Institut fr Formale Methoden der Informatik
Universita Stuttgart
Universit&sstral® 38

70569 Stuttgart
Germany

Diplomarbeit Nr. 3520

Der Angriff auf
Merkle-Hellman Kryptosystem
Sheng Gao
Studiengang: Informatik
Prifer: Prof. Dr. Volker Diekert
Betreuer: Armin Weif3
begonnen am: 17.05.2013
beendet am: 09.01.2014

CR-Klassifikation: E.3,E.4,F.22

Erklarung

Hiermit versichere ich, diese Arbeit selbststéndig verfasst und nur die angegebenen
Quellen benutzt zu haben. Wétliche und sinngem&3® Ubernahmen aus anderen
Quellen habe ich nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 09. Jan. 2014

Inhaltsverzeichnis

Einleitung

Merkle-Hellman Kryptosystem

2.1 Rucksackproblem
2.2 Asymmetrisches Kryptosystem oL
2.3 Merkle-Hellman Verfahren,

2.4 Liicke von Merkle-Hellman Verfahren

Neue Entwicklung der Angriffsmethoden

3.1 Uberblick

3.2 Dichte-Angriff oL
3.2.1 Grundlagen
3.2.2 Niedrige-Dichte-Angriffo
3.2.3 Diskussion iiber den Grenzwert der Dichte

3.3 Neue Verfahren des Rucksack-Typ-Kryptosystems
3.3.1 Diffusion und Konfusion,

3.3.2 Verfahren mit hoher Dichte

Der Angriff vom Shamir-Algorithmus

4.1 Verlassen der Abhéngigkeit von M
4.2 Anfangen mit der Anfangsfolge,
4.3 Wahrscheinlichkeit, um V zu finden
4.4 Das Simplex Verfahren

10

11
11
12
12
13
16
17
17
17

21

INHALTSVERZEICHNIS

4.5 Bestimmen von V

4.6 Diskretes Approximieren zu V'

4.7 Permutation und Zeitkomplexitato o000

5 Implementierung von Shamirs Algorithmus

5.1 Implementierungsumgebung .

5.2 Uberblick zur Programmierung

5.3 Bemerkungen und Performance des Programms

6 Fazit
6.1 Zusammenfassung

6.2 Diskussion und offenes Thema

Literaturverzeichnis

32
35
39

40
40
41
42

44
44
44

45

Kapitel 1
Einleitung

Im Jahre 1976 haben Diffie and Hellman das asymmetrischen Kryptosystem erfunden.
1978 entwickelten Merkle und Hellman mit dem Merkle-Hellman Kryptosystem eines der
ersten asymmetrischen Kryptoverfahren. Sie haben ein asymmetrisches Kryptosystem er-
funden, das auf dem NP-vollstindigen Rucksackproblem basiert. Das Rucksackproblem
ist eines der beriihmtesten NP-vollstindigen Probleme. Im Merkle-Hellman Kryptosystem
wird eine stark wachsende Folge benutzt, die eine wichtige Information bringt. Adi Shamir
hat im Jahre 1982 die erste Angriffsmethode auf Merkle-Hellman Kryptosystem erfasst,
und spéater hat man durch die diophantische Approximation, den Density-Attack usw. das
Merkle-Hellman Kryptosystem sowie seine Nachfolgen gebrochen. Aufserdem hat man be-
wiesen, dass solches Kryptosystem mit einer Dichte(Density) kleiner als 0.9408. .. durch
LLL-Algorithmus unsicher ist. Jedoch ist das Kryptosystem mit dem Rucksackproblem
sowohl beim Verschliisseln als auch beim Entschliisseln sehr effizient. Viele neuen Vari-
anten vom Merkle-Hellman Kryptosystem mit dem modifizierten Rucksackproblem sind
noch mit hoher Sicherheit. Deshalb ist das Merkle-Hellman bzw. Rucksackproblem Kryp-

tosystem heutzutage noch sinnvoll.

Dafiir habe ich zuerst das Rucksackproblem und das Merkle-Hellman Kryptosystem erk-
lart. Auferdem habe ich die Einfilhrung der neuen Entwicklung der Analyse von dem
Merkle-Hellman Kryptosystem, seinen neuen Varianten und ggf. den Angriffsmethoden
darauf. Danach habe ich {iber den Shamir’s Angriff ausfiihrlich beschrieben. Insbesondere
habe ich iiber die Approximation von ,, Trapdoor Paar® analysiert. Zudem habe ich den
Shamir’s Angriff implementiert und getestet. Man hat dann die Performance vom Shamir’s
Angriff in Praxis gesehen. In der praktischen Implementierung sowie Testen habe ich einen

Sonderfall bemerkt, dass mehrere ,, Trapdoor Paare vorkommen kénnen.

Dariiber hinaus finde ich in der Analysis vom Shamir’s Angriff eine Eigenschaft der stark

wachsenden Folge, die eine Moglichkeit zur Kollision der 6ffentlichen Schliissel bringen

4

kann. Am Ende habe ich eine Zusammenfassung vom Merkle-Hellman Kryptosystem mit
dem Shamir’s Angriff gegeben, und gleichzeitig ein offenes Thema fiir die Kollision der

offentlichen Schliissel gestellt.

Kapitel 2
Merkle-Hellman Kryptosystem

Die Grundidee vom Merkle-Hellman Kryptosystem ist, dass eine relativ einfache Instanz
des Rucksackproblems zuerst erzeugt wird, die als privater Schliissel zum Entschliisseln
zu benutzen ist. Dann wird aus dieser einfachen Instanz eine moglichst schwere Instanz
berechnet, die als 6ffentlicher Schliissel benutzt wird[1]. Wenn der Absender eine Nachricht
an den Empfanger sendet, kann der Absender zuerst mit dem Rucksackproblem verschliis-
seln. Weil dieses Problem NP-vollstindig ist, kann der Angreifer die Verschliisselung nicht
brechen. Dies war der Gedanke von Merkle und Hellman. Leider ist der Gedanke nicht
ganz korrekt. Es liegt daran, dass das Rucksackproblem von Merkle-Hellman eigentlich
eine wichtige Liicke hat und nicht wirklich ausreichend sicher ist. Nun folgt eine Ein-
fiihrung zum Rucksackproblem, asymmetrischem Kryptosystem und dem Merkle-Hellman
Verfahren:

2.1 Rucksackproblem

Das Rucksackproblem heifsst auf Englisch Knappsack oder Subset Problem. Gegeben sind
n Objekte und einen Rucksack mit der Kapazitiat (Gewichtsgrenze) C.

FEingabe:
P=(p1,...;pn) . Menge der Rucksécke
W = (wy,...,w,) : Gewichtsmenge jedes Rucksacks
C . (Gesamte)Kapazitét

Gesucht:

Maximiere Y a;p; unter > . xw; = C, z € {0, 1}
6

2.2. ASYMMETRISCHES KRYPTOSYSTEM 7

Wir definieren noch die Nutzendichte (vom Objekt ¢): -, wobei alle It sortiert sind. Es
soll gelten, dass ., w; > C, w; < C, fiir alle i. Das Ziel ist eine Auswahl einer Teilmenge

von Objekten mit maximalem Nutzen unter Beachtung der Kapazitit.

2.2 Asymmetrisches Kryptosystem

Fiir das asymmetrische Kryptosystem kann man in mathematischer Formulierung so
definieren|2]:

Pr Menge der privaten Schliissel
Pb Menge der o6ffentlichen Schliissel
U Menge der Nutzer (User), Teilnehmer

Jeder Teilnehmer A € U hat einen privaten Schliissel Pr(A)
sowie einen offentlichen Schliissel Pb(A)

M Menge von Klartexten

C Menge der chiffrierten Nachrichten

f: Pbx M — C Chiffrierfunktion

g: PrxC — M Dechiffrierfunktion

Bei einem Asymmetrischen Verschliisselungsverfahren (auch als Public- Key- Verfahren genan-
nt), gibt es im Gegensatz zu einem Symmetrischen, nicht nur einen Schliissel, sondern
gleichzeitig zwei. Dieses sogenannte Schliisselpaar setzt sich aus einem privaten Schliis-
sel (engl.: private key) und einem offentlichen Schliissel (nicht geheim, engl.: public key)
zusammen. Fiir die Anwendung muss man einen Algorithmus finden, dass das Entschliis-
seln fiir den Besitzer mit dem privaten Schliissel relativ leicht ist, wiahrend der Angriff

moglichst schwer sein kann, obwohl der offentliche Schliissel schon bekannt ist.

2.3 Merkle-Hellman Verfahren

Beim Rucksackproblem hat man eine Folge positiver reeller Zahlen, im grundlegenden
Merkle-Hellman Verfahren|1] ist diese Folge natiirliche Zahlen. Und diese Folge (a4, ..., ay)
ist stark wachsend (engl.: super increasing) und zwar a; > Z;_:ll a; fiir alle 1 < ¢ < n. Die
Idee von Merkle-Hellman ist diese ,stark wachsende* Eigenschaft zu nutzen und erzeugt
eine neue Folge durch eine Modulo-Rechnung, um das Kryptosystem zu bilden. Diese

Folge sowie deren Eigenschaft sind die Kernidee, sowohl von Merkle-Hellman zu ver- und

8 KAPITEL 2. MERKLE-HELLMAN KRYPTOSYSTEM

entschliisseln, aus auch von Shamir anzugreifen|3, 4]. Neben der stark wachsenden Folge
wird ein Modulus M mit M > "7 a; gewéhlt, um eine (quasi-) zufillige Folge zu erzeu-
gen und dann zu verschliisseln. Der richtige Empfianger braucht fiir Entschliisseln noch
einen Multiplikator U sowie dessen Inverse W mit UW = I1mod M und U > 1, W > 1.

Um U sowie W schnell zu finden, soll M idealerweise prim sein.
Privater Schliissel:

Wie alle asymmetrischen Kryptosysteme hat Merkle-Hellman Verfahren einen Geheimteil

und zwar (ai, ..., a,), M, U und W bilden den privaten Schliissel fiir Alice.
Offentlicher Schliissel:

Alice verdffentlicht eine Folge (b, ..., b,) mit
bl‘ = CLZ‘U mod M
was sehr | zufillig“ aussieht, und verdffentlicht das als offentlicher Schliissel (by, ..., b,),

den alle kennen konnen. Natiirlich kann Alice noch eine Permutation n einsetzen, dann

sieht die Folge (b1, ..., b,) noch ,zufilliger aus.

