Institute of Architecture of Application Systems

University of Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Diploma Thesis Nr. 3540

Realizing a Decision Support
System for Different Deployment
Automation Approaches

Bing Shao
Course of Study: Computer Science
Examiner: Prof. Dr. Frank Leymann
Supervisor: Dipl.-Inf. Johannes Wettinger
Commenced: 1. August 2013
Completed: 31. Januar 2014

CR-Classification: C24,D21,D.2.11,D.2.13, H4.2

Abstract

In recent years more and more IT enterprises use Cloud computing to deliver their services.
To deploy services on the Cloud, there are different Deployment Automation Approaches
(DAA) available, e.g. PaaS- and IaaS-based DAA. It’s must be ensured, a particular service
is deployable using a certain DAA, which means the deployment requirements of the service
are fulfilled by the DAA. There are plenty of particular DAAs on the market. Some of them
have different but similar features. Therefore a appropriate choice will be a key issue for the
deployment.

This thesis proposes a Decision Support System for different Deployment Automation Ap-
proaches (DSS4DAA). Based on the research in the features of different DAAs, we design and
implement the basic rule for the decision support system. Its components are reusable and
deployable for the future work.

Contents

1 Introduction

1.1 Motivation e
1.2 Problem Statement
1.3 List of Abbreviations

2 Background

2.1 Cloud Computing o o i
2.2 Cloud Service Models e
2.3 Deployment Automation Approaches
2.4 Decision Support System

3 Specification

4 Design & Implementation

4.1 System Design
4.2 Deployment Requirements L o
4.3 Knowledge Base
4.4 Decision Support Logic

5 Evaluation
6 Summary and Future Work

Bibliography

13
13
13
15
22

25

29
29
31
32
38

41

47

49

List of Figures

2.1
2.2
2.3
24
2.5

3.1

4.1
4.2
4.3

Comparison of traditional IT and three basic Cloud Service Models [Chol2] . . 15
Overview of Stratos 2.0 Architecture [WSO14a] 18
Overview of Chef Architecture [ops14] 20
Puppet Working Process [pupl4] 21
Arc Metamodel of decision [Zim13] L. 24
Use Case Diagram o 26
Activity Diagram of Decision Support System 30
ER Diagram for description of Deployment Automation Approach 34
Class Diagram of Knowledge Base 36

List of Tables

1.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

Concepts of the Formal Definition 10
Key-Value Definition of Map object in class KnowledgeBase 35
Key-Value Definition of Map object in class OptionLibrary 37
Example of Comparison of two Strings and the Result of function COMPARE() . 38
Option of Knowledge Base o 42
Features of Knowledge Base 43
Decision Support for Deployment of Wordpress 44
Decision Support for Deployment of Joolma 44
Decision Support for Deployment of Redmine 45
Decision Support for Deployment of Etherpad 46

List of Listings

4.1 Requirements of Joomla using JSON oo, 33
4.2 Knowledge Base of Google App Engine using YAML 39

List of Algorithms

4.1 Suitable DAA e 40
4.2 DAA Ranking 40

1 Introduction

1.1 Motivation

The business and IT leaders are facing the business challenges from the real world. In business
level the rising tide of globalization changes the world markets, accordingly the business
logic should be changed to adapter to the markets. The lowering costs of computation are
always a key issue for business, which are driving the focus from personal to datacenter-centric
computing. Based on it the changes propagated to information technology. The new delivery
models for IT services are being used. On the user side the way to access IT services are
also changed. Nowadays there are more mobile devices than desktop computers in use, which
means more requests from mobile devices are sent. In most mobile devices instead of heavy
client, browser and thin client are used to access services.

"I think the Internet was the last big change. The Internet is maturing. They don’t call it
the Internet anymore. They call it cloud computing.” Larry Ellison, the CEO of Oracle said,
“When the Internet first started, the primary device connected to it was the personal computer.
Every network has enormously complex components that are hidden from consumers. The
PC network was very different. The PC was very complex, and was attached to a complex
network. Now we’ve migrated that complexity off the desktop and moved it to Internet servers.
That has been recast as cloud computing.” [Hes12]

As a consumption and delivery model for IT services cloud computing has its advantages, such
as scalability, flexibility, reliability, high availability, to accept those challenges. It’s the reason,
why more and more I'T enterprises deliver their businesses and services to customers through
cloud computing. The cloud vendor offers computation, storage, application hosting service
and provide coverage on service continuance, offering service level agreements(SLA)-backed
service performance. There is a variety of cloud service offering on the market. Each of
them has its characteristics. For example, Google App Engine provides an extensible runtime
environment for application, but doesn’t allow application to access the filesystem. Microsoft
Azure provides a wide array of Windows-based services for developing and deploying Windows
applications, but only supports Windows. Therefore it’s important for the developers, which
are required to deploy cloud applications and services, to choose the suitable cloud service for
their applications and services.

1 Introduction

Concept Description

S = {s1,...,s} | aset of cloud services

O ={o1,...,05} | a set of options

V ={v1,...,ux} | a set of option’s values

F ={f1,....fi} | aset of cloud service features

P ={p1,....,pm} | aset of feature’s providers

C ={c1,...,cn} | aset of feature’s categories

R={ry,..,m} | aset of application’s requirements

Table 1.1: Concepts of the Formal Definition

1.2 Problem Statement

In reality there is a variety of services and applications. Each of them has its own requirements.
For example, the self-hosted blogging tool, Wordpress!. PHP and MySQL are needed to deploy
a Wordpress service. [worl2] In other words, a cloud service, which supports PHP and MySQL,
can be used as host to deploy Wordpress on it.

In order to describe the cloud services and applications, Table 1.1 presents the concepts
required for the formal definition. In the definition S is a set of offered cloud services, such as
Google App Engine, Cloud Foundry, etc. The cloud services have options and features, which
are presented by O and F. Options O need a set V to save all the supported values of each
option. Features F' should be organized by categories C, each feature should have at least one
provider. All the providers of each feature are saved in P. For example, Google App Engine
supports Java, Python, PHP, Go and Google Cloud SQL, which means the option “Runtime
Environments” of GAE has value Java, Python, PHP, Go And GAE has a feature “Google
Cloud SQL”, which is provided by Google, can be organized in Category “SQL Storage”. The
application’s requirements are presented by R. For example, the requirements of Wordpress
are PHP and MySQL.

This work aims to develop a Decision Support System for different Deployment Automation
Approaches(DSS4DAA) in order to help developers to make the right choice to deploy their
applications or services to cloud. At the first the cloud services should be characterized to
a appropriated data model, which should be comparable. Then find suitable cloud service
for application to deploy. The deployability of an application on a cloud service means
each requirements of the application should be fulfilled by the cloud service, otherwise is
undeployable. A decision for application deployment can be defined as follow:

Definition Decision support for the deployment of application with requirements R to the cloud
can be identified with {si|(‘v’r ER:reFVreO)ANE « f(s) NO « g(si),F CF,0C O}

"http://wordpress.org/

10

http://wordpress.org/

1.3 List of Abbreviations

In the definition, the function f(s;) returns the features of the cloud servie s;, and the function
g(s;) returns the options of s;. Note the F' is the features of s;, it’s part of F. As the same, O
is the options of s;, it’s part of O.

It’s possible, the decision support system has more than one result. A ranking subsystem is
very necessary to help consumers select the most suitable cloud service.

1.3 List of Abbreviations

The following list contains abbreviations which are used in this document.

API Application Programming Interface
DAA Deployment Automation Approach
DSL Decision Support Logic

DSS Decision Support System

GAE Google App Engine

IaaS Infrastructure-as-a-Service

JSON JavaScript Object Notation

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

11

2 Background

2.1 Cloud Computing

One of the most referred-to descriptions of cloud computing was published by the National
Institute of Standards and Technology (NIST). “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.” [MG11] A cloud
has the characteristics described in the following:

e Self-Service
Using interface consumers can subscribe to cloud services and resources. The benefit of
this self-service ability to the customers is, the provisioning of their needed resources is
quickly, so that their business can respond to opportunities in a timely manner.

