Institut fiir Visualisierung und Interaktive Systeme
Universitdt Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Diplomarbeit Nr. 3511

Kompakte und ganzheitliche
Visualisierung von Ontologien

David Bold
Studiengang: Softwaretechnik
Priifer: Prof. Dr. Thomas Ertl
Betreuer: Steffen Lohmann, M.Sc.
Beginn am: 14. Juni 2013
Beendet am: 13. Dezember 2013

CR-Nummer: H.5.2,H.4.0,H34,D.22

Kurzfassung

Im Kontext des Semantischen Webs und Linked Data sind Ontologien ein beliebtes Konzept
der Wissensreprésentation fiir semantische Anreicherung und Strukturierung von Daten.
Bisher existieren nur Visualisierungskonzepte zur Darstellung von Teilaspekten von Ontolo-
gien. Ein Konzept zur Visualisierung aller Aspekte einer Ontologie fehlt bisher. Im Rahmen
dieser Arbeit werden sechs bestehende Visualisierungskonzepte auf ihre jeweiligen Stér-
ken und Schwéchen analysiert und darauf aufbauend ein kompaktes und ganzheitliches
Visualisierungskonzept vorgestellt und weiterfiihrend optimiert. Dieses Konzept versucht
die analysierten Schwiachen bestehender Konzepte zu vermeiden und realisiert das entwi-
ckelte und optimierte Konzept in Form eines Prototypen. Zur Umsetzung der prototypischen
Realisierung werden acht verschiedene Grafikframeworks auf ihre Eignung fiir die Entwick-
lung des Prototypen untersucht und anhand in dieser Arbeit aufgestellten Kriterien eines
ausgewdhlt und verwendet. Die Architektur des realisierten Prototypen ist dokumentiert
und wurde durch eine Benutzerstudie im Rahmen dieser Arbeit evaluiert. Dabei wurden
Starken und Schwéchen des Visualisierungskonzepts herausgearbeitet und mit alternativen
Konzepten verglichen.

Abkulrzungsverzeichnis

ARPA Advanced Research Projects Agency

RDF Resource Description Framework

RDFS Resource Description Framework Schema
OWL Web Ontology Language

OWL2 Web Ontology Language 2.0

W3C World Wide Web Consortium

MCF Meta Content Framework

URI Uniform Resource Identifier

HTML Hypertext Markup Language

UML Unified Modeling Language

ERM Entity-Relationship Model

BPMN Business Process Model and Notation
VOWL Visual Notation for OWL Ontologies
JUNG Java Universal Network/Graph Framework
FOAF friend-of-a-friend

MUTO modular-unified-tagging-ontology

Inhaltsverzeichnis

1. Einleitung
11. Zielsetzung
1.2, Gliederung e

2. Grundlagen

21. Ontologie.
22, RDF . .. e
23. RDF-Schema
24. OWL .. e
25. OWL-APL.
26. Protégé
Protégé3

Protégé 4
WebProtégé

Protégé Plug-ins

27. Graphen e
2.7.1. Anforderungen an die Darstellung von Graphen
2.72. GraphenLayout,

3. Themenverwandte Arbeiten
31. GrOWL e e
3.2. SOVA . e e
33. OWLViz e e e e e
34. OntoGraf e e
35. TGVizTab e e
3.6. Jambalaya
3.7. Zusammenfassung

4. Konzept
41. VOWLT0 e
42. VOWL20
4.3. Konzeptoptimierungen o

5. Frameworks fiir Graphen
51. GraphViz
52. Grappa
53. EclipseZest

13
14
14

15
15
18
19
20
24
24
25
25
26
26
26
27
28

33
33
38
42
42
45
46
48

49
49
52
52

57
58
61
63

54. JGraph e 64
55. JUNG . . . o e e e e 66
5.6. Prefuse e 69
5.7. Piccolo2D e e 73
58. GraphStream 75
59. Zusammenfassungo 76
510. Entscheidung 76

6. Implementierung 77
6.1. Chronologischer Ablauf 77
6.1.1. Darstellung der Grundformen 77

6.1.2. Darstellung der VOWL-Elemente 79

6.1.3. Darstellung der eingelesenen Ontologie 81

6.2. Architektur. e 82
6.2.1. DasPaketLanguages. 83

6.2.2. DasPakettesting 83

6.2.3. DasPaketprotege 85

6.24. DasPakettypes 85

6.2.5. Das PaketinfoPanel 88

6.2.6. Das Paket GraphDataModifier 90

6.2.7. Das Paket GraphRendering 92

7. Evaluation 99
7.1. Durchfithrung 99
72. Aufgaben 100
7.2.1. Fragen zur MUTO-Ontologie 100

7.2.2. Fragen zur FOAF-Ontologie. 101

72.3. Abschlussfragen 101

7.3. Studienteilnehmer 102
74. Resultate e 103
7.5. Fazit. e 107

8. Zusammenfassung & Ausblick 109
A. Fragebogen 113
B. Weitere Visualisierungen 121
Literaturverzeichnis 123

Abbildungsverzeichnis

2.1

2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

3.1.
3.2
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
39

3.10.
3.11.
3.12.
3.13.
3.14.

3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.

Beispiel eines Tripels aus Subjekt, Pradikat und Objekt und dessen Abbildung

alsRelation. 16
Ontologie aus Quelltext 2.1 visualisiert mittels OWLViz.. 17
Ontologie aus Quelltext 2.1 visualisiert mittels OntoGraf. 18
Ontologie aus Quelltext 2.1 visualisiert mittels SOVA [PK12]. 18
rdfs:domain und rdfs:range an einem Beispiel. 20
Eine Visualisierung der MUTO-Ontologie [LDA11] erstellt durch OntoGraf. . . 23
Ansicht des Liniennetzplans des VVS [Ver13].. 28
Beispiel eines hierarchischen Graphen. 29
Beispiel eines zirkuldren Layouts, entnommen aus der Prefuse Demo [Ber13,

RadialGraphView]. 29
Darstellung eines kréftebasierte Algorithmus aus der Prefuse Demonstration

[Berl3]. o e e 31
Darstellung der MUTO-Ontologie mittels GrOWL. 35
Konstrukte in GrOWL, entnommen aus [KWVO07]. 35
Instanzen werden in GrOWL visualisiert. 36
Operatoren konnen zusammengefasst werden. 36
Darstellung der WINE-Ontologie mittels GrOWL. 37
Visualisierung der meaning of Property aus der MUTO-Ontologie. 37
Das SOVA Plug-in bei geladener MUTO-Ontologie. 39
Visualisierung der one0f Property in SOVA, entnommen aus [PK10]. 40
Darstellung verschiedener Properties, entnommen aus [PK10]. 40
Darstellung von union0f, entnommen aus [PK10]. 41
Kardinalitidt in SOVA, enthommen aus [PK10]. 41
Visualisierung der WINE-Ontologie mittels SOVA. 41
Visualisierung der MUTO-Ontologie mittels OWLViz. 42
OntoGraf: Tooltip bei Properties. Symmetrische Properties werden kreisformig

dargestellt. 44
OntoGraf: Tooltipbei Klassen. 44
OntoGraf: Property-Ubersicht. 44
Visualisierung mittels TGVizTab, Abbildung entnommen aus [Ala03]. 45
Jambalaya bietet verschiedene Ansichten zur Visualisierung. 46
Visualisierung mittels TreeMap-Ansicht in Jambalaya. 47
Visualisierung mittels ClassTree-Ansicht in Jambalaya. 47
Visualisierung mittels Domain- & Range-Ansicht in Jambalaya. 47

10

3.22.

4.1.
4.2.
43.
44.
4.5.
4.6.
4.7.
4.38.
4.9.

4.10.

4.11.
4.12.

5.1.
5.2.

5.3.
54.
5.5.
5.6.
5.7.

5.8.

5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.

6.1.
6.2.
6.3.
6.4.
6.5.

Ubersicht der verwendeten Farben und Symbole. 48

Darstellung von Eigenschaften in VOWL 1.0 [NL13]. 50
Darstellung von Klassen (links) und Instanzen (rechts) in VOWL 1.0 [NL13].. . 50
Darstellung der konzeptuellen Sicht aus VOWL 1.0 [NL13].. 51
Darstellung der integrierten Sicht aus VOWL 1.0 [NL13]. 51
Propertiesin VOWL2.0. 52
Unterschiedliche Versionen fiir subProperty0f.. 53
Alternative Darstellung mehrfacher symmetrischer Properties. 54
Darstellung mehrfacher symmetrischer Properties. 54

Darstellung von owl:disjointWith (links oben), owl:unionOf (links unten),
owl:intersectionOf (rechts oben) und owl:complementOf (rechts unten) in
OWL 1.0, . . o o 54
Darstellung von owl:union0Of (links oben), owl:intersection0f (links unten),
owl:disjointWith (rechts oben), und owl:complementOf (rechts unten) nach

Optimierung des Visualisierungskonzeptes. 55
Darstellung mehrfacher Properties gemafs Konzeptoptimierung. 55
Skizze der explorierbaren Detailansicht., 55

Der in Quelltext 5.1 beschriebene Graph nach der Generierung durch dot,

Abbildung entnommen aus [KNT91]. 59
Ein innerhalb 0,41 Sekunden generierter Graph, Abbildung entnommen aus

[NorO4]. o o e e 60
Aufbau von Grappa, entnommen aus [BML97]. 62
Klassenhierachie in Grappe, entnommen aus [BML97]. 62
Zest visualisiert einen Graphen [Vogl11]. 63
Visualisierung des Codes aus Quelltext 5.4 mittels JGraph. 65
Visualisierung des Codes aus Quelltext 5.4 nach Verdanderung der Grofse des

dritten Knoten. 65
Freie Kanten im Raum und Namensdnderung. 65
Visualisierung des Codes aus Quelltext 5.5 mittels JUNG. 68
Visualisierung eines komplexeren Graphen mittels JUNG, entnommen aus [Jun]. 68
Mittels Prefuse erstellte Visualisierung eines aggregierten Graphen. 69
Mittels Prefuse erstellte Visualisierung eines Graphen. 70
Visualisierung des Graphen aus Quelltext5.6.. 71
Visualisierung eines Graphen mittels Piccolo2D. 74
Visualisierung eines Graphen mittels Piccolo2D. 74
Visualisierung des Graphen aus Quelltext5.8.. 75
Visualisierung eines Graphen, enthommen aus [Gral0]. 76
Visualisierung des chronologischen Ablauf der Entwicklung. 77
In VOWL verwendete Kantenformen. 78
Ausschnitt eines Graphen, der alle benotigten Grundformen enthalt. 78
Anderung der Visualisierung eines Graphen in Prefuse. 79
Sequenzdiagramm der erste Etappe. o Lo oL 79

6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.
6.20.
6.21.
6.22.
6.23.
6.24.
6.25.
6.26.

7.1.
7.2.

7.3.
74.
7.5.
7.6.

7.7.

7.8.

B.1.
B.2.

Sequenzdiagramm der zweiten Etappe. oL 80

Darstellung der VOWL-Elemente innerhalb des Gaphens. 80
Sequenzdiagramm der dritten Etappe.o L 81
Schematische Dastellung der einzelnen Schritte der dritten Etappe. 81
Visualisierung der MUTO-Ontologie. 82
Paketansicht des Prototyps. L. 82
UML-Klassendiagramm des Paket Languages. 83
UML-Klassendiagramm des Paket testing. 84
UML-Klassendiagramm des Pakets protege. 85
UML-Klassendiagramm des Paket types. 86
UML-Klassendiagramm des Paket infoPanel. 88
Skizze der Datenstruktur. e 89
UML-Klassendiagramm des Pakets GraphDataModifier. 91
UML-Klassendiagramm des Paket GraphRendering 92
Erforderliches Aussehen von symmetrischen Properties. 93
Darstellung mehrere symmetrische Properties. 94
Ausschnitt der Konzeptansichtaus VOWL 1.0 [NL13].. 94
Visualisierung der Kante AB und der Kante BA. 95
Erhoffter Losungsansatz des Problems aus Abbildung 6.23. 95
Visuell nicht ansprechendes Ergebnis des Losungsansatzes aus Abbildung 6.23. 96
Dritter Losungsansatz. 96
Kenntnisstand {iber Ontologien im Allgemeinen. 102
Kenntnisstand {iiber die Visualisierung von Ontologien und tiber die Visuali-

sierungskonzepte SOVAund VOWL. 103
Kenntnisstand {iber MUTO-Ontologie und die FOAF-Ontologie. 103
Wieviele Personen konnten alle Fragen zur MUTO-Ontologie beantworten? . . 104
Wieviele Personen konnten alle Fragen zur FOAF-Ontologie beantworten? . . . 104
Konnten die Probanden wihrend der Evaluation Klassen und Properties intui-

tivunterscheiden? e 105
Wie konnten die Probanden wahrend der Evaluation Klassen und Properties

unterschieden? 105
Gesamtbenotung der Visualisierungskonzepte durch die Probanden. 106
Visalisierung der FOAF-Ontologie mittels SOVA. 121
Visualisierung der FOAF-Ontologie mittels VOWL2.0. 121

11

Quelltextverzeichnis

12

2.1.
2.2.

2.3.

24.
2.5.
2.6.
2.7.

3.1.
3.2
3.3.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
57.
5.8.

6.1.
6.2.
6.3.
6.4.

Textuelle Darstellung der Ontologie. 16
Eine Moglichkeit zur Formalisierung der Aussage: drei verschiedene Opern

sind verschieden. L 21
Eine andere Moglichkeit zur Formalisierung der Aussage: drei verschiedene

Opernsind verschieden. 22
Eine Klasse aus OWL, entnommen aus der MUTO-Ontologie [LDA11]. 22
Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11]. 22
Eine Eigenschaft, der MUTO-Ontologie entnommen [LDAI1]. 23
Eigenstandige SubClassOf Definition. 23
Property meaning of aus der MUTO-Ontologie. 36
tag0f Property aus der MUTO-Ontologie. 40
taglabel Property aus der MUTO-Ontologie. 40
Ein Beispiel eines in DOT beschriebenen Graphen, entnommen aus [KN791]. . 59

Ein Beispiel fiir die Verwendung von DOT in Zest, Beispiel [Ste13] entnommen. 63
Objektorientierte Weise einen Graphen zu Erstellen, Beispiel [Vog11] entnommen. 63

Erstellung eines Demonstrationsgraphen mittels JGraph. 64
Erstellung eines Demonstrationsgraphen mittels JUNG. 67
Erstellung eines Demonstrationsgraphen mittels Prefuse. 72
Ergebnisse des integrierten Prefuse Benchmarks. 73
Erstellung eines Demonstrationsgraphen mittels GraphStream. 75
Ausschnitt der Datengenerierung eines Knoten. 79
Ausschnitt aus der Generierung des VOWL-Beispiels. 80
Auszug der LanguagesInfoPanelENjava. 83
Auszug aus der Nodetypejava. L. 87

1. Einleitung

Die Entwicklung des Internets begann 1966 mit einem Projekt der Advanced Research Projects
Agency (ARPA), einer Behorde des Verteidigungsministeriums der Vereinigten Staaten, mit
dem Ziel Computer miteinander zu vernetzen. 1970 wurde begonnen, die verschiedenen,
bereits existierenden, Teilnetze zu einem groflen Netz zusammenzufassen. Bereits in den
1960er Jahren wurden erste Ideen zur Realisierung einer Hypertextstruktur zur Informations-
navigation beschrieben, die die damals jedoch noch nicht real umgesetzt werden konnten
[KV06]. Der Gedanke neben Text-Anweisungen und Format-Anweisungen auch Befehle fiir
Hyperlinks [Wik13] zu integrieren, war jedoch schon geboren [KV06], auch wenn der Entwurf
durch Tim Berners-Lee erst 1989 offentlich als Diskussionspapier vorgestellt werden sollte
[BL89].

Auch wenn Vordenker bereits damals die Moglichkeiten vernetzter Netzwerke und der Hy-
pertext Sprache erkannten, ist es fraglich, ob sie vorhersehen konnten, dass im Jahre 2012
bereits 34.3 % gesamten der Weltbevolkerung bzw. 63.2 % der Bevolkerung Europas und 78.6
% der Bevolkerung von Nord-Amerika diese Technologie verwendet. Zwischen 2000 und
2012 betrug das Wachstum der Anwender des World Wide Webs 566 % [Min12]. Diese Zahlen
verdeutlichen die Evolution einer Idee zu einem weltweit angewandten Medium.

Unser heutiger Alltag ist ohne das World Wide Web kaum mehr vorstellbar, es ldsst uns
miteinander Meinungen austauschen und bietet uns eine unvorstellbare Menge an Informa-
tionen und Unterhaltung verschiedenster Art. Dienstleistungen rund ums World Wide Web
sind ldngst zu einem bedeutenden wirtschaftlichen Faktor geworden, das Netz steuert in
Deutschland beispielsweise bereits 21 % des Wachstums des Bruttosozialprodukt bei [Sch11].
Das Datenvolumen des World Wide Web wichst stetig weiter, im Jahre 2011 umfasste es be-
reits 1,8 Trillionen Gigabytes in fiinf hundert Quadrillion , Dateien”, fiir das Jahr 2015 werden
8 Trillionen Gigabytes prognostiziert [GR11]. 90 % dieser Daten sind jedoch unstrukturiert
[GR11], sodass Werkzeuge benotigt werden, um diesen Datenberg zu durchsuchen. Mit dem
Semantischen Web wurde von Tim Berners-Lee eine Moglichkeit entworfen, Daten nicht
nur miteinander zu vernetzen, sondern Informationen samt ihrer Bedeutung miteinander zu
verkniipfen [BL98].

Um Daten zu strukturieren und semantisch anzureichern stellen Ontologien ein populédres
Konzept der Wissensreprasentation dar. Ontologien bilden dabei ein Netz von Hierarchien
ab, dabei konnen Informationen durch logische Beziehungen miteinander verkniipft sein.
Aufgrund der gestiegenen Verbreitung der Nutzung von Ontologien in der Wissensreprasen-
tation stieg auch der Wunsch, Ontologien visuell darzustellen. Dabei muss jedoch beachtet
werden, dass kein einheitliches Visualisierungskonzept fiir Ontologien existiert. Vorhanden
ist hingegen eine Vielzahl unterschiedlicher Ansitze, die hdufig nur einen Teilaspekt grafisch
abbilden konnen.

13

1. Einleitung

1.1. Zielsetzung

Im Rahmen dieser Arbeit soll eine kompakte und ganzheitliche Visualisierung fiir Ontologien
entwickelt und prototypisch umgesetzt werden. Die Visualisierung soll dabei die Konzepte
und Relationen der Ontologien verstandlich darstellen und einen Eindruck der enthaltenen
Daten der Instanzen vermitteln. Die meisten, der in OWL spezifizierten Ontologie-Konstrukte
sollen auf kompakte und verstandliche Weise dargestellt werden, wahrend Details interak-
tiv exploriert werden konnen. Das Visualisierungskonzept soll, mit realen Daten aus einer
Nutzerstudie, evaluiert werden. Die Ergebnisse der Studie werden im Anschluss ausgewertet
und diskutiert.

1.2. Gliederung

In diesem Abschnitt wird ein Uberblick tiber die Struktur dieser Arbeit vermittelt.

Kapitel 2 — Grundlagen: Dieses Kapitel erldutert die Themenfelder, die dieser Arbeit zugrun-
de liegen. Hierzu zdhlen vor allem Ontologien und ihre Darstellung.

Kapitel 3 — Themenverwandte Arbeiten: In diesem Kapitel werden verschiedene, bereits exis-
tierende Konzepte zur Visualisierung von Ontologien vorgestellt und ihre Starken und
Schwichen erldutert.

Kapitel 4 — Konzept: In diesem Kapitel wird das verwendete und optimierte Konzept ndher
erldutert, welches die Vorlage der prototypischen Umsetzung bildet.

Kapitel 5 — Frameworks fiir Graphen: In diesem Kapitel werden verschiedene Frameworks
fiir Graphen, speziell fiir Knoten-Kanten-Diagramme vorgestellt und auf ihre Eignung,
die spatere prototypische Umsetzung zu unterstiitzen, untersucht.

Kapitel 6 — Implementierung: In diesem Kapitel wird die Struktur und Architektur der pro-
totypischen Umsetzung beschrieben und das zeitliche Vorgehen wéhrend der Imple-
mentierung erldutert.

Kapitel 7 — Evaluation: In diesem Kapitel wird das optimierte Konzept und dessen prototy-
pische Umsetzung im Rahmen einer Expertenstudie evaluiert.

Kapitel 8 — Zusammenfassung & Ausblick: Dieses abschlieflende Kapitel gibt einen zusam-
menfassenden Uberblick iiber die Arbeit und bietet einen Ausblick auf weitere Aspekte,
die in fortfithrenden Arbeiten behandelt werden konnten.

14

2. Grundlagen

Dieses Kapitel enthilt die Grundlagen, die dem Verstdandnis dieser Arbeit dienen. Hierzu
gehort die Einfiihrung und Vorstellung von Ontologien sowie deren Anwendung und Visua-
lisierung.

2.1. Ontologie

Der Begriff der Ontologie entstammt der Philosophie. Er beschreibt sowohl die Moglichkeiten
als auch die Bedingungen des Seienden und setzt sich dabei sowohl mit den Fahigkeiten als
auch den Grenzen des menschlichen Wahrnehmens und Erkennens auseinander.

In vielen Bereichen der modernen Welt muss Wissen mit anderen geteilt, Erkanntes und
Erdachtes reprasentiert, sowie Sachverhalte, Regeln und Fakten modelliert werden. Menschen
verwenden beim Erlernen von Fachwissen verschiedene Hilfsmittel wie Lehrbiicher, Regel-
werke, Lexika oder Schlagwortregister. In der Regel konnen Menschen aus unstrukturierten
Texten Zusammenhinge und die verwendeten Begriffe erkennen.

Sollen Maschinen Entscheidungen auf Basis ihres gespeicherten Wissens treffen, so wird
eine Représentation der zugrunde liegenden Begriffe und deren Zusammenhénge benéotigt.
Hilfsmittel hierfiir konnen Ontologien sein. Ontologien ermdglichen die maschinelle Wieder-
verwendung von Wissen und die Erstellung automatischer Schlussfolgerungen [Hes02].
Tom Gruber definierte eine Ontologie 1992 als formale Spezifikation einer Konzeptualisie-
rung.

,An ontology is a specification of a conceptualization” [G93]

Ontologien beschreiben einen Wissensbereich mithilfe standardisierter Terminologien und
definieren die Beziehungen und Ableitungsregeln zwischen den zuvor definierten Begriffen.
Klassen, Individuen, Relationen, Funktionen und Axiome sind ihre Hilfsmittel. [G193].
Innerhalb einer Ontologie werden Axiome als Aussagen bezeichnet, die immer erfiillt und
damit wahr sein miissen. Mithilfe von Axiomen lassen sich beispielsweise Vererbungsregeln
zwischen Klassen und Relationen definieren. Enthilt eine Ontologie Axiome, kann sie als
schwergewichtig eingeteilt werden, andernfalls als leichtgewichtig.

Relationen sind gerichtet und verweisen auf Klassen oder Individuen. Sitze entstehen durch
das Verkniipfen von Informationen. Informationen setzen sich immer aus einem Tripel beste-
hend aus Subjekt, Pradikat und Objekt zusammen [Hit07]. Abbildung 2.1 verdeutlicht dies
anhand eines Beispiels.

15

2. Grundlagen

Der Mount Everest ist hoch.
N 3
Subjekt Pradikat
Mount —_—
Everest Hohe

Abbildung 2.1.: Beispiel eines Tripels aus Subjekt, Pradikat und Objekt und dessen Abbildung
als Relation.

Veranschaulichung anhand eines Beispiels

Als Beispiel sei eine Ontologie gewdhlt, die die Existenz von vier Personen, von denen je zwei
weiblich und ménnlich sind, modelliert. Diese Ontologie kann, wie in Quelltext 2.1 gezeigt,
textuell dargestellt werden. In diesem Beispiel wurden die Klassen , Person”, , Frau” und
,Mann” definiert. ,Frau” und ,Mann” wurden als Unterklasse der Klasse ,,Person” definiert.
Beide enthalten jeweils zwei Individuen. Diese Ontologie hat als Axiom, dass die Teilmenge
von ménnlich und weiblich nur die leere Menge enthilt, sie sind disjunkt.

Die in Quelltext 2.1 gezeigte Ontologie wurde mittels eines Werkzeugs erstellt, das in Ab-
schnitt 2.6 ndher beschrieben wird. Das in Quelltext 2.1 verwendete Dateiformat wird in den
Abschnitten 2.2, 2.3 und 2.4 niher beschrieben.

Quelltext 2.1: Textuelle Darstellung der Ontologie.

<?xml version="1.0"7>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
1>

<rdf:RDF xmlns="http://wuw.example.org/db/ontologies/2013/11/untitled-ontology-1146#"
xml :base="http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:xsd="http://wuw.w3.org/2001/XMLSchema#"
xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#">

<owl:0Ontology rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146"/>

<owl:Class rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Person"/>

<owl:Class rdf:about=

16

2.1. Ontologie

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann">
<rdfs:subClass0f rdf:resource=

"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Person"/>
</owl:Class>

<owl:Class rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Frau">
<rdfs:subClass0f rdf:resource=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Person"/>
<owl:disjointWith rdf:resource=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann"/>
</owl:Class>

<owl:NamedIndividual rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P1">
<rdf:type rdf:resource=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Frau"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P2">
<rdf:type rdf:resource=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Frau"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P3">
<rdf:type rdf:resource=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#P4">
<rdf:type rdf:resource=
"http://www.example.org/db/ontologies/2013/11/untitled-ontology-1146#Mann"/>
</owl:NamedIndividual>
</rdf :RDF>

Ontologien werden haufig visuell dargestellt. Dies kann beispielsweise mithilfe der Werkzeu-
ge OWLViz (Abbildung 2.2), OntoGraf (Abbildung 2.3) und SOVA (Abbildung 2.4) geschehen.
Die verfiigbaren Werkzeuge unterscheiden sich im Umfang ihrer Darstellung, so stellt OW-
LViz beispielsweise keine Individuen dar. OntoGraf visualisiert hingegen die Wurzel aller
Klassen, owl:Thing nicht. Alle drei hier gezeigten Visualisierungen werden in Kapitel 3
detailliert beschrieben.

*—J§jL'——<:E%EEE>
()

Abbildung 2.2.: Ontologie aus Quelltext 2.1 visualisiert mittels OWLViz.

17

2. Grundlagen

$ P3

Mann

— B
Person

I :
U
IS

Frau > P1

$ P2

Abbildung 2.3.: Ontologie aus Quelltext 2.1 visualisiert mittels OntoGraf.

Abbildung 2.4.: Ontologie aus Quelltext 2.1 visualisiert mittels SOVA [PK12].

2.2. RDF

Das Resource Description Framework (RDF) ist ein System, welches vom World Wide Web
Consortium (W3C) zur Beschreibung von Metadaten entwickelt wurde. RDF basiert zum
Teil auf dem von Ramanathan V. Guha 1995 entworfenen Meta Content Framework (MCF)
[Int13] und ist dabei eines von vielen Methoden zur Formalisierung logischer Ausdriicke
iiber beliebige Dinge. Damit ist es, genau wie die darauf aufbauenden Resource Description
Framework Schema (RDFS) und Web Ontology Language (OWL), ein Grundbaustein des
Semantischen Webs. RDF verwendet aus UML-Klassendiagrammen und Entity-Relationship-
Modellen bekannte Methoden zur Modellierung von Konzepten.

Jede Elementaraussage in RDF ist ein Tripel bestehend aus Subjekt, Pradikat und Objekt.

18

2.3. RDF-Schema

Das Pradikat und das Objekt sind Ressourcen, die das Subjekt ndher beschreiben. Ein Objekt
kann dabei eine beliebige Ressource sein. Alle Bezeichner in RDF miissen eindeutig sein,
daher werden hierfiir Uniform Resource Identifier (URI) verwendet [BL94]. Ontologien lassen
sich mit RDF formalisieren, sie werden im RDF-Format meist mit dem Mime-Type XML
abgespeichert.

2.3. RDF-Schema

RDEFS ist eine Abkiirzung fiir das Resource Description Framework Schema, welches
ein von der W3C entworfenes Hilfsmittel zur Formalisierung von Ontologien ist. Es bie-
tet ein Vokabular fiir die Modellierung von Ontologien. RDFS représentiert die vorkom-
menden Ressourcen durch deren Eigenschaften und Relationen. RDFS greift dabei auf
die Idee des mengentheoretischen Klassenmodells zuriick, bei der Klassen und Eigen-
schaften getrennt voneinander modelliert werden. RDFS definiert hierzu Klassen und Ei-
genschaften. Klassen werden in RDFS durch die Attribute rdfs:Resource, rdfs:Class,
rdfs:Literal, rdfs:Datatype, rdf:XMLLiteral und rdf:Property ndher beschrieben,
wihrend Eigenschaften durch rdfs:range, rdfs:domain, rdf:type, rdfs:subClassOf,
rdfs:subProperty0f, rdfs:label und rdfs:comment ndher definiert werden. Des Weite-
ren enthélt RDFS weitere Begriffe wie Container Classes und RDF Collections [VVVMO4].
RDEFS stellt eine abwiérts kompatible Schemaerweiterung fiir RDF dar.

rdfs:Resource: alles innerhalb von RDEFS ist eine, durch eine URI eindeutig bestimmte, Res-
source.

rdfs:Class: eine Klasse fasst eine Menge gleichartiger Attribute zusammen, sie kénnen In-
stanzen anderer Klassen sein.

rdfs:Literal ist innerhalb von RDFS ein atomarer Wert, beispielsweise ein String oder ein
Zahlenwert.

rdfs:subClassOf sind vergleichbar mit vererbten Klassen. SubClass0f ermoglicht Verer-
bungshierarchien, sie sind transitive Eigenschaften. Falls X eine Unterklasse von Y
ist, erbt X alle Eigenschaften von Y. Im Beispiel von Abbildung 2.1 wurde die Klas-
se ,weiblich” als Unterklasse von ,Person” definiert; dies wurde beispielsweise in
Abbildung 2.2 visualisiert.

rdfs:subPropertyOf ermoglichen die Vererbung von Eigenschaften, die dquivalent zu
rdfs:subClass0f sind.

rdfs:label ermoglicht die Festlegung eines Labels, das eine fiir Menschen besser lesbaren
Version der eindeutigen URI entspricht.

rdfs:comment ermoglicht die Angabe einer fiir Menschen besser verstdndlichen Beschrei-
bung einer Ressource.

19

2. Grundlagen

rdfs:domain legt das Subjekt einer Relation (und deren Typ) fest, Abbildung 2.5 verdeutlicht
dies anhand eines Beispiels. Falls eine Eigenschaft eine rdfs:domain Angabe enthilt, so
wird sowohl der Definitionsbereich der Eigenschaft eingeschrankt als auch eine Aussage
tiber die Klasse, die den Definitionsbereich darstellt, getroffen.

rdfs:range legt das Objekt einer Relation (und deren Typ) fest, Abbildung 2.5 verdeutlicht
dies anhand eines Beispiels. Falls eine Eigenschaft eine rdfs:range Angabe enthilt, so
wird sowohl Definitionsbereich der Eigenschaft eingeschrankt als auch eine Aussage
iiber die Klasse, die den Definitionsbereich darstellt, getroffen.

rdfs:domain

/ rdfs:range

Subjekt T piagiar O

Abbildung 2.5.: rdfs:domain und rdfs:range an einem Beispiel.

