Institut fiir Architektur von Anwendungssystemen
Universitdt Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Diplomarbeit Nr. 3527

Semantisches Wiki zur Erfassung
von Design-Patterns

Norbert Fiirst
Studiengang: Informatik
Priifer/in: Prof. Dr. Frank Leymann
Betreuer/in: Dipl.-Inf. Christoph Fehling
Beginn am: 4. Februar 2013
Beendet am: 6. August 2013
CR-Nummer: D.21,D.22,D.211,H2.1,H2.7,HJ3.5,

H.5.2,1.5.0

Zusammenfassung

Patterns sind ein in unterschiedlichen Doménen verbreitetes Konzept, das haufig auftauchen-
de Probleme in einem gewissen Kontext beschreibt und dazu eine Musterlosung bietet. Neue
Patterns werden aus der Abstraktion von konkreten oft auftauchenden Problemen und deren
Losungen von Pattern Autoren entdeckt. Ein in allen Doméanen auftauchendes Problem der
Pattern Community ist der fehlende IT-Support bei der Verwaltung der Patterns. Im Rahmen
dieser Diplomarbeit wurde daher ein Pattern Repository auf Basis von semantischen Wiki-
Technologien entworfen, das die Erstellung, Verwaltung und Suche von Patterns ermdglicht.
Dabei ist das Patternformat frei konfigurierbar, so dass die Anwendung fiir unterschiedliche
Doménen angepasst werden kann. Der Entwurf wurde auf Basis von Semantic Mediawiki
implementiert und zuletzt in einem Vergleich zu anderen Pattern Repositorys evaluiert.

Abstract

Patterns are a concept spread in different domains that describes problems in a certain
context and offers a sample solution. Pattern authors discover new patterns by abstracting
them from reoccurring actual problems and their solutions. A problem concerning pattern
communities of all domains is the missing IT-support for managing patterns. This diploma
thesis designs a pattern repository based on semantic wiki-technology, enabling the creation,
management and search of patterns. To adapt the application for different domains, the
pattern format is freely configurable. The design was implemented based on Semantic
Mediawiki and evaluated by the comparison with other pattern repositories.

Inhaltsverzeichnis

1

Einleitung
1.1 Ziel ... e
1.2 Gliederung der Arbeit o L oo
Grundlagen
2.1 Repository
2.2 Patterns und Patternsprachen o o 0L
2.2.1 Patternformat Lo Lo
2.2.2 Pattern Auffindung und Anwendung
2.3 SemanticWeb
23.1 RDFundRDFES
2.3.2 OWL zur Ontologiemodellierung
2.3.3 AbfragenmitSPARQL o L oo
2.3.4 Triplestores L
2.3.5 Ontologie-Modellierung mit Protégé
2.3.6 Semantic Mediawiki oo o
2.3.7 Erweiterungen von Semantic Mediawiki
Anforderungen
3.1 Funktionale Anforderungen L 0L
3.2 Nichtfunktionale Anforderungen
33 UseCases e
3.4 Griinde fiir Verwendung semantischer Technologie
3.5 Evaluation von vorhandenen semantischen Wikianwendungen
3.5.1 Vergleichstabelle
Konzeptionelles Design
4.1 EingabevonPatterns o L
411 Formular.
412 Templates L
4.2 Annotation
4.2.1 Semantische Attribute - Linktypen
4.2.2 Zieleigenschaften oo oo L oL
423 Formular.
4.3 Verwendung des Pattern Repositorys
4.3.1 Einstieg in die Patterndoméne
4.3.2 Assistent

10
10

13
13
14
15
17
18
19
21
24
24
25
26
28

33
33

36
38
39
41

45
46
47
48
50
51
54

57
58

59

4.3.3 Weiteres Navigieren 62

4.4 Resultierendes Datenmodell Lo L. 63
4.4.1 OWL-Ontologie: Kerndatenmodell 65
4.4.2 OWL-Ontologie: Zieleigenschaften 73
4.4.3 Abbildung auf Semantic Mediawiki-Elemente 74
5 Implementierung des Pattern Repositorys 79
5.1 Web-Entwicklung mit dem Mediawiki-Framework 79
5.1.1 Technologien des Mediawiki-Frameworks 79
5.1.2 Entwicklung von Erweiterungen fiir das Mediawiki-Framework 8o
5.2 Systemarchitektur o o 82
5.3 Importdes Datenmodells, 85
5.4 Das Patternformular Lo o 87
5.5 Die Erweiterung - Pattern Repository 88
5.5.1 Annotationsunterstiitzung - Semantic Textarea 89
5.5.2 Auswahl semantischer Propertys - Property Dropdown 93
5.5.3 Zahlenauswahl - Number Slider 94
5.5.4 Ausblendbare Querys-Query Tabs 95

5.5.5 Visualisierung von semantischen Pradikaten im Kontext von Kategori-
en - Property Visualizer 97
5.5.6 Suchassistent- Wizard oo 99
6 Ergebnis und Evaluation 105
6.1 Das Pattern Repository L o 105
6.1.1 Infrastruktur L 107
6.1.2 Administration L o 108
6.2 Evaluation 109
6.2.1 Beispieldomédne Cloud Computing Patterns 110
6.2.2 Beispieldomdne Kosttim-Patterns 110
6.2.3 Vergleich mit anderen Pattern-Repositorys 111
6.2.4 Vorteile und Nachteile des Pattern Repositorys 117
6.3 Ruckblick auf Verlauf der Arbeit 118
7 Zusammenfassung und Ausblick 121
7.1 Zusammenfassung e 121
7.2 Ausblick 122
Literaturverzeichnis 125

Abbildungsverzeichnis

2.1
2.2

2.3

2.4
2.5

4.1
4.2
4.3
4-4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

413

5.2

53

54
55

Der Pattern-, Lebenszyklus” (nach [SBLE12,S5.3])
Mehrere RDF-Tripel in Graphdarstellung mit Literalen. Legende: Krei-

se=Ressourcen, Rechtecke=Literale, Pfeile=Beziehungen
Klassenhierarchie der Beziehung zwischen OWL/RDEF(S) (nach [AVHo4, S.

119]). Legende: Rechtecke=Elemente aus OWL/RDEF(S), Pfeile=Generalisierung . .
Beispiel einer einfachen OWL-Ontologie
Die graphische Darstellung einer OWL-Ontologie

Use Cases des Pattern Repository

Arbeitsablauf beim Verwenden des Pattern Repositorys
Mockup einiger Formularelemente
Zusammenhang zwischen Formular und Templates
N-dre Relation in einem Entity-Relationship Diagramm
N-dre Relationin OWL,
Datenmodell - Kategorien
Datenmodell - Visualisierung
Datenmodell - Ubersicht iiber die Abschnittsbeziehungen
Datenmodell - Abschnitte,
Datenmodell - Eingabetypen des Formulars
Datenmodell - Semantische Attribute
Allgemeine Ontologie zur Einbindung von Zieleigenschaften mit Legende
Mapping der OWL-Ontologien durch den Importvorgang. Legende: Gestri-
chelter Pfeil=Mapping

Systemarchitektur mit angebundenem Triplestore. Auf der linken Seite ist das
allgemeine Schichtenmodell zu sehen und rechts die konkrete Auspragung
des Mediawiki-Stacks mit den verwendeten Technologien (nach [Kar11])
Aufbau von DataWiki. Legende: Gestrichelter schwarzer Pfeil=Abhingigkeit,
Braune Linie=Verbindung zu MySQL-Datenbanktabelle, Lila Linie=Fiir den Triple-
store bendtigte Verbindung L L oo
Interne Architektur der Erweiterung Pattern Repository. Legende: Schwarz
gestrichelter Pfeil=Zur Realisierung verwendet fiir. Orange gestrichelter
Pfeil=Abhingigkeit
Auswahl des zu annotierenden Wortes in Semantic Textarea
Annotation mithilfe von Semantic Textarea
Anschlieffende Darstellung der Annotation in Semantic Textarea

5.7 Eingabe eines Zahlenwerts durch den Number Slider 94
5.8 Ausgeblendete Querys o L 96
5.9 FEingeblendete Query Lo Lo oL 96
5.10 Visualisierung eines semantischen Linktyps durch den Property Visualizer . . 98
5.11 Das Hauptmenii des entwickelten Pattern Wizard - Links das Auswahlmenti
der Empfehlungsfunktionen und auf der rechten Seite die Leseliste. 99
5.12 Auswahl eines bekannten Anwendungsfalls im Wizard - Auf der linken Seite
geschieht die Auswahl, in der Mitte werden die Empfehlungen angezeigt und
rechts unten ist die Leseliste zusehen 101
5.13 Auswahl grundlegenden Patterns im Wizard - Auf der linken Seite geschieht
die Auswahl und rechts ist die Leseliste zu sehen. Die abgebildeten Beispiel-
spatterns sind aus [FLRT13] L 101
5.14 Auswahl einer Benutzerrolle im Wizard - Auf der linken Seite geschieht die
Auswahl und rechts ist die Leseliste zusehen 102
5.15 Vorschldge anhand der Leseliste im Wizard - Auf der linken Seite sind die
Vorschldge abgebildet und rechts ist die Leseliste zusehen 103
6.1 Das Hauptmenti des Pattern Repositorys 106
Tabellenverzeichnis
3.1 Vergleichstabelle der Evaluation von Alternativen 42
4.1 Abbildung von OWL- auf Semantic Mediawiki-Elemente 64
6.1 Vergleichstabelle von alternativen Pattern Repositorys 115
Verzeichnis der Auflistungen
2.1 FEine einfache SPARQL-Query 24

1 Einleitung

Seit dem Beginn des Informationszeitalters nimmt die Spezialisierung in unterschiedlichen
Wissenschaftsbereichen zu, was Experten mit sehr spezifischem Fachwissen hervorbringt
[Haros]. Um solches doméanenspezifisches Expertenwissen in Form von leicht konsumierba-
ren Wissensportionen fiir Andere zuganglich zu machen, gibt es das Konzept der ,Patterns”
(Muster). Patterns sind Problem-Losungspaare, die ein Problem in einem gewissen Kontext
beschreiben und dazu eine Musterlosung bieten. Wenn es auf einem Gebiet eine gewisse
Anzahl von Patterns gibt, konnen diese miteinander vernetzt werden, und bilden anschlie-
lend eine Patternsprache. Die Vernetzung geschieht dabei durch die unterschiedlichen
Beziehungen, welche die Patterns untereinander aufweisen, z.B. kann ein Pattern eine Spe-
zialisierung eines allgemeineren Patterns darstellen. Die Patternsprache kann fiir den Leser
einer Sammlung von Patterns eine Reihenfolge vorgeben, in welcher sie betrachtet werden.
Neue Patterns werden entdeckt, indem zunéachst sich oft wiederholende dhnliche Problem-
stellungen und jeweils konkrete Losungen in existierenden Anwendungsféllen von einem
Experten des Gebiets analysiert werden. Anschlieffend wird versucht, einen gemeinsamen
Kern des Problems zu abstrahieren und schliefilich eine aus der Erfahrung heraus als gut
befundene Losung dafiir zu beschrieben. Anhand einer Sammlung von Patterns kénnen
weniger erfahrene Anwender des Gebiets von der Erfahrung von Experten profitieren, indem
sie Patterns auf ihre konkreten Entwurfsprobleme anwenden und individualisieren.

Als Wegbereiter fiir die Verbreitung von Patterns kann der Architekt Christopher Alexander
betrachtet werden [AIST77]. Die Verwendung von Patterns wurde in anderen Gebieten
iibernommen, und so gibt es neben Werken im IT-Bereich tiber objektorientierte Program-
mierung [JGVHgs5] oder Cloud Computing [FLR"13] auch Anwendungen im Bereich des
Kosttimmanagements [SBLE12] oder der Padagogik [Kop13]. Ein Problem, welches in den
Patterngemeinden aller Gebiete auftritt, ist die fehlende Unterstiitzung durch IT-Werkzeuge
bei der Erstellung, Verwaltung und Suche von Patterns. Dies hat einige negative Folgen, wie
z.B. die oft schlechte Dokumentation, aus welchen Quellen ein Pattern abstrahiert wurde.
Patternautoren miissen zudem ohne die Unterstiitzung durch benutzerfreundliche Formu-
lare oder dhnliches manuell sicherstellen, dass ein konsistentes Patternformat im ganzen
Patternkatalog eingehalten wird. Fiir Benutzer eines Patternwerks ergibt sich oft das Problem,
in einer untibersichtlichen Menge von Patterns eine geeignete Losung fiir sich zu finden.
Mithilfe eines IT-Werkzeugs konnte man den Benutzer durch einen Assistenten unterstiitzen,
der bei der Auffindung von Patterns durch Empfehlungen hilft. Sowohl fiir Autoren als auch
Benutzer wire die Visualisierung der Patternsprache aufgrund der Beziehungen der Patterns
zueinander zusitzlich ein niitzliches Hilfsmittel, um die Vernetzung zu verbessern und um
das Verstandnis zu vertiefen.

1 Einleitung

Ein Patternkatalog in elektronischer Form wird als Pattern Repository bezeichnet. Es gibt
bereits einige Pattern Repositorys [qui, Yah, SBS]; allerdings sind dies meistens von den
Autoren eines Patternbuchs betriebene Webseiten, die keine weiteren Hilfsmittel bieten und
spezifisch fiir eine konkrete Patterndoméne entwickelt wurden. Es fehlt eine Anwendung,
die Patternautoren von Anfang an unterstiitzt, ein benutzerfreundliches Interface fiir die
Benutzer des Patternkatalogs bietet und dabei frei konfigurierbar fiir unterschiedliche
Patternformate ist.

1.1 Ziel

Das Ziel dieser Diplomarbeit ist die Entwicklung eines auf semantischen Wikitechnologien
basierenden Pattern Repositorys, das die unterstiitzte Erstellung, Suche und Empfehlung von
Design Patterns unterschiedlichster Doméanen ermoglicht. Fiir eine moglichst komfortable
Erstellung bzw. Eingabe von Patterns sollen dafiir Dokumentvorlagen erstellt werden, so
dass dem Benutzer ein gewisses Patternformat vorgegeben wird. Um eine erweiterte Suche
und die Verwendung von semantischen Querytechniken zu ermoglichen, soll es auf benut-
zerfreundliche Art moglich sein, Patterns untereinander und Patterns mit Anwendungsféllen
mithilfe von semantischen Annotationen zu verkniipfen. Neben den umfangreichen Que-
rytechniken, die dem Benutzer dadurch zur Verfiigung stehen, soll es einen Assistenten
geben, der dem Benutzer sinnvolle Patterns empfehlen kann. Zum Abschluss der Arbeit
soll eine Evaluation des resultierenden Pattern Repositorys geschehen, indem es an zwei
Beispieldoménen getestet wird. Dabei handelt es sich um sehr unterschiedliche Doménen,
so dass iiberpriift werden kann, ob das Pattern Repository flexibel an unterschiedliche
Patternformate angepasst werden kann.

1.2 Gliederung der Arbeit

Im Folgenden soll ein kurzer Uberblick gegeben werden, aus welchen Kapiteln die Diplom-
arbeit besteht und was jeweils inhaltliche Schwerpunkte sind.

Kapitel 2 - Grundlagen In diesem Kapitel werden die benétigten Grundlagen zum Ver-
standnis dieser Arbeit in der benotigten Tiefe erldutert. Neben einer allgemeinen Einfiihrung
in Patterns und Patternsprachen gibt es einen Uberblick der Semantic Web Technologien,
die im Rahmen dieser Arbeit zum Einsatz kommen. Dabei werden viele Referenzen zu
vertiefender Literatur geboten, um dem geneigten Leser Moglichkeiten zu bieten, sich tiefer
mit der Materie zu beschiftigen.

Kapitel 3 - Anforderungen In den Anforderungen wird das in diesem Kapitel beschriebene
Ziel in detaillierte Anforderungen in Form von User Stories aufgespalten, wie man sie aus
der agilen Softwareentwicklung kennt. In den darauf folgenden Use Cases werden konkre-
tere Einblicke in die Anwendungsaspekte des Systems gegeben. Neben einer Erlduterung,

10

1.2 Gliederung der Arbeit

weshalb semantische Technologie in der Arbeit verwendet wurde, gibt es auch eine Evaluati-
on, die zu der Entscheidung gefiihrt hat, Semantic Mediawiki als Basis fiir diese Arbeit zu
verwenden.

Kapitel 4 - Konzeptionelles Design Das konzeptionelle Design beschreibt zunichst auf einer
abstrakten Ebene, wie einzelne Verwendungsaspekte der entwickelten Software realisiert
werden sollten. AnschliefSend folgt eine konkrete Umsetzung in Form eines Datenmodells,
das in Ontologiesprache OWL modelliert wurde und sehr ausfiihrlich beschrieben wurde.
Am Ende des Kapitels gibt es eine Abbildung des Datenmodells auf Elemente von Semantic
Mediawiki.

Kapitel 5 - Implementierung des Pattern Repositorys Die Implementierung stellt die Syste-
marchitektur des entworfenen Systems auf mehreren Ebenen dar. Es folgt eine Beschreibung
des Programms, welches zum Import des im konzeptionellen Design beschriebenen Daten-
modells dient. Die Beschreibung des Patternformulars geht auf die Details bei der Umsetzung
ein und zuletzt folgt nach einer kurzen Einfithrung in die Begriffe der Mediawiki Erweite-
rungsentwicklung die genaue Vorstellung der fiir die Diplomarbeit entwickelten Mediawiki
Erweiterungen.

Kapitel 6 - Ergebnis und Evaluation Das Ergebnis der Diplomarbeit wird vorgestellt und
kurz auf dessen Infrastruktur und Administration eingegangen. Es folgt eine Evaluation,
in der zundchst die Fahigkeit des entwickelten Pattern Repositorys tiberpriift wird, sich
fiir beliebige Patterndoménen konfigurieren zu lassen. Es folgt ein Vergleich mit anderen
Repositorys, die online verfiigbar sind, um mit einem Riickblick auf den Verlauf der Arbeit
zu schlieflen.

Kapitel 7 - Zusammenfassung und Ausblick Die wichtigsten Ergebnisse der Arbeit werden
kurz zusammengefasst und es wird ein Ausblick auf mogliche weitere Entwicklungen auf
dem Gebiet gegeben.

11

2 Grundlagen

Nachdem nun auf die Motivation und die Zielstellung dieser Arbeit eingegangen wurde,
sollen im folgenden Kapitel grundlegende Begriffe und Systeme erklart werden, die zum
Verstidndnis dieser Diplomarbeit nétig sind. In Abschnitt 2.1 soll dazu zunédchst der Begriff
,Repository” definiert werden, um eine klare Vorstellung des Ziels der Arbeit zu ermoglichen.
In Abschnitt 2.2 soll anschliefiend das Verstandnis fiir Patterns im Allgemeinen verbessert
werden, um die Anforderungen aus Kapitel 3 an ein Pattern Repository besser verstehen
zu konnen. Abschnitt 2.3, welcher das Semantic Web behandelt, soll schliefdlich das nétige
Wissen auf der technischen Seite vermitteln, um die Modellierung des Datenmodells in
Kapitel 4 verstehen zu konnen, um schliefSlich ein Gesamtverstandnis fiir das System mithilfe
von Kapitel 5 zu erlangen. Hierbei soll insbesondere auf Abschnitt 2.3.5 verwiesen werden,
der zum Verstdndnis der in der Arbeit sehr gehduft auftauchenden Darstellungen von
Ontologien notwendig ist.

2.1 Repository

Der Begriff Repository (deutsch: Sammelplatz, Aufbewahrungsort) bezeichnet ein Dokumen-
tationssystem, welches die Ablage und Suche von Informationen und die Beschreibung
der Beziehungen der abgelegten Elemente zueinander anhand von Metadaten ermoglicht.
Habermann und Leymann definieren dies folgendermafSen:

Das Repository ist die zentrale Ablage von beschreibenden Informationen iiber alle
Informationselemente einer Organisation und deren Benutzer. [HL93, S. 11]

Funktional ist das Repository ein System, das Informationen iiber Objekte der Soft-
wareproduktion [...], deren Beschreibungen und Beziehungen untereinander verwaltet,
auswertet und bereitstellt. [HLg3, S. 15]

Eine sehr dhnliche Definition liefert Ortner:

Repositorien sind Dokumentationssysteme. In Repositorien werden auf einer Metaspra-
chebene Sprachartefakte [...] strukturiert beschrieben. [Ortgg, S. 236]

In den beiden zitierten Werken [HL93, Ortgg] wurde der Begriff Repository dabei sehr
beschrankt in dem Bereich des CASE" eingesetzt. Daher wurden in den Zitaten die zu CASE-
spezifischen Stellen weggelassen. Dieser Diplomarbeit soll ein erweitertes Verstandnis von

Computer-Aided Software Engineering

13

2 Grundlagen

Repositorys zugrunde liegen, so dass diese als Dokumentationssysteme fiir Informationen
aller Art betrachtet werden konnen. In diesem Sinne ldsst sich beispielsweise jedes Wiki als
Wissensrepository betrachten, wie auch aus dem Zitat von Garcia et al. ersichtlich wird:

This paper focuses on the use of wikis such as Web 2.0 knowledge repositories [...].
[GASB11]

Das im Rahmen dieser Arbeit entwickelte Repository wird als ,Pattern Repository” bezeich-
net, um auszudriicken, dass es sich dabei um ein auf Patterns spezialisiertes System mit
Repository-Funktionalitdt handelt. Diese Bezeichnung wird ebenfalls von anderen Projekten
verwendet, wie z.B. von [KEoz], [por] und [Hee]. Welche Anforderungen an ein Pattern Re-
pository es genau gibt, und damit auch die verfiigbaren Funktionalitdten, wird ausfiihrlicher
in Kapitel 3 erldutert. Um tiberhaupt eine genaue Vorstellung vom Begriff der Patterns zu
bekommen, folgt nun eine Definition und auch eine Erlduterung der damit in Verbindung
stehenden Patternsprachen.

2.2 Patterns und Patternsprachen

Das Konzept der Patterns (deutsch: Muster) verdankt die mittlerweile grofSe Verbreitung in
unterschiedlichen Anwendungsgebieten dem Architekten, Architektur- und Systemtheore-
tiker Christopher Alexander. Alexander definierte Patterns in seinem klassischen Werk A
Pattern Language: Towns, Buildings, Constructions wie folgt:

Each pattern describes a problem that occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice. [AIS*77]

Christopher Alexander war zur Zeit des Verfassens dieses Werks bereits ein erfahrener
Architekt und hatte festgestellt, dass ihm bei unterschiedlichen Projekten sich wiederholende
Entwurfsprobleme begegneten. Diese mussten zwar jeweils individuell im Kontext des Ge-
samtprojekts gelost werden, entsprachen dabei aber auf einer abstrakteren Ebene Problemen,
welchen er schon bei fritheren Projekten begegnet war. Daraus entsprang die Idee, fiir diese
im Kern gleichen Probleme eine Losung ebenfalls auf abstrakter Ebene anzugeben.

Mithilfe von Patterns, fiir die er ein festes Format in Form eines strukturierten Textes
festlegte, konnen Best Practises von erfahrenen Experten einer Domane festgehalten werden,
die anschlieBend als leicht zugéngliche , Nuggets of Advice” [FLR* 13, S. 7] zur Verfiigung
stehen. Patterns helfen leicht variierende, aber im Kern gleiche Probleme nicht jedes Mal
aufs Neue losen zu miissen.

Um den Ansatz von C. Alexander etwas greifbarer zu machen, soll hier nun ein Beispielpat-
tern kurz erldutert werden. Alexanders Patterns in [AIST77] 16sen architektonische Probleme
auf der Ebene von Regionen, Stadten, Stadtvierteln bis hin zu einer sehr detaillierten Stufe
wie der Gestaltung von Tiirgriffen innerhalb eines Zimmers. Mit dem Halb-versteckter Garten-
Pattern [AIST 77, S. 260-261] beschreibt er beispielsweise, wie der Grundentwurf eines Hauses

14

2.2 Patterns und Patternsprachen

aussehen kann, das einen halb versteckten Garten besitzen soll. Zunichst wird beschrieben,
mit welchen anderen Patterns das Halb-versteckter Garten-Pattern zusammenhéngt, wie z.B.
mit dem Héauserblock-Pattern. AnschlieSend wird die Tatsache, dass ein halb versteckter
Garten an einem Haus die relative Position der Hiuser innerhalb eines Blocks verdndert, als
Grund fiir die Verbindung mit dem Héauserblock-Pattern aufgefiihrt. Dariiber hinaus wird
das zugrundeliegende Problem beschrieben, dass der Garten weder voll von der Strafle aus
sichtbar sein darf, da dies nicht privat genug wire, aber auch nicht zu weit weg von der
Strafle sein darf, da dies zu isoliert wire. Es folgt ein Losungsvorschlag, wie ein solch halb
versteckter Garten in einen Entwurf integriert werden kann und auf was geachtet werden
muss. Zusitzlich wird das Pattern mit anderen Patterns in Verbindung gebracht, die ebenfalls
fiir diesen Entwurf relevant sein diirften, z.B. der Gartenmauer-Pattern. AnschliefSend wird
auch noch auf Verfeinerungen des Patterns hingewiesen, wie z.B. den Dachgarten.

Laut Hohpe und Woolf [HWo3, S. xli] entspricht jedes Pattern einer Entscheidung, die
gemacht werden muss, sowie den Abwégungen, die in Betracht gezogen werden miissen, um
die Entscheidung zu fillen. Eine sog. Patternsprache ergibt sich aus einem Netz von miteinan-
der verkniipften Patterns, in dem jede Entscheidung zu weiteren verwandten Patterns fiihrt.
Auf dieser Weise ist es moglich, sich anhand des Expertenwissens durch die Patternsprache
fithren zu lassen. Bei Alexander ist die Mustersprache, welche durch die Relationen zwi-
schen den Patterns gebildet wird, in eine hierarchische Baumstruktur unterteilt. Sie beginnt,
wie bereits oben erwdhnt, mit Patterns fiir die Gestaltung von Regionen und wird immer
detaillierter bis zu dem Grad der Gestaltung von einzelnen Objekten in einem Haus. Dabei
enthalten Patterns auf hoherer Ebene Patterns auf niederer Ebene, oder die Patterns niederer
Ebenen werden durch die Spezialisierung von allgemeineren Patterns gebildet. Auf gleicher
Ebene gibt es Patterns, welche Alternativen zueinander darstellen und es auf diese Weise
zulassen, unterschiedliche Wege einzuschlagen.

Der Ansatz, Expertenwissen durch Patterns festzuhalten, wurde auch in anderen Bereichen
als der Architektur tibernommen, z.B. fiir piddagogische Zwecke [K6p13], dem Design von
Filmkostiimen [SBLE12] und nicht zuletzt im IT-Bereich. Das Werk, das den Grundstein
fir Design Patterns in der Informatik gelegt hat, ist Design Patterns: Elements of Reusable
Object-Oriented Software [JGVHg5]. Die Autoren des Buches, Erich Gamma, Richard Helm,
Ralph Johnson und John Vlissides werden als Parodie auf die chinesische Viererbande
um Mao Zedong auch als Gang of Four bezeichnet. Das Buch beschreibt Design Patterns
fiir objektorientierte Software und verfeinert dabei das originale Format von Alexander in
einigen Aspekten, behilt aber eine einheitliche Struktur der Patterns bei, um das Lernen,
Vergleichen und Verwenden der Patterns zu vereinfachen [JGVHos, S. 16]. Auch das Bilden
der Patternsprache funktioniert sehr dhnlich wie bei Alexander, mit dem Unterschied, dass
anstatt Tiiren und Wanden nun Beziehungen aus der objektorientierten Programmierung
verwendet werden.

2.2.1 Patternformat

Im Kern besteht ein Muster immer aus einem Problem-Losungspaar, das aus vielen anderen
Problem-Losungspaaren abstrahiert wurde und in einen gewissen Kontext gesetzt wird

15

2 Grundlagen

[Busg8, S. 1-4]. Dies stimmt auch mit Alexanders Definition in seinem zweiten Werk zu
Patterns, The Timeless Way Of Building, tiberein:

Each pattern is a three part rule, which express a relation between a certain context, a
problem, and a solution. [Aley9, S. 2471f]

Dabei wird im Kontext die Situation beschrieben, in der das Problem auftritt, welches das
Pattern 16st und bietet so einen Rahmen. Im Problemabschnitt werden die unterschiedlichen
Kriéfte (forces) beschrieben, die Aspekte darstellen, die bei der Losung des Entwurfsproblems
zu berticksichtigen sind, wie z.B. bestimmte Anforderungen oder sonstige Randbedingungen.
Die Losung beschreibt das allgemeine Losungsprinzip, mit dem das Problem auf einer
abstrakten Ebene gelost werden kann und versucht dabei, die Krafte des Problems moglichst
gut auszugleichen. Wahrend dieses urspriingliche Format zur Beschreibung von Patterns
von Alexander in [AIST77] verwendet wurde, wird es auch in neueren Werken, wie z.B.
[MDg7], verwendet. In [JGVHos, S. 16-18] wurde dieses Format feiner aufgegliedert und
schliefllich in [FLR" 13, S. 10-11] sinnvoll weiterentwickelt, so dass dieses als Beispiel erldutert
werden soll. Dabei sei angemerkt, dass sich Patternformate unterschiedlicher Werke meistens
unterscheiden, im Kern dabei jedoch immer das oben erlduterte dreiteilige Format verwendet
wird.

Patternname Der Name des Patterns stellt wohl in allen Patternsprachen das wichtigste
Merkmal zur schnellen Identifizierung eines Patterns dar, und sollte daher pragnant
gewdhlt werden.

Intent Die Absicht driickt kurz und knapp den Zweck und das Ziel eines Patterns aus.

Icon Dient als schnelles Identifizierungsmerkmal eines Patterns und kann in Darstellungen
der Patternsprache verwendet werden.

Driving Question Die Leitfrage erfasst das Problem, welches dem Pattern zugrunde liegt.

Context Der Kontext beschreibt, wie oben bereits erldutert, die Umgebung und die Krafte,
mit welchen das Problem umgeben ist.

Solution Die Losung skizziert kurz, wie das Pattern das in der Leitfrage beschriebene
Problem 16st.

Result Der Ergebnisabschnitt erkldrt die bereits skizzierte Losung in grofserem Detail.

Variations Beschreibt leichte Abweichungen von dem beschriebenen Pattern, welche es nicht
notig machen wiirden, ein komplett neues Pattern zu verfassen.

Related Patterns Beschreibt Beziehungen zu anderen Patterns, beispielsweise mit welchen
das aktuelle Pattern gut kombiniert werden kann, und welche ausgeschlossen werden.
Auf diese Weise wird die Patternsprache gebildet.

Known Uses Beispiele fiir Anwendungsgebiete, in denen das Pattern verwendet wurde und
eventuell als Quelle zur Abstraktion des Patterns genutzt wurden.

16

2.2 Patterns und Patternsprachen

2.2.2 Pattern Auffindung und Anwendung

Konkrete Losungen fur wiederauftretende Probleme in existierenden
Systemen/Anwendungsfallen.

Bekannte

Abstraktion Anwendungsgebiete

Patterns

Anwendung und Konkretisierung

Neue individualisierte Problemlésung auf Basis eines/von mehreren Patterns

Abbildung 2.1: Der Pattern-, Lebenszyklus” (nach [SBLE12, S. 3])

Das Verfassen von neuen Patterns geschieht nicht auf die Weise, dass diese neu , erfunden”
wiirden, sondern indem Sie von Experten entdeckt werden. Diese betrachten sehr viel dhnliche
Anwendungsgebiete, abstrahieren Problem-Losungspaare aus diesen und entdecken durch
das Herausfiltern von Gemeinsamkeiten schliefflich neue Patterns [Busg8, S. 2]. Wurden erst
einmal eine Reihe von Patterns entdeckt, und diese zu einer Patternsprache vernetzt, stehen
sie zur Anwendung bereit. Soll mithilfe von Patterns ein konkretes Problem geltst werden,
muss dieses unter Umstdnden erst soweit verallgemeinert werden, bis sich ein passendes
Pattern zu dem verallgemeinerten Problem findet. Anhand dieses Patterns ist es nun moglich,
entlang der Patternsprache zu navigieren und dadurch unterschiedliche Entwurfsprobleme
des konkreten Anwendungsfalles zu 16sen. Hierbei sei ein weiterer besonderer Nutzen des
patterngestiitzten Entwurfs hervorgehoben: Werden Systeme mithilfe von Patterns entworfen,
ist es moglich, innerhalb der Doméne auf ein gemeinsames Vokabular zuriickzugreifen und
Entwiirfe vergleichbar zu machen [FEL ™ 12]. Dabei spielt es keine Rolle, ob nun ein Bauwerk
anhand der Patterns von Alexander entworfen wurde, oder ein objektorientiertes Programm
verfasst wurde; gewisse Charakteristika lassen sich nun durch Patterns vergleichen.

Hierzu soll Abbildung 2.1 einen Uberblick bieten: die oberste ,,Ebene” des Bildes stellen
konkrete Anwendungsfille dar, aus denen anhand von Problem-Losungspaaren Patterns ab-
strahiert werden konnen. Dies ist in der Abbildung anhand des mit Abstraktion beschrifteten

17

2 Grundlagen

Pfeils erkennbar. Von den Patterns, welche die zweite Ebene darstellen, gibt es wiederum
einen Riickverweis auf bekannte Anwendungsgebiete (Known Uses) durch den Pfeil Bekannte
Anwendungsgebiete. Die dritte Ebene zeigt die Anwendung von Patterns, indem sie fiir den
konkreten Problemfall angepasst werden und so eine neue individuelle Losung bilden, die
aufgrund des patternbasierten Vorgehens trotzdem schnell fassbar und vergleichbar ist. Diese
Beziehung ist in der Abbildung anhand des mit Anwendung und Konkretisierung beschrifteten
Pfeils dargestellt.

Nachdem nun genauer auf die inhaltlichen Aspekte rund um Patterns und Patternsprachen
eingegangen wurde, folgt eine Erlduterung von wichtigen Begriffen um das Semantic Web.
Diese sind zum Verstdndnis der technischen Seite dieser Diplomarbeit und somit der
folgenden Kapitel notig.

2.3 Semantic Web

Das World Wide Web beeinflusst unser Leben wie sonst kaum eine Technologie, und ent-
wickelt sich rasant weiter. Zunichst dominierten statische Webseiten das Netz, die von
Einzelpersonen oder Firmen gepflegt wurden. Ab der Jahrtausendwende entwickelte sich
eine Konzentration auf inhaltsbezogene Plattformen, auf welchen die Benutzer kollaborativ
selbst neue Inhalte erstellen. Diese neuen das Web dominierenden Anwendungen wie Video-
plattformen, soziale Netzwerke oder Wikis wurden unter dem weitreichenden Begriff des
,Web 2.0” zusammen gefasst. Das Aufkommen dieser Anwendungen hatte zur Folge, dass
die verfiigbaren Informationen immer weiter und schneller wuchsen. Dementsprechend er-
klart sich auch die enorm gestiegene Bedeutung von Suchmaschinen und beispielsweise der
unvergleichliche Aufstieg von Google*. Das Problem war nun, zu einer gewissen gew{iinschten
Information guten Quellen aus den schier endlosen zu Verfiigung stehenden Datenmengen
herauszufinden und insbesondere Informationen mit der korrekten semantischen Bedeutung
zu finden. Wird beispielsweise eine Google-Suche mit dem Begriff ,,Owl” begonnen, und auf
Informationen tiber die Web Ontology Language gehofft, werden sich viele Suchergebnisse
auf die Eule als Tier beziehen, da das System nicht den semantischen Zusammenhang kennt.

Bei der grofsen unstrukturierten Datenmenge, welche das Web momentan darstellt, gibt
es einige fundamentale Probleme, welche laut [HKRS08, S. 9-10] insbesondere die grofie
Heterogenitédt der Daten, die dadurch nétige Informationsintegration und das Fehlen eines
zugrunde liegenden maschinenlesbaren Datenschemas darstellen. Die unter dem Begriff des
Semantic Web zusammengefassten Technologien versuchen dieses Problem zu l6sen. Mithilfe
von offenen Standards wird die Moglichkeit geschaffen, Informationen auf eine Weise zu
beschreiben, dass sie von Maschinen verarbeitbar werden. Das World Wide Web Consortium?3
hat hierfiir die Standards RDF(S) und OWL auf Basis von XML geschaffen. RDF(S) und OWL
stellen formale Sprachen dar, die zur Beschreibung von Ontologien dienen konnen. [AVHog4,
S. 11] definiert den Begriff Ontologie nach R. Studer: , An ontology is an explicit and formal

*http://www.google.com/
Shttp:/ /www.w3.org/

18

http://www.google.com/

2.3 Semantic Web

specification of a conceptualization.”. Eine Ontologie stellt im Zusammenhang mit dem Semantic
Web eine formale Beschreibung des Wissens iiber ein bestimmtes Anwendungsgebiet in
Form eines RDF(S)- oder OWL-Dokuments dar. Dadurch wird es moglich, Informationen
tiber semantischen Zusammenhénge in einer formalen maschinenlesbaren Sprache zu be-
schreiben. Unter Berticksichtigung dieser Zusammenhédnge konnen dem Suchenden nun
passendere Ergebnisse prasentiert werden, die mit der tatsdchlich beabsichtigten Bedeutung
iibereinstimmen.

2.3.1 RDF und RDFS

Das Resource Description Framework (RDF) ist laut W3C ein standardisiertes Modell zum
Datenaustausch im Web [W3C]. Den Hauptanwendungszweck von RDF sieht [HKRS08,
S. 35] folgendermafien: "Durch RDF sollen Anwendungen in die Lage versetzt werden,
Daten im Web auszutauschen, ohne dass ihre urspriingliche Bedeutung dabei verloren
geht."Die grundlegende Dateneinheit in RDF stellen Aussagen im Subjekt-Pradikat-Objekt
Format dar, welche als RDF-Tripel bezeichnet werden. Dabei sind Subjekt und Objekt
beliebige Ressourcen, die durch Uniform Resource Identifiers (URI) identifiziert werden. Dabei
ist nicht vorgeschrieben, ob es sich bei der URI um eine URL oder um eine beliebige
andere einzigartige ID handelt. Zusitzlich lassen sich fiir Ressourcen unterschiedliche
Datentypen angeben, und falls nun auf keine abstrakte Ressource, sondern auf ein konkretes
Datenattribut z.B. des Typs String verwiesen werden soll, spricht man von einem Literal.

/i : http://iaas.de/hatAutor
http.//laas.dfa/Dlp > http://iaas.de/Student
lomarbeit ¥

http://iaas.de/Titel http://iaas.de/Name

N

Semantic Wiki for Design

Pattern Capturing Norbert Furst

Abbildung 2.2: Mehrere RDF-Tripel in Graphdarstellung mit Literalen. Legende: Krei-
se=Ressourcen, Rechtecke=Literale, Pfeile=Beziehungen

RDF-Tripel beschreiben gerichtete Graphen, welche bei grofien Datenmengen sog. ,,semanti-
sche Netze” bilden [AVHo4, S. 69]. Ein Beispiel fiir einen solchen Graphen ist in Abbildung
2.2 abgebildet, welcher neben Ressourcen, die in Kreisen dargestellt sind, auch Literale in
Form von Rechtecken enthilt. Die Beziehungen zwischen Ressourcen und Literalen werden
in der Grafik anhand von Pfeilen mit Bezeichnern dargestellt. Ein Baumformat wie bei
klassischen XML-Dokumenten bietet sich bei solchen allgemeinen Ressourcen-Beziehungen
insbesondere deswegen nicht an, da RDF nicht zur Beschreibung der Struktur hierarchischer

19

2 Grundlagen

Dokumente dient. Die Unterordnung von verschiedenen Elementen ist bei RDF niemals ein-
deutig oder erwiinscht, da bei einem Tripel nicht klar ist, ob sich nun das Subjekt dem Objekt
unterordnen sollte oder umgekehrt. Des Weiteren ist ein wichtiger Aspekt von RDF, dass
sich mehrere Graphen problemlos zu einem vereinen lassen, bei hierarchischen Strukturen
dagegen ist dies sehr problematisch [HKRSo08, S. 37].

In RDF werden keinerlei Annahmen iiber eine bestimmte Domé&ne gemacht, in welcher Res-
sourcen beschrieben werden, und keine Aussagen tiber die zugrundeliegende Semantik der
beschriebenen Objekte. Fiir diesen Zweck wurde RDF Schema (RDFS) konzipiert, welches es
erlaubt, ein Vokabular fiir eine bestimmte Doméne zu modellieren. Ein Vokabular bezeichnet
dabei einen Satz von Bezeichnern fiir Individuen, Beziehungen und Klassen, festgelegte
Bedeutungen fiir gewisse Bezeichner sowie Einschrankungen bei deren Verwendung. RDFS
ermoglicht es nun, solches terminologisches Wissen tiber Begriffe eines Vokabulars zu spe-
zifizieren [HKRS08, S. 67]. Auf syntaktischer Ebene ist jedes RDFS-Dokument in korrekter
RDF-Syntax verfasst und beschreibt die neu eingefiihrten Konzepte konsequenterweise
als RDF-Tripel. In RDFS werden folgende Konzepte zur Beschreibung der Semantik einer
Doméne eingefiihrt:

Klasse Die Verwendung von Klassen erlaubt es, die grundlegende Unterscheidung von
Individuen einer Domé&ne zu ermoglichen. Dabei gibt es die Beziehung zwischen
Klasse und Instanz, wobei die Instanz ein konkretes Individuum einer Klasse ist.
In dem Beispiel aus Abbildung 2.2 kénnten die Ressourcen Diplomarbeit und Student
beispielsweise Klassen darstellen, wohingegen Semantic Wiki for Design Pattern Capturing
eine konkrete Instanz der Klasse Diplomarbeit wire. Dabei ist es auch moglich, eine
Klassenhierarchie zu definieren. Eine Uberklasse fiir Diplomarbeit kénnte demnach
Studentische Arbeit sein, welche als Unterklasse ebenso Studienarbeit enthalten konnte.
Weshalb eine solche Hierarchie niitzlich ist, wird sich im ndchsten Punkt zeigen.

Property Als Propertys werden diejenigen Ressourcen bezeichnet, die in Tripeln als Pradika-
te verwendet werden und dienen zum Ausdriicken von Relationen zwischen Subjekten
und Objekten. Diese Relationen dhneln mathematischen Relationen insofern, dass sie
eine Menge als Definitionsbereich (Domain) und eine Menge als Wertebereich (Range)
besitzen. Die Mengen werden in RDFS dabei durch Klassen festgelegt, so dass bestimmt
werden kann, welche Beziehungen zwischen welchen Klassen moglich sind. Domain
schrankt dabei die Subjekte fiir Tripel ein, und Range dementsprechend die Objekte.
Um zu dem obigen Beispiel zuriickzukehren, konnte man nun die Property hatAutor
so definieren, dass sie als Domain Studentische Arbeit zugewiesen bekommt, und als
Range Student. Damit wiére es nun mdoglich, auch allen Unterklassen der studentischen
Arbeit, wie z.B. der Diplomarbeit oder Studienarbeit, einen studentischen Autor zuzu-
weisen. Propertys sind vergleichbar zu Klassen, da sie Mengen von Individuenpaaren
beschreiben, und verfiigen ebenfalls iiber das Konzept der Subpropertys bzw. Unter-
propertys. Die Beispielproperty hatAutor konnte dementsprechend eine Subproperty
von beschiiftigtePersonen sein, wovon eine weitere Subproperty beispielsweise hatBetreuer
sein konnte.

20

2.3 Semantic Web

2.3.2 OWL zur Ontologiemodellierung

Die Web Ontology Language OWL wurde vom W3C konzipiert, da die Ausdruckskraft von
RDE(S) sehr begrenzt ist und sich bei der Modellierung von Ontologien fiir das Semantic
Web einige mit RDF(S) nicht erfiillbare Anforderungen ergaben. Ein Anforderung war bei-
spielsweise, Domain und Range einer Property lokal begrenzen zu konnen, so dass eine
Range-Definition nur fiir eine eingeschriankte Menge von Klassen gilt. Eine weitere Anfor-
derung war es, moglich zu machen, die Disjunktheit von Klassen ausdriicken zu konnen,
was beispielsweise fiir die Klassen Minnlich und Weiblich Sinn macht. Als letztes Beispiel fiir
eine Anforderung, die in RDF(S) nicht erfiillt wurde, soll das Festlegen von Kardinalitdten
dienen. Mit RDF(S) ist es nicht moglich, fiir eine Property HatEltern festzulegen, dass diese
nur maximal zwei Werte annehmen kann.

