
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3527

Semantisches Wiki zur Erfassung
von Design-Patterns

Norbert Fürst

Studiengang: Informatik

Prüfer/in: Prof. Dr. Frank Leymann

Betreuer/in: Dipl.-Inf. Christoph Fehling

Beginn am: 4. Februar 2013

Beendet am: 6. August 2013

CR-Nummer: D.2.1, D.2.2, D.2.11, H.2.1, H.2.7, H.3.5,
H.5.2, I.5.0

Zusammenfassung

Patterns sind ein in unterschiedlichen Domänen verbreitetes Konzept, das häufig auftauchen-
de Probleme in einem gewissen Kontext beschreibt und dazu eine Musterlösung bietet. Neue
Patterns werden aus der Abstraktion von konkreten oft auftauchenden Problemen und deren
Lösungen von Pattern Autoren entdeckt. Ein in allen Domänen auftauchendes Problem der
Pattern Community ist der fehlende IT-Support bei der Verwaltung der Patterns. Im Rahmen
dieser Diplomarbeit wurde daher ein Pattern Repository auf Basis von semantischen Wiki-
Technologien entworfen, das die Erstellung, Verwaltung und Suche von Patterns ermöglicht.
Dabei ist das Patternformat frei konfigurierbar, so dass die Anwendung für unterschiedliche
Domänen angepasst werden kann. Der Entwurf wurde auf Basis von Semantic Mediawiki
implementiert und zuletzt in einem Vergleich zu anderen Pattern Repositorys evaluiert.

Abstract

Patterns are a concept spread in different domains that describes problems in a certain
context and offers a sample solution. Pattern authors discover new patterns by abstracting
them from reoccurring actual problems and their solutions. A problem concerning pattern
communities of all domains is the missing IT-support for managing patterns. This diploma
thesis designs a pattern repository based on semantic wiki-technology, enabling the creation,
management and search of patterns. To adapt the application for different domains, the
pattern format is freely configurable. The design was implemented based on Semantic
Mediawiki and evaluated by the comparison with other pattern repositories.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Ziel . 10

1.2 Gliederung der Arbeit . 10

2 Grundlagen 13
2.1 Repository . 13

2.2 Patterns und Patternsprachen . 14

2.2.1 Patternformat . 15

2.2.2 Pattern Auffindung und Anwendung . 17

2.3 Semantic Web . 18

2.3.1 RDF und RDFS . 19

2.3.2 OWL zur Ontologiemodellierung . 21

2.3.3 Abfragen mit SPARQL . 24

2.3.4 Triplestores . 24

2.3.5 Ontologie-Modellierung mit Protégé . 25

2.3.6 Semantic Mediawiki . 26

2.3.7 Erweiterungen von Semantic Mediawiki 28

3 Anforderungen 33
3.1 Funktionale Anforderungen . 33

3.2 Nichtfunktionale Anforderungen . 36

3.3 Use Cases . 36

3.4 Gründe für Verwendung semantischer Technologie 38

3.5 Evaluation von vorhandenen semantischen Wikianwendungen 39

3.5.1 Vergleichstabelle . 41

4 Konzeptionelles Design 45
4.1 Eingabe von Patterns . 46

4.1.1 Formular . 47

4.1.2 Templates . 48

4.2 Annotation . 50

4.2.1 Semantische Attribute - Linktypen . 51

4.2.2 Zieleigenschaften . 54

4.2.3 Formular . 56

4.3 Verwendung des Pattern Repositorys . 57

4.3.1 Einstieg in die Patterndomäne . 58

4.3.2 Assistent . 59

5

4.3.3 Weiteres Navigieren . 62

4.4 Resultierendes Datenmodell . 63

4.4.1 OWL-Ontologie: Kerndatenmodell . 65

4.4.2 OWL-Ontologie: Zieleigenschaften . 73

4.4.3 Abbildung auf Semantic Mediawiki-Elemente 74

5 Implementierung des Pattern Repositorys 79
5.1 Web-Entwicklung mit dem Mediawiki-Framework 79

5.1.1 Technologien des Mediawiki-Frameworks 79

5.1.2 Entwicklung von Erweiterungen für das Mediawiki-Framework 80

5.2 Systemarchitektur . 82

5.3 Import des Datenmodells . 85

5.4 Das Patternformular . 87

5.5 Die Erweiterung - Pattern Repository . 88

5.5.1 Annotationsunterstützung - Semantic Textarea 89

5.5.2 Auswahl semantischer Propertys - Property Dropdown 93

5.5.3 Zahlenauswahl - Number Slider . 94

5.5.4 Ausblendbare Querys - Query Tabs . 95

5.5.5 Visualisierung von semantischen Prädikaten im Kontext von Kategori-
en - Property Visualizer . 97

5.5.6 Suchassistent - Wizard . 99

6 Ergebnis und Evaluation 105
6.1 Das Pattern Repository . 105

6.1.1 Infrastruktur . 107

6.1.2 Administration . 108

6.2 Evaluation . 109

6.2.1 Beispieldomäne Cloud Computing Patterns 110

6.2.2 Beispieldomäne Kostüm-Patterns . 110

6.2.3 Vergleich mit anderen Pattern-Repositorys 111

6.2.4 Vorteile und Nachteile des Pattern Repositorys 117

6.3 Rückblick auf Verlauf der Arbeit . 118

7 Zusammenfassung und Ausblick 121
7.1 Zusammenfassung . 121

7.2 Ausblick . 122

Literaturverzeichnis 125

6

Abbildungsverzeichnis

2.1 Der Pattern-„Lebenszyklus“ (nach [SBLE12, S. 3]) 17

2.2 Mehrere RDF-Tripel in Graphdarstellung mit Literalen. Legende: Krei-
se=Ressourcen, Rechtecke=Literale, Pfeile=Beziehungen 19

2.3 Klassenhierarchie der Beziehung zwischen OWL/RDF(S) (nach [AVH04, S.
119]). Legende: Rechtecke=Elemente aus OWL/RDF(S), Pfeile=Generalisierung . . 22

2.4 Beispiel einer einfachen OWL-Ontologie . 23

2.5 Die graphische Darstellung einer OWL-Ontologie 25

3.1 Use Cases des Pattern Repository . 37

4.1 Arbeitsablauf beim Verwenden des Pattern Repositorys 45

4.2 Mockup einiger Formularelemente . 48

4.3 Zusammenhang zwischen Formular und Templates 51

4.4 N-äre Relation in einem Entity-Relationship Diagramm 55

4.5 N-äre Relation in OWL . 55

4.6 Datenmodell - Kategorien . 65

4.7 Datenmodell - Visualisierung . 66

4.8 Datenmodell - Übersicht über die Abschnittsbeziehungen 68

4.9 Datenmodell - Abschnitte . 69

4.10 Datenmodell - Eingabetypen des Formulars . 70

4.11 Datenmodell - Semantische Attribute . 72

4.12 Allgemeine Ontologie zur Einbindung von Zieleigenschaften mit Legende . . 74

4.13 Mapping der OWL-Ontologien durch den Importvorgang. Legende: Gestri-
chelter Pfeil=Mapping . 75

5.1 Systemarchitektur mit angebundenem Triplestore. Auf der linken Seite ist das
allgemeine Schichtenmodell zu sehen und rechts die konkrete Ausprägung
des Mediawiki-Stacks mit den verwendeten Technologien (nach [Kar11]) . . . 83

5.2 Aufbau von DataWiki. Legende: Gestrichelter schwarzer Pfeil=Abhängigkeit,
Braune Linie=Verbindung zu MySQL-Datenbanktabelle, Lila Linie=Für den Triple-
store benötigte Verbindung . 84

5.3 Interne Architektur der Erweiterung Pattern Repository. Legende: Schwarz
gestrichelter Pfeil=Zur Realisierung verwendet für. Orange gestrichelter
Pfeil=Abhängigkeit . 90

5.4 Auswahl des zu annotierenden Wortes in Semantic Textarea 91

5.5 Annotation mithilfe von Semantic Textarea . 91

5.6 Anschließende Darstellung der Annotation in Semantic Textarea 91

7

5.7 Eingabe eines Zahlenwerts durch den Number Slider 94

5.8 Ausgeblendete Querys . 96

5.9 Eingeblendete Query . 96

5.10 Visualisierung eines semantischen Linktyps durch den Property Visualizer . . 98

5.11 Das Hauptmenü des entwickelten Pattern Wizard - Links das Auswahlmenü
der Empfehlungsfunktionen und auf der rechten Seite die Leseliste 99

5.12 Auswahl eines bekannten Anwendungsfalls im Wizard - Auf der linken Seite
geschieht die Auswahl, in der Mitte werden die Empfehlungen angezeigt und
rechts unten ist die Leseliste zu sehen . 101

5.13 Auswahl grundlegenden Patterns im Wizard - Auf der linken Seite geschieht
die Auswahl und rechts ist die Leseliste zu sehen. Die abgebildeten Beispiel-
spatterns sind aus [FLR+

13] . 101

5.14 Auswahl einer Benutzerrolle im Wizard - Auf der linken Seite geschieht die
Auswahl und rechts ist die Leseliste zu sehen 102

5.15 Vorschläge anhand der Leseliste im Wizard - Auf der linken Seite sind die
Vorschläge abgebildet und rechts ist die Leseliste zu sehen 103

6.1 Das Hauptmenü des Pattern Repositorys . 106

Tabellenverzeichnis

3.1 Vergleichstabelle der Evaluation von Alternativen 42

4.1 Abbildung von OWL- auf Semantic Mediawiki-Elemente 64

6.1 Vergleichstabelle von alternativen Pattern Repositorys 115

Verzeichnis der Auflistungen

2.1 Eine einfache SPARQL-Query . 24

8

1 Einleitung

Seit dem Beginn des Informationszeitalters nimmt die Spezialisierung in unterschiedlichen
Wissenschaftsbereichen zu, was Experten mit sehr spezifischem Fachwissen hervorbringt
[Har05]. Um solches domänenspezifisches Expertenwissen in Form von leicht konsumierba-
ren Wissensportionen für Andere zugänglich zu machen, gibt es das Konzept der „Patterns“
(Muster). Patterns sind Problem-Lösungspaare, die ein Problem in einem gewissen Kontext
beschreiben und dazu eine Musterlösung bieten. Wenn es auf einem Gebiet eine gewisse
Anzahl von Patterns gibt, können diese miteinander vernetzt werden, und bilden anschlie-
ßend eine Patternsprache. Die Vernetzung geschieht dabei durch die unterschiedlichen
Beziehungen, welche die Patterns untereinander aufweisen, z.B. kann ein Pattern eine Spe-
zialisierung eines allgemeineren Patterns darstellen. Die Patternsprache kann für den Leser
einer Sammlung von Patterns eine Reihenfolge vorgeben, in welcher sie betrachtet werden.
Neue Patterns werden entdeckt, indem zunächst sich oft wiederholende ähnliche Problem-
stellungen und jeweils konkrete Lösungen in existierenden Anwendungsfällen von einem
Experten des Gebiets analysiert werden. Anschließend wird versucht, einen gemeinsamen
Kern des Problems zu abstrahieren und schließlich eine aus der Erfahrung heraus als gut
befundene Lösung dafür zu beschrieben. Anhand einer Sammlung von Patterns können
weniger erfahrene Anwender des Gebiets von der Erfahrung von Experten profitieren, indem
sie Patterns auf ihre konkreten Entwurfsprobleme anwenden und individualisieren.

Als Wegbereiter für die Verbreitung von Patterns kann der Architekt Christopher Alexander
betrachtet werden [AIS+77]. Die Verwendung von Patterns wurde in anderen Gebieten
übernommen, und so gibt es neben Werken im IT-Bereich über objektorientierte Program-
mierung [JGVH95] oder Cloud Computing [FLR+

13] auch Anwendungen im Bereich des
Kostümmanagements [SBLE12] oder der Pädagogik [Köp13]. Ein Problem, welches in den
Patterngemeinden aller Gebiete auftritt, ist die fehlende Unterstützung durch IT-Werkzeuge
bei der Erstellung, Verwaltung und Suche von Patterns. Dies hat einige negative Folgen, wie
z.B. die oft schlechte Dokumentation, aus welchen Quellen ein Pattern abstrahiert wurde.
Patternautoren müssen zudem ohne die Unterstützung durch benutzerfreundliche Formu-
lare oder ähnliches manuell sicherstellen, dass ein konsistentes Patternformat im ganzen
Patternkatalog eingehalten wird. Für Benutzer eines Patternwerks ergibt sich oft das Problem,
in einer unübersichtlichen Menge von Patterns eine geeignete Lösung für sich zu finden.
Mithilfe eines IT-Werkzeugs könnte man den Benutzer durch einen Assistenten unterstützen,
der bei der Auffindung von Patterns durch Empfehlungen hilft. Sowohl für Autoren als auch
Benutzer wäre die Visualisierung der Patternsprache aufgrund der Beziehungen der Patterns
zueinander zusätzlich ein nützliches Hilfsmittel, um die Vernetzung zu verbessern und um
das Verständnis zu vertiefen.

9

1 Einleitung

Ein Patternkatalog in elektronischer Form wird als Pattern Repository bezeichnet. Es gibt
bereits einige Pattern Repositorys [qui, Yah, SBS]; allerdings sind dies meistens von den
Autoren eines Patternbuchs betriebene Webseiten, die keine weiteren Hilfsmittel bieten und
spezifisch für eine konkrete Patterndomäne entwickelt wurden. Es fehlt eine Anwendung,
die Patternautoren von Anfang an unterstützt, ein benutzerfreundliches Interface für die
Benutzer des Patternkatalogs bietet und dabei frei konfigurierbar für unterschiedliche
Patternformate ist.

1.1 Ziel

Das Ziel dieser Diplomarbeit ist die Entwicklung eines auf semantischen Wikitechnologien
basierenden Pattern Repositorys, das die unterstützte Erstellung, Suche und Empfehlung von
Design Patterns unterschiedlichster Domänen ermöglicht. Für eine möglichst komfortable
Erstellung bzw. Eingabe von Patterns sollen dafür Dokumentvorlagen erstellt werden, so
dass dem Benutzer ein gewisses Patternformat vorgegeben wird. Um eine erweiterte Suche
und die Verwendung von semantischen Querytechniken zu ermöglichen, soll es auf benut-
zerfreundliche Art möglich sein, Patterns untereinander und Patterns mit Anwendungsfällen
mithilfe von semantischen Annotationen zu verknüpfen. Neben den umfangreichen Que-
rytechniken, die dem Benutzer dadurch zur Verfügung stehen, soll es einen Assistenten
geben, der dem Benutzer sinnvolle Patterns empfehlen kann. Zum Abschluss der Arbeit
soll eine Evaluation des resultierenden Pattern Repositorys geschehen, indem es an zwei
Beispieldomänen getestet wird. Dabei handelt es sich um sehr unterschiedliche Domänen,
so dass überprüft werden kann, ob das Pattern Repository flexibel an unterschiedliche
Patternformate angepasst werden kann.

1.2 Gliederung der Arbeit

Im Folgenden soll ein kurzer Überblick gegeben werden, aus welchen Kapiteln die Diplom-
arbeit besteht und was jeweils inhaltliche Schwerpunkte sind.

Kapitel 2 - Grundlagen In diesem Kapitel werden die benötigten Grundlagen zum Ver-
ständnis dieser Arbeit in der benötigten Tiefe erläutert. Neben einer allgemeinen Einführung
in Patterns und Patternsprachen gibt es einen Überblick der Semantic Web Technologien,
die im Rahmen dieser Arbeit zum Einsatz kommen. Dabei werden viele Referenzen zu
vertiefender Literatur geboten, um dem geneigten Leser Möglichkeiten zu bieten, sich tiefer
mit der Materie zu beschäftigen.

Kapitel 3 - Anforderungen In den Anforderungen wird das in diesem Kapitel beschriebene
Ziel in detaillierte Anforderungen in Form von User Stories aufgespalten, wie man sie aus
der agilen Softwareentwicklung kennt. In den darauf folgenden Use Cases werden konkre-
tere Einblicke in die Anwendungsaspekte des Systems gegeben. Neben einer Erläuterung,

10

1.2 Gliederung der Arbeit

weshalb semantische Technologie in der Arbeit verwendet wurde, gibt es auch eine Evaluati-
on, die zu der Entscheidung geführt hat, Semantic Mediawiki als Basis für diese Arbeit zu
verwenden.

Kapitel 4 - Konzeptionelles Design Das konzeptionelle Design beschreibt zunächst auf einer
abstrakten Ebene, wie einzelne Verwendungsaspekte der entwickelten Software realisiert
werden sollten. Anschließend folgt eine konkrete Umsetzung in Form eines Datenmodells,
das in Ontologiesprache OWL modelliert wurde und sehr ausführlich beschrieben wurde.
Am Ende des Kapitels gibt es eine Abbildung des Datenmodells auf Elemente von Semantic
Mediawiki.

Kapitel 5 - Implementierung des Pattern Repositorys Die Implementierung stellt die Syste-
marchitektur des entworfenen Systems auf mehreren Ebenen dar. Es folgt eine Beschreibung
des Programms, welches zum Import des im konzeptionellen Design beschriebenen Daten-
modells dient. Die Beschreibung des Patternformulars geht auf die Details bei der Umsetzung
ein und zuletzt folgt nach einer kurzen Einführung in die Begriffe der Mediawiki Erweite-
rungsentwicklung die genaue Vorstellung der für die Diplomarbeit entwickelten Mediawiki
Erweiterungen.

Kapitel 6 - Ergebnis und Evaluation Das Ergebnis der Diplomarbeit wird vorgestellt und
kurz auf dessen Infrastruktur und Administration eingegangen. Es folgt eine Evaluation,
in der zunächst die Fähigkeit des entwickelten Pattern Repositorys überprüft wird, sich
für beliebige Patterndomänen konfigurieren zu lassen. Es folgt ein Vergleich mit anderen
Repositorys, die online verfügbar sind, um mit einem Rückblick auf den Verlauf der Arbeit
zu schließen.

Kapitel 7 - Zusammenfassung und Ausblick Die wichtigsten Ergebnisse der Arbeit werden
kurz zusammengefasst und es wird ein Ausblick auf mögliche weitere Entwicklungen auf
dem Gebiet gegeben.

11

2 Grundlagen

Nachdem nun auf die Motivation und die Zielstellung dieser Arbeit eingegangen wurde,
sollen im folgenden Kapitel grundlegende Begriffe und Systeme erklärt werden, die zum
Verständnis dieser Diplomarbeit nötig sind. In Abschnitt 2.1 soll dazu zunächst der Begriff
„Repository“ definiert werden, um eine klare Vorstellung des Ziels der Arbeit zu ermöglichen.
In Abschnitt 2.2 soll anschließend das Verständnis für Patterns im Allgemeinen verbessert
werden, um die Anforderungen aus Kapitel 3 an ein Pattern Repository besser verstehen
zu können. Abschnitt 2.3, welcher das Semantic Web behandelt, soll schließlich das nötige
Wissen auf der technischen Seite vermitteln, um die Modellierung des Datenmodells in
Kapitel 4 verstehen zu können, um schließlich ein Gesamtverständnis für das System mithilfe
von Kapitel 5 zu erlangen. Hierbei soll insbesondere auf Abschnitt 2.3.5 verwiesen werden,
der zum Verständnis der in der Arbeit sehr gehäuft auftauchenden Darstellungen von
Ontologien notwendig ist.

2.1 Repository

Der Begriff Repository (deutsch: Sammelplatz, Aufbewahrungsort) bezeichnet ein Dokumen-
tationssystem, welches die Ablage und Suche von Informationen und die Beschreibung
der Beziehungen der abgelegten Elemente zueinander anhand von Metadaten ermöglicht.
Habermann und Leymann definieren dies folgendermaßen:

Das Repository ist die zentrale Ablage von beschreibenden Informationen über alle
Informationselemente einer Organisation und deren Benutzer. [HL93, S. 11]

Funktional ist das Repository ein System, das Informationen über Objekte der Soft-
wareproduktion [...], deren Beschreibungen und Beziehungen untereinander verwaltet,
auswertet und bereitstellt. [HL93, S. 15]

Eine sehr ähnliche Definition liefert Ortner:

Repositorien sind Dokumentationssysteme. In Repositorien werden auf einer Metaspra-
chebene Sprachartefakte [...] strukturiert beschrieben. [Ort99, S. 236]

In den beiden zitierten Werken [HL93, Ort99] wurde der Begriff Repository dabei sehr
beschränkt in dem Bereich des CASE1 eingesetzt. Daher wurden in den Zitaten die zu CASE-
spezifischen Stellen weggelassen. Dieser Diplomarbeit soll ein erweitertes Verständnis von

1Computer-Aided Software Engineering

13

2 Grundlagen

Repositorys zugrunde liegen, so dass diese als Dokumentationssysteme für Informationen
aller Art betrachtet werden können. In diesem Sinne lässt sich beispielsweise jedes Wiki als
Wissensrepository betrachten, wie auch aus dem Zitat von García et al. ersichtlich wird:

This paper focuses on the use of wikis such as Web 2.0 knowledge repositories [...].
[GASB11]

Das im Rahmen dieser Arbeit entwickelte Repository wird als „Pattern Repository“ bezeich-
net, um auszudrücken, dass es sich dabei um ein auf Patterns spezialisiertes System mit
Repository-Funktionalität handelt. Diese Bezeichnung wird ebenfalls von anderen Projekten
verwendet, wie z.B. von [KE02], [por] und [Hee]. Welche Anforderungen an ein Pattern Re-
pository es genau gibt, und damit auch die verfügbaren Funktionalitäten, wird ausführlicher
in Kapitel 3 erläutert. Um überhaupt eine genaue Vorstellung vom Begriff der Patterns zu
bekommen, folgt nun eine Definition und auch eine Erläuterung der damit in Verbindung
stehenden Patternsprachen.

2.2 Patterns und Patternsprachen

Das Konzept der Patterns (deutsch: Muster) verdankt die mittlerweile große Verbreitung in
unterschiedlichen Anwendungsgebieten dem Architekten, Architektur- und Systemtheore-
tiker Christopher Alexander. Alexander definierte Patterns in seinem klassischen Werk A
Pattern Language: Towns, Buildings, Constructions wie folgt:

Each pattern describes a problem that occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice. [AIS+77]

Christopher Alexander war zur Zeit des Verfassens dieses Werks bereits ein erfahrener
Architekt und hatte festgestellt, dass ihm bei unterschiedlichen Projekten sich wiederholende
Entwurfsprobleme begegneten. Diese mussten zwar jeweils individuell im Kontext des Ge-
samtprojekts gelöst werden, entsprachen dabei aber auf einer abstrakteren Ebene Problemen,
welchen er schon bei früheren Projekten begegnet war. Daraus entsprang die Idee, für diese
im Kern gleichen Probleme eine Lösung ebenfalls auf abstrakter Ebene anzugeben.

Mithilfe von Patterns, für die er ein festes Format in Form eines strukturierten Textes
festlegte, können Best Practises von erfahrenen Experten einer Domäne festgehalten werden,
die anschließend als leicht zugängliche „Nuggets of Advice“ [FLR+

13, S. 7] zur Verfügung
stehen. Patterns helfen leicht variierende, aber im Kern gleiche Probleme nicht jedes Mal
aufs Neue lösen zu müssen.

Um den Ansatz von C. Alexander etwas greifbarer zu machen, soll hier nun ein Beispielpat-
tern kurz erläutert werden. Alexanders Patterns in [AIS+77] lösen architektonische Probleme
auf der Ebene von Regionen, Städten, Stadtvierteln bis hin zu einer sehr detaillierten Stufe
wie der Gestaltung von Türgriffen innerhalb eines Zimmers. Mit dem Halb-versteckter Garten-
Pattern [AIS+77, S. 260-261] beschreibt er beispielsweise, wie der Grundentwurf eines Hauses

14

2.2 Patterns und Patternsprachen

aussehen kann, das einen halb versteckten Garten besitzen soll. Zunächst wird beschrieben,
mit welchen anderen Patterns das Halb-versteckter Garten-Pattern zusammenhängt, wie z.B.
mit dem Häuserblock-Pattern. Anschließend wird die Tatsache, dass ein halb versteckter
Garten an einem Haus die relative Position der Häuser innerhalb eines Blocks verändert, als
Grund für die Verbindung mit dem Häuserblock-Pattern aufgeführt. Darüber hinaus wird
das zugrundeliegende Problem beschrieben, dass der Garten weder voll von der Straße aus
sichtbar sein darf, da dies nicht privat genug wäre, aber auch nicht zu weit weg von der
Straße sein darf, da dies zu isoliert wäre. Es folgt ein Lösungsvorschlag, wie ein solch halb
versteckter Garten in einen Entwurf integriert werden kann und auf was geachtet werden
muss. Zusätzlich wird das Pattern mit anderen Patterns in Verbindung gebracht, die ebenfalls
für diesen Entwurf relevant sein dürften, z.B. der Gartenmauer-Pattern. Anschließend wird
auch noch auf Verfeinerungen des Patterns hingewiesen, wie z.B. den Dachgarten.

Laut Hohpe und Woolf [HW03, S. xli] entspricht jedes Pattern einer Entscheidung, die
gemacht werden muss, sowie den Abwägungen, die in Betracht gezogen werden müssen, um
die Entscheidung zu fällen. Eine sog. Patternsprache ergibt sich aus einem Netz von miteinan-
der verknüpften Patterns, in dem jede Entscheidung zu weiteren verwandten Patterns führt.
Auf dieser Weise ist es möglich, sich anhand des Expertenwissens durch die Patternsprache
führen zu lassen. Bei Alexander ist die Mustersprache, welche durch die Relationen zwi-
schen den Patterns gebildet wird, in eine hierarchische Baumstruktur unterteilt. Sie beginnt,
wie bereits oben erwähnt, mit Patterns für die Gestaltung von Regionen und wird immer
detaillierter bis zu dem Grad der Gestaltung von einzelnen Objekten in einem Haus. Dabei
enthalten Patterns auf höherer Ebene Patterns auf niederer Ebene, oder die Patterns niederer
Ebenen werden durch die Spezialisierung von allgemeineren Patterns gebildet. Auf gleicher
Ebene gibt es Patterns, welche Alternativen zueinander darstellen und es auf diese Weise
zulassen, unterschiedliche Wege einzuschlagen.

Der Ansatz, Expertenwissen durch Patterns festzuhalten, wurde auch in anderen Bereichen
als der Architektur übernommen, z.B. für pädagogische Zwecke [Köp13], dem Design von
Filmkostümen [SBLE12] und nicht zuletzt im IT-Bereich. Das Werk, das den Grundstein
für Design Patterns in der Informatik gelegt hat, ist Design Patterns: Elements of Reusable
Object-Oriented Software [JGVH95]. Die Autoren des Buches, Erich Gamma, Richard Helm,
Ralph Johnson und John Vlissides werden als Parodie auf die chinesische Viererbande
um Mao Zedong auch als Gang of Four bezeichnet. Das Buch beschreibt Design Patterns
für objektorientierte Software und verfeinert dabei das originale Format von Alexander in
einigen Aspekten, behält aber eine einheitliche Struktur der Patterns bei, um das Lernen,
Vergleichen und Verwenden der Patterns zu vereinfachen [JGVH95, S. 16]. Auch das Bilden
der Patternsprache funktioniert sehr ähnlich wie bei Alexander, mit dem Unterschied, dass
anstatt Türen und Wänden nun Beziehungen aus der objektorientierten Programmierung
verwendet werden.

2.2.1 Patternformat

Im Kern besteht ein Muster immer aus einem Problem-Lösungspaar, das aus vielen anderen
Problem-Lösungspaaren abstrahiert wurde und in einen gewissen Kontext gesetzt wird

15

2 Grundlagen

[Bus98, S. 1-4]. Dies stimmt auch mit Alexanders Definition in seinem zweiten Werk zu
Patterns, The Timeless Way Of Building, überein:

Each pattern is a three part rule, which express a relation between a certain context, a
problem, and a solution. [Ale79, S. 247ff]

Dabei wird im Kontext die Situation beschrieben, in der das Problem auftritt, welches das
Pattern löst und bietet so einen Rahmen. Im Problemabschnitt werden die unterschiedlichen
Kräfte (forces) beschrieben, die Aspekte darstellen, die bei der Lösung des Entwurfsproblems
zu berücksichtigen sind, wie z.B. bestimmte Anforderungen oder sonstige Randbedingungen.
Die Lösung beschreibt das allgemeine Lösungsprinzip, mit dem das Problem auf einer
abstrakten Ebene gelöst werden kann und versucht dabei, die Kräfte des Problems möglichst
gut auszugleichen. Während dieses ursprüngliche Format zur Beschreibung von Patterns
von Alexander in [AIS+77] verwendet wurde, wird es auch in neueren Werken, wie z.B.
[MD97], verwendet. In [JGVH95, S. 16-18] wurde dieses Format feiner aufgegliedert und
schließlich in [FLR+

13, S. 10-11] sinnvoll weiterentwickelt, so dass dieses als Beispiel erläutert
werden soll. Dabei sei angemerkt, dass sich Patternformate unterschiedlicher Werke meistens
unterscheiden, im Kern dabei jedoch immer das oben erläuterte dreiteilige Format verwendet
wird.

Patternname Der Name des Patterns stellt wohl in allen Patternsprachen das wichtigste
Merkmal zur schnellen Identifizierung eines Patterns dar, und sollte daher prägnant
gewählt werden.

Intent Die Absicht drückt kurz und knapp den Zweck und das Ziel eines Patterns aus.

Icon Dient als schnelles Identifizierungsmerkmal eines Patterns und kann in Darstellungen
der Patternsprache verwendet werden.

Driving Question Die Leitfrage erfasst das Problem, welches dem Pattern zugrunde liegt.

Context Der Kontext beschreibt, wie oben bereits erläutert, die Umgebung und die Kräfte,
mit welchen das Problem umgeben ist.

Solution Die Lösung skizziert kurz, wie das Pattern das in der Leitfrage beschriebene
Problem löst.

Result Der Ergebnisabschnitt erklärt die bereits skizzierte Lösung in größerem Detail.

Variations Beschreibt leichte Abweichungen von dem beschriebenen Pattern, welche es nicht
nötig machen würden, ein komplett neues Pattern zu verfassen.

Related Patterns Beschreibt Beziehungen zu anderen Patterns, beispielsweise mit welchen
das aktuelle Pattern gut kombiniert werden kann, und welche ausgeschlossen werden.
Auf diese Weise wird die Patternsprache gebildet.

Known Uses Beispiele für Anwendungsgebiete, in denen das Pattern verwendet wurde und
eventuell als Quelle zur Abstraktion des Patterns genutzt wurden.

16

2.2 Patterns und Patternsprachen

2.2.2 Pattern Auffindung und Anwendung

Konkrete Lösungen für wiederauftretende Probleme in existierenden
Systemen/Anwendungsfällen.

Patterns

Neue individualisierte Problemlösung auf Basis eines/von mehreren Patterns

Abstraktion
Bekannte

Anwendungsgebiete

Anwendung und Konkretisierung

Abbildung 2.1: Der Pattern-„Lebenszyklus“ (nach [SBLE12, S. 3])

Das Verfassen von neuen Patterns geschieht nicht auf die Weise, dass diese neu „erfunden“
würden, sondern indem Sie von Experten entdeckt werden. Diese betrachten sehr viel ähnliche
Anwendungsgebiete, abstrahieren Problem-Lösungspaare aus diesen und entdecken durch
das Herausfiltern von Gemeinsamkeiten schließlich neue Patterns [Bus98, S. 2]. Wurden erst
einmal eine Reihe von Patterns entdeckt, und diese zu einer Patternsprache vernetzt, stehen
sie zur Anwendung bereit. Soll mithilfe von Patterns ein konkretes Problem gelöst werden,
muss dieses unter Umständen erst soweit verallgemeinert werden, bis sich ein passendes
Pattern zu dem verallgemeinerten Problem findet. Anhand dieses Patterns ist es nun möglich,
entlang der Patternsprache zu navigieren und dadurch unterschiedliche Entwurfsprobleme
des konkreten Anwendungsfalles zu lösen. Hierbei sei ein weiterer besonderer Nutzen des
patterngestützten Entwurfs hervorgehoben: Werden Systeme mithilfe von Patterns entworfen,
ist es möglich, innerhalb der Domäne auf ein gemeinsames Vokabular zurückzugreifen und
Entwürfe vergleichbar zu machen [FEL+

12]. Dabei spielt es keine Rolle, ob nun ein Bauwerk
anhand der Patterns von Alexander entworfen wurde, oder ein objektorientiertes Programm
verfasst wurde; gewisse Charakteristika lassen sich nun durch Patterns vergleichen.

Hierzu soll Abbildung 2.1 einen Überblick bieten: die oberste „Ebene“ des Bildes stellen
konkrete Anwendungsfälle dar, aus denen anhand von Problem-Lösungspaaren Patterns ab-
strahiert werden können. Dies ist in der Abbildung anhand des mit Abstraktion beschrifteten

17

2 Grundlagen

Pfeils erkennbar. Von den Patterns, welche die zweite Ebene darstellen, gibt es wiederum
einen Rückverweis auf bekannte Anwendungsgebiete (Known Uses) durch den Pfeil Bekannte
Anwendungsgebiete. Die dritte Ebene zeigt die Anwendung von Patterns, indem sie für den
konkreten Problemfall angepasst werden und so eine neue individuelle Lösung bilden, die
aufgrund des patternbasierten Vorgehens trotzdem schnell fassbar und vergleichbar ist. Diese
Beziehung ist in der Abbildung anhand des mit Anwendung und Konkretisierung beschrifteten
Pfeils dargestellt.

Nachdem nun genauer auf die inhaltlichen Aspekte rund um Patterns und Patternsprachen
eingegangen wurde, folgt eine Erläuterung von wichtigen Begriffen um das Semantic Web.
Diese sind zum Verständnis der technischen Seite dieser Diplomarbeit und somit der
folgenden Kapitel nötig.

2.3 Semantic Web

Das World Wide Web beeinflusst unser Leben wie sonst kaum eine Technologie, und ent-
wickelt sich rasant weiter. Zunächst dominierten statische Webseiten das Netz, die von
Einzelpersonen oder Firmen gepflegt wurden. Ab der Jahrtausendwende entwickelte sich
eine Konzentration auf inhaltsbezogene Plattformen, auf welchen die Benutzer kollaborativ
selbst neue Inhalte erstellen. Diese neuen das Web dominierenden Anwendungen wie Video-
plattformen, soziale Netzwerke oder Wikis wurden unter dem weitreichenden Begriff des
„Web 2.0“ zusammen gefasst. Das Aufkommen dieser Anwendungen hatte zur Folge, dass
die verfügbaren Informationen immer weiter und schneller wuchsen. Dementsprechend er-
klärt sich auch die enorm gestiegene Bedeutung von Suchmaschinen und beispielsweise der
unvergleichliche Aufstieg von Google2. Das Problem war nun, zu einer gewissen gewünschten
Information guten Quellen aus den schier endlosen zu Verfügung stehenden Datenmengen
herauszufinden und insbesondere Informationen mit der korrekten semantischen Bedeutung
zu finden. Wird beispielsweise eine Google-Suche mit dem Begriff „Owl“ begonnen, und auf
Informationen über die Web Ontology Language gehofft, werden sich viele Suchergebnisse
auf die Eule als Tier beziehen, da das System nicht den semantischen Zusammenhang kennt.

Bei der großen unstrukturierten Datenmenge, welche das Web momentan darstellt, gibt
es einige fundamentale Probleme, welche laut [HKRS08, S. 9-10] insbesondere die große
Heterogenität der Daten, die dadurch nötige Informationsintegration und das Fehlen eines
zugrunde liegenden maschinenlesbaren Datenschemas darstellen. Die unter dem Begriff des
Semantic Web zusammengefassten Technologien versuchen dieses Problem zu lösen. Mithilfe
von offenen Standards wird die Möglichkeit geschaffen, Informationen auf eine Weise zu
beschreiben, dass sie von Maschinen verarbeitbar werden. Das World Wide Web Consortium3

hat hierfür die Standards RDF(S) und OWL auf Basis von XML geschaffen. RDF(S) und OWL
stellen formale Sprachen dar, die zur Beschreibung von Ontologien dienen können. [AVH04,
S. 11] definiert den Begriff Ontologie nach R. Studer: „An ontology is an explicit and formal

2http://www.google.com/
3http://www.w3.org/

18

http://www.google.com/

2.3 Semantic Web

specification of a conceptualization.“. Eine Ontologie stellt im Zusammenhang mit dem Semantic
Web eine formale Beschreibung des Wissens über ein bestimmtes Anwendungsgebiet in
Form eines RDF(S)- oder OWL-Dokuments dar. Dadurch wird es möglich, Informationen
über semantischen Zusammenhänge in einer formalen maschinenlesbaren Sprache zu be-
schreiben. Unter Berücksichtigung dieser Zusammenhänge können dem Suchenden nun
passendere Ergebnisse präsentiert werden, die mit der tatsächlich beabsichtigten Bedeutung
übereinstimmen.

2.3.1 RDF und RDFS

Das Resource Description Framework (RDF) ist laut W3C ein standardisiertes Modell zum
Datenaustausch im Web [W3C]. Den Hauptanwendungszweck von RDF sieht [HKRS08,
S. 35] folgendermaßen: "Durch RDF sollen Anwendungen in die Lage versetzt werden,
Daten im Web auszutauschen, ohne dass ihre ursprüngliche Bedeutung dabei verloren
geht."Die grundlegende Dateneinheit in RDF stellen Aussagen im Subjekt-Prädikat-Objekt
Format dar, welche als RDF-Tripel bezeichnet werden. Dabei sind Subjekt und Objekt
beliebige Ressourcen, die durch Uniform Resource Identifiers (URI) identifiziert werden. Dabei
ist nicht vorgeschrieben, ob es sich bei der URI um eine URL oder um eine beliebige
andere einzigartige ID handelt. Zusätzlich lassen sich für Ressourcen unterschiedliche
Datentypen angeben, und falls nun auf keine abstrakte Ressource, sondern auf ein konkretes
Datenattribut z.B. des Typs String verwiesen werden soll, spricht man von einem Literal.

Semantic Wiki for Design
Pattern Capturing

http://iaas.de/Dip
lomarbeit

http://iaas.de/Student
http://iaas.de/hatAutor

Norbert Fürst

http://iaas.de/Titel http://iaas.de/Name

Abbildung 2.2: Mehrere RDF-Tripel in Graphdarstellung mit Literalen. Legende: Krei-
se=Ressourcen, Rechtecke=Literale, Pfeile=Beziehungen

RDF-Tripel beschreiben gerichtete Graphen, welche bei großen Datenmengen sog. „semanti-
sche Netze“ bilden [AVH04, S. 69]. Ein Beispiel für einen solchen Graphen ist in Abbildung
2.2 abgebildet, welcher neben Ressourcen, die in Kreisen dargestellt sind, auch Literale in
Form von Rechtecken enthält. Die Beziehungen zwischen Ressourcen und Literalen werden
in der Grafik anhand von Pfeilen mit Bezeichnern dargestellt. Ein Baumformat wie bei
klassischen XML-Dokumenten bietet sich bei solchen allgemeinen Ressourcen-Beziehungen
insbesondere deswegen nicht an, da RDF nicht zur Beschreibung der Struktur hierarchischer

19

2 Grundlagen

Dokumente dient. Die Unterordnung von verschiedenen Elementen ist bei RDF niemals ein-
deutig oder erwünscht, da bei einem Tripel nicht klar ist, ob sich nun das Subjekt dem Objekt
unterordnen sollte oder umgekehrt. Des Weiteren ist ein wichtiger Aspekt von RDF, dass
sich mehrere Graphen problemlos zu einem vereinen lassen, bei hierarchischen Strukturen
dagegen ist dies sehr problematisch [HKRS08, S. 37].

In RDF werden keinerlei Annahmen über eine bestimmte Domäne gemacht, in welcher Res-
sourcen beschrieben werden, und keine Aussagen über die zugrundeliegende Semantik der
beschriebenen Objekte. Für diesen Zweck wurde RDF Schema (RDFS) konzipiert, welches es
erlaubt, ein Vokabular für eine bestimmte Domäne zu modellieren. Ein Vokabular bezeichnet
dabei einen Satz von Bezeichnern für Individuen, Beziehungen und Klassen, festgelegte
Bedeutungen für gewisse Bezeichner sowie Einschränkungen bei deren Verwendung. RDFS
ermöglicht es nun, solches terminologisches Wissen über Begriffe eines Vokabulars zu spe-
zifizieren [HKRS08, S. 67]. Auf syntaktischer Ebene ist jedes RDFS-Dokument in korrekter
RDF-Syntax verfasst und beschreibt die neu eingeführten Konzepte konsequenterweise
als RDF-Tripel. In RDFS werden folgende Konzepte zur Beschreibung der Semantik einer
Domäne eingeführt:

Klasse Die Verwendung von Klassen erlaubt es, die grundlegende Unterscheidung von
Individuen einer Domäne zu ermöglichen. Dabei gibt es die Beziehung zwischen
Klasse und Instanz, wobei die Instanz ein konkretes Individuum einer Klasse ist.
In dem Beispiel aus Abbildung 2.2 könnten die Ressourcen Diplomarbeit und Student
beispielsweise Klassen darstellen, wohingegen Semantic Wiki for Design Pattern Capturing
eine konkrete Instanz der Klasse Diplomarbeit wäre. Dabei ist es auch möglich, eine
Klassenhierarchie zu definieren. Eine Überklasse für Diplomarbeit könnte demnach
Studentische Arbeit sein, welche als Unterklasse ebenso Studienarbeit enthalten könnte.
Weshalb eine solche Hierarchie nützlich ist, wird sich im nächsten Punkt zeigen.

Property Als Propertys werden diejenigen Ressourcen bezeichnet, die in Tripeln als Prädika-
te verwendet werden und dienen zum Ausdrücken von Relationen zwischen Subjekten
und Objekten. Diese Relationen ähneln mathematischen Relationen insofern, dass sie
eine Menge als Definitionsbereich (Domain) und eine Menge als Wertebereich (Range)
besitzen. Die Mengen werden in RDFS dabei durch Klassen festgelegt, so dass bestimmt
werden kann, welche Beziehungen zwischen welchen Klassen möglich sind. Domain
schränkt dabei die Subjekte für Tripel ein, und Range dementsprechend die Objekte.
Um zu dem obigen Beispiel zurückzukehren, könnte man nun die Property hatAutor
so definieren, dass sie als Domain Studentische Arbeit zugewiesen bekommt, und als
Range Student. Damit wäre es nun möglich, auch allen Unterklassen der studentischen
Arbeit, wie z.B. der Diplomarbeit oder Studienarbeit, einen studentischen Autor zuzu-
weisen. Propertys sind vergleichbar zu Klassen, da sie Mengen von Individuenpaaren
beschreiben, und verfügen ebenfalls über das Konzept der Subpropertys bzw. Unter-
propertys. Die Beispielproperty hatAutor könnte dementsprechend eine Subproperty
von beschäftigtePersonen sein, wovon eine weitere Subproperty beispielsweise hatBetreuer
sein könnte.

20

2.3 Semantic Web

2.3.2 OWL zur Ontologiemodellierung

Die Web Ontology Language OWL wurde vom W3C konzipiert, da die Ausdruckskraft von
RDF(S) sehr begrenzt ist und sich bei der Modellierung von Ontologien für das Semantic
Web einige mit RDF(S) nicht erfüllbare Anforderungen ergaben. Ein Anforderung war bei-
spielsweise, Domain und Range einer Property lokal begrenzen zu können, so dass eine
Range-Definition nur für eine eingeschränkte Menge von Klassen gilt. Eine weitere Anfor-
derung war es, möglich zu machen, die Disjunktheit von Klassen ausdrücken zu können,
was beispielsweise für die Klassen Männlich und Weiblich Sinn macht. Als letztes Beispiel für
eine Anforderung, die in RDF(S) nicht erfüllt wurde, soll das Festlegen von Kardinalitäten
dienen. Mit RDF(S) ist es nicht möglich, für eine Property HatEltern festzulegen, dass diese
nur maximal zwei Werte annehmen kann.

