
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3508

Zeitreihenanalyse auf dünnen
Gittern

David Pfander

Studiengang: Informatik

Prüfer/in: Prof. Dr. Dirk Pflüger

Betreuer/in: M.sc. Fabian Franzelin

Beginn am: 10. Juni 2013

Beendet am: 10. Dezember 2013

CR-Nummer: H.2.8

Kurzfassung

Zeitreihen sind Mengen von zeitlich geordneten Beobachtungen und fallen bei nahezu allen
messbaren Daten an. In dieser Arbeit wird das Vorhersageproblem für Zeitreihen untersucht,
für das viele praktische Anwendungen existieren, darunter die Vorhersage von Börsendaten.
Für die Untersuchung von Zeitreihen können Gitter-basierte Ansätze verwendet werden. Bei
diesen treten jedoch bei hohen Problemdimensionen unpraktikabel große Rechenzeiten auf.
In dieser Arbeit wird eine Methode zur Zeitreihenanalyse mit dünnen Gittern vorgestellt,
die es erlaubt, Lösungen für Probleme mit höherer Dimensionalität zu berechnen. Die
durchgeführten Experimente zeigen dabei, dass für einige Datensätze Vorhersagen mit
sehr hoher Qualität berechnet werden. Gleichzeitig ist die benötigte Rechenzeit für viele
zeitkritische Anwendungen bereits ausreichend. Um das Anwendungsspektrum der Methode
weiter zu vergrößern, werden Optimierungen vorgestellt, mit denen die benötigte Rechenzeit
weiter verringert wird.

3

Inhaltsverzeichnis

1. Einleitung 9

2. Data Mining mit dünnen Gittern 13
2.1. Was sind dünne Gitter? . 13

2.2. Knowledge Discovery und Data Mining . 14

2.3. Grundlagen der dünnen Gitter . 14

2.4. Klassifikation mittels der Methode der kleinsten Quadrate 22

2.5. Klassifikation mittels Dichteschätzung . 24

2.6. Regressionaufgaben auf dünnen Gittern . 27

2.7. Adaptivität . 27

3. Zeitreihenanalyse mit dünnen Gittern 31
3.1. Grundlagen der Zeitreihenanalyse . 31

3.2. Das Vorhersageproblem für Zeitreihen . 32

3.3. Zeitreihenanalyse als Data Mining Problem . 34

3.4. Regularisierung und Validierung . 35

3.5. Der gesamte Algorithmus . 37

4. Die Konstruktion von Attributräumen 39
4.1. Das allgemeine Verfahren . 39

4.2. Attributkonstruktoren . 41

4.3. Über die Wahl der Datenpunkte . 42

4.4. Möglichkeiten der Datenvorverarbeitung . 43

4.5. Dimension des Dünngitterraums und Anzahl der Datenpunkte 45

5. Datensätze und Vorhersagequalität 47
5.1. Der synthetische Datensatz „Kurve“ . 48

5.2. Der synthetische Datensatz „Muster“ . 53

5.3. Experimente mit Finanzdatensätzen . 57

5.4. Interpretation der qualitativen Ergebnisse . 65

6. Beschleunigung der Zeitreihenanalyse 67
6.1. Die verwendete Plattform . 67

6.2. Benötigte Rechenzeit ohne Optimierungen . 67

6.3. Ausgangspunkt und Methodik der Optimierungen 70

6.4. Wiederverwertung des Koeffizientenvektors über mehrere Zeitschritte 71

6.5. Levelreduktion durch Adaptivität . 72

5

6.6. Zoom-Ansatz . 75

7. Zusammenfassung und Ausblick 79

A. Anhang 81
A.1. Evaluation des Dichte-basierten Ansatzes . 81

Literaturverzeichnis 87

6

Abbildungsverzeichnis

2.1. Eindimensionale Hutfunktion und nodale Basis. 16

2.2. Interpolation mit nodaler Basis in einer Dimension. 18

2.3. Konstruktion eines Dünngitterraums ohne Rand. 19

2.4. Konstruktion eines Dünngitteraums mit Rand. 20

2.5. Interpolation auf einem dünnen Gitter in einer Dimension. 22

2.6. Dünngitterfunktionen des Schachbrettdatensatzes als Heatmap. 26

2.7. Illustration des Prinzips der Verfeinerung in zwei Dimensionen. 28

3.1. Schema des iterierten Vorhersageproblems. 33

5.1. Verlauf der Zeitreihe des „Kurve“-Datensatzes. 49

5.2. Vorhersagequalität des „Kurve“-Datensatz. 50

5.3. Zeitreihe des „Kurve“-Datensatzes im Attributraum. 52

5.4. Illustration der Periodizität der Differenzen im „Kurve“-Datensatz. 53

5.5. Die Zeitreihe des „Muster“-Datensatzes. 54

5.6. Schema der Konstruktion des „Muster“-Datensatzes und berechnete Funktion. 55

5.7. Vorhersagequalität des „Muster“-Datensatz. 56

5.8. Die Zeitreihe des „DAX“-Datensatz. 58

5.9. Vorhersagequalität des „DAX“-Datensatz. 59

5.10. Die Zeitreihe des „Dow Jones“-Datensatz. 61

5.11. Vorhersagequalität des „Dow Jones“-Datensatz. 62

5.12. Verlauf des Dollar in Euro Kurses im Dezember 2012. 63

5.13. Vorhersagequalität des „FX“-Datensatz. 64

6.1. Benötigte Rechenzeit für hohe Trefferraten. 69

6.2. Koeffizienten-Wiederverwertung mit zwei Datensätzen. 71

6.3. Adaptivität bei niedrigerem Level angewendet auf den „Muster“-Datensatz. . 74

6.4. Adaptivität bei niedrigerem Level angewendet auf den „FX“-Datensatz. 74

6.5. Verfeinern der Umgebung mit zwei Datensätzen. Dabei wird jeweils die
Schrittanzahl und damit die Dimension des Attributraums variiert. 76

A.1. Vorhersagequalität des „Kurve“-Datensatz mit dem Dichte-basierten Ansatz. . 82

A.2. Vorhersagequalität des „Muster“-Datensatz mit dem Dichte-basierten Ansatz. 83

A.3. Vorhersagequalität des „DAX“-Datensatz mit dem Dichte-basierten Ansatz. . . 84

A.4. Vorhersagequalität des „Dow Jones“-Datensatz mit dem Dichte-basierten Ansatz. 85

A.5. Vorhersagequalität des „FX“-Datensatz mit dem Dichte-basierten Ansatz. . . . 86

7

Verzeichnis der Algorithmen

3.1. Der gesamte Algorithmus . 38

6.1. Verfeinerungs- und Vergröberungsschema . 73

8

1. Einleitung

Eine Zeitreihe ist eine Menge von zeitlich geordneten Beobachtungen. Zeitreihenanalyse ist
die Untersuchung von Zeitreihen, dabei sind unter anderem die folgenden drei Arten von
Untersuchungen möglich [BJR08]:

1. Die Vorhersage zukünftiger Zeitschritte einer Zeitreihe.

2. Bestimmung einer Transferfunktion aus zwei gegebenen Zeitreihen. Dabei stellt eine
Zeitreihe eine Eingabegröße dar. Über die andere Zeitreihe ist die Antwort eines
dynamischen Systems auf die aufeinanderfolgenden Eingaben gegeben.

3. Die Untersuchung multivariater Zeitreihen. Hier werden mehrere Zeitreihen von
korrelierten Größen zusammen untersucht. Ziel dieser Untersuchung ist vor allem die
Verbesserung von Vorhersagen gegenüber der Betrachtung einer einzelnen Zeitreihe.

In dieser Arbeit werden alle drei vorgestellten Untersuchungen behandelt. Im Fokus steht
dabei die Vorhersage zukünftiger Werte einer Zeitreihe. Dafür wird eine unbekannte Vorher-
sagefunktion mithilfe gegebener Zeitreihen approximiert, wobei die approximierte Vorhersa-
gefunktion kann auch als Transferfunktion interpretiert werden kann. Außerdem werden die
Auswirkungen auf die Vorhersage durch Verwendung korrelierter Zeitreihen betrachtet, was
einer Untersuchung multivariater Zeitreihen entspricht.

Es existieren viele unterschiedliche Methoden zur Analyse von Zeitreihen [BJR08, SS10],
darunter Support Vector Machines [HDO+

98, CT03] und neuronale Netzwerke [Zha03]. Die
Ansätze, die in dieser Arbeit betrachtet werden, sind Gitter-basierte Methoden. Dazu wird
die Zeitreihe in einen Attributraum übersetzt, der es erlaubt Gitter-basierte Regressions-
oder Klassifikationsalgorithmen zur Approximation einer unbekannten Vorhersagefunktion
zu nutzen.

Gitter-basierte Methoden besitzen die problematische Eigenschaft, dass die benötigte Rechen-
zeit bei der Berechnung von höherdimensionalen Problemen schnell sehr groß wird. Dieses
Phänomen wird als „Fluch der Dimensionalität“ bezeichnet [Bel61]. Durch die Verwendung
von dünnen Gittern kann dieses Problem reduziert werden. Dünne Gitter verwenden eine
hierarchische Basis im Gegensatz zur nodalen Basis, die bei vielen Gitter-basierten Ansatzen
eingesetzt wird. Für dünne Gitter kann trotz einer deutlichen Reduktion der Anzahl der
Gitterpunkte gezeigt werden, dass ein ähnlicher Interpolationsfehler wie bei der Verwendung
herkömmlicher Gitter vorliegt. Aufgrund der reduzierten Anzahl an Gitterpunkten kann
damit eine deutlich reduzierte Rechenzeit erreicht werden, besonders bei der Betrachtung
höherdimensionaler Probleme [BG04, Pfl10, Gar04].

9

1. Einleitung

Um darzulegen, dass die Methode erfolgreich zum Vorhersagen von Zeitreihen genutzt
werden kann, werden fünf Datensätze vorgestellt. Zwei der Datensätze wurden synthetisch
generiert und dienen der grundsätzlichen Validierung des Ansatzes. Zusätzlich werden Ex-
perimente mit drei nichtsynthetischen Datensätzen durchgeführt, mit denen eine erfolgreiche
Anwendung des Ansatzes auf realistischere Probleme gezeigt werden soll. Im Einzelnen
wurden Daten der Aktienindizes DAX und Dow Jones verwendet, sowie zusätzlich der Kurs
des Euro gegenüber dem Dollar.

Neben der Qualität der Vorhersagen, die mit dieser Methode erreichbar ist, wird angestrebt,
diesen Ansatz auch für zeitkritische Anwendungen verfügbar zu machen. Dazu wird zu-
nächst mittels einiger Experimente untersucht, wie hoch die Rechenzeitanforderungen durch
die verwendete Methode sind. Anschließend werden einige Optimierungen vorgestellt, mit
denen die benötigte Rechenzeit weiter verringert wird, damit noch stärker zeitkritische
Datensätze mit dieser Methode untersucht werden können.

10

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Data Mining mit dünnen Gittern: Hier wird in die zugrunde liegende Theorie
der dünnen Gitter eingeführt. Weiterhin wird der Data Mining Prozess beschrieben,
der auch in dieser Arbeit Verwendung findet. Anschließend wird ausgeführt, wie
bestimmte Data Mining Probleme mithilfe der Theorie der dünnen Gitter gelöst werden
können.

Kapitel 3 – Zeitreihenanalyse mit dünnen Gittern: In diesem Kapitel wird beschrieben, wie
das Vorhersageproblem für Zeitreihen mit den im vorherigen Kapitel beschriebenen
Data Mining Methoden gelöst werden kann. Da das beschriebene Verfahren durch
Variation von Parametern eine Vielzahl von Modellen für einen gegebenen Datensatz
erzeugen kann, wird zudem auf die Validierung passender Modelle eingegangen.

Kapitel 4 – Die Konstruktion von Attributräumen: Um das Vorhersageproblem für Zeitrei-
hen als Data Mining Problem aufzufassen, müssen die Zeitreihen in einen Attributs-
raum überführt werden. Die Konstruktion geeigneter Attributsräume wird in diesem
Kapitel beschrieben.

Kapitel 5 – Datensätze und Vorhersagequalität: Um zu zeigen, dass sich die beschriebene
Methode zur Lösung des Vorhersageproblems eignet, werden in diesem Kapitel Ex-
perimente vorgestellt, die dies belegen. Dafür werden sowohl synthetische als auch
nichtsynthetische Datensätze betrachtet.

Kapitel 6 – Beschleunigung der Zeitreihenanalyse: Da das zweite Ziel dieser Arbeit die
Anwendung auf zeitkritische Vorhersageprobleme darstellt, wird in diesem Kapitel
untersucht, wie das vorgestellte Verfahren weiter beschleunigt werden kann. Für die
Untersuchungen werden die Datensätze aus dem letzten Kapitel verwendet.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Anknüpfungspunkte vor.

11

2. Data Mining mit dünnen Gittern

Der in dieser Arbeit vorgestellte Ansatz zur Zeitreihenanalyse basiert auf Data Mining
Methoden, die ihrerseits wiederum auf dünnen Gittern basieren. Bevor also das Vorher-
sageproblem für Zeitreihen angegangen werden kann, müssen zunächst die benötigten
Grundlagen ausgeführt werden. Als erster Schritt zur Zeitreihenanalyse wird daher in die-
sem Kapitel in die Theorie der dünnen Gitter eingeführt und die darauf basierenden Data
Mining Methoden vorgestellt. Der Ansatz für die Zeitreihenanalyse selbst wird anschließend
in Kapitel 3 vorgestellt.

2.1. Was sind dünne Gitter?

Auf gitterbasierte Ansätze mit äquidistanten Gitterpunkten in jeder Dimension kann bei
Problemen mit Dimensionalität häufig nicht zurückgegriffen werden, da die Anzahl der
Gitterpunkte mit der Dimension exponentiell steigt und die daraus resultierende Rechenzeit
nicht mehr praktikabel ist. Es werden O(Nd) Gitterpunkte für ein Problem in d Dimensionen
benötigt, wenn in Richtung jeder Dimension N Gitterpunkte verwendet werden [Pfl10].
Dieses Phänomen ist als „Fluch der Dimensionalität“ bekannt [Bel61]. In dieser Arbeit
werden gewöhnliche Gitter mit äquidistant verteilten Gitterpunkten in jeder Dimension als
voll besetzte Gitter bezeichnet.

Bei einem Ansatz mit dünnen Gittern können häufig gegenüber einem voll besetzten Gitter
weniger Gitterpunkte verwendet werden, ohne dabei eine schlechtere Lösung zu erhalten.
Dies ist darauf zurückzuführen, dass es mit einem dünnen Gitter möglich ist, nur dort
Gitterpunkte zu investieren, wo auch tatsächlich Datenpunkte vorliegen. Das heißt, durch
die Verwendung von dünnen Gittern wird es möglich, ein Problem mit ähnlicher Genauigkeit,
allerdings bei deutlich reduzierter Rechenzeit zu lösen.

Dünne Gitter wurden zuerst zur Interpolation und zum Lösen partieller Differenzialgleichun-
gen verwendet [Zen91]. Seitdem wurden dünne Gitter insbesondere für Probleme aus dem
Bereich der numerischen Quadratur [GG98] und Data Mining [HP13, PFPB13] eingesetzt. Ein
Ansatz zur Zeitreihenanalyse mittels dünner Gitter wurde bereits in zwei anderen Arbeiten
vorgestellt [GGG10, BG13]. Dort kam allerdings die Kombinationstechnik für dünne Gitter
zum Einsatz, die in dieser Arbeit nicht verwendet wird1.

1Die Kombinationstechnik wird von Jochen Garcke ausführlich dargestellt [Gar04].

13

2. Data Mining mit dünnen Gittern

2.2. Knowledge Discovery und Data Mining

Der Prozess der Wissensentdeckung in Datenbanken (Knowledge Discovery in Databases),
aufgrund des englischsprachigen Urspungs abgekürzt KDD, ist ein nichttrivialer Prozess
zum Identifizieren von gültigen, neuen, potenziell nützlichen und verstehbaren Mustern
in Daten. Das bedeutet, der KDD-Prozess erlaubt es Muster aus Daten zu extrahieren, die,
durch korrekte Interpretation, neues und nützliches Wissen darstellen können [FPsS96].
KDD ist ein Prozess, der aus mehreren Schritten besteht [FPsS96]:

1. Auswahl der Daten: Es werden die Daten ausgewählt, aus der die Muster extrahiert
werden sollen. Dafür ist es notwendig zu wissen, nach welchen Mustern gesucht wird
und es wird zumindest eine Vermutung benötigt, welche Daten diese Muster enthalten
könnten.

2. Vorverarbeitung: Die meisten Daten liegen in nicht direkt verwertbarer Form vor.
Häufig muss eine Strategie zum Umgang mit fehlerhaften Daten gefunden werden. Falls
außerdem Daten fehlen, muss eine Strategie entwickelt werden, um die Auswirkungen
durch fehlende Daten zu minimieren.

3. Überführung der Daten: Die meisten Daten liegen nicht passend vor, um daraus die
Muster mittels Data Mining extrahieren zu können. Häufig müssen zunächst als weitere
Vorverarbeitung bestimmte Informationen aus den Daten gewonnen werden.

4. Data Mining: In diesem Arbeitsschritt werden aus den vorbereiteten Daten Muster
errechnet. Dazu sind Klassifikations- und Regressionsmethoden üblich. In dieser Arbeit
wird hierfür auf Methoden zurückgegriffen, die auf der Theorie dünner Gitter basieren.

5. Interpretation oder Evaluation der Daten: Die durch das Data Mining gewonnenen Mus-
ter werden interpretiert. Wurden die vorherigen Schritte korrekt durchgeführt, dann
kann durch die richtige Interpretation der Muster neues Wissen gewonnen werden.
Damit eine Interpretation möglich wird, können weitere Nachverarbeitungsschritte
notwendig sein.

Die Vorgehensweise in dieser Arbeit folgt weitgehend diesem Muster, wobei die ersten
drei Schritte nicht strikt getrennt werden, sondern als ein großer Vorverarbeitungsschritt
betrachtet werden. Eine Aufteilung entsprechend dem beschriebenen Prozess ist jedoch
grundsätzlich möglich. Auf die Data Mining Methoden wird in den Abschnitten 2.4 und 2.6
näher eingegangen. Die Vorverarbeitungsschritte werden vor allem in Kapitel 3 ausgeführt.
Die Interpretation und Evaluation wird vor allem im Kontext konkreter Experimente in
Kapitel 5 stattfinden.

2.3. Grundlagen der dünnen Gitter

Dünne Gitter wurden als Modifikation von voll besetzten Gittern entwickelt. Sie können
elegant mittels einer Unterraumkonstruktion dargestellt werden. Damit der Schritt von voll

14

2.3. Grundlagen der dünnen Gitter

besetzten Gittern zu dünnen Gittern nachvollziehbar bleibt, wird zur Erläuterung auf volle
Gitter zurückgegriffen. Das Interpolationsproblem auf einem voll besetzten Gitter mit einer
Basis bestehend aus Hutfunktionen dient dabei als Ausgangspunkt. Zunächst werden jedoch
noch einige mathematische Definitionen benötigt.

2.3.1. Mathematische Vorbemerkungen

Für die Darstellung von Vektoren wird eine Stich über dem Variablennamen verwendet. Des
Weiteren wird sowohl für voll besetzte als auch für dünne Gitter üblicherweise gefordert, dass
als Urbildmenge der d-dimensionale Hyperwürfel [0, 1]d verwendet wird. Diese Konvention
wird auch in dieser Arbeit beibehalten. Datenpunkte und Funktionen, die nicht passend
vorliegen, werden daher auf [0, 1]d normiert.

Um im Rahmen der Theorie der dünnen Gitter Multi-Indizes verwenden zu können, wird
die folgende Relation in einem d-dimensionalen Vektorraum definiert wird:

l ≤ k ⇐⇒ ∀i ∈ {1, . . . , d} : li ≤ ki(2.1)

Zusätzlich werden die Summen- und Maximumsnormen für Multi-Indizes definiert mit

|l|1 :=
d

∑
j=1

lj, |l|∞ := max
1≤j≤d

|lj|.(2.2)

Der Abstand zwischen zwei Gitterpunkten wird im Folgenden mit hl bezeichnet, Er wird
definiert als

hl := 2−l .(2.3)

Der Parameter l stellt die Diskretisierungsstufe dar und wird auch als Level bezeichnet. In
Fällen, in denen die genaue Breite des Intervalls keine Rolle spielt, wird bei hl gelegentlich
auf das Subskript l verzichtet. Im d-dimensionalen Fall wird der Level vektoriell mit l
angegeben. Die zugehörige Breite der Intervalle ist dann gegeben durch

hl := (2−l1 , 2−l2 , . . . , 2−ld).(2.4)

Hierdurch werden unterschiedliche feine Diskretisierungen in unterschiedliche Richtungen
des verwendeten Raumes angegeben.

Des Weiteren wird das übliche Skalarprodukt des L2-Raums definiert mit

(f , g)L2 :=
∫

Ω
f (x)g(x)dx f , g ∈ L2.(2.5)

Außerdem wird die durch das Skalarprodukt induzierte Norm des L2-Raums benötigt, diese
ist definiert durch

|| f ||2L2
:=
∫

Ω
f 2(x)dx.(2.6)

15

2. Data Mining mit dünnen Gittern

1

1

0-1

1

Abbildung 2.1.: Auf der linken Seite ist ein Graph der eindimensionalen Hutfunktion zu
sehen. Die rechte Seite zeigt einen Ausschnitt der nodalen Basis in einer
Dimension.

Der Support einer Funktion f : A → R, im Deutschen auch Träger genannt, ist gegeben
durch

supp(f) := {x ∈ A| f (x) 6= 0}(2.7)

Der Support einer Funktion ist also die abgeschlossene Hülle der Menge der Punkte, an
denen die Funktion nicht Null ist.

2.3.2. Das Interpolationsproblem in einer Dimension auf einem voll besetztem
Gitter

Ein volles besetztes Gitter besitzt äquidistante Gitterpunkte in Richtung jeder Dimension.
Voll besetzte Gitter werden häufig zusammen mit der nodalen Basis verwendet, die Hutfunk-
tionen als Basisfunktionen verwendet. Dabei überlappt sich der Support der Basisfunktion
an einem Gitterpunkt mit dem Support der Basisfunktionen an direkt benachbarten Git-
terpunkten. Durch diese Überlappung werden Punkte zwischen den Gitterpunkten linear
interpoliert. Ausgangspunkt für die Basisfunktionen ist die in Abbildung 2.1 auf der linken
Seite dargestellte eindimensionale Hutfunktion

φ(x) := max(1− |x|, 0).(2.8)

Um die Hutfunktion in einem Gitter verwenden zu können, muss sie auf ein Intervall skaliert
werden. Zu diesem Zweck wird die Funktion φ wie folgt angepasst:

φj(x) := max
(

1−
∣∣∣∣ x− jh

h

∣∣∣∣ , 0
)

(2.9)

16

2.3. Grundlagen der dünnen Gitter

Für eine gewählte Diskretisierung hl = 2−l zählt der Parameter j die Hutfunktionen an den
einzelnen Gitterpunkte auf. Die Menge der Hutfunktionen wiederum kann als Basis für
einen Raum

Vl :={φ1, φ2 . . . , φ2l−1}(2.10)

verwendet werden. Vl besitzt 2l − 1 Gitterpunkten mit 2l − 1 darauf zentrierten Hutfunk-
tionen auf. Die Hutfunktion an einem der Punkte überlappt sich jeweils mit den direkt
benachbarten Punkten. Dies ist in Abbildung 2.1 auf der rechten Seite dargestellt.

