
 

 

Institut für Architektur von Anwendungssystemen 
Universität Stuttgart 

Universitätsstraße 38 
70569 Stuttgart 

Deutschland 
 

 

 

 

 

 

 

Diplomarbeit Nr. 3588 
 
 

Analyse, Konzept und Realisierung 
eines multimodalen B2B-

Verkehrsplanungsdienstes auf Basis 
von Webserviceaggregation 

 
Stanislaus Biesinger 

 

 

 

 

Studiengang:  Softwaretechnik 
 
 
 

  

Prüfer:  Jun.-Prof. Dr. Dimka Karastoyanova 
   
Betreuer:  M.Sc. Wirt.-Inf. Andreas Weiß 

 
Betreuer Industrie: 
 

 Dipl.-Ing. Volker W. Fricke 

begonnen am:  01.11.2013 
   
beendet am:  02.05.2014 
 
 
 

  

CR-Klassifikation:  H.3.5, H.5.3 



i 

Kurzfassung 

Die vorliegende Arbeit befasst sich mit der Konzeption und Entwicklung eines multimodalen 

B2B-Verkehrsplanungsdienstes auf der Basis von Webserviceaggregation. Es wird ein kurzer 

Überblick über das Thema „multimodale Verkehrsplanung“ und die bisher entstandenen Ar-

beiten auf Basis von gewichteten Graphen geboten. Die Nachteile bestehender Lösungen 

werden diskutiert und ein neuer Ansatz vorgestellt. Im Folgenden wird eine Beispielimple-

mentierung dieses Ansatzes mithilfe von WS-BPEL beschrieben. Daraufhin werden die Er-

gebnisse, welche von dieser Beispielimplementierung geliefert werden, mit den Ergebnissen 

bestehender Planungsdienste verglichen. Schlussendlich werden Vor- und Nachteile des neu-

en webservicebasierten Ansatzes erörtert und denkbare Erweiterungsmöglichkeiten bespro-

chen. 

 

Abstract 

This thesis deals with the conception and development of a multimodal B2B journey planner, 

based on web service aggregation. For this purpose, a short summary of the topic of multi-

modal journey planning is given. Prior work in this field based on shortest path algorithms is 

also discussed. It discusses the various shortcomings of existing solutions and present a novel 

approach based on the aggregation of existing web services. This is followed by the descrip-

tion of an implementation of this approach using WS-BPEL. The output of this implementa-

tion is then compared to the output of existing solutions. Finally, the various advantages and 

shortcomings of the concept are discussed, followed by possible solutions for these problems 

and possible expansions of the concept in general.  

  



ii 

Inhaltsverzeichnis 

Kurzfassung ................................................................................................................................. i 

Inhaltsverzeichnis ....................................................................................................................... ii 

Abbildungsverzeichnis ............................................................................................................... v 

 

1 Einleitung ........................................................................................................................... 1 

1.1 Motivation und Zielsetzung ......................................................................................... 1 

1.2 Struktur des Dokumentes ............................................................................................. 2 

2 Grundlagen ......................................................................................................................... 3 

2.1 Multimodale Verkehrsplanung .................................................................................... 3 

2.2 Webserviceaggregation ............................................................................................... 4 

2.3 B2B Webservice .......................................................................................................... 5 

2.4 WS-BPEL .................................................................................................................... 5 

2.5 WSDL .......................................................................................................................... 6 

2.6 WGS84 ........................................................................................................................ 6 

3 Verwandte Arbeiten ........................................................................................................... 8 

3.1 Pathingalgorithmen ...................................................................................................... 8 

3.1.1 Dijkstra Algorithmus ............................................................................................ 8 

3.1.2 A* Algorithmus .................................................................................................. 10 

3.2 Theoretische Routingansätze ..................................................................................... 12 

3.2.1 Routing von dynamisch gerouteten Mobilitätsanbietern ................................... 12 

3.2.2 Routing von linienbasierten Mobilitätsanbietern ............................................... 13 

3.2.3 Multimodales Routing ........................................................................................ 13 

3.3 Bereits veröffentlichte Dienste zur multimodalen Verkehrsplanung ........................ 13 

3.3.1 Moovel ............................................................................................................... 14 

3.3.2 AnachB ............................................................................................................... 14 

3.4 Gegenüberstellung zu MoBee ................................................................................... 15 

3.4.1 Nachteile bisheriger Ansätze und Lösungen ...................................................... 15 

3.4.2 Ansatz von MoBee ............................................................................................. 16 

4 Implementierung .............................................................................................................. 18 

4.1 Verwendete Middleware ............................................................................................ 18 

4.1.1 IBM WebSphere Application Server/Process Server ......................................... 18 

4.1.2 IBM DB2 Server/DB2 Spatial Extender ............................................................ 18 

4.2 Routingalgorithmus (TiGeR) ..................................................................................... 19 

4.2.1 Terminologie ...................................................................................................... 19 

4.2.2 Ablauf ................................................................................................................. 20 



iii 

4.2.3 Ablaufbeispiel .................................................................................................... 22 

4.3 Architekturübersicht und Systemkontext .................................................................. 24 

4.4 Prozesslogik ............................................................................................................... 25 

4.4.1 GetSimpleRoutes Query ..................................................................................... 27 

4.4.2 TieredTrip Query ................................................................................................ 28 

4.4.3 Handoff Query .................................................................................................... 29 

4.4.4 LineTrip Query ................................................................................................... 31 

4.4.5 CarsharingTrip Query ........................................................................................ 31 

4.4.6 FootTrip Query ................................................................................................... 31 

4.4.7 CabTrip Query .................................................................................................... 31 

4.4.8 TripQuery_MainProcess .................................................................................... 31 

4.4.9 TripQuery_Wrapper ........................................................................................... 32 

4.5 Geospatial Subsystem ................................................................................................ 32 

4.5.1 Übersicht ............................................................................................................ 32 

4.5.2 Queries und Spatial Functions ............................................................................ 33 

4.6 Web Service Wrapper ................................................................................................ 36 

4.7 Sorting Service .......................................................................................................... 37 

5 Webservice Ports .............................................................................................................. 38 

5.1 TripQuery Wrapper (Hauptschnittstelle) ................................................................... 38 

5.1.1 Operationen ........................................................................................................ 38 

5.1.2 Datentypen ......................................................................................................... 38 

5.2 Database Connector (GSS Kommunikation) ............................................................. 42 

5.2.1 Operationen ........................................................................................................ 42 

5.2.2 Datentypen ......................................................................................................... 42 

5.3 Externe Webservice Ports .......................................................................................... 47 

5.3.1 Generic LineTrip Port ........................................................................................ 47 

5.3.2 Generic_Carsharing Port .................................................................................... 52 

5.3.3 NavRoute Port .................................................................................................... 54 

5.4 SuggestionSorter Port (Sorting Service) .................................................................... 56 

5.4.1 Operationen ........................................................................................................ 57 

5.4.2 Datentypen ......................................................................................................... 57 

6 Evaluierung ...................................................................................................................... 58 

6.1 Stärken des MoBee Konzeptes .................................................................................. 58 

6.1.1 Auflistung von Alternativen für simple Routen ................................................. 58 

6.1.2 Tiered Queries .................................................................................................... 59 

6.1.3 Leichte Erweiterbarkeit ...................................................................................... 61 

6.1.4 Verzicht auf proprietäre Funktionalität .............................................................. 62 

6.2 Schwächen des Konzeptes und Lösungsvorschläge .................................................. 62 



iv 

6.2.1 Übergabepunktberechnung bei Handoff Queries ............................................... 62 

6.2.2 Lange Laufzeit von Routenberechnungen .......................................................... 63 

6.2.3 Verfügbarkeit von geteilten Fahrzeugen bei kombinierten Routen ................... 64 

6.2.4 Ineffiziente Routen durch Unkenntnis der Haltestellen bei linienbasierten 

Verkehrsanbietern ............................................................................................................ 64 

6.2.5 Unrealistische Routingvorschläge durch Unkenntnis über die 

Verkehrssituation… ......................................................................................................... 66 

7 Ausblick und Zusammenfassung ..................................................................................... 68 

7.1 Direkte Buchung von vorgeschlagenen Routen ........................................................ 68 

7.2 Aufnahme von Leihfahrrädern in die Routenplanung ............................................... 68 

7.3 Ausgabe von Grafiken für die Streckenvisualisierung .............................................. 70 

7.4 Zusammenfassung ..................................................................................................... 73 

Literaturverzeichnis .................................................................................................................. 74 

 

 

 

 

 

 

 

  



v 

 

Abbildungsverzeichnis 

Abbildung 2-1 WS-Choreography vs. WS-Orchestration .......................................................... 5 
Abbildung 3-1 Wahl des nächsten Knotens beim Dijkstra Algorithmus ................................... 9 
Abbildung 3-2 Dijkstra-Graph nach Auffinden der kürzesten Route zu H .............................. 10 
Abbildung 3-3 Ausgangspunkt unterschiedlicher Vorgehensweise von Dijkstra und A* ....... 11 

Abbildung 3-4 Unterschiedliche Vorgehensweise von Dijkstra und A* ................................. 12 
Abbildung 3-5 Ausgabemaske von Moovel ............................................................................. 14 
Abbildung 3-6 Park-and-Ride Ausgabemaske von AnachB .................................................... 15 
Abbildung 4-1 Ablauf von TiGeR als Flussdiagramm ............................................................ 20 
Abbildung 4-2 Routenvektor Innsbruck - Stuttgart mit geschnittenen A2 .............................. 22 

Abbildung 4-3 MoBee System Context Diagram .................................................................... 24 
Abbildung 4-4 MoBee Systemarchitektur ................................................................................ 25 

Abbildung 4-5 Assemblydiagramm MoBee ............................................................................ 26 

Abbildung 4-6 Aufruf der entsprechenden Subprozesse im GetSimpleRoutes Prozess .......... 27 
Abbildung 4-7 Ausschnitt TieredQuery Subprozess ................................................................ 28 
Abbildung 4-8 Bildung einer Tiered Route .............................................................................. 29 
Abbildung 4-9 Handoff Query mit zwei Typ-0 Anbietern ...................................................... 30 

Abbildung 4-10 Datenbankstruktur GSS ................................................................................. 32 
Abbildung 4-11 Architektur der WSW .................................................................................... 37 

Abbildung 5-1 TripQuery Wrapper Port .................................................................................. 38 
Abbildung 5-2 Database Connector Port ................................................................................. 42 

Abbildung 5-3 Generic LineTrip Port ...................................................................................... 47 
Abbildung 5-4 Generic_Carsharing Port .................................................................................. 52 
Abbildung 5-5 NavRoute Port .................................................................................................. 54 

Abbildung 6-1 Vergleich Routingergebnisse MoBee und Moovel .......................................... 59 

Abbildung 6-2 MoBee Routenvorschlag Innsbruck Hilton nach Krefelder Straße 21, Stuttgart

 .................................................................................................................................................. 60 
Abbildung 6-3 Tiered Trip Stuttgart – Tübingen ..................................................................... 61 

Abbildung 6-4 Ineffiziente Route mit linienbasiertem Mobilitätsanbieter .............................. 65 
Abbildung 6-5 Theoretisch mögliche bessere Route mit dynamisch geroutetem 

Mobilitätsanbieter ..................................................................................................................... 65 
Abbildung 7-1 Mögliche Schnittstelle für einen Leihfahrrad-Subprozess ............................... 69 
Abbildung 7-2 Generische Schnittstelle für Fahrradverleihanbieter ........................................ 69 
Abbildung 7-3 Mögliche Erweiterung des Generic_LineTrip_Port......................................... 70 

Abbildung 7-4 Designvorschlag für den TraversedNodes_Query ........................................... 71 
Abbildung 7-5 Schnittstelle und Datentypen für den Bildbearbeitungsservice ....................... 72 
  



1 

 

1 Einleitung 

1.1 Motivation und Zielsetzung 

In der „Einführung in die Verkehrswirtschaft“ [Kum06] wird multimodaler Verkehr als 

„mehrgliedrige Transportkette [...], bei der die Beförderung von Personen oder der Transport 

eines Gutes mit zwei oder mehr unterschiedlichen Verkehrsträgern vollzogen wird“ definiert. 

Die multimodale Verkehrsplanung beschäftigt sich mit der Kreation dieser Transportketten. 

Es gibt bereits zahlreiche Arbeiten zu diesem Thema (siehe 3.2), auch gibt es bereits marktrei-

fe Implementierungen von computergestützten multimodalen Verkehrsplanungsdiensten. Je-

doch besitzen diese Implementierungen durchweg zwei Limitierungen: Zum einen bedienen 

sie zumeist nur die Transportmittel eines einzelnen Mobilitätsanbieters, beispielsweise die 

Komponenten eines Verkehrsverbundes. Bei den wenigen Sonderfällen, in denen mehrere 

Mobilitätsanbieter berücksichtigt werden (moovel.com [Dai14]), handelt es sich mehr um 

eine Auflistung von alternativen Transportmitteln als eine wahre multimodale Transportpla-

nung. Zum anderen arbeiten diese Systeme auf einem einzigen vereinheitlichten Datensatz. 

Dies hat zur Folge, dass neue Transportmittel/Mobilitätsanbieter, welche am multimodalen 

Verkehrsplanungssystem teilnehmen wollen, ihre Daten komplett offen legen und in das vom 

bereits bestehenden System verwendete Format konvertieren müssen. Zwar gibt es bereits 

Versuche, gerade für linienbasierte Mobilitätsanbieter einen einheitlichen Standard zu etablie-

ren [Goo12], jedoch bleibt bei vielen Unternehmen der Widerwille [Lor12], ihre Daten Drit-

ten zugänglich zu machen. Zusätzlich dazu haben sich in der Praxis bereits kommerzielle 

Verkehrsplanungssysteme etabliert [HAF14], deren Hersteller vermutlich wenig Interesse an 

einer Änderung des Status Quo besitzen. Dies ist vermutlich auch einer der Gründe, warum 

wahre multimodale Verkehrsplanung bisher nur innerhalb von Verbünden existiert. 

Ziel dieser Diplomarbeit ist es, einen multimodalen Verkehrsplanungsdienst zu entwickeln, 

welcher die beiden oben genannten Limitationen umgeht. Es soll eine Integrationsplattform 

entstehen, in welcher bereits bestehende Planungsdienste von Mobilitätsanbietern in Form 

von Webservices aggregiert werden. Folgende Formen der Mobilität sollen in die multimoda-

le Planung aufgenommen werden: 

 Linienbasierter Verkehr (Bus, Bahn etc.) 

 Carsharing 

 Taxi 

 Fußweg 

Als Namen für den zu implementierenden Dienst wurde MoBee (Multimodal Mobility) ge-

wählt. 

Dieser Dienst soll im Rahmen der Green eMotion B2B Integrationsplattform als B2B Webs-

ervice (siehe 2.3) bereitgestellt werden. Das Green eMotion Projekt ist ein Teil der European 

Green Cars Initiative [Sie14]. Es besteht aus einem Konsortium aus 43 Partnern, sowohl aus 



2 

 

der Industrie als auch aus dem Universitäts- und Forschungsbereich. Ziel von Green eMotion 

ist die Entwicklung europaweiter Standards und Infrastruktur für Elektromobilität im Zuge 

der EU-Klimaziele einer CO2-Reduzierung von 60 Prozent bis zum Jahre 2050. Eine zentrale 

Komponente dieser Infrastruktur ist der Green eMotion E-Mobility B2B-Marketplace. Her-

steller und Anbieter von Dienstleistungen rund um Elektromobilität können dort in einer auf 

offenen Standards basierenden Cloud Computing-Umgebung ihre Angebote integrieren und 

miteinander verknüpfen. 

1.2 Struktur des Dokumentes 

Diese Diplomarbeit gliedert sich in 7 Kapitel. In Kapitel 2 - Grundlagen werden Grundlagen 

besprochen, welche für das Verständnis der Arbeit vonnöten sind. Kapitel 3 - Verwandte Ar-

beiten behandelt verwandte Arbeiten zum Thema multimodale Verkehrsplanung und Pathing. 