Bei der Konzeption von OWL wurde versucht, einen Kompromiss zwischen Ausdrucks-
starke und der Skalierbarkeit von logischem Schlussfolgern (Reasoning) zu gewéahrleisten.
Deswegen wurde OWL in drei Teilsprachen unterteilt, die je nach den Anforderungen
des Nutzers unterschiedliche Ausdrucksstarken und damit verbundene Komplexitidt von
logischen Schlussfolgerungen besitzen [HKRS0S, S. 151-154].

e OWL Lite ist die Teilsprache mit geringstem Umfang, ist daher auch am wenigsten aus-
drucksstark, aber entscheidbar mit einer Zeitkomplexitdt von ExpTime im schlimmsten
Fall. Diese Teilsprache besitzt auch die beste Unterstiitzung durch Softwarewerkzeuge,
da sie am einfachsten zu Implementieren ist. Beispiele nicht verfiigbarer Sprachkon-
strukte sind das Fehlen von Klassendefinitionen durch Aufzihlung oder Aussagen
iiber die Disjunktheit von Klassen [AVHo4, S. 118-119].

e OWL DL enthilt OWL Lite, besitzt etwas mehr Ausdruckskraft und ist ebenfalls ent-
scheidbar mit einer Zeitkomplexitdt von NExpTime im Worst-Case. OWL DL enthilt die
Ausdruckskraft von RDEF(S) bis zu dem Grad, an dem die Sprache ansonsten unent-
scheidbar geworden wire. Sie ist die am hadufigsten verwendete Sprache zur Erstellung
von Ontologien und besitzt eine gute Unterstiitzung durch Softwarewerkzeuge.

e OWL Full enthdlt OWL Lite und OWL DL. Es enthilt RDF(S) als komplette Teilsprache
und besitzt damit die grofste Ausdruckskraft der drei Teilsprachen. Es enthilt alle
OWL-Sprachelemente und erlaubt, diese beliebig mit RDF(S)-Primitiven zu kombi-
nieren und sogar deren Bedeutung zu verdndern. Es ist ebenso keine Typentrennung
zwischen Individuen, Klassen und Rollen nétig, was die Definition von Klassen er-
moglicht und somit zur Meta-Modellierung verwendet werden kann. Dies fiihrt dazu,
dass die Sprache unentscheidbar wird und daher nur von sehr wenigen Softwarewerk-
zeugen teilweise unterstiitzt wird, da keine logische Inferenz mehr méglich ist sobald
unentscheidbare Konstrukte auftauchen.

Nun soll ein kleiner Uberblick lediglich iiber diejenigen Sprachelemente folgen, die tatséch-
lich auch zur Modellierung der Ontologien in Kapitel 4 verwendet wurden. Dazu soll die
Klassenhierarchie aus Abbildung 2.3 zunéchst einen Uberblick gewihren, wie OWL und
RDE(S) in Verbindung miteinander stehen. In der Abbildung stehen Rechtecke fiir Elemente
aus OWL/RDE(S), wobei die genaue Herkunft anhand des Namensraums im Bezeichner

21

2 Grundlagen

erkennbar ist. Die Pfeile stellen eine Generalisierungsbeziehung dar, wie sie beispielsweise
aus der objektorientierten Programmierung bekannt ist. Zu Modellierung der Ontologien
dieser Diplomarbeit wurde OWL DL verwendet.

rdfs:Resource

/\

rdfs:Class rdf:Property

owl:Class | owl:ObjectProperty | | owl:DatatypeProperty |

Abbildung 2.3: Klassenhierarchie der Beziehung zwischen OWL/RDEF(S) (nach [AVHoy4, S.
119]). Legende: Rechtecke=Elemente aus OWL/RDF(S), Pfeile=Generalisierung

Wie aus der Abbildung ersichtlich ist, wurde die RDF-Property in Object- und Data-Propertys
verfeinert. Object Propertys verbinden dabei Objekte mit Objekten, und Data Propertys ver-
binden Objekte mit typisierten Datenwerten. In dem RDF-Beispiel aus Abbildung 2.2 wire
nun die Relation HatAutor eine Object Property, und Titel und Name wéren Data Propertys.
Es ist dartiber hinaus moglich, die Eigenschaften einer Object Property anhand von sog.
,Special Properties” festzulegen. Diese dienen zur Definition von Charakteristiken wie z.B.
Transitivitit oder Symmetrie. OWL bietet zur Typisierung von Data Propertys keine eigenen
Datentypen, dafiir aber standardmaéfsiig eine Untermenge der XML Schema-Datentypen an.
Eine weitere hinzugekommene Moglichkeit ist nun die Definition von mehreren Ranges oder
Domains, was zu einer Bildung der Vereinigungsmenge der ausgewihlten Klassen fiihrt. In
OWL gibt es zudem Individuen, welche Instanzen von Klassen klar als solche kennzeichnen.
Wurde eine Object Property definiert, die zwei Klassen verbindet, bedeutet dies, dass Indivi-
duen der Klasse diese Beziehung aufweisen kénnen, aber nicht miissen. Daher wird eine
konkrete Beziehung zwischen Individuen in Form von Object Property Assertions ausgedriickt,
welche aussagen, dass die Relation konkret zwischen den beiden Individuen gilt.

Logische Inferenzen in OWL

OWL DL lasst sich unter anderem auf eine Untermenge der Pradikatenlogik erster Stufe
zuriickfithren und ermoglicht dadurch die Anwendung vieler gut erprobter Algorithmen
aus diesem Bereich [HKRSo08, S. 163]. Dadurch entfaltet sich ein grofler Mehrnutzen aus der
formalen Beschreibung und Klassifizierung einer Doméne anhand einer Ontologie in OWL.
Aus der Ontologie lassen sich logische Schlussfolgerungen (Inferenzen) ziehen, die auf der
einfachsten Ebene beispielsweise auf der Transitivitdt oder Symmetrie von Object Propertys
basieren kénnen.

22

2.3 Semantic Web

Zu Veranschaulichung dieses Umstandes soll eine in OWL modellierte tiberarbeitete Ver-
sion des obigen Beispiels aus Abbildung 2.2 verwendet werden, welche in Abbildung 2.4
dargestellt ist. Eine detaillierte Beschreibung aller Einzelheiten der Visualisierung einer OWL-
Ontologie befindet sich in Abschnitt 2.3.5 und wird an dieser Stelle nicht fiir das Verstandnis
des Beispiels benotigt. Die beiden Beispielontologien unterscheiden sich insofern, dass nun
statt Literalen zur Modellierung der Diplomarbeit und des Autors Individuen verwendet
wurden. Zudem gibt es die bereits oben beschriebene Property-Hierarchie von beschéftigte-
Personen mit den Unterpropertys hatAutor sowie hatBetreuer und die Klassenhierarchie zur
Beschreibung der Diplomarbeit als studentische Arbeit. Die Object Property hatAutor ist nun
asymmetrisch und funktional. Funktionale Object Propertys konnen nur genau auf ein Objekt
zeigen, um den funktionalen Zusammenhang zwischen zwei Individuen zu verdeutlichen.

Wissen-
Legende sch. Christoph
has Subclass Mitarbei- Fehling
ter —
——> has|Individual Person an '
Universi- !
———> beschiftigtePerson tat H
Diplomar Semantic Wiki
hatAutor beit for Design ...
——> hatBetreuer Studen-
tische
Arbeit Norbert First
Norbert Fuerst

Abbildung 2.4: Beispiel einer einfachen OWL-Ontologie

Um implizites Wissen, welches in dieser Ontologie enthalten ist, explizit zu machen, gibt es
semantische Inferenzprogramme (Reasoner), die logische Schliisse aus explizit abgesicherten
Aussagen (asserted statements) und Axiomen ziehen konnen. Ein solcher Reasoner konnte
nun, auf die obige Ontologie angewandt, u.a. schlussfolgern, dass die hatAutor-Relation von
Diplomarbeit zu den beiden Autoren eigentlich die gleiche Person meint. Dies ldsst sich aus
der Tatsache folgern, dass hatAutor eine funktionale Property ist, und dass es daher nur einen
Autor geben kann. Aus der Asymmetrie dieser Property lédsst sich aufserdem folgern, dass
es nie ein Tripel der Art Student - hatAutor - Diplomarbeit geben kann. Wahrend diese
Erkenntnisse innerhalb der kleinen Beispielontologie vielleicht trivial erscheinen, konnen
durch Inferenzprogramme in Ontologien mit vielen tausend Begriffen durchaus interessante
neue Erkenntnisse gewonnen werden.

23

2 Grundlagen

Listing 2.1 Eine einfache SPARQL-Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT 7subj

WHERE

{

?subj rdf:type <http://iaas.de/Diplomarbeit> .

}

2.3.3 Abfragen mit SPARQL

SPARQL (SPARQL Protocol And RDF Query Language) ist eine vom W3C standardisierte
Abfragesprache fiir Daten, die im RDF-Format vorliegen [SP]. Sie ermoglicht das Abfragen
von Daten mit einem Resultat als RDF-Graph oder als Ergebnismenge sowie die Manipu-
lation von RDF-Daten. Es spielt dabei auch keine Rolle, ob die Daten tatsdchlich in RDF
vorliegen oder zunéchst von einer Middleware in RDF transformiert wurden. SPARQL stellt
mittlerweile den De-Facto Standard fiir Abfragen im Semantic Web dar und basiert im Kern
auf RDF-Anfragen in Form von Graphmustern [HKRS08, S. 202].

Im Folgenden soll die Query aus Abbildung 2.1 als Beispiel fiir die Erklarung der grund-
legenden Aspekte von SPARQL dienen. Mithilfe des Schliisselwortes PREFIX werden Na-
mensrdume definiert, um nicht immer den vollen Namensraum ausschreiben zu miissen.
SELECT dient zur Auswahl der Ergebnisspalten, bzw. gibt an welche Teile des unter WHERE
angegebenen Graphmusters schliefilich als Ergebnis gezeigt werden sollen. Die in Abbildung
2.1 dargestellte Query wiirde demzufolge alle Individuen des Typs Diplomarbeit als Ergebnis
anzeigen, wenn sie auf die OWL-Ontologie auf Abbildung 2.4 angewandt wiirde.

2.3.4 Triplestores

Triplestores oder RDF-Datenbanken sind spezielle Datenbanken zur Ablage und Abfrage von
RDF-Daten im Tripel-Format [Becoz]. Im Vergleich zu klassischen relationalen Datenbanken,
in welchen zusammenhdangende Daten durch Mengen von Tupeln beschrieben wurden,
handelt es sich bei RDF-Graphen um Mengen von Tripeln. Dabei ergeben sich insbesondere
bei grofsen Datenmengen Anforderungen, die mit klassischen RDBMS direkt nicht erfiillt
werden konnen und daher spezielle Optimierungen fiir hdufig vorkommende Operationen
auf RDF-Datenbestianden notig machen. Es gibt zur Umsetzung von Triplestores verschiedene
Ansitze, die jeweils Vor- und Nachteile mit sich bringen [LHos]. Triplestores, die auf Basis
von RDBMS entwickelt wurden, bieten gute Inferenzmoglichkeiten, skalieren ab einer
gewissen Grofie des Datenbestandes aber nicht mehr gut. Native Triplestores skalieren besser
bei grofien Datenbestdanden, allerdings bieten sie zum Zeitpunkt des Erscheinens von [LHos]
weniger gute Inferenzmoglichkeiten. Zuletzt gibt es die Moglichkeit, die Daten In-Memory
zu halten, was bis auf der grofien Hauptspeicherbedarf den anderen Moglichkeiten tiberlegen
ist. Da es im Rahmen dieser Diplomarbeit nur sehr kleine Datenbestdnde gibt und somit

24

2.3 Semantic Web

die Begrenzung des Hauptspeichers kein Problem darstellt, wurde die In-Memory-Variante
ausgewadhlt.

Triplestores konnen in Zusammenarbeit mit einem Reasoner die Machtigkeit von SPARQL-
Abfragen insofern erhohen, dass bei der Berechnung der Ergebnismenge logisch hergeleitetes
Wissen miteinbezogen wird. So ist es moglich, dass nicht explizit angegebenes Wissen mit in
der Ergebnismenge enthalten ist, wie z.B. Beziehungen iiber transitive Propertys.

2.3.5 Ontologie-Modellierung mit Protégé

Protégé ist ein weit verbreiteter Open-Source Ontologie Editor, der von der Stanford Uni-
versity School of Medicine in Java entwickelt wurde [pro]. Er verftigt tiber zwei eingebaute
Reasoner (FaCT++ und HermiT), mit welchen die modellierte Ontologie direkt auf logische
Widerspriiche tiberpriift werden kann und implizit enthaltene Aussagen materialisiert wer-
den konnen. Ein SPARQL-Endpoint erlaubt direkte SPARQL-Anfragen auf eine Ontologie,
die in Protégé geladen wurde. Ebenso sind zwei Visualisierungsplugins enthalten, welche die
graphische Darstellung von OWL-Ontologien ermdglichen. Fiir die Darstellung von OWL-
Ontologien in dieser Arbeit wurde jedoch die manuelle Visualisierung durch selbst erstellte
Grafiken gewdhlt, um {ibersichtlichere Resultate zu erhalten, die nur benétigte Elemente
abbilden. Der Visualisierungsstil von Klassen, Individuen und Propertys ist grob an das
Protégé-Plugin OntoGraf* angelehnt. Zum Besseren Verstdndnis der Ontologie-Abbildungen
folgt nun anhand von Abbildung 2.5 eine Erkldrung, wie einzelne Elemente dargestellt
werden.

Legende
Klasse Individuum
N has Subclass
——> has Individual |
]
]
> Object Property i
]
v
Andere .
Individuum2

Klasse

Abbildung 2.5: Die graphische Darstellung einer OWL-Ontologie

o Klassen werden als Ellipsen mit dem Klassennamen in der Mitte der Ellipse dargestellt.
In Abbildung 2.5 sind Thing, Klasse, und Andere Klasse Klassen.

4http://protegewiki.stanford.edu/wiki/OntoGraf

25

http://protegewiki.stanford.edu/wiki/OntoGraf

2 Grundlagen

e Individuen werden in Rechtecken mit dem Individuennamen in der Mitte des Recht-

ecks dargestellt. In Abbildung 2.5 sind Individuum und Individuumz2 Individuen.

Object Propertys werden als farbige Pfeile dargestellt. Dabei entsprechen durchge-
zogene Pfeile zwischen Klassen Domain-Range Definitionen, und gestrichelte Pfei-
le zwischen Individuen Object Property Assertions. In der Abbildung gibt es eine
Domain-Range Definition von Klasse nach AndereKlasse, was bedeutet, dass diese
Object Property als Domain Klasse verwendet und als Range Andere Klasse. Von dem
Individuum Individuum gibt es eine Object Property Assertion zu Individuumz, d.h.
dass Individuum in der definierten Beziehung Object Property (siehe die Legende in
Abbildung 2.5) zu Individuumz2 steht.

Subklassen- und Klasse-Instanz-Beziehungen werden ebenfalls als farbige durchge-
zogene Pfeile dargestellt. Die Beziehung has Subclass (deutsch: hat Unterklasse) ist in dem
Beispiel dabei als pinker Pfeil dargestellt, und has Individual (deutsch: hat Individuum)
als griinblauer Pfeil. Diese Farben werden in der kompletten Diplomarbeit konsistent
verwendet, um ein schnelles Erfassen der Graphen zu ermdoglichen.

2.3.6 Semantic Mediawiki

Semantic Mediawiki [KV] ist eine Erweiterung fiir Mediawiki [mwo], die die semantische
Annotation von Seiten und deren Abfrage ermdoglicht. Bevor auf die Besonderheiten von
Semantic Mediawiki eingegangen wird, soll zunéchst erklart werden, aus welchen Grundbe-
standteilen Mediawiki besteht. Mediawiki ist das Open-Source Softwarepaket, mit welchem
wikipedia.org betrieben wird, und basiert auf PHP und Javascript. Die grundsétzliche Bestand-
teile von Mediawiki, die zum Verstandnis der Arbeit nétig sind, werden im Folgenden kurz
erklart:

26

e Seiten: Die Grundgranularitdt von Mediawiki stellen Seiten dar, auf welchen grundsatz-

lich jeder Benutzer Inhalte hinzufiigen kann. Um eine gewisse Qualitdtskontrolle zu
ermdglichen, wird fiir jede Seite eine Versionsverwaltung des Inhalts gefiihrt, so dass
eine Seite auf frithere Stande zuriickgesetzt werden kann. Seiteninhalte werden in der
Auszeichnungssprache Wikitext (Wiki markup) verfasst, welches eine vereinfachte Form
von HTML darstellt und eine grundlegende Textformatierung ohne HTML-Kenntnisse
ermoglicht. Mithilfe von [[Hyperlink|Interner Link]] wiirde man z.B. einen Link
auf die Wikiseite ,Hyperlink” verfassen, der als Linktext ,Interner Link” verwendet. ==
Abschnitt == wiirde beispielsweise einen neuen Absatz mit der grofs geschriebenen
Uberschrift ,, Abschnitt” erzeugen.

Namensraume (Namespaces): Namensrdume dienen zur Abgrenzung von Seiten mit
unterschiedlichen Verwendungszwecken. Dabei sollten Namensrdaume nicht mit Ka-
tegorien verwechselt werden, die zur inhaltlichen Abgrenzung von Artikeln dienen.
Namensrdume erkennt man daran, dass sie als Préfix vor dem eigentlichen Artikelna-
men stehen, z.B. , Hilfe:Ubersicht”.

2.3 Semantic Web

o Kategorien: Die Kategorien in Mediawiki dienen dazu, Inhalte zu kategorisieren, struk-
turieren und somit leichter auffindbar und verstandlich zu machen. Dabei ermoglicht
es das Verfassen von Kategoriehierarchien Taxonomien abzubilden. Die Seiten, welche
Kategorien definieren, befinden sich in dem eigenen Namensraum Kategorie. Zur Ein-
ordnung eines Artikels in eine Kategorie gentigt es, [[Kategorie:Beispiel]] an eine
beliebige Stelle des Artikels zu schreiben.

e Vorlagen (Templates): Vorlagen erlauben die Einbindung von vordefinierten Inhalts-
bausteinen nach dem Transklusionsprinzip, d.h. durch die Angabe einer Referenz
auf eine Vorlage wird der Inhalt der Vorlage an der entsprechenden Stelle eingefiigt.
Sie werden im eigenen Namensraum Vorlage definiert und bieten die Moglichkeit,
benannte Parameter zu definieren. Auf diese Weise wird es moglich, standardisierte
Vorlagen fiir gewisse Inhalte anzubieten, was ein einheitliches Layout von Artikeln
ermoglicht. Ein Template kann durch {{Templatename |Parameteri=a|Parameter2=b}}
auf einer Seite verwendet werden, wobei a und b als Eingabe fiir die vordefinierten
Parameter verwendet wiirden.

e Spezialseiten: Der Namensraum Spezial wird hauptsédchlich zu administrativen Zwe-
cken genutzt und bietet die Moglichkeit, spezielle Funktionalitdten fiir Erweiterungen
auf gesonderten Seiten anzubieten. Viele dieser Seiten sind nur fiir Benutzer mit
Administrationsrechten verfiigbar.

Im Folgenden sollen nun die wichtigsten Aspekte von Semantic Mediawiki ndher erldutert
werden. Dabei wird zunichst auf die Annotation von Artikeln mithilfe von semantischen
Attributen eingegangen, anschlieffend auf die Abfrage von annotierten Inhalten und zuletzt
auf in Seiten eingebettete Abfragen in Form von Konzepten.

Semantische Attribute

Semantische Attribute (Semantic Propertys) dienen zur Annotation von Artikeln mit semanti-
schen Informationen. Als grundlegende Objekte muss man sich hier die Seiten vorstellen,
welche mit OWL-Terminologie bezeichnet Individuen der Klasse Seite wéren. Dabei gibt es
sowohl die Moglichkeit, Relationen zwischen Seiten in der Entsprechung von OWL-Object
Propertys auszudriicken, als auch Datenattribute pro Seite wie bei Data Propertys zuzu-
ordnen. Hierbei wird bei Semantic Mediawiki allerdings immer von , Semantic Propertys”
gesprochen, die jedoch typisierbar sind. Ein einfacher semantischer Link zu einer ande-
ren Seite wird erstellt, indem die beispielhafte semantische Annotation [[semantischer
Link::Andere Seite]] auf einer Seite eingefiigt wird. Damit wird das Tripel Aktuelle
Seite - semantischer Link - Andere Seite geschaffen, sowie eine neue Seite im Namens-
raum Attribut (Property) mit dem Titel ,semantischer Link”. Die Property semantischer Link
hat dabei implizit den Typ Seite zugewiesen bekommen und wird daher als Object Property
betrachtet. Sollte stattdessen beabsichtigt sein, dass es sich um eine Data Property handelt,
versieht man die Seite der Property mit der Annotation [[Hat Typ::String]]. Dies hat zur

27

2 Grundlagen

Folge, dass Andere Seite nun als semantisches Attribut vom Typ String betrachtet wird. Eine
vollstindige Liste der verfiigbaren Datentypen ist unter > verfiigbar.

Abfragen auf Attribute

Wurden in einem Wiki semantische Informationen annotiert, konnen diese tiber Querys
abgefragt werden. Dafiir gibt es eine spezielle Abfragesprache®, die sich an der Notation
des Wikitexts orientiert und so das Verfassen von Abfragen auch fiir technische Laien
ermoglichen soll. In den Ergebnismengen dieser Querys entspricht grundsétzlich eine Reihe
immer einer Seite im Wiki. Die Verwendung einer Abfrage kann entweder iiber die Seite
~Spezial:Semantische_Suche” geschehen, welche auch eine Unterstiitzung bei dem Verfassen
von Querys bietet, oder iiber auf Seiten eingebettete Abfragen.

Die Abfrage [[Category:Diplomarbeit]] [[hatAutor::+]] |?7hatAutor=Autor |format=table
wiirde beispielsweise als Ergebnismenge alle Seiten der Kategorie Diplomarbeit liefern, fiir die

ein beliebiger Autor annotiert wurde. Die Ergebnismenge wiirde als Tabelle dargestellt, in
welcher die erste Spalte den Namen der Diplomarbeiten enthalten wiirde, und die zweite zu
Autor umbenannte Spalte die Werte des semantischen Attributs hatAutor. Auf diese Weise las-

sen sich beliebig Werte von Propertys, Kategorien und Namensrdumen abfragen, allerdings

ist dabei immer das Subjekt der Tripelergebnismenge als Variable vorgegeben. Die Sprache
unterstiitzt zudem Joins, Subquerys und Sortierungsoperationen auf der Ergebnismenge.

Konzepte

Die sog. Konzepte? (Concepts) bezeichnen Seiten im dem Namensraum Konzept und bieten
die Moglichkeit, Querys zu speichern. Ein Konzept entspricht einer Query im Semantic
Mediawiki-Format, und kann als eine Art dynamische Kategorie betrachtet werden. Auf
einer Konzeptseite kann jeweils nur eine Abfrage gespeichert sein, im Gegensatz zu auf nor-
malen Seiten eingebetteten Abfragen, von welchen beliebig viele auf einer Seite vorkommen
koénnen.

2.3.7 Erweiterungen von Semantic Mediawiki

Durch die modulare Architektur von Semantic Mediawiki gibt es eine grofie Entwickler-
gemeinde, die aktiv an Erweiterungen arbeitet. Die wichtigsten fiir diese Diplomarbeiten
verwendeten Erweiterungen sollen im Anschluss kurz vorgestellt werden.

Shttp://semantic-mediawiki.org/wiki/Help:Properties_and_types
®http://semantic-mediawiki.org/wiki/Help:Selecting_pages
7http://semantic-mediawiki.org/wiki/Help:Concepts

28

http://semantic-mediawiki.org/wiki/Help:Properties_and_types
http://semantic-mediawiki.org/wiki/Help:Selecting_pages
http://semantic-mediawiki.org/wiki/Help:Concepts

2.3 Semantic Web

DataWiki

Das Produkt DataWiki® der Firma DIQAY, das urspriinglich unter dem Namen SMW+ ent-
wickelt wurde, ist ein ,,semantisches Unternehmenswiki”. Es bereichert Semantic Mediawiki
um eine Sammlung von Erweiterungen, die viele Anderungen und Verbesserungen an der
Benutzeroberflache und der Benutzerfreundlichkeit mitbringen. Der Kern von DataWiki
stellt die Halo Extension™ dar, welche unter anderem folgende Features liefert:

e Anbindung eines Triplestores: Ebenfalls von DIQA gibt es das Produkt Triplestore
Basic'*, welches eine Anbindung von Semantic Mediawiki an den Jena In-Memory-
Triplestore ermoglicht. Jena ist eines der fithrenden Frameworks zur Entwicklung von
Semantic Web Anwendungen und ermoglicht die Verwendung von unterschiedlichen
Reasonern [WSK"03]. Zudem bietet Triplestore Basic einen SPARQL-Web Endpoint
an, was dadurch die Moglichkeit bietet, SPARQL-Querys auf dem Wiki-Datenbestand
auszufiihren und dabei die Unterstiitzung eines Reasoners zu verwenden.

e Erleichterte Annotation: Mithilfe der Semantic Toolbar wird die Annotation von Artikeln
beispielsweise durch Autovervollstandigung von Namen vereinfacht.

o WYSIWYG-Editor: Mithilfe des mitgelieferten WYSIWYG-Editors ist es moglich, Artikel
ohne Kenntnisse von Wiki markup zu verfassen und dabei semantische Annotationen
und Kategoriezuweisungen ebenfalls ohne Kenntnisse der Syntax einzufiigen.

¢ Ontologiebrowser: Mithilfe dieser Spezialseite ist es moglich, die dem Wiki zugrunde
liegende Ontologie zu visualisieren und effizient neue Propertys oder Kategorien
anzulegen.

Neben der Erweiterung Halo sei ebenfalls die Deployment Framework-Erweiterung als Teil
von DataWiki genannt. Sie ermoglicht die komfortable Administration des Wikis tiber ein
Webinterface sowie das Verwalten von Erweiterungen auf Basis eines Repositorys.

Semantic Forms

Die Erweiterung Semantic Forms' erlaubt das Erstellen von auf Templates basierenden,
bereits semantisch annotierten Seiten mithilfe von benutzerfreundlichen Formularen. Sie
wurde hauptsédchlich von Yaron Koren und Stephan Gambke entwickelt.

Dabei werden Assistenten zum Erzeugen von semantischen Propertys, Templates und For-
mularen geliefert, so dass das Entwerfen von Formularen sehr benutzerfreundlich geschehen
kann. Bei dem Erstellen von Templates ist bereits die Angabe eines bestimmten Feldes mog-
lich, dass verwendet werden soll, um einer semantischen Property einen Wert zuzuweisen.

8http://diqa-pm.com/de/DataWiki

%http://diqa-pm.com
°http://semanticweb.org/wiki/Halo_Extension
http://diqa-pm.com/de/Triplestore_basic
http://www.mediawiki.org/wiki/Extension:Semantic_Forms

29

http://diqa-pm.com/de/DataWiki
http://diqa-pm.com
http://semanticweb.org/wiki/Halo_Extension
http://diqa-pm.com/de/Triplestore_basic
http://www.mediawiki.org/wiki/Extension:Semantic_Forms

2 Grundlagen

Beim Erzeugen des Formulars werden nach Angabe der Templates, welche verwendet wer-
den sollen, automatisch fiir alle erkannten Felder passende Eingabetypen vorgeschlagen und
die Moglichkeit geboten, ein Label fiir jedes Feld zu bestimmen. Die benotigten Parameter
zur Feinkonfiguration eines Eingabetyps konnen schlieflich in einem ausklappbaren Fenster
eingegeben werden. Semantic Forms bietet zudem die Moglichkeit, die erstellten Formulare
liickenlos in ein Wiki zu integrieren. Dabei lassen sich zum einen ganze Namensraume ei-
nem gewissen Formular zuordnen, zum anderen auch einzelne Seiten durch die Annotation
mit der semantischen Property Page has default form. Das zugeordnete Formular wird
anschliefSend geoffnet, sobald der Benutzer den Editieren-Button verwendet.

Besonders erwahnenswert ist auch die offene modulare Architektur von Semantic Forms,
welche die Entwicklung von zusétzlichen Eingabetypen sehr komfortabel erlaubt. Dies hat
dazu gefiihrt, dass es bereits ganze Sammlungen von zusitzlichen Eingabetypen gibt, wie
z.B. in Form der Erweiterung Semantic Forms Inputs®3.

Category Tree

Die Erweiterung Category Tree'* von Daniel Kinzler erlaubt es, die Struktur der Kategorien
innerhalb des Wikis als Baum darzustellen.

Dabei muss zur Anzeige eines solchen Baumes lediglich ein Ausdruck der Art
<categorytree>Wurzelkategorie</categorytree> auf einer Wikiseite eingefiigt werden.
AnschliefSend wird je nach ausgewidhltem Modus nur die Unterkategorien der Wurzelkate-
gorie, oder die Unterkategorien sowie deren Seiten angezeigt. Eine Unterkategorie entsteht,
wenn die Seite, welche die Kategorie definiert, selbst mit einem Kategorie-Tag versehen wird,
und somit in eine Uberkategorie eingeordnet wird.

GraphViz

Die Erweiterung GraphViz'> von Daniel Kinzler dient dazu, Graphen als eingebettete Grafiken
im Wiki darzustellen. Dafiir stehen die beiden Grapherzeugungsprogramme GraphViz
[Per] und Mscgen® zur Verfiigung. Mscgen dient zur Erzeugung von Message Sequence
Charts (Nachrichten-Reihenfolge-Diagramme) und wurde im Rahmen der Diplomarbeit nicht
verwendet.

Das Open-Source Programmpaket GraphViz ist in der Lage, aus Graphbeschreibungen im
DOT-Format eine Vielzahl von unterschiedlichen Graphtypen zu erzeugen. DOT ist eine
einfache Graphbeschreibungssprache, mit der in Klartext fiir Menschen und Maschinen
lesbare Beschreibungen von Graphen verfasst werden konnen. Solche Graphbeschreibungen

Bhttp://www.mediawiki.org/wiki/Extension:Semantic_Forms_Inputs
Mhttp://www.mediawiki.org/wiki/Extension:CategoryTree
Shttp://www.mediawiki.org/wiki/GraphViz
Ohttp://www.mcternan.me.uk/mscgen/

30

http://www.mediawiki.org/wiki/Extension:Semantic_Forms_Inputs
http://www.mediawiki.org/wiki/Extension:CategoryTree
http://www.mediawiki.org/wiki/GraphViz
http://www.mcternan.me.uk/mscgen/

2.3 Semantic Web

konnen mit der Mediawiki GraphViz-Erweiterung direkt auf Wikiseiten eingefiigt werden.
Im Rahmen der Erweiterung wird die Beschreibung mithilfe der auf dem Server vorhandenen
GraphViz-Installation in ein Bild umgewandelt, welches anstatt des Textes auf der Seite
erscheint. Die Moglichkeiten, die GraphViz dabei zur Gestaltung der Graphen bietet, sind
sehr vielseitig. Neben der Bestimmung von Knotenfarben und -formen kénnen Kanten
unterschiedlich dargestellt und beschriftet werden, und zudem kénnen in Knoten auch Links
eingebettet werden.

Semantic Drilldown

Die Erweiterung Semantic Drilldown'7 bietet eine Spezialseite, auf der anhand von Kategorien
und Filtern Drilldown-Operationen auf den Daten eines semantischen Wikis ausgefiihrt
werden konnen. Dabei liegt der Fokus auf Filter, welche anhand von semantischen Propertys
definiert werden. Die Erweiterung wird von Yaron Koren und David Loomer entwickelt.

Zu Beginn einer Drilldown-Operation auf der dafiir bereit gestellten Spezialseite stehen alle
Waurzelkategorien zur Verfiigung, d.h. alle Kategorien, die selbst keine Unterkategorie einer
anderen Kategorie sind. Wurde nun eine Wurzelkategorie ausgewdihlt, stehen alle Unterka-
tegorien und fiir diese Kategorie definierten Filter als Drilldown-Merkmal zur Verfiigung.
Solange kein Drilldown-Merkmal ausgewaihlt ist, werden alle Seiten der Wurzelkatego-
rie alphabetisch sortiert als Ergebnismenge angezeigt. Jede Auswahl eines zusatzlichen
Drilldown-Merkmals schrankt die angezeigte Seitenmenge weiter ein. Wird beispielsweise
eine Unterkategorie ausgewihlt, werden anschlieffend nur noch Seiten der Unterkategorie
angezeigt. Die bereits erwdhnten Filter werden als Seiten des Namensraums Filter definiert
und ermoglichen es, unterschiedliche Filterkriterien anzubieten. Eine Moglichkeit besteht
beispielsweise darin, einen Filter mit einer semantischen Property zu verkniipfen. Zur Aus-
wahl als Drilldown-Merkmal stehen nun alle Werte zur Verfiigung, die das semantische
Attribut im Wiki zugewiesen bekommen hat. Wird ein Wert ausgewahlt, erscheinen nur
noch Seiten, auf welchen die Property mit genau demselben Wert annotiert wurde. Ein
andere Moglichkeit, einen Filter zu definieren, ist die feste Vorgabe von Werten, die zur
Auswahl angezeigt werden sollen. Ein weiteres Feature von Semantic Drilldown besteht
darin, bestimmte Filter erst anzuzeigen, wenn fiir einen anderen vorher definierten Filter
bereits ein Wert ausgewdhlt wurde.

Nachdem nun die notigen Grundlagen fiir das Verstandnis sowohl der inhaltlichen als auch
der technischen Aspekte dieser Diplomarbeit geschaffen wurden, folgt im ndchsten Kapitel
die Aufnahme der genauen Anforderungen an ein Pattern Repository. Dies ermoglicht eine
Implementierung, die genau den festgehaltenen Zielen entspricht und anschlieflend auch
eine exakte Evaluation, inwiefern die Ziele erreicht wurden.

7http://www.mediawiki.org/wiki/Extension:Semantic_Drilldown

31

http://www.mediawiki.org/wiki/Extension:Semantic_Drilldown

3 Anforderungen

Im Folgenden Kapitel sollen zunéchst in Abschnitt 3.1 die funktionalen, und in Abschnitt
3.2 die nichtfunktionalen Anforderungen an das Pattern Repository festgehalten werden,
das im Rahmen dieser Diplomarbeit entwickelt werden soll. Nach der Beschreibung der
relevanten Use Cases in Abschnitt 3.3 sollen in Abschnitt 3.4 die Vorteile der Verwendung
semantischer Technologie fiir die Umsetzung vorgestellt werden. Zuletzt folgt in Abschnitt 3.5
eine Evaluation verschiedener Produkte, und eine Begriindung der Entscheidung zugunsten
von DataWiki.

3.1 Funktionale Anforderungen

In diesem Abschnitt sollen die funktionalen Anforderungen an das Projekt in Form von
User Stories festgehalten werden, wie es beispielsweise in [LLoy] beschrieben ist. Die funk-
tionalen Anforderungen wurden aus unterschiedlichen Quellen erarbeitet, die sich mit der
Beschreibung von Anforderungen an ein Pattern Repository beschaftigen. Weiss et al. be-
schreibt in [WBoy] Anforderungen an ein auf einem Wiki basierenden Pattern Repository,
welche sich aufgrund der groflen Ahnlichkeit der Zielsetzung sehr gut zur Verwendung
in dieser Arbeit eignen. Dabei werden Benutzer anhand ihrer Rollen in Pattern Autoren
und Endnutzer unterschieden. Im Kern sollen Autoren in der Lage sein, Patterns und deren
Beziehungen abzulegen. Dabei sollen es moglich sein, einzelne Pattern-Domé&nen anhand
ihrer Patternsprache als Sammlungen zu speichern. Sowohl Endnutzer als auch Autoren
konnen Tags an Patterns anbringen, um das spitere Auffinden zu erleichtern. Zuletzt soll
zur einfacheren Suche die Moglichkeit bestehen, Metadaten iiber Patterns zu speichern und
sie anschlieffend darauf basierend zu suchen.

Neben diesen Grundanforderungen wurden in [DKTos5] eine Reihe Benutzerinterface Pattern
Sammlungen verglichen und einige detailliertere Anforderungen an Pattern Repositorys
aus diesem Bereich gesammelt. Sehr ausfiihrlich wurde hier auf die Spezifikationen von
Greene et al. [GM] 03] und Gaffar et al. [GSJSo3] eingegangen. Die Anforderungen sind
in den drei Quellen nicht spezifisch auf diese Doméane zugeschnitten und kénnen daher
ebenfalls im Rahmen dieser Arbeit verwendet werden. Weitere Anforderungen konnten von
Buschmann et al. tibernommen werden, welcher die Anforderungen an ein Mustersystem
fir Softwarearchitektur beschreibt [BHSo7, S. 360-361]. Diese sind bereits sehr allgemein
gehalten, so dass sie sich sehr gut fiir die Verwendung in dieser Arbeit eignen.

Im Folgenden wurde die teils groben Anforderungen aus den unterschiedlichen Quellen
in Form von User Stories ausformuliert und nach den Benutzerrollen angeordnet, die sie

33

3 Anforderungen

betreffen. Die Benutzerrollen wurden aus [WBoy] iibernommen. Im Einzelnen ist angemerkt,
aus welcher Quelle welche Anforderung iibernommen wurde, wobei User Stories ohne
Quellen aus der Zielsetzung dieser Arbeit abgeleitet wurden.

Pattern Autor

34

o Als Pattern Autor mochte ich die Struktur der Patterns im System passend zu meiner
Patterndoméne konfigurieren kénnen, so dass sie anschliefiend im kompletten System
konsistent eingehalten wird. [DKTos, ,Standardizing a Common Pattern Form”, S. 36],
[Busg8, S. 361]

o Als Pattern Autor mochte ich neue Patterns mithilfe eines komfortablen Formulars
hinzufiigen konnen.

e Als Pattern Autor mochte ich vorhandene Patterns mit dem gleichen Formular editieren
konnen, mit dem ich sie angelegt habe.

o Als Pattern Autor mochte ich Patterns vernetzten konnen, indem ich die Beziehungen
angebe, welche die Patterns verbinden. [DKTos, , Relating Patterns”, S. 36], [Busg8, S.
361], [GS]So3]

e Als Pattern Autor mochte ich die semantische Annotation von Patterns auf WYSIWYG-

Weise vornehmen konnen, und dabei von der verwendeten Software unterstiitzt wer-
den.

e Als Pattern Autor mochte ich Patterns mit Zieleigenschaften aus einer Ontologie

annotieren konnen, um spater anhand dieser Zieleigenschaften filtern zu konnen.
Unter dem Stichwort ,,Manipulating Forces” in [DKTos, S. 36] wird die Anforderung
beschrieben, dass Auswahl von Patterns anhand der Angabe von Forces moglich sein
soll, welche sich teilweise mit Zieleigenschaften tiberschneiden.

o Als Pattern Autor mochte ich die Moglichkeit haben, Patterns mit den Anwendungsfal-

len zu vernetzen, aus welchen sie abstrahiert wurden. Dies ermdglicht die transparen-
tere Diskussion tiber Patterns, da die Quellen nicht verloren gehen, aus welchen sie
abstrahiert wurden. Die Vorteile von mehr Transparenz beziiglich der Patternquellen
werden z.B. in [FEL" 12] beschrieben.

o Als Pattern Autor mochte ich die Beziehungen zwischen Patterns visualisieren. [Scho3]

e Als Pattern Autor mdchte ich die Moglichkeit der Versionierung von Patterns haben,

um einen Uberblick {iber den Entstehungsprozess mit zu dokumentieren. [DKTos,
, Versioning Patterns”, S. 36]

o Als Pattern Autor mochte ich ein Pattern Repository, welches interoperabel mit anderen

Repositorys eingesetzt werden kann. [Bir1o, HL93, DKTos]

3.1 Funktionale Anforderungen

Endnutzer

o Als Endnutzer mochte ich ein Inhaltsverzeichnis der Patterns haben, aus dem ich
komfortabel durch den Patternfundus navigieren kann. [GM] 03, , Browsing”]

e Als Endnutzer mochte ich fortgeschrittene Suchmoglichkeiten wie z.B. eine Queryspra-
che zur Verfiigung haben, um Patterns zu finden, welche sehr spezifische Suchkriterien
erfiillen. Diese Anforderung resultiert aus den in [Bir1o] beschriebenen Schwierigkeiten
bei der Patternsuche. In [GASB11] ist im Rahmen von Richtlinien fiir die Entwicklung
eines Repositorys eine effiziente Suchfunktion als zentrale Anforderung angegeben.

o Als Endnutzer mochte ich eine oder mehrere Zieleigenschaften auswéhlen konnen, um
eine Liste zu erhalten, in der die Patterns anhand ihrer Korrelationswerte zu dieser
Zieleigenschaft sortiert sind. [GM] " 03, ,Pattern ranking”]

e Als Endnutzer mochte ich direkt die Art von Beziehungen sehen konnen, die ein
Pattern zu anderen Patterns hat. [Scho3]

e Als Endnutzer mochte ich von einem Ausgangspattern aus andere Patterns vorgeschla-
gen bekommen, die man gut mit dem Ausgangspattern kombinieren kann. Gleichzeitig
mochte ich eine Anzeige von Alternativen, die ich verwenden kann, falls ich das
Ausgangspattern nicht verwenden mochte. In [GM] 03] wird unter dem Stichwort
,Browsing” zusammengefasst beschrieben, dass es unterschiedliche Moglichkeiten
geben sollte, zwischen den Patterns zu navigieren.

o Als Endnutzer mochte ich die Moglichkeit eines einfachen Einstiegs in eine Patterndo-
méne haben, indem mir anhand von Pattern-User Stories Vorschldge gemacht werden,
wo ich mit dem Lesen beginnen soll. Dieses Vorgehen ist in [[GVHgs, S. 10] [FLR* 13,
S. 14-20] und [HWos3, S. xlviii-xlix] zu beobachten und kann daher als Anforderung an
ein Pattern Repository formuliert werden.

e Als Endnutzer mdochte ich einen Assistenten zur Verfiigung haben, der mir verschiedene
Moglichkeiten vorschldgt, die dazu dienen, mich effizient mit der Patterndoméne zu
beschéftigen. [Bir1o, S. 8f]

o Als Endnutzer mochte ich ein tieferes Verstandnis tiber die Patternsprache der entspre-
chenden Doméne gewinnen, wobei mir Visualisierungen helfen konnten. In [Scho3]
wird erldutert, dass unterschiedliche Visualisierungsmoglichkeiten der Patternsprache
eine wichtige Anforderung an ein Pattern Repository sind.

e Als Endnutzer mochte ich fiir jede Kategorie von Patterns innerhalb einer Doméne
eine Ubersichtsgrafik haben, anhand der ich durch die Inhalte der Kategorie navigieren
kann.

¢ Als Endnutzer mochte ich einen Anwendungsfall auswéhlen, an dem ich besonderes
Interesse habe, und mir zu diesem passende Patterns anzeigen lassen. [FEL*12]

35

3 Anforderungen

3.2 Nichtfunktionale Anforderungen

Die nichtfunktionalen Anforderungen an das Projekt sollen nach der Gliederung aus [Hoe]
festgehalten werden. Sie wurden teilweise aus allgemeinen Anforderungen an Repositorys
aus [HLg3] tibernommen, und teils fiir die Zielsetzung der Diplomarbeit entwickelt. Als
Grundlage zur , Entwicklung” der nichtfunktionalen Anforderungen wurde die in der Norm
ISO25010 beschriebenen nichtfunktionalen Softwarequalitidten verwendet [ISO10].

Im Bereich der Produktqualitit wird eine hohe Usability [ISO10] angestrebt, um auf Ak-
zeptanz in der Pattern Community zu stofSen. Dies soll vor allem durch eine komfortable
Bedienung der Software erreicht werden, wozu auch ein immer fliissig bleibendes Benut-
zerinterface der Software gehort. Zur Gewdhrleistung der Portabilitit [ISO10] sollte eine
Bindung an ein bestimmtes Betriebssystem moglichst vermieden werden, was auch bei der
Verbreitung des Produkts helfen kann. Die Plattformunabhingigkeit ist eine Anforderung, die
allgemein fiir Repositorys gilt [HL93].

Eine allgemeine Anforderung an den Entwicklungsprozess ist die Verwendung von Metho-
den der agilen Softwareentwicklung, um verwendbare Zwischenstinde der Software zu
Prasentationszwecken zur Verfiigung zu haben. Auf diese Weise ist jederzeit ein Uberblick
iiber den Status der Diplomarbeit moglich. Wahrend des Entwicklungsprozess soll bereits
eine gute Dokumentation sowohl in Form eines Handbuchs als auch innerhalb des Codes
entstehen, um so die Wartbarkeit und die Erweiterbarkeit [ISO10] der entwickelten Software
zu gewdhrleisten.

