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Kurzfassung

Zeitreihen sind Mengen von zeitlich geordneten Beobachtungen und fallen bei nahezu allen
messbaren Daten an. In dieser Arbeit wird das Vorhersageproblem fiir Zeitreihen untersucht,
fiir das viele praktische Anwendungen existieren, darunter die Vorhersage von Borsendaten.
Fiir die Untersuchung von Zeitreihen konnen Gitter-basierte Ansétze verwendet werden. Bei
diesen treten jedoch bei hohen Problemdimensionen unpraktikabel grofie Rechenzeiten auf.
In dieser Arbeit wird eine Methode zur Zeitreihenanalyse mit diinnen Gittern vorgestellt,
die es erlaubt, Losungen fiir Probleme mit hoherer Dimensionalitdt zu berechnen. Die
durchgefiihrten Experimente zeigen dabei, dass fiir einige Datensdtze Vorhersagen mit
sehr hoher Qualitdt berechnet werden. Gleichzeitig ist die benotigte Rechenzeit fiir viele
zeitkritische Anwendungen bereits ausreichend. Um das Anwendungsspektrum der Methode
weiter zu vergrofiern, werden Optimierungen vorgestellt, mit denen die bendtigte Rechenzeit
weiter verringert wird.
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1. Einleitung

Eine Zeitreihe ist eine Menge von zeitlich geordneten Beobachtungen. Zeitreihenanalyse ist
die Untersuchung von Zeitreihen, dabei sind unter anderem die folgenden drei Arten von
Untersuchungen moglich [BJRo8]:

1. Die Vorhersage zukiinftiger Zeitschritte einer Zeitreihe.

2. Bestimmung einer Transferfunktion aus zwei gegebenen Zeitreihen. Dabei stellt eine
Zeitreihe eine Eingabegrofie dar. Uber die andere Zeitreihe ist die Antwort eines
dynamischen Systems auf die aufeinanderfolgenden Eingaben gegeben.

3. Die Untersuchung multivariater Zeitreihen. Hier werden mehrere Zeitreihen von
korrelierten Grofien zusammen untersucht. Ziel dieser Untersuchung ist vor allem die
Verbesserung von Vorhersagen gegeniiber der Betrachtung einer einzelnen Zeitreihe.

In dieser Arbeit werden alle drei vorgestellten Untersuchungen behandelt. Im Fokus steht
dabei die Vorhersage zukiinftiger Werte einer Zeitreihe. Dafiir wird eine unbekannte Vorher-
sagefunktion mithilfe gegebener Zeitreihen approximiert, wobei die approximierte Vorhersa-
gefunktion kann auch als Transferfunktion interpretiert werden kann. AufSerdem werden die
Auswirkungen auf die Vorhersage durch Verwendung korrelierter Zeitreihen betrachtet, was
einer Untersuchung multivariater Zeitreihen entspricht.

Es existieren viele unterschiedliche Methoden zur Analyse von Zeitreihen [BJRo8, SS10],
darunter Support Vector Machines [HDO"98, CTo3] und neuronale Netzwerke [Zhao3]. Die
Ansitze, die in dieser Arbeit betrachtet werden, sind Gitter-basierte Methoden. Dazu wird
die Zeitreihe in einen Attributraum {ibersetzt, der es erlaubt Gitter-basierte Regressions-
oder Klassifikationsalgorithmen zur Approximation einer unbekannten Vorhersagefunktion
zu nutzen.

Gitter-basierte Methoden besitzen die problematische Eigenschaft, dass die benotigte Rechen-
zeit bei der Berechnung von hoherdimensionalen Problemen schnell sehr grofs wird. Dieses
Phanomen wird als , Fluch der Dimensionalitdt” bezeichnet [Bel61]. Durch die Verwendung
von diinnen Gittern kann dieses Problem reduziert werden. Diinne Gitter verwenden eine
hierarchische Basis im Gegensatz zur nodalen Basis, die bei vielen Gitter-basierten Ansatzen
eingesetzt wird. Fiir diinne Gitter kann trotz einer deutlichen Reduktion der Anzahl der
Gitterpunkte gezeigt werden, dass ein dhnlicher Interpolationsfehler wie bei der Verwendung
herkdmmlicher Gitter vorliegt. Aufgrund der reduzierten Anzahl an Gitterpunkten kann
damit eine deutlich reduzierte Rechenzeit erreicht werden, besonders bei der Betrachtung
hoherdimensionaler Probleme [BGo4, Pflio, Garog].



1. Einleitung

Um darzulegen, dass die Methode erfolgreich zum Vorhersagen von Zeitreihen genutzt
werden kann, werden fiinf Datensétze vorgestellt. Zwei der Datensidtze wurden synthetisch
generiert und dienen der grundsétzlichen Validierung des Ansatzes. Zusétzlich werden Ex-
perimente mit drei nichtsynthetischen Datensitzen durchgefiihrt, mit denen eine erfolgreiche
Anwendung des Ansatzes auf realistischere Probleme gezeigt werden soll. Im Einzelnen
wurden Daten der Aktienindizes DAX und Dow Jones verwendet, sowie zusatzlich der Kurs
des Euro gegeniiber dem Dollar.

Neben der Qualitdt der Vorhersagen, die mit dieser Methode erreichbar ist, wird angestrebt,
diesen Ansatz auch fiir zeitkritische Anwendungen verfiigbar zu machen. Dazu wird zu-
ndchst mittels einiger Experimente untersucht, wie hoch die Rechenzeitanforderungen durch
die verwendete Methode sind. Anschlieffend werden einige Optimierungen vorgestellt, mit
denen die benotigte Rechenzeit weiter verringert wird, damit noch starker zeitkritische
Datensédtze mit dieser Methode untersucht werden kénnen.
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Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Data Mining mit diinnen Gittern: Hier wird in die zugrunde liegende Theorie
der diinnen Gitter eingefiihrt. Weiterhin wird der Data Mining Prozess beschrieben,
der auch in dieser Arbeit Verwendung findet. Anschlieflend wird ausgefiihrt, wie
bestimmte Data Mining Probleme mithilfe der Theorie der diinnen Gitter gelost werden
konnen.

Kapitel 3 — Zeitreihenanalyse mit diinnen Gittern: In diesem Kapitel wird beschrieben, wie
das Vorhersageproblem fiir Zeitreihen mit den im vorherigen Kapitel beschriebenen
Data Mining Methoden geltost werden kann. Da das beschriebene Verfahren durch
Variation von Parametern eine Vielzahl von Modellen fiir einen gegebenen Datensatz
erzeugen kann, wird zudem auf die Validierung passender Modelle eingegangen.

Kapitel 4 — Die Konstruktion von Attributrdumen: Um das Vorhersageproblem fiir Zeitrei-
hen als Data Mining Problem aufzufassen, miissen die Zeitreihen in einen Attributs-
raum tberfiihrt werden. Die Konstruktion geeigneter Attributsraume wird in diesem
Kapitel beschrieben.

Kapitel 5 — Datensétze und Vorhersagequalitat: Um zu zeigen, dass sich die beschriebene
Methode zur Losung des Vorhersageproblems eignet, werden in diesem Kapitel Ex-
perimente vorgestellt, die dies belegen. Dafiir werden sowohl synthetische als auch
nichtsynthetische Datensétze betrachtet.

Kapitel 6 — Beschleunigung der Zeitreihenanalyse: Da das zweite Ziel dieser Arbeit die
Anwendung auf zeitkritische Vorhersageprobleme darstellt, wird in diesem Kapitel
untersucht, wie das vorgestellte Verfahren weiter beschleunigt werden kann. Fiir die
Untersuchungen werden die Datensétze aus dem letzten Kapitel verwendet.

Kapitel 7 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Ankniipfungspunkte vor.
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2. Data Mining mit diinnen Gittern

Der in dieser Arbeit vorgestellte Ansatz zur Zeitreihenanalyse basiert auf Data Mining
Methoden, die ihrerseits wiederum auf diinnen Gittern basieren. Bevor also das Vorher-
sageproblem fiir Zeitreihen angegangen werden kann, miissen zundchst die benotigten
Grundlagen ausgefiihrt werden. Als erster Schritt zur Zeitreihenanalyse wird daher in die-
sem Kapitel in die Theorie der diinnen Gitter eingefiihrt und die darauf basierenden Data
Mining Methoden vorgestellt. Der Ansatz fiir die Zeitreihenanalyse selbst wird anschlieflend
in Kapitel 3 vorgestellt.

2.1. Was sind dunne Gitter?

Auf gitterbasierte Ansitze mit dquidistanten Gitterpunkten in jeder Dimension kann bei
Problemen mit Dimensionalitdt hdufig nicht zuriickgegriffen werden, da die Anzahl der
Gitterpunkte mit der Dimension exponentiell steigt und die daraus resultierende Rechenzeit
nicht mehr praktikabel ist. Es werden O(N?) Gitterpunkte fiir ein Problem in d Dimensionen
benoétigt, wenn in Richtung jeder Dimension N Gitterpunkte verwendet werden [Pfl1o].
Dieses Phinomen ist als ,,Fluch der Dimensionalitit” bekannt [Bel61]. In dieser Arbeit
werden gewohnliche Gitter mit dquidistant verteilten Gitterpunkten in jeder Dimension als
voll besetzte Gitter bezeichnet.

Bei einem Ansatz mit diinnen Gittern konnen hdufig gegentiber einem voll besetzten Gitter
weniger Gitterpunkte verwendet werden, ohne dabei eine schlechtere Losung zu erhalten.
Dies ist darauf zuriickzufiihren, dass es mit einem diinnen Gitter moglich ist, nur dort
Gitterpunkte zu investieren, wo auch tatsachlich Datenpunkte vorliegen. Das heifst, durch
die Verwendung von diinnen Gittern wird es moglich, ein Problem mit &hnlicher Genauigkeit,
allerdings bei deutlich reduzierter Rechenzeit zu 16sen.

Diinne Gitter wurden zuerst zur Interpolation und zum Losen partieller Differenzialgleichun-
gen verwendet [Zeng1]. Seitdem wurden diinne Gitter insbesondere fiir Probleme aus dem
Bereich der numerischen Quadratur [GG98] und Data Mining [HP13, PFPB13] eingesetzt. Ein
Ansatz zur Zeitreihenanalyse mittels diinner Gitter wurde bereits in zwei anderen Arbeiten
vorgestellt [GGG10, BG13]. Dort kam allerdings die Kombinationstechnik fiir diinne Gitter
zum Einsatz, die in dieser Arbeit nicht verwendet wird®.

'Die Kombinationstechnik wird von Jochen Garcke ausfiihrlich dargestellt [Garo4].
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2. Data Mining mit diinnen Gittern

2.2. Knowledge Discovery und Data Mining

Der Prozess der Wissensentdeckung in Datenbanken (Knowledge Discovery in Databases),
aufgrund des englischsprachigen Urspungs abgekiirzt KDD, ist ein nichttrivialer Prozess
zum Identifizieren von giiltigen, neuen, potenziell niitzlichen und verstehbaren Mustern
in Daten. Das bedeutet, der KDD-Prozess erlaubt es Muster aus Daten zu extrahieren, die,
durch korrekte Interpretation, neues und niitzliches Wissen darstellen kénnen [FPsSg6].
KDD ist ein Prozess, der aus mehreren Schritten besteht [FPsSg6]:

1. Auswahl der Daten: Es werden die Daten ausgewdhlt, aus der die Muster extrahiert
werden sollen. Dafiir ist es notwendig zu wissen, nach welchen Mustern gesucht wird
und es wird zumindest eine Vermutung benétigt, welche Daten diese Muster enthalten
konnten.

2. Vorverarbeitung: Die meisten Daten liegen in nicht direkt verwertbarer Form vor.
Haufig muss eine Strategie zum Umgang mit fehlerhaften Daten gefunden werden. Falls
auflerdem Daten fehlen, muss eine Strategie entwickelt werden, um die Auswirkungen
durch fehlende Daten zu minimieren.

3. Uberfiihrung der Daten: Die meisten Daten liegen nicht passend vor, um daraus die
Muster mittels Data Mining extrahieren zu konnen. Haufig miissen zunichst als weitere
Vorverarbeitung bestimmte Informationen aus den Daten gewonnen werden.

4. Data Mining: In diesem Arbeitsschritt werden aus den vorbereiteten Daten Muster
errechnet. Dazu sind Klassifikations- und Regressionsmethoden tiblich. In dieser Arbeit
wird hierfiir auf Methoden zuriickgegriffen, die auf der Theorie diinner Gitter basieren.

5. Interpretation oder Evaluation der Daten: Die durch das Data Mining gewonnenen Mus-
ter werden interpretiert. Wurden die vorherigen Schritte korrekt durchgefiihrt, dann
kann durch die richtige Interpretation der Muster neues Wissen gewonnen werden.
Damit eine Interpretation moglich wird, kénnen weitere Nachverarbeitungsschritte
notwendig sein.

Die Vorgehensweise in dieser Arbeit folgt weitgehend diesem Muster, wobei die ersten
drei Schritte nicht strikt getrennt werden, sondern als ein grofier Vorverarbeitungsschritt
betrachtet werden. Eine Aufteilung entsprechend dem beschriebenen Prozess ist jedoch
grundsatzlich moglich. Auf die Data Mining Methoden wird in den Abschnitten 2.4 und 2.6
ndher eingegangen. Die Vorverarbeitungsschritte werden vor allem in Kapitel 3 ausgefiihrt.
Die Interpretation und Evaluation wird vor allem im Kontext konkreter Experimente in
Kapitel 5 stattfinden.

2.3. Grundlagen der diinnen Gitter

Diinne Gitter wurden als Modifikation von voll besetzten Gittern entwickelt. Sie konnen
elegant mittels einer Unterraumkonstruktion dargestellt werden. Damit der Schritt von voll
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2.3. Grundlagen der diinnen Gitter

besetzten Gittern zu diinnen Gittern nachvollziehbar bleibt, wird zur Erlduterung auf volle
Gitter zuriickgegriffen. Das Interpolationsproblem auf einem voll besetzten Gitter mit einer
Basis bestehend aus Hutfunktionen dient dabei als Ausgangspunkt. Zunichst werden jedoch
noch einige mathematische Definitionen benotigt.

2.3.1. Mathematische Vorbemerkungen

Fiir die Darstellung von Vektoren wird eine Stich tiber dem Variablennamen verwendet. Des
Weiteren wird sowohl fiir voll besetzte als auch fiir diinne Gitter iiblicherweise gefordert, dass
als Urbildmenge der d-dimensionale Hyperwiirfel [0, 1]¢ verwendet wird. Diese Konvention
wird auch in dieser Arbeit beibehalten. Datenpunkte und Funktionen, die nicht passend
vorliegen, werden daher auf [0, 1]? normiert.

Um im Rahmen der Theorie der diinnen Gitter Multi-Indizes verwenden zu konnen, wird
die folgende Relation in einem d-dimensionalen Vektorraum definiert wird:

(1) 1<k &= Vie{l,...,d}:I; <k
Zusiatzlich werden die Summen- und Maximumsnormen fiir Multi-Indizes definiert mit

— d —
(22) |l ::]Z%lj,|l\m = 52%“]'"

Der Abstand zwischen zwei Gitterpunkten wird im Folgenden mit /; bezeichnet, Er wird
definiert als

(2.3) h =271

Der Parameter [ stellt die Diskretisierungsstufe dar und wird auch als Level bezeichnet. In
Fallen, in denen die genaue Breite des Intervalls keine Rolle spielt, wird bei &; gelegentlich
auf das Subskript I verzichtet. Im d-dimensionalen Fall wird der Level vektoriell mit [
angegeben. Die zugehorige Breite der Intervalle ist dann gegeben durch

(2.4) hpi= (270,270, 270,

Hierdurch werden unterschiedliche feine Diskretisierungen in unterschiedliche Richtungen
des verwendeten Raumes angegeben.

Des Weiteren wird das iibliche Skalarprodukt des Ly-Raums definiert mit
@s) (fg)ni= [ fx)g(x)ix fig€la

Aufierdem wird die durch das Skalarprodukt induzierte Norm des L,-Raums benétigt, diese
ist definiert durch

@6 IfIR, = [ fx)dx.
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2. Data Mining mit diinnen Gittern

- _ I -
[-1 0 K /\/ [ [ [ [ o

Abbildung 2.1.: Auf der linken Seite ist ein Graph der eindimensionalen Hutfunktion zu
sehen. Die rechte Seite zeigt einen Ausschnitt der nodalen Basis in einer
Dimension.

Der Support einer Funktion f : A — R, im Deutschen auch Trager genannt, ist gegeben
durch

(27) supp(f) := {x € Alf(x) # 0}

Der Support einer Funktion ist also die abgeschlossene Hiille der Menge der Punkte, an
denen die Funktion nicht Null ist.

2.3.2. Das Interpolationsproblem in einer Dimension auf einem voll besetztem
Gitter

Ein volles besetztes Gitter besitzt dquidistante Gitterpunkte in Richtung jeder Dimension.
Voll besetzte Gitter werden hdufig zusammen mit der nodalen Basis verwendet, die Hutfunk-
tionen als Basisfunktionen verwendet. Dabei tiberlappt sich der Support der Basisfunktion
an einem Gitterpunkt mit dem Support der Basisfunktionen an direkt benachbarten Git-
terpunkten. Durch diese Uberlappung werden Punkte zwischen den Gitterpunkten linear
interpoliert. Ausgangspunkt fiir die Basisfunktionen ist die in Abbildung 2.1 auf der linken
Seite dargestellte eindimensionale Hutfunktion

(2.8) ¢(x):=max(1— |x|,0).

Um die Hutfunktion in einem Gitter verwenden zu konnen, muss sie auf ein Intervall skaliert

werden. Zu diesem Zweck wird die Funktion ¢ wie folgt angepasst:

x —jh
1)

(2.9)  ¢j(x) := max <1 -

16



2.3. Grundlagen der diinnen Gitter

Fiir eine gewihlte Diskretisierung h; = 2! z&hlt der Parameter j die Hutfunktionen an den
einzelnen Gitterpunkte auf. Die Menge der Hutfunktionen wiederum kann als Basis fiir
einen Raum

(2.10) Vi:={¢1, 2 ..., Pp_1}

verwendet werden. V; besitzt 2! — 1 Gitterpunkten mit 2/ — 1 darauf zentrierten Hutfunk-
tionen auf. Die Hutfunktion an einem der Punkte tiberlappt sich jeweils mit den direkt
benachbarten Punkten. Dies ist in Abbildung 2.1 auf der rechten Seite dargestellt.

Alle Funktionen in V; konnen als Linearkombinationen der Basisfunktionen dargestellt
werden:

(211) fi(x) = iaiqx(x)

Dabei ist n gewdhlt mit n = 2/ — 1. Ein Beispiel fiir eine einfache Anwendung dieses
Funktionsraums ist das Interpolationsproblem. Eine Funktion f : [0,1] — R soll in einem
vollen Gitter mit Level I interpoliert werden. Dafiir miissen initial # Auswertungen an den
Gitterpunkten x; durchgefiihrt werden, an denen genau eine der Hutfunktionen den Wert
1 annimmt. Diese Menge von Punkten kann als S = {(x;,y;)}/", dargestellt werden. Zur
Berechnung der Funktion, mit der die Datenpunkte in S interpoliert werden, muss lediglich
fiir jeden Gitterpunkt der zugehorige Koeffizient #; auf den Wert y; gesetzt werden. Damit
erhdlt man direkt die gewtinschte interpolierende Funktion f, € Vj,. In Abbildung 2.2 ist
dies fiir ein Gitter mit Level 2 und daraus folgend 3 Gitterpunkten und Basisfunktionen
veranschaulicht. Dabei liegt die zu interpolierende Funktion schwarz im Hintergrund. Die
drei Basisfunktionen des Gitters sind griin eingefarbt. Die resultierende Funktion f, € V, ist
in roter Farbe dargestellt.

2.3.3. Hierarchische Raume

Diinne Gitter basieren auf einer hierarchischen Basis. Als Basisfunktionen werden, wie bei
voll besetzten Gittern, tiblicherweise Hutfunktionen verwendet. Da es sich bei Diinngit-
terraumen um hierarchische Raume handelt, die sich aus Unterrdumen zusamensetzen,
muss die grundlegende Hutfunktion erneut modifiziert werden. Dafiir wird die Hutfunk-
tion auf einem Unterraum eines vorgegebenen Levels | an einem Ort mit einem Index j
definiert [Gar11]:

(212) ¢1,(x) = {1 = (= jm)/ln| - x € [(i =Dk, (G + D] N[O, 1]

0 sonst
Wie bei voll besetzten Gittern ist jede Basisfunktion an einem Gitterpunkt zentriert. Uber
den Index werden die Gitterpunkte aufgezahlt. Der Schnitt mit [0, 1] ist notwendig, damit
der Rand des Gebiets korrekt bertiicksichtigt wird, falls ein Gitter mit Punkten auf dem Rand
verwendet wird.
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2. Data Mining mit diinnen Gittern

0 0,5 I

Abbildung 2.2.: Ein einfaches Beispiel fiir eine Interpolation auf einem voll besetzten Gitter
in einer Dimension. Die Basisfunktionen sind in Griin dargestellt. Die rote
interpolierende Funktion tiberlappt sich mit den Basisfunktionen an den
Randpunkten.

Mit den Funktionen ¢;; kénnen die eigentlichen d-dimensionalen Basisfunktionen definiert
werden als [Gar11]:

d
(2'13) %j(y) = I—!(Plt/]'t(xt)
=

Um zu beschreiben, wie sich die Gitterpunkte auf das Gebiet verteilen, wird die Indexmen-
ge

(214) [:={ieN:1< i <2l —1Aiungerade A1 <j<d}

benoétigt. Die an dieser Stelle etwas arbitrdr erscheinende Anforderung, dass i ungerade
sein soll, wird spater dazu dienen, wahrend der Konstruktion des Diinngitterraums bereits
hinzugefiigte Gitterpunkte nicht ein zweites Mal hinzuzuftigen. Mithilfe von I; lasst sich ein
Diinngitterraum als direkte Summe von hierarchischen Unterrdumen darstellen. Zunéchst

werden hierzu die hierarchischen Unterrdume mittels der oben definierten Basisfunktionen
definiert als

(2.15) Wp={¢;,;(%) i€ L}
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2.3. Grundlagen der diinnen Gitter
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Abbildung 2.3.: Konstruktion eines Diinngitteraums ohne Rand (rot) in zwei Dimensionen
mit Level [ = (3,3). Die Unterrdume des zugehorigen vollen Gitters sind
blau abgegrenzt.

