
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3511

Kompakte und ganzheitliche
Visualisierung von Ontologien

David Bold

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Steffen Lohmann, M.Sc.

Beginn am: 14. Juni 2013

Beendet am: 13. Dezember 2013

CR-Nummer: H.5.2, H.4.0, H.3.4, D.2.2

Kurzfassung

Im Kontext des Semantischen Webs und Linked Data sind Ontologien ein beliebtes Konzept
der Wissensrepräsentation für semantische Anreicherung und Strukturierung von Daten.
Bisher existieren nur Visualisierungskonzepte zur Darstellung von Teilaspekten von Ontolo-
gien. Ein Konzept zur Visualisierung aller Aspekte einer Ontologie fehlt bisher. Im Rahmen
dieser Arbeit werden sechs bestehende Visualisierungskonzepte auf ihre jeweiligen Stär-
ken und Schwächen analysiert und darauf aufbauend ein kompaktes und ganzheitliches
Visualisierungskonzept vorgestellt und weiterführend optimiert. Dieses Konzept versucht
die analysierten Schwächen bestehender Konzepte zu vermeiden und realisiert das entwi-
ckelte und optimierte Konzept in Form eines Prototypen. Zur Umsetzung der prototypischen
Realisierung werden acht verschiedene Grafikframeworks auf ihre Eignung für die Entwick-
lung des Prototypen untersucht und anhand in dieser Arbeit aufgestellten Kriterien eines
ausgewählt und verwendet. Die Architektur des realisierten Prototypen ist dokumentiert
und wurde durch eine Benutzerstudie im Rahmen dieser Arbeit evaluiert. Dabei wurden
Stärken und Schwächen des Visualisierungskonzepts herausgearbeitet und mit alternativen
Konzepten verglichen.

3

Abkürzungsverzeichnis

ARPA Advanced Research Projects Agency
RDF Resource Description Framework
RDFS Resource Description Framework Schema
OWL Web Ontology Language
OWL2 Web Ontology Language 2.0
W3C World Wide Web Consortium
MCF Meta Content Framework
URI Uniform Resource Identifier
HTML Hypertext Markup Language
UML Unified Modeling Language
ERM Entity-Relationship Model
BPMN Business Process Model and Notation
VOWL Visual Notation for OWL Ontologies
JUNG Java Universal Network/Graph Framework
FOAF friend-of-a-friend
MUTO modular-unified-tagging-ontology

5

Inhaltsverzeichnis

1. Einleitung 13
1.1. Zielsetzung . 14
1.2. Gliederung . 14

2. Grundlagen 15
2.1. Ontologie . 15
2.2. RDF . 18
2.3. RDF-Schema . 19
2.4. OWL . 20
2.5. OWL-API . 24
2.6. Protégé . 24

Protégé 3 . 25
Protégé 4 . 25
WebProtégé . 26
Protégé Plug-ins . 26

2.7. Graphen . 26
2.7.1. Anforderungen an die Darstellung von Graphen 27
2.7.2. Graphen Layout . 28

3. Themenverwandte Arbeiten 33
3.1. GrOWL . 33
3.2. SOVA . 38
3.3. OWLViz . 42
3.4. OntoGraf . 42
3.5. TGVizTab . 45
3.6. Jambalaya . 46
3.7. Zusammenfassung . 48

4. Konzept 49
4.1. VOWL 1.0 . 49
4.2. VOWL 2.0 . 52
4.3. Konzeptoptimierungen . 52

5. Frameworks für Graphen 57
5.1. GraphViz . 58
5.2. Grappa . 61
5.3. Eclipse Zest . 63

7

5.4. JGraph . 64
5.5. JUNG . 66
5.6. Prefuse . 69
5.7. Piccolo2D . 73
5.8. GraphStream . 75
5.9. Zusammenfassung . 76
5.10. Entscheidung . 76

6. Implementierung 77
6.1. Chronologischer Ablauf . 77

6.1.1. Darstellung der Grundformen . 77
6.1.2. Darstellung der VOWL-Elemente . 79
6.1.3. Darstellung der eingelesenen Ontologie 81

6.2. Architektur . 82
6.2.1. Das Paket Languages . 83
6.2.2. Das Paket testing . 83
6.2.3. Das Paket protege . 85
6.2.4. Das Paket types . 85
6.2.5. Das Paket infoPanel . 88
6.2.6. Das Paket GraphDataModifier . 90
6.2.7. Das Paket GraphRendering . 92

7. Evaluation 99
7.1. Durchführung . 99
7.2. Aufgaben . 100

7.2.1. Fragen zur MUTO-Ontologie . 100
7.2.2. Fragen zur FOAF-Ontologie . 101
7.2.3. Abschlussfragen . 101

7.3. Studienteilnehmer . 102
7.4. Resultate . 103
7.5. Fazit . 107

8. Zusammenfassung & Ausblick 109

A. Fragebogen 113

B. Weitere Visualisierungen 121

Literaturverzeichnis 123

8

Abbildungsverzeichnis

2.1. Beispiel eines Tripels aus Subjekt, Prädikat und Objekt und dessen Abbildung
als Relation. 16

2.2. Ontologie aus Quelltext 2.1 visualisiert mittels OWLViz. 17
2.3. Ontologie aus Quelltext 2.1 visualisiert mittels OntoGraf. 18
2.4. Ontologie aus Quelltext 2.1 visualisiert mittels SOVA [PK12]. 18
2.5. rdfs:domain und rdfs:range an einem Beispiel. 20
2.6. Eine Visualisierung der MUTO-Ontologie [LDA11] erstellt durch OntoGraf. . . 23
2.7. Ansicht des Liniennetzplans des VVS [Ver13]. 28
2.8. Beispiel eines hierarchischen Graphen. 29
2.9. Beispiel eines zirkulären Layouts, entnommen aus der Prefuse Demo [Ber13,

RadialGraphView]. 29
2.10. Darstellung eines kräftebasierte Algorithmus aus der Prefuse Demonstration

[Ber13]. 31

3.1. Darstellung der MUTO-Ontologie mittels GrOWL. 35
3.2. Konstrukte in GrOWL, entnommen aus [KWV07]. 35
3.3. Instanzen werden in GrOWL visualisiert. 36
3.4. Operatoren können zusammengefasst werden. 36
3.5. Darstellung der WINE-Ontologie mittels GrOWL. 37
3.6. Visualisierung der meaning of Property aus der MUTO-Ontologie. 37
3.7. Das SOVA Plug-in bei geladener MUTO-Ontologie. 39
3.8. Visualisierung der oneOf Property in SOVA, entnommen aus [PK10]. 40
3.9. Darstellung verschiedener Properties, entnommen aus [PK10]. 40
3.10. Darstellung von unionOf, entnommen aus [PK10]. 41
3.11. Kardinalität in SOVA, entnommen aus [PK10]. 41
3.12. Visualisierung der WINE-Ontologie mittels SOVA. 41
3.13. Visualisierung der MUTO-Ontologie mittels OWLViz. 42
3.14. OntoGraf: Tooltip bei Properties. Symmetrische Properties werden kreisförmig

dargestellt. 44
3.15. OntoGraf: Tooltip bei Klassen. 44
3.16. OntoGraf: Property-Übersicht. 44
3.17. Visualisierung mittels TGVizTab, Abbildung entnommen aus [Ala03]. 45
3.18. Jambalaya bietet verschiedene Ansichten zur Visualisierung. 46
3.19. Visualisierung mittels TreeMap-Ansicht in Jambalaya. 47
3.20. Visualisierung mittels ClassTree-Ansicht in Jambalaya. 47
3.21. Visualisierung mittels Domain- & Range-Ansicht in Jambalaya. 47

9

3.22. Übersicht der verwendeten Farben und Symbole. 48

4.1. Darstellung von Eigenschaften in VOWL 1.0 [NL13]. 50
4.2. Darstellung von Klassen (links) und Instanzen (rechts) in VOWL 1.0 [NL13]. . . 50
4.3. Darstellung der konzeptuellen Sicht aus VOWL 1.0 [NL13]. 51
4.4. Darstellung der integrierten Sicht aus VOWL 1.0 [NL13]. 51
4.5. Properties in VOWL 2.0. 52
4.6. Unterschiedliche Versionen für subPropertyOf. 53
4.7. Alternative Darstellung mehrfacher symmetrischer Properties. 54
4.8. Darstellung mehrfacher symmetrischer Properties. 54
4.9. Darstellung von owl:disjointWith (links oben), owl:unionOf (links unten),

owl:intersectionOf (rechts oben) und owl:complementOf (rechts unten) in
OWL 1.0. 54

4.10. Darstellung von owl:unionOf (links oben), owl:intersectionOf (links unten),
owl:disjointWith (rechts oben), und owl:complementOf (rechts unten) nach
Optimierung des Visualisierungskonzeptes. 55

4.11. Darstellung mehrfacher Properties gemäß Konzeptoptimierung. 55
4.12. Skizze der explorierbaren Detailansicht. 55

5.1. Der in Quelltext 5.1 beschriebene Graph nach der Generierung durch dot,
Abbildung entnommen aus [KN+91]. 59

5.2. Ein innerhalb 0,41 Sekunden generierter Graph, Abbildung entnommen aus
[Nor04]. 60

5.3. Aufbau von Grappa, entnommen aus [BML97]. 62
5.4. Klassenhierachie in Grappe, entnommen aus [BML97]. 62
5.5. Zest visualisiert einen Graphen [Vog11]. 63
5.6. Visualisierung des Codes aus Quelltext 5.4 mittels JGraph. 65
5.7. Visualisierung des Codes aus Quelltext 5.4 nach Veränderung der Größe des

dritten Knoten. 65
5.8. Freie Kanten im Raum und Namensänderung. 65
5.9. Visualisierung des Codes aus Quelltext 5.5 mittels JUNG. 68
5.10. Visualisierung eines komplexeren Graphen mittels JUNG, entnommen aus [Jun]. 68
5.11. Mittels Prefuse erstellte Visualisierung eines aggregierten Graphen. 69
5.12. Mittels Prefuse erstellte Visualisierung eines Graphen. 70
5.13. Visualisierung des Graphen aus Quelltext 5.6. 71
5.14. Visualisierung eines Graphen mittels Piccolo2D. 74
5.15. Visualisierung eines Graphen mittels Piccolo2D. 74
5.16. Visualisierung des Graphen aus Quelltext 5.8. 75
5.17. Visualisierung eines Graphen, entnommen aus [Gra10]. 76

6.1. Visualisierung des chronologischen Ablauf der Entwicklung. 77
6.2. In VOWL verwendete Kantenformen. 78
6.3. Ausschnitt eines Graphen, der alle benötigten Grundformen enthält. 78
6.4. Änderung der Visualisierung eines Graphen in Prefuse. 79
6.5. Sequenzdiagramm der erste Etappe. 79

10

6.6. Sequenzdiagramm der zweiten Etappe. 80
6.7. Darstellung der VOWL-Elemente innerhalb des Gaphens. 80
6.8. Sequenzdiagramm der dritten Etappe. 81
6.9. Schematische Dastellung der einzelnen Schritte der dritten Etappe. 81
6.10. Visualisierung der MUTO-Ontologie. 82
6.11. Paketansicht des Prototyps. 82
6.12. UML-Klassendiagramm des Paket Languages. 83
6.13. UML-Klassendiagramm des Paket testing. 84
6.14. UML-Klassendiagramm des Pakets protege. 85
6.15. UML-Klassendiagramm des Paket types. 86
6.16. UML-Klassendiagramm des Paket infoPanel. 88
6.17. Skizze der Datenstruktur. 89
6.18. UML-Klassendiagramm des Pakets GraphDataModifier. 91
6.19. UML-Klassendiagramm des Paket GraphRendering 92
6.20. Erforderliches Aussehen von symmetrischen Properties. 93
6.21. Darstellung mehrere symmetrische Properties. 94
6.22. Ausschnitt der Konzeptansicht aus VOWL 1.0 [NL13]. 94
6.23. Visualisierung der Kante AB und der Kante BA. 95
6.24. Erhoffter Lösungsansatz des Problems aus Abbildung 6.23. 95
6.25. Visuell nicht ansprechendes Ergebnis des Lösungsansatzes aus Abbildung 6.23. 96
6.26. Dritter Lösungsansatz. 96

7.1. Kenntnisstand über Ontologien im Allgemeinen. 102
7.2. Kenntnisstand über die Visualisierung von Ontologien und über die Visuali-

sierungskonzepte SOVA und VOWL. 103
7.3. Kenntnisstand über MUTO-Ontologie und die FOAF-Ontologie. 103
7.4. Wieviele Personen konnten alle Fragen zur MUTO-Ontologie beantworten? . . 104
7.5. Wieviele Personen konnten alle Fragen zur FOAF-Ontologie beantworten? . . . 104
7.6. Konnten die Probanden während der Evaluation Klassen und Properties intui-

tiv unterscheiden? . 105
7.7. Wie konnten die Probanden während der Evaluation Klassen und Properties

unterschieden? . 105
7.8. Gesamtbenotung der Visualisierungskonzepte durch die Probanden. 106

B.1. Visalisierung der FOAF-Ontologie mittels SOVA. 121
B.2. Visualisierung der FOAF-Ontologie mittels VOWL 2.0. 121

11

Quelltextverzeichnis

2.1. Textuelle Darstellung der Ontologie. 16
2.2. Eine Möglichkeit zur Formalisierung der Aussage: drei verschiedene Opern

sind verschieden. 21
2.3. Eine andere Möglichkeit zur Formalisierung der Aussage: drei verschiedene

Opern sind verschieden. 22
2.4. Eine Klasse aus OWL, entnommen aus der MUTO-Ontologie [LDA11]. 22
2.5. Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11]. 22
2.6. Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11]. 23
2.7. Eigenständige SubClassOf Definition. 23

3.1. Property meaning of aus der MUTO-Ontologie. 36
3.2. tagOf Property aus der MUTO-Ontologie. 40
3.3. tagLabel Property aus der MUTO-Ontologie. 40

5.1. Ein Beispiel eines in DOT beschriebenen Graphen, entnommen aus [KN+91]. . 59
5.2. Ein Beispiel für die Verwendung von DOT in Zest, Beispiel [Ste13] entnommen. 63
5.3. Objektorientierte Weise einen Graphen zu Erstellen, Beispiel [Vog11] entnommen. 63
5.4. Erstellung eines Demonstrationsgraphen mittels JGraph. 64
5.5. Erstellung eines Demonstrationsgraphen mittels JUNG. 67
5.6. Erstellung eines Demonstrationsgraphen mittels Prefuse. 72
5.7. Ergebnisse des integrierten Prefuse Benchmarks. 73
5.8. Erstellung eines Demonstrationsgraphen mittels GraphStream. 75

6.1. Ausschnitt der Datengenerierung eines Knoten. 79
6.2. Ausschnitt aus der Generierung des VOWL-Beispiels. 80
6.3. Auszug der LanguagesInfoPanelEN.java. 83
6.4. Auszug aus der Nodetype.java. 87

12

1. Einleitung

Die Entwicklung des Internets begann 1966 mit einem Projekt der Advanced Research Projects
Agency (ARPA), einer Behörde des Verteidigungsministeriums der Vereinigten Staaten, mit
dem Ziel Computer miteinander zu vernetzen. 1970 wurde begonnen, die verschiedenen,
bereits existierenden, Teilnetze zu einem großen Netz zusammenzufassen. Bereits in den
1960er Jahren wurden erste Ideen zur Realisierung einer Hypertextstruktur zur Informations-
navigation beschrieben, die die damals jedoch noch nicht real umgesetzt werden konnten
[KV06]. Der Gedanke neben Text-Anweisungen und Format-Anweisungen auch Befehle für
Hyperlinks [Wik13] zu integrieren, war jedoch schon geboren [KV06], auch wenn der Entwurf
durch Tim Berners-Lee erst 1989 öffentlich als Diskussionspapier vorgestellt werden sollte
[BL89].
Auch wenn Vordenker bereits damals die Möglichkeiten vernetzter Netzwerke und der Hy-
pertext Sprache erkannten, ist es fraglich, ob sie vorhersehen konnten, dass im Jahre 2012
bereits 34.3 % gesamten der Weltbevölkerung bzw. 63.2 % der Bevölkerung Europas und 78.6
% der Bevölkerung von Nord-Amerika diese Technologie verwendet. Zwischen 2000 und
2012 betrug das Wachstum der Anwender des World Wide Webs 566 % [Min12]. Diese Zahlen
verdeutlichen die Evolution einer Idee zu einem weltweit angewandten Medium.
Unser heutiger Alltag ist ohne das World Wide Web kaum mehr vorstellbar, es lässt uns
miteinander Meinungen austauschen und bietet uns eine unvorstellbare Menge an Informa-
tionen und Unterhaltung verschiedenster Art. Dienstleistungen rund ums World Wide Web
sind längst zu einem bedeutenden wirtschaftlichen Faktor geworden, das Netz steuert in
Deutschland beispielsweise bereits 21 % des Wachstums des Bruttosozialprodukt bei [Sch11].
Das Datenvolumen des World Wide Web wächst stetig weiter, im Jahre 2011 umfasste es be-
reits 1,8 Trillionen Gigabytes in fünf hundert Quadrillion „Dateien“, für das Jahr 2015 werden
8 Trillionen Gigabytes prognostiziert [GR11]. 90 % dieser Daten sind jedoch unstrukturiert
[GR11], sodass Werkzeuge benötigt werden, um diesen Datenberg zu durchsuchen. Mit dem
Semantischen Web wurde von Tim Berners-Lee eine Möglichkeit entworfen, Daten nicht
nur miteinander zu vernetzen, sondern Informationen samt ihrer Bedeutung miteinander zu
verknüpfen [BL98].
Um Daten zu strukturieren und semantisch anzureichern stellen Ontologien ein populäres
Konzept der Wissensrepräsentation dar. Ontologien bilden dabei ein Netz von Hierarchien
ab, dabei können Informationen durch logische Beziehungen miteinander verknüpft sein.
Aufgrund der gestiegenen Verbreitung der Nutzung von Ontologien in der Wissensrepräsen-
tation stieg auch der Wunsch, Ontologien visuell darzustellen. Dabei muss jedoch beachtet
werden, dass kein einheitliches Visualisierungskonzept für Ontologien existiert. Vorhanden
ist hingegen eine Vielzahl unterschiedlicher Ansätze, die häufig nur einen Teilaspekt grafisch
abbilden können.

13

1. Einleitung

1.1. Zielsetzung

Im Rahmen dieser Arbeit soll eine kompakte und ganzheitliche Visualisierung für Ontologien
entwickelt und prototypisch umgesetzt werden. Die Visualisierung soll dabei die Konzepte
und Relationen der Ontologien verständlich darstellen und einen Eindruck der enthaltenen
Daten der Instanzen vermitteln. Die meisten, der in OWL spezifizierten Ontologie-Konstrukte
sollen auf kompakte und verständliche Weise dargestellt werden, während Details interak-
tiv exploriert werden können. Das Visualisierungskonzept soll, mit realen Daten aus einer
Nutzerstudie, evaluiert werden. Die Ergebnisse der Studie werden im Anschluss ausgewertet
und diskutiert.

1.2. Gliederung

In diesem Abschnitt wird ein Überblick über die Struktur dieser Arbeit vermittelt.

Kapitel 2 – Grundlagen: Dieses Kapitel erläutert die Themenfelder, die dieser Arbeit zugrun-
de liegen. Hierzu zählen vor allem Ontologien und ihre Darstellung.

Kapitel 3 – Themenverwandte Arbeiten: In diesem Kapitel werden verschiedene, bereits exis-
tierende Konzepte zur Visualisierung von Ontologien vorgestellt und ihre Stärken und
Schwächen erläutert.

Kapitel 4 – Konzept: In diesem Kapitel wird das verwendete und optimierte Konzept näher
erläutert, welches die Vorlage der prototypischen Umsetzung bildet.

Kapitel 5 – Frameworks für Graphen: In diesem Kapitel werden verschiedene Frameworks
für Graphen, speziell für Knoten-Kanten-Diagramme vorgestellt und auf ihre Eignung,
die spätere prototypische Umsetzung zu unterstützen, untersucht.

Kapitel 6 – Implementierung: In diesem Kapitel wird die Struktur und Architektur der pro-
totypischen Umsetzung beschrieben und das zeitliche Vorgehen während der Imple-
mentierung erläutert.

Kapitel 7 – Evaluation: In diesem Kapitel wird das optimierte Konzept und dessen prototy-
pische Umsetzung im Rahmen einer Expertenstudie evaluiert.

Kapitel 8 – Zusammenfassung & Ausblick: Dieses abschließende Kapitel gibt einen zusam-
menfassenden Überblick über die Arbeit und bietet einen Ausblick auf weitere Aspekte,
die in fortführenden Arbeiten behandelt werden könnten.

14

2. Grundlagen

Dieses Kapitel enthält die Grundlagen, die dem Verständnis dieser Arbeit dienen. Hierzu
gehört die Einführung und Vorstellung von Ontologien sowie deren Anwendung und Visua-
lisierung.

2.1. Ontologie

Der Begriff der Ontologie entstammt der Philosophie. Er beschreibt sowohl die Möglichkeiten
als auch die Bedingungen des Seienden und setzt sich dabei sowohl mit den Fähigkeiten als
auch den Grenzen des menschlichen Wahrnehmens und Erkennens auseinander.
In vielen Bereichen der modernen Welt muss Wissen mit anderen geteilt, Erkanntes und
Erdachtes repräsentiert, sowie Sachverhalte, Regeln und Fakten modelliert werden. Menschen
verwenden beim Erlernen von Fachwissen verschiedene Hilfsmittel wie Lehrbücher, Regel-
werke, Lexika oder Schlagwortregister. In der Regel können Menschen aus unstrukturierten
Texten Zusammenhänge und die verwendeten Begriffe erkennen.
Sollen Maschinen Entscheidungen auf Basis ihres gespeicherten Wissens treffen, so wird
eine Repräsentation der zugrunde liegenden Begriffe und deren Zusammenhänge benötigt.
Hilfsmittel hierfür können Ontologien sein. Ontologien ermöglichen die maschinelle Wieder-
verwendung von Wissen und die Erstellung automatischer Schlussfolgerungen [Hes02].
Tom Gruber definierte eine Ontologie 1992 als formale Spezifikation einer Konzeptualisie-
rung.

„An ontology is a specification of a conceptualization“ [G+93]

Ontologien beschreiben einen Wissensbereich mithilfe standardisierter Terminologien und
definieren die Beziehungen und Ableitungsregeln zwischen den zuvor definierten Begriffen.
Klassen, Individuen, Relationen, Funktionen und Axiome sind ihre Hilfsmittel. [G+93].
Innerhalb einer Ontologie werden Axiome als Aussagen bezeichnet, die immer erfüllt und
damit wahr sein müssen. Mithilfe von Axiomen lassen sich beispielsweise Vererbungsregeln
zwischen Klassen und Relationen definieren. Enthält eine Ontologie Axiome, kann sie als
schwergewichtig eingeteilt werden, andernfalls als leichtgewichtig.
Relationen sind gerichtet und verweisen auf Klassen oder Individuen. Sätze entstehen durch
das Verknüpfen von Informationen. Informationen setzen sich immer aus einem Tripel beste-
hend aus Subjekt, Prädikat und Objekt zusammen [Hit07]. Abbildung 2.1 verdeutlicht dies
anhand eines Beispiels.

15

2. Grundlagen

Der Mount Everest ist 8.848 Meter hoch.

Subjekt PrädikatObjekt

Mount
Everest

8.848m
Höhe

Abbildung 2.1.: Beispiel eines Tripels aus Subjekt, Prädikat und Objekt und dessen Abbildung
als Relation.

Veranschaulichung anhand eines Beispiels

Als Beispiel sei eine Ontologie gewählt, die die Existenz von vier Personen, von denen je zwei
weiblich und männlich sind, modelliert. Diese Ontologie kann, wie in Quelltext 2.1 gezeigt,
textuell dargestellt werden. In diesem Beispiel wurden die Klassen „Person“, „Frau“ und
„Mann“ definiert. „Frau“ und „Mann“ wurden als Unterklasse der Klasse „Person“ definiert.
Beide enthalten jeweils zwei Individuen. Diese Ontologie hat als Axiom, dass die Teilmenge
von männlich und weiblich nur die leere Menge enthält, sie sind disjunkt.
Die in Quelltext 2.1 gezeigte Ontologie wurde mittels eines Werkzeugs erstellt, das in Ab-
schnitt 2.6 näher beschrieben wird. Das in Quelltext 2.1 verwendete Dateiformat wird in den
Abschnitten 2.2, 2.3 und 2.4 näher beschrieben.

Quelltext 2.1: Textuelle Darstellung der Ontologie.
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#"

xml:base="http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146"/>

<owl:Class rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Person"/>

<owl:Class rdf:about=

16

2.1. Ontologie

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann">

<rdfs:subClassOf rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Person"/>

</owl:Class>

<owl:Class rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Frau">

<rdfs:subClassOf rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Person"/>

<owl:disjointWith rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann"/>

</owl:Class>

<owl:NamedIndividual rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P1">

<rdf:type rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Frau"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P2">

<rdf:type rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Frau"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P3">

<rdf:type rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P4">

<rdf:type rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann"/>

</owl:NamedIndividual>

</rdf:RDF>

Ontologien werden häufig visuell dargestellt. Dies kann beispielsweise mithilfe der Werkzeu-
ge OWLViz (Abbildung 2.2), OntoGraf (Abbildung 2.3) und SOVA (Abbildung 2.4) geschehen.
Die verfügbaren Werkzeuge unterscheiden sich im Umfang ihrer Darstellung, so stellt OW-
LViz beispielsweise keine Individuen dar. OntoGraf visualisiert hingegen die Wurzel aller
Klassen, owl:Thing nicht. Alle drei hier gezeigten Visualisierungen werden in Kapitel 3
detailliert beschrieben.

Abbildung 2.2.: Ontologie aus Quelltext 2.1 visualisiert mittels OWLViz.

17

2. Grundlagen

Abbildung 2.3.: Ontologie aus Quelltext 2.1 visualisiert mittels OntoGraf.

Abbildung 2.4.: Ontologie aus Quelltext 2.1 visualisiert mittels SOVA [PK12].

2.2. RDF

Das Resource Description Framework (RDF) ist ein System, welches vom World Wide Web
Consortium (W3C) zur Beschreibung von Metadaten entwickelt wurde. RDF basiert zum
Teil auf dem von Ramanathan V. Guha 1995 entworfenen Meta Content Framework (MCF)
[Int13] und ist dabei eines von vielen Methoden zur Formalisierung logischer Ausdrücke
über beliebige Dinge. Damit ist es, genau wie die darauf aufbauenden Resource Description
Framework Schema (RDFS) und Web Ontology Language (OWL), ein Grundbaustein des
Semantischen Webs. RDF verwendet aus UML-Klassendiagrammen und Entity-Relationship-
Modellen bekannte Methoden zur Modellierung von Konzepten.
Jede Elementaraussage in RDF ist ein Tripel bestehend aus Subjekt, Prädikat und Objekt.

18

2.3. RDF-Schema

Das Prädikat und das Objekt sind Ressourcen, die das Subjekt näher beschreiben. Ein Objekt
kann dabei eine beliebige Ressource sein. Alle Bezeichner in RDF müssen eindeutig sein,
daher werden hierfür Uniform Resource Identifier (URI) verwendet [BL94]. Ontologien lassen
sich mit RDF formalisieren, sie werden im RDF-Format meist mit dem Mime-Type XML
abgespeichert.