Seien alle Codierung binér, vorgeschlagen sind n = 100 und die erste Zahl der Folge,
némlich a1, 100 Bits. Jede weitere i-te Zahl ist (maximal) n+i—1 Bits, damit (ay, ..., a,)
eine stark wachsende Folge wird. Daher sollte a, 199 Bits lang und der Modulus M 200

Bits lang sein. Nach einer Modulo-Rechnung ist jedes b; auch maximal 2n Bits lang.
Zu verschliisseln.:

Der Absender Bob nimmt einen Klartext durch Bindrcodierung, ndmlich eine n-Bits-lange
Folge x = (xy, ..., x,) € B", und verschliisselt mit dem o6ffentlichen Schliissel (b, ..., b,)
duch die Berechnung der Summe y = " z;b;. Schlieklich sendet er den Ciphertext y
iiber den offentlichen Kanal an den Empfinger Alice. Die Bitldnge von y ist maximal

2n + log(n), weil y < n2%" ist.
Zu Entschlisseln:

Alice empfingt y und berechnet ¢ = yU mod M , das ist nichts anders als

C— zn: ZL’ZbZW mod M = zn: T;Q4 mod M
1=1 i=1

Wegen M > 3" | a; folgt ¢ = 3" | z;0; und auferdem ist (a1, ..., a,) stark wachsend,

dann ist die Rekonstruktion von der Folge z = (x4, ..., z,) € B™, B = {0, 1} leicht

2.3. MERKLE-HELLMAN VERFAHREN 9

zu haben. Falls Alice am Anfang noch eine Permutation 7 nimmt, die sie kennt, ist der

Wiederherstellung der Reihenfolge beim Entschliisseln fiir sie nicht schwer.

Das Kryptosystem ist fiir den Empfanger, der den privaten Schliissel besitzt, polynomial
zu n berechenbar, und auf der anderen Seite ist fiir Angreifer mit der Hoffnung moglichst
nicht polynomial zu l6sen, da das Kryptosystem auf dem Rucksackproblem mit der Kom-
plexitit von NP-schwer basieren sollte. Ein interessantes Bild, um das Mechanismus von
Merkle-Hellman Verfahren darzustellen, und auch die Prinzip des asymmetrischen Kryp-

tosystems, sieht man in Abbildung 2.1[5|.

Rajib Biswas. BITS Pilani

Bob:encoding . Alice:decoding . Alice , .

¥ g

MH Knapsack Public Key Cryptography:- the whole Mechanism

Abbildung 2.1: M-H Kryptosystem

10 KAPITEL 2. MERKLE-HELLMAN KRYPTOSYSTEM

2.4 Liicke von Merkle-Hellman Verfahren

Dass das Rucksackproblem NP-vollstindig ist, soll aber etwas irrefithrend sein, dass das
zugehorige Rucksackproblem im Merkle-Hellman Verfahren eigentlich nicht auch NP-
vollstiandig ist. Insbesondere ist die Folge (ay, ..., a,) im Vergleich zum normalen Ruck-
sackproblem nicht nur ,streng monoton steigend”, sondern auch ,stark wachsend®. Vielle-
icht hatten Merkle-Hellman den Gedanke, dass das einfach beim Entschliisseln und durch
Modulo-Rechnung usw. noch schwer genug fiir Angreifen ist. Aber diese Eigenschaft der
Folge bringt viele Informationen und man kann diese Liicke mit verschiedenen Method-
en angreifen, damit das Merkle-Hellman Verfahren nicht mehr sicher ist. Folgende zwei
Kapiteln werden erklért, wie man das das Merkle-Hellman Verfahren bricht. Und fiir die

erste Angriffsmethode von Shamir wird ausfiihrlich beschrieben.

Kapitel 3

Neue Entwicklung der
Angrifftsmethoden

3.1 Uberblick

Die erste Angriffsmethode gegen Merkle-Hellman Kryptosystem wurde von Adi Shamir
aus Israel im Jahr 1982 erfunden. Sein Algorithmus ist gegen der grundlegenden Ver-
sion und zwar das zugehorige Rucksackproblem von Merkle-Hellman ist mit einer stark
wachsenden Folge fiir die Gewichtsmenge und daher kein normales Rucksackproblem. Die
Bitlinge vom Modulus M usw. fiir einen n-Bits-langen Klartext sind dn, 1 < d < 2, und
das Element in der stark wachsenden Folge ist mit einer Bitlinge von (d—1)n+i—1. Diese
originale Version von Merkle-Hellman, die auch eine Permutationen erlaubt, und sogar mit
multi-iterierten Rucksécken sein kann, werden spéater von Lagarias durch die diophantische
Approximation gebrochen|6]. Auferdem werden andere Versionen, insbesondere , Niedrige
Dichte Angriff“ erfunden, somit die Varianten mit niedrigem Verhéltnis von Anzahl der
FElemente / Bitlinge des 6ffentlichen Schliissels auch unsicher sind. Dazu werden vielféltige

Verfahren entwickelt und in diesem Kapitel wird eine Ubersicht dafiir erstellt.

Definition: Informationsrate, Dichte(Density)
Ein grundlegender aber wichtiger Parameter zur Analysis fiirs Merkle-Hellman Kryptosys-

tem ist der Begriff Informationsrate, und definiert durch

R = # KlartextBits n
" #CipherertextBits ~ loga >.r_, a;
=1

wobei a; die Gewichte des Rucksacks, ndmlich der 6ffentliche Schliissel ist.

11

12 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

In manchen Papers wird auch ,, Dichte, auf Englisch heifst ,, Density“, benutzt und dhnlich

wie oben definiert:

d_ n

" log2 mazx a;

Offensichtlich gilt, dass 0 < R <1, 0 < d ist.

Wir kénnen fiirs Merkle-Hellman Kryptosystem seine Dichte sehen, also d = 0,5, wenn n

sehr grofs ist.

Lagarias und Odlyzko haben gezeigt, dass fir d < 0,6463 ,fast alle® Merkle-Hellman

Verfahren gelost werden konnen|7].

Was zu beachten ist, dass hier das Rucksackproblem nicht genau gleich wie Merkle-
Hellman Verfahren sein kann, d.h., eine stark wachsende Folge der Gewichte muss nicht

unbedingt gewahlt wird.

Seit einigen Jahren gibt es viele neuen Varianten von Merkle-Hellman Verfahren, deren
Dichte wesentlich grofer als Merkle-Hellman Kryptosystem ist. In folgenden Abschnitten

werden wir sehen.

3.2 Dichte-Angriff

3.2.1 Grundlagen

Theorem (Lagarias-Odlyzko)

Sei A eine positive natirliche Zahle und sei aq,...,a, zufillige positive ganze Zahlen
mit 0 < a; < A, 1 <i<n.Unde= (er,...,e,) € {0,1}" willkiirlich. Ferner sei
S = 3" eia;, falls die Dichte d < 0,6463.... Dann ist das Rucksack-Problem durch

Lattice in Polynomialzeit ,fast immer® berechenbar.

Mit diesemm Theorem kann man sehen, dass Merkle-Hellman Verfahren auch unsicher ist,
da die Dichte 0,5 zu klein ist. Die stark wachsende Folge fiihrt zu einer verbreiterten

Bitlange des 6ffentlichen Schliissels.

Hier ist eine Einfiihrung in den Angriff mit Lattice:

Definition Lattice

3.2. DICHTE-ANGRIFF 13

Sei R™ ist ein m-dimensionaler Euklidischer Raum. Eine Lattice(man kann das auch auf
Deutsch Gitter tibersetzen.) ist die Klasse

L(bh cee bn) = {Z?:l Iibi, x; € R}

fiir alle ganzzahligen Kombinationen von n linearen unabhéngigen Vektoren by, ..., b,
im Raum R mit m > n. Die natiirlichen Zahlen n und m heifen der Rang und die
Dimension der Lattice. B = {by, ..., b,} € R™*" heifst ein Lattice Basis, mit L = L(B).

8]

3.2.2 Niedrige-Dichte- Angriff

Der Algorithmus von Lenstra-Lenstra-Lovész (LLL) Reduction ist ein wichtiges Verfahren
fiir den Niedrige-Dichte- Angriff.

Lenstra—Lenstra—Lovasz (LLL) Reduction|9]

Zuerst definieren wir S,(R) die Anzahl der Integer-Losungen fiir die Ungleichung

i Ti <R

1= K3

Ferner sei ein Basis B = {b1,...,b,} € R" und sein zugehoriges Gram-Schmidt orthogonal
Basis B* = {by,...,b,} € R" sowie die Gram-Schmidt-Koeffiziente

_ (oot

,LLZ,] - * *
b]-,bj

firalle 1 <j <i<n.
Dann heifst ein Basis B reduziert, wenn
1. (Groke-Reduktion) u; ; < %, fiir alle 1 < j < i < mn ist.

2. (Lovasz Kondition) es existiert ein Parameter ¢ € (0,25, 1], sodass fir alle 2 < £ < n:

sl |1* < bl + g

2
*
16k

Lenstra, Lenstra und Lovasz haben einen wichtigen Algorithmus erfunden, der in vielen
theoretischen ganzzahligen Problemen angewandt wird. Dieser LLL-Algorithmus kann wie

folgende Schritte erfasst werden|10]:

EINGABE:
Ein Lattice-Basis B = {by,...,b,} € Z"
Ein Paramepter § € (0, 25, 1]

14 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

Prozedur:
Gram-Schmidl Phase
by == by, By == (bj, b))
for alle 7 von 2 bis n, do
by :=b;

for alle j von 2 bis i — 1, do

(or.57)

Hi,j = ~p;
by = b} — i ;b5
end for
B; = <b;‘, b;‘>
end for
k=2 (b,...,bx—1 sind reduziert nach Grifie-Reduktion)
if |y, 5] > 3 then (tut die Reduktion von RED(k, k — 1))
for [von £ —1 bis 1 do
ri= 10,5+ pik,]
by :== by — b
for y von 1 bis [— 1 do
Hk,j = Hk,j — TH,j
end for
Hi,l = Mg — T
end for
end if
Berechne p; ; fiir 1 < j < <nund B, fiir ¢ von 1 bis n
while £ < n do
Groke-Reduktion by und richtiges py,, ; nach RED(k, k — 1), fiir j von 1 bis £ — 1
if B, < (% — /Li7k_1) Bj,_; then
Tausche b, und by,
k:=max(2, k—1)

else

3.2. DICHTE-ANGRIFF 15

k=k+1
end if
end while

AUSGABE: LLL reduziertes Basis b, ..., b,

Mit diesem LLL-Algorithmus haben Lagarias und Odlyzko ihr Theorem fiir ,Niedrige-
Dichte-Angriff“ den Grenzwert 0,6463 ... gefunden und zwar wie folgt [11] [12]:

Lagarias-Odlyzko Algorithmus
1. Eingabe: a4, ..., a,, s, Ausgabe: eq, ..., e,.
2. Nehme N > /n.