Diese werden kurz beschrieben. Aus den ihnen inhärenten Nachteilen werden Anforderungen 

an das MoBee Konzept abgeleitet und dessen darauf basierende Designprinzipien erläutert. 

Kapitel 4 - Implementierung beschreibt die Implementierung des MoBee Konzeptes im Rah-

men dieser Arbeit. Es behandelt die verwendete Middleware, den dem Konzept zugrunde lie-

genden Algorithmus, die Systemarchitektur und die Implementierung der zuvor beschriebe-

nen Komponenten. In Kapitel 5 - Webservice Ports werden diejenigen Webservice Ports, wel-

che zur Kommunikation zwischen den einzelnen Subsystemen und zur Kommunikation mit 

externen Webservices benötigt werden, beschrieben. Kapitel 6 - Evaluierung bietet einen 

Überblick über die nach Fertigstellung der Implementierung erkannten Stärken und Schwä-

chen des MoBee Konzeptes. Zusätzlich werden für die weitere Arbeit am Thema Lösungsan-

sätze für die erkannten Probleme des Konzeptes vorgeschlagen. In Kapitel 7 - Ausblick wer-

den schließlich mögliche Erweiterungen für das MoBee Konzept vorgestellt. 

 



3 

 

2 Grundlagen 

Im folgenden Kapitel werden einige grundlegenden Konzepte und Technologien aus dem 

Umfeld von Routenplanung und Webservices vorgestellt, welche innerhalb dieser Arbeit ver-

wendet werden. Der Abschnitt multimodale Verkehrsplanung beschreibt die Softwaredomäne 

der Arbeit. Webserviceaggregation definiert die Technologie Webservices als ganzes und 

beschreibt das Konzept der Webserviceaggregation. Der Abschnitt WS-BPEL stellt die in der 

Arbeit verwendete Ausführungssprache vor. WSDL beschreibt die Web Service Description 

Language welche verwendet wird, um die internen und externen Schnittstelle des MoBee Sys-

tems zu definieren. Der Abschnitt WGS84 beschreibt schließlich das in dieser Arbeit verwen-

dete räumliche Bezugssystem. 

2.1 Multimodale Verkehrsplanung 

Die Vorteile öffentlich verfügbarer Transportmöglichkeiten sind hinreichend bekannt: Nicht 

nur sind sie umweltfreundlicher als private Automobile, sie stellen auch einen Zugewinn an 

Mobilität für diejenigen Personen dar, welche sich kein eigenes Automobil leisten können 

oder führen dürfen und tragen dadurch zu deren persönlicher Freiheit bei. Trotz dieser be-

kannten Vorteile ist der Anteil öffentlich verfügbarer Transportmöglichkeiten an der Ge-

samtmobilität der Bevölkerung vergleichsweise niedrig [New]. Obwohl die Gründe für die 

relative Inakzeptanz öffentlich verfügbarer Transportmöglichkeiten sicherlich vielfältig sind, 

stechen doch zwei Gründe besonders hervor [Kry04]: Zum einen wäre hier das Problem der 

Fragmentierung zu erwähnen. Öffentlich verfügbare Transportmöglichkeiten beschränken 

sich meist auf einen spezifischen Raum (Regionales Verkehrsnetz, Rückgabestationen von 

Carsharingdiensten). Zusätzlich dazu ist es oft umständlich und zeitraubend, einen Startpunkt 

für die Transportmöglichkeit (Haltestelle) zu erreichen. Zum anderen besteht, gerade bei li-

niengebundenen Transportmitteln, das Problem der Ineffizienz, welches zum Teil aus der zu-

vor erwähnten Fragmentierung entsteht: Nur ein relativ geringer Teil des Zeitaufwandes, wel-

cher für die Benutzung liniengebundener Transportmittel benötigt wird, wird tatsächlich da-

rauf aufgewendet, sich dem Ziel physisch zu nähern. Einen weitaus größeren Teil des Zeit-

aufwandes stellen das Warten auf das Eintreffen des gewählten Verkehrsmittels und das An-

fahren von Verkehrsknoten (zum Beispiel Umstieg am Hauptbahnhof) dar. 

Die multimodale Verkehrsplanung, also die Streckenplanung unter Zuhilfenahme mehrerer 

verschiedener öffentlicher Transportmöglichkeiten, versucht diese Probleme zu lindern und 

somit die Akzeptanz der öffentlichen Transportmöglichkeiten zu erhöhen. Durch die Kombi-

nation mehrerer Mobilitätsanbieter können Fahrtstrecken über die Verfügbarkeitsgrenzen ein-

zelner Mobilitätsanbieter hinaus effizient geplant werden. Dies behebt das Problem der Frag-

mentierung fast vollständig. Auch das Problem der Ineffizienz wird abgemildert, da von ein-

zelnen Mobilitätsanbietern nur unzureichend abgedeckte Gebiete durch flexiblere, in diesem 

Gebiet gut vertretene Mobilitätsanbieter überbrückt werden können. Hierbei muss beachtet 

werden, dass multimodale Verkehrsplanung sich nicht nur auf das Aufzeigen von Alternati-

ven für das zurücklegen einer bestimmten Fahrtstrecke beschränkt. Plattformen wie Moovel 

[Dai14], welche verschiedene Transportmöglichkeiten berücksichtigen, diese jedoch nur ein-

geschränkt kombinieren (Fußweg bis zur Haltestelle), sind zwar sicherlich nützlich, adressie-



4 

 

ren jedoch nicht die im vorigen Abschnitt erläuterten Einschränkungen öffentlich verfügbarer 

Transportmittel. Echte multimodale Verkehrsplanung zeigt kombinierte Fahrtstrecken unter 

Zuhilfenahme aller zur Verfügung stehenden Transportmöglichkeiten auf. 

 

2.2 Webserviceaggregation 

Das World Wide Web Consortium (W3C) definiert den Begriff „Webservice“ folgenderma-

ßen: 

„A Web service is a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine-processable format 

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by 

its description using SOAP-messages, typically conveyed using HTTP with an XML seriali-

zation in conjunction with other Web-related standards.“[W3C04] 

Ein Webservice stellt also Softwarefunktionalität als Dienstleistung dar. Auf diese Funktiona-

lität kann von externen Softwaresystemen über standardisierte Kommunikationsprotokolle 

(SOAP, JSON-RPC etc.) unabhängig von der Plattform und Implementierung des Webser-

vices zugegriffen werden. Der Nutzen einzelner Webservices in Isolation, also ohne Weiter-

verarbeitung der Ein- oder Ausgabedaten durch weitere Software, ist jedoch stark begrenzt: 

Um für eine Vielzahl von Anwendungen nützlich und damit praktikabel zu sein, muss die 

vom Webservice angebotene Funktionalität möglichst generisch und nicht auf einen spezifi-

schen Anwendungsbereich beschränkt sein. Eine einzelne Softwareoperation auf ein externes 

System auszulagern ist jedoch für moderne Softwaresysteme nicht besonders nützlich, da die-

se sich nur selten mit elementaren Operationen befassen. Aus diesem Grund entstand das 

Konzept der Webserviceaggregation [Kha03]. Durch ein System von lose gekoppelten Webs-

ervices, welche jeweils einen Teilbereich der Softwarefunktionalität übernehmen, lässt sich 

ein großer Teil bereits bestehender Software wiederverwenden und somit der Aufwand für 

neue Software erheblich reduzieren. 

Bei der Aggregation von Webservices wird zwischen zwei Herangehensweisen unterschieden: 

Webservice Choreography und Webservice Orchestration. Webservice Choreography be-

zeichnet ein dezentrales Interaktionsprotokoll zwischen mehreren Webservices. Alle beteilig-

ten Webservices werden dabei gleich behandelt, es besteht, ähnlich einem Peer-to-Peer Sys-

tem, keinerlei Hierarchie innerhalb des Systems. Der Fokus der Webservice Choreography 

liegt auf dem Nachrichtenaustausch. Jeder beteiligte Webservice weiß, zu welchem Zeitpunkt 

welche Operation ausgeführt werden soll und zu welcher Zeit mit welchem Webservice inter-

agiert werden muss. Webservice Orchestration bezeichnet hingegen die Organisation des 

Softwareprozessflusses aus der Sicht eines einzelnen Teilnehmers, des Controller Service. 

Dieser enthält die Prozesslogik und koordiniert somit die ihm unterstellten Webservices. Ab-

bildung 2-1 enthält eine grafische Gegenüberstellung dieser beiden Aggregationskonzepte 



5 

 

 

Abbildung 2-1 WS-Choreography vs. WS-Orchestration 

 

Die Webservice Orchestration ist bereits wohlverstanden [Kar11] und es gibt bereits einige 

hierzu einsetzbare Technologien (WS-BPEL, WebSphere MQSeries), welche produktiv ge-

nutzt werden. Webservice Choreography ist jedoch noch Gegenstand aktiver Forschung 

[Suj14]. MoBee steuert die an das System angeschlossenen Webservices über einen zentralen 

in WS-BPEL definierten Prozess, ist also ein Vertreter der Webservice Orchestration. 

2.3 B2B Webservice 

Die Bezeichnung Business-to-Business (B2B) beschreibt eine Anbieter-Kunde Beziehung 

zwischen zwei Unternehmen. Der Begriff „Unternehmen“, vor allem auf der Kundenseite, 

wird in der Literatur unterschiedlich definiert: Einige Quellen schließen in den Begriff allein 

agierende Händler mit ein [KuR06], andere erweitern die Definition auch auf Regierungsbe-

hörden [Kot10]. Ein B2B Webservice bezeichnet somit einen Webservice, welcher nicht an 

Endkunden (B2C – Business-to-Consumer), sondern an Geschäftskunden gerichtet ist. Diese 

können den Service in ihr eigenes Angebot integrieren, oder die Funktionalität für ihre inter-

nen Prozesse nutzen. Da MoBee als ein solcher B2B-Service konzipiert ist, wird auf Funktio-

nalität verzichtet, welche der direkten Interaktion des Endkunden mit dem System dient. Dies 

wären zum Beispiel eine grafische Eingabemaske für die Streckendaten oder ein Geocoding-

modul für die direkte Eingabe von Start- und Zieladressen. 

2.4 WS-BPEL 

Die Web Service Business Process Execution Language (WS-BPEL) ist eine ausführbare 

Sprache für die Beschreibung von Geschäftsprozessen des OASIS-Konsortiums [OAS07]. 

Die Aktivitäten, welche in WS-BPEL ausgeführt werden, sind als Webservices implementiert, 

die Schnittstellen nach außen hin sind ebenfalls als WSDL-Ports definiert. WS-BPEL kann 

folglich als Sprache für Web Service Orchestration betrachtet werden. Der Kontrollfluss von 

WS-BPEL wird durch vordefinierte Aktivitäten, wie zum Beispiel Weichen, Iterationen oder 

Schleifen ausgedrückt. Für die interne Datenhaltung werden XML-Elemente verwendet, der 



6 

 

Datenzugriff geschieht über XPATH. BPEL-Prozesse lassen sich in zwei Typen unterteilen: 

Prozesse mit langer Laufzeit und Microflow-Prozesse. 

Prozesse mit langer Laufzeit beinhalten Aufrufe von anderen Prozessen/Webservices, welche 

nicht sofort eine Antwort auf den Aufruf liefern. Meist handelt es sich hierbei um Geschäfts-

prozesse, an denen menschliche Entscheidungen oder Leistungen beteiligt sind. Microflow-

Prozesse haben eine vergleichsweise kurze Laufzeit und kommunizieren nur mit anderen 

Computersystemen. Da MoBee vollautomatisch ist und außer dem Übermitteln der Eingabe-

parameter keinerlei menschlicher Interaktion bedarf, werden im Rahmen dieser Arbeit nur 

Microflow-Prozesse betrachtet. 

 

2.5 WSDL 

Die Web Service Description Language (WSDL) ist eine protokollunabhängige Sprache für 

die Beschreibung von Web Services [W3C01]. Sie ist ein Standard des W3C und basiert auf 

der Markupsprache XML. Ein WSDL-Dokument beschreibt den vollen Funktionsumfang 

eines Webservices. Die Definition geschieht über 6 XML-Elemente: 

 types – Beschreibt die Datentypen für den Nachrichtenaustausch 

 message – Beschreibt die konkreten Nachrichten, die für die Kommunikation mit dem 

Webservice verwendet werden 

 portType – Beschreibt die Operationen (Funktionen), welche der Webservice anbietet 

 binding – Definiert Protokoll und Datenformat für die unter portType beschriebenen 

Operationen 

 port – Definiert einen Endpunkt (URI) für ein Binding 

 service – Zusammenfassung aller Ports eines PortType 

Im Rahmen dieser Arbeit wird WSDL genutzt, um die Schnittstellen der einzelnen Subpro-

zesse (siehe 4.4) und die notwendigen Schnittstellen kooperierender Mobilitätsanbieter (siehe 

5.3) zu definieren. 

 

2.6 WGS84 

Das World Geodetic System 1984 (WGS84) ist ein räumliches Bezugssystem für Positions-

angaben auf der Erde [Nat84]. Das Koordinatensystem, welches WGS84 zugrunde liegt, ist 

ein kartesisches Koordinatensystem, dessen Zentrum am Schwerpunkt der Erde liegt. Auf 

diesem ist ein Elipsoid definiert, welches eine Näherung an die Form der Erdkugel darstellt. 

Die Längen- und Breitengrade dieses Elipsoides werden verwendet, um Positionsangaben auf 

der Erdoberfläche zu beschreiben. 



7 

 

MoBee benutzt WGS84 für die Positionsangabe von Start- und Zielpunkten für Routenvor-

schläge und für die räumlichen Berechnungen auf den Verfügbarkeitsbereichen der Mobili-

tätsanbieter. Positionsangaben von kooperierenden Mobilitätsanbietern, welche in einem an-

deren räumlichen Bezugssystem definiert sind, werden vor der weiteren Verarbeitung umge-

rechnet. 

 

 



8 

 

3 Verwandte Arbeiten 

Im folgenden Kapitel werden bereits bestehende Arbeiten zum Thema Verkehrsplanung und 

Routing im Allgemeinen besprochen und deren Funktionsweise und -umfang von MoBee 

abgegrenzt. 

 

3.1 Pathingalgorithmen 

Pathingalgorithmen im Sinne dieser Arbeit sind solche, welche das Problem des kürzesten 

Pfades auf einem gewichteten Graphen lösen. Ein gewichteter Graph ist hierbei als G = (V, E) 

definiert, wobei V die Menge der Knoten, E die Menge der Kanten bezeichnet. Die Kanten 

besitzen eine Gewichtung, welche die Kosten darstellt, die Kante zu passieren. Im folgenden 

Abschnitt werden zwei der bekanntesten Pathingalgorithmen kurz vorgestellt. 

3.1.1 Dijkstra Algorithmus 
Der nach seinem Erfinder Edsger W. Dijkstra benannte Dijkstra Algorithmus [Dij59] gehört 

zur Klasse der Greedy-Algorithmen [Gil88], das heißt es wird bei der Routenberechnung im-

mer derjenige Knoten als nächster Wegpunkt gewählt, welcher zum Zeitpunkt das beste Er-

gebnis verspricht, also die kürzeste Route vom Startknoten aus darstellt. Die Kostenfunktion 

f(x) ist also die Summe aller Kanten welche passiert werden müssen, um den Knoten X vom 

Startknoten aus zu erreichen. Einmal besuchte Knoten werden nicht wieder als Wegpunkt in 

Betracht gezogen. Dieses Vorgehen wird wiederholt, bis entweder der Zielknoten erreicht 

wird, oder die optimale Route zu jedem Knoten vom Startpunkt aus bekannt ist. Abbildung 

3-1 veranschaulicht dieses Vorgehen: Vom Startknoten A aus soll der kürzeste Pfad zum 

Endknoten H ermittelt werden. Von Knoten A aus sind die Knoten B, C und D erreichbar. 