Dabei stellt W; einen Unterraum dar, der genau die Gitterpunkte auf dem durch [ spezifi-
zierten Level enthidlt. Werden alle moglichen Unterrdaume mittels einer direkten Summe?
kombiniert, erhdlt man ein volles Gitter durch den Vektorraum V! [Pfl10]:

(2.16) V) := @ W;

l|ew<n

VY besitzt jetzt eine hierarchische Basis anstatt der nodalen Basis. Voll besetzt ist das Gitter
allerdings trotzdem, da die Gitterpunkte in Richtung jeder Dimension dquidistant tiber
das Gebiet verteilt sind. In Abbildung 2.3 sind die hierarchischen Unterrdume fiir ein
zweidimensionales hierarchisches Gitter fiir alle Level bis inklusive [ = (3,3) dargestellt.
Werden alle dargestellten Unterraume summiert, ergibt sich das dargestellte voll besetzte
Gitter. Im Unterschied zur nodalen Basis tiberlappen sich Gitterpunkte mit gleichem Level
nicht, stattdessen besitzt die hierarchische Basis eine Baumstruktur. Dabei wird das Gebiet,
auf dem eine der Basisfunktionen Support hat, im nédchsten Level aufgeteilt. Es existieren
dann mehrere nicht {iberlappende Basisfunktionen, die jeweils auf einer Teilmenge des
Gebiets Support besitzen. Durch die gestrichelten Linien ist in Abbildung 2.3 der Support
der Basisfunktion abgegrenzt.

?Die direkte Summe kann hier als lineare Hiille der Vereinigung der Basisfunktionen der Unterrdume betrachtet
werden.

19
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Abbildung 2.4.: Konstruktion eines Diinngitteraums mit Rand (rot) in zwei Dimensionen
mit Level [ = (3,3). Die Unterrdume des zugehorigen vollen Gitters sind
blau abgegrenzt.

Neben diinnen Gittern ohne Rand, wie sie in dieser Arbeit verwendet werden, existieren
noch mehrere andere Varianten hierarchische Unterrdume zu diinnen Gittern zu kombinie-
ren [Pfl1o]. Eine besonders interessante Variante stellen die diinnen Gitter mit Rand dar, die
in Abbildung 2.4 fiir den zweidimensionalen Fall schematisch dargestellt sind. Wahrend
Randpunkte grundsitzlich erwiinscht sind, besitzen gewohnliche diinne Gitter mit Rand
die Eigenschaft, dass mit zunehmendem Level die meisten Gitterpunkte am Rand liegen,
und nicht mehr im Gebiet. Grundsétzlich gibt es zwei Strategien, um dieses Problem zu
l6sen. Zum einen konnen die Bedingungen fiir die Randpunkte modifiziert werden, wodurch
deren Anzahl reduziert wird. Andererseits konnen die Datenpunkte durch eine geeignete
Konstruktion so normalisiert werden, dass Gitterpunkte auf dem Rand nicht benétigt werden.
In dieser Arbeit wird auf die zweite Strategie zuriickgegriffen.

Durch das Auslassen bestimmter Unterrdume erhélt man einen Diinngitterraum
(2.17) V= @ W
1|y <n+d—1

In Abbildung 2.3 ist die Konstruktion fiir den zweidimensionalen Fall veranschaulicht. Im
Gegensatz zum Vollgitterfall werden jetzt nur die durch die rote, diagonal verlaufende Linie
begrenzten Unterrdume aufsummiert.

Durch die Konstruktion der Unterrdume werden zwei unterschiedliche Levelbegriffe ver-
wendet. Es existieren Unterrdume eines bestimmten Levels . Gleichzeitig ergibt sich durch
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2.3. Grundlagen der diinnen Gitter

die Unterraumkonstruktion der Level eines Gitter, der oben tiber das Subskript n angegeben
wurde.

2.3.4. Interpolation in hierarchischen Raumen

Sei & ein Koeffizientenvektor passender Dimension fiir den jeweiligen Raum. Dann kann eine
Funktion u € V! als Linearkombination der Basisfunktionen von V; dargestellt werden:

(218) u(x) =Y, Zucﬁcf%lj(f)

l|w<nicl

Analog ergibt sich eine Darstellung fiir beliebige Funktionen im Diinngitterraum V), mit

(219) u(X) = Y. Y a;;¢:(3).

[[h<n+d-1i€]

Im Vergleich zur Berechnung der Koeffizienten bei der ,flachen” Basis aus 2.3.2 ist die
Interpolation auf diinnen Gittern aufwendiger und kann effizient mittels einem als Hierarchi-
sierung bezeichneten Verfahren durchgefiihrt werden [Pfl1o]. Als einfachere, allerdings auch
weniger effiziente Alternative kann ein lineares Gleichungssystem aufgestellt werden. Dazu
wird zunédchst die zu interpolierende Funktion wieder an jedem Gitterpunkt x; ausgewertet,
wodurch sich die Menge S = {(x;,y;) }/_ ergibt. Entsprechend der Definition der Funktion
u ergibt sich damit das Gleichungssystem mit den Gleichungen

(220) yj= ), Y} ().

[l <n+d—-1liel;

tiir jeden der Gitterpunkte. In Abbildung 2.5 ist ein einfaches Beispiel fiir eine eindimen-
sionale Diinngitterinterpolation mit Level 2 zu sehen. Die drei Basisfunktion sind in griin
dargestellt. Die zu interpolierende Funktion ist schwarz eingefarbt, es handelt sich um
dieselbe Funktion wie sie bei dem Vollgitterbeispiel 2.2 zu finden war. Die gestrichelten
Pfeile symbolisieren die Werte und Vorzeichen der Koeffizienten. In Rot ist die resultierende
interpolierende Funktion u dargestellt.

Fiir den asymptotischen Interpolationsfehler || f(x) — u(x)||1, einer interpolierenden Funkti-
on u kann fiir volle Gitter mit Level n und Intervallbreite 11, = 27" gezeigt werden, dass der

Fehler mit O(h2) abfallt. Dafiir werden allerdings auch O(Z”d) Gitterpunkte benétigt [BGo4].
Wird mit einem diinnen Gitter interpoliert, dann ist der Fehler im Vergleich zum voll
besetzten Gitter etwas grofser mit

(2.21) O(h;(log(hy ') 1).

Dafiir steigt die Anzahl der Gitterpunkte mit zunehmendem Level des Gitters deutlich
langsamer [BGo4]:

(2.22) O(h, " (log(i,"))"~!) = O(2" (log(2")" ")
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2. Data Mining mit diinnen Gittern

Abbildung 2.5.: Einfaches Beispiel einer Interpolation auf einem diinnen Gitter in einer
Dimension. Die drei Basisfunktionen sind griin dargestellt, die blauen Pfeile
stellen die Werte der Koeffizienten dar. Die interpolierende Funktion ist Rot
dargestellt.

Das heifst, trotz der deutlich reduzierten Anzahl an Gitterpunkten ist bei einem diinnen Gitter
immer noch ein dhnlicher Fehler wie bei einem voll besetzten Gitter zu erwarten. Aufgrund
dieser Eigenschaft konnen mithilfe von diinnen Gittern Probleme mit hoherer Dimension
angegangen werden konnen, bei der ein volles Gitter bereits zu viel Rechenzeit benotigen
wiirde, ohne dabei starke Einbufiem hinsichtlich der Qualitat der Losung hinnehmen zu
miissen.

2.4. Klassifikation mittels der Methode der kleinsten Quadrate

Klassifikation ist die Bestimmung einer Funktion, die Datenpunkten Klassenbezeichnungen
zuordnet. Fiir die Bestimmung der Funktion wird eine Menge von Trainingsdaten verwendet.
Sei

(2.23) S:={(x;,yi) € RY x T,

die Menge der Trainingsdaten, wobei y; die Klasse des zugehorigen Datenpunkts X; bezeich-
net. Die Menge T ist die Menge der Klassen beziehungsweise Klassenbezeichnungen. Es
wird gefordert, dass es sich bei T um eine endliche Menge handelt.

Auf den Trainingsdaten kann ein Klassifikationsproblem formuliert werden. Angenommen
die Menge S besteht aus Auswertungen einer unbekannten Funktion f : RY — T aus dem
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2.4. Klassifikation mittels der Methode der kleinsten Quadrate

Funktionsraum V, die jedem Datenpunkt seine zugehorige Klasse zuordnet. Dann kann S
genutzt werden, um f zu approximieren.

Zu beachten ist, dass die Trainingsdaten fehlerhaft oder unvollstindig sein kénnen, was
die maximal erreichbare Approximationsqualitidt reduziert. Ebenso kann die Qualitét ein-
geschrankt bleiben, falls die Trainingsdaten die unbekannte Funktion strukturell nicht
ausreichend prézise wiedergeben, zum Beispiel weil alle Trainingsdaten nur aus einem
kleinen Bereich der Urbildmenge der Funktion f stammen. Die Wahl der Trainingsdaten ist
also entscheidend fiir eine gute Approximation der Klassifikationsfunktion.

Zur Losung des Klassifikationsproblems mit der Methode der kleinsten Quadrate wird
zunichst ein Raum V,, mit der Basis ¥ = {¢;(x)} ; gewahlt fir den gilt: V,, C V. Ei-
ne approximierende Funktion fy(¥) kann mithilfe der Basis als Linearkombination der
Basisfunktionen und zusétzlichen Koeffizienten a; geschrieben werden als

N
(2.24) fn(x) = ;wis‘bi(@-

Um die Koeffizienten zu bestimmen, mit denen die Trainingsmenge approximiert wird, kann
der quadratische Fehler minimiert werden. Formal kann dies als Minimierungsproblem

m N
(2.25) fy = argmin <1 Z(]/i —fr (JTZ))2 +A Z a?) .

f*eVn i=1 i=1

dargestellt werden [Pfl10]. Hierbei dient der Term (y; — f*(¥;))? als zu minimierender
Fehlerterm zwischen den Koeffizienten der Diinngitterfunktion und den vorliegenden Da-
tenpunkten. Der Term YV, a? stellt den Regularisierungsoperator dar, er dient also der
Glattung der Funktion. Ziel der Regularisierung ist es, dass die Genauigkeit der Vorhersagen
auf noch unbekannte Daten maximiert wird. Dafiir ist eine geeignete Wahl des Regularisie-
rungsparameters A notwendig.

Es existieren auch andere Regularisierungsoperatoren, wobei sich der vorgestellte Operator
fiir diese Arbeit als ausreichend erwies. Durch Zeitreihenanalyse als Anwendung des Data
Mining Verfahrens ergeben sich einige spezielle Anforderungen fiir die Regularisierung,
die verwendete Strategie zur Wahl des Regularisierungsparameters wird in Abschnitt 3.4
vorgestellt.

Als Losung des obigen Minimierungsproblems ergibt sich ein lineares Gleichungssystem,
welches in Matrixschreibweise notiert werden kann als [Pfl10]

1 1
26) ( =BBT 4+ Al | = —By.
(2.26) <m + > o - Y
Dabei ist w der Koeffizientenvektor der Diinngitterfunktion, die Matrix B ist gegeben durch

(2.27) (B);j == ¢i(x;).
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2. Data Mining mit diinnen Gittern

Um fy zu erhalten, muss das Gleichungssystem noch gelost werden. Als Loser wurde
hierfiir das Konjugierte-Gradienten-Verfahren, im Folgenden als CG-Verfahren bezeichnet,
verwendet [Sheog4].

Durch die Methode der kleinsten Quadrate wird sichergestellt, dass an jeden Datenpunkt x;
die Diinngitterfunktion moglichst nahe am Wert y; liegt. Um die Klassifikationsaufgabe zu
16sen, miisste jedoch y; eine der Klassen aus T sein. Um die Methode der kleinsten Quadrate
verwenden zu kénnen, muss zundchst mittels einer Abbildung ¢ : T — R jedes Element
aus T auf eine reelle Zahl abgebildet werden. Da T endlich ist, stellt dies keine besondere
Schwierigkeit dar. Bei zwei Klassen und der Bezeichnermenge T = {Rot, Griin} kann den
einzelnen Elementen zum Beispiel ein Element aus der Menge {0, 1} zugeordnet werden.
Damit alle Klassen unterscheidbar als Werte erhalten bleiben und keine neuen Klassenwerte
unnotig eingefiihrt werden, muss die Abbildung bijektiv sein.

Um die berechnete Diinngitterfunktion fy zur Klassifikation zu benutzen, ist eine Nach-
behandlung des mit der Diinngitterfunktion berechneten Werts notwendig, durch die ein
inverses Mapping h : R — T realisiert wird. Ein derartige Funktion h wird benotigt, weil die
Diinngitterfunktion nicht notwendigerweise Werte aus T zurtickgibt. Fiir die Anwendungen
im Rahmen dieser Arbeit ist jedoch ein einfaches Verfahren ausreichend. An einem zu klassi-
fizierenden Datenpunkt ¥ wird die Klasse gewdhlt, deren zugeordneter Wert am néachsten

zu fy(X) liegt:
(2.28) t = argmin|(g(i) — fn(¥))|

ieT

Im Rahmen dieser Arbeit werden nur bindre Klassifikationsprobleme betrachtet. Falls jedoch
mehr Klassen benotigt werden, kann das vorgestellte Klassifikationsschema problematisch
werden. Angenommen einer Menge mit drei Klassen werden die Werte 1, 2 und 3 zugeordnet.
Dann kann es vorkommen, dass die Diinngitterfunktion in Bereichen, in denen ein Ubergang
von 3 nach 1 liegt, den Wert 2 einnimmt. Dies ist vor allem deswegen problematisch, weil
dazu keinerlei Trainingsdaten aus der Klasse mit dem Wert 2 in der Nachbarschaft liegen
miissen.

Dieses Problem kann durch ein anderes Klassifikationsschema gelost werden. Anstatt eine
einzelne Diinngitterfunktion fiir alle m Klassen zu erstellen, konnen auch m Diinngitterfunk-
tionen fiir die einzelnen Klassen erstellt werden. Ein darauf aufbauendes Klassifikations-
schema wird in Abschnitt 2.5 detaillierter ausgefiihrt, da die einfache obige Strategie fiir die
Dichte-basierte Klassifikation nicht verwendet werden kann.

2.5. Klassifikation mittels Dichteschéatzung

Ein Klassifikationsproblem kann auf ein Problem der Dichte-Schitzung zurtickgefiihrt
werden. Dazu wird fiir jede Klasse eine Funktion bestimmt, mittels der die Dichte an
jedem Ort des betrachteten Hyperwiirfels [0,1]? abgeschitzt werden kann. Auf Basis der
Dichteschdtzungen jeder Klasse an einem bestimmten Punkt im Raum kann mithilfe eines
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2.5. Klassifikation mittels Dichteschatzung

separat anzugebenden Entscheidungskriteriums die Klasse ausgewéhlt werden, die am
besten zu den errechneten Dichten passt.

Als Ansatz fiir diese Vorgehensweise wurde von Hegland et al. ein Verfahren zur Dichte-
schiatzung vorgestellt [HHRoo], zu dem von Jochen Garcke als Anwendung das Losen von
Klassifikationsproblemen vorgeschlagen wurde [Garog]. Dieser Ansatz wurde in anderen
Arbeiten weiter verfolgt [Frai1, PFPB13].

Als Ausgangspunkt fiir die Dichteschitzung muss die Trainingsmenge S = {X; € R} ge-
geben sein. Dann kann das folgende Variationsproblem als Ansatz fiir eine Dichteschdtzung
verwendet werden [Garo4]:

M
(2.20) R(f) = |[(fF()IIZ, + AlISFII® = % ;f(fi)

(2.30) R(f) f?v min

S ist dabei der verwendete Regularisierungsoperator, der wie bei der Methode der kleins-
ten Quadrate mit der Identitit gewdhlt wird. Unter Verwendung einer Diinngitterbasis
kann das gegebene Variationsproblem damit als lineares Gleichungssystem dargestellt wer-
den [Fra11]:

(2.31) (A+ADa = %BTT

Dabei sind die einzelnen Matrizen wie folgt definiert:

(2.32) Aix = (91, Pr)1, i,ke{1,2,...N}
(233)  Bij:=¢(xi) ic{1,2,...n},je{1,2,...N}

Durch Auswertung der berechneten Diinngitterfunktion an einem Punkt ¥, kann damit
die Dichte der Trainingsdatenmenge S an diesem Punkt abgeschitzt werden. Damit al-
lein kann jedoch keine Klassifikation durchgefiihrt werden. Zundchst muss der gegebene
Trainingsdatensatz

(234) S" == {(xi,y:) € R x T},

modifiziert werden, indem er nach Klassen aufgeteilt wird. Dabei entstehen mehrere Da-
tensdtze S wie oben angegeben. Fiir jeden der Trainingsdatensétze der Klassen wird eine
Dichteschdtzung mithilfe des obigen Verfahrens berechnet. Als Ergebnis erhdlt man eine
Diinngitterfunktion fiir jede der Klassen. Diese Diinngitterfunktionen erlauben es abzu-
schitzen, wie dicht eine bestimmte Klasse an einem bestimmten Punkt im Raum liegt. Ein
naheliegendes Kriterium zur Klassifikation ist die Wahl der Klasse, die am betrachteten
Datenpunkt die hochste Dichte einnimmt [Fra11]. Dies lédsst sich darstellen mit

(2.35) t = argmax(fi(x)).

ieT
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Abbildung 2.6.: Diinngitterfunktionen des Schachbrettdatensatzes als Heatmap dargestellt.
Datenpunkte zweier Klassen wurden abwechselnd auf die einzelnen Felder
eines Schachbrettmusters verteilt. Die Farbe codiert den Wert der grofiten
Diinngitterfunktion am betrachteten Punkt, das Vorzeichen gibt die Klasse
an.

Dabei ist t die Klasse, die dem Datenpunkt X zugeordnet wird.

Wie beim vorherigen Ansatz aus 2.4 muss auch hier fiir die Berechnung der Diinngitter-
funktion auf ein Verfahren zum Losen linearer Gleichungssysteme zuriickgegriffen werden.
Dafiir wurde auch fiir diesen Ansatz das CG-Verfahren als Loser gewahlt.

In Abbildung 2.6 ist ein Beispiel fiir die Klassifikation mittels Dichteschdtzung zu sehen.
Als Datensatz dient ein bereits normalisiertes Schachbrettmuster, wobei den Feldern des
Schachbretts alternierende Klassen zugeordnet wurden. Die Abbildung zeigt die Werte der
Diinngitterfunktionen vor Anwendung des eigentlichen Klassifikationskriteriums. Um beide
Diinngitterfunktionen in der Abbildung darzustellen, wurde an jedem Punkt der Abbildung
immer nur die Klasse dargestellt, deren Wert grofier war. Zusatzlich wurde eine Funktion
an der x-Achse gespiegelt, um die Klassen unterscheiden zu kénnen. An der Abbildung
kann man damit am Vorzeichen des Werts ablesen, mit welcher Klasse ein Punkt klassifiziert
werden wiirde. Der positive oder negative Betrag zeigt den Verlauf der Funktionen.
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2.6. Regressionaufgaben auf dinnen Gittern

Regressionsaufgaben sind eng mit Klassifikationsaufgaben verwandt. Bei Regressionsaufga-
ben soll eine unbekannte Funktion f : R? — R, wobei f aus dem Funktionsraum V stammt,
approximiert werden. Wie bei der Klassifikationsaufgabe sei

(236) S:= {(T,y:) € R" xR},

eine Menge an Trainingsdaten, die aus Auswertungen der unbekannten Funktion besteht. Im
Gegensatz zur Klassifikation wird die Anforderung aufgegeben, dass die Menge der Klassen
endlich ist. Auch hier kann die Trainingsdatenmenge fehlerhaft oder unvollstindig sein.

Regressionsaufgaben konnen mittels der Methode der kleinsten Quadrate mit dem in
Abschnitt 2.4 vorgestellten Algorithmus angegangen werden, wofiir lediglich auf die Anwen-
dung des Klassifikationsschemas verzichtet werden muss. Der Ansatz mittels Dichteschét-
zung steht fiir dieses Problem leider nicht zur Verfiigung, da dieser darauf basiert, dass fiir
jede Klasse eine eigene Dichteschitzfunktion ermittelt wird. Falls die Werte y; einen kleinen
Wertebereich einnehmen, konnen diese als Klassen aufgefasst werden. Im Allgemeinen
stellen die Werte y; jedoch keine Klassen dar und konnen auch nicht als solche betrachtet
werden. Dadurch ist es nicht moglich, den Dichte-basierten Ansatz anzuwenden.

2.7. Adaptivitat

Das Rechnen mit hohen Leveln oder hoher Dimensionalitit fithrt zur Nutzung vieler Git-
terpunkte. Dies kann ein Problem darstellen, da mehr Gitterpunkte bei dem Losen eines
assoziierten Gleichungssystems zu einem entsprechenden Mehraufwand fithren. Besonders
interessant ist der Fall, in dem ein interessanter Teil des Hyperwiirfels [0,1]¢ von zu wenig
Gitterpunkten abgedeckt wird, um die unbekannte Funktion f lokal ausreichend gut zu
approximieren.

In diesem Fall ist es nicht erwiinscht, einfach nur auf hoherem Level zu rechnen, denn
dies wiirde dazu fiihren, dass auch andere Bereiche unnotig fein aufgelost wiirden, was
wiederum den Aufwand zum Losen des Gleichungssystems unnoétig vergroflert. Gerade
bei Klassifikationsproblemen ergibt sich als zusédtzliche Schwierigkeit, dass durch zu viele
Gitterpunkte relativ zur Anzahl der Datenpunkte Overfitting auftritt. Durch Overfitting kann
eine Losung mit mehr Gitterpunkten schlechter werden, da die Diinngitterfunktion lokal zu
schnell abfillt, wodurch zum Beispiel Bereiche zwischen zwei Datenpunkten der gleichen
Klassen félschlicherweise als isolierte Bereiche dieser Klasse durch die Diinngitterfunktion
wiedergegeben werden.