3. Bilde eine Lattice mit den folgenden Vektoren:

blz(]_, 0, ey 0, —Nal)

bQZ(O, 1, ey 0, —Nag)

b, = (0,0, ..., 1, —Nay,)

bui1 = (0,0, ..., 0, —Ns)

Finde einen kiirzesten nicht-negativen Vektor v = (vy, ..., vp+1) durch LLL-Algorithmus.

Falls s = 2?21 a;v;, dann v = e und der Verktor v ist gefunden.

Coster, Joux, LaMacchia, Odlyzko, Schnorr und Stern haben den Lagarias-Odlyzko Al-
gorithmus noch ein bisschen modifiziert und damit wird gezeigt, dass fast alle Rucksack-

probleme mit einer Dichte von d < 0,9408... auch gelost werden kénnen.[13]
Die Verbesserung wird durch Einsetzen des Vektors b,,; = (%, ceey 21, Ns) statt
bpy1 = (0,0, ..., 0, —=Ns).

Man kann fiir die Verbesserung noch die Vektoren B € R""2 so setzen:

blz(n+1, —1, —]_, ceey 0, N(Il)

16 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

bp=(-1,n+1, —1,..., =1, Nay)
b, =(-1, =1, ..., n+1, =1, Na,)
bpyr = (=1, -1, ..., =1, ,;n+1, —Ns)

damit die Grenze 0,9408... auch gezeigt wird. [13]

3.2.3 Diskussion tiber den Grenzwert der Dichte

Lemma

Jede Kugel mit dem Radius von \/an in R" mit o < § hat maximal (2 —) Punkte von
{0, 1}, fiir v = () > 0.

Mit diesem Lemma kann man deshalb die Grenze 0, 9408 . .. durch eine Reduktion der Vek-

toren von polynomialer Anzahl von Basis mit verschiedenen b, nicht mehr verbessern,

wenn n sehr grof ist.

D.h., 0,9408... ist die obere Grenze fiir einen Niedrige-Dichte-Angriff[13|. Jedoch kann

man fiir ein bestimmtes kleines n den Grenzwert mdoglicherweise noch verbessern.

Japanische Experten haben 2003 gezeigt|[12]|, dass fiir alle Dichte d < d, ein Kryptosys-
tem mit dem Rucksackproblem mittels aq, ..., a, und s ,fast immer* in Polynomialzeit
berechenbar ist, wenn man einen Parameter A < 7 nimmt, wobei Radius der Kugel \/fn

ist und

_ 1
do = MAT o0 om0

n(B, u) =uf +Inde™)
0(z) = 1+23 52, 2%

e=(ey,...,e,)und u € R
Ein Beispiel dafiir ist n = 64, § = 6, und d, > 0,9408.. ., also ist eine Dichte iiber dem
Grenzwert zu sehen.

Somit werden manche Kryptosysteme mit dem Rucksackproblem und einer Dichte gegen

1 auch unsicher.

3.3. NEUE VERFAHREN DES RUCKSACK-TYP-KRYPTOSYSTEMS 17
3.3 Neue Verfahren des Rucksack-Typ-Kryptosystems

Nach dem Merkle-Hellman Kryptosystem hat man viele Techniken beim Schliissel-Erzeugen

eingesetzt, somit sehen wir heutzutage viele neuen Verfahren.

3.3.1 Diffusion und Konfusion

Im symmetrischen Kryptosystem benutzt man die Prinzipien der Diffusion und Konfusion

nach Shannon, um den Ciphertext noch schwerer fiir Angreifer zu erkennen.

Diffusion: Jeder Bitblock von Klartext oder Schliisseln soll viele Bitblocke von Ciphertext

beeinflussen.
Hier sind lineare Funktionen dazu relevant.

Konfusion: Jeder Bitblock von Ciphertext soll hoch nicht-linear von einigen Bitblécken

von Klartext und Schliisseln abhéngen.
Dafiir sind nicht-lineare Funktionen zustindig.

Nach Shannon sollen die Funktionen von Ver- und Entschliisseln sowohl gute Diffusion
als auch Konfusion fiir die Bitblocke behalten.[14]

Dieses Prinzip kann man aber auch im asymmetrischen Kryptosystem, insbesondere in
Rucksack-Problem-Kryptosystemen weiter nutzen und zwar sind die Verfahren von Chor

Rivest und Wang Bao-Cang zwei der beriihmtesten Varianten.

3.3.2 Verfahren mit hoher Dichte

Chor-Rivest Kryptosystem |15, 16|

Sei ¢ = p" eine Primzahlpotenz. Wir nehmen den endlichen Korper GF(q) und verdf-
fentlichen den. (Z.B.: ein h-Grad Polynom P(z) ist nicht reduzierbar auf GF(p) und
Elemente von GF(q) sind Polynome modulo P(x).) Gleichzeitig nehmen wir einen Ring
« fiir den Unterkdérper GF(p) C GF(q)), z.B. {ag, ..., ap_1} = GF(p).

Der private Schliissel besteht aus
Ein Element ¢ € GF(q) mit algebraischem Grad h
Ein Generator g von GF(q)*
Eine natiirliche Zahl d € Z,_,

Eine Permutation = von {0, ..., p — 1}

18 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

Der 6ffentliche Teil besteht aus allen
¢i = d + logy(t + o) mod q — 1

mit 2 =0, ..., p— 1.

Die offentlichen Parameter miissen so ausgewahlt werden, dass der diskrete Logarithmus
einfach in GF(q) berechenbar ist. Vorgeschlagen werden ein relativ kleiner p und ein
weicher h genommen und beispielsweise sind solche Kérper von GF(197%*), GF(211**),
GF(243%") sowie GF(256%).

Die Nachrichten in Chor-Rivest Kryptosystem sind alle p-Bits-Strings m = [my ... m,_1]
mit Hamming-Abstand A.

Fiirs Erzeugen vom o6ffentlichen Schliissel berechnen wir zuerst

wobei E(m) =mocy+ ... +my_1¢,-1mod ¢ —1und h =mgy+...my_;.

Fiir m brauchen wir noch eine Faktorisierung von
Hmiil(t + CVW(Z'))
Das Entschliisseln ist aber wie traditionelles Merkle-Hellman Kryptosystem mit Ruck-

sackproblem.

Der Angriff von Odlyzko ist durch eine Analysis von endlichem Koérper und zwar wenn der
Parameter h einen kleinen Faktor r hat, mit r > %+ \/ R+ %, ist der Angriff mit Zeitkom-
plexitit von O(h*p"/r?)[16]. Dariiber hinaus wird gezeigt, dass die Verdffentlichung aller
Koeflizienten von ¢; durch die Shortcut Methode auch eine Liicke ist.[17]|/16]

Wang-Kryptosystem:|18]

Wang Bao-Cang hat bei Schliissel-Erzeugen den Chinesischen Restsatz eingesetzt und die
Dichte kann gegen 1 sein. Wir nehmen hier sein Verfahren als ein Beispiel fiir solche neuen

Entwicklungen nach Merkle-Hellman Kryptosystem seit einigen Jahren.
Schlissel-Erzeugen:
Wihle zuerst einen n-dimensionalen zufilligen Vektor U = (uq, ..., u,), u; > 0.

Berechne den Vektor V = (vy, ..., v,) mit

v =u2"" 1<i<n.

3.3. NEUE VERFAHREN DES RUCKSACK-TYP-KRYPTOSYSTEMS 19

Wihle noch zwei zufillige Primzahlen p und ¢, sodass

p > Z?:l ui) q > 2max {Zvi>0 Ui7 _Zvi<0 'Ui}

Mit dem chinesischen Restsatz berechnen wir noch den Vektor A = (ay, ..., a,), 0 <

a; < pg — 1 und zwar
a; = u; mod p, a; = u; mod g

Privater Schliissel: U, V', p und q

Offentlicher Schlissel: A

Zu, verschliisseln:
Sei den Klartext m von n-Bits, ndmlich m := (m)y = my - - - m,, m; = 0 oder 1.
Der Ciphertext ist ¢ = aymq + ... + a,my,

Zu, entschlisseln:

Mit den Nachrichten ¢ und dem privaten Schliisseln p und ¢ berechnen wir

cp=cmodp, 0< ¢, <p

cg=cmodq, -4 <¢c,<p

Beachte den Wertbereich von ¢,, der auch negativ sein kann.

Dann ist der bindre Klartext
(m)2 =mi--my = (cq — ¢q)2

Wir konnen noch sehen, dass bei Verschliisseln und Entschliisseln die Vektoren U und V'

nicht direkt benutzt werden.

Wang hat noch eine Verbesserung beim Schliissel-Erzeugen gegeben und zwar wird neben
dem chinesischen Restsatz noch eine Modulo-Mutiplikation eingesetzt, damit die Infor-

mation von v; = u;—2"" , 1 < i < n im 6ffentlichen Schliissel noch tiefer versteckt.

Analysis von Wang-Kryptosystem:

Beim Schliissel-Erzeugen benétigt es O(n) und bei Entschliisseln zwei Modulo-Rechnung,

also ist das Verfahren sehr effizient.

20 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

. n
loga max a; *

Nach der Definition ist die Dichte von Wang-Kryptosystem d =
Da 0 <a; < pg—1, gilt logs max a; < logs pq.

Nach Abschnitt 3.2.3 soll die Lange von pg nicht grofer als sein, sonst ist dieses

n
0,9408
Verfahren unsicher.

Dafiir nehemen wir r die grofite mogliche Lange von ¢. Es muss gelten

0,9408 < 1

Wegen v; = 1;-2"* kann man am Ende sehen, dass
ui+(2r— 1) > Uipr + Uppo + .o+ Uy

wobei alle v; eigentlich negative ganze Zahlen sind, mit |v;| < 2" — 1.

Diese Ungleichungen von u; und r kann man noch mit der Eigenschaft der stark wach-
senden Folge in v; = u;—2"~%, 1 < i < n vergleichen, und dann kann mit 2", 1 < i < n

dieses Verfahren auch angreifen|19].

Noch andere Varianten

Neben Wang Bao-Cang haben Min-Shiang Hwang und noch andere Experten verschiedene
auf dem Rucksackproblem basierte Kryptosysteme mit hoher Dichte erfunden. Manche
haben sogar eine Dichte iiber 0.9408.. ..

Min-Shiang Hwang wahlt zuerst eine stark wachsende Folge und einen Modulus M usw.

wie Merkle-Hellman, dann setzt noch sehr komplizierte Permutaionen-Kombination-Algorithmen
ein. Am Ende hat man eine Dichte d > 0.9408...[20]. Aber ein Angriff auf dem Hwang-
Kryptosystem wurde 2013, also drei Jahre spdter, von Rastaghi mit Nutzen der stark
wachsenden Folge detailliert beschrieben|21].

Ahnlich wie Wang-Kryptosystem haben noch einige Experten mit anderen Techniken der
Diffusion und Konfusion erfunden und behaupteten, dass ihre Verfahren ,unter Umstéin-

den* sicher seien. Eine genaue Priifung dafiir bleibt aber noch offen.

