
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3563

Visualisierung von dynamischen
Software-Entwicklerzahlen in

Arbeitsbereichen

Tanja Munz

Studiengang: Informatik

Prüfer/in: Prof. Dr. Daniel Weiskopf

Betreuer/in: Dr. Michael Burch

Beginn am: 15. September 2013

Beendet am: 17. März 2014

CR-Nummer: H.3.3, H.5.2, I.3.3, I.3.6, I.3.8

Kurzfassung

Softwaresysteme werden häufig über mehrere Jahre von vielen Entwicklern bearbeitet. In dieser Zeit
können sich sowohl die Beteiligung der Entwickler als auch die Arbeitsbereiche, in denen entwickelt
wird, stark verändern. In dieser Arbeit wird das Konzept der AOI Rivers für die Visualisierung von
Softwareentwicklungsprozessen angepasst, indem es zu WOI Rivers erweitert wird. Mit WOI Rivers
ist es möglich, die dynamischen Verhaltensweisen von Entwicklergruppen zu beobachten. Es kann
sichtbar gemacht werden, wie sich die Anzahl von Entwicklern oder die Häufigkeit ihrer Beteili-
gung an Dateiveränderungen in verschiedenen Arbeitsbereichen über die Zeit verändert. Zusätzlich
kann über Transitionen gezeigt werden, wie zwischen verschiedenen Arbeitsbereichen gewechselt
wird und wann bzw. wo neue Entwickler hinzukommen oder das Projekt wieder verlassen. Da sich
Entwickler zur gleichen Zeit an vielen verschiedenen Dateien bzw. verschiedenen Arbeitsbereichen
in unterschiedlichen Stärken beteiligen können, ist die Höhe, die jedem Entwickler in einem In-
tervall zugewiesen wird, variabel und muss auf mehrere Transitionen aufgeteilt werden. Hierfür
werden verschiedene Möglichkeiten untersucht und es wird eine Methode entwickelt, Transitionen
zwischen gleichen Arbeitsbereichen nicht unnötig aufzuteilen, um die Anzahl an Überkreuzungen,
und dadurch Visual Clutter, zu reduzieren. Die Visualisierungstechnik wurde als interaktives Visua-
lisierungswerkzeug implementiert. In diesem können Arbeitsbereiche, sogenannte Workspaces of
Interest (WOIs), in einer Hierarchiedarstellung, Entwicklergruppen aus einer Liste aller Entwickler
und der darzustellende Zeitbereich für die WOI River-Visualisierung festgelegt werden. Anhand dreier
Open-Source-Softwareprojekte werden Fallstudien durchgeführt, um Einsichten in die Entwicklungs-
prozesse dieser Projekte zu erhalten.

2

Inhaltsverzeichnis

1 Einleitung 4
1.1 Motivation . 4
1.2 Ziele . 5
1.3 Gliederung . 5

2 Verwandte Arbeiten 7
2.1 Hierarchievisualisierung . 7
2.2 Visualisierung zeitveränderlicher Daten . 9
2.3 Softwarevisualisierung . 10

3 Visualisierungstechnik 13
3.1 Datenmodell . 13
3.2 Hierarchie . 15
3.3 WOI Rivers . 17
3.4 Farbvergabe . 34

4 Implementierung 35
4.1 Vorverarbeitung . 36
4.2 Benutzeroberfläche . 37
4.3 Import . 39
4.4 Grundfunktionen . 40
4.5 Weitere Funktionen und Interaktion . 44
4.6 Export . 52

5 Fallstudien 53
5.1 Python . 53
5.2 libvpx . 58
5.3 Linux-Kernel . 62

6 Zusammenfassung und Ausblick 66

Literaturverzeichnis 69

3

1 Einleitung

1.1 Motivation

Softwaresysteme durchlaufen meist einen mehrjährigen Entwicklungsprozess an dem viele Entwickler
beteiligt sein können. Im Laufe dieser Zeit werden verschiedene Dateien des Softwaresystems von
den verschiedenen Entwicklern erzeugt, verändert oder auch wieder gelöscht. Entwicklergruppen
arbeiten dabei in verschiedenen oder auch gemeinsamen Arbeitsbereichen über längere oder kürzere
Entwicklungszeiträume. Dabei können sich sowohl die Entwickleranzahl, als auch die Häufigkeit, mit
der Änderungen gemacht werden und die Bereiche, die bearbeitet werden, durchgehend verändern.

Um Einsichten in diesen Entwicklungsprozess zu erhalten, können Visualisierungen sehr hilfreich
sein. Sie können dabei helfen, Entwicklungsstrategien zu analysieren, sowie Trends, Beziehungen,
Anomalien und weitere Besonderheiten während der Entwicklung aufzuspüren. In Bezug auf das
Entwicklerverhalten könnte interessieren, wie viele Entwickler über die Zeit an einem Projekt gear-
beitet haben, wie sich diese Anzahl oder die Anzahl ihrer Änderungen an dem Projekt über die Zeit
verändert hat und wo Schwerpunkte bei der Entwicklung lagen. Zudem könnte von Belang sein, wie
viele und welche Entwickler in den einzelnen Bereichen aktiv waren oder wie viele Änderungen es
dort gab. Tiefere Einblicke entstehen, wenn erkennbar ist, wie Entwickler zwischen verschiedenen
Bereichen wechselten und wann bzw. zu welchen Bereichen neue Entwickler hinzukamen oder nichts
mehr zu dem Projekt beigetragen haben. Es gibt noch viele weitere interessante Fragestellungen in
Bezug auf den Entwicklungsprozess, dies sind jedoch die wesentlichen Aspekte, die mit Hilfe der hier
vorgestellten Technik beantwortet werden können.

Es gibt bereits viele Techniken, die sich mit der grafischen Darstellung eines Softwareentwicklungspro-
zesses beschäftigen. Hierbei sind statische Verfahren wie die Evolution Storylines [OM10] und Code
Flows [TA08] zu nennen. Aber auch dynamische Verfahren wie Gource [Cau10] oder code_swarm
[OM09] veranschaulichen, wie Entwickler ein Softwareprojekt über die Zeit verändern.

Die hier vorgestellte Technik ist statisch und basiert auf den AOI Rivers [BKW13]. Diese stellen
eine Erweiterung der ThemeRiver [HHWN02] dar, welche – angelehnt an das Konzept der Sankey-
Diagramme [Tuf83] – um Transitionen sowie Zu- und Abflüsse erweitert wurden. Mit Hilfe der
AOI Rivers kann das zeitliche Verhalten von Augenbewegungen verschiedener Teilnehmer einer
Eye-Tracking-Studie dargestellt und analysiert werden. Hierfür werden Bereiche auf dem Bildschirm
als Areas of Interest (AOIs) festgelegt, in welche die Augenbewegungen und Fixationspunkte der
Teilnehmer während des Experiments fallen können bzw. zwischen denen sie wechseln können.

Im Folgenden wird die Technik der AOI Rivers für die Visualisierung des Softwareentwicklungsprozes-
ses angepasst. Statt Areas of Interest werden Arbeitsbereiche der Projekthierarchie, sog. Workspaces

4

1.2 Ziele

of Interest (WOIs) betrachtet. Innerhalb dieser WOIs bearbeiten Entwickler die Dateien des Software-
systems.

Informationen zum Entwicklungsprozess können aus Versionskontrollsystemen gewonnen werden.
Mit ihrer Hilfe können Entwickler ihre Änderungen an dem Softwaresystem speichern, indem sie
ihre veränderten Dateien in ein Repository „einchecken“ (bzw. „committen“). Dabei werden unter
anderem Informationen bezüglich des Änderungsdatums, des Entwicklernamens und der bearbeiteten
Dateien protokolliert, aus denen die Systementwicklung rekonstruiert werden kann. Diese Daten
können verwendet werden, um Informationen zur Verhaltensweise von Entwicklern zu erhalten und
diese als WOI River darzustellen und interaktiv zu untersuchen.

Während bei Eye-Tracking-Experimenten die Teilnehmer jederzeit auf maximal eine Position des
Bildschirms schauen können, bearbeiten Entwickler meist mehrere Dateien gleichzeitig in Bezug
auf ein festgelegtes Zeitintervall. Folglich werden bei AOI Rivers Teilnehmer in jedem Zeitschritt
genau einem AOI zugeordnet und die Transitionen eines Teilnehmers verlaufen zwischen maximal
zwei AOIs. Bei den WOI Rivers muss die Höhe der Entwickler in jedem Zeitschritt bzw. Intervall
auf verschiedene WOIs aufgeteilt werden und die Transitionen können zwischen all diesen WOIs
verlaufen. Außerdem tragen Entwickler in verschiedenen Zeitbereichen und im Vergleich mit anderen
Entwicklern unterschiedlich viel zu einem Projekt bei. Hier stellt sich die Frage, wie dies in der
Erweiterung der AOI Rivers sinnvoll umzusetzen ist.

1.2 Ziele

Ziel dieser Arbeit ist, ein Visualisierungswerkzeug zur Analyse dynamischer Entwicklerzahlen in
Workspaces of Interest (WOIs) eines Softwaresystems zu erstellen. Hierzu soll das Konzept der AOI
Rivers entsprechend umfunktioniert und angepasst werden.

Als Eingabe sollen Daten eines Softwaresystems mit dynamischen Entwicklerzahlen verwendet
werden, indem sie aus einem Open-Source-Softwaresystem extrahiert und lokal gespeichert werden.
Die Systemstruktur des Softwareprojekts soll als interaktiv manipulierbare Hierarchiedarstellung
angezeigt werden, in der WOIs interaktiv festgelegt und verändert werden können. Außerdem
sollen Entwicklergruppen definiert werden können, die für die Visualisierung verwendet werden. In
Abhängigkeit der festgelegten WOIs und Entwicklergruppen soll der entsprechende WOI River als
interaktive Visualisierung angezeigt werden. Dabei soll eine Reduzierung der Überkreuzungen in den
WOI Rivers sowie ein hoher Farbkontrast benachbarter Ströme angestrebt werden. DesWeiteren sollen
benutzerdefinierte Ausschnitte der Daten zur späteren Analyse abgespeichert werden können.

Anhand mehrerer Fallstudien zu verschiedenen Open-Source-Softwaresystemen soll die implemen-
tierte Visualisierungstechnik evaluiert werden.

1.3 Gliederung

Die restliche Arbeit ist wie folgt gegliedert:

5

1.3 Gliederung

Kapitel 2 – Verwandte Arbeiten: Dieses Kapitel gibt einen Überblick über einige bereits existie-
rende Visualisierungstechniken in den Bereichen Hierarchievisualisierung, Visualisierung
dynamischer quantitativer Daten und Softwarevisualisierung.

Kapitel 3 – Visualisierungstechnik: Die Visualisierungstechnik wird genauer vorgestellt. Hierbei
wird erst auf das Datenmodell, danach auf die Hierarchie- und WOI River-Visualisierung
eingegangen. Bei letzterer stehen die Erzeugung der Transitionsmatrizen und die Konstruktion
der einzelnen Komponenten im Vordergrund.

Kapitel 4 – Implementierung: In diesem Kapitel wird auf die Implementierung eingegangen. Hier-
zu wird erklärt, wie aus einem Versionskontrollsystem eines Softwareprojekts die relevanten
Daten für die Anwendung erhalten werden können und wie aus diesen Daten die entsprechen-
de Visualisierung des WOI Rivers erzeugt werden kann. Dabei werden Funktionalitäten und
Interaktionsmöglichkeiten der Anwendung beschrieben.

Kapitel 5 – Fallstudien: Es wird versucht, Einsichten in die Entwicklungsprozesse dreier Open-
Source-Softwaresysteme zu erhalten und die Anwendung bzw. deren Visualisierungstechnik
wird analysiert. Der erste untersuchte Datensatz repräsentiert den Entwicklungsprozess der
Programmiersprache Python. Das zweite untersuchte Projekt ist die Bibliothek libvpx für die
Videocodecs VP8/VP9. Außerdem wird der Linux-Kernel als recht großes Projekt betrachtet
und es wird geprüft, ob die Visualisierungstechnik auch für größere Datensätze skalierbar ist.

Kapitel 6 – Zusammenfassung und Ausblick: Die Arbeit wird zusammengefasst und es werden
Verbesserungs- und Erweiterungsmöglichkeiten für die Anwendung und die Visualisierungs-
technik geliefert.

6

2 Verwandte Arbeiten

In dem hier entwickelten Visualisierungswerkzeug spielen Komponenten aus verschiedenen Berei-
chen der Informationsvisualisierung eine wichtige Rolle. Allgemein beschäftigt sich die Visualisierung
mit Softwarevisualisierung. Genauer betrachtet ist die Visualisierung aus zwei Bestandteilen aufgebaut:
Zum einen gibt es das Softwaresystem, das durch eine Hierarchievisualisierung dargestellt wird; diese
Hierarchie enthält alle Dateien, die während des Entwicklungsprozesses erstellt, verändert oder
gelöscht wurden. Zum anderen wird in der Hauptvisualisierung ein zeitlicher Verlauf der Entwick-
lerbeteiligung in Arbeitsbereichen abgebildet. Dies wird durch eine Visualisierung zeitveränderlicher
Daten in Flussdarstellung realisiert.

Im Folgenden wird eine Übersicht über bereits existierende Visualisierungen in diesen Gebieten
geliefert. Zuerst werden die Hierarchievisualisierung und die Visualisierung zeitveränderlicher Daten
beschrieben; danach die Softwarevisualisierung als spezielles Anwendungsgebiet, in dem Visualisie-
rungstechniken aus den anderen Bereichen verwenden werden können.

Da in den einzelnen Bereichen jeweils eine große Anzahl an Techniken existiert, werden nicht alle
einzeln vorgestellt sondern vor allem Techniken, die für die hier angestrebte Visualisierungstechnik
relevant scheinen.

2.1 Hierarchievisualisierung

Es gibt sehr viele verschiedene Techniken zur Visualisierung von Hierarchien. Zu den bekanntesten
visuellen Metaphern der Hierarchievisualisierung gehören Node-Link-Diagramme, Layered Icicle
Plots [KL83], Indented Plots und Treemaps [JS91]. Es gibt jeweils nochmals mehrere Varianten, die sich
in mehreren Aspekten wie Form oder Anordnung unterscheiden und im zwei- oder dreidimensionalen
Raum visualisiert werden. Eine weitere, recht neue Technik ist der Verallgemeinerte Pythagorasbaum
[BBM+14]. Jürgensmann und Schulz haben eine Übersicht verschiedener Techniken erstellt [JS10].
Jede dieser Techniken besitzt gewisse Vor- und Nachteile und ist daher je nach Anwendungsbereich
mehr oder weniger gut geeignet.

Im Folgenden werden die bereits genannten Techniken kurz vorgestellt und es wird auf ihre Eigen-
schaften eingegangen. In Abbildung 2.1 werden die verschiedenen Techniken anhand einer einfachen
Hierarchie, die aus sechs Knoten besteht, veranschaulicht.

7

2.1 Hierarchievisualisierung

A

B C

E FD

(a)

A

B

CE

F

D

(b)

A

B C

E FD

(c)

A

B C

E FD

(d)

A

B
C

E F

D

(e)

Abbildung 2.1: Veranschaulichung verschiedener Visualisierungstechniken für Hierarchien:
(a) Node-Link-Diagramm; (b) Treemap; (c) Indented Plot; (d) Layered Icicle Plot
und (e) Verallgemeinerter Pythagorasbaum. (Darstellungen aus [Mun13])

Node-Link-Diagramm Einen klassischen Ansatz zur Visualisierung von Hierarchien stellen Node-
Link-Diagramme dar. Knoten werden hierbei häufig durch Kreise dargestellt, die über Linien mitein-
ander verbunden sind. Oft wird der Wurzelknoten oben abgebildet und die Kinderknoten darunter;
die Anordnung kann allerdings auch auf verschiedene andere Arten erfolgen. Ein Beispiel für ein
Node-Link-Diagramm ist in Abbildung 2.1a zu sehen. Die Struktur von Node-Link-Diagrammen ist
einfach erkennbar und einzelne Pfade können gut verfolgt werden. Der zur Verfügung stehende Platz
wird allerdings nicht effizient genutzt. Außerdem ist diese Methode eher für kleinere Hierarchien
geeignet.

Treemap Bei Treemaps [JS91] wird Verschachtelung zur Visualisierung der Hierarchie verwendet.
Knoten werden durch Rechtecke dargestellt, wobei sich Kinderknoten innerhalb ihrer Elternknoten
befinden, wie in Abbildung 2.1b zu erkennen ist. DieseMethode nutzt den Platz sehr effizient, allerdings
ist die hierarchische Struktur teilweise schwer zu erkennen. Für die Anordnung der Knoten gibt es
mehrere verschiedene Unterteilungsalgorithmen. Ursprünglich wurde das Slice-and-Dice-Verfahren
verwendet. Andere Ansätze sind z.B. Squarified Treemaps [BHW00], bei denen näherungsweise
Quadrate für die Knoten verwendet werden oder kreisförmige Treemaps (Pebbles) [Wet03] und
Voronoi-Diagramme [BDL05], die keine Rechtecke zur Darstellung der Knoten verwenden.

Indented Plot Indented Plots verwenden Einrückung zur Positionierung der Kinderknoten. Alle
Knoten werden horizontal nebeneinander angeordnet, wobei Kinderknoten im Vergleich zu ihren
Elternknoten nach unten eingerückt werden und hierdurch in unterschiedlicher Höhe dargestellt sind.
Knoten gleicher Tiefe in der Hierarchie werden in gleicher Höhe in der Visualisierung dargestellt.
Ein Nachteil dieser Visualisierungstechnik ist, dass sie horizontal viel Platz benötigt. Ein Beispiel ist
in 2.1c zu sehen.
Diese Methode ist aus Dateimanagern bekannt, bei denen die Knoten vertikal angeordnet werden und
Unterhierarchien interaktiv ein- und aufgeklappt werden können. In [BRW10] wurden Indented Pixel
Tree Plots vorgestellt, die auf diesem Verfahren basieren und auch besonders für große Hierarchien
geeignet sind um einen Überblick über die hierarchische Grundstruktur zu liefern.

8

2.2 Visualisierung zeitveränderlicher Daten

Layered Icicle Plot Layered Icicle Plots [KL83] entstehen durch Stapelung der Knoten, wobei
Kinderknoten auf ihre Elternknoten gesetzt werden, wie inAbbildung 2.1d dargestellt. Jeder der Knoten
wird als Rechteck gezeichnet, wobei sich derWurzelknoten häufig oben befindet; Kinderknotenwerden
rekursiv darunter gezeichnet. Der Wurzelknoten benötigt hierdurch horizontal genauso viel Platz
wie seine Kinderknoten. Eine Abwandlungen dieser Darstellung stellt beispielsweise Sunburst [SZ00]
dar, dort wird der Wurzelknoten als Kreis dargestellt und Kinderknoten nach außen in kreisförmigen
Schichten aufgesetzt.

Verallgemeinerter Pythagorasbaum Verallgemeinerte Pythagorasbäume [BBM+14] basieren auf
der Konstruktionsweise von Pythagorasbäumen [Bos57]. Bei Pythagorasbäumen werden Quadrate
über rechtwinklige Dreiecke miteinander verbunden. Dies ermöglicht jedoch nur die Darstellung
binärer Hierarchien. In der Erweiterung werden beliebige konvexe Polygone als Verbindungsele-
mente verwendet; die erweiterte Variante kann dadurch zur Darstellung beliebiger Hierarchien
verwendet werden, wie in Abbildung 2.1e anhand der Beispielhierarchie zu sehen ist. Diese Technik
liefert ästhetische Darstellungen und ist besonders für tiefe Hierarchien geeignet. Nachteile dieser
Visualisierungstechnik sind, dass der zur Verfügung stehende Platz nicht effizient genutzt wird und
Überlappungen der Knoten auftreten können.

2.2 Visualisierung zeitveränderlicher Daten

Für die Visualisierung zeitveränderlicher Daten gibt es sehr viele verschiedene Methoden. In
[AMM+07] kann eine Übersicht verschiedener Techniken gefunden werden. Dort werden verschiede-
ne Kategorien vorgestellt, in welche die unterschiedlichen Techniken eingeordnet werden können.
Visualisierungen zeitveränderlicher Daten werden allgemein dazu verwendet, die Entwicklung von
Daten über die Zeit zu untersuchen, Trends und Muster zu erkennen und um Einsichten sowie ein
tieferes Verständnis für die Daten zu erhalten.

Die in dieser Arbeit verwendete Visualisierungstechnik basiert auf den AOI Rivers [BKW13]; diese
Visualisierungstechnik wurde durch Verwendung der Metapher eines Flusses umgesetzt.