Bei der Konzeption von OWL wurde versucht, einen Kompromiss zwischen Ausdrucks-
stärke und der Skalierbarkeit von logischem Schlussfolgern (Reasoning) zu gewährleisten.
Deswegen wurde OWL in drei Teilsprachen unterteilt, die je nach den Anforderungen
des Nutzers unterschiedliche Ausdrucksstärken und damit verbundene Komplexität von
logischen Schlussfolgerungen besitzen [HKRS08, S. 151-154].

• OWL Lite ist die Teilsprache mit geringstem Umfang, ist daher auch am wenigsten aus-
drucksstark, aber entscheidbar mit einer Zeitkomplexität von ExpTime im schlimmsten
Fall. Diese Teilsprache besitzt auch die beste Unterstützung durch Softwarewerkzeuge,
da sie am einfachsten zu Implementieren ist. Beispiele nicht verfügbarer Sprachkon-
strukte sind das Fehlen von Klassendefinitionen durch Aufzählung oder Aussagen
über die Disjunktheit von Klassen [AVH04, S. 118-119].

• OWL DL enthält OWL Lite, besitzt etwas mehr Ausdruckskraft und ist ebenfalls ent-
scheidbar mit einer Zeitkomplexität von NExpTime im Worst-Case. OWL DL enthält die
Ausdruckskraft von RDF(S) bis zu dem Grad, an dem die Sprache ansonsten unent-
scheidbar geworden wäre. Sie ist die am häufigsten verwendete Sprache zur Erstellung
von Ontologien und besitzt eine gute Unterstützung durch Softwarewerkzeuge.

• OWL Full enthält OWL Lite und OWL DL. Es enthält RDF(S) als komplette Teilsprache
und besitzt damit die größte Ausdruckskraft der drei Teilsprachen. Es enthält alle
OWL-Sprachelemente und erlaubt, diese beliebig mit RDF(S)-Primitiven zu kombi-
nieren und sogar deren Bedeutung zu verändern. Es ist ebenso keine Typentrennung
zwischen Individuen, Klassen und Rollen nötig, was die Definition von Klassen er-
möglicht und somit zur Meta-Modellierung verwendet werden kann. Dies führt dazu,
dass die Sprache unentscheidbar wird und daher nur von sehr wenigen Softwarewerk-
zeugen teilweise unterstützt wird, da keine logische Inferenz mehr möglich ist sobald
unentscheidbare Konstrukte auftauchen.

Nun soll ein kleiner Überblick lediglich über diejenigen Sprachelemente folgen, die tatsäch-
lich auch zur Modellierung der Ontologien in Kapitel 4 verwendet wurden. Dazu soll die
Klassenhierarchie aus Abbildung 2.3 zunächst einen Überblick gewähren, wie OWL und
RDF(S) in Verbindung miteinander stehen. In der Abbildung stehen Rechtecke für Elemente
aus OWL/RDF(S), wobei die genaue Herkunft anhand des Namensraums im Bezeichner

21

2 Grundlagen

erkennbar ist. Die Pfeile stellen eine Generalisierungsbeziehung dar, wie sie beispielsweise
aus der objektorientierten Programmierung bekannt ist. Zu Modellierung der Ontologien
dieser Diplomarbeit wurde OWL DL verwendet.

rdfs:Resource

rdfs:Class rdf:Property

owl:Class owl:ObjectProperty owl:DatatypeProperty

Abbildung 2.3: Klassenhierarchie der Beziehung zwischen OWL/RDF(S) (nach [AVH04, S.
119]). Legende: Rechtecke=Elemente aus OWL/RDF(S), Pfeile=Generalisierung

Wie aus der Abbildung ersichtlich ist, wurde die RDF-Property in Object- und Data-Propertys
verfeinert. Object Propertys verbinden dabei Objekte mit Objekten, und Data Propertys ver-
binden Objekte mit typisierten Datenwerten. In dem RDF-Beispiel aus Abbildung 2.2 wäre
nun die Relation HatAutor eine Object Property, und Titel und Name wären Data Propertys.
Es ist darüber hinaus möglich, die Eigenschaften einer Object Property anhand von sog.
„Special Properties“ festzulegen. Diese dienen zur Definition von Charakteristiken wie z.B.
Transitivität oder Symmetrie. OWL bietet zur Typisierung von Data Propertys keine eigenen
Datentypen, dafür aber standardmäßig eine Untermenge der XML Schema-Datentypen an.
Eine weitere hinzugekommene Möglichkeit ist nun die Definition von mehreren Ranges oder
Domains, was zu einer Bildung der Vereinigungsmenge der ausgewählten Klassen führt. In
OWL gibt es zudem Individuen, welche Instanzen von Klassen klar als solche kennzeichnen.
Wurde eine Object Property definiert, die zwei Klassen verbindet, bedeutet dies, dass Indivi-
duen der Klasse diese Beziehung aufweisen können, aber nicht müssen. Daher wird eine
konkrete Beziehung zwischen Individuen in Form von Object Property Assertions ausgedrückt,
welche aussagen, dass die Relation konkret zwischen den beiden Individuen gilt.

Logische Inferenzen in OWL

OWL DL lässt sich unter anderem auf eine Untermenge der Prädikatenlogik erster Stufe
zurückführen und ermöglicht dadurch die Anwendung vieler gut erprobter Algorithmen
aus diesem Bereich [HKRS08, S. 163]. Dadurch entfaltet sich ein großer Mehrnutzen aus der
formalen Beschreibung und Klassifizierung einer Domäne anhand einer Ontologie in OWL.
Aus der Ontologie lassen sich logische Schlussfolgerungen (Inferenzen) ziehen, die auf der
einfachsten Ebene beispielsweise auf der Transitivität oder Symmetrie von Object Propertys
basieren können.

22

2.3 Semantic Web

Zu Veranschaulichung dieses Umstandes soll eine in OWL modellierte überarbeitete Ver-
sion des obigen Beispiels aus Abbildung 2.2 verwendet werden, welche in Abbildung 2.4
dargestellt ist. Eine detaillierte Beschreibung aller Einzelheiten der Visualisierung einer OWL-
Ontologie befindet sich in Abschnitt 2.3.5 und wird an dieser Stelle nicht für das Verständnis
des Beispiels benötigt. Die beiden Beispielontologien unterscheiden sich insofern, dass nun
statt Literalen zur Modellierung der Diplomarbeit und des Autors Individuen verwendet
wurden. Zudem gibt es die bereits oben beschriebene Property-Hierarchie von beschäftigte-
Personen mit den Unterpropertys hatAutor sowie hatBetreuer und die Klassenhierarchie zur
Beschreibung der Diplomarbeit als studentische Arbeit. Die Object Property hatAutor ist nun
asymmetrisch und funktional. Funktionale Object Propertys können nur genau auf ein Objekt
zeigen, um den funktionalen Zusammenhang zwischen zwei Individuen zu verdeutlichen.

Legende

has Subclass

has Individual

beschäftigtePerson

hatBetreuer

hatAutor

Studen-
tische
Arbeit

Person an
Universi-

tät

Christoph
Fehling

Semantic Wiki
for Design …

Wissen-
sch.

Mitarbei-
ter

Diplomar
beit

Student

Norbert Fürst

Norbert Fuerst

Abbildung 2.4: Beispiel einer einfachen OWL-Ontologie

Um implizites Wissen, welches in dieser Ontologie enthalten ist, explizit zu machen, gibt es
semantische Inferenzprogramme (Reasoner), die logische Schlüsse aus explizit abgesicherten
Aussagen (asserted statements) und Axiomen ziehen können. Ein solcher Reasoner könnte
nun, auf die obige Ontologie angewandt, u.a. schlussfolgern, dass die hatAutor-Relation von
Diplomarbeit zu den beiden Autoren eigentlich die gleiche Person meint. Dies lässt sich aus
der Tatsache folgern, dass hatAutor eine funktionale Property ist, und dass es daher nur einen
Autor geben kann. Aus der Asymmetrie dieser Property lässt sich außerdem folgern, dass
es nie ein Tripel der Art Student - hatAutor - Diplomarbeit geben kann. Während diese
Erkenntnisse innerhalb der kleinen Beispielontologie vielleicht trivial erscheinen, können
durch Inferenzprogramme in Ontologien mit vielen tausend Begriffen durchaus interessante
neue Erkenntnisse gewonnen werden.

23

2 Grundlagen

Listing 2.1 Eine einfache SPARQL-Query
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?subj

WHERE

{

?subj rdf:type <http://iaas.de/Diplomarbeit> .

}

2.3.3 Abfragen mit SPARQL

SPARQL (SPARQL Protocol And RDF Query Language) ist eine vom W3C standardisierte
Abfragesprache für Daten, die im RDF-Format vorliegen [SP]. Sie ermöglicht das Abfragen
von Daten mit einem Resultat als RDF-Graph oder als Ergebnismenge sowie die Manipu-
lation von RDF-Daten. Es spielt dabei auch keine Rolle, ob die Daten tatsächlich in RDF
vorliegen oder zunächst von einer Middleware in RDF transformiert wurden. SPARQL stellt
mittlerweile den De-Facto Standard für Abfragen im Semantic Web dar und basiert im Kern
auf RDF-Anfragen in Form von Graphmustern [HKRS08, S. 202].

Im Folgenden soll die Query aus Abbildung 2.1 als Beispiel für die Erklärung der grund-
legenden Aspekte von SPARQL dienen. Mithilfe des Schlüsselwortes PREFIX werden Na-
mensräume definiert, um nicht immer den vollen Namensraum ausschreiben zu müssen.
SELECT dient zur Auswahl der Ergebnisspalten, bzw. gibt an welche Teile des unter WHERE
angegebenen Graphmusters schließlich als Ergebnis gezeigt werden sollen. Die in Abbildung
2.1 dargestellte Query würde demzufolge alle Individuen des Typs Diplomarbeit als Ergebnis
anzeigen, wenn sie auf die OWL-Ontologie auf Abbildung 2.4 angewandt würde.

2.3.4 Triplestores

Triplestores oder RDF-Datenbanken sind spezielle Datenbanken zur Ablage und Abfrage von
RDF-Daten im Tripel-Format [Bec02]. Im Vergleich zu klassischen relationalen Datenbanken,
in welchen zusammenhängende Daten durch Mengen von Tupeln beschrieben wurden,
handelt es sich bei RDF-Graphen um Mengen von Tripeln. Dabei ergeben sich insbesondere
bei großen Datenmengen Anforderungen, die mit klassischen RDBMS direkt nicht erfüllt
werden können und daher spezielle Optimierungen für häufig vorkommende Operationen
auf RDF-Datenbeständen nötig machen. Es gibt zur Umsetzung von Triplestores verschiedene
Ansätze, die jeweils Vor- und Nachteile mit sich bringen [LH05]. Triplestores, die auf Basis
von RDBMS entwickelt wurden, bieten gute Inferenzmöglichkeiten, skalieren ab einer
gewissen Größe des Datenbestandes aber nicht mehr gut. Native Triplestores skalieren besser
bei großen Datenbeständen, allerdings bieten sie zum Zeitpunkt des Erscheinens von [LH05]
weniger gute Inferenzmöglichkeiten. Zuletzt gibt es die Möglichkeit, die Daten In-Memory
zu halten, was bis auf der großen Hauptspeicherbedarf den anderen Möglichkeiten überlegen
ist. Da es im Rahmen dieser Diplomarbeit nur sehr kleine Datenbestände gibt und somit

24

2.3 Semantic Web

die Begrenzung des Hauptspeichers kein Problem darstellt, wurde die In-Memory-Variante
ausgewählt.

Triplestores können in Zusammenarbeit mit einem Reasoner die Mächtigkeit von SPARQL-
Abfragen insofern erhöhen, dass bei der Berechnung der Ergebnismenge logisch hergeleitetes
Wissen miteinbezogen wird. So ist es möglich, dass nicht explizit angegebenes Wissen mit in
der Ergebnismenge enthalten ist, wie z.B. Beziehungen über transitive Propertys.

2.3.5 Ontologie-Modellierung mit Protégé

Protégé ist ein weit verbreiteter Open-Source Ontologie Editor, der von der Stanford Uni-
versity School of Medicine in Java entwickelt wurde [pro]. Er verfügt über zwei eingebaute
Reasoner (FaCT++ und HermiT), mit welchen die modellierte Ontologie direkt auf logische
Widersprüche überprüft werden kann und implizit enthaltene Aussagen materialisiert wer-
den können. Ein SPARQL-Endpoint erlaubt direkte SPARQL-Anfragen auf eine Ontologie,
die in Protégé geladen wurde. Ebenso sind zwei Visualisierungsplugins enthalten, welche die
graphische Darstellung von OWL-Ontologien ermöglichen. Für die Darstellung von OWL-
Ontologien in dieser Arbeit wurde jedoch die manuelle Visualisierung durch selbst erstellte
Grafiken gewählt, um übersichtlichere Resultate zu erhalten, die nur benötigte Elemente
abbilden. Der Visualisierungsstil von Klassen, Individuen und Propertys ist grob an das
Protégé-Plugin OntoGraf4 angelehnt. Zum Besseren Verständnis der Ontologie-Abbildungen
folgt nun anhand von Abbildung 2.5 eine Erklärung, wie einzelne Elemente dargestellt
werden.

Legende

has Subclass

has Individual

Object Property

Individuum

Individuum2

Klasse

Andere
Klasse

Thing

Abbildung 2.5: Die graphische Darstellung einer OWL-Ontologie

• Klassen werden als Ellipsen mit dem Klassennamen in der Mitte der Ellipse dargestellt.
In Abbildung 2.5 sind Thing, Klasse, und Andere Klasse Klassen.

4http://protegewiki.stanford.edu/wiki/OntoGraf

25

http://protegewiki.stanford.edu/wiki/OntoGraf

2 Grundlagen

• Individuen werden in Rechtecken mit dem Individuennamen in der Mitte des Recht-
ecks dargestellt. In Abbildung 2.5 sind Individuum und Individuum2 Individuen.

• Object Propertys werden als farbige Pfeile dargestellt. Dabei entsprechen durchge-
zogene Pfeile zwischen Klassen Domain-Range Definitionen, und gestrichelte Pfei-
le zwischen Individuen Object Property Assertions. In der Abbildung gibt es eine
Domain-Range Definition von Klasse nach AndereKlasse, was bedeutet, dass diese
Object Property als Domain Klasse verwendet und als Range Andere Klasse. Von dem
Individuum Individuum gibt es eine Object Property Assertion zu Individuum2, d.h.
dass Individuum in der definierten Beziehung Object Property (siehe die Legende in
Abbildung 2.5) zu Individuum2 steht.

• Subklassen- und Klasse-Instanz-Beziehungen werden ebenfalls als farbige durchge-
zogene Pfeile dargestellt. Die Beziehung has Subclass (deutsch: hat Unterklasse) ist in dem
Beispiel dabei als pinker Pfeil dargestellt, und has Individual (deutsch: hat Individuum)
als grünblauer Pfeil. Diese Farben werden in der kompletten Diplomarbeit konsistent
verwendet, um ein schnelles Erfassen der Graphen zu ermöglichen.

2.3.6 Semantic Mediawiki

Semantic Mediawiki [KV] ist eine Erweiterung für Mediawiki [mwo], die die semantische
Annotation von Seiten und deren Abfrage ermöglicht. Bevor auf die Besonderheiten von
Semantic Mediawiki eingegangen wird, soll zunächst erklärt werden, aus welchen Grundbe-
standteilen Mediawiki besteht. Mediawiki ist das Open-Source Softwarepaket, mit welchem
wikipedia.org betrieben wird, und basiert auf PHP und Javascript. Die grundsätzliche Bestand-
teile von Mediawiki, die zum Verständnis der Arbeit nötig sind, werden im Folgenden kurz
erklärt:

• Seiten: Die Grundgranularität von Mediawiki stellen Seiten dar, auf welchen grundsätz-
lich jeder Benutzer Inhalte hinzufügen kann. Um eine gewisse Qualitätskontrolle zu
ermöglichen, wird für jede Seite eine Versionsverwaltung des Inhalts geführt, so dass
eine Seite auf frühere Stände zurückgesetzt werden kann. Seiteninhalte werden in der
Auszeichnungssprache Wikitext (Wiki markup) verfasst, welches eine vereinfachte Form
von HTML darstellt und eine grundlegende Textformatierung ohne HTML-Kenntnisse
ermöglicht. Mithilfe von [[Hyperlink|Interner Link]] würde man z.B. einen Link
auf die Wikiseite „Hyperlink“ verfassen, der als Linktext „Interner Link“ verwendet. ==
Abschnitt == würde beispielsweise einen neuen Absatz mit der groß geschriebenen
Überschrift „Abschnitt“ erzeugen.

• Namensräume (Namespaces): Namensräume dienen zur Abgrenzung von Seiten mit
unterschiedlichen Verwendungszwecken. Dabei sollten Namensräume nicht mit Ka-
tegorien verwechselt werden, die zur inhaltlichen Abgrenzung von Artikeln dienen.
Namensräume erkennt man daran, dass sie als Präfix vor dem eigentlichen Artikelna-
men stehen, z.B. „Hilfe:Übersicht“.

26

2.3 Semantic Web

• Kategorien: Die Kategorien in Mediawiki dienen dazu, Inhalte zu kategorisieren, struk-
turieren und somit leichter auffindbar und verständlich zu machen. Dabei ermöglicht
es das Verfassen von Kategoriehierarchien Taxonomien abzubilden. Die Seiten, welche
Kategorien definieren, befinden sich in dem eigenen Namensraum Kategorie. Zur Ein-
ordnung eines Artikels in eine Kategorie genügt es, [[Kategorie:Beispiel]] an eine
beliebige Stelle des Artikels zu schreiben.

• Vorlagen (Templates): Vorlagen erlauben die Einbindung von vordefinierten Inhalts-
bausteinen nach dem Transklusionsprinzip, d.h. durch die Angabe einer Referenz
auf eine Vorlage wird der Inhalt der Vorlage an der entsprechenden Stelle eingefügt.
Sie werden im eigenen Namensraum Vorlage definiert und bieten die Möglichkeit,
benannte Parameter zu definieren. Auf diese Weise wird es möglich, standardisierte
Vorlagen für gewisse Inhalte anzubieten, was ein einheitliches Layout von Artikeln
ermöglicht. Ein Template kann durch {{Templatename|Parameter1=a|Parameter2=b}}

auf einer Seite verwendet werden, wobei a und b als Eingabe für die vordefinierten
Parameter verwendet würden.

• Spezialseiten: Der Namensraum Spezial wird hauptsächlich zu administrativen Zwe-
cken genutzt und bietet die Möglichkeit, spezielle Funktionalitäten für Erweiterungen
auf gesonderten Seiten anzubieten. Viele dieser Seiten sind nur für Benutzer mit
Administrationsrechten verfügbar.

Im Folgenden sollen nun die wichtigsten Aspekte von Semantic Mediawiki näher erläutert
werden. Dabei wird zunächst auf die Annotation von Artikeln mithilfe von semantischen
Attributen eingegangen, anschließend auf die Abfrage von annotierten Inhalten und zuletzt
auf in Seiten eingebettete Abfragen in Form von Konzepten.

Semantische Attribute

Semantische Attribute (Semantic Propertys) dienen zur Annotation von Artikeln mit semanti-
schen Informationen. Als grundlegende Objekte muss man sich hier die Seiten vorstellen,
welche mit OWL-Terminologie bezeichnet Individuen der Klasse Seite wären. Dabei gibt es
sowohl die Möglichkeit, Relationen zwischen Seiten in der Entsprechung von OWL-Object
Propertys auszudrücken, als auch Datenattribute pro Seite wie bei Data Propertys zuzu-
ordnen. Hierbei wird bei Semantic Mediawiki allerdings immer von „Semantic Propertys“
gesprochen, die jedoch typisierbar sind. Ein einfacher semantischer Link zu einer ande-
ren Seite wird erstellt, indem die beispielhafte semantische Annotation [[semantischer

Link::Andere Seite]] auf einer Seite eingefügt wird. Damit wird das Tripel Aktuelle

Seite - semantischer Link - Andere Seite geschaffen, sowie eine neue Seite im Namens-
raum Attribut (Property) mit dem Titel „semantischer Link“. Die Property semantischer Link
hat dabei implizit den Typ Seite zugewiesen bekommen und wird daher als Object Property
betrachtet. Sollte stattdessen beabsichtigt sein, dass es sich um eine Data Property handelt,
versieht man die Seite der Property mit der Annotation [[Hat Typ::String]]. Dies hat zur

27

2 Grundlagen

Folge, dass Andere Seite nun als semantisches Attribut vom Typ String betrachtet wird. Eine
vollständige Liste der verfügbaren Datentypen ist unter 5 verfügbar.

Abfragen auf Attribute

Wurden in einem Wiki semantische Informationen annotiert, können diese über Querys
abgefragt werden. Dafür gibt es eine spezielle Abfragesprache6, die sich an der Notation
des Wikitexts orientiert und so das Verfassen von Abfragen auch für technische Laien
ermöglichen soll. In den Ergebnismengen dieser Querys entspricht grundsätzlich eine Reihe
immer einer Seite im Wiki. Die Verwendung einer Abfrage kann entweder über die Seite
„Spezial:Semantische_Suche“ geschehen, welche auch eine Unterstützung bei dem Verfassen
von Querys bietet, oder über auf Seiten eingebettete Abfragen.

Die Abfrage [[Category:Diplomarbeit]] [[hatAutor::+]] |?hatAutor=Autor |format=table

würde beispielsweise als Ergebnismenge alle Seiten der Kategorie Diplomarbeit liefern, für die
ein beliebiger Autor annotiert wurde. Die Ergebnismenge würde als Tabelle dargestellt, in
welcher die erste Spalte den Namen der Diplomarbeiten enthalten würde, und die zweite zu
Autor umbenannte Spalte die Werte des semantischen Attributs hatAutor. Auf diese Weise las-
sen sich beliebig Werte von Propertys, Kategorien und Namensräumen abfragen, allerdings
ist dabei immer das Subjekt der Tripelergebnismenge als Variable vorgegeben. Die Sprache
unterstützt zudem Joins, Subquerys und Sortierungsoperationen auf der Ergebnismenge.

Konzepte

Die sog. Konzepte7 (Concepts) bezeichnen Seiten im dem Namensraum Konzept und bieten
die Möglichkeit, Querys zu speichern. Ein Konzept entspricht einer Query im Semantic
Mediawiki-Format, und kann als eine Art dynamische Kategorie betrachtet werden. Auf
einer Konzeptseite kann jeweils nur eine Abfrage gespeichert sein, im Gegensatz zu auf nor-
malen Seiten eingebetteten Abfragen, von welchen beliebig viele auf einer Seite vorkommen
können.

2.3.7 Erweiterungen von Semantic Mediawiki

Durch die modulare Architektur von Semantic Mediawiki gibt es eine große Entwickler-
gemeinde, die aktiv an Erweiterungen arbeitet. Die wichtigsten für diese Diplomarbeiten
verwendeten Erweiterungen sollen im Anschluss kurz vorgestellt werden.

5http://semantic-mediawiki.org/wiki/Help:Properties_and_types
6http://semantic-mediawiki.org/wiki/Help:Selecting_pages
7http://semantic-mediawiki.org/wiki/Help:Concepts

28

http://semantic-mediawiki.org/wiki/Help:Properties_and_types
http://semantic-mediawiki.org/wiki/Help:Selecting_pages
http://semantic-mediawiki.org/wiki/Help:Concepts

2.3 Semantic Web

DataWiki

Das Produkt DataWiki8 der Firma DIQA9, das ursprünglich unter dem Namen SMW+ ent-
wickelt wurde, ist ein „semantisches Unternehmenswiki“. Es bereichert Semantic Mediawiki
um eine Sammlung von Erweiterungen, die viele Änderungen und Verbesserungen an der
Benutzeroberfläche und der Benutzerfreundlichkeit mitbringen. Der Kern von DataWiki
stellt die Halo Extension10 dar, welche unter anderem folgende Features liefert:

• Anbindung eines Triplestores: Ebenfalls von DIQA gibt es das Produkt Triplestore
Basic11, welches eine Anbindung von Semantic Mediawiki an den Jena In-Memory-
Triplestore ermöglicht. Jena ist eines der führenden Frameworks zur Entwicklung von
Semantic Web Anwendungen und ermöglicht die Verwendung von unterschiedlichen
Reasonern [WSK+

03]. Zudem bietet Triplestore Basic einen SPARQL-Web Endpoint
an, was dadurch die Möglichkeit bietet, SPARQL-Querys auf dem Wiki-Datenbestand
auszuführen und dabei die Unterstützung eines Reasoners zu verwenden.

• Erleichterte Annotation: Mithilfe der Semantic Toolbar wird die Annotation von Artikeln
beispielsweise durch Autovervollständigung von Namen vereinfacht.

• WYSIWYG-Editor: Mithilfe des mitgelieferten WYSIWYG-Editors ist es möglich, Artikel
ohne Kenntnisse von Wiki markup zu verfassen und dabei semantische Annotationen
und Kategoriezuweisungen ebenfalls ohne Kenntnisse der Syntax einzufügen.

• Ontologiebrowser: Mithilfe dieser Spezialseite ist es möglich, die dem Wiki zugrunde
liegende Ontologie zu visualisieren und effizient neue Propertys oder Kategorien
anzulegen.

Neben der Erweiterung Halo sei ebenfalls die Deployment Framework-Erweiterung als Teil
von DataWiki genannt. Sie ermöglicht die komfortable Administration des Wikis über ein
Webinterface sowie das Verwalten von Erweiterungen auf Basis eines Repositorys.

Semantic Forms

Die Erweiterung Semantic Forms12 erlaubt das Erstellen von auf Templates basierenden,
bereits semantisch annotierten Seiten mithilfe von benutzerfreundlichen Formularen. Sie
wurde hauptsächlich von Yaron Koren und Stephan Gambke entwickelt.

Dabei werden Assistenten zum Erzeugen von semantischen Propertys, Templates und For-
mularen geliefert, so dass das Entwerfen von Formularen sehr benutzerfreundlich geschehen
kann. Bei dem Erstellen von Templates ist bereits die Angabe eines bestimmten Feldes mög-
lich, dass verwendet werden soll, um einer semantischen Property einen Wert zuzuweisen.

8http://diqa-pm.com/de/DataWiki
9http://diqa-pm.com

10http://semanticweb.org/wiki/Halo_Extension
11http://diqa-pm.com/de/Triplestore_basic
12http://www.mediawiki.org/wiki/Extension:Semantic_Forms

29

http://diqa-pm.com/de/DataWiki
http://diqa-pm.com
http://semanticweb.org/wiki/Halo_Extension
http://diqa-pm.com/de/Triplestore_basic
http://www.mediawiki.org/wiki/Extension:Semantic_Forms

2 Grundlagen

Beim Erzeugen des Formulars werden nach Angabe der Templates, welche verwendet wer-
den sollen, automatisch für alle erkannten Felder passende Eingabetypen vorgeschlagen und
die Möglichkeit geboten, ein Label für jedes Feld zu bestimmen. Die benötigten Parameter
zur Feinkonfiguration eines Eingabetyps können schließlich in einem ausklappbaren Fenster
eingegeben werden. Semantic Forms bietet zudem die Möglichkeit, die erstellten Formulare
lückenlos in ein Wiki zu integrieren. Dabei lassen sich zum einen ganze Namensräume ei-
nem gewissen Formular zuordnen, zum anderen auch einzelne Seiten durch die Annotation
mit der semantischen Property Page has default form. Das zugeordnete Formular wird
anschließend geöffnet, sobald der Benutzer den Editieren-Button verwendet.

Besonders erwähnenswert ist auch die offene modulare Architektur von Semantic Forms,
welche die Entwicklung von zusätzlichen Eingabetypen sehr komfortabel erlaubt. Dies hat
dazu geführt, dass es bereits ganze Sammlungen von zusätzlichen Eingabetypen gibt, wie
z.B. in Form der Erweiterung Semantic Forms Inputs13.

Category Tree

Die Erweiterung Category Tree14 von Daniel Kinzler erlaubt es, die Struktur der Kategorien
innerhalb des Wikis als Baum darzustellen.

Dabei muss zur Anzeige eines solchen Baumes lediglich ein Ausdruck der Art
<categorytree>Wurzelkategorie</categorytree> auf einer Wikiseite eingefügt werden.
Anschließend wird je nach ausgewähltem Modus nur die Unterkategorien der Wurzelkate-
gorie, oder die Unterkategorien sowie deren Seiten angezeigt. Eine Unterkategorie entsteht,
wenn die Seite, welche die Kategorie definiert, selbst mit einem Kategorie-Tag versehen wird,
und somit in eine Überkategorie eingeordnet wird.

GraphViz

Die Erweiterung GraphViz15 von Daniel Kinzler dient dazu, Graphen als eingebettete Grafiken
im Wiki darzustellen. Dafür stehen die beiden Grapherzeugungsprogramme GraphViz
[Per] und Mscgen16 zur Verfügung. Mscgen dient zur Erzeugung von Message Sequence
Charts (Nachrichten-Reihenfolge-Diagramme) und wurde im Rahmen der Diplomarbeit nicht
verwendet.

Das Open-Source Programmpaket GraphViz ist in der Lage, aus Graphbeschreibungen im
DOT-Format eine Vielzahl von unterschiedlichen Graphtypen zu erzeugen. DOT ist eine
einfache Graphbeschreibungssprache, mit der in Klartext für Menschen und Maschinen
lesbare Beschreibungen von Graphen verfasst werden können. Solche Graphbeschreibungen

13http://www.mediawiki.org/wiki/Extension:Semantic_Forms_Inputs
14http://www.mediawiki.org/wiki/Extension:CategoryTree
15http://www.mediawiki.org/wiki/GraphViz
16http://www.mcternan.me.uk/mscgen/

30

http://www.mediawiki.org/wiki/Extension:Semantic_Forms_Inputs
http://www.mediawiki.org/wiki/Extension:CategoryTree
http://www.mediawiki.org/wiki/GraphViz
http://www.mcternan.me.uk/mscgen/

2.3 Semantic Web

können mit der Mediawiki GraphViz-Erweiterung direkt auf Wikiseiten eingefügt werden.
Im Rahmen der Erweiterung wird die Beschreibung mithilfe der auf dem Server vorhandenen
GraphViz-Installation in ein Bild umgewandelt, welches anstatt des Textes auf der Seite
erscheint. Die Möglichkeiten, die GraphViz dabei zur Gestaltung der Graphen bietet, sind
sehr vielseitig. Neben der Bestimmung von Knotenfarben und -formen können Kanten
unterschiedlich dargestellt und beschriftet werden, und zudem können in Knoten auch Links
eingebettet werden.

Semantic Drilldown

Die Erweiterung Semantic Drilldown17 bietet eine Spezialseite, auf der anhand von Kategorien
und Filtern Drilldown-Operationen auf den Daten eines semantischen Wikis ausgeführt
werden können. Dabei liegt der Fokus auf Filter, welche anhand von semantischen Propertys
definiert werden. Die Erweiterung wird von Yaron Koren und David Loomer entwickelt.

Zu Beginn einer Drilldown-Operation auf der dafür bereit gestellten Spezialseite stehen alle
Wurzelkategorien zur Verfügung, d.h. alle Kategorien, die selbst keine Unterkategorie einer
anderen Kategorie sind. Wurde nun eine Wurzelkategorie ausgewählt, stehen alle Unterka-
tegorien und für diese Kategorie definierten Filter als Drilldown-Merkmal zur Verfügung.
Solange kein Drilldown-Merkmal ausgewählt ist, werden alle Seiten der Wurzelkatego-
rie alphabetisch sortiert als Ergebnismenge angezeigt. Jede Auswahl eines zusätzlichen
Drilldown-Merkmals schränkt die angezeigte Seitenmenge weiter ein. Wird beispielsweise
eine Unterkategorie ausgewählt, werden anschließend nur noch Seiten der Unterkategorie
angezeigt. Die bereits erwähnten Filter werden als Seiten des Namensraums Filter definiert
und ermöglichen es, unterschiedliche Filterkriterien anzubieten. Eine Möglichkeit besteht
beispielsweise darin, einen Filter mit einer semantischen Property zu verknüpfen. Zur Aus-
wahl als Drilldown-Merkmal stehen nun alle Werte zur Verfügung, die das semantische
Attribut im Wiki zugewiesen bekommen hat. Wird ein Wert ausgewählt, erscheinen nur
noch Seiten, auf welchen die Property mit genau demselben Wert annotiert wurde. Ein
andere Möglichkeit, einen Filter zu definieren, ist die feste Vorgabe von Werten, die zur
Auswahl angezeigt werden sollen. Ein weiteres Feature von Semantic Drilldown besteht
darin, bestimmte Filter erst anzuzeigen, wenn für einen anderen vorher definierten Filter
bereits ein Wert ausgewählt wurde.

Nachdem nun die nötigen Grundlagen für das Verständnis sowohl der inhaltlichen als auch
der technischen Aspekte dieser Diplomarbeit geschaffen wurden, folgt im nächsten Kapitel
die Aufnahme der genauen Anforderungen an ein Pattern Repository. Dies ermöglicht eine
Implementierung, die genau den festgehaltenen Zielen entspricht und anschließend auch
eine exakte Evaluation, inwiefern die Ziele erreicht wurden.

17http://www.mediawiki.org/wiki/Extension:Semantic_Drilldown

31

http://www.mediawiki.org/wiki/Extension:Semantic_Drilldown

3 Anforderungen

Im Folgenden Kapitel sollen zunächst in Abschnitt 3.1 die funktionalen, und in Abschnitt
3.2 die nichtfunktionalen Anforderungen an das Pattern Repository festgehalten werden,
das im Rahmen dieser Diplomarbeit entwickelt werden soll. Nach der Beschreibung der
relevanten Use Cases in Abschnitt 3.3 sollen in Abschnitt 3.4 die Vorteile der Verwendung
semantischer Technologie für die Umsetzung vorgestellt werden. Zuletzt folgt in Abschnitt 3.5
eine Evaluation verschiedener Produkte, und eine Begründung der Entscheidung zugunsten
von DataWiki.

3.1 Funktionale Anforderungen

In diesem Abschnitt sollen die funktionalen Anforderungen an das Projekt in Form von
User Stories festgehalten werden, wie es beispielsweise in [LL07] beschrieben ist. Die funk-
tionalen Anforderungen wurden aus unterschiedlichen Quellen erarbeitet, die sich mit der
Beschreibung von Anforderungen an ein Pattern Repository beschäftigen. Weiss et al. be-
schreibt in [WB07] Anforderungen an ein auf einem Wiki basierenden Pattern Repository,
welche sich aufgrund der großen Ähnlichkeit der Zielsetzung sehr gut zur Verwendung
in dieser Arbeit eignen. Dabei werden Benutzer anhand ihrer Rollen in Pattern Autoren
und Endnutzer unterschieden. Im Kern sollen Autoren in der Lage sein, Patterns und deren
Beziehungen abzulegen. Dabei sollen es möglich sein, einzelne Pattern-Domänen anhand
ihrer Patternsprache als Sammlungen zu speichern. Sowohl Endnutzer als auch Autoren
können Tags an Patterns anbringen, um das spätere Auffinden zu erleichtern. Zuletzt soll
zur einfacheren Suche die Möglichkeit bestehen, Metadaten über Patterns zu speichern und
sie anschließend darauf basierend zu suchen.

Neben diesen Grundanforderungen wurden in [DKT05] eine Reihe Benutzerinterface Pattern
Sammlungen verglichen und einige detailliertere Anforderungen an Pattern Repositorys
aus diesem Bereich gesammelt. Sehr ausführlich wurde hier auf die Spezifikationen von
Greene et al. [GMJ+03] und Gaffar et al. [GSJS03] eingegangen. Die Anforderungen sind
in den drei Quellen nicht spezifisch auf diese Domäne zugeschnitten und können daher
ebenfalls im Rahmen dieser Arbeit verwendet werden. Weitere Anforderungen konnten von
Buschmann et al. übernommen werden, welcher die Anforderungen an ein Mustersystem
für Softwarearchitektur beschreibt [BHS07, S. 360-361]. Diese sind bereits sehr allgemein
gehalten, so dass sie sich sehr gut für die Verwendung in dieser Arbeit eignen.

Im Folgenden wurde die teils groben Anforderungen aus den unterschiedlichen Quellen
in Form von User Stories ausformuliert und nach den Benutzerrollen angeordnet, die sie

33

3 Anforderungen

betreffen. Die Benutzerrollen wurden aus [WB07] übernommen. Im Einzelnen ist angemerkt,
aus welcher Quelle welche Anforderung übernommen wurde, wobei User Stories ohne
Quellen aus der Zielsetzung dieser Arbeit abgeleitet wurden.

Pattern Autor

• Als Pattern Autor möchte ich die Struktur der Patterns im System passend zu meiner
Patterndomäne konfigurieren können, so dass sie anschließend im kompletten System
konsistent eingehalten wird. [DKT05, „Standardizing a Common Pattern Form“, S. 36],
[Bus98, S. 361]

• Als Pattern Autor möchte ich neue Patterns mithilfe eines komfortablen Formulars
hinzufügen können.

• Als Pattern Autor möchte ich vorhandene Patterns mit dem gleichen Formular editieren
können, mit dem ich sie angelegt habe.

• Als Pattern Autor möchte ich Patterns vernetzten können, indem ich die Beziehungen
angebe, welche die Patterns verbinden. [DKT05, „Relating Patterns“, S. 36], [Bus98, S.
361], [GSJS03]

• Als Pattern Autor möchte ich die semantische Annotation von Patterns auf WYSIWYG-
Weise vornehmen können, und dabei von der verwendeten Software unterstützt wer-
den.

• Als Pattern Autor möchte ich Patterns mit Zieleigenschaften aus einer Ontologie
annotieren können, um später anhand dieser Zieleigenschaften filtern zu können.
Unter dem Stichwort „Manipulating Forces“ in [DKT05, S. 36] wird die Anforderung
beschrieben, dass Auswahl von Patterns anhand der Angabe von Forces möglich sein
soll, welche sich teilweise mit Zieleigenschaften überschneiden.

• Als Pattern Autor möchte ich die Möglichkeit haben, Patterns mit den Anwendungsfäl-
len zu vernetzen, aus welchen sie abstrahiert wurden. Dies ermöglicht die transparen-
tere Diskussion über Patterns, da die Quellen nicht verloren gehen, aus welchen sie
abstrahiert wurden. Die Vorteile von mehr Transparenz bezüglich der Patternquellen
werden z.B. in [FEL+

12] beschrieben.

• Als Pattern Autor möchte ich die Beziehungen zwischen Patterns visualisieren. [Sch03]

• Als Pattern Autor möchte ich die Möglichkeit der Versionierung von Patterns haben,
um einen Überblick über den Entstehungsprozess mit zu dokumentieren. [DKT05,
„Versioning Patterns“, S. 36]

• Als Pattern Autor möchte ich ein Pattern Repository, welches interoperabel mit anderen
Repositorys eingesetzt werden kann. [Bir10, HL93, DKT05]

34

3.1 Funktionale Anforderungen

Endnutzer

• Als Endnutzer möchte ich ein Inhaltsverzeichnis der Patterns haben, aus dem ich
komfortabel durch den Patternfundus navigieren kann. [GMJ+03, „Browsing“]

• Als Endnutzer möchte ich fortgeschrittene Suchmöglichkeiten wie z.B. eine Queryspra-
che zur Verfügung haben, um Patterns zu finden, welche sehr spezifische Suchkriterien
erfüllen. Diese Anforderung resultiert aus den in [Bir10] beschriebenen Schwierigkeiten
bei der Patternsuche. In [GASB11] ist im Rahmen von Richtlinien für die Entwicklung
eines Repositorys eine effiziente Suchfunktion als zentrale Anforderung angegeben.

• Als Endnutzer möchte ich eine oder mehrere Zieleigenschaften auswählen können, um
eine Liste zu erhalten, in der die Patterns anhand ihrer Korrelationswerte zu dieser
Zieleigenschaft sortiert sind. [GMJ+03, „Pattern ranking“]

• Als Endnutzer möchte ich direkt die Art von Beziehungen sehen können, die ein
Pattern zu anderen Patterns hat. [Sch03]

• Als Endnutzer möchte ich von einem Ausgangspattern aus andere Patterns vorgeschla-
gen bekommen, die man gut mit dem Ausgangspattern kombinieren kann. Gleichzeitig
möchte ich eine Anzeige von Alternativen, die ich verwenden kann, falls ich das
Ausgangspattern nicht verwenden möchte. In [GMJ+03] wird unter dem Stichwort
„Browsing“ zusammengefasst beschrieben, dass es unterschiedliche Möglichkeiten
geben sollte, zwischen den Patterns zu navigieren.

• Als Endnutzer möchte ich die Möglichkeit eines einfachen Einstiegs in eine Patterndo-
mäne haben, indem mir anhand von Pattern-User Stories Vorschläge gemacht werden,
wo ich mit dem Lesen beginnen soll. Dieses Vorgehen ist in [JGVH95, S. 10] ,[FLR+

13,
S. 14-20] und [HW03, S. xlviii-xlix] zu beobachten und kann daher als Anforderung an
ein Pattern Repository formuliert werden.

• Als Endnutzer möchte ich einen Assistenten zur Verfügung haben, der mir verschiedene
Möglichkeiten vorschlägt, die dazu dienen, mich effizient mit der Patterndomäne zu
beschäftigen. [Bir10, S. 8f]

• Als Endnutzer möchte ich ein tieferes Verständnis über die Patternsprache der entspre-
chenden Domäne gewinnen, wobei mir Visualisierungen helfen könnten. In [Sch03]
wird erläutert, dass unterschiedliche Visualisierungsmöglichkeiten der Patternsprache
eine wichtige Anforderung an ein Pattern Repository sind.

• Als Endnutzer möchte ich für jede Kategorie von Patterns innerhalb einer Domäne
eine Übersichtsgrafik haben, anhand der ich durch die Inhalte der Kategorie navigieren
kann.

• Als Endnutzer möchte ich einen Anwendungsfall auswählen, an dem ich besonderes
Interesse habe, und mir zu diesem passende Patterns anzeigen lassen. [FEL+

12]

35

3 Anforderungen

3.2 Nichtfunktionale Anforderungen

Die nichtfunktionalen Anforderungen an das Projekt sollen nach der Gliederung aus [Hoe]
festgehalten werden. Sie wurden teilweise aus allgemeinen Anforderungen an Repositorys
aus [HL93] übernommen, und teils für die Zielsetzung der Diplomarbeit entwickelt. Als
Grundlage zur „Entwicklung“ der nichtfunktionalen Anforderungen wurde die in der Norm
ISO25010 beschriebenen nichtfunktionalen Softwarequalitäten verwendet [ISO10].

Im Bereich der Produktqualität wird eine hohe Usability [ISO10] angestrebt, um auf Ak-
zeptanz in der Pattern Community zu stoßen. Dies soll vor allem durch eine komfortable
Bedienung der Software erreicht werden, wozu auch ein immer flüssig bleibendes Benut-
zerinterface der Software gehört. Zur Gewährleistung der Portabilität [ISO10] sollte eine
Bindung an ein bestimmtes Betriebssystem möglichst vermieden werden, was auch bei der
Verbreitung des Produkts helfen kann. Die Plattformunabhängigkeit ist eine Anforderung, die
allgemein für Repositorys gilt [HL93].