Kapitel 4
Der Angriff vom Shamir-Algorithmus

Nun wird gezeigt, wie genau das Merkle-Hellman Kryptosystem unsicher ist und wie man
das nach dem Shamir-Algorithmus brechen kann. Hier sind viele Inhalte aus dem Paper

von Shamir[3], einem Skript von Lagarias[22] und dem Buch von Diekert|[23].

4.1 Verlassen der Abhingigkeit von M

Wie Kapital 2 ist die stark wachsende Folge der ,Schliissel” fiir Angreifer. Im Merkle-
Hellman Verfahren kann zwar die Reihenfolge durch Permutationen noch verstecken, aber
das bringt nicht n! mehr Aufwand, sondern nur weniger als n* mehr Aufwand zu raten
und man weif dann, dass eine stark wachsende Folge mit Sicherheit existiert[23]. Den

Grund dafiir sehen wir spéiter in der Analysis.

Der erste Gedanke ist, wie man die Folge im &ffentlichen Schliissel, umgekehrt zur ur-
sprunglichen stark wachsende Folge des privaten Schliissels bringt? Oder kann man eine

dquivalent stark wachsende Folge bekommen?

Die Umwandlung fiir Alice ist einfach, sie weifs M und W, damit durch a; = b;/W’ mod M
die originale stark wachsende Folge wieder erstellt wird, was die M und W (oder in
dquivalenter weise U, da W = U~! mod M) benétigt. Wir wissen M und W nicht, kénnen
aber die direkte Abhéngigkeit von M und W verlassen und stattdessen ein ,, Trapdoor

Paar® V mit 0 < V < 1 finden und dann eine stark wachsende Folge auch bekommen.

Wir defineiren fiir rationale Zahlen r und s mit »r = smod 1, wobei r = smod1 und
0 < r < 1 ist. Das bedeutet, dass r gleich der Wert des Bruchteils von s ist. Und zuerst

wird ohne Permutation im Merkle-Hellman Verfahren interpretiert.

21

22 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Wir hoffen, dass mit einer rationalen Zahl V' und dem offentlichen Schliissel (by, ..., by)
durch

ri = b;V mod1 (4.1)
eine stark wachsende Folge (rq, ..., r,) bekommen. Falls solches V' gefunden wird, dann

kann der Angreifer eigentlich wie der Empfianger entschliisseln [23] und zwar

yV = Zn:l’zbzv modl = Z:;ll’ﬂ“i (42)

i=1
Jetzt kann man wie Alice alle z; berechnen.

Falls Alice noch eine Permutation © hat, dann gilt

T, = bn(Z)V mod 1 (43)
yV = Zi:lxn(i)bn(i)v mod1l = Zi:1xn(i)ri (4.4)
Fiir die Permutation © kann man alle M&glichkeiten der Reihenfolge von (bn(l)7 cee bn(n))

durch testen und es garantiert eine richtige Permutation zu finden.

Jetzt miissen wird die folgenden Fragen iiberlegen:

1.Wie kann man das richtige V' finden?

2. Kann man das V' direkt finden, oder (nur) approximieren?
3. Ist V iiberhaupt relevant zu M, W bzw. U?

Wir werden zuerst die 3. Frage beantworten und dann sehen die Antworte von 1. sowie 2.

Frage.

Die wichtigste Idee ist immer noch die Eigenschaft einer stark wachsenden Folge. Zuriick
zum Entschliisseln bei Alice: wir raten, dass My der Modulus bei der Erzeugung von
offentlichen Schliissel aber fiir den Angreifer unbekannt ist. Und sei W} analog die un-
bekannte Inverse. Es kann sein, dass My = M, Wy = W aber nicht unbedingt. Das Bild
der Funktion beim Entschliisseln fiir ein festes b; ist f;: [0, Mp) — [0, Mp) mit

fi(Wo) = Wyb; mod M, (4.5)

4.1. VERLASSEN DER ABHANGIGKEIT VON M 23

ist in der Sidgezahn-Form in Abb. 4.1:

1 ﬁ{Wﬂ] = WDL—"[mﬂ'd Mﬂ

Myb, 2Myb. (b-1)Myb M,

Abbildung 4.1: f;(W)
[24]

Wir konnen sehen:

Es gibt genau b; Linien, mit ihren Nullstellen von 0 bis bib—:l]\/[o.
fi st stetig bis auf alle Sprungstellen.

Jede Steigung ist b;, bis auf alle Sprungstellen.

Die Steigung b; ist unabhéngig von M,

Auferdem wissen wir im Merkle-Hellman Verfahren schon

und fiir ein passendes Wy bilden dann alle f;(Wy) = a;, 1 < ¢ < n eine stark wachsende

Folge.

Gleichzeitig kénnen wir aus (4.1) fiir V' eine Klasse der Funktionen f; : [0, 1) — [0, 1)

definieren, mit

!

fi(V) =Vb;mod1 (4.7)

Fiir ein festes b; ist auch ein Graph in der Sédgezahn-Form in Abb. 4.2 zu erwarten:

24 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

4 £ (V) =Vb, mod 1

b b 1

/b,

2/b.

i

Abbildung 4.2: f;(V)
[24]

Es ist auch leicht zu finden:

Es gibt auch genau 0; Linien, mit ihren Nullstellen von 3 bis bb;l
f; ist stetig bis auf alle Sprungstellen.

Jede Steigung ist b; und unabhingig von anderen Variablen.

Und es existiert auch ein V), damit
fi (Vo) = Vob;mod 1 = 7
eine stark wachsende Folge (rq,...,r,) liefern kann.
Wir kénnen noch sehen, dass beide Bilder fast identisch sind, nur die horizontalen-und

vertikalen Achsen unterscheiden sich. Und die Umwandlung vonf; zu f; ist auch einfach,
dass man f; durch den Modulus M, teilt. D.h.:

fi_ Wo
M,y M,

Wo
Mo

mod1 = f;(—) (4.8)

Ersetze % durch V, dann stimmen f;(V) und f;(V) iiberein. Und folglich ist

4.1. VERLASSEN DER ABHANGIGKEIT VON M 25

(4.10)

Ferner bemerkt man, dass

Zrz- <1 (4.11)

wenn man My ~ M sieht.
Danach werden die Funktionen f;(V) und f;(V) als dieselbe betrachtet.

Falls noch eine Permutation n eingesetzt wurde, liefert (11, ..., 7xm)) die gleiche Rei-

henfolge wie (axq), ..., r(n)) mit

Jx)(Wo) = Wobriymod My = ;)

Jry(Vo) = Vobriymod 1 = 1y

Ar(;
Tagiy = VZ’ (4.12)

Das gesuchte V' ist dann in der Berechnung eigentlich unabhéngig von M usw.. Damit
haben wir jetzt die Antwort der Frage 3. Und das bringt uns den Vorteil, dass wir nur

einen Variabel V' berechnen miissen, statt gegen zwei Unbekannten M und W bekémpfen.

Gleichzeitig sehen wir, dass es fiir ein festes f;(V') genau b; mogliche Linien gibt und
es fiir ein festes V' auch n Stiicke von f1(V), ..., fo(V) gibt, die zu berechnen von V
dienen. Der néchste Schritt ist, wie man das richtige V' finden bzw. in einem kleineren
Bereich begrenzen kann. Betrachte, dass jedes b; ungleich zu einander ist. Wenn man
einige unterschiedliche Bilder aus f; zusammenlegen, dann kann man in manchen Stellen
von V, dass f;(V) =r;, f;(V)=r;, usw., 1 <i < j <--- <n, eine monoton steigende
(und sogar ,stark wachsende®) Folge liefert. Idealerweise soll ein solches V' fiir alle 7 in
der Abbildung gelten, wenn alles zusammengelegt wird. Mit diesem Uberlegen kénnen wir

spater fiir die Suche nach V' helfen.

Und wahrscheinlich kann man mit Gliick sogar mehrere disjunkte Intervalle der Vs finden,
da jedes f; periodisch ist. Obwohl diese Uberlegung ungenau aussieht, ist aber auch un-
wichtig, da der Existenz von V' bekannt ist. Wenn ein gefundenes V' eine stark wachsende

Folge liefert, so hat man die wichtigste Information vom Merkle-Hellman Kryptosystem.

26 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

4.2 Anfangen mit der Anfangsfolge

Um die 1. Frage zu beantworten, wollen wir zuerst mit einigen b; bearbeiten.

Wurde eine Permutation n eingesetzt, ist n! Durchldufe zu erwarten. Auf einer Seite ist das
nicht in polynomialer Zeit, was sehr ineffizient ist, auf der anderen Seite ist ein richtiges V'
fiir alle b; gleichzeitig bzw. einmalig zu bestimmen auch unrealistisch. Wir kénnen aber die
Anfangsfolge mit ,, zum Beispiel* | = 4 Elementen testen. Ist ein passenden Wert oder In-
tervall von V fiir die ersten vier Elemente mit der stark wachsenden Folge gefunden, dann
kann dieser Wert oder Intervall von V fiir weitere Elemente die genaue Suche nach V' sowie

die Anzahl der mdogliche Permutationen ggf. minimieren, was wir spiter sehen werden.

Allerdings muss man zuerst maximal O(n*) Male fiir die Anfangsfolge (n(1), ..., 7(4))
probieren.
Seien wir in der richtigen Phase mit der Anfangsfolge, ndmlich n(j) = j, j € {1, ..., I},
mit [= 4, also sind die vier Elemente {bﬂ(l), ceey bn(4)} des offentlichen Schliissels genau
{b1, ..., by}, die aus {aq, ..., a4}, erzeugt werden.
Nun schauen wir die Abb. von f;. Sein das gesuchte V" liegt irgendwo zwischen * und
¢l ¢; ist jetzt aber noch unbekannt, also

ci c; +1

<y 4.13

b — b; (4.13)
Und setze

G
V=3t (4.14)

wobel 0 < ¢g; < % ist.
Dann gilt

und wegen 0 < ¢g; < bl gilt

a;
A 1=be, — —- 4.1
b;V mod b;e; (4.16)

*

4.2. ANFANGEN MIT DER ANFANGSFOLGE 27

wobei M *eigentlich der aproximierte Wert von M ist. Man kann zuerst M ~ M *betracheten.

Ferner ist

a;
€ = M (417)
Analog liegt V' zwischen ;—j und %, i,7€4{1,2, 3,4}, 1 # j. Also
V=g (4.18)
b
Mit (4.17), (4.18) und ¢ # j folgt
Cj C; a; Qj
J 2= — — 4.19
b b YT b M bM (4.19)
Und nach einer kleinen Umrechnung ist
1
Cjbi — Cibj = W(aibj — ajbi) (420)
Und dann
1
Cjbl‘ — Cibj S Waibj
1
Cibj - Cjbz' S Wajbi (421)
Betrachte M ~ M* > 37" a; , daher ist
a; < 27" M (4.22)
Noch mit (4.21) gilt
— 2_n+jbi < Cjbz' — Cibj < 2_n+ibj (423)

Noch iibersichtlicher ist

‘Cjbi — Cibj‘ < 27n+4bma17 (424)

28 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

was ein bisschen grob abgeschitzt wird.

