
Institut für Formale Methoden der Informatik

Universität Stuttgart

Universitätsstraße 38

70569 Stuttgart

Germany

Diplomarbeit Nr. 3520

Der Angriff auf

Merkle-Hellman Kryptosystem

Sheng Gao

Studiengang: Informatik

Prüfer: Prof. Dr. Volker Diekert

Betreuer: Armin Weiß

begonnen am: 17.05.2013

beendet am: 09.01.2014

CR-Klassifikation: E.3, E.4, F.2.2

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen

Quellen benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen

Quellen habe ich nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 09. Jan. 2014 _____________________

Inhaltsverzeichnis

1 Einleitung 4

2 Merkle-Hellman Kryptosystem 6

2.1 Rucksackproblem . 6

2.2 Asymmetrisches Kryptosystem . 7

2.3 Merkle-Hellman Verfahren . 7

2.4 Lücke von Merkle-Hellman Verfahren . 10

3 Neue Entwicklung der Angri�smethoden 11

3.1 Überblick . 11

3.2 Dichte-Angri� . 12

3.2.1 Grundlagen . 12

3.2.2 Niedrige-Dichte-Angri� . 13

3.2.3 Diskussion über den Grenzwert der Dichte 16

3.3 Neue Verfahren des Rucksack-Typ-Kryptosystems 17

3.3.1 Di�usion und Konfusion . 17

3.3.2 Verfahren mit hoher Dichte . 17

4 Der Angri� vom Shamir-Algorithmus 21

4.1 Verlassen der Abhängigkeit von M . 21

4.2 Anfangen mit der Anfangsfolge . 26

4.3 Wahrscheinlichkeit, um V zu �nden . 28

4.4 Das Simplex Verfahren . 31

2

INHALTSVERZEICHNIS 3

4.5 Bestimmen von V . 32

4.6 Diskretes Approximieren zu V . 35

4.7 Permutation und Zeitkomplexität . 39

5 Implementierung von Shamirs Algorithmus 40

5.1 Implementierungsumgebung . 40

5.2 Überblick zur Programmierung . 41

5.3 Bemerkungen und Performance des Programms 42

6 Fazit 44

6.1 Zusammenfassung . 44

6.2 Diskussion und o�enes Thema . 44

Literaturverzeichnis 45

Kapitel 1

Einleitung

Im Jahre 1976 haben Di�e and Hellman das asymmetrischen Kryptosystem erfunden.

1978 entwickelten Merkle und Hellman mit dem Merkle-Hellman Kryptosystem eines der

ersten asymmetrischen Kryptoverfahren. Sie haben ein asymmetrisches Kryptosystem er-

funden, das auf dem NP-vollständigen Rucksackproblem basiert. Das Rucksackproblem

ist eines der berühmtesten NP-vollständigen Probleme. Im Merkle-Hellman Kryptosystem

wird eine stark wachsende Folge benutzt, die eine wichtige Information bringt. Adi Shamir

hat im Jahre 1982 die erste Angri�smethode auf Merkle-Hellman Kryptosystem erfasst,

und später hat man durch die diophantische Approximation, den Density-Attack usw. das

Merkle-Hellman Kryptosystem sowie seine Nachfolgen gebrochen. Auÿerdem hat man be-

wiesen, dass solches Kryptosystem mit einer Dichte(Density) kleiner als 0.9408. . . durch

LLL-Algorithmus unsicher ist. Jedoch ist das Kryptosystem mit dem Rucksackproblem

sowohl beim Verschlüsseln als auch beim Entschlüsseln sehr e�zient. Viele neuen Vari-

anten vom Merkle-Hellman Kryptosystem mit dem modi�zierten Rucksackproblem sind

noch mit hoher Sicherheit. Deshalb ist das Merkle-Hellman bzw. Rucksackproblem Kryp-

tosystem heutzutage noch sinnvoll.

Dafür habe ich zuerst das Rucksackproblem und das Merkle-Hellman Kryptosystem erk-

lärt. Auÿerdem habe ich die Einführung der neuen Entwicklung der Analyse von dem

Merkle-Hellman Kryptosystem, seinen neuen Varianten und ggf. den Angri�smethoden

darauf. Danach habe ich über den Shamir's Angri� ausführlich beschrieben. Insbesondere

habe ich über die Approximation von �Trapdoor Paar� analysiert. Zudem habe ich den

Shamir's Angri� implementiert und getestet. Man hat dann die Performance vom Shamir's

Angri� in Praxis gesehen. In der praktischen Implementierung sowie Testen habe ich einen

Sonderfall bemerkt, dass mehrere �Trapdoor Paare� vorkommen können.

Darüber hinaus �nde ich in der Analysis vom Shamir's Angri� eine Eigenschaft der stark

wachsenden Folge, die eine Möglichkeit zur Kollision der ö�entlichen Schlüssel bringen

4

5

kann. Am Ende habe ich eine Zusammenfassung vom Merkle-Hellman Kryptosystem mit

dem Shamir's Angri� gegeben, und gleichzeitig ein o�enes Thema für die Kollision der

ö�entlichen Schlüssel gestellt.

Kapitel 2

Merkle-Hellman Kryptosystem

Die Grundidee vom Merkle-Hellman Kryptosystem ist, dass eine relativ einfache Instanz

des Rucksackproblems zuerst erzeugt wird, die als privater Schlüssel zum Entschlüsseln

zu benutzen ist. Dann wird aus dieser einfachen Instanz eine möglichst schwere Instanz

berechnet, die als ö�entlicher Schlüssel benutzt wird[1]. Wenn der Absender eine Nachricht

an den Empfänger sendet, kann der Absender zuerst mit dem Rucksackproblem verschlüs-

seln. Weil dieses Problem NP-vollständig ist, kann der Angreifer die Verschlüsselung nicht

brechen. Dies war der Gedanke von Merkle und Hellman. Leider ist der Gedanke nicht

ganz korrekt. Es liegt daran, dass das Rucksackproblem von Merkle-Hellman eigentlich

eine wichtige Lücke hat und nicht wirklich ausreichend sicher ist. Nun folgt eine Ein-

führung zum Rucksackproblem, asymmetrischem Kryptosystem und dem Merkle-Hellman

Verfahren:

2.1 Rucksackproblem

Das Rucksackproblem heiÿst auf Englisch Knappsack oder Subset Problem. Gegeben sind

n Objekte und einen Rucksack mit der Kapazität (Gewichtsgrenze) C.

Eingabe:

P = (p1; :::; pn) : Menge der Rucksäcke

W = (w1; :::; wn) : Gewichtsmenge jedes Rucksacks

C : (Gesamte)Kapazität

Gesucht :

Maximiere
Pn

i=1 xipi unter
Pn

i=1xiwi = C, x 2 f0; 1g
6

2.2. ASYMMETRISCHES KRYPTOSYSTEM 7

Wir de�nieren noch die Nutzendichte (vom Objekt i): pi
wi
, wobei alle pi

wi
sortiert sind. Es

soll gelten, dass
Pn

i=1wi > C; wi < C, für alle i. Das Ziel ist eine Auswahl einer Teilmenge

von Objekten mit maximalem Nutzen unter Beachtung der Kapazität.

2.2 Asymmetrisches Kryptosystem

Für das asymmetrische Kryptosystem kann man in mathematischer Formulierung so

de�nieren[2]:

Pr Menge der privaten Schlüssel

Pb Menge der ö�entlichen Schlüssel

U Menge der Nutzer (User), Teilnehmer

Jeder Teilnehmer A 2 U hat einen privaten Schlüssel Pr(A)

sowie einen ö�entlichen Schlüssel Pb(A)

M Menge von Klartexten

C Menge der chi�rierten Nachrichten

f : Pb�M ! C Chi�rierfunktion

g : Pr � C !M Dechi�rierfunktion

Bei einem Asymmetrischen Verschlüsselungsverfahren (auch als Public-Key-Verfahren genan-

nt), gibt es im Gegensatz zu einem Symmetrischen, nicht nur einen Schlüssel, sondern

gleichzeitig zwei. Dieses sogenannte Schlüsselpaar setzt sich aus einem privaten Schlüs-

sel (engl.: private key) und einem ö�entlichen Schlüssel (nicht geheim, engl.: public key)

zusammen. Für die Anwendung muss man einen Algorithmus �nden, dass das Entschlüs-

seln für den Besitzer mit dem privaten Schlüssel relativ leicht ist, während der Angri�

möglichst schwer sein kann, obwohl der ö�entliche Schlüssel schon bekannt ist.

2.3 Merkle-Hellman Verfahren

Beim Rucksackproblem hat man eine Folge positiver reeller Zahlen, im grundlegenden

Merkle-Hellman Verfahren[1] ist diese Folge natürliche Zahlen. Und diese Folge (a1; . . . ; an)

ist stark wachsend (engl.: super increasing) und zwar ai >
Pi�1

j=1 aj für alle 1 � i � n. Die

Idee von Merkle-Hellman ist diese �stark wachsende� Eigenschaft zu nutzen und erzeugt

eine neue Folge durch eine Modulo-Rechnung, um das Kryptosystem zu bilden. Diese

Folge sowie deren Eigenschaft sind die Kernidee, sowohl von Merkle-Hellman zu ver- und

8 KAPITEL 2. MERKLE-HELLMAN KRYPTOSYSTEM

entschlüsseln, aus auch von Shamir anzugreifen[3, 4]. Neben der stark wachsenden Folge

wird ein Modulus M mit M >
Pn

i=1ai gewählt, um eine (quasi-) zufällige Folge zu erzeu-

gen und dann zu verschlüsseln. Der richtige Empfänger braucht für Entschlüsseln noch

einen Multiplikator U sowie dessen Inverse W mit UW = 1modM und U > 1; W > 1.

Um U sowie W schnell zu �nden, soll M idealerweise prim sein.

Privater Schlüssel :

Wie alle asymmetrischen Kryptosysteme hat Merkle-Hellman Verfahren einen Geheimteil

und zwar (a1; . . . ; an), M , U und W bilden den privaten Schlüssel für Alice.

Ö�entlicher Schlüssel :

Alice verö�entlicht eine Folge (b; . . . ; bn) mit

0 � bi < M

bi = aiU modM

was sehr �zufällig� aussieht, und verö�entlicht das als ö�entlicher Schlüssel (b1; . . . ; bn),

den alle kennen können. Natürlich kann Alice noch eine Permutation p einsetzen, dann

sieht die Folge (b1; . . . ; bn) noch �zufälliger� aus.

Seien alle Codierung binär, vorgeschlagen sind n = 100 und die erste Zahl der Folge,

nämlich a1, 100 Bits. Jede weitere i-te Zahl ist (maximal) n+i�1 Bits, damit (a1; . . . ; an)

eine stark wachsende Folge wird. Daher sollte an 199 Bits lang und der Modulus M 200

Bits lang sein. Nach einer Modulo-Rechnung ist jedes bi auch maximal 2n Bits lang.

