Institut fir Visualisierung und Interaktive Systeme
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3563

Visualisierung von dynamischen
Software-Entwicklerzahlen in

Arbeitsbereichen
Tanja Munz
Studiengang: Informatik
Prifer/in: Prof. Dr. Daniel Weiskopf
Betreuer/in: Dr. Michael Burch
Beginn am: 15. September 2013
Beendet am: 17. Méarz 2014

CR-Nummer: H.3.3, H.5.2,1.3.3, 1.3.6, .3.8

Kurzfassung

Softwaresysteme werden haufig iiber mehrere Jahre von vielen Entwicklern bearbeitet. In dieser Zeit
konnen sich sowohl die Beteiligung der Entwickler als auch die Arbeitsbereiche, in denen entwickelt
wird, stark verandern. In dieser Arbeit wird das Konzept der AOI Rivers fiir die Visualisierung von
Softwareentwicklungsprozessen angepasst, indem es zu WOI Rivers erweitert wird. Mit WOI Rivers
ist es moglich, die dynamischen Verhaltensweisen von Entwicklergruppen zu beobachten. Es kann
sichtbar gemacht werden, wie sich die Anzahl von Entwicklern oder die Haufigkeit ihrer Beteili-
gung an Dateiveranderungen in verschiedenen Arbeitsbereichen iiber die Zeit verandert. Zusétzlich
kann tber Transitionen gezeigt werden, wie zwischen verschiedenen Arbeitsbereichen gewechselt
wird und wann bzw. wo neue Entwickler hinzukommen oder das Projekt wieder verlassen. Da sich
Entwickler zur gleichen Zeit an vielen verschiedenen Dateien bzw. verschiedenen Arbeitsbereichen
in unterschiedlichen Stédrken beteiligen konnen, ist die Hohe, die jedem Entwickler in einem In-
tervall zugewiesen wird, variabel und muss auf mehrere Transitionen aufgeteilt werden. Hierfiir
werden verschiedene Mdoglichkeiten untersucht und es wird eine Methode entwickelt, Transitionen
zwischen gleichen Arbeitsbereichen nicht unnétig aufzuteilen, um die Anzahl an Uberkreuzungen,
und dadurch Visual Clutter, zu reduzieren. Die Visualisierungstechnik wurde als interaktives Visua-
lisierungswerkzeug implementiert. In diesem konnen Arbeitsbereiche, sogenannte Workspaces of
Interest (WOIs), in einer Hierarchiedarstellung, Entwicklergruppen aus einer Liste aller Entwickler
und der darzustellende Zeitbereich fiir die WOI River-Visualisierung festgelegt werden. Anhand dreier
Open-Source-Softwareprojekte werden Fallstudien durchgefiithrt, um Einsichten in die Entwicklungs-
prozesse dieser Projekte zu erhalten.

Inhaltsverzeichnis

6

Einleitung

1.1 Motivation
1.2 Ziele
1.3 Gliederung L
Verwandte Arbeiten

2.1 Hierarchievisualisierung
2.2 Visualisierung zeitverdnderlicher Daten
2.3 Softwarevisualisierung L

Visualisierungstechnik

3.1 Datenmodell
3.2 Hierarchie e
33 WOIRIVErS e e e e e
3.4 Farbvergabe
Implementierung

4.1 Vorverarbeitung
4.2 Benutzeroberfliche
43 Import e
4.4 Grundfunktionen e
4.5 Weitere Funktionen und Interaktion
4.6 Export e e
Fallstudien

51 Python
52 Hbvpx . . oo
53 Linux-Kernel e

Zusammenfassung und Ausblick

Literaturverzeichnis

13
13
15
17
34

35
36
37
39
40
44
52

53
53
58
62

66

69

1 Einleitung

1.1 Motivation

Softwaresysteme durchlaufen meist einen mehrjahrigen Entwicklungsprozess an dem viele Entwickler
beteiligt sein konnen. Im Laufe dieser Zeit werden verschiedene Dateien des Softwaresystems von
den verschiedenen Entwicklern erzeugt, verandert oder auch wieder geloscht. Entwicklergruppen
arbeiten dabei in verschiedenen oder auch gemeinsamen Arbeitsbereichen iiber ldngere oder kiirzere
Entwicklungszeitraume. Dabei kénnen sich sowohl die Entwickleranzahl, als auch die Haufigkeit, mit
der Anderungen gemacht werden und die Bereiche, die bearbeitet werden, durchgehend verindern.

Um Einsichten in diesen Entwicklungsprozess zu erhalten, kénnen Visualisierungen sehr hilfreich
sein. Sie konnen dabei helfen, Entwicklungsstrategien zu analysieren, sowie Trends, Beziehungen,
Anomalien und weitere Besonderheiten wahrend der Entwicklung aufzuspiiren. In Bezug auf das
Entwicklerverhalten konnte interessieren, wie viele Entwickler iber die Zeit an einem Projekt gear-
beitet haben, wie sich diese Anzahl oder die Anzahl ihrer Anderungen an dem Projekt tiber die Zeit
verdndert hat und wo Schwerpunkte bei der Entwicklung lagen. Zudem kénnte von Belang sein, wie
viele und welche Entwickler in den einzelnen Bereichen aktiv waren oder wie viele Anderungen es
dort gab. Tiefere Einblicke entstehen, wenn erkennbar ist, wie Entwickler zwischen verschiedenen
Bereichen wechselten und wann bzw. zu welchen Bereichen neue Entwickler hinzukamen oder nichts
mehr zu dem Projekt beigetragen haben. Es gibt noch viele weitere interessante Fragestellungen in
Bezug auf den Entwicklungsprozess, dies sind jedoch die wesentlichen Aspekte, die mit Hilfe der hier
vorgestellten Technik beantwortet werden kénnen.

Es gibt bereits viele Techniken, die sich mit der grafischen Darstellung eines Softwareentwicklungspro-
zesses beschéftigen. Hierbei sind statische Verfahren wie die Evolution Storylines [OM10] und Code
Flows [TA08] zu nennen. Aber auch dynamische Verfahren wie Gource [Cau10] oder code_swarm
[OMO09] veranschaulichen, wie Entwickler ein Softwareprojekt tiber die Zeit verdandern.

Die hier vorgestellte Technik ist statisch und basiert auf den AOI Rivers [BKW13]. Diese stellen
eine Erweiterung der ThemeRiver [HHWNO02] dar, welche — angelehnt an das Konzept der Sankey-
Diagramme [Tuf83] — um Transitionen sowie Zu- und Abfliisse erweitert wurden. Mit Hilfe der
AOI Rivers kann das zeitliche Verhalten von Augenbewegungen verschiedener Teilnehmer einer
Eye-Tracking-Studie dargestellt und analysiert werden. Hierfiir werden Bereiche auf dem Bildschirm
als Areas of Interest (AOIs) festgelegt, in welche die Augenbewegungen und Fixationspunkte der
Teilnehmer wahrend des Experiments fallen konnen bzw. zwischen denen sie wechseln kénnen.

Im Folgenden wird die Technik der AOI Rivers fiir die Visualisierung des Softwareentwicklungsprozes-
ses angepasst. Statt Areas of Interest werden Arbeitsbereiche der Projekthierarchie, sog. Workspaces

1.2 Ziele

of Interest (WOQIs) betrachtet. Innerhalb dieser WOIs bearbeiten Entwickler die Dateien des Software-
systems.

Informationen zum Entwicklungsprozess konnen aus Versionskontrollsystemen gewonnen werden.
Mit ihrer Hilfe kénnen Entwickler ihre Anderungen an dem Softwaresystem speichern, indem sie
ihre veranderten Dateien in ein Repository ,einchecken® (bzw. ,committen®). Dabei werden unter
anderem Informationen beziiglich des Anderungsdatums, des Entwicklernamens und der bearbeiteten
Dateien protokolliert, aus denen die Systementwicklung rekonstruiert werden kann. Diese Daten
konnen verwendet werden, um Informationen zur Verhaltensweise von Entwicklern zu erhalten und
diese als WOI River darzustellen und interaktiv zu untersuchen.

Wihrend bei Eye-Tracking-Experimenten die Teilnehmer jederzeit auf maximal eine Position des
Bildschirms schauen koénnen, bearbeiten Entwickler meist mehrere Dateien gleichzeitig in Bezug
auf ein festgelegtes Zeitintervall. Folglich werden bei AOI Rivers Teilnehmer in jedem Zeitschritt
genau einem AOI zugeordnet und die Transitionen eines Teilnehmers verlaufen zwischen maximal
zwei AOIs. Bei den WOI Rivers muss die Hohe der Entwickler in jedem Zeitschritt bzw. Intervall
auf verschiedene WOIs aufgeteilt werden und die Transitionen kénnen zwischen all diesen WOIs
verlaufen. Aufferdem tragen Entwickler in verschiedenen Zeitbereichen und im Vergleich mit anderen
Entwicklern unterschiedlich viel zu einem Projekt bei. Hier stellt sich die Frage, wie dies in der
Erweiterung der AOI Rivers sinnvoll umzusetzen ist.

1.2 Ziele

Ziel dieser Arbeit ist, ein Visualisierungswerkzeug zur Analyse dynamischer Entwicklerzahlen in
Workspaces of Interest (WOIs) eines Softwaresystems zu erstellen. Hierzu soll das Konzept der AOI
Rivers entsprechend umfunktioniert und angepasst werden.

Als Eingabe sollen Daten eines Softwaresystems mit dynamischen Entwicklerzahlen verwendet
werden, indem sie aus einem Open-Source-Softwaresystem extrahiert und lokal gespeichert werden.
Die Systemstruktur des Softwareprojekts soll als interaktiv manipulierbare Hierarchiedarstellung
angezeigt werden, in der WOIs interaktiv festgelegt und verdndert werden kénnen. Auflerdem
sollen Entwicklergruppen definiert werden konnen, die fiir die Visualisierung verwendet werden. In
Abhangigkeit der festgelegten WOIs und Entwicklergruppen soll der entsprechende WOI River als
interaktive Visualisierung angezeigt werden. Dabei soll eine Reduzierung der Uberkreuzungen in den
WOI Rivers sowie ein hoher Farbkontrast benachbarter Stréme angestrebt werden. Des Weiteren sollen
benutzerdefinierte Ausschnitte der Daten zur spateren Analyse abgespeichert werden kénnen.

Anhand mehrerer Fallstudien zu verschiedenen Open-Source-Softwaresystemen soll die implemen-
tierte Visualisierungstechnik evaluiert werden.

1.3 Gliederung

Die restliche Arbeit ist wie folgt gegliedert:

1.3 Gliederung

Kapitel 2 — Verwandte Arbeiten: Dieses Kapitel gibt einen Uberblick tiber einige bereits existie-
rende Visualisierungstechniken in den Bereichen Hierarchievisualisierung, Visualisierung
dynamischer quantitativer Daten und Softwarevisualisierung.

Kapitel 3 — Visualisierungstechnik: Die Visualisierungstechnik wird genauer vorgestellt. Hierbei
wird erst auf das Datenmodell, danach auf die Hierarchie- und WOI River-Visualisierung
eingegangen. Bei letzterer stehen die Erzeugung der Transitionsmatrizen und die Konstruktion
der einzelnen Komponenten im Vordergrund.

Kapitel 4 — Implementierung: In diesem Kapitel wird auf die Implementierung eingegangen. Hier-
zu wird erklért, wie aus einem Versionskontrollsystem eines Softwareprojekts die relevanten
Daten fiir die Anwendung erhalten werden koénnen und wie aus diesen Daten die entsprechen-
de Visualisierung des WOI Rivers erzeugt werden kann. Dabei werden Funktionalitdten und
Interaktionsmoglichkeiten der Anwendung beschrieben.

Kapitel 5 — Fallstudien: Es wird versucht, Einsichten in die Entwicklungsprozesse dreier Open-
Source-Softwaresysteme zu erhalten und die Anwendung bzw. deren Visualisierungstechnik
wird analysiert. Der erste untersuchte Datensatz repréasentiert den Entwicklungsprozess der
Programmiersprache Python. Das zweite untersuchte Projekt ist die Bibliothek libvpx fiir die
Videocodecs VP8/VP9. Aulerdem wird der Linux-Kernel als recht grofies Projekt betrachtet
und es wird geprift, ob die Visualisierungstechnik auch fiir groflere Datensétze skalierbar ist.

Kapitel 6 — Zusammenfassung und Ausblick: Die Arbeit wird zusammengefasst und es werden
Verbesserungs- und Erweiterungsmoglichkeiten fiir die Anwendung und die Visualisierungs-

technik geliefert.

2 Verwandte Arbeiten

In dem hier entwickelten Visualisierungswerkzeug spielen Komponenten aus verschiedenen Berei-
chen der Informationsvisualisierung eine wichtige Rolle. Allgemein beschaftigt sich die Visualisierung
mit Softwarevisualisierung. Genauer betrachtet ist die Visualisierung aus zwei Bestandteilen aufgebaut:
Zum einen gibt es das Softwaresystem, das durch eine Hierarchievisualisierung dargestellt wird; diese
Hierarchie enthilt alle Dateien, die wahrend des Entwicklungsprozesses erstellt, verandert oder
geloscht wurden. Zum anderen wird in der Hauptvisualisierung ein zeitlicher Verlauf der Entwick-
lerbeteiligung in Arbeitsbereichen abgebildet. Dies wird durch eine Visualisierung zeitverdnderlicher
Daten in Flussdarstellung realisiert.

Im Folgenden wird eine Ubersicht iiber bereits existierende Visualisierungen in diesen Gebieten
geliefert. Zuerst werden die Hierarchievisualisierung und die Visualisierung zeitveranderlicher Daten
beschrieben; danach die Softwarevisualisierung als spezielles Anwendungsgebiet, in dem Visualisie-
rungstechniken aus den anderen Bereichen verwenden werden kénnen.

Da in den einzelnen Bereichen jeweils eine grofle Anzahl an Techniken existiert, werden nicht alle
einzeln vorgestellt sondern vor allem Techniken, die fiir die hier angestrebte Visualisierungstechnik
relevant scheinen.

2.1 Hierarchievisualisierung

Es gibt sehr viele verschiedene Techniken zur Visualisierung von Hierarchien. Zu den bekanntesten
visuellen Metaphern der Hierarchievisualisierung gehéren Node-Link-Diagramme, Layered Icicle
Plots [KL83], Indented Plots und Treemaps [JS91]. Es gibt jeweils nochmals mehrere Varianten, die sich
in mehreren Aspekten wie Form oder Anordnung unterscheiden und im zwei- oder dreidimensionalen
Raum visualisiert werden. Eine weitere, recht neue Technik ist der Verallgemeinerte Pythagorasbaum
[BBM™14]. Jirrgensmann und Schulz haben eine Ubersicht verschiedener Techniken erstellt [JS10].
Jede dieser Techniken besitzt gewisse Vor- und Nachteile und ist daher je nach Anwendungsbereich
mehr oder weniger gut geeignet.

Im Folgenden werden die bereits genannten Techniken kurz vorgestellt und es wird auf ihre Eigen-
schaften eingegangen. In Abbildung 2.1 werden die verschiedenen Techniken anhand einer einfachen
Hierarchie, die aus sechs Knoten besteht, veranschaulicht.

2.1 Hierarchievisualisierung

o>

()
D |7 A D
(B) © c B ?| B c B X¢

D|E|F
@ ® ©® F A
(a) (b) (0 (d) (e)

Abbildung 2.1: Veranschaulichung verschiedener Visualisierungstechniken fiir Hierarchien:
(a) Node-Link-Diagramm; (b) Treemap; (c) Indented Plot; (d) Layered Icicle Plot
und (e) Verallgemeinerter Pythagorasbaum. (Darstellungen aus [Mun13])

Node-Link-Diagramm Einen klassischen Ansatz zur Visualisierung von Hierarchien stellen Node-
Link-Diagramme dar. Knoten werden hierbei haufig durch Kreise dargestellt, die tiber Linien mitein-
ander verbunden sind. Oft wird der Wurzelknoten oben abgebildet und die Kinderknoten darunter;
die Anordnung kann allerdings auch auf verschiedene andere Arten erfolgen. Ein Beispiel fiir ein
Node-Link-Diagramm ist in Abbildung 2.1a zu sehen. Die Struktur von Node-Link-Diagrammen ist
einfach erkennbar und einzelne Pfade kénnen gut verfolgt werden. Der zur Verfiigung stehende Platz
wird allerdings nicht effizient genutzt. Auflerdem ist diese Methode eher fiir kleinere Hierarchien
geeignet.

Treemap Bei Treemaps [JS91] wird Verschachtelung zur Visualisierung der Hierarchie verwendet.
Knoten werden durch Rechtecke dargestellt, wobei sich Kinderknoten innerhalb ihrer Elternknoten
befinden, wie in Abbildung 2.1b zu erkennen ist. Diese Methode nutzt den Platz sehr effizient, allerdings
ist die hierarchische Struktur teilweise schwer zu erkennen. Fiir die Anordnung der Knoten gibt es
mehrere verschiedene Unterteilungsalgorithmen. Urspriinglich wurde das Slice-and-Dice-Verfahren
verwendet. Andere Ansétze sind z.B. Squarified Treemaps [BHWO00], bei denen niherungsweise
Quadrate fiir die Knoten verwendet werden oder kreisformige Treemaps (Pebbles) [Wet03] und
Voronoi-Diagramme [BDLO05], die keine Rechtecke zur Darstellung der Knoten verwenden.

Indented Plot Indented Plots verwenden Einriickung zur Positionierung der Kinderknoten. Alle
Knoten werden horizontal nebeneinander angeordnet, wobei Kinderknoten im Vergleich zu ihren
Elternknoten nach unten eingeriickt werden und hierdurch in unterschiedlicher Hohe dargestellt sind.
Knoten gleicher Tiefe in der Hierarchie werden in gleicher Hohe in der Visualisierung dargestellt.
Ein Nachteil dieser Visualisierungstechnik ist, dass sie horizontal viel Platz benétigt. Ein Beispiel ist
in 2.1c zu sehen.

Diese Methode ist aus Dateimanagern bekannt, bei denen die Knoten vertikal angeordnet werden und
Unterhierarchien interaktiv ein- und aufgeklappt werden konnen. In [BRW10] wurden Indented Pixel
Tree Plots vorgestellt, die auf diesem Verfahren basieren und auch besonders fiir grofie Hierarchien
geeignet sind um einen Uberblick tiber die hierarchische Grundstruktur zu liefern.

2.2 Visualisierung zeitveranderlicher Daten

Layered Icicle Plot Layered Icicle Plots [KL83] entstehen durch Stapelung der Knoten, wobei
Kinderknoten auf ihre Elternknoten gesetzt werden, wie in Abbildung 2.1d dargestellt. Jeder der Knoten
wird als Rechteck gezeichnet, wobei sich der Wurzelknoten hiufig oben befindet; Kinderknoten werden
rekursiv darunter gezeichnet. Der Wurzelknoten benétigt hierdurch horizontal genauso viel Platz
wie seine Kinderknoten. Eine Abwandlungen dieser Darstellung stellt beispielsweise Sunburst [SZ00]
dar, dort wird der Wurzelknoten als Kreis dargestellt und Kinderknoten nach auflen in kreisférmigen
Schichten aufgesetzt.

Verallgemeinerter Pythagorasbaum Verallgemeinerte Pythagorasbdume [BBM ' 14] basieren auf
der Konstruktionsweise von Pythagorasbdumen [Bos57]. Bei Pythagorasbdumen werden Quadrate
iiber rechtwinklige Dreiecke miteinander verbunden. Dies ermdglicht jedoch nur die Darstellung
bindrer Hierarchien. In der Erweiterung werden beliebige konvexe Polygone als Verbindungsele-
mente verwendet; die erweiterte Variante kann dadurch zur Darstellung beliebiger Hierarchien
verwendet werden, wie in Abbildung 2.1e anhand der Beispielhierarchie zu sehen ist. Diese Technik
liefert asthetische Darstellungen und ist besonders fiir tiefe Hierarchien geeignet. Nachteile dieser
Visualisierungstechnik sind, dass der zur Verfiigung stehende Platz nicht effizient genutzt wird und
Uberlappungen der Knoten auftreten kénnen.

2.2 Visualisierung zeitveranderlicher Daten

Fir die Visualisierung zeitveranderlicher Daten gibt es sehr viele verschiedene Methoden. In
[AMM™07] kann eine Ubersicht verschiedener Techniken gefunden werden. Dort werden verschiede-
ne Kategorien vorgestellt, in welche die unterschiedlichen Techniken eingeordnet werden kénnen.
Visualisierungen zeitverdnderlicher Daten werden allgemein dazu verwendet, die Entwicklung von
Daten uber die Zeit zu untersuchen, Trends und Muster zu erkennen und um Einsichten sowie ein
tieferes Verstdndnis fiir die Daten zu erhalten.

Die in dieser Arbeit verwendete Visualisierungstechnik basiert auf den AOI Rivers [BKW13]; diese
Visualisierungstechnik wurde durch Verwendung der Metapher eines Flusses umgesetzt.

Im Folgenden werden nur die Techniken beschrieben, die fiir diese Arbeit relevant sind; hierbei wird
auf ThemeRiver [HHWNO02] und AOI Rivers [BKW13] eingegangen. Weitere Techniken, die in diesem
Bereich genannt werden sollten, sind Streamgraphs [BW08], CloudLines [KBK11] und StoryFlows
[LWW13]. Jede dieser Techniken verwendet eine Zeitachse durch die eine zeitliche Verinderung
der Daten dargestellt wird.

ThemeRiver ThemeRiver [HHWNO2] ist eine bekannte Technik zur Darstellung zeitverdnderlicher
quantitativer Daten. Urspriinglich wurde diese Visualisierungstechnik fiir die Visualisierung der
Verdnderung von Themen in Dokumenten iiber die Zeit verwendet. Es gibt eine Zeitachse, die von
links nach rechts verlauft und in Zeitintervalle aufgeteilt ist. Die einzelnen Themen werden durch
Teilfliisse in unterschiedlichen Farben dargestellt. In jedem Zeitintervall wird die Haufigkeit der
Themen durch die Flusshohe des jeweiligen Teilflusses dargestellt. Die einzelnen Werte werden iiber
kontinuierliche Kurven miteinander verbunden um abrupte Anderungen zu vermeiden. Zudem werden

2.3 Softwarevisualisierung

alle Teilfliisse aus dsthetischen Griinden symmetrisch um die Mittelachse aufeinander gestapelt. Es ist
erkennbar, wie die Wichtigkeit, also die Hohe der einzelnen Teilfliisse, wichst, unverandert bleibt oder
abnimmt. Aulerdem kann das Verhalten der einzelnen Teilfliisse im Vergleich zueinander betrachtet
werden: Entweder beeinflussen sich mehrere Teilfliisse gegenseitig, weisen ein dhnliches Verhalten
auf oder stehen in keiner Weise in Beziehung zueinander.

AOI Rivers Die AOIRivers-Visualisierung [BKW13] bietet die Grundlage fiir die in dieser Arbeit ver-
wendete Visualisierungstechnik. Sie basiert auf der Grundidee der eben beschriebenen ThemeRivers
[HHWNO02] und wird fiir die Visualisierung zeitveranderlicher Daten aus Eye-Tracking-Experimenten
eingesetzt.