Alle Funktionen in Vn können als Linearkombinationen der Basisfunktionen dargestellt
werden:

fl(x) =
n

∑
i=1

αiφi(x)(2.11)

Dabei ist n gewählt mit n = 2l − 1. Ein Beispiel für eine einfache Anwendung dieses
Funktionsraums ist das Interpolationsproblem. Eine Funktion f : [0, 1] → R soll in einem
vollen Gitter mit Level l interpoliert werden. Dafür müssen initial n Auswertungen an den
Gitterpunkten xi durchgeführt werden, an denen genau eine der Hutfunktionen den Wert
1 annimmt. Diese Menge von Punkten kann als S = {(xi, yi)}n

i=0 dargestellt werden. Zur
Berechnung der Funktion, mit der die Datenpunkte in S interpoliert werden, muss lediglich
für jeden Gitterpunkt der zugehörige Koeffizient αi auf den Wert yi gesetzt werden. Damit
erhält man direkt die gewünschte interpolierende Funktion fn ∈ Vn. In Abbildung 2.2 ist
dies für ein Gitter mit Level 2 und daraus folgend 3 Gitterpunkten und Basisfunktionen
veranschaulicht. Dabei liegt die zu interpolierende Funktion schwarz im Hintergrund. Die
drei Basisfunktionen des Gitters sind grün eingefärbt. Die resultierende Funktion f2 ∈ V2 ist
in roter Farbe dargestellt.

2.3.3. Hierarchische Räume

Dünne Gitter basieren auf einer hierarchischen Basis. Als Basisfunktionen werden, wie bei
voll besetzten Gittern, üblicherweise Hutfunktionen verwendet. Da es sich bei Dünngit-
terräumen um hierarchische Räume handelt, die sich aus Unterräumen zusamensetzen,
muss die grundlegende Hutfunktion erneut modifiziert werden. Dafür wird die Hutfunk-
tion auf einem Unterraum eines vorgegebenen Levels l an einem Ort mit einem Index j
definiert [Gar11]:

φl,j(x) =

{
1− |(x− jhl)/hl | x ∈ [(j− 1)hl , (j + 1)hl]

⋂
[0, 1]

0 sonst
(2.12)

Wie bei voll besetzten Gittern ist jede Basisfunktion an einem Gitterpunkt zentriert. Über
den Index werden die Gitterpunkte aufgezählt. Der Schnitt mit [0, 1] ist notwendig, damit
der Rand des Gebiets korrekt berücksichtigt wird, falls ein Gitter mit Punkten auf dem Rand
verwendet wird.

17

2. Data Mining mit dünnen Gittern

10,50

1

Abbildung 2.2.: Ein einfaches Beispiel für eine Interpolation auf einem voll besetzten Gitter
in einer Dimension. Die Basisfunktionen sind in Grün dargestellt. Die rote
interpolierende Funktion überlappt sich mit den Basisfunktionen an den
Randpunkten.

Mit den Funktionen φl,j können die eigentlichen d-dimensionalen Basisfunktionen definiert
werden als [Gar11]:

φl,j(x) :=
d

∏
t=1

φlt,jt(xt)(2.13)

Um zu beschreiben, wie sich die Gitterpunkte auf das Gebiet verteilen, wird die Indexmen-
ge

Il := {i ∈N : 1 ≤ ij ≤ 2lj − 1∧ i ungerade∧ 1 ≤ j ≤ d}(2.14)

benötigt. Die an dieser Stelle etwas arbiträr erscheinende Anforderung, dass i ungerade
sein soll, wird später dazu dienen, während der Konstruktion des Dünngitterraums bereits
hinzugefügte Gitterpunkte nicht ein zweites Mal hinzuzufügen. Mithilfe von Il lässt sich ein
Dünngitterraum als direkte Summe von hierarchischen Unterräumen darstellen. Zunächst
werden hierzu die hierarchischen Unterräume mittels der oben definierten Basisfunktionen
definiert als

Wl :={φl,i(x) : i ∈ Il}.(2.15)

18

2.3. Grundlagen der dünnen Gitter

l0

l1

Abbildung 2.3.: Konstruktion eines Dünngitteraums ohne Rand (rot) in zwei Dimensionen
mit Level l = (3, 3). Die Unterräume des zugehörigen vollen Gitters sind
blau abgegrenzt.

Dabei stellt Wl einen Unterraum dar, der genau die Gitterpunkte auf dem durch l spezifi-
zierten Level enthält. Werden alle möglichen Unterräume mittels einer direkten Summe2

kombiniert, erhält man ein volles Gitter durch den Vektorraum Vv
n [Pfl10]:

Vv
n :=

⊕
|l|∞≤n

Wl(2.16)

Vv
n besitzt jetzt eine hierarchische Basis anstatt der nodalen Basis. Voll besetzt ist das Gitter

allerdings trotzdem, da die Gitterpunkte in Richtung jeder Dimension äquidistant über
das Gebiet verteilt sind. In Abbildung 2.3 sind die hierarchischen Unterräume für ein
zweidimensionales hierarchisches Gitter für alle Level bis inklusive l = (3, 3) dargestellt.
Werden alle dargestellten Unterräume summiert, ergibt sich das dargestellte voll besetzte
Gitter. Im Unterschied zur nodalen Basis überlappen sich Gitterpunkte mit gleichem Level
nicht, stattdessen besitzt die hierarchische Basis eine Baumstruktur. Dabei wird das Gebiet,
auf dem eine der Basisfunktionen Support hat, im nächsten Level aufgeteilt. Es existieren
dann mehrere nicht überlappende Basisfunktionen, die jeweils auf einer Teilmenge des
Gebiets Support besitzen. Durch die gestrichelten Linien ist in Abbildung 2.3 der Support
der Basisfunktion abgegrenzt.

2Die direkte Summe kann hier als lineare Hülle der Vereinigung der Basisfunktionen der Unterräume betrachtet
werden.

19

2. Data Mining mit dünnen Gittern

l0

l1

Abbildung 2.4.: Konstruktion eines Dünngitteraums mit Rand (rot) in zwei Dimensionen
mit Level l = (3, 3). Die Unterräume des zugehörigen vollen Gitters sind
blau abgegrenzt.

Neben dünnen Gittern ohne Rand, wie sie in dieser Arbeit verwendet werden, existieren
noch mehrere andere Varianten hierarchische Unterräume zu dünnen Gittern zu kombinie-
ren [Pfl10]. Eine besonders interessante Variante stellen die dünnen Gitter mit Rand dar, die
in Abbildung 2.4 für den zweidimensionalen Fall schematisch dargestellt sind. Während
Randpunkte grundsätzlich erwünscht sind, besitzen gewöhnliche dünne Gitter mit Rand
die Eigenschaft, dass mit zunehmendem Level die meisten Gitterpunkte am Rand liegen,
und nicht mehr im Gebiet. Grundsätzlich gibt es zwei Strategien, um dieses Problem zu
lösen. Zum einen können die Bedingungen für die Randpunkte modifiziert werden, wodurch
deren Anzahl reduziert wird. Andererseits können die Datenpunkte durch eine geeignete
Konstruktion so normalisiert werden, dass Gitterpunkte auf dem Rand nicht benötigt werden.
In dieser Arbeit wird auf die zweite Strategie zurückgegriffen.

Durch das Auslassen bestimmter Unterräume erhält man einen Dünngitterraum

Vn :=
⊕

|l|1≤n+d−1

Wl .(2.17)

In Abbildung 2.3 ist die Konstruktion für den zweidimensionalen Fall veranschaulicht. Im
Gegensatz zum Vollgitterfall werden jetzt nur die durch die rote, diagonal verlaufende Linie
begrenzten Unterräume aufsummiert.

Durch die Konstruktion der Unterräume werden zwei unterschiedliche Levelbegriffe ver-
wendet. Es existieren Unterräume eines bestimmten Levels l. Gleichzeitig ergibt sich durch

20

2.3. Grundlagen der dünnen Gitter

die Unterraumkonstruktion der Level eines Gitter, der oben über das Subskript n angegeben
wurde.

2.3.4. Interpolation in hierarchischen Räumen

Sei α ein Koeffizientenvektor passender Dimension für den jeweiligen Raum. Dann kann eine
Funktion u ∈ Vv

n als Linearkombination der Basisfunktionen von Vv
n dargestellt werden:

u(x) = ∑
|l|∞≤n

∑
i∈Il

αl,iφl,i(x)(2.18)

Analog ergibt sich eine Darstellung für beliebige Funktionen im Dünngitterraum Vn mit

u(x) = ∑
|l|1≤n+d−1

∑
i∈Il

αl,iφl,i(x).(2.19)

Im Vergleich zur Berechnung der Koeffizienten bei der „flachen“ Basis aus 2.3.2 ist die
Interpolation auf dünnen Gittern aufwendiger und kann effizient mittels einem als Hierarchi-
sierung bezeichneten Verfahren durchgeführt werden [Pfl10]. Als einfachere, allerdings auch
weniger effiziente Alternative kann ein lineares Gleichungssystem aufgestellt werden. Dazu
wird zunächst die zu interpolierende Funktion wieder an jedem Gitterpunkt xj ausgewertet,
wodurch sich die Menge S = {(xj, yj)}n

j=0 ergibt. Entsprechend der Definition der Funktion
u ergibt sich damit das Gleichungssystem mit den Gleichungen

yj = ∑
|l|1≤n+d−1

∑
i∈Il

αl,iφl,i(xj).(2.20)

für jeden der Gitterpunkte. In Abbildung 2.5 ist ein einfaches Beispiel für eine eindimen-
sionale Dünngitterinterpolation mit Level 2 zu sehen. Die drei Basisfunktion sind in grün
dargestellt. Die zu interpolierende Funktion ist schwarz eingefärbt, es handelt sich um
dieselbe Funktion wie sie bei dem Vollgitterbeispiel 2.2 zu finden war. Die gestrichelten
Pfeile symbolisieren die Werte und Vorzeichen der Koeffizienten. In Rot ist die resultierende
interpolierende Funktion u dargestellt.

Für den asymptotischen Interpolationsfehler || f (x)− u(x)||L2 einer interpolierenden Funkti-
on u kann für volle Gitter mit Level n und Intervallbreite hn = 2−n gezeigt werden, dass der
Fehler mit O(h2

n) abfällt. Dafür werden allerdings auch O(2nd
) Gitterpunkte benötigt [BG04].

Wird mit einem dünnen Gitter interpoliert, dann ist der Fehler im Vergleich zum voll
besetzten Gitter etwas größer mit

O(h2
n(log(h−1

n))d−1).(2.21)

Dafür steigt die Anzahl der Gitterpunkte mit zunehmendem Level des Gitters deutlich
langsamer [BG04]:

O(h−1
n (log(h−1

n))d−1) = O(2n(log(2n)d−1)(2.22)

21

2. Data Mining mit dünnen Gittern

10,50

1

Abbildung 2.5.: Einfaches Beispiel einer Interpolation auf einem dünnen Gitter in einer
Dimension. Die drei Basisfunktionen sind grün dargestellt, die blauen Pfeile
stellen die Werte der Koeffizienten dar. Die interpolierende Funktion ist Rot
dargestellt.

Das heißt, trotz der deutlich reduzierten Anzahl an Gitterpunkten ist bei einem dünnen Gitter
immer noch ein ähnlicher Fehler wie bei einem voll besetzten Gitter zu erwarten. Aufgrund
dieser Eigenschaft können mithilfe von dünnen Gittern Probleme mit höherer Dimension
angegangen werden können, bei der ein volles Gitter bereits zu viel Rechenzeit benötigen
würde, ohne dabei starke Einbußem hinsichtlich der Qualität der Lösung hinnehmen zu
müssen.

2.4. Klassifikation mittels der Methode der kleinsten Quadrate

Klassifikation ist die Bestimmung einer Funktion, die Datenpunkten Klassenbezeichnungen
zuordnet. Für die Bestimmung der Funktion wird eine Menge von Trainingsdaten verwendet.
Sei

S := {(xi, yi) ∈ Rd × T}m
i=1(2.23)

die Menge der Trainingsdaten, wobei yi die Klasse des zugehörigen Datenpunkts xi bezeich-
net. Die Menge T ist die Menge der Klassen beziehungsweise Klassenbezeichnungen. Es
wird gefordert, dass es sich bei T um eine endliche Menge handelt.

Auf den Trainingsdaten kann ein Klassifikationsproblem formuliert werden. Angenommen
die Menge S besteht aus Auswertungen einer unbekannten Funktion f : Rd → T aus dem

22

2.4. Klassifikation mittels der Methode der kleinsten Quadrate

Funktionsraum V, die jedem Datenpunkt seine zugehörige Klasse zuordnet. Dann kann S
genutzt werden, um f zu approximieren.

Zu beachten ist, dass die Trainingsdaten fehlerhaft oder unvollständig sein können, was
die maximal erreichbare Approximationsqualität reduziert. Ebenso kann die Qualität ein-
geschränkt bleiben, falls die Trainingsdaten die unbekannte Funktion strukturell nicht
ausreichend präzise wiedergeben, zum Beispiel weil alle Trainingsdaten nur aus einem
kleinen Bereich der Urbildmenge der Funktion f stammen. Die Wahl der Trainingsdaten ist
also entscheidend für eine gute Approximation der Klassifikationsfunktion.

Zur Lösung des Klassifikationsproblems mit der Methode der kleinsten Quadrate wird
zunächst ein Raum Vn mit der Basis Ψ = {φi(x)}n

i=1 gewählt für den gilt: Vn ⊂ V. Ei-
ne approximierende Funktion fN(x) kann mithilfe der Basis als Linearkombination der
Basisfunktionen und zusätzlichen Koeffizienten αi geschrieben werden als

fN(x) =
N

∑
i=1

αiφi(x).(2.24)

Um die Koeffizienten zu bestimmen, mit denen die Trainingsmenge approximiert wird, kann
der quadratische Fehler minimiert werden. Formal kann dies als Minimierungsproblem

fN = arg min
f ∗∈VN

(
1
m

m

∑
i=1

(yi − f ∗(xi))
2 + λ

N

∑
i=1

α2
i

)
.(2.25)

dargestellt werden [Pfl10]. Hierbei dient der Term (yi − f ∗(xi))
2 als zu minimierender

Fehlerterm zwischen den Koeffizienten der Dünngitterfunktion und den vorliegenden Da-
tenpunkten. Der Term ∑N

i=1 α2
i stellt den Regularisierungsoperator dar, er dient also der

Glättung der Funktion. Ziel der Regularisierung ist es, dass die Genauigkeit der Vorhersagen
auf noch unbekannte Daten maximiert wird. Dafür ist eine geeignete Wahl des Regularisie-
rungsparameters λ notwendig.

Es existieren auch andere Regularisierungsoperatoren, wobei sich der vorgestellte Operator
für diese Arbeit als ausreichend erwies. Durch Zeitreihenanalyse als Anwendung des Data
Mining Verfahrens ergeben sich einige spezielle Anforderungen für die Regularisierung,
die verwendete Strategie zur Wahl des Regularisierungsparameters wird in Abschnitt 3.4
vorgestellt.

Als Lösung des obigen Minimierungsproblems ergibt sich ein lineares Gleichungssystem,
welches in Matrixschreibweise notiert werden kann als [Pfl10](

1
m

BBT + λI
)

α =
1
m

By.(2.26)

Dabei ist α der Koeffizientenvektor der Dünngitterfunktion, die Matrix B ist gegeben durch

(B)ij := φi(xj).(2.27)

23

2. Data Mining mit dünnen Gittern

Um fN zu erhalten, muss das Gleichungssystem noch gelöst werden. Als Löser wurde
hierfür das Konjugierte-Gradienten-Verfahren, im Folgenden als CG-Verfahren bezeichnet,
verwendet [She94].

Durch die Methode der kleinsten Quadrate wird sichergestellt, dass an jeden Datenpunkt xi
die Dünngitterfunktion möglichst nahe am Wert yi liegt. Um die Klassifikationsaufgabe zu
lösen, müsste jedoch yi eine der Klassen aus T sein. Um die Methode der kleinsten Quadrate
verwenden zu können, muss zunächst mittels einer Abbildung g : T → R jedes Element
aus T auf eine reelle Zahl abgebildet werden. Da T endlich ist, stellt dies keine besondere
Schwierigkeit dar. Bei zwei Klassen und der Bezeichnermenge T = {Rot, Grün} kann den
einzelnen Elementen zum Beispiel ein Element aus der Menge {0, 1} zugeordnet werden.
Damit alle Klassen unterscheidbar als Werte erhalten bleiben und keine neuen Klassenwerte
unnötig eingeführt werden, muss die Abbildung bijektiv sein.

Um die berechnete Dünngitterfunktion fN zur Klassifikation zu benutzen, ist eine Nach-
behandlung des mit der Dünngitterfunktion berechneten Werts notwendig, durch die ein
inverses Mapping h : R→ T realisiert wird. Ein derartige Funktion h wird benötigt, weil die
Dünngitterfunktion nicht notwendigerweise Werte aus T zurückgibt. Für die Anwendungen
im Rahmen dieser Arbeit ist jedoch ein einfaches Verfahren ausreichend. An einem zu klassi-
fizierenden Datenpunkt x wird die Klasse gewählt, deren zugeordneter Wert am nächsten
zu fN(x) liegt:

t = arg min
i∈T

|(g(i)− fN(x))|(2.28)

Im Rahmen dieser Arbeit werden nur binäre Klassifikationsprobleme betrachtet. Falls jedoch
mehr Klassen benötigt werden, kann das vorgestellte Klassifikationsschema problematisch
werden. Angenommen einer Menge mit drei Klassen werden die Werte 1, 2 und 3 zugeordnet.
Dann kann es vorkommen, dass die Dünngitterfunktion in Bereichen, in denen ein Übergang
von 3 nach 1 liegt, den Wert 2 einnimmt. Dies ist vor allem deswegen problematisch, weil
dazu keinerlei Trainingsdaten aus der Klasse mit dem Wert 2 in der Nachbarschaft liegen
müssen.

Dieses Problem kann durch ein anderes Klassifikationsschema gelöst werden. Anstatt eine
einzelne Dünngitterfunktion für alle m Klassen zu erstellen, können auch m Dünngitterfunk-
tionen für die einzelnen Klassen erstellt werden. Ein darauf aufbauendes Klassifikations-
schema wird in Abschnitt 2.5 detaillierter ausgeführt, da die einfache obige Strategie für die
Dichte-basierte Klassifikation nicht verwendet werden kann.

2.5. Klassifikation mittels Dichteschätzung

Ein Klassifikationsproblem kann auf ein Problem der Dichte-Schätzung zurückgeführt
werden. Dazu wird für jede Klasse eine Funktion bestimmt, mittels der die Dichte an
jedem Ort des betrachteten Hyperwürfels [0, 1]d abgeschätzt werden kann. Auf Basis der
Dichteschätzungen jeder Klasse an einem bestimmten Punkt im Raum kann mithilfe eines

24

2.5. Klassifikation mittels Dichteschätzung

separat anzugebenden Entscheidungskriteriums die Klasse ausgewählt werden, die am
besten zu den errechneten Dichten passt.

Als Ansatz für diese Vorgehensweise wurde von Hegland et al. ein Verfahren zur Dichte-
schätzung vorgestellt [HHR00], zu dem von Jochen Garcke als Anwendung das Lösen von
Klassifikationsproblemen vorgeschlagen wurde [Gar04]. Dieser Ansatz wurde in anderen
Arbeiten weiter verfolgt [Fra11, PFPB13].

Als Ausgangspunkt für die Dichteschätzung muss die Trainingsmenge S = {xi ∈ Rd}n
i=1 ge-

geben sein. Dann kann das folgende Variationsproblem als Ansatz für eine Dichteschätzung
verwendet werden [Gar04]:

R(f) = ||(f (x)||2L2
+ λ||S f ||2 − 1

M

M

∑
i=1

f (xi)(2.29)

R(f) →
f∈V

min(2.30)

S ist dabei der verwendete Regularisierungsoperator, der wie bei der Methode der kleins-
ten Quadrate mit der Identität gewählt wird. Unter Verwendung einer Dünngitterbasis
kann das gegebene Variationsproblem damit als lineares Gleichungssystem dargestellt wer-
den [Fra11]:

(A + λI)α =
1
n

BT1(2.31)

Dabei sind die einzelnen Matrizen wie folgt definiert:

Ai,k := (φi, φk)L2 i, k ∈ {1, 2, . . . N}(2.32)
Bi,j := φj(xi) i ∈ {1, 2, . . . n}, j ∈ {1, 2, . . . N}(2.33)

Durch Auswertung der berechneten Dünngitterfunktion an einem Punkt x, kann damit
die Dichte der Trainingsdatenmenge S an diesem Punkt abgeschätzt werden. Damit al-
lein kann jedoch keine Klassifikation durchgeführt werden. Zunächst muss der gegebene
Trainingsdatensatz

S′ := {(xi, yi) ∈ Rd × T}m
i=1(2.34)

modifiziert werden, indem er nach Klassen aufgeteilt wird. Dabei entstehen mehrere Da-
tensätze S wie oben angegeben. Für jeden der Trainingsdatensätze der Klassen wird eine
Dichteschätzung mithilfe des obigen Verfahrens berechnet. Als Ergebnis erhält man eine
Dünngitterfunktion für jede der Klassen. Diese Dünngitterfunktionen erlauben es abzu-
schätzen, wie dicht eine bestimmte Klasse an einem bestimmten Punkt im Raum liegt. Ein
naheliegendes Kriterium zur Klassifikation ist die Wahl der Klasse, die am betrachteten
Datenpunkt die höchste Dichte einnimmt [Fra11]. Dies lässt sich darstellen mit

t = arg max
i∈T

(fi(x)).(2.35)

25

2. Data Mining mit dünnen Gittern

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

Abbildung 2.6.: Dünngitterfunktionen des Schachbrettdatensatzes als Heatmap dargestellt.
Datenpunkte zweier Klassen wurden abwechselnd auf die einzelnen Felder
eines Schachbrettmusters verteilt. Die Farbe codiert den Wert der größten
Dünngitterfunktion am betrachteten Punkt, das Vorzeichen gibt die Klasse
an.

Dabei ist t die Klasse, die dem Datenpunkt x zugeordnet wird.

Wie beim vorherigen Ansatz aus 2.4 muss auch hier für die Berechnung der Dünngitter-
funktion auf ein Verfahren zum Lösen linearer Gleichungssysteme zurückgegriffen werden.
Dafür wurde auch für diesen Ansatz das CG-Verfahren als Löser gewählt.

In Abbildung 2.6 ist ein Beispiel für die Klassifikation mittels Dichteschätzung zu sehen.
Als Datensatz dient ein bereits normalisiertes Schachbrettmuster, wobei den Feldern des
Schachbretts alternierende Klassen zugeordnet wurden. Die Abbildung zeigt die Werte der
Dünngitterfunktionen vor Anwendung des eigentlichen Klassifikationskriteriums. Um beide
Dünngitterfunktionen in der Abbildung darzustellen, wurde an jedem Punkt der Abbildung
immer nur die Klasse dargestellt, deren Wert größer war. Zusätzlich wurde eine Funktion
an der x-Achse gespiegelt, um die Klassen unterscheiden zu können. An der Abbildung
kann man damit am Vorzeichen des Werts ablesen, mit welcher Klasse ein Punkt klassifiziert
werden würde. Der positive oder negative Betrag zeigt den Verlauf der Funktionen.

26

2.6. Regressionaufgaben auf dünnen Gittern

2.6. Regressionaufgaben auf dünnen Gittern

Regressionsaufgaben sind eng mit Klassifikationsaufgaben verwandt. Bei Regressionsaufga-
ben soll eine unbekannte Funktion f : Rd → R, wobei f aus dem Funktionsraum V stammt,
approximiert werden. Wie bei der Klassifikationsaufgabe sei

S := {(xi, yi) ∈ Rd ×R}m
i=1(2.36)

eine Menge an Trainingsdaten, die aus Auswertungen der unbekannten Funktion besteht. Im
Gegensatz zur Klassifikation wird die Anforderung aufgegeben, dass die Menge der Klassen
endlich ist. Auch hier kann die Trainingsdatenmenge fehlerhaft oder unvollständig sein.