Um die Performanceprobleme und das mogliche Overfitting durch einem hoheren Level
zu vermeiden und trotzdem eine Verbesserung der Losung zu erzielen, ist es moglich eine
bestehende Losung adaptiv zu verfeinern. Dazu wird das zur unverfeinerten Losung gehorige
Gitter betrachtet. Zunichst wird bestimmt, an welchem oder welchen Gitterpunkten eine
Verfeinerung den grofiten Nutzen bringen wiirde. Dies kann durch unterschiedliche Kriterien
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Abbildung 2.7.: [llustration des Prinzips der Verfeinerung in zwei Dimensionen. Der rote
Punkt wird verfeinert, wodurch die blauen Punkte eingefiigt werden. Die
griinen Punkte miissen als hierarchische Vorginger ebenfalls eingefiigt
werden.

festgelegt werden. AnschliefSend werden Punkte in die Umgebung des zu verfeinernden
Punktes eingefiigt. Eine Moglichkeit besteht darin, das Gebiet, auf der die Funktion des zu
verfeinernden Gitterpunktes Support hat, in jede Richtung zu halbieren und auf halbem Weg
einen neuen Gitterpunkt hinzuzufiigen. Im zweidimensionalen Fall folgt daraus, dass das
Gebiet geviertelt wird, im d-dimensionalen Fall werden 2d neue Gitterpunkte eingeftigt.

Hierbei ergibt sich als zusitzliche Schwierigkeit, dass fiir die meisten Algorithmen alle
hierarchischen Vorgéanger eines Gitterpunktes verfiigbar sein miissen [Pfl10]. Das bedeutet,
dass es unter Umstdnden nicht ausreicht nur die Gitterpunkte einzufiigen, die direkt der
Verfeinerung dienen, sondern es miissen auch noch deren hierarchische Vorgianger eingefiigt
werden. Ein Beispiel, das dieses Phanomen zeigt, ist in Abbildung 2.7 zu sehen. Hier wird
der rot markierte Gitterpunkt verfeinert, wodurch die blau markierten Punkte eingefiigt
werden sollen. Allerdings fehlen die griin markierten hierarchischen Vorganger, die deswegen
ebenfalls eingefiigt werden miissen.

Noch zu kldren ist, welche Gitterpunkte zu verfeinern sind. Grundsétzlich konnten Fehlerab-
schdtzungen verwendet werden, die es erlauben wiirden, lokal den Fehler zu bestimmen.
Ein empirisch niitzliches und duflerst performantes Verfahren ergibt sich allerdings bereits
durch die blofSe Betrachtung der Koeffizienten. Betrachtet werden hierbei nur Punkte, deren
hierarchische Nachfolger noch nicht eingefiigt wurden. Das heifst, es werden die Blattknoten
des Baumes betrachtet, der mit der hierarchischen Basis assoziiert ist. Bei Gitterpunkten,
deren Koeffizienten hohe Werte einnehmen, kann vermutet werden, dass die lokale Approxi-
mation noch schlechter ist, als durch die verwendeten Datenpunkte eigentlich erreichbar.
Denn sobald die Datenpunkte gut approximiert werden, sollten die Koeffizienten weiterer
unnotiger Gitterpunkte nahe bei Null liegen [Pfl10].

Falls lokal eine gute Approximation vorliegt und die Koeffizienten gleichzeitig grofse Werte
einnehmen, gilt, dass die Koeffizienten neu eingefiigter Gitterpunkte kleine Werte einneh-
men sollten. Das heifst, sollte im falschen Bereich verfeinert werden, wird dies zumindest
hochstens einmal geschehen. Dieses Verfeinerungskriterium hat sich fiir die im Rahmen der
in dieser Arbeit durchgefiihrten Experimente als gute Wahl erwiesen.

Analog zur Verfeinerung von Gitterpunkten kann es auch sinnvoll sein, Gitterpunkte wieder
aus einem Gitter zu entfernen. Ein Anwendungsfall, der fiir diese Arbeit relevant ist, sind
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Gitter, die mit dhnlichen Datensatzen tiber mehrere Zeitschritte wiederverwendet werden.
Durch entfernte Datenpunkte kdnnen Bereiche, in denen im letzten Zeitschritt viele Git-
terpunkte notwendig waren, jetzt durch weniger Gitterpunkte ausreichend approximiert
werden. Analog zum obigen Fall kénnen hier Gitterpunkte mit Koeffizienten mit einem Wert
nahe Null entfernt werden, da diese Gitterpunkte, aufgrund der kleinen Koeffizientenwerte,
nur wenig bei der Auswertung der Diinngitterfunktion beitragen.
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3. Zeitreihenanalyse mit dinnen Gittern

In diesem Kapitel wird ein Ansatz zum Losen des Vorhersageproblems fiir Zeitreihen
vorgestellt. Daftir wird zundchst der Begriff der Zeitreihenanalyse ndher ausgefiihrt. Wie
gezeigt wird, lasst sich die Vorhersage von Zeitreihen als Klassifikations- oder Regressions-
problem auffassen, wodurch eine Anwendung der in Kapitel 2 vorgestellten Algorithmen
moglich wird. Zuletzt wird ein Verfahren zur Validierung der berechneten Modellfunktionen
vorgestellt.

3.1. Grundlagen der Zeitreihenanalyse

Eine Zeitreihe ist eine Menge von zeitlich geordneten Beobachtungen [BJRo8]. Die Zeitpunkte
der Beobachtungen konnen hierbei dquidistant gewdahlt sein, es sind allerdings auch unregel-
mafiige Zeitschritte moglich. Im einfachsten Fall wird die Entwicklung einer einzelnen Grofie
tiber die Zeit betrachtet, beispielsweise eine Zeitreihe, die eine Bevolkerungsentwicklung
tber die Zeit reprédsentiert. Eine eindimensionale Zeitreihe wird in dieser Arbeit wie folgt
formal dargestellt:

1) T ={(t,y;) ERxRIVk€{0,...,i—1}:t <t}

Eindimensionale Zeitreihen werden auch univariate Zeitreihen genannt, hoherdimensionale
Zeitreihen werden auch als multivariate Zeitreihen bezeichnet. Bei multivariaten Zeitreihen
wird nicht nur eine einzelne Grofse tiber die Zeit verfolgt, stattdessen werden mehrere
Grofien verfolgt. Das heif3t, jeder Zeitschritt ist nicht mit einem einzelnen Wert verkniipft,
sondern mit einem Tupel an Werten [BJRo8]. Bei multivariaten Zeitreihen werden also
mehrere univariate Zeitreihen zusammen als eine einzige multivariate Zeitreihe aufgefasst:

(32) T ={(t,z) e RxRIAVK € {0,...,i—1}: t < i}y

Multivariate Zeitreihen werden hédufig verwendet, wenn die Datenpunkte einer univariaten
Zeitreihe mit zusatzlichen Informationen verkniipft werden konnen. Ein Beispiel hierfiir ist
eine Abfolge von gemessenen Gesten einer Hand iiber die Zeit. Eine univariate Zeitreihe
konnte hierbei nur aus den Namen der Gesten tiber die Zeit bestehen. In Form einer multi-
variaten Zeitreihe konnten zuséitzliche Informationen tiber die Haltung der Finger gegeben
werden. Durch diese zusitzlichen Informationen kann die Vorhersage zukiinftiger Werte
erleichtert werden, da mehr kontextuelle Informationen vorliegen. Fiir eine Verbesserung der
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3. Zeitreihenanalyse mit dinnen Gittern

Vorhersage ist es erforderlich, dass die zusatzlichen Informationen fiir die vorherzusagende
Zielgrofse relevant sind.

Zeitreihen spielen immer dann eine Rolle, wenn zeitabhédngige Prozesse untersucht wer-
den. Dafiir sind Anwendungsfille in nahezu allen wissenschaftlichen und wirtschaftlichen
Bereichen denkbar:

e In der Okonomie werden unter anderem Aktienkurse und Unternehmensprofite iiber
die Zeit betrachtet.

e Natiirliche Phanomene konnen interessante Zeitreihen ergeben. Zum Beispiel kann
durch Messung der Temperatur iiber die Zeit das Phanomen der globalen Erwdarmung
untersucht werden. Die Entwicklung von regelméfsigen Wetterphdnomenen wie El
Nifio sind ebenfalls ausgesprochen interessant.

e In der Medizin kann unter anderem der Verlauf der Aktivitiat unterschiedlicher Hirna-
reale iiber die Zeit mit Untersuchungsmethoden wie der funktionellen Magnetreso-
nanztomographie oder einem EEG verfolgt werden.

e In der Linguistik sticht besonders das Problem der Spracherkennung heraus. Hier wird
der Verlauf von Schallwellen {iber die Zeit untersucht.

Eine Untersuchung einiger der beschriebenen Anwendungfélle wurde von Robert H. Shum-
way und David S. Stoffer durchgefiihrt [SS10].

3.2. Das Vorhersageproblem flir Zeitreihen

Das Vorhersageproblem fiir univariate Zeitreihen kann wie folgt beschrieben werden. An
einem Zeitschritt t, 1 ist eine Menge von Werten an vergangenen Zeitschritten

33) P ={(tiyis1) ERXRIVk € {0...i—1}: tp <t}

gegeben und es soll der Wert y,,» vorhergesagt werden.

Man beachte, dass im Gegensatz zur Definition einer Zeitreihe jetzt der Wert y;; am
Zeitpunkt t; Teil des zugehorigen Tupels ist, und nicht mehr y;. Durch die Verkniipfung des
ndchsten Werts mit dem aktuellen Zeitpunkt wird ein Zusammenhang zum néchsten Wert
hergestellt, da die Tupel als Auswertungen einer unbekannten Vorhersagefunktion aufgefasst
werden konnen. Da die Vorhersage nicht immer korrekt ist, muss weiter zwischen einem
vorhergesagten Wert y;  , und dem tatsdchlichen Wert v, >, der am néchsten Zeitschritt
gemessen wird, unterschieden werden. Im besten Fall gilt y; ,, = y,12, hdufig weicht die
Vorhersage jedoch vom korrekten nachsten Wert ab.

Im multivariaten Fall wird die gegebene Zeitreihe der Vorhersageaufgabe analog zum
univariaten Fall modifiziert:

(34) p[(;i)l = {(ti/fi/}/zﬁrl) € R x ]Rd X ]R‘Vk S {0 e 1} < ti}?:()
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Abbildung 3.1.: Schema des iterierten Vorhersageproblems.

Dabei sind am Zeitpunkt ¢, 1 die weiteren Zeitreihen X gegeben und eine Vorhersage v ., ,
fiir den Wert im néchsten Zeitschritt i, wird gesucht. Gesucht ist also eine Vorhersage fiir
den Wert einer bestimmten Zeitreihe.

Fiir das in dieser Arbeit betrachtete Szenario soll nicht nur ein einzelner Zeitschritt vorherge-
sagt werden, daher wird das iterierte Vorhersageproblem untersucht. Dabei fallen zu jedem
Zeitschritt neue Werte X, {1 an und es wird eine Vorhersage vy, , fiir den Wert y,,,» gesucht.
Im nédchsten Zeitschritt wird dann der tatsachliche Wert y,,1» gemessen und zusammen mit
Xp41 als neuer Datenpunkt (f,,41, X,11, Yu42) der Trainingsdatenmenge hinzugeftiigt:

(35) pg(ij__gl) = ngj-)l U {(tn—&-lryn—i-lz yi’l+2)}

Auf Basis der neuen Trainingsdatenmenge wird nun eine Vorhersage vy, _ 5 fiir den noch
unbekannten Wert y,,43 berechnet. Dieser Prozess kann wiederholt werden, solange weitere
Beobachtungen moglich sind. Das in Abbildung 3.1 dargestellte Schema illustriert die
Vorgehensweise fiir eine univariate Zeitreihe. Diese Vorgehensweise ist insbesondere bei
Zeitreihen interessant, die kontinuierlich anfallen und in Echtzeit verarbeitet werden miissen.
Beispiele hierfiir sind medizinische Messdaten oder Borsendaten.

Gerade bei Borsendaten kann die Vorhersage zuséatzlich mit Entscheidungsprozessen ver-
kntipft sein. Ist dies der Fall, muss noch eine zweite zeitliche Komponente berticksichtigt
werden. Es ist nicht nur notwendig y,,1» mit moglichst hoher Genauigkeit vorherzusagen,
sondern der Wert fiir y,4, muss schnell genug verfligbar sein, um eine Entscheidung noch
rechtzeitig treffen zu konnen. Ein Beispiel fiir dieses Szenario ist die Vorhersage von Aktien-
kursen. Wenn ein bestimmter vorhergesagter Wert fiir eine bestimmte Aktie eine Einkaufs-
oder Verkaufsaktion auslost, dann sollte dieser Wert verfiigbar sein, bevor die Aktie tatsdch-
lich den Wert einnimmt, beispielsweise um Verluste zu vermeiden. Daher ist es sinnvoll, als
obere Grenze fiir die erlaubte Rechenzeit der Vorhersage festzulegen, dass eine Rechenzeit
von At = t,1 — t, bei dquidistanten Zeitreihen nicht tiberschritten werden darf. Bei unregel-
maéfiigen Zeitreihen sollte die Vorhersage spatestens eintreffen, bevor durchschnittlich ein
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3. Zeitreihenanalyse mit dinnen Gittern

neuer Datenpunkt vorliegt'. Werden diese Kriterien eingehalten, kann von einer Vorhersage
in Echtzeit gesprochen werden.

3.3. Zeitreihenanalyse als Data Mining Problem

Nachdem das Vorhersageproblem im letzten Abschnitt definiert wurde, kann jetzt eine

Losung des Problems vorgestellt werden. Es wurde bereits erwédhnt, dass Mengen P‘gi)l der
Vorhersageprobleme als Auswertungen einer unbekannten Vorhersagefunktion f : R — R
aufgefasst werden konnen, die einem Zeitpunkt eine Vorhersage v, , , fiir den néchsten Zeit-
schritt zuordnet. Dies kann gleichzeitig als Regressionsproblem interpretiert werden, da bei
Regressionsproblemen auf Basis einer Menge von Funktionauswertungen die zugrunde lie-
gende Funktion rekonstruiert werden soll. Falls alle y; aus einer endlichen Menge T stammen,

kann das Vorhersageproblem weiter als Klassifikationsproblem betrachtet werden.

Eine erfolgreiche Vorhersage wird durch diese Vorgehensweise noch nicht erreicht, da die
Zeitpunkte t; nur eine Ordnung der Werte der Zeitreihe sicherstellen, allerdings selbst
keine relevanten Informationen fiir den Verlauf der Zeitreihe darstellen. Damit prinzipiell
erfolgreiche Vorhersagen berechnet werden konnen, muss t; durch einen Wert oder ein
Tupel von Werten ersetzt werden, das zum Zeitpunkt f; verfiigbar ist und gleichzeitig
Werte beinhaltet, die fiir den ndchsten Wert y;,, relevant sind. Verfiigbar sind hierfiir alle
vergangenen Werte der Zeitreihe und alle weiteren Zeitreihen, falls eine multivariate Zeitreihe
betrachtet wird. Zu beachten ist, dass alte Werte der Zeitreihen nicht nur direkt verwendet
werden konnen, sondern auch abgeleitete Werte, die sich aus Werten an vergangenen
Zeitpunkten errechnen. Es bleibt zu betonen, dass die Wahl, welche Werte mit der Vorhersage
zu einem Tupel des Regressionsproblems verkniipft werden, vom Problem abhéngig ist und
damit nicht allgemein gekldrt werden kann. Es gibt jedoch einige Strategien, durch die bei
vielen Zeitreihen eine erfolgreiche Vorhersage moglich wird.

Im einfachsten Fall kann als Tupel anstatt (#;,y;11) das Tupel (y;, yit+1) verwendet werden.
Wird das resultierende Regressionsproblem gelost, ergibt sich eine Diinngitterfunktion, die
auf Basis des aktuellen Wert y, versucht, y,,1 vorherzusagen. Falls der Wert im letzten
Zeitschritt eine zentrale Information fiir den Wert im nichsten Zeitschritt liefert, kann damit
eine gute Vorhersage berechnet werden. Als Beispiel dient die folgende zyklische Zeitreihe:

(3.6) 5,3,7,4,9,5,3,7, ...

Sind alle Werte des Zyklus Teil der Trainingsmenge, dann kann leicht eine Funktion ange-
geben werden, die korrekte Vorhersagen fiir zukiinftige Zeitschritte berechnet. Allgemein
konnen auch weiter in der Vergangenheit liegende Werte mit v, verkniipft werden. Dabei
ist es im allgemeinen sinnvoll, den nidchsten Wert regelbasiert mit bestimmten, zum Beispiel
m Schritte in der Vergangenheit liegenden Werten zu verkniipfen. Diese Strategie wird
Delay-Embedding genannt [GGG10]. Einige konkrete Moglichkeiten vergangene Werte mit

'Fiir dieses Szenario sind auch strengere Kriterien denkbar.
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dem néchsten Wert zum Zweck einer erfolgreichen Vorhersage zu verkniipfen, werden im
nichsten Kapitel vorgestellt.

Durch Delay-Embedding entsteht die Trainingsmenge fiir das Regressionsproblem. Die neu
eingefiigten Komponenten der Tupel der Trainingsmenge liefern Informationen iiber den
vorherzusagenden Wert der Zeitreihe und werden als Attribute bezeichnet. Die Abbildungen,
die mit Werten aus den vergangenen Zeitschritten Attribute fiir das Regressionsproblem
erzeugen, werden als Attributkonstruktoren bezeichnet. Der Raum, der durch Konstruktion
der Attribute und der vorherzusagenden Zielgrofie aufgespannt wird, wird Attributraum
genannt.

Da die vorgestellten Verfahren fiir Regression und Klassifikation auf diinnen Gittern er-
fordern, dass die Attribute aus [0,1]¢ stammen, ist der Attributraum auf [0,1]? x R einge-
schriankt. Dies ist keine wesentliche Einschrankung, da beliebige Attribute verwendet werden
konnen, deren Werte reellen Zahlen zugeordnet werden konnen. Gegebenfalls miissen die
Daten anschliefiend noch auf den passenden Hyperwtirfel normalisiert werden.

Da in Abschnitt 2.3.3 ein Gitter ohne Rand gewéahlt wurde und generell zum Rand hin
weniger Datenpunkte vorliegen, wire eine direkte Normalisierung auf [0,1]¢ problematisch.
Die Normalisierung wiirde sicherstellen, dass in Richtung jeder Dimension mindestens
zwei Datenpunkte auf dem Rand liegen. Diese Datenpunkte konnten niemals optimal
approximiert werden, da dies ein Gitter ohne Rand nicht erlaubt. Des Weiteren nimmt die
Anzahl der Gitterpunkte zum Rand hin ab, und es wire erforderlich einen sehr hohen Level
zu wihlen, falls viele Gitterpunkte in der Nahe des Rands liegen. Eine einfache Losung fiir
dieses Problem ist eine Normalisierung auf den inneren Wiirfel [0.1,0.9]%. Diese Wahl der
Normalisierung hat sich im Rahmen dieser Arbeit bewé&hrt.

3.4. Regularisierung und Validierung

Sowohl beim Data Mining mittels der Methode der kleinsten Quadrate als auch beim Dichte-
basierten Data Mining ist es erforderlich, den der Regularisierung dienenden Parameter A
zu wahlen. Dafiir wird ein spezielles Verfahren vorgeschlagen, das es ausniitzt, dass es sich
bei der Vorhersage von Zeitreihen um ein iteriertes Problem handelt.

Jede Wahl von A kann als ein neues Model fiir die gegebenen Beobachtungen betrachtet
werden. Das heif$t, fiir jeden Wert des Parameters A muss getestet werden, ob dieser Wert
eine gute Wahl im Verhiltnis zu anderen moglichen Werten fiir A darstellt. Um zu testen, ob
ein Wert eine gute Wahl darstellt, bietet sich ein Validierungsschema an, dass als forward-
chaining oder rolling-validation bekannt ist>.

Dazu wird die Zeitreihe durchlaufen, wobei immer nur die vergangenen Beobachtungen
bekannt sind und der nichste Wert vorhergesagt werden soll. Es werden also die vergangenen

?Der Ursprung des Verfahrens ist nicht vollstindig klar, es wird unter anderem von Hu et al. [HZJPg9]
verwendet und ist im Data-Mining-Bereich héufig zu finden.
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3. Zeitreihenanalyse mit dinnen Gittern

Vorhersagen aus obigem Algorithmus mit einem neuen A nochmals nachvollzogen. Letztlich
wird die Funktion fiir die Vorhersage ausgewdhlt, die im Fall der Klassifikation die hochste
Trefferrate besitzt oder im Fall eines Regressionsproblems den niedrigsten durchschnittlichen
quadratischen Fehler besitzt.

Dieses Verfahren hat das zentrale Problem, dass das Testen von neuen A-Werten mit dieser
Methode ausgesprochen teuer ist, da ein Testen mit allen Daten aus der Vergangenheit einen
grofieren Aufwand an Rechenzeit erfordert. Wird jedoch auf eine feste Menge von Lamb-
das zuriickgegriffen, kann der bendtigte Validierungsaufwand fiir jedes A stark reduziert
werden.

Es wird in jedem Zeitschritt fiir alle n Werte von A eine Vorhersage fiir den nédchsten
Zeitschritt berechnet. Uber alle Zeitschritte hinweg wird fiir jedes A ein Zahler mitgefiihrt,
der die Menge der erfolgreichen Vorhersagen im Klassifikationsfall zdhlt. Im Fall eines
Regressionsproblems summiert der Zahler den Fehler an den einzelnen Zeitschritten auf.
Auf Basis dieser Zihler kann fiir die Vorhersage im aktuellen Zeitschritt die Funktion
ausgewdahlt werden, die in der Vergangenheit am meisten korrekte Vorhersagen ermoglichte,
beziehungsweise die niedrigste Summe an Fehlertermen besitzt. In dieser Arbeit wurden
folgenden Werte als Kandidaten fiir A verwendet:

(37) L ={0,0.1,0.01,0.001,0.0001}

Als zusatzliche Komplikation ergibt es sich, dass dieses Verfahren nur dann verwendet
werden kann, wenn gentigend Zeitschritte durchlaufen wurden, da die Zahler der einzelnen
A-Werte ansonsten nicht aussagekréaftig sind. Diese Schwierigkeit kann mit einer Aufwarm-
phase gelost werden. Hier ist zu bemerken, dass dieses Problem auch bei anderen Verfahren
zur Wahl eines geeigneten Regularisierungsparameters existiert: Es spiegelt lediglich wieder,
dass am Anfang des Durchlaufens einer Zeitreihe zu wenig Information zur Verfiigung steht,
um A sinnvoll zu wihlen. Fiir jede Art von aussagekréftiger Vorhersage am ersten Zeitschritt,
miissen auch im ersten Zeitschritt bereits vergangene Beobachtungen vorliegen.