Im Folgenden werden nur die Techniken beschrieben, die für diese Arbeit relevant sind; hierbei wird
auf ThemeRiver [HHWN02] und AOI Rivers [BKW13] eingegangen. Weitere Techniken, die in diesem
Bereich genannt werden sollten, sind Streamgraphs [BW08], CloudLines [KBK11] und StoryFlows
[LWW+13]. Jede dieser Techniken verwendet eine Zeitachse durch die eine zeitliche Veränderung
der Daten dargestellt wird.

ThemeRiver ThemeRiver [HHWN02] ist eine bekannte Technik zur Darstellung zeitveränderlicher
quantitativer Daten. Ursprünglich wurde diese Visualisierungstechnik für die Visualisierung der
Veränderung von Themen in Dokumenten über die Zeit verwendet. Es gibt eine Zeitachse, die von
links nach rechts verläuft und in Zeitintervalle aufgeteilt ist. Die einzelnen Themen werden durch
Teilflüsse in unterschiedlichen Farben dargestellt. In jedem Zeitintervall wird die Häufigkeit der
Themen durch die Flusshöhe des jeweiligen Teilflusses dargestellt. Die einzelnen Werte werden über
kontinuierliche Kurvenmiteinander verbunden um abrupte Änderungen zu vermeiden. Zudemwerden

9

2.3 Softwarevisualisierung

alle Teilflüsse aus ästhetischen Gründen symmetrisch um die Mittelachse aufeinander gestapelt. Es ist
erkennbar, wie die Wichtigkeit, also die Höhe der einzelnen Teilflüsse, wächst, unverändert bleibt oder
abnimmt. Außerdem kann das Verhalten der einzelnen Teilflüsse im Vergleich zueinander betrachtet
werden: Entweder beeinflussen sich mehrere Teilflüsse gegenseitig, weisen ein ähnliches Verhalten
auf oder stehen in keiner Weise in Beziehung zueinander.

AOI Rivers Die AOI Rivers-Visualisierung [BKW13] bietet die Grundlage für die in dieser Arbeit ver-
wendete Visualisierungstechnik. Sie basiert auf der Grundidee der eben beschriebenen ThemeRivers
[HHWN02] und wird für die Visualisierung zeitveränderlicher Daten aus Eye-Tracking-Experimenten
eingesetzt.

Als Erweiterung wurde die ThemeRiver-Visualisierung zur Anzeige weiterer Details angepasst, indem
sie nach dem Konzept der Sankey-Diagramme [Tuf83] um Transitionen sowie Zu- und Abflüsse
erweitert wurde. Mit Hilfe der AOI Rivers ist es möglich, das zeitliche Verhalten von Teilnehmern
eines Eye-Tracking-Experiments zu visualisieren und zu untersuchen. Dabei werden auf dem Bild-
schirm sog. Areas of Interest (AOIs) festgelegt und es wird ermittelt, in welche dieser Bereiche die
Augenbewegungen und Fixationspunkte der Teilnehmer fallen. Zunächst erfolgt die Darstellung
der Ergebnisse durch die Visualisierung eines ThemeRivers, wodurch erkannt werden kann, welche
Bereiche des Bildschirms während des Experiments betrachtet wurden und wie sich die Anzahl der
Teilnehmer, die in diese Bereiche blickten, über die Zeit verändert.

Durch Interaktion ist es möglich, eine detailliertere Ansicht zwischen jeweils zwei Zeitpunkten zu
erhalten, die Informationen darüber liefert, wie Teilnehmer zwischen verschiedenen Bereichen ihre
Augen bewegen und ob sie die als AOIs festgelegten Bereiche des Bildschirms mit ihren Blicken
verlassen bzw. ob sie wieder in die Bereiche schauen. Hiermit können Strategien der Teilnehmer
besser untersucht werden.

Während bei den AOI Rivers Eye-Tracking-Daten aus einer Benutzerstudie analysiert wurden, sollen
im Folgenden Entwicklerzahlen eines Softwaresystems untersucht werden können.

2.3 Softwarevisualisierung

Die Bereiche in denen Softwarevisualisierung eingesetzt werden kann variieren sehr stark. In der
Beschreibung von Softwarevisualisierung geht Stephan Diehl in seinem Buch [Die07] auf drei Unter-
teilungsbereiche ein: Struktur (structure), Verhalten (behaviour) und Entwicklung (evolution). Unter
der Struktur ordnet er statische Elemente und Beziehungen eines Systems ein. Dazu zählen unter
anderem der Programm-Code, Datenstrukturen und statische Call-Graphen. Beim Verhalten bezieht
er sich auf die Ausführung des Programms und bei der Entwicklung werden der Entwicklungsprozess
des Softwaresystems und Codeveränderungen über die Zeit betrachtet.

Die hier entwickelte Visualisierungstechnik kann in den Bereich der Entwicklung eingeordnet wer-
den, da sie den zeitlichen Verlauf der Entwicklung, aber nicht die Software selbst, visualisiert. In
diesem Gebiet kann die Analyse verschiedene Schwerpunkte haben. Es kann der Code berücksichtigt
werden, wie die einzelnen Zeilen über die Zeit verändert werden oder es können einzelne Dateien

10

2.3 Softwarevisualisierung

oder Klassen betrachtet werden. Es gibt sowohl statische als auch dynamische Verfahren, im zweidi-
mensionalen und dreidimensionalen Bereich. Einen groben Überblick über verschiedene Techniken
der Softwarevisualisierung gibt es beispielsweise in [Die07] und [SČG05].

Im Folgenden wird auf einige dieser Techniken genauer eingegangen. Hierbei stehen Verfahren im
Vordergrund, bei denen das Verhalten von Entwicklern betrachtet wird. Zuerst werden die animierte
Techniken Gource [Cau10] und code_swarm [OM09] vorgestellt, danach die statischen Verfahren
Software Evolution Storyline [OM10] und Code Flows [TA08].

2.3.1 Animierte Softwarevisualisierung

Animierte Visualisierungen eines Softwareentwicklungsprozesses sind meist sehr ansprechend ge-
staltet. Sie zeigen wie das System dynamisch bearbeitet und vergrößert wird. Man sieht wie neue
Dateien erstellt werden, wie die Dateien ihre Größe oder Wichtigkeit verändern, wie Entwickler
zum Geschehen hinzukommen, in den Vordergrund treten oder wieder verschwinden. Sie lassen an
dem Entwicklungsprozess in gewisser Weise teilhaben und ihn gebannt verfolgen. Allerdings ist es
schwer, genaue Details festzuhalten und die Animation muss unter Umständen mehrere Minuten
lang aufmerksam verfolgt werden.

code_swarm Mit code_swarm [OM09] kann ein Softwareentwicklungsprozess animiert dargestellt
werden. Hierbei werden die einzelnen Entwickler und die Dateien, die über die Zeit committet werden,
berücksichtigt. Die Dateien werden durch Kreise dargestellt, die Entwickler durch Namenslabel. Bei
jedem Commit werden der Entwickler und die entsprechenden veränderten Dateien hervorgehoben
und die veränderten Dateien bewegen sich auf den Entwickler zu. Die Farben der Dateien deuten
den Dateityp an; ihre Helligkeit, wann die Datei das letzte Mal verändert wurde; die Größe der Datei-
Repräsentationen ist in Abhängigkeit der Anzahl committeter Dateien. Wenn Dateien oder Entwickler
über längere Zeit inaktiv sind, verschwinden sie allmählich wieder aus der Visualisierung. Zusätzlich
wird ein Histogramm für die Anzahl und Art der Commits angezeigt. Durch diese Visualisierung
entsteht eine gute Übersicht über die Entwicklung.

Gource Auch Gource [Cau10] ist ein animiertes Visualisierungswerkzeug, das zusätzlich interaktive
Features bietet. Die einzelnen Entwickler werden zusammen mit einer Projekthierarchie, die sie
dynamisch aufbauen und verändern, visualisiert. Einzelne Dateien werden durch Kugeln visualisiert
und in Abhängigkeit ihres Dateityps eingefärbt. Wenn ein Entwickler eine Datei erzeugt, verändert
oder löscht, bewegt er sich auf sie zu und sendet einen eingefärbten Strahl in Richtung der Datei
aus, der die Art der Änderung andeutet. Verzeichnisse werden durch Splines miteinander verbunden
und Dateien werden in spiralförmigem Muster um das Zentrum des zugehörigen Verzeichnisses
angeordnet. Für die Anordnung der aktiven Verzeichnisse der Projekthierarchie wird ein Force-
Directed-Layoutalgorithmus verwendet.

11

2.3 Softwarevisualisierung

2.3.2 Statische Softwarevisualisierung

Bei statischen Visualisierungen fällt es meist leichter, Details über den Softwareentwicklungsprozess
zu erhalten. In nur einer Abbildung erhält man eine Übersicht über den gesamten Entwicklungsprozess.
Für den dynamischen Aspekt wird häufig eine Zeitachse verwendet,

Software Evolution Storylines Software Evolution Storylines [OM10] veranschaulichen die Zu-
sammenarbeit von Entwicklern in der Softwareprojektentwicklung über die Zeit. Die Zeit verläuft
in Zeitschritten von links nach rechts. Einzelne Entwickler werden in Form von Röhren (Tubes)
unterschiedlicher Farbe dargestellt und durch einen Clustering-Algorithmus in Abhängigkeit der bear-
beiteten Dateien in der Nähe anderer Entwickler platziert. Entwickler die zusammenarbeiten werden
demnach näher beieinander gezeichnet. Zusätzlich wird durch ein Histogramm die Menge und Art
der committeten Dateien in den einzelnen Zeitschritten angezeigt. Bei dieser Visualisierungstechnik
entstehen ästhetische Bilder und sie zeigt mehr Details als animierte Techniken. Der zeitliche Verlauf
ist in einer einzigen Visualisierung zu sehen, welche weiter untersucht werden kann. Ein Nachteil ist,
dass die Technik für große Projekte nicht skaliert, Visual Clutter entsteht und viele Entwickler in das
gleiche Cluster fallen können.

Code Flows Durch Code Flows [TA08] kann die zeitliche Entwicklung der Struktur von Pro-
grammcode genauer untersucht werden. Hierbei können Änderungen wie das Verschieben, Teilen,
Zusammenfügen, Einfügen oder Löschen von Code genauer betrachtet werden. Für die Visualisie-
rung werden gespiegelte Layered Icicle Plots verwendet, welche Codeblöcke aufeinanderfolgender
Versionen repräsentieren. Diese werden durch Splines zur Darstellung von Beziehungen miteinander
verbunden. Dabei wird unterschieden, ob Codefragmente während der Entwicklung fast unverändert
bleiben oder ob sie häufig verändert werden.

12

3 Visualisierungstechnik

In diesem Kapitel wird die verwendete Visualisierungstechnik für die Systemstruktur und die WOI
River-Visualisierung vorgestellt. Zuerst wird auf das verwendete Datenmodell eingegangen, danach
werden die Visualisierungstechniken detailliert beschrieben.

Als Grundlage werden Daten von Softwaresystemen verwendet. Hierbei sind die einzelnen Commits
von Bedeutung, diese sollten folgende Informationen enthalten:

einen Zeitstempel, der das Änderungsdatum angibt,

einen Entwicklernamen, der im Repository für den Entwickler festgelegt wurde und

veränderte Dateien, also alle Dateien, die erzeugt, gelöscht oder bearbeitet wurden.

Aus diesen Daten kann die Projekthierarchie ermittelt und visualisiert werden. Durch die Festlegung
von WOIs innerhalb der Projekthierarchie, eines Zeitbereichs, der Art der Intervalle und durch die
Auswahl (mehrerer) Entwickler kann der zugehörige WOI River berechnet und visualisiert werden.

3.1 Datenmodell

3.1.1 Commit

Ein Commit c ∈ C ist ein 3-Tupel c = (t, d, f), bestehend aus einem Zeitstempel t, einem Ent-
wicklernamen d ∈ D und einer Menge veränderter Dateien f ∈ P(F).
Hierbei ist C die Menge aller Commits, D die Menge aller Entwickler und F die Menge aller Dateien,
die in den Commits vorkommen.

3.1.2 Geschichte

Die gesamte Geschichte eines Softwareprojekts wird als Sequenz aller Commits modelliert:
H = c1 → c2 → · · · → cn mit ci ∈ C

13

3.1 Datenmodell

3.1.3 Hierarchie

Die Hierarchie wird als gerichteter Graph H = (V, E) modelliert, wobei V = {v1, . . . , vk} die
Menge von k Knoten und E ⊂ V × V die Menge der Kanten repräsentiert. Es kann beliebig viele
Wurzelknoten geben (die keine eingehenden Kanten besitzen); die restlichen Knoten besitzen einen
Eingangsgrad von eins. Der Ausgangsgrad aller Knoten ist beliebig. Blattknoten sind die Knoten der
Hierarchie, die keine ausgehenden Kanten besitzen.

Eine Teilhierarchie h = (Vh, Eh) mit Vh ⊆ V und Eh ⊆ E wird entsprechend modelliert, es
gibt allerdings jeweils nur einen Wurzelknoten. Zwei Teilhierarchien sind disjunkt, wenn sie keine
gemeinsamen Knoten besitzen.

Jede Datei in F wird durch einen Dateipfad dargestellt, dieser besteht aus einer Sequenz von Knoten:
fi = vi1 → vi2 → · · · → vim . Die Projekthierarchie wird aus allen vorkommenden Knoten in den
Dateipfaden aller Commits gebildet.

3.1.4 WOI

Ein WOI ist eine Menge aus Teilhierarchien der Hierarchie H:
W = {h1, h2 . . . , hp}

Alle WOIs ergeben eine Menge an l WOIs:
W = {W1, . . . , Wl}

Hierbei dürfen sich zwei WOIs nicht überlappen, d.h. WOIs dürfen keine gemeinsamen Knoten
enthalten.

3.1.5 Entwicklergruppe

Eine Entwicklergruppe ist eine Menge mehrerer Entwickler:
G ⊆ D

Es können mehrere Entwicklergruppen festgelegt werden, deren VereinigungG = G1 ∪G2 ∪· · ·∪Gq

alle Entwickler der ausgewählten Gruppen beinhaltet.

3.1.6 Zeitbereich und Intervalle

Für die WOI River-Visualisierung kann ein beliebiger Zeitbereich [tmin, tmax] angegeben werden.

Falls genau die Zeitspanne, in der alle Commits liegen, dargestellt werden soll, müssen der minimale
und maximale Zeitstempel aller Commits verwendet werden:
tmin = min(t1, t2, . . . , tn),
tmax = max(t1, t2, . . . , tn).

Intervalle können auf zwei verschiedene Arten gebildet werden – entweder in Abhängigkeit der Zeit
oder der Commits.

14

3.2 Hierarchie

Zeitintervalle

Für die Aufteilung des Zeitbereiches [tmin, tmax] in eine festgelegte Anzahl von I Intervallen erhält
jedes Intervall eine Länge t = ⌊ tmax−tmin

I ⌋.

Sollen Zeitintervalle einer festen Länge t gebildet werden, ergeben sich I = ⌈ tmax−tmin
t ⌉ Intervalle.

Commit-Intervalle

Wenn x Commits in ein Intervall fallen sollen, wird die Gesamtzahl i aller Commits, die im angegebe-
nen Zeitbereich liegen, in I = ⌈ i

x⌉ Intervalle aufgeteilt bzw. bei I Intervallen befinden sich x = ⌊ i
I ⌋

Commits in jedem Zeitintervall.

3.1.7 Transitionsmatrizen

Aus den festgelegten WOIs W, dem Zeitbereich [tmin, tmax], der Anzahl an Intervallen I und den
Entwicklern in den ausgewählten Entwicklergruppen G können zeitveränderliche Transitionsmatri-
zen

Mi ∈ M(l + 1 × l + 1,R × R)

berechnet werden. Hierbei wird ein zusätzlicher WOI eingeführt, der für Zu- und Abflüsse zuständig
ist.

Die genaue Berechnung der Transitionsmatrizen wird in Abschnitt 3.3 schrittweise hergeleitet.

3.2 Hierarchie

Die Hierarchievisualisierung repräsentiert die Systemstruktur des Softwareprojekts; in ihr werden
die ausgewählten WOIs farblich hervorgehoben. Dies bietet eine Zuordnung der Arbeitsbereiche zu
den Flüssen des WOI Rivers.

Konstruktion

Die Projekthierarchie kann sowohl als Layered Icicle Plot als auch als Indented Plot visualisiert werden.
Beide visuelle Metaphern können neben der WOI River-Visualisierung platziert werden und benötigen
horizontal wenig Platz. Dabei können die Hierarchiedarstellungen in x- und y-Richtung gestaucht
werden, ohne dass die Grundstruktur verloren geht. Sie eignen sich auch für größere Hierarchien,
wobei die Struktur immer noch gut erkennbar ist. In Abbildung 3.1 sind beide Varianten anhand einer
Beispielhierarchie dargestellt.

Die Wurzelknoten befinden sich links, die Kinderknoten jeweils rechts von ihren Elternknoten. Die
Hierarchie wächst somit von links nach rechts.

15

3.2 Hierarchie

(a) (b)

Abbildung 3.1: Hierarchievisualisierung als (a) Layered Icicle Plot und (b) Indented Plot.

In beiden Fällen werden Knoten in Form von Rechtecken dargestellt, die jeweils eine gleiche Breite
besitzen.

Layered Icicle Plot Bei Layered Icicle Plots werden Kinderknoten rekursiv auf ihre Elternknoten
gesetzt. Dabei werden alle Blattknoten in der gleichen Größe dargestellt. Die Höhe bzw. der Flächenin-
halt eines Elternknotens wird aus der Summe der Höhe bzw. der Flächeninhalte seiner Kinderknoten
ermittelt.

Indented Plot Bei Indented Plots sind Kinderknoten im Vergleich zu ihren Elternknoten nach
rechts eingerückt, alle Knoten gleicher Tiefe werden bei der gleichen x-Koordinate platziert. Hier
werden alle Knoten durch gleich große Rechtecke dargestellt.

Die Bestimmung der Höhe könnte auch in Abhängigkeit der Dateigröße oder der bearbeiteten
Dateien erfolgen. Da im Folgenden nur die Systemstruktur interessiert und der Schwerpunkt auf der
Visualisierung des WOI Rivers liegt, wird die eben beschriebene Festlegung für die Höhe verwendet.

Farben

Wenn keine WOIs ausgewählt sind, wird die Hierarchie in Grautönen eingefärbt. Der verwendete
Grauton spiegelt die Tiefe eines Knotens innerhalb der Hierarchie wider. Alle Knoten erhalten

16

3.3 WOI Rivers

zusätzlich einen Farbverlauf von einem helleren zu einem dunkleren Grauton, um die Abbildung
ästhetischer wirken zu lassen.

Alle Knoten, die zu einemWOI gehören, werden entsprechend der zugeordnetenWOI-Farbe eingefärbt.
Hierbei wird ein Farbverlauf verwendet, sodass die Farbe des WOIs in der Mitte des Knotens sichtbar
ist; nach oben wird sie etwas heller, nach unten dunkler. In diesem Fall gibt es keine zusätzliche
Farbänderung für die Tiefe, um keine Verwirrung mit zusätzlichen Farbtönen zu erzeugen.

Labels

Jeder Knoten erhält ein Label des Datei- bzw. Verzeichnisnamens. Je nachdem ob das Rechteck, das
den Knoten repräsentiert, breiter oder höher ist, wird das Label horizontal bzw. vertikal gezeichnet.
Falls nicht genügend Platz für die gesamte Zeichenkette zur Verfügung steht werden ggf. Ellipsen
verwendet.

3.3 WOI Rivers

Die Visualisierung der WOI Rivers erfolgt im Wesentlichen wie bei der AOI River-Visualisierung.
Zuerst wird eine gestapelte Übersicht der zeitveränderlichen Quantitäten durch einen Fluss, ähnlich
der ThemeRiver-Visualisierung angezeigt; zusätzlich können daraufhin Übergänge, Zu- und Abflüsse
zwischen Teilflüssen eingeblendet werden. Teilweise wurden hier Änderungen im Vergleich zu den
AOI Rivers vorgenommen oder zusätzliche Eigenschaften hinzugefügt.

Im Folgenden wird zunächst die Konstruktion der ThemeRiver-Visualisierung und der einzelnen
Elemente für die Detailansicht (Übergänge, Zu- und Abflüsse) beschrieben. Danach wird auf die Er-
stellung der Transitionsmatrizen eingegangen; diese werden ähnlich der Transitionsmatrizen der AOI
Rivers erstellt, müssen allerding für die Visualisierung eines Softwareentwicklungsverlaufs angepasst
werden. Zudem werden hierbei verschiedene Varianten vorgestellt, die unterschiedliche Darstel-
lungen für die vorliegenden Daten liefern, indem die Gewichtsverteilung für einzelne Entwickler
unterschiedlich vorgenommen wird. Die Transitionsmatrizen bilden die Grundlage für die Visualisie-
rung der einzelnen Komponenten eines WOI Rivers. Anhand eines Beispieldatensatzes können die
Ergebnisse der verschiedenen Vorgehensweisen zur Berechnung der Transitionsmatrizen miteinander
verglichen werden. Zum Schluss wird noch auf weitere visuelle Besonderheiten (Anordnung der
visuellen Elemente und Labels) eingegangen.