Eine spezielle Anforderung, die sich aus der Verwendung von den Patterns aus [FLR"13] als
Testdatensatz ergibt, ist die Moglichkeit der Zugriffsbeschrankung. Um rechtliche Probleme
zu vermeiden, soll es zudem eine Moglichkeit geben, Teile des Datenbestandes vor der
Offentlichkeit zu verbergen. Diese speziellen Anforderungen lassen sich unter dem Bereich
Sicherheit [ISO10] zusammenfassen.

3.3 Use Cases

Nachdem nun in den vorherigen Abschnitten die genauen Anforderungen an das zu entwi-
ckelnde System festgehalten wurden, folgt in diesem Abschnitt eine weitere Konkretisierung
anhand von Use Cases. In Abbildung 3.1 ist ein UML-Use Case Diagramm der zu ent-
wickelnden Software in UML-Notation abgebildet. Das System setzt sich aus drei grofsen
Bestandteilen zusammen, welche im Rahmen eines Arbeitsflusses nacheinander verwendet
werden und letztendlich das Pattern Repository hervorbringen. Die Teile des Systems sind
jeweils durch einen grofien Rahmen in der Abbildung dargestellt, der oben in der Mitte
mit der Bezeichnung des jeweiligen Teilsystems beschriftet ist. Dabei werden die moglichen
Benutzer des Systems in die Benutzerrollen technischer Administrator, Pattern Autor und
Endnutzer eingeteilt.

Zundchst passt der technische Administrator das Datenmodell des Repositorys an das
spezifische Patternformat an, welches verwendet werden soll, sowie die erlaubten Relationen

36

3.3 Use Cases

zwischen den Patterns. Dazu wird ein Ontologie-Editor verwendet, der auch dazu dient,

Technischer Administrator

Ontologie-Editor

Erstellen und Anpassen
von zusétzlichen
Ontologien

Administrative
Aufgaben

Annotation von
Metainformationen

Annotation von
semantischen Links

«extends»

Suche anhand von
annotierten
Patterneigenschaften

Suche anhand eines
existierenden Anwendungsfalls

Erstellen/
Editieren von
Patterns

«extends»
«extends»

«extends» . A
Unterstitzte Lektlre

des Patternfundus

Visualisierung von
Patternbeziehungen

Pattern Autor] Endnutzer

«extgnds»

Erweiterte
Navigation

Abbildung 3.1: Use Cases des Pattern Repository

37

3 Anforderungen

die in Abschnitt 3.1 erwdhnten Zieleigenschaften fiir die entsprechende Patterndoméne
anzupassen. Darauf folgt der Import dieser Ontologien in das eigentliche Pattern Repository
mithilfe eines Importers, der das modellierte Datenmodell und sonstige Informationen auf
das Datenmodell des Pattern Repositorys abbildet. Dieser Import ist in der Abbildung
anhand von gestrichelten Linien angedeutet.

Nach der Ubertragung des Datenmodells kann das Repository schliellich von Pattern
Autoren und Endnutzern verwendet werden. Nachdem der Pattern Autor erste Patterns
erstellt hat, kann er diese Annotieren und mithilfe von semantischen Links die Beziehungen
zwischen den Patterns ausdriicken. Diese erweiterten Funktionalititen wurden in dem
Diagramm aus Abbildung 3.1 anhand der UML-Beziehung extends modelliert, welche fiir
die Ableitung von spezifischeren Funktionalitdten basierend auf einer Basisfunktionalitét
verwendet wird. So stellt die Annotation von semantischen Links beispielsweise eine Spe-
zialisierung des Editierens eines Patterns dar. Neben den Beziehungen konnen weitere
Metainformationen, wie z.B. die oben erwdhnten Zieleigenschaften, annotiert werden. Die
Suche von Patterns wird sowohl von Pattern Autoren, als auch von Endnutzern verwendet.
Als Spezialisierungen der Suche koénnen annotierte Patterneigenschaften in den Suchkriterien
angegeben werden, aufierdem sind auch Suchen anhand von existierenden Anwendungs-
fallen moglich. Anhand dieser Suche konnen Patterns durch Anwendungsfille gefunden
werden, aus welchen sie abstrahiert wurden.

Fiir den Endnutzer ist insbesondere die Lektiire der vorhandenen Patterns wichtig, wofiir
unter der in der Grafik vorkommenden Erweiterten Navigation beispielsweise Vorschldge
zdhlen, die durch einen Assistenten gemacht werden. Die Visualisierung von Patternbezie-
hungen kann nicht nur dem Pattern Autor helfen, seine Patternsprache besser zu entwerfen,
sondern auch dem Endnutzer, um die Patternsprache besser zu verstehen. Detailliertere Be-
schreibungen der hier kurz angeschnittenen Zusammenhinge befinden sich in den Kapiteln
4 und 5.

3.4 Grunde fur Verwendung semantischer Technologie

Im vorherigen Abschnitt wurden die Use Cases konkretisiert, die fiir das im Rahmen dieser
Diplomarbeit zu entwickelnden Systems relevant sind. Nun soll eine Begriindung folgen,
weshalb es bei der Umsetzung des Systems von Vorteil wire, semantische Technologien
zu verwenden. Momentan verwenden viele Pattern-Autoren fiir die Veroffentlichung ih-
rer Patterns entweder nur ein Buch, oder begleitend eine Webseite (siehe [OOD], [HWo3],
[IGVHogs]). Hierbei bleibt im Fall eines Buches dem Leser nur das zeitraubende Blittern im
Buch, um von einem Pattern zu einem anderen zu springen, oder bei einer Webseite das
komfortablere Verwenden von einfachen Links. Die Verwendung von semantischen Techno-
logien ermoglicht es einem Pattern Autor, durch die Vernetzung der Patterns anhand von
semantischen Linktypen zusétzliche Informationen tiber die Beziehungen zwischen Patterns
anzugeben. Beispielsweise ermoglicht dies eine formale Beschreibung der Patternsprache
(siehe Abschnitt 2.2) aufgrund der Relationstypen. Durch diese zusitzlichen semantischen

38

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

Informationen, die man an ein Pattern anhdngen kann, sind nun erst die oben aufgezahlten
funktionalen Anforderungen an ein Pattern Repository erfiillbar.

Die semantischen Annotationen ermoglichen eine Fithrung des Endnutzers durch das
Pattern Repository, indem er z.B. auf einen Blick sieht, dass aufgrund eines gewissen
Linktyps auf ein anderes Pattern sich dieses Pattern gut mit diesem kombinieren lief3e.
Dazu ldsst sich dynamisch tiber verschiedene Visualisierungen die Patternsprache darstellen,
und eine interaktive Navigation ermoglichen. Auch der Einstieg in eine komplette neue
Patterndoméne kann durch einen semantisch annotierten Patternfundus um ein vielfaches
erleichtert werden. In gewissen Féllen hat der Endnutzer, wenn er ein Pattern Repository
verwendet, bereits eine konkretes Problem im Hinterkopf, dass er mithilfe der Patterns losen
mochte. Wurden die Patterns zuvor vom Pattern Autor diesbeziiglich annotiert, eroffnet
sich die Moglichkeit, den Benutzer ein gewisses Problem auswéhlen zu lassen, zu dem er
geeignete Patterns angezeigt bekommt.

Diese Beispiele fiir neue Anwendungsfille zeigen, dass sich mithilfe von semantischen
Annotationen ein grofier Mehrwert fiir ein Pattern Repository ergeben kann. Wahrend
der tatsdchlich erreichte Mehrwert direkt von der Qualitdt der Annotationen abhéngt,
ergeben sich stark erweiterte Abfragemoglichkeiten durch die Verwendung der Querysprache
SPARQL (siehe Abschnitt 2.3.3).

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

Nach der im vorherigen Abschnitt erlauterten Entscheidung, semantische Technologien fiir
die Umsetzung des Pattern Repository zu verwenden, war der nédchste Schritt die Auswahl
eines bereits existierenden Produkts, welches moglichst vollstandig den zuvor festgehal-
tenen Anforderungen entspricht. Aufgrund der speziellen Anforderungen an das Pattern
Repository war von Anfang an auch die Erweiterbarkeit bzw. Anpassbarkeit ein wichtiges
Merkmal des zu wahlenden Basisprodukts. Bei der konkreten Auswahl gab es nun auf der
einen Seite eine Reihe von semantischen Wikis, welche die Stirken von klassischen Wikis wie
die einfache Verwendbarkeit, flexible Zusammenarbeit von Benutzern und Verlinken von Ar-
tikeln mit den Fahigkeiten des semantischen Webs wie strukturierte Inhalte, Wissensmodelle
in Form von Ontologien und Reasoning vereinen [SBBKo8]. Auf der anderen Seite gibt es
eine Reihe von sehr ausgereiften Produkten aus dem Bereich des allgemeinen Content bzw.
Knowledge Managements, welche dhnliche Grundfunktionalitdten wie Wikis aufweisen und
ebenfalls immer mehr mit semantischen Funktionalititen ausgertistet werden.

Der erste Schritt stellte die Auswahl einer Menge von Kandidaten aus den vielen existie-
renden Produkten sowohl aus dem Semantic Wiki Umfeld, als auch aus dem Bereich der
allgemeinen Knowledge Management Produkten, dar. Im Semantic Wiki Umfeld gab es eine
Reihe von vielversprechenden Forschungsprojekten und Prototypen [SBBKo8, VKo6], die
nicht mehr weiterentwickelt werden:

39

3 Anforderungen

o IkeWiki [Scho6]: Entwicklung eingestellt zugunsten von KIWI, welches ebenfalls bereits
seit dem Jahr 2010 inaktiv ist. Hitte die semantische Annotation anhand einer benut-
zerfreundlichen graphischen Oberfldche direkt im Text ermoglicht. Volle Reasoning-
Unterstiitzung mit Ontologien im OWL-RDF und OWL DL-Format inklusive Import
von OWL-Ontologien.

e WikSar [AAos]: Entwicklung eingestellt. War ein direkter Konkurrent von Semantic
Mediawiki mit vielen dhnlichen Konzepten.

e SweetWiki [BGE"08]: Entwicklung eingestellt. Hatte den Fokus insbesondere auf
WYSIWYG gelegt.

e Kaukulo [Djaos]: Scheinbar eingestellt, keine Updates seit 2007. Basierend auf JSP-Wiki,
Annotation von belieben Teilen einer Seite statt Annotation, die sich auf die ganze Seite
beziehen. Import von Ontologien und Reasoning-Unterstiitzung.

Eine Ubersicht iiber den Status einzelner Projekte, welche auch zum Erstellen dieser Liste
benutzt wurde, bietet [Sem]. Da es auch tatsdchlich noch aktive Projekte gibt, die Semantic
Wikis entwickeln, wurden die inaktiven Projekte zu Beginn von der Auswahl ausgeschlos-
sen.

e Semantic Mediawiki [KV]: Open-Source Erweiterung zu dem bekannten Framework
Mediawiki, welches als Grundlage fiir wikipedia.org dient. Benutzt eine Ontologie als
Datenmodell, aber keine direkte Unterstiitzung fiir den Import von OWL Ontologien.
Die grofse Entwicklergemeinde hat bereits viele Erweiterung fiir die unterschiedlichsten
Anwendungsfélle mit zusitzlichen semantischen Daten entwickelt, und durch die
Moglichkeit, einen Triple Store anzuschliefSen, volle Reasoning-Fahigkeiten.

o zAgile Wikidsmart [zAg]: Proprietdre Erweiterung zu Atlassian Confluence mit Ontol-
gie als Datenmodell, Import von OWL-Ontologien und voller Reasoning Unterstiitzung.

o Tiki Wiki CMS Groupware [tik]: Wikibasiertes Open-Source Content Management Sys-
tem, welches seit Version 3.0 typisierte semantische Links zwischen Artikel unterstiitzt.
Keine Ontologie als zugrunde liegendes Datenmodell, dementsprechend auch keinen
OWL Import oder Reasoning-Unterstiitzung.

Aus dieser Liste wurden fiir den finalen Vergleich letztendlich Semantic Mediawiki und
Wikidsmart ausgewihlt, da bei Tiki Wiki der Fokus nicht auf den semantischen Features
liegt, und es auch von der Tiki Wiki Community keinerlei ,Mods” fiir die Ausnutzung von
semantischen Daten gibt'. Semantic Mediawiki dagegen bietet eine vielfdltige Auswahl von
Erweiterungen und lasst sich durch die grofie Flexibilitit des Mediawiki-Frameworks an alle
Anforderungen anpassen. Wikidsmart ist ein sehr ausgereiftes Produkt, welches aber den
grofien Nachteil hat, dass es ein kommerzielles Produkt ist.

Als Konkurrenten fiir die beiden Semantic Wikis wurden Microsoft Sharepoint und IBM
Mashup Center ausgewdhlt. Microsoft Sharepoint mag vorwiegend als Verwaltungssystem

Thttp://mods.tiki.org/

40

http://mods.tiki.org/

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

fiir Microsoft Office Dokumente bekannt sein, bietet dariiber hinaus aber auch umfangreiche
Knowledge Management Fahigkeiten inklusive semantischer Annotationen und wird von
den Semantic Mediawiki-Machern selbst als grofSer Konkurrent gesehen [Smw]. Das IBM
Mashup Center wurde als letzter Konkurrent gewdhlt, da auf Basis dessen Vorgéangers
QEDWiki im Rahmen der Dissertation von Olaf Zimmermann [Zimog] ein ,,Architectural
Decision Knowledge Wiki” entwickelt wurde, welches gewisse Anforderungen an das in
dieser Arbeit entwickelte Pattern Repository teilt.

3.5.1 Vergleichstabelle

In Tabelle 3.1 wurde eine Reihe von Kriterien zum Vergleich der Kandidaten ausgewdéhlt,
welche im Folgenden jeweils kurz begriindet werden sollen. Dabei wurden die funktionalen
Anforderungen aus Abschnitt 3.1 zusammengefasst und recherchiert, mit welchen existie-
renden Technologien einzelne Anforderungen umgesetzt werden konnten. Auf diese Weise
wurde eine tatsdchliche Vergleichbarkeit der Kandidaten erreicht.

e Kennzeichnung von Problemen (Tagging): Resultiert aus der Anforderung, Patterns
mit Metainformationen annotieren zu kénnen, um spéter eine erweiterte Suche nach
diesen Kriterien zu ermdglichen. Tagging dient hier auch als allgemeine Bezeichnung
fir die Anforderung an einen Mechanismus, Aussagen tiber Beziehungen zwischen
Entitdten treffen zu konnen.

¢ Ontologie-Support: Resultiert indirekt aus der Anforderung nach der Moglichkeit, Me-
tainformationen unterschiedlicher Art zu annotieren. Um dem Benutzer eine Auswahl
von Begriffen z.B. bei der Beschreibung von Beziehungstypen zu ermoglichen, muss
diese Information zuvor maschinenlesbar hinterlegt worden sein. Ontologien eignen
sich sehr gut fiir diesen Zweck, siehe dazu auch 2.3.

e Constraints auf Kardinalitdt: Dient zur Verfeinerung der Aussage iiber Beziehungen
zwischen Entitdten. Resultiert aus der Anforderung nach erweiterten Suchmdoglichkei-
ten.

e Suche anhand semantischer Metainformationen: Die Suche anhand von Metainforma-
tionen ist eine Basisanforderung, die jede als Repository verwendete Software erfiillen
muss.

¢ Einpflegen von neuen Patterns: Ebenfalls eine Basisanforderung, die fiir die Grund-
funktionalitit als Repository erforderlich ist.

e Import/Export von Daten und Ontologien: Um auf per Ontologie spezifizierte Daten
zugreifen zu konnen, sollten diese auch in das Repository importiert werden konnen.
Wurde die Ontologie innerhalb des Systems verfeinert, sollte auch ein Export moglich
sein.

e Reasoning: Resultiert aus der Anforderung, eine erweiterte Suchfunktion inklusive
einer Querysprache zur Verfiigung zu haben. Da mithilfe von Reasoning die Funktiona-
litat von Querys insbesondere z.B. durch die Ausnutzung von transitiven Beziehungen

41

3 Anforderungen

Store-Connector
beliebige Reaso-
ner anschlie3en.

Anforderungen
Semantic Media- | MS Sharepoint Confluence IBM Mashup
wiki Wikidsmart
Kennzeichnung| Beliebige Tags via | Out-of-the -box | Beliebige Tags,
von Proble- | Semantische At-| keine individu- | die pro Kategorie
men (Tagging) | tribute ellen Metadata- | festgelegt sind,
Tags. Eigene | welche man
Implementierung | selbst definieren
in Visual Basic | kann.
notwendig.
Ontologie- Ja Als Ja Nein
Support Taxonomie/Term-
Set
Constraints Ja, z.B. mit | Nein Unterstiitzung Nein
auf Kardinali- | [BDS"09] fiir Attribut-
tat Datentypen und
Kardinalitaten
Suche anhand | Vielfache Mog- | SQL-basierte Su-| Semantic Re- | Frei konfigurier-
semantischer | lichkeiten durch | che. pository ex- | bare Suchfilter
Metainforma- | Extensions. In tern aufrufbar. | auf Datenfeeds
tionen Seiten integrierte Ebensfalls in | wie zB. SQL-
SMW /SPARQL- Seiten integrierte | Datenbanken.
Querys moglich. SPARQL-Querys
moglich.
Einpflegen Umfangreiches Normale Stan- | Anpassbare For- | Realisierung
von neuen | Fomularwerk- dardformulare mulare und Tem- | als Datenfeed
Patterns zeug Semantic | miissten manu- | plates von Quelle, wel-
Forms und | ell per Visual che bereits das
Mediawiki Tem- | Basic angepasst entsprechende
plates werden. Format sicher-
stellt?
Import/Export | Manueller Impor- | Import von RDEFE- | Getrennte Daten- | Viele unterstiitz-
von Daten und | t/Export mit frei- | Daten ohne Hier- | banken fiir Wiki | te Datenquellen,
Ontologien em Mapping via | archie in Share- | Inhalte und extra | kein OWL.
Wiki-API Point Term Set Semantic Reposi-
tory
Reasoning Durch Support | Nein, Eigenent- | Ja Nein, Eigenent-
von Triple Sto-| wicklung eines wicklung eines
re lassen sich | Triple Store Triple Store
tiber Triple | Connectors notig. Connectors notig.

Tabelle 3.1: Vergleichstabelle der Evaluation von Alternativen

42

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

erweitert werden kann, ist dies als Anforderung bei der Abfrage von Patternbeziehun-
gen notwendig.

Anhand der Vergleichstabelle 3.1 wurde nun die Entscheidung getroffen, als Grundlage
fiir diese Diplomarbeit Semantic Mediawiki zu verwenden. Das IBM Mashup Center hat
seine Starken v.a. in der Integration von Datenquellen und dem einfachen Visualisieren
der integrierten Daten, erfiillt aber zu wenige der bestehenden Anforderungen, die es fiir
die Aufgabe als Pattern Repository gibt. Microsoft Sharepoint wiirde vermutlich genauso
eine sehr gute Basis fiir Eigenanpassungen liefern, aber der Aufwand wiirde den Rahmen
einer Diplomarbeit wohl deutlich sprengen. Zuletzt bleiben Mediawiki mit der Erweiterung
Semantic Mediawiki und Atlassian Confluence mit der Erweiterung Wikidsmart. Wahrend
Semantic Mediawiki und Wikidsmart zwar beides Open-Source Erweiterungen sind, ist
lediglich Mediawiki als Wikiplattform auch Open-Source, Atlassians Confluence dagegen ist
eine proprietdre kostenpflichtige Software. Die deutlichste Starke von Semantic Mediawiki
ist wohl die Existenz von vielen Erweiterungen, die den Mehrwert der semantischen An-
notationen um ein vielfaches erhohen. Im Vergleich dazu weifs Wikidsmart v.a. mit seiner
grofsen Ausgereiftheit und Produktisierung zu gefallen.

Ausschlaggebend fiir die Entscheidung fiir Semantic Mediawiki waren zuletzt zwei Faktoren.
Zum einen ist Semantic Mediawiki frei erhéltlich und kostet keine Lizenzgebiihren etc. Zum
anderen gibt es bei Wikidsmart keinerlei Unterstiitzung fiir Entwickler von Erweiterun-
gen, bzw. nur gegen die Kosten einer professionellen IT-Beratung. Da es sich bei dieser
Diplomarbeit um eine wissenschaftliche Forschungsarbeit an einer Universitdt und kein
Projekt in einem Unternehmen handelt, und es von absoluter Notwendigkeit ist, selbst
Erweiterungen fiir das Framework zu schreiben, wurde die Entscheidung zugunsten von
Semantic Mediawiki gefallt.

Fiir Semantic Mediawiki ist zudem die sehr umfangreiche Erweiterung DataWiki verfiigbar,
welche es u.a. auch ermoglicht, mit geringem Aufwand einen Triplestore fiir die semanti-
schen Daten anzuschliefSend. Dadurch erhélt man mit sehr geringem Aufwand einen voll
funktionsfahigen Reasoner fiir Semantic Mediawiki, was ein weiteres sehr starkes Argument
fiir dessen Verwendung ist. Eine genauere Beschreibung von DataWiki gibt es in Abschnitt
2.3.7, sowie einen grafischen Uberblick iiber die Systemarchitektur in Abschnitt 5.2.

43

4 Konzeptionelles Design

In diesem Kapitel wird das Design beschrieben, welches aus den in Kapitel 3 erlduterten
Anforderungen resultiert. Dabei orientiert sich die Reihenfolge der Beschreibung des Ent-
wurfs an dem natiirlichen Arbeitsablauf beim Verwenden des Pattern Repositorys, welcher
in Abbildung 4.1 dargestellt ist. Die fundamentalen Arbeitsschritte sind durch die Pfeile
ganz links reprasentiert: Zuerst erfolgt die Eingabe von Patterns, anschlieffend die Annotation
mit semantischen Informationen und zuletzt die tatsachliche Verwendung.

R Datenmodell Formular und
E | nga be (Patternformat und Templates
Kategorien) P
Datenmodel

(Relationstypen und Metai.nformationen:
Zieleigenschaften) Relationstypen und
Zieleigenschaften

Annotation

Erweiterte Suche

und Assistent NERTEEIE

Abbildung 4.1: Arbeitsablauf beim Verwenden des Pattern Repositorys

Zundchst wird in Abschnitt 4.1 ein Entwurf fiir die Eingabe von Patterns in das System
beschrieben. Wie in Abbildung 4.1 ersichtlich ist, geschieht dies anhand eines Formulars
und Templates, die aufgrund eines Datenmodells erzeugt wurden. Es soll trotzdem zuné&chst
der Grobentwurf fiir das Formular und die Templates beschrieben werden, um anhand der
Kenntnis des Resultats schliefllich die Beschreibung der Einzelheiten des fiir das Patternfor-
mats und der Kategorisierung notigen Datenmodells in Abschnitt 4.4 besser verstehen zu
konnen.

Anschliefsend oder bereits beim Einpflegen werden zusétzliche semantische Informationen
annotiert, was in Abschnitt 4.2 genau beschrieben ist. In Abbildung 4.1 ist ebenfalls der
Umstand dargestellt, dass fiir die Verfiigbarkeit der Annotation von Metainformationen wie
z.B. Relationstypen, diese zuvor im Datenmodell modelliert werden miissen. Die detaillierte
Beschreibung der zugehorigen Teile des Datenmodells findet sich wiederum in Abschnitt
4.4. In Abschnitt 4.3 wird erldutert, welche Verwendungsmoglichkeiten es fiir ein Pattern

45

4 Konzeptionelles Design

Repository geben kann und wie von der semantischen Annotation profitiert werden kann.
In Abbildung 4.1 sind beispielsweise die erweiterte Suche anhand von Metainformationen
sowie der Assistent aufgefiihrt, welche eine intelligente Navigation durch das Repository
ermoglichen.

Zuletzt wird in Abschnitt 4.4 das vollstandige resultierende Datenmodell aus den obigen Teil-
entwiirfen genau beschrieben, welches als OWL-Ontologie umgesetzt wurde. Die detaillierte
Erklarung des Datenmodells wurde bewusst am Ende des Kapitels platziert, um zunéchst
einen Uberblick iiber die unterschiedlichen Funktionalitdten des Pattern Repositorys zu
gewdhrleisten und anschliefSend einen Einblick in die genaue Modellierung zu erhalten.

4.1 Eingabe von Patterns

Der erste wichtige Arbeitsschritt ist die Eingabe von Patterns in das Repository. Hier sollte
besonders beachtet werden, dass sich die Struktur von Patterns zwischen unterschiedli-
chen Patterndoméanen deutlich unterscheiden kann, auch wenn viele Pattern-Autoren als
Grundlage die Struktur von Christopher Alexander aus [AIST77] benutzen. Um diesem
Umstand gerecht zu werden, muss die Struktur bei der Einrichtung des Pattern Repositorys
konfigurierbar sein, und anschlieffend konsistent in dem ganzen System eingehalten werden.
Die Wichtigkeit des systemweiten Einhaltens eines festgelegten Patternformats liegt zum
einen darin, dass eine gute Vergleichbarkeit innerhalb der Patternsprache und auch mit an-
deren Patternsprachen ermoglicht wird [DKTos, S. 32]. Zum anderen wird ein gemeinsames
,Vokabular” geschaffen, dass das kollaborative Erarbeiten von Patterns und den Austausch
von Experten der Doméne untereinander erleichtert [FEL* 12, S. 7].

Es muss zwischen zwei separaten Bestandteilen unterschieden werden: Einerseits dem
Format des Formulars, welches zur Eingabe und der semantischen Annotation dient, ande-
rerseits dem tatsdchliche Resultat, d.h. wie ein Pattern dem Nutzer prasentiert wird. Die
tatsdchliche Struktur des Patterns spiegelt sich dabei in beiden Bestandteilen wieder. Der
Unterschied ist, dass im Eingabeformular evtl. gewisse technische Hilfsmittel zur Verfiigung
gestellt werden, um die Eingabe moglichst komfortabel zu machen, und in der Vorlage fiir die
Ausgabe entsprechende Text oder Bild-Formatierungen hinterlegt sein miissen, um ein ein-
heitliches Darstellungsformat zu erhalten. Diese Vorlagen zum festlegen des Ausgabeformats
werden im weiteren Lauf der Arbeit als Templates bezeichnet.

In dieser Arbeit wird zum Erhalten einer konfigurierbaren Struktur zundchst versucht,
eine minimale Menge von Inhaltselementen zu identifizieren, und diese Elemente mit
einer minimalen Menge an Attributen zu versehen, um das Konfigurieren von beliebigen
Patternformaten zu ermoglichen. Als Inhaltselement reicht ein Typ namens Abschnitt
aus. Dieser geniigt, um Text, der innerhalb eines Abschnitts enthalten ist, zu formatieren,
ein Bild einzubetten, aber auch um komplexe semantische Beziehungen aus semantischen
Annotationen zu beinhalten. In den meisten Fallen ist es sogar moglich, die originalen Pattern-
Abschnitte direkt auf die Struktur-Abschnitte des Formats im Repository abzubilden. Diese
Abschnitte dienen zudem als Basis dafiir, bestimmte Relationstypen nur von bestimmten
Abschnitten aus zu erlauben. Sowohl das Formular als auch die Templates sind anhand

46

4.1 Eingabe von Patterns

dieser Struktur-Abschnitte gegliedert und verbunden, wobei das Formular fiir die Eingabe
dient und die Templates fiir die korrekt formatierte Ausgabe der Eingaben.

4.1.1 Formular

Das Eingabeformular sollte das Patternformat moglichst direkt widerspiegeln, allerdings
auch Unterstiitzung bei der Eingabe von Patterns bieten. Daher sollten die Abschnitte
moglichst in der gleichen Reihenfolge im Formular auftauchen, wie sie auch in dem aus
dem Formular generierten Patterntext im Repository auftauchen werden. Zudem sollte es
moglich sein, fiir unterschiedliche Inhaltstypen eines Abschnitts passende Eingabetypen
anzugeben. So bietet sich fiir die Eingabe eines Bildes evtl. ein anderer Eingabetyp an als fiir
die Eingabe eines Textes. Es folgt eine Liste von moglichen Inhaltstypen und Vorschlége fiir
benutzerfreundliche Eingabemoglichkeiten:

o Text: Fiir die Texteingabe gentigt im Normalfall ein normales Textfeld. Formatierungs-
moglichkeiten wie fette oder kursive Schrift sind dabei nicht erwiinscht, da solche
Moglichkeiten immer pro Abschnitt vorgegeben sind. Eine Besonderheit ist in diesem
Fall das semantische Annotieren. Hierfiir sollte es moglich sein, Text zu markieren und
anschlieflend auszuwihlen, mit welchem semantischen Relationstyp auf ein anderes
Pattern oder eine Losung gezeigt werden soll. Annotierte Textstiicke sollen zudem als
solche erkennbar sein. Annotationen sollten auch wieder riickgangig gemacht werden
konnen.

e Bild: Um ein Bild zu einem Pattern hinzuzuftigen, sollte es moglich sein, entweder
neue Bilder in das System hochladen zu kdnnen oder auf bereits im System vor-
handene Bilder zu verweisen. Fiir bereits vorhandene Bilder sollte der Benutzer per
Autovervollstaindigung bei der Eingabe untersttitzt werden.

e Zahlen: Fiir die Eingabe einer beliebigen Zahl bietet sich ein einfaches Textfeld an.
Fiir die Auswahl einer Zahl aus einem gewissen vorgegebenen Bereich bietet sich
ein Regler an, der nur Werte aus dem vorgegebenen Bereich zulésst. Fiir eine prazise
Auswahl sollte es zusédtzlich noch ein Textfeld geben, fiir eine unprazise Auswahl
dagegen geniigt der Regler allein.

e Relation zu anderem Pattern: Zum einen muss es - wie im Punkt Text schon erwéahnt -
die Moglichkeit geben, in normalen Texten Relationen zu anderen Patterns zu annotie-
ren, wenn diese im Fliefitext anhand des Kontexts enthalten sind. Zum anderen gibt es
in vielen Pattern-Formaten einen extra Abschnitt, in dem lediglich Verweise zu anderen
Patterns aufgefiihrt sind. Um auf komfortable Weise fiir diese Verweise semantische
Attribute auswidhlen zu konnen, sollte es ein spezielles Eingabewerkzeug geben, das
die schnelle Auswahl aller verfiigbaren semantischer Annotationstypen ermdglicht. Des
Weiteren sollte die Auswahl von Zielpatterns eine Unterstiitzung fiir den Nutzer bieten,
welche es ermoglicht, im System vorhandene Patterns schnell auswdhlen zu konnen.
Eine Moglichkeit hierfiir wére ebenfalls die Autovervollstindigung des Patternnamens.

47

4 Konzeptionelles Design

e Relation zu Inhalten einer beliebigen Ontologie: Neben den Relationen zu anderen
Patterns im System sollte es auch moglich sein, auf Inhalte von beliebigen zusétzlichen
Ontologien verweisen zu konnen. Wie bereits im Rahmen von Kapitel 3 beschrieben,
dienen Ontologien hier zur Vorgabe von zusétzlichen fiir die Annotation verfiigbare
Metainformationen. Zwei denkbare Einsatzzwecke wéren hier zum einen eine On-
tologie, die Zieleigenschaften enthilt, auf die mit der Verwendung eines Patterns
hingesteuert werden kann und zum anderen eine Ontologie, die mogliche Losungen
enthélt, aus welchen die Patterns abstrahiert wurden oder die aufgrund der Auswahl
einer bestimmten Patternmenge resultieren. Als Besonderheit sollte hier erwdhnt wer-
den, dass es in diesem Kontext wiinschenswert ist, den Relationen zusitzliche Attribute
zuweisen zu konnen. Dies wird ebenfalls eine gesonderte Eingabemaske nétig machen.

Icon [Choose Image] [Upload Image]

Context [Annotate]
Solution

Related [Choose Relation Type] | Choose Target

Patterns

Abbildung 4.2: Mockup einiger Formularelemente

Das in Abbildung 4.2 dargestellte Mockup einiger oben vorgestellter Eingabetypen soll
demonstrieren, wie ein solches Formular aussehen konnte. Links im Bild sind jeweils die
Bezeichner der entsprechenden Patternabschnitte, und rechts die dazugehorigen Eingabe-
typen. Icon ist ein Beispiel fiir den Eingabetyp Bild und bietet Buttons zur Auswahl von
vorhandenen Bilder und zum Hochladen von neuen Bildern. Context und Solution sind jeweils
Texteingabefelder, wobei Context noch ein Button zur semantischen Annotation im Fliefs-
text bietet. Bei Related Patterns findet sich ein Vorschlag fiir die Eingabe von semantischen
Verweisen auf andere Patterns, wobei das Ziel in dem kleinen Textfeld rechts eingegeben
werden kann.

4.1.2 Templates

Mithilfe der Templates werden die Informationen, welche im Formular eingegeben wurden,
entsprechend aufbereitet und fertig fiir die Ausgabe formatiert. Anhand der Patternfor-

48

4.1 Eingabe von Patterns

mate aus [FEL*12] und [SBLE12] wurde in einem ersten Arbeitsschritt untersucht, welche
Formatierungsmoglichkeiten notig sind. So sollte es fiir jeden Abschnitt folgende Formatie-
rungsmoglichkeiten geben:

e Fiir die Uberschrift: Zunichst sollte wihlbar sein, ob ein Abschnitt eine Uberschrift
braucht. Neben der Uberschrift selbst sollte dariiber hinaus auswihlbar sein, ob und wie
sie formatiert ist. Also verschiedene Schriftgrofien sowie fett, kursiv und unterstrichen.

e Fiir den Text: Neben den Standard-Textformatierungen wie fett, kursiv und unterstri-
chen sollten auch Schriftfarbe und Schrifthintergrundfarbe wihlbar sein. Zudem sollte,
falls der Textabschnitt nach einem Bild kommt und keine Uberschrift hat, wahlbar sein,
ob er als Fliefstext neben dem Bild platziert werden soll oder danach.

e Fiir Bilder: Fiir Bilder sollten die Grofse, die Position im Text (linksbiindig, zentriert,
rechtsbiindig) und das Vorhandensein einer Bildunterschrift auswéhlbar sein. Des
Weiteren sollte wéhlbar sein, ob das Bild eine Einrahmung oder sonstige Abhebung
vom Text erhalten soll.

e Fiir semantische Annotationen: Falls ein Abschnitt speziell als Container fiir seman-
tische Annotationen dient, sollten die Linktypen der Relationen auf einen Blick er-
kennbar sein. Daneben sollte zusitzlich zu der Verlinkung und dem Linktyp ein
Beschreibungstext moglich sein, um zu begriinden, weshalb die referenzierten Patterns
in einer gewissen Beziehung zu dem aktuellen Pattern stehen. Handelt es sich bei
der semantischen Relation um eine Relation mit Attributen, sollten die Attribute in
einer iibersichtlichen Form dargestellt werden. Unter Umstdnden wird es sich an
manchen Stellen sogar anbieten, statt der semantischen Annotation direkt eine Query
zur Darstellung der Beziehungen des Patterns zu anderen Patterns einzubetten.

Des Weiteren konnen Patterns anhand von Templates ein gewisses Bedienungslayout bzw.
Interface erhalten. So wére es beispielsweise sinnvoll, am Ende jedes Patterns einen Abschnitt
zum weiteren Navigieren des Patternfundus einzublenden, der Querys auf bestimmte
semantische Attribute enthdlt. Am naheliegendsten wiren hier folgende Querys:

e Kombinierbare Patterns: Zeigt eine Liste der Patterns an, die entweder direkt vom
aktuellen Pattern aus eine Verlinkung vom Typ Kombinierbar erhalten haben, aber
auch Patterns, die auf die aktuelle Seite mit dem entsprechenden Linktyp zeigen.
In OWL-Terminologie wéren das alle Objekte, die mit dem aktuellen Subjekt das
Pradikat Kombinierbar haben. Zudem alle Subjekte, die als Objekt das aktuelle Pattern
haben und als Prdadikat ebenfalls Kombinierbar. Dies entspricht im Prinzip einer
Empfehlungsmatrix, wozu mehr im Abschnitt 4.3.2 unter Empfehlungen aufgrund der
Leseliste erklart ist und wozu die Grundidee aus [FLR"11] stammt.

e Kombinierbare Patterns hoheren Grades: Dies sollte eine optional zuschaltbare Query
sein, welche die Transitivitit der Kombinierbarkeit ausniitzt und dadurch solche
Patterns anzeigt, welche als kombinierbare Partner der direkten Partnerpatterns des
aktuellen Patterns annotiert sind. Dies konnte eine relativ grofSe Ergebnismenge zur
Folge haben.

49

4 Konzeptionelles Design

e Sich ausschliefiende Patterns: Zeigt eine Liste der Patterns an, die nicht mehr sinnvoll
verwendbar sind, sollte man sich fiir das aktuelle Pattern entscheiden. Die Liste soll
Patterns enthalten, die entweder direkt von dem aktuellen Pattern aus eine Verlinkung
vom Typ Konkurrierende Alternativen erhalten haben, aber auch Patterns, die auf die
aktuelle Seite mit dem entsprechenden Linktyp zeigen.

e Patterns, welche die gleichen Ziele verfolgen: Aufgrund der Moglichkeit, beliebige On-
tologien in das Pattern Repository mit einzubinden und die Patterns mit Bestandteilen
der Ontologien zu annotieren, wére es auch umsetzbar, Gemeinsamkeiten bei diesen
zusdtzlichen Annotationen aufzuzeigen. Ein mogliches Beispiel fiir eine Ontologie,
die z.B. Zieleigenschaften enthailt, folgt in Abschnitt 4.2.2. Dies wiirde ermoglichen,
dem Endnutzer weitere Patterns aufzulisten, die die gleichen Zieleigenschaften ver-
folgen wie das aktuelle Pattern. Hat nun der Endnutzer bereits das aktuelle Pattern
aufgrund einer gewissen Zieleigenschaft aufgerufen, die er verfolgen mochte, konnte
diese Auflistung sehr niitzlich sein.

Der Zusammenhang zwischen Formular und Template wurde in Abbildung 4.3 dargestellt.
Auf der linken Seite befindet sich das Formular und auf der rechten Seite die Darstellung
eines Patterns im Pattern Repository. Die Templates werden nun bei der Ubertragung der
Eingaben aus dem Formular in das gewiinschte Ausgabeformular verwendet, was in der
Grafik als grau gestrichelte Pfeile dargestellt ist. In den Templates werden die Eingaben als
Parameter an den vorgegebenen Stellen eingefiigt, so dass letztendlich die rechts dargestellte
fertig formatierte Darstellung resultiert.

4.2 Annotation

Nachdem nun die Eingabe der Patterns entworfen wurde, soll der Entwurf der Annotati-
on von zusédtzlichen Informationen folgen. Den Mehrwert fiir das Pattern Repository im
Vergleich zu nicht-semantischen Losungen stellen die semantischen Informationen dar, mit
welchen man die Artikel annotieren kann. Dabei ist der tatsdchliche Mehrwert davon abhéin-
gig, wie sinnvoll die moglichen Annotationen gewédhlt wurden und ob diese auch korrekt
vom Pattern Autor verwendet werden. Denn selbst wenn die Annotationsmoglichkeiten
optimal gewihlt wiren, konnten falsche Annotationsinhalte den ganzen Nutzen wieder
umkehren und evtl. sogar fiir inhaltliche Widerspriiche sorgen. Eine gewisse Absicherung
der Annotationsqualitét ist dadurch gegeben, dass mithilfe des Datenmodells ein einheitli-
ches Modell von Relationstypen vorgegeben wird, so dass diese konsistent innerhalb der
Patternsprache verwendet werden.

Zunéchst sollen nun die semantischen Attribute genauer erldutert werden, die im Pattern
Repository zur Verfiigung stehen. Als Anmerkung sei hier noch erwdhnt, dass diese At-
tribute frei konfigurierbar sein sollten. Denn je nach Patterndoméne koénnen sich evtl. die
Anforderungen nochmals deutlich unterscheiden, oder spezielle Linktypen Sinn machen, die
in einer anderen Doméne keinen Nutzen bieten wiirden.

50

4.2 Annotation

4.2.1 Semantische Attribute - Linktypen

Als Basis fiir die vorgegebenen semantischen Attribute, die im Pattern Repository zum
Ausdriicken von Relationen der Patterns untereinander mitgeliefert werden, diente die
Diplomarbeit von Philipp Grimm [Gri11] . Die hier vorgeschlagenen Relationstypen sind
sehr dhnlich zu den in [HL93, S. 28f] beschriebenen semantischen Beziehungen zwischen
allgemeinen Entitdten in Repositorys. Dies liegt daran, dass es sich dabei um Relationen
handelt, welche strukturelle Beziehungen von miteinander kombinierbaren Objekten be-
schreiben. Die Beobachtung, dass Patternsprachen durch solche strukturelle Beziehungen
gebildet werden konnen, macht auch Welie et al. und liefert in [WVo03] eine entsprechende
Kategorisierung. Dabei gleichen die grundsétzlichen Relationstypen Aggregation, Assoziation
und Spezialisierung den Relationen, die aus der objektorientierten Programmierung bekannt
sind [WVos3, S. 2]. Im Folgenden sind sowohl die grundsatzlichen Relationstypen als auch
deren Verfeinerungen aufgefiihrt. Zusatzlich wird zur exakten Definition auch bereits be-
schrieben, ob eine Relation symmetrisch oder transitiv ist. Dies spielt bei der Abfrage von
Patternrelationen eine Rolle und kann die Semantik solcher Abfragen verdndern.

Legende

-----2> Template fligt Eingaben am richtigen Ort ein Pattern abc

-
-
-
-

S mmmmmmmmmmmmmT T > Context
S e
Icon ’[Chooseimage | _Upload Image | Das ist der Kontext.
I”’
Context | Das ist der Kontext. Annotate
------------------------------ -> Solution
I”’
Solution
| .. Related
i P i Patterns
Related | Combination) | Pattern efg |

Patterns * (Combination) Pattern efg

Abbildung 4.3: Zusammenhang zwischen Formular und Templates

51

4 Konzeptionelles Design

Aggregation

Mithilfe des Relationstyps Aggregation ldsst sich eine hat ein-Beziehung ausdriicken. Die
Untertypen der Aggregation dienen vor allem zum Aufbau der Patternsprache (siehe Ab-
schnitt 2.2 fiir eine Begriffserklarung) und driicken strukturelle Beziehungen zwischen den
einzelnen Patterns aus. Von einem aggregierenden Pattern wird gesprochen, wenn das Pattern
aus mehreren anderen Patterns besteht. Als Verfeinerung der Aggregationsbeziehungen
werden die Vorschldge aus [Gri11] iibernommen.

e Combining: Durch diesen symmetrischen transitiven Relationstyp ldsst sich ausdriicken,
dass sich die beiden verkniipften Patterns auf eine gewisse Weise kombinieren lassen,
um in dieser Kombination entweder ein grofieres Problem zu 16sen oder um gemeinsam
Teil eines grofleren Systems zu sein. In gewissen Féllen kann es auch Situationen geben,
in welchen sich mehrere Patterns kombinieren lassen, um die Funktionalitidt eines
anderen Patterns zu imitieren. Dies ist in Abschnitt 7.2 ndher ausgefiihrt.

e Completing: Durch diesen symmetrischen nicht transitiven Relationstyp ldsst sich aus-
driicken, dass sich die beiden verkniipften Patterns nicht nur kombinieren lassen (die
Relation Combining ist implizit schon enthalten), sondern dass sie sich gegenseitig ver-
vollstandigen. Die beiden Patterns beinhalten Losungen, die sich gegenseitig ergdnzen
und benutzt werden kénnen, um ein grofieres System aufzubauen. Es ist dabei denkbar,
dass sich die beiden Patterns auf der gleichen Abstraktionsebene der Patterndoméne
bewegen, aber auch dass eines der Patterns eine hohere Ebene anspricht, und das
andere Pattern ein Problem auf einer niedereren Ebene 16st.

e Competing: Durch diesen symmetrischen nicht transitiven Relationstyp ldsst sich aus-
driicken, dass zwei Patterns das gleiche Problem ansprechen und deswegen nicht
gleichzeitig in einem System, welches durch die Patternsprache aufgebaut wird, ver-
wendet werden konnen. Sie stellen Alternativen fiir die Problemlosung dar, wodurch
dieser Relationstyp sehr wertvoll fiir den Endnutzer wird. Spricht aus einem beliebigen
Grund etwas gegen die Verwendung eines gewissen Patterns, konnen dem Endnutzer
durch diesen Linktypen verschiedene Alternativen aufgezeigt werden.