¢ Broad Network Access
Consumers are using a variety of devices to access cloud services. The access should
be secure and reliable from different networks. It’s important for service developers, to
use the device and system independently web technologies to keep the availability on
different devices.

e Resource pooling
The cloud provider should organize the resource by using a multi-tenant model.

e Rapid elasticity
The consumers’ demand is dynamical, so that the provisioning should be re-configured
and re-applied based on demand.

e Measured service
The cloud provider monitors status of resources used by consumers.

2.2 Cloud Service Models

The NIST has also defined the cloud computing in three service models, SaaS, PaaS and IaaS.
MG11]

SaaS

13

2 Background

Software as a Service is a software delivery model in which applications are hosted by a vendor
or service provider and made available to customers over a network, typically the Internet.
Compare to the traditional software delivery model, SaaS has its advantages,

e casier administration
e automatic update

e global accessibility

compatibility by using the same version of software

e casier collaboration without version control problem

In this work we don’t consider of SaaS. It can be purchased on demand, but cannot be used as
target of deployment.

PaaS

Platform as a Service is a concept that describes a computing platform that is rented or
delivered as an integrated solution, solution stack or service through an Internet connection.
PaaS provides all the infrastructure needed to develop and run applications over the Internet.
PaaS has advantages for developers. With PaaS, operating system and runtime features
can be updated frequently. Distributed development teams can work together on software
development projects. Costs can be reduced by the use of infrastructure services from a single
vendor rather than maintaining multiple hardware facilities.

TaaS

Infrastructure as a Service is a service model that delivers computer infrastructure on an
outsourced basis to support enterprise operations. IaaS provides physical server or virtual
machines, storage, servers and network components. The IaaS provider owns the equipment
and is responsible for running and maintaining it. The consumer pays on a per-use based
billing. Characteristics of IaaS include:

e Utility computing service and billing model
e Automation of administrative tasks

e Dynamic scaling

Desktop virtualization

Policy-based services

Internet connectivity

14

2.3 Deployment Automation Approaches

Traditional IT Infrastructure Platform Software
{as a Service) (as a Service) (as a Service)
s s
= 2 _
= _ L Operating System — . Operating System = Operating System |-
s Vintualization Vitualization | = Virtualization |o Virtualization |
. e e | s
_ Storage 2 Storage N Storage

Figure 2.1: Comparison of traditional IT and three basic Cloud Service Models [Chol2]

Based on the definition, Figure 2.1 [Cho12] shows the comparison of traditional IT and three
basic cloud service models. In traditional I'T all works from maintain infrastructure to develop
and publishing application are done by own staff. Using cloud service models the works can
be reduced. As an application consumer the only thing to do is to find the need SaaS and
purchase it on demand. If the needed SaaS doesn’t existed, the software developer can focus
on development. Using PaaS the developed application can be deployed without deal with
Infrastructure. If no PaaS suit for the developed application, can use IaaS to build suitable
platform for the application. In other words, system administrator manages laaS and provides
the needed PaaS to software developer. The software developer uses the PaaS publishing the
needed SaaS to end user. The developer really can focus on their code, their program and
their business logic. They just push it to the Cloud and let the PaaS engine take care of the
functions of the middleware and the infrastructure, as well as the scalability requirements. So,
developer doesn’t need to waste their time on all kinds of environment setups, which actually
don’t add a lot of value to their work. They can pay more attention to improve their user
experiments.

2.3 Deployment Automation Approaches

This thesis focuses on application deployment. There are different kinds of deployment
automation approaches to deploy application to the cloud. Suitable hosted-PaaS providers
can be direct used to deploy application. PaaS frameworks are typically used to build custom

15

2 Background

platforms based on laaS offerings or physical servers. If there are no suitable PaaS for
application, TaaS providers are also solutions to deploy application.

2.3.1 Hosted-PaaS Providers

PaaS hosting provides not only the needed hardware infrastructure, also the needed operating
systems, middleware, database, test environments. Hosted-PaaS providers deliver a computing
platform and a solution stack for software vendors, developers who want to avoid the costs
and complexity of acquiring and managing their own platform. The down side of hosted-PaaS
providers is, some of them have restriction, such as Google App Engine. It can be a problem
for the application extensibility.

Google App Engine

Google App Engine [Engl2] is a scalable runtime environment mostly devoted to executing
Web applications. These take advantage of the large computing infrastructure of Google
to dynamically scale as the demand varies over time. App Engine provides both a secure
execution environment and a collection of services that simplify the development of scalable and
high-performance Web applications. These services include in-memory data caching, scalable
data store, job queues, messaging. [Engl2] Developers can build and test applications on their
own machines using the App Engine software development kit (SDK), which replicates the
production runtime environment and helps test and profile applications. Once development is
complete, developers can easily migrate their application to App Engine, set quotas to contain
the costs generated, and make the application available to the world. The languages currently
supported are Python, Java, and Go.

There are some restrictions of Google App Engine.
e Filesystem on GAE is read-only access.
e The executable code can only be called from an HT'TP request.

e The maximum of request duration is 60 seconds.

Java applications may only use a subset of classes from the standard JRE.

For python application support only pure-Python modules.

Heroku

Heroku'! is a popular Platform as a Service provider that’s been announced in 2007, providing
simplistic web application hosting for polyglot developers. Heroku supports a wide variety of

"https://www.heroku.com/

16

https://www.heroku.com/

2.3 Deployment Automation Approaches

programming languages, and just about every web framework you can think of. What makes
Heroku a an appropriate choice for hosting is that:

e Heroku is built on top of Amazon Web Services, one of the largest cloud providers in the
world.

e Heroku doesn’t lock you into their platform—they’re built using all open source tools so
you don’t have to rewrite your codebase to make things work.

e Use Git to manage your deployments.

e Instantly provision, resize, and remove any needed infrastructure components (stuff like
PostgreSQL, Memcached, etc.).

e Keep private data decoupled from your code via environment variables.
e Instantly scale your infrastructure up and down to support large amounts of traffic.
e Pay for usage only: no monthly fees, contracts, or anything else.

e Heroku has a large collection of addons which makes using additional infrastructure
components easily.

2.3.2 PaaS Frameworks
Cloud Foundry

Cloud Foundry? is an open Platform as a Service, which is developed and operated by VMware.
Cloud Foundry is an Open Source project available through a variety of private and public
Cloud distributions. It’s written in Ruby, but intended to host any language or any other
component. There are many PaaS offerings in the market today, but they all lack some
functionality. In consideration of this, VMware introduced their PaaS, Cloud Foundry, with
an emphasis on making up for the shortcomings of other PaaS. They focused on three main
categories: Clouds, Frameworks and Services.

Firstly, current Clouds in the market are tied to a single Cloud — one public Cloud or one
Cloud managed by a single provider. Because Cloud Foundry is open PaaS, it supports an
architecture that is extensible and collaborative, and has the ecosystem of technologies that
lets developers have the choices they want. So, Cloud Foundry is going to solve the weaknesses
and limitations of current PaaS offerings by supporting multiple public Clouds which run in
Cloud Foundry as well as private Clouds. This enables developers to have a true kind of public,
private and hybrid solution of Clouds running behind the firewall in a public Cloud partner.

Secondly, most Clouds are tied to a single framework and single language. For example, they
are supporting only .Net applications, or only Java applications, or only Rails applications,
etc. And they are tied to one framework, which is pretty limiting. Companies and developers

2http://www.cloudfoundry . com/

17

http://www.cloudfoundry.com/

2 Background

Stratos 2.0 Layered Architecture

Wi

@ Carbon Carbon Other Any

E" ESB AppSenver Carbon Ca:':z = c'iﬁg"g Pluggable

& Cartridge Cartridge Cartridges 9 9 Cartridge
File Column Logaing Felational Task

Storage Siorage
Semice Senir

Semnice Senice Senice
(Elastic Load Balancer) (Cloud Controller)(Stratos Controller) (CLV WebUI Tool)
(jclouds)

nfrastructure as a Service (EC2, OpenStack, vCloud, etc.)

dentity " egistry .I'_"_-'J-_‘.'_ ng | a
_l'l'l 1 BAM F .'I i _3 l b Billing Data Management

Senice

-enIce Sence aenice

Stratos
Foundation

laas

Figure 2.2: Overview of Stratos 2.0 Architecture [WSO14a]

want to mix and match different types of frameworks or different types of applications that
all need to coexist. Cloud Foundry can use multiple frameworks, so it can support Java
Spring applications and Ruby on Rails applications at the same time. And it is also extensible
to a PaaS engine supporting future frameworks and future languages for developers. The
frameworks and languages currently supported by Cloud Foundry include Spring, Java, Ruby
on Rails, Sinatra, Node, Grails and Play.