Regressionsaufgaben können mittels der Methode der kleinsten Quadrate mit dem in
Abschnitt 2.4 vorgestellten Algorithmus angegangen werden, wofür lediglich auf die Anwen-
dung des Klassifikationsschemas verzichtet werden muss. Der Ansatz mittels Dichteschät-
zung steht für dieses Problem leider nicht zur Verfügung, da dieser darauf basiert, dass für
jede Klasse eine eigene Dichteschätzfunktion ermittelt wird. Falls die Werte yi einen kleinen
Wertebereich einnehmen, können diese als Klassen aufgefasst werden. Im Allgemeinen
stellen die Werte yi jedoch keine Klassen dar und können auch nicht als solche betrachtet
werden. Dadurch ist es nicht möglich, den Dichte-basierten Ansatz anzuwenden.

2.7. Adaptivität

Das Rechnen mit hohen Leveln oder hoher Dimensionalität führt zur Nutzung vieler Git-
terpunkte. Dies kann ein Problem darstellen, da mehr Gitterpunkte bei dem Lösen eines
assoziierten Gleichungssystems zu einem entsprechenden Mehraufwand führen. Besonders
interessant ist der Fall, in dem ein interessanter Teil des Hyperwürfels [0, 1]d von zu wenig
Gitterpunkten abgedeckt wird, um die unbekannte Funktion f lokal ausreichend gut zu
approximieren.

In diesem Fall ist es nicht erwünscht, einfach nur auf höherem Level zu rechnen, denn
dies würde dazu führen, dass auch andere Bereiche unnötig fein aufgelöst würden, was
wiederum den Aufwand zum Lösen des Gleichungssystems unnötig vergrößert. Gerade
bei Klassifikationsproblemen ergibt sich als zusätzliche Schwierigkeit, dass durch zu viele
Gitterpunkte relativ zur Anzahl der Datenpunkte Overfitting auftritt. Durch Overfitting kann
eine Lösung mit mehr Gitterpunkten schlechter werden, da die Dünngitterfunktion lokal zu
schnell abfällt, wodurch zum Beispiel Bereiche zwischen zwei Datenpunkten der gleichen
Klassen fälschlicherweise als isolierte Bereiche dieser Klasse durch die Dünngitterfunktion
wiedergegeben werden.

Um die Performanceprobleme und das mögliche Overfitting durch einem höheren Level
zu vermeiden und trotzdem eine Verbesserung der Lösung zu erzielen, ist es möglich eine
bestehende Lösung adaptiv zu verfeinern. Dazu wird das zur unverfeinerten Lösung gehörige
Gitter betrachtet. Zunächst wird bestimmt, an welchem oder welchen Gitterpunkten eine
Verfeinerung den größten Nutzen bringen würde. Dies kann durch unterschiedliche Kriterien

27

2. Data Mining mit dünnen Gittern

Abbildung 2.7.: Illustration des Prinzips der Verfeinerung in zwei Dimensionen. Der rote
Punkt wird verfeinert, wodurch die blauen Punkte eingefügt werden. Die
grünen Punkte müssen als hierarchische Vorgänger ebenfalls eingefügt
werden.

festgelegt werden. Anschließend werden Punkte in die Umgebung des zu verfeinernden
Punktes eingefügt. Eine Möglichkeit besteht darin, das Gebiet, auf der die Funktion des zu
verfeinernden Gitterpunktes Support hat, in jede Richtung zu halbieren und auf halbem Weg
einen neuen Gitterpunkt hinzuzufügen. Im zweidimensionalen Fall folgt daraus, dass das
Gebiet geviertelt wird, im d-dimensionalen Fall werden 2d neue Gitterpunkte eingefügt.

Hierbei ergibt sich als zusätzliche Schwierigkeit, dass für die meisten Algorithmen alle
hierarchischen Vorgänger eines Gitterpunktes verfügbar sein müssen [Pfl10]. Das bedeutet,
dass es unter Umständen nicht ausreicht nur die Gitterpunkte einzufügen, die direkt der
Verfeinerung dienen, sondern es müssen auch noch deren hierarchische Vorgänger eingefügt
werden. Ein Beispiel, das dieses Phänomen zeigt, ist in Abbildung 2.7 zu sehen. Hier wird
der rot markierte Gitterpunkt verfeinert, wodurch die blau markierten Punkte eingefügt
werden sollen. Allerdings fehlen die grün markierten hierarchischen Vorgänger, die deswegen
ebenfalls eingefügt werden müssen.

Noch zu klären ist, welche Gitterpunkte zu verfeinern sind. Grundsätzlich könnten Fehlerab-
schätzungen verwendet werden, die es erlauben würden, lokal den Fehler zu bestimmen.
Ein empirisch nützliches und äußerst performantes Verfahren ergibt sich allerdings bereits
durch die bloße Betrachtung der Koeffizienten. Betrachtet werden hierbei nur Punkte, deren
hierarchische Nachfolger noch nicht eingefügt wurden. Das heißt, es werden die Blattknoten
des Baumes betrachtet, der mit der hierarchischen Basis assoziiert ist. Bei Gitterpunkten,
deren Koeffizienten hohe Werte einnehmen, kann vermutet werden, dass die lokale Approxi-
mation noch schlechter ist, als durch die verwendeten Datenpunkte eigentlich erreichbar.
Denn sobald die Datenpunkte gut approximiert werden, sollten die Koeffizienten weiterer
unnötiger Gitterpunkte nahe bei Null liegen [Pfl10].

Falls lokal eine gute Approximation vorliegt und die Koeffizienten gleichzeitig große Werte
einnehmen, gilt, dass die Koeffizienten neu eingefügter Gitterpunkte kleine Werte einneh-
men sollten. Das heißt, sollte im falschen Bereich verfeinert werden, wird dies zumindest
höchstens einmal geschehen. Dieses Verfeinerungskriterium hat sich für die im Rahmen der
in dieser Arbeit durchgeführten Experimente als gute Wahl erwiesen.

Analog zur Verfeinerung von Gitterpunkten kann es auch sinnvoll sein, Gitterpunkte wieder
aus einem Gitter zu entfernen. Ein Anwendungsfall, der für diese Arbeit relevant ist, sind

28

2.7. Adaptivität

Gitter, die mit ähnlichen Datensätzen über mehrere Zeitschritte wiederverwendet werden.
Durch entfernte Datenpunkte können Bereiche, in denen im letzten Zeitschritt viele Git-
terpunkte notwendig waren, jetzt durch weniger Gitterpunkte ausreichend approximiert
werden. Analog zum obigen Fall können hier Gitterpunkte mit Koeffizienten mit einem Wert
nahe Null entfernt werden, da diese Gitterpunkte, aufgrund der kleinen Koeffizientenwerte,
nur wenig bei der Auswertung der Dünngitterfunktion beitragen.

29

3. Zeitreihenanalyse mit dünnen Gittern

In diesem Kapitel wird ein Ansatz zum Lösen des Vorhersageproblems für Zeitreihen
vorgestellt. Dafür wird zunächst der Begriff der Zeitreihenanalyse näher ausgeführt. Wie
gezeigt wird, lässt sich die Vorhersage von Zeitreihen als Klassifikations- oder Regressions-
problem auffassen, wodurch eine Anwendung der in Kapitel 2 vorgestellten Algorithmen
möglich wird. Zuletzt wird ein Verfahren zur Validierung der berechneten Modellfunktionen
vorgestellt.

3.1. Grundlagen der Zeitreihenanalyse

Eine Zeitreihe ist eine Menge von zeitlich geordneten Beobachtungen [BJR08]. Die Zeitpunkte
der Beobachtungen können hierbei äquidistant gewählt sein, es sind allerdings auch unregel-
mäßige Zeitschritte möglich. Im einfachsten Fall wird die Entwicklung einer einzelnen Größe
über die Zeit betrachtet, beispielsweise eine Zeitreihe, die eine Bevölkerungsentwicklung
über die Zeit repräsentiert. Eine eindimensionale Zeitreihe wird in dieser Arbeit wie folgt
formal dargestellt:

T(n)
1 = {(ti, yi) ∈ R×R|∀k ∈ {0, . . . , i− 1} : tk < ti}n

i=0(3.1)

Eindimensionale Zeitreihen werden auch univariate Zeitreihen genannt, höherdimensionale
Zeitreihen werden auch als multivariate Zeitreihen bezeichnet. Bei multivariaten Zeitreihen
wird nicht nur eine einzelne Größe über die Zeit verfolgt, stattdessen werden mehrere
Größen verfolgt. Das heißt, jeder Zeitschritt ist nicht mit einem einzelnen Wert verknüpft,
sondern mit einem Tupel an Werten [BJR08]. Bei multivariaten Zeitreihen werden also
mehrere univariate Zeitreihen zusammen als eine einzige multivariate Zeitreihe aufgefasst:

T(n)
d = {(ti, zi) ∈ R×Rd ∧ ∀k ∈ {0, . . . , i− 1} : tk < ti}n

i=0(3.2)

Multivariate Zeitreihen werden häufig verwendet, wenn die Datenpunkte einer univariaten
Zeitreihe mit zusätzlichen Informationen verknüpft werden können. Ein Beispiel hierfür ist
eine Abfolge von gemessenen Gesten einer Hand über die Zeit. Eine univariate Zeitreihe
könnte hierbei nur aus den Namen der Gesten über die Zeit bestehen. In Form einer multi-
variaten Zeitreihe könnten zusätzliche Informationen über die Haltung der Finger gegeben
werden. Durch diese zusätzlichen Informationen kann die Vorhersage zukünftiger Werte
erleichtert werden, da mehr kontextuelle Informationen vorliegen. Für eine Verbesserung der

31

3. Zeitreihenanalyse mit dünnen Gittern

Vorhersage ist es erforderlich, dass die zusätzlichen Informationen für die vorherzusagende
Zielgröße relevant sind.

Zeitreihen spielen immer dann eine Rolle, wenn zeitabhängige Prozesse untersucht wer-
den. Dafür sind Anwendungsfälle in nahezu allen wissenschaftlichen und wirtschaftlichen
Bereichen denkbar:

• In der Ökonomie werden unter anderem Aktienkurse und Unternehmensprofite über
die Zeit betrachtet.

• Natürliche Phänomene können interessante Zeitreihen ergeben. Zum Beispiel kann
durch Messung der Temperatur über die Zeit das Phänomen der globalen Erwärmung
untersucht werden. Die Entwicklung von regelmäßigen Wetterphänomenen wie El
Niño sind ebenfalls ausgesprochen interessant.

• In der Medizin kann unter anderem der Verlauf der Aktivität unterschiedlicher Hirna-
reale über die Zeit mit Untersuchungsmethoden wie der funktionellen Magnetreso-
nanztomographie oder einem EEG verfolgt werden.

• In der Linguistik sticht besonders das Problem der Spracherkennung heraus. Hier wird
der Verlauf von Schallwellen über die Zeit untersucht.

Eine Untersuchung einiger der beschriebenen Anwendungfälle wurde von Robert H. Shum-
way und David S. Stoffer durchgeführt [SS10].

3.2. Das Vorhersageproblem für Zeitreihen

Das Vorhersageproblem für univariate Zeitreihen kann wie folgt beschrieben werden. An
einem Zeitschritt tn+1 ist eine Menge von Werten an vergangenen Zeitschritten

P(n)
1 = {(ti, yi+1) ∈ R×R|∀k ∈ {0 . . . i− 1} : tk < ti}n

i=0(3.3)

gegeben und es soll der Wert yn+2 vorhergesagt werden.

Man beachte, dass im Gegensatz zur Definition einer Zeitreihe jetzt der Wert yi+1 am
Zeitpunkt ti Teil des zugehörigen Tupels ist, und nicht mehr yi. Durch die Verknüpfung des
nächsten Werts mit dem aktuellen Zeitpunkt wird ein Zusammenhang zum nächsten Wert
hergestellt, da die Tupel als Auswertungen einer unbekannten Vorhersagefunktion aufgefasst
werden können. Da die Vorhersage nicht immer korrekt ist, muss weiter zwischen einem
vorhergesagten Wert y∗n+2 und dem tatsächlichen Wert yn+2, der am nächsten Zeitschritt
gemessen wird, unterschieden werden. Im besten Fall gilt y∗n+2 = yn+2, häufig weicht die
Vorhersage jedoch vom korrekten nächsten Wert ab.

Im multivariaten Fall wird die gegebene Zeitreihe der Vorhersageaufgabe analog zum
univariaten Fall modifiziert:

p(n)d+1 = {(ti, xi, yi+1) ∈ R×Rd ×R|∀k ∈ {0 . . . i− 1} : tk < ti}n
i=0(3.4)

32

3.2. Das Vorhersageproblem für Zeitreihen

y2y1t 1:

y1

y1

y1

y2

y2

y2

y3

y3

y3

y4

y4 y5

t 2:

t 3:

t 4 :

…

Abbildung 3.1.: Schema des iterierten Vorhersageproblems.

Dabei sind am Zeitpunkt tn+1 die weiteren Zeitreihen x gegeben und eine Vorhersage y∗n+2
für den Wert im nächsten Zeitschritt yn+2 wird gesucht. Gesucht ist also eine Vorhersage für
den Wert einer bestimmten Zeitreihe.

Für das in dieser Arbeit betrachtete Szenario soll nicht nur ein einzelner Zeitschritt vorherge-
sagt werden, daher wird das iterierte Vorhersageproblem untersucht. Dabei fallen zu jedem
Zeitschritt neue Werte xn+1 an und es wird eine Vorhersage y∗n+2 für den Wert yn+2 gesucht.
Im nächsten Zeitschritt wird dann der tatsächliche Wert yn+2 gemessen und zusammen mit
xn+1 als neuer Datenpunkt (tn+1, xn+1, yn+2) der Trainingsdatenmenge hinzugefügt:

p(n+1)
d+1 := P(n)

d+1 ∪ {(tn+1, xn+1, yn+2)}(3.5)

Auf Basis der neuen Trainingsdatenmenge wird nun eine Vorhersage y∗n+3 für den noch
unbekannten Wert yn+3 berechnet. Dieser Prozess kann wiederholt werden, solange weitere
Beobachtungen möglich sind. Das in Abbildung 3.1 dargestellte Schema illustriert die
Vorgehensweise für eine univariate Zeitreihe. Diese Vorgehensweise ist insbesondere bei
Zeitreihen interessant, die kontinuierlich anfallen und in Echtzeit verarbeitet werden müssen.
Beispiele hierfür sind medizinische Messdaten oder Börsendaten.

Gerade bei Börsendaten kann die Vorhersage zusätzlich mit Entscheidungsprozessen ver-
knüpft sein. Ist dies der Fall, muss noch eine zweite zeitliche Komponente berücksichtigt
werden. Es ist nicht nur notwendig yn+2 mit möglichst hoher Genauigkeit vorherzusagen,
sondern der Wert für yn+2 muss schnell genug verfügbar sein, um eine Entscheidung noch
rechtzeitig treffen zu können. Ein Beispiel für dieses Szenario ist die Vorhersage von Aktien-
kursen. Wenn ein bestimmter vorhergesagter Wert für eine bestimmte Aktie eine Einkaufs-
oder Verkaufsaktion auslöst, dann sollte dieser Wert verfügbar sein, bevor die Aktie tatsäch-
lich den Wert einnimmt, beispielsweise um Verluste zu vermeiden. Daher ist es sinnvoll, als
obere Grenze für die erlaubte Rechenzeit der Vorhersage festzulegen, dass eine Rechenzeit
von ∆t = tn+1 − tn bei äquidistanten Zeitreihen nicht überschritten werden darf. Bei unregel-
mäßigen Zeitreihen sollte die Vorhersage spätestens eintreffen, bevor durchschnittlich ein

33

3. Zeitreihenanalyse mit dünnen Gittern

neuer Datenpunkt vorliegt1. Werden diese Kriterien eingehalten, kann von einer Vorhersage
in Echtzeit gesprochen werden.

3.3. Zeitreihenanalyse als Data Mining Problem

Nachdem das Vorhersageproblem im letzten Abschnitt definiert wurde, kann jetzt eine
Lösung des Problems vorgestellt werden. Es wurde bereits erwähnt, dass Mengen P(n)

d+1 der
Vorhersageprobleme als Auswertungen einer unbekannten Vorhersagefunktion f : R→ R

aufgefasst werden können, die einem Zeitpunkt eine Vorhersage y∗n+2 für den nächsten Zeit-
schritt zuordnet. Dies kann gleichzeitig als Regressionsproblem interpretiert werden, da bei
Regressionsproblemen auf Basis einer Menge von Funktionauswertungen die zugrunde lie-
gende Funktion rekonstruiert werden soll. Falls alle yi aus einer endlichen Menge T stammen,
kann das Vorhersageproblem weiter als Klassifikationsproblem betrachtet werden.

Eine erfolgreiche Vorhersage wird durch diese Vorgehensweise noch nicht erreicht, da die
Zeitpunkte ti nur eine Ordnung der Werte der Zeitreihe sicherstellen, allerdings selbst
keine relevanten Informationen für den Verlauf der Zeitreihe darstellen. Damit prinzipiell
erfolgreiche Vorhersagen berechnet werden können, muss ti durch einen Wert oder ein
Tupel von Werten ersetzt werden, das zum Zeitpunkt ti verfügbar ist und gleichzeitig
Werte beinhaltet, die für den nächsten Wert yi+1 relevant sind. Verfügbar sind hierfür alle
vergangenen Werte der Zeitreihe und alle weiteren Zeitreihen, falls eine multivariate Zeitreihe
betrachtet wird. Zu beachten ist, dass alte Werte der Zeitreihen nicht nur direkt verwendet
werden können, sondern auch abgeleitete Werte, die sich aus Werten an vergangenen
Zeitpunkten errechnen. Es bleibt zu betonen, dass die Wahl, welche Werte mit der Vorhersage
zu einem Tupel des Regressionsproblems verknüpft werden, vom Problem abhängig ist und
damit nicht allgemein geklärt werden kann. Es gibt jedoch einige Strategien, durch die bei
vielen Zeitreihen eine erfolgreiche Vorhersage möglich wird.

Im einfachsten Fall kann als Tupel anstatt (ti, yi+1) das Tupel (yi, yi+1) verwendet werden.
Wird das resultierende Regressionsproblem gelöst, ergibt sich eine Dünngitterfunktion, die
auf Basis des aktuellen Wert yn versucht, yn+1 vorherzusagen. Falls der Wert im letzten
Zeitschritt eine zentrale Information für den Wert im nächsten Zeitschritt liefert, kann damit
eine gute Vorhersage berechnet werden. Als Beispiel dient die folgende zyklische Zeitreihe:

5, 3, 7, 4, 9, 5, 3, 7, . . .(3.6)

Sind alle Werte des Zyklus Teil der Trainingsmenge, dann kann leicht eine Funktion ange-
geben werden, die korrekte Vorhersagen für zukünftige Zeitschritte berechnet. Allgemein
können auch weiter in der Vergangenheit liegende Werte mit yn+1 verknüpft werden. Dabei
ist es im allgemeinen sinnvoll, den nächsten Wert regelbasiert mit bestimmten, zum Beispiel
m Schritte in der Vergangenheit liegenden Werten zu verknüpfen. Diese Strategie wird
Delay-Embedding genannt [GGG10]. Einige konkrete Möglichkeiten vergangene Werte mit

1Für dieses Szenario sind auch strengere Kriterien denkbar.

34

3.4. Regularisierung und Validierung

dem nächsten Wert zum Zweck einer erfolgreichen Vorhersage zu verknüpfen, werden im
nächsten Kapitel vorgestellt.

Durch Delay-Embedding entsteht die Trainingsmenge für das Regressionsproblem. Die neu
eingefügten Komponenten der Tupel der Trainingsmenge liefern Informationen über den
vorherzusagenden Wert der Zeitreihe und werden als Attribute bezeichnet. Die Abbildungen,
die mit Werten aus den vergangenen Zeitschritten Attribute für das Regressionsproblem
erzeugen, werden als Attributkonstruktoren bezeichnet. Der Raum, der durch Konstruktion
der Attribute und der vorherzusagenden Zielgröße aufgespannt wird, wird Attributraum
genannt.

Da die vorgestellten Verfahren für Regression und Klassifikation auf dünnen Gittern er-
fordern, dass die Attribute aus [0, 1]d stammen, ist der Attributraum auf [0, 1]d ×R einge-
schränkt. Dies ist keine wesentliche Einschränkung, da beliebige Attribute verwendet werden
können, deren Werte reellen Zahlen zugeordnet werden können. Gegebenfalls müssen die
Daten anschließend noch auf den passenden Hyperwürfel normalisiert werden.

Da in Abschnitt 2.3.3 ein Gitter ohne Rand gewählt wurde und generell zum Rand hin
weniger Datenpunkte vorliegen, wäre eine direkte Normalisierung auf [0, 1]d problematisch.
Die Normalisierung würde sicherstellen, dass in Richtung jeder Dimension mindestens
zwei Datenpunkte auf dem Rand liegen. Diese Datenpunkte könnten niemals optimal
approximiert werden, da dies ein Gitter ohne Rand nicht erlaubt. Des Weiteren nimmt die
Anzahl der Gitterpunkte zum Rand hin ab, und es wäre erforderlich einen sehr hohen Level
zu wählen, falls viele Gitterpunkte in der Nähe des Rands liegen. Eine einfache Lösung für
dieses Problem ist eine Normalisierung auf den inneren Würfel [0.1, 0.9]d. Diese Wahl der
Normalisierung hat sich im Rahmen dieser Arbeit bewährt.

3.4. Regularisierung und Validierung

Sowohl beim Data Mining mittels der Methode der kleinsten Quadrate als auch beim Dichte-
basierten Data Mining ist es erforderlich, den der Regularisierung dienenden Parameter λ
zu wählen. Dafür wird ein spezielles Verfahren vorgeschlagen, das es ausnützt, dass es sich
bei der Vorhersage von Zeitreihen um ein iteriertes Problem handelt.

Jede Wahl von λ kann als ein neues Model für die gegebenen Beobachtungen betrachtet
werden. Das heißt, für jeden Wert des Parameters λ muss getestet werden, ob dieser Wert
eine gute Wahl im Verhältnis zu anderen möglichen Werten für λ darstellt. Um zu testen, ob
ein Wert eine gute Wahl darstellt, bietet sich ein Validierungsschema an, dass als forward-
chaining oder rolling-validation bekannt ist2.

Dazu wird die Zeitreihe durchlaufen, wobei immer nur die vergangenen Beobachtungen
bekannt sind und der nächste Wert vorhergesagt werden soll. Es werden also die vergangenen

2Der Ursprung des Verfahrens ist nicht vollständig klar, es wird unter anderem von Hu et al. [HZJP99]
verwendet und ist im Data-Mining-Bereich häufig zu finden.

35

3. Zeitreihenanalyse mit dünnen Gittern

Vorhersagen aus obigem Algorithmus mit einem neuen λ nochmals nachvollzogen. Letztlich
wird die Funktion für die Vorhersage ausgewählt, die im Fall der Klassifikation die höchste
Trefferrate besitzt oder im Fall eines Regressionsproblems den niedrigsten durchschnittlichen
quadratischen Fehler besitzt.

Dieses Verfahren hat das zentrale Problem, dass das Testen von neuen λ-Werten mit dieser
Methode ausgesprochen teuer ist, da ein Testen mit allen Daten aus der Vergangenheit einen
größeren Aufwand an Rechenzeit erfordert. Wird jedoch auf eine feste Menge von Lamb-
das zurückgegriffen, kann der benötigte Validierungsaufwand für jedes λ stark reduziert
werden.

Es wird in jedem Zeitschritt für alle n Werte von λ eine Vorhersage für den nächsten
Zeitschritt berechnet. Über alle Zeitschritte hinweg wird für jedes λ ein Zähler mitgeführt,
der die Menge der erfolgreichen Vorhersagen im Klassifikationsfall zählt. Im Fall eines
Regressionsproblems summiert der Zähler den Fehler an den einzelnen Zeitschritten auf.
Auf Basis dieser Zähler kann für die Vorhersage im aktuellen Zeitschritt die Funktion
ausgewählt werden, die in der Vergangenheit am meisten korrekte Vorhersagen ermöglichte,
beziehungsweise die niedrigste Summe an Fehlertermen besitzt. In dieser Arbeit wurden
folgenden Werte als Kandidaten für λ verwendet:

L = {0, 0.1, 0.01, 0.001, 0.0001}(3.7)

Als zusätzliche Komplikation ergibt es sich, dass dieses Verfahren nur dann verwendet
werden kann, wenn genügend Zeitschritte durchlaufen wurden, da die Zähler der einzelnen
λ-Werte ansonsten nicht aussagekräftig sind. Diese Schwierigkeit kann mit einer Aufwärm-
phase gelöst werden. Hier ist zu bemerken, dass dieses Problem auch bei anderen Verfahren
zur Wahl eines geeigneten Regularisierungsparameters existiert: Es spiegelt lediglich wieder,
dass am Anfang des Durchlaufens einer Zeitreihe zu wenig Information zur Verfügung steht,
um λ sinnvoll zu wählen. Für jede Art von aussagekräftiger Vorhersage am ersten Zeitschritt,
müssen auch im ersten Zeitschritt bereits vergangene Beobachtungen vorliegen.