2.3. RDF-Schema

RDFS ist eine Abkürzung für das Resource Description Framework Schema, welches
ein von der W3C entworfenes Hilfsmittel zur Formalisierung von Ontologien ist. Es bie-
tet ein Vokabular für die Modellierung von Ontologien. RDFS repräsentiert die vorkom-
menden Ressourcen durch deren Eigenschaften und Relationen. RDFS greift dabei auf
die Idee des mengentheoretischen Klassenmodells zurück, bei der Klassen und Eigen-
schaften getrennt voneinander modelliert werden. RDFS definiert hierzu Klassen und Ei-
genschaften. Klassen werden in RDFS durch die Attribute rdfs:Resource, rdfs:Class,

rdfs:Literal, rdfs:Datatype, rdf:XMLLiteral und rdf:Property näher beschrieben,
während Eigenschaften durch rdfs:range, rdfs:domain, rdf:type, rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:label und rdfs:comment näher definiert werden. Des Weite-
ren enthält RDFS weitere Begriffe wie Container Classes und RDF Collections [VVVM04].
RDFS stellt eine abwärts kompatible Schemaerweiterung für RDF dar.

rdfs:Resource: alles innerhalb von RDFS ist eine, durch eine URI eindeutig bestimmte, Res-
source.

rdfs:Class: eine Klasse fasst eine Menge gleichartiger Attribute zusammen, sie können In-
stanzen anderer Klassen sein.

rdfs:Literal ist innerhalb von RDFS ein atomarer Wert, beispielsweise ein String oder ein
Zahlenwert.

rdfs:subClassOf sind vergleichbar mit vererbten Klassen. SubClassOf ermöglicht Verer-
bungshierarchien, sie sind transitive Eigenschaften. Falls X eine Unterklasse von Y
ist, erbt X alle Eigenschaften von Y. Im Beispiel von Abbildung 2.1 wurde die Klas-
se „weiblich“ als Unterklasse von „Person“ definiert; dies wurde beispielsweise in
Abbildung 2.2 visualisiert.

rdfs:subPropertyOf ermöglichen die Vererbung von Eigenschaften, die äquivalent zu
rdfs:subClassOf sind.

rdfs:label ermöglicht die Festlegung eines Labels, das eine für Menschen besser lesbaren
Version der eindeutigen URI entspricht.

rdfs:comment ermöglicht die Angabe einer für Menschen besser verständlichen Beschrei-
bung einer Ressource.

19

2. Grundlagen

rdfs:domain legt das Subjekt einer Relation (und deren Typ) fest, Abbildung 2.5 verdeutlicht
dies anhand eines Beispiels. Falls eine Eigenschaft eine rdfs:domain Angabe enthält, so
wird sowohl der Definitionsbereich der Eigenschaft eingeschränkt als auch eine Aussage
über die Klasse, die den Definitionsbereich darstellt, getroffen.

rdfs:range legt das Objekt einer Relation (und deren Typ) fest, Abbildung 2.5 verdeutlicht
dies anhand eines Beispiels. Falls eine Eigenschaft eine rdfs:range Angabe enthält, so
wird sowohl Definitionsbereich der Eigenschaft eingeschränkt als auch eine Aussage
über die Klasse, die den Definitionsbereich darstellt, getroffen.

SubjektSubjekt ObjektObjekt
Prädikat

rdfs:range
rdfs:domain

Abbildung 2.5.: rdfs:domain und rdfs:range an einem Beispiel.

2.4. OWL

Die Web Ontology Language ist eine Spezifikation des W3C, sie stellt eine formale Beschrei-
bungssprache dar mit deren Hilfe Ontologien erstellt, publiziert und verteilt werden können.
Zusammen mit RDF und RDFS ist OWL ein Bestandteil der Semantic-Web-Initiative von Tim
Berners-Lee. Tim Berners-Lee ist ein Begründer des W3C, derzeitiger Direktor1 des W3C,
Erfinder der Hypertext Markup Language (HTML) und lehrt am Massachusetts Institute
of Technology. OWL erweitert die Ausdrucksmöglichkeit von RDFS und RDF. Dabei bleibt
OWL weiterhin kompatibel zu RDFS und RDF, denn RDF bzw. RDFS wird durch OWL nur
mit zusätzlichen Elementen erweitert. Jedes RDF- und jedes RDFS-Dokument wird durch
die OWL Erweiterung weiterhin als valide angesehen. Diese Erweiterung durch OWL er-
möglicht beispielsweise die Interferenzbildung und die Formalisierung von Ausdrücken der
Prädikatenlogik. OWL kann im Gegensatz zu RDF eine symmetrische, transitive, funktionale
und inverse Property beschreiben. Auch ist die Angabe einer Kardinalität in OWL möglich.
OWL kann Inferenzen bilden und unterstützt Mengenoperatoren. Da unterschiedliche An-
wendungsgebiete verschiedene Zielsetzungen haben, wurden vom W3C mehrere Versionen
von OWL definiert [Hit07]:

OWL Lite: ist eine Teilmenge von OWL DL und ist vor allem für einfache Taxonomien ge-
dacht. Taxonomien in OWL Lite sind entscheidbar, es kann stets entschieden werden,
ob eine Aussage aus einer Ontologie geschlossen werden kann oder nicht. Viele Sprach-
elemente aus RDFS sind entweder verboten oder nur stark eingeschränkt zugelassen,
beispielsweise sind bei Zahlenrestriktionen nur die beiden Zahlenwerte 1,0 erlaubt.

1http://www.w3.org/Consortium/

20

http://www.w3.org/Consortium/

2.4. OWL

OWL DL: ist eine Teilmenge von OWL Full, sie enthält alle Bestandteile von OWL Lite. Sie
wird von den meisten Werkzeugen unterstützt. Innerhalb von OWL DL kann entschie-
den werden, ob eine Aussage aus der Ontologie geschlossen werden kann. Es wird
explizit zwischen Klassen, Individuen, abstrakten und konkreten Rollen und Datenty-
pen unterschieden, zugelassen sind nicht alle Sprachelemente aus RDFS.

OWL Full: enthält die vollständige Ausdrucksstärke von OWL und beinhaltet daher ganz
RDFS. Im Gegensatz zu OWL DL und OWL Lite ist OWL Full unentscheidbar, das heißt,
es kann nicht entschieden werden, ob eine Aussage aus einer Ontologie geschlossen
werden kann. Hauptsächlich basiert die Unentscheidbarkeit auf der Möglichkeit die
Typen Individuen, Klassen und Rollen nicht zu trennen. Nach [Hit07] wird OWL Full
von Werkzeugen derzeit nur bedingt unterstützt.

OWL erweitert sowohl RDF als auch RDFS und ermöglicht beispielsweise die Formulierung
abzubilden, dass Individuen (Instanzen einer Klasse) unterschiedlich zueinander sind. Hierfür
bietet OWL verschiedene Möglichkeiten, siehe hierzu Quelltext 2.2 und Quelltext 2.3. Die
Aussage „Oper1, Oper2 und Oper3 sind unterschiedliche Opern“ wird in beiden Beispie-
len formalisiert. In Quelltext 2.2 enthält „Oper2“ die Angabe, dass sie ungleich „Oper1“ ist.
„Oper3“ beinhaltet die Divergenz zu „Oper1“ und „Oper2“. Damit kann „Oper1“ ebenfalls
nicht identisch zu „Oper2“ oder „Oper3“ sein. Die Spezifikation dieser Verschiedenartigkeit
erfolgt durch das OWL-Element <owl:differentFrom rdf:resource=URI/> innerhalb der
jeweiligen Oper. In Quelltext 2.3 wird dieselbe Aussage formalisiert. Hierbei erfolgt dies
jedoch nicht als Angabe innerhalb der jeweiligen Oper, sondern als eigenständige Aussage.
Durch <owl:AllDifferent> wird ausgedrückt, dass folgende Auflistung verschiedenartig ist.
<owl:distinctMembers rdf:parseType="Collection� definiert die zuvor erwähnte Auflis-
tung, die wiederum die Elemente Oper1, Oper2 und Oper3 beinhaltet.

Quelltext 2.2 Eine Möglichkeit zur Formalisierung der Aussage: drei verschiedene Opern
sind verschieden.
<Opera rdf:ID="Oper1"/>

<Opera rdf:ID="Oper2">

<owl:differentFrom rdf:resource="#Oper1"/>

</Opera>

<Opera rdf:ID="Oper3">

<owl:differentFrom rdf:resource="#Oper1"/>

<owl:differentFrom rdf:resource="#Oper2"/>

</Opera>

21

2. Grundlagen

Quelltext 2.3 Eine andere Möglichkeit zur Formalisierung der Aussage: drei verschiedene
Opern sind verschieden.
<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<Opera rdf:about="#Oper1"/>

<Opera rdf:about="#Oper2"/>

<Opera rdf:about="#Oper3"/>

</owl:distinctMembers>

</owl:AllDifferent>

Eine Klasse wird in OWL gemäß Quelltext 2.4 beschrieben. Sie enthält eine eindeutige URI, ein
für Menschen besser lesbares Label als Alternative zur URI und ein Kommentar als Beschrei-
bung. Der Kommentar spielt nur für Menschen eine Rolle, die Ontologie wird weder vom
Label noch vom Kommentar verändert. Die URI wird durch <owl:Class rdf:about=URL, das
Label durch <rdfs:label xml:lang=ISO-CODE> spezifiziert. Die Angabe <rdfs:subClassOf2

sagt aus, dass diese Klasse eine Unterklasse von „Item“ ist und daher dieselben Eigenschaften,
wie „Item“ enthält.

Quelltext 2.4 Eine Klasse aus OWL, entnommen aus der MUTO-Ontologie [LDA11].
<owl:Class rdf:about="http://purl.org/muto/core#Tagging">

<rdfs:label xml:lang="en">Tagging</rdfs:label>

<rdfs:comment xml:lang="en">A tagging links a resource to a user account and one or more

tags.</rdfs:comment>

<rdfs:subClassOf rdf:resource="http://rdfs.org/sioc/ns#Item"/>

<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>

</owl:Class>

Quelltext 2.5 beschreibt eine Eigenschaft nach OWL. Sie enthält eine eindeutige URI, ein für
Menschen besser lesbares Label als Alternative zur URI und einen Kommentar als Beschrei-
bung. rdfs:range beschreibt das Objekt dieser Relation während rdfs:domain das Subjekt
dieser Relation beschreibt. Falls die Angabe einer rdfs:range bzw. einer rdfs:domain fehlt,
so wird diese Eigenschaft nicht eingeschränkt. In diesem Fall bezieht sich die Relation auf
OWL:Thing und damit auf alle Subjekte innerhalb einer Ontologie.

Quelltext 2.5 Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11].
<owl:ObjectProperty rdf:about="http://rdfs.org/sioc/ns#account_of">

<rdfs:label xml:lang="en">account of</rdfs:label>

<rdfs:comment xml:lang="en">Refers to the foaf:Agent or foaf:Person who owns this

sioc:UserAccount.</rdfs:comment>

<rdfs:domain rdf:resource="http://rdfs.org/sioc/ns#UserAccount"/>

<rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>

<rdfs:isDefinedBy rdf:resource="http://rdfs.org/sioc/ns#"/>

<owl:inverseOf rdf:resource="http://xmlns.com/foaf/0.1/account"/>

</owl:ObjectProperty>

2http://www.w3.org/TR/owl-ref/#subClassOf-def

22

http://www.w3.org/TR/owl-ref/#subClassOf-def

2.4. OWL

Quelltext 2.6 beschreibt ebenfalls eine Eigenschaft. Diese Eigenschaft bezieht sich im Gegen-
satz zu Quelltext 2.5 nicht auf eine andere Klasse, sondern auf ein Literal und damit auf einen
atomaren Wert. Ansonsten verhält sich Quelltext 2.6 analog zu Quelltext 2.5.

Quelltext 2.6 Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11].
<owl:DatatypeProperty rdf:about="http://rdfs.org/sioc/ns#content">

<rdfs:label xml:lang="en">content</rdfs:label>

<rdfs:comment xml:lang="en">The content of the Item in plain text format.</rdfs:comment>

<rdfs:domain rdf:resource="http://rdfs.org/sioc/ns#Item"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://rdfs.org/sioc/ns#"/>

</owl:DatatypeProperty>

Falls eine Klasse als Unterklasse einer anderen Klasse modelliert werden soll, so kann dies
auf unterschiedliche Art und Weise realisiert werden. Die Klasse kann, wie in Quelltext 2.4
gezeigt, direkt innerhalb der Klassendefinition als Unterklasse einer anderen Klasse definiert
werden. Die Unterklassendefinition kann, wie in Quelltext 2.7 gezeigt, auch eigenständig
erfolgen.

Quelltext 2.7 Eigenständige SubClassOf Definition.
<SubClassOf>

<Class IRI="#SubClass"/>

<Class IRI="#ParentClass"/>

</SubClassOf>

Abbildung 2.6 stellt eine mögliche Visualisierung der MUTO-Ontologie [LDA11] dar. Die in
Quelltext 2.4 beschriebene Klasse ist in dieser Visualisierung hervorgehoben. Die Eigenschaf-
ten dieser Klasse werden hier als Tooltip wiedergegeben. Die Object Property aus Quelltext
2.5 und die Datatype Property aus Quelltext 2.6 werden in dieser Visualisierung nur in Form
von Pfeilen dargestellt.

Abbildung 2.6.: Eine Visualisierung der MUTO-Ontologie [LDA11] erstellt durch OntoGraf.

23

2. Grundlagen

Einen vollständigen Überblick über die Ausdrucksstärke und Mächtigkeit von OWL bietet
die W3C Empfehlung zu OWL [BVHH+04]. Dieses Dokument enthält auch eine ausführliche
Beschreibung der einzelnen Parameter. Eine neuere Version der OWL wurde in Form der
Web Ontology Language 2.0 (OWL2) bereits veröffentlicht [MGH+09]. OWL2 erweitert die
Ausdrucksmöglichkeiten von OWL um weitere Features, die von der W3C3 aufgelistet wer-
den, und enthält ebenfalls verschiedene Versionen für unterschiedliche Anwendungszwecke:
OWL 2 EL, OWL 2 QL, und OWL 2 RL. Die Gruppeneinteilung bei OWL2 erfolgt anhand
der Laufzeit, OWL 2 EL steht zum Beispiel für Polynomialzeitalgorithmen und eignet sich
beispielsweise für die Bildung von Schlussfolgerungen innerhalb von Polynomialzeit.

2.5. OWL-API

Die OWL-API ist eine 2003 erschienene JAVA Referenzimplementierung, mit deren Hilfe
OWL-Ontologien erstellt, geändert und serialisiert werden können. Die aktuellste Fassung
der OWL-API konzentriert sich auf die Version 2 von OWL, sie wird unter anderem von
Protégé 4 verwendet und unterstützt Protégé beim serialisieren [HB11]. Unterstützt werden
die folgenden Formate:

- RDF/XML

- OWL/XML

- Terse RDF Triple Language

- OWL Functional Syntax

- Manchester OWL Syntax

- KRSS Syntax

- ODA Flat File

2.6. Protégé

Protégé [Ins13a] ist ein Editor zur Modellierung von Ontologien. Seine Entwicklung begann
am Institut für Medizinische Informatik der Universität Stanford. Ziel der Entwicklung war
es, einen Editor zum Erstellen von Ontologien für medizinische Forschungszwecke zu schaf-
fen. Entwickelt wird Protégé in der Programmiersprache JAVA und seine Veröffentlichung
geschieht unter der Mozilla Public License [Moz13]. Mit Protégé kann eine Wissensdaten-
bank angelegt, diese mit Informationen befüllt und Wissen daraus abgefragt werden. Aktuell
werden drei verschiedene Versionen von Protégé angeboten [Ins13b]:

3http://www.w3.org/TR/2009/REC-owl2-quick-reference-20091027/#New_Features_in_OWL_2

24

 http://www.w3.org/TR/2009/REC-owl2-quick-reference-20091027/#New_Features_in_OWL_2

2.6. Protégé

- Protégé Desktop 3

- Protégé Desktop 4

- WebProtégé

Protégé Desktop 3 bzw. Protégé Desktop 4 werden innerhalb der Protégé Dokumentation
auch als P3 bzw. P4 bezeichnet.

Protégé 3

In Protégé 3 können Ontologien auf zwei unterschiedliche Arten modelliert werden:

Protégé-Frames: Informationen werden über eine bestimmte Domäne in einer hierarchi-
schen Struktur modelliert. Protégé arbeitet dabei mit einem frame-basierten Ansatz, der
die hierarchischen Strukturen durch Konzepte, Attribute und Instanzen darstellt. Die
Schnittstelle von Protégé zum Zugriff auf Ontologien ist dabei mit dem Protokoll Open
Knowledge Base Connectivity kompatibel [Ins13d].

Protégé-OWL: Mittels Protégé-OWL können Ontologien für das Semantische Web modelliert
werden. Zum Einsatz kommen dabei häufig die W3C Spezifikation RDFS[VVVM04]
und OWL[BVHH+04]. Eine OWL-Ontologie kann dabei Klassen, Eigenschaften und
Instanzen enthalten. Im Gegensatz zu Protégé-Frames kann Protégé-OWL auch lo-
gische Mechanismen verwenden. Dabei kann das implizit enthaltene Wissen durch
Schlussfolgerungen erweitern werden [Ins13e]. Protégé-OWL unterstützt nur OWL 1.0
[Ins13b].

Protégé 4

Protégé in Version 4 unterstützt nur noch Protégé-OWL, Protégé-Frames ist nicht mehr
enthalten. Protégé 4 unterstützt OWL 2.0 [Ins13b]. Des Weiteren sind in Version 4 einige
Verbesserungen enthalten, beispielsweise werden SPARQL-Abfragen ebenso wie die Javacode-
Generierung aus Ontologien4 unterstützt. Das Einlesen einer OWL-Ontologie, welche mit
Protégé-OWL aus Protégé 4 abgespeichert wurde, ist mit Protégé-OWL aus Protégé 3 nicht
immer fehlerfrei möglich.

4http://protegewiki.stanford.edu/wiki/P4_2_Release_Announcement

25

http://protegewiki.stanford.edu/wiki/P4_2_Release_Announcement

2. Grundlagen

WebProtégé

WebProtégé ist eine spezielle Version von Protégé , die direkt im Browser ausgeführt werden
kann. Serverseitig läuft WebProtégé in einen Servlet Container und benötigt daher einen
Server für Java-Web-Anwendungen, beispielsweise Apache Tomcat. Des Weiteren benötigt
WebProtégé die NoSQL Datenbank mongoDB5. Neben dem Download von WebProtégé im
Dateiformat „WAR“ kann WebProtégé auch online ausprobiert werden6. WebProtégé ist vom
Funktionsumfang derzeit noch stark eingeschränkt, die Version 2 von OWL wird aber bereits
unterstützt.

Protégé Plug-ins

Protégé stellt ein Framework dar, welches durch Plug-ins erweitert werden kann. Aufgrund
der Änderungen zwischen Protégé 3 und Protégé 4 sind die meisten Plug-ins nur in einer der
beiden Protégé Versionen lauffähig. Sie können über die jeweilige Protégé Webseite bezogen
[Ins13a] [Ins13a] werden. Plug-ins für Protégé 3 können nach den Kategorien

- Protégé Client-Server [Pro13a]

- Protégé-Frames [Pro13b]

- Protégé-OWL [Pro13c]

unterschieden werden. Plug-ins der Kategorie Protégé-Frames verwenden die Protégé API
während Plug-ins der Kategorie Protégé-OWL die Protégé-OWL API, verwenden. Plug-ins
für Protégé 4 müssen durch den Wegfall von Protégé-Frames nicht mehr in verschiedene
Kategorien eingeteilt werden. Des Weiteren verwenden sie eine neuere Version der Protégé-
OWL API [Ins13c], daher sind Protégé 4 Plug-ins inkompatible zu Protégé 3 Plug-ins.

2.7. Graphen

Ein Graph ist eine aus Knoten und Kanten bestehende Struktur. Kanten eines Graphen können
Gewichte enthalten, sie können gerichtet oder ungerichtet sein. Knoten repräsentieren meist
Werte. Formal lässt sich ein Graph wie folgt definieren [Lei13, Seite 11]:

Definition 1 Ein Graph ist ein Paar G = (V, E) disjunkter Mengen mit E ⊆ [V]2; die Elemente von
E sind also 2-elementige Teilmengen von V. Die Elemente von V nennt man die Ecken (oder Knoten)
des Graphen G, die Elemente E seine Kanten.

5http://www.mongodb.org/
6http://webprotege.stanford.edu

26

http://www.mongodb.org/
http://webprotege.stanford.edu

2.7. Graphen

Menschen können visuelle Informationen meist besser verarbeiten, daher werden Graphen
oft visualisiert, hierfür eignen sich vor allem Knoten-Kanten-Diagramme. Die Visualisierung
von Graphen findet unter anderem in der Informationsvisualisierung Anwendung. Knoten-
Kanten-Diagramme sollen helfen, Prozessabläufe und Beziehungen zu veranschaulichen, den
Zugang zu Massendaten durch Strukturierung zu erleichtern und die Mustererkennung der
Menschen unterstützen damit Relationen und Strukturen erkannt und in Kontext zu anderen
Informationen gesetzt werden können.

„Die Visualisierung entspricht der Neigung der menschlichen Spezies und unserer
Kultur, visuelle Informationsprozesse und Präsentationsformen zu bevorzugen.“
[Luc13]

In der Visualisierung von Ontologien werden häufig Knoten-Kanten-Diagramme eingesetzt.
Beispiele zur Visualisierung einer OWL Ontologie wurden bereits in Abschnitt 2.1 vorgestellt.
Im Allgemeinen ist die textuelle Darstellung kompakter und maschinell gut lesbar, während
sie für Menschen weder besonders intuitiv noch besonders explorierbar ist, da grafische
Visualisierungen für Menschen meist leichter zu verstehen sind.
Im weiteren Verlauf der Arbeit ist mit der Bezeichnung des Graphen die visuelle Repräsenta-
tion eines Graphen als Knoten-Kanten-Diagramms gemeint.

2.7.1. Anforderungen an die Darstellung von Graphen

Ein Graph soll Menschen bei der Erfassung der dargestellten Informationen unterstützen.
Menschen finden Graphen mit bestimmten Kriterien ästhetische ansprechend [Sim96] [CT98].
Diese können jedoch nicht immer eingehalten werden.

- Schnitte zwischen Kanten und Knoten sollte vermieden werden.

- Schnitte zweier Kanten sollten vermieden werden.

- Sofern ein sinnvoller Mindestabstand zwischen Knoten eingehalten wird, kann die vom
Graphen benötigte Fläche minimiert werden. Alternativ zum Mindestabstand können
die Knoten auch auf einem festgelegten Gitter angeordnet werden.

- Sofern ein sinnvoller Mindestabstand zwischen Knoten eingehalten wird, kann die
Länge der Kanten minimiert werden. Auch in diesem Fall kann ein festgelegtes Gitter
eine Alternative zum Mindestabstand darstellen.

- Die Kanten sollten eine ähnliche Länge aufweisen.

- Enthält der Graph eine Symmetrie, so sollte diese Symmetrie auch visualisiert werden.

Graphen mit wenigen Elementen lassen sich selbst unter Berücksichtigung dieser Anforderun-
gen relativ einfach realisieren. Menschen berücksichtigen viele dieser Kriterien intuitiv, denn
sie entsprechen größtenteils denen einer ästhetischen Darstellung. Sollen große Graphen mit
vielen Elementen maschinell dargestellt werden, so werden Algorithmen benötigt die viele
dieser Anforderungen berücksichtigen. Dies wird im Beispiel Abbildung 2.7 berücksichtigt.

27

2. Grundlagen

Kanten schneiden sich kaum, es gibt nur Schnittpunkte zwischen verschiedenen Verkehrsmit-
teln (U-Bahn und S-Bahn), Knoten (Haltestellen) werden nicht von Kanten geschnitten und
Knickpunkte von Kanten sind selten vorhanden. Kanten von gleichen Verkehrsmitteln haben
größtenteils dieselbe Länge, die Knoten sind gleichmäßig zu verteilen und die zugrunde
liegende Struktur wird widergespiegelt.

R74
 Fr

eu
den

sta
dt

R73
 Herr

en
bergR73 Tübingen

R2 Aalen

R1 Ulm

R7 H
orb

R4 Heilbronn

R5 Pforzheim

R8 T
übingen

R3 C
rai

lsh
eim

Plüderhausen

Rudersberg Nord

Gültstein Weil im Schönbuch Untere Halde

Weil im Schönbuch Röte

Weil im Schönbuch Troppel

Holzgerlingen Buch

Holzgerlingen

Holzgerlingen Nord

Böbl. Zimmerschlag

Böbl. Heusteigstr.

Böbl. Südbf.

 Miedelsbach-
Steinenberg

Schorndorf
Hammerschlag

Haubersbronn

Oppenweiler

Fornsbach

Korntal
Gymnasium

Ebitzweg

Sulzbach (M)

Murrhardt

Herrenberg
 Zwerchweg

Münster

Zazenhausen

Urbach

Reichenbach (F)

Nürtingen Vorstadt Owen

Unter-
lenningen

Oberboihingen

Roßdorf

Frickenhausen

Bempflingen

Frickenh.Kelterstr.

Linsenhofen

Kirchheim (N)

Bondorf

Gäufelden

Vaihingen (E)

SachsenheimSersheim

Ellental

Schwieberdingen

Münchingen
RührbergHemmingen Münchingen

Dettingen (T)

Kirchheim (T) Süd

Brucken

Walheim

Böbl. Danziger Str.

Besigheim

Michelau

Schlechtbach

Rudersberg

Haubersbronn Mitte

Suttnerstr.Tapachstr.

Fürfelder Str.

Hohensteinstr.

Friedrichswahl

LöwentorLandauer Str.

Rastatter Str.

Wolfbusch

Bergheimer Hof

Wilhelm-
Geiger-Platz

Föhrich

Sportpark
Feuerbach

Arndt-/Spittastr.

Vogelsang
Herder-
platz

Lind-
paintnerstr.

Beet-
hovenstr.

Millöcker-
str.

Eltinger
Str.

Löwentorbrücke

Stadtbibliothek

Friedrichs-
bau

Schwab-/Bebelstr.

Glocken-
str.

Nord-
bahn-

hof
Mitt-
nachtstr.

Pragfriedhof

Milch-
hof Wilhelma

Mühlsteg
Kraftwerk Münster

Münster Viadukt

Münster
Rathaus

Freibergstr.

Elbestr.

Max-Eyth-
See

Wagrain-
äcker Hofen

Auwiesen Brücken-
str.

Hornbach

Obere
Ziegelei

Gnesener
Str.

Kur-
saal

Daimlerpl.

Uff-Kirchhof Augsburger
Platz

Schwabenlandhalle

Antwerpener Straße

Esslinger Str.

Olgaeck

Eugenspl.
Heidehofstr.

Stafflen-
bergstr.

Bubenbad
Payerstr.

Geroksruhe
Stelle

Ruhbank
 (Fernsehturm)

Silberwald

Schemppstr.
Sillenbuch

Bockelstr.

Ruit

Parksiedlung

Zinsholz

Kreuzbrunnen

Techn. Akademie

Scharnhauser Park

Österreich.
Platz

Erwin-Schoettle
-Platz

Bihlplatz

Jurastr.
Wall-

graben
 SSB-

Zentrum

Vaihinger
Str.

 Rohrer
Weg

Möhringen Freibad Lein-
 felden
Frank

 Unter-
aichen

Pfaffenweg

Nägelestr.

Zahnradbf.

Dobelstr.

Bopser

Peregrinastr.

Sonnen
berg

Möhringen
Sigmaringer Str.

Salzäcker

Wielandshöhe

Maybach-
str.

Degerloch
Albstr.

Wangen Marktplatz

Hedelfinger Str.

Insel-
str.

Im
Degen

Brendle
(Groß-
markt)

Schlacht-
hofOstheim

Leo-Vetter-Bad

Ostendpl.
Raitelsberg

Karl-Olga-
 Krankenhaus

Staatsgalerie

Wangener-/
Landhausstr.

Bergfriedhof

Russische
Kirche

Rosenberg-/
Seidenstr.

Schloss-/Johannesstr.

Beskidenstr.

Höhenstr.

 Salamanderweg

Siedlung

Weilimdorf Löwen-Markt

Feuerbach Pfostenwäldle

Waldau

Liststr.

Rosensteinpark

Schozacher
Str.

Schloss-
platz Charlottenplatz

Rathaus

Wald-
eck

Kalten-
tal

Engel-
boldstr.

Fauststr.

Vaihingen Schillerplatz Riedsee

Mineralbäder

Metzstr. Berliner Platz

Neckar-
tor

Blick

Eszet

Schlotterbeckstr.

Kienbachstr.

Mercedes-
 str.

FreibergHimmelsleiter

Stöckach

Eckartshaldenweg

Borsigstr.