Finally, most Clouds are tied to one set of application services, only allowing use of specific
databases, specific service technology and management technologies. Again, people want as
many choices as possible. Cloud Foundry supports multiple application services. So there are
some base services shipped in Cloud Foundry like a relational database, key/value store, and
an extensible API allowing more partner technologies to be added in the future. You can plug
them into the API to work with Cloud Foundry. The services currently supported by Cloud
Foundry include Redis, MySQL, PostgreSQL, RabbitMQ and mongoDB.

Stratos

WSO2 Stratos® is a middleware PaaS. It’s open source, licensed under Apache 2.0. Before
Stratos announced, WSO2 has been doing many releases based on Carbon platform [WSO14b],
which redefines middleware by providing an integrated and componentized middleware platform
that adapts to the specific needs of any enterprise IT project - on premise or in the cloud.
As Figure 2.2 [WSO14a] shows the most important features for deployment, the pluggable

3http://wso2.com/cloud/stratos/

18

http://wso2.com/cloud/stratos/

2.3 Deployment Automation Approaches

Cartridges like Carbon and the possibility to run Stratos on multiple infrastructures via Apache
JClouds?.

Cartridges are a way of packaging a runtime making it available to be run on Stratos. There
are two types of cartridges: Carbon and non-Carbon. Carbon or Product Cartridges are
wrappers around WSO2 middleware products, including ESB, API Manager, Application
Server, Governance Registry, Business Process Manager, Identity Server, WSO2 Message
Broker, etc.. These cartridge are provided by WSO2. A non-Carbon cartridge is a virtual
machine image created for a specific [aaS, including the desired runtime and some configuration
information, which is then registered with Stratos Cloud Controller and deployed to be run on
a PaaS.

WSO2 currently has created PHP and MySQL cartridges with the intent to provide more in
the future. Developers can create their own cartridges following the guidelines. Carbon or
custom cartridges are cloud ready and have built-in multi-tenancy support. Complex products
requiring multiple cartridges in order to run are not supported yet, but they will be in the
next version, according to WSO2.

The other major feature available in Stratos 2.0 is the possibility to deploy the PaaS on multiple
TaaS infrastructures, including the ability to dynamically switch from an IaaS to another
or scaling across different ITaaS as needed. This features has been added by incorporating
JClouds technology, which expands the number of IaaS supported to 30 [JC114], including all
OpenStack variants, VMware, Eucalyptus, and Amazon EC2.

2.3.3 laaS Tools
Chef

Chef’ is a systems and cloud infrastructure automation framework that makes it easy to deploy
servers and applications to any physical, virtual, or cloud location, no matter the size of the
infrastructure. Figure 2.3 [ops14] shows the architecture of chef. Chef comprises three main
elements: a server, one or more nodes, and at least one workstation. Each node contains a
chef-client that performs the various infrastructure automation tasks that each node requires.
The chef-client relies on abstract definitions, which are known as cookbooks and recipes, that
are written in Ruby. Each definition describes how a specific part of your infrastructure should
be built and managed. The chef-client then applies those definitions to servers and applications,
as specified, resulting in a fully automated infrastructure. When a new node is purchased, the
only thing the chef-client needs to know is which cookbooks and recipes to apply.

The server manages every node in the organization. It ensures that the right cookbooks and
recipes are available, that the right policies are being applied, that the node object used during
the previous chef-client run is available to the current chef-client run, and that all of the

‘http://jclouds.apache.org/
Shttp://www.getchef . com/

19

http://jclouds.apache.org/
http://www.getchef.com/

2 Background

CHEF SERVER NODES
9, e i NC| N
s chef-client ohai physical
anvirons rolas data bags policy

chef-client ohai virtual

=— ——
manager o — M
L —

p run-ist attributes node object h Q

saarch chef-client ohai cloud
: N i C| B
o— [] O
Vversions recipes altributes cookbooks chaf-cliant ohai network
WORKSTATIONS

fa oo o

anvirons roles data bags saltings

knife .\l E ﬂ- ﬂﬂ chet-

cookbooks recipes attributes varsions

i

Figure 2.3: Overview of Chef Architecture [ops14]

nodes that will be maintained by the chef-client are registered and known to the server. The
workstation is the location from which cookbooks and recipes are authored, policy data such
as roles, environments, and data bags are defined, data is synchronized with the chef-repo,
and data is uploaded to the server.

20

2.3 Deployment Automation Approaches

. i — = @ Define: with Puppet's declarative

language you design a graph of

relaticnships between resources within
- - = reusable modules. These modules define
= = = your infrastrecture in its desired state.
o -

é B
l:p__. .
-]
o *

@ Report: Pupper Dashboard reports

o
il

Simulate: with this resource

track relationships between . | graph, Puppet is unigque in its
companents and all changes, allowing " | ability to simulate deployments, enabling
wou e keap up with security and you o test changes withowt disreption
compliance mandates, And with the -"-\ ta yaur infrastructiure.,
agen APl you can integrate Puppet with ", s
third party monitaring tools. e -
— P
[— _r Enforce: Puppet compares your
mul ’ -‘5‘ system (o the desired state as pou
‘ S T define it, and awtomatically enforces it
e to the desired state answEring your systam
—ﬁ-— is in compliance.

Figure 2.4: Puppet Working Process [pup14]

Puppet

Puppet® is IT automation software that helps system administrators manage infrastructure
throughout its lifecycle, from provisioning and configuration to orchestration and reporting.
Using Puppet, you can easily automate repetitive tasks, quickly deploy critical applications,
and proactively manage change, scaling from 10s of servers to 1000s, on-premise or in the
cloud. Figure 2.4 [pupl4] shows how Puppet works.

1. Define the desired state of the infrastructure’s configuration using Puppet’s declarative
configuration language.

2. Simulate configuration changes before enforcing them.
3. Enforce the deployed desired state automatically, correcting any configuration drift.

4. Report on the differences between actual and desired states and any changes made
enforcing the desired state.

Shttp://puppetlabs.com/

21

http://puppetlabs.com/

2 Background

Juju

Juju” is an “automatic service orchestration” project launched by Canonical, developers of the
Ubuntu Linux-based operating system, to deploy, manage and scale software and interconnected
services across one or more Ubuntu servers and cloud platforms. Juju is a next generation
service orchestration framework. It has been likened to APT for the cloud. In Ubuntu APT is
a package management tool, it understands collections of packages called “repositories” and is
able to find the packages needed to satisfy inter-package dependencies. With Juju, different
authors are able to create service formulas, called charms, independently, and make those
services coordinate their communication and configuration through a simple protocol.

2.4 Decision Support System

Decision-making analysis was conducted by the Carnegie Institute of Technology in the late
1950s and early 1960s. The Massachusetts Institute of Technology (MIT) applied computer
technology to decision-making theory in the 1960s. [KM78] By the 1980s, intensive research on
DSS was underway, and new theories and concepts emerged from single-user models of DSS,
including organizational decision support systems (ODSSs), group decision support systems
(GDSSs) and executive information systems (EISs). By 1990 DSS was broadened to include
data warehousing and online analytical processing.

Another taxonomy for DSS has been created by Daniel J. Power. Using the mode of assistance
as the criterion, Power differentiates communication-driven DSS, data-driven DSS, document-
driven DSS, knowledge-driven DSS, and model-driven DSS. [Pow(2]

e Communication-driven DSS supports more than one person working on a shared
task.

e Data-driven DSS emphasizes access to and manipulation of a time series of data.

e Document-driven DSS manages, retrieves, and manipulates unstructured information
in a variety of electronic formats.

¢ Knowledge-driven DSS provides specialized problem-solving expertise stored as facts,
rules, procedures, or in similar structures. [Pow(02]

e Model-driven DSS emphasizes access to and manipulation of a statistical, financial,
optimization, or simulation model.