Zu verschlüsseln:

Der Absender Bob nimmt einen Klartext durch Binärcodierung, nämlich eine n-Bits-lange

Folge x = (x1; . . . ; xn) 2 Bn, und verschlüsselt mit dem ö�entlichen Schlüssel (b; . . . ; bn)

duch die Berechnung der Summe y =
Pn

i=1xibi. Schlieÿlich sendet er den Ciphertext y

über den ö�entlichen Kanal an den Empfänger Alice. Die Bitlänge von y ist maximal

2n+ log(n), weil y < n22n ist.

Zu Entschlüsseln:

Alice empfängt y und berechnet c = yU modM , das ist nichts anders als

c=
nX
i=1

xibiW modM =
nX
i=1

xiaimodM

Wegen M >
Pn

i=1 ai folgt c =
Pn

i=1 xiai und auÿerdem ist (a1; . . . ; an) stark wachsend,

dann ist die Rekonstruktion von der Folge x = (x1; . . . ; xn) 2 Bn, B = f0; 1g leicht

2.3. MERKLE-HELLMAN VERFAHREN 9

zu haben. Falls Alice am Anfang noch eine Permutation � nimmt, die sie kennt, ist der

Wiederherstellung der Reihenfolge beim Entschlüsseln für sie nicht schwer.

Das Kryptosystem ist für den Empfänger, der den privaten Schlüssel besitzt, polynomial

zu n berechenbar, und auf der anderen Seite ist für Angreifer mit der Ho�nung möglichst

nicht polynomial zu lösen, da das Kryptosystem auf dem Rucksackproblem mit der Kom-

plexität von NP-schwer basieren sollte. Ein interessantes Bild, um das Mechanismus von

Merkle-Hellman Verfahren darzustellen, und auch die Prinzip des asymmetrischen Kryp-

tosystems, sieht man in Abbildung 2.1[5].

Abbildung 2.1: M-H Kryptosystem

10 KAPITEL 2. MERKLE-HELLMAN KRYPTOSYSTEM

2.4 Lücke von Merkle-Hellman Verfahren

Dass das Rucksackproblem NP-vollständig ist, soll aber etwas irreführend sein, dass das

zugehörige Rucksackproblem im Merkle-Hellman Verfahren eigentlich nicht auch NP-

vollständig ist. Insbesondere ist die Folge (a1; : : :; an) im Vergleich zum normalen Ruck-

sackproblem nicht nur �streng monoton steigend�, sondern auch �stark wachsend�. Vielle-

icht hatten Merkle-Hellman den Gedanke, dass das einfach beim Entschlüsseln und durch

Modulo-Rechnung usw. noch schwer genug für Angreifen ist. Aber diese Eigenschaft der

Folge bringt viele Informationen und man kann diese Lücke mit verschiedenen Method-

en angreifen, damit das Merkle-Hellman Verfahren nicht mehr sicher ist. Folgende zwei

Kapiteln werden erklärt, wie man das das Merkle-Hellman Verfahren bricht. Und für die

erste Angri�smethode von Shamir wird ausführlich beschrieben.

Kapitel 3

Neue Entwicklung der

Angri�smethoden

3.1 Überblick

Die erste Angri�smethode gegen Merkle-Hellman Kryptosystem wurde von Adi Shamir

aus Israel im Jahr 1982 erfunden. Sein Algorithmus ist gegen der grundlegenden Ver-

sion und zwar das zugehörige Rucksackproblem von Merkle-Hellman ist mit einer stark

wachsenden Folge für die Gewichtsmenge und daher kein normales Rucksackproblem. Die

Bitlänge vom Modulus M usw. für einen n-Bits-langen Klartext sind dn, 1 � d � 2, und

das Element in der stark wachsenden Folge ist mit einer Bitlänge von (d�1)n+i�1. Diese

originale Version von Merkle-Hellman, die auch eine Permutationen erlaubt, und sogar mit

multi-iterierten Rucksäcken sein kann, werden später von Lagarias durch die diophantische

Approximation gebrochen[6]. Auÿerdem werden andere Versionen, insbesondere �Niedrige

Dichte Angri�� erfunden, somit die Varianten mit niedrigem Verhältnis von Anzahl der

Elemente / Bitlänge des ö�entlichen Schlüssels auch unsicher sind. Dazu werden vielfältige

Verfahren entwickelt und in diesem Kapitel wird eine Übersicht dafür erstellt.

De�nition: Informationsrate, Dichte(Density)

Ein grundlegender aber wichtiger Parameter zur Analysis fürs Merkle-Hellman Kryptosys-

tem ist der Begri� Informationsrate, und de�niert durch

R = #KlartextBits

#CipherertextBits
= n

log2
Pn

i=1 ai

wobei ai die Gewichte des Rucksacks, nämlich der ö�entliche Schlüssel ist.

11

12 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

In manchen Papers wird auch �Dichte�, auf Englisch heiÿt �Density�, benutzt und ähnlich

wie oben de�niert:

d = n
log2maxai

O�ensichtlich gilt, dass 0 < R � 1, 0 < d ist.

Wir können fürs Merkle-Hellman Kryptosystem seine Dichte sehen, also d = 0; 5, wenn n

sehr groÿ ist.

Lagarias und Odlyzko haben gezeigt, dass für d < 0; 6463 �fast alle� Merkle-Hellman

Verfahren gelöst werden können[7].

Was zu beachten ist, dass hier das Rucksackproblem nicht genau gleich wie Merkle-

Hellman Verfahren sein kann, d.h., eine stark wachsende Folge der Gewichte muss nicht

unbedingt gewählt wird.

Seit einigen Jahren gibt es viele neuen Varianten von Merkle-Hellman Verfahren, deren

Dichte wesentlich gröÿer als Merkle-Hellman Kryptosystem ist. In folgenden Abschnitten

werden wir sehen.

3.2 Dichte-Angri�

3.2.1 Grundlagen

Theorem (Lagarias-Odlyzko)

Sei A eine positive natürliche Zahle und sei a1; . . . ; an zufällige positive ganze Zahlen

mit 0 < ai < A, 1 � i � n . Und e = (e1; . . . ; en) 2 f0; 1gn willkürlich. Ferner sei

S =
Pn

i=1 eiai, falls die Dichte d < 0; 6463 : : :. Dann ist das Rucksack-Problem durch

Lattice in Polynomialzeit �fast immer� berechenbar.

Mit diesem Theorem kann man sehen, dass Merkle-Hellman Verfahren auch unsicher ist,

da die Dichte 0; 5 zu klein ist. Die stark wachsende Folge führt zu einer verbreiterten

Bitlänge des ö�entlichen Schlüssels.

Hier ist eine Einführung in den Angri� mit Lattice:

De�nition Lattice

3.2. DICHTE-ANGRIFF 13

Sei Rm ist ein m-dimensionaler Euklidischer Raum. Eine Lattice(man kann das auch auf

Deutsch Gitter übersetzen.) ist die Klasse

L(b1; : : : ; bn) = fPn

i=1 xibi; xi 2 Rg

für alle ganzzahligen Kombinationen von n linearen unabhängigen Vektoren b1; : : : ; bn

im Raum R
m mit m > n. Die natürlichen Zahlen n und m heiÿen der Rang und die

Dimension der Lattice. B = fb1; : : : ; bng 2 Rm�n heiÿt ein Lattice Basis, mit L = L(B).

[8]

3.2.2 Niedrige-Dichte-Angri�

Der Algorithmus von Lenstra�Lenstra�Lovász (LLL) Reduction ist ein wichtiges Verfahren

für den Niedrige-Dichte-Angri�.

Lenstra�Lenstra�Lovász (LLL) Reduction[9]

Zuerst de�nieren wir Sn(R) die Anzahl der Integer-Lösungen für die Ungleichung

Pn

i=1 x
2
i � R

Ferner sei ein Basis B = fb1; . . . ; bng 2 Rn und sein zugehöriges Gram-Schmidt orthogonal

Basis B� = fb1; . . . ; bng 2 Rn sowie die Gram-Schmidt-Koe�ziente

�i; j =
hbi; b�ji
hb�j ; b�ji

für alle 1 � j < i � n.

Dann heiÿt ein Basis B reduziert, wenn

1. (Gröÿe-Reduktion) ui; j � 1
2
, für alle 1 � j < i � n ist.

2. (Lovász Kondition) es existiert ein Parameter � 2 (0; 25; 1], sodass für alle 2 � k � n:

�

b�k�1

2 � kb�kk2 + ��i; j

b�k�1

2

Lenstra, Lenstra und Lovász haben einen wichtigen Algorithmus erfunden, der in vielen

theoretischen ganzzahligen Problemen angewandt wird. Dieser LLL-Algorithmus kann wie

folgende Schritte erfasst werden[10]:

EINGABE :

Ein Lattice-Basis B = fb1; . . . ; bng 2 Zn
Ein Paramepter � 2 (0; 25; 1]

14 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

Prozedur :

Gram-Schmidt Phase

b�1 := b1, B1 := hb�1; b�1i
for alle i von 2 bis n, do

b�i := bi

for alle j von 2 bis i� 1, do

�i; j :=
hb�i ; b�ji
Bj

b�i := b�i � �i; jb
�

j

end for

Bi :=

b�i ; b

�

j

�
end for

k := 2 (b1; . . . ; bk�1 sind reduziert nach Gröÿe-Reduktion)

if j�i; jj > 1
2
then (tut die Reduktion von RED(k; k � 1))

for l von k � 1 bis 1 do

r := b0; 5 + �k; lc
bk := bk � rbl

for j von 1 bis l � 1 do

�k; j := �k; j � r�l; j

end for

�k; l := �k; l � r

end for

end if

Berechne �i; j für 1 � j < i � n und Bi für i von 1 bis n

while k � n do

Gröÿe-Reduktion bk und richtiges �k; j nach RED(k; k � 1), für j von 1 bis k � 1

if Bk <
�
3
4
� �2k; k�1

�
Bk�1 then

Tausche bk und bk�1

k := max(2; k � 1)

else

3.2. DICHTE-ANGRIFF 15

k := k + 1

end if

end while

AUSGABE : LLL reduziertes Basis b1; : : :; bn

Mit diesem LLL-Algorithmus haben Lagarias und Odlyzko ihr Theorem für �Niedrige-

Dichte-Angri�� den Grenzwert 0; 6463 : : : gefunden und zwar wie folgt [11] [12]:

Lagarias-Odlyzko Algorithmus

1. Eingabe: a1; : : : ; an; s, Ausgabe: e1; : : : ; en.

2. Nehme N >
p
n.

3. Bilde eine Lattice mit den folgenden Vektoren:

b1 = (1; 0; : : : ; 0; �Na1)

b2 = (0; 1; : : : ; 0; �Na2)

: : :

bn = (0; 0; : : : ; 1; �Nan)

bn+1 = (0; 0; : : : ; 0; �Ns)

Finde einen kürzesten nicht-negativen Vektor v = (v1; : : : ; vn+1) durch LLL-Algorithmus.