Eine allgemeine Anforderung an den Entwicklungsprozess ist die Verwendung von Metho-
den der agilen Softwareentwicklung, um verwendbare Zwischenstände der Software zu
Präsentationszwecken zur Verfügung zu haben. Auf diese Weise ist jederzeit ein Überblick
über den Status der Diplomarbeit möglich. Während des Entwicklungsprozess soll bereits
eine gute Dokumentation sowohl in Form eines Handbuchs als auch innerhalb des Codes
entstehen, um so die Wartbarkeit und die Erweiterbarkeit [ISO10] der entwickelten Software
zu gewährleisten.

Eine spezielle Anforderung, die sich aus der Verwendung von den Patterns aus [FLR+
13] als

Testdatensatz ergibt, ist die Möglichkeit der Zugriffsbeschränkung. Um rechtliche Probleme
zu vermeiden, soll es zudem eine Möglichkeit geben, Teile des Datenbestandes vor der
Öffentlichkeit zu verbergen. Diese speziellen Anforderungen lassen sich unter dem Bereich
Sicherheit [ISO10] zusammenfassen.

3.3 Use Cases

Nachdem nun in den vorherigen Abschnitten die genauen Anforderungen an das zu entwi-
ckelnde System festgehalten wurden, folgt in diesem Abschnitt eine weitere Konkretisierung
anhand von Use Cases. In Abbildung 3.1 ist ein UML-Use Case Diagramm der zu ent-
wickelnden Software in UML-Notation abgebildet. Das System setzt sich aus drei großen
Bestandteilen zusammen, welche im Rahmen eines Arbeitsflusses nacheinander verwendet
werden und letztendlich das Pattern Repository hervorbringen. Die Teile des Systems sind
jeweils durch einen großen Rahmen in der Abbildung dargestellt, der oben in der Mitte
mit der Bezeichnung des jeweiligen Teilsystems beschriftet ist. Dabei werden die möglichen
Benutzer des Systems in die Benutzerrollen technischer Administrator, Pattern Autor und
Endnutzer eingeteilt.

Zunächst passt der technische Administrator das Datenmodell des Repositorys an das
spezifische Patternformat an, welches verwendet werden soll, sowie die erlaubten Relationen

36

3.3 Use Cases

zwischen den Patterns. Dazu wird ein Ontologie-Editor verwendet, der auch dazu dient,

Pattern Repository

Pattern Autor Endnutzer

Ontologie-Editor Importer

Ontologie
Import/Export

Anpassen des
Datenmodells

Erstellen und Anpassen
von zusätzlichen

Ontologien

Erstellen/
Editieren von

Patterns

Annotation von
semantischen Links

Annotation von
Metainformationen

Suche eines Pattern

Unterstützte Lektüre
des Patternfundus

Suche anhand von
annotierten

Patterneigenschaften

«extends»

Suche anhand eines
existierenden Anwendungsfalls

«extends»

«extends»«extends»

Visualisierung von
Patternbeziehungen

«extends»

Erweiterte
Navigation

«extends»

Administrative
Aufgaben

Technischer Administrator

Abbildung 3.1: Use Cases des Pattern Repository

37

3 Anforderungen

die in Abschnitt 3.1 erwähnten Zieleigenschaften für die entsprechende Patterndomäne
anzupassen. Darauf folgt der Import dieser Ontologien in das eigentliche Pattern Repository
mithilfe eines Importers, der das modellierte Datenmodell und sonstige Informationen auf
das Datenmodell des Pattern Repositorys abbildet. Dieser Import ist in der Abbildung
anhand von gestrichelten Linien angedeutet.

Nach der Übertragung des Datenmodells kann das Repository schließlich von Pattern
Autoren und Endnutzern verwendet werden. Nachdem der Pattern Autor erste Patterns
erstellt hat, kann er diese Annotieren und mithilfe von semantischen Links die Beziehungen
zwischen den Patterns ausdrücken. Diese erweiterten Funktionalitäten wurden in dem
Diagramm aus Abbildung 3.1 anhand der UML-Beziehung extends modelliert, welche für
die Ableitung von spezifischeren Funktionalitäten basierend auf einer Basisfunktionalität
verwendet wird. So stellt die Annotation von semantischen Links beispielsweise eine Spe-
zialisierung des Editierens eines Patterns dar. Neben den Beziehungen können weitere
Metainformationen, wie z.B. die oben erwähnten Zieleigenschaften, annotiert werden. Die
Suche von Patterns wird sowohl von Pattern Autoren, als auch von Endnutzern verwendet.
Als Spezialisierungen der Suche können annotierte Patterneigenschaften in den Suchkriterien
angegeben werden, außerdem sind auch Suchen anhand von existierenden Anwendungs-
fällen möglich. Anhand dieser Suche können Patterns durch Anwendungsfälle gefunden
werden, aus welchen sie abstrahiert wurden.

Für den Endnutzer ist insbesondere die Lektüre der vorhandenen Patterns wichtig, wofür
unter der in der Grafik vorkommenden Erweiterten Navigation beispielsweise Vorschläge
zählen, die durch einen Assistenten gemacht werden. Die Visualisierung von Patternbezie-
hungen kann nicht nur dem Pattern Autor helfen, seine Patternsprache besser zu entwerfen,
sondern auch dem Endnutzer, um die Patternsprache besser zu verstehen. Detailliertere Be-
schreibungen der hier kurz angeschnittenen Zusammenhänge befinden sich in den Kapiteln
4 und 5.

3.4 Gründe für Verwendung semantischer Technologie

Im vorherigen Abschnitt wurden die Use Cases konkretisiert, die für das im Rahmen dieser
Diplomarbeit zu entwickelnden Systems relevant sind. Nun soll eine Begründung folgen,
weshalb es bei der Umsetzung des Systems von Vorteil wäre, semantische Technologien
zu verwenden. Momentan verwenden viele Pattern-Autoren für die Veröffentlichung ih-
rer Patterns entweder nur ein Buch, oder begleitend eine Webseite (siehe [OOD], [HW03],
[JGVH95]). Hierbei bleibt im Fall eines Buches dem Leser nur das zeitraubende Blättern im
Buch, um von einem Pattern zu einem anderen zu springen, oder bei einer Webseite das
komfortablere Verwenden von einfachen Links. Die Verwendung von semantischen Techno-
logien ermöglicht es einem Pattern Autor, durch die Vernetzung der Patterns anhand von
semantischen Linktypen zusätzliche Informationen über die Beziehungen zwischen Patterns
anzugeben. Beispielsweise ermöglicht dies eine formale Beschreibung der Patternsprache
(siehe Abschnitt 2.2) aufgrund der Relationstypen. Durch diese zusätzlichen semantischen

38

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

Informationen, die man an ein Pattern anhängen kann, sind nun erst die oben aufgezählten
funktionalen Anforderungen an ein Pattern Repository erfüllbar.

Die semantischen Annotationen ermöglichen eine Führung des Endnutzers durch das
Pattern Repository, indem er z.B. auf einen Blick sieht, dass aufgrund eines gewissen
Linktyps auf ein anderes Pattern sich dieses Pattern gut mit diesem kombinieren ließe.
Dazu lässt sich dynamisch über verschiedene Visualisierungen die Patternsprache darstellen,
und eine interaktive Navigation ermöglichen. Auch der Einstieg in eine komplette neue
Patterndomäne kann durch einen semantisch annotierten Patternfundus um ein vielfaches
erleichtert werden. In gewissen Fällen hat der Endnutzer, wenn er ein Pattern Repository
verwendet, bereits eine konkretes Problem im Hinterkopf, dass er mithilfe der Patterns lösen
möchte. Wurden die Patterns zuvor vom Pattern Autor diesbezüglich annotiert, eröffnet
sich die Möglichkeit, den Benutzer ein gewisses Problem auswählen zu lassen, zu dem er
geeignete Patterns angezeigt bekommt.

Diese Beispiele für neue Anwendungsfälle zeigen, dass sich mithilfe von semantischen
Annotationen ein großer Mehrwert für ein Pattern Repository ergeben kann. Während
der tatsächlich erreichte Mehrwert direkt von der Qualität der Annotationen abhängt,
ergeben sich stark erweiterte Abfragemöglichkeiten durch die Verwendung der Querysprache
SPARQL (siehe Abschnitt 2.3.3).

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

Nach der im vorherigen Abschnitt erläuterten Entscheidung, semantische Technologien für
die Umsetzung des Pattern Repository zu verwenden, war der nächste Schritt die Auswahl
eines bereits existierenden Produkts, welches möglichst vollständig den zuvor festgehal-
tenen Anforderungen entspricht. Aufgrund der speziellen Anforderungen an das Pattern
Repository war von Anfang an auch die Erweiterbarkeit bzw. Anpassbarkeit ein wichtiges
Merkmal des zu wählenden Basisprodukts. Bei der konkreten Auswahl gab es nun auf der
einen Seite eine Reihe von semantischen Wikis, welche die Stärken von klassischen Wikis wie
die einfache Verwendbarkeit, flexible Zusammenarbeit von Benutzern und Verlinken von Ar-
tikeln mit den Fähigkeiten des semantischen Webs wie strukturierte Inhalte, Wissensmodelle
in Form von Ontologien und Reasoning vereinen [SBBK08]. Auf der anderen Seite gibt es
eine Reihe von sehr ausgereiften Produkten aus dem Bereich des allgemeinen Content bzw.
Knowledge Managements, welche ähnliche Grundfunktionalitäten wie Wikis aufweisen und
ebenfalls immer mehr mit semantischen Funktionalitäten ausgerüstet werden.

Der erste Schritt stellte die Auswahl einer Menge von Kandidaten aus den vielen existie-
renden Produkten sowohl aus dem Semantic Wiki Umfeld, als auch aus dem Bereich der
allgemeinen Knowledge Management Produkten, dar. Im Semantic Wiki Umfeld gab es eine
Reihe von vielversprechenden Forschungsprojekten und Prototypen [SBBK08, VK06], die
nicht mehr weiterentwickelt werden:

39

3 Anforderungen

• IkeWiki [Sch06]: Entwicklung eingestellt zugunsten von KIWI, welches ebenfalls bereits
seit dem Jahr 2010 inaktiv ist. Hätte die semantische Annotation anhand einer benut-
zerfreundlichen graphischen Oberfläche direkt im Text ermöglicht. Volle Reasoning-
Unterstützung mit Ontologien im OWL-RDF und OWL DL-Format inklusive Import
von OWL-Ontologien.

• WikSar [AA05]: Entwicklung eingestellt. War ein direkter Konkurrent von Semantic
Mediawiki mit vielen ähnlichen Konzepten.

• SweetWiki [BGE+
08]: Entwicklung eingestellt. Hatte den Fokus insbesondere auf

WYSIWYG gelegt.

• Kaukulo [Dja05]: Scheinbar eingestellt, keine Updates seit 2007. Basierend auf JSP-Wiki,
Annotation von belieben Teilen einer Seite statt Annotation, die sich auf die ganze Seite
beziehen. Import von Ontologien und Reasoning-Unterstützung.

Eine Übersicht über den Status einzelner Projekte, welche auch zum Erstellen dieser Liste
benutzt wurde, bietet [Sem]. Da es auch tatsächlich noch aktive Projekte gibt, die Semantic
Wikis entwickeln, wurden die inaktiven Projekte zu Beginn von der Auswahl ausgeschlos-
sen.

• Semantic Mediawiki [KV]: Open-Source Erweiterung zu dem bekannten Framework
Mediawiki, welches als Grundlage für wikipedia.org dient. Benutzt eine Ontologie als
Datenmodell, aber keine direkte Unterstützung für den Import von OWL Ontologien.
Die große Entwicklergemeinde hat bereits viele Erweiterung für die unterschiedlichsten
Anwendungsfälle mit zusätzlichen semantischen Daten entwickelt, und durch die
Möglichkeit, einen Triple Store anzuschließen, volle Reasoning-Fähigkeiten.

• zAgile Wikidsmart [zAg]: Proprietäre Erweiterung zu Atlassian Confluence mit Ontol-
gie als Datenmodell, Import von OWL-Ontologien und voller Reasoning Unterstützung.

• Tiki Wiki CMS Groupware [tik]: Wikibasiertes Open-Source Content Management Sys-
tem, welches seit Version 3.0 typisierte semantische Links zwischen Artikel unterstützt.
Keine Ontologie als zugrunde liegendes Datenmodell, dementsprechend auch keinen
OWL Import oder Reasoning-Unterstützung.

Aus dieser Liste wurden für den finalen Vergleich letztendlich Semantic Mediawiki und
Wikidsmart ausgewählt, da bei Tiki Wiki der Fokus nicht auf den semantischen Features
liegt, und es auch von der Tiki Wiki Community keinerlei „Mods“ für die Ausnutzung von
semantischen Daten gibt1. Semantic Mediawiki dagegen bietet eine vielfältige Auswahl von
Erweiterungen und lässt sich durch die große Flexibilität des Mediawiki-Frameworks an alle
Anforderungen anpassen. Wikidsmart ist ein sehr ausgereiftes Produkt, welches aber den
großen Nachteil hat, dass es ein kommerzielles Produkt ist.

Als Konkurrenten für die beiden Semantic Wikis wurden Microsoft Sharepoint und IBM
Mashup Center ausgewählt. Microsoft Sharepoint mag vorwiegend als Verwaltungssystem

1http://mods.tiki.org/

40

http://mods.tiki.org/

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

für Microsoft Office Dokumente bekannt sein, bietet darüber hinaus aber auch umfangreiche
Knowledge Management Fähigkeiten inklusive semantischer Annotationen und wird von
den Semantic Mediawiki-Machern selbst als großer Konkurrent gesehen [Smw]. Das IBM
Mashup Center wurde als letzter Konkurrent gewählt, da auf Basis dessen Vorgängers
QEDWiki im Rahmen der Dissertation von Olaf Zimmermann [Zim09] ein „Architectural
Decision Knowledge Wiki“ entwickelt wurde, welches gewisse Anforderungen an das in
dieser Arbeit entwickelte Pattern Repository teilt.

3.5.1 Vergleichstabelle

In Tabelle 3.1 wurde eine Reihe von Kriterien zum Vergleich der Kandidaten ausgewählt,
welche im Folgenden jeweils kurz begründet werden sollen. Dabei wurden die funktionalen
Anforderungen aus Abschnitt 3.1 zusammengefasst und recherchiert, mit welchen existie-
renden Technologien einzelne Anforderungen umgesetzt werden könnten. Auf diese Weise
wurde eine tatsächliche Vergleichbarkeit der Kandidaten erreicht.

• Kennzeichnung von Problemen (Tagging): Resultiert aus der Anforderung, Patterns
mit Metainformationen annotieren zu können, um später eine erweiterte Suche nach
diesen Kriterien zu ermöglichen. Tagging dient hier auch als allgemeine Bezeichnung
für die Anforderung an einen Mechanismus, Aussagen über Beziehungen zwischen
Entitäten treffen zu können.

• Ontologie-Support: Resultiert indirekt aus der Anforderung nach der Möglichkeit, Me-
tainformationen unterschiedlicher Art zu annotieren. Um dem Benutzer eine Auswahl
von Begriffen z.B. bei der Beschreibung von Beziehungstypen zu ermöglichen, muss
diese Information zuvor maschinenlesbar hinterlegt worden sein. Ontologien eignen
sich sehr gut für diesen Zweck, siehe dazu auch 2.3.

• Constraints auf Kardinalität: Dient zur Verfeinerung der Aussage über Beziehungen
zwischen Entitäten. Resultiert aus der Anforderung nach erweiterten Suchmöglichkei-
ten.

• Suche anhand semantischer Metainformationen: Die Suche anhand von Metainforma-
tionen ist eine Basisanforderung, die jede als Repository verwendete Software erfüllen
muss.

• Einpflegen von neuen Patterns: Ebenfalls eine Basisanforderung, die für die Grund-
funktionalität als Repository erforderlich ist.

• Import/Export von Daten und Ontologien: Um auf per Ontologie spezifizierte Daten
zugreifen zu können, sollten diese auch in das Repository importiert werden können.
Wurde die Ontologie innerhalb des Systems verfeinert, sollte auch ein Export möglich
sein.

• Reasoning: Resultiert aus der Anforderung, eine erweiterte Suchfunktion inklusive
einer Querysprache zur Verfügung zu haben. Da mithilfe von Reasoning die Funktiona-
lität von Querys insbesondere z.B. durch die Ausnutzung von transitiven Beziehungen

41

3 Anforderungen

Anforderungen
Semantic Media-
wiki

MS Sharepoint Confluence
Wikidsmart

IBM Mashup

Kennzeichnung
von Proble-
men (Tagging)

Beliebige Tags via
Semantische At-
tribute

Out-of-the -box
keine individu-
ellen Metadata-
Tags. Eigene
Implementierung
in Visual Basic
notwendig.

Beliebige Tags,
die pro Kategorie
festgelegt sind,
welche man
selbst definieren
kann.

Ontologie-
Support

Ja Als
Taxonomie/Term-
Set

Ja Nein

Constraints
auf Kardinali-
tät

Ja, z.B. mit
[BDS+09]

Nein Unterstützung
für Attribut-
Datentypen und
Kardinalitäten

Nein

Suche anhand
semantischer
Metainforma-
tionen

Vielfache Mög-
lichkeiten durch
Extensions. In
Seiten integrierte
SMW/SPARQL-
Querys möglich.

SQL-basierte Su-
che.

Semantic Re-
pository ex-
tern aufrufbar.
Ebensfalls in
Seiten integrierte
SPARQL-Querys
möglich.

Frei konfigurier-
bare Suchfilter
auf Datenfeeds
wie z.B. SQL-
Datenbanken.

Einpflegen
von neuen
Patterns

Umfangreiches
Fomularwerk-
zeug Semantic
Forms und
Mediawiki Tem-
plates

Normale Stan-
dardformulare
müssten manu-
ell per Visual
Basic angepasst
werden.

Anpassbare For-
mulare und Tem-
plates

Realisierung
als Datenfeed
von Quelle, wel-
che bereits das
entsprechende
Format sicher-
stellt?

Import/Export
von Daten und
Ontologien

Manueller Impor-
t/Export mit frei-
em Mapping via
Wiki-API

Import von RDF-
Daten ohne Hier-
archie in Share-
Point Term Set

Getrennte Daten-
banken für Wiki
Inhalte und extra
Semantic Reposi-
tory

Viele unterstütz-
te Datenquellen,
kein OWL.

Reasoning Durch Support
von Triple Sto-
re lassen sich
über Triple
Store-Connector
beliebige Reaso-
ner anschließen.

Nein, Eigenent-
wicklung eines
Triple Store
Connectors nötig.

Ja Nein, Eigenent-
wicklung eines
Triple Store
Connectors nötig.

Tabelle 3.1: Vergleichstabelle der Evaluation von Alternativen

42

3.5 Evaluation von vorhandenen semantischen Wikianwendungen

erweitert werden kann, ist dies als Anforderung bei der Abfrage von Patternbeziehun-
gen notwendig.

Anhand der Vergleichstabelle 3.1 wurde nun die Entscheidung getroffen, als Grundlage
für diese Diplomarbeit Semantic Mediawiki zu verwenden. Das IBM Mashup Center hat
seine Stärken v.a. in der Integration von Datenquellen und dem einfachen Visualisieren
der integrierten Daten, erfüllt aber zu wenige der bestehenden Anforderungen, die es für
die Aufgabe als Pattern Repository gibt. Microsoft Sharepoint würde vermutlich genauso
eine sehr gute Basis für Eigenanpassungen liefern, aber der Aufwand würde den Rahmen
einer Diplomarbeit wohl deutlich sprengen. Zuletzt bleiben Mediawiki mit der Erweiterung
Semantic Mediawiki und Atlassian Confluence mit der Erweiterung Wikidsmart. Während
Semantic Mediawiki und Wikidsmart zwar beides Open-Source Erweiterungen sind, ist
lediglich Mediawiki als Wikiplattform auch Open-Source, Atlassians Confluence dagegen ist
eine proprietäre kostenpflichtige Software. Die deutlichste Stärke von Semantic Mediawiki
ist wohl die Existenz von vielen Erweiterungen, die den Mehrwert der semantischen An-
notationen um ein vielfaches erhöhen. Im Vergleich dazu weiß Wikidsmart v.a. mit seiner
großen Ausgereiftheit und Produktisierung zu gefallen.

Ausschlaggebend für die Entscheidung für Semantic Mediawiki waren zuletzt zwei Faktoren.
Zum einen ist Semantic Mediawiki frei erhältlich und kostet keine Lizenzgebühren etc. Zum
anderen gibt es bei Wikidsmart keinerlei Unterstützung für Entwickler von Erweiterun-
gen, bzw. nur gegen die Kosten einer professionellen IT-Beratung. Da es sich bei dieser
Diplomarbeit um eine wissenschaftliche Forschungsarbeit an einer Universität und kein
Projekt in einem Unternehmen handelt, und es von absoluter Notwendigkeit ist, selbst
Erweiterungen für das Framework zu schreiben, wurde die Entscheidung zugunsten von
Semantic Mediawiki gefällt.

Für Semantic Mediawiki ist zudem die sehr umfangreiche Erweiterung DataWiki verfügbar,
welche es u.a. auch ermöglicht, mit geringem Aufwand einen Triplestore für die semanti-
schen Daten anzuschließend. Dadurch erhält man mit sehr geringem Aufwand einen voll
funktionsfähigen Reasoner für Semantic Mediawiki, was ein weiteres sehr starkes Argument
für dessen Verwendung ist. Eine genauere Beschreibung von DataWiki gibt es in Abschnitt
2.3.7, sowie einen grafischen Überblick über die Systemarchitektur in Abschnitt 5.2.

43

4 Konzeptionelles Design

In diesem Kapitel wird das Design beschrieben, welches aus den in Kapitel 3 erläuterten
Anforderungen resultiert. Dabei orientiert sich die Reihenfolge der Beschreibung des Ent-
wurfs an dem natürlichen Arbeitsablauf beim Verwenden des Pattern Repositorys, welcher
in Abbildung 4.1 dargestellt ist. Die fundamentalen Arbeitsschritte sind durch die Pfeile
ganz links repräsentiert: Zuerst erfolgt die Eingabe von Patterns, anschließend die Annotation
mit semantischen Informationen und zuletzt die tatsächliche Verwendung.

Eingabe
Datenmodell

(Patternformat und
Kategorien)

Formular und
Templates

Annotation
Datenmodel

(Relationstypen und
Zieleigenschaften)

Metainformationen:
Relationstypen und
Zieleigenschaften

Verwendung Erweiterte Suche
und Assistent

Navigation

Abbildung 4.1: Arbeitsablauf beim Verwenden des Pattern Repositorys

Zunächst wird in Abschnitt 4.1 ein Entwurf für die Eingabe von Patterns in das System
beschrieben. Wie in Abbildung 4.1 ersichtlich ist, geschieht dies anhand eines Formulars
und Templates, die aufgrund eines Datenmodells erzeugt wurden. Es soll trotzdem zunächst
der Grobentwurf für das Formular und die Templates beschrieben werden, um anhand der
Kenntnis des Resultats schließlich die Beschreibung der Einzelheiten des für das Patternfor-
mats und der Kategorisierung nötigen Datenmodells in Abschnitt 4.4 besser verstehen zu
können.

Anschließend oder bereits beim Einpflegen werden zusätzliche semantische Informationen
annotiert, was in Abschnitt 4.2 genau beschrieben ist. In Abbildung 4.1 ist ebenfalls der
Umstand dargestellt, dass für die Verfügbarkeit der Annotation von Metainformationen wie
z.B. Relationstypen, diese zuvor im Datenmodell modelliert werden müssen. Die detaillierte
Beschreibung der zugehörigen Teile des Datenmodells findet sich wiederum in Abschnitt
4.4. In Abschnitt 4.3 wird erläutert, welche Verwendungsmöglichkeiten es für ein Pattern

45

4 Konzeptionelles Design

Repository geben kann und wie von der semantischen Annotation profitiert werden kann.
In Abbildung 4.1 sind beispielsweise die erweiterte Suche anhand von Metainformationen
sowie der Assistent aufgeführt, welche eine intelligente Navigation durch das Repository
ermöglichen.

Zuletzt wird in Abschnitt 4.4 das vollständige resultierende Datenmodell aus den obigen Teil-
entwürfen genau beschrieben, welches als OWL-Ontologie umgesetzt wurde. Die detaillierte
Erklärung des Datenmodells wurde bewusst am Ende des Kapitels platziert, um zunächst
einen Überblick über die unterschiedlichen Funktionalitäten des Pattern Repositorys zu
gewährleisten und anschließend einen Einblick in die genaue Modellierung zu erhalten.

4.1 Eingabe von Patterns

Der erste wichtige Arbeitsschritt ist die Eingabe von Patterns in das Repository. Hier sollte
besonders beachtet werden, dass sich die Struktur von Patterns zwischen unterschiedli-
chen Patterndomänen deutlich unterscheiden kann, auch wenn viele Pattern-Autoren als
Grundlage die Struktur von Christopher Alexander aus [AIS+77] benutzen. Um diesem
Umstand gerecht zu werden, muss die Struktur bei der Einrichtung des Pattern Repositorys
konfigurierbar sein, und anschließend konsistent in dem ganzen System eingehalten werden.
Die Wichtigkeit des systemweiten Einhaltens eines festgelegten Patternformats liegt zum
einen darin, dass eine gute Vergleichbarkeit innerhalb der Patternsprache und auch mit an-
deren Patternsprachen ermöglicht wird [DKT05, S. 32]. Zum anderen wird ein gemeinsames
„Vokabular“ geschaffen, dass das kollaborative Erarbeiten von Patterns und den Austausch
von Experten der Domäne untereinander erleichtert [FEL+

12, S. 7].

Es muss zwischen zwei separaten Bestandteilen unterschieden werden: Einerseits dem
Format des Formulars, welches zur Eingabe und der semantischen Annotation dient, ande-
rerseits dem tatsächliche Resultat, d.h. wie ein Pattern dem Nutzer präsentiert wird. Die
tatsächliche Struktur des Patterns spiegelt sich dabei in beiden Bestandteilen wieder. Der
Unterschied ist, dass im Eingabeformular evtl. gewisse technische Hilfsmittel zur Verfügung
gestellt werden, um die Eingabe möglichst komfortabel zu machen, und in der Vorlage für die
Ausgabe entsprechende Text oder Bild-Formatierungen hinterlegt sein müssen, um ein ein-
heitliches Darstellungsformat zu erhalten. Diese Vorlagen zum festlegen des Ausgabeformats
werden im weiteren Lauf der Arbeit als Templates bezeichnet.

In dieser Arbeit wird zum Erhalten einer konfigurierbaren Struktur zunächst versucht,
eine minimale Menge von Inhaltselementen zu identifizieren, und diese Elemente mit
einer minimalen Menge an Attributen zu versehen, um das Konfigurieren von beliebigen
Patternformaten zu ermöglichen. Als Inhaltselement reicht ein Typ namens Abschnitt
aus. Dieser genügt, um Text, der innerhalb eines Abschnitts enthalten ist, zu formatieren,
ein Bild einzubetten, aber auch um komplexe semantische Beziehungen aus semantischen
Annotationen zu beinhalten. In den meisten Fällen ist es sogar möglich, die originalen Pattern-
Abschnitte direkt auf die Struktur-Abschnitte des Formats im Repository abzubilden. Diese
Abschnitte dienen zudem als Basis dafür, bestimmte Relationstypen nur von bestimmten
Abschnitten aus zu erlauben. Sowohl das Formular als auch die Templates sind anhand

46

4.1 Eingabe von Patterns

dieser Struktur-Abschnitte gegliedert und verbunden, wobei das Formular für die Eingabe
dient und die Templates für die korrekt formatierte Ausgabe der Eingaben.

4.1.1 Formular

Das Eingabeformular sollte das Patternformat möglichst direkt widerspiegeln, allerdings
auch Unterstützung bei der Eingabe von Patterns bieten. Daher sollten die Abschnitte
möglichst in der gleichen Reihenfolge im Formular auftauchen, wie sie auch in dem aus
dem Formular generierten Patterntext im Repository auftauchen werden. Zudem sollte es
möglich sein, für unterschiedliche Inhaltstypen eines Abschnitts passende Eingabetypen
anzugeben. So bietet sich für die Eingabe eines Bildes evtl. ein anderer Eingabetyp an als für
die Eingabe eines Textes. Es folgt eine Liste von möglichen Inhaltstypen und Vorschläge für
benutzerfreundliche Eingabemöglichkeiten:

• Text: Für die Texteingabe genügt im Normalfall ein normales Textfeld. Formatierungs-
möglichkeiten wie fette oder kursive Schrift sind dabei nicht erwünscht, da solche
Möglichkeiten immer pro Abschnitt vorgegeben sind. Eine Besonderheit ist in diesem
Fall das semantische Annotieren. Hierfür sollte es möglich sein, Text zu markieren und
anschließend auszuwählen, mit welchem semantischen Relationstyp auf ein anderes
Pattern oder eine Lösung gezeigt werden soll. Annotierte Textstücke sollen zudem als
solche erkennbar sein. Annotationen sollten auch wieder rückgängig gemacht werden
können.

• Bild: Um ein Bild zu einem Pattern hinzuzufügen, sollte es möglich sein, entweder
neue Bilder in das System hochladen zu können oder auf bereits im System vor-
handene Bilder zu verweisen. Für bereits vorhandene Bilder sollte der Benutzer per
Autovervollständigung bei der Eingabe unterstützt werden.

• Zahlen: Für die Eingabe einer beliebigen Zahl bietet sich ein einfaches Textfeld an.
Für die Auswahl einer Zahl aus einem gewissen vorgegebenen Bereich bietet sich
ein Regler an, der nur Werte aus dem vorgegebenen Bereich zulässt. Für eine präzise
Auswahl sollte es zusätzlich noch ein Textfeld geben, für eine unpräzise Auswahl
dagegen genügt der Regler allein.

• Relation zu anderem Pattern: Zum einen muss es - wie im Punkt Text schon erwähnt -
die Möglichkeit geben, in normalen Texten Relationen zu anderen Patterns zu annotie-
ren, wenn diese im Fließtext anhand des Kontexts enthalten sind. Zum anderen gibt es
in vielen Pattern-Formaten einen extra Abschnitt, in dem lediglich Verweise zu anderen
Patterns aufgeführt sind. Um auf komfortable Weise für diese Verweise semantische
Attribute auswählen zu können, sollte es ein spezielles Eingabewerkzeug geben, das
die schnelle Auswahl aller verfügbaren semantischer Annotationstypen ermöglicht. Des
Weiteren sollte die Auswahl von Zielpatterns eine Unterstützung für den Nutzer bieten,
welche es ermöglicht, im System vorhandene Patterns schnell auswählen zu können.
Eine Möglichkeit hierfür wäre ebenfalls die Autovervollständigung des Patternnamens.

47

4 Konzeptionelles Design

• Relation zu Inhalten einer beliebigen Ontologie: Neben den Relationen zu anderen
Patterns im System sollte es auch möglich sein, auf Inhalte von beliebigen zusätzlichen
Ontologien verweisen zu können. Wie bereits im Rahmen von Kapitel 3 beschrieben,
dienen Ontologien hier zur Vorgabe von zusätzlichen für die Annotation verfügbare
Metainformationen. Zwei denkbare Einsatzzwecke wären hier zum einen eine On-
tologie, die Zieleigenschaften enthält, auf die mit der Verwendung eines Patterns
hingesteuert werden kann und zum anderen eine Ontologie, die mögliche Lösungen
enthält, aus welchen die Patterns abstrahiert wurden oder die aufgrund der Auswahl
einer bestimmten Patternmenge resultieren. Als Besonderheit sollte hier erwähnt wer-
den, dass es in diesem Kontext wünschenswert ist, den Relationen zusätzliche Attribute
zuweisen zu können. Dies wird ebenfalls eine gesonderte Eingabemaske nötig machen.

Context

Solution

Related
Patterns

Icon Choose Image Upload Image

Choose Relation Type Choose Target

Annotate

Abbildung 4.2: Mockup einiger Formularelemente

Das in Abbildung 4.2 dargestellte Mockup einiger oben vorgestellter Eingabetypen soll
demonstrieren, wie ein solches Formular aussehen könnte. Links im Bild sind jeweils die
Bezeichner der entsprechenden Patternabschnitte, und rechts die dazugehörigen Eingabe-
typen. Icon ist ein Beispiel für den Eingabetyp Bild und bietet Buttons zur Auswahl von
vorhandenen Bilder und zum Hochladen von neuen Bildern. Context und Solution sind jeweils
Texteingabefelder, wobei Context noch ein Button zur semantischen Annotation im Fließ-
text bietet. Bei Related Patterns findet sich ein Vorschlag für die Eingabe von semantischen
Verweisen auf andere Patterns, wobei das Ziel in dem kleinen Textfeld rechts eingegeben
werden kann.

4.1.2 Templates

Mithilfe der Templates werden die Informationen, welche im Formular eingegeben wurden,
entsprechend aufbereitet und fertig für die Ausgabe formatiert. Anhand der Patternfor-

48

4.1 Eingabe von Patterns

mate aus [FEL+
12] und [SBLE12] wurde in einem ersten Arbeitsschritt untersucht, welche

Formatierungsmöglichkeiten nötig sind. So sollte es für jeden Abschnitt folgende Formatie-
rungsmöglichkeiten geben:

• Für die Überschrift: Zunächst sollte wählbar sein, ob ein Abschnitt eine Überschrift
braucht. Neben der Überschrift selbst sollte darüber hinaus auswählbar sein, ob und wie
sie formatiert ist. Also verschiedene Schriftgrößen sowie fett, kursiv und unterstrichen.

• Für den Text: Neben den Standard-Textformatierungen wie fett, kursiv und unterstri-
chen sollten auch Schriftfarbe und Schrifthintergrundfarbe wählbar sein. Zudem sollte,
falls der Textabschnitt nach einem Bild kommt und keine Überschrift hat, wählbar sein,
ob er als Fließtext neben dem Bild platziert werden soll oder danach.

• Für Bilder: Für Bilder sollten die Größe, die Position im Text (linksbündig, zentriert,
rechtsbündig) und das Vorhandensein einer Bildunterschrift auswählbar sein. Des
Weiteren sollte wählbar sein, ob das Bild eine Einrahmung oder sonstige Abhebung
vom Text erhalten soll.

• Für semantische Annotationen: Falls ein Abschnitt speziell als Container für seman-
tische Annotationen dient, sollten die Linktypen der Relationen auf einen Blick er-
kennbar sein. Daneben sollte zusätzlich zu der Verlinkung und dem Linktyp ein
Beschreibungstext möglich sein, um zu begründen, weshalb die referenzierten Patterns
in einer gewissen Beziehung zu dem aktuellen Pattern stehen. Handelt es sich bei
der semantischen Relation um eine Relation mit Attributen, sollten die Attribute in
einer übersichtlichen Form dargestellt werden. Unter Umständen wird es sich an
manchen Stellen sogar anbieten, statt der semantischen Annotation direkt eine Query
zur Darstellung der Beziehungen des Patterns zu anderen Patterns einzubetten.

Des Weiteren können Patterns anhand von Templates ein gewisses Bedienungslayout bzw.
Interface erhalten. So wäre es beispielsweise sinnvoll, am Ende jedes Patterns einen Abschnitt
zum weiteren Navigieren des Patternfundus einzublenden, der Querys auf bestimmte
semantische Attribute enthält. Am naheliegendsten wären hier folgende Querys:

• Kombinierbare Patterns: Zeigt eine Liste der Patterns an, die entweder direkt vom
aktuellen Pattern aus eine Verlinkung vom Typ Kombinierbar erhalten haben, aber
auch Patterns, die auf die aktuelle Seite mit dem entsprechenden Linktyp zeigen.
In OWL-Terminologie wären das alle Objekte, die mit dem aktuellen Subjekt das
Prädikat Kombinierbar haben. Zudem alle Subjekte, die als Objekt das aktuelle Pattern
haben und als Prädikat ebenfalls Kombinierbar. Dies entspricht im Prinzip einer
Empfehlungsmatrix, wozu mehr im Abschnitt 4.3.2 unter Empfehlungen aufgrund der
Leseliste erklärt ist und wozu die Grundidee aus [FLR+

11] stammt.

• Kombinierbare Patterns höheren Grades: Dies sollte eine optional zuschaltbare Query
sein, welche die Transitivität der Kombinierbarkeit ausnützt und dadurch solche
Patterns anzeigt, welche als kombinierbare Partner der direkten Partnerpatterns des
aktuellen Patterns annotiert sind. Dies könnte eine relativ große Ergebnismenge zur
Folge haben.

49

4 Konzeptionelles Design

• Sich ausschließende Patterns: Zeigt eine Liste der Patterns an, die nicht mehr sinnvoll
verwendbar sind, sollte man sich für das aktuelle Pattern entscheiden. Die Liste soll
Patterns enthalten, die entweder direkt von dem aktuellen Pattern aus eine Verlinkung
vom Typ Konkurrierende Alternativen erhalten haben, aber auch Patterns, die auf die
aktuelle Seite mit dem entsprechenden Linktyp zeigen.

• Patterns, welche die gleichen Ziele verfolgen: Aufgrund der Möglichkeit, beliebige On-
tologien in das Pattern Repository mit einzubinden und die Patterns mit Bestandteilen
der Ontologien zu annotieren, wäre es auch umsetzbar, Gemeinsamkeiten bei diesen
zusätzlichen Annotationen aufzuzeigen. Ein mögliches Beispiel für eine Ontologie,
die z.B. Zieleigenschaften enthält, folgt in Abschnitt 4.2.2. Dies würde ermöglichen,
dem Endnutzer weitere Patterns aufzulisten, die die gleichen Zieleigenschaften ver-
folgen wie das aktuelle Pattern. Hat nun der Endnutzer bereits das aktuelle Pattern
aufgrund einer gewissen Zieleigenschaft aufgerufen, die er verfolgen möchte, könnte
diese Auflistung sehr nützlich sein.

Der Zusammenhang zwischen Formular und Template wurde in Abbildung 4.3 dargestellt.
Auf der linken Seite befindet sich das Formular und auf der rechten Seite die Darstellung
eines Patterns im Pattern Repository. Die Templates werden nun bei der Übertragung der
Eingaben aus dem Formular in das gewünschte Ausgabeformular verwendet, was in der
Grafik als grau gestrichelte Pfeile dargestellt ist. In den Templates werden die Eingaben als
Parameter an den vorgegebenen Stellen eingefügt, so dass letztendlich die rechts dargestellte
fertig formatierte Darstellung resultiert.

4.2 Annotation

Nachdem nun die Eingabe der Patterns entworfen wurde, soll der Entwurf der Annotati-
on von zusätzlichen Informationen folgen. Den Mehrwert für das Pattern Repository im
Vergleich zu nicht-semantischen Lösungen stellen die semantischen Informationen dar, mit
welchen man die Artikel annotieren kann. Dabei ist der tatsächliche Mehrwert davon abhän-
gig, wie sinnvoll die möglichen Annotationen gewählt wurden und ob diese auch korrekt
vom Pattern Autor verwendet werden. Denn selbst wenn die Annotationsmöglichkeiten
optimal gewählt wären, könnten falsche Annotationsinhalte den ganzen Nutzen wieder
umkehren und evtl. sogar für inhaltliche Widersprüche sorgen. Eine gewisse Absicherung
der Annotationsqualität ist dadurch gegeben, dass mithilfe des Datenmodells ein einheitli-
ches Modell von Relationstypen vorgegeben wird, so dass diese konsistent innerhalb der
Patternsprache verwendet werden.
Zunächst sollen nun die semantischen Attribute genauer erläutert werden, die im Pattern
Repository zur Verfügung stehen. Als Anmerkung sei hier noch erwähnt, dass diese At-
tribute frei konfigurierbar sein sollten. Denn je nach Patterndomäne können sich evtl. die
Anforderungen nochmals deutlich unterscheiden, oder spezielle Linktypen Sinn machen, die
in einer anderen Domäne keinen Nutzen bieten würden.

50

4.2 Annotation

4.2.1 Semantische Attribute - Linktypen

Als Basis für die vorgegebenen semantischen Attribute, die im Pattern Repository zum
Ausdrücken von Relationen der Patterns untereinander mitgeliefert werden, diente die
Diplomarbeit von Philipp Grimm [Gri11] . Die hier vorgeschlagenen Relationstypen sind
sehr ähnlich zu den in [HL93, S. 28f] beschriebenen semantischen Beziehungen zwischen
allgemeinen Entitäten in Repositorys. Dies liegt daran, dass es sich dabei um Relationen
handelt, welche strukturelle Beziehungen von miteinander kombinierbaren Objekten be-
schreiben. Die Beobachtung, dass Patternsprachen durch solche strukturelle Beziehungen
gebildet werden können, macht auch Welie et al. und liefert in [WV03] eine entsprechende
Kategorisierung. Dabei gleichen die grundsätzlichen Relationstypen Aggregation, Assoziation
und Spezialisierung den Relationen, die aus der objektorientierten Programmierung bekannt
sind [WV03, S. 2]. Im Folgenden sind sowohl die grundsätzlichen Relationstypen als auch
deren Verfeinerungen aufgeführt. Zusätzlich wird zur exakten Definition auch bereits be-
schrieben, ob eine Relation symmetrisch oder transitiv ist. Dies spielt bei der Abfrage von
Patternrelationen eine Rolle und kann die Semantik solcher Abfragen verändern.

Context Das ist der Kontext.

Solution

Related
Patterns

Icon Choose Image Upload Image

Combination Pattern efg

Annotate

Pattern abc

Context

Related
Patterns

Solution

Das ist der Kontext.

• (Combination) Pattern efg

Legende

Template fügt Eingaben am richtigen Ort ein

Abbildung 4.3: Zusammenhang zwischen Formular und Templates

51

4 Konzeptionelles Design

Aggregation

Mithilfe des Relationstyps Aggregation lässt sich eine hat ein-Beziehung ausdrücken. Die
Untertypen der Aggregation dienen vor allem zum Aufbau der Patternsprache (siehe Ab-
schnitt 2.2 für eine Begriffserklärung) und drücken strukturelle Beziehungen zwischen den
einzelnen Patterns aus. Von einem aggregierenden Pattern wird gesprochen, wenn das Pattern
aus mehreren anderen Patterns besteht. Als Verfeinerung der Aggregationsbeziehungen
werden die Vorschläge aus [Gri11] übernommen.

• Combining: Durch diesen symmetrischen transitiven Relationstyp lässt sich ausdrücken,
dass sich die beiden verknüpften Patterns auf eine gewisse Weise kombinieren lassen,
um in dieser Kombination entweder ein größeres Problem zu lösen oder um gemeinsam
Teil eines größeren Systems zu sein. In gewissen Fällen kann es auch Situationen geben,
in welchen sich mehrere Patterns kombinieren lassen, um die Funktionalität eines
anderen Patterns zu imitieren. Dies ist in Abschnitt 7.2 näher ausgeführt.

• Completing: Durch diesen symmetrischen nicht transitiven Relationstyp lässt sich aus-
drücken, dass sich die beiden verknüpften Patterns nicht nur kombinieren lassen (die
Relation Combining ist implizit schon enthalten), sondern dass sie sich gegenseitig ver-
vollständigen. Die beiden Patterns beinhalten Lösungen, die sich gegenseitig ergänzen
und benutzt werden können, um ein größeres System aufzubauen. Es ist dabei denkbar,
dass sich die beiden Patterns auf der gleichen Abstraktionsebene der Patterndomäne
bewegen, aber auch dass eines der Patterns eine höhere Ebene anspricht, und das
andere Pattern ein Problem auf einer niedereren Ebene löst.