Spezialisierung

Die Beziehung Spezialisierung wird nicht weiter verfeinert, daher gibt es nur einen asym-
metrischen nicht transitiven Relationstyp Specialisation. Dieser kann verwendet werden, um
eine ist-ein-Beziehung zum Ausdruck zu bringen. Dies kommt insbesondere vor, wenn ein
spezialisiertes Pattern die gleiche Grundidee wie ein anderes generelleres Pattern verwendet,
aber sich in gewissen Aspekten des gelosten Problems eine spezifischere Losung anbietet.
Es erbt die Grundidee des allgemeineren Patterns und ermdglicht damit beim Bilden der
Patternsprache die gleiche Vorgehensweise wie bei der objektorientierten Programmierung
[WVo3, S. 2]. Zundchst wird eine Basisklasse erstellt, in diesem Fall also ein Basispattern,
und daraus Unterklassen abgeleitet bzw. spezialisierte Patterns verfasst.

52

4.2 Annotation

Assoziation

Die Relationen vom Typ Assoziation dienen dem Aufzeigen von allgemeinen Beziehungen,
die sich weder als Aggregation, noch als Spezialisierung beschreiben lassen. Die allgemeine
Beziehung Assoziation dient zum Ausdriicken eines nicht ndher beschreibbaren Zusammen-
hangs zwischen Patterns. Bei den Verfeinerungen der Beziehung Assoziation handelt es sich
um keine strukturelle Beziehungen mehr, sondern z.B. um temporale Beziehungen wie eine
zeitliche Reihenfolge der Anwendung von Patterns. Ebenfalls moglich ist eine Abstraktions-
beziehung, um Patterns mit den Anwendungsféllen in Verbindung zu bringen, aus welchen
sie abstrahiert wurden. Fiir die Verfeinerung wurden lediglich der Untertyp Association aus
[Gri11] tibernommen, die restlichen Untertypen konnten aus den in Kapitel 3 beschriebenen
Anforderungen entwickelt werden.

e Associaton: Hierdurch wird eine symmetrische transitive Beziehung ausgedriickt, die
sich nicht genauer typisieren ldsst. Im Prinzip entspricht dies einem Link ohne Typ,
weswegen sich die Frage stellt, ob dieser Linktyp benétigt wird. Allerdings konnte er
dazu dienen, unkompliziert ein gewisses Grundnetzwerk aufzubauen, welches spéter
durch Linktypen verfeinert wird, welche mehr Aussagekraft haben.

e Depends On: Die asymmetrische nicht transitive Depends On-Beziehung driickt eine
Abhéngigkeit in der Art aus, dass ein Pattern allein, ohne das verlinkte Pattern, nicht
verwendbar ist. Ein moglicher Fall konnte z.B. bei Patterns auf unterschiedlichen
Abstraktionsebenen auftreten. So konnte erst ein Pattern auf einer hoheren Abstrak-
tionsebene tiberhaupt die Voraussetzungen fiir den Einsatz eines Patterns auf einer
niedereren Abstraktionsebene schaffen, das eventuell ein sehr spezifisches Problem
anspricht.

e Implemented By: Diese asymmetrische nicht transitive Beziehung ermdoglicht es, Bezie-
hungen von Patterns zu konkreten Losungen oder Anwendungsgebieten des durch
das Pattern angesprochenen Problems darzustellen. In einigen Patternsprachen, z.B. in
[FEL*12], [SBLE12] und [JGVHgs5], werden diese Losungen in einem extra Abschnitt
Known Uses aufgefiihrt. Dieser Relationstyp ermoglich zum einen, konkrete Umsetzun-
gen eines Patterns zu erhalten und andererseits den umgekehrte Weg. Dieser konnte
vor allem bei Patterns auf hoherer Abstraktionsebene Sinn machen, so dass der End-
nutzer zundchst von einer Losung ausgeht, dann entsprechende Patterns aufruft, die
das Problem auf einer abstrakten Ebene 16sen, und von dort iiber die Aggregations-
beziehungen weitere Patterns fiir seinen Anwendungsfall finden oder ausschliefSen
kann. Dadurch wird die in Abschnitt 3.1 als Anforderung formulierte Transparenz
ermoglicht sowie die Dokumentation der Quellen, aus welchen die Patterns abstrahiert
wurden.

e Consider Before: Diese asymmetrische transitive Beziehung ermoglicht das Ausdriicken
von temporalen Zusammenhéngen. In vielen Situationen kann es sein, dass zwischen
Patterns zwar keine direkte strukturelle Verkniipfung besteht, aber dafiir eine tempora-
le Beziehung in der Form, dass ein anderes Pattern erst dann sinnvoll einsetzbar ist,
wenn das aktuelle Pattern bereits Verwendung findet. In gewisser Art iiberschneidet

53

4 Konzeptionelles Design

sich dieser Relationstyp also mit Depends On; allerdings wird hier die Art der Ab-
hingigkeit konkretisiert. Mithilfe dieses Beziehungstyps ldsst sich eine Patternsprache
mit , linearer Struktur” modellieren [Scho3, S. 1]. Laut Schiimmer trifft diese Linearitét
auf die meisten Patternsprachen zu, womit sich durch diesen Relationstyp eine gute
Grundkompatibilitit des Repositorys zu vielen Patternsprachen ergibt.

4.2.2 Zieleigenschaften

Die Annotation von Zieleigenschaften geschieht nach der Eingabe von Patterns und befindet
sich dementsprechend auf der mittleren Ebene von Abbildung 4.1, die am Anfang dieses
Kapitels zu finden ist. Mithilfe dieser Informationen kénnen im letzten Schritt - der Verwen-
dung des Pattern Repositorys - dem Benutzer im Rahmen eines Assistenten Vorschldge auf
Basis der Annotationen gemacht werden.

Daher findet sich die Moglichkeit der Annotation von Patterns mit Metainformationen
aus beliebigen Ontologien unter den in Abschnitt 3.1 beschriebenen Anforderungen. Ein
sinnvoller Anwendungsfall fiir eine solche Ontologie konnte z.B. eine Ontologie von Zielei-
genschaften fiir die entsprechende Patterndoméne sein. Denn die Ziele oder Eigenschaften,
die mit einem Pattern korrelieren, sind oft vielschichtiger als nur das Losen des spezifischen
Problems, welches zugrunde liegt. Als Beispiel soll hier das Pattern Eventual Consistency
aus der Doméne der Cloud Computing Patterns dienen [FLR*13]. Dieses Pattern beschreibt
ein Vorgehen, welches bei der Verteilung von Datenreplicas tiber mehrere Orte die standige
Verfiigbarkeit und Performance in den Vordergrund stellt. Dabei wird die strikte Konsistenz
der Daten vernachldssigt, d.h. dass es Zustdnde geben kann, in denen inkonsistente Daten
gelesen werden. Hier lassen sich drei Ziele identifizieren, welche dem Pattern zugrunde
liegen: Verfiigbarkeit, Performance und Datenkonsistenz. Wenn es nun eine Moglichkeit gibt,
diese Zieleigenschaften anhand einer Ontologie zu annotieren, ist es im Nachhinein fiir den
Endnutzer moglich, iiber die Angabe seiner Anwendungszieleigenschaften entsprechende
Patterns vorgeschlagen zu bekommen.

An dem obigen Beispiel wird allerdings auch deutlich, dass eine einfach binire Relation von
dem Pattern zu der Ontologieentitit nicht ausreicht, da z.B. nicht nur ausgedriickt werden
soll, dass ein Pattern mit der Zieleigenschaft Verfiigbarkeit verbunden ist, sondern auch auf
welche Art die Verwendung des Patterns in einem System diese Zieleigenschaft beeinflusst.
Diesbeziiglich wire auf der einfachsten Ebene denkbar, dass zusitzlich angegeben wird, ob
die Verfiigbarkeit angehoben oder gesenkt wird, und wie stark die Korrelation zwischen
dem Pattern und der Zieleigenschaft ist. Um dies zu modellieren, ist es nétig, der Beziehung
des Patterns zu der Zieleigenschaft weitere Eigenschaften in Form einer n-dren Relation
hinzuzuftigen, was bei der gewiinschten Modellierung in OWL nicht direkt moglich ist.
Wihrend es z.B. bei Entity Relationship-Modellen ganz einfach moglich ist, n-dre Beziehun-
gen darzustellen, muss bei RDF/OWL das Prinzip der Reification bzw. Vergegenstandlichung
angewandt werden. In [NRHWo06] sind unterschiedliche Losungswege zur n-dren Model-
lierung im Semantic Web beschrieben. Fiir die Modellierung im Rahmen dieser Arbeit hat
sich am meisten der Weg iiber eine neu eingefiihrte Klasse angeboten, da der Use Case
dieser Diplomarbeit genau mit dem in [NRHWo06] beschriebenen iibereinstimmt. Die neue

54

4.2 Annotation

Klasse dient nur als leerer Containerknoten, um mit bindren Relationen eine n-dre Relation

Target Attr B

darzustellen.

Target Attr A

[1:N]
Pattern Target Target Property

Abbildung 4.4: N-dre Relation in einem Entity-Relationship Diagramm

ObjectProperty
Pattern ObjectProperty Target Target

[#domain—"" Target “‘—range—# Relation [«—domain —range®| Property

Target
Object

ObjectProperty ObjectProperty

domain

Target Attr domain Target Attr
A Value B Value
range range
Target Target
Value 1 Attr A Attr B
- haslIndividual
Value 2 hasIndividual

Abbildung 4.5: N-dre Relation in OWL

Zur Veranschaulichung dieser Modellierungsmethodik dient Abbildung 4.4, welche zunéchst
eine n-dre Relation mithilfe eines Entitiy-Relationship Diagramms darstellt und Abbildung
4.5, in der die gleiche Relation mit OWL dargestellt wurde. In dem Entitiy-Relationship
Diagramm in Abbildung 4.4 sind die Entitdten Pattern und Target Property, welche als
Rechtecke dargestellt sind, durch die Beziehung Target, welche als Diamant dargestellt ist,
verbunden. Der Target-Beziehungen wurden nun die in Kreisen dargestellten Attribute

55

4 Konzeptionelles Design

Target Attr A und B hinzugefiigt. In der OWL-Ontologie in Abbildung 4.5 sind sowohl
Entitdten als auch Attribute als Klassen modelliert, welche als blaue Rechtecke dargestellt
sind. Beziehungen zwischen den Klassen werden als in der Abbildung griin dargestellte
Object Propertys modelliert, wobei neben der urspriinglichen Beziehung Target auch noch
Verbindungen zu den Attributen hergestellt werden miissen. Um einem Beziehungsattribut
einen Wert zuzuweisen, miissen Individuen der Klasse mit dem gewiinschten Wert erstellt
werden, wie in der Abbildung anhand von Target Attr A demonstriert wird. Das Attribut
Target Attr A bekommt die Werte Value 1 und Value 2 zugewiesen, indem diese als Individuen
modelliert werden, welche in der Abbildung als schwarze Rechtecke dargestellt sind.

Beim Vergleich von Abbildung 4.4 und 4.5 féllt zunédchst auf, dass sich durch die kiinstliche
Einfiihrung einer weiteren Entitdt in OWL die Komplexitdt des Diagramms erhoht. Statt
nur einer Relation Target gibt es zusétzlich die Object Property Target, welche nur dazu
dient, die Patternklasse mit der neuen leeren Relationsklasse Target Relation zu verbinden.
Die tatsdchliche Verbindung mit der Target Property wird nun erst hergestellt, indem die
Target Relation-Klasse iiber eine neue eingefiihrte Object Property Target Object mit der
Klasse der Zieleigenschaften verbunden wird. Zusitzliche Attribute der Relation benétigen
in OWL pro Attribut eine extra Klasse und eine extra Object Property, um auf die Klasse zu
verweisen. So entsteht zwar ein gewisser Overhead, aber es gelingt dadurch auch mit OWL
n-dre Beziehungen darzustellen.

4.2.3 Formular

Die Annotation von semantischen Attributen stellt einen sehr zeitaufwendigen Prozess dar,
welcher notwendig ist, um einen moglichen Mehrwert aus den zusétzlichen Informationen
schopfen zu konnen. Dabei stellt laut den Anforderungen aus Kapitel 3 nicht nur die
Effektivitdt eine Anforderung dar, sondern auch die Effizienz. Daher wird die Annotation
von semantischen Eigenschaften direkt in das Formular integriert, welches zum Erstellen
von neuen Patterns dient.

Wie bereits in Abschnitt 4.1.1 erwdhnt, werden dabei generell zwei Arten der Annotation
unterschieden: Die Annotation direkt im FliefStext und extra Abschnitte, die speziell zum
Annotieren dienen. Die Annotation im Fliefstext soll fiir jedes Texteingabefenster moglich
sein, allerdings in Abhingigkeit von dem entsprechenden Abschnitt, in welchem sich das Tex-
teingabefenster befindet. Welche Relationstypen fiir den entsprechenden Abschnitt verfiigbar
sind, muss daher als zusétzliche Information in der Definition des Formular-Datenmodells ge-
schehen. So konnen beispielsweise fiir einen Abschnitt, der Anwendungsfélle eines Patterns
enthélt, besondere Relationstypen zum Verweis auf eben jene Anwendungsfille bereitgestellt
werden. Die erlaubten Relationstypen miissen ebenfalls fiir Abschnitte definiert werden,
deren Hauptzweck das Annotieren darstellt, da unter Umstdnden nicht erwiinscht ist, dass
in einem solchen Abschnitt komplett die gleichen semantische Pradikate zur Verfligung
stehen als in anderen Volltext-Abschnitten. Hierfiir gibt es zwei besondere Abschnittstypen,
welche fiir alle Patterndoménen relevant sein diirften.

56

4.3 Verwendung des Pattern Repositorys

e Verwandte Patterns (Related Patterns): Dieser Abschnitt wird in allen der in dieser
Arbeit referenzierten Patternkataloge in Buchform verwendet, und enthélt Verweise auf
verwandte Patterns innerhalb der Doméne. Da es mit dem Pattern Repository moglich
ist, das Patternformat frei zu konfigurieren, und ebenso in welchen Abschnitten welche
semantischen Linktypen verfiigbar sein sollen, wird ein extra Eingabetyp benétigt,
um diese Informationen aufzunehmen. Es soll eine Auswahl aller fiir den Abschnitt
erlaubten semantischen Linktypen geben, sowie die Moglichkeit, pro Linktyp eine
beliebige Anzahl von Linkzielen anzugeben. Dabei soll dem Endnutzer per Autover-
vollstandigung bei der Eingabe geholfen werden. Zusétzlich soll pro semantischem
Link auch eine Begriindung bzw. Erkldrung angegeben werden konnen, warum das
aktuelle Pattern nun mit diesem semantischen Linktyp mit einem anderen Pattern
vernetzt wird. Ebenso muss es moglich sein, beliebig viele dieser Annotationen pro
Pattern hinzuzufiigen.

o Zieleigenschaften (Target Properties): Dieser Patternabschnitt ermoglicht die Annotation
der in Abschnitt 4.2.2 erlduterten Zieleigenschaften. Dabei ist die Grundidee gleich
wie bei dem Verwandte Patterns-Abschnitt, mit dem Unterschied, dass hier zuséitzliche
Attribute, welche die Relation charakterisieren, abgefragt werden miissen. Ein weiterer
Unterschied ist die Art der Auswahl einer entsprechenden Zieleigenschaft. Wahrend
die moglichen semantischen Linktypen im Verwandte Patterns-Abschnitt als flache
Liste prasentiert werden konnen, da mehr als zehn Relationstypen im Normalfall nicht
vorhanden sein sollten, ist dies bei unter Umstdnden sehr umfangreichen Ontologien
tiir Zieleigenschaften nicht moglich. Hier sollte eine Auswahl im Baumformat gesche-
hen, so dass jeweils nur gewisse Untermengen der Ontologie gleichzeitig angezeigt
werden. Bei Patternrelationen sollte die Anzahl gering bleiben, da laut Miller [Mil56]
der Mensch auf einen Blick nicht mehr als etwa sieben plus minus zwei Informationen
gleichzeitig verarbeiten kann. Neben der unerwiinschten Verlangsamung des Annotati-
onsprozesses, die eine zu grofle Anzahl von semantischen Relationstypen zur Folge
hitte, existieren zudem zum aktuellen Zeitpunkt keine Anwendungsfélle fiir eine noch
feinere Aufgliederung von semantischen Relationstypen.

4.3 Verwendung des Pattern Repositorys

Die tatsachliche Verwendung des Pattern Repositorys stellt nach dem Erstellen und Anno-
tieren von Patterns die letzte Stufe in der Ubersichtgrafik 4.1 dar, welche am Anfang des
Kapitels zu finden ist. Nachdem Patterns im ersten Schritt in dem Repository erstellt werden
und im zweiten Schritt annotiert, gilt es, den Benutzer bei der Navigation durch den Pattern-
fundus zu unterstiitzen. Dabei kann nun von den annotierten Metainformationen Gebrauch
gemacht werden, indem dem Benutzer bei der Suche die semantischen Informationen als
zusétzliche Suchkriterien angeboten werden, die sonst nicht moglich waren. Die erleichterte
Suche von Patterns durch das Verwenden von zusitzlichen semantischen Informationen
stellt somit eine Kernfunktionalitdt des Pattern Repositorys dar.

57

4 Konzeptionelles Design

4.3.1 Einstieg in die Patterndoméne

Wihrend sich bei Patternkatalogen in Buchform dem Leser zu Beginn die Frage stellt, ob
er nun das Buch von Seite eins bis zum Ende linear durchlesen soll oder lieber bei einem
Unterkapitel beginnen, tritt dieses Problem bei einem elektronischen Pattern Repository noch
schneller auf. Denn ein Wiki ldsst sich nicht von Beginn bis zum Ende durchbldttern, so dass
dem Endnutzer von der Startseite an eine Unterstiitzung geboten werden muss. Um dies zu
einer Starke des Repositorys auszubauen, soll zunédchst untersucht werden, wie mit diesem
Problem in einigen etablierten Patternkatalogen in Buchform umgegangen wird. Dazu gibt
es verschiedene Ansitze, um dem Leser das Erschliefien der Patterndoméne zu erleichtern
und ihm zu helfen, das Patternbuch zu benutzen. Einige wiederkehrende Vorgehensweisen,
welche in dhnlicher Form sowohl in [HWo3], [FEL"12] als auch [JGVHgs] zu finden sind,
werden im Folgenden beschrieben.

Grundlegende Patterns

Viele Patterndoménen sind nach dem Vorbild der von Christopher Alexander in [AIS*77] ent-
worfenen Patternsprache in ihrer Grundstruktur hierarchisch aufgebaut in dem Sinne, dass
Entscheidungen auf einer hohen Abstraktionsebene mogliche Entscheidungen auf niedereren
Abstraktionsebenen einengen. Der Begriff , Entscheidung” wird hier als Synonym zu dem
Begriff Pattern verwendet, da ein Pattern im Prinzip immer einer Entscheidung entspricht,
die zur Losung eines bestimmten Problems getroffen werden muss. Dementsprechend macht
es in Patternsprachen mit solchen hierarchischen Beziehungen auch viel Sinn, bei der Lektiire
auf der hochsten Abstraktionsebene zu beginnen und sich auf diese Weise durch die Pattern-
sprache zu navigieren. Um diese hierarchische Struktur zugéanglicher zu gestalten, bieten
sich unterschiedliche grafische Aufbereitungsmoglichkeiten an. Zum einen wére dies die
Darstellung anhand einer Ordnerstruktur, die dem Inhaltsverzeichnis eines Buches gleicht,
mit dem Unterschied, dass es Moglichkeiten zum Auf- und Zuklappen einzelner Ordner zur
Erhohung der Ubersicht gibe. Andererseits wire dies die Darstellung als gerichteter Graph,
in welchem die Kapitel bzw. Kategorien, zu welchen einzelne Patterns oder Unterkapitel bzw.
Unterkategorien gehoren, anhand von beschrifteten Umrandungen hervorgehoben werden
wiirden. Der Graph sollte dabei gerichtet sein, um nicht die Information tiber die Richtung
der Hierarchie zu verlieren.

Dabei sollen die leicht unterschiedlichen Ansétze der grafischen Aufbereitung aus [HWo3]
und [FEL"12] zu einer in unterschiedlichen Patterndoménen anwendbaren Losung vereint
werden. Aus [FEL*12] wird der Ansatz iibernommen, fiir jedes grofes Kapitel bzw. jede
Kategorie von Patterns einen Graph zu erstellen, welcher die Abhdngigkeiten innerhalb
des Kapitels darstellt. Dabei sollen sowohl alle Patterns, als auch die Information der
Zugehorigkeit zu eventuellen Unterkategorien erhalten und visualisiert werden. Dies kann,
wie bereits oben beschrieben, durch einen gerichteten Graphen geschehen, in welchem
Zugehorigkeiten zu Unterkapiteln durch beschriftete Umrandungen dargestellt werden.
Bei einer Patterndomaéne, in der noch nicht so viele Patterns entdeckt wurden und es
dementsprechend auch noch nicht geniigend Kapitel und Unterkapitel gibt, diirfte der

58

4.3 Verwendung des Pattern Repositorys

Ansatz aus [HWo3, S. xlvii] niitzlicher sein, bei dem eine grofse Ubersichtsgraﬁk uber
den kompletten Patternkatalog existiert. Im Gegensatz zu [FEL"12], in welchem es auch
eine Ubersichtsgrafik gibt, ist diese in [HWo03] in einer Art gehalten, wie Sie in anderen
Doménen genau oder sogar noch besser verwendet werden kann. Auf einer sehr hohen
Abstraktionsebene werden die Abhédngigkeiten zwischen den Kapiteln skizziert, um so
dem Leser einen schnellen Uberblick iiber die Struktur der Patternsprache verschaffen zu
konnen.

Diese Art des Einstiegs macht entsprechend am meisten Sinn, wenn ein Problem noch
komplett ungeldst ist, wenn also nicht schon gewisse Teile des zukiinftige Systems bzw. der
Losung des Problems feststehen. Wenn der Leser bzw. Benutzer noch vollig unvertraut mit
dem Patternfundus ist, diirfte dies eine effiziente Einstiegsmoglichkeit sein, in dem Sinne,
dass der Benutzer sich schnellstmoglich strukturiertes Wissen aus dem Gebiet aneignen
kann.

Benutzerrollen

Ein vollig anderer Ansatz stellt das Vorschlagen von moglichen Startkategorien oder Startka-
piteln aufgrund der Rolle dar, die der Benutzer beim Lesen des Patternkatalogs einnimmt.
Dabei wird vorausgesetzt, dass sich jeder Leser in eine entsprechende Rollenkategorie ein-
teilen lasst, und dass fiir einen Leser mit diesem Hintergrund die Lektiire von bestimmten
Kapiteln vorteilhafter ist als die Lektiire von anderen Kapiteln. In [JGVHogs5, S. 10] geschieht
dies nur sehr grob, so dass dem Leser im Fall, dass er unerfahren in objektorientiertem
Design ist, der Beginn bei einem bestimmten Kapitel empfohlen wird. In [FLR"13, S. 14-20]
und [HWos3, S. xlviii-xlix] gibt es eine sehr viel feinere Unterscheidung der Kenntnisstande
und Hintergriinde der Leser, die dementsprechend spezifischer fiir das entsprechende Gebiet
sind. Hier muss je nach Patterndoméne eine individuelle Losung entwickelt werden, und
es wird schwer sein, im elektronischen Format einen Mehrwert gegeniiber einem Buch zu
erzielen. Eine naheliegende Losung diirfte das direkte Ubernehmen der Rollen aus einer
vorhandenen Buchvorlage sein.

4.3.2 Assistent

Nachdem nun bereits die in Biichern vorhandenen Einstiegshilfen fiir eine Patterndoméne
erldutert wurden, soll nun untersucht werden, wie diese Punkte in einem Pattern Reposito-
ry integriert werden konnen und welche weiteren Einstiegshilfen durch das elektronische
Format moglich sind. Wahrend bei einem Buch der Leser zunédchst das Kapitel aufschlagen
muss, in dem die Einstiegshilfen beschrieben werden, ist es bei einem Repository in Form
einer Webanwendung sehr viel einfacher, den Benutzer zu fithren. Diese Aufgabe soll ein
Wizard bzw. Assistent iibernehmen, in welchem der Benutzer neben den oben beschriebe-
nen Einstiegspunkten auch noch weitere Moglichkeiten hat, sich effizient Wissen tiber die
vorhandenen Patterns anzueignen.

59

4 Konzeptionelles Design

Als Einstieg soll es zundchst eine Auswahl zwischen den moglichen Vorgehensweisen geben,
bei welchen der Benutzer Schritt fiir Schritt von dem Assistent geleitet wird. Eine weitere
Komfortfunktion, welche in dem Pattern Repository als Mehrwert im Vergleich zu einem
normalen Buch integriert sein soll, ist das Vorhandensein einer ,Leseliste”. Darin kann sich
der Benutzer einzelne Patterns oder ganze Patternkapitel speichern, die er noch bearbeiten
mochte, bzw. der Assistent kann dem Benutzer gewisse Vorschldge auf seiner Liste eintragen.
Im Vergleich zu einem Buch féllt nun das wiederholte zuriickbldttern zu den Empfehlungen
weg, und die Liste kann wahrend des Lesens um weitere Eintrdge erweitert werden. Diese
Leseliste kann auch als weiterer moglicher Einstiegspunkt verwendet werden, indem die
semantischen Annotationen im Wiki fiir dynamisch zusammengestellte Querys verwendet
werden. So kénnen dem Benutzer intelligente Vorschldge auf Basis der in der Leseliste
enthaltenen Patterns gemacht werden, welcher dieser im Rahmen eines iterativen Vorgehens
erneut in seiner Leseliste abspeichern kann.

Die im Folgenden beschriebenen Einstiegspunkte wurden entwickelt, um den Benutzer im
Falle von spezifischen Wiinschen zu unterstiitzen und neue Perspektiven bei der Bearbeitung
von Patterns zu bieten.

Zieleigenschaften

In Abschnitt 4.2.2 wurde bereits beschrieben, aus welchen Griinden es sinnvoll sein kann,
Patterns mit Zieleigenschaften zu annotieren, mit welchen sie korrelieren. Um nun Vorteile
aus diesen semantischen Informationen zu ziehen, soll der Benutzer eine Zieleigenschaft
oder eine Reihe von Zieleigenschaften angeben konnen, zu welchen dann Patterns aufgelistet
werden, welche moglichst stark mit den gewiinschten Eigenschaften korrelieren. Da es die
Moglichkeit gibt, beliebige Attribute fiir die Beziehung eines Patterns zu einer Zieleigen-
schaft zu definieren, miissen diese Attribute auch auswéhlbar sein. Das Ergebnis soll in
tabellarischer Form préasentiert werden, so dass die Eintrdge nach der Korrelationsstarke zu
den gewdhlten Zieleigenschaften mit den Attributen der Relation sortiert sind.

Dies ermoglicht eine vollig neue Herangehensweise fiir den Umgang mit einem Pattern-
katalog. Zuvor war der Leser bzw. Benutzer immer an die Kategorien und die Ratschlidge
gebunden, welche die Autoren der Patterns definiert haben. Dabei konnte es sehr schwie-
rig sein, niitzliche Patterns zu finden wenn man dabei nur an gewissen eingeschrankten
Aspekten interessiert ist, welche die Patterns behandeln. Auch das Design eines kompletten
neuen Systems anhand von Patterns wird im Normalfall eher durch gewisse Ziele definiert
sein, als anhand von Problemen, iiber welche sich die Patterns definieren. Dabei ist es
auch egal, ob das System nun ein neues Bauwerk sein soll [AIST77], ein Kostiim fiir einen
Film [SBLE12], eine objektorientierte Software [JGVHg5] oder eine Anwendung im Cloud
Computing Umfeld [FEL" 12]. Allerdings muss die Ontologie der Zieleigenschaften immer
an den Bereich angepasst sein, in welchem sich die Patterns ansiedeln. Da sich die Zielei-
genschaften auf einer sehr hohen Abstraktionsebene befinden, diirfte es aber beispielsweise
geniigen, fiir Patterns unterschiedlicher IT-Bereiche die gleiche Ontologie von allgemeinen
IT-Eigenschaften zu verwenden.

60

4.3 Verwendung des Pattern Repositorys

Anwendungsgebiete (Solutions)

Ein vollig entgegengesetzter Ansatz im Vergleich zu den bisher aufgefiihrten Einstiegspunk-
ten ist die Auswahl eines Anwendungsgebiets, von welchem bekannt ist, dass das Pattern
daraus stammt oder darin verwendet wird. Den Ansatz, von einer hohen Abstraktionsebene
aus mit grundlegenden Patterns zu beginnen, oder auch aufgrund einer gewtiinschten Zielei-
genschaft die Patterns auszuwihlen, konnte man als ,, Top-Down*-Ansatz betrachten. Von
grundlegenden Patterns auf einer hohen Abstraktionsebene bewegt man sich in Richtung
niederer Abstraktionsebenen mit spezialisierten Patterns oder von einer Zieleigenschaft aus
zundchst tiber abstraktere Patterns zu spezielleren Patterns hin.

Die Patternauswahl von den Anwendungsgebieten heraus stellt im Vergleich dazu den
,Bottom-Up”-Ansatz dar. So werden Produkte und Losungen betrachtet, die zuvor dazu
verwendet wurden, durch Abstraktion des zugrunde liegenden geldsten Problems Patterns
zu entdecken. Diese Anwendungsgebiete werden in einigen Patternkatalogen, wie z.B. in
[FEL*12] und [HWo3] in einem extra Abschnitt unter Known Uses erwdhnt. Dabei gibt
es nirgends einen Index, um {iiber die Anwendungsgebiete alle Patterns zu finden, die
darin verwendet werden bzw. daraus stammen. Es wire allerdings durchaus denkbar,
dass ein Benutzer an ein gewisser Produkt oder Anwendungsgebiet bereits gebunden ist,
und zunidchst wissen mochte, welche Patterns in dem Produkt verwendet werden und
anschliefSend herausfinden mochte, welche weiteren Patterns sich besonders im Kontext mit
diesem Produkt anbieten wiirden.

Als Beispiel hierfiir soll ein Anwendungsgebiet bzw. ein Produkt aus [FLR"13] dienen:
Amazon CloudFront'. Nehmen wir an, ein Entwickler einer Cloud Computing Anwendung
ist aus einem bestimmten Grund, beispielsweise einer Partnerschaft seiner Firma mit Amazon,
an dieses Produkt gebunden und mochte nun herausfinden, welche Patterns sich in diesem
Umfeld verwenden liefien bzw. welche Patterns denn schon zum Einsatz kommen. Dann
wiirde er durch die Verwendung des Pattern Repository-Assistenten herausfinden, dass
CloudFront die Patterns Content Distribution Network und Blob Storage realisiert bzw. die
beiden Patterns aus den konkreten Anwendungsfallen bei CloudFront abstrahiert wurden.
Von diesen beiden Patterns aus kann der Benutzer entweder direkt iiber die Patternseiten
oder tiber den Umweg der Empfehlung aufgrund der Leseliste (siehe folgenden Abschnitt) sich
die nédchsten Patterns anzeigen lassen, die bei eventuell auftretenden Problemen eine Losung
fiir ihn beinhalten konnten. Eine notige Entscheidung wire z.B., ob er sich fiir das Pattern
Strict consistency, oder Eventually consistency entscheidet. Von diesen Patterns aus kann sich
der Benutzer durch viele Einzelentscheidungen bei gewissen Designprobleme langsam ein
System aus Patterns zusammenstellen. Zuletzt kann er von den Patterns aus wiederum nach
moglichen Losungen schauen, welche die ausgewihlten Patterns realisieren.

Thttp://aws.amazon.com/de/cloudfront/

61

http://aws.amazon.com/de/cloudfront/

4 Konzeptionelles Design

Empfehlungen aufgrund der Leseliste

Ein weiterer Ansatz, welcher bei der inkrementellen Zusammenstellung einer Leseliste sehr
hilfreich sein kann, sind Empfehlungen auf Basis der Patterns, welche sich bereits in der
Leseliste befinden. Dabei kann man die Leseliste als Hilfe fiir die Zusammenstellung eines
schliissigen Systems betrachten, zumindest falls der Benutzer keine sich widersprechende
Patterns auf die Liste hinzufiigt. Die Grundidee fiir diese Art, einen Patternfundus zu benut-
zen, stammt aus [FLR " 11]. In diesem Paper wurde eine Entscheidungsempfehlungstabelle
vorgestellt, welche eine Matrix darstellt, in welcher die Beziehungen von Patterns zueinan-
der in Form von drei Beziehungstypen ausgedriickt werden: Starke Zusammengehorigkeit,
Ausschluss und neutral. Ubertragen auf das Pattern Repository wiren diese Informationen
in Form von semantischen Links auf den einzelnen Patternseiten gespeichert, wodurch man
bei der semantischen Annotation implizit auch eine solche Entscheidungsempfehlungsma-
trix erzeugt, welche aber mehr Beziehungstypen zulédsst, und daher feinere Empfehlungen
ermoglicht.

Basierend auf den Beziehungstypen Combining, welcher die starke Zusammengehorigkeit
zweier Patterns ausdriicken kann, sowie Competing, welcher zum Ausdruck eines Aus-
schlusses dient, lassen sich anhand einer aggregierenden Query intelligente Empfehlungen
aussprechen. Diese Query soll die Menge aller Patterns mit starker Zusammengehorigkeit zu
den aktuellen Patterns in der Leseliste berechnen unter Entfernung solcher Patterns, welche
sich gegenseitig ausschliefsen. Zusatzlich ware es auch moglich, temporadre Abhdngigkeiten in
die Empfehlungsliste mit einfliefsen zu lassen, so dass lediglich Patterns empfohlen werden,
welche eine direkte oder transitiv berechnete Consider Before-Relation zu den Patterns in der
Liste besitzen. Diese Art der Empfehlung von weiteren Patterns diirfte viel benutzerfreundli-
cher sein, als das mithsame Absuchen einer riesigen Empfehlungsmatrix, was bei bereits
vielen verwendeten Patterns beinahe unmoglich sein diirfte.

4.3.3 Weiteres Navigieren

Mithilfe dieser verschiedenen Einstiegsmdoglichkeiten wird der Endnutzer des Systems wenig
Schwierigkeiten haben, sich einen Einstieg in das Pattern Repository zu suchen. Sind die
ersten Schritte geschafft, stellt sich die Frage, wie die weitere Navigation geschehen soll.
Dafiir ist es wichtig, das jedes Pattern in dem Repository iiber eine Art ,Interface” verfiigt,
welches sichtbar macht, wo sich das aktuelle Pattern in der Patternsprache befindet und
wie man von dort aus weiter navigieren kann. Das Interface besteht zum einen aus der
klassischen Art der Navigation in Form von Hyperlinks, wie sie auf jeder normalen Webseite
auch verfiigbar ist. Dies kommt vor allem in Abschnitten in Form von Prosatext vor, in
welchen direkte Verweise auf andere Patterns enthalten sind, wofiir auch keine semantischen
Informationen benétigt werden. Die zusatzlichen Moglichkeiten der Navigation ergeben
sich aus den semantischen Links auf andere Patterns. Diese konnen fiir jedes Pattern am
Ende durch Querys gesammelt und in tabellarischen Form aufbereitet werden, so dass man
beispielsweise auf einen Blick sieht, mit welchen Patterns sich das aktuelle Pattern denn gut
kombinieren liefle, oder welche Patterns konkurrierende Alternativen sind. Dies ermoglicht

62

4.4 Resultierendes Datenmodell

ein systematisches weiteres Vorgehen des Benutzers entlang der Patternsprache unter voller
Ausnutzung der zur Verfiigung stehenden semantischen Informationen.

Wenn man diese tabellarische Auflistung mit der Entscheidungsempfehlungsmatrix aus
[FLR*"11] vergleicht, entsprechen die unterschiedlichen Tabellen einer Zeile in der Matrix.
Dabei ist die Auflistung in dem Pattern Repository insofern effizienter, da sie es ermoglicht,
auf einen Blick alle Patterns mit starker Zusammengehorigkeit oder alle sich ausschlieflende
Patterns anzuzeigen, ohne dabei erst nach den entsprechenden Zeichen in einer Matrix
suchen zu miissen.

4.4 Resultierendes Datenmodell

Aus dem bisher beschriebenen Design resultiert ein Datenmodell, das in diesem Abschnitt
detailliert beschrieben werden soll. Fiir die flexible Modellierung des Datenmodells werden
mehrere OWL-Ontologien benutzt, zu deren besserem Verstiandnis eine Erklarung in Ab-
schnitt 2.3.5 vorhanden ist. Im weiteren Ablauf werden die Ontologien durch ein Programm
geparst, um in ein entsprechend vorbereitetes Repository importiert werden zu konnen. Erst
nach dem Import ist die Funktionalitdt beztiglich dem Erstellen und Annotieren von Patterns
moglich, was am Anfang des Kapitels in Abbildung 4.1 dargestellt ist. In dem Diagramm
befindet sich das Datenmodell jeweils links von den jeweiligen Funktionen, welche durch
das Modell beschrieben sind, da ohne das Datenmodell beispielsweise auch kein Formular
erzeugt werden kann. Der Importvorgang ist detailliert in Abschnitt 5.3 beschrieben.

Das generelle Problem bei der Durchsetzung eines klar definierten Datenmodells in einem
Wiki ist, dass Wikis urspriinglich fiir eine moglichst nicht in der Form eingeschrankte Samm-
lung von Informationen entwickelt wurden. Diesem allgemeinen Problem wirken nun zwei
Faktoren entgegen. Zum einen wird durch die Verwendung von Semantic Mediawiki generell
die Moglichkeit eingefiihrt, Daten zu strukturieren und dadurch in Querys verwendbar zu
machen. Zum anderen gibt es in Mediawiki das Konzept der Templates, um das Datenmodell
von Artikeln zu vereinheitlichen [HLSo5]. Ohne die Verwendung von Templates kann es z.B.
vorkommen, dass jeder Artikel, der eine Stadt beschreibt, ein leicht anderes Format aufweist.
Mit der Verwendung von Templates, deren Funktionsweise detaillierter in Abschnitt 2.3.6
beschrieben ist, wird durch benannte Parameter ein konsistentes Format erreicht. Diese
Moglichkeit ist bei der Verwaltung von Patterns in einem Wiki von grofser Wichtigkeit, da
Patterns einen grofien Teil ihrer Zugdnglichkeit durch ein konsistentes Format innerhalb
der Patterndoméne erhalten. Dies wird beispielsweise in dem Paper [FLR " 11] tiefer begriin-
det, in welchem ein Patternformat fiir Cloud Computing Patterns vorgestellt wird, oder in
[MDg7], einem Standardwerk zum Verfassen von Patterns.

Es zeigt sich, dass das Datenformat im Wiki fiir die Patterns nicht direkt durch die Mo-
dellierung einer Tabelle fiir eine relationale Datenbank oder durch das direkte Importieren
einer OWL-Ontologie festlegbar ist. Stattdessen muss das Wissen iiber das Datenformat
in einem moglichst leicht maschinell lesbaren Format abgespeichert werden und dement-
sprechend auf die im Wiki zur Verfiigung stehenden Entitdten tibertragen werden. Auf
welche Elemente des Wikis welche Elemente der Ontologie iibertragen werden, soll nun

63

4 Konzeptionelles Design

OWL Semantic Mediawiki

Individual Normale Seite in einem Namespace fiir Inhaltsseiten
Class Seite im Namespace Kategorie

Subclass Seite im Namespace Kategorie, mit einem Kategorieeintrag

zu der Uberkategorie
Object Property | Semantisches Attribut im Namespace Property mit dem Typ

Page
Object Subproper- | Semantisches Attribut im Namespace Property mit dem
ty Typ Page sowie semantisches Attribut Subproperty 0f mit
Verweis zum Vaterattribut.
Data Property Semantisches Attribut im Namespace Property mit einem

anderen Datentyp als Page, z.B. String oder Date

Tabelle 4.1: Abbildung von OWL- auf Semantic Mediawiki-Elemente

im Folgenden erortert werden. In [VKo6] wurde beschrieben, wie OWL-Ontologien in eine
Semantic Mediawiki-Installation importiert werden kénnen und insbesondere, welche ,na-
tiirliche” Entsprechungen es in Semantic Mediawiki fiir die Elemente einer OWL-Ontologie
gibt. Seit dem Erscheinen des Papers 2006 hat sich jedoch das interne Semantic Mediawiki-
Datenmodell verdandert, weshalb in Tabelle 4.1 eine aktualisierte Tabelle aufgefiihrt ist. Im
Vergleich zu der Originaltabelle in [VKo6] hat sich insbesondere die Entsprechung von Object
und Data Properties verdndert, da es die zusitzlichen Namespaces Relation und Attribut
mittlerweile nicht mehr gibt.

Wenn es fiir alle Standardelemente aus OWL Entsprechungen in Semantic Mediawiki gibt,
stellt sich die Frage, warum nicht einfach die komplette Patterndoméane in OWL modelliert
und direkt in das Wiki importiert wurde? Dies ist darin begriindet, dass ein solcher direkter
Import lediglich statische Daten auf Seitengranularitdt in das Wiki laden kann, aber nicht
dafiir geeignet ist, die Datenstruktur des Wikis auf besondere Bediirfnisse anzupassen. Die
Ebene der Datenstruktur, die durch einen solchen Import von statischen Inhalten in das
Wiki verdandert werden kann, ist die Ebene der semantischen Attribute, Kategorien und
Seiten, also auf sehr grober Granularitit. Fiir die Anforderungen an das Pattern Repository
ist dagegen eine Anpassung des Datenmodells auf einer viel niedereren Ebene bzw. feineren
Granularitdt notig: die Strukturierung von Daten innerhalb von Seiten durch verschiedene
Templates und semantische Attribute sowie die automatische Erzeugung von Unterinhalten
auf gewissen Seiten. Ein besonderer Anwendungsfall stellt hier auch die Konstruktion des
Formulars dar, welche anhand der vorgegebenen Patternstruktur sehr flexibel sein muss,
gleichzeitig aber eine komplexe Vielfalt von Moglichkeiten beinhaltet.

Dartiber hinaus ist die Technologie OWL nicht dafiir gedacht, groflen strukturierten Prosatext
aufzunehmen, sondern mehr um strukturelle Beziehungen zwischen Entitidten und Wissen
tiber Taxonomien und deren Beziehungen auszudriicken. Im Fall des in dieser Diplomarbeit
entwickelten Pattern Repository werden die OWL-Ontologien dafiir genutzt, um das Wissen
tiber die Form des Datenmodells abzuspeichern, welches von dem Importprogramm in
das Wiki geladen wird. Es gibt dafiir eine Ontologie, welche das Kerndatenmodell fiir die

64

4.4 Resultierendes Datenmodell

Patterns sowie die semantischen Relationstypen zwischen den Patterns enthilt, und eine
andere optionale Ontologie, welche eine Taxonomie der moglichen Zieleigenschaften und
eine Beschreibung der Attribute der n-dren Relation enthalt.

4.4.1 OWL-Ontologie: Kerndatenmodell

Zunichst soll die Ontologie, die das Kerndatenmodell beschreibt, genauer betrachtet werden.
Obwohl die ganze Ontologie tiber unterschiedliche Beziehungen sehr in sich vernetzt ist,
soll versucht werden, die Betrachtung auf gesonderte einzelne Abschnitte zu lenken, um das
Verstdndnis der Zusammenhédnge zu vereinfachen.

Kategorien

Cloud
Application
Manageme
nt Patterns

Legende

S has Subclass

Cloud
Offering
Patterns

Composite
Cloud
Application
Patterns

Cloud
Computing
Patterns

Cloud
Computing
Funda-
mentals

Category
Hierarchy

Cloud
Application
Architec-
ture

Abbildung 4.6: Datenmodell - Kategorien

Wenn fiir eine bestimmte Doméne bereits viele Patterns gefunden wurden, besteht im
Normalfall auch bereits eine Kategorisierung der Patterns, d.h. bei Patternkatalogen in
Buchform eine Einordnung der Patterns in Kapitel. Diese Kategorisierung ladsst sich in
der Klasse CategoryHierarchy der Ontologie direkt ,einhdngen”, d.h. die Taxonomie der
Kategorien kann als Klassenhierarchie zu der Uberklasse CategoryHierarchy hinzugefiigt
werden. In Abbildung 4.6 ist die oberste Ebene einer solche Taxonomie anhand eines Beispiels
aus den Cloud Computing Patterns visualisiert [FLR " 13]. Dabei dient die hier vorkommende

65

4 Konzeptionelles Design

Klasse Cloud Computing Patterns als Uberkategorie fiir die jeweilige Patterndoméne, wobei
der Begriff ,,Cloud Computing” durch die Doménenbezeichnung ersetzt wird. Die Klasse
Solutions aus der Abbildung dient als Uberkategorie fiir mogliche Anwendungsfille von
Patterns, die ins Repository eingepflegt werden konnen. Beim Import wird nun fiir jede
vorhandene Klasse eine neue Kategorie im Wiki erzeugt, wobei die Information {iber die
Unterklassen anhand der has Subclass-Beziehung durch Unterkategorien erhalten bleibt.
Zusétzlich ist es moglich, tiber die Object Property HasVisualizationGraph festzulegen, dass
auf einer bestimmten Kategorieseite einer der verfiigbaren Visualisierungsgraphen verwendet
werden soll.