Sieglestr.
Stein-

haldenfeld

 Haupt-
friedhof

Mühl-
hausen Mühle

Breitwiesen

Rosensteinbr.

Landhaus

Plieninger Str.

Vaihingen
Viadukt

Haigst

Wasenstr.Gaisburg

Pragsattel

Weinsteige

Cann-
 statter
 Wasen

Fasanenhof

Europaplatz

EnBW City

Fasanenhof Schelmenwasen

Kirchtalstr.Salzwiesenstr.

Wimpfener
Str.

Heutings-
heimer Str.

Korntaler
Str.

Zuffenhausen
Rathaus

Zuffenhausen
Kelterplatz

Asperg

Tamm Freiberg (N)

Benningen (N) Favoritepark

Ludwigsburg

 Erdmannhausen

Marbach (N) Kirchberg (M)

Burgstall (M)

Maubach

Nellmersbach

Winnenden

Schwaikheim

Neustadt-Hohenacker

Waiblingen

Stetten-Beinstein

Endersbach

Beutelsbach

Grunbach

Geradstetten

Winterbach

Weiler

Nürn-
berger
Str.

Sommer-
rain

Zuffenhausen

Weilimdorf

Ditzingen

Höfingen

Rutesheim

Renningen

Leonberg

Korntal Neuwirtshaus
(Porscheplatz)

Hulb

Ehningen

Gärtringen

Nufringen

 Maichingen

 Maichingen Nord

 Magstadt

 Renningen Süd

Sindelfingen

Rommelshausen

Rohr
Goldberg

Oberaichen

Echterdingen

Feuersee

Stadtmitte
(Rotebühlpl.)

Universität

Österfeld

Mettingen

Oberesslingen

Zell

Altbach

Obertürkheim

Esslingen (N)

Wernau (N)

Wendlingen (N)

Bad Cannstatt Fellbach

Ötlingen

Neckarpark
(Mercedes-Benz)

Malmsheim

Rudersberg Oberndorf

Heimerdingen

NeuffenDettenhausen Oberlenningen

Nürtingen

Kornwestheim

Mönchfeld

Neckargröningen
Remseck

Neugereut

Fellbach
Lutherkirche

Heumaden

Waldfriedhof

Hölderlinplatz

Killesberg

Degerloch

Gerlingen

Giebel

Botnang

Nellingen Ostfildern

Hedelfingen

Plieningen

Leinfelden

Vaihingen

NeckarPark (Stadion)

 Bad Cannstatt
Wilhelmsplatz

Südheimer
Platz

Marienpl.

Heslach
Vogelrain

Stammheim

Kirchheim (T)

Hauptbahnhof
(Arnulf-Klett-Pl.)

Filderstadt

Schorndorf

Schwabstraße

Böblingen

Weil der Stadt

Herrenberg

Flughafen / Messe

Backnang

Untertürkheim

Bietigheim-
Bissingen

Feuerbach

Plochingen

Verkehrs- und Tarifverbund Stuttgart GmbH www.vvs.de Tel. 0711 19449 © VVS 12.2012nicht im VVS-Tarif

Verbund-Schienennetz vvs

Abbildung 2.7.: Ansicht des Liniennetzplans des VVS [Ver13].

2.7.2. Graphen Layout

Bei der Darstellung von Graphen gibt es unterschiedliche Ansätze diese zu strukturieren. Die
Ansätze unterscheiden sich auch in ihrer Eignung für bestimmte Anwendungsgebiete, daher
sollte je nach Anwendungsgebiet ein geeignetes Layout gewählt werden.

Hierarchisches Layout

Bei dieser Struktur wird versucht die gegebene Hierarchie in der Visualisierung widerzu-
spiegeln. Das hierarchische Layout eignet sich daher gut zur Abbildung von Hierarchien.
Funktionsbäumen, Syntaxbäume, Bäume oder Geschäftsprozesse werden oft hierarchisch
abgebildet. Meist werden gerichtete Kanten verwendet und oft zeigen die meisten Kanten in
die gleiche Richtung und oft wird auch ihre Überschneidung minimiert.
Bäume können als eine Spezialisierung des hierarchischen Layouts angesehen werden. Mittels
Bäumen können Monohierarchien (d.h.: die Existenz einer Wurzel ist gegeben) gut dargestellt
werden, Abbildung 2.8 visualisiert eine Monohierarchie mittels hierarchischem Layout.

28

2.7. Graphen

Abbildung 2.8.: Beispiel eines hierarchischen Graphen.

Zirkuläres Layout

Ein zirkulären Layouts spiegelt Gruppenstrukturen wieder. Die Anordnung der Knoten
innerhalb eines zirkuläres Layout entspricht der Verbindungsstrukturen der Knoten. Dieses
Layout eignet sich gut zur Analyse von Netzwerken, seien sie technischer oder sozialer Natur
[Ten13]. Abbildung 2.9 demonstriert ein zirkuläres Layout anhand eines Beispiels.

Abbildung 2.9.: Beispiel eines zirkulären Layouts, entnommen aus der Prefuse Demo [Ber13,
RadialGraphView].

29

2. Grundlagen

Layout des längsten Pfad

Beim Layout des längsten Pfades wird der Pfad mit den meisten Knoten zwischen allen Knoten
ohne Vorgänger und Knoten ohne Nachfolger ermittelt. Dieser Pfad wird zur Ausrichtung
des gesamten Graphen verwendet. Alle Knoten des längsten Pfades werden entlang einer
Geraden ausgerichtet, alle anderen Knoten werden um diese Gerade angeordnet. Diese Art der
Darstellung eignet sich vor allem für ereignisgesteuerte Prozessketten (d.h.: zur Darstellung
von Geschäftsprozessen). Auch Unified Modeling Language (UML) und Business Process
Model and Notation (BPMN) Diagramme können auf diese Art und Weise übersichtlich
dargestellt werden.

Kräftebasiertes Layout

„Der Energie-Layout-Algorithmus nutzt einen kräfte-ausgleichenden Layout-
Algorithmus für die Anordnung der Knoten im Graphen. Dieser Algorithmus
betrachtet den Graphen als ein Kräftesystem und strebt eine möglichst energie-
arme Anordnung an. In diesem System werden die Knoten eines Graphen als
elektrisch geladene Teilchen mit Abstoßungskräften und die Kanten als Federn
mit Rückhaltefunktion betrachtet. Das Resultat des Energie-Layouts ist besonders
natürlich und ideal für das Layout von Sozialen Netzen und für die Simulati-
on von chemischen oder physikalischen Modellen. Es erzeugt ein harmonisches
und ausbalanciertes Ergebnis, obwohl sich hier Kanten überschneiden können.“
[Ten13]

Kräftebasierte Layouts werden oft für geradlinige Zeichnungen und ungerichtete Graphen
eingesetzt, denn sie sind populär und ergeben eine übersichtliche und einfach zu verstehende
Darstellung. Das Resultat eines kräftebasierten Layoutalgorithmus ist ein System mit minima-
ler Energie, nicht jedoch zwangsweise das System mit der minimalsten Energie [Sch13]. Ein
Beispiel eines kräftebasierten Layouts ist in Abbildung 2.10 abgebildet. Kräftebasierte Layouts
sind leicht adaptierbar, konfigurierbar, robust und skalierbar. Sie haben weder Qualitätsga-
rantien noch Laufzeitgarantien [TM06]. Kräftebasierte Algorithmen können beispielsweise
auch zur Darstellung eines Entity-Relationship Model (ERM) verwendet werden.

30

2.7. Graphen

Abbildung 2.10.: Darstellung eines kräftebasierte Algorithmus aus der Prefuse Demonstrati-
on [Ber13].

31

3. Themenverwandte Arbeiten

In diesem Abschnitt werden themenverwandte Arbeiten, die sich mit der Visualisierung von
Ontologien befassen, vorgestellt und ihre Vorteile und Nachteile gegenüber dem in Kapitel 4
vorgestellten Konzepts diskutiert.

3.1. GrOWL

GrOWL ist ein 2005 veröffentlichtes Werkzeug zur Visualisierung und Bearbeitung von Onto-
logien auf Basis von OWL-Ontologien und bzw. Ontologien auf Basis der Beschreibungslogik
(DL) [KWV07]. Wie Protégé ist GrOWL ein Editor zum Bearbeiten von Ontologien, Abbildung
3.1 verdeutlicht die Möglichkeiten Ontologien zu bearbeiten. Eine Visualisierung der bereits
in Abschnitt 2.4 vorgestellten und mittels OntoGraf visualisierten MUTO-Ontologie ist in
Abbildung 3.1 dargestellt.
GrOWL wird von der Universität von Vermont nicht mehr zur Verfügung gestellt, Besucher
der Webseite erhalten stattdessen eine Fehlermeldung1. Mithilfe des Internet-Archiv2 kann
die Seite des Projekts aus dem Jahre 2008 weiterhin aufgerufen werden3. Die Darstellungen
aus Abbildung 3.1 entstammen der Standalone Edition, welche die Versionsnummer 0.02
trägt. Die im Internet-Archiv weiterhin aufrufbare Seite stellt zwei Versionen des Tools vor:
Die ältere Version verwendet die OWL-API, während die neuere Version Prefuse und JENA
verwendet. Bei JENA4 handelt es sich um ein Framework zum Einlesen und Schreiben von
Ontologien im RDF-Format. JENA ist damit der OWL-API aus Abschnitt 2.5 ähnlich und un-
terstützt beispielsweise SPARQL5. Dabei handelt es sich um eine graphbasierte, semantische
Abfragesprache für RDF, SPARQL ist zugleich ein Akronym für „SPARQL Protocol And RDF
Query Language“. Die im Internet-Archiv verfügbare Version 0.02 von GrOWL akzeptiert
Ontologien im RDF-Format, andere Formate können nicht eingelesen werden. Des Weiteren
stürzt die im Internet-Archiv verfügbare Version 0.02 beim Einlesen der MUTO-Ontologie
öfters ohne Fehlermeldung ab. Damit ist eine zuverlässige Erstellung und Bearbeitung von
Ontologien mit dieser Version von GrOWL nicht gewährleistet. Über GrOWL können Zusatz-
informationen zu Literalen und Klassen abgerufen werden. Zusätzliche Informationen über
Kanten werden hingegen nicht dargestellt, auch wenn Kanten wie Knoten markiert werden

1http://www.uvm.edu/~skrivov/GrOWLEditor.jar
2http://archive.org/about/contact.php
3http://web.archive.org/web/20080424033752/http://www.uvm.edu/~skrivov/growl/index.html
4http://jena.apache.org
5http://www.w3.org/2009/sparql/wiki/Main_Page

33

http://www.uvm.edu/~skrivov/GrOWLEditor.jar
http://archive.org/about/contact.php
http://web.archive.org/web/20080424033752/http://www.uvm.edu/~skrivov/growl/index.html
http://jena.apache.org
http://www.w3.org/2009/sparql/wiki/Main_Page

3. Themenverwandte Arbeiten

können. Rechts wird, wie Abbildung 3.1 zeigt, eine Übersicht aller enthaltenen Klassen gege-
ben.
Innerhalb von GrOWL werden Object Properties blau dargestellt, während Datatype

Properties mit einer gelben Farbe visualisiert werden. Der Namespace eines Elements wird
innerhalb des Knoten-Kanten-Diagramms nicht angezeigt. Zugriff auf die verwendeten Na-
mespaces erhält der Benutzer in Tabellenform, nach Betätigen der View Metadata Schaltfläche.
Klassen werden in GrOWL ovalförmig, während Literale quadratisch dargestellt werden.
SubClassOf Beziehungen werden in GrOWL durch einen durchgezogenen Pfeil dargestellt.
Äquivalenzen werden durch einen Mesomeriepfeil repräsentiert, dabei handelt es sich um
einen Pfeil, der zwei Spitzen besitzt. GrOWL orientiert sich bei der Darstellung von OWL-
Konstrukten an prädikatenlogische Ausdrücke und den DL-Klassenkonstrukte. Ein Auszug
hiervon ist in Abbildung 3.2 dargestellt. Instanzen werden in GrOWL durch ein nicht gefülltes
blaues Quadrat repräsentiert. Das in Abschnitt 2.1 vorgestellte Beispiel aus Abbildung 2.1
wird in GrOWL gemäß Abbildung 3.3 visualisiert.
Eine Besonderheit von GrOWL besteht in der Möglichkeit, Operatoren zusammengefasst
darzustellen, dass in Abbildung 3.4 verdeutlicht wird.
Der Benutzer kann Instanzen ausblenden, ein Überblick über die Anzahl der Instanzen wird
jedoch nicht gegeben. Durch die Darstellung sämtlicher Instanzen und Restriktionen werden
große Ontologien schnell unübersichtlich, was bei der Visualisierung der WINE-Ontologie6

in GrOWL deutlich zum Vorschein kommt und in Abbildung 3.5 veranschaulicht wird.
GrOWL kann verschiedene Einschränkungen der Properties, visuell darstellen, hierzu
zählen Werteeinschränkungen, Einschränkungen hinsichtlich der Kardinalität sowie die
OWL-Einschränkungen someValuesFrom und allValuesFrom. Allerdings besitzt GrOWL kei-
ne spezielle Visualisierung der unterschiedlichen Property-Typen. Zwar werden Object

Properties und Datatype Properties in unterschiedlichen Farben dargestellt, eine visuel-
le Repräsentation der Eigenschaften inverseOf, TransitiveProperty, SymmetricProperty,
FunctionalProperty und InverseFunctionalProperty ist hingegen nicht vorgesehen. Im
Beispiel aus Abbildung 3.1 werden die funktionalen Properties nextTag und previousTag

exakt wie meaningOf dargestellt. Bei meaningOf handelt es sich um eine Property, die keine
Domain-Angabe besitzt. Ihre Beschreibung im RDF-Format ist in Quelltext 3.1 gegeben. Wie
Abbildung 3.6 zeigt, kann diese Information lediglich über die rechte Informationsleiste
abgerufen werden. Falls der Benutzer herausfinden möchte, welche Property symmetrisch ist,
so muss er jede Einzelne markieren und die rechte Informationsleiste überprüfen.
GrOWL stellt damit nur einen Teilaspekt der Ontologie dar und eignet sich daher nicht für
die ganzheitliche Visualisierung.

6http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine

34

http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine

3.1. GrOWL

Abbildung 3.1.: Darstellung der MUTO-Ontologie mittels GrOWL.

Abbildung 3.2.: Konstrukte in GrOWL, entnommen aus [KWV07].

35

3. Themenverwandte Arbeiten

Abbildung 3.3.: Instanzen werden in GrOWL visualisiert.

Abbildung 3.4.: Operatoren können zusammengefasst werden.

Quelltext 3.1 Property meaning of aus der MUTO-Ontologie.
<owl:ObjectProperty rdf:about="http://purl.org/muto/core#meaningOf">

<rdfs:label xml:lang="en">meaning of</rdfs:label>

<rdfs:comment xml:lang="en">The number of tags that can be linked to one and the same

meaning is theoretically unlimited.</rdfs:comment>

<rdfs:range rdf:resource="http://purl.org/muto/core#Tag"/>

<owl:inverseOf rdf:resource="http://purl.org/muto/core#tagMeaning"/>

<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>

</owl:ObjectProperty>

36

3.1. GrOWL

Abbildung 3.5.: Darstellung der WINE-Ontologie mittels GrOWL.

Abbildung 3.6.: Visualisierung der meaning of Property aus der MUTO-Ontologie.

37

3. Themenverwandte Arbeiten

3.2. SOVA

SOVA ist ein Protégé Plug-in zur Visualisierung von Ontologien, ausgeschrieben steht SOVA
für „Simple Ontology Visualization API“. Entwickelt wurde es von Piotr Kunowski und
Tomasz Boiński von der Gdańsk-Universität der Technik7, die ihre erste Version von SOVA
im Jahre 2010 veröffentlichten. [PK12]. Eine Visualisierung der MUTO-Ontologie mittels
SOVA ist in Abbildung 3.7 dargestellt. Ein Verzeichnis aller Symbole samt entsprechender
OWL-Statements steht online unter [PK10] zur Verfügung.
Die Ansicht innerhalb des SOVA Plug-ins ist dreigeteilt. Links erhält der Benutzer eine Über-
sicht über die Hierarchie aller enthaltenen Klassen. Diese Ansicht wird von Protégé zur
Verfügung gestellt, der Anwender könnte diese Ansicht anderen Visualisierungen ebenfalls
hinzufügen. In der Mitte befindet sich die eigentliche Visualisierung. Rechts werden zusätz-
liche Informationen angezeigt, sofern der Benutzer eine Kante anklickt. Ein Beispiel dieser
dreiteiligen Ansicht ist in Abbildung 3.7 gegeben. Anstelle des mittigen Graphen kann auch
eine weitere Hierarchie der Klassen und Individuen eingeblendet werden, um dies zu be-
werkstelligen, wird der hermit owl reasoner benötigt8.
SOVA verwendet ein Spring-Layout, dies hat zur Folge, dass sich Knoten gegenseitig ab-
stoßen, während Kanten Anziehungskräfte modellieren. Durch diese Layoutform werden
semantisch ähnlichere Knoten dichter als semantisch unähnlichere Knoten platziert. Innerhalb
der Visualisierung der Ontologie verwendet SOVA ähnliche Symbole wie das bereits in Ab-
schnitt 3.1 vorgestellte GrOWL. Instanzen werden als grau gefüllte Quadrate den jeweiligen
Klassen zugeordnet. Eine Visualisierung des Beispiels aus Abschnitt 2.1 mittels SOVA wurde
bereits in Abbildung 2.4 gezeigt. Eine Information über die Anzahl der enthaltenen Instanzen
wird nicht gegeben, der Benutzer muss diese Information durch Zählen der abgebildeten
Instanzen selbst ermitteln. Im Gegensatz zu GrOWL aus Abschnitt 3.1 besteht keine Mög-
lichkeit des Ausblendens der Instanzen. Analog zu GrOWL können in SOVA nur Knoten
angeklickt werden. Das Auswählen von Kanten ist nicht möglich. Fährt der Benutzer mit
dem Mauszeiger über einen Knoten und damit auf eine Klasse bzw. ein Literal, so werden
alle damit verbundenen Knoten farblich hervorgehoben. Des Weiteren ist dies die einzige
Möglichkeit den Namespace der entsprechenden Klasse bzw. Literal in Erfahrung zu bringen.
SOVA bietet dem Nutzer die Möglichkeit nach dem Namen einer Klasse bzw. eines Literals
zu suchen, die Verwendung von regulären Ausdrücken ist nicht möglich. Abbildung 3.7 zeigt
sowohl das farbliche Hervorheben durch eine weiße Farbe, die Suche sowie das Auslesen
des Namespace der angeklickten Klasse. Abbildung 3.7 zeigt allerdings auch einen Fehler
des SOVA Plug-ins. Quelltext 3.2 zeigt die Object Property tagOf. Sie enthält sowohl einen
Kommentar als auch ein Label. Beides wird innerhalb des Plug-ins nicht angezeigt. Dies kann
sich irritierend auf Benutzer auswirken, schließlich erweckt Quelltext 3.2 den Eindruck, dass
die entsprechende Property wirklich keine weiteren Angaben enthalten würde.
SOVA verwendet bei der Visualisierung von Kardinalitäten Existenzquantoren. Klassen wer-
den als abgerundetes Quadrat mit der Hintergrundfarbe „steelblue“ dargestellt. Datatype
Properties und RDF-Properties werden ebenfalls als abgerundetes Quadrat abgebildet.

7http://www.pg.gda.pl/en/
8http://hermit-reasoner.com

38

http://www.pg.gda.pl/en/
http://hermit-reasoner.com

3.2. SOVA

Datatype Properties haben eine hellgrüne Hintergrundfarbe, während RDF-Properties
„darkmagenta“ als Hintergrundfabe besitzen. Datatype Properties werden durch das Plug-
in nicht repräsentiert. Abbildung 3.7 enthält beispielsweise keine Visualisierung des Datatype
Properties tag label. Datatype Properties sind innerhalb der MUTO-Ontologie gemäß
Quelltext 3.3 vorhanden.
Ähnlich wie GrWOL visualisiert SOVA äquivalente Klassen mittels Mesomeriepfeilen. Die
disjointWith Eigenschaft wird mittels invertiertem Mesomeriepfeil dargestellt. Dabei wer-
den beide Pfeilspitzen vertikal gespiegelt. SOVA beherrscht ebenfalls das zusammenfassen
von Relationen, beispielsweise muss nicht jedes Individuum einer oneOf Relation ein eigenes
Symbol besitzen. Eine Visualisierung dieser oneOf Relation gemäß [PK10] wird in Abbildung
3.8 gezeigt.
Im Gegensatz zu dem in Abschnitt 3.1 vorgestelltem GrOWL ist SOVA in der Lage, die
Eigenschaften inverseOf, TransitiveProperty, SymmetricProperty, FunctionalProperty
und InverseFunctionalProperty gemäß Abbildung 3.9 visuell darzustellen. SOVA stellt
unionOf, intersectionOf und complementOf mit denselben Symbolen wie GrOWL aus Ab-
bildung 3.2 dar. SOVA verwendet allerdings andere Pfeilspitzen und die daraus resultierende
Klasse wird für die weitere Verwendung ebenfalls grafisch dargestellt. Ein Beispiel für unionOf
ist in Abbildung 3.10 abgebildet. Kardinalitäten werden von SOVA ebenfalls unterstützt, diese
sehen für unerfahrene Anwender jedoch recht merkwürdig aus. Eine derartige Angabe ist in
Abbildung 3.11 vorhanden.
Durch die Visualisierung aller Instanzen und durch Repräsentation von OWL-Konstrukten
mittels einer Vielzahl von geometrischen Formen werden große Ontologien schnell unüber-
sichtlich. Abbildung 3.12 stellen eine Visualisierung der WINE-Ontologie dar. SOVA verwen-
det ein kräftebasiertes Layout, durch das die wichtigsten Bestandteile der Ontologie mittig
platziert werden.
Aufgrund der fehlenden Datatype Properties stellt SOVA nur einen Teilaspekt der Ontolo-
gie dar und eignet sich daher nicht für die ganzheitliche Visualisierung von Ontologien.

Abbildung 3.7.: Das SOVA Plug-in bei geladener MUTO-Ontologie.

39

3. Themenverwandte Arbeiten

Quelltext 3.2 tagOf Property aus der MUTO-Ontologie.
<owl:ObjectProperty rdf:about="http://purl.org/muto/core#tagOf">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

<rdfs:label xml:lang="en">tag of</rdfs:label>

<rdfs:comment xml:lang="en">Every tag is linked to exactly one tagging. This results from

the fact that tags with same labels are NOT merged in the ontology.</rdfs:comment>

<rdfs:domain rdf:resource="http://purl.org/muto/core#Tag"/>

<rdfs:range rdf:resource="http://purl.org/muto/core#Tagging"/>

<owl:inverseOf rdf:resource="http://purl.org/muto/core#hasTag"/>

<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>

</owl:ObjectProperty>

Quelltext 3.3 tagLabel Property aus der MUTO-Ontologie.
<owl:DatatypeProperty rdf:about="http://purl.org/muto/core#tagLabel">

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

<rdfs:label xml:lang="en">tag label</rdfs:label>

<rdfs:comment xml:lang="en">Every tag has exactly one label (usually the one given by the

user) - otherwise it is not a tag. Additional labels can be defined in the resource

that is linked via muto:tagMeaning.</rdfs:comment>

<owl:versionInfo>Version 1.0: The subproperty relation to rdfs:label has been removed for

OWL DL conformance (rdfs:label is an annotation property and one cannot define

subproperties for annotation properties in OWL DL).</owl:versionInfo>

<rdfs:domain rdf:resource="http://purl.org/muto/core#Tag"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>

</owl:DatatypeProperty>

Abbildung 3.8.: Visualisierung der oneOf Property in SOVA, entnommen aus [PK10].

Abbildung 3.9.: Darstellung verschiedener Properties, entnommen aus [PK10].

40

3.2. SOVA

Abbildung 3.10.: Darstellung von unionOf, entnommen aus [PK10].

Abbildung 3.11.: Kardinalität in SOVA, entnommen aus [PK10].

Abbildung 3.12.: Visualisierung der WINE-Ontologie mittels SOVA.

41

3. Themenverwandte Arbeiten

3.3. OWLViz

Bei OWLViz handelt es sich um ein Protégé Plug-in zur Visualisierung von Ontologien und
ist in der Standardinstallation von Protégé enthalten9. Eine Visualisierung des Beispiels
aus Abschnitt 2.1 wurde bereits in Abbildung 2.2 vorgestellt. In Abbildung 3.13 findet sich
eine Darstellung der mittels OWLViz visualisierten MUTO-Ontologie. [LDA11]. OWLViz
verwendet das, in dem späteren Abschnitt 5.1 näher beschriebene, Grafikframework Graph-
Viz zur Generierung der Visualisierung. Dies ist eine Ursache für die eher statisch gehaltene
Visualisierung von OWLViz. Dies hat zur Folge, dass der Benutzer Knoten des Knoten-Kanten-
Diagramms zwar markieren, jedoch diese nicht mittels drag & drop verschieben kann.
Wie bereits in Abbildung 2.2 gezeigt, visualisiert OWLViz keine Instanzen. Die Visualisierung
der MUTO-Ontologie aus Abbildung 3.13 demonstriert, dass OWLViz auch keine Properties
visuell darstellen kann. Lediglich die SubClassOf Beziehung zwischen Klassen wird darge-
stellt. Somit stellt OWLViz nur einen sehr kleinen Ausschnitt aus OWL grafisch dar und eignet
sich daher nicht die ganzheitliche Visualisierung von Ontologien.

Abbildung 3.13.: Visualisierung der MUTO-Ontologie mittels OWLViz.

3.4. OntoGraf

Bei OntoGraf handelt es sich, wie bei OWLViz aus Abschnitt 3.3, um ein Protégé Plug-in
zur Visualisierung von Ontologien und ist ebenfalls in der Standardinstallation von Protégé
enthalten10. Wie Abbildung 3.14 zeigt, stellt OntoGraf nicht nur Klassen visuell dar, sondern
auch Properties und Instanzen. Knoten stehen für Klasse und Instanzen, während Kanten
die grafische Repräsentation von Properties darstellen. Die Abbildung von Instanzen wurde
bereits in Abbildung 2.3 vorgestellt.
Innerhalb von OntoGraf kann der Benutzer Knoten markieren und diese verschieben, wäh-
rend Kanten nur markiert werden können. Bei beiden Elementen erhält der Benutzer Tooltips,
was in Abbildung 3.14 für Kanten und in Abbildung 3.15 für Knoten veranschaulicht wird.
In beiden Fällen werden die, mit dem entsprechenden Element, verbundenen Objekte gra-
fisch hervorgehoben. Zwar sind die Tooltips für Knoten umfangreich, die entsprechenden

9http://protegewiki.stanford.edu/wiki/OWLViz
10http://protegewiki.stanford.edu/wiki/OntoGraf

42

http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/OntoGraf

3.4. OntoGraf

OWL-Einträge werden allerdings nicht aufbereitet. Stattdessen erhält der Benutzer eine, durch
Absätze formatierte, Auflistung aller zugehörigen Annotationen. Ein Beispiel für einen derar-
tigen Tooltip ist in Abbildung 3.15 abgebildet. Tooltips für Kanten verhalten sich analog, ein
Beispiel hierfür wird in Abbildung 3.14 gegeben.
Innerhalb von OntoGraf kann der Benutzer Knoten markieren und diese verschieben, wäh-
rend Kanten nur markiert werden können. Bei beiden Elementen erhält der Benutzer Tooltips,
was in Abbildung 3.14 für Kanten und in Abbildung 3.15 für Knoten veranschaulicht wird.
In beiden Fällen werden die, mit dem entsprechenden Element, verbundenen Objekte gra-
fisch hervorgehoben. Zwar sind die Tooltips für Knoten umfangreich, die entsprechenden
OWL-Einträge werden allerdings nicht aufbereitet. Stattdessen erhält der Benutzer eine, durch
Absätze formatierte, Auflistung aller zugehörigen Annotationen. Ein Beispiel für einen derar-
tigen Tooltip ist in Abbildung 3.15 abgebildet. Tooltips für Kanten verhalten sich analog, ein
Beispiel hierfür wird in Abbildung 3.14 gegeben.
Die fehlenden Kantenbeschriftungen stellt für den Nutzer ein Ärgernis dar, denn er muss
die Kantenfarbe mit der Property-Übersicht aus Abbildung 3.16 eigenständig abgleichen.
Die Kantenfarben werden zufällig gewählt, sie stellen keine grafische Darstellung eines be-
stimmten Property-Typs dar. Ein und dieselbe Kante wird in Abbildung 3.14 und Abbildung
3.15 unterschiedlich gefärbt, obwohl alle drei Abbildungen die MUTO-Ontologie visuell
darstellen. Im Gegensatz zur Farbe ist die Form einer Kante relevant. Durchgezogene Linien
stehen für Unterklassen-Beziehungen. Automatic Tag ist beispielsweise eine Unterklasse
von Tag. Gestrichelte Linien stehen hingegen für Properties, eine Unterscheidung zwischen
DatatypeProperty und Object Property findet jedoch nicht statt. Daher kann zwischen
inverseOf, TransitiveProperty, FunctionalProperty und InverseFunctionalProperty

nicht unterschieden werden. Eine SymmetricProperty kann durch den zurückgelegten Weg
visuell erkannt werden, dies wird in Abbildung 3.14 demonstriert.
OntoGraf kann, wie in Abbildung 3.16 gezeigt, eine Übersicht der verwendeten Kantenfarben
und der zugehörigen Properties einblenden. Durch diese Übersicht erfährt der Benutzer
lediglich den Namen einer Property, Informationen über ihre Funktion bleiben dem Benutzer
damit verborgen. Somit eignet sich OntoGraf nur bedingt für unerfahrene Nutzer, die unfor-
matierte Auflistung aller Klassen-Eigenschaften aus Abbildung 3.15 stellt sie möglicherweise
vor Verständnisprobleme. Die Nutzer werden durch fehlende Kantenbeschriftungen nur
unzureichend beim Erforschen einer Ontologie unterstützt. Die Property-Übersicht aus Ab-
bildung 3.16 erweist sich für einen unerfahrenen Nutzer nur als eingeschränktes Hilfsmittel.
Dieser Nutzergruppe sollten daher eher andere Werkzeuge empfohlen werden.