• Competing: Durch diesen symmetrischen nicht transitiven Relationstyp lässt sich aus-
drücken, dass zwei Patterns das gleiche Problem ansprechen und deswegen nicht
gleichzeitig in einem System, welches durch die Patternsprache aufgebaut wird, ver-
wendet werden können. Sie stellen Alternativen für die Problemlösung dar, wodurch
dieser Relationstyp sehr wertvoll für den Endnutzer wird. Spricht aus einem beliebigen
Grund etwas gegen die Verwendung eines gewissen Patterns, können dem Endnutzer
durch diesen Linktypen verschiedene Alternativen aufgezeigt werden.

Spezialisierung

Die Beziehung Spezialisierung wird nicht weiter verfeinert, daher gibt es nur einen asym-
metrischen nicht transitiven Relationstyp Specialisation. Dieser kann verwendet werden, um
eine ist-ein-Beziehung zum Ausdruck zu bringen. Dies kommt insbesondere vor, wenn ein
spezialisiertes Pattern die gleiche Grundidee wie ein anderes generelleres Pattern verwendet,
aber sich in gewissen Aspekten des gelösten Problems eine spezifischere Lösung anbietet.
Es erbt die Grundidee des allgemeineren Patterns und ermöglicht damit beim Bilden der
Patternsprache die gleiche Vorgehensweise wie bei der objektorientierten Programmierung
[WV03, S. 2]. Zunächst wird eine Basisklasse erstellt, in diesem Fall also ein Basispattern,
und daraus Unterklassen abgeleitet bzw. spezialisierte Patterns verfasst.

52

4.2 Annotation

Assoziation

Die Relationen vom Typ Assoziation dienen dem Aufzeigen von allgemeinen Beziehungen,
die sich weder als Aggregation, noch als Spezialisierung beschreiben lassen. Die allgemeine
Beziehung Assoziation dient zum Ausdrücken eines nicht näher beschreibbaren Zusammen-
hangs zwischen Patterns. Bei den Verfeinerungen der Beziehung Assoziation handelt es sich
um keine strukturelle Beziehungen mehr, sondern z.B. um temporale Beziehungen wie eine
zeitliche Reihenfolge der Anwendung von Patterns. Ebenfalls möglich ist eine Abstraktions-
beziehung, um Patterns mit den Anwendungsfällen in Verbindung zu bringen, aus welchen
sie abstrahiert wurden. Für die Verfeinerung wurden lediglich der Untertyp Association aus
[Gri11] übernommen, die restlichen Untertypen konnten aus den in Kapitel 3 beschriebenen
Anforderungen entwickelt werden.

• Associaton: Hierdurch wird eine symmetrische transitive Beziehung ausgedrückt, die
sich nicht genauer typisieren lässt. Im Prinzip entspricht dies einem Link ohne Typ,
weswegen sich die Frage stellt, ob dieser Linktyp benötigt wird. Allerdings könnte er
dazu dienen, unkompliziert ein gewisses Grundnetzwerk aufzubauen, welches später
durch Linktypen verfeinert wird, welche mehr Aussagekraft haben.

• Depends On: Die asymmetrische nicht transitive Depends On-Beziehung drückt eine
Abhängigkeit in der Art aus, dass ein Pattern allein, ohne das verlinkte Pattern, nicht
verwendbar ist. Ein möglicher Fall könnte z.B. bei Patterns auf unterschiedlichen
Abstraktionsebenen auftreten. So könnte erst ein Pattern auf einer höheren Abstrak-
tionsebene überhaupt die Voraussetzungen für den Einsatz eines Patterns auf einer
niedereren Abstraktionsebene schaffen, das eventuell ein sehr spezifisches Problem
anspricht.

• Implemented By: Diese asymmetrische nicht transitive Beziehung ermöglicht es, Bezie-
hungen von Patterns zu konkreten Lösungen oder Anwendungsgebieten des durch
das Pattern angesprochenen Problems darzustellen. In einigen Patternsprachen, z.B. in
[FEL+

12], [SBLE12] und [JGVH95], werden diese Lösungen in einem extra Abschnitt
Known Uses aufgeführt. Dieser Relationstyp ermöglich zum einen, konkrete Umsetzun-
gen eines Patterns zu erhalten und andererseits den umgekehrte Weg. Dieser könnte
vor allem bei Patterns auf höherer Abstraktionsebene Sinn machen, so dass der End-
nutzer zunächst von einer Lösung ausgeht, dann entsprechende Patterns aufruft, die
das Problem auf einer abstrakten Ebene lösen, und von dort über die Aggregations-
beziehungen weitere Patterns für seinen Anwendungsfall finden oder ausschließen
kann. Dadurch wird die in Abschnitt 3.1 als Anforderung formulierte Transparenz
ermöglicht sowie die Dokumentation der Quellen, aus welchen die Patterns abstrahiert
wurden.

• Consider Before: Diese asymmetrische transitive Beziehung ermöglicht das Ausdrücken
von temporalen Zusammenhängen. In vielen Situationen kann es sein, dass zwischen
Patterns zwar keine direkte strukturelle Verknüpfung besteht, aber dafür eine tempora-
le Beziehung in der Form, dass ein anderes Pattern erst dann sinnvoll einsetzbar ist,
wenn das aktuelle Pattern bereits Verwendung findet. In gewisser Art überschneidet

53

4 Konzeptionelles Design

sich dieser Relationstyp also mit Depends On; allerdings wird hier die Art der Ab-
hängigkeit konkretisiert. Mithilfe dieses Beziehungstyps lässt sich eine Patternsprache
mit „linearer Struktur“ modellieren [Sch03, S. 1]. Laut Schümmer trifft diese Linearität
auf die meisten Patternsprachen zu, womit sich durch diesen Relationstyp eine gute
Grundkompatibilität des Repositorys zu vielen Patternsprachen ergibt.

4.2.2 Zieleigenschaften

Die Annotation von Zieleigenschaften geschieht nach der Eingabe von Patterns und befindet
sich dementsprechend auf der mittleren Ebene von Abbildung 4.1, die am Anfang dieses
Kapitels zu finden ist. Mithilfe dieser Informationen können im letzten Schritt - der Verwen-
dung des Pattern Repositorys - dem Benutzer im Rahmen eines Assistenten Vorschläge auf
Basis der Annotationen gemacht werden.

Daher findet sich die Möglichkeit der Annotation von Patterns mit Metainformationen
aus beliebigen Ontologien unter den in Abschnitt 3.1 beschriebenen Anforderungen. Ein
sinnvoller Anwendungsfall für eine solche Ontologie könnte z.B. eine Ontologie von Zielei-
genschaften für die entsprechende Patterndomäne sein. Denn die Ziele oder Eigenschaften,
die mit einem Pattern korrelieren, sind oft vielschichtiger als nur das Lösen des spezifischen
Problems, welches zugrunde liegt. Als Beispiel soll hier das Pattern Eventual Consistency
aus der Domäne der Cloud Computing Patterns dienen [FLR+

13]. Dieses Pattern beschreibt
ein Vorgehen, welches bei der Verteilung von Datenreplicas über mehrere Orte die ständige
Verfügbarkeit und Performance in den Vordergrund stellt. Dabei wird die strikte Konsistenz
der Daten vernachlässigt, d.h. dass es Zustände geben kann, in denen inkonsistente Daten
gelesen werden. Hier lassen sich drei Ziele identifizieren, welche dem Pattern zugrunde
liegen: Verfügbarkeit, Performance und Datenkonsistenz. Wenn es nun eine Möglichkeit gibt,
diese Zieleigenschaften anhand einer Ontologie zu annotieren, ist es im Nachhinein für den
Endnutzer möglich, über die Angabe seiner Anwendungszieleigenschaften entsprechende
Patterns vorgeschlagen zu bekommen.

An dem obigen Beispiel wird allerdings auch deutlich, dass eine einfach binäre Relation von
dem Pattern zu der Ontologieentität nicht ausreicht, da z.B. nicht nur ausgedrückt werden
soll, dass ein Pattern mit der Zieleigenschaft Verfügbarkeit verbunden ist, sondern auch auf
welche Art die Verwendung des Patterns in einem System diese Zieleigenschaft beeinflusst.
Diesbezüglich wäre auf der einfachsten Ebene denkbar, dass zusätzlich angegeben wird, ob
die Verfügbarkeit angehoben oder gesenkt wird, und wie stark die Korrelation zwischen
dem Pattern und der Zieleigenschaft ist. Um dies zu modellieren, ist es nötig, der Beziehung
des Patterns zu der Zieleigenschaft weitere Eigenschaften in Form einer n-ären Relation
hinzuzufügen, was bei der gewünschten Modellierung in OWL nicht direkt möglich ist.
Während es z.B. bei Entity Relationship-Modellen ganz einfach möglich ist, n-äre Beziehun-
gen darzustellen, muss bei RDF/OWL das Prinzip der Reification bzw. Vergegenständlichung
angewandt werden. In [NRHW06] sind unterschiedliche Lösungswege zur n-ären Model-
lierung im Semantic Web beschrieben. Für die Modellierung im Rahmen dieser Arbeit hat
sich am meisten der Weg über eine neu eingeführte Klasse angeboten, da der Use Case
dieser Diplomarbeit genau mit dem in [NRHW06] beschriebenen übereinstimmt. Die neue

54

4.2 Annotation

Klasse dient nur als leerer Containerknoten, um mit binären Relationen eine n-äre Relation
darzustellen.

Pattern Target Property

 [1:N]
Target

Target Attr A

Target Attr B

Abbildung 4.4: N-äre Relation in einem Entity-Relationship Diagramm

Pattern Target
Relation

Target
Property

ObjectProperty

Target

Target
Attr A

domain range

Target
Attr B

Target Attr
A Value

ObjectProperty

ObjectProperty

Target
Object

domain range

Target Attr
B Value

ObjectPropertydomain
domain

range range

Value 1
hasIndividual

Value 2
hasIndividual

Abbildung 4.5: N-äre Relation in OWL

Zur Veranschaulichung dieser Modellierungsmethodik dient Abbildung 4.4, welche zunächst
eine n-äre Relation mithilfe eines Entitiy-Relationship Diagramms darstellt und Abbildung
4.5, in der die gleiche Relation mit OWL dargestellt wurde. In dem Entitiy-Relationship
Diagramm in Abbildung 4.4 sind die Entitäten Pattern und Target Property, welche als
Rechtecke dargestellt sind, durch die Beziehung Target, welche als Diamant dargestellt ist,
verbunden. Der Target-Beziehungen wurden nun die in Kreisen dargestellten Attribute

55

4 Konzeptionelles Design

Target Attr A und B hinzugefügt. In der OWL-Ontologie in Abbildung 4.5 sind sowohl
Entitäten als auch Attribute als Klassen modelliert, welche als blaue Rechtecke dargestellt
sind. Beziehungen zwischen den Klassen werden als in der Abbildung grün dargestellte
Object Propertys modelliert, wobei neben der ursprünglichen Beziehung Target auch noch
Verbindungen zu den Attributen hergestellt werden müssen. Um einem Beziehungsattribut
einen Wert zuzuweisen, müssen Individuen der Klasse mit dem gewünschten Wert erstellt
werden, wie in der Abbildung anhand von Target Attr A demonstriert wird. Das Attribut
Target Attr A bekommt die Werte Value 1 und Value 2 zugewiesen, indem diese als Individuen
modelliert werden, welche in der Abbildung als schwarze Rechtecke dargestellt sind.

Beim Vergleich von Abbildung 4.4 und 4.5 fällt zunächst auf, dass sich durch die künstliche
Einführung einer weiteren Entität in OWL die Komplexität des Diagramms erhöht. Statt
nur einer Relation Target gibt es zusätzlich die Object Property Target, welche nur dazu
dient, die Patternklasse mit der neuen leeren Relationsklasse Target Relation zu verbinden.
Die tatsächliche Verbindung mit der Target Property wird nun erst hergestellt, indem die
Target Relation-Klasse über eine neue eingeführte Object Property Target Object mit der
Klasse der Zieleigenschaften verbunden wird. Zusätzliche Attribute der Relation benötigen
in OWL pro Attribut eine extra Klasse und eine extra Object Property, um auf die Klasse zu
verweisen. So entsteht zwar ein gewisser Overhead, aber es gelingt dadurch auch mit OWL
n-äre Beziehungen darzustellen.

4.2.3 Formular

Die Annotation von semantischen Attributen stellt einen sehr zeitaufwendigen Prozess dar,
welcher notwendig ist, um einen möglichen Mehrwert aus den zusätzlichen Informationen
schöpfen zu können. Dabei stellt laut den Anforderungen aus Kapitel 3 nicht nur die
Effektivität eine Anforderung dar, sondern auch die Effizienz. Daher wird die Annotation
von semantischen Eigenschaften direkt in das Formular integriert, welches zum Erstellen
von neuen Patterns dient.

Wie bereits in Abschnitt 4.1.1 erwähnt, werden dabei generell zwei Arten der Annotation
unterschieden: Die Annotation direkt im Fließtext und extra Abschnitte, die speziell zum
Annotieren dienen. Die Annotation im Fließtext soll für jedes Texteingabefenster möglich
sein, allerdings in Abhängigkeit von dem entsprechenden Abschnitt, in welchem sich das Tex-
teingabefenster befindet. Welche Relationstypen für den entsprechenden Abschnitt verfügbar
sind, muss daher als zusätzliche Information in der Definition des Formular-Datenmodells ge-
schehen. So können beispielsweise für einen Abschnitt, der Anwendungsfälle eines Patterns
enthält, besondere Relationstypen zum Verweis auf eben jene Anwendungsfälle bereitgestellt
werden. Die erlaubten Relationstypen müssen ebenfalls für Abschnitte definiert werden,
deren Hauptzweck das Annotieren darstellt, da unter Umständen nicht erwünscht ist, dass
in einem solchen Abschnitt komplett die gleichen semantische Prädikate zur Verfügung
stehen als in anderen Volltext-Abschnitten. Hierfür gibt es zwei besondere Abschnittstypen,
welche für alle Patterndomänen relevant sein dürften.

56

4.3 Verwendung des Pattern Repositorys

• Verwandte Patterns (Related Patterns): Dieser Abschnitt wird in allen der in dieser
Arbeit referenzierten Patternkataloge in Buchform verwendet, und enthält Verweise auf
verwandte Patterns innerhalb der Domäne. Da es mit dem Pattern Repository möglich
ist, das Patternformat frei zu konfigurieren, und ebenso in welchen Abschnitten welche
semantischen Linktypen verfügbar sein sollen, wird ein extra Eingabetyp benötigt,
um diese Informationen aufzunehmen. Es soll eine Auswahl aller für den Abschnitt
erlaubten semantischen Linktypen geben, sowie die Möglichkeit, pro Linktyp eine
beliebige Anzahl von Linkzielen anzugeben. Dabei soll dem Endnutzer per Autover-
vollständigung bei der Eingabe geholfen werden. Zusätzlich soll pro semantischem
Link auch eine Begründung bzw. Erklärung angegeben werden können, warum das
aktuelle Pattern nun mit diesem semantischen Linktyp mit einem anderen Pattern
vernetzt wird. Ebenso muss es möglich sein, beliebig viele dieser Annotationen pro
Pattern hinzuzufügen.

• Zieleigenschaften (Target Properties): Dieser Patternabschnitt ermöglicht die Annotation
der in Abschnitt 4.2.2 erläuterten Zieleigenschaften. Dabei ist die Grundidee gleich
wie bei dem Verwandte Patterns-Abschnitt, mit dem Unterschied, dass hier zusätzliche
Attribute, welche die Relation charakterisieren, abgefragt werden müssen. Ein weiterer
Unterschied ist die Art der Auswahl einer entsprechenden Zieleigenschaft. Während
die möglichen semantischen Linktypen im Verwandte Patterns-Abschnitt als flache
Liste präsentiert werden können, da mehr als zehn Relationstypen im Normalfall nicht
vorhanden sein sollten, ist dies bei unter Umständen sehr umfangreichen Ontologien
für Zieleigenschaften nicht möglich. Hier sollte eine Auswahl im Baumformat gesche-
hen, so dass jeweils nur gewisse Untermengen der Ontologie gleichzeitig angezeigt
werden. Bei Patternrelationen sollte die Anzahl gering bleiben, da laut Miller [Mil56]
der Mensch auf einen Blick nicht mehr als etwa sieben plus minus zwei Informationen
gleichzeitig verarbeiten kann. Neben der unerwünschten Verlangsamung des Annotati-
onsprozesses, die eine zu große Anzahl von semantischen Relationstypen zur Folge
hätte, existieren zudem zum aktuellen Zeitpunkt keine Anwendungsfälle für eine noch
feinere Aufgliederung von semantischen Relationstypen.

4.3 Verwendung des Pattern Repositorys

Die tatsächliche Verwendung des Pattern Repositorys stellt nach dem Erstellen und Anno-
tieren von Patterns die letzte Stufe in der Übersichtgrafik 4.1 dar, welche am Anfang des
Kapitels zu finden ist. Nachdem Patterns im ersten Schritt in dem Repository erstellt werden
und im zweiten Schritt annotiert, gilt es, den Benutzer bei der Navigation durch den Pattern-
fundus zu unterstützen. Dabei kann nun von den annotierten Metainformationen Gebrauch
gemacht werden, indem dem Benutzer bei der Suche die semantischen Informationen als
zusätzliche Suchkriterien angeboten werden, die sonst nicht möglich wären. Die erleichterte
Suche von Patterns durch das Verwenden von zusätzlichen semantischen Informationen
stellt somit eine Kernfunktionalität des Pattern Repositorys dar.

57

4 Konzeptionelles Design

4.3.1 Einstieg in die Patterndomäne

Während sich bei Patternkatalogen in Buchform dem Leser zu Beginn die Frage stellt, ob
er nun das Buch von Seite eins bis zum Ende linear durchlesen soll oder lieber bei einem
Unterkapitel beginnen, tritt dieses Problem bei einem elektronischen Pattern Repository noch
schneller auf. Denn ein Wiki lässt sich nicht von Beginn bis zum Ende durchblättern, so dass
dem Endnutzer von der Startseite an eine Unterstützung geboten werden muss. Um dies zu
einer Stärke des Repositorys auszubauen, soll zunächst untersucht werden, wie mit diesem
Problem in einigen etablierten Patternkatalogen in Buchform umgegangen wird. Dazu gibt
es verschiedene Ansätze, um dem Leser das Erschließen der Patterndomäne zu erleichtern
und ihm zu helfen, das Patternbuch zu benutzen. Einige wiederkehrende Vorgehensweisen,
welche in ähnlicher Form sowohl in [HW03], [FEL+

12] als auch [JGVH95] zu finden sind,
werden im Folgenden beschrieben.

Grundlegende Patterns

Viele Patterndomänen sind nach dem Vorbild der von Christopher Alexander in [AIS+77] ent-
worfenen Patternsprache in ihrer Grundstruktur hierarchisch aufgebaut in dem Sinne, dass
Entscheidungen auf einer hohen Abstraktionsebene mögliche Entscheidungen auf niedereren
Abstraktionsebenen einengen. Der Begriff „Entscheidung“ wird hier als Synonym zu dem
Begriff Pattern verwendet, da ein Pattern im Prinzip immer einer Entscheidung entspricht,
die zur Lösung eines bestimmten Problems getroffen werden muss. Dementsprechend macht
es in Patternsprachen mit solchen hierarchischen Beziehungen auch viel Sinn, bei der Lektüre
auf der höchsten Abstraktionsebene zu beginnen und sich auf diese Weise durch die Pattern-
sprache zu navigieren. Um diese hierarchische Struktur zugänglicher zu gestalten, bieten
sich unterschiedliche grafische Aufbereitungsmöglichkeiten an. Zum einen wäre dies die
Darstellung anhand einer Ordnerstruktur, die dem Inhaltsverzeichnis eines Buches gleicht,
mit dem Unterschied, dass es Möglichkeiten zum Auf- und Zuklappen einzelner Ordner zur
Erhöhung der Übersicht gäbe. Andererseits wäre dies die Darstellung als gerichteter Graph,
in welchem die Kapitel bzw. Kategorien, zu welchen einzelne Patterns oder Unterkapitel bzw.
Unterkategorien gehören, anhand von beschrifteten Umrandungen hervorgehoben werden
würden. Der Graph sollte dabei gerichtet sein, um nicht die Information über die Richtung
der Hierarchie zu verlieren.

Dabei sollen die leicht unterschiedlichen Ansätze der grafischen Aufbereitung aus [HW03]
und [FEL+

12] zu einer in unterschiedlichen Patterndomänen anwendbaren Lösung vereint
werden. Aus [FEL+

12] wird der Ansatz übernommen, für jedes großes Kapitel bzw. jede
Kategorie von Patterns einen Graph zu erstellen, welcher die Abhängigkeiten innerhalb
des Kapitels darstellt. Dabei sollen sowohl alle Patterns, als auch die Information der
Zugehörigkeit zu eventuellen Unterkategorien erhalten und visualisiert werden. Dies kann,
wie bereits oben beschrieben, durch einen gerichteten Graphen geschehen, in welchem
Zugehörigkeiten zu Unterkapiteln durch beschriftete Umrandungen dargestellt werden.
Bei einer Patterndomäne, in der noch nicht so viele Patterns entdeckt wurden und es
dementsprechend auch noch nicht genügend Kapitel und Unterkapitel gibt, dürfte der

58

4.3 Verwendung des Pattern Repositorys

Ansatz aus [HW03, S. xlvii] nützlicher sein, bei dem eine große Übersichtsgrafik über
den kompletten Patternkatalog existiert. Im Gegensatz zu [FEL+

12], in welchem es auch
eine Übersichtsgrafik gibt, ist diese in [HW03] in einer Art gehalten, wie Sie in anderen
Domänen genau oder sogar noch besser verwendet werden kann. Auf einer sehr hohen
Abstraktionsebene werden die Abhängigkeiten zwischen den Kapiteln skizziert, um so
dem Leser einen schnellen Überblick über die Struktur der Patternsprache verschaffen zu
können.

Diese Art des Einstiegs macht entsprechend am meisten Sinn, wenn ein Problem noch
komplett ungelöst ist, wenn also nicht schon gewisse Teile des zukünftige Systems bzw. der
Lösung des Problems feststehen. Wenn der Leser bzw. Benutzer noch völlig unvertraut mit
dem Patternfundus ist, dürfte dies eine effiziente Einstiegsmöglichkeit sein, in dem Sinne,
dass der Benutzer sich schnellstmöglich strukturiertes Wissen aus dem Gebiet aneignen
kann.

Benutzerrollen

Ein völlig anderer Ansatz stellt das Vorschlagen von möglichen Startkategorien oder Startka-
piteln aufgrund der Rolle dar, die der Benutzer beim Lesen des Patternkatalogs einnimmt.
Dabei wird vorausgesetzt, dass sich jeder Leser in eine entsprechende Rollenkategorie ein-
teilen lässt, und dass für einen Leser mit diesem Hintergrund die Lektüre von bestimmten
Kapiteln vorteilhafter ist als die Lektüre von anderen Kapiteln. In [JGVH95, S. 10] geschieht
dies nur sehr grob, so dass dem Leser im Fall, dass er unerfahren in objektorientiertem
Design ist, der Beginn bei einem bestimmten Kapitel empfohlen wird. In [FLR+

13, S. 14-20]
und [HW03, S. xlviii-xlix] gibt es eine sehr viel feinere Unterscheidung der Kenntnisstände
und Hintergründe der Leser, die dementsprechend spezifischer für das entsprechende Gebiet
sind. Hier muss je nach Patterndomäne eine individuelle Lösung entwickelt werden, und
es wird schwer sein, im elektronischen Format einen Mehrwert gegenüber einem Buch zu
erzielen. Eine naheliegende Lösung dürfte das direkte Übernehmen der Rollen aus einer
vorhandenen Buchvorlage sein.

4.3.2 Assistent

Nachdem nun bereits die in Büchern vorhandenen Einstiegshilfen für eine Patterndomäne
erläutert wurden, soll nun untersucht werden, wie diese Punkte in einem Pattern Reposito-
ry integriert werden können und welche weiteren Einstiegshilfen durch das elektronische
Format möglich sind. Während bei einem Buch der Leser zunächst das Kapitel aufschlagen
muss, in dem die Einstiegshilfen beschrieben werden, ist es bei einem Repository in Form
einer Webanwendung sehr viel einfacher, den Benutzer zu führen. Diese Aufgabe soll ein
Wizard bzw. Assistent übernehmen, in welchem der Benutzer neben den oben beschriebe-
nen Einstiegspunkten auch noch weitere Möglichkeiten hat, sich effizient Wissen über die
vorhandenen Patterns anzueignen.

59

4 Konzeptionelles Design

Als Einstieg soll es zunächst eine Auswahl zwischen den möglichen Vorgehensweisen geben,
bei welchen der Benutzer Schritt für Schritt von dem Assistent geleitet wird. Eine weitere
Komfortfunktion, welche in dem Pattern Repository als Mehrwert im Vergleich zu einem
normalen Buch integriert sein soll, ist das Vorhandensein einer „Leseliste“. Darin kann sich
der Benutzer einzelne Patterns oder ganze Patternkapitel speichern, die er noch bearbeiten
möchte, bzw. der Assistent kann dem Benutzer gewisse Vorschläge auf seiner Liste eintragen.
Im Vergleich zu einem Buch fällt nun das wiederholte zurückblättern zu den Empfehlungen
weg, und die Liste kann während des Lesens um weitere Einträge erweitert werden. Diese
Leseliste kann auch als weiterer möglicher Einstiegspunkt verwendet werden, indem die
semantischen Annotationen im Wiki für dynamisch zusammengestellte Querys verwendet
werden. So können dem Benutzer intelligente Vorschläge auf Basis der in der Leseliste
enthaltenen Patterns gemacht werden, welcher dieser im Rahmen eines iterativen Vorgehens
erneut in seiner Leseliste abspeichern kann.

Die im Folgenden beschriebenen Einstiegspunkte wurden entwickelt, um den Benutzer im
Falle von spezifischen Wünschen zu unterstützen und neue Perspektiven bei der Bearbeitung
von Patterns zu bieten.

Zieleigenschaften

In Abschnitt 4.2.2 wurde bereits beschrieben, aus welchen Gründen es sinnvoll sein kann,
Patterns mit Zieleigenschaften zu annotieren, mit welchen sie korrelieren. Um nun Vorteile
aus diesen semantischen Informationen zu ziehen, soll der Benutzer eine Zieleigenschaft
oder eine Reihe von Zieleigenschaften angeben können, zu welchen dann Patterns aufgelistet
werden, welche möglichst stark mit den gewünschten Eigenschaften korrelieren. Da es die
Möglichkeit gibt, beliebige Attribute für die Beziehung eines Patterns zu einer Zieleigen-
schaft zu definieren, müssen diese Attribute auch auswählbar sein. Das Ergebnis soll in
tabellarischer Form präsentiert werden, so dass die Einträge nach der Korrelationsstärke zu
den gewählten Zieleigenschaften mit den Attributen der Relation sortiert sind.

Dies ermöglicht eine völlig neue Herangehensweise für den Umgang mit einem Pattern-
katalog. Zuvor war der Leser bzw. Benutzer immer an die Kategorien und die Ratschläge
gebunden, welche die Autoren der Patterns definiert haben. Dabei konnte es sehr schwie-
rig sein, nützliche Patterns zu finden wenn man dabei nur an gewissen eingeschränkten
Aspekten interessiert ist, welche die Patterns behandeln. Auch das Design eines kompletten
neuen Systems anhand von Patterns wird im Normalfall eher durch gewisse Ziele definiert
sein, als anhand von Problemen, über welche sich die Patterns definieren. Dabei ist es
auch egal, ob das System nun ein neues Bauwerk sein soll [AIS+77], ein Kostüm für einen
Film [SBLE12], eine objektorientierte Software [JGVH95] oder eine Anwendung im Cloud
Computing Umfeld [FEL+

12]. Allerdings muss die Ontologie der Zieleigenschaften immer
an den Bereich angepasst sein, in welchem sich die Patterns ansiedeln. Da sich die Zielei-
genschaften auf einer sehr hohen Abstraktionsebene befinden, dürfte es aber beispielsweise
genügen, für Patterns unterschiedlicher IT-Bereiche die gleiche Ontologie von allgemeinen
IT-Eigenschaften zu verwenden.

60

4.3 Verwendung des Pattern Repositorys

Anwendungsgebiete (Solutions)

Ein völlig entgegengesetzter Ansatz im Vergleich zu den bisher aufgeführten Einstiegspunk-
ten ist die Auswahl eines Anwendungsgebiets, von welchem bekannt ist, dass das Pattern
daraus stammt oder darin verwendet wird. Den Ansatz, von einer hohen Abstraktionsebene
aus mit grundlegenden Patterns zu beginnen, oder auch aufgrund einer gewünschten Zielei-
genschaft die Patterns auszuwählen, könnte man als „Top-Down“-Ansatz betrachten. Von
grundlegenden Patterns auf einer hohen Abstraktionsebene bewegt man sich in Richtung
niederer Abstraktionsebenen mit spezialisierten Patterns oder von einer Zieleigenschaft aus
zunächst über abstraktere Patterns zu spezielleren Patterns hin.

Die Patternauswahl von den Anwendungsgebieten heraus stellt im Vergleich dazu den
„Bottom-Up“-Ansatz dar. So werden Produkte und Lösungen betrachtet, die zuvor dazu
verwendet wurden, durch Abstraktion des zugrunde liegenden gelösten Problems Patterns
zu entdecken. Diese Anwendungsgebiete werden in einigen Patternkatalogen, wie z.B. in
[FEL+

12] und [HW03] in einem extra Abschnitt unter Known Uses erwähnt. Dabei gibt
es nirgends einen Index, um über die Anwendungsgebiete alle Patterns zu finden, die
darin verwendet werden bzw. daraus stammen. Es wäre allerdings durchaus denkbar,
dass ein Benutzer an ein gewisser Produkt oder Anwendungsgebiet bereits gebunden ist,
und zunächst wissen möchte, welche Patterns in dem Produkt verwendet werden und
anschließend herausfinden möchte, welche weiteren Patterns sich besonders im Kontext mit
diesem Produkt anbieten würden.

Als Beispiel hierfür soll ein Anwendungsgebiet bzw. ein Produkt aus [FLR+
13] dienen:

Amazon CloudFront1. Nehmen wir an, ein Entwickler einer Cloud Computing Anwendung
ist aus einem bestimmten Grund, beispielsweise einer Partnerschaft seiner Firma mit Amazon,
an dieses Produkt gebunden und möchte nun herausfinden, welche Patterns sich in diesem
Umfeld verwenden ließen bzw. welche Patterns denn schon zum Einsatz kommen. Dann
würde er durch die Verwendung des Pattern Repository-Assistenten herausfinden, dass
CloudFront die Patterns Content Distribution Network und Blob Storage realisiert bzw. die
beiden Patterns aus den konkreten Anwendungsfällen bei CloudFront abstrahiert wurden.
Von diesen beiden Patterns aus kann der Benutzer entweder direkt über die Patternseiten
oder über den Umweg der Empfehlung aufgrund der Leseliste (siehe folgenden Abschnitt) sich
die nächsten Patterns anzeigen lassen, die bei eventuell auftretenden Problemen eine Lösung
für ihn beinhalten könnten. Eine nötige Entscheidung wäre z.B., ob er sich für das Pattern
Strict consistency, oder Eventually consistency entscheidet. Von diesen Patterns aus kann sich
der Benutzer durch viele Einzelentscheidungen bei gewissen Designprobleme langsam ein
System aus Patterns zusammenstellen. Zuletzt kann er von den Patterns aus wiederum nach
möglichen Lösungen schauen, welche die ausgewählten Patterns realisieren.

1http://aws.amazon.com/de/cloudfront/

61

http://aws.amazon.com/de/cloudfront/

4 Konzeptionelles Design

Empfehlungen aufgrund der Leseliste

Ein weiterer Ansatz, welcher bei der inkrementellen Zusammenstellung einer Leseliste sehr
hilfreich sein kann, sind Empfehlungen auf Basis der Patterns, welche sich bereits in der
Leseliste befinden. Dabei kann man die Leseliste als Hilfe für die Zusammenstellung eines
schlüssigen Systems betrachten, zumindest falls der Benutzer keine sich widersprechende
Patterns auf die Liste hinzufügt. Die Grundidee für diese Art, einen Patternfundus zu benut-
zen, stammt aus [FLR+

11]. In diesem Paper wurde eine Entscheidungsempfehlungstabelle
vorgestellt, welche eine Matrix darstellt, in welcher die Beziehungen von Patterns zueinan-
der in Form von drei Beziehungstypen ausgedrückt werden: Starke Zusammengehörigkeit,
Ausschluss und neutral. Übertragen auf das Pattern Repository wären diese Informationen
in Form von semantischen Links auf den einzelnen Patternseiten gespeichert, wodurch man
bei der semantischen Annotation implizit auch eine solche Entscheidungsempfehlungsma-
trix erzeugt, welche aber mehr Beziehungstypen zulässt, und daher feinere Empfehlungen
ermöglicht.

Basierend auf den Beziehungstypen Combining, welcher die starke Zusammengehörigkeit
zweier Patterns ausdrücken kann, sowie Competing, welcher zum Ausdruck eines Aus-
schlusses dient, lassen sich anhand einer aggregierenden Query intelligente Empfehlungen
aussprechen. Diese Query soll die Menge aller Patterns mit starker Zusammengehörigkeit zu
den aktuellen Patterns in der Leseliste berechnen unter Entfernung solcher Patterns, welche
sich gegenseitig ausschließen. Zusätzlich wäre es auch möglich, temporäre Abhängigkeiten in
die Empfehlungsliste mit einfließen zu lassen, so dass lediglich Patterns empfohlen werden,
welche eine direkte oder transitiv berechnete Consider Before-Relation zu den Patterns in der
Liste besitzen. Diese Art der Empfehlung von weiteren Patterns dürfte viel benutzerfreundli-
cher sein, als das mühsame Absuchen einer riesigen Empfehlungsmatrix, was bei bereits
vielen verwendeten Patterns beinahe unmöglich sein dürfte.

4.3.3 Weiteres Navigieren

Mithilfe dieser verschiedenen Einstiegsmöglichkeiten wird der Endnutzer des Systems wenig
Schwierigkeiten haben, sich einen Einstieg in das Pattern Repository zu suchen. Sind die
ersten Schritte geschafft, stellt sich die Frage, wie die weitere Navigation geschehen soll.
Dafür ist es wichtig, das jedes Pattern in dem Repository über eine Art „Interface“ verfügt,
welches sichtbar macht, wo sich das aktuelle Pattern in der Patternsprache befindet und
wie man von dort aus weiter navigieren kann. Das Interface besteht zum einen aus der
klassischen Art der Navigation in Form von Hyperlinks, wie sie auf jeder normalen Webseite
auch verfügbar ist. Dies kommt vor allem in Abschnitten in Form von Prosatext vor, in
welchen direkte Verweise auf andere Patterns enthalten sind, wofür auch keine semantischen
Informationen benötigt werden. Die zusätzlichen Möglichkeiten der Navigation ergeben
sich aus den semantischen Links auf andere Patterns. Diese können für jedes Pattern am
Ende durch Querys gesammelt und in tabellarischen Form aufbereitet werden, so dass man
beispielsweise auf einen Blick sieht, mit welchen Patterns sich das aktuelle Pattern denn gut
kombinieren ließe, oder welche Patterns konkurrierende Alternativen sind. Dies ermöglicht

62

4.4 Resultierendes Datenmodell

ein systematisches weiteres Vorgehen des Benutzers entlang der Patternsprache unter voller
Ausnutzung der zur Verfügung stehenden semantischen Informationen.

Wenn man diese tabellarische Auflistung mit der Entscheidungsempfehlungsmatrix aus
[FLR+

11] vergleicht, entsprechen die unterschiedlichen Tabellen einer Zeile in der Matrix.
Dabei ist die Auflistung in dem Pattern Repository insofern effizienter, da sie es ermöglicht,
auf einen Blick alle Patterns mit starker Zusammengehörigkeit oder alle sich ausschließende
Patterns anzuzeigen, ohne dabei erst nach den entsprechenden Zeichen in einer Matrix
suchen zu müssen.

4.4 Resultierendes Datenmodell

Aus dem bisher beschriebenen Design resultiert ein Datenmodell, das in diesem Abschnitt
detailliert beschrieben werden soll. Für die flexible Modellierung des Datenmodells werden
mehrere OWL-Ontologien benutzt, zu deren besserem Verständnis eine Erklärung in Ab-
schnitt 2.3.5 vorhanden ist. Im weiteren Ablauf werden die Ontologien durch ein Programm
geparst, um in ein entsprechend vorbereitetes Repository importiert werden zu können. Erst
nach dem Import ist die Funktionalität bezüglich dem Erstellen und Annotieren von Patterns
möglich, was am Anfang des Kapitels in Abbildung 4.1 dargestellt ist. In dem Diagramm
befindet sich das Datenmodell jeweils links von den jeweiligen Funktionen, welche durch
das Modell beschrieben sind, da ohne das Datenmodell beispielsweise auch kein Formular
erzeugt werden kann. Der Importvorgang ist detailliert in Abschnitt 5.3 beschrieben.

Das generelle Problem bei der Durchsetzung eines klar definierten Datenmodells in einem
Wiki ist, dass Wikis ursprünglich für eine möglichst nicht in der Form eingeschränkte Samm-
lung von Informationen entwickelt wurden. Diesem allgemeinen Problem wirken nun zwei
Faktoren entgegen. Zum einen wird durch die Verwendung von Semantic Mediawiki generell
die Möglichkeit eingeführt, Daten zu strukturieren und dadurch in Querys verwendbar zu
machen. Zum anderen gibt es in Mediawiki das Konzept der Templates, um das Datenmodell
von Artikeln zu vereinheitlichen [HLS05]. Ohne die Verwendung von Templates kann es z.B.
vorkommen, dass jeder Artikel, der eine Stadt beschreibt, ein leicht anderes Format aufweist.
Mit der Verwendung von Templates, deren Funktionsweise detaillierter in Abschnitt 2.3.6
beschrieben ist, wird durch benannte Parameter ein konsistentes Format erreicht. Diese
Möglichkeit ist bei der Verwaltung von Patterns in einem Wiki von großer Wichtigkeit, da
Patterns einen großen Teil ihrer Zugänglichkeit durch ein konsistentes Format innerhalb
der Patterndomäne erhalten. Dies wird beispielsweise in dem Paper [FLR+

11] tiefer begrün-
det, in welchem ein Patternformat für Cloud Computing Patterns vorgestellt wird, oder in
[MD97], einem Standardwerk zum Verfassen von Patterns.

Es zeigt sich, dass das Datenformat im Wiki für die Patterns nicht direkt durch die Mo-
dellierung einer Tabelle für eine relationale Datenbank oder durch das direkte Importieren
einer OWL-Ontologie festlegbar ist. Stattdessen muss das Wissen über das Datenformat
in einem möglichst leicht maschinell lesbaren Format abgespeichert werden und dement-
sprechend auf die im Wiki zur Verfügung stehenden Entitäten übertragen werden. Auf
welche Elemente des Wikis welche Elemente der Ontologie übertragen werden, soll nun

63

4 Konzeptionelles Design

OWL Semantic Mediawiki
Individual Normale Seite in einem Namespace für Inhaltsseiten
Class Seite im Namespace Kategorie
Subclass Seite im Namespace Kategorie, mit einem Kategorieeintrag

zu der Überkategorie
Object Property Semantisches Attribut im Namespace Property mit dem Typ

Page

Object Subproper-
ty

Semantisches Attribut im Namespace Property mit dem
Typ Page sowie semantisches Attribut Subproperty Of mit
Verweis zum Vaterattribut.

Data Property Semantisches Attribut im Namespace Property mit einem
anderen Datentyp als Page, z.B. String oder Date

Tabelle 4.1: Abbildung von OWL- auf Semantic Mediawiki-Elemente

im Folgenden erörtert werden. In [VK06] wurde beschrieben, wie OWL-Ontologien in eine
Semantic Mediawiki-Installation importiert werden können und insbesondere, welche „na-
türliche“ Entsprechungen es in Semantic Mediawiki für die Elemente einer OWL-Ontologie
gibt. Seit dem Erscheinen des Papers 2006 hat sich jedoch das interne Semantic Mediawiki-
Datenmodell verändert, weshalb in Tabelle 4.1 eine aktualisierte Tabelle aufgeführt ist. Im
Vergleich zu der Originaltabelle in [VK06] hat sich insbesondere die Entsprechung von Object
und Data Properties verändert, da es die zusätzlichen Namespaces Relation und Attribut
mittlerweile nicht mehr gibt.

Wenn es für alle Standardelemente aus OWL Entsprechungen in Semantic Mediawiki gibt,
stellt sich die Frage, warum nicht einfach die komplette Patterndomäne in OWL modelliert
und direkt in das Wiki importiert wurde? Dies ist darin begründet, dass ein solcher direkter
Import lediglich statische Daten auf Seitengranularität in das Wiki laden kann, aber nicht
dafür geeignet ist, die Datenstruktur des Wikis auf besondere Bedürfnisse anzupassen. Die
Ebene der Datenstruktur, die durch einen solchen Import von statischen Inhalten in das
Wiki verändert werden kann, ist die Ebene der semantischen Attribute, Kategorien und
Seiten, also auf sehr grober Granularität. Für die Anforderungen an das Pattern Repository
ist dagegen eine Anpassung des Datenmodells auf einer viel niedereren Ebene bzw. feineren
Granularität nötig: die Strukturierung von Daten innerhalb von Seiten durch verschiedene
Templates und semantische Attribute sowie die automatische Erzeugung von Unterinhalten
auf gewissen Seiten. Ein besonderer Anwendungsfall stellt hier auch die Konstruktion des
Formulars dar, welche anhand der vorgegebenen Patternstruktur sehr flexibel sein muss,
gleichzeitig aber eine komplexe Vielfalt von Möglichkeiten beinhaltet.

Darüber hinaus ist die Technologie OWL nicht dafür gedacht, großen strukturierten Prosatext
aufzunehmen, sondern mehr um strukturelle Beziehungen zwischen Entitäten und Wissen
über Taxonomien und deren Beziehungen auszudrücken. Im Fall des in dieser Diplomarbeit
entwickelten Pattern Repository werden die OWL-Ontologien dafür genutzt, um das Wissen
über die Form des Datenmodells abzuspeichern, welches von dem Importprogramm in
das Wiki geladen wird. Es gibt dafür eine Ontologie, welche das Kerndatenmodell für die

64

4.4 Resultierendes Datenmodell

Patterns sowie die semantischen Relationstypen zwischen den Patterns enthält, und eine
andere optionale Ontologie, welche eine Taxonomie der möglichen Zieleigenschaften und
eine Beschreibung der Attribute der n-ären Relation enthält.

4.4.1 OWL-Ontologie: Kerndatenmodell

Zunächst soll die Ontologie, die das Kerndatenmodell beschreibt, genauer betrachtet werden.
Obwohl die ganze Ontologie über unterschiedliche Beziehungen sehr in sich vernetzt ist,
soll versucht werden, die Betrachtung auf gesonderte einzelne Abschnitte zu lenken, um das
Verständnis der Zusammenhänge zu vereinfachen.