2.4. OWL

Die Web Ontology Language ist eine Spezifikation des W3C, sie stellt eine formale Beschrei-
bungssprache dar mit deren Hilfe Ontologien erstellt, publiziert und verteilt werden konnen.
Zusammen mit RDF und RDEFS ist OWL ein Bestandteil der Semantic-Web-Initiative von Tim
Berners-Lee. Tim Berners-Lee ist ein Begriinder des W3C, derzeitiger Direktor! des W3C,
Erfinder der Hypertext Markup Language (HTML) und lehrt am Massachusetts Institute
of Technology. OWL erweitert die Ausdrucksmoglichkeit von RDFS und RDEF. Dabei bleibt
OWL weiterhin kompatibel zu RDFS und RDF, denn RDF bzw. RDFS wird durch OWL nur
mit zusédtzlichen Elementen erweitert. Jedes RDF- und jedes RDFS-Dokument wird durch
die OWL Erweiterung weiterhin als valide angesehen. Diese Erweiterung durch OWL er-
moglicht beispielsweise die Interferenzbildung und die Formalisierung von Ausdriicken der
Pradikatenlogik. OWL kann im Gegensatz zu RDF eine symmetrische, transitive, funktionale
und inverse Property beschreiben. Auch ist die Angabe einer Kardinalitdt in OWL moglich.
OWL kann Inferenzen bilden und unterstiitzt Mengenoperatoren. Da unterschiedliche An-
wendungsgebiete verschiedene Zielsetzungen haben, wurden vom W3C mehrere Versionen
von OWL definiert [Hit07]:

OWL Lite: ist eine Teilmenge von OWL DL und ist vor allem fiir einfache Taxonomien ge-
dacht. Taxonomien in OWL Lite sind entscheidbar, es kann stets entschieden werden,
ob eine Aussage aus einer Ontologie geschlossen werden kann oder nicht. Viele Sprach-
elemente aus RDFS sind entweder verboten oder nur stark eingeschrankt zugelassen,
beispielsweise sind bei Zahlenrestriktionen nur die beiden Zahlenwerte 1,0 erlaubt.

http: //wuw.w3.org/Consortium/

20

http://www.w3.org/Consortium/

2.4. OWL

OWL DL: ist eine Teilmenge von OWL Full, sie enthilt alle Bestandteile von OWL Lite. Sie
wird von den meisten Werkzeugen unterstiitzt. Innerhalb von OWL DL kann entschie-
den werden, ob eine Aussage aus der Ontologie geschlossen werden kann. Es wird
explizit zwischen Klassen, Individuen, abstrakten und konkreten Rollen und Datenty-
pen unterschieden, zugelassen sind nicht alle Sprachelemente aus RDFS.

OWL Full: enthilt die vollstandige Ausdrucksstarke von OWL und beinhaltet daher ganz
RDEFS. Im Gegensatz zu OWL DL und OWL Lite ist OWL Full unentscheidbar, das heifst,
es kann nicht entschieden werden, ob eine Aussage aus einer Ontologie geschlossen
werden kann. Hauptsdchlich basiert die Unentscheidbarkeit auf der Moglichkeit die
Typen Individuen, Klassen und Rollen nicht zu trennen. Nach [Hit07] wird OWL Full
von Werkzeugen derzeit nur bedingt untersttitzt.

OWL erweitert sowohl RDF als auch RDFS und ermdglicht beispielsweise die Formulierung
abzubilden, dass Individuen (Instanzen einer Klasse) unterschiedlich zueinander sind. Hierfiir
bietet OWL verschiedene Moglichkeiten, siehe hierzu Quelltext 2.2 und Quelltext 2.3. Die
Aussage ,Operl, Oper2 und Oper3 sind unterschiedliche Opern” wird in beiden Beispie-
len formalisiert. In Quelltext 2.2 enthélt ,Oper2” die Angabe, dass sie ungleich ,Operl” ist.
, Oper3” beinhaltet die Divergenz zu ,Operl” und ,Oper2”. Damit kann ,,Operl” ebenfalls
nicht identisch zu ,,Oper2” oder , Oper3” sein. Die Spezifikation dieser Verschiedenartigkeit
erfolgt durch das OWL-Element <owl:differentFrom rdf:resource=URI/> innerhalb der
jeweiligen Oper. In Quelltext 2.3 wird dieselbe Aussage formalisiert. Hierbei erfolgt dies
jedoch nicht als Angabe innerhalb der jeweiligen Oper, sondern als eigenstandige Aussage.
Durch <owl:AllDifferent> wird ausgedriickt, dass folgende Auflistung verschiedenartig ist.
<owl:distinctMembers rdf:parseType="Collection» definiert die zuvor erwdhnte Auflis-
tung, die wiederum die Elemente Oper1, Oper2 und Oper3 beinhaltet.

Quelltext 2.2 Eine Moglichkeit zur Formalisierung der Aussage: drei verschiedene Opern

sind verschieden.
<Opera rdf:ID="Operl"/>

<0Opera rdf:ID="Oper2">
<owl:differentFrom rdf:resource=”#0per1"/>
</0Opera>

<0Opera rdf:ID="Oper3">
<owl:differentFrom rdf:resource="#0Operl"/>
<owl:differentFrom rdf:resource="#0Oper2"/>
</Opera>

21

2. Grundlagen

Quelltext 2.3 Eine andere Moglichkeit zur Formalisierung der Aussage: drei verschiedene
Opern sind verschieden.

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<Opera rdf:about="#0perl"/>
<Opera rdf:about="#0per2"/>
<Opera rdf:about="#0per3"/>
</owl:distinctMembers>
</owl:AllDifferent>

Eine Klasse wird in OWL gemaf3 Quelltext 2.4 beschrieben. Sie enthélt eine eindeutige URI, ein
fiir Menschen besser lesbares Label als Alternative zur URI und ein Kommentar als Beschrei-
bung. Der Kommentar spielt nur fiir Menschen eine Rolle, die Ontologie wird weder vom
Label noch vom Kommentar verandert. Die URI wird durch <owl:Class rdf:about=URL, das
Label durch <rdfs:label xml:lang=IS0-CODE> spezifiziert. Die Angabe <rdfs:subClass0f>
sagt aus, dass diese Klasse eine Unterklasse von ,Item” ist und daher dieselben Eigenschaften,
wie ,,Item” enthalt.

Quelltext 2.4 Eine Klasse aus OWL, entnommen aus der MUTO-Ontologie [LDA11].

<owl:Class rdf:about="http://purl.org/muto/core#Tagging">
<rdfs:label xml:lang="en">Tagging</rdfs:label>
<rdfs:comment xml:lang="en">A tagging links a resource to a user account and one or more

tags.</rdfs:comment>
<rdfs:subClass0f rdf:resource="http://rdfs.org/sioc/ns#Item"/>
<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>
</owl:Class>

Quelltext 2.5 beschreibt eine Eigenschaft nach OWL. Sie enthilt eine eindeutige URI, ein fiir
Menschen besser lesbares Label als Alternative zur URI und einen Kommentar als Beschrei-
bung. rdfs:range beschreibt das Objekt dieser Relation wahrend rdfs:domain das Subjekt
dieser Relation beschreibt. Falls die Angabe einer rdfs:range bzw. einer rdfs:domain fehlt,
so wird diese Eigenschaft nicht eingeschrédnkt. In diesem Fall bezieht sich die Relation auf
OWL:Thing und damit auf alle Subjekte innerhalb einer Ontologie.

Quelltext 2.5 Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11].

<owl:0ObjectProperty rdf:about="http://rdfs.org/sioc/ns#account_of">
<rdfs:label xml:lang="en">account of</rdfs:label>
<rdfs:comment xml:lang="en">Refers to the foaf:Agent or foaf:Person who owns this

sioc:UserAccount.</rdfs:comment>
<rdfs:domain rdf:resource="http://rdfs.org/sioc/ns#UserAccount"/>
<rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
<rdfs:isDefinedBy rdf:resource="http://rdfs.org/sioc/ns#"/>
<owl:inverseOf rdf:resource="http://xmlns.com/foaf/0.1/account"/>
</owl:0bjectProperty>

*http://wuw.w3.org/TR/owl-ref/#subClass0f-def

22

http://www.w3.org/TR/owl-ref/#subClassOf-def

2.4. OWL

Quelltext 2.6 beschreibt ebenfalls eine Eigenschaft. Diese Eigenschaft bezieht sich im Gegen-
satz zu Quelltext 2.5 nicht auf eine andere Klasse, sondern auf ein Literal und damit auf einen
atomaren Wert. Ansonsten verhilt sich Quelltext 2.6 analog zu Quelltext 2.5.

Quelltext 2.6 Eine Eigenschaft, der MUTO-Ontologie entnommen [LDA11].

<owl:DatatypeProperty rdf:about="http://rdfs.org/sioc/ns#content">
<rdfs:label xml:lang="en">content</rdfs:label>
<rdfs:comment xml:lang="en">The content of the Item in plain text format.</rdfs:comment>
<rdfs:domain rdf:resource="http://rdfs.org/sioc/ns#Item"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:isDefinedBy rdf:resource="http://rdfs.org/sioc/ns#"/>

</owl:DatatypeProperty>

Falls eine Klasse als Unterklasse einer anderen Klasse modelliert werden soll, so kann dies
auf unterschiedliche Art und Weise realisiert werden. Die Klasse kann, wie in Quelltext 2.4
gezeigt, direkt innerhalb der Klassendefinition als Unterklasse einer anderen Klasse definiert
werden. Die Unterklassendefinition kann, wie in Quelltext 2.7 gezeigt, auch eigenstdandig
erfolgen.

Quelltext 2.7 Eigenstandige SubClassOf Definition.

<SubClass0f>
<Class IRI="#SubClass"/>
<Class IRI="#ParentClass"/>
</SubClass0f>

Abbildung 2.6 stellt eine mdogliche Visualisierung der MUTO-Ontologie [LDA11] dar. Die in
Quelltext 2.4 beschriebene Klasse ist in dieser Visualisierung hervorgehoben. Die Eigenschaf-
ten dieser Klasse werden hier als Tooltip wiedergegeben. Die Object Property aus Quelltext
2.5und die Datatype Property aus Quelltext 2.6 werden in dieser Visualisierung nur in Form
von Pfeilen dargestellt.

7 . . Tag
Jp—— » - 4
[y] ' - ‘
S - /
-
) R 4 - ’
. RN - ’
’ -
, -~
-
p P

~—— | Tagging Tagging
S —— URL: hitp:fpurl orgimuto/core#Tagging
s
ke s

label "Tagging"@en

isDefinedBy cora#

‘Private
Tagging'

Abbildung 2.6.: Eine Visualisierung der MUTO-Ontologie [LDA11] erstellt durch OntoGraf.

23

2. Grundlagen

Einen vollstindigen Uberblick iiber die Ausdrucksstirke und Machtigkeit von OWL bietet
die W3C Empfehlung zu OWL [BVHH " 04]. Dieses Dokument enthilt auch eine ausfiihrliche
Beschreibung der einzelnen Parameter. Eine neuere Version der OWL wurde in Form der
Web Ontology Language 2.0 (OWL2) bereits veroffentlicht [MGH™09]. OWL2 erweitert die
Ausdrucksmoglichkeiten von OWL um weitere Features, die von der W3C3 aufgelistet wer-
den, und enthilt ebenfalls verschiedene Versionen fiir unterschiedliche Anwendungszwecke:
OWL 2 EL, OWL 2 QL, und OWL 2 RL. Die Gruppeneinteilung bei OWL2 erfolgt anhand
der Laufzeit, OWL 2 EL steht zum Beispiel fiir Polynomialzeitalgorithmen und eignet sich
beispielsweise fiir die Bildung von Schlussfolgerungen innerhalb von Polynomialzeit.

2.5. OWL-API

Die OWL-API ist eine 2003 erschienene JAVA Referenzimplementierung, mit deren Hilfe
OWL-Ontologien erstellt, gedndert und serialisiert werden konnen. Die aktuellste Fassung
der OWL-API konzentriert sich auf die Version 2 von OWL, sie wird unter anderem von
Protégé 4 verwendet und unterstiitzt Protégé beim serialisieren [HB11]. Unterstiitzt werden
die folgenden Formate:

RDF/XML
OWL/XML

Terse RDF Triple Language

OWL Functional Syntax
Manchester OWL Syntax
- KRSS Syntax

- ODA Flat File

2.6. Protégé

Protégé [Ins13a] ist ein Editor zur Modellierung von Ontologien. Seine Entwicklung begann
am Institut fiir Medizinische Informatik der Universitdt Stanford. Ziel der Entwicklung war
es, einen Editor zum Erstellen von Ontologien fiir medizinische Forschungszwecke zu schaf-
fen. Entwickelt wird Protégé in der Programmiersprache JAVA und seine Veroffentlichung
geschieht unter der Mozilla Public License [Moz13]. Mit Protégé kann eine Wissensdaten-
bank angelegt, diese mit Informationen befiillt und Wissen daraus abgefragt werden. Aktuell
werden drei verschiedene Versionen von Protégé angeboten [Ins13b]:

3http: //wuw.w3.org/TR/2009/REC-owl2-quick-reference-20091027/#New_Features_in_0WL_2

24

 http://www.w3.org/TR/2009/REC-owl2-quick-reference-20091027/#New_Features_in_OWL_2

2.6. Protégé

- Protégé Desktop 3
- Protégé Desktop 4
- WebProtégé

Protégé Desktop 3 bzw. Protégé Desktop 4 werden innerhalb der Protégé Dokumentation
auch als P3 bzw. P4 bezeichnet.

Protégé 3

In Protégé 3 konnen Ontologien auf zwei unterschiedliche Arten modelliert werden:

Protégé-Frames: Informationen werden tiber eine bestimmte Domaéne in einer hierarchi-
schen Struktur modelliert. Protégé arbeitet dabei mit einem frame-basierten Ansatz, der
die hierarchischen Strukturen durch Konzepte, Attribute und Instanzen darstellt. Die
Schnittstelle von Protégé zum Zugriff auf Ontologien ist dabei mit dem Protokoll Open
Knowledge Base Connectivity kompatibel [Ins13d].

Protégé-OWL: Mittels Protégé-OWL konnen Ontologien fiir das Semantische Web modelliert
werden. Zum Einsatz kommen dabei hédufig die W3C Spezifikation RDFS[VVVMO04]
und OWL[BVHH " 04]. Eine OWL-Ontologie kann dabei Klassen, Eigenschaften und
Instanzen enthalten. Im Gegensatz zu Protégé-Frames kann Protégé-OWL auch lo-
gische Mechanismen verwenden. Dabei kann das implizit enthaltene Wissen durch
Schlussfolgerungen erweitern werden [Ins13e]. Protégé-OWL unterstiitzt nur OWL 1.0
[Ins13b].

Protégé 4

Protégé in Version 4 unterstiitzt nur noch Protégé-OWL, Protégé-Frames ist nicht mehr
enthalten. Protégé 4 unterstiitzt OWL 2.0 [Ins13b]. Des Weiteren sind in Version 4 einige
Verbesserungen enthalten, beispielsweise werden SPARQL-Abfragen ebenso wie die Javacode-
Generierung aus Ontologien® unterstiitzt. Das Einlesen einer OWL-Ontologie, welche mit
Protégé-OWL aus Protégé 4 abgespeichert wurde, ist mit Protégé-OWL aus Protégé 3 nicht
immer fehlerfrei moglich.

4http: //protegewiki.stanford.edu/wiki/P4_2_Release_Announcement

25

http://protegewiki.stanford.edu/wiki/P4_2_Release_Announcement

2. Grundlagen

WebProtégé

WebProtégé ist eine spezielle Version von Protégé , die direkt im Browser ausgefiihrt werden
kann. Serverseitig lauft WebProtégé in einen Servlet Container und benotigt daher einen
Server fiir Java-Web-Anwendungen, beispielsweise Apache Tomcat. Des Weiteren benotigt
WebProtégé die NoSQL Datenbank mongoDB®. Neben dem Download von WebProtégé im
Dateiformat ,WAR” kann WebProtégé auch online ausprobiert werden®. WebProtégé ist vom
Funktionsumfang derzeit noch stark eingeschréankt, die Version 2 von OWL wird aber bereits
unterstiitzt.

Protégé Plug-ins

Protégé stellt ein Framework dar, welches durch Plug-ins erweitert werden kann. Aufgrund
der Anderungen zwischen Protégé 3 und Protégé 4 sind die meisten Plug-ins nur in einer der
beiden Protégé Versionen lauffihig. Sie konnen {iiber die jeweilige Protégé Webseite bezogen
[Ins13a] [Ins13a] werden. Plug-ins fiir Protégé 3 konnen nach den Kategorien

- Protégé Client-Server [Prol3a]
- Protégé-Frames [Pro13b]
- Protégé-OWL [Prol13c]

unterschieden werden. Plug-ins der Kategorie Protégé-Frames verwenden die Protégé API
wihrend Plug-ins der Kategorie Protégé-OWL die Protégé-OWL API, verwenden. Plug-ins
fiir Protégé 4 miissen durch den Wegfall von Protégé-Frames nicht mehr in verschiedene
Kategorien eingeteilt werden. Des Weiteren verwenden sie eine neuere Version der Protégé-
OWL API [Ins13c], daher sind Protégé 4 Plug-ins inkompatible zu Protégé 3 Plug-ins.

2.7. Graphen

Ein Graph ist eine aus Knoten und Kanten bestehende Struktur. Kanten eines Graphen konnen
Gewichte enthalten, sie konnen gerichtet oder ungerichtet sein. Knoten reprasentieren meist
Werte. Formal ldsst sich ein Graph wie folgt definieren [Leil3, Seite 11]:

Definition 1 Ein Graph ist ein Paar G = (V, E) disjunkter Mengen mit E C [V%; die Elemente von
E sind also 2-elementige Teilmengen von V. Die Elemente von V nennt man die Ecken (oder Knoten)
des Graphen G, die Elemente E seine Kanten.

Shttp://www.mongodb. org/
Shttp://webprotege.stanford.edu

26

http://www.mongodb.org/
http://webprotege.stanford.edu

2.7. Graphen

Menschen konnen visuelle Informationen meist besser verarbeiten, daher werden Graphen
oft visualisiert, hierfiir eignen sich vor allem Knoten-Kanten-Diagramme. Die Visualisierung
von Graphen findet unter anderem in der Informationsvisualisierung Anwendung. Knoten-
Kanten-Diagramme sollen helfen, Prozessabldufe und Beziehungen zu veranschaulichen, den
Zugang zu Massendaten durch Strukturierung zu erleichtern und die Mustererkennung der
Menschen unterstiitzen damit Relationen und Strukturen erkannt und in Kontext zu anderen
Informationen gesetzt werden konnen.

,Die Visualisierung entspricht der Neigung der menschlichen Spezies und unserer
Kultur, visuelle Informationsprozesse und Prasentationsformen zu bevorzugen.”
[Lucl3]

In der Visualisierung von Ontologien werden hédufig Knoten-Kanten-Diagramme eingesetzt.
Beispiele zur Visualisierung einer OWL Ontologie wurden bereits in Abschnitt 2.1 vorgestellt.
Im Allgemeinen ist die textuelle Darstellung kompakter und maschinell gut lesbar, wahrend
sie fiir Menschen weder besonders intuitiv noch besonders explorierbar ist, da grafische
Visualisierungen fiir Menschen meist leichter zu verstehen sind.

Im weiteren Verlauf der Arbeit ist mit der Bezeichnung des Graphen die visuelle Reprasenta-
tion eines Graphen als Knoten-Kanten-Diagramms gemeint.

2.7.1. Anforderungen an die Darstellung von Graphen

Ein Graph soll Menschen bei der Erfassung der dargestellten Informationen unterstiitzen.
Menschen finden Graphen mit bestimmten Kriterien dsthetische ansprechend [Sim96] [CT98].
Diese konnen jedoch nicht immer eingehalten werden.

- Schnitte zwischen Kanten und Knoten sollte vermieden werden.
- Schnitte zweier Kanten sollten vermieden werden.

- Sofern ein sinnvoller Mindestabstand zwischen Knoten eingehalten wird, kann die vom
Graphen benétigte Flache minimiert werden. Alternativ zum Mindestabstand kénnen
die Knoten auch auf einem festgelegten Gitter angeordnet werden.

- Sofern ein sinnvoller Mindestabstand zwischen Knoten eingehalten wird, kann die
Lange der Kanten minimiert werden. Auch in diesem Fall kann ein festgelegtes Gitter
eine Alternative zum Mindestabstand darstellen.

- Die Kanten sollten eine dhnliche Lange aufweisen.
- Enthélt der Graph eine Symmetrie, so sollte diese Symmetrie auch visualisiert werden.

Graphen mit wenigen Elementen lassen sich selbst unter Berticksichtigung dieser Anforderun-
gen relativ einfach realisieren. Menschen beriicksichtigen viele dieser Kriterien intuitiv, denn
sie entsprechen grofitenteils denen einer dsthetischen Darstellung. Sollen grofie Graphen mit
vielen Elementen maschinell dargestellt werden, so werden Algorithmen benétigt die viele
dieser Anforderungen berticksichtigen. Dies wird im Beispiel Abbildung 2.7 berticksichtigt.

27

2. Grundlagen

Kanten schneiden sich kaum, es gibt nur Schnittpunkte zwischen verschiedenen Verkehrsmit-
teln (U-Bahn und S-Bahn), Knoten (Haltestellen) werden nicht von Kanten geschnitten und
Knickpunkte von Kanten sind selten vorhanden. Kanten von gleichen Verkehrsmitteln haben
grofitenteils dieselbe Lange, die Knoten sind gleichméfiig zu verteilen und die zugrunde
liegende Struktur wird widergespiegelt.

Verbund-Schienennetz (v
e » [0

,, /

Abbildung 2.7.: Ansicht des Liniennetzplans des VVS [Ver13].

2.7.2. Graphen Layout

Bei der Darstellung von Graphen gibt es unterschiedliche Ansétze diese zu strukturieren. Die
Ansitze unterscheiden sich auch in ihrer Eignung fiir bestimmte Anwendungsgebiete, daher
sollte je nach Anwendungsgebiet ein geeignetes Layout gewahlt werden.

Hierarchisches Layout

Bei dieser Struktur wird versucht die gegebene Hierarchie in der Visualisierung widerzu-
spiegeln. Das hierarchische Layout eignet sich daher gut zur Abbildung von Hierarchien.
Funktionsbaumen, Syntaxbdume, Biume oder Geschiftsprozesse werden oft hierarchisch
abgebildet. Meist werden gerichtete Kanten verwendet und oft zeigen die meisten Kanten in
die gleiche Richtung und oft wird auch ihre Uberschneidung minimiert.

Baume konnen als eine Spezialisierung des hierarchischen Layouts angesehen werden. Mittels
Baumen konnen Monohierarchien (d.h.: die Existenz einer Wurzel ist gegeben) gut dargestellt
werden, Abbildung 2.8 visualisiert eine Monohierarchie mittels hierarchischem Layout.

28

2.7. Graphen

9
O: O:
1 L 1 I
0: 0 O

Abbildung 2.8.: Beispiel eines hierarchischen Graphen.

Zirkulares Layout

Ein zirkuldren Layouts spiegelt Gruppenstrukturen wieder. Die Anordnung der Knoten
innerhalb eines zirkuldres Layout entspricht der Verbindungsstrukturen der Knoten. Dieses
Layout eignet sich gut zur Analyse von Netzwerken, seien sie technischer oder sozialer Natur
[Ten13]. Abbildung 2.9 demonstriert ein zirkuldres Layout anhand eines Beispiels.

it iBidar o -
ﬁﬁ?he&nl? H ol

Joa anhta squris
£33 dan
Michae]]el'erﬁw|
I\{é‘F;r"a H ePh
Dorothy Yot
Kewvin
Matl
TohnAnthory Judith
Alexander
Caterina

Jasan
Jesse James

Alexander
Jary
Matt B Jam
e Stawart
Micaela X -,
Shane Corey I\«ka II
Justin il
fy Sieve
Rikard Fernando ey
Shane E)i(lg
Sumit o R
Daniel Patrick Zenhoria
Jeremy Hally Jeff Ed
Do Christiaan
David
Phil
David Emily
Matth p John
Richord S Adem Calvin
ichar 5
Keri) Cl"ﬁth'a Stephanie
Stephen by John
Christopher I\:lé%lr?‘!aniel Pal'kker
Patricl
"
Casay Alar Ryﬁﬁﬂ
Matthaw
Jash
on
Michael e
'%Qbin
Bty Robert
Andren, Patrick:
Scﬂ%
W Sam
A kafieb

o camb

Abbildung 2.9.: Beispiel eines zirkuldren Layouts, entnommen aus der Prefuse Demo [Ber13,
RadialGraphView].

29

2. Grundlagen

Layout des ldngsten Pfad

Beim Layout des langsten Pfades wird der Pfad mit den meisten Knoten zwischen allen Knoten
ohne Vorganger und Knoten ohne Nachfolger ermittelt. Dieser Pfad wird zur Ausrichtung
des gesamten Graphen verwendet. Alle Knoten des langsten Pfades werden entlang einer
Geraden ausgerichtet, alle anderen Knoten werden um diese Gerade angeordnet. Diese Art der
Darstellung eignet sich vor allem fiir ereignisgesteuerte Prozessketten (d.h.: zur Darstellung
von Geschéftsprozessen). Auch Unified Modeling Language (UML) und Business Process
Model and Notation (BPMN) Diagramme kénnen auf diese Art und Weise tibersichtlich
dargestellt werden.

Kréftebasiertes Layout

,Der Energie-Layout-Algorithmus nutzt einen krifte-ausgleichenden Layout-
Algorithmus fiir die Anordnung der Knoten im Graphen. Dieser Algorithmus
betrachtet den Graphen als ein Kréftesystem und strebt eine moglichst energie-
arme Anordnung an. In diesem System werden die Knoten eines Graphen als
elektrisch geladene Teilchen mit AbstofSungskraften und die Kanten als Federn
mit Riickhaltefunktion betrachtet. Das Resultat des Energie-Layouts ist besonders
natiirlich und ideal fiir das Layout von Sozialen Netzen und fiir die Simulati-
on von chemischen oder physikalischen Modellen. Es erzeugt ein harmonisches
und ausbalanciertes Ergebnis, obwohl sich hier Kanten tiberschneiden konnen.”
[Ten13]

Kréftebasierte Layouts werden oft fiir geradlinige Zeichnungen und ungerichtete Graphen
eingesetzt, denn sie sind populédr und ergeben eine tibersichtliche und einfach zu verstehende
Darstellung. Das Resultat eines kréftebasierten Layoutalgorithmus ist ein System mit minima-
ler Energie, nicht jedoch zwangsweise das System mit der minimalsten Energie [Sch13]. Ein
Beispiel eines kréftebasierten Layouts ist in Abbildung 2.10 abgebildet. Kriftebasierte Layouts
sind leicht adaptierbar, konfigurierbar, robust und skalierbar. Sie haben weder Qualitédtsga-
rantien noch Laufzeitgarantien [TMO06]. Kriftebasierte Algorithmen kénnen beispielsweise
auch zur Darstellung eines Entity-Relationship Model (ERM) verwendet werden.

30

2.7. Graphen

W o
L -
am

£ L)
-
g .
L A
o i a a
i
" a
- .
"
B
-
- .
[LT
P F
a " LR 3
L 1] 1 -
- - "
: - .
. 2 .
-a
" " A
] = -
il - .
2
" -
- w
x
1] 4 2%
a
LT L I
- " En
m
- o [t
-
P
u
]
-
:J
"
"
r
- .
" = ¥
- N
"
- N a
»
b
" - p
" .
- "
. 4 .
-]
3
. o
"
e
"
o A
L =
Wy T

(]

u

1 I ET)
L] .o . W
L]
" - . 1]
L] -t A L u a W
,] " -
a (2] £l ko a L]
- i A 1]
2
i - oW u -
E2] =
u
L . " ke = 2
& .
B b 2 L1} »
£
2
- 2 a]
e A .‘,]
]
u "
- [
L] * u B
- . [
2 L £
= ™
£
1 [t
=_| -
[T
£ "
[
u
» - T
u
7]
[i J 23
-
2
W 2 .
E7) " -
T
L H
. w M
i & 1w
a
-
a
"
u
o W
)
.
A
u 1]
- En 1]
l.i 2
" u
Lt
.]
.
m
LT
"
LE] - -
A
-
2]
W L, -
i [Tl
u
"
A . -a
L
w
s "
Lt "

Abbildung 2.10.: Darstellung eines kraftebasierte Algorithmus aus der Prefuse Demonstrati-

on [Ber13].

31

3. Themenverwandte Arbeiten

In diesem Abschnitt werden themenverwandte Arbeiten, die sich mit der Visualisierung von
Ontologien befassen, vorgestellt und ihre Vorteile und Nachteile gegeniiber dem in Kapitel 4
vorgestellten Konzepts diskutiert.

3.1. GrOWL

GrOWL ist ein 2005 veroffentlichtes Werkzeug zur Visualisierung und Bearbeitung von Onto-
logien auf Basis von OWL-Ontologien und bzw. Ontologien auf Basis der Beschreibungslogik
(DL) [KWV07]. Wie Protégé ist GrOWL ein Editor zum Bearbeiten von Ontologien, Abbildung
3.1 verdeutlicht die Moglichkeiten Ontologien zu bearbeiten. Eine Visualisierung der bereits
in Abschnitt 2.4 vorgestellten und mittels OntoGraf visualisierten MUTO-Ontologie ist in
Abbildung 3.1 dargestellt.

GrOWL wird von der Universitdt von Vermont nicht mehr zur Verfiigung gestellt, Besucher
der Webseite erhalten stattdessen eine Fehlermeldung!. Mithilfe des Internet-Archiv? kann
die Seite des Projekts aus dem Jahre 2008 weiterhin aufgerufen werden®. Die Darstellungen
aus Abbildung 3.1 entstammen der Standalone Edition, welche die Versionsnummer 0.02
tragt. Die im Internet-Archiv weiterhin aufrufbare Seite stellt zwei Versionen des Tools vor:
Die éltere Version verwendet die OWL-API, wihrend die neuere Version Prefuse und JENA
verwendet. Bei JENA* handelt es sich um ein Framework zum Einlesen und Schreiben von
Ontologien im RDF-Format. JENA ist damit der OWL-API aus Abschnitt 2.5 dhnlich und un-
terstiitzt beispielsweise SPARQL®. Dabei handelt es sich um eine graphbasierte, semantische
Abfragesprache fiir RDF, SPARQL ist zugleich ein Akronym fiir ,SPARQL Protocol And RDF
Query Language”. Die im Internet-Archiv verfiigbare Version 0.02 von GrOWL akzeptiert
Ontologien im RDF-Format, andere Formate konnen nicht eingelesen werden. Des Weiteren
stlirzt die im Internet-Archiv verfiigbare Version 0.02 beim Einlesen der MUTO-Ontologie
ofters ohne Fehlermeldung ab. Damit ist eine zuverldssige Erstellung und Bearbeitung von
Ontologien mit dieser Version von GrOWL nicht gewahrleistet. Uber GrOWL kénnen Zusatz-
informationen zu Literalen und Klassen abgerufen werden. Zusétzliche Informationen tiber
Kanten werden hingegen nicht dargestellt, auch wenn Kanten wie Knoten markiert werden

http://www.uvm. edu/~skrivov/GrOWLEditor. jar

Zhttp://archive.org/about/contact.php

Shttp://web.archive.org/web/20080424033752/http: //wuw.uvm.edu/~skrivov/growl/index . html
*http://jena.apache. org

Shttp://wuw.u3.org/2009/sparql/wiki/Main_Page

33

http://www.uvm.edu/~skrivov/GrOWLEditor.jar
http://archive.org/about/contact.php
http://web.archive.org/web/20080424033752/http://www.uvm.edu/~skrivov/growl/index.html
http://jena.apache.org
http://www.w3.org/2009/sparql/wiki/Main_Page

3. Themenverwandte Arbeiten

konnen. Rechts wird, wie Abbildung 3.1 zeigt, eine Ubersicht aller enthaltenen Klassen gege-
ben.