Durch dieses Verfahren ist es möglich, die Kosten für die Wahl des Regularisierungsparame-
ters auf die einzelnen Zeitschritte zu verteilen. Die Menge der Testdaten für dieses Verfahren
in jedem Zeitschritt ist jeweils nur ein Element, ähnlich wie bei einer Leave-One-Out Validie-
rung [Bis06]. Allerdings bleibt die Regularisierung insgesamt relativ teuer, da immer nur
für alle n Regularisierungsparameter in jedem Zeitschritt ein Data Mining Problem gelöst
werden muss. Techniken zur weiteren Beschleunigung des Prozesses werden in Kapitel 6

besprochen. Durch die feste Wahl der Kandidaten für λ kann der Regularisierungsparameter
nur dann optimal gewählt werden, wenn das optimale λ bereits in der Menge der Kandida-
ten enthalten ist. Da der optimale Wert schwierig im voraus zu bestimmen ist, bringt dies
gewisse Nachteile in der Vorhersagequalität mit sich. In Kapitel 5 ist jedoch zu sehen, dass
mit der gewählten Kandidatenmenge gute Vorhersagen möglich sind.

Ein weiteres Problem entsteht, wenn durch eine strukturelle Änderung des Attributraums
für weitere erfolgreiche Vorhersagen ein anderer Wert für λ benötigt wird. Mit einer be-
stimmten Wahl des Regularisierungsparameters konnten bis zum aktuellen Zeitpunkt gute
Vorhersagen getroffen werden, ab dem aktuellen Zeitschritt ist ein anderer Wert erforderlich.

36

3.5. Der gesamte Algorithmus

Grundsätzlich werden die verwendeten Zähler für die Werte des Regularisierungsparame-
ters nach einer gewissen Zeit die Änderungen im Attributraum widerspiegeln. Falls der
Vorhersageprozess allerdings schon sehr lange läuft, kann es lange dauern, bis wieder gute
Vorhersagen berechnet werden. Falls sich der Attributraum häufig strukturell ändert, können
grundsätzlich keine guten Vorhersagen getroffen werden. Um dieses Problem abzumildern
ist es notwendig eine feste Anzahl vergangener Vorhersagen für die Zähler zu berücksichti-
gen. Für Vorhersagen, die zu weit zurückliegen, kann dazu der auf den Zähler addierte Wert
wieder abgezogen werden. Da bei den Experimenten in dieser Arbeit keine Vorhersagen
über besonders große Zeiträume stattfanden, trat dieses Problem bei den durchgeführten
Experimenten nicht auf.

3.5. Der gesamte Algorithmus

Mithilfe der Überlegungen auf diesem Kapitel kann der vollständige Algorithmus zur
Vorhersage von Zeitreihen angegeben werden. In Algorithmus 3.1 ist dies für die Methode
der kleinsten Quadrate dargestellt. Der Ablauf für den ersten Zeitschritt wird im Folgenden
beschrieben.

Vor Beginn des eigentlichen Vorhersageprozesses muss die Trainingsdatenmenge aus den
gegebenen Zeitreihen erzeugt werden. Dann beginnt der eigentliche Vorhersageprozess für
die einzelnen Zeitschritte.

Dafür wird als Erstes der aktuelle Wert der Zeitreihen gemessen und in den Attributraum
übersetzt. Anschließend wird mit der Methode der kleinsten Quadrate eine Dünngitterfunk-
tion für jeden der gewählten Werte von λ berechnet. Mit jeder der berechneten Funktionen
wird eine Vorhersage für den nächsten Zeitschritt berechnet und gespeichert. Als Vorhersage
für den aktuellen Zeitschritt wird dabei die Vorhersage gewählt, deren Zähler den größten
Wert einnimmt. An dieser Stelle kann die Vorhersage für beliebige Aufgaben verwendet
werden.

Dann wird auf den nächsten Zeitschritt gewartet. Sobald eine neue Beobachtung gemacht
werden kann, werden die Vorhersagen ausgewertet. Dafür wird der tatsächliche nächste Wert
der Zielgröße gemessen und die Zähler für die Regularisierungsparameter erhöht, die eine
korrekte Vorhersage berechnet haben. Zuletzt wird mit der gemessenen Klasse ein neues
Trainingstupel erzeugt und der Trainingsmenge hinzugefügt. Dies wird für die gewünschte
Anzahl von Zeitschritten wiederholt.

Der Algorithmus für das Dichte-basierte Verfahren ist dem Algorithmus 3.1 sehr ähnlich.
Hier muss lediglich etwas zusätzlicher Verwaltungsaufwand betrieben werden, da nicht
nur eine Dünngitterfunktion für jeden Wert von λ erzeugt wird, sondern so viele, wie Klas-
sen vorliegen. Das heißt, die Funktion CreateSparseGridFunction wird mehrere Funktionen
zurückgeben und die Funktion EvaluateFunction verwendet alle Dünngitterfunktionen als
Eingabe und klassifiziert das Attributtupel wie in Abschnitt 2.5 beschrieben.

37

3. Zeitreihenanalyse mit dünnen Gittern

Algorithmus 3.1 Der gesamte Algorithmus
timeseries← „Initiale Messungen“
procedure MakePredictions(timeseries, testSteps, lambdaSet)

trainingSet← CreateInitialTrainingSet(timeseries)
. Vorhersagen der nächsten testSteps Zeitschritte
for t = 1→ testSteps do

observation← GetNextObservation()
. Beobachtung in Attributraum übersetzen
attributeTuple← MapToAttributeSpace(timeseries, observation)
predictions← MakeHashMap()
. Eine Vorhersage für jedes λ berechnen
for λ ∈ lambdaSet do

f ← CreateSparseGridFunction(trainingSet, λ)
value← EvaluateFunction(f , attributeTuple)
class← MapToClass(value)
predictions[λ]← class

end for
. Das λ mit dem höchsten Zähler wählen
bestLambda← GetBestLambda(counters, lambdaSet)
bestPrediction← predictions[bestLambda]
. Verwenden der besten Vorhersage . . .
WaitUntilNextObservation()
actualClass← MeasureActualClass()
. Vorhersagen auswerten und Zähler anpassen
for λ ∈ lambdaSet do

if predictions[λ] = actualClass then
counters[λ]← counters[λ] + 1

end if
end for
trainingSetTuple← AddToTuple(attributeTuple, actualClass)
trainingSet← trainingSet ∪ {trainingSetTuple}

end for
end procedure

38

4. Die Konstruktion von Attributräumen

Im letzten Kapitel wurde beschrieben, wie das Vorhersageproblem für Zeitreihen mit Data
Mining Methoden gelöst werden kann. Dabei wurde als zentrale Strategie die Technik des
Delay-Embeddings beschrieben. Die in dieser Arbeit verwendeten Attributkonstruktoren
wurde jedoch offen gelassen. Dies wird in diesem Kapitel nachgeholt. Die Konstruktion
von Attributräumen ist Teil der Vorverarbeitung des in Abschnitt 2.2 beschriebenen Know-
ledge Discovery Prozesses. Damit die Regressions- oder Klassifikationslösung erfolgreiche
Vorhersagen erlaubt, sind neben der Wahl der Attributkonstruktoren noch weitere Aspekte
der Datenvorverarbeitung zu berücksichtigen. Diese werden ebenfalls in diesem Kapitel
behandelt.

4.1. Das allgemeine Verfahren

Alle in dieser Arbeit verwendeten Attributkonstruktoren sind Abbildungen, die an jedem
Zeitschritt, an dem die Zielgröße existiert, den aktuellen Zeitschritt regelbasiert mit Werten
aus der Vergangenheit verknüpfen. Dieses Vorgehen wird in diesem Abschnitt formalisiert.

Um einen Attributkonstruktor anwenden zu können, muss zunächst die Zielgröße an jedem
Zeitschritt bestimmt werden. Es kann vorkommen, dass dies nicht an jedem Zeitschritt
möglich ist. Wird als Zielgröße beispielsweise der Durchschnitt aus den letzten vier Werten
und dem nächsten Wert gewählt, dann kann an den drei ersten Zeitschritten der Durchschnitt
nicht berechnet werden. In dieser Arbeit wurde als Zielgröße nur der Trend im nächsten
Zeitschritt verwendet, also die Information, ob der Wert der Zeitreihe steigt oder fällt. Da
der Trend mit einem Rückgriff auf den letzten Zeitschritt berechnet wird, kann es auch hier
vorkommen, dass in der Zeitreihe existierende Zeitschritte nicht als Teil des Data Mining
Problems verwendet werden können.

Nachdem die Zeitreihe der Zielgrößen aus dem ursprünglichen Datensatz berechnet wurde,
können die Attributkonstruktoren für jeden Zeitschritt angewendet werden. Alle Attribut-
konstruktoren, die in dieser Arbeit verwendet wurden, greifen auf eine festgelegte Anzahl
von Schritten in die Vergangenheit zurück. Dabei müssen nicht alle vergangenen Zeitschritte
in diesem Intervall für die Attributkonstruktion berücksichtigt werden. Im Rahmen dieser
Arbeit wird die zusätzliche Anforderung gestellt, dass Attribute jeweils nur aus einer der
Zeitreihen des Datensatzes erstellt werden können. Für Werte z(j) am Zeitschritt j aus einer
Zeitreihe Z des Datensatzes, stellt beispielsweise die folgende Menge ein mögliches Attribut
dar:

{(tj, (z(j), z(j−3), z(j−5), z(j−6)))|∀j ∈ {7 . . . n}}(4.1)

39

4. Die Konstruktion von Attributräumen

Um die Schemata geschickt angeben zu können, werden alle Zeitschritte, auf die Bezug
genommen wird, relativ zum aktuell betrachteten Zeitschritt spezifiziert.

Um diese Überlegung zu formalisieren wird ein Indextupel

IA ∈ {(i|∀l ∈N : ∀k ∈ {1, . . . , l} : ik ∈ {0, . . . , n}}(4.2)

benötigt, das die Differenzen zum aktuell betrachteten Zeitschritt beschreibt. Im obigen
Beispiel wäre dies das Tupel (0, 3, 5, 6). Um die Attribute zu erzeugen, können als Zwischen-
schritt die Wertetupel an den einzelnen Zeitschritten aufgeschrieben werden als

A′ = {(tj, ((z(j−i0), . . . , z(j−im))))|∀k ∈ {1 . . . m} : ik ∈ IA ∧ z(j−ik) ∈ Z}n
j=0.(4.3)

Mit den Wertetupeln an den Zeitschritten kann aus A′ das eigentliche Attribut berechnet
werden. Dafür muss noch eine Abbildung C mit |IA| als Dimension der Urbildmenge
ausgewählt werden. Ist eine gewünschte Abbildung C gewählt, ergibt sich daraus das
Attribut

A = {(tj, C(zj))|(tj, zj) ∈ A′}n
j=0.(4.4)

Die Dimension des Attributs |A| wird definiert durch die Dimension der Bildmenge der
Abbildung C.

Die Zielgröße kann als ein weiteres Attribut betrachtet werden, wobei zur Berechnung der
Zielgröße auch Werte am Zeitschritt j + 1 benutzt werden, das zugehörige Indextupel ist
also

IY ∈ {(i|∀k ∈ {1, . . . , l} : ik ∈ {0, . . . , n + 1}}(4.5)

Außerdem ist der Bildraum des Attributs auf R eingeschränkt. Nach Auswahl der Zeitschritte
folgt daraus

Y′ = {(tj, (z(j−i0), . . . , z(j−im)))|ik ∈ IY}n
j=0.(4.6)

Woraus durch eine weitere Abbildung CY die Zeitreihe der Zielgröße entsteht:

Y = {(tn, CY(z))|(tj, zj) ∈ Y′}(4.7)

Mit dem Konkatenationsoperator für Tupel ◦, den Attributen A1 . . . Am und der Zeitreihe der
Zielgröße Y kann schließlich die Trainingsmenge für das Data Mining Problems angegeben
werden:

P(n)
d+1 = {a(1)2 ◦ · · · ◦ a(m)

2 ◦ y2|∀k ∈ {1 . . . m} : a(k) ∈ Ak ∧ a(k)1 = tj∧(4.8)

y ∈ Y ∧ y1 = tj+1}n
j=0

Über a(j)
1 und a(j)

2 werden auf den Zeitschritt t und das Wertetupel z der Tupel eines Attributs
j zugegriffen. Die Gesamtdimension des Attributraums ergibt sich aus der Summe der

40

4.2. Attributkonstruktoren

Dimensionen der Attribute, zuzüglich einer Dimension für die Zielgröße. Die Dimension der
Attribute wird berechnet mit

d = |A1|+ |A2|+ · · ·+ |Am|.(4.9)

Um also die Trainingsmenge aufzustellen, müssen die einzelnen Attribute festgelegt werden.
Zusätzlich wird die Zielgröße aufgestellt, die, wie oben beschrieben, als spezielles Attri-
but behandelt werden kann. Jedes Attribut ist durch eine Indexmenge I und zugehörige
Abbildung C gegeben. Mit der Indexmenge werden die Zeitschritte relativ zum aktuellen
Zeitschritt aus einer Zeitreihe ausgewählt, aus denen ein Attribut errechnet wird. Die Ab-
bildung berechnet aus den einzelnen Werten das resultierende Attribut. Zuletzt kann aus
den Attributen und der Zeitreihe der Zielgröße wie oben beschrieben der Attributraum P(n)

d+1
berechnet werden.

4.2. Attributkonstruktoren

Um ein Attribut zu erzeugen, muss, wie im letzten Abschnitt beschrieben wurde, zunächst
eine Zeitreihe ausgewählt werden. Dann kann ein Attribut durch Vorgabe eines Indextupels
und einer Abbildung angegeben werden. In diesem Abschnitt werden die im Rahmen der Ex-
perimente dieser Arbeit verwendeten Strategien zum erzeugen von Attributen ausgeführt.

4.2.1. Der Linear-Konstruktor und dessen quadratische Variante

Der einfachste Attributkonstruktor ist der Linear-Konstruktor. Dieser verwendet als Abbil-
dung die Identität. Das heißt, er berechnet die über ein Indextupel vorgegebenen Werte an
den vergangenen Zeitschritten und gibt diese als Tupel direkt zurück. Dieser Konstruktor
kann verwendet werden, um zum Beispiel den Wert am aktuellen Zeitpunkt mit dem Wert
am letzten Zeitpunkt zu verknüpfen. Chancen auf erfolgreiche Vorhersagen bestehen, wenn
bekannte Kombinationen an Werten eine Aussage für den nächsten Wert erlauben. Zum
Beispiel bei Zeitreihen mit unbekanntem, aber periodischem Verlauf kann dieser Ansatz
erfolgsversprechend sein.

Für die Wahl der Indextupel wird eine weitere Restriktion eingeführt. Um Experimente zu
vereinfachen können nicht beliebige Tupel ausgewählt werden, sondern es kann lediglich
eine Zahl m gewählt werden, die bestimmt, wie viele vergangene Zeitschritte berücksichtigt
werden. Ein Indextupel hat also die Form (1, 2, 3, . . . , m). Der Parameter m wird Schrittanzahl
genannt.

Als Variante dieses Konstruktors kann dieselbe Abbildung mit einer quadratisch wachsenden
Schrittweite verwendet werden. Das heißt, es werden Tupel (ti, ti−1, ti−4, ti−9) hinzugefügt.
Wird die quadratische Variante verwendet, dann wird der Attributkonstruktor als Quad-
Attributkonstruktor bezeichnet. Dieser Konstruktor ist nützlich, wenn sowohl kurz- als auch
langfristige Strukturen in den Daten eine Rolle für die Vorhersage spielen.

41

4. Die Konstruktion von Attributräumen

Dieser Attributkonstrukor hat einen starken Nachteil, der ihn für viele Datensätze unbrauch-
bar macht. Wenn sich Werte der Datenpunkte nicht wiederholen, dann wird die Trefferquote
mit diesem Konstruktor äußerst niedrig ausfallen. Zum Beispiel weil die unbekannte Funkti-
on, die mit der Zeitreihe angenähert werden soll, einer Geraden mit Steigung ungleich null
entspricht. Neue Werte in der Zeitreihe bedeuten dann, dass mit diesem Konstruktor eine
Auswertung am aktuellen Zeitschritt an einem Datenpunkt xn stattfindet, in dessen Nähe es
keine oder nur wenige Datenpunkte geben kann, da ähnliche Werte bei einer monoton stei-
gender oder fallenden Funktion nicht vorliegen können. Eine Abhilfe für diese Problematik
stellt der nächste Konstruktor dar.

4.2.2. Der Differenz-Konstruktor und dessen quadratische Variante

Der Differenz-Konstruktor verwendet Differenzen zwischen dem aktuellen Werten einer
Zeitreihe zn und Werten aus der Vergangenheit. Damit können Tupel der Form

(zn − zn−1, zn − zn−2, . . .)(4.10)

für äquidistante Zeitreihen erzeugt werden. Für unregelmäßige Zeitreihen muss der jeweilige
Abstand der Zeitreihen berücksichtigt werden, was zu Tupeln der Form(

zn − zn−1

tn − tn−1
,

zn − zn−2

tn − tn−2
, . . .

)
(4.11)

führt. Durch diese Wahl der Konstruktion der Datenpunkte des Attributraums ist es möglich
relativ betrachtet ähnliche Kombination von Werten zu berücksichtigen. Dies löst insbe-
sondere das im letzten Abschnitt beschriebene Problem, dass vollständig neue Werte in
der Zeitreihe auftreten, wodurch neue Bereiche im Attributraum erschlossen wurden. Mit
diesem Konstruktor ist es nur noch erforderlich, dass ähnliche genäherte Ableitungswerte
vorliegen.

Analog zum Linear-Konstruktor existiert auch bei diesem Konstruktor eine quadratische
Variante, die Differenz-Quad-Konstruktor genannt wird. Auch hier wird wieder modelliert,
dass Änderungen sowohl über kleine, als auch über größere zeitliche Abschnitte relevant sein
können. Dieser Konstruktor erlaubt beides zu betrachten, ohne dass die Gesamtdimension
zu groß wird. Tupel haben dann die folgende Form:(

zn − zn−1

tn − tn−1
,

zn − zn−4

tn − tn−4
,

zn − zn−9

tn − tn−9
, . . .

)
(4.12)

4.3. Über die Wahl der Datenpunkte

Durch die Attributkonstrukoren werden Informationen, die in der Zeitreihe versteckt sind,
so dargestellt, dass sie für die Formulierung als Regressions- oder Klassifikationsproblem
nützlich sind. Bestimmte Wertekombinationen der erzeugten Attribute signalisieren dann

42

4.4. Möglichkeiten der Datenvorverarbeitung

über das Data Mining Problem, welcher Wert am nächsten Zeitpunkt zu vermuten ist. Dabei
gibt es jedoch zwei Schwierigkeiten bei der Wahl der Datenpunkte.

Zum einen können leicht mehr Datenpunkte als eigentlich notwendig gewählt werden. Wenn
bereits alle relevanten Bereiche des Dünngitterraums über die Wahl der aktuellen Daten-
punkte der Zeitreihe für das gestellte Problem hinreichend genau modelliert wurden, dann
sind zusätzliche Datenpunkte unnötig. Zudem führt die Verwendung von nicht benötigten
Datepunkten dazu, dass sich der Bedarf an Rechenzeit erhöht. Bei Data Mining nach der
Methode der kleinsten Quadrate benötigt das Aufstellen der Matrix O(mn) Operationen,
wobei m für die Anzahl der Datenpunkte und n für die Anzahl der Gitterpunkte steht.
Beim Dichte-basierten Ansatz findet sich ebenfalls eine Komplexität von O(mn) bei der
Auswertung der rechten Seite des zugehörigen Gleichungssystems. Es muss allerdings
betont werden, dass das Lösen des linearen Gleichungssystems den größten Teil der Zeit
beansprucht.

Deutlich problematischer ist ein zweites Phänomen. Angenommen die aktuelle Wahl der
Attributkonstrukoren erlaubt eine gute Vorhersage der Zeitreihe. Das heißt, die wichtigsten
Aspekte der Zeitreihe werden durch die Datenpunkte korrekt wiedergegeben. Sollten jetzt
neue Prozesse in der Zeitreihe auftreten, wird die Vorhersage stark an Genauigkeit verlieren.
Durch das weitere kontinuierliche Hinzufügen neuer Datenpunkte in jedem Zeitschritt wird
die Genauigkeit mit der Zeit wieder zunehmen. Allerdings kann es, ähnlich wie im Kontext
der Regularisierung ausgeführt, lange dauern, bis die Datenpunkte mit jetzt veralteten
Werten keine Rolle mehr für die Vorhersage spielen.

Um die beiden obigen Probleme zu minimieren, ist es notwendig die Anzahl der Datenpunk-
te in der Vergangenheit zu limitieren. Hierfür wird ein einfaches Verfahren gewählt, das
als Sliding-Window bezeichnet wird. Dabei werden für die Vorhersage des nächstens Zeit-
schritts immer die letzten m Datenpunkte verwendet. Die Anzahl der zu berücksichtigenden
Datenpunkte wird als Fenstergröße bezeichnet. Es muss an dieser Stelle angemerkt werden,
dass nicht nur ein zu großes Fenster zu Problemen bei der Vorhersage führt. Werden zu
wenig Datenpunkte verwendet, dann werden selbst bei der Wahl korrekter Attributkonstruk-
toren, die alle relevanten Informationen verfügbar machen, nicht alle benötigten Muster im
Attributraum des Data Mining Problems repräsentiert. In diesem Fall sinkt die Qualität der
Vorhersage ebenfalls stark.

4.4. Möglichkeiten der Datenvorverarbeitung

Durch die Darstellung der Zeitreihenanalyse als Data Mining Problem unterliegt diese Form
der Zeitreihenanalyse dem üblichen Data-Mining-Prozess, wie er in Abschnitt 2.2 vorgestellt
wurde. Das bedeutet, zur Anwendung des vorgestellten Verfahrens müssen die folgenden
Schritte durchgeführt werden:

• Vorverarbeitung der Daten: Dieser Schritt ist Weiter unterteilt in Auswahl der Daten,
Vorverarbeitung und Transformation der Daten. Nach Abschluss der Vorverarbeitung
steht ein Attributraum für die Data-Mining-Algorithmen bereit.

43

4. Die Konstruktion von Attributräumen

• Dem eigentlichen algorithmischen Data Mining mit den vorgestellten Verfahren.

• Zuletzt werden die Ergebnisse interpretiert.

Dabei sind die drei Vorverarbeitungsschritte tendenziell manuelle Prozesse. Ebenso die
Interpretation der Ergebnisse. Wie bei anderen Data Mining Ansätzen auch, ist die richtige
Vorverarbeitung essenziell für die erreichbare Qualität der Ergebnisse. Außerdem erlaubt eine
umsichtige Vorverarbeitung eine einfachere Interpretation der Ergebnisse. Auf der anderen
Seite führt eine ungünstige Vorverarbeitung dazu, dass die Ergebnisse keine Aussagekraft
besitzen. Falls schlechte Resulate gemessen werden, ist es zudem schwer zu sagen, ob die
Vorverarbeitung der Daten zu schlecht gewählt war oder ob die Qualität der Daten ein
Grund für eine unerwartet schlechte Qualität der Ergebnisse ist. Aus diesen Gründen ist es
äußerst nützlich, wenn im Zuge der Vorverarbeitungsschritte bereits möglich viel Wissen
über die Daten vorliegt, um möglichst gute Ergebnisse zu erreichen.

