einen Graphen
bekommen. Dieser Graph, der in Abbildung 6.2 gezeigt wird, entspricht dem Graphen, der in
Abbildung 6.1 dargestellt wird. Daraus ergibt sich, dass diese CSAR-Datei korrekt ist.

80

6 Evaluation

(HostedOn_relationshiptype)

v

apache2 nodeTempl...
apache2
(apache2_nodetype)

s

Requirements

Capabilities

apache2

wordpress nodeTem...
wordpress
(wordpress_nodetype)
Requirements
db
nfs (ConnectsTo_relationshiptype)
cache
i
Capabilities
website)
h 4
(mysqgl nodeTemplate
mysql
(mysql_nodetype)
Requirements
slave
ceph
ha
Capabilities
db
db-admin
shared-db
master
munin
monitors
local-monitors

Abbildung 6.2: Ergebnis fiirs Validieren der CSAR "WordPress-Service"

81

6 Evaluation

82

7 Zusammenfassung und Ausblick

7 Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde ein automatisches Verfahren dargestellt, mit dem die TOSCA
Service-Template basierend auf existierenden von den hinter Juju und Chef stehenden
DevOps-Communities verdffentlichten Artefakten erzeugt werden konnen. Diese generierten
TOSCA Service-Templates, die diese Artefakte verwenden, kénnen von jeder TOSCA-
konformen Laufzeitumgebung verarbeitet werden.

Im Grundlagenkapitel wurden die DevOps-Ansdtze (Chef und Juju) und deren Verwendung
zur Realisierung des Deployments und Managements dargestellt. AuBerdem wurde in
Abbildung 2.6 gezeigt, dass Topology-Template und Pldne die zentralen Elemente eines
TOSCA Service-Template sind. Ein Topology-Template besteht aus Node-Templates und
Relationship-Templates. Diese Arbeit beschéftigte sich ausschlieBlich mit der Generierung
von Service-Templates ohne Plidne. Dazu gehdren (1) die Generierung von Node-Types, die
den Typ eines oder mehrerer Node-Templates definieren, (2) die Generierung von
Relationship-Types, die den Typ eines oder mehrerer Relationship-Templates definieren, und
(3) die Generierung des Topology-Template. In Kapitel 3 wurde besprochen, dass die
verschiedenen DevOps-Ansitze (Juju und Chef) abstrahiert werden miissen, um ihre
Topologie abstrakt zu modellieren. Das Ergebnis der Abstraktion ist, dass fiir jede Art dieser
Ansitze ein entsprechendes Topologie-Modell generiert wurde. Aullerdem wurde als Beispiel
die Modell-Transformation von Juju nach TOSCA sowie von Chef nach TOSCA erldutert. In
Kapitel 4 wurden die Konzepte fiir das automatische Verfahren erldutert und es wurde
beschrieben, wie ein Node-Type aus einem Chef-Cookbook und ein Relationship-Type aus
zwei Juju-Charms erzeugt werden. Auflerdem wurde in Unterkapitel 4.4 dargestellt, wie ein
Service-Template durch Orchestrierung dieser generierten Node-Types und Relationship-
Types erstellt wird. Um dieses automatische Verfahren zu evaluieren, wurde in Kapitel 5 ein
Prototyp entwickelt, mit dem sich alle 6ffentlich zugénglichen Chef- und Juju-Artefakte in
CSARs verwenden lassen. Es wurde dargestellt, welche Funktionalititen der Prototyp besitzt
und mit welchen wichtigen Komponenten der Prototyp aufgebaut wird. Auerdem wurde in
Unterkapitel 5.3 die konkrete Implementierung des Prototyps besprochen. In Kapitel 6 wurde
gezeigt, dass die CSAR-Datei durch den entwickelten Prototyp automatisch generiert werden
kann. AuBlerdem wurde diese CSAR-Datei durch das Werkzeug "Winery" [50] validiert.

Eine Moglichkeit fiir zukiinftige Arbeiten ist die Erzeugung von entsprechenden Plénen, die
verwendet werden, um den Lebenszyklus eines Cloud-Service oder einer Cloud-Anwendung
zu verwalten. Diese Pline sollten unter Verwendung von existierenden Workflow-Sprachen
wie BPMN [27] oder BPEL [28] zwischen verschiedenen Cloud-Umgebungen und Cloud-
Anbietern portabel sein. Dies ermoglicht es, dass das Management von Cloud-Services
wiederverwendbar und portabel ist. AuBBerdem bezog sich diese Arbeit stark auf Chef und
Juju. Allerdings sind die in dieser Arbeit beschriebenen Konzepte nicht Chef- oder Juju-
spezifisch. Folglich kann das in dieser Arbeit beschriebene Verfahren auf weitere dhnliche
Werkzeuge und Artefakte iibertragen werden. Beispielsweise konnen auch die Konzepte
beziiglich Chef fiir andere Konfigurationsmanagementwerkzeuge wie z.B. Puppet [15] und
CFEngine [34] implementiert werden, da sie eine sehr dhnliche Architektur besitzen.