Innerhalb von GrOWL werden Object Properties blau dargestellt, wahrend Datatype
Properties mit einer gelben Farbe visualisiert werden. Der Namespace eines Elements wird
innerhalb des Knoten-Kanten-Diagramms nicht angezeigt. Zugriff auf die verwendeten Na-
mespaces erhdlt der Benutzer in Tabellenform, nach Betadtigen der View Metadata Schaltfldche.
Klassen werden in GrOWL ovalformig, wiahrend Literale quadratisch dargestellt werden.
SubClass0f Beziehungen werden in GrOWL durch einen durchgezogenen Pfeil dargestellt.
Aquivalenzen werden durch einen Mesomeriepfeil reprasentiert, dabei handelt es sich um
einen Pfeil, der zwei Spitzen besitzt. GrOWL orientiert sich bei der Darstellung von OWL-
Konstrukten an pradikatenlogische Ausdriicke und den DL-Klassenkonstrukte. Ein Auszug
hiervon ist in Abbildung 3.2 dargestellt. Instanzen werden in GrOWL durch ein nicht gefiilltes
blaues Quadrat reprédsentiert. Das in Abschnitt 2.1 vorgestellte Beispiel aus Abbildung 2.1
wird in GrOWL gemafs Abbildung 3.3 visualisiert.

Eine Besonderheit von GrOWL besteht in der Moglichkeit, Operatoren zusammengefasst
darzustellen, dass in Abbildung 3.4 verdeutlicht wird.

Der Benutzer kann Instanzen ausblenden, ein Uberblick iiber die Anzahl der Instanzen wird
jedoch nicht gegeben. Durch die Darstellung samtlicher Instanzen und Restriktionen werden
grofle Ontologien schnell uniibersichtlich, was bei der Visualisierung der WINE-Ontologie®
in GrOWL deutlich zum Vorschein kommt und in Abbildung 3.5 veranschaulicht wird.
GrOWL kann verschiedene Einschrankungen der Properties, visuell darstellen, hierzu
zdhlen Werteeinschrankungen, Einschrankungen hinsichtlich der Kardinalitdt sowie die
OWL-Einschrankungen someValuesFrom und allValuesFrom. Allerdings besitzt GrOWL kei-
ne spezielle Visualisierung der unterschiedlichen Property-Typen. Zwar werden Object
Properties und Datatype Properties in unterschiedlichen Farben dargestellt, eine visuel-
le Reprasentation der Eigenschaften inverse0f, TransitiveProperty, SymmetricProperty,
FunctionalProperty und InverseFunctionalProperty ist hingegen nicht vorgesehen. Im
Beispiel aus Abbildung 3.1 werden die funktionalen Properties nextTag und previousTag
exakt wie meaning0f dargestellt. Bei meaning0f handelt es sich um eine Property, die keine
Domain-Angabe besitzt. Ihre Beschreibung im RDF-Format ist in Quelltext 3.1 gegeben. Wie
Abbildung 3.6 zeigt, kann diese Information lediglich iiber die rechte Informationsleiste
abgerufen werden. Falls der Benutzer herausfinden mochte, welche Property symmetrisch ist,
so muss er jede Einzelne markieren und die rechte Informationsleiste iiberpriifen.

GrOWL stellt damit nur einen Teilaspekt der Ontologie dar und eignet sich daher nicht fiir
die ganzheitliche Visualisierung.

http://wuw.w3.org/TR/2003/CR-owl-guide-20030818/wine

34

http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine

3.1. GrOWL

2P X ¥ A

T A An Ax

Abbildung 3.1.: Darstellung der MUTO-Ontologie mittels GrOWL.

-
4 + Class Name
4
Label
sioc:has_creator
MNamespace
Comments
http:#fpurl. orgsdeftermsfereated
sioc:ltem PP g
tagged resourgs“d with
dateTime
creator of
v nrevious tag .. tagging created |
izt next tag hast. tagof " F cioclcertccount” =]
~ Taaging », s
automatic tag meaning / \ e e
meaning of ———&<
g Tagg
913" tag created
tagging modified 5
/ h, has 2 dateTime
/dateT\me tag meaning
P —— tag label Automnatic Tag
Frivate Tagging
Literal
hitp:#purl arg/d ctermsimadified
] [y b

Definition of class C The diagram G(C) Base node
BN(C)

Named Class C ¢

Intersection G NGy Biieny) -0 BN(C2) jal

Union CU C; By <O S i

Complement — G @ BN(C1) @

Enumeration {oy02}

"

Eaust Restriction JR.Cy

3R —= BN(C1) IR
For all Restriction YR.Cy ¥R ——= BN(C1) R
Number Restriction 2 nR Eg R R
Number Restriction €n R Eg R TR

Value Restriction R;g

&S

Abbildung 3.2.: Konstrukte in GrOWL, entnommen aus [KWV07].

35

3. Themenverwandte Arbeiten

ol Namedlndl\rlduaF
(F]
Abbildung 3.3.: Instanzen werden in GrOWL visualisiert.
= H
BN(C1 BN(C2 BN(C3)
(C1) (C2) BN(C1) gy c2) BN(C3)

Abbildung 3.4.: Operatoren konnen zusammengefasst werden.

Quelltext 3.1 Property meaning of aus der MUTO-Ontologie.

<owl:0bjectProperty rdf:about="http://purl.org/muto/core#meaning0f">

<rdfs:label xml:lang="en">meaning of</rdfs:label>

<rdfs:comment xml:lang="en">The number of tags that can be linked to one and the same

meaning is theoretically unlimited.</rdfs:comment>
<rdfs:range rdf:resource="http://purl.org/muto/core#Tag"/>
<owl:inverseOf rdf:resource="http://purl.org/muto/core#tagMeaning"/>
<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>

</owl:0bjectProperty>

36

3.1. GrOWL

TiwinmadsFrme: Wieod hg:b- L S
TR S Dol oc] Om G rape wZinfandalGrape
o

vin:madeFroz ivinmadeFramtrans
=vin in:madeFromGraps” G made moraps, ==

"
food:DessetCourse gV&ﬁuud OusterShel hasFood *rem@rape.

FishCd ke w,
“food:SplcuRedieatCours e il = famerie .y N
foodDakeatf owlCourse A ¥ ¥ P scrap]
T2o0FART fond:NonRedMeatCourse T W’ i T AL
Z1ivin mauemn.wape Wi madef om&iape

e T - B
in SLig vinmadeFromray
j@ E?Ma‘? I iredihasDiing 'n"'T'" nu.unumshEuuls@)s\ 1meadEFrum6faDE
; nitine st SO a1 o O
(AinCalter e = W ifond haw—‘— LS @1 winimadeFremG £
fo
=

2)

virPak = o
:Swizetf itCourse WtoadihazDiink E'"‘H“‘"’C' =iivinmes LivinmadeFromer

AN .4 o Tt adhasbrink) E2winimadaF e in:FetiteSyrah n:Semillon .
sdhasbiink - gpad hasDiig) e CmaleB asedPeadbouse e SivinimadeFomorane o yin:ChatesuDYchemSautsc i
cewanaEfood Lo NN 7 o] Nunuysievaheunshcn@ A in EheqiBlang in:5e.snThackieySiuzP eti
W foad:hasDrink oodihasDiink T CiniealinCall

vinilocatun

fo. VvlnmademeGlaE Pl 4@‘ i ~ = i CotturiZintant

‘ _& D L

food:Seafe food:Radhleatto Z _.—'WII-M_
v —_— VifogdhaFood . NutsDes " W/’/ ‘
‘ /] Yiton S WivinzhasSugar FinhasBady

o2
Emilien %
sbleLiquid

ha e
amnegpscnptor i hasBEeTinhasBody_ 7y

Sinotriolr i
win: Iwcaledln V 'nud hasFood — R - vin:hasBody.
owl:Thing ~ A =i asouner
e i Bardaau win:hasGolor i = TTH:C abemetmrane T b e
FUNCHEIATE =S < m_m
mhlﬂh”c‘u ‘d!NunSwgthrmlﬂﬂulSE in RnsEWmE i aliBodie duine 2 vincMerlot — 7 : i =

win:mermage S
NN a e vin:CabemstSa

White - % p
m Ifm‘[\“ewn,m */‘\‘_ Yinhas5 uaa InRleslingor asBody RO R T in hasSugar A (ED

y bty
\ \ T Tah\a\l\/me S T :
J win hiteWine o e ﬁ_ "
= CortonhdsnirachstihtsBurgund W“
1 WineColar g vin WlnET "m gundy o hass“g‘
dmantat
S] l/ / 'wﬂ I &" ot

A Ol o o R v
locatedin sin:RedBurgunady win: Whl(eElur ‘

- ™, |
{ENncatedin “. VinDesseriing vin RedT ableline M m |
[l PO

- P
food:NonCansumableThing
nibuscaast

”

vin:Medos

el n; haXFlale
win:Margaux & N ILeiizlAlais @ win:CotesDOr
e A vindeaiing ¥
vin:Pauillae e vineumault ‘ T VinihasBody
7 N pLin P ageMillWinerCa
= thas - nltennedylLateral

win: hasF\avur vin:Mariettal

e _mL__,,/
vin:Mountada, vinhasFlavel 5
— i hasBudy =

/ [faoared] i e T ,,mhasaudv o,
(SR Rehall an ey hossindy o g hasf aver) ST TEEF I Yinchast

ol
Teadibite | Tmer i mer g 8 vin Tavlar] el GinhasBadeS .

"food:Grape

win: E[}h\u%\’ﬂ\la
1 -
vin:Handlcy ‘a'}‘

food:Ful

n:Selabslcelline

R
vinchasBody e —
i1

Abbildung 3.5.: Darstellung der WINE-Ontologie mittels GrOWL.

» Object Property:
oreviousTad
Label
orevious taa
Annotation
dateTime
This property indicates the
tag that is preceding in the
Frivate Tagging list of tags. It can be used
T +n Aacrriha tha ardar in
Mamespace
o <default>
AT ACCesE
tagged resource '/ tagged with
e tagging madific
2a meaning e Tagging - t
tag created CIENL EEEEES Functional
- has tag =
next tag = .
hN %“_ tag of Transitive
previous tag ' 29 crea(u.h.a.s CHEED Symmetric
ag label / \\‘ One To One
meaning ofﬂ“c e sioc:Userfccount Inverse Functional
Automatic Tag sos:Concept ______‘___-_.-
4 1 [3

Abbildung 3.6.: Visualisierung der meaning of Property aus der MUTO-Ontologie.

37

3. Themenverwandte Arbeiten

3.2. SOVA

SOVA ist ein Protégé Plug-in zur Visualisierung von Ontologien, ausgeschrieben steht SOVA
fir ,Simple Ontology Visualization API”. Entwickelt wurde es von Piotr Kunowski und
Tomasz Boiriski von der Gdarisk-Universitit der Technik’, die ihre erste Version von SOVA
im Jahre 2010 veroffentlichten. [PK12]. Eine Visualisierung der MUTO-Ontologie mittels
SOVA ist in Abbildung 3.7 dargestellt. Ein Verzeichnis aller Symbole samt entsprechender
OWL-Statements steht online unter [PK10] zur Verfiigung.

Die Ansicht innerhalb des SOVA Plug-ins ist dreigeteilt. Links erhélt der Benutzer eine Uber-
sicht tiber die Hierarchie aller enthaltenen Klassen. Diese Ansicht wird von Protégé zur
Verfligung gestellt, der Anwender konnte diese Ansicht anderen Visualisierungen ebenfalls
hinzufiigen. In der Mitte befindet sich die eigentliche Visualisierung. Rechts werden zusatz-
liche Informationen angezeigt, sofern der Benutzer eine Kante anklickt. Ein Beispiel dieser
dreiteiligen Ansicht ist in Abbildung 3.7 gegeben. Anstelle des mittigen Graphen kann auch
eine weitere Hierarchie der Klassen und Individuen eingeblendet werden, um dies zu be-
werkstelligen, wird der hermit owl reasoner benétigtg.

SOVA verwendet ein Spring-Layout, dies hat zur Folge, dass sich Knoten gegenseitig ab-
stofien, wahrend Kanten Anziehungskrifte modellieren. Durch diese Layoutform werden
semantisch dhnlichere Knoten dichter als semantisch undhnlichere Knoten platziert. Innerhalb
der Visualisierung der Ontologie verwendet SOVA dhnliche Symbole wie das bereits in Ab-
schnitt 3.1 vorgestellte GrOWL. Instanzen werden als grau gefiillte Quadrate den jeweiligen
Klassen zugeordnet. Eine Visualisierung des Beispiels aus Abschnitt 2.1 mittels SOVA wurde
bereits in Abbildung 2.4 gezeigt. Eine Information iiber die Anzahl der enthaltenen Instanzen
wird nicht gegeben, der Benutzer muss diese Information durch Zdhlen der abgebildeten
Instanzen selbst ermitteln. Im Gegensatz zu GrOWL aus Abschnitt 3.1 besteht keine Mog-
lichkeit des Ausblendens der Instanzen. Analog zu GrOWL konnen in SOVA nur Knoten
angeklickt werden. Das Auswéhlen von Kanten ist nicht moglich. Fahrt der Benutzer mit
dem Mauszeiger iiber einen Knoten und damit auf eine Klasse bzw. ein Literal, so werden
alle damit verbundenen Knoten farblich hervorgehoben. Des Weiteren ist dies die einzige
Moglichkeit den Namespace der entsprechenden Klasse bzw. Literal in Erfahrung zu bringen.
SOVA bietet dem Nutzer die Moglichkeit nach dem Namen einer Klasse bzw. eines Literals
zu suchen, die Verwendung von reguldren Ausdriicken ist nicht moglich. Abbildung 3.7 zeigt
sowohl das farbliche Hervorheben durch eine weifSe Farbe, die Suche sowie das Auslesen
des Namespace der angeklickten Klasse. Abbildung 3.7 zeigt allerdings auch einen Fehler
des SOVA Plug-ins. Quelltext 3.2 zeigt die Object Property tag0f. Sie enthdlt sowohl einen
Kommentar als auch ein Label. Beides wird innerhalb des Plug-ins nicht angezeigt. Dies kann
sich irritierend auf Benutzer auswirken, schliefslich erweckt Quelltext 3.2 den Eindruck, dass
die entsprechende Property wirklich keine weiteren Angaben enthalten wiirde.

SOVA verwendet bei der Visualisierung von Kardinalitdten Existenzquantoren. Klassen wer-
den als abgerundetes Quadrat mit der Hintergrundfarbe ,steelblue” dargestellt. Datatype
Properties und RDF-Properties werden ebenfalls als abgerundetes Quadrat abgebildet.

"http://www. pg.gda.pl/en/
8http://hermit-reasoner.com

38

http://www.pg.gda.pl/en/
http://hermit-reasoner.com

3.2. SOVA

Datatype Properties haben eine hellgriine Hintergrundfarbe, wahrend RDF-Properties
,darkmagenta” als Hintergrundfabe besitzen. Datatype Properties werden durch das Plug-
in nicht reprasentiert. Abbildung 3.7 enthilt beispielsweise keine Visualisierung des Datatype
Properties tag label.Datatype Properties sind innerhalb der MUTO-Ontologie gemaf3
Quelltext 3.3 vorhanden.

Ahnlich wie GrWOL visualisiert SOVA dquivalente Klassen mittels Mesomeriepfeilen. Die
disjointWith Eigenschaft wird mittels invertiertem Mesomeriepfeil dargestellt. Dabei wer-
den beide Pfeilspitzen vertikal gespiegelt. SOVA beherrscht ebenfalls das zusammenfassen
von Relationen, beispielsweise muss nicht jedes Individuum einer one0f Relation ein eigenes
Symbol besitzen. Eine Visualisierung dieser one0f Relation gemédfs [PK10] wird in Abbildung
3.8 gezeigt.

Im Gegensatz zu dem in Abschnitt 3.1 vorgestelltem GrOWL ist SOVA in der Lage, die
Eigenschaften inverse0f, TransitiveProperty, SymmetricProperty, FunctionalProperty
und InverseFunctionalProperty gemifl Abbildung 3.9 visuell darzustellen. SOVA stellt
unionOf, intersection0f und complement0f mit denselben Symbolen wie GrOWL aus Ab-
bildung 3.2 dar. SOVA verwendet allerdings andere Pfeilspitzen und die daraus resultierende
Klasse wird fiir die weitere Verwendung ebenfalls grafisch dargestellt. Ein Beispiel fiir union0f
ist in Abbildung 3.10 abgebildet. Kardinalititen werden von SOVA ebenfalls unterstiitzt, diese
sehen fiir unerfahrene Anwender jedoch recht merkwiirdig aus. Eine derartige Angabe ist in
Abbildung 3.11 vorhanden.

Durch die Visualisierung aller Instanzen und durch Repréasentation von OWL-Konstrukten
mittels einer Vielzahl von geometrischen Formen werden grofie Ontologien schnell uniiber-
sichtlich. Abbildung 3.12 stellen eine Visualisierung der WINE-Ontologie dar. SOVA verwen-
det ein kréftebasiertes Layout, durch das die wichtigsten Bestandteile der Ontologie mittig
platziert werden.

Aufgrund der fehlenden Datatype Properties stellt SOVA nur einen Teilaspekt der Ontolo-
gie dar und eignet sich daher nicht fiir die ganzheitliche Visualisierung von Ontologien.

ETI SOVA - Hierarchy Tree Vis

to:/fpurt org/mute)core #tagof 2

Abbildung 3.7.: Das SOVA Plug-in bei geladener MUTO-Ontologie.

39

3. Themenverwandte Arbeiten

Quelltext 3.2 tag0f Property aus der MUTO-Ontologie.

<owl:0ObjectProperty rdf:about="http://purl.org/muto/core#taglf">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
<rdfs:label xml:lang="en">tag of</rdfs:label>
<rdfs:comment xml:lang="en">Every tag is linked to exactly one tagging. This results from
the fact that tags with same labels are NOT merged in the ontology.</rdfs:comment>
<rdfs:domain rdf:resource="http://purl.org/muto/core#Tag"/>
<rdfs:range rdf:resource="http://purl.org/muto/core#Tagging"/>
<owl:inverseOf rdf:resource="http://purl.org/muto/core#hasTag"/>
<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>
</owl:0bjectProperty>

Quelltext 3.3 tagLabel Property aus der MUTO-Ontologie.

<owl:DatatypeProperty rdf:about="http://purl.org/muto/core#taglabel">
rdf :resource="http://www.w3.org/2002/07/ouwl#FunctionalProperty"/>
<rdfs:label xml:lang="en">tag label</rdfs:label>
<rdfs:comment xml:lang="en">Every tag has exactly one label (usually the one given by the
user) - otherwise it is not a tag. Additional labels can be defined in the resource
that is linked via muto:tagMeaning.</rdfs:comment>
<owl:versionInfo>Version 1.0: The subproperty relation to rdfs:label has been removed for
OWL DL conformance (rdfs:label is an annotation property and one cannot define
subproperties for annotation properties in OWL DL).</owl:versionInfo>
<rdfs:domain rdf:resource="http://purl.org/muto/core#Tag"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdfs:isDefinedBy rdf:resource="http://purl.org/muto/core#"/>
</owl:DatatypeProperty>

Individual

Individual

Abbildung 3.8.: Visualisierung der one0f Property in SOVA, entnommen aus [PK10].

functional Property

inverseFunctionalProperty

symmetricProperty

(espropery) (0
(eebroper) o)
(uesbropery) (5
(uespropery) (&)

transitiveProperty

Abbildung 3.9.: Darstellung verschiedener Properties, entnommen aus [PK10].

40

3.2. SOVA

Abbildung 3.10.: Darstellung von union0f, entnommen aus [PK10].

Abbildung 3.11.: Kardinalitdt in SOVA, entnommen aus [PK10].

Peaches

SR 07,, | 70
\ \\ & | mrioe/ o] | S
gawlwmr’fle!ﬁ@! .

TRl | Vo —
17 /> X g
: B | AN

N~ VihasFood) 3
A S 230
\‘ SR
s I\

-
A/
\
P S

S
J N\

\ ﬂ-ﬁu-m’e
‘\\\'A‘-’k*“ |
‘ = : o"’-"““\\‘;\\ A\"\!‘I\‘
: \ e
£ BTy ad \‘\&\

v
Qtran I} B |\

Abbildung 3.12.: Visualisierung der WINE-Ontologie mittels SOVA.

41

3. Themenverwandte Arbeiten

3.3. OWLViz

Bei OWLViz handelt es sich um ein Protégé Plug-in zur Visualisierung von Ontologien und
ist in der Standardinstallation von Protégé enthalten®. Eine Visualisierung des Beispiels
aus Abschnitt 2.1 wurde bereits in Abbildung 2.2 vorgestellt. In Abbildung 3.13 findet sich
eine Darstellung der mittels OWLViz visualisierten MUTO-Ontologie. [LDA11]. OWLViz
verwendet das, in dem spédteren Abschnitt 5.1 ndher beschriebene, Grafikframework Graph-
Viz zur Generierung der Visualisierung. Dies ist eine Ursache fiir die eher statisch gehaltene
Visualisierung von OWLViz. Dies hat zur Folge, dass der Benutzer Knoten des Knoten-Kanten-
Diagramms zwar markieren, jedoch diese nicht mittels drag & drop verschieben kann.

Wie bereits in Abbildung 2.2 gezeigt, visualisiert OWLViz keine Instanzen. Die Visualisierung
der MUTO-Ontologie aus Abbildung 3.13 demonstriert, dass OWLViz auch keine Properties
visuell darstellen kann. Lediglich die SubClass0f Beziehung zwischen Klassen wird darge-
stellt. Somit stellt OWLViz nur einen sehr kleinen Ausschnitt aus OWL grafisch dar und eignet

sich daher nicht die ganzheitliche Visualisierung von Ontologien.
'Automatic Tag'

'Private Tagging'

Abbildung 3.13.: Visualisierung der MUTO-Ontologie mittels OWLViz.

3.4. OntoGraf

Bei OntoGraf handelt es sich, wie bei OWLViz aus Abschnitt 3.3, um ein Protégé Plug-in
zur Visualisierung von Ontologien und ist ebenfalls in der Standardinstallation von Protégé
enthalten!®. Wie Abbildung 3.14 zeigt, stellt OntoGraf nicht nur Klassen visuell dar, sondern
auch Properties und Instanzen. Knoten stehen fiir Klasse und Instanzen, wihrend Kanten
die grafische Reprasentation von Properties darstellen. Die Abbildung von Instanzen wurde
bereits in Abbildung 2.3 vorgestellt.

Innerhalb von OntoGraf kann der Benutzer Knoten markieren und diese verschieben, wih-
rend Kanten nur markiert werden kénnen. Bei beiden Elementen erhilt der Benutzer Tooltips,
was in Abbildung 3.14 fiir Kanten und in Abbildung 3.15 fiir Knoten veranschaulicht wird.
In beiden Féllen werden die, mit dem entsprechenden Element, verbundenen Objekte gra-
fisch hervorgehoben. Zwar sind die Tooltips fiir Knoten umfangreich, die entsprechenden

http: //protegewiki.stanford.edu/wiki/0WLViz
Onhttp://protegewiki.stanford.edu/wiki/0OntoGraf

42

http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/OntoGraf

3.4. OntoGraf

OWL-Eintrage werden allerdings nicht aufbereitet. Stattdessen erhélt der Benutzer eine, durch
Absitze formatierte, Auflistung aller zugehorigen Annotationen. Ein Beispiel fiir einen derar-
tigen Tooltip ist in Abbildung 3.15 abgebildet. Tooltips fiir Kanten verhalten sich analog, ein
Beispiel hierfiir wird in Abbildung 3.14 gegeben.

Innerhalb von OntoGraf kann der Benutzer Knoten markieren und diese verschieben, wih-
rend Kanten nur markiert werden konnen. Bei beiden Elementen erhélt der Benutzer Tooltips,
was in Abbildung 3.14 fiir Kanten und in Abbildung 3.15 fiir Knoten veranschaulicht wird.
In beiden Fallen werden die, mit dem entsprechenden Element, verbundenen Objekte gra-
fisch hervorgehoben. Zwar sind die Tooltips fiir Knoten umfangreich, die entsprechenden
OWL-Eintrage werden allerdings nicht aufbereitet. Stattdessen erhélt der Benutzer eine, durch
Absitze formatierte, Auflistung aller zugehorigen Annotationen. Ein Beispiel fiir einen derar-
tigen Tooltip ist in Abbildung 3.15 abgebildet. Tooltips fiir Kanten verhalten sich analog, ein
Beispiel hierfiir wird in Abbildung 3.14 gegeben.

Die fehlenden Kantenbeschriftungen stellt fiir den Nutzer ein Argernis dar, denn er muss
die Kantenfarbe mit der Property-Ubersicht aus Abbildung 3.16 eigenstindig abgleichen.
Die Kantenfarben werden zuféllig gewihlt, sie stellen keine grafische Darstellung eines be-
stimmten Property-Typs dar. Ein und dieselbe Kante wird in Abbildung 3.14 und Abbildung
3.15 unterschiedlich gefarbt, obwohl alle drei Abbildungen die MUTO-Ontologie visuell
darstellen. Im Gegensatz zur Farbe ist die Form einer Kante relevant. Durchgezogene Linien
stehen fiir Unterklassen-Beziehungen. Automatic Tag ist beispielsweise eine Unterklasse
von Tag. Gestrichelte Linien stehen hingegen fiir Properties, eine Unterscheidung zwischen
DatatypeProperty und Object Property findet jedoch nicht statt. Daher kann zwischen
inverse0f, TransitiveProperty, FunctionalProperty und InverseFunctionalProperty
nicht unterschieden werden. Eine SymmetricProperty kann durch den zuriickgelegten Weg
visuell erkannt werden, dies wird in Abbildung 3.14 demonstriert.

OntoGraf kann, wie in Abbildung 3.16 gezeigt, eine Ubersicht der verwendeten Kantenfarben
und der zugehorigen Properties einblenden. Durch diese Ubersicht erfihrt der Benutzer
lediglich den Namen einer Property, Informationen tiber ihre Funktion bleiben dem Benutzer
damit verborgen. Somit eignet sich OntoGraf nur bedingt fiir unerfahrene Nutzer, die unfor-
matierte Auflistung aller Klassen-Eigenschaften aus Abbildung 3.15 stellt sie moglicherweise
vor Verstandnisprobleme. Die Nutzer werden durch fehlende Kantenbeschriftungen nur
unzureichend beim Erforschen einer Ontologie unterstiitzt. Die Property-Ubersicht aus Ab-
bildung 3.16 erweist sich fiir einen unerfahrenen Nutzer nur als eingeschréanktes Hilfsmittel.
Dieser Nutzergruppe sollten daher eher andere Werkzeuge empfohlen werden.

43

3. Themenverwandte Arbeiten

Abbildung 3.14.: OntoGraf: Tooltip bei Properties. Symmetrische Properties werden kreisfor-
mig dargestellt.

Tag
URI:
Superclasses:
Tag SubClassOf Concept
Annotations:
comment " Tag consisis of an arbitrary lext [abel. Nota that fags with the
same labei ars NOT mergad in the onfology."@en
versionknfo "Varsion 1.0: The owl disjointWith statement was ramoved 1o make e
MUTO conform to OWL Li (the statemant is not assaniial in this case).* ey
isDefinedBy core# .
label "Tag"@en

E Arc Types =

— "automatic tag meaning’ (Domain >Range)

— ‘ceator of (Pomain>Range)

— '

O 'Private
Tagging

— 'has access’ (Domain>Range)

— 'has creator’ (Domain>Range)

"hes tag’ (Pomain>Range)

—— 'meaning of (Domain >Range)

— 'next tag' (Domain >Range)

‘previous tag’ (Domain>Range)

—— 'tag meaning’ (Domain>Range)

—— 'tag of (Domain -Range)

— 'tagged resource’ (Domain>Range)

— 'tagged with' (Domain =Range)

= has individual

B <||||] = has subdlass

Abbildung 3.16.: OntoGraf: Property-Ubersicht.

44

3.5. TGVizTab

3.5. TGVizTab

TGVizTab ist ein Plug-in fiir Protégé 3 zur Generierung visueller Graphen. Es verwendet
dabei TouchGraph, eine Java-Umgebung zur Generierung von visuellen Graphen [Ala03].
TGVizTab verwendet ein Spring-Layout, daher stoflen Knoten sich gegenseitig ab, wahrend
Kanten Anziehungskrifte fiir Knoten modellieren. Daher sind semantisch dhnlichere Knoten
dichter beisammen abgebildet als semantisch verschiedene Knoten. Abbildung 3.17 zeigt
TGVizTab bei der Visualisierung einer Ontologie. TGVizTab verwenden unterschiedliche
Farben zur Darstellung von Klassen und Instanzen. Die Wahl der Farben und ihre Sichtbarkeit
kann vom Benutzer festgelegt werden.

TGVizTab kann Unterklassenbeziehungen grafisch darstellen, auch Vielfachvererbung sind
abbildbar. Die Beziehung zueinander wird jedoch erst visuell dargestellt, wenn der Benut-
zer mit der Maus auf eine Kante zeigt. Properties werden nicht innerhalb des eigentlichen
Graphen, sondern in einem separaten Fenster angezeigt [SA11]. In einer Studie kritisierten
Benutzer die spontanen Bewegungen, die in TGVizTab auftreten konnen. Die Benutzer dieser
Studie bevorzugten den Klassenbrowser von Protégé anstelle von TGVizTab [KTH™06].

id
haae:Reseatch
base:Publication /

—- ._..r'".-.-r

4
base:Person

10
basze: Technology fpy BLE=EE

-
.
Y

base: Group
super

Baset D e
Expand Node

base: Purpose Collapse Node
1

purpose: CourseRequirenent Hide Node

A

purpose:Report

\

Abbildung 3.17.: Visualisierung mittels TGVizTab, Abbildung entnommen aus [Ala03].

45

3. Themenverwandte Arbeiten

3.6. Jambalaya

Jambalaya ist, wie TGVizTab aus Abschnitt 3.5, ein Plug-in fiir Protégé 3 zur Visualisierung
von Ontologien!!. Jambalaya verwendet das Grafikframework Piccolo zur Darstellung der Vi-
sualisierung. Jambalaya unterstiitzt unterschiedliche Ansichten zur Visualisierung, so konnen
Ontologien beispielsweise als Treemap oder in Form einer Baumansicht angezeigt werden.
Die Baumansicht steht sowohl mit als auch ohne Individuen zur Verfiigung. Abbildung 3.18
zeigt die Auswahl der gewiinschten Ansicht in Jambalaya. Die Darstellung einer Treemap
wird in Abbildung 3.19 gezeigt, widhrend Abbildung 3.20 die Baumansicht mit Individuen
und Abbildung 3.21 die Domain & Range Ansicht demonstriert. Wie das bereits in Abschnitt
3.4 vorgestellte OntoGraf stellt Jambalaya samtliche Properties auf dieselbe Weise dar. Je-
des Property wird eine eigene Farbe zugewiesen, eine Unterscheidung in unterschiedliche
Property-Typen findet jedoch nicht statt. Abbildung 3.22 zeigt eine, von Jambalaya zur Ver-
fligung gestellte, Ubersicht aller verwendeten Property-Farben. Auch iiber Tooltips erhalt
der Benutzer keine Information tiber den jeweiligen Property-Typ. Ein Beispiel hierzu wird
in Abbildung 3.21 vorgestellt. In einer Vergleichsstudie schnitt Jambalaya schlechter als der
Klassenbrowser von Protégé ab [KTH™06].