Nach Prüfung der Kantengewichtung wird Knoten C als nächster Wegpunkt gewählt, da die-

ser mit den geringsten Kosten zu erreichen ist. 



9 

 

 

Abbildung 3-1 Wahl des nächsten Knotens beim Dijkstra Algorithmus 

 

Knoten C wird nun, genauso wie zuvor Knoten A, als besucht markiert. Der Knoten A am 

nächsten gelegene, nicht besuchte Knoten ist nun Knoten D. Knoten H wäre zwar nun theore-

tisch auch zu erreichen, allerdings betragen die Kosten der dorthin bekannten Route 4 + 9 = 

13. Die nun bekannte kürzeste Distanz zu Knoten B beträgt hingegen 2 + 4 = 6. Es wird folg-

lich, wie zuvor mit Knoten C, mit Knoten D verfahren: Knoten D wird als besucht markiert, 

wodurch die Kosten um den nun erreichbaren Punkt F zu erreichen zu 5 + 9 = 14 werden. 

Dieses Verfahren wird nun wiederholt, bis der Endknoten H erreicht wird. Da in jedem Schritt 

immer nach der kürzesten Route zu einem beliebigen erreichbaren Knoten gesucht wird, kann 

man nach Erreichen des Endknotens davon ausgehen, dass keine effizientere Route zum End-

knoten existiert. Abbildung 3-2 zeigt die Markierungen des Graphen nach Auffinden der kür-

zesten Route zu Knoten H. 

 



10 

 

 

Abbildung 3-2 Dijkstra-Graph nach Auffinden der kürzesten Route zu H 

 

Man kann leicht erkennen, dass es kostspieliger wäre, einen der anderen erreichbaren Knoten 

(Knoten E oder Knoten F) zu erreichen, als die gefundene Route zu H zu nutzen. Es ist somit 

unmöglich, dass eine effizientere Route von A zu H existiert. 

Obwohl der Dijkstra Algorithmus ohne Einschränkungen auf zusammenhängenden gerichte-

ten Graphen mit positiver Kantengewichtung korrekte Ergebnisse liefert, ist seine Performanz 

nicht immer optimal. Dies hängt damit zusammen, dass der Dijkstra Algorithmus, so wie alle 

Greedy-Algorithmen, unabhängig von der bekannten Struktur des Graphen immer nur den 

zurzeit am effizientesten erscheinenden Weg wählt. Dieses Problem kann durch Erweiterun-

gen des Dijkstra-Algorithmus umgangen werden, wie zum Beispiel durch den in 3.1.2 be-

schriebenen A*-Algorithmus. 

3.1.2 A* Algorithmus 
Der erstmals 1968 beschriebene A* Algorithmus stellt eine Erweiterung des Dijkstra-

Algorithmus um einen heuristischen Bestandteil [Har68] dar. Die Kostenfunktion f(x) für 

einen noch nicht besuchten Knoten setzt sich beim A* Algorithmus aus zwei Unterfunktionen 

zusammen: 

 g(x) ist die aus dem Dijkstra Algorithmus bekannte Kostenfunktion. Die Kosten aller 

Kanten, welche passiert werden müssen, um den Knoten X zu erreichen. 



11 

 

 h(x) ist eine heuristische Funktion zur Abschätzung der Distanz des Knoten X vom 

Zielknoten. 

Der Vorteil dieser Herangehensweise wird in Abbildung 3-3 deutlich. Als Schätzfunktion h(x) 

wird in diesem Beispiel die Luftlinie zwischen dem zu betrachtenden Knoten und dem Ziel-

knoten F gewählt. An dieser Stelle muss betont werden, dass h(x) die Kosten abschätzt, den 

Zielknoten zu erreichen. Der Wert der Funktion h(x) selbst stellt keine Schätzung dar, sondern 

ist genau bestimmbar. Die Schätzung besteht vielmehr darin, dass die genaue Relation zwi-

schen dem Wert von h(x) und der Entfernung zum Zielpunkt auf dem Graphen unbekannt ist.  

 

 

Abbildung 3-3 Ausgangspunkt unterschiedlicher Vorgehensweise von Dijkstra und A* 

 

Bis zu diesem Punkt in der Wegfindung wäre der Ablauf des Dijkstra und A* Algorithmus 

identisch. Der Dijkstra Algorithmus würde an dieser Stelle Knoten E als nächstes betrachten, 

da die Kosten diesen zu erreichen mit 1,5 + 2 + 3 = 6,5 geringer sind als die Kosten, Knoten F 

zu erreichen (2 + 3 +2 = 7). Unter Zuhilfenahme der heuristischen Funktion wären beim A* 

Algorithmus allerdings die Kosten von Knoten E größer, da dieser sich räumlich vom Ziel-

knoten F entfernt. Der A* Algorithmus wäre in diesem Fall also effizienter, da er sich die 

Betrachtung des Knotens E sparen würde. Abbildung 3-4 zeigt eine Gegenüberstellung des 

nächsten Schrittes der beiden Algorithmen. 

 



12 

 

 

Abbildung 3-4 Unterschiedliche Vorgehensweise von Dijkstra und A* 

An dieser Stelle ist nochmals zu erwähnen, dass es sich bei h(x) um eine heuristische Funkti-

on, also einen Schätzwert, handelt. Die Tatsache, dass der Wert von g(x) in diesem Beispiel 

genau der Kantengewichtung zwischen den Knoten entspricht liegt daran, dass einerseits als 

h(x) die Luftlinie zwischen den Knoten gewählt wurde und andererseits in diesem Beispiel 

der letzte Schritt der Wegfindung betrachtet wird. 

 

3.2 Theoretische Routingansätze 

Im folgenden Abschnitt werden die bisher gängigen Ansätze für die Implementierung von 

Routingalgorithmen für Verkehrsplanung betrachtet. 

3.2.1 Routing von dynamisch gerouteten Mobilitätsanbietern 
Routing von dynamisch gerouteten Mobilitätsanbietern, also Routing auf Straßennetzen, wird 

auf einem klassischen, gewichteten Graphen durchgeführt. Hierbei wird das Straßennetz als 

ein Graph G = (V,E) definiert, wobei die Menge der Knoten V Kreuzungen oder Abzweigun-

gen und die Menge der Kanten E die eigentlichen Straßen repräsentieren. Das Problem des 

kürzesten Pfades ist bereits lange Gegenstand von Forschungsarbeiten, die das Problem be-

treffenden Algorithmen (A*, Dijkstra, etc.) gehören zum Standardrepertoire der theoretischen 

Informatik (siehe 3.1). Aktuelle Forschungsarbeiten zu diesem Thema befassen sich haupt-

sächlich mit der Steigerung der Effizienz bereits bekannter Algorithmen, zum Beispiel Land-

mark A* [Gol05] oder SHARC [Bau09]. Bestehende Mobilitätsplanungsdienste, welche dy-

namisch geroutete Mobilitätsoptionen anbieten, beschränken sich entweder auf Vermittlung 

von Fahrzeugen (MyTaxi, car2go) und bieten nicht die Routenplanung selbst, oder haben die 

interne Funktionsweise ihres Dienstes nicht offengelegt (AnachB, Moovel). Es ist jedoch da-

von auszugehen, dass auch diese Dienste eine Variante des gewichteten Graphen verwenden, 

da bisher kein alternativer Ansatz veröffentlicht wurde. 



13 

 

3.2.2 Routing von linienbasierten Mobilitätsanbietern 
Das Routing auf linienbasierten Mobilitätsanbietern erfolgt ebenfalls auf gewichteten Gra-

phen. Sämtliche verfügbare Forschungsarbeiten zu diesem Thema basieren auf diesem Kon-

zept. Es haben sich jedoch zwei unterschiedliche Ansätze zu der Fragestellung herauskristalli-

siert, woraus der Graph gebildet werden soll: 

Der Time-Expanded-Ansatz  [Fra00] nutzt einen Graphen, dessen Knotenmenge aus Paaren 

zwischen einem Zeitereignis (Ankunft/Abfahrt) und einem Ort (Haltestelle) besteht. Die Kan-

ten repräsentieren in diesem Graphen entweder Bewegung in Raum und Zeit (Fahrt zu einer 

anderen Haltestelle) oder nur in der Zeit (Verweilen an einer Haltestelle). 

Der Time-Dependent-Ansatz [Bro04] erzeugt einen Graphen, in welchem jeder Knoten eine 

Haltestelle des betreffenden Liniennetzes abbildet. Die Kanten repräsentieren jeweils eine 

elementare Verbindung (Fahrt ohne Zwischenstopp) zwischen den Haltestellen. Die Gewich-

tung der Kanten wird bei diesem Ansatz zur Laufzeit festgelegt und ist von den jeweils zum 

fraglichen Zeitpunkt verfügbaren Linien von diesem Knoten aus abhängig. 

Darüber hinaus existieren einige Hybridansätze, wie zum Beispiel [Ant12], welche die beiden 

Graphentypen kombinieren. 

3.2.3 Multimodales Routing 
Echtes multimodales Routing wurde in der Forschung bisher nur sehr selten behandelt. Der 

von Horn beschriebene Journey-Planner in [Hor02] implementiert einen Time-Dependent-

Graphen linienbasierter Mobilitätsanbieter, auf dem eine Breadth-First Suche durchgeführt 

wird. Der ebenfalls in [Hor02] beschriebene Fleet-Scheduler wird über einen Message Broker 

mit diesem verbunden, sodass Taxifahrten als erster, beziehungsweise letzter Streckenab-

schnitt einer vorgeschlagenen Reiseroute genutzt werden können. Yu und Lu beschreiben in 

[YuH10] einen evolutionären Algorithmus, welcher auf einem Time-Expanded-Graphen ar-

beitet. Der von ihnen vorgeschlagene Algorithmus ist auf linienbasierte Mobilitätsanbieter 

sowie auf Taxifahrten anwendbar. 

Der bisher einzig vollständig multimodale Ansatz ist der von Hrncir und Jakob in [Hrn13] 

beschriebene Generalised Time-Dependent Graph. Dieser Graph besteht aus mehreren Unter-

graphen: Einen für das Straßennetz und einen für jeden integrierten linienbasierten Mobili-

tätsanbieter. Verknüpfungen zwischen den Graphen werden durch Mappings zwischen Kno-

ten des Straßengraphen (Adressen) und Knoten der Liniengraphen (Haltestellen) hergestellt. 

Dieser Ansatz bietet fast vollständige multimodale Verkehrsplanung. Die einzige Ausnahme 

bilden hier Carsharing-Services und unter Umständen Mietfahrräder, da keine Möglichkeit 

vorgesehen ist, zur Laufzeit den Standort verfügbarer Fahrzeuge in den Graphen zu integrie-

ren. 

3.3 Bereits veröffentlichte Dienste zur multimodalen Verkehrsplanung 

Im folgenden Abschnitt werden zwei bereits einsatzbereite multimodale 

Verkehrsplanungsdienste vorgestellt. Diese sind das Moovel System der Daimler AG und der 

österreichische Routenplaner AnachB. 



14 

 

3.3.1 Moovel 
Moovel ist das multimodale Reiseplanungssystem der Daimler AG [Dai14]. Es bietet linien-

basierte Mobilitätsanbieter, Carsharing über car2go und Taxifahrten als Transportmöglichkei-

ten an. Der Dienst ist an Endkunden gerichtet, der Zugriff erfolgt entweder über die Website 

des Systems oder über eine Smartphone-App. Obwohl sich der Dienst selbst als multimodal 

bezeichnet, beschränkt er sich auf die Aufzählung mehrerer alternativer Verbindungsmög-

lichkeiten zwischen Start- und Zielpunkt. Er erfüllt somit nicht die in 2.1 aufgestellte Defini-

tion eines multimodalen Verkehrsplanungsdienstes. Da es sich bei Moovel um ein kommerzi-

elles System handelt wurde der Quellcode, beziehungsweise der zu Grunde liegende Algo-

rithmus, nicht offengelegt. Aufgrund der Tatsache, dass die verschiedenen Reiseoptionen un-

terschiedlich viel Zeit benötigen, um ein Ergebnis zu liefern, ist es jedoch wahrscheinlich, 

dass es sich bei Moovel um ein Beispiel von Webserviceaggregation handelt. Zumindest lässt 

es sich dadurch vermuten, dass externe Daten für die Routenvorschläge genutzt werden. 

 

Abbildung 3-5 Ausgabemaske von Moovel 

 

3.3.2 AnachB 
AnachB ist ein multimodaler Verkehrsplanungsdienst für die Region Niederösterreich. Er 

bietet multimodale Verkehrsplanung mit öffentlichen Verkehrsmitteln, dem Fahrrad und pri-

vaten PKW über eine Park-and-Ride Funktion. Der Dienst richtet sich an Endkunden und ist 

über seine Website bedienbar. Hervorzuheben ist, dass AnachB stets mit aktuellen Informati-

onen von Verkehrssensoren, Baustellen-, Störungs-, Unfall- und Fahrplandatenbanken ver-

sorgt wird, welche in die Routenberechnung mit aufgenommen werden. Der Quellcode von 

AnachB wurde nicht offengelegt, somit lassen sich keine Aussagen über die zu Grunde lie-

gende Funktionsweise des Systems treffen. 



15 

 

 

Abbildung 3-6 Park-and-Ride Ausgabemaske von AnachB 

 

 

3.4 Gegenüberstellung zu MoBee 

In diesem Abschnitt werden die Limitierungen der in den vorangegangenen Abschnitten vor-

gestellten Ansätze und Systeme zur Routenplanung erörtert. Anschließend werden aus diesen 

die Eckpunkte für den Ansatz des MoBee Systems abgeleitet. 

3.4.1 Nachteile bisheriger Ansätze und Lösungen 
Alle hier beschriebenen theoretischen Ansätze zur Routenplanung, ob multimodal oder nicht, 

besitzen einen gemeinsamen Nachteil: Sie alle arbeiten mit einer bekannten Datenmenge. 

Dies führt zu dem Umstand, dass diejenigen linienbasierten Mobilitätsanbieter, welche in die 

Routenplanung mit aufgenommen werden sollen, Informationen über ihr Liniennetz offenle-

gen und aktuell halten müssten. Wie die Erfahrung gezeigt hat, sind gerade die größeren An-

bieter (zum Beispiel die Deutsche Bahn, welche auch im Rahmen dieser Arbeit kontaktiert 

wurde und nicht zur Kooperation bereit war) nicht gewillt, dies zu tun. Auch muss bedacht 

werden, dass die Daten aller Mobilitätsanbieter normalisiert und zusammengeführt werden 

müssten. Dies mag einen einmaligen Aufwand darstellen, er ist jedoch in Anbetracht der vie-

len offenen und proprietären Formate nicht unerheblich. 

Darüber hinaus ist es schwierig, dynamisch geroutete Mobilitätsanbieter in diese Ansätze mit 

aufzunehmen: Der Ansatz in [Hor02] kann nur deshalb Taxifahrten mit einbeziehen, weil in 

diesem Modell die Flottenverwaltung des Taxiunternehmens vom systemeigenen Fleet-

Scheduler übernommen wird. Er bietet keine Schnittstelle für externen Dateninput. Auch der 

bisher einer echten multimodalen Verkehrsplanung am nächsten kommende theoretische An-

satz von Hrncir und Jakob [Hrn13], könnte nur dann Taxis und Carsharinganbieter sinnvoll in 



16 

 

die Routenplanung mit aufnehmen, wenn der von ihnen vorgeschlagene Generalised Time-

Dependent Graph (vgl. 3.2.3) laufend mit aktuellen Daten versorgt werden würde. 