83

7 Zusammenfassung und Ausblick

84

Literaturverzeichnis
Alle Weblinks wurden das letzte Mal am 01.12.2013 gepriift.

[1] Wettinger, Kopp und Leymann: Improving Portability of Cloud Service Topology Models
Relying on Script-Based Deployment. In: CEUR Workshop Proceedings; Online
Proceedings for Scientific Workshops. (2013)

[2] Leymann: Cloud Computing. it — Information Technology, 53(4). (2011)

[3] Mell und Grance: The NIST Definition of Cloud Computing. National Institute of
Standards and Technology. (2011)

[4] Giinther, Haupt und Splieth: Utilizing Internal Domain-Specific Languages for
Deployment and Maintenance of IT Infrastructures. Technical report, Very Large
Business Applications Lab Magdeburg, Fakultit fiir Informatik, Otto-von-
Guericke-Universitdt Magdeburg. (2010)

[5] Benjamin, Waldemar, Christian, Philipp und Schahram: Winds of Change: From Vendor
Lock-In to the Meta Cloud. Vienna University of Technology. (2013)

[6] Humble und Farley: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Addison-Wesley Professional. (2010)

[7] Humble und Molesky: Why Enterprises Must Adopt Devops to Enable Continuous
Delivery. Cutter IT Journal, 24(8):6. (2011)

[8] Shamow: Devops at Advance Internet: How We Got in the Door. IT Journal, page 14.
(2011)

[9] Nelson-Smith: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc. (2011)

[10] Delaet, Joosen und Vanbrabant: A Survey of System Configuration Tools. In
Proceedings of the 24th Large Installations Systems Administration (LISA)
conference. (2010)

[11] Smith: Hype Cycle for Cloud Computing. (2011)

[12] Leymann: Cloud Computing: The Next Revolution in IT. In Photogrammetric Week *09.
Wichmann Verlag. (2009)

[13] Vaquero, Rodero-Merino, Caceres und Lindner: A Break in the Clouds: Towards a Cloud
Definition. ACM SIGCOMM Computer Communication Review, 39(1):50-55.
(2008)

[14] Chef Cookbooks. http://community.opscode.com/cookbooks

[15] Puppet Webseite. https://puppetlabs.com/

85

http://community.opscode.com/cookbooks

[16] Juju Charm Browser. http://jujucharms.com/

[17] TOSCA Specification, Version 1.0 Committee Specification 01. 18 March 2013.
http://docs.oasis-open.org/tosca/ TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

[18] Chef Documentation: http://docs.opscode.com/

[19] Git - Verteiltes Versionsverwaltungssystem: http://git-scm.com/

[20] Wettinger, Behrendt, Binz, Breitenbiicher, Breiter, Leymann, Moser, Schwertle, Spatzier:
Integrating Configuration Management with Model-Driven Cloud Management
Based on TOSCA. In: Proceedings of the 3rd International Conference on Cloud
Computing and Services Science (CLOSER). (2013)

[21] Delaet und Joosen: PoDIM: A language for high-level configuration management. In
Proceedings of the Large Installations Systems Administration (LISA) Conference,
Berkeley, CA. (2007)

[22] SugarCRM Webseite. http://www.sugarcrm.com/

[23] Juju Documentation. https://juju.ubuntu.com/docs/

[24] YAML Webseite. http://www.yaml.org/

[25] WordPress Webseite. http://wordpress.com/

[26] MySQL Webseite. http://www.mysql.de/

[27] Business Process Model and Notation (BPMN) Version 2.0, Object Management Group
specification: http://www.bpmn.org/

[28] Web Services Business Process Execution Language (BPEL) Version 2.0, OASIS
specification: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[29] Binz, Breiter, Leymann und Spatzier: Portable Cloud Services Using TOSCA. Internet
Computing, IEEE, 16(3):80-85. (2012)