- —
Quick Views - pizza,
4 pi

o

||| [New Quick View || 3 Delete | % Delete All | Defaults | | = Run Quick View | | £x3 Import | i Export |
_ - e AN B Nested View (Default) Details (=)
Name: \Nesten View (Default) | Display? I
E Nested Treemap Layout: ‘Gnd - By Type | - | —
o [27 -
0 Label mode: |Above Node (fixed) [~]
C= Nested Composite View
s
] & Node & Arc Types | - Mesting Hierarcy | <= Composite Arcs ‘
I Class & Individual Tree Select the node types of interest: | checkAl | CheckMone |
‘./\) -‘7. : Defined Class &
. g Enumeration 1
i Individual T
Class Tree |
o B Logical Operation]
R i: Primitive Class =
o’ pomainRange | =
“| Select the arc types of interest: | Check All ” Check None \

- has instance

4 has subclass

hasBase

hasBase (Domain>Range)

hasBase (Necessary and Sufficient)
- hasBase (Necessary)

4 hasCountryOfOrigin

hasCountryOfOrigin (Domain>Range)

hasCountryOfOrigin (Necessary and Sufficient)

hasCountryOfOrigin (Necessary)
hasingredient

haslingredient (Domain=Range)
hasIngredient {(Necessary and Sufficient)
hasIngredient (Necessary)

:B|[¥] hasSpiciness
‘N [¥] hasSpiciness {Domain>Range)

hasSpiciness (Necessary and Sufficient)

4 hasSpiciness (Necessary)

Abbildung 3.18.: Jambalaya bietet verschiedene Ansichten zur Visualisierung.

Hhttp://protegewiki.stanford.edu/wiki/Jambalaya

46

http://protegewiki.stanford.edu/wiki/Jambalaya

3.6. Jambalaya

T | ouid - [FRQ) (<1 65 3] (& @A EREE =
or Project: @ pizza.owl Views = Q

s o B

Class Hierarchy

¢ @ DomainConcept
© Country (5)
® iceCream
o ®riza
o @ PizaBass

vt)

® Domanconcent =

o @ PizaTopping ® v Y =
o @ ValueParttion o

l.lll‘] NN

= TR =
I
I 1]
Castm
owe [:
[n | €@ | = pcassa- | in] [=] Arctabels: &1 mavigatonegny |]

Abbildung 3.19.: Visualisierung mittels TreeMap-Ansicht in Jambalaya.

File Edit Project OWL Reasoning Code Tools Window @ Jambalaya Help

Dlee
[® metadata(pizza.ow) | @ OWLCiasses | M Properties | 4 Indwiduals | = Forms | @ I
EESTIET M| Quick]88 =l ala

For Project: @ pizza.owl

Class Hierarchy [R[ST=Ix]~]
owl.Thing
¢ @ DomainConcept
© Country (5)
® lceCream
o @ Pizma
o @ PiaBase
o @ PizaTapping
o @ valuePartition

<€protégn

e
—"has subclass

®PizzaTopping-
e

INSTANCE BROWSER

For Class: @ http:iiwww.co-ode.orglontologie.

NAME =

Abbildung 3.20.: Visualisierung mittels ClassTree-Ansicht in Jambalaya.

|nlae) (87 [B] [A-[EA0d EFmE =
T [Jeomne] 5 sewren | _acoor

&l

B[]

>

HE

Abbildung 3.21.: Visualisierung mittels Domain- & Range-Ansicht in Jambalaya.

47

3. Themenverwandte Arbeiten

< Arc Filter - pizza.owl =]
<é protégé
I @ Help €]
|| s T e
4ll| ciick on an arc type icon below to change the style.
i Double-cick on a group to turn on high level arcs.
ty be dragged .
on a node type icon below to change the sty... = Class-nstance Hierarchy (2 ypes) @
[¥1© Defined Class [| & nasinstance
e
® primitive Class.
® RDFS Class | ®valusPariiion
.o i closs
| fl
Hide All I
I is: Navigation: | Magnity | v

Abbildung 3.22.: Ubersicht der verwendeten Farben und Symbole.

3.7. Zusammenfassung

In diesem Kapitel wurden themenverwandten Arbeiten vorgestellt und auf ihre Fahigkeiten
zur Visualisierung von Ontologien untersucht. Dabei werden die bestehenden Probleme,
Nachteile aber auch die Vorteile dieser Werkzeuge herausgearbeitet.

In OntoGraf (Protégé 4) und Jambalaya (Protégé 3) findet beispielsweise keine Unterscheidung
verschiedenartiger Properties statt. So werden verschiedene Properties zwar in unterschiedli-
chen Farben dargestellt, eine visuelle Unterscheidung zwischen einer FunctionalProperty
und TransitiveProperty oder zwischen Datatype PropertyundObject Property ist hinge-
gen nicht moglich. In OntoGraf wird nicht einmal der Name einer Property grafisch dargestellt.
TGVizTab fiir Protégé 3 ermoglicht ebenfalls keine visuelle Unterscheidung verschiedener
Property-Typen. OWLViz fiir Protégé 4 stellt nur Klassen- und Unterklassen-Beziehungen dar.
Die Protégé 4 Visualisierungen GrOWL und SOVA haben diesen Mangel nicht. SOVA lei-
det aber unter Mangeln bei der Darstellung von Kommentaren und Labels und sieht kei-
ne Visualisierung fiir Literale vor. GrOWL visualisiert Literale, hat dafiir Mangel bei der
Visualisierung der Property-Typen inverse0f, TransitiveProperty, SymmetricProperty,
FunctionalProperty und InverseFunctionalProperty. GrOWL und SOVA orientieren sich
bei der Darstellung an pradikatenlogische Ausdriicke und eignen sich daher weniger fiir
einen Laien, da nicht anzunehmen ist, dass diesem die Pradikatenlogik bekannt sein diirfte.

48

4. Konzept

In der Wissensreprasentation werden oft Ontologien verwendet, um Daten zu strukturieren
und diese semantisch anzureichern. Zur Visualisierung dieser Ontologien wird ein Konzept
benotigt, das sich nicht auf Teilaspekte einer Ontologie beschrankt, sondern Ontologien kom-
pakt und ganzheitlich darstellen kann. Mit VOWL (Abschnitt 4.1) existiert bereits ein solches
Konzept. Die derzeit im Entstehen befindliche Version 2.0 von VOWL (Abschnitt 4.2) wird im
Rahmen dieser Arbeit als geeignetes Konzept fiir die kompakte und ganzheitliche Visualisie-
rung von Ontologien angesehen. Sie dient daher als Konzept fiir die prototypische Umsetzung.
Im Gegensatz zu den verwandten Arbeiten aus Abschnitt 3 stellt das hier vorgestellte VOWL
Ontologie-Elemente in einer kompakteren Form dar. Zur Darstellung der Elemente werden
wenige visuelle Elemente benétigt. Die verwendeten Elemente unterscheiden sich hinsichtlich
Form und Farbgebung deutlich voneinander. Dadurch kénnen diese durch den Benutzer
leichter unterschieden und gleiche Elemente gruppiert werden. Dies soll das Lesen einer
Ontologie erleichtern.

In den folgenden Abschnitten wird VOWL in Version 1.0 und 2.0 vorgestellt 2.0, sowie eine
Optimierung von VOWL 1.0 vorgestellt, die im Rahmen dieser Arbeit entwickelt wurde.

4.1. VOWL 1.0

Die Visual Notation for OWL Ontologies (VOWL) ist eine Spezifikation zur Visualisierung
von OWL Ontologien. Am 28. Januar 2013 wurde Version 1.0 veroffentlicht, an Version 2.0
wird derzeit gearbeitet.

VOWL 1.0 bietet ein Visualisierungskonzept, das in drei Ansichten strukturiert ist, die im
Folgenden ndher vorgestellt werden:

konzeptuellen Sicht: enthilt Klassen, Eigenschaften und stellt die Beziehungen untereinan-
der dar.

Instanzansicht: stellt Instanzen und ihre Beziehungen untereinander dar.

integrierte Ansicht: kombiniert beide Sichten und stellt sowohl die Klassen als auch ihre
Instanzen samt Eigenschaften und deren Beziehungen untereinander dar.

Ein Beispiel der konzeptuellen Sicht ist in Abbildung 4.3 und ein Muster der integrierten Sicht
in Abbildung 4.4 vorhanden.

In VOWL werden alle Elemente einer Ontologie grafisch reprasentiert. VOWL verwendet
hierfiir Knoten und Kanten. Knoten gibt es in runden und quadratischen Ausfithrungen.
Runde Knoten stellen Klassen dar, wahrend quadratische Knoten Literale darstellen und

49

4. Konzept

Kanten Properties verkdrpern. Meistens verbindet eine Kante zwei verschiedene Knoten
und stellt damit eine Property der Ontologie dar. Abbildung 4.1 visualisiert die Darstellung
von Klassen, Literale und Poperies in VOWL. Eine Kante kann im Falle einer Subproperty
auch auf eine andere Kante zeigen. Falls Klassen Instanzen enthalten, so werden diese in der
Instanzansicht und in der integrierten Ansicht durch Kreisausschnitte visuell reprasentiert,
die Lange des Kreisbogens der jeweiligen Instanz richtet sich nach der Gesamtanzahl an
Instanzen einer Klasse. Die einzelnen Instanzen stellen dabei einen Kreissektor dar. In allen
Sichten wachst der Radius und damit die visuelle Grofle einer Klasse falls diese Instanzen
enthilt. Dieses Verhalten wird in Abbildung 4.2 dargestellt.

Die visuelle Darstellung samtlicher Elemente ist in der VOWL 1.0 Spezifikation enthalten
[NL13]. VOWL nutzt das kréftebasierte Layout. Dadurch werden jene Bestandteile einer On-
tologie, die wenig Verbindungen mit anderen Bestandteilen haben, am Rande der Darstellung
platziert, wiahrend jene mit vielen Verbindungen im Zentrum dargestellt werden. Diese Form
der Darstellung unterstiitzt den Benutzer im Verstehen einer Ontologie, da die wichtigsten
Bestandteile einer Ontologie im Zentrum der Ansicht dargestellt werden.

VOWL 1.0 bietet eine integrierte Darstellung sowohl der Instanzen als auch des Konzepts ei-
ner Ontologie und bietet dem Benutzer so einen Uberblick der Ontologie. Object Properties
und Datatype Properties konnenin VOWL klar unterschieden werden. Die konzeptionellen
Strukturen einer Ontologie sollen mit diesem Visualisierungskonzept klar ersichtlich werden

[NL13].
Object Property
D Range
@ Datatype Property
D Range

Abbildung 4.1.: Darstellung von Eigenschaften in VOWL 1.0 [NL13].

3 instances
Class Label ;;st:iif: ¢
Class Label

Abbildung 4.2.: Darstellung von Klassen (links) und Instanzen (rechts) in VOWL 1.0 [NL13].

50

41. VOWL1.0

oo inif
theme

£ ——
DNA chacksum

Given Name.

title

Title: Friend of a Friend (FOAF) vocabulary
About: httpy/xmins.com/foaf/0.1/
Description: The Friend of a Friend (FOAF) RDF

wocabulary, described using W3C RDF Schema and
the WebOntology Language.

5 instances

Abbildung 4.4.: Darstellung der integrierten Sicht aus VOWL 1.0 [NL13].

51

4. Konzept

4.2. VOWL 2.0

VOWL 2.0 stellt eine Weiterentwicklung von VOWL 1.0 dar und enthélt hauptsachlich eine
vereinfachte und verstdndlichere Darstellung, auf die im Folgenden néher eingegangen wird.
Nach derzeitigem Stand beinhaltet 2.0 beispielsweise keine integrierte Ansicht mehr. Enthalt
eine Klasse Instanzen, so werden diese nicht mehr als Kreissegment der Klasse dargestellt,
stattdessen wird nur die Anzahl der Instanzen iiber die dargestellte Grofse der Klasse visuali-
siert. Instanzen und ihre Instanzdaten werden erst nach Aufforderung des Nutzers dargestellt,
dies kann beispielsweise iiber das Auswaihlen einer spezifischen Klasse geschehen. Allerdings
wird dartiiber nachgedacht, die Darstellung der Instanzen als Kreissegmente optional weiter-
hin anzubieten.

Daneben vereinfacht VOWL 2.0 die visuelle Darstellung der grafischen Notation. So enthal-
ten Klassen keinen inneren Ring mehr, sondern sind komplett gefiillt. Einen Ausschnitt der
vereinfachten Darstellung wird in Abbildung 4.5 dargestellt. VOWL 2.0 befindet sich zurzeit
noch in Entwicklung.

Property ObjectProperty
Range Domain Range
SubClass DatatypeProperty
--------------- > - e

Abbildung 4.5.: Properties in VOWL 2.0.

4.3. Konzeptoptimierungen

In diesem Abschnitt wird das im Rahmen dieser Arbeit entwickelte Optimierungskonzept
von VOWL vorgestellt und erldutert. Die Optimierungsvorschldge sind ebenfalls in die Weiter-
entwicklung von VOWL 1.0 eingeflossen und bilden eine von vielen Grundlagen fiir VOWL
2.0.

In der linken Grafik von Abbildung 4.6 wird die subClass0f Property von VOWL 1.0 gezeigt,
wihrend mittig die Optimierung abgebildet ist. Die rechte Darstellung aus Abbildung 4.6
zeigt die vorerst letzte Fassung dieser Property aus VOWL 2.0. Von Probanden der VOWL 1.0
Evaluation wurde ebenfalls vorgeschlagen, subClass0f Properties zusdtzlich zu beschriften,
da ihnen sonst die Bedeutung dieser Property unklar sei [NL13].

VOWL 1.0 regelt die Darstellung verschiedener symmetrischer Properties mit identischer
Domain & Range nicht explizit. Die Konzeptoptimierung sieht die Darstellung dieser symme-
trischen Properties verteilt um die Domain und Range Knoten vor. Alternativ hitten diese

52

4.3. Konzeptoptimierungen

auch, wie in Abbildung 4.7 symbolisiert, mit unterschiedlichem Abstand zum Knoten dar-
gestellt werden konnen. Die Optimierung aus Abbildung 4.8 hat den Vorteil der leichteren
Zuordnung der Kantenbeschriftung mit der Kante.

Weitere Anpassungen sehen den Austausch der Symbole fiir owl:disjointWith, owl:union0f,
owl:intersection0f und owl:complementOf Properties vor. Anstelle jener Darstellung
aus Abbildung 4.9 sieht die Optimierung die, der Mengenlehre entnommenen, Symbole
aus Abbildung 4.10 vor. In Abbildung 4.9 ist links oben owl:disjointWith, links unten
owl:unionOf, rechts oben owl:intersection0f und rechts unten owl:complementOf dar-
gestellt. In Abbildung 4.9 ist links oben owl:union0f, links unten owl:intersection0Of,
rechts oben owl:disjointWith und rechts unten owl:complementOf dargestellt. Mit Aus-
nahme von owl:complement0f sind alle Symbole der Mengenlehre entnommen wéhrend
owl:complementOf durch invertierte Symbole und Farben eine Invertierung und damit ein
Komplement verkorpern soll.

Des Weiteren sieht ein Entwurf die Darstellung verschiedener Properties mit denselben
Domain- und Range-Angaben gemafl Abbildung 4.11 vor. Im Gegensatz zu den Darstellun-
gen dieser Properties aus Abbildung 4.2 und Abbildung 4.3 sollen diese als Biindel visualisiert
werden.

Die Grofie einer Klasse spiegelt die Anzahl der darin enthaltenen Instanzen wieder. Zur Dar-
stellung der eigentlichen Instanzdaten wird die Verwendung eines seitlichen angebrachten
Informationsfensters vorgesehen. Der Benutzer soll auf diese Weise einen ganzheitlichen
Uberblick der Ontologie erhalten, samt Ubersicht tiber die Anzahl der Instanzen. Die Details
der eigentlichen Instanzen konnen explorativ erforscht werden, sie sollen den Benutzer nicht
durch eine mogliche Informationstiberflutung am Verstehen des Konzeptes der Ontologie
hindern. Dieser Aufbau wird in Abbildung 4.12 skizziert.

Property [Subproperty]

Abbildung 4.6.: Unterschiedliche Versionen fiir subProperty0f.

53

4. Konzept

Abbildung 4.7.: Alternative Darstellung mehrfacher symmetrischer Properties.

8-

Abbildung 4.8.: Darstellung mehrfacher symmetrischer Properties.

(Disjoint)

_“__

@.

QO
> @@ -5

Abbildung 4.9.: Darstellung von owl:disjointWith (links oben), owl:union0f (links unten),
owl:intersectionOf (rechts oben) und owl:complementQf (rechts unten) in
OWL 1.0.

54

4.3. Konzeptoptimierungen

//\\
\K//

/h\/h\
NN
N ,,/

Abbildung 4.10.: Darstellung von owl:union0Of (links oben), owl:intersection0f (links
unten), owl:disjointWith (rechts oben), und owl:complement0f (rechts
unten) nach Optimierung des Visualisierungskonzeptes.

i\ o N
Class1 Class2

@ <«

Abbildung 4.11.: Darstellung mehrfacher Properties geméafs Konzeptoptimierung.

Name: Class 1
Type: Class
Instances: 2

Instance 1:
Name: Hans
Age: 16

Instance 2:
Name: Peter
Age: 50

Graph Details

Abbildung 4.12.: Skizze der explorierbaren Detailansicht.

55

5. Frameworks flur Graphen

Im Rahmen dieser Arbeit miissen Ontologien visualisiert werden. Die Visualisierung soll
durch die Verwendung von Grafikframeworks erleichtert werden, schliefilich miissen Grun-
doperationen nicht selbst implementiert werden. Grafikframeworks bieten unter anderem
Funktionen, um eine Kante zwischen zwei Knoten zeichnen zu lassen. Falls man eine derartige
Funktion selbst implementieren mochte, so wird beispielsweise die Kenntnis der genauen Po-
sition des Knoten notwendig. Daneben implementieren Grafikframeworks unzihlige weitere
Funktionen, welche die Entwicklung einer Ontologievisualisierung unterstiitzen kénnen.
Aus diesem Anlass werden verschiedene Frameworks auf ihre Eignung, die Implementierung
dieser Visualisierung zu unterstiitzen, untersucht. Hinsichtlich der Bewertung der Frame-
works werden folgende Kriterien aufgestellt:

Einarbeitungszeit: Die Einarbeitung in die Grundlagen des entsprechenden Frameworks
sollte aufgrund des zeitlich beschrankten Rahmens dieser Arbeit moglichst wenig
Zeit beanspruchen. Mit dem jeweiligen Grafikframework sollte innerhalb von drei
Stunden ein Prototyp zur Visualisierung eines einfachen Graphen realisiert werden.
Die Verwendung des Frameworks sollte in einer positiven Kosten/Nutzen Rechnung
resultieren, d.h.: die Verwendung des Frameworks sollte zeitsparender als die direkte
Verwendung von Java2D samt Implementierung aller benétigten Features sein.

Dokumentation: Das Framework sollte tiber eine umfangreiche Dokumentation verfiigen.
Hierbei wird nicht nur die Dokumentation des Frameworkquellcodes gewertet, sondern
auch alle Dokumente tiber dessen Verwendung, seien es Beispiele, Grundlagen oder
theoretische Modelle. Der Ursprung der Dokumentation, ob vom Hersteller oder von
Dritten, spielt dabei keine Rolle.

Editierbarkeit (Graph): Das Framework sollte ausreichend viele Moglichkeiten bieten, die
Visualisierung des Graphen zu beeinflussen. Beispielsweise sollte das Framework ver-
schiedene Parameter fiir die Schriftfarbe, Schriftgrofse oder Liniendicke akzeptieren.
Wie die Beeinflussung der zu erstellenden Visualisierung im Detail erfolgt, ist irrelevant.

Editierbarkeit (Code): Wenn eine erwiinschte Modifikation der Visualisierung nicht tiber
das Framework selbst realisiert werden kann, so wird eine Ergdnzung des Codes des
Frameworks notwendig. Diese Verdnderungen sollten ohne groflere Schwierigkeiten
moglich sein. Neben der Erreichbarkeit des Quellcodes zahlt zu diesem Kriterium auch,
wie umfangreich die Einarbeitung in das Framework ist. Frameworks, deren Module
gut gekapselt und deren Funktionalitdt klar erkennbar sind, sind in der Regel leichter
zu verstehen und damit zu verdndern als Module, deren Zweck vollig unklar sind.

57

5. Frameworks fir Graphen

Performance: Die Erstellung des Graphen durch das Framework sollte so flott geschehen,
dass der Nutzer von der Generierung des Graphen nichts mitbekommt. Handelt es sich
bei dem Framework um ein interaktives Framework, so sollte die Interaktion mit dem
Graphen zu keiner, vom Benutzer zu bemerkenden, Verzogerung fiihren.

Interaktivitat: Der Nutzer sollte in der Lage sein mit dem Graphen zu interagieren. Die
Interaktion sollte den Nutzer bei der Exploration der Ontologie unterstiitzen. Das
Framework muss dem Benutzer beispielsweise die Moglichkeit bieten, Bestandteile des
Graphen visuell zu verschieben. Die Interaktivitat ist auf das Explorieren beschréankt.
Eine tiefer gehende Modifikation des Graphen ist nicht vorgesehen, der Nutzer muss
keine Elemente aus dem Graphen 16schen oder hinzufiigen kénnen.

Integrierbarkeit: Das Framework zur Generierung des Graphen sollte in die eigene Anwen-
dung integrierbar sein.

Innerhalb dieses Kapitels werden Frameworks hinsichtlich der hier aufgestellten Kriterien be-
wertet. Im Anschluss an die Vorstellung und Bewertung der einzelnen Frameworks folgt eine
Zusammenfassung der untersuchten Frameworks, beziiglich ihrer Eignung die Visualisierung
von Ontologien im Rahmen dieser Arbeit sinnvoll zu unterstiitzen.

5.1. GraphViz

GraphViz ist eine Sammlung von Programmen zur Visualisierung von Graphen. Ihre Entwick-
lung begann 1988 bei AT&T und den Bell-Labs. Lizenziert wird GraphViz unter der Eclipse
Public License!. Die Programmsammlung enthélt verschiedene Teilprogramme, die jeweils
eine andere Art von Graphen generieren [Gral3a]. Im Folgenden werden die verschiedenen
Programmsammlungen und die Graphen, die sie erzeugen konnen, vorgestellt:

dot: erstellt hierarchische Strukturen. Dot versucht bei der Graphengenerierung einen Gra-
phen zu erstellen, dessen Kanten moglichst kurz sind, sich nicht gegenseitig schneiden
und in dieselbe Richtung zeigen - von oben nach unten oder von links nach rechts.

neato: generiert kréftebasierte Layouts. Neato sollte nach [Gral3a] nicht fiir Graphen mit
mehr als 100 Knoten verwendet werden. Bei der Graphengenerierung wird eine mul-
tidimensionale Skalierung eingesetzt. Dabei werden dhnliche Objekte raumlich néher,
undhnliche eher entfernt voneinander platziert. Nach diesem Ansatz werden verbunde-
ne Knoten innerhalb eines Graphen raumlich ndher und unverbundene Knoten raumlich
eher getrennt voneinander angeordnet.

fdp: erstellt hierarchische Strukturen. Im Gegensatz zu neato implementiert fdp eine
Fruchterman-Reingold Heuristik und ist damit auch fiir grofsere Graphen geeignet.
Bei diesem Ansatz werden Anziehungskrifte und AbstofSlungskrifte zwischen Knoten
eines Graphen berechnet und visualisert.

Ihttp://www.graphviz.org/Download.php

58

http://www.graphviz.org/Download.php

5.1. GraphViz

twopi: erstellt einen Graphen mit einem radialen Layout.
circo: erstellt einen Graphen mit einem circuldren Layout.

Jedes Teilprogramm der GraphViz-Programmsammlung generiert einen Graphen aus einer
textuellen Beschreibung [Nor04]. Diese Beschreibung erfolgt in der Auszeichnungssprache
DOT. Nach erfolgreicher Generierung wird das Ergebnis als Datei exportiert [KN91]. Bei-
spielsweise enthélt Quelltext 5.1 einen in der Auszeichnungssprache DOT beschriebenen
Graph. DOT generiert daraus einen Graph, aus dem ein visueller Graph, wie in Abbildung
5.1 dargestellt, erstellt wird.

Quelltext 5.1 Ein Beispiel eines in DOT beschriebenen Graphen, enthnommen aus [KN191].

digraph G {

main -> parse -> execute;
main -> init;

main -> cleanup;

execute -> make_string;
execute -> printf;

init -> make_string;
main -> printf;

execute -> compare;

:)

compare

Abbildung 5.1.: Der in Quelltext 5.1 beschriebene Graph nach der Generierung durch dot,
Abbildung entnommen aus [KN191].

make_string

GraphViz wird stetig weiter entwickelt, so erschien am 1. August 2013 GraphViz in Version
2.32 [Gral3a]. GraphViz dient bereits einigen Protégé Plug-ins als Framework zur Visuali-
sierung von Graphen. Beispielsweise benotigt das schon in Abbildung 2.2 aus Abschnitt 2.1
erwdhnte Plug-in OWLViz GraphViz [Hor10].

Die Dokumentation zu GraphViz ist ausfiihrlich und umfangreich. Die Webseite enthalt
nicht nur eine umfangreiche Galerie bereits generierter Graphen, sondern auch detaillierte
Handbiicher zu den unterschiedlichen Bestandteilen von GraphViz und eine detaillierte
Beschreibung der verschiedenen Parameter. Die einfache und beschreibende Struktur der

59

5. Frameworks fir Graphen

Beschreibungssprache DOT, sowie die detaillierte Dokumentation von GraphViz ermogli-
chen einen einfachen Einstieg in die Erstellung unterschiedlicher, nach eigenen Wiinschen
angepasster, Graphen. [Gral3b] enthélt beispielsweise eine umfangreiche Liste verschiedener
Formen von Knoten und Kanten, die mit GraphViz visualisiert werden konnen. Als Open-
Source-Anwendung liegt GraphViz zwar im Quellcode vor?, jedoch sind Anderungen am
Code mit einer erneuten Kompilierung verbunden, wofiir wiederum zahlreiche Pakete und
Werkzeuge benétigt werden. Des Weiteren werden Kenntnisse in der Programmiersprache C
vorausgesetzt [Gan13]. Die Performance von GraphViz ist mehr als ausreichend, beispiels-
weise wurde der Graph in Abbildung 5.2 durch neato innerhalb von 0.41 Sekunden generiert
[Nor04]. Da GraphViz als eine in C implementierte Anwendung vorliegt, ist sowohl die Inter-
aktivitdt als auch die Integrierbarkeit zwischen der C-Anwendung und der Java-Anwendung
eingeschrankt.

Abbildung 5.2.: Ein innerhalb 0,41 Sekunden generierter Graph, Abbildung entnommen aus
[Nor04].

Fiir GraphViz wurden einige Java-Interfaces entwickelt, mit deren Hilfe die GraphViz-
Programmsammlung direkt in Java verwendet werden kann. Beispiele fiir derartige Interfaces
sind:

Grappa: GRAPh PAckage in Java [BML97]
JPGD: Java-basierter Parser fiir GraphViz Dokumente?

GraphViz Java-Implementierung*

Zhttp://www. graphviz.org/Download_source.php
Shttp://www.alexander-merz.com/graphviz

60

http://www.graphviz.org/Download_source.php
http://www.alexander-merz.com/graphviz

5.2. Grappa

Die Dokumentationen zu diesen Interfaces sind diirftig. Fiir Gappa konnte beispielsweise
neben dem Quellcode nur ein einziges Paper gefunden werden. Es gibt nahezu keine Infor-
mationen iiber den Umfang mit dem JPGD bzw. die GraphViz Java-Implementierung die
Auszeichnungssprache DOT verarbeiten kann.

5.2. Grappa

Grappa ist ein Java-Package mit den Graphen, die in der Auszeichnungssprache DOT beschrie-
ben wurden, visualisiert werden konnen. Ebenso wie GraphViz wurde Grappa von AT&T
entwickelt. Die Webseite enthilt neben dem Quellcode auch eine Online-Demonstration, mit
der Grappa getestet werden kann.

Laut Webseite existiert zu Grappa neben dem Paper [BML97] und JavaDocs® keine weitere Do-
kumentation. Die Webseite weist ebenfalls darauf hin, dass Grappa kein Layout beherrscht®.
Abbildung 5.3 zeigt den Aufbau, wihrend Abbildung 5.4 die Klassenhierarchie von Grappa
beschreibt. Grappa wird von dem Protégé-Visualisierungsplugin OntoViz verwendet.

Die letzte Aktualisierung von Grappa fand am 22. September 2010 statt, 2008 gab es kleinere
Verbesserungen, die aktive Entwicklung schien zwischen 2001 und 2006 stattgefunden zu
haben.

Innerhalb der gesetzten Frist fiir die Einarbeitungszeit konnte kein Graph generiert werden.
Die Einarbeitung scheiterte unter anderem an fehlenden Paketen, die zusammengesucht wer-
den mussten. Beispielsweise benétigt Grappa das Paket java_cup.runtime, welches ebenfalls
von AT&T entwickelt wurde”. Innerhalb der gesetzten Frist konnten nicht alle benétigten
Pakete gefunden werden.

Aufgrund der Verwendung der Auszeichnungssprache DOT ist davon auszugehen, dass die
mit Grappa zu visualisierende Graphen hinreichend an eigene Wiinsche angepasst werden
konnen. Aufgrund der teils widerspriichlichen Dokumentation fehlen jedoch klare Aussagen,
ob alle Deklarationen aus DOT unterstiitzt werden. Die Webseite deutet beispielsweise an,
dass eine grofie Menge unterschiedlicher Knotenformen unterstiitzt werden. Soll diese In-
formation den Leser dariiber informieren, dass Grappa verglichen mit anderen Frameworks
viele Formen unterstiitzt, oder soll die Information darauf hinweisen, dass eben nicht alle
Formen verwendet werden kénnen?

Aufgrund der, in Abbildung 5.3 erwdhnten Client-Server Trennung erschien eine eventu-
ell benotigte Modifikation des Codes als zu zeitaufwendig und hitte moglicherweise den
zeitlichen Rahmen dieser Arbeit gesprengt. Aufgrund der Verwendung von Grappa in On-
toGraf kann die Performance von Grappa allerdings als ausreichend bewertet werden. Die
Onlinedemonstration beweist die Existenz von Tooltips, allerdings scheint der Benutzer kei-
ne Knoten verschieben zu konnen. Die Online-Demonstration erscheint recht rudimentir,
das Kompilieren des Graphen aus Quelltext 5.1 ist nicht moglich, obwohl dieser Graph der
GraphViz-Dokumentation entnommen wurde [KN"91]. Nicht abschlieBend geklart werden

Shttp://wuw2.research.att.com/~ john/Grappa/docs/att/grappa/package- summary.html
bhttp://www2.research.att.com/~j ohn/Grappa/grappa_faq.html#Usage_Q1
"http://wuw2.research.att.com/~ john/Grappa/docs/java_cup/runtime/package- summary.html

61

http://www2.research.att.com/~john/Grappa/docs/att/grappa/package-summary.html
http://www2.research.att.com/~john/Grappa/grappa_faq.html#Usage_Q1
http://www2.research.att.com/~john/Grappa/docs/java_cup/runtime/package-summary.html

5. Frameworks fir Graphen

konnte, ob dieser Fehler auf eine nicht ausreichende Unterstiirzung der Auszeichnungsspra-
che DOT hindeutet oder ob ein Fehler innerhalb der Online-Demonstration vorliegt.

