
Institut für Architektur von Anwendungssystemen
Universität Stuttgart
Universitätsstraße 38

70569 Stuttgart
Germany

Diplomarbeit Nr. 3493

Ein automatisches Verfahren zur Erzeugung
von lauffähigen TOSCA Service-Templates,

basierend auf DevOps-Artefakten

Shaojun Zhang

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Johannes Wettinger

begonnen am: 09.07.2013

beendet am: 08.01.2014

CR-Klassifikation: K6; D2.11; D2.13

3

Kurzfassung

In letzter Zeit wurden eine Reihe von Ansätzen, Werkzeugen und Communities entwickelt,
um das aktuell viel diskutierte DevOps-Paradigma realisierbar zu machen. Prominente
Beispiele dafür sind Chef, Puppet oder Juju. All diese Ansätze verfolgen das Ziel,
wiederverwendbare Artefakte (Skripte und Konfigurationsdefinitionen) zu erstellen, zu
veröffentlichen und miteinander zu kombinieren (Orchestrierung), um damit durch einen
hohen Grad an Automatisierung ein effizientes Deployment und Management von Services
oder Applikationen in einer Cloud-Umgebung zu ermöglichen. Daher werden diese
Werkzeuge häufig auch mit den Begriffen "Configuration Management Tooling" (Chef,
Puppet, etc.) oder "Service Orchestration Tooling" (Juju, etc.) bezeichnet. Das Hauptproblem
ist hierbei, dass die von den DevOps-Communities erstellten und veröffentlichten Artefakte
nicht portabel sind, weil sie durch proprietäre Ansätze implementiert werden und damit von
einer ebenfalls proprietären Laufzeitumgebung abhängig sind. Das heißt, dass diese Artefakte
sich nur mit den Werkzeugen verarbeiten lassen, mit denen sie erstellt wurden. Dadurch
weisen diese Artefakte einen sehr geringen Grad an Portabilität auf.

Um das oben genannte Problem zu vermeiden, sind Standardisierungsbemühungen im
Bereich des Cloud Computing von wichtiger Bedeutung. Die "Topology and Orchestration
Specification for Cloud Applications" (TOSCA) stellt einen Standardisierungsansatz dar, um
solche Artefakte auf eine portable Art und Weise zu erstellen, sodass durch deren
Orchestrierung portable Service-Templates entstehen können.

Ziel dieser Diplomarbeit ist die Entwicklung eines automatischen Verfahrens, um einsetzbare
TOSCA Service-Templates zu erzeugen, basierend auf existierenden von den hinter Juju und
Chef stehenden DevOps-Communities veröffentlichten Artefakten. Damit können diese
Artefakte und die TOSCA Service-Templates, die diese Artefakte verwenden, von jeder
TOSCA-konformen Laufzeitumgebung [65] verarbeitet werden.

4

5

Inhaltsverzeichnis

Kurzfassung...3

Inhaltsverzeichnis..5

1 Einleitung... 9

1.1 Hintergrund... 9

1.2 Problemstellung...12

1.3 Ziel der Arbeit...12

1.4 Struktur der Arbeit.. 12

2 Grundlagen...15

2.1 Chef...15

2.2 Juju.. 21

2.3 Topology and Orchestration Specification for Cloud Applications............................28

3 Anforderungen an ein automatisches Verfahren..37

3.1 Abstraktion der Eigenheiten verschiedener DevOps-Ansätze.................................... 37

3.2 Grenzen und Einschränkungen... 38

3.3 Modell-Transformation...38

4 Konzepte für ein automatisches Verfahren.. 41

4.1 Erzeugung von TOSCA Node-Types aus bestehenden Chef-Artefakten................... 41

4.2 Erzeugung von TOSCA Node-Types aus bestehenden Juju-Artefakten.................... 49

4.3 Erzeugung von TOSCA Relationship-Types aus bestehenden Juju-Artefakten.........51

4.4 Erzeugung von TOSCA Service-Templates... 56

5 Entwurf und Implementierung... 61

5.1 Anforderungsanalyse...61

5.2 Entwurf des Prototyps...62

5.3 Implementierung des Prototyps...68

6 Evaluation.. 79

6.1 Test der Funktionalität des Prototyps..79

6.2 Validieren von CSARs..80

7 Zusammenfassung und Ausblick... 83

6

Literaturverzeichnis...85

Anhang 1... 89

Anhang 2... 92

Anhang 3... 94

Anhang 4... 95

Erklärung...99

7

Abbildungsverzeichnis

Abbildung 2.1: Die vereinfachte Architektur von Chef ...16

Abbildung 2.2: Die Komponenten von Cookbooks "mysql" und "apache 2".......................... 18

Abbildung 2.3: Deployment mithilfe des Konfigurationsmanagements21

Abbildung 2.4: Ein Beispiel für die Struktur eines Charm... 23

Abbildung 2.5: Ein Bespiel für das Verzeichnis "hooks"... 24

Abbildung 2.6: Die Datei "metadata.yaml" des Charm "WordPress"...................................... 25

Abbildung 2.7: Die Datei "metadata.yaml" des Charm "MySQL"...26

Abbildung 2.8: Ein Bespiel für die Datei "config.yaml".. 27

Abbildung 2.9: Beispiel für die Require/Provide-Relation...28

Abbildung 2.10: Strukturelle Elemente eines Service-Template und ihrer Beziehungen........ 29

Abbildung 2.11: Beispiel für einen Node-Type..30

Abbildung 2.12: Die Struktur einer CSAR-Datei... 32

Abbildung 3.1: Beispiel für Modell-Transformation von Chef nach TOSCA..........................39

Abbildung 3.2: Beispiel für Modell-Transformation von Juju nach TOSCA...........................40

Abbildung 4.1: Transparente Integration mit Hilfe eines Wrapper-Skripts..............................44

Abbildung 4.2: Beispiel für Erzeung vom TOSCA Node-Type aus Juju-Charm "MySQL"... 50

Abbildung 5.1: Eine grobe Übersicht über die Komponenten des Prototyps........................... 62

Abbildung 5.2: Die interne Struktur jeder Komponente...64

Abbildung 5.3: Ablaufdiagramm der Komponente "Node-Type-Generator"...........................65

Abbildung 5.4: Ablaufdiagramm der Komponente "Relationship-Type-Generator"............... 66

Abbildung 5.5: Ablaufdiagramm der Komponente "Service-Template-Generator"................ 67

Abbildung 5.6: Sequenzdiagramm für die Klasse "NodeTypeFromCookbook"69

Abbildung 5.7: Sequenzdiagramm für die Klasse "RelationshipTypeFromCharms"70

Abbildung 5.8: Sequenzdiagramm für die Klasse "ServiceTemplateFromType"71

Abbildung 5.9: Klassendiagramm für das Java-Paket "org.tosca.meta"72

Abbildung 6.1: Beispiel für das TOSCA Service-Template "WordPress-Service"..................79

Abbildung 6.2: Ergebnis fürs Validieren der CSAR "WordPress-Service"............................. 81

8

Ausschnittsverzeichnis

Ausschnitt 2.1: XML-Syntax eines TOSCA-Definitions-Dokuments......................................34

Ausschnitt 4.1: XML-Syntax für den Capability-Type...42

Ausschnitt 4.2: XML-Syntax für das Chef-spezifische Artefact-Template..............................45

Ausschnitt 4.3: XML-Syntax für den Node-Type...47

Ausschnitt 4.4: XML-Syntax für die Node-Type-Implementation...48

Ausschnitt 4.5: XML-Syntax für das Artifact-Template vom Standard-Artifact-Type............53

Ausschnitt 4.6: XML-Syntax für den Relationship-Type... 54

Ausschnitt 4.7: XML-Syntax für die Relationship-Type-Implementation............................... 55

Ausschnitt 4.8: XML-Syntax für das Node-Template.. 57

Ausschnitt 4.9: XML-Syntax für das Relationship-Template...58

Abkürzungsverzeichnis

BPEL: Business Process Execution Language

BPMN: Business Process Model and Notation

CSAR: Cloud Service Archive

DSL: Domain-specific Language

TOSCA: Topology and Orchestration Specification for Cloud Applications

URI: Uniform Resource Identifier

URL: Uniform Resoure Locator

UUID: Universal Unique Identifier

WSDL: Web Services Description Language

XML: Extensible Markup Language

XSD: XML Schema Definition

1 Einleitung

9

1 Einleitung

Dieses Kapitel beschreibt die Einleitung der Diplomarbeit. Zunächst wird der Hintergrund des
Cloud-Service-Managements dargestellt und die Probleme von DevOps-Ansätzen sowie ihre
Lösungen besprochen. Aus diesem Kontext heraus wird die Problemstellung und somit das
Ziel der Diplomarbeit spezifiziert. Am Ende der Einleitung wird eine Übersicht über die
Struktur der Arbeit und die Beschreibungen des Kapitels präsentiert.

1.1 Hintergrund

Die Reduzierung der Kosten für das Infrastruktur- und Service-Management ist einer der
wichtigsten Aspekte von Cloud Computing, weil das traditionelle IT-Service-Management
aufwendig ist [1]. Dieses Ziel wird durch die Automatisierung des gesamten Managements
von Services in der Cloud erreicht. Das Management von Cloud-Services ist nicht auf das
Deployment und Stilllegen von Service-Instanzen beschränkt. Dazu gehören weitere
Managementaufgaben, die ausgeführt werden müssen, sobald eine bestimmte Service-Instanz
deployed wurde. Beispielsweise muss sich die Service-Instanz je nach der aktuellen
Arbeitsbelastung vergrößern und verkleinern. Zurzeit bieten viele Anbieter auf dem Gebiet
von Cloud Computing [2] [3] proprietäre Angebote, mit denen die hochgradig skalierbaren
Applikationen und Services erstellt werden können. Diese können Infrastruktur-Angebote wie
Amazon Web Services [54] oder Plattform-Angebote wie Google App Engine [55] sein.
Außerdem stellen Cloud-Anbieter auch proprietäre Werkzeuge wie z.B. "CloudFormation"
und "Auto Scaling" von Amazon Web Services zur Verfügung, um das Management von
Applikationen und Services in der Cloud zu automatisieren. Die Lernkurve ist
vergleichsweise ach, weil diese Angebote und Werkzeuge einfach zu bedienen sind.

Wenn die Services immer komplexer werden, wird ihr Management jedoch zunehmend
schwieriger [4]. Es könnte sogar unmöglich sein, den Service von einem Cloud-Anbieter zu
einem anderen zu verschieben, weil noch Standards fehlen, die Portabilität zu gewährleisten.
Das führt zu "Vendor Lock-in" [5] und schlechter Verwaltbarkeit ("Manageability"). Bei der
Situation "Vendor Lock-in" ist Providerwechsel schwierig oder sogar unmöglich. Portabilität
ist sehr wichtig für die Services in der Cloud, um "Vendor Lock-in" zu verhindern. Zurzeit
sind viele Cloud-Services selbst portabel und können damit von einem Cloud-Anbieter zu
einem anderen verschoben werden. Aber es könnte für das Service-Management nicht
zutreffend sein. Das Management dieser Services wird oft auf das Provider-spezifische
Managementwerkzeug beschränkt. Da das Managementwerkzeug unterschiedlich ist, könnte
sich die Art des Managements eines bestimmten Cloud-Service komplett ändern, das heißt,
der Service könnte auf eine ganz unterschiedliche Weise verwaltet werden, wenn dieser
Service zu einem anderen Cloud-Anbieter verschoben wird. Darum ist Portabilität unbedingt
erforderlich für die Services in der Cloud ist, vor allem, wenn es um das Service-Management
geht. Deshalb muss es garantiert sein, dass die Verwaltbarkeit von Services in der Cloud
verbessert wird, ohne auf die Portabilität zu verzichten.

Bis heute zeigen die sogenannten DevOps-Ansätze [6] [7] [8] das führende Paradigma für das
effiziente Management von Services und Applikationen auf eine hochautomatisierte Weise.
Das ursprüngliche Ziel dieser Methodologien ist es, die Entwickler und das Betriebspersonal

1 Einleitung

10

zusammenzubringen. Dieses Ziel wird hauptsächlich durch die Automatisierung aller
Deployment- und Managementaufgaben erreicht.

In letzter Zeit haben sich eine Reihe von Ansätzen, Werkzeugen und Communities etabliert,
um das aktuell viel diskutierte DevOps-Paradigma realisierbar zu machen. Prominente
Beispiele dafür sind Chef [14], Puppet [15] oder Juju [16]. All diese Ansätze verfolgen das
Ziel, wiederverwendbare Artefakte (Skripte und Konfigurationsdefinitionen) zu erstellen, zu
veröffentlichen und miteinander zu kombinieren (Orchestrierung), um damit durch einen
hohen Grad an Automatisierung ein effizientes Deployment und Management eines Service
oder einer Anwendung in einer Cloud-Umgebung zu ermöglichen. Daher werden diese
Werkzeuge häufig auch mit den Begriffen Konfigurationsmanagementwerkzeug (Chef,
Puppet, etc.) oder Service-Orchestrierungswerkzeug (Juju, etc.) bezeichnet. Unter
Konfigurationsmanagement versteht man die Disziplin im Bereich des System- und
Infrastruktur-Managements, unterschiedliche Konfigurationen und deren Definitionen sauber
zu verwalten. Der Begriff Service-Orchestrierung meint im Kontext dieser Arbeit die
Möglichkeit, unterschiedliche Services (z.B. eine MySQL-Datenbank, ein Caching-System,
etc.) miteinander zu verbinden.

Konfigurationsmanagementwerkzeug

Ein Konfigurationsmanagementwerkzeug [4] [9] [10] wie z.B. Chef oder Puppet realisiert die
eigentliche Automatisierung. Demzufolge sind die entsprechenden Managementprozesse
zuverlässiger und kostengünstiger im Gegensatz zur manuellen Durchführung dieser Prozesse.
Folglich ist es viel einfacher, das initiale Deployment sowie das erneute Deployment von
Services in verschiedenen Umgebungen wie z.B. Entwicklung, Test und Produktion
durchzuführen. Die Philosophie hinter der DevOps-Bewegung ist, agile Methodologien in die
Welt des IT-Infrastruktur- und IT-Service-Managements zu bringen [6]. Dies wird durch die
Implementierung des Konzepts "Infrastructure as Code" unter Verwendung eines
Konfigurationsmanagementwerkzeuges erreicht. Das Konzept basiert auf der Annahme, dass
fast jede Aktion auf der Infrastruktur-Management-Ebene programmatisch automatisiert
werden kann [11]. Folglich stellen die dieses Konzept implementierenden Produkte wie z.B.
Chef oder Puppet eine Skriptsprache oder eine DSL ("Domain-specific Language") zur
Verfügung, um plattformunabhängige Konfigurationsdefinitionen für das Deployment und
Management eines IT-Service zu erstellen und zu verwalten [4]. Natürlich beschränkt sich das
Konfigurationsmanagement nicht auf die Implementierung von DevOps-Ansätzen. Das
Konzept von "Infrastructure as Code" zielt im Allgemeinen auf die Automatisierung und
Kostenreduktion von Service-Management. Dies sind wesentliche Teile des Cloud-
Computing-Paradigmas [12] [13].

Service-Orchestrierungswerkzeug

Orchestrierung beschreibt das Arrangieren, Koordinieren und Management von komplexen
Computersystemen, Middlewares und Services [56]. Bei der Service-Orchestrierung handelt
es sich um das automatische Deployment und Management eines Service auf eine bestimmte
Art und Weise. Wir gehen davon aus, dass die Struktur und das Managementverhalten eines
Service durch ein Service-Topologie-Modell, das aus mehreren Topologie-Modell-
Komponenten besteht, spezifiziert wird [1]. Als Beispiel könnten zwei Topologie-Modell-
Komponenten zu einem Topologie-Modell für das Deployment und Management einer Web-

1 Einleitung

11

Anwendung gehören: ein Webserver "Apache" [51] und ein Datenbankserver "MySQL" [26].
Eine Topologie-Modell-Komponente enthält Skripte, die normalerweise unter Verwendung
einer Skriptsprache wie Python oder Perl implementiert werden. Diese Skripte realisieren die
Managementaktionen wie z.B. das Deployment und die Aktualisierung seiner Komponenten,
die bezüglich einer Service-Instanz des bestimmten Topologie-Modells durchgeführt werden
können. Wir konzentrieren uns auf das Service-Deployment als eine der wichtigsten
Managementaufgaben, die auf den Topologie-Modellen basieren. Zurzeit gibt es bereits
vorhandene Topologie-Modell-Komponenten, die öffentlich zur Verfügung stehen. Diese
Topologie-Modell-Komponenten können verwendet werden, um das Deployment und
Management von Services in einer Cloud-Umgebung durchzuführen. Ein prominentes
Beispiel dafür ist Juju als ein Service-Orchestrierungswerkzeug. Durch Juju können viele
Topologie-Modell-Komponenten erstellt werden. Jede solche Komponente kann mit einer
anderen Komponente kombiniert werden, um ein Service-Topologie-Modell zu erstellen.
Dieses Service-Topologie-Modell kann in einer Cloud-Umgebung instanziiert und verwaltet
werden. Der Kern einer Komponente ist eine Menge von Skripten, die das automatisierte
Management einer bestimmten Service-Instanz ermöglichen.

Der Ansatz "Konfigurationsmanagement" ist nicht geeignet für das Management von
komplexen Services. Es kann umständlich und zeitaufwendig werden, eine große und
komplizierte Service-Topologie, die aus verschiedenen Maschinen besteht, unter Verwendung
eines Konfigurationsmanagementwerkzeuges zu verwalten. Auch die Infrastruktur für die
Versorgung einer üblichen Web-Anwendung kann sehr schnell komplex werden, weil es
mehrere Technologien gibt, die erforderlich sind, um z.B. Lastverteilung ("Load Balancing"),
Zwischenspeichern ("Caching") und Volltextindexierung ("Full-Text Index") zu realisieren.
Um solche Infrastruktur zu spezifizieren, wird eine Menge "Infrastruktur-Code" erstellt.
Demzufolge ist es schwierig, die Code-Struktur sauber zu halten, denn es gibt kein
ganzheitliches Service-Modell im Hintergrund. Dieses Service-Modell enthält die Service-
Topologie, die die Struktur eines Service, der instanziiert werden kann, bestimmt. Außerdem
wird jede einzelne Änderung des "Infrastruktur-Codes" ein Risiko, weil es schwer ist, die
Folgen jener bestimmten Änderung abzuschätzen [9].

Im Gegensatz zum Konfigurationsmanagementwerkzeug beschreibt ein Service-
Orchestrierungswerkzeug ein Service-Topologie-Modell, mit dem das Deployment und
Management konkreter Service-Instanzen in einer Cloud-Umgebung bewerkstelligt werden
kann. Das Service-Orchestrierungswerkzeug ermöglicht den Modell-getriebenen
Managementansatz einer Topologie von Cloud-Services und Cloud-Applikationen. Aber die
Artefakte, die durch diese Werkzeuge erstellt wurden, lassen sich nur mit diesen Werkzeugen
verarbeiten. Beispielsweise können Juju-Artefakte nur mithilfe der Juju-Laufzeitumgebung, in
der sie erstellt wurden, ausgeführt und verarbeitet werden. Dadurch besitzen diese Artefakte
einen sehr geringen Grad an Portabilität.

Um solche oben genannten Probleme zu lösen, gibt es bereits Standardisierungsbestrebungen
im Bereich des Modell-getriebenen Cloud-Managements, die sich auf die Portabilität des
Managements konzentrieren: Die "Topology and Orchestration Specification for Cloud
Applications" (TOSCA) [17] ist ein aktueller Standard, der durch eine Reihe von prominenten
Unternehmen in der Branche wie IBM, SAP und Hewlett-Packard unterstützt wird. TOSCA
ermöglicht die Spezifikation von portablen Service-Topologie-Modellen und portablen

1 Einleitung

12

Topologie-Modell-Komponenten, die von jeder TOSCA-konformen Cloud-Umgebung
deployed und verwaltet werden können. Allerdings spezifiziert TOSCA als ein Beispiel vom
Modell-getriebenen Cloud-Management nicht direkt, wie die "Lower-Level" Aktionen auf
einer virtuellen Maschine durchgeführt werden. Diese Aktionen sind z.B. die Ausführung von
Skripten, um eine bestimmte Software-Komponente auf einer virtuellen Maschine zu
installieren und zu konfigurieren. Deshalb ist es bedeutungsvoll, das
Konfigurationsmanagement mit dem Modell-getriebenen Cloud-Management zu integrieren,
um die Mängel der einzelnen Ansätze zu minimieren.

1.2 Problemstellung

Mit TOSCA könnten zwar die existierenden Probleme der DevOps-Werkzeuge gelöst werden,
aber der Einsatz von TOSCA hat momentan starke Einschränkungen, weil noch ein
entsprechendes Ökosystem dafür fehlt. Ein solches Ökosystem besteht aus einer aktiven
Community, die die auf TOSCA basierenden Topologie-Modelle und Topologie-Modell-
Komponenten zur Verfügung stellt. Im Gegensatz zu TOSCA gibt es bereits die
entsprechenden Ökosysteme für die DevOps-Werkzeuge. Zum Beispiel stellt die Juju-
Community mehr als hundert Topologie-Modell-Komponenten zur Verfügung. Ebenso bietet
die Community für Chef auch viele Konfigurationsdefinitionen an. Solche von diesen
Communities veröffentlichten Artefakte sind wiederverwendbar und können als Open-
Source-Software verwendet werden.

1.3 Ziel der Arbeit

Das Ziel dieser Arbeit ist basierend auf existierenden von den hinter Juju und Chef stehenden
DevOps-Communities veröffentlichten Artefakten diese Artefakte selbst auf eine portable Art
und Weise zu verpacken, sodass durch deren Orchestrierung portable TOSCA-Artefakte
("Service-Templates") entstehen können. Basierend auf diesen TOSCA-Artefakten kann das
Deployment und Management konkreter Service-Instanzen in einer Cloud-Umgebung
bewerkstelligt werden, die eine dem TOSCA-Standard konforme Laufzeitumgebung [65] zur
Verfügung stellt.

Zu diesem Zweck soll ein automatisches Verfahren entwickelt werden. Mit diesem Verfahren
können aus den von den DevOps-Communities veröffentlichten Artefakten die
entsprechenden TOSCA-Artefakte möglichst automatisch erstellt werden.

Zu den konkreten Aufgaben gehören: (1) die Erzeugung von TOSCA Node-Types aus
bestehenden Chef-Artefakten, (2) die Erzeugung von TOSCA Relationship-Types aus
bestehenden Juju-Artefakten und (3) die Erzeugung von TOSCA Service-Templates durch die
Orchestrierung der Node-Types und Relationship-Types, die auf bestehenden Artefakten
basieren.

1.4 Struktur der Arbeit

Die Arbeit ist in mehrere Kapitel gegliedert. Auf die Einleitung folgt ein Grundlagenkapitel.
In diesem Grundlagenkapitel werden existierende Technologien wie Chef, Juju und TOSCA
beschrieben, die als Grundlage dieser Arbeit dienen.

1 Einleitung

13

Im dritten Kapitel werden die Anforderungen an das automatische Verfahren dargestellt. Ein
Beispiel ist die Abstraktion der Eigenheiten verschiedener DevOps-Ansätze (Chef, Juju, etc.).
Als das Ergebnis der Abstraktion wird ein Modell für jeden verschiedenen DevOps-Ansatz
generiert. Außerdem wird besprochen, welche Grenzen und Einschränkungen es dafür gibt.
Am Ende werden zwei Beispiele für die Modell-Transformation (Chef nach TOSCA und Juju
nach TOSCA) dargestellt.

Das vierte Kapitel beschreibt die Konzepte für das automatische Verfahren. Hier wird
ausführlich besprochen, wie TOSCA Node-Types aus bestehenden Chef-Artefakten und
TOSCA Relationship-Types aus bestehenden Juju-Artefakten erstellt werden. Darüber hinaus
wird im letzten Unterkapitel beschrieben, wie die TOSCA Service-Templates durch die
Orchestrierung der generierten Node-Types und Relationship-Types erzeugt werden.

Im fünften Kapitel werden der Entwurf und die Implementierung eines Prototyps zur
Evaluierung des automatischen Verfahrens präsentiert. Damit soll gezeigt werden, dass die
Konzepte für das automatische Verfahren tatsächlich realisiert werden können. Das heißt,
dass durch diesen entwickelten Prototyp die entsprechenden TOSCA Node-Types, TOSCA
Relationship-Types und TOSCA Service-Templates möglichst automatisch generiert werden
können.

Das sechste Kapitel zeigt die Evaluierung des automatischen Verfahrens durch den
entwickelten Prototyp. Die konkrete Evaluierungsarbeit besteht aus zwei Teilen: der Test der
Funktionalität des Prototyps und die Überprüfung der Korrektheit und Gültigkeit von den mit
dem entwickelten Prototyp generierten CSAR-Dateien für TOSCA Service-Templates.

Kapitel 7 beinhaltet eine Zusammenfassung der Arbeit und einen kurzen Ausblick auf
mögliche weiterführende Arbeiten.

1 Einleitung

14

2 Grundlagen

15

2 Grundlagen

Dieses Kapitel soll dem Leser Grundlagen vermitteln, die zum Verständnis der Diplomarbeit
erforderlich sind. Drei Bereiche sind hierzu von besonderer Bedeutung. Im ersten
Unterkapitel werden zunächst wichtige Informationen über Chef als ein Beispiel des
Konfigurationsmanagementwerkzeuges gegeben. Unterkapitel 2.2 beschreibt wichtige Inhalte
über Juju als ein Beispiel des Service-Orchestrierungswerkzeuges. Im letzten Unterkapitel
wird TOSCA als ein aktueller Standard des Cloud-Service-Managements im Bereich des
Modell-getriebenen Cloud-Managements erläutert.

2.1 Chef

Chef ist ein "Cloud-Infrastructure-Automation-Framework" und wird entwickelt, um die
Vorteile des Konfigurationsmanagements zur Infrastruktur zu bringen. Chef erleichtert das
Deployment von Servern und Applikationen auf jedem physischen, virtuellen oder Cloud-
Standort, unabhängig von der Größe der Infrastruktur [18]. Chef stützt sich auf abstrakte
Konfigurationsdefinitionen ("Cookbooks" und "Recipes"), die in Ruby [35] geschrieben und
wie Source-Codes verwaltet werden. Jede Konfigurationsdefinition beschreibt, wie ein
bestimmter Teil der Infrastruktur erstellt und verwaltet werden sollte. Chef benutzt dann diese
Konfigurationsdefinitionen auf Servern und Applikationen, wodurch eine vollständig
automatisierte Infrastruktur verwirklicht wird. Beim Deployment eines neuen Knotens ist das
Einzige, was Chef wissen muss, welche Konfigurationsdefinitionen zur Anwendung kommen.

2.1.1 Architektur
In diesem Unterkapitel wird eine Einführung zur Architektur von Chef gegeben. Es werden
die grundlegenden Funktionen von den wichtigen Komponenten einer Chef-Organisation
(Client/Server-Umgebung) [18] erläutert. Außerdem wird besprochen, wie diese
Komponenten bei der Verwendung von Chef zur Verwaltung der Infrastruktur miteinander
kommunizieren.

Die Abbildung 2.1 zeigt die wichtigen Komponenten einer Chef-Organisation und die
Beziehungen zwischen diesen Komponenten. Diese Komponenten arbeiten zusammen, um
dem Chef die Informationen und Anweisungen anzubieten. Chef benötigt diese Informationen
und Anweisungen, um seine Arbeit ausführen zu können. Chef besteht aus drei wesentlichen
Komponenten: einem Server, einem (oder mehreren) Knoten ("Nodes") und mindestens einer
Workstation.

Nodes

Eine Chef-Organisation besteht aus einer beliebigen Kombination von physischen, virtuellen
und Cloud-basierten Knoten. Ein Cloud-basierter Knoten wird in einer externen Cloud-
basierten Service gehostet, wie z.B. Amazon Virtual Private Cloud [57], OpenStack [58],
Rackspace [59], Google Compute Engine [60] oder Windows Azure [61]. Wenn die Instanzen
auf Cloud-basierten Services erstellt werden, wird Chef für das Deployment und
Konfigurieren dieser Instanzen verwendet. Ein virtueller Knoten ist eine Maschine, die nur als
eine Software-Implementation läuft. Aber ansonsten verhält sie sich ähnlich wie eine
physische Maschine. Ein physischer Knoten ist normalerweise ein physischer Server, der

2 Grundlagen

16

durch einen Chef-Client konfiguriert wird und mit einem Netzwerk verbunden ist. Das heißt,
dass jeder Knoten einen Chef-Client enthalten und durch ein Netzwerk mit einem Chef-Server
kommunizieren kann. Der Chef-Client führt die verschiedenen Infrastruktur-
Automatisierungsaufgaben durch, die jeder Knoten benötigt. Die wichtigen Aufgaben eines
Chef-Clients sind z.B. (1) Registrierung und Authentifizierung des Knoten mit dem Chef-
Server, (2) Laden aller erforderlichen Cookbooks, welche die Recipes, die Attributes und alle
anderen Abhängigkeiten ("Dependencies") enthalten, und (3) Unternehmen der geeigneten
und erforderlichen Maßnahmen zum Konfigurieren des Knotens.

Abbildung 2.1: Die vereinfachte Architektur von Chef [18]

Chef-Workstations

Eine Chef-Workstation ist ein Computer, auf dem das Software "Knife" installiert ist. Knife
wird zum Synchronisieren mit dem Chef-Repository und zur Interaktion mit einem einzelnen
Chef-Server verwendet. Die wichtigen Aufgaben einer Chef-Workstation sind z.B. (1)
Entwicklung von Cookbooks und Recipes unter Verwendung von Ruby, (2) Synchronisierung
vom Chef-Repository mit einem Versionsverwaltungssystem ("Version Control System"), (3)
Hochladen der Konfigurationsdateien vom Chef-Repository zum Chef-Server mithilfe von

2 Grundlagen

17

Knife, (4) Definieren von Rollen ("Roles") und (5) Interaktion mit den Knoten, wenn es
erforderlich ist, wie z.B. Durchführung einer Bootstrap-Operation. Eine Rolle versammelt
verschiedene Recipes, um eine bestimmte Darstellung vom Knoten zu bilden. Beispielsweise
können Rollen die Arten von den Knoten definieren, wie z.B. "Webserver" oder
"Datenbankserver" [21]. Ein bestimmter Knoten kann keine oder mehrere Rollen haben.
Recipes können mit einer oder mehreren Rollen verbunden sein. Dieser Mechanismus
ermöglicht es, Recipes mit Knoten zu verbinden, ohne sie direkt zuzuweisen [20].