Die bisher verfügbaren Implementierungen multimodaler Verkehrsplanungssysteme besitzen 

auch einige nicht zu übersehende Nachteile: Moovel bietet keine echte Multimodalität, son-

dern nur eine Auflistung von Alternativen, AnachB ist nur für einen relativ kleinen Teilbe-

reich Österreichs verfügbar. Beiden gemein ist die Eigenschaft, dass sie sich nur an Endkun-

den richten. Eine weitere Benutzung durch Geschäftskunden ist mit den zur Verfügung ste-

henden grafischen Schnittstellen nicht möglich. 

Auffällig bei beiden vorhandenen Diensten ist auch die geringe Anzahl von kooperierenden 

Unternehmen. Dies mag damit zusammenhängen, dass der Typische Anwendungsfall (Use-

Case) für einen multimodalen Verkehrsplanungsdienst einen relativ kleinen Raum umfasst. Es 

gibt jedoch auch Use-Cases, in denen Regionen übergreifend geroutet werden muss (siehe 

4.2.3). Hierfür sind die bisherigen Systeme jedoch denkbar ungeeignet. 

3.4.2 Ansatz von MoBee 
Im vorherigen Abschnitt wurden folgende Limitationen bisheriger Ansätze identifiziert: 

 Notwendigkeit eines vollständigen, normalisierten Datensatzes mit Daten aller koope-

rierender Mobilitätsanbieter 

 Meist keine Möglichkeit, aktuelle Daten in die Routenberechnung mit aufzunehmen 

 Keine echte Multimodalität bei aggregierenden Planungsdiensten 

 Geringe Reichweite aufgrund von geringer Anzahl beteiligter Mobilitätsanbieter. 

MoBee umgeht diese Probleme durch das Routing mithilfe bereits bestehender Dienste der 

kooperierenden Mobilitätsanbieter: 

Da auf die bereits vorhandenen Routingsysteme der einzelnen Mobilitätsanbieter zurückge-

griffen wird, ist kein vereinheitlichter Datensatz notwendig. Das Einzige, was normalisiert 

werden muss, sind die externen Schnittstellen der bereits vorhandenen Routingsysteme (siehe 

5.3). Dies ist jedoch nicht zwingend notwendig, da mit verhältnismäßig geringem Aufwand 

Adapter für die bestehenden Schnittstellen implementiert werden können (siehe 4.6). 

Die Aktualität von Informationen ist durch die Verwendung von Daten direkt vom Mobilitäts-

anbieter ebenfalls gewährleistet, da davon ausgegangen werden kann, dass die Mobilitätsan-

bieter ihre eigenen Dienste mit den aktuellsten, ihnen zur Verfügung stehenden Daten versor-

gen. 

Auch das Miteinbeziehen von Carsharinganbietern und Taxidiensten ist kein Problem, da die 

Verfügbarkeitsdaten ihrer Fahrzeugflotten ebenfalls zur Laufzeit in die Streckenberechnung 

mit aufgenommen werden können. 



17 

 

MoBee bietet echtes multimodales Routing. Die Routingdaten der verschiedenen Mobilitäts-

anbieter werden zu Routenvorschlägen kombiniert, nicht nur als Alternativen aufgezeigt. 

Darüber hinaus können beliebig viele Mobilitätsanbieter mit geringem Aufwand an das Sys-

tem angeschlossen werden. MoBee ist somit nicht auf eine bestimmte Region beschränkt. 

Durch die rekursive Natur des in 4.2 beschriebenen TiGeR-Algorithmus ist es theoretisch 

möglich, transnationale Mobilitätsanbieter mit einzubeziehen und somit weltweites Routing 

anzubieten. 

 



18 

 

4 Implementierung 

Im folgenden Kapitel wird die Beispielimplementierung des MoBee Konzeptes im Rahmen 

dieser Arbeit vorgestellt. Behandelt werden die verwendete Middleware, der dem MoBee 

Konzept zugrunde liegende Algorithmus TiGeR mitsamt einem Ablaufbeispiel und die Soft-

warearchitektur der Implementierung.  

 

4.1 Verwendete Middleware 

Im folgenden Abschnitt wird die in der Implementierung von MoBee verwendete Middleware 

aufgelistet und kurz beschrieben. 

4.1.1 IBM WebSphere Application Server/Process Server 
Der WebSphere Application Server (WAS) ist, wie der Name schon sagt, ein Applikations-

server für Webanwendungen und das Flaggschiff der IBM WebSphere Suite [IBM14]. Der 

WAS basiert auf offenen Standards, wie zum Beispiel JavaEE, XML und Webservices. Die 

Hauptfunktion des WAS besteht darin, eine Laufzeitumgebung für JavaEE-Anwendungen 

anzubieten. Diese werden in Form einer Enterprise Archive Datei (EAR) auf dem Server in-

stalliert (deployed). Eine EAR enthält typischerweise Java-Klassen als Bytecode, Java Server 

Pages für die Nutzeroberfläche und Konfigurationsdaten in XML-Form, sogenannte Deploy-

ment-Deskriptoren. Im Rahmen des MoBee Systems wird der Websphere Application Server 

als Laufzeitumgebung für die Web Service Wrapper (siehe 4.6) genutzt. 

WebSphere Process Server wird von IBM als eigenständiges Produkt vermarktet, ist jedoch 

im Kern eine Spezialkonfiguration des WebSphere Application Server. Durch eine Anzahl an 

vorinstallierten JavaEE-Anwendungen wird es dem Process Server möglich, Anwendungen 

mit serviceorientierter Architektur (SOA) als Laufzeitumgebung zu dienen. Insbesondere die 

durch die Umrüstung gewonnene Fähigkeit, WS-BPEL Prozesse auszuführen, prädestiniert 

den WebSphere Process Server als Middleware für das MoBee Projekt. 

4.1.2 IBM DB2 Server/DB2 Spatial Extender 
DB2 ist das relationale Datenbanksmanagementsystem (RDBMS) der Firma IBM [IBM141]. 

Als Abfragesprache wird die Structured Query Language (SQL) genutzt. Der von DB2 ver-

wendete SQL-Dialekt entspricht weitgehend ANSI-SQL und es stehen für viele Programmier-

sprachen DB2-Datenbanktreiber zur Verfügung. Es ist daher möglich, Datenbankabfragen aus 

Programmen heraus mit Embedded SQL zu realisieren. 

Beim DB2 Spatial Extender handelt es sich um eine Erweiterung für DB2, welche die Arbeit 

mit räumlichen Datentypen ermöglicht [IBM142]. Räumliche Datentypen sind hierbei geo-

metrische Formen, wie zum Beispiel Punkte, Linien oder Polygone, welche in Bezug zu ei-

nem räumlichen Bezugssystem stehen. Es stehen out-of-the-box eine Vielzahl vordefinierter 

räumlicher Bezugssysteme (unter anderem das vom Global Positioning System verwendete 

WGS84) bereit, es ist jedoch auch möglich, eigene Bezugssysteme zu definieren. Das räumli-

che Bezugssystem ist für jedes räumliche Datenobjekt frei wählbar. Bei geometrischen Opera-



19 

 

tionen (Finden des Schnittpunktes, Prüfung auf Identität, etc.) sind Objekte mit unterschiedli-

chen räumlichen Bezugssystemen kompatibel, die Objekte werden automatisch in das räuml-

che Bezugssystem des Ergebnisobjektes konvertiert. Da in MoBee die Datenbank der Spei-

cherung der Availability Areas (siehe 4.2.1.2) von Mobilitätsanbietern dient, ist eine Erweite-

rung der Datenbankfunktionalität um räumliche Datentypen unabdingbar. Die im Spatial Ex-

tender bereits vorhandenen Datenbankfunktionen für geometrische Operationen erlauben es 

darüber hinaus, sämtliche räumlichen Berechnungen auf den Datenbankserver auszulagern 

(siehe 4.5). 

 

4.2 Routingalgorithmus (TiGeR) 

Aus den in 3.4.1 aufgezeigten Problematiken mit konventionellen Routingalgorithmen geht 

hervor, dass ein neuer Routingalgorithmus für das MoBee-System notwendig ist.  

Ein Algorithmus, welcher zusammengesetzte Routen aus mehreren diskreten Routingdiensten 

erstellen soll, muss folgende Anforderungen erfüllen: 

 Auswahl der für die geplante Route in Frage kommenden Mobilitätsanbieter 

 Auswahl geeigneter Teilstrecken der Gesamtroute 

 Verknüpfung der gewählten Teilstrecken 

Im folgenden Kapitel wird ein Routingalgorithmus beschrieben, welcher multimodale Rou-

tenplanung durch Aggregation bereits bestehender Webservices ermöglicht: Tiered Geospatial 

Routing (TiGeR). Es wird darüber hinaus gezeigt, in welcher Weise die oben genannten An-

forderungen von TiGeR erfüllt werden. 

4.2.1 Terminologie 
Im folgenden Abschnitt werden einige TiGeR-spezifische Begriffe kurz erläutert. 

4.2.1.1 Mobilitätsanbieter 
Mobilitätsanbieter im Sinne von TiGeR sind alle externen Dienstleister, welche Routenvor-

schläge für die von ihnen angebotenen Transportmittel über eine Webservice-Schnittstelle 

anbieten. Es wird ferner unterschieden zwischen linienbasierten (Bus, Bahn) und dynamisch 

gerouteten Mobilitätsanbietern (Carsharing, Taxi etc). 

4.2.1.2 Availability Area 
TiGeR arbeitet mit dem Konzept der Availability Areas (A2). Dies sind diejenigen räumli-

chen Bereiche, in welchem ein Mobilitätsanbieter seine Dienste anbietet. Die A2 werden in 

TiGeR lokal vorgehalten, brechen also mit dem Konzept der reinen Aggregation bereits ex-

tern vorhandener Daten. Zum Zeitpunkt der Erstellung dieser Arbeit stellt kein Mobilitätsan-

bieter diese Daten als Service bereit. Es kann auch als unwahrscheinlich betrachtet werden, 

dass dies jemals der Fall sein wird (Ausrichtung der Services auf Endkunden). Aus diesem 

Grunde ist diese Instanz von lokaler Datenhaltung unvermeidbar. 



20 

 

4.2.1.3 Routenvektor 
Als Routenvektor wird in TiGeR eine gerade Linie zwischen zwei geografischen Punkten 

(Ziel- und Endpunkt einer zu berechnenden Route oder Ziel- und Endpunkt einer zu berech-

nenden Teilstrecke einer Route) bezeichnet. Die Richtung des Vektors ist vom Start- zum 

Zielpunkt. 

4.2.1.4 Anbietertypen (Tiers) 
Mobilitätsanbieter werden in zwei verschiedene Typen unterteilt. Typ-0 Anbieter sind dyna-

misch geroutete Mobilitätsanbieter, wie zum Beispiel Taxi- oder Carsharingunternehmen. 

Typ-1 Anbieter sind linienbasierte Mobilitätsanbieter, welche eine lokal eng begrenzte A2 

besitzen, zum Beispiel Stadtbahnen oder Buslinien. Typ-2 Anbieter sind solche, welche Regi-

onen übergreifende A2 besitzen, zum Beispiel die Deutsche Bahn oder die Österreichische 

Bundesbahn. 

4.2.2 Ablauf 
Abbildung 4-1 zeigt den Ablauf von TiGeR als Flußdiagramm. 

 

Abbildung 4-1 Ablauf von TiGeR als Flussdiagramm 

 

 



21 

 

Die Schritte im Diagramm werden im Folgenden einzeln erläutert. 

1. Bildung des Vektors 

In diesem Schritt wird aus den Eingabekoordinaten ein Routenvektor erzeugt. Er dient 

der Auswahl der in Frage kommenden A2. 

 

2. Auswahl der geschnittenen A2 

Aus der lokalen Datenbank werden diejenigen A2 ausgewählt, welche vom 

Routenvektor geschnitten werden. Die Datenbank gibt hierbei die den A2 zugehörigen 

Mobilitätsanbieter, die Schnittpunkte der A2 mit dem Routenvektor sowie die Länge 

des Schnittvektors zurück. 

 

3. Routenberechnung je nach Abdeckungsfall 

An diesem Punkt wird zwischen drei unterschiedlichen Fällen unterschieden: 

Abdeckung des Vektors durch einen Typ-0/1 Mobilitätsanbieter, Abdeckung durch 

zwei benachbarte Tier-1 Mobilitätsanbieter und Abdeckung durch 3 oder mehr 

Teilstrecken. Dabei ist zu beachten, dass diese Fälle sich nicht gegenseitig 

ausschließen. 

 

Im Falle einer Abdeckung durch einen einzelnen Typ-0/1 Anbieter (Schritt 3.1) wird 

eine Route von dem zur A2 zugehörigen Mobilitätsanbieter abgerufen. Diese wird 

dann als Routenvorschlag ausgegeben. 

 

Im Falle einer Abdeckung des Routenvektors durch zwei benachbarte A2 von Typ-0/1 

Anbietern wird ein gemeinsamer Knoten der beiden Mobilitätsanbieter, 

beziehungsweise werden zwei nahe beieinanderliegende Knoten gesucht. Die beiden 

Teilrouten werden anschließend von den jeweiligen Mobilitätsanbietern abgerufen und 

zusammen als Routenvorschlag ausgegeben. 

 

Im Falle einer Abdeckung unter Zuhilfenahme eines Typ-2 Mobilitätsanbieters oder 

mindestens 3 Teilstrecken werden die geschnittenen A2 nach der Länge des 

Schnittvektors sortiert und der Algorithmus fährt mit Schritt 4 fort. 

 

4. Auswahl des längsten Schnittvektors 

Der Mobilitätsanbieter mit dem größten Schnittvektor auf der A2 wird ausgewählt. 

 

5. Auswahl der den Schnittpunkten mit der A2 nächstgelegenen Knoten 

Die den Schnittpunkten mit dem Routenvektor nächstgelegenen Knoten des 

Mobilitätsanbieters werden gesucht und eine Route zwischen diesen beiden Punkten 

abgefragt. 

 

6. Rekursive Aufrufe 

Der Algorithmus ruft sich selbst auf, mit den Schnittpunkten mit der A2 des 

Mobilitätsanbieters aus 5. als Ursprungs- beziehungsweise Zielpunkt. 

 

7. Ausgabe kombinierter Route  

Die kombinierte Route, zusammengesetzt aus den Teilrouten aus 5. und 6. wird als 

Routenvorschlag ausgegeben. 

 



22 

 

4.2.3 Ablaufbeispiel 
Im folgenden Abschnitt wird, nachdem im vorherigen Abschnitt der Ablauf des TiGeR-

Algorithmus in der Theorie erklärt wurde, eben jener Algorithmus anhand eines realen Bei-

spiels nochmals veranschaulicht. Dieses Beispiel befasst sich mit folgendem Szenario: Ein 

Geschäftsmann möchte vom Hilton Innsbruck zurück nach Hause in die Krefelder Straße 

nach Stuttgart. Um seine Heimreise zu planen, nutzt er MoBee, von dessen Pilotphase er von 

einem Freund bei IBM gehört hat. Er übergibt Start- und Zieladresse, sowie seine gewünschte 

Ankunftszeit, an die Green eMotion B2B Plattform. Diese greift auf einen ebenfalls auf der 

Plattform verfügbaren Geocoding-Service zu und übermittelt die so erhaltenen Start- und 

Zielkoordinaten zusammen mit der Ankunftszeit an das MoBee System. Das MoBee System 

verfährt nun wie folgt: 

Zuerst wird der Routenvektor gebildet. Dieser verläuft in diesem Fall von (47.261957, 

11.395971) nach (48.810369, 9.212706). Der Routenvektor wird nun an die Datenbank über-

mittelt und von ihm geschnittene Availability Areas geprüft. Die den geschnittenen Availabi-

lity Areas zugehörigen Mobilitätsanbieter werden nun der Prozesslogik übergeben. Abbildung 

4-2 zeigt den erstellten Routenvektor zusammen mit den geschnittenen A2 der Verkehrsver-

bünde Tirol und Stuttgart, sowie dem Verfügbarkeitsbereich des Stuttgarter car2go Dienstes. 