3.3.1 Konstruktion

Die Visualisierung des WOI Rivers besteht aus einzelnen Elementen, die zusammen den WOI River
bilden. Im Folgenden wird beschrieben, wie diese einzelnen Komponenten konstruiert werden. Das
Ergebnis des WOI Rivers bildet sich aus dem Zusammenfügen dieser einzelnen Elemente, wie der
Abbildung 3.2 entnommen werden kann.

17

3.3 WOI Rivers

(a) (b)

Abbildung 3.2: Aufbau eines WOI Rivers aus einzelnen Elementen: (a) für die ThemeRiver-Ansicht
und (b) für die Detailansicht

ThemeRiver-Darstellung

Die ThemeRiver-Darstellung entsteht durch gestapelte Darstellung zeitveränderlicher quantitativer
Werte. Als Grundlage für die Werte werden Transitionsmatrizen verwendet, bei denen die Summe
einzelner Zeilen den verwendeten Quantitäten entspricht. (Die Berechnung der Transitionsmatrizen
wird in Kapitel 3.3.2 beschrieben.) Die Anordnung erfolgt hierbei symmetrisch um die x-Achse.
Zwischen den Werten aufeinanderfolgender Intervalle wird aus ästhetischen Gründen interpoliert.

Für die Berechnung der Interpolation wird wie bei den AOI Rivers vorgegangen. Hierbei werden
kubische Bézier-Kurven verwendet, die aus dem Startpunkt P1(xP1 , yP1), dem Endpunkt P2(xP2 , yP2)
und zwei weiteren Kontrollpunkten (C1(xC1 , yC1) und C2(xC2 , yC2)) ermittelt werden (vgl. Abbil-
dung 3.3). Der Start- und Endpunkt entspricht hierbei den Punkten, die interpoliert werden sollen.
Die Koordinaten der weiteren Kontrollpunkte berechnen sich folgendermaßen:

yC1 = yP1

yC2 = yP2

xC1 = xC2 = (xP1 +xP2)
2

Die Darstellung des WOI Rivers kann aus Elementen aufgebaut werden, die aus jeweils zwei ver-
tikal benachbarten Kurven gebildet werden. Je nachdem, ob die ThemeRiver-Visualisierung oder
die Detailansicht angezeigt werden soll, können entsprechende Elemente ein- bzw. ausgeblendet
werden.

18

3.3 WOI Rivers

P1

P2C2

C1

(a)

Abbildung 3.3: Konstruktionsskizze für eine Bézier-Kurve.

Transitionen, Zu- und Abflüsse

Die AOI Rivers besitzen in der Detailansicht Transitionen, Zu- und Abflüsse. Bei den WOI Rivers kann
das Verhalten von Entwicklern zwischen angrenzenden Intervallen dargestellt werden. Die genauen
Werte, die für die Berechnung dieser Elemente verwendet werden, sind in den Transitionsmatrizen
gespeichert.

Für die Visualisierungen der einzelnen Elemente werden vier Punkte (P1(xP1 , yP1), P2(xP2 , yP2),
P3(xP3 , yP3) und P4(xP4 , yP4)) benötigt, zwischen denen der Linienverlauf interpoliert wird.

Transitionen Transitionenwerden verwendet umÜbergänge von Entwicklern zwischen verschiede-
nen Arbeitsbereichen darzustellen. Sie werden, wie auch schon die Elemente der ThemeRiver-Ansicht,
unter Verwendung kubischer Bézier-Kurven konstruiert. Die Berechnung erfolgt analog zur Beschrei-
bung bei der Erzeugung der einzelnen Elemente für die ThemeRiver-Ansicht. Eine Konstruktionsskizze
kann den Abbildungen 3.4a bzw. 3.4b entnommen werden.

Bei den AOI Rivers ist der Abstand zwischen P1 und P2 bzw. P3 und P4 gleich (Abbildung 3.4a). Dies
ist bei den WOI Rivers nicht unbedingt vorausgesetzt, hier können die Abstände auch unterschiedlich
sein, was zu einer Verallgemeinerung führt, die in Abbildung 3.4b schematisch dargestellt ist.

Die Farbe bzw. der Farbverlauf, mit dem eine Transition dargestellt wird, ist davon abhängig, zwischen
welchen WOIs die Transition verläuft.

Zu- und Abflüsse Für Entwickler, die in einem Zeitintervall neu zu der Entwicklung hinzukommen
bzw. diese verlassen, werden Zu- bzw. Abflüsse für die visuelle Repräsentation verwendet. Zuflüsse
werden dabei so gezeichnet, dass sie von oben nach unten verlaufen und an gegebenen Positionen in
den Hauptfluss einfließen; Abflüsse verlassen entsprechend den Hauptfluss und fließen orthogonal
nach unten.

Die Konstruktion erfolgt hierbei mit Hilfe von Kreisen. In Abbildung 3.4c und 3.4d sind die zugehörigen
Konstruktionszeichnungen abgebildet.

Die Beschreibung im Folgenden bezieht sich auf einen Zufluss; für den Abfluss kann die Berechnung
entsprechend angepasst werden.

Ein Zufluss verläuft von P1P2 nach P3P4. Während die Punkte P3 und P4 durch Positionen im Fluss
gegeben sind, werden P1 und P2 so berechnet, dass die entsprechenden Punkte aller Zu- und Abflüsse

19

3.3 WOI Rivers

P1

P3C3

C1

P2

P4C4

C2

(a)

P2

P4C4

C2

P1
P3C3

C1

(b)

P4

P3

P1P2

C2

C1

S4

S2
S1

S3

(c)

P1

P2

P4 P3

C1

C2

S1

S3S4

S2

(d)

Abbildung 3.4: Konstruktionsskizzen für (a) eine Transition zwischen gleichen WOIs, (b) eine Tran-
sition zwischen unterschiedlichen WOIs, (c) einen Zufluss und (d) einen Abfluss.

20

3.3 WOI Rivers

(a) (b) (c)

Abbildung 3.5: Zuflüsse mit unterschiedlichen Werten für v: (a) v = 0 (b) v = 1 (c) v = 0, 7.

horizontal nebeneinander angeordnet sind. Um keine Überschneidungen zu erzeugen, werden die
Koordinaten dieser Punkte so gewählt, dass diese umso weiter links platziert werden, je weiter unten
sich der zugehörige Hauptfluss in der Visualisierung befindet.

Der Zufluss soll vertikal nach unten in die Visualisierung und horizontal in den Hauptfluss einfließen.
Daher werden für die Konstruktion vier weitere Punkte Si(xSi, ySi) benötigt; deren Koordinaten
berechnen sich folgendermaßen:

Mit dem Radius für den inneren Kreis

r = min(xP 3 − xP 1, yP 3 − yP 1) · v mit v ∈ [0, 1]

ergeben sich folgende Koordinaten für Si:

xS1 = xP 1
xS2 = xP 2
yS1 = yS2 = yP 3 − r
yS3 = yP 3
yS4 = yP 4
xS3 = xS4 = xP 1 + r

Die Abschnitte P1S1, P2S2, P3S3 und P4S4 sind gerade Linien. S1C1 bzw. S3C1 legt den Radius des
äußeren Kreises fest und S2C2 bzw. S4C2 entsprechend den inneren. Kreisausschnitte verlaufen von
S1 nach S3 und S2 nach S4.

Hierbei gibt v ein Verhältnis für den Radius an. Je Größer v gewählt wird, umso größer ist der Radius
des Kreises, d.h. bei großen v werden die geraden Strecken kürzer, bei kleinen v größer. In Abbil-
dung 3.5 sind Zuflüsse für unterschiedlich gewählte Werte für v dargestellt. In den Visualisierungen
wurde v = 0, 7 gewählt, da hierdurch noch kein zu starker „Knick“ entsteht und die Ergebnisse der
Visualisierung ästhetisch wirken.

Bei der Untersuchung realer Softwareprojekte wurde festgestellt, dass die Zu- und Abflüsse in der
Visualisierung stark dominieren. Damit sie in den Abbildungen nicht als zu störend auffallen, werden
sie nach oben bzw. unten durch Verringerung der Deckkraft ausgeblendet.

21

3.3 WOI Rivers

3.3.2 Anpassung der Transitionsmatrizen

Bei den AOI Rivers erhält jeder Teilnehmer im Verlauf des Flusses durchgehend die gleiche Höhe
in der Visualisierung zugewiesen (falls er auf eines der festgelegten AOIs schaut). Hier ist es nicht
möglich, dass ein Teilnehmer gleichzeitig auf mehrere Bereiche des Bildschirms schaut. Übertragen auf
unseren Fall würde dies bedeuten, dass Entwickler in jedem Zeitintervall nur einen WOI bearbeiten;
Entwickler bearbeiten jedoch meistens Dateien in mehreren WOIs gleichzeitig bzw. sorgt hier die
Bildung der Intervalle dafür, dass in jedes Intervall Dateiänderungen aus mehreren WOIs fallen.

Würde die Vorgehensweise der AOI Rivers also genau so auf die WOI Rivers übertragen werden, wäre
unter der Berücksichtigung, dass Entwickler mehrere WOIs gleichzeitig bearbeiten, keine Visualisie-
rung möglich. Da dies allerdings unter Umständen sehr häufig vorkommt, muss die Erstellung der
Transitionsmatrizen angepasst werden.

Deshalb können Übergänge zwischen zwei Zeitschritten bzw. Intervallen nicht mehr nur als Wechsel
zwischen zwei Bereichen bzw. als ein Zu- oder Abfluss eines Entwicklers dargestellt werden. Dadurch,
dass mehrere WOIs gleichzeitig bearbeitet werden, findet ein Wechsel zwischen verschiedenen
Bereichen statt. Demnach ist hier eine Aufteilung der Höhe in den Transitionsbereichen (den Bereichen
zwischen zwei Intervallen) notwendig. Außerdem kommt hinzu, dass Entwickler, wenn sie zu dem
Projekt hinzu kommen bzw. wenn sie es verlassen, unter Umständen nicht nur ein WOI, sondern
mehrere WOIs bearbeiten, deshalb werden sie hierbei auf mehrere Zu- bzw. Abflüsse aufgeteilt.

Zusätzlich arbeiten Entwickler mit unterschiedlich großer Beteiligung an Dateien, was ebenfalls
berücksichtigt werden sollte.

Im Folgenden wird für die Berechnung der Transitionsmatrizen jedem Entwickler in jedem Intervall
ein Gewicht zugewiesen, das seine Gesamthöhe in der Visualisierung festlegt.

Für den folgenden Verlauf ergeben sich drei Probleme für die Visualisierung jedes Entwicklers, die
sinnvoll gelöst werden sollten:

Welches Gewicht erhält ein Entwickler über die Zeit?

Das Gewicht eines Entwicklers gibt die Höhe an, mit der er in dem Fluss berücksichtigt wird. Bei den
AOI Rivers wird jeder Teilnehmer jeweils mit der gleichen Höhe berücksichtigt. Auch hier könnte
jeder Entwickler die gleiche Höhe erhalten; hierdurch wäre erkennbar, wann wie viele Entwickler
in den verschiedenen WOIs arbeiten. Die Höhe jedes Entwicklers könnte sich jedoch auch in jedem
Zeitschritt und im Vergleich zu anderen Entwicklern ändern. Wenn nicht die Anzahl der Entwickler,
sondern die Beteiligung an dem Projekt interessiert, kann das Gewicht beispielsweise in Abhängigkeit
der veränderten Dateien in den entsprechenden Intervallen ermittelt werden. Hierdurch kann erkannt
werden, wann bzw. wo es die meisten Änderungen an dem Projekt gab.

Wie wird das Gewicht eines Entwicklers auf die WOIs aufgeteilt, an denen er arbeitet?

Ein Entwickler kann in jedem Intervall verschiedene WOIs bearbeiten. Hier besteht die Möglich-
keit, jedem WOI, der in dem entsprechenden Intervall bearbeitet wurde, den gleichen Anteil vom
Gewicht des Entwicklers zuzuweisen oder die Gewichtung in Abhängigkeit der bearbeiteten Dateien
durchzuführen.

22

3.3 WOI Rivers

Wie werden die Gewichte für die Transitionen aufgeteilt?

Wenn ein Entwickler in aufeinanderfolgenden Intervallen an unterschiedlichen WOIs beteiligt ist,
müssen die Gewichtsanteile für die Transitionen aufgeteilt werden. Ein trivialer Ansatz ist, jeden
Gewichtsanteil eines WOIs im ersten Intervall gleichmäßig auf alle WOIs im zweiten Intervall auf-
zuteilen. Dies hat allerdings teilweise viele Überschneidungen zur Folge; dies wird auch als „Visual
Clutter“ [RLN07] bezeichnet. Darüber hinaus ist diese Aufteilung nicht sehr intuitiv. Ein besseres
Ergebnis wird erzielt, wenn gezeigt werden kann, dass manche Bereiche in beiden Intervallen be-
arbeitet werden, und somit ein Übergang mit einem höheren Gewicht erhalten bleiben kann, statt
diesen unnötig aufzuteilen.

Im Folgenden werden mögliche Lösungsansätze für diese Fragestellungen beschrieben und wie sie
bei der Erstellung der Transitionsmatrizen berücksichtigt werden könnten. Bei der Erklärung werden
meist Visualisierungen verwendet, die das Prinzip für einen Entwickler innerhalb von zwei Intervallen
veranschaulichen.

Vorbereitung

Zunächst muss der gesamte Zeitbereich in Intervalle eingeteilt werden. Ein Intervall deckt eine
gewisse Zeitspanne ab, in die alle Commits fallen, die einen Zeitstempel besitzen, der in diesen
Bereich fällt. Durch die Bildung der Intervalle erfolgt eine Aggregation aller Commits, die in die
entsprechenden Zeitspannen fallen. Bei den Visualisierungen sollte demnach beachtet werden, dass
in den WOI Rivers nur die aggregierten Werte verschiedener Commits innerhalb eines Zeitintervalls
korrekt angezeigt werden, dazwischen (in den Transitionsbereichen) wird interpoliert.

Um an die quantitativen Werte für die Visulisierung zu gelangen, müssen Transitionsmatrizen be-
rechnet werden. Deren Berechnung erfolgt grundlegend wie bei den AOI Rivers, wurde allerdings
erweitert; Grundlage für die Berechnung bilden die Intervalle, die WOIsW und alle Entwickler in
G.

Es wird so vorgegangen, dass für alle Entwickler d ∈ G und jedes Intervall i : 1 ≤ i < I bestimmt
wird, wie viele und welche WOIs in i und dem darauffolgenden Intervall i + 1 bearbeitet wurden.
Falls ein Entwickler im Intervall i keine WOIs bearbeitet hat, bedeutet dies, dass unter Umständen ein
Zufluss entsteht, da der Entwickler im Intervall i nichts zum Projekt beigetragen hat. Danach wird
für alle WOIs t die von ihm im Intervall i + 1 bearbeitet wurden, der zugehörige Eintrag Mi[s][t] der
Transitionsmatrix angepasst, wobei s einen Zufluss repräsentiert.
Falls im Intervall i + 1 keine WOIs bearbeitet wurden, könnten entsprechend Abflüsse entstehen.
Hier wird für alle WOIs t, die im Intervall i bearbeitet wurden, Mi[s][t] angepasst, wobei t einen
Abfluss darstellt.
Falls sowohl im Intervall i als auch im Intervall i+1 WOIs bearbeitet wurden, wird für alle relevanten
WOIs s des Intervalls i für alle bearbeiteten WOIs t des Intervalls i + 1 Mi[s][t] angepasst.

Durch I Matrizen Xi ∈ X(|D| × l,N) wird repräsentiert welche WOIs bearbeitet wurden und evtl.
wie oft. Um diese zu ermitteln, wird über jeden Commit cp der Geschichte H iteriert und geprüft, ob
der zugehörige Zeitstempel tp in dem darzustellenden Zeitbereich, d.h. in [tmin, tmax], liegt. Falls dies
zutrifft, wird ermittelt, in welches Zeitintervall i tp fällt. Anschließend wird über alle Dateien, die

23

3.3 WOI Rivers

1·A 2·A

(a)

1·A 2·A

(b)

Abbildung 3.6: Verschiedene Methoden zur Vergabe der Höhe eines Entwicklers: (a) jeder Entwickler
ist in der Visualisierung über den gesamten Verlauf des Flusses durch die gleiche
Höhe dargestellt; (b) die Höhe eines Entwicklers ist abhängig von der Anzahl seiner
veränderten Dateien in den entsprechenden Intervallen.

für den Commit verändert wurden, iteriert, der WOI Wa ermittelt, zu dem die entsprechende Datei
gehört und der Eintrag in Xp(dp, a) angepasst.

Gesamthöhe

Die Höhe bzw. die Gewichte eines Entwicklers können entweder für jeden Entwickler und jedes
Intervall gleich sein, in Abhängigkeit der Anzahl der Dateien, die in einem Zeitintervall bearbeitet
wurden oder in Abhängigkeit der Anzahl der bearbeiteten WOIs bestimmt werden.

Wenn jedem Entwickler in jedem Zeitintervall das gleiche Gewicht zugeordnet wird, entspricht die
Gesamthöhe des WOI Rivers der Anzahl an Entwicklern, die im jeweiligen Intervall mindestens
eine Datei bearbeitet haben; es ist also erkennbar, wie viele Entwickler über die Zeit an jedem WOI
gearbeitet haben. Ein Entwickler wird durchgehend mit der gleichen Höhe gezeichnet.

Bei Gewichten in Abhängigkeit der bearbeiteten Dateien kann in der Visualisierung besser erkannt
werden, in welchen Arbeitsbereichen vermehrt gearbeitet wird. Hierbei ist allerdings nicht mehr
erkennbar, wie viele Entwickler an den Änderungen beteiligt sind. In diesem Fall wird ein Entwickler
im Verlauf des Flusses nicht mehr durchgehend mit der gleichen Höhe dargestellt, sondern sein Anteil
verändert sich, je nachdem, ob er im nachfolgenden Intervall jeweils mehr oder weniger Dateien des
Projekts bearbeitet hat. Das Gewicht für jeden Entwickler in jedem Intervall kann aus Xi erhalten
werden, indem die einzelnen Werte eines Entwicklers in einem Zeitintervall summiert werden.

Außerdem kann das Gewicht in Abhängigkeit der Anzahl der bearbeiteten WOIs ermittelt werden;
hierbei wird nicht berücksichtigt, wie viele Dateien in einem entsprechenden WOI bearbeitet wurden,
sondern nur, dass sie bearbeitet wurden. Hiermit ist wieder erkennbar, von wie vielen Bearbeitern
einzelne WOIs bearbeitet wurden, da jeder Entwickler in jedem bearbeiteten WOI die gleiche Höhe
erhält. Hier wird das Gewicht durch Summierung der Vorkommnisse der bearbeiteten WOIs eines
Entwicklers in einem Zeitintervall ermittelt.

24

3.3 WOI Rivers

1·B

1·C

1·A

(a)

1·B

4·C

2·A

(b)

Abbildung 3.7: Veranschaulichung der Aufteilung der Höhe eines Entwicklers: (a) gleichmäßig auf
alle bearbeiteten WOIs; (b) in Abhängigkeit der veränderten Dateien innerhalb der
WOIs.

In den Abbildungen 3.6a und 3.6b sind Beispiele für die Höhenfestlegung eines Entwicklers dargestellt,
welcher jeweils im ersten Intervall eine Datei und im zweiten Intervall zwei Dateien bearbeitet. In
Abbildung 3.6a hat der Entwickler durchgehend die gleiche Höhe; in Abbildung 3.6b verändert sie
sich in Abhängigkeit der bearbeiteten Dateien.

Aufteilung der Höhe

Wie bereits erwähnt, arbeitet ein Entwickler meistens an mehreren Dateien gleichzeitig, daher ist
eine Aufteilung seines Gewichts auf mehrere WOIs in jedem Intervall notwendig.

Hier gibt es die Möglichkeit, dass das Gesamtgewicht eines Entwicklers entweder gleichmäßig auf
alle WOIs aufgeteilt wird oder in Abhängigkeit der veränderten Dateien.

Beispiele für eine mögliche Aufteilung der Höhe für die gleichen Daten sind in Abbildung 3.7 darge-
stellt.

Höhe der Transitionen, Zuflüsse und Abflüsse

Das Teilgewicht, das ein Entwickler für einen WOI in einem Intervall erhalten hat, muss in den
Transitionen auf die WOIs im nächsten Intervall aufgeteilt werden.