Zwei wichtigen Komponenten der Workstations sind Knife und Repository. Knife ist ein
Kommandozeilen-Werkzeug, das eine Schnittstelle zwischen einem lokalen Chef-Repository
und einem Chef-Server zur Verfügung stellt. Unter Verwendung von Knife verwalten die
Benutzer z.B. Knoten, Cookbooks, Recipes, Rollen sowie Cloud-Ressourcen und Installation
von Chef-Client etc. Das Chef-Repository ist der Speicherort, in dem einige Datenobjekte wie
z.B. Cookbooks, Rollen und Konfigurationsdateien gespeichert werden. Das Chef-Repository
befindet sich auf einer Workstation und sollte mit einem Versionsverwaltungssystem wie z.B.
Git [19] synchronisiert werden. Alle Daten im Chef-Repository sollten wie Source-Code
behandelt werden. Knife wird zum Hochladen von Daten aus dem Chef-Repository auf den
Chef-Server verwendet. Nach dem Hochladen werden diese Daten von Chef verwendet, um
alle Knoten zu verwalten. Diese Knoten sind auf dem Chef-Server registriert. Außerdem
verwendet Chef diese Daten, um sicherzustellen, dass die richtigen Cookbooks, Rollen und
andere Einstellungen korrekt auf den Knoten angewendet werden.

Chef-Server

Der Chef-Server fungiert als ein Zentrum für die Konfigurationsdaten der Infrastruktur. Er
speichert die Daten wie z.B. die Cookbooks, die Rollen und die Metadaten, welche für das
Konfigurieren der Knoten erforderlich sind. Die Metadaten beschreiben jeden registrierten
Knoten, der durch den Chef-Client verwaltet wird. Die Knoten verwenden den Chef-Client,
um den Server um die Konfigurationsdetails wie z.B. Recipes, Templates und File-
Distributions zu bitten. Der Chef-Client führt dann möglichst viel Konfigurationsarbeit auf
den Knoten selbst und nicht auf dem Server aus.

Verwendungsmodi von Chef

Es gibt zwei Verwendungsmodi von Chef: (1) Chef-Solo: Chef-Solo ist eine Open-Source-
Version des Chef-Clients und ermöglicht die Verwendung von Cookbooks auf den Knoten,
ohne auf einen Server zuzugreifen. Chef-Solo wird auf dem Knoten lokal ausgeführt und
erfordert, dass sich ein Cookbook und alle seine Abhängigkeiten ("Dependencies") auf
derselben physischen Festplatte des Knotens befinden. (2) Chef Client und Chef Server: Chef-
Client ist ein Chef-Agent, der wie Chef-Solo auf dem Knoten lokal ausgeführt wird. Chef-
Client verbindet sich mit einem Chef-Server und erfährt vom Server, welche Cookbooks und
Ressourcen auf dem lokalen Knoten durchgeführt werden.

2.1.2 Cookbooks
Cookbooks sind die grundlegenden Einheiten der Verteilung ("Distribution") in Chef und die
Art, wie Chef-Benutzer die Konfigurationsinformation verpacken, verteilen und gemeinsam
benutzen. Sie kapselt alle Ressourcen ein, die zur Automatisierung der Infrastruktur benötigt
werden. So ist es ganz einfach, den anderen Chef-Benutzern solche Ressourcen zur

2 Grundlagen

18

Verfügung zu stellen. Sie enthalten Recipes, Attribut-Dateien, Templates und andere
Konfigurationsartefakte. Wenn Chef-Client ausgeführt wird, werden die in der Run-Liste
aufgelisteten Recipes zusammen mit den anderen Inhalten in dem Cookbook, das diese
Recipes enthält, zum Knoten übertragen. Diese Recipes werden dann auf dem Knoten
verwendet, damit der Knoten richtig konfiguriert werden kann. Normalerweise enthält ein
Cookbook die notwendigen Informationen zum Konfigurieren eines einzelnen Service oder
eines einzelnen Teils des Systems. Beispielsweise könnte ein Cookbook "Users" [62] für das
Konfigurieren von Benutzern den Zugang zum System besitzen und ein Cookbook "Apache"
[52] den Apache-Webserver konfigurieren. Cookbooks können von jedem Benutzer mit
grundlegenden Fähigkeiten im Bereich der Programmierung erstellt werden. Darüber hinaus
können die Cookbooks geschrieben werden, ohne die Details über eine Zielumgebung für das
Deployment zu speichern. Dies bedeutet, dass diese Cookbooks zwischen verschiedenen
Organisationen und Unternehmen wiederverwendet werden können. Benutzer haben bereits
mehr als 300 Cookbooks auf der Chef-Community-Website veröffentlicht und zur Verfügung
gestellt. Deshalb können Sie direkt mit den vorhandenen Cookbooks die Services und die
Applikationen auf Ihrer Maschine installieren und konfigurieren, ohne ein neues Cookbook
schreiben zu müssen. Abbildung 2.2 zeigt zwei Beispiele, welche Komponenten die
Cookbooks "mysql" und "apache 2" besitzen und wie die Inhalte von diesen Cookbooks
aussehen.

Abbildung 2.2: Die Komponenten von Cookbooks "mysql" und "apache 2"

Attributes - Ein Attribut ist ein spezifisches Detail zu einem Knoten, wie z.B. eine IP-
Adresse, ein Hostname, eine Portnummer und so weiter. Attribute werden vom Chef-Client
verwendet, um den Zustand des Knotens zu erfahren. Ein Attribut kann in einem Cookbook
(oder einem Recipe) definiert und dann zum Überschreiben ("Override") der
Standardeinstellungen ("Default Settings") auf einem Knoten verwendet werden.

Recipes - Ein Recipe ist das grundlegendste Konfigurationselement. Ein Recipe muss alle
erforderlichen Ressourcen für das Konfigurieren eines Systems definieren und wird in einem

2 Grundlagen

19

Cookbook gespeichert. Außerdem muss ein Recipe zu einer Run-Liste hinzugefügt werden,
bevor sie durch den Chef-Client verwendet werden kann. Die Recipes werden immer in der
gleichen Reihenfolge ausgeführt, wie sie in einer Run-Liste aufgelistet werden.

Definitions - Eine Definition wird verwendet, um neue Ressourcen zu erstellen, indem eine
oder mehrere existierenden Ressourcen aneinandergefügt werden.

Files - Cookbooks werden häufig auf mehreren Plattformen ausgeführt und oft aufgefordert,
eine spezielle Datei zu einer speziellen Plattform zu transportieren. Eine Datei-Distribution ist
eine spezielle Art der Ressource, die einem Cookbook mitteilt, wie die Dateien verteilt
werden.

Libraries - Eine Library ermöglicht die Verwendung von beliebigen Ruby-Codes in einem
Cookbook dadurch, entweder indem die vom Chef-Client verwendeten Klassen erweitert
werden oder eine neue Klasse direkt implementiert wird.

Templates - Ein Template ist eine mit der Markup-Sprache geschriebene Datei, die Ruby-
Anweisungen verwendet, um komplexe Konfigurationsszenarien zu lösen.

Metadata - Eine Metadata-Datei wird verwendet, um sicherzustellen, dass jedes Cookbook
zu jedem Knoten richtig und ordnungsgemäß deployed wird. Da die Metadata-Datei in einem
Cookbook sehr wichtig für diese Arbeit ist, wird sie im nächsten Unterkapitel ausführlich
besprochen.

Der Chef-Client verwendet nicht nur Ruby als Referenzsprache für die Erstellung von
Cookbooks und die Definition von Recipes sondern auch eine erweiterbare DSL für spezielle
Ressourcen. Eine angemessene Menge von Ressourcen steht dem Chef-Client zur Verfügung.
Diese ist ausreichend, um die üblichsten Infrastruktur-Automatisierungsszenarien zu
unterstützen. Diese DSL kann jedoch auch erweitert werden, wenn zusätzliche Ressourcen
und Fähigkeiten benötigt werden.

2.1.3 Metadaten
Für jedes Cookbook muss eine kleine Menge von Metadaten spezifiziert werden. Diese
Metadaten werden in einer Datei namens "metadata.rb" gespeichert. Diese Datei
"metadata.rb" befindet sich im Wurzelverzeichnis jedes Cookbook. Die Inhalte der Datei
"metadata.rb" bieten dem Server einige Hinweise an, damit die Cookbooks auf jedem Knoten
richtig eingesetzt werden. Außerdem weisen sie den Server darauf hin, welche Cookbooks auf
einem gegebenen Knoten eingesetzt werden sollten. Die Datei "metadata.rb" wird für ein
automatisiertes System zur Entdeckung und Installation von Cookbooks wesentlich sein.

Eine Datei "metadata.rb" wird automatisch erstellt, wenn ein Cookbook unter Verwendung
von Knife erstellt wird. Die Datei "metadata.rb" wird nie direkt interpretiert, sondern zuerst
vom Server kompiliert und als JSON-Daten in der Datei namens "metadata.json" gespeichert.
Die JavaScript Object Notation (JSON) [63] ist ein kompaktes Datenformat in für Mensch
und Maschine einfach lesbarer Textform zum Zweck des Datenaustauschs zwischen
Anwendungen. Diese JSON-Datei ist die echte Metadaten-Datei und wird beim Hochladen
des Cookbook oder beim Ausführen des Befehls "knife cookbook metadata" generiert. Die
Datei "metadata.json" kann direkt bearbeitet werden, wenn temporäre Änderungen

2 Grundlagen

20

vorgenommen werden müssen. Jedes nachfolgenden Hochladen oder jede Aktion, die die
Datei "metadata.rb" generiert, wird dazu führen, dass die vorhandene Datei "metadata.json"
mit der neu generierten Datei "metadata.rb" überschrieben wird. Deshalb sollte jede
erforderliche permanente Änderung an Metadaten nur in der Datei "metadata.rb"
vorgenommen werden.

Im Folgenden werden einige Abschnitte, die für diese Arbeit sehr wichtig sind, in der Datei
"metadata.rb" beschrieben.

Name - Der Name eines Cookbook.

Description - Eine kurze Beschreibung eines Cookbook und seiner Funktionalität.

Recipe - Eine kurze Beschreibung für ein Recipe.

Supports - zeigt, welche Plattformen das Cookbook unterstützt.

Depends - zeigt, dass ein Cookbook eine Abhängigkeit ("Dependency") von anderen
Cookbook mit der Versionsnummer besitzt. Das Cookbook mit dem passenden Namen und
der passenden Version muss auf dem Server existieren und bei der Ausführung von Chef-
Client zum Knoten übertragen werden. Es ist sehr wichtig, dass der Abschnitt "depends"
korrekte Daten enthält. Wenn diese Daten nicht korrekt sind, ist der Chef-Client nicht in der
Lage, die Konfiguration des Systems erfolgreich durchzuführen.

Attribute - Die Liste der Attribute, die für das Konfigurieren eines Cookbook erforderlich
sind. Der Name eines Attributs ist erforderlich und die anderen sind optional, wie z.B.
"display_name" (der Name, der in der Benutzeroberfläche angezeigt wird), "description" (eine
kurze Beschreibung), "type" (der Typ von Wert, entweder "String" oder "Array") und
"default" (Default-Wert des Attributs) etc.

2.1.4 Bestehende Defizite und Zusammenfassung
Chef als ein Konfigurationsmanagementwerkzeug implementiert das Konzept "Infrastructure
as Code". Durch Chef kann man die plattformunabhängigen Konfigurationsdefinitionen wie
z.B. Cookbooks und Recipes erstellen und verwalten, um das automatisierte Deployment und
Management eines Service oder einer Anwendung zu ermöglichen. Aber für das Management
von komplexen Services ist Chef nicht praktisch. Als ein Beispiel zeigt Abbildung 2.3, wie
das Deployment von Sugar [22] als ein Service in der Cloud unter Verwendung von Chef
ermöglicht wird. Sugar ist ein Web-basiertes Customer-Relationship-Management-System
und steht als Open-Source-Software öffentlich zur Verfügung.

Für das tatsächliche Deployment von Sugar werden zwei virtuellen Maschinen bereitgestellt.
Auf einer Maschine werden durch die automatische Ausführung der Artefakte der Apache-
Webserver, das PHP-Modul und die Sugar-Applikation installiert und konfiguriert. Der
MySQL-Server und die Sugar-Datenbank werden auf der anderen Maschine installiert und
konfiguriert. Um das Deploment zu beenden wird die Applikation mit der Datenbank
verbunden. Alle diese Aktionen werden durch die Ausführung der entsprechenden
Konfigurationsdefinitionen wie z.B. Cookbooks und Recipes implementiert. Das heißt, dass
eine große Menge Chef-Codes erstellt werden müssen, um solche Infrastruktur zu

2 Grundlagen

21

spezifizieren. Dadurch ist es schwierig, die Code-Struktur sauber zu halten. Außerdem
können keine expliziten Beziehungen zwischen diesen Konfigurationsdefinitionen definiert
werden, da es kein ganzheitliches Service-Modell dafür gibt. Solches Service-Modell enthält
die Service-Topologie, die die ganze Struktur für das Deployment von Sugar bestimmt.
Daraus folgt, dass es umständlich und zeitaufwendig werden kann, einen großen und
komplizierten Service, der aus verschiedenen Maschinen besteht, unter Verwendung von Chef
zu verwalten.

Abbildung 2.3: Deployment mithilfe des Konfigurationsmanagements [20]

Chef ist ein beliebtes Konfigurationsmanagementprodukt. Seine Open-Source-Version ist
öffentlich verfügbar und kann kostenlos genutzt werden. Konfigurationsdefinitionen in Chef
nennt man Recipes. Sie sind grundsätzlich die in einer DSL geschriebenen Skripte zur
Darstellung des Ziel-Zustands eines Systems [4]. Ein oder mehrere Recipes sind in einem
Cookbook gebündelt. Außer Cookbooks können Rollen definiert werden, um die Arten der
Knoten zu spezifizieren. Durch eine Rolle kann beispielsweise ein Knoten zu einem
Webserver konfiguriert werden. Der Chef-Server speichert alle Cookbooks und Rollen.
Darüber hinaus verwaltet die Server-Komponente eine Run-Liste für jeden registrierten
Knoten. Der Chef-Client wird auf jedem Knoten ausgeführt, um den Chef-Server zu
verbinden. Eine bestimmte Run-Liste weist Recipes und Rollen einem Knoten zu. Zur
Ausführung der Recipes ist der Chef-Server nicht erforderlich. Außer dem Client/Server-
Modus steht auch ein Chef-Solo-Modus zur Verfügung. Unter Verwendung dieses Modus
kann der Chef-Client die Recipes direkt auf dem Knoten ausführen, ohne sich mit einem
Chef-Server zu kommunizieren [9].

2.2 Juju

Juju zielt darauf ab, ein Service-Deployment- und Orchestrierungswerkzeug zu sein, das die
Zusammenarbeit zwischen den Services sowie die einfache Verwaltung dieser Services
ermöglicht. Verschiedene Service-Entwickler können mit Juju Services selbstständig erstellen
und die Kommunikation von diesen Services durch ein einfaches Konfigurationsprotokoll
koordinieren. Dann können die Service-Benutzer die Services von verschiedenen Service-
Entwicklern nehmen und sie sehr komfortabel in einer Umgebung bereitstellen. Das Ergebnis
ist, dass mehrere Maschinen und Komponenten transparent zusammenarbeiten können, um
die angeforderten Services zur Verfügung zu stellen.

2 Grundlagen

22

2.2.1 Arbeitsweise
In diesem Unterkapitel wird beschrieben, wie man mit Juju durch einfache Befehlen Services
deployen kann. Auf die Installation und die Konfiguration von Juju folgt es, eine Bootstrap-
Umgebung einzurichten. Sie ist eine Instanz in der Cloud und wird von Juju verwendet, um
Services zu deployen und verwalten. In der Praxis wird das Einrichten einer Bootstrap-
Umgebung durch einen einfachen Juju-Befehl "juju bootstrap" automatisch implementiert.
Falls eine solche Bootstrap-Umgebung erfolgreich aufgebaut wurde, können wir jetzt durch
einige einfachen Juju-Befehle die Services deployen, verwalten und von außen zugreifbar zu
machen. Ein kleines Beispiel für das Deployment des Service "WordPress" [25] zum Aufbau
und zur Pflege eines Weblogs wird hier gegeben. Im Beispiel werden zuerst zwei Services
"WordPress" und "MySQL" installiert und konfiguriert. Dann wird ein Beziehung
"WordPress verbindet mit MySQL" zwischen diesen zwei Services aufgebaut. Schließlich
wird der Service "WordPress" von außen zugreifbar gemacht. All diese Arbeiten werden in
Juju nur mit vier einfachen Juju-Befehlen erledigt. Zu Beginn deployen wir die Services
"WordPress" und "MySQL" durch die Juju-Befehle "juju deploy wordpress" und "juju deploy
mysql". Dann wird der Service "WordPress" durch den Juju-Befehl "juju add-relation
wordpress mysql" mit dem Service "MySQL" verbunden. Am Ende wird der Juju-Befehl
"juju expose wordpress" verwendet, um den Service “WordPress” von außen zugreifbar zu
machen. Mit diesem kleinen Beispiel kann man verstehen, dass man nur einige Juju-Befehle
einzugeben braucht, um Services zu deployen und zu verwalten. Allerdings muss man
beachten, dass ein Juju-Befehl nicht direkt die tatsächlichen Arbeiten für das Deployment und
die Verwaltung von Services implementiert, sondern er informiert Juju über den Zustand, in
dem sich die Umgebung befindet. Die tatsächlichen Arbeiten werden durch das System in der
vorher eingerichteten Bootstrap-Umgebung erledigt.

2.2.2 Juju Charm
Juju verwendet Charms, um Softwares, sogenannte Services zu deployen. Charms definieren,
wie sich Services integrieren (Relation von Services) und wie ihre Service-Einheiten auf
Ereignisse in der verteilten Umgebung reagieren. Ein Service in Juju ist eine Anwendung oder
eine Gruppe von Anwendungen und kann als eine einzelne Komponente verwendet werden.
In der Regel können sich mehrere Services miteinander kombinieren, um einen komplexeren
Service aufzubauen. Als ein Beispiel könnte "WordPress" als ein Service eingesetzt werden.
Um seine Aufgaben korrekt zu verrichten, könnte "WordPress" mit einem Service
"Datenbank" und einem Service "Load-Balancer" kommunizieren. Eine Service-Instanz in
Juju besitzt zu Beginn genau eine Service-Einheit. Es können jedoch weitere Service-
Einheiten zu dieser Instanz hinzugefügt werden, um z.B. Skalierbarkeit zu ermöglichen. Alle
Service-Einheiten für einen bestimmten Service nutzen gemeinsam dasselbe Charm, dieselben
Beziehungen und dieselbe Konfiguration, die vom Benutzer bereitgestellt werden.
Beispielsweise kann eine MySQL-Datenbank-Instanz zu Beginn genau eine Service-Einheit
(eine virtuelle Maschine) besitzen. Später können dann weitere Service-Einheiten (weitere
virtuelle Maschinen) zu dieser Instanz hinzugefügt und mit der ursprünglichen Service-
Einheit verknüpft werden. Ein Charm stellt die Definition des Service zur Verfügung. Zur
Definition gehören auch seine Metadaten, die Abhängigkeiten von anderen Services, die
notwendigen Pakete sowie die Logik für die Verwaltung der Anwendung. In Abbildung 2.4
wird ein Beispiel für die Struktur eines Charm dargestellt.

2 Grundlagen

23

Abbildung 2.4: Ein Beispiel für die Struktur eines Charm

Normalerweise enthält jedes Charm ein Verzeichnis namens "hooks" und eine
"metadata.yaml" Datei. Manche Charms enthalten noch eine "config.yaml" Datei. Details
werden in den folgenden Unterkapiteln besprochen.

2.2.2.1 Das Verzeichnis "hooks"
In dem Verzeichnis "hooks" gibt es viele Dateien. Jede dieser Dateien wird als "Hook"
bezeichnet. Die Hooks in einem Charm sind auf einem Ubuntu-Server ausführbare Dateien
und können unter Verwendung von einer beliebigen Skriptsprache oder Programmiersprache
geschrieben werden. Juju verwendet die Hooks, um eine Service-Einheit über die
Veränderungen in ihrem Lebenszyklus oder in der verteilten Umgebung zu benachrichtigen.
Ein für eine Service-Einheit laufender Hook kann diese Umgebung überprüfen. Außerdem
kann es die gewünschten lokalen Änderungen auf der Maschine, wo sich dieser Hook befindet,
vornehmen sowie die Einstellung der Relation ändern.

In der Regel gibt es in Bezug auf den Lebenszyklus einer Service-Einheit folgende Hooks:
"install", "config-changed", "start" und "stop". Der Hook "install" wird zur Installation einer
Service-Einheit verwendet und nur einmal ausgeführt, bevor alle anderen Hooks aufgerufen
werden. Der Hook "config-changed" wird immer unmittelbar nach der Ausführung des Hooks
"install" ausgeführt. Außerdem wird er auch verwendet, wenn sich die Service-Konfiguration
ändert. Der Hook "start" wird ausgeführt, wenn die Service-Einheit gestartet wird. Dagegen
wird der Hook "stop" ausgeführt, wenn die Service-Einheit gestoppt wird. Es können noch
weitere Hooks verwendet werden, die als "Relation-Hook" bezeichnet und nach der
Ausführung des Hooks "start" und vor der Ausführung des Hooks "stop" ausgeführt werden.
Sie werden auf jeder Service-Einheit aufgerufen, wenn eine Relation hergestellt oder geändert

2 Grundlagen

24

wird. Es gibt vier Arten Relation-Hooks. Der Hook "<relation name>-relation-joined" wird
ausgeführt, wenn eine entfernte Service-Einheit an der Beziehung teilnimmt. Der Hook
"<relation name>-relation-changed" wird ausgeführt, wenn eine entfernte Service-Einheit an
der Beziehung teilnimmt oder seine Beziehungseinstellungen ändert. Der Hook "<relation
name>-relation-departed" wird ausgeführt, wenn eine entfernte Service-Einheit eine
Beziehung verlässt. Dies könnte passieren, wenn die Service-Einheit entfernt wurde, sein
Service zerstört wurde oder die Beziehung zwischen diesem Service und dem entfernten
Service entfernt wurde. Der Hook "<relation name>-relation-broken" bezieht sich auf die
Beziehung selbst und wird ausgeführt, sobald die lokale Service-Einheit bereit ist, die
Beziehung selbst zu verlassen. Diese Service-Einheit kann dann alle
Konfigurationsinformationen über diese Beziehung beseitigen.

Ein Beispiel für das Verzeichnis "hooks" des Charm "MySQL" [26] wird in Abbildung 2.5
gezeigt. In dieser Abbildung werden nicht alle Hooks fürs Charm "MySQL" gezeigt, sondern
die einigen typischen Hooks. Der Hook "install" wird zur Installation des Service "MySQL"
verwendet. Der Hook "config-changed" wird nach der Ausführung des Hooks "install" zum
Konfigurieren des Service "MySQL" ausgeführt. Der Hook "start" wird zum Starten einer
Service-Einheit "MySQL" ausgeführt und der Hook "stop" wird verwendet, um eine Service-
Einheit "MySQL" zu beenden.

Abbildung 2.5: Ein Bespiel für das Verzeichnis "hooks"

2 Grundlagen

25

In diesem Verzeichnis "hooks" gibt es noch zwei Relation-Hooks "db-relation-joined" und
"db-relation-broken". Der Hook "db-relation-joined" wird aufgerufen, wenn eine Beziehung -
z.B. eine Datenbankverbindung - zu einer Service-Einheit hinzugefügt wird. Der Hook "db-
relation-broken" wird aufgerufen, wenn die Beziehung entfernt wird. Dabei wird die Service-
Einheit die Konfigurationsinformationen zur Datenbankverbindung löschen.

2.2.2.2 Die Datei "metadata.yaml"
Die Datei "metadata.yaml" ist eine YAML-Datei. YAML [24] ist eine einfache Markup-
Sprache zur Datenserialisierung, die sowohl gut von Menschen lesbar sein soll als auch
vollautomatisch von Maschinen verarbeitbar ist. Diese Datei befindet sich im
Wurzelverzeichnis eines Charm und beschreibt das Charm. Wir nehmen das Charm
"WordPress" [25] als Beispiel. Seine "metadata.yaml" Datei wird teilweise in Abbildung 2.6
dargestellt.

Abbildung 2.6: Die Datei "metadata.yaml" des Charm "WordPress"

Diese Datei "metadata.yaml" deklariert ein Charm mit dem Namen "WordPress". Die ersten
vier Abschnitte geben folgende Informationen über dieses Charm an: den Namen des Charm,
die Information über den Ersteller des Charm, eine kurze und eine lange Beschreibung.

Der Abschnitt "provides" beschreibt, welche Services das Charm "WordPress" tatsächlich zur
Verfügung stellt. Das Charm "WordPress" ist ein Web-basierter Service der Blogging-
Plattform, der ein einfaches Interface "http" zur Verfügung stellt. Der hier angegebene Name
"website" ist ein lokaler Beziehungsname ("Relation-Name") und identifiziert diese
Beziehung eindeutig innerhalb des Charm "WordPress". Und das Interface "http" wird von
den anderen Charms verwendet, wenn sie eine Beziehung mit diesem Charm herstellen
wollen. Juju überprüft Interfaces, wenn Juju versucht, festzustellen, ob zwei Services
miteinander verknüpft werden können.

Der Abschnitt "requires" beschreibt, welche Services das Charm "WordPress" braucht. Für
das Charm "WordPress" wird eine Beziehung mit einer Datenbank definiert. Diese Beziehung
wird lokal "db" genannt und besitzt das Interface "mysql". Durch das Überprüfen der
Metadaten des Charm "MySQL" erfährt Juju, dass dieses Charm die Fähigkeit einer
Datenbank mit dem Interface "mysql" zur Verfügung stellt. Das heißt, dass eine Beziehung
zwischen den Charms "WordPress" und "MySQL" mit dem gleichen Interface "mysql"

2 Grundlagen

26

implizit hergestellt werden kann. Ein Beispiel für die Datei "metadata.yaml" des Charm
"MySQL" wird teilweise in Abbildung 2.7 gezeigt.

Abbildung 2.7: Die Datei "metadata.yaml" des Charm "MySQL"

Der Abschnitt "provides" beschreibt, dass das Charm "MySQL" die Fähigkeit einer
Datenbank zur Verfügung stellt. Der lokale Beziehungsname ist "db" und das Interface
"mysql" wird beispielsweise vom Charm "WordPress" verwendet, wenn "WordPress" eine
Beziehung mit dem Charm "MySQL" herstellen will. Außerdem wird der Abschnitt "peers" in
der Datei "metadata.yaml" vom Charm "MySQL" definiert, der im Unterkapitel 2.2.3
besprochen wird.

2.2.2.3 Die Datei "config.yaml"
Die Datei "config.yaml" befindet sich auch im Wurzelverzeichnis eines Charm. In dieser
Datei werden einige Konfigurationsoptionen definiert, auf die das Charm zugreift. Diese
Konfigurationsdaten beschreiben, wie ein Service konfiguriert wird. Charms erlauben nur, die
Konfigurationsoptionen zu bearbeiten, die von dem Ersteller des Charm explizit definiert
werden. Diese Optionen werden nicht nur für eine bestimmte Service-Einheit oder Beziehung
verwendet, sondern für den gesamten Service. Beispielsweise können wir mit dem Charm
"WordPress einen Service namens "myblog" deployen. Dieser Service könnte eine Option
"blog-title" definieren. Diese Option kontrolliert den Titel des zu veröffentlichenden Blogs.
Die Änderungen an dieser Option gelten für alle Service-Einheiten, die zu einer bestimmten
Service-Instanz des Service "myblog" gehören. Dabei wird ein entsprechender Hook auf jeder
von diesen Service-Einheiten aufgerufen.

In Abbildung 2.8 wird gezeigt, wie eine "config.yaml" Datei aussieht. Jede Option enthält
eine lesbare Beschreibung und einen optionalen Default-Wert "default". Zusätzlich kann
möglicherweise ein Typ "type" spezifiziert werden. Alle Optionen haben einen Default-Typ
von 'string'. Er bedeutet, dass sein Wert nur als eine Text-Zeichenfolge behandelt wird.
Andere gültige Optionen sind 'int' und 'float'.

2 Grundlagen

27

Abbildung 2.8: Ein Bespiel für die Datei "config.yaml"

2.2.3 Relation in Juju
Dieses Unterkapitel beschäftigt sich mit den Beziehungen zwischen Services in Juju. Eine
Bezeihung wird normalerweise in Juju als "Relation" bezeichnet. Deshalb wird das Wort
"Relation" in diesem Unterkapitel verwendet. In der Datei "metadata.yaml" könnte es drei
Abschnitte "provides", "requires" und "peers" geben. Ein Beispiel dafür wurde in Abbildung
2.7 gegeben. Die drei Abschnitte definieren die verschiedenen Relationen, an den das Charm
teilnehmen wird. Relationen in Juju haben drei Haupteigenschaften: ein Interface, eine Art
und einen Namen. Das Relation-Interface ist ein eindeutiger Name, durch den die Service-
Einheiten unter Verwendung von ihren jeweiligen Hooks die Informationen austauschen
können. Solange der Name identisch ist, bedeutet das, dass die Charms auf eine kompatible
Art und Weise geschrieben wurden. Deshalb darf die Relation durch das gleiche Interface
hergestellt werden. Relationen mit verschiedenen Interfaces können nicht hergestellt werden.
Die Relation-Art informiert darüber, ob eine Service-Einheit, die das gegebene Charm
deployed, als ein "Provider", ein "Requirer" oder ein "Peer" in der Relation dienen wird.
Providers und Requirers ergänzen sich gegenseitig. Folglich kann ein Service, der ein
Interface zur Verfügung stellt, eine Relation besitzen. Diese Relation wird nur mit dem
Service, der das gleiche Interface braucht, hergestellt und umgekehrt. Peer-Relationen werden
zwischen den Service-Einheiten innerhalb eines Service, der diese Relation deklariert,
automatisch hergestellt. Das dient dazu, diese Service-Einheiten zusammenzubinden, um
Master und Slaves, Ringe oder andere strukturelle Organisation, die die zugrunde liegende
Software unterstützt, aufzubauen. Der Relation-Name identifiziert die entsprechende Relation
innerhalb des Charm eindeutig. Außerdem erlaubt er, dass ein einzelnes Charm (und Service
und Service-Einheiten, die das Charm benutzen) mehrere Relationen mit dem gleichen
Interface aber zu unterschiedlichen Zwecken hat. Dieser Identifizierer (Relation-Name) wird
in Hook-Namen verwendet. In Abbildung 2.9 wird ein Beispiel für die Require/Provide-
Relation in Juju gezeigt. Wenn dieses Service-Modell realisiert wird, wird Juju alle Service-
Einheiten des Service "WordPress" darüber informieren, dass eine Relation mit den
jeweiligen Service-Einheiten des Service "MySQL" hergestellt wurde. Dieses Ereignis wird
dadurch mitgeteilt, dass die entsprechenden Hooks mithilfe der lokalen Relation-Namen auf
beiden Service-Einheiten aufgerufen werden. Falls die Verbindung zwischen den Services
"WordPress" und "MySQL" im Beispiel getriggert wird, werden die Hooks "db-relation-

2 Grundlagen

28

joined, db-relation-changed" auf der WordPress-Seite aufgerufen. Entsprechende Hooks
"server-relation-joined" und "server-relation-changed" werden auf der MySQL-Seite
aufgerufen.