Kategorien

Category
Hierarchy

Legende

has Subclass

Cloud
Computing

Patterns

Solutions

Cloud
Application
Manageme
nt Patterns

Cloud
Offering
Patterns

Composite
Cloud

Application
Patterns

Cloud
Computing

Funda-
mentals

Cloud
Application

Architec-
ture

Abbildung 4.6: Datenmodell - Kategorien

Wenn für eine bestimmte Domäne bereits viele Patterns gefunden wurden, besteht im
Normalfall auch bereits eine Kategorisierung der Patterns, d.h. bei Patternkatalogen in
Buchform eine Einordnung der Patterns in Kapitel. Diese Kategorisierung lässt sich in
der Klasse CategoryHierarchy der Ontologie direkt „einhängen“, d.h. die Taxonomie der
Kategorien kann als Klassenhierarchie zu der Überklasse CategoryHierarchy hinzugefügt
werden. In Abbildung 4.6 ist die oberste Ebene einer solche Taxonomie anhand eines Beispiels
aus den Cloud Computing Patterns visualisiert [FLR+

13]. Dabei dient die hier vorkommende

65

4 Konzeptionelles Design

Klasse Cloud Computing Patterns als Überkategorie für die jeweilige Patterndomäne, wobei
der Begriff „Cloud Computing“ durch die Domänenbezeichnung ersetzt wird. Die Klasse
Solutions aus der Abbildung dient als Überkategorie für mögliche Anwendungsfälle von
Patterns, die ins Repository eingepflegt werden können. Beim Import wird nun für jede
vorhandene Klasse eine neue Kategorie im Wiki erzeugt, wobei die Information über die
Unterklassen anhand der has Subclass-Beziehung durch Unterkategorien erhalten bleibt.
Zusätzlich ist es möglich, über die Object Property HasVisualizationGraph festzulegen, dass
auf einer bestimmten Kategorieseite einer der verfügbaren Visualisierungsgraphen verwendet
werden soll.

Die Datenstruktur für die Zuweisung von Visualisierungsmöglichkeiten ist in Abbildung
4.7 abgebildet. Die Klasse Visualization dient der Speicherung von zur Verfügung stehenden
Visualisierungsmöglichkeiten im Repository, wobei es in der Abbildung lediglich die Unter-
klasse Graph gibt. Momentan gibt es zwei unterstützte Graphtypen: Den PAREPTree, dessen
Implementierung in 5.5.5 beschrieben ist, und den sog. Hypergraph aus der Semantic Graph-
Erweiterung, welche in Abschnitt 2.3.7 beschrieben ist. Da dies konkrete Graphinstanzen
sind, wurden sie als Individuen modelliert, was an der Darstellung als Rechteck erkennbar
ist. Es sei angemerkt, dass beliebige weitere Graphtypen in die Ontologie eingefügt werden
können, wenn entsprechend auch das Importprogramm erweitert wird, das für das Parsen
der Ontologie zuständig ist.

Legende

has Subclass

has Individual

hasVisualizationGraph

Category
Hierar-

chy

Cloud
Computing

Patterns

Hypergraph

PAREPTree

Visuali-
zation

Graph

Cloud
Comput-

ing
Patterns

Abbildung 4.7: Datenmodell - Visualisierung

66

4.4 Resultierendes Datenmodell

Für die Object Property HasVisualizationGraph wurde als Domain die Klasse Cloud Com-
puting Patterns2 gewählt, und als Range die Klasse Graph. Damit wird ausgedrückt, dass
für Individuen der Klasse Cloud Computing Patterns die Möglichkeit besteht, einen Graph
zur Visualisierung aus der Klasse Graph zu besitzen. Um nun für eine Kategorieseite einen
Visualisierungsgraphen zu wählen, wird zunächst ein Individuum für die konkrete Seite
erstellt. Für dieses kann anschließend in Form einer Object Property Assertion ein Graphin-
dividuum aus der Klasse der verfügbaren Graphen ausgewählt werden. In der Abbildung
gibt es beispielsweise die durch einen grün gestrichelten Pfeil dargestellte Object Property
Assertion HasVisualizationGraph von der Kategorieseite Cloud Computing Patterns zu
Hypergraph. Unterschiedliche Graphtypen benötigen im Normalfall auch verschiedene Ein-
gabeparameter, welche für die Erzeugung des Wikicodes für den entsprechenden Graphen
benötigt werden. Um eine Möglichkeit zu haben, solche zusätzlichen Parameter ebenfalls in
der Ontologie abzulegen, wurde dafür eine Data Property Style eingeführt. Auf diese Weise
können die nötigen Parameter über eine Data Property Assertion für das entsprechende
Kategorie-Individuum gespeichert werden. Statt einer Data Property wäre auch eine Annota-
tion Property zum Speichern dieser Art von zusätzlichen Informationen möglich gewesen.
Diese Designentscheidung wurde aufgrund der Tatsache getroffen, dass sich Data Property
Assertions komfortabler mit der für den Zugriff auf OWL-Daten verwendeten Jena RDF-API
des Importprogramms parsen lassen.

Falls das Pattern Repository dazu benutzt werden soll, einen komplett neuen Patternfun-
dus aufzubauen, ist es auch möglich, ohne einen bereits existierenden Kategoriebaum zu
beginnen. Gewünschte Visualisierungsmöglichkeiten können entsprechend von Hand auf
Kategorieseiten eingefügt werden.

Patternstruktur

Die Patternstruktur bzw. das Patternformat kann als Kern eines Patternkatalogs bezeichnet
werden. Im Fall des Pattern Repositorys wird dieses Format über eine Reihe von Templates
definiert, welche das Datenformat der Patterns definieren und dazu benötigt werden, die
Eingabe über ein einheitliches Formular zu ermöglichen. Die Generierung der Templates
und des Formulars wird über den Importer gesteuert und hängt von dem in der Ontologie
konfigurierten Format ab. Neben den Informationen, welche Abschnitte es in einem Pattern
geben soll, müssen auch Informationen über die Art der Abschnitte, über eventuelle For-
matierungsoptionen für die Templates sowie für die korrekten Eingabetypen im Formular
gespeichert sein.

Diese Informationen sind in dem Ausschnitt aus der Ontologie des Kerndatenmodells
in Abbildung 4.8 modelliert. Die Klasse Section ist als Unterklasse von ContentElement
modelliert, so dass es in Zukunft auch möglich ist, weitere Arten von Inhaltselementen
einzuführen. Die tatsächlichen Abschnitte sind Individuen der Klasse Section, so dass sich

2In anderen Domänen würde die Klasse statt mit „Cloud Computing“ mit dem entsprechenden Domänennamen
beginnen.

67

4 Konzeptionelles Design

die nötigen Beziehungen zu anderen Klassen anhand von Object Property Assertions auf den
Individuen darstellen lassen. Der orange Pfeil in der Abbildung steht für die Object Property
hasInputType von der Klasse Section zu der Klasse FormInputType, in welcher verfügbare
Eingabentypen für das Pattern-Eingabeformular gespeichert sind. Der grüne Pfeil von der
Klasse SemanticProperty nach Section visualisiert die Object Property allowsSection, welche für
die Zuweisung von Relationstypen zu Abschnitten benutzt wird. Anhand dieser Zuweisung
wird bestimmt, welche Relationstypen für einen Abschnitt erlaubt sind, d.h. zur Annotation
angezeigt werden, und welche nicht.

In Abbildung 4.8 ist beispielhaft anhand des Patternformats für Cloud Computing Pat-
terns aus [FEL+

12] dargestellt, welche Individuen die Klasse Section haben könnte. Um
die Übersicht zu wahren, wurden lediglich für drei zufällig ausgewählte Individuen deren
hasInputType-Beziehung angezeigt. Die Abschnitte Intent und Driving Question verwenden
beide den gleichen Eingabetyp namens Semantic Textarea, was in der Abbildung anhand der
von den beiden Individuen ausgehenden orange gestrichelten Pfeilen dargestellt ist. Der
Abschnitt Sketch dagegen verwendet den Eingabetyp ImageWithLabel, was ebenfalls anhand
eines orange gestrichelten Pfeils ersichtlich ist. Die Klassenzugehörigkeit der beiden Einga-
betypen ist in dieser Abbildung nicht dargestellt. Dazu gibt es eine detaillierte Darstellung
der Modellierung der Eingabetypen in Abbildung 4.10. Die näheren Beschreibungen zu dem
semantischen Hintergrund der unterschiedlichen Typen sind in Abschnitt 4.1.1 zu finden. Die
Implementierungen der Eingabetypen Semantic Textarea, Number Slider und Target Props sind
in Abschnitt 5.5 detailliert beschrieben. Die Klasse FormInputType wurde als Unterklasse
von InputType modelliert, um bereits einen möglichen Anknüpfungspunkt für die Definition
von weiteren Eingabetypen für andere Entitäten innerhalb des Wikis zu bieten. Der orange
Pfeil von Form zu FormInputType sagt aus, dass Instanzen der Klasse Form verschiedene
Eingabetypen haben können. Zusätzlich erlaubt der Pfeil von Section zu FormInputType die
individuelle Definition von Eingabetypen spezifisch pro Abschnitt.

Legende

has Subclass

allowsSection

hasInputType

Content
Element

Section

Input
Type

Form
Input
Type

Seman-
ticProp-

erty
Relation

Abbildung 4.8: Datenmodell - Übersicht über die Abschnittsbeziehungen

68

4.4 Resultierendes Datenmodell

Legende

has Subclass

has Individual

hasInputType

Section
Content
Element

Category
Section

Driving
Question

Context

Icon

Intent

Known Uses

Related
Patterns

Result

Sketch

Solution

Target
Properties

Variations

Semantic
Textarea

ImageWithLa
bel

Abbildung 4.9: Datenmodell - Abschnitte

69

4 Konzeptionelles Design

Die bis jetzt noch fehlenden Informationen betreffen die Darstellung der Patterns als fertige
Seite, nachdem eine Eingabe über das Formular getätigt wurde. Neben der Angabe der
entsprechenden Eingabetypen, soll es auch die Möglichkeit geben, für einzelne Abschnitte
Formatierungsmöglichkeiten für die entsprechenden Inhalte angeben zu können. Darüber
hinaus soll es auch möglich sein, die Reihenfolge der Abschnitte zu bestimmen, in welcher
sie in dem resultierenden Element auftreten sollen. Da dies bei der Modellierung in OWL
nicht direkt möglich ist, wurde der Umweg über eine Data Property gewählt. Die dafür
eingeführte Data Property OrderValue vom Typ postitiveInteger wird daher benutzt, um
jedem Abschnitt einen Index zuzuweisen. Konkret im Datenmodell ist dies als Data Property
Assertion auf allen Individuen der Klasse Section modelliert. Eine Schwierigkeit ist hierbei,

Legende

has Subclass

has Individual

hasInputType

Category

ImageWith
Label

Image

None

Number
Slider

Semantic
Textarea

TargetProps

Textarea

VarRelations

Form
Input
Type

Input
Type

Form

Section

Abbildung 4.10: Datenmodell - Eingabetypen des Formulars

70

4.4 Resultierendes Datenmodell

dass darauf geachtet werden muss, dass keine Indices doppelt verteilt werden, da dies beim
Parsen dazu führen würde, dass eines der beiden Elemente mit gleichem Index ignoriert wird.
Die Data Property Style wird schließlich dazu benutzt, um Formatierungen für Elemente
angeben zu können. Dabei gibt es folgende gültige Optionen:

• heading: Gibt an, ob für den Abschnitt ein abgetrennter Textabschnitt mit fettgedruck-
ter Überschrift erzeugt werden soll, oder lieber ein Abschnitt mit etwas kleinerer
Überschrift, der keinen Absatz erzeugt. Der angegeben Wert entspricht der Überschrift.

• headingStyle: Gibt eine mögliche Textformatierung für die Überschrift an.

• position: Erlaubt es, für eingebundene Bilder die Position innerhalb der Seite zu
bestimmen.

• htmlElement: Erlaubt die Angabe eines beliebigen HTML-Elements, in welchem der
Eingabetext gespeichert werden soll.

• htmlElementAttributes: Erlaubt die Angabe von Attributen, falls ein HTML-Element
angegeben wurde. Dabei sind nur solche Attribute gültig, die für das oben angegebene
Element gültig sind.

Patternrelationen

Die Möglichkeit, Relationen zwischen Patterns durch unterschiedliche Linktypen auszu-
drücken, setzt voraus, dass zuvor die besonderen Charakteristiken dieser Relationen definiert
wurden. Wieso es welche Linktypen gibt, wurde in Abschnitt 4.2.1 erklärt. Des Weiteren soll
der Anforderung genügt werden, dass nicht alle semantischen Linktypen für alle Abschnitte
zur Verfügung stehen. Dazu ist es nötig zu speichern, welcher Linktyp für welchen Abschnitt
erlaubt ist. Diese Fülle an Informationen wurde in einem Teil der Kernontologie modelliert,
welcher in Abbildung 4.11 dargestellt ist.

Die Klasse Relation in Abbildung 4.11 erlaubt es, allgemeine Charakteristika von Pattern-
relationen zu beschreiben, ohne dabei bereits spezifisch an eine Technologie gebunden zu
sein. Die für Semantic Mediawiki spezifische Stufe beginnt dabei erst ab er Klasse Semantic
Property, und spaltet sich von dort aus auf. Von der Klasse Filter aus gibt es eine Object
Property filtersRelation zur Klasse Relation, um ausdrücken zu können, dass eine gewisse
Relation filterbar ist. Dies ist als roter durchgezogener Pfeil dargestellt, drückt also eine
Domain-Range-Definition aus. Das Filtern bezieht sich hierbei auf die Eignung für Drilldown-
Operationen, wofür beispielsweise eine Verknüpfung des Filters mit einem semantischen
Attribut bestehen muss. Von der Klasse Relation gibt es eine Object Property hasRelationType
zur Klasse RelationType, welche dafür verwendet wird, Individuen der Klasse Relation einen
Relationstyp zuweisen zu können. Momentan gibt es zwei unterschiedliche Relationstypen,
die nach dem Vorbild von OWL-Object Properties ausgewählt wurden: Symmetric und Transi-
tive, welche in der Abbildung als Individuen dargestellt sind. Auf weitere Charakteristiken,
die es zwar für OWL Object Propertys gibt wurde verzichtet, da sie entweder nicht abbildbar
auf Semantic Mediawiki sind oder nicht benötigt werden. Dabei wird von den Standardwer-
ten dieser beiden Attribute ausgegangen, wenn einem Individuum der Klasse Relation keiner

71

4 Konzeptionelles Design

der Relationstypen zugewiesen wird. Eine Relation ist dadurch standardmäßig asymmetrisch
und nicht transitiv. Dies wurde nach dem Bestimmen der nötigen Charakteristiken für die
gewählten semantischen Attribute so gewählt, da die Mehrzahl der Relationen asymmetrisch
und nicht transitiv sind.

Relation
Type

Relation

Filter

Semantic
Property

Aggrega
-tion

Section

Associa-
tion

Specia-
lisation

Symmetric Transitive

Combining

Completing

Competing

Implemented
By

DependsOn

Consider
Before

Association

Specialisation
Of

Related
Patterns

Context

Legende

has Subclass

has Individual

allowsSection

filtersRelation

hasRelationType

Abbildung 4.11: Datenmodell - Semantische Attribute

72

4.4 Resultierendes Datenmodell

Ein Beispiel für eine solche Zuordnung findet sich in Abbildung 4.11 anhand des semanti-
schen Attributs Combining, welches symmetrisch und transitiv ist. Dies wird in der Abbil-
dung als gelb gestrichelter Pfeil dargestellte Object Property Assertion von hasRelationType
modelliert, der Combining mit Symmetric und Transitive verbindet. Die nächste Information,
welche für das Datenmodell benötigt wird, ist die Zuordnung von semantischen Relatio-
nen zu den entsprechenden Abschnitten des Patternformats. Bei der Annotation über das
Patternformular sollen pro Abschnitt nur bestimmte semantische Attribute zur Verfügung
stehen, und diese Zuordnung von Attributen zu Abschnitten muss im Datenmodell definiert
werden. Dafür wurde die Object Property allowsSection eingeführt, welche zwischen den
Klassen SemanticProperty und Section über Domain und Range definiert wurde. Dadurch ist
es möglich, Individuen der Klasse SemanticProperty mit Individuen der Klasse Section über
Object Property Assertions von allowsSection in Verbindung zu bringen. Ein Beispiel für die
allowsSection-Relation in der Abbildung findet sich in Form der grün gestrichelten Pfeile.
Dabei wurden jedoch bewusst nicht alle existierenden allowsSection-Relationen dargestellt,
um die Übersicht zu waren. Aus der Abbildung lässt sich anhand dieser Relation beispiels-
weise entnehmen, dass das Individuum ConsiderBefore der Klasse SemanticProperty zur
Annotation im Abschnitt Context zugelassen ist. Context ist dabei ein Individuum der Klasse
Section, was jedoch aus Übersichtsgründen in der Abbildung ebenfalls nicht dargestellt ist.

4.4.2 OWL-Ontologie: Zieleigenschaften

Um die Annotation von Zieleigenschaften im Pattern Repository zu ermöglichen, muss
es einen gewissen Rahmen geben, in welchen je nach Patterndomäne Ontologien von
Zieleigenschaften eingehängt werden können. Zusätzlich soll auch die Beziehung zu den
Zieleigenschaften beliebige Beziehungsattribute besitzen können, weswegen diese Attribute
ebenfalls frei in der Ontologie definierbar sein müssen.

Ein mögliches Design für eine solche Ontologie ist in Abbildung 4.12 dargestellt. Zunächst
ist anhand der Klassenhierarchie in der Abbildung von ContentContainer, Page und Pattern
modelliert, von welchem Inhaltselement auf Zieleigenschaften verweisen werden kann. Dies
ist durch den grauen Pfeil von Pattern nach TargetRelation anhand der Object Property target
festgelegt, so dass Patterns auf Zieleigenschaften verweisen können. Der Verweis geschieht
aufgrund der in Abschnitt 4.2.2 erläutert Problematik von n-ären Beziehungen in OWL aber
lediglich indirekt. Die leere zusätzliche Klasse TargetRelation wurde als Zwischenknoten
eingeführt, welcher als Zielobjekte Individuen aus der Klasse Target Properties annimmt
und weitere beliebige Attribute aufweist. Der tatsächliche Verweis auf die Zieleigenschaften
geschieht über die in der Abbildung lila dargestellte Object Property Target Object. Als
zusätzliches Beziehungsattribut gibt es die Klasse TargetImpact, welche zwei Individuen
beinhaltet: Decrease und Increase. TargetImpact ist eine Unterklasse von TargetRelation, und
steht über die Türkis dargestellte Object Property Target_Impact in Verbindung, was zum
Verweis von Individuen von TargetRelation auf Individuen von TargetImpact nötig ist.

Auf diese Weise lässt sich zu einer konkreten Zieleigenschaft-Relation ein konkreter Einfluss
zuordnen. Zusammen mit der Object Property target_Correlation soll es somit möglich
sein, die Korrelationsstärke eines Patterns zu einer Zieleigenschaft anzugeben. Darüber

73

4 Konzeptionelles Design

hinaus ist es durch die Angabe der Richtung des Einflusses möglich, Aussagen zu treffen
wie: „Pattern Xyz steht mit einer Korrelation von 75% mit einem Sinken der Verfügbarkeit in
Verbindung.“. Die Object Property für die Zieleigenschaft-Korrelation ist in Abbildung 4.12

nicht abgebildet, da sie zwar als Domain die Klasse Target Relation verwendet, als Range
aber die Data Property Correlation Range, welche einen Integer im Bereich von 0 − 100
erwartet. Damit wird ausgedrückt, dass target_Correlation von einem Individuum der Klasse
Target Relation auf eine Zahl im von Correlation Range definierten Wertebereich verweist. In
der Grafik ist bereits sichtbar, dass unter der Klasse Target Properties in der Ontologie eine
Klassenhierarchie von Zieleigenschaften eingehängt werden kann. Als Beispiel wurde hier
IT-Target Properties gewählt, wobei hier eine beliebige für die Domäne modellierte Ontologie
von Zieleigenschaften stehen könnte. Um vom Parser gelesen werden zu können, ist es
notwendig, die Zieleigenschaften als Klassenhierarchie mithilfe der Beziehung has Subclass
zu modellieren.

4.4.3 Abbildung auf Semantic Mediawiki-Elemente

Der nächste Schritt nach der Definition des Datenmodells in einem nicht systemgebundenen
Format ist nun die Abbildung der Elemente aus der OWL-Ontologie auf Elemente, die es
in Semantic Mediawiki gibt. Abbildung 4.13 stellt eine Übersichtsgrafik dar, in welcher die
verschiedenen Zuordnungen der Elemente zueinander abgebildet sind. Auf der linken Seite
finden sich die beiden Ontologien, die zum Zeitpunkt des Verfassens dieser Arbeit existieren

Legende

has Subclass

has Individual

target

Target_Impact

target_Object

Content
Contain-

er

Decrease

Increase

Page

Pattern
Target

Relation

Target
Proper-

ties

IT-Target
Proper-

ties

Target
Impact

Abbildung 4.12: Allgemeine Ontologie zur Einbindung von Zieleigenschaften mit Legende

74

4.4 Resultierendes Datenmodell

in Form von Rechtecken: Die Kerndatenmodell Ontologie und die optionale Zieleigenschaften
Ontologie. Die Begriffe in Ellipsen stellen dabei OWL-Klassen dar. Auf der rechten Seite sind
die Elemente innerhalb von Semantic Mediawiki abgebildet, auf welche die Ontologieinhalte
nach dem Parsen durch das Importprogramm übertragen werden.

Kerndatenmodell
Ontologie

Zieleigenschaften
Ontologie

Semantic Mediawiki

Kategorien

Konzepte

Attribute

Patterntemplates

Patternformular

Seiteninhalte

Relation

Category
Hierarchy

Visualization

Section

Target
Properties

Target
Relation

Abbildung 4.13: Mapping der OWL-Ontologien durch den Importvorgang. Legende: Gestri-
chelter Pfeil=Mapping

Die Frage, warum nun nicht direkt die Zuordnung aus Tabelle 4.1 verwendet werden konnte,
wurde zu Beginn dieses Abschnitts bereits erörtert. In der folgenden Aufzählung wird erklärt,
auf welche Elemente im Wiki die Inhalte der Ontologie Einflüsse haben. Sollten dabei auch
Zuordnungen erwähnt werden, die aus Abbildung 4.13 nicht direkt ersichtlich sind, liegt
das daran, dass zur Wahrung der Übersicht nur die größten Einflüsse abgebildet wurden.
Die folgende Aufzählung der Abbildungen orientiert sich an den OWL-Klassen, die auf der
linken Seite der Grafik dargestellt sind.

• CategoryHierarchy: Die Klassenhierarchie, welche in der Ontologie als Unterklassen
von CategoryHierarchy gespeichert werden, wird auf die direkte Entsprechung im
Wiki, den Kategorien, abgebildet. Dabei findet die Unterklasse-Beziehung in den
Wiki-Unterkategorien ihre Entsprechung. Die Klassenhierarchie hat indirekt auch
Einfluss auf das Patternformular, da dort eine Auswahl zur Einordnung des Patterns

75

4 Konzeptionelles Design

in eine Kategorie zu Verfügung steht, welche dynamisch von den Unterkategorien der
Kategorie CategoryHierarchy abgerufen wird.

• Visualization: In der Klasse Visualization sind mögliche Visualisierungsarten gespei-
chert, welche in dem Pattern Repository verfügbar sind. Über die Relation HasVisualisa-
tionGraph kann beispielsweise direkt für einer der Kategorien aus CategoryHierarchy
ein Graph definiert werden, welcher den Inhalt der Kategorieseite darstellt.

• Relation: Aus den Unterklassen der Klasse Relation werden im Wiki semantische
Attribute bzw. Linktypen erstellt, welche zur Vernetzung der Patterns verfügbar sein
sollen. Die Information, für welche Patternabschnitte ein semantischer Linktyp zur
Verfügung steht, wird über eine in einem Konzept gespeicherte Query dynamisch
abgerufen. Dafür erhalten die Seiten, welche die semantischen Linktypen definieren,
ihrerseits wiederum ein semantisches Attribut allowsSection vom Typ String, in wel-
chem die erlaubten Patternabschnitte für den entsprechenden Linktyp hinterlegt sind.
Die erstellten Konzeptseiten werden später von Funktionsmodulen der Erweiterung
Pattern Repository zur Annotation (Semantic Textarea und Property Dropdown, siehe
Abschnitt 5.5) verwendet, um nur erlaubte Linktypen anzuzeigen.

• Section: Hier wird das eigentliche Patternformat gespeichert. Dabei beinhalten die
OWL-Klassen und Individuen aus der Klasse Section sowohl die Informationen über
das Format des Patternformulars, als auch die Informationen zur Generierung der Tem-
plates, welche das Erscheinungsbild der eingegebenen Daten des Formulars steuern.
In den Templates gibt es dabei für jeden Patternabschnitt einen benannten Parameter
zur Platzierung der Eingaben aus dem Formular in der entstehenden Wiki-Seite. Zur
Generierung des Formulars müssen von Semantic Forms akzeptierte Eingabetypen
verwendetet werden, sowie eine Zuordnung zu den in den Templates verwendeten
Parametern. Gäbe es in dem Formular keine Möglichkeit, ein Template mehrmals
zu instanziieren, würde ein einziges Template für das Patternformular genügen. Da
es für das Patternformular allerdings die Anforderung gibt, gewisse Inhaltselemente
wegzulassen oder beliebig oft anzugeben, müssen die Templates für das Formular
entsprechend aufgeteilt werden. Die Verteilung muss dabei so geschehen, dass jeder In-
haltsblock, welcher beliebig oft im Formular verwendet werden kann, ein vollkommen
eigenes Template erhält. Ein Beispiel für solch einen Abschnitt ist Related Patterns, der
zur Annotation beliebig vieler verwandter Patterns dient.

• TargetProperties: In dem Fall, dass eine extra Ontologie mit Zieleigenschaften zur
Verfügung gestellt wird, werden die Unterklassen von TargetProperties, eventuelle
Unterklassen von TargetRelation und dessen Individuen auf ein Geflecht von Attributen,
Kategorien, Konzepten und normalen Wikiseiten abgebildet. Für jede Unterklasse der
TargetProperties wird eine Kategorieseite und eine normale Wikiseite im Namespace
Ontologie erstellt, welche dazu dienen kann, eine Beschreibung zu der entsprechenden
Zieleigenschaft zu hinterlegen. Dabei werden alle Zieleigenschaftenseiten in eine
Überkategorie TargetProperties eingeordnet, über welche mithilfe einer Konzeptseite
eine Liste aller vorhandenen Zieleigenschaften dynamisch über eine Query geführt
wird. Zum Verweisen auf diese Zieleigenschaften wird ein semantischer Linktyp
Target eingeführt, der Patternseiten mit Zieleigenschaften verbindet, mit welchen

76

4.4 Resultierendes Datenmodell

diese korrelieren. Mithilfe der Klasse TargetRelation ist es möglich, Eigenschaften
der Relation zwischen Pattern und Zieleigenschaft in der Ontologie zu modellieren.
Ins Wiki werden diese anschließend abgebildet, indem für jede Kombination aus
Zieleigenschaft und Relationsattribut eine eigene semantische Eigenschaft erstellt wird,
was auch in Abschnitt 4.2.2 beschrieben ist. Gibt es zum Beispiel eine Zieleigenschaft
„Performance“, wird es auch ein semantisches Attribut „PerformanceCorrelation“
geben, falls ein Relationsattribut „Correlation“ existiert.
Des Weiteren hat die Zieleigenschaftenontolgie auch Einfluss auf die Templates und das
Patternformular. Falls eine Ontologie mit Zieleigenschaften eingebunden wird, muss es
ein zusätzliches Template geben, welches einen Inhaltsbaustein enthält, welcher einer
Zieleigenschaftsannotation entspricht. Darüber muss dieses Template so im Formular
eingebunden werden, dass kein oder beliebig viele dieser Inhaltsbausteine erstellt
werden können.

77

5 Implementierung des Pattern Repositorys

Nach der Beschreibung des konzeptionellen Designs im vorherigen Kapitel, soll in diesem
Kapitel auf die Implementierung des Pattern Repositorys eingegangen werden, also der
Umsetzung des Entwurfs. Zunächst wird in Abschnitt 5.1 ein kurzer Überblick über im
Mediawiki-Framework verwendete Technologien und die Besonderheiten bei der Entwick-
lung von Erweiterungen gegeben. Abschnitt 5.2 gibt eine Übersicht der Systemarchitektur,
um die Anordnung der einzelnen Komponenten anhand eines Schichten-Modells deutlicher
zu machen. Im darauf folgenden Abschnitt 5.3 wird der Import des in Kapitel 4 beschriebe-
nen Datenmodells beschrieben. In Abschnitt 5.4 gibt es eine detaillierte Ausführung über das
durch den Import erzeugte Patternformular. Zuletzt wird in Abschnitt 5.5 auf das eigentliche
Herzstück des entwickelten Systems eingegangen, der Semantic Mediawiki-Erweiterung
Pattern Repository.

5.1 Web-Entwicklung mit dem Mediawiki-Framework

In diesem Abschnitt soll zunächst ein kurzer Überblick über die verwendeten Technologi-
en gegeben werden, die beherrscht werden müssen, um mit dem Mediawiki-Framework
entwickeln zu können. Insbesondere Abschnitt 5.1.2 ist hilfreich, um Abschnitt 5.5 bes-
ser nachvollziehen zu können, in welchem auf die Implementierung der für das Pattern
Repository entwickelten Erweiterung Pattern Repository eingegangen wird.

5.1.1 Technologien des Mediawiki-Frameworks

Mediawiki basiert auf der Skriptsprache PHP und verwendet als Datenbank MySQL. Media-
wiki selbst, sowie die meisten Erweiterungen, verwenden die Möglichkeit objektorientiert
mit PHP zu programmieren, wofür es seit Version 5 ein vollständiges Objektmodell in
PHP gibt. Für eine effiziente Entwicklung mit Javascript auf der Seite des Clients wird in
aktuellen Mediawiki-Versionen immer häufiger auf die umfangreiche Javascript-Bibliothek
jQuery1 gesetzt. jQuery vereinfacht viele, häufig bei der Javascript-Programmierung auftre-
tende Aufgaben, wie die Traversierung und Manipulation von HTML-Dokumenten, Event
Handling, Animationen und AJAX durch eine benutzerfreundliche API. Dabei verwendet
jQuery CSS3-kompatible CSS-Selektoren und funktioniert in den meisten Browsern auf die

1http://jquery.com/

79

http://jquery.com/

5 Implementierung des Pattern Repositorys

gleiche Weise, was bei Javascript nicht gegeben ist. AJAX2 steht für Asynchronous JavaScript
and XML und ermöglicht asynchrone Datenübertragung zwischen Browser und Server, so
dass Seiteninhalte einer scheinbar bereits geladenen Seite transparent nachgeladen werden
können. Der Benutzer bemerkt davon in den meisten Fällen nichts, sondern denkt, dass
bereits alles beim Öffnen der Seite geladen wurde. Diese Technologie zur Vermeidung
von unnötigem Datenverkehr wird beispielsweise von der Erweiterung Category Tree, die
in Abschnitt 2.3.7 vorgestellt wurde, verwendet, um Teile des Kategorienbaums erst zu
laden, wenn der Benutzer den entsprechenden Knoten aufklappt. CSS-Selektoren3 werden
dazu verwendet, bestimmte Elemente in einem HTML- oder XML-Dokument anhand eines
angegebenen Musters auszuwählen. Dabei entspricht der Selektor einer Bedingung, die für
jedes Element innerhalb des Dokuments geprüft wird und eine Ergebnismenge der Elemente
zurückliefert, bei welchen die Bedingung zu „wahr“ ausgewertet werden konnte. Zu Beginn
der meisten jQuery-Ausdrücke steht daher ein CSS-Selektor, um auszuwählen, auf welchem
Element gearbeitet werden soll.

5.1.2 Entwicklung von Erweiterungen für das Mediawiki-Framework

Das Mediawiki-Framework bietet eine Reihe von Erweiterungsmöglichkeiten, die die Ent-
wicklung von sehr unterschiedlichen Erweiterungen ermöglicht. In [Ler06] werden dazu
die absoluten Grundlagen beschrieben und auf [Meda] wird ein detailliertes Handbuch zu
den unterschiedlichen Aspekten der Erweiterungsentwicklung zur Verfügung gestellt. Im
Folgenden sollen diejenigen Erweiterungsmöglichkeiten kurz erläutert werden, welche im
Rahmen dieser Diplomarbeit bei der Entwicklung Pattern Repository verwendet wurden.

Wiki Markup-Erweiterungen erweitern die Syntax von Wikitext um zusätzliche Tags, die
mit beliebigen Funktionen versehen werden können. Wikitext-Tags entsprechen XML-
Tags in der Art von <Beispieltag>Eingabetext</Beispieltag>. Die Registrierung
des Paares aus Tag-Bezeichner und auszuführender Funktion geschieht in der Instanz
des Wikitextparsers, welcher Wikitext zu HTML umwandelt. Die Funktion, die mit dem
Tag registriert wird, erhält den im Tag eingeschlossenen Text als Parameter übergeben
und soll validen HMTL-Code zurückgeben. Falls in dem von den Tags umschlossenen
Text weitere Wikitags oder Parserfunktionsaufrufe enthalten sind, müssen diese vor
der Rückgabe explizit durch den Aufruf der entsprechenden Parserfunktion ebenfalls
zu HTML umgewandelt werden.

Parserfunktionen stellen eine Möglichkeit dar, um eng mit dem Wikiparser integriert, direkt
eigene Funktionen aufzurufen. Sie sind schwergewichtiger als Markup-Erweiterungen,
bieten dafür jedoch den Vorteil, dass von Parserfunktionen erzeugte Ausgaben, vor
dem eigentlichen Parsen des Wikitexts, in die Seite eingefügt werden. Dies ermöglicht
eine Interaktion mit anderen Wikielementen, wie z.B. das Verwenden der Ausgabe

2http://www.w3schools.com/ajax/
3http://www.w3.org/TR/selectors/

80

http://www.w3schools.com/ajax/
http://www.w3.org/TR/selectors/

5.1 Web-Entwicklung mit dem Mediawiki-Framework

der Parserfunktion als Eingabe für Wikitext Tags. Eine Parserfunktion wird im Wi-
kitext in folgender Form verwendet: {{#funktBezeichner:param1=a|param2=b}}. Die
Bezeichnung der Funktion muss dabei in einer Übersetzungsdatei hinterlegt sein
und mindestens in Englisch vorliegen sowie als Magic Word registriert sein, um vom
Mediawiki-System fehlerlos erkannt zu werden. Magic Words sind Strings, die vom
Mediawiki-System nicht direkt ausgegeben werden, sondern stattdessen wird der
Rückgabewert der Funktion ausgegeben, die mit dem Magic Word assoziiert ist. Die
Übersetzungsdatei muss in dem Wiki-System registriert werden, ebenso wie der Funk-
tionsbezeichner und die aufzurufende Funktion. Die Funktion hat über ein assoziatives
Array Zugriff auf benannte Parameter und kann Wikitext oder HTML-Code zurückge-
ben. Die Rückgabe von Wikitext stellt kein Problem dar, da wie bereits oben erläutert,
die Ausgabe der Parserfunktion nochmals komplett von dem Wikitextparser bearbeitet
wird.

Hooks an Events ermöglichen es, eigene Event Handler mit beliebigen Mediawiki-Events
zu verknüpfen. Dabei gibt es eine Liste4 der momentan über 400 verfügbaren Hooks,
an welchen Funktionen registriert werden können. Dabei ist es auch möglich, an einem
Hook mehrere Funktionen anzuhängen. Die Funktionen werden in diesem Fall nachein-
ander ausgeführt und Änderungen werden von Funktion zu Funktion weitergereicht.
Ein Beispiel für einen in Pattern Repository verwendeten Hook ist BeforePageDisplay.
Damit verknüpfte Funktionen werden jedes Mal aufgerufen, bevor eine Seite frisch
geladen wird.

Spezialseiten sind Seiten im gesonderten Namensraum Spezial und dienen zur Ausführung
von spezifischen Funktionen. Spezialseiten können nicht direkt von Benutzern editiert
werden und werden auf einer speziellen Seite des Wikis aufgelistet. Darüber hinaus
können explizit die Benutzerrechte festgelegt werden, die zum Verwenden einer Spezi-
alseite nötig sind. Dies ist insbesondere nötig, da viele Spezialseiten zu administrativen
Zwecken dienen und daher nur von Administratoren verwendet werden sollten. Spe-
zialseiten werden von der Klasse SpecialPage abgeleitet und durch Überschreiben der
Ausgabefunktion soll valider HTML-Code zur Erzeugung der Spezialseite zurückgege-
ben werden. Falls es erwünscht ist, dass die Seite in der Auflistung aller Spezialseiten
erscheint, müssen dafür Einträge in einer zuvor registrierten Übersetzungsdatei erstellt
werden.

Darüber hinaus wurde versucht, den Best Practises bei der Entwicklung von Mediawiki-
Erweiterungen zu folgen und so entspricht der Aufbau exakt den Mustervorgaben aus
[Meda]. In der Hauptdatei „PatternRepository.php“ werden alle Teilerweiterungen, entspre-
chend der jeweils verwendeten Methode im Mediawiki-System registriert, die benötigten
PHP-Klassen in den sog. Autoloader von Mediawiki hinzugefügt, die Übersetzungs- und
Magic Word-Dateien registriert sowie alle Module für den Resource Loader zusammenge-
stellt. Der Autoloader von Mediawiki sorgt dafür, dass alle benötigten PHP-Klassen geladen
werden, die zu der jeweiligen Erweiterung gehören. Der Resource Loader ist ein relativ

4http://www.mediawiki.org/wiki/Manual:Hooks

81

http://www.mediawiki.org/wiki/Manual:Hooks

5 Implementierung des Pattern Repositorys

neuer Bestandteil von Mediawiki, der eingeführt wurde, um die Leistung und das An-
wendererlebnis der Weboberfläche zu verbessern. Durch die verstärkte Verwendung von
Javascript, CSS und zu übersetzender Textbestandteile entwickelte sich das Problem, dass pro
Seitenaufruf viel unnötiger Javascript-Code zum Benutzer übertragen wurde. Der Resource
Loader versucht dieses Problem zu entschärfen, indem nur tatsächlich auf der Seite benö-
tigte Funktionalitäten geladen werden und möglichst viel Caching verwendet wird [Medb].
Zur Ermittlung der benötigten Ressourcen wird daher für jede Mediawiki-Erweiterung ein
Resource Loader-Modul definiert, welches verwendete Javascript- und CSS-Dateien enthält
sowie Abhängigkeiten zu Mediawiki-Standardbibliotheken, wie z.B. jQuery.

Das Installieren einer Mediawiki-Erweiterung sowie deren Konfiguration, findet in der Datei
„LocalSettings.php“5 statt. Zunächst wird die Hauptdatei der Erweiterung in den allgemeinen
Initialisierungsvorgang von Mediawiki mit eingebunden und ist somit installiert. Sollen
allgemeine Parameter zur Konfiguration an die Erweiterung übergeben werden, geschieht
dies durch globale PHP-Variablen, die ebenfalls in dieser Datei definiert werden können.

5.2 Systemarchitektur

Im vorherigen Abschnitt wurden die Grundlagen und die Möglichkeiten der Entwickelung
mit Mediawiki erläutert, wodurch in diesem Abschnitt auf die konkrete Systemarchitektur,
des für diese Diplomarbeit verwendeten Systems, eingegangen werden kann. In Abbildung
5.1 ist die Systemarchitektur des verwendeten Mediawiki-Stacks dargestellt. Es handelt sich
dabei um eine zwischen Client und Server verteilte 4-Schichten Architektur.

Auf Seite des Clients wird zur Präsentation der Browser benutzt, welcher die vom Wiki
berechneten Seiten rendert. Dabei sind Teile der Anwendungslogik in Form von Javas-
cript und insbesondere jQuery, AJAX und Java-Applets auf den Client ausgelagert. Dabei
wird Javascript mit jQuery v.a. zur Reaktion auf Benutzereingaben und der Anpassung
aufwendiger Teile der Benutzeroberfläche verwendet. AJAX wird u.a. zum dynamischen
Nachladen von Inhaltsbausteinen benutzt, um nicht bereits zu Beginn große Datenmengen
vom Server übertragen zu müssen, wenn danach nur ein Bruchteil tatsächlich benutzt wird.
Java-Applets werden u.a. für das Rendering von Graphen benutzt, die interaktiv auf Einga-
ben des Benutzers reagieren sollen, was mit normalen Bildern in dieser Art nicht möglich
wäre.

Auf Serverseite besteht die Präsentationsschicht aus den dynamisch generierten Webseiten
aus PHP-Aufrufen, die vom Mediawiki-Framework, welches sich auf Ebene der Anwen-
dungslogik befindet, berechnet wird. Hier ist die Abgrenzung der Schichten nicht eindeutig
gegeben, da im Rahmen von Mediawiki die Generierung von HTML und tatsächliche Be-
rechnungen Hand in Hand gehen. Eine eindeutige Trennung ist dafür in Richtung der
Datenhaltungsschicht gegeben, welche sich horizontal wiederum in eine Daten-Interface-
Schicht und Datenschicht sowie vertikal in eine relationale Datenbank und einen Triplestore,

5http://www.mediawiki.org/wiki/Manual:LocalSettings.php

82

http://www.mediawiki.org/wiki/Manual:LocalSettings.php

5.2 Systemarchitektur

aufteilen lassen. Die Daten-Interface-Schicht besteht aus einem PHP-MySQL-Treiber und
einer extra Komponente, dem DIQA Triplestore Connector. Dieser stellt die Verbindung zwi-
schen der Anwendungslogikschicht von Mediawiki und dem Apache JENA Triplestore her.
Die genaueren Zusammenhänge innerhalb der Mediawiki-Architektur werden im Folgenden
Abschnitt ausführlicher beschrieben.
Die Verteilung der Schichten in Abbildung 5.1 auf lediglich Client und einen Server ließe
sich dabei noch auf weitere Systeme ausweiten. Während Präsentations- und Anwendungs-
logik auf dem Server nicht getrennt werden können, könnte die Datenhaltungsschicht auf
ein weiteres System ausgelagert werden. Die vertikale Teilung der Datenhaltungsschicht
würde es ermöglichen, die relationale Datenbank sowie den Triplestore, auf zwei getrennte
Datenbankserver zu verteilen, um eine bestmögliche Skalierung zu erreichen.