Im Rahmen des vorgestellten Ansatzes bestehen die folgenden Optionen für die Vorverarbei-
tung der Daten:

1. Wahl einer geeigneten Zielgröße

2. Entscheidung aus einem d-dimensionalen Datensatz für die Datenreihen, die relevant
für die gewählte Zielgröße sind

3. Wahl eines oder mehrerer geeigneter Konstruktoren für jede gewählte Zeitreihe, um
die Daten in für die Zielgröße relevante Informationen zu übersetzen

4. Konfiguration der ausgewählten Konstruktoren, zum Beispiel durch Vorgabe der
Schrittanzahl

5. Normalisieren der finalen Datenpunkte des Attributraums

6. Wahl der Fenstergröße

7. Wahl geeigneter Kandidaten für den Regularisierungsparameter λ

8. Wahl der Anzahl der Iterationen (alternativ des Werts der Fehlernorm) des verwendeten
iterativen Lösers

9. Wahl des Levels für das dünne Gitter, auf dem das Data Mining stattfindet

10. Optional: Auswählen, wie viele Verfeinerungsvorgänge und Vergröberungsvorgänge in
jedem Zeitschritt durchgeführt werden sollen.

Die Wahl dieser Optionen beeinflusst die Qualität der Zeitreihenanalyse entscheidend, wie in
Kapitel 5 an vielen Beispielen gezeigt wird. Auf zwei spezielle Schwierigkeiten, die speziell
im Kontext einer Zeitreihenanalyse mit Gitter-basierten Ansätzen auftreten, muss noch
separat eingegangen werden.

44

4.5. Dimension des Dünngitterraums und Anzahl der Datenpunkte

4.5. Dimension des Dünngitterraums und Anzahl der Datenpunkte

Die Gesamtdimension des Dünngitterraums entspricht der Summe der Dimensionen der
einzelnen Attributkonstruktoren, zuzüglich einer weiteren Dimension für die vorherzusa-
gende Zielgröße. Steigt die Dimension, dann steigt auch das Volumen des Dünngitterraums
exponentiell. Wenn mit steigender Dimension nicht gleichzeitig die Anzahl der Datenpunkte
erhöht wird, dann liegen die Datenpunkte immer dünner im Dünngitterraum. Im Allge-
meinen werden die Punkte auch nicht gleichmäßig im Raum verteilt liegen, da die Werte
der einzelnen Attribute nicht gleichmäßig verteilt auftreten. Dieses Phänomen hat mehrere
Konsequenzen.

Zum einen motiviert dies die Verwendung eines dünnen Gitters anstatt eines voll besetz-
ten Gitters, da bei voll besetzten Gittern die Anzahl der Gitterpunkte mit zunehmender
Dimension deutlich schneller wächst (siehe 2.3.3). Das heißt, die maximal wählbare Anzahl
an Attributen wird durch die Verwendung von dünnen Gittern deutlich verbessert. Zum an-
deren wird gerade bei höherer Dimension die Verwendung von adaptiver Verfeinerung und
adaptiver Vergröberung wichtiger, da der Raum, bezogen auf das Volumen, durch weniger
Datenpunkte überdeckt ist. Mittels adaptiver Verfeinerung kann sichergestellt werden, dass
lokal eine genügend hohe Auflösung an Gitterpunkten vorliegt. Ohne die Verwendung von
adaptiver Verfeinerung kann die Vorhersagegenauigkeit sonst selbst dann fallen, wenn die
zusätzlich eingeführten Attribute tatsächlich relevant für die vorherzusagende Größe sind.

Eine weitere Schwierigkeit bei der Datenvorverarbeitung besteht darin, dass durch die
Wahl unpassender Konstruktoren die Vorhersagegenauigkeit stark fallen kann. Naiv könnte
vermutet werden, dass zusätzlich Attribute lediglich zusätzliche Informationen liefern
würden und im schlechtesten Fall keine zusätzlichen Informationen liefern. Dann würde
zwar das Problem in einer höheren Dimension als eigentlich notwendig gelöst und die
Berechnung der Lösung würde mehr Rechenzeit in Anspruch nehmen, aber in Bezug auf die
Vorhersagequalität würde sich jedoch kein Unterschied ergeben.

Diese Vermutung ist leider falsch, falls die Anzahl der Datenpunkte gleich bleibt. Man
stelle sich ein zur Zielgröße unkorreliertes Attribut vor. Ein solches Attribut kann zum
Beispiel durch eine Zufallsvariable modelliert werden. In Bezug auf die Datenpunkte des
Dünngitterraums bedeutet dies, dass eine Koordinate in jedem Datenpunkt zufällig variiert
ist. Wird nun eine konkrete Vorhersage berechnet und existiert ein ähnlicher Datenpunkt,
dann sind alle Koordinaten des Datenpunktes ähnlich zu den aktuell gemessenen Daten.
Die eine unkorrelierte Koordinate wird jedoch beliebig weit abweichen. Dadurch steigt die
Distanz zwischen den aktuellen Daten und dem Datenpunkt beliebig weit an, wodurch die
Qualität der Vorhersage grundsätzlich beliebig schlecht werden kann.

Damit trotz eines unkorrelierten Attributs noch sinnvolle Voraussagen errechnet werden
können, müssen für alle Werte des unkorrelierten Attributs genügend Datenpunkte vorliegen,
damit passende Datenpunkte, also Datenpunkte die in den anderen Attributen ähnlich sind,
für beliebige Werte des unkorrelierten Attributs vorliegen. Falls die Anzahl der Datenpunkte
also deutlich vergrößert werden kann oder falls das unkorrelierte Attribut nur eine kleine
Wertemenge besitzt, wird die Vorhersagequalität nicht allzu stark negativ betroffen sein.

45

4. Die Konstruktion von Attributräumen

Falls allerdings die Anzahl der Datenpunkte gleich bleibt und die Wertemenge des Attributs
groß ist, dann ist mit einer deutlichen Verschlechterung der Vorhersagen zu rechnen. Dieses
Problem kann durch die Auswahl geeigneter Attributkonstrukoren umgangen werden.

46

5. Datensätze und Vorhersagequalität

In den letzten Kapiteln wurde ein Ansatz zur Zeitreihenanalyse auf dünnen Gittern vor-
gestellt. Um zu zeigen, dass diese Algorithmen auch tatsächlich für Vorhersagen genutzt
werden können, wurde eine Untersuchung der Qualität der Vorhersagen mit mehreren Expe-
rimenten durchgeführt. In diesem Kapitel werden die einzelnen Datensätze der Experimente
vorgestellt und die durchgeführten Experimente ausgewertet.

Insgesamt wurden fünf Datensätze betrachtet, von denen zwei synthetisch generiert wurden.
Mit den synthetischen Datensätzen soll gezeigt werden, dass der vorgestellte Ansatz bei
einer geeigneten Vorverarbeitung der Daten und der Verfügbarkeit von Daten mit hoher
Qualität eine hohe Trefferrate korrekter Vorhersagen ermöglicht. Des Weiteren wurde der
vorgestellte Ansatz mit drei nichtsynthetischen, auf Finanzdaten basierten Datensätzen
untersucht. Durch die Experimente mit nichtsynthetischen Datensätzen soll gezeigt werden,
dass auch bei realen Daten korrekte Vorhersagen möglich sind. Dabei erschweren die Wahl
einer geeigneten Vorverarbeitung und eine geringere Qualität der Datensätze ähnlich gute
Ergebnisse, wie sie bei den synthetischen Daten vorliegen.

Die vorherzusagende Zielgröße ist bei allen Experimenten dieselbe. Es wird vorhergesagt,
ob die Zeitreihe im nächsten Schritt steigen wird oder ob sie fällt. Diese Art der Vorhersage
wird Trendvorhersage genannt. Das Zuordnen des korrekten Trends zu den Werten an den
Zeitpunkten ist dabei Teil der Vorverarbeitung. Zeitschritte, bei denen der Wert der Zeitreihe
gleich bleibt, werden nicht als Teil des Vorhersageproblems betrachtet. Das heißt, wenn die
Steigung der Zeitreihe positiv ist, dann wird versucht dies vorherzusagen. Wenn die Steigung
der Zeitreihe negativ ist, dann wird ebenfalls versucht dies vorherzusagen. Wenn die Zeitrei-
he weder steigt noch fällt, ist die Vorhersage irrelevant. Dabei wird berücksichtigt, dass sich
die Trefferrate aus dem Quotienten der korrekten Vorhersagen und den für die Vorhersage
gültigen Zeitschritten zusammensetzt. Als weiterer Vorverarbeitungsschritt wurden alle
Datenpunkte der Attributräume auf [0.1, 0.9]d ×R normiert1. Diese Vorverarbeitungsschritte
finden bei jedem Datensatz statt.

In Abschnitt 4.4 wurden die möglichen Optionen zur Datenvorverarbeitung beschrieben.
Um die Anzahl der Experimente auf einen auswertbaren Rahmen zu reduzieren, wurden
einige Parameter fest gewählt:

• Als Zielgröße dient immer der Trend.

• Experimente, bei denen kein Level angegeben wurde, wurden auf einem Gitter mit
Level 6 berechnet.

1Die Zielgröße muss nach wie vor nicht normiert werden.

47

5. Datensätze und Vorhersagequalität

• Die Anzahl der Iterationen des Lösers wurde auf 15 Iterationen beschränkt. Falls
die Fehlerschranke, hier festgelegt mit 10−5, schneller erreicht wird, werden weniger
Iterationen verwendet.

• Die Fenstergröße, das heißt die Anzahl der relevanten Daten aus der Vergangenheit,
wurde mit 3000 Zeitschritten gewählt. Daraus folgt, dass für die Erstellung einer
Dünngitterfunktion immer die letzten 3000 Datenpunkte berücksichtigt werden, jeweils
vom aktuellen Zeitschritt aus betrachtet.

• Da die Ergebnisse des Dichte-basierten Ansatzes und die Ergebnisse des Ansatzes mit
der Methode der kleinsten Quadrate sehr ähnlich sind, wird hier nur auf die Methode
der kleinsten Quadrate eingegangen. Ergebnisse für den Dichte-basierten Ansatz sind
jedoch in Anhang A.1 zu finden.

5.1. Der synthetische Datensatz „Kurve“

Die Durchführung synthetischer Experimente dient der experimentellen Überprüfung des in
den letzten Kapiteln präsentierten Ansatzes. In Fällen, in denen alle relevanten Informationen
über die Daten vorliegen und die Daten zudem so beschaffen sind, dass auffindbare Muster
auch tatsächlich existieren und mit den vorgestellten Attributkonstruktoren extrahierbar
sind, muss eine hohe Vorhersagequalität erreichbar sein. Dies wird mit diesem Datensatz
und dem im nächsten Abschnitt folgenden Datensatz experimentell überprüft.

In diesem ersten synthetischen Datensatz wird eine bekannte Funktion an diskreten Zeit-
punkten ausgewertet. Als einfaches Untersuchungsobjekt wurde eine Summe von mehreren
Sinusfunktionen gewählt, wobei die einzelnen Funktionen kurz- und langfristige Zyklen in
den Daten darstellen sollen:

fsin(t) =
m

∑
i=0

aisin
(

2πt
bi

)
+ ct(5.1)

Durch die Multiplikation von t mit 2π werden die Sinusfunktionen auf eine Periode von 1
normiert. Durch den Parameter bi werden beliebige Perioden erzeugt, mit den Parametern
ai werden die Amplituden gesteuert. Der Parameter c fügt eine zusätzliche Gerade hinzu,
durch die eine vollständige Periodizität der Werte der Funktion verhindern soll, wenn c
ungleich Null ist. Erhalten bleibt allerdings auch bei einer Wahl von c ungleich Null eine
Periodizität in den Ableitungen, die interessant für die Vorhersage der Funktion ist.

Für die Untersuchung in diesem Abschnitt wird die Funktion fsin mit den folgenden Para-
metern gewählt:

a = (17, 11)(5.2)

b = (97, 29)(5.3)
c = 0.05(5.4)

48

5.1. Der synthetische Datensatz „Kurve“

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

0 1000 2000

Abbildung 5.1.: Verlauf der Zeitreihe des „Kurve“-Datensatzes vor den Vorverarbeitungs-
schritten.

Mit diesen Parametern ergibt sich die in Abbildung 5.1 abgebildete Funktion. Die Gesamtpe-
riode der Sinusfunktion ist das kleinste gemeinsame Vielfache der Einzelperioden, in diesem
Fall also 97 · 29 = 2813, da beide Einzelperioden Primzahlen sind. Durch die Wahl einer
geringen positiven Steigung wird das Data Mining etwas erschwert, da im Verlauf der Zeit
immer neue, noch nie aufgetretene Werte auftreten. Trotzdem ist sichergestellt, dass fsin
klare Muster besitzt, da die Ableitung von fsin periodisch ist. Da eine Zeitreihe über 5000
Zeitschritte generiert wurde und eine Fenstergröße mit 3000 Schritten gewählt wurde, ist die
vorliegende Funktion bis auf die Gerade periodisch.

Die beschriebene Funktion hat die Eigenschaft, dass eine Trendvorhersage extrem einfach ist.
Da die Anzahl der Extremstellen bezogen auf die 5000 Zeitschritte relativ gering ist, ist eine
einfache Schätzung nach folgender Regel möglich: Wenn die Funktion im letzten Zeitschritt
gestiegen ist, dann steigt sie auch in diesem Zeitschritt.

Wird diese einfache Regel verwendet, dann werden von den ersten 5000 Zeitschritten 346
falsch vorhergesagt, weil sich der Trend an den Extremstellen ändert. Das heißt, es ergibt sich
eine Trefferrate von 93, 1%. Daraus folgt, dass erst ab einer Trefferrate von mehr als 93, 1%
auch einige der schwerer vorherzusagenden Trendwechsel garantiert erfolgreich vorhergesagt
werden.

Bei den mit diesem Datensatz durchgeführten Experimenten wurde die Schrittanzahl m für
jeden Konstruktor variiert. Wie in Abschnitt 4.2.1 beschrieben, steuert diese, wie viele Daten-
punkte aus der Vergangenheit zur Konstruktion eines Tupels im Attributraum herangezogen
werden. Daraus ergibt sich gleichzeitig die Dimension des Attributs.

49

5. Datensätze und Vorhersagequalität

1 2 3 4 5 6 7
35
40

50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6 7
35
40

50

60

70

80

90

100

Level
ko

rr
ek

t
(%

)

m = 1 m = 2 m = 3

(b) Linear-Quad-Konstruktor

1 2 3 4 5 6 7
35
40

50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Differenz-Konstruktor

1 2 3 4 5 6 7
35
40

50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(d) Differenz-Quad-Konstruktor

Abbildung 5.2.: Qualität der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den „Kurve“-Datensatz. Dabei wird der Level des Gitters bei jedem
Konstruktor variiert.

50

5.1. Der synthetische Datensatz „Kurve“

In Abbildung 5.2 sind die Ergebnisse der Experimente mit verschiedenen Attributkonstrukto-
ren und dem „Kurve“-Datensatz zu sehen. Es kann beobachtet werden, dass die Genauigkeit
der Vorhersage mit der Wahl des Konstruktors variiert. Da die Funktion fsin, wie oben
erwähnt, häufig zuvor noch nicht erreichte Werte einnimmt, ist die Vorhersagequalität der
direkt auf den Werten operierenden Attributkonstruktoren relativ niedrig. Trotzdem ist
die Trefferrate immer noch relativ hoch, da der Linear-Konstruktor bis zu 96, 4% korrekte
Vorhersagen erreichen kann, der Linear-Quad-Konstruktor erreicht bis zu 96, 2%. Die hohe
Trefferrate kann dadurch erklärt werden, dass neue Werte nicht zu häufig erreicht werden,
und zuvor erreichte Werte eine Aussage über den zukünftigen Verlauf erlauben.

Abbildung 5.3 veranschaulicht dieses Phänomen. Diese Abbildung zeigt den Attributraum
für den Linear-Konstruktor mit m = 2, wodurch ein zweidimensionaler Attributraum ent-
steht. Abbildung 5.3a zeigt dabei die Kurve über 2000 Zeitschritte, Abbildung 5.3b über
einen kleineren Ausschnitt von 400 Zeitschritten. Datenpunkte, die zu unterschiedlichen
Klassen gehören, sind farblich unterschiedlich markiert, wobei steigende Zeitschritte blau
und fallende Zeitschritte rot eingefärbt sind. Die Kurve verläuft in Kreisbahnen von links
unten nach rechts oben durch den Raum. Die Kreisbahnen sind auf die Sinusfunktionen
zurückzuführen. Dadurch, dass die Werte im Verlauf der Zeit steigen, wandert die Kur-
ve langsam von links unten nach rechts oben. Ein Punkt (f (t), f (t− 1)) am Anfang des
betrachteten Zeitfensters liegt eher links unten, weil die Werte der Zeitreihe klein (und
normiert) sind, im Verlauf der Zeit jedoch größer werden. Die Kurve verläuft in der Nähe
der Winkelhalbierenden, da die Differenz der Werte zwischen einzelnen Zeitschritten relativ
klein ist. Da erkennbar ist, dass sich die Klassen nur wenig überlappen, lässt dies zunächst
eine hohe Trefferrate erwarten. Dadurch, dass die Kurve durch den Attributraum wandert,
finden die Auswertungen zur Vorhersage des nächsten Zeitschritts allerdings immer am
Rand der aktuellen Menge an Datenpunkten im Attributraum statt. Dabei liegen einige
wenige Punkte in der Nähe, wodurch die Anzahl der korrekten Vorhersagen immer noch
relativ hoch ist. Das Auftreten von Mustern im Attributraum allein garantiert also noch
keine optimale Trefferrate, da es vorkommen kann, dass die Muster, wie in diesem Beispiel
zu sehen, für die Vorhersage nur eingeschränkt verwendet werden können.

Da der Datensatz bei Verwendung des Differenz-Konstruktors periodisch wird, ist eine
höhere Trefferrate zu erwarten. Die Ergebnisse aus Abbildung 5.2 bestätigen diese Vermutung.
Der Differenz-Konstruktor erreicht eine Trefferrate von bis zu 99, 4%, der Differenz-Quad-
Konstruktor kann sogar eine Trefferrate von bis zu 99, 7% erreichen.

In Abbildung 5.4 ist der berechnete Attributraum für den Differenz-Konstruktor zu sehen. Die
Farbcodierung ist wieder Rot für „fallend“ und blau für „steigend“. Um die Periodizität der
Kurve im Datenraum zu veranschaulichen, wurde eine modifizierte Funktion fsin geplottet,
bei die Perioden der Sinusfunktionen deutlich reduziert wurden. An dieser Abbildung kann
deutlich gesehen werden, dass die meisten steigenden oder fallenden Datenpunkte klar
räumlich getrennt sind. Die Korrektheit aller Vorhersagen kann vermutlich deswegen nicht
erreicht werden, weil die Klassen sehr nahe beieinander liegen und eine exakte Trennung
sehr viele Gitterpunkte erfordert.

51

5. Datensätze und Vorhersagequalität

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f(
t-

1
)

f(t)

(a) Attributraum von fsin dargestellt als fsin(t) gegen fsin(t− 1) über 2000 Zeitschritte.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

f(
t-

1
)

f(t)

(b) Attributraum von fsin dargestellt als fsin(t) gegen fsin(t− 1) über 400 Zeitschritte.

Abbildung 5.3.: Zeitreihe des „Kurve“-Datensatzes im 2D-Attributraum, transformiert mit
dem Linear-Attributkonstruktor. Die Klassen sind farblich unterschieden.
Die Kurve verläuft in Kreisbahnen von links unten nach rechts oben.

52

5.2. Der synthetische Datensatz „Muster“

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f(
t)

 -
 f
(t

-2
)

f(t) - f(t-1)

Abbildung 5.4.: Attributraum von fsin dargestellt als fsin(t) − fsin(t − 1) gegen fsin(t) −
fsin(t− 2) bei stark reduzierter Periode. Da mehr Zeitschritte dargestellt
werden, als die Periode der Funktion lang ist, zeigt die Abbildung die
vollständige Funktion. Die Klassen sind farblich markiert.

5.2. Der synthetische Datensatz „Muster“

Der zweite synthetische Datensatz besteht aus einem geometrischen Muster, das in eine
Zeitreihe codiert wird. Ausgangspunkt dafür ist die folgende Funktion:

f (xn, xn−1) =



rand(xn, 1) xn < 0, 5∧ xn−1 < 0, 5∧
(xn − 0, 25)2 + (xn−1 − 0, 25)2 > 0, 22

rand(xn, 1) xn > 0, 5∧ xn−1 > 0, 5∧
(xn − 0, 75)2 + (xn−1 − 0, 75)2 < 0, 22

rand(xn, 1) xn > 0, 5∧ xn−1 < 0, 5∧ 1− xn−1 < xn

rand(xn, 1) xn−1 > 0, 5∧ xn < 0, 5∧ 1− xn−1 < xn

rand(0, xn) sonst

(5.5)

53

5. Datensätze und Vorhersagequalität

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

Abbildung 5.5.: Verlauf der Zeitreihe des „Muster“-Datensatzes vor den Vorverarbeitungs-
schritten.

Die Funktion rand(., .) gibt einen zufälligen Wert aus dem durch die Argumente spezifi-
zierten Intervall zurück. Die Zeitreihe wurde aus dem Datensatz durch die Rekursionsvor-
schrift

g(n + 1) = f (g(n), g(n− 1))(5.6)
g(1) = rand(0, 1)(5.7)
g(2) = rand(0, 1)(5.8)

erzeugt. Dabei wurden zusätzlich alle bereits erzeugten Werte von g zur Berechnung zukünf-
tiger Zeitschritte wiederverwendet. Der Verlauf der Zeitreihe mit dieser Rekursionsvorschrift
ist zufällig. Abbildung 5.5 zeigt einen möglichen Verlauf der Zeitreihe für einige Zeitschrit-
te.

Wird dieser Datensatz auf eine bestimmte Weise betrachtet, ergibt sich ein deutlich erkenn-
bares Muster, das in Abbildung 5.6a dargestellt ist. Die Fallunterscheidung in der Definition
von f entspricht allen Bereichen, die in der Abbildung rot dargestellt sind. Dabei bedeutet es
geometrisch, dass der nächste Wert der Zeitreihe aus dem Bereich zwischen dem aktuellen
Wert und Eins gelost wird, wenn das Tupel bestehend aus dem aktuellen und dem letzten
Wert eine Koordinate in einem roten Bereich darstellt. Entsprechend bedeutet es für ein Tupel,
wenn es in einem blauen Bereich liegt, dass der nächste Wert aus dem Bereich zwischen null
und dem aktuellen Wert gelost wird. In Abbildung 5.6b ist eine gute Näherung der Funktion
zu sehen vor der Klassifikation zu sehen. Nach der Klassifikation würden alle Werte größer
null der „roten“ Klasse zugeordnet werden.

Wie beim Datensatz „Kurve“ wurden auch hier wieder Experimente mit mehreren Attri-
butkonstruktoren und Konfigurationen durchgeführt. Ein Überblick über die Ergebnisse
ist in Abbildung 5.7 zu sehen. Da die Zeitreihe aufgrund ihrer Konstruktion durch den
Linear-Konstruktor in zwei Dimensionen nahezu perfekt abgebildet werden sollte, ist hier
die erreichte Vorhersagegenauigkeit am höchsten. Der Linear-Konstruktor erreichte eine

54

5.2. Der synthetische Datensatz „Muster“

1

1

0 y t

y t−1

(a) Ideale Geometrie im Attributraum

-1

-0.5

 0

 0.5

 1

(b) Heatmap einer guten Näherung der Funktion

Abbildung 5.6.: Auf der linken Seite ist das Schema der Konstruktion des Datensatzes
abgebildet. Rechts ist eine Dünngitterfunktion abgebildet, die eine sehr gute
Annäherung an das Konstruktionsschema darstellt.

Trefferrate von 95, 2%. Interessanterweise konnte dessen quadratische Variante dieselbe
Genauigkeit erreichen.