Die Datenstruktur fiir die Zuweisung von Visualisierungsmoglichkeiten ist in Abbildung
4.7 abgebildet. Die Klasse Visualization dient der Speicherung von zur Verfiigung stehenden
Visualisierungsmoglichkeiten im Repository, wobei es in der Abbildung lediglich die Unter-
klasse Graph gibt. Momentan gibt es zwei unterstiitzte Graphtypen: Den PAREPTree, dessen
Implementierung in 5.5.5 beschrieben ist, und den sog. Hypergraph aus der Semantic Graph-
Erweiterung, welche in Abschnitt 2.3.7 beschrieben ist. Da dies konkrete Graphinstanzen
sind, wurden sie als Individuen modelliert, was an der Darstellung als Rechteck erkennbar
ist. Es sei angemerkt, dass beliebige weitere Graphtypen in die Ontologie eingefiigt werden
konnen, wenn entsprechend auch das Importprogramm erweitert wird, das fiir das Parsen
der Ontologie zustdndig ist.

Legende

N has Subclass

———> hasIndividual
——— hasVisualizationGraph PAREPTree
Visuali-
zation
Hypergraph

Cloud
Computing
Patterns

Category
Hierar-
chy

Abbildung 4.7: Datenmodell - Visualisierung

66

4.4 Resultierendes Datenmodell

Fiir die Object Property HasVisualizationGraph wurde als Domain die Klasse Cloud Com-
puting Patterns? gewihlt, und als Range die Klasse Graph. Damit wird ausgedriickt, dass
fiir Individuen der Klasse Cloud Computing Patterns die Moglichkeit besteht, einen Graph
zur Visualisierung aus der Klasse Graph zu besitzen. Um nun fiir eine Kategorieseite einen
Visualisierungsgraphen zu wahlen, wird zunéchst ein Individuum fiir die konkrete Seite
erstellt. Fiir dieses kann anschlieffend in Form einer Object Property Assertion ein Graphin-
dividuum aus der Klasse der verfiigbaren Graphen ausgewdhlt werden. In der Abbildung
gibt es beispielsweise die durch einen griin gestrichelten Pfeil dargestellte Object Property
Assertion HasVisualizationGraph von der Kategorieseite Cloud Computing Patterns zu
Hypergraph. Unterschiedliche Graphtypen benotigen im Normalfall auch verschiedene Ein-
gabeparameter, welche fiir die Erzeugung des Wikicodes fiir den entsprechenden Graphen
benotigt werden. Um eine Moglichkeit zu haben, solche zusatzlichen Parameter ebenfalls in
der Ontologie abzulegen, wurde dafiir eine Data Property Style eingefiihrt. Auf diese Weise
konnen die notigen Parameter iiber eine Data Property Assertion fiir das entsprechende
Kategorie-Individuum gespeichert werden. Statt einer Data Property wire auch eine Annota-
tion Property zum Speichern dieser Art von zusatzlichen Informationen moglich gewesen.
Diese Designentscheidung wurde aufgrund der Tatsache getroffen, dass sich Data Property
Assertions komfortabler mit der fiir den Zugriff auf OWL-Daten verwendeten Jena RDF-API
des Importprogramms parsen lassen.

Falls das Pattern Repository dazu benutzt werden soll, einen komplett neuen Patternfun-
dus aufzubauen, ist es auch moglich, ohne einen bereits existierenden Kategoriebaum zu
beginnen. Gewiinschte Visualisierungsmoglichkeiten kéonnen entsprechend von Hand auf
Kategorieseiten eingeftigt werden.

Patternstruktur

Die Patternstruktur bzw. das Patternformat kann als Kern eines Patternkatalogs bezeichnet
werden. Im Fall des Pattern Repositorys wird dieses Format iiber eine Reihe von Templates
definiert, welche das Datenformat der Patterns definieren und dazu benétigt werden, die
Eingabe tiber ein einheitliches Formular zu ermdoglichen. Die Generierung der Templates
und des Formulars wird iiber den Importer gesteuert und hiangt von dem in der Ontologie
konfigurierten Format ab. Neben den Informationen, welche Abschnitte es in einem Pattern
geben soll, miissen auch Informationen iiber die Art der Abschnitte, {iber eventuelle For-
matierungsoptionen fiir die Templates sowie fiir die korrekten Eingabetypen im Formular
gespeichert sein.

Diese Informationen sind in dem Ausschnitt aus der Ontologie des Kerndatenmodells
in Abbildung 4.8 modelliert. Die Klasse Section ist als Unterklasse von ContentElement
modelliert, so dass es in Zukunft auch moglich ist, weitere Arten von Inhaltselementen
einzufiihren. Die tatsdchlichen Abschnitte sind Individuen der Klasse Section, so dass sich

?In anderen Doménen wiirde die Klasse statt mit ,,Cloud Computing” mit dem entsprechenden Dom&dnennamen
beginnen.

67

4 Konzeptionelles Design

die notigen Beziehungen zu anderen Klassen anhand von Object Property Assertions auf den
Individuen darstellen lassen. Der orange Pfeil in der Abbildung steht fiir die Object Property
hasInputType von der Klasse Section zu der Klasse FormInputType, in welcher verfiigbare
Eingabentypen fiir das Pattern-Eingabeformular gespeichert sind. Der griine Pfeil von der
Klasse SemanticProperty nach Section visualisiert die Object Property allowsSection, welche fiir
die Zuweisung von Relationstypen zu Abschnitten benutzt wird. Anhand dieser Zuweisung
wird bestimmt, welche Relationstypen fiir einen Abschnitt erlaubt sind, d.h. zur Annotation
angezeigt werden, und welche nicht.

In Abbildung 4.8 ist beispielhaft anhand des Patternformats fiir Cloud Computing Pat-
terns aus [FEL'12] dargestellt, welche Individuen die Klasse Section haben kénnte. Um
die Ubersicht zu wahren, wurden lediglich fiir drei zuféllig ausgewdhlte Individuen deren
hasInputType-Beziehung angezeigt. Die Abschnitte Intent und Driving Question verwenden
beide den gleichen Eingabetyp namens Semantic Textarea, was in der Abbildung anhand der
von den beiden Individuen ausgehenden orange gestrichelten Pfeilen dargestellt ist. Der
Abschnitt Sketch dagegen verwendet den Eingabetyp ImageWithLabel, was ebenfalls anhand
eines orange gestrichelten Pfeils ersichtlich ist. Die Klassenzugehorigkeit der beiden Einga-
betypen ist in dieser Abbildung nicht dargestellt. Dazu gibt es eine detaillierte Darstellung
der Modellierung der Eingabetypen in Abbildung 4.10. Die ndheren Beschreibungen zu dem
semantischen Hintergrund der unterschiedlichen Typen sind in Abschnitt 4.1.1 zu finden. Die
Implementierungen der Eingabetypen Semantic Textarea, Number Slider und Target Props sind
in Abschnitt 5.5 detailliert beschrieben. Die Klasse FormInputType wurde als Unterklasse
von InputType modelliert, um bereits einen moglichen Ankniipfungspunkt fiir die Definition
von weiteren Eingabetypen fiir andere Entitdten innerhalb des Wikis zu bieten. Der orange
Pfeil von Form zu FormInputType sagt aus, dass Instanzen der Klasse Form verschiedene
Eingabetypen haben konnen. Zusatzlich erlaubt der Pfeil von Section zu FormInputType die
individuelle Definition von Eingabetypen spezifisch pro Abschnitt.

Legende

N has Subclass

— allowsSection

—— hasinputType

Content
Element

Section

Seman-
ticProp-
erty

Relation

Abbildung 4.8: Datenmodell - Ubersicht iiber die Abschnittsbeziehungen

68

4.4 Resultierendes Datenmodell

Legende Category
Yy, .
5 has Subclass Section
——> has Individual
Context
——> haslnputType
Driving

Question [\

lcon i Semantic
,71 Textarea

Intent

Known Uses

Content

Element
Related

Patterns

Result

ImageWithlLa

-
Sketch bel

Solution

y Target
Properties

Variations

Abbildung 4.9: Datenmodell - Abschnitte

4 Konzeptionelles Design

Die bis jetzt noch fehlenden Informationen betreffen die Darstellung der Patterns als fertige
Seite, nachdem eine Eingabe iiber das Formular getitigt wurde. Neben der Angabe der
entsprechenden Eingabetypen, soll es auch die Moglichkeit geben, fiir einzelne Abschnitte
Formatierungsmoglichkeiten fiir die entsprechenden Inhalte angeben zu konnen. Dartiber
hinaus soll es auch moglich sein, die Reihenfolge der Abschnitte zu bestimmen, in welcher
sie in dem resultierenden Element auftreten sollen. Da dies bei der Modellierung in OWL
nicht direkt moglich ist, wurde der Umweg tiber eine Data Property gewdhlt. Die dafiir
eingefiihrte Data Property OrderValue vom Typ postitiveInteger wird daher benutzt, um
jedem Abschnitt einen Index zuzuweisen. Konkret im Datenmodell ist dies als Data Property
Assertion auf allen Individuen der Klasse Section modelliert. Eine Schwierigkeit ist hierbei,

Legende
Category
S has Subclass

——> has Individual
Image

——> hasinputType

ImageWith
Label

None

Number
Slider

Semantic
Textarea

TargetProps

Textarea

VarRelations

Abbildung 4.10: Datenmodell - Eingabetypen des Formulars

70

4.4 Resultierendes Datenmodell

dass darauf geachtet werden muss, dass keine Indices doppelt verteilt werden, da dies beim
Parsen dazu fiihren wiirde, dass eines der beiden Elemente mit gleichem Index ignoriert wird.
Die Data Property Style wird schliefilich dazu benutzt, um Formatierungen fiir Elemente
angeben zu konnen. Dabei gibt es folgende giiltige Optionen:

e heading: Gibt an, ob fiir den Abschnitt ein abgetrennter Textabschnitt mit fettgedruck-
ter Uberschrift erzeugt werden soll, oder lieber ein Abschnitt mit etwas kleinerer
Uberschrift, der keinen Absatz erzeugt. Der angegeben Wert entspricht der Uberschrift.

e headingStyle: Gibt eine mogliche Textformatierung fiir die Uberschrift an.

e position: Erlaubt es, fiir eingebundene Bilder die Position innerhalb der Seite zu
bestimmen.

e htmlElement: Erlaubt die Angabe eines beliebigen HTML-Elements, in welchem der
Eingabetext gespeichert werden soll.

e htmlElementAttributes: Erlaubt die Angabe von Attributen, falls ein HTML-Element
angegeben wurde. Dabei sind nur solche Attribute giiltig, die fiir das oben angegebene
Element giiltig sind.

Patternrelationen

Die Moglichkeit, Relationen zwischen Patterns durch unterschiedliche Linktypen auszu-
driicken, setzt voraus, dass zuvor die besonderen Charakteristiken dieser Relationen definiert
wurden. Wieso es welche Linktypen gibt, wurde in Abschnitt 4.2.1 erkldrt. Des Weiteren soll
der Anforderung gentigt werden, dass nicht alle semantischen Linktypen fiir alle Abschnitte
zur Verfligung stehen. Dazu ist es nétig zu speichern, welcher Linktyp fiir welchen Abschnitt
erlaubt ist. Diese Fiille an Informationen wurde in einem Teil der Kernontologie modelliert,
welcher in Abbildung 4.11 dargestellt ist.

Die Klasse Relation in Abbildung 4.11 erlaubt es, allgemeine Charakteristika von Pattern-
relationen zu beschreiben, ohne dabei bereits spezifisch an eine Technologie gebunden zu
sein. Die fiir Semantic Mediawiki spezifische Stufe beginnt dabei erst ab er Klasse Semantic
Property, und spaltet sich von dort aus auf. Von der Klasse Filter aus gibt es eine Object
Property filtersRelation zur Klasse Relation, um ausdriicken zu kénnen, dass eine gewisse
Relation filterbar ist. Dies ist als roter durchgezogener Pfeil dargestellt, driickt also eine
Domain-Range-Definition aus. Das Filtern bezieht sich hierbei auf die Eignung fiir Drilldown-
Operationen, wofiir beispielsweise eine Verkniipfung des Filters mit einem semantischen
Attribut bestehen muss. Von der Klasse Relation gibt es eine Object Property hasRelationType
zur Klasse RelationType, welche dafiir verwendet wird, Individuen der Klasse Relation einen
Relationstyp zuweisen zu konnen. Momentan gibt es zwei unterschiedliche Relationstypen,
die nach dem Vorbild von OWL-Object Properties ausgewidhlt wurden: Symmetric und Transi-
tive, welche in der Abbildung als Individuen dargestellt sind. Auf weitere Charakteristiken,
die es zwar fiir OWL Object Propertys gibt wurde verzichtet, da sie entweder nicht abbildbar
auf Semantic Mediawiki sind oder nicht bendtigt werden. Dabei wird von den Standardwer-
ten dieser beiden Attribute ausgegangen, wenn einem Individuum der Klasse Relation keiner

71

4 Konzeptionelles Design

der Relationstypen zugewiesen wird. Eine Relation ist dadurch standardmaéfiig asymmetrisch
und nicht transitiv. Dies wurde nach dem Bestimmen der notigen Charakteristiken fiir die
gewdhlten semantischen Attribute so gewdhlt, da die Mehrzahl der Relationen asymmetrisch
und nicht transitiv sind.

Legende
S has Subclass

——> has Individual

Symmetric
—— allowsSection

Transitive

/1

hasRelationType

— filtersRelation

Combining
Relation . Aggrega . ‘\
Type Section _tion Competing \“
Completing \

Implemented \‘\
By

DependsOn L
Relation

Semantic
Property

Associa-
tion

Related

y; Patterns
Consider |/
4 Before kY
N Context
Association

Specia-

Specialisation
lisation

of

Abbildung 4.11: Datenmodell - Semantische Attribute

72

4.4 Resultierendes Datenmodell

Ein Beispiel fiir eine solche Zuordnung findet sich in Abbildung 4.11 anhand des semanti-
schen Attributs Combining, welches symmetrisch und transitiv ist. Dies wird in der Abbil-
dung als gelb gestrichelter Pfeil dargestellte Object Property Assertion von hasRelationType
modelliert, der Combining mit Symmetric und Transitive verbindet. Die ndchste Information,
welche fiir das Datenmodell benétigt wird, ist die Zuordnung von semantischen Relatio-
nen zu den entsprechenden Abschnitten des Patternformats. Bei der Annotation tiber das
Patternformular sollen pro Abschnitt nur bestimmte semantische Attribute zur Verfiigung
stehen, und diese Zuordnung von Attributen zu Abschnitten muss im Datenmodell definiert
werden. Dafiir wurde die Object Property allowsSection eingefiihrt, welche zwischen den
Klassen SemanticProperty und Section iiber Domain und Range definiert wurde. Dadurch ist
es moglich, Individuen der Klasse SemanticProperty mit Individuen der Klasse Section iiber
Object Property Assertions von allowsSection in Verbindung zu bringen. Ein Beispiel fiir die
allowsSection-Relation in der Abbildung findet sich in Form der griin gestrichelten Pfeile.
Dabei wurden jedoch bewusst nicht alle existierenden allowsSection-Relationen dargestellt,
um die Ubersicht zu waren. Aus der Abbildung ldsst sich anhand dieser Relation beispiels-
weise entnehmen, dass das Individuum ConsiderBefore der Klasse SemanticProperty zur
Annotation im Abschnitt Context zugelassen ist. Context ist dabei ein Individuum der Klasse
Section, was jedoch aus Ubersichtsgriinden in der Abbildung ebenfalls nicht dargestellt ist.

4.4.2 OWL-Ontologie: Zieleigenschaften

Um die Annotation von Zieleigenschaften im Pattern Repository zu ermoglichen, muss
es einen gewissen Rahmen geben, in welchen je nach Patterndomédne Ontologien von
Zieleigenschaften eingehdngt werden konnen. Zusitzlich soll auch die Beziehung zu den
Zieleigenschaften beliebige Beziehungsattribute besitzen konnen, weswegen diese Attribute
ebenfalls frei in der Ontologie definierbar sein miissen.

Ein mogliches Design fiir eine solche Ontologie ist in Abbildung 4.12 dargestellt. Zunéchst
ist anhand der Klassenhierarchie in der Abbildung von ContentContainer, Page und Pattern
modelliert, von welchem Inhaltselement auf Zieleigenschaften verweisen werden kann. Dies
ist durch den grauen Pfeil von Pattern nach TargetRelation anhand der Object Property target
festgelegt, so dass Patterns auf Zieleigenschaften verweisen konnen. Der Verweis geschieht
aufgrund der in Abschnitt 4.2.2 erldutert Problematik von n-dren Beziehungen in OWL aber
lediglich indirekt. Die leere zusétzliche Klasse TargetRelation wurde als Zwischenknoten
eingefiihrt, welcher als Zielobjekte Individuen aus der Klasse Target Properties annimmt
und weitere beliebige Attribute aufweist. Der tatsdchliche Verweis auf die Zieleigenschaften
geschieht iiber die in der Abbildung lila dargestellte Object Property Target Object. Als
zusidtzliches Beziehungsattribut gibt es die Klasse TargetImpact, welche zwei Individuen
beinhaltet: Decrease und Increase. TargetImpact ist eine Unterklasse von TargetRelation, und
steht tiber die Tiirkis dargestellte Object Property Target_Impact in Verbindung, was zum
Verweis von Individuen von TargetRelation auf Individuen von TargetImpact notig ist.

Auf diese Weise ldsst sich zu einer konkreten Zieleigenschaft-Relation ein konkreter Einfluss
zuordnen. Zusammen mit der Object Property target_Correlation soll es somit moglich
sein, die Korrelationsstdrke eines Patterns zu einer Zieleigenschaft anzugeben. Dartiiber

73

4 Konzeptionelles Design

hinaus ist es durch die Angabe der Richtung des Einflusses moglich, Aussagen zu treffen
wie: , Pattern Xyz steht mit einer Korrelation von 75% mit einem Sinken der Verfiigbarkeit in
Verbindung.”. Die Object Property fiir die Zieleigenschaft-Korrelation ist in Abbildung 4.12
nicht abgebildet, da sie zwar als Domain die Klasse Target Relation verwendet, als Range
aber die Data Property Correlation Range, welche einen Integer im Bereich von 0 — 100
erwartet. Damit wird ausgedriickt, dass target_Correlation von einem Individuum der Klasse
Target Relation auf eine Zahl im von Correlation Range definierten Wertebereich verweist. In
der Grafik ist bereits sichtbar, dass unter der Klasse Target Properties in der Ontologie eine
Klassenhierarchie von Zieleigenschaften eingehdngt werden kann. Als Beispiel wurde hier
IT-Target Properties gewdhlt, wobei hier eine beliebige fiir die Domédne modellierte Ontologie
von Zieleigenschaften stehen konnte. Um vom Parser gelesen werden zu konnen, ist es
notwendig, die Zieleigenschaften als Klassenhierarchie mithilfe der Beziehung has Subclass
zu modellieren.

4.4.3 Abbildung auf Semantic Mediawiki-Elemente

Der néichste Schritt nach der Definition des Datenmodells in einem nicht systemgebundenen
Format ist nun die Abbildung der Elemente aus der OWL-Ontologie auf Elemente, die es
in Semantic Mediawiki gibt. Abbildung 4.13 stellt eine Ubersichtsgrafik dar, in welcher die
verschiedenen Zuordnungen der Elemente zueinander abgebildet sind. Auf der linken Seite
finden sich die beiden Ontologien, die zum Zeitpunkt des Verfassens dieser Arbeit existieren

Legende
Content IT-Target &

Contain- Proper- 5 has Subclass

er ties

——> has Individual

target

——> target_Object

Page
Target_Impact
| Decrease
\ TN
Tar,
Pattern g.et
Relation
Increase

Abbildung 4.12: Allgemeine Ontologie zur Einbindung von Zieleigenschaften mit Legende

74

4.4 Resultierendes Datenmodell

in Form von Rechtecken: Die Kerndatenmodell Ontologie und die optionale Zieleigenschaften
Ontologie. Die Begriffe in Ellipsen stellen dabei OWL-Klassen dar. Auf der rechten Seite sind
die Elemente innerhalb von Semantic Mediawiki abgebildet, auf welche die Ontologieinhalte
nach dem Parsen durch das Importprogramm iibertragen werden.

Kerndatenmodell Semantic Mediawiki
Ontologie
Category X
@ Kategorien
@ Seiteninhalte
@ Konzepte
@ Patternformular

Zieleigenschaften
Ontologie

A4

Patterntemplates

Target
Properties

Attribute

Target
Relation

al

Abbildung 4.13: Mapping der OWL-Ontologien durch den Importvorgang. Legende: Gestri-
chelter Pfeil=Mapping

Die Frage, warum nun nicht direkt die Zuordnung aus Tabelle 4.1 verwendet werden konnte,
wurde zu Beginn dieses Abschnitts bereits erdrtert. In der folgenden Aufzahlung wird erklart,
auf welche Elemente im Wiki die Inhalte der Ontologie Einfliisse haben. Sollten dabei auch
Zuordnungen erwdahnt werden, die aus Abbildung 4.13 nicht direkt ersichtlich sind, liegt
das daran, dass zur Wahrung der Ubersicht nur die grofiten Einfliisse abgebildet wurden.
Die folgende Aufzdhlung der Abbildungen orientiert sich an den OWL-Klassen, die auf der
linken Seite der Grafik dargestellt sind.

o CategoryHierarchy: Die Klassenhierarchie, welche in der Ontologie als Unterklassen
von CategoryHierarchy gespeichert werden, wird auf die direkte Entsprechung im
Wiki, den Kategorien, abgebildet. Dabei findet die Unterklasse-Beziehung in den
Wiki-Unterkategorien ihre Entsprechung. Die Klassenhierarchie hat indirekt auch
Einfluss auf das Patternformular, da dort eine Auswahl zur Einordnung des Patterns

75

4 Konzeptionelles Design

76

in eine Kategorie zu Verfiigung steht, welche dynamisch von den Unterkategorien der
Kategorie CategoryHierarchy abgerufen wird.

Visualization: In der Klasse Visualization sind mogliche Visualisierungsarten gespei-
chert, welche in dem Pattern Repository verfiigbar sind. Uber die Relation HasVisualisa-
tionGraph kann beispielsweise direkt fiir einer der Kategorien aus CategoryHierarchy
ein Graph definiert werden, welcher den Inhalt der Kategorieseite darstellt.

Relation: Aus den Unterklassen der Klasse Relation werden im Wiki semantische
Attribute bzw. Linktypen erstellt, welche zur Vernetzung der Patterns verfiigbar sein
sollen. Die Information, fiir welche Patternabschnitte ein semantischer Linktyp zur
Verfiigung steht, wird {iber eine in einem Konzept gespeicherte Query dynamisch
abgerufen. Dafiir erhalten die Seiten, welche die semantischen Linktypen definieren,
ihrerseits wiederum ein semantisches Attribut allowsSection vom Typ String, in wel-
chem die erlaubten Patternabschnitte fiir den entsprechenden Linktyp hinterlegt sind.
Die erstellten Konzeptseiten werden spater von Funktionsmodulen der Erweiterung
Pattern Repository zur Annotation (Semantic Textarea und Property Dropdown, siehe
Abschnitt 5.5) verwendet, um nur erlaubte Linktypen anzuzeigen.

Section: Hier wird das eigentliche Patternformat gespeichert. Dabei beinhalten die
OWL-Klassen und Individuen aus der Klasse Section sowohl die Informationen tiber
das Format des Patternformulars, als auch die Informationen zur Generierung der Tem-
plates, welche das Erscheinungsbild der eingegebenen Daten des Formulars steuern.
In den Templates gibt es dabei fiir jeden Patternabschnitt einen benannten Parameter
zur Platzierung der Eingaben aus dem Formular in der entstehenden Wiki-Seite. Zur
Generierung des Formulars miissen von Semantic Forms akzeptierte Eingabetypen
verwendetet werden, sowie eine Zuordnung zu den in den Templates verwendeten
Parametern. Gédbe es in dem Formular keine Moglichkeit, ein Template mehrmals
zu instanziieren, wiirde ein einziges Template fiir das Patternformular gentigen. Da
es fiir das Patternformular allerdings die Anforderung gibt, gewisse Inhaltselemente
wegzulassen oder beliebig oft anzugeben, miissen die Templates fiir das Formular
entsprechend aufgeteilt werden. Die Verteilung muss dabei so geschehen, dass jeder In-
haltsblock, welcher beliebig oft im Formular verwendet werden kann, ein vollkommen
eigenes Template erhilt. Ein Beispiel fiir solch einen Abschnitt ist Related Patterns, der
zur Annotation beliebig vieler verwandter Patterns dient.

TargetProperties: In dem Fall, dass eine extra Ontologie mit Zieleigenschaften zur
Verfiigung gestellt wird, werden die Unterklassen von TargetProperties, eventuelle
Unterklassen von TargetRelation und dessen Individuen auf ein Geflecht von Attributen,
Kategorien, Konzepten und normalen Wikiseiten abgebildet. Fiir jede Unterklasse der
TargetProperties wird eine Kategorieseite und eine normale Wikiseite im Namespace
Ontologie erstellt, welche dazu dienen kann, eine Beschreibung zu der entsprechenden
Zieleigenschaft zu hinterlegen. Dabei werden alle Zieleigenschaftenseiten in eine
Uberkategorie TargetProperties eingeordnet, tiber welche mithilfe einer Konzeptseite
eine Liste aller vorhandenen Zieleigenschaften dynamisch tiber eine Query gefiihrt
wird. Zum Verweisen auf diese Zieleigenschaften wird ein semantischer Linktyp
Target eingefiihrt, der Patternseiten mit Zieleigenschaften verbindet, mit welchen

4.4 Resultierendes Datenmodell

diese korrelieren. Mithilfe der Klasse TargetRelation ist es moglich, Eigenschaften
der Relation zwischen Pattern und Zieleigenschaft in der Ontologie zu modellieren.
Ins Wiki werden diese anschlieffend abgebildet, indem fiir jede Kombination aus
Zieleigenschaft und Relationsattribut eine eigene semantische Eigenschaft erstellt wird,
was auch in Abschnitt 4.2.2 beschrieben ist. Gibt es zum Beispiel eine Zieleigenschaft
,Performance”, wird es auch ein semantisches Attribut ,PerformanceCorrelation”
geben, falls ein Relationsattribut ,Correlation” existiert.

Des Weiteren hat die Zieleigenschaftenontolgie auch Einfluss auf die Templates und das
Patternformular. Falls eine Ontologie mit Zieleigenschaften eingebunden wird, muss es
ein zusétzliches Template geben, welches einen Inhaltsbaustein enthélt, welcher einer
Zieleigenschaftsannotation entspricht. Dariiber muss dieses Template so im Formular
eingebunden werden, dass kein oder beliebig viele dieser Inhaltsbausteine erstellt
werden konnen.

77

5 Implementierung des Pattern Repositorys

Nach der Beschreibung des konzeptionellen Designs im vorherigen Kapitel, soll in diesem
Kapitel auf die Implementierung des Pattern Repositorys eingegangen werden, also der
Umsetzung des Entwurfs. Zunichst wird in Abschnitt 5.1 ein kurzer Uberblick {iber im
Mediawiki-Framework verwendete Technologien und die Besonderheiten bei der Entwick-
lung von Erweiterungen gegeben. Abschnitt 5.2 gibt eine Ubersicht der Systemarchitektur,
um die Anordnung der einzelnen Komponenten anhand eines Schichten-Modells deutlicher
zu machen. Im darauf folgenden Abschnitt 5.3 wird der Import des in Kapitel 4 beschriebe-
nen Datenmodells beschrieben. In Abschnitt 5.4 gibt es eine detaillierte Ausfithrung tiber das
durch den Import erzeugte Patternformular. Zuletzt wird in Abschnitt 5.5 auf das eigentliche
Herzstiick des entwickelten Systems eingegangen, der Semantic Mediawiki-Erweiterung
Pattern Repository.

5.1 Web-Entwicklung mit dem Mediawiki-Framework

In diesem Abschnitt soll zunéchst ein kurzer Uberblick tiber die verwendeten Technologi-
en gegeben werden, die beherrscht werden miissen, um mit dem Mediawiki-Framework
entwickeln zu konnen. Insbesondere Abschnitt 5.1.2 ist hilfreich, um Abschnitt 5.5 bes-
ser nachvollziehen zu konnen, in welchem auf die Implementierung der fiir das Pattern
Repository entwickelten Erweiterung Pattern Repository eingegangen wird.

5.1.1 Technologien des Mediawiki-Frameworks

Mediawiki basiert auf der Skriptsprache PHP und verwendet als Datenbank MySQL. Media-
wiki selbst, sowie die meisten Erweiterungen, verwenden die Moglichkeit objektorientiert
mit PHP zu programmieren, wofiir es seit Version 5 ein vollstindiges Objektmodell in
PHP gibt. Fiir eine effiziente Entwicklung mit Javascript auf der Seite des Clients wird in
aktuellen Mediawiki-Versionen immer hédufiger auf die umfangreiche Javascript-Bibliothek
jQuery" gesetzt. jQuery vereinfacht viele, haufig bei der Javascript-Programmierung auftre-
tende Aufgaben, wie die Traversierung und Manipulation von HTML-Dokumenten, Event
Handling, Animationen und AJAX durch eine benutzerfreundliche API. Dabei verwendet
jQuery CSS3-kompatible CSS-Selektoren und funktioniert in den meisten Browsern auf die

Thttp://jquery.com/

79

http://jquery.com/

5 Implementierung des Pattern Repositorys

gleiche Weise, was bei Javascript nicht gegeben ist. AJAX? steht fiir Asynchronous JavaScript
and XML und ermdglicht asynchrone Datentibertragung zwischen Browser und Server, so
dass Seiteninhalte einer scheinbar bereits geladenen Seite transparent nachgeladen werden
konnen. Der Benutzer bemerkt davon in den meisten Fillen nichts, sondern denkt, dass
bereits alles beim Offnen der Seite geladen wurde. Diese Technologie zur Vermeidung
von unnotigem Datenverkehr wird beispielsweise von der Erweiterung Category Tree, die
in Abschnitt 2.3.7 vorgestellt wurde, verwendet, um Teile des Kategorienbaums erst zu
laden, wenn der Benutzer den entsprechenden Knoten aufklappt. CSS-Selektoren? werden
dazu verwendet, bestimmte Elemente in einem HTML- oder XML-Dokument anhand eines
angegebenen Musters auszuwéhlen. Dabei entspricht der Selektor einer Bedingung, die fiir
jedes Element innerhalb des Dokuments gepriift wird und eine Ergebnismenge der Elemente
zurtickliefert, bei welchen die Bedingung zu , wahr” ausgewertet werden konnte. Zu Beginn
der meisten jQuery-Ausdriicke steht daher ein CSS-Selektor, um auszuwéhlen, auf welchem
Element gearbeitet werden soll.

5.1.2 Entwicklung von Erweiterungen fur das Mediawiki-Framework

Das Mediawiki-Framework bietet eine Reihe von Erweiterungsmoglichkeiten, die die Ent-
wicklung von sehr unterschiedlichen Erweiterungen ermoglicht. In [Lero6] werden dazu
die absoluten Grundlagen beschrieben und auf [Meda] wird ein detailliertes Handbuch zu
den unterschiedlichen Aspekten der Erweiterungsentwicklung zur Verfiigung gestellt. Im
Folgenden sollen diejenigen Erweiterungsmoglichkeiten kurz erldutert werden, welche im
Rahmen dieser Diplomarbeit bei der Entwicklung Pattern Repository verwendet wurden.

Wiki Markup-Erweiterungen erweitern die Syntax von Wikitext um zusitzliche Tags, die
mit beliebigen Funktionen versehen werden konnen. Wikitext-Tags entsprechen XML-
Tags in der Art von <Beispieltag>Eingabetext</Beispieltag>. Die Registrierung
des Paares aus Tag-Bezeichner und auszufiithrender Funktion geschieht in der Instanz
des Wikitextparsers, welcher Wikitext zu HTML umwandelt. Die Funktion, die mit dem
Tag registriert wird, erhdlt den im Tag eingeschlossenen Text als Parameter {ibergeben
und soll validen HMTL-Code zuriickgeben. Falls in dem von den Tags umschlossenen
Text weitere Wikitags oder Parserfunktionsaufrufe enthalten sind, miissen diese vor
der Riickgabe explizit durch den Aufruf der entsprechenden Parserfunktion ebenfalls
zu HTML umgewandelt werden.

Parserfunktionen stellen eine Moglichkeit dar, um eng mit dem Wikiparser integriert, direkt
eigene Funktionen aufzurufen. Sie sind schwergewichtiger als Markup-Erweiterungen,
bieten dafiir jedoch den Vorteil, dass von Parserfunktionen erzeugte Ausgaben, vor
dem eigentlichen Parsen des Wikitexts, in die Seite eingefiigt werden. Dies ermoglicht
eine Interaktion mit anderen Wikielementen, wie z.B. das Verwenden der Ausgabe

2http://www.w3schools.com/ajax/
Shttp://www.w3.org/TR/selectors/

8o

http://www.w3schools.com/ajax/
http://www.w3.org/TR/selectors/

5.1 Web-Entwicklung mit dem Mediawiki-Framework

der Parserfunktion als Eingabe fiir Wikitext Tags. Eine Parserfunktion wird im Wi-
kitext in folgender Form verwendet: {{#funktBezeichner:parami=a|param2=b}}. Die
Bezeichnung der Funktion muss dabei in einer Ubersetzungsdatei hinterlegt sein
und mindestens in Englisch vorliegen sowie als Magic Word registriert sein, um vom
Mediawiki-System fehlerlos erkannt zu werden. Magic Words sind Strings, die vom
Mediawiki-System nicht direkt ausgegeben werden, sondern stattdessen wird der
Riickgabewert der Funktion ausgegeben, die mit dem Magic Word assoziiert ist. Die
Ubersetzungsdatei muss in dem Wiki-System registriert werden, ebenso wie der Funk-
tionsbezeichner und die aufzurufende Funktion. Die Funktion hat tiber ein assoziatives
Array Zugriff auf benannte Parameter und kann Wikitext oder HTML-Code zurtickge-
ben. Die Riickgabe von Wikitext stellt kein Problem dar, da wie bereits oben erldutert,
die Ausgabe der Parserfunktion nochmals komplett von dem Wikitextparser bearbeitet
wird.

Hooks an Events ermoglichen es, eigene Event Handler mit beliebigen Mediawiki-Events
zu verkniipfen. Dabei gibt es eine Liste* der momentan tiber 400 verfiigbaren Hooks,
an welchen Funktionen registriert werden konnen. Dabei ist es auch moglich, an einem
Hook mehrere Funktionen anzuhidngen. Die Funktionen werden in diesem Fall nachein-
ander ausgefiihrt und Anderungen werden von Funktion zu Funktion weitergereicht.
Ein Beispiel fiir einen in Pattern Repository verwendeten Hook ist BeforePageDisplay.
Damit verkniipfte Funktionen werden jedes Mal aufgerufen, bevor eine Seite frisch
geladen wird.

Spezialseiten sind Seiten im gesonderten Namensraum Spezial und dienen zur Ausfiihrung
von spezifischen Funktionen. Spezialseiten konnen nicht direkt von Benutzern editiert
werden und werden auf einer speziellen Seite des Wikis aufgelistet. Dariiber hinaus
konnen explizit die Benutzerrechte festgelegt werden, die zum Verwenden einer Spezi-
alseite notig sind. Dies ist insbesondere notig, da viele Spezialseiten zu administrativen
Zwecken dienen und daher nur von Administratoren verwendet werden sollten. Spe-
zialseiten werden von der Klasse SpecialPage abgeleitet und durch Uberschreiben der
Ausgabefunktion soll valider HTML-Code zur Erzeugung der Spezialseite zuriickgege-
ben werden. Falls es erwiinscht ist, dass die Seite in der Auflistung aller Spezialseiten
erscheint, miissen dafiir Eintrége in einer zuvor registrierten Ubersetzungsdatei erstellt
werden.

Dariiber hinaus wurde versucht, den Best Practises bei der Entwicklung von Mediawiki-
Erweiterungen zu folgen und so entspricht der Aufbau exakt den Mustervorgaben aus
[Meda]. In der Hauptdatei , PatternRepository.php” werden alle Teilerweiterungen, entspre-
chend der jeweils verwendeten Methode im Mediawiki-System registriert, die benotigten
PHP-Klassen in den sog. Autoloader von Mediawiki hinzugefiigt, die Ubersetzungs- und
Magic Word-Dateien registriert sowie alle Module fiir den Resource Loader zusammenge-
stellt. Der Autoloader von Mediawiki sorgt dafiir, dass alle benétigten PHP-Klassen geladen
werden, die zu der jeweiligen Erweiterung gehoren. Der Resource Loader ist ein relativ

4http://www.mediawiki.org/wiki/Manual:Hooks

81

http://www.mediawiki.org/wiki/Manual:Hooks

5 Implementierung des Pattern Repositorys

neuer Bestandteil von Mediawiki, der eingefithrt wurde, um die Leistung und das An-
wendererlebnis der Weboberflache zu verbessern. Durch die verstarkte Verwendung von
Javascript, CSS und zu tibersetzender Textbestandteile entwickelte sich das Problem, dass pro
Seitenaufruf viel unnétiger Javascript-Code zum Benutzer tibertragen wurde. Der Resource
Loader versucht dieses Problem zu entschirfen, indem nur tatsiachlich auf der Seite beno-
tigte Funktionalitdten geladen werden und moglichst viel Caching verwendet wird [Medb].
Zur Ermittlung der bendtigten Ressourcen wird daher fiir jede Mediawiki-Erweiterung ein
Resource Loader-Modul definiert, welches verwendete Javascript- und CSS-Dateien enthalt
sowie Abhdngigkeiten zu Mediawiki-Standardbibliotheken, wie z.B. jQuery.

Das Installieren einer Mediawiki-Erweiterung sowie deren Konfiguration, findet in der Datei
,LocalSettings.php”> statt. Zunachst wird die Hauptdatei der Erweiterung in den allgemeinen
Initialisierungsvorgang von Mediawiki mit eingebunden und ist somit installiert. Sollen
allgemeine Parameter zur Konfiguration an die Erweiterung iibergeben werden, geschieht
dies durch globale PHP-Variablen, die ebenfalls in dieser Datei definiert werden kénnen.

5.2 Systemarchitektur

Im vorherigen Abschnitt wurden die Grundlagen und die Moglichkeiten der Entwickelung
mit Mediawiki erldutert, wodurch in diesem Abschnitt auf die konkrete Systemarchitektur,
des fiir diese Diplomarbeit verwendeten Systems, eingegangen werden kann. In Abbildung
5.1 ist die Systemarchitektur des verwendeten Mediawiki-Stacks dargestellt. Es handelt sich
dabei um eine zwischen Client und Server verteilte 4-Schichten Architektur.

Auf Seite des Clients wird zur Priasentation der Browser benutzt, welcher die vom Wiki
berechneten Seiten rendert. Dabei sind Teile der Anwendungslogik in Form von Javas-
cript und insbesondere jQuery, AJAX und Java-Applets auf den Client ausgelagert. Dabei
wird Javascript mit jQuery v.a. zur Reaktion auf Benutzereingaben und der Anpassung
aufwendiger Teile der Benutzeroberfliche verwendet. AJAX wird u.a. zum dynamischen
Nachladen von Inhaltsbausteinen benutzt, um nicht bereits zu Beginn grofse Datenmengen
vom Server iibertragen zu miissen, wenn danach nur ein Bruchteil tatsdchlich benutzt wird.
Java-Applets werden u.a. fiir das Rendering von Graphen benutzt, die interaktiv auf Einga-
ben des Benutzers reagieren sollen, was mit normalen Bildern in dieser Art nicht moglich
ware.

Auf Serverseite besteht die Prasentationsschicht aus den dynamisch generierten Webseiten
aus PHP-Aufrufen, die vom Mediawiki-Framework, welches sich auf Ebene der Anwen-
dungslogik befindet, berechnet wird. Hier ist die Abgrenzung der Schichten nicht eindeutig
gegeben, da im Rahmen von Mediawiki die Generierung von HTML und tatsédchliche Be-
rechnungen Hand in Hand gehen. Eine eindeutige Trennung ist dafiir in Richtung der
Datenhaltungsschicht gegeben, welche sich horizontal wiederum in eine Daten-Interface-
Schicht und Datenschicht sowie vertikal in eine relationale Datenbank und einen Triplestore,

Shttp://www.mediawiki.org/wiki/Manual:LocalSettings.php

82

http://www.mediawiki.org/wiki/Manual:LocalSettings.php

5.2 Systemarchitektur

aufteilen lassen. Die Daten-Interface-Schicht besteht aus einem PHP-MySQL-Treiber und
einer extra Komponente, dem DIQA Triplestore Connector. Dieser stellt die Verbindung zwi-
schen der Anwendungslogikschicht von Mediawiki und dem Apache JENA Triplestore her.
Die genaueren Zusammenhénge innerhalb der Mediawiki-Architektur werden im Folgenden
Abschnitt ausfiihrlicher beschrieben.

Die Verteilung der Schichten in Abbildung 5.1 auf lediglich Client und einen Server lief3e
sich dabei noch auf weitere Systeme ausweiten. Wahrend Prédsentations- und Anwendungs-
logik auf dem Server nicht getrennt werden kénnen, konnte die Datenhaltungsschicht auf
ein weiteres System ausgelagert werden. Die vertikale Teilung der Datenhaltungsschicht
wiirde es ermoglichen, die relationale Datenbank sowie den Triplestore, auf zwei getrennte
Datenbankserver zu verteilen, um eine bestmogliche Skalierung zu erreichen.

Abbildung 5.2 ermoglicht einen genaueren Einblick in den Aufbau der Anwendungslogik
und Datenhaltungsschicht sowie in dazugehorige Zusammenhidnge und Abhidngigkeiten.
Die Ausfithrung der Anwendungslogik geschieht auf einem Apache Http-Server, welcher
tiber einen PHP Interpreter verfiigen muss und in der Abbildung als dufSerstes, oberes
Rechteck dargestellt ist. Den Rahmen fiir die Anwendung bildet das Mediawiki-Framework,

Client

Client

Browser

Server Server

Prasentation PHP - Dynamisch generierte Webseiten

Daten-Interface-Schicht

DIQA Triplestore
Connector

Apache JENA
Triplestore

Datenschicht

Abbildung 5.1: Systemarchitektur mit angebundenem Triplestore. Auf der linken Seite ist
das allgemeine Schichtenmodell zu sehen und rechts die konkrete Aus-
pragung des Mediawiki-Stacks mit den verwendeten Technologien (nach
[Kar11])

5 Implementierung des Pattern Repositorys

welches in der Abbildung als braunes Rechteck dargestellt ist. Es bietet eine grofie Vielfalt
von moglichen Erweiterungspunkten, weswegen es viele Erweiterungen (Extensions) aufweist,
die grofitenteils als nicht kommerzielle Open Source-Projekte entwickelt wurden. Als Basis
fiir DataWiki und das entwickelte Pattern Repository dient, das in der Abbildung als beiges
Rechteck dargestellte, Semantic Mediawiki, welches Mediawiki um semantische Attribute und
eine eigene Querysprache erweitert. Es handelt sich dabei um eine Mediawiki-Erweiterung,
weswegen sich das Semantic Mediawiki-Rechteck in der Abbildung in dem hellen Rahmen
fur Extensions befindet. Mit Semantic Mediawiki als Basis wurden weitere Erweiterungen
entwickelt, die dabei die moglichen Anwendungsgebiete der semantischen Attribute erwei-
tern oder auch Teile des Semantic Mediawiki ersetzen. DataWiki, welches selbst wiederum
aus einer Reihe von verschiedenen Erweiterungen besteht, erweitert Semantic Mediawiki
um die Anbindung an einen Triplestore und um viele Komfortoptionen wie beispielsweise
WYSIWYG-Eingabe von Wiki-Artikeln, ein Wiki Administration Tool zur komfortablen Instal-
lation von Erweiterungen aus einem Extension-Repository und weiteres. Die Abhédngigkeit
von DataWiki zu Semantic Mediawiki ist durch den gestrichelten Pfeil dargestellt, wobei
die Abhéngigkeit in Richtung des Pfeiles definiert ist. Die im Rahmen dieser Diplomarbeit

Apache HTTP Server + PHP Interpreter

Extensions

Semantic
Forms Pattern

Repository

Semantic
Mediawiki ---4 GraphViz

i---1 Category Tree

DataWiki

HEEE
\

MySQL Java Apache Jena

Mediawiki Semantic

Tabellen — Mediawiki DIOA

Triplestore
Connector

Artikel, Tabellen — Sem.
Kategorien,... Attribute

Abbildung 5.2: Aufbau von DataWiki. Legende: Gestrichelter schwarzer Pfeil=Abhiingigkeit,
Braune Linie=Verbindung zu MySQL-Datenbanktabelle, Lila Linie=Fiir den
Triplestore bendtigte Verbindung

5.3 Import des Datenmodells

entwickelte Erweiterung Pattern Repository wiederum besitzt Abhidngigkeiten zu den Erwei-
terungen Semantic Forms, Category Tree und GraphViz, was wiederum durch die gestrichelten
Pfeile in der Abbildung dargestellt ist. Welche Komponente von Pattern Repository dabei
genau von welcher Erweiterung abhédngig ist, wird in Abschnitt 5.5 genauer erldutert. Die
verwendeten Erweiterungen wurden im Einzelnen bereits in Abschnitt 2.3.7 vorgestellt.