Abbildung 2.9: Beispiel für die Require/Provide-Relation

2.2.4 Bestehende Defizite und Zusammenfassung
Juju als ein Service-Orchestrierungswerkzeug ermöglicht das Modell-getriebene Cloud-
Management. Die Juju-Community veröffentlicht mehr als einhundert Topologie-Modell-
Komponenten als Open-Source-Software. Diese Komponenten sind gemeinsam nutzbar und
wiederverwendbar und werden als "Charms" bezeichnet. Ein Charm enthält in der Regel
Shell- oder Python-Skripte. Diese Skripte werden verwendet, um das automatische
Management einer bestimmten Service-Instanz zu ermöglichen. Ein Charm kann mit einem
anderen Charm kombiniert werden, um ein Service-Topologie-Modell zu erstellen. Dieses
Service-Topologie-Modell kann in der Cloud-Umgebung instanziiert und verwaltet werden.
Darüber hinaus können die Beziehungen zwischen den Service-Instanzen hergestellt werden.

Bezüglich der Portabilität gibt es jedoch starke Einschränkungen, weil die Juju-Artefakte nur
mithilfe der Juju-Laufzeitumgebung ausgeführt und verarbeitet werden können. Das bedeutet,
dass die von der Juju-Community zur Verfügung gestellten Charms nur durch die Juju-Engine
verarbeitet werden können. Außerdem beschränken die Skripte in Charms die Portabilität auf
zwei Arten: (1) Die Skripte verwenden eine Reihe von Befehlen und Umgebungsvariablen,
die auf jeder von Juju verwalteten virtuellen Maschine verfügbar sind. (2) Die Skripte werden
so designt, dass sie nur auf Ubuntu-Linux ausgeführt werden können. Infolgedessen misslingt
ihre Ausführung auf den anderen Linux-Varianten und den anderen Plattformen.

2.3 Topology and Orchestration Specification for Cloud Applications

Cloud Computing [3] kann wertvoller werden, wenn die (semi-)automatische Erstellung und
Verwaltung von Cloud-Services auf der Anwendungsschicht in den verschiedenen Cloud-
Umgebungen eingesetzt werden kann. Somit können die Services interoperabel bleiben. Die
TOSCA-Spezifikation [17] stellt eine Sprache zur Verfügung, die die Service-Komponenten
und ihre Beziehungen mithilfe einer Service-Topologie ("Service-Topology") beschreibt.
Außerdem bietet diese Sprache noch die Beschreibung der Verwaltungsprozeduren an, welche
die Services mittels Orchestrierungsprozesse ("Orchestration-Processes") erstellen, ändern
und terminieren. In TOSCA werden diese Prozesse als Pläne [29] [44] [45] bezeichnet. Die
Kombination von Topologie und Orchestrierung in einem Service-Template beschreibt, was

2 Grundlagen

29

unter Deployments in verschiedenen Umgebungen benötigt wird. Das Ziel ist das
interoperable Deployment von Cloud-Services und ihrer Verwaltung während des gesamten
Lebenszyklus zu ermöglichen, wenn die Applikationen in unterschiedlichen Cloud-
Umgebungen deployed werden.

2.3.1 Einführung
Unter Verwendung von TOSCA kann eine Service-Topologie modelliert werden. So wird ein
portables, ausführbares Service-Modell erstellt werden. Außerdem beinhaltet dieses Service-
Modell alle seine Teile, aus denen es besteht und wird verwendet, um die Service-Instanzen in
der Cloud zu deployen und zu verwalten [29]. Bevor TOSCA eingeführt wurde, hatte sich die
Forschung auf die Migration der Services von einer Cloud-Umgebung zu einer anderen
konzentriert, ohne die Portabilität von Managementaspekte zu berücksichtigen [30] [31].

Das Metamodell von TOSCA ist technisch durch eine XML-Schema-Definition spezifiziert.
Es legt die Struktur eines Service-Template fest. Die wichtigen Teile zur Beschreibung einer
Service-Topologie in einem Service-Template sind: Node-Types, Relationship-Types und das
Topology-Template. Dies wird in Abbildung 2.10 dargestellt.

Abbildung 2.10: Strukturelle Elemente eines Service-Template und ihrer Beziehungen [17]

Node-Types repräsentieren die Komponenten, die im Topology-Template verwendet werden.
Ein einzelner Node-Type, wie z.B. "Datenbankserver", kann als ein Node-Template im
Topology-Template einmal oder mehrmals instanziiert werden. Relationship-Types, wie z.B.
"Hosted-On", können als Relationship-Templates im Topology-Template instanziiert werden,
um die Beziehung zwischen zwei bestimmten Node-Templates darzustellen. Das Topology-
Template deniert die tatsächliche topologische Struktur eines IT-Service. Es besteht aus
Node-Templates und Relationship-Templates.

Abbildung 2.11 zeigt ein Beispiel für einen Node-Type, der eine Datenbankserver-
Komponente definiert. Ein Node-Type kann die Definitionen der beliebigen Eigenschaften

2 Grundlagen

30

wie z.B. "Benutzername" und "Passwort" besitzen. Diese Eigenschaften werden explizit
definiert und an einen bestimmten Node-Type angehängt. Node-Templates können konkrete
Werte für diese Eigenschaften definieren. Darüber hinaus kann ein Node-Type die Interfaces
besitzen. Ein bestimmtes Interface stellt die Operationen zur Verfügung, die die
Möglichkeiten zur Interaktion eines Knotens des angegebenen Node-Type definieren. Wir
gehen davon aus, dass ein beliebiger Node-Type ein Lebenszyklus-Interface besitzt, das
mindestens zwei Operationen zur Verfügung stellt, wie z.B. den Knoten eines bestimmten
Node-Type zu erstellen und zu terminieren. Bis jetzt ist die Definition des Node-Type
abstrakt und zeigt noch nicht, wie eine Operation implementiert wird. So können ein oder
mehrere konkrete Implementation-Artifacts mit einer Operation verknüpft werden. Ein
solches Implementation-Artifact wird durch die Definition eines Artifact-Template innerhalb
des Service-Template erstellt. Dann kann das Artifact-Template als ein Implementation-
Artifact an mindestens eine Operation angehängt werden. Eine Implementierung für die
Operation "create" kann beispielsweise ein Unix-Shell-Skript zur Installation des
Datenbankservers sein. Darüber hinaus kann ein anderes Skript an dieselbe Operation
angehängt werden. Das Skript könnte die entsprechenden Aktionen auf Windows-basierten
Systemen ausführen. Das Anhängen mehrerer Implementation-Artifacts an einer bestimmten
Operation verbessert die Portabilität des Service-Template, da die Operation auf
verschiedenen Plattformen ausgeführt werden kann. Die Definition von Relationship-Types
ist ähnlich wie die Definition von Node-Types.

Abbildung 2.11: Beispiel für einen Node-Type [20]

TOSCA konzentriert sich nicht nur auf die Spezifizierung der Service-Topologie. Pläne
können definiert werden, um den gesamten Lebenszyklus einer Anwendung wie z.B.
Deployment, Wartung und Termination zu unterstützen. Diese Pläne können unter
Verwendung der Sprachen wie z.B. BPMN [27] oder BPEL [28] definiert werden. Im
Rahmen dieser Arbeit sind die Pläne nicht wichtig. Diese Arbeit konzentriert sich auf das
Topologie-Modell.

Alle Dateien wie z.B. Skripte, ausführbare Dateien oder Programme und Pläne, die innerhalb
des Service-Template referenziert werden, werden zusammen mit dem Service-Template in
ein Cloud-Service-Archiv (CSAR) eingebaut. Das CSAR ist komplett “self-contained”. Das
heißt, dass das CSAR alles zum Deployment und Management eines Cloud-Service beinhaltet.
Dieser Cloud-Service wird durch das Service-Template spezifiziert und dieses Service-
Template ist auch in der entsprechenden CSAR-Datei eingebaut. Die Software, die die
CSARs verarbeiten kann, wird als TOSCA-Laufzeitumgebung (TOSCA-Container) [65]
bezeichnet.

2 Grundlagen

31

2.3.2 Service-Templates und Artifacts
Ein Artefakt repräsentiert den Inhalt, der zur Realisierung eines Deployment benötigt wird. Es
kann eine ausführbare Datei (z.B. ein Skript, ein ausführbares Programm, ein Image), eine
Konfigurationsdatei, eine Datendatei oder etwas (z.B. eine Library), das für die Ausführung
von anderen ausführbaren Dateien benötigt wird, sein. Artefakte können verschiedene Arten,
z.B. EJBs oder Python-Skripte sein. Der Inhalt eines Artefakts hängt von seiner Art ab.
Normalerweise werden deskriptive Metadaten auch zusammen mit dem Artefakt zur
Verfügung stehen. Diese Metadaten könnten erforderlich sein, um das Artefakt korrekt zu
verarbeiten, z.B. durch die Beschreibung der entsprechenden Ausführungsumgebung. TOSCA
unterscheidet zwei Arten von Artefakten: Implementation-Artifacts und Deployment-Artifacts.

Ein Implementation-Artifact repräsentiert die ausführbare Datei einer Operation eines Node-
Type, und ein Deployment-Artifact repräsentiert die ausführbare Datei für die
Materialisierung von Instanzen eines Knoten. Der grundlegende Unterschied zwischen
Implementation-Artifacts und Deployment-Artifacts ist: (1) der Zeitpunkt, wann das Artefakt
deployed wird, und (2) durch welche Entität und wohin das Artefakt deployed wird.

Die Operationen eines Node-Type führen die Verwaltungsaktionen auf dem Node-Type oder
auf den Instanzen des Node-Type durch. Die Implementierungen dieser Operationen können
als Implementation-Artifacts zur Verfügung gestellt werden. Folglich müssen die
Implementation-Artifacts der entsprechenden Operationen in der Verwaltungsumgebung
deployed werden, bevor jede Verwaltungsoperation gestartet werden kann. Mit anderen
Worten muss eine TOSCA-konforme Umgebung in der Lage sein, die Typen der
Implementation-Artifacts zu verarbeiten. Diese Artifact-Types werden zum Ausführen dieser
Verwaltungsoperationen benötigt. Eine solche Verwaltungsoperation könnte beispielsweise
die Instanziierung eines Node-Type sein.

Für die Instanziierung eines Node-Type wird benötigt, dass die Deployment-Artifacts in der
verwalteten Ziel-Umgebung zur Verfügung stehen. Zu diesem Zweck unterstützt ein TOSCA-
Container eine Reihe von Arten der Deployment-Artifacts, die er verarbeiten kann. Ein
Service-Template, das Implementation- oder Deployment-Artifacts von nicht-unterstützten
Typen enthält, kann durch den Container nicht verarbeitet werden.

2.3.3 Requirements and Capabilities
TOSCA kann die Anforderungen ("Requirements") und Fähigkeiten ("Capabilities") von
Komponenten eines Service bestimmten. Beispielsweise hängt eine Komponente von einem
Feature ab, das von einer anderen Komponente zur Verfügung gestellt wird. Oder eine
Komponente besitzt eine bestimmte Anforderung an die Hosting-Umgebung wie z.B. für die
Allokation von bestimmten Ressourcen.

Anforderungen und Fähigkeiten werden unter Verwendung von Requirement-Definitions und
Capability-Definitions in Node-Types modelliert. Requirement-Types und Capability-Types
werden als wiederverwendbare Einheiten definiert, sodass diese Definitionen im
Zusammenhang mit verschiedenen Node-Types verwendet werden können. Beispielsweise
könnte ein Requirement-Type "DatabaseConnectionRequirement" definiert werden, um die
Anforderung eines Klienten für eine Datenbankverbindung zu beschreiben. Dieser
Requirement-Type kann dann für alle Arten von Node-Types wiederverwendet werden.

2 Grundlagen

32

Beispielsweise repräsentieren solche Node-Types, dass eine Applikation eine Verbindung zu
einem Datenbankserver benötigt.

Node-Templates, die die entsprechende Node-Types mit Requirement-Definitions oder
Capability-Definitions besitzen, enthalten die Darstellungen von den jeweiligen
Anforderungen und Fähigkeiten mit spezifischem Inhalt zum jeweiligen Node-Template.
Beispielsweise stellt die in einem Node-Template repräsentierte Anforderung konkrete Werte
für die im Requirement-Type definierten Eigenschaften zur Verfügung, während die
Requirement-Types nur die Metadaten der Anforderung darstellen. Darüber hinaus können
Anforderungen und Fähigkeiten von Node-Templates in einem Topology-Template unter
Verwendung von Relationship-Templates optional verbunden werden, um anzuzeigen, dass
eine bestimmte Anforderung eines Knotens durch eine von einem anderen Knoten zur
Verfügung gestellte Fähigkeit erfüllt wird.

2.3.4 TOSCA Cloud Service ARchive (CSAR)
Um in einer bestimmten Umgebung die Durchführung und die Verwaltung des Lebenszyklus
einer Cloud-Anwendung zu unterstützen, müssen alle entsprechenden Artefakte in dieser
Umgebung verfügbar sein. Das heißt, dass neben dem Service-Template der Cloud-
Anwendung die Deployment-Artifacts und die Implementation-Artifacts in dieser Umgebung
verfügbar sein müssen. Um die Verfügbarkeit von allen genannten Elementen zu garantieren,
definiert diese Spezifikation ein entsprechendes Archiv-Format namens Cloud-Service-
Archive (CSAR). Abbildung 2.12 zeigt die Struktur einer CSAR-Datei.

Abbildung 2.12: Die Struktur einer CSAR-Datei

2 Grundlagen

33

Ein CSAR ist eine Zipdatei, die mindestens zwei Verzeichnisse enthält: "TOSCA-Metadata"
und "Definitions". Darüber hinaus können andere Verzeichnisse in einer CSAR-Datei
enthalten sein, d.h., der Ersteller einer CSAR-Datei hat die Freiheit, die Inhalte einer CSAR-
Datei und die Strukturierung dieser Inhalte den Cloud-Anwendungen entsprechend zu
definieren.

Das Verzeichnis "TOSCA-Metadata" enthält die Metadaten, welche die anderen Inhalte der
CSAR-Datei beschreiben. Diese Metadaten werden als "TOSCA-Metadatei" bezeichnet.
Diese Datei besitzt den Dateinamen "TOSCA.meta".

Das Verzeichnis "Definitions" enthält ein oder mehrere TOSCA-Definitions-Dokumente
(Dateiendung ".tosca"). Diese Definitions-Dateien enthalten in der Regel Definitionen
bezüglich der Cloud-Anwendung des CSAR. Darüber hinaus kann eine CSAR-Datei nur die
Definition der Elemente für Wiederverwendung in anderen Kontexten enthalten.
Beispielsweise könnte eine CSAR-Datei verwendet werden, um eine Reihe von Node-Types
und Relationship-Types mit ihren jeweiligen Implementierungen zu verpacken, die dann von
Service-Templates in anderen CSAR-Dateien verwendet werden können. In den Fällen, wo
eine komplette Cloud-Anwendung in einer CSAR-Datei verpackt ist, muss eins der TOSCA-
Definitions-Dokumente im Verzeichnis "Definitions" eine Definition für Service-Template
enthalten, die die Struktur und das Verhalten der Cloud-Anwendung definiert.

2.3.5 TOSCA-Definitions-Dokument
Alle Elemente, die zum Definieren eines TOSCA Service-Template nötig sind, wie z.B.
Node-Type-Definitionen, Relationship-Type-Definitionen sowie Service-Templates selbst,
sind Teil eines TOSCA-Definitions-Dokuments. Dieses Unterkapitel beschreibt die
allgemeine Struktur eines TOSCA-Definitions-Dokuments.

Der XML-Ausschnitt 2.1 beschreibt ein Pseudo-Schema, das die XML-Syntax eines TOSCA-
Definitions-Dokuments definiert. Im Folgenden werden nur die wichtigen Elemente
besprochen, die diese Arbeit betreffen.

"?" bedeutet ein optionales Element oder Attribut.

"*" bedeutet null oder mehrere Elemente bzw. Attribute.

"+" bedeutet ein oder mehrere Elemente bzw. Attribute.

"|" bedeutet Auswählen. Zum Beispiel zeigt "a|b" eine Wahl zwischen "a" und "b".

"(" und ")" werden verwendet, um den Rahmen der Operatoren "?", "*", "+" und "|"
anzugeben.

Definitions: Das Element ist das Wurzelelement eines TOSCA-Definitions-Dokuments.

Import: Das Element deklariert eine Abhängigkeit von externen TOSCA-Definitionen, XML-
Schema-Definitionen oder WSDL-Definitionen. Eine beliebige Anzahl von Elementen Import
könnten als Kindelemente des Elements Definitions erscheinen.

2 Grundlagen

34

ServiceTemplate: Das Element spezifiziert ein komplettes Service-Template für eine Cloud-
Anwendung. Ein Service-Template enthält eine Definition des Topology-Template der Cloud-
Anwendung sowie eine beliebige Anzahl von Plänen. Innerhalb des Service-Template können
alle Typ-Definitionen wie z.B. Node-Types und Relationship-Types verwendet werden. Diese
Typ-Definitionen werden in demselben oder im importierten Definitions-Dokument definiert.

01 <Definitions id="xs:ID"
02 name="xs:string"?
03 targetNamespace="xs:anyURI">
04
05 <Extensions>
06 <Extension namespace="xs:anyURI"
07 mustUnderstand="yes|no"?/> +
08 </Extensions> ?
09
10 <Import namespace="xs:anyURI"?
11 location="xs:anyURI"?
12 importType="xs:anyURI"/> *
13
14 <Types>
15 <xs:schema .../> *
16 </Types> ?
17
18 (
19 <ServiceTemplate> ... </ServiceTemplate>
20 |
21 <NodeType> ... </NodeType>
22 |
23 <NodeTypeImplementation> ... </NodeTypeImplementation>
24 |
25 <RelationshipType> ... </RelationshipType>
26 |
27 <RelationshipTypeImplementation>...

</RelationshipTypeImplementation>
28 |
29 <RequirementType> ... </RequirementType>
30 |
31 <CapabilityType> ... </CapabilityType>
32 |
33 <ArtifactType> ... </ArtifactType>
34 |
35 <ArtifactTemplate> ... </ArtifactTemplate>
36 |
37 <PolicyType> ... </PolicyType>
38 |
39 <PolicyTemplate> ... </PolicyTemplate>
40) +
41
42 </Definitions>

Ausschnitt 2.1: XML-Syntax eines TOSCA-Definitions-Dokuments

NodeType: Das Element spezifiziert einen Typ des Knotens, der als ein Typ für die Node-
Templates eines Service-Template referenziert werden kann.

2 Grundlagen

35

NodeTypeImplementation: Das Element spezifiziert die Implementierung des Verwaltbarkeit-
Verhaltens ("Manageability Behavior") eines Node-Type, der als ein Typ der Node-Templates
eines Service-Template referenziert werden kann.

RelationshipType: Das Element spezifiziert einen Typ der Beziehung ("Relationship"), der als
ein Typ für die Relationship-Templates eines Service-Template referenziert werden kann.

RelationshipTypeImplementation: Das Element spezifiziert die Implementierung des
Verwaltbarkeit-Verhaltens ("Manageability Behavior") eines Relationship-Type, der als ein
Typ der Relationship-Templates eines Service-Template referenziert werden kann.

RequirementType: Das Element spezifiziert einen Typ der Anforderung ("Requirement"), der
in den entsprechenden Node-Types deklariert wird.

CapabilityType: Das Element spezifiziert einen Typ der Fähigkeit ("Capability"), der in den
entsprechenden Node-Types deklariert wird.

ArtifactType: Das Element spezifiziert einen Typ des Artefakts, das innerhalb eines Service-
Template verwendet wird. Beispielsweise könnten Artifact-Types die Anwendungsmodule
(z.B. die Dateien mit der Dateiendung ".war" oder ".ear"), die Betriebssystem-Pakete (z.B.
RPMs) oder die Image-Dateien von virtuellen Maschinen (z.B. die Dateien mit der
Dateiendung ".ova") sein.

ArtifactTemplate: Das Element spezifiziert ein Template, das ein Artefakt beschreibt. Dieses
Artefakt wird durch Teile eines Service-Template referenziert. Beispielsweise könnte das
installierbare Artefakt für einen Anwendungsserver als ein Artifact-Template definiert werden.

Ein TOSCA-Definitions-Dokument muss mindestens eines der Elemente ServiceTemplate,
NodeType, NodeTypeImplementation, RelationshipType, RelationshipTypeImplementation,
RequirementType, CapabilityType, ArtifactType, ArtifactTemplate, PolicyType, oder
PolicyTemplate definieren. Es kann aber beliebig viele dieser Elemente in einer beliebigen
Reihenfolge definieren.

Diese Technik unterstützt eine modulare Definition von Service-Templates. Beispielsweise
kann ein Definitions-Dokument nur die Definitionen von Node-Type und Relationship-Type
enthalten, die dann in ein anderes Definitions-Dokument importiert werden können. Das
zweite Definitions-Dokument definiert dann nur ein Service-Template und verwendet die
importierten Node-Types und Relationship-Types. Ebenso können Node-Type-Properties in
separaten XML-Schema-Definitions-Dokumenten definiert werden, die bei dem Definieren
eines Node-Type importiert und referenziert werden.

2 Grundlagen

36

3 Anforderungen an ein automatisches Verfahren

37

3 Anforderungen an ein automatisches Verfahren

Die Hauptaufgabe der Arbeit ist die Entwicklung eines Verfahrens, mit dem aus den von den
DevOps-Communities veröffentlichten Artefakten die entsprechenden TOSCA Service-
Templates möglichst automatisch erstellt werden können. Solche Artefakte können durch
verschiedene DevOps-Ansätze erstellt werden. Im Grundlagenkapitel wurden zwei Beispiele
für die DevOps-Ansätze dargestellt: Chef (Unterkapitel 2.1) und Juju (Unterkapitel 2.2). Da
diese Werkzeuge wie Chef und Juju eigene Eigenheiten besitzen, werden die Artefakte auf
verschiedene Art und Weise generiert. Das heißt, dass die inneren Strukturen dieser Artefakte
unterschiedlich sind. Wegen der Unterschiede dieser DevOps-Ansätze ergeben sich jedoch
viele Schwierigkeiten bei der Entwicklung des Verfahrens. Deshalb wird eine hauptsächliche
Anforderung an das Verfahren gestellt, die Eigenheiten verschiedener Ansätze wie Chef und
Juju sowie ihre Artefakte zu abstrahieren, um diese Unterschiede verbergen zu können.
Außerdem folgen daraus zwei Anforderungen: (1) Das Verfahren zur Erzeugung von
TOSCA-NodeTypes, Relationship-Types und Service-Templates soll möglichst
vollautomatisch sein. (2) Verschiedene Artefakttypen sollen miteinander kombiniert werden.
Beispielsweise können sich zwei TOSCA Node-Types in einem Topology-Template
kombinieren lassen. Ein Node-Type wurde aus einem Juju-Charm "WordPress" generiert und
beinhaltet das Charm. Der andere wurde aus einem Chef-Cookbook "mysql" generiert und
beinhaltet das Cookbook. Im Folgenden wird die Haupanforderung ausführlich vorgestellt.

3.1 Abstraktion der Eigenheiten verschiedener DevOps-Ansätze

Um ein automatisches Verfahren zu ermöglichen, werden zwei Abstraktion-Arten besprochen:
Prozessabstraktion und Datenabstraktion. Die Prozessabstraktion bedeutet im Rahmen dieser
Arbeit die Abbildung der Elemente der Quelle auf die Elemente des Zieles. Die
Voraussetzung für die Abbildung ist, die äquivalenten Elemente zwischen der Quelle und dem
Ziel zu finden. Damit wird garantiert, dass ein entsprechendes Ziel-Element aus einem
bestimmten Quelle-Element generiert werden kann. In unserem Fall sind die Quellen die
Artefakte (z.B. Chef-Cookbooks und Juju-Charms), die von verschiedenen DevOps-Ansätzen
erstellt werden. Das Ziel ist ein TOSCA Service-Template. Die Hauptaufgabe für die
sogenannte Prozessabstraktion ist, die Elemente aus Chef- oder Juju-Artefakten zu den
Elementen im TOSCA Service-Template zu transformieren. Die konkreten Konzepte dafür
werden im Kaptiel 4 ausführlich dargestellt.

Die Datenabstraktion bedeutet im Rahmen dieser Arbeit, durch Datenkapselung komplexe
Objekte abstrakt darzustellen. Die konkrete Aufgabe besteht darin, die komplexe Struktur der
von den DevOps-Ansätzen erstellten Artefakte zu modellieren. Im Grundlagenkapitel werden
zwei verschiedene DevOps-Ansätze (Chef als ein Konfigurationsmanagementwerkzeug und
Juju als ein Service-Orchestrierungswerkzeug) vorgestellt. Durch diese Ansätze können die
Artefakte von verschiedenen Typen generiert werden. Um die Unterschiede dieser Artefakte
verbergen zu können, werden diese Artefakte abstrahiert. Das Ergebnis der Abstraktion ist,
dass für jeden Artefakttyp ein entsprechendes abstraktes Modell generiert wird. Folglich
findet die Transformation von diesen Artefakten in TOSCA Service-Templates auf einer
abstrakten Modell-Ebene statt. Die Modell-Transformation von den DevOps-Anätzen (Chef
und Juju) hin zu TOSCA wird im Unterkapitel 3.3 ausführlich erläutert.

3 Anforderungen an ein automatisches Verfahren

38

3.2 Grenzen und Einschränkungen

Im letzten Unterkapitel wurde die Anforderung an das automatische Verfahren dargestellt.
Das heißt, dass die Eigenheiten verschiedener DevOps-Ansätze abstrahiert werden, um ihre
Unterschiede zu verbergen. So können die abstrakten Modelle für die verschiedenen DevOps-
Ansätze erstellt werden. Dabei können einige Einschränkungen entstehen. Die Transformation
zwischen zwei Modellen ist tatsächlich die Transformation zwischen den äquivalenten
Komponenten in zwei Modellen. Falls zwei Modelle das ähnliche Metamodell besitzen, das
heißt, dass sie die ähnliche Struktur besitzen und all ihre Komponenten äquivalent sind, dann
ist es möglich, durch ein automatisches Verfahren die Modell-Transformation zu ermöglichen.
Beispielsweise hat Juju als ein Service-Orchestrierungswerkzeug das ähnliche Metamodell
wie TOSCA. Deshalb kann eine äquivalente Modell-Transformation zwischen Juju und
TOSCA einfach ermöglicht werden. Falls zwei Modelle kein ähnliches Metamodell besitzen,
das heißt, dass es vielleicht in einem Modell ein äquivalenter Teil fehlt, dann wird die Modell-
Transformation mithilfe eines automatischen Verfahrens beschränkt. Beispielsweise werden
keine Beziehungen zwischen den Chef-Cookbooks explizit definiert. Deshalb können Chef-
Cookbooks durch ein automatisches Verfahren zu Relationship-Types im TOSCA Service-
Template nicht transformiert werden. Im folgenden Unterkapitel werden zwei Beispiele für
die Modell-Transformation beschrieben.

3.3 Modell-Transformation

Dieses Unterkapitel befasst sich mit zwei Beispielen für die Modell-Transformation. Zuerst
wird die Modell-Transformation von Chef als ein Konfigurationsmanagementwerkzeug nach
TOSCA dargestellt. Dann wird die Modell-Transformation von Juju als ein Service-
Orchestrierungswerkzeug nach TOSCA besprochen.

3.3.1 Modell-Transformation von Chef nach TOSCA
Aus den vorigen Inhalten wissen wir, dass TOSCA zur Realisierung vom Modell-getriebenen
Cloud-Management verwendet wird, indem das Service-Topologie-Modell ("Service-
Template") auf einer höheren Ebene spezifiziert wird. Solche Service-Topologie-Modelle von
TOSCA spezifizieren grundsätzlich die Graphen. Diese Graphen bestehen aus den Knoten
und den Beziehungen zwischen den Knoten, um die ganze Struktur für das Deployment eines
Service zu bestimmen. In TOSCA werden die Beziehungen und die Knoten als separate
Topologie-Modell-Komponenten explizit modelliert. Um dies genauer zu formulieren,
beschreibt eine solche Spezifikation das Topology-Template, die Node-Types und die
Relationship-Types. Darüber hinaus müssen die Implementation-Artifacts auf der unteren
Ebene an die Operationen von Node-Types und Relationship-Types angehängt werden, um
die Funktionalität dieser Operationen wie die Installierung und die Konfiguration einer
bestimmten Software-Komponente zu realisieren. Aber TOSCA konzentriert sich nicht auf
die Aspekte der unteren Ebene, wie z.B. die Implementation-Artifacts auf der unteren Ebene.
Der geradlinige Ansatz ist, Shell-Skripte zu implementieren, um die Software-Komponenten
zu installieren und zu konfigurieren. Da Shell-Skripte für die Ausführung der einfachen
Aufgaben auf einer spezifischen Plattform verwendet werden sollen, wäre eine
plattformunabhängige Skriptsprache wie Python oder Ruby eine bessere Wahl, um die
portablen Artefakte zu erstellen.