Grpahical User Interface

Draw Graph Parse Graph
Client
Graph Graph
drawing spec.,
Graph
drawing
Server { dot
Graph

spec.

Abbildung 5.3.: Aufbau von Grappa, entnommen aus [BML97].

DotE]emcnt : AppObject D| awObject (rraphlcC‘ ontcxt
Dnt]:dge % Drawl:dge DrdwNade Drav. Sub graph
4 Box InvertedHouse Pentagon
Circle InvertedTrapezium PlainText
Diamond InvertedTriangle | RoundedBox
DoubleCircle MCircle Square
@ DoubleOctagon MDiamond Table
Egg MSquare Trapezium
Ellipse MTable Triangle
Hexagon Octagon TripleOctagon
___ House Parallelogram Wedge /

Abbildung 5.4.: Klassenhierachie in Grappe, entnommen aus [BML97].

62

5.3. Eclipse Zest

5.3. Eclipse Zest

Bei Zest, dem Eclipse Visualization Toolkit [Ste13], handelt es sich um eine Sammlung von
Visualisierungskomponenten fiir Eclipse. Wie Quelltext 5.2 zeigt, unterstiitzt Zest Graphen,
die in der Auszeichnungssprache DOT beschrieben werden kénnen. Eine objektorientierte
Erstellung der Komponenten ist, wie in Quelltext 5.3 gezeigt, ebenfalls moglich.

Quelltext 5.2 Ein Beispiel fiir die Verwendung von DOT in Zest, Beispiel [Stel3] entnommen.

Shell shell = new Shell();

DotGraph graph = new DotGraph("digraph{ 1->2 }", shell, SWT.NONE);
graph.add("2->3").add("2->4");

graph.add("node[label=zested]; edge[style=dashed]l; 3->5; 4->6");
open(shell) ;

Quelltext 5.3 Objektorientierte Weise einen Graphen zu Erstellen, Beispiel [Vog11] entnom-

men.
graph = new Graph(parent, SWT.NONE);
GraphNode nodel = new GraphNode (graph, SWT.NONE, "A");
GraphNode node2 = new GraphNode(graph, SWT.NONE, "B");
GraphNode node3 = new GraphNode(graph, SWT.NONE, "C");
new GraphConnection(graph, ZestStyles.CONNECTIONS_DIRECTED, nodel, node2);
new GraphConnection(graph, SWT.NONE, node3, nodel);

Eill

Jim

Toe Jack.

Abbildung 5.5.: Zest visualisiert einen Graphen [Vog11].

Die verfiigbaren Informationen zu Zest sind deutlich geringer als jene zu GraphViz. Die
verfiigbaren Dokumente zu Zest sind grofitenteils Anleitungen, beschreiben, jedoch nicht
ins Detail gehen. Einige der auf der Zest-Webseite verlinkten Dokumente sind nicht mehr
verfiigbar. Innerhalb der Zeitvorgabe konnte kein Graph mittels Zest generiert werden, sodass
die Einarbeitungszeit als negativ bewertet werden muss. Graphen lassen sich in Zest nur
eingeschrankt editieren. Zest unterstiitzt die Auszeichnungssprache DOT, allerdings gibt
es keine Informationen, ob alle Bestandteile von DOT unterstiitzt werden oder nur eine
Teilmenge. Informationen iiber die objektorientierte Graphenerstellung sind ebenfalls nicht
verfiigbar.

63

5. Frameworks fir Graphen

5.4. JGraph

JGraph ist ein auf Java basiertes Grafikframework zur Visualisierung von Graphen, zu dem
verschiedenen Versionen existieren. 2002 erschien die erste Version von JGraph. Ab Version
5 wird die Entwicklung unter dem Namen mxGraph kommerziell fortgesetzt, wahrend die
Open-Source-Variante ab Version 6 den Namen JGraphX tragt. Innerhalb dieser Ausarbeitung
werden alle Versionen unter dem Namen JGraph gefiihrt, da eine detaillierte Unterscheidung
der einzelnen Varianten fiir die weitere Vorstellung und Analyse im Rahmen dieser Arbeit
nicht relevant ist.

Quelltext 5.4 zeigt den Code eines, in der Einarbeitungszeit erstellten rudimentdren Graphen
dessen Visualisierung in Abbildung 5.6 vorgestellt wird. Die Dokumentation zu JGraph ist
umfangreich, [Ald03] erklart beispielsweise, wie man in JGraph einen Graphen erstellt, wie
dieser an die eigenen Wiinsche angepasst werden kann und wie JGraph auf Eingaben des Be-
nutzers reagieren soll. [Ald02] beschreibt den Aufbau von JGraph ndher. Weitere Dokumente
sind im World Wide Web verfiigbar. JGraph ist gut in die eigene Anwendung integrierbar,
es werden nur wenige Pakete vorausgesetzt. Die Interaktivitdt von JGraph ist schwierig zu
bewerten. Wie in Abbildung 5.7 gezeigt, kann der Benutzer die Grofse von einzelnen Knoten
verdandern, das Verschieben der Knoten ist allerdings nicht moglich. In den Standardeinstellun-
gen kann der Benutzer, wie in Abbildung 5.8 gezeigt, weitere Kanten hinzufiigen, die beliebig
im Raum verteilt werden konnen. Der Namen eines Knoten kann ebenfalls vom Nutzer ver-
andert werden. Dieses Verhalten von JGraph ist aber abschaltbar. Letztendlich tiberwiegt der
Eindruck, dass vieles in JGraph moglich ist, deren Implementierung jedoch recht umstandlich
ist, beispielsweise sind Tooltips, verglichen mit anderen Frameworks eher umstandlich zu
realisieren [Ald03, S. 10]. Die Performance von JGraph ist mehr als ausreichend.

Quelltext 5.4 Erstellung eines Demonstrationsgraphen mittels JGraph.

mxGraph graph = new mxGraph() ;

Object parent = graph.getDefaultParent();

graph.getModel () .beginUpdate() ;

try {
// graph.insertEdge(parent, id, value, source, target)
Object vl = graph.insertVertex(parent, null, "Nodel", 20, 20, 80, 30);
Object v2 = graph.insertVertex(parent, null, "Node2", 240, 150, 80, 30);
Object v3 graph.insertVertex(parent, null, "Node3", 170, 100, 80, 30);
graph.insertEdge (parent, null, "Vi2", vi, v2);
graph.insertEdge (parent, null, "V13", vi, v3);

} finally {
graph.getModel () .endUpdate() ;

}
mxGraphComponent graphComponent = new mxGraphComponent (graph) ;
JGraphX frame = new JGraphX();

frame.add(graphComponent) ;

frame.pack() ;

frame.setVisible (true);

64

5.4. JGraph

Maode

S Mode3

Mode2

Abbildung 5.6.: Visualisierung des Codes aus Quelltext 5.4 mittels JGraph.

odled

ocled

H'\-\.‘

Mode2

Abbildung 5.7.: Visualisierung des Codes aus Quelltext 5.4 nach Verdnderung der Grofle des

dritten Knoten.
AT
Mode1 ’,f’
T -'"'#-'
I"'.::I E‘"'\-\.._h H__/l
Wi 3 g
\ . 12&-%%

Abbildung 5.8.: Freie Kanten im Raum und Namensdnderung.

65

5. Frameworks fir Graphen

5.5. JUNG

Java Universal Network/Graph Framework (JUNG) ist ein auf Java basiertes Framework zur
Visualisierung von Graphen und Netzwerken. JUNG findet beispielsweise Anwendung in der
Analyse von Netzwerkdaten [Jun]. Innerhalb der Einarbeitungszeit konnte mittels JUNG der
Graph aus Abbildung 5.9 auf Basis des Codes aus Quelltext 5.5 generiert werden. Komplexere
Graphen lassen sich ebenfalls mit JUNG visualisieren. Abbildung 5.10 veranschaulicht hierzu
ein Beispiel eines komplexeren Graphen, der mittels JUNG visualisiert wurde.

Die JUNG-Dokumentation erscheint fiir das Framework angemessen umfangreich, ist jedoch
deutlich geringer als die der beiden bereits vorgestellten Frameworks GraphViz und JGraph.
Die JUNG-Webseite [JUN10b] hilt einige Anleitungen parat. JUNG ist das einzige untersuchte
Framework, dessen Anleitung von einem Entwickler des Frameworks geschrieben wurde
[Ber10]. Das JUNG-Framework verfiigt iiber eine aktivere Community. Bei Stackoverflow®
wurden beispielsweise 260 Fragen mit dem Tag ,JUNG” versehen. Im Vergleich hierzu
verfiigt GraphViz mit mehr als 803 Tags tiber deutlich mehr Fragen auf Stackoverflow. Die
Frameworks JGraph, Prefuse und Zest bilden mit 30, 61 und 41 Tags auf Stackoverflow
deutlich das Schlusslicht. Auf Basis der auf Stackoverflow gestellten Fragen und Antworten
lasst sich auf die Grofle und Aktivitdt der Community der entsprechende Riickschluss ziehen,
dass JUNG von den hier vorgestellten Frameworks die aktivste Community besitzt. JUNG
dient nicht nur einer Vielzahl von Anwendungen als Grafikframework, sondern ist auch
Bestandteil zahlreicher wissenschaftlicher Abhandlungen [Jun10a].

Der Graph scheint durch zahlreiche Parameter gut konfigurierbar zu sein. Dasselbe trifft
auch auf die Editierbarkeit des Codes zu. Beispiele zu beiden Féllen konnen in [Ber10]
gefunden werden. Die Performance von JUNG kann als ausreichend bewertet werden. Die
Integrierbarkeit in die eigene Anwendung stellt kein Problem dar, auch wenn hierzu 17 JAR-
Pakete importiert werden miissen. Die Pakete sind leicht aufzufinden und miissen nicht extra
identifiziert und gesucht werden. JUNG verfiigt ebenfalls tiber umfangreiche Moglichkeiten
fir Nutzer zur Interaktion mit dem visualisierten Graphen.

8http://stackoverflow.com

66

http://stackoverflow.com

5.5. JUNG

Quelltext 5.5 Erstellung eines Demonstrationsgraphen mittels JUNG.

private static Graph<String, Integer> getGraph() {

final Graph<String, Integer> g = new DirectedSparseGraph<String, Integer>();

g.addVertex ("Haus") ;

g.addVertex ("Reihenhaus") ;

g.addVertex ("Mehrfamilienhaus") ;

g.addVertex ("Hochhaus") ;

g.addVertex("kaputtes Haus");

g.addEdge (1, "Haus", "Hochhaus");

g.addEdge (2, "Reihenhaus", "Mehrfamilienhaus");

g-addEdge (3, "kaputtes Haus", "Haus");

return g;

private static GraphZoomScrollPane getJungGraphPane() {

final Graph<String, Integer> g = getGraph();
final VisualizationViewer<String, Integer> viewer = new
VisualizationViewer<String, Integer>(
new CirclelLayout<String, Integer>(g));
viewer.setDoubleBuffered(true) ;
final GraphZoomScrollPane paneWithGraph = new GraphZoomScrollPane (
viewer) ;
return paneWithGraph;

@0verride
protected Control createContents(final Composite parent) {

final Composite graphViewComposite = new Composite(parent, SWT.NONE
| SWT.EMBEDDED) ;
final Frame graphFrame = SWT_AWT.new_Frame (graphViewComposite) ;

GridDataFactory.fillDefaults() .grab(true, true)
.applyTo (graphViewComposite) ;

graphFrame.add (getJungGraphPane ()) ;
graphFrame.pack() ;
graphFrame.setVisible(true) ;

return parent;

public void run() {

this.setBlockOnOpen(true) ;
this.open() ;
Display.getCurrent () .dispose();

public static void main(final String[] args) {

}

new Jung().run();

67

5. Frameworks fir Graphen

Abbildung 5.9.: Visualisierung des Codes aus Quelltext 5.5 mittels JUNG.

i wm sLirski
nhnalh
eI

P Ronkamen

\ s

D Gunopulos

ao
D Pregibon B Dom
€ Glymour J Kiving

N Paviav

Abbildung 5.10.: Visualisierung eines komplexeren Graphen mittels JUNG, entnommen aus

[Jun].

68

5.6. Prefuse

5.6. Prefuse

Prefuse ist ein auf Java basiertes Grafikframework, das unter BSD Lizenz’ steht und daher
sowohl nicht-kommerziell als auch kommerziell verwendet werden kann. Prefuse nutzt zur
Visualisierung die Java 2D-Grafikbibliothek. Entwickelt wurde das Prefuse-Framework zur
dynamischen Visualisierung von strukturierten und unstrukturierten Daten [HCLO5]. Die
Webseite des Frameworks halt neben einem Handbuch auch eine Galery verschiedener Visua-
lisierungen parat [Ber13].

Der Quellcode demonstriert durch zahlreiche Beispiele verschiedener Visualisierungen die
Maichtigkeit des Frameworks. Als Beispiel hierfiir konnen die enthaltene Visualisierung der
geografischen Verteilung von Postleitzahlen in den Vereinigten Staaten und eine Visualisie-
rung einer Treemap gelten. Abbildung 5.11 und Abbildung 5.12 demonstrieren die Fahigkeiten
von Prefuse zur Visualisierung von Graphen. Auch diese Beispiele sind im Quellcode des
Prefuse-Frameworks vorzufinden, ihre Abbildungen kénnen aus diesem generiert werden
[Ber13].

Abbildung 5.11.: Mittels Prefuse erstellte Visualisierung eines aggregierten Graphen.

http://opensource.org/licenses/bsd-license.php

69

http://opensource.org/licenses/bsd-license.php

Frameworks fiir Graphen

44

59

78]

43

28

42

27

26

25

24
41

NBodyForce
GravitationalCans... {}

Distance 1
BarnesHutTheta

DragForce

DragCoefficient {

SpringForce
SpringCoefficient I

DefaultSpringLength U

Connectivity Filter
Distance

58
40

57
39

56

73
55

72
54

i

88
70

87
83

86

68

na

Abbildung 5.12.: Mittels Prefuse erstellte Visualisierung eines Graphen.

Innerhalb der festgelegten Frist zur Einarbeitung konnte der Codes aus Quelltext 5.6 und
damit der Graph aus Abbildung 5.13 erstellt werden. In diesem Prototyp wurde die Anzahl
der Kanten, ihr Startknoten und Zielknoten zufillig bestimmt. Dieses Beispiel sollte die weni-
gen Schritte demonstrieren, die zur Erstellung der Elemente des Graphen notwendig sind.
Prefuse ermoglicht einen einfachen Einstieg, die Webseite stellt ein Handbuch und eine API
zur Verfiigung [Ber13].

Auch von der wissenschaftlichen Seite findet Prefuse Anerkennung, beispielsweise wurde
das Framework auf der CHI 2005'° vorgestellt [HCLO05]. Bereits die Informationen der Ab-
handlung [HCLO05] reichen fiir einen Einstieg in das Framework und dessen Verwendung
aus. Prefuse verfiigt auch Jahre nach der letzten Anderung iiber eine aktive Community. Bei
Stackoverflow!! existieren beispielsweise mindestens 61 Fragen zu Prefuse und auch die
eigenen Diskussionsforen sind gut besucht!?. Zu Prefuse existieren zahlreiche Dokumente,
die Association for Computing Machinery listet beispielsweise 152 Abhandlungen zu Prefuse.
Auch in anderen dhnlichen Projekten kam Prefuse bereits zum Einsatz, beispielsweise in SO-
VA [BJKK10]. Weitere Verwendung fand Prefuse in mindestens hundert weiteren Projekten'®.
Die Moglichkeiten zur Verdnderung des Graphen sind vielfiltig gegeben. Beispielsweise
kann der Graph direkt bei seiner Generierung an die eigenen Wiinsche angepasst werden.

Onttp: //www.chi2005. org/index . html
Uhttp://stackoverflow.com/questions/tagged/prefuse
2http: //sourceforge.net/p/prefuse/discussion/343012
1Bhttps://masterbranch.com/prefuse-projects

70

http://www.chi2005.org/index.html
http://stackoverflow.com/questions/tagged/prefuse
http://sourceforge.net/p/prefuse/discussion/343012
https://masterbranch.com/prefuse-projects

5.6. Prefuse

In Quelltext 5.6 wurden beispielsweise samtliche Kanten eine Graue und allen Knoten eine
griine Farbe zugewiesen. Dies geschah durch die beiden Anweisungen ,ColorAction fill
= new ColorAction("graph.nodes", Visualltem.FILLCOLOR, ColorLib.rgb(0, 200, 0));” und
,ColorAction edges = new ColorAction("graph.edges", Visualltem.STROKECOLOR, Color-
Lib.gray(200)),”.

Der Code von Prefuse ist gut strukturiert und kommentiert, sodass man sich als Entwickler
schnell zurechtfindet. Anderungen an Prefuse kénnen leicht durchgefiihrt und durch inte-
grierte JUnit-Tests gepriift werden. Die Performance von Prefuse ist mehr als ausreichend.
Als einziges Framework verfiigt Prefuse {iber einen integrierten Benchmark. Das Resultat
des Benchmarks kann Quelltext 5.7 entnommen werden. Pefuse generiert 10000 Elemente
auf einem alten ,Intel Core 2 Duo” innerhalb von 3 Sekunden. Die genauen Ergebnisse sind
jedoch fiir diese Beurteilung irrelevant, zumal kein exakter Vergleich mit anderen Frameworks
moglich ist. Fiir den geforderten Anwendungszweck kann Prefuse damit als ausreichend
performant angesehen werden.

Es ist gut in die eigene Anwendung integrierbar und die Interaktivitdt mit dem Graphen ist
ebenfalls sehr gut. Der Nutzer kann beispielsweise Knoten mittels drag & drop verschieben
oder das Mausrad zum Zoomen verwenden.

|
l.. L | - ..l

Abbildung 5.13.: Visualisierung des Graphen aus Quelltext 5.6.

71

5. Frameworks fir Graphen

Quelltext 5.6 Erstellung eines Demonstrationsgraphen mittels Prefuse.

Graph graph = new Graph();
// create Nodes
for (int i=0; i<=50; i++) {

}

graph.addNode() ;

// create connections
Random rnd = new Random();
for (int i=0; i<=15; i++) {

int a = rnd.nextInt(50);
int b = rnd.nextInt(50);
graph.addEdge(a, b);

ColorAction fill = new ColorAction("graph.nodes", VisualIltem.FILLCOLOR,

ColorLib.rgb(0, 200, 0));

ColorAction edges = new ColorAction("graph.edges", VisualItem.STROKECOLOR,

ColorLib.gray(200));

ActionList color = new ActionList();
color.add(fill);

color.add(edges) ;

ActionList layout = new ActionList();
layout.add(new RandomLayout ("graph"));
layout.add(new RepaintAction());
Visualization vis = new Visualization();
vis.add("graph", graph);
vis.putAction("color", color);
vis.putAction("layout", layout);
ShapeRenderer r = new ShapeRenderer();
vis.setRendererFactory (new DefaultRendererFactory(r));
Display d = new Display(vis);

d.
d.
d.
d.

setSize (720, 500);

addControlListener (new DragControl());
addControlListener (new PanControl());
addControlListener (new ZoomControl());

JFrame frame = new JFrame("prefuse example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
frame.add(d);

frame.pack() ;

frame.setVisible(true);

vis.run("color");

vis.run("layout");

72

5.7. Piccolo2D

Quelltext 5.7 Ergebnisse des integrierten Prefuse Benchmarks.

Nov 15, 2013 3:32:00 PM test.RenderingBenchmarks paintComponent
INFO: Rendering Benchmarks: NORMAL
PRIMITIVE COUNT TIME PRIMITIVES/SEC PRIMITIVES/FRAME @ 20fps

lines-direct 10000 0.01s 1000000.0 pr/s 50000.0 pr/fr
lines-shape 10000 0.022s 454545.45 pr/s 22727.27 pr/fr
rect-direct-draw 10000 0.023s 434782.6 pr/s 21739.13 pr/fr
rect-shape-draw 10000 0.118s 84745.76 pr/s 4237.28 pr/fr
rect-direct-fill 10000 0.022s 454545.45 pr/s 22727.27 pr/fr
rect-shape-fill 10000 0.042s 238095.23 pr/s 11904.76 pr/fr
rrect-direct-draw 10000 0.12s 83333.33 pr/s 4166.66 pr/fr
rrect-shape-draw 10000 0.086s 116279.06 pr/s 5813.95 pr/fr
rrect-direct-fill 10000 0.255s 39215.68 pr/s 1960.78 pr/fr
rrect-shape-fill 10000 0.251s 39840.63 pr/s 1992.03 pr/fr
text-direct-int 10000 0.039s 256410.25 pr/s 12820.51 pr/fr
text-direct-float 10000 0.035s 285714.28 pr/s 14285.71 pr/fr
text-glyph-vector 10000 0.035s 285714.28 pr/s 14285.71 pr/fr

Nov 15, 2013 3:32:05 PM test.RenderingBenchmarks paintComponent
INFO: Rendering Benchmarks: ANTI-ALIASING
PRIMITIVE COUNT TIME PRIMITIVES/SEC PRIMITIVES/FRAME @ 20fps

lines-direct 10000 0.045s 222222.22 pr/s 11111.11 pr/fr
lines-shape 10000 0.007s 1428571.42 pr/s 71428.57 pr/fr
rect-direct-draw 10000 0.06s 166666.66 pr/s 8333.33 pr/fr
rect-shape-draw 10000 0.007s 1428571.42 pr/s 71428.57 pr/fr
rect-direct-fill 10000 0.029s 344827.58 pr/s 17241.37 pr/fr
rect-shape-fill 10000 0.004s 2500000.0 pr/s 125000.0 pr/fr
rrect-direct-draw 10000 2.36s 4237.28 pr/s 211.86 pr/fr
rrect-shape-draw 10000 1.233s 8110.3 pr/s 405.51 pr/fr
rrect-direct-fill 10000 0.952s 10504.2 pr/s 525.21 pr/fr
rrect-shape-fill 10000 0.774s 12919.89 pr/s 645.99 pr/fr
text-direct-int 10000 0.048s 208333.33 pr/s 10416.66 pr/fr
text-direct-float 10000 0.038s 263157.89 pr/s 13157.89 pr/fr
text-glyph-vector 10000 0.055s 181818.18 pr/s 9090.9 pr/fr

5.7. Piccolo2D

Bei Piccolo2D handelt es sich um ein, auf Java basiertes Grafikframework, welches sich selbst
als zoombares Userinterface beschreibt. Entwickelt wurde Piccolo2D vom Mensch-Computer
Interaktionslabor der Universitdt von Maryland!4. Die Visualisierung eines Graphen mittels
Piccolo2D kann Abbildung 5.14 entnommen werden. Sie ist als Beispiel direkt im Piccolo2D
Quellcode enthalten. Piccolo2D ist kein Framework zur reinen Visualisierung von Graphen,
stattdessen lassen sich 2D Strukturen modellieren. Abbildung 5.15 zeigt Piccolo2D beispiels-
weise bei der Visualisierung von Tabellen, auch dieses Beispiel ist direkt dem Quellcode ent-
nommen. Die Dokumentation zu Piccolo erscheint diirftig, so enthilt die Piccolo2D-Webseite

4http: //wuw.cs.umd.edu/hcil/jazz/index. shtml

73

http://www.cs.umd.edu/hcil/jazz/index.shtml

5. Frameworks fir Graphen

nur eine wenige Seiten umfassende Anleitung zum Einstieg in das Framework. Der Quellco-
de hingegen demonstriert seine Einsetzbarkeit anhand zahlreicher Beispiele. Aufgrund der
Tatsache, dass wichtige Kriterien im Gegensatz zu den anderen vorgestellten Frameworks
nicht erfiillt wurden, schied Piccolo2D fiir weitere Untersuchungen aus.

Abbildung 5.14.: Visualisierung eines Graphen mittels Piccolo2D.

Col 0Col 1 Col 2Col 3Col 4 Col 5Cal 6 Col 7 Cal 8 Cal 9
Row 0
Row 1
Row 2
Row 3
Row 4
Row 5
Row &
Row 7
Row 8
Row @

Abbildung 5.15.: Visualisierung eines Graphen mittels Piccolo2D.

74

5.8. GraphStream

5.8. GraphStream

GraphStream ist ebenfalls ein Java basiertes Framework zur Visualisierung von Graphen.
Die Webseite von GraphStream!® enthilt eine Demonstration des Frameworks. Abbildung
5.16 zeigt einen mittels GraphStream generierten Graphen, dessen Quellcode Quelltext 5.8
entnommen werden kann. Abbildung 5.17 stellt einen komplexeren Graphen dar, dessen
Visualisierung der GraphStream Galerie entnommen wurde [Gral0]. Zwar vermittelt die
Webseite von GraphStream einen Eindruck von der Méachtigkeit des Frameworks, scheint
sich aber auf die Dokumentation, die auf der Webseite zur Verfiigung steht, zu beschrianken.
Zum Zeitpunkt der Erstellung dieses Dokumentes wurde der Release von GraphStream 1.2
um 11 Monate versaumt'®. Aufgrund der Tatsache, dass wichtige Kriterien im Gegensatz zu
den anderen vorgestellten Frameworks nicht erfiillt wurden, schied GraphStream fiir weitere
Untersuchungen aus.

Quelltext 5.8 Erstellung eines Demonstrationsgraphen mittels GraphStream.

Graph graph = new SingleGraph("Test");
graph.addNode ("A");

Node n = graph.getNode ("A");
n.setAttribute ("weight", 1.5);
n.addAttribute("ui.label™, "A");
graph.addNode ("B");
graph.addNode ("C");
graph.addNode ("D");
graph.addEdge ("AB", "A", "B");
graph.addEdge ("BC", "B", "C");
graph.addEdge ("CA", "C", "A");
graph.addEdge ("CD", "C", "D");
graph.addEdge ("BD", "B", "D");
graph.display();

Abbildung 5.16.: Visualisierung des Graphen aus Quelltext 5.8.

15http://graphstream—project.org
16https://github.com/graphstream/gs-core/issues/milestones

75

http://graphstream-project.org
https://github.com/graphstream/gs-core/issues/milestones

5. Frameworks fir Graphen

Abbildung 5.17.: Visualisierung eines Graphen, entnommen aus [Gra10].

5.9. Zusammenfassung

Kriterium GraphViz | Grappa | Zest | JGRaph | JUNG | Prefuse GraphStream | Piccolo2D
Einarbeitungszeit + - - + + + +

Dokumentation + - - + + + _ -
Editierbarkeit (Graph) + + - - + +
Editierbarkeit (Code) Java: - - - + + +

C:+

Performance + + ... + + +

Interaktivitat - - + - + +

Integrierbarkeit - - + + + +

5.10. Entscheidung

Nach ausfiihrlicher Analyse der vorgestellten Frameworks auf Basis der in diesem Kapitel
vorgestellten Kriterien ergeben sich die beiden Favoriten: JUNG und Prefuse. GraphViz
verfiigt tiber eine gute Bewertung, die fehlende Interaktivitat lasst GraphViz fiir dieses Projekt
aus der ndheren Auswahl allerdings ausscheiden.

Prefuse scheint in den Demonstrationsbeispielen gegeniiber JUNG optisch ansprechendere
Ergebnisse liefern zu konnen. Prefuse scheint eine aktivere Community zu besitzen. Prefuse
wird von den Entwicklern als abgeschlossen betrachtet, die letzte Erganzung am Code stammt
aus dem Jahre 2008. Trotz dieser Zeitspanne scheint die Prefuse-Community weiterhin aktiv
zu sein'”. Des Weiteren scheint die verfiigbare Dokumentation zu Prefuse hinsichtlich Umfang
minimal besser, als jene fiir JUNG, zu sein. Aus diesen Griinden wurde im Rahmen dieser
Arbeit das Framework Prefuse fiir die Entwicklung eines geeigneten Visualisierungskonzepts
fur die kompakte und ganzheitliche Visualisierung von Ontologien gewdhlt.

http://sourceforge.net/p/prefuse/discussion/343013

76

http://sourceforge.net/p/prefuse/discussion/343013

6. Implementierung

Nachdem die Grundlagen fiir die technische Realisierung in den vorherigen Kapiteln erldutert
wurden, kann mit der Implementierung begonnen werden.

Realisiert wird die Visualisierung von Ontologien als Plug-in fiir Protégé. Dadurch entfallt
die Notwendigkeit der Implementierung eigener Funktionen zum Laden und Speichern von
Ontologien. Des Weiteren kann das Datenmodell der OWL-API verwendet werden, denn
Protégé nutzt intern selbst die OWL-APL

Die grafische Darstellung des in Kapitel 4 vorgestellten Konzepts nutzt das in Kapitel 5 ausge-
wihlte Grafikframework Prefuse. Die Verwendung von Prefuse ermdglicht eine Reduzierung
des Realisierungsaufwandes, schliefSlich reduziert sich der Umfang der zu implementierenden
Funktionen.

In diesem Kapitel wird zunéchst der chronologische Ablauf der Entwicklung beschrieben,
um anschlieflend den Entwurf und einige Designentscheidungen vorzustellen.

6.1. Chronologischer Ablauf

Die Entwicklung des Protégé Plug-ins zur Visualisierung von Ontologien verlduft in drei
Etappen. Diese Abschnitte sind in Abbildung 6.1 dargestellt und werden in den folgenden
Abschnitten ndher erliautert.

. Darstellung
der VOWL [_‘, der gesamten
Elemente Ontologie

Darstellung Darstellung

der VOWL
Grundformen

Abbildung 6.1.: Visualisierung des chronologischen Ablauf der Entwicklung.

6.1.1. Darstellung der Grundformen

Bereits wahrend der Evaluation des Grafikframeworks Prefuse wurde ein rudimentérer Graph
als Prototyp generiert. Dieser Graph aus Abbildung 5.13 wurde im ersten Abschnitt ersetzt.
Die im Konzept aus Kapitel 4 erwdhnten Abbildungen miissen zerlegt und die Bestandteile
des Konzeptes durch Prefuse gerendert werden. Abbildung 4.3 besteht beispielsweise aus
mindestens drei verschiedenen, in Abbildung 6.2 dargestellter Kantenformen. Des Weiteren
werden Knoten unterschiedlichster Form benétigt. Abbildung 6.3 zeigt das Ergebnis dieser

77

6. Implementierung

ersten Realisierungsphase. Dieser Ausschnitt eines Graphen enthilt die meisten der benétig-
ten Grundformen. Zur Realisierung dieser Darstellung muss Prefuse erweitert werden. Zwar
bietet Prefuse bereits zahlreiche Moglichkeiten zur Modifikation der Graphendarstellung,
diese beziehen sich jedoch meist auf den gesamten Graphen. Die beispielsweise in Abbil-
dung 6.4 vorkommende Modifikation vergibt allen Linien und Pfeilspitzen eine schwarze
Farbe. Dies ist jedoch nicht gewollt. Fiir die im Konzept gewiinschte Darstellung wird die
Moglichkeit benétigt, die Form einzelner Knoten und Kanten gezielt zu verdndern. In die-
ser ersten Etappe geht es vor allem um die Erweiterung von Prefuse, um alle benotigten
Grundformen darstellen zu konnen. Dies geschieht durch Erweiterung der Klassen prefu-
se.render.EdgeRenderer und prefuse.render.AbstractShapeRenderer. Nach der Erweiterung
konnen einzelne Kanten und Knoten durch zusétzliche Parameter gezielt angepasst werden,
um die grafische Darstellung der jeweiligen Parameter kiimmern sich die entsprechenden
Renderer. Jede Kante und jeder Knoten innerhalb des Prefuse-Graphen enthalten eine eigene
Wertetabelle mit Key-Value Paaren. Dies erweist sich als duflerst niitzlich, schliefSlich kénnen
die gewtinschten Parameter auf diese Weise tibergeben werden, Quelltext 6.1 zeigt einen
Ausschnitt hiervon. Als Datenquelle fiir diesen ersten Graphen aus Abbildung 6.3 dienen zu-
fallig generierte Werte. Mit diesen, voneinander unabhingigen, zufélligen Werten sollen alle
moglichen Wertekombinationen abgedeckt werden und damit eventuell auftretende Fehler
leichter entdeckt werden. Der Ablauf der ersten Etappe entspricht dem Sequenzdiagramm
aus Abbildung 6.5.