Als Erweiterung wurde die ThemeRiver-Visualisierung zur Anzeige weiterer Details angepasst, indem
sie nach dem Konzept der Sankey-Diagramme [Tuf83] um Transitionen sowie Zu- und Abflisse
erweitert wurde. Mit Hilfe der AOI Rivers ist es moglich, das zeitliche Verhalten von Teilnehmern
eines Eye-Tracking-Experiments zu visualisieren und zu untersuchen. Dabei werden auf dem Bild-
schirm sog. Areas of Interest (AOIs) festgelegt und es wird ermittelt, in welche dieser Bereiche die
Augenbewegungen und Fixationspunkte der Teilnehmer fallen. Zunichst erfolgt die Darstellung
der Ergebnisse durch die Visualisierung eines ThemeRivers, wodurch erkannt werden kann, welche
Bereiche des Bildschirms wihrend des Experiments betrachtet wurden und wie sich die Anzahl der
Teilnehmer, die in diese Bereiche blickten, tiber die Zeit verandert.

Durch Interaktion ist es moglich, eine detailliertere Ansicht zwischen jeweils zwei Zeitpunkten zu
erhalten, die Informationen dariiber liefert, wie Teilnehmer zwischen verschiedenen Bereichen ihre
Augen bewegen und ob sie die als AOIs festgelegten Bereiche des Bildschirms mit ihren Blicken
verlassen bzw. ob sie wieder in die Bereiche schauen. Hiermit kénnen Strategien der Teilnehmer
besser untersucht werden.

Waihrend bei den AOI Rivers Eye-Tracking-Daten aus einer Benutzerstudie analysiert wurden, sollen
im Folgenden Entwicklerzahlen eines Softwaresystems untersucht werden kénnen.

2.3 Softwarevisualisierung

Die Bereiche in denen Softwarevisualisierung eingesetzt werden kann variieren sehr stark. In der
Beschreibung von Softwarevisualisierung geht Stephan Diehl in seinem Buch [Die07] auf drei Unter-
teilungsbereiche ein: Struktur (structure), Verhalten (behaviour) und Entwicklung (evolution). Unter
der Struktur ordnet er statische Elemente und Beziehungen eines Systems ein. Dazu zdhlen unter
anderem der Programm-Code, Datenstrukturen und statische Call-Graphen. Beim Verhalten bezieht
er sich auf die Ausfithrung des Programms und bei der Entwicklung werden der Entwicklungsprozess
des Softwaresystems und Codeverianderungen iiber die Zeit betrachtet.

Die hier entwickelte Visualisierungstechnik kann in den Bereich der Entwicklung eingeordnet wer-
den, da sie den zeitlichen Verlauf der Entwicklung, aber nicht die Software selbst, visualisiert. In
diesem Gebiet kann die Analyse verschiedene Schwerpunkte haben. Es kann der Code beriicksichtigt
werden, wie die einzelnen Zeilen tiber die Zeit veriandert werden oder es konnen einzelne Dateien

10

2.3 Softwarevisualisierung

oder Klassen betrachtet werden. Es gibt sowohl statische als auch dynamische Verfahren, im zweidi-
mensionalen und dreidimensionalen Bereich. Einen groben Uberblick tiber verschiedene Techniken
der Softwarevisualisierung gibt es beispielsweise in [Die07] und [SCGO05].

Im Folgenden wird auf einige dieser Techniken genauer eingegangen. Hierbei stehen Verfahren im
Vordergrund, bei denen das Verhalten von Entwicklern betrachtet wird. Zuerst werden die animierte
Techniken Gource [Caul0] und code_swarm [OMO09] vorgestellt, danach die statischen Verfahren
Software Evolution Storyline [OM10] und Code Flows [TA08].

2.3.1 Animierte Softwarevisualisierung

Animierte Visualisierungen eines Softwareentwicklungsprozesses sind meist sehr ansprechend ge-
staltet. Sie zeigen wie das System dynamisch bearbeitet und vergréflert wird. Man sieht wie neue
Dateien erstellt werden, wie die Dateien ihre Grofie oder Wichtigkeit verdndern, wie Entwickler
zum Geschehen hinzukommen, in den Vordergrund treten oder wieder verschwinden. Sie lassen an
dem Entwicklungsprozess in gewisser Weise teilhaben und ihn gebannt verfolgen. Allerdings ist es
schwer, genaue Details festzuhalten und die Animation muss unter Umstinden mehrere Minuten
lang aufmerksam verfolgt werden.

code_swarm Mit code_swarm [OM09] kann ein Softwareentwicklungsprozess animiert dargestellt
werden. Hierbei werden die einzelnen Entwickler und die Dateien, die iiber die Zeit committet werden,
berticksichtigt. Die Dateien werden durch Kreise dargestellt, die Entwickler durch Namenslabel. Bei
jedem Commit werden der Entwickler und die entsprechenden veranderten Dateien hervorgehoben
und die veranderten Dateien bewegen sich auf den Entwickler zu. Die Farben der Dateien deuten
den Dateityp an; ihre Helligkeit, wann die Datei das letzte Mal veréndert wurde; die Gréfie der Datei-
Reprisentationen ist in Abhéngigkeit der Anzahl committeter Dateien. Wenn Dateien oder Entwickler
tiber langere Zeit inaktiv sind, verschwinden sie allmahlich wieder aus der Visualisierung. Zusétzlich
wird ein Histogramm fir die Anzahl und Art der Commits angezeigt. Durch diese Visualisierung
entsteht eine gute Ubersicht iiber die Entwicklung.

Gource Auch Gource [Caul0] ist ein animiertes Visualisierungswerkzeug, das zusatzlich interaktive
Features bietet. Die einzelnen Entwickler werden zusammen mit einer Projekthierarchie, die sie
dynamisch aufbauen und verandern, visualisiert. Einzelne Dateien werden durch Kugeln visualisiert
und in Abhéngigkeit ihres Dateityps eingefirbt. Wenn ein Entwickler eine Datei erzeugt, verandert
oder 16scht, bewegt er sich auf sie zu und sendet einen eingefirbten Strahl in Richtung der Datei
aus, der die Art der Anderung andeutet. Verzeichnisse werden durch Splines miteinander verbunden
und Dateien werden in spiralformigem Muster um das Zentrum des zugehorigen Verzeichnisses
angeordnet. Fiir die Anordnung der aktiven Verzeichnisse der Projekthierarchie wird ein Force-
Directed-Layoutalgorithmus verwendet.

11

2.3 Softwarevisualisierung

2.3.2 Statische Softwarevisualisierung

Bei statischen Visualisierungen fallt es meist leichter, Details tiber den Softwareentwicklungsprozess
zu erhalten. In nur einer Abbildung erhilt man eine Ubersicht tiber den gesamten Entwicklungsprozess.
Fir den dynamischen Aspekt wird héufig eine Zeitachse verwendet,

Software Evolution Storylines Software Evolution Storylines [OM10] veranschaulichen die Zu-
sammenarbeit von Entwicklern in der Softwareprojektentwicklung iiber die Zeit. Die Zeit verlauft
in Zeitschritten von links nach rechts. Einzelne Entwickler werden in Form von Réhren (Tubes)
unterschiedlicher Farbe dargestellt und durch einen Clustering-Algorithmus in Abhangigkeit der bear-
beiteten Dateien in der Nahe anderer Entwickler platziert. Entwickler die zusammenarbeiten werden
demnach néher beieinander gezeichnet. Zusétzlich wird durch ein Histogramm die Menge und Art
der committeten Dateien in den einzelnen Zeitschritten angezeigt. Bei dieser Visualisierungstechnik
entstehen asthetische Bilder und sie zeigt mehr Details als animierte Techniken. Der zeitliche Verlauf
ist in einer einzigen Visualisierung zu sehen, welche weiter untersucht werden kann. Ein Nachteil ist,
dass die Technik fiir grofie Projekte nicht skaliert, Visual Clutter entsteht und viele Entwickler in das
gleiche Cluster fallen konnen.

Code Flows Durch Code Flows [TA08] kann die zeitliche Entwicklung der Struktur von Pro-
grammcode genauer untersucht werden. Hierbei konnen Anderungen wie das Verschieben, Teilen,
Zusammenfiigen, Einfiigen oder Loschen von Code genauer betrachtet werden. Fiir die Visualisie-
rung werden gespiegelte Layered Icicle Plots verwendet, welche Codeblécke aufeinanderfolgender
Versionen reprasentieren. Diese werden durch Splines zur Darstellung von Beziehungen miteinander
verbunden. Dabei wird unterschieden, ob Codefragmente wahrend der Entwicklung fast unverandert
bleiben oder ob sie hiufig verandert werden.

12

3 Visualisierungstechnik

In diesem Kapitel wird die verwendete Visualisierungstechnik fiir die Systemstruktur und die WOI
River-Visualisierung vorgestellt. Zuerst wird auf das verwendete Datenmodell eingegangen, danach
werden die Visualisierungstechniken detailliert beschrieben.

Als Grundlage werden Daten von Softwaresystemen verwendet. Hierbei sind die einzelnen Commits
von Bedeutung, diese sollten folgende Informationen enthalten:

einen Zeitstempel, der das Anderungsdatum angibt,
einen Entwicklernamen, der im Repository fiir den Entwickler festgelegt wurde und
verinderte Dateien, also alle Dateien, die erzeugt, geloscht oder bearbeitet wurden.

Aus diesen Daten kann die Projekthierarchie ermittelt und visualisiert werden. Durch die Festlegung
von WOIs innerhalb der Projekthierarchie, eines Zeitbereichs, der Art der Intervalle und durch die
Auswahl (mehrerer) Entwickler kann der zugehorige WOI River berechnet und visualisiert werden.

3.1 Datenmodell

3.1.1 Commit
Ein Commit ¢ € C' ist ein 3-Tupel ¢ = (¢, d, f), bestehend aus einem Zeitstempel ¢, einem Ent-
wicklernamen d € D und einer Menge verinderter Dateien f € P(F).

Hierbei ist C' die Menge aller Commits, D die Menge aller Entwickler und F’ die Menge aller Dateien,
die in den Commits vorkommen.

3.1.2 Geschichte

Die gesamte Geschichte eines Softwareprojekts wird als Sequenz aller Commits modelliert:
H=c¢ —c¢c— - —c,mitc; € C

13

3.1 Datenmodell

3.1.3 Hierarchie

Die Hierarchie wird als gerichteter Graph H = (V, E) modelliert, wobei V' = {vy, ..., vy} die
Menge von k Knoten und E C V' x V die Menge der Kanten reprisentiert. Es kann beliebig viele
Wurzelknoten geben (die keine eingehenden Kanten besitzen); die restlichen Knoten besitzen einen
Eingangsgrad von eins. Der Ausgangsgrad aller Knoten ist beliebig. Blattknoten sind die Knoten der
Hierarchie, die keine ausgehenden Kanten besitzen.

Eine Teilhierarchie h = (V}, Ey) mit V), C V und E;, C E wird entsprechend modelliert, es
gibt allerdings jeweils nur einen Wurzelknoten. Zwei Teilhierarchien sind disjunkt, wenn sie keine
gemeinsamen Knoten besitzen.

Jede Datei in F’ wird durch einen Dateipfad dargestellt, dieser besteht aus einer Sequenz von Knoten:
fi = viy = vy, = -+ — v;,,. Die Projekthierarchie wird aus allen vorkommenden Knoten in den
Dateipfaden aller Commits gebildet.

3.1.4 WOl
Ein WOI ist eine Menge aus Teilhierarchien der Hierarchie H:
W ={h1, ha ..., hp}

Alle WOIs ergeben eine Menge an [WOIs:
W= {w1, ..., W}

Hierbei diirfen sich zwei WOIs nicht iiberlappen, d.h. WOIs diirfen keine gemeinsamen Knoten
enthalten.

3.1.5 Entwicklergruppe
Eine Entwicklergruppe ist eine Menge mehrerer Entwickler:
GCD

Es konnen mehrere Entwicklergruppen festgelegt werden, deren Vereinigung G = G1 UG U- - UGy
alle Entwickler der ausgewahlten Gruppen beinhaltet.

3.1.6 Zeitbereich und Intervalle

Fir die WOI River-Visualisierung kann ein beliebiger Zeitbereich [, tmaz] angegeben werden.

Falls genau die Zeitspanne, in der alle Commits liegen, dargestellt werden soll, miissen der minimale
und maximale Zeitstempel aller Commits verwendet werden:

tmin = min(tl, tg, ceey tn),

tmaac = max(tl, tQ, ey tn).

Intervalle kénnen auf zwei verschiedene Arten gebildet werden — entweder in Abhangigkeit der Zeit
oder der Commits.

14

3.2 Hierarchie

Zeitintervalle

Fir die Aufteilung des Zeitbereiches [tin, tmaz] in eine festgelegte Anzahl von I Intervallen erhalt
jedes Intervall eine Lange ¢ = | lmaz—tmin |

Sollen Zeitintervalle einer festen Lange ¢ gebildet werden, ergeben sich [= (@} Intervalle.

Commit-Intervalle

Wenn x Commits in ein Intervall fallen sollen, wird die Gesamtzahl 7 aller Commits, die im angegebe—

nen Zeitbereich liegen, in [= [%1 Intervalle aufgeteilt bzw. bei I Intervallen befinden sich z = [7|
Commits in jedem Zeitintervall.

3.1.7 Transitionsmatrizen

Aus den festgelegten WOIs W, dem Zeitbereich [t,in, tmaz], der Anzahl an Intervallen I und den
Entwicklern in den ausgewahlten Entwicklergruppen G koénnen zeitverdnderliche Transitionsmatri-
zen

M;e M(I+1x1+1,RxR)
berechnet werden. Hierbei wird ein zusatzlicher WOI eingefiihrt, der fiir Zu- und Abfliisse zustandig
ist.

Die genaue Berechnung der Transitionsmatrizen wird in Abschnitt 3.3 schrittweise hergeleitet.

3.2 Hierarchie

Die Hierarchievisualisierung repréasentiert die Systemstruktur des Softwareprojekts; in ihr werden
die ausgewihlten WOIs farblich hervorgehoben. Dies bietet eine Zuordnung der Arbeitsbereiche zu
den Flissen des WOI Rivers.

Konstruktion

Die Projekthierarchie kann sowohl als Layered Icicle Plot als auch als Indented Plot visualisiert werden.
Beide visuelle Metaphern kénnen neben der WOI River-Visualisierung platziert werden und benétigen
horizontal wenig Platz. Dabei kénnen die Hierarchiedarstellungen in x- und y-Richtung gestaucht
werden, ohne dass die Grundstruktur verloren geht. Sie eignen sich auch fiir gréflere Hierarchien,
wobei die Struktur immer noch gut erkennbar ist. In Abbildung 3.1 sind beide Varianten anhand einer
Beispielhierarchie dargestellt.

Die Wurzelknoten befinden sich links, die Kinderknoten jeweils rechts von ihren Elternknoten. Die
Hierarchie wachst somit von links nach rechts.

15

3.2 Hierarchie

Lorem

ipsum

wnsdi

diam

wao

weip

Junpiaul

(b)

Abbildung 3.1: Hierarchievisualisierung als (a) Layered Icicle Plot und (b) Indented Plot.

In beiden Fillen werden Knoten in Form von Rechtecken dargestellt, die jeweils eine gleiche Breite
besitzen.

Layered Icicle Plot Bei Layered Icicle Plots werden Kinderknoten rekursiv auf ihre Elternknoten
gesetzt. Dabei werden alle Blattknoten in der gleichen Gro8e dargestellt. Die Hohe bzw. der Flachenin-
halt eines Elternknotens wird aus der Summe der Hohe bzw. der Fldcheninhalte seiner Kinderknoten
ermittelt.

Indented Plot Bei Indented Plots sind Kinderknoten im Vergleich zu ihren Elternknoten nach
rechts eingeriickt, alle Knoten gleicher Tiefe werden bei der gleichen x-Koordinate platziert. Hier
werden alle Knoten durch gleich grofie Rechtecke dargestellt.

Die Bestimmung der Hohe koénnte auch in Abhingigkeit der Dateigréfle oder der bearbeiteten
Dateien erfolgen. Da im Folgenden nur die Systemstruktur interessiert und der Schwerpunkt auf der
Visualisierung des WOI Rivers liegt, wird die eben beschriebene Festlegung fiir die Hohe verwendet.

Farben

Wenn keine WOIs ausgewihlt sind, wird die Hierarchie in Grautonen eingefirbt. Der verwendete
Grauton spiegelt die Tiefe eines Knotens innerhalb der Hierarchie wider. Alle Knoten erhalten

16

3.3 WOI Rivers

zusitzlich einen Farbverlauf von einem helleren zu einem dunkleren Grauton, um die Abbildung
asthetischer wirken zu lassen.

Alle Knoten, die zu einem WOI gehéren, werden entsprechend der zugeordneten WOI-Farbe eingefarbt.
Hierbei wird ein Farbverlauf verwendet, sodass die Farbe des WOIs in der Mitte des Knotens sichtbar
ist; nach oben wird sie etwas heller, nach unten dunkler. In diesem Fall gibt es keine zusatzliche
Farbanderung fiir die Tiefe, um keine Verwirrung mit zusétzlichen Farbténen zu erzeugen.

Labels

Jeder Knoten erhailt ein Label des Datei- bzw. Verzeichnisnamens. Je nachdem ob das Rechteck, das
den Knoten reprasentiert, breiter oder héher ist, wird das Label horizontal bzw. vertikal gezeichnet.
Falls nicht geniigend Platz fuir die gesamte Zeichenkette zur Verfiigung steht werden ggf. Ellipsen
verwendet.

3.3 WOI Rivers

Die Visualisierung der WOI Rivers erfolgt im Wesentlichen wie bei der AOI River-Visualisierung.
Zuerst wird eine gestapelte Ubersicht der zeitverianderlichen Quantititen durch einen Fluss, dhnlich
der ThemeRiver-Visualisierung angezeigt; zusétzlich konnen daraufthin Ubergéinge, Zu- und Abfliisse
zwischen Teilflissen eingeblendet werden. Teilweise wurden hier Anderungen im Vergleich zu den
AQI Rivers vorgenommen oder zusitzliche Eigenschaften hinzugefiigt.

Im Folgenden wird zunichst die Konstruktion der ThemeRiver-Visualisierung und der einzelnen
Elemente fiir die Detailansicht (Uberginge, Zu- und Abfliisse) beschrieben. Danach wird auf die Er-
stellung der Transitionsmatrizen eingegangen; diese werden dhnlich der Transitionsmatrizen der AQI
Rivers erstellt, miissen allerding fiir die Visualisierung eines Softwareentwicklungsverlaufs angepasst
werden. Zudem werden hierbei verschiedene Varianten vorgestellt, die unterschiedliche Darstel-
lungen fiir die vorliegenden Daten liefern, indem die Gewichtsverteilung fiir einzelne Entwickler
unterschiedlich vorgenommen wird. Die Transitionsmatrizen bilden die Grundlage fiir die Visualisie-
rung der einzelnen Komponenten eines WOI Rivers. Anhand eines Beispieldatensatzes konnen die
Ergebnisse der verschiedenen Vorgehensweisen zur Berechnung der Transitionsmatrizen miteinander
verglichen werden. Zum Schluss wird noch auf weitere visuelle Besonderheiten (Anordnung der
visuellen Elemente und Labels) eingegangen.

3.3.1 Konstruktion

Die Visualisierung des WOI Rivers besteht aus einzelnen Elementen, die zusammen den WOI River
bilden. Im Folgenden wird beschrieben, wie diese einzelnen Komponenten konstruiert werden. Das
Ergebnis des WOI Rivers bildet sich aus dem Zusammenfiigen dieser einzelnen Elemente, wie der
Abbildung 3.2 entnommen werden kann.

17

3.3 WOI Rivers

(a) (b)

Abbildung 3.2: Aufbau eines WOI Rivers aus einzelnen Elementen: (a) fiir die ThemeRiver-Ansicht
und (b) fiir die Detailansicht

ThemeRiver-Darstellung

Die ThemeRiver-Darstellung entsteht durch gestapelte Darstellung zeitverdnderlicher quantitativer
Werte. Als Grundlage fiir die Werte werden Transitionsmatrizen verwendet, bei denen die Summe
einzelner Zeilen den verwendeten Quantititen entspricht. (Die Berechnung der Transitionsmatrizen
wird in Kapitel 3.3.2 beschrieben.) Die Anordnung erfolgt hierbei symmetrisch um die x-Achse.
Zwischen den Werten aufeinanderfolgender Intervalle wird aus dsthetischen Griinden interpoliert.

Fir die Berechnung der Interpolation wird wie bei den AOI Rivers vorgegangen. Hierbei werden
kubische Bézier-Kurven verwendet, die aus dem Startpunkt P (xp,, yp,), dem Endpunkt Pa(xp,, yp,)
und zwei weiteren Kontrollpunkten (C1 (z¢,, yc,) und Ca(x ¢y, Yo,)) ermittelt werden (vgl. Abbil-
dung 3.3). Der Start- und Endpunkt entspricht hierbei den Punkten, die interpoliert werden sollen.
Die Koordinaten der weiteren Kontrollpunkte berechnen sich folgendermaflen:

Yo, = Yypy

yCz = yP2 ()
Tp,+Tp.

Ty =Xy = g2

Die Darstellung des WOI Rivers kann aus Elementen aufgebaut werden, die aus jeweils zwei ver-
tikal benachbarten Kurven gebildet werden. Je nachdem, ob die ThemeRiver-Visualisierung oder
die Detailansicht angezeigt werden soll, konnen entsprechende Elemente ein- bzw. ausgeblendet
werden.

18

3.3 WOI Rivers

(a)

Abbildung 3.3: Konstruktionsskizze fir eine Bézier-Kurve.

Transitionen, Zu- und Abfliisse

Die AOI Rivers besitzen in der Detailansicht Transitionen, Zu- und Abfliisse. Bei den WOI Rivers kann
das Verhalten von Entwicklern zwischen angrenzenden Intervallen dargestellt werden. Die genauen
Werte, die fiir die Berechnung dieser Elemente verwendet werden, sind in den Transitionsmatrizen
gespeichert.

Fir die Visualisierungen der einzelnen Elemente werden vier Punkte (Py(xzp,,yp,), P2(zp,, yp,),
Ps(xp,,yp,) und Py(zp,,yp,)) bendtigt, zwischen denen der Linienverlauf interpoliert wird.

Transitionen Transitionen werden verwendet um Ubergénge von Entwicklern zwischen verschiede-
nen Arbeitsbereichen darzustellen. Sie werden, wie auch schon die Elemente der ThemeRiver-Ansicht,
unter Verwendung kubischer Bézier-Kurven konstruiert. Die Berechnung erfolgt analog zur Beschrei-
bung bei der Erzeugung der einzelnen Elemente fiir die ThemeRiver-Ansicht. Eine Konstruktionsskizze
kann den Abbildungen 3.4a bzw. 3.4b entnommen werden.

Bei den AOI Rivers ist der Abstand zwischen P; und P bzw. P3 und Py gleich (Abbildung 3.4a). Dies
ist bei den WOI Rivers nicht unbedingt vorausgesetzt, hier konnen die Abstinde auch unterschiedlich
sein, was zu einer Verallgemeinerung fiihrt, die in Abbildung 3.4b schematisch dargestellt ist.