Da Entwickler in zwei aufeinanderfolgenden Intervallen ein unterschiedliches Gewicht besitzen
können, müssen für Transitionen in der Transitionsmatrix jeweils zwei Werte gespeichert werden –
einer für das Intervall i und einer für das Intervall i + 1. Wenn ein Entwickler im Verlauf des Flusses
immer das gleiche Gewicht besitzt, sind beide Werte gleich; dies trifft auch bei Zu- und Abflüssen zu.
Die beiden Werte unterschieden sich nur für die Transitionen, die gebildet werden, wenn sich das
Gewicht eines Entwicklers über die Zeit verändert.

25

3.3 WOI Rivers

Im einfachsten Fall kann das Teilgewicht, das ein Entwickler für ein WOI zugewiesen bekommen hat,
gleichmäßig auf alle WOIs im nächsten Intervall aufgeteilt werden. Diese Vorgehensweise ist zwar
recht einfach zu berechnen, allerdings nicht intuitiv für das Verständnis der Visualisierung, da viele
unnötige Übergänge entstehen können.

Für die folgenden Beispiele sind in Abbildung 3.8 Visualisierungen für jeweils die ThemeRiver-
Darstellungen, die eben beschriebene Methode und eine Optimierung dargestellt.
Angenommen ein Entwickler arbeitet über längere Zeit an zwei verschiedenen WOIs A und B, durch-
gehend zu gleichen Anteilen, dann sollten diese WOIs nicht aufgeteilt werden (vgl. Abbildung 3.8b)
sondern die Übergänge jeweils zwischen den gleichen WOIs verlaufen, wie in Abbildung 3.8c darge-
stellt.
Der gleiche Grundgedanke gilt auch, wenn ein Entwickler zuerst weniger an A arbeitet und im
nächsten Intervall mehr. Hier wäre es entsprechend nachvollziehbarer, größtmögliche Arbeitskapazi-
täten zu gleichen WOIs überfließen zu lassen und nur die restliche Kapazität auf die weiteren WOIs
aufzuteilen (Abbildung 3.8f).
Entsprechendes gilt auch beispielsweise, wenn ein Wechsel von zwei zu drei WOIs stattfindet. Zum
einen könnte hier auch die Höhe von WOI A und B in je drei Anteile unterteilt werden, sodass die
neuen WOIs aus je einem Anteil von A und B gebildet werden. Auch hier wäre es allerdings sinnvoller
und intuitiver, wenn die größtmögliche Höhe von A bzw. B beibehalten wird und nur der neue WOI
aus der restlichen Kapazität entsteht (Abbildung 3.8i).
In Abbildung 3.9 ist zudem noch ein Extremfall dargestellt, bei dem in zwei aufeinanderfolgenden
Intervallen die genau gleichen WOIs bearbeitet werden.

Für diese Erweiterung muss zuerst für alle WOIs geprüft werden, ob der gleiche WOI auch im
nachfolgenden Intervall bearbeitet wird. Falls dies zutrifft, wird das maximale Gewicht ermittelt, das
zwischen den beiden WOIs fließen kann. Diese Werte müssen gespeichert werden, um später noch
das restliche Gewicht auf die weiteren WOIs aufteilen zu können.

Durch Rundungsfehler bei der Fließkommazahlenrechnung können sehr viele sehr dünne Transitionen
entstehen, da ein durch Rundungsfehler übrig gebliebener Wert auf die weiteren WOIs verteilt wird.
Daher wird zusätzlich gespeichert, ob das gesamte Gewicht eines WOIs für eine Transition bereits
vergeben ist.

Die Werte, die hier für jeden Entwickler ermittelt werden, müssen in der Transitionsmatrix für die
entsprechenden WOIs und Intervalle addiert werden.

Übersicht der Darstellungsmöglichkeiten

In den Abbildungen 3.10, 3.11 und 3.12 sind die Ergebnisse der hier vorgestellten Visualisierungs-
technik anhand eines Beispieldatensatzes veranschaulicht. Der Datensatz enthält 5 Entwickler und es
wurden 5 WOIs festgelegt.

Während in Abbildung 3.10a die Hierarchievisualisierung der Systemstruktur mit den ausgewählten
WOIs dargestellt ist, können in 3.10b und 3.10c WOI River-Visualisierungen als Übersicht und De-
tailansicht gefunden werden. Bei den hier abgebildeten Visualisierungen wird jeder Entwickler mit
der gleichen Höhe dargestellt. Die Höhe jedes Entwicklers wird in Abhängigkeit der bearbeiteten

26

3.3 WOI Rivers

A

B

A

B

(a)

A

B

A

B

(b)

A

B

A

B

(c)

A

B

A

B

(d)

A

B

A

B

(e)

A

B

A

B

(f)

A

B

B

C

(g)

A

B

B

C

A

B

B

C

(h)

A

B

B

C

(i)

Abbildung 3.8: Veranschaulichung des WOI Rivers für zwei Intervalle und einen Entwickler, der an
zwei (a – f) bzw. drei (g – i) WOIs arbeitet. Während bei (a – c) beide WOIs in beiden
Intervallen zu gleichen Anteilen bearbeitet werden, wird in (d – f) eine unterschiedli-
che Gewichtung für die WOIs verwendet. In (g – h) kommt eines weiterer WOI hinzu.
(a), (d) und (g) zeigen die ThemeRiver-Visualisierungen, die zwei nachfolgenden
Bilder jeweils die dazugehörige Detailansicht. Bei (b), (e) und (h) werden Übergänge
gleichmäßig aufgeteilt; bei (c), (f) und (i) werden Transitionen zwischen gleichen
WOIs nicht unnötig aufgeteilt.

27

3.3 WOI Rivers

(a) (b) (c)

Abbildung 3.9: Veranschaulichung des WOI Rivers für zwei Intervalle und einen Entwickler, bei
dem in jedem Intervall die gleichen WOIs mit jeweils gleichen Gewichten dargestellt
werden: (a) ThemeRiver-Ansicht; (b) Detailansicht, bei der Transitionen gleichmäßig
aufgeteilt werden; (c) Detailansicht, bei der Transitionen nicht unnötig aufgeteilt
werden.

Dateien in den einzelnen WOIs aufgeteilt und Transitionen werden nicht unnötig aufgeteilt. Diese
Visualisierung gibt demnach einen Überblick über das Entwicklerverhalten, aus dem ersichtlich wer-
den kann, wie viele Entwickler ihre Arbeitsleistung prozentual in die verschiedenen Arbeitsbereiche
investiert haben.

In den Abbildungen 3.11 und 3.12 sind Visualisierungen zum gleichen Datensatz als Übersicht über
die Ergebnisse der beschriebenen Varianten der Transitionsmatrizen dargestellt. Während in 3.11 alle
WOI Rivers nur einen Entwickler berücksichtigen, werden in 3.12 alle Entwickler berücksichtigt. In
den oberen Darstellungen ist die Höhe jedes Entwicklers gleich und in den unteren abhängig von der
Anzahl der bearbeiteten Dateien (rechts) bzw.WOIs (links). Links erfolgt eine gleichmäßige Aufteilung
der Höhe auf alle bearbeiteten WOIs, rechts in Abhängigkeit der bearbeiteten Dateien. Es sind jeweils
eine Übersicht und die Detailansichten mit einer gleichmäßigen Aufteilung der Transitionen und der
optimierten Variante (die ein unnötiges Aufteilen der Transitionen verhindert) zu sehen.

3.3.3 Vertikale Anordnung

In der vertikalen Anordnung der Teilflüsse eines WOIs werden zuerst die Zuflüsse gezeichnet, danach
alle Transitionen und zum Schluss folgen die Abflüsse. Die Transitionen werden dabei in der Reihen-
folge, in der sie in den Transitionsmatrizen bzw. im WOI River vorkommen angeordnet, um keine
unnötigen Überschneidungen zu erzeugen. Diese Anordnung wurde im Vergleich mit der Umsetzung
bei den AOI Rivers verändert. Bei diesen werden zuerst Transitionen zum selben WOI und danach erst
die Transitionen, die zu den restlichen WOIs fließen, in vertikaler Reihenfolge angeordnet. Bei der
optimierten Anordnung für WOI Rivers überschneiden sich die verschiedenen Arten der Transitionen
nicht unnötig (wie in Abbildung 3.13 anhand eines Beispiels für einen AOI River und einen WOI River
zu sehen ist).

28

3.3 WOI Rivers

(a)

(b)

(c)

Abbildung 3.10: Visualisierung für einen Beispieldatensatz mit (a) der Projekthierarchie, (b) der
Übersichts-Visualisierung und (c) der Detailansicht.

3.3.4 Zeichenreihenfolge

Im Hintergrund werden die Zu- und Abflüsse gezeichnet. Die restlichen Transitionen werden im
Vordergrund abgebildet. Alle Transitionen eines Transitionsbereichs werden nach ihrer Höhe sortiert
und so angeordnet, dass dünnere Übergänge weiter vorne gezeichnet werden, damit sie nicht von
dickeren Übergängen überdeckt werden.

3.3.5 Labels

Es gibt verschiedene Labels für die WOI River Visualisierung. Nicht alle Labels können gleichzeitig
angezeigt werden, da die Berechnungen der Positionen unabhängig voneinander ablaufen.

29

3.3 WOI Rivers

Übersicht

Detailansicht

Höhe jedes WOIs ist gleich

Transitionen beibehalten

Höhe eines WOIs in Abhängigkeit
veränderter Dateien

Transitionen gleichmäßig aufgeteilt

(a)

Übersicht

Detailansicht

Höhe jedes WOIs ist gleich

Transitionen beibehalten

Höhe eines WOIs in Abhängigkeit
veränderter Dateien

Transitionen gleichmäßig aufgeteilt

(b)

Abbildung 3.11: Übersicht über verschiedene Darstellungsmöglichkeiten für einen Beispieldatensatz
anhand eines Entwicklers. (a) In Abhängigkeit der Anzahl an Entwicklern und (b) in
Abhängigkeit der Anzahl an veränderten Dateien.

30

3.3 WOI Rivers

Übersicht

Detailansicht

Höhe jedes WOIs ist gleich

Transitionen beibehalten

Höhe eines WOIs in Abhängigkeit
veränderter Dateien

Transitionen gleichmäßig aufgeteilt

(a)

Übersicht

Detailansicht

Höhe jedes WOIs ist gleich

Transitionen beibehalten

Höhe eines WOIs in Abhängigkeit
veränderter Dateien

Transitionen gleichmäßig aufgeteilt

(b)

Abbildung 3.12: Übersicht über verschiedene Darstellungsmöglichkeiten für einen Beispieldatensatz
mit mehreren Entwicklern. (a) In Abhängigkeit der Anzahl an Entwicklern und
(b) in Abhängigkeit der Anzahl an veränderten Dateien.

31

3.3 WOI Rivers

A

B

B

(a)

A

B

B

(b)

A

B

B

(c)

Abbildung 3.13: Anpassung der Reihenfolge im Vergleich mit den AOI Rivers: (a) Übersicht; (b) AOI
River-Reihenfolge; (c) WOI River-Reihenfolge.

(a)

(b)

(c)

Abbildung 3.14: Veranschaulichung einiger Methoden zur Anzeige von Labels: (a) Intervall-Labels,
(b) Entwickler-Labels und (c) WOI-Labels.

Allgemein bestehen die Labels (bis auf die Intervall-Labels) aus semi-transparenten abgerundeten
Rechtecken, auf die der entsprechende Text gezeichnet wird. Die Farbe der Rechtecke ist je nach Art
des Labels weiß bzw. schwarz und der Text schwarz bzw. weiß. Durch Verwendung von Transparenz
ist es möglich, den Umriss des Flusses trotz Labels zu erkennen.

Die Intervall-Labels werden grau gezeichnet.

Intervall-Labels

Für jedes Intervall kann ein Label mit dem Zeitbereich, aus dem die Daten für die Flussdarstellung
stammen, sowie mit den Nummern der in dem Intervall vorkommenden Commits (alle Commits
sind dabei von 1 bis zur Anzahl an verwendeten Commits durchnummeriert). Ein Beispiel ist in
Abbildung 3.14a dargestellt.

32

3.3 WOI Rivers

Entwickler-Labels

In jedem Zeitintervall können für jeden WOI die Entwickler mit den meisten Beteiligungen angezeigt
werden (vgl. Abbildung 3.14b). Der Entwickler, der die meisten Dateien verändert hat, wird in der Mitte
dargestellt; nach außen sinkt der Beitrag der Entwickler. Zusätzlich spiegelt sich in der verwendeten
Schriftgröße die Beteiligung der Entwickler wider: Je mehr Dateien von einem Entwickler verändert
wurden, umso größer ist dessen Schriftgröße; dabei wird allerdings die Schriftgröße beim Erreichen
eines minimalenWertes nicht weiter verkleinert, um die Lesbarkeit zu erhalten. Der vertikale Platz, der
mit Labels aufgefüllt werden kann, entspricht der Höhe des jeweiligen Flusses in dem entsprechenden
Intervall. Weniger wichtige bzw. kleinere Flüsse erhalten dadurch keine Labels während in den
größeren mehrere Entwickler angezeigt werden können.

WOI-Labels

Um einen schnellen Überblick über die Bedeutungen der einzelnen Flüsse in der Projekthierarchie
zu erhalten, können die Bezeichnungen der WOIs als Labels angezeigt werden, wie z.B. in Abbil-
dung 3.14c zu sehen ist. Für jeden Fluss werden die Labels horizontal an der Stelle mit der weitesten
Ausdehnung gezeichnet; gibt es mehrere Stellen mit der gleichen vertikalen Ausdehnung, wird eine
Position verwendet, die nach Möglichkeit weit links im Fluss liegt. Horizontal befinden sich die Labels
mittig im Fluss des entsprechenden WOIs. Die Labels werden in der Reihenfolge ihrer maximalen
Ausdehnungen gezeichnet, sodass zuerst Labels für Bereiche mit größeren Ausdehnungen, gefolgt
von den restlichen gezeichnet werden. Zudem werden sie nur dann gezeichnet, wenn sie sich mit
keinen bereits gezeichneten Labels überschneiden. Hierdurch sind wichtigere Labels sichtbar und
überdecken sich nicht mit weiteren Labels.

Werte-Labels

Für jeden Fluss können in jedem Intervall Werte-Labels angezeigt werden, um herauszufinden, wie
viele Entwickler an einem Fluss arbeiten (relativ gesehen) bzw. wie viele Dateien bearbeitet wurden.
Hierbei wird ähnlich wie bei den WOI-Labels vorgegangen: Die horizontale Positionierung erfolgt in
jedem Fluss mittig; zuerst werden höhere Werte gezeichnet und nur dann wenn sie sich nicht mit
bereits gezeichneten Labels überschneiden.

Summe der Entwickler bzw. veränderter Dateien

Zudem kann über jedem Intervall ein Label platziert werden, das die Anzahl der Entwickler bzw. die
Anzahl der veränderten Dateien in dem entsprechenden Intervall anzeigt.

33

3.4 Farbvergabe

3.4 Farbvergabe

Durch Verwendung von Farbe wird die Hierarchievisualisierung mit der WOI River-Visualisierung
verbunden, indem ein Fluss des WOI River jeweils die gleiche Farbe wie die zugehörigen Arbeitsbe-
reiche der Systemstruktur erhält. Dabei sollte versucht werden, Farben mit einem möglichst hohen
Kontrast zueinander zu verwenden, um die einzelnen Bereiche unterscheiden zu können und eine
eindeutige Zuordnung zwischen den Arbeitsbereichen in der Hierarchie und dem entsprechenden
Fluss zu ermöglichen. Eine zusätzliche Schwierigkeit ist, dass die Anzahl der Farbwerte, die benötigt
werden, nicht von vornherein bekannt ist, da in der Anwendung beliebig viele weitere WOIs angelegt
werden können und eine Anpassung der Farben bei der Festlegung jedes neuen WOIs keine sinnvolle
Lösung wäre.

Die Farbvergabe für die WOIs kann auf drei verschiedene Arten erfolgen:

Mit Hilfe des Verfahrens von Ankerl [Ank09] können Farben mit hohem Kontrast für jeweils zwei
aufeinander folgende Farben erzeugt werden. Hierfür werden Farben im HSV-Farbraum berechnet,
wobei die Farbsättigung (saturation) und die Helligkeit (value) konstant bleiben; nur der Farbton
(hue) ändert sich. Die Berechnung des Farbtons basiert auf der Verwendung des Goldenen Schnitts,
um gleichmäßig verteilte Werte zu erhalten, unabhängig davon, wie viele Farben verwendet werden.
Farben wiederholen sich bei dieser Technik nie, allerdings können sie mit der Zeit ähnlich zu bereits
verwendeten Farben sein.

Außerdem besteht die Möglichkeit, Farbwerte aus einer vordefinierten Liste an Farben zu verwenden,
die so gewählt wurden, dass sie ästhetisch wirken und unterscheidbar sind. Die Liste besitzt allerdings
eine begrenzte Anzahl an Farbwerten, wodurch eine Wiederholung der Farben in der Visualisierung
nicht ausgeschlossen ist.

Darüber hinaus können die Farben auch für jeden WOI manuell festgelegt werden.

34

4 Implementierung

Die Anwendung für die Visualisierung der WOI Rivers ist in C++ und Qt implementiert. Sie bietet
die Möglichkeit, die Systemstruktur eines Softwareprojekts anzuzeigen und für ausgewählte Arbeits-
bereiche den zugehörigen WOI River zu visualisieren. Dabei gibt es verschiedene Einstellungs- und
Interaktionsmöglichkeiten um den Entwicklungsprozess eines Softwareprojekts zu untersuchen.

In dem hier abgebildeten Diagramm ist der schematische Ablauf dargestellt, wie Visualisierungen
zu einem Softwareentwicklungsprozess erhalten werden können; dabei werden die Gewinnung der
Eingabedaten und die Hauptmerkmale der Anwendung berücksichtigt.

Log-Datei

Projekt-
hierarchie

Entwickler

Zeitbereich

weitere
Einstellungen

Transitions-
matrizen

WOIs

Entwicklergruppen

Zeitbereich, Intervalle

Höhe, Anordnung

Versions-
kontroll-
system

Interaktion

WOI River

Interaktion

Abbildung 4.1: Veranschaulichung der wichtigsten Elemente der Datei-Erzeugung und Implemen-
tierung – von der Datenquelle bis zur Visualisierung des WOI Rivers.

Zuerst muss aus einem Repository eines Softwareprojekts eine Log-Datei der Entwicklungsgeschichte
erzeugt werden (genaueres dazu folgt in Abschnitt 4.3). Diese Datei kann in die Anwendung geladen
werden und aus den enthaltenen Commit-Informationen wird die zugehöriger Projekthierarchie
aufgebaut und visualisiert; außerdem werden die Zeitpunkte des ersten und letzten Commits und die
Namen aller beteiligten Entwickler ermittelt.
In der Hierarchie können anschließend interaktiv WOIs definiert werden; außerdem ist es möglich,
den Zeitbereich und die Art der Intervalle festzulegen sowie Entwicklergruppen zu erstellen, die für
die Visualisierung berücksichtigt werden sollen. Beschreibungen dieser Grundfunktionen folgen in
Abschnitt 4.4. Aus diesen Informationen bzw. Einstellungen werden die Transitionsmatrizen für den
WOI River berechnet, welche daraufhin für dessen Visualisierung Verwendung findet.

In der Anwendung spielt Interaktion eine sehr große Rolle. Bereits bei der Auswahl und Festlegung
verschiedener WOIs können innerhalb der Systemstruktur interaktiv verschiedene Arbeitsbereiche als
WOIs ausgewählt werden. Nachdem der zugehörige WOI River angezeigt wird, bietet dieser zunächst
als ThemeRiver einen Überblick darüber, wie viele Entwickler an dem Projekt beteiligt sind bzw. wie

35

4.1 Vorverarbeitung

viele Veränderungen an dem Projekt in den verschiedenen Arbeitsbereichen über die Zeit vorgenom-
men wurden. Erst durch Interaktion ist es möglich, weitere Besonderheiten herauszufinden.

In vielen Anwendungen findet sich das Prinzip des Visual Information Seeking Mantra: „Overview
first, zoom and filter, then details-on-demand“ [Shn96]. In der hier entwickelten Anwendung kann
dieses Prinzip sowohl bei der Hierarchie- als auch bei der WOI-River-Visualisierung wiedergefunden
werden.

Betrachten wir zuerst die Hierarchiedarstellung: Zunächst wird eine Übersicht über die Systemstruk-
tur des gesamten Projekts angezeigt. Anschließend kann sowohl geometrisch als auch semantisch
gezoomt werden und weitere Details zu einem Knoten können durch Klick auf diesen herausgefunden
werden.