 

Abbildung 4-2 Routenvektor Innsbruck - Stuttgart mit geschnittenen A2 



23 

 

Die ebenfalls geschnittenen A2 der Österreichischen Bundesbahn und der Deutschen Bahn 

sind in dieser Grafik nicht markiert, da sie beide die komplette Fläche der Grafik abdecken 

würden. Des Weiteren ist zu erwähnen, dass die hier gezeigten Availability Areas nicht de-

tailgetreu die echten A2 der Mobilitätsanbieter abbilden. Sie stellen nur eine Näherung dar 

und dienen dem erleichterten Verständnis dieses Beispiels. 

MoBee prüft nun, ob der gesamte Routenvektor von einer Availability Area eines Typ-0 oder 

Typ-1 Anbieters beinhaltet wird. Aus Abbildung 4-2 ist ersichtlich, dass dies nicht der Fall ist. 

Auch die Prüfung auf Abdeckung durch zwei sich überlappende Typ-0 oder Typ-1 Mobili-

tätsanbieter verläuft negativ. Da beide Möglichkeiten für eine nichtrekursive Routenerzeu-

gung nun ausgeschlossen sind, wird mit der Bildung einer Tiered Route begonnen. 

Zuerst werden die einzelnen Schnittvektoren der von der Datenbankabfrage zurückgegebenen 

Availablity Areas der Länge nach sortiert. Hierbei wird ersichtlich, dass die A2 der Österrei-

chischen Bundesbahn und der Deutschen Bahn die längsten Schnittvektoren besitzen. MoBee 

stellt nun eine Anfrage nach den Endpunkten des Routenvektors naheliegenden Knoten an 

den Webservice der Österreichischen Bundesbahn. Der Webservice gibt die Haltestellen In-

nsbruck Hauptbahnhof und Bad Cannstatt Bahnhof zurück. Diese beiden Haltestellen werden 

nun als Ziel- beziehungsweise Startpunkt für zwei neue Instanzen des MoBee-Prozesses ge-

nutzt. 

Die Teilstrecke Hilton - Innsbruck Hauptbahnhof wird zuerst auf Abdeckung durch einen 

einzelnen Typ-0 oder Typ-1 Anbieter überprüft. Hier wird von der Datenbank der Mobilitäts-

anbieter VVT gefunden. Da die Strecke relativ kurz (< 1km) ist, werden zusätzlich Fußweg 

und Taxifahrt gewählt. Die Teilstrecke Bad Cannstatt Bahnhof – Krefelder Straße wird von 

den A2 von VVS und car2go abgedeckt. Auch hier werden aufgrund des kurzen Routenvek-

tors Taxifahrten und Fußweg mitaufgenommen. 

Nun wird mit der Routenbildung begonnen. Für die Strecke Bad Cannstatt Bahnhof - Krefel-

der Straße wird eine direkte Fahrt mit dem VVS verworfen, da der VVS-Webservice keine 

geeignete Strecke mit seinen Fahrzeugen zur gewählten Uhrzeit liefert. Es wird allerdings 

eine Alternativstrecke über den Stuttgarter Hauptbahnhof gefunden. Es wird ebenso am Cann-

statter Bahnhof ein car2go Fahrzeug gefunden. Eine Fahrtstrecke mit Diesem und der Fußweg 

werden jeweils so berechnet, dass der Fahrgast zur gewünschten Zeit in der Krefelder Straße 

ankommt. Danach wird nach jeweils einer Fahrt mit der ÖBB gesucht, welche zum ermittel-

ten Abfahrtszeitpunkt am Bahnhof Bad Cannstatt ankommt. Die so ermittelten Abfahrtszeit-

punkte der ÖBB-Strecken werden nun als Ankunftszeitpunkte für die Teilstrecke Hilton – 

Innsbruck Hauptbahnhof genutzt. Die hieraus entstandenen Vorschläge für die jeweiligen 

Teilrouten werden nun kombiniert und jeweils als Routenvorschlag von MoBee ausgegeben. 

Die Green eMotion Plattform gibt diese nun an den Geschäftskunden weiter, welcher sie an 

den Endkunden weiterleitet. 

 



24 

 

4.3 Architekturübersicht und Systemkontext 

MoBee ist mit der Zielsetzung konzipiert, auf der Green eMotion B2B-Integrationsplattform 

ausgeführt zu werden. Einen Überblick über das Zusammenspiel zwischen dem MoBee Sys-

tem und den umliegenden Softwarekomponenten bietet Abbildung 4-3. Routenanfragen wer-

den von dem Endkunden über den Geschäftskunden, welcher bei Green eMotion registriert 

ist, an die Green eMotion Plattform weitergeleitet. Diese übergibt die Anfrage anschließend 

an das MoBee System. MoBee ist über Webservice Schnittstellen mit den kooperierenden 

Mobilitätsanbietern und einem Karten/Routendienst verbunden. Von diesen werden Informa-

tionen über die benötigten (Teil-)Routen abgefragt und von MoBee zu einem oder mehreren 

Routenvorschlägen kombiniert. Die kombinierten Routenvorschläge werden wiederum über 

die Green eMotion Plattform zuerst an den Geschäftskunden, dann an den Endnutzer weiter-

geleitet. Alternativ kann die Funktionalität des MoBee Systems auch als Teil eines aggregier-

ten Dienstes der Green eMotion Plattform aufgerufen werden. Hierbei würde ein Dienst ange-

boten werden, welcher als eine seiner Komponenten eine multimodale Reiseplanung beinhal-

tet. Dieser würde dann die Ausgabedaten von MoBee beinhalten, ohne dass der Kunde den 

Dienst explizit aufruft. 

 

 

Abbildung 4-3 MoBee System Context Diagram 

 

MoBee besteht aus drei Subsystemen, welche jeweils einen Teil der Funktionalität des Sys-

tems implementieren. Diese Subsysteme sind: WS-Wrapper, Prozesslogik und Geospatial 



25 

 

Subsystem. Die Subsysteme bilden eine 2-Schichten-Architektur (siehe Abbildung 4-4). Die 

Kommunikation zwischen den einzelnen Subsystemen geschieht über das Simple Object Ac-

cess Protocol (SOAP). 

 

Abbildung 4-4 MoBee Systemarchitektur 

 

Die Prozesslogik behandelt das eigentliche Routing (siehe Abschnitt 4.2) und beinhaltet die 

öffentliche Schnittstelle des Systems. Das Geospatial Subsystem (GSS) implementiert die 

räumlichen Berechnungen, welche zur Auswahl der für das Routing in Frage kommenden A2 

benötigt werden. Zudem liefert es die für die jeweils in der Prozesslogik laufenden Prozesse 

erforderlichen räumlichen Daten (Routenvektoren, Schnittmengen von A2 etc). Die Web Ser-

vice Wrapper dienen der Kommunikation mit Mobilitätsanbietern, welche keinen Webservice 

nach 5.3 anbieten. Zum Zeitpunkt der Diplomarbeit sind dies natürlich alle angebundenen 

Webservices (da die Schnittstellen aus 5.3 noch nicht veröffentlicht sind), somit sind die 

Wrapper derzeit ein großer Teil der Implementierung. Sie sind allerdings kein Teil des 

MoBee Systems als solchem. Im Folgenden wird die Implementierung der einzelnen Sub-

komponenten im Detail beschrieben. 

 

4.4 Prozesslogik 

Die Prozesslogik von MoBee ist, wie bereits erwähnt, als BPEL-Microflow implementiert. 

Der Prozess gliedert sich hierbei in eine Anzahl von Subprozessen, welche jeweils einen spe-

zifischen Aufgabenbereich abdecken. Auf oberster Ebene befindet sich der Hauptprozess, 

welcher mit der Datenbank kommuniziert und die Routenvorschläge der typspezifischen Rou-

tingprozesse aggregiert. Ihm untergeordnet sind die drei typspezifischen Subprozesse: Ge-

tSimpleRoutes, HandoffTrip und TieredTrip, welche jeweils einen Typ von Route erzeugen 

und an den Hauptprozess übergeben. An unterster Stelle finden sich die Prozesse, welche die 

generischen Queries für die jeweiligen Typen von Mobilitätsanbietern anbieten: Linienbasier-



26 

 

te Anbieter, Carsharinganbieter und Taxis. Diese Prozesse greifen über die in 5.3 beschriebe-

nen Webservice Ports auf die Informationssysteme der Mobilitätsanbieter zu. Abbildung 4-5 

zeigt die Struktur der Subprozesse, deren Verknüpfung miteinander und die Verknüpfungen 

mit den genutzten externen Webservice Schnittstellen. Rauten stellen in diesem Diagramm 

BPEL-Prozesse dar, Pfeile Verweise auf Webservices. Die folgenden Abschnitte betrachten 

die einzelnen Subprozesse im Detail. 

 

Abbildung 4-5 Assemblydiagramm MoBee 



27 

 

 

4.4.1 GetSimpleRoutes Query 
Der GetSimpleRoutes Query behandelt den einfachsten Fall: Der an den Hauptprozess über-

gebene Routenvektor wird von einem einzelnen Mobilitätsanbieter komplett abgedeckt. Der 

Prozess empfängt von einer Instanz des Hauptprozesses das Ergebnis einer Datenbankabfrage 

nach 4.5.2.2, welche alle vom Routenvektor geschnittenen Mobilitätsanbieter beinhaltet. Der 

GetSimpleRoutes Prozess iteriert nun über die Menge von Mobilitätsanbietern. Für jeden An-

bieter, dessen Availability Area den Routenvektor komplett abdeckt, wird der dem Anbieter-

typ zugehörige Subprozess für die Routengenerierung aufgerufen und dessen Resultat der 

Liste von Routenvorschlägen hinzugefügt. Diese Liste wird letztendlich dem aufrufenden 

Prozess übergeben. Abbildung 4-6 veranschaulicht den Aufruf der entsprechenden Subpro-

zesse. 

 

 

Abbildung 4-6 Aufruf der entsprechenden Subprozesse im GetSimpleRoutes Prozess 

 

Taxirouten werden hier gesondert behandelt. Es sind in der Datenbank von Mobilitätsanbie-

tern keine Taxiunternehmen enthalten, da sich zum Erstellungszeitpunkt der Arbeit keine am 

Taxiunternehmen fanden, welche im Rahmen dieser Arbeit kooperieren wollten. Da davon 

ausgegangen wird, dass Taxis überall verfügbar sind, wird der CabOnly Subprozess ohne 

Überprüfung einer Availability Area aufgerufen. Diese Funktionalität ist jedoch kein Platzhal-

ter: Auch in einem fertigen System mit Anbindung an reale Taxiunternehmen kann es vor-

kommen, dass keines dieser Unternehmen die benötigte Teilstrecke bedient. In diesem Fall 

wird ein Schätzwert für ein generisches Taxiunternehmen geliefert. Da in dieser Version des 



28 

 

MoBee Konzeptes die Buchung der Teilstrecken manuell vorgenommen werden muss, ist die 

fehlende Kopplung an ein bestimmtes Taxiunternehmen noch unproblematisch. Sollte in spä-

teren Versionen ein Buchungssystem integriert werden (siehe 7.1), muss dieser Fall gesondert 

behandelt werden. 

4.4.2 TieredTrip Query 
Der TieredTrip Query ist das Herzstück des beschriebenen TiGeR Algorithmus. Er empfängt 

vom Hauptprozess eine Liste der von dem vorgegebenen Routenvektor geschnittenen Mobili-

tätsanbietern, zusammen mit deren Serviceendpunkten und Schnittvektoren. Diese Liste wird 

zuerst nach dem längsten Schnittvektor durchsucht. Der diesem Vektor zugehörige Mobili-

tätsanbieter (Backbone) wird in einer lokalen BPEL-Variable gespeichert. Dies wird in Ab-

bildung 4-7 veranschaulicht. 

 

 

Abbildung 4-7 Ausschnitt TieredQuery Subprozess 

 

Danach wird der Endpoint der Referenz auf den generischen Webservice Port im BPEL-

Prozess zugewiesen. Diese Servicereferenz wird nun aufgerufen und dazu genutzt, die den 

Start- und Endpunkten des Schnittvektors am nächsten gelegenen Knoten des Backbones ab-

zurufen. Der Hauptprozess wird nun rekursiv aufgerufen, um eine Streckenberechnung für die 

Teilstrecke zwischen globalem Startpunkt und dem Startpunkt des Backbones zu erzeugen. 

Die Ankunftszeiten der sich hieraus ergebenden Möglichkeiten werden nun als Abfahrtszeiten 

für Fahrten mit dem Backbone genutzt, welcher anschließend für jede mögliche Route für die 

erste Teilstrecke aufgerufen wird. Für die Teilstrecke hinter dem Verfügbarkeitsbereich des 

Backbones wird nun noch einmal rekursiv der Hauptprozess aufgerufen. Nach jedem dieser 

Aufrufe werden nun die Routenketten zu einem Routenvorschlag zusammengefügt. Schluss-



29 

 

endlich wird die Liste der Routenvorschläge an die aufrufende Instanz des Hauptprozesses 

übergeben. Abbildung 4-8 veranschaulicht dieses Vorgehen. 

 

 

Abbildung 4-8 Bildung einer Tiered Route 

 

Im Falle der Angabe einer gewünschten Ankunftszeit, anstatt einer gewünschten Abfahrtszeit, 

wird umgekehrt verfahren: Der „hintere“ Teil des ermittelten Routenvektors wird zuerst re-

kursiv an den TripQuery Subprozess übergeben und dessen Abfahrtszeit als gewünschte An-

kunftszeit für die Teilstrecke auf dem Backbone genutzt. 

4.4.3 Handoff Query 
Der Handoff Query behandelt den Sonderfall, dass ein Routenvektor von zwei sich berühren-

den oder sich überlappenden Availability Areas abgedeckt wird. Der Query selbst kümmert 

sich nicht um das Auffinden dieser A2 und den ihnen zugehörigen Mobilitätsanbietern, dies 

wird, wie in 4.5.2.3 beschrieben, vom GSS übernommen. Der Handoff Query empfängt vom 

Hauptprozess eine Liste von Paaren aus Mobilitätsanbietern, welche den Routenvektor zu-



30 

 

sammen abdecken. Nun wird geprüft, um welche Anbietertypen es sich dabei handelt: Im 

Falle von zwei Typ-1 Anbietern wird eine einfache Routenabfrage (siehe 4.4.4) über die 

komplette Wegstrecke an den auf dem Routenvektor „vorderen“ Anbieter gestellt. Dies hat 

den Hintergrund, dass alle Typ-1 Anbieter, welche zum Erstellungszeitpunkt dieser Arbeit in 

MoBee integriert sind, zumindest die größeren Knoten ihrer Nachbarnetze beinhalten und 

auch dort Routenvorschläge liefern können. Dies hat deutlich effizientere Routenvorschläge 

zum Ergebnis, als eine Verknüpfung zweier diskreter Routenanfragen über einen gemeinsa-

men Knoten, da der zur Berechnung genutzte Routenvektor nicht notwendigerweise über dem 

realen Liniennetz liegt 

Im Falle von zwei Typ-0 Anbietern wird zuerst geprüft, ob sich in der Nähe des Übergabe-

punktes ein verfügbares Fahrzeug desjenigen Anbieters befindet, dessen Availability Area den 

„hinteren“ Teil des Routenvektors abbildet. Wurde ein Fahrzeug gefunden, wird dessen Posi-

tion als Zielpunkt für eine Routenanfrage an den ersten Anbieter, und als Startpunkt für eine 

Anfrage an den zweiten genutzt. Die beiden Teilrouten werden nun verknüpft und ausgege-

ben. Abbildung 4-9 bietet eine grafische Darstellung dieses Vorgangs. 

 

 

Abbildung 4-9 Handoff Query mit zwei Typ-0 Anbietern 

 

Im Falle einer Mischung aus Typ-0 und Typ-1 Anbietern wird ähnlich vorgegangen, mit dem 

Unterschied, dass im Falle eines Typ-1 Anbieters als „erstem“ Anbieter auf eine Verifikation 

von vorhandenen Fahrzeugen verzichtet werden kann. 