Die Farbe bzw. der Farbverlauf, mit dem eine Transition dargestellt wird, ist davon abhangig, zwischen
welchen WOIs die Transition verlauft.

Zu- und Abfliisse Fiir Entwickler, die in einem Zeitintervall neu zu der Entwicklung hinzukommen
bzw. diese verlassen, werden Zu- bzw. Abflusse fir die visuelle Reprisentation verwendet. Zufliisse
werden dabei so gezeichnet, dass sie von oben nach unten verlaufen und an gegebenen Positionen in
den Hauptfluss einflieffen; Abfliisse verlassen entsprechend den Hauptfluss und flielen orthogonal
nach unten.

Die Konstruktion erfolgt hierbei mit Hilfe von Kreisen. In Abbildung 3.4c und 3.4d sind die zugehorigen
Konstruktionszeichnungen abgebildet.

Die Beschreibung im Folgenden bezieht sich auf einen Zufluss; fiir den Abfluss kann die Berechnung
entsprechend angepasst werden.

Ein Zufluss verlauft von P; P nach P3 Ps. Wahrend die Punkte P; und P, durch Positionen im Fluss
gegeben sind, werden P} und P, so berechnet, dass die entsprechenden Punkte aller Zu- und Abfliisse

19

3.3 WOI Rivers

(b)

() (d)

Abbildung 3.4: Konstruktionsskizzen fiir (a) eine Transition zwischen gleichen WOIs, (b) eine Tran-
sition zwischen unterschiedlichen WOIs, (c) einen Zufluss und (d) einen Abfluss.

20

3.3 WOI Rivers

(a) (b) (o)
Abbildung 3.5: Zufliisse mit unterschiedlichen Werten fiir v: (a) v =0 (b) v =1 (c) v = 0, 7.

horizontal nebeneinander angeordnet sind. Um keine Uberschneidungen zu erzeugen, werden die
Koordinaten dieser Punkte so gew#hlt, dass diese umso weiter links platziert werden, je weiter unten
sich der zugehorige Hauptfluss in der Visualisierung befindet.

Der Zufluss soll vertikal nach unten in die Visualisierung und horizontal in den Hauptfluss einflieffen.
Daher werden fiir die Konstruktion vier weitere Punkte S;(zg;, ys;) benotigt; deren Koordinaten
berechnen sich folgendermafien:

Mit dem Radius fiir den inneren Kreis
r =min(zps — Tp1,yp3 — yp1) - v mitv € [0,1]

ergeben sich folgende Koordinaten fiir S;:

Ts1 = Tp1
rs2 = Tp2
Ys1 =yYs2 =yp3 — T
Ys3 = Yp3
Ysa = Ypra

rg3 =xg4 =Tp1 + T

Die Abschnitte P51, P»Sa, P3S3 und PS4 sind gerade Linien. S7C bzw. S3C' legt den Radius des
aufleren Kreises fest und SoC'y bzw. S4C5 entsprechend den inneren. Kreisausschnitte verlaufen von
S1 nach S3 und S nach Sy.

Hierbei gibt v ein Verhaltnis fiir den Radius an. Je Gré8er v gewahlt wird, umso gréfler ist der Radius
des Kreises, d.h. bei grofien v werden die geraden Strecken kiirzer, bei kleinen v gréfler. In Abbil-
dung 3.5 sind Zufliisse fiir unterschiedlich gewahlte Werte fiir v dargestellt. In den Visualisierungen
wurde v = 0, 7 gewéhlt, da hierdurch noch kein zu starker ,Knick® entsteht und die Ergebnisse der
Visualisierung asthetisch wirken.

Bei der Untersuchung realer Softwareprojekte wurde festgestellt, dass die Zu- und Abfliisse in der
Visualisierung stark dominieren. Damit sie in den Abbildungen nicht als zu stérend auffallen, werden
sie nach oben bzw. unten durch Verringerung der Deckkraft ausgeblendet.

21

3.3 WOI Rivers

3.3.2 Anpassung der Transitionsmatrizen

Bei den AOI Rivers erhilt jeder Teilnehmer im Verlauf des Flusses durchgehend die gleiche Hohe
in der Visualisierung zugewiesen (falls er auf eines der festgelegten AOIs schaut). Hier ist es nicht
moglich, dass ein Teilnehmer gleichzeitig auf mehrere Bereiche des Bildschirms schaut. Ubertragen auf
unseren Fall wiirde dies bedeuten, dass Entwickler in jedem Zeitintervall nur einen WOI bearbeiten;
Entwickler bearbeiten jedoch meistens Dateien in mehreren WOIs gleichzeitig bzw. sorgt hier die
Bildung der Intervalle dafiir, dass in jedes Intervall Dateidnderungen aus mehreren WOIs fallen.

Wiirde die Vorgehensweise der AOI Rivers also genau so auf die WOI Rivers iibertragen werden, wére
unter der Beriicksichtigung, dass Entwickler mehrere WOIs gleichzeitig bearbeiten, keine Visualisie-
rung moglich. Da dies allerdings unter Umstanden sehr haufig vorkommt, muss die Erstellung der
Transitionsmatrizen angepasst werden.

Deshalb kénnen Uberginge zwischen zwei Zeitschritten bzw. Intervallen nicht mehr nur als Wechsel
zwischen zwei Bereichen bzw. als ein Zu- oder Abfluss eines Entwicklers dargestellt werden. Dadurch,
dass mehrere WOIs gleichzeitig bearbeitet werden, findet ein Wechsel zwischen verschiedenen
Bereichen statt. Demnach ist hier eine Aufteilung der Hohe in den Transitionsbereichen (den Bereichen
zwischen zwei Intervallen) notwendig. Aulerdem kommt hinzu, dass Entwickler, wenn sie zu dem
Projekt hinzu kommen bzw. wenn sie es verlassen, unter Umsténden nicht nur ein WOI, sondern
mehrere WOIs bearbeiten, deshalb werden sie hierbei auf mehrere Zu- bzw. Abfliisse aufgeteilt.

Zusatzlich arbeiten Entwickler mit unterschiedlich grofler Beteiligung an Dateien, was ebenfalls
beriicksichtigt werden sollte.

Im Folgenden wird fir die Berechnung der Transitionsmatrizen jedem Entwickler in jedem Intervall
ein Gewicht zugewiesen, das seine Gesamthohe in der Visualisierung festlegt.

Fir den folgenden Verlauf ergeben sich drei Probleme fiir die Visualisierung jedes Entwicklers, die
sinnvoll geldst werden sollten:

Welches Gewicht erhilt ein Entwickler iiber die Zeit?

Das Gewicht eines Entwicklers gibt die Hohe an, mit der er in dem Fluss beriicksichtigt wird. Bei den
AOI Rivers wird jeder Teilnehmer jeweils mit der gleichen Hohe beriicksichtigt. Auch hier konnte
jeder Entwickler die gleiche Hohe erhalten; hierdurch wire erkennbar, wann wie viele Entwickler
in den verschiedenen WOIs arbeiten. Die Hohe jedes Entwicklers konnte sich jedoch auch in jedem
Zeitschritt und im Vergleich zu anderen Entwicklern dndern. Wenn nicht die Anzahl der Entwickler,
sondern die Beteiligung an dem Projekt interessiert, kann das Gewicht beispielsweise in Abhéngigkeit
der verdnderten Dateien in den entsprechenden Intervallen ermittelt werden. Hierdurch kann erkannt
werden, wann bzw. wo es die meisten Anderungen an dem Projekt gab.

Wie wird das Gewicht eines Entwicklers auf die WOIs aufgeteilt, an denen er arbeitet?

Ein Entwickler kann in jedem Intervall verschiedene WOIs bearbeiten. Hier besteht die Moglich-
keit, jedem WOI, der in dem entsprechenden Intervall bearbeitet wurde, den gleichen Anteil vom
Gewicht des Entwicklers zuzuweisen oder die Gewichtung in Abhangigkeit der bearbeiteten Dateien
durchzufiihren.

22

3.3 WOI Rivers

Wie werden die Gewichte fiir die Transitionen aufgeteilt?

Wenn ein Entwickler in aufeinanderfolgenden Intervallen an unterschiedlichen WOIs beteiligt ist,
missen die Gewichtsanteile fiir die Transitionen aufgeteilt werden. Ein trivialer Ansatz ist, jeden
Gewichtsanteil eines WOIs im ersten Intervall gleichméflig auf alle WOIs im zweiten Intervall auf-
zuteilen. Dies hat allerdings teilweise viele Uberschneidungen zur Folge; dies wird auch als ,Visual
Clutter” [RLN07] bezeichnet. Dariiber hinaus ist diese Aufteilung nicht sehr intuitiv. Ein besseres
Ergebnis wird erzielt, wenn gezeigt werden kann, dass manche Bereiche in beiden Intervallen be-
arbeitet werden, und somit ein Ubergang mit einem héheren Gewicht erhalten bleiben kann, statt
diesen unnotig aufzuteilen.

Im Folgenden werden mogliche Losungsansétze fiir diese Fragestellungen beschrieben und wie sie
bei der Erstellung der Transitionsmatrizen beriicksichtigt werden konnten. Bei der Erklarung werden
meist Visualisierungen verwendet, die das Prinzip fiir einen Entwickler innerhalb von zwei Intervallen
veranschaulichen.

Vorbereitung

Zunichst muss der gesamte Zeitbereich in Intervalle eingeteilt werden. Ein Intervall deckt eine
gewisse Zeitspanne ab, in die alle Commits fallen, die einen Zeitstempel besitzen, der in diesen
Bereich fillt. Durch die Bildung der Intervalle erfolgt eine Aggregation aller Commits, die in die
entsprechenden Zeitspannen fallen. Bei den Visualisierungen sollte demnach beachtet werden, dass
in den WOI Rivers nur die aggregierten Werte verschiedener Commits innerhalb eines Zeitintervalls
korrekt angezeigt werden, dazwischen (in den Transitionsbereichen) wird interpoliert.

Um an die quantitativen Werte fiir die Visulisierung zu gelangen, miissen Transitionsmatrizen be-
rechnet werden. Deren Berechnung erfolgt grundlegend wie bei den AOI Rivers, wurde allerdings
erweitert; Grundlage fiir die Berechnung bilden die Intervalle, die WOIs W und alle Entwickler in
G.

Es wird so vorgegangen, dass fur alle Entwickler d € G und jedes Intervall ¢ : 1 < ¢ < [bestimmt
wird, wie viele und welche WOIs in ¢ und dem darauffolgenden Intervall ¢ + 1 bearbeitet wurden.
Falls ein Entwickler im Intervall 7 keine WOIs bearbeitet hat, bedeutet dies, dass unter Umstanden ein
Zufluss entsteht, da der Entwickler im Intervall ¢ nichts zum Projekt beigetragen hat. Danach wird
fir alle WOIs ¢ die von ihm im Intervall i + 1 bearbeitet wurden, der zugehorige Eintrag M;[s][t] der
Transitionsmatrix angepasst, wobei s einen Zufluss reprasentiert.

Falls im Intervall ¢ + 1 keine WOIs bearbeitet wurden, konnten entsprechend Abfliisse entstehen.
Hier wird fiir alle WOIs ¢, die im Intervall ¢ bearbeitet wurden, M;[s][t] angepasst, wobei ¢ einen
Abfluss darstellt.

Falls sowohl im Intervall 7 als auch im Intervall 7 + 1 WOIs bearbeitet wurden, wird fiir alle relevanten
WOIs s des Intervalls 4 fur alle bearbeiteten WOIs ¢ des Intervalls ¢ + 1 M;[s][t] angepasst.

Durch I Matrizen X; € X (|D| x [, N) wird reprasentiert welche WOIs bearbeitet wurden und evtl.
wie oft. Um diese zu ermitteln, wird tiber jeden Commit c,, der Geschichte H iteriert und gepriift, ob
der zugehorige Zeitstempel ¢, in dem darzustellenden Zeitbereich, d.h. in [tmins tmaz), liegt. Falls dies
zutrifft, wird ermittelt, in welches Zeitintervall ¢ ¢,, fallt. Anschlielend wird iiber alle Dateien, die

23

3.3 WOI Rivers

(a) (b)

Abbildung 3.6: Verschiedene Methoden zur Vergabe der Héhe eines Entwicklers: (a) jeder Entwickler
ist in der Visualisierung iiber den gesamten Verlauf des Flusses durch die gleiche
Hohe dargestellt; (b) die Hohe eines Entwicklers ist abhangig von der Anzahl seiner
veranderten Dateien in den entsprechenden Intervallen.

fir den Commit verandert wurden, iteriert, der WOI W, ermittelt, zu dem die entsprechende Datei
gehort und der Eintrag in X,(d,, a) angepasst.

Gesamthohe

Die Hohe bzw. die Gewichte eines Entwicklers konnen entweder fiir jeden Entwickler und jedes
Intervall gleich sein, in Abhangigkeit der Anzahl der Dateien, die in einem Zeitintervall bearbeitet
wurden oder in Abhangigkeit der Anzahl der bearbeiteten WOIs bestimmt werden.

Wenn jedem Entwickler in jedem Zeitintervall das gleiche Gewicht zugeordnet wird, entspricht die
Gesamthohe des WOI Rivers der Anzahl an Entwicklern, die im jeweiligen Intervall mindestens
eine Datei bearbeitet haben; es ist also erkennbar, wie viele Entwickler iiber die Zeit an jedem WOI
gearbeitet haben. Ein Entwickler wird durchgehend mit der gleichen Hohe gezeichnet.

Bei Gewichten in Abhangigkeit der bearbeiteten Dateien kann in der Visualisierung besser erkannt
werden, in welchen Arbeitsbereichen vermehrt gearbeitet wird. Hierbei ist allerdings nicht mehr
erkennbar, wie viele Entwickler an den Anderungen beteiligt sind. In diesem Fall wird ein Entwickler
im Verlauf des Flusses nicht mehr durchgehend mit der gleichen Hohe dargestellt, sondern sein Anteil
verdndert sich, je nachdem, ob er im nachfolgenden Intervall jeweils mehr oder weniger Dateien des
Projekts bearbeitet hat. Das Gewicht fiir jeden Entwickler in jedem Intervall kann aus X; erhalten
werden, indem die einzelnen Werte eines Entwicklers in einem Zeitintervall summiert werden.

Auflerdem kann das Gewicht in Abhingigkeit der Anzahl der bearbeiteten WOIs ermittelt werden;
hierbei wird nicht berticksichtigt, wie viele Dateien in einem entsprechenden WOI bearbeitet wurden,
sondern nur, dass sie bearbeitet wurden. Hiermit ist wieder erkennbar, von wie vielen Bearbeitern
einzelne WOIs bearbeitet wurden, da jeder Entwickler in jedem bearbeiteten WOI die gleiche Hohe
erhalt. Hier wird das Gewicht durch Summierung der Vorkommnisse der bearbeiteten WOIs eines
Entwicklers in einem Zeitintervall ermittelt.

24

3.3 WOI Rivers

4-C
1-C

() (b)

Abbildung 3.7: Veranschaulichung der Aufteilung der Hohe eines Entwicklers: (a) gleichméaf3ig auf
alle bearbeiteten WOISs; (b) in Abhéngigkeit der verdnderten Dateien innerhalb der
WOlIs.

In den Abbildungen 3.6a und 3.6b sind Beispiele fiir die Hohenfestlegung eines Entwicklers dargestellt,
welcher jeweils im ersten Intervall eine Datei und im zweiten Intervall zwei Dateien bearbeitet. In
Abbildung 3.6a hat der Entwickler durchgehend die gleiche Héhe; in Abbildung 3.6b verédndert sie
sich in Abhingigkeit der bearbeiteten Dateien.

Aufteilung der H6he

Wie bereits erwahnt, arbeitet ein Entwickler meistens an mehreren Dateien gleichzeitig, daher ist
eine Aufteilung seines Gewichts auf mehrere WOIs in jedem Intervall notwendig.

Hier gibt es die Moglichkeit, dass das Gesamtgewicht eines Entwicklers entweder gleichmaflig auf
alle WOIs aufgeteilt wird oder in Abhéngigkeit der verdnderten Dateien.

Beispiele fiir eine mogliche Aufteilung der Hohe fiir die gleichen Daten sind in Abbildung 3.7 darge-
stellt.

Hohe der Transitionen, Zufliisse und Abfllisse

Das Teilgewicht, das ein Entwickler fiir einen WOI in einem Intervall erhalten hat, muss in den
Transitionen auf die WOIs im néchsten Intervall aufgeteilt werden.

Da Entwickler in zwei aufeinanderfolgenden Intervallen ein unterschiedliches Gewicht besitzen
konnen, miissen fiir Transitionen in der Transitionsmatrix jeweils zwei Werte gespeichert werden —
einer fiir das Intervall ¢ und einer fiir das Intervall 7 + 1. Wenn ein Entwickler im Verlauf des Flusses
immer das gleiche Gewicht besitzt, sind beide Werte gleich; dies trifft auch bei Zu- und Abfliissen zu.
Die beiden Werte unterschieden sich nur fiir die Transitionen, die gebildet werden, wenn sich das
Gewicht eines Entwicklers tiber die Zeit verdndert.

25

3.3 WOI Rivers

Im einfachsten Fall kann das Teilgewicht, das ein Entwickler fiir ein WOI zugewiesen bekommen hat,
gleichméaflig auf alle WOIs im néchsten Intervall aufgeteilt werden. Diese Vorgehensweise ist zwar
recht einfach zu berechnen, allerdings nicht intuitiv fir das Verstandnis der Visualisierung, da viele
unnétige Ubergénge entstehen koénnen.

Fir die folgenden Beispiele sind in Abbildung 3.8 Visualisierungen fiir jeweils die ThemeRiver-
Darstellungen, die eben beschriebene Methode und eine Optimierung dargestellt.

Angenommen ein Entwickler arbeitet tiber ldngere Zeit an zwei verschiedenen WOIs A und B, durch-
gehend zu gleichen Anteilen, dann sollten diese WOIs nicht aufgeteilt werden (vgl. Abbildung 3.8b)
sondern die Ubergénge jeweils zwischen den gleichen WOIs verlaufen, wie in Abbildung 3.8c darge-
stellt.

Der gleiche Grundgedanke gilt auch, wenn ein Entwickler zuerst weniger an A arbeitet und im
nichsten Intervall mehr. Hier wire es entsprechend nachvollziehbarer, grofitmogliche Arbeitskapazi-
titen zu gleichen WOIs tiberflieflen zu lassen und nur die restliche Kapazitat auf die weiteren WOIs
aufzuteilen (Abbildung 3.8f).

Entsprechendes gilt auch beispielsweise, wenn ein Wechsel von zwei zu drei WOIs stattfindet. Zum
einen konnte hier auch die Hohe von WOI A und B in je drei Anteile unterteilt werden, sodass die
neuen WOIs aus je einem Anteil von A und B gebildet werden. Auch hier wire es allerdings sinnvoller
und intuitiver, wenn die grofitmogliche Hohe von A bzw. B beibehalten wird und nur der neue WOI
aus der restlichen Kapazitit entsteht (Abbildung 3.8i).

In Abbildung 3.9 ist zudem noch ein Extremfall dargestellt, bei dem in zwei aufeinanderfolgenden
Intervallen die genau gleichen WOIs bearbeitet werden.

Fur diese Erweiterung muss zuerst fiir alle WOIs gepriift werden, ob der gleiche WOI auch im
nachfolgenden Intervall bearbeitet wird. Falls dies zutrifft, wird das maximale Gewicht ermittelt, das
zwischen den beiden WOIs flieBen kann. Diese Werte miissen gespeichert werden, um spater noch
das restliche Gewicht auf die weiteren WOlIs aufteilen zu kénnen.

Durch Rundungsfehler bei der FlieSkommazahlenrechnung kénnen sehr viele sehr diinne Transitionen
entstehen, da ein durch Rundungsfehler iibrig gebliebener Wert auf die weiteren WOIs verteilt wird.
Daher wird zusétzlich gespeichert, ob das gesamte Gewicht eines WOIs fiir eine Transition bereits
vergeben ist.

Die Werte, die hier fiir jeden Entwickler ermittelt werden, miissen in der Transitionsmatrix fiir die
entsprechenden WOIs und Intervalle addiert werden.

Ubersicht der Darstellungsméglichkeiten

In den Abbildungen 3.10, 3.11 und 3.12 sind die Ergebnisse der hier vorgestellten Visualisierungs-
technik anhand eines Beispieldatensatzes veranschaulicht. Der Datensatz enthélt 5 Entwickler und es
wurden 5 WOIs festgelegt.

Wihrend in Abbildung 3.10a die Hierarchievisualisierung der Systemstruktur mit den ausgew#hlten
WOIs dargestellt ist, konnen in 3.10b und 3.10c WOI River-Visualisierungen als Ubersicht und De-
tailansicht gefunden werden. Bei den hier abgebildeten Visualisierungen wird jeder Entwickler mit
der gleichen Hohe dargestellt. Die Hohe jedes Entwicklers wird in Abhéngigkeit der bearbeiteten

26

3.3 WOI Rivers

®) (h) @)

Abbildung 3.8: Veranschaulichung des WOI Rivers fiir zwei Intervalle und einen Entwickler, der an
zwei (a — f) bzw. drei (g - i) WOIs arbeitet. Wahrend bei (a - ¢) beide WOIs in beiden
Intervallen zu gleichen Anteilen bearbeitet werden, wird in (d - f) eine unterschiedli-
che Gewichtung fiir die WOIs verwendet. In (g — h) kommt eines weiterer WOI hinzu.
(a), (d) und (g) zeigen die ThemeRiver-Visualisierungen, die zwei nachfolgenden
Bilder jeweils die dazugehérige Detailansicht. Bei (b), (e) und (h) werden Ubergéinge
gleichméfig aufgeteilt; bei (c), (f) und (i) werden Transitionen zwischen gleichen
WOISs nicht unnétig aufgeteilt.

27

3.3 WOI Rivers

(a) (b) (©

Abbildung 3.9: Veranschaulichung des WOI Rivers fiir zwei Intervalle und einen Entwickler, bei
dem in jedem Intervall die gleichen WOIs mit jeweils gleichen Gewichten dargestellt
werden: (a) ThemeRiver-Ansicht; (b) Detailansicht, bei der Transitionen gleichmaflig
aufgeteilt werden; (c) Detailansicht, bei der Transitionen nicht unnétig aufgeteilt
werden.

Dateien in den einzelnen WOIs aufgeteilt und Transitionen werden nicht unnétig aufgeteilt. Diese
Visualisierung gibt demnach einen Uberblick iiber das Entwicklerverhalten, aus dem ersichtlich wer-
den kann, wie viele Entwickler ihre Arbeitsleistung prozentual in die verschiedenen Arbeitsbereiche
investiert haben.

In den Abbildungen 3.11 und 3.12 sind Visualisierungen zum gleichen Datensatz als Ubersicht iiber
die Ergebnisse der beschriebenen Varianten der Transitionsmatrizen dargestellt. Wahrend in 3.11 alle
WOI Rivers nur einen Entwickler beriicksichtigen, werden in 3.12 alle Entwickler beriicksichtigt. In
den oberen Darstellungen ist die Hohe jedes Entwicklers gleich und in den unteren abhingig von der
Anzahl der bearbeiteten Dateien (rechts) bzw. WOIs (links). Links erfolgt eine gleichméaflige Aufteilung
der Hohe auf alle bearbeiteten WOIs, rechts in Abhangigkeit der bearbeiteten Dateien. Es sind jeweils
eine Ubersicht und die Detailansichten mit einer gleichméafligen Aufteilung der Transitionen und der
optimierten Variante (die ein unnétiges Aufteilen der Transitionen verhindert) zu sehen.