Abbildung 6.3.: Ausschnitt eines Graphen, der alle benétigten Grundformen enthilt.

78

6.1. Chronologischer Ablauf

Abbildung 6.4. Anderung der Visualisierung eines Graphen in Prefuse.

ColorAction edges = new ColorAction("GraphDataModifier.edges",
Visualltem.STROKECOLOR, ColorLib.rgb(0, 0, 0));

ColorAction arrow = new ColorAction("GraphDataModifier.edges", VisualIltem.FILLCOLOR,
ColorLib.rgb(0, 0, 0));

Quelltext 6.1 Ausschnitt der Datengenerierung eines Knoten.

Node n = graph.addNode() ;

.set (ColumnNames.ID, rnd.nextInt (25000));

.set (ColumnNames .NODE_HEIGHT, rnd.nextInt(35));

.set (ColumnNames .NODE_WIDTH, rnd.nextInt(35));

.set (ColumnNames.TEXT_SIZE, rnd.nextInt(12));

.set (ColumnNames .COLOR_RED, rnd.nextInt(250));

.set (ColumnNames .COLOR_GREEN, rnd.nextInt(250));
.set (ColumnNames .COLOR_BLUE, rnd.nextInt(250));

.set (ColumnNames .TEXT_COLOR_RED, rnd.nextInt(250));
.set (ColumnNames . TEXT_COLOR_GREEN, rnd.nextInt(250));
.set (ColumnNames .TEXT_COLOR_BLUE, rnd.nextInt(250));

B BBBBBBBBB

IZufallsdaten JPrefuse Datenrnodell JRenderm des Graphen

beflllt

Datenberyabe

Abbildung 6.5.: Sequenzdiagramm der erste Etappe.

6.1.2. Darstellung der VOWL-Elemente

Nachdem die benotigten Grundformen in 6.1.1 bereits modelliert wurden, konnte mit der
Umsetzung des Konzeptes aus Kapitel 4 begonnen werden. Dies geschah durch Ersetzen
des in Abschnitt 6.1.1 eingefiihrten Zufallsdatengenerators. Als Datenquelle des zweiten
Abschnitts dient ein zuvor definiertes VOWL-Beispiel. Dieses VOWL-Beispiel wurde durch
ein weiteres Modul in das Prefuse-Datenmodell iibersetzt und anschlieffend vom Prefuse
Renderer als Graph gezeichnet. Da die hierzu nétigen Modifikationen an Prefuse bereits
zuvor erledigt wurden, waren in dieser Phase keine weiteren Erweiterungen an Prefuse
notwendig. Das Sequenzdiagramm aus Abbildung 6.6 erlautert den Aufbau in diesem zweiten
Abschnitt. Quelltext 6.2 zeigt einen Ausschnitt aus der durch das VOWL-Beispiel definierten
Ontologie. Sie wird durch den GraphDataModifier in das Prefuse-Datenmodell iibersetzt, um
anschlieffend den Graphen aus Abbildung 6.7 generieren zu kénnen.

79

6. Implementierung

NOWL Beispiel ‘ ‘ JGraphDatamodiier JRendem des Graphen

‘ iPrefuse Datenmadell ‘

Ghergibt Daten

ibersetzt

Abbildung 6.6.: Sequenzdiagramm der zweiten Etappe.

Quelltext 6.2 Ausschnitt aus der Generierung des VOWL-Beispiels.

GraphStorage.newGraph() ;

GraphDataModifier mod = new GraphDataModifier();

mod.addClassThing (1) ;

mod.addClass ("Person") ;

mod.addInstanceToClass ("Person", 5);

mod.addClass ("Agent") ;

mod.addInstanceToClass ("Agent", 16);

mod.addClass ("Document") ;

mod.addProperty ("Agent", Nodetype.vowltype[l], "Agent", Nodetype.vowltype[1]);

mod.addInstanceToClass ("Document", 12);

mod.addDeprecatedClass ("Spartial Thing");

mod.addInstanceToClass (mod.findClass("Spartial Thing", Nodetype.vowltypel[2]), 5);

mod.addProperty ("Person", Nodetype.vowltype[1], "Spartial Thing",
Nodetype.vowltype[2]);

mod.addProperty ("Document", Nodetype.vowltype[1], "Agent", Nodetype.vowltypel[1]);

80

[5]
Spartial
Thing
deprecated)

Abbildung 6.7.: Darstellung der VOWL-Elemente innerhalb des Gaphens.

6.1. Chronologischer Ablauf

6.1.3. Darstellung der eingelesenen Ontologie

Im dritten und letzten Schritt wird die zuvor fest vorgegebene Ontologie durch eine be-
liebige, von Protégé eingelesene Ontologie, ersetzt. Das Sequenzdiagramm aus Abbildung
6.8 und die schematische Skizze aus Abbildung 6.9 verdeutlichen den Ablauf in dieser
Phase. Auf die eingelesene Ontologie wird mittels der OWL-API zugegriffen. Das Modul
TransformOWLtoGraph zerlegt die gespeicherte Ontologie in ihre Klassen und Beziehungen.
Diese werden anschlieffend durch den GraphDataModifier in fiir Prefuse verstdndliche Daten
iibersetzt. Falls die MUTO-Ontologie [LDA11] eingelesen wird, so stellt Abbildung 6.10 das
visuelle Resultat dieses Schrittes dar. In diesem letzten Entwicklungsschritt wird ebenfalls die
rechts in Abbildung 6.10 sichtbare Informationsleiste implementiert und die innerhalb des
Graphen selektierten Elemente optisch sichtbar gekennzeichnet. Die mit der Maus anvisierten
Elemente werden ebenfalls farblich markiert.

IProtege Gniologie IGraphDataModifier IRendem des Graphen

‘ IPrefuse Datenmadell

iibergint Daten

Obersetzt

Abbildung 6.8.: Sequenzdiagramm der dritten Etappe.

Funktion des Protégé-Frameworks

V4

Abfrage der OWL-API nach den einzelnen Bestandteilen der Ontologie durch die Klasse TransformOWLtoGraph

W4

die Klasse GraphDataModifier fiillt das Prefuse-Datenmodell aus den zerlegten Bestandteilen

7

Auslesen des Prefuse -Datenmodells und Generierung der geometrischen Formen

Abbildung 6.9.: Schematische Dastellung der einzelnen Schritte der dritten Etappe.

81

6. Implementierung

[Name: Tagging
Type: Class
fnstances: o

Inttp: ffpurl.orgjimu

R to/core=Tacang

tagging
modified A tagging links a
resource to a user

(Commentary: account and one or
/ mare tags.
http: /fourl.org/mu
. Defined By:
tagging madifisd L & tolcore

is sub class of

tag
created
4
v, /

o tag created
is sub class of

tagaing created \
is sub class of

- tagaing RS
is sub class of tag label created 4
. taglabel .

Abbildung 6.10.: Visualisierung der MUTO-Ontologie.

6.2. Architektur

Dieses Kapitel beschreibt die Architektur des Plug-ins. Abbildung 6.11 vermittelt einen groben
Uberblick tiber die einzelnen Pakete. Die Funktion und Bedeutung der einzelnen Pakete wird
in den folgenden Abschnitten ndher erldutert.

1 1
<<Java Packages»= <<Java Packages=
{4 protege fH testing

I
=<lava Packages» 5
*| f GraphRendering |7

==lava Package=> ==Java Package==
HinfoPanel 4 GraphDataModifier
<<Java Package=> <<«Java Package»=
£ Languages Htypes

Abbildung 6.11.: Paketansicht des Prototyps.

82

6.2. Architektur

6.2.1. Das Paket Languages

Abbildung 6.12 enthdilt eine detailliertere Darstellung des Pakets Languages. Dieses Paket
beinhaltet eine Sammlung statischer Strings (static & final), die als Platzhalter der jeweiligen
Ubersetzung dienen. Auf diese Weise wird eine spitere Ubersetzung in andere Sprachen
ebenso erleichtert, wie die Unterstiitzung verschiedener Sprachen. Dieses Paket ist ein Nach-
bau des Android MultiLanguage Konzeptes!. LanguagesGraphEN java enthélt die innerhalb
des Grapes verwendeten englischen Begriffe. LanguagesInfoPanelEN java beinhaltet die in
der rechten Informationsleiste verwendeten englischen Begriffe. Quelltext 6.3 enthilt einen
kleinen Auszug der LanguagesInfoPanelEN java.

=<=lava Clags== z=Java Clazs==
(2 LanguagesGraphEN (= LanguagesinfoPanelEN
Langusges Languages
%FIS_SUEI_ELASS_DF: String = "is sub class of " “F NAME: String = "Name: "
%F PROPERTY String = "Property”™ SFrvPE: String = "Type: "
%F SUBPROPERTY: String = "Subproperty™ SF INSTANCES: String = "Instances: ”
&LanguagesGraphEN(} LRI String = "URL "

%F COMMENT: String = "Commentary: ™

%FDEFINIED_EIY: String = "Defined By: "
s'C-FIZII";'-.I’L_‘-.FEI-"'.S_II\JFIIII: String = "Wersion Info: ™
sG-FP.I}FS_I}IZZIr.mlN: String = "Domain URL ™
s\3-"_P.IZ:-FE-_FL-CarwIGE: String = "Range URL "
%FRDFS_IN‘-JEF‘.SE_DF: String = "Inverse Property Of URL ™

{PLﬂnguageslnfuPﬂnelEN(}

Abbildung 6.12.: UML-Klassendiagramm des Paket Languages.

Quelltext 6.3 Auszug der LanguagesInfoPanelEN java.

public final static String COMMENT = "Commentary: ";
public final static String DEFINIED_BY "Defined By: ";
public final static String OWL_VERS_INFO = "Version Info: ";

6.2.2. Das Paket testing

Abbildung 6.13 zeigt den Aufbau des Pakets testing. Es enthélt Module, die hauptsdchlich in
den Entwicklungsschritten der Abschnitte 6.1.1 und 6.1.2 benétigt werden.

Ihttp://developer.android.com/training/basics/supporting-devices/languages.html

83

http://developer.android.com/training/basics/supporting-devices/languages.html

6. Implementierung

<<Java Class=>
(@ standaloneTesting
testing
%o JFRAME_NAME: String = "LOOKING FOR A NAME”
S DISPL&Y_SIZE_H: int = 640
% DISPLAY_SIZE_W: int = 850

L')cstandaluneTesting(}
Qsmain(stringﬂ}:vuid

L 4y

==Java Class== ==Java Class==
(3 CreateRandomGraphData (® GraphAddVOWLExample

testing testing
5 COUNT_MODES: int = 15
%l COUNT_CONNECTIONS: int = 25

L'.PGraphAddVOb‘JLExample[}

{?CreateRandumGraphData(}
@ create().Graph

@ create(Graph):Graph

Abbildung 6.13.: UML-Klassendiagramm des Paket testing.

GraphAddVOWLExample

Das Modul GraphAddVOWLExample generiert das zuvor festgelegte VOWL-Beispiel aus
dem zweiten Entwicklungsschritt des Abschnittes 6.1.2. Dieses Modell wird anschliefSend
durch den GraphDataModifier des Paketes GraphDataModifier in das Prefuse-Datenmodell
tibersetzt.

CreateRandomGraphData

Das Modul CreateRandomGraphData wird im ersten Entwicklungsschritt aus Abschnitt 6.1.1
benotigt, um Knoten und Kanten mit Zufallsdaten generieren zu kénnen.

StandaloneTesting

Dieses Modul umgeht Protégé und visualisiert den Prefuse-Graphen direkt. Dies ist vor
allem im ersten Entwicklungsschritt aus Abschnitt 6.1.1 hilfreich, denn auf diese Weise kann
der Graph direkt aus Eclipse gestartet werden. Dadurch konnen die tiblichen Entwicklungs-
werkzeuge, wie den Eclipse Debugger, einfacher verwendet werden. Natiirlich entféllt dabei
die Moglichkeit des Einlesens einer Ontologie, weswegen dieses Modul nur die festgelegte
Ontologie aus der Klasse GraphAddVOWLExample bzw. den Graphen aus Zufallsdaten der
Klasse CreateRandomGraphData visualisieren kann.

84

6.2. Architektur

6.2.3. Das Paket protege

Das in Abbildung 6.14 dargestellte Paket protege enthilt eine einzige Klasse. VOWLViewCom-
ponent.java erweitert die AbstractOWLViewComponent von Protégé und generiert damit die
von Protégé angezeigte ViewComponente. Des Weiteren bestimmt diese Klasse das grundle-
gende Layout des Plug-ins. VOWLViewComponent legt die relative Position und Grofie des
Prefuse-Graphen und der rechten Informationsleiste fest. Mittels disposeOWLView kiimmert
sich die VOWLViewComponent ebenfalls um das Schliefien des Plug-ins.

<<lava Clasg>>=

(& VOWLViewComponent

protege

% serialversionUID: long =1L
o prefuseGraphDisplay: Display

f.f VOWLViewComponent()
< intialise0WLiew () void

< dispose0WLView ([)void

Abbildung 6.14.: UML-Klassendiagramm des Pakets protege.

6.2.4. Das Paket types

Ahnlich zu dem Paket Languages enthilt das Paket types statische Strings. Im Gegensatz
zu denen des Pakets Languages dienen diese nicht der visuellen Darstellung. Sie werden
als Schliissel in den Key-Value Paaren des Prefuse-Datenmodells verwendet, mit denen die
gewiinschte Darstellung der entsprechenden Objekte kodiert wird. Die Gruppierung der
statischen Strings in dem Paket types soll die Konsistenz der Schreibweise der Key-Value
Pair Schliissel sicherstellen und ein spéteres Uberarbeiten erleichtern. Nebenbei erhilt man
auf diese Weise eine Liste aller, im Plug-in verwendeten Schliissel. Abbildung 6.15 zeigt den
Aufbau des Paketes types anhand eines UML-Klassendiagramm:s.

85

6. Implementierung

A BT ==Java Class»>
® Nodetype (® OWLTypes
types types
% nodetype: String[] = {"Circle”, "Square”, "Pie”, "None™} % RDFS_LABEL: String = "rdfs:label’
eruwrtype: String[] = {"None”, "Class”, "DeprecatedClass”, "ImportedClass”, "DataTypeProperty™} SOFRDFS—COI'”"ENT: String = "rdfs:comment”
= % RDFS_DEFINED_BY: String = “rdfs:isDefinedBy”
& Hodetype() %F OWL_VERSIONINFO: String = "owl:versioninfo”

SoFRDFSfSUBCLASS String = "rdfs:subClass0f

=<Java Class=» S\I'FF’.DFS_DOI.U’-\IN. String = “rdfs:domain”
(3 ColumnNames SOFRDFS_RANGE: String = "rdfs:range”
fypes

& OWLTypes()

%FID: String = "GRAPH_DBJECT_ID"
5P TEXT_SIZE: String = "TEXT_SIZE"
%FNODE_FORM: String = "NODE_FORM"

WFNAME: String = "NAME™ <<Java Class=»

SFFULL_NAME: String = "FULL_NAME" @Edgef-ﬁ'pe

% NODE_WIDTH: String = "NODE_WIDTH" e

‘-obFNODE_HHGHT: String = "NODE_HEIGHT” SoFarruwtype: String[] = {"None”, "Arrow_filled”, "Arrow_nonfiled™}
%F CLASS_INSTANCE_COUNT: String = "CLASS_INSTANCE_COUNT" % inetype: Stringll - 'normal’, “dashed", "dotiedy

% COLOR_RED: String = "COLOR_RED" & EdgesType()

E‘\)FCOLOH_GREEISJ: String = "COLOR_GREEN"
%F COLOR_BLUE: String = "COLOR_BLUE"

SF TEXT_COLOR_RED: String = "TEXT_COLOR_RED" HEp e e avaltaesry
5P TEXT_COLOR_GREEN: String = "TEXT_COLOR_GREEN" © PropertyType ©rontused
%F TEXT_COLOR_BLUE: String = "TEXT_COLOR_BLUE" e e

5F EDGE_ARROW_TYFE: String = "EDGE_ARROW_TYFE" S PROPERTY: int = 0 & FortUsed()
%F EDGE_LINE_TPE: String = "EDGE_LINE_TYPE" % OBJECT_PROPERTY: int = 1 & getFont():Font
% EDGE_LENGTH: String = "EDGE_LENGTH" "F DATATVPE_PROPERTY: int - 2

SFVOWL_TVPE: String = "VOWL_TvPE" & PrapertyType()

%F TEXT_BACKGROUND_COLOR_RED: String = "TEXT_BACKGROUND_COLOR_RED"

%F TEXT_BACKGROUND_COLOR_BLUE: String = "TEXT_BACKGROUND_COLOR_BLUE"

5P TEXT_BACKGROUND_COLOR_GREEN: String = "TEXT_BACKGROUND_COLOR_GREEN"
%FTEXT_BACKGROUND_STROKE COLOR_RED: String = "TEXT_BACKGROUND_STROKE_COLOR_RED"
%F TEXT_BACKGROUND_STROKE_COLOR_BLUE: String = "TEXT_BACKGROUND_STROKE_COLOR_BLUE"
%F TEXT_BACKGROUND_STROKE_COLOR_GREEN: String = "TEXT_BACKGROUND_STROKE_COLOR_GREEN"
%FRDFS_URL String = "ROFS_URI"

%FADFS_COMMENT: String = "RDFS_COMMENT"

%F ADFS_DEFINED_BY: String = "RDFS_DEFINED_BY™

%F ADFS_DOMAIN: String = "RDFS_DOMAIN"

%P ADF5_AANGE: String = "RDFS_RANGE"

%FRDFS_INVERSE_OF: String = "RDFS_INVERSE_OF"

%F OWL_VERSION_INFO: String = "0WL_VERSION_INFO"

5F15_HIGHLIGHTED: String = "I5_HIGHLIGHTED"

%F15_CLICKED: String = "IS_CLICKED"

& Colu mnMNames(}

Abbildung 6.15.: UML-Klassendiagramm des Paket types.

PropertyType

Die Klasse PropertyType enthilt verschiedene Integer Konstanten zur Unterscheidung der im
Konzept (Kapitel 4) definierten Property-Typen: Object Property, Datatype Property und
Property. Letztere sind fiir allgemeine Propertyies aus RDF vorgesehen, die sich weder in
Object Properties noch in Datatype Properties unterscheiden lassen.

OWLTypes

Die Klasse OWLTypes enthilt verschiedene statische Strings, die als Bezeichner zum Identifi-
zieren der jeweiligen Attribute innerhalb einer eingelesenen Ontologie dienen. Die OWL-API
speichert Bestandteile einer eingelesenen Ontologie als Liste ab. Diese Liste enthalt zahlreiche

86

6.2. Architektur

Klassen des Typs OWLAnNnotation, die jeweils durch eine Eigenschaft (getProperty()) und
einen Wert (getValue()) reprasentiert werden. Aus diesem Grund erfolgt beim Umwandeln
einer eingelesenen Ontologie in einem Graphen ein Vergleich mit den in dieser Klasse ge-
speicherten Strings. Informationen iiber das Auslesen der Ontologie aus der OWL-API sind
zum Teil in der OWL-API Dokumentation® gegeben. Die Zusammenfassung der Strings fiir
einen spéteren Vergleich garantiert die Konsistenz der Schreibweise und vermeidet schwer
zu liberpriifende Fehler, wie beispielsweise Rechtschreibfehler.

Nodetype

Die Klasse Nodetype beinhaltet zwei String-Arrays, die ebenfalls ausschliefSlich der Be-
schreibung der Knotenform im Prefuse-Datenmodell dienen. Quelltext 6.4 zeigt verschiede-
ne verwendete Formen. In den Key-Value Paaren des Prefuse-Datenmodells definiert die
Klasse Nodetype die moglichen Werte, wihrend die erlaubten Schliissel durch die Klasse
ColumnNames definiert werden. Falls ein Knoten tiber das Key-Value Pair ,NODE_FORM”
und , Circle” verfiigt, so zeichnet der Noderenderer den Knoten als Kreis. Die Grofie des
Kreises wird beispielsweise durch ein anderes Key-Value Paar definiert.

Quelltext 6.4 Auszug aus der Nodetype.java.

{"Circle", "Square", "Pie", "None"}

FontUsed

Die Klasse FontUsed dient dem Auslesen der derzeit verwendeten Schrift. Diese Information
wird unter anderem von der rechten Informationsleiste benotigt, um den benotigten Platz
zum Anzeigen einer Information zu berechnen.

EdgesType

Die Klasse EdgesType definiert die verschiedenen moglichen Kantenformen. Sie enthélt zwei
String-Arrays, die jeweils die Linienart und die Pfeilspitze definieren. In den Key-Value Paaren
des Prefuse-Datenmodells definiert die Klasse EdgesType die moglichen Werte, wahrend die
erlaubten Schliissel durch die Klasse ColumnNames definiert werden. Diese Key-Value Paare
werden anschlieffend vom Edgerenderer ausgelesen.

Zhttps://github.com/owlcs/owlapi/wiki/Documentation

87

https://github.com/owlcs/owlapi/wiki/Documentation

6. Implementierung

ColumnNames

Die Klasse ColumnNames enthélt simtliche moglichen Schliissel des Key-Value Paares des
Prefuse-Datenmodells, die von diesem Plug-in verwendet werden.

6.2.5. Das Paket infoPanel

Abbildung 6.16 zeigt ein UML-Klassendiagramm des Pakets infoPanel. Es stellt die Imple-
mentierung der rechten Informationsleiste dar. Die Bestandteile dieses Paketes werden im
Folgenden nédher erldutert.

<<Java Class>> <<Java Class=> <<Java Class>>
(3 QuadratTableModel (3 InfoPanelDataExtractor (@ InfoPanelClickListener
infoPanel infoPanel infoPanel
uzculumntul:lnl int=2 & infoFaneDatakxtractor(Nodeiem) %o logger: Logger = Logger.getLogger(infoPanelClickListener. class)
S}M & infoPaneDataExtractor(Edpetem) & InfoPane(ClickListenar()
SJM @ extractFromiode(Nodeltem nfoPanelManager): void @ valueChanged(ListSelectionEvent)void

stLogoer(QuadratTableModel class)

B extractFromEdge(Edgeltem InfoPanellanager):void
& QuadratTableModell) @ addHelper(lnfoPanelManager Siring, String). void

@ getRow Count(}:int i

@ getColumnCount(yint

@ setColumnCount(int)-void

@ setRow Count(inty:void i
@ gefValueAt(int int): Object
@ helperCalculateNeededRowHeight(String,int):void

==lava Clags>>
(9 InfoPanelManager
infoPanel

&°_infoPanel JTabls
% logger: Logger = Logger getl ogger(infoPanelManager class)
SMAX_NAME_LENGT. int = 20

& InfoPanelManager()

& InfoPanelManager(JTable)

@ getinfoPanel().JTable

@ setinfoPanel{JTable):void

@ clearTable():void

@ add(String,String):void

@ refreshTable()void

&* decodeToUri(Siring):String

@ helperContainsURI(String):boolean
® helperMedURI(String):String

@ helperhlodLongString(String):String

] I
==lava Clags>>
(@ InfoPanelDataStorage
infoPanel

5F lngger: Logger - Logger.getLoggeriinfoPanelDataStorags. class)

+| &FinfoPaneiDatastorage()

1 @ clearData(}:void

"-,_D addinfoPanelDataToStorage(String, String):void
c‘g: getinfoPanelDataSize()int

@.getinfoPaneDataF romStorage(int) InfoPanelDataStorageStructure

nfoPaneIData/*

«<Java Class>»
(3 InfoPanelDataStorage Structure
infoPanel

a key: String
a value: String

Gc\nfuPane\DataStorageslructura[}
@ setKey(String):void

@ sefValue(String):void

@ getKey():String

@ gefValue():String

Abbildung 6.16.: UML-Klassendiagramm des Paket infoPanel.

88

6.2. Architektur

InfoPanelClickListener

Die einzige Funktion des InfoPanelClickListener besteht darin, auf Mauseingaben des Benut-
zers innerhalb der rechten Informationsleiste zu reagieren. Klickt der Benutzer einen Link
innerhalb der Informationsleiste an, so wird dieser mit dem Standardbrowser des Betriebs-
systems geoffnet. Falls der Nutzer innerhalb der Informationsleiste die Maus verwendet, um
mehrere Links gleichzeitig zu selektieren, so werden samtliche selektierte Links durch den
InfoPanelClickListener an den Browser des Betriebssystems zum Offnen iibergeben.

InfoPanelDataExtractor

Falls der Benutzer ein Element des Graphen mit der Maus anklickt, so werden
dessen Informationen in der Informationsleiste angezeigt. Der ControlListener aus
dem Paket GraphRendering reagiert auf das Klick-Event und dieser tibergibt dem
InfoPanelDataExtractor das selektierte Element. Die Aufgabe des InfoPanelDataExtractor
besteht darin, die notwendigen Informationen iiber den Zugriff auf das Prefuse-Datenmodell
zu extrahieren. Die zusammengestellten Informationen werden in der InfoPanelDataStorage
abgespeichert. Der InfoPanelDataExtractor bestimmt, welche Daten extrahiert und im Daten-
modell abgelegt werden. Auf diese Weise regelt der InfoPanelDataExtractor welche Daten
innerhalb der Informationsleiste angezeigt werden sollen und welche nicht. Sollen weitere In-
formationen in der Informationsleiste angezeigt werden, so muss der InfoPanelDataExtractor
erweitert werden, damit die benétigten Informationen extrahiert und anschlieffend im
InfoPanelDataStorage abgelegt werden.

InfoPanelDataStorage

Das InfoPanelDataStorage stellt das Datenmodell der rechten Informationsleiste dar. Sobald
der Nutzer ein Element des Graphen mit der Maus auswihlt, wird das InfoPanelDataExtractor
mit Daten befiillt. Das InfoPanelDataStorage ist ebenso wie das Prefuse-Datenmodell als
Liste von Key-Value Paaren aufgebaut. Diese Key-Value Paare sind Objekte der Klasse
InfoPanelDataStorageStructure. Abbildung 6.17 stellt diesen Sachverhalt grafisch dar.

InfoPanelDataStorageStructure E— InfoPanelDataStorageStructure e — InfoPanelDataStorageStructure
ae e

N - I

InfoPanelDataStorage

Abbildung 6.17.: Skizze der Datenstruktur.

89

6. Implementierung

InfoPanelDataStorageStructure

Das InfoPanelDataStorageStructure regelt die Struktur der Daten des InfoPanels. Die Daten-
struktur des InfoPanelDataStorage besteht aus einer Liste von InfoPanelDataStorageStructure
Elementen.

QuadratTableModel

Das QuadratTableModel erweitert das AbstractTableModel und stellt Methoden zur Verfii-
gung mit denen die JTable auf das Datenmodell zugreifen kann. Des Weiteren formatiert das
QuadratTableModel Links und berechnet die benttigte Hohe einer Zeile.

InfoPanelManager

Der InfoPanelManager enthidlt Methoden, mit denen Informationen im Datenmodell der
Informationsleiste abgelegt werden konnen. Der InfoPanelDataExtractor verwendet den
InfoPanelManager zum Ablegen der erforderlichen Informationen. Des Weiteren dekodiert er
Links fiir den InfoPanelClickListener. Der InfoPanelManager dient ebenfalls als Zugriffspunkt
auf die JTable der rechten Informationsleiste. Diese wird beim Generieren des Layouts durch
die Klasse VOWLViewComponent benotigt.

6.2.6. Das Paket GraphDataModifier

Das Paket GraphDataModifier enthdlt samtliche Module, die zum Andern der Da-
ten des Prefuse-Datenmodells notwendig sind. Ein UML-Klassendiagramm des Pakets
GraphDataModifier ist in Abbildung 6.18 abgebildet. Die einzelnen Bestandteile dieses Pake-
tes werden in den folgenden Abschnitten ndher erldutert.

90

6.2. Architektur

<<lava Class=>
(3 GraphDataModifier

GraphDataModifier

S IMPORTED: String = "\niimported)”

Sof DEPRECATED: String = "\n(deprecated)”

o MIN_CLASS_SIZE: int = 80

o CLASS_INSTANCES_STEPS: int = 1

o MIN_TEXT_SIZE: int = 11

o MIN_EDGE_LENGTH_CLASSES int = 200

o° MIN_EDGE_LENGTH_PROPERTY'S: int = 120

o MAX_CLASS_NAME_LENGT. int = 10

o MAX_CLASS_NAME_LINES: int = 2

5 logger: Logger = Logger getlogger(GraphDataModifier class)

=«Java Class=»

(3 TransformOWLtoGraph

GraphDataModifier

& GraphDataModifier()

@ addClass(String):void

@ addClass(int,String):void

@ addClass(int,String, String, String, String, String, boolean,boolean): void

@ addPropertyNodeiint,String,String, String, String, String, String, String): void
@ addinstanceToClass(String):void

@ addinstanceToClass(String,int):void

@ addinstanceToClass(int int):void

@ removelnstanceFromClass(int):void

@ removelnstanceFromClass(String):void

@ removelnstanceFromClass(int int):void

@ removelnstanceFromClass(String int):void

@ addinstanceToClass(int):void

@ addClassThing():void

@ addClassThing(int) void

@ addDeprecatedClass(String):void

@ findElement(String)rint

@ findClass(String, String):int

@ addProperty(String, String String, String} void

@& addSubProperty(String String, String, String):void

@ addSubClassProperty(int,int): void

@ addPropertyData(int, String, String, String, String String String String String):void
@ addProperty(int,int String, intjint

@ helperFindNode(int):Node

® helperEdgeLenght(Node Mode).int

® helperDecreaseCla: izeAfterR Node, int): void

@ helperincreaseClassSizeA fterAddinginstances(Node, int):void

@ helperUpdateShoriiame(Node): void

@ helperGetShortName(String): String

@ addObjectPropertyWithLabeldsNode(int int, String, String, String, String, String, String, String, String):void

% logger: Logger = Logger.getLogger(Trans formOWLtaGraph.class)

& TransformOWLtoGraph()
@ transformOVVLtoGraph(OWLOntology}:void

E transformSubClassesDefinedOutsideOtherClass(Set«<0WLClass=,0WLOntology,GraphDataModifier):void
B transformDataProperty(Set<0WL DataProperty= OWL Ontology, GraphDataModifier)-void

® transformObjectProperty(Set«0WLObjectProperty=, OWLOntelo gy, GraphDataModifier): void

@ transformClasses(Set=0WL Class> OWLOntology, GraphDataModifier)void

® helperFiterQuotes(String):String
B helperExtractValuelfCondition(String, String, String, String): String
@ helperCheckSubClass(String, String, GraphDataMoedifier):void

.| @ helperExtract. abelNameF romiRIfabeHasNoName(String, String) String

<<Java Class=>
(@ GraphStorage

GraphDatshodifier

c*graph: Graph
R cofid_counter: int =1

o GraphStorage()

& GraphStorage(Graph)

E)SgetDﬂtEM odifier(): GraphDatalMedifier
@FsetGraph(Graph)-void

@ getNewID():int

@ newGraph()-void

@ getGraph():Graph

W
=<lava Class=»
(® GraphAddColumnDefinition

GraphDatsModifier

& GraphAddCelumnDefinition(}
@ addColumnDefinition(Graph):Graph

Abbildung 6.18.: UML-Klassendiagramm des Pakets GraphDataModifier.