Durch dieses Verfahren ist es moglich, die Kosten fiir die Wahl des Regularisierungsparame-
ters auf die einzelnen Zeitschritte zu verteilen. Die Menge der Testdaten fiir dieses Verfahren
in jedem Zeitschritt ist jeweils nur ein Element, dhnlich wie bei einer Leave-One-Out Validie-
rung [Biso6]. Allerdings bleibt die Regularisierung insgesamt relativ teuer, da immer nur
tir alle n Regularisierungsparameter in jedem Zeitschritt ein Data Mining Problem gelost
werden muss. Techniken zur weiteren Beschleunigung des Prozesses werden in Kapitel 6
besprochen. Durch die feste Wahl der Kandidaten fiir A kann der Regularisierungsparameter
nur dann optimal gewéhlt werden, wenn das optimale A bereits in der Menge der Kandida-
ten enthalten ist. Da der optimale Wert schwierig im voraus zu bestimmen ist, bringt dies
gewisse Nachteile in der Vorhersagequalitdt mit sich. In Kapitel 5 ist jedoch zu sehen, dass
mit der gewihlten Kandidatenmenge gute Vorhersagen moglich sind.

Ein weiteres Problem entsteht, wenn durch eine strukturelle Anderung des Attributraums
fiir weitere erfolgreiche Vorhersagen ein anderer Wert fiir A benétigt wird. Mit einer be-
stimmten Wahl des Regularisierungsparameters konnten bis zum aktuellen Zeitpunkt gute
Vorhersagen getroffen werden, ab dem aktuellen Zeitschritt ist ein anderer Wert erforderlich.
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Grundsatzlich werden die verwendeten Zihler fiir die Werte des Regularisierungsparame-
ters nach einer gewissen Zeit die Anderungen im Attributraum widerspiegeln. Falls der
Vorhersageprozess allerdings schon sehr lange lduft, kann es lange dauern, bis wieder gute
Vorhersagen berechnet werden. Falls sich der Attributraum héufig strukturell andert, kénnen
grundsitzlich keine guten Vorhersagen getroffen werden. Um dieses Problem abzumildern
ist es notwendig eine feste Anzahl vergangener Vorhersagen fiir die Zadhler zu berticksichti-
gen. Fiir Vorhersagen, die zu weit zuriickliegen, kann dazu der auf den Zahler addierte Wert
wieder abgezogen werden. Da bei den Experimenten in dieser Arbeit keine Vorhersagen
iiber besonders grofde Zeitraume stattfanden, trat dieses Problem bei den durchgefiihrten
Experimenten nicht auf.

3.5. Der gesamte Algorithmus

Mithilfe der Uberlegungen auf diesem Kapitel kann der vollstindige Algorithmus zur
Vorhersage von Zeitreihen angegeben werden. In Algorithmus 3.1 ist dies fiir die Methode
der kleinsten Quadrate dargestellt. Der Ablauf fiir den ersten Zeitschritt wird im Folgenden
beschrieben.

Vor Beginn des eigentlichen Vorhersageprozesses muss die Trainingsdatenmenge aus den
gegebenen Zeitreihen erzeugt werden. Dann beginnt der eigentliche Vorhersageprozess fiir
die einzelnen Zeitschritte.

Dafiir wird als Erstes der aktuelle Wert der Zeitreihen gemessen und in den Attributraum
tibersetzt. Anschlieffend wird mit der Methode der kleinsten Quadrate eine Diinngitterfunk-
tion fiir jeden der gewdhlten Werte von A berechnet. Mit jeder der berechneten Funktionen
wird eine Vorhersage fiir den ndchsten Zeitschritt berechnet und gespeichert. Als Vorhersage
fiir den aktuellen Zeitschritt wird dabei die Vorhersage gewéhlt, deren Zahler den grofiten
Wert einnimmt. An dieser Stelle kann die Vorhersage fiir beliebige Aufgaben verwendet
werden.

Dann wird auf den nédchsten Zeitschritt gewartet. Sobald eine neue Beobachtung gemacht
werden kann, werden die Vorhersagen ausgewertet. Dafiir wird der tatsdchliche ndchste Wert
der Zielgrofie gemessen und die Zahler fiir die Regularisierungsparameter erhoht, die eine
korrekte Vorhersage berechnet haben. Zuletzt wird mit der gemessenen Klasse ein neues
Trainingstupel erzeugt und der Trainingsmenge hinzugefiigt. Dies wird fiir die gewiinschte
Anzahl von Zeitschritten wiederholt.

Der Algorithmus fiir das Dichte-basierte Verfahren ist dem Algorithmus 3.1 sehr dhnlich.
Hier muss lediglich etwas zusatzlicher Verwaltungsaufwand betrieben werden, da nicht
nur eine Diinngitterfunktion fiir jeden Wert von A erzeugt wird, sondern so viele, wie Klas-
sen vorliegen. Das heifst, die Funktion CreateSparseGridFunction wird mehrere Funktionen
zuriickgeben und die Funktion EvaluateFunction verwendet alle Diinngitterfunktionen als
Eingabe und klassifiziert das Attributtupel wie in Abschnitt 2.5 beschrieben.
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Algorithmus 3.1 Der gesamte Algorithmus

timeseries <— , Initiale Messungen”
procedure MAKEPREDICTIONS(timeseries, testSteps, lambdaSet)
trainingSet <— CREATEINITIALTRAININGSET(timeseries)
> Vorhersagen der nichsten testSteps Zeitschritte
for t =1 — testSteps do
observation - GETNEXTOBSERVATION()
> Beobachtung in Attributraum tiibersetzen
attributeTuple <— MAPTOATTRIBUTESPACE(timeseries, observation)
predictions <— MAKEHASHMAP()
> Eine Vorhersage fiir jedes A berechnen
for A € lambdaSet do
f < CREATESPARSEGRIDFUNCTION(frainingSet, A)
value <— EvALUATEFUNCTION(f, attributeTuple)
class «+ MarToCrass(value)
predictions[A] < class
end for
> Das A mit dem hochsten Zihler wéhlen
bestLambda < GeTBEsTLAMBDA(counters, lambdaSet)
bestPrediction <— predictions[bestLambdal
> Verwenden der besten Vorhersage ...
WAITUNTILNEXTOBSERVATION()
actualClass < MEASUREACTUALCLASS()
> Vorhersagen auswerten und Zahler anpassen
for A € lambdaSet do
if predictions|A] = actualClass then
counters[A] <— counters[A] + 1
end if
end for
trainingSetTuple <— AppToTupLE(attributeTuple, actualClass)
trainingSet <— trainingSet U {trainingSetTuple}
end for
end procedure
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Im letzten Kapitel wurde beschrieben, wie das Vorhersageproblem fiir Zeitreihen mit Data
Mining Methoden gelost werden kann. Dabei wurde als zentrale Strategie die Technik des
Delay-Embeddings beschrieben. Die in dieser Arbeit verwendeten Attributkonstruktoren
wurde jedoch offen gelassen. Dies wird in diesem Kapitel nachgeholt. Die Konstruktion
von Attributrdumen ist Teil der Vorverarbeitung des in Abschnitt 2.2 beschriebenen Know-
ledge Discovery Prozesses. Damit die Regressions- oder Klassifikationslosung erfolgreiche
Vorhersagen erlaubt, sind neben der Wahl der Attributkonstruktoren noch weitere Aspekte

der Datenvorverarbeitung zu berticksichtigen. Diese werden ebenfalls in diesem Kapitel
behandelt.

4.1. Das allgemeine Verfahren

Alle in dieser Arbeit verwendeten Attributkonstruktoren sind Abbildungen, die an jedem
Zeitschritt, an dem die Zielgrofie existiert, den aktuellen Zeitschritt regelbasiert mit Werten
aus der Vergangenheit verkniipfen. Dieses Vorgehen wird in diesem Abschnitt formalisiert.

Um einen Attributkonstruktor anwenden zu konnen, muss zunédchst die Zielgrofie an jedem
Zeitschritt bestimmt werden. Es kann vorkommen, dass dies nicht an jedem Zeitschritt
moglich ist. Wird als Zielgrofse beispielsweise der Durchschnitt aus den letzten vier Werten
und dem néchsten Wert gewidhlt, dann kann an den drei ersten Zeitschritten der Durchschnitt
nicht berechnet werden. In dieser Arbeit wurde als Zielgréfie nur der Trend im n&chsten
Zeitschritt verwendet, also die Information, ob der Wert der Zeitreihe steigt oder fillt. Da
der Trend mit einem Riickgriff auf den letzten Zeitschritt berechnet wird, kann es auch hier
vorkommen, dass in der Zeitreihe existierende Zeitschritte nicht als Teil des Data Mining
Problems verwendet werden konnen.

Nachdem die Zeitreihe der Zielgrofien aus dem urspriinglichen Datensatz berechnet wurde,
konnen die Attributkonstruktoren fiir jeden Zeitschritt angewendet werden. Alle Attribut-
konstruktoren, die in dieser Arbeit verwendet wurden, greifen auf eine festgelegte Anzahl
von Schritten in die Vergangenheit zuriick. Dabei miissen nicht alle vergangenen Zeitschritte
in diesem Intervall fiir die Attributkonstruktion berticksichtigt werden. Im Rahmen dieser
Arbeit wird die zusétzliche Anforderung gestellt, dass Attribute jeweils nur aus einer der
Zeitreihen des Datensatzes erstellt werden koénnen. Fiir Werte zU/) am Zeitschritt j aus einer
Zeitreihe Z des Datensatzes, stellt beispielsweise die folgende Menge ein mogliches Attribut
dar:

(4.1 {(t;, (z,2079,2079 20-0))vj € {7...n}}
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4. Die Konstruktion von Attributrdumen

Um die Schemata geschickt angeben zu konnen, werden alle Zeitschritte, auf die Bezug
genommen wird, relativ zum aktuell betrachteten Zeitschritt spezifiziert.

Um diese Uberlegung zu formalisieren wird ein Indextupel

(42) Ixe{(iVIeN:Vke{1,...,1} :ix€{0,...,n}}

benoétigt, das die Differenzen zum aktuell betrachteten Zeitschritt beschreibt. Im obigen
Beispiel wire dies das Tupel (0,3,5,6). Um die Attribute zu erzeugen, kénnen als Zwischen-
schritt die Wertetupel an den einzelnen Zeitschritten aufgeschrieben werden als

(43) A= {(tj, ((zV=),..., 20 m)))) vk € {1.. m};ikelAAzU*fk)ez};;O

Mit den Wertetupeln an den Zeitschritten kann aus A’ das eigentliche Attribut berechnet
werden. Dafiir muss noch eine Abbildung C mit |I4| als Dimension der Urbildmenge
ausgewdhlt werden. Ist eine gewiinschte Abbildung C gewdhlt, ergibt sich daraus das
Attribut

4-4) A={(t;,CE))I(t,z) € A}y

Die Dimension des Attributs |A| wird definiert durch die Dimension der Bildmenge der
Abbildung C.

Die Zielgrofie kann als ein weiteres Attribut betrachtet werden, wobei zur Berechnung der
Zielgrofie auch Werte am Zeitschritt j + 1 benutzt werden, das zugehorige Indextupel ist
also

45 Iy e {(iVke {1,...,1} g€ {0,...,n+1}}

Auflerdem ist der Bildraum des Attributs auf R eingeschrankt. Nach Auswahl der Zeitschritte
folgt daraus

(46) Y= {(t, 2V, 2 € I},
Woraus durch eine weitere Abbildung Cy die Zeitreihe der Zielgrofse entsteht:
@7) Y =A{(ts Cx(2)I(t;, 7)) € Y'}

Mit dem Konkatenationsoperator fiir Tupel o, den Attributen A; ... A, und der Zeitreihe der
Zielgrofie Y kann schliefslich die Trainingsmenge fiir das Data Mining Problems angegeben
werden:

(4-8) Péi)l = {agl) an onWk e{1...m}:a® e A, /\ag ) = tiA
YEY Ay =t}

Uber a( /) und a( /) werden auf den Zeitschritt t und das Wertetupel z der Tupel eines Attributs
j zugegnffen D1e Gesamtdimension des Attributraums ergibt sich aus der Summe der
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Dimensionen der Attribute, zuziiglich einer Dimension fiir die Zielgrofle. Die Dimension der
Attribute wird berechnet mit

(4.9) d=[A1|+ Az + -+ |Anl

Um also die Trainingsmenge aufzustellen, miissen die einzelnen Attribute festgelegt werden.
Zusatzlich wird die Zielgrofie aufgestellt, die, wie oben beschrieben, als spezielles Attri-
but behandelt werden kann. Jedes Attribut ist durch eine Indexmenge I und zugehorige
Abbildung C gegeben. Mit der Indexmenge werden die Zeitschritte relativ zum aktuellen
Zeitschritt aus einer Zeitreihe ausgewihlt, aus denen ein Attribut errechnet wird. Die Ab-
bildung berechnet aus den einzelnen Werten das resultierende Attribut. Zuletzt kann aus

den Attributen und der Zeitreihe der Zielgrofse wie oben beschrieben der Attributraum Péi)l
berechnet werden.

4.2. Attributkonstruktoren

Um ein Attribut zu erzeugen, muss, wie im letzten Abschnitt beschrieben wurde, zundchst
eine Zeitreihe ausgewihlt werden. Dann kann ein Attribut durch Vorgabe eines Indextupels
und einer Abbildung angegeben werden. In diesem Abschnitt werden die im Rahmen der Ex-
perimente dieser Arbeit verwendeten Strategien zum erzeugen von Attributen ausgefiihrt.

4.2.1. Der Linear-Konstruktor und dessen quadratische Variante

Der einfachste Attributkonstruktor ist der Linear-Konstruktor. Dieser verwendet als Abbil-
dung die Identitdt. Das heifst, er berechnet die tiber ein Indextupel vorgegebenen Werte an
den vergangenen Zeitschritten und gibt diese als Tupel direkt zuriick. Dieser Konstruktor
kann verwendet werden, um zum Beispiel den Wert am aktuellen Zeitpunkt mit dem Wert
am letzten Zeitpunkt zu verkniipfen. Chancen auf erfolgreiche Vorhersagen bestehen, wenn
bekannte Kombinationen an Werten eine Aussage fiir den ndchsten Wert erlauben. Zum
Beispiel bei Zeitreihen mit unbekanntem, aber periodischem Verlauf kann dieser Ansatz
erfolgsversprechend sein.

Fiir die Wahl der Indextupel wird eine weitere Restriktion eingefiihrt. Um Experimente zu
vereinfachen konnen nicht beliebige Tupel ausgewdhlt werden, sondern es kann lediglich
eine Zahl m gewdhlt werden, die bestimmt, wie viele vergangene Zeitschritte beriicksichtigt
werden. Ein Indextupel hat also die Form (1,2,3,...,m). Der Parameter m wird Schrittanzahl
genannt.

Als Variante dieses Konstruktors kann dieselbe Abbildung mit einer quadratisch wachsenden
Schrittweite verwendet werden. Das heif3t, es werden Tupel (¢, t;_1, ti_4, ti_9) hinzugefiigt.
Wird die quadratische Variante verwendet, dann wird der Attributkonstruktor als Quad-
Attributkonstruktor bezeichnet. Dieser Konstruktor ist niitzlich, wenn sowohl kurz- als auch
langfristige Strukturen in den Daten eine Rolle fiir die Vorhersage spielen.

41



4. Die Konstruktion von Attributrdumen

Dieser Attributkonstrukor hat einen starken Nachteil, der ihn fiir viele Datensitze unbrauch-
bar macht. Wenn sich Werte der Datenpunkte nicht wiederholen, dann wird die Trefferquote
mit diesem Konstruktor duflerst niedrig ausfallen. Zum Beispiel weil die unbekannte Funkti-
on, die mit der Zeitreihe angendhert werden soll, einer Geraden mit Steigung ungleich null
entspricht. Neue Werte in der Zeitreihe bedeuten dann, dass mit diesem Konstruktor eine
Auswertung am aktuellen Zeitschritt an einem Datenpunkt x,, stattfindet, in dessen Néhe es
keine oder nur wenige Datenpunkte geben kann, da dhnliche Werte bei einer monoton stei-
gender oder fallenden Funktion nicht vorliegen konnen. Eine Abhilfe fiir diese Problematik
stellt der ndchste Konstruktor dar.

4.2.2. Der Differenz-Konstruktor und dessen quadratische Variante

Der Differenz-Konstruktor verwendet Differenzen zwischen dem aktuellen Werten einer
Zeitreihe z,, und Werten aus der Vergangenheit. Damit konnen Tupel der Form

(4'10) (Zi’l —Zn—1sZn — Zn-2,--- )

fiir dquidistante Zeitreihen erzeugt werden. Fiir unregelméfiige Zeitreihen muss der jeweilige
Abstand der Zeitreihen berticksichtigt werden, was zu Tupeln der Form

(4.11) <Zn_zn—1 Zn — Zn-2 )

th — th—1 ’ th —th—2 ’

tithrt. Durch diese Wahl der Konstruktion der Datenpunkte des Attributraums ist es moglich
relativ betrachtet dhnliche Kombination von Werten zu berticksichtigen. Dies 16st insbe-
sondere das im letzten Abschnitt beschriebene Problem, dass vollstindig neue Werte in
der Zeitreihe auftreten, wodurch neue Bereiche im Attributraum erschlossen wurden. Mit
diesem Konstruktor ist es nur noch erforderlich, dass dhnliche gendherte Ableitungswerte
vorliegen.

Analog zum Linear-Konstruktor existiert auch bei diesem Konstruktor eine quadratische
Variante, die Differenz-Quad-Konstruktor genannt wird. Auch hier wird wieder modelliert,
dass Anderungen sowohl iiber kleine, als auch iiber grofiere zeitliche Abschnitte relevant sein
konnen. Dieser Konstruktor erlaubt beides zu betrachten, ohne dass die Gesamtdimension
zu grofd wird. Tupel haben dann die folgende Form:

Zn — Zn—1 Zn — Zn—4 Zn — Zn—9 >
7 v J
tn - tn—l tn - tn—4 tn - tn79

(4.12) <

4.3. Uber die Wahl der Datenpunkte

Durch die Attributkonstrukoren werden Informationen, die in der Zeitreihe versteckt sind,
so dargestellt, dass sie fiir die Formulierung als Regressions- oder Klassifikationsproblem
niitzlich sind. Bestimmte Wertekombinationen der erzeugten Attribute signalisieren dann
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tiber das Data Mining Problem, welcher Wert am néchsten Zeitpunkt zu vermuten ist. Dabei
gibt es jedoch zwei Schwierigkeiten bei der Wahl der Datenpunkte.

Zum einen konnen leicht mehr Datenpunkte als eigentlich notwendig gewdhlt werden. Wenn
bereits alle relevanten Bereiche des Diinngitterraums iiber die Wahl der aktuellen Daten-
punkte der Zeitreihe fiir das gestellte Problem hinreichend genau modelliert wurden, dann
sind zusitzliche Datenpunkte unnétig. Zudem fiihrt die Verwendung von nicht benétigten
Datepunkten dazu, dass sich der Bedarf an Rechenzeit erhoht. Bei Data Mining nach der
Methode der kleinsten Quadrate benotigt das Aufstellen der Matrix O(mn) Operationen,
wobei m fiir die Anzahl der Datenpunkte und # fiir die Anzahl der Gitterpunkte steht.
Beim Dichte-basierten Ansatz findet sich ebenfalls eine Komplexitiat von O(mn) bei der
Auswertung der rechten Seite des zugehorigen Gleichungssystems. Es muss allerdings
betont werden, dass das Losen des linearen Gleichungssystems den grofiten Teil der Zeit
beansprucht.

Deutlich problematischer ist ein zweites Phanomen. Angenommen die aktuelle Wahl der
Attributkonstrukoren erlaubt eine gute Vorhersage der Zeitreihe. Das heifst, die wichtigsten
Aspekte der Zeitreihe werden durch die Datenpunkte korrekt wiedergegeben. Sollten jetzt
neue Prozesse in der Zeitreihe auftreten, wird die Vorhersage stark an Genauigkeit verlieren.
Durch das weitere kontinuierliche Hinzufiigen neuer Datenpunkte in jedem Zeitschritt wird
die Genauigkeit mit der Zeit wieder zunehmen. Allerdings kann es, dhnlich wie im Kontext
der Regularisierung ausgefiihrt, lange dauern, bis die Datenpunkte mit jetzt veralteten
Werten keine Rolle mehr fiir die Vorhersage spielen.

Um die beiden obigen Probleme zu minimieren, ist es notwendig die Anzahl der Datenpunk-
te in der Vergangenheit zu limitieren. Hierfiir wird ein einfaches Verfahren gewéhlt, das
als Sliding-Window bezeichnet wird. Dabei werden fiir die Vorhersage des nédchstens Zeit-
schritts immer die letzten m Datenpunkte verwendet. Die Anzahl der zu berticksichtigenden
Datenpunkte wird als Fenstergrofie bezeichnet. Es muss an dieser Stelle angemerkt werden,
dass nicht nur ein zu grofies Fenster zu Problemen bei der Vorhersage fiihrt. Werden zu
wenig Datenpunkte verwendet, dann werden selbst bei der Wahl korrekter Attributkonstruk-
toren, die alle relevanten Informationen verfiigbar machen, nicht alle benttigten Muster im
Attributraum des Data Mining Problems reprasentiert. In diesem Fall sinkt die Qualitét der
Vorhersage ebenfalls stark.

4.4. Moglichkeiten der Datenvorverarbeitung

Durch die Darstellung der Zeitreihenanalyse als Data Mining Problem unterliegt diese Form
der Zeitreihenanalyse dem tiiblichen Data-Mining-Prozess, wie er in Abschnitt 2.2 vorgestellt
wurde. Das bedeutet, zur Anwendung des vorgestellten Verfahrens miissen die folgenden
Schritte durchgefiihrt werden:

e Vorverarbeitung der Daten: Dieser Schritt ist Weiter unterteilt in Auswahl der Daten,
Vorverarbeitung und Transformation der Daten. Nach Abschluss der Vorverarbeitung
steht ein Attributraum fiir die Data-Mining-Algorithmen bereit.
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4. Die Konstruktion von Attributrdumen

e Dem eigentlichen algorithmischen Data Mining mit den vorgestellten Verfahren.
e Zuletzt werden die Ergebnisse interpretiert.