3 Anforderungen an ein automatisches Verfahren

39

Chef als ein beliebtes Konfigurationsmanagementwerkzeug kann diesen Schwachpunkt
ausgleichen. Für Chef gibt es schon viele Konfigurationsdefinitionen wie z.B. Cookbooks für
den Apache-Webserver und den MySQL-Datenbankserver, die bereits verfügbar sind, um
viele Software-Komponenten zu installieren und zu konfigurieren. Da diese
Konfigurationsdefinitionen durch die plattformunabhängige Skriptsprache "Ruby" und eine
interne DSL geschrieben werden, sind sie portabel und können als die Implementation-
Artifacts auf der unteren Ebene von TOSCA dienen. Außerdem können keine expliziten
Beziehungen zwischen diesen Konfigurationsdefinitionen definiert werden, da es kein
ganzheitliches Service-Topologie-Modell in Chef gibt. Folglich muss nur ein Schritt
durchgeführt werden, um die von der Chef-Community veröffentlichten
Konfigurationsdefinitionen zu den TOSCA-konformen Topologie-Modell-Komponenten zu
verwandeln. Aus jedem Chef-Cookbook muss ein Node-Type in TOSCA generiert werden.
Die Relationship-Types können jedoch in TOSCA nicht erzeugt werden, weil die
entsprechenden Beziehungen zwischen den Cookbooks in Chef fehlen. In Abbildung 3.1 wird
ein Beispiel für die Modell-Transformation von Chef nach TOSCA gezeigt.

Abbildung 3.1: Beispiel für Modell-Transformation von Chef nach TOSCA

In diesem Besipiel wird dargestellt, dass aus den Chef-Cookbooks "Web-Applikation" und
"Datenbankserver" zwei entsprechende Node-Types generiert werden, die die Knoten in
einem TOSCA Topologie-Modell repräsentieren. Aus der Beziehung "Die Web-Applikation
verbindet sich mit dem MySQL-Datenbankserver" wird kein Relationship-Type erzeugt, die
die entsprechende Beziehung in einem TOSCA Topologie-Modell repräsentieren kann. Der
Grund dafür ist, dass in Chef keine Beziehung zwischen diesen zwei Cookbooks explizit
definiert wird. Auch wenn eine solche Beziehung zwischen ihnen implizit existieren könnte,
ist es ziemlich schwierig, aus dieser Beziehung ein entsprechender TOSCA Relationship-
Type zu generieren.

3.3.2 Modell-Transformation von Juju nach TOSCA
Aus dem Grundlagenkapitel wissen wir, dass die Juju-Community mehr als einhundert
Topologie-Modell-Komponenten als Open-Source-Software zur Verfügung stellt. Eine solche
Komponente wird ein "Charm" genannt und kann mit einer anderen Komponente kombiniert
werden, um ein Service-Topologie-Modell zu erstellen. Dieses Service-Topologie-Modell
kann in der Cloud-Umgebung instanziiert und verwaltet werden. Das heißt, dass Juju als ein
beliebtes Service-Orchestrierungswerkzeug das ähnliche Metamodell wie TOSCA hat und das
Modell-getriebene Cloud-Management ermöglicht. Im Grunde spezifizieren die Topologie-

3 Anforderungen an ein automatisches Verfahren

40

Modelle von TOSCA und Juju die Graphen. Diese Graphen bestehen aus den Knoten und den
Beziehungen ("Relations") zwischen den Knoten, um die Struktur eines Cloud-Service zu
definieren. In TOSCA werden die Beziehungen und die Knoten als separate Topologie-
Modell-Komponenten explizit modelliert, während Juju nur die Knoten als Topologie-
Modell-Komponenten spezifiziert. Folglich müssen zwei wichtige Schritte durchgeführt
werden, um die von der Juju-Community veröffentlichten Topologie-Modell-Komponenten
zu den TOSCA-konformen Topologie-Modell-Komponenten zu verwandeln [1]. (1) Aus
jedem Juju-Charm muss eine TOSCA-konforme Topologie-Modell-Komponente generiert
werden. Demzufolge kann jeder Knoten, der mit Juju modelliert werden kann, auch mit
TOSCA modelliert werden. Die Beziehungen zwischen diesen Knoten können jedoch in
TOSCA nicht modelliert werden, weil die entsprechenden Topologie-Modell-Komponenten
fehlen. (2) Deshalb müssen zusätzliche TOSCA-konformen Topologie-Modell-Komponenten
aus jeder Beziehung, die mit Juju implizit modelliert werden kann, generiert werden. In
Abbildung 3.2 wird ein Beispiel für die Modell-Transformation von Juju nach TOSCA
gezeigt.

Abbildung 3.2: Beispiel für Modell-Transformation von Juju nach TOSCA

In diesem Beispiel wird dargestellt, dass aus den Juju-Charms "WordPress" und "MySQL"
zwei entsprechende Topologie-Modell-Komponenten generiert werden. Diese Topologie-
Modell-Komponenten repräsentieren die Knoten in einem TOSCA Topologie-Modell
("Service-Topology"). Aus der Relation "Die WordPress-Applikation verbindet mit dem
MySQL-Datenbankserver", die in Juju implizit modelliert werden kann, wird eine separate
Topologie-Modell-Komponente erzeugt, die die entsprechende Beziehung in einem TOSCA
Topologie-Modell repräsentieren kann.

4 Konzepte für ein automatisches Verfahren

41

4 Konzepte für ein automatisches Verfahren

In diesem Kapitel werden die Konzepte für das automatische Verfahren vorgestellt, mit dem
die TOSCA Service-Templates aus den von den DevOps-Communities veröffentlichten
Artefakten automatisch generiert werden. Zu den konkreten Konzepten gehören das Konzept
für die Erzeugung von TOSCA Node-Types aus bestehenden Chef-Artefakten, das Konzept
für die Erzeugung von TOSCA Relationship-Types aus bestehenden Juju-Artefakten und das
Konzept für die Erzeugung von TOSCA Service-Templates durch die Orchestrierung der
generierten Node-Types und Relationship-Types.

4.1 Erzeugung von TOSCA Node-Types aus bestehenden Chef-Artefakten

Dieses Unterkapitel beschäftigt sich mit dem Konzept für die Generierung von TOSCA Node-
Types aus Chef-Artefakten. Im Folgenden wird beschrieben, wie die Abbildung der Elemente
in einem Chef-Cookbook zu den Elementen in einem TOSCA-Definitions-Dokument für
einen Node-Type realisiert wird. Die Idee ist, die äquivalenten Elemente zwischen ihnen zu
finden. Zuerst wird durch die Attribute, die in der Matadatei namens "metadata.rb" in einem
Cookbook definiert werden, ein entsprechendes Dokument für die Node-Type-Properties
erzeugt. Dann wird durch die anderen Informationen in dieser Matadatei ein entsprechendes
TOSCA-Definitions-Dokument für einen Node-Type generiert. Schließlich wird die
entsprechende CSAR-Datei erzeugt, die alle notwendigen Dokumente und Artefakte enthält.

4.1.1 Erzeugung des Node-Type-Properties-Dokuments
In einem Cookbook oder in einem Recipe können Attribute definiert werden. Ein Attribut ist
eine bestimmte Information über den Knoten, wie z.B. ein Hostname, eine IP-Adresse, eine
Netzwerk-Schnittstelle, ein Dateisystem, die Anzahl der Klienten, die ein auf einem Knoten
laufender Service akzeptieren, und so weiter. Wenn ein Cookbook während des Chef-Runs
geladen wird, werden diese Attribute mit den Attributen verglichen, die bereits auf dem
Knoten vorhanden sind. Wenn die Cookbook-Attribute die höhere Priorität als die Default-
Attribute haben, wird Chef die Werte der neuen Attribute auf dem Knoten verwenden.

Ein TOSCA Node-Type kann durch die Node-Type-Properties die Eigenschaften (die in
Abbildung 2.10 dargestellten "Properties") einer Software-Komponente definieren. Diese
Eigenschaften werden verwendet, um die Informationen über eine Service-Instanz zu
speichern: die statische Information (z.B. die Hardware-Spezifikation einer virtuellen
Maschine) und die Laufzeit-Information (z.B. die IP-Adresse). Die Node-Type-Properties
können in separaten XML-Schema-Definitionen definiert werden, die beim Definieren eines
Node-Type importiert werden.

Es gibt eine bestimmte Beziehung zwischen den Eigenschaften des TOSCA Node-Type und
den Attributen des Chef-Cookbook. Für eine Interface-Operation des Node-Type wird ein
entsprechendes Artifact-Template als ein Implementation-Artifact referenziert. In unserem
Fall wird hier ein Artifact-Template des Chef-spezifischen Artifact-Type aufgerufen. Für die
Ausführung eines Chef-spezifischen Artifact-Template werden die Werte der Attribute im
Cookbook benötigt. Um das zu verwirklichen, können die Eigenschaften des Node-Type (die
Node-Type-Properties) zu Cookbook-Attributen abgebildet werden. Deshalb kann aus den
Attributen in der Metadatei eines Cookbook ein entsprechendes Node-Type-Properties-

4 Konzepte für ein automatisches Verfahren

42

Dokument generiert werden. Das Dokument besitzt die Dateiendung ".xsd" (XML Schema
Definition) und wird zum Definieren der Struktur für ein XML-Element verwendet. Das
XML-Element definiert die Struktur der Node-Type-Properties. Ein Beispiel für das Node-
Type-Properties-Dokument, das aus den Attributen des Cookbook "mysql" generiert wurde,
wird im Anhang 1 präsentiert.

4.1.2 Erzeugung von Requirement-Types und Capability-Types
Ein Requirement-Type ist eine wiederverwendbare Entität, die eine Art Anforderung
("Requirement") beschreibt. Ein Node-Type kann deklarieren, solche Anforderungen (die in
Abbildung 2.10 dargestellten "Requirement Definitions") zu besitzen. Beispielsweise kann ein
Requirement-Type für eine Datenbankverbindung definiert werden. Verschiedene Node-
Types (z.B. ein Node-Type für eine Web-Anwendung) können deklarieren, eine Anforderung
für eine Datenbankverbindung zu besitzen.

Ein Capability-Type ist eine wiederverwendbare Entität, die eine Art Fähigkeit ("Capability")
beschreibt. Ein Node-Type kann deklarieren, solche Fähigkeiten (die in Abbildung 2.10
dargestellten "Capability Definitions") bereitstellen zu können. Beispielsweise kann ein
Capability-Type für einen Datenbankserver definiert werden. Verschiedene Node-Types (z.B.
ein Node-Type für eine Datenbank) können deklarieren, die Fähigkeit eines Datenbankservers
zur Verfügung zu stellen. Im Grunde legen die Requirement-Types die Anforderungen an
einen Node-Type fest. Im Gegensatz dazu definieren die Capability-Types die Fähigkeiten,
die ein Node-Type zur Verfügung stellen kann.

Wir wissen, dass ein Chef-Cookbook alle erforderlichen Informationen und Ressourcen für
die Konfiguration eines Service oder einer Applikation enthält. Das heißt, dass aus einem
Cookbook genau eine konkrete Fähigkeit, wie z.B. einen MySQL-Datenbankserver zu
konfigurieren, verwirklicht werden kann. Die Anforderungen können jedoch nicht genauer im
TOSCA Topologie-Modell beschrieben werden. Der Grund dafür ist, dass sich ein Cookbook
auf der unteren Ebene im TOSCA Topologie-Modell befindet und als ein Implementation-
Artifact für eine Interface-Operation eines TOSCA Node-Type verwendet wird. Deshalb kann
nur ein entsprechender Capability-Type aus einem Chef-Cookbook generiert wird.

Der XML-Ausschnitt 4.1 zeigt ein Beispiel für den Capability-Type bezüglich des Chef-
Cookbook "mysql".

01 <CapabilityType name="mysql"
02 targetNamespace="http://community.opscode.com/cookbooks/
03 mysql/capabilites"/>

Ausschnitt 4.1: XML-Syntax für den Capability-Type

Der aus dem Cookbook "mysql" generierten Node-Type stellt genau eine Fähigkeit "mysql"
zur Verfügung. Folglich wird ein entsprechender Capability-Type names "mysql" generiert.

4.1.3 Erzeugung von Artifact-Types und Artifact-Templates
Die Erzeugung von Artifact-Types und Artifact-Templates ist eine sehr wichtige Aufgabe für
diese Arbeit, um aus Chef-Cookbooks die entsprechenden TOSCA Node-Types zu generieren.
Artifact-Types sind wiederverwendbare Entitäten und definieren Typen von Artifact-

4 Konzepte für ein automatisches Verfahren

43

Templates. Diese Artifact-Templates dienen als Deployment-Artifacts für Node-Templates
oder als Implementation-Artifacts für die Interface-Operationen von Node-Types und
Relationship-Types. In unserem Fall wird hier ein Artifact-Template als Implementation-
Artifact für die Interface-Operationen eines Node-Type referenziert. Das Artifact-Template
definiert in der Regel die Werte der Eigenschaften innerhalb des Elements Properties.
Außerdem stellt normalerweise ein Artifact-Template eine Referenz oder mehrere Referenzen
auf das tatsächliche Artefakt selbst zur Verfügung. Es kann eine Datei in der CSAR-Datei
sein, welche das gesamte Service-Template enthält. Es kann auch an einem entfernten Ort wie
einem FTP-Server verfügbar sein.

Im Folgenden wird dargestellt, wie die Artifact-Templates und die entsprechenden Artifact-
Types aus Chef-Cookbooks generiert werden. Das heißt, wie die Chef-Cookbooks als die
Implementation-Artifacts in ein TOSCA Service-Topologie-Modell integriert werden. Es gibt
zwei verschiedene Ansätze [20] zur Einbettung von Chef-Cookbooks in ein Service-
Topologie-Modell: die direkte Integration und die transparente Integration.

4.1.3.1 Die direkte Integration
Der direkte Ansatz zur Einbettung von Chef-Cookbooks in ein Service-Template ist, einen
Chef-spezifischen Artifact-Type zu definieren, welche der Struktur der Artefakte "Chef-
Cookbooks" entspricht. Außerdem können die Implementation-Artifacts des Chef-
spezifischen Artifact-Type von einer beliebigen TOSCA-Laufzeitumgebung bearbeitet
werden. Beliebige Typen von Implementation-Artifacts können durch das Erstellen einer
entsprechenden XML-Schema-Definition definiert werden. Eine TOSCA-Laufzeitumgebung,
die ein Service-Template mit diesen Implementation-Artifacts verarbeitet, muss den
entsprechenden Artifact-Type verstehen. Das heißt, dass die TOSCA-Laufzeitumgebung den
Chef-spezifischen Artifact-Type verstehen muss, um die entsprechenden Implementation-
Artifacts verarbeiten zu können.

Ein Artifact-Template wird innerhalb eines TOSCA Service-Template definiert und kann
dann als ein Implementation-Artifact für eine bestimmte Operation referenziert werden.
Durch den direkten Integrationsansatz können hier Chef-spezifische Artifact-Templates
erzeugt werden. Die TOSCA-Laufzeitumgebung muss den Inhalt des Chef-spezifischen
Artifact-Template (insbesondere den Inhalt des Elements ChefArtifactProperties) verstehen,
um die entsprechenden Aktionen durchführen zu können. Das Element ChefArtifactProperties
wird in der XML-Schema-Definition (in der Datei "ChefArtifact.xsd") für den Chef-
spezifischen Artifact-Type definiert und verwendet, um die Struktur der Chef-spezifischen
Artifact-Type-Properties zu definieren. Die Datei "ChefArtifact.xsd" wird im Anhang 4
präsentiert. Alle Chef-bezogenen Informationen wie das Mapping von Node-Type-Properties
zu Cookbook-Attributen und die Run-Liste, in der die erforderlichen Recipes für die
Konfiguration eines Service oder einer Anwendung gelistet sind, werden im Element
ChefArtifactProperties definiert.

4.1.3.2 Die transparente Integration
Chef-Cookbooks können auch auf eine transparente Weise unter Verwendung des Standard-
Artifact-Type "Script Artifact" [64] in ein Service-Topologie-Modell eingebettet werden. Die
Artefakte des Type "Script Artifact" können von einer beliebigen TOSCA-Laufzeitumgebung
verarbeitet werden. Folglich muss die TOSCA-Laufzeitumgebung die Implementation-

4 Konzepte für ein automatisches Verfahren

44

Artifacts der spezifischen Artifact-Types wie die Chef-spezifische Artefakte nicht verstehen.
Dieser transparente Integrationsansatz kann in der Praxis durch die Erstellung der Wrapper-
Skripte realisiert werden. Wrapper-Skripte können das Konfigurationsmanagementwerkzeug
mit entsprechenden Parametern aufrufen, um auf die Konfigurationsdefinitionen in
Cookbooks zu verweisen.

Abbildung 4.1: Transparente Integration mithilfe eines Wrapper-Skripts [20]

Abbildung 4.1 zeigt, wie die Wrapper-Skripte verwendet werden, um die Operationen auf
einem Target-Knoten unter Verwendung von Chef durchzuführen. Erstens kopiert die
TOSCA-Laufzeitumgebung das entsprechende Wrapper-Skript zu dem Target-Knoten und
triggert dann die Ausführung des Wrapper-Skripts. Zusätzliche Dateien, die für die
Ausführung des Wrapper-Skripts erforderlich sind, werden auch zu den Target-Knoten
kopiert. Zweitens ruft das Wrapper-Skript den Chef-Client. Diese Wrapper-Skripte können als
die Implementation-Artifacts des Typs "Script Artifact" in das TOSCA Topologie-Modell
eingebettet werden.

Einige Einschränkungen sind im Wrapper-Skript fest kodiert, wie z.B. die Konfiguration des
Chef-Client, der die Konfigurationsdefinitionen in Cookbooks verarbeitet, die Run-Liste
sowie das Mapping von Eigenschaften. Alle Chef-bezogenen Informationen sind im Wrapper-
Skript versteckt. Das führt zum Verlust von Flexibilität, die Konfigurationsdefinitionen zu
verarbeiten, weil die TOSCA-Laufzeitumgebung nicht versteht, was in einem Wrapper-Skript
geschieht. Sie kann nicht kontrollieren, wie das Wrapper-Skript seine Arbeit ausführt.
Darüber hinaus ist es schwer, die Wrapper-Skripte portabel zu machen.

4.1.3.3 Der bevorzugte Ansatz
Für den zweiten Integrationsansatz sind die Chef-Spezifika des Artifact-Template für die
TOSCA-Laufzeitumgebung vollständig transparent. Die Laufzeit-Implementierung muss
nichts über Chef wissen. Alle notwendigen Aktionen zur Realisierung des Artefakts sind
jedoch im Wrapper-Skript fest kodiert. Die TOSCA-Laufzeitumgebung hat wenig Flexibilität
bei der Durchführung der entsprechenden Aktionen. Die Mappings von Eigenschaften und
Parametern müssen im Wrapper-Skript versteckt sein. Im Gegensatz dazu sind für den
direkten Integrationsansatz diese Mappings im Artifact-Template explizit definiert. Außerdem
wird kein Chef-Client bei dem direkten Ansatz aufgerufen. Deshalb wird der direkte
Integrationsansatz in Bezug auf Chef in dieser Arbeit bevorzugt.

Der XML-Ausschnitt 4.2 zeigt ein Beispiel für ein Chef-spezifisches Artifact-Template, das
einen MySQL-Datenbankserver installiert und konfiguriert. Das Beispiel zeigt die Struktur
eines Artifact-Template aus einem Chef-spezifischen Artifact-Type.

4 Konzepte für ein automatisches Verfahren

45

01 <ArtifactTemplate id="322de67d-721b-4ab5-ae4f-a280076496c2"
02 xmlns:artifacts="http://docs.oasis-open.org/
03 tosca/ns/2011/12/Artifacts"
02 type="artifacts:ChefArtifact">
03 <Properties>
04 <artifacts:ChefArtifactProperties
05 xmlns:artifacts="http://docs.oasis-open.org/
06 tosca/ns/2011/12/Artifacts">
07 <Cookbooks>
08 <Cookbook name="build-essential"
09 location="/files/chef/cookbooks/build-essential.zip"/>
10 <Cookbook name="openssl"
11 location="/files/chef/cookbooks/openssl.zip"/>
12 <Cookbook name="mysql"
13 location="/files/chef/cookbooks/mysql.zip"/>
14 </Cookbooks>
15 <Mappings>
16 <PropertyMapping property="/mysql/server_root_password"
17 cookbookAttribute="mysql/server_root_password"
18 mode="input"/>
19 ...
20 </Mappings>
21 <RunList>
22 <Include>
23 <RunListEntry cookbookName="mysql" recipeName="server"/>
24 </Include>
25 </RunList>
26 </artifacts:ChefArtifactProperties>
27 </Properties>
28 <ArtifactReferences>
29 <ArtifactReference reference="/files/chef/cookbooks/">
30 <Include pattern="build-essential.zip"/>
31 <Include pattern="openssl.zip"/>
32 <Include pattern="mysql.zip"/>
33 </ArtifactReference>
34 </ArtifactReferences>
35 </ArtifactTemplate>

Ausschnitt 4.2: XML-Syntax für das Chef-spezifische Artefact-Template

Das Element ArtifactTemplate besitzt zwei Attribute: id und type. Das Attribut id spezifiziert
einen eindeutigen Bezeichner für dieses bestimmte Artifact-Template innerhalb des Service-
Template. Das Attribut type spezifiziert den Artifact-Type. Der Inhalt des Elements
Properties ist Chef-spezifisch. Die Struktur des Elements ChefArtifactProperties kann unter
Verwendung einer XML-Schema-Definition definiert werden. Sie enthält die folgenden Teile:

4 Konzepte für ein automatisches Verfahren

46

Cookbooks: Jedes Cookbook, das zur Realisierung eines bestimmten Artifact-Template
erforderlich ist, wird durch ein Element Cookbook referenziert. Eingeschlossen werden hier
die Cookbooks, die innerhalb der Run-Liste direkt referenziert werden, sowie die Cookbooks,
von denen die in der Run-Liste referenzierten Cookbooks abhängig sind. Diese Cookbooks
werden durch die Abschnitte "depends" in der Metadatei eines Cookbook gezeigt.

Mappings: Werte der Node-Type-Properties können zu Cookbook-Attributen durch das
Element PropertyMapping abgebildet werden. Das Attribut propertyPath enthält einen
XPath-Ausdruck, der auf eine bestimmte Eigenschaft verweist. Das Attribut
cookbookAttribute wird verwendet, um auf das entsprechende Cookbook-Attribut zu
referenzieren. Das Attribut mode spezifiziert die Richtung des Mapping und besitzt zwei
Werte "input" und "output". Der Wert "input" bedeutet, dass der Wert der Eigenschaft zum
Cookbook-Attribut zugeordnet wird, bevor die Chef-Recipes ausgeführt werden. Der Wert
"output" ordnet das Cookbook-Attribut zur Eigenschaft zu, nachdem die Chef-Recipes
ausgeführt werden.

RunList: Im Wesentlichen definiert ein Chef-spezifisches Artifact-Template, welche Recipes
in der entsprechenden Run-Liste gezeigt werden. Das Element RunList enthält ein
Kindelement Include. Das Element Include besteht aus mindestens einem Element
RunListEntry, das auf Recipes verweist. Die Recipes in der Run-Liste werden in der
angegebenen Reihenfolge ausgeführt. In der Metadatei eines Cookbook werden viele Recipes
durch die Abschnitte "recipe" gezeigt. Ein oder mehrere Recipes können ausgewählt und zur
Run-Liste hinzugefügt werden.

Das Element ArtifactReferences enthält einen Verweis oder mehrere Verweise auf die Dateien,
die in die CSAR-Datei gelegt werden und für die Verarbeitung des Artefakts notwendig sind.
Im Beispiel wird das Cookbook "mysql" referenziert. Außerdem werden noch zwei
Cookbooks "build-essential" und "openssl" referenziert, von denen das Cookbook "mysql"
abhängig ist.

4.1.4 Erzeugung von Node-Type und Node-Type-Implementation
Ein Node-Type ist eine wiederverwendbare Entität, die den Typ eines Node-Template oder
von mehreren Node-Templates definiert. Das Element NodeType bezüglich eines Chef-
Cookbook besteht aus den folgenden Elementen: PropertiesDefinition, CapabilityDefinition
und Interfaces.

Der XML-Ausschnitt 4.3 zeigt ein Beispiel für einen Node-Type bezüglich des Chef-
Cookbook "mysql".

In dem Unterkapitel 4.1.1 wird beschrieben, dass aus den Attributen in der Metadatei eines
Cookbook ein entsprechendes Node-Type-Properties-Dokument generiert werden kann.
Durch das Element PropertiesDefinition kann die Struktur der Eigenschaften des Node-Type
wie z.B. seine Konfiguration und sein Zustand mittels XML-Schema spezifiziert werden. In
unserem Fall besitzt das Element PropertiesDefinition das Attribut element, das den Namen
eines XML-Elements angibt. Dieses XML-Element definiert die Struktur der Node-Type-
Properties.

4 Konzepte für ein automatisches Verfahren

47

Unterkapitel 4.1.2 zeigt, dass die aus Chef-Cookbooks generierten Node-Types keine
Anforderungen haben. Für jeden aus einem Chef-Cookbook generierten Node-Type sollte
genau eine Fähigkeit generiert werden. Das Element CapabilityDefinition definiert eine
bestimmte Fähigkeit, die der Node-Type zur Verfügung stellen kann. Durch das Attribut
capabilityType kann der entsprechende Capability-Type identifiziert werden. Für das
Cookbook "mysql" hat beispielsweise der entsprechende Node-Type "MySQL" genau eine
Fähigkeit "mysql".

01 <NodeType name="mysql_nodetype"
02 targetNamespace="http://community.opscode.com/cookbooks">
03 <PropertiesDefinition
04 xmlns:properties="http://community.opscode.com/
05 cookbooks/mysql/nodetype_properties"
06 element="properties:mysql-properties"/>
07 <CapabilityDefinitions>
08 <CapabilityDefinition name="mysql"
09 xmlns:capabilites="http://community.opscode.com/
10 cookbooks/mysql/capabilites"
11 capabilityType="capabilites:mysql"
12 lowerBound="0" upperBound="unbounded"/>
13 </CapabilityDefinitions>
14 <Interfaces>
15 <Interface
16 name="http://docs.oasis-open.org/
17 tosca/ns/2011/12/interfaces/server">
18 <Operation name="create"/>
19 </Interface>
20 </Interfaces>
21 </NodeType>

Ausschnitt 4.3: XML-Syntax für den Node-Type

Die Funktionen, die auf (einer Instanz von) einem entsprechenden Node-Template
durchgeführt werden können, werden durch die Interfaces des Node-Type definiert. Das
Element Interfaces enthält die Definitionen der Operationen, die auf (Instanzen von) dem
Node-Type durchgeführt werden können. Beispielsweise werden die Operationen wie z.B.
"install", "start", "stop" verwendet, um in der TOSCA-Umgebung den Lebenszyklus eines
Service oder einer Anwendung durchzuführen und zu verwalten. Aber Chef befindet sich auf
der Ebene von Implementation-Artifacts in TOSCA. Es gibt bei Chef keine solchen
Lebenszyklus-Operationen. Um das Deployment eines aus einem Chef-Cookbook generierten
CSAR zu ermöglichen, wird eine Lebenszyklus-Operation "create" für jeden Node-Type im
Element Interface definiert. Implementation-Artifacts zur Installierung und Konfigurierung
der entsprechenden Software-Komponenten werden an diese Operation "create" angehängt.

Eine Node-Type-Implementation beschreibt den ausführbaren Code, der einen spezifischen
Node-Type implementiert. Die Node-Type-Implementation stellt eine Sammlung von
ausführbaren Dateien oder Programmen zur Verfügung, welche die Interface-Operationen
eines Node-Type (auch bekannt als Implementation-Artifacts) implementieren. Außerdem

4 Konzepte für ein automatisches Verfahren

48

stellt sie eine Sammlung von ausführbaren Dateien oder Programmen zur Verfügung, die
nötig sind, um die Instanzen von Node-Templates (auch bekannt als Deployment-Artifacts) zu
erstellen. Diese ausführbaren Dateien oder Programme werden als separate Artifact-
Templates definiert und von den Implementation-Artifacts und den Deployment-Artifacts
einer Node-Type-Implementation referenziert.

Der XML-Ausschnitt 4.4 zeigt ein Beispiel für eine Node-Type-Implementation, die das
Chef-spezifische Artifact-Template (dargestellt in Unterkapitel 4.1.3.3) mit der Interface-
Operation "create" im aus dem Chef-Cookbook "mysql" generierten Node-Type verknüpfen
kann.

01 <NodeTypeImplementation
02 xmlns:cookbooks="http://community.opscode.com/cookbooks"
03 name="mysql_nodetypeimplementation"
04 targetNamespace="http://community.opscode.com/cookbooks"
05 nodeType="cookbooks:mysql_nodetype">
06 <RequiredContainerFeatures>
07 <RequiredContainerFeature
08 feature="redhat|amazon|centos|debian|ubuntu|freebsd|
09 mac_os_x|scientific|suse|windows"/>
10 </RequiredContainerFeatures>
11 <ImplementationArtifacts>
12 <ImplementationArtifact name="create"
13 xmlns:artifacts="http://docs.oasis-open.org/
14 tosca/ns/2011/12/Artifacts"
15 xmlns:mysql="http://community.opscode.com/
16 cookbooks/mysql/nodetype"
17 interfaceName="http://docs.oasis-open.org/
18 tosca/ns/2011/12/interfaces/server"
19 operationName="create"
20 artifactType="artifacts:ChefArtifact"
21 artifactRef="mysql:322de67d-721b-4ab5-ae4f-a280076496c2"/>
22 </ImplementationArtifacts>
23 </NodeTypeImplementation>

Ausschnitt 4.4: XML-Syntax für die Node-Type-Implementation

Im Fall des aus dem Chef-Cookbook "mysql" generierten Node-Type wird ein entsprechendes
Implementation-Artifact für die Operation "create" durch das Element ImplementationArtifact
definiert. Dieses Element hat die folgenden Attribute: name, artifactType, artifactRef,
interfaceName und operationName. Das Attribut name spezifiziert den Namen des Artefakts.
Das Attribut artifactType spezifiziert den Typ des Artefakts. Das optionale Attribut
artifactRef enthält einen Namen, der ein Artifact-Template als ein Implementation-Artifact
identifiziert. Der Wert des Attributs artifactRef entspricht dem Wert des Attributs id im
Artifact-Template (dargestellt in Unterkapitel 4.1.3.3). Das optionale Attribut interfaceName
spezifiziert den Namen des Interface und entspricht dem Interface-Namen im entsprechenden
Node-Type. Das optionale Attribut operationName spezifiziert den Namen der Operation und
referenziert die Interface-Operation "create" im entsprechenden Node-Type. Außerdem kann

4 Konzepte für ein automatisches Verfahren

49

die Node-Type-Implementation das Element RequiredContainerFeatures besitzen. Dieses
Element spezifiziert die Hinweise für einen TOSCA-Container, dass er eine Implementierung,
die einer bestimmten Umgebung entspricht, richtig auswählen kann.