3.3.3 Vertikale Anordnung

In der vertikalen Anordnung der Teilfliisse eines WOIs werden zuerst die Zufliisse gezeichnet, danach
alle Transitionen und zum Schluss folgen die Abfliisse. Die Transitionen werden dabei in der Reihen-
folge, in der sie in den Transitionsmatrizen bzw. im WOI River vorkommen angeordnet, um keine
unnotigen Uberschneidungen zu erzeugen. Diese Anordnung wurde im Vergleich mit der Umsetzung
bei den AOI Rivers verandert. Bei diesen werden zuerst Transitionen zum selben WOI und danach erst
die Transitionen, die zu den restlichen WOISs flieflen, in vertikaler Reihenfolge angeordnet. Bei der
optimierten Anordnung fiir WOI Rivers iiberschneiden sich die verschiedenen Arten der Transitionen
nicht unnétig (wie in Abbildung 3.13 anhand eines Beispiels fiir einen AOI River und einen WOI River
zu sehen ist).

28

3.3 WOI Rivers

Bob
Alice

wnsdr

Alice

01.03.201400.00:00 - 01.03.201418:12:00 - 02.03.20141424:00 - 03.03.2014 09.36:00 - 04.03.201404.48:00 -
01.03.2014 19:12:00 02.0320141224:00 03.03.201409:36:00 04.03.2014 04:48:00 05.03.2014 00:00:00

1 3.1 8-10 1Moz 1314

(b)

waso
Awnuou
Jodway

pouwia

weip

Bab
Alice

01.03.2014 00.00:00 - 01.03.2014 18:1 2.00 - 02.03.201414.2400 - 03.03.2014 09.36:00 - 04.03.2014 04.48:00 -
01.03.2014 19:12:00 02.0320141424.00 03.03.201409:36:00 04,03.2014 04:48:00 05.03.2014 00:00:00

1.2 3.1 810 -1z 13414

Abbildung 3.10: Visualisierung fiir einen Beispieldatensatz mit (a) der Projekthierarchie, (b) der
Ubersichts-Visualisierung und (c) der Detailansicht.

3.3.4 Zeichenreihenfolge
Im Hintergrund werden die Zu- und Abfliisse gezeichnet. Die restlichen Transitionen werden im
Vordergrund abgebildet. Alle Transitionen eines Transitionsbereichs werden nach ihrer Hohe sortiert

und so angeordnet, dass diinnere Ubergiinge weiter vorne gezeichnet werden, damit sie nicht von
dickeren Ubergéngen iiberdeckt werden.

3.3.5 Labels

Es gibt verschiedene Labels fiir die WOI River Visualisierung. Nicht alle Labels konnen gleichzeitig
angezeigt werden, da die Berechnungen der Positionen unabhingig voneinander ablaufen.

29

3.3 WOI Rivers

Héhe jedes WOIs ist gleich Hoéhe eines WOIs in Abhangigkeit
veranderter Dateien

Ubersicht

Detailansicht
Transitionen gleichmaRig aufgeteilt

Transitionen beibehalten

(a)

Hoéhe jedes WOIs ist gleich Hohe eines WOIs in Abhangigkeit
B veranderter Dateien
Ubersicht

Detailansicht
Transitionen gleichmaBig aufgeteilt

Transitionen beibehalten

(b)

Abbildung 3.11: Ubersicht iiber verschiedene Darstellungsmédglichkeiten fiir einen Beispieldatensatz
anhand eines Entwicklers. (a) In Abhangigkeit der Anzahl an Entwicklern und (b) in
Abhiangigkeit der Anzahl an verédnderten Dateien.

30

3.3 WOI Rivers

Héhe jedes WOIs ist gleich Hoéhe eines WOIs in Abhangigkeit
veranderter Dateien

Ubersicht

Detailansicht
Transitionen gleichmaRig aufgeteilt

(a)

Héhe jedes WOIs ist gleich Hoéhe eines WOIs in Abhangigkeit
veranderter Dateien

Ubersicht

Detailansicht
Transitionen gleichmaBig aufgeteilt

Transitionen beibehalten

(b)

Abbildung 3.12: Ubersicht iiber verschiedene Darstellungsmdglichkeiten fiir einen Beispieldatensatz
mit mehreren Entwicklern. (a) In Abhingigkeit der Anzahl an Entwicklern und
(b) in Abhangigkeit der Anzahl an veridnderten Dateien.

31

3.3 WOI Rivers

(a) (b) (©

Abbildung 3.13: Anpassung der Reihenfolge im Vergleich mit den AOI Rivers: (a) Ubersicht; (b) AOI
River-Reihenfolge; (c) WOI River-Reihenfolge.

01.03.2014 00:00:00 -
01.03.2014 12:00:00

Lorem/ipsu

1-2
(@)

(b)

Abbildung 3.14: Veranschaulichung einiger Methoden zur Anzeige von Labels: (a) Intervall-Labels,
(b) Entwickler-Labels und (c) WOI-Labels.

Allgemein bestehen die Labels (bis auf die Intervall-Labels) aus semi-transparenten abgerundeten
Rechtecken, auf die der entsprechende Text gezeichnet wird. Die Farbe der Rechtecke ist je nach Art
des Labels weify bzw. schwarz und der Text schwarz bzw. weify. Durch Verwendung von Transparenz
ist es moglich, den Umriss des Flusses trotz Labels zu erkennen.

Die Intervall-Labels werden grau gezeichnet.

Intervall-Labels

Fiir jedes Intervall kann ein Label mit dem Zeitbereich, aus dem die Daten fiir die Flussdarstellung
stammen, sowie mit den Nummern der in dem Intervall vorkommenden Commits (alle Commits

sind dabei von 1 bis zur Anzahl an verwendeten Commits durchnummeriert). Ein Beispiel ist in
Abbildung 3.14a dargestellt.

32

3.3 WOI Rivers

Entwickler-Labels

In jedem Zeitintervall konnen fiir jeden WOI die Entwickler mit den meisten Beteiligungen angezeigt
werden (vgl. Abbildung 3.14b). Der Entwickler, der die meisten Dateien veréndert hat, wird in der Mitte
dargestellt; nach auflen sinkt der Beitrag der Entwickler. Zusatzlich spiegelt sich in der verwendeten
Schriftgrofle die Beteiligung der Entwickler wider: Je mehr Dateien von einem Entwickler verandert
wurden, umso grofler ist dessen Schriftgrofle; dabei wird allerdings die Schriftgrof3e beim Erreichen
eines minimalen Wertes nicht weiter verkleinert, um die Lesbarkeit zu erhalten. Der vertikale Platz, der
mit Labels aufgefiillt werden kann, entspricht der Hohe des jeweiligen Flusses in dem entsprechenden
Intervall. Weniger wichtige bzw. kleinere Fliisse erhalten dadurch keine Labels wéhrend in den
grofleren mehrere Entwickler angezeigt werden kénnen.

WOI-Labels

Um einen schnellen Uberblick tiber die Bedeutungen der einzelnen Fliisse in der Projekthierarchie
zu erhalten, konnen die Bezeichnungen der WOIs als Labels angezeigt werden, wie z.B. in Abbil-
dung 3.14c zu sehen ist. Fiir jeden Fluss werden die Labels horizontal an der Stelle mit der weitesten
Ausdehnung gezeichnet; gibt es mehrere Stellen mit der gleichen vertikalen Ausdehnung, wird eine
Position verwendet, die nach Moglichkeit weit links im Fluss liegt. Horizontal befinden sich die Labels
mittig im Fluss des entsprechenden WOIs. Die Labels werden in der Reihenfolge ihrer maximalen
Ausdehnungen gezeichnet, sodass zuerst Labels fiir Bereiche mit gréfleren Ausdehnungen, gefolgt
von den restlichen gezeichnet werden. Zudem werden sie nur dann gezeichnet, wenn sie sich mit
keinen bereits gezeichneten Labels tiberschneiden. Hierdurch sind wichtigere Labels sichtbar und
iiberdecken sich nicht mit weiteren Labels.

Werte-Labels

Fiir jeden Fluss konnen in jedem Intervall Werte-Labels angezeigt werden, um herauszufinden, wie
viele Entwickler an einem Fluss arbeiten (relativ gesehen) bzw. wie viele Dateien bearbeitet wurden.
Hierbei wird dhnlich wie bei den WOI-Labels vorgegangen: Die horizontale Positionierung erfolgt in
jedem Fluss mittig; zuerst werden héhere Werte gezeichnet und nur dann wenn sie sich nicht mit
bereits gezeichneten Labels tiberschneiden.

Summe der Entwickler bzw. verdnderter Dateien

Zudem kann tiber jedem Intervall ein Label platziert werden, das die Anzahl der Entwickler bzw. die
Anzahl der verinderten Dateien in dem entsprechenden Intervall anzeigt.

33

3.4 Farbvergabe

3.4 Farbvergabe

Durch Verwendung von Farbe wird die Hierarchievisualisierung mit der WOI River-Visualisierung
verbunden, indem ein Fluss des WOI River jeweils die gleiche Farbe wie die zugehdrigen Arbeitsbe-
reiche der Systemstruktur erhélt. Dabei sollte versucht werden, Farben mit einem moéglichst hohen
Kontrast zueinander zu verwenden, um die einzelnen Bereiche unterscheiden zu konnen und eine
eindeutige Zuordnung zwischen den Arbeitsbereichen in der Hierarchie und dem entsprechenden
Fluss zu ermoglichen. Eine zusitzliche Schwierigkeit ist, dass die Anzahl der Farbwerte, die benétigt
werden, nicht von vornherein bekannt ist, da in der Anwendung beliebig viele weitere WOIs angelegt
werden konnen und eine Anpassung der Farben bei der Festlegung jedes neuen WOIs keine sinnvolle
Losung ware.

Die Farbvergabe fiir die WOIs kann auf drei verschiedene Arten erfolgen:

Mit Hilfe des Verfahrens von Ankerl [Ank09] konnen Farben mit hohem Kontrast fiir jeweils zwei
aufeinander folgende Farben erzeugt werden. Hierfiir werden Farben im HSV-Farbraum berechnet,
wobei die Farbséttigung (saturation) und die Helligkeit (value) konstant bleiben; nur der Farbton
(hue) andert sich. Die Berechnung des Farbtons basiert auf der Verwendung des Goldenen Schnitts,
um gleichméafig verteilte Werte zu erhalten, unabhingig davon, wie viele Farben verwendet werden.
Farben wiederholen sich bei dieser Technik nie, allerdings konnen sie mit der Zeit dhnlich zu bereits
verwendeten Farben sein.

Auflerdem besteht die Moglichkeit, Farbwerte aus einer vordefinierten Liste an Farben zu verwenden,
die so gewahlt wurden, dass sie #dsthetisch wirken und unterscheidbar sind. Die Liste besitzt allerdings
eine begrenzte Anzahl an Farbwerten, wodurch eine Wiederholung der Farben in der Visualisierung
nicht ausgeschlossen ist.

Dariiber hinaus kénnen die Farben auch fiir jeden WOI manuell festgelegt werden.

34

4 Implementierung

Die Anwendung fiir die Visualisierung der WOI Rivers ist in C++ und Qt implementiert. Sie bietet
die Moglichkeit, die Systemstruktur eines Softwareprojekts anzuzeigen und fiir ausgewahlte Arbeits-
bereiche den zugehérigen WOI River zu visualisieren. Dabei gibt es verschiedene Einstellungs- und
Interaktionsmoglichkeiten um den Entwicklungsprozess eines Softwareprojekts zu untersuchen.

In dem hier abgebildeten Diagramm ist der schematische Ablauf dargestellt, wie Visualisierungen
zu einem Softwareentwicklungsprozess erhalten werden kénnen; dabei werden die Gewinnung der
Eingabedaten und die Hauptmerkmale der Anwendung beriicksichtigt.

Interaktion

Projekt-

hierarchie WOls
Interaktion
Entwicklergruppen /)

: Entwickler
Versions- o
kontroll- — Log-Datei / REEE e - WOI River

Zeitbereich, Intervalle matrizen
system \ . . :
y Zeitbereich

- Héhe, Anordnun
weitere

Einstellungen

Abbildung 4.1: Veranschaulichung der wichtigsten Elemente der Datei-Erzeugung und Implemen-
tierung — von der Datenquelle bis zur Visualisierung des WOI Rivers.

Zuerst muss aus einem Repository eines Softwareprojekts eine Log-Datei der Entwicklungsgeschichte
erzeugt werden (genaueres dazu folgt in Abschnitt 4.3). Diese Datei kann in die Anwendung geladen
werden und aus den enthaltenen Commit-Informationen wird die zugehoriger Projekthierarchie
aufgebaut und visualisiert; auflerdem werden die Zeitpunkte des ersten und letzten Commits und die
Namen aller beteiligten Entwickler ermittelt.

In der Hierarchie kdnnen anschlieffend interaktiv WOIs definiert werden; auflerdem ist es moglich,
den Zeitbereich und die Art der Intervalle festzulegen sowie Entwicklergruppen zu erstellen, die fiir
die Visualisierung beriicksichtigt werden sollen. Beschreibungen dieser Grundfunktionen folgen in
Abschnitt 4.4. Aus diesen Informationen bzw. Einstellungen werden die Transitionsmatrizen fiir den
WOI River berechnet, welche daraufhin fiir dessen Visualisierung Verwendung findet.

In der Anwendung spielt Interaktion eine sehr grofe Rolle. Bereits bei der Auswahl und Festlegung
verschiedener WOIs kénnen innerhalb der Systemstruktur interaktiv verschiedene Arbeitsbereiche als
WOIs ausgewihlt werden. Nachdem der zugehorige WOI River angezeigt wird, bietet dieser zunéchst
als ThemeRiver einen Uberblick dariiber, wie viele Entwickler an dem Projekt beteiligt sind bzw. wie

35

4.1 Vorverarbeitung

viele Veranderungen an dem Projekt in den verschiedenen Arbeitsbereichen iiber die Zeit vorgenom-
men wurden. Erst durch Interaktion ist es moglich, weitere Besonderheiten herauszufinden.

In vielen Anwendungen findet sich das Prinzip des Visual Information Seeking Mantra: ,Overview
first, zoom and filter, then details-on-demand” [Shn96]. In der hier entwickelten Anwendung kann
dieses Prinzip sowohl bei der Hierarchie- als auch bei der WOI-River-Visualisierung wiedergefunden
werden.

Betrachten wir zuerst die Hierarchiedarstellung: Zunichst wird eine Ubersicht tiber die Systemstruk-
tur des gesamten Projekts angezeigt. Anschlieflend kann sowohl geometrisch als auch semantisch
gezoomt werden und weitere Details zu einem Knoten kénnen durch Klick auf diesen herausgefunden
werden.

Entsprechend bietet die WOI River-Visualisierung zunichst als ThemeRiver eine Ubersicht des
Entwicklungsverlaufs; durch das Anzeigen von Transitionen sowie Zu- und Abfliissen und das
Einblenden weiterer Informationen in Bezug auf einen Fluss, kann das Visualisierte besser verstanden
werden.

Beide Visualisierungen bieten noch weitere Einstellungs- und Interaktionsmdglichkeiten, auf die in
Abschnitt 4.5 genauer eingegangen wird.

Im Folgenden wird zuerst beschrieben, wie eine Datei, welche Informationen beziiglich der Ent-
wicklungsgeschichte enthilt, aus dem Repository eines Versionskontrollsystems gewonnen und fiir
die Anwendung angepasst werden kann. Danach werden die Benutzeroberfliche und ihre Hauptbe-
standteile grob vorgestellt und es folgt eine Beschreibung des Imports, der Grundfunktionen sowie
weiterer Funktionalitdten und Interaktionsmoglichkeiten des Programms. Zum Schluss werden noch
verschiedene Export-Moglichkeiten beschrieben.

4.1 Vorverarbeitung

Es gibt heute sehr viele verschiedene Versionskontrollsysteme. Bei jedem entstehen unterschiedlich
formatierte Log-Ausgaben, welche Informationen zur Entwicklungsgeschichte eines Projekts enthal-
ten. Die Datensatze, die im Rahmen dieser Arbeit verwendet wurden, stammen aus Git-, Mercurial-,
Subversion- und Bazaar-Repositories. Die hier entwickelte Anwendung verwendet ein unabhangiges
Format und ist daher nicht auf ein bestimmtes Versionskontrollsystem beschrénkt.

Mercurial- oder Subversion-Repositories bieten bereits die Moglichkeit, die Versionsgeschichte im
XML-Format zu erzeugen. Diese Dateien konnen direkt in die Anwendung geladen werden. Zur
Erzeugung der Log-Dateien konnen folgende Programmaufrufe verwendet werden:

Mercurial: hg log --style=xml -v
Subversion: svn log --xml -v

Bei der Suche nach Open-Source-Softwareprojekten wurde festgestellt, dass viele Projekte inzwischen
mit Git verwaltet werden. Da es hierfiir keine XML-Ausgabe der Versionsgeschichte gibt, muss dies
auf eine andere Art, beispielsweise durch ein Skript erzeugt werden. Bei Bazaar gibt es zwar eine
XML-Ausgabe, diese muss allerdings zuerst an das entsprechende Format angepasst werden.

36

4.2 Benutzeroberflache

Der genaue Aufbau des Eingabeformats folgt in Kapitel 4.3.

4.1.1 Vorfilterung

Es kommt vor, dass Entwickler in einem Commit nur eine kleine Anderung machen, die jedoch
eine Auswirkung auf sehr viele andere Dateien hat. Beispielsweise konnte der Name einer Klasse
verandert werden, was zur Folge hitte, dass alle Dateien, die diese Klasse verwenden, auch verandert
werden miissen. Solche Commits sind meistens die Folge von Anderungen an der Infrastruktur und
sorgen fiir Rauschen. In [ZW04] wird dieses Problem durch Filtern aller Commits, die mehr als N
Anderungen enthalten, behoben. Eine sinnvolle obere Grenze fir N ist dabei von dem jeweiligen
Projekt abhéngig.

4.2 Benutzeroberflache

In Abbildung 4.2 ist die Benutzeroberfliche der Anwendung zu sehen. Sie besteht aus vier Hauptteilen:
der Hierarchievisualisierung zur Auswahl von WOIs, der Hauptansicht mit der Darstellung des WOI
Rivers und den Dock Widgets, in denen der Zeitbereich, Intervalle und Entwicklergruppen festgelegt
sowie weitere Einstellungen vorgenommen werden konnen. Ein weiteres Dock Widget bietet eine
Ubersicht iiber den WOI River, in der die aktuelle Position des dargestellten Bereichs in Bezug auf die
Hauptansicht erkennbar ist.

Hierarchieansicht

Fiir die Visualisierung der Projekthierarchie stehen zwei verschiedene visuelle Metaphern zur Ver-
figung: zum einen ein Layered Icicle Plot, zum anderen ein Indented Plot (vgl. Abbildung 3.1). Die
inneren Knoten repriasentieren im Normalfall Verzeichnisse und die Blattknoten Dateien (oder leere
Verzeichnisse).

Die Hierarchievisualisierung bietet die Grundlage zur Festlegung von WOIs fiir die WOI River-
Visualisierung; zusétzlich bietet sie Interaktions- und Navigationsmoglichkeiten um die visualisierten
Daten zu reduzieren.

WOI River-Ansicht

In der Hauptvisualisierung wird der WOI River zu den zuvor festgelegten WOIs, Entwicklern und dem
angegebenen Zeitbereich dargestellt. Hierbei ist die Darstellung in Hinsicht auf mehrere Parameter
veranderbar und Interaktionstechniken unterstiitzen die Analyse der visualisierten Daten.

37

8¢

File Edit Wiew Settings Info

- ;.) bsp.xxml — WOl River ‘«‘.’9 @ ;

wate

01.03.2014 19:12:00 -
02.03.2014 14:24:.00

3-7

Intervals:

&
WOI River & X
Start time:
(01.03.14 2 [o0:00 9
End time:
(05,0314 £ looioo 2]
=
(]

Number of time intervals

02.03.201414:24:00 -
03.03.2014 09:36:00

8-10

Abbildung 4.2: Benutzeroberfliche der Anwendung zur Visualisierung der WOI Rivers.

ayoe|ueqolazinueg 2y

4.3 Import

Dock Widgets

In den Dock Widgets konnen verschiedene Einstellungsmoglichkeiten fiir die Hierarchie- und WOI
River-Visualisierung gefunden werden. Aulerdem kénnen allgemeine Informationen zu den geladenen
Daten und visualisierten Elementen angezeigt werden.

Es stehen insgesamt neun Dock Widgets mit unterschiedlichen Informationen, Funktionen und
Einstellungsmoglichkeiten bereit. Die einzelnen Dock Widgets kénnen ausgeblendet sowie aus dem
Fenster gelost werden, um dadurch mehr Platz fiir die Hauptvisualisierungen zur Verfiigung zu
haben.

Meni

Im Anwendungsmentii findet sich die Méglichkeit zum Importieren der Log-Datei und verschiedene
Export-Funktionalitdten. Dariiber hinaus gibt es hier die Moglichkeit, Teile des Fensters ein- bzw.
auszublenden und eine Funktion zur Festlegung von WOIs durch die Verwendung von Filtern.

4.3 Import

Wie bereits beschrieben werden fiir die Visualisierung Commit-Informationen eines Repositories
benétigt, welche jeweils Informationen beziiglich des Anderungsdatums, des Entwicklernamens und
der veranderten Dateien enthalten. Als Eingabe erwartet die Anwendung eine XML-Datei, welche
diese Informationen enthalt; das Format dieser Datei muss folgendem Schema entsprechen:

<log>
<logentry>
<date>2013-15-09T00:00:00+01:00</date>
<name>Alice</name>
<paths>
<path>Lorem/ipsum/dolor/amet</path>
<path>Lorem/diam/nonumy/eirmod</path>
</paths>
</logentry>
</log>

Innerhalb eines log-Elements konnen die einzelnen Commits in beliebiger Reihenfolge angegeben
werden. Jeder logentry-Eintrag repréasentiert einen Commit, date enthélt das Datum des Commits, name
den Namen des Entwicklers und in paths werden alle Pfade separat zwischen path-Tags angegeben.

39

4.4 Grundfunktionen

Der Name eines Entwicklers kann aus einer beliebigen Zeichenkette (in UTF-8 kodiert) bestehen, der
Zeitstempel muss im ISO-8601-Format [iso] angegeben sein und die Pfade konnen beliebig aufgebaut
werden, wobei ein Schrégstrich (,,/“) als Trennzeichen erwartet wird.

Weitere Elemente, die beispielsweise Commit-Kommentare enthalten, oder Attribute fiir Elemente sind
im Eingabeformat erlaubt, werden allerdings ignoriert. Fehlen bei einem Commit Anderungsdatum
oder Pfade, ist dieser fiir die Visualisierung nicht relevant und wird ignoriert. Fir den Fall, dass bei
einem Commit kein Entwicklername angegeben ist, wird dieser Commit einem weiteren Entwickler
zugeordnet, dessen Name aus einer leeren Zeichenkette besteht.