43

3. Themenverwandte Arbeiten

Abbildung 3.14.: OntoGraf: Tooltip bei Properties. Symmetrische Properties werden kreisför-
mig dargestellt.

Abbildung 3.15.: OntoGraf: Tooltip bei Klassen.

Abbildung 3.16.: OntoGraf: Property-Übersicht.

44

3.5. TGVizTab

3.5. TGVizTab

TGVizTab ist ein Plug-in für Protégé 3 zur Generierung visueller Graphen. Es verwendet
dabei TouchGraph, eine Java-Umgebung zur Generierung von visuellen Graphen [Ala03].
TGVizTab verwendet ein Spring-Layout, daher stoßen Knoten sich gegenseitig ab, während
Kanten Anziehungskräfte für Knoten modellieren. Daher sind semantisch ähnlichere Knoten
dichter beisammen abgebildet als semantisch verschiedene Knoten. Abbildung 3.17 zeigt
TGVizTab bei der Visualisierung einer Ontologie. TGVizTab verwenden unterschiedliche
Farben zur Darstellung von Klassen und Instanzen. Die Wahl der Farben und ihre Sichtbarkeit
kann vom Benutzer festgelegt werden.
TGVizTab kann Unterklassenbeziehungen grafisch darstellen, auch Vielfachvererbung sind
abbildbar. Die Beziehung zueinander wird jedoch erst visuell dargestellt, wenn der Benut-
zer mit der Maus auf eine Kante zeigt. Properties werden nicht innerhalb des eigentlichen
Graphen, sondern in einem separaten Fenster angezeigt [SA11]. In einer Studie kritisierten
Benutzer die spontanen Bewegungen, die in TGVizTab auftreten können. Die Benutzer dieser
Studie bevorzugten den Klassenbrowser von Protégé anstelle von TGVizTab [KTH+06].

Abbildung 3.17.: Visualisierung mittels TGVizTab, Abbildung entnommen aus [Ala03].

45

3. Themenverwandte Arbeiten

3.6. Jambalaya

Jambalaya ist, wie TGVizTab aus Abschnitt 3.5, ein Plug-in für Protégé 3 zur Visualisierung
von Ontologien11. Jambalaya verwendet das Grafikframework Piccolo zur Darstellung der Vi-
sualisierung. Jambalaya unterstützt unterschiedliche Ansichten zur Visualisierung, so können
Ontologien beispielsweise als Treemap oder in Form einer Baumansicht angezeigt werden.
Die Baumansicht steht sowohl mit als auch ohne Individuen zur Verfügung. Abbildung 3.18
zeigt die Auswahl der gewünschten Ansicht in Jambalaya. Die Darstellung einer Treemap
wird in Abbildung 3.19 gezeigt, während Abbildung 3.20 die Baumansicht mit Individuen
und Abbildung 3.21 die Domain & Range Ansicht demonstriert. Wie das bereits in Abschnitt
3.4 vorgestellte OntoGraf stellt Jambalaya sämtliche Properties auf dieselbe Weise dar. Je-
des Property wird eine eigene Farbe zugewiesen, eine Unterscheidung in unterschiedliche
Property-Typen findet jedoch nicht statt. Abbildung 3.22 zeigt eine, von Jambalaya zur Ver-
fügung gestellte, Übersicht aller verwendeten Property-Farben. Auch über Tooltips erhält
der Benutzer keine Information über den jeweiligen Property-Typ. Ein Beispiel hierzu wird
in Abbildung 3.21 vorgestellt. In einer Vergleichsstudie schnitt Jambalaya schlechter als der
Klassenbrowser von Protégé ab [KTH+06].

Abbildung 3.18.: Jambalaya bietet verschiedene Ansichten zur Visualisierung.

11http://protegewiki.stanford.edu/wiki/Jambalaya

46

http://protegewiki.stanford.edu/wiki/Jambalaya

3.6. Jambalaya

Abbildung 3.19.: Visualisierung mittels TreeMap-Ansicht in Jambalaya.

Abbildung 3.20.: Visualisierung mittels ClassTree-Ansicht in Jambalaya.

Abbildung 3.21.: Visualisierung mittels Domain- & Range-Ansicht in Jambalaya.

47

3. Themenverwandte Arbeiten

Abbildung 3.22.: Übersicht der verwendeten Farben und Symbole.

3.7. Zusammenfassung

In diesem Kapitel wurden themenverwandten Arbeiten vorgestellt und auf ihre Fähigkeiten
zur Visualisierung von Ontologien untersucht. Dabei werden die bestehenden Probleme,
Nachteile aber auch die Vorteile dieser Werkzeuge herausgearbeitet.
In OntoGraf (Protégé 4) und Jambalaya (Protégé 3) findet beispielsweise keine Unterscheidung
verschiedenartiger Properties statt. So werden verschiedene Properties zwar in unterschiedli-
chen Farben dargestellt, eine visuelle Unterscheidung zwischen einer FunctionalProperty
und TransitiveProperty oder zwischen Datatype Property und Object Property ist hinge-
gen nicht möglich. In OntoGraf wird nicht einmal der Name einer Property grafisch dargestellt.
TGVizTab für Protégé 3 ermöglicht ebenfalls keine visuelle Unterscheidung verschiedener
Property-Typen. OWLViz für Protégé 4 stellt nur Klassen- und Unterklassen-Beziehungen dar.
Die Protégé 4 Visualisierungen GrOWL und SOVA haben diesen Mangel nicht. SOVA lei-
det aber unter Mängeln bei der Darstellung von Kommentaren und Labels und sieht kei-
ne Visualisierung für Literale vor. GrOWL visualisiert Literale, hat dafür Mängel bei der
Visualisierung der Property-Typen inverseOf, TransitiveProperty, SymmetricProperty,
FunctionalProperty und InverseFunctionalProperty. GrOWL und SOVA orientieren sich
bei der Darstellung an prädikatenlogische Ausdrücke und eignen sich daher weniger für
einen Laien, da nicht anzunehmen ist, dass diesem die Prädikatenlogik bekannt sein dürfte.

48

4. Konzept

In der Wissensrepräsentation werden oft Ontologien verwendet, um Daten zu strukturieren
und diese semantisch anzureichern. Zur Visualisierung dieser Ontologien wird ein Konzept
benötigt, das sich nicht auf Teilaspekte einer Ontologie beschränkt, sondern Ontologien kom-
pakt und ganzheitlich darstellen kann. Mit VOWL (Abschnitt 4.1) existiert bereits ein solches
Konzept. Die derzeit im Entstehen befindliche Version 2.0 von VOWL (Abschnitt 4.2) wird im
Rahmen dieser Arbeit als geeignetes Konzept für die kompakte und ganzheitliche Visualisie-
rung von Ontologien angesehen. Sie dient daher als Konzept für die prototypische Umsetzung.
Im Gegensatz zu den verwandten Arbeiten aus Abschnitt 3 stellt das hier vorgestellte VOWL
Ontologie-Elemente in einer kompakteren Form dar. Zur Darstellung der Elemente werden
wenige visuelle Elemente benötigt. Die verwendeten Elemente unterscheiden sich hinsichtlich
Form und Farbgebung deutlich voneinander. Dadurch können diese durch den Benutzer
leichter unterschieden und gleiche Elemente gruppiert werden. Dies soll das Lesen einer
Ontologie erleichtern.
In den folgenden Abschnitten wird VOWL in Version 1.0 und 2.0 vorgestellt 2.0, sowie eine
Optimierung von VOWL 1.0 vorgestellt, die im Rahmen dieser Arbeit entwickelt wurde.

4.1. VOWL 1.0

Die Visual Notation for OWL Ontologies (VOWL) ist eine Spezifikation zur Visualisierung
von OWL Ontologien. Am 28. Januar 2013 wurde Version 1.0 veröffentlicht, an Version 2.0
wird derzeit gearbeitet.
VOWL 1.0 bietet ein Visualisierungskonzept, das in drei Ansichten strukturiert ist, die im
Folgenden näher vorgestellt werden:

konzeptuellen Sicht: enthält Klassen, Eigenschaften und stellt die Beziehungen untereinan-
der dar.

Instanzansicht: stellt Instanzen und ihre Beziehungen untereinander dar.

integrierte Ansicht: kombiniert beide Sichten und stellt sowohl die Klassen als auch ihre
Instanzen samt Eigenschaften und deren Beziehungen untereinander dar.

Ein Beispiel der konzeptuellen Sicht ist in Abbildung 4.3 und ein Muster der integrierten Sicht
in Abbildung 4.4 vorhanden.
In VOWL werden alle Elemente einer Ontologie grafisch repräsentiert. VOWL verwendet
hierfür Knoten und Kanten. Knoten gibt es in runden und quadratischen Ausführungen.
Runde Knoten stellen Klassen dar, während quadratische Knoten Literale darstellen und

49

4. Konzept

Kanten Properties verkörpern. Meistens verbindet eine Kante zwei verschiedene Knoten
und stellt damit eine Property der Ontologie dar. Abbildung 4.1 visualisiert die Darstellung
von Klassen, Literale und Poperies in VOWL. Eine Kante kann im Falle einer Subproperty
auch auf eine andere Kante zeigen. Falls Klassen Instanzen enthalten, so werden diese in der
Instanzansicht und in der integrierten Ansicht durch Kreisausschnitte visuell repräsentiert,
die Länge des Kreisbogens der jeweiligen Instanz richtet sich nach der Gesamtanzahl an
Instanzen einer Klasse. Die einzelnen Instanzen stellen dabei einen Kreissektor dar. In allen
Sichten wächst der Radius und damit die visuelle Größe einer Klasse falls diese Instanzen
enthält. Dieses Verhalten wird in Abbildung 4.2 dargestellt.
Die visuelle Darstellung sämtlicher Elemente ist in der VOWL 1.0 Spezifikation enthalten
[NL13]. VOWL nutzt das kräftebasierte Layout. Dadurch werden jene Bestandteile einer On-
tologie, die wenig Verbindungen mit anderen Bestandteilen haben, am Rande der Darstellung
platziert, während jene mit vielen Verbindungen im Zentrum dargestellt werden. Diese Form
der Darstellung unterstützt den Benutzer im Verstehen einer Ontologie, da die wichtigsten
Bestandteile einer Ontologie im Zentrum der Ansicht dargestellt werden.
VOWL 1.0 bietet eine integrierte Darstellung sowohl der Instanzen als auch des Konzepts ei-
ner Ontologie und bietet dem Benutzer so einen Überblick der Ontologie. Object Properties

und Datatype Properties können in VOWL klar unterschieden werden. Die konzeptionellen
Strukturen einer Ontologie sollen mit diesem Visualisierungskonzept klar ersichtlich werden
[NL13].

Abbildung 4.1.: Darstellung von Eigenschaften in VOWL 1.0 [NL13].

Abbildung 4.2.: Darstellung von Klassen (links) und Instanzen (rechts) in VOWL 1.0 [NL13].

50

4.1. VOWL 1.0

Abbildung 4.3.: Darstellung der konzeptuellen Sicht aus VOWL 1.0 [NL13].

Abbildung 4.4.: Darstellung der integrierten Sicht aus VOWL 1.0 [NL13].

51

4. Konzept

4.2. VOWL 2.0

VOWL 2.0 stellt eine Weiterentwicklung von VOWL 1.0 dar und enthält hauptsächlich eine
vereinfachte und verständlichere Darstellung, auf die im Folgenden näher eingegangen wird.
Nach derzeitigem Stand beinhaltet 2.0 beispielsweise keine integrierte Ansicht mehr. Enthält
eine Klasse Instanzen, so werden diese nicht mehr als Kreissegment der Klasse dargestellt,
stattdessen wird nur die Anzahl der Instanzen über die dargestellte Größe der Klasse visuali-
siert. Instanzen und ihre Instanzdaten werden erst nach Aufforderung des Nutzers dargestellt,
dies kann beispielsweise über das Auswählen einer spezifischen Klasse geschehen. Allerdings
wird darüber nachgedacht, die Darstellung der Instanzen als Kreissegmente optional weiter-
hin anzubieten.
Daneben vereinfacht VOWL 2.0 die visuelle Darstellung der grafischen Notation. So enthal-
ten Klassen keinen inneren Ring mehr, sondern sind komplett gefüllt. Einen Ausschnitt der
vereinfachten Darstellung wird in Abbildung 4.5 dargestellt. VOWL 2.0 befindet sich zurzeit
noch in Entwicklung.

Abbildung 4.5.: Properties in VOWL 2.0.

4.3. Konzeptoptimierungen

In diesem Abschnitt wird das im Rahmen dieser Arbeit entwickelte Optimierungskonzept
von VOWL vorgestellt und erläutert. Die Optimierungsvorschläge sind ebenfalls in die Weiter-
entwicklung von VOWL 1.0 eingeflossen und bilden eine von vielen Grundlagen für VOWL
2.0.
In der linken Grafik von Abbildung 4.6 wird die subClassOf Property von VOWL 1.0 gezeigt,
während mittig die Optimierung abgebildet ist. Die rechte Darstellung aus Abbildung 4.6
zeigt die vorerst letzte Fassung dieser Property aus VOWL 2.0. Von Probanden der VOWL 1.0
Evaluation wurde ebenfalls vorgeschlagen, subClassOf Properties zusätzlich zu beschriften,
da ihnen sonst die Bedeutung dieser Property unklar sei [NL13].
VOWL 1.0 regelt die Darstellung verschiedener symmetrischer Properties mit identischer
Domain & Range nicht explizit. Die Konzeptoptimierung sieht die Darstellung dieser symme-
trischen Properties verteilt um die Domain und Range Knoten vor. Alternativ hätten diese

52

4.3. Konzeptoptimierungen

auch, wie in Abbildung 4.7 symbolisiert, mit unterschiedlichem Abstand zum Knoten dar-
gestellt werden können. Die Optimierung aus Abbildung 4.8 hat den Vorteil der leichteren
Zuordnung der Kantenbeschriftung mit der Kante.
Weitere Anpassungen sehen den Austausch der Symbole für owl:disjointWith, owl:unionOf,
owl:intersectionOf und owl:complementOf Properties vor. Anstelle jener Darstellung
aus Abbildung 4.9 sieht die Optimierung die, der Mengenlehre entnommenen, Symbole
aus Abbildung 4.10 vor. In Abbildung 4.9 ist links oben owl:disjointWith, links unten
owl:unionOf, rechts oben owl:intersectionOf und rechts unten owl:complementOf dar-
gestellt. In Abbildung 4.9 ist links oben owl:unionOf, links unten owl:intersectionOf,
rechts oben owl:disjointWith und rechts unten owl:complementOf dargestellt. Mit Aus-
nahme von owl:complementOf sind alle Symbole der Mengenlehre entnommen während
owl:complementOf durch invertierte Symbole und Farben eine Invertierung und damit ein
Komplement verkörpern soll.
Des Weiteren sieht ein Entwurf die Darstellung verschiedener Properties mit denselben
Domain- und Range-Angaben gemäß Abbildung 4.11 vor. Im Gegensatz zu den Darstellun-
gen dieser Properties aus Abbildung 4.2 und Abbildung 4.3 sollen diese als Bündel visualisiert
werden.
Die Größe einer Klasse spiegelt die Anzahl der darin enthaltenen Instanzen wieder. Zur Dar-
stellung der eigentlichen Instanzdaten wird die Verwendung eines seitlichen angebrachten
Informationsfensters vorgesehen. Der Benutzer soll auf diese Weise einen ganzheitlichen
Überblick der Ontologie erhalten, samt Übersicht über die Anzahl der Instanzen. Die Details
der eigentlichen Instanzen können explorativ erforscht werden, sie sollen den Benutzer nicht
durch eine mögliche Informationsüberflutung am Verstehen des Konzeptes der Ontologie
hindern. Dieser Aufbau wird in Abbildung 4.12 skizziert.

Abbildung 4.6.: Unterschiedliche Versionen für subPropertyOf.

53

4. Konzept

Class1 P1 P2 P3

Abbildung 4.7.: Alternative Darstellung mehrfacher symmetrischer Properties.

Abbildung 4.8.: Darstellung mehrfacher symmetrischer Properties.

Abbildung 4.9.: Darstellung von owl:disjointWith (links oben), owl:unionOf (links unten),
owl:intersectionOf (rechts oben) und owl:complementOf (rechts unten) in

OWL 1.0.

54

4.3. Konzeptoptimierungen

Class1 Class2

Class1 Class2

Class1 Class2

Class1 Class2

Abbildung 4.10.: Darstellung von owl:unionOf (links oben), owl:intersectionOf (links
unten), owl:disjointWith (rechts oben), und owl:complementOf (rechts

unten) nach Optimierung des Visualisierungskonzeptes.

Class1 Class2

Abbildung 4.11.: Darstellung mehrfacher Properties gemäß Konzeptoptimierung.

Abbildung 4.12.: Skizze der explorierbaren Detailansicht.

55

5. Frameworks für Graphen

Im Rahmen dieser Arbeit müssen Ontologien visualisiert werden. Die Visualisierung soll
durch die Verwendung von Grafikframeworks erleichtert werden, schließlich müssen Grun-
doperationen nicht selbst implementiert werden. Grafikframeworks bieten unter anderem
Funktionen, um eine Kante zwischen zwei Knoten zeichnen zu lassen. Falls man eine derartige
Funktion selbst implementieren möchte, so wird beispielsweise die Kenntnis der genauen Po-
sition des Knoten notwendig. Daneben implementieren Grafikframeworks unzählige weitere
Funktionen, welche die Entwicklung einer Ontologievisualisierung unterstützen können.
Aus diesem Anlass werden verschiedene Frameworks auf ihre Eignung, die Implementierung
dieser Visualisierung zu unterstützen, untersucht. Hinsichtlich der Bewertung der Frame-
works werden folgende Kriterien aufgestellt:

Einarbeitungszeit: Die Einarbeitung in die Grundlagen des entsprechenden Frameworks
sollte aufgrund des zeitlich beschränkten Rahmens dieser Arbeit möglichst wenig
Zeit beanspruchen. Mit dem jeweiligen Grafikframework sollte innerhalb von drei
Stunden ein Prototyp zur Visualisierung eines einfachen Graphen realisiert werden.
Die Verwendung des Frameworks sollte in einer positiven Kosten/Nutzen Rechnung
resultieren, d.h.: die Verwendung des Frameworks sollte zeitsparender als die direkte
Verwendung von Java2D samt Implementierung aller benötigten Features sein.

Dokumentation: Das Framework sollte über eine umfangreiche Dokumentation verfügen.
Hierbei wird nicht nur die Dokumentation des Frameworkquellcodes gewertet, sondern
auch alle Dokumente über dessen Verwendung, seien es Beispiele, Grundlagen oder
theoretische Modelle. Der Ursprung der Dokumentation, ob vom Hersteller oder von
Dritten, spielt dabei keine Rolle.

Editierbarkeit (Graph): Das Framework sollte ausreichend viele Möglichkeiten bieten, die
Visualisierung des Graphen zu beeinflussen. Beispielsweise sollte das Framework ver-
schiedene Parameter für die Schriftfarbe, Schriftgröße oder Liniendicke akzeptieren.
Wie die Beeinflussung der zu erstellenden Visualisierung im Detail erfolgt, ist irrelevant.

Editierbarkeit (Code): Wenn eine erwünschte Modifikation der Visualisierung nicht über
das Framework selbst realisiert werden kann, so wird eine Ergänzung des Codes des
Frameworks notwendig. Diese Veränderungen sollten ohne größere Schwierigkeiten
möglich sein. Neben der Erreichbarkeit des Quellcodes zählt zu diesem Kriterium auch,
wie umfangreich die Einarbeitung in das Framework ist. Frameworks, deren Module
gut gekapselt und deren Funktionalität klar erkennbar sind, sind in der Regel leichter
zu verstehen und damit zu verändern als Module, deren Zweck völlig unklar sind.

57

5. Frameworks für Graphen

Performance: Die Erstellung des Graphen durch das Framework sollte so flott geschehen,
dass der Nutzer von der Generierung des Graphen nichts mitbekommt. Handelt es sich
bei dem Framework um ein interaktives Framework, so sollte die Interaktion mit dem
Graphen zu keiner, vom Benutzer zu bemerkenden, Verzögerung führen.

Interaktivität: Der Nutzer sollte in der Lage sein mit dem Graphen zu interagieren. Die
Interaktion sollte den Nutzer bei der Exploration der Ontologie unterstützen. Das
Framework muss dem Benutzer beispielsweise die Möglichkeit bieten, Bestandteile des
Graphen visuell zu verschieben. Die Interaktivität ist auf das Explorieren beschränkt.
Eine tiefer gehende Modifikation des Graphen ist nicht vorgesehen, der Nutzer muss
keine Elemente aus dem Graphen löschen oder hinzufügen können.

Integrierbarkeit: Das Framework zur Generierung des Graphen sollte in die eigene Anwen-
dung integrierbar sein.

Innerhalb dieses Kapitels werden Frameworks hinsichtlich der hier aufgestellten Kriterien be-
wertet. Im Anschluss an die Vorstellung und Bewertung der einzelnen Frameworks folgt eine
Zusammenfassung der untersuchten Frameworks, bezüglich ihrer Eignung die Visualisierung
von Ontologien im Rahmen dieser Arbeit sinnvoll zu unterstützen.

5.1. GraphViz

GraphViz ist eine Sammlung von Programmen zur Visualisierung von Graphen. Ihre Entwick-
lung begann 1988 bei AT&T und den Bell-Labs. Lizenziert wird GraphViz unter der Eclipse
Public License1. Die Programmsammlung enthält verschiedene Teilprogramme, die jeweils
eine andere Art von Graphen generieren [Gra13a]. Im Folgenden werden die verschiedenen
Programmsammlungen und die Graphen, die sie erzeugen können, vorgestellt:

dot: erstellt hierarchische Strukturen. Dot versucht bei der Graphengenerierung einen Gra-
phen zu erstellen, dessen Kanten möglichst kurz sind, sich nicht gegenseitig schneiden
und in dieselbe Richtung zeigen - von oben nach unten oder von links nach rechts.

neato: generiert kräftebasierte Layouts. Neato sollte nach [Gra13a] nicht für Graphen mit
mehr als 100 Knoten verwendet werden. Bei der Graphengenerierung wird eine mul-
tidimensionale Skalierung eingesetzt. Dabei werden ähnliche Objekte räumlich näher,
unähnliche eher entfernt voneinander platziert. Nach diesem Ansatz werden verbunde-
ne Knoten innerhalb eines Graphen räumlich näher und unverbundene Knoten räumlich
eher getrennt voneinander angeordnet.

fdp: erstellt hierarchische Strukturen. Im Gegensatz zu neato implementiert fdp eine
Fruchterman-Reingold Heuristik und ist damit auch für größere Graphen geeignet.
Bei diesem Ansatz werden Anziehungskräfte und Abstoßungskräfte zwischen Knoten
eines Graphen berechnet und visualisert.

1http://www.graphviz.org/Download.php

58

http://www.graphviz.org/Download.php

5.1. GraphViz

twopi: erstellt einen Graphen mit einem radialen Layout.

circo: erstellt einen Graphen mit einem circulären Layout.

Jedes Teilprogramm der GraphViz-Programmsammlung generiert einen Graphen aus einer
textuellen Beschreibung [Nor04]. Diese Beschreibung erfolgt in der Auszeichnungssprache
DOT. Nach erfolgreicher Generierung wird das Ergebnis als Datei exportiert [KN+91]. Bei-
spielsweise enthält Quelltext 5.1 einen in der Auszeichnungssprache DOT beschriebenen
Graph. DOT generiert daraus einen Graph, aus dem ein visueller Graph, wie in Abbildung
5.1 dargestellt, erstellt wird.

Quelltext 5.1 Ein Beispiel eines in DOT beschriebenen Graphen, entnommen aus [KN+91].
digraph G {

main -> parse -> execute;

main -> init;

main -> cleanup;

execute -> make_string;

execute -> printf;

init -> make_string;

main -> printf;

execute -> compare;

: }

Abbildung 5.1.: Der in Quelltext 5.1 beschriebene Graph nach der Generierung durch dot,
Abbildung entnommen aus [KN+91].

GraphViz wird stetig weiter entwickelt, so erschien am 1. August 2013 GraphViz in Version
2.32 [Gra13a]. GraphViz dient bereits einigen Protégé Plug-ins als Framework zur Visuali-
sierung von Graphen. Beispielsweise benötigt das schon in Abbildung 2.2 aus Abschnitt 2.1
erwähnte Plug-in OWLViz GraphViz [Hor10].
Die Dokumentation zu GraphViz ist ausführlich und umfangreich. Die Webseite enthält
nicht nur eine umfangreiche Galerie bereits generierter Graphen, sondern auch detaillierte
Handbücher zu den unterschiedlichen Bestandteilen von GraphViz und eine detaillierte
Beschreibung der verschiedenen Parameter. Die einfache und beschreibende Struktur der

59

5. Frameworks für Graphen

Beschreibungssprache DOT, sowie die detaillierte Dokumentation von GraphViz ermögli-
chen einen einfachen Einstieg in die Erstellung unterschiedlicher, nach eigenen Wünschen
angepasster, Graphen. [Gra13b] enthält beispielsweise eine umfangreiche Liste verschiedener
Formen von Knoten und Kanten, die mit GraphViz visualisiert werden können. Als Open-
Source-Anwendung liegt GraphViz zwar im Quellcode vor2, jedoch sind Änderungen am
Code mit einer erneuten Kompilierung verbunden, wofür wiederum zahlreiche Pakete und
Werkzeuge benötigt werden. Des Weiteren werden Kenntnisse in der Programmiersprache C
vorausgesetzt [Gan13]. Die Performance von GraphViz ist mehr als ausreichend, beispiels-
weise wurde der Graph in Abbildung 5.2 durch neato innerhalb von 0.41 Sekunden generiert
[Nor04]. Da GraphViz als eine in C implementierte Anwendung vorliegt, ist sowohl die Inter-
aktivität als auch die Integrierbarkeit zwischen der C-Anwendung und der Java-Anwendung
eingeschränkt.