Three fundamental components of a DSS architecture are database (or knowledge base), model
and user interface. [Pow02] User interface is used as input and output of the system. The
database is required as user knowledge and expertise by the user. The model is used to make
decision.

"https://juju.ubuntu.com/

22

https://juju.ubuntu.com/

2.4 Decision Support System

This thesis uses knowledge-driven DSS. The existed deployment automation approaches should
be stored as knowledge base. Zimmermann introduced a decision modeling framework for
service-oriented architecture design. Figure 2.5 [Zim13] shows the overview of Arc decision
based on [Zim09]. Requirements are gotten from DecisionRequired. DecisionMade makes
decision. If mismatch refactoring are need, which is defined as undecide-redecide actions.

Based on it a decision support logic should be used as the model of the decision support
system.

23

2 Background

leadingTo

class ArcDecisionCoreOverview ~

DecisionRequired

OptionConsidered|

Decision

/

DecisionMetadata

OptionChosen

DecisionMade

desiredSolution

\

OptionNeglected

chosenSolution

DecisionMismatch

incompatibleWith

Option

EnforcementProblem

resdlves

ArchitecturalRefactoring

I,\

TechnicalDebtltem

T

ReviewFinding

Figure 2.5: Arc Metamodel of decision [Zim13]

24

3 Specification

This thesis focuses on the decision support system of application deployment. This DSS should
have the following characteristics

Extensibility

This work defines the basic rule of a DSS for application deployment. The functionality
of DSS should be extensible in the further work. The features of deployment automation
approaches can be extended by the cloud service providers. As knowledge base it need
to be extend in the future.

Distributability
The components of the DSS should be distributable. As a service this DSS should be
deployable. Distributability of components makes deployment of DSS flexible.

Reusability
The components are not only for this DSS. It should be reused in other decision support
systems. The interface of each components should be specified.

Easy to maintain
Because of the update of cloud service providers, the maintain of knowledge base may
be a recurring task. It’s very necessary to make it easier and independence.

Integration-aware
It should be possible to integrate the developed DSS with other DSSs, like the DSS for
cost calculation [Sonl13].

To deploy an application to cloud, two kind of information are needed, requirements of
application and available features of deployment automation approaches. These information
are gained from different actors. Like figure 3.1 shows, user and DSS. User chooses the
application requirements, includes the weights of requirements, which are used to calculate
ranking. The application requirements are used to make decision. Each application has its
own requirements. For instance, some typical requirements can be:

Runtime environment

Web-based services and applications need runtime environment to run. It can be a
develop language environment, like Java, PHP, Python, Ruby, or a framework, such as
Rails, Django, Spring. Note that applications can be develped using multi-language or
frameworks. In this case the application needs a multi-runtime environment.

25

3 Specification

<<include>> DAAs
> <Y
Requirements of app - T —<<extend>>t — =
User D / DSS

Frontend

Initialize User
Interface
Weights of each
requirements
|

Description
of DAAs

<~

<<extend>>

~

Available features of o

=+~

<<extend>> <<include>>,

—

L

<<extend>> — |-

Figure 3.1: Use Case Diagram

Supported database
Database is a typical requirement of application. It could be a SQL database, e.g.
MySQL, PostgreSQL, or a NoSQL database, e.g. MongoDB, Redis.

Supported Web Servers
Web servers are used to run web-based services. The typical web servers are Apache,
Jboss, Nginx, Microsoft IIS.

Filesystem access

If application need to read data from filesystem, such as reading configuration file, then
needs a read-only filesystem access. If application need to write data to filesystem, like
modify the configuration file or update a photo to cloud, then the filesystem access
should be read-write.

Data processing services

Some application need server-side data processing. For example, the self-hosted invoicing
and project management service Pancake!' needs a server-side image processing GD?.
[panl4]

The features of deployment automation approaches are described. The description of DAAs
uses documents. The reasons of using documents instead of database to describe DAAs are

"https://pancakeapp.com/
*http://1ibgd.bitbucket.org/

26

https://pancakeapp.com/
http://libgd.bitbucket.org/

independence, easy to maintain. The document formats can be CSV, XML, JSON, YAML.
Knowledge base is initialized based on the description. In backend decision support logic has
two components, decision making and ranking. They use the application requirements as
parameters, to make decision and handle ranking.

As a component of the DSS, user interface is used to get the application requirements from user
as input and put the result back to user. Each application has its own requirements. In order
to make decision, the requirements should be comparable with the features of DAAs, which
means the modeling of application requirements and features of DAAs should be identify. They
are two solutions to make the comparison possible, modeling from the application requirements
and modeling from DAAs.

27

4 Design & Implementation

This chapter presents design and implementation of the system. In Section 4.1 the architectural
solution considered to build the system, which fulfills the requirements specified in Chapter 3.
Section 4.2 shows the deployment requirements. As the components of the DSS, Knowledge
Base and Decision Support Logic are described in Section 4.3 and Section 4.4.

4.1 System Design

As mentioned before, knowledge base, model and user interface are the fundamental components
of a decision support system. The data model of knowledge base is designed for not only itself,
but also used by decision support logic. The DSL is designed as model to make decision. as in-
and output of the system the user interface is not detailed introduced, expect the API for the
UT and the messages.

Figure 4.1 shows the overview of activity diagram for the decision support system. The first
step is initialization. Before system starting, the information of cloud service providers as
knowledge base are saved into external documents, such as XML, JSON, YAML. All the
documents, which save knowledge base, should be loaded into system. The user interface
is used to get the requirements of application and show the result. The requirements of
application are used to make decision, which means it should be comparable with the features
of deployment automation approaches. It’s a solution, provides available features of all DA As.
User just need select the needed requirements for their application from the selection list. It’s
possible, the requirements are not features of DAAs, which means there are no DAAs support
those requirements yet. In this case, the deployment of application is not possible. It’s no need
to use this decision support system. Otherwise it’s suitable to get requirements of application.
It’s the reason, why user interface is initialized after initialization of knowledge base.

After initialization, system is ready to use. The requirements as input are sent to decision
support logic. The requirements are chosen from the features list of DAAs, which means
every requirement is support at least by one DAA. If a DAA support all the requirements, it’s
a suitable DAA for the application. Otherwise it needs a recommend deployment solution,
a combination of DAAs. For example, a use-developed application needs write access of
filesystem, Java runtime and MySQL support. In knowledge base there are PaaS-based DA As
support Java and MySQL, but no write access of filesystem. Only IaaS-based DAAs support
write access of filesystem. A solution could be combination of a PaaS-based DAA and a
laaS-based DAA, and the Paas-based DAA should deployable on the TaaS-based DAA.

29

4 Design & Implementation

Figure 4.1: Activity Diagram of Decision Support System

30

Decision Support System for Deployment Automation Approaches

Backend

Frontend

/Init DSS

init knowledgebase

i of DSS

send options to w 150
i Client J

receive requirements}

get requirements of
app

!

of app and
normalization J‘

A

NO

has suitable DAAs l

4{ Ranking

J

SON

(send requirements of
L app to Server

Yes)) i
find composite !
deployment solution | |

[send result to Clientj

)

ISON

=[show result]

4.2 Deployment Requirements

In decision support logic, a ranking subsystem is necessary. Some requirements, like PHP,
Java, MySQL, are supported by almost each PaaS-based DAAs. If a application has the those
requirements, there are many suitable DAAs. The ranking is used to help the user to make
the choice from the list. Ranking needs parameter of each requirements, Weights. It should be
set by user. The message between frontend and backend are using JSON.