Falls ein Entwickler unter verschiedenen Namen in der Eingabedatei vorkommt, wird dieser wie
mehrere selbstindige Entwickler behandelt. Eine Vereinheitlichung der Namen in der Eingabedatei
kann dieses Problem beheben.

Aus den Commits, die in der Log-Datei enthalten sind, kann die gesamte Geschichte des Softwarepro-
jekts extrahiert und die hierarchische Struktur des Softwareprojekts erzeugt werden. Die Hierarchie
wird dabei in der Reihenfolge aufgebaut, in der die Commits in der Eingabedatei vorkommen. Dabei
miissen die Commits nicht zwingend zeitlich sortiert sein. Je nachdem in welcher Reihenfolge die
Commits in der Datei vorkommen (zeitlich aufsteigend, absteigend oder ungeordnet), kénnen unter-
schiedliche Anordnungen der Knoten in der Hierarchievisualisierung entstehen. Auflerdem kénnen
allgemeine Informationen, wie die vorkommenden Entwicklernamen und der Zeitbereich, innerhalb
welchem alle Commits liegen, ermittelt werden.

Nach dem Laden wird die Hierarchie direkt in der Hierarchieansicht visualisiert; der Zeitbereich
wird als Grundeinstellung fiir den zu visualisierenden WOI River festgelegt, alle Entwicklernamen
werden in eine Liste in einem der Dock Widgets eingefiigt und eine Entwicklergruppe bestehend
aus allen Entwicklern wird festgelegt. Dariiber hinaus werden in einem Dock Widget Informationen
iiber die geladenen Daten angezeigt; diese liefern einen Uberblick iiber die Anzahl an Commits und
Entwicklern sowie den Zeitbereich und die Anzahl an Knoten in der Projekthierarchie.

4.4 Grundfunktionen

Bevor die Visualisierung eines WOI River erfolgen kann, miissen verschiedene Grundeinstellungen
vorgenommen werden. In Kapitel 3.3 wurde bereits auf die verschiedenen Méglichkeiten eingegangen,
wie die Hohe einzelner Entwickler in der Visualisierung behandelt werden kann; entsprechende
Einstellungen konnen in einem Dock Widget angepasst werden; durch diese Einstellungen wird
festgelegt, wie die visualisierten Daten zu interpretieren sind. Anschliefend miissen WOIs in der
Projekthierarchie festgelegt werden, die grundlegend fiir die zu visualisierenden Fliisse sind. Zusatzlich
konnen Entwicklergruppen, der Zeitbereich und die Art der Intervalle angegeben werden.

4.4.1 WOIs festlegen

Die Grundlage zur Festlegung der WOIs bietet die Projekthierarchie. Hier ist der Benutzer in der
Lage, interaktiv WOIs festzulegen, um spater den WOI River fiir die entsprechenden Arbeitsbereiche
anzeigen zu lassen.

40

4.4 Grundfunktionen

wnsdi
wnsdy
wnsd

Bupsdipes

Jodway

wale
Awnuou
wale
waio
waio
wale

pouja

welp
welp
weip

|
o
=
=
a

(@) (b) (© (d) C

Abbildung 4.3: Unterschiedliche Moglichkeiten fiir die Festlegung von WOIs: (a) jede Unterhierar-
chie der Tiefe drei bildet ein WOI; (b) alle Dateien bzw. Blattknoten bilden jeweils
ein WOI; (c) mehrere Unterhierarchien an beliebiger Position bilden ein WOI; (d)
Aufziehen eines Rechtecks um mehrere benachbarte Unterhierarchien zu einem WOI
hinzuzufiigen; (e) das Ergebnis von (d): mehrere benachbarte Unterhierarchien bilden
ein WOL

Unter einem WOI sind eine oder mehrere Bereiche (Unterhierarchien) der gesamten Projekthierarchie
zu verstehen. Ein WOI kann zwar aus mehreren Unterhierarchien bestehen, mehrere WOIs konnen
sich allerdings nicht iiberlappen. Diese WOIs kénnen interaktiv in der Hierarchievisualisierung
festgelegt werden. Alle betroffenen Knoten der Hierarchiedarstellung in den Unterhierarchien eines
festgelegten WOIs werden darauthin in einer veranderten Darstellungsform (durch Verwendung der
zugewiesenen WOI-Farbe) angezeigt.

Fir die Festlegung von WOIs stehen mehrere Alternativen zur Verfiigung. In Abbildung 4.3 sind
einige Moglichkeiten als Beispiele dargestellt. Zum einen ist die Auswahl einzelner Unterhierarchien
als WOIs moglich, zum anderen kénnen Funktionalititen verwendet werden, um einen WOI aus
mehreren Unterhierarchien zu erzeugen bzw. um mehrere WOIs gleichzeitig zu bilden.

Per Doppelklick auf einen Knoten in der Hierarchiedarstellung konnen einzelne Unterhierarchien als
WOIs festgelegt oder wieder geloscht werden. Uber das Kontextmenii eines Knotens stehen weitere
Funktionen zur Verfiigung. Dort kénnen alle Unterhierarchien einer bestimmten Tiefe oder alle
Kinderknoten eines ausgewidhlten Knotens als einzelner WOI festgelegt werden. Aulerdem ist es
moglich, Unterhierarchien zum zuletzt festgelegten WOI hinzuzufiigen oder alle Blattknoten der
gesamten Hierarchie als einzelne WOIs zu definieren.

41

4.4 Grundfunktionen

Zusitzlich kann durch Aufziehen eines Bereiches mit der Maus in der Hierarchievisualisierung (vgl.
Abbildung 4.3d) ein Teil der Hierarchie als ein neuer WOI festgelegt werden. Hierbei werden nur die
Knoten beriicksichtigt, die noch zu keinem weiteren WOI gehoren. Es wird jeweils dafiir gesorgt,
dass alle Knoten, die den Bereich schneiden zu dem neuen WOI hinzugefiigt werden.

Eine weitere Funktion ist, einen WOI aus allen Dateien und/oder Ordnern zu erstellen, die eine
bestimmte Zeichenkette enthalten. Hierfiir wird bei allen Knoten gepriift, ob die Zeichenkette in
deren Namen enthalten ist. Falls dies zutrifft wird die Teilhierarchie, die durch den jeweiligen Kno-
ten festgelegt ist, zu einem neuen WOI hinzugefiigt und in der Unterhierarchie des Knotens muss
keine weitere Priifung erfolgen. Die Festlegung kann entweder nur fiir Dateien oder zusitzlich fiir
Verzeichnisse durchgefithrt werden.

Auflerdem konnen fiir eine festgelegte Anzahl an vorkommenden Dateiendungen neue WOIs erzeugt
werden. Da in der Verzeichnisstruktur des Projektes verschiedene Dateiarten vorkommen, kénnte
eine Festlegung der WOIs in Abhingigkeit von Dateiendungen interessant sein, um herauszufinden,
welche Arten von Dateien tiber die Zeit am meisten und von welchen Entwicklern bearbeitet wurden.
Hierfiir werden zunichst alle Dateiendungen, die in der gesamten Struktur vorkommen, ermittelt.
Indem bei jedem Blattknoten gepriift wird, ob eine Unterteilung des Namens in einen Teil vor und
nach einem Punkt moglich ist, kann ggf. der Teil nach dem letzten Punkt als Dateiendung verwendet
werden. Nachfolgend wird ermittelt, welches die am haufigsten vorkommenden Dateiendungen sind
und es werden fiir die M haufigsten Dateiendungen neue WOIs angelegt.

4.4.2 Entwicklergruppen festlegen

In der Grundeinstellung der Anwendung werden alle Entwickler, die mindestens einen Commit-
Beitrag geleistet haben, bereits in eine aktive Entwicklergruppe zusammengefasst und werden fiir die
Visualisierung des WOI Rivers beriicksichtigt. Hiufig interessieren allerdings nicht alle Entwickler, die
an einem Softwareprojekt beteiligt sind, sondern nur bestimmte Entwickler oder Entwicklergruppen,
z.B. die Entwickler, die am meisten zum Projekt beigetragen haben bzw. die an einem bestimmten WOI
arbeiten oder auch spezielle einzelne Entwickler. Bei grofien Projekten gibt es teilweise Entwickler,
die nur ein Mal oder sehr selten Anderungen bewirkt haben; diese konnen fiir Rauschen sorgen und
sollten unter Umstdnden herausgefiltert werden.

Zu diesem Zweck bietet die Anwendung die Moglichkeit, einzelne Entwicklergruppen festzulegen
und nur diese fiir die Visualisierung zu beriicksichtigen. In einem Dock Widget wird eine Liste aller
Entwickler, die Dateidnderungen fiir das Projekt committet haben, bereitgestellt. Diese Liste kann
alphabetisch oder in Abhingigkeit der Anzahl der Anderungen der einzelnen Entwickler sortiert
werden. Im ersten Fall konnen bestimmte Entwickler schnell gefunden werden; im zweiten Fall
kann leicht herausgefunden werden, wer ein Hauptentwickler ist und wer eher weniger zum Projekt
beigetragen hat. Aus dieser Liste kénnen Entwickler ausgewahlt werden und als Gruppe mit einem
benutzerdefinierten Namen abgespeichert werden.

Auflerdem besteht die Moglichkeit, dass alle Entwickler, die an einem Fluss beteiligt sind einer neuen
Gruppe zugeordnet werden (iiber das Kontextmenti eines Flusses erreichbar).

42

4.4 Grundfunktionen

Anschlieflend besteht die Moglichkeit, eine oder mehrere Entwicklergruppen zu selektieren, um alle
darin enthaltenen Entwickler fiir die WOI River-Visualisierung zu beriicksichtigen.

4.4.3 Zeitbereich und Intervalle festlegen

In der Benutzeroberfliche kann ein Zeitbereich fiir die zu visualisierenden Daten angegeben werden
sowie die Art der Intervallerzeugung.

Zeitbereich

Standardméfig ist fiir die Visualisierung der Zeitbereich vom ersten bis zum letzten Commit ausge-
wihlt, sodass alle Commits der Eingabedatei in der Visualisierung berticksichtigt werden kdnnen. Falls
nur ein bestimmter Zeitabschnitt interessiert, kann dieser individuell festgelegt werden. Hierdurch
kann beispielsweise bei einem Entwicklungsprozess, der schon linger andauert, die Visualisierung
auf die ersten Jahre beschrinkt werden oder es kann bei mehreren Projekten, die parallel laufen, der
gleiche Zeitbereich gew#hlt werden, um die Ergebnisse besser miteinander vergleichen zu kénnen.
Zudem ist es dadurch moglich, ohne eine Erh6hung der Anzahl der verwendeten Intervalle trotzdem
eine feinere Aufteilung des Zeitbereichs in einzelne Intervalle zu erhalten.

Intervalle

Es gibt zwei verschiedene Arten Intervalle festzulegen: Entweder durch Zeitintervalle, die jeweils
eine bestimmte Zeitspanne abdecken oder durch Commit-Intervalle, die eine bestimmte Anzahl an
Commits beinhalten.

Durch Angabe der Anzahl an Zeitintervallen, in die der angegebene Zeitraum eingeteilt werden soll
bzw. welche Zeitspanne durch ein Intervall reprasentiert werden soll, konnen Intervalle in Bezug auf
die Zeit festgelegt werden. Fiir die Bildung der Zeitintervalle werden alle Commits verwendet, die in
die entsprechende Zeitspanne fallen.

Des Weiteren ist es moglich, Intervalle unabhingig von der Zeit zu bilden, indem nur Commits
beriicksichtigt werden. Gibt es beispielsweise eine grofiere Pause in einem Entwicklungsprozess, hat
dies bei einer Unterteilung in Zeitintervalle zuerst viele Abfliisse und danach viele Zufliisse zur Folge.
Wenn die Intervalle zeitunabhangig gebildet werden, kann der angegebene Zeitbereich normalisiert
werden. Durch Angabe der Anzahl an Commits, die in ein Intervall fallen sollen bzw. die Anzahl
der Commit-Intervalle, die gebildet werden sollen, werden Intervalle erzeugt, die nach Moglichkeit
jeweils die gleiche Anzahl an Commits beinhalten.

43

4.5 Weitere Funktionen und Interaktion

4.5 Weitere Funktionen und Interaktion

Sowohl die Hierarchiedarstellung als auch die WOI River-Visualisierung bietet verschiedene
Einstellungs- und Interaktionsmoglichkeiten. Im Folgenden wird zuerst auf die der Hierarchiedarstel-
lung eingegangen, danach auf die der WOI River-Visualisierung,.

4.5.1 Hierarchie

Die Hierarchie bietet die Grundlage zur Festlegung von WOIs. Zusitzlich bietet sie verschiedene
Interaktionsmoglichkeiten; in Abbildung 4.4 sind einige anhand von Beispielen dargestellt.

Allgemeine Informationen

In einem Dock Widget werden allgemeine Informationen beziiglich der Hierarchie angezeigt. Diese
beinhalten die Anzahl der Knoten der Hierarchie, die Anzahl der Blattknoten (d.h. der Dateien/leeren
Verzeichnisse) und die maximale Tiefe.

Selektion

Ein einzelner Knoten der Hierarchie kann ausgewéhlt werden, wodurch in einem Dock Widget weitere
Informationen tiber seine Position innerhalb der Hierarchie angezeigt werden. Dies beinhaltet seinen
Pfad, seine Tiefe, die Anzahl seiner Kinder-, Unter- und Blattknoten und den beinhaltenden WOL.
Selektierte Knoten werden zusitzlich etwas dunkler visualisiert als andere Knoten mit dhnlichen
Eigenschaften (d.h. Knoten gleicher Tiefe bzw. Knoten die zum gleichen WOI gehoren) innerhalb der
Hierarchie.

Auflerdem gibt es, falls der Knoten zu einem WOI gehort, eine Verbindung zum WOI River (mehr
dazu in Abschnitt 4.5.2).

Zoomen

Die Hierarchie unterstiitzt sowohl geometrisches als auch semantisches Zoomen [Spe07]. Beim geo-
metrischen Zoomen wird die Darstellung der Hierarchie nicht verdndert, sondern nur der angezeigte
Ausschnitt vergrofiert oder verkleinert. Beim semantischen Zoomen kénnen auch angezeigte Formen
und Details verdndert werden oder Objekte verschwinden bzw. hinzukommen.

Der erste Fall wird hier durch Verénderung des dargestellten Ausschnittes der Hierarchie umgesetzt
(Abbildung 4.4d). Es ist somit méglich, einzelne Bereiche vergrofiert anzuzeigen oder eine Ubersicht
tiber einen grofieren Bereich der Darstellung zu erhalten. Zusétzlich kann die Héhe bzw. Breite der
Abbildung beliebig in x- und y-Richtung gestreckt werden, um beispielsweise weniger Platz fiir die
Darstellung zu benétigen oder um Labels besser anzeigen zu kénnen.

44

4.5 Weitere Funktionen und Interaktion

dolor
=

] sit
amet Lorem

amet

= dolor ipsum

2 folor 1PSUM ipsum
= delor amet
£ Lorem

El

© sit amet
St dolor

s
315 wnsd) e walo
s

wnsdy
wasdy

w0
w0

1010p
1010p

2we
“p s el s wnsdy

Pwe

sit

ipsum
Lorem Lorem
dolor

amet. -

(d)

Abbildung 4.4: Interaktionsmoglichkeiten in der Hierarchiedarstellung am Beispiel der Layered
Icicle-Darstellung: (a) Hierarchiedarstellung ohne Interaktion; (b) semantisches Zoo-
men; (c) Aggregation einer Unterhierarchie; (d) geometrisches Zoomen (rechts) sowie
verdnderte Skalierung in x-Richtung (links) und y-Richtung (unten).

45

4.5 Weitere Funktionen und Interaktion

Der zweite Fall wird durch das Anzeigen einer Teilhierarchie realisiert, indem die restlichen Knoten
ausgeblendet werden (Abbildung 4.4b). Besonders bei sehr groflen Hierarchien ist dadurch eine
Konzentration auf bestimmte Bereiche in der Hierarchie moglich.

Navigation

Falls nur eine Teilhierarchie angezeigt wird, kann innerhalb der Hierarchie navigiert werden. Zum
einen kann eine Ebene aufgestiegen werden, d.h. der zugehorige Teilbaum des Elternknotens wird dann
angezeigt, zum anderen kann zu bereits angezeigten Teilhierarchien zuriick navigieren werden.

Aggregation

Auflerdem konnen Teile der Hierarchie aggregiert werden, wodurch Kinderknoten eines ausgewahlten
Knotens ausgeblendet werden und der Wurzelknoten der aggregierten Teilhierarchie evtl. kleiner
dargestellt wird; weniger relevante Bereiche der Hierarchie kdnnen so ausgeblendet werden. Ein
Beispiel mit einer aggregierten Teilhierarchie ist in 4.4c dargestellt.

Labels

Labels konnen optional angezeigt werden und enthalten den Namen einzelner Knoten, d.h. des Datei-
bzw. Ordnernamens; ihre Schriftgrofle ist individuell einstellbar. Beim Zoomen konnen teilweise
weitere Labels sichtbar werden, da sich die Groéfe der Knotenreprésentationen in der Ansicht verandert
und somit unter Umstdnden zusatzlicher Platz verfiighbar wird (vgl. Abbildung 4.4d).

Tooltips
Der Tooltip eines Hierarchieknotens enthélt den Namen der zugehorigen Datei bzw. des zugehorigen
Ordners. Falls nicht gentigend Platz fiir die Anzeige eines Labels zu Verfiigung steht, kénnen Tooltips

verwendet werden, um dennoch herauszufinden, welcher Knoten an einer bestimmten Position

abgebildet ist.

4.5.2 WOI River

Eine Ubersicht verschiedener Funktionen und Interaktionsmoglichkeiten der WOI River-Ansicht sind
in den Abbildungen 4.5 und 4.6 dargestellt.

Allgemeine Informationen
Auch zum WOI River werden allgemeine Informationen in einem Dock Widget angezeigt. Diese bein-

halten Informationen zu der Anzahl angezeigter Fliisse, Intervalle, beteiligter Entwickler, verwendeter
Commits und Dateidnderungen sowie dem dargestellten Zeitbereich.

46

4.5 Weitere Funktionen und Interaktion

(b)

Abbildung 4.5: Darstellung eines Beispieldatensatzes; jeweils Hierarchiedarstellungen und sichtbare
Ausschnitte in der Benutzeroberflache in ThemeRiver-Ansicht und in Detailansicht:
(a) Normalansicht; (b) mit hervorgehobenem WOL

Detailansicht

Die Ansicht der einzelnen Ubergangsbereiche kann zwischen einer ThemeRiver-Darstellung und
einer Detaildarstellung gewechselt werden (Abbildung 4.5 in der Mitte und rechts). Der Wechsel wird
per Doppelklick auf einen Ubergangsbereich erreicht. Dies hat den Effekt des ,,Auf- bzw. Zuklappens®;
in die Detailansicht sind Details beziiglich des Verhaltens der Entwickler durch Transitionen und Zu-
bzw. Abfliisse sichtbar; in der ThemeRiver-Ansicht ist nur eine Ubersicht zu erkennen.

Auflerdem besteht die Moglichkeit, dass alle Bereiche gleichzeitig auf- bzw. zugeklappt werden,
wodurch der gesamte Fluss als ThemeRiver bzw. in der Detailansicht angezeigt wird.

Hervorhebung

Ein WOI kann in der Visualisierung hervorgehoben werden, indem der Mauszeiger auf einen Fluss
bewegt wird oder indem ein Fluss, durch Markieren mit der Maus, ausgew&hlt wird. In beiden Fillen
werden alle WOIs transparent dargestellt, bis auf den zugehérigen WOI des ausgewahlten Flusses
(Abbildung 4.5b). Diese Anderung in der Visualisierung hat sowohl Auswirkungen auf den WOI
River als auch auf die Hierarchiedarstellung. Hiermit ist es fir den Benutzer méglich, per ,brushing®
und ,linking“ [BMMS91] eine Verbindung zwischen der WOI River- und Hierarchievisualisierung

47

4.5 Weitere Funktionen und Interaktion

0103201400000 -
01032014 194200

01.03.201400:0000 - 1 2 01032014 0000:00 0103201411200
01032014 19.42.00 0. a2 01032018 181200 02032014 142400
31 12 i 1 37

Alce

0103201400000 - 0100~ 62.0- 03.0- 040 0103201419 - PR 142410

01.03.201419.42.00 021200 03. 00 04. .00 05. .00 020320181 0203 2014 142400 33032014 053600
3 a0 e i s 3 B

Al
slie

01032014 000000
01032014 191200

01032014 000000 - 01032014 15:1200 -
. 4 01032014 13:1200 02032014 142600
i L

1 31

® (h)

Abbildung 4.6: Veranschaulichung ausgewahlter Funktionen bzw. Interaktionsmoglichkeiten in der
WOI River-Ansicht: (a) Fluss im Vordergrund, (b) Ausblenden verschiedener Uber-
génge bis zu einem festgelegten Schwellwert, (c) transparente Zufliisse, (d) Breite der
Ubergangsbereiche der ThemeRiver-Ansicht verkleinert, (e) Breite der Ubergangs-

bereiche der Detailansichten vergréfiert, (f) Panning, (f) Zoomen und (h) Anzeige
eines Tooltips

48

4.5 Weitere Funktionen und Interaktion

(a) (b) © (d

Abbildung 4.7: Veranschaulichung der Funktionen der Ubersicht: (a) Ubersicht des sichtbaren Aus-
schnitts der Hauptdarstellung; (b) Bereich festlegen; (c) sichtbarer Bereich nach
Festlegen eines Bereichs und (d) Verschieben des sichtbaren Bereichs.

aufzubauen, da in beiden Ansichten Elemente, die zu dem entsprechenden WOI gehéren, hervorge-
hoben werden. Hiermit kann eine schnelle Verkniipfung zwischen dem dargestellten Fluss und den
Arbeitsbereichen in der Hierarchie erfolgen. Optional kann die Hervorhebung fiir den Fall, dass der
Mauszeiger auf einen Fluss bewegt und das entsprechende WOI hervorgehoben wird, deaktiviert
werden.

Entsprechende Auswirkungen werden auch bei der Hierarchiedarstellung erreicht, wenn ein Knoten,
der zu einem WOI gehort, ausgewahlt wird oder sich die Maus iiber einem solchen Knoten befindet.

Selektion

Zusatzlich zu der Veranderung in der Darstellung, werden nach einer Markierung eines Flusses (bzw.
eines Knotens in der Hierarchievisualisierung) mit der Maus in einem Dock Widget Informationen
beziiglich des zugehorigen WOIs angezeigt.

WOlI in Vordergrund

Falls ein einzelner Fluss genauer untersucht werden soll, kann dieser auch in den Vordergrund gesetzt
werden. Dies bewirkt, dass er von keinen diinneren Ubergéngen iiberdeckt wird und sein Verlauf
besser untersucht werden kann (Abbildung 4.6a).