Entsprechend bietet die WOI River-Visualisierung zunächst als ThemeRiver eine Übersicht des
Entwicklungsverlaufs; durch das Anzeigen von Transitionen sowie Zu- und Abflüssen und das
Einblenden weiterer Informationen in Bezug auf einen Fluss, kann das Visualisierte besser verstanden
werden.

Beide Visualisierungen bieten noch weitere Einstellungs- und Interaktionsmöglichkeiten, auf die in
Abschnitt 4.5 genauer eingegangen wird.

Im Folgenden wird zuerst beschrieben, wie eine Datei, welche Informationen bezüglich der Ent-
wicklungsgeschichte enthält, aus dem Repository eines Versionskontrollsystems gewonnen und für
die Anwendung angepasst werden kann. Danach werden die Benutzeroberfläche und ihre Hauptbe-
standteile grob vorgestellt und es folgt eine Beschreibung des Imports, der Grundfunktionen sowie
weiterer Funktionalitäten und Interaktionsmöglichkeiten des Programms. Zum Schluss werden noch
verschiedene Export-Möglichkeiten beschrieben.

4.1 Vorverarbeitung

Es gibt heute sehr viele verschiedene Versionskontrollsysteme. Bei jedem entstehen unterschiedlich
formatierte Log-Ausgaben, welche Informationen zur Entwicklungsgeschichte eines Projekts enthal-
ten. Die Datensätze, die im Rahmen dieser Arbeit verwendet wurden, stammen aus Git-, Mercurial-,
Subversion- und Bazaar-Repositories. Die hier entwickelte Anwendung verwendet ein unabhängiges
Format und ist daher nicht auf ein bestimmtes Versionskontrollsystem beschränkt.

Mercurial- oder Subversion-Repositories bieten bereits die Möglichkeit, die Versionsgeschichte im
XML-Format zu erzeugen. Diese Dateien können direkt in die Anwendung geladen werden. Zur
Erzeugung der Log-Dateien können folgende Programmaufrufe verwendet werden:

Mercurial: hg log --style=xml -v

Subversion: svn log --xml -v

Bei der Suche nach Open-Source-Softwareprojekten wurde festgestellt, dass viele Projekte inzwischen
mit Git verwaltet werden. Da es hierfür keine XML-Ausgabe der Versionsgeschichte gibt, muss dies
auf eine andere Art, beispielsweise durch ein Skript erzeugt werden. Bei Bazaar gibt es zwar eine
XML-Ausgabe, diese muss allerdings zuerst an das entsprechende Format angepasst werden.

36

4.2 Benutzeroberfläche

Der genaue Aufbau des Eingabeformats folgt in Kapitel 4.3.

4.1.1 Vorfilterung

Es kommt vor, dass Entwickler in einem Commit nur eine kleine Änderung machen, die jedoch
eine Auswirkung auf sehr viele andere Dateien hat. Beispielsweise könnte der Name einer Klasse
verändert werden, was zur Folge hätte, dass alle Dateien, die diese Klasse verwenden, auch verändert
werden müssen. Solche Commits sind meistens die Folge von Änderungen an der Infrastruktur und
sorgen für Rauschen. In [ZW04] wird dieses Problem durch Filtern aller Commits, die mehr als N
Änderungen enthalten, behoben. Eine sinnvolle obere Grenze für N ist dabei von dem jeweiligen
Projekt abhängig.

4.2 Benutzeroberfläche

In Abbildung 4.2 ist die Benutzeroberfläche der Anwendung zu sehen. Sie besteht aus vier Hauptteilen:
der Hierarchievisualisierung zur Auswahl von WOIs, der Hauptansicht mit der Darstellung des WOI
Rivers und den Dock Widgets, in denen der Zeitbereich, Intervalle und Entwicklergruppen festgelegt
sowie weitere Einstellungen vorgenommen werden können. Ein weiteres Dock Widget bietet eine
Übersicht über den WOI River, in der die aktuelle Position des dargestellten Bereichs in Bezug auf die
Hauptansicht erkennbar ist.

Hierarchieansicht

Für die Visualisierung der Projekthierarchie stehen zwei verschiedene visuelle Metaphern zur Ver-
fügung: zum einen ein Layered Icicle Plot, zum anderen ein Indented Plot (vgl. Abbildung 3.1). Die
inneren Knoten repräsentieren im Normalfall Verzeichnisse und die Blattknoten Dateien (oder leere
Verzeichnisse).

Die Hierarchievisualisierung bietet die Grundlage zur Festlegung von WOIs für die WOI River-
Visualisierung; zusätzlich bietet sie Interaktions- und Navigationsmöglichkeiten um die visualisierten
Daten zu reduzieren.

WOI River-Ansicht

In der Hauptvisualisierung wird der WOI River zu den zuvor festgelegten WOIs, Entwicklern und dem
angegebenen Zeitbereich dargestellt. Hierbei ist die Darstellung in Hinsicht auf mehrere Parameter
veränderbar und Interaktionstechniken unterstützen die Analyse der visualisierten Daten.

37

4.2
B

enutzeroberfläche

Abbildung 4.2: Benutzeroberfläche der Anwendung zur Visualisierung der WOI Rivers.

38

4.3 Import

Dock Widgets

In den Dock Widgets können verschiedene Einstellungsmöglichkeiten für die Hierarchie- und WOI
River-Visualisierung gefundenwerden. Außerdem können allgemeine Informationen zu den geladenen
Daten und visualisierten Elementen angezeigt werden.

Es stehen insgesamt neun Dock Widgets mit unterschiedlichen Informationen, Funktionen und
Einstellungsmöglichkeiten bereit. Die einzelnen Dock Widgets können ausgeblendet sowie aus dem
Fenster gelöst werden, um dadurch mehr Platz für die Hauptvisualisierungen zur Verfügung zu
haben.

Menü

Im Anwendungsmenü findet sich die Möglichkeit zum Importieren der Log-Datei und verschiedene
Export-Funktionalitäten. Darüber hinaus gibt es hier die Möglichkeit, Teile des Fensters ein- bzw.
auszublenden und eine Funktion zur Festlegung von WOIs durch die Verwendung von Filtern.

4.3 Import

Wie bereits beschrieben werden für die Visualisierung Commit-Informationen eines Repositories
benötigt, welche jeweils Informationen bezüglich des Änderungsdatums, des Entwicklernamens und
der veränderten Dateien enthalten. Als Eingabe erwartet die Anwendung eine XML-Datei, welche
diese Informationen enthält; das Format dieser Datei muss folgendem Schema entsprechen:

<log>

<logentry>

<date>2013-15-09T00:00:00+01:00</date>

<name>Alice</name>

<paths>

<path>Lorem/ipsum/dolor/amet</path>

<path>Lorem/diam/nonumy/eirmod</path>

...

</paths>

</logentry>

...

</log>

Innerhalb eines log-Elements können die einzelnen Commits in beliebiger Reihenfolge angegeben
werden. Jeder logentry-Eintrag repräsentiert einen Commit, date enthält das Datum des Commits, name
den Namen des Entwicklers und in paths werden alle Pfade separat zwischen path-Tags angegeben.

39

4.4 Grundfunktionen

Der Name eines Entwicklers kann aus einer beliebigen Zeichenkette (in UTF-8 kodiert) bestehen, der
Zeitstempel muss im ISO-8601-Format [iso] angegeben sein und die Pfade können beliebig aufgebaut
werden, wobei ein Schrägstrich („/“) als Trennzeichen erwartet wird.

Weitere Elemente, die beispielsweise Commit-Kommentare enthalten, oder Attribute für Elemente sind
im Eingabeformat erlaubt, werden allerdings ignoriert. Fehlen bei einem Commit Änderungsdatum
oder Pfade, ist dieser für die Visualisierung nicht relevant und wird ignoriert. Für den Fall, dass bei
einem Commit kein Entwicklername angegeben ist, wird dieser Commit einem weiteren Entwickler
zugeordnet, dessen Name aus einer leeren Zeichenkette besteht.

Falls ein Entwickler unter verschiedenen Namen in der Eingabedatei vorkommt, wird dieser wie
mehrere selbständige Entwickler behandelt. Eine Vereinheitlichung der Namen in der Eingabedatei
kann dieses Problem beheben.

Aus den Commits, die in der Log-Datei enthalten sind, kann die gesamte Geschichte des Softwarepro-
jekts extrahiert und die hierarchische Struktur des Softwareprojekts erzeugt werden. Die Hierarchie
wird dabei in der Reihenfolge aufgebaut, in der die Commits in der Eingabedatei vorkommen. Dabei
müssen die Commits nicht zwingend zeitlich sortiert sein. Je nachdem in welcher Reihenfolge die
Commits in der Datei vorkommen (zeitlich aufsteigend, absteigend oder ungeordnet), können unter-
schiedliche Anordnungen der Knoten in der Hierarchievisualisierung entstehen. Außerdem können
allgemeine Informationen, wie die vorkommenden Entwicklernamen und der Zeitbereich, innerhalb
welchem alle Commits liegen, ermittelt werden.

Nach dem Laden wird die Hierarchie direkt in der Hierarchieansicht visualisiert; der Zeitbereich
wird als Grundeinstellung für den zu visualisierenden WOI River festgelegt, alle Entwicklernamen
werden in eine Liste in einem der Dock Widgets eingefügt und eine Entwicklergruppe bestehend
aus allen Entwicklern wird festgelegt. Darüber hinaus werden in einem Dock Widget Informationen
über die geladenen Daten angezeigt; diese liefern einen Überblick über die Anzahl an Commits und
Entwicklern sowie den Zeitbereich und die Anzahl an Knoten in der Projekthierarchie.

4.4 Grundfunktionen

Bevor die Visualisierung eines WOI River erfolgen kann, müssen verschiedene Grundeinstellungen
vorgenommen werden. In Kapitel 3.3 wurde bereits auf die verschiedenen Möglichkeiten eingegangen,
wie die Höhe einzelner Entwickler in der Visualisierung behandelt werden kann; entsprechende
Einstellungen können in einem Dock Widget angepasst werden; durch diese Einstellungen wird
festgelegt, wie die visualisierten Daten zu interpretieren sind. Anschließend müssen WOIs in der
Projekthierarchie festgelegt werden, die grundlegend für die zu visualisierenden Flüsse sind. Zusätzlich
können Entwicklergruppen, der Zeitbereich und die Art der Intervalle angegeben werden.

4.4.1 WOIs festlegen

Die Grundlage zur Festlegung der WOIs bietet die Projekthierarchie. Hier ist der Benutzer in der
Lage, interaktiv WOIs festzulegen, um später den WOI River für die entsprechenden Arbeitsbereiche
anzeigen zu lassen.

40

4.4 Grundfunktionen

(a) (b) (c) (d) (e)

Abbildung 4.3: Unterschiedliche Möglichkeiten für die Festlegung von WOIs: (a) jede Unterhierar-
chie der Tiefe drei bildet ein WOI; (b) alle Dateien bzw. Blattknoten bilden jeweils
ein WOI; (c) mehrere Unterhierarchien an beliebiger Position bilden ein WOI; (d)
Aufziehen eines Rechtecks um mehrere benachbarte Unterhierarchien zu einemWOI
hinzuzufügen; (e) das Ergebnis von (d): mehrere benachbarte Unterhierarchien bilden
ein WOI.

Unter einemWOI sind eine oder mehrere Bereiche (Unterhierarchien) der gesamten Projekthierarchie
zu verstehen. Ein WOI kann zwar aus mehreren Unterhierarchien bestehen, mehrere WOIs können
sich allerdings nicht überlappen. Diese WOIs können interaktiv in der Hierarchievisualisierung
festgelegt werden. Alle betroffenen Knoten der Hierarchiedarstellung in den Unterhierarchien eines
festgelegten WOIs werden daraufhin in einer veränderten Darstellungsform (durch Verwendung der
zugewiesenen WOI-Farbe) angezeigt.

Für die Festlegung von WOIs stehen mehrere Alternativen zur Verfügung. In Abbildung 4.3 sind
einige Möglichkeiten als Beispiele dargestellt. Zum einen ist die Auswahl einzelner Unterhierarchien
als WOIs möglich, zum anderen können Funktionalitäten verwendet werden, um einen WOI aus
mehreren Unterhierarchien zu erzeugen bzw. um mehrere WOIs gleichzeitig zu bilden.

Per Doppelklick auf einen Knoten in der Hierarchiedarstellung können einzelne Unterhierarchien als
WOIs festgelegt oder wieder gelöscht werden. Über das Kontextmenü eines Knotens stehen weitere
Funktionen zur Verfügung. Dort können alle Unterhierarchien einer bestimmten Tiefe oder alle
Kinderknoten eines ausgewählten Knotens als einzelner WOI festgelegt werden. Außerdem ist es
möglich, Unterhierarchien zum zuletzt festgelegten WOI hinzuzufügen oder alle Blattknoten der
gesamten Hierarchie als einzelne WOIs zu definieren.

41

4.4 Grundfunktionen

Zusätzlich kann durch Aufziehen eines Bereiches mit der Maus in der Hierarchievisualisierung (vgl.
Abbildung 4.3d) ein Teil der Hierarchie als ein neuer WOI festgelegt werden. Hierbei werden nur die
Knoten berücksichtigt, die noch zu keinem weiteren WOI gehören. Es wird jeweils dafür gesorgt,
dass alle Knoten, die den Bereich schneiden zu dem neuen WOI hinzugefügt werden.

Eine weitere Funktion ist, einen WOI aus allen Dateien und/oder Ordnern zu erstellen, die eine
bestimmte Zeichenkette enthalten. Hierfür wird bei allen Knoten geprüft, ob die Zeichenkette in
deren Namen enthalten ist. Falls dies zutrifft wird die Teilhierarchie, die durch den jeweiligen Kno-
ten festgelegt ist, zu einem neuen WOI hinzugefügt und in der Unterhierarchie des Knotens muss
keine weitere Prüfung erfolgen. Die Festlegung kann entweder nur für Dateien oder zusätzlich für
Verzeichnisse durchgeführt werden.

Außerdem können für eine festgelegte Anzahl an vorkommenden Dateiendungen neue WOIs erzeugt
werden. Da in der Verzeichnisstruktur des Projektes verschiedene Dateiarten vorkommen, könnte
eine Festlegung der WOIs in Abhängigkeit von Dateiendungen interessant sein, um herauszufinden,
welche Arten von Dateien über die Zeit am meisten und von welchen Entwicklern bearbeitet wurden.
Hierfür werden zunächst alle Dateiendungen, die in der gesamten Struktur vorkommen, ermittelt.
Indem bei jedem Blattknoten geprüft wird, ob eine Unterteilung des Namens in einen Teil vor und
nach einem Punkt möglich ist, kann ggf. der Teil nach dem letzten Punkt als Dateiendung verwendet
werden. Nachfolgend wird ermittelt, welches die am häufigsten vorkommenden Dateiendungen sind
und es werden für die M häufigsten Dateiendungen neue WOIs angelegt.

4.4.2 Entwicklergruppen festlegen

In der Grundeinstellung der Anwendung werden alle Entwickler, die mindestens einen Commit-
Beitrag geleistet haben, bereits in eine aktive Entwicklergruppe zusammengefasst und werden für die
Visualisierung desWOI Rivers berücksichtigt. Häufig interessieren allerdings nicht alle Entwickler, die
an einem Softwareprojekt beteiligt sind, sondern nur bestimmte Entwickler oder Entwicklergruppen,
z.B. die Entwickler, die am meisten zum Projekt beigetragen haben bzw. die an einem bestimmtenWOI
arbeiten oder auch spezielle einzelne Entwickler. Bei großen Projekten gibt es teilweise Entwickler,
die nur ein Mal oder sehr selten Änderungen bewirkt haben; diese können für Rauschen sorgen und
sollten unter Umständen herausgefiltert werden.

Zu diesem Zweck bietet die Anwendung die Möglichkeit, einzelne Entwicklergruppen festzulegen
und nur diese für die Visualisierung zu berücksichtigen. In einem Dock Widget wird eine Liste aller
Entwickler, die Dateiänderungen für das Projekt committet haben, bereitgestellt. Diese Liste kann
alphabetisch oder in Abhängigkeit der Anzahl der Änderungen der einzelnen Entwickler sortiert
werden. Im ersten Fall können bestimmte Entwickler schnell gefunden werden; im zweiten Fall
kann leicht herausgefunden werden, wer ein Hauptentwickler ist und wer eher weniger zum Projekt
beigetragen hat. Aus dieser Liste können Entwickler ausgewählt werden und als Gruppe mit einem
benutzerdefinierten Namen abgespeichert werden.

Außerdem besteht die Möglichkeit, dass alle Entwickler, die an einem Fluss beteiligt sind einer neuen
Gruppe zugeordnet werden (über das Kontextmenü eines Flusses erreichbar).

42

4.4 Grundfunktionen

Anschließend besteht die Möglichkeit, eine oder mehrere Entwicklergruppen zu selektieren, um alle
darin enthaltenen Entwickler für die WOI River-Visualisierung zu berücksichtigen.

4.4.3 Zeitbereich und Intervalle festlegen

In der Benutzeroberfläche kann ein Zeitbereich für die zu visualisierenden Daten angegeben werden
sowie die Art der Intervallerzeugung.

Zeitbereich

Standardmäßig ist für die Visualisierung der Zeitbereich vom ersten bis zum letzten Commit ausge-
wählt, sodass alle Commits der Eingabedatei in der Visualisierung berücksichtigt werden können. Falls
nur ein bestimmter Zeitabschnitt interessiert, kann dieser individuell festgelegt werden. Hierdurch
kann beispielsweise bei einem Entwicklungsprozess, der schon länger andauert, die Visualisierung
auf die ersten Jahre beschränkt werden oder es kann bei mehreren Projekten, die parallel laufen, der
gleiche Zeitbereich gewählt werden, um die Ergebnisse besser miteinander vergleichen zu können.
Zudem ist es dadurch möglich, ohne eine Erhöhung der Anzahl der verwendeten Intervalle trotzdem
eine feinere Aufteilung des Zeitbereichs in einzelne Intervalle zu erhalten.

Intervalle

Es gibt zwei verschiedene Arten Intervalle festzulegen: Entweder durch Zeitintervalle, die jeweils
eine bestimmte Zeitspanne abdecken oder durch Commit-Intervalle, die eine bestimmte Anzahl an
Commits beinhalten.

Durch Angabe der Anzahl an Zeitintervallen, in die der angegebene Zeitraum eingeteilt werden soll
bzw. welche Zeitspanne durch ein Intervall repräsentiert werden soll, können Intervalle in Bezug auf
die Zeit festgelegt werden. Für die Bildung der Zeitintervalle werden alle Commits verwendet, die in
die entsprechende Zeitspanne fallen.

Des Weiteren ist es möglich, Intervalle unabhängig von der Zeit zu bilden, indem nur Commits
berücksichtigt werden. Gibt es beispielsweise eine größere Pause in einem Entwicklungsprozess, hat
dies bei einer Unterteilung in Zeitintervalle zuerst viele Abflüsse und danach viele Zuflüsse zur Folge.
Wenn die Intervalle zeitunabhängig gebildet werden, kann der angegebene Zeitbereich normalisiert
werden. Durch Angabe der Anzahl an Commits, die in ein Intervall fallen sollen bzw. die Anzahl
der Commit-Intervalle, die gebildet werden sollen, werden Intervalle erzeugt, die nach Möglichkeit
jeweils die gleiche Anzahl an Commits beinhalten.

43

4.5 Weitere Funktionen und Interaktion

4.5 Weitere Funktionen und Interaktion

Sowohl die Hierarchiedarstellung als auch die WOI River-Visualisierung bietet verschiedene
Einstellungs- und Interaktionsmöglichkeiten. Im Folgenden wird zuerst auf die der Hierarchiedarstel-
lung eingegangen, danach auf die der WOI River-Visualisierung.

4.5.1 Hierarchie

Die Hierarchie bietet die Grundlage zur Festlegung von WOIs. Zusätzlich bietet sie verschiedene
Interaktionsmöglichkeiten; in Abbildung 4.4 sind einige anhand von Beispielen dargestellt.

Allgemeine Informationen

In einem Dock Widget werden allgemeine Informationen bezüglich der Hierarchie angezeigt. Diese
beinhalten die Anzahl der Knoten der Hierarchie, die Anzahl der Blattknoten (d.h. der Dateien/leeren
Verzeichnisse) und die maximale Tiefe.

Selektion

Ein einzelner Knoten der Hierarchie kann ausgewählt werden, wodurch in einemDockWidget weitere
Informationen über seine Position innerhalb der Hierarchie angezeigt werden. Dies beinhaltet seinen
Pfad, seine Tiefe, die Anzahl seiner Kinder-, Unter- und Blattknoten und den beinhaltenden WOI.
Selektierte Knoten werden zusätzlich etwas dunkler visualisiert als andere Knoten mit ähnlichen
Eigenschaften (d.h. Knoten gleicher Tiefe bzw. Knoten die zum gleichen WOI gehören) innerhalb der
Hierarchie.