Falls s =
Pn

i=1 aivi, dann v = e und der Verktor v ist gefunden.

Coster, Joux, LaMacchia, Odlyzko, Schnorr und Stern haben den Lagarias-Odlyzko Al-

gorithmus noch ein bisschen modi�ziert und damit wird gezeigt, dass fast alle Rucksack-

probleme mit einer Dichte von d < 0; 9408 : : : auch gelöst werden können.[13]

Die Verbesserung wird durch Einsetzen des Vektors bn+1 = (1
2
; : : : ; 1

2;
; Ns) statt

bn+1 = (0; 0; : : : ; 0; �Ns).

Man kann für die Verbesserung noch die Vektoren B 2 Rn+2 so setzen:

b1 = (n+ 1; �1; �1; : : : ; 0; Na1)

16 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

b2 = (�1; n+ 1; �1; : : : ; �1; Na2)

: : :

bn = (�1; �1; : : : ; n+ 1; �1; Nan)

bn+1 = (�1; �1; : : : ; �1; ; n+ 1; �Ns)

damit die Grenze 0; 9408 : : : auch gezeigt wird. [13]

3.2.3 Diskussion über den Grenzwert der Dichte

Lemma

Jede Kugel mit dem Radius von
p
�n in Rn mit � < 1

4
hat maximal (2�
) Punkte von

f0; 1gn, für
 =
(�) > 0.

Mit diesem Lemma kann man deshalb die Grenze 0; 9408 : : : durch eine Reduktion der Vek-

toren von polynomialer Anzahl von Basis mit verschiedenen bn+1 nicht mehr verbessern,

wenn n sehr groÿ ist.

D.h., 0; 9408 : : : ist die obere Grenze für einen Niedrige-Dichte-Angri� [13]. Jedoch kann

man für ein bestimmtes kleines n den Grenzwert möglicherweise noch verbessern.

Japanische Experten haben 2003 gezeigt[12], dass für alle Dichte d < da ein Kryptosys-

tem mit dem Rucksackproblem mittels a1; : : : ; an und s �fast immer� in Polynomialzeit

berechenbar ist, wenn man einen Parameter h � n
4
nimmt, wobei Radius der Kugel

p
�n

ist und

da = max 1
(log2e)�(�; u)

�(�; u) = u� + ln �(e�u)

�(z) = 1 + 2
P
1

k=1 z
k2

e = (e1; : : : ; en) und u 2 R

Ein Beispiel dafür ist n = 64, � = 6, und da > 0; 9408 : : :, also ist eine Dichte über dem

Grenzwert zu sehen.

Somit werden manche Kryptosysteme mit dem Rucksackproblem und einer Dichte gegen

1 auch unsicher.

3.3. NEUE VERFAHREN DES RUCKSACK-TYP-KRYPTOSYSTEMS 17

3.3 Neue Verfahren des Rucksack-Typ-Kryptosystems

Nach demMerkle-Hellman Kryptosystem hat man viele Techniken beim Schlüssel-Erzeugen

eingesetzt, somit sehen wir heutzutage viele neuen Verfahren.

3.3.1 Di�usion und Konfusion

Im symmetrischen Kryptosystem benutzt man die Prinzipien der Di�usion und Konfusion

nach Shannon, um den Ciphertext noch schwerer für Angreifer zu erkennen.

Di�usion: Jeder Bitblock von Klartext oder Schlüsseln soll viele Bitblöcke von Ciphertext

beein�ussen.

Hier sind lineare Funktionen dazu relevant.

Konfusion: Jeder Bitblock von Ciphertext soll hoch nicht-linear von einigen Bitblöcken

von Klartext und Schlüsseln abhängen.

Dafür sind nicht-lineare Funktionen zuständig.

Nach Shannon sollen die Funktionen von Ver- und Entschlüsseln sowohl gute Di�usion

als auch Konfusion für die Bitblöcke behalten.[14]

Dieses Prinzip kann man aber auch im asymmetrischen Kryptosystem, insbesondere in

Rucksack-Problem-Kryptosystemen weiter nutzen und zwar sind die Verfahren von Chor

Rivest und Wang Bao-Cang zwei der berühmtesten Varianten.

3.3.2 Verfahren mit hoher Dichte

Chor-Rivest Kryptosystem [15, 16]

Sei q = ph eine Primzahlpotenz. Wir nehmen den endlichen Körper GF (q) und veröf-

fentlichen den. (Z.B.: ein h-Grad Polynom P (x) ist nicht reduzierbar auf GF (p) und

Elemente von GF (q) sind Polynome modulo P (x).) Gleichzeitig nehmen wir einen Ring

� für den Unterkörper GF (p) � GF (q)), z.B. f�0; : : : ; �p�1g = GF (p).

Der private Schlüssel besteht aus

Ein Element t 2 GF (q) mit algebraischem Grad h

Ein Generator g von GF (q)�

Eine natürliche Zahl d 2 Zq�1
Eine Permutation � von f0; : : : ; p� 1g

18 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

Der ö�entliche Teil besteht aus allen

ci = d+ logg(t+ ��(i)) mod q� 1

mit i = 0; : : : ; p� 1.

Die ö�entlichen Parameter müssen so ausgewählt werden, dass der diskrete Logarithmus

einfach in GF (q) berechenbar ist. Vorgeschlagen werden ein relativ kleiner p und ein

weicher h genommen und beispielsweise sind solche Körper von GF (19724), GF (21124),

GF (24324) sowie GF (25625).

Die Nachrichten in Chor-Rivest Kryptosystem sind alle p-Bits-Strings m = [m0 : : :mp�1]

mit Hamming-Abstand h.

Fürs Erzeugen vom ö�entlichen Schlüssel berechnen wir zuerst

p(t) = gE(m)�hd

wobei E(m) = m0c0 + : : :+mp�1cp�1 mod q � 1 und h = m0 + : : :mp�1.

Für m brauchen wir noch eine Faktorisierung von

�mi=1(t+ ��(i))

Das Entschlüsseln ist aber wie traditionelles Merkle-Hellman Kryptosystem mit Ruck-

sackproblem.

Der Angri� von Odlyzko ist durch eine Analysis von endlichem Körper und zwar wenn der

Parameter h einen kleinen Faktor r hat, mit r > 1
2
+
q
h+ 1

4
, ist der Angri� mit Zeitkom-

plexität von O(h3pr=r2)[16]. Darüber hinaus wird gezeigt, dass die Verö�entlichung aller

Koe�zienten von ci durch die Shortcut Methode auch eine Lücke ist.[17][16]

Wang-Kryptosystem:[18]

Wang Bao-Cang hat bei Schlüssel-Erzeugen den Chinesischen Restsatz eingesetzt und die

Dichte kann gegen 1 sein. Wir nehmen hier sein Verfahren als ein Beispiel für solche neuen

Entwicklungen nach Merkle-Hellman Kryptosystem seit einigen Jahren.

Schlüssel-Erzeugen:

Wähle zuerst einen n-dimensionalen zufälligen Vektor U = (u1; : : : ; un), ui > 0.

Berechne den Vektor V = (v1; : : : ; vn) mit

vi = ui�2n�i, 1 � i � n.

3.3. NEUE VERFAHREN DES RUCKSACK-TYP-KRYPTOSYSTEMS 19

Wähle noch zwei zufällige Primzahlen p und q, sodass

p >
Pn

i=1 ui , q > 2max
�P

vi>0
vi; �

P
vi<0

vi
	

Mit dem chinesischen Restsatz berechnen wir noch den Vektor A = (a1; : : : ; an), 0 �
ai � pq � 1 und zwar

ai � uimod p, ai � uimod q

Privater Schlüssel : U , V , p und q

Ö�entlicher Schlüssel : A

Zu verschlüsseln:

Sei den Klartext m von n-Bits, nämlich m := (m)2 = m1 � � �mn, mi = 0 oder 1.

Der Ciphertext ist c = a1m1 + : : :+ anmn

Zu entschlüsseln:

Mit den Nachrichten c und dem privaten Schlüsseln p und q berechnen wir

cp = cmodp, 0 � cp < p

cq = cmodq, � q

2
< cq � p

Beachte den Wertbereich von cq, der auch negativ sein kann.

Dann ist der binäre Klartext

(m)2 = m1 � � �mn = (cq � cq)2

Wir können noch sehen, dass bei Verschlüsseln und Entschlüsseln die Vektoren U und V

nicht direkt benutzt werden.

Wang hat noch eine Verbesserung beim Schlüssel-Erzeugen gegeben und zwar wird neben

dem chinesischen Restsatz noch eine Modulo-Mutiplikation eingesetzt, damit die Infor-

mation von vi = ui�2n�i , 1 � i � n im ö�entlichen Schlüssel noch tiefer versteckt.

Analysis von Wang-Kryptosystem:

Beim Schlüssel-Erzeugen benötigt es O(n) und bei Entschlüsseln zwei Modulo-Rechnung,

also ist das Verfahren sehr e�zient.

20 KAPITEL 3. NEUE ENTWICKLUNG DER ANGRIFFSMETHODEN

Nach der De�nition ist die Dichte von Wang-Kryptosystem d = n
log2maxai

.

Da 0 � ai � pq � 1, gilt log2maxai � log2 pq.

Nach Abschnitt 3.2.3 soll die Länge von pq nicht gröÿer als n
0;9408

sein, sonst ist dieses

Verfahren unsicher.

Dafür nehemen wir r die gröÿte mögliche Länge von q. Es muss gelten

0; 9408 < n
n�2+r

Wegen vi = ui�2n�i kann man am Ende sehen, dass

ui + (2r � 1) > ui+1 + ui+2 + : : :+ un

wobei alle vi eigentlich negative ganze Zahlen sind, mit jvij < 2r � 1.

Diese Ungleichungen von ui und r kann man noch mit der Eigenschaft der stark wach-

senden Folge in vi = ui�2n�i; 1 � i � n vergleichen, und dann kann mit 2n�i, 1 � i � n

dieses Verfahren auch angreifen[19].

Noch andere Varianten

Neben Wang Bao-Cang haben Min-Shiang Hwang und noch andere Experten verschiedene

auf dem Rucksackproblem basierte Kryptosysteme mit hoher Dichte erfunden. Manche

haben sogar eine Dichte über 0:9408 : : :.

Min-Shiang Hwang wählt zuerst eine stark wachsende Folge und einen Modulus M usw.

wie Merkle-Hellman, dann setzt noch sehr komplizierte Permutaionen-Kombination-Algorithmen

ein. Am Ende hat man eine Dichte d > 0:9408 : : :[20]. Aber ein Angri� auf dem Hwang-

Kryptosystem wurde 2013, also drei Jahre später, von Rastaghi mit Nutzen der stark

wachsenden Folge detailliert beschrieben[21].

Ähnlich wie Wang-Kryptosystem haben noch einige Experten mit anderen Techniken der

Di�usion und Konfusion erfunden und behaupteten, dass ihre Verfahren �unter Umstän-

den� sicher seien. Eine genaue Prüfung dafür bleibt aber noch o�en.