Um das richtige V' zu finden, kann man zuerst alle ¢; bestimmen, i € {1, 2, 3, 4}. Mit
(4.21) oder (4.22) sehen wir, dass man fiir beliebige i, j € {1, 2, 3, 4}, i # j zwei Ungle-
ichungen zur Verfiigung stehen kann. Offensichtlich ist 0 < ¢; < b; fiir alle 1 <4 < n. Und

mit den vier Unbekannten ¢; hat man ein diophantisches Ungleichungssystem

Cjbi — Cibj < 27n+ibj

Cibj — Cjbi < 27n+jbi

0< Ciy €5 < bj (425)

fiir alle i, j € {1, 2, 3, 4} und j # i.

Wegen der Existenz von V soll das Ungleichungssystem eine Losung(-smenge) der ganz-
zahligen Zahlen besitzen. Aufserdem kann das Ungleichungssystem zu einem Integer-
Programming-Problem umwandeln kann und das verspricht auch eine ganzzahlige Losung

zu bekommen|[25].

4.3 Wahrscheinlichkeit, um V' zu finden

Wir miissen jetzt das Ungleichungssystem als Integer-Programming-Problem l6sen, um
das V' zu finden.

Zuriick zur Auswahl von [, dass [= 4 genommen wird. Aber warum die Anfangsfolge
genau 4 Elementen ist? Grob erklart ist fiir die Berechnung von V' mit 4 Unbekannten im
Ungleichungssystem durch Integer-Programming gut geeignet. Weniger als 4 Unbekan-
nte bringt es zu viele Losungen, die meisten davon sind aber unbrauchbar, da so viele
moglichen Stelle von V' unrealistisch sind. Fiir [> 5 bringt im gegen Satz dazu viel mehr

Aufwand zu rechnen.

Zudem hat Shamir noch bewiesen, dass zwischen /[und dem Expansionsfaktor d folgendes

Verhéltnis gelten muss

I>d+1

4.3. WAHRSCHEINLICHKEIT, UMV ZU FINDEN 29

Bei unserem Fall ist d = 2, also [muss mindestens 4 sein. Fiir einen hoheren Wert von d
muss man noch mehr Unbekannten im Integer-Programming-Problem bringen: z.B.: wenn

d = 3 ist, muss man 5 Variablen nehmen.|25]

Zur genaueren Analyse fiir [= 4: wie wahrscheinlich bzw. ob {iberhaupt eine ganzzahlige
Lésung gefunden werden kann, die das Integer-Programming erfiillt? Falls viele Losungen
vorkommen kénnen, dann ist ein Durchtesten der langen Liste sehr mithsam. Andererseits,

falls haufig keine Losung gefunden wird, ist der Angriff gescheitert.

Erste Behauptung:

Die Wahrscheinlichkeit, tiiberhaupt eine Lisung zu finden, ist gering.
Sei ' = {1, 2, 3, 4}.

Mit (4.17) und (4.22) bekommen wir fiir alle 4 € T’

—n-+i
i < 4.26
< (4.20)
Sei
b > 2% e T (4.27)
Da b; < 2?7, folgt
namlich
T< A <2n-+1i (4.28)

Wegen b; = a;,U mod M, ist b; mit ungefihr gleicher Grofenordnung von M. Also kann
man sehen, A; &~ 7, und im schlimmsten Fall gilt %; € O(n), wenn b; sehr klein ist. Da i
eigentlich auf Konstant beschrinkt wird, ist A; auch so, und zwar %; € O(1), fiir alle ; € T,

A; ist maximal sublinear zu n.[23]

Sei A = Apaz, € = Emag fiir alle ¢ € I', dann ist

g < 273 (4.29)

30 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Nun nehmen wir an, dass die Zahlen b; fiir alle 7 € ' unabhéngige Zufallsvariablen sind.
Betrachte die Stelle 0 < Z—] < 1, neben der das gesuchte V' liegt.
J

Die Wahrscheinlichkeit, dass fiir den Durchschnitt des Intervalls [(£, £ + €;] mit jeder

Positionsmenge g fiir alle [€ T', | # j, nicht leer ist, héchstens

(2—n+)\)3 — 2—371-1—3)\ (430)

Wenn alle moéglichen ¢; summiert werden, kann die Wahrscheinlichkeit unter der oberen
Annahme, iiberhaupt eine Losung zu finden, weniger als 2773 Laut der Annahme ,\
sublinear zu n* ist die obere Wahrscheinlichkeit gegen null, wenn n grof genug ist. Und
unter der Annahme A ist auf Konstant beschrankt* strebt die Wahrscheinlichkeit noch
schneller, also exponentiell gegen null. Deswegen soll man keine Sorge haben, dass man

zu viele Losungen finden und miithsam priifen muss.

Zweite Behauptung:

In fast allen Fdllen existiert mindestens eine Losung.

Wir wissen noch, dass alle b; eigentlich nicht unabhéngig sind. Deshalb kann man vorstellen,

dass die obere Wahrscheinlichkeit tatsichlich grofer ist, als was wir abgeschétzt haben.

Mann kann auch vorstellen, dass wegen der Existenz von V' = % das V' ndhe genug von

mehreren a; liegen soll, die wir wohl bestimmen koénnen.
Aufserdem hat Shamir eine Annahme benutzt und zwar
Hypothese[22]

Das Integer-Programming-Problem von (4.25) beziiglich dem Rucksackproblem von Merkle-
Hellman hat bis einem multiplikativen Konstant abhéingig von 1, mit | = |I'|, und die er-
wartete Anzahl der Lésungen fiir das obere quasi-zufillige Integer-Programming-Problem

1st mindestens 1.

Aquivalent kann es gesagt werden, dass fiir das obere Integer-Programming-Problem, die

Klasse von Mapping von den Folgen (W, aq, ..., a,) an ein festes by, die Bilder von
(ay, ..., a;) hat, was fast immer mindestens eine positive Fraktion in Abhéngigkeit von [
schlagt.

Das wiederum ist aus dem folgenden Lemma:

Lemma:[22]

4.4. DAS SIMPLEX VERFAHREN 31

Sei by fest mit by = uM, # < u < 1. Die Anzahl der verschieden (b, ..., b)) mod by,
die die Bilder von etwa(W, aq, ..., a;,) mit Wby = a; mod M sind, ist entweder O oder

mindestens ein Konstant abhdngig von lpZQ(Z_I)d".

Hier gibt es eine Annahme, dassnM2 < b; < M. Da alle b; eigentlich etwas gleich grofs wie

M ist, kann diese Annahme fast immer gelten.

Nun werden solche Aussagen ohne Beweis gestellt. Daher ist eine Losung von (4.25) (fast)

immer garantiert.

Dariiber hinaus kann man dieses Ungleichungssystem durch die diophantische Approxi-
mation analysieren, und es wird zeigt, dass sogar auch fiir mehrfach permutierte Version
von Merkle-Hellman fast immer eine Losung zu erwarten ist [6]. Obwohl wir hier die
diophantische Approximation nicht anwenden, ist eine ganzzahlige Losung im Integer-

Programming-Problem auch zu erwarten.

4.4 Das Simplex Verfahren

Um dieses Integer-Programming-Problem zu 16sen, haben wir uns das Simplex Verfahren
entschieden. Das Simplex-Verfahren ist eine der bekanntesten Algorithmen, um lineare
Integer-Programmen effizient zu 16sen. Wie im Buch von George B. Dantzig|26] erklirt
wird, hat dieser Algorithmus normalerweise polynomiale Laufzeit, nur im extremen Fall
kann exponentiell laufen. Das Verfahren kann mehrere Variante und gleichzeitig mit vielen

Techniken haben, um die Lésung schneller zu liefern.

Im Allgemeinen dient das Simplex zur linearen Programme der Form
(LP) maz {c"z|Az <b, x> 0}

wobei z € R", A € R™*" eine Matrix mit reellen Eintragen, ¢ € R" der Zielfunktionsvek-

tor und b € R™ der Vektor von Beschrinkungen ist.

Ein Punkt bzw. Vektor x ist zu finden, hier ist x mit ganzzahligen Eintragen, um das
lineare Gleichungssystem zu erfiillen und einen moglichst hohen Zielfunktionswert F'(z) =

"'z 7zu haben.

Falls ein lineares Programm nicht wie die Standardform von oben ist, wird eine Umfor-

mung bendtigt.

32 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Fiir die Menge der zuldssigen Losungen gibt es drei Moglichkeiten:
1. das LP besitzt keine zuldssigen Losungen, d. h., das Polyeder ist leer.
3. das LP ist unbeschriankt, es gibt Losungen mit beliebig hohem Zielfunktionswert.
3. es gibt genau eine oder unendliche viele Optimallésungen.

Das Simplex-Verfahren setzt sich aus zwei Phasen zusammen:

Phase I bestimmt eine zuléssige Startlosung oder stellt fest, dass das Problem keine

Losung besitzt.

Phase II verbessert eine bestehende Losung immer weiter, bis keine Verbesserung der

Zielfunktion mehr moglich ist oder die Unbeschrinktheit des Problems festgestellt wird.
Laufzeit:

Aus theoretischer Sicht ist das Simplex-Verfahren daher beispielsweise den Innere-Punkte-
Verfahren mit polynomialer Laufzeit unterlegen. Aus praktischer Sicht hat es sich aber in
vielen Fallen als schneller erwiesen. Der grofite Vorteil des Simplex-Algorithmus gegeniiber
anderen Verfahren liegt jedoch darin, dass es bei kleinen Anderungen der Eingabedaten
im Laufe des Algorithmus einen ,Warmstart* erlaubt, also die letzte berechnete Basis
als Ausgangspunkt fiir wenige weitere (primale oder duale) Iterationen nehmen kann,
wahrend beispielsweise Innere-Punkte-Verfahren in solch einem Fall von vorne anfangen
miissen. Dieser Fall tritt sehr hdufig auf, wenn sehr viele dhnliche lineare Programme
in Folge gel6st werden miissen, beispielsweise im Rahmen von Schnittebenenverfahren,
Branch-and-Bound oder Branch-and-Cut.

Wir haben leider kein passendes Tool bzw. API von Simplex gefunden. Das beste Tool
heutzutage ,lp solve* berechnet bei unserem Testfall keine richtige Losung und daher
wird ein natives Verfahren ersetzt. Obwohl das Verfahren nicht effizient ist, liefer das

immer richtige Losung an.