GraphAddColumnDefinition

Beim Erstellen eines neuen Prefuse-Graphen legt die Klasse GraphAddColumnDefinition
alle Schliissel der Prefuse Datentabelle und damit die Schliissel der Key-Value Paare fest. Als
Schliissel dienen die statischen Strings der Klasse ColumnNames aus dem Paket types. Die
Klasse GraphAddColumnDefinition kommt daher nur bei der Generierung eines Graphen
zur Anwendung. Dies ist beispielsweise beim Laden einer Ontologie in Protégé der Fall.

TransformOWLtoGraph

Nachdem eine Ontologie in Protégé eingelesen wurde, extrahiert die Klasse TransformOWLtoGraph

sdamtliche notwendigen Informationen aus der Ontologie und legt diese Daten im Prefuse-
Datenmodell ab. TransformOWLtoGraph extrahiert die notwendigen Informationen, die
anschliefsend von der Klasse GraphDataModifier in das Prefuse-Datenmodell umgewandelt
werden. Das Extrahieren der notwendigen Informationen erfolgt durch Zugriff auf die OWL-
API. Hierbei wird auch auf die statischen Strings der Klasse OWLTIypes des Pakets types

zugegriffen.

91

6. Implementierung

GraphDataModifier

Die Klasse GraphDataModifier enthilt Methoden, mit deren Hilfe OWL-Elemente in das
Prefuse-Datenmodell umgewandelt werden. Beim Laden einer Ontologie werden die hierfiir
benétigen Informationen von der Klasse TransformOWLtoGraph aus der Ontologie der
OWL-API extrahiert.

GraphStorage

Die Klasse GraphStorage hilt den Prefuse-Graphen und bietet Methoden, um auf diesen
zugreifen zu konnen. Der Prefuse-Graph innerhalb dieser Klasse ist statische, schliefllich kann
von diesem Plug-in lediglich ein einzelner Graph gleichzeitig visualisiert werden. Dadurch,
dass der Graph statisch ist, kann jede andere Klasse des Plug-ins auf den Graphen zugreifen.
Dies erleichtert jeder Klasse das Extrahieren benétigter Informationen. Des Weiteren erhalt
der GraphStorage einen ID-Generator, durch den eindeutige IDs fiir die weitere Verwendung
im Rahmen des Plug-ins generiert werden konnen.

6.2.7. Das Paket GraphRendering

Das Paket GraphRendering enthilt Klassen, die zur Visualisierung des Graphen notwen-
dig sind. Abbildung 6.19 stellt ein UML-Klassendiagramm des Pakets dar. Die einzelnen
Bestandteile des Paketes werden in den folgenden Abschnitten niher erldutert.

% logger. Logger = Loggergetl
< box_circke: Elipse2D = new Elipse23.Double ()
RectangularShape = new Rectangle2D Double)

LayoutExtended(Siring, boolean}
iLayoutExtended(Siring,boolean,boolean)
© getSpringLengtn(Edgetem) float

edgeRenden

°) & NodeRenderer(y
© changeArmowHead intnt String) Polygon © gelRawShape(Visualter):Shape

Abbildung 6.19.: UML-Klassendiagramm des Paket GraphRendering

ControlListener

Die Klasse ControlListener erweitert den ControlAdapter und implementiert die abstrak-
te Klasse Control. Sie reagiert auf Klickeingaben des Benutzers und tibergibt diese dem
InfoPanelClickListener des infoPanel Pakets. Dabei setzt der ControlListener ein IS_CLICKED
Boolean Flag bei dem entsprechenden Element des Graphen auf den Wert , true”. Des Weiteren
reagiert der ControlListener auf Mouseover-Ereignisse und setzt dabei das IS_HIGHLIGHTED
Flag auf den Wert ,true”. Wird ein anderes Element angeklickt bzw. verldsst die Maus

92

6.2. Architektur

den Bereich des Elementes, so werden die jeweiligen Flags entfernt. Die Visualisierung bei-
der Ereignisse wird, abhidngig des selektierten Elements, von dem EdgeRender bzw. dem
NodeRenderer iibernommen.

TextLayoutDecarator

Die Klasse TextLayoutDecarator regelt das Layout des Textes einer Kante. Hierzu erwei-
tert TextLayoutDecarator das Prefuse Layout. TextLayoutDecarator bestimmt die Positi-
on des Textes einer Kante und regelt das Aussehen des Textes. Beispielsweise stellt der
TextLayoutDecarator den Text in einer anderen Farbe dar, falls die zugehorige Kante durch
den Benutzer markiert wurde. Neben der Position eines Textes regelt der TextLayoutDecarator
auch die Textfarbe und die Hintergrundfarbe eines Textes.

ForceDirectedLayoutExtended

Die Klasse ForceDirectedLayoutExtended erweitert das ForceDirectedLayout von Prefuse
und regelt die Lange einer Kante des Graphen. Auf diese Weise konnten unterschiedliche
Kanten eine verschiedene Lange aufweisen.

EdgeRender

Die Klasse EdgeRender erweitert den Prefuse EdgeRenderer. Sie regelt das Aussehen einer
Kante. Hierzu werden die Informationen des Prefuse-Datenmodells ausgelesen und die
gewiinschte Kantenform generiert. Auf diese Weise konnen unterschiedliche Pfeilformen
innerhalb eines Graphen realisiert werden. Des Weiteren enthilt die Klasse EdgeRender eine
Sonderbehandlung fiir symmetrische Properties. Eine Kante zwischen dem Knoten A und
dem Knoten A ist in Prefuse korrekterweise sehr kurz. Dieses Verhalten war jedoch nicht
erwiinscht, denn das Konzept spezifiziert die Form aus Abbildung 6.20 fiir derartige Kanten.
Falls mehrere symmetrische Properties vorhanden sind, so sollen diese, wie Abbildung
6.21 demonstriert nebeneinander platziert werden. Des Weiteren muss der EdgeRender
die entsprechenden Flags, gesetzt durch den ControlListener, beachten und markierte und
selektierte Kanten in einer anderen Farbe darstellen.

Abbildung 6.20.: Erforderliches Aussehen von symmetrischen Properties.

93

6. Implementierung

Abbildung 6.21.: Darstellung mehrere symmetrische Properties.

In Version 1.0 von VOWL ist die Existenz mehrere Kanten zwischen Knoten A und B nur
indirekt spezifiziert. Dies wird in Abbildung 6.22 verdeutlicht. Der Prefuse Kantenrenderer
zeichnet derartige Knoten iibereinander. Eine Kante zwischen Knoten A und B und eine Kante
zwischen B und A haben dieselben Koordinaten, lediglich ihre Pfeilspitzen unterscheiden
sich. Das Beispiel aus Abbildung 6.23 verdeutlicht, dass die derzeit markierte Kante zwischen
,Document” und , Agent” iiber der Kante zwischen ,, Agent” und ,Document” gezeichnet
wird. Beide Kanten kénnen nur {iiber ihre Pfeilspitze unterschieden werden.

Abbildung 6.22.: Ausschnitt der Konzeptansicht aus VOWL 1.0 [NL13].

94

6.2. Architektur

Abbildung 6.23.: Visualisierung der Kante AB und der Kante BA.

Auch dieses Problem wird vom EdgeRender des Plug-ins gelost. Eine erste Losung sah
ein ausklappbares Dropdown-Menti vor, iiber das der Benutzer die gewiinschte Kante und
damit die erwiinschte Property auswahlen konnte. Diese Idee wurde jedoch verworfen, jeder
Bestandteil der Ontologie sollte visuell reprasentiert werden, andernfalls wére das Erlernen
einer unbekannten, grofsen Ontologie durch mangelnde visuelle Unterstiitzung unnotig
erschwert. Ein zweiter Losungsansatz sah die Auftrennung einer Kante in zwei Kanten vor.
Bei diesem Ansatz sollte das Label der Kante als Knoten zwischen beiden Kanten eingefiigt
werden. Abbildung 6.24 verdeutlicht diesen zweiten Losungsansatz.

Abbildung 6.24.: Erhoffter Losungsansatz des Problems aus Abbildung 6.23.

Der zweite Losungsansatz aus Abbildung 6.24 hatte das visuell nicht ansprechende Ergebnis
aus Abbildung 6.25 zur Folge. Die Abstofsungskrifte der nicht verbundenen Zwischenkno-
ten ,creator” und ,has_creator” des kraftebasierten Layouts lassen beide Knoten zu weit
voneinander weg driften. Dasselbe Verhalten ist bei , has_tag” und ,tag_of” zu erkennen.

95

6. Implementierung

nexflag

previous
tag label

- is sub class of

tagging i
created h
'
'
J
.
'

tagging created

creator

A

[l tag created
. F
) fag

\ created

'
tagaing modified is sub class of
v

A
'
i
\ '
is sub class of N
tagging h |
modified \ v
| i

Abbildung 6.25.: Visuell nicht ansprechendes Ergebnis des Losungsansatzes aus Abbildung
6.23.

Aus diesem Grund wurde ein dritter Ansatz entwickelt, bei dem der EdgeRender des Plug-ins
jede weitere Kanten mit einem versetzen Mittelpunkt visualisiert. Dies wird in Abbildung
6.26 visuell dargestellt.

tagging
modified
tagging modified

tagging
created
tagging created

Abbildung 6.26.: Dritter Losungsansatz.

96

6.2. Architektur

NodeRenderer

Die Klasse NodeRenderer erweitert den Prefuse AbstractShapeRenderer und bietet Unter-
stlitzung fiir unterschiedliche Knotenformen. Durch die Realisierung der unterschiedlichen
Knotenformen kdnnen Knoten ein und desselben Graphen eine unterschiedliche Form anneh-
men. Hierzu werden die Daten des Prefuse-Datenmodells ausgelesen und die entsprechenden
Attribute ausgewertet. Der NodeRenderer setzt beispielsweise die Farbe eines Knoten und
verandert diese, falls die entsprechenden Flags des ControlListener gesetzt wurden.

RenderPrefuseGraph

Die Klasse RenderPrefuseGraph rendert den Prefuse-Graphen im, durch die VOWLViewCom-
ponent des Paketes protege, vorgegebenen Display.

97

7. Evaluation

Ihm Rahmen dieser Arbeit wurde das in Kapitel 4 vorgestellte und in Kapitel 6 realisierte
Visualisierungskonzept durch eine Nutzerstudie evaluiert. Dabei wurde sowohl die Ver-
standlichkeit der Visualisierung als auch der Umgang mit dem Visualisierungswerkzeug
untersucht.

Innerhalb der Nutzerstudie wurde die Referenzimplementierung, die das Konzept aus Ka-
pitel 4 implementiert, mit einem weiteren bereits existierenden Visualisierungswerkzeug
verglichen. Hierbei handelte es sich um das schon in Abschnitt 3.2 beschriebene SOVA. Als
Blindstudie wurde die Nutzerstudie nicht durchgefiihrt, schliefflich konnten die Studienteil-
nehmer den Namen der jeweiligen Visualisierung ablesen. Die meisten der Teilnehmer der
Studie kannten weder die Referenzvisualisierung SOVA noch das Visualisierungskonzept
VOWL oder dessen Prototyp. Weiter wussten sie nicht, welche der beiden Visualisierungen
zu untersuchenden VOWL-Prototyp entsprach. Damit kam die Studie fiir die meisten der
Teilnehmer den Kriterien einer ,einfachblind Studie” hinsichtlich dieses Kriteriums sehr nahe.
Zum Vergleich des Visualisierungskonzeptes VOWL und dessen prototypischer Umsetzung
wurde das Visualisierungswerkzeug SOVA aus der Liste aller themenverwandten Arbeiten
(Abschnitt 3) ausgewdhlt. Die Vergleichsvisualisierung sollte auf demselben Framework basie-
ren, damit dieselbe Ontologie visualisiert werden konnte. Protégé 3 kann Protégé 4 Ontologien
nicht fehlerfrei einlesen. Des Weiteren sollte ausgeschlossen werden, dass die Nutzer VOWL
aufgrund des moderneren Designs von Protégé bevorzugten. Da OntoGraf im Vergleich
zu SOVA zu viele Nachteile aufwies, wurde SOVA als Vergleichsvisualisierung bestimmt.
Durchfithrung und Resultate der Nutzerstudien werden in diesem Kapitel beschrieben.

7.1. Durchfiihrung

In diesem Abschnitt wird die Durchfiihrung der Benutzerstudie beschrieben. Die Verifikation
der prototypischen Umsetzung des Visualisierungskonzeptes aus Kapitel 4 erfolgte als Exper-
tenstudie. Der Prototype wurde von jeweils einer Person unter Anleitung des Studienleiters
in einem neutralen Raum validiert.

Die Studie besteht aus einer Nutzerbefragung und einem Laborexperiment. Zu Beginn der
Studie erhielten die Teilnehmer einen Fragebogen zur Erfassung ihres Vorwissens. Die enthal-
tenen Fragen beschrankten sich auf die Erhebung der Erfahrung hinsichtlich der Visualisie-
rung von Ontologien im allgemeinen und den untersuchten Visualisierungen und Ontologien
im Speziellen.

Im Anschluss sollten die Studienteilnehmer in einem Laborexperiment verschiedene Auf-
gaben mit dem Prototyp erledigen. Zur Kontrolle wurden weitere Fragen gestellt, um die

99

7. Evaluation

Ergebnisse mit SOVA aus Abschnitt 3.2 als Referenzwerkzeug vergleichen zu konnen. Die Rei-
henfolge der Visualisierungsplugins war alternierend, dem ersten Teilnehmer wurde zuerst
VOWL anschlieffend SOVA gezeigt, wahrend die Reihenfolge im Anschluss an den vorherigen
Teilnehmer getauscht wurde. Der Studienleiter notierte die Bemerkungen der Probanden und
deren Vorgehen.

Abschlieflend wurde abermals eine Nutzerbefragung durchgefiihrt, in der die Probanden
um ihre abschliefSende Meinung hinsichtlich der beider Visualisierungen gebeten wurden.
Auch wurden den Probanden zwei Abbildungen gezeigt, die sie beschreiben und bewerten
sollten.

7.2. Aufgaben

Wihrend des Laborexperiments sollten die Studienteilnehmer 16 Aufgaben losen. Die ersten
acht Aufgaben bezogen sich auf die modular-unified-tagging-ontology (MUTO) [LDA11], die
restlichen auf die friend-of-a-friend (FOAF) Ontologie [DB10]. Die MUTO-Ontologie wurde
als Referenz fiir eine kleine Ontologie ausgewahlt, wahrend die FOAF-Ontologie als Vertreter
einer grofieren Ontologie diente.

Jeweils vier der acht Fragen zur MUTO-Ontologie mussten mithilfe des Visualisierungs-
konzeptes SOVA beantwortet werden, die restlichen vier Fragen unter Zuhilfenahme des
Visualisierungskonzeptes VOWL. Mit den acht Aufgaben zur FOAF-Ontologie wurde dquiva-
lent verfahren. Die Reihenfolge der verwendeten Visualisierungskonzepte war alternierend.
Abbildung 3.7 visualisiert die MUTO-Ontologie mithilfe des in Abschnitt 3.2 vorgestellten Vi-
sualisierungskonzepts SOVA. Abbildung 6.10 zeigt eine Visualisierung der MUTO-Ontologie
mithilfe des in Abschnitt 4 vorgestellten und verbesserten Visualisierungskonzepts. Eine
Visualisierung der FOAF-Ontologie durch beide Visualisierungskonzepte befindet sich in Ab-
schnitt B des Anhangs unter Abbildung B.1 und Abbildung B.2. Vergleichbare Darstellungen
erhielten die Probanden wahrend der durchgefiihrten Evaluation.

In diesem Abschnitt werden die einzelnen Fragen und Aufgaben sowie deren Motivation
erldutert. Der Fragebogen ist in Abschnitt A des Anhangs beigefiigt.

Die einzelnen Fragen sind mit einer dreistelligen Nummer gekennzeichnet. Die erste Ziffer
gibt die zu bearbeitende Ontologie an, dabei steht eins fiir die MUTO-Ontologie und zwei fiir
die FOAF-Ontologie. Die zweite Ziffer dient der Unterscheidung des zu verwendeten Visuali-
sierungswerkzeuges, wahrend die dritte Ziffer die eigentlichen Fragen kennzeichnet. 111 steht
beispielsweise fiir die erste Ontologie (MUTO-Ontologie), das erste Visualisierungswerkzeug
und die erste Frage.

7.2.1. Fragen zur MUTO-Ontologie

In Aufgabe 111 wurden die Probanden gebeten, den Namensraum eines Objekts mit dem
Namen , Item” zu bestimmen.

Aufgabe 112 war dhnlich zu 111, nur dass diesmal nach dem Namensraum des Objekts ,tag
of” gefragt wurde. In beiden Féllen wurde den Probanden nicht mitgeteilt, ob eine Klasse

100

7.2. Aufgaben

oder Property gesucht wurde. Beide Fragen dienten dem Einstieg und sollten die Interaktion
des Nutzers mit dem Werkzeug tiberpriifen.

In Aufgabe 113 sollte der Nutzer die Anzahl der Klassen bestimmen. Durch diese Frage sollte
bestimmt werden, ob die Nutzer Klassen intuitiv als solche bestimmen konnen.

Durch Aufgabe 114 wurden die Nutzer schliefilich gebeten, das Objekt , Tagging” zu beschrie-
ben. Durch diese Frage sollte die Visualisierung als Ganzes tiberpriift werden. Waren die
Nutzer in der Lage die Ontologie richtig zu deuten, konnten sie erkennen, welche Richtung
durch die Pfeile propagiert werden sollte? Waren sie in der Lage die verschiedenen Properties
richtig zu erkennen?

Anschlieffend wurde das Visualisierungswerkzeug gewechselt und der Nutzer musste in
Aufgabe 121 den Namensraum des Objekts ,Concept” bestimmen.

In Aufgabe 122 sollten sie den Namensraum des Objekts ,nextTag” herausfinden. Beide
Aufgaben haben eine dhnliche Fragestellung wie Aufgabe 111 bzw. 112 und dienen dem
Vergleich beider Visualisierungskonzepte.

In Aufgabe 123 sollte der Nutzer die Anzahl der Properties bestimmen. Diese Frage diente
analog zu Frage 123 der Feststellung, ob Properties durch den Nutzer intuitiv als solche zu
erkennen seien.

Durch Aufgabe 124 wurden die Nutzer schliellich aufgefordert, das Objekt , Tag” zu be-
schreiben. Analog zu Frage 114 sollte {iberpriift werden, ob die Nutzer die Visualisierung als
Ganzes verstehen konnten. Waren die Nutzer in der Lage die Ontologie richtig zu deuten,
konnten sie erkennen, welche Richtung durch die Pfeile propagiert werden sollte? Waren sie
in der Lage die verschiedenen Properties richtig zu deuten?

7.2.2. Fragen zur FOAF-Ontologie

Die Fragen zur FOAF-Ontologie waren analog zu den Fragen der MUTO-Ontologie und
dienten dem weiteren Vergleich beider Visualisierungskonzepte fiir groiere Graphen. In
Aufgabe 211 und Aufgabe 221 sollte der Namensraum einer Klasse, in Aufgabe 212 und
Aufgabe 222 der einer Property bestimmt werden. Aufgabe 221 stellte eine Besonderheit dar,
es existieren zwei Klassen mit demselben Namen , Person”. Durch Aufgabe 213 und Aufgabe
223 sollte bestimmt werden, ob der Nutzer innerhalb des Visualisierungskonzeptes Klassen
und Properties intuitiv unterscheiden kann und mittels Aufgabe 214 und Aufgabe 224 sollte
die Visualisierung als Ganzes verifiziert werden.

7.2.3. Abschlussfragen

Im Anschluss an die 16 Aufgaben wurden die Probanden um ihre abschliefende Meinung zu
VOWL und SOVA gebeten. Sie sollten sowohl die Vorteile als auch die Nachteile nennen, die
Visualisierung mittels Schulnoten bewerten und die Schwierigkeit des Auslesens von Klassen,
Properties und von Details bewerten. Anschliefend wurden den Studienteilnehmern zwei
verschiedene Darstellungen gezeigt und sie gebeten, die gezeigte Darstellung zu beschreiben
und ihr favorisiertes Konzept zu nennen.

101

7. Evaluation

7.3. Studienteilnehmer

An der Nutzerstudie haben sechs Probanden teilgenommen. Alle Teilnehmer kamen aus dem
Bereich der Fakultit 5 der Universitat Stuttgart und waren mannlich.

Das Vorwissen der Teilnehmer war gering, allen Teilnehmern war die FOAF-Ontologie unbe-
kannt, einer von sechs Teilnehmern kannte die MUTO-Ontolgie. Vier von sechs Teilnehmern
gaben einen mittleren Kenntnisstand hinsichtlich Ontologien im Allgemeinen an. Vier von
sechs Teilnehmern kannten das Visualisierungskonzept VOWL nicht, keiner der sechs Teilneh-
mer kannte das Visualisierungskonzept SOVA. Drei der Sechs Teilnehmer gaben an, bereits
zuvor Werkzeuge zur Visualisierung von Ontologien verwendet zu haben. Abbildung 7.1,
Abbildung 7.2 und Abbildung 7.3 stellen den Kenntnisstand der Probanden grafisch dar.

Kenntnisstand Uber Ontologien im Allgemeinen

Anzahl Personen

gut ehergut mittelmallig eher gering gering

S =~ N W & O

Abbildung 7.1.: Kenntnisstand iiber Ontologien im Allgemeinen.

102

7.4. Resultate

Vorwissen

B Werkzeuge zur
Visualisierung verwendet

Kenntnisse Gber SOVA

I I I m Kenntnisse Uiber VOWL

intensiv benutzt gehort nie gehodrt

Anzahl Personen

O =~ N W d» 00 O N

Kenntnisstand

Abbildung 7.2.: Kenntnisstand tiber die Visualisierung von Ontologien und {iiber die
Visualisierungskonzepte SOVA und VOWL.

Kenntnisstand Uber die Ontologien

B MUTO-Ontologie
bekannt

B FOAF-Ontotologie
bekannt

Anzahl Personen

= N W b OO O N

Abbildung 7.3.: Kenntnisstand tiber MUTO-Ontologie und die FOAF-Ontologie.

7.4. Resultate

In diesem Abschnitt werden die Ergebnisse der Studie sowie die Bewertungen der Visualisie-

rungen durch die Probanden aufgelistet.
Die Studienteilnehmer konnten die Aufgaben 1, 2 und 4 in beiden Ontologien erfolgreich erle-
digen. Abbildung 7.4 verdeutlicht das Ergebnis fiir die MUTO-Ontologie und Abbildung 7.5

103

7. Evaluation

fiir die FOAF-Ontologie. Deutlich ist zu erkennen, dass Aufgabe 3 nicht von allen Probanden
richtig beantwortet werden konnte.

Resultate der MUTO-Ontologie

6

5
S 4
c
S mVOWL
5 3
o H SOVA
q 2
&

1

0

Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4
Aufgaben

Abbildung 7.4.: Wieviele Personen konnten alle Fragen zur MUTO-Ontologie beantworten?

Resultate der FOAF-Ontologie

6
HVOWL
H SOVA
0

Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4
Aufgaben

N w B (6]

Anzahl Personen

-

Abbildung 7.5.: Wieviele Personen konnten alle Fragen zur FOAF-Ontologie beantworten?

Abbildung 7.6 und Abbildung 7.7 erldutern die Ursache fiir das Abschneiden der Probanden
bei der dritten Aufgabe. Wéahrend alle Teilnehmer Klassen und Datatype Properties inner-
halb der VOWL-Visualisierung intuitiv erkennen konnten, schien dies auf Object Properties
nicht zuzutreffen, ein einziger Studienteilnehmer beachtete Object Properties bei der Auf-
zdhlung aller Properties. Bei der SOVA-Visualisierung ergab sich ein dhnliches Bild. Wenige
Teilnehmer konnten Klassen und Object Properties intuitiv unterscheiden. Berticksichtigt
werden sollte allerdings, dass Datatype Properties von SOVA nicht dargestellt werden. Aus
diesem Grund liegt die Wahrscheinlichkeit richtig zu raten bei 50 %. Fast allen Teilnehmern, de-
nen eine intuitive Unterscheidung nicht gelang konnten durch logisches Denken eine richtige
Differenzierung treffen und durch Beriicksichtigung der Labels die Frage richtig beantworten.

104

7.4. Resultate

Beispielsweise haben zwei von sechs Teilnehmern Properties in der SOVA-Visualisierung
intuitiv erkannt. Alle vier Teilnehmern, denen dies nicht gelang, konnten durch logisches
Schliefsen zu dem Schluss gelangen, dass Properties in SOVA durch die violette Farbe darge-
stellt werden. Dies erkldrt das deutlich bessere Abschneiden der SOVA-Visualisierung bei der
dritten Frage.

Ist die Visualisierung intuitiv?

6
B VOWL Intuitiv Klassen
5 erkannt
B SOVA Intuitiv Properties
g 4 erkannt
g B SOVA Intuitiv Klassen erkannt
e 3 VOWL Intuitiv Objekt-
% 9 Properties erkannt
g~ B VOWL Intuitiv Datatype-
1 Properties erkannt
0

ja nein

Abbildung 7.6.: Konnten die Probanden wéhrend der Evaluation Klassen und Properties
intuitiv unterscheiden?

SOVA

H Klassen durch
Ausschlusswahl erkannt
(vom Namen her)

4 Intuitiv Properties erkannt
M Properties durch
Ausschlusswahl erkannt
(vom Namen her)
I I ' B Intuitiv Klassen erkannt
0
ja

nein

w

N

Anzahl Personen

-

Abbildung 7.7.: Wie konnten die Probanden wahrend der Evaluation Klassen und Properties
unterschieden?

105

7. Evaluation

Alle sechs bevorzugten die VOWL-Visualisierung und benoteten VOWL sowohl bei der
Gesamtbewertung als auch bei den Einzelbewertungen mit besseren Noten, als die Vergleichs-
visualisierung. Die Bewertung erfolgte in Schulnoten, eine Eins gilt als beste, eine Sechs als
schlechteste Note. Abbildung 7.8 vermittelt einen Eindruck der Gesamtbewertung durch die
Probanden.

Gesamtbenotung
4,5
3,5

2,5 —— SOVA
—o— VOWL

Note
N

1,5
0,5

1 2 3 4 5 6
Proband

Abbildung 7.8.: Gesamtbenotung der Visualisierungskonzepte durch die Probanden.

Alle Probanden wihlten zur Beantwortung von Frage 221 das im Zentrum platzierte Objekt
,Person”. Durch das kriftebasierte Layout werden semantisch dhnlichere Objekte raumlich
niher zueinander platziert, daher gruppieren sich jene Objekte mit der grofiten Ahnlichkeit
im Zentrum der Ontologie. Wahrend der Evaluation konnte man durch Verfolgen des Maus-
zeigers erkennen, dass dies ist, auch die Region, in der die meisten Menschen mit ihrer Suche
starten.

Als Vorteil der SOVA-Visualisierung nannten fiinf von sechs Probanden die Suchfunktion,
wihrend vier von sechs Probanden bei VOWL die Ubersichtlichkeit sowie die deutlichen
Unterschiede hinsichtlich Form und Farbe lobten. Wahrend die Ubersichtlichkeit bei VOWL
gelobt wurde, wurde die Uniibersichtlichkeit bei SOVA von vier von sechs Studienteilneh-
mern geriigt.

Beziiglich der bevorzugten Darstellung konnte keine Priaferenz erkannt werden, drei Proban-
den bevorzugten die Darstellung aus VOWL 1.0, wiahrend drei Probanden die Optimierung
bevorzugten. Beide Darstellungen konnten von 100 % aller Probanden beschrieben werden.

106

7.5. Fazit

7.5. Fazit

Die Ergebnisse der Evaluation zeigen, dass sich mit der prototypischen Umsetzung aus Ab-
schnitt 6 des in Kapitel 4 vorgestellten Losungskonzepts Ontologien auch fiir Benutzer ohne
Hintergrundwissen verstandlich sind und sich ganzheitliche visualisieren lassen. Insbesonde-
re Klassen und Datatype Properties lassen sich so intuitiv darstellen. Die Ergebnisse der
Untersuchung zeigen, dass die Darstellung von Object Properties noch weitere optimiert
werden kann und stellt damit ein Thema fiir eventuell auf diesem Konzept aufbauende Arbei-
ten dar. Die Resulte fiir die Visualisierung der Datatype Properties konnen aber auch durch
die Fragestellung beeinflusst worden sein. Einigen Probanden der Studie war beispielsweise
nicht klar, dass nach der Summe aller Properties gesucht wurde. In aufbauenden Arbeiten
sollte dieser Sachverhalt daher noch einmal untersucht werden. Die Resultate zeigen ebenfalls
die Eignung des Konzepts und dessen prototypische Umsetzung fiir grofiere Ontologien.
Trotz sinkender Ubersicht blieben die Auswirkungen auf die Probanden gering. Auch die
Vorteile und Eignung eines kriftebasierten Layouts zur Visualisierung von Ontologien wur-
de durch die Studie gezeigt. Alle Studienteilnehmer bevorzugten die deutliche und klare
Farbauswahl und Formwahl der VOWL-Visualisierung.

107

8. Zusammenfassung & Ausblick

In dieser Arbeit wurden existierende Visualisierungskonzepte zur grafischen Darstellung
von Ontologien vorgestellt und auf ihre jeweiligen Starken und Schwéchen hin untersucht.
Im Anschluss wurde das Visualisierungskonzept VOWL vorgestellt und optimiert, VOWL
bildet dabei ein weiteres Konzept fiir die grafische Darstellung von Ontologien und versucht
die zuvor genannten Schwiachen zu vermeiden. Das VOWL-Visualisierungskonzept sollte
auch fur Benutzergruppen mit geringer bis keiner Erfahrung im Umgang mit Ontologien
geeignet sein. Auf VOWL folgend wurde die Realisierung der Visualisierung beschrieben.
Diese begann mit einer Untersuchung existierender Grafikframeworks, um herauszufinden,
welche die Realisierung eines Prototypen positiv unterstiitzen konnten. Anschliefiend wurde
das zeitliche Vorgehen der Realisierung und der Architektur der prototypischen Umsetzung
als Protégé Plug-in beschrieben. Die Integration als Plug-in in ein weitverbreitetes Werkzeug
zum Bearbeiten und Analysieren von Ontologien, wie Protégé, ermoglicht es sowohl fort-
geschrittenen Anwender Protégé und Plug-ins in ihren Workflow zu integrieren, als auch
Einsteigern, die auf Dokumentation und Tutorials rund um Protégé zurtickgreifen konnen.
Nach Abschluss der Realisierung wurde das optimierte Visualisierungskonzept und des
darauf aufbauenden Prototyps, im Rahmen einer Nutzerstudie, evaluiert. Die Evaluation
zeigt die Eignung von VOWL-Ontologien, auch fiir Nutzer mit wenigen Vorkenntnissen,
kompakt und ganzheitlich darzustellen.