4.1.5 Erzeugung der entsprechenden CSAR-Datei
Aus dem Grundlagenkapitel wissen wir, dass eine TOSCA CSAR-Datei erstellt werden muss,
um die Verfügbarkeit aller Elemente für eine Cloud-Anwendung in einer TOSCA-konformen
Umgebung zu garantieren. Diese CSAR-Datei enthält alle erforderlichen Elemente für die
Cloud-Anwendung. Im Fall von Chef gehören zu solchen Elementen das Node-Type-
Properties-Dokument, das TOSCA-Definitions-Dokument für den Node-Type, die TOSCA-
Metadatei "TOSCA.meta" sowie alle erforderlichen Artefakte wie z.B. Cookbooks und
Recipes. Außerdem gibt es die Möglichkeit, dass ein Cookbook von den anderen Cookbooks
abhängig ist, welche auch in der Matadatei definiert werden. Solche Cookbooks müssen auch
zu der aus diesem Cookbook generierten CSAR-Datei integriert werden. Beispielsweise wird
in der Metadatei des Cookbook "mysql" definiert, dass dieses Cookbook von zwei anderen
Cookbooks "openssl" und "build-essential" abhängig ist. Diese Cookbooks müssen auch zu
der aus dem Cookbook "mysql" generierten CSAR-Datei integriert werden. Wenn die
Ausführung von Cookbooks "openssl" und "build-essential" auch von den anderen
Cookbooks abhängig ist, dann müssen diese entsprechenden Cookbooks in die CSAR-Datei
integriert werden. Im Fall des Cookbook "mysql" werden nur die drei Cookbooks "mysql",
"openssl" und "build-essential" in die CSAR-Datei integriert, weil die Cookbooks "openssl"
und "build-essential" von keinem Cookbook abhängig sind.

4.2 Erzeugung von TOSCA Node-Types aus bestehenden Juju-Artefakten

In diesem Unterkapitel wird das Konzept für die Generierung von TOSCA Node-Types aus
Juju-Artefakten kurz dargestellt. Die Erzeugung von TOSCA Node-Types aus Juju-
Artefakten gehört nicht zum Rahmen dieser Arbeit. Es wird hier besprochen, damit die Leser
das Konzept für die Generierung von TOSCA Relationship-Types aus Juju-Artefakten besser
verstehen können. Im Folgenden wird durch eine Abbildung dargestellt, wie ein TOSCA
Node-Type aus einem Juju-Charm generiert wird. In der Abbildung 4.2 gibt es einige
gestrichelten Linien, die zeigen, dass durch eine Datei in einem Charm eine entsprechende
Datei für eine TOSCA CSAR-Datei generiert werden kann.

Als erster Schritt wird durch die YAML-Datei namens "config" im Charm ein entsprechendes
Node-Type-Properties-Dokument erzeugt. Einige Konfigurationsoptionen wie z.B. eine IP-
Adresse oder eine Netzwerk-Schnittstelle werden in dieser YAML-Datei definiert und vom
Charm benutzt, um die Informationen über eine Service-Instanz zu speichern. Solche
Konfigurationsoptionen entsprechen den Eigenschaften ("Properties") des TOSCA Node-
Type. Eine Hook-Datei wird hier in einem Artefakt-Template definiert und als ein konkretes
Implementation-Artifact für eine Interface-Operation des Node-Type aufgerufen. Für die
Ausführung eines Hooks werden die Werte der Konfigurationsoptionen benötigt. Deshalb
brauchen wir ein Node-Type-Properties-Dokument, in dem die entsprechenden Eigenschaften
für die Ausführung dieser "Hook" Artefakt-Templates definiert werden. Die Node-Type-
Properties können in separaten XML-Schema-Definitionen definiert werden, die beim
Definieren eines Node-Type importiert werden. Es gibt noch die Möglichkeit, dass es keine

4 Konzepte für ein automatisches Verfahren

50

YAML-Datei "config" im Charm gibt. Das bedeutet, dass kein entprechendes Node-Type-
Properties-Dokument generiert werden muss.

Abbildung 4.2: Beispiel für Erzeung vom TOSCA Node-Type aus Juju-Charm "MySQL"

Der zweite Schritt ist die Generierung eines TOSCA-Definitions-Dokuments für einen Node-
Type. Zuerst können durch die Informationen über die Abschnitte "requires" und "provides"
in der Datei "metadata.yaml" vom Charm die entsprechenden Elemente RequirementType und
CapabilityType für das TOSCA-Definitions-Dokument generiert werden. Außerdem können
die entsprechenden Elemente ArtifactType und ArtifactTemplate für die Interface-Operationen
für den Lebenszyklus eines Cloud-Service erzeugt werden, wenn in dem Verzeichnis "hooks"
die Dateien wie z.B. "install", "start" und "stop" vorhanden sind. Hier wird ein Standard-
Artifact-Type "Script-Artifact" definiert. Die Artefakte des Typs “Script-Artifact” können von
einer beliebigen TOSCA-Laufzeitumgebung verarbeitet werden. Um die tatsächlichen Hooks
aufzurufen, werden die zusätzlichen Wrapper-Skripte als die tatsächlichen Artifact-Templates
vom Typ "Script-Artifact" erstellt. Der Grund dafür ist, dass nicht bekannt ist, in welcher
Skriptsprache diese Hook-Dateien implementiert wurden. Bei TOSCA muss man definieren,
um welche Art von Skript (z.B. Shell oder Python) es sich handelt. Deswegen braucht man
die zusätzliche Datei "install.sh" als ein Wrapper-Skript, um die Hook-Datei "install"
aufzurufen. Dasselbe gilt auch für "start" und "stop" [20]. Schließlich werden durch die
vorher erzeugten Elemente die entsprechenden Elemente NodeType und
NodeTypeImplementation generiert. Das Element NodeType bezüglich Juju besteht aus den
folgenden Elementen: PropertiesDefinition, RequirementDefinition, CapabilityDefinition und
Interfaces. Durch das Element PropertiesDefinition kann ein XML-Element angegeben
werden, welches die Struktur der Node-Type-Properties definiert. Die Elemente
RequirementDefinition und CapabilityDefinition können durch die entsprechenden Elemente
RequirementType und CapabilityType generiert werden. Es gibt bei Juju die Lebenszyklus-

4 Konzepte für ein automatisches Verfahren

51

Operationen wie z.B. "install", "start" und "stop". Um das Deployment eines aus Juju
generierten CSAR zu ermöglichen, muss jede Lebenszyklus-Operation im Element Interface
im Node-Type definiert werden. Solche Operationen werden verwendet, um in der TOSCA-
Umgebung den Lebenszyklus eines Service oder einer Anwendung zu verwalten. Eine Node-
Type-Implementation implementiert einen entsprechenden Node-Type. Das Element
NodeTypeImplementation kann durch das Element ImplementationArtifact die Verweise auf
die konkreten Artifact-Templates für die Lebenszyklus-Operationen im Node-Type definieren.
Außerdem kann das Element RequiredContainerFeatures den Hinweis für den TOSCA-
Container spezifizieren, dass die Hooks aus Juju als die konkreten Artifact-Templates nur
unter Ubuntu-Linux ausgeführt werden können.

Ergänzung zum zweiten Schritt: Möglicherweise könnte es den Abschnitt "peers" in der Datei
"metadata.yaml" gegeben. Dieser Abschnitt definiert in Juju eine Art Relation "Peer-Relation".
Da die Peer-Relationen zwischen den Service-Einheiten innerhalb eines Service automatisch
hergestellt werden, kann für die Peer-Relation ein Peers-Interface im entsprechenden Node-
Type generiert werden. Das heißt, dass aus dem Abschnitt "peers" ein Interface namens
"peers" generiert werden kann. Das Interface "peers" wird wie das Lebenszyklus-Interface als
ein Element im Element NodeType definiert. Die Elemente, auf die sich das Inferface "peers"
bezieht, sind die Elemente ArtifactType, ArtifactTemplate, Interface (im Element NodeType)
und ImplementationArtifact (im Element NodeTypeImplementation). Das Konzept für die
Generierung vom Peers-Interface ist genauso wie das Konzept für die Generierung vom
Lebenszyklus-Interface, das oben besprochen wurde.

Als letzter Schritt muss eine entsprechende CSAR-Datei generiert werden. Diese Datei enthält
die vorher generierten Node-Type-Properties-Dokument und TOSCA-Definitions-Dokument
für den Node-Type sowie die TOSCA-Metadatei "TOSCA.meta". Außerdem muss sie alle
originale Dateien (alle Hooks und die anderen Dateien) in der Charm-Datei enthalten. Diese
Dateien werden noch als die entsprechenden Artefakte verwendet, um in der TOSCA-
Umgebung den Lebenszyklus eines Service oder einer Anwendung zu verwalten. Wo sich
diese Dateien in der CSAR-Datei befinden sollen, kann der Ersteller der CSAR-Datei selbst
entscheiden. In unserem Fall werden sie alle in dem Verzeichnis "Files" gespeichert.

4.3 Erzeugung von TOSCA Relationship-Types aus bestehenden Juju-
Artefakten

Dieses Unterkapitel beschäftigt sich mit dem Konzept für die Generierung von TOSCA
Relationship-Types aus Juju-Artefakten. Aus dem Grundlagenkapitel wissen wir, dass es in
Juju zwei Arten von Beziehungen gibt: Peer-Relation und Require/Provide-Relation. Da sich
die Peer-Relation nur auf ein einzelnes Charm bezieht, kann für die Peer-Relation ein
Interface namens "peers" im entsprechenden TOSCA Node-Type generiert werden. Das
konkrete Konzept dafür wurde in Unterkapitel 4.2 besprochen. Im Folgenden wird
beschrieben, wie ein TOSCA Relationship-Type aus der Beziehung zwischen zwei Juju-
Charms generiert wird. Diese Beziehung wird in Juju implizit definiert und als
"Require/Provide-Relation" bezeichnet. Das heißt, wie die Abbildung der Elemente in zwei
Juju-Charms mit einer bestimmten Beziehung zu den Elementen in einem TOSCA-
Definitions-Dokument für einen Relationship-Type realisiert wird. Die Idee ist, die
äquivalenten Elemente zwischen ihnen zu finden. Zuerst wird ein entsprechendes TOSCA-

4 Konzepte für ein automatisches Verfahren

52

Definitions-Dokument für einen Relationship-Type generiert. Zu diesem Dokument gehören
die Definitionen der Elemente ArtifactType, ArtifactTemplate, RelationshipType und
RelationshipTypeImplementation. Dann wird die entsprechende CSAR-Datei erzeugt, die alle
notwendigen Dokumente und Artefakte enthält.

4.3.1 Erzeugung von Artifact-Types und Artifact-Templates
Artifact-Types sind wiederverwendbare Entitäten und definieren Typen von Artifact-
Templates. Im Fall von Juju wird hier das Artifact-Template als Implementation-Artifact für
die Interface-Operationen des Relationship-Type referenziert. Die tatsächlichen Artefakte, auf
die das Artifact-Template verweist, sind die sogenannten Relation-Hooks. Die in Hooks
definierten Skripte verwenden eine Reihe von Befehlen und Umgebungsvariablen, die nur auf
der von Juju verwalteten virtuellen Maschine verfügbar sind. Diese Einschränkung kann
durch das Erzeugen von Wrapper-Skripten ausgeglichen werden. Diese Wrapper-Skripte
bereiten die Ausführungsumgebung vor und rufen dann die tatsächlichen Skripte in Juju-
Charms auf. Folglich muss die TOSCA-Laufzeitumgebung die Implementation-Artifacts der
spezifischen Artifact-Types wie die Juju-Artefakte nicht verstehen. Das heißt, dass die
Laufzeit-Implementierung von TOSCA nichts über Juju wissen muss: z.B. in welcher
Skriptsprache diese Hook-Dateien implementiert wurden. Dieser Ansatz wird als transparente
Integration bezeichnet und in Unterkapitel 4.1.4.2 ausführlich erläutert.

Zuerst wird ein Standard-Artifact-Type "Script Artifact" definiert. Die Artefakte des Typs
"Script Artifact" können von einer beliebigen TOSCA-Laufzeitumgebung verarbeitet werden.
Dann werden die zusätzlichen Wrapper-Skripte erstellt, um die tatsächlichen Relation-Hooks
aufzurufen. Ein Beispiel ist, dass sich die Anwendung "WordPress" mit dem Datenbankserver
"MySQL" verbindet. Aus dem Abschnitt "requires" in der Datei "metadata.yaml" im Charm
"WordPress" erfährt man, dass die Anwendung "WordPress" eine Verbindung mit dem
Datenbankserver "MySQL" benötigt. Der Beziehungsname ist "db" und der Interface-Name
ist "mysql". Der Beziehungsname wird verwendet, um die entsprechenden Hooks zu finden:
"db-relation-changed", "db-relation-departed" und "db-relation-broken". Ebenso erfährt man
aus dem Abschnitt "provides" in der Datei "metadata.yaml" im Charm "MySQL", dass dieses
Charm eine Verbindung mit dem Datenbankserver "MySQL" zur Verfügung stellt. Der
Beziehungsname ist "db" und der Interface-Name ist "mysql". Der Beziehungsname wird
verwendet, um die entsprechenden Hooks zu finden: "db-relation-joined" und "db-relation-
broken". Der Interface "mysql" bezeugt, dass eine Beziehung zwischen des Charm
"WordPress" und des Charm "MySQL" entstehen kann. Wenn "WordPress" mit "MySQL"
verbunden ist, werden die Hooks "db-relation-changed", "db-relation-departed" und "db-
relation-broken" auf der WordPress-Seite aufgerufen. Entsprechende Hooks "db-relation-
joined" und "db-relation-broken" werden auf der MySQL-Seite aufgerufen. Als Ergebnis wird
für jedes Relation-Hook eine entsprechende Wrapper-Datei erstellt. Diese Wrapper-Dateien
können unter Verwendung der Implementation-Artifacts des Typs "Script Artifact" in das
TOSCA Topologie-Modell eingebettet werden.

Der XML-Ausschnitt 4.5 zeigt ein Beispiel für ein Artifact-Template des Typs "Script
Artifact" bezüglich eines Wrappers, der das tatsächliche Relation-Hook "db-relation-joined"
im Charm "MySQL" aufruft.

4 Konzepte für ein automatisches Verfahren

53

01 <ArtifactTemplate id="cc449a07-8218-4b37-9e01-3e833d5bd09b"
02 xmlns:artifacts="http://docs.oasis-open.org/
03 tosca/ns/2011/12/Artifacts"
02 type="artifacts:ScriptArtifact">
03 <Properties>
04 <artifacts:ScriptArtifactProperties
05 xmlns:artifacts="http://docs.oasis-open.org/
06 tosca/ns/2011/12/Artifacts>
07 <ScriptLanguage>sh</ScriptLanguage>
08 <PrimaryScript>
09 Files/charm_mysql/tosca_scripts/db-relation-joined.sh
10 </PrimaryScript>
11 </artifacts:ScriptArtifactProperties>
12 </Properties>
13 <ArtifactReferences>
14 <ArtifactReference reference="Files/charm_mysql/tosca_scripts/">
15 <Include pattern="db-relation-joined.sh"/>
16 </ArtifactReference>
17 </ArtifactReferences>
18 </ArtifactTemplate>

Ausschnitt 4.5: XML-Syntax für das Artifact-Template vom Standard-Artifact-Type

Der Inhalt des Elements ScriptArtifactProperties beschränkt sich auf einige generische
Metadaten in Bezug auf das entsprechende Skript. Das Element ScriptArtifactProperties wird
in der XML-Schema-Definition [64] (in der Datei "ScriptArtifact.xsd") für den Standard-
Artifact-Type definiert und verwendet, um die Struktur der Eigenschaften des Standard-
Artifact-Type zu definieren. Die Datei "ScriptArtifact.xsd" wird im Anhang 3 präsentiert. Alle
Juju-bezogenen Informationen werden im Wrapper-Skript "db-relation-joined.sh" versteckt.
Folglich sind die Juju-Spezifika des Artifact-Template vollständig transparent für die
TOSCA-Laufzeitumgebung. Das heißt, dass die Laufzeit-Implementierung nichts über Juju
wissen muss.

4.3.2 Erzeugung von Relationship-Type und Relationship-Type-Implementation
Ein Relationship-Type ist eine wiederverwendbare Entität, die den Typ eines Relationship-
Template oder von mehreren Relationship-Templates definiert. Das Element
RelationshipType bezüglich zwei Juju-Charms besteht aus den folgenden Elementen:
SourceInterfaces, TargetInterfaces, ValidSource und ValidTarget. Die Operationen, die auf
(einer Instanz von) einem Relationship-Template durchgeführt werden können, werden durch
die Interfaces des Relationship-Type definiert. Es gibt zwei Arten Interfaces für den
Relationship-Type: Source-Interfaces und Target-Interfaces. Das Element SourceInterfaces
enthält die Definitionen der Interfaces. Diese Interfaces können auf der Quelle einer
Beziehung durchgeführt werden. Ebenso werden die Interfaces, die im Element
TargetInterfaces definiert werden, auf dem Ziel der Beziehung durchgeführt werden. Die
Definitionen dieser Interfaces werden in Form von verschachtelten Elementen Interface
angegeben. Der Inhalt des Elements Interface ist ähnlich wie der Inhalt des Elements

4 Konzepte für ein automatisches Verfahren

54

Interface im Node-Type (Unterkapitel 4.1.4). Das Element ValidSource spezifiziert den Typ
des Objektes, das als Quelle für Beziehungen zulässig ist. Ebenso spezifiziert das Element
ValidTarget den Typ des Objektes, das als Ziel für Beziehungen zulässig ist. Der Typ der
Quelle und der Typ des Zieles müssen miteinander übereinstimmen. Das heißt, dass der Typ
des Zieles ein Node-Type sein muss, wenn der Typ der Quelle ein Node-Type ist.
Anderenfalls muss der Typ des Zieles ein Capability-Type sein, wenn der Typ der Quelle ein
Requirement-Type ist. Außerdem muss dieser Capability-Type mit dem Capability-Type, der
im Attribut requiredCapabilityType des entsprechenden Elements RequirementType
spezifiziert wird, übereinstimmen.

Der XML-Ausschnitt 4.6 zeigt ein Beispiel für den Relationship-Type "ConnectsTo"
bezüglich zwei Services "WordPress " und "MySQL" und entspricht dem Beispiel, das im
letzten Unterkapitel dargestellt wurde.

01 <RelationshipType name="ConnectsTo"
02 targetNamespace="http://jujucharms.com/charms/relations">
03 <SourceInterfaces>
04 <Interface name="http://jujucharms.com/charms/wordpress">
05 <Operation name="db-relation-changed"/>
06 <Operation name="db-relation-departed"/>
07 <Operation name="db-relation-broken"/>
08 </Interface>
09 </SourceInterfaces>
10 <TargetInterfaces>
11 <Interface name="http://jujucharms.com/charms/mysql">
12 <Operation name="db-relation-joined"/>
13 <Operation name="db-relation-broken"/>
14 </Interface>
15 </TargetInterfaces>
16 <ValidSource xmlns:charm="http://jujucharms.com/charms"
17 typeRef="charm:wordpress"/>
18 <ValidTarget xmlns:charm="http://jujucharms.com/charms"
19 typeRef="charm:mysql"/>
20 </RelationshipType>

Ausschnitt 4.6: XML-Syntax für den Relationship-Type

Der Relationship-Type definiert den Typ der Beziehung "ConnectsTo". Das Element
ValidSource spezifiziert durch das Attribut typeRef, dass der Typ der Quelle dieser Beziehung
der Node-Type "WordPress" ist. Ebenso spezifiziert das Element ValidTarget, dass der Typ
des Zieles dieser Beziehung der Node-Type "MySQL" ist. Das Element Interface im Element
SourceInterfaces definiert die Operationen "db-relation-changed", "db-relation-departed" und
"db-relation-broken", die auf der Quelle "WordPress" dieser Beziehung aufgerufen werden,
um diese Beziehung zu verwalten und zu beenden. Ebenso definiert das Element Interface im
Element TargetInterfaces die Operationen "db-relation-joined" und "db-relation-broken", die
auf dem Ziel "MySQL" dieser Beziehung aufgerufen werden, um diese Beziehung
herzustellen und zu beenden.

4 Konzepte für ein automatisches Verfahren

55

Eine Relationship-Type-Implementation beschreibt den ausführbaren Code, der einen
spezifischen Relationship-Type implementiert. Die Relationship-Type-Implementation stellt
auch eine Sammlung von ausführbaren Dateien oder Programmen zur Verfügung, welche die
Interface-Operationen eines Relationship-Type implementieren. Diese ausführbaren Dateien
oder Programme werden als separate Artifact-Templates definiert und von den
Implementation-Artifacts einer Relationship-Type-Implementation referenziert. Im Fall von
aus Juju-Charms generierten Relationship-Types wird ein entsprechendes Implementation-
Artifact für jede Interface-Operation durch das Element ImplementationArtifact definiert.
Beispielsweise werden im Relationship-Type "MySQL" die Operation "db-relation-joined"
(an einer Verbindung mit dem Datenbankserver teilzunehmen) und die Operation "db-
relation-broken" (eine Verbindung mit dem Datenbankserver zu verlassen) definiert.

Der XML-Ausschnitt 4.7 zeigt ein Beispiel für eine Relationship-Type-Implementation, die
das Artifact-Template (dargestellt in Ausschnitt 4.5) vom Typ "Script Artifact" mit der
Operation "db-relation-joined" vom Target-Interface im aus den Juju-Charms "WordPress"
und "MySQL" generierten Relationship-Type verknüpfen kann.

01 <RelationshipTypeImplementation
02 xmlns:relation="http://jujucharms.com/charms/relations"
03 name="ConnectsTo_relationshiptypeimplementation"
04 targetNamespace="http://jujucharms.com/charms/relations"
05 relationshipType="relation:ConnectsTo_relationshiptype">
06 <RequiredContainerFeatures>
07 <RequiredContainerFeature
08 feature="http://jujucharms.com/platform/ubuntu"/>
09 </RequiredContainerFeatures>
10 <ImplementationArtifacts>
11 ...
12 <ImplementationArtifact name="mysql-db-relation-joined"
13 xmlns:artifacts="http://docs.oasis-open.org/
14 tosca/ns/2011/12/Artifacts"
15 xmlns:ConnectsTo="http://jujucharms.com/charms/
16 precise/ConnectsTo/relationshiptype"
17 interfaceName="http://jujucharms.com/charms/mysql"
18 operationName="db-relation-joined"
19 artifactType="artifacts:ScriptArtifact"
20 artifactRef="ConnectsTo:cc449a07-...-9e01-3e833d5bd09b"/>
21 ...
22 </RelationshipTypeImplementation>

Ausschnitt 4.7: XML-Syntax für die Relationship-Type-Implementation

Das Element ImplementationArtifact hat die folgenden Attribute: name, artifactType,
artifactRef, interfaceName und operationName. Das Attribut name spezifiziert den Namen
des Artefakts. Das Attribut artifactType spezifiziert den Typ des Artefakts. Das optionale
Attribut artifactRef enthält einen Namen, der ein Artifact-Template als ein Implementation-
Artifact identifiziert. Der Wert des Attributs artifactRef entspricht dem Wert des Attributs id
im Artifact-Template (dargestellt in Ausschnitt 4.5). Das optionale Attribut interfaceName

4 Konzepte für ein automatisches Verfahren

56

spezifiziert den Namen des Interface und entspricht dem Interface-Namen im entsprechenden
Relationship-Type. Das optionale Attribut operationName spezifiziert den Namen der
Operation und referenziert die Operation "db-relation-joined" für das Target-Interface im
entsprechenden Relationship-Type. Außerdem kann das Element RequiredContainerFeatures
den Hinweis für einen TOSCA-Container spezifizieren, dass die Hooks aus Juju als die
konkreten Artefakte nur unter Ubuntu-Linux ausgeführt werden können.

4.3.3 Erzeugung der entsprechenden CSAR-Datei
Schließlich muss eine TOSCA CSAR-Datei generiert werden. In unserem Fall enthält diese
CSAR-Datei alle erforderlichen Elemente für die Beziehung zwischen zwei Services oder
Anwendungen. Zu solchen Elementen gehören das TOSCA-Definitions-Dokument für den
Relationship-Type, die TOSCA-Metadatei "TOSCA.meta" sowie alle erforderlichen Artefakte.
Diese Artefakte sind die originalen Dateien (alle Hooks und die anderen Dateien) in den
Charm-Dateien. Sie werden noch als die entsprechenden Artefakte aufgerufen werden, um in
der TOSCA-Umgebung den Lebenszyklus einer Beziehung zwischen zwei Services oder
Anwendungen zu verwalten. Wo sich diese Dateien in der CSAR-Datei befinden sollen, kann
der Ersteller der CSAR-Datei selbst entscheiden. In unserem Fall werden sie alle in dem
Verzeichnis "Files" gespeichert.

4.4 Erzeugung von TOSCA Service-Templates

Dieses Unterkapitel beschäftigt sich mit dem Konzept für die Generierung von TOSCA
Service-Templates durch Orchestrierung der Node-Types und Relationship-Types, die auf
bestehenden Chef- oder Juju-Artefakten basieren. Um genauer auszudrücken, werden diese
Node-Types und Relationship-Types aus Chef-Cookbooks und Juju-Charms mittels der in
Unterkapitel 4.1, 4.2 und 4.3 dargestellten Konzepte generiert. Zuerst wird ein entsprechendes
TOSCA-Definitions-Dokument für ein Service-Template generiert. Ein Service-Template
besteht in der Regel aus zwei wichtigen Teilen: Topology-Template und Pläne. Da sich diese
Arbeit nicht auf die Pläne konzentriert, wird nur das Konzept für die Erzeugung des Element
TopologyTemplate besprochen. Dieses Dokument enthält eine Reihe von Definitionen für die
Elemente Import und die Definition des Elements TopologyTemplate. Das Element
TopologyTemplate besteht aus einer Reihe der Elemente NodeTemplate und
RelationshipTemplate. Schließlich wird die entsprechende CSAR-Datei für das Service-
Template erzeugt, die alle notwendigen Dokumente und Artefakte enthält.

4.4.1 Erzeugung der Elemente Import
Durch das Element Import können die externen Dokumente für die TOSCA-Definitionen, die
XML-Schema-Definitionen oder die WSDL-Definitionen ins Service-Template importiert
werden. Da die bestehenden Node-Types und Relationship-Types verwendet werden, um das
entsprechende Service-Template zu erzeugen, werden die TOSCA-Definitions-Dokumente
für die entsprechenden Node-Types und Relationship-Types importiert. Durch jeden
importierten Node-Type kann ein entsprechendes Node-Template im Service-Template
generiert werden. Dasselbe gilt auch für die Generierung von Relationship-Templates.

Im Folgenden wird beschrieben, wie ein TOSCA Topology-Template generiert wird. Das
Element TopologyTemplate spezifiziert die gesamte Struktur der Cloud-Anwendung, die
durch das Service-Template definiert wird. Es werden die Komponenten, aus denen diese
Cloud-Anwendung besteht, und die Beziehungen zwischen diesen Komponenten definiert.

4 Konzepte für ein automatisches Verfahren

57

Die Komponenten eines Service werden als Node-Templates bezeichnet und die Beziehungen
zwischen diesen Komponenten werden als Relationship-Templates bezeichnet. Als Nächstes
wird ausführlich beschrieben, wie die Node-Templates und die Relationship-Templates
erzeugt werden.

4.4.2 Erzeugung von Node-Templates
Ein entsprechendes Node-Template wird durch einen importierten Node-Type generiert. Das
Element NodeTemplate spezifiziert eine bestimmte Komponente, die als ein Bestandteil in der
Cloud-Anwendung verwendet wird. Sein Attribut type verweist auf den Node-Type, der den
Typ des Node-Template spezifiziert. Das Element NodeTemplate besteht aus den folgenden
Elementen: Properties, Requirements und Capabilities.

Der XML-Ausschnitt 4.8 zeigt ein Beispiel für ein Node-Template vom Node-Type
"WordPress", der aus dem Charm "WordPress" generiert wurde.

01 <NodeTemplate name="wordpress nodeTemplate"
02 id="wordpress_nodeTemplate"
03 xmlns:nodeType="http://jujucharms.com/charms"
04 type="nodeType:wordpress_nodetype">
05 <Properties>
06 <wordpress-properties>
07 <tuning>single</tuning>
08 <debug>no</debug>
09 <engine>nginx</engine>
10 </wordpress-properties>
11 </Properties>
12 <Requirements>
13 <Requirement name="db" id="wordpress_db"
14 xmlns:requirementType="http://jujucharms.com/interfaces"
15 type="requirementType:mysql"/>
16 <Requirement name="nfs" id="wordpress_nfs"
17 xmlns:requirementType="http://jujucharms.com/interfaces"
18 type="requirementType:mount"/>
19 <Requirement name="cache" id="wordpress_cache"
20 xmlns:requirementType="http://jujucharms.com/interfaces"
21 type="requirementType:memcache"/>
22 </Requirements>
23 <Capabilities>
24 <Capability name="website" id="wordpress_website"
25 xmlns:capabilityType="http://jujucharms.com/interfaces"
26 type="capabilityType:http"/>
27 </Capabilities>
28 </NodeTemplate>

Ausschnitt 4.8: XML-Syntax für das Node-Template

Das Element Properties spezifiziert die Ausgangswerte ("Initial Values") für die
Eigenschaften des Node-Type (die Node-Type-Properties). Die Ausgangswerte werden durch

4 Konzepte für ein automatisches Verfahren

58

ein Instanz-Dokument des XML-Schemas der entsprechenden Node-Type-Properties
spezifiziert. Nicht allen Eigenschaften des Node-Type können die Ausgangswerte zugewiesen
werden. Das heißt, dass einige Elemente oder Attribute in der Instanz, die das Element
Properties zur Verfügung stellt, möglicherweise verloren gehen. Sobald das definierte Node-
Template instanziiert wurde, muss sich die XML-Darstellung der Eigenschaften des Node-
Type durch die assoziierte XML-Schema-Definition validieren lassen. Bei der Generierung
von Node-Types aus Chef- oder Juju-Artefakten wird auch das entsprechende Node-Type-
Properties-Dokument erzeugt. Dieses Dokument ist eine XML-Datei mit der Dateiendung
".xsd" und speichert die XML-Schema-Definition. Dieses XML-Schema definiert die Struktur
von XML-Dokumenten (XML-Instanzen) und ermöglicht eine Validierung. Im Beispiel wird
die XML-Instanz (das Element wordpress-properties) als Inhalt des Elements Properties
verwendet. Diese XML-Instanz wurde durch das Node-Type-Properties-Dokument erzeugt,
das durch die Datei "config.yaml" im Charm "WordPress" generiert wurde.