Abbildung 5.2.: Ein innerhalb 0,41 Sekunden generierter Graph, Abbildung entnommen aus
[Nor04].

Für GraphViz wurden einige Java-Interfaces entwickelt, mit deren Hilfe die GraphViz-
Programmsammlung direkt in Java verwendet werden kann. Beispiele für derartige Interfaces
sind:

Grappa: GRAPh PAckage in Java [BML97]

JPGD: Java-basierter Parser für GraphViz Dokumente3

GraphViz Java-Implementierung4

2http://www.graphviz.org/Download_source.php
3http://www.alexander-merz.com/graphviz

60

http://www.graphviz.org/Download_source.php
http://www.alexander-merz.com/graphviz

5.2. Grappa

Die Dokumentationen zu diesen Interfaces sind dürftig. Für Gappa konnte beispielsweise
neben dem Quellcode nur ein einziges Paper gefunden werden. Es gibt nahezu keine Infor-
mationen über den Umfang mit dem JPGD bzw. die GraphViz Java-Implementierung die
Auszeichnungssprache DOT verarbeiten kann.

5.2. Grappa

Grappa ist ein Java-Package mit den Graphen, die in der Auszeichnungssprache DOT beschrie-
ben wurden, visualisiert werden können. Ebenso wie GraphViz wurde Grappa von AT&T
entwickelt. Die Webseite enthält neben dem Quellcode auch eine Online-Demonstration, mit
der Grappa getestet werden kann.
Laut Webseite existiert zu Grappa neben dem Paper [BML97] und JavaDocs5 keine weitere Do-
kumentation. Die Webseite weist ebenfalls darauf hin, dass Grappa kein Layout beherrscht6.
Abbildung 5.3 zeigt den Aufbau, während Abbildung 5.4 die Klassenhierarchie von Grappa
beschreibt. Grappa wird von dem Protégé-Visualisierungsplugin OntoViz verwendet.
Die letzte Aktualisierung von Grappa fand am 22. September 2010 statt, 2008 gab es kleinere
Verbesserungen, die aktive Entwicklung schien zwischen 2001 und 2006 stattgefunden zu
haben.
Innerhalb der gesetzten Frist für die Einarbeitungszeit konnte kein Graph generiert werden.
Die Einarbeitung scheiterte unter anderem an fehlenden Paketen, die zusammengesucht wer-
den mussten. Beispielsweise benötigt Grappa das Paket java_cup.runtime, welches ebenfalls
von AT&T entwickelt wurde7. Innerhalb der gesetzten Frist konnten nicht alle benötigten
Pakete gefunden werden.
Aufgrund der Verwendung der Auszeichnungssprache DOT ist davon auszugehen, dass die
mit Grappa zu visualisierende Graphen hinreichend an eigene Wünsche angepasst werden
können. Aufgrund der teils widersprüchlichen Dokumentation fehlen jedoch klare Aussagen,
ob alle Deklarationen aus DOT unterstützt werden. Die Webseite deutet beispielsweise an,
dass eine große Menge unterschiedlicher Knotenformen unterstützt werden. Soll diese In-
formation den Leser darüber informieren, dass Grappa verglichen mit anderen Frameworks
viele Formen unterstützt, oder soll die Information darauf hinweisen, dass eben nicht alle
Formen verwendet werden können?
Aufgrund der, in Abbildung 5.3 erwähnten Client-Server Trennung erschien eine eventu-
ell benötigte Modifikation des Codes als zu zeitaufwendig und hätte möglicherweise den
zeitlichen Rahmen dieser Arbeit gesprengt. Aufgrund der Verwendung von Grappa in On-
toGraf kann die Performance von Grappa allerdings als ausreichend bewertet werden. Die
Onlinedemonstration beweist die Existenz von Tooltips, allerdings scheint der Benutzer kei-
ne Knoten verschieben zu können. Die Online-Demonstration erscheint recht rudimentär,
das Kompilieren des Graphen aus Quelltext 5.1 ist nicht möglich, obwohl dieser Graph der
GraphViz-Dokumentation entnommen wurde [KN+91]. Nicht abschließend geklärt werden

5http://www2.research.att.com/~john/Grappa/docs/att/grappa/package-summary.html
6http://www2.research.att.com/~john/Grappa/grappa_faq.html#Usage_Q1
7http://www2.research.att.com/~john/Grappa/docs/java_cup/runtime/package-summary.html

61

http://www2.research.att.com/~john/Grappa/docs/att/grappa/package-summary.html
http://www2.research.att.com/~john/Grappa/grappa_faq.html#Usage_Q1
http://www2.research.att.com/~john/Grappa/docs/java_cup/runtime/package-summary.html

5. Frameworks für Graphen

konnte, ob dieser Fehler auf eine nicht ausreichende Unterstürzung der Auszeichnungsspra-
che DOT hindeutet oder ob ein Fehler innerhalb der Online-Demonstration vorliegt.

Abbildung 5.3.: Aufbau von Grappa, entnommen aus [BML97].

Abbildung 5.4.: Klassenhierachie in Grappe, entnommen aus [BML97].

62

5.3. Eclipse Zest

5.3. Eclipse Zest

Bei Zest, dem Eclipse Visualization Toolkit [Ste13], handelt es sich um eine Sammlung von
Visualisierungskomponenten für Eclipse. Wie Quelltext 5.2 zeigt, unterstützt Zest Graphen,
die in der Auszeichnungssprache DOT beschrieben werden können. Eine objektorientierte
Erstellung der Komponenten ist, wie in Quelltext 5.3 gezeigt, ebenfalls möglich.

Quelltext 5.2 Ein Beispiel für die Verwendung von DOT in Zest, Beispiel [Ste13] entnommen.
Shell shell = new Shell();

DotGraph graph = new DotGraph("digraph{ 1->2 }", shell, SWT.NONE);

graph.add("2->3").add("2->4");

graph.add("node[label=zested]; edge[style=dashed]; 3->5; 4->6");

open(shell);

Quelltext 5.3 Objektorientierte Weise einen Graphen zu Erstellen, Beispiel [Vog11] entnom-
men.
graph = new Graph(parent, SWT.NONE);

GraphNode node1 = new GraphNode(graph, SWT.NONE, "A");

GraphNode node2 = new GraphNode(graph, SWT.NONE, "B");

GraphNode node3 = new GraphNode(graph, SWT.NONE, "C");

new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, node1, node2);

new GraphConnection(graph, SWT.NONE, node3, node1);

Abbildung 5.5.: Zest visualisiert einen Graphen [Vog11].

Die verfügbaren Informationen zu Zest sind deutlich geringer als jene zu GraphViz. Die
verfügbaren Dokumente zu Zest sind größtenteils Anleitungen, beschreiben, jedoch nicht
ins Detail gehen. Einige der auf der Zest-Webseite verlinkten Dokumente sind nicht mehr
verfügbar. Innerhalb der Zeitvorgabe konnte kein Graph mittels Zest generiert werden, sodass
die Einarbeitungszeit als negativ bewertet werden muss. Graphen lassen sich in Zest nur
eingeschränkt editieren. Zest unterstützt die Auszeichnungssprache DOT, allerdings gibt
es keine Informationen, ob alle Bestandteile von DOT unterstützt werden oder nur eine
Teilmenge. Informationen über die objektorientierte Graphenerstellung sind ebenfalls nicht
verfügbar.

63

5. Frameworks für Graphen

5.4. JGraph

JGraph ist ein auf Java basiertes Grafikframework zur Visualisierung von Graphen, zu dem
verschiedenen Versionen existieren. 2002 erschien die erste Version von JGraph. Ab Version
5 wird die Entwicklung unter dem Namen mxGraph kommerziell fortgesetzt, während die
Open-Source-Variante ab Version 6 den Namen JGraphX trägt. Innerhalb dieser Ausarbeitung
werden alle Versionen unter dem Namen JGraph geführt, da eine detaillierte Unterscheidung
der einzelnen Varianten für die weitere Vorstellung und Analyse im Rahmen dieser Arbeit
nicht relevant ist.
Quelltext 5.4 zeigt den Code eines, in der Einarbeitungszeit erstellten rudimentären Graphen
dessen Visualisierung in Abbildung 5.6 vorgestellt wird. Die Dokumentation zu JGraph ist
umfangreich, [Ald03] erklärt beispielsweise, wie man in JGraph einen Graphen erstellt, wie
dieser an die eigenen Wünsche angepasst werden kann und wie JGraph auf Eingaben des Be-
nutzers reagieren soll. [Ald02] beschreibt den Aufbau von JGraph näher. Weitere Dokumente
sind im World Wide Web verfügbar. JGraph ist gut in die eigene Anwendung integrierbar,
es werden nur wenige Pakete vorausgesetzt. Die Interaktivität von JGraph ist schwierig zu
bewerten. Wie in Abbildung 5.7 gezeigt, kann der Benutzer die Größe von einzelnen Knoten
verändern, das Verschieben der Knoten ist allerdings nicht möglich. In den Standardeinstellun-
gen kann der Benutzer, wie in Abbildung 5.8 gezeigt, weitere Kanten hinzufügen, die beliebig
im Raum verteilt werden können. Der Namen eines Knoten kann ebenfalls vom Nutzer ver-
ändert werden. Dieses Verhalten von JGraph ist aber abschaltbar. Letztendlich überwiegt der
Eindruck, dass vieles in JGraph möglich ist, deren Implementierung jedoch recht umständlich
ist, beispielsweise sind Tooltips, verglichen mit anderen Frameworks eher umständlich zu
realisieren [Ald03, S. 10]. Die Performance von JGraph ist mehr als ausreichend.

Quelltext 5.4 Erstellung eines Demonstrationsgraphen mittels JGraph.
mxGraph graph = new mxGraph();

Object parent = graph.getDefaultParent();

graph.getModel().beginUpdate();

try {

// graph.insertEdge(parent, id, value, source, target)

Object v1 = graph.insertVertex(parent, null, "Node1", 20, 20, 80, 30);

Object v2 = graph.insertVertex(parent, null, "Node2", 240, 150, 80, 30);

Object v3 = graph.insertVertex(parent, null, "Node3", 170, 100, 80, 30);

graph.insertEdge(parent, null, "V12", v1, v2);

graph.insertEdge(parent, null, "V13", v1, v3);

} finally {

graph.getModel().endUpdate();

}

mxGraphComponent graphComponent = new mxGraphComponent(graph);

JGraphX frame = new JGraphX();

frame.add(graphComponent);

frame.pack();

frame.setVisible(true);

64

5.4. JGraph

Abbildung 5.6.: Visualisierung des Codes aus Quelltext 5.4 mittels JGraph.

Abbildung 5.7.: Visualisierung des Codes aus Quelltext 5.4 nach Veränderung der Größe des
dritten Knoten.

Abbildung 5.8.: Freie Kanten im Raum und Namensänderung.

65

5. Frameworks für Graphen

5.5. JUNG

Java Universal Network/Graph Framework (JUNG) ist ein auf Java basiertes Framework zur
Visualisierung von Graphen und Netzwerken. JUNG findet beispielsweise Anwendung in der
Analyse von Netzwerkdaten [Jun]. Innerhalb der Einarbeitungszeit konnte mittels JUNG der
Graph aus Abbildung 5.9 auf Basis des Codes aus Quelltext 5.5 generiert werden. Komplexere
Graphen lassen sich ebenfalls mit JUNG visualisieren. Abbildung 5.10 veranschaulicht hierzu
ein Beispiel eines komplexeren Graphen, der mittels JUNG visualisiert wurde.
Die JUNG-Dokumentation erscheint für das Framework angemessen umfangreich, ist jedoch
deutlich geringer als die der beiden bereits vorgestellten Frameworks GraphViz und JGraph.
Die JUNG-Webseite [JUN10b] hält einige Anleitungen parat. JUNG ist das einzige untersuchte
Framework, dessen Anleitung von einem Entwickler des Frameworks geschrieben wurde
[Ber10]. Das JUNG-Framework verfügt über eine aktivere Community. Bei Stackoverflow8

wurden beispielsweise 260 Fragen mit dem Tag „JUNG“ versehen. Im Vergleich hierzu
verfügt GraphViz mit mehr als 803 Tags über deutlich mehr Fragen auf Stackoverflow. Die
Frameworks JGraph, Prefuse und Zest bilden mit 30, 61 und 41 Tags auf Stackoverflow
deutlich das Schlusslicht. Auf Basis der auf Stackoverflow gestellten Fragen und Antworten
lässt sich auf die Größe und Aktivität der Community der entsprechende Rückschluss ziehen,
dass JUNG von den hier vorgestellten Frameworks die aktivste Community besitzt. JUNG
dient nicht nur einer Vielzahl von Anwendungen als Grafikframework, sondern ist auch
Bestandteil zahlreicher wissenschaftlicher Abhandlungen [Jun10a].
Der Graph scheint durch zahlreiche Parameter gut konfigurierbar zu sein. Dasselbe trifft
auch auf die Editierbarkeit des Codes zu. Beispiele zu beiden Fällen können in [Ber10]
gefunden werden. Die Performance von JUNG kann als ausreichend bewertet werden. Die
Integrierbarkeit in die eigene Anwendung stellt kein Problem dar, auch wenn hierzu 17 JAR-
Pakete importiert werden müssen. Die Pakete sind leicht aufzufinden und müssen nicht extra
identifiziert und gesucht werden. JUNG verfügt ebenfalls über umfangreiche Möglichkeiten
für Nutzer zur Interaktion mit dem visualisierten Graphen.

8http://stackoverflow.com

66

http://stackoverflow.com

5.5. JUNG

Quelltext 5.5 Erstellung eines Demonstrationsgraphen mittels JUNG.
private static Graph<String, Integer> getGraph() {

final Graph<String, Integer> g = new DirectedSparseGraph<String, Integer>();

g.addVertex("Haus");

g.addVertex("Reihenhaus");

g.addVertex("Mehrfamilienhaus");

g.addVertex("Hochhaus");

g.addVertex("kaputtes Haus");

g.addEdge(1, "Haus", "Hochhaus");

g.addEdge(2, "Reihenhaus", "Mehrfamilienhaus");

g.addEdge(3, "kaputtes Haus", "Haus");

return g;

}

private static GraphZoomScrollPane getJungGraphPane() {

final Graph<String, Integer> g = getGraph();

final VisualizationViewer<String, Integer> viewer = new

VisualizationViewer<String, Integer>(

new CircleLayout<String, Integer>(g));

viewer.setDoubleBuffered(true);

final GraphZoomScrollPane paneWithGraph = new GraphZoomScrollPane(

viewer);

return paneWithGraph;

}

@Override

protected Control createContents(final Composite parent) {

final Composite graphViewComposite = new Composite(parent, SWT.NONE

| SWT.EMBEDDED);

final Frame graphFrame = SWT_AWT.new_Frame(graphViewComposite);

GridDataFactory.fillDefaults().grab(true, true)

.applyTo(graphViewComposite);

graphFrame.add(getJungGraphPane());

graphFrame.pack();

graphFrame.setVisible(true);

return parent;

}

public void run() {

this.setBlockOnOpen(true);

this.open();

Display.getCurrent().dispose();

}

public static void main(final String[] args) {

new Jung().run();

}

67

5. Frameworks für Graphen

Abbildung 5.9.: Visualisierung des Codes aus Quelltext 5.5 mittels JUNG.

Abbildung 5.10.: Visualisierung eines komplexeren Graphen mittels JUNG, entnommen aus
[Jun].

68

5.6. Prefuse

5.6. Prefuse

Prefuse ist ein auf Java basiertes Grafikframework, das unter BSD Lizenz9 steht und daher
sowohl nicht-kommerziell als auch kommerziell verwendet werden kann. Prefuse nutzt zur
Visualisierung die Java 2D-Grafikbibliothek. Entwickelt wurde das Prefuse-Framework zur
dynamischen Visualisierung von strukturierten und unstrukturierten Daten [HCL05]. Die
Webseite des Frameworks hält neben einem Handbuch auch eine Galery verschiedener Visua-
lisierungen parat [Ber13].
Der Quellcode demonstriert durch zahlreiche Beispiele verschiedener Visualisierungen die
Mächtigkeit des Frameworks. Als Beispiel hierfür können die enthaltene Visualisierung der
geografischen Verteilung von Postleitzahlen in den Vereinigten Staaten und eine Visualisie-
rung einer Treemap gelten. Abbildung 5.11 und Abbildung 5.12 demonstrieren die Fähigkeiten
von Prefuse zur Visualisierung von Graphen. Auch diese Beispiele sind im Quellcode des
Prefuse-Frameworks vorzufinden, ihre Abbildungen können aus diesem generiert werden
[Ber13].

Abbildung 5.11.: Mittels Prefuse erstellte Visualisierung eines aggregierten Graphen.

9http://opensource.org/licenses/bsd-license.php

69

http://opensource.org/licenses/bsd-license.php

5. Frameworks für Graphen

Abbildung 5.12.: Mittels Prefuse erstellte Visualisierung eines Graphen.

Innerhalb der festgelegten Frist zur Einarbeitung konnte der Codes aus Quelltext 5.6 und
damit der Graph aus Abbildung 5.13 erstellt werden. In diesem Prototyp wurde die Anzahl
der Kanten, ihr Startknoten und Zielknoten zufällig bestimmt. Dieses Beispiel sollte die weni-
gen Schritte demonstrieren, die zur Erstellung der Elemente des Graphen notwendig sind.
Prefuse ermöglicht einen einfachen Einstieg, die Webseite stellt ein Handbuch und eine API
zur Verfügung [Ber13].
Auch von der wissenschaftlichen Seite findet Prefuse Anerkennung, beispielsweise wurde
das Framework auf der CHI 200510 vorgestellt [HCL05]. Bereits die Informationen der Ab-
handlung [HCL05] reichen für einen Einstieg in das Framework und dessen Verwendung
aus. Prefuse verfügt auch Jahre nach der letzten Änderung über eine aktive Community. Bei
Stackoverflow11 existieren beispielsweise mindestens 61 Fragen zu Prefuse und auch die
eigenen Diskussionsforen sind gut besucht12. Zu Prefuse existieren zahlreiche Dokumente,
die Association for Computing Machinery listet beispielsweise 152 Abhandlungen zu Prefuse.
Auch in anderen ähnlichen Projekten kam Prefuse bereits zum Einsatz, beispielsweise in SO-
VA [BJKK10]. Weitere Verwendung fand Prefuse in mindestens hundert weiteren Projekten13.
Die Möglichkeiten zur Veränderung des Graphen sind vielfältig gegeben. Beispielsweise
kann der Graph direkt bei seiner Generierung an die eigenen Wünsche angepasst werden.

10http://www.chi2005.org/index.html
11http://stackoverflow.com/questions/tagged/prefuse
12http://sourceforge.net/p/prefuse/discussion/343012
13https://masterbranch.com/prefuse-projects

70

http://www.chi2005.org/index.html
http://stackoverflow.com/questions/tagged/prefuse
http://sourceforge.net/p/prefuse/discussion/343012
https://masterbranch.com/prefuse-projects

5.6. Prefuse

In Quelltext 5.6 wurden beispielsweise sämtliche Kanten eine Graue und allen Knoten eine
grüne Farbe zugewiesen. Dies geschah durch die beiden Anweisungen „ColorAction fill
= new ColorAction("graph.nodes", VisualItem.FILLCOLOR, ColorLib.rgb(0, 200, 0));“ und
„ColorAction edges = new ColorAction("graph.edges", VisualItem.STROKECOLOR, Color-
Lib.gray(200));“.
Der Code von Prefuse ist gut strukturiert und kommentiert, sodass man sich als Entwickler
schnell zurechtfindet. Änderungen an Prefuse können leicht durchgeführt und durch inte-
grierte JUnit-Tests geprüft werden. Die Performance von Prefuse ist mehr als ausreichend.
Als einziges Framework verfügt Prefuse über einen integrierten Benchmark. Das Resultat
des Benchmarks kann Quelltext 5.7 entnommen werden. Pefuse generiert 10000 Elemente
auf einem alten „Intel Core 2 Duo“ innerhalb von 3 Sekunden. Die genauen Ergebnisse sind
jedoch für diese Beurteilung irrelevant, zumal kein exakter Vergleich mit anderen Frameworks
möglich ist. Für den geforderten Anwendungszweck kann Prefuse damit als ausreichend
performant angesehen werden.
Es ist gut in die eigene Anwendung integrierbar und die Interaktivität mit dem Graphen ist
ebenfalls sehr gut. Der Nutzer kann beispielsweise Knoten mittels drag & drop verschieben
oder das Mausrad zum Zoomen verwenden.

Abbildung 5.13.: Visualisierung des Graphen aus Quelltext 5.6.

71

5. Frameworks für Graphen

Quelltext 5.6 Erstellung eines Demonstrationsgraphen mittels Prefuse.
Graph graph = new Graph();

// create Nodes

for (int i=0; i<=50; i++) {

graph.addNode();

}

// create connections

Random rnd = new Random();

for (int i=0; i<=15; i++) {

int a = rnd.nextInt(50);

int b = rnd.nextInt(50);

graph.addEdge(a, b);

}

ColorAction fill = new ColorAction("graph.nodes", VisualItem.FILLCOLOR,

ColorLib.rgb(0, 200, 0));

ColorAction edges = new ColorAction("graph.edges", VisualItem.STROKECOLOR,

ColorLib.gray(200));

ActionList color = new ActionList();

color.add(fill);

color.add(edges);

ActionList layout = new ActionList();

layout.add(new RandomLayout("graph"));

layout.add(new RepaintAction());

Visualization vis = new Visualization();

vis.add("graph", graph);

vis.putAction("color", color);

vis.putAction("layout", layout);

ShapeRenderer r = new ShapeRenderer();

vis.setRendererFactory(new DefaultRendererFactory(r));

Display d = new Display(vis);

d.setSize(720, 500);

d.addControlListener(new DragControl());

d.addControlListener(new PanControl());

d.addControlListener(new ZoomControl());

JFrame frame = new JFrame("prefuse example");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(d);

frame.pack();

frame.setVisible(true);

vis.run("color");

vis.run("layout");

72

5.7. Piccolo2D

Quelltext 5.7 Ergebnisse des integrierten Prefuse Benchmarks.

Nov 15, 2013 3:32:00 PM test.RenderingBenchmarks paintComponent

INFO: Rendering Benchmarks: NORMAL

PRIMITIVE COUNT TIME PRIMITIVES/SEC PRIMITIVES/FRAME @ 20fps

lines-direct 10000 0.01s 1000000.0 pr/s 50000.0 pr/fr

lines-shape 10000 0.022s 454545.45 pr/s 22727.27 pr/fr

rect-direct-draw 10000 0.023s 434782.6 pr/s 21739.13 pr/fr

rect-shape-draw 10000 0.118s 84745.76 pr/s 4237.28 pr/fr

rect-direct-fill 10000 0.022s 454545.45 pr/s 22727.27 pr/fr

rect-shape-fill 10000 0.042s 238095.23 pr/s 11904.76 pr/fr

rrect-direct-draw 10000 0.12s 83333.33 pr/s 4166.66 pr/fr

rrect-shape-draw 10000 0.086s 116279.06 pr/s 5813.95 pr/fr

rrect-direct-fill 10000 0.255s 39215.68 pr/s 1960.78 pr/fr

rrect-shape-fill 10000 0.251s 39840.63 pr/s 1992.03 pr/fr

text-direct-int 10000 0.039s 256410.25 pr/s 12820.51 pr/fr

text-direct-float 10000 0.035s 285714.28 pr/s 14285.71 pr/fr

text-glyph-vector 10000 0.035s 285714.28 pr/s 14285.71 pr/fr

Nov 15, 2013 3:32:05 PM test.RenderingBenchmarks paintComponent

INFO: Rendering Benchmarks: ANTI-ALIASING

PRIMITIVE COUNT TIME PRIMITIVES/SEC PRIMITIVES/FRAME @ 20fps

lines-direct 10000 0.045s 222222.22 pr/s 11111.11 pr/fr

lines-shape 10000 0.007s 1428571.42 pr/s 71428.57 pr/fr

rect-direct-draw 10000 0.06s 166666.66 pr/s 8333.33 pr/fr

rect-shape-draw 10000 0.007s 1428571.42 pr/s 71428.57 pr/fr

rect-direct-fill 10000 0.029s 344827.58 pr/s 17241.37 pr/fr

rect-shape-fill 10000 0.004s 2500000.0 pr/s 125000.0 pr/fr

rrect-direct-draw 10000 2.36s 4237.28 pr/s 211.86 pr/fr

rrect-shape-draw 10000 1.233s 8110.3 pr/s 405.51 pr/fr

rrect-direct-fill 10000 0.952s 10504.2 pr/s 525.21 pr/fr

rrect-shape-fill 10000 0.774s 12919.89 pr/s 645.99 pr/fr

text-direct-int 10000 0.048s 208333.33 pr/s 10416.66 pr/fr

text-direct-float 10000 0.038s 263157.89 pr/s 13157.89 pr/fr

text-glyph-vector 10000 0.055s 181818.18 pr/s 9090.9 pr/fr

5.7. Piccolo2D

Bei Piccolo2D handelt es sich um ein, auf Java basiertes Grafikframework, welches sich selbst
als zoombares Userinterface beschreibt. Entwickelt wurde Piccolo2D vom Mensch-Computer
Interaktionslabor der Universität von Maryland14. Die Visualisierung eines Graphen mittels
Piccolo2D kann Abbildung 5.14 entnommen werden. Sie ist als Beispiel direkt im Piccolo2D
Quellcode enthalten. Piccolo2D ist kein Framework zur reinen Visualisierung von Graphen,
stattdessen lassen sich 2D Strukturen modellieren. Abbildung 5.15 zeigt Piccolo2D beispiels-
weise bei der Visualisierung von Tabellen, auch dieses Beispiel ist direkt dem Quellcode ent-
nommen. Die Dokumentation zu Piccolo erscheint dürftig, so enthält die Piccolo2D-Webseite

14http://www.cs.umd.edu/hcil/jazz/index.shtml

73

http://www.cs.umd.edu/hcil/jazz/index.shtml

5. Frameworks für Graphen

nur eine wenige Seiten umfassende Anleitung zum Einstieg in das Framework. Der Quellco-
de hingegen demonstriert seine Einsetzbarkeit anhand zahlreicher Beispiele. Aufgrund der
Tatsache, dass wichtige Kriterien im Gegensatz zu den anderen vorgestellten Frameworks
nicht erfüllt wurden, schied Piccolo2D für weitere Untersuchungen aus.

Abbildung 5.14.: Visualisierung eines Graphen mittels Piccolo2D.

Abbildung 5.15.: Visualisierung eines Graphen mittels Piccolo2D.

74

5.8. GraphStream

5.8. GraphStream

GraphStream ist ebenfalls ein Java basiertes Framework zur Visualisierung von Graphen.
Die Webseite von GraphStream15 enthält eine Demonstration des Frameworks. Abbildung
5.16 zeigt einen mittels GraphStream generierten Graphen, dessen Quellcode Quelltext 5.8
entnommen werden kann. Abbildung 5.17 stellt einen komplexeren Graphen dar, dessen
Visualisierung der GraphStream Galerie entnommen wurde [Gra10]. Zwar vermittelt die
Webseite von GraphStream einen Eindruck von der Mächtigkeit des Frameworks, scheint
sich aber auf die Dokumentation, die auf der Webseite zur Verfügung steht, zu beschränken.
Zum Zeitpunkt der Erstellung dieses Dokumentes wurde der Release von GraphStream 1.2
um 11 Monate versäumt16. Aufgrund der Tatsache, dass wichtige Kriterien im Gegensatz zu
den anderen vorgestellten Frameworks nicht erfüllt wurden, schied GraphStream für weitere
Untersuchungen aus.

Quelltext 5.8 Erstellung eines Demonstrationsgraphen mittels GraphStream.
Graph graph = new SingleGraph("Test");

graph.addNode("A");

Node n = graph.getNode("A");

n.setAttribute("weight", 1.5);

n.addAttribute("ui.label", "A");

graph.addNode("B");

graph.addNode("C");

graph.addNode("D");

graph.addEdge("AB", "A", "B");

graph.addEdge("BC", "B", "C");

graph.addEdge("CA", "C", "A");

graph.addEdge("CD", "C", "D");

graph.addEdge("BD", "B", "D");

graph.display();

Abbildung 5.16.: Visualisierung des Graphen aus Quelltext 5.8.