Kapitel 4

Der Angri� vom Shamir-Algorithmus

Nun wird gezeigt, wie genau das Merkle-Hellman Kryptosystem unsicher ist und wie man

das nach dem Shamir-Algorithmus brechen kann. Hier sind viele Inhalte aus dem Paper

von Shamir[3], einem Skript von Lagarias[22] und dem Buch von Diekert[23].

4.1 Verlassen der Abhängigkeit von M

Wie Kapital 2 ist die stark wachsende Folge der �Schlüssel� für Angreifer. Im Merkle-

Hellman Verfahren kann zwar die Reihenfolge durch Permutationen noch verstecken, aber

das bringt nicht n! mehr Aufwand, sondern nur weniger als n4 mehr Aufwand zu raten

und man weiÿ dann, dass eine stark wachsende Folge mit Sicherheit existiert[23]. Den

Grund dafür sehen wir später in der Analysis.

Der erste Gedanke ist, wie man die Folge im ö�entlichen Schlüssel, umgekehrt zur ur-

sprunglichen stark wachsende Folge des privaten Schlüssels bringt? Oder kann man eine

äquivalent stark wachsende Folge bekommen?

Die Umwandlung für Alice ist einfach, sie weiÿ M und W , damit durch ai = biW modM

die originale stark wachsende Folge wieder erstellt wird, was die M und W (oder in

äquivalenter weise U , daW = U�1modM) benötigt. Wir wissenM undW nicht, können

aber die direkte Abhängigkeit von M und W verlassen und stattdessen ein �Trapdoor

Paar � V mit 0 < V < 1 �nden und dann eine stark wachsende Folge auch bekommen.

Wir de�neiren für rationale Zahlen r und s mit r = smod 1, wobei r � smod 1 und

0 � r < 1 ist. Das bedeutet, dass r gleich der Wert des Bruchteils von s ist. Und zuerst

wird ohne Permutation im Merkle-Hellman Verfahren interpretiert.

21

22 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Wir ho�en, dass mit einer rationalen Zahl V und dem ö�entlichen Schlüssel (b1; . . . ; bn)

durch

ri = biV mod 1 (4.1)

eine stark wachsende Folge (r1; . . . ; rn) bekommen. Falls solches V gefunden wird, dann

kann der Angreifer eigentlich wie der Empfänger entschlüsseln [23] und zwar

yV =
nX
i=1

xibiV mod1 =
Xn

i=1
xiri (4.2)

Jetzt kann man wie Alice alle xi berechnen.

Falls Alice noch eine Permutation p hat, dann gilt

ri = bp(i)V mod 1 (4.3)

yV =
Xn

i=1
xp(i)bp(i)V mod 1 =

Xn

i=1
xp(i)ri (4.4)

Für die Permutation p kann man alle Möglichkeiten der Reihenfolge von (bp(1); . . . ; bp(n))

durch testen und es garantiert eine richtige Permutation zu �nden.

Jetzt müssen wird die folgenden Fragen überlegen:

1.Wie kann man das richtige V �nden?

2. Kann man das V direkt �nden, oder (nur) approximieren?

3. Ist V überhaupt relevant zu M , W bzw. U?

Wir werden zuerst die 3. Frage beantworten und dann sehen die Antworte von 1. sowie 2.

Frage.

Die wichtigste Idee ist immer noch die Eigenschaft einer stark wachsenden Folge. Zurück

zum Entschlüsseln bei Alice: wir raten, dass M0 der Modulus bei der Erzeugung von

ö�entlichen Schlüssel aber für den Angreifer unbekannt ist. Und sei W0 analog die un-

bekannte Inverse. Es kann sein, dass M0 = M , W0 = W aber nicht unbedingt. Das Bild

der Funktion beim Entschlüsseln für ein festes bi ist fi: [0; M0)! [0; M0) mit

fi(W0) = W0bimodM0 (4.5)

4.1. VERLASSEN DER ABHÄNGIGKEIT VON M 23

ist in der Sägezahn-Form in Abb. 4.1:

Abbildung 4.1: fi(W)
[24]

Wir können sehen:

Es gibt genau bi Linien, mit ihren Nullstellen von 0 bis bi�1
bi
M0.

fi ist stetig bis auf alle Sprungstellen.

Jede Steigung ist bi, bis auf alle Sprungstellen.

Die Steigung bi ist unabhängig von M0

Auÿerdem wissen wir im Merkle-Hellman Verfahren schon

WbimodM = ai (4.6)

und für ein passendes W0 bilden dann alle fi(W0) = ai, 1 � i � n eine stark wachsende

Folge.

Gleichzeitig können wir aus (4.1) für V eine Klasse der Funktionen f
0

i : [0; 1) ! [0; 1)

de�nieren, mit

f
0

i (V) = V bimod 1 (4.7)

Für ein festes bi ist auch ein Graph in der Sägezahn-Form in Abb. 4.2 zu erwarten:

24 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Abbildung 4.2: f
0

i (V)
[24]

Es ist auch leicht zu �nden:

Es gibt auch genau bi Linien, mit ihren Nullstellen von 0
bi
bis bi�1

bi

f
0

i ist stetig bis auf alle Sprungstellen.

Jede Steigung ist bi und unabhängig von anderen Variablen.

Und es existiert auch ein V0, damit

f
0

i (V0) = V0bimod 1 = ri

eine stark wachsende Folge (r1; . . . ; rn) liefern kann.

Wir können noch sehen, dass beide Bilder fast identisch sind, nur die horizontalen-und

vertikalen Achsen unterscheiden sich. Und die Umwandlung vonfi zu f
0

i ist auch einfach,

dass man fi durch den Modulus M0 teilt. D.h.:

fi
M0

=
W0

M0
mod 1 = f i(

W0

M0
) (4.8)

Ersetze W0

M0

durch V , dann stimmen fi(V) und f
0

i (V) überein. Und folglich ist

V =
W0

M0
(4.9)

4.1. VERLASSEN DER ABHÄNGIGKEIT VON M 25

ri =
ai
M0

(4.10)

Ferner bemerkt man, dass

nX
i=1

ri < 1 (4.11)

wenn man M0 �M sieht.

Danach werden die Funktionen f
0

i (V) und fi(V) als dieselbe betrachtet.

Falls noch eine Permutation p eingesetzt wurde, liefert (rp(1); . . . ; rp(n)) die gleiche Rei-

henfolge wie (ap(1); . . . ; ap(n)) mit

fp(i)(W0) = W0bp(i)modM0 = ap(i)

fp(i)(V0) = V0bp(i)mod 1 = rp(i)

rp(i) =
ap(i)
M0

(4.12)

Das gesuchte V ist dann in der Berechnung eigentlich unabhängig von M usw.. Damit

haben wir jetzt die Antwort der Frage 3. Und das bringt uns den Vorteil, dass wir nur

einen Variabel V berechnen müssen, statt gegen zwei UnbekanntenM undW bekämpfen.

Gleichzeitig sehen wir, dass es für ein festes fi(V) genau bi mögliche Linien gibt und

es für ein festes V auch n Stücke von f1(V), : : :, fn(V) gibt, die zu berechnen von V

dienen. Der nächste Schritt ist, wie man das richtige V �nden bzw. in einem kleineren

Bereich begrenzen kann. Betrachte, dass jedes bi ungleich zu einander ist. Wenn man

einige unterschiedliche Bilder aus fi zusammenlegen, dann kann man in manchen Stellen

von V , dass fi(V) = ri, fj(V) = rj, usw., 1 � i < j < � � � � n, eine monoton steigende

(und sogar �stark wachsende�) Folge liefert. Idealerweise soll ein solches V für alle i in

der Abbildung gelten, wenn alles zusammengelegt wird. Mit diesem Überlegen können wir

später für die Suche nach V helfen.

Und wahrscheinlich kann man mit Glück sogar mehrere disjunkte Intervalle der V s �nden,

da jedes fi periodisch ist. Obwohl diese Überlegung ungenau aussieht, ist aber auch un-

wichtig, da der Existenz von V bekannt ist. Wenn ein gefundenes V eine stark wachsende

Folge liefert, so hat man die wichtigste Information vom Merkle-Hellman Kryptosystem.

26 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

4.2 Anfangen mit der Anfangsfolge

Um die 1. Frage zu beantworten, wollen wir zuerst mit einigen bi bearbeiten.

Wurde eine Permutation p eingesetzt, ist n! Durchläufe zu erwarten. Auf einer Seite ist das

nicht in polynomialer Zeit, was sehr ine�zient ist, auf der anderen Seite ist ein richtiges V

für alle bi gleichzeitig bzw. einmalig zu bestimmen auch unrealistisch. Wir können aber die

Anfangsfolge mit �zum Beispiel � l = 4 Elementen testen. Ist ein passenden Wert oder In-

tervall von V für die ersten vier Elemente mit der stark wachsenden Folge gefunden, dann

kann dieser Wert oder Intervall von V für weitere Elemente die genaue Suche nach V sowie

die Anzahl der mögliche Permutationen ggf. minimieren, was wir später sehen werden.

Allerdings muss man zuerst maximal O(n4) Male für die Anfangsfolge (p(1); . . . ; p(4))

probieren.

Seien wir in der richtigen Phase mit der Anfangsfolge, nämlich p(j) = j, j 2 f1; : : : ; lg,
mit l = 4, also sind die vier Elemente fb�(1); . . . ; bp(4)g des ö�entlichen Schlüssels genau

fb1; . . . ; b4g, die aus fa1; . . . ; a4g, erzeugt werden.
Nun schauen wir die Abb. von f i. Sein das gesuchte V liegt irgendwo zwischen ci

bi
und

ci+1
bi

, ci ist jetzt aber noch unbekannt, also

ci
bi
� V <

ci + 1

bi
(4.13)

Und setze

V =
ci
bi

+ ei (4.14)

wobei 0 � ei <
1
bi
ist.

Dann gilt

biV = ci + biei (4.15)

und wegen 0 � ei <
1
bi
gilt

biV mod 1 = biei =
ai
M�

(4.16)

4.2. ANFANGEN MIT DER ANFANGSFOLGE 27

wobeiM�eigentlich der aproximierte Wert vonM ist. Man kann zuerstM �M�betracheten.

Ferner ist

ei =
ai

biM�
(4.17)

Analog liegt V zwischen cj
bj
und cj+1

bj
, i; j 2 f1; 2; 3; 4g; i 6= j. Also

V =
cj
bj

+ ej (4.18)

Mit (4.17), (4.18) und i 6= j folgt

cj
bi
� ci
bj

= ei � ej =
ai

biM�
� aj
bjM�

(4.19)

Und nach einer kleinen Umrechnung ist

cjbi � cibj =
1

M�
(aibj � ajbi) (4.20)

Und dann

cjbi � cibj � 1

M�
aibj

cibj � cjbi � 1

M�
ajbi (4.21)

Betrachte M �M� >
Pn

i=1
ai , daher ist

ai < 2�n+iM (4.22)

Noch mit (4.21) gilt

� 2�n+jbi < cjbi � cibj < 2�n+ibj (4.23)

Noch übersichtlicher ist

jcjbi � cibjj < 2�n+4bmax (4.24)

28 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

was ein bisschen grob abgeschätzt wird.