4.2 Deployment Requirements

The common requirements of application are described like Wordpress [worl2], a list of
requirements. There is another case like Joolma'. The requirements of Joolma 3.x are :
[jool4]

e Software: PHP
e Supported Databases: MySQL, MSSQL, PostgreSQL

e Supported Web Servers: Apache, Nginx, Microsoft IIS

Note, there are more than one supported databases and web servers. It doesn’t means all
the databases or web servers are required by Joolma. One of them is enough. To describe
the requirements correctly, logical expression is used. The requirement of Joomla should be
formatted as:

Tal AN (761 V To2 V 753) A (Te1 V Te2 V T¢3)

with 7141 : PHP requirement
rp1 : MySQL requirement
rp2 : MSSQL requirement
rp3 : PostgreSQL requirement
re1 - Apache requirement
reo : Nginx requirement
re3 : Microsoft IIS requirement

As the same, the requirements of Wordpress should be:

Taq N\ Th

with 7, : PHP requirement
rp : MySQL requirement

"http://www. joomla.org/

31

http://www.joomla.org/

4 Design & Implementation

Logical expression should be used to describe requirements of application, which must be
fulfilled. And some requirements are optional, which means it’s unrelated with the deploy
availability. But it’s useful for the ranking. Therefore the deployment requirements can be
described as

o KnockedOutRequirements must be fulfilled, described using logical expression
OptionalRequirements optioinal, described using list

Normally JSON is used as data format in Frontend. The requiements are gotten from user
interface. So we choose JSON as data format for the requirements of application. Listing 4.1
implements the requirements of Joolma using JSON.

4.3 Knowledge Base

Knowledge base is the fundamental part of implementing decision support logic. It provides
information of DAAs. Each DAA has its own features. Each features should be categorized in
different categories. Figure 4.2 shows Entity-Relation diagram for description of deployment
automation approach. Entity DAA contains the basic information of a Cloud service provider,
name, type, description. Type of DAA should be Hosted-PaaS, PaaS Framework and IaaS.
A DAA could have many categories, like SQL Storage, NoSQL Storage, Mail Services, Data
Processing Services, etc. So DAA has a one-to-many relationship with Category entity. Each
category could have many features. In some case a feature could have more than one provider.
For example, as a NoSQL storage service, MongoDB? can be provided by MongoHQ? or
MongoLab?. Therefore Category entity has a one-to-many relationship with Provider entity.

Some features of DAA are simply, need not described by using the Category-Feature-Provider
Entity-Relatioin. For example, runtime environment. The common runtimes could be Java,
PHP, Python, Ruby, Node.js. They are standard. The Provider entity is not needed. Those
features can be described by using entity Option. As the basic information each Option entity
has name and values. For example, Google App Engine supports Java, PHP, Python, Go. For
GAE the Option “Runtime Environment” has value “Java, PHP, Python, Go”.

Note, that Option entity is not only for DAA entity. Feature entity and Provider entity could
also have Option entity. Each feature may has its own properties. Feature can be detailed
described using Option entity. For Provider entity, the different providers of same feature may
not have same instance. For example, as intance of MongoDB, MongoHQ supports Automatic
Database Optimization, but MongoLab doesn’t specified if Automatic Database Optimization
supported.

2http://www.mongodb. com/
3http://www.mongohq . com/
“http://mongolab.com/

32

http://www.mongodb.com/
http://www.mongohq.com/
http://mongolab.com/

4.3 Knowledge Base

Listing 4.1 Requirements of Joomla using JSON

{
¢ ‘Operation’’: ¢‘AND’’,
‘‘data’’: [
{ ‘‘Runtime Environments’’: ‘‘PHP’’ },
{ “‘Operation’’: ‘‘OR’’,
‘‘data’’: [
{ ‘‘categories’’: ‘‘SQL Storage’’,
¢‘features’’: {
‘‘Name’’: ‘‘Microsoft SQL’’,
‘‘Optiomns’’: [...]
}
},
{ ‘‘categories’’: ¢‘SQL Storage’’,
‘‘features’’: {
‘‘Name’’: ‘‘MySQL’’,
‘‘Optiomns’’: [...]
}
},
{ ‘‘categories’’: ¢‘SQL Storage’’,
‘‘features’’: {
‘‘Name’’: ‘‘PostgreSQL’’,
‘‘Optiomns’’: [...]
}
}
]
},
{ ¢‘Operation’’: ‘‘OR’’,
‘‘data’’: [
{ ““categories’’: ‘‘Web Server’’,
‘‘features’’: {
‘‘Name’’: °‘Apache’’,
‘‘Optiomns’’: [...]
}
},
{ ¢‘categories’’: ‘‘Web Server’’,
‘‘features’’: {
‘‘Name’’: ¢‘Nginx’’,
“‘Optiomns’’: [...]
}
},
{ ¢‘categories’’: ‘‘Web Server’’,
‘‘features’’: {
‘‘Name’’: ‘‘Microsoft IIS’’,
‘‘Optiomns’’: [...]
}
}
]
}
]
}

33

4 Design & Implementation

description

Decision Automation

1 has
Approach
description
' N

Category
T
1
Option
description
] N
N N
1— Feature
description
1 1
Provider N has

Figure 4.2: ER Diagram for description of Deployment Automation Approach

34

4.3 Knowledge Base

Data member | Key Value

daas Name of DAA DAA object with the name

categories DAA object All the supported categories by this DAA
features Category object | All features belongs to this Category
providers Feature object | All providers of this Feature

Table 4.1: Key-Value Definition of Map object in class KnowledgeBase

Entity Option and Category-Feature-Provider are two ways to describe the features of DA As.
It’s necessary to consider, which way is suit to describe the feature. For the same feature some
DAAs describe detailed information about it, some DAAs not. In this work the comparison is
important to make decision. To keep the feature of DAAs comparable each feature of DAAs
should be described in same way, Option entity or Category-Feature-Provider, even if some
DA As have no enough information of the feature.

As mentioned before, the first step is initializing knowledge base. The knowledge base is
loaded to decision support system. Figure 4.3 shows the class diagram of knowledge base
in DSS. This DSS should have only one knowledge base. In package knowledgebase, the
class KnowledgeBase is a static class. In class KnowledgeBase data member kbPath saves the
path of the knowledge base documents. The procedure INIT() is used to initialize knowledge
base. If the knowledge base documents are modified, procedure UPDATE() can be used to
apply the change. After initialization all the loaded information from the external documents
are saved in this class. daas saves all the DAAs. categories saves all available categories,
as the same features for features, providers for providers. The data structure of daas,
categories, features and providers is Map. The reason using Map instead of List or Set is,
in implementation phase using key-value pair of Map is easy to find value without traversing.
Table 4.1 shows the key-value definition of the map object in class KnowledgeBase.

Class DAA is the data structure of DAAs. name, type are basic information of the DAA.
Unlike categories in class KnowledgeBase, categories in class DAA saves only the supported
categories by this DAA. Tts key-value definition is also different. The key of this categories
is the name of category, value of this categories is the Category object with the name.
supportedIaas is a special, only for class DAA. Technically PaaS frameworks should be deployed
on all TaaS. Some PaaS framework specified the supported laaS. It could be considered, the
guarantee of deployment to the supported IaaS. It’s vantage to keep the deployment infallible.

Class Category is easy to understand. Like DAA, name and description are basic iniformation.
features in class Category saves the features of this category. The key of this features
is the name of feature, value of this features is the Feature object with the name. Class
Feature and Provider are similar to Category except rating in Provider. rating is used
to save the user rating of the Provider. It can help user to make choice.

35

9¢

knowledgebase

knowledgebase.option

<<Interface>>

IDAA

<<static>>

KnowledgeBase

String getName()

String getType()

Set<ICategory> getCategories()
ICategory getCategory(String name)

kbPath : String

daas : Map<String, IDAA>

categories : Map<IDAA, Map<String, ICategory>>
features : Map<ICategory, Map<String, IFeature>>
providers : Map<CatFeat, Map<String, IProvider>>

B

void init()

DAA

void update()

name : String

type: String

supportedlaas : Set<IDAA>

options : Map<IOption, [Value>
categories : Map<String, ICategory>

-

<<Interface>>

Feature

ICategory

Set<IFeature> getFeatures()
IFeature getFeature(String name)

name : String

options : Map<IOption, IValue>
providers : Map<String, IProvider>
description : String

<<Interface>>

IProvider

I\

Category

name : String

<<Interface>>

|IFeature

features : Map<String, IFeature>

description : String

Set<IProvider> getProviders()
IProvider getProvider(String name)

String getRating()

A

Provider

name : String
rating : float
options : Map<IOption, IValue>T
description : String

<<Interface>>

I0ption

String getName()

MultiValue getValueSet()
String getDescription()