 



31 

 

4.4.4 LineTrip Query 
Der LineTrip Query Subprozess behandelt das Abfragen möglicher Routen von einem Typ-1 

Mobilitätsanbieter. Er empfängt Start- und Zielpunkt, als auch den Serviceendpoint eines 

Typ-1 Anbieters. Der Serviceendpoint wird der Referenz auf den generischen Webservice 

Port (siehe 5.3.1) zugewiesen. Danach werden zuerst Knoten in der Nähe von Start- und Ziel-

punkt, dann mögliche Routen zwischen diesen Knoten abgefragt. Die Ergebnismenge wird 

dann dem aufrufenden Prozess übergeben. 

4.4.5 CarsharingTrip Query 
Dieser Subprozess liefert mögliche Reiserouten mit Typ-0 Anbietern welche Carsharing an-

bieten. Wie der LineTrip Subprozess empfängt auch er Start-, Zielpunkt und Serviceendpoint 

eines Mobilitätsanbieters. Nachdem über den generischen Typ-0 Port (siehe 5.3.2) dem Start-

punkt nahegelegene verfügbare Fahrzeuge des Mobilitätsanbieters gefunden wurden, wird 

über den angebundenen Routingservice (siehe 5.3.3) eine Autoroute bezogen. Diese wird 

dann, zusammen mit dem Standort des verfügbaren Fahrzeugs, an den aufrufenden Prozess 

übergeben. 

4.4.6 FootTrip Query 
Dieser Subprozess dient der Ermittlung von Fußrouten. Er beinhaltet einen Aufruf des exter-

nen Routingdienstes. Diesem werden Start- und Zielpunkt übergeben. Das Resultat des Rou-

tenvorschlages wird dann in das MoBee-interne Format FootTripType konvertiert (siehe 

5.1.2). 

4.4.7 CabTrip Query 
Der CabTrip Query Subprozess ist in dieser Implementierung von MoBee ein Platzhalter, da 

sich kein Online Taxiservice dazu bereit erklärte, eine Schnittstelle zu den benötigten Daten 

in ihrem System zur Verfügung zu stellen. Der Prozess ruft eine Autoroute vom Routingser-

vice ab und errechnet aus deren Parametern (Dauer, Wegstrecke) Schätzwerte für Dauer und 

Kosten einer Taxifahrt. Diese werden an den aufrufenden Prozess übergeben. Wie bereits 

erwähnt, könnte diese Funktionalität nach Integration von Taxiunternehmen weiterverwendet 

werden, um auch Routenvorschläge mit dem Taxi für solche Gebiete anbieten zu können, 

welche nicht innerhalb der Availability Area eines solchen integrierten Taxiunternehmens 

liegen. 

4.4.8 TripQuery_MainProcess 
Der Hauptprozess nimmt vom Wrapper oder einem TieredTrip Query Start- und Endpunkte 

der gewünschten Route an und leitet diese je nach Bedarf an die entsprechenden Subprozesse 

weiter. Dazu wird zuerst die Datenbank nach 4.5.2.2 abgefragt, um diejenigen Mobilitätsan-

bieter zu erhalten, deren Availability Areas vom Routenvektor geschnitten werden oder die-

sen komplett enthalten. Danach wird der GetSimpleRoutes Query (siehe 4.4.1) aufgerufen, 

um eventuell vorhandene einfache Routen zu erhalten. Sollten keine einfachen Routen gefun-

den werden, werden die kombinierten Routenqueries aufgerufen. Deren Ergebnisse werden 

zusammengefasst und an den aufrufenden Subprozess übergeben. 



32 

 

4.4.9 TripQuery_Wrapper 
Dieser Subprozess dient dazu, die Sortierfunktion von rekursiven Aufrufen des 

TripQuery_MainProcess Subprozesses abzukapseln. Er nimmt als Eingabeparameter Start-

und Zielpunkt der gewünschten Route, zusammen mit Sortier- und Begrenzungsparameter 

(siehe 4.7) entgegen. Nachdem eine Instanz von TripQuery_MainProcess eine Liste von Rou-

tenvorschlägen zurückgibt, gibt er diese Liste zusammen mit dem Sortierparameter an den 

Sorting Service weiter. Die von Diesem sortierte Liste stellt die Ausgabe des 

TripQuery_Wrapper Prozesses dar. 

4.5 Geospatial Subsystem 

Der folgende Abschnitt behandelt das Geospatial Subsystem (GSS) der MoBee Implementie-

rung. Das GSS ermöglicht es, Informationen über vorhandene Mobilitätsanbieter via Embed-

ded SQL aus einer Datenbank abzurufen. Der Aufbau und die genaue Funktionsweise des 

GSS werden im Folgenden beleuchtet. 

4.5.1 Übersicht 
Das GSS hat die Aufgabe anhand eines Routenvektors die in Frage kommenden Mobilitäts-

anbieter für eine zu erstellende Reiseroute zu liefern. Zu diesem Zwecke enthält es eine Da-

tenbank mit einer Tabelle aller angeschlossenen Mobilitätsanbieter. Abbildung 4-10 zeigt die 

Struktur der Tabelle. 

 

 

Abbildung 4-10 Datenbankstruktur GSS 

 

Das Feld ENDPOINT beinhaltet die Endpunktreferenz des dem Mobilitätsanbieter zugehöri-

gen Webservice. 

CARRIERNAME beinhaltet die Textbezeichnung des Mobilitätsanbieters.  

Das Feld AREA enthält die Availability Area des Mobilitätsanbieters als ST_Multipolygon. 

Hierbei handelt es sich um einen räumlichen Datentyp des DB2 Spatial Extenders, welcher 

ein in sich abgeschlossenes Polygon aus Koordinaten eines räumlichen Bezugssystems (im 

Falle von MoBee WGS84) beinhaltet. 

Das Feld TYPE enthält die Typisierung des Moblitätsanbieters nach 4.2.1.4. 



33 

 

Das GSS bietet über eine Webservice Schnittstelle drei Funktionen für räumliche Berechnun-

gen an: 

 Suche nach allen Mobilitätsanbietern, deren Availability Areas eine bestimmte 

WGS84-Koordinate beinhalten. 

 Suche nach allen Mobilitätsanbietern, deren A2 von einem Routenvektor geschnitten 

werden. Rückgabe der Mobilitätsanbieter und der jeweiligen Schnittvektoren. 

 Suche nach Paaren von Mobilitätsanbietern, welche zusammen einen Routenvektor 

abdecken. 

Der Webservice Port, seine Operationen und die ihnen zu Grunde liegenden Datentypen wer-

den in 5.2 im Detail beschrieben. 

4.5.2 Queries und Spatial Functions 
Die Abfrage von Daten vom DB2 Server erfolgt über vorgefertigte SQL-Queries (Embedded 

SQL) innerhalb einer JavaEE Anwendung, welche räumliche Berechnungsfunktionen (Spatial 

Functions) des DB2 Spatial Extenders verwenden. Diese werden im Folgenden genauer be-

trachtet. 

4.5.2.1 Abfrage von beinhaltenden Availability Areas 
 

1 SELECT ENDPOINT, TYPE, CARRIERNAME FROM mobee.availareas  

2 WHERE  

3 db2gse.ST_WITHIN(db2gse.ST_POINT(X, Y,1003), AREA 

4 ) 

5 = 1 

In diesem Query werden Endpoint, Typ und Name aller Mobilitätsanbieter abgerufen, deren 

Availability Areas den Punkt (X,Y) beinhalten. Die Spatial Function ST_WITHIN übergibt 1, 

falls der Punkt (X,Y) in AREA liegt, 0 falls nicht. Die Funktion ST_POINT ist die Kon-

struktorfunktion für den Räumlichen Typ selben Namens. Die Zahl 1003 ist hierbei die Kenn-

zahl des zu verwendenden räumlichen Bezugssystems, in diesem Fall WGS84. 

  



34 

 

4.5.2.2 Abfrage von geschnittenen Availability Areas 
 

1 WITH IntersectionsTable AS ( 

2 SELECT ENDPOINT, TYPE, CARRIERNAME, 

3  

4   db2gse.ST_TOLINESTRING( 

5      db2gse.ST_INTERSECTION( 

6      db2gse.ST_LINESTRING('linestring(XY1 XY2',1003), 

7      AREA) 

8    ) AS IntersectionLine 

9  

10  FROM  mobee.availareas ) 

11  

12  SELECT ENDPOINT, TYPE, CARRIERNAME,  

13    db2gse.ST_LENGTH(IntersectionLine) AS IntersectionLength,  

14    db2gse.ST_STARTPOINT(IntersectionLine) AS StartPoint, 

15    db2gse.ST_ENDPOINT(IntersectionLine) AS INTERSECTIONENDPOINT 

16   

17    FROM IntersectionsTable  

18  

19  WHERE db2gse.ST_ISEMPTY(INTERSECTIONLINE) != 1 

Der hier beschriebene Query ist zweiteilig. Im ersten Teil wird eine virtuelle Tabelle erzeugt, 

welche eine zusätzliche Spalte mit dem Schnittvektor der jeweiligen Availability Area enthält. 

Der zweite Teil extrahiert die Start- und Endpunkte des Schnittvektors. Die Zweiteilung er-

folgt aus Performancegründen: Durch das Zwischenspeichern des Schnittvektors werden die 

leistungsintensiven Spatial Functions ST_INTERSECTION und ST_LINESTRING pro Mo-

bilitätsanbieter nur einmal aufgerufen. 

  



35 

 

4.5.2.3 Abfrage von benachbarten Mobilitätsanbietern 
 

1  WITH ContainingAreas AS( 
2  SELECT ENDPOINT, TYPE, CARRIERNAME, AREA 
3  FROM mobee.availareas WHERE 
4  
5  db2gse.ST_WITHIN(db2gse.ST_POINT(X1, Y1,1003),AREA) != 0 
6  OR db2gse.ST_WITHIN(db2gse.ST_POINT(X1, Y1,1003),AREA) != 0  
7  ), 
8  
9  RawIntersects AS ( 
10    SELECT ENDPOINT AS SERVICEENDPOINT, TYPE AS CARRIERTYPE, 
11          CARRIERNAME, 
12  
13       db2gse.ST_TOLINESTRING( 
14            db2gse.ST_INTERSECTION( 
15                db2gse.ST_LineString( 
16                    'linestring(XY1, XY2)',1003), 
17                AREA) 
18      ) 
19    AS IntersectionLine FROM ContainingAreas 
20  ), 
21  
22  IntersectionTable AS ( 
23    SELECT SERVICEENDPOINT, CARRIERTYPE, 
24       CARRIERNAME, IntersectionLine, 
25       db2gse.ST_STARTPOINT(IntersectionLine) AS StartPoint, 
26       db2gse.ST_ENDPOINT(IntersectionLine) AS EndPoint 
27    FROM RawIntersects 
28    WHERE db2gse.ST_LENGTH(InterSectionLine) != 0 
29  ) 
30  
31  SELECT 
32  IT1.CARRIERNAME AS CARRIERNAME1, 
33  IT1.SERVICEENDPOINT AS ENDPOINT1, 
34  IT1.CARRIERTYPE AS TYPE1,  
35  IT2.CARRIERNAME AS CARRIERNAME2, 
36  IT2.SERVICEENDPOINT AS ENDPOINT2, 
37  IT2.CARRIERTYPE AS TYPE2, 
38  IT1.ENDPOINT AS HANDOVER 
39  
40  FROM IntersectionTable IT1, IntersectionTable IT2 
41  WHERE 
42  
43  (db2gse.ST_TOUCHES(IT1.Endpoint,IT2.IntersectionLine) = 1 
44  OR db2gse.ST_WITHIN(IT1.ENDPOINT,IT2.IntersectionLine) = 1) 
45  AND db2gse.ST_EQUALS(IT1.ENDPOINT, IT2.ENDPOINT) != 1 
46  AND db2gse.ST_EQUALS(IT1.STARTPOINT, IT2.STARTPOINT) != 1 



36 

 

Die Zeilen 1 bis 25 sind funktionsgleich mit dem Query aus 4.5.2.2. Deren Resultat wird wie-

derum in einer virtuellen Tabelle gespeichert. Danach wird nach Anbieterpaaren gesucht, de-

ren Schnittvektoren sich überlappen oder berühren. Im weiteren Verlauf werden diese dann 

zusammen mit einem, beiden Schnittvektoren gemeinsamen, Punkt ausgegeben. 

 

4.6 Web Service Wrapper 

Wie bereits erwähnt müssen Mobilitätsanbieter, je nach Typ, einen Webservice Port aus 5.3 

implementieren. Da dies vor einer kommerziellen Implementierung und der anschließenden 

Vermarktung des MoBee Systems jedoch nicht geschehen wird, ist eine Kapselung der real 

existierenden Webschnittstellen notwendig. Diese Funktion übernehmen die Web Service 

Wrapper (WSW). Die WSW gliedern sich in fünf Komponenten: 

 

 WS-Port 

Java Implementierung des jeweiligen Porttyps. Entweder Generic LineTrip Port, 

Generic Carsharing Port oder NavRoute Port. Die Komponente beinhaltet auch Java-

Repräsentationen der XML-Datentypen, welche im jeweiligen Porttyp Verwendung 

finden. 

 

 HTTP-Accessor 

Behandelt die Kommunikation mit dem jeweiligen Anbieter. HTTP-Request entweder 

als POST oder GET. Beinhaltet teilweise auch einen Trust Manager für SSL-

Verbindungen. 

 

 JavaEE Core 

Steuermodul für die restlichen Komponenten, instanziiert diese auch. 

 

 SAX-Parser 

Wandelt den vom Partner übermittelten XML-Stream in das vom Porttyp definierte 

Datenformat um. 

 

 Partnerspezifische Dienstmodule 

Einige Partner übermitteln ihre Daten in einer Weise, welche nicht nur strukturell, 

sondern auch bezüglich des Datenformates von der MoBee-Spezifikation abweicht 

(Positionsdaten in Gauß-Krüger anstatt WGS84, Haltestellenliste unsortiert etc.). Die 

WSW dieser Partner erfordern folglich zusätzliche Dienstmodule, welche die 

gelieferten Daten in das korrekte Format umformatieren. 

 

Abbildung 4-11 stellt die Komponenten eines WSW dar und zeigt den Datenfluss eines 

Querys an den Mobilitätsanbieter. Die Pfeile mit durchgezogener Linie stellen hierbei den 

Datenfluss vom MoBee System zum Partnerservice dar, gepunktete Pfeile den Datenfluss in 

die entgegengesetzte Richtung. 



37 

 

 

Abbildung 4-11 Architektur der WSW 

 

4.7 Sorting Service 

Der Sorting Service stellt einen Sonderfall der WSW dar. Anstatt die Datenausgabe des 

Webdienstes eines Mobilitätsanbieters zu kapseln, formatiert dieser Wrapper die Ausgabe der 

Prozesslogik. Zu diesem Zwecke beinhaltet die externe Schnittstelle des MoBee Systems 

(siehe 5.1) die Parameter SortBy und SecondaryCap. SortBy gibt an, nach welcher Metrik die 

gelieferten Routenvorschläge sortiert werden sollen. Mögliche Werte sind hierbei die Werte 

DURATION (Fahrtdauer) und FARE (Fahrtkosten). SecondaryCap dient dazu, jene Routen-

vorschläge herauszufiltern, welche in der sekundären Metrik stark vom Durchschnittswert 

aller berechneten Routenvorschläge abweichen. Hierfür wird als Parameter SecondaryCap ein 

Integer übergeben, der einen Prozentsatz des Durchschnittes angibt, welchen die sekundäre 

Metrik nicht überschreiten darf. 



38 

 

5 Webservice Ports 

Im folgenden Kapitel werden die diversen Webserviceschnittstellen beschrieben, welche 

MoBee für die interne Kommunikation mit seinen Subkomponenten und die Kommunikation 

mit externen Anbietern verwendet. 