Um das richtige V zu �nden, kann man zuerst alle ci bestimmen, i 2 f1; 2; 3; 4}. Mit

(4.21) oder (4.22) sehen wir, dass man für beliebige i; j 2 f1; 2; 3; 4g, i 6= j zwei Ungle-

ichungen zur Verfügung stehen kann. O�ensichtlich ist 0 � ci < bi für alle 1 � i � n. Und

mit den vier Unbekannten ci hat man ein diophantisches Ungleichungssystem

cjbi � cibj < 2�n+ibj

cibj � cjbi < 2�n+jbi

0 � ci; cj < bj (4.25)

für alle i; j 2 f1; 2; 3; 4g und j 6= i.

Wegen der Existenz von V soll das Ungleichungssystem eine Lösung(-smenge) der ganz-

zahligen Zahlen besitzen. Auÿerdem kann das Ungleichungssystem zu einem Integer-

Programming-Problem umwandeln kann und das verspricht auch eine ganzzahlige Lösung

zu bekommen[25].

4.3 Wahrscheinlichkeit, um V zu �nden

Wir müssen jetzt das Ungleichungssystem als Integer-Programming-Problem lösen, um

das V zu �nden.

Zurück zur Auswahl von l, dass l = 4 genommen wird. Aber warum die Anfangsfolge

genau 4 Elementen ist? Grob erklärt ist für die Berechnung von V mit 4 Unbekannten im

Ungleichungssystem durch Integer-Programming gut geeignet. Weniger als 4 Unbekan-

nte bringt es zu viele Lösungen, die meisten davon sind aber unbrauchbar, da so viele

möglichen Stelle von V unrealistisch sind. Für l � 5 bringt im gegen Satz dazu viel mehr

Aufwand zu rechnen.

Zudem hat Shamir noch bewiesen, dass zwischen l und dem Expansionsfaktor d folgendes

Verhältnis gelten muss

l > d+ 1

4.3. WAHRSCHEINLICHKEIT, UM V ZU FINDEN 29

Bei unserem Fall ist d = 2, also l muss mindestens 4 sein. Für einen höheren Wert von d

muss man noch mehr Unbekannten im Integer-Programming-Problem bringen: z.B.: wenn

d = 3 ist, muss man 5 Variablen nehmen.[25]

Zur genaueren Analyse für l = 4: wie wahrscheinlich bzw. ob überhaupt eine ganzzahlige

Lösung gefunden werden kann, die das Integer-Programming erfüllt? Falls viele Lösungen

vorkommen können, dann ist ein Durchtesten der langen Liste sehr mühsam. Andererseits,

falls häu�g keine Lösung gefunden wird, ist der Angri� gescheitert.

Erste Behauptung:

Die Wahrscheinlichkeit, überhaupt eine Lösung zu �nden, ist gering.

Sei G = f1; 2; 3; 4g.
Mit (4.17) und (4.22) bekommen wir für alle i 2 G

ei <
2�n+i

bi
(4.26)

Sei

bi � 22n+i�li ; i 2 G (4.27)

Da bi � 22n, folgt

0 < 2n+ i� li < 2n

nämlich

i < li < 2n+ i (4.28)

Wegen bi = aiU modM , ist bi mit ungefähr gleicher Gröÿenordnung von M . Also kann

man sehen, li � i, und im schlimmsten Fall gilt li 2 O(n), wenn bi sehr klein ist. Da i

eigentlich auf Konstant beschränkt wird, ist li auch so, und zwar li 2 O(1); für alle i 2 G,

li ist maximal sublinear zu n.[23]

Sei l = lmax, e = emax für alle i 2 G, dann ist

e < 2�3n+l (4.29)

30 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Nun nehmen wir an, dass die Zahlen bi für alle i 2 G unabhängige Zufallsvariablen sind.

Betrachte die Stelle 0 � cj
bj
< 1, neben der das gesuchte V liegt.

Die Wahrscheinlichkeit, dass für den Durchschnitt des Intervalls [
cj
bj
;
cj
bj

+ ej] mit jeder

Positionsmenge N

bl
für alle l 2 G, l 6= j, nicht leer ist, höchstens

(2�n+l)3 = 2�3n+3l (4.30)

Wenn alle möglichen cl summiert werden, kann die Wahrscheinlichkeit unter der oberen

Annahme, überhaupt eine Lösung zu �nden, weniger als 2�n+3l. Laut der Annahme �l

sublinear zu n� ist die obere Wahrscheinlichkeit gegen null, wenn n groÿ genug ist. Und

unter der Annahme �l ist auf Konstant beschränkt� strebt die Wahrscheinlichkeit noch

schneller, also exponentiell gegen null. Deswegen soll man keine Sorge haben, dass man

zu viele Lösungen �nden und mühsam prüfen muss.

Zweite Behauptung:

In fast allen Fällen existiert mindestens eine Lösung.

Wir wissen noch, dass alle bi eigentlich nicht unabhängig sind. Deshalb kann man vorstellen,

dass die obere Wahrscheinlichkeit tatsächlich gröÿer ist, als was wir abgeschätzt haben.

Mann kann auch vorstellen, dass wegen der Existenz von V � W
M

das V nähe genug von

mehreren aj liegen soll, die wir wohl bestimmen können.

Auÿerdem hat Shamir eine Annahme benutzt und zwar

Hypothese[22]

Das Integer-Programming-Problem von (4.25) bezüglich dem Rucksackproblem von Merkle-

Hellman hat bis einem multiplikativen Konstant abhängig von l, mit l = jGj, und die er-

wartete Anzahl der Lösungen für das obere quasi-zufällige Integer-Programming-Problem

ist mindestens 1.

Äquivalent kann es gesagt werden, dass für das obere Integer-Programming-Problem, die

Klasse von Mapping von den Folgen (W; a1; . . . ; an) an ein festes b1, die Bilder von

(a1; . . . ; al) hat, was fast immer mindestens eine positive Fraktion in Abhängigkeit von l

schlägt.

Das wiederum ist aus dem folgenden Lemma:

Lemma:[22]

4.4. DAS SIMPLEX VERFAHREN 31

Sei b1 fest mit b1 = mM , 1
n2
� m < 1. Die Anzahl der verschieden (b2; . . . ; bl) mod b1,

die die Bilder von etwa(W; a1; . . . ; al;) mit Wb1 � a1modM sind, ist entweder 0 oder

mindestens ein Konstant abhängig von lml2(l�1)dn.

Hier gibt es eine Annahme, dassM
n2
� bi < M . Da alle bi eigentlich etwas gleich groÿ wie

M ist, kann diese Annahme fast immer gelten.

Nun werden solche Aussagen ohne Beweis gestellt. Daher ist eine Lösung von (4.25) (fast)

immer garantiert.

Darüber hinaus kann man dieses Ungleichungssystem durch die diophantische Approxi-

mation analysieren, und es wird zeigt, dass sogar auch für mehrfach permutierte Version

von Merkle-Hellman fast immer eine Lösung zu erwarten ist [6]. Obwohl wir hier die

diophantische Approximation nicht anwenden, ist eine ganzzahlige Lösung im Integer-

Programming-Problem auch zu erwarten.

4.4 Das Simplex Verfahren

Um dieses Integer-Programming-Problem zu lösen, haben wir uns das Simplex Verfahren

entschieden. Das Simplex-Verfahren ist eine der bekanntesten Algorithmen, um lineare

Integer-Programmen e�zient zu lösen. Wie im Buch von George B. Dantzig[26] erklärt

wird, hat dieser Algorithmus normalerweise polynomiale Laufzeit, nur im extremen Fall

kann exponentiell laufen. Das Verfahren kann mehrere Variante und gleichzeitig mit vielen

Techniken haben, um die Lösung schneller zu liefern.

Im Allgemeinen dient das Simplex zur linearen Programme der Form

(LP) max
�
cTxjAx � b; x � 0

	

wobei x 2 Rn, A 2 Rm�n eine Matrix mit reellen Einträgen, c 2 Rn der Zielfunktionsvek-

tor und b 2 Rm der Vektor von Beschränkungen ist.

Ein Punkt bzw. Vektor x ist zu �nden, hier ist x mit ganzzahligen Einträgen, um das

lineare Gleichungssystem zu erfüllen und einen möglichst hohen Zielfunktionswert F (x) =

cTx zu haben.

Falls ein lineares Programm nicht wie die Standardform von oben ist, wird eine Umfor-

mung benötigt.

32 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Für die Menge der zulässigen Lösungen gibt es drei Möglichkeiten:

1. das LP besitzt keine zulässigen Lösungen, d. h., das Polyeder ist leer.

3. das LP ist unbeschränkt, es gibt Lösungen mit beliebig hohem Zielfunktionswert.

3. es gibt genau eine oder unendliche viele Optimallösungen.

Das Simplex-Verfahren setzt sich aus zwei Phasen zusammen:

Phase I bestimmt eine zulässige Startlösung oder stellt fest, dass das Problem keine

Lösung besitzt.

Phase II verbessert eine bestehende Lösung immer weiter, bis keine Verbesserung der

Zielfunktion mehr möglich ist oder die Unbeschränktheit des Problems festgestellt wird.

Laufzeit:

Aus theoretischer Sicht ist das Simplex-Verfahren daher beispielsweise den Innere-Punkte-

Verfahren mit polynomialer Laufzeit unterlegen. Aus praktischer Sicht hat es sich aber in

vielen Fällen als schneller erwiesen. Der gröÿte Vorteil des Simplex-Algorithmus gegenüber

anderen Verfahren liegt jedoch darin, dass es bei kleinen Änderungen der Eingabedaten

im Laufe des Algorithmus einen �Warmstart� erlaubt, also die letzte berechnete Basis

als Ausgangspunkt für wenige weitere (primale oder duale) Iterationen nehmen kann,

während beispielsweise Innere-Punkte-Verfahren in solch einem Fall von vorne anfangen

müssen. Dieser Fall tritt sehr häu�g auf, wenn sehr viele ähnliche lineare Programme

in Folge gelöst werden müssen, beispielsweise im Rahmen von Schnittebenenverfahren,

Branch-and-Bound oder Branch-and-Cut.

Wir haben leider kein passendes Tool bzw. API von Simplex gefunden. Das beste Tool

heutzutage �lp_solve� berechnet bei unserem Testfall keine richtige Lösung und daher

wird ein natives Verfahren ersetzt. Obwohl das Verfahren nicht e�zient ist, liefer das

immer richtige Lösung an.