[30] Leymann, Fehling, Mietzner, Nowak und Dustdar: Moving Applications to the Cloud:
An Approach Based on Application Model Enrichment. International Journal of
Cooperative Information Systems, 20(3):307. (2011)

[31] Binz, Leymann und Schumm: CMotion: A Framework for Migration of Applications into
and between Clouds. In 2011 IEEE International Conference on Service-Oriented
Computing and Applications. IEEE. (2011)

[32] Breitenbiicher, Binz, Kopp und Leymann: Pattern-Based Runtime Management of
Composite Cloud Applications. In Proceedings of the 3rd International
Conference on Cloud Computing and Services Science (CLOSER). (2013)

86

http://jujucharms.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.opscode.com/
http://git-scm.com/
http://www.sugarcrm.com/
http://www.yaml.org/
http://wordpress.com/
http://www.mysql.de/
http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[33] Zhang: Studienarbeit: Vorlagen fiir das Deployment von Services und Applikationen in
der Cloud. Betreuer: Wettinger. (2013)

[34] JAXB Reference Implementation. https://jaxb.java.net/

[35] Ruby Webseite. https://www.ruby-lang.org/en/

[36] JRuby Webseite. http://jruby.org/

[37] JRuby Wikipedia. http://de.wikipedia.org/wiki/JRuby

[38] Dom4j Webseite. http://dom4;j.sourceforge.net/

[39] Dom4j Wikipedia. http://de.wikipedia.org/wiki/Dom4]

[40] UUID Wikipedia. http://de.wikipedia.org/wiki/Universally Unique Identifier

[41] Snakeyaml Webseite. http://code.google.com/p/snakeyaml/

[42] JAXB Wikipedia. http://de.wikipedia.org/wiki/Java Architecture for XML _Binding

[43] CFEngine Webseite. http://cfengine.com/

[44] Baun, Kunze und Tai: Cloud Computing - Web-basierte dynamische IT-Services, 2. Aufl.
ed., Heidelberg, Dordrecht, London, New York: Springer-Verlag. (2011)

[45] Kopp, Binz, Breitenbiicher, Leymann: BPMN4TOSCA: A Domain-Specific Language to
Model Management Plans for Composite Applications. In: Mendling, Jan (Hrsg);
Weidlich, Matthias (Hrsg): 4th International Workshop on the Business Process
Model and Notation. (2012)

[46] GitHub Webseite. https://github.com/

[47] Bazaar Webseite. http://bazaar.canonical.com/

[48] Launchpad Webseite. https://launchpad.net/

[49] Winery Webseite. http://dev.winery.opentosca.org:8080/winery/servicetemplates/

[50] Kopp, Binz, Breitenbiicher, und Leymann: Winey - A Modeling Tool for TOSCA-based
Cloud Applications. Springer-Verlag. (2013)

[51] Apache Webseite. http://www.apache.org/

[52] Chef Cookbook Apache2. http://community.opscode.com/cookbooks/apache2

[53] Chef Cookbook WordPress. http://community.opscode.com/cookbooks/wordpress

[54] Amazon Web Services Webseite. http://aws.amazon.com/de/

[55] Google App Engine Webseite. https://developers.google.com/appengine/

87

http://jruby.org/
http://de.wikipedia.org/wiki/JRuby
http://dom4j.sourceforge.net/
http://de.wikipedia.org/wiki/Dom4j
http://de.wikipedia.org/wiki/Universally_Unique_Identifier
http://code.google.com/p/snakeyaml/
http://de.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://cfengine.com/
http://bazaar.canonical.com/
http://dev.winery.opentosca.org:8080/winery/servicetemplates/
http://www.apache.org/
http://community.opscode.com/cookbooks/apache2
http://community.opscode.com/cookbooks/wordpress
http://aws.amazon.com/de/

[56] Definition der Orchestration. http://en.wikipedia.org/wiki/Service_orchestration

[57] Amazon Virtual Private Cloud Webseite. http://aws.amazon.com/de/vpc/

[58] OpenStack Webseite. http://www.openstack.org/

[59] Rackspace Webseite. http://www.rackspace.com/

[60] Google Compute Engine Webseite. https://developers.google.com/compute/

[61] Windows Azure Webseite. http://www.windowsazure.com/de-de/

[62] Chef Cookbook User. http://community.opscode.com/cookbooks/user

[63] JavaScript Object Notation. http://de.wikipedia.org/wiki/JavaScript Object Notation