<<static>>

OptionLibrary

daaOptions : Map<String, |IOption>

featureOptions : Map<ICategory,Map<String,|Option>>1
providerOptions : Map<CatFeat,Map<String,|Option>> I

catFeats : Map<String, CatFeat>

boolean compare(String s1, String s2)

CatFeat

category : ICategory
feature : IFeature

o v
LimitedValue
<<Interface>>
type : Class IValue
min:Singlevalue T~ - <=
max : SingleValue Class getType()

Option

name : String
valueSet : MultiValue kR

SingleValue

type : Class
value : Object

““Object getValue()

MultiValue

type: Class
values : Set<SingleValue>

Set<SingleValue> getValues()

Figure 4.3: Class Diagram of Knowledge Base

uolejusws|dw| 7 usiIsaq ¥

4.3 Knowledge Base

Data member Key Value

daalOptions Name of DAA Option object with the name

featureOptions | Category object | All available option for the features of this category

providerOptions | CatFeat object | All available option for the providers of this CatFeat

Table 4.2: Key-Value Definition of Map object in class OptionLibrary

The package knowledgebase.option is used to model option of DAAs. As mentioned before,
there are three categories of option, option for DA As, option for features and option for providers.
As a singleton class OptionLibrary saves all options. There are daaOptions, featureOptions
and providerOptions. Their data structure is also Map. Table 4.2 shows key-value definition
of map object in class OptionLibrary. Note, that the key of featureOptions is Category
instead of Feature. There are no needs for each feature a set of option to generation. For
example, Category “NoSQL Storage” has feature “MongoDB”, “CouchDB” and “Redis”. The
three features are all NoSQL service. Most of their option could be duplicated. To avoid this
case, a better solution is merging the option of all features of the category. As the same reason,
the key of providerOptions is CatFeat object instead Provider. Class CatFeat is used to
identify provider for different features. Because it possible, a provider has more features, which
belongs to different category.

Class Option describes option, name as identifier and valueSet saves all acceptable values of
the option. There are two classes to describe the value of option, SingleValue and MultiValue.
SingleValue has only one value. Its type is not fixed. It can be any data type supported
by the implementation language, like String, Boolean, Integer, Float, Double, Date, etc.
MultiValue has a set of SingleValue. Note, that the type of MultiValue should as same as
each SingleValue of it. Before add a SingleValue to a MultiValue, it must be sure, that
the type of the SingleValue and the MultiValue are same. Otherwise the SingleValue
can’t be added to the MultiValue. Some cases should be noticed. For example, a Multivalue
object has a SingleValue with type String and value 1. The type of this MultiValue is
also String. Then another SingleValue with type Integer and value 2 is needed to add to
the MultiValue. In this case, it cannot direct add the SingleValue 2 to the MultiValue. It
should convert the type of MultiValue from String to Integer firstly, then add.

Class LimitedValue describes another set of value, value range. For example a option accepts
a Float value range between 0.1 and 0.9, or a Date value range from today. The lower value
saves in min and upper value saves in max. min and max are both SingleValue. Same as
MultiValue, type of min, max and the LimitedValue must be identified.

Most data types are easy to compare, except String. The function COMPARE(STRING S1,
STRING $2) in class OptionLibrary provides a solution to compare strings, and return a
reasonable value. Table 4.3 shows some example of comparison. Note, that some cases are
not reasonable because it’s not easy to implement. For example, the reasonable result of
comparison “Java 7” and “Java 7.0” should be True. But function COMPARE(STRING S1,
STRING S2) returns a False.

37

4 Design & Implementation

sl s2 sl ==s2
“Java 77 | “ Java 7”7 | True
“Java 77 | “Java?” True
“Java 77 | “jAva 77 True
“Java 77 | “ava 7”7 False
“Java 77 | “Java 7.0” | False

Table 4.3: Example of Comparison of two Strings and the Result of function COMPARE()

The package knowledgebase.option provides a solution to model option and compare its
value. options in class DAA is used for DAA option, in class Feature is for feature option, in
class Provider is for provider option. All the options are used Map as its data type, Option
object as its identifier and selected value saved as value of Map.

To implement knowledge base we can use XML, JSON, YAML. Compare to XML, JSON and
YAML is easy to read and edit. To save same information, JSON and YAML need less storage
than XML. YAML and JSON are similar. YAML can therefore be viewed as a natural superset
of JSON, offering improved human readability and a more complete information model. This
is also the case in practice; every JSON file is also a valid YAML file. This makes it easy to
migrate from JSON to YAML if/when the additional features are required. [yam14] And web
technologies, like AJAX, tend to use JSON. YAML is currently being used more for offline
data processes. Knowledge base in this work is offline data process. Therefore we choose
YAML to implement knowledge base.

Based on design of the knowledge base, List 4.2 shows part of knowledge base of Google App
engine implemented by using YAML.

4.4 Decision Support Logic

Decision support logic has two components, find the suitable DAAs for the application and
Ranking subsystem. Algorithmus 4.1 shows a procedure used to find suitable DAA for
application. As the input data there are two variables. R contains the requirements of
application. As mentioned in 4.2, the requirements R contains not only the requirements,
the logical relation of requirements should also be described in R. L; has all DAAs saved in
knowledge base. Each DAA should be checked, if the DAA fulfills the requirements. As a
result suitable contains all suitable DAAs for the application.

The Ranking subsystem is used to valuation the suitable DAAs depended on the requirements.
It needs the information of requirements and features. Each features of DAAs has been
evaluated by a point. The same feature in different DAAs may have not same point. The
other side, requirements have different weights indicates the importance of each requirements
for application. The deployment of application to DAA can be evaluated as :

38

4.4 Decision Support Logic

Listing 4.2 Knowledge Base of Google App Engine using YAML

name: Google App Engine
type: Hosted PaaS
description: Google App Engine
options:
Runtime Environments:
- Java
- Python
- Go
- PHP
Filesystem Access: read only
categories:
- SQL Storage:
description: All the supported SQL database storage services from this Deployment
Automation Approach
features:
- Google Cloud SQL:
options:
Sql support: true
Supported sql dialects:
- mysql
- oracle
providers:
- Google:
description: A fully-managed web service that allows you to create,
configure, and use relational databases that live in Google’s cloud.
rating:
Sql support: true
Supported sql dialects:
- mysql
- oracle
- NoSQL Storage:
description: All the supported NoSQL database storage services from this Deployment
Automation Approach
features:
- Google Datastore:
options:
providers:
- Google:
description: A schemaless object datastore providing robust, scalable
storage for your web application, a rich data modeling API, and a
SQL-like query language called GQL.
- Google Blobstore:
options:
providers:
- Google:
description: Allows your application to serve large data objects, such as
video or image files, that are too large for storage in the Datastore
service.
- Google Cloud Storage:
options:
providers:
- Google:
description: Lets your application read files from and write files to
buckets in Google Cloud Storage, with with internal error handling and
retry logic.

39

4 Design & Implementation

Algorithm 4.1 Suitable DAA

procedure SUITABLEDAA(R,L,) // R denotes requirements of application
/| Lq denotes list of DAAs

suitable < ()
for all daa € L; do
matched < true
for all » € R do
matched < matched AN MATCHING(r, daa)
if —(matched) then
break;
end if
end for
if matched then
ADD(daa,suitable)
end if
end for
end procedure

Algorithm 4.2 DAA Ranking

procedure RANKING(R,Lg) // R denotes requirements of application
/| Lg denotes list of DAAs

score < ()
for all daa € L; do
sum <+ 0
for all r € R do
sum <— sum + r.GETWEIGHTS() X daa.GETSEVERITY(r)
end for
score.PUT(daa,sum)
end for
score.SORT()
end procedure

o

score = w; X p;

=1

with w; : Weights of requirement i
p; = Point of requirement i, which specified in DAA

As algorithm 4.2 shows, the function GETWEIGHTS() is used to get the weights of requirements.
GETSEVERITY () can get the point of features. After calculate the evaluation of DAAs, the list
should be sorted in descending order.

40

5 Evaluation

This chapter provides evaluation of the system. It must be ensured, that the system require-
ments specified in Chapter 3 are fulfilled in the design and implementation phases. Some cloud
providers and test cases are used to validate the results.

There is a variety of cloud providers on the market. Some of them are chosen as knowledge

base.