4.5 Bestimmen von V

Ob das V' genau gleich % sein muss, ist keins von unserer Interesse, da eigentlich nur ein

approximierter Wert von % ausreicht sein kann, namlich Y= in unserem Gedanke. Das
liegt daran, dass {r;]\Z— 1 <i<n}und {b|1 <7< n} zwar mit gleicher Eigenschaft

bi

M
wachsende” Eigenschaft beim Verschliisseln schon reicht. Tatséchlich kann man vorstellen,

sind, aber ob r; = unbedingt ist, muss eigentlich nicht sein, weil nur diese ,stark

4.5. BESTIMMEN VON V 33

dass in einem kleinen rationalen Intervall (5, n) alle Punkte die obere Eigenschaft erfiillen
kénnen. D.h., ein kleines ,,Rauschen ist erlaubt und wir miissen nur eigentlich den Wert

V' gut genug approximieren. Damit wird jetzt die Frage 2 im ersten Schritt beantwortet.

Wenn eine Losung vom oben genannten Integer-Programming-Problem gefunden wird,
also die Menge {c(;)} mit Annahme von n(j) = j, j € I', dann testen wir gleich, ob die
das richtige V liefert. Falls wir mehrere Losungen finden, dann testen wir alle {cf{l(z) |7 €T},
{cf(;)\j € I'}, --+ durch. Da wir in (4.25) nur konstante Unbekannte haben und positive

ganzzahlige Losungen finden wollen, ist diese Liste endlich.[23]

Setze ¢; = ¢x(j), aus (4.18) und (4.29) setze noch o = # , ¢ = 27¥"** und folgt V' € [, o€].
J

Offensichtlich darf V' sich nicht am Rand befinden, dann ist V' € (o, o+ ¢€).

Fixiere dieses Paar {c;, b;}, und betrachte alle anderen Paare {c;, b;} mit 1 <i <n, i # j.
Der Abstand 1;17 zwischen zwei Minimalen ist (fast) immer grofer als €, weil b; < 22"
Da ¢ normalerweise auf Konstant beschrinkt ist, kann man hier so mutig behaupten.
Daraus folgt, dass im Intervall (o, o 4 €) beziiglich j, maximal einen Punkt von p/b; mit
p < b, i <n,i# j. Das Bild der Funktion f; mit f;(V)) = b;V mod1, i # j, kann das
Intervall (o, a+¢) maximal zu zwei Abschnitten teilen. Mit den ersten vier ¢; berechneten
bekommt man maximal 4% Schnittpunkte von den vier Linien beziiglich ¢; und b; mit
1 < 7 < 4. Diese Schnittpunkte kann man leicht berechnen. Und wenn man alle n Linien
beziiglich ¢; und b; mit1 < ¢ < n sieht, ist dann maximal O(n?) Schnittpunkte zu erwarten.
Durch je zwei benachbarte Schnittpunkte wird das Intervall (o, o+ ¢) zu hichstens O(n?)
Teilintervallen unterteilt. Betrachte jedes Teilintervall [3, § + {] ausgenommen den Rand
{a, a+e}, dass das keine Position ¢;/b; mit 1 < i < n enthilt, damit wir priifen kénnen, ob
eine Stelle V* mit der Rechnung (4.8) eine stark wachsende Folge etwa wie (%, ..., §%, 1)
liefert. D.h., wir kénnen mit {¢;|1 < j <!, [= 4} einige kleine Intervalle bestimmen, um

das gesuchte V' zu approximieren.

Was man aber noch diskutieren muss, ist der Sonderfall von(0, €) bzw. (0, {), ndmlich,
wenn b; = 0 ist. Offensichtlich sind alle anderen Positionen bzgl. b; mitl < i < n entweder
auch 0, oder liegen am rechts von 0. Allerdings wissen wir schon, dass der Abstand bi
ist fast immer grofer als €, dann miissen alle Positionen genau 0 sein, da alle Rechts %J?,
¢; > 0 auferhalb vom Intervall (0, €) liegt. Zudem sieht man noch, dass das Intervall
(0, €) gar nicht unterteilt wird und wir nur ein einziges Intervall haben. Daher sollen alle
¢; = 0,4 € n sein. Insbesondere ist (0,0, 0,0) auch eine mogliche Losung zum oben genan-
nten Ungleichungssystem. In diesem Fall soll ein gewiinschtes V' nahe 0 sein, damit die
Folge (bz1), - .., bzn)) streng monoton wachsend ist. Dieser Sonderfall hat die Permuta-

tion schon fest gelegt und man behandelt mit anderen Permutationen nicht mehr. Falls die

34 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Folge des offentlichen Schliissels nicht permutiert ist, bedeutet das, dass die stark wach-
sende {a;|1 < i < n}, durch die Rechnung b; = a;U mod M, auch eine streng monoton
wachsend Folge (by, ..., b,) erzeugt. Das ist aber kaum moglich. Fiir solche Fille kann

man separat behandeln.

Andererseits kann b;, 7 € I' im extremen Fall sehr klein sein, damit das zugehorige A
den maximalen Wert erreicht. Das fiihrt dazu, dass ¢ = 273"+ grifer als der Abstand
b%- ist. Infolgedessen diirfen andere Positionen j* mit ¢ # j innerhalb vom Intervall (0, €)
liegen. Aber dieser Sonderfall ist wegen des Analysis von A auch sehr unwahrscheinlich

vorzukommen, damit man nicht viel darauf beachten soll.

Zusammengefasst ist der Sonderfall {¢; = 0|7 € I'} Shamir-Algorithmus nicht zu schmélern.

Nun werden alle O(n?) Schnittpunkte von n Linien berechnet. Die genauere Selektion der
Teilintervalle kann man mit (cy, ..., ¢4) und € zuerst fiir (x(1), ..., n(4)) vorwahlen. Man
kann jetzt sehen, dass in diesem Durchschnitt alle Linien von unten nach oben ,richtig”
angeordnet werden soll, namlich, innerhalb eines Teilintervalls (8, 4 () C [a, o +¢) alle

Punkte V' davon bringen die Monoton-Eigenschaft beziiglich der Permutation =

0 < bn(l)V modl < --- < bn(4)V modl < 1 (431)

Danach miissen in diesem selektierten Teilintervall insbesondere alle anderen by , 5 <

i <n fiir (4.31) noch weiter gelten

0< bﬁ(l)v modl <-.- < bn(n)V modl <1 (4.32)

Diese Ungleichungen stellen gleichzeitig die Permutation = fest, die moglicherweise mit der
originalen Permutation II iiberein stimmen kann. Das fiihrt dazu, dass wir fiir andere Per-
mutationen von (n(5), ..., n(n)) statt O(n!) auf O(n?) begrenzt. Auberdem ist das Raten
von (n(1), ..., n(4)) maximal O(n'), somit miissen wir fiirs Raten aller Permutationen
(n(1), ..., n(n)) maximal O(n®) belasten.

Dariiber hinaus wissen wir, dass es in einem Teilintervall mindestens ein V' existiert, mit

dem eine stark wachsende Folge erzeugt wird, was wir gleich priifen werden.

Dafiir definieren wir natiirliche Zahlen s; = ;3|1 < i < n , ndmlich den ganzzahligen

Teil davon und damit

4.6. DISKRETES APPROXIMIEREN ZU V 35

Zusammen mit dem Unbekannten V' haben wir fiir jedes richtig selektiertes Teilintervall

8, 8+ {] ein Ungleichungssystem

<V <B4+
i—1
Z(ij—Sj) <bZ~V—si, 2<1<n
j=1

n

> iV —s) <1 (4.34)

1=1

Setze t; = b;V — s;, 1 <14 < n, so erhalten wir noch das in noch iibersichtlicherer Form:

<V <B4+

i—1
th<ti7 2<1<n
Jj=1

d i< (4.35)
=1

Theoretisch kann man diese Ungleichungen 16sen und ein Teilintervall [L, R] C [, B+,
0 < L, R <1 nehmen, damit fiir alle V € [L, R] das oben genannte Ungleichungssystem
fiillt, so dass man V = % finden kann, mit dem eine stark wachsende Folge erzeugt wird.

Infolgedessen ist unser Ziel des Angriffs erreicht.

4.6 Diskretes Approximieren zu V

Wir konnen insgesamt hochstens O(n?) Teilintervalle [3, B +] selektieren, aber eine
direkte Berechnung fiir solche Teilintervalle [L, R] aus (4.34) in einem [, $ + {] ist in
Praxis nicht einfach. Alternativ kann man mit diskreten Punkten in einem Teilintervall

B, B+ {] das gewiinschte V' approximieren. Da nur ein gewiinschter Wert von V' statt

w
M

gesamten Teilintervall Schritt fiir Schritt diskret raten und priifen. Wenn einen richtigen

genau = oder ein Teilintervall mit aller méglichen Werten ausreicht, darf man in einem

Wert gefunden wird, beendet man diese Suche nach V.

36 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Jedoch muss man solche diskreten Punkte sorgfiltig definieren. Sei V* = W*/M* eine
selektierte diskrete Stelle. Der kleinste Abstand zwischen V*und % soll nicht grofer als
ein bestimmter Wert. Um diese Grenze festzustellen, schauen wir noch die urspriingliche
stark wachsenden Folge {a;|1 < i < n}. Sei nun M* = xM und W* = x(W + &). Dann

gilt

ws W g
wowje wan
Andererseits ist
Nach (4.7) ergibt sich
Verglichen mit (4.37) und (4.38) hat man
I/V*bZ — M*Ci = x(ai — Ebz) (439)
Wir sehen aus (4.39), dass die Folge von

wird auch stark wachsend, wenn das Rauschen &b; gering genug ist, damit die Eigenschaft
von {a;|1 < i < n} nicht zerstort bzw. beeinflusst. Also um den minimalen Abstand |£/M |

zu bestimmen, ist dquivalent um Zb; zu berechnen.

Dazu definieren wir noch die Distanz d; beziiglich a; und M mit

i—1
di:ai—Zaj, 1§2§7L (441)
j=1

Dann folgt

n

=Y 2, (4.42)
Z Zz:l

=1

4.6. DISKRETES APPROXIMIEREN ZU V 37

Damit &b; mit (4.40) die stark wachsende Eigenschaft nicht beeinflusst, sollen alle d;
moglichst ,,grofi* definiert werden. Nun haben wir ein Integer-Programming-Problem mit
den Unbekannten d;

M > Zilz”*idi (4.43)

Zudem sei d; < D, fiir alle 1 <14 < n, und dann setze

& =d;— D (4.44)

7

mit df > 0,1 <7 < n. Daraus folgt

M= (2 =1)D>Y" o d; (4.45)

Sei S, (M) die Anzahl der ganzzahligen Losungen von (4.43) und analog sei S,,(M — (2" —
1)D) fiir (4.45). Es soll gelten

Sn(M) ~ Sp(M — (2" = 1)D)
wenn M =29 1 < d < 2, n— oo, wobei ~ die Aquivalenz Relation ist, damit die stark
wachsende Eigenschaft der Folge bleibt.
Mit der Hilfe von

Theorem|22]:

wobei n — oo und M grofi genug ist.
Man kann fiir S,,(M — (2" — 1)D) etwa wie
D=n"%2""M (4.46)

nehmen, damit die Aquivalenz Relation zwischen S, (M) und S, (M —(2"—1)D) tatséichlich
gilt.