[64] TOSCA Implementer's Recommendations for Interoperable TOSCA Implementations,
Version 1.0 Interoperability Subcommittee, Working Draft 01, Rev. 05, 20 May
2013. https://www.oasis-

open.org/committees/document.php?document 1d=49302&wg_abbrev=tosca

[65] TOSCA Primer, Version 1.0. Committee Note Draft (CND) 01, Working Draft 07,
Revision 01, 08 February 2013. https://www.oasis-
open.org/committees/document.php?document_id=48201&wg_abbrev=tosca

88

http://en.wikipedia.org/wiki/Service_orchestration
http://aws.amazon.com/de/vpc/
http://www.openstack.org/
http://www.rackspace.com/
http://www.windowsazure.com/de-de/
http://community.opscode.com/cookbooks/user
http://de.wikipedia.org/wiki/JavaScript_Object_Notation

Anhang 1

Node-Type-Properties-Dokument fiir den Node-Type "MySQL" aus dem Cookbook "mysql"

<?xml version="1.0" encoding="UTF-8"7?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://community.opscode.com/cookbooks/mysqgl/nodetype
_properties" targetNamespace="http://community.opscode.com/

cookbooks/mysgl/nodetype properties">

<xs:complexType name="t-mysgl-properties">
<xs:sequence>
<xs:element name="mysql/server root password" type="string"
default="randomly generated">
<xs:annotation>
<xs:documentation xml:lang="en">Randomly generated password
for the mysgld root user</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/bind address" type="string"
default="ipaddress">
<xs:annotation>
<xs:documentation xml:lang="en">Address that mysgld should
listen on</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/data dir" type="string"
default="/var/lib/mysqgl">
<xs:annotation>
<xs:documentation xml:lang="en">Location of mysqgl
databases</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/conf dir" type="string"
default="/etc/mysqgl">
<xs:annotation>
<xs:documentation xml:lang="en">Location of mysgl conf
files</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/ec2 path" type="string"
default="/mnt/mysql">
<xs:annotation>

<xs:documentation xml:lang="en">Location of mysql directory

89

on EC2 instance EBS volumes</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/reload action" type="string"
default="reload">
<xs:annotation>
<xs:documentation xml:lang="en">Action to take when mysqgl
conf files are modified</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/tunable" type="hash">
<xs:annotation>
<xs:documentation xml:lang="en">Hash of MySQL tunable
attributes</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysql/tunable/key buffer" type="string"
default="250M"/>
<xs:element name="mysql/tunable/max connections" type="string"
default="800"/>
<xs:element name="mysql/tunable/wait timeout" type="string"
default="180"/>
<xs:element name="mysqgl/tunable/net read timeout" type="string"
default="30"/>
<xs:element name="mysql/tunable/net write timeout" type="string"
default="30"/>
<xs:element name="mysql/tunable/back log" type="string"
default="128"/>
<xs:element name="mysqgl/tunable/table cache" type="string"
default="128"/>
<xs:element name="mysqgl/tunable/table open cache" type="string"
default="128"/>
<xs:element name="mysqgl/tunable/max heap table size"
type="string" default="32M"/>
<xs:element name="mysqgl/tunable/expire logs days" type="string"
default="10"/>
<xs:element name="mysqgl/tunable/max binlog size" type="string"
default="100M"/>
<xs:element name="mysgl/client" type="hash">
<xs:annotation>
<xs:documentation xml:lang="en">Hash of MySQL client
attributes</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="mysqgl/client/version" type="string"
default="6.0.2"/>

<xs:element name="mysqgl/client/arch" type="string"

90

default="win32"/>

<xs:element name="mysqgl/client/package file" type="string"
default="mysgl-connector-c-6.0.2-win32.msi" />

<xs:element name="mysgl/client/url" type="string"
default="http://www.mysqgl.com/get/Downloads/Connector-C/
mysgl-connector-c-6.0.2-win32.msi/from/http://
mysql.mirrors.pair.com/"/>

<xs:element name="mysqgl/client/package name" type="string"
default="MySQL Connector C 6.0.2"/>

<xs:element name="mysqgl/client/basedir" type="string"
default="C:\Program Files (x86)\MySQL\Connector C 6.0.2"/>

<xs:element name="mysqgl/client/lib dir" type="string"
default="C:\Program Files (x86)\MySQL\
Connector C 6.0.2\1ib\opt"/>

<xs:element name="mysqgl/client/bin dir" type="string"
default="C:\Program Files (x86)\MySQL\Connector C 6.0.2\bin"/>