Außerdem gibt es, falls der Knoten zu einem WOI gehört, eine Verbindung zum WOI River (mehr
dazu in Abschnitt 4.5.2).

Zoomen

Die Hierarchie unterstützt sowohl geometrisches als auch semantisches Zoomen [Spe07]. Beim geo-
metrischen Zoomen wird die Darstellung der Hierarchie nicht verändert, sondern nur der angezeigte
Ausschnitt vergrößert oder verkleinert. Beim semantischen Zoomen können auch angezeigte Formen
und Details verändert werden oder Objekte verschwinden bzw. hinzukommen.

Der erste Fall wird hier durch Veränderung des dargestellten Ausschnittes der Hierarchie umgesetzt
(Abbildung 4.4d). Es ist somit möglich, einzelne Bereiche vergrößert anzuzeigen oder eine Übersicht
über einen größeren Bereich der Darstellung zu erhalten. Zusätzlich kann die Höhe bzw. Breite der
Abbildung beliebig in x- und y-Richtung gestreckt werden, um beispielsweise weniger Platz für die
Darstellung zu benötigen oder um Labels besser anzeigen zu können.

44

4.5 Weitere Funktionen und Interaktion

(a) (b) (c)

(d)

Abbildung 4.4: Interaktionsmöglichkeiten in der Hierarchiedarstellung am Beispiel der Layered
Icicle-Darstellung: (a) Hierarchiedarstellung ohne Interaktion; (b) semantisches Zoo-
men; (c) Aggregation einer Unterhierarchie; (d) geometrisches Zoomen (rechts) sowie
veränderte Skalierung in x-Richtung (links) und y-Richtung (unten).

45

4.5 Weitere Funktionen und Interaktion

Der zweite Fall wird durch das Anzeigen einer Teilhierarchie realisiert, indem die restlichen Knoten
ausgeblendet werden (Abbildung 4.4b). Besonders bei sehr großen Hierarchien ist dadurch eine
Konzentration auf bestimmte Bereiche in der Hierarchie möglich.

Navigation

Falls nur eine Teilhierarchie angezeigt wird, kann innerhalb der Hierarchie navigiert werden. Zum
einen kann eine Ebene aufgestiegenwerden, d.h. der zugehörige Teilbaum des Elternknotenswird dann
angezeigt, zum anderen kann zu bereits angezeigten Teilhierarchien zurück navigieren werden.

Aggregation

Außerdem können Teile der Hierarchie aggregiert werden, wodurch Kinderknoten eines ausgewählten
Knotens ausgeblendet werden und der Wurzelknoten der aggregierten Teilhierarchie evtl. kleiner
dargestellt wird; weniger relevante Bereiche der Hierarchie können so ausgeblendet werden. Ein
Beispiel mit einer aggregierten Teilhierarchie ist in 4.4c dargestellt.

Labels

Labels können optional angezeigt werden und enthalten den Namen einzelner Knoten, d.h. des Datei-
bzw. Ordnernamens; ihre Schriftgröße ist individuell einstellbar. Beim Zoomen können teilweise
weitere Labels sichtbar werden, da sich die Größe der Knotenrepräsentationen in der Ansicht verändert
und somit unter Umständen zusätzlicher Platz verfügbar wird (vgl. Abbildung 4.4d).

Tooltips

Der Tooltip eines Hierarchieknotens enthält den Namen der zugehörigen Datei bzw. des zugehörigen
Ordners. Falls nicht genügend Platz für die Anzeige eines Labels zu Verfügung steht, können Tooltips
verwendet werden, um dennoch herauszufinden, welcher Knoten an einer bestimmten Position
abgebildet ist.

4.5.2 WOI River

Eine Übersicht verschiedener Funktionen und Interaktionsmöglichkeiten der WOI River-Ansicht sind
in den Abbildungen 4.5 und 4.6 dargestellt.

Allgemeine Informationen

Auch zum WOI River werden allgemeine Informationen in einem Dock Widget angezeigt. Diese bein-
halten Informationen zu der Anzahl angezeigter Flüsse, Intervalle, beteiligter Entwickler, verwendeter
Commits und Dateiänderungen sowie dem dargestellten Zeitbereich.

46

4.5 Weitere Funktionen und Interaktion

(a)

(b)

Abbildung 4.5: Darstellung eines Beispieldatensatzes; jeweils Hierarchiedarstellungen und sichtbare
Ausschnitte in der Benutzeroberfläche in ThemeRiver-Ansicht und in Detailansicht:
(a) Normalansicht; (b) mit hervorgehobenem WOI.

Detailansicht

Die Ansicht der einzelnen Übergangsbereiche kann zwischen einer ThemeRiver-Darstellung und
einer Detaildarstellung gewechselt werden (Abbildung 4.5 in der Mitte und rechts). Der Wechsel wird
per Doppelklick auf einen Übergangsbereich erreicht. Dies hat den Effekt des „Auf- bzw. Zuklappens“;
in die Detailansicht sind Details bezüglich des Verhaltens der Entwickler durch Transitionen und Zu-
bzw. Abflüsse sichtbar; in der ThemeRiver-Ansicht ist nur eine Übersicht zu erkennen.

Außerdem besteht die Möglichkeit, dass alle Bereiche gleichzeitig auf- bzw. zugeklappt werden,
wodurch der gesamte Fluss als ThemeRiver bzw. in der Detailansicht angezeigt wird.

Hervorhebung

Ein WOI kann in der Visualisierung hervorgehoben werden, indem der Mauszeiger auf einen Fluss
bewegt wird oder indem ein Fluss, durch Markieren mit der Maus, ausgewählt wird. In beiden Fällen
werden alle WOIs transparent dargestellt, bis auf den zugehörigen WOI des ausgewählten Flusses
(Abbildung 4.5b). Diese Änderung in der Visualisierung hat sowohl Auswirkungen auf den WOI
River als auch auf die Hierarchiedarstellung. Hiermit ist es für den Benutzer möglich, per „brushing“
und „linking“ [BMMS91] eine Verbindung zwischen der WOI River- und Hierarchievisualisierung

47

4.5 Weitere Funktionen und Interaktion

(a) (b) (c)

(d) (e) (f)

(g) (h)

Abbildung 4.6: Veranschaulichung ausgewählter Funktionen bzw. Interaktionsmöglichkeiten in der
WOI River-Ansicht: (a) Fluss im Vordergrund, (b) Ausblenden verschiedener Über-
gänge bis zu einem festgelegten Schwellwert, (c) transparente Zuflüsse, (d) Breite der
Übergangsbereiche der ThemeRiver-Ansicht verkleinert, (e) Breite der Übergangs-
bereiche der Detailansichten vergrößert, (f) Panning, (f) Zoomen und (h) Anzeige
eines Tooltips

48

4.5 Weitere Funktionen und Interaktion

(a) (b) (c) (d)

Abbildung 4.7: Veranschaulichung der Funktionen der Übersicht: (a) Übersicht des sichtbaren Aus-
schnitts der Hauptdarstellung; (b) Bereich festlegen; (c) sichtbarer Bereich nach
Festlegen eines Bereichs und (d) Verschieben des sichtbaren Bereichs.

aufzubauen, da in beiden Ansichten Elemente, die zu dem entsprechenden WOI gehören, hervorge-
hoben werden. Hiermit kann eine schnelle Verknüpfung zwischen dem dargestellten Fluss und den
Arbeitsbereichen in der Hierarchie erfolgen. Optional kann die Hervorhebung für den Fall, dass der
Mauszeiger auf einen Fluss bewegt und das entsprechende WOI hervorgehoben wird, deaktiviert
werden.

Entsprechende Auswirkungen werden auch bei der Hierarchiedarstellung erreicht, wenn ein Knoten,
der zu einemWOI gehört, ausgewählt wird oder sich die Maus über einem solchen Knoten befindet.

Selektion

Zusätzlich zu der Veränderung in der Darstellung, werden nach einer Markierung eines Flusses (bzw.
eines Knotens in der Hierarchievisualisierung) mit der Maus in einem Dock Widget Informationen
bezüglich des zugehörigen WOIs angezeigt.

WOI in Vordergrund

Falls ein einzelner Fluss genauer untersucht werden soll, kann dieser auch in den Vordergrund gesetzt
werden. Dies bewirkt, dass er von keinen dünneren Übergängen überdeckt wird und sein Verlauf
besser untersucht werden kann (Abbildung 4.6a).

Transitionen, Zuflüsse und Abflüsse filtern

Die angezeigten Transitionen und Zu- bzw. Abflüsse können nach verschiedenen Kriterien gefiltert
dargestellt werden. Hierbei gibt es die Möglichkeit, sie entweder ganz oder bis zu einen bestimmten
Schwellwert auszublenden. Indem sie nur ab einem bestimmten Wert angezeigt werden, können
dünnere, evtl. störende Transitionen ausgeblendet werden. Zudem ist es möglich Transitionen trans-
parent darzustellen; weniger interessante Transitionen verschwinden dadurch nicht ganz, gelangen
aber etwas in den Hintergrund. Da die Visualisierungen teilweise sehr stark von Zu- und Abflüssen
geprägt sind, könnte es hier sinnvoll sein, diese transparent darzustellen um sie nicht ganz aus dem

49

4.5 Weitere Funktionen und Interaktion

Gesichtsfeld zu verlieren und den Schwerpunkt auf die restlichen Übergänge zu legen. Beispiele sind
in Abbildung 4.6b und 4.6c abgebildet.

Die beschriebenen Einstellungen können getrennt für Transitionen zwischen gleichen WOIs, Transi-
tionen zwischen verschiedenen WOIs und Zu- und Abflüssen vorgenommen werden.

Breite der Übergangsbereiche

Da die Zu- und Abflüsse horizontal und vertikal mindestens die gleiche Breite besitzen müssen,
können diese nicht getrennt in x- und y-Richtung skaliert werden; bei der ThemeRiver-Visualisierung
spielen die Proportionen in x- und y-Richtung keine Rolle. Um den dargestellten Bereich dennoch in
x-Richtung zu skalieren, kann die Breite der Übergangsbereiche sowohl in der ThemeRiver-Ansicht
als auch in der Detailansicht unabhängig voneinander eingestellt werden (Abbildungen 4.6d und 4.6e).
Hierdurch kann eine Visualisierung mit vielen Intervallen verkleinert werden. Allerdings benötigen
Zu- und Abflüsse teilweise eine minimale Breite (maximal die Höhe des Flusses und einen geringen
Abstand zwischen jedem Zu-/Abfluss) wodurch diese Funktion nur eingeschränkt verwendet werden
kann.

Zoomen

Wie auch schon bei der Hierarchiedarstellung, kann in der Ansicht gezoomt werden (Abbildung 4.6g),
wodurch mehr Details erkennbar werden und evtl. weitere Labels sichtbar werden können oder der
gesamte Verlauf des Flusses angezeigt werden kann. Die Visualisierung kann hierbei jedoch nicht
getrennt in x- und y-Richtung skaliert werden, da, wie bereits beschrieben, bei Zu- und Abflüssen
sowohl die Höhe als auch Breite entscheidend ist.

Panning

In dem sichtbaren Ausschnitt der WOI River-Ansicht kann meist nicht der gesamte WOI River mit den
gewünschten Einstellungen angezeigt werden. Während die ThemeRiver-Darstellung in x-Richtung
beliebig skaliert werden kann, benötigt die Detailansicht häufig eine Mindestbreite. Durch zoomen
kann zwar die gesamte Visualisierung angezeigt werden, allerdings wird der Fluss so klein, dass keine
Details mehr zu erkennen sind. Durch Verschieben des sichtbaren Bereichs („Panning“), können die
Bereiche der Visualisierung sichtbar gemacht werden, die sich momentan außerhalb des dargestellten
Bereichs befinden um diese weiter zu untersuchen (Abbildung 4.6h).

Übersicht

In einem Dock Widget befindet sich eine Miniatur-Übersicht des dargestellten WOI Rivers in Form
eines ThemeRivers. In ihr ist immer erkennbar, welcher Ausschnitt momentan in der Hauptdarstellung
sichtbar ist. Wenn gezoomt wird oder ein anderer Ausschnitt in der WOI River-Ansicht angezeigt wird,
wird die Übersicht entsprechend angepasst. Auch wenn Bereiche der Hauptansicht aufgeklappt sind,

50

4.5 Weitere Funktionen und Interaktion

wird der entsprechende Bereich in der zugehörigen ThemeRiver-Visualisierung erkennbar. Hierdurch
ist ein Rückschluss vom sichtbaren Ausschnitt auf die gesamte Darstellung möglich und es wird
dadurch den Erhalt der Mental Map unterstützt.
Zusätzlich ist es möglich, in der Übersicht den sichtbaren Bereich zu verschieben oder durch Auswahl
eines Bereichs neu festzulegen, um schnell an eine gewünschte Stelle in der Visualisierung zu gelangen.
Die Funktionen der Übersicht sind in Abbildung 4.7 veranschaulicht.

Tooltips

Für die einzelnen Elemente, aus denen der WOI River aufgebaut ist (Transitionen, Zuflüsse, Abflüsse
und Elemente des ThemeRivers zwischen zwei Intervallen) können jeweils Tooltips angezeigt werden
(vgl. Abbildung 4.6f). Je nach Typ, können der zugehörige Zeitbereich, der Name des (bzw. der)
zugehörigen WOIs, die Anzahl der Entwickler und zehn Entwickler mit der größten Beteiligung
angezeigt werden. Bei der Anzahl der Entwickler wird zusätzlich angezeigt, wie viele Entwickler den
entsprechende WOI/die entsprechenden WOIs in beiden angrenzenden Intervallen bearbeitet haben
und bei den Entwicklern ist angegeben, wie viele Dateien sie in beiden Intervallen verändert haben.

Außerdem besitzen die Intervall-Linien Tooltips, in denen Informationen über das Intervall, die Anzahl
der Bearbeiter und der veränderten Dateien sowie zehn Entwickler, welche die meisten Änderungen
in dem Intervall bewirkt haben, angegeben sind.

Labels

Es gibt verschiedene Arten von Labels, die optional angezeigt werden können (die verschiedenen
Varianten sind im Kapitel 3.3.5 beschrieben); die Schriftgröße kann jeweils variiert werden.

Hilfslinien

Ferner können in der Visualisierung Intervall-Linien und eine Mittellinie angezeigt werden.

4.5.3 Weitere Visualisierungsparameter

Bei jedem Festlegen eines neuen WOIs bekommt dieser eine neue Farbe zugewiesen. Wenn zwischen-
durch andere WOIs wieder gelöscht werden, wird deren Farbe in den Visualisierungen nicht mehr
verwendet. Daher besteht die Möglichkeit, alle Farben neu zu vergeben, wodurch alle WOIs neue
Farben erhalten, auch wenn sie manuell festgelegt wurden.

Die Anordnung, in der WOIs im WOI River angezeigt werden, kann entweder in der Reihenfolge
erfolgen, in der die einzelnen WOIs ausgewählt wurden oder so wie sie in der Hierarchie vorkommen.
Beim zweiten Fall werden die Flüsse so angeordnet, dass WOIs, die weiter oben in der Visualisierung
der Hierarchie vorkommen auch weiter oben in der WOI River-Visualisierung gezeichnet werden.
Hiermit kann eine einfache Verknüpfung zwischen den beiden Visualisierungen für den Benutzer
erfolgen, auch wenn gleiche oder ähnliche Farben bei verschiedenenWOIs verwendet werden. Besteht

51

4.6 Export

ein WOI aus mehreren Teilhierarchien, wird jeweils die Position der Teilhierarchie verwendet, die am
weitesten oben in der Visualisierung gezeichnet wird.

4.6 Export

Es gibt mehrere Möglichkeiten zum Export der Visualisierungen und der zugehörigen Daten. Zum
einen können die Visualisierungen im PNG-Format gespeichert werden, zum anderen besteht die
Möglichkeit Informationen bezüglich der Einstellungen und der visualisierten Daten zu speichern
sowie benutzerdefinierte Ausschnitte der Daten abzuspeichern.

4.6.1 PNG-Export

Die dargestellten Visualisierungen können als PNG-Datei exportiert werden. Dabei gibt es sowohl für
die Hierarchie als auch den WOI River die Möglichkeit die gesamte Visualisierung zu exportieren
oder nur den aktuell sichtbaren Bereich. Hierbei werden in den Dateien Metadaten bezüglich der
verwendeten Einstellungen der Anwendung, die für die Visualisierung relevant sind, gespeichert.

4.6.2 Einstellungen und allgemeine Informationen

Weiterhin gibt es die Möglichkeit eine Textdatei mit Informationen bezüglich des aktuell geladenen
Datensatzes und der Visualisierungen zu speichern. Diese enthalten allgemeine Informationen bezüg-
lich der geladenen Daten (Name der geladenen Datei, Anzahl der Commits, Anzahl der Entwickler,
Zeitpunkt des ersten und letzten Commits, Anzahl der Knoten und Blattknoten in der Hierarchie
sowie die maximale Tiefe der Hierarchie) und des dargestellten WOI Rivers (Zeitintervall der dar-
gestellten Daten, Anzahl der Flüsse sowie Anzahl der berücksichtigten Commits und Entwickler).
Zusätzlich kann eine Datei mit den aktuellen Einstellungen bzw. Festlegungen (Einstellungen in den
Dock Widgets und festgelegte WOIs) der angezeigten Visualisierungen exportiert werden um die
Visualisierungen rekonstruieren zu können.

4.6.3 Benutzerdefinierte Ausschnitte der Daten

Darüber hinaus können benutzerdefinierte Ausschnitte der Daten für eine spätere Analyse abgespei-
chert werden. Teilweise sind die zu visualisierenden Daten recht groß und enthalten Informationen
über einen längeren Zeitraum von vielen Entwicklern und einer großen Projekthierarchie. Interes-
siert für einen langen Zeitraum, zu vielen Entwicklern und einer großen Projekthierarchie nur ein
bestimmter Zeitabschnitt, bestimmte Entwickler oder nur ein Teil der Projekthierarchie, können die
entsprechenden relevanten Daten exportiert werden, die dann wiederum in der Anwendung geladen
werden können um nur die gefilterten Daten zu visualisieren.

52

5 Fallstudien

In diesem Kapitel werden drei Fallstudien anhand verschiedener Open-Source-Softwareprojekte
durchgeführt. Ziel ist dabei jeweils, einen guten Einblick in den Softwareentwicklungsprozess zu
erhalten und Besonderheiten oder Trends zu erkennen.

Mehrere Fragestellungen können hierbei untersucht werden – zum einen in Bezug auf die Anzahl der
Entwickler, die an den Projekten arbeiten und zum anderen in Bezug auf die Anzahl der Änderungen
(im Folgenden in Form von Dateiänderungen berücksichtigt), die von den Entwicklern bewirkt
werden.

Als erstes Projekt wird die Programmiersprache Python untersucht. Hierbei wird zusätzlich mit
den Ergebnissen der Evolution Storylines-Visualisierung verglichen. Danach wird die Entwicklung
der Bibliothek libvpx für die Videocodecs VP8/VP9 betrachtet sowie die des Linux-Kernels. Der
Linux-Kernel zählt als recht großes Projekt; es wird geprüft, ob die Visualisierungstechnik auch für
sehr große Projekte skalierbar ist und es noch möglich ist, durch die Visualisierung Einsichten zu
erhalten.

Ausschlaggebend für eine sinnvolle Untersuchung des Entwicklungsverhaltens ist eine geeignete
Wahl der WOIs. Zum einen sollten nicht zu viele WOIs gewählt werden, da die einzelnen Flüsse so
immer schmaler werden, ähnliche Farben bei unterschiedlichen Flüssen verwendet werden und es
sehr starke Wechsel zwischen den WOIs geben kann. Zum anderen sollte aber auch versucht werden,
möglichst viele Bereiche zu berücksichtigen um keine wichtigen Veränderungen zu übersehen. Bei
den folgenden Analysen wurde versucht, Hauptordner der Projekthierarchie als WOIs zu verwenden
und die restlichen Dateien in einem zusätzlichen WOI zusammenzufassen, um jeden Entwickler und
jede Änderung an dem jeweiligen Projekt zu berücksichtigen.

5.1 Python

Als erstes Open-Source-Projekt wird die Programmiersprache Python [Pyta] gewählt. Die Entwicklung
von Python begann 1990 und dauert bis heute an, es liegt somit die Geschichte des Entwicklungspro-
zesses aus etwa 24 Jahren vor. Zum Zeitpunkt der Untersuchung (Februar 2014) besteht der verwendete
Datensatz aus 88950 Commits von insgesamt 184 Entwicklern. Die Projekthierarchie umfasst 10865
Knoten mit 10108 Dateien und einer maximalen Tiefe von zehn. Die Eingabedaten wurden aus dem
Mercurial-Repository [Pytb] erzeugt.