Abbildung 5.2 ermöglicht einen genaueren Einblick in den Aufbau der Anwendungslogik
und Datenhaltungsschicht sowie in dazugehörige Zusammenhänge und Abhängigkeiten.
Die Ausführung der Anwendungslogik geschieht auf einem Apache Http-Server, welcher
über einen PHP Interpreter verfügen muss und in der Abbildung als äußerstes, oberes
Rechteck dargestellt ist. Den Rahmen für die Anwendung bildet das Mediawiki-Framework,

Client

Server

Client

Server

Präsentation

Anwendungslogik

Anwendungslogik

Javascript, jQuery, AJAX, Java-Applet

Datenschicht

Präsentation

Browser

PHP – Mediawiki + Semantic Mediawiki +
DataWiki

PHP - Dynamisch generierte Webseiten

Daten-Interface-Schicht

MySQL

DIQA Triplestore
Connector

Apache JENA
Triplestore

Abbildung 5.1: Systemarchitektur mit angebundenem Triplestore. Auf der linken Seite ist
das allgemeine Schichtenmodell zu sehen und rechts die konkrete Aus-
prägung des Mediawiki-Stacks mit den verwendeten Technologien (nach
[Kar11])

83

5 Implementierung des Pattern Repositorys

welches in der Abbildung als braunes Rechteck dargestellt ist. Es bietet eine große Vielfalt
von möglichen Erweiterungspunkten, weswegen es viele Erweiterungen (Extensions) aufweist,
die größtenteils als nicht kommerzielle Open Source-Projekte entwickelt wurden. Als Basis
für DataWiki und das entwickelte Pattern Repository dient, das in der Abbildung als beiges
Rechteck dargestellte, Semantic Mediawiki, welches Mediawiki um semantische Attribute und
eine eigene Querysprache erweitert. Es handelt sich dabei um eine Mediawiki-Erweiterung,
weswegen sich das Semantic Mediawiki-Rechteck in der Abbildung in dem hellen Rahmen
für Extensions befindet. Mit Semantic Mediawiki als Basis wurden weitere Erweiterungen
entwickelt, die dabei die möglichen Anwendungsgebiete der semantischen Attribute erwei-
tern oder auch Teile des Semantic Mediawiki ersetzen. DataWiki, welches selbst wiederum
aus einer Reihe von verschiedenen Erweiterungen besteht, erweitert Semantic Mediawiki
um die Anbindung an einen Triplestore und um viele Komfortoptionen wie beispielsweise
WYSIWYG-Eingabe von Wiki-Artikeln, ein Wiki Administration Tool zur komfortablen Instal-
lation von Erweiterungen aus einem Extension-Repository und weiteres. Die Abhängigkeit
von DataWiki zu Semantic Mediawiki ist durch den gestrichelten Pfeil dargestellt, wobei
die Abhängigkeit in Richtung des Pfeiles definiert ist. Die im Rahmen dieser Diplomarbeit

Mediawiki

Apache HTTP Server + PHP Interpreter

Extensions

Triplestore In-
Memory Tabellen

Semantic
Mediawiki

DataWiki

Pattern
Repository

Semantic
Forms

GraphViz

Category Tree

Mediawiki
Tabellen –

Artikel,
Kategorien,…

MySQL

Semantic
Mediawiki

Tabellen – Sem.
Attribute

Java

DIQA
Triplestore
Connector

Apache Jena

Abbildung 5.2: Aufbau von DataWiki. Legende: Gestrichelter schwarzer Pfeil=Abhängigkeit,
Braune Linie=Verbindung zu MySQL-Datenbanktabelle, Lila Linie=Für den
Triplestore benötigte Verbindung

84

5.3 Import des Datenmodells

entwickelte Erweiterung Pattern Repository wiederum besitzt Abhängigkeiten zu den Erwei-
terungen Semantic Forms, Category Tree und GraphViz, was wiederum durch die gestrichelten
Pfeile in der Abbildung dargestellt ist. Welche Komponente von Pattern Repository dabei
genau von welcher Erweiterung abhängig ist, wird in Abschnitt 5.5 genauer erläutert. Die
verwendeten Erweiterungen wurden im Einzelnen bereits in Abschnitt 2.3.7 vorgestellt.

Die verschiedenen Verbindungen zu unterschiedlichen Datenbanken sind in Abbildung 5.2
anhand von farbigen Linien dargestellt. Die linke, braune Linie steht für die Verbindung von
Mediawiki über die PHP-MySQL-Bibliothek zu den allgemeinen Tabellen in der relationa-
len MySQL-Datenbank. In diesen Tabellen sind beispielsweise Artikelinhalte, Kategorien,
Namensräume oder auch Links der Artikel untereinander gespeichert. Bilder und sonstige
Medien werden im Dateisystem gespeichert, so dass in der Datenbank lediglich Verweise
darauf gespeichert werden müssen. Die Verbindung von Semantic Mediawiki zu den ent-
sprechenden MySQL-Tabellen wird ebenfalls über die PHP-MySQL-Bibliothek hergestellt
und ist in der Abbildung durch die rechte, braune Linie dargestellt. Dabei werden in der
Mediawiki-Datenbank neue Tabellen für semantische Attribute, gecachte Ergebnisse von
bereits ausgeführten Querys, URIs von Ontologie-Elementen und einige weitere Tabellen für
interne Verwendungszwecke erstellt.

Sobald der DIQA Triplestore Connector mit dem Apache Jena Backend installiert wurde,
gibt es die in der Abbildung durch lila Linien dargestellte Verbindungen. Die Verbindung
des Wikis wird über die DataWiki-Komponente Halo hergestellt. Dabei agiert der Triple-
store Connector als Webservice, der über eine RESTful Http-Verbindung aufgerufen wird
und in der Abbildung als obere, in Lila dargestellte, Linie erkennbar ist. Beim Starten des
Triplestores wird über einen Java-MySQL Connector (in der Abbildung dargestellt als die
lila Linie zwischen Triplestore Connector und dem MySQL-Quadrat) zunächst ein komplet-
tes In-Memory Abbild der MySQL-Datenbank erstellt. Dabei wird von dem relationalen
Datenschema auf ein Tripelschema abgebildet, welches anhand der Verbindung zwischen
dem Triplestore Connector und Apache JENA nun in dem für Triplestores typischen Graph-
Format abgelegt wird. Wird in der Wiki-Anwendung eine Query auf einer Seite gespeichert,
wird diese von der Halo Extension zunächst ins SPARQL-Format umgewandelt und dann
über den Triplestore Connector an den Jena Triplestore geschickt, was in der Abbildung
anhand der rechten lila Linie erkennbar ist. Dort wird mit Unterstützung eines Reasoners die
Ergebnismenge berechnet und wiederum über den Connector an die Halo Extension zurück
geschickt. Dort werden die Ergebnisse normalisiert, so dass das gleiche Ergebnisformat
vorliegt, wie wenn die Query an die MySQL-Datenbank geschickt worden wäre.

5.3 Import des Datenmodells

In den beiden vorherigen Abschnitten wurden die Rahmenbedingungen erklärt, wie mit dem
verwendeten System entwickelt werden kann und wie die zugehörige Systemarchitektur
dazu aussieht. Damit kann nun auf die Implementierung des ersten Teils des Ergebnisses
dieser Diplomarbeit eingegangen werden, dem Importer für das Datenmodell. Nachdem
ein Datenmodell modelliert wurde, und ein entsprechend eingerichteter DataWiki-Stack zur

85

5 Implementierung des Pattern Repositorys

Verfügung steht, kann mit dem Import begonnen werden. Dies geschieht mithilfe eines Java-
Programms, welches die Tripel aus den Datenmodell-Ontologien einliest und entsprechend
parst, so dass die Zuordnung wie in Abbildung 4.13 dargestellt aus Abschnitt 4.4.3 geschieht.
Die OWL-Ontologien sollten dabei in RDF/XML-Serialisierung vorliegen. Im Folgenden soll
dargestellt werden, in welcher Reihenfolge das Parsing abläuft und welche Klassen daran
beteiligt sind:

1. DesignPatternWikiMaintenance: Dies ist die Hauptklasse, die die Main-Methode ent-
hält. Sie dient zum Verarbeiten der Eingabeparameter, wie z.B. Pfade zu den Ontologie-
Dateien oder Login-Daten für das Wiki und organisiert das Zusammenspiel der einzel-
nen Hilfsklassen.

2. WikiImporter: Wurde als Wrapperklasse für wiki-java6 geschrieben, um die Interaktion
mit dem Wiki zu vereinfachen. Wiki-java ist ein Mediawiki-Bot-Framework, welches
den Zugriff auf die von Mediawiki zur Verfügung gestellte API ermöglicht, und
so das Erstellen und Editieren von Seiten im Wiki ermöglicht. Die Wrapperklasse
WikiImporter wurde verfasst, um erweiterte Funktionalitäten, wie beispielsweise das
Anhängen von Text an das Ende eines Artikels, zu ermöglichen. Beim Instanziieren
der Klasse wird eine Verbindung zu dem Wiki mit zuvor angegebenen Logindaten
hergestellt.

3. TargetPropertiesImporter: Im Fall, dass eine Ontologie mit Zieleigenschaften als Pa-
rameter an das Hauptprogramm übergeben wurde, dient diese Klasse zum Erzeugen
der Kategorienhierarchie der Zieleigenschaften, zum Erzeugen der Zieleigenschaften-
seiten im Namensraum Ontology sowie deren Vernetzung durch den semantischen Link
Has Subelement. Darüber hinaus werden die semantischen Attribute erzeugt, welche
zum Abbilden der n-ären Relation in Semantic Mediawiki nötig sind. Zudem werden
die nötigen Daten für die Klasse RepoImportUtil gespeichert, die zur Generierung des
Formulars und der Templates nötig sind. Zum Parsen der OWL-Ontologie wird die
Jena RDF API benutzt [McB01]. Als Resultat erhält man Subjekt-Prädikat-Objekt Tripel,
die sich je nach gesuchter Information weiterverarbeiten lassen. Die Hierarchie der
Zieleigenschaften wird dabei zunächst in einem Graphen gespeichert, der anschließend
rekursiv traversiert wird, um die Inhalte mithilfe der WikiImporter-Instanz in das Wiki
zu übertragen.

4. RepoImportUtil: Diese Klasse dient zum Import der Ontologie, welche das Kerndaten-
modell enthält. Die OWL-Daten werden ebenfalls mithilfe der Jena RDF API eingelesen
und daraus werden Kategorienhierarchie, Konzeptseiten und semantische Attribute
erzeugt. Anschließend wird die Klasse TemplateFormImporter verwendet, um die für
das Patternformular benötigten Templates und das Formular selbst zu erzeugen. Falls
zuvor bereits eine Zieleigenschaften-Ontologie eingelesen wurde, wird dafür ein zu-
sätzliches Template erzeugt und die Eingabe in das Formular integriert. Zuletzt werden
die Aufrufe zum Erzeugen von Visualisierungsgraphen auf den Wikiseiten eingetragen,
falls dies in der Ontologie modelliert wurde.

6http://code.google.com/p/wiki-java/

86

http://code.google.com/p/wiki-java/

5.4 Das Patternformular

5. DatawikiCustomizer: Diese Klasse dient hauptsächlich dazu, das Aussehen von Da-
taWiki dem Benutzerinterface des Pattern Repositorys anzupassen. Dazu werden
Einträge in der horizontalen oberen Hauptmenüleiste erzeugt, die Zugriffe auf einzelne
Funktionalitäten ermöglichen. Darüber hinaus wird die Hauptseite mit Inhalt gefüllt,
welche der Benutzer als Erstes beim Aufrufen des Wikis sieht und die Seite mit dem
Inhaltsverzeichnis wird erzeugt.

5.4 Das Patternformular

Nachdem nun, mithilfe des im vorherigen Abschnitt beschriebenen Programms, das Daten-
modell in das Wiki importiert wurde, steht nun das Patternformular zur Verfügung. Da
dieses ein zentraler Bestandteil der Funktionalität zum Erstellen und Editieren von Patterns
darstellt, soll es im folgenden Abschnitt detailliert beschrieben werden. Das Formular wird
durch die Erweiterung Semantic Forms realisiert, wozu die Grundlagen des Funktionsum-
fangs in 2.3.7 beschrieben sind. Während es im Prinzip eine Eingabemaske für die Parameter
der verwendeten Templates darstellt, sorgen insbesondere auf die Eingabedaten abgestimmte
Eingabetypen für die nötige Benutzerfreundlichkeit bei der Bedienung des Formulars. In
Abschnitt 4.4.1 werden anhand von Abbildung 4.10 die möglichen Eingabetypen beschrie-
ben, wie sie im Datenmodell für das Wiki verfügbar sind. Es folgt eine Zuordnung zu den
Semantic Forms Eingabetypen, auf welche die Eingabetypen beim Import aus der Ontologie
im Formular abgebildet werden.

• Textarea: Entspricht direkt dem Semantic Forms-Eingabetyp Textarea, welcher ein
einfaches, mehrzeiliges Feld zur Texteingabe darstellt. Als Parameter wird eine feste
Größe übergeben, so dass Textarea-Felder und Semantic Textarea-Felder gleich groß
im Formular dargestellt werden.

• Image: Entspricht dem Semantic Forms-Eingabetyp Text with autocomplete, welcher
eine einzeilige Texteingabe ermöglicht und dabei per Autovervollständigung Werte
vorschlägt. Welche Vorschläge gemacht werden sollen, wird über einen Parameter
gesteuert, welcher als Eingabe die Anweisung erhält, alle bereits vorhandenen Bilder
im System zur Autovervollständigung zu benutzen. Diese sind im Namensraum File
gespeichert. Über den Parameter uploadable wird zudem erreicht, dass neben dem
Texteingabefeld auch ein Link „Upload“ erscheint, der das Hochladen von neuen
Bildern ermöglicht.

• ImageWithLabel: Zusätzlich zu dem Eingabetyp Image wird im Formular ein zu-
sätzliches Feld zur Eingabe einer Bildbeschriftung erzeugt, welches den Semantic
Forms-Eingabetyp Text verwendet. Als Eingabe wird ein einfacher Text erwartet, der
im Template an der richtige Stelle als extra Parameter eingefügt wird.

• Category: Entspricht dem Semantic Forms-Eingabetyp Category, welcher die Erweite-
rung Category Tree benutzt, um die Auswahl einer Kategorie über einen Kategorien-
baum zu ermöglichen. Als Parameter wird die Wurzel des Baumes benötigt, in diesem
Fall die Kategorie CategoryHierarchy.

87

5 Implementierung des Pattern Repositorys

• Semantic Textarea: Wurde auf Basis des Semantic Forms-Eingabetyps Textarea entwi-
ckelt und ermöglicht das Annotieren von Semantischen Attributen direkt in einem
Freitext. Details zur Implementierung werden in Abschnitt 5.5.1 erläutert.

• VarRelations: Obwohl VarRelations in der Ontologie als Eingabetyp für einen Abschnitt
verfügbar ist, besteht die Darstellung im Formular aus drei Feldern sowie einem
einzelnen Template nur für diesen Abschnitt. Für die Auswahl des zu annotierenden
Relationstyps wird der neu entwickelte Eingabetyp Property Dropdown benutzt. Dieser
erwartet als Parameter eine Konzeptseite, welche eine Aufzählung der zulässigen
semantischen Relationstypen enthält, die dann zur Auswahl bereit stehen. Zur Eingabe
des Zielpatterns wird ein Text with autocomplete-Feld benutzt, das seine Werte von
einer Konzeptseite erhält, die alle verfügbaren Zielpatterns auflistet. Zur Angabe einer
textuellen Erklärung der Verlinkung gibt es schließlich ein Textarea-Feld.

• TargetProps: Der TargetProps-Eingabetyp aus der Ontologie wird im Formular ebenfalls
durch mehrere Felder repräsentiert sowie einem Template nur für diesen Abschnitt.
Für die Auswahl der gewünschten Zieleigenschaft steht ein Dropdown-Menü zur
Verfügung. Zusätzliche Attribute der Relation lassen sich über den Semantic Forms-
Eingabetyp Radiobutton auswählen, wobei vorgegebene auswählbare Werte über den
Parameter Values fest im Formular übergeben werden. Die Korrelation wird schließ-
lich über den im nächsten Punkt genauer erläuterten Eingabetypen Number Slider
ausgewählt.

• Number Slider: Dieser neu für Semantic Forms entwickelte Eingabetyp ermöglicht
die Eingabe einer Zahl aus einem vorgegebenen Zahlenbereich heraus. Durch entspre-
chende Parameter kann der Zahlenbereich verändert werden, der zur Auswahl bereit
stehen soll. Details zur Implementierung gibt es in Abschnitt 5.5.3.

Bevor die aufgelistete Zuordnung von Eingabetypen zu Feldern relevant wird, muss zunächst
ein Template in das Formular eingebunden werden. Dies geschieht durch einen Aufruf über
den Formularnamen, und die Zuordnung von Eingabetypen zu den im Template vorhan-
denen Feldern. Um es zu ermöglichen, ein Template beliebig oft in einem Formular zu
instanziieren und dementsprechend den Template-Inhalt beliebig oft in das resultierende
Dokument einzufügen, gibt es beim Aufruf eines Templates den Parameter multiple. Dieser
Parameter bezieht sich jedoch immer auf ein komplettes Template und kann nicht für einzel-
nen Feldern definiert werden. Daraus resultiert die Notwendigkeit, die Templates für das
Patternformular so aufzuteilen, dass mehrfach instanziierbare Inhalte gesonderte Templates
erhalten. Dementsprechend erhalten die Eingabetypen VarRelations und TargetProps aus
der Datenmodellontologie jeweils einzelne Templates.

5.5 Die Erweiterung - Pattern Repository

Der Funktionsumfang, welcher durch das entwickelte Pattern Repository zur Verfügung
gestellt wird, besteht zunächst aus dem Datenmodell, welches in Kapitel 4.4 beschrieben wird,
und dessen Import detailliert in Abschnitt 5.3 erläutert wurde. Mithilfe des Datenmodells als

88

5.5 Die Erweiterung - Pattern Repository

Grundlage wurde nun möglichst viel Funktionalität durch bereits existierenden Mediawiki-
und Semantic Mediawiki-Erweiterungen realisiert, insbesondere mit Semantic Forms. An
einigen Stellen gab es jedoch Anforderungen, die dadurch nicht abgedeckt werden konnten,
und diese fehlende Funktionalität wurde in Form der Erweiterung „Pattern Repository“
nachgeliefert bzw. eigenständig implementiert.

Die Integration der einzelnen Module der Pattern Repository Erweiterung geschieht über
unterschiedliche Erweiterungspunkte, welche von Mediawiki bzw. den entsprechenden
Mediawiki-Erweiterungen zur Verfügung gestellt werden. Eine Übersicht über die einzel-
nen Module, inklusive den benutzten Erweiterungspunkten und den Abhängigkeiten der
einzelnen Teile, ist in Abbildung 5.3 dargestellt.

Die braunen Rechtecke auf der linken Seite stellen die verwendeten Erweiterungspunkte der
einzelnen Erweiterungen dar. Eine Erklärung der allgemeinen Erweiterungsmechanismen
gibt es bereits in Abschnitt 5.1.2. SF Input Type steht hier für Semantic Forms Input Type und
stellt ein Interface dar, über welches es Semantic Forms erlaubt, beliebige neue Eingabetypen
für die Formulare zu registrieren. Dazu muss lediglich die Klasse SFFormInput erweitert
und ein von Semantic Forms angebotener Parser Hook verwendet werden, über welchen
eigene Eingabetypen, aber auch neue Eingabetypen, eingelesen werden.

Die Rechtecke mit weißem Hintergrund in der Mitte repräsentieren jeweils den Ort, an
dem das Modul eingesetzt wird. Dabei gibt es eine Gruppe, welche neue zusätzliche Ein-
gabetypen für Semantic Forms bietet, zwei Module für die Verwendung auf „normalen“
Inhaltsseiten bzw. auch Kategorieseiten im Wiki und eine eigene Wiki-Spezialseite. Die oran-
gen gestrichelten Pfeile, welche von den einzelnen Funktionsmodulen ausgehen, bedeuten
Abhängigkeiten von anderen Mediawiki- oder Semantic Mediawiki-Erweiterungen und
Javascript-Bibliotheken. Dabei stehen die dunkelgrünen Rechtecke für Mediawiki- und Se-
mantic Mediawiki-Erweiterungen und die hellblauen Rechtecke für Javascript-Bibliotheken,
wobei es sich außer bei jsTree bei den restlichen Bibliotheken um Module von jQuery handelt.
jsTree [Boz] ist eine Bibliothek für die Darstellung von Bäumen mit Javascript. Um den
Best Practises der Mediawiki-Entwicklung zu folgen [Medb], wurden die Abhängigkeiten
der einzelnen Funktionsmodule in Resource Modules zusammengefasst, welche durch den
Mediawiki Resource Loader verwendet werden können.

5.5.1 Annotationsunterstützung - Semantic Textarea

Die Anforderung, in einem bereits existierenden freien Text einzelne Wörter semantisch zu
annotieren, ist in Semantic Mediawiki nur sehr unkomfortabel möglich. Dies soll anhand
eines kleinen Beispiels demonstriert werden. Als Ausgangslage soll folgender Satz dienen:

Dieses Pattern stellt eine Spezialisierung von Pattern xyz dar.

Nun soll im Text eine SpecialisationOf-Verlinkung auf das Pattern Xyz stattfinden. Dabei
darf auch nicht vergessen werden, dass in einem freien Fließtext das andere Pattern eventuell
nicht exakt gleich benannt wurde, wie die tatsächliche Seite im Wiki für das Pattern. Mit den

89

5 Implementierung des Pattern Repositorys

mitgelieferten Mitteln von Semantic Mediawiki müsste die Annotation nun folgendermaßen
geschehen:

Dieses Pattern stellt eine Spezialisierung von Pattern

[[SpecialisationOf::Xyz|xyz]] dar.

Durch den Ausdruck SpecialisationOf::Xyz wird die Verlinkung auf die korrekte Pat-
ternseite hergestellt, und durch den Zusatz |xyz wird nach wie vor „xyz“ im Fließtext
angezeigt. Eine ausreichende Usability ist hier nicht gewährleistet. So erhält der Benutzer
weder Unterstützung bei der Auswahl des semantischen Attributs (durch einen Tippfehler
würde ein anderes Attribut verwendet werden), noch bei der Auswahl des korrekten Ziel-
patterns. Auch hier würde durch einen Tippfehler auf eine andere Entität verwiesen. Unter
Berücksichtigung der Detailanforderungen, die sich aus der generellen Anforderung nach
einem benutzerfreundlichen Annotationsmechanismus ergeben, ist ein neuer Eingabetyp für
Semantic Forms entstanden, welcher Semantic Textarea genannt wurde.

Patternformular – Semantic Forms

Spezial-Seite für Assistenten

jQuery UI Slider

Tag-
Extension

Parser-
Function

Special
Page

jQuery UI Tabs

jQuery Cookie

jsTree

Pattern Repository Wizard

Normale Wikiseite

Query Tabs

Property Visualizer

Property Dropdown

Semantic Textarea
SF Input

Type

Number Slider

jQuery

Semantic Forms

Category Tree

Semantic Drilldown

GraphViz

Abbildung 5.3: Interne Architektur der Erweiterung Pattern Repository. Legende: Schwarz
gestrichelter Pfeil=Zur Realisierung verwendet für. Orange gestrichelter
Pfeil=Abhängigkeit

90

5.5 Die Erweiterung - Pattern Repository

Um ein Wort in einem Text zu annotieren, muss es zuerst mithilfe der Maus markiert werden,
wie es in Abbildung 5.4 zu sehen ist. Nun kann der Button „Annotate“ betätigt werden, der
das Annotationsinterface öffnet, welches in Abbildung 5.5 dargestellt ist.

Mithilfe des Dropdown-Menüs lassen sich semantische Attribute auswählen, welche zuvor
im Datenmodell für den entsprechenden Abschnitt konfiguriert wurden. Auf diese Weise ist
es nicht möglich, nicht existierende Attribute auszuwählen oder durch einen Tippfehler die
Annotation nutzlos zu machen. In dem Textfeld kann schließlich ein Zielpattern ausgewählt
werden, wobei der Benutzer hier mit einer Autovervollständigungsfunktion unterstützt
wird.

Abbildung 5.4: Auswahl des zu annotierenden Wortes in Semantic Textarea

Abbildung 5.5: Annotation mithilfe von Semantic Textarea

Abbildung 5.6: Anschließende Darstellung der Annotation in Semantic Textarea

91

5 Implementierung des Pattern Repositorys

Durch die Betätigung des Buttons „Save“ wird die Annotation gespeichert und auf gleiche
Weise wie ein Hyperlink dargestellt, was in Abbildung 5.6 zu sehen ist. Das tatsächliche Ziel
kann dabei auch jederzeit von dem annotierten Wort abweichen; das annotierte Wort muss
trotzdem nicht verändert werden.

Die technische Umsetzung basiert auf einer Kombination eines iFrames, welches zur Darstel-
lung des sichtbaren Textes und zur Verarbeitung von Eingabeevents mithilfe von jQuery dient
und einer versteckten Textarea, welche den „tatsächlichen“ Text enthält, der im Wiki abge-
speichert werden soll. Die Verwendung eines iFrames mit Aktivierung des designMode=�on�-
Attributs zur Realisierung eines WYSIWYG-Editors ist ein gängiges Vorgehen, und dieser
Teil der HTML-Spezifikation wird von folgenden Browsern in der jeweils neuesten Version
unterstützt: Internet Explorer, Firefox, Opera, Safari und Chrome [Koc]. Die Verwendung
des Design Mode ermöglicht es, auf einem ausgewählten Text innerhalb eines iFrames eine
Liste von Befehlen über das Interface execCommand auszuführen, welche in [Koc] aufgelistet
sind. Herausforderungen bei der Implementierung haben sich v.a. daraus ergeben, dass
eine Art eigene „Markup-Sprache“ entwickelt werden musste, so dass zwar mithilfe des
iFrames lediglich die Möglichkeiten von normalem HTML zur optischen Darstellung der
Annotation ausreichen, im Endeffekt jedoch ein Text entsteht, der der Markup-Sprache von
Sematic Mediawiki entspricht und somit vom System erkannt wird. Dieses Hinzufügen und
Entfernen der Markupsprache bei der Übertragung von Text zwischen dem iFrame und der
versteckten Textarea wird mithilfe von jQuery-Events realisiert.

Während dem Eintippen von Text wird nach jedem getippten Buchstaben der komplette
Text übertragen und in die versteckte Textarea gespeichert. Ebenso wird bei jeder Übertra-
gung die HTML-Darstellung aus dem iFrame in die Semantic Mediawiki-Markupsprache
umgewandelt. Der gleiche Übertragungs- und Umwandlungsvorgang geschieht bei jeder
Annotation, die mithilfe des Save-Buttons abgeschlossen wird.

Das Erstellen aller relevanten Elemente geschieht auf der Seite des Servers durch PHP,
wobei bereits das Dropdown-Menü mit den semantischen Attributen gefüllt wird. Wel-
che semantischen Attribute in dem Dropdown-Menü zur Verfügung stehen, wird dabei
über eine Konzeptseite gesteuert. Dafür gibt es ein festes Mapping zwischen dem Namen
des Abschnitts und einer Konzeptseite, welche nach folgendem Schema benannt wird:
Concept:Abschnittsname_Section. Auf dieser Seite befindet sich eine Query, welche beim
Import des Datenmodells angelegt wurde:

[[Property:+]] [[AllowedSection::Related Patterns]]

Diese Query sucht nach allen semantischen Attributen, die ihrerseits wiederum mit einem
semantischen Attribut AllowedSection annotiert wurden. Dies dient zur Angabe für welche
Abschnitte das Attribut zugelassen ist. Um schließlich das Ergebnis dieser Query für das
Dropdown-Menü zu erhalten, wird eine Hilfsfunktion von Semantic Forms benutzt. CSS-
relevanten Optionen wurden, um eine stärkere Modularisierung und einfacher wartbaren
Code zu erhalten, in eine extra Datei ausgelagert. Die Textarea und das Annotationsfenster
werden per display: none ausgeblendet, wobei bei der Betätigung des Annotate-Buttons

92

5.5 Die Erweiterung - Pattern Repository

der Annotate-Button ausgeblendet wird und dafür das Annotationsfenster eingeblendet.
Durch die Aktivierung des Save-Buttons wird der Vorgang wieder rückgängig gemacht.

Es folgt eine Übersicht, auf welche Dateien die Funktionalität verteilt ist:

• includes/PAREP_SemanticTextarea.php: Abgeleitet von der Semantic Forms-Klasse
SFFormInput, dient zur Generierung des statischen HTML-Codes mit PHP-
Funktionen und zur Füllung des Dropdown-Menüs. Hinzufügen einer Javascript-
Initialisierungsfunktion mithilfe der Semantic Forms-Funktion addJsInitFunctionData,
die ausgeführt wird, sobald der DOM-Tree geladen ist.

• libs/semantictextarea.js: Über eine Initialisierungsfunktion werden die nötigen
Javascript-Event Listener mithilfe von jQuery-Selektoren an die entsprechenden HTML-
Elemente angehängt, um dynamische Funktionalität zu realisieren. Umsetzung der
Markup-Konversion von HTML nach Semantic Mediawiki-Markup und umgekehrt,
wobei als Basis hier reguläre Ausdrücke benutzt werden, um Ausdrücke aus dem
iFrame in Wikitext zu konvertieren.

• skins/PAREP_SemanticTextarea.css: Dient zur Steuerung welche Elemente versteckt
sein sollen und welche angezeigt werden sollen. Korrekte Positionierung der Annotati-
onsbox neben dem Texteingabefeld.

Wie die Funktionalität nun in Semantic Forms integriert wurde, wurde bereits in Abschnitt
5.5 beschrieben.

5.5.2 Auswahl semantischer Propertys - Property Dropdown

Das Property Dropdown-Menü wurde entwickelt, um eine komfortable semantische Ver-
linkung zu anderen Patterns zu ermöglichen. Dies stellt eine wichtige Anforderung dar, da
die Vernetzung der Patterns zu einer Patternsprache als Kernaspekt vieler Patterndomänen
betrachtet werden kann. In Semantic Forms existiert zwar ein Eingabetypen, welcher ein
Dropdown-Menü zur Verfügung stellt, allerdings verfügt dieser nicht über alle benötigten
Features.

Zum Auffinden der erlaubten semantischen Linktypen von dem Abschnitt ausgehend, in
dem das Dropdown-Menü verwendet wird, soll eine Query ausgeführt werden. Diese Query
befindet sich auf einer Konzeptseite, die entsprechend den Namen des Abschnitts trägt und
während des Imports des Datenmodells erzeugt wurde. Für den Abschnitt Related Patterns
würde die Konzeptseite beispielsweise „Concept:Related_Patterns_Section“ heißen. Würde
nun der Standardeingabetyp von Semantic Forms verwendet, würden die gefundenen Link-
typen jeweils ihren Namensraum vor ihrer Bezeichnung tragen, z.B. „Property:Combining“.
Dies liegt daran, dass es keiner der normalen Anwendungsfälle von Semantic Forms ist,
dynamisch einen semantischen Linktyp auszuwählen. Normalerweise wurden diese zuvor
bereits statisch erzeugt, sodass anhand der Formulare lediglich Inhalte für die Linktypen
eingegeben werden. Die dynamische Verwendung wird nun möglich, indem der Name der
Property selbst einen Parameter in dem zugehörigen Template darstellt, ebenso wie der
zugewiesene Wert. Für die Erzeugung einer gültigen semantischen Annotation der Form

93

5 Implementierung des Pattern Repositorys

[[property::value]] durch das Template ist es nötig, den Namensraum Property in dem
Bezeichner zu entfernen.

Zu diesem Zweck wurde der Semantic Forms Dropdown-Eingabetyps SFDropdownInput

so erweitert, dass als zusätzlicher Parameter angegeben werden kann, ob ein eventuell in
den Einträgen des Menüs enthaltener Namensraum entfernt werden soll. An anderer Stelle
wurde überflüssige Funktionalität entfernt, um den Programmcode schlank zu halten und da
für allgemeine Zwecke weiterhin das Semantic Forms Dropdown-Menü verwendet werden
sollte. Da das Menü wie ein Standard Dropdown-Menü aussieht, folgt keine Abbildung,
sondern direkt die Erklärung, an welcher Stelle die PHP-Datei mit der Implementierung
liegt.

• includes/PAREP_PropertyDropdown.php: Abgeleitet von der Klasse SFFormInput. Ge-
neriert den statischen HTML-Code für das Menü und führt die nötigen String-
Operationen durch.

5.5.3 Zahlenauswahl - Number Slider

Der Number Slider wurde aufgrund der Anforderung entwickelt, Zieleigenschaften an-
notieren zu können. Wie in Abschnitt 4.2.2 beschrieben, ist es bei der Annotation von
Zieleigenschaften erwünscht, die Relation mit zusätzlichen Attributen versehen zu können.
Neben textuellen Attributen, welche im Formular über ein normales Textfeld eingegeben
werden können, ist ein denkbarer Anwendungsfall die Angabe eines Korrelationswerts
zwischen einem Pattern und einer Zieleigenschaft. Dieser Korrelationswert entspricht ei-
ner prozentualen Angabe von 0 bis 100. Um eine schnelle, nicht notwendigerweise sehr
präzise Eingabe zu machen, biete sich hier ein Regler sehr gut an. Die Umsetzung ist in
Abbildung 5.7 dargestellt, wobei es, wie in der Abbildung anhand des kleinen Textfeldes
erkennbar, neben der Eingabe durch den Regler auch die Möglichkeit gibt, direkt eine Zahl
einzutippen.

Abbildung 5.7: Eingabe eines Zahlenwerts durch den Number Slider

Da es sich bei dem Number Slider um einen Eingabetypen handelt, wurde er als zusätzli-
cher Eingabetyp zu Semantic Forms entwickelt. Es besteht eine Abhängigkeit zu Semantic
Forms, was wiederum auch eine vollständige Integration ermöglicht. Zur Darstellung des
Schiebereglers selbst wurde die jQuery UI-Bibliothek Slider7 benutzt. Eine Besonderheit
bei der technischen Umsetzung stellte die Anpassung des Schiebereglers für die multiple
Instance-Template-Funktion von Semantic Forms dar. Diese Funktion ermöglicht es, wie bereits

7http://jqueryui.com/slider/

94

http://jqueryui.com/slider/

5.5 Die Erweiterung - Pattern Repository

genauer in Abschnitt 5.4 beschrieben, ein Template mehrmals innerhalb eines Formulars zu
instanziieren und so eine variable Anzahl von gewissen Inhaltsbestandteilen zu ermöglichen.
Gerade bei der Annotation von Zieleigenschaften ist dies nötig, da es sein kann, dass der
Benutzer gar keine Zieleigenschaften annotieren möchte oder eine beliebige große Anzahl.
Das Erzeugen des jQuery-Elements Slider geschieht über eine Instanziierungsfunktion, wel-
che zum Zeitpunkt des Erzeugens des Eingabetyps an das, den Eingabetyp umgebende,
Div-Element angehängt wird. Um den Slider im richtigen Div-Element zu speichern, wird
beim Erzeugen des HTML-Codes für den Eingabetyp eine statische ID vergeben. Die In-
stanziierung neuer Inhaltselemente wird so durchgeführt, dass zunächst ein Inhaltselement
als Prototyp erzeugt und unsichtbar gemacht wird. Bei jeder Instanziierung wird nun eine
Kopie des Prototyps erstellt, und im Rahmen der Instanziierungsfunktion wird eine neue ID
für Semantic Forms-eigene Eingabetypen berechnet und zugewiesen. Da dies leider nicht
dokumentiert ist, musste dieses Verhalten durch die Analyse des Semantic Forms-Code
herausgefunden werden. Danach konnte die Instanziierungsfunktion des Number Sliders so
angepasst werden, dass auch er eine neue eindeutige ID erhält, und so auch bei mehreren
Instanzen des Schieberegler immer genau die ausgewählten Werte in der vom Formular
generierten Seite gespeichert werden.

Es folgt eine Übersicht, auf welche Dateien die Funktionalität verteilt ist:

• includes/PAREP_NumberSlider.php: Abgeleitet von der Klasse SFFormInput. Gene-
riert den statischen HTML-Code und hängt die Instanziierungsfunktionen an den
Eingabetyp an.

• libs/numberslider.js: Erstellung des jQuery Sliders in dem dafür vorgesehenen Div.
Erzeugung von dynamischen IDs bei multiple Instance-Templates.

• skins/PAREP_NumberSlider.css: Einbindung des für die jQuery-Bibliothek nötigen
CSS-Codes.

5.5.4 Ausblendbare Querys - Query Tabs

Um die Navigation durch das Pattern Repository entlang der Patternsprache möglichst intui-
tiv zu gestalten, ist es nötig, vorhandene semantische Verlinkungen maximal auszunutzen,
ohne den Endnutzer dabei durch zu viele Informationen zu verwirren. Die Patternsprache
ist durch die semantischen Verlinkungen der Patterns zueinander in Form der semantischen
Daten abgelegt und kann nun durch Querys abgerufen werden. Wenn nun pro Pattern eine
große Informationsvielfalt vorhanden ist, könnte schnell die Übersichtlichkeit verloren gehen.
Dies hätte den Effekt, dass der Benutzer noch unsicherer ist, wie er weiter navigieren soll.
Daher muss ein Kompromiss zwischen dem Ausnutzen der Informationsvielfalt und dem
Verhindern der Überforderung des Benutzers angestrebt werden. Ausblendbare Querys, die
sich auf normalen Seiten integrieren lassen, bieten sich hierfür an.

In Abbildung 5.8 ist die Leiste von ausgeblendeten Querys zu sehen, die sich durch einen
Klick auf die gewünschte Query öffnen lassen und ganz am Ende eines Patterns eingeblendet
werden soll. Dabei können die Reiter der einzelnen Querys frei benannt werden, und die

95

5 Implementierung des Pattern Repositorys

Querys selbst sind beliebig komplexe einbettbare Semantic Mediawiki- oder SPARQL-
Querys. In Abbildung 5.9 ist eine aufgeklappte Query mit einer einfachen Ergebnistabelle zu
sehen, welche durch einen wiederholten Klick auf den entsprechenden Reiter auch wieder
geschlossen werden kann.

Abbildung 5.8: Ausgeblendete Querys

Abbildung 5.9: Eingeblendete Query

Die technische Umsetzung von Query Tabs beruht auf einer Erweiterung der Wiki Mar-
kupsprache und benutzt zur Visualisierung die jQuery UI-Bibliothek Tabs. Es werden zwei
neue Markupbefehle eingeführt, <tabs> als äußere Umgebung für Tabs und <tab> um den
tatsächlichen Inhalt eines Tabs abzulegen, wobei zusätzlich noch ein Tabtitel angegeben
werden kann. Die größte Schwierigkeit bei der Implementierung stellte die Verkettung
der nötigen Befehle für die Übergabe an den Mediawikiparser dar. Zunächst muss nach
dem Öffnen einer <tabs>-Umgebung der Mediawikiparser noch einmal aufgerufen werden,
um die enthaltenen <tab>-Bestandteile zu erhalten und die damit verknüpften Funktionen
aufzurufen. Zuvor muss ein Div-Container mit dem von jQuery Tabs benötigten Daten-
modell erzeugt werden, in welchen die Tabs schließlich ihre Inhalte einfügen können. Bei
der Verarbeitung der einzelnen Tabs wiederum muss darauf geachtet werden, dass der
Parser den Inhalt nach Parserfunktionen durchsucht, welche Querys enthalten, so dass am
Ende der Benutzer auch ein Queryergebnis angezeigt bekommt und nicht nur die Query
als Text. Das Ergebnis wird dynamisch in den Div-Container eingefügt und zuletzt wird
aus der fertigen Datenstruktur eine jQuery Tabs-Leiste erzeugt. Eine weitere Schwierigkeit
stellte die Anwendung von Javascript-Initialisierungsfunktionen auf bestimmte Elemente
des DOMs dar, deren vollständige IDs erst zur Laufzeit im PHP-Code erzeugt werden,
indem an ein festes Präfix eine einzigartige MD5-Hashzahl angehängt wird. Dafür wurde
die Lösung gewählt, dass an die Elemente des Div-Containers der Tableiste mithilfe von
jQuery dynamisch Initialisierungsfunktionen angehängt werden, welche die richtigen IDs
der Elemente enthalten. Nach dem Laden des Dokuments wird mithilfe von statischem
Javascript nach Divs mit dem entsprechenden Präfix in der ID gesucht und alle angehängten
Funktionen werden ausgeführt. Einen ähnlichen Mechanismus implementiert Semantic

96

5.5 Die Erweiterung - Pattern Repository

Forms, so dass bei der Implementierung der anderen Semantic Forms Eingabetypen für das
Pattern Repository dieses Problem nicht auftrat.

Es folgt eine Übersicht, auf welche Dateien die Funktionalität verteilt ist:

• includes/PAREP_QueryTabs.php: Enthält die Tab-Renderfunktionen, welche an die
Aufrufe des Mediawikiparsers gekoppelt sind, sobald die entsprechenden Markup-
Befehle geparst werden.

• libs/querytabs.js: Aufruf der an die Elemente angehängten Initialisierungsfunktio-
nen. Erstellen des jQuery Tabs-Elements

• skins/PAREP_QueryTabs.css: Einbindung des für die jQuery-Bibliothek nötigen CSS-
Codes.

5.5.5 Visualisierung von semantischen Prädikaten im Kontext von Kategorien -
Property Visualizer

Zur Gewinnung eines entsprechenden Mehrwerts aus der semantischen Annotation von
Patternrelationen bietet es sich an, diese neu beschriebenen Informationen zu visualisieren,
um sie für den Menschen greifbarer zu machen und besser verständlich aufzubereiten. Wie
bereits in Abschnitt 4.2.1 beschrieben, dienen solche Relationen der Patterns untereinander
dem Aufbau einer Patternsprache, wodurch man durch die Visualisierung der Relationen
eine Visualisierung des Aufbaus der Patternsprache erhält. Dies sind sowohl Anforderungen
des Pattern Autors als auch des Endnutzers.

Hierfür wurde nun eine Erweiterung entwickelt, die es ermöglicht, unter Angabe einer
Kategorie und eines semantischen Attributs, die Vernetzung der Patterns aller Unterkate-
gorien durch die semantischen Links als gerichteten Graphen darzustellen. Ein mögliches
Beispiel für einen solchen Graphen ist in Abbildung 5.10 dargestellt. Die grauen Recht-
ecke repräsentieren jeweils eine Kategorie von Patterns, wobei der weiße Schriftzug die
Bezeichnung der Kategorie darstellt und die Patterns selbst in schwarz geschrieben sind. Die
Pfeile stehen für semantische Links entsprechend dem Attribut, welches zuvor ausgewählt
wurde. Voraussetzungen, um ein solches Ergebnis zu erhalten, sind die Gliederung einer
Patterndomäne in Unterkategorien sowie die Existenz von gerichteten semantischen Links.

Die technische Umsetzung wurde durch das Hinzufügen einer Mediawiki-Parserfunktion
realisiert, welche eine korrekte Eingabe im DOT-Format für die Mediawiki-Erweiterung
GraphViz produziert, die bereits in Abschnitt 2.3.7 vorgestellt wurde. Die Parserfunktion
#pareptree nimmt als Parameter eine Kategorie und das semantische Attribut, das visua-
lisiert werden soll, entgegen. Nun wird zunächst intern ein mehrdimensionales Array der
Kategorien, Unterkategorien und der dazugehörigen Seiten erstellt sowie ein mehrdimensio-
nales Array, welches ein Array von ausgehenden Links pro Seite speichert. Mithilfe dieser
Informationen wird ein mit <graphviz> umgebener Text im DOT-Format erstellt, der den
abzubildenden Graph beschreibt. Damit als Resultat schließlich nicht dieser Text, sondern
die gewünschte Grafik dargestellt wird, ruft die Property Visualizer-Parserfunktion den
Mediawiki-Parser auf, der Wikitags auflösen soll. Dadurch wird die Erweiterung GraphViz

97

5 Implementierung des Pattern Repositorys

aufgerufen, welche ihrerseits wiederum davon abhängig ist, dass auf dem Server Graphviz
installiert ist. Graphviz erzeugt eine Bilddatei, die ins resultierende Dokument eingebunden
wird.

Es folgt eine Übersicht, auf welche Dateien die Funktionalität verteilt ist:

• includes/PAREP_PropertyVisualizer.php: Extraktion der Eingabeparameter, Aufruf
der PAREPSemPropTree-Klasse und Aufruf des Mediawiki-Parsers.

• includes/util/PAREP_SemPropTree.php: Mithilfe von PAREPTreefunc wird ein Baum
erstellt und schließlich in das Graphviz-Format geparst.

• includes/util/PAREP_Treefunc.php: Enthält nötige Logik für den komfortablen Um-
gang mit Bäumen.

• languages/PAREP.i18n.magic.php: Registrierung eines einzigartigen Namens für die
Parserfunktion. Dabei ist es möglich, den Funktionsnamen an die jeweilige Sprache
des Wikis anzupassen.