Dabei sind die drei Vorverarbeitungsschritte tendenziell manuelle Prozesse. Ebenso die
Interpretation der Ergebnisse. Wie bei anderen Data Mining Ansitzen auch, ist die richtige
Vorverarbeitung essenziell fiir die erreichbare Qualitiat der Ergebnisse. AufSerdem erlaubt eine
umsichtige Vorverarbeitung eine einfachere Interpretation der Ergebnisse. Auf der anderen
Seite fiihrt eine ungtinstige Vorverarbeitung dazu, dass die Ergebnisse keine Aussagekraft
besitzen. Falls schlechte Resulate gemessen werden, ist es zudem schwer zu sagen, ob die
Vorverarbeitung der Daten zu schlecht gewédhlt war oder ob die Qualitdt der Daten ein
Grund fiir eine unerwartet schlechte Qualitdt der Ergebnisse ist. Aus diesen Griinden ist es
duflerst niitzlich, wenn im Zuge der Vorverarbeitungsschritte bereits moglich viel Wissen
iiber die Daten vorliegt, um moglichst gute Ergebnisse zu erreichen.

Im Rahmen des vorgestellten Ansatzes bestehen die folgenden Optionen fiir die Vorverarbei-
tung der Daten:

1. Wahl einer geeigneten Zielgrofse

2. Entscheidung aus einem d-dimensionalen Datensatz fiir die Datenreihen, die relevant
fiir die gewéhlte Zielgrofie sind

3. Wahl eines oder mehrerer geeigneter Konstruktoren fiir jede gewédhlte Zeitreihe, um
die Daten in fiir die Zielgrofle relevante Informationen zu iibersetzen

4. Konfiguration der ausgewdhlten Konstruktoren, zum Beispiel durch Vorgabe der
Schrittanzahl

Normalisieren der finalen Datenpunkte des Attributraums
Wahl der Fenstergrofe

Wahl geeigneter Kandidaten fiir den Regularisierungsparameter A

© N o ¢

Wahl der Anzahl der Iterationen (alternativ des Werts der Fehlernorm) des verwendeten
iterativen Losers

9. Wahl des Levels fiir das diinne Gitter, auf dem das Data Mining stattfindet

10. Optional: Auswihlen, wie viele Verfeinerungsvorgange und Vergroberungsvorgédnge in
jedem Zeitschritt durchgefiihrt werden sollen.

Die Wahl dieser Optionen beeinflusst die Qualitédt der Zeitreihenanalyse entscheidend, wie in
Kapitel 5 an vielen Beispielen gezeigt wird. Auf zwei spezielle Schwierigkeiten, die speziell
im Kontext einer Zeitreihenanalyse mit Gitter-basierten Ansitzen auftreten, muss noch
separat eingegangen werden.
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4.5. Dimension des Dlunngitterraums und Anzahl der Datenpunkte

Die Gesamtdimension des Diinngitterraums entspricht der Summe der Dimensionen der
einzelnen Attributkonstruktoren, zuztiglich einer weiteren Dimension fiir die vorherzusa-
gende Zielgrofie. Steigt die Dimension, dann steigt auch das Volumen des Diinngitterraums
exponentiell. Wenn mit steigender Dimension nicht gleichzeitig die Anzahl der Datenpunkte
erhoht wird, dann liegen die Datenpunkte immer diinner im Diinngitterraum. Im Allge-
meinen werden die Punkte auch nicht gleichmifiig im Raum verteilt liegen, da die Werte
der einzelnen Attribute nicht gleichméfig verteilt auftreten. Dieses Phanomen hat mehrere
Konsequenzen.

Zum einen motiviert dies die Verwendung eines diinnen Gitters anstatt eines voll besetz-
ten Gitters, da bei voll besetzten Gittern die Anzahl der Gitterpunkte mit zunehmender
Dimension deutlich schneller wichst (siehe 2.3.3). Das heifdt, die maximal wéhlbare Anzahl
an Attributen wird durch die Verwendung von diinnen Gittern deutlich verbessert. Zum an-
deren wird gerade bei hoherer Dimension die Verwendung von adaptiver Verfeinerung und
adaptiver Vergroberung wichtiger, da der Raum, bezogen auf das Volumen, durch weniger
Datenpunkte tiberdeckt ist. Mittels adaptiver Verfeinerung kann sichergestellt werden, dass
lokal eine geniigend hohe Auflosung an Gitterpunkten vorliegt. Ohne die Verwendung von
adaptiver Verfeinerung kann die Vorhersagegenauigkeit sonst selbst dann fallen, wenn die
zusétzlich eingefiihrten Attribute tatsdchlich relevant fiir die vorherzusagende GrofSe sind.

Eine weitere Schwierigkeit bei der Datenvorverarbeitung besteht darin, dass durch die
Wahl unpassender Konstruktoren die Vorhersagegenauigkeit stark fallen kann. Naiv konnte
vermutet werden, dass zusitzlich Attribute lediglich zusétzliche Informationen liefern
wiirden und im schlechtesten Fall keine zusétzlichen Informationen liefern. Dann wiirde
zwar das Problem in einer hoheren Dimension als eigentlich notwendig gelost und die
Berechnung der Losung wiirde mehr Rechenzeit in Anspruch nehmen, aber in Bezug auf die
Vorhersagequalitidt wiirde sich jedoch kein Unterschied ergeben.

Diese Vermutung ist leider falsch, falls die Anzahl der Datenpunkte gleich bleibt. Man
stelle sich ein zur Zielgrofle unkorreliertes Attribut vor. Ein solches Attribut kann zum
Beispiel durch eine Zufallsvariable modelliert werden. In Bezug auf die Datenpunkte des
Diinngitterraums bedeutet dies, dass eine Koordinate in jedem Datenpunkt zuféllig variiert
ist. Wird nun eine konkrete Vorhersage berechnet und existiert ein dhnlicher Datenpunkt,
dann sind alle Koordinaten des Datenpunktes dhnlich zu den aktuell gemessenen Daten.
Die eine unkorrelierte Koordinate wird jedoch beliebig weit abweichen. Dadurch steigt die
Distanz zwischen den aktuellen Daten und dem Datenpunkt beliebig weit an, wodurch die
Qualitdt der Vorhersage grundsitzlich beliebig schlecht werden kann.

Damit trotz eines unkorrelierten Attributs noch sinnvolle Voraussagen errechnet werden
konnen, miissen fiir alle Werte des unkorrelierten Attributs geniigend Datenpunkte vorliegen,
damit passende Datenpunkte, also Datenpunkte die in den anderen Attributen dhnlich sind,
tiir beliebige Werte des unkorrelierten Attributs vorliegen. Falls die Anzahl der Datenpunkte
also deutlich vergrofiert werden kann oder falls das unkorrelierte Attribut nur eine kleine
Wertemenge besitzt, wird die Vorhersagequalitidt nicht allzu stark negativ betroffen sein.
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Falls allerdings die Anzahl der Datenpunkte gleich bleibt und die Wertemenge des Attributs
grofd ist, dann ist mit einer deutlichen Verschlechterung der Vorhersagen zu rechnen. Dieses
Problem kann durch die Auswahl geeigneter Attributkonstrukoren umgangen werden.
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In den letzten Kapiteln wurde ein Ansatz zur Zeitreihenanalyse auf diinnen Gittern vor-
gestellt. Um zu zeigen, dass diese Algorithmen auch tatsdchlich fiir Vorhersagen genutzt
werden konnen, wurde eine Untersuchung der Qualitdt der Vorhersagen mit mehreren Expe-
rimenten durchgefiihrt. In diesem Kapitel werden die einzelnen Datensitze der Experimente
vorgestellt und die durchgefiihrten Experimente ausgewertet.

Insgesamt wurden fiinf Datensétze betrachtet, von denen zwei synthetisch generiert wurden.
Mit den synthetischen Datensdtzen soll gezeigt werden, dass der vorgestellte Ansatz bei
einer geeigneten Vorverarbeitung der Daten und der Verfiigbarkeit von Daten mit hoher
Qualitédt eine hohe Trefferrate korrekter Vorhersagen ermoglicht. Des Weiteren wurde der
vorgestellte Ansatz mit drei nichtsynthetischen, auf Finanzdaten basierten Datensétzen
untersucht. Durch die Experimente mit nichtsynthetischen Datensétzen soll gezeigt werden,
dass auch bei realen Daten korrekte Vorhersagen moglich sind. Dabei erschweren die Wahl
einer geeigneten Vorverarbeitung und eine geringere Qualitdt der Datensdtze dhnlich gute
Ergebnisse, wie sie bei den synthetischen Daten vorliegen.

Die vorherzusagende Zielgrofie ist bei allen Experimenten dieselbe. Es wird vorhergesagt,
ob die Zeitreihe im nédchsten Schritt steigen wird oder ob sie fillt. Diese Art der Vorhersage
wird Trendvorhersage genannt. Das Zuordnen des korrekten Trends zu den Werten an den
Zeitpunkten ist dabei Teil der Vorverarbeitung. Zeitschritte, bei denen der Wert der Zeitreihe
gleich bleibt, werden nicht als Teil des Vorhersageproblems betrachtet. Das heifst, wenn die
Steigung der Zeitreihe positiv ist, dann wird versucht dies vorherzusagen. Wenn die Steigung
der Zeitreihe negativ ist, dann wird ebenfalls versucht dies vorherzusagen. Wenn die Zeitrei-
he weder steigt noch fillt, ist die Vorhersage irrelevant. Dabei wird berticksichtigt, dass sich
die Trefferrate aus dem Quotienten der korrekten Vorhersagen und den fiir die Vorhersage
glltigen Zeitschritten zusammensetzt. Als weiterer Vorverarbeitungsschritt wurden alle
Datenpunkte der Attributraume auf [0.1,0.9]% x R normiert'. Diese Vorverarbeitungsschritte
finden bei jedem Datensatz statt.

In Abschnitt 4.4 wurden die moglichen Optionen zur Datenvorverarbeitung beschrieben.
Um die Anzahl der Experimente auf einen auswertbaren Rahmen zu reduzieren, wurden
einige Parameter fest gewahlt:

o Als Zielgrofse dient immer der Trend.

e Experimente, bei denen kein Level angegeben wurde, wurden auf einem Gitter mit
Level 6 berechnet.

'Die Zielgrofse muss nach wie vor nicht normiert werden.
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e Die Anzahl der Iterationen des Losers wurde auf 15 Iterationen beschriankt. Falls
die Fehlerschranke, hier festgelegt mit 107>, schneller erreicht wird, werden weniger
Iterationen verwendet.

e Die Fenstergrofie, das heifdt die Anzahl der relevanten Daten aus der Vergangenheit,
wurde mit 3000 Zeitschritten gewdhlt. Daraus folgt, dass fiir die Erstellung einer
Diinngitterfunktion immer die letzten 3000 Datenpunkte bertiicksichtigt werden, jeweils
vom aktuellen Zeitschritt aus betrachtet.

e Da die Ergebnisse des Dichte-basierten Ansatzes und die Ergebnisse des Ansatzes mit
der Methode der kleinsten Quadrate sehr dhnlich sind, wird hier nur auf die Methode
der kleinsten Quadrate eingegangen. Ergebnisse fiir den Dichte-basierten Ansatz sind
jedoch in Anhang A.1 zu finden.

5.1. Der synthetische Datensatz ,,Kurve*

Die Durchfiihrung synthetischer Experimente dient der experimentellen Uberpriifung des in
den letzten Kapiteln prasentierten Ansatzes. In Féllen, in denen alle relevanten Informationen
tiber die Daten vorliegen und die Daten zudem so beschaffen sind, dass auffindbare Muster
auch tatsdchlich existieren und mit den vorgestellten Attributkonstruktoren extrahierbar
sind, muss eine hohe Vorhersagequalitét erreichbar sein. Dies wird mit diesem Datensatz
und dem im nédchsten Abschnitt folgenden Datensatz experimentell tiberpriift.

In diesem ersten synthetischen Datensatz wird eine bekannte Funktion an diskreten Zeit-
punkten ausgewertet. Als einfaches Untersuchungsobjekt wurde eine Summe von mehreren
Sinusfunktionen gewdhlt, wobei die einzelnen Funktionen kurz- und langfristige Zyklen in
den Daten darstellen sollen:

27t +ct
b;

Durch die Multiplikation von t mit 27t werden die Sinusfunktionen auf eine Periode von 1
normiert. Durch den Parameter b; werden beliebige Perioden erzeugt, mit den Parametern
a; werden die Amplituden gesteuert. Der Parameter c fligt eine zusatzliche Gerade hinzu,
durch die eine vollstindige Periodizitidt der Werte der Funktion verhindern soll, wenn c
ungleich Null ist. Erhalten bleibt allerdings auch bei einer Wahl von ¢ ungleich Null eine
Periodizitdt in den Ableitungen, die interessant fiir die Vorhersage der Funktion ist.

(5-1) fsin(t) = Zaisin (
i=0

Fiir die Untersuchung in diesem Abschnitt wird die Funktion f,;, mit den folgenden Para-
metern gewdahlt:

(5.2) a=(17,11)
(5.3) b=(97,29)
(5-4) ¢ =0.05
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Abbildung 5.1.: Verlauf der Zeitreihe des , Kurve”-Datensatzes vor den Vorverarbeitungs-
schritten.

Mit diesen Parametern ergibt sich die in Abbildung 5.1 abgebildete Funktion. Die Gesamtpe-
riode der Sinusfunktion ist das kleinste gemeinsame Vielfache der Einzelperioden, in diesem
Fall also 97 - 29 = 2813, da beide Einzelperioden Primzahlen sind. Durch die Wahl einer
geringen positiven Steigung wird das Data Mining etwas erschwert, da im Verlauf der Zeit
immer neue, noch nie aufgetretene Werte auftreten. Trotzdem ist sichergestellt, dass f;,
klare Muster besitzt, da die Ableitung von f;, periodisch ist. Da eine Zeitreihe tiber 5000
Zeitschritte generiert wurde und eine Fenstergrofie mit 3000 Schritten gewdhlt wurde, ist die
vorliegende Funktion bis auf die Gerade periodisch.

Die beschriebene Funktion hat die Eigenschaft, dass eine Trendvorhersage extrem einfach ist.
Da die Anzahl der Extremstellen bezogen auf die 5000 Zeitschritte relativ gering ist, ist eine
einfache Schatzung nach folgender Regel moglich: Wenn die Funktion im letzten Zeitschritt
gestiegen ist, dann steigt sie auch in diesem Zeitschritt.

Wird diese einfache Regel verwendet, dann werden von den ersten 5000 Zeitschritten 346
falsch vorhergesagt, weil sich der Trend an den Extremstellen dndert. Das heifst, es ergibt sich
eine Trefferrate von 93, 1%. Daraus folgt, dass erst ab einer Trefferrate von mehr als 93, 1%
auch einige der schwerer vorherzusagenden Trendwechsel garantiert erfolgreich vorhergesagt
werden.

Bei den mit diesem Datensatz durchgefiihrten Experimenten wurde die Schrittanzahl m fiir
jeden Konstruktor variiert. Wie in Abschnitt 4.2.1 beschrieben, steuert diese, wie viele Daten-
punkte aus der Vergangenheit zur Konstruktion eines Tupels im Attributraum herangezogen
werden. Daraus ergibt sich gleichzeitig die Dimension des Attributs.
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Abbildung 5.2.: Qualitdt der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den ,Kurve”-Datensatz. Dabei wird der Level des Gitters bei jedem

Konstruktor variiert.
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5.1. Der synthetische Datensatz ,Kurve®

In Abbildung 5.2 sind die Ergebnisse der Experimente mit verschiedenen Attributkonstrukto-
ren und dem ,Kurve”-Datensatz zu sehen. Es kann beobachtet werden, dass die Genauigkeit
der Vorhersage mit der Wahl des Konstruktors variiert. Da die Funktion f;;,,, wie oben
erwdhnt, hdufig zuvor noch nicht erreichte Werte einnimmt, ist die Vorhersagequalitédt der
direkt auf den Werten operierenden Attributkonstruktoren relativ niedrig. Trotzdem ist
die Trefferrate immer noch relativ hoch, da der Linear-Konstruktor bis zu 96, 4% korrekte
Vorhersagen erreichen kann, der Linear-Quad-Konstruktor erreicht bis zu 96, 2%. Die hohe
Trefferrate kann dadurch erkldrt werden, dass neue Werte nicht zu héufig erreicht werden,
und zuvor erreichte Werte eine Aussage iiber den zukiinftigen Verlauf erlauben.

Abbildung 5.3 veranschaulicht dieses Phanomen. Diese Abbildung zeigt den Attributraum
fir den Linear-Konstruktor mit m = 2, wodurch ein zweidimensionaler Attributraum ent-
steht. Abbildung 5.3a zeigt dabei die Kurve tiber 2000 Zeitschritte, Abbildung 5.3b iiber
einen kleineren Ausschnitt von 400 Zeitschritten. Datenpunkte, die zu unterschiedlichen
Klassen gehoren, sind farblich unterschiedlich markiert, wobei steigende Zeitschritte blau
und fallende Zeitschritte rot eingeféarbt sind. Die Kurve verlduft in Kreisbahnen von links
unten nach rechts oben durch den Raum. Die Kreisbahnen sind auf die Sinusfunktionen
zuriickzuftihren. Dadurch, dass die Werte im Verlauf der Zeit steigen, wandert die Kur-
ve langsam von links unten nach rechts oben. Ein Punkt (f(¢), f(t — 1)) am Anfang des
betrachteten Zeitfensters liegt eher links unten, weil die Werte der Zeitreihe klein (und
normiert) sind, im Verlauf der Zeit jedoch grofier werden. Die Kurve verlduft in der Nédhe
der Winkelhalbierenden, da die Differenz der Werte zwischen einzelnen Zeitschritten relativ
klein ist. Da erkennbar ist, dass sich die Klassen nur wenig tiberlappen, ldsst dies zundchst
eine hohe Trefferrate erwarten. Dadurch, dass die Kurve durch den Attributraum wandert,
finden die Auswertungen zur Vorhersage des nédchsten Zeitschritts allerdings immer am
Rand der aktuellen Menge an Datenpunkten im Attributraum statt. Dabei liegen einige
wenige Punkte in der Ndhe, wodurch die Anzahl der korrekten Vorhersagen immer noch
relativ hoch ist. Das Auftreten von Mustern im Attributraum allein garantiert also noch
keine optimale Trefferrate, da es vorkommen kann, dass die Muster, wie in diesem Beispiel
zu sehen, fiir die Vorhersage nur eingeschrankt verwendet werden konnen.

Da der Datensatz bei Verwendung des Differenz-Konstruktors periodisch wird, ist eine
hohere Trefferrate zu erwarten. Die Ergebnisse aus Abbildung 5.2 bestdtigen diese Vermutung.
Der Differenz-Konstruktor erreicht eine Trefferrate von bis zu 99, 4%, der Differenz-Quad-
Konstruktor kann sogar eine Trefferrate von bis zu 99,7% erreichen.

In Abbildung 5.4 ist der berechnete Attributraum fiir den Differenz-Konstruktor zu sehen. Die
Farbcodierung ist wieder Rot fiir ,fallend” und blau fiir ,steigend”. Um die Periodizitat der
Kurve im Datenraum zu veranschaulichen, wurde eine modifizierte Funktion f;;, geplottet,
bei die Perioden der Sinusfunktionen deutlich reduziert wurden. An dieser Abbildung kann
deutlich gesehen werden, dass die meisten steigenden oder fallenden Datenpunkte klar
raumlich getrennt sind. Die Korrektheit aller Vorhersagen kann vermutlich deswegen nicht
erreicht werden, weil die Klassen sehr nahe beieinander liegen und eine exakte Trennung
sehr viele Gitterpunkte erfordert.
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Abbildung 5.3.: Zeitreihe des ,, Kurve”-Datensatzes im 2D-Attributraum, transformiert mit
dem Linear-Attributkonstruktor. Die Klassen sind farblich unterschieden.
Die Kurve verlduft in Kreisbahnen von links unten nach rechts oben.
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5.2. Der synthetische Datensatz ,Muster*
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Abbildung 5.4.: Attributraum von fy;, dargestellt als fq,(t) — fsin(t — 1) gegen fsin(t) —
fsin(t — 2) bei stark reduzierter Periode. Da mehr Zeitschritte dargestellt
werden, als die Periode der Funktion lang ist, zeigt die Abbildung die
vollstandige Funktion. Die Klassen sind farblich markiert.

5.2. Der synthetische Datensatz ,,Muster*

Der zweite synthetische Datensatz besteht aus einem geometrischen Muster, das in eine
Zeitreihe codiert wird. Ausgangspunkt dafiir ist die folgende Funktion:

(55) f(xn, xn-1) =

rand(x,, 1)
rand(x,, 1)
rand(x,, 1)

rand(x,, 1)
rand (0, x,,)

Xy < 0,5Ax,-1 <0,5A

(xn —0,25)% + (x,_1 — 0,25)% > 0,22
X, > 0,5Ax,-1>0,5A

(x4 —0,75)% + (x,_1 — 0,75)% < 0,22
Xy >0,5A%,_1 <0,5A1—x,_1<x,
Xp1>0,5Ax, <O0,5A1—x,1<xy,

sonst
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Abbildung 5.5.: Verlauf der Zeitreihe des , Muster”-Datensatzes vor den Vorverarbeitungs-
schritten.

Die Funktion rand(.,.) gibt einen zufélligen Wert aus dem durch die Argumente spezifi-
zierten Intervall zuriick. Die Zeitreihe wurde aus dem Datensatz durch die Rekursionsvor-
schrift

(56) g(n+1) = f(g(n), g(ﬂ -1))

(57) 8(1) =rand(0,1)
(5.8) g(2) = rand(O 1)

erzeugt. Dabei wurden zusétzlich alle bereits erzeugten Werte von g zur Berechnung zukiinf-
tiger Zeitschritte wiederverwendet. Der Verlauf der Zeitreihe mit dieser Rekursionsvorschrift
ist zufdllig. Abbildung 5.5 zeigt einen moglichen Verlauf der Zeitreihe fiir einige Zeitschrit-
te.

Wird dieser Datensatz auf eine bestimmte Weise betrachtet, ergibt sich ein deutlich erkenn-
bares Muster, das in Abbildung 5.6a dargestellt ist. Die Fallunterscheidung in der Definition
von f entspricht allen Bereichen, die in der Abbildung rot dargestellt sind. Dabei bedeutet es
geometrisch, dass der ndchste Wert der Zeitreihe aus dem Bereich zwischen dem aktuellen
Wert und Eins gelost wird, wenn das Tupel bestehend aus dem aktuellen und dem letzten
Wert eine Koordinate in einem roten Bereich darstellt. Entsprechend bedeutet es fiir ein Tupel,
wenn es in einem blauen Bereich liegt, dass der ndchste Wert aus dem Bereich zwischen null
und dem aktuellen Wert gelost wird. In Abbildung 5.6b ist eine gute Naherung der Funktion
zu sehen vor der Klassifikation zu sehen. Nach der Klassifikation wiirden alle Werte grofser
null der ,,roten” Klasse zugeordnet werden.