 

5.1 TripQuery Wrapper (Hauptschnittstelle) 

Der TripQuery Wrapper Port stellt die Hauptschnittstelle des MoBee Systems dar. Über 

diesen werden Routenanfragen an das System gestellt und Routenvorschläge zurückgegeben. 

 

Abbildung 5-1 TripQuery Wrapper Port 

 

5.1.1 Operationen 
 

 GetTrip 

Liefert Routenvorschläge abhängig von Start- und Zielkoordinaten und 

Sortierparametern 

 

5.1.2 Datentypen 
 

GetTripType 

 

 

 

 



39 

 

Funktion: 

Containerelement für die Eingabedaten der Operation GetTrip 

Felder: 

 StartPoint (WGS84_Point) 

Koordinaten des Startpunktes für die zu ermittelnden Routenvorschläge 

 

 DestPoint (WGS84_Point) 

Koordinaten des Zielpunktes für die zu ermittelnden Routenvorschläge 

 

 ArrivalTime (dateTime) 

Zielankunftszeit für die zu ermittelnden Routenvorschläge 

 

 DepartureTime (dateTime) 

Zielabfahrtszeit für die zu ermittelnden Routenvorschläge 

 

 SortBy(string) 

ENUM, welcher die Metrik angibt, nach welcher sortiert werden soll 

 

 SecondaryCap(int) 

Obergrenze für sekundäre Metriken 

 

GetTripResponseType 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation GetTrip 

Felder: 

 TripSuggestions (TripSuggestList) 

Liste von TripSuggestion 

  



40 

 

TripSuggestion 

 

Funktion: 

Enthält die Eckdaten (Fahrtzeit, Kosten) eines Routenvorschlages, sowie eine Liste von Teil-

trecken, welche zusammen die vorgeschlagene Route ergeben. 

Felder: 

 Fare (float) 

Fahrtkosten des Routenvorschlags in Euro 

 

 Duration (int) 

Gesamte Fahrtdauer des Routenvorschlages in Minuten 

 

 SuggestionPart (SuggestionPart[]) 

Array von Elementen des Typs SuggestionPart. Teilstrecken ergeben zusammen den 

Routenvorschlag 

 

 ArrivalTime (dateTime) 

Ankunftszeit des Routenvorschlags 

 

 DepartureTime (dateTime) 

Abfahrtszeit des Routenvorschlags 

 

SuggestionPart 

 

Funktion: 

Enthält eine Teilstrecke des gesamten Routenvorschlages. Jedes Element vom Typ 

SuggestionPart enthält genau ein Element, welches entweder vom Typ CabRouteType, 



41 

 

TripType oder Carsharing_TripType ist. Die Datentypen der Sorten von Teilstrecken, welche 

die Dienste von Mobilitätsanbietern nutzen, sind in 5.3 beschrieben. 

Felder: 

 CabRoute (CabRouteType) 

Teilstrecke, welche mit dem Taxi zurückgelegt wird 

 

 RailTrip (TripType) 

Teilstrecke, welche mit linienbasierten Verkehrsanbietern zurückgelegt wird 

 

 CarsharingTrip (Carsharing_TripType) 

Teilstrecke, welche mit einem Carsharingauto zurückgelegt wird 

 

 FootTrip (FootTripType) 

Teilstrecke, welche zu Fuß zurückgelegt wird 

 

FootTripType 

 

Funktion: 

Enthält eine Teilstrecke, welche zu Fuß zurückgelegt wird 

Felder: 

 Route (NavRouteType) 

Route, welche gelaufen werden muss (siehe 5.3.3) 

 

 ArrivalTime (dateTime) 

Ankunftszeit der Laufstrecke 

 

 DepartureTime (dateTime) 

Startzeit der Laufstrecke 

  



42 

 

5.2 Database Connector (GSS Kommunikation) 

Der Database Connector Port regelt die Kommunikation des MoBee-Hauptprozesses mit dem 

DB2-Server. Er stellt Operationen zur Verfügung, welche Informationen über 

Mobilitätsanbieter und ihre Availability Areas in Bezug auf geodätische Punkte liefern. 

 

Abbildung 5-2 Database Connector Port 

 

5.2.1 Operationen 
 

 GetContainingArea 

Liefert alle Availability Areas, welche einen übergebenen Punkt einschliessen 

 

 GetIntersectionAreas 

Liefert alle Availability Areas, welche von einem übergebenen Routenvektor 

geschnitten werden, zusammen mit den Schnittvektoren und ihren Start- und 

Endpunkten 

 

 GetAdjacentAreas 

Liefert eine List von Anbieterpaaren, welche jeweils einen Routenvektor zusammen 

abdecken 

5.2.2 Datentypen 
 

GetContainingArea 

 



43 

 

Funktion: 

Containerelement für die Eingabedaten der Operation GetContainingArea 

Felder: 

 Coords  (WGS84_Point) 

Diejenigen Coordinaten, auf die die Availability Areas geprüft werden sollen 

 

GetContainingAreasResponse 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation  GetContainingArea 

Felder: 

 Provider  (ProviderType[]) 

Array von Providern, dessen Availability Areas den Eingabepunkt enthalten 

 

 

GetIntersectingAreasResponse 

 

Funktion: 

Containerelement für die Ausgabeoparameter der Operation GetIntersectingAreas 

Felder: 

 Provider (MobilityProviderType[]) 

Array von Mobilitätsanbietern inklusive ihrer Schnittvektoren 

  



44 

 

GetIntersectingAreas 

 

Funktion: 

Containerelement für die Eingabedaten  der Operation GetIntersectingAreas 

Felder: 

 DepartureCoords  (WGS84_Point) 

Startpunkt für den Routenvektor 

 

 DestinationCoords  (WGS84_Point) 

Endpunkt für den Routenvektor 

 

GetAdjacentAreas 

 

Funktion: 

Containerelement für die Eingabedaten der Operation GetAdjacentAreas 

Felder: 

 DepartureCoords (WGS84_Point) 

Startpunkt des abzudeckenden Routenvektors 

 

 DestinationCoords (WGS84_Point) 

Endpunkt des abzudeckenden Routenvektors 

  



45 

 

GetAdjacentAreasResponse 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation GetAdjacentAreas 

Felder: 

 Providerpair (ProviderPairType[]) 

Array von Paaren von Mobilitätsanbietern inklusive der ihnen zugehörigen 

Schnittvektoren. 

 

ProviderType 

 

Funktion: 

Datenelement für das Kapseln einer Servicereferenz zusammen mit dem Klartextnamen des 

Mobilitätsanbieters und dessen Typ. 

Felder: 

 Provider Reference(ServiceRefType) 

Referenz auf  den dem  Mobilitätsanbieter zugehörigen Webservice 

 

 ProviderName(string) 

Anzeigename des Mobilitätsanbieters 

 

 ProviderType(int) 

MoBee-interne Klassifizierung des Anbietertyps 

 

 



46 

 

MobilityProviderType 

 

Funktion: 

Datenelement für die Kapselung eines Mobilitätsanbieters mit dessen Schnittvektor und 

dessen Start- und Endpunkt. 

Felder: 

 Provider (ProviderType) 

Enhält die Servicereferenz, den Klartextnamen und den Typ des Mobilitätsanbieters 

 

 IntersectionLength (double) 

Länge des Schnittvektors 

 

 StartPoint (WGS84_Point) 

Startpunkt des Schnittvektors 

 

 EndPoint (WGS84_Point) 

Endpunkt des Schnittvektors 

 

ProviderPair 

 

Funktion: 

Datenelement, welches zwei Mobilitätsanbieter beinhaltet, die einen Routenvektor 

gemeinsam abdecken, zusammen mit einem Übergabepunkt. 



47 

 

Felder: 

 Provider1 (ProviderType) 

Mobilitätsanbieter, welcher den ersten Teil des Routenvektors abdeckt 

 

 Provider2 (ProviderType) 

Mobilitätsanbieter, welcher den zweiten Teil des Routenvektors abdeckt 

 

 HandoffPoint (WGS84_Point) 

Übergabepunkt  zwischen den Verfügbarkeitsbereichen der Mobilitätsanbieter 

 

5.3 Externe Webservice Ports  

Um mit dem MoBee-System zu kommunizieren, müssen Webservices, je nach ihrer Funktio-

nalität, einen von drei Webservice Ports implementieren. Diese werden im Folgenden, zu-

sammen mit den ihnen zu Grunde liegenden Datentypen, beschrieben. 

5.3.1 Generic LineTrip Port 
Der Generic LineTrip Port ist der Porttyp für linienbasierte Mobilitätsanbieter. Er bietet Funk-

tionalität für das Auffinden von Knoten (Haltestellen) in Abhängigkeit von WGS84-

Koordinaten und dem Abruf von Strecken zwischen zwei aufgefundenen Knoten. 

 

Abbildung 5-3 Generic LineTrip Port 

5.3.1.1 Operationen: 
 

 GetNearNodesByLoc 

Gibt einer WGS84-Koordinate naheliegende Knoten des Mobilitätsanbieters zurück 

 

 GetTrip 

Gibt Routenvorschläge zwischen zwei Knoten des Mobilitätsanbieters zurück 

  



48 

 

5.3.1.2 Datentypen: 
 

GetNearNodesByLoc 

 

Funktion: 

Containerelement für die Eingabedaten der Operation GetNearNodesByLoc 

Felder: 

 Coordinates  (WGS84_Point) 

Diejenigen Koordinaten, in dessen Nähe Knoten gefunden werden sollen 

 

 

 

GetNearNodesByLocResponse 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation GetNearNodesByLoc 

Felder: 

 Node (RailNode[]) 

Array von Knoten, welche den übergebenen Koordinaten nahe liegen 

  



49 

 

 

GetTrip 

 

Funktion: 

Containerelement für die Eingabedaten der Operation GetTrip 

Felder: 

 DepartureNodeID (string) 

Serviceinterner Identifikationsstring für den Abfahrtknoten 

 

 DestinationNodeID (string) 

Serviceinterner Identifikationsstring für den Zielknoten 

 

 DepartureTime(dateTime) 

Zielabfahrtszeit 

 

 ArrivalTime(DateTime) 

Zielankunftszeit 

 

GetTripResponse 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation GetTrip 

Felder: 

 Trip (TripType[]) 

Dient der Rückgabe von vorgeschlagenen Routen zwischen den übergebenen 

Haltestellen 



50 

 

TripType 

 

Funktion: 

Enthält Fahrtzeit und Fahrtkosten, sowie die einzelnen Teilstrecken einer vorgeschlagenen 

Reiseroute 

Felder: 

 TripTime (int) 

Komplette Fahrtzeit der vorgeschlagenen Route in Minuten 

 

 Fare (float) 

Kosten der Fahrt in Euro 

 

 SubTrip (SubTripType[]) 

Teilrouten der Fahrtstrecke 

 

SubTripType 

 

Funktion:  

Enthält die Parameter einer Teilroute 

  



51 

 

Felder: 

 LineName (string) 

Name der Linie der Teilroute (z.B. U14) 

 

 DepartureNodeName (string) 

Anzeigename der Abfahrtshaltestelle 

 

 DestinationNodeName (string) 

Anzeigename der Zielhaltestelle 

 

 DepartureTime (dateTime) 

Abfahrtszeit der Teilroute 

 

 ArrivalTime (dateTime) 

Ankunftszeit der Teilroute 

 

RailNode 

 

Funktion: 

Enthält die relevanten Daten eines Knotens, sowohl für die MoBee-interne Verarbeitung, als 

auch für die Rückgabe an den externen Webservice. 

Felder: 

 DispName (string) 

Anzeigename des Knotens 

 

 Coordinates (WGS84_Point) 

WGS84-Koordinaten des Knotens für die MoBee-interne Verarbeitung 

 

 InternalID (string) 

Interner Identifikationsstring des Knotens 

  



52 

 

5.3.2 Generic_Carsharing Port 
Der Generic Carsharing Port ist der Porttyp für die Kommunikation mit Carsharinganbietern. 

Er bietet Funktionalität für das Auffinden von verfügbaren Fahrzeugen. 

 

 

Abbildung 5-4 Generic_Carsharing Port 

 

 

5.3.2.1 Operationen 
 

 getVehicles 

Gibt eine Liste von verfügbaren Fahrzeugen zurück, sortiert nach Nähe zu den 

Zielkoordinaten. 

 

5.3.2.2 Datentypen 
 

getVehicles 

 

Funktion: 

Containerelement für die Eingabedaten der Operation getVehicles 

Felder: 

 Coordinates (WGS84_Point) 

Koordinaten, in deren Nähe nach verfügbaren Fahrzeugen gesucht werden soll 

  



53 

 

getVehiclesResponse 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation getVehicles 

Felder: 

 VehicleList (vehicleType) 

Array, welches die gefundenen Farhzeuge enthält 

 

 

vehicleType 

 

Funktion: 

Enthält die zur Weiterverarbeitung notwendigen Daten eines gefundenen Fahrzeugs 

Felder: 

 Coordinates (WGS84_Point) 

WGS84-Koordinaten des Fahrzeugs 

 

 Identifier (string) 

Serviceinterner Identifikationsstring des Fahrzeugs 

 

 FuelPercentage (int) 

Prozentualer Treibstofffüllstand des Fahrzeugs 

 

 



54 

 

5.3.3 NavRoute Port 
Der Navigations- und Routingport (NavRoute) behandelt die Kommunikation mit einem 

Routingservice für straßengebundene Verkehrsmittel. Er bietet Funktionalität für den Abruf 

von Streckeninformationen. 

 

Abbildung 5-5 NavRoute Port 

 

5.3.3.1 Operationen 
 

 GetNavRoute 

Gibt eine Straßenroute zwischen zwei WGS84-Koordinaten zurück. 

 

5.3.3.2 Datentypen 
 

GetNavRoute 

 

Funktion: 

Containerelement für die Eingabedaten der Operation GetNavRoute 

Felder: 

 DepartureCoord (WGS84_Point) 

Abfahrtskoordinaten für die gelieferte Route 

 

 DestinationCoord (WGS84_Point) 

Ankunftskoordinaten für die gelieferte Route 

 

 Mode (string) 

Serviceinterner Identifikationsstring für den Navigationsmodus (fahren, laufen) 

 

 TimeConstraints (TimeConstraintsType) 

Zeitbeschränkungen (Ankunft, Abfahrt) für die gelieferte Route 



55 

 

GetNavRouteResponse 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation GetNavRoute 

Felder: 

 NavRoute (NavRouteType) 

Containerelement für die vorgeschlagene Route 

 

 DepartureTime (dateTime) 

Abfahrtszeit 

 

 ArrivalTime (dateTime) 

Ankunftszeit 

 

NavRoute 

 

Funktion: 

Containerelement für die vorgeschlagene Route. 

Felder: 

 Instruction (NavInstructionType[]) 

Array von Teilstrecken/Fahranweisungen 

 

 TotalDuration (int) 

Gesamtfahrtzeit in Minuten 

 

 TotalDistance (int) 

Gesamtfahrtstrecke in Metern 



56 

 

NavInstructionType 

 

Funktion: 

Containerelement für Teilstrecken/Fahrtanweisungen 

Felder: 

 Instruction (string) 

Fahrtanweisung in natürlicher Sprache 

 

 Duration (int) 

Dauer der Teilstrecke in Sekunden 

 

 Length (int) 

Streckenlänge in Metern 

 

 StartCoord (WGS84_Point) 

Abfahrtskoordinate der Teilstrecke 

 

 EndCoord (WGS84_Point) 

Zielkoordinate der Teilstrecke 

 

 

 

5.4 SuggestionSorter Port (Sorting Service) 

Der SuggesionSorter Port dient der Kommunikation der BPEL-Prozesse der Prozesslogik mit 

dem in 4.7 beschriebenen Sorting Service. 