Transitionen, Zufliisse und Abfllisse filtern

Die angezeigten Transitionen und Zu- bzw. Abfliisse konnen nach verschiedenen Kriterien gefiltert
dargestellt werden. Hierbei gibt es die Moglichkeit, sie entweder ganz oder bis zu einen bestimmten
Schwellwert auszublenden. Indem sie nur ab einem bestimmten Wert angezeigt werden, kénnen
dinnere, evtl. storende Transitionen ausgeblendet werden. Zudem ist es moglich Transitionen trans-
parent darzustellen; weniger interessante Transitionen verschwinden dadurch nicht ganz, gelangen
aber etwas in den Hintergrund. Da die Visualisierungen teilweise sehr stark von Zu- und Abfliissen
gepragt sind, konnte es hier sinnvoll sein, diese transparent darzustellen um sie nicht ganz aus dem

49

4.5 Weitere Funktionen und Interaktion

Gesichtsfeld zu verlieren und den Schwerpunkt auf die restlichen Uberginge zu legen. Beispiele sind
in Abbildung 4.6b und 4.6¢ abgebildet.

Die beschriebenen Einstellungen kénnen getrennt fiir Transitionen zwischen gleichen WOIs, Transi-
tionen zwischen verschiedenen WOIs und Zu- und Abfliissen vorgenommen werden.

Breite der Ubergangsbereiche

Da die Zu- und Abfliisse horizontal und vertikal mindestens die gleiche Breite besitzen miissen,
konnen diese nicht getrennt in x- und y-Richtung skaliert werden; bei der ThemeRiver-Visualisierung
spielen die Proportionen in x- und y-Richtung keine Rolle. Um den dargestellten Bereich dennoch in
x-Richtung zu skalieren, kann die Breite der Ubergangsbereiche sowohl in der ThemeRiver-Ansicht
als auch in der Detailansicht unabhéngig voneinander eingestellt werden (Abbildungen 4.6d und 4.6e).
Hierdurch kann eine Visualisierung mit vielen Intervallen verkleinert werden. Allerdings benétigen
Zu- und Abflisse teilweise eine minimale Breite (maximal die H6éhe des Flusses und einen geringen
Abstand zwischen jedem Zu-/Abfluss) wodurch diese Funktion nur eingeschrankt verwendet werden
kann.

Zoomen

Wie auch schon bei der Hierarchiedarstellung, kann in der Ansicht gezoomt werden (Abbildung 4.6g),
wodurch mehr Details erkennbar werden und evtl. weitere Labels sichtbar werden kdonnen oder der
gesamte Verlauf des Flusses angezeigt werden kann. Die Visualisierung kann hierbei jedoch nicht
getrennt in x- und y-Richtung skaliert werden, da, wie bereits beschrieben, bei Zu- und Abfliissen
sowohl die H6he als auch Breite entscheidend ist.

Panning

In dem sichtbaren Ausschnitt der WOI River-Ansicht kann meist nicht der gesamte WOI River mit den
gewiinschten Einstellungen angezeigt werden. Wahrend die ThemeRiver-Darstellung in x-Richtung
beliebig skaliert werden kann, benétigt die Detailansicht hiufig eine Mindestbreite. Durch zoomen
kann zwar die gesamte Visualisierung angezeigt werden, allerdings wird der Fluss so klein, dass keine
Details mehr zu erkennen sind. Durch Verschieben des sichtbaren Bereichs (,Panning®), konnen die
Bereiche der Visualisierung sichtbar gemacht werden, die sich momentan auflerhalb des dargestellten
Bereichs befinden um diese weiter zu untersuchen (Abbildung 4.6h).

Ubersicht

In einem Dock Widget befindet sich eine Miniatur-Ubersicht des dargestellten WOI Rivers in Form
eines ThemeRivers. In ihr ist immer erkennbar, welcher Ausschnitt momentan in der Hauptdarstellung
sichtbar ist. Wenn gezoomt wird oder ein anderer Ausschnitt in der WOI River-Ansicht angezeigt wird,
wird die Ubersicht entsprechend angepasst. Auch wenn Bereiche der Hauptansicht aufgeklappt sind,

50

4.5 Weitere Funktionen und Interaktion

wird der entsprechende Bereich in der zugehodrigen ThemeRiver-Visualisierung erkennbar. Hierdurch
ist ein Riickschluss vom sichtbaren Ausschnitt auf die gesamte Darstellung moglich und es wird
dadurch den Erhalt der Mental Map unterstiitzt.

Zusitzlich ist es moglich, in der Ubersicht den sichtbaren Bereich zu verschieben oder durch Auswahl
eines Bereichs neu festzulegen, um schnell an eine gewiinschte Stelle in der Visualisierung zu gelangen.
Die Funktionen der Ubersicht sind in Abbildung 4.7 veranschaulicht.

Tooltips

Fir die einzelnen Elemente, aus denen der WOI River aufgebaut ist (Transitionen, Zufliisse, Abfliisse
und Elemente des ThemeRivers zwischen zwei Intervallen) konnen jeweils Tooltips angezeigt werden
(vgl. Abbildung 4.6f). Je nach Typ, kénnen der zugehorige Zeitbereich, der Name des (bzw. der)
zugehorigen WOIs, die Anzahl der Entwickler und zehn Entwickler mit der gréfiten Beteiligung
angezeigt werden. Bei der Anzahl der Entwickler wird zusétzlich angezeigt, wie viele Entwickler den
entsprechende WOI/die entsprechenden WOIs in beiden angrenzenden Intervallen bearbeitet haben
und bei den Entwicklern ist angegeben, wie viele Dateien sie in beiden Intervallen verdndert haben.

Auflerdem besitzen die Intervall-Linien Tooltips, in denen Informationen iiber das Intervall, die Anzahl
der Bearbeiter und der verinderten Dateien sowie zehn Entwickler, welche die meisten Anderungen
in dem Intervall bewirkt haben, angegeben sind.

Labels

Es gibt verschiedene Arten von Labels, die optional angezeigt werden kénnen (die verschiedenen
Varianten sind im Kapitel 3.3.5 beschrieben); die Schriftgrofie kann jeweils variiert werden.

Hilfslinien

Ferner konnen in der Visualisierung Intervall-Linien und eine Mittellinie angezeigt werden.

4.5.3 Weitere Visualisierungsparameter

Bei jedem Festlegen eines neuen WOIs bekommt dieser eine neue Farbe zugewiesen. Wenn zwischen-
durch andere WOIs wieder geloscht werden, wird deren Farbe in den Visualisierungen nicht mehr
verwendet. Daher besteht die Moglichkeit, alle Farben neu zu vergeben, wodurch alle WOIs neue
Farben erhalten, auch wenn sie manuell festgelegt wurden.

Die Anordnung, in der WOIs im WOI River angezeigt werden, kann entweder in der Reihenfolge
erfolgen, in der die einzelnen WOIs ausgewéhlt wurden oder so wie sie in der Hierarchie vorkommen.
Beim zweiten Fall werden die Flisse so angeordnet, dass WOIs, die weiter oben in der Visualisierung
der Hierarchie vorkommen auch weiter oben in der WOI River-Visualisierung gezeichnet werden.
Hiermit kann eine einfache Verkniipfung zwischen den beiden Visualisierungen fiir den Benutzer
erfolgen, auch wenn gleiche oder dhnliche Farben bei verschiedenen WOIs verwendet werden. Besteht

51

4.6 Export

ein WOI aus mehreren Teilhierarchien, wird jeweils die Position der Teilhierarchie verwendet, die am
weitesten oben in der Visualisierung gezeichnet wird.

4.6 Export

Es gibt mehrere Moglichkeiten zum Export der Visualisierungen und der zugehorigen Daten. Zum
einen konnen die Visualisierungen im PNG-Format gespeichert werden, zum anderen besteht die
Maoglichkeit Informationen beziiglich der Einstellungen und der visualisierten Daten zu speichern
sowie benutzerdefinierte Ausschnitte der Daten abzuspeichern.

4.6.1 PNG-Export

Die dargestellten Visualisierungen konnen als PNG-Datei exportiert werden. Dabei gibt es sowohl fiir
die Hierarchie als auch den WOI River die Méglichkeit die gesamte Visualisierung zu exportieren
oder nur den aktuell sichtbaren Bereich. Hierbei werden in den Dateien Metadaten beziiglich der
verwendeten Einstellungen der Anwendung, die fiir die Visualisierung relevant sind, gespeichert.

4.6.2 Einstellungen und allgemeine Informationen

Weiterhin gibt es die Moglichkeit eine Textdatei mit Informationen beziiglich des aktuell geladenen
Datensatzes und der Visualisierungen zu speichern. Diese enthalten allgemeine Informationen beziig-
lich der geladenen Daten (Name der geladenen Datei, Anzahl der Commits, Anzahl der Entwickler,
Zeitpunkt des ersten und letzten Commits, Anzahl der Knoten und Blattknoten in der Hierarchie
sowie die maximale Tiefe der Hierarchie) und des dargestellten WOI Rivers (Zeitintervall der dar-
gestellten Daten, Anzahl der Fliisse sowie Anzahl der beriicksichtigten Commits und Entwickler).
Zusatzlich kann eine Datei mit den aktuellen Einstellungen bzw. Festlegungen (Einstellungen in den
Dock Widgets und festgelegte WOIs) der angezeigten Visualisierungen exportiert werden um die
Visualisierungen rekonstruieren zu kénnen.

4.6.3 Benutzerdefinierte Ausschnitte der Daten

Dariiber hinaus konnen benutzerdefinierte Ausschnitte der Daten fiir eine spatere Analyse abgespei-
chert werden. Teilweise sind die zu visualisierenden Daten recht grofl und enthalten Informationen
iiber einen langeren Zeitraum von vielen Entwicklern und einer grolen Projekthierarchie. Interes-
siert fiir einen langen Zeitraum, zu vielen Entwicklern und einer grofien Projekthierarchie nur ein
bestimmter Zeitabschnitt, bestimmte Entwickler oder nur ein Teil der Projekthierarchie, konnen die
entsprechenden relevanten Daten exportiert werden, die dann wiederum in der Anwendung geladen
werden konnen um nur die gefilterten Daten zu visualisieren.

52

5 Fallstudien

In diesem Kapitel werden drei Fallstudien anhand verschiedener Open-Source-Softwareprojekte
durchgefiihrt. Ziel ist dabei jeweils, einen guten Einblick in den Softwareentwicklungsprozess zu
erhalten und Besonderheiten oder Trends zu erkennen.

Mehrere Fragestellungen konnen hierbei untersucht werden — zum einen in Bezug auf die Anzahl der
Entwickler, die an den Projekten arbeiten und zum anderen in Bezug auf die Anzahl der Anderungen
(im Folgenden in Form von Dateidnderungen beriicksichtigt), die von den Entwicklern bewirkt
werden.

Als erstes Projekt wird die Programmiersprache Python untersucht. Hierbei wird zusétzlich mit
den Ergebnissen der Evolution Storylines-Visualisierung verglichen. Danach wird die Entwicklung
der Bibliothek libvpx fiir die Videocodecs VP8/VP9 betrachtet sowie die des Linux-Kernels. Der
Linux-Kernel zhlt als recht grofies Projekt; es wird geprift, ob die Visualisierungstechnik auch fiir
sehr grofle Projekte skalierbar ist und es noch méglich ist, durch die Visualisierung Einsichten zu
erhalten.

Ausschlaggebend fiir eine sinnvolle Untersuchung des Entwicklungsverhaltens ist eine geeignete
Wahl der WOIs. Zum einen sollten nicht zu viele WOIs gewahlt werden, da die einzelnen Fliisse so
immer schmaler werden, ahnliche Farben bei unterschiedlichen Fliissen verwendet werden und es
sehr starke Wechsel zwischen den WOIs geben kann. Zum anderen sollte aber auch versucht werden,
moglichst viele Bereiche zu beriicksichtigen um keine wichtigen Veranderungen zu tibersehen. Bei
den folgenden Analysen wurde versucht, Hauptordner der Projekthierarchie als WOIs zu verwenden
und die restlichen Dateien in einem zusatzlichen WOI zusammenzufassen, um jeden Entwickler und
jede Anderung an dem jeweiligen Projekt zu beriicksichtigen.

5.1 Python

Als erstes Open-Source-Projekt wird die Programmiersprache Python [Pyta] gewéhlt. Die Entwicklung
von Python begann 1990 und dauert bis heute an, es liegt somit die Geschichte des Entwicklungspro-
zesses aus etwa 24 Jahren vor. Zum Zeitpunkt der Untersuchung (Februar 2014) besteht der verwendete
Datensatz aus 88950 Commits von insgesamt 184 Entwicklern. Die Projekthierarchie umfasst 10865
Knoten mit 10108 Dateien und einer maximalen Tiefe von zehn. Die Eingabedaten wurden aus dem
Mercurial-Repository [Pytb] erzeugt.

Dieses Projekt wurde bereits in den Evolution Storylines [OM10] und in code_swarm [OM09] analy-
siert; das Ergebnis von der Evolution Storylines-Visualisierung kann in Abbildung 5.1 zum Vergleich
betrachtet werden. Dort wurde der Entwicklungsprozess nur bis zum Jahr 2006 beriicksichtigt. Unsere

53

5.1 Python

Python Storylines

i
i
| i
other 1%
Cose ! ! |
aaaaaaa K |4 i
1 i d 1ed 1
Docs . e
99

JEIRNEANS IPOR | INPATPRRNARAAT | 118 N ..I||II..|| (UL TF I I AR T A T HTTLHTTE ARERR L 11
99 00 200 2002 200: 2004 2005 2006

-
20 2001

1992 1993 1994 995 1996 1997 1998

Abbildung 5.1: Visualisierung des Entwicklungsprozesses der Programmiersprache Python von 1990
bis 2006 mittels der Evolution Storylines [OM10].

Visualisierung wird mit dem Ergebnis der Evolution Storylines-Visualisierung verglichen, um zu
sehen, ob die gleichen Besonderheiten erkennbar sind.

Im Folgenden werden vier WOIs fiir die Betrachtung gewahlt: Die Ordner Doc (blau), Lib (rot), Modules
(orange) und alle restlichen Dateien (grau). Hierbei wird versucht, die gleichen Bereiche festzulegen,
die auch bei den Evolution Storylines gewahlt wurden.

Bei den Evolution Storylines wurde unter anderem festgestellt, dass Guido van Rossum das Projekt
1990 anfingt und erst zwei Jahre spater vereinzelt weitere Entwickler hinzukommen. Hierbei ist
erkennbar, wie Entwickler teilweise zusammenarbeiten. Au3erdem kommen in den Jahren 2000 und
2005 viele weitere Entwickler hinzu.

Bei den Evolution Storylines erfolgt die Aufteilung monatsweise; dies wiirde bei dem hier betrachteten
Zeitraum von etwa 24 Jahren zu einer Aufteilung in ca. 288 Intervalle fithren. Da viele der Transitions-
bereiche aufgrund der Zu- und Abfliisse eine Mindestbreite besitzen miissen, wiirden hierdurch sehr
breite Visualisierungen entstehen, welche zur Untersuchung eher weniger geeignet wiren, da der
vollstandige Zeitbereich nicht auf einmal betrachtet werden kann. Im Folgenden werden nur sechs
Intervalle gebildet, deshalb werden die Daten innerhalb der einzelnen Abschnitte stark aggregiert.

In Abbildung 5.2 ist die Hierarchie zusammen mit der Ubersicht und der Detailansicht des WOI Rivers
zu sehen, jeweils fiir die Darstellung in Abhéngigkeit der Anzahl an Entwicklern (5.2b und 5.2¢) und
in Abhéngigkeit der veranderten Dateien (5.2d und 5.2e).

Sowohl bei den Darstellungen in Abhangigkeit der Entwicklerzahl als auch bei den Visualisierungen
in Abhangigkeit der Anzahl bearbeiteter Dateien ist erkennbar, dass die Beteiligung am Projekt
monoton wichst. Es gibt in jedem Intervall recht viele neue Entwickler, die hinzukommen; etwas

54

5.1 Python

Fred Drake
uido van Rossum|
Fim Peer]

Jack Jansen Martin v. Lovis p—
Jack Jansen’ e ictor Stiner

Tim Peters Christian Heimes Georg Brand!

EEman EEE Antoine Pitrou

29092 70287 79610

4141 15842 30464

Benjamin Peterson’
Georg Brand|
o
jai

p
Guido van Rossum

Guido van Rossum TS Jack Jansen
Tim Peters Victor Stinner

Martin v. Léwis. Georg Brand|

Christian Heimes Antoine Pitrou

Benjamin Peterson Benjami...eterson
Martin v. Liwis
Christian Heimes)
Antoine Pitrou
co.1900 2515 09.07.1994 1005327 06061998 07:4539 08,05, 2002 052551 7,
06,0619 07:45:59 08,0520 052551 4
747357501 S7se2-anas

9.8,
08.07.1894 10:05:27
-2 17215460 o451-23378 z -3

4141

Guido van Rossum’

1 Thomas w.xm

I Guido van Rossum;
Benjamin Peterson

Jack Jansen

Tim Peters -
= Martin v. Lowi Georg Brandl
Antoine Pitrou

Guido van Rossum

07.03.2010 00156115
03022014 22:26:27

06,05.2002 05251 0701 2006 D060

09.08.1990 1225115 09071554 10105127 05.05.1990.07:45:39
08071894 10:05:27 05.06.1996 07:45:53 06.05.2002 05,2551 07.04 2006 03:05:03 07.05.2010 0018115
17218460 o451-29576 -3 3747357561 Sse2-as264

1120

(e)
Abbildung 5.2: Softwareentwicklungsverlauf von Python: (a) Projekthierarchie; (b) und (c): Darstel-

lung der Anzahl der beteiligten Entwickler als Ubersicht und Detailansicht; (d) und
(e): Darstellung der Anzahl an verdnderten Dateien als Ubersicht und Detailansicht.

55

5.1 Python

3924 9261 6016 1756 5984 341

430 3975

1328

764 388

1052

09,08,1990 12:25:15 - 09,07,1994 10:05:27 - 08,06,1998 07:45:39 - 08,05,2002 05:25:51 - 07,04,2006 03:06:03 - 07,03,2010 00:46:15 -
09,07.1994 10:05:27 08,06,1998 07:45:39 08,05,2002 05:25:51 07,04.2006 03:06:03 07,03.2010 00:46:15 03.02,2014 22:26:27

1-1720 1721 - 8480 8461 - 23378 23377 - 37472 37473 5761 57562 - 36264

Abbildung 5.3: WOI River des Python-Entwicklungsprozesses fiir Guido van Rossum.

weniger verlassen das Projekt wieder. Die Entwickler, die das Projekt verlassen, haben nicht viele
Dateien verdndert, da in der unteren Teilabbildung nur sehr wenige Abfliisse zu sehen sind.

Am Anfang bearbeiten nur sehr wenige Entwickler das Projekt. Aufgrund der hier gewiahlten Inter-
valleinteilung kann allerdings nicht festgestellt werden, ob dies nur Guido van Rossum ist; bei einer
feineren Einteilung kann dies jedoch auch herausgefunden werden. Das gleiche gilt fiir die Feststellung
bei den Evolution Storylines, dass viele Entwickler in den Jahren 2000 und 2005 hinzukamen; die hier
gezeigten Visualisierungen erwecken eher den Eindruck, dass in jedem Intervall jeweils viele neue
Entwickler hinzukommen. Nur bei Betrachtung der Abbildungen in Abhangigkeit der veranderten
Dateien kann erkannt werden, dass im zweiten Drittel die Beteiligung durch sehr viele Zufliisse stark
zunimmt.

Bis jetzt wurden die Beitrage aller Entwickler untersucht. Da Guido van Rossum das Projekt vor vielen
Jahren gestartet hat, konnte interessant sein, herauszufinden, wie er im Laufe dieser Zeit an dem
Projekt mitgewirkt hat. In Abbildung 5.3 ist eine ThemeRiver-Ansicht fiir die Anzahl der durch ihn
verdanderten Dateien dargestellt. In dieser Visualisierung fallt auf, dass Guido van Rossum zunéchst
immer mehr zum Projekt beigetragen hat, danach wieder weniger. Im letzten Intervall hat er kaum
noch Dateien verdndert. Er beteiligt sich in jedem der ausgewahlten Arbeitsbereiche, wobei er bei
Doc und Lib eher weniger Anderungen vornimmt.

Als néchstes wird noch eine weitere Festlegung der WOIs gewahlt: die zehn am haufigsten vorkom-
menden Dateiendungen; in Abbildung 5.4 sind die zugehorigen WOI Rivers dargestellt: die Hohe des
WOI Rivers bezieht sich auf die Anzahl der veranderten Dateien.

In den Abbildungen 5.4b und 5.4c sieht man, dass am haufigsten Python-Dateien (*.py) bearbeitet
wurden, gefolgt von C-Dateien (*.c), TEX-Dateien (*.tex), RST-Dateien (*.rst) und H-Dateien (*.h).
Im zweiten Drittel des Entwicklungsprozesses ist in der Ubersichts-Darstellung hierbei etwas In-
teressantes zu sehen: der rosarote Bereich (TEX-Dateien) 16st sich auf, wahrend der griine Bereich
(RST-Dateien) entsteht.

Wenn hierzu die Detailansicht angeschaut wird, ist erkennbar, dass zum einen neue Entwickler zum
RST-Bereich hinzukommen und zum anderen ein Wechsel der Entwickler vom TEX-Bereich zum

56

5.1 Python

g

sjooL

owag

e ——

3721 12432 24158 24204 60461

Georg Brand|

Jack Jansen
Tim Peters|
* Raymond Hettinger

64330

Eric Araujo
Georg Brand|
Ezio Melotti

08,1990 122515 09071394 10105127 08.06.199 07:45:39 08.05.2002 0525151 07042006 03063

08.07.1894 10:05:27 05.06.1996 07:45:33 06.05.2002 05,2551 07.04 2006 03:05:03 07.05.2010 005115
-2 17218460 o451-23376 -3 47357561
3721 12432 24158 24204 60461

4/ Thomas Wouters
Peters| Benjamin Peterson
Christian Heimes

=

07032010 00156115
03022014 22:26:27

7562 8284

64330

" Eric Araujo
Georg Brand|
Ezio Melotti

enjamin Peterson
Antoine Pitrou

N Guido van Rossum’
\
il is.
— —

05.08.1990 125115 09071594 10105127 05.05.1990.07:45:39 08.05.2002 0125151 o
08071894 10:05:27 08.06.19% 07:45:53 06.05.2002 05,25:51 07.04 2006 03:05:03 07,05 2010004615

1172 17215460 o461 23376 -3 747357861

352 4570 €73 4408 14368

antane iscu
R. David My
Jercen Ruigrok van cer Werven
Brett Cannon
Ezi0 Melotti
Raymond Hettinger
Benjamin Peterson
Georg Brand|
Christian Heimes
Andrew M. Kuchling
Mark Dickinson
Aexandre Vassdott
Guido van Rossum
Gregory P. Smith
ooy Sm

Barry Warsaw
inge
J Léwis

~Sjoerd Mullender Martin v.