Table 5.1 shows four options of knowledge base.

Out-of-the-box Supported Hosting Provider

Sometimes the requirements of application are not fulfilled by a single DAA. In this
case, the possible solution is a combination of a PaaS and IaaS. Technically the PaaS
framework can by deployed on all [aaS platform. This option shows the tested IaaS from
official documentation.

Runtime Environment
Application needs runtime environment supported by IAAs, such as Java, PHP, Python,
Ruby, etc.

Filesystem Access
Application has different requirements of filesystem access, read only, read/write.

Control over Infrastructure
If DAA can control the infrastructure. Normally IaaS has high ability of infrastructure
control, Hosted-PaaS has no control of infrastructure.

Table 5.2 shows the features of knowledge base. The features of PaaS providers are mostly
official specified. The features of IaaS providers are extended as plug-ins. Note, that the
knowledge base has only deployment-related information of DAAs. The documentation of
some DAAs is not in detail.

41

47

Google App | Heroku CloudFoundry Stratos Chef Puppet
Engine
Out-of-the-box Amazon Web Ser- | SUSE Cloud,
Supported Host- vices EC2, Open- | other OpenStack-
ing Providers Stack, VMware | based offerings,
vSphere, vCloud | VMware, Eu-
Director, Chef calyptus, and
Amazon Elastic
Computing Cloud
(EC2), vCloud,
jclouds
Runtime Environ- | Java 6, Java | Ruby, Java, | Java, Spring, | php PHP, Java, | PERL, Java,
ments 7, Python 2.6, | Python, Clojure, | Ruby, Node.js Node.js, Ruby, | PHP, Node.js,
Python 2.7, Go, | Scala, Node.js, JRuby, Django, | Python, Ruby, ...
PHP Play Framework, R, Perl, ...
Spring, Rails,
Django, Facebook
App
Filesystem Access | read-only read-only read/write read/write read/write read/write
Control over In- | no control no control low low high high
frastructure

Table 5.1: Option of Knowledge Base

uoilen|eny G

1937

Google App | Heroku CloudFoundry Stratos Chef Puppet
Engine
SQL Storage Ser- | Google Cloud | MySQL MySQL MySQL MySQL, Post- | MySQL, Post-
vices SQL (ClearDB), (ClearDB), greSQL, Oracle, | greSQL, SQLite
Heroku Postgres, | PostgreSQL SQL Server, ...
Amazon RDS (ElephantSQL)
NoSQL Storage | Google Datastore, | MongoDB (Mon- | Redis (Redis MongoDB, MongoDB, Redis,
Services Google Blobstore, | goHQ), CouchDB | Cloud), Mon- Hadoop,
Google Cloud | (Cloudant), Redis | goDB (Mongo- CouchDB, Redis,
Storage (Redis To Go, | Lab)
Redis Cloud,
RedisGreen,
openredis), Neodj,
Hadoop (Treasure
Data)
Web Server Nginx Apache, Nginx, | Apache, Nginx,
lighttpd, JBoss, | lighttpd, JBoss,
IIS, Zend, ... 1IS, Zend, ...
Queueing Services IronMQ, Rab- | RabbitMQ RabbitMQ, Ze- | RabbitMQ),
bitMQ, ... (CloudAMQP) roMQ, ActiveMQ | ActiveMQ,
Cache Services Google Memcache | Memcachier(add- memcached memcached
ons), IronCache
Data Processing | Google Images, imagemagick, imagemagick
Services Google MapRe- pdf2image
duce
Mail Services Google Mail, | SendGrid Email | SendGrid sendmail Postfix, sendmail

SendGrid Email
(SendGrid)

(SendGrid), Mail-
gun, CloudMailln,

Dev & Monitoring
Services

Google Logs

App logs, System
logs, API logs,
PG Backups, ...

BlazeMeter, Load
Impact, New
Relic, Compo-
nent Logging,
Database Mi-
grations, Log
Aggregation

logwatch, rsyslog,

rsyslog, monitor,
automysqlbackup

Table 5.2: Features of Knowledge Base

5 Evaluation

Requirements PHP | MySQL | Result
Google App Engine | True | False False
Heroku False | True False
CloudFoundry False | True False
Stratos True | True True
Chef True | True True
Puppet True | True True

Table 5.3: Decision Support for Deployment of Wordpress

Requirements PHP | MySQL | MSSQL | PostgreSQL | Apache | Nginx | IIS Result
(ra1) | (rs1) (Tb2) (r13) (re1) (re2) | (res)
Google App Engine | True | False False False False False | False | False
Heroku False | True False True False True False | False
CloudFoundry False | True False True False False | False | False
Stratos True | True False False False False False | False
Chef True | True True True True True True | True
Puppet True | True False True True True True | True

Table 5.4: Decision Support for Deployment of Joolma

Test Case: Wordpress

The requirements of Wordpress are PHP and MySQL. [jool4] Based on decision support logic
Table 5.3 shows the decision support for deployment of Wordpress. The result is Stratos,
Chef and Puppet. As the most used blog service, Wordpress can be also deployed on Google
App Engine, Heroku and CloudFoundry. The requirements of Wordpress are not directly
fulfilled by the three DAAs, which means more operation are needed to deploy Wordpress on
GAE, Heroku and CloudFoundry. Therefore the system suggests using other DAAs to deploy
Workpress.

Test Case: Joolma

As mentioned before, the requirements of Joolma are : [jool4]

e Software: PHP
e Supported Databases: MySQL, MSSQL, PostgreSQL
e Supported Web Servers: Apache, Nginx, Microsoft IIS

Table 5.4 shows the decision support for deployment of Joolma. The logical expression of
requirements is

44

Requirements Ruby | JRuby | Rails | MySQL | PostgreSQL | SQL Server | SQLite Result
(ra1) | (ra2) (r1) | (re1) (re2) (Tes))
Google App Engine | False | False False | False False False False False
Heroku True | False True | True False False False True
CloudFoundry True | False False | True False False False False
Stratos False | False False | True False False False False
Chef True | True True | True True True False True
Puppet True | False False | True True False True False

Table 5.5: Decision Support for Deployment of Redmine

Tl N\ (Tbl V rye V 7“1,3) A (T’Cl V reV T'Cg)

Based on decision support logic the results is Chef and Puppet. The same as Wordpress, Chef
and Puppet have fulfilled the requirements. Official, the other DA As have not fulfilled the
requirements. Because of the reliability and dependency of deployment, other DA As are not
suggested.

Test Case: Redmine

Redmine! is a flexible project management web application. Written using the Ruby on Rails
framework, it is cross-platform and cross-database. The reuirements are : [red14]

e Runtime: Ruby Version: Ruby, JRuby. Rails
e Database: MySQL, PostgreSQL, Microsoft SQL Server, SQLite

Table 5.5 shows the decision support for deployment of Redmine. The logical expression of
requirements is

(Tal \ ra2) ANrpr A (rcl VreoVrgV TC4)

Based on decision support logic the matched results are Chef and Heroku. The same as
Wordpress, Chef and Puppet have fulfilled the requirements. Other DAAs have not enough
official support for the requirements. Other DAAs are not suggested by the system.

45

5 Evaluation

Requirements Node.js | Result
Google App Engine | False False
Heroku True True
CloudFoundry True True
Stratos False False
Chef True True
Puppet True True

Table 5.6: Decision Support for Deployment of Etherpad

Test Case: Etherpad

Etherpad? is a really-real time collaborative editor maintained by the Etherpad Community.
It’s written in Javascript. For deployment we notice on the server side it’s only a Node.js
runtime needed. To find the suitable DAASs, the requirement should be matched with the
knowledge base. As Table 5.6 shows, the results are Heroku, CloudFoundry, chef and Puppet.

"http://www.redmine.org/
*https://github.com/ether/etherpad-lite

46

http://www.redmine.org/
https://github.com/ether/etherpad-lite

6 Summary and Future Work

Cloud computing is an opportunity for enterprises. It decreases I'T costs, increases profit. It’s
also a challenge. Unlike traditional IT architecture Cloud computing is a different consumption
and delivery model. Application should adapt the new model to deliver service. A variety
of application are needed to deploy to Cloud. There are also plenty of Cloud services on
the market. It’s necessary to help the consumer make the suitable choice to deploy their
application. Therefore this work aims at realizing a Decision Support System for different
Deployment Automation Approaches (DSS4DAA).