38 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Mit (4.46) kann man ferner &b; aus (4.40) setzen, beispielsweise als

Ehy < EM <n "2 "M (4.47)

damit das Rauschen &b; gering genug wird.

Infolgedessen betrdgt der minimale Abstand nach (4.36) maximal

13 1
— 4.4
‘M ‘ n®2n M (4.48)
Nach (4.18) und (4.36) hat man
0 14 C; 1
Also die Breite des gesamten Wertbereichs von V' bzgl. b; und ¢; ist kleiner als ﬁ .

Die Grofenabschéitzung von M ist

M <2, d=2

somit wir fiir hochstens

59n 2n
n2M<[2 —‘Qins

Punkte testen miissen, fiir jedes festes b;.

22n
°= [bj

Da wir am Anfang b;, 1 < i < 4 fest genommen haben, sind 2¢ und e eigentlich konstant,

Setze nun

und somit ist das Testen fiir das ganze Intervall O(n°) zu erwarten. Wie vorher besprochen
wird, berechnet man die O(n?) Abschnitte zuerst und selektiert die Teilintervalle [, B+,

und danach testet schrittweise in Weite von 1/p2%"n® und sieht, ob in h-tem Schritt

1

Vi=B+ 025n5

(4.49)

eine stark wachsende Folge durch V*b, mod 1, 1 < i < n erzeugt. Die proportionale Anzahl
der Punkte zu testen ist durchschnittlich O(n?).

4.7. PERMUTATION UND ZEITKOMPLEXITAT 39

Somit wird die 1. sowie 2. Frage im Abschnitt 4.1 auch beantwortet.

4.7 Permutation und Zeitkomplexitat

Falls das Merkle-Hellman Kryptosystem ohne Permutation eingesetzt wird, muss man
nicht raten. Der Zeitaufwand vom Integer-Programming-Problem, um {¢;|1 < j < 4}
zu bestimmen, ist in Praxis polynomiall9, 25|, da es nur 4 Unbekannte im Integer-
Programming-Problem gibt. Und die durchschnittliche erwartete Anzahl der Losungen
ist wenig. Das schrittweise Testen im richtigen Teilintervall 8, B+ (], um V' zu approx-

imieren, ist durchschnittlich O(n?), maximal O(n%).

Wenn eine Permutation in den offentlichen Schliissel eingesetzt wird, wissen wir nicht, ob
wir uns in der richtigen Permutation befinden. Wir kénnen aber raten und wegen der Ex-
istenz der Losung priifen wir jede Moglichkeit, ob die die gewiinschte Eigenschaft erfiillt.
Dazu raten wir zuerst (n(1), ..., n(4)) fiir O(n*) mal. Jedes Mal losen wir das Integer-
Programming-Problem. Wir wissen noch, dass das Selektieren der Teilintervalle eigentlich
auch fiir eine richtige Wahl der Permutation n tut. Bestimmt eine Anordnung von un-
ten nach oben beziiglich den n(7) Linienabschnitten eine Permutation (bys), ..., bxm)),
startet man das schrittweise Testen im zugehorigen Teilintervall |3, B + {]. [23] Also fiir
ein festes ,Raten“ von (n(1), ..., n(4)), ist das gesamte Testen mit Beriicksichtigung aller
Permutationen der restlichen b.;), 5 < ¢ < n, maximal O(n®) Schritte zu erwarten. Im
Vergleich zur gesamten Schritten in der Testphase ohne Permutation haben wir trotz der

Permutation den gesamten Aufwand auch auf O(n’) begrenzt.

Wenn ein passendes V' gefunden wird, wissen wir gleichzeitig die zugehdrige Permutation
noch. Danach kénnen wir wie Alice alle Ciphertexte erkennen. Somit ist alles in Polyno-
mialzeit berechenbar, und deshalb ist der Angriff von Shamir erfolgreich und auch mit

einer Permutation ist das Merkle-Hellman Kryptosystem untauglich.

Kapitel 5

Implementierung von Shamirs

Algorithmus

Nach der theoretischen Beschreibung von Merkle-Hellman Kryptosystem und Shamirs An-
griff wollen wir jetzt die Verfahren implementieren, damit man die praktische Performance

sehen kann.

5.1 Implementierungsumgebung

Hardwarekonfiguration:

Laptop Lenovo ThinkPad X60s

Intel Core Duo L2300 1,5Ghz / 2MB L2 Cache
3GB DDR2-667 RAM

160GB HDD 7200rpm

Betriebssystem:
Microsoft Windows 7 Professional SP1

Softwareplattform:

Development Environment: Eclipse IDE for Java Developers
Version: Indigo Service Release 2

Programmiersprache: Java

40

5.2. UBERBLICK ZUR PROGRAMMIERUNG 41

5.2 Uberblick zur Programmierung

Datenstruktur

Einerseits ist der offentliche und private Schliissel die natiirliche Zahle mit Bitlinge von
ca. 2n. Im Vergleich zum typischen Datenstruktur von Integer (32Bits) oder Double
(ca.50Bits Mantisse) der Programmiersprachen Java, C++ usw. sind 2n-Bits fiir grofies
n zu lang. Aber Java bietet noch einen schon vorhandenen Datentyp ,,BigInteger, mit
dem man natiirliche Zahlen beliebiger Lingen bearbeiten kann. Anderseits miissen wir
in der Berechnung von rationaler Zahl V' moglichst genaue Werte haben, im Gegensatz
dazu kann man mit Fliekkomma-Zahl das Runden nicht kontrollieren. Deswegen habe ich
selbst ein neues Datentyp ,,BigRational® erfunden, damit man rationale Zahle auch wie
,, BigInteger* mit typischer Operationen bearbeiten kann. Hier heifst ,, Big* eigentlich, dass
der Teiler und der Nenner ,, Biglnteger® und/oder normale Integer sein konnen. Mit diesem
,BigRational* kann man rationale Zahlen ohne Rundungsfehler beliebig genau berechnen,

sodass die Rechnung von V' sowohl theoretisch als auch praktisch moglich wird.

Klassifikation

Das gesamte Package ,, Kryptosystem* besteht fiir die Implementierung von Merkle-Hellman

Kryptosystem und Shamir-Angriff aus folgenden Klassen:
KryptoSystem

Diese Klasse steuert den Ablauf von Verschliisseln, Entschliisseln, Angriff usw. Am Ende

wird Ergebnisse ausgegeben, damit man sieht, ob der Angriff richtig tut.
PlainText

Diese Klasse dient eine Binércodierung der originalen Klartext.

MHKey, MHPrivateKey und MHPublicKey

Diese drei Klassen sind die Definition und Erzeugung vom offentlichen und privaten

Schliissel in Merkle-Hellman Kryptosystem.
MerkleHellmann

In dieser Klasse werden Nachrichten nach Merkle-Hellmann Verfahren verschliisselt sowie

entschliisselt. Eine Permutation ist auch eingesetzt.
ShamirsAttack

Diese Klasse beinhaltet Hauptfunktionen des Shamir-Angriffs. Insbesondere steuert die
das Raten der Anfangsfolge und die Durchpriifung mdoglicher Lsungsliste aus Integer-

Programming-Problem. Am Ende werden Nachrichten auch entschliisselt.

42 KAPITEL 5. IMPLEMENTIERUNG VON SHAMIRS ALGORITHMUS

Integer Programmaing

Diese Klasse 16st das lineare Ungleichungsproblem und zeigt alle méglichen Lésungen, die

die Position vom gesuchten V' ggf. bestimmen.
SuperIncreasingSequence

Stark wachsende Folge wird mit f(V) = ;V mod1 hier berechnet und gepriift. Dafiir

werden zuerst die moglichen Teilintervalle selektiert und die Permutation festgestellt.

5.3 Bemerkungen und Performance des Programms

Bitlinge:

Da die Codierung binér und je Einheit(Byte) 8 Bits lang ist, haben wir mit n = 8, 16, ...
angefangen. Also sind M, W usw. 16 Bits fiir n = 8, oder 32 Bits fiir n = 16. Aber wenn n
noch grofer wird, ist der Zeitbedarf extrem hoch. Fiir n = 8 dauert ein kompletter Durch-
lauf fiir den Angriff je nach der Anzahl der Lésungen von Integer-Programming-Problem
einige Minuten bis ca. Halbstunde. Aber schon bei n = 16, muss es normalerweise eine
Stunde oder mehr dauern. Und fiir n = 32 oder noch grofser kann das am ganzen Tag nicht
fertig sein. Natiirlich kann ein Angriff nicht mit so schnell sein und Personal Computers
sind auch nicht mit einem grofen Server oder Cluster vergleichbar. Jedoch kann man in
der industriellen Anwendung erst bei der Angabe des Offentlichen Schliissel den Angriff
schon richtig starten, weil die zu sendenden Nachrichten nicht fiir den Angriff bendtigt
werden, und auferdem sind die leistungsstirkeren Server die Rechnungsgeschwindigkeit

wesentlich zu beschleunigen.

Integer-Programming

Um das ganzzahlige Ungleichungssystem zu l6sen, haben wir bei der Nutzung vom beriihmten
Hilfstool ,,Ip _Solve gefunden, dass dieses Simplex-Program fiir unseres Ungleichungssys-
tem nicht richtig funktioniert sowie ungeeignet. ,,Ip Solve wird von C/C++ implemen-
tiert und hat ,,double’ als Datentype benutzt. Das ,,double soll eigentlich fiir Zahlen ca.
50-Bits grof noch in Ordnung sein, aber ,,Ip Solve* gibt bei n = 8 oder n = 16 keine
richtige Losungen aus. Das kann daran liegen, dass ,,double” Fliekkommazahl ist und mit
Rundungsfehlern Schritt fiir Schritt den Fehler der ganzzahligen Losungen fiihren. Deswe-
gen sind vielleicht nur richtige ,,Rationale“-Typen geeignet. Leider findet man zurzeit
keine passenden Hilfs-Programme bzw. Software und auferdem ist eine richtige Imple-

mentierung nicht einfacher Version von Simplex sehr aufwendig. Daher haben wir das

5.3. BEMERKUNGEN UND PERFORMANCE DES PROGRAMMS 43

Tool von Simplex verzichten und eine native Methode implementiert, mit der wir unseres
Integer-Programming ohne Fehler rechnen kénnen. Die Zeitkomplexitét ist aber viel mehr
als polynomial. Deswegen sind fiir n > 16 deutlich langsamer. Jedoch ist diese Methode
ziemlich sicher und keine richtigen Losungen sind zu verpassen und zwar c; ist von 1 bis
b1 — 1, und fiir jedes feste ¢y, rechne jeweils ¢o, c3 und ¢4. Man muss selbstverstindlich fiir
¢i, 2 <1 <4 von 1 bis by — 1 jeden Wert priifen. Es gibt intelligente Strategie, damit wir
die Berechnung fiir ¢;, 2 < i < 4 viel sparen und keine exponentielle Zeit zu haben ist.
Trotzdem muss man fiir ¢; immer noch O(2") Schritte bendtigen. Dann ist dieses native

Verfahren fiir Integer-Programming-Problem leider nicht in Polynomialzeit berechenbar.