Andrew M. Kuchling

05.08.1990 122515~ 05071594 10105127 08.06.1996.07:95:39 08.05.2002 0525151 - 07012006 03.05:03
06.07.1994 10,0827 08.06.199 07:48:33 06.05.2002 05,25:51 07,04 2006 030603 07.05.2010 006115
720 17215460 o461 23376 232 735761
Ancine i
R. David Muray.
Jercen Ruigrok van der Werven

Brett Cannon
Ezi0 Melotti
Raymond Hettinger
Benjamin Peterson
Georg Brand|
Christian Heimes
Andrew M. Kuchling

Mark Dickinson
Alexandre Vassdott
Guido van Rossum
Gregory P. Smith
Tork zindé

Andrew M. Kuchling

05.08.1990 12:2515- 0071894 10105127 05.06.1996.07:95:39 - 05.05,2002 05125151 - 07.01.2006 088 03
05.07.1994 10:05:27 08.06.199 07:48:33 06.05.2002 05,2551 07,04 2006 030603 2010 00 15
112 17215460 o461 23076 2357737972 473 s781

(©

o, os6iss -
05022014 22:26:27

Ssea-as2s

Senthi Kumaran
Serhiy Storchaka
Benjamin Peterson
Antoine Pitrou
Eric Araujo
Georg Brand|
Ezio Melotti
Raymond Hettinger
R David Murray
Sandro Tosi
Victer Stier
Srett Carrion

Anceew Svator
El iy

07.05.2010 006115 -
03022014 226021

S7sea-asos

Serhiy Storchaka
Benjamin Peterson
Antoine Pitrou
Eric Araujo
Georg Brand|
Ezio Melotti
Raymond Hettinger
R David Murray
Sando Tosi

07.05.2010 006115 -
02014 Z26i2T

Sse2-asos

Abbildung 5.4: Darstellungen nach Anzahl der veranderten Dateien mit WOIs fiir Dateiendungen:

(a) Hierarchiedarstellung; (b) und (c): zugehoriger WOI River; (d) und (e): WOI River
fir den Doc-Ordner.

57

5.2 libvpx

RST-Bereich stattfindet.

Werden als nichstes nur die Anderungen des Dokumentations-Ordners fiir den WOI River beriicksich-
tigt (Abbildungen 5.4d und 5.4e), ist dieser Wechsel sehr deutlich erkennbar. Es findet anscheinend
ein Wechsel vom Ordner Doc/Lib (enthilt sehr viele TEX-Dateien) zu Doc/Libraries (enthélt die
RST-Dateien) statt. Wahrscheinlich wurde das Dokumentationsformat von TEX auf RST umgestellt.

5.2 libvpx

Als néchstes wird die Entwicklung der Bibliothek libvpx der Videocodecs VP8/VP9 fiir verlustbehaftete
Komprimierung von Videodaten untersucht.

Der Codec VP8 wurde zunéchst von dem Unternehmen On2 Technologies entwickelt [web]. Seit dem
Jahr 2010 besitzt Google durch die Ubernahme von On2 Technologies die Rechte an dem Projekt und
stellt es als Open-Source-Software zur freien Verfiigung. In den darauf folgenden Jahren begann die
Entwicklung des Nachfolgers VP9.

Die zur Verfiigung stehende History stammt aus einem Git-Repository [lib]. Die Daten reichen von
Mitte 2010 (als das Projekt als freie Software freigegeben wurde) bis Marz 2014, also iiber einem
Zeitraum von etwa vier Jahren. Es wurden alle 5222 Commits von 106 Entwicklern beriicksichtigt. Die
Projekthierarchie umfasst 2364 Knoten mit 2196 Dateien und besitzt eine maximale Tiefe von acht.
Fiir die Analyse wurden drei WOIs festgelegt und im Nachfolgenden durch die jeweils angegebenen
Farben dargestellt: die Verzeichnisse vp8 (griin) und vp9 (rot) sowie alle restlichen Ordner/Dateien,
die unter anderem Tests und Beispiele enthalten (blau). In Abbildung 5.5a sind die WOIs innerhalb
der Projekthierarchie erkennbar.

Fir die Untersuchung des Entwicklungsprozesses wird zunéchst der zeitliche Verlauf der Entwick-
leranzahlen betrachtet. Die Abbildungen 5.5b und 5.5¢ zeigen die Ubersicht und Detailansicht dieser
Entwicklung.

In Abbildung 5.5b sieht man, dass an dem Projekt meistens etwa 31-53 Entwickler arbeiten; gegen
Anfang ist die Anzahl etwas erhoht, dann sinkt sie leicht und gegen Ende scheint sie starker zu
wachsen. Das Projekt wird im Vergleich zu Python schon von Beginn an von mehreren Entwicklern
bearbeitet. Dies liegt wahrscheinlich daran, dass libvpx schon bevor es als freie Software zur Verfiigung
stand, entwickelt wurde und vielleicht noch die gleichen Entwickler wie zuvor daran arbeiten. Man
kann feststellen, dass in den ersten beiden Jahren, bis 2012, nur im Ordner vp8 und an den weiteren
Dateien gearbeitet wird. Ende 2012 dominiert die Entwicklung im Verzeichnis vp9 stark, bis sie 2014
die Entwicklung in vp8 fast vollstandig abgelost hat.

In der zugehorigen Detailansicht (Abbildung 5.5¢) fallen zuniachst recht viele Zu- und Abfliisse
auf, es scheint einen standigen Wechsel der Entwickler zu geben bzw. viele Entwickler, die sich
voriibergehend an dem Projekt beteiligen und es wieder verlassen. Gegen Ende ist allerdings ein
deutlicher Zufluss zu erkennen. Um zu unserer vorherigen Feststellung zuriick zu kommen: Auch hier
ist der Wechsel (als ein Entwicklerstrom von vp8 zu vp9) erkennbar. Zuniachst bleibt einige Beteiligung
bei dem Verzeichnis vp8 (evtl. arbeiten Entwickler noch an beiden Versionen, aber verstarkt an der
neueren, oder es haben einige gewechselt, wiahrend andere noch an der alten Version arbeiten). Im

58

5.2 libvpx

a
o
=
=
o
a
*86
=
=3
o
(=9
o
[l
g M i
3 &
=
=
Iy
T e ()
3988 2336 4052 7924 6991
o Gt Dot
itz Koenig iy
Sctt Lavammay oo Vidherie
Timothy B. Terriberry Yaowu Xu Yaowu X?,
John Koleszar Paul Wilkins John Koleszar
John Koleszar paul Wikins

Johann Koenig
Yunging Wang
Paul Wikins
Tera Rintzema

Scott Lavamway ‘Scott LaVamwiay
Yunging Wang. Johann Koenig

Timothy B Temiber

Jim Bankoski.
Deb Mukherjee.
Ronald S. Bultie
Scott Lavamway
John Koleszar

30.05.2013 21:46:!
03.03.2014 23:13:59

26.08.2012 20:

23.11.2011 18:52:43 - i
30.05.2013 21:46:

26.08.2012 20:19:48

(d)

19.02.2011 17:25:38 -

18.05.2010 15:58:33 -
23.11.2011 18:52:43

19.02.2011 17:25:38

3988 2336
| estin Duvviee
oo XU i
o Ronald . Bultj
k=) Ronald 5. Eule ohn Kolesza
Tincty 8, Temiberry Yoo X S R
John Koleszar Paul Wilkins John Koleszar
Johann Koenig John Koleszar Paul Wilkins
Yunging Wang Scott LaVamway Scott LaVarnway
'Yunging Wang Johann Koenig. 0
_Ee

Pl Wikin
Tera Rintaluoma

(i et

Jim Bankoski

John Koleszar
James Zem:
Deb Mukherjee.
Ronald S. Bultie
Scott LaVamviay

John Koleszar
Frank Galligan

30.05.2013 21:46:53

26.08.20122(153 -
03.03.2014 23:13:59

30.05.2013 21:

23.11.2011 18:52:43 -
26.08.2012 20:19:48

19.02.2011 17:25:38 -
143

18.05.2010 15:58:33 -
38 23.11.2011 18:

19.02.2011 17:;

(e)
Abbildung 5.5: Softwareentwicklungsverlauf von libvpx: (a) Projekthierarchie; (b) und (c): Darstel-
lung der Anzahl der beteiligten Entwickler als Ubersicht und Detailansicht; (d) und
(e): Darstellung der Anzahl an verdnderten Dateien als Ubersicht und Detailansicht.

59

5.2 libvpx

Marco Pariconi
YaomuXu
Paul Wikins
Scott LaVamway
Deb Mukherjee
Ronald S. Bultje
Jim Bankoski

John Koleszar:
Yunding Wang
Johenn Koenig

Deb Mukherjee

am:
Verkatasbramarian

[Paul Wilkins |
John Koleszar]
nald S. Bultje!

Yaowu Xu}

leszar

John Koleszar
28.08.2012{15:58:33 - 02.10.2012 01:11:07 - 05.11.2012 10:23:41 - 09.12.2012 19:36:15 - 13.01.2013 04:48:50 - 16.02.201314:01:24 -
13.01.2013 04:48:50 16.02.2013 14:01:24 22,03.201} 23:13:58

02.10.2017 01:11:07 05.11,2012 10:23:41

Merco Penicary Paul Wilkins
Yaowu Xu John Koleszar;
Paul Wikins. 0
o Ronald S. Bultje|
Deb Mukherjee Scott LaVamuway
Deb Mukherjee Deb Mukherjee! [Deb vl
Ronald S. Bultje -._ =
Jim Bankoski s John Koleszarfs)
John Koleszar amed
Yunging Wang

Jchenn Koenig

09.12.2012 19:36:15

1936

John Koleszar

551

16.02.2013(14:01:24 -

13.01.2013 04:48:50 -

09.12.2012 19:36:15 -
16.02.2013 14:01:24. 22.03.201} 23:13:58

13.01.2013 04:48:50

05.11,2012 10:23:41 -
09.12.2012 19:36:15

02.10.2012 01:11:07 -
05.11.2012 10:23:41

28,08.2012{15:58:33 -
02.10.201% 01:11:07

Abbildung 5.6: Softwareentwicklungsverlauf von libvpx in Bezug auf die Anzahl der veréanderten
Dateien. Oben: gesamter Verlauf; unten: Ubersicht und Detailansicht eines ausge-

wihlten Zeitabschnitts.

60

5.2 libvpx

Ronald 5 Bultje Ronald 5. Bultje

Ronald 5 Bultje Ronald 5. Bultje

2012 23:29:54 - 01.11.2012 23:31:10 - 01.11.201; 2012 23:29:54 -
2012 23:31:10 01.11.2012 23:32:27 01.11.201 2012 23:31:10

1962 - 1962

() (b)

Abbildung 5.7: Softwareentwicklungsverlauf von libvpx: Erster Commit in vp9.

nichsten Zeitschritt geht dann weitere Entwicklerkapazitat zu vp9 tiber, bis die Entwicklung von vp8
fast aufzuhoren scheint.

Bei der Betrachtung der Visualisierungen in Abhangigkeit der Anderungen (Abbildungen 5.5d und
5.5e) werden die bereits festgestellten Besonderheiten nochmals verstarkt erkennbar. Zusétzlich ist
zu sehen, dass die Anzahl der veranderten Dateien leicht sinkt, dann immer starker wachst, bis sie ihr
Maximum bei dem erwahnten Wechsel erreicht hat und dann wieder leicht abnimmt. Zu- und Abfliisse
fallen fast nicht auf — wahrscheinlich bewirken die Entwickler, die in den vorherigen Visualisierungen
durch Zu- und Abfliisse sehr stark dominiert haben, nur sehr wenige Anderungen an den Dateien
und fallen daher kaum ins Gewicht. Bei dem Wechsel ist erkennbar, dass die Entwickler, die bereits an
dem Projekt arbeiten, immer mehr Anderungen zum Projekt beitragen. Dies sieht man daran, dass die
Ubergénge von griin nach rot und griin nach griin im dritten Abschnitt breiter werden. Hier wechseln
zudem Entwickler von den weiteren Dateien zu vp8. Im néchsten Schritt geht die Beteiligung wieder
etwas zuriick und es wirkt so, als ob Entwickler, die voriibergehend bei Anderungen im Ordner vp9
mitgewirkt haben, wieder zuriick zu den weiteren Dateien gehen.

Da die Aufteilung der vier Jahre Entwicklungsprozess in nur fiinf Zeitintervalle etwas ungenau
ist, betrachten wir nun noch eine feinere Aufteilung. In Abbildung 5.6 wurde der Zeitbereich in 40
Intervalle aufgeteilt. Auch hier fillt der Ubergang zwischen der Beteiligung bei vp8 und vp9 gleich
auf. Die allgemeine Beteiligung der Entwickler ist hier sehr grof3. Davor ist sie eher gering, danach
sinkt sie auch wieder stark, bleibt aber etwas hoher als zuvor. Wenn wir uns nur den Zeitbereich der
Anderung genauer anschauen (der Bereich darunter), sticht heraus, dass der Ubergang recht schnell
vollzogen wird. Aus den vorherigen Bildern kénnte entnommen werden, dass der Wechsel ein langer
andauernder Prozess ist, der iiber ein Jahr anhélt; dies liegt an der Aufteilung des Zeitbereichs in
sehr wenige Intervalle, hierdurch werden die Daten sehr stark aggregiert und ungenau. In dieser
Ansicht wird nun klar, dass der Wechsel in sehr kurzer Zeit durchgefiithrt wird, bis fast alle Entwickler
zwischen den beiden Bereichen gewechselt haben.

61

5.3 Linux-Kernel

Bei einer noch feineren Aufteilung der Intervalle bzw. bei einer Einschrankung des dargestellten
Zeitbereichs kann sogar herausgefunden werden, wann das erste Mal im Ordner vp9 committet wurde:
Am 1.11.2012 hat Ronald S. Bultje die erste Anderung im Verzeichnis vp9 vorgenommen. Durch
Verwendung der Tooltips (sowohl die der Intervalle als auch die der Fluss-Elemente; in Abbildungen
5.7b ist einer dieser Tooltips abgebildet) kann herausgefunden werden, dass bei diesem Commit die
genau gleiche Anzahl an Dateien in vp8 und vp9 bearbeitet wurden. Moglicherweise hat er hier
Dateien im vp8-Verzeichnis geloscht und bei vp9 eingetiigt; dies kann allerdings in der Anwendung
nicht herausgefunden werden, da zwischen Dateien, die erzeugt, geloscht oder verdndert werden
nicht unterschieden wird.

Wenn nun wieder die Abbildung 5.6 (unten) betrachtet wird, ist hier zudem sichtbar, dass bei der
Anzahl der Anderungen schon vor dem Wechsel zu vp9 bereits ein starkes Wachstum in vp8 zu
erkennen ist (der griine Bereich ganz links, der sehr schmal anfingt und sehr breit wird, bevor er
sich wieder fast auflost), ohne dass Zufliisse hinzukommen; erst danach wechselt der Grof3teil der
Beteiligung von vp8 zu vp9. Dariiber hinaus ist auch ein stirkerer Wechsel aus den weiteren Dateien
zu vp9 vorhanden. Gegen Ende des Zeitbereichs wechseln die Entwickler teilweise wieder zuriick in
diesen Bereich.

In den Darstellungen kann demnach erkannt werden, dass zunachst im Bereich von VP8 und spater
von VP9 entwickelt wurde. Gleichzeitig wurden Dateien fiir Tests und Beispiele erstellt oder bearbeitet.
Gegen Mitte des betrachteten Zeitraums findet eine kurze Ubergangsphase statt. Fast die gesamte
Entwicklerleistung wechselt von vp8 zu vp9 und nimmt dabei zu. In dieser Ubergangsphase wurden
deutlich mehr Anderungen vorgenommen als davor oder danach. Die Wartung der alten Version
bricht jedoch nie vollstindig ab, wird aber deutlich weniger, bis sie noch eine geringe gleichméflige
Beachtung erhélt. Die Testdateien werden wahrscheinlich fiir beide Versionen verwendet und sind
daher unabhingig von dem Wechsel.

5.3 Linux-Kernel

Das letzte Projekt, das betrachtet wird, ist der Linux-Kernel; dieser wird bereits seit 1991 entwickelt.
Die verwendeten Log-Daten des Git-Repositories [Lin] reichen allerdings nur von Mitte 2005 bis heute.
Fir diesen Zeitraum konnten 426935 Commits von 11495 Entwicklern beriicksichtigt werden. Die
Projekthierarchie umfasst 81938 Knoten, wobei 77599 Dateien enthalten sind; sie hat eine maximale
Tiefe von zwolf. Es werden folgende Unterhierarchien als WOIs gewéhlt: drivers, fs, arch, sound,
include, Documentation. Alle restlichen Dateien werden einem weiteren WOI zugeordnet.

In Abbildung 5.8a ist die Hierarchie mit den ausgewahlten WOIs dargestellt, daneben die Ubersicht
und Detailansicht zu jeweils den Entwickleranzahlen und der Anzahl an verénderten Dateien.

Auf den ersten Blick ist bereits in Abbildung 5.8b sichtbar, dass die Gesamtzahl der Entwickler
in der gesamten Zeit leicht ansteigt. Die einzelnen Bereiche werden gleichméflig von etwa einem
gleichen Anteil der Bearbeiter modifiziert. Aufgeklappt (Abbildung 5.8¢) sieht jeder Ubergangsbereich
etwa gleich aus. Hier gibt es, wie in den beiden Fallstudien zuvor, recht viele Zu- und Abfliisse. Ein
Hauptfluss von Entwicklern, die durchgiangig am Projekt zu arbeiten scheinen, kann in dem WOI

62

5.3 Linux-Kernel

144628 133270 189922 192436 218616 211703

Amaldo Carvalho de Melo)
&
= Linus Torvalds Lwey-i Guy
E Patrick McHard riens ver)
Linus Torvalds Greg Kroah-Hartman;
Greg K...artman Tejun Heo) Bartlomiej Zolnierkiewicz|
= Jeff Garzik Bartlomiej Zolnierkiewicz Greg Kroah-Hartman,
H eff Garzik] lauro Carvalho Chehab
2 Linus Torvalds;
5= (Chrs Vison)]
3 Linus Torvalds . {Alan Cox]
Thomas Gleixner Paul Mundt i "
. Dave Chinner
Russell King Uwe Kleine-Kdnig i e el
Linus Torvalds Thomas Gleixner Ingo Molnar Russell King AlViro avid Howells
Russell Kin: Al Viro
Paul Mundt 9
i David Howells Ralf Baechle
Russell King .
David Howells
002005 2:2035- 3102008 204802 2103208 194728 07002009 740554 - 2420t 1420 122012 1
31,2000 204502 210 200 1901720 iorat0s 174554 Zhgeznit 16142 12062012 vz ottt
1-36001 seone-oniz coors- 156510 15031236535 zacsar-sersns sersrsszenss
144628 133270 189922 192436 218616 211703

Johannes Berg
Johannes Berg| Arnaldo Carv: l e —

alho de Melo =

E — T
Ve I N 2 ez g

i Greg Koah Hartnan,

Bartlomiej Zolnierkiewicz
Bill Pemberton] Greg Kroah-Hartman GJ ;n‘m':“m"
A _ Mauro Carvalho Chehab
== oe perches]

RS Bartiomie) Zolnierkiewicz mperm
“ ST S — :
T 2
Paul Mundt A o p—

Russell King
Ingo Molnar

David Howells
Russell King AlViro
‘David Howells Ralf Baechle

Russell King
- Paul Mundt
=]

Russell King

-David Howells

6.04.2005 22205 - 3102006 20049102 21032008 131728 07.09.2009 1745154 12.08.2012 14342146
03.10.2006 20145102 21032008 15117:28 07.08.2009 17145154 24002011 16:14:20 28002014 1311
1-38981 a6z ess1z 6913 158540 158941 236536 sre7s 4260

(e)

Abbildung 5.8: Softwareentwicklungsverlauf des Linux-Kernels: (a) Projekthierarchie; (b) und
(c): Darstellung der Anzahl der beteiligten Entwickler als Ubersicht und Detail-

ansicht; (d) und (e): Darstellung der Anzahl an veranderten Dateien als Ubersicht
und Detailansicht.

63

5.3 Linux-Kernel

100 114 129 138 138 131
|Arnaldo Carvalho de Melo)
[ERARPaSIBeT Amaldo Carvalho de Melo! David S. Miller]
Patrick McHard:
Linus Torvalds [Roland Vossen]
=
Linus Torvalds; Tejun Heo [SSE B
Greg K. .artman,
Jeff Garzik e ivalho Cheha Jonathan Car
o Per
it Lin;
Linus Torvalds’ r
Linus Torvalds Ralf Baechle

Dave Chinner
Thomas Gleixner Paul Mandt
Seff ke Russell King
Ingo Molar

Ure Kleine-Konig AlViro David Hoveells
Russell King Russell King AlViro
Paul Mundt David Howells Ralf Baechle

Thomas Gleixner

. — David Howells
Eric Dumazet David S. Miller D
3.10.2008 24302 21052008 19,1726 07052009 17145154 2032001 (51470
- s oz - .

12082012 194246 B0tz itz

1sa94

257 {32757

27574

‘Arnaldo Carvalho de Melo] David 5. Millr]
Johannes Berg
S ——
—

= ro Carvalho Chehed
Bartlomiej Zolnierkiewicz| e
Jeff Garzik]
g
)
> i S
Ralf Baechle /ipaul =S - <4 Christoph Hellwig
A

Thomas Gleixner x
SeffDike Russell King
S

ig AlViro. David Howells
Linus Torvalds - Russell King " RussellKing AlViro

Paul Mundt. David Howells Ralf Baechle

 Thomas Gleixner

T " Eric Dumazet David 5. Miler~ David Howells
16012008 canc 03102 2002 07092009 14554 sqozanut tninan acaz iz
o By e gl Frrviin
. sz oz w10 5o -0 zss-sarsme 5126335
97741 75238 103060 92270 105290 90706
BT
Arnaldo Carvalho de Melo! Johannes Berg
tEEr
Patrick McHard
aro Carvalho Chehab)
- iej ierkiewic Jeff Kirsher
Bartlomiej Zolnierkiewicz Deff Kirsher
ETTrm Greg Kroah-Hartma
Bartlomiej Zolnierkiewicz o Greg Kroah-Hartman T
eff Garzi Mauro Carvaho Chehab o
e
Linus Torvalds Ralf Baechle Sam Ravriborg

Ralf Baechle Thomas Gleixner Paul Mundt

Jeff Dike Russell King Unie Kleine-Konig oD David Howells
Ingo Molnar Russell King i Al Viro

Greg Kroah-Hartman Yinghai Lu e Russell King Ralf Baechle
Linus Torvalds) N Rarcloneld

David Woodhouse Russell King I Howells

I—— ~—= - ~——

1504208 2220 10208 2092 2109200 14728 07002009 70551 etz sinz w2z a2
10 206 20002 2200 19,4728 0705 2009 1714550 Zaa i 161020 2 2012 e Tt 190

97741 75238 103060 92270 105290 90706

[Roland Vossen
IMauro Carvalho Chehab |
o =
Greg Kioah-Hartman
Linus Torvalds

Ralf Baechle /

Greg KroalHartman / Thomas Gleixner YinghaiLu_~ \ /
Linus Torvalds —
David Woodhouse ~

David Howells

Al Viro
Russell King / Ralf Baechle
David Howells

wid Howells

03.10.2005 24512 07.09.2009 178554 2402201 1611420 12082012 1052146
2052008 19:47.28 009 17 4022001 1614 1206.2012 14142145 ENErpina
13081 P seo13- 150940

15601 - 226535 s T 2175 26w

(d

Abbildung 5.9: WOI River des Linux-Kernels fiir die 140 Entwickler mit den meisten Dateidnderun-

gen: (a) und (b): Darstellung der Anzahl der beteiligten Entwickler als Ubersicht

und Detailansicht; (c) und (d): Darstellung der Anzahl an veranderten Dateien als
Ubersicht und Detailansicht.