Das Element Requirements enthält eine Liste der Anforderungen für das Node-Template.
Diese Liste entspricht der Liste der Anforderungsdefinitionen des Node-Type, der im Attribut
type des Node-Template spezifiziert wird. Das heißt, dass eine Anforderung für das Node-
Template durch eine entsprechende Anforderungsdefinition des Node-Type erzeugt werden
kann. Jede Anforderung wird in einem separaten verschachtelten Element Requirement
spezifiziert.

Das Element Capabilities enthält eine Liste der Fähigkeiten für das Node-Template. Diese
Liste entspricht der Liste der Fähigkeitsdefinitionen des Node-Type, der im Attribut type des
Node-Template spezifiziert wird. Das heißt, dass eine Fähigkeit für das Node-Template durch
eine entsprechende Fähigkeitsdefinition des Node-Type erzeugt werden kann. Jede Fähigkeit
wird in einem separaten verschachtelten Element Capability spezifiziert.

4.4.3 Erzeugung von Relationship-Templates
Ein entsprechendes Relationship-Template wird durch einen importierten Relationship-Type
generiert. Das Element RelationshipTemplate spezifiziert eine bestimmte Beziehung zwischen
den Komponenten der Cloud-Anwendung. Sein Attribut type verweist auf den Relationship-
Type, der den Typ des Relationship-Template definiert. Das Element RelationshipTemplate
besteht aus den folgenden Elementen: SourceElement und TargetElement.

Der XML-Ausschnitt 4.9 zeigt ein Beispiel für ein Relationship-Template vom Relationship-
Type "ConnectsTo", der aus zwei Charms "WordPress" und "MySQL" generiert wurde.

01 <RelationshipTemplate name="ConnectsTo relationshipTemplate"
02 id="ConnectsTo_relationshipTemplate"
03 xmlns:relationshipType="http://jujucharms.com/charms/relations"
04 type="relationshipType:ConnectsTo_relationshiptype">
05 <SourceElement ref="wordpress_nodeTemplate"/>
06 <TargetElement ref="mysql_nodeTemplate"/>
07 </RelationshipTemplate>

Ausschnitt 4.9: XML-Syntax für das Relationship-Template

4 Konzepte für ein automatisches Verfahren

59

Das Element SourceElement spezifiziert die Quelle der Beziehung, die durch das aktuelle
Relationship-Template dargestellt wird. Ebenso spezifiziert das Element TargetElement das
Ziel dieser Beziehung. Im Fall, dass ein Node-Type als gültige Quelle im Relationship-Type
definiert wird, muss ein Node-Template des entsprechenden Node-Type im Element
SourceElement referenziert werden. Dasselbe gilt auch für das Element TargetElement. Im
Beispiel referenziert das Element SourceElement das Node-Template "WordPress", während
das Element TargetElement das Node-Template "MySQL" referenziert.

4.4.4 Erzeugung der entsprechenden CSAR-Datei
Als letzter Schritt wird eine TOSCA CSAR-Datei für das Service-Template generiert. Diese
CSAR-Datei enthält nicht nur das generierte TOSCA-Definitions-Dokument für das Service-
Template sondern auch alle importierten TOSCA-Definitions-Dokumente für Node-Types
und Relationship-Types sowie die Node-Type-Properties-Dokumente für die entsprechenden
Node-Types. Außerdem beinhaltet sie die TOSCA-Metadatei "TOSCA.meta" und alle
erforderlichen Artefakte wie z.B. Chef-Cookboks, Juju-Charms und andere Ressourcen. Diese
Dateien werden in unserem Fall in dem Verzeichnis "Files" gespeichert und als tatsächliche
Artefakte verwendet, um die entsprechenden Services oder Anwendungen und die
Beziehungen zwischen ihnen zu verwalten.

4 Konzepte für ein automatisches Verfahren

60

5 Entwurf und Implementierung

61

5 Entwurf und Implementierung

In Kapitel 4 wurden die Konzepte für das automatische Verfahren zur Erzeugung von TOSCA
Service-Templates aus den Chef- und Juju-Artefakten dargestellt. Um diese Konzepte zu
evaluieren, wird ein Prototyp entwickelt, mit dem sich alle öffentlich zugänglichen Chef- und
Juju-Artefakte in CSARs verwenden lassen können. In diesem Kapitel werden zuerst die
Analyse und der Entwurf des Prototyps besprochen. Darauf folgt die Beschreibung der
Implementierung des Prototyps.

5.1 Anforderungsanalyse

Vor dem Entwurf des Prototyps müssen die Anforderungen an den Prototyp analysiert werden.
In diesem Unterkapitel wird zunächst auf die funktionalen Anforderungen an den Prototyp
eingegangen. Darauf folgt eine Beschreibung der nicht-funktionalen Anforderungen.
Schließlich werden zusätzliche Funktionalitäten des Prototyps dargestellt.

5.1.1 Funktionale Anforderungen
Die funktionalen Anforderungen an den Prototyp werden in diesem Unterkapitel erläutert.
Der Prototyp soll folgende Anforderungen erfüllen:

Eine TOSCA CSAR-Datei für den Node-Type soll durch eine URL als Eingabe des Prototyps
erzeugt werden. Die URL lokalisiert eine Ressource wie z. B. ein Chef-oder ein Juju-Artefakt.
Neben dem TOSCA-Definitions-Dokument für den Node-Type und dem entsprechenden
Node-Type-Properties-Dokument soll diese generierte CSAR-Datei noch alle entsprechenden
Chef- oder Juju-Artefakte enthalten. Diese Arbeit konzentriert sich nur auf die Erzeugung von
TOSCA Node-Types aus Chef-Artefakten. Die Erzeugung von TOSCA Node-Types aus Juju-
Artefakten wurde in der Studienarbeit "Vorlagen für das Deployment von Services und
Applikationen in der Cloud" [33] dargestellt.

Eine TOSCA CSAR-Datei für den Relationship-Type soll durch zwei URLs als Eingabe des
Prototyps erzeugt werden. Jede URL lokalisiert in diesem Fall ein Juju-Artefakt. Außerdem
muss garantiert werden, dass eine implizite Beziehung zwischen diesen zwei Juju-Artefakten
bestehen soll. Neben dem TOSCA-Definitions-Dokument für den Relationship-Type soll
diese CSAR-Datei noch alle entsprechenden Juju-Artefakte enthalten.

Eine TOSCA CSAR-Datei für das Service-Template soll durch eine Reihe von Node-Types
und Relationship-Types als Eingabe des Prototyps erzeugt werden. Diese Node-Types und
Relationship-Types sollen durch den entwickelten Prototyp aus bestehenden Chef- oder Juju-
Artefakten erzeugt werden. Neben den TOSCA-Definitions-Dokumenten für die Node-Types,
die Relationship-Types und das Service-Template sowie den Node-Type-Properties-
Dokumenten soll diese CSAR-Datei noch alle entsprechenden Chef- oder Juju-Artefakte
enthalten.

5.1.2 Nicht-funktionale Anforderungen
Neben den funktionalen Aspekten sollen die folgenden nicht-funktionalen Anforderungen
erfüllt werden. Der Prototyp soll in Java implementiert werden und sich als JAR-Datei
verpacken lassen, sodass er als Library einfach in anderen Java-Projekten verwendet werden

5 Entwurf und Implementierung

62

kann. Die Komponenten des Prototyps sollen lose gekoppelt werden, um die Erweiterung des
Prototyps und den Austausch der verschiedenen Teile für neue Implementierungen zu
erleichtern.

5.1.3 Zusätzliche Funktionalitäten des Prototyps
Der Prototyp soll außerdem zusätzliche Funktionen erfüllen: Beispielsweise kann ein
entsprechendes Artefakt durch eine URL zu einem Repository heruntergeladen werden, das
ein Chef- oder Juju-Artefakt enthält. Außerdem sollen auch die Operationen zu einem Ordner
zur Verfügung gestellt werden. Dazu gehören das Suchen einer Datei in einem Ordner durch
einen gegebenen Namen, das Auflisten der Inhalte in einem Ordner, das Kopieren der Inhalte
von einem Ordner zu einem anderen und das Packen eines Ordners zu einer Zipdatei.

5.2 Entwurf des Prototyps

Dieses Unterkapitel geht auf den Entwurf des Prototyps ein. Es wird zunächst die allgemeine
Architektur des Prototyps dargestellt. Diese Architektur zeigt wichtige Komponenten, aus
denen der Prototyp besteht. Darauf folgt die interne Struktur jeder Komponente. Diese interne
Struktur zeigt die notwendigen Teilkomponenten innerhalb jeder Komponente. Schließlich
wird beschrieben, in welcher Reihenfolge die Teilkomponenten innerhalb jeder Komponente
ausgeführt werden.

5.2.1 Architektur des Prototyps
Dieses Unterkapitel beschreibt die funktionale Architektur des Prototyps. Der zu
entwickelnde Prototyp besteht aus drei wichtigen Komponenten. Die Funktion, die von jeder
Komponente implementiert wird, entspricht jeder der funktionalen Anforderungen
(Unterkapitel 5.1.1). Eine grobe Übersicht über die Komponenten des Prototyps wird in
Abbildung 5.1 gezeigt. Dies sind die Komponenten "Node-Type-Generator", "Relationship-
Type-Generator" und "Service-Template-Generator". Diese drei Komponenten arbeiten
unabhängig voneinander und realisieren jeweils eigene Funktionen.

Abbildung 5.1: Eine grobe Übersicht über die Komponenten des Prototyps

Die Aufgabe des "Node-Type-Generator" ist aus einem Chef- oder Juju-Artefakt eine TOSCA
CSAR-Datei für den Node-Type zu erzeugen. Zu den Aufgaben dieser Komponente gehören
(1) das Herunterladen eines Chef- oder Juju-Artefakts durch eine entsprechende URL, (2) die

5 Entwurf und Implementierung

63

Erzeugung des Node-Type-Properties-Dokuments, (3) die Erzeugung des TOSCA-
Definitions-Dokuments für den Node-Type und (4) das Packen aller notwendigen Dokumente
und Ressourcen (z.B. Cookbooks und Recipes von Chef sowie Charms und Hooks von Juju)
zu der generierten CSAR-Datei. Die Eingabe dieser Komponente ist eine URL, die sich mit
einem Repository (z.B. GIT [19] und Bazaar [47]) verbindet, das ein Chef-Cookbook oder
Juju-Charm enthält. Die Ausgabe dieser Komponente ist eine TOSCA CSAR-Datei für den
entsprechenden Node-Type.

Die Aufgabe des "Relationship-Type-Generator" ist aus zwei Juju-Artefakten mit einer
impliziten Beziehung eine TOSCA CSAR-Datei für den Relationship-Type zu erzeugen. Zu
den Aufgaben dieser Komponente gehören (1) das Herunterladen von Juju-Artefakten durch
zwei entsprechende URLs, (2) die Erzeugung des TOSCA-Definitions-Dokuments für den
Relationship-Type und (3) das Packen aller notwendigen Dokumente und Ressourcen wie z.B.
Charms und Hooks von Juju zu der generierten CSAR-Datei. Die Eingabe dieser Komponente
ist zwei URLs. Jede URL verbindet sich mit einem Repository, das ein Juju-Charm enthält.
Außerdem soll eine Beziehung zwischen diesen zwei Juju-Charms bestehen. Die Ausgabe
dieser Komponente ist eine TOSCA CSAR-Datei für den entsprechenden Relationship-Type.

Die Aufgabe des "Service-Template-Generator" ist aus einer Reihe von TOSCA-Definitions-
Dokumenten für Node-Types und Relationship-Types eine TOSCA CSAR-Datei für das
Service-Template zu erzeugen. Diese TOSCA-Definitions-Dokumente für Node-Types und
Relationship-Types werden von den obengenannten Komponenten generiert und hier als
Eingabe verwendet. Die wichtige Aufgabe dieser Komponente ist die Erzeugung des TOSCA-
Definitions-Dokuments für das Service-Template. Außerdem müssen alle notwendigen
Ressourcen (z.B. Cookbooks und Recipes von Chef sowie Charms und Charms von Juju) und
Dokumente in die generierte CSAR-Datei als Zipdatei gepackt werden. Zu den Dokumenten
gehören die als Eingabe importierten TOSCA-Definitions-Dokumente für Node-Types und
Relationship-Types, das generierte TOSCA-Definitions-Dokument für das Service-Template
sowie die entsprechenden Node-Type-Properties-Dokumente. Die Eingabe dieser
Komponente ist eine Reihe von TOSCA-Definitions-Dokumenten für Node-Types und
Relationship-Types. Die Ausgabe dieser Komponente ist eine TOSCA CSAR-Datei für das
entsprechende Service-Template.

5.2.2 Interne Struktur der Komponenten
In Unterkapitel 5.2.1 wurden die allgemeine Architektur des Prototyps und ihre wichtigen
Komponenten vorgestellt. In diesem Unterkapitel wird die interne Struktur der einzelnen
Komponente beschrieben. Diese Struktur zeigt, welche Teilkomponenten die einzelne
Komponente besitzen muss, um ihre Funktionen erledigen zu können. Die Teilkomponenten
unterscheiden sich in zwei Arten: Kernkomponenten und Hilfskomponenten.

Abbildung 5.2 zeigt eine grobe Übersicht über die interne Struktur jeder Komponente des
Prototyps. Jede Komponente besteht aus zwei Kernkomponenten (Metamodell-Generator und
Metamodell-Converter) und anderen Hilfskomponenten (Downloader, FileUtils, XSD-/XML-
Generator und ZIP-File-Handler).

5 Entwurf und Implementierung

64

Abbildung 5.2: Die interne Struktur jeder Komponente

Die Kernkomponente "Metamodell-Generator" liest das Chef- oder Juju-Artefakt ein,
analysiert es und generiert daraus das entsprechende Metamodell. Unter Metamodell versteht
man im Rahmen dieser Arbeit ein abstraktes Objekt, in dem alle Elemente der Artefakte wie
z.B. Chef-Cookbooks, Juju-Charms und TOSCA-Definitions-Dokumente auf eine abstrakte
Art und Weise gespeichert werden können. Es werden drei Metamodell-Arten definiert:
Cookbook-Metamodell für ein Chef-Cookbook, Charm-Metamodell für ein Juju-Charm und
TOSCA-Metamodell für ein TOSCA-Definitions-Dokument. Das Cookbook-Metamodell
dient zum Speichern von Elementen eines Chef-Cookbook. Dasselbe gilt auch für das Charm-
Metamodell und das TOSCA-Metamodell. Diese Kernkomponente besitzt drei
Funktionseinheiten: Cookbook-Ruby-Reader, Charm-YAML-Reader und TOSCA-XML-
Reader. Der Cookbook-Ruby-Reader bekommt die Metadatei "metadata.rb" im Chef-
Cookbook übergeben und liefert als Ausgabe ein entsprechendes Cookbook-Metamodell. Der
Charm-YAML-Reader liest die Metadatei "metadata.yaml" im Juju-Charm ein und generiert
ein entsprechendes Charm-Metamodell. Der TOSCA-XML-Reader bekommt ein TOSCA-
Definitions-Dokument für den Node-Type oder den Relationship-Type übergeben und liefert
als Ausgabe ein entsprechendes TOSCA-Metamodell.

Die Kernkomponente "Metamodell-Converter" konvertiert ein Metamodell oder mehrere
Metamodelle zu einem anderen Metamodell. Diese Kernkomponente besitzt drei
Funktionseinheiten: Cookbook-Metamodell-Converter, Charm-Metamodell-Converter und
TOSCA-Metamodell-Converter. Der Cookbook-Metamodell-Converter für den Node-Type-
Generator bekommt ein Cookbook-Metamodell übergeben und liefert als Ausgabe ein
entsprechendes TOSCA-Metamodell für einen Node-Type. Der Charm-Metamodell-
Converter für den Node-Type-Generator liest ein Charm-Metamodell ein und generiert ein
entsprechendes TOSCA-Metamodell für einen Node-Type. Im anderen Fall bekommt der
Charm-Metamodell-Converter für den Relationship-Type-Generator zwei Charm-
Metamodelle übergeben und liefert als Ausgabe ein entsprechendes TOSCA-Metamodell für
einen Relationship-Type. Der TOSCA-Metamodell-Converter bekommt eine Reihe von
TOSCA-Metamodellen für Node-Types und Relationship-Types übergeben und liefert als
Ausgabe ein entsprechendes TOSCA-Metamodell für ein Service-Template. Das TOSCA-
Metamodell dient zum Speichern von XML-Elementen eines TOSCA-Definitions-Dokuments.

5 Entwurf und Implementierung

65

Neben diesen Kernkomponenten besitzt jede Komponente noch einige notwendigen
Hilfskomponenten. Beispielsweise kann die Hilfskomponente "Downloader" ein
entsprechendes Artefakt wie z.B. ein Chef-Cookbook oder ein Juju-Charm durch eine
angegebene URL zu einem Repository herunterladen, das dieses Artefakt enthält. Die
Komponente "Service-Template-Generator" enthält jedoch diese Hilfskomponente nicht, weil
sie nicht die Chef- oder Juju-Artefakte sondern die TOSCA-Definitions-Dokumente für
Node-Types und Relationship-Types verarbeitet. Die Funktion der Hilfskomponente "XSD-
/XML-File-Generator" ist eine XSD- oder XML-Datei zu generieren. In unserem Fall kann
der XML-File-Generator durch ein TOSCA-Metamodell ein entsprechendes TOSCA-
Definitions-Dokument erzeugen. Wenn ein TOSCA-Metamodell die Elemente für die Node-
Type-Properties enthält, kann der XSD-File-Generator durch dieses TOSCA-Metamodell ein
entsprechendes XML-Schema-Definitions-Dokument generieren. Außerdem stellt die
Hilfskomponente "FileUtils" die Operationen zu einem Ordner zur Verfügung. Dazu gehören
das Suchen einer Datei in einem Ordner durch einen gegebenen Datei-Namen, das Auflisten
der Inhalte in einem Ordner und das Kopieren der Inhalte von einem Ordner zu einem anderen.
Und die Hilfskomponente "ZIP-File-Handler" kann einen Ordner zu einer Zipdatei packen.

5.2.3 Die Funktionsweise der Komponenten
In diesem Unterkapitel wird die Funktionsweise jeder Komponente des Prototyps beschrieben.
Die Teilkomponenten jeder Komponente werden in sequenzieller Reihenfolge ausgeführt.
Außerdem wird die Ausgabe einer Teilkomponente als Eingabe der nächsten Teilkomponente
verwendet. Zur Übersichtlichkeit werden einige Schritte in den folgenden Abbildungen
weggelassen. Beispielsweise muss eine TOSCA-Metadatei "TOSCA.meta" für jede CSAR-
Datei generiert werden. Darüber hinaus müssen alle entsprechenden Dokumente und
Ressourcen (z.B. Chef-Cookbooks und Juju-Charms) zur CSAR-Datei gezippt werden. In den
folgenden Abbildungen repräsentiert der Kreis die Prozedur, die ausgeführt wird, die
Rechtecke vor und nach dem Kreis die Ein- und Ausgabe.

5.2.3.1 Die Funktionsweise der Komponente "Node-Type-Generator"
In Abbildung 5.3 wird ein vereinfachtes Ablaufdiagramm gezeigt. Das Ablaufdiagramm stellt
die Funktionsweise der Teilkomponenten innerhalb der Komponente "Node-Type-Generator"
für Chef dar. Die Funktionsweise wird in 4 Schritten beschrieben.

Abbildung 5.3: Ablaufdiagramm der Komponente "Node-Type-Generator"

5 Entwurf und Implementierung

66

Schritt 1: Der Downloader lädt ein Chef-Cookbook durch eine angegebene URL herunter. Die
Metadatei "metadata.rb" im heruntergeladenen Chef-Cookbook kann als Eingabe des
Cookbook-Ruby-Readers verwendet werden.

Schritt 2: Der Cookbook-Ruby-Reader liest die Metadatei "metadata.rb" im Chef-Cookbook
ein und generiert ein entsprechendes Cookbook-Metamodell. Das daraus erzeugte Cookbook-
Metamodell wird als Eingabe des Cookbook-Metamodell-Converters verwendet.

Schritt 3: Der Cookbook-Metamodell-Converter bekommt ein Cookbook-Metamodell
übergeben. Das Cookbook-Metamodell wird durch eine Reihe von Transformationsregeln zu
einem entsprechenden TOSCA-Metamodell für den Node-Type konvertiert. Diese
Transformationsregeln sollen dem Konzept zur Erzeugung von Node-Types aus Chef-
Artefakten (Unterkapitel 4.1) entsprechen. Das daraus erzeugte TOSCA-Metamodell wird als
Eingabe des XSD-/XML-File-Generators verwendet.

Schritt 4: Der XML-File-Generator bekommt ein TOSCA-Metamodell für den Node-Type
übergeben und kann dieses TOSCA-Metamodell in ein entsprechendes TOSCA-Definitions-
Dokument schreiben. Wenn die Elemente für Node-Type-Properties im TOSCA-Metamodell
vorhanden sind, wird durch den XSD-File-Generator ein entsprechendes Node-Type-
Properties-Dokument generiert.

5.2.3.2 Die Funktionsweise der Komponente "Relationship-Type-Generator"
In Abbildung 5.4 wird ein vereinfachtes Ablaufdiagramm gezeigt. Das Ablaufdiagramm stellt
die Funktionsweise der Teilkomponenten innerhalb der Komponente "Relationship-Type-
Generator" für Juju dar. Die Funktionsweise wird in 4 Schritten beschrieben.

Abbildung 5.4: Ablaufdiagramm der Komponente "Relationship-Type-Generator"

Schritt 1: Durch den Downloader können zwei Juju-Charms durch zwei angegebene URLs
heruntergeladen werden. Zwischen diesen zwei Juju-Charms soll eine implizite Beziehung
bestehen, aus der ein entsprechender Relationship-Type generiert werden kann. Die
Metadateien "metadata.yaml" in den zwei heruntergeladenen Juju-Charms können als Eingabe
des Charm-YAML-Readers verwendet werden.

5 Entwurf und Implementierung

67

Schritt 2: Der Charm-YAML-Reader kann durch das Lesen von zwei Metadateien
"metadata.yaml" in Juju-Charms zwei entsprechende Charm-Metamodelle generieren. Die
daraus erzeugten Charm-Metamodelle werden als Eingabe des Charm-Metamodell-
Converters verwendet.

Schritt 3: Der Charm-Metamodell-Converter bekommt zwei Charm-Metamodelle als Eingabe.
Diese zwei Charm-Metamodelle werden durch eine Reihe von Transformationsregeln zu
einem entsprechenden TOSCA-Metamodell für den Relationship-Type konvertiert. Diese
Transformationsregeln sollen dem Konzept zur Erzeugung von Relationship-Types aus Juju-
Artefakten (Unterkapitel 4.3) entsprechen. Das daraus erzeugte TOSCA-Metamodell wird als
Eingabe des XML-File-Generators verwendet.

Schritt 4: Der XML-File-Generator bekommt ein TOSCA-Metamodell für den Relationship-
Type übergeben und kann dieses TOSCA-Metamodell in ein entsprechendes TOSCA-
Definitions-Dokument schreiben.

5.2.3.3 Die Funktionsweise der Komponente "Service-Template-Generator"
In Abbildung 5.5 wird ein vereinfachtes Ablaufdiagramm gezeigt. Das Ablaufdiagramm stellt
die Funktionsweise der Teilkomponenten innerhalb der Komponente "Service-Template-
Generator" dar. Die Funktionsweise wird in 3 Schritten beschrieben.

Abbildung 5.5: Ablaufdiagramm der Komponente "Service-Template-Generator"

Schritt 1: Der TOSCA-XML-Reader liest eine Reihe von TOSCA-Definitions-Dokumenten
für Node-Types und Relationship-Types ein und generiert eine Reihe von TOSCA-
Metamodellen für Node-Types und Relationship-Types. Die daraus erzeugten TOSCA-
Metamodelle werden als Eingabe des TOSCA-Metamodell-Converters verwendet.

Schritt 2: Der TOSCA-Metamodell-Converter bekommt eine Reihe von TOSCA-
Metamodellen für Node-Types und Relationship-Types übergeben. Diese TOSCA-
Metamodelle werden durch eine Reihe von Transformationsregeln zu einem entsprechenden
TOSCA-Metamodell für das Service-Template konvertiert. Diese Transformationsregeln
sollen dem Konzept zur Erzeugung von Service-Templates (Unterkapitel 4.4) entsprechen.
Das daraus erzeugte TOSCA-Metamodell wird als Eingabe des XML-File-Generators
verwendet.

Schritt 3: Der XML-File-Generator bekommt ein TOSCA-Metamodell für das Service-
Template übergeben und es kann in ein entsprechendes TOSCA-Definitions-Dokument
geschrieben werden.

5 Entwurf und Implementierung

68

5.3 Implementierung des Prototyps

In den folgenden Abschnitten wird die Implementierung des Prototyps ausführlich
beschrieben. Es werden drei Java-Pakete "org.tosca.csar", "org.tosca.meta" und
"org.tosca.util" entwickelt. In diesen Paketen werden die verschiedenen Schnittstellen und
ihre Implementierungsklassen sowie die Methoden in den Klassen implementiert. Im
Folgenden werden die drei Pakete in Details besprochen. Zur Übersichtlichkeit werden die
Parameter der Methoden weggelassen.

5.3.1 Das Paket "org.tosca.csar"
Im Java-Paket "org.tosca.csar" werden drei Schnittstellen zur Erzeugung von CSAR-Dateien
definiert. Diese Schnittstellen sind "INodeTypeGenerator", "IRelationshipTypeGenerator"
und "IServiceTemplateGenerator". Außerdem werden zur Übersichtlichkeit zwei letzen
Schritte in den folgenden drei Abbildungen weggelassen. Nachdem das entsprechende
TOSCA-Definitions-Dokument generiert wurde, wird die TOSCA-Metadatei "TOSCA.meta"
durch Aufruf der Methode "generate" der Klasse "MetaFileGenerator" generiert. Schließlich
wird die Methode "generate" der Klasse "ZIPFileGenerator" aufgerufen, um alle generierten
Dokumente (z.B. das Node-Type-Properties-Dokument, das TOSCA-Definitions-Dokument
für den Node-Type, den Relationship-Type und das Service-Template sowie die TOSCA-
Metadatei) und alle entsprechenden Artefakte (z.B. Chef-Cookbooks und Juju-Charms) zu
einer CSAR-Datei zu zippen.

5.3.1.1 Die Schnittstelle "INodeTypeGenerator"
In der Schnittstelle "INodeTypeGenerator" wird eine abstrakte Methode "generate" definiert,
um eine CSAR-Datei für den Node-Type zu generieren. Die Implementierungsklassen dieser
Schnittstelle könnten die Klassen "NodeTypeFromCookbook" und "NodeTypeFromCharm"
sein. Die Implementierung der Klasse "NodeTypeFromCharm" wurde in der Studienarbeit
"Vorlagen für das Deployment von Services und Applikationen in der Cloud" [33] dargestellt.
In dieser Arbeit beschäftigen wir uns nur mit der Implementierung der Klasse
"NodeTypeFromCookbook".

NodeTypeFromCookbook

Die Klasse "NodeTypeFromCookbook" implementiert die Schnittstelle
"INodeTypeGenerator" und überschreibt die abstrakte Methode "generate". Diese Methode
wird verwendet, um eine TOSCA CSAR-Datei für den Node-Type aus einem Chef-Cookbook
zu generieren. Diese Methode benötigt einen Eingabeparameter "csar_location" vom Typ
"java.lang.String". Dieser Eingabeparameter zeigt, wo die generierte CSAR-Datei ausgegeben
werden soll. Als Ausgabe liefert diese Methode eine entsprechende CSAR-Datei für den
Node-Type. In Abbildung 5.6 wird ein vereinfachtes Pseudo-Sequenzdiagramm für die
Methode “generate” dargestellt. Im ersten Schritt ruft die Methode "generate" die Methode
"read" der Klasse "MetamodelFromCookbook" auf. Die Methode "read" liest die Metadatei
"metadata.rb" im Chef-Cookbook ein und liefert als Ausgabe ein Objekt der Klasse
"CookbookMetamodel". Im zweiten Schritt wird die Methode "convert" der Klasse
"CookbookToTosca" aufgerufen. Die Methode "convert" bekommt das generierte
CookbookMetamodel-Objekt übergeben und liefert als Ausgabe ein Objekt der Klasse
"TOSCAMetamodel".

5 Entwurf und Implementierung

69

Abbildung 5.6: Sequenzdiagramm für die Klasse "NodeTypeFromCookbook"

Wenn die Elemente für die Node-Type-Properties im TOSCAMetamodel-Objekt vorhanden
ist, wird als dritter Schritt die Methode "generate" der Klasse "XSDGenerator" aufgerufen,
um ein entsprechendes Node-Type-Properties-Dokument zu generieren. Andernfalls kann der
dritte Schritt ignoriert. Durch das generierte TOSCAMetamodel-Objekt generiert als letzter
Schritt die Methode "generate" der Klasse "XMLGenerator" ein TOSCA-Definitions-
Dokument für den Node-Type.

5.3.1.2 Die Schnittstelle "IRelationshipTypeGenerator"
In der Schnittstelle "IRelationshipTypeGenerator" wird eine abstrakte Methode "generate"
definiert, um eine TOSCA CSAR-Datei für den Relationship-Type zu erzeugen. Die Klasse
"RelationshipTypeFromCharms" ist die einzige Implementierungsklasse dieser Schnittstelle.