15http://graphstream-project.org
16https://github.com/graphstream/gs-core/issues/milestones

75

http://graphstream-project.org
https://github.com/graphstream/gs-core/issues/milestones

5. Frameworks für Graphen

Abbildung 5.17.: Visualisierung eines Graphen, entnommen aus [Gra10].

5.9. Zusammenfassung

Kriterium GraphViz Grappa Zest JGRaph JUNG Prefuse GraphStream Piccolo2D
Einarbeitungszeit + - - + + + + . . .
Dokumentation + - - + + + - -

Editierbarkeit (Graph) + + - - + +
Editierbarkeit (Code) Java: -

C: +
- - + + +

Performance + + . . . + + +
Interaktivität - - + - + +

Integrierbarkeit - - + + + +

5.10. Entscheidung

Nach ausführlicher Analyse der vorgestellten Frameworks auf Basis der in diesem Kapitel
vorgestellten Kriterien ergeben sich die beiden Favoriten: JUNG und Prefuse. GraphViz
verfügt über eine gute Bewertung, die fehlende Interaktivität lässt GraphViz für dieses Projekt
aus der näheren Auswahl allerdings ausscheiden.
Prefuse scheint in den Demonstrationsbeispielen gegenüber JUNG optisch ansprechendere
Ergebnisse liefern zu können. Prefuse scheint eine aktivere Community zu besitzen. Prefuse
wird von den Entwicklern als abgeschlossen betrachtet, die letzte Ergänzung am Code stammt
aus dem Jahre 2008. Trotz dieser Zeitspanne scheint die Prefuse-Community weiterhin aktiv
zu sein17. Des Weiteren scheint die verfügbare Dokumentation zu Prefuse hinsichtlich Umfang
minimal besser, als jene für JUNG, zu sein. Aus diesen Gründen wurde im Rahmen dieser
Arbeit das Framework Prefuse für die Entwicklung eines geeigneten Visualisierungskonzepts
für die kompakte und ganzheitliche Visualisierung von Ontologien gewählt.

17http://sourceforge.net/p/prefuse/discussion/343013

76

http://sourceforge.net/p/prefuse/discussion/343013

6. Implementierung

Nachdem die Grundlagen für die technische Realisierung in den vorherigen Kapiteln erläutert
wurden, kann mit der Implementierung begonnen werden.
Realisiert wird die Visualisierung von Ontologien als Plug-in für Protégé. Dadurch entfällt
die Notwendigkeit der Implementierung eigener Funktionen zum Laden und Speichern von
Ontologien. Des Weiteren kann das Datenmodell der OWL-API verwendet werden, denn
Protégé nutzt intern selbst die OWL-API.
Die grafische Darstellung des in Kapitel 4 vorgestellten Konzepts nutzt das in Kapitel 5 ausge-
wählte Grafikframework Prefuse. Die Verwendung von Prefuse ermöglicht eine Reduzierung
des Realisierungsaufwandes, schließlich reduziert sich der Umfang der zu implementierenden
Funktionen.
In diesem Kapitel wird zunächst der chronologische Ablauf der Entwicklung beschrieben,
um anschließend den Entwurf und einige Designentscheidungen vorzustellen.

6.1. Chronologischer Ablauf

Die Entwicklung des Protégé Plug-ins zur Visualisierung von Ontologien verläuft in drei
Etappen. Diese Abschnitte sind in Abbildung 6.1 dargestellt und werden in den folgenden
Abschnitten näher erläutert.

Abbildung 6.1.: Visualisierung des chronologischen Ablauf der Entwicklung.

6.1.1. Darstellung der Grundformen

Bereits während der Evaluation des Grafikframeworks Prefuse wurde ein rudimentärer Graph
als Prototyp generiert. Dieser Graph aus Abbildung 5.13 wurde im ersten Abschnitt ersetzt.
Die im Konzept aus Kapitel 4 erwähnten Abbildungen müssen zerlegt und die Bestandteile
des Konzeptes durch Prefuse gerendert werden. Abbildung 4.3 besteht beispielsweise aus
mindestens drei verschiedenen, in Abbildung 6.2 dargestellter Kantenformen. Des Weiteren
werden Knoten unterschiedlichster Form benötigt. Abbildung 6.3 zeigt das Ergebnis dieser

77

6. Implementierung

ersten Realisierungsphase. Dieser Ausschnitt eines Graphen enthält die meisten der benötig-
ten Grundformen. Zur Realisierung dieser Darstellung muss Prefuse erweitert werden. Zwar
bietet Prefuse bereits zahlreiche Möglichkeiten zur Modifikation der Graphendarstellung,
diese beziehen sich jedoch meist auf den gesamten Graphen. Die beispielsweise in Abbil-
dung 6.4 vorkommende Modifikation vergibt allen Linien und Pfeilspitzen eine schwarze
Farbe. Dies ist jedoch nicht gewollt. Für die im Konzept gewünschte Darstellung wird die
Möglichkeit benötigt, die Form einzelner Knoten und Kanten gezielt zu verändern. In die-
ser ersten Etappe geht es vor allem um die Erweiterung von Prefuse, um alle benötigten
Grundformen darstellen zu können. Dies geschieht durch Erweiterung der Klassen prefu-
se.render.EdgeRenderer und prefuse.render.AbstractShapeRenderer. Nach der Erweiterung
können einzelne Kanten und Knoten durch zusätzliche Parameter gezielt angepasst werden,
um die grafische Darstellung der jeweiligen Parameter kümmern sich die entsprechenden
Renderer. Jede Kante und jeder Knoten innerhalb des Prefuse-Graphen enthalten eine eigene
Wertetabelle mit Key-Value Paaren. Dies erweist sich als äußerst nützlich, schließlich können
die gewünschten Parameter auf diese Weise übergeben werden, Quelltext 6.1 zeigt einen
Ausschnitt hiervon. Als Datenquelle für diesen ersten Graphen aus Abbildung 6.3 dienen zu-
fällig generierte Werte. Mit diesen, voneinander unabhängigen, zufälligen Werten sollen alle
möglichen Wertekombinationen abgedeckt werden und damit eventuell auftretende Fehler
leichter entdeckt werden. Der Ablauf der ersten Etappe entspricht dem Sequenzdiagramm
aus Abbildung 6.5.

Abbildung 6.2.: In VOWL verwendete Kantenformen.

Abbildung 6.3.: Ausschnitt eines Graphen, der alle benötigten Grundformen enthält.

78

6.1. Chronologischer Ablauf

Abbildung 6.4. Änderung der Visualisierung eines Graphen in Prefuse.
ColorAction edges = new ColorAction("GraphDataModifier.edges",

VisualItem.STROKECOLOR, ColorLib.rgb(0, 0, 0));

ColorAction arrow = new ColorAction("GraphDataModifier.edges", VisualItem.FILLCOLOR,

ColorLib.rgb(0, 0, 0));

Quelltext 6.1 Ausschnitt der Datengenerierung eines Knoten.
Node n = graph.addNode();

n.set(ColumnNames.ID, rnd.nextInt(25000));

n.set(ColumnNames.NODE_HEIGHT, rnd.nextInt(35));

n.set(ColumnNames.NODE_WIDTH, rnd.nextInt(35));

n.set(ColumnNames.TEXT_SIZE, rnd.nextInt(12));

n.set(ColumnNames.COLOR_RED, rnd.nextInt(250));

n.set(ColumnNames.COLOR_GREEN, rnd.nextInt(250));

n.set(ColumnNames.COLOR_BLUE, rnd.nextInt(250));

n.set(ColumnNames.TEXT_COLOR_RED, rnd.nextInt(250));

n.set(ColumnNames.TEXT_COLOR_GREEN, rnd.nextInt(250));

n.set(ColumnNames.TEXT_COLOR_BLUE, rnd.nextInt(250));

Abbildung 6.5.: Sequenzdiagramm der erste Etappe.

6.1.2. Darstellung der VOWL-Elemente

Nachdem die benötigten Grundformen in 6.1.1 bereits modelliert wurden, konnte mit der
Umsetzung des Konzeptes aus Kapitel 4 begonnen werden. Dies geschah durch Ersetzen
des in Abschnitt 6.1.1 eingeführten Zufallsdatengenerators. Als Datenquelle des zweiten
Abschnitts dient ein zuvor definiertes VOWL-Beispiel. Dieses VOWL-Beispiel wurde durch
ein weiteres Modul in das Prefuse-Datenmodell übersetzt und anschließend vom Prefuse
Renderer als Graph gezeichnet. Da die hierzu nötigen Modifikationen an Prefuse bereits
zuvor erledigt wurden, waren in dieser Phase keine weiteren Erweiterungen an Prefuse
notwendig. Das Sequenzdiagramm aus Abbildung 6.6 erläutert den Aufbau in diesem zweiten
Abschnitt. Quelltext 6.2 zeigt einen Ausschnitt aus der durch das VOWL-Beispiel definierten
Ontologie. Sie wird durch den GraphDataModifier in das Prefuse-Datenmodell übersetzt, um
anschließend den Graphen aus Abbildung 6.7 generieren zu können.

79

6. Implementierung

Abbildung 6.6.: Sequenzdiagramm der zweiten Etappe.

Quelltext 6.2 Ausschnitt aus der Generierung des VOWL-Beispiels.
GraphStorage.newGraph();

GraphDataModifier mod = new GraphDataModifier();

mod.addClassThing(1);

mod.addClass("Person");

mod.addInstanceToClass("Person", 5);

mod.addClass("Agent");

mod.addInstanceToClass("Agent", 16);

mod.addClass("Document");

mod.addProperty("Agent", Nodetype.vowltype[1], "Agent", Nodetype.vowltype[1]);

mod.addInstanceToClass("Document", 12);

mod.addDeprecatedClass("Spartial Thing");

mod.addInstanceToClass(mod.findClass("Spartial Thing", Nodetype.vowltype[2]), 5);

mod.addProperty("Person", Nodetype.vowltype[1], "Spartial Thing",

Nodetype.vowltype[2]);

mod.addProperty("Document", Nodetype.vowltype[1], "Agent", Nodetype.vowltype[1]);

Abbildung 6.7.: Darstellung der VOWL-Elemente innerhalb des Gaphens.

80

6.1. Chronologischer Ablauf

6.1.3. Darstellung der eingelesenen Ontologie

Im dritten und letzten Schritt wird die zuvor fest vorgegebene Ontologie durch eine be-
liebige, von Protégé eingelesene Ontologie, ersetzt. Das Sequenzdiagramm aus Abbildung
6.8 und die schematische Skizze aus Abbildung 6.9 verdeutlichen den Ablauf in dieser
Phase. Auf die eingelesene Ontologie wird mittels der OWL-API zugegriffen. Das Modul
TransformOWLtoGraph zerlegt die gespeicherte Ontologie in ihre Klassen und Beziehungen.
Diese werden anschließend durch den GraphDataModifier in für Prefuse verständliche Daten
übersetzt. Falls die MUTO-Ontologie [LDA11] eingelesen wird, so stellt Abbildung 6.10 das
visuelle Resultat dieses Schrittes dar. In diesem letzten Entwicklungsschritt wird ebenfalls die
rechts in Abbildung 6.10 sichtbare Informationsleiste implementiert und die innerhalb des
Graphen selektierten Elemente optisch sichtbar gekennzeichnet. Die mit der Maus anvisierten
Elemente werden ebenfalls farblich markiert.

Abbildung 6.8.: Sequenzdiagramm der dritten Etappe.

Visualisierung des Graphen
Auslesen des Prefuse -Datenmodells und Generierung der geometrischen Formen

Befüllung des Prefuse-Datenmodells
die Klasse GraphDataModifier füllt das Prefuse-Datenmodell aus den zerlegten Bestandteilen

Zerlegung der Ontologie
Abfrage der OWL-API nach den einzelnen Bestandteilen der Ontologie durch die Klasse TransformOWLtoGraph

einlesen der Ontologie
Funktion des Protégé-Frameworks

Abbildung 6.9.: Schematische Dastellung der einzelnen Schritte der dritten Etappe.

81

6. Implementierung

Abbildung 6.10.: Visualisierung der MUTO-Ontologie.

6.2. Architektur

Dieses Kapitel beschreibt die Architektur des Plug-ins. Abbildung 6.11 vermittelt einen groben
Überblick über die einzelnen Pakete. Die Funktion und Bedeutung der einzelnen Pakete wird
in den folgenden Abschnitten näher erläutert.

Abbildung 6.11.: Paketansicht des Prototyps.

82

6.2. Architektur

6.2.1. Das Paket Languages

Abbildung 6.12 enthält eine detailliertere Darstellung des Pakets Languages. Dieses Paket
beinhaltet eine Sammlung statischer Strings (static & final), die als Platzhalter der jeweiligen
Übersetzung dienen. Auf diese Weise wird eine spätere Übersetzung in andere Sprachen
ebenso erleichtert, wie die Unterstützung verschiedener Sprachen. Dieses Paket ist ein Nach-
bau des Android MultiLanguage Konzeptes1. LanguagesGraphEN.java enthält die innerhalb
des Grapes verwendeten englischen Begriffe. LanguagesInfoPanelEN.java beinhaltet die in
der rechten Informationsleiste verwendeten englischen Begriffe. Quelltext 6.3 enthält einen
kleinen Auszug der LanguagesInfoPanelEN.java.

Abbildung 6.12.: UML-Klassendiagramm des Paket Languages.

Quelltext 6.3 Auszug der LanguagesInfoPanelEN.java.
public final static String COMMENT = "Commentary: ";

public final static String DEFINIED_BY = "Defined By: ";

public final static String OWL_VERS_INFO = "Version Info: ";

6.2.2. Das Paket testing

Abbildung 6.13 zeigt den Aufbau des Pakets testing. Es enthält Module, die hauptsächlich in
den Entwicklungsschritten der Abschnitte 6.1.1 und 6.1.2 benötigt werden.

1http://developer.android.com/training/basics/supporting-devices/languages.html

83

http://developer.android.com/training/basics/supporting-devices/languages.html

6. Implementierung

Abbildung 6.13.: UML-Klassendiagramm des Paket testing.

GraphAddVOWLExample

Das Modul GraphAddVOWLExample generiert das zuvor festgelegte VOWL-Beispiel aus
dem zweiten Entwicklungsschritt des Abschnittes 6.1.2. Dieses Modell wird anschließend
durch den GraphDataModifier des Paketes GraphDataModifier in das Prefuse-Datenmodell
übersetzt.

CreateRandomGraphData

Das Modul CreateRandomGraphData wird im ersten Entwicklungsschritt aus Abschnitt 6.1.1
benötigt, um Knoten und Kanten mit Zufallsdaten generieren zu können.

StandaloneTesting

Dieses Modul umgeht Protégé und visualisiert den Prefuse-Graphen direkt. Dies ist vor
allem im ersten Entwicklungsschritt aus Abschnitt 6.1.1 hilfreich, denn auf diese Weise kann
der Graph direkt aus Eclipse gestartet werden. Dadurch können die üblichen Entwicklungs-
werkzeuge, wie den Eclipse Debugger, einfacher verwendet werden. Natürlich entfällt dabei
die Möglichkeit des Einlesens einer Ontologie, weswegen dieses Modul nur die festgelegte
Ontologie aus der Klasse GraphAddVOWLExample bzw. den Graphen aus Zufallsdaten der
Klasse CreateRandomGraphData visualisieren kann.

84

6.2. Architektur

6.2.3. Das Paket protege

Das in Abbildung 6.14 dargestellte Paket protege enthält eine einzige Klasse. VOWLViewCom-
ponent.java erweitert die AbstractOWLViewComponent von Protégé und generiert damit die
von Protégé angezeigte ViewComponente. Des Weiteren bestimmt diese Klasse das grundle-
gende Layout des Plug-ins. VOWLViewComponent legt die relative Position und Größe des
Prefuse-Graphen und der rechten Informationsleiste fest. Mittels disposeOWLView kümmert
sich die VOWLViewComponent ebenfalls um das Schließen des Plug-ins.

Abbildung 6.14.: UML-Klassendiagramm des Pakets protege.

6.2.4. Das Paket types

Ähnlich zu dem Paket Languages enthält das Paket types statische Strings. Im Gegensatz
zu denen des Pakets Languages dienen diese nicht der visuellen Darstellung. Sie werden
als Schlüssel in den Key-Value Paaren des Prefuse-Datenmodells verwendet, mit denen die
gewünschte Darstellung der entsprechenden Objekte kodiert wird. Die Gruppierung der
statischen Strings in dem Paket types soll die Konsistenz der Schreibweise der Key-Value
Pair Schlüssel sicherstellen und ein späteres Überarbeiten erleichtern. Nebenbei erhält man
auf diese Weise eine Liste aller, im Plug-in verwendeten Schlüssel.Abbildung 6.15 zeigt den
Aufbau des Paketes types anhand eines UML-Klassendiagramms.

85

6. Implementierung

Abbildung 6.15.: UML-Klassendiagramm des Paket types.

PropertyType

Die Klasse PropertyType enthält verschiedene Integer Konstanten zur Unterscheidung der im
Konzept (Kapitel 4) definierten Property-Typen: Object Property, Datatype Property und
Property. Letztere sind für allgemeine Propertyies aus RDF vorgesehen, die sich weder in
Object Properties noch in Datatype Properties unterscheiden lassen.

OWLTypes

Die Klasse OWLTypes enthält verschiedene statische Strings, die als Bezeichner zum Identifi-
zieren der jeweiligen Attribute innerhalb einer eingelesenen Ontologie dienen. Die OWL-API
speichert Bestandteile einer eingelesenen Ontologie als Liste ab. Diese Liste enthält zahlreiche

86

6.2. Architektur

Klassen des Typs OWLAnnotation, die jeweils durch eine Eigenschaft (getProperty()) und
einen Wert (getValue()) repräsentiert werden. Aus diesem Grund erfolgt beim Umwandeln
einer eingelesenen Ontologie in einem Graphen ein Vergleich mit den in dieser Klasse ge-
speicherten Strings. Informationen über das Auslesen der Ontologie aus der OWL-API sind
zum Teil in der OWL-API Dokumentation2 gegeben. Die Zusammenfassung der Strings für
einen späteren Vergleich garantiert die Konsistenz der Schreibweise und vermeidet schwer
zu überprüfende Fehler, wie beispielsweise Rechtschreibfehler.

Nodetype

Die Klasse Nodetype beinhaltet zwei String-Arrays, die ebenfalls ausschließlich der Be-
schreibung der Knotenform im Prefuse-Datenmodell dienen. Quelltext 6.4 zeigt verschiede-
ne verwendete Formen. In den Key-Value Paaren des Prefuse-Datenmodells definiert die
Klasse Nodetype die möglichen Werte, während die erlaubten Schlüssel durch die Klasse
ColumnNames definiert werden. Falls ein Knoten über das Key-Value Pair „NODE_FORM“
und „Circle“ verfügt, so zeichnet der Noderenderer den Knoten als Kreis. Die Größe des
Kreises wird beispielsweise durch ein anderes Key-Value Paar definiert.

Quelltext 6.4 Auszug aus der Nodetype.java.
{"Circle", "Square", "Pie", "None"}

FontUsed

Die Klasse FontUsed dient dem Auslesen der derzeit verwendeten Schrift. Diese Information
wird unter anderem von der rechten Informationsleiste benötigt, um den benötigten Platz
zum Anzeigen einer Information zu berechnen.

EdgesType

Die Klasse EdgesType definiert die verschiedenen möglichen Kantenformen. Sie enthält zwei
String-Arrays, die jeweils die Linienart und die Pfeilspitze definieren. In den Key-Value Paaren
des Prefuse-Datenmodells definiert die Klasse EdgesType die möglichen Werte, während die
erlaubten Schlüssel durch die Klasse ColumnNames definiert werden. Diese Key-Value Paare
werden anschließend vom Edgerenderer ausgelesen.

2https://github.com/owlcs/owlapi/wiki/Documentation

87

https://github.com/owlcs/owlapi/wiki/Documentation

6. Implementierung

ColumnNames

Die Klasse ColumnNames enthält sämtliche möglichen Schlüssel des Key-Value Paares des
Prefuse-Datenmodells, die von diesem Plug-in verwendet werden.

6.2.5. Das Paket infoPanel

Abbildung 6.16 zeigt ein UML-Klassendiagramm des Pakets infoPanel. Es stellt die Imple-
mentierung der rechten Informationsleiste dar. Die Bestandteile dieses Paketes werden im
Folgenden näher erläutert.

Abbildung 6.16.: UML-Klassendiagramm des Paket infoPanel.

88

6.2. Architektur

InfoPanelClickListener

Die einzige Funktion des InfoPanelClickListener besteht darin, auf Mauseingaben des Benut-
zers innerhalb der rechten Informationsleiste zu reagieren. Klickt der Benutzer einen Link
innerhalb der Informationsleiste an, so wird dieser mit dem Standardbrowser des Betriebs-
systems geöffnet. Falls der Nutzer innerhalb der Informationsleiste die Maus verwendet, um
mehrere Links gleichzeitig zu selektieren, so werden sämtliche selektierte Links durch den
InfoPanelClickListener an den Browser des Betriebssystems zum Öffnen übergeben.

InfoPanelDataExtractor

Falls der Benutzer ein Element des Graphen mit der Maus anklickt, so werden
dessen Informationen in der Informationsleiste angezeigt. Der ControlListener aus
dem Paket GraphRendering reagiert auf das Klick-Event und dieser übergibt dem
InfoPanelDataExtractor das selektierte Element. Die Aufgabe des InfoPanelDataExtractor
besteht darin, die notwendigen Informationen über den Zugriff auf das Prefuse-Datenmodell
zu extrahieren. Die zusammengestellten Informationen werden in der InfoPanelDataStorage
abgespeichert. Der InfoPanelDataExtractor bestimmt, welche Daten extrahiert und im Daten-
modell abgelegt werden. Auf diese Weise regelt der InfoPanelDataExtractor welche Daten
innerhalb der Informationsleiste angezeigt werden sollen und welche nicht. Sollen weitere In-
formationen in der Informationsleiste angezeigt werden, so muss der InfoPanelDataExtractor
erweitert werden, damit die benötigten Informationen extrahiert und anschließend im
InfoPanelDataStorage abgelegt werden.

InfoPanelDataStorage

Das InfoPanelDataStorage stellt das Datenmodell der rechten Informationsleiste dar. Sobald
der Nutzer ein Element des Graphen mit der Maus auswählt, wird das InfoPanelDataExtractor
mit Daten befüllt. Das InfoPanelDataStorage ist ebenso wie das Prefuse-Datenmodell als
Liste von Key-Value Paaren aufgebaut. Diese Key-Value Paare sind Objekte der Klasse
InfoPanelDataStorageStructure. Abbildung 6.17 stellt diesen Sachverhalt grafisch dar.

Abbildung 6.17.: Skizze der Datenstruktur.

89

6. Implementierung

InfoPanelDataStorageStructure

Das InfoPanelDataStorageStructure regelt die Struktur der Daten des InfoPanels. Die Daten-
struktur des InfoPanelDataStorage besteht aus einer Liste von InfoPanelDataStorageStructure
Elementen.

QuadratTableModel

Das QuadratTableModel erweitert das AbstractTableModel und stellt Methoden zur Verfü-
gung mit denen die JTable auf das Datenmodell zugreifen kann. Des Weiteren formatiert das
QuadratTableModel Links und berechnet die benötigte Höhe einer Zeile.

InfoPanelManager

Der InfoPanelManager enthält Methoden, mit denen Informationen im Datenmodell der
Informationsleiste abgelegt werden können. Der InfoPanelDataExtractor verwendet den
InfoPanelManager zum Ablegen der erforderlichen Informationen. Des Weiteren dekodiert er
Links für den InfoPanelClickListener. Der InfoPanelManager dient ebenfalls als Zugriffspunkt
auf die JTable der rechten Informationsleiste. Diese wird beim Generieren des Layouts durch
die Klasse VOWLViewComponent benötigt.

6.2.6. Das Paket GraphDataModifier

Das Paket GraphDataModifier enthält sämtliche Module, die zum Ändern der Da-
ten des Prefuse-Datenmodells notwendig sind. Ein UML-Klassendiagramm des Pakets
GraphDataModifier ist in Abbildung 6.18 abgebildet. Die einzelnen Bestandteile dieses Pake-
tes werden in den folgenden Abschnitten näher erläutert.

90

6.2. Architektur

Abbildung 6.18.: UML-Klassendiagramm des Pakets GraphDataModifier.

GraphAddColumnDefinition

Beim Erstellen eines neuen Prefuse-Graphen legt die Klasse GraphAddColumnDefinition
alle Schlüssel der Prefuse Datentabelle und damit die Schlüssel der Key-Value Paare fest. Als
Schlüssel dienen die statischen Strings der Klasse ColumnNames aus dem Paket types. Die
Klasse GraphAddColumnDefinition kommt daher nur bei der Generierung eines Graphen
zur Anwendung. Dies ist beispielsweise beim Laden einer Ontologie in Protégé der Fall.

TransformOWLtoGraph

Nachdem eine Ontologie in Protégé eingelesen wurde, extrahiert die Klasse TransformOWLtoGraph
sämtliche notwendigen Informationen aus der Ontologie und legt diese Daten im Prefuse-
Datenmodell ab. TransformOWLtoGraph extrahiert die notwendigen Informationen, die
anschließend von der Klasse GraphDataModifier in das Prefuse-Datenmodell umgewandelt
werden. Das Extrahieren der notwendigen Informationen erfolgt durch Zugriff auf die OWL-
API. Hierbei wird auch auf die statischen Strings der Klasse OWLTypes des Pakets types
zugegriffen.

91

6. Implementierung

GraphDataModifier

Die Klasse GraphDataModifier enthält Methoden, mit deren Hilfe OWL-Elemente in das
Prefuse-Datenmodell umgewandelt werden. Beim Laden einer Ontologie werden die hierfür
benötigen Informationen von der Klasse TransformOWLtoGraph aus der Ontologie der
OWL-API extrahiert.

GraphStorage

Die Klasse GraphStorage hält den Prefuse-Graphen und bietet Methoden, um auf diesen
zugreifen zu können. Der Prefuse-Graph innerhalb dieser Klasse ist statische, schließlich kann
von diesem Plug-in lediglich ein einzelner Graph gleichzeitig visualisiert werden. Dadurch,
dass der Graph statisch ist, kann jede andere Klasse des Plug-ins auf den Graphen zugreifen.
Dies erleichtert jeder Klasse das Extrahieren benötigter Informationen. Des Weiteren erhält
der GraphStorage einen ID-Generator, durch den eindeutige IDs für die weitere Verwendung
im Rahmen des Plug-ins generiert werden können.

6.2.7. Das Paket GraphRendering

Das Paket GraphRendering enthält Klassen, die zur Visualisierung des Graphen notwen-
dig sind. Abbildung 6.19 stellt ein UML-Klassendiagramm des Pakets dar. Die einzelnen
Bestandteile des Paketes werden in den folgenden Abschnitten näher erläutert.

Abbildung 6.19.: UML-Klassendiagramm des Paket GraphRendering

ControlListener

Die Klasse ControlListener erweitert den ControlAdapter und implementiert die abstrak-
te Klasse Control. Sie reagiert auf Klickeingaben des Benutzers und übergibt diese dem
InfoPanelClickListener des infoPanel Pakets. Dabei setzt der ControlListener ein IS_CLICKED
Boolean Flag bei dem entsprechenden Element des Graphen auf den Wert „true“. Des Weiteren
reagiert der ControlListener auf Mouseover-Ereignisse und setzt dabei das IS_HIGHLIGHTED
Flag auf den Wert „true“. Wird ein anderes Element angeklickt bzw. verlässt die Maus

92

6.2. Architektur

den Bereich des Elementes, so werden die jeweiligen Flags entfernt. Die Visualisierung bei-
der Ereignisse wird, abhängig des selektierten Elements, von dem EdgeRender bzw. dem
NodeRenderer übernommen.