Ausblick

In diesem Abschnitt werden Optimierungsmoglichkeiten des Visualisierungskonzeptes und
dessen prototypischer Umsetzung beschrieben.

Reaktion auf Anderungen in Protégé

Der Prototyp greift mittels OWL-API auf die von Protégé eingelesene Ontologie zu und
speichert diese in einer eigenen Datenstruktur. Das Auslesen der durch Protégé eingelesenen
Ontologie erfolgt einmalig bei der Initialisierung des Prototyps. Zum reinen Betrachten einer
abgespeicherten Ontologie stellt dieser Sachverhalt keine Einschrankung dar, schliefSlich wird
Protégé beim Laden einer abgespeicherten Ontologie ebenfalls neu initialisiert.

Mit Protégé hilt der Benutzer ein méachtiges Werkzeug zum Bearbeiten und Erstellen von
Ontologien in den Handen. Aufgrund des einmaligen Auslesens der Ontologie beim Initia-
lisieren des Plug-ins ist der Prototyp in der aktuellen Ausbaustufe nicht in der Lage die
Modifikationen des Benutzers innerhalb der Visualisierung darzustellen. Dasselbe gilt fiir

109

8. Zusammenfassung & Ausblick

Ontologien, die zwar erstellt jedoch nicht gespeichert wurden.

Bisher miissen diese Ontologien zuerst gespeichert und anschlieflend geladen werden, damit
sie von der prototypischen Umsetzung visualisiert werden konnen. Zur Losung dieses Pro-
blems sind verschiedene Losungsansitze denkbar. Beispielsweise konnte das Einlesen der
abgespeicherten Ontologie auf den Moment verschoben werden, an dem das Plug-in durch
den Benutzer aufgerufen wird. Alternativ konnte ein Update Mechanismus implementiert
werden, der die Elemente des Prefuse-Datenmodells mit jenen des Protégé-Datenmodells
vergleicht und Anderungen iibernimmt. Aufgrund der eindeutigen Bezeichner wire dieser
Ansatz machbar.

Ausbau der Visualisierungskonzept fiir verschiedene Nutzergruppen

Das vorgestellte Visualisierungskonzept konnte verschiedene Nutzergruppen besser unter-
stiitzen. Denkbar wire beispielsweise, dass die Symbolwahl von einer ausgewé&hlten Nutzer-
gruppe abhinge. Beispielsweise konnten fiir verschiedene Nutzergruppen unterschiedliche
Symbole fiir owl:intersection0f definiert werden. Zudem wire es denkbar unerfahrenen
Benutzern bestimmte Details vorzuenthalten, um ihnen die Nutzung und den Einstieg in das
Plug-in zu erleichtern.

Ausbau der Visualisierungskonzept fiir sehr groBe Graphen

Das vorgestellte Visualisierungskonzept konnte fiir sehr grofse Graphen angepasst werden.
Denkbar wire es beispielsweise Informationen tiber Instanzen ab einer Mindestzoomstufe
anzuzeigen. Dasselbe sei auch fiir verschiedene Property-Typen denkbar. Auf diese Weise
konnte der Gesamtiiberblick auf Kosten der Details verbessert werden. Die Details konnten
erst angezeigt werden, falls der Benutzer einen Ausschnitt des Graphen vergrofiere.
Zusitzlich kénnte der Uberblick bei grofien Graphen durch eine zusétzliche Miniaturansicht
weiter verbessert werden. Innerhalb der Evaluation aus Kapitel 7 schlug ein Teilnehmer
Hinweise im Bereich der Darstellung vor, die ihn dartiber informieren, dass aufierhalb des
sichtbaren Bereiches weitere Elemente existieren. Dies konnte {iber farbliche Markierungen,
beispielsweise durch Pfeile, geschehen.

Konfigurierbarkeit der Visualisierung

Die prototypische Umsetzung konnte ausgebaut werden, um dem Nutzer mehr Moglichkeiten
zu bieten, die Darstellung nach eigenen Wiinschen zu verdandern.

110

Vollsténdige Realisierung des Konzepts

Die prototypische Umsetzung koénnte ausgebaut werden, um sdmtliche Elemente des
Visualisierungskonzeptes korrekt darzustellen. Kardinalititen werden im Prototyp bis-
her nicht visuell dargestellt. Dasselbe gilt fiir die OWL-Elemente FunctionalProperty,
InverseFunctionalProperty und TransitiveProperty.

Ausbau der unterstiitzen Formate

Der Prototyp liest die eingelesene Ontologie mittels OWL-API aus Protégé aus und kann
daher prinzipiell alle Dateiformate visualisieren, die Protégé einlesen kann. Leider scheint
die Unterstiitzung der verschiedener Dateiformate durch Protégé unterschiedlich ausgebaut
zu sein. Falls eine Ontologie im RDF-Format eingelesen, durch Protégé in OWL-Format
konvertiert und anschlieffend zuriick in das RDF-Format exportiert wird, so konnte ein
Datenverlust bemerkt werden. Getestet wurde die Funktionalitdt des Prototyps bisher nur
mit Ontologien, die im RDF-Format vorlagen.

Unterstiitzung fiir Abfragesprachen

Die prototypische Umsetzung konnte erweitert werden, um Abfragesprachen direkt auf der
visualisierten Ontologie ausfiihren zu konnen. Auf diese Weise konnten sehr erfahrene Nutzer
eine visualisierte Ontologie besser explorieren.

Auflésung der Protégé Abhéngigkeit

Der Prototyp kdnnte von seiner Abhédngigkeit mit dem Protégé-Framework gelost und als
eigenstandiges Programm veroffentlicht werden. Aus diese Weise wire der Prototyp auch fiir
Nutzer geeignet, die mit Protégé iiberfordert sind. Alternativ konnte der Prototyp als Plug-in
tir weitere Ontologie Editoren veroffentlicht werden, dies wiirde den Nutzerkreis weiter
erhohen.

111

113

A. Fragebogen

A.

114

Fragebogen

Identifikationsnummer:

Fragen zum Vorwissen:

Kennen Sie die MUTO Ontologie?
(Modular Unified Tagging Ontology)

Kennen Sie die FOAF Ontologie?
(Friend of a Friend)

gut eher mittel- | eher gering
gut malRig | gering
Wie schatzen Sie lhren Kentnissstand Uber
Ontologien im Allgemeinen ab?
intensiv | schon schon
benutzt | davon
gehort
Haben Sie bereits Werkzeuge zur
Visualisierung von Ontologien verwendet?
Kennen sie das Visualisierungskonzept
VOWL?
Kennen sie das Werkzeug / Plugin /
Programm / Konzept: SOVA?
Ja etwas Nein

MUTO-Fragen

Plug-in [TVOWL []SOVA

111.Bestimmen Sie den Namespace von “ltem”.
112.Bestimmen Sie den Namespace von “tag of”.
113.Wieviele Klassen sind in dieser Ontologie enthalten?
114.Beschrieben Sie “Tagging”.

Welche Aussagen kdnnen Sie Uiber “Tagging” treffen?

Plug-in []JVOWL []SOVA

121.Bestimmen Sie den Namespace von “Concept”.
122.Bestimmen Sie den Namespace von “nextTag”.
123.Wieviele Properties sind in dieser Ontologie enthalten?
124.Beschrieben Sie “Tag”.

Welche Aussagen kdnnen Sie Uber “Tag” treffen?

115

A. Fragebogen

FOAF-Fragen

Plug-in [TVOWL []SOVA

211.Bestimmen Sie den Namespace von “Agent”.
212.Bestimmen Sie den Namespace von “yahooChatID”.
213.Wieviele Klassen sind in dieser Ontologie enthalten?
214.Beschrieben Sie “Concept”.

Welche Aussagen kdnnen Sie Uber “Concept” treffen?

Plug-in []JVOWL []SOVA

221.Bestimmen Sie den Namespace von “Person”.
222 Bestimmen Sie den Namespace von “birthday”.
223.Wieviele Properties sind in dieser Ontologie enthalten?
224 Beschrieben Sie “Document”.

Welche Aussagen kdnnen sie uber “Document” treffen?

116

Fragen:

1.

Was hat lhnen gefallen an: OPTIONAL
a. SOVA

b. VOWL

Was hat lhnen nicht gefallen an: OPTIONAL
a. VOWL

b. SOVA

Benoten Sie die Visualisierungen mit Schulnoten :
(1 - sehr gut, 2 - gut, 3 - befriedigen, 4 - ausreichend, 5 - mangelhaft, 6 - ungeniigend)
a. SOVA

b. VOWL

Wie schwer war die Bestimmung der Anzahl der Klassen bzw. Properties in
Schulnoten:
(1 - sehr gut, 2 - gut, 3 - befriedigen, 4 - ausreichend, 5 - mangelhaft, 6 - ungenligend)
Klassen Properties
a. VOWL /
b. SOVA /
Wie schwer war das Auslesen zusatzlicher Details in Schulnoten:
(1 - sehr gut, 2 - gut, 3 - befriedigen, 4 - ausreichend, 5 - mangelhaft, 6 - ungentigend)
a. SOVA
b. VOWL
Welche Visualisierung wiirden Sie einsetzen und warum?

117

A. Fragebogen

Zwei Darstellungen:

118

Fragen:

1. Welche der beiden Darstellung gefillt lhnen besser?
[] dunkelblaue / obere Darstellung
[1 hellblaue / untere Darstellung
2. obere Darstellung
a. was bedeutet oben links?
b. was bedeutet oben rechts?

c. was bedeutet unten links?

d. was bedeutet unten rechts?

3. untere Darstellung
a. was bedeutet oben links?
b. was bedeutet oben rechts?
c. was bedeutet unten links?

d. was bedeutet unten rechts?

119

B. Weitere Visualisierungen

PG ETI SOVA - Visuslizsticn | PG ETI SOVA - Hisrarehy Tres Vis|

PG ETI SOVA - Visualization:

MEEE

search 33 | 5

Abbildung B.1.: Visalisierung der FOAF-Ontologie mittels SOVA.

[=]

Abbildung B.2.: Visualisierung der FOAF-Ontologie mittels VOWL 2.0.

121

Literaturverzeichnis

[Ala03]

[Ald02]

[Ald03]

[Ber10]

[Ber13]

[BJKK10]

[BL89]

[BL94]

[BLIS]

[BML97]

[BVHH*04]

[CT98]

H. Alani. TGVizTab: An Ontology Visualisation Extension for Protégé. In
Knowledge Capture (K-Cap’03), Workshop on Visualization Information in Knowledge
Engineering. 2003. Event Dates: October 26. (Zitiert auf den Seiten 9 und 45)

G. Alder. Design and implementation of the JGraph swing component. Techical
Report, 1(6), 2002. (Zitiert auf Seite 64)

G. Alder. The JGraph Tutorial. Verdffentlicht auf: http: // www. jgraph. com/
docs. html, 37:62-71,2003. (Zitiert auf Seite 64)

G. Bernstein. JUNG 2.0 Tutorial, 2010. URL http://www.grotto-networking.
com/JUNG/JUNG2-Tutorial .pdf. (Zitiert auf Seite 66)

Berkeley Institute of Design (BiD). prefuse | interactive information visualizati-
on toolkit, 2013. URL http://prefuse.org. (Zitiert auf den Seiten 9, 29, 31, 69
und 70)

T. Boinski, A. Jaworska, R. Kleczkowski, P. Kunowski. Ontology visualization.
Zeszyty Naukowe, 18:15-20, 2010. (Zitiert auf Seite 70)

T. Berners-Lee. Information Management: A Proposal. Technischer Bericht,
CERN, 1989. URL http://www.w3.org/History/1989/proposal.html. (Zitiert
auf Seite 13)

T. Berners-Lee. Universal Resource Identifiers in WWW, 1994. URL http:
//tools.ietf.org/html/rfc1630. (Zitiert auf Seite 19)

T. Berners-Lee. Semantic web road map, 1998. URL http://student.bus.
olemiss.edu/files/conlon/others/others/semanticwebpapers/roadmap.
pdf. (Zitiert auf Seite 13)

N. S. Barghouti, J]. M. Mocenigo, W. Lee. Grappa: a GRAPh PAckage in Java. In
In Fifth International Symposium on Graph Drawing, S. 336-343. Springer-Verlag,
1997. (Zitiert auf den Seiten 10, 60, 61 und 62)

S. Bechhofer, F. Van Harmelen,]J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, L. A. Stein, et al. OWL web ontology language reference. W3C
recommendation, 10:2006-01, 2004. (Zitiert auf den Seiten 24 und 25)

L. F. Cruz, R. Tamassia. Graph drawing tutorial. URL: http: // wwwj. ncsu. edu/
“gremaud/ MA4{32/ graph_ drawing_ tutorial. pdf, 1998. (Zitiert auf Seite 27)

123

 http://www.jgraph.com/docs.html
 http://www.jgraph.com/docs.html
http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf
http://www.grotto-networking.com/JUNG/JUNG2-Tutorial.pdf
http://prefuse.org
http://www.w3.org/History/1989/proposal.html
http://tools.ietf.org/html/rfc1630
http://tools.ietf.org/html/rfc1630
http://student.bus.olemiss.edu/files/conlon/others/others/semantic web papers/roadmap.pdf
http://student.bus.olemiss.edu/files/conlon/others/others/semantic web papers/roadmap.pdf
http://student.bus.olemiss.edu/files/conlon/others/others/semantic web papers/roadmap.pdf
http://www4.ncsu.edu/~gremaud/MA432/graph_drawing_tutorial.pdf
http://www4.ncsu.edu/~gremaud/MA432/graph_drawing_tutorial.pdf

Literaturverzeichnis

[DB10]

[GT93]

[Gan13]

[GR11]

[GralO]

[Gral3a]

[Gral3b]

[HB11]

[HCLO5]

[Hes02]

[Hit07]

[Hor10]

[Ins13a]

[Ins13b]

[Ins13c]

124

L. M. Dan Brickley. FOAF Vocabulary Specification 0.98, 2010. URL http:
//xmlns.com/foaf/spec/. (Zitiert auf Seite 100)

T. R. Gruber, et al. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199-220, 1993. (Zitiert auf Seite 15)

E. R. Gansner. Using Graphvizas a Library (cgraph version). 2013. (Zitiert auf
Seite 60)

J. Gantz, D. Reinsel. Extracting value from chaos. IDC iView, S. 1-12, 2011.
(Zitiert auf Seite 13)

GraphStream - Gallery, 2010. URL http://graphstream-project.org/doc/
Gallery. (Zitiert auf den Seiten 10, 75 und 76)

Graphviz - Graph Visualization Software, 2013. URL http://www.graphviz.
org/Home . php. (Zitiert auf den Seiten 58 und 59)

Node Shapes, 2013. URL http://www.graphviz.org/doc/info/shapes.html.
(Zitiert auf Seite 60)

M. Horridge, S. Bechhofer. The owl api: A java api for owl ontologies. Semantic
Web, 2(1):11-21, 2011. (Zitiert auf Seite 24)

J. Heer, S. K. Card, J. A. Landay. Prefuse: a toolkit for interactive information
visualization. In Proceedings of the SIGCHI conference on Human factors in computing
systems, S. 421-430. ACM, 2005. (Zitiert auf den Seiten 69 und 70)

W. Hesse. Ontologie (n). Informatik-Spektrum, 25(6):477-480, 2002. (Zitiert auf
Seite 15)

P. Hitzler. Semantic Web: Grundlagen. Springer, 2007. URL http://books.google.
de/books?id=1wa7TuJ_RR8C. (Zitiert auf den Seiten 15, 20 und 21)

M. Horridge. OWLViz, 2010. URL http://protegewiki.stanford.edu/wiki/
OWLViz. (Zitiert auf Seite 59)

Institut fiir Medizinische Informatik an der Universitiat Stanford (USA). The
Protégé Ontology Editor and Knowledge Acquisition System, 2013. URL http:
//protege.stanford.edu. (Zitiert auf den Seiten 24 und 26)

Institut fiir Medizinische Informatik an der Universitiat Stanford (USA). The
Protégé Ontology Editor and Knowledge Acquisition System, 2013. URL http://

protege.stanford.edu/download/registered.html. (Zitiert auf den Seiten 24
und 25)

Institut fiir Medizinische Informatik an der Universitit Stanford (USA). protégé-
owl api, 2013. URL http://protege.stanford.edu/plugins/owl/api/index.
html. (Zitiert auf Seite 26)

http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://graphstream-project.org/doc/Gallery
http://graphstream-project.org/doc/Gallery
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/doc/info/shapes.html
http://books.google.de/books?id=lwa7TuJ_RR8C
http://books.google.de/books?id=lwa7TuJ_RR8C
http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/OWLViz
http://protege.stanford.edu
http://protege.stanford.edu
http://protege.stanford.edu/download/registered.html
http://protege.stanford.edu/download/registered.html
http://protege.stanford.edu/plugins/owl/api/index.html
http://protege.stanford.edu/plugins/owl/api/index.html

Literaturverzeichnis

[Ins13d]

[Ins13e]

[Int13]

[Jun]
[Junl0a]

[JUN10b]

[KN191]

[KTH*06]

[KV06]

[KWV07]

[LDA11]

[Leil3]

Institut fiir Medizinische Informatik an der Universitidt Stanford (USA). what
is protégé-frames?, 2013. URL http://protege.stanford.edu/overview/
protege-frames.html. (Zitiert auf Seite 25)

Institut fir Medizinische Informatik an der Universitidt Stanford (USA).
what is protégé-owl?, 2013. URL http://protege.stanford.edu/overview/
protege-owl.html. (Zitiert auf Seite 25)

International Semantic Web Conference. Keynote - Ramanathan
V. Guha, 2013. URL http://iswc2013.semanticweb.org/content/
keynote-ramanathan-v-guha. (Zitiert auf Seite 18)

(Zitiert auf den Seiten 10, 66 und 68)

ProjectsUsingJUNG, 2010. URL http://sourceforge.net/apps/trac/jung/
wiki/ProjectsUsingJUNG. (Zitiert auf Seite 66)

JUNG Framework Development Team. JUNG Java Universal Network/Graph
Framework, 2010. URL http://jung.sourceforge.net/. (Zitiert auf Seite 66)

E. Koutsofios, S. North, et al. Drawing graphs with dot. Technischer Bericht,
Technical Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ,
1991. (Zitiert auf den Seiten 10, 12, 59 und 61)

A. Katifori, E. Torou, C. Halatsis, G. Lepouras, C. Vassilakis. A Comparative
Study of Four Ontology Visualization Techniques in Protege: Experiment Setup
and Preliminary Results. In Information Visualization, 2006. IV 2006. Tenth Inter-
national Conference on, S. 417—423. 2006. doi:10.1109/1V.2006.3. (Zitiert auf den
Seiten 45 und 46)

A. Kirpal, A. Vogel. Neue Medien in einer vernetzten Gesellschaft: Zur Geschich-
te des Internets und des World Wide Web. NTM International Journal of History &
Ethics of Natural Sciences, Technology & Medicine, 14(3):137-147, 2006. (Zitiert auf
Seite 13)

S. Krivov, R. Williams, E. Villa. GrOWL: A tool for visualization and editing of
OWL ontologies. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):54-57,2007. (Zitiert auf den Seiten 9, 33 und 35)

S. Lohmann, P. Diaz, I. Aedo. MUTO: the modular unified tagging ontology. In
Proceedings of the 7th International Conference on Semantic Systems, I-Semantics '11,
S.95-104. ACM, New York, NY, USA, 2011. doi:10.1145/2063518.2063531. URL
http://doi.acm.org/10.1145/2063518.2063531. (Zitiert auf den Seiten 9, 12,
22,23, 42,81 und 100)

H. Leitte. Darstellung von Graphen, 2013. URL http://www.iwr.
uni-heidelberg.de/groups/CoVis/Data/visl-9_Graphen.pdf. (Zitiert auf
Seite 26)

125

http://protege.stanford.edu/overview/protege-frames.html
http://protege.stanford.edu/overview/protege-frames.html
http://protege.stanford.edu/overview/protege-owl.html
http://protege.stanford.edu/overview/protege-owl.html
http://iswc2013.semanticweb.org/content/keynote-ramanathan-v-guha
http://iswc2013.semanticweb.org/content/keynote-ramanathan-v-guha
http://sourceforge.net/apps/trac/jung/wiki/ProjectsUsingJUNG
http://sourceforge.net/apps/trac/jung/wiki/ProjectsUsingJUNG
http://jung.sourceforge.net/
http://doi.acm.org/10.1145/2063518.2063531
http://www.iwr.uni-heidelberg.de/groups/CoVis/Data/vis1-9_Graphen.pdf
http://www.iwr.uni-heidelberg.de/groups/CoVis/Data/vis1-9_Graphen.pdf

Literaturverzeichnis

[Lucl3]

[MGH*09]

[Min12]

[Moz13]

[NL13]

[Nor04]

[PK10]

[PK12]

[Prol3a]

[Pro13b]

[Pro13c]

[SA11]

126

H.-D. Luckhardt. Informationsvisualisierung, 2013. URL http://wiki.
infowiss.net/Informationsvisualisierung. Revision vom 19. April 2011 ge-
dandert durch Heinz-Dirk Luckhardt, URL http://wiki.infowiss.net/index.
php?title=Informationsvisualisierung&oldid=14669. (Zitiert auf Seite 27)

B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz. Owl 2 web ontology
language: Profiles. W3C recommendation, 27:61, 2009. (Zitiert auf Seite 24)

Miniwatts Marketing Group. Internet World Stats, 2012. URL http://wuw.
internetworldstats.com/stats.htm. (Zitiert auf Seite 13)

Mozilla Foundation. Mozilla Public License, 2013. URL http://www.mozilla.
org/MPL. Letzte Anderung vom 1. Februar 2012. (Zitiert auf Seite 24)

S. Negru, S. Lohmann. A Visual Notation for the Integrated Representation
of OWL Ontologies. In Proceedings of the 9th International Conference on Web
Information Systems and Technologies, WEBIST "13, S. 308-315. SciTePress, 2013.
(Zitiert auf den Seiten 10, 11, 50, 51, 52 und 94)

S. C. North. Drawing graphs with NEATO. NEATO User Manual, S. 11, 2004.
(Zitiert auf den Seiten 10, 59 und 60)

T. B. Piotr Kunowski. SOVA - Visualization symbols, 2010. URL http:
//protegewiki.stanford.edu/images/1/12/S0VA-Symbols.pdf. (Zitiert auf
den Seiten 9, 38, 39, 40 und 41)

T. B. Piotr Kunowski. SOVA, 2012. URL http://protegewiki.stanford.edu/
wiki/SOVA. (Zitiert auf den Seiten 9, 18 und 38)

Protege Client-Server, 2013. URL http://protegewiki.stanford.
edu/wiki/Protege_Client-Server. Revision vom 27. April 2011,
URL http://protegewiki.stanford.edu/index.php?title=Protege_

Client-Server&oldid=9805. (Zitiert auf Seite 26)

Protege-Frames, 2013. URL http://protegewiki.stanford.edu/wiki/
Protege-Frames. Revision vom 16. Miarz 2012, URL http://protegewiki.
stanford.edu/index.php?title=Protege-Frames&oldid=10874. (Zitiert auf
Seite 26)

Protege-OWL, 2013. URL http://protegewiki.stanford.edu/wiki/
Protege-0OWL. Revision vom 16. Marz 2012, URL http://protegewiki.
stanford.edu/index.php?title=Protege-0WL&0o1ldid=10879. (Zitiert auf
Seite 26)

R. Sivakumar, P. Arivoli. ONTOLOGY VISUALIZATION PROTEGE TOOLS-
AReview. International Journal of Advanced Information Technology, 1(4), 2011.
(Zitiert auf Seite 45)

http://wiki.infowiss.net/Informationsvisualisierung
http://wiki.infowiss.net/Informationsvisualisierung
http://wiki.infowiss.net/index.php?title=Informationsvisualisierung&oldid=14669
http://wiki.infowiss.net/index.php?title=Informationsvisualisierung&oldid=14669
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.mozilla.org/MPL
http://www.mozilla.org/MPL
http://protegewiki.stanford.edu/images/1/12/SOVA-Symbols.pdf
http://protegewiki.stanford.edu/images/1/12/SOVA-Symbols.pdf
http://protegewiki.stanford.edu/wiki/SOVA
http://protegewiki.stanford.edu/wiki/SOVA
http://protegewiki.stanford.edu/wiki/Protege_Client-Server
http://protegewiki.stanford.edu/wiki/Protege_Client-Server
http://protegewiki.stanford.edu/index.php?title=Protege_Client-Server&oldid=9805
http://protegewiki.stanford.edu/index.php?title=Protege_Client-Server&oldid=9805
http://protegewiki.stanford.edu/wiki/Protege-Frames
http://protegewiki.stanford.edu/wiki/Protege-Frames
http://protegewiki.stanford.edu/index.php?title=Protege-Frames&oldid=10874
http://protegewiki.stanford.edu/index.php?title=Protege-Frames&oldid=10874
http://protegewiki.stanford.edu/wiki/Protege-OWL
http://protegewiki.stanford.edu/wiki/Protege-OWL
http://protegewiki.stanford.edu/index.php?title=Protege-OWL&oldid=10879
http://protegewiki.stanford.edu/index.php?title=Protege-OWL&oldid=10879

Literaturverzeichnis

[Schi1]

[Sch13]

[Sim96]

[Stel3]

[Ten13]

[TMO6]

[Ver13]

[Vogl1]

[VVVMO4]

[Wik13]

H. Schmidt. Deutschlands Internet-Industrie ist schlecht geriiste,
2011. URL http://blogs.faz.net/netzwirtschaft-blog/2011/05/27/
deutschlands-internet-industrie-ist-schlecht-geruestet-2574/. (Zi-
tiert auf Seite 13)

G. Scheuermann. Darstellung von Graphen, 2013. URL http:
//www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/
Infovis_b-graphs_0.pdf. (Zitiert auf Seite 30)

S. Sim. Automatic graph drawing algorithms. Manuscript, available at http:
//www. drsusansim. org/ papers/ grafdraw. pdf, 1996. (Zitiert auf Seite 27)

E. Steeg. Zest/DOT, 2013. URL http://wiki.eclipse.org/Zest/DOT. Revision
vom 21. August 2013, URL http://wiki.eclipse.org/index.php?title=Zest/
D0T&01d1d=346056. (Zitiert auf den Seiten 12 und 63)

Tensegrity Software GmbH. Layout Algorithmen, 2013. URL http://www.
tensegrity-software.de/layout-algorithmen/html. (Zitiert auf den Sei-
ten 29 und 30)

I. R. Tamara Mchedlidze, Martin Nollenburg. Algorithmen zur Visualisie-
rung von Graphen, 2006. URL http://illwww.iti.uni-karlsruhe.de/_media/
teaching/winter2012/graphdrawing/v15.pdf. (Zitiert auf Seite 30)

Verkehrs- und Tarifverbund Stuttgart GmbH (VVS). Liniennetz, 2013. URL
http://www.vvs.de/karten-plaene/liniennetz. Verbund-Schienennetz (pdf).
(Zitiert auf den Seiten 9 und 28)

L. Vogel. Eclipse Zest - Tutorial, 2011. URL http://www.vogella.com/articles/
EclipseZest/article.html. (Zitiert auf den Seiten 10, 12 und 63)

T. Version, L. Version, P. Version, B. McBride. RDF Vocabulary Description
Language 1.0: RDF Schema. Changes, 2004. (Zitiert auf den Seiten 19 und 25)

Hypertext - Wikipedia, 2013. URL http://de.wikipedia.org/wiki/Hypertext.
Revision vom 08. August 2013, URL http://de.wikipedia.org/w/index.php?
title=Hypertext&oldid=121327895. (Zitiert auf Seite 13)

Alle URLs wurden zuletzt am 12. Dez. 2013 gepriift.

127

http://blogs.faz.net/netzwirtschaft-blog/2011/05/27/deutschlands-internet-industrie-ist-schlecht-geruestet-2574/
http://blogs.faz.net/netzwirtschaft-blog/2011/05/27/deutschlands-internet-industrie-ist-schlecht-geruestet-2574/
http://www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/Infovis_5-graphs_0.pdf
http://www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/Infovis_5-graphs_0.pdf
http://www.informatik.uni-leipzig.de/bsv/homepage/sites/default/files/Infovis_5-graphs_0.pdf
http://www.drsusansim.org/papers/grafdraw.pdf
http://www.drsusansim.org/papers/grafdraw.pdf
http://wiki.eclipse.org/Zest/DOT
http://wiki.eclipse.org/index.php?title=Zest/DOT&oldid=346056
http://wiki.eclipse.org/index.php?title=Zest/DOT&oldid=346056
http://www.tensegrity-software.de/layout-algorithmen/html
http://www.tensegrity-software.de/layout-algorithmen/html
http://i11www.iti.uni-karlsruhe.de/_media/teaching/winter2012/graphdrawing/v15.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/winter2012/graphdrawing/v15.pdf
http://www.vvs.de/karten-plaene/liniennetz
http://www.vogella.com/articles/EclipseZest/article.html
http://www.vogella.com/articles/EclipseZest/article.html
http://de.wikipedia.org/wiki/Hypertext
http://de.wikipedia.org/w/index.php?title=Hypertext&oldid=121327895
http://de.wikipedia.org/w/index.php?title=Hypertext&oldid=121327895

Erkldrung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wortlich oder sinngemaf$ aus anderen Werken iiber-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Priifungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollstindig veroffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren {iiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Zielsetzung
	1.2 Gliederung

	2 Grundlagen
	2.1 Ontologie
	2.2 RDF
	2.3 RDF-Schema
	2.4 OWL
	2.5 OWL-API
	2.6 Protégé
	2.7 Graphen
	2.7.1 Anforderungen an die Darstellung von Graphen
	2.7.2 Graphen Layout

	3 Themenverwandte Arbeiten
	3.1 GrOWL
	3.2 SOVA
	3.3 OWLViz
	3.4 OntoGraf
	3.5 TGVizTab
	3.6 Jambalaya
	3.7 Zusammenfassung

	4 Konzept
	4.1 VOWL 1.0
	4.2 VOWL 2.0
	4.3 Konzeptoptimierungen

	5 Frameworks für Graphen
	5.1 GraphViz
	5.2 Grappa
	5.3 Eclipse Zest
	5.4 JGraph
	5.5 JUNG
	5.6 Prefuse
	5.7 Piccolo2D
	5.8 GraphStream
	5.9 Zusammenfassung
	5.10 Entscheidung

	6 Implementierung
	6.1 Chronologischer Ablauf
	6.1.1 Darstellung der Grundformen
	6.1.2 Darstellung der VOWL-Elemente
	6.1.3 Darstellung der eingelesenen Ontologie

	6.2 Architektur
	6.2.1 Das Paket Languages
	6.2.2 Das Paket testing
	6.2.3 Das Paket protege
	6.2.4 Das Paket types
	6.2.5 Das Paket infoPanel
	6.2.6 Das Paket GraphDataModifier
	6.2.7 Das Paket GraphRendering

	7 Evaluation
	7.1 Durchführung
	7.2 Aufgaben
	7.2.1 Fragen zur MUTO-Ontologie
	7.2.2 Fragen zur FOAF-Ontologie
	7.2.3 Abschlussfragen

	7.3 Studienteilnehmer
	7.4 Resultate
	7.5 Fazit

	8 Zusammenfassung & Ausblick
	A Fragebogen
	B Weitere Visualisierungen
	Literaturverzeichnis