Die verschiedenen Verbindungen zu unterschiedlichen Datenbanken sind in Abbildung 5.2
anhand von farbigen Linien dargestellt. Die linke, braune Linie steht fiir die Verbindung von
Mediawiki iiber die PHP-MySQL-Bibliothek zu den allgemeinen Tabellen in der relationa-
len MySQL-Datenbank. In diesen Tabellen sind beispielsweise Artikelinhalte, Kategorien,
Namensrdume oder auch Links der Artikel untereinander gespeichert. Bilder und sonstige
Medien werden im Dateisystem gespeichert, so dass in der Datenbank lediglich Verweise
darauf gespeichert werden miissen. Die Verbindung von Semantic Mediawiki zu den ent-
sprechenden MySQL-Tabellen wird ebenfalls tiber die PHP-MySQL-Bibliothek hergestellt
und ist in der Abbildung durch die rechte, braune Linie dargestellt. Dabei werden in der
Mediawiki-Datenbank neue Tabellen fiir semantische Attribute, gecachte Ergebnisse von
bereits ausgefiihrten Querys, URIs von Ontologie-Elementen und einige weitere Tabellen fiir
interne Verwendungszwecke erstellt.

Sobald der DIQA Triplestore Connector mit dem Apache Jena Backend installiert wurde,
gibt es die in der Abbildung durch lila Linien dargestellte Verbindungen. Die Verbindung
des Wikis wird tiber die DataWiki-Komponente Halo hergestellt. Dabei agiert der Triple-
store Connector als Webservice, der iiber eine RESTful Http-Verbindung aufgerufen wird
und in der Abbildung als obere, in Lila dargestellte, Linie erkennbar ist. Beim Starten des
Triplestores wird tiber einen Java-MySQL Connector (in der Abbildung dargestellt als die
lila Linie zwischen Triplestore Connector und dem MySQL-Quadrat) zundchst ein komplet-
tes In-Memory Abbild der MySQL-Datenbank erstellt. Dabei wird von dem relationalen
Datenschema auf ein Tripelschema abgebildet, welches anhand der Verbindung zwischen
dem Triplestore Connector und Apache JENA nun in dem fiir Triplestores typischen Graph-
Format abgelegt wird. Wird in der Wiki-Anwendung eine Query auf einer Seite gespeichert,
wird diese von der Halo Extension zunéchst ins SPARQL-Format umgewandelt und dann
iiber den Triplestore Connector an den Jena Triplestore geschickt, was in der Abbildung
anhand der rechten lila Linie erkennbar ist. Dort wird mit Unterstiitzung eines Reasoners die
Ergebnismenge berechnet und wiederum iiber den Connector an die Halo Extension zurtick
geschickt. Dort werden die Ergebnisse normalisiert, so dass das gleiche Ergebnisformat
vorliegt, wie wenn die Query an die MySQL-Datenbank geschickt worden wiére.

5.3 Import des Datenmodells

In den beiden vorherigen Abschnitten wurden die Rahmenbedingungen erklart, wie mit dem
verwendeten System entwickelt werden kann und wie die zugehorige Systemarchitektur
dazu aussieht. Damit kann nun auf die Implementierung des ersten Teils des Ergebnisses
dieser Diplomarbeit eingegangen werden, dem Importer fiir das Datenmodell. Nachdem
ein Datenmodell modelliert wurde, und ein entsprechend eingerichteter DataWiki-Stack zur

5 Implementierung des Pattern Repositorys

Verftigung steht, kann mit dem Import begonnen werden. Dies geschieht mithilfe eines Java-
Programms, welches die Tripel aus den Datenmodell-Ontologien einliest und entsprechend
parst, so dass die Zuordnung wie in Abbildung 4.13 dargestellt aus Abschnitt 4.4.3 geschieht.
Die OWL-Ontologien sollten dabei in RDF/XML-Serialisierung vorliegen. Im Folgenden soll
dargestellt werden, in welcher Reihenfolge das Parsing ablduft und welche Klassen daran
beteiligt sind:

1. DesignPatternWikiMaintenance: Dies ist die Hauptklasse, die die Main-Methode ent-

hélt. Sie dient zum Verarbeiten der Eingabeparameter, wie z.B. Pfade zu den Ontologie-
Dateien oder Login-Daten fiir das Wiki und organisiert das Zusammenspiel der einzel-
nen Hilfsklassen.

. WikiImporter: Wurde als Wrapperklasse fiir wiki-java® geschrieben, um die Interaktion

mit dem Wiki zu vereinfachen. Wiki-java ist ein Mediawiki-Bot-Framework, welches
den Zugriff auf die von Mediawiki zur Verfiigung gestellte API ermoglicht, und
so das Erstellen und Editieren von Seiten im Wiki ermoglicht. Die Wrapperklasse
WikiImporter wurde verfasst, um erweiterte Funktionalitdten, wie beispielsweise das
Anhédngen von Text an das Ende eines Artikels, zu ermoglichen. Beim Instanziieren
der Klasse wird eine Verbindung zu dem Wiki mit zuvor angegebenen Logindaten
hergestellt.

. TargetPropertiesImporter: Im Fall, dass eine Ontologie mit Zieleigenschaften als Pa-

rameter an das Hauptprogramm iibergeben wurde, dient diese Klasse zum Erzeugen
der Kategorienhierarchie der Zieleigenschaften, zum Erzeugen der Zieleigenschaften-
seiten im Namensraum Ontology sowie deren Vernetzung durch den semantischen Link
Has Subelement. Dariiber hinaus werden die semantischen Attribute erzeugt, welche
zum Abbilden der n-dren Relation in Semantic Mediawiki nétig sind. Zudem werden
die notigen Daten fiir die Klasse RepoImportUtil gespeichert, die zur Generierung des
Formulars und der Templates nétig sind. Zum Parsen der OWL-Ontologie wird die
Jena RDF API benutzt [McBo1]. Als Resultat erhédlt man Subjekt-Pradikat-Objekt Tripel,
die sich je nach gesuchter Information weiterverarbeiten lassen. Die Hierarchie der
Zieleigenschaften wird dabei zundchst in einem Graphen gespeichert, der anschliefSend
rekursiv traversiert wird, um die Inhalte mithilfe der Wikilmporter-Instanz in das Wiki
zu iibertragen.

. RepoImportUtil: Diese Klasse dient zum Import der Ontologie, welche das Kerndaten-

modell enthilt. Die OWL-Daten werden ebenfalls mithilfe der Jena RDF API eingelesen
und daraus werden Kategorienhierarchie, Konzeptseiten und semantische Attribute
erzeugt. Anschlieffend wird die Klasse TemplateFormImporter verwendet, um die fiir
das Patternformular benotigten Templates und das Formular selbst zu erzeugen. Falls
zuvor bereits eine Zieleigenschaften-Ontologie eingelesen wurde, wird dafiir ein zu-
sdtzliches Template erzeugt und die Eingabe in das Formular integriert. Zuletzt werden
die Aufrufe zum Erzeugen von Visualisierungsgraphen auf den Wikiseiten eingetragen,
falls dies in der Ontologie modelliert wurde.

Shttp://code.google.com/p/wiki-java/

86

http://code.google.com/p/wiki-java/

5.4 Das Patternformular

5. DatawikiCustomizer: Diese Klasse dient hauptsédchlich dazu, das Aussehen von Da-
taWiki dem Benutzerinterface des Pattern Repositorys anzupassen. Dazu werden
Eintrdge in der horizontalen oberen Hauptmentileiste erzeugt, die Zugriffe auf einzelne
Funktionalitdten ermoglichen. Dartiber hinaus wird die Hauptseite mit Inhalt gefiillt,
welche der Benutzer als Erstes beim Aufrufen des Wikis sieht und die Seite mit dem
Inhaltsverzeichnis wird erzeugt.

5.4 Das Patternformular

Nachdem nun, mithilfe des im vorherigen Abschnitt beschriebenen Programms, das Daten-
modell in das Wiki importiert wurde, steht nun das Patternformular zur Verfiigung. Da
dieses ein zentraler Bestandteil der Funktionalitdt zum Erstellen und Editieren von Patterns
darstellt, soll es im folgenden Abschnitt detailliert beschrieben werden. Das Formular wird
durch die Erweiterung Semantic Forms realisiert, wozu die Grundlagen des Funktionsum-
fangs in 2.3.7 beschrieben sind. Wahrend es im Prinzip eine Eingabemaske fiir die Parameter
der verwendeten Templates darstellt, sorgen insbesondere auf die Eingabedaten abgestimmte
Eingabetypen fiir die notige Benutzerfreundlichkeit bei der Bedienung des Formulars. In
Abschnitt 4.4.1 werden anhand von Abbildung 4.10 die moglichen Eingabetypen beschrie-
ben, wie sie im Datenmodell fiir das Wiki verfiigbar sind. Es folgt eine Zuordnung zu den
Semantic Forms Eingabetypen, auf welche die Eingabetypen beim Import aus der Ontologie
im Formular abgebildet werden.

o Textarea: Entspricht direkt dem Semantic Forms-Eingabetyp Textarea, welcher ein
einfaches, mehrzeiliges Feld zur Texteingabe darstellt. Als Parameter wird eine feste
Grofse tibergeben, so dass Textarea-Felder und Semantic Textarea-Felder gleich grof3
im Formular dargestellt werden.

e Image: Entspricht dem Semantic Forms-Eingabetyp Text with autocomplete, welcher
eine einzeilige Texteingabe ermoglicht und dabei per Autovervollstandigung Werte
vorschldgt. Welche Vorschldge gemacht werden sollen, wird iiber einen Parameter
gesteuert, welcher als Eingabe die Anweisung erhilt, alle bereits vorhandenen Bilder
im System zur Autovervollstindigung zu benutzen. Diese sind im Namensraum File
gespeichert. Uber den Parameter uploadable wird zudem erreicht, dass neben dem
Texteingabefeld auch ein Link ,Upload” erscheint, der das Hochladen von neuen
Bildern ermoglicht.

e ImageWithLabel: Zusitzlich zu dem Eingabetyp Image wird im Formular ein zu-
sdtzliches Feld zur Eingabe einer Bildbeschriftung erzeugt, welches den Semantic
Forms-Eingabetyp Text verwendet. Als Eingabe wird ein einfacher Text erwartet, der
im Template an der richtige Stelle als extra Parameter eingeftigt wird.

e Category: Entspricht dem Semantic Forms-Eingabetyp Category, welcher die Erweite-
rung Category Tree benutzt, um die Auswahl einer Kategorie iiber einen Kategorien-
baum zu ermdoglichen. Als Parameter wird die Wurzel des Baumes benétigt, in diesem
Fall die Kategorie CategoryHierarchy.

5 Implementierung des Pattern Repositorys

e Semantic Textarea: Wurde auf Basis des Semantic Forms-Eingabetyps Textarea entwi-
ckelt und ermoglicht das Annotieren von Semantischen Attributen direkt in einem
Freitext. Details zur Implementierung werden in Abschnitt 5.5.1 erldutert.

e VarRelations: Obwohl VarRelations in der Ontologie als Eingabetyp fiir einen Abschnitt
verfligbar ist, besteht die Darstellung im Formular aus drei Feldern sowie einem
einzelnen Template nur fiir diesen Abschnitt. Fiir die Auswahl des zu annotierenden
Relationstyps wird der neu entwickelte Eingabetyp Property Dropdown benutzt. Dieser
erwartet als Parameter eine Konzeptseite, welche eine Aufzdhlung der zuldssigen
semantischen Relationstypen enthilt, die dann zur Auswahl bereit stehen. Zur Eingabe
des Zielpatterns wird ein Text with autocomplete-Feld benutzt, das seine Werte von
einer Konzeptseite erhilt, die alle verfiigbaren Zielpatterns auflistet. Zur Angabe einer
textuellen Erkldarung der Verlinkung gibt es schliefllich ein Textarea-Feld.

o TargetProps: Der TargetProps-Eingabetyp aus der Ontologie wird im Formular ebenfalls
durch mehrere Felder représentiert sowie einem Template nur fiir diesen Abschnitt.
Fiir die Auswahl der gewiinschten Zieleigenschaft steht ein Dropdown-Menti zur
Verfligung. Zusitzliche Attribute der Relation lassen sich tiber den Semantic Forms-
Eingabetyp Radiobutton auswéhlen, wobei vorgegebene auswéhlbare Werte iiber den
Parameter Values fest im Formular tibergeben werden. Die Korrelation wird schlief3-
lich iiber den im nédchsten Punkt genauer erlduterten Eingabetypen Number Slider
ausgewdahlt.

e Number Slider: Dieser neu fiir Semantic Forms entwickelte Eingabetyp ermoglicht
die Eingabe einer Zahl aus einem vorgegebenen Zahlenbereich heraus. Durch entspre-
chende Parameter kann der Zahlenbereich verdndert werden, der zur Auswahl bereit
stehen soll. Details zur Implementierung gibt es in Abschnitt 5.5.3.

Bevor die aufgelistete Zuordnung von Eingabetypen zu Feldern relevant wird, muss zunéchst
ein Template in das Formular eingebunden werden. Dies geschieht durch einen Aufruf iiber
den Formularnamen, und die Zuordnung von Eingabetypen zu den im Template vorhan-
denen Feldern. Um es zu ermoglichen, ein Template beliebig oft in einem Formular zu
instanziieren und dementsprechend den Template-Inhalt beliebig oft in das resultierende
Dokument einzufiigen, gibt es beim Aufruf eines Templates den Parameter multiple. Dieser
Parameter bezieht sich jedoch immer auf ein komplettes Template und kann nicht fiir einzel-
nen Feldern definiert werden. Daraus resultiert die Notwendigkeit, die Templates fiir das
Patternformular so aufzuteilen, dass mehrfach instanziierbare Inhalte gesonderte Templates
erhalten. Dementsprechend erhalten die Eingabetypen VarRelations und TargetProps aus
der Datenmodellontologie jeweils einzelne Templates.

5.5 Die Erweiterung - Pattern Repository

Der Funktionsumfang, welcher durch das entwickelte Pattern Repository zur Verfligung
gestellt wird, besteht zundchst aus dem Datenmodell, welches in Kapitel 4.4 beschrieben wird,
und dessen Import detailliert in Abschnitt 5.3 erldutert wurde. Mithilfe des Datenmodells als

88

5.5 Die Erweiterung - Pattern Repository

Grundlage wurde nun moglichst viel Funktionalitdt durch bereits existierenden Mediawiki-
und Semantic Mediawiki-Erweiterungen realisiert, insbesondere mit Semantic Forms. An
einigen Stellen gab es jedoch Anforderungen, die dadurch nicht abgedeckt werden konnten,
und diese fehlende Funktionalitit wurde in Form der Erweiterung , Pattern Repository”
nachgeliefert bzw. eigenstandig implementiert.

Die Integration der einzelnen Module der Pattern Repository Erweiterung geschieht tiber
unterschiedliche Erweiterungspunkte, welche von Mediawiki bzw. den entsprechenden
Mediawiki-Erweiterungen zur Verfiigung gestellt werden. Eine Ubersicht {iber die einzel-
nen Module, inklusive den benutzten Erweiterungspunkten und den Abhédngigkeiten der
einzelnen Teile, ist in Abbildung 5.3 dargestellt.

Die braunen Rechtecke auf der linken Seite stellen die verwendeten Erweiterungspunkte der
einzelnen Erweiterungen dar. Eine Erklarung der allgemeinen Erweiterungsmechanismen
gibt es bereits in Abschnitt 5.1.2. SF Input Type steht hier fiir Semantic Forms Input Type und
stellt ein Interface dar, {iber welches es Semantic Forms erlaubt, beliebige neue Eingabetypen
fir die Formulare zu registrieren. Dazu muss lediglich die Klasse SFFormInput erweitert
und ein von Semantic Forms angebotener Parser Hook verwendet werden, iiber welchen
eigene Eingabetypen, aber auch neue Eingabetypen, eingelesen werden.

Die Rechtecke mit weiflem Hintergrund in der Mitte reprédsentieren jeweils den Ort, an
dem das Modul eingesetzt wird. Dabei gibt es eine Gruppe, welche neue zusitzliche Ein-
gabetypen fiir Semantic Forms bietet, zwei Module fiir die Verwendung auf , normalen”
Inhaltsseiten bzw. auch Kategorieseiten im Wiki und eine eigene Wiki-Spezialseite. Die oran-
gen gestrichelten Pfeile, welche von den einzelnen Funktionsmodulen ausgehen, bedeuten
Abhéngigkeiten von anderen Mediawiki- oder Semantic Mediawiki-Erweiterungen und
Javascript-Bibliotheken. Dabei stehen die dunkelgriinen Rechtecke fiir Mediawiki- und Se-
mantic Mediawiki-Erweiterungen und die hellblauen Rechtecke fiir Javascript-Bibliotheken,
wobei es sich aufler bei jsTree bei den restlichen Bibliotheken um Module von jQuery handelt.
jsTree [Boz] ist eine Bibliothek fiir die Darstellung von Baumen mit Javascript. Um den
Best Practises der Mediawiki-Entwicklung zu folgen [Medb], wurden die Abhangigkeiten
der einzelnen Funktionsmodule in Resource Modules zusammengefasst, welche durch den
Mediawiki Resource Loader verwendet werden konnen.

5.5.1 Annotationsunterstiitzung - Semantic Textarea

Die Anforderung, in einem bereits existierenden freien Text einzelne Worter semantisch zu
annotieren, ist in Semantic Mediawiki nur sehr unkomfortabel moglich. Dies soll anhand
eines kleinen Beispiels demonstriert werden. Als Ausgangslage soll folgender Satz dienen:

Dieses Pattern stellt eine Spezialisierung von Pattern xyz dar.

Nun soll im Text eine Specialisation0f-Verlinkung auf das Pattern Xyz stattfinden. Dabei
darf auch nicht vergessen werden, dass in einem freien Fliefitext das andere Pattern eventuell
nicht exakt gleich benannt wurde, wie die tatsdchliche Seite im Wiki fiir das Pattern. Mit den

89

5 Implementierung des Pattern Repositorys

mitgelieferten Mitteln von Semantic Mediawiki miisste die Annotation nun folgendermafien
geschehen:

Dieses Pattern stellt eine Spezialisierung von Pattern
[[SpecialisationOf: :Xyz|xyz]] dar.

Durch den Ausdruck SpecialisationOf::Xyz wird die Verlinkung auf die korrekte Pat-
ternseite hergestellt, und durch den Zusatz |xyz wird nach wie vor ,xyz” im FliefStext
angezeigt. Eine ausreichende Usability ist hier nicht gewihrleistet. So erhilt der Benutzer
weder Unterstiitzung bei der Auswahl des semantischen Attributs (durch einen Tippfehler
wiirde ein anderes Attribut verwendet werden), noch bei der Auswahl des korrekten Ziel-
patterns. Auch hier wiirde durch einen Tippfehler auf eine andere Entitdt verwiesen. Unter
Berticksichtigung der Detailanforderungen, die sich aus der generellen Anforderung nach
einem benutzerfreundlichen Annotationsmechanismus ergeben, ist ein neuer Eingabetyp fiir
Semantic Forms entstanden, welcher Semantic Textarea genannt wurde.

Patternformular — Semantic Forms = Category Tree

1
1
-1
1
L

Property Dropdown | - Semantic Forms

I
|
S L I Semantic Textarea f
Type
I Number Slider } ------------------------- jQuery Ul Slider

Tag- | __. Normale Wikiseite
Extension i
S — > Query Tabs e jQuery Ul Tabs
Parser- [- ioar e s i
Funetion | Property Visualizer } GraphViz

Spezial-Seite fiir Assistenten

Special [
Page |

Pattern Repository Wizard |-

Abbildung 5.3: Interne Architektur der Erweiterung Pattern Repository. Legende: Schwarz
gestrichelter Pfeil=Zur Realisierung verwendet fiir. Orange gestrichelter
Pfeil=Abhiingigkeit

90

5.5 Die Erweiterung - Pattern Repository

Um ein Wort in einem Text zu annotieren, muss es zuerst mithilfe der Maus markiert werden,
wie es in Abbildung 5.4 zu sehen ist. Nun kann der Button , Annotate” betitigt werden, der
das Annotationsinterface 6ffnet, welches in Abbildung 5.5 dargestellt ist.

Mithilfe des Dropdown-Meniis lassen sich semantische Attribute auswihlen, welche zuvor
im Datenmodell fiir den entsprechenden Abschnitt konfiguriert wurden. Auf diese Weise ist
es nicht moglich, nicht existierende Attribute auszuwéhlen oder durch einen Tippfehler die
Annotation nutzlos zu machen. In dem Textfeld kann schliefslich ein Zielpattern ausgewahlt
werden, wobei der Benutzer hier mit einer Autovervollstaindigungsfunktion unterstiitzt
wird.

Abbildung 5.4: Auswahl des zu annotierenden Wortes in Semantic Textarea

Abbildung 5.5: Annotation mithilfe von Semantic Textarea

Abbildung 5.6: Anschlieflende Darstellung der Annotation in Semantic Textarea

91

5 Implementierung des Pattern Repositorys

Durch die Betdtigung des Buttons ,,Save” wird die Annotation gespeichert und auf gleiche
Weise wie ein Hyperlink dargestellt, was in Abbildung 5.6 zu sehen ist. Das tatsdchliche Ziel
kann dabei auch jederzeit von dem annotierten Wort abweichen; das annotierte Wort muss
trotzdem nicht verdndert werden.

Die technische Umsetzung basiert auf einer Kombination eines iFrames, welches zur Darstel-
lung des sichtbaren Textes und zur Verarbeitung von Eingabeevents mithilfe von jQuery dient
und einer versteckten Textarea, welche den , tatsdchlichen” Text enthilt, der im Wiki abge-
speichert werden soll. Die Verwendung eines iFrames mit Aktivierung des designMode=,,on‘*-
Attributs zur Realisierung eines WYSIWYG-Editors ist ein gidngiges Vorgehen, und dieser
Teil der HTML-Spezifikation wird von folgenden Browsern in der jeweils neuesten Version
unterstiitzt: Internet Explorer, Firefox, Opera, Safari und Chrome [Koc]. Die Verwendung
des Design Mode ermoglicht es, auf einem ausgewdhlten Text innerhalb eines iFrames eine
Liste von Befehlen tiber das Interface execCommand auszufiihren, welche in [Koc] aufgelistet
sind. Herausforderungen bei der Implementierung haben sich v.a. daraus ergeben, dass
eine Art eigene ,Markup-Sprache” entwickelt werden musste, so dass zwar mithilfe des
iFrames lediglich die Moglichkeiten von normalem HTML zur optischen Darstellung der
Annotation ausreichen, im Endeffekt jedoch ein Text entsteht, der der Markup-Sprache von
Sematic Mediawiki entspricht und somit vom System erkannt wird. Dieses Hinzufiigen und
Entfernen der Markupsprache bei der Ubertragung von Text zwischen dem iFrame und der
versteckten Textarea wird mithilfe von jQuery-Events realisiert.

Wihrend dem Eintippen von Text wird nach jedem getippten Buchstaben der komplette
Text iibertragen und in die versteckte Textarea gespeichert. Ebenso wird bei jeder Ubertra-
gung die HTML-Darstellung aus dem iFrame in die Semantic Mediawiki-Markupsprache
umgewandelt. Der gleiche Ubertragungs- und Umwandlungsvorgang geschieht bei jeder
Annotation, die mithilfe des Save-Buttons abgeschlossen wird.

Das Erstellen aller relevanten Elemente geschieht auf der Seite des Servers durch PHP,
wobei bereits das Dropdown-Menii mit den semantischen Attributen gefiillt wird. Wel-
che semantischen Attribute in dem Dropdown-Menii zur Verfiigung stehen, wird dabei
iiber eine Konzeptseite gesteuert. Dafiir gibt es ein festes Mapping zwischen dem Namen
des Abschnitts und einer Konzeptseite, welche nach folgendem Schema benannt wird:
Concept:Abschnittsname_Section. Auf dieser Seite befindet sich eine Query, welche beim
Import des Datenmodells angelegt wurde:

[[Property:+]] [[AllowedSection::Related Patterns]]

Diese Query sucht nach allen semantischen Attributen, die ihrerseits wiederum mit einem
semantischen Attribut AllowedSection annotiert wurden. Dies dient zur Angabe fiir welche
Abschnitte das Attribut zugelassen ist. Um schliefilich das Ergebnis dieser Query fiir das
Dropdown-Menti zu erhalten, wird eine Hilfsfunktion von Semantic Forms benutzt. CSS-
relevanten Optionen wurden, um eine starkere Modularisierung und einfacher wartbaren
Code zu erhalten, in eine extra Datei ausgelagert. Die Textarea und das Annotationsfenster
werden per display: none ausgeblendet, wobei bei der Betdtigung des Annotate-Buttons

92

5.5 Die Erweiterung - Pattern Repository

der Annotate-Button ausgeblendet wird und dafiir das Annotationsfenster eingeblendet.
Durch die Aktivierung des Save-Buttons wird der Vorgang wieder riickgidngig gemacht.

Es folgt eine Ubersicht, auf welche Dateien die Funktionalitit verteilt ist:

e includes/PAREP_SemanticTextarea.php: Abgeleitet von der Semantic Forms-Klasse
SFFormInput, dient zur Generierung des statischen HTML-Codes mit PHP-
Funktionen und zur Fillung des Dropdown-Meniis. Hinzufligen einer Javascript-
Initialisierungsfunktion mithilfe der Semantic Forms-Funktion addJsInitFunctionData,
die ausgefiihrt wird, sobald der DOM-Tree geladen ist.

e libs/semantictextarea.js: Uber eine Initialisierungsfunktion werden die nétigen
Javascript-Event Listener mithilfe von jQuery-Selektoren an die entsprechenden HTML-
Elemente angehdngt, um dynamische Funktionalitdt zu realisieren. Umsetzung der
Markup-Konversion von HTML nach Semantic Mediawiki-Markup und umgekehrt,
wobei als Basis hier reguldre Ausdriicke benutzt werden, um Ausdriicke aus dem
iFrame in Wikitext zu konvertieren.

e skins/PAREP_SemanticTextarea.css: Dient zur Steuerung welche Elemente versteckt
sein sollen und welche angezeigt werden sollen. Korrekte Positionierung der Annotati-
onsbox neben dem Texteingabefeld.

Wie die Funktionalitdt nun in Semantic Forms integriert wurde, wurde bereits in Abschnitt
5.5 beschrieben.

5.5.2 Auswahl semantischer Propertys - Property Dropdown

Das Property Dropdown-Menii wurde entwickelt, um eine komfortable semantische Ver-
linkung zu anderen Patterns zu ermoglichen. Dies stellt eine wichtige Anforderung dar, da
die Vernetzung der Patterns zu einer Patternsprache als Kernaspekt vieler Patterndomédnen
betrachtet werden kann. In Semantic Forms existiert zwar ein Eingabetypen, welcher ein
Dropdown-Menii zur Verfiigung stellt, allerdings verfiigt dieser nicht tiber alle benétigten
Features.

Zum Auffinden der erlaubten semantischen Linktypen von dem Abschnitt ausgehend, in
dem das Dropdown-Menii verwendet wird, soll eine Query ausgefiihrt werden. Diese Query
befindet sich auf einer Konzeptseite, die entsprechend den Namen des Abschnitts tragt und
wéhrend des Imports des Datenmodells erzeugt wurde. Fiir den Abschnitt Related Patterns
wiirde die Konzeptseite beispielsweise ,Concept:Related_Patterns_Section” heifien. Wiirde
nun der Standardeingabetyp von Semantic Forms verwendet, wiirden die gefundenen Link-
typen jeweils ihren Namensraum vor ihrer Bezeichnung tragen, z.B. , Property:Combining”.
Dies liegt daran, dass es keiner der normalen Anwendungsfille von Semantic Forms ist,
dynamisch einen semantischen Linktyp auszuwéhlen. Normalerweise wurden diese zuvor
bereits statisch erzeugt, sodass anhand der Formulare lediglich Inhalte fiir die Linktypen
eingegeben werden. Die dynamische Verwendung wird nun moglich, indem der Name der
Property selbst einen Parameter in dem zugehorigen Template darstellt, ebenso wie der
zugewiesene Wert. Fiir die Erzeugung einer giiltigen semantischen Annotation der Form

93

5 Implementierung des Pattern Repositorys

[[property::valuel] durch das Template ist es notig, den Namensraum Property in dem
Bezeichner zu entfernen.

Zu diesem Zweck wurde der Semantic Forms Dropdown-Eingabetyps SFDropdownInput
so erweitert, dass als zusdtzlicher Parameter angegeben werden kann, ob ein eventuell in
den Eintrdgen des Meniis enthaltener Namensraum entfernt werden soll. An anderer Stelle
wurde tiberfliissige Funktionalitdt entfernt, um den Programmcode schlank zu halten und da
fiir allgemeine Zwecke weiterhin das Semantic Forms Dropdown-Menii verwendet werden
sollte. Da das Menii wie ein Standard Dropdown-Menti aussieht, folgt keine Abbildung,
sondern direkt die Erkldarung, an welcher Stelle die PHP-Datei mit der Implementierung
liegt.

e includes/PAREP_PropertyDropdown.php: Abgeleitet von der Klasse SFFormInput. Ge-
neriert den statischen HTML-Code fiir das Menii und fiihrt die notigen String-
Operationen durch.

5.5.3 Zahlenauswahl - Number Slider

Der Number Slider wurde aufgrund der Anforderung entwickelt, Zieleigenschaften an-
notieren zu konnen. Wie in Abschnitt 4.2.2 beschrieben, ist es bei der Annotation von
Zieleigenschaften erwiinscht, die Relation mit zusétzlichen Attributen versehen zu kdnnen.
Neben textuellen Attributen, welche im Formular iiber ein normales Textfeld eingegeben
werden konnen, ist ein denkbarer Anwendungsfall die Angabe eines Korrelationswerts
zwischen einem Pattern und einer Zieleigenschaft. Dieser Korrelationswert entspricht ei-
ner prozentualen Angabe von o bis 100. Um eine schnelle, nicht notwendigerweise sehr
prézise Eingabe zu machen, biete sich hier ein Regler sehr gut an. Die Umsetzung ist in
Abbildung 5.7 dargestellt, wobei es, wie in der Abbildung anhand des kleinen Textfeldes
erkennbar, neben der Eingabe durch den Regler auch die Moglichkeit gibt, direkt eine Zahl
einzutippen.

Abbildung 5.7: Eingabe eines Zahlenwerts durch den Number Slider

Da es sich bei dem Number Slider um einen Eingabetypen handelt, wurde er als zusatzli-
cher Eingabetyp zu Semantic Forms entwickelt. Es besteht eine Abhédngigkeit zu Semantic
Forms, was wiederum auch eine vollstdndige Integration ermoglicht. Zur Darstellung des
Schiebereglers selbst wurde die jQuery Ul-Bibliothek Slider” benutzt. Eine Besonderheit
bei der technischen Umsetzung stellte die Anpassung des Schiebereglers fiir die multiple
Instance-Template-Funktion von Semantic Forms dar. Diese Funktion ermoglicht es, wie bereits

7http://jqueryui.com/slider/

94

http://jqueryui.com/slider/

5.5 Die Erweiterung - Pattern Repository

genauer in Abschnitt 5.4 beschrieben, ein Template mehrmals innerhalb eines Formulars zu
instanziieren und so eine variable Anzahl von gewissen Inhaltsbestandteilen zu ermdglichen.
Gerade bei der Annotation von Zieleigenschaften ist dies notig, da es sein kann, dass der
Benutzer gar keine Zieleigenschaften annotieren mochte oder eine beliebige grofse Anzahl.
Das Erzeugen des jQuery-Elements Slider geschieht iiber eine Instanziierungsfunktion, wel-
che zum Zeitpunkt des Erzeugens des Eingabetyps an das, den Eingabetyp umgebende,
Div-Element angehdngt wird. Um den Slider im richtigen Div-Element zu speichern, wird
beim Erzeugen des HTML-Codes fiir den Eingabetyp eine statische ID vergeben. Die In-
stanziierung neuer Inhaltselemente wird so durchgefiihrt, dass zunéchst ein Inhaltselement
als Prototyp erzeugt und unsichtbar gemacht wird. Bei jeder Instanziierung wird nun eine
Kopie des Prototyps erstellt, und im Rahmen der Instanziierungsfunktion wird eine neue ID
fiir Semantic Forms-eigene Eingabetypen berechnet und zugewiesen. Da dies leider nicht
dokumentiert ist, musste dieses Verhalten durch die Analyse des Semantic Forms-Code
herausgefunden werden. Danach konnte die Instanziierungsfunktion des Number Sliders so
angepasst werden, dass auch er eine neue eindeutige ID erhilt, und so auch bei mehreren
Instanzen des Schieberegler immer genau die ausgewidhlten Werte in der vom Formular
generierten Seite gespeichert werden.

Es folgt eine Ubersicht, auf welche Dateien die Funktionalitit verteilt ist:

e includes/PAREP_NumberSlider.php: Abgeleitet von der Klasse SFFormInput. Gene-
riert den statischen HTML-Code und hdngt die Instanziierungsfunktionen an den
Eingabetyp an.

e libs/numberslider.js: Erstellung des jQuery Sliders in dem dafiir vorgesehenen Div.
Erzeugung von dynamischen IDs bei multiple Instance-Templates.

e skins/PAREP_NumberSlider.css: Einbindung des fiir die jQuery-Bibliothek notigen
CSS-Codes.

5.5.4 Ausblendbare Querys - Query Tabs

Um die Navigation durch das Pattern Repository entlang der Patternsprache moglichst intui-
tiv zu gestalten, ist es notig, vorhandene semantische Verlinkungen maximal auszunutzen,
ohne den Endnutzer dabei durch zu viele Informationen zu verwirren. Die Patternsprache
ist durch die semantischen Verlinkungen der Patterns zueinander in Form der semantischen
Daten abgelegt und kann nun durch Querys abgerufen werden. Wenn nun pro Pattern eine
grofle Informationsvielfalt vorhanden ist, konnte schnell die Ubersichtlichkeit verloren gehen.
Dies héatte den Effekt, dass der Benutzer noch unsicherer ist, wie er weiter navigieren soll.
Daher muss ein Kompromiss zwischen dem Ausnutzen der Informationsvielfalt und dem
Verhindern der Uberforderung des Benutzers angestrebt werden. Ausblendbare Querys, die
sich auf normalen Seiten integrieren lassen, bieten sich hierfiir an.

In Abbildung 5.8 ist die Leiste von ausgeblendeten Querys zu sehen, die sich durch einen
Klick auf die gewtiinschte Query 6ffnen lassen und ganz am Ende eines Patterns eingeblendet
werden soll. Dabei konnen die Reiter der einzelnen Querys frei benannt werden, und die

95

5 Implementierung des Pattern Repositorys

Querys selbst sind beliebig komplexe einbettbare Semantic Mediawiki- oder SPARQL-
Querys. In Abbildung 5.9 ist eine aufgeklappte Query mit einer einfachen Ergebnistabelle zu
sehen, welche durch einen wiederholten Klick auf den entsprechenden Reiter auch wieder
geschlossen werden kann.

Abbildung 5.8: Ausgeblendete Querys

Abbildung 5.9: Eingeblendete Query

Die technische Umsetzung von Query Tabs beruht auf einer Erweiterung der Wiki Mar-
kupsprache und benutzt zur Visualisierung die jQuery Ul-Bibliothek Tabs. Es werden zwei
neue Markupbefehle eingefiihrt, <tabs> als dufiere Umgebung fiir Tabs und <tab> um den
tatsdchlichen Inhalt eines Tabs abzulegen, wobei zusétzlich noch ein Tabtitel angegeben
werden kann. Die grofite Schwierigkeit bei der Implementierung stellte die Verkettung
der notigen Befehle fiir die Ubergabe an den Mediawikiparser dar. Zunichst muss nach
dem Offnen einer <tabs>-Umgebung der Mediawikiparser noch einmal aufgerufen werden,
um die enthaltenen <tab>-Bestandteile zu erhalten und die damit verkniipften Funktionen
aufzurufen. Zuvor muss ein Div-Container mit dem von jQuery Tabs benéttigten Daten-
modell erzeugt werden, in welchen die Tabs schlieslich ihre Inhalte einfligen kénnen. Bei
der Verarbeitung der einzelnen Tabs wiederum muss darauf geachtet werden, dass der
Parser den Inhalt nach Parserfunktionen durchsucht, welche Querys enthalten, so dass am
Ende der Benutzer auch ein Queryergebnis angezeigt bekommt und nicht nur die Query
als Text. Das Ergebnis wird dynamisch in den Div-Container eingefiigt und zuletzt wird
aus der fertigen Datenstruktur eine jQuery Tabs-Leiste erzeugt. Eine weitere Schwierigkeit
stellte die Anwendung von Javascript-Initialisierungsfunktionen auf bestimmte Elemente
des DOMs dar, deren vollstindige IDs erst zur Laufzeit im PHP-Code erzeugt werden,
indem an ein festes Prafix eine einzigartige MD5-Hashzahl angehdngt wird. Dafiir wurde
die Losung gewdhlt, dass an die Elemente des Div-Containers der Tableiste mithilfe von
jQuery dynamisch Initialisierungsfunktionen angehdngt werden, welche die richtigen IDs
der Elemente enthalten. Nach dem Laden des Dokuments wird mithilfe von statischem
Javascript nach Divs mit dem entsprechenden Prifix in der ID gesucht und alle angehédngten
Funktionen werden ausgefiihrt. Einen dhnlichen Mechanismus implementiert Semantic

96

5.5 Die Erweiterung - Pattern Repository

Forms, so dass bei der Implementierung der anderen Semantic Forms Eingabetypen fiir das
Pattern Repository dieses Problem nicht auftrat.

Es folgt eine Ubersicht, auf welche Dateien die Funktionalitit verteilt ist:

e includes/PAREP_QueryTabs.php: Enthdlt die Tab-Renderfunktionen, welche an die
Aufrufe des Mediawikiparsers gekoppelt sind, sobald die entsprechenden Markup-
Befehle geparst werden.

e libs/querytabs. js: Aufruf der an die Elemente angehidngten Initialisierungsfunktio-
nen. Erstellen des jQuery Tabs-Elements

e skins/PAREP_QueryTabs.css: Einbindung des fiir die jQuery-Bibliothek nétigen CSS-
Codes.

5.5.5 Visualisierung von semantischen Pradikaten im Kontext von Kategorien -
Property Visualizer

Zur Gewinnung eines entsprechenden Mehrwerts aus der semantischen Annotation von
Patternrelationen bietet es sich an, diese neu beschriebenen Informationen zu visualisieren,
um sie fiir den Menschen greifbarer zu machen und besser verstandlich aufzubereiten. Wie
bereits in Abschnitt 4.2.1 beschrieben, dienen solche Relationen der Patterns untereinander
dem Aufbau einer Patternsprache, wodurch man durch die Visualisierung der Relationen
eine Visualisierung des Aufbaus der Patternsprache erhilt. Dies sind sowohl Anforderungen
des Pattern Autors als auch des Endnutzers.

Hierfiir wurde nun eine Erweiterung entwickelt, die es ermoglicht, unter Angabe einer
Kategorie und eines semantischen Attributs, die Vernetzung der Patterns aller Unterkate-
gorien durch die semantischen Links als gerichteten Graphen darzustellen. Ein mogliches
Beispiel fiir einen solchen Graphen ist in Abbildung 5.10 dargestellt. Die grauen Recht-
ecke représentieren jeweils eine Kategorie von Patterns, wobei der weifie Schriftzug die
Bezeichnung der Kategorie darstellt und die Patterns selbst in schwarz geschrieben sind. Die
Pfeile stehen fiir semantische Links entsprechend dem Attribut, welches zuvor ausgewéhlt
wurde. Voraussetzungen, um ein solches Ergebnis zu erhalten, sind die Gliederung einer
Patterndoméne in Unterkategorien sowie die Existenz von gerichteten semantischen Links.

Die technische Umsetzung wurde durch das Hinzufiigen einer Mediawiki-Parserfunktion
realisiert, welche eine korrekte Eingabe im DOT-Format fiir die Mediawiki-Erweiterung
GraphViz produziert, die bereits in Abschnitt 2.3.7 vorgestellt wurde. Die Parserfunktion
#pareptree nimmt als Parameter eine Kategorie und das semantische Attribut, das visua-
lisiert werden soll, entgegen. Nun wird zunéchst intern ein mehrdimensionales Array der
Kategorien, Unterkategorien und der dazugehdrigen Seiten erstellt sowie ein mehrdimensio-
nales Array, welches ein Array von ausgehenden Links pro Seite speichert. Mithilfe dieser
Informationen wird ein mit <graphviz> umgebener Text im DOT-Format erstellt, der den
abzubildenden Graph beschreibt. Damit als Resultat schliefdlich nicht dieser Text, sondern
die gewtinschte Grafik dargestellt wird, ruft die Property Visualizer-Parserfunktion den
Mediawiki-Parser auf, der Wikitags auflosen soll. Dadurch wird die Erweiterung GraphViz

97

5 Implementierung des Pattern Repositorys

aufgerufen, welche ihrerseits wiederum davon abhangig ist, dass auf dem Server Graphviz
installiert ist. Graphviz erzeugt eine Bilddatei, die ins resultierende Dokument eingebunden
wird.

Es folgt eine Ubersicht, auf welche Dateien die Funktionalitit verteilt ist:

e includes/PAREP_PropertyVisualizer.php: Extraktion der Eingabeparameter, Aufruf
der PAREPSemPropTree-Klasse und Aufruf des Mediawiki-Parsers.

e includes/util/PAREP_SemPropTree.php: Mithilfe von PAREPTreefunc wird ein Baum
erstellt und schliefllich in das Graphviz-Format geparst.

e includes/util/PAREP_Treefunc.php: Enthilt notige Logik fiir den komfortablen Um-
gang mit Baumen.

e languages/PAREP.118n.magic.php: Registrierung eines einzigartigen Namens fiir die
Parserfunktion. Dabei ist es moglich, den Funktionsnamen an die jeweilige Sprache
des Wikis anzupassen.

Abbildung 5.10: Visualisierung eines semantischen Linktyps durch den Property Visualizer

98

5.5 Die Erweiterung - Pattern Repository

5.5.6 Suchassistent - Wizard

Als Kern fiir die Benutzung des entwickelten Pattern Repositorys kann der Suchassistent bzw.
Wizard gezédhlt werden. Sobald das Repository zu einer Patternsprache vernetzte und durch
semantische Annotationen angereicherte Patterns enthilt, sind verschiedene Szenarien fiir
die Fithrung des Benutzers durch Empfehlungen moglich. Dabei ist der Wizard insbesondere
dann niitzlich, wenn aufgrund der groflen Komplexitét einer Doméne der Endnutzer auf Pro-
bleme bei dem Einstieg in die Patterndoméne stofst oder Schwierigkeiten bei der Navigation
durch die Patternsprache hat. Wegen diesen unterschiedlichen Anwendungsfillen wurde
die Grundstruktur des Wizards so gewihlt, dass der Benutzer zunachst auswéhlen kann,
welche Art der Unterstiitzung benottigt wird bzw. welche Art von Vorschldgen erwtiinscht
ist. Das Ziel liegt jedoch immer darin, dem Benutzer moglichst sinnvolle Patternvorschldage
zu bieten. In dem Fall, dass der Benutzer eine ganze Liste von Vorschldgen erhilt, die zwar
alle interessant fiir ihn sind, aber die er nicht gleichzeitig bearbeiten kann, gibt es die in
Abschnitt 4.3.2 beschriebene , Leseliste”. Diese stellt eine zusatzliche Funktion des Wizards
dar und ermoglicht das Vormerken von Patterns, die der Benutzer spater noch lesen mochte.
Dartiber hinaus lédsst sich auf diese Weise ein System von Patterns anhand der Leseliste
zusammenstellen, auf deren Basis weitere Empfehlungen fiir Patterns moglich sind, die sich
mit den in der Liste vorhandenen Pattern kombinieren lassen.