Dieses Projekt wurde bereits in den Evolution Storylines [OM10] und in code_swarm [OM09] analy-
siert; das Ergebnis von der Evolution Storylines-Visualisierung kann in Abbildung 5.1 zum Vergleich
betrachtet werden. Dort wurde der Entwicklungsprozess nur bis zum Jahr 2006 berücksichtigt. Unsere

53

5.1 Python

Abbildung 5.1: Visualisierung des Entwicklungsprozesses der Programmiersprache Python von 1990
bis 2006 mittels der Evolution Storylines [OM10].

Visualisierung wird mit dem Ergebnis der Evolution Storylines-Visualisierung verglichen, um zu
sehen, ob die gleichen Besonderheiten erkennbar sind.

Im Folgenden werden vier WOIs für die Betrachtung gewählt: Die Ordner Doc (blau), Lib (rot),Modules
(orange) und alle restlichen Dateien (grau). Hierbei wird versucht, die gleichen Bereiche festzulegen,
die auch bei den Evolution Storylines gewählt wurden.

Bei den Evolution Storylines wurde unter anderem festgestellt, dass Guido van Rossum das Projekt
1990 anfängt und erst zwei Jahre später vereinzelt weitere Entwickler hinzukommen. Hierbei ist
erkennbar, wie Entwickler teilweise zusammenarbeiten. Außerdem kommen in den Jahren 2000 und
2005 viele weitere Entwickler hinzu.

Bei den Evolution Storylines erfolgt die Aufteilung monatsweise; dies würde bei dem hier betrachteten
Zeitraum von etwa 24 Jahren zu einer Aufteilung in ca. 288 Intervalle führen. Da viele der Transitions-
bereiche aufgrund der Zu- und Abflüsse eine Mindestbreite besitzen müssen, würden hierdurch sehr
breite Visualisierungen entstehen, welche zur Untersuchung eher weniger geeignet wären, da der
vollständige Zeitbereich nicht auf einmal betrachtet werden kann. Im Folgenden werden nur sechs
Intervalle gebildet, deshalb werden die Daten innerhalb der einzelnen Abschnitte stark aggregiert.

In Abbildung 5.2 ist die Hierarchie zusammen mit der Übersicht und der Detailansicht des WOI Rivers
zu sehen, jeweils für die Darstellung in Abhängigkeit der Anzahl an Entwicklern (5.2b und 5.2c) und
in Abhängigkeit der veränderten Dateien (5.2d und 5.2e).

Sowohl bei den Darstellungen in Abhängigkeit der Entwicklerzahl als auch bei den Visualisierungen
in Abhängigkeit der Anzahl bearbeiteter Dateien ist erkennbar, dass die Beteiligung am Projekt
monoton wächst. Es gibt in jedem Intervall recht viele neue Entwickler, die hinzukommen; etwas

54

5.1 Python

(a)

(b)

(c)

(d)

(e)

Abbildung 5.2: Softwareentwicklungsverlauf von Python: (a) Projekthierarchie; (b) und (c): Darstel-
lung der Anzahl der beteiligten Entwickler als Übersicht und Detailansicht; (d) und
(e): Darstellung der Anzahl an veränderten Dateien als Übersicht und Detailansicht.

55

5.1 Python

Abbildung 5.3:WOI River des Python-Entwicklungsprozesses für Guido van Rossum.

weniger verlassen das Projekt wieder. Die Entwickler, die das Projekt verlassen, haben nicht viele
Dateien verändert, da in der unteren Teilabbildung nur sehr wenige Abflüsse zu sehen sind.
Am Anfang bearbeiten nur sehr wenige Entwickler das Projekt. Aufgrund der hier gewählten Inter-
valleinteilung kann allerdings nicht festgestellt werden, ob dies nur Guido van Rossum ist; bei einer
feineren Einteilung kann dies jedoch auch herausgefunden werden. Das gleiche gilt für die Feststellung
bei den Evolution Storylines, dass viele Entwickler in den Jahren 2000 und 2005 hinzukamen; die hier
gezeigten Visualisierungen erwecken eher den Eindruck, dass in jedem Intervall jeweils viele neue
Entwickler hinzukommen. Nur bei Betrachtung der Abbildungen in Abhängigkeit der veränderten
Dateien kann erkannt werden, dass im zweiten Drittel die Beteiligung durch sehr viele Zuflüsse stark
zunimmt.

Bis jetzt wurden die Beiträge aller Entwickler untersucht. Da Guido van Rossum das Projekt vor vielen
Jahren gestartet hat, könnte interessant sein, herauszufinden, wie er im Laufe dieser Zeit an dem
Projekt mitgewirkt hat. In Abbildung 5.3 ist eine ThemeRiver-Ansicht für die Anzahl der durch ihn
veränderten Dateien dargestellt. In dieser Visualisierung fällt auf, dass Guido van Rossum zunächst
immer mehr zum Projekt beigetragen hat, danach wieder weniger. Im letzten Intervall hat er kaum
noch Dateien verändert. Er beteiligt sich in jedem der ausgewählten Arbeitsbereiche, wobei er bei
Doc und Lib eher weniger Änderungen vornimmt.

Als nächstes wird noch eine weitere Festlegung der WOIs gewählt: die zehn am häufigsten vorkom-
menden Dateiendungen; in Abbildung 5.4 sind die zugehörigen WOI Rivers dargestellt: die Höhe des
WOI Rivers bezieht sich auf die Anzahl der veränderten Dateien.

In den Abbildungen 5.4b und 5.4c sieht man, dass am häufigsten Python-Dateien (*.py) bearbeitet
wurden, gefolgt von C-Dateien (*.c), TEX-Dateien (*.tex), RST-Dateien (*.rst) und H-Dateien (*.h).
Im zweiten Drittel des Entwicklungsprozesses ist in der Übersichts-Darstellung hierbei etwas In-
teressantes zu sehen: der rosarote Bereich (TEX-Dateien) löst sich auf, während der grüne Bereich
(RST-Dateien) entsteht.
Wenn hierzu die Detailansicht angeschaut wird, ist erkennbar, dass zum einen neue Entwickler zum
RST-Bereich hinzukommen und zum anderen ein Wechsel der Entwickler vom TEX-Bereich zum

56

5.1 Python

(a)

(b)

(c)

(d)

(e)

Abbildung 5.4: Darstellungen nach Anzahl der veränderten Dateien mit WOIs für Dateiendungen:
(a) Hierarchiedarstellung; (b) und (c): zugehöriger WOI River; (d) und (e): WOI River
für den Doc-Ordner.

57

5.2 libvpx

RST-Bereich stattfindet.
Werden als nächstes nur die Änderungen des Dokumentations-Ordners für den WOI River berücksich-
tigt (Abbildungen 5.4d und 5.4e), ist dieser Wechsel sehr deutlich erkennbar. Es findet anscheinend
ein Wechsel vom Ordner Doc/Lib (enthält sehr viele TEX-Dateien) zu Doc/Libraries (enthält die
RST-Dateien) statt. Wahrscheinlich wurde das Dokumentationsformat von TEX auf RST umgestellt.

5.2 libvpx

Als nächstes wird die Entwicklung der Bibliothek libvpx der Videocodecs VP8/VP9 für verlustbehaftete
Komprimierung von Videodaten untersucht.

Der Codec VP8 wurde zunächst von dem Unternehmen On2 Technologies entwickelt [web]. Seit dem
Jahr 2010 besitzt Google durch die Übernahme von On2 Technologies die Rechte an dem Projekt und
stellt es als Open-Source-Software zur freien Verfügung. In den darauf folgenden Jahren begann die
Entwicklung des Nachfolgers VP9.

Die zur Verfügung stehende History stammt aus einem Git-Repository [lib]. Die Daten reichen von
Mitte 2010 (als das Projekt als freie Software freigegeben wurde) bis März 2014, also über einem
Zeitraum von etwa vier Jahren. Es wurden alle 5222 Commits von 106 Entwicklern berücksichtigt. Die
Projekthierarchie umfasst 2364 Knoten mit 2196 Dateien und besitzt eine maximale Tiefe von acht.
Für die Analyse wurden drei WOIs festgelegt und im Nachfolgenden durch die jeweils angegebenen
Farben dargestellt: die Verzeichnisse vp8 (grün) und vp9 (rot) sowie alle restlichen Ordner/Dateien,
die unter anderem Tests und Beispiele enthalten (blau). In Abbildung 5.5a sind die WOIs innerhalb
der Projekthierarchie erkennbar.

Für die Untersuchung des Entwicklungsprozesses wird zunächst der zeitliche Verlauf der Entwick-
leranzahlen betrachtet. Die Abbildungen 5.5b und 5.5c zeigen die Übersicht und Detailansicht dieser
Entwicklung.

In Abbildung 5.5b sieht man, dass an dem Projekt meistens etwa 31–53 Entwickler arbeiten; gegen
Anfang ist die Anzahl etwas erhöht, dann sinkt sie leicht und gegen Ende scheint sie stärker zu
wachsen. Das Projekt wird im Vergleich zu Python schon von Beginn an von mehreren Entwicklern
bearbeitet. Dies liegt wahrscheinlich daran, dass libvpx schon bevor es als freie Software zur Verfügung
stand, entwickelt wurde und vielleicht noch die gleichen Entwickler wie zuvor daran arbeiten. Man
kann feststellen, dass in den ersten beiden Jahren, bis 2012, nur im Ordner vp8 und an den weiteren
Dateien gearbeitet wird. Ende 2012 dominiert die Entwicklung im Verzeichnis vp9 stark, bis sie 2014
die Entwicklung in vp8 fast vollständig abgelöst hat.

In der zugehörigen Detailansicht (Abbildung 5.5c) fallen zunächst recht viele Zu- und Abflüsse
auf, es scheint einen ständigen Wechsel der Entwickler zu geben bzw. viele Entwickler, die sich
vorübergehend an dem Projekt beteiligen und es wieder verlassen. Gegen Ende ist allerdings ein
deutlicher Zufluss zu erkennen. Um zu unserer vorherigen Feststellung zurück zu kommen: Auch hier
ist der Wechsel (als ein Entwicklerstrom von vp8 zu vp9) erkennbar. Zunächst bleibt einige Beteiligung
bei dem Verzeichnis vp8 (evtl. arbeiten Entwickler noch an beiden Versionen, aber verstärkt an der
neueren, oder es haben einige gewechselt, während andere noch an der alten Version arbeiten). Im

58

5.2 libvpx

(a)

(b)

(c)

(d)

(e)

Abbildung 5.5: Softwareentwicklungsverlauf von libvpx: (a) Projekthierarchie; (b) und (c): Darstel-
lung der Anzahl der beteiligten Entwickler als Übersicht und Detailansicht; (d) und
(e): Darstellung der Anzahl an veränderten Dateien als Übersicht und Detailansicht.

59

5.2 libvpx

Abbildung 5.6: Softwareentwicklungsverlauf von libvpx in Bezug auf die Anzahl der veränderten
Dateien. Oben: gesamter Verlauf; unten: Übersicht und Detailansicht eines ausge-
wählten Zeitabschnitts.

60

5.2 libvpx

(a) (b)

Abbildung 5.7: Softwareentwicklungsverlauf von libvpx: Erster Commit in vp9.

nächsten Zeitschritt geht dann weitere Entwicklerkapazität zu vp9 über, bis die Entwicklung von vp8
fast aufzuhören scheint.

Bei der Betrachtung der Visualisierungen in Abhängigkeit der Änderungen (Abbildungen 5.5d und
5.5e) werden die bereits festgestellten Besonderheiten nochmals verstärkt erkennbar. Zusätzlich ist
zu sehen, dass die Anzahl der veränderten Dateien leicht sinkt, dann immer stärker wächst, bis sie ihr
Maximum bei dem erwähntenWechsel erreicht hat und dann wieder leicht abnimmt. Zu- und Abflüsse
fallen fast nicht auf – wahrscheinlich bewirken die Entwickler, die in den vorherigen Visualisierungen
durch Zu- und Abflüsse sehr stark dominiert haben, nur sehr wenige Änderungen an den Dateien
und fallen daher kaum ins Gewicht. Bei dem Wechsel ist erkennbar, dass die Entwickler, die bereits an
dem Projekt arbeiten, immer mehr Änderungen zum Projekt beitragen. Dies sieht man daran, dass die
Übergänge von grün nach rot und grün nach grün im dritten Abschnitt breiter werden. Hier wechseln
zudem Entwickler von den weiteren Dateien zu vp8. Im nächsten Schritt geht die Beteiligung wieder
etwas zurück und es wirkt so, als ob Entwickler, die vorübergehend bei Änderungen im Ordner vp9
mitgewirkt haben, wieder zurück zu den weiteren Dateien gehen.

Da die Aufteilung der vier Jahre Entwicklungsprozess in nur fünf Zeitintervalle etwas ungenau
ist, betrachten wir nun noch eine feinere Aufteilung. In Abbildung 5.6 wurde der Zeitbereich in 40
Intervalle aufgeteilt. Auch hier fällt der Übergang zwischen der Beteiligung bei vp8 und vp9 gleich
auf. Die allgemeine Beteiligung der Entwickler ist hier sehr groß. Davor ist sie eher gering, danach
sinkt sie auch wieder stark, bleibt aber etwas höher als zuvor. Wenn wir uns nur den Zeitbereich der
Änderung genauer anschauen (der Bereich darunter), sticht heraus, dass der Übergang recht schnell
vollzogen wird. Aus den vorherigen Bildern könnte entnommen werden, dass der Wechsel ein länger
andauernder Prozess ist, der über ein Jahr anhält; dies liegt an der Aufteilung des Zeitbereichs in
sehr wenige Intervalle, hierdurch werden die Daten sehr stark aggregiert und ungenau. In dieser
Ansicht wird nun klar, dass der Wechsel in sehr kurzer Zeit durchgeführt wird, bis fast alle Entwickler
zwischen den beiden Bereichen gewechselt haben.

61

5.3 Linux-Kernel

Bei einer noch feineren Aufteilung der Intervalle bzw. bei einer Einschränkung des dargestellten
Zeitbereichs kann sogar herausgefunden werden, wann das erste Mal im Ordner vp9 committet wurde:
Am 1. 11. 2012 hat Ronald S. Bultje die erste Änderung im Verzeichnis vp9 vorgenommen. Durch
Verwendung der Tooltips (sowohl die der Intervalle als auch die der Fluss-Elemente; in Abbildungen
5.7b ist einer dieser Tooltips abgebildet) kann herausgefunden werden, dass bei diesem Commit die
genau gleiche Anzahl an Dateien in vp8 und vp9 bearbeitet wurden. Möglicherweise hat er hier
Dateien im vp8-Verzeichnis gelöscht und bei vp9 eingefügt; dies kann allerdings in der Anwendung
nicht herausgefunden werden, da zwischen Dateien, die erzeugt, gelöscht oder verändert werden
nicht unterschieden wird.

Wenn nun wieder die Abbildung 5.6 (unten) betrachtet wird, ist hier zudem sichtbar, dass bei der
Anzahl der Änderungen schon vor dem Wechsel zu vp9 bereits ein starkes Wachstum in vp8 zu
erkennen ist (der grüne Bereich ganz links, der sehr schmal anfängt und sehr breit wird, bevor er
sich wieder fast auflöst), ohne dass Zuflüsse hinzukommen; erst danach wechselt der Großteil der
Beteiligung von vp8 zu vp9. Darüber hinaus ist auch ein stärkerer Wechsel aus den weiteren Dateien
zu vp9 vorhanden. Gegen Ende des Zeitbereichs wechseln die Entwickler teilweise wieder zurück in
diesen Bereich.

In den Darstellungen kann demnach erkannt werden, dass zunächst im Bereich von VP8 und später
von VP9 entwickelt wurde. Gleichzeitig wurden Dateien für Tests und Beispiele erstellt oder bearbeitet.
Gegen Mitte des betrachteten Zeitraums findet eine kurze Übergangsphase statt. Fast die gesamte
Entwicklerleistung wechselt von vp8 zu vp9 und nimmt dabei zu. In dieser Übergangsphase wurden
deutlich mehr Änderungen vorgenommen als davor oder danach. Die Wartung der alten Version
bricht jedoch nie vollständig ab, wird aber deutlich weniger, bis sie noch eine geringe gleichmäßige
Beachtung erhält. Die Testdateien werden wahrscheinlich für beide Versionen verwendet und sind
daher unabhängig von dem Wechsel.

5.3 Linux-Kernel

Das letzte Projekt, das betrachtet wird, ist der Linux-Kernel; dieser wird bereits seit 1991 entwickelt.
Die verwendeten Log-Daten des Git-Repositories [Lin] reichen allerdings nur von Mitte 2005 bis heute.
Für diesen Zeitraum konnten 426935 Commits von 11495 Entwicklern berücksichtigt werden. Die
Projekthierarchie umfasst 81938 Knoten, wobei 77599 Dateien enthalten sind; sie hat eine maximale
Tiefe von zwölf. Es werden folgende Unterhierarchien als WOIs gewählt: drivers, fs, arch, sound,
include, Documentation. Alle restlichen Dateien werden einem weiteren WOI zugeordnet.

In Abbildung 5.8a ist die Hierarchie mit den ausgewählten WOIs dargestellt, daneben die Übersicht
und Detailansicht zu jeweils den Entwickleranzahlen und der Anzahl an veränderten Dateien.

Auf den ersten Blick ist bereits in Abbildung 5.8b sichtbar, dass die Gesamtzahl der Entwickler
in der gesamten Zeit leicht ansteigt. Die einzelnen Bereiche werden gleichmäßig von etwa einem
gleichen Anteil der Bearbeiter modifiziert. Aufgeklappt (Abbildung 5.8c) sieht jeder Übergangsbereich
etwa gleich aus. Hier gibt es, wie in den beiden Fallstudien zuvor, recht viele Zu- und Abflüsse. Ein
Hauptfluss von Entwicklern, die durchgängig am Projekt zu arbeiten scheinen, kann in dem WOI

62

5.3 Linux-Kernel

(a)

(b)

(c)

(d)

(e)

Abbildung 5.8: Softwareentwicklungsverlauf des Linux-Kernels: (a) Projekthierarchie; (b) und
(c): Darstellung der Anzahl der beteiligten Entwickler als Übersicht und Detail-
ansicht; (d) und (e): Darstellung der Anzahl an veränderten Dateien als Übersicht
und Detailansicht.

63

5.3 Linux-Kernel

(a)

(b)

(c)

(d)

Abbildung 5.9: WOI River des Linux-Kernels für die 140 Entwickler mit den meisten Dateiänderun-
gen: (a) und (b): Darstellung der Anzahl der beteiligten Entwickler als Übersicht
und Detailansicht; (c) und (d): Darstellung der Anzahl an veränderten Dateien als
Übersicht und Detailansicht.

64

5.3 Linux-Kernel

drivers erkannt werden (der rote Fluss); hier scheinen auch allgemein die meisten Entwickler zu
arbeiten.

Bei den Darstellungen in Abhängigkeit der veränderten Dateien (Abbildungen 5.8d und 5.8e) ist
eine ähnliche Entwicklung zu erkennen, es gibt allerdings deutlich weniger Zu- und Abflüsse; daher
sind hier die einzelnen Übergänge zwischen den verschiedenen WOIs besser erkennbar. Zudem ist
sichtbar, dass recht viele Entwickler in aufeinanderfolgenden Zeitintervallen in den gleichen WOIs
entwickeln.Wechsel zwischen verschiedenenWOIs kommen eher selten vor – hauptsächlich zwischen
den Ordnern drivers und arch, wobei eine ähnliche Entwicklerkapazität in die eine, aber auch die
andere Richtung wechselt.

Da an dem Projekt sehr viele Entwickler beteiligt sind, viele davon jedoch kaum etwas verändern,
werden im Folgenden noch einige Darstellungen betrachtet, die nur Hauptentwickler berücksichtigen.
Hierfür sind in Abbildung 5.9 Visualisierungen abgebildet, die das Verhalten der 140 Entwickler zeigen,
welche die meisten Dateiänderungen bewirkt haben (jeweils mindesten 1500 Dateiänderungen). Bei
dem Vergleich dieser Visualisierungen fällt auf, dass die Verteilung der Anzahl an Entwicklern
und der Dateiänderungen sich im Wesentlichen nur gering unterscheiden. Es sind kaum Zu- bzw.
Abflüsse zu erkennen, was bedeutet, dass fast alle Entwickler in dem dargestellten Zeitbereich an dem
Projekt beteiligt waren. Während bei den zuvor betrachteten Visualisierungen sowohl die Anzahl der
Entwickler, als auch die der Dateiänderungen monoton gewachsen ist, schwanken hier die Anzahlen
teilweise.