RelationshipTypeFromCharms

Die Klasse "RelationshipTypeFromCharms" implementiert die Schnittstelle
"IRelationshipTypeGenerator" und überschreibt die abstrakte Methode "generate". Diese
Methode wird verwendet, um eine TOSCA CSAR-Datei für den Relationship-Type aus zwei
Juju-Charms mit einer bestimmten Beziehung zu generieren. Diese Methode benötigt einen
Eingabeparameter "csar_location" vom Typ "java.lang.String". Dieser Eingabeparameter zeigt,
wo die generierte CSAR-Datei ausgegeben werden soll. Als Ausgabe liefert diese Methode
eine entsprechende CSAR-Datei für den Relationship-Type. In Abbildung 5.7 wird ein
vereinfachtes Pseudo-Sequenzdiagramm für die Methode “generate” dargestellt. Im ersten
Schritt ruft die Methode "generate" die Methode "read" der Klasse "MetamodelFromCharm"
auf. Die Methode "read" liest die Metadatei "metadata.yaml" im Juju-Charm ein und liefert
als Ausgabe ein Objekt der Klasse "CharmMetamodel". Da es zwei Juju-Charms gibt, wird

5 Entwurf und Implementierung

70

die Methode "read" zweimal aufgerufen. Deshalb werden zwei CharmMetamodel-Objekte
generiert.

Abbildung 5.7: Sequenzdiagramm für die Klasse "RelationshipTypeFromCharms"

Im zweiten Schritt wird die Methode "convert" der Klasse "CharmToTOSCA" aufgerufen.
Die Methode "convert" bekommt zwei generierten CharmMetamodel-Objekte übergeben und
liefert als Ausgabe ein Objekt der Klasse "TOSCAMetamodel". Durch das generierte
TOSCAMetamodel-Objekt generiert als letzter Schritt die Methode "generate" der Klasse
"XMLGenerator" ein TOSCA-Definitions-Dokument für den Relationship-Type.

5.3.1.3 Die Schnittstelle "IServiceTemplateGenerator"
In der Schnittstelle "IServiceTemplateGenerator" wird eine abstrakte Methode "generate"
definiert, um eine TOSCA CSAR-Datei für das Service-Template zu erzeugen. Die Klasse
"ServiceTemplateFromTypes" ist die einzige Implementierungsklasse dieser Schnittstelle.

ServiceTemplateFromTypes

Die Klasse "ServiceTemplateFromTypes" implementiert die Schnittstelle
"IServiceTemplateGenerator" und überschreibt die abstrakte Methode "generate". Diese
Methode wird verwendet, um eine TOSCA CSAR-Datei für das Service-Template aus einer
Reihe von TOSCA-Definitions-Dokumenten für Node-Types und Relationship-Types zu
generieren. Diese Methode benötigt einen Eingabeparameter "csar_location" vom Typ
"java.lang.String". Dieser Eingabeparameter zeigt, wo die generierte CSAR-Datei ausgegeben
werden soll. Als Ausgabe liefert diese Methode eine entsprechende CSAR-Datei für das
Service-Template. Die TOSCA-Definitions-Dokumente für Node-Types und Relationship-
Types können wir durch die Konstruktormethode "ServiceTemplateFromTypes" bekommen.

5 Entwurf und Implementierung

71

In Abbildung 5.8 wird ein vereinfachtes Pseudo-Sequenzdiagramm für die Methode
"generate" dargestellt.

Abbildung 5.8: Sequenzdiagramm für die Klasse "ServiceTemplateFromType"

Im ersten Schritt ruft die Methode "generate" für jedes TOSCA-Definitions-Dokument einmal
die Methode "read" der Klasse "MetamodelFromTOSCA" auf. Das heißt, dass der erste
Schritt im Kästchen in der Abbildung mehrmals wiederholt wird. Diese Methode "read" liest
ein TOSCA-Definitions-Dokument ein und liefert ein Objekt der Klasse "TOSCAMetamodel"
als Ausgabe. Wir instanziieren zwei Objekte vom Typ "java.util.List". Ein Objekt dient zum
Speichern der generierten TOSCAMetamodel-Objekte für Node-Types. Das andere dient zum
Speichern der generierten TOSCAMetamodel-Objekte für Relationship-Types. Im zweiten
Schritt wird die Methode "convert" der Klasse "TOSCAToTOSCA" aufgerufen. Die Methode
"convert" bekommt einen Service-Namen vom Typ "java.lang.String" für das Service-
Template und zwei generierten Objekte vom Typ "java.util.List" übergeben und liefert als
Ausgabe ein Objekt der Klasse "TOSCAMetamodel". Durch das generierte
TOSCAMetamodel-Objekt generiert als letzter Schritt die Methode "generate" der Klasse
"XMLGenerator" ein TOSCA-Definitions-Dokument für das Service-Template.

5.3.2 Das Paket "org.tosca.meta"
In Abbildung 5.9 wird ein Klassendiagramm ohne Methoden und Attributen für das Java-
Paket "org.tosca.meta" dargestellt. In dieserm Paket werden drei Schnittstellen und ihre
Implementierungsklassen definiert. Die Implementierungsklassen der Schnittstelle
"IMetamodel" könnten die Klasse "TOSCAMetamodel", "CookbookMetamodel" und
"CharmMetamodel" sein. Die Implementierungsklassen der Schnittstelle
"IMetamodelGenerator" könnten die Klassen "MetamodelFromCookbook",
"MetamodelFromCharm" und "MetamodelFromTOSCA" sein. Die Implementierungsklassen
der Schnittstelle "IMetamodelConverter" könnten die Klassen "CookbookToTOSCA",
"CharmToTOSCA" und "TOSCAToTOSCA" sein.

5 Entwurf und Implementierung

72

Abbildung 5.9: Klassendiagramm für das Java-Paket "org.tosca.meta"

Außerdem werden im Paket "org.tosca.meta" noch drei Pakete definiert. Diese Pakete sind
"org.tosca.meta.charm", "org.tosca.meta.cookbook" und "org.tosca.meta.elements". Details
werden in den folgenden Unterkapiteln besprochen.

5.3.2.1 Die Schnittstelle "IMetamodel"
In der Schnittstelle "IMetamodel" wird keine Methode definiert. Es wird nur gezeigt, dass
eine Klasse als Metamodell verwendet wird, wenn diese Klasse diese Schnittstelle
implementiert.

TOSCAMetamodel

Die Klasse "TOSCAMetamodel" implementiert die Schnittstelle "IMetamodel". Diese Klasse
enthält als Attribute alle Elemente im TOSCA-Definitions-Dokument. Diese Elemente
werden durch die entsprechenden Klassen definiert. Beispielsweise können die Elemente
Definitions, Import, RequirementType, CapabilityType, ArtifactType, ArtifactTemplate,
NodeType NodeTypeImplementation, RelationshipType und RelationshipTypeImplementation
durch die Klassen "TDefinitions", "TImport", "TRequirementType", "TCapabilityType",
"TArtifactType", "TArtifactTemplate", "TNodeType", "TNodeTypeImplementation",
"TRelationshipType" und "TRelationshipTypeImplementation" definiert werden. Zur
Generierung dieser Klassen wird die JAXB-Technologie [34] benutzt. JAXB ist die
Abkürzung von "Java Architecture for XML Binding" und ist eine Programmschnittstelle in
Java, die es ermöglicht, Daten aus einer XML-Schema-Instanz heraus automatisch an Java-
Klassen zu binden, und diese Java-Klassen aus einem XML-Schema heraus zu generieren
[42]. So können die entsprechenden Java-Klassen aus dem TOSCA-Schema [17] heraus
generiert und im Java-Paket "org.tosca.meta.elements" gespeichert werden. Außerdem besitzt
die Klasse "TOSCAMetamodel" noch ein Attribut "propertiesXSD" der Klasse

5 Entwurf und Implementierung

73

"TPropertiesXSD". Die Klasse "TPropertiesXSD" wird manuell geschrieben und im Java-
Paket "org.tosca.meta.elements" gespeichert. Sie dient zur Generierung eines Node-Type-
Properties-Dokuments. Durch ein Objekt der Klasse "TOSCAMetamodel" kann ein
entsprechendes TOSCA-Definitions-Dokument generiert werden.

CookbookMetamodel

Die Klasse "CookbookMetamodel" implementiert die Schnittstelle "IMetamodel". In dieser
Klasse werden alle Informationen z.B. "recipes", "dependencies" und "attribute" in der Datei
"metadata.rb" in einem Chef-Cookbook gespeichert. Für jede Information wird eine
entsprechende Klasse erstellt. Dies sind die Klassen "Recipe", "Dependency" und "Attribute"
und werden im Java-Paket "org.tosca.meta.cookbook" gespeichert. Durch ein Objekt der
Klasse "CookbookMetamodel" kann ein entsprechendes Objekt der Klasse
"TOSCAMetamodel" generiert werden.

CharmMetamodel

Die Klasse "CharmMetamodel" implementiert die Schnittstelle "IMetamodel". In dieser
Klasse werden alle Informationen z.B. "requires", "provides" und "peers" in der Datei
"metadata.yaml" in einem Juju-Charm gespeichert. Für jede Information wird eine
entsprechende Klasse erstellt. Dies sind die Klassen "Require", "Provide" und "Peer" und
werden im Java-Paket "org.tosca.meta.charm" gespeichert. Durch ein Objekt der Klasse
"CharmMetamodel" kann ein entsprechendes Objekt der Klasse "TOSCAMetamodel"
generiert werden.

5.3.2.2 Die Schnittstelle "IMetamodelGenerator "
In der Schnittstelle "IMetamodelGenerator" wird eine abstrakte Methode "read" definiert, um
ein entsprechendes Metamodell aus Metadaten eines Artefakts zu erzeugen. Beispielsweise
kann diese Methode ein entsprechendes Cookbook- oder Charm-Metamodell aus der Datei
"matadata.rb" in einem Chef-Cookbook oder aus der Datei "matadata.yaml" in einem Juju-
Charm generieren. Außerdem kann durch diese Methode ein entsprechendes TOSCA-
Metamodell aus einem TOSCA-Definitions-Dokument für den Node-Type oder den
Relationship-Type erzeugt werden.

MetamodelFromCookbook

Die Klasse "MetamodelFromCookbook" implementiert die Schnittstelle
"IMetamodelGenerator" und überschreibt die Methode "read". Diese Methode wird verwendet,
um ein Objekt der Klasse "CookbookMetamodel" aus der Datei "metadata.rb" in einem Chef-
Cookbook zu generieren. Die Datei "metadata.rb" können wir durch die Konstruktormethode
"MetamodelFromCookbook" bekommen. Als Ausgabe liefert diese Methode ein
CookbookMetamodel-Objekt. Da Chef von der Skriptsprache Ruby implementiert wurde,
können wir die Ruby-Skripte benutzen, um die Datei "metadata.rb" einfacher zu lesen und zu
analysieren. Um den Aufruf der Ruby-Skripte in der Java-Laufzeitumgebung zu realisieren,
haben wir uns für JRuby [36] entschieden. Der Grund dafür ist, dass JRuby eine
Implementierung eines Ruby-Interpreters in Java ist und die Interaktion von Java und Ruby in
beiden Richtungen ermöglicht. Damit ermöglicht JRuby die Nutzung von Ruby als eine
alternative Sprache für die Java-Laufzeitumgebung [37]. Wir erstellen eine JRuby-Datei

5 Entwurf und Implementierung

74

namens "metaparser.rb". Diese Datei enthält die Ruby-Skripte zum Lesen der Inhalte der
Datei "metadata.rb" eines Chef-Cookbook und liefert als Ausgabe ein Objekt der Klasse
"CookbookMetamodel". Im Anhang 2 wird die Datei "metaparser.rb" präsentiert. Zuerst
erstellen wir eine Instanz der Klasse "java.script.ScriptEngine" für JRuby. Durch diese
Instanz kann die Datei "metaparser.rb" aufgerufen werden. Um dies zu realisieren, müssen die
JAR-Dateien "jsr223.jar" und "jruby-1.7.4" in die Java-Laufzeitumgebung importiert werden.

MetamodelFromCharm

Die Klasse "MetamodelFromCharm" implementiert die Schnittstelle "IMetamodelGenerator"
und überschreibt die Methode "read". Diese Methode wird verwendet, um ein Objekt der
Klasse "CharmMetamodel" aus der Datei "metadata.yaml" und der Datei "config.yaml" (wenn
sie vorhanden ist) in einem Juju-Charm zu generieren. Die Dateien "metadata.rb" und
"config.yaml können wir durch die Konstruktormethode "MetamodelFromCharm" bekommen.
Als Ausgabe liefert diese Methode ein CharmMetamodel-Objekt. Zu den konkreten Arbeiten
gehören, (1) die YAML-Datei zu lesen und zu analysieren, (2) die Inhalte der YAML-Datei in
den abstrakten Objekten zu speichern und (3) die abstrakten Objekte zu einem
CharmMetamodel-Objekt zu transformieren. Für die Implementierung dieser Arbeiten werden
drei Klassen "YamlModel", "YamlModelList" und "YamlReader" verwendet. Die ersten zwei
Klassen dienen zum Speichern der Inhalte in einer YAML-Datei. Die letzte Klasse dient zum
Lesen und Analysieren einer YAML-Datei. Dabei wird eine YAML-Software von
Drittanbietern verwendet: SnakeYAML [41] ist ein YAML-Parser für Programmiersprache
"Java" und bekannt dafür, dass er ein kompletter YAML1.1-Parser ist. Durch SnakeYAML
kann die YAML-Datei einfach gelesen und analysiert werden. Die konkrete Implementierung
dieser drei Klassen wurde in der Studienarbeit "Vorlagen für das Deployment von Services
und Applikationen in der Cloud" [33] dargestellt.

MetamodelFromTOSCA

Die Klasse "MetamodelFromTOSCA" implementiert die Schnittstelle
"IMetamodelGenerator" und überschreibt die Methode "read". Diese Methode wird verwendet,
um ein Objekt der Klasse "TOSCAMetamodel" aus einem TOSCA-Definitions-Dokument zu
generieren. Das TOSCA-Definitions-Dokument können wir durch die Konstruktormethode
"MetamodelFromTOSCA" bekommen. Als Ausgabe liefert diese Methode ein
TOSCAMetamodel-Objekt. Die konkrete Arbeit ist, jedes XML-Element im TOSCA-
Definitions-Dokument als ein entsprechendes Objekt im TOSCAMetamodel-Objekt zu
speichern. Durch JAXB können die XML-Elemente in einem TOSCA-Definitions-Dokument
zu den entsprechenden Objekten transformiert werden.

5.3.2.3 Die Schnittstelle "IMetamodelConverter"
In der Schnittstelle "IMetamodelConverter" werden drei abstrakten Methoden "convert"
definiert. Die Methode mit einem Parameter dient dazu, ein Cookbook- oder Charm-
Metamodell zu einem TOSCA-Metamodell für einen Node-Type zu konvertieren. Die
Methode mit zwei Parametern dient dazu, zwei Charm-Metamodelle zu einem TOSCA-
Metamodell für einen Relationship-Type zu konvertieren. Die Methode mit drei Parametern
dient dazu, eine Reihe von TOSCA-Metamodellen für Node-Types und Relationship-Types
zu einem TOSCA-Metamodell für ein Service-Template zu konvertieren.

5 Entwurf und Implementierung

75

CookbookToTOCSA

Die Klasse "CookbookToTOCSA" implementiert die Schnittstelle "IMetamodelConverter"
und überschreibt drei abstrakten Methoden "convert". In den Methoden mit mehreren
Parametern werden keine Codes geschrieben und NULL wird zurückgegeben. Die Methode
mit einem Parameter bekommt ein CookbookMetamodel-Objekt übergeben und liefert als
Ausgabe ein TOSCAMetamodel-Objekt für einen Node-Type. Der Kern dieser Methode ist,
durch die entsprechenden Transformationsregeln ein Cookbook-Metamodell zu einem
TOSCA-Metamodell zu konvertieren. Diese Regeln müssen dem Konzept (Unterkapitel 4.1)
für die Erzeugung von TOSCA Node-Types aus Chef-Artefakten entsprechen.

Zuerst wird ein Objekt der Klasse "TOSCAMetamodel" zum Speichern der XML-Elemente in
einem TOSCA-Definitions-Dokument instanziiert. Wenn das CookbookMetamodel-Objekt
ein Objekt der Klasse "java.util.List" zum Speichern der Cookbook-Attribute enthält, kann ein
Objekt der Klasse "TPropertiesXSD" erzeugt werden. Das generierte Objekt enthält die XSD-
Elemente zur Erzeugung eines Node-Type-Properties-Dokuments und wird im
TOSCAMetamodel-Objekt gespeichert. Diese XSD-Elemente werden durch Dom4j [38]
erzeugt. Dom4j ist eine in der Programmiersprache Java geschriebene Open-Source-
Programmierschnittstelle für den Zugriff und die Verarbeitung von XML-Dokumenten [39].
Dabei muss ein Objekt der Klasse "TImport" zum Importieren des generierten Node-Type-
Properties-Dokuments in das entsprechende TOSCA-Definitions-Dokument für den Node-
Type erzeugt. Dieses Objekt wird dann im TOSCAMetamodel-Objekt gespeichert.

Außerdem können durch das CookbookMetamodel-Objekt die folgenden Elemente erzeugt
werden: Definitions, CapabilityType, ArtifactType, ArtifactTemplate, NodeType und
NodeTypeImplementation. Jedes Element kann durch die Instanziierung eines Objektes der
entsprechenden Klasse implementiert werden. Beispielsweise kann das Element NodeType
durch das Erzeugen eines Objektes der Klasse "TNodeType" implementiert werden. Dasselbe
gilt auch für die Generierung von anderen Elementen. Diese generierten Objekte werden auch
im TOSCAMetamodel-Objekt gespeichert. Da die Erzeugung der Elemente auf gleiche Art
und Weise implementiert wird, werden wir als Beispiel nur die Implementierung der
Elemente ArtifactType und ArtifactTemplate beschreiben.

In Unterkapitel 4.1.3 wird besprochen, dass der direkte Ansatz verwendet wird, um die Chef-
Cookbooks in ein Service-Template einzubetten. Deswegen erzeugen wir durch die Klasse
"TArtifactType" das Element ArtifactType namens "ChefArtifact", welche der Struktur der
Chef-Artefakte entspricht. Beim Erzeugen des Elements ArtifactTemplate benutzen wir einen
unveränderlichen Universally Unique Identifier (UUID) [40] als ein Wert des Attributs id des
Elements ArtifactTemplate. Ein UUID als ein Standard für Identifikatoren beschreibt einen
128-Bit-Wert und wird verwendet, um Informationen eindeutig kennzeichnen zu können. Hier
dient ein UUID dazu, ein Artifact-Template eindeutig zu identifizieren. Der Inhalt des
Kindelements Properties ist Chef-spezifisch. Folglich brauchen wir ein Element
ChefArtifactProperties als Inhalt des Element Properties. Durch die JAXB-Technologie kann
die Klasse "ChefArtifactProperties" aus der XML-Schema-Datei "ChefArtifact.xsd" heraus
generiert und im Java-Paket "org.tosca.meta.elements" gespeichert werden. Die Klasse
"ChefArtifactProperties" enthält als Attribute alle Elemente wie z.B. Cookbook, Mappings
und Runlist, die in der Datei "ChefArtifact.xsd" definiert sind. Die Generierung des Elements

5 Entwurf und Implementierung

76

ChefArtifactProperties und seiner Kindelemente Cookbooks, Mappings und RunList wird
durch die Klasse "TChefArtifactProperties" implementiert. Dann wird das Element
ChefArtifactProperties als ein Objekt der Klasse "JAXBElement" zum Element Properties
hinzugefügt.

CharmToTOCSA

Die Klasse "CharmToTOCSA" implementiert die Schnittstelle "IMetamodelConverter" und
überschreibt drei Methoden "convert". In der Methode mit drei Parametern werden keine
Codes geschrieben und NULL wird zurückgegeben. Die Methode mit einem Parameter
bekommt ein CharmMetamodel-Objekt übergeben und liefert als Ausgabe ein Objekt von der
Klasse "TOSCAMetamodel" für einen Node-Type. Der Kern dieser Methode ist, durch die
entsprechenden Transformationsregeln ein Charm-Metamodell zu einem TOSCA-Metamodell
zu konvertieren. Diese Regeln müssen dem Konzept (Unterkapitel 4.2) für die Erzeugung von
TOSCA Node-Types aus Juju-Artefakten entsprechen. Die konkrete Implementierung dieser
Methode wurde in der Studienarbeit "Vorlagen für das Deployment von Services und
Applikationen in der Cloud" [33] dargestellt. In dieser Diplomarbeit beschäftigen wir uns nur
mit der Implementierung der Methode mit zwei Parametern. Diese Methode bekommt zwei
CharmMetamodel-Objekte übergeben und liefert als Ausgabe ein Objekt von der Klasse
"TOSCAMetamodel" für einen Relationship-Type. Der Kern dieser Methode ist, durch die
entsprechenden Transformationsregeln zwei Charm-Metamodelle zu einem TOSCA-
Metamodell zu konvertieren. Diese Regeln müssen dem Konzept (Unterkapitel 4.3) für die
Erzeugung von TOSCA Relationship-Types aus zwei Juju-Artefakten entsprechen.

Zuerst wird ein Objekt der Klasse "TOSCAMetamodel" zum Speichern der XML-Elemente in
einem TOSCA-Definitions-Dokument instanziiert. Dann können durch diese zwei
CharmMetamodel-Objekte die folgenden Elemente erzeugt werden: Definitions, ArtifactType,
ArtifactTemplate, RelationshipType und RelationshipTypeImplementation. Jedes Element
kann durch die Instanziierung eines Objektes der entsprechenden Klasse implementiert
werden. Beispielsweise kann das Element RelationshipType durch das Erzeugen eines
Objektes der Klasse "TRelationshipType" implementiert werden. Dasselbe gilt auch für die
Generierung von anderen Elementen. Diese generierten Objekte werden auch im
TOSCAMetamodel-Objekt gespeichert. Da die Erzeugung der Elemente auf gleiche Art und
Weise implementiert wird, werden wir als Beispiel nur die Implementierung der Elemente
ArtifactType und ArtifactTemplate beschreiben.

In Unterkapitel 4.3.1 wird besprochen, dass Juju-Charms auf eine transparente Art und Weise
unter Verwendung des Standard-Artifact-Type "Script Artifact" in ein Service-Template
eingebettet werden. Deswegen erzeugen wir zuerst durch die Klasse "TArtifactType" das
Element ArtifactType namens "ScriptArtifact". Dann muss festgelegt werden, welche
Relation-Hooks zur Herstellung der entsprechenden Beziehung aufgerufen werden. Für diese
Relation-Hooks müssen die zusätzlichen Wrapper-Dateien erstellt werden, um diesen
transparenten Ansatz zu realisieren. Folglich muss für jede Wrapper-Datei ein Artifact-
Template vom Standard-Artifact-Type "Script Artifact" generiert werden. Beim Erzeugen des
Elements ArtifactTemplate benutzen wir einen UUID, um das Artifact-Template eindeutig zu
identifizieren. Der Inhalt seines Kindelements Properties ist vom Standard-Artifact-Type

5 Entwurf und Implementierung

77

"Script Artifact". Folglich brauchen wir ein Element ScriptArtifactProperties als Inhalt des
Element Properties. Durch die JAXB-Technologie kann die entsprechende Klasse
"ScriptArtifactProperties" aus der XML-Schema-Datei "ScriptArtifact.xsd" heraus generiert
und im Java-Paket "org.tosca.meta.elements" gespeichert werden. Die Klasse
"ScriptArtifactProperties" enthält als Attribute alle Elemente wie z.B. ScriptLanguage und
PrimaryScript, die in der Datei "ScriptArtifact.xsd" definiert sind. Die Generierung des
Elements ScriptArtifactProperties und seiner Kindelemente ScriptLanguage und
PrimaryScript wird durch die Klasse "ScriptArtifactProperties" implementiert. Schließlich
wird das Element ScriptArtifactProperties als ein Objekt der Klasse "JAXBElement" zum
Element Properties hinzugefügt.

TOSCAToTOCSA

Die Klasse "TOSCAToTOCSA" implementiert die Schnittstelle "IMetamodelConverter" und
überschreibt drei Methoden "convert". In den Methoden mit einem und zwei Parametern
werden keine Codes geschrieben und NULL wird zurückgegeben. Die Methode mit drei
Parametern bekommt einen Service-Namen vom Typ "java.lang.String" für das Service-
Template und zwei Objekte vom Typ "java.util.List" übergeben und liefert als Ausgabe ein
Objekt der Klasse "TOSCAMetamodel" für ein Service-Template. Ein Eingabe-Objekt dient
zum Speichern der TOSCAMetamodel-Objekte für Node-Types. Das andere dient zum
Speichern der TOSCAMetamodel-Objekte für Relationship-Types. Der Kern dieser Methode
ist, durch die entsprechenden Transformationsregeln die TOACA-Metamodelle für Node-
Types und Relationship-Types zu einem TOSCA-Metamodell für ein Service-Tempate zu
konvertieren. Diese Regeln müssen dem Konzept (Unterkapitel 4.4) für die Erzeugung von
TOSCA Service-Templates durch Orchestrierung der Node-Types und Relationship-Types
entsprechen.

Zuerst wird ein Objekt der Klasse "TOSCAMetamodel" zum Speichern der XML-Elemente in
einem TOSCA-Definitions-Dokument für ein Service-Template instanziiert. Dann werden die
XML-Elemente Definition, ServiceTemplate und TopologyTemplate generiert. Außerdem
können durch zwei Eingabe-Objekte eine Reihe der folgenden Elemente erzeugt werden:
Import, NodeTemplate und RelationshipTemplate. Beispielsweise können die Elemente
Import und NodeTemplate durch ein TOSCAMetamodel-Objekt für einen Node-Type erzeugt
werden. Dasselbe gilt auch für die Generierung der Elemente RelationshipTemplate. Diese
Elemente können durch die Instanziierung der Objekte der entsprechenden Klassen
"Definitions", "TServiceTemplate", "TTopologyTemplate" "TImport", "TNodeTemplate" und
"TRelationshipTemplate" implementiert werden. Diese generierten Objekte werden auch im
TOSCAMetamodel-Objekt für das Service-Template gespeichert.

5.3.3 Das Paket "org.tosca.util"
Im Java-Paket "org.tosca.util" werden einige Klassen für die Hilfefunktionen des Prototyps
implementiert. In der Klasse "Downloader" werden zwei Methoden "git" und "bazaar"
definiert, die zum Herunterladen der verschiedenen Artefakte dienen. Da Chef-Artefakte in
einem öffentlichen GIT Repository auf GitHub [46] hinterlegt werden, wird die Methode "git"
zum Herunterladen der Chef-Artefakte durch eine entsprechende URL als Eingabe verwendet.
Ebenso wird die Methode "bazaar" zum Herunterladen der Juju-Artefakte verwendet, da sie in
einem öffentlichen Bazaar [47] Repository auf Lauchpad [48] aufbewahrt werden.

5 Entwurf und Implementierung

78

Die Klasse "XSDGenerator" dient zur Generierung einer XSD-Datei (in unserem Fall, eines
Node-Type-Properties-Dokuments). Zuerst wird ein XML-Dokument durch die Methode
"createDocument" der Klasse "org.dom4j.DocumentHelper" erzeugt. Dieses XML-Dokument
dient zum Speichern aller entsprechenden XML-Elemente für das TOSCA Node-Type-
Properties-Dokument. Dann müssen das Wurzelelement und seine Kindelemente zu diesem
Dokument hinzugefügt werden. Schließlich wird dieses Dokument durch die Methode "write"
der Klasse "org.dom4j.io.XMLWriter" in eine XSD-Datei geschrieben. Um diese Klassen zu
verwenden, muss die JAR-Datei "dom4j-1.6.1" in die Java-Laufzeitumgebung importiert
werden.

Die Klasse "XMLGenerator" dient zur Generierung einer XML-Datei (in unserem Fall, eines
TOSCA-Definition-Dokuments). Zuerst wird eine JAXBContext-Instanz durch die Methode
"newInstance" der Klasse "JAXBContext" erstellt, um die Funktion "marschall" in
JAXBContext verwenden zu können. Diese Methode bekommt als Eingabe im Rahmen dieser
Arbeit den Paket-Namen "org.tosca.meta.elements" vom Typ "java.lang.String". Dieses Paket
"org.tosca.meta.elements" enthält alle Java-Klassen, die durch die JAXB-Technologie aus
dem TOSCA-Schema [17] generiert wurden. Dann wird ein Objekt der Klasse "Definitions"
durch die Methode "createDefinitions" der Klasse "org.tosca.meta.elements.ObjectFactory"
erzeugt. Dieses Objekt ist das Wurzelelement eines TOSCA-Definitions-Dokuments und die
anderen entsprechenden Elemente müssen zum Wurzelelement hinzugefügt werden.
Schließlich wird das Wurzelelement durch die Methode "marshal" der Klasse
"javax.xml.bind.Marshaller" in eine XML-Datei geschrieben.

Die Klasse "MetaFileGenerator" dient zur Generierung der Metadatei "TOSCA.meta". Die
Methode "generate" in dieser Klasse bekommt zwei Pfadnamen vom Typ "java.lang.String"
übergeben. Der erste Pfadname zeigt, wo sich der Ordner für ein TOSCA-Artefakt befindet.
Der zweite zeigt, wo die zu generierende Metadatei "TOSCA.meta" ausgegeben werden sollte.
Die konkrete Implementierung ist, dass ein Objekt der Klasse "java.lang.StringBuffer" durch
die Klasse "java.io.FileOutputStream" in eine Datei vom Typ "java.io.File" geschrieben wird.
Dasselbe gilt auch für die Klasse "WrapperFileGenerator" zur Generierung der Wrapper-Datei.

Die Klasse "FileUtils" stellt die Operationen zum Ordner zur Verfügung, z.B. nach einer
Datei zu suchen, alle Dateinamen und Pfadnamen aufzulisten und einen Ordner sowie die
Inhalte im Ordner zu einem anderen Ordner zu kopieren. Dazu wird das Java-Paket "java.io"
verwendet. Die Klasse "ZIPFileGenerator" dient dazu, einen Ordner zu einer Zipdatei zu
komprimieren. Dazu wird das Java-Paket "java.util.zip" verwendet. Die konkrete
Implementierung dieser zwei Klassen wurde in der Studienarbeit "Vorlagen für das
Deployment von Services und Applikationen in der Cloud" [33] dargestellt.