In Abbildung 5.7 sind außerdem Ergebnisse für den Differenz-Konstruktor und den Differenz-
Quad-Konstruktor zu sehen. Wie erwartet liegen die Ergebnisse deutlich unter den Ergebnis-
sen des Linear-Konstruktors, da der Raum nicht entsprechend einem Differenzenschema
aufgebaut wurde. Gerade dadurch, dass der nächste Wert vom Zufall abhängt, reduziert
sich die Anzahl korrekter Vorhersagen, da die Differenz nahezu beliebige Werte einnehmen
können. Dabei fällt insbesondere auf, dass die Vorhersage trotz des nicht optimalen Kon-
struktors immer noch deutlich über 50% liegt. Das heißt, auch bei einem schlecht gewählten
Konstruktor können immer noch Muster im Attributraum auftreten.

Aufgrund der Konstruktion des Raums mit zwei Kreisen und einer diagonal verlaufenden
Grenze zwischen den Klassen werden, trotz der relativ einfachen Struktur des Problems, für
eine hohe Vorhersagegenauigkeit sehr viele Gitterpunkte benötigt. Dies zeigt sich auch bei
den gewählten Konstruktoren. Mit zunehmendem Level steigt die Qualität der Vorhersage
weiter an. Eine perfekte Trefferrate wird mit den vorgestellten Experimenten noch nicht
erreicht, obwohl aufgrund der Konstruktion keine Überlappung der Klassen vorliegt. Wird
mit dem Linear-Konstruktor und noch höherem Level gerechnet, lässt sich die Trefferrate
auf nahezu 100% verbessern. Eine perfekte Vorhersage ist allerdings schwierig, da Punkte
auf den scharfen Klassengrenzen nur mit äußerst vielen Gitterpunkten immer korrekt den
Klassen zugeordnet werden können.

Dieses Beispiel zeigt weiter, dass für eine gute Vorhersage keineswegs Periodizität benötigt
wird. Trotz des zufälligen Verlaufs der Kurve durch den Attributraum ist der Verlauf der
Kurve regelbasierend. Des Weiteren zeigen beide synthetischen Beispiele, dass die Wahl des

55

5. Datensätze und Vorhersagequalität

1 2 3 4 5 6 7
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6 7
45
50

60

70

80

90

100

Level
ko

rr
ek

t
(%

)

m = 1 m = 2 m = 3

(b) Linear-Quad-Konstruktor

1 2 3 4 5 6 7
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Differenz-Konstruktor

1 2 3 4 5 6 7
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(d) Differenz-Quad-Konstruktor

Abbildung 5.7.: Qualität der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den „Muster“-Datensatz. Dabei wird der Level des Gitters bei jedem
Konstruktor variiert.

56

5.3. Experimente mit Finanzdatensätzen

Konstruktors äußerst wichtig ist. Wird dieser optimal gewählt und sind die Daten qualitativ
ausreichend, dann können Vorhersagen mit hoher Präzision durchgeführt werden.

Dieser Datensatz ist auch ein gutes Beispiel dafür, dass die Betrachtung eines Problems in
einer höheren Dimension nicht zwangsläufig zu einer Verbesserung der Vorhersage führt.
Durch die Technik der Konstruktion der Zeitreihe handelt es sich inhärent um ein Problem
in zwei Dimensionen. Die Trefferrate der Konstruktoren in Abbildung 5.7 bestätigt diese
Hypothese.

5.3. Experimente mit Finanzdatensätzen

Durch Experimente mit real gemessenen Daten kann gezeigt werden, dass Zeitreihenanalyse
mit dünnen Gittern auch abseits von synthetischen Experimenten erfolgreich zur Vorhersage
verwendet werden kann. Dazu wurden drei Datensätze verwendet. Zwei davon bestehen
aus Zeitschritten bekannter Aktienindizes, dem deutschen DAX und dem amerikanischen
Dow Jones. Der dritte Datensatz beinhaltet Euro-Dollar Umrechnungskurse im Verlauf der
Zeit. Ziel ist wie bisher die korrekte Vorhersage des Trends.

5.3.1. Vorhersage des Deutschen Aktienindex DAX

Als erstes Beispiel für nichtsynthetische Daten wird ein Ausschnitt des Kursverlaufs des
Deutschen Aktienindex verwendet. Der DAX ist der wichtigste deutsche Aktienindex. Er
setzt sich aus den 30 größten und umsatzstärksten Unternehmen zusammen, die an der
Frankfurter Börse gelistet sind. Darunter sind Firmen wie Bayer, Siemens und BASF [Dax].

Die Daten der hier vorgestellten Experimente wurden aus Googles Finanzdienst „Fi-
nance“ manuell gewonnen [Goo]. Die verwendeten Daten stammen aus dem Zeitraum
vom 30.10.2013 um 8:03 Uhr bis zum 19.11.2013 um 4:36 Uhr. Die Datenpunkte liegen in Mi-
nutenabständen vor, allerdings wird der DAX nur an Werktagen von 9:00 bis 17:45 gehandelt,
weswegen große Lücken über die Nächte und über die Wochenenden entstehen.

In Abbildung 5.8 ist der Verlauf des DAX im verwendeten Zeitraum zu sehen. Deutlich
erkennbar sind auch die Zeiträume, in denen der DAX tatsächlich gehandelt wird. Die
kurzen Lücken werden durch die Nächte der Werktage hervorgerufen, die langen Lücken
entstehen durch Wochenenden. Zusätzlich sind die Daten unvollständig, da für einige
Zeitschritte keine Daten vorliegen. Für den beschriebenen Zeitraum liegen insgesamt 7573
Datenpunkte vor. Da die Werte minütlich vorliegen, kann errechnet werden, dass nicht
für jede Minute ein Wert vorliegt. Da ebenfalls Daten für einige der DAX Unternehmen
betrachtet werden sollen, wurden Zeitpunkte, an denen nicht alle Daten verfügbar waren,
verworfen. Für die Vorhersagen mithilfe von assoziierten Daten stehen daher nur 5782
Datenpunkte zur Verfügung. Für die Experimente mit diesem Datensatz wurden jeweils 1000
Testdaten verwendet, das heißt, es wurden Vorhersagen für 1000 Zeitschritte berechnet.

57

5. Datensätze und Vorhersagequalität

 8950

 9000

 9050

 9100

 9150

 9200

 9250

 9300

Abbildung 5.8.: Verlauf des DAX im Zeitraum zwischen dem 30.10.2013 um 8:03 Uhr und
dem 19.11.2013 um 4:36 Uhr.

Zur Untersuchung der Qualität der Vorhersage wurden vier Experimente durchgeführt.
Für die ersten beiden Experimente wurden der Linear-Konstruktor und der Differenz-
Konstruktor ausgewählt. Als drittes Experiment wurden beide Konstruktoren der ersten
beiden Experimente zusammen angewendet. Zuletzt wurden mehrere Zeitreihen betrachtet,
neben dem Kurs des DAX selbst wurden dem Datensatz die Kurse von bis zu drei DAX-
Unternehmen hinzugefügt.

Auch für dieses Experiment gibt es eine minimal zu erreichende Trefferrate, die überschritten
werden muss, damit Vorhersagen nicht als trivial gelten. Von den 1000 Elementen der
Testdatenmenge sind insgesamt 969 Zeitschritte relevant. Bei 31 Zeitschritten liegt keine
Änderung der Werte relativ zum Vorgänger vor. Von den relevanten Zeitschritten besitzen
wiederum 502 Zeitschritte einen steigenden Trend. Da auch in den Daten der verwendeten
Fenster mehr steigende als fallende Zeitschritte zu finden sind, wird die mindestens zu
schlagende Basistrefferrate mit 51, 8% angegeben.

In Abbildung 5.9 sind die Ergebnisse der durchgeführten Experimente zu sehen. Da für
diese Experimente keine synthetischen Daten verwendet wurden, ist nicht die Trefferrate
der synthetischen Experimente zu erwarten. Mit dem Linear-Konstruktor beträgt die beste
erreichbare Trefferrate 54, 4%, der Differenz-Konstruktor erreicht 55, 2%. Die insgesamt beste
Trefferrate wird durch die Kombination der beiden vorherigen Konstruktoren erreicht, sie
beträgt 56, 3%. Während also die generelle Trefferrate im Vergleich zu den synthetischen
Daten deutlich niedriger ausfällt, wird zumindest die Basistrefferrate von 51, 8% deutlich
übertroffen.

Bei der Kombination mehrerer Zeitreihen ist eine Basistrefferrate etwas niedriger, da der
verwendete Datensatz, wie oben beschrieben, modifiziert wurde. Die Basistrefferrate liegt
hier bei 50, 6%. Da durch die Hinzunahme von zwei weiteren Zeitreihen eine Trefferrate

58

5.3. Experimente mit Finanzdatensätzen

1 2 3 4 5 6 7
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6 7
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(b) Differenz-Konstruktor

1 2 3 4 5
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Linear-Konstruktor und Differenz-Konstruktor

1 2 3 4
45

50

55

60

Anzahl der Zeitreihen

ko
rr

ek
t

(%
)

Linear-K. Differenz-K.

(d) Verwendung mehrerer Zeitreihen.

Abbildung 5.9.: Qualität der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den „DAX“-Datensatz. In den ersten drei Abbildungen wird der Level
des Gitters zusätzlich variiert. Die vierte Abbildung zeigt die Trefferraten,
wenn mehrere Zeitreihen zur Vorhersage verwendet werden.

59

5. Datensätze und Vorhersagequalität

von 53, 2% erreicht werden kann, liegt eine Verbesserung um 2, 6% vor. Da die drei anderen
Experimente eine Verbesserung von im besten Fall 4, 5% schaffen, ist zumindest bei diesem
Vergleich eine korrekte Wahl der Konstruktor nützlicher als die Verwendung dieser weiteren
Zeitreihen.

Im Allgemeinen steigt die Trefferrate zwischen Level 1 und Level 2 stark an. Dies deutet
darauf hin, dass die erkannten Muster relativ grob sind. Ansonsten würde das Rechnen mit
höheren Leveln zu weiteren Verbesserungen führen. Am deutlichsten ist dies bei Verwendung
des Differenz-Konstruktors zu beobachten. Nach einer relativ hohen Trefferrate auf einem
Gitter mit Level 2, fällt die Trefferrate mit zunehmendem Level tendenziell ab. Hier scheint
ein grobes Muster durch wenige Gitterpunkte gut wiedergegeben zu werden, während es
bei mehr Gitterpunkten schnell zu Overfitting kommt. Außerdem kann beobachtet werden,
dass für akzeptable Vorhersagen mindestens ein zweidimensionaler Attributraum benötigt
wird. Wird nur mit einer Dimension gerechnet, liegen die Trefferraten kaum über der
Basistrefferrate.

5.3.2. Vorhersage des amerikanischen Aktienindex Dow Jones

Der Dow Jones ist ein wichtiger Aktienindex der New York Stock Exchange. Ähnlich wie der
deutsche DAX ist der Dow Jones ein Aktienindex, dessen Wert sich aus dem gewichteten
Wert großer Unternehmen zusammensetzt. Unternehmen mit starker Gewichtung sind unter
anderem Visa, IBM, Goldman Sachs, Boeing und 3M [Dow]. In dieser Arbeit wird der Verlauf
des Dow Jones und seiner assoziierten Unternehmen im Zeitraum zwischen dem 18.9.2013
um 1:31 Uhr und dem 8.10.2013 um 8:00 Uhr betrachtet. Dafür liegen 5711 Datenpunkte vor,
die auf einen Zeitraum von etwa 20 Tagen verteilt sind. Wie die DAX-Daten wurde auch
dieser Satz mithilfe von „Google Finance“ erstellt [Goo].

Der Verlauf des Dow Jones über den betrachteten Zeitraum ist in Abbildung 5.10 zu sehen.
Ähnlich wie beim „DAX“-Datensatz gilt auch hier wieder, dass die zeitlichen Sprünge
durch Nächte und Wochenenden erklärbar sind. Aufgrund von Wochenenden und der nicht
ganztägigen Berechnungszeit des Dow Jones liegt bei diesem Datensatz pro Minute ein Wert
vor. Auch hier ist der Datensatz nicht vollständig, weswegen Zeitschritte mit unvollständigen
Daten verworfen wurden.

Da der Dow Jones dem DAX strukturell ähnelt, wurden dieselben Experimente durchge-
führt. Es wurden auch hier der Linear-Konstruktor und der Differenz-Konstruktor einzeln
und kombiniert angewendet. Ebenfalls wurde ein Experiment mit assoziierten Zeitreihen
durchgeführt, wobei auch hier drei der Unternehmen gewählt wurden, aus denen sich der
Dow Jones zusammensetzt.

Von den 1000 Elementen der Testdatenmengen, sind 951 für die Vorhersage relevant. Da 493
Zeitschritte mit steigenden Werten vorliegen, liegt die Basistrefferrate bei 51, 8%. Durch eine
entsprechende Rechnung liegt die Basistrefferrate beim modifizierten Datensatz für mehrere
Zeitreihen bei 50, 8%.

60

5.3. Experimente mit Finanzdatensätzen

 14700

 14800

 14900

 15000

 15100

 15200

 15300

 15400

 15500

 15600

 15700

 15800

Abbildung 5.10.: Verlauf des Dow Jones im Zeitraum zwischen dem 18.9.2013 um 1:31 Uhr
und dem 8.10.2013 um 8:00 Uhr.

Wie die Ergebnisse der Experimente in Abbildung 5.11 zeigen, liegt die erzielte Trefferrate nur
wenig über der Basistrefferrate. Das beste Ergebnis aus den einzelnen Konstruktoren und den
kombinierten Konstruktoren beträgt 53, 3% und liegt damit 1, 5% über der Basistrefferrate
von 51, 8%. Eine Verbesserung kann durch die Verwendung einer zusätzlichen Zeitreihe
erzielt werden. Dann steigt die Trefferrate auf 53, 9%, wobei die Basistrefferrate hier 50, 8%
beträgt. Damit liegt das beste Experiment immerhin 3, 1% über der Basistrefferrate.

Die erzielten Trefferraten bewegen sich damit auf einem ähnlichen Niveau wie die DAX-
Daten. Da beide Datensätze eine ähnliche Struktur und eine ähnliche Qualität besitzen, ist ein
solches Ergebnis plausibel. Eine Verbesserung der Trefferraten könnte vermutlich bei beiden
Datensätzen erreicht werden, wenn weniger lückenhafte Daten vorliegen. Besonders über die
langen Lücken durch die Nächte und Wochenenden sind zum Teil erhebliche Änderungen
der Werte zu beobachten. Durch eine Verknüpfung mit weiteren Zeitreihen, deren Werte
die nächtlichen Änderungen abschätzen lassen, sollte ebenfalls eine weitere Verbesserung
erreichbar sein.

5.3.3. Vorhersage im Hochfrequenzhandel am Beispiel von Euro-Dollar
Wechselkursen

Als dritter Datensatz zur Evaluierung des Ansatzes unter realistischeren Bedingungen
wurden Wechselkurse des Euros in Dollar verwendet. Hierzu wurde ein Datensatz verwendet,
der über den Datenanbieter TrueFX2 bezogen wurde [Tru]. Bei den verwendeten Daten
handelt es sich um Tickdaten. Das bedeutet, dass jede Änderung des Kurses verzeichnet ist.

2TrueFX ist selbst ein Produkt der Integral Development Corporation.

61

5. Datensätze und Vorhersagequalität

1 2 3 4 5 6 7
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6 7
45

50

55

60

Level
ko

rr
ek

t
(%

)
m = 1 m = 2 m = 3

(b) Differenz-Konstruktor

1 2 3 4 5
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Linear-Konstruktor und Differenz-Konstruktor

1 2 3 4
45

50

55

60

Level

ko
rr

ek
t

(%
)

Linear-K. Differenz-K.

(d) Trefferrate bei unterschiedlicher Anzahl an ver-
wendeten Zeitreihen

Abbildung 5.11.: Qualität der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den „Dow Jones“-Datensatz. In den ersten drei Abbildungen wird
der Level des Gitters zusätzlich variiert. Die vierte Abbildung zeigt die
Trefferraten, wenn mehrere Zeitreihen zur Vorhersage verwendet werden.

62

5.3. Experimente mit Finanzdatensätzen

 1.302

 1.3025

 1.303

 1.3035

 1.304

 1.3045

Abbildung 5.12.: Verlauf des Dollar in Euro Kurses im Dezember 2012.

Für die hier vorgestellten Experimente wurde der Datensatz so vorverarbeitet, dass Daten
in Minutenintervallen vorliegen. Betrachtet wurde der Zeitraum vom 2.12.2012 um 11:00
Uhr bis zum 3.12.2012 um 10:33 Uhr. Daraus resultierten insgesamt 15430 Datenpunkte
(aus den 6, 7 Millionen Tickdaten für den gesamten Dezember 2012). Von den verbliebenen
Datenpunkten wurden wiederum 2000 als Testdaten ausgewählt.

Um auch Experimente mit korrelierten Daten durchführen zu können, wurden zusätz-
lich Wechselkurse des Euros in britische Pfund verwendet. Diese wurden vom selben
Datenanbieter bezogen und liegen ebenfalls als Tickdaten vor. Da Tickdaten jedoch schwer
synchronisierbar sind, wurden die Daten modifiziert kombiniert. Dabei wurde immer der
erste Sekundenwert als Teil des modifizierten Datensatzes ausgewählt, bei dem für beide
Zeitreihen Daten vorliegen haben. Daraus entstand ein Datensatz mit 7652 Zeitschritten
für den oben genannten Zeitabschnitt. Damit bestehen große Unterschiede zwischen dem
allgemeinen Datensatz und dem Datensatz für Experimente mit korrelierten Zeitreihen. Letz-
terer Datensatz arbeitet auf festen Sekundenintervallen, der allgemeine Datensatz arbeitet
dagegen auf den unregelmäßigen Tickdaten.

Auch mit diesem Datensatz wurden dieselben Experimente wie bei den beiden vorherigen
Datensätzen durchgeführt. Da der Datensatz des Experiments mit mehreren Zeitreihen stark
von den anderen Experimenten abweicht, sollte dieser allerdings als eigenständig betrachtet
werden.

Für die ersten drei Experimente liegen 2000 Testzeitpunkte vor, darunter 692 steigende
Zeitschritte und 676 fallende Zeitschritte. Die erwartete Basistrefferrate liegt damit bei
50, 6%. Wie in Abbildung 5.13 zu sehen ist, kann die Basistrefferrate in den durchgeführten
Experimenten deutlich überboten werden. Bereits der Linear-Konstruktor erreicht eine
Trefferrate von bis zu 68, 86%. Dies wird durch den Differenz-Konstruktor sogar noch weiter

63

5. Datensätze und Vorhersagequalität

1 2 3 4 5 6 7
45

50

60

70

80

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6 7
45

50

60

70

80

Level
ko

rr
ek

t
(%

)
m = 1 m = 2 m = 3

(b) Differenz-Konstruktor

1 2 3 4 5
45

50

60

70

80

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Linear-Konstruktor und Differenz-Konstruktor

1 2
45

50

60

70

80

Anzahl der Zeitreihen

ko
rr

ek
t

(%
)

Linear-K. Differenz-K.

(d) Trefferrate bei unterschiedlicher Anzahl an ver-
wendeten Zeitreihen

Abbildung 5.13.: Qualität der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den „FX“-Datensatz. In den ersten drei Abbildungen wird der Level
des Gitters zusätzlich variiert. Die vierte Abbildung zeigt die Trefferraten,
wenn mehrere Zeitreihen zur Vorhersage verwendet werden, dabei wird
eine stark modifizierte Zeitreihe verwendet.

64

5.4. Interpretation der qualitativen Ergebnisse

überboten, da dieser bis 71, 6% korrekte Vorhersagen liefert. Der kombinierte Ansatz erreicht
eine Trefferrate von 71, 2%.

Es fällt auf, dass alle Experimente sehr hohe Trefferraten besitzen. Und dass für hohe
Trefferraten bereits ein niedriger Level ausreicht. Gleichzeitig korreliert eine niedrigere
Dimension tendenziell mit schlechteren Vorhersagen. All dies deutet darauf hin, dass der
betrachtete Zeitraum einem verhältnismäßig einfachen Prozess unterliegt, der bereits mit
wenigen Gitterpunkten gut abgebildet werden kann. Weitere Muster werden aber scheinbar
nicht erkannt, da ein höherer Level nicht zu besseren Resultaten führt. Für diese Hypothese
spricht besonders der Verlauf des Experiments, das den Linear-Konstruktor verwendet. Hier
scheint bei höheren Levels Overfitting einzutreten. Des Weiteren wird mit dem Differenz-
Konstruktor bereits auf Level 2 eine sehr hohe Trefferrate erreicht, das bedeutet, dass bereits
3 Gitterpunkte für gute Vorhersagen ausreichen. Mit 7 Gitterpunkten wird bereits die höchste
Trefferrate erreicht.

Das Experiment mit mehreren Zeitreihen zeigt erwartungsgemäß einen anderen Verlauf.
Während mit dem in diesem Datensatz bei Verwendung einer Zeitreihe eine Trefferrate von
54, 1% erreicht wird, kann dies durch Verwendung einer weiteren Zeitreihe deutlich auf
58, 3% gesteigert werden.

5.4. Interpretation der qualitativen Ergebnisse

Die mit den fünf Datensätzen durchgeführten Experimenten legen einige allgemeineren
Schlüsse nahe. Die Trefferrate steigt mit zunehmendem Level und eine für das Problem
passende Dimension erhöht ebenfalls die Trefferrate. Des Weiteren ist die Wahl der Kon-
struktoren äußerst wichtig.

Bei den synthetischen Experimenten sind diese Phänomene alle sehr deutlich zu beobachten,
weil sehr gute Informationen über die Daten und zudem Daten von hoher Qualität vorliegen.
Diese Informationen können genutzt werden, um geeignete Attributräume zu konstruieren.
Damit konnten letztlich sehr hohe Trefferrate zu erreicht werden.

Die Trefferraten bei den Experimenten mit nichtsynthetischen Datensätzen sind erwartungs-
gemäß deutlich niedriger. Der Aufwand, der betrieben werden muss, um unter diesen
Umständen geeignete Konstruktoren für reale Daten zu finden, ist ungleich größer, da die
Beschreibung der Phänomene, die zu den Werten der Zeitreihe führen, ungleich kompli-
zierter ist. Zudem besteht bei real gemessenen Daten das Problem, dass a priori unklar ist,
ob die vorhandenen Daten auch tatsächlich für eine hohe Trefferrate bei den Vorhersagen
ausreichen. Insbesondere der „DAX“- und der „Dow Jones“-Datensatz sind

Wird als Zeitreihe nur eine sehr einfache Zielgröße verwendet, wären gute Vorhersagen in
vielen Fällen äußerst erstaunlich. Zum Beispiel stellt die Produktion einer Fabrik über die
Zeit eine Zeitreihe dar. Und es kann auch durchaus der Fall sein, dass das Produktionsnivau
bestimmten Regelmäßigkeiten folgt, die gute Vorhersagen erlauben. Trotzdem ist eine sehr
hohe Trefferrate sehr unwahrscheinlich, da eine Vielzahl relevanter äußerer Umstände nicht
einbezogen werden. Sollte aufgrund eines Unfalls die Produktion für einige Zeit ausfallen,

65

5. Datensätze und Vorhersagequalität

wird dies im Normfall nicht aus den Daten an vergangenen Zeitpunkten heraus vorhersagbar
sein3. Wie bei allen Data Mining Aufgaben gilt auch hier, dass nur die Informationen aus
den Daten gewonnen werden können, die im ursprünglichen Datensatz vorhanden sind.

Von Garcke et al. wurde ein ähnlicher Ansatz verfolgt, der ebenfalls auf dünnen Gittern
basiert und die sogenannte Kombinationstechnik verwendet. Zudem wurden von Garcke
et al. ebenfalls Börsendaten betrachtet. Unter ähnlichen Bedingungen wurde dort eine
Trefferrate von knapp 53% erreicht [GGG10]. Unglücklicherweise standen die verwendeten
Daten nicht zur Verfügung, da sie kommerziell bezogen wurden. Dies schränkt eine direkte
Vergleichbarkeit deutlich ein.