Abbildung 5.10: Visualisierung eines semantischen Linktyps durch den Property Visualizer

98

5.5 Die Erweiterung - Pattern Repository

5.5.6 Suchassistent - Wizard

Als Kern für die Benutzung des entwickelten Pattern Repositorys kann der Suchassistent bzw.
Wizard gezählt werden. Sobald das Repository zu einer Patternsprache vernetzte und durch
semantische Annotationen angereicherte Patterns enthält, sind verschiedene Szenarien für
die Führung des Benutzers durch Empfehlungen möglich. Dabei ist der Wizard insbesondere
dann nützlich, wenn aufgrund der großen Komplexität einer Domäne der Endnutzer auf Pro-
bleme bei dem Einstieg in die Patterndomäne stößt oder Schwierigkeiten bei der Navigation
durch die Patternsprache hat. Wegen diesen unterschiedlichen Anwendungsfällen wurde
die Grundstruktur des Wizards so gewählt, dass der Benutzer zunächst auswählen kann,
welche Art der Unterstützung benötigt wird bzw. welche Art von Vorschlägen erwünscht
ist. Das Ziel liegt jedoch immer darin, dem Benutzer möglichst sinnvolle Patternvorschläge
zu bieten. In dem Fall, dass der Benutzer eine ganze Liste von Vorschlägen erhält, die zwar
alle interessant für ihn sind, aber die er nicht gleichzeitig bearbeiten kann, gibt es die in
Abschnitt 4.3.2 beschriebene „Leseliste“. Diese stellt eine zusätzliche Funktion des Wizards
dar und ermöglicht das Vormerken von Patterns, die der Benutzer später noch lesen möchte.
Darüber hinaus lässt sich auf diese Weise ein System von Patterns anhand der Leseliste
zusammenstellen, auf deren Basis weitere Empfehlungen für Patterns möglich sind, die sich
mit den in der Liste vorhandenen Pattern kombinieren lassen.

Abbildung 5.11: Das Hauptmenü des entwickelten Pattern Wizard - Links das Auswahlmenü
der Empfehlungsfunktionen und auf der rechten Seite die Leseliste

In Abbildung 5.11 ist das Hauptmenü des Wizards dargestellt. Auf der linken Seite gibt
es die verfügbaren Empfehlungsfunktionen, bei welchen eine getätigte Auswahl mit dem
Button Select bestätigt werden kann. Auf der rechten Seite ist die Leseliste, mit einigen
Beispielpatterns als Inhalt, dargestellt. Im Folgenden soll auf die Umsetzung der einzelnen
Funktionen eingegangen werden. Bei der Beschreibung des konzeptionellen Entwurfs in
Kapitel 4 wurde in Abschnitt 4.3.1 bereits erläutert, welche unterschiedlichen Einstiegs-
möglichkeiten in eine Patterndomäne in einem Pattern Repository vorhanden sein sollten.
Der Einstieg über grundlegende Patterns ist über den Menüpunkt Choose from basic patterns
erreichbar und der Einstieg anhand von Benutzerrollen über den Menüpunkt Choose your
role. In Abschnitt 4.3.2 wurden die weiteren Funktionen entworfen: Choose a target property
ermöglicht die Empfehlung von Patterns anhand von ausgewählten Zieleigenschaften und

99

5 Implementierung des Pattern Repositorys

Choose a solution die Empfehlung anhand von bekannten Anwendungen. Der Menüpunkt
Propose me patterns based on my reading list erlaubt die ebenfalls in Abschnitt 4.3.2 beschriebene
Empfehlung aufgrund von vorhandenen Patterns in der Leseliste.

Der gesamte Wizard wurde in Form einer Mediawiki Spezial-Seite umgesetzt, die über
URL-Parameter8 gesteuert wird. Die genau Funktionsweise von Spezial-Seiten wurde bereits
in Abschnitt 5.1.2 erläutert. Das Hauptmenü mit dem Select-Button wurde dabei durch
ein HTML-Formular umgesetzt, welches bei Betätigung des Buttons eine GET-Anfrage sen-
det und die entsprechende Auswahl an die URL anhängt. Domänenspezifische Angaben
über Kategorien und ähnliche von der Domäne abhängige Anpassungen können in der
Mediawiki-LocalSettings.php vorgenommen werden. Ein großer Teil der sonstigen nötigen
Benutzereingaben wurde über die auf jQuery basierende Javascript-Bibliothek jsTree [Boz]
realisiert. Diese ermöglicht es, unter anderem aus JSON-Daten, eine Baumstruktur zu erzeu-
gen, wobei Labels und hinterlegte Links frei wählbar sind. Sollen anhand der Auswahl in
einem jsTree dynamische Empfehlungen angezeigt werden, wird zur Laufzeit eine SPARQL-
Query aus der Benutzerauswahl erzeugt. Diese wird anschließend per AJAX-Anfrage an den
Triplestore gesendet und das Ergebnis als Tabelle angezeigt. Zudem gibt es die Möglichkeit,
Einträge der Ergebnistabelle per Drag & Drop in die Leseliste einzufügen. Es folgt eine kurze
Beschreibung der einzelnen Funktionen und deren technische Umsetzung:

Auswahl eines bekannten Anwendungsfalls In Abbildung 5.12 ist die Empfehlungsfunk-
tion anhand von bekannten Anwendungsfällen dargestellt. Die auf der linken Seite
dargestellte Auswahl der Anwendungsfälle ist über jsTree realisiert und zeigt zunächst
die Kategorienhierarchie an, die sich unter der in der „LocalSettings.php“ dafür konfi-
gurierten Überkategorie befindet. Nun lassen sich anhand von Checkboxen mehrere
Anwendungsfälle auswählen, an welchen der Benutzer interessiert ist. Bei Betätigung
des Propose Patterns-Buttons wird per AJAX-Aufruf eine PHP-Funktion des Wizards
aufgerufen, mit deren Hilfe dynamisch eine SPARQL-Query erzeugt wird. Die Query
ruft alle Patterns ab, die eine Implemented By-Beziehung zu einem der ausgewählten
Anwendungsfälle haben. Die fertig generierte Query wird in Textform über einen
Aufruf an den Mediawiki-Parser zu dem Triplestore geschickt. Sobald der asynchrone
Aufruf ein Ergebnis zurückliefert, wird dieses in Form einer Ergebnis-Tabelle dem
Endbenutzer angezeigt. Auf die Tabelle wird zusätzliche eine Javascript-Funktion aus-
geführt, die ihr eine bestimmte HTML-Klasse zuordnet. Aufgrund dieser Klasse ist es
nun möglich, per Drag & Drop Ergebnisse aus der Tabelle in die Leseliste einzufügen.

Auswahl von Zieleigenschaften Die Auswahl von Zieleigenschaften ist weitestgehend gleich
umgesetzt wie die Auswahl von bekannten Anwendungsfällen, weswegen hier keine
zusätzliche Abbildung gezeigt werden soll. Die Umsetzung unterscheidet sich lediglich
dadurch, dass die Überkategorie durch einen anderen Parameter gegeben ist und eine
andere Query erzeugt wird. Pro Zeile wird ein Pattern sowie alle Zieleigenschaften
angezeigt, mit welchen es annotiert wurde. Die möglichen Zieleigenschaften hängen
dabei von der Auswahl der jsTree-Einträge durch den Benutzer ab. Zusätzlich gibt es für

8http://www.mediawiki.org/wiki/Manual:Parameters_to_index.php

100

http://www.mediawiki.org/wiki/Manual:Parameters_to_index.php

5.5 Die Erweiterung - Pattern Repository

jede Zieleigenschaft eine Spalte, welche die jeweilige Korrelation der Patterns zu dieser
Zieleigenschaft anzeigt. Die letzte Spalte zeigt den berechneten Durchschnittswert aller
Zieleigenschaftenkorrelationswerte eines Patterns an. Anschließend wird das Ergebnis
anhand dieses Durchschnittswertes sortiert, so dass der Benutzer das Pattern an erster
Stelle erhält, welches am meisten mit seiner Auswahl von Zieleigenschaften korreliert.

Auswahl eines grundlegenden Patterns In Abbildung 5.13 ist die Auswahl eines grund-
legenden Patterns zu sehen, wobei die gezeigten Cloud Computing Patterns aus
[FLR+

13] stammen. Es gibt keine Auswahlmöglichkeiten für den Benutzer, stattdessen
wird eine in der „LocalSettings.php“-Datei per Parameter festgelegte Kategorie von Pat-
terns angezeigt. Dabei können die Patterns entweder direkt vom Benutzer angeklickt
werden, um auf die Seite des entsprechenden Patterns zu gelangen oder per Drag &
Drop in die Leseliste eingefügt werden.

Auswahl einer Benutzerrolle In Abbildung 5.14 ist der Auswahldialog zu sehen, der er-
scheint, falls sich der Benutzer für die Empfehlung anhand einer Benutzerrolle entschie-

Abbildung 5.12: Auswahl eines bekannten Anwendungsfalls im Wizard - Auf der linken Sei-
te geschieht die Auswahl, in der Mitte werden die Empfehlungen angezeigt
und rechts unten ist die Leseliste zu sehen

Abbildung 5.13: Auswahl grundlegenden Patterns im Wizard - Auf der linken Seite ge-
schieht die Auswahl und rechts ist die Leseliste zu sehen. Die abgebildeten
Beispielspatterns sind aus [FLR+

13]

101

5 Implementierung des Pattern Repositorys

den hat. Nach der Bestätigung der Auswahl per Select-Button werden dem Benutzer
die für diese Rolle empfohlenen Patterns, anhand eines jsTrees wie bei der Auswahl der
grundlegenden Patterns, angezeigt. Die in dem Baum angezeigten Kategorien hängen
dabei von den Empfehlungen für die jeweilige Rolle ab, wobei mehrere Kategorien auf
Wurzelebene möglich sind.

Abbildung 5.14: Auswahl einer Benutzerrolle im Wizard - Auf der linken Seite geschieht die
Auswahl und rechts ist die Leseliste zu sehen

Vorschlag aufgrund der Leseliste In Abbildung 5.15 ist die Empfehlungsfunktion der Le-
seliste dargestellt. Dabei ist in der Abbildung bereits ein Beispiel für ein Ergebnis
sichtbar, welches nach der Betätigung des Propose Patterns-Buttons angezeigt wird.
Zuvor erscheint in dem Rahmen Propositions die Aufforderung, den Button zu betätigen.
Der Mechanismus für die Ergebnisanzeige funktioniert gleich wie bei der Auswahl der
Anwendungsfälle, mit dem Unterschied, dass hier keine Benutzereingabe notwendig
ist. Als Eingabe wird der Inhalt der Leseliste verwendet, um wiederum dynamisch
eine SPARQL-Query zu erstellen. Die Query zeigt - wie in Abbildung 5.15 sichtbar - je
Pattern die möglichen Kombinationen und konkurrierende Alternativen an, welche
über die Relationstypen Combining und Competing abgefragt werden. Aus der Ergebni-
stabelle können schließlich alle gewünschten Patterns per Drag & Drop in die Leseliste
hinzugefügt werden.

• LocalSettings.php: Enthält die Parameter zur Konfiguration von den unterschiedli-
chen Kategorien, die im Wizard verwendet werden sollen.

• specials/PAREP_Wizard.php: Enthält die Verarbeitung der übergebenen URL-
Parameter, um je nach Benutzerauswahl die korrekte Seite anzuzeigen. Darüber
hinaus sind hier die AJAX-Callbacks definiert, die zum Erzeugen der dynamischen
SPARQL-Querys und dem Senden der Querys an den Triplestore verwendet werden.

• util/PAREP_JsTree.php: Dient zur Umwandlung von aus dem Wiki abgefragten Daten
in die JSON-Datenstruktur, welche von jsTree zur Darstellung als Baum benötigt wird.

• util/PAREP_SPARQLQueryBuilder: Wird von den verwendeten AJAX-Callbacks aus
PAREP_Wizard.php zur Erstellung der SPARQL-Querys abhängig von den erhaltenen
Benutzereingaben verwendet.

• libs/wizard.js: Enthält die komplette Applikationslogik für die unterschiedlichen
verwendeten jsTrees. Außerdem werden von hier aus die AJAX-Aufrufe für verschiede-
ne Benutzereingaben gestartet und deren Ergebnisse verwaltet. Hier ist ebenfalls die
persistente Speicherung der Leseliste als Cookie realisiert.

102

5.5 Die Erweiterung - Pattern Repository

• skins/PAREP_Wizard.css: Steuert die Anordnung der einzelnen Elemente des Layouts,
so dass sich diese beispielsweise nicht gegenseitig verdecken oder überschneiden.

• languages/PAREP.i18n.php: Enthält Titel für die Spezialseite des Wizards, unter wel-
chem er in der Übersicht aller Spezialseiten erscheint.

Abbildung 5.15: Vorschläge anhand der Leseliste im Wizard - Auf der linken Seite sind die
Vorschläge abgebildet und rechts ist die Leseliste zu sehen

103

6 Ergebnis und Evaluation

Nach der genaueren Erläuterung relevanter Aspekte der Implementierung im vorherigen
Kapitel soll nun anhand von Abschnitt 6.1 das Resultat dieser Diplomarbeit mit der ver-
wendeten Infrastruktur und den Einstellungsmöglichkeiten vorgestellt werden. In Abschnitt
6.2 erfolgt eine Evaluation, welche die Anwendung an zwei Patterndomänen demonstriert
und mit anderen Pattern Repositorys vergleicht. Abschließend erfolgt in Abschnitt 6.3
ein Rückblick auf den Verlauf der Arbeit, und eine kritische Bewertung im Hinblick auf
Verbesserungsmöglichkeiten.

6.1 Das Pattern Repository

Das Resultat dieser Arbeit ist ein Pattern Repository, wobei die Repository-Funktionalität
auf Semantic Mediawiki basiert, welches für die Verwendung mit Patterns angepasst und
erweitert wurde. Eine grobe Übersicht der Bestandteile des Repositorys gibt es bereits in
Abbildung 3.1 aus Abschnitt 3.3, woraus auch ersichtlich ist, dass es sich bei dem Pattern
Repository im Prinzip mehr um ein Framework handelt, als um ein einzelnes Programm.
Da die unterschiedlichen Teile des Systems nie gleichzeitig zum Einsatz kommen, soll im
Folgenden die Reihenfolge der Verwendung beschrieben werden:

1. Modellierung des Datenmodells: Der erste Schritt zur Verwendung der Anwendung
stellt das Editieren und Anpassen der mitgelieferten Datenmodell-Ontologien dar. Da-
bei ist es mindestens notwendig, die Ontologie des Kerndatenmodells auf die eigenen
Ansprüche und insbesondere auf das gewünschte Patternformat anzupassen. Die Onto-
logie der Zieleigenschaften dagegen ist optional, und kann daher auf Wunsch ignoriert
werden. Welche genauen Modellierungsmöglichkeiten es innerhalb der Ontologien gibt,
wurde bereits ausführlich in Abschnitt 4.4 beschrieben. Als Modellierungswerkzeug
kann jedes beliebige Programm verwendet werden, welches OWL-Dateien lesen kann
und das Resultat als OWL in RDF/XML-Serialisierung speichern kann. Im Rahmen die-
ser Diplomarbeit wurde zur Modellierung das Programm Protégé verwendet, welches
in Abschnitt 2.3.5 genauer beschrieben wurde.

2. Import des Datenmodells in eine DataWiki-Installation: Nachdem die Ontologien
den eigenen Anforderungen entsprechend editiert wurden, können sie mithilfe des
Java-Importers in eine Wiki-Installation übertragen werden. Die genauen Schritte
zur Vorbereitung der Wiki-Installation sind in der technischen Dokumentation des
entwickelten Pattern Repositorys hinterlegt. Inwiefern die Ontologie-Elemente auf

105

6 Ergebnis und Evaluation

Elemente des Wikis abgebildet werden, wurde in Abschnitt 4.4.3 dargestellt. Der
Import-Vorgang selbst und dessen Implementierung wurde in Abschnitt 5.3 erläutert.

3. Installation der benötigten Erweiterungen: Die für die volle Funktionalität des Reposito-
rys benötigten Semantic Mediawiki-Erweiterungen müssen auf den Webserver kopiert
werden. Zusätzlich ist es nötig, entsprechende Anpassungen in Konfigurationsdateien
vorzunehmen. Die genauen Schritte sind auch hier ausführlich in der technischen
Dokumentation erläutert.

4. Verwendung des Pattern Repositorys: Nun kann das Pattern Repository verwen-
det werden. Einen Überblick über die einzelnen Funktionen der Pattern Repository-
Erweiterung wurde in Abschnitt 5.5 gegeben.

Abbildung 6.1: Das Hauptmenü des Pattern Repositorys

Eine besondere Rolle bei der Verwendung des Pattern Repositorys spielt das Benutzerinter-
face, welches hauptsächlich aus dem Hauptmenü besteht, das in Abbildung 6.1 dargestellt
ist. Der Hausbutton ganz links öffnet die Hauptseite, welche einen Verweis zu dem Pattern
Repository Assistenten enthält, sowie eine aus einer eingebetteten Query erstellen Tabelle
aller Patterns inklusive deren Icons. Es folgt eine Beschreibung der einzelnen Menüpunkte
und deren Untermenüs:

• Quickstart: Soll den schnellen Einstieg anhand einer Übersicht der Patterns ermöglichen.
Dazu gibt es den Menüpunkt Table of Contents, der ein Inhaltsverzeichnis der Patterns
in Form eines Kategoriebaums enthält. Der Menüpunkt List of All Patterns führt zu
einer Seite mit der bereits beschriebenen dynamischen Auflistung aller existierender
Patterns und deren zugehörigen Icons.

• Wizard: Dient einerseits über Start Wizard zum Aufrufen der Spezialseite für den Pattern
Repository Assistenten. Andererseits lässt sich damit direkt auf die Leseliste zugreifen,
welche mit dem Wizard erstellt werden kann, um daraus weitere vorgemerkte Patterns
aufzurufen.

• Search: Dieses Menü enthält unterschiedliche Suchmöglichkeiten. Mit dem Menüpunkt
Semantic Search lässt sich eine von DataWiki bereit gestellte Volltextsuche starten, die
zudem auch Filterfunktionen zum Ausblenden gewisser Ergebnisteilmengen enthält.
Find Patterns By Target Property öffnet die Spezialseite der Erweiterung Semantic Drill-
down, welche einen semantischen Drilldown anhand von annotierten Zieleigenschaften
ermöglicht.

• Create: Dieses Menü enthält nur den Eintrag Create New Pattern und dient zum Aufrufen
des Patternformulars zum Erstellen von neuen Patterns.

• Help: Dieses Menü enthält Verweise zu kurzen Hilfestellungen bezüglich dem Erstellen
und Suchen von Patterns sowie der Verwendung des Assistenten.

106

6.1 Das Pattern Repository

Der Button New Page neben dem Hauptmenü dient als weitere Möglichkeit, um entweder
ein neues Pattern zu erstellen, oder um eine Seite ohne die Hilfe eines Formulars zu
erstellen. Der Suchdialog ganz rechts bietet eine komfortable schnelle Suchfunktion mit
Autovervollständigung sowie den schnellen Aufruf der Volltextsuche, die auch über das
Menü Search -> Semantic Search aufgerufen werden kann. Die Volltextsuche kann dabei direkt
über einen Klick auf das Lupensymbol für den eingegebenen Begriff aufgerufen werden.

6.1.1 Infrastruktur

Es ist möglich, einen Server für das Pattern Repository sowohl auf Windows- als auch auf
Linux-Basis zu betreiben. Dafür wurden im Lauf der Diplomarbeit sowohl ein Windows
Server 2008 R2-System vollständig konfiguriert, als auch ein Debian 6.0 „Squeeze“-System.
Ein vollständig konfigurierter Server mit installiertem DataWiki stellt die Grundlage dar,
um mit der weiteren Einrichtung fortzufahren, welche im vorigen Abschnitt beschrieben
wurde.

Die Einrichtung der Infrastruktur auf dem Windows-System gestaltet sich dabei sehr un-
problematisch. Seitens DIQA liegen dafür Installationsdateien mit einem sehr benutzer-
freundlichen Installationsassistenten bereit, der DataWiki inklusive XAMPP und Solr sowie
sinnvoller Voreinstellungen installiert. XAMPP1 ist ein Paket, welches den Webserver Apache,
die Datenbank MySQL, PHP und weiteres enthält, womit die Grundanforderungen von
Mediawiki erfüllt sind. Solr2 ist Teil des Apache Lucene-Projekts3 und stellt ein Servlet für
fortgeschrittene Suchoperationen bereit. Im Rahmen von DataWiki dient es zur Realisierung
einer performanten Volltext-Suche. Die Installation des Triplestore Basic funktioniert eben-
falls unkompliziert über einen Installationsassistenten, der automatisch alle Einstellungen
für die Integration mit DataWiki vornimmt.

Unter Linux gestaltet sich die Einrichtung eines mit Triplestore betriebenen DataWiki kom-
plizierter, da keine automatischen Installationsassistenten zur Verfügung stehen. Dadurch
besteht auch keine Bindung an XAMPP, sondern es muss nur dafür gesorgt werden, dass
für Mediawiki möglichst ein Apache-Webserver mit PHP-Interpreter zur Verfügung steht,
sowie eine MySQL-Installation als Datenbank. Um auf keine Probleme durch Inkompatibili-
täten unterschiedlicher Versionen zu stoßen, wird für die Einrichtung unter Linux ebenfalls
XAMPP in der identischen Version wie unter Windows verwendet. Nachdem die Webserver-
Infrastruktur verfügbar ist, folgt die manuelle Installation der gleichen Mediawiki und
Semantic Mediawiki-Versionen, wie sie unter Windows verwendet werden. Um die Vorteile
von serverseitigem Caching ausnutzen zu können, sollte ebenfalls manuell der Cache Mem-
cached4 installiert werden. Für die Solr-Installation sollte man sich des Tricks bedienen, zuvor
eine Windows-Installation einzurichten, und dann den Ordner von Windows nach Linux zu

1http://www.apachefriends.org/en/xampp.html
2http://lucene.apache.org/solr/
3http://lucene.apache.org
4http://memcached.org/

107

http://www.apachefriends.org/en/xampp.html
http://lucene.apache.org/solr/
http://lucene.apache.org
http://memcached.org/

6 Ergebnis und Evaluation

kopieren. Dies ist nötig, da die Solr-Version5, die unter dem DataWiki-Sourceforgeprojekt
erhältlich ist, keinerlei für die Integration mit DataWiki benötigte Einstellungen enthält. Nun
kann mithilfe des Wiki Administration Tools6, das Teil von DataWiki ist, die eigentliche Instal-
lation der restlichen DataWiki-Funktionen begonnen werden. Dies ist über das Webinterface
des Wiki Administration Tools möglich, welches Zugriff auf ein Repository von Erweite-
rungen gewährt, aus welchem auch DataWiki ausgewählt werden kann. Für die Installation
und Integration des Triplestore Basic müssen innerhalb der Mediawiki-Konfigurationsdatei
„LocalSettings.php“ sowie in einer Triplestore Konfigurationsdatei zahlreiche Anpassungen
gemacht werden. Eine ausführliche Anleitung der Einrichtung von DataWiki unter Linux ist
in der technischen Dokumentation zu DataWiki enthalten.

Im Folgenden sind die genauen Versionen der einzelnen Programme und Frameworks
aufgelistet, welche zur Installation einer DataWiki-Installation benötigt werden, die mit dem
Pattern Repository kompatibel ist.

• XAMPP 1.7.4 Beta 2 (in dem DataWiki-Installationsprogramm enthalten)

• Mediawiki 1.17.0

• Semantic Mediawiki 1.7.1

• DIQA DataWiki 1.7.1 Build 134

• DIQA Triplestore Basic 1.7.3 Build 22

6.1.2 Administration

Die Administration des Pattern Repositorys sollte von einem Mediawiki-erfahrenen Admi-
nistrator durchgeführt werden. Neben den üblichen Spezialseiten, die zur Administration
von einzelnen Erweiterungen benutzt werden können, bietet DataWiki eine komfortable
Seite, die alle diesbezüglich wichtigen Funktionen zusammenfasst. Sie ist über den Link
Administration erreichbar, welcher links neben dem Login erscheint, sobald ein Benutzer mit
Administratorrechten eingeloggt ist.

Von dieser Seite aus gibt es Zugriff auf graphische Werkzeuge zur Administration. Mithilfe
des Wiki Administration Tool lassen sich unter anderem Backups der aktuellen Installati-
on erstellen, oder anhand des bereits beschriebenen DataWiki Repositorys Erweiterungen
komfortabel aus einer Liste installieren, ohne dass manuell Anpassungen an Konfigurations-
dateien gemacht werden müssen. Die Triplestore Administrationsseite bietet Informationen
über einen angeschlossenen Triplestore und informiert über den aktuellen Status. Neben
der Verwaltung von Benutzer- und Benutzergruppenrechten ist es außerdem möglich, das
DataWiki-Hauptmenü zu verändern, oder auch den Inhalt der Fußzeile anzupassen.

5http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/SOLR/
6http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/DataWiki%20extensions/

108

http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/SOLR/
http://sourceforge.net/projects/datawiki/files/DataWiki%201.7.1/DataWiki%20extensions/

6.2 Evaluation

6.2 Evaluation

Nachdem vorhergehend das Ergebnis der Diplomarbeit beschrieben wurde, folgt nun dessen
Evaluation und Bewertung. Dabei soll untersucht werden, inwiefern das in Abschnitt 1.1
definierte Ziel erreicht wurde und inwieweit es gelungen ist, die in Kapitel 3 formulierten An-
forderungen zu erfüllen. Insbesondere soll in diesem Abschnitt auch überprüft werden, wie
gut sich das entwickelte Pattern Repository im Umgang mit zwei Beispielpatterndomänen
eignet.

Mit der Entwicklung der in Abschnitt 6.1 vorgestellten Anwendung wurde das Ziel die-
ser Diplomarbeit, ein Pattern Repository zu entwickeln, vollständig erreicht. Anhand des
Repositorys ist es möglich, das Patternformat flexibel auf eine gewisse Patterndomäne
anzupassen und man erhält anschließend ein benutzerfreundliches Formular zur Eingabe
und zum Editieren von bereits vorhandenen Patterns. Die Anpassung des Patternformats
geschieht mit einer OWL-Ontologie, was das Verwenden von beliebigen OWL-kompatiblen
Editoren möglich macht. Durch das Formular ist das Patternformat fest vorgegeben, was
unerwünschte Abweichungen vom „Standard“ ausschließt.

Das Annotieren von semantischen Links ist benutzerfreundlich mithilfe eines speziellen
Werkzeugs des Patternformulars sowie innerhalb von Fließtext mithilfe eines WYSIWYG-
Editors möglich. Dabei lassen sich ebenso bekannte Anwendungsfälle annotieren, um zu
dokumentieren, aus welchen Quellen das Pattern abstrahiert wurde. Die Annotation von
Zieleigenschaften, für welche ebenfalls ein spezielles Werkzeug für die Verwendung im
Patternformular bereit steht, ermöglicht die zielgerichtete Auswahl von Patterns. Zur Unter-
stützung bei der Erzeugung einer Patternsprache gibt es unterschiedliche Visualisierungs-
möglichkeiten, die eine Übersicht über die vorhandene Vernetzung bieten und daher eine
gezieltere Feinvernetzung möglich machen.

Für die Verwendung des Pattern Repositorys durch den Endnutzer gibt es vielseitige
Möglichkeiten. Anhand eines Inhaltsverzeichnisses im Baumformat, einer Liste aller Patterns
mit deren Icons sowie von Visualisierungen erhält der Benutzer schnell einen Überblick über
die Patterndomäne. Der Assistent ist dabei in der Lage, dem Benutzer Empfehlungen anhand
von unterschiedlichen Kriterien auszusprechen. Neben auswählbaren Benutzerrollen können
Zieleigenschaften, bekannte Anwendungsfälle oder eine abstrakte Startkategorie gewählt
werden. Diese dienen anschließend als Grundlage für die Erstellung von dynamischen
Querys, um dem Benutzer sinnvolle Empfehlungen zu geben. Die Leseliste, die dazu dienen
kann, ein System von Patterns zu verfassen, ermöglicht die Empfehlung von Patterns, die
sich gut in das zusammengestellte System einfügen lassen würden. Das Benutzerinterface in
Form von ausblendbaren Querys, welches für die Patterns entwickelt wurde, ermöglicht ein
Traversieren der Patternsprache von Patternartikel zu Patternartikel. Es folgt die Analyse der
Eignung für zwei Beispieldomänen, für welche das entsprechende Patternformat komplett als
Ontologie modelliert wurde. Darüber hinaus wurden jeweils der komplette zum Zeitpunkt
des Verfassens dieser Arbeit vorhandene Patternfundus in das System übertragen, um
einen Eindruck von dem Verhalten eines vollständig eingerichteten Pattern Repositorys zu
erhalten.

109

6 Ergebnis und Evaluation

6.2.1 Beispieldomäne Cloud Computing Patterns

Die Entwicklung der unterschiedlichen Repository-Bestandteile wurde jeweils mit Beispiel-
daten aus der Domäne der Cloud Computing Patterns aus [FLR+

13] durchgeführt. Auf diese
Weise konnte sichergestellt werden, dass bei der Konzeption möglichst allgemein gehaltene
Mechanismen auch tatsächlich funktionieren. Daraus ergibt sich, dass das Pattern Repository
sehr gut mit diesem Patternfundus funktioniert, da es wegen der Verwendung der Patterns
als Testdatensatz auch gewissen Detailanpassungen speziell für diese Domäne gibt. Es
wurde darauf geachtet, dass diese Detailanpassungen nicht in das Kerndatenmodell Einzug
erhalten, und dadurch das ganze System speziell auf diese Domäne angepasst wäre.

Die Darstellung der Patternsprache für eine gewisse Patternkategorie wurde direkt aus
dem Werk zu den Cloud Computing Patterns [FLR+

13] übernommen und ist in Abschnitt
5.5.5 genauer beschrieben. Aufgrund der detaillierten Anpassungsmöglichkeiten des Pat-
ternformats und der gleichen grafischen Gestaltung der kategorieweisen Visualisierung der
Patternsprache entspricht die optische Darstellung der Cloud Computing Patterns in dem
Pattern Repository exakt der Darstellung im Buch. Zusätzlich wurde, um auch die Features
betreffend der Zieleigenschaften nutzen zu können, eine Beispielontologie mit Zieleigen-
schaften modelliert und in das System eingebunden. Dies ermöglicht die Verwendung des
vollen Funktionsumfangs des Pattern-Assistenten. Zusammenfassend lässt sich sagen, dass
die vollständige Kompatibilität der Cloud Computing Patterns mit dem Repository ein gutes
Indiz dafür ist, dass sich die entwickelte Anwendung für Patterns im IT-Bereich sehr gut
eignet.

6.2.2 Beispieldomäne Kostüm-Patterns

Um sicherzustellen, dass das Pattern Repository tatsächlich frei für die unterschiedlichs-
ten Patterndomänen konfigurierbar ist, wurden als zweite Evaluationsdomäne die Kostüm
Patterns aus [SBLE12] gewählt. Für diese Patterndomäne gibt es zu dem Zeitpunkt des Ver-
fassens der Arbeit keinen kompletten Fundus von Patterns, sondern dieses Projekt befindet
sich gerade in dem Prozess des Entdeckens von Patterns. Die Sprache der Kostüm Patterns
soll dabei helfen, den Entwurfsprozess für komplexe Kostüme in Filmen zu vereinfachen
und damit das vorhandene Kostümmanagement auch durch bessere IT-Werkzeuge auf die
nächste Ebene zu bringen.

Bei der Konfiguration des Patternformats anhand der OWL-Ontologie gab es keinerlei
Schwierigkeiten, was insofern aber auch nicht verwunderlich ist, da das Kostüm Patternfor-
mat sehr ähnlich zu dem Format der Cloud Computing Patterns ist. Dementsprechend gab es
auch keine Probleme bei der Generierung des Patternformulars anhand des Java-Importers.

Die Kostüminstanz des Pattern Repositorys wurde mit dem im Rahmen der Diplomarbeit
von Daniel Kaupp entwickelten semantischen Wiki zur Lösungsdokumentation und Musteridentifi-
kation integriert [Kau13]. Dieses System ermöglicht es, viele konkrete Problem-Lösungspaare
in einem Wiki abzulegen, um auf diese Weise anschließend neue Patterns entdecken zu
können. Mithilfe des Repositorys ist es bei der Eingabe von neuen Patterns möglich, diese

110

6.2 Evaluation

direkt mit allen zur Abstraktion verwendeten Lösungen zu vernetzen und von Grund auf
eine dichte Patternsprache zu erzeugen. Es ist zu vermuten, dass ein bereits beim Erstellen
der Patterns geführtes Pattern Repository sehr viele semantischen Annotationen enthalten
wird, und dadurch potentiell sehr lohnende Ergebnisse vom Pattern-Assistenten produziert
werden können. Zur Umsetzung des Systems von Daniel Kaupp wurde ebenfalls DataWiki
verwendet, weswegen es bei der Integration der beiden Systeme nur wenige Probleme gab,
die leicht lösbar waren.

6.2.3 Vergleich mit anderen Pattern-Repositorys

Nachdem die Evaluation anhand des Anpassens des entwickelten Pattern Repositorys an
zwei Beispieldomänen sehr erfolgreich verlaufen ist, soll in diesem Abschnitt ein Vergleich
der Anwendung mit anderen webbasierten Pattern Repositorys durchgeführt werden. Auf
diese Weise soll eine Positionierung des neu entwickelten Repositorys in der aktuellen Pattern
Repository Produktlandschaft ermöglicht werden. Zudem soll Lesern, die diese Diplomarbeit
zur Evaluation von Pattern Werkzeugen verwenden, eine fundierte Entscheidung ermöglicht
werden.

Im Folgenden sollen in dem Vergleich auftauchende Kandidaten kurz vorgestellt werden.
Diese wurden aus der großen Fülle von Pattern-Webanwendungen ausgewählt, indem vorab
überprüft wurde, ob die jeweiligen Anwendungen tatsächlich mehr sind als „flache“ Websei-
ten mit durch Hyperlinks verbundene Patterns. Aufgrund dieses Kriteriums ausgeschiedene
Webseiten sind unter anderem http://www.eaipatterns.com, das Patternwerk zu [HW03],
http://www.welie.com oder http://ajaxpatterns.org/, was als Grundlage für [Mah09]
diente. Bedauerlicherweise behandeln die untersuchten Patternkataloge alle die gleiche
Domäne: Design Patterns für Benutzerschnittstellen bzw. graphischer Oberflächen in der
Webprogrammierung. Dies erklärt sich vermutlich aus der großen Nachfrage auf diesem
Gebiet.

Quince Quince ist eine Patternbibliothek für interaktive Benutzererfahrungs- bzw. graphi-
sche Benutzeroberflächen-Design Patterns [qui] und wird von der Firma Infragistics7

entwickelt. Neben der Möglichkeit, eine Liste aller Patterns anzuzeigen, gibt es die
Herangehensweise, die Aufgabe anzugeben, die mithilfe des Patterns gelöst werden
soll, um Vorschläge für passende Patterns zu erhalten. Patterns können in Quince mit
Tags versehen werden, die einer Kategorisierung entsprechen. Anhand dieser Tags
wird eine Übersichtskarte generiert, auf der die am meisten verwendeten Tags im Stil
einer Tag Cloud am größten erscheinen, und die am wenigsten verwendeten Tags am
kleinsten. Die Beziehungen zwischen Tags werden dadurch erzeugt, dass Tags, die
gemeinsam für ein Pattern verwendet werden, eine Verbindung erhalten. Wird ein Tag
ausgewählt, erscheinen alle Patterns, die damit versehen wurden. Mithilfe des sog.
„Wireframe“ können Patterns anhand ihrer sinnvollen Verwendungsposition inner-
halb einer „typischen“ graphischen Benutzeroberfläche ausgewählt werden. Benutzer

7http://www.infragistics.com

111

http://www.eaipatterns.com
http://www.welie.com
http://ajaxpatterns.org/
http://www.infragistics.com

6 Ergebnis und Evaluation

können zu allen Patterns Kommentare und Verbesserungsvorschläge beisteuern. Zur
Eingabe neuer Patterns können registrierte Benutzer Vorschläge einreichen. Dafür lässt
sich ein Dokument hochladen und Tags sowie die Position im Wireframe vorschlagen.

Ypatterns Die Yahoo! Design Pattern Library enthält Design Patterns für Benutzerschnitt-
stellen von Webanwendungen und wird von Entwicklern der Yahoo!-Plattform betreut
[Yah]. Neben einer Liste aller Patterns mit Icons sind die Patterns ebenfalls in Katego-
rien eingeteilt, aus welchen sie direkt ausgewählt werden können. Eine Besonderheit
ist das Angebot eines Stencil Kits, welches Schablonen für unterschiedliche Designpro-
gramme enthält. Die Schablonen entsprechen Patterns aus der Yahoo! Design Pattern
Library und Codemodulen aus der Yahoo! User Interface Library8, einer Bibliothek von
interaktiven Webanwendungen. Mithilfe der Schablonen kann der Benutzer Entwürfe
seiner Anwendungen erstellen und sieht direkt, welche Patterns er anschließend zur
Umsetzung verwenden kann. Die Patternseiten enthalten neben den üblichen Abschnit-
ten auch viele Verlinkungen zu Codebeispielen und zu ähnlichen Patterns aus anderen
Benutzerschnittstellen-Design Pattern Repositorys. Die Patterns werden von einem
Yahoo-Team bereitgestellt, allerdings werden dazu auf http://www.yuiblog.com teils
Umfragen gestartet, um die Meinung der Entwicklergemeinde zu Patternentwürfen zu
erfahren.

Usabilitypatterns UsabilityPatterns.de ist das Resultat einer studentischen Fachstudie und
wurde von Yves Schubert, Uwe Breitenbücher und Jens Schumann entwickelt [SBS].
Die Seite enthält ebenfalls Design Patterns für Benutzerschnittstellen und befindet
sich noch in der Beta-Phase. Das zugrundeliegende Patternkonzept unterscheidet sich
dabei von dem klassischen auf Christopher Alexander basierenden Format. Dabei
werden Patterns nicht mehr als feste Einheit gesehen; stattdessen sollen die starren
Problem-Lösungspaare aufgespalten werden. Daraus resultiert ein Modell, das einer
Lösung beliebig viele Probleme und Lösungsvorschläge zuordnen lässt. Bei der Suche
nach Patterns gibt es einen Wizard, der anhand dieses Modells die Auswahl in vier
Phasen aufteilt. In der Startphase, die momentan noch nicht implementiert ist, sollen
später grobe Patternkategorien gewählt werden können. In der Interaktionsartphase
kann die Art der Interaktion ausgewählt werden, die umgesetzt werden soll. Dies ist
möglich, da Usabilitypatterns.de ebenfalls auf ein Tagsystem setzt, und dabei sogar
semantische Tags erlaubt, die die Zuordnung des Tags zu einer der Phasen ermöglicht.
In der Typphase werden nun alle Möglichkeiten aufgeführt, welche die beiden zuvor
ausgewählten Tags und einen weiteren Tag besitzen, der als Typ angezeigt wird. In der
Zusatzattributephase können die angezeigten Patterns anhand von weiteren verfügbaren
Tags weiter eingeschränkt werden. Neben dieser assistentengestützten Suche ist das
Stöbern durch den kompletten Patternfundus anhand der Auswahl von Tags möglich.
Patterns können von registrierten Benutzern anhand von verschiedenen Kriterien
bewertet werden. Für Implementierungen von Patterns gibt es eine extra Oberfläche,
die neben Bewertungen auch das Schreiben von Kommentaren ermöglicht.

8http://yuilibrary.com/

112

http://www.yuiblog.com
http://yuilibrary.com/

6.2 Evaluation

Die vorgestellten Kandidaten sollen nun anhand von gewissen Qualitätsmerkmalen unter-
einander verglichen werden. Dabei werden die Systeme teils anhand der Anforderungen aus
Kapitel 3 verglichen, denn diese haben, obwohl sie teils spezifisch für das neu entwickelte
Repository sind, durchaus allgemeine Gültigkeit als Qualitätsmerkmale für Pattern Reposi-
torys. Andererseits wurden Gemeinsamkeiten zwischen den Anwendungen gesucht, um
überhaupt einen sinnvollen Vergleich möglich zu machen. Zunächst sollen nun die einzelnen
Qualitätsmerkmale anhand von Fragen beschrieben werden, die zum Vergleich verwendet
wurden.

• Visualisierung der Patternsprache: Gibt es eine Möglichkeit, die Beziehungen zwischen
Patterns, die die Patternsprache bilden, graphisch darzustellen?

• Unterstützung bei der Eingabe von neuen Patterns: Gibt es ein Formular oder einen
Assistenten, um den Benutzer bei der Eingabe von neuen Patterns zu unterstützen?

• Kollaborative Arbeit an Patterns: Ist es möglich, dass Patterns in gemeinschaftlicher
Arbeit in dem System weiterentwickelt werden? Gibt es Möglichkeiten, Kommentare
oder Verbesserungsvorschläge für Patterns anzumerken?

• Suche von Patterns: Können Patterns komfortabel gefunden werden? Wird der Benutzer
dabei vom System unterstützt?

• Assistent zur Patternsuche: Gibt es einen interaktiven Assistenten, der dem Benutzer
nach Abfrage von gewissen Kriterien sinnvolle Patterns vorschlägt?

• Führung des Benutzers: Ist ein Hilfedialog vorhanden, wenn der Benutzer das Pattern
Repository aufruft? Wird erklärt, wie das Repository funktioniert?

• Darstellung der Patterns: Werden die einzelnen Patterns übersichtlich dargestellt, so
dass der Inhalt schnell erfasst werden kann? Wie werden die Verweise auf andere
Patterns dargestellt?

• Anwendungsperformance: Reagiert das System schnell auf Nutzereingaben? Gibt es
lange Ladezeiten?

• Optik der Anwendung: Wirkt die Oberfläche eher wertig oder billig? Ist erkenntlich,
dass es sich um ein zusammengehöriges System handelt, oder wirken die einzelnen
Komponenten zusammengestückelt?

• Ausgereiftheit des Repositorys: Treten Bugs während der Verwendung des Systems
auf? Wirken einzelne Aspekte optimiert, oder ist es spürbar, dass sich das System noch
in der Entwicklung befindet?

Ein wichtiger Punkt, der in dieser Aufzählung fehlt, ist die Konfiguration für andere Pattern-
domänen. Dieser kann anhand dieser Evaluation leider nicht bewertet werden, da es keinen
Zugriff auf den Quellcode der Projekte gibt und sie jeweils für eine bestimmte Patterndomäne
konfiguriert wurden. In Tabelle 6.1 ist ein Vergleich der ausgewählten Kandidaten dargestellt.
Um die einzelnen Pattern Repositorys anhand eines Merkmals bewerten zu können, wird
eine Skala verwendet, die dem schulischen Notensystem ähnelt:

113

6 Ergebnis und Evaluation

• ++: Das Repository weist sehr gute Leistungen in dem mit zwei Plus bewerteten
Qualitätsmerkmal auf, und übertrifft die meisten anderen Repositorys.

• +: Das Repository weist gute Leistungen in dem mit einem Plus bewerteten Qualitäts-
merkmal auf, und kann sich dadurch eventuell leicht von den anderen Kandidaten
abgrenzen.

• o: Das Repository weist befriedigende bzw. durchschnittliche Leistungen in dem mit
einer Null bewerteten Qualitätsmerkmal auf.

• -: Das Repository weist ausreichende Leistungen in dem mit einem Minus bewerteten
Qualitätsmerkmal auf, und ist damit etwas schlechter als die Konkurrenz.

• - -: Das Repository weist ungenügende Leistungen in dem mit zwei Minus bewerteten
Qualitätsmerkmal auf.