64

5.3 Linux-Kernel

drivers erkannt werden (der rote Fluss); hier scheinen auch allgemein die meisten Entwickler zu
arbeiten.

Bei den Darstellungen in Abhingigkeit der veranderten Dateien (Abbildungen 5.8d und 5.8e) ist
eine dhnliche Entwicklung zu erkennen, es gibt allerdings deutlich weniger Zu- und Abfliisse; daher
sind hier die einzelnen Uberginge zwischen den verschiedenen WOIs besser erkennbar. Zudem ist
sichtbar, dass recht viele Entwickler in aufeinanderfolgenden Zeitintervallen in den gleichen WOIs
entwickeln. Wechsel zwischen verschiedenen WOIs kommen eher selten vor — hauptsachlich zwischen
den Ordnern drivers und arch, wobei eine dhnliche Entwicklerkapazitit in die eine, aber auch die
andere Richtung wechselt.

Da an dem Projekt sehr viele Entwickler beteiligt sind, viele davon jedoch kaum etwas verdndern,
werden im Folgenden noch einige Darstellungen betrachtet, die nur Hauptentwickler beriicksichtigen.
Hierfiir sind in Abbildung 5.9 Visualisierungen abgebildet, die das Verhalten der 140 Entwickler zeigen,
welche die meisten Dateiinderungen bewirkt haben (jeweils mindesten 1500 Dateidnderungen). Bei
dem Vergleich dieser Visualisierungen fillt auf, dass die Verteilung der Anzahl an Entwicklern
und der Dateidnderungen sich im Wesentlichen nur gering unterscheiden. Es sind kaum Zu- bzw.
Abflusse zu erkennen, was bedeutet, dass fast alle Entwickler in dem dargestellten Zeitbereich an dem
Projekt beteiligt waren. Wahrend bei den zuvor betrachteten Visualisierungen sowohl die Anzahl der
Entwickler, als auch die der Dateidnderungen monoton gewachsen ist, schwanken hier die Anzahlen
teilweise.

Allgemein kénnte man vermuten, dass es sich hier um einen gleichméfligen und stabilen Entwick-
lungsprozess handelt, bei dem jeder Arbeitsbereich jeweils zu gleichen Anteilen bearbeitet wird. Es
gibt zwar, je nach Art der Darstellung, recht viele Abfliisse, aber jeweils noch mehr Zufliisse.

Obwohl dieses Projekt recht grof} ist, sind in der Visualisierung immer noch Trends und Merkmale
erkennbar.

65

6 Zusammenfassung und Ausblick

Ziel dieser Arbeit war die Umfunktionierung des Konzepts der AOI Rivers [BKW13] in ein interaktives
Visualisierungswerkzeug zur Analyse dynamischer Entwicklerzahlen in WOIs eines Softwaresys-
tems.

Die AOI River-Visualisierung wurde urspriinglich fiir Eye-Tracking-Daten verwendet; in dieser Arbeit
wurde sie fiir die Analyse von Softwareentwicklungsprozessen angepasst und erweitert.

Ein WOI River kann die dynamischen Verhaltensweisen von Entwicklergruppen veranschaulichen.
Durch ihn kann die Anzahl an Entwicklern bzw. die Anzahl ihrer Anderungen am Softwaresystem
fiir festgelegte WOIs tiber die Zeit visualisiert werden. Aulerdem kénnen Wechsel zwischen ver-
schiedenen WOIs sowie Zu- und Abfliisse zum bzw. aus dem Projekt sichtbar gemacht werden. Es
wurden verschiedene Methoden zur Behandlung der Héhe der einzelnen Entwickler fiir die einzelnen
Intervalle und Transitionen untersucht.

Fir die Visualisierungstechnik wurde eine Anwendung implementiert, in der die Projekthierarchie
und der zugehorige WOI River interaktiv untersucht werden kénnen. Die verschiedenen WOIs, der
darzustellende Zeitbereich, die Einteilung in Intervalle und die Entwickler, welche fiir die Visuali-
sierung beriicksichtigt werden sollen, kénnen hier angegeben werden. Fiir die Festlegung der WOIs
konnen verschiedene Hilfsfunktionen und Filter eingesetzt werden. Weitere Einstellungsmoglich-
keiten fiir die Berechnung des WOI Rivers und fiir die Anzeige verschiedener Elemente stehen zur
Verfiigung. Ein WOI River bietet zun4chst in Form eines ThemeRivers einen Gesamtiiberblick des Ent-
wicklungsprozesses. Auf Wunsch kénnen Bereiche zwischen Intervallen in der Darstellung verandert
werden, um Details beziiglich der Zu- und Abfliisse zum bzw. aus dem Projekt sowie den Ubergingen
zwischen WOIs anzuzeigen.

Die WOI River-Visualisierungstechnik liefert dsthetische Darstellungen eines Softwareentwicklungs-
prozesses, in denen Entwicklungsstrategien und -verhalten sichtbar gemacht werden kénnen. Es
wurde festgestellt, dass die Technik fiir unterschiedlich grofie Projekte geeignet ist und auch fiir
groflere Projekte wie den Linux-Kernel skalierbar ist. Entwickler, die wenig zum Projekt beitragen,
dominieren teilweise in der Visualisierung durch haufige Zu- und Abfliisse. Indem die dargestellten
Daten reduziert werden, um weniger relevante Aspekte, wie Commits mit sehr vielen Dateidnderun-
gen oder Entwickler mit geringer Beteiligung auszublenden, kénnen Rauschen und Visual Clutter
vermindert und ein Uberblick tiber den Entwicklungsprozess gewonnen werden. Interaktionstechni-
ken konnen hilfreich sein, das Dargestellte in den WOI Rivers besser zu verstehen und weitere Details
herauszufinden.

Anhand dreier Fallstudien wurde untersucht, welche Einsichten in die Entwicklungsprozesse der
Projekte mit Hilfe der Visualisierung gewonnen werden kénnen und wie interaktiv weitere niitzliche

66

6 Zusammenfassung und Ausblick

Details herausgefunden werden kénnen. Zuerst wurde die Entwicklung der Programmiersprache
Python analysiert, gefolgt von der Bibliothek libvpx und dem Linux-Kernel.

Ausblick

Die Visualisierung liefert einen guten Uberblick iiber die Anzahl der Entwickler, die in verschie-
denen Arbeitsbereichen gearbeitet haben oder iiber deren Anderungen am Projekt. Es gibt jedoch
noch viele Moglichkeiten die Visualisierung anzupassen um noch mehr iber den Entwicklungs-
prozess herauszufinden oder die Analyse zu erleichtern. Im Folgenden werden einige dieser Ideen
vorgestellt.

Die Intervalle, die in der Anwendung gebildet werden kénnen, haben jeweils etwa die gleiche Grof3e;
sie decken entweder einen festen Zeitbereich oder eine bestimmte Anzahl an Commits ab. Bei dieser
Einteilung kénnte nach verschiedenen anderen Kriterien vorgegangen werden. Es ware moglich
wichtige Ereignisse zu beriicksichtigen, wie etwa Releases oder das Anlegen von Tags im Versions-
kontrollsystem. Hiermit kénnte das Verhalten zwischen wichtigen Meilensteinen der Entwicklung
untersucht werden.

Der Zeitbereich fiir die Visualisierung kann beliebig festgelegt werden. Wenn entsprechende Bereiche
in der WOI River-Visualisierung interaktiv selektiert werden kénnten, wire eine direkte Darstellung
des entsprechenden Zeitbereichs mit einer feineren Aufteilung moglich. Es miissten nicht zuerst die
Grenzen des gewiinschten Zeitbereiches herausgefunden werden; der Analyseprozess konnte hiermit
vereinfacht werden.

Dariiber hinaus wire das Hervorheben eines einzelnen Entwicklers oder einer Entwicklergruppe im
Kontext des gesamten Flusses sehr niitzlich um die Beteiligung der entsprechenden Entwickler im
Vergleich mit den restlichen Entwicklern zu sehen und besser verfolgen zu kdnnen. Je nach Einstellun-
gen konnte erkannt werden, ob die ausgewiahlten Entwickler in den Bereichen der Hauptentwicklung
arbeiten, in einzelnen Bereichen dominieren oder iiber mehrere Bereiche verteilt sind.

Dadurch, dass Entwickler haufig gleichzeitig an verschiedenen Bereichen des Projekts beteiligt sind
wird die Hohe, die einen Entwickler in der Visualisierung reprasentiert, auf moglicherweise mehrere
WOIs aufgeteilt. Eventuell miissen die Entwickler manche Dateien, die aulerhalb ihres eigenen
Arbeitsbereiches liegen sehr selten verandern, wodurch viele diinne Uberginge zwischen den WOIs
entstehen konnen. Wiirde einem Entwickler in jedem Intervall nur ein WOI zugeordnet werden — der
WOI zu dem er am meisten beigetragen hat — konnte Visual Clutter vermieden werden, allerdings
wiirden auch leicht wichtige Informationen verloren gehen.

Gelegentlich wird ein Projekt von Entwicklern nur fiir eine gewisse Zeit verlassen, bevor sie wieder
zum Projekt zuriickkehren. Dies hat mehrere Zu- und Abfliisse zur Folge. Hier konnte tiberlegt werden,
ob zwischen den Entwicklern, die das Projekt vollstindig und denen, die es nur voriibergehend
verlassen unterschieden wird, um die Zu- und Abflusse in unterschiedlicher Weise zu visualisieren.
Beispielsweise konnten ,inaktive” Entwickler in einen zusétzlichen ,inaktiven® Fluss flielen und aus
diesem wieder zuriick in das Hauptprojekt. Ein anderer Ansatz konnte sein, Zu- und Abfliisse in einer
anderen Darstellungsform, z.B. durch eine verkiirzte vertikale Lange der Elemente, anzuzeigen.

67

6 Zusammenfassung und Ausblick

Die Reihenfolge in der die einzelnen Fliisse vertikal angeordnet sind spielt eine recht grofe Rolle
um Besonderheiten zu erkennen - derzeit entspricht sie der Anordnung in der Hierarchie oder
der Reihenfolge in der sie festgelegt wurden. Befinden sich beispielsweise zwei WOIs, die sich
gegenseitig abldsen iibereinander ist ein Ubergang von dem einen zu dem anderen WOI gut erkennbar.
Befinden sich jedoch andere WOIs dazwischen, konnte dieser Wechsel moglicherweise ibersehen
werden. Zusatzlich ist es in einigen Fillen schwierig zu erkennen, welche Arbeitsbereiche die grofite
Beteiligung besitzen, vor allem wenn mehrere Bereiche gleich stark bearbeitet werden. Aufierdem gibt
es in der Visualisierung teilweise sehr viele sich iiberkreuzende Transitionen zwischen verschiedenen
WOIs. Besonders storend konnte es sein, wenn viele Transitionen zwischen den obersten und den
untersten WOIs verlaufen. Ein geeigneter Algorithmus konnte dafiir sorgen, dass eine optimierte
Reihenfolge der Flusse erreicht wird.

Ein einfacher Ansatz hierzu konnte sein, die Fliisse nach ihrer durchschnittlichen oder maximal
vorkommenden Hohe zu sortieren. Hierdurch ist schneller erkennbar wo die Beteiligung einzelner
Entwickler am gr6fiten war. Wiirde der Fluss mit der héchsten Wichtigkeit in der Mitte platziert
werden und nach auflen die eher unwichtigeren, wire eine Reduzierung der Uberkreuzungen moglich,
da wahrscheinlich haufiger Transitionen zu oder von den wichtigeren WOIs ausgehen. Zu dem
wichtigsten Fluss miissten folglich keine Transitionen tiber die gesamte vertikale Visualisierung
verlaufen, sondern nur bis etwa zur Mitte.

Auch die Farbvergabe fiir die einzelnen WOIs kénnte optimiert werden. Wahrend momentan zwar
Farben mit einem moglichst hohen Kontrast vergeben werden, konnte zusétzlich der Flussverlauf
beriicksichtigt werden. Hierbei miisste darauf geachtet werden, dass an benachbarte Fliisse und bei
Fliissen zwischen denen Transitionen verlaufen eine moglichst kontrastreiche Farbe vergeben wird.

Zudem ist denkbar, weitere Informationen des Versionskontrollsystems zu verwenden und diese
in die Anwendung zu integrieren. Eine Verwendung der Commit-Kommentare oder das Zugreifen
auf bestimmte Dateien und deren Verdnderungen konnte die Anwendung noch hilfreicher ma-
chen.

68

Literaturverzeichnis

[AMMT07] W. Aigner, S. Miksch, W. Miiller, H. Schumann, C. Tominski. Visualizing time-oriented

[Anko9]

[BBMT14]

[BDLO5]

[BHWO00]

[BKW13]

[BMMS91]

[Bos57]

[BRW10]

[BW0S]

data-A systematic view. Comput. Graph., 31(3):401-409, 2007. doi:10.1016/j.cag.2007.01.
030. URL http://dx.doi.org/10.1016/j.cag.2007.01.030. (Zitiert auf Seite 9)

M. Ankerl. How to Generate Random Colors Programmatically. http://martin.ankertl.
com/2009/12/09/how-to-create- random-colors-programmatically/, 2009. (Zi-
tiert auf Seite 34)

F. Beck, M. Burch, T. Munz, L. Di Silvestro, D. Weiskopf. Generalized Pythagoras Trees
for Visualizing Hierarchies. In IVAPP ’14: Proceedings of the 5th International Conference
on Information Visualization Theory and Application, S. 17-28. SCITEPRESS, 2014. (Zitiert
auf den Seiten 7 und 9)

M. Balzer, O. Deussen, C. Lewerentz. Voronoi Treemaps for the Visualization of Software
Metrics. In Proceedings of the 2005 ACM symposium on Software visualization, SoftVis
’05, S. 165-172. ACM, New York, NY, USA, 2005. doi:10.1145/1056018.1056041. URL
http://doi.acm.org/10.1145/1056018.1056041. (Zitiert auf Seite 8)

M. Bruls, K. Huizing, J. Wijk. Squarified Treemaps. In W. Leeuw, R. Liere, Herausgeber,
Data Visualization 2000, Eurographics, S. 33-42. Springer Vienna, 2000. doi:10.1007/
978-3-7091-6783-0_4. URL http://dx.doi.org/10.1007/978-3-7091-6783-0_4. (Zi-
tiert auf Seite 8)

M. Burch, A. Kull, D. Weiskopf. AOI Rivers for Visualizing Dynamic Eye Gaze Frequencies.
In Computer Graphics Forum, Band 32, S. 281-290. Wiley Online Library, 2013. (Zitiert
auf den Seiten 4, 9, 10 und 66)

A. Buja, J. McDonald, J. Michalak, W. Stuetzle. Interactive data visualization using focu-
sing and linking. In Visualization, 1991. Visualization ’91, Proceedings., IEEE Conference
on, S. 156-163, 419. 1991. d0i:10.1109/VISUAL.1991.175794. (Zitiert auf Seite 47)

A. E. Bosman. Het wondere onderzoekingsveld der viakke meetkunde. Parcival, Breda,
1957. (Zitiert auf Seite 9)

M. Burch, M. Raschke, D. Weiskopf. Indented Pixel Tree Plots. In Advances in Visual
Computing, S. 338-349. Springer, 2010. (Zitiert auf Seite 8)

L. Byron, M. Wattenberg. Stacked Graphs — Geometry & Aesthetics. Visualization and
Computer Graphics, IEEE Transactions on, 14(6):1245-1252, 2008. doi:10.1109/TVCG.2008.
166. (Zitiert auf Seite 9)

69

http://dx.doi.org/10.1016/j.cag.2007.01.030
http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
http://doi.acm.org/10.1145/1056018.1056041
http://dx.doi.org/10.1007/978-3-7091-6783-0_4

Literaturverzeichnis

[Caul0]

[Die07]

[HHWN02]

[iso]

[JS91]

[JS10]

[KBK11]

[KL83]

[lib]

[Lin]

[LWWT13]

[Mun13]

[OM09]

A. H. Caudwell. Gource: Visualizing Software Version Control History. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH ’10, S. 73-74. ACM, New York, NY,
USA, 2010. doi:10.1145/1869542.1869554. URL http://doi.acm.org/10.1145/1869542.
1869554. (Zitiert auf den Seiten 4 und 11)

S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolution of
Software. Springer, 2007. (Zitiert auf den Seiten 10 und 11)

S. Havre, E. Hetzler, P. Whitney, L. Nowell. ThemeRiver: Visualizing Thematic Changes
in Large Document Collections. Visualization and Computer Graphics, IEEE Transactions
on, 8(1):9-20, 2002. doi:10.1109/2945.981848. (Zitiert auf den Seiten 4, 9 und 10)

Data Elements and Interchange Formats—Information Exchange—Representation of
Dates and Times—ISO 8601: 2004. International Standardizaton Organization (ISO).
(Zitiert auf Seite 40)

B. Johnson, B. Shneiderman. Tree-Maps: a Space-Filling Approach to the Visualization of
Hierarchical Information Structures. In Proceedings of the 2nd conference on Visualization
’91, VIS 91, S. 284-291. IEEE Computer Society Press, Los Alamitos, CA, USA, 1991.
URL http://dl.acm.org/citation.cfm?id=949607.949654. (Zitiert auf den Seiten 7
und 8)

S.Jirgensmann, H.-J. Schulz. Poster: A Visual Survey of Tree Visualization. In Proceedings
of IEEE Information Visualization, Band 5. 2010. (Zitiert auf Seite 7)

M. Krstajic, E. Bertini, D. Keim. CloudLines: Compact Display of Event Episodes in Multi-
ple Time-Series. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2432-
2439, 2011. doi:10.1109/TVCG.2011.179. (Zitiert auf Seite 9)

J. B. Kruskal, J. M. Landwehr. Icicle Plots: Better Displays for Hierarchical Clustering.
The American Statistician, 37(2):162-168, 1983. (Zitiert auf den Seiten 7 und 9)

lipvpx-Repository. https://chromium.googlesource.com/webm/libvpx. (Zitiert auf
Seite 58)

Linux-Kernel-Repository. git://git.kernel.org/pub/scm/linux/kernel/git/
stable/linux-stable.git. (Zitiert auf Seite 62)

S. Liu, Y. Wu, E. Wei, M. Liu, Y. Liu. StoryFlow: Tracking the Evolution of Stories.
Visualization and Computer Graphics, IEEE Transactions on, 19(12):2436—2445, 2013. doi:
10.1109/TVCG.2013.196. (Zitiert auf Seite 9)

T. Munz. Hierarchievisualisierung mit verallgemeinerten Pythagoras-Baumen. Studien-
arbeit, Universitit Stuttgart, VISUS, 2013. (Zitiert auf Seite 8)

M. Ogawa, K.-L. Ma. code_swarm: A Design Study in Organic Software Visualization.
Visualization and Computer Graphics, IEEE Transactions on, 15(6):1097-1104, 2009. doi:
10.1109/TVCG.2009.123. (Zitiert auf den Seiten 4, 11 und 53)

70

http://doi.acm.org/10.1145/1869542.1869554
http://doi.acm.org/10.1145/1869542.1869554
http://dl.acm.org/citation.cfm?id=949607.949654
https://chromium.googlesource.com/webm/libvpx
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

Literaturverzeichnis

[OM10]

[Pyta]
[Pytb]
[RLN07]

[SCGO5]

[Shn96]

[Spe07]
[SZ00]

[TA08]

[Tuf83]

[web]

[Wet03]

[ZW04]

M. Ogawa, K.-L. Ma. Software Evolution Storylines. In Proceedings of the 5th International
Symposium on Software Visualization, SOFTVIS ’10, S. 35-42. ACM, New York, NY,
USA, 2010. doi:10.1145/1879211.1879219. URL http://doi.acm.org/10.1145/1879211.
1879219. (Zitiert auf den Seiten 4, 11, 12, 53 und 54)

Python. http://www.python.org/. (Zitiert auf Seite 53)
Python-Repository. http://hg.python.org/cpython. (Zitiert auf Seite 53)

R. Rosenholtz, Y. Li, L. Nakano. Measuring Visual Clutter. Journal of Vision, 7(2):17, 2007.
(Zitiert auf Seite 23)

M.-A. D. Storey, D. Cubrani¢, D. M. German. On the Use of Visualization to Support
Awareness of Human Activities in Software Development: A Survey and a Framework.
In Proceedings of the 2005 ACM symposium on Software visualization, S. 193-202. ACM,
2005. (Zitiert auf Seite 11)

B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, S. 336—-343.
1996. d0i:10.1109/VL.1996.545307. (Zitiert auf Seite 36)

R. Spence. Information visualization. Pearson, London u.a., 2007. (Zitiert auf Seite 44)

J. Stasko, E. Zhang. Focus+Context Display and Navigation Techniques for Enhancing
Radial, Space-Filling Hierarchy Visualizations. In Information Visualization, 2000. InfoVis
2000. IEEE Symposium on, S. 57-65. 2000. doi:10.1109/INFVIS.2000.885091. (Zitiert auf
Seite 9)

A. Telea, D. Auber. Code Flows: Visualizing Structural Evolution of Source Code. In
Computer Graphics Forum, Band 27, S. 831-838. Wiley Online Library, 2008. (Zitiert auf
den Seiten 4, 11 und 12)

E. R. Tufte. The Visual Display of Quantitative Information, Band 2. Graphics Press
Cheshire, CT, 1983. (Zitiert auf den Seiten 4 und 10)

The WebM Project | Frequently Asked Questions. http://www.webmproject.org/
about/faq. (Zitiert auf Seite 58)

K. Wetzel. Pebbles — using Circular Treemaps to visualize disk usage. http://lip.
sourceforge.net/ctreemap.html, 2003. (Zitiert auf Seite 8)

T. Zimmermann, P. Wei3gerber. Preprocessing CVS Data for Fine-Grained Analysis. In
Proceedings International Workshop on Mining Software Repositories, MSR04. 2004. (Zitiert
auf Seite 37)

Alle URLs wurden zuletzt am 14. 03. 2014 gepriift.

71

http://doi.acm.org/10.1145/1879211.1879219
http://doi.acm.org/10.1145/1879211.1879219
http://www.python.org/
http://hg.python.org/cpython
http://www.webmproject.org/about/faq
http://www.webmproject.org/about/faq
http://lip.sourceforge.net/ctreemap.html
http://lip.sourceforge.net/ctreemap.html

Erklirung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngeméafd aus anderen Werken ibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstiandig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziele
	1.3 Gliederung

	2 Verwandte Arbeiten
	2.1 Hierarchievisualisierung
	2.2 Visualisierung zeitveränderlicher Daten
	2.3 Softwarevisualisierung

	3 Visualisierungstechnik
	3.1 Datenmodell
	3.2 Hierarchie
	3.3 WOI Rivers
	3.4 Farbvergabe

	4 Implementierung
	4.1 Vorverarbeitung
	4.2 Benutzeroberfläche
	4.3 Import
	4.4 Grundfunktionen
	4.5 Weitere Funktionen und Interaktion
	4.6 Export

	5 Fallstudien
	5.1 Python
	5.2 libvpx
	5.3 Linux-Kernel

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