3Natürlich sind auch Szenarien denkbar, wo Unfälle Regelmäßigkeiten folgen.

66

6. Beschleunigung der Zeitreihenanalyse

Data Mining auf großen Datensätzen kann sehr teuer sein. Bei Gitter-basierten Lösungen
verschärft sich dieses Problem, wenn die Daten aus hochdimensionalen Räumen stammen.
Nachdem im letzten Kapitel gezeigt wurde, dass mit dem beschriebenen Dünngitteransatz
zur Zeitreiheanalyse erfolgreiche Vorhersagen möglich sind, wird in diesem Kapitel die
benötigte Rechenzeit untersucht. Anschließend werden weitere Optimierungen vorgestellt
und untersucht. Die Optimierungen wurden dabei nur für den auf der Methode der kleinsten
Quadrate basierten Ansatz evaluiert.

6.1. Die verwendete Plattform

Um eine gewisse Vergleichbarkeit herzustellen, muss auf die verwendete Hard- und Software
näher eingegangen werden. Das verwendete Dünngittertoolkit SG++ ist hochperformant
implementiert und verwendet OpenMP zur Skalierung innerhalb eines Shared-Memory-
Systems [Pfl10]. Dies wurde mit einem Intel-basierten 4-Sockel-System kombiniert, das als
Prozessoren vier Intel Xeon E7540 nutzt. Diese Prozessoren besitzen je 6 Kerne und takten
mit 2 Ghz1. Insgesamt liegen 24 Prozessorkerne vor, die dank Hyper-Threading 48 Threads
gleichzeitig verarbeiten können. Jeder Prozessor besitzt außerdem 18MB Level-3 Cache und
dem System stehen 512GB an Arbeitsspeicher zur Verfügung.

6.2. Benötigte Rechenzeit ohne Optimierungen

Da die Verwendung dünner Gitter im Vergleich zu voll besetzten Gittern bereits gute
Rechenzeiten erwarten lässt, wird in diesem Abschnitt auf die benötigten Rechenzeiten
ohne weitere Optimierungen eingegangen. In Abbildung 6.1 sind die Rechenzeiten für jeden
der Datensätze aus dem letzten Kapitel dargestellt. Dabei wurde bei jedem Datensatz das
Experiment ausgewählt, bei dem die höchste Trefferrate beobachtet werden konnte:

• „Kurve“: Die besten Ergebnisse wurden mit dem Differenz-Quad-Konstruktor mit
Schrittanzahl m = 3 erreicht. Daraus folgt ein Attributraum mit Dimension 3.

• „Muster“: Der Linear-Konstruktor mit m = 2 ergab die höchste Trefferrate. Dies ergibt
einen Attributraum mit Dimension 2.

1Durch den Turbomodus können die Prozessoren bis zu 2, 26 Ghz erreichen.

67

6. Beschleunigung der Zeitreihenanalyse

• „DAX“: Hier wurden der Linear-Konstruktor und der Differenz-Konstruktor zusam-
men verwendet, wobei jeder Konstruktor mit Schrittanzahl m = 2 gewählt wurde. Das
resultierende Problem hat damit 4 Dimensionen.

• „Dow Jones“: Bei diesem Datensatz konnte die höchste Trefferrate bei Verwendung
zweier Zeitreihen beobachtet werden. Die Dimension entspricht der Anzahl der ver-
wendeten Zeitreihen.

• „FX“: Der Differenz-Konstruktor mit m = 3 und daraus folgender Problemdimension
3 erreichte die höchste Trefferrate.

Abbildung 6.1 lässt den Schluss zu, dass bei allen Datensätzen eine Maximierung der
Trefferrate mit relativ geringen Rechenzeitanforderungen zusammenfällt. Bei vier der fünf
Datensätze wurden 1000 Testzeitpunkte verwendet, lediglich bei Experimenten mit dem
„FX“-Datensatz bestand die Testdatenmenge aus 2000 Elementen. Da bei den synthetischen
Experimenten kein Zeitmaßstab direkt vorgegeben ist, ist eine finale Einschätzung schwierig.
Beim Datensatz „Kurve“ wurde die höchste Trefferrate bereits bei einem Gitter mit Level
3 erreicht, was aufgrund der niedrigen Anzahl an Gitterpunkten auf eine sehr geringe
Rechenzeit für die einzelnen Testdatenpunkte hinweist.

Interessanter ist der Datensatz „Muster“. Die beiden Klassen werden in diesem Datensatz
durch scharfe Kanten begrenzt. Dadurch werden viele Gitterpunkte benötigt, um die Treffer-
rate zu maximieren. Entsprechend wird die höchste Trefferrate auch erst auf einem Gitter
mit Level 6 erreicht. Dabei werden für die 1000 Testzeitpunkte insgesamt 80s Rechenzeit
benötigt. Daraus folgt, dass 1 Sekunde Rechenzeit pro Zeitschritt bei einem Problem mit
niedriger Dimension, das aber gleichzeitig ein feines Gitter benötigt, immer noch deutlich
unterschritten wird.

Bei den nichtsynthetischen Datensätzen gelten ähnliche Aussagen. Beim Datensatz „DAX“
werden immerhin 4 Dimensionen benötigt und gleichzeitig ein Gitter mit Level 5. Bei diesem
Datensatz wird damit am meisten Rechenzeit pro Zeitschritt aufgewendet, um die Trefferrate
zu maximieren. Da die Daten bei diesem Datensatz minütlich vorliegen, kann der Datensatz
trotzdem problemlos in Echtzeit verarbeitet werden.

Für den „FX“-Datensatz gilt, dass die höchste Trefferrate bereits bei Level 2 erreicht wird,
wodurch eine geringe Rechenzeit möglich wird, obwohl eine größere Testdatenmenge mit
2000 Zeitschritten verwendet wird. Für die gesamte Testdatenmenge werden 56s benötigt.
Damit können 36 Zeitschritte pro Sekunde verarbeitet werden, wodurch auch bei diesem
Datensatz, bei dem durchaus tatsächlich mehrere Zeitschritte pro Sekunde vorliegen, die
Echtzeitanforderungen eingehalten werden können.

Ähnliches gilt für den „Dow Jones“-Datensatz. Für die beste Trefferrate wurden zwei
Zeitreihen kombiniert. Da die höchste Trefferrate allerdings bei einem Gitter mit Level
2 erreicht wird und die Datenpunkte in Minutenabständen vorliegen, sind die Vorhersagen
schnell genug verfügbar.

Generell ist bereits die unoptimierte Rechenzeit des Ansatzes gering genug, um einige
Hundert bis wenige Tausend Gitterpunkte in Echtzeit verwenden zu können. Das vorge-
stellte „DAX“ Experiment benötigt zum Beispiel 769 Gitterpunkte. Durch die Verwendung

68

6.2. Benötigte Rechenzeit ohne Optimierungen

1 2 3 4 5 6 7

0

100

200

300

Level

R
ec

he
nz

ei
t

(s
)

„Kurve“ „Muster“

(a) Rechenzeit der synthetischen Experimente

1 2 3 4 5

0

200

400

Level

R
ec

he
nz

ei
t

(s
)

„DAX“ „FX“

(b) Rechenzeit der Datensätze „DAX“ und „FX“.

1 2 3 4

50

100

150

200

Level

R
ec

he
nz

ei
t

(s
)

„Dow Jones“

(c) Rechenzeit des „Dow Jones“-Datensatz

Abbildung 6.1.: Benötigte Rechenzeit für unterschiedliche Datensätze bei den Experimenten
mit der höchsten Trefferrate.

69

6. Beschleunigung der Zeitreihenanalyse

stärkerer Hardware sollte noch eine deutliche Verbesserung erreicht werden können. Zudem
werden durch das Regularisierungsverfahren aus Abschnitt 3.4 in jedem Zeitschritt mehrere
Dünngitterfunktionen berechnet. Da jede Funktion unabhängig berechnet werden kann und
nur die verwendeten Zählervariablen für die Vorhersage synchronisiert werden müssen,
kann dieses Verfahren sehr einfach über mehrere Knoten parallelisiert werden.

6.3. Ausgangspunkt und Methodik der Optimierungen

In vielen Anwendungsfällen kann eine längere Rechenzeit für die Berechnung der Dünn-
gitterfunktion in Kauf genommen werden, da die Funktion anschließend zum Lösen eines
nachgeschalteten Problems genutzt wird. Das heißt, die Berechnung der Dünngitterfunktion
dominiert nicht die gesamte Rechenzeit. Der vorgestellte Algorithmus zur Zeitreihenanalyse
dagegen erstellt eine Dünngitterfunktion pro Zeitschritt. Zudem wird diese Dünngitter-
funktion in jedem Zeitschritt für lediglich eine einzige Auswertung verwendet: Es wird der
nächste Wert vorhergesagt, anschließend wird auf den nächsten Zeitschritt gewartet.

Das hat zur Konsequenz, dass die Berechnung der Dünngitterfunktionen den Gesamtauf-
wand klar dominiert. Das heißt, die Minimierung der benötigten Zeit für die Berechnung
der Dünngitterfunktion ist ein zentraler Ausgangspunkt zum Erreichen der Echtzeitfähigkeit
in zeitlich restriktiveren Szenarien. Daneben spielt noch die Vorverarbeitung eine wichtige
Rolle. Wird ein Attributraum mit zu hoher Dimension und damit zu vielen Gitterpunkte ge-
wählt, kann dies die benötigte Rechenzeit ebenfalls erheblich erhöhen. An dieser Stelle wird
allerdings versucht, Verbesserungen zu erzielen, die weitgehend unabhängig von einzelnen
Datensätzen sind. Daher liegt der Fokus in den nächsten Abschnitten auf der Berechnung
der Dünngitterfunktion.

Da effiziente Algorithmen für dünne Gitter und für das Data Mining auf dünnen Git-
tern bereits existieren [Pfl10, Fra11], werden nur Optimierungen betrachtet, die speziell
für die Zeitreihenanalyse interessant sind. Ausgenutzt wird dabei, dass es sich bei der
Zeitreihenanalyse um ein iteriertes Problem handelt, bei dem zwischen den Zeitschritten als
einzige Änderung das Hinzufügen eines Datenpunktes und die Auswertung der berechneten
Dünngitterfunktion an einer anderen Stelle besteht. Dies eröffnet mehrere Strategien zur
Optimierung, die in den folgenden Abschnitten vorgestellt werden.

Als Datensätze zur Untersuchung der Optimierungen wurden der synthetische Datensatz
„Muster“ und der nichtsynthetische Datensatz „FX“ ausgewählt. Wo sinnvoll möglich wurden
Experimente ausgewählt, die gleichzeitig eine hohe Trefferrate besitzen, damit Auswirkungen
der Optimierungen auf die Trefferrate ebenfalls berücksichtigt werden können.

70

6.4. Wiederverwertung des Koeffizientenvektors über mehrere Zeitschritte

1 2 3 4 5 6

50

100

150

Level

R
ec

he
nz

ei
t

(s
)

Original mit Optimierung

(a) „FX“-Datensatz

1 2 3 4 5 6
0

20

40

60

80

Level
R

ec
he

nz
ei

t
(s

)
Original mit Optimierung

(b) „Muster“-Datensatz

Abbildung 6.2.: Koeffizienten-Wiederverwertung mit zwei Datensätzen. Dabei wird die
Rechenzeit mit und ohne Wiederverwertung der Koeffizienten verglichen.

6.4. Wiederverwertung des Koeffizientenvektors über mehrere
Zeitschritte

Dadurch, dass das zu lösende Vorhersageproblem zwischen zwei Zeitschritten sehr ähnlich
ist, wird erwartet, dass auch die zum Lösen der Aufgabe berechneten Dünngitterfunktionen
sehr ähnlich sind. Da mit dem Konjugierte-Gradienten-Verfahren ein iteratives Verfahren
zum Lösen der Gleichungssysteme verwendet wird, kann die benötigte Rechenzeit verringert
werden, indem ein guter Startvektor für das CG-Verfahren geraten wird, durch den die
Fehlerschranke des Lösers mit möglichst wenig Iterationen erreicht wird. Aufgrund der
Verwandtschaft der Probleme über die Zeit steht ein passender Kandidat als Startvektor
bereit. Es wird der Koeffizientenvektor α der Dünngitterfunktion des letzten Zeitschritts als
Eingabe für den Löser verwendet. Damit diese Optimierung durchgeführt werden kann, ist
es notwendig, das gleiche Gitter wie im letzten Zeitschritt zu verwenden.

Zur Evaluierung wurden bei beiden betrachteten Datensätzen die besten einzelnen Konstruk-
toren mit Schrittanzahl m = 2 verwendet. Als Testdatenmenge wurde beim „FX“-Datensatz
wie üblich 2000 Zeitschritte verwendet, beim „Muster“-Datensatz bestand die Testdaten-
menge aus 1000 Elementen. Die Ergebnisse sind in Abbildung 6.2 zu sehen, wobei die
Dauer jeweils einmal mit und einmal ohne die Wiederverwertung des Koeffizientenvektors
dargestellt wird.

Bei beiden Datensätzen kann eine deutliche Reduktion der benötigten Rechenzeit beobachtet
werden, wenn der Koeffizientenvektor wiederverwertet wird und mehr als ein Gitterpunkt
vorliegt. Die erzielte Reduktion der Rechenzeit kann dabei bis zu einem Drittel der unop-

71

6. Beschleunigung der Zeitreihenanalyse

timierten Rechenzeit betragen, wobei der Nutzen mit steigendem Level scheinbar wieder
geringer wird.

Ein großer Vorteil dieses Ansatzes ist, dass durch die Wiederverwertung der Koeffizienten
keine Verschlechterung der Vorhersagen zu befürchten ist. Zudem wurde kein relevantes
Experiment beobachtet, bei dem die Wiederverwertung der Koeffizienten zu mehr Rechenzeit
führt.

6.5. Levelreduktion durch Adaptivität

Der unmittelbare Grund für die höhere Rechenzeit auf einem Gitter mit höherem Level
oder der Verwendung einer höheren Dimension ist die resultierende größere Anzahl an
Gitterpunkten. Durch adaptive Verfeinerung kann die Gesamtanzahl an Gitterpunkten für ein
gegebenes Problem häufig stark reduziert werden. Zusätzlich können bei dem vorliegenden
iterierten Problem die Kosten für die Verfeinerungsschritte auf die Zeitschritte verteilt
werden.

Durch die Ähnlichkeit der Probleme über die Zeit ist eine Wiederverwertung der Gitter
möglich. Da sich die Datenpunkte nur langsam über die Zeit ändern, gilt dies auch für durch
Verfeinerung weiter angepasste Gitter. Da es durch Verfeinerung möglich ist, nur in Regionen
Gitterpunkte zu verwenden, wo diese auch tatsächlich benötigt werden, kann auf einem
deutlich niedrigeren initialen Level gerechnet werden. In den ersten Zeitschritten ist dann
ein etwas erhöhter Rechenbedarf notwendig, um einmalig ein passend verfeinertes Gitter zu
erstellen. Diese initiale Verfeinerung wird hier als unproblematisch bewertet, da sie als Teil
einer Aufwärmphase betrachtet werden kann. Anschließend wird ein Gitter verwendet, das
ähnliche Trefferraten besitzt, wie sie bei einem unverfeinerten Gitter auf höherem Level zu
messen sein sollten. Da die Gesamtanzahl der Gitterpunkte geringer ist, sind auch geringere
Rechenzeiten zu erwarten.

Eine initiale Verfeinerung allein reicht nicht, um die Änderungen im Attributsraum beim
Durchlaufen einer Zeitreihe korrekt widerzuspiegeln. Die neuen Punkte im Attributsraum
erfordern weitere Verfeinerungsschritte. Da sich die Datenpunkte aber nur langsam ändern,
reichen sehr wenig Verfeinerungsschritte in jedem betrachteten Zeitschritt aus. Eine Verfeine-
rung in jedem Zeitschritt hat die weitere negative Konsequenz für die Laufzeit, dass sich die
Anzahl der Gitterpunkte beim Durchlaufen der Zeitreihe ständig erhöht. Damit der Vorteil
der geringeren Anzahl an Gitterpunkten bei diesem Verfahren nicht verloren geht, ist es
daher notwendig, Gitterpunkte wieder zu entfernen. Wie in Abschnitt 2.7 erklärt, können als
einfache Vergröberungsstrategie Gitterpunkte mit niedrigen Koeffizientenwerten entfernt
werden. Dies muss immer durchgeführt werden, wenn die Gesamtanzahl der Gitterpunkte
zu hoch wird.

Der gesamte Algorithmus lässt sich damit wie folgt beschreiben. Es wird eine gewünschte
Anzahl an Gitterpunkten t vorgegeben, die so gewählt sein muss, dass sich eine ausrei-
chend gute Vorhersagequalität damit erreichen lässt. In der Aufwärmphase wird durch eine
vorgegebene Anzahl an Modifikationsschritten s ein möglichst passendes Gitter aufgebaut.

72

6.5. Levelreduktion durch Adaptivität

Algorithmus 6.1 Verfeinerungs- und Vergröberungsschema
procedure CreateSparseGridFunction(trainingSet, λ, lastGrid)

f ← SolveLeastSquareProblem(trainingSet, lastGrid)
α← GetCoefficients(f)
gridPoints← GetSize(lastGrid)
for t = 1→ re f inementSteps do

if gridPoints ≤ targetGridPoints then
newGrid← RefineGrid(lastGrid, α)

else
newGrid← EncoarsenGrid(lastGrid, α)

end if
f ← SolveLeastSquareProblem(trainingSet, newGrid)

end for
end procedure

Dabei wird so lange verfeinert, bis die t Gitterpunkte überschritten werden. Dann wird
vergröbert, bis wieder weniger als t Gitterpunkte vorliegen. Das resultierende Gitter sollte
nach den vorgegebenen s Schritten gut auf die Datenpunkte passen. Während des Durchlau-
fens der Zeitreihe wird eine kleine Anzahl an Modifikationsschritten in jedem Zeitschritt
durchgeführt, wodurch ein passendes Gitter in jedem Zeitschritt vorliegt.

Das kontinuierliche Verfeinern und Vergröbern an den einzelnen Zeitschritten ist in Algo-
rithmus 6.1 dargestellt. Mit diesem Verfahren pendelt die Anzahl der Gitterpunkte um den
vorgegebenen Wert, wobei in jedem Zeitschritt ein passend verfeinertes Gitter vorliegt.

Für die hier vorgestellten Experimente wird lediglich ein Modifikationsschritt an jedem
Zeitpunkt durchgeführt. Dabei werden jeweils 5 Gitterpunkte verfeinert. Falls die Anzahl der
Gitterpunkte größer oder gleich der vorgegebenen Zahl an Gitterpunkten ist, wird versucht,
die Differenz zur gewünschten Anzahl an Gitterpunkten zuzüglich 5 weiterer Gitterpunkte
zu entfernen. Da nur Blattknoten der hierarchischen Basis entfernt werden können, wird die
Anzahl der zu entfernenden Gitterpunkte bei Misserfolgen im nächsten Zeitschritt jeweils
um zwei pro erfolglosem Versuch erhöht.

Bei diesem Ansatz müssen zwei Aspekte beachtet werden. Werden Gitterpunkte mittels
adaptiver Verfeinerung hinzugefügt oder mittels adaptiver Vergröberung entfernt, dann
müssen im Anschluss die Koeffizienten der zugehörigen Dünngitterfunktion neu berechnet
werden. Das heißt, es muss erneut ein Gleichungssystem gelöst werden, was vergleichsweise
teuer ist. Im Allgemeinen wird dieser Ansatz umso besser funktionieren, je mehr unnötige
Gitterpunkte durch adaptive Verfeinerung eingespart werden können, da dann kleinere und
schneller lösbare Gleichungssysteme zu lösen sind.

Des Weiteren erfordert es dieser Ansatz, dass eine passende Anzahl an Gitterpunkten für
adaptiv angepasste Gitter gewählt wird. Werden zu wenig Gitterpunkte gewählt, dann
nimmt die Vorhersagequalität ab. Werden zu viele Gitterpunkte verwendet, kann der Vorteil

73

6. Beschleunigung der Zeitreihenanalyse

1 2 3
45
50

60

70

80

90

100

Schrittanzahl

Tr
ef

fe
rr

at
e

Original mit Optimierung

(a) Qualität der Vorhersage

1 2 3
0

50

100

150

Schrittanzahl

R
ec

he
nz

ei
t

(s
)

Original mit Optimierung

(b) Rechenzeit abhängig von der Dimension des
Problems.

Abbildung 6.3.: Adaptivität bei niedrigerem Level angewendet auf den „Muster“-Datensatz.

1 2 3
45
50

60

70

80

90

100

Schrittanzahl

Tr
ef

fe
rr

at
e

Original mit Optimierung

(a) Qualität der Vorhersage

1 2 3
0

100

200

300

Schrittanzahl

R
ec

he
nz

ei
t

(s
)

Original mit Optimierung

(b) Rechenzeit abhängig von der Dimension des
Problems.

Abbildung 6.4.: Adaptivität bei niedrigerem Level angewendet auf den „FX“-Datensatz.

74

6.6. Zoom-Ansatz

der geringeren Rechenzeit entfallen. Letzteres gilt dabei weniger wegen der Anzahl der
Gitterpunkte, sondern vor allem aufgrund des Lösens weiterer Gleichungssysteme.

Aufgrund dieser Eigenheiten des Ansatzes wurden Experimente mit relativ hoher Dimension
und Level durchgeführt. Variiert wurde die Schrittanzahl der Konstruktoren und damit die
Dimension. Das Gitter wurde für die unoptimierten Durchläufe mit Level 6 gewählt. Für
die Experimente mit Adaptivität wurde ein Gitter mit Level 3 gewählt, wobei als Ziel der
Verfeinerungs- und Vergröberungsstrategie 500 Gitterpunkte vorgegeben wurden. Dieser
Parameter wurde während der Experimente nicht variiert, was die Rechenzeit des adaptiven
Ansatzes bei niedrigerer Dimension erhöht.

Die Ergebnisse dieser Experimente für den Datensatz „Muster“ sind in Abbildung 6.3 zu
sehen. Bei niedriger Dimension ist die Verwendung des adaptiven Ansatzes etwas teurer, die
Rechenzeit ist höher als beim unoptimierten Ansatz. Sobald drei Dimensionen vorliegen,
dreht sich dies jedoch, da die Anzahl der Gitterpunkte auch auf einem dünnen Gitter mit
zunehmender Dimension exponentiell steigt. Für noch höhere Dimensionen wird erwartet,
dass noch mehr Rechenzeit vermieden werden kann. Gleichzeitig ist eine leichte Verringerung
der Qualität der Vorhersagen zu beobachten. Es wird jedoch davon ausgegangen, dass dies
durch eine bessere Wahl der gewünschten Anzahl an Gitterpunkten kompensiert werden
kann. Es ist allerdings möglich, dass der Rechenzeitvorteil dann erst bei einer noch höheren
Dimension sichtbar wird.

Ähnliche Ergebnisse zeigt der „FX“-Datensatz, wie in Abbildung 6.4 zu sehen ist. Auch
hier zeigt die Optimierungen eine Verringerung der Rechenzeit bei einem Problem in drei
Dimensionen. Die Qualität der Vorhersage ist dabei vergleichbar mit den unoptimierten
Ergebnissen. Allerdings ist zu bedenken, dass zum Erreichen sehr guter Vorhersagen mit die-
sem Datensatz in Abschnitt 5.3.3 gezeigt wurde, dass hierfür bereits sehr wenig Gitterpunkte
ausreichen.

Der vermutete Rechenzeitvorteil durch die Verwendung der adaptiven Verfeinerungsstrategie
konnte in den durchgeführten Experimenten bestätigt werden. Die Wahl einer passenden
Anzahl an Gitterpunkten hat sich in der Praxis allerdings als schwierig erwiesen.