Anhand dieser Bewertungsskala wird anschließend in der letzten Spalte der Tabelle eine
Summe der Punkte für jede Anwendung gebildet. Dabei zählt jedes Plus als plus Eins, jede
Null als Null, und jedes Minus als minus Eins.

Es folgt eine Begründung der Bewertungen in den jeweiligen Qualitätsmerkmalen der
unterschiedlichen Repositorys.

• Visualisierung der Patternsprache: Das in dieser Arbeit entwickelte Pattern Repository
erhält zwei Plus, da die Patternsprache anhand von auswählbaren Linktypen visua-
lisiert werden kann. YPatterns erhält zwei Minus, da es keinerlei Visualisierung der
Patternsprache gibt. Quince erhält zwei Plus für die übersichtliche Visualisierung in
Form der Tagcloud, die Beziehungen enthält, wenn auch nur in Form eines Linktyps.
UsabilityPatterns.de erhält ein Minus, das es zwar eine Visualisierung der Tags in Form
einer Tagcloud gibt, diese aber keine Beziehungen enthält und nicht klar ist, wie die
Tags innerhalb der Wolke angeordnet werden.

• Unterstützung bei Eingabe von neuen Patterns: Das Pattern Repository erhält zwei
Plus, da das Patternformular viele den Benutzer unterstützende Hilfsmittel enthält.
Die anderen Repositorys erhalten zwei Minus, da die Benutzer keine neuen Patterns
hinzufügen können, und es daher auch keinen Zugriff auf ein Formular gibt. Es
ist unbekannt, inwiefern die Eingabe der Patterns intern in den unterschiedlichen
Anwendungen funktioniert.

• Kollaborative Arbeit an Patterns: Das Pattern Repository erhält ein Plus, da durch die
Verwendung der Mediawiki-Plattform kollaboratives Arbeiten gut möglich ist. Zudem
gibt es eine Diskussionsseite zu jedem Pattern, auf der Benutzer Kommentare zu den
Patterns hinterlassen können. Die anderen Anwendungen erhalten jeweils eine Null,
da sie zwar eine Möglichkeit für Benutzer bieten, Bewertungen oder Kommentare
abzugeben, das gemeinsame Arbeiten an Patterns aber nicht vorgesehen ist.

• Suche von Patterns: Das Pattern Repository erhält zwei Plus, da eine Schnellsuche mit
Autovervollständigung, eine Volltextsuche mit Filterfunktionen und eine Möglichkeit
zum Drilldown durch den Patternfundus gegeben ist. YPatterns erhält zwei Minus,

114

6.2 Evaluation

Pattern Re-
pository

YPatterns Quince Usability-
patterns

Visualisierung
der Patternspra-
che

++ - - ++ -

Unterstützung
bei Eingabe von
neuen Patterns

++ - - - - - -

Kollaborative Ar-
beit an Patterns

+ o o o

Suche von Pat-
terns

++ - - o ++

Assistent zur Pat-
ternsuche

+ ++ ++ +

Führung des Be-
nutzers

- ++ ++ - -

Darstellung der
Patterns

++ ++ + ++

Anwendungs-
performance

+ ++ - - ++

Optik der Anwen-
dung

o ++ ++ +

Ausgereiftheit
des Repositorys

- ++ + - -

Summe 9 6 6 1

Tabelle 6.1: Vergleichstabelle von alternativen Pattern Repositorys

da es keinerlei Suchfunktion gibt und auch kein Anzeigen von Patterns anhand
von Tags oder Ähnlichem. Quince erhält eine Null, da die Patternsuche anhand der
Tagcloud sehr träge ist und es keine Schnellsuche mit Autovervollständigung gibt.
UsabilityPatterns.de erhält zwei Plus, da die Suche anhand von Tags sehr komfortabel
funktioniert und ein Filtern innerhalb der Tagcloud möglich ist. Für die Schnellsuche
gibt es eine Autovervollständigung der Patternbezeichner.

• Assistent zur Patternsuche: Das Pattern Repository erhält ein Plus, da es einen Assis-
tenten gibt, der bereits viele Funktionen hat, aber noch nicht so ausgereift ist. YPatterns
wird mit zwei Plus bewertet für den sehr interaktiven Ansatz über die Stencil Kits,
was ein intuitives Auffinden der Patterns ermöglicht. Quince erhält ebenfalls zwei
Plus für den Ansatz mit dem Wireframe, wobei dieser sehr ähnlich zu dem YPatterns-
Ansatz ist. Usabilitypatterns.de erhält ein Plus, da der Assistent momentan nicht sehr
benutzerfreundlich zu bedienen ist und kaum brauchbare Ergebnisse liefert.

115

6 Ergebnis und Evaluation

• Führung des Benutzers: In dem Pattern Repository gibt es lediglich auf der Hauptseite
einen Verweis auf unterschiedliche Funktionalitäten, wobei der Benutzer diese aber
auch übersehen könnte, daher gibt es ein Minus. Bei YPatterns hat der Benutzer direkt
die Möglichkeit, eine Beschreibung der Yahoo Design Pattern Library zu öffnen und
Hilfestellung zu erhalten, wofür es zwei Plus gibt. Quince erhält ebenfalls zwei Plus
und schlägt sich bei der Führung des Nutzers am besten. Beim ersten Öffnen wird
ein modaler Dialog angezeigt, der eine detaillierte Hilfestellung zu allen Funktionen
enthält, der sich auf Wunsch aber bei zukünftigen Besuchen von Quince nicht mehr
öffnet. UsabilityPatterns.de erhält zwei Minus, da beim Öffnen des Repositorys eine
inhaltsleere Seite erscheint, und der Benutzer sich ohne Unterstützung zurechtfinden
muss.

• Darstellung der Patterns: Das Pattern Repository erhält zwei Plus, weil die Verlinkung
zu anderen Patterns und Anwendungsfällen sowie die eingebetteten informativen Que-
rys ein sehr komfortables Navigieren durch die Patterns ermöglicht. YPatterns erhält
ebenfalls zwei Plus, da sich die Darstellung der Patterns sehr übersichtlich gestaltet und
alle verwandten Patterns, Lösungen und Implementierungen auf einen Blick erfasst
werden können. Darüber hinaus gibt es hochwertige Icons sowohl für Patterns als auch
für Kategorien. Quince erhält nur ein Plus, da das Scrollen durch die verschiedenen
Abschnitte des Pattern sehr träge und damit nicht benutzerfreundlich ist; das ständige
Einblenden von Beispielen dagegen sehr nützlich. UsabilityPatterns.de erhält zwei Plus,
da die Abschnitte sehr übersichtlich sind, und alle wichtigen Informationen schnell
erreichbar sind. Die zusätzliche Oberfläche für Implementierungen ist ebenfalls eine
sinnvolle Idee.

• Gefühlte Anwendungsperformance: Das Pattern Repository erhält ein Plus, da die
meisten Aktionen zwar ohne störende Wartezeiten durchgeführt werden können,
aber manchmal kleinere Wartezeiten von ca. 2 Sekunden auftreten. YPatterns und
UsabilityPatterns.de erhalten je zwei Plus, da beide Anwendungen sehr schnell auf
Benutzeraktionen reagieren und es kaum Ladezeiten gibt. Quince erhält zwei Minus,
da unabhängig von der Geschwindigkeit der Internetverbindung und des verwendeten
Rechners extrem lange Ladezeiten auftreten. Bereits beim Öffnen der Applikation gibt
es zunächst eine Ladezeit von ca. 10 Sekunden und auch das Öffnen von Patterns
dauert jedes Mal 3-5 Sekunden.

• Optik der Anwendung: Das Pattern Repository erhält eine Null, da DataWiki durchaus
ein ansehnliches Design hat, die entwickelten Erweiterungen im Rahmen der Diplomar-
beit aber noch eine einheitliche optische Linie vermissen lassen. Quince und YPatterns
erhalten je zwei Plus, da die kompletten Anwendungen sehr professionell erscheinen
und ein einheitliches Design auf der kompletten Seite beibehalten. UsabilityPatterns.de
erhält ein Plus, da die Oberfläche durchaus zu gefallen weiß, an einigen Stellen der
Betastatus aber noch zu offensichtlich ist.

• Ausgereiftheit des Repositorys: Das Pattern Repository erhält hier ein Minus, da es zwar
eine solide Grundlage darstellt, aber viele Funktionen noch detaillierter ausgearbeitet
werden sollten. Zudem wurde es noch nie mit vielen Benutzern getestet. YPatterns
ist eine sehr ausgereift professionelle Anwendung, die von einem ganzen Team von

116

6.2 Evaluation

Entwicklern gepflegt wird. Quince erhält ein Plus, da es zwar ebenfalls professionell
gepflegt wird, die Performance aber noch viel Raum für Optimierungen offen lässt.
UsabilityPatterns.de erhält zwei Minus, weil man der Anwendung an vielen Stellen
ihren Beta-Status sehr deutlich anmerkt.

Zuletzt erfolgt ein Ranking anhand der Summenspalte aus Tabelle 6.1. Die Bildung der
Summe wurde bereits oben erläutert, und daraus resultiert folgendes Ranking:

1. Pattern Repository

2. YPatterns und Quince

3. Usabilitypatterns

Um dieses Ergebnis etwas zu relativieren soll an dieser Stelle noch einmal betont werden,
dass einige der verwendeten Qualitätsmerkmale aus dem Anforderungskatalog dieser Di-
plomarbeit stammen. Hätte man stattdessen die Anforderungen verwendet, die bei der
Entwicklung von beispielsweise YPatterns formuliert wurden, hätte YPatterns vermutlich
den Vergleich „gewonnen“. Auch die niedrige Punktzahl von UsabilityPatterns.de soll nicht
aussagen, dass es sich dabei um ein schlechtes System handelt. Dies folgt vielmehr aus dem
Beta-Status, der an vielen Stellen sehr deutlich spürbar ist.

6.2.4 Vorteile und Nachteile des Pattern Repositorys

In diesem Abschnitt sollen mögliche Vorteile und Nachteile aufgelistet werden, die sich aus
den obigen Vergleichen mit anderen Pattern Repositorys ergeben haben. Zusätzlich wurden
Bewertungen aus meiner Sicht hinzugefügt.

Vorteile:

• Benutzerfreundliche graphische Oberfläche, die dem Benutzer an vielen Stellen Unter-
stützung durch Autovervollständigung etc. anbietet.

• Benutzerfreundlicher Assistent hilft auch bei komplexen Suchszenarien. In Buchform
gibt es keine Möglichkeit, den Benutzer auf diese Weise zu unterstützen.

• Effizientes kollaboratives Arbeiten an Patterns wird ermöglicht durch Verwendung
von Mediawiki als Basis.

• Vielfältige Suchmöglichkeiten, um Patterns anhand von unterschiedlichsten Kriterien
zu finden.

• Aussagekräftige Visualisierung der Patternsprache.

• Benutzerfreundliches Patternformular, das sowohl zur Eingabe von neuen Patterns
dient, als auch zum Editieren von bereits vorhandenen.

117

6 Ergebnis und Evaluation

• Komplette Flexibilität des zugrunde liegenden Datenmodells und insbesondere des
Patternformats, womit sich das Pattern Repository für viele Patterndomänen sehr gut
eignet. Für die Domäne der Cloud Computing Patterns aus [FLR+

13] wurde die gute
Eignung bereits erprobt.

• Erweiterungsmöglichkeiten des Pattern Repositorys durch die modulare Architektur
und dem erweiterungsfreundlichen Design von Mediawiki.

• Problemlose Integration mit anderen auf Mediawiki basierenden Anwendungen mög-
lich.

• Das Datenmodell lässt sich um beliebige Funktionalitäten erweitern, indem der Java-
Importer ebenfalls angepasst wird.

• Einfache Installation der zugrundeliegenden Plattform unter Windows.

Nachteile:

• Der Nutzen der semantischen Annotationen kann nur so groß sein, wie die inhaltliche
Qualität und Sinnhaftigkeit der Annotationen.

• Es sind noch keine komplexen Querys in dem System enthalten, so dass dement-
sprechend auch noch keine außergewöhnlichen neue Einsichten z.B. betreffend der
Patternsprache gewonnen werden können. Allerdings kann nur spekuliert werden, ob
dies durch komplexere Abfragen möglich ist.

• Wenig Führung des Nutzers durch das Repository.

• Die indirekte Abbildung der Datenmodellontologie auf das Wiki ist sehr komplex.

• Komplizierte Installation der zugrundeliegenden Plattform unter Linux.

• Breit gefächertes Wissen vom technischen Administrator des Pattern Repositorys
gefordert: Wissen über Ontologiemodellierung in OWL, Java-Programmierkenntnisse,
falls das Importprogramm angepasst werden soll, Administration eines Webservers
und Mediawiki- sowie Semantic Mediawiki-Kenntnisse.

• Unsicherheit über die Zukunft von DataWiki. Falls die Entwicklung eingestellt werden
sollte, muss anderweitiger Ersatz für die von DataWiki bereitgestellten Funktionen
gefunden werden.

6.3 Rückblick auf Verlauf der Arbeit

Anschließend an die Vorstellung der Ergebnisse dieser Arbeit und deren Evaluation soll nun
ein Rückblick auf den Verlauf der Arbeit erfolgen, um einen Überblick über das Vorgehen zu
geben und es entsprechend zu analysieren. Am Beginn der Arbeit stellte sich zunächst die
Frage des zu verwendenden semantischen Wikis. Dabei entstand bereits die in dieser Arbeit
unter Abschnitt 3.5 aufgeführte Evaluation der alternativen Anwendungen, allerdings waren
an vielen Stellen die Anforderungen an das benötigte Werkzeug nicht sehr klar formuliert.

118

6.3 Rückblick auf Verlauf der Arbeit

Dies lag zum einen daran, dass sich viele Anforderungen erst aus Ideen entwickelten, die
durch die Erforschung der Möglichkeiten von Semantic Mediawiki entstanden. Zum anderen
hätte dies vielleicht früher forciert werden sollen.

Anschließend folgte die Untersuchung auf die Verwendbarkeit von unterschiedlichen Erwei-
terungen für Semantic Mediawiki, wobei unter anderem auch das sehr nützliche DataWiki
entdeckt wurde. Es folgte nun die inkrementelle Entwicklung eines Datenmodells in Kapitel
4, wobei unterschiedliche Ansätze versucht wurden. Dabei wurde die Modellierung als
UML-Metamodell oder als UML-Klassenhierarchie aber letztendlich wieder verworfen, weil
die Modellierung als OWL-Ontologie sich schließlich als naheliegende Lösung herausstellte.
Dies machte auch insofern Sinn, da in Semantic Mediawiki gewisse OWL-Konzepte direkte
Entsprechungen besitzen.

Nach der Modellierung des Patternformats und der Kategorienhierarchie in OWL folgte
die schrittweise Erweiterung des Datenmodells um Funktionen wie die Angabe von Vi-
sualisierungen auf Kategorieseiten und die Einbindung von Zieleigenschaften. Gleichzeitig
wurde dabei jeweils das Parsen der neu hinzugekommenen Elemente in dem in Abschnitt
5.3 beschriebenen Java-Importer implementiert, so dass die jeweils erweiterten Datenmodelle
auch ins Wiki übertragen werden konnten. Die unterschiedlichen Teile der Erweiterung
Pattern Repository wurde jeweils nach der Integration der Funktionen im Datenmodell im-
plementiert und sind in Abschnitt 5.5 beschrieben. Als letzter Schritt der Erweiterung wurde
der Assistent entwickelt, der das Zusammenspiel aller bisher entwickelten Funktionalitäten
benötigt.

Während der laufenden Entwicklung wurde auch damit experimentiert, das Pattern Reposi-
tory auf unterschiedlichen Infrastrukturen zu betreiben, mit dem Resultat einer ausführlichen
Installationsanleitung für Windows und Linux. Zu Evaluationszwecken wurde, wie in Ab-
schnitt 6.2 beschrieben, das Datenmodell für die Patterndomäne der Kostüme konfiguriert
und diese Kostüm-Instanz des Pattern Repositorys mit Daniel Kaupps System [Kau13]
integriert. Im nächsten Kapitel folgt nun eine Zusammenfassung dieser Diplomarbeit.

119

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung

Im Rahmen dieser Diplomarbeit wurde entsprechend der Zielsetzung ein Pattern Repository
zur Verwaltung und Suche von Design Patterns unterschiedlicher Domänen entworfen. Die
Anwendung wurde mithilfe von semantischen Webtechnologien auf Basis von Semantic
Mediawiki und Erweiterungen für dieses Framework realisiert.

Zu Beginn wurde evaluiert, welches semantisches Wiki sich am besten eignen würde, um
die zusätzlich benötigten Funktionen darauf zu implementieren. Die Evaluation ergab,
dass Semantic Mediawiki als ausgereifte, den Anforderungen entsprechende Open-Source
Anwendung eine gute Wahl dafür wäre. Semantic Mediawiki ist eine Erweiterung für
Mediawiki, der Plattform für wikipedia.org, wodurch sich die Möglichkeit ergibt, zahlreiche
bereits bestehende Erweiterungen für Mediawiki zu verwenden. Die Hauptanforderungen
für das zu entwickelnde Werkzeug waren das benutzerfreundliche Erstellen von neuen
Patterns, das Annotieren von semantischen Informationen zum Ausdruck der Beziehungen
zwischen Patterns und die ausgeklügelte Suche nach Patterns. Zudem sollte das Werkzeug
über einen Assistenten verfügen, der dem Benutzer sinnvolle Patterns vorschlagen kann.

Im Rahmen eines konzeptionellen Designs wurden die in der Zielsetzung geforderten
Grundfunktionalitäten ausformuliert und konkretisiert. Insbesondere der Mechanismus zum
Vernetzen der Patterns untereinander zur Bildung einer Patternsprache wurde sehr sorgfältig
entworfen. Anschließend wurde das aus diesen detaillierten Beschreibungen resultierende
Datenmodell in Form einer OWL-Ontologie modelliert und vorgestellt. Die nötige Abbildung
der Elemente der Ontologie auf das Wiki, das für den Import des Datenmodells in Semantic
Mediawiki nötig ist, wurde beschrieben und die Wahl von OWL als Modellierungssprache
begründet. Nach der Fertigstellung aller nötigen Entwurfsschritte wurde mit der Umsetzung
begonnen. Der Import des Datenmodells geschieht über ein Java-Programm, dass die Onto-
logie parst und in das Wiki überträgt. Auf diese Weise werden das Formular zur Eingabe
von Patterns und die erlaubten semantischen Linktypen zwischen Patterns erzeugt, wobei
das Formular mithilfe einer Semantic Mediawiki Erweiterung umgesetzt wird. Fehlende
Funktionalitäten wie bestimmte Eingabetypen für das Formular oder Möglichkeiten zur
Visualisierung der Patternsprache wurden durch die Umsetzung der Erweiterung „Pattern
Repository“ in das Wiki integriert. Darin ist auch der Assistent implementiert, der Patterns
anhand unterschiedlichster Kriterien vorschlagen kann, beispielsweise anhand von Zielei-
genschaften, die durch die Wahl eines Patterns erreicht werden sollen. Die resultierende
Architektur aus dem Zusammenspiel der Ontologie, des Java-Importers und der selbst

121

7 Zusammenfassung und Ausblick

entwickelten Erweiterung wurde auf unterschiedlichen Detailstufen graphisch dargestellt
und erläutert.

Zuletzt wurde das Pattern Repository als Ergebnis dieser Diplomarbeit anhand seiner
Infrastruktur und Verwendung vorgestellt und durch die Konfiguration für zwei Pattern-
Beispieldomänen evaluiert. Die Evaluation kam zu dem Ergebnis, dass sich das System
sehr flexibel an unterschiedliche Domänen anpassen lässt und sehr gut für die beiden
Beispieldomänen funktioniert. In einem Vergleich mit anderen Pattern Repositorys konnte
sich das entwickelte Repository gegenüber seinen Konkurrenten behaupten, auch wenn es
noch viel Verbesserungspotential gibt.

7.2 Ausblick

Wie bereits im Rahmen der Evaluation in Abschnitt 6.2 erwähnt, bietet der jetzige Implemen-
tierungsstand eine gute Grundlage für Erweiterungen der unterschiedlichsten Aspekte. Im
Folgenden sollen die jeweiligen Grundideen der Vorschläge kurz umrissen werden.

Ausbau des Assistenten Der Assistent besitzt zum jetzigen Zeitpunkt bereits die unter-
schiedlichsten Ansätze zur Empfehlung von sinnvollen Patterns, allerdings ist keiner
davon sehr detailliert ausgebaut oder optimiert. Bei der Empfehlung von Zieleigen-
schaften wäre es beispielsweise nötig, ein Eingabewerkzeug zur Verfügung zu haben,
welches die Navigation durch den Ontologiebaum erleichtert. Bei der Auswahl über
bekannte Anwendungsfälle wäre eine Art von Kategorisierung von diesen wünschens-
wert, um die Auswahl geordneter zu gestalten. Das größte Potential bietet sicherlich
die Empfehlung anhand der Leseliste, für die ein intelligenter Algorithmus entwickelt
werden sollte. Zumindest eine intelligentere Query wäre hier sehr wünschenswert.
Neben dem Ausbau der bereits vorhandenen Punkte ist es auch problemlos möglich,
den Assistenten um neue Empfehlungsarten zu erweitern.

Implementierungen an Patterns anhängen Momentan gibt es für das Anhängen von Imple-
mentierungen an Patterns zwar die Möglichkeit, diese in einem speziellen Abschnitt zu
speichern oder auf externe Inhalte zu verlinken, aber gerade im IT-Bereich gäbe es hier
Potential für erweiterte Funktionen. Als Vorbild könnte hier YPatterns [Yah] dienen,
welches eine sehr enge Vernetzung von Patterns, Implementierungen und tatsächlich
verwendbaren Beispielen umsetzt.

Interface der Patternseiten verbessern Die Art, wie durch eine Patternsprache navigiert
wird, hängt sehr stark von dem Interface ab, das auf den einzelnen Patternseiten zu
finden ist. In Form von ausblendbaren Querys wurde in dem Pattern Repository ein
sehr mächtiges Werkzeug implementiert, wofür nur noch nützlichere Querys umgesetzt
werden müssten.

Export der Ontologie aus dem Wiki Momentan ist lediglich der Import einer OWL-
Ontologie in das Wiki implementiert, nicht aber der Export aus dem Wiki in eine

122

7.2 Ausblick

Ontologie. Dafür müsste das momentan verwendete Java-Programm entsprechend
erweitert werden, um eine Abbildung auf die Kerndatenmodellontologie zu erhalten.

Integriertes Installationsprogramm Um die Benutzerfreundlichkeit des Repositorys auf die
nächste Stufe zu bringen, müsste es ein Installationsprogramm geben, dass alle Schrit-
te für die Einrichtung einer neuen DataWiki-Installation übernimmt. Dafür müss-
te das Programm den Java-Importer enthalten, und in der Lage sein, Mediawiki-
Erweiterungen automatisch zu installieren.

Visualisierungen verbessern Bei Patternsprachen gibt es sehr unterschiedliche Aspekte, die
visualisiert werden können. Besonders interessant wäre beispielsweise eine „grobe“
Visualisierung, in der eine komplette Patterndomäne abgebildet wäre. Um die Über-
sichtlichkeit zu wahren, müsste dafür eventuell ein Algorithmus entwickelt werden, der
bei zu vielen Pattern innerhalb einer Kategorie anschließend z.B. nur die Kategorie an-
statt der Einzelpatterns in der Grafik anzeigt. Die Verwendung von z.B. Hypergraphen
hat sich aufgrund der fehlenden Übersicht als nicht empfehlenswert herausgestellt.

Leseliste als Entscheidungsprozess Eine sehr interessante Idee, die eventuell eine tiefere
Untersuchung Wert wäre, ist das Ausbauen der jetzigen „Leseliste“ zu einer Möglich-
keit, den Entscheidungsprozess anhand von Patterns abzubilden. Denn im Prinzip
entspricht die Verwendung jedes Patterns dem Fällen einer Entscheidung, und somit
dem Navigieren entlang der Patternsprache auf einem gewissen Pfad. Daher wäre
es auch denkbar, diesen „Pfad“ in der Leseliste abzubilden und es zu ermöglichen,
ihn zu visualisieren. Dieser Pfad könnte man sich als Subgraph einer Patternsprache
vorstellen, der alle verwendeten Patterns enthält.

Pattern Mitigation Pattern Mitigation beschreibt ein Vorgehen, um mit der Kombination
von bestimmten Patterns auf einer hohen Abstraktionsebene Zieleigenschaften zu
erreichen, für die normalerweise Patterns auf einer niedereren Abstraktionsebene
benötigt würden. Diese Art der ausweichenden Modellierung kann sich anbieten, falls
das spezifischere Pattern gewisse Nachteile mit sich bringt, die durch die ersatzweise
Modellierung auf höherer Ebene nicht oder weniger stark auftreten, also abgeschwächt
werden. Dies ist genauer in [FLR+

13, S. 299-310] beschrieben. Um eine mögliche Pattern
Mitigation in einem Pattern Repository abzubilden, würde dafür eine n-äre semantische
Beziehung zwischen den beteiligten Patterns benötigt. Dafür wäre ein extra Abschnitt
im Patternformular nötig, sowie eine Erweiterung des Pattern Interfaces und des
Assistenten, um von den Annotationen letztendlich auch profitieren zu können. Da die
Darstellung von n-ären Beziehungen bereits für die Annotation von Zieleigenschaften
entwickelt wurde, müsste diese dafür verwendbar sein.

123

Literaturverzeichnis

[AA05] D. Aumueller, S. Auer. Towards a Semantic Wiki Experience - Desktop Integrati-
on and Interactivity in WikSAR. In Semantic Desktop Workshop. 2005. (Zitiert auf
Seite 40)

[AIS+77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel.
A Pattern Language: Towns, Buildings, Constructions. Oxford University Press,
1977. (Zitiert auf den Seiten 9, 14, 16, 46, 58 und 60)

[Ale79] C. Alexander. The timeless way of building, Band 1. New York: Oxford University
Press, 1979. (Zitiert auf Seite 16)

[AVH04] G. Antoniou, F. Van Harmelen. Semantic Web Primer. the MIT Press, 2004. (Zitiert
auf den Seiten 7, 18, 19, 21 und 22)

[BDS+09] J. Bao, L. Ding, P. R. Smart, D. Braines, G. Jones. Rule modeling using semantic
mediawiki. 2009. (Zitiert auf Seite 42)

[Bec02] D. Beckett. SWAD-Europe Deliverable 10.1: Scalability and Storage: Survey
of Free Software / Open Source RDF storage systems, 2002. URL http:

//www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/. (Zi-
tiert auf Seite 24)

[BGE+
08] M. Buffa, F. Gandon, G. Ereteo, P. Sander, C. Faron. SweetWiki: A semantic wiki.

Web Semant., 6:84–97, 2008. (Zitiert auf Seite 40)

[BHS07] F. Buschmann, K. Henney, D. Schmidt. Pattern-Oriented Software Architecture, On
Patterns and Pattern Languages. Pattern-Oriented Software Architecture. Wiley,
2007. (Zitiert auf Seite 33)

[Bir10] A. Birukou. A survey of existing approaches for pattern search and selection. In
Proceedings of the 15th European Conference on Pattern Languages of Programs, S. 2.
ACM, 2010. (Zitiert auf den Seiten 34 und 35)

[Boz] I. Bozhanov. JsTree. URL http://www.jstree.com/. (Zitiert auf den Seiten 89

und 100)

[Bus98] F. Buschmann. Pattern-orientierte Software-Architektur. Pearson Deutschland
GmbH, 1998. (Zitiert auf den Seiten 16, 17 und 34)

[Dja05] B.-R. Djaloeis. Kaukolu: Building a semantic wiki. Diplomarbeit, University of
Kaiserslautern, 2005. (Zitiert auf Seite 40)

125

http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/
http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/
http://www.jstree.com/

Literaturverzeichnis

[DKT05] J. Deng, E. Kemp, E. G. Todd. Managing UI pattern collections. In Proceedings of
the 6th ACM SIGCHI New Zealand chapter’s international conference on Computer-
human interaction: making CHI natural, S. 31–38. ACM, 2005. (Zitiert auf den
Seiten 33, 34 und 46)

[FEL+
12] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rutschlin, D. Schumm. Capturing

Cloud Computing Knowledge and Experience in Patterns. In Proceedings of
the 2012 IEEE Fifth International Conference on Cloud Computing, CLOUD ’12, S.
726–733. IEEE Computer Society, Washington, DC, USA, 2012. (Zitiert auf den
Seiten 17, 34, 35, 46, 49, 53, 58, 59, 60, 61 und 68)

[FLR+
11] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. An architectural

pattern language of Cloud-based applications. In Proceedings of the Conference on
Pattern Languages of Programs (PLoP). 2011. (Zitiert auf den Seiten 49, 62 und 63)

[FLR+
13] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing

Patterns - Fundamentals to Design, Build, and Manage Cloud Applications. Springer,
2013. (Zitiert auf den Seiten 8, 9, 14, 16, 35, 36, 54, 59, 61, 65, 101, 110, 118

und 123)

[GASB11] J. García, A. Amescua, M.-I. Sánchez, L. Bermón. Design guidelines for soft-
ware processes knowledge repository development. Information and Software
Technology, 53(8):834 – 850, 2011. (Zitiert auf den Seiten 14 und 35)

[GMJ+03] S. L. Greene, P. Matchen, L. Jones, J. C. Thomas, M. Callery. Tool-based decision
support for pattern assisted development. In Proc. of CHI 2003 Workshop on User
Interface Patterns. 2003. (Zitiert auf den Seiten 33 und 35)

[Gri11] P. Grimm. Metamodell und Plattform für Mustersprachen und Musterkataloge. Di-
plomarbeit, Universität Stuttgart, 2011. (Zitiert auf den Seiten 51, 52 und 53)

[GSJS03] A. Gaffar, D. Sinnig, H. Javahery, A. Seffah. MOUDIL: A comprehensive fra-
mework for disseminating and sharing HCI patterns. In CHI 2003 Workshop on
Perspectives on HCI patterns: Concepts and Tools. 2003. (Zitiert auf den Seiten 33

und 34)

[Har05] S. Hartmann. Transdisziplinarität - Eine Herausforderung für die Wissenschafts-
theorie. Homo Sapiens und Homo Faber. Festschrift für Jürgen Mittelstrass. Berlin &
New York: Walter de Gruyter, S. 335–343, 2005. (Zitiert auf Seite 9)

[Hee] U. van Heesch. Open Pattern Repository. URL http://www.patternrepository.

com. (Zitiert auf Seite 14)

[HKRS08] P. Hitzler, M. Krötzsch, S. Rudolph, Y. Sure. Semantic Web: Grundlagen. Springer
London, Limited, 2008. (Zitiert auf den Seiten 18, 19, 20, 21, 22 und 24)

[HL93] H.-J. Habermann, F. Leymann. Repository - Eine Einführung. R. Oldenbourg
Verlag, 1993. (Zitiert auf den Seiten 13, 34, 36 und 51)

126

http://www.patternrepository.com
http://www.patternrepository.com

Literaturverzeichnis

[HLS05] A. Haake, S. Lukosch, T. Schümmer. Wiki-templates: adding structure support
to wikis on demand. In Proceedings of the 2005 international symposium on Wikis,
WikiSym ’05, S. 41–51. ACM, New York, NY, USA, 2005. (Zitiert auf Seite 63)

[Hoe] P. D. H. Hoepfner. Grundlagen des SE. (Zitiert auf Seite 36)

[HW03] G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003. (Zitiert auf den Seiten 15, 35, 38, 58, 59, 61 und 111)

[ISO10] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models, 2010. (Zitiert auf Seite 36)

[JGVH95] R. Johnson, E. Gamma, J. Vlissides, R. Helm. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995. (Zitiert auf den Seiten 9, 15, 16,
35, 38, 53, 58, 59 und 60)

[Kar11] D. Karastoyanova. Services and Service Composition - Application Architecture
and Application Integration, 2011. Vorlesungsfolien. (Zitiert auf den Seiten 7

und 83)

[Kau13] D. Kaupp. Use of a Semantic Wiki for Capturing of Solutions and Pattern Discovery.
Diplomarbeit, Universität Stuttgart, 2013. (Zitiert auf den Seiten 110 und 119)

[KE02] D. M. Kienzle, M. C. Elder. Final technical report: Security patterns for web
application development. DARPA, Washington DC, 2002. (Zitiert auf Seite 14)

[Koc] P.-P. Koch. ExecCommand compatibility. URL http://www.quirksmode.org/

dom/execCommand.html. (Zitiert auf Seite 92)

[Köp13] C. Köppe. A Pattern Language for Teaching Design Patterns. In Transactions on
Pattern Languages of Programming III, S. 24–54. Springer, 2013. (Zitiert auf den
Seiten 9 und 15)

[KV] M. Krötzsch, D. Vrandecic. Semantic MediaWiki. URL http://

semantic-mediawiki.org/. (Zitiert auf den Seiten 26 und 40)

[Ler06] R. M. Lerner. Installing and customizing MediaWiki. Linux J., 2006(144):3,
2006. URL http://dl.acm.org/citation.cfm?id=1124506.1124509. (Zitiert
auf Seite 80)

[LH05] B. Liu, B. Hu. An evaluation of RDF storage systems for large data applications.
In Semantics, Knowledge and Grid, 2005. SKG’05. First International Conference on, S.
59–59. IEEE, 2005. (Zitiert auf Seite 24)

[LL07] J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. Dpunkt-Verlag, 2007. (Zitiert auf Seite 33)

[Mah09] M. Mahemoff. Ajax design patterns. O’Reilly Media, 2009. (Zitiert auf Seite 111)

127

http://www.quirksmode.org/dom/execCommand.html
http://www.quirksmode.org/dom/execCommand.html
http://semantic-mediawiki.org/
http://semantic-mediawiki.org/
http://dl.acm.org/citation.cfm?id=1124506.1124509

Literaturverzeichnis

[McB01] B. McBride. Jena: Implementing the rdf model and syntax specification. 2001.
(Zitiert auf Seite 86)

[MD97] G. Meszaros, J. Doble. A pattern language for pattern writing. In R. C. Martin,
D. Riehle, F. Buschmann, Herausgeber, Pattern languages of program design, Kapitel
A pattern language for pattern writing, S. 529–574. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997. (Zitiert auf den Seiten 16 und 63)

[Meda] MediaWiki. Manual - Developing extensions. URL http://www.mediawiki.org/

wiki/Manual:Developing_extensions. (Zitiert auf den Seiten 80 und 81)

[Medb] MediaWiki. Resource Loader. URL http://www.mediawiki.org/wiki/

ResourceLoader. (Zitiert auf den Seiten 82 und 89)

[Mil56] G. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The psychological review, 63:81–97, 1956.
(Zitiert auf Seite 57)

[mwo] MediaWiki. URL http://www.mediawiki.org. (Zitiert auf Seite 26)

[NRHW06] N. Noy, A. Rector, P. Hayes, C. Welty. Defining n-ary relations on the semantic
web. W3C Working Group Note, 12:4, 2006. (Zitiert auf Seite 54)

[OOD] Design Patterns - Object Oriented Design. URL http://www.oodesign.com.
(Zitiert auf Seite 38)

[Ort99] E. Ortner. Repository Systems. Teil 1: Mehrstufigkeit und Entwicklungsumge-
bung. Informatik-Spektrum, 22(4):235–251, 1999. (Zitiert auf Seite 13)

[Per] D. Perry. Graphviz - Graph Visualization Software. URL http://www.graphviz.

org. (Zitiert auf Seite 30)

[por] Portland Pattern Repository. URL http://c2.com/ppr/. (Zitiert auf Seite 14)

[pro] The Protégé Ontology Editor and Knowledge Acquisition System. URL http:

//protege.stanford.edu/. (Zitiert auf Seite 25)

[qui] Quince - UX Patterns Explorer. URL http://quince.infragistics.com. (Zitiert
auf den Seiten 10 und 111)

[SBBK08] S. Schaffert, F. Bry, J. Baumeister, M. Kiesel. Semantic wikis. Software, IEEE,
25(4):8–11, 2008. (Zitiert auf Seite 39)

[SBLE12] D. Schumm, J. Barzen, F. Leymann, L. Ellrich. A Pattern Language for Costumes
in Films. In Proceedings of the 17th European Conference on Pattern Languages of
Programs (EuroPLoP 2012). 2012. (Zitiert auf den Seiten 7, 9, 15, 17, 49, 53, 60

und 110)

[SBS] Y. Schubert, U. Breitenbücher, J. Schumann. UsabilityPatterns.de - Die Usability
Pattern Sammlung. URL http://www.usabilitypatterns.de:8080. (Zitiert auf
den Seiten 10 und 112)

128

http://www.mediawiki.org/wiki/Manual:Developing_extensions
http://www.mediawiki.org/wiki/Manual:Developing_extensions
http://www.mediawiki.org/wiki/ResourceLoader
http://www.mediawiki.org/wiki/ResourceLoader
http://www.mediawiki.org
http://www.oodesign.com
http://www.graphviz.org
http://www.graphviz.org
http://c2.com/ppr/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://quince.infragistics.com
http://www.usabilitypatterns.de:8080

Literaturverzeichnis

[Sch03] T. Schuemmer. Seeking for structure in a Groupware Pattern Language. In
Workshop at CHI. 2003. (Zitiert auf den Seiten 34, 35 und 54)

[Sch06] S. Schaffert. IkeWiki: A semantic wiki for collaborative knowledge management.
In Enabling Technologies: Infrastructure for Collaborative Enterprises, 2006. WETI-
CE’06. 15th IEEE International Workshops on, S. 388–396. IEEE, 2006. (Zitiert auf
Seite 40)

[Sem] Semantic Wiki Projects. URL http://semanticweb.org/wiki/Semantic_wiki_

projects#Active. (Zitiert auf Seite 40)

[Smw] Semantic Wikipedia FAQ - What are the alternatives to SMW? URL http://

semantic-mediawiki.org/wiki/FAQ#What_are_the_alternatives_to_SMW.3F.
(Zitiert auf Seite 41)

[SP] A. Seaborne, E. Prud’hommeaux. SPARQL Query Language for RDF. URL
http://www.w3.org/TR/rdf-sparql-query/. (Zitiert auf Seite 24)

[tik] Tiki Wiki CMS Groupware. URL http://info.tiki.org/. (Zitiert auf Seite 40)

[VK06] D. Vrandecic, M. Krötzsch. Reusing ontological background knowledge in
semantic wikis. In Proceedings of the 1st Workshop on Semantic Wikis, Budva,
Montenegro. 2006. (Zitiert auf den Seiten 39 und 64)

[W3C] W3C. Resource Description Framework (RDF). URL http://www.w3.org/RDF/.
(Zitiert auf Seite 19)

[WB07] M. Weiss, A. Birukou. Building a pattern repository: Benefitting from the open,
lightweight, and participative nature of wikis. In International Symposium on
Wikis (WikiSym), ACM, S. 21–23. 2007. (Zitiert auf den Seiten 33 und 34)

[WSK+
03] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, et al. Efficient RDF storage and

retrieval in Jena2. In Proceedings of SWDB, Band 3, S. 7–8. 2003. (Zitiert auf
Seite 29)

[WV03] M. V. Welie, G. C. V. D. Veer. Pattern languages in interaction design: Structure
and organization. In Proc. Interact ’03, M. Rauterberg, Wesson, Ed(s). IOS, S.
527–534. IOS Press, 2003. (Zitiert auf den Seiten 51 und 52)

[Yah] Yahoo. Yahoo Design Pattern Library. URL http://developer.yahoo.com/

ypatterns. (Zitiert auf den Seiten 10, 112 und 122)

[zAg] zAgile. Wikidsmart for Atlassian Confluence. URL http://www.zagile.com/

products/wikidsmart.html. (Zitiert auf Seite 40)

[Zim09] O. Zimmermann. An architectural decision modeling framework for service-oriented
architecture design. Dissertation, Stuttgart, Univ., Diss., 2009, 2009. (Zitiert auf
Seite 41)

Alle URLs wurden zuletzt am 31. Juli 2013 geprüft.

129

http://semanticweb.org/wiki/Semantic_wiki_projects#Active
http://semanticweb.org/wiki/Semantic_wiki_projects#Active
http://semantic-mediawiki.org/wiki/FAQ#What_are_the_alternatives_to_SMW.3F
http://semantic-mediawiki.org/wiki/FAQ#What_are_the_alternatives_to_SMW.3F
http://www.w3.org/TR/rdf-sparql-query/
http://info.tiki.org/
http://www.w3.org/RDF/
http://developer.yahoo.com/ypatterns
http://developer.yahoo.com/ypatterns
http://www.zagile.com/products/wikidsmart.html
http://www.zagile.com/products/wikidsmart.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Ziel
	1.2 Gliederung der Arbeit

	2 Grundlagen
	2.1 Repository
	2.2 Patterns und Patternsprachen
	2.2.1 Patternformat
	2.2.2 Pattern Auffindung und Anwendung

	2.3 Semantic Web
	2.3.1 RDF und RDFS
	2.3.2 OWL zur Ontologiemodellierung
	2.3.3 Abfragen mit SPARQL
	2.3.4 Triplestores
	2.3.5 Ontologie-Modellierung mit Protégé
	2.3.6 Semantic Mediawiki
	2.3.7 Erweiterungen von Semantic Mediawiki

	3 Anforderungen
	3.1 Funktionale Anforderungen
	3.2 Nichtfunktionale Anforderungen
	3.3 Use Cases
	3.4 Gründe für Verwendung semantischer Technologie
	3.5 Evaluation von vorhandenen semantischen Wikianwendungen
	3.5.1 Vergleichstabelle

	4 Konzeptionelles Design
	4.1 Eingabe von Patterns
	4.1.1 Formular
	4.1.2 Templates

	4.2 Annotation
	4.2.1 Semantische Attribute - Linktypen
	4.2.2 Zieleigenschaften
	4.2.3 Formular

	4.3 Verwendung des Pattern Repositorys
	4.3.1 Einstieg in die Patterndomäne
	4.3.2 Assistent
	4.3.3 Weiteres Navigieren

	4.4 Resultierendes Datenmodell
	4.4.1 OWL-Ontologie: Kerndatenmodell
	4.4.2 OWL-Ontologie: Zieleigenschaften
	4.4.3 Abbildung auf Semantic Mediawiki-Elemente

	5 Implementierung des Pattern Repositorys
	5.1 Web-Entwicklung mit dem Mediawiki-Framework
	5.1.1 Technologien des Mediawiki-Frameworks
	5.1.2 Entwicklung von Erweiterungen für das Mediawiki-Framework

	5.2 Systemarchitektur
	5.3 Import des Datenmodells
	5.4 Das Patternformular
	5.5 Die Erweiterung - Pattern Repository
	5.5.1 Annotationsunterstützung - Semantic Textarea
	5.5.2 Auswahl semantischer Propertys - Property Dropdown
	5.5.3 Zahlenauswahl - Number Slider
	5.5.4 Ausblendbare Querys - Query Tabs
	5.5.5 Visualisierung von semantischen Prädikaten im Kontext von Kategorien - Property Visualizer
	5.5.6 Suchassistent - Wizard

	6 Ergebnis und Evaluation
	6.1 Das Pattern Repository
	6.1.1 Infrastruktur
	6.1.2 Administration

	6.2 Evaluation
	6.2.1 Beispieldomäne Cloud Computing Patterns
	6.2.2 Beispieldomäne Kostüm-Patterns
	6.2.3 Vergleich mit anderen Pattern-Repositorys
	6.2.4 Vorteile und Nachteile des Pattern Repositorys

	6.3 Rückblick auf Verlauf der Arbeit

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	Literaturverzeichnis