<xs:element name="mysqgl/client/ruby dir" type="string"
default="system ruby"/>

</xs:sequence>
</xs:complexType>

<xs:element name="mysgl-properties" type="t-mysgl-properties"/>

</xs:schema>

91

Anhang 2

Die Datei "metaparser.rb"”

require './lib/chef/metadata’

require 'java'

java_import 'org.tosca.meta.CookbookMetamodel'
java import 'org.tosca.meta.cookbook.Recipe'
java_import 'org.tosca.meta.cookbook.Dependency'

java import 'org.tosca.meta.cookbook.Attribute'

metadata file=Spathname

puts metadata file
cmm=CookbookMetamodel .new

metadata = Chef::Cookbook::Metadata.new

metadata.from file(metadata file)

name="#{metadata.name}"

cmm. setName (name.to_ java)

description="#{metadata.description}"

cmm. setDescription(description.to java)

metadata.recipes.each { |name, description|
name="4#{name}"
description=" #{description}"
recipe=Recipe.new
recipe.setName (name)
recipe.setDescription (description)

cmm.getRecipes () .add (recipe)

metadata.platforms.each { |platform, version|
platform="#{platform}"
cmm.getPlatforms () .add(platform)

metadata.dependencies.each { |cookbook, version]
cookbook="#{cookbook}"
version=" #{version}"
dependency=Dependency.new
dependency.setCookbook (cookbook)
dependency.setVersion (version)

cmm.getDependencies () .add (dependency)

92

metadata.attributes.each { |name, options|
name="4#{name}"
attribute=Attribute.new
attribute.setName (name)
options.each{|optionname, option|
optionname="#{optionname} "
option="#{option}"
if /display name /=~optionname then
attribute.setDisplay name (option)
end
if /description/=~optionname then
attribute.setDescription (option)
end
if /default /=~optionname then
attribute.setDefault value (option)
end
if /choice /=~optionname then
attribute.setChoice (option)
end
if /calculated/=~optionname then
attribute.setCalculated (option)
end
if /type /=~optionname then
attribute.setType (option)
end
if /required /=~optionname then
attribute.setRequired (option)
end
if /recipes/=~optionname then
attribute.setRecipes (option)
end
}
cmm.getAttributes () .add (attribute)

return cmm

93

Anhang 3

Die Datei "ScriptArtifact.xsd"

<?xml version="1.0" encoding="UTF-8"7?>

<xs:schema
targetNamespace="http://docs.ocasis-open.org/tosca/.../Artifacts"
elementFormDefault="qualified"
attributeFormDefault="unqualified"

xmlns="http://docs.oasis-open.org/tosca/ns/2011/12/Artifacts"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="ScriptArtifactProperties">
<xs:complexType>

<Xs:sequence>

<xs:element name="ScriptLanguage" type="xs:anyURI"/>
<xs:element name="PrimaryScript" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

94

Anhang 4

Die Datei "ChefArtifact.xsd"

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema targetNamespace="http://www.example.com/ChefArtifacts"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns="http://www.example.com/ChefArtifacts"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="documentation" type="tDocumentation"/>
<xs:complexType name="tDocumentation" mixed="true">
<xs:sequence>
<xs:any processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="source" type="xs:anyURI"/>
</xs:complexType>
<xs:complexType name="tExtensibleElements">
<xs:sequence>
<xs:element ref="documentation" minOccurs="0"
maxOccurs="unbounded" />
<xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:element name="ChefArtifactProperties">
<xs:complexType>
<xs:complexContent>
<xs:extension base="tChefArtifactProperties"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:complexType name="tChefArtifactProperties">
<xs:complexContent>
<xs:extension base="tExtensibleElements">
<xs:sequence>
<xs:element name="Cookbooks">
<xs:complexType>
<xs:sequence>
<xs:element name="Cookbook" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string"
use="required" />
<xs:attribute name="location" type="xs:anyURI"

use="required" />

95

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Roles" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="Role" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string"
use="required" />
<xs:attribute name="location" type="xs:anyURI"
use="required" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Mappings" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="PropertyMapping"
type="tPropertyMapping”" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="SourcePropertyMapping"”
type="tPropertyMapping" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TargetPropertyMapping"
type="tPropertyMapping”" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="InputParameterMapping"”
type="tParameterMapping" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="OutputParameterMapping"
type="tParameterMapping" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="RunList">
<xs:complexType>
<xs:sequence>
<xs:element name="Include" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="RunListEntry"