Wie beim Datensatz ,Kurve” wurden auch hier wieder Experimente mit mehreren Attri-
butkonstruktoren und Konfigurationen durchgefiihrt. Ein Uberblick tiber die Ergebnisse
ist in Abbildung 5.7 zu sehen. Da die Zeitreihe aufgrund ihrer Konstruktion durch den
Linear-Konstruktor in zwei Dimensionen nahezu perfekt abgebildet werden sollte, ist hier
die erreichte Vorhersagegenauigkeit am hochsten. Der Linear-Konstruktor erreichte eine
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(a) Ideale Geometrie im Attributraum (b) Heatmap einer guten Naherung der Funktion

Abbildung 5.6.: Auf der linken Seite ist das Schema der Konstruktion des Datensatzes
abgebildet. Rechts ist eine Diinngitterfunktion abgebildet, die eine sehr gute
Anndherung an das Konstruktionsschema darstellt.

Trefferrate von 95,2%. Interessanterweise konnte dessen quadratische Variante dieselbe
Genauigkeit erreichen.

In Abbildung 5.7 sind auflerdem Ergebnisse fiir den Differenz-Konstruktor und den Differenz-
Quad-Konstruktor zu sehen. Wie erwartet liegen die Ergebnisse deutlich unter den Ergebnis-
sen des Linear-Konstruktors, da der Raum nicht entsprechend einem Differenzenschema
aufgebaut wurde. Gerade dadurch, dass der ndchste Wert vom Zufall abhdngt, reduziert
sich die Anzahl korrekter Vorhersagen, da die Differenz nahezu beliebige Werte einnehmen
konnen. Dabei fallt insbesondere auf, dass die Vorhersage trotz des nicht optimalen Kon-
struktors immer noch deutlich iiber 50% liegt. Das heifit, auch bei einem schlecht gewé&hlten
Konstruktor kénnen immer noch Muster im Attributraum auftreten.

Aufgrund der Konstruktion des Raums mit zwei Kreisen und einer diagonal verlaufenden
Grenze zwischen den Klassen werden, trotz der relativ einfachen Struktur des Problems, fiir
eine hohe Vorhersagegenauigkeit sehr viele Gitterpunkte benétigt. Dies zeigt sich auch bei
den gewdhlten Konstruktoren. Mit zunehmendem Level steigt die Qualitdt der Vorhersage
weiter an. Eine perfekte Trefferrate wird mit den vorgestellten Experimenten noch nicht
erreicht, obwohl aufgrund der Konstruktion keine Uberlappung der Klassen vorliegt. Wird
mit dem Linear-Konstruktor und noch hoherem Level gerechnet, ldsst sich die Trefferrate
auf nahezu 100% verbessern. Eine perfekte Vorhersage ist allerdings schwierig, da Punkte
auf den scharfen Klassengrenzen nur mit dufierst vielen Gitterpunkten immer korrekt den
Klassen zugeordnet werden konnen.

Dieses Beispiel zeigt weiter, dass fiir eine gute Vorhersage keineswegs Periodizitidt benotigt
wird. Trotz des zufélligen Verlaufs der Kurve durch den Attributraum ist der Verlauf der
Kurve regelbasierend. Des Weiteren zeigen beide synthetischen Beispiele, dass die Wahl des
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Abbildung 5.7.: Qualitit der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den , Muster”-Datensatz. Dabei wird der Level des Gitters bei jedem

Konstruktor variiert.
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5.3. Experimente mit Finanzdatensétzen

Konstruktors dufserst wichtig ist. Wird dieser optimal gewidhlt und sind die Daten qualitativ
ausreichend, dann konnen Vorhersagen mit hoher Préazision durchgefiihrt werden.

Dieser Datensatz ist auch ein gutes Beispiel dafiir, dass die Betrachtung eines Problems in
einer hoheren Dimension nicht zwangslaufig zu einer Verbesserung der Vorhersage fiihrt.
Durch die Technik der Konstruktion der Zeitreihe handelt es sich inhdrent um ein Problem
in zwei Dimensionen. Die Trefferrate der Konstruktoren in Abbildung 5.7 bestatigt diese
Hypothese.

5.3. Experimente mit Finanzdatensatzen

Durch Experimente mit real gemessenen Daten kann gezeigt werden, dass Zeitreihenanalyse
mit diinnen Gittern auch abseits von synthetischen Experimenten erfolgreich zur Vorhersage
verwendet werden kann. Dazu wurden drei Datensidtze verwendet. Zwei davon bestehen
aus Zeitschritten bekannter Aktienindizes, dem deutschen DAX und dem amerikanischen
Dow Jones. Der dritte Datensatz beinhaltet Euro-Dollar Umrechnungskurse im Verlauf der
Zeit. Ziel ist wie bisher die korrekte Vorhersage des Trends.

5.3.1. Vorhersage des Deutschen Aktienindex DAX

Als erstes Beispiel fiir nichtsynthetische Daten wird ein Ausschnitt des Kursverlaufs des
Deutschen Aktienindex verwendet. Der DAX ist der wichtigste deutsche Aktienindex. Er
setzt sich aus den 30 grofiten und umsatzstiarksten Unternehmen zusammen, die an der
Frankfurter Borse gelistet sind. Darunter sind Firmen wie Bayer, Siemens und BASF [Dax].

Die Daten der hier vorgestellten Experimente wurden aus Googles Finanzdienst ,Fi-
nance” manuell gewonnen [Goo]. Die verwendeten Daten stammen aus dem Zeitraum
vom 30.10.2013 um 8:03 Uhr bis zum 19.11.2013 um 4:36 Uhr. Die Datenpunkte liegen in Mi-
nutenabstdnden vor, allerdings wird der DAX nur an Werktagen von 9:00 bis 17:45 gehandelt,
weswegen grofse Liicken tiber die Nachte und tiber die Wochenenden entstehen.

In Abbildung 5.8 ist der Verlauf des DAX im verwendeten Zeitraum zu sehen. Deutlich
erkennbar sind auch die Zeitrdume, in denen der DAX tatsdchlich gehandelt wird. Die
kurzen Liicken werden durch die Nachte der Werktage hervorgerufen, die langen Liicken
entstehen durch Wochenenden. Zusitzlich sind die Daten unvollstindig, da fiir einige
Zeitschritte keine Daten vorliegen. Fiir den beschriebenen Zeitraum liegen insgesamt 7573
Datenpunkte vor. Da die Werte mintitlich vorliegen, kann errechnet werden, dass nicht
fiir jede Minute ein Wert vorliegt. Da ebenfalls Daten fiir einige der DAX Unternehmen
betrachtet werden sollen, wurden Zeitpunkte, an denen nicht alle Daten verfiigbar waren,
verworfen. Fiir die Vorhersagen mithilfe von assoziierten Daten stehen daher nur 5782
Datenpunkte zur Verfiigung. Fiir die Experimente mit diesem Datensatz wurden jeweils 1000
Testdaten verwendet, das heift, es wurden Vorhersagen fiir 1000 Zeitschritte berechnet.
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Abbildung 5.8.: Verlauf des DAX im Zeitraum zwischen dem 30.10.2013 um 8:03 Uhr und
dem 19.11.2013 um 4:36 Uhr.

Zur Untersuchung der Qualitdt der Vorhersage wurden vier Experimente durchgefiihrt.
Fiir die ersten beiden Experimente wurden der Linear-Konstruktor und der Differenz-
Konstruktor ausgewihlt. Als drittes Experiment wurden beide Konstruktoren der ersten
beiden Experimente zusammen angewendet. Zuletzt wurden mehrere Zeitreihen betrachtet,
neben dem Kurs des DAX selbst wurden dem Datensatz die Kurse von bis zu drei DAX-
Unternehmen hinzugefiigt.

Auch fiir dieses Experiment gibt es eine minimal zu erreichende Trefferrate, die tiberschritten
werden muss, damit Vorhersagen nicht als trivial gelten. Von den 1000 Elementen der
Testdatenmenge sind insgesamt 969 Zeitschritte relevant. Bei 31 Zeitschritten liegt keine
Anderung der Werte relativ zum Vorgénger vor. Von den relevanten Zeitschritten besitzen
wiederum 502 Zeitschritte einen steigenden Trend. Da auch in den Daten der verwendeten
Fenster mehr steigende als fallende Zeitschritte zu finden sind, wird die mindestens zu
schlagende Basistrefferrate mit 51, 8% angegeben.

In Abbildung 5.9 sind die Ergebnisse der durchgefiihrten Experimente zu sehen. Da fiir
diese Experimente keine synthetischen Daten verwendet wurden, ist nicht die Trefferrate
der synthetischen Experimente zu erwarten. Mit dem Linear-Konstruktor betrdgt die beste
erreichbare Trefferrate 54,4%, der Differenz-Konstruktor erreicht 55,2%. Die insgesamt beste
Trefferrate wird durch die Kombination der beiden vorherigen Konstruktoren erreicht, sie
betragt 56,3%. Wahrend also die generelle Trefferrate im Vergleich zu den synthetischen
Daten deutlich niedriger ausfallt, wird zumindest die Basistrefferrate von 51,8% deutlich
ubertroffen.

Bei der Kombination mehrerer Zeitreihen ist eine Basistrefferrate etwas niedriger, da der
verwendete Datensatz, wie oben beschrieben, modifiziert wurde. Die Basistrefferrate liegt
hier bei 50,6%. Da durch die Hinzunahme von zwei weiteren Zeitreihen eine Trefferrate
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Abbildung 5.9.: Qualitdt der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den ,DAX"-Datensatz. In den ersten drei Abbildungen wird der Level
des Gitters zusatzlich variiert. Die vierte Abbildung zeigt die Trefferraten,
wenn mehrere Zeitreihen zur Vorhersage verwendet werden.
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von 53,2% erreicht werden kann, liegt eine Verbesserung um 2,6% vor. Da die drei anderen
Experimente eine Verbesserung von im besten Fall 4,5% schaffen, ist zumindest bei diesem
Vergleich eine korrekte Wahl der Konstruktor niitzlicher als die Verwendung dieser weiteren
Zeitreihen.

Im Allgemeinen steigt die Trefferrate zwischen Level 1 und Level 2 stark an. Dies deutet
darauf hin, dass die erkannten Muster relativ grob sind. Ansonsten wiirde das Rechnen mit
hoheren Leveln zu weiteren Verbesserungen fithren. Am deutlichsten ist dies bei Verwendung
des Differenz-Konstruktors zu beobachten. Nach einer relativ hohen Trefferrate auf einem
Gitter mit Level 2, fallt die Trefferrate mit zunehmendem Level tendenziell ab. Hier scheint
ein grobes Muster durch wenige Gitterpunkte gut wiedergegeben zu werden, wéahrend es
bei mehr Gitterpunkten schnell zu Overfitting kommt. AufSerdem kann beobachtet werden,
dass fiir akzeptable Vorhersagen mindestens ein zweidimensionaler Attributraum benétigt
wird. Wird nur mit einer Dimension gerechnet, liegen die Trefferraten kaum {iiber der
Basistrefferrate.

5.3.2. Vorhersage des amerikanischen Aktienindex Dow Jones

Der Dow Jones ist ein wichtiger Aktienindex der New York Stock Exchange. Ahnlich wie der
deutsche DAX ist der Dow Jones ein Aktienindex, dessen Wert sich aus dem gewichteten
Wert grofler Unternehmen zusammensetzt. Unternehmen mit starker Gewichtung sind unter
anderem Visa, IBM, Goldman Sachs, Boeing und 3M [Dow]. In dieser Arbeit wird der Verlauf
des Dow Jones und seiner assoziierten Unternehmen im Zeitraum zwischen dem 18.9.2013
um 1:31 Uhr und dem 8.10.2013 um 8:00 Uhr betrachtet. Dafiir liegen 5711 Datenpunkte vor,
die auf einen Zeitraum von etwa 20 Tagen verteilt sind. Wie die DAX-Daten wurde auch
dieser Satz mithilfe von ,Google Finance” erstellt [Goo].

Der Verlauf des Dow Jones iiber den betrachteten Zeitraum ist in Abbildung 5.10 zu sehen.
Ahnlich wie beim , DAX“-Datensatz gilt auch hier wieder, dass die zeitlichen Spriinge
durch Néchte und Wochenenden erkldrbar sind. Aufgrund von Wochenenden und der nicht
ganztdgigen Berechnungszeit des Dow Jones liegt bei diesem Datensatz pro Minute ein Wert
vor. Auch hier ist der Datensatz nicht vollstandig, weswegen Zeitschritte mit unvollstandigen
Daten verworfen wurden.

Da der Dow Jones dem DAX strukturell dhnelt, wurden dieselben Experimente durchge-
fiihrt. Es wurden auch hier der Linear-Konstruktor und der Differenz-Konstruktor einzeln
und kombiniert angewendet. Ebenfalls wurde ein Experiment mit assoziierten Zeitreihen
durchgefiihrt, wobei auch hier drei der Unternehmen gewihlt wurden, aus denen sich der
Dow Jones zusammensetzt.

Von den 1000 Elementen der Testdatenmengen, sind 951 fiir die Vorhersage relevant. Da 493
Zeitschritte mit steigenden Werten vorliegen, liegt die Basistrefferrate bei 51, 8%. Durch eine
entsprechende Rechnung liegt die Basistrefferrate beim modifizierten Datensatz fiir mehrere
Zeitreihen bei 50, 8%.
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Abbildung 5.10.: Verlauf des Dow Jones im Zeitraum zwischen dem 18.9.2013 um 1:31 Uhr
und dem 8.10.2013 um 8:00 Uhr.

Wie die Ergebnisse der Experimente in Abbildung 5.11 zeigen, liegt die erzielte Trefferrate nur
wenig liber der Basistrefferrate. Das beste Ergebnis aus den einzelnen Konstruktoren und den
kombinierten Konstruktoren betragt 53,3% und liegt damit 1,5% tiber der Basistrefferrate
von 51,8%. Eine Verbesserung kann durch die Verwendung einer zuséatzlichen Zeitreihe
erzielt werden. Dann steigt die Trefferrate auf 53, 9%, wobei die Basistrefferrate hier 50, 8%
betrdgt. Damit liegt das beste Experiment immerhin 3,1% tiber der Basistrefferrate.

Die erzielten Trefferraten bewegen sich damit auf einem dhnlichen Niveau wie die DAX-
Daten. Da beide Datensitze eine dhnliche Struktur und eine dhnliche Qualitit besitzen, ist ein
solches Ergebnis plausibel. Eine Verbesserung der Trefferraten konnte vermutlich bei beiden
Datensédtzen erreicht werden, wenn weniger liickenhafte Daten vorliegen. Besonders iiber die
langen Liicken durch die Nachte und Wochenenden sind zum Teil erhebliche Anderungen
der Werte zu beobachten. Durch eine Verkniipfung mit weiteren Zeitreihen, deren Werte
die nachtlichen Anderungen abschitzen lassen, sollte ebenfalls eine weitere Verbesserung
erreichbar sein.

5.3.3. Vorhersage im Hochfrequenzhandel am Beispiel von Euro-Dollar
Wechselkursen

Als dritter Datensatz zur Evaluierung des Ansatzes unter realistischeren Bedingungen
wurden Wechselkurse des Euros in Dollar verwendet. Hierzu wurde ein Datensatz verwendet,

der iiber den Datenanbieter TrueFX* bezogen wurde [Tru]. Bei den verwendeten Daten
handelt es sich um Tickdaten. Das bedeutet, dass jede Anderung des Kurses verzeichnet ist.

2TrueFX ist selbst ein Produkt der Integral Development Corporation.

61



5. Datensatze und Vorhersagequalitat

korrekt (%)

60

55

50

45

Level

—-om=1w=m=2-em=23

(a) Linear-Konstruktor

(c) Linear-Konstruktor und Differenz-Konstruktor (d) Trefferrate bei unterschiedlicher Anzahl an ver-

Abbildung 5.11.: Qualitdt der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den ,Dow Jones”-Datensatz. In den ersten drei Abbildungen wird
der Level des Gitters zusatzlich variiert. Die vierte Abbildung zeigt die
Trefferraten, wenn mehrere Zeitreihen zur Vorhersage verwendet werden.
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5.3. Experimente mit Finanzdatensétzen
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Abbildung 5.12.: Verlauf des Dollar in Euro Kurses im Dezember 2012.

Fiir die hier vorgestellten Experimente wurde der Datensatz so vorverarbeitet, dass Daten
in Minutenintervallen vorliegen. Betrachtet wurde der Zeitraum vom 2.12.2012 um 11:00
Uhr bis zum 3.12.2012 um 10:33 Uhr. Daraus resultierten insgesamt 15430 Datenpunkte
(aus den 6,7 Millionen Tickdaten fiir den gesamten Dezember 2012). Von den verbliebenen
Datenpunkten wurden wiederum 2000 als Testdaten ausgewdhlt.

Um auch Experimente mit korrelierten Daten durchfiihren zu kénnen, wurden zusétz-
lich Wechselkurse des Euros in britische Pfund verwendet. Diese wurden vom selben
Datenanbieter bezogen und liegen ebenfalls als Tickdaten vor. Da Tickdaten jedoch schwer
synchronisierbar sind, wurden die Daten modifiziert kombiniert. Dabei wurde immer der
erste Sekundenwert als Teil des modifizierten Datensatzes ausgewdhlt, bei dem fiir beide
Zeitreihen Daten vorliegen haben. Daraus entstand ein Datensatz mit 7652 Zeitschritten
fiir den oben genannten Zeitabschnitt. Damit bestehen grofse Unterschiede zwischen dem
allgemeinen Datensatz und dem Datensatz fiir Experimente mit korrelierten Zeitreihen. Letz-
terer Datensatz arbeitet auf festen Sekundenintervallen, der allgemeine Datensatz arbeitet
dagegen auf den unregelméfligen Tickdaten.

Auch mit diesem Datensatz wurden dieselben Experimente wie bei den beiden vorherigen
Datensdtzen durchgefiihrt. Da der Datensatz des Experiments mit mehreren Zeitreihen stark
von den anderen Experimenten abweicht, sollte dieser allerdings als eigenstdandig betrachtet
werden.

Fiir die ersten drei Experimente liegen 2000 Testzeitpunkte vor, darunter 692 steigende
Zeitschritte und 676 fallende Zeitschritte. Die erwartete Basistrefferrate liegt damit bei
50, 6%. Wie in Abbildung 5.13 zu sehen ist, kann die Basistrefferrate in den durchgefiihrten
Experimenten deutlich iiberboten werden. Bereits der Linear-Konstruktor erreicht eine
Trefferrate von bis zu 68, 86%. Dies wird durch den Differenz-Konstruktor sogar noch weiter
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wendeten Zeitreihen

Abbildung 5.13.: Qualitdt der Vorhersagen verschiedener Attributkonstruktoren angewendet
auf den , FX”-Datensatz. In den ersten drei Abbildungen wird der Level
des Gitters zusétzlich variiert. Die vierte Abbildung zeigt die Trefferraten,
wenn mehrere Zeitreihen zur Vorhersage verwendet werden, dabei wird
eine stark modifizierte Zeitreihe verwendet.
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5.4. Interpretation der qualitativen Ergebnisse

tiberboten, da dieser bis 71, 6% korrekte Vorhersagen liefert. Der kombinierte Ansatz erreicht
eine Trefferrate von 71,2%.

Es fdllt auf, dass alle Experimente sehr hohe Trefferraten besitzen. Und dass fiir hohe
Trefferraten bereits ein niedriger Level ausreicht. Gleichzeitig korreliert eine niedrigere
Dimension tendenziell mit schlechteren Vorhersagen. All dies deutet darauf hin, dass der
betrachtete Zeitraum einem verhéltnismafsig einfachen Prozess unterliegt, der bereits mit
wenigen Gitterpunkten gut abgebildet werden kann. Weitere Muster werden aber scheinbar
nicht erkannt, da ein hoherer Level nicht zu besseren Resultaten fiihrt. Fiir diese Hypothese
spricht besonders der Verlauf des Experiments, das den Linear-Konstruktor verwendet. Hier
scheint bei hoheren Levels Overfitting einzutreten. Des Weiteren wird mit dem Differenz-
Konstruktor bereits auf Level 2 eine sehr hohe Trefferrate erreicht, das bedeutet, dass bereits
3 Gitterpunkte fiir gute Vorhersagen ausreichen. Mit 7 Gitterpunkten wird bereits die hochste
Trefferrate erreicht.

Das Experiment mit mehreren Zeitreihen zeigt erwartungsgemaf3 einen anderen Verlauf.
Wihrend mit dem in diesem Datensatz bei Verwendung einer Zeitreihe eine Trefferrate von
54,1% erreicht wird, kann dies durch Verwendung einer weiteren Zeitreihe deutlich auf
58, 3% gesteigert werden.

5.4. Interpretation der qualitativen Ergebnisse

Die mit den fiinf Datensédtzen durchgefiihrten Experimenten legen einige allgemeineren
Schliisse nahe. Die Trefferrate steigt mit zunehmendem Level und eine fiir das Problem
passende Dimension erhoht ebenfalls die Trefferrate. Des Weiteren ist die Wahl der Kon-
struktoren duferst wichtig.

Bei den synthetischen Experimenten sind diese Phanomene alle sehr deutlich zu beobachten,
weil sehr gute Informationen iiber die Daten und zudem Daten von hoher Qualitit vorliegen.
Diese Informationen kénnen genutzt werden, um geeignete Attributrdume zu konstruieren.
Damit konnten letztlich sehr hohe Trefferrate zu erreicht werden.