TextLayoutDecarator

Die Klasse TextLayoutDecarator regelt das Layout des Textes einer Kante. Hierzu erwei-
tert TextLayoutDecarator das Prefuse Layout. TextLayoutDecarator bestimmt die Positi-
on des Textes einer Kante und regelt das Aussehen des Textes. Beispielsweise stellt der
TextLayoutDecarator den Text in einer anderen Farbe dar, falls die zugehörige Kante durch
den Benutzer markiert wurde. Neben der Position eines Textes regelt der TextLayoutDecarator
auch die Textfarbe und die Hintergrundfarbe eines Textes.

ForceDirectedLayoutExtended

Die Klasse ForceDirectedLayoutExtended erweitert das ForceDirectedLayout von Prefuse
und regelt die Länge einer Kante des Graphen. Auf diese Weise könnten unterschiedliche
Kanten eine verschiedene Länge aufweisen.

EdgeRender

Die Klasse EdgeRender erweitert den Prefuse EdgeRenderer. Sie regelt das Aussehen einer
Kante. Hierzu werden die Informationen des Prefuse-Datenmodells ausgelesen und die
gewünschte Kantenform generiert. Auf diese Weise können unterschiedliche Pfeilformen
innerhalb eines Graphen realisiert werden. Des Weiteren enthält die Klasse EdgeRender eine
Sonderbehandlung für symmetrische Properties. Eine Kante zwischen dem Knoten A und
dem Knoten A ist in Prefuse korrekterweise sehr kurz. Dieses Verhalten war jedoch nicht
erwünscht, denn das Konzept spezifiziert die Form aus Abbildung 6.20 für derartige Kanten.
Falls mehrere symmetrische Properties vorhanden sind, so sollen diese, wie Abbildung
6.21 demonstriert nebeneinander platziert werden. Des Weiteren muss der EdgeRender
die entsprechenden Flags, gesetzt durch den ControlListener, beachten und markierte und
selektierte Kanten in einer anderen Farbe darstellen.

Abbildung 6.20.: Erforderliches Aussehen von symmetrischen Properties.

93

6. Implementierung

Abbildung 6.21.: Darstellung mehrere symmetrische Properties.

In Version 1.0 von VOWL ist die Existenz mehrere Kanten zwischen Knoten A und B nur
indirekt spezifiziert. Dies wird in Abbildung 6.22 verdeutlicht. Der Prefuse Kantenrenderer
zeichnet derartige Knoten übereinander. Eine Kante zwischen Knoten A und B und eine Kante
zwischen B und A haben dieselben Koordinaten, lediglich ihre Pfeilspitzen unterscheiden
sich. Das Beispiel aus Abbildung 6.23 verdeutlicht, dass die derzeit markierte Kante zwischen
„Document“ und „Agent“ über der Kante zwischen „Agent“ und „Document“ gezeichnet
wird. Beide Kanten können nur über ihre Pfeilspitze unterschieden werden.

Abbildung 6.22.: Ausschnitt der Konzeptansicht aus VOWL 1.0 [NL13].

94

6.2. Architektur

Abbildung 6.23.: Visualisierung der Kante AB und der Kante BA.

Auch dieses Problem wird vom EdgeRender des Plug-ins gelöst. Eine erste Lösung sah
ein ausklappbares Dropdown-Menü vor, über das der Benutzer die gewünschte Kante und
damit die erwünschte Property auswählen konnte. Diese Idee wurde jedoch verworfen, jeder
Bestandteil der Ontologie sollte visuell repräsentiert werden, andernfalls wäre das Erlernen
einer unbekannten, großen Ontologie durch mangelnde visuelle Unterstützung unnötig
erschwert. Ein zweiter Lösungsansatz sah die Auftrennung einer Kante in zwei Kanten vor.
Bei diesem Ansatz sollte das Label der Kante als Knoten zwischen beiden Kanten eingefügt
werden. Abbildung 6.24 verdeutlicht diesen zweiten Lösungsansatz.

Abbildung 6.24.: Erhoffter Lösungsansatz des Problems aus Abbildung 6.23.

Der zweite Lösungsansatz aus Abbildung 6.24 hatte das visuell nicht ansprechende Ergebnis
aus Abbildung 6.25 zur Folge. Die Abstoßungskräfte der nicht verbundenen Zwischenkno-
ten „creator“ und „has_creator“ des kräftebasierten Layouts lassen beide Knoten zu weit
voneinander weg driften. Dasselbe Verhalten ist bei „has_tag“ und „tag_of“ zu erkennen.

95

6. Implementierung

Abbildung 6.25.: Visuell nicht ansprechendes Ergebnis des Lösungsansatzes aus Abbildung
6.23.

Aus diesem Grund wurde ein dritter Ansatz entwickelt, bei dem der EdgeRender des Plug-ins
jede weitere Kanten mit einem versetzen Mittelpunkt visualisiert. Dies wird in Abbildung
6.26 visuell dargestellt.

Abbildung 6.26.: Dritter Lösungsansatz.

96

6.2. Architektur

NodeRenderer

Die Klasse NodeRenderer erweitert den Prefuse AbstractShapeRenderer und bietet Unter-
stützung für unterschiedliche Knotenformen. Durch die Realisierung der unterschiedlichen
Knotenformen können Knoten ein und desselben Graphen eine unterschiedliche Form anneh-
men. Hierzu werden die Daten des Prefuse-Datenmodells ausgelesen und die entsprechenden
Attribute ausgewertet. Der NodeRenderer setzt beispielsweise die Farbe eines Knoten und
verändert diese, falls die entsprechenden Flags des ControlListener gesetzt wurden.

RenderPrefuseGraph

Die Klasse RenderPrefuseGraph rendert den Prefuse-Graphen im, durch die VOWLViewCom-
ponent des Paketes protege, vorgegebenen Display.

97

7. Evaluation

Ihm Rahmen dieser Arbeit wurde das in Kapitel 4 vorgestellte und in Kapitel 6 realisierte
Visualisierungskonzept durch eine Nutzerstudie evaluiert. Dabei wurde sowohl die Ver-
ständlichkeit der Visualisierung als auch der Umgang mit dem Visualisierungswerkzeug
untersucht.
Innerhalb der Nutzerstudie wurde die Referenzimplementierung, die das Konzept aus Ka-
pitel 4 implementiert, mit einem weiteren bereits existierenden Visualisierungswerkzeug
verglichen. Hierbei handelte es sich um das schon in Abschnitt 3.2 beschriebene SOVA. Als
Blindstudie wurde die Nutzerstudie nicht durchgeführt, schließlich konnten die Studienteil-
nehmer den Namen der jeweiligen Visualisierung ablesen. Die meisten der Teilnehmer der
Studie kannten weder die Referenzvisualisierung SOVA noch das Visualisierungskonzept
VOWL oder dessen Prototyp. Weiter wussten sie nicht, welche der beiden Visualisierungen
zu untersuchenden VOWL-Prototyp entsprach. Damit kam die Studie für die meisten der
Teilnehmer den Kriterien einer „einfachblind Studie“ hinsichtlich dieses Kriteriums sehr nahe.
Zum Vergleich des Visualisierungskonzeptes VOWL und dessen prototypischer Umsetzung
wurde das Visualisierungswerkzeug SOVA aus der Liste aller themenverwandten Arbeiten
(Abschnitt 3) ausgewählt. Die Vergleichsvisualisierung sollte auf demselben Framework basie-
ren, damit dieselbe Ontologie visualisiert werden konnte. Protégé 3 kann Protégé 4 Ontologien
nicht fehlerfrei einlesen. Des Weiteren sollte ausgeschlossen werden, dass die Nutzer VOWL
aufgrund des moderneren Designs von Protégé bevorzugten. Da OntoGraf im Vergleich
zu SOVA zu viele Nachteile aufwies, wurde SOVA als Vergleichsvisualisierung bestimmt.
Durchführung und Resultate der Nutzerstudien werden in diesem Kapitel beschrieben.

7.1. Durchführung

In diesem Abschnitt wird die Durchführung der Benutzerstudie beschrieben. Die Verifikation
der prototypischen Umsetzung des Visualisierungskonzeptes aus Kapitel 4 erfolgte als Exper-
tenstudie. Der Prototype wurde von jeweils einer Person unter Anleitung des Studienleiters
in einem neutralen Raum validiert.
Die Studie besteht aus einer Nutzerbefragung und einem Laborexperiment. Zu Beginn der
Studie erhielten die Teilnehmer einen Fragebogen zur Erfassung ihres Vorwissens. Die enthal-
tenen Fragen beschränkten sich auf die Erhebung der Erfahrung hinsichtlich der Visualisie-
rung von Ontologien im allgemeinen und den untersuchten Visualisierungen und Ontologien
im Speziellen.
Im Anschluss sollten die Studienteilnehmer in einem Laborexperiment verschiedene Auf-
gaben mit dem Prototyp erledigen. Zur Kontrolle wurden weitere Fragen gestellt, um die

99

7. Evaluation

Ergebnisse mit SOVA aus Abschnitt 3.2 als Referenzwerkzeug vergleichen zu können. Die Rei-
henfolge der Visualisierungsplugins war alternierend, dem ersten Teilnehmer wurde zuerst
VOWL anschließend SOVA gezeigt, während die Reihenfolge im Anschluss an den vorherigen
Teilnehmer getauscht wurde. Der Studienleiter notierte die Bemerkungen der Probanden und
deren Vorgehen.
Abschließend wurde abermals eine Nutzerbefragung durchgeführt, in der die Probanden
um ihre abschließende Meinung hinsichtlich der beider Visualisierungen gebeten wurden.
Auch wurden den Probanden zwei Abbildungen gezeigt, die sie beschreiben und bewerten
sollten.

7.2. Aufgaben

Während des Laborexperiments sollten die Studienteilnehmer 16 Aufgaben lösen. Die ersten
acht Aufgaben bezogen sich auf die modular-unified-tagging-ontology (MUTO) [LDA11], die
restlichen auf die friend-of-a-friend (FOAF) Ontologie [DB10]. Die MUTO-Ontologie wurde
als Referenz für eine kleine Ontologie ausgewählt, während die FOAF-Ontologie als Vertreter
einer größeren Ontologie diente.
Jeweils vier der acht Fragen zur MUTO-Ontologie mussten mithilfe des Visualisierungs-
konzeptes SOVA beantwortet werden, die restlichen vier Fragen unter Zuhilfenahme des
Visualisierungskonzeptes VOWL. Mit den acht Aufgaben zur FOAF-Ontologie wurde äquiva-
lent verfahren. Die Reihenfolge der verwendeten Visualisierungskonzepte war alternierend.
Abbildung 3.7 visualisiert die MUTO-Ontologie mithilfe des in Abschnitt 3.2 vorgestellten Vi-
sualisierungskonzepts SOVA. Abbildung 6.10 zeigt eine Visualisierung der MUTO-Ontologie
mithilfe des in Abschnitt 4 vorgestellten und verbesserten Visualisierungskonzepts. Eine
Visualisierung der FOAF-Ontologie durch beide Visualisierungskonzepte befindet sich in Ab-
schnitt B des Anhangs unter Abbildung B.1 und Abbildung B.2. Vergleichbare Darstellungen
erhielten die Probanden während der durchgeführten Evaluation.
In diesem Abschnitt werden die einzelnen Fragen und Aufgaben sowie deren Motivation
erläutert. Der Fragebogen ist in Abschnitt A des Anhangs beigefügt.
Die einzelnen Fragen sind mit einer dreistelligen Nummer gekennzeichnet. Die erste Ziffer
gibt die zu bearbeitende Ontologie an, dabei steht eins für die MUTO-Ontologie und zwei für
die FOAF-Ontologie. Die zweite Ziffer dient der Unterscheidung des zu verwendeten Visuali-
sierungswerkzeuges, während die dritte Ziffer die eigentlichen Fragen kennzeichnet. 111 steht
beispielsweise für die erste Ontologie (MUTO-Ontologie), das erste Visualisierungswerkzeug
und die erste Frage.

7.2.1. Fragen zur MUTO-Ontologie

In Aufgabe 111 wurden die Probanden gebeten, den Namensraum eines Objekts mit dem
Namen „Item“ zu bestimmen.
Aufgabe 112 war ähnlich zu 111, nur dass diesmal nach dem Namensraum des Objekts „tag
of“ gefragt wurde. In beiden Fällen wurde den Probanden nicht mitgeteilt, ob eine Klasse

100

7.2. Aufgaben

oder Property gesucht wurde. Beide Fragen dienten dem Einstieg und sollten die Interaktion
des Nutzers mit dem Werkzeug überprüfen.
In Aufgabe 113 sollte der Nutzer die Anzahl der Klassen bestimmen. Durch diese Frage sollte
bestimmt werden, ob die Nutzer Klassen intuitiv als solche bestimmen können.
Durch Aufgabe 114 wurden die Nutzer schließlich gebeten, das Objekt „Tagging“ zu beschrie-
ben. Durch diese Frage sollte die Visualisierung als Ganzes überprüft werden. Waren die
Nutzer in der Lage die Ontologie richtig zu deuten, konnten sie erkennen, welche Richtung
durch die Pfeile propagiert werden sollte? Waren sie in der Lage die verschiedenen Properties
richtig zu erkennen?
Anschließend wurde das Visualisierungswerkzeug gewechselt und der Nutzer musste in
Aufgabe 121 den Namensraum des Objekts „Concept“ bestimmen.
In Aufgabe 122 sollten sie den Namensraum des Objekts „nextTag“ herausfinden. Beide
Aufgaben haben eine ähnliche Fragestellung wie Aufgabe 111 bzw. 112 und dienen dem
Vergleich beider Visualisierungskonzepte.
In Aufgabe 123 sollte der Nutzer die Anzahl der Properties bestimmen. Diese Frage diente
analog zu Frage 123 der Feststellung, ob Properties durch den Nutzer intuitiv als solche zu
erkennen seien.
Durch Aufgabe 124 wurden die Nutzer schließlich aufgefordert, das Objekt „Tag“ zu be-
schreiben. Analog zu Frage 114 sollte überprüft werden, ob die Nutzer die Visualisierung als
Ganzes verstehen konnten. Waren die Nutzer in der Lage die Ontologie richtig zu deuten,
konnten sie erkennen, welche Richtung durch die Pfeile propagiert werden sollte? Waren sie
in der Lage die verschiedenen Properties richtig zu deuten?

7.2.2. Fragen zur FOAF-Ontologie

Die Fragen zur FOAF-Ontologie waren analog zu den Fragen der MUTO-Ontologie und
dienten dem weiteren Vergleich beider Visualisierungskonzepte für größere Graphen. In
Aufgabe 211 und Aufgabe 221 sollte der Namensraum einer Klasse, in Aufgabe 212 und
Aufgabe 222 der einer Property bestimmt werden. Aufgabe 221 stellte eine Besonderheit dar,
es existieren zwei Klassen mit demselben Namen „Person“. Durch Aufgabe 213 und Aufgabe
223 sollte bestimmt werden, ob der Nutzer innerhalb des Visualisierungskonzeptes Klassen
und Properties intuitiv unterscheiden kann und mittels Aufgabe 214 und Aufgabe 224 sollte
die Visualisierung als Ganzes verifiziert werden.

7.2.3. Abschlussfragen

Im Anschluss an die 16 Aufgaben wurden die Probanden um ihre abschließende Meinung zu
VOWL und SOVA gebeten. Sie sollten sowohl die Vorteile als auch die Nachteile nennen, die
Visualisierung mittels Schulnoten bewerten und die Schwierigkeit des Auslesens von Klassen,
Properties und von Details bewerten. Anschließend wurden den Studienteilnehmern zwei
verschiedene Darstellungen gezeigt und sie gebeten, die gezeigte Darstellung zu beschreiben
und ihr favorisiertes Konzept zu nennen.

101

7. Evaluation

7.3. Studienteilnehmer

An der Nutzerstudie haben sechs Probanden teilgenommen. Alle Teilnehmer kamen aus dem
Bereich der Fakultät 5 der Universität Stuttgart und waren männlich.
Das Vorwissen der Teilnehmer war gering, allen Teilnehmern war die FOAF-Ontologie unbe-
kannt, einer von sechs Teilnehmern kannte die MUTO-Ontolgie. Vier von sechs Teilnehmern
gaben einen mittleren Kenntnisstand hinsichtlich Ontologien im Allgemeinen an. Vier von
sechs Teilnehmern kannten das Visualisierungskonzept VOWL nicht, keiner der sechs Teilneh-
mer kannte das Visualisierungskonzept SOVA. Drei der Sechs Teilnehmer gaben an, bereits
zuvor Werkzeuge zur Visualisierung von Ontologien verwendet zu haben. Abbildung 7.1,
Abbildung 7.2 und Abbildung 7.3 stellen den Kenntnisstand der Probanden grafisch dar.

gut eher gut mittelmäßig eher gering gering
0

1

2

3

4

5

Kenntnisstand über Ontologien im Allgemeinen

Kenntnisstand

A
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.1.: Kenntnisstand über Ontologien im Allgemeinen.

102

7.4. Resultate

intensiv benutzt gehört nie gehört
0

1

2

3

4

5

6

7

Vorwissen

Werkzeuge zur
Visualisierung verwendet

Kenntnisse über SOVA

Kenntnisse über VOWL

Kenntnisstand

A
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.2.: Kenntnisstand über die Visualisierung von Ontologien und über die
Visualisierungskonzepte SOVA und VOWL.

ja etwas nein
0

1

2

3

4

5

6

7

Kenntnisstand über die Ontologien

MUTO-Ontologie
bekannt

FOAF-Ontotologie
bekannt

Kenntnisstand

A
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.3.: Kenntnisstand über MUTO-Ontologie und die FOAF-Ontologie.

7.4. Resultate

In diesem Abschnitt werden die Ergebnisse der Studie sowie die Bewertungen der Visualisie-
rungen durch die Probanden aufgelistet.
Die Studienteilnehmer konnten die Aufgaben 1, 2 und 4 in beiden Ontologien erfolgreich erle-
digen. Abbildung 7.4 verdeutlicht das Ergebnis für die MUTO-Ontologie und Abbildung 7.5

103

7. Evaluation

für die FOAF-Ontologie. Deutlich ist zu erkennen, dass Aufgabe 3 nicht von allen Probanden
richtig beantwortet werden konnte.

 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4
0

1

2

3

4

5

6

Resultate der MUTO-Ontologie

VOWL

SOVA

Aufgaben

A
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.4.: Wieviele Personen konnten alle Fragen zur MUTO-Ontologie beantworten?

 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4
0

1

2

3

4

5

6

Resultate der FOAF-Ontologie

VOWL

SOVA

Aufgaben

A
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.5.: Wieviele Personen konnten alle Fragen zur FOAF-Ontologie beantworten?

Abbildung 7.6 und Abbildung 7.7 erläutern die Ursache für das Abschneiden der Probanden
bei der dritten Aufgabe. Während alle Teilnehmer Klassen und Datatype Properties inner-
halb der VOWL-Visualisierung intuitiv erkennen konnten, schien dies auf Object Properties

nicht zuzutreffen, ein einziger Studienteilnehmer beachtete Object Properties bei der Auf-
zählung aller Properties. Bei der SOVA-Visualisierung ergab sich ein ähnliches Bild. Wenige
Teilnehmer konnten Klassen und Object Properties intuitiv unterscheiden. Berücksichtigt
werden sollte allerdings, dass Datatype Properties von SOVA nicht dargestellt werden. Aus
diesem Grund liegt die Wahrscheinlichkeit richtig zu raten bei 50 %. Fast allen Teilnehmern, de-
nen eine intuitive Unterscheidung nicht gelang konnten durch logisches Denken eine richtige
Differenzierung treffen und durch Berücksichtigung der Labels die Frage richtig beantworten.

104

7.4. Resultate

Beispielsweise haben zwei von sechs Teilnehmern Properties in der SOVA-Visualisierung
intuitiv erkannt. Alle vier Teilnehmern, denen dies nicht gelang, konnten durch logisches
Schließen zu dem Schluss gelangen, dass Properties in SOVA durch die violette Farbe darge-
stellt werden. Dies erklärt das deutlich bessere Abschneiden der SOVA-Visualisierung bei der
dritten Frage.

ja nein

0

1

2

3

4

5

6

Ist die Visualisierung intuitiv?

VOWL Intuitiv Klassen
erkannt

SOVA Intuitiv Properties
erkannt

SOVA Intuitiv Klassen erkannt

VOWL Intuitiv Objekt-
Properties erkannt

VOWL Intuitiv Datatype-
Properties erkannt

A
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.6.: Konnten die Probanden während der Evaluation Klassen und Properties
intuitiv unterscheiden?

ja nein

0

1

2

3

4

5

6

SOVA

Klassen durch
Ausschlusswahl erkannt
(vom Namen her)

Intuitiv Properties erkannt

Properties durch
Ausschlusswahl erkannt
(vom Namen her)

Intuitiv Klassen erkanntA
n

za
h

l P
e

rs
o

n
e

n

Abbildung 7.7.: Wie konnten die Probanden während der Evaluation Klassen und Properties
unterschieden?

105

7. Evaluation

Alle sechs bevorzugten die VOWL-Visualisierung und benoteten VOWL sowohl bei der
Gesamtbewertung als auch bei den Einzelbewertungen mit besseren Noten, als die Vergleichs-
visualisierung. Die Bewertung erfolgte in Schulnoten, eine Eins gilt als beste, eine Sechs als
schlechteste Note. Abbildung 7.8 vermittelt einen Eindruck der Gesamtbewertung durch die
Probanden.

 1 2 3 4 5 6
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Gesamtbenotung

SOVA

VOWL

Proband

N
o

te

Abbildung 7.8.: Gesamtbenotung der Visualisierungskonzepte durch die Probanden.

Alle Probanden wählten zur Beantwortung von Frage 221 das im Zentrum platzierte Objekt
„Person“. Durch das kräftebasierte Layout werden semantisch ähnlichere Objekte räumlich
näher zueinander platziert, daher gruppieren sich jene Objekte mit der größten Ähnlichkeit
im Zentrum der Ontologie. Während der Evaluation konnte man durch Verfolgen des Maus-
zeigers erkennen, dass dies ist, auch die Region, in der die meisten Menschen mit ihrer Suche
starten.
Als Vorteil der SOVA-Visualisierung nannten fünf von sechs Probanden die Suchfunktion,
während vier von sechs Probanden bei VOWL die Übersichtlichkeit sowie die deutlichen
Unterschiede hinsichtlich Form und Farbe lobten. Während die Übersichtlichkeit bei VOWL
gelobt wurde, wurde die Unübersichtlichkeit bei SOVA von vier von sechs Studienteilneh-
mern gerügt.
Bezüglich der bevorzugten Darstellung konnte keine Präferenz erkannt werden, drei Proban-
den bevorzugten die Darstellung aus VOWL 1.0, während drei Probanden die Optimierung
bevorzugten. Beide Darstellungen konnten von 100 % aller Probanden beschrieben werden.

106

7.5. Fazit

7.5. Fazit

Die Ergebnisse der Evaluation zeigen, dass sich mit der prototypischen Umsetzung aus Ab-
schnitt 6 des in Kapitel 4 vorgestellten Lösungskonzepts Ontologien auch für Benutzer ohne
Hintergrundwissen verständlich sind und sich ganzheitliche visualisieren lassen. Insbesonde-
re Klassen und Datatype Properties lassen sich so intuitiv darstellen. Die Ergebnisse der
Untersuchung zeigen, dass die Darstellung von Object Properties noch weitere optimiert
werden kann und stellt damit ein Thema für eventuell auf diesem Konzept aufbauende Arbei-
ten dar. Die Resulte für die Visualisierung der Datatype Properties können aber auch durch
die Fragestellung beeinflusst worden sein. Einigen Probanden der Studie war beispielsweise
nicht klar, dass nach der Summe aller Properties gesucht wurde. In aufbauenden Arbeiten
sollte dieser Sachverhalt daher noch einmal untersucht werden. Die Resultate zeigen ebenfalls
die Eignung des Konzepts und dessen prototypische Umsetzung für größere Ontologien.
Trotz sinkender Übersicht blieben die Auswirkungen auf die Probanden gering. Auch die
Vorteile und Eignung eines kräftebasierten Layouts zur Visualisierung von Ontologien wur-
de durch die Studie gezeigt. Alle Studienteilnehmer bevorzugten die deutliche und klare
Farbauswahl und Formwahl der VOWL-Visualisierung.

107

8. Zusammenfassung & Ausblick

In dieser Arbeit wurden existierende Visualisierungskonzepte zur grafischen Darstellung
von Ontologien vorgestellt und auf ihre jeweiligen Stärken und Schwächen hin untersucht.
Im Anschluss wurde das Visualisierungskonzept VOWL vorgestellt und optimiert, VOWL
bildet dabei ein weiteres Konzept für die grafische Darstellung von Ontologien und versucht
die zuvor genannten Schwächen zu vermeiden. Das VOWL-Visualisierungskonzept sollte
auch für Benutzergruppen mit geringer bis keiner Erfahrung im Umgang mit Ontologien
geeignet sein. Auf VOWL folgend wurde die Realisierung der Visualisierung beschrieben.
Diese begann mit einer Untersuchung existierender Grafikframeworks, um herauszufinden,
welche die Realisierung eines Prototypen positiv unterstützen könnten. Anschließend wurde
das zeitliche Vorgehen der Realisierung und der Architektur der prototypischen Umsetzung
als Protégé Plug-in beschrieben. Die Integration als Plug-in in ein weitverbreitetes Werkzeug
zum Bearbeiten und Analysieren von Ontologien, wie Protégé, ermöglicht es sowohl fort-
geschrittenen Anwender Protégé und Plug-ins in ihren Workflow zu integrieren, als auch
Einsteigern, die auf Dokumentation und Tutorials rund um Protégé zurückgreifen können.
Nach Abschluss der Realisierung wurde das optimierte Visualisierungskonzept und des
darauf aufbauenden Prototyps, im Rahmen einer Nutzerstudie, evaluiert. Die Evaluation
zeigt die Eignung von VOWL-Ontologien, auch für Nutzer mit wenigen Vorkenntnissen,
kompakt und ganzheitlich darzustellen.

Ausblick

In diesem Abschnitt werden Optimierungsmöglichkeiten des Visualisierungskonzeptes und
dessen prototypischer Umsetzung beschrieben.

Reaktion auf Änderungen in Protégé

Der Prototyp greift mittels OWL-API auf die von Protégé eingelesene Ontologie zu und
speichert diese in einer eigenen Datenstruktur. Das Auslesen der durch Protégé eingelesenen
Ontologie erfolgt einmalig bei der Initialisierung des Prototyps. Zum reinen Betrachten einer
abgespeicherten Ontologie stellt dieser Sachverhalt keine Einschränkung dar, schließlich wird
Protégé beim Laden einer abgespeicherten Ontologie ebenfalls neu initialisiert.
Mit Protégé hält der Benutzer ein mächtiges Werkzeug zum Bearbeiten und Erstellen von
Ontologien in den Händen. Aufgrund des einmaligen Auslesens der Ontologie beim Initia-
lisieren des Plug-ins ist der Prototyp in der aktuellen Ausbaustufe nicht in der Lage die
Modifikationen des Benutzers innerhalb der Visualisierung darzustellen. Dasselbe gilt für

109

8. Zusammenfassung & Ausblick

Ontologien, die zwar erstellt jedoch nicht gespeichert wurden.
Bisher müssen diese Ontologien zuerst gespeichert und anschließend geladen werden, damit
sie von der prototypischen Umsetzung visualisiert werden können. Zur Lösung dieses Pro-
blems sind verschiedene Lösungsansätze denkbar. Beispielsweise könnte das Einlesen der
abgespeicherten Ontologie auf den Moment verschoben werden, an dem das Plug-in durch
den Benutzer aufgerufen wird. Alternativ könnte ein Update Mechanismus implementiert
werden, der die Elemente des Prefuse-Datenmodells mit jenen des Protégé-Datenmodells
vergleicht und Änderungen übernimmt. Aufgrund der eindeutigen Bezeichner wäre dieser
Ansatz machbar.

Ausbau der Visualisierungskonzept für verschiedene Nutzergruppen

Das vorgestellte Visualisierungskonzept könnte verschiedene Nutzergruppen besser unter-
stützen. Denkbar wäre beispielsweise, dass die Symbolwahl von einer ausgewählten Nutzer-
gruppe abhinge. Beispielsweise könnten für verschiedene Nutzergruppen unterschiedliche
Symbole für owl:intersectionOf definiert werden. Zudem wäre es denkbar unerfahrenen
Benutzern bestimmte Details vorzuenthalten, um ihnen die Nutzung und den Einstieg in das
Plug-in zu erleichtern.