96

type="tRunListEntry" minOccurs="1"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Exclude" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="RunListEntry"
type="tRunListEntry" minOccurs="1"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="tRunListEntry">
<xs:attribute name="cookbookName" type="xs:string"/>
<xs:attribute name="recipeName" type="xs:string"/>
<xs:attribute name="roleName" type="xs:string"/>
</xs:complexType>
<xs:complexType name="tParameterMapping">
<xs:attribute name="parameterName" type="xs:string"
use="required"/>
<xs:attribute name="cookbookAttribute" type="xs:string"
use="required"/>
</xs:complexType>
<xs:complexType name="tPropertyMapping">
<xs:attribute name="propertyPath" type="xs:string" use="required"/>
<xs:attribute name="cookbookAttribute" type="xs:string"
use="required" />
<xs:attribute name="mode" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="input"/>
<xs:enumeration value="output"/>
<xs:enumeration value="input-output"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

</xs:schema>

97

98

Erklarung
Ich versichere, diese Arbeit selbststindig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngemif3
aus anderen Werken iibernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen
Priifungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollstindig verdffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren {iberein.

Stuttgart, den 8. Januar 2014

99

	Einleitung
	Hintergrund
	Problemstellung
	ZielderArbeit
	StrukturderArbeit

	Grundlagen
	Chef
	Architektur
	Cookbooks
	Metadaten
	BestehendeDefiziteundZusammenfassung

	Juju
	Arbeitsweise
	JujuCharm
	DasVerzeichnis"hooks"
	DieDatei"metadata.yaml"
	DieDatei"config.yaml"

	RelationinJuju
	BestehendeDefiziteundZusammenfassung

	TopologyandOrchestrationSpecificationforCloud
	Einführung
	Service-TemplatesundArtifacts
	RequirementsandCapabilities
	TOSCACloudServiceARchive(CSAR)
	TOSCA-Definitions-Dokument

	AnforderungenaneinautomatischesVerfahren
	AbstraktionderEigenheitenverschiedenerDevOps-A
	GrenzenundEinschränkungen
	Modell-Transformation
	Modell-TransformationvonChefnachTOSCA
	Modell-TransformationvonJujunachTOSCA

	KonzeptefüreinautomatischesVerfahren
	ErzeugungvonTOSCANode-TypesausbestehendenChe
	ErzeugungdesNode-Type-Properties-Dokuments
	ErzeugungvonRequirement-TypesundCapability-Typ
	ErzeugungvonArtifact-TypesundArtifact-Template
	DiedirekteIntegration
	DietransparenteIntegration
	DerbevorzugteAnsatz

	ErzeugungvonNode-TypeundNode-Type-Implementati
	ErzeugungderentsprechendenCSAR-Datei

	ErzeugungvonTOSCANode-TypesausbestehendenJuj
	ErzeugungvonTOSCARelationship-Typesausbestehe
	ErzeugungvonArtifact-TypesundArtifact-Template
	ErzeugungvonRelationship-TypeundRelationship-T
	ErzeugungderentsprechendenCSAR-Datei

	ErzeugungvonTOSCAService-Templates
	ErzeugungderElementeImport
	ErzeugungvonNode-Templates
	ErzeugungvonRelationship-Templates
	ErzeugungderentsprechendenCSAR-Datei

	EntwurfundImplementierung
	Anforderungsanalyse
	FunktionaleAnforderungen
	Nicht-funktionaleAnforderungen
	ZusätzlicheFunktionalitätendesPrototyps

	EntwurfdesPrototyps
	ArchitekturdesPrototyps
	InterneStrukturderKomponenten
	DieFunktionsweisederKomponenten
	DieFunktionsweisederKomponente"Node-Type-Gener
	DieFunktionsweisederKomponente"Relationship-Ty
	DieFunktionsweisederKomponente"Service-Templat

	ImplementierungdesPrototyps
	DasPaket"org.tosca.csar"
	DieSchnittstelle"INodeTypeGenerator"
	DieSchnittstelle"IRelationshipTypeGenerator"
	DieSchnittstelle"IServiceTemplateGenerator"

	DasPaket"org.tosca.meta"
	DieSchnittstelle"IMetamodel"
	DieSchnittstelle"IMetamodelGenerator"
	DieSchnittstelle"IMetamodelConverter"

	DasPaket"org.tosca.util"

	Evaluation
	TestderFunktionalitätdesPrototyps
	ValidierenvonCSARs

	ZusammenfassungundAusblick