Please make your choice: Articles to Read
@ Choose a target property MNr3
- M2

Choose from basic patterns i
[\.Jr‘]

Choose your role

Choose a solution

Propose me patterns based on my reading
list

Select

Abbildung 5.11: Das Hauptmenii des entwickelten Pattern Wizard - Links das Auswahlmenti
der Empfehlungsfunktionen und auf der rechten Seite die Leseliste

In Abbildung 5.11 ist das Hauptmenii des Wizards dargestellt. Auf der linken Seite gibt
es die verfiigbaren Empfehlungsfunktionen, bei welchen eine getitigte Auswahl mit dem
Button Select bestitigt werden kann. Auf der rechten Seite ist die Leseliste, mit einigen
Beispielpatterns als Inhalt, dargestellt. Im Folgenden soll auf die Umsetzung der einzelnen
Funktionen eingegangen werden. Bei der Beschreibung des konzeptionellen Entwurfs in
Kapitel 4 wurde in Abschnitt 4.3.1 bereits erldutert, welche unterschiedlichen Einstiegs-
moglichkeiten in eine Patterndomaéne in einem Pattern Repository vorhanden sein sollten.
Der Einstieg iiber grundlegende Patterns ist tiber den Mentipunkt Choose from basic patterns
erreichbar und der Einstieg anhand von Benutzerrollen iiber den Mentiipunkt Choose your
role. In Abschnitt 4.3.2 wurden die weiteren Funktionen entworfen: Choose a target property
ermoglicht die Empfehlung von Patterns anhand von ausgewéhlten Zieleigenschaften und

99

5 Implementierung des Pattern Repositorys

Choose a solution die Empfehlung anhand von bekannten Anwendungen. Der Meniipunkt
Propose me patterns based on my reading list erlaubt die ebenfalls in Abschnitt 4.3.2 beschriebene
Empfehlung aufgrund von vorhandenen Patterns in der Leseliste.

Der gesamte Wizard wurde in Form einer Mediawiki Spezial-Seite umgesetzt, die tiber
URL-Parameter® gesteuert wird. Die genau Funktionsweise von Spezial-Seiten wurde bereits
in Abschnitt 5.1.2 erldutert. Das Hauptmenii mit dem Select-Button wurde dabei durch
ein HTML-Formular umgesetzt, welches bei Betdtigung des Buttons eine GET-Anfrage sen-
det und die entsprechende Auswahl an die URL anhédngt. Domé&nenspezifische Angaben
tiber Kategorien und dhnliche von der Doméne abhédngige Anpassungen konnen in der
Mediawiki-LocalSettings.php vorgenommen werden. Ein grofSer Teil der sonstigen notigen
Benutzereingaben wurde tiber die auf jQuery basierende Javascript-Bibliothek jsTree [Boz]
realisiert. Diese ermdglicht es, unter anderem aus JSON-Daten, eine Baumstruktur zu erzeu-
gen, wobei Labels und hinterlegte Links frei wahlbar sind. Sollen anhand der Auswahl in
einem jsTree dynamische Empfehlungen angezeigt werden, wird zur Laufzeit eine SPARQL-
Query aus der Benutzerauswahl erzeugt. Diese wird anschlieffend per AJAX-Anfrage an den
Triplestore gesendet und das Ergebnis als Tabelle angezeigt. Zudem gibt es die Moglichkeit,
Eintrdge der Ergebnistabelle per Drag & Drop in die Leseliste einzuftigen. Es folgt eine kurze
Beschreibung der einzelnen Funktionen und deren technische Umsetzung;:

Auswahl eines bekannten Anwendungsfalls In Abbildung 5.12 ist die Empfehlungsfunk-
tion anhand von bekannten Anwendungsfillen dargestellt. Die auf der linken Seite
dargestellte Auswahl der Anwendungsfille ist tiber jsTree realisiert und zeigt zunachst
die Kategorienhierarchie an, die sich unter der in der ,LocalSettings.php” dafiir konfi-
gurierten Uberkategorie befindet. Nun lassen sich anhand von Checkboxen mehrere
Anwendungsfille auswéhlen, an welchen der Benutzer interessiert ist. Bei Betdtigung
des Propose Patterns-Buttons wird per AJAX-Aufruf eine PHP-Funktion des Wizards
aufgerufen, mit deren Hilfe dynamisch eine SPARQL-Query erzeugt wird. Die Query
ruft alle Patterns ab, die eine Implemented By-Beziehung zu einem der ausgewéhlten
Anwendungsfélle haben. Die fertig generierte Query wird in Textform tiber einen
Aufruf an den Mediawiki-Parser zu dem Triplestore geschickt. Sobald der asynchrone
Aufruf ein Ergebnis zurtickliefert, wird dieses in Form einer Ergebnis-Tabelle dem
Endbenutzer angezeigt. Auf die Tabelle wird zusitzliche eine Javascript-Funktion aus-
gefiihrt, die ihr eine bestimmte HTML-Klasse zuordnet. Aufgrund dieser Klasse ist es
nun moglich, per Drag & Drop Ergebnisse aus der Tabelle in die Leseliste einzufiigen.

Auswahl von Zieleigenschaften Die Auswahl von Zieleigenschaften ist weitestgehend gleich
umgesetzt wie die Auswahl von bekannten Anwendungsfillen, weswegen hier keine
zusétzliche Abbildung gezeigt werden soll. Die Umsetzung unterscheidet sich lediglich
dadurch, dass die Uberkategorie durch einen anderen Parameter gegeben ist und eine
andere Query erzeugt wird. Pro Zeile wird ein Pattern sowie alle Zieleigenschaften
angezeigt, mit welchen es annotiert wurde. Die moglichen Zieleigenschaften hangen
dabei von der Auswahl der jsTree-Eintrage durch den Benutzer ab. Zusitzlich gibt es fiir

8http://www.mediawiki.org/wiki/Manual : Parameters_to_index.php

100

http://www.mediawiki.org/wiki/Manual:Parameters_to_index.php

5.5 Die Erweiterung - Pattern Repository

jede Zieleigenschaft eine Spalte, welche die jeweilige Korrelation der Patterns zu dieser
Zieleigenschaft anzeigt. Die letzte Spalte zeigt den berechneten Durchschnittswert aller
Zieleigenschaftenkorrelationswerte eines Patterns an. Anschlieffend wird das Ergebnis
anhand dieses Durchschnittswertes sortiert, so dass der Benutzer das Pattern an erster
Stelle erhdlt, welches am meisten mit seiner Auswahl von Zieleigenschaften korreliert.

Auswahl eines grundlegenden Patterns In Abbildung 5.13 ist die Auswahl eines grund-
legenden Patterns zu sehen, wobei die gezeigten Cloud Computing Patterns aus
[FLR*13] stammen. Es gibt keine Auswahlméglichkeiten fiir den Benutzer, stattdessen
wird eine in der , LocalSettings.php”-Datei per Parameter festgelegte Kategorie von Pat-
terns angezeigt. Dabei konnen die Patterns entweder direkt vom Benutzer angeklickt
werden, um auf die Seite des entsprechenden Patterns zu gelangen oder per Drag &
Drop in die Leseliste eingeftigt werden.

Auswahl einer Benutzerrolle In Abbildung 5.14 ist der Auswahldialog zu sehen, der er-
scheint, falls sich der Benutzer fiir die Empfehlung anhand einer Benutzerrolle entschie-

Please make your choice: Results Articles to Read
il Category:Solutions M
¥ Sol1 |Pattern|lmp|emented by solution - Nrd
L. []S0l2 - M2
— Ml
Propose patterns Nrd Solt N

Abbildung 5.12: Auswahl eines bekannten Anwendungsfalls im Wizard - Auf der linken Sei-
te geschieht die Auswahl, in der Mitte werden die Empfehlungen angezeigt
und rechts unten ist die Leseliste zu sehen

Please make your choice: Articles to Read

4. Category:Cloud_Computing_Fundamentals ‘- Insert nodes here
4- Category-Application_Workloads

- Continuously Changing Workload
- Once-in-a-lifetime Workload

- Periodic Workload

- Static Workload

- Unpredictable Workload

4- Category:Cloud_Deployment_Models
- Community Cloud

- Hybrid Cloud

- Private Cloud

- Public Cloud

4- Category:Cloud_Senvice_Models

- Infrastructure as a Semnice

- Platform as a Service

-~ Software as a Senice

Abbildung 5.13: Auswahl grundlegenden Patterns im Wizard - Auf der linken Seite ge-
schieht die Auswahl und rechts ist die Leseliste zu sehen. Die abgebildeten
Beispielspatterns sind aus [FLR"13]

101

5 Implementierung des Pattern Repositorys

den hat. Nach der Bestdatigung der Auswahl per Select-Button werden dem Benutzer
die fiir diese Rolle empfohlenen Patterns, anhand eines jsTrees wie bei der Auswahl der
grundlegenden Patterns, angezeigt. Die in dem Baum angezeigten Kategorien hangen
dabei von den Empfehlungen fiir die jeweilige Rolle ab, wobei mehrere Kategorien auf
Waurzelebene moglich sind.

Please select your role: Articles to Read
@ Customer Nr3
Student - Nr2

w
Select '

Abbildung 5.14: Auswahl einer Benutzerrolle im Wizard - Auf der linken Seite geschieht die

Auswahl und rechts ist die Leseliste zu sehen

Vorschlag aufgrund der Leseliste In Abbildung 5.15 ist die Empfehlungsfunktion der Le-

102

seliste dargestellt. Dabei ist in der Abbildung bereits ein Beispiel fiir ein Ergebnis
sichtbar, welches nach der Betdtigung des Propose Patterns-Buttons angezeigt wird.
Zuvor erscheint in dem Rahmen Propositions die Aufforderung, den Button zu betatigen.
Der Mechanismus fiir die Ergebnisanzeige funktioniert gleich wie bei der Auswahl der
Anwendungsfille, mit dem Unterschied, dass hier keine Benutzereingabe notwendig
ist. Als Eingabe wird der Inhalt der Leseliste verwendet, um wiederum dynamisch
eine SPARQL-Query zu erstellen. Die Query zeigt - wie in Abbildung 5.15 sichtbar - je
Pattern die moglichen Kombinationen und konkurrierende Alternativen an, welche
iiber die Relationstypen Combining und Competing abgefragt werden. Aus der Ergebni-
stabelle konnen schliefSlich alle gew{iinschten Patterns per Drag & Drop in die Leseliste
hinzugefiigt werden.

LocalSettings.php: Enthélt die Parameter zur Konfiguration von den unterschiedli-
chen Kategorien, die im Wizard verwendet werden sollen.

specials/PAREP_Wizard.php: Enthdlt die Verarbeitung der tiibergebenen URL-
Parameter, um je nach Benutzerauswahl die korrekte Seite anzuzeigen. Dariiber
hinaus sind hier die AJAX-Callbacks definiert, die zum Erzeugen der dynamischen
SPARQL-Querys und dem Senden der Querys an den Triplestore verwendet werden.

util/PAREP_JsTree.php: Dient zur Umwandlung von aus dem Wiki abgefragten Daten
in die JSON-Datenstruktur, welche von jsTree zur Darstellung als Baum bendétigt wird.

util/PAREP_SPARQLQueryBuilder: Wird von den verwendeten AJAX-Callbacks aus
PAREP_Wizard.php zur Erstellung der SPARQL-Querys abhédngig von den erhaltenen
Benutzereingaben verwendet.

libs/wizard. js: Enthdlt die komplette Applikationslogik fiir die unterschiedlichen
verwendeten jsTrees. Auflerdem werden von hier aus die AJAX-Aufrufe fiir verschiede-
ne Benutzereingaben gestartet und deren Ergebnisse verwaltet. Hier ist ebenfalls die
persistente Speicherung der Leseliste als Cookie realisiert.

5.5 Die Erweiterung - Pattern Repository

e skins/PAREP_Wizard.css: Steuert die Anordnung der einzelnen Elemente des Layouts,
so dass sich diese beispielsweise nicht gegenseitig verdecken oder iiberschneiden.

e languages/PAREP.118n.php: Enthilt Titel fiir die Spezialseite des Wizards, unter wel-
chem er in der Ubersicht aller Spezialseiten erscheint.

Propositions

Pattern |Combinations | Competitors

Mr
M Mr2

Nr3
Nrd

N5
NI
N2 (N2 N3
NI5
N3 N1
N3 N2

Fropose Patterns

Articles to Read

= Nr3

Abbildung 5.15: Vorschldge anhand der Leseliste im Wizard - Auf der linken Seite sind die
Vorschldge abgebildet und rechts ist die Leseliste zu sehen

103

6 Ergebnis und Evaluation

Nach der genaueren Erlduterung relevanter Aspekte der Implementierung im vorherigen
Kapitel soll nun anhand von Abschnitt 6.1 das Resultat dieser Diplomarbeit mit der ver-
wendeten Infrastruktur und den Einstellungsmoglichkeiten vorgestellt werden. In Abschnitt
6.2 erfolgt eine Evaluation, welche die Anwendung an zwei Patterndoménen demonstriert
und mit anderen Pattern Repositorys vergleicht. Abschlieffend erfolgt in Abschnitt 6.3
ein Riickblick auf den Verlauf der Arbeit, und eine kritische Bewertung im Hinblick auf
Verbesserungsmoglichkeiten.

6.1 Das Pattern Repository

Das Resultat dieser Arbeit ist ein Pattern Repository, wobei die Repository-Funktionalitat
auf Semantic Mediawiki basiert, welches fiir die Verwendung mit Patterns angepasst und
erweitert wurde. Eine grobe Ubersicht der Bestandteile des Repositorys gibt es bereits in
Abbildung 3.1 aus Abschnitt 3.3, woraus auch ersichtlich ist, dass es sich bei dem Pattern
Repository im Prinzip mehr um ein Framework handelt, als um ein einzelnes Programm.
Da die unterschiedlichen Teile des Systems nie gleichzeitig zum Einsatz kommen, soll im
Folgenden die Reihenfolge der Verwendung beschrieben werden:

1. Modellierung des Datenmodells: Der erste Schritt zur Verwendung der Anwendung
stellt das Editieren und Anpassen der mitgelieferten Datenmodell-Ontologien dar. Da-
bei ist es mindestens notwendig, die Ontologie des Kerndatenmodells auf die eigenen
Anspriiche und insbesondere auf das gewiinschte Patternformat anzupassen. Die Onto-
logie der Zieleigenschaften dagegen ist optional, und kann daher auf Wunsch ignoriert
werden. Welche genauen Modellierungsmoglichkeiten es innerhalb der Ontologien gibt,
wurde bereits ausfiihrlich in Abschnitt 4.4 beschrieben. Als Modellierungswerkzeug
kann jedes beliebige Programm verwendet werden, welches OWL-Dateien lesen kann
und das Resultat als OWL in RDF/XML-Serialisierung speichern kann. Im Rahmen die-
ser Diplomarbeit wurde zur Modellierung das Programm Protégé verwendet, welches
in Abschnitt 2.3.5 genauer beschrieben wurde.

2. Import des Datenmodells in eine DataWiki-Installation: Nachdem die Ontologien
den eigenen Anforderungen entsprechend editiert wurden, konnen sie mithilfe des
Java-Importers in eine Wiki-Installation tibertragen werden. Die genauen Schritte
zur Vorbereitung der Wiki-Installation sind in der technischen Dokumentation des
entwickelten Pattern Repositorys hinterlegt. Inwiefern die Ontologie-Elemente auf

105

6 Ergebnis und Evaluation

Elemente des Wikis abgebildet werden, wurde in Abschnitt 4.4.3 dargestellt. Der
Import-Vorgang selbst und dessen Implementierung wurde in Abschnitt 5.3 erldutert.

3. Installation der benétigten Erweiterungen: Die fiir die volle Funktionalitdt des Reposito-
rys benétigten Semantic Mediawiki-Erweiterungen miissen auf den Webserver kopiert
werden. Zusitzlich ist es notig, entsprechende Anpassungen in Konfigurationsdateien
vorzunehmen. Die genauen Schritte sind auch hier ausfiihrlich in der technischen
Dokumentation erldutert.

4. Verwendung des Pattern Repositorys: Nun kann das Pattern Repository verwen-
det werden. Einen Uberblick {iber die einzelnen Funktionen der Pattern Repository-
Erweiterung wurde in Abschnitt 5.5 gegeben.

Abbildung 6.1: Das Hauptmenii des Pattern Repositorys

Eine besondere Rolle bei der Verwendung des Pattern Repositorys spielt das Benutzerinter-
face, welches hauptsachlich aus dem Hauptmenii besteht, das in Abbildung 6.1 dargestellt
ist. Der Hausbutton ganz links 6ffnet die Hauptseite, welche einen Verweis zu dem Pattern
Repository Assistenten enthilt, sowie eine aus einer eingebetteten Query erstellen Tabelle
aller Patterns inklusive deren Icons. Es folgt eine Beschreibung der einzelnen Meniipunkte
und deren Untermentis:

e Quickstart: Soll den schnellen Einstieg anhand einer Ubersicht der Patterns ermdglichen.
Dazu gibt es den Mentipunkt Table of Contents, der ein Inhaltsverzeichnis der Patterns
in Form eines Kategoriebaums enthélt. Der Mentipunkt List of All Patterns fithrt zu
einer Seite mit der bereits beschriebenen dynamischen Auflistung aller existierender
Patterns und deren zugehorigen Icons.

e Wizard: Dient einerseits tiber Start Wizard zum Aufrufen der Spezialseite fiir den Pattern
Repository Assistenten. Andererseits ldsst sich damit direkt auf die Leseliste zugreifen,
welche mit dem Wizard erstellt werden kann, um daraus weitere vorgemerkte Patterns
aufzurufen.

e Search: Dieses Menii enthilt unterschiedliche Suchmoglichkeiten. Mit dem Meniipunkt
Semantic Search 1asst sich eine von DataWiki bereit gestellte Volltextsuche starten, die
zudem auch Filterfunktionen zum Ausblenden gewisser Ergebnisteilmengen enthalt.
Find Patterns By Target Property 6ffnet die Spezialseite der Erweiterung Semantic Drill-
down, welche einen semantischen Drilldown anhand von annotierten Zieleigenschaften
ermoglicht.

o Create: Dieses Menii enthélt nur den Eintrag Create New Pattern und dient zum Aufrufen
des Patternformulars zum Erstellen von neuen Patterns.

e Help: Dieses Menti enthdlt Verweise zu kurzen Hilfestellungen beztiglich dem Erstellen
und Suchen von Patterns sowie der Verwendung des Assistenten.

106

6.1 Das Pattern Repository

Der Button New Page neben dem Hauptmenti dient als weitere Moglichkeit, um entweder
ein neues Pattern zu erstellen, oder um eine Seite ohne die Hilfe eines Formulars zu
erstellen. Der Suchdialog ganz rechts bietet eine komfortable schnelle Suchfunktion mit
Autovervollstindigung sowie den schnellen Aufruf der Volltextsuche, die auch tiber das
Menti Search -> Semantic Search aufgerufen werden kann. Die Volltextsuche kann dabei direkt
tiber einen Klick auf das Lupensymbol fiir den eingegebenen Begriff aufgerufen werden.

6.1.1 Infrastruktur

Es ist moglich, einen Server fiir das Pattern Repository sowohl auf Windows- als auch auf
Linux-Basis zu betreiben. Dafiir wurden im Lauf der Diplomarbeit sowohl ein Windows
Server 2008 R2-System vollstindig konfiguriert, als auch ein Debian 6.0 ,,Squeeze”-System.
Ein vollstindig konfigurierter Server mit installiertem DataWiki stellt die Grundlage dar,
um mit der weiteren Einrichtung fortzufahren, welche im vorigen Abschnitt beschrieben
wurde.

Die Einrichtung der Infrastruktur auf dem Windows-System gestaltet sich dabei sehr un-
problematisch. Seitens DIQA liegen dafiir Installationsdateien mit einem sehr benutzer-
freundlichen Installationsassistenten bereit, der DataWiki inklusive XAMPP und Solr sowie
sinnvoller Voreinstellungen installiert. XAMPP" ist ein Paket, welches den Webserver Apache,
die Datenbank MySQL, PHP und weiteres enthélt, womit die Grundanforderungen von
Mediawiki erfiillt sind. Solr? ist Teil des Apache Lucene-Projekts3 und stellt ein Servlet fiir
fortgeschrittene Suchoperationen bereit. Im Rahmen von DataWiki dient es zur Realisierung
einer performanten Volltext-Suche. Die Installation des Triplestore Basic funktioniert eben-
falls unkompliziert {iber einen Installationsassistenten, der automatisch alle Einstellungen
fiir die Integration mit DataWiki vornimmt.

Unter Linux gestaltet sich die Einrichtung eines mit Triplestore betriebenen DataWiki kom-
plizierter, da keine automatischen Installationsassistenten zur Verfiigung stehen. Dadurch
besteht auch keine Bindung an XAMPP, sondern es muss nur dafiir gesorgt werden, dass
fiir Mediawiki moglichst ein Apache-Webserver mit PHP-Interpreter zur Verfiigung steht,
sowie eine MySQL-Installation als Datenbank. Um auf keine Probleme durch Inkompatibili-
taten unterschiedlicher Versionen zu stofien, wird fiir die Einrichtung unter Linux ebenfalls
XAMPP in der identischen Version wie unter Windows verwendet. Nachdem die Webserver-
Infrastruktur verfiigbar ist, folgt die manuelle Installation der gleichen Mediawiki und
Semantic Mediawiki-Versionen, wie sie unter Windows verwendet werden. Um die Vorteile
von serverseitigem Caching ausnutzen zu koénnen, sollte ebenfalls manuell der Cache Mem-
cached4 installiert werden. Fiir die Solr-Installation sollte man sich des Tricks bedienen, zuvor
eine Windows-Installation einzurichten, und dann den Ordner von Windows nach Linux zu

Thttp://wuw.apachefriends.org/en/xampp.html
*http://lucene.apache.org/solr/
3http://lucene.apache.org
4http://memcached.org/

107

http://www.apachefriends.org/en/xampp.html
http://lucene.apache.org/solr/
http://lucene.apache.org
http://memcached.org/

6 Ergebnis und Evaluation

kopieren. Dies ist notig, da die Solr-Version’, die unter dem DataWiki-Sourceforgeprojekt
erhéltlich ist, keinerlei fiir die Integration mit DataWiki bendtigte Einstellungen enthélt. Nun
kann mithilfe des Wiki Administration Tools®, das Teil von DataWiki ist, die eigentliche Instal-
lation der restlichen DataWiki-Funktionen begonnen werden. Dies ist {iber das Webinterface
des Wiki Administration Tools moglich, welches Zugriff auf ein Repository von Erweite-
rungen gewdhrt, aus welchem auch DataWiki ausgewidhlt werden kann. Fiir die Installation
und Integration des Triplestore Basic miissen innerhalb der Mediawiki-Konfigurationsdatei
,LocalSettings.php” sowie in einer Triplestore Konfigurationsdatei zahlreiche Anpassungen
gemacht werden. Eine ausfiihrliche Anleitung der Einrichtung von DataWiki unter Linux ist
in der technischen Dokumentation zu DataWiki enthalten.

Im Folgenden sind die genauen Versionen der einzelnen Programme und Frameworks
aufgelistet, welche zur Installation einer DataWiki-Installation benttigt werden, die mit dem
Pattern Repository kompatibel ist.

e XAMPP 1.7.4 Beta 2 (in dem DataWiki-Installationsprogramm enthalten)

Mediawiki 1.17.0

Semantic Mediawiki 1.7.1

e DIQA DataWiki 1.7.1 Build 134

DIQA Triplestore Basic 1.7.3 Build 22

6.1.2 Administration

Die Administration des Pattern Repositorys sollte von einem Mediawiki-erfahrenen Admi-
nistrator durchgefiihrt werden. Neben den tiblichen Spezialseiten, die zur Administration
von einzelnen Erweiterungen benutzt werden konnen, bietet DataWiki eine komfortable
Seite, die alle diesbeziiglich wichtigen Funktionen zusammenfasst. Sie ist tiber den Link
Administration erreichbar, welcher links neben dem Login erscheint, sobald ein Benutzer mit
Administratorrechten eingeloggt ist.

Von dieser Seite aus gibt es Zugriff auf graphische Werkzeuge zur Administration. Mithilfe
des Wiki Administration Tool lassen sich unter anderem Backups der aktuellen Installati-
on erstellen, oder anhand des bereits beschriebenen DataWiki Repositorys Erweiterungen
komfortabel aus einer Liste installieren, ohne dass manuell Anpassungen an Konfigurations-
dateien gemacht werden miissen. Die Triplestore Administrationsseite bietet Informationen
tiber einen angeschlossenen Triplestore und informiert {iber den aktuellen Status. Neben
der Verwaltung von Benutzer- und Benutzergruppenrechten ist es aufserdem moglich, das
DataWiki-Hauptmenii zu verdndern, oder auch den Inhalt der Fufizeile anzupassen.

Shttp://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/SOLR/
http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/DataWiki%20extensions/

108

http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/SOLR/
http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/DataWiki%20extensions/

6.2 Evaluation

6.2 Evaluation

Nachdem vorhergehend das Ergebnis der Diplomarbeit beschrieben wurde, folgt nun dessen
Evaluation und Bewertung. Dabei soll untersucht werden, inwiefern das in Abschnitt 1.1
definierte Ziel erreicht wurde und inwieweit es gelungen ist, die in Kapitel 3 formulierten An-
forderungen zu erfiillen. Insbesondere soll in diesem Abschnitt auch iiberpriift werden, wie
gut sich das entwickelte Pattern Repository im Umgang mit zwei Beispielpatterndoménen
eignet.

Mit der Entwicklung der in Abschnitt 6.1 vorgestellten Anwendung wurde das Ziel die-
ser Diplomarbeit, ein Pattern Repository zu entwickeln, vollstindig erreicht. Anhand des
Repositorys ist es moglich, das Patternformat flexibel auf eine gewisse Patterndoméne
anzupassen und man erhélt anschlieffend ein benutzerfreundliches Formular zur Eingabe
und zum Editieren von bereits vorhandenen Patterns. Die Anpassung des Patternformats
geschieht mit einer OWL-Ontologie, was das Verwenden von beliebigen OWL-kompatiblen
Editoren moglich macht. Durch das Formular ist das Patternformat fest vorgegeben, was
unerwiinschte Abweichungen vom ,Standard” ausschlief3t.

Das Annotieren von semantischen Links ist benutzerfreundlich mithilfe eines speziellen
Werkzeugs des Patternformulars sowie innerhalb von Fliefstext mithilfe eines WYSIWYG-
Editors moglich. Dabei lassen sich ebenso bekannte Anwendungsfille annotieren, um zu
dokumentieren, aus welchen Quellen das Pattern abstrahiert wurde. Die Annotation von
Zieleigenschaften, fiir welche ebenfalls ein spezielles Werkzeug fiir die Verwendung im
Patternformular bereit steht, ermdoglicht die zielgerichtete Auswahl von Patterns. Zur Unter-
stiitzung bei der Erzeugung einer Patternsprache gibt es unterschiedliche Visualisierungs-
moglichkeiten, die eine Ubersicht iiber die vorhandene Vernetzung bieten und daher eine
gezieltere Feinvernetzung moglich machen.

Fir die Verwendung des Pattern Repositorys durch den Endnutzer gibt es vielseitige
Moglichkeiten. Anhand eines Inhaltsverzeichnisses im Baumformat, einer Liste aller Patterns
mit deren Icons sowie von Visualisierungen erhélt der Benutzer schnell einen Uberblick iiber
die Patterndomaéne. Der Assistent ist dabei in der Lage, dem Benutzer Empfehlungen anhand
von unterschiedlichen Kriterien auszusprechen. Neben auswéhlbaren Benutzerrollen kénnen
Zieleigenschaften, bekannte Anwendungsfélle oder eine abstrakte Startkategorie gewéahlt
werden. Diese dienen anschliefsend als Grundlage fiir die Erstellung von dynamischen
Querys, um dem Benutzer sinnvolle Empfehlungen zu geben. Die Leseliste, die dazu dienen
kann, ein System von Patterns zu verfassen, ermdoglicht die Empfehlung von Patterns, die
sich gut in das zusammengestellte System einfiigen lassen wiirden. Das Benutzerinterface in
Form von ausblendbaren Querys, welches fiir die Patterns entwickelt wurde, ermdoglicht ein
Traversieren der Patternsprache von Patternartikel zu Patternartikel. Es folgt die Analyse der
Eignung fiir zwei Beispieldoménen, fiir welche das entsprechende Patternformat komplett als
Ontologie modelliert wurde. Dariiber hinaus wurden jeweils der komplette zum Zeitpunkt
des Verfassens dieser Arbeit vorhandene Patternfundus in das System tibertragen, um
einen Eindruck von dem Verhalten eines vollstindig eingerichteten Pattern Repositorys zu
erhalten.

109

6 Ergebnis und Evaluation

6.2.1 Beispieldoméane Cloud Computing Patterns

Die Entwicklung der unterschiedlichen Repository-Bestandteile wurde jeweils mit Beispiel-
daten aus der Doméne der Cloud Computing Patterns aus [FLR' 13] durchgefiihrt. Auf diese
Weise konnte sichergestellt werden, dass bei der Konzeption moglichst allgemein gehaltene
Mechanismen auch tatsdchlich funktionieren. Daraus ergibt sich, dass das Pattern Repository
sehr gut mit diesem Patternfundus funktioniert, da es wegen der Verwendung der Patterns
als Testdatensatz auch gewissen Detailanpassungen speziell fiir diese Doméne gibt. Es
wurde darauf geachtet, dass diese Detailanpassungen nicht in das Kerndatenmodell Einzug
erhalten, und dadurch das ganze System speziell auf diese Doméne angepasst wére.

Die Darstellung der Patternsprache fiir eine gewisse Patternkategorie wurde direkt aus
dem Werk zu den Cloud Computing Patterns [FLR"13] tibernommen und ist in Abschnitt
5.5.5 genauer beschrieben. Aufgrund der detaillierten Anpassungsmoglichkeiten des Pat-
ternformats und der gleichen grafischen Gestaltung der kategorieweisen Visualisierung der
Patternsprache entspricht die optische Darstellung der Cloud Computing Patterns in dem
Pattern Repository exakt der Darstellung im Buch. Zusitzlich wurde, um auch die Features
betreffend der Zieleigenschaften nutzen zu kénnen, eine Beispielontologie mit Zieleigen-
schaften modelliert und in das System eingebunden. Dies ermoglicht die Verwendung des
vollen Funktionsumfangs des Pattern-Assistenten. Zusammenfassend ldsst sich sagen, dass
die vollstandige Kompatibilitdt der Cloud Computing Patterns mit dem Repository ein gutes
Indiz dafiir ist, dass sich die entwickelte Anwendung fiir Patterns im IT-Bereich sehr gut
eignet.

6.2.2 Beispieldoméane Kostliim-Patterns

Um sicherzustellen, dass das Pattern Repository tatsadchlich frei fiir die unterschiedlichs-
ten Patterndoménen konfigurierbar ist, wurden als zweite Evaluationsdoméne die Kostiim
Patterns aus [SBLE12] gewdhlt. Fiir diese Patterndoméne gibt es zu dem Zeitpunkt des Ver-
fassens der Arbeit keinen kompletten Fundus von Patterns, sondern dieses Projekt befindet
sich gerade in dem Prozess des Entdeckens von Patterns. Die Sprache der Kostiim Patterns
soll dabei helfen, den Entwurfsprozess fiir komplexe Kostiime in Filmen zu vereinfachen
und damit das vorhandene Kostiimmanagement auch durch bessere IT-Werkzeuge auf die
nichste Ebene zu bringen.

Bei der Konfiguration des Patternformats anhand der OWL-Ontologie gab es keinerlei
Schwierigkeiten, was insofern aber auch nicht verwunderlich ist, da das Kostiim Patternfor-
mat sehr dhnlich zu dem Format der Cloud Computing Patterns ist. Dementsprechend gab es
auch keine Probleme bei der Generierung des Patternformulars anhand des Java-Importers.

Die Kostiiminstanz des Pattern Repositorys wurde mit dem im Rahmen der Diplomarbeit
von Daniel Kaupp entwickelten semantischen Wiki zur Losungsdokumentation und Musteridentifi-
kation integriert [Kau13]. Dieses System ermoglicht es, viele konkrete Problem-Losungspaare
in einem Wiki abzulegen, um auf diese Weise anschliefSend neue Patterns entdecken zu
konnen. Mithilfe des Repositorys ist es bei der Eingabe von neuen Patterns moglich, diese

110

6.2 Evaluation

direkt mit allen zur Abstraktion verwendeten Losungen zu vernetzen und von Grund auf
eine dichte Patternsprache zu erzeugen. Es ist zu vermuten, dass ein bereits beim Erstellen
der Patterns gefiihrtes Pattern Repository sehr viele semantischen Annotationen enthalten
wird, und dadurch potentiell sehr lohnende Ergebnisse vom Pattern-Assistenten produziert
werden konnen. Zur Umsetzung des Systems von Daniel Kaupp wurde ebenfalls DataWiki
verwendet, weswegen es bei der Integration der beiden Systeme nur wenige Probleme gab,
die leicht 16sbar waren.

6.2.3 Vergleich mit anderen Pattern-Repositorys

Nachdem die Evaluation anhand des Anpassens des entwickelten Pattern Repositorys an
zwei Beispieldoménen sehr erfolgreich verlaufen ist, soll in diesem Abschnitt ein Vergleich
der Anwendung mit anderen webbasierten Pattern Repositorys durchgefiihrt werden. Auf
diese Weise soll eine Positionierung des neu entwickelten Repositorys in der aktuellen Pattern
Repository Produktlandschaft ermoglicht werden. Zudem soll Lesern, die diese Diplomarbeit
zur Evaluation von Pattern Werkzeugen verwenden, eine fundierte Entscheidung ermoglicht
werden.

Im Folgenden sollen in dem Vergleich auftauchende Kandidaten kurz vorgestellt werden.
Diese wurden aus der grofien Fiille von Pattern-Webanwendungen ausgewdahlt, indem vorab
tiberpriift wurde, ob die jeweiligen Anwendungen tatsachlich mehr sind als ,flache” Websei-
ten mit durch Hyperlinks verbundene Patterns. Aufgrund dieses Kriteriums ausgeschiedene
Webseiten sind unter anderem http://www.eaipatterns.com, das Patternwerk zu [HWo3],
http://www.welie.com oder http://ajaxpatterns.org/, was als Grundlage fiir [Mahog]
diente. Bedauerlicherweise behandeln die untersuchten Patternkataloge alle die gleiche
Doméne: Design Patterns fiir Benutzerschnittstellen bzw. graphischer Oberflichen in der
Webprogrammierung. Dies erkldrt sich vermutlich aus der grofien Nachfrage auf diesem
Gebiet.

Quince Quince ist eine Patternbibliothek fiir interaktive Benutzererfahrungs- bzw. graphi-
sche Benutzeroberflichen-Design Patterns [qui] und wird von der Firma Infragistics”
entwickelt. Neben der Moglichkeit, eine Liste aller Patterns anzuzeigen, gibt es die
Herangehensweise, die Aufgabe anzugeben, die mithilfe des Patterns gelost werden
soll, um Vorschlége fiir passende Patterns zu erhalten. Patterns konnen in Quince mit
Tags versehen werden, die einer Kategorisierung entsprechen. Anhand dieser Tags
wird eine Ubersichtskarte generiert, auf der die am meisten verwendeten Tags im Stil
einer Tag Cloud am grofiten erscheinen, und die am wenigsten verwendeten Tags am
kleinsten. Die Beziehungen zwischen Tags werden dadurch erzeugt, dass Tags, die
gemeinsam fiir ein Pattern verwendet werden, eine Verbindung erhalten. Wird ein Tag
ausgewdhlt, erscheinen alle Patterns, die damit versehen wurden. Mithilfe des sog.
,Wireframe” konnen Patterns anhand ihrer sinnvollen Verwendungsposition inner-
halb einer ,typischen” graphischen Benutzeroberfliche ausgewadhlt werden. Benutzer

7http://www.infragistics.com

111

http://www.eaipatterns.com
http://www.welie.com
http://ajaxpatterns.org/
http://www.infragistics.com

6 Ergebnis und Evaluation

konnen zu allen Patterns Kommentare und Verbesserungsvorschldge beisteuern. Zur
Eingabe neuer Patterns konnen registrierte Benutzer Vorschldge einreichen. Dafiir lasst
sich ein Dokument hochladen und Tags sowie die Position im Wireframe vorschlagen.

Ypatterns Die Yahoo! Design Pattern Library enthélt Design Patterns fiir Benutzerschnitt-

stellen von Webanwendungen und wird von Entwicklern der Yahoo!-Plattform betreut
[Yah]. Neben einer Liste aller Patterns mit Icons sind die Patterns ebenfalls in Katego-
rien eingeteilt, aus welchen sie direkt ausgewéahlt werden konnen. Eine Besonderheit
ist das Angebot eines Stencil Kits, welches Schablonen fiir unterschiedliche Designpro-
gramme enthélt. Die Schablonen entsprechen Patterns aus der Yahoo! Design Pattern
Library und Codemodulen aus der Yahoo! User Interface Library®, einer Bibliothek von
interaktiven Webanwendungen. Mithilfe der Schablonen kann der Benutzer Entwiirfe
seiner Anwendungen erstellen und sieht direkt, welche Patterns er anschliefsend zur
Umsetzung verwenden kann. Die Patternseiten enthalten neben den {tiblichen Abschnit-
ten auch viele Verlinkungen zu Codebeispielen und zu dhnlichen Patterns aus anderen
Benutzerschnittstellen-Design Pattern Repositorys. Die Patterns werden von einem
Yahoo-Team bereitgestellt, allerdings werden dazu auf http://www.yuiblog. com teils
Umfragen gestartet, um die Meinung der Entwicklergemeinde zu Patternentwiirfen zu
erfahren.

Usabilitypatterns UsabilityPatterns.de ist das Resultat einer studentischen Fachstudie und

wurde von Yves Schubert, Uwe Breitenbticher und Jens Schumann entwickelt [SBS].
Die Seite enthilt ebenfalls Design Patterns fiir Benutzerschnittstellen und befindet
sich noch in der Beta-Phase. Das zugrundeliegende Patternkonzept unterscheidet sich
dabei von dem klassischen auf Christopher Alexander basierenden Format. Dabei
werden Patterns nicht mehr als feste Einheit gesehen; stattdessen sollen die starren
Problem-Losungspaare aufgespalten werden. Daraus resultiert ein Modell, das einer
Losung beliebig viele Probleme und Losungsvorschldge zuordnen ldsst. Bei der Suche
nach Patterns gibt es einen Wizard, der anhand dieses Modells die Auswahl in vier
Phasen aufteilt. In der Startphase, die momentan noch nicht implementiert ist, sollen
spdter grobe Patternkategorien gewédhlt werden konnen. In der Interaktionsartphase
kann die Art der Interaktion ausgewdahlt werden, die umgesetzt werden soll. Dies ist
moglich, da Usabilitypatterns.de ebenfalls auf ein Tagsystem setzt, und dabei sogar
semantische Tags erlaubt, die die Zuordnung des Tags zu einer der Phasen ermdoglicht.
In der Typphase werden nun alle Moglichkeiten aufgefiihrt, welche die beiden zuvor
ausgewahlten Tags und einen weiteren Tag besitzen, der als Typ angezeigt wird. In der
Zusatzattributephase konnen die angezeigten Patterns anhand von weiteren verfiigbaren
Tags weiter eingeschrankt werden. Neben dieser assistentengestiitzten Suche ist das
Stobern durch den kompletten Patternfundus anhand der Auswahl von Tags moglich.
Patterns konnen von registrierten Benutzern anhand von verschiedenen Kriterien
bewertet werden. Fiir Implementierungen von Patterns gibt es eine extra Oberfldche,
die neben Bewertungen auch das Schreiben von Kommentaren ermdglicht.

8http://yuilibrary.com/

112

http://www.yuiblog.com
http://yuilibrary.com/

6.2 Evaluation

Die vorgestellten Kandidaten sollen nun anhand von gewissen Qualitdtsmerkmalen unter-
einander verglichen werden. Dabei werden die Systeme teils anhand der Anforderungen aus
Kapitel 3 verglichen, denn diese haben, obwohl sie teils spezifisch fiir das neu entwickelte
Repository sind, durchaus allgemeine Giiltigkeit als Qualitdtsmerkmale fiir Pattern Reposi-
torys. Andererseits wurden Gemeinsamkeiten zwischen den Anwendungen gesucht, um
tiberhaupt einen sinnvollen Vergleich moglich zu machen. Zunéchst sollen nun die einzelnen
Qualitdtsmerkmale anhand von Fragen beschrieben werden, die zum Vergleich verwendet
wurden.

o Visualisierung der Patternsprache: Gibt es eine Moglichkeit, die Beziehungen zwischen
Patterns, die die Patternsprache bilden, graphisch darzustellen?

¢ Unterstiitzung bei der Eingabe von neuen Patterns: Gibt es ein Formular oder einen
Assistenten, um den Benutzer bei der Eingabe von neuen Patterns zu unterstiitzen?

e Kollaborative Arbeit an Patterns: Ist es moglich, dass Patterns in gemeinschaftlicher
Arbeit in dem System weiterentwickelt werden? Gibt es Moglichkeiten, Kommentare
oder Verbesserungsvorschlidge fiir Patterns anzumerken?

e Suche von Patterns: Koénnen Patterns komfortabel gefunden werden? Wird der Benutzer
dabei vom System unterstiitzt?

e Assistent zur Patternsuche: Gibt es einen interaktiven Assistenten, der dem Benutzer
nach Abfrage von gewissen Kriterien sinnvolle Patterns vorschlagt?

e Fithrung des Benutzers: Ist ein Hilfedialog vorhanden, wenn der Benutzer das Pattern
Repository aufruft? Wird erklart, wie das Repository funktioniert?

e Darstellung der Patterns: Werden die einzelnen Patterns iibersichtlich dargestellt, so
dass der Inhalt schnell erfasst werden kann? Wie werden die Verweise auf andere
Patterns dargestellt?

¢ Anwendungsperformance: Reagiert das System schnell auf Nutzereingaben? Gibt es
lange Ladezeiten?

e Optik der Anwendung: Wirkt die Oberflache eher wertig oder billig? Ist erkenntlich,
dass es sich um ein zusammengehoriges System handelt, oder wirken die einzelnen
Komponenten zusammengestiickelt?

o Ausgereiftheit des Repositorys: Treten Bugs wéahrend der Verwendung des Systems
auf? Wirken einzelne Aspekte optimiert, oder ist es sptiirbar, dass sich das System noch
in der Entwicklung befindet?

Ein wichtiger Punkt, der in dieser Aufzdhlung fehlt, ist die Konfiguration fiir andere Pattern-
domainen. Dieser kann anhand dieser Evaluation leider nicht bewertet werden, da es keinen
Zugriff auf den Quellcode der Projekte gibt und sie jeweils fiir eine bestimmte Patterndoméne
konfiguriert wurden. In Tabelle 6.1 ist ein Vergleich der ausgewéahlten Kandidaten dargestellt.
Um die einzelnen Pattern Repositorys anhand eines Merkmals bewerten zu konnen, wird
eine Skala verwendet, die dem schulischen Notensystem dhnelt:

113

6 Ergebnis und Evaluation

e ++: Das Repository weist sehr gute Leistungen in dem mit zwei Plus bewerteten

Qualitatsmerkmal auf, und tibertrifft die meisten anderen Repositorys.

e +: Das Repository weist gute Leistungen in dem mit einem Plus bewerteten Qualitats-

merkmal auf, und kann sich dadurch eventuell leicht von den anderen Kandidaten
abgrenzen.

e 0: Das Repository weist befriedigende bzw. durchschnittliche Leistungen in dem mit

einer Null bewerteten Qualititsmerkmal auf.

e -: Das Repository weist ausreichende Leistungen in dem mit einem Minus bewerteten

Qualititsmerkmal auf, und ist damit etwas schlechter als die Konkurrenz.

e - -: Das Repository weist ungeniigende Leistungen in dem mit zwei Minus bewerteten

Qualitdatsmerkmal auf.