Allgemein könnte man vermuten, dass es sich hier um einen gleichmäßigen und stabilen Entwick-
lungsprozess handelt, bei dem jeder Arbeitsbereich jeweils zu gleichen Anteilen bearbeitet wird. Es
gibt zwar, je nach Art der Darstellung, recht viele Abflüsse, aber jeweils noch mehr Zuflüsse.

Obwohl dieses Projekt recht groß ist, sind in der Visualisierung immer noch Trends und Merkmale
erkennbar.

65

6 Zusammenfassung und Ausblick

Ziel dieser Arbeit war die Umfunktionierung des Konzepts der AOI Rivers [BKW13] in ein interaktives
Visualisierungswerkzeug zur Analyse dynamischer Entwicklerzahlen in WOIs eines Softwaresys-
tems.

Die AOI River-Visualisierung wurde ursprünglich für Eye-Tracking-Daten verwendet; in dieser Arbeit
wurde sie für die Analyse von Softwareentwicklungsprozessen angepasst und erweitert.

Ein WOI River kann die dynamischen Verhaltensweisen von Entwicklergruppen veranschaulichen.
Durch ihn kann die Anzahl an Entwicklern bzw. die Anzahl ihrer Änderungen am Softwaresystem
für festgelegte WOIs über die Zeit visualisiert werden. Außerdem können Wechsel zwischen ver-
schiedenen WOIs sowie Zu- und Abflüsse zum bzw. aus dem Projekt sichtbar gemacht werden. Es
wurden verschiedene Methoden zur Behandlung der Höhe der einzelnen Entwickler für die einzelnen
Intervalle und Transitionen untersucht.

Für die Visualisierungstechnik wurde eine Anwendung implementiert, in der die Projekthierarchie
und der zugehörige WOI River interaktiv untersucht werden können. Die verschiedenen WOIs, der
darzustellende Zeitbereich, die Einteilung in Intervalle und die Entwickler, welche für die Visuali-
sierung berücksichtigt werden sollen, können hier angegeben werden. Für die Festlegung der WOIs
können verschiedene Hilfsfunktionen und Filter eingesetzt werden. Weitere Einstellungsmöglich-
keiten für die Berechnung des WOI Rivers und für die Anzeige verschiedener Elemente stehen zur
Verfügung. Ein WOI River bietet zunächst in Form eines ThemeRivers einen Gesamtüberblick des Ent-
wicklungsprozesses. Auf Wunsch können Bereiche zwischen Intervallen in der Darstellung verändert
werden, um Details bezüglich der Zu- und Abflüsse zum bzw. aus dem Projekt sowie den Übergängen
zwischen WOIs anzuzeigen.

Die WOI River-Visualisierungstechnik liefert ästhetische Darstellungen eines Softwareentwicklungs-
prozesses, in denen Entwicklungsstrategien und -verhalten sichtbar gemacht werden können. Es
wurde festgestellt, dass die Technik für unterschiedlich große Projekte geeignet ist und auch für
größere Projekte wie den Linux-Kernel skalierbar ist. Entwickler, die wenig zum Projekt beitragen,
dominieren teilweise in der Visualisierung durch häufige Zu- und Abflüsse. Indem die dargestellten
Daten reduziert werden, um weniger relevante Aspekte, wie Commits mit sehr vielen Dateiänderun-
gen oder Entwickler mit geringer Beteiligung auszublenden, können Rauschen und Visual Clutter
vermindert und ein Überblick über den Entwicklungsprozess gewonnen werden. Interaktionstechni-
ken können hilfreich sein, das Dargestellte in den WOI Rivers besser zu verstehen und weitere Details
herauszufinden.

Anhand dreier Fallstudien wurde untersucht, welche Einsichten in die Entwicklungsprozesse der
Projekte mit Hilfe der Visualisierung gewonnen werden können und wie interaktiv weitere nützliche

66

6 Zusammenfassung und Ausblick

Details herausgefunden werden können. Zuerst wurde die Entwicklung der Programmiersprache
Python analysiert, gefolgt von der Bibliothek libvpx und dem Linux-Kernel.

Ausblick

Die Visualisierung liefert einen guten Überblick über die Anzahl der Entwickler, die in verschie-
denen Arbeitsbereichen gearbeitet haben oder über deren Änderungen am Projekt. Es gibt jedoch
noch viele Möglichkeiten die Visualisierung anzupassen um noch mehr über den Entwicklungs-
prozess herauszufinden oder die Analyse zu erleichtern. Im Folgenden werden einige dieser Ideen
vorgestellt.

Die Intervalle, die in der Anwendung gebildet werden können, haben jeweils etwa die gleiche Größe;
sie decken entweder einen festen Zeitbereich oder eine bestimmte Anzahl an Commits ab. Bei dieser
Einteilung könnte nach verschiedenen anderen Kriterien vorgegangen werden. Es wäre möglich
wichtige Ereignisse zu berücksichtigen, wie etwa Releases oder das Anlegen von Tags im Versions-
kontrollsystem. Hiermit könnte das Verhalten zwischen wichtigen Meilensteinen der Entwicklung
untersucht werden.

Der Zeitbereich für die Visualisierung kann beliebig festgelegt werden. Wenn entsprechende Bereiche
in der WOI River-Visualisierung interaktiv selektiert werden könnten, wäre eine direkte Darstellung
des entsprechenden Zeitbereichs mit einer feineren Aufteilung möglich. Es müssten nicht zuerst die
Grenzen des gewünschten Zeitbereiches herausgefunden werden; der Analyseprozess könnte hiermit
vereinfacht werden.

Darüber hinaus wäre das Hervorheben eines einzelnen Entwicklers oder einer Entwicklergruppe im
Kontext des gesamten Flusses sehr nützlich um die Beteiligung der entsprechenden Entwickler im
Vergleich mit den restlichen Entwicklern zu sehen und besser verfolgen zu können. Je nach Einstellun-
gen könnte erkannt werden, ob die ausgewählten Entwickler in den Bereichen der Hauptentwicklung
arbeiten, in einzelnen Bereichen dominieren oder über mehrere Bereiche verteilt sind.

Dadurch, dass Entwickler häufig gleichzeitig an verschiedenen Bereichen des Projekts beteiligt sind
wird die Höhe, die einen Entwickler in der Visualisierung repräsentiert, auf möglicherweise mehrere
WOIs aufgeteilt. Eventuell müssen die Entwickler manche Dateien, die außerhalb ihres eigenen
Arbeitsbereiches liegen sehr selten verändern, wodurch viele dünne Übergänge zwischen den WOIs
entstehen können. Würde einem Entwickler in jedem Intervall nur ein WOI zugeordnet werden – der
WOI zu dem er am meisten beigetragen hat – könnte Visual Clutter vermieden werden, allerdings
würden auch leicht wichtige Informationen verloren gehen.

Gelegentlich wird ein Projekt von Entwicklern nur für eine gewisse Zeit verlassen, bevor sie wieder
zum Projekt zurückkehren. Dies hat mehrere Zu- und Abflüsse zur Folge. Hier könnte überlegt werden,
ob zwischen den Entwicklern, die das Projekt vollständig und denen, die es nur vorübergehend
verlassen unterschieden wird, um die Zu- und Abflüsse in unterschiedlicher Weise zu visualisieren.
Beispielsweise könnten „inaktive“ Entwickler in einen zusätzlichen „inaktiven“ Fluss fließen und aus
diesem wieder zurück in das Hauptprojekt. Ein anderer Ansatz könnte sein, Zu- und Abflüsse in einer
anderen Darstellungsform, z.B. durch eine verkürzte vertikale Länge der Elemente, anzuzeigen.

67

6 Zusammenfassung und Ausblick

Die Reihenfolge in der die einzelnen Flüsse vertikal angeordnet sind spielt eine recht große Rolle
um Besonderheiten zu erkennen - derzeit entspricht sie der Anordnung in der Hierarchie oder
der Reihenfolge in der sie festgelegt wurden. Befinden sich beispielsweise zwei WOIs, die sich
gegenseitig ablösen übereinander ist ein Übergang von dem einen zu dem anderenWOI gut erkennbar.
Befinden sich jedoch andere WOIs dazwischen, könnte dieser Wechsel möglicherweise übersehen
werden. Zusätzlich ist es in einigen Fällen schwierig zu erkennen, welche Arbeitsbereiche die größte
Beteiligung besitzen, vor allem wenn mehrere Bereiche gleich stark bearbeitet werden. Außerdem gibt
es in der Visualisierung teilweise sehr viele sich überkreuzende Transitionen zwischen verschiedenen
WOIs. Besonders störend könnte es sein, wenn viele Transitionen zwischen den obersten und den
untersten WOIs verlaufen. Ein geeigneter Algorithmus könnte dafür sorgen, dass eine optimierte
Reihenfolge der Flüsse erreicht wird.
Ein einfacher Ansatz hierzu könnte sein, die Flüsse nach ihrer durchschnittlichen oder maximal
vorkommenden Höhe zu sortieren. Hierdurch ist schneller erkennbar wo die Beteiligung einzelner
Entwickler am größten war. Würde der Fluss mit der höchsten Wichtigkeit in der Mitte platziert
werden und nach außen die eher unwichtigeren, wäre eine Reduzierung der Überkreuzungen möglich,
da wahrscheinlich häufiger Transitionen zu oder von den wichtigeren WOIs ausgehen. Zu dem
wichtigsten Fluss müssten folglich keine Transitionen über die gesamte vertikale Visualisierung
verlaufen, sondern nur bis etwa zur Mitte.

Auch die Farbvergabe für die einzelnen WOIs könnte optimiert werden. Während momentan zwar
Farben mit einem möglichst hohen Kontrast vergeben werden, könnte zusätzlich der Flussverlauf
berücksichtigt werden. Hierbei müsste darauf geachtet werden, dass an benachbarte Flüsse und bei
Flüssen zwischen denen Transitionen verlaufen eine möglichst kontrastreiche Farbe vergeben wird.

Zudem ist denkbar, weitere Informationen des Versionskontrollsystems zu verwenden und diese
in die Anwendung zu integrieren. Eine Verwendung der Commit-Kommentare oder das Zugreifen
auf bestimmte Dateien und deren Veränderungen könnte die Anwendung noch hilfreicher ma-
chen.

68

Literaturverzeichnis

[AMM+07] W. Aigner, S. Miksch, W. Müller, H. Schumann, C. Tominski. Visualizing time-oriented
data-A systematic view. Comput. Graph., 31(3):401–409, 2007. doi:10.1016/j.cag.2007.01.
030. URL http://dx.doi.org/10.1016/j.cag.2007.01.030. (Zitiert auf Seite 9)

[Ank09] M. Ankerl. How to Generate RandomColors Programmatically. http://martin.ankerl.
com/2009/12/09/how-to-create-random-colors-programmatically/, 2009. (Zi-
tiert auf Seite 34)

[BBM+14] F. Beck, M. Burch, T. Munz, L. Di Silvestro, D. Weiskopf. Generalized Pythagoras Trees
for Visualizing Hierarchies. In IVAPP ’14: Proceedings of the 5th International Conference
on Information Visualization Theory and Application, S. 17–28. SCITEPRESS, 2014. (Zitiert
auf den Seiten 7 und 9)

[BDL05] M. Balzer, O. Deussen, C. Lewerentz. Voronoi Treemaps for the Visualization of Software
Metrics. In Proceedings of the 2005 ACM symposium on Software visualization, SoftVis
’05, S. 165–172. ACM, New York, NY, USA, 2005. doi:10.1145/1056018.1056041. URL
http://doi.acm.org/10.1145/1056018.1056041. (Zitiert auf Seite 8)

[BHW00] M. Bruls, K. Huizing, J. Wijk. Squarified Treemaps. In W. Leeuw, R. Liere, Herausgeber,
Data Visualization 2000, Eurographics, S. 33–42. Springer Vienna, 2000. doi:10.1007/
978-3-7091-6783-0_4. URL http://dx.doi.org/10.1007/978-3-7091-6783-0_4. (Zi-
tiert auf Seite 8)

[BKW13] M. Burch, A. Kull, D.Weiskopf. AOI Rivers for Visualizing Dynamic Eye Gaze Frequencies.
In Computer Graphics Forum, Band 32, S. 281–290. Wiley Online Library, 2013. (Zitiert
auf den Seiten 4, 9, 10 und 66)

[BMMS91] A. Buja, J. McDonald, J. Michalak, W. Stuetzle. Interactive data visualization using focu-
sing and linking. In Visualization, 1991. Visualization ’91, Proceedings., IEEE Conference
on, S. 156–163, 419. 1991. doi:10.1109/VISUAL.1991.175794. (Zitiert auf Seite 47)

[Bos57] A. E. Bosman. Het wondere onderzoekingsveld der vlakke meetkunde. Parcival, Breda,
1957. (Zitiert auf Seite 9)

[BRW10] M. Burch, M. Raschke, D. Weiskopf. Indented Pixel Tree Plots. In Advances in Visual
Computing, S. 338–349. Springer, 2010. (Zitiert auf Seite 8)

[BW08] L. Byron, M. Wattenberg. Stacked Graphs – Geometry & Aesthetics. Visualization and
Computer Graphics, IEEE Transactions on, 14(6):1245–1252, 2008. doi:10.1109/TVCG.2008.
166. (Zitiert auf Seite 9)

69

http://dx.doi.org/10.1016/j.cag.2007.01.030
http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
http://doi.acm.org/10.1145/1056018.1056041
http://dx.doi.org/10.1007/978-3-7091-6783-0_4

Literaturverzeichnis

[Cau10] A. H. Caudwell. Gource: Visualizing Software Version Control History. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH ’10, S. 73–74. ACM, New York, NY,
USA, 2010. doi:10.1145/1869542.1869554. URL http://doi.acm.org/10.1145/1869542.
1869554. (Zitiert auf den Seiten 4 und 11)

[Die07] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolution of
Software. Springer, 2007. (Zitiert auf den Seiten 10 und 11)

[HHWN02] S. Havre, E. Hetzler, P. Whitney, L. Nowell. ThemeRiver: Visualizing Thematic Changes
in Large Document Collections. Visualization and Computer Graphics, IEEE Transactions
on, 8(1):9–20, 2002. doi:10.1109/2945.981848. (Zitiert auf den Seiten 4, 9 und 10)

[iso] Data Elements and Interchange Formats—Information Exchange—Representation of
Dates and Times—ISO 8601: 2004. International Standardizaton Organization (ISO).
(Zitiert auf Seite 40)

[JS91] B. Johnson, B. Shneiderman. Tree-Maps: a Space-Filling Approach to the Visualization of
Hierarchical Information Structures. In Proceedings of the 2nd conference on Visualization
’91, VIS ’91, S. 284–291. IEEE Computer Society Press, Los Alamitos, CA, USA, 1991.
URL http://dl.acm.org/citation.cfm?id=949607.949654. (Zitiert auf den Seiten 7
und 8)

[JS10] S. Jürgensmann, H.-J. Schulz. Poster: A Visual Survey of Tree Visualization. In Proceedings
of IEEE Information Visualization, Band 5. 2010. (Zitiert auf Seite 7)

[KBK11] M. Krstajic, E. Bertini, D. Keim. CloudLines: Compact Display of Event Episodes in Multi-
ple Time-Series. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2432–
2439, 2011. doi:10.1109/TVCG.2011.179. (Zitiert auf Seite 9)

[KL83] J. B. Kruskal, J. M. Landwehr. Icicle Plots: Better Displays for Hierarchical Clustering.
The American Statistician, 37(2):162–168, 1983. (Zitiert auf den Seiten 7 und 9)

[lib] lipvpx-Repository. https://chromium.googlesource.com/webm/libvpx. (Zitiert auf
Seite 58)

[Lin] Linux-Kernel-Repository. git://git.kernel.org/pub/scm/linux/kernel/git/

stable/linux-stable.git. (Zitiert auf Seite 62)

[LWW+13] S. Liu, Y. Wu, E. Wei, M. Liu, Y. Liu. StoryFlow: Tracking the Evolution of Stories.
Visualization and Computer Graphics, IEEE Transactions on, 19(12):2436–2445, 2013. doi:
10.1109/TVCG.2013.196. (Zitiert auf Seite 9)

[Mun13] T. Munz. Hierarchievisualisierung mit verallgemeinerten Pythagoras-Bäumen. Studien-
arbeit, Universität Stuttgart, VISUS, 2013. (Zitiert auf Seite 8)

[OM09] M. Ogawa, K.-L. Ma. code_swarm: A Design Study in Organic Software Visualization.
Visualization and Computer Graphics, IEEE Transactions on, 15(6):1097–1104, 2009. doi:
10.1109/TVCG.2009.123. (Zitiert auf den Seiten 4, 11 und 53)

70

http://doi.acm.org/10.1145/1869542.1869554
http://doi.acm.org/10.1145/1869542.1869554
http://dl.acm.org/citation.cfm?id=949607.949654
https://chromium.googlesource.com/webm/libvpx
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

Literaturverzeichnis

[OM10] M. Ogawa, K.-L. Ma. Software Evolution Storylines. In Proceedings of the 5th International
Symposium on Software Visualization, SOFTVIS ’10, S. 35–42. ACM, New York, NY,
USA, 2010. doi:10.1145/1879211.1879219. URL http://doi.acm.org/10.1145/1879211.
1879219. (Zitiert auf den Seiten 4, 11, 12, 53 und 54)

[Pyta] Python. http://www.python.org/. (Zitiert auf Seite 53)

[Pytb] Python-Repository. http://hg.python.org/cpython. (Zitiert auf Seite 53)

[RLN07] R. Rosenholtz, Y. Li, L. Nakano. Measuring Visual Clutter. Journal of Vision, 7(2):17, 2007.
(Zitiert auf Seite 23)

[SČG05] M.-A. D. Storey, D. Čubranić, D. M. German. On the Use of Visualization to Support
Awareness of Human Activities in Software Development: A Survey and a Framework.
In Proceedings of the 2005 ACM symposium on Software visualization, S. 193–202. ACM,
2005. (Zitiert auf Seite 11)

[Shn96] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, S. 336–343.
1996. doi:10.1109/VL.1996.545307. (Zitiert auf Seite 36)

[Spe07] R. Spence. Information visualization. Pearson, London u.a., 2007. (Zitiert auf Seite 44)

[SZ00] J. Stasko, E. Zhang. Focus+Context Display and Navigation Techniques for Enhancing
Radial, Space-Filling Hierarchy Visualizations. In Information Visualization, 2000. InfoVis
2000. IEEE Symposium on, S. 57–65. 2000. doi:10.1109/INFVIS.2000.885091. (Zitiert auf
Seite 9)

[TA08] A. Telea, D. Auber. Code Flows: Visualizing Structural Evolution of Source Code. In
Computer Graphics Forum, Band 27, S. 831–838. Wiley Online Library, 2008. (Zitiert auf
den Seiten 4, 11 und 12)

[Tuf83] E. R. Tufte. The Visual Display of Quantitative Information, Band 2. Graphics Press
Cheshire, CT, 1983. (Zitiert auf den Seiten 4 und 10)

[web] The WebM Project | Frequently Asked Questions. http://www.webmproject.org/

about/faq. (Zitiert auf Seite 58)

[Wet03] K. Wetzel. Pebbles – using Circular Treemaps to visualize disk usage. http://lip.

sourceforge.net/ctreemap.html, 2003. (Zitiert auf Seite 8)

[ZW04] T. Zimmermann, P. Weißgerber. Preprocessing CVS Data for Fine-Grained Analysis. In
Proceedings International Workshop on Mining Software Repositories, MSR04. 2004. (Zitiert
auf Seite 37)

Alle URLs wurden zuletzt am 14. 03. 2014 geprüft.

71

http://doi.acm.org/10.1145/1879211.1879219
http://doi.acm.org/10.1145/1879211.1879219
http://www.python.org/
http://hg.python.org/cpython
http://www.webmproject.org/about/faq
http://www.webmproject.org/about/faq
http://lip.sourceforge.net/ctreemap.html
http://lip.sourceforge.net/ctreemap.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziele
	1.3 Gliederung

	2 Verwandte Arbeiten
	2.1 Hierarchievisualisierung
	2.2 Visualisierung zeitveränderlicher Daten
	2.3 Softwarevisualisierung

	3 Visualisierungstechnik
	3.1 Datenmodell
	3.2 Hierarchie
	3.3 WOI Rivers
	3.4 Farbvergabe

	4 Implementierung
	4.1 Vorverarbeitung
	4.2 Benutzeroberfläche
	4.3 Import
	4.4 Grundfunktionen
	4.5 Weitere Funktionen und Interaktion
	4.6 Export

	5 Fallstudien
	5.1 Python
	5.2 libvpx
	5.3 Linux-Kernel

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