4.5 Bestimmen von V

Ob das V genau gleich W
M

sein muss, ist keins von unserer Interesse, da eigentlich nur ein

approximierter Wert von W
M

ausreicht sein kann, nämlich W �

M�
in unserem Gedanke. Das

liegt daran, dass fri = bi
M�
j1 � i � ng und fbij1 � i � ng zwar mit gleicher Eigenschaft

sind, aber ob ri = bi
M

unbedingt ist, muss eigentlich nicht sein, weil nur diese �stark

wachsende� Eigenschaft beim Verschlüsseln schon reicht. Tatsächlich kann man vorstellen,

4.5. BESTIMMEN VON V 33

dass in einem kleinen rationalen Intervall (d; h) alle Punkte die obere Eigenschaft erfüllen

können. D.h., ein kleines �Rauschen� ist erlaubt und wir müssen nur eigentlich den Wert

V gut genug approximieren. Damit wird jetzt die Frage 2 im ersten Schritt beantwortet.

Wenn eine Lösung vom oben genannten Integer-Programming-Problem gefunden wird,

also die Menge fcp(j)g mit Annahme von p(j) = j, j 2 G, dann testen wir gleich, ob die

das richtige V liefert. Falls wir mehrere Lösungen �nden, dann testen wir alle fc(1)
p(j)jj 2 Gg,

fc(2)
p(j)jj 2 Gg, � � � durch. Da wir in (4.25) nur konstante Unbekannte haben und positive

ganzzahlige Lösungen �nden wollen, ist diese Liste endlich.[23]

Setze cj = c�(j), aus (4.18) und (4.29) setze noch a =
cj
bj
, e = 2�3n+l und folgt V 2 [a; a+e].

O�ensichtlich darf V sich nicht am Rand be�nden, dann ist V 2 (a; a+ e).

Fixiere dieses Paar fcj; bjg, und betrachte alle anderen Paare fci; bigmit 1 � i � n; i 6= j.

Der Abstand 1
bi

zwischen zwei Minimalen ist (fast) immer gröÿer als e, weil bi < 22n.

Da e normalerweise auf Konstant beschränkt ist, kann man hier so mutig behaupten.

Daraus folgt, dass im Intervall (a; a+ e) bezüglich j, maximal einen Punkt von p=bi mit

p < bi, i � n, i 6= j. Das Bild der Funktion fi mit fi(V) = biV mod 1, i 6= j, kann das

Intervall (a; a+e) maximal zu zwei Abschnitten teilen. Mit den ersten vier cj berechneten

bekommt man maximal 42 Schnittpunkte von den vier Linien bezüglich cj und bj mit

1 � j � 4. Diese Schnittpunkte kann man leicht berechnen. Und wenn man alle n Linien

bezüglich ci und bi mit1 � i � n sieht, ist dann maximalO(n2) Schnittpunkte zu erwarten.

Durch je zwei benachbarte Schnittpunkte wird das Intervall (a; a+ e) zu höchstens O(n2)

Teilintervallen unterteilt. Betrachte jedes Teilintervall [b; b+ z] ausgenommen den Rand

fa; a+eg, dass das keine Position ci=bi mit 1 � i � n enthält, damit wir prüfen können, ob

eine Stelle V � mit der Rechnung (4.8) eine stark wachsende Folge etwa wie (a1
M
; . . . ; an

M
; 1)

liefert. D.h., wir können mit fcjj1 � j � l; l = 4g einige kleine Intervalle bestimmen, um

das gesuchte V zu approximieren.

Was man aber noch diskutieren muss, ist der Sonderfall von(0; e) bzw. (0; z), nämlich,

wenn bj = 0 ist. O�ensichtlich sind alle anderen Positionen bzgl. bi mit1 � i � n entweder

auch 0, oder liegen am rechts von 0. Allerdings wissen wir schon, dass der Abstand 1
bi

ist fast immer gröÿer als e, dann müssen alle Positionen genau 0 sein, da alle Rechts cj
bj
,

cj > 0 auÿerhalb vom Intervall (0; e) liegt. Zudem sieht man noch, dass das Intervall

(0; e) gar nicht unterteilt wird und wir nur ein einziges Intervall haben. Daher sollen alle

ci = 0, i 2 n sein. Insbesondere ist (0; 0; 0; 0) auch eine mögliche Lösung zum oben genan-

nten Ungleichungssystem. In diesem Fall soll ein gewünschtes V nahe 0 sein, damit die

Folge (bp(1); . . . ; bp(n)) streng monoton wachsend ist. Dieser Sonderfall hat die Permuta-

tion schon fest gelegt und man behandelt mit anderen Permutationen nicht mehr. Falls die

34 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Folge des ö�entlichen Schlüssels nicht permutiert ist, bedeutet das, dass die stark wach-

sende {aij1 � i � n}, durch die Rechnung bi = aiU modM , auch eine streng monoton

wachsend Folge (b1; . . . ; bn) erzeugt. Das ist aber kaum möglich. Für solche Fälle kann

man separat behandeln.

Andererseits kann bj, j 2 G im extremen Fall sehr klein sein, damit das zugehörige l

den maximalen Wert erreicht. Das führt dazu, dass e = 2�3n+l gröÿer als der Abstand
1
bi
ist. Infolgedessen dürfen andere Positionen ci

bi
mit i 6= j innerhalb vom Intervall (0; e)

liegen. Aber dieser Sonderfall ist wegen des Analysis von l auch sehr unwahrscheinlich

vorzukommen, damit man nicht viel darauf beachten soll.

Zusammengefasst ist der Sonderfall {cj = 0jj 2 G} Shamir-Algorithmus nicht zu schmälern.

Nun werden alle O(n2) Schnittpunkte von n Linien berechnet. Die genauere Selektion der

Teilintervalle kann man mit (c1; : : : ; c4) und e zuerst für (p(1); . . . ; p(4)) vorwählen. Man

kann jetzt sehen, dass in diesem Durchschnitt alle Linien von unten nach oben �richtig�

angeordnet werden soll, nämlich, innerhalb eines Teilintervalls (b; b+ z) � [a; a+ e) alle

Punkte V davon bringen die Monoton-Eigenschaft bezüglich der Permutation p

0 < bp(1)V mod 1 < � � � < bp(4)V mod 1 < 1 (4.31)

Danach müssen in diesem selektierten Teilintervall insbesondere alle anderen bp(i) , 5 �
i � n für (4.31) noch weiter gelten

0 < bp(1)V mod 1 < � � � < bp(n)V mod 1 < 1 (4.32)

Diese Ungleichungen stellen gleichzeitig die Permutation p fest, die möglicherweise mit der

originalen Permutation P überein stimmen kann. Das führt dazu, dass wir für andere Per-

mutationen von (p(5); . . . ; p(n)) statt O(n!) auf O(n2) begrenzt. Auÿerdem ist das Raten

von (p(1); . . . ; p(4)) maximal O(n4), somit müssen wir fürs Raten aller Permutationen

(p(1); . . . ; p(n)) maximal O(n6) belasten.

Darüber hinaus wissen wir, dass es in einem Teilintervall mindestens ein V existiert, mit

dem eine stark wachsende Folge erzeugt wird, was wir gleich prüfen werden.

Dafür de�nieren wir natürliche Zahlen si = bbibc1 � i � n , nämlich den ganzzahligen

Teil davon und damit

biV � si = biV mod 1 = ri (4.33)

4.6. DISKRETES APPROXIMIEREN ZU V 35

Zusammen mit dem Unbekannten V haben wir für jedes richtig selektiertes Teilintervall

[b; b+ z] ein Ungleichungssystem

b < V < b+ z

i�1X
j=1

(bjV � sj) < biV � si; 2 � i � n

nX
i=1

(biV � si) < 1 (4.34)

Setze ti = biV � si, 1 � i � n , so erhalten wir noch das in noch übersichtlicherer Form:

b < V < b+ z

i�1X
j=1

tj < ti; 2 � i � n

nX
i=1

ti < 1 (4.35)

Theoretisch kann man diese Ungleichungen lösen und ein Teilintervall [L; R] � [b; b+ z],

0 � L, R � 1 nehmen, damit für alle V 2 [L; R] das oben genannte Ungleichungssystem

füllt, so dass man V � W
M

�nden kann, mit dem eine stark wachsende Folge erzeugt wird.

Infolgedessen ist unser Ziel des Angri�s erreicht.

4.6 Diskretes Approximieren zu V

Wir können insgesamt höchstens O(n2) Teilintervalle [b; b + z] selektieren, aber eine

direkte Berechnung für solche Teilintervalle [L; R] aus (4.34) in einem [b; b + z] ist in

Praxis nicht einfach. Alternativ kann man mit diskreten Punkten in einem Teilintervall

[b; b + z] das gewünschte V approximieren. Da nur ein gewünschter Wert von V statt

genau W
M

oder ein Teilintervall mit aller möglichen Werten ausreicht, darf man in einem

gesamten Teilintervall Schritt für Schritt diskret raten und prüfen. Wenn einen richtigen

Wert gefunden wird, beendet man diese Suche nach V .

36 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Jedoch muss man solche diskreten Punkte sorgfältig de�nieren. Sei V � = W �=M� eine

selektierte diskrete Stelle. Der kleinste Abstand zwischen V �und W
M

soll nicht gröÿer als

ein bestimmter Wert. Um diese Grenze festzustellen, schauen wir noch die ursprüngliche

stark wachsenden Folge {aij1 � i � n}. Sei nun M� = kM und W � = k(W + x). Dann

gilt

����W
�

M�
� W

M

���� =
���� xM

���� (4.36)

Andererseits ist

W �bi �M�ci = k((Wbi �Mci)� xbi) (4.37)

Nach (4.7) ergibt sich

Wbi �Mqi = ai; qi 2 N (4.38)

Verglichen mit (4.37) und (4.38) hat man

W �bi �M�ci = k(ai � xbi) (4.39)

Wir sehen aus (4.39), dass die Folge von

a�i = ai � xbi (4.40)

wird auch stark wachsend, wenn das Rauschen xbi gering genug ist, damit die Eigenschaft

von {aij1 � i � n} nicht zerstört bzw. beein�usst. Also um den minimalen Abstand jx=M |

zu bestimmen, ist äquivalent um xbi zu berechnen.

Dazu de�nieren wir noch die Distanz di bezüglich ai und M mit

di = ai �
i�1X
j=1

aj; 1 � i � n (4.41)

Dann folgt

nX
i=1

ai =
Xn

i=1
2n�idi (4.42)

4.6. DISKRETES APPROXIMIEREN ZU V 37

Damit xbi mit (4.40) die stark wachsende Eigenschaft nicht beein�usst, sollen alle di

möglichst �groÿ � de�niert werden. Nun haben wir ein Integer-Programming-Problem mit

den Unbekannten di

M >
Xn

i=1
2n�idi (4.43)

Zudem sei di < D, für alle 1 � i � n, und dann setze

d�i = di �D (4.44)

mit d�i > 0; 1 � i � n. Daraus folgt

M � (2n � 1)D >
Xn

i=1
2n�id�i (4.45)

Sei Sn(M) die Anzahl der ganzzahligen Lösungen von (4.43) und analog sei Sn(M � (2n�
1)D) für (4.45). Es soll gelten

Sn(M) � Sn(M � (2n � 1)D)

wenn M = 2dn; 1 < d < 2; n!1, wobei � die Äquivalenz Relation ist, damit die stark

wachsende Eigenschaft der Folge bleibt.