Die Trefferraten bei den Experimenten mit nichtsynthetischen Datensitzen sind erwartungs-
gemdfl deutlich niedriger. Der Aufwand, der betrieben werden muss, um unter diesen
Umstdnden geeignete Konstruktoren fiir reale Daten zu finden, ist ungleich grofier, da die
Beschreibung der Phianomene, die zu den Werten der Zeitreihe fiihren, ungleich kompli-
zierter ist. Zudem besteht bei real gemessenen Daten das Problem, dass a priori unklar ist,
ob die vorhandenen Daten auch tatsédchlich fiir eine hohe Trefferrate bei den Vorhersagen
ausreichen. Insbesondere der ,,DAX“- und der ,,Dow Jones“-Datensatz sind

Wird als Zeitreihe nur eine sehr einfache Zielgrofie verwendet, wiren gute Vorhersagen in
vielen Féllen duflerst erstaunlich. Zum Beispiel stellt die Produktion einer Fabrik tiber die
Zeit eine Zeitreihe dar. Und es kann auch durchaus der Fall sein, dass das Produktionsnivau
bestimmten Regelméfiigkeiten folgt, die gute Vorhersagen erlauben. Trotzdem ist eine sehr
hohe Trefferrate sehr unwahrscheinlich, da eine Vielzahl relevanter dufSerer Umstinde nicht
einbezogen werden. Sollte aufgrund eines Unfalls die Produktion fiir einige Zeit ausfallen,
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5. Datensatze und Vorhersagequalitat

wird dies im Normfall nicht aus den Daten an vergangenen Zeitpunkten heraus vorhersagbar
sein3. Wie bei allen Data Mining Aufgaben gilt auch hier, dass nur die Informationen aus
den Daten gewonnen werden konnen, die im urspriinglichen Datensatz vorhanden sind.

Von Garcke et al. wurde ein dhnlicher Ansatz verfolgt, der ebenfalls auf diinnen Gittern
basiert und die sogenannte Kombinationstechnik verwendet. Zudem wurden von Garcke
et al. ebenfalls Borsendaten betrachtet. Unter dhnlichen Bedingungen wurde dort eine
Trefferrate von knapp 53% erreicht [GGG1o]. Ungliicklicherweise standen die verwendeten
Daten nicht zur Verfiigung, da sie kommerziell bezogen wurden. Dies schréinkt eine direkte
Vergleichbarkeit deutlich ein.

3Nattirlich sind auch Szenarien denkbar, wo Unfille Regelmafiigkeiten folgen.
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6. Beschleunigung der Zeitreihenanalyse

Data Mining auf grofien Datensdtzen kann sehr teuer sein. Bei Gitter-basierten Losungen
verscharft sich dieses Problem, wenn die Daten aus hochdimensionalen Raumen stammen.
Nachdem im letzten Kapitel gezeigt wurde, dass mit dem beschriebenen Diinngitteransatz
zur Zeitreiheanalyse erfolgreiche Vorhersagen moglich sind, wird in diesem Kapitel die
benotigte Rechenzeit untersucht. Anschliefiend werden weitere Optimierungen vorgestellt
und untersucht. Die Optimierungen wurden dabei nur fiir den auf der Methode der kleinsten
Quadrate basierten Ansatz evaluiert.

6.1. Die verwendete Plattform

Um eine gewisse Vergleichbarkeit herzustellen, muss auf die verwendete Hard- und Software
niher eingegangen werden. Das verwendete Diinngittertoolkit SG* ist hochperformant
implementiert und verwendet OpenMP zur Skalierung innerhalb eines Shared-Memory-
Systems [Pfl10]. Dies wurde mit einem Intel-basierten 4-Sockel-System kombiniert, das als
Prozessoren vier Intel Xeon E7540 nutzt. Diese Prozessoren besitzen je 6 Kerne und takten
mit 2 Ghz'. Insgesamt liegen 24 Prozessorkerne vor, die dank Hyper-Threading 48 Threads
gleichzeitig verarbeiten konnen. Jeder Prozessor besitzt auflerdem 18MB Level-3 Cache und
dem System stehen 512GB an Arbeitsspeicher zur Verfiigung.

6.2. Benotigte Rechenzeit ohne Optimierungen

Da die Verwendung diinner Gitter im Vergleich zu voll besetzten Gittern bereits gute
Rechenzeiten erwarten ldsst, wird in diesem Abschnitt auf die benotigten Rechenzeiten
ohne weitere Optimierungen eingegangen. In Abbildung 6.1 sind die Rechenzeiten fiir jeden
der Datensitze aus dem letzten Kapitel dargestellt. Dabei wurde bei jedem Datensatz das
Experiment ausgewdhlt, bei dem die hochste Trefferrate beobachtet werden konnte:

e ,Kurve”: Die besten Ergebnisse wurden mit dem Differenz-Quad-Konstruktor mit
Schrittanzahl m = 3 erreicht. Daraus folgt ein Attributraum mit Dimension 3.

e ,Muster”: Der Linear-Konstruktor mit m = 2 ergab die hochste Trefferrate. Dies ergibt
einen Attributraum mit Dimension 2.

IDurch den Turbomodus konnen die Prozessoren bis zu 2,26 Ghz erreichen.
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6. Beschleunigung der Zeitreihenanalyse

o ,DAX”: Hier wurden der Linear-Konstruktor und der Differenz-Konstruktor zusam-
men verwendet, wobei jeder Konstruktor mit Schrittanzahl m = 2 gewahlt wurde. Das
resultierende Problem hat damit 4 Dimensionen.

e ,Dow Jones”: Bei diesem Datensatz konnte die hochste Trefferrate bei Verwendung
zweier Zeitreihen beobachtet werden. Die Dimension entspricht der Anzahl der ver-
wendeten Zeitreihen.

o ,EX”: Der Differenz-Konstruktor mit m = 3 und daraus folgender Problemdimension
3 erreichte die hochste Trefferrate.

Abbildung 6.1 ldasst den Schluss zu, dass bei allen Datensdtzen eine Maximierung der
Trefferrate mit relativ geringen Rechenzeitanforderungen zusammenfillt. Bei vier der fiinf
Datensédtze wurden 1000 Testzeitpunkte verwendet, lediglich bei Experimenten mit dem
,FX”-Datensatz bestand die Testdatenmenge aus 2000 Elementen. Da bei den synthetischen
Experimenten kein Zeitmafsstab direkt vorgegeben ist, ist eine finale Einschdtzung schwierig.
Beim Datensatz ,, Kurve” wurde die hochste Trefferrate bereits bei einem Gitter mit Level
3 erreicht, was aufgrund der niedrigen Anzahl an Gitterpunkten auf eine sehr geringe
Rechenzeit fiir die einzelnen Testdatenpunkte hinweist.

Interessanter ist der Datensatz ,,Muster”. Die beiden Klassen werden in diesem Datensatz
durch scharfe Kanten begrenzt. Dadurch werden viele Gitterpunkte benétigt, um die Treffer-
rate zu maximieren. Entsprechend wird die hochste Trefferrate auch erst auf einem Gitter
mit Level 6 erreicht. Dabei werden fiir die 1000 Testzeitpunkte insgesamt 80s Rechenzeit
benotigt. Daraus folgt, dass 1 Sekunde Rechenzeit pro Zeitschritt bei einem Problem mit
niedriger Dimension, das aber gleichzeitig ein feines Gitter benétigt, immer noch deutlich
unterschritten wird.

Bei den nichtsynthetischen Datensédtzen gelten dhnliche Aussagen. Beim Datensatz ,DAX"
werden immerhin 4 Dimensionen benétigt und gleichzeitig ein Gitter mit Level 5. Bei diesem
Datensatz wird damit am meisten Rechenzeit pro Zeitschritt aufgewendet, um die Trefferrate
zu maximieren. Da die Daten bei diesem Datensatz minditlich vorliegen, kann der Datensatz
trotzdem problemlos in Echtzeit verarbeitet werden.

Fiir den ,FX”-Datensatz gilt, dass die hochste Trefferrate bereits bei Level 2 erreicht wird,
wodurch eine geringe Rechenzeit moglich wird, obwohl eine grofiere Testdatenmenge mit
2000 Zeitschritten verwendet wird. Fiir die gesamte Testdatenmenge werden 56s benotigt.
Damit kdnnen 36 Zeitschritte pro Sekunde verarbeitet werden, wodurch auch bei diesem
Datensatz, bei dem durchaus tatsdchlich mehrere Zeitschritte pro Sekunde vorliegen, die
Echtzeitanforderungen eingehalten werden kénnen.

Ahnliches gilt fiir den ,Dow Jones”-Datensatz. Fiir die beste Trefferrate wurden zwei
Zeitreihen kombiniert. Da die hochste Trefferrate allerdings bei einem Gitter mit Level
2 erreicht wird und die Datenpunkte in Minutenabstdnden vorliegen, sind die Vorhersagen
schnell genug verfiigbar.

Generell ist bereits die unoptimierte Rechenzeit des Ansatzes gering genug, um einige
Hundert bis wenige Tausend Gitterpunkte in Echtzeit verwenden zu kdnnen. Das vorge-
stellte ,DAX"” Experiment benotigt zum Beispiel 769 Gitterpunkte. Durch die Verwendung
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Abbildung 6.1.: Benotigte Rechenzeit fiir unterschiedliche Datensétze bei den Experimenten
mit der hochsten Trefferrate.
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6. Beschleunigung der Zeitreihenanalyse

starkerer Hardware sollte noch eine deutliche Verbesserung erreicht werden konnen. Zudem
werden durch das Regularisierungsverfahren aus Abschnitt 3.4 in jedem Zeitschritt mehrere
Diinngitterfunktionen berechnet. Da jede Funktion unabhingig berechnet werden kann und
nur die verwendeten Zihlervariablen fiir die Vorhersage synchronisiert werden miissen,
kann dieses Verfahren sehr einfach tiber mehrere Knoten parallelisiert werden.

6.3. Ausgangspunkt und Methodik der Optimierungen

In vielen Anwendungsféllen kann eine lingere Rechenzeit fiir die Berechnung der Diinn-
gitterfunktion in Kauf genommen werden, da die Funktion anschliefsend zum Losen eines
nachgeschalteten Problems genutzt wird. Das heifit, die Berechnung der Diinngitterfunktion
dominiert nicht die gesamte Rechenzeit. Der vorgestellte Algorithmus zur Zeitreihenanalyse
dagegen erstellt eine Diinngitterfunktion pro Zeitschritt. Zudem wird diese Diinngitter-
funktion in jedem Zeitschritt fiir lediglich eine einzige Auswertung verwendet: Es wird der
néchste Wert vorhergesagt, anschlieflend wird auf den nidchsten Zeitschritt gewartet.

Das hat zur Konsequenz, dass die Berechnung der Diinngitterfunktionen den Gesamtauf-
wand klar dominiert. Das heifst, die Minimierung der benétigten Zeit fiir die Berechnung
der Diinngitterfunktion ist ein zentraler Ausgangspunkt zum Erreichen der Echtzeitfahigkeit
in zeitlich restriktiveren Szenarien. Daneben spielt noch die Vorverarbeitung eine wichtige
Rolle. Wird ein Attributraum mit zu hoher Dimension und damit zu vielen Gitterpunkte ge-
wihlt, kann dies die benotigte Rechenzeit ebenfalls erheblich erhthen. An dieser Stelle wird
allerdings versucht, Verbesserungen zu erzielen, die weitgehend unabhéngig von einzelnen
Datensatzen sind. Daher liegt der Fokus in den ndchsten Abschnitten auf der Berechnung
der Diinngitterfunktion.

Da effiziente Algorithmen fiir diinne Gitter und fiir das Data Mining auf diinnen Git-
tern bereits existieren [Pflio, Frai1], werden nur Optimierungen betrachtet, die speziell
fir die Zeitreihenanalyse interessant sind. Ausgenutzt wird dabei, dass es sich bei der
Zeitreihenanalyse um ein iteriertes Problem handelt, bei dem zwischen den Zeitschritten als
einzige Anderung das Hinzuftigen eines Datenpunktes und die Auswertung der berechneten
Diinngitterfunktion an einer anderen Stelle besteht. Dies erdffnet mehrere Strategien zur
Optimierung, die in den folgenden Abschnitten vorgestellt werden.

Als Datensitze zur Untersuchung der Optimierungen wurden der synthetische Datensatz
,Muster” und der nichtsynthetische Datensatz ,FX” ausgewéahlt. Wo sinnvoll moglich wurden
Experimente ausgewdhlt, die gleichzeitig eine hohe Trefferrate besitzen, damit Auswirkungen
der Optimierungen auf die Trefferrate ebenfalls berticksichtigt werden koénnen.
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Abbildung 6.2.: Koeffizienten-Wiederverwertung mit zwei Datensdtzen. Dabei wird die
Rechenzeit mit und ohne Wiederverwertung der Koeffizienten verglichen.

6.4. Wiederverwertung des Koeffizientenvektors tiber mehrere
Zeitschritte

Dadurch, dass das zu losende Vorhersageproblem zwischen zwei Zeitschritten sehr dhnlich
ist, wird erwartet, dass auch die zum Losen der Aufgabe berechneten Diinngitterfunktionen
sehr dhnlich sind. Da mit dem Konjugierte-Gradienten-Verfahren ein iteratives Verfahren
zum Losen der Gleichungssysteme verwendet wird, kann die benétigte Rechenzeit verringert
werden, indem ein guter Startvektor fiir das CG-Verfahren geraten wird, durch den die
Fehlerschranke des Losers mit moglichst wenig Iterationen erreicht wird. Aufgrund der
Verwandtschaft der Probleme tiber die Zeit steht ein passender Kandidat als Startvektor
bereit. Es wird der Koeffizientenvektor & der Diinngitterfunktion des letzten Zeitschritts als
Eingabe fiir den Loser verwendet. Damit diese Optimierung durchgefiihrt werden kann, ist
es notwendig, das gleiche Gitter wie im letzten Zeitschritt zu verwenden.

Zur Evaluierung wurden bei beiden betrachteten Datensédtzen die besten einzelnen Konstruk-
toren mit Schrittanzahl m = 2 verwendet. Als Testdatenmenge wurde beim , FX“-Datensatz
wie iiblich 2000 Zeitschritte verwendet, beim ,,Muster“-Datensatz bestand die Testdaten-
menge aus 1000 Elementen. Die Ergebnisse sind in Abbildung 6.2 zu sehen, wobei die
Dauer jeweils einmal mit und einmal ohne die Wiederverwertung des Koeffizientenvektors
dargestellt wird.

Bei beiden Datensdtzen kann eine deutliche Reduktion der benétigten Rechenzeit beobachtet
werden, wenn der Koeffizientenvektor wiederverwertet wird und mehr als ein Gitterpunkt
vorliegt. Die erzielte Reduktion der Rechenzeit kann dabei bis zu einem Drittel der unop-
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6. Beschleunigung der Zeitreihenanalyse

timierten Rechenzeit betragen, wobei der Nutzen mit steigendem Level scheinbar wieder
geringer wird.

Ein grofier Vorteil dieses Ansatzes ist, dass durch die Wiederverwertung der Koeffizienten
keine Verschlechterung der Vorhersagen zu befiirchten ist. Zudem wurde kein relevantes
Experiment beobachtet, bei dem die Wiederverwertung der Koeffizienten zu mehr Rechenzeit
fiihrt.

6.5. Levelreduktion durch Adaptivitat

Der unmittelbare Grund fiir die hohere Rechenzeit auf einem Gitter mit hoherem Level
oder der Verwendung einer hoheren Dimension ist die resultierende grofiere Anzahl an
Gitterpunkten. Durch adaptive Verfeinerung kann die Gesamtanzahl an Gitterpunkten fiir ein
gegebenes Problem hiufig stark reduziert werden. Zusétzlich konnen bei dem vorliegenden
iterierten Problem die Kosten fiir die Verfeinerungsschritte auf die Zeitschritte verteilt
werden.

Durch die Ahnlichkeit der Probleme iiber die Zeit ist eine Wiederverwertung der Gitter
moglich. Da sich die Datenpunkte nur langsam {tiber die Zeit d&ndern, gilt dies auch fiir durch
Verfeinerung weiter angepasste Gitter. Da es durch Verfeinerung moglich ist, nur in Regionen
Gitterpunkte zu verwenden, wo diese auch tatsédchlich benotigt werden, kann auf einem
deutlich niedrigeren initialen Level gerechnet werden. In den ersten Zeitschritten ist dann
ein etwas erhohter Rechenbedarf notwendig, um einmalig ein passend verfeinertes Gitter zu
erstellen. Diese initiale Verfeinerung wird hier als unproblematisch bewertet, da sie als Teil
einer Aufwarmphase betrachtet werden kann. Anschliefsend wird ein Gitter verwendet, das
dhnliche Trefferraten besitzt, wie sie bei einem unverfeinerten Gitter auf hoherem Level zu
messen sein sollten. Da die Gesamtanzahl der Gitterpunkte geringer ist, sind auch geringere
Rechenzeiten zu erwarten.

Eine initiale Verfeinerung allein reicht nicht, um die Anderungen im Attributsraum beim
Durchlaufen einer Zeitreihe korrekt widerzuspiegeln. Die neuen Punkte im Attributsraum
erfordern weitere Verfeinerungsschritte. Da sich die Datenpunkte aber nur langsam dndern,
reichen sehr wenig Verfeinerungsschritte in jedem betrachteten Zeitschritt aus. Eine Verfeine-
rung in jedem Zeitschritt hat die weitere negative Konsequenz fiir die Laufzeit, dass sich die
Anzahl der Gitterpunkte beim Durchlaufen der Zeitreihe stindig erhoht. Damit der Vorteil
der geringeren Anzahl an Gitterpunkten bei diesem Verfahren nicht verloren geht, ist es
daher notwendig, Gitterpunkte wieder zu entfernen. Wie in Abschnitt 2.7 erkldrt, konnen als
einfache Vergroberungsstrategie Gitterpunkte mit niedrigen Koeffizientenwerten entfernt
werden. Dies muss immer durchgefiihrt werden, wenn die Gesamtanzahl der Gitterpunkte
zu hoch wird.

Der gesamte Algorithmus ldsst sich damit wie folgt beschreiben. Es wird eine gewtinschte
Anzahl an Gitterpunkten ¢ vorgegeben, die so gewahlt sein muss, dass sich eine ausrei-
chend gute Vorhersagequalitdt damit erreichen ldsst. In der Aufwarmphase wird durch eine
vorgegebene Anzahl an Modifikationsschritten s ein moglichst passendes Gitter aufgebaut.
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6.5. Levelreduktion durch Adaptivitat

Algorithmus 6.1 Verfeinerungs- und Vergroberungsschema

procedure CREATESPARSEGRIDFUNCTION(trainingSet, A, lastGrid)
f <= SOLVELEASTSQUAREPROBLEM(trainingSet, lastGrid)
« <— GETCOEFFICIENTS(f)
gridPoints <— GETS1ZE(lastGrid)
for t =1 — refinementSteps do
if gridPoints < targetGridPoints then
newGrid <— REFINEGRID(lastGrid, x)
else
newGrid <— ENCOARSENGRID(lastGrid, )
end if
f <— SOLVELEASTSQUAREPROBLEM(trainingSet, newGrid)
end for
end procedure

Dabei wird so lange verfeinert, bis die t Gitterpunkte tiberschritten werden. Dann wird
vergrobert, bis wieder weniger als t Gitterpunkte vorliegen. Das resultierende Gitter sollte
nach den vorgegebenen s Schritten gut auf die Datenpunkte passen. Wahrend des Durchlau-
fens der Zeitreihe wird eine kleine Anzahl an Modifikationsschritten in jedem Zeitschritt
durchgefiihrt, wodurch ein passendes Gitter in jedem Zeitschritt vorliegt.

Das kontinuierliche Verfeinern und Vergrobern an den einzelnen Zeitschritten ist in Algo-
rithmus 6.1 dargestellt. Mit diesem Verfahren pendelt die Anzahl der Gitterpunkte um den
vorgegebenen Wert, wobei in jedem Zeitschritt ein passend verfeinertes Gitter vorliegt.

Fiir die hier vorgestellten Experimente wird lediglich ein Modifikationsschritt an jedem
Zeitpunkt durchgefiihrt. Dabei werden jeweils 5 Gitterpunkte verfeinert. Falls die Anzahl der
Gitterpunkte grofser oder gleich der vorgegebenen Zahl an Gitterpunkten ist, wird versucht,
die Differenz zur gewiinschten Anzahl an Gitterpunkten zuziiglich 5 weiterer Gitterpunkte
zu entfernen. Da nur Blattknoten der hierarchischen Basis entfernt werden konnen, wird die
Anzahl der zu entfernenden Gitterpunkte bei Misserfolgen im nédchsten Zeitschritt jeweils
um zwei pro erfolglosem Versuch erhoht.

Bei diesem Ansatz miissen zwei Aspekte beachtet werden. Werden Gitterpunkte mittels
adaptiver Verfeinerung hinzugefiigt oder mittels adaptiver Vergroberung entfernt, dann
miissen im Anschluss die Koeffizienten der zugehorigen Diinngitterfunktion neu berechnet
werden. Das heifst, es muss erneut ein Gleichungssystem gelost werden, was vergleichsweise
teuer ist. Im Allgemeinen wird dieser Ansatz umso besser funktionieren, je mehr unnotige
Gitterpunkte durch adaptive Verfeinerung eingespart werden kénnen, da dann kleinere und
schneller 16sbare Gleichungssysteme zu losen sind.

Des Weiteren erfordert es dieser Ansatz, dass eine passende Anzahl an Gitterpunkten fiir
adaptiv angepasste Gitter gewdhlt wird. Werden zu wenig Gitterpunkte gewéahlt, dann
nimmt die Vorhersagequalitit ab. Werden zu viele Gitterpunkte verwendet, kann der Vorteil
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6.6. Zoom-Ansatz

der geringeren Rechenzeit entfallen. Letzteres gilt dabei weniger wegen der Anzahl der
Gitterpunkte, sondern vor allem aufgrund des Losens weiterer Gleichungssysteme.

Aufgrund dieser Eigenheiten des Ansatzes wurden Experimente mit relativ hoher Dimension
und Level durchgefiihrt. Variiert wurde die Schrittanzahl der Konstruktoren und damit die
Dimension. Das Gitter wurde fiir die unoptimierten Durchldufe mit Level 6 gewahlt. Fiir
die Experimente mit Adaptivitdt wurde ein Gitter mit Level 3 gewéhlt, wobei als Ziel der
Verfeinerungs- und Vergroberungsstrategie 500 Gitterpunkte vorgegeben wurden. Dieser
Parameter wurde wihrend der Experimente nicht variiert, was die Rechenzeit des adaptiven
Ansatzes bei niedrigerer Dimension erhoht.

Die Ergebnisse dieser Experimente fiir den Datensatz ,Muster” sind in Abbildung 6.3 zu
sehen. Bei niedriger Dimension ist die Verwendung des adaptiven Ansatzes etwas teurer, die
Rechenzeit ist hoher als beim unoptimierten Ansatz. Sobald drei Dimensionen vorliegen,
dreht sich dies jedoch, da die Anzahl der Gitterpunkte auch auf einem diinnen Gitter mit
zunehmender Dimension exponentiell steigt. Fiir noch hohere Dimensionen wird erwartet,
dass noch mehr Rechenzeit vermieden werden kann. Gleichzeitig ist eine leichte Verringerung
der Qualitdt der Vorhersagen zu beobachten. Es wird jedoch davon ausgegangen, dass dies
durch eine bessere Wahl der gewiinschten Anzahl an Gitterpunkten kompensiert werden
kann. Es ist allerdings moglich, dass der Rechenzeitvorteil dann erst bei einer noch hoheren
Dimension sichtbar wird.