Verfeinerung fiir die Ungleichungen

Fiir die Ungleichungen als Integer-Programming habe ich etwas verfeinert und zwar die
Rechtsseite einer Ungleichung ist mir mit jedes ¢; und jedes b; abhangig und damit wird
die Suche nach ¢;, 1 <4 < 4 noch schneller und genauer. Ich sehe in vielen Literaturen,
dass vermutlich wegen der Ubersichtlichkeit dieses Integer-Programming-Problems immer
feste Werte fiir die 6 Ungleichungen genommen werden. Das ist zwar auch richtig, aber in
meinem Testen der Implementierung kam manchmal von, dass fiir ein festes ¢;, mehrere
moglichen Werte von ¢;, 2 < 7 < 4 vorkommen. Das fiithrt zu noch einem kleineren
Aufwand mehr. Mit meiner kleinen Verfeinerung wird solcher Sonderfall grundsétzlich

vermieden.

Anzahl der Lésungen

In einigen Fallen im praktischen Testen kommen nicht nur eine Losung von gesuchtem
V' vor, mit dem man die Nachrichten entschliisseln kann. Aber nicht jede Lésung von
{¢;|1 < j < 4} aus dem Integer-Programming kann eine richtige stark wachsende Folge

bringen. Also ein Testen dafiir ist noch notwendig.

Kapitel 6

Fazit

6.1 Zusammenfassung

Die Aufgabenstellung dieser Arbeit ist, um das Merkle-Hellman Kryptosystem und seine
Varianten sowie Angriffsverfahren, insbesondere den Shamir-Algorithmus zu analysieren
und zu implementieren. Der Shamir-Angriff wurde ausfiihrlich behandelt, wobei es klar
ist, dass der Angriff gegen der Liicke vom Merkle-Hellman Kryptosystem mit der stark
wachsenden Folge erfolgreich ist. In manchen Stellen habe ich das Verfahren von Shamir
verfeinert. In der praktischen Implementierung hat man auch bemerkt, dass der Angriff
auch immer funktioniert und manchmal kommen mehrere Losungen vor, die dquivalent
zu entschliisseln sind. Das alles kann uns in der Zukunft helfen, eine bessere Variante vom

Merkle-Hellman Kryptosystem zu erfinden und ggf. anzugreifen.

6.2 Diskussion und offenes Thema

In der Analysis vom Abschnitt 4.6 haben wir gesehen, dass eine stark wachsende Folge
mit einem bestimmten Rauschen auch eine stark wachsende Folge erzeugen kann.[22]
Beispielsweise haben wir im Shamir-Angriff aus der Gleichung 4.40 und der Ungleichung
4.47

a; = a; — b;

Ebz < n=52 "M

Wenn das Rauschen £b; so klein genug ist, kann die Folge von o}, 1 < ¢ < n auch stark

44

6.2. DISKUSSION UND OFFENES THEMA 45

wachsend sein.

Was zu beachten ist, dass hier a; eine rationale Zahl ist und nicht immer ganze Zahl
sein kann. Aber wenn man eine Kollision der o6ffentlichen Schliissel im Merkle-Hellman
Kryptosystem haben will, soll die Folge aus allen a;mit ganzzahligen Eintragen bestehen.
Wir miissen £b; mit £b; < n 22 "M sorgfiltig selektieren, sodass £b; auch positive ganze
Zahl ist, fiir alle 1 < i < n. Im Allgemeinen ist M 2n-Bits lang, also M > 22"~!. Dann ist

n=527"M > n=°2"~1. Falls n grok genug ist, kann LQZ:J eine positive ganze Zahl sein.

Somit ist die Folge von af, 1 <i < n dquivalent zur urspriinglichen Folge (a1, ..., a,).

Ferner kénnen die anderen Teile des privaten Schliissels, ndmlich M, U und W, mit
allen a7, 1 < i < n einen dquivalenten Offentlichen Schliissel zur Kollision bringen, da
M >3"" a; gelten soll.

Wir sehen jetzt dann, wann eine Kollision des &ffentlichen Schliissels vorkommen kann.
Hierzu bleibt noch die Frage, wie wahrscheinlich diese Kollision vorkommt? Wegen der
Zeitbeschrinkung habe ich das noch nicht analysiert. Das kann man in der Zukunft noch

genauer erforschen.

Literaturverzeichnis

1]

2]

13l

[4]

[5]

[6]

|7l

18]

19]

[10]

[11]

Ralph C. Merkle, Student Member, Ieee, Martin E. Hellman, and Senior Member.
Hiding information and signatures in trapdoor knapsacks. IEEE Transactions On
Information Theory, 24:525-530, 1978.

Frieder Knueppel. Asymmetrische Kryptosysteme, 2013.

Adi Shamir. A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem, 1982.

Adi Shamir. A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem. In IEEE Transcations On Inofmation Theory, Vol. IT-30, No. 5,
September 198/, 1984.

Rajib Biswas. BITS Pilani. Asymmetric Cryptosystem.

J. C. Lagarias. Knapsack Public Key Cryptosystems and Diophantine Approxima-
tion. In David Chaum, editor, CRYPTO, pages 3-23. Plenum Press, New York,
1983.

J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. In in
Proceedings of 24rd Annu. Symp. Foundations of comput. Sci, 1983.

Daniele Micciancio and Shafi Goldwasser. Complezity of Lattice Problems: a cryp-
tographic perspective, volume 671 of The Kluwer national Series in Engineering and

Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, March 2002.

Lenstra A.K. LovAjsz L. Lenstra, H.W. jr. Factoring Polynomials with Rational
Coefficients. Mathematische Annalen, 261:515-534, 1982.

Henri Cohen. A course in computational algebraic number theory. Springer, 2000.

E. F. Brickell and A. M. Odlyzko. Cryptanalysis: a survey of recent results. In
Proc. IEEE 76, 1988.

46

LITERATURVERZEICHNIS 47

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Keiji Oomura and Keisuke Tanaka. Density Attack on the Knapsack Cryptosystems

with Enumerative Source (extended abstract), 2003.

Matthijs J. Coster, Antoine Joux, Brian A. Lamacchia, Andrew M. Odlyzko, Claus
peter Schnorr, and Jacques Stern. An improved low-density subset sum algorithm.

In in Advances in Cryptology: Proceedings of Furocrypt 91, 1991.

Claude E. Shannon. Communication Theory of Secrecy Systems. In Bell System
Technical Journal, vol.28-4, 1949.

Benny Chor and Ronald L. Rivest. A Knapsack Type Public Key Cryptosystem
Based on Arithmetic in Finite Fields. IEEE Trans. Inform. Theory, 34:54—65, 1988.

Serge Vaudenay. Cryptanalysis of the Chor-Rivest Cryptosystem. In CRYPTO 98,
pages 243-256. Springer-Verlag, 1998.

Hendrik W. Lenstra Jr. On the Chor-Rivest Knapsack Cryptosystem. J. Cryptology,
3(3):149-155, 1991.

Bao-cang and Hu Yu-pu. Public Key Cryptosystem using Random Knapsacks. Jour-
nal of Electronics and Information Technology, 2010.

Fei Xiang dong; Ding Yan-yan and Pan Yu. Analysis and improvement of a knapsack

Public-key cryptosystem, 2011.

Min-Shiang, Cheng-Chi Lee, , and Shiang-Feng Tzeng. A New Knapsack Public-key
Cryptosystem Based on Permutation Combination Algorithm. 3(9):855 — 861, 2009.

Hamid R. Dalili Rastaghi, Roohallah; Oskouei. Cryptanalysis of a Public-key Cryp-
tosystem using Lattice Basis Reduction Algorithm. In International Journal of Com-
puter Science Issues (IJCSI) . Sep2012, Vol. 9 Issue 5, p110-117. 8p, 2012.

J. C. Lagarias. Performance Analysis of Shamir’s Attack on the Basic Merkle-Hellman

Knapsack Cryptosystem, 1984.

Volker Diekert, Manfred Kufleitner, and Gerhard Rosenberger. FElemente der
Diskreten Mathematik. Walter de Gruyter, 2013.

Eberhard Karls University Tuebingen Informatilk. Interaktives Kryptologie Skript,
Shamirs Algorithmus, 2013.

Jr. H. W. Lenstra. Integer Programming and Cryptography, 1984.

George B. Dantzig. Linear programming and extensions. Rand Corporation Research
Study. Princeton Univ. Press, Princeton, NJ, 1963.

	1 Einleitung
	2 Merkle-Hellman Kryptosystem
	2.1 Rucksackproblem
	2.2 Asymmetrisches Kryptosystem
	2.3 Merkle-Hellman Verfahren
	2.4 Lücke von Merkle-Hellman Verfahren

	3 Neue Entwicklung der Angriffsmethoden
	3.1 Überblick
	3.2 Dichte-Angriff
	3.2.1 Grundlagen
	3.2.2 Niedrige-Dichte-Angriff
	3.2.3 Diskussion über den Grenzwert der Dichte

	3.3 Neue Verfahren des Rucksack-Typ-Kryptosystems
	3.3.1 Diffusion und Konfusion
	3.3.2 Verfahren mit hoher Dichte

	4 Der Angriff vom Shamir-Algorithmus
	4.1 Verlassen der Abhängigkeit von M
	4.2 Anfangen mit der Anfangsfolge
	4.3 Wahrscheinlichkeit, um V zu finden
	4.4 Das Simplex Verfahren
	4.5 Bestimmen von V
	4.6 Diskretes Approximieren zu V
	4.7 Permutation und Zeitkomplexität

	5 Implementierung von Shamirs Algorithmus
	5.1 Implementierungsumgebung
	5.2 Überblick zur Programmierung
	5.3 Bemerkungen und Performance des Programms

	6 Fazit
	6.1 Zusammenfassung
	6.2 Diskussion und offenes Thema

	Literaturverzeichnis