Mit der Hilfe von

Theorem[22]:

Sn(M) =
2

�

0
B@
n

2

1
CA

n!
Mn +O

2
6666664
2

�

0
B@
n

2

1
CA

n!
Mn

�
2nn4

M

�
3
7777775

wobei n!1 und M groÿ genug ist.

Man kann für Sn(M � (2n � 1)D) etwa wie

D = n�22�nM (4.46)

nehmen, damit die Äquivalenz Relation zwischen Sn(M) und Sn(M�(2n�1)D) tatsächlich

gilt.

38 KAPITEL 4. DER ANGRIFF VOM SHAMIR-ALGORITHMUS

Mit (4.46) kann man ferner xbi aus (4.40) setzen, beispielsweise als

xbi < xM � n�52�nM (4.47)

damit das Rauschen xbi gering genug wird.

Infolgedessen beträgt der minimale Abstand nach (4.36) maximal

���� xM
���� � 1

n52nM
(4.48)

Nach (4.18) und (4.36) hat man

0 <
W

M
� ci
bi
<

1

2n�ibi

Also die Breite des gesamten Wertbereichs von V bzgl. bi und ci ist kleiner als 1
2n�ibi

.

Die Gröÿenabschätzung von M ist

M < 2dn; d = 2

somit wir für höchstens

n52nM

2n�ibi
�
�
22n

bi

�
2in5

Punkte testen müssen, für jedes festes bi.

Setze nun

r =

�
22n

bi

�

Da wir am Anfang bi, 1 � i � 4 fest genommen haben, sind 2i und r eigentlich konstant,

und somit ist das Testen für das ganze Intervall O(n5) zu erwarten. Wie vorher besprochen

wird, berechnet man die O(n2) Abschnitte zuerst und selektiert die Teilintervalle [b; b+z],

und danach testet schrittweise in Weite von 1=r23nn5 und sieht, ob in h-tem Schritt

V � = b+
1

r23nn5
h (4.49)

eine stark wachsende Folge durch V �bimod 1, 1 � i � n erzeugt. Die proportionale Anzahl

der Punkte zu testen ist durchschnittlich O(n3).

4.7. PERMUTATION UND ZEITKOMPLEXITÄT 39

Somit wird die 1. sowie 2. Frage im Abschnitt 4.1 auch beantwortet.

4.7 Permutation und Zeitkomplexität

Falls das Merkle-Hellman Kryptosystem ohne Permutation eingesetzt wird, muss man

nicht raten. Der Zeitaufwand vom Integer-Programming-Problem, um {cjj1 � j � 4}

zu bestimmen, ist in Praxis polynomial[9, 25], da es nur 4 Unbekannte im Integer-

Programming-Problem gibt. Und die durchschnittliche erwartete Anzahl der Lösungen

ist wenig. Das schrittweise Testen im richtigen Teilintervall [b; b + z], um V zu approx-

imieren, ist durchschnittlich O(n3), maximal O(n5).

Wenn eine Permutation in den ö�entlichen Schlüssel eingesetzt wird, wissen wir nicht, ob

wir uns in der richtigen Permutation be�nden. Wir können aber raten und wegen der Ex-

istenz der Lösung prüfen wir jede Möglichkeit, ob die die gewünschte Eigenschaft erfüllt.

Dazu raten wir zuerst (p(1); . . . ; p(4)) für O(n4) mal. Jedes Mal lösen wir das Integer-

Programming-Problem. Wir wissen noch, dass das Selektieren der Teilintervalle eigentlich

auch für eine richtige Wahl der Permutation p tut. Bestimmt eine Anordnung von un-

ten nach oben bezüglich den p(i) Linienabschnitten eine Permutation (bp(5); : : : ; bp(n)),

startet man das schrittweise Testen im zugehörigen Teilintervall [b; b + z]. [23] Also für

ein festes �Raten� von (p(1); . . . ; p(4)), ist das gesamte Testen mit Berücksichtigung aller

Permutationen der restlichen bp(i), 5 � i � n, maximal O(n5) Schritte zu erwarten. Im

Vergleich zur gesamten Schritten in der Testphase ohne Permutation haben wir trotz der

Permutation den gesamten Aufwand auch auf O(n5) begrenzt.

Wenn ein passendes V gefunden wird, wissen wir gleichzeitig die zugehörige Permutation

noch. Danach können wir wie Alice alle Ciphertexte erkennen. Somit ist alles in Polyno-

mialzeit berechenbar, und deshalb ist der Angri� von Shamir erfolgreich und auch mit

einer Permutation ist das Merkle-Hellman Kryptosystem untauglich.

Kapitel 5

Implementierung von Shamirs

Algorithmus

Nach der theoretischen Beschreibung von Merkle-Hellman Kryptosystem und Shamirs An-

gri� wollen wir jetzt die Verfahren implementieren, damit man die praktische Performance

sehen kann.

5.1 Implementierungsumgebung

Hardwarekon�guration:

Laptop Lenovo ThinkPad X60s

Intel Core Duo L2300 1,5Ghz / 2MB L2 Cache

3GB DDR2-667 RAM

160GB HDD 7200rpm

Betriebssystem:

Microsoft Windows 7 Professional SP1

Softwareplattform:

Development Environment: Eclipse IDE for Java Developers

Version: Indigo Service Release 2

Programmiersprache: Java

40

5.2. ÜBERBLICK ZUR PROGRAMMIERUNG 41

5.2 Überblick zur Programmierung

Datenstruktur

Einerseits ist der ö�entliche und private Schlüssel die natürliche Zahle mit Bitlänge von

ca. 2n. Im Vergleich zum typischen Datenstruktur von Integer (32Bits) oder Double

(ca. 50Bits Mantisse) der Programmiersprachen Java, C++ usw. sind 2n-Bits für groÿes

n zu lang. Aber Java bietet noch einen schon vorhandenen Datentyp �BigInteger �, mit

dem man natürliche Zahlen beliebiger Längen bearbeiten kann. Anderseits müssen wir

in der Berechnung von rationaler Zahl V möglichst genaue Werte haben, im Gegensatz

dazu kann man mit Flieÿkomma-Zahl das Runden nicht kontrollieren. Deswegen habe ich

selbst ein neues Datentyp �BigRational � erfunden, damit man rationale Zahle auch wie

�BigInteger � mit typischer Operationen bearbeiten kann. Hier heiÿt �Big� eigentlich, dass

der Teiler und der Nenner �BigInteger � und/oder normale Integer sein können. Mit diesem

�BigRational � kann man rationale Zahlen ohne Rundungsfehler beliebig genau berechnen,

sodass die Rechnung von V sowohl theoretisch als auch praktisch möglich wird.

Klassi�kation

Das gesamte Package �Kryptosystem� besteht für die Implementierung von Merkle-Hellman

Kryptosystem und Shamir-Angri� aus folgenden Klassen:

KryptoSystem

Diese Klasse steuert den Ablauf von Verschlüsseln, Entschlüsseln, Angri� usw. Am Ende

wird Ergebnisse ausgegeben, damit man sieht, ob der Angri� richtig tut.

PlainText

Diese Klasse dient eine Binärcodierung der originalen Klartext.

MHKey, MHPrivateKey und MHPublicKey

Diese drei Klassen sind die De�nition und Erzeugung vom ö�entlichen und privaten

Schlüssel in Merkle-Hellman Kryptosystem.

MerkleHellmann

In dieser Klasse werden Nachrichten nach Merkle-Hellmann Verfahren verschlüsselt sowie

entschlüsselt. Eine Permutation ist auch eingesetzt.

ShamirsAttack

Diese Klasse beinhaltet Hauptfunktionen des Shamir-Angri�s. Insbesondere steuert die

das Raten der Anfangsfolge und die Durchprüfung möglicher Lösungsliste aus Integer-

Programming-Problem. Am Ende werden Nachrichten auch entschlüsselt.

42 KAPITEL 5. IMPLEMENTIERUNG VON SHAMIRS ALGORITHMUS

IntegerProgramming

Diese Klasse löst das lineare Ungleichungsproblem und zeigt alle möglichen Lösungen, die

die Position vom gesuchten V ggf. bestimmen.

SuperIncreasingSequence

Stark wachsende Folge wird mit f(V) = biV mod 1 hier berechnet und geprüft. Dafür

werden zuerst die möglichen Teilintervalle selektiert und die Permutation festgestellt.

5.3 Bemerkungen und Performance des Programms

Bitlänge:

Da die Codierung binär und je Einheit(Byte) 8 Bits lang ist, haben wir mit n = 8; 16; . . .

angefangen. Also sindM ,W usw. 16 Bits für n = 8, oder 32 Bits für n = 16. Aber wenn n

noch gröÿer wird, ist der Zeitbedarf extrem hoch. Für n = 8 dauert ein kompletter Durch-

lauf für den Angri� je nach der Anzahl der Lösungen von Integer-Programming-Problem

einige Minuten bis ca. Halbstunde. Aber schon bei n = 16, muss es normalerweise eine

Stunde oder mehr dauern. Und für n = 32 oder noch gröÿer kann das am ganzen Tag nicht

fertig sein. Natürlich kann ein Angri� nicht mit so schnell sein und Personal Computers

sind auch nicht mit einem groÿen Server oder Cluster vergleichbar. Jedoch kann man in

der industriellen Anwendung erst bei der Angabe des ö�entlichen Schlüssel den Angri�

schon richtig starten, weil die zu sendenden Nachrichten nicht für den Angri� benötigt

werden, und auÿerdem sind die leistungsstärkeren Server die Rechnungsgeschwindigkeit

wesentlich zu beschleunigen.

Integer-Programming

Um das ganzzahlige Ungleichungssystem zu lösen, haben wir bei der Nutzung vom berühmten

Hilfstool �Ip_Solve� gefunden, dass dieses Simplex-Program für unseres Ungleichungssys-

tem nicht richtig funktioniert sowie ungeeignet. �Ip_Solve� wird von C/C++ implemen-

tiert und hat �double� als Datentype benutzt. Das �double� soll eigentlich für Zahlen ca.