6.6. Zoom-Ansatz

Eine Alternative zu den vorgeschlagenen Strategien entsteht durch eine spezielle Betrachtung
des Attributraums. In jedem Zeitschritt ist bekannt, wo die zu berechnende Dünngitterfunk-
tion ausgewertet werden soll. Außerdem findet genau eine Auswertung statt. Das heißt, es
wird eigentlich nicht die vollständige Funktion benötigt, sondern eine möglichst gute Appro-
ximation der Funktion an dem Punkt, an dem ausgewertet wird. Da Datenpunkte, die weit
entfernt vom Ort der Auswertung liegen, nur sehr geringen Einfluss auf die Auswertung am
aktuellen Punkt besitzen, kann bei weiter entfernten Datenpunkten eine lediglich sehr grobe
Approximation verwendet werden. Das wiederum bedeutet, dass weniger Gitterpunkte
verwendet werden können, wodurch die Rechenzeit verringert wird.

75

6. Beschleunigung der Zeitreihenanalyse

1 2 3
0

100

200

300

400

500

Schrittanzahl

R
ec

he
nz

ei
t

(s
)

Original mit Optimierung

(a) „FX“-Datensatz

1 2 3
0

50

100

150

Schrittanzahl

R
ec

he
nz

ei
t

(s
)

Original mit Optimierung

(b) „Muster“-Datensatz

Abbildung 6.5.: Verfeinern der Umgebung mit zwei Datensätzen. Dabei wird jeweils die
Schrittanzahl und damit die Dimension des Attributraums variiert.

Eine Möglichkeit, dies zu realisieren, ist eine Verfeinerungsstrategie, die, wie im letzten
Abschnitt beschrieben, abwechselnd Vergröberungs- und Verfeinerungsschritte verwendet.
Dabei werden allerdings Gitterpunkte stärker berücksichtigt, die sich näher am Ort der
Auswertung befinden. Konkret wird zum Punkt der Auswertung hin verfeinert, bei den
durchgeführten Experimenten wurden konkret die 10 nächsten Gitterpunkte verfeinert,
allerdings nur, falls sie Blattknoten darstellen.

Auch mit dieser Optimierungsstrategie wurden Experimente durchgeführt, deren Ergebnisse
in Abbildung 6.5 vorliegen. Es kann dabei erneut eine Reduktion der benötigten Rechenzeit
beobachtet werden, im Gegensatz zum zuvor vorgestellten Ansatz auch bereits bei zwei Di-
mensionen. Ähnlich wie beim letzten Ansatz ist ein leichtes Absinken der Vorhersagequalität
zu beobachten. Beim „Muster“-Datensatz konnte in zwei Dimensionen keine Verschlechte-
rung der Trefferrate beobachtet werden, sie lag mit und ohne Optimierung bei 97%. Bei zwei
Dimensionen sank die Trefferrate von 95% auf 93%. Beim „FX“-Datensatz war die Trefferrate
auf gleichem Niveau mit und ohne Verfeinerung der Umgebung. Sie lag bei 68% in einer
Dimension und bei 71% in zwei Dimensionen.

Dieser Ansatz kann weiter ausgebaut werden. Bisher wurde argumentiert, dass Gitterpunkte
nur in der Nähe des Ortes der Auswertung benötigt werden. Es ist naheliegend zu vermuten,
dass dies auch auf die Datenpunkte zutrifft, da weiter entfernte Datenpunkte ebenfalls
eine geringe Rolle für die aktuelle Auswertung spielen sollten. Um dies algorithmisch
umzusetzen, wird eine Entfernung gewählt, ab der Datenpunkte nicht mehr als Teil der
Trainingsmenge berücksichtigt werden. Hier wurde eine Distanz von 0, 2 im betrachteten
Hyperwürfel gewählt, wobei als Metrik die euklidische Metrik zum Einsatz kam.

76

6.6. Zoom-Ansatz

Bei Experimenten wurde festgestellt, dass die Rechenzeit deutlich verringert werden konnte.
Da allerdings gleichzeitig die Trefferrate drastisch sank, wurde diese Idee nicht weiter
verfolgt. Eine akzeptable Trefferrate konnte erst wieder erst wieder erreicht werden, als
wieder nahezu alle Punkte berücksichtigt wurden.

Das Verfeinern der Umgebung um den Auswertungspunkt kann erfolgreich zur Reduktion
der Rechenzeit eingesetzt werden. Zusätzlich kann dieser mit der zuvor vorgestellten Wieder-
verwertung des Koeffizientenvektors kombiniert werden. Dies führt zu weiter reduzierten
Rechenzeiten. Wie beim allgemeinen adaptiven Ansatz aus Abschnitt 6.5 ist es auch hier
wieder schwierig eine geeignete Anzahl an Gitterpunkten zu wählen, damit die Vorhersagen
qualitativ vergleichbar bleiben.

Dieser Ansatz besitzt einige Nachteile. Dadurch, dass immer neue lokale Probleme betrachtet
werden, sinkt die Qualität der Regularisierung mit dem in 3.4 vorgestellten Verfahren. Der
Grund hierfür ist, dass die lokalen Probleme strukturell unterschiedlich beschaffen sein
können und daher andere Werte für den Regularisierungsparameter benötigen.

77

7. Zusammenfassung und Ausblick

In dieser Arbeit wurde die Zeitreihenanalyse auf dünnen Gittern betrachtet. Es wurden auf
dünnen Gittern basierte Algorithmen vorgestellt, die eine Lösung des Vorhersageproblems
für Zeitreihen ermöglichen. Zudem sollte sichergestellt werden, dass die vorgestellte Lö-
sung auch in zeitkritischen Anwendungen nutzbar ist, weshalb einige Optimierungen zur
Verkürzung der benötigten Rechenzeit vorgestellt wurden.

Der vorgestellte Ansatz basiert auf dünnen Gittern, mit denen es möglich ist, Regressions-
und Klassifikationsprobleme aus dem Bereich des Data Minings zu lösen. Auf diesen
Verfahren aufbauend wurde ein Algorithmus vorgestellt, mit dem zukünftige Werte von
Zeitreihen durch Formulierung als Regressions- oder Klassifikationsproblem berechnet
werden können. Dafür wurden Datenpunkte des Vorhersageproblems als Auswertungen
einer unbekannten Funktion interpretiert, die einem gegebenen Wertetupel den Wert im
nächsten Zeitschritt zuordnet. Mit Methoden aus dem Bereich des Data Minings kann diese
unbekannte Funktion approximiert werden.

Für eine erfolgreiche Approximation der Vorhersagefunktion ist es notwendig die Daten der
Zeitreihen so vorzubereiten, dass durch die Data Mining Algorithmen auch tatsächlich eine
passende Vorhersagefunktion approximiert wird.

Zur Validierung des Ansatzes wurden Experimente mit fünf Datensätzen durchgeführt,
von denen zwei der Datensätze synthetische Daten beinhalten und drei der Datensätze aus
nichtsynthetischen Daten bestehen. Die Vorhersagen für die synthetischen Daten entsprachen
exakt den gestellten Erwartungen, wobei die Trefferrate korrekter Vorhersagen sehr hoch
war. Bei den nichtsynthetischen Datensätzen wurden deutlich weniger, allerdings akzeptabel
viele korrekte Vorhersagen gemessen. Dies ist vermutlich zum Teil auf die Qualität der Daten
zurückzuführen und zum Teil auf das Problem, dass eine geeignete Vorverarbeitung von
real gemessenen Daten äußerst schwierig ist. Die gemessene Vorhersagequalität war dabei
mit ähnlichen Ansätzen vergleichbar.

Bei den durchgeführten Experimenten wurde festgestellt, dass die benötigte Rechenzeit für
gute Vorhersagen bereits vor Anwendung der vorgestellten Optimierungen relativ gering
war. Generell erfordern unterschiedliche Datensätze unterschiedliche Attributsräume und
gerade Attributsräume mit hoher Dimension und vielen Gitterpunkten benötigen unter
Umständen große Mengen an Rechenzeit. Da der vorgestellte Ansatz auf dünnen Gittern
basiert, tritt dieses Problem im Vergleich zu vollen Gittern weniger stark zutage. Durch die
zusätzlichen Optimierungen wurde eine weitere Verbesserung der Laufzeit beobachtet. Der
zentrale Ansatzpunkt für die vorgestellten Optimierungen war dabei, dass sich bei iterierten
Vorhersagen das Problem zwischen den Zeitschritten nur geringfügig ändert, wodurch in
der Vergangenheit gewonnene Informationen weiter genutzt werden können.

79

7. Zusammenfassung und Ausblick

Alles in allem besitzt der vorgestellte Ansatz eine gute Performance und insbesondere bei den
Experimenten mit synthetischen Datensätzen eine sehr hohe Genauigkeit der Vorhersagen,
die weitere Experimente mit nichtsynthetischen Daten wünschenswert erscheinen lassen.
Die vorgestellten Optimierungen können dabei das Ziel erreichen, die Einsatzgebiete, bei
denen Vorhersagen in Echtzeit berechnet werden können, zu vergrößern.

Ausblick

Auf dem vorgestellten Ansatz aufbauend, sind weitere Optimierungen möglich. Numerische
Verfahren wie die Vorkonditionierung der Gleichungssysteme der einzelnen Verfahren
können die bei einem gegebenen Verfahren benötigte Rechenzeit weiter reduzieren. Auch
ist der Ansatz, Informationen über mehrere Zeitschritte hinweg zu nutzen, wahrscheinlich
noch nicht ausgereizt, wodurch weitere Performanceverbesserungen möglich werden.

Während die Qualität der Vorhersagen insgesamt als gut zu bewerten ist, sollten dennoch
weitere Experimente durchgeführt werden. Besonders Experimente mit nichtsynthetischen
Datensätzen, die eine hohe Qualität besitzen und gleichzeitig gut verstanden sind, wären
äußerst sinnvoll. Durch derartige Experimente könnte der Nutzen des Ansatzes deutlich
besser abgeschätzt werden, da die für erfolgreiche Vorhersagen kritische Vorverarbeitung
vereinfacht würde.

Bei der Durchführung der Experimente hat sich das Problem, eine geeignete Vorverarbeitung
für die Daten zu finden, als zentral für erfolgreiche Vorhersagen herausgestellt. Zudem
kann durch eine geeignete Vorverarbeitung eventuell ein Raum von niedriger Dimension
gewählt werden, in dem unnötige Dimensionen nicht in den Datenraum eingebaut werden.
Ebenfalls kann die Verwendung passender Attributskonstruktoren dazu führen, dass Muster
im Attributsraum zu finden sind, die sich mit weniger Datenpunkten gut repräsentieren
lassen. Das heißt, eine geeignete Vorverarbeitung kann sowohl zu besseren Vorhersagen als
auch zu schnelleren Vorhersagen führen.

Die Vorverarbeitung von Zeitreihen kann als Optimierungsproblem aufgefasst werden, das
durch die Wahl der Parameter bei der Konstruktion des Attributsraums gegeben ist. Ansätze
zur Lösung dieses Problems würden vermutlich die größten Verbesserungen bei Verwendung
der vorgestellten Methode oder verwandter Methoden erlauben. Allerdings gilt letztlich
auch hier:

„A lack of information cannot be remedied by any mathematical trickery.“
- Cornelius Lanczos [Lan61]

80

A. Anhang

A.1. Evaluation des Dichte-basierten Ansatzes

Bei der Evaluation des Dichte-basierten Ansatzes wurden ähnliche Trefferraten beobachtet,
wie sie auch bereits bei Verwendung der Methode der kleinsten Quadrate beobachtet wurden.
Wie die Abbildungen auf den nächsten Seiten zeigen, werden bei den einzelnen Experimenten
nahezu identische Trefferrate bei den einzelnen Datensätzen erreicht.

Für die Experimente bei diesem Ansatz etwa die doppelte Rechenzeit benötigt. Der Grund
dafür ist, dass beim Dichte-basierten Ansatz eine Dünngitterfunktion pro Klasse des Problems
berechnet werden muss. Wie in 2.4 beschrieben, gilt dies jedoch auch für den auf der Methode
der kleinsten Quadrate basierenden Ansatz, da bei diesem bei mehr als zwei Klassen auch
mehrere Dünngitterfunktionen verwendet werden sollten.

81

A. Anhang

1 2 3 4 5 6
35
40

50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6
35
40

50

60

70

80

90

100

Level
ko

rr
ek

t
(%

)

m = 1 m = 2 m = 3

(b) Linear-Quad-Konstruktor

1 2 3 4 5 6
35
40

50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Differenz-Konstruktor

1 2 3 4 5 6
35
40

50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(d) Differenz-Quad-Konstruktor

Abbildung A.1.: Qualität der Vorhersagen bei Verwendung des Dichte-basierten Ansatzes
bei verschiedener Attributkonstruktoren angewendet auf den „Kurve“-
Datensatz. Dabei wird der Level des Gitters bei jedem Konstruktor variiert.

82

A.1. Evaluation des Dichte-basierten Ansatzes

1 2 3 4 5 6
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(b) Linear-Quad-Konstruktor

1 2 3 4 5 6
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Differenz-Konstruktor

1 2 3 4 5 6
45
50

60

70

80

90

100

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(d) Differenz-Quad-Konstruktor

Abbildung A.2.: Qualität der Vorhersagen bei Verwendung des Dichte-basierten Ansatzes
bei verschiedener Attributkonstruktoren angewendet auf den „Muster“-
Datensatz. Dabei wird der Level des Gitters bei jedem Konstruktor variiert.

83

A. Anhang

1 2 3 4 5 6
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6
45

50

55

60

Level
ko

rr
ek

t
(%

)
m = 1 m = 2 m = 3

(b) Differenz-Konstruktor

1 2 3 4
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Linear-Konstruktor und Differenz-Konstruktor

1 2 3 4
45

50

55

60

Anzahl der Zeitreihen

ko
rr

ek
t

(%
)

Linear-K. Differenz-K.

(d) Trefferrate bei unterschiedlicher Anzahl an ver-
wendeten Zeitreihen

Abbildung A.3.: Qualität der Vorhersagen bei Verwendung des Dichte-basierten Ansat-
zes verschiedener Attributkonstruktoren angewendet auf den „DAX“-
Datensatz. In den ersten drei Abbildungen wird der Level des Gitters
zusätzlich variiert. Die vierte Abbildung zeigt die Trefferraten, wenn meh-
rere Zeitreihen zur Vorhersage verwendet werden.

84

A.1. Evaluation des Dichte-basierten Ansatzes

1 2 3 4 5 6
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(b) Differenz-Konstruktor

1 2 3 4
45

50

55

60

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Linear-Konstruktor und Differenz-Konstruktor

1 2 3 4
45

50

55

60

Level

ko
rr

ek
t

(%
)

Linear-K. Differenz-K.

(d) Trefferrate bei unterschiedlicher Anzahl an ver-
wendeten Zeitreihen

Abbildung A.4.: Qualität der Vorhersagen bei Verwendung des Dichte-basierten Ansatzes
verschiedener Attributkonstruktoren angewendet auf den „Dow Jones“-
Datensatz. In den ersten drei Abbildungen wird der Level des Gitters
zusätzlich variiert. Die vierte Abbildung zeigt die Trefferraten, wenn meh-
rere Zeitreihen zur Vorhersage verwendet werden.

85

A. Anhang

1 2 3 4 5 6 7
45

50

60

70

80

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(a) Linear-Konstruktor

1 2 3 4 5 6 7
45

50

60

70

80

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(b) Differenz-Konstruktor

1 2 3 4 5
45

50

60

70

80

Level

ko
rr

ek
t

(%
)

m = 1 m = 2 m = 3

(c) Linear-Konstruktor und Differenz-Konstruktor

1 2
45

50

60

70

80

Anzahl der Zeitreihen

ko
rr

ek
t

(%
)

Linear-K. Differenz-K.

(d) Trefferrate bei unterschiedlicher Anzahl an ver-
wendeten Zeitreihen

Abbildung A.5.: Qualität der Vorhersagen bei Verwendung des Dichte-basierten Ansatzes
verschiedener Attributkonstruktoren angewendet auf den „FX“-Datensatz.
In den ersten drei Abbildungen wird der Level des Gitters zusätzlich
variiert. Die vierte Abbildung zeigt die Trefferraten, wenn mehrere Zeitrei-
hen zur Vorhersage verwendet werden, dabei wird eine stark modifizierte
Zeitreihe verwendet.

86

Literaturverzeichnis

[Bel61] R. Bellman. Adaptive Control Processes: A Guided Tour. ’Rand Corporation. Research
studies. Princeton University Press, 1961. (Zitiert auf den Seiten 9 und 13)

[BG04] H.-J. Bungartz, M. Griebel. Sparse grids. Acta Numerica, 13:1–123, 2004. (Zitiert
auf den Seiten 9 und 21)

[BG13] B. Bohn, M. Griebel. An Adaptive Sparse Grid Approach for Time Series Predic-
tion. In J. Garcke, M. Griebel, Herausgeber, Sparse Grids and Applications, Band 88

von Lecture Notes in Computational Science and Engineering, S. 1–30. Springer Berlin
Heidelberg, 2013. (Zitiert auf Seite 13)

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., 2006. (Zitiert auf Seite 36)

[BJR08] G. E. Box, G. M. Jenkins, G. C. Reinsel. Time Series Analysis: Forecasting and Control.
Wiley Series in Probability and Statistics. Wiley, 2008. (Zitiert auf den Seiten 9

und 31)

[CT03] L. J. Cao, F. Tay. Support vector machine with adaptive parameters in financial
time series forecasting. Neural Networks, IEEE Transactions on, 14(6):1506–1518,
2003. (Zitiert auf Seite 9)

[Dax] Deutsche Börse Group Factsheet Dax. URL http://www.dax-indices.com/DE/

MediaLibrary/Document/Factsheet_DAX_de.pdf. (Zitiert auf Seite 57)

[Dow] S&P Dow Jones Indices Factsheet and Methodology. URL http://www.

djindexes.com/literature/. (Zitiert auf Seite 60)

[FPsS96] U. Fayyad, G. Piatetsky-shapiro, P. Smyth. From Data Mining to Knowledge
Discovery in Databases. AI Magazine, 17:37–54, 1996. (Zitiert auf Seite 14)

[Fra11] F. Franzelin. Classification with Estimated Densities on Sparse Grids. Diplomar-
beit, Technische Universität München, 2011. URL http://www5.in.tum.de/pub/

franzelin_ma11.pdf. (Zitiert auf den Seiten 25 und 70)

[Gar04] J. Garcke. Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten
dünnen Gittern. Dissertation, University of Bonn, 2004. (Zitiert auf den Seiten 9,
13 und 25)

[Gar11] J. Garcke. Sparse Grid Tutorial. 2011. URL http://page.math.tu-berlin.de/

~garcke/paper/sparseGridTutorial.pdf. (Zitiert auf den Seiten 17 und 18)

87

http://www.dax-indices.com/DE/MediaLibrary/Document/Factsheet_DAX_de.pdf
http://www.dax-indices.com/DE/MediaLibrary/Document/Factsheet_DAX_de.pdf
http://www.djindexes.com/literature/
http://www.djindexes.com/literature/
http://www5.in.tum.de/pub/franzelin_ma11.pdf
http://www5.in.tum.de/pub/franzelin_ma11.pdf
http://page.math.tu-berlin.de/~garcke/paper/sparseGridTutorial.pdf
http://page.math.tu-berlin.de/~garcke/paper/sparseGridTutorial.pdf

Literaturverzeichnis

[GG98] T. Gerstner, M. Griebel. Numerical integration using sparse grids. Numerical
Algorithms, 18(3-4):209–232, 1998. (Zitiert auf Seite 13)

[GGG10] J. Garcke, T. Gerstner, M. Griebel. Intraday Foreign Exchange Rate Forecasting
using Sparse Grids, 2010. (Zitiert auf den Seiten 13, 34 und 66)

[Goo] Google Finance. URL http://www.google.com/finance. (Zitiert auf den Sei-
ten 57 und 60)

[HDO+
98] M. Hearst, S. Dumais, E. Osman, J. Platt, B. Scholkopf. Support vector machines.

Intelligent Systems and their Applications, IEEE, 13(4):18–28, 1998. (Zitiert auf
Seite 9)

[HHR00] M. Hegland, G. Hooker, S. Roberts. Finite Element Thin Plate Splines in Density
Estimation, 2000. (Zitiert auf Seite 25)

[HP13] A. Heinecke, D. Pflüger. Emerging Architectures Enable to Boost Massively
Parallel Data Mining using Adaptive Sparse Grids. International Journal of Parallel
Programming, 41(3):357–399, 2013. (Zitiert auf Seite 13)

[HZJP99] M. Y. Hu, G. P. Zhang, C. X. Jiang, B. E. Patuwo. A Cross-Validation Analysis
of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting.
Decision Sciences, 30(1):197–216, 1999. (Zitiert auf Seite 35)

[Lan61] C. Lanczos. Linear differential operators. Van Nostrand, London, 1961. (Zitiert auf
Seite 80)

[Pfl10] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Disserta-
tion, Institut für Informatik, Technische Universität München, München, 2010.
URL http://www5.in.tum.de/pub/pflueger10spatially.pdf. (Zitiert auf den
Seiten 9, 13, 19, 20, 21, 23, 28, 67 und 70)

[PFPB13] B. Peherstorfer, F. Franzelin, D. Pflüger, H.-J. Bungartz. Classification with
Probability Density Estimation on Sparse Grids. In Sparse Grids and Applications.
2013. Submitted. (Zitiert auf den Seiten 13 und 25)

[She94] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. 1994. (Zitiert auf Seite 24)

[SS10] R. Shumway, D. Stoffer. Time Series Analysis and Its Applications: With R Examples.
Springer texts in statistics. Springer, 2010. (Zitiert auf den Seiten 9 und 32)

[Tru] TrueFX. URL http://www.truefx.com/. (Zitiert auf Seite 61)

[Zen91] C. Zenger. Sparse Grids. Notes on Numerical Fluid Mechanics, 31:241–251, 1991.
(Zitiert auf Seite 13)

[Zha03] G. Zhang. Time series forecasting using a hybrid {ARIMA} and neural network
model. Neurocomputing, 50(0):159 – 175, 2003. (Zitiert auf Seite 9)

Alle URLs wurden zuletzt am 9. 12. 2013 geprüft.

88

http://www.google.com/finance
http://www5.in.tum.de/pub/pflueger10spatially.pdf
http://www.truefx.com/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Data Mining mit dünnen Gittern
	2.1 Was sind dünne Gitter?
	2.2 Knowledge Discovery und Data Mining
	2.3 Grundlagen der dünnen Gitter
	2.4 Klassifikation mittels der Methode der kleinsten Quadrate
	2.5 Klassifikation mittels Dichteschätzung
	2.6 Regressionaufgaben auf dünnen Gittern
	2.7 Adaptivität

	3 Zeitreihenanalyse mit dünnen Gittern
	3.1 Grundlagen der Zeitreihenanalyse
	3.2 Das Vorhersageproblem für Zeitreihen
	3.3 Zeitreihenanalyse als Data Mining Problem
	3.4 Regularisierung und Validierung
	3.5 Der gesamte Algorithmus

	4 Die Konstruktion von Attributräumen
	4.1 Das allgemeine Verfahren
	4.2 Attributkonstruktoren
	4.3 Über die Wahl der Datenpunkte
	4.4 Möglichkeiten der Datenvorverarbeitung
	4.5 Dimension des Dünngitterraums und Anzahl der Datenpunkte

	5 Datensätze und Vorhersagequalität
	5.1 Der synthetische Datensatz „Kurve“
	5.2 Der synthetische Datensatz „Muster“
	5.3 Experimente mit Finanzdatensätzen
	5.4 Interpretation der qualitativen Ergebnisse

	6 Beschleunigung der Zeitreihenanalyse
	6.1 Die verwendete Plattform
	6.2 Benötigte Rechenzeit ohne Optimierungen
	6.3 Ausgangspunkt und Methodik der Optimierungen
	6.4 Wiederverwertung des Koeffizientenvektors über mehrere Zeitschritte
	6.5 Levelreduktion durch Adaptivität
	6.6 Zoom-Ansatz

	7 Zusammenfassung und Ausblick
	A Anhang
	A.1 Evaluation des Dichte-basierten Ansatzes

	Literaturverzeichnis