Chapter 2 present the necessary background about the technologies used in this work. The
concrete Cloud services are categorized in three categories, Hosted-PaaS, PaaS Framework
and [aaS. After researching on the feature similarities and differences of Cloud services, a
description of DAA is specified. Based on the specification a DSS is designed. The DSS
contains knowledge base, decision support logic and user interface. In order to update the
information of DAAs without modification of implementation of DSS, the collected data and
information of DAAs are saved in external document, its implementation uses YAML. Using
external documents save information of DAAs. The components of DSS are implemented
as module, which can be reused. The system are implemented using restful API to provide
service. At the end serveral DAAs and application are chosen to evaluate the system.

Future Work

This work has proposed the basic rules of a decision support system for deployment automation
approaches. It can be more specific. The following features are identified for future work:

1. User Interface
The knowledge base and decision support logic are implemented in this work. The other
component of system, user interface is not implemented. The API for Ul is defined as
restful service endpoint. It can be used for data exchanging between GUI and other
components.

2. Extension of DAAs in the knowledge base
The implemented knowledge base contains six DAAs by now. It should be extended with
more DAAs for a further wide field of application. And features of each DAAs should be
specified in detailed. The update of knowledge base can be manual, or semi-automatic
solution.

47

6 Summary and Future Work

48

3. Comparison of options of features and providers

In system design there are options for features and providers defined. It should be
comparable to make user clear, the difference of features and providers between DA As.
The system may suggest more than one DAAs to user. It can help user to make choice
from the result.

. Point setting of ranking subsystem

In ranking subsystem we define point for options, features and providers. By now they
are all set as the default value. It should be set reasonable. The criteria of setting should
be described.

. Finer description of application requirements

The idea of system design is based on the research of DAAs. The all available options,
features and providers are saved in knowledge base. The other side, the requirements of
application should be also refined, like categorized as Game Apps, Communication Apps,
Picture Handling Apps, Audio Apps, Geolocation Apps, ... Each category of application
should have similar requirements, which can be saved as part of knowledge base. And
requirments of each category of application could be pre-matched with DAAs before
system is used. It makes the decision support logic as a two level architecture, pre-match
for each category of application, match for the application. It can make the system more
effective.

Bibliography

[Chol2]

[Eng12]

[Hes12]

[JC114]

[jool4]

[KMT78]

IMG11]

[ops14]

[panl4]

[Pow02]

[pup14]

D. Chou. Three basic Cloud Service Models. http://blogs.msdn.com/b/dachou/,
2012. [Online; accessed December-2013]. (Cited on pages 6 and 15)

G. A. Engine. Overview of App Engine Features. https://developers.google.
com/appengine/features/, 2012. [Online; accessed December-2013]. (Cited on
page 16)

A. Hesseldahl. Oracle CEO Larry Ellison: Dog Fight in the Cloud. http://
allthingsd.com/20120530/oracle-ceo-larry-ellison-live-at-d10/, 2012.
[Online; accessed December-2013]. (Cited on page 9)

JClouds. APACHE JCLOUDS SUPPORTED PROVIDERS. http://jclouds.
apache.org/documentation/reference/supported-providers/, 2014. [Online;
accessed January-2014]. (Cited on page 19)

joolma.org. Joolma REQUIREMENTS. http://www. joomla.org/
technical-requirements.html, 2014. [Online; accessed January-2014].
(Cited on pages 31 and 44)

P. Keen, M. Morton. Decision support systems: an organizational perspective.
Addison-Wesley series on decision support. Addison-Wesley Pub. Co., 1978. URL
http://books.google.de/books?id=iQtPAAAAMAAJ. (Cited on page 22)

P. Mell, T. Grance. The NIST definition of cloud computing (draft). NIST special
publication, 800(145):7, 2011. (Cited on page 13)

opscode.com. An Overview of Chef. http://docs.opscode.com/chef_overview.
html, 2014. [Online; accessed 06-January-2014]. (Cited on pages 6, 19 and 20)

pancake.com. Pancake REQUIREMENTS. http://help.pancakeapp.com/
customer/portal/articles/602921-server-requirements, 2014. [Online; ac-
cessed January-2014]. (Cited on page 26)

D. Power. Decision Support Systems: Concepts and Resources for Managers.
Quorum Books, 2002. URL http://books.google.de/books?id=9NA6QMcte3cC.
(Cited on page 22)

puppetlabs.com. What is Puppet. http://puppetlabs.com/puppet/
what-is-puppet, 2014. [Online; accessed January-2014]. (Cited on pages 6 and 21)

49

http://blogs.msdn.com/b/dachou/
https://developers.google.com/appengine/features/
https://developers.google.com/appengine/features/
http://allthingsd.com/20120530/oracle-ceo-larry-ellison-live-at-d10/
http://allthingsd.com/20120530/oracle-ceo-larry-ellison-live-at-d10/
http://jclouds.apache.org/documentation/reference/supported-providers/
http://jclouds.apache.org/documentation/reference/supported-providers/
http://www.joomla.org/technical-requirements.html
http://www.joomla.org/technical-requirements.html
http://books.google.de/books?id=iQtPAAAAMAAJ
http://docs.opscode.com/chef_overview.html
http://docs.opscode.com/chef_overview.html
http://help.pancakeapp.com/customer/portal/articles/602921-server-requirements
http://help.pancakeapp.com/customer/portal/articles/602921-server-requirements
http://books.google.de/books?id=9NA6QMcte3cC
http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet

Bibliography

[red14]

[Son13]

[worl2]

[WSO14a]

[WSO14b)

[yam14]

[Zim09)

[Zim13]

redmine.org. Redmine REQUIREMENTS. http://www.redmine.org/projects/
redmine/wiki/RedmineInstall, 2014. [Online; accessed January-2014]. (Cited
on page 45)

Z. Song. A decision support system for application migration to the Cloud. Master’s
thesis, Universitat Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2013. URL http:
//elib.uni-stuttgart.de/opus/volltexte/2013/8262. (Cited on page 25)

wordpress.org. WordPress Requirements. http://wordpress.org/about/
requirements/, 2012. [Online; accessed December-2013]. (Cited on pages 10
and 31)

WSO2. Stratos 2.0 Architecture. http://docs.wso02.org/display/Stratos200/
Architecture, 2014. [Online; accessed January-2014]. (Cited on pages 6 and 18)

WS02. WSO2 Carbon. http://wso2.com/products/carbon/, 2014. [Online;
accessed January-2014]. (Cited on page 18)

yaml.org. YAML 1.2 Specification. http://www.yaml.org/spec/1.2/spec.html,
2014. [Online; accessed January-2014]. (Cited on page 38)

O. Zimmermann. An architectural decision modeling framework for service-oriented
architecture design. Ph.D. thesis, Stuttgart, Univ., Diss., 2009, 2009. (Cited on
page 23)

0. Zimmermann. Cloud Computing — Aus der Sicht des Anwendungsarchitekten,
2013. (Cited on pages 6, 23 and 24)

All links were last followed on Januar 31, 2014.

50

http://www.redmine.org/projects/redmine/wiki/RedmineInstall
http://www.redmine.org/projects/redmine/wiki/RedmineInstall
http://elib.uni-stuttgart.de/opus/volltexte/2013/8262
http://elib.uni-stuttgart.de/opus/volltexte/2013/8262
http://wordpress.org/about/requirements/
http://wordpress.org/about/requirements/
http://docs.wso2.org/display/Stratos200/Architecture
http://docs.wso2.org/display/Stratos200/Architecture
http://wso2.com/products/carbon/
http://www.yaml.org/spec/1.2/spec.html

Decleration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 List of Abbreviations

	2 Background
	2.1 Cloud Computing
	2.2 Cloud Service Models
	2.3 Deployment Automation Approaches
	2.4 Decision Support System

	3 Specification
	4 Design & Implementation
	4.1 System Design
	4.2 Deployment Requirements
	4.3 Knowledge Base
	4.4 Decision Support Logic

	5 Evaluation
	6 Summary and Future Work
	Bibliography