Ausbau der Visualisierungskonzept für sehr große Graphen

Das vorgestellte Visualisierungskonzept könnte für sehr große Graphen angepasst werden.
Denkbar wäre es beispielsweise Informationen über Instanzen ab einer Mindestzoomstufe
anzuzeigen. Dasselbe sei auch für verschiedene Property-Typen denkbar. Auf diese Weise
könnte der Gesamtüberblick auf Kosten der Details verbessert werden. Die Details könnten
erst angezeigt werden, falls der Benutzer einen Ausschnitt des Graphen vergrößere.
Zusätzlich könnte der Überblick bei großen Graphen durch eine zusätzliche Miniaturansicht
weiter verbessert werden. Innerhalb der Evaluation aus Kapitel 7 schlug ein Teilnehmer
Hinweise im Bereich der Darstellung vor, die ihn darüber informieren, dass außerhalb des
sichtbaren Bereiches weitere Elemente existieren. Dies könnte über farbliche Markierungen,
beispielsweise durch Pfeile, geschehen.

Konfigurierbarkeit der Visualisierung

Die prototypische Umsetzung könnte ausgebaut werden, um dem Nutzer mehr Möglichkeiten
zu bieten, die Darstellung nach eigenen Wünschen zu verändern.

110

Vollständige Realisierung des Konzepts

Die prototypische Umsetzung könnte ausgebaut werden, um sämtliche Elemente des
Visualisierungskonzeptes korrekt darzustellen. Kardinalitäten werden im Prototyp bis-
her nicht visuell dargestellt. Dasselbe gilt für die OWL-Elemente FunctionalProperty,
InverseFunctionalProperty und TransitiveProperty.

Ausbau der unterstützen Formate

Der Prototyp liest die eingelesene Ontologie mittels OWL-API aus Protégé aus und kann
daher prinzipiell alle Dateiformate visualisieren, die Protégé einlesen kann. Leider scheint
die Unterstützung der verschiedener Dateiformate durch Protégé unterschiedlich ausgebaut
zu sein. Falls eine Ontologie im RDF-Format eingelesen, durch Protégé in OWL-Format
konvertiert und anschließend zurück in das RDF-Format exportiert wird, so konnte ein
Datenverlust bemerkt werden. Getestet wurde die Funktionalität des Prototyps bisher nur
mit Ontologien, die im RDF-Format vorlagen.

Unterstützung für Abfragesprachen

Die prototypische Umsetzung könnte erweitert werden, um Abfragesprachen direkt auf der
visualisierten Ontologie ausführen zu können. Auf diese Weise könnten sehr erfahrene Nutzer
eine visualisierte Ontologie besser explorieren.

Auflösung der Protégé Abhängigkeit

Der Prototyp könnte von seiner Abhängigkeit mit dem Protégé-Framework gelöst und als
eigenständiges Programm veröffentlicht werden. Aus diese Weise wäre der Prototyp auch für
Nutzer geeignet, die mit Protégé überfordert sind. Alternativ könnte der Prototyp als Plug-in
für weitere Ontologie Editoren veröffentlicht werden, dies würde den Nutzerkreis weiter
erhöhen.

111

113

A. Fragebogen

A. Fragebogen

Identifikationsnummer:

Fragen zum Vorwissen :

gut eher
gut

mittel-
mäßig

eher
gering

gering

Wie schätzen Sie Ihren Kentnissstand über
Ontologien im Allgemeinen ab?

intensiv schon
benutzt

schon
davon
gehört

nie
gehört

Haben Sie bereits Werkzeuge zur
Visualisierung von Ontologien verwendet?

Kennen sie das Visualisierungskonzept
VOWL?

Kennen sie das Werkzeug / Plugin /
Programm / Konzept: SOVA?

Ja etwas Nein - -

Kennen Sie die MUTO Ontologie?
(Modular Unified Tagging Ontology)

Kennen Sie die FOAF Ontologie?
(Friend of a Friend)

114

MUTO - Fragen

Plug-in [] VOWL [] SOVA

111.Bestimmen Sie den Namespace von “Item”.
112.Bestimmen Sie den Namespace von “tag of”.
113.Wieviele Klassen sind in dieser Ontologie enthalten?
114.Beschrieben Sie “Tagging”.

 Welche Aussagen können Sie über “Tagging” treffen?

Plug-in [] VOWL [] SOVA

121.Bestimmen Sie den Namespace von “Concept”.
122.Bestimmen Sie den Namespace von “nextTag”.
123.Wieviele Properties sind in dieser Ontologie enthalten?
124.Beschrieben Sie “Tag”.

 Welche Aussagen können Sie über “Tag” treffen?

115

A. Fragebogen

FOAF - Fragen

Plug-in [] VOWL [] SOVA

211.Bestimmen Sie den Namespace von “Agent”.
212.Bestimmen Sie den Namespace von “yahooChatID”.
213.Wieviele Klassen sind in dieser Ontologie enthalten?
214.Beschrieben Sie “Concept”.

 Welche Aussagen können Sie über “Concept” treffen?

Plug-in [] VOWL [] SOVA

221.Bestimmen Sie den Namespace von “Person”.
222.Bestimmen Sie den Namespace von “birthday”.
223.Wieviele Properties sind in dieser Ontologie enthalten?
224.Beschrieben Sie “Document”.

 Welche Aussagen können sie über “Document” treffen?

116

Fragen :
1. Was hat Ihnen gefallen an: OPTIONAL

a. SOVA

b. VOWL

2. Was hat Ihnen nicht gefallen an: OPTIONAL
a. VOWL

b. SOVA

3. Benoten Sie die Visualisierungen mit Schulnoten :
(1 - sehr gut, 2 - gut, 3 - befriedigen, 4 - ausreichend, 5 - mangelhaft, 6 - ungenügend)

a. SOVA

b. VOWL

4. Wie schwer war die Bestimmung der Anzahl der Klassen bzw. Properties in
Schulnoten:
(1 - sehr gut, 2 - gut, 3 - befriedigen, 4 - ausreichend, 5 - mangelhaft, 6 - ungenügend)

Klassen Properties
a. VOWL /
b. SOVA /

5. Wie schwer war das Auslesen zusätzlicher Details in Schulnoten:
(1 - sehr gut, 2 - gut, 3 - befriedigen, 4 - ausreichend, 5 - mangelhaft, 6 - ungenügend)

a. SOVA
b. VOWL

6. Welche Visualisierung würden Sie einsetzen und warum?

117

A. Fragebogen

Zwei Darstellungen :

118

Fragen :

1. Welche der beiden Darstellung gefällt Ihnen besser?
 [] dunkelblaue / obere Darstellung
 [] hellblaue / untere Darstellung

2. obere Darstellung

a. was bedeutet oben links?

b. was bedeutet oben rechts?

c. was bedeutet unten links?

d. was bedeutet unten rechts?

3. untere Darstellung

a. was bedeutet oben links?

b. was bedeutet oben rechts?

c. was bedeutet unten links?

d. was bedeutet unten rechts?

119

B. Weitere Visualisierungen

Abbildung B.1.: Visalisierung der FOAF-Ontologie mittels SOVA.

Abbildung B.2.: Visualisierung der FOAF-Ontologie mittels VOWL 2.0.

121

Literaturverzeichnis

[Ala03] H. Alani. TGVizTab: An Ontology Visualisation Extension for Protégé. In
Knowledge Capture (K-Cap’03), Workshop on Visualization Information in Knowledge
Engineering. 2003. Event Dates: October 26. (Zitiert auf den Seiten 9 und 45)

[Ald02] G. Alder. Design and implementation of the JGraph swing component. Techical
Report, 1(6), 2002. (Zitiert auf Seite 64)

[Ald03] G. Alder. The JGraph Tutorial. Veröffentlicht auf: http: // www. jgraph. com/
docs. html , 37:62–71, 2003. (Zitiert auf Seite 64)

[Ber10] G. Bernstein. JUNG 2.0 Tutorial, 2010. URL http://www.grotto-networking.

com/JUNG/JUNG2-Tutorial.pdf. (Zitiert auf Seite 66)

[Ber13] Berkeley Institute of Design (BiD). prefuse | interactive information visualizati-
on toolkit, 2013. URL http://prefuse.org. (Zitiert auf den Seiten 9, 29, 31, 69
und 70)

[BJKK10] T. Boiński, A. Jaworska, R. Kleczkowski, P. Kunowski. Ontology visualization.
Zeszyty Naukowe, 18:15–20, 2010. (Zitiert auf Seite 70)

[BL89] T. Berners-Lee. Information Management: A Proposal. Technischer Bericht,
CERN, 1989. URL http://www.w3.org/History/1989/proposal.html. (Zitiert
auf Seite 13)

[BL94] T. Berners-Lee. Universal Resource Identifiers in WWW, 1994. URL http:

//tools.ietf.org/html/rfc1630. (Zitiert auf Seite 19)

[BL98] T. Berners-Lee. Semantic web road map, 1998. URL http://student.bus.

olemiss.edu/files/conlon/others/others/semanticwebpapers/roadmap.

pdf. (Zitiert auf Seite 13)

[BML97] N. S. Barghouti, J. M. Mocenigo, W. Lee. Grappa: a GRAPh PAckage in Java. In
In Fifth International Symposium on Graph Drawing, S. 336–343. Springer-Verlag,
1997. (Zitiert auf den Seiten 10, 60, 61 und 62)

[BVHH+04] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, L. A. Stein, et al. OWL web ontology language reference. W3C
recommendation, 10:2006–01, 2004. (Zitiert auf den Seiten 24 und 25)

[CT98] I. F. Cruz, R. Tamassia. Graph drawing tutorial. URL: http: // www4. ncsu. edu/
~gremaud/ MA432/ graph_ drawing_ tutorial. pdf , 1998. (Zitiert auf Seite 27)

123

 http://www.jgraph.com/docs.html
 http://www.jgraph.com/docs.html
http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf
http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf
http://prefuse.org
http://www.w3.org/History/1989/proposal.html
http://tools.ietf.org/html/rfc1630
http://tools.ietf.org/html/rfc1630
http://student.bus.olemiss.edu/files/conlon/others/others/semantic web papers/roadmap.pdf
http://student.bus.olemiss.edu/files/conlon/others/others/semantic web papers/roadmap.pdf
http://student.bus.olemiss.edu/files/conlon/others/others/semantic web papers/roadmap.pdf
http://www4.ncsu.edu/~gremaud/MA432/graph_drawing_tutorial.pdf
http://www4.ncsu.edu/~gremaud/MA432/graph_drawing_tutorial.pdf

Literaturverzeichnis

[DB10] L. M. Dan Brickley. FOAF Vocabulary Specification 0.98, 2010. URL http:

//xmlns.com/foaf/spec/. (Zitiert auf Seite 100)

[G+93] T. R. Gruber, et al. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993. (Zitiert auf Seite 15)

[Gan13] E. R. Gansner. Using Graphvizas a Library (cgraph version). 2013. (Zitiert auf
Seite 60)

[GR11] J. Gantz, D. Reinsel. Extracting value from chaos. IDC iView, S. 1–12, 2011.
(Zitiert auf Seite 13)

[Gra10] GraphStream - Gallery, 2010. URL http://graphstream-project.org/doc/

Gallery. (Zitiert auf den Seiten 10, 75 und 76)

[Gra13a] Graphviz - Graph Visualization Software, 2013. URL http://www.graphviz.

org/Home.php. (Zitiert auf den Seiten 58 und 59)

[Gra13b] Node Shapes, 2013. URL http://www.graphviz.org/doc/info/shapes.html.
(Zitiert auf Seite 60)

[HB11] M. Horridge, S. Bechhofer. The owl api: A java api for owl ontologies. Semantic
Web, 2(1):11–21, 2011. (Zitiert auf Seite 24)

[HCL05] J. Heer, S. K. Card, J. A. Landay. Prefuse: a toolkit for interactive information
visualization. In Proceedings of the SIGCHI conference on Human factors in computing
systems, S. 421–430. ACM, 2005. (Zitiert auf den Seiten 69 und 70)

[Hes02] W. Hesse. Ontologie (n). Informatik-Spektrum, 25(6):477–480, 2002. (Zitiert auf
Seite 15)

[Hit07] P. Hitzler. Semantic Web: Grundlagen. Springer, 2007. URL http://books.google.

de/books?id=lwa7TuJ_RR8C. (Zitiert auf den Seiten 15, 20 und 21)

[Hor10] M. Horridge. OWLViz, 2010. URL http://protegewiki.stanford.edu/wiki/

OWLViz. (Zitiert auf Seite 59)

[Ins13a] Institut für Medizinische Informatik an der Universität Stanford (USA). The
Protégé Ontology Editor and Knowledge Acquisition System, 2013. URL http:

//protege.stanford.edu. (Zitiert auf den Seiten 24 und 26)

[Ins13b] Institut für Medizinische Informatik an der Universität Stanford (USA). The
Protégé Ontology Editor and Knowledge Acquisition System, 2013. URL http://

protege.stanford.edu/download/registered.html. (Zitiert auf den Seiten 24
und 25)

[Ins13c] Institut für Medizinische Informatik an der Universität Stanford (USA). protégé-
owl api, 2013. URL http://protege.stanford.edu/plugins/owl/api/index.

html. (Zitiert auf Seite 26)

124

http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://graphstream-project.org/doc/Gallery
http://graphstream-project.org/doc/Gallery
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/doc/info/shapes.html
http://books.google.de/books?id=lwa7TuJ_RR8C
http://books.google.de/books?id=lwa7TuJ_RR8C
http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/OWLViz
http://protege.stanford.edu
http://protege.stanford.edu
http://protege.stanford.edu/download/registered.html
http://protege.stanford.edu/download/registered.html
http://protege.stanford.edu/plugins/owl/api/index.html
http://protege.stanford.edu/plugins/owl/api/index.html

Literaturverzeichnis

[Ins13d] Institut für Medizinische Informatik an der Universität Stanford (USA). what
is protégé-frames?, 2013. URL http://protege.stanford.edu/overview/

protege-frames.html. (Zitiert auf Seite 25)

[Ins13e] Institut für Medizinische Informatik an der Universität Stanford (USA).
what is protégé-owl?, 2013. URL http://protege.stanford.edu/overview/

protege-owl.html. (Zitiert auf Seite 25)

[Int13] International Semantic Web Conference. Keynote - Ramanathan
V. Guha, 2013. URL http://iswc2013.semanticweb.org/content/

keynote-ramanathan-v-guha. (Zitiert auf Seite 18)

[Jun] (Zitiert auf den Seiten 10, 66 und 68)

[Jun10a] ProjectsUsingJUNG, 2010. URL http://sourceforge.net/apps/trac/jung/

wiki/ProjectsUsingJUNG. (Zitiert auf Seite 66)

[JUN10b] JUNG Framework Development Team. JUNG Java Universal Network/Graph
Framework, 2010. URL http://jung.sourceforge.net/. (Zitiert auf Seite 66)

[KN+91] E. Koutsofios, S. North, et al. Drawing graphs with dot. Technischer Bericht,
Technical Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ,
1991. (Zitiert auf den Seiten 10, 12, 59 und 61)

[KTH+06] A. Katifori, E. Torou, C. Halatsis, G. Lepouras, C. Vassilakis. A Comparative
Study of Four Ontology Visualization Techniques in Protege: Experiment Setup
and Preliminary Results. In Information Visualization, 2006. IV 2006. Tenth Inter-
national Conference on, S. 417–423. 2006. doi:10.1109/IV.2006.3. (Zitiert auf den
Seiten 45 und 46)

[KV06] A. Kirpal, A. Vogel. Neue Medien in einer vernetzten Gesellschaft: Zur Geschich-
te des Internets und des World Wide Web. NTM International Journal of History &
Ethics of Natural Sciences, Technology & Medicine, 14(3):137–147, 2006. (Zitiert auf
Seite 13)

[KWV07] S. Krivov, R. Williams, F. Villa. GrOWL: A tool for visualization and editing of
OWL ontologies. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):54–57, 2007. (Zitiert auf den Seiten 9, 33 und 35)

[LDA11] S. Lohmann, P. Díaz, I. Aedo. MUTO: the modular unified tagging ontology. In
Proceedings of the 7th International Conference on Semantic Systems, I-Semantics ’11,
S. 95–104. ACM, New York, NY, USA, 2011. doi:10.1145/2063518.2063531. URL
http://doi.acm.org/10.1145/2063518.2063531. (Zitiert auf den Seiten 9, 12,
22, 23, 42, 81 und 100)

[Lei13] H. Leitte. Darstellung von Graphen, 2013. URL http://www.iwr.

uni-heidelberg.de/groups/CoVis/Data/vis1-9_Graphen.pdf. (Zitiert auf
Seite 26)

125

http://protege.stanford.edu/overview/protege-frames.html
http://protege.stanford.edu/overview/protege-frames.html
http://protege.stanford.edu/overview/protege-owl.html
http://protege.stanford.edu/overview/protege-owl.html
http://iswc2013.semanticweb.org/content/keynote-ramanathan-v-guha
http://iswc2013.semanticweb.org/content/keynote-ramanathan-v-guha
http://sourceforge.net/apps/trac/jung/wiki/ProjectsUsingJUNG
http://sourceforge.net/apps/trac/jung/wiki/ProjectsUsingJUNG
http://jung.sourceforge.net/
http://doi.acm.org/10.1145/2063518.2063531
http://www.iwr.uni-heidelberg.de/groups/CoVis/Data/vis1-9_Graphen.pdf
http://www.iwr.uni-heidelberg.de/groups/CoVis/Data/vis1-9_Graphen.pdf

Literaturverzeichnis

[Luc13] H.-D. Luckhardt. Informationsvisualisierung, 2013. URL http://wiki.

infowiss.net/Informationsvisualisierung. Revision vom 19. April 2011 ge-
ändert durch Heinz-Dirk Luckhardt, URL http://wiki.infowiss.net/index.

php?title=Informationsvisualisierung&oldid=14669. (Zitiert auf Seite 27)

[MGH+09] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz. Owl 2 web ontology
language: Profiles. W3C recommendation, 27:61, 2009. (Zitiert auf Seite 24)

[Min12] Miniwatts Marketing Group. Internet World Stats, 2012. URL http://www.

internetworldstats.com/stats.htm. (Zitiert auf Seite 13)

[Moz13] Mozilla Foundation. Mozilla Public License, 2013. URL http://www.mozilla.

org/MPL. Letzte Änderung vom 1. Februar 2012. (Zitiert auf Seite 24)

[NL13] S. Negru, S. Lohmann. A Visual Notation for the Integrated Representation
of OWL Ontologies. In Proceedings of the 9th International Conference on Web
Information Systems and Technologies, WEBIST ’13, S. 308–315. SciTePress, 2013.
(Zitiert auf den Seiten 10, 11, 50, 51, 52 und 94)

[Nor04] S. C. North. Drawing graphs with NEATO. NEATO User Manual, S. 11, 2004.
(Zitiert auf den Seiten 10, 59 und 60)

[PK10] T. B. Piotr Kunowski. SOVA - Visualization symbols, 2010. URL http:

//protegewiki.stanford.edu/images/1/12/SOVA-Symbols.pdf. (Zitiert auf
den Seiten 9, 38, 39, 40 und 41)

[PK12] T. B. Piotr Kunowski. SOVA, 2012. URL http://protegewiki.stanford.edu/

wiki/SOVA. (Zitiert auf den Seiten 9, 18 und 38)

[Pro13a] Protege Client-Server, 2013. URL http://protegewiki.stanford.

edu/wiki/Protege_Client-Server. Revision vom 27. April 2011,
URL http://protegewiki.stanford.edu/index.php?title=Protege_

Client-Server&oldid=9805. (Zitiert auf Seite 26)

[Pro13b] Protege-Frames, 2013. URL http://protegewiki.stanford.edu/wiki/

Protege-Frames. Revision vom 16. März 2012, URL http://protegewiki.

stanford.edu/index.php?title=Protege-Frames&oldid=10874. (Zitiert auf
Seite 26)

[Pro13c] Protege-OWL, 2013. URL http://protegewiki.stanford.edu/wiki/

Protege-OWL. Revision vom 16. März 2012, URL http://protegewiki.

stanford.edu/index.php?title=Protege-OWL&oldid=10879. (Zitiert auf
Seite 26)

[SA11] R. Sivakumar, P. Arivoli. ONTOLOGY VISUALIZATION PROTÉGÉ TOOLS–
AReview. International Journal of Advanced Information Technology, 1(4), 2011.
(Zitiert auf Seite 45)

126

http://wiki.infowiss.net/Informationsvisualisierung
http://wiki.infowiss.net/Informationsvisualisierung
http://wiki.infowiss.net/index.php?title=Informationsvisualisierung&oldid=14669
http://wiki.infowiss.net/index.php?title=Informationsvisualisierung&oldid=14669
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.mozilla.org/MPL
http://www.mozilla.org/MPL
http://protegewiki.stanford.edu/images/1/12/SOVA-Symbols.pdf
http://protegewiki.stanford.edu/images/1/12/SOVA-Symbols.pdf
http://protegewiki.stanford.edu/wiki/SOVA
http://protegewiki.stanford.edu/wiki/SOVA
http://protegewiki.stanford.edu/wiki/Protege_Client-Server
http://protegewiki.stanford.edu/wiki/Protege_Client-Server
http://protegewiki.stanford.edu/index.php?title=Protege_Client-Server&oldid=9805
http://protegewiki.stanford.edu/index.php?title=Protege_Client-Server&oldid=9805
http://protegewiki.stanford.edu/wiki/Protege-Frames
http://protegewiki.stanford.edu/wiki/Protege-Frames
http://protegewiki.stanford.edu/index.php?title=Protege-Frames&oldid=10874
http://protegewiki.stanford.edu/index.php?title=Protege-Frames&oldid=10874
http://protegewiki.stanford.edu/wiki/Protege-OWL
http://protegewiki.stanford.edu/wiki/Protege-OWL
http://protegewiki.stanford.edu/index.php?title=Protege-OWL&oldid=10879
http://protegewiki.stanford.edu/index.php?title=Protege-OWL&oldid=10879

Literaturverzeichnis

[Sch11] H. Schmidt. Deutschlands Internet-Industrie ist schlecht gerüste,
2011. URL http://blogs.faz.net/netzwirtschaft-blog/2011/05/27/

deutschlands-internet-industrie-ist-schlecht-geruestet-2574/. (Zi-
tiert auf Seite 13)

[Sch13] G. Scheuermann. Darstellung von Graphen, 2013. URL http:

//www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/

Infovis_5-graphs_0.pdf. (Zitiert auf Seite 30)

[Sim96] S. Sim. Automatic graph drawing algorithms. Manuscript, available at http:
// www. drsusansim. org/ papers/ grafdraw. pdf , 1996. (Zitiert auf Seite 27)

[Ste13] F. Steeg. Zest/DOT, 2013. URL http://wiki.eclipse.org/Zest/DOT. Revision
vom 21. August 2013, URL http://wiki.eclipse.org/index.php?title=Zest/

DOT&oldid=346056. (Zitiert auf den Seiten 12 und 63)

[Ten13] Tensegrity Software GmbH. Layout Algorithmen, 2013. URL http://www.

tensegrity-software.de/layout-algorithmen/html. (Zitiert auf den Sei-
ten 29 und 30)

[TM06] I. R. Tamara Mchedlidze, Martin Nöllenburg. Algorithmen zur Visualisie-
rung von Graphen, 2006. URL http://i11www.iti.uni-karlsruhe.de/_media/

teaching/winter2012/graphdrawing/v15.pdf. (Zitiert auf Seite 30)

[Ver13] Verkehrs- und Tarifverbund Stuttgart GmbH (VVS). Liniennetz, 2013. URL
http://www.vvs.de/karten-plaene/liniennetz. Verbund-Schienennetz (pdf).
(Zitiert auf den Seiten 9 und 28)

[Vog11] L. Vogel. Eclipse Zest - Tutorial, 2011. URL http://www.vogella.com/articles/

EclipseZest/article.html. (Zitiert auf den Seiten 10, 12 und 63)

[VVVM04] T. Version, L. Version, P. Version, B. McBride. RDF Vocabulary Description
Language 1.0: RDF Schema. Changes, 2004. (Zitiert auf den Seiten 19 und 25)

[Wik13] Hypertext - Wikipedia, 2013. URL http://de.wikipedia.org/wiki/Hypertext.
Revision vom 08. August 2013, URL http://de.wikipedia.org/w/index.php?

title=Hypertext&oldid=121327895. (Zitiert auf Seite 13)

Alle URLs wurden zuletzt am 12. Dez. 2013 geprüft.

127

http://blogs.faz.net/netzwirtschaft-blog/2011/05/27/deutschlands-internet-industrie-ist-schlecht-geruestet-2574/
http://blogs.faz.net/netzwirtschaft-blog/2011/05/27/deutschlands-internet-industrie-ist-schlecht-geruestet-2574/
http://www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/Infovis_5-graphs_0.pdf
http://www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/Infovis_5-graphs_0.pdf
http://www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/Infovis_5-graphs_0.pdf
http://www.drsusansim.org/papers/grafdraw.pdf
http://www.drsusansim.org/papers/grafdraw.pdf
http://wiki.eclipse.org/Zest/DOT
http://wiki.eclipse.org/index.php?title=Zest/DOT&oldid=346056
http://wiki.eclipse.org/index.php?title=Zest/DOT&oldid=346056
http://www.tensegrity-software.de/layout-algorithmen/html
http://www.tensegrity-software.de/layout-algorithmen/html
http://i11www.iti.uni-karlsruhe.de/_media/teaching/winter2012/graphdrawing/v15.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/winter2012/graphdrawing/v15.pdf
http://www.vvs.de/karten-plaene/liniennetz
http://www.vogella.com/articles/EclipseZest/article.html
http://www.vogella.com/articles/EclipseZest/article.html
http://de.wikipedia.org/wiki/Hypertext
http://de.wikipedia.org/w/index.php?title=Hypertext&oldid=121327895
http://de.wikipedia.org/w/index.php?title=Hypertext&oldid=121327895

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Zielsetzung
	1.2 Gliederung

	2 Grundlagen
	2.1 Ontologie
	2.2 RDF
	2.3 RDF-Schema
	2.4 OWL
	2.5 OWL-API
	2.6 Protégé
	2.7 Graphen
	2.7.1 Anforderungen an die Darstellung von Graphen
	2.7.2 Graphen Layout

	3 Themenverwandte Arbeiten
	3.1 GrOWL
	3.2 SOVA
	3.3 OWLViz
	3.4 OntoGraf
	3.5 TGVizTab
	3.6 Jambalaya
	3.7 Zusammenfassung

	4 Konzept
	4.1 VOWL 1.0
	4.2 VOWL 2.0
	4.3 Konzeptoptimierungen

	5 Frameworks für Graphen
	5.1 GraphViz
	5.2 Grappa
	5.3 Eclipse Zest
	5.4 JGraph
	5.5 JUNG
	5.6 Prefuse
	5.7 Piccolo2D
	5.8 GraphStream
	5.9 Zusammenfassung
	5.10 Entscheidung

	6 Implementierung
	6.1 Chronologischer Ablauf
	6.1.1 Darstellung der Grundformen
	6.1.2 Darstellung der VOWL-Elemente
	6.1.3 Darstellung der eingelesenen Ontologie

	6.2 Architektur
	6.2.1 Das Paket Languages
	6.2.2 Das Paket testing
	6.2.3 Das Paket protege
	6.2.4 Das Paket types
	6.2.5 Das Paket infoPanel
	6.2.6 Das Paket GraphDataModifier
	6.2.7 Das Paket GraphRendering

	7 Evaluation
	7.1 Durchführung
	7.2 Aufgaben
	7.2.1 Fragen zur MUTO-Ontologie
	7.2.2 Fragen zur FOAF-Ontologie
	7.2.3 Abschlussfragen

	7.3 Studienteilnehmer
	7.4 Resultate
	7.5 Fazit

	8 Zusammenfassung & Ausblick
	A Fragebogen
	B Weitere Visualisierungen
	Literaturverzeichnis