Anhand dieser Bewertungsskala wird anschlieflend in der letzten Spalte der Tabelle eine
Summe der Punkte fiir jede Anwendung gebildet. Dabei zdhlt jedes Plus als plus Eins, jede
Null als Null, und jedes Minus als minus Eins.

Es folgt eine Begriindung der Bewertungen in den jeweiligen Qualitdtsmerkmalen der
unterschiedlichen Repositorys.

114

e Visualisierung der Patternsprache: Das in dieser Arbeit entwickelte Pattern Repository

erhélt zwei Plus, da die Patternsprache anhand von auswihlbaren Linktypen visua-
lisiert werden kann. YPatterns erhilt zwei Minus, da es keinerlei Visualisierung der
Patternsprache gibt. Quince erhélt zwei Plus fiir die tibersichtliche Visualisierung in
Form der Tagcloud, die Beziehungen enthilt, wenn auch nur in Form eines Linktyps.
UsabilityPatterns.de erhilt ein Minus, das es zwar eine Visualisierung der Tags in Form
einer Tagcloud gibt, diese aber keine Beziehungen enthalt und nicht klar ist, wie die
Tags innerhalb der Wolke angeordnet werden.

Unterstiitzung bei Eingabe von neuen Patterns: Das Pattern Repository erhélt zwei
Plus, da das Patternformular viele den Benutzer unterstiitzende Hilfsmittel enthilt.
Die anderen Repositorys erhalten zwei Minus, da die Benutzer keine neuen Patterns
hinzufiigen koénnen, und es daher auch keinen Zugriff auf ein Formular gibt. Es
ist unbekannt, inwiefern die Eingabe der Patterns intern in den unterschiedlichen
Anwendungen funktioniert.

Kollaborative Arbeit an Patterns: Das Pattern Repository erhilt ein Plus, da durch die
Verwendung der Mediawiki-Plattform kollaboratives Arbeiten gut moglich ist. Zudem
gibt es eine Diskussionsseite zu jedem Pattern, auf der Benutzer Kommentare zu den
Patterns hinterlassen kénnen. Die anderen Anwendungen erhalten jeweils eine Null,
da sie zwar eine Moglichkeit fiir Benutzer bieten, Bewertungen oder Kommentare
abzugeben, das gemeinsame Arbeiten an Patterns aber nicht vorgesehen ist.

Suche von Patterns: Das Pattern Repository erhélt zwei Plus, da eine Schnellsuche mit
Autovervollstaindigung, eine Volltextsuche mit Filterfunktionen und eine Moglichkeit
zum Drilldown durch den Patternfundus gegeben ist. YPatterns erhdlt zwei Minus,

6.2 Evaluation

Pattern Re- | YPatterns | Quince Usability-
pository patterns
Visualisierung ++ -- 4+ -
der Patternspra-
che
Unterstiitzung ++ -- -- - -
bei Eingabe von
neuen Patterns
Kollaborative Ar-| + o o o
beit an Patterns
Suche von Pat-| ++ -- o ++
terns
Assistent zur Pat- | + ++ ++ +
ternsuche
Fithrung des Be- | - ++ ++ -
nutzers
Darstellung der | ++ ++ + ++
Patterns
Anwendungs- + ++ -- ++
performance
Optik der Anwen- | o ++ ++ +
dung
Ausgereiftheit - ++ + -
des Repositorys
Summe 9 6 6 1

Tabelle 6.1: Vergleichstabelle von alternativen Pattern Repositorys

da es keinerlei Suchfunktion gibt und auch kein Anzeigen von Patterns anhand
von Tags oder Ahnlichem. Quince erhilt eine Null, da die Patternsuche anhand der
Tagcloud sehr trdge ist und es keine Schnellsuche mit Autovervollstandigung gibt.
UsabilityPatterns.de erhélt zwei Plus, da die Suche anhand von Tags sehr komfortabel
funktioniert und ein Filtern innerhalb der Tagcloud moglich ist. Fiir die Schnellsuche
gibt es eine Autovervollstindigung der Patternbezeichner.

e Assistent zur Patternsuche: Das Pattern Repository erhilt ein Plus, da es einen Assis-
tenten gibt, der bereits viele Funktionen hat, aber noch nicht so ausgereift ist. YPatterns
wird mit zwei Plus bewertet fiir den sehr interaktiven Ansatz iiber die Stencil Kits,
was ein intuitives Auffinden der Patterns ermoglicht. Quince erhélt ebenfalls zwei
Plus fiir den Ansatz mit dem Wireframe, wobei dieser sehr dhnlich zu dem YPatterns-
Ansatz ist. Usabilitypatterns.de erhélt ein Plus, da der Assistent momentan nicht sehr
benutzerfreundlich zu bedienen ist und kaum brauchbare Ergebnisse liefert.

115

6 Ergebnis und Evaluation

116

e Fithrung des Benutzers: In dem Pattern Repository gibt es lediglich auf der Hauptseite

einen Verweis auf unterschiedliche Funktionalititen, wobei der Benutzer diese aber
auch tibersehen konnte, daher gibt es ein Minus. Bei YPatterns hat der Benutzer direkt
die Moglichkeit, eine Beschreibung der Yahoo Design Pattern Library zu 6ffnen und
Hilfestellung zu erhalten, wofiir es zwei Plus gibt. Quince erhilt ebenfalls zwei Plus
und schlagt sich bei der Fithrung des Nutzers am besten. Beim ersten Offnen wird
ein modaler Dialog angezeigt, der eine detaillierte Hilfestellung zu allen Funktionen
enthilt, der sich auf Wunsch aber bei zukiinftigen Besuchen von Quince nicht mehr
offnet. UsabilityPatterns.de erhilt zwei Minus, da beim Offnen des Repositorys eine
inhaltsleere Seite erscheint, und der Benutzer sich ohne Unterstiitzung zurechtfinden
muss.

Darstellung der Patterns: Das Pattern Repository erhdlt zwei Plus, weil die Verlinkung
zu anderen Patterns und Anwendungsfallen sowie die eingebetteten informativen Que-
rys ein sehr komfortables Navigieren durch die Patterns ermoglicht. YPatterns erhalt
ebenfalls zwei Plus, da sich die Darstellung der Patterns sehr tibersichtlich gestaltet und
alle verwandten Patterns, Losungen und Implementierungen auf einen Blick erfasst
werden konnen. Dariiber hinaus gibt es hochwertige Icons sowohl fiir Patterns als auch
fiir Kategorien. Quince erhélt nur ein Plus, da das Scrollen durch die verschiedenen
Abschnitte des Pattern sehr trage und damit nicht benutzerfreundlich ist; das standige
Einblenden von Beispielen dagegen sehr niitzlich. UsabilityPatterns.de erhélt zwei Plus,
da die Abschnitte sehr tibersichtlich sind, und alle wichtigen Informationen schnell
erreichbar sind. Die zusitzliche Oberfldche fiir Implementierungen ist ebenfalls eine
sinnvolle Idee.

Gefiihlte Anwendungsperformance: Das Pattern Repository erhélt ein Plus, da die
meisten Aktionen zwar ohne storende Wartezeiten durchgefiihrt werden konnen,
aber manchmal kleinere Wartezeiten von ca. 2 Sekunden auftreten. YPatterns und
UsabilityPatterns.de erhalten je zwei Plus, da beide Anwendungen sehr schnell auf
Benutzeraktionen reagieren und es kaum Ladezeiten gibt. Quince erhilt zwei Minus,
da unabhéngig von der Geschwindigkeit der Internetverbindung und des verwendeten
Rechners extrem lange Ladezeiten auftreten. Bereits beim Offnen der Applikation gibt
es zunichst eine Ladezeit von ca. 10 Sekunden und auch das Offnen von Patterns
dauert jedes Mal 3-5 Sekunden.

Optik der Anwendung: Das Pattern Repository erhdlt eine Null, da DataWiki durchaus
ein ansehnliches Design hat, die entwickelten Erweiterungen im Rahmen der Diplomar-
beit aber noch eine einheitliche optische Linie vermissen lassen. Quince und YPatterns
erhalten je zwei Plus, da die kompletten Anwendungen sehr professionell erscheinen
und ein einheitliches Design auf der kompletten Seite beibehalten. UsabilityPatterns.de
erhdlt ein Plus, da die Oberfliche durchaus zu gefallen weif3, an einigen Stellen der
Betastatus aber noch zu offensichtlich ist.

Ausgereiftheit des Repositorys: Das Pattern Repository erhilt hier ein Minus, da es zwar
eine solide Grundlage darstellt, aber viele Funktionen noch detaillierter ausgearbeitet
werden sollten. Zudem wurde es noch nie mit vielen Benutzern getestet. YPatterns
ist eine sehr ausgereift professionelle Anwendung, die von einem ganzen Team von

6.2 Evaluation

Entwicklern gepflegt wird. Quince erhélt ein Plus, da es zwar ebenfalls professionell
gepflegt wird, die Performance aber noch viel Raum fiir Optimierungen offen lasst.
UsabilityPatterns.de erhilt zwei Minus, weil man der Anwendung an vielen Stellen
ihren Beta-Status sehr deutlich anmerkt.

Zuletzt erfolgt ein Ranking anhand der Summenspalte aus Tabelle 6.1. Die Bildung der
Summe wurde bereits oben erldutert, und daraus resultiert folgendes Ranking;:

1. Pattern Repository
2. YPatterns und Quince

3. Usabilitypatterns

Um dieses Ergebnis etwas zu relativieren soll an dieser Stelle noch einmal betont werden,
dass einige der verwendeten Qualitdtsmerkmale aus dem Anforderungskatalog dieser Di-
plomarbeit stammen. Hétte man stattdessen die Anforderungen verwendet, die bei der
Entwicklung von beispielsweise YPatterns formuliert wurden, hétte YPatterns vermutlich
den Vergleich , gewonnen”. Auch die niedrige Punktzahl von UsabilityPatterns.de soll nicht
aussagen, dass es sich dabei um ein schlechtes System handelt. Dies folgt vielmehr aus dem
Beta-Status, der an vielen Stellen sehr deutlich spiirbar ist.

6.2.4 Vorteile und Nachteile des Pattern Repositorys

In diesem Abschnitt sollen mogliche Vorteile und Nachteile aufgelistet werden, die sich aus
den obigen Vergleichen mit anderen Pattern Repositorys ergeben haben. Zusatzlich wurden
Bewertungen aus meiner Sicht hinzugefiigt.

Vorteile:

e Benutzerfreundliche graphische Oberfliche, die dem Benutzer an vielen Stellen Unter-
stiitzung durch Autovervollstindigung etc. anbietet.

e Benutzerfreundlicher Assistent hilft auch bei komplexen Suchszenarien. In Buchform
gibt es keine Moglichkeit, den Benutzer auf diese Weise zu unterstiitzen.

o Effizientes kollaboratives Arbeiten an Patterns wird ermoglicht durch Verwendung
von Mediawiki als Basis.

o Vielfdltige Suchmoglichkeiten, um Patterns anhand von unterschiedlichsten Kriterien
zu finden.

o Aussagekriftige Visualisierung der Patternsprache.

e Benutzerfreundliches Patternformular, das sowohl zur Eingabe von neuen Patterns
dient, als auch zum Editieren von bereits vorhandenen.

117

6 Ergebnis und Evaluation

Komplette Flexibilitdt des zugrunde liegenden Datenmodells und insbesondere des
Patternformats, womit sich das Pattern Repository fiir viele Patterndoménen sehr gut
eignet. Fiir die Doméne der Cloud Computing Patterns aus [FLR"13] wurde die gute
Eignung bereits erprobt.

Erweiterungsmoglichkeiten des Pattern Repositorys durch die modulare Architektur
und dem erweiterungsfreundlichen Design von Mediawiki.

Problemlose Integration mit anderen auf Mediawiki basierenden Anwendungen mog-
lich.

Das Datenmodell ldsst sich um beliebige Funktionalitidten erweitern, indem der Java-
Importer ebenfalls angepasst wird.

Einfache Installation der zugrundeliegenden Plattform unter Windows.

Nachteile:

6.3

Der Nutzen der semantischen Annotationen kann nur so grof3 sein, wie die inhaltliche
Qualitdt und Sinnhaftigkeit der Annotationen.

Es sind noch keine komplexen Querys in dem System enthalten, so dass dement-
sprechend auch noch keine aufSergewohnlichen neue Einsichten z.B. betreffend der
Patternsprache gewonnen werden konnen. Allerdings kann nur spekuliert werden, ob
dies durch komplexere Abfragen moglich ist.

Wenig Fiihrung des Nutzers durch das Repository.
Die indirekte Abbildung der Datenmodellontologie auf das Wiki ist sehr komplex.
Komplizierte Installation der zugrundeliegenden Plattform unter Linux.

Breit gefdachertes Wissen vom technischen Administrator des Pattern Repositorys
gefordert: Wissen iiber Ontologiemodellierung in OWL, Java-Programmierkenntnisse,
falls das Importprogramm angepasst werden soll, Administration eines Webservers
und Mediawiki- sowie Semantic Mediawiki-Kenntnisse.

Unsicherheit tiber die Zukunft von DataWiki. Falls die Entwicklung eingestellt werden
sollte, muss anderweitiger Ersatz fiir die von DataWiki bereitgestellten Funktionen
gefunden werden.

Ruckblick auf Verlauf der Arbeit

Anschlieffend an die Vorstellung der Ergebnisse dieser Arbeit und deren Evaluation soll nun
ein Riickblick auf den Verlauf der Arbeit erfolgen, um einen Uberblick tiber das Vorgehen zu
geben und es entsprechend zu analysieren. Am Beginn der Arbeit stellte sich zunédchst die
Frage des zu verwendenden semantischen Wikis. Dabei entstand bereits die in dieser Arbeit
unter Abschnitt 3.5 aufgefiihrte Evaluation der alternativen Anwendungen, allerdings waren
an vielen Stellen die Anforderungen an das bendtigte Werkzeug nicht sehr klar formuliert.

118

6.3 Ruckblick auf Verlauf der Arbeit

Dies lag zum einen daran, dass sich viele Anforderungen erst aus Ideen entwickelten, die
durch die Erforschung der Moglichkeiten von Semantic Mediawiki entstanden. Zum anderen
hitte dies vielleicht frither forciert werden sollen.

Anschlieflend folgte die Untersuchung auf die Verwendbarkeit von unterschiedlichen Erwei-
terungen fiir Semantic Mediawiki, wobei unter anderem auch das sehr niitzliche DataWiki
entdeckt wurde. Es folgte nun die inkrementelle Entwicklung eines Datenmodells in Kapitel
4, wobei unterschiedliche Ansitze versucht wurden. Dabei wurde die Modellierung als
UML-Metamodell oder als UML-Klassenhierarchie aber letztendlich wieder verworfen, weil
die Modellierung als OWL-Ontologie sich schliefdlich als naheliegende Losung herausstellte.
Dies machte auch insofern Sinn, da in Semantic Mediawiki gewisse OWL-Konzepte direkte
Entsprechungen besitzen.

Nach der Modellierung des Patternformats und der Kategorienhierarchie in OWL folgte
die schrittweise Erweiterung des Datenmodells um Funktionen wie die Angabe von Vi-
sualisierungen auf Kategorieseiten und die Einbindung von Zieleigenschaften. Gleichzeitig
wurde dabei jeweils das Parsen der neu hinzugekommenen Elemente in dem in Abschnitt
5.3 beschriebenen Java-Importer implementiert, so dass die jeweils erweiterten Datenmodelle
auch ins Wiki tibertragen werden konnten. Die unterschiedlichen Teile der Erweiterung
Pattern Repository wurde jeweils nach der Integration der Funktionen im Datenmodell im-
plementiert und sind in Abschnitt 5.5 beschrieben. Als letzter Schritt der Erweiterung wurde
der Assistent entwickelt, der das Zusammenspiel aller bisher entwickelten Funktionalitdaten
bendtigt.

Wihrend der laufenden Entwicklung wurde auch damit experimentiert, das Pattern Reposi-
tory auf unterschiedlichen Infrastrukturen zu betreiben, mit dem Resultat einer ausfiihrlichen
Installationsanleitung fiir Windows und Linux. Zu Evaluationszwecken wurde, wie in Ab-
schnitt 6.2 beschrieben, das Datenmodell fiir die Patterndoméane der Kostiime konfiguriert
und diese Kostiim-Instanz des Pattern Repositorys mit Daniel Kaupps System [Kau13]
integriert. Im nédchsten Kapitel folgt nun eine Zusammenfassung dieser Diplomarbeit.

119

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung

Im Rahmen dieser Diplomarbeit wurde entsprechend der Zielsetzung ein Pattern Repository
zur Verwaltung und Suche von Design Patterns unterschiedlicher Domé&nen entworfen. Die
Anwendung wurde mithilfe von semantischen Webtechnologien auf Basis von Semantic
Mediawiki und Erweiterungen fiir dieses Framework realisiert.

Zu Beginn wurde evaluiert, welches semantisches Wiki sich am besten eignen wiirde, um
die zusitzlich benétigten Funktionen darauf zu implementieren. Die Evaluation ergab,
dass Semantic Mediawiki als ausgereifte, den Anforderungen entsprechende Open-Source
Anwendung eine gute Wahl dafiir wire. Semantic Mediawiki ist eine Erweiterung fiir
Mediawiki, der Plattform fiir wikipedia.org, wodurch sich die Moglichkeit ergibt, zahlreiche
bereits bestehende Erweiterungen fiir Mediawiki zu verwenden. Die Hauptanforderungen
fir das zu entwickelnde Werkzeug waren das benutzerfreundliche Erstellen von neuen
Patterns, das Annotieren von semantischen Informationen zum Ausdruck der Beziehungen
zwischen Patterns und die ausgekliigelte Suche nach Patterns. Zudem sollte das Werkzeug
tiber einen Assistenten verfiigen, der dem Benutzer sinnvolle Patterns vorschlagen kann.

Im Rahmen eines konzeptionellen Designs wurden die in der Zielsetzung geforderten
Grundfunktionalitdten ausformuliert und konkretisiert. Insbesondere der Mechanismus zum
Vernetzen der Patterns untereinander zur Bildung einer Patternsprache wurde sehr sorgfaltig
entworfen. Anschlieflend wurde das aus diesen detaillierten Beschreibungen resultierende
Datenmodell in Form einer OWL-Ontologie modelliert und vorgestellt. Die nétige Abbildung
der Elemente der Ontologie auf das Wiki, das fiir den Import des Datenmodells in Semantic
Mediawiki notig ist, wurde beschrieben und die Wahl von OWL als Modellierungssprache
begriindet. Nach der Fertigstellung aller notigen Entwurfsschritte wurde mit der Umsetzung
begonnen. Der Import des Datenmodells geschieht iiber ein Java-Programm, dass die Onto-
logie parst und in das Wiki iibertragt. Auf diese Weise werden das Formular zur Eingabe
von Patterns und die erlaubten semantischen Linktypen zwischen Patterns erzeugt, wobei
das Formular mithilfe einer Semantic Mediawiki Erweiterung umgesetzt wird. Fehlende
Funktionalitdten wie bestimmte Eingabetypen fiir das Formular oder Moglichkeiten zur
Visualisierung der Patternsprache wurden durch die Umsetzung der Erweiterung ,Pattern
Repository” in das Wiki integriert. Darin ist auch der Assistent implementiert, der Patterns
anhand unterschiedlichster Kriterien vorschlagen kann, beispielsweise anhand von Zielei-
genschaften, die durch die Wahl eines Patterns erreicht werden sollen. Die resultierende
Architektur aus dem Zusammenspiel der Ontologie, des Java-Importers und der selbst

121

7 Zusammenfassung und Ausblick

entwickelten Erweiterung wurde auf unterschiedlichen Detailstufen graphisch dargestellt
und erldutert.

Zuletzt wurde das Pattern Repository als Ergebnis dieser Diplomarbeit anhand seiner
Infrastruktur und Verwendung vorgestellt und durch die Konfiguration fiir zwei Pattern-
Beispieldomédnen evaluiert. Die Evaluation kam zu dem Ergebnis, dass sich das System
sehr flexibel an unterschiedliche Doménen anpassen ldsst und sehr gut fiir die beiden
Beispieldoméanen funktioniert. In einem Vergleich mit anderen Pattern Repositorys konnte
sich das entwickelte Repository gegeniiber seinen Konkurrenten behaupten, auch wenn es
noch viel Verbesserungspotential gibt.

7.2 Ausblick

Wie bereits im Rahmen der Evaluation in Abschnitt 6.2 erwdhnt, bietet der jetzige Implemen-
tierungsstand eine gute Grundlage fiir Erweiterungen der unterschiedlichsten Aspekte. Im
Folgenden sollen die jeweiligen Grundideen der Vorschldge kurz umrissen werden.

Ausbau des Assistenten Der Assistent besitzt zum jetzigen Zeitpunkt bereits die unter-
schiedlichsten Ansédtze zur Empfehlung von sinnvollen Patterns, allerdings ist keiner
davon sehr detailliert ausgebaut oder optimiert. Bei der Empfehlung von Zieleigen-
schaften wire es beispielsweise nétig, ein Eingabewerkzeug zur Verfiigung zu haben,
welches die Navigation durch den Ontologiebaum erleichtert. Bei der Auswahl tiber
bekannte Anwendungsfille wire eine Art von Kategorisierung von diesen wiinschens-
wert, um die Auswahl geordneter zu gestalten. Das grofste Potential bietet sicherlich
die Empfehlung anhand der Leseliste, fiir die ein intelligenter Algorithmus entwickelt
werden sollte. Zumindest eine intelligentere Query ware hier sehr wiinschenswert.
Neben dem Ausbau der bereits vorhandenen Punkte ist es auch problemlos moglich,
den Assistenten um neue Empfehlungsarten zu erweitern.

Implementierungen an Patterns anhdngen Momentan gibt es fiir das Anhdngen von Imple-
mentierungen an Patterns zwar die Moglichkeit, diese in einem speziellen Abschnitt zu
speichern oder auf externe Inhalte zu verlinken, aber gerade im IT-Bereich gabe es hier
Potential fur erweiterte Funktionen. Als Vorbild konnte hier YPatterns [Yah] dienen,
welches eine sehr enge Vernetzung von Patterns, Implementierungen und tatsédchlich
verwendbaren Beispielen umsetzt.

Interface der Patternseiten verbessern Die Art, wie durch eine Patternsprache navigiert
wird, hangt sehr stark von dem Interface ab, das auf den einzelnen Patternseiten zu
finden ist. In Form von ausblendbaren Querys wurde in dem Pattern Repository ein
sehr machtiges Werkzeug implementiert, wofiir nur noch niitzlichere Querys umgesetzt
werden miissten.

Export der Ontologie aus dem Wiki Momentan ist lediglich der Import einer OWL-
Ontologie in das Wiki implementiert, nicht aber der Export aus dem Wiki in eine

122

7.2 Ausblick

Ontologie. Dafiir miisste das momentan verwendete Java-Programm entsprechend
erweitert werden, um eine Abbildung auf die Kerndatenmodellontologie zu erhalten.

Integriertes Installationsprogramm Um die Benutzerfreundlichkeit des Repositorys auf die
ndchste Stufe zu bringen, miisste es ein Installationsprogramm geben, dass alle Schrit-
te fiir die Einrichtung einer neuen DataWiki-Installation tibernimmt. Dafiir miiss-
te das Programm den Java-Importer enthalten, und in der Lage sein, Mediawiki-
Erweiterungen automatisch zu installieren.

Visualisierungen verbessern Bei Patternsprachen gibt es sehr unterschiedliche Aspekte, die
visualisiert werden konnen. Besonders interessant wire beispielsweise eine , grobe”
Visualisierung, in der eine komplette Patterndoméne abgebildet wire. Um die Uber-
sichtlichkeit zu wahren, miisste dafiir eventuell ein Algorithmus entwickelt werden, der
bei zu vielen Pattern innerhalb einer Kategorie anschlieflend z.B. nur die Kategorie an-
statt der Einzelpatterns in der Grafik anzeigt. Die Verwendung von z.B. Hypergraphen
hat sich aufgrund der fehlenden Ubersicht als nicht empfehlenswert herausgestellt.

Leseliste als Entscheidungsprozess Eine sehr interessante Idee, die eventuell eine tiefere
Untersuchung Wert wire, ist das Ausbauen der jetzigen ,Leseliste” zu einer Moglich-
keit, den Entscheidungsprozess anhand von Patterns abzubilden. Denn im Prinzip
entspricht die Verwendung jedes Patterns dem Féllen einer Entscheidung, und somit
dem Navigieren entlang der Patternsprache auf einem gewissen Pfad. Daher wére
es auch denkbar, diesen ,Pfad” in der Leseliste abzubilden und es zu ermoglichen,
ihn zu visualisieren. Dieser Pfad konnte man sich als Subgraph einer Patternsprache
vorstellen, der alle verwendeten Patterns enthilt.

Pattern Mitigation Pattern Mitigation beschreibt ein Vorgehen, um mit der Kombination
von bestimmten Patterns auf einer hohen Abstraktionsebene Zieleigenschaften zu
erreichen, fiir die normalerweise Patterns auf einer niedereren Abstraktionsebene
benotigt wiirden. Diese Art der ausweichenden Modellierung kann sich anbieten, falls
das spezifischere Pattern gewisse Nachteile mit sich bringt, die durch die ersatzweise
Modellierung auf hoherer Ebene nicht oder weniger stark auftreten, also abgeschwiicht
werden. Dies ist genauer in [FLR" 13, S. 299-310] beschrieben. Um eine mogliche Pattern
Mitigation in einem Pattern Repository abzubilden, wiirde dafiir eine n-dre semantische
Beziehung zwischen den beteiligten Patterns benétigt. Dafiir wire ein extra Abschnitt
im Patternformular nétig, sowie eine Erweiterung des Pattern Interfaces und des
Assistenten, um von den Annotationen letztendlich auch profitieren zu konnen. Da die
Darstellung von n-dren Beziehungen bereits fiir die Annotation von Zieleigenschaften
entwickelt wurde, miisste diese dafiir verwendbar sein.

123

Literaturverzeichnis

[AAos5]

[AIST77]

[Ale79]

[AVHo4]
[BDS"09]

[Becoz]

[BGE*08]

[BHSo7]

[Bir1o0]

[Boz]

[Buso8]

[Djaos]

D. Aumueller, S. Auer. Towards a Semantic Wiki Experience - Desktop Integrati-
on and Interactivity in WikSAR. In Semantic Desktop Workshop. 2005. (Zitiert auf
Seite 40)

C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel.
A Pattern Language: Towns, Buildings, Constructions. Oxford University Press,
1977. (Zitiert auf den Seiten 9, 14, 16, 46, 58 und 60)

C. Alexander. The timeless way of building, Band 1. New York: Oxford University
Press, 1979. (Zitiert auf Seite 16)

G. Antoniou, F. Van Harmelen. Semantic Web Primer. the MIT Press, 2004. (Zitiert
auf den Seiten 7, 18, 19, 21 und 22)

J. Bao, L. Ding, P. R. Smart, D. Braines, G. Jones. Rule modeling using semantic
mediawiki. 2009. (Zitiert auf Seite 42)

D. Beckett. SWAD-Europe Deliverable 10.1: Scalability and Storage: Survey
of Free Software / Open Source RDF storage systems, 2002. URL http:
//www.w3.0rg/2001/sw/Europe/reports/rdf_scalable_storage_report/. (Zi-
tiert auf Seite 24)

M. Buffa, F. Gandon, G. Ereteo, P. Sander, C. Faron. SweetWiki: A semantic wiki.
Web Semant., 6:84—97, 2008. (Zitiert auf Seite 40)

E. Buschmann, K. Henney, D. Schmidt. Pattern-Oriented Software Architecture, On
Patterns and Pattern Languages. Pattern-Oriented Software Architecture. Wiley,
2007. (Zitiert auf Seite 33)

A. Birukou. A survey of existing approaches for pattern search and selection. In
Proceedings of the 15th European Conference on Pattern Languages of Programs, S. 2.
ACM, 2010. (Zitiert auf den Seiten 34 und 35)

I. Bozhanov. JsTree. URL http://www.jstree.com/. (Zitiert auf den Seiten 89
und 100)

F. Buschmann. Pattern-orientierte Software-Architektur. Pearson Deutschland
GmbH, 1998. (Zitiert auf den Seiten 16, 17 und 34)

B.-R. Djaloeis. Kaukolu: Building a semantic wiki. Diplomarbeit, University of
Kaiserslautern, 2005. (Zitiert auf Seite 40)

125

http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/
http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/
http://www.jstree.com/

Literaturverzeichnis

[DKTos]

[FEL*12]

[FLR"11]

[FLR*13]

[GASB11]

[GM] 03]

[Griz1]

[GSJSo3]

[Haros]

[Hee]
[HKRSo08]

[HL93]

126

J. Deng, E. Kemp, E. G. Todd. Managing UI pattern collections. In Proceedings of
the 6th ACM SIGCHI New Zealand chapter’s international conference on Computer-
human interaction: making CHI natural, S. 31—38. ACM, 2005. (Zitiert auf den
Seiten 33, 34 und 46)

C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rutschlin, D. Schumm. Capturing
Cloud Computing Knowledge and Experience in Patterns. In Proceedings of
the 2012 IEEE Fifth International Conference on Cloud Computing, CLOUD ’12, S.
726—733. IEEE Computer Society, Washington, DC, USA, 2012. (Zitiert auf den
Seiten 17, 34, 35, 46, 49, 53, 58, 59, 60, 61 und 68)

C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. An architectural
pattern language of Cloud-based applications. In Proceedings of the Conference on
Pattern Languages of Programs (PLoP). 2011. (Zitiert auf den Seiten 49, 62 und 63)

C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns - Fundamentals to Design, Build, and Manage Cloud Applications. Springer,
2013. (Zitiert auf den Seiten 8, 9, 14, 16, 35, 36, 54, 59, 61, 65, 101, 110, 118
und 123)

J. Garcia, A. Amescua, M.-I. Sdnchez, L. Bermoén. Design guidelines for soft-
ware processes knowledge repository development. Information and Software
Technology, 53(8):834 — 850, 2011. (Zitiert auf den Seiten 14 und 35)

S. L. Greene, P. Matchen, L. Jones, J. C. Thomas, M. Callery. Tool-based decision
support for pattern assisted development. In Proc. of CHI 2003 Workshop on User
Interface Patterns. 2003. (Zitiert auf den Seiten 33 und 35)

P. Grimm. Metamodell und Plattform fiir Mustersprachen und Musterkataloge. Di-
plomarbeit, Universitat Stuttgart, 2011. (Zitiert auf den Seiten 51, 52 und 53)

A. Gaffar, D. Sinnig, H. Javahery, A. Seffah. MOUDIL: A comprehensive fra-
mework for disseminating and sharing HCI patterns. In CHI 2003 Workshop on
Perspectives on HCI patterns: Concepts and Tools. 2003. (Zitiert auf den Seiten 33
und 34)

S. Hartmann. Transdisziplinaritét - Eine Herausforderung fiir die Wissenschafts-
theorie. Homo Sapiens und Homo Faber. Festschrift fiir Jiirgen Mittelstrass. Berlin &
New York: Walter de Gruyter, S. 335-343, 2005. (Zitiert auf Seite 9)

U. van Heesch. Open Pattern Repository. URL http://www.patternrepository.
com. (Zitiert auf Seite 14)

P. Hitzler, M. Krotzsch, S. Rudolph, Y. Sure. Semantic Web: Grundlagen. Springer
London, Limited, 2008. (Zitiert auf den Seiten 18, 19, 20, 21, 22 und 24)

H.-]. Habermann, F. Leymann. Repository - Eine Einfiihrung. R. Oldenbourg
Verlag, 1993. (Zitiert auf den Seiten 13, 34, 36 und 51)

http://www.patternrepository.com
http://www.patternrepository.com

Literaturverzeichnis

[HLSos5]

[Hoe]
[HWo3]

[ISO10]

JGVHos]

[Kar11]

[Kau1s]

[KEo2]

[Koc]

[Kép13]

[KV]

[Lero6]

[LHos]

[LLo7]

[Mahoo]

A. Haake, S. Lukosch, T. Schiimmer. Wiki-templates: adding structure support
to wikis on demand. In Proceedings of the 2005 international symposium on Wikis,
WikiSym ‘o5, S. 41-51. ACM, New York, NY, USA, 2005. (Zitiert auf Seite 63)

P. D. H. Hoepfner. Grundlagen des SE. (Zitiert auf Seite 36)

G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003. (Zitiert auf den Seiten 15, 35, 38, 58, 59, 61 und 111)

ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models, 2010. (Zitiert auf Seite 36)

R. Johnson, E. Gamma, J. Vlissides, R. Helm. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995. (Zitiert auf den Seiten 9, 15, 16,

35, 38, 53, 58, 59 und 60)

D. Karastoyanova. Services and Service Composition - Application Architecture
and Application Integration, 2011. Vorlesungsfolien. (Zitiert auf den Seiten 7
und 83)

D. Kaupp. Use of a Semantic Wiki for Capturing of Solutions and Pattern Discovery.
Diplomarbeit, Universitit Stuttgart, 2013. (Zitiert auf den Seiten 110 und 119)

D. M. Kienzle, M. C. Elder. Final technical report: Security patterns for web
application development. DARPA, Washington DC, 2002. (Zitiert auf Seite 14)

P.-P. Koch. ExecCommand compatibility. URL http://www.quirksmode.org/
dom/execCommand.html. (Zitiert auf Seite 92)

C. Koppe. A Pattern Language for Teaching Design Patterns. In Transactions on
Pattern Languages of Programming III, S. 24-54. Springer, 2013. (Zitiert auf den
Seiten 9 und 15)

M. Kroétzsch, D. Vrandecic. Semantic MediaWiki. URL http://
semantic-mediawiki.org/. (Zitiert auf den Seiten 26 und 40)

R. M. Lerner. Installing and customizing MediaWiki. Linux J., 2006(144):3,
2006. URL http://dl.acm.org/citation.cfm?id=1124506.1124509. (Zitiert
auf Seite 80)

B. Liu, B. Hu. An evaluation of RDF storage systems for large data applications.
In Semantics, Knowledge and Grid, 2005. SKG'05. First International Conference on, S.
59-59. IEEE, 2005. (Zitiert auf Seite 24)

J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. Dpunkt-Verlag, 2007. (Zitiert auf Seite 33)

M. Mahemoff. Ajax design patterns. O’'Reilly Media, 2009. (Zitiert auf Seite 111)

127

http://www.quirksmode.org/dom/execCommand.html
http://www.quirksmode.org/dom/execCommand.html
http://semantic-mediawiki.org/
http://semantic-mediawiki.org/
http://dl.acm.org/citation.cfm?id=1124506.1124509

Literaturverzeichnis

[McBo1]

[MDg7]

[Meda]

[Medb]

[Mil56]

[mwo]

[NRHWOo06]

[0OD]

[Ortg9]

[Per]

[por]
[pro]

[qui]
[SBBKo08]

[SBLE12]

[SBS]

128

B. McBride. Jena: Implementing the rdf model and syntax specification. 2001.
(Zitiert auf Seite 86)

G. Meszaros,]. Doble. A pattern language for pattern writing. In R. C. Martin,
D. Riehle, F. Buschmann, Herausgeber, Pattern languages of program design, Kapitel
A pattern language for pattern writing, S. 529-574. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997. (Zitiert auf den Seiten 16 und 63)

MediaWiki. Manual - Developing extensions. URL http://www.mediawiki.org/
wiki/Manual:Developing_extensions. (Zitiert auf den Seiten 8o und 81)

MediaWiki. = Resource Loader. @~ URL http://www.mediawiki.org/wiki/
ResourceLoader. (Zitiert auf den Seiten 82 und 89)

G. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The psychological review, 63:81—97, 1956.
(Zitiert auf Seite 57)

MediaWiki. URL http://www.mediawiki.org. (Zitiert auf Seite 26)

N. Noy, A. Rector, P. Hayes, C. Welty. Defining n-ary relations on the semantic
web. W3C Working Group Note, 12:4, 2006. (Zitiert auf Seite 54)

Design Patterns - Object Oriented Design. URL http://www.oodesign.com.
(Zitiert auf Seite 38)

E. Ortner. Repository Systems. Teil 1: Mehrstufigkeit und Entwicklungsumge-
bung. Informatik-Spektrum, 22(4):235-251, 1999. (Zitiert auf Seite 13)

D. Perry. Graphviz - Graph Visualization Software. URL http://www.graphviz.
org. (Zitiert auf Seite 30)

Portland Pattern Repository. URL http://c2.com/ppr/. (Zitiert auf Seite 14)

The Protégé Ontology Editor and Knowledge Acquisition System. URL http:
//protege.stanford.edu/. (Zitiert auf Seite 25)

Quince - UX Patterns Explorer. URL http://quince.infragistics.com. (Zitiert
auf den Seiten 10 und 111)

S. Schaffert, F. Bry, J. Baumeister, M. Kiesel. Semantic wikis. Software, IEEE,
25(4):8-11, 2008. (Zitiert auf Seite 39)

D. Schumm, J. Barzen, F. Leymann, L. Ellrich. A Pattern Language for Costumes
in Films. In Proceedings of the 17th European Conference on Pattern Languages of
Programs (EuroPLoP 2012). 2012. (Zitiert auf den Seiten 7, 9, 15, 17, 49, 53, 60
und 110)

Y. Schubert, U. Breitenbiicher, J. Schumann. UsabilityPatterns.de - Die Usability
Pattern Sammlung. URL http://www.usabilitypatterns.de:8080. (Zitiert auf
den Seiten 10 und 112)

http://www.mediawiki.org/wiki/Manual:Developing_extensions
http://www.mediawiki.org/wiki/Manual:Developing_extensions
http://www.mediawiki.org/wiki/ResourceLoader
http://www.mediawiki.org/wiki/ResourceLoader
http://www.mediawiki.org
http://www.oodesign.com
http://www.graphviz.org
http://www.graphviz.org
http://c2.com/ppr/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://quince.infragistics.com
http://www.usabilitypatterns.de:8080

Literaturverzeichnis

[Schos3]

[Schob]

[Sem]

[Smw]

[SP]

[tik]
[VKo6]

[W3C]

[WBo7]

[WSK* 03]

[WVos]

[Yah]

[zAg]

[Zimog]

T. Schuemmer. Seeking for structure in a Groupware Pattern Language. In
Workshop at CHI. 2003. (Zitiert auf den Seiten 34, 35 und 54)

S. Schaffert. IkeWiki: A semantic wiki for collaborative knowledge management.
In Enabling Technologies: Infrastructure for Collaborative Enterprises, 2006. WETI-
CE’06. 15th IEEE International Workshops on, S. 388-396. IEEE, 2006. (Zitiert auf
Seite 40)

Semantic Wiki Projects. URL http://semanticweb.org/wiki/Semantic_wiki_
projectst#Active. (Zitiert auf Seite 40)

Semantic Wikipedia FAQ - What are the alternatives to SMW? URL http://
semantic-mediawiki.org/wiki/FAQ#What_are_the_alternatives_to_SMW.3F.
(Zitiert auf Seite 41)

A. Seaborne, E. Prud’hommeaux. SPARQL Query Language for RDF. URL
http://www.w3.org/TR/rdf - sparql-query/. (Zitiert auf Seite 24)

Tiki Wiki CMS Groupware. URL http://info.tiki.org/. (Zitiert auf Seite 40)

D. Vrandecic, M. Krotzsch. Reusing ontological background knowledge in
semantic wikis. In Proceedings of the 1st Workshop on Semantic Wikis, Budva,
Montenegro. 2006. (Zitiert auf den Seiten 39 und 64)

W3C. Resource Description Framework (RDF). URL http://www.w3.org/RDF/.
(Zitiert auf Seite 19)

M. Weiss, A. Birukou. Building a pattern repository: Benefitting from the open,
lightweight, and participative nature of wikis. In International Symposium on
Wikis (WikiSym), ACM, S. 21—23. 2007. (Zitiert auf den Seiten 33 und 34)

K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, et al. Efficient RDF storage and
retrieval in Jena2. In Proceedings of SWDB, Band 3, S. 7-8. 2003. (Zitiert auf
Seite 29)

M. V. Welie, G. C. V. D. Veer. Pattern languages in interaction design: Structure
and organization. In Proc. Interact ‘03, M. Rauterberg, Wesson, Ed(s). IOS, S.
527-534. IOS Press, 2003. (Zitiert auf den Seiten 51 und 52)

Yahoo. Yahoo Design Pattern Library. URL http://developer.yahoo.com/
ypatterns. (Zitiert auf den Seiten 10, 112 und 122)

zAgile. Wikidsmart for Atlassian Confluence. URL http://www.zagile.com/
products/wikidsmart.html. (Zitiert auf Seite 40)

O. Zimmermann. An architectural decision modeling framework for service-oriented
architecture design. Dissertation, Stuttgart, Univ., Diss., 2009, 2009. (Zitiert auf
Seite 41)

Alle URLs wurden zuletzt am 31. Juli 2013 gepriift.

129

http://semanticweb.org/wiki/Semantic_wiki_projects#Active
http://semanticweb.org/wiki/Semantic_wiki_projects#Active
http://semantic-mediawiki.org/wiki/FAQ#What_are_the_alternatives_to_SMW.3F
http://semantic-mediawiki.org/wiki/FAQ#What_are_the_alternatives_to_SMW.3F
http://www.w3.org/TR/rdf-sparql-query/
http://info.tiki.org/
http://www.w3.org/RDF/
http://developer.yahoo.com/ypatterns
http://developer.yahoo.com/ypatterns
http://www.zagile.com/products/wikidsmart.html
http://www.zagile.com/products/wikidsmart.html

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Ziel
	1.2 Gliederung der Arbeit

	2 Grundlagen
	2.1 Repository
	2.2 Patterns und Patternsprachen
	2.2.1 Patternformat
	2.2.2 Pattern Auffindung und Anwendung

	2.3 Semantic Web
	2.3.1 RDF und RDFS
	2.3.2 OWL zur Ontologiemodellierung
	2.3.3 Abfragen mit SPARQL
	2.3.4 Triplestores
	2.3.5 Ontologie-Modellierung mit Protégé
	2.3.6 Semantic Mediawiki
	2.3.7 Erweiterungen von Semantic Mediawiki

	3 Anforderungen
	3.1 Funktionale Anforderungen
	3.2 Nichtfunktionale Anforderungen
	3.3 Use Cases
	3.4 Gründe für Verwendung semantischer Technologie
	3.5 Evaluation von vorhandenen semantischen Wikianwendungen
	3.5.1 Vergleichstabelle

	4 Konzeptionelles Design
	4.1 Eingabe von Patterns
	4.1.1 Formular
	4.1.2 Templates

	4.2 Annotation
	4.2.1 Semantische Attribute - Linktypen
	4.2.2 Zieleigenschaften
	4.2.3 Formular

	4.3 Verwendung des Pattern Repositorys
	4.3.1 Einstieg in die Patterndomäne
	4.3.2 Assistent
	4.3.3 Weiteres Navigieren

	4.4 Resultierendes Datenmodell
	4.4.1 OWL-Ontologie: Kerndatenmodell
	4.4.2 OWL-Ontologie: Zieleigenschaften
	4.4.3 Abbildung auf Semantic Mediawiki-Elemente

	5 Implementierung des Pattern Repositorys
	5.1 Web-Entwicklung mit dem Mediawiki-Framework
	5.1.1 Technologien des Mediawiki-Frameworks
	5.1.2 Entwicklung von Erweiterungen für das Mediawiki-Framework

	5.2 Systemarchitektur
	5.3 Import des Datenmodells
	5.4 Das Patternformular
	5.5 Die Erweiterung - Pattern Repository
	5.5.1 Annotationsunterstützung - Semantic Textarea
	5.5.2 Auswahl semantischer Propertys - Property Dropdown
	5.5.3 Zahlenauswahl - Number Slider
	5.5.4 Ausblendbare Querys - Query Tabs
	5.5.5 Visualisierung von semantischen Prädikaten im Kontext von Kategorien - Property Visualizer
	5.5.6 Suchassistent - Wizard

	6 Ergebnis und Evaluation
	6.1 Das Pattern Repository
	6.1.1 Infrastruktur
	6.1.2 Administration

	6.2 Evaluation
	6.2.1 Beispieldomäne Cloud Computing Patterns
	6.2.2 Beispieldomäne Kostüm-Patterns
	6.2.3 Vergleich mit anderen Pattern-Repositorys
	6.2.4 Vorteile und Nachteile des Pattern Repositorys

	6.3 Rückblick auf Verlauf der Arbeit

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	Literaturverzeichnis