50-Bits groÿ noch in Ordnung sein, aber �Ip_Solve� gibt bei n = 8 oder n = 16 keine

richtige Lösungen aus. Das kann daran liegen, dass �double� Flieÿkommazahl ist und mit

Rundungsfehlern Schritt für Schritt den Fehler der ganzzahligen Lösungen führen. Deswe-

gen sind vielleicht nur richtige �Rationale�-Typen geeignet. Leider �ndet man zurzeit

keine passenden Hilfs-Programme bzw. Software und auÿerdem ist eine richtige Imple-

mentierung nicht einfacher Version von Simplex sehr aufwendig. Daher haben wir das

5.3. BEMERKUNGEN UND PERFORMANCE DES PROGRAMMS 43

Tool von Simplex verzichten und eine native Methode implementiert, mit der wir unseres

Integer-Programming ohne Fehler rechnen können. Die Zeitkomplexität ist aber viel mehr

als polynomial. Deswegen sind für n > 16 deutlich langsamer. Jedoch ist diese Methode

ziemlich sicher und keine richtigen Lösungen sind zu verpassen und zwar c1 ist von 1 bis

b1�1, und für jedes feste c1, rechne jeweils c2, c3 und c4. Man muss selbstverständlich für

ci, 2 � i � 4 von 1 bis b1 � 1 jeden Wert prüfen. Es gibt intelligente Strategie, damit wir

die Berechnung für ci, 2 � i � 4 viel sparen und keine exponentielle Zeit zu haben ist.

Trotzdem muss man für c1 immer noch O(2n) Schritte benötigen. Dann ist dieses native

Verfahren für Integer-Programming-Problem leider nicht in Polynomialzeit berechenbar.

Verfeinerung für die Ungleichungen

Für die Ungleichungen als Integer-Programming habe ich etwas verfeinert und zwar die

Rechtsseite einer Ungleichung ist mir mit jedes cj und jedes bi abhängig und damit wird

die Suche nach cj, 1 � i � 4 noch schneller und genauer. Ich sehe in vielen Literaturen,

dass vermutlich wegen der Übersichtlichkeit dieses Integer-Programming-Problems immer

feste Werte für die 6 Ungleichungen genommen werden. Das ist zwar auch richtig, aber in

meinem Testen der Implementierung kam manchmal von, dass für ein festes c1, mehrere

möglichen Werte von ci, 2 � i � 4 vorkommen. Das führt zu noch einem kleineren

Aufwand mehr. Mit meiner kleinen Verfeinerung wird solcher Sonderfall grundsätzlich

vermieden.

Anzahl der Lösungen

In einigen Fällen im praktischen Testen kommen nicht nur eine Lösung von gesuchtem

V vor, mit dem man die Nachrichten entschlüsseln kann. Aber nicht jede Lösung von

{cjj1 � j � 4} aus dem Integer-Programming kann eine richtige stark wachsende Folge

bringen. Also ein Testen dafür ist noch notwendig.

Kapitel 6

Fazit

6.1 Zusammenfassung

Die Aufgabenstellung dieser Arbeit ist, um das Merkle-Hellman Kryptosystem und seine

Varianten sowie Angri�sverfahren, insbesondere den Shamir-Algorithmus zu analysieren

und zu implementieren. Der Shamir-Angri� wurde ausführlich behandelt, wobei es klar

ist, dass der Angri� gegen der Lücke vom Merkle-Hellman Kryptosystem mit der stark

wachsenden Folge erfolgreich ist. In manchen Stellen habe ich das Verfahren von Shamir

verfeinert. In der praktischen Implementierung hat man auch bemerkt, dass der Angri�

auch immer funktioniert und manchmal kommen mehrere Lösungen vor, die äquivalent

zu entschlüsseln sind. Das alles kann uns in der Zukunft helfen, eine bessere Variante vom

Merkle-Hellman Kryptosystem zu er�nden und ggf. anzugreifen.

6.2 Diskussion und o�enes Thema

In der Analysis vom Abschnitt 4.6 haben wir gesehen, dass eine stark wachsende Folge

mit einem bestimmten Rauschen auch eine stark wachsende Folge erzeugen kann.[22]

Beispielsweise haben wir im Shamir-Angri� aus der Gleichung 4:40 und der Ungleichung

4:47

a�i = ai � xbi

xbi < n�52�nM

Wenn das Rauschen xbi so klein genug ist, kann die Folge von a�i , 1 � i � n auch stark

44

6.2. DISKUSSION UND OFFENES THEMA 45

wachsend sein.

Was zu beachten ist, dass hier a�i eine rationale Zahl ist und nicht immer ganze Zahl

sein kann. Aber wenn man eine Kollision der ö�entlichen Schlüssel im Merkle-Hellman

Kryptosystem haben will, soll die Folge aus allen a�imit ganzzahligen Einträgen bestehen.

Wir müssen xbi mit xbi < n�52�nM sorgfältig selektieren, sodass xbi auch positive ganze

Zahl ist, für alle 1 � i � n. Im Allgemeinen ist M 2n-Bits lang, also M � 22n�1. Dann ist

n�52�nM � n�52n�1. Falls n groÿ genug ist, kann
j
2n�1

n5

k
eine positive ganze Zahl sein.

Somit ist die Folge von a�i , 1 � i � n äquivalent zur ursprünglichen Folge (a1; : : : ; an).

Ferner können die anderen Teile des privaten Schlüssels, nämlich M , U und W , mit

allen a�i , 1 � i � n einen äquivalenten ö�entlichen Schlüssel zur Kollision bringen, da

M >
Pn

i=1 a
�

i gelten soll.

Wir sehen jetzt dann, wann eine Kollision des ö�entlichen Schlüssels vorkommen kann.

Hierzu bleibt noch die Frage, wie wahrscheinlich diese Kollision vorkommt? Wegen der

Zeitbeschränkung habe ich das noch nicht analysiert. Das kann man in der Zukunft noch

genauer erforschen.

Literaturverzeichnis

[1] Ralph C. Merkle, Student Member, Ieee, Martin E. Hellman, and Senior Member.

Hiding information and signatures in trapdoor knapsacks. IEEE Transactions On

Information Theory, 24:525�530, 1978.

[2] Frieder Knueppel. Asymmetrische Kryptosysteme, 2013.

[3] Adi Shamir. A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman

Cryptosystem, 1982.

[4] Adi Shamir. A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman

Cryptosystem. In IEEE Transcations On Inofmation Theory, Vol. IT-30, No. 5,

September 1984, 1984.

[5] Rajib Biswas. BITS Pilani. Asymmetric Cryptosystem.

[6] J. C. Lagarias. Knapsack Public Key Cryptosystems and Diophantine Approxima-

tion. In David Chaum, editor, CRYPTO, pages 3�23. Plenum Press, New York,

1983.

[7] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. In in

Proceedings of 24rd Annu. Symp. Foundations of comput. Sci, 1983.

[8] Daniele Micciancio and Sha� Goldwasser. Complexity of Lattice Problems: a cryp-

tographic perspective, volume 671 of The Kluwer national Series in Engineering and

Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, March 2002.

[9] Lenstra A.K. LovÃ½sz L. Lenstra, H.W. jr. Factoring Polynomials with Rational

Coe�cients. Mathematische Annalen, 261:515�534, 1982.

[10] Henri Cohen. A course in computational algebraic number theory. Springer, 2000.

[11] E. F. Brickell and A. M. Odlyzko. Cryptanalysis: a survey of recent results. In

Proc.IEEE 76, 1988.

46

LITERATURVERZEICHNIS 47

[12] Keiji Oomura and Keisuke Tanaka. Density Attack on the Knapsack Cryptosystems

with Enumerative Source (extended abstract), 2003.

[13] Matthijs J. Coster, Antoine Joux, Brian A. Lamacchia, Andrew M. Odlyzko, Claus

peter Schnorr, and Jacques Stern. An improved low-density subset sum algorithm.

In in Advances in Cryptology: Proceedings of Eurocrypt '91, 1991.

[14] Claude E. Shannon. Communication Theory of Secrecy Systems. In Bell System

Technical Journal, vol.28-4, 1949.

[15] Benny Chor and Ronald L. Rivest. A Knapsack Type Public Key Cryptosystem

Based on Arithmetic in Finite Fields. IEEE Trans. Inform. Theory, 34:54�65, 1988.

[16] Serge Vaudenay. Cryptanalysis of the Chor-Rivest Cryptosystem. In CRYPTO '98,

pages 243�256. Springer-Verlag, 1998.

[17] Hendrik W. Lenstra Jr. On the Chor-Rivest Knapsack Cryptosystem. J. Cryptology,

3(3):149�155, 1991.

[18] Bao-cang and Hu Yu-pu. Public Key Cryptosystem using Random Knapsacks. Jour-

nal of Electronics and Information Technology, 2010.

[19] Fei Xiang dong; Ding Yan-yan and Pan Yu. Analysis and improvement of a knapsack

Public-key cryptosystem, 2011.

[20] Min-Shiang, Cheng-Chi Lee, , and Shiang-Feng Tzeng. A New Knapsack Public-key

Cryptosystem Based on Permutation Combination Algorithm. 3(9):855 � 861, 2009.

[21] Hamid R. Dalili Rastaghi, Roohallah; Oskouei. Cryptanalysis of a Public-key Cryp-

tosystem using Lattice Basis Reduction Algorithm. In International Journal of Com-

puter Science Issues (IJCSI) . Sep2012, Vol. 9 Issue 5, p110-117. 8p, 2012.

[22] J. C. Lagarias. Performance Analysis of Shamir's Attack on the Basic Merkle-Hellman

Knapsack Cryptosystem, 1984.

[23] Volker Diekert, Manfred Ku�eitner, and Gerhard Rosenberger. Elemente der

Diskreten Mathematik. Walter de Gruyter, 2013.

[24] Eberhard Karls University Tuebingen Informatilk. Interaktives Kryptologie Skript,

Shamirs Algorithmus, 2013.

[25] Jr. H. W. Lenstra. Integer Programming and Cryptography, 1984.

[26] George B. Dantzig. Linear programming and extensions. Rand Corporation Research

Study. Princeton Univ. Press, Princeton, NJ, 1963.

	1 Einleitung
	2 Merkle-Hellman Kryptosystem
	2.1 Rucksackproblem
	2.2 Asymmetrisches Kryptosystem
	2.3 Merkle-Hellman Verfahren
	2.4 Lücke von Merkle-Hellman Verfahren

	3 Neue Entwicklung der Angriffsmethoden
	3.1 Überblick
	3.2 Dichte-Angriff
	3.2.1 Grundlagen
	3.2.2 Niedrige-Dichte-Angriff
	3.2.3 Diskussion über den Grenzwert der Dichte

	3.3 Neue Verfahren des Rucksack-Typ-Kryptosystems
	3.3.1 Diffusion und Konfusion
	3.3.2 Verfahren mit hoher Dichte

	4 Der Angriff vom Shamir-Algorithmus
	4.1 Verlassen der Abhängigkeit von M
	4.2 Anfangen mit der Anfangsfolge
	4.3 Wahrscheinlichkeit, um V zu finden
	4.4 Das Simplex Verfahren
	4.5 Bestimmen von V
	4.6 Diskretes Approximieren zu V
	4.7 Permutation und Zeitkomplexität

	5 Implementierung von Shamirs Algorithmus
	5.1 Implementierungsumgebung
	5.2 Überblick zur Programmierung
	5.3 Bemerkungen und Performance des Programms

	6 Fazit
	6.1 Zusammenfassung
	6.2 Diskussion und offenes Thema

	Literaturverzeichnis