Ahnliche Ergebnisse zeigt der ,FX“-Datensatz, wie in Abbildung 6.4 zu sehen ist. Auch
hier zeigt die Optimierungen eine Verringerung der Rechenzeit bei einem Problem in drei
Dimensionen. Die Qualitdt der Vorhersage ist dabei vergleichbar mit den unoptimierten
Ergebnissen. Allerdings ist zu bedenken, dass zum Erreichen sehr guter Vorhersagen mit die-
sem Datensatz in Abschnitt 5.3.3 gezeigt wurde, dass hierfiir bereits sehr wenig Gitterpunkte
ausreichen.

Der vermutete Rechenzeitvorteil durch die Verwendung der adaptiven Verfeinerungsstrategie
konnte in den durchgefiihrten Experimenten bestitigt werden. Die Wahl einer passenden
Anzahl an Gitterpunkten hat sich in der Praxis allerdings als schwierig erwiesen.

6.6. Zoom-Ansatz

Eine Alternative zu den vorgeschlagenen Strategien entsteht durch eine spezielle Betrachtung
des Attributraums. In jedem Zeitschritt ist bekannt, wo die zu berechnende Diinngitterfunk-
tion ausgewertet werden soll. Aufierdem findet genau eine Auswertung statt. Das heif3t, es
wird eigentlich nicht die vollstindige Funktion benétigt, sondern eine moglichst gute Appro-
ximation der Funktion an dem Punkt, an dem ausgewertet wird. Da Datenpunkte, die weit
entfernt vom Ort der Auswertung liegen, nur sehr geringen Einfluss auf die Auswertung am
aktuellen Punkt besitzen, kann bei weiter entfernten Datenpunkten eine lediglich sehr grobe
Approximation verwendet werden. Das wiederum bedeutet, dass weniger Gitterpunkte
verwendet werden kénnen, wodurch die Rechenzeit verringert wird.
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Eine Moglichkeit, dies zu realisieren, ist eine Verfeinerungsstrategie, die, wie im letzten
Abschnitt beschrieben, abwechselnd Vergroberungs- und Verfeinerungsschritte verwendet.
Dabei werden allerdings Gitterpunkte stdarker berticksichtigt, die sich ndher am Ort der
Auswertung befinden. Konkret wird zum Punkt der Auswertung hin verfeinert, bei den
durchgefiihrten Experimenten wurden konkret die 10 ndchsten Gitterpunkte verfeinert,
allerdings nur, falls sie Blattknoten darstellen.

Auch mit dieser Optimierungsstrategie wurden Experimente durchgefiihrt, deren Ergebnisse
in Abbildung 6.5 vorliegen. Es kann dabei erneut eine Reduktion der benétigten Rechenzeit
beobachtet werden, im Gegensatz zum zuvor vorgestellten Ansatz auch bereits bei zwei Di-
mensionen. Ahnlich wie beim letzten Ansatz ist ein leichtes Absinken der Vorhersagequalitit
zu beobachten. Beim ,,Muster”“-Datensatz konnte in zwei Dimensionen keine Verschlechte-
rung der Trefferrate beobachtet werden, sie lag mit und ohne Optimierung bei 97%. Bei zwei
Dimensionen sank die Trefferrate von 95% auf 93%. Beim , FX“-Datensatz war die Trefferrate
auf gleichem Niveau mit und ohne Verfeinerung der Umgebung. Sie lag bei 68% in einer
Dimension und bei 71% in zwei Dimensionen.

Dieser Ansatz kann weiter ausgebaut werden. Bisher wurde argumentiert, dass Gitterpunkte
nur in der Ndhe des Ortes der Auswertung bendtigt werden. Es ist naheliegend zu vermuten,
dass dies auch auf die Datenpunkte zutrifft, da weiter entfernte Datenpunkte ebenfalls
eine geringe Rolle fiir die aktuelle Auswertung spielen sollten. Um dies algorithmisch
umzusetzen, wird eine Entfernung gewihlt, ab der Datenpunkte nicht mehr als Teil der
Trainingsmenge berticksichtigt werden. Hier wurde eine Distanz von 0, 2 im betrachteten
Hyperwiirfel gewahlt, wobei als Metrik die euklidische Metrik zum Einsatz kam.
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6.6. Zoom-Ansatz

Bei Experimenten wurde festgestellt, dass die Rechenzeit deutlich verringert werden konnte.
Da allerdings gleichzeitig die Trefferrate drastisch sank, wurde diese Idee nicht weiter
verfolgt. Eine akzeptable Trefferrate konnte erst wieder erst wieder erreicht werden, als
wieder nahezu alle Punkte beriicksichtigt wurden.

Das Verfeinern der Umgebung um den Auswertungspunkt kann erfolgreich zur Reduktion
der Rechenzeit eingesetzt werden. Zuséitzlich kann dieser mit der zuvor vorgestellten Wieder-
verwertung des Koeffizientenvektors kombiniert werden. Dies fithrt zu weiter reduzierten
Rechenzeiten. Wie beim allgemeinen adaptiven Ansatz aus Abschnitt 6.5 ist es auch hier
wieder schwierig eine geeignete Anzahl an Gitterpunkten zu wéhlen, damit die Vorhersagen
qualitativ vergleichbar bleiben.

Dieser Ansatz besitzt einige Nachteile. Dadurch, dass immer neue lokale Probleme betrachtet
werden, sinkt die Qualitit der Regularisierung mit dem in 3.4 vorgestellten Verfahren. Der
Grund hierfiir ist, dass die lokalen Probleme strukturell unterschiedlich beschaffen sein
konnen und daher andere Werte fiir den Regularisierungsparameter benotigen.
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7. Zusammenfassung und Ausblick

In dieser Arbeit wurde die Zeitreihenanalyse auf diinnen Gittern betrachtet. Es wurden auf
diinnen Gittern basierte Algorithmen vorgestellt, die eine Losung des Vorhersageproblems
tiir Zeitreihen ermoglichen. Zudem sollte sichergestellt werden, dass die vorgestellte Lo-
sung auch in zeitkritischen Anwendungen nutzbar ist, weshalb einige Optimierungen zur
Verkiirzung der bendtigten Rechenzeit vorgestellt wurden.

Der vorgestellte Ansatz basiert auf diinnen Gittern, mit denen es moglich ist, Regressions-
und Klassifikationsprobleme aus dem Bereich des Data Minings zu losen. Auf diesen
Verfahren aufbauend wurde ein Algorithmus vorgestellt, mit dem zukiinftige Werte von
Zeitreihen durch Formulierung als Regressions- oder Klassifikationsproblem berechnet
werden konnen. Dafiir wurden Datenpunkte des Vorhersageproblems als Auswertungen
einer unbekannten Funktion interpretiert, die einem gegebenen Wertetupel den Wert im
ndchsten Zeitschritt zuordnet. Mit Methoden aus dem Bereich des Data Minings kann diese
unbekannte Funktion approximiert werden.

Fiir eine erfolgreiche Approximation der Vorhersagefunktion ist es notwendig die Daten der
Zeitreihen so vorzubereiten, dass durch die Data Mining Algorithmen auch tatsédchlich eine
passende Vorhersagefunktion approximiert wird.

Zur Validierung des Ansatzes wurden Experimente mit fiinf Datensdtzen durchgefiihrt,
von denen zwei der Datensétze synthetische Daten beinhalten und drei der Datensitze aus
nichtsynthetischen Daten bestehen. Die Vorhersagen fiir die synthetischen Daten entsprachen
exakt den gestellten Erwartungen, wobei die Trefferrate korrekter Vorhersagen sehr hoch
war. Bei den nichtsynthetischen Datensdtzen wurden deutlich weniger, allerdings akzeptabel
viele korrekte Vorhersagen gemessen. Dies ist vermutlich zum Teil auf die Qualitdt der Daten
zuriickzufiihren und zum Teil auf das Problem, dass eine geeignete Vorverarbeitung von
real gemessenen Daten duferst schwierig ist. Die gemessene Vorhersagequalitdt war dabei
mit dhnlichen Ansétzen vergleichbar.

Bei den durchgefiihrten Experimenten wurde festgestellt, dass die benotigte Rechenzeit fiir
gute Vorhersagen bereits vor Anwendung der vorgestellten Optimierungen relativ gering
war. Generell erfordern unterschiedliche Datensatze unterschiedliche Attributsraume und
gerade Attributsraume mit hoher Dimension und vielen Gitterpunkten benétigen unter
Umstdnden grofle Mengen an Rechenzeit. Da der vorgestellte Ansatz auf diinnen Gittern
basiert, tritt dieses Problem im Vergleich zu vollen Gittern weniger stark zutage. Durch die
zusétzlichen Optimierungen wurde eine weitere Verbesserung der Laufzeit beobachtet. Der
zentrale Ansatzpunkt fiir die vorgestellten Optimierungen war dabei, dass sich bei iterierten
Vorhersagen das Problem zwischen den Zeitschritten nur geringfiigig dndert, wodurch in
der Vergangenheit gewonnene Informationen weiter genutzt werden konnen.
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7. Zusammenfassung und Ausblick

Alles in allem besitzt der vorgestellte Ansatz eine gute Performance und insbesondere bei den
Experimenten mit synthetischen Datensétzen eine sehr hohe Genauigkeit der Vorhersagen,
die weitere Experimente mit nichtsynthetischen Daten wiinschenswert erscheinen lassen.
Die vorgestellten Optimierungen kdnnen dabei das Ziel erreichen, die Einsatzgebiete, bei
denen Vorhersagen in Echtzeit berechnet werden konnen, zu vergrofsern.

Ausblick

Auf dem vorgestellten Ansatz aufbauend, sind weitere Optimierungen moglich. Numerische
Verfahren wie die Vorkonditionierung der Gleichungssysteme der einzelnen Verfahren
konnen die bei einem gegebenen Verfahren benotigte Rechenzeit weiter reduzieren. Auch
ist der Ansatz, Informationen iiber mehrere Zeitschritte hinweg zu nutzen, wahrscheinlich
noch nicht ausgereizt, wodurch weitere Performanceverbesserungen moglich werden.

Wihrend die Qualitiat der Vorhersagen insgesamt als gut zu bewerten ist, sollten dennoch
weitere Experimente durchgefiihrt werden. Besonders Experimente mit nichtsynthetischen
Datensétzen, die eine hohe Qualitdt besitzen und gleichzeitig gut verstanden sind, wéren
duflerst sinnvoll. Durch derartige Experimente konnte der Nutzen des Ansatzes deutlich
besser abgeschitzt werden, da die fiir erfolgreiche Vorhersagen kritische Vorverarbeitung
vereinfacht wiirde.

Bei der Durchfiihrung der Experimente hat sich das Problem, eine geeignete Vorverarbeitung
fiir die Daten zu finden, als zentral fiir erfolgreiche Vorhersagen herausgestellt. Zudem
kann durch eine geeignete Vorverarbeitung eventuell ein Raum von niedriger Dimension
gewdhlt werden, in dem unnétige Dimensionen nicht in den Datenraum eingebaut werden.
Ebenfalls kann die Verwendung passender Attributskonstruktoren dazu fiihren, dass Muster
im Attributsraum zu finden sind, die sich mit weniger Datenpunkten gut reprasentieren
lassen. Das heifst, eine geeignete Vorverarbeitung kann sowohl zu besseren Vorhersagen als
auch zu schnelleren Vorhersagen fiihren.

Die Vorverarbeitung von Zeitreihen kann als Optimierungsproblem aufgefasst werden, das
durch die Wahl der Parameter bei der Konstruktion des Attributsraums gegeben ist. Ansitze
zur Losung dieses Problems wiirden vermutlich die grofiten Verbesserungen bei Verwendung
der vorgestellten Methode oder verwandter Methoden erlauben. Allerdings gilt letztlich
auch hier:

,A lack of information cannot be remedied by any mathematical trickery.”
- Cornelius Lanczos [Lan61]
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A. Anhang

A.1. Evaluation des Dichte-basierten Ansatzes

Bei der Evaluation des Dichte-basierten Ansatzes wurden dhnliche Trefferraten beobachtet,
wie sie auch bereits bei Verwendung der Methode der kleinsten Quadrate beobachtet wurden.
Wie die Abbildungen auf den néchsten Seiten zeigen, werden bei den einzelnen Experimenten
nahezu identische Trefferrate bei den einzelnen Datensitzen erreicht.

Fiir die Experimente bei diesem Ansatz etwa die doppelte Rechenzeit benétigt. Der Grund
dafiir ist, dass beim Dichte-basierten Ansatz eine Diinngitterfunktion pro Klasse des Problems
berechnet werden muss. Wie in 2.4 beschrieben, gilt dies jedoch auch fiir den auf der Methode
der kleinsten Quadrate basierenden Ansatz, da bei diesem bei mehr als zwei Klassen auch
mehrere Diinngitterfunktionen verwendet werden sollten.
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Abbildung A.1.: Qualitdt der Vorhersagen bei Verwendung des Dichte-basierten Ansatzes
bei verschiedener Attributkonstruktoren angewendet auf den ,Kurve”-
Datensatz. Dabei wird der Level des Gitters bei jedem Konstruktor variiert.
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rere Zeitreihen zur Vorhersage verwendet werden.
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Abbildung A.5.: Qualitdt der Vorhersagen bei Verwendung des Dichte-basierten Ansatzes
verschiedener Attributkonstruktoren angewendet auf den , FX”-Datensatz.
In den ersten drei Abbildungen wird der Level des Gitters zusétzlich
variiert. Die vierte Abbildung zeigt die Trefferraten, wenn mehrere Zeitrei-
hen zur Vorhersage verwendet werden, dabei wird eine stark modifizierte

86

80

70

45

1 2 3 4 5
Level

—eo—m=1wm=2-e-m=23

Zeitreihe verwendet.

korrekt (%)

80

70

60

50
45

Level

—eo—m=1wm=2-e-m=3

(b) Differenz-Konstruktor

korrekt (%)

80

70

60

50
45

Anzahl der Zeitreihen

—eo— Linear-K. —=— Differenz-K.

wendeten Zeitreihen



Literaturverzeichnis

[Bel61]

[BGo4]

[BG13]

[Biso6]

[BJRo8]

[CTo3]

[Dax]

[Dow]

[FPsS96]

[Fra11]

[Garo4]

[Gar11]

R. Bellman. Adaptive Control Processes: A Guided Tour. 'Rand Corporation. Research
studies. Princeton University Press, 1961. (Zitiert auf den Seiten 9 und 13)

H.-]. Bungartz, M. Griebel. Sparse grids. Acta Numerica, 13:1-123, 2004. (Zitiert
auf den Seiten 9 und 21)

B. Bohn, M. Griebel. An Adaptive Sparse Grid Approach for Time Series Predic-
tion. In J. Garcke, M. Griebel, Herausgeber, Sparse Grids and Applications, Band 88
von Lecture Notes in Computational Science and Engineering, S. 1-30. Springer Berlin
Heidelberg, 2013. (Zitiert auf Seite 13)

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., 2006. (Zitiert auf Seite 36)

G. E. Box, G. M. Jenkins, G. C. Reinsel. Time Series Analysis: Forecasting and Control.
Wiley Series in Probability and Statistics. Wiley, 2008. (Zitiert auf den Seiten 9
und 31)

L. J. Cao, F. Tay. Support vector machine with adaptive parameters in financial
time series forecasting. Neural Networks, IEEE Transactions on, 14(6):1506-1518,
2003. (Zitiert auf Seite 9)

Deutsche Borse Group Factsheet Dax. URL http://www.dax-indices.com/DE/
MediaLibrary/Document/Factsheet_DAX_de.pdf. (Zitiert auf Seite 57)

S&P Dow Jones Indices Factsheet and Methodology. URL http://wuw.
djindexes.com/literature/. (Zitiert auf Seite 60)

U. Fayyad, G. Piatetsky-shapiro, P. Smyth. From Data Mining to Knowledge
Discovery in Databases. Al Magazine, 17:37-54, 1996. (Zitiert auf Seite 14)

F. Franzelin. Classification with Estimated Densities on Sparse Grids. Diplomar-
beit, Technische Universitat Miinchen, 2011. URL http://www5.in.tum.de/pub/
franzelin_mall.pdf. (Zitiert auf den Seiten 25 und 70)

J. Garcke. Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten
diinnen Gittern. Dissertation, University of Bonn, 2004. (Zitiert auf den Seiten o,
13 und 25)

J. Garcke. Sparse Grid Tutorial. 2011. URL http://page.math.tu-berlin.de/
~garcke/paper/sparseGridTutorial.pdf. (Zitiert auf den Seiten 17 und 18)


http://www.dax-indices.com/DE/MediaLibrary/Document/Factsheet_DAX_de.pdf
http://www.dax-indices.com/DE/MediaLibrary/Document/Factsheet_DAX_de.pdf
http://www.djindexes.com/literature/
http://www.djindexes.com/literature/
http://www5.in.tum.de/pub/franzelin_ma11.pdf
http://www5.in.tum.de/pub/franzelin_ma11.pdf
http://page.math.tu-berlin.de/~garcke/paper/sparseGridTutorial.pdf
http://page.math.tu-berlin.de/~garcke/paper/sparseGridTutorial.pdf

Literaturverzeichnis

[GGo8]
[GGG1o]
[Goo]

[HDO™ 98]

[HHRoo0]

[HP13]

[HZ]JPg9]

[Lan61]

[Pfl10]

[PFPB13]

[Sheg4]

[SS10]

[Tru]
[Zeng1]

[Zhaos3]

T. Gerstner, M. Griebel. Numerical integration using sparse grids. Numerical
Algorithms, 18(3-4):209-232, 1998. (Zitiert auf Seite 13)

J. Garcke, T. Gerstner, M. Griebel. Intraday Foreign Exchange Rate Forecasting
using Sparse Grids, 2010. (Zitiert auf den Seiten 13, 34 und 66)

Google Finance. URL http://www.google.com/finance. (Zitiert auf den Sei-
ten 57 und 60)

M. Hearst, S. Dumais, E. Osman, J. Platt, B. Scholkopf. Support vector machines.
Intelligent Systems and their Applications, IEEE, 13(4):18-28, 1998. (Zitiert auf
Seite 9)

M. Hegland, G. Hooker, S. Roberts. Finite Element Thin Plate Splines in Density
Estimation, 2000. (Zitiert auf Seite 25)

A. Heinecke, D. Pfltiger. Emerging Architectures Enable to Boost Massively
Parallel Data Mining using Adaptive Sparse Grids. International Journal of Parallel
Programming, 41(3):357-399, 2013. (Zitiert auf Seite 13)

M. Y. Hu, G. P. Zhang, C. X. Jiang, B. E. Patuwo. A Cross-Validation Analysis
of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting.
Decision Sciences, 30(1):197-216, 1999. (Zitiert auf Seite 35)

C. Lanczos. Linear differential operators. Van Nostrand, London, 1961. (Zitiert auf
Seite 80)

D. Pfltiger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Disserta-
tion, Institut fiir Informatik, Technische Universitit Miinchen, Miinchen, 2010.
URL http://wwwb.in.tum.de/pub/pfluegeriOspatially.pdf. (Zitiert auf den
Seiten 9, 13, 19, 20, 21, 23, 28, 67 und 70)

B. Peherstorfer, F. Franzelin, D. Pfliiger, H.-J. Bungartz. Classification with
Probability Density Estimation on Sparse Grids. In Sparse Grids and Applications.
2013. Submitted. (Zitiert auf den Seiten 13 und 25)

J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. 1994. (Zitiert auf Seite 24)

R. Shumway, D. Stoffer. Time Series Analysis and Its Applications: With R Examples.
Springer texts in statistics. Springer, 2010. (Zitiert auf den Seiten 9 und 32)

TrueFX. URL http://www.truefx.com/. (Zitiert auf Seite 61)

C. Zenger. Sparse Grids. Notes on Numerical Fluid Mechanics, 31:241-251, 1991.
(Zitiert auf Seite 13)

G. Zhang. Time series forecasting using a hybrid {ARIMA} and neural network
model. Neurocomputing, 50(0):159 — 175, 2003. (Zitiert auf Seite 9)

Alle URLs wurden zuletzt am 9. 12. 2013 gepriift.

88


http://www.google.com/finance
http://www5.in.tum.de/pub/pflueger10spatially.pdf
http://www.truefx.com/

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift



	1 Einleitung
	2 Data Mining mit dünnen Gittern
	2.1 Was sind dünne Gitter?
	2.2 Knowledge Discovery und Data Mining
	2.3 Grundlagen der dünnen Gitter
	2.4 Klassifikation mittels der Methode der kleinsten Quadrate
	2.5 Klassifikation mittels Dichteschätzung
	2.6 Regressionaufgaben auf dünnen Gittern
	2.7 Adaptivität

	3 Zeitreihenanalyse mit dünnen Gittern
	3.1 Grundlagen der Zeitreihenanalyse
	3.2 Das Vorhersageproblem für Zeitreihen
	3.3 Zeitreihenanalyse als Data Mining Problem
	3.4 Regularisierung und Validierung
	3.5 Der gesamte Algorithmus

	4 Die Konstruktion von Attributräumen
	4.1 Das allgemeine Verfahren
	4.2 Attributkonstruktoren
	4.3 Über die Wahl der Datenpunkte
	4.4 Möglichkeiten der Datenvorverarbeitung
	4.5 Dimension des Dünngitterraums und Anzahl der Datenpunkte

	5 Datensätze und Vorhersagequalität
	5.1 Der synthetische Datensatz „Kurve“
	5.2 Der synthetische Datensatz „Muster“
	5.3 Experimente mit Finanzdatensätzen
	5.4 Interpretation der qualitativen Ergebnisse

	6 Beschleunigung der Zeitreihenanalyse
	6.1 Die verwendete Plattform
	6.2 Benötigte Rechenzeit ohne Optimierungen
	6.3 Ausgangspunkt und Methodik der Optimierungen
	6.4 Wiederverwertung des Koeffizientenvektors über mehrere Zeitschritte
	6.5 Levelreduktion durch Adaptivität
	6.6 Zoom-Ansatz

	7 Zusammenfassung und Ausblick
	A Anhang
	A.1 Evaluation des Dichte-basierten Ansatzes

	Literaturverzeichnis