6 Evaluation

79

6 Evaluation

Um die in Kapitel 4 beschriebenen Konzepte zu evaluieren, wurde ein Prototyp entwickelt.
Mit dem entwickelten Prototyp können die entsprechenden TOSCA Service-Templates aus
den Chef- und Juju-Artefakten erzeugt werden. In Kapitel 5 werden der Entwurf und die
Implementierung dieses Prototyps dargestellt und es wurde gezeigt, dass der Prototyp drei
wichtigen Aufgaben erledigen kann. Zu den konkreten Aufgaben gehören die Erzeugung von
TOSCA Node-Types aus Chef-Cookbooks oder Juju-Charms, die Erzeugung von TOSCA
Relationship-Types aus zwei Juju-Charms und die Erzeugung von TOSCA Service-Templates
aus diesen generierten Node-Types und Relationship-Types. Im Folgenden werden die
Konzepte mittels des entwickelten Prototyps anhand eines Beispiels überprüft. Die Aufgabe
der Evaluierung besteht aus zwei Teilen: (1) Zuerst werden die Funktionalität des Prototyps
getestet. Das heißt, dass die CSARs durch den entwickelten Prototyp automatisch generiert
werden können; (2) dann werden die generierten CSARs validiert.

6.1 Test der Funktionalität des Prototyps

Zum Testen der Funktionalität des entwickelten Prototyps wird in Abbildung 6.1 ein Beispiel
für ein TOSCA Service-Template namens "WordPress-Service" gegeben. Dieses Service-
Template besteht aus drei Knoten "WordPress", "MySQL" und "Apache2" und zwei
Beziehungen "ConnectsTo" und "HostedOn".

Abbildung 6.1: Beispiel für das TOSCA Service-Template "WordPress-Service"

Zuerst wird mittels der Komponente "Node-Type-Generator" des Prototyps ein Node-Type
für die Applikationsserver "Apache 2" aus einem entsprechenden Chef-Cookbook
automatisch generiert. In diesem Fall ist die Eingabe des Prototyps die URL, die sich mit dem
Repository für das Chef-Cookbook "apache 2" verbindet. Auf gleiche automatische Art und
Weise können mithilfe des Prototyps die Node-Types für die Applikation "WordPress" und
die Datenbank "MySQL" aus den entsprechenden Juju-Charms automatisch erzeugt werden.
Hierbei sind die Eingaben die URLs, die auf das Repository für Juju-Charms "WordPress"
und "MySQL" verweisen. Das Ziel für die Verwendung von verschiedenen Typen der

6 Evaluation

80

Artefakte wie Chef-Cookbooks und Juju-Charms ist, zu ermöglichen, dass verschiedene
Artefakttypen miteinander kombiniert werden können. Für die Beziehung "ConnectsTo"
zwischen der Applikation "WordPress" und des Datenbankservers "MySQL" kann die
Komponente "Relationship-Type-Generator" des Prototyps ein entsprechender Relationship-
Type aus den Juju-Charms "WordPress" und "MySQL" automatisch generieren werden. Der
einzige Teil für das Service-Template, den ich manuell implementiert habe, ist der
Relationship-Type für die Beziehung "HostedOn". Das entsprechende TOSCA-Definitions-
Dokument für diesen Relationship-Type enthält zwei Elemente ValidSource und ValidTarget.
Sie spezifizieren die Typen der Quelle und des Zieles der Beziehung "HostedOn". In unserem
Fall spezifiziert das Element ValidSource den Node-Type "WordPress", während das Element
ValidTarget den Node-Type "Apache 2" spezifiziert. Schließlich kann die Komponente
"Service-Template-Generator" des Prototyps durch diese generierten Node-Types und
Relationship-Types die entsprechende TOSCA CSAR-Datei für das Service-Template
"WordPress-Service" automatisch generieren. Neben den Node-Types und Relationship-
Types sowie dem Service-Template selbst enthält diese CSAR-Datei auch alle notwendigen
Artefakte (Cookbooks und Recipes von Chef sowie Charms und Hooks von Juju).

6.2 Validieren von CSARs

In Unterkapitel 6.1 wurde dargestellt, dass durch den entwickelten Prototyp die TOSCA
CSAR-Datei für das Service-Template "WordPress-Service" automatisch generiert werden
kann. In dieser CSAR-Datei lassen sich alle entsprechenden Chef- und Juju-Artefakte
verwenden. In diesem Unterkapitel werden die Korrektheit und die Gültigkeit dieser CSAR-
Datei geprüft, damit basierend auf diesem Service-Template das Deployment und
Management der konkreten Service-Instanzen in einer Cloud-Umgebung verwirklicht werden
kann. Die Voraussetzung dafür ist, dass diese Cloud-Umgebung eine dem TOSCA-Standard
konforme Laufzeitumgebung zur Verfügung stellen muss. Zum Validieren dieser CSAR-
Datei wurde das Werkzeug "Winery" [49] verwendet. Winery [50] ist eine webbasierte
Umgebung und wird verwendet, um TOSCA-Topologien und Pläne grafisch zu modellieren.
Diese Umgebung enthält eine Komponente zur Verwaltung von Types und Templates. Mit
dieser Komponente können alle in der TOSCA-Spezifikation definierten Elemente erstellt und
verarbeitet werden. Alle Informationen werden in einem Repository gespeichert. Dieses
Repository ist dafür verantwortlich, CSARs zu importieren und zu exportieren.

Zuerst wurde diese CSAR-Datei zum Werkzeug "Winery" importiert. Nachdem der Import
der CSAR-Datei erfolgreich durchgeführt wurde, haben wir als Ergebnis einen Graphen
bekommen. Dieser Graph, der in Abbildung 6.2 gezeigt wird, entspricht dem Graphen, der in
Abbildung 6.1 dargestellt wird. Daraus ergibt sich, dass diese CSAR-Datei korrekt ist.

6 Evaluation

81

Abbildung 6.2: Ergebnis fürs Validieren der CSAR "WordPress-Service"

6 Evaluation

82

7 Zusammenfassung und Ausblick

83

7 Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde ein automatisches Verfahren dargestellt, mit dem die TOSCA
Service-Template basierend auf existierenden von den hinter Juju und Chef stehenden
DevOps-Communities veröffentlichten Artefakten erzeugt werden können. Diese generierten
TOSCA Service-Templates, die diese Artefakte verwenden, können von jeder TOSCA-
konformen Laufzeitumgebung verarbeitet werden.

Im Grundlagenkapitel wurden die DevOps-Ansätze (Chef und Juju) und deren Verwendung
zur Realisierung des Deployments und Managements dargestellt. Außerdem wurde in
Abbildung 2.6 gezeigt, dass Topology-Template und Pläne die zentralen Elemente eines
TOSCA Service-Template sind. Ein Topology-Template besteht aus Node-Templates und
Relationship-Templates. Diese Arbeit beschäftigte sich ausschließlich mit der Generierung
von Service-Templates ohne Pläne. Dazu gehören (1) die Generierung von Node-Types, die
den Typ eines oder mehrerer Node-Templates definieren, (2) die Generierung von
Relationship-Types, die den Typ eines oder mehrerer Relationship-Templates definieren, und
(3) die Generierung des Topology-Template. In Kapitel 3 wurde besprochen, dass die
verschiedenen DevOps-Ansätze (Juju und Chef) abstrahiert werden müssen, um ihre
Topologie abstrakt zu modellieren. Das Ergebnis der Abstraktion ist, dass für jede Art dieser
Ansätze ein entsprechendes Topologie-Modell generiert wurde. Außerdem wurde als Beispiel
die Modell-Transformation von Juju nach TOSCA sowie von Chef nach TOSCA erläutert. In
Kapitel 4 wurden die Konzepte für das automatische Verfahren erläutert und es wurde
beschrieben, wie ein Node-Type aus einem Chef-Cookbook und ein Relationship-Type aus
zwei Juju-Charms erzeugt werden. Außerdem wurde in Unterkapitel 4.4 dargestellt, wie ein
Service-Template durch Orchestrierung dieser generierten Node-Types und Relationship-
Types erstellt wird. Um dieses automatische Verfahren zu evaluieren, wurde in Kapitel 5 ein
Prototyp entwickelt, mit dem sich alle öffentlich zugänglichen Chef- und Juju-Artefakte in
CSARs verwenden lassen. Es wurde dargestellt, welche Funktionalitäten der Prototyp besitzt
und mit welchen wichtigen Komponenten der Prototyp aufgebaut wird. Außerdem wurde in
Unterkapitel 5.3 die konkrete Implementierung des Prototyps besprochen. In Kapitel 6 wurde
gezeigt, dass die CSAR-Datei durch den entwickelten Prototyp automatisch generiert werden
kann. Außerdem wurde diese CSAR-Datei durch das Werkzeug "Winery" [50] validiert.

Eine Möglichkeit für zukünftige Arbeiten ist die Erzeugung von entsprechenden Plänen, die
verwendet werden, um den Lebenszyklus eines Cloud-Service oder einer Cloud-Anwendung
zu verwalten. Diese Pläne sollten unter Verwendung von existierenden Workflow-Sprachen
wie BPMN [27] oder BPEL [28] zwischen verschiedenen Cloud-Umgebungen und Cloud-
Anbietern portabel sein. Dies ermöglicht es, dass das Management von Cloud-Services
wiederverwendbar und portabel ist. Außerdem bezog sich diese Arbeit stark auf Chef und
Juju. Allerdings sind die in dieser Arbeit beschriebenen Konzepte nicht Chef- oder Juju-
spezifisch. Folglich kann das in dieser Arbeit beschriebene Verfahren auf weitere ähnliche
Werkzeuge und Artefakte übertragen werden. Beispielsweise können auch die Konzepte
bezüglich Chef für andere Konfigurationsmanagementwerkzeuge wie z.B. Puppet [15] und
CFEngine [34] implementiert werden, da sie eine sehr ähnliche Architektur besitzen.

7 Zusammenfassung und Ausblick

84

85

Literaturverzeichnis

Alle Weblinks wurden das letzte Mal am 01.12.2013 geprüft.

[1] Wettinger, Kopp und Leymann: Improving Portability of Cloud Service Topology Models
Relying on Script-Based Deployment. In: CEUR Workshop Proceedings; Online
Proceedings for Scientific Workshops. (2013)

[2] Leymann: Cloud Computing. it – Information Technology, 53(4). (2011)

[3] Mell und Grance: The NIST Denition of Cloud Computing. National Institute of
Standards and Technology. (2011)

[4] Günther, Haupt und Splieth: Utilizing Internal Domain-Specic Languages for
Deployment and Maintenance of IT Infrastructures. Technical report, Very Large
Business Applications Lab Magdeburg, Fakultät für Informatik, Otto-von-
Guericke-Universität Magdeburg. (2010)

[5] Benjamin, Waldemar, Christian, Philipp und Schahram: Winds of Change: From Vendor
Lock-In to the Meta Cloud. Vienna University of Technology. (2013)

[6] Humble und Farley: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Addison-Wesley Professional. (2010)

[7] Humble und Molesky: Why Enterprises Must Adopt Devops to Enable Continuous
Delivery. Cutter IT Journal, 24(8):6. (2011)

[8] Shamow: Devops at Advance Internet: How We Got in the Door. IT Journal, page 14.
(2011)

[9] Nelson-Smith: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc. (2011)

[10] Delaet, Joosen und Vanbrabant: A Survey of System Configuration Tools. In
Proceedings of the 24th Large Installations Systems Administration (LISA)
conference. (2010)

[11] Smith: Hype Cycle for Cloud Computing. (2011)

[12] Leymann: Cloud Computing: The Next Revolution in IT. In Photogrammetric Week ’09.
Wichmann Verlag. (2009)

[13] Vaquero, Rodero-Merino, Caceres und Lindner: A Break in the Clouds: Towards a Cloud
Definition. ACM SIGCOMM Computer Communication Review, 39(1):50–55.
(2008)

[14] Chef Cookbooks. http://community.opscode.com/cookbooks

[15] Puppet Webseite. https://puppetlabs.com/

http://community.opscode.com/cookbooks

86

[16] Juju Charm Browser. http://jujucharms.com/

[17] TOSCA Specification, Version 1.0 Committee Specification 01. 18 March 2013.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

[18] Chef Documentation: http://docs.opscode.com/

[19] Git - Verteiltes Versionsverwaltungssystem: http://git-scm.com/

[20] Wettinger, Behrendt, Binz, Breitenbücher, Breiter, Leymann, Moser, Schwertle, Spatzier:
Integrating Configuration Management with Model-Driven Cloud Management
Based on TOSCA. In: Proceedings of the 3rd International Conference on Cloud
Computing and Services Science (CLOSER). (2013)

[21] Delaet und Joosen: PoDIM: A language for high-level configuration management. In
Proceedings of the Large Installations Systems Administration (LISA) Conference,
Berkeley, CA. (2007)

[22] SugarCRM Webseite. http://www.sugarcrm.com/

[23] Juju Documentation. https://juju.ubuntu.com/docs/

[24] YAML Webseite. http://www.yaml.org/

[25] WordPress Webseite. http://wordpress.com/

[26] MySQL Webseite. http://www.mysql.de/

[27] Business Process Model and Notation (BPMN) Version 2.0, Object Management Group
specification: http://www.bpmn.org/

[28] Web Services Business Process Execution Language (BPEL) Version 2.0, OASIS
specification: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[29] Binz, Breiter, Leymann und Spatzier: Portable Cloud Services Using TOSCA. Internet
Computing, IEEE, 16(3):80–85. (2012)

[30] Leymann, Fehling, Mietzner, Nowak und Dustdar: Moving Applications to the Cloud:
An Approach Based on Application Model Enrichment. International Journal of
Cooperative Information Systems, 20(3):307. (2011)

[31] Binz, Leymann und Schumm: CMotion: A Framework for Migration of Applications into
and between Clouds. In 2011 IEEE International Conference on Service-Oriented
Computing and Applications. IEEE. (2011)

[32] Breitenbücher, Binz, Kopp und Leymann: Pattern-Based Runtime Management of
Composite Cloud Applications. In Proceedings of the 3rd International
Conference on Cloud Computing and Services Science (CLOSER). (2013)

http://jujucharms.com/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.opscode.com/
http://git-scm.com/
http://www.sugarcrm.com/
http://www.yaml.org/
http://wordpress.com/
http://www.mysql.de/
http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

87

[33] Zhang: Studienarbeit: Vorlagen für das Deployment von Services und Applikationen in
der Cloud. Betreuer: Wettinger. (2013)

[34] JAXB Reference Implementation. https://jaxb.java.net/

[35] Ruby Webseite. https://www.ruby-lang.org/en/

[36] JRuby Webseite. http://jruby.org/

[37] JRuby Wikipedia. http://de.wikipedia.org/wiki/JRuby

[38] Dom4j Webseite. http://dom4j.sourceforge.net/

[39] Dom4j Wikipedia. http://de.wikipedia.org/wiki/Dom4j

[40] UUID Wikipedia. http://de.wikipedia.org/wiki/Universally_Unique_Identifier

[41] Snakeyaml Webseite. http://code.google.com/p/snakeyaml/

[42] JAXB Wikipedia. http://de.wikipedia.org/wiki/Java_Architecture_for_XML_Binding

[43] CFEngine Webseite. http://cfengine.com/

[44] Baun, Kunze und Tai: Cloud Computing - Web-basierte dynamische IT-Services, 2. Aufl.
ed., Heidelberg, Dordrecht, London, New York: Springer-Verlag. (2011)

[45] Kopp, Binz, Breitenbücher, Leymann: BPMN4TOSCA: A Domain-Specific Language to
Model Management Plans for Composite Applications. In: Mendling, Jan (Hrsg);
Weidlich, Matthias (Hrsg): 4th International Workshop on the Business Process
Model and Notation. (2012)

[46] GitHub Webseite. https://github.com/

[47] Bazaar Webseite. http://bazaar.canonical.com/

[48] Launchpad Webseite. https://launchpad.net/

[49] Winery Webseite. http://dev.winery.opentosca.org:8080/winery/servicetemplates/

[50] Kopp, Binz, Breitenbücher, und Leymann: Winey - A Modeling Tool for TOSCA-based
Cloud Applications. Springer-Verlag. (2013)

[51] Apache Webseite. http://www.apache.org/

[52] Chef Cookbook Apache2. http://community.opscode.com/cookbooks/apache2

[53] Chef Cookbook WordPress. http://community.opscode.com/cookbooks/wordpress

[54] Amazon Web Services Webseite. http://aws.amazon.com/de/

[55] Google App Engine Webseite. https://developers.google.com/appengine/

http://jruby.org/
http://de.wikipedia.org/wiki/JRuby
http://dom4j.sourceforge.net/
http://de.wikipedia.org/wiki/Dom4j
http://de.wikipedia.org/wiki/Universally_Unique_Identifier
http://code.google.com/p/snakeyaml/
http://de.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
http://cfengine.com/
http://bazaar.canonical.com/
http://dev.winery.opentosca.org:8080/winery/servicetemplates/
http://www.apache.org/
http://community.opscode.com/cookbooks/apache2
http://community.opscode.com/cookbooks/wordpress
http://aws.amazon.com/de/

88

[56] Definition der Orchestration. http://en.wikipedia.org/wiki/Service_orchestration

[57] Amazon Virtual Private Cloud Webseite. http://aws.amazon.com/de/vpc/

[58] OpenStack Webseite. http://www.openstack.org/

[59] Rackspace Webseite. http://www.rackspace.com/

[60] Google Compute Engine Webseite. https://developers.google.com/compute/

[61] Windows Azure Webseite. http://www.windowsazure.com/de-de/

[62] Chef Cookbook User. http://community.opscode.com/cookbooks/user

[63] JavaScript Object Notation. http://de.wikipedia.org/wiki/JavaScript_Object_Notation

[64] TOSCA Implementer's Recommendations for Interoperable TOSCA Implementations,
Version 1.0 Interoperability Subcommittee, Working Draft 01, Rev. 05, 20 May
2013. https://www.oasis-
open.org/committees/document.php?document_id=49302&wg_abbrev=tosca

[65] TOSCA Primer, Version 1.0. Committee Note Draft (CND) 01, Working Draft 07,
Revision 01, 08 February 2013. https://www.oasis-
open.org/committees/document.php?document_id=48201&wg_abbrev=tosca

http://en.wikipedia.org/wiki/Service_orchestration
http://aws.amazon.com/de/vpc/
http://www.openstack.org/
http://www.rackspace.com/
http://www.windowsazure.com/de-de/
http://community.opscode.com/cookbooks/user
http://de.wikipedia.org/wiki/JavaScript_Object_Notation

89

Anhang 1

Node-Type-Properties-Dokument für den Node-Type "MySQL" aus dem Cookbook "mysql"

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://community.opscode.com/cookbooks/mysql/nodetype
_properties" targetNamespace="http://community.opscode.com/
cookbooks/mysql/nodetype_properties">

<xs:complexType name="t-mysql-properties">
<xs:sequence>

<xs:element name="mysql/server_root_password" type="string"
default="randomly generated">
<xs:annotation>

<xs:documentation xml:lang="en">Randomly generated password
for the mysqld root user</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="mysql/bind_address" type="string"

default="ipaddress">
<xs:annotation>

<xs:documentation xml:lang="en">Address that mysqld should
listen on</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="mysql/data_dir" type="string"

default="/var/lib/mysql">
<xs:annotation>

<xs:documentation xml:lang="en">Location of mysql
databases</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="mysql/conf_dir" type="string"

default="/etc/mysql">
<xs:annotation>

<xs:documentation xml:lang="en">Location of mysql conf
files</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="mysql/ec2_path" type="string"

default="/mnt/mysql">
<xs:annotation>

<xs:documentation xml:lang="en">Location of mysql directory

90

on EC2 instance EBS volumes</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="mysql/reload_action" type="string"

default="reload">
<xs:annotation>

<xs:documentation xml:lang="en">Action to take when mysql
conf files are modified</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="mysql/tunable" type="hash">

<xs:annotation>
<xs:documentation xml:lang="en">Hash of MySQL tunable

attributes</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="mysql/tunable/key_buffer" type="string"

default="250M"/>
<xs:element name="mysql/tunable/max_connections" type="string"

default="800"/>
<xs:element name="mysql/tunable/wait_timeout" type="string"

default="180"/>
<xs:element name="mysql/tunable/net_read_timeout" type="string"

default="30"/>
<xs:element name="mysql/tunable/net_write_timeout" type="string"

default="30"/>
<xs:element name="mysql/tunable/back_log" type="string"

default="128"/>
<xs:element name="mysql/tunable/table_cache" type="string"

default="128"/>
<xs:element name="mysql/tunable/table_open_cache" type="string"

default="128"/>
<xs:element name="mysql/tunable/max_heap_table_size"

type="string" default="32M"/>
<xs:element name="mysql/tunable/expire_logs_days" type="string"

default="10"/>
<xs:element name="mysql/tunable/max_binlog_size" type="string"

default="100M"/>
<xs:element name="mysql/client" type="hash">

<xs:annotation>
<xs:documentation xml:lang="en">Hash of MySQL client

attributes</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="mysql/client/version" type="string"

default="6.0.2"/>
<xs:element name="mysql/client/arch" type="string"

91

default="win32"/>
<xs:element name="mysql/client/package_file" type="string"

default="mysql-connector-c-6.0.2-win32.msi"/>
<xs:element name="mysql/client/url" type="string"

default="http://www.mysql.com/get/Downloads/Connector-C/
mysql-connector-c-6.0.2-win32.msi/from/http://
mysql.mirrors.pair.com/"/>

<xs:element name="mysql/client/package_name" type="string"
default="MySQL Connector C 6.0.2"/>

<xs:element name="mysql/client/basedir" type="string"
default="C:\Program Files (x86)\MySQL\Connector C 6.0.2"/>

<xs:element name="mysql/client/lib_dir" type="string"
default="C:\Program Files (x86)\MySQL\
Connector C 6.0.2\lib\opt"/>

<xs:element name="mysql/client/bin_dir" type="string"
default="C:\Program Files (x86)\MySQL\Connector C 6.0.2\bin"/>

<xs:element name="mysql/client/ruby_dir" type="string"
default="system ruby"/>

</xs:sequence>
</xs:complexType>
<xs:element name="mysql-properties" type="t-mysql-properties"/>

</xs:schema>

92

Anhang 2

Die Datei "metaparser.rb"

require './lib/chef/metadata'
require 'java'
java_import 'org.tosca.meta.CookbookMetamodel'
java_import 'org.tosca.meta.cookbook.Recipe'
java_import 'org.tosca.meta.cookbook.Dependency'
java_import 'org.tosca.meta.cookbook.Attribute'

metadata_file=$pathname
puts metadata_file
cmm=CookbookMetamodel.new
metadata = Chef::Cookbook::Metadata.new
metadata.from_file(metadata_file)

name="#{metadata.name}"
cmm.setName(name.to_java)

description="#{metadata.description}"
cmm.setDescription(description.to_java)

metadata.recipes.each { |name, description|
name="#{name}"
description=" #{description}"
recipe=Recipe.new
recipe.setName(name)
recipe.setDescription(description)
cmm.getRecipes().add(recipe)

}

metadata.platforms.each { |platform, version|
platform="#{platform}"
cmm.getPlatforms().add(platform)

}

metadata.dependencies.each { |cookbook, version|
cookbook="#{cookbook}"
version=" #{version}"
dependency=Dependency.new
dependency.setCookbook(cookbook)
dependency.setVersion(version)
cmm.getDependencies().add(dependency)

}

93

metadata.attributes.each { |name, options|
name="#{name}"
attribute=Attribute.new
attribute.setName(name)
options.each{|optionname, option|

optionname="#{optionname} "
option="#{option}"
if /display_name /=~optionname then

attribute.setDisplay_name(option)
end
if /description/=~optionname then

attribute.setDescription(option)
end
if /default /=~optionname then

attribute.setDefault_value(option)
end
if /choice /=~optionname then

attribute.setChoice(option)
end
if /calculated/=~optionname then

attribute.setCalculated(option)
end
if /type /=~optionname then

attribute.setType(option)
end
if /required /=~optionname then

attribute.setRequired(option)
end
if /recipes/=~optionname then

attribute.setRecipes(option)
end

}
cmm.getAttributes().add(attribute)

}

return cmm

94

Anhang 3

Die Datei "ScriptArtifact.xsd"

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
targetNamespace="http://docs.oasis-open.org/tosca/.../Artifacts"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmlns="http://docs.oasis-open.org/tosca/ns/2011/12/Artifacts"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ScriptArtifactProperties">
<xs:complexType>

<xs:sequence>
<xs:element name="ScriptLanguage" type="xs:anyURI"/>
<xs:element name="PrimaryScript" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

95

Anhang 4

Die Datei "ChefArtifact.xsd"

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.example.com/ChefArtifacts"

elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns="http://www.example.com/ChefArtifacts"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="documentation" type="tDocumentation"/>
<xs:complexType name="tDocumentation" mixed="true">

<xs:sequence>
<xs:any processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="source" type="xs:anyURI"/>

</xs:complexType>
<xs:complexType name="tExtensibleElements">

<xs:sequence>
<xs:element ref="documentation" minOccurs="0"

maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>
<xs:element name="ChefArtifactProperties">

<xs:complexType>
<xs:complexContent>

<xs:extension base="tChefArtifactProperties"/>
</xs:complexContent>

</xs:complexType>
</xs:element>
<xs:complexType name="tChefArtifactProperties">

<xs:complexContent>
<xs:extension base="tExtensibleElements">

<xs:sequence>
<xs:element name="Cookbooks">

<xs:complexType>
<xs:sequence>

<xs:element name="Cookbook" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="name" type="xs:string"
use="required"/>

<xs:attribute name="location" type="xs:anyURI"
use="required"/>

96

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Roles" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="Role" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="name" type="xs:string"
use="required"/>

<xs:attribute name="location" type="xs:anyURI"
use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Mappings" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="PropertyMapping"
type="tPropertyMapping" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="SourcePropertyMapping"
type="tPropertyMapping" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="TargetPropertyMapping"
type="tPropertyMapping" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="InputParameterMapping"
type="tParameterMapping" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="OutputParameterMapping"
type="tParameterMapping" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="RunList">

<xs:complexType>
<xs:sequence>

<xs:element name="Include" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="RunListEntry"

97

type="tRunListEntry" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Exclude" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="RunListEntry"
type="tRunListEntry" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="tRunListEntry">

<xs:attribute name="cookbookName" type="xs:string"/>
<xs:attribute name="recipeName" type="xs:string"/>
<xs:attribute name="roleName" type="xs:string"/>

</xs:complexType>
<xs:complexType name="tParameterMapping">

<xs:attribute name="parameterName" type="xs:string"
use="required"/>

<xs:attribute name="cookbookAttribute" type="xs:string"
use="required"/>

</xs:complexType>
<xs:complexType name="tPropertyMapping">

<xs:attribute name="propertyPath" type="xs:string" use="required"/>
<xs:attribute name="cookbookAttribute" type="xs:string"

use="required"/>
<xs:attribute name="mode" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="input"/>
<xs:enumeration value="output"/>
<xs:enumeration value="input-output"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:schema>

98

99

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß
aus anderen Werken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Stuttgart, den 8. Januar 2014 _____________________

	Einleitung
	Hintergrund
	Problemstellung
	ZielderArbeit
	StrukturderArbeit

	Grundlagen
	Chef
	Architektur
	Cookbooks
	Metadaten
	BestehendeDefiziteundZusammenfassung

	Juju
	Arbeitsweise
	JujuCharm
	DasVerzeichnis"hooks"
	DieDatei"metadata.yaml"
	DieDatei"config.yaml"

	RelationinJuju
	BestehendeDefiziteundZusammenfassung

	TopologyandOrchestrationSpecificationforCloud
	Einführung
	Service-TemplatesundArtifacts
	RequirementsandCapabilities
	TOSCACloudServiceARchive(CSAR)
	TOSCA-Definitions-Dokument

	AnforderungenaneinautomatischesVerfahren
	AbstraktionderEigenheitenverschiedenerDevOps-A
	GrenzenundEinschränkungen
	Modell-Transformation
	Modell-TransformationvonChefnachTOSCA
	Modell-TransformationvonJujunachTOSCA

	KonzeptefüreinautomatischesVerfahren
	ErzeugungvonTOSCANode-TypesausbestehendenChe
	ErzeugungdesNode-Type-Properties-Dokuments
	ErzeugungvonRequirement-TypesundCapability-Typ
	ErzeugungvonArtifact-TypesundArtifact-Template
	DiedirekteIntegration
	DietransparenteIntegration
	DerbevorzugteAnsatz

	ErzeugungvonNode-TypeundNode-Type-Implementati
	ErzeugungderentsprechendenCSAR-Datei

	ErzeugungvonTOSCANode-TypesausbestehendenJuj
	ErzeugungvonTOSCARelationship-Typesausbestehe
	ErzeugungvonArtifact-TypesundArtifact-Template
	ErzeugungvonRelationship-TypeundRelationship-T
	ErzeugungderentsprechendenCSAR-Datei

	ErzeugungvonTOSCAService-Templates
	ErzeugungderElementeImport
	ErzeugungvonNode-Templates
	ErzeugungvonRelationship-Templates
	ErzeugungderentsprechendenCSAR-Datei

	EntwurfundImplementierung
	Anforderungsanalyse
	FunktionaleAnforderungen
	Nicht-funktionaleAnforderungen
	ZusätzlicheFunktionalitätendesPrototyps

	EntwurfdesPrototyps
	ArchitekturdesPrototyps
	InterneStrukturderKomponenten
	DieFunktionsweisederKomponenten
	DieFunktionsweisederKomponente"Node-Type-Gener
	DieFunktionsweisederKomponente"Relationship-Ty
	DieFunktionsweisederKomponente"Service-Templat

	ImplementierungdesPrototyps
	DasPaket"org.tosca.csar"
	DieSchnittstelle"INodeTypeGenerator"
	DieSchnittstelle"IRelationshipTypeGenerator"
	DieSchnittstelle"IServiceTemplateGenerator"

	DasPaket"org.tosca.meta"
	DieSchnittstelle"IMetamodel"
	DieSchnittstelle"IMetamodelGenerator"
	DieSchnittstelle"IMetamodelConverter"

	DasPaket"org.tosca.util"

	Evaluation
	TestderFunktionalitätdesPrototyps
	ValidierenvonCSARs

	ZusammenfassungundAusblick