 

  



57 

 

5.4.1 Operationen 
 

 SortSuggestions 

Sortiert eine Liste von Routenvorschlägen nach den übergebenen Parametern 

5.4.2 Datentypen 
 

SortSuggestionsType 

 

Funktion: 

Containerelement für die Eingabeparameter der Operation SortSuggestions 

Felder: 

 Comparator (string) 

Metrik, anhand derer die übergebenen Routenvorschläge sortiert werden sollen 

 

 SuggestionList (TripSuggestList) 

Liste von Routenvorschlägen, welche sortiert werden soll (siehe 5.1.2) 

 

 SecondaryCap (int) 

Wert ab welchem die sekundären Metriken als Ausschlusskriterium dienen (siehe 4.7) 

 

SortSuggestionsResponseType 

 

Funktion: 

Containerelement für die Ausgabedaten der Operation SortSuggestions 

Felder: 

 SortedSuggestions (TripSuggestList) 

Sortierte Liste von Routenvorschlägen 

 



58 

 

6 Evaluierung 

Im folgenden Kapitel werden die Erfahrungen aus dem Test des MoBee Systems, die dabei zu 

Tage getretenen Stärken und Schwächen des Konzeptes, sowie mögliche Erweiterungen des 

Konzeptes betrachtet. 

Ziel der Arbeit war, wie in 1.1 beschrieben, einen multimodalen Planungsdienst zu Entwi-

ckeln, welcher: 

 Echte Mulitmodalität anbietet 

 Eine große Anzahl von Moblitätsanbietern aufnehmen kann 

 Für Bahn, ÖPNV, Carsharing, Taxis und Fußweg einsetzbar ist 

 Diese Ziele durch die Aggregation bereits bestehender Webservices erreicht 

Diese Kriterien können als erfüllt betrachtet werden. Dennoch sind einige besondere Eigen-

schaften, positiv wie negativ, zu Tage getreten. Diese sollen im folgenden Kapitel erörtert 

werden. 

6.1 Stärken des MoBee Konzeptes 

Im folgenden Abschnitt werden die Stärken des MoBee Konzeptes sowie dessen Implemen-

tierung im Rahmen dieser Arbeit betrachtet. 

6.1.1 Auflistung von Alternativen für simple Routen 
Besonders positiv sind die Ergebnisse des MoBee Konzeptes im Bereich der Verkehrsplanung 

innerhalb des Verfügbarkeitsbereiches einzelner Mobilitätsanbieter. Dies ist auch nicht weiter 

verwunderlich, da im Grunde genommen nur die Routenvorschläge der bestehenden Dienste 

normalisiert und als alternative Routenvorschläge ausgegeben werden. Im Falle von Taxi- und 

Carsharingunternehmen werden die zur Verfügung gestellten Daten noch um Streckendaten 

des Routingdienstes erweitert. Dies stellt jedoch auch nur eine Zusammenführung zweier dis-

kreter Datensätze dar und ist deshalb wenig fehleranfällig. Abbildung 6-1 zeigt eine Gegen-

überstellung der vorgeschlagenen Routen von MoBee und Moovel für die Strecke zwischen 

Krefelder Straße 21, Stuttgart und Jasminweg 10, Stuttgart. Zu beachten ist hierbei, dass für 

die Fahrt mit dem Verkehrsverbund Stuttgart von beiden Systemen dieselbe Route geliefert 

wurde. Zusätzlich dazu wurde von MoBee direkt in der Krefelder Straße ein car2go Fahrzeug 

gefunden. Eine Fahrt mit Diesem würde etwas mehr als 20 Minuten früher das Ziel erreichen, 

als eine Fahrt mit dem von Moovel vorgeschlagenen Taxi. 



59 

 

 

Abbildung 6-1 Vergleich Routingergebnisse MoBee und Moovel 

 

6.1.2 Tiered Queries 
Eine weitere hervorzuhebende Stärke von MoBee sind die Tiered Queries des TiGeR-

Algorithmus. Die hierdurch gelieferten Routenvorschläge gehen weit über das hinaus, was 

bisher erhältliche Mobilitätsplanungsdienste ermöglichen: Carsharing- und Taxianbieter, öf-

fentliche Verkehrsmittel auf regionaler und überregionaler Ebene werden zusammengeführt 

und für kombinierte Routenvorschläge verwendet. Überdies sind die errechneten Routenvor-

schläge für den Alltagsgebrauch praktikabel. 

Da bisher kein anderer verfügbarer Planungsdienst diese Funktionalität anbietet, kann hier 

leider kein direkter Vergleich zu herkömmlichen Lösungen gezogen werden. Es soll aller-

dings an dieser Stelle noch einmal das Beispiel aus 4.2.3 herangezogen werden Füttert man 

die MoBee Implementierung mit den im aufgeführten Beispiel verwendeten Start- und Ziel-

koordinaten, (47.261957, 11.395971) und (48.810369, 9.212706), entspricht das Ergebnis fast 

genau dem händisch in 4.2.3 Erhaltenen. Abbildung 6-2 zeigt einen von MoBee gelieferten 

kombinierten Routenvorschlag für die genannte Strecke. 



60 

 

 

Abbildung 6-2 MoBee Routenvorschlag Innsbruck Hilton nach Krefelder Straße 21, 

Stuttgart 

 

Als Backbone-Haltestellen werden wie im Beispiel der Innsbrucker Hauptbahnhof und der 

Bahnhof Bad Cannstatt in Stuttgart verwendet. Es werden folgende kombinierte Routen vor-

geschlagen: 

 Fußweg – ÖBB – Fußweg 

 Fußweg – ÖBB – Carsharing 

 Fußweg – ÖBB – Taxi 

 Taxi – ÖBB – Fußweg 

 Taxi – ÖBB – Carsharing 

 Taxi – ÖBB – Taxi 



61 

 

Das Fehlen von kombinierten Routenvorschlägen unter Zuhilfenahme von Typ-1 Mobilitäts-

anbietern ist auf zweierlei Gründe zurückzuführen: Einerseits wurde, wie im Beispiel vorher-

gesagt, keine effiziente Route mit dem Verkehrsverbund Stuttgart zwischen dem Cannstatter 

Bahnhof und der Krefelder Straße gefunden. Zum anderen ist der Verkehrsverbund Tirol nicht 

an die dieser Arbeit zugrunde liegende Implementierung angeschlossen. Wie in Abbildung 

6-3 ersichtlich ist, werden Typ-1 Mobilitätsanbieter auch in die Routenvorschläge mit aufge-

nommen, so fern eine entsprechende Teilroute gefunden wurde. 

 

Abbildung 6-3 Tiered Trip Stuttgart – Tübingen 

 

Wie bereits erwähnt, existiert zurzeit kein multimodales Verkehrsplanungssystem, welches 

die in diesem Beispiel verwendete Route komplett planen kann. Um auf die hier gezeigte 

Route zu kommen, müsste der Fahrgast mindestens drei verschiedene Fahrplansysteme bezie-

hungsweise Lokalisierungsdienste benutzen. Darüber hinaus wäre nicht direkt ersichtlich, 

welche Kombination von Mobilitätsanbietern die jeweils schnellste oder günstigste Variante 

darstellt. Um diese Information zu erhalten, würde die Anzahl der zu benutzenden Webdiens-

te nochmals steigen. Zusätzlich müssten diese Dienste alle mehrfach, also einmal pro Anbie-

terkombination, aufgerufen werden. Schließlich müsste der Endnutzer die Auswahl der opti-

malen Routenkombination selbst treffen, was erneut mit Mehraufwand verbunden wäre. 

6.1.3 Leichte Erweiterbarkeit 
Eines der Designprinzipien von MoBee ist die leichte Erweiterbarkeit durch die Verwendung 

von standardisierten Webservice Ports. Dieses Ziel wurde weitestgehend erreicht: Um dem 

System einen neuen Mobilitätsanbieter hinzuzufügen genügt es in der Theorie, die Servicere-

ferenz und die Availability Area der Datenbank hinzuzufügen. In der Praxis ist dies allerdings 



62 

 

noch nicht möglich, da kein bestehender Webservice die in dieser Arbeit definierten Ports 

implementiert. Es stellte sich jedoch während der Implementierungsphase heraus, dass nach-

dem eine sinnvolle Architektur für die Wrapper Applikationen gefunden wurde, sich der 

Aufwand für die Integration eines neuen Dienstes sehr in Grenzen hielt. In einer eventuellen 

kommerziellen Implementierung könnten die Wrapper durchaus ein fester Bestandteil des 

Systems werden, da der mit ihnen verbundene Entwicklungsaufwand die leichte Erweiterbar-

keit des Systems nicht nennenswert beeinträchtigt. 

6.1.4 Verzicht auf proprietäre Funktionalität 
MoBee kommt, in der jetzigen Implementierung, vollkommen ohne proprietäre Technologien 

aus. Alle Komponenten der Implementierung, sowohl in der Datenhaltung, als auch in der der 

Prozesslogik, basieren auf offenen Standards. Die in dieser Arbeit eingesetzte Middleware 

besteht zwar aus proprietären IBM-Produkten, das System wäre jedoch auch auf einer kom-

plett auf Open Source basierender Middleware lauffähig. Die WebSphere Server könnten zum 

Beispiel durch Apache Tomcat/ODE [Apa141], der DB2 Server inklusive Spatial Extender 

durch PostGIS [OSG14] ersetzt werden. 

6.2 Schwächen des Konzeptes und Lösungsvorschläge 

Im folgenden Abschnitt werden erkannte Schwachstellen des MoBee Konzeptes betrachtet 

und mögliche Lösungsvorschläge für eine erweiterte Version des Systems besprochen. 

6.2.1 Übergabepunktberechnung bei Handoff Queries 
Ein großer Schwachpunkt des MoBee-Konzeptes sind die Handoff Queries. Im Falle zweier 

sich überlappender oder nebeneinander liegender Verfügbarkeitsbereiche von linienbasierten 

Mobilitätsanbietern liefert das System noch gute Ergebnisse, da die Tatsache ausgenutzt wird, 

dass alle verfügbaren Fahrplansysteme zumindest in begrenztem Umfang die Linien und Hal-

testellen ihrer Nachbardienste beinhalten. Die ermittelten Routen gleichen somit denen aus 

der Berechnung einer simplen Route (vgl. 6.1.1). Sobald jedoch ein dynamisch gerouteter 

Mobilitätsanbieter mitverwendet wird, sind die von MoBee gelieferten Ergebnisse subopti-

mal. Der Grund hierfür ist die Ermittlung des Übergabepunkts. Wie in 4.5.2.3 beschrieben, 

wird hierfür der Mittelpunkt der Luftlinie zwischen Start- und Zielpunkt der zu berechnenden 

Route verwendet. Da Mobilitätsanbieter mit ihrem Verfügbarkeitsbereich meist einen Bal-

lungsraum abdecken, liegt dieser Punkt meist in spärlich besiedeltem Gebiet. Diesem Punkt 

nahegelegene Haltestellen sind meist nur über Umwege erreichbar und nur spärlich mit dem 

restlichen Netz Verbunden. Auch sind hier nur selten verfügbare Fahrzeuge von Typ-0 Mobi-

litätsdienstleistern (Taxi, Carsharing) zu finden. Routen, welche von Handoff Queries errech-

net werden tendieren folglich dazu, extrem zeitaufwendig und somit unbrauchbar zu sein. 

Das Problem ließe sich beheben, wenn auf der Seite der linienbasierten Mobilitätsanbieter 

bekannt wäre, welche Haltestellen aus dem Netz des Mobilitätsanbieters heraus gut erreichbar 

sind. In diesem Falle könnte im Grenzgebiet der beiden in Frage kommenden Mobilitätsanbie-

ter nach solchen Haltestellen gesucht und deren Koordinaten als Übergabepunkt genutzt wer-

den. So wäre gewährleistet, dass kein Umweg eingeplant wird, nur um einen mehr oder weni-

ger willkürlich ausgewählten Übergabepunkt zu erreichen. Eine Möglichkeit, solche gut ver-

bundenen Haltestellen ausfindig zu machen wäre, den Generic LineTrip Port um eine Opera-



63 

 

tion zu erweitern, welche die Anzahl an verfügbaren Linien an einer gegebenen Haltestelle 

ausgibt. Anhand der Anzahl der jeweils eine Haltestelle anfahrenden Linien und eines geeig-

netes Grenzwertes wäre es so möglich zu erkennen, wie gut verknüpft und somit leicht zu 

erreichen ein potentieller Übergabepunkt ist. Da alle linienbasierten Mobilitätsanbieter in ih-

ren Webdiensten den Aushangfahrplan verfügbar machen, wäre dies ohne weiteres möglich. 

In dem Falle, dass sich die Availability Areas von zwei Typ-0 Mobilitätsanbietern überlap-

pen, könnte ein Vektor gebildet werden, welcher orthogobal zum Routenvektor ist und diesen 

am von der Datenbank errechneten Übergabepunkt schneidet. Entlang Diesem könnte dann 

nach Orten gesucht werden, an dem Fahrzeuge des den zweiten Teil der Route bedienenden 

Anbieters verfügbar sind. 

6.2.2 Lange Laufzeit von Routenberechnungen 
Die Laufzeit von Routenberechnungen ist mit ca. 15 bis 20 Sekunden in der jetzigen Imple-

mentierung des MoBee Systems extrem lang. Dies ist nicht etwa auf komplexe Berechnungen 

oder eine ineffiziente Programmierung zurückzuführen. Anfragen an die Datenbank werden in 

etwa einer Sekunde abgearbeitet, die Subprozesse selbst enthalten keine komplexen Kalkula-

tionen. Vielmehr ist der Grund für die lange Laufzeit im Grundkonzept von MoBee zu finden: 

Der teilweise mehrfache Aufruf mehrerer externer Werbservices. Diese lassen sich, gerade bei 

der zeitaufwändigen Erstellung von Tiered Queries, nur begrenzt parallelisieren, da die Aus-

gabewerte vorhergegangener Routenteile für die Anfrage neuer Routenteile benötigt werden. 

Ein damit verwandtes Problem ist die Tatsache, dass in der jetzigen Implementierung pro 

Kombination von Mobilitätsanbietern (zum Beispiel ÖPNV-Bahn-Carsharing) nur ein Rou-

tenvorschlag erzeugt wird. Es wäre algorithmisch betrachtet eine Leichtigkeit, an dieser Stelle 

mehrere leicht zeitversetzte Routenvorschläge anzubieten. Der Entwicklungsaufwand  würde 

sich auf das Hinzufügen einer Iteration beschränken, da zeitversetzte Routenvorschläge von 

allen Mobilitätsanbietern angeboten werden und auch bereits im Datenmodell von MoBee 

integriert sind. Das Problem ist vielmehr, dass der Zeitaufwand für die Routenberechnung auf 

mehrere Minuten anschwellen würde und das System damit für den Praxisgebrauch ungeeig-

net werden würde. 

Es gibt mehrere Möglichkeiten, dem MoBee System einen höheren Grad an Parallelität und 

somit eine kürzere Laufzeit zu ermöglichen. 

 

1. Parallelisierung der Subprozesse für simple und kombinierte Routenerzeugung. 

Durch ein gleichzeitiges Ausführen dieser Subprozesse könnte mit der Bildung von kom-

binierten Routen begonnen werden bevor bekannt ist, ob eine simple Route zum Ziel exis-

tiert. Sollte eine solche simple Route gefunden werden, würden die Subprozesse für die 

Bildung kombinierter Routen terminiert und die simple Route als Routenvorschlag ausge-

geben werden. 

 



64 

 

2. Heuristische Ermittlung von Teilstrecken beim TieredTrip Subprozess 

Anstatt bei der Bildung eines TieredTrip jeweils die Ankunftszeit der vorangegangenen 

Teilstrecke als Abfahrtszeit für die nächste Teilstrecke zu nutzen, könnte auf Basis der 

Länge des Routenvektors zu Beginn der Routenbildung ein Schätzwert für die Fahrtzeit 

der Teilstrecken gebildet werden. Auf Basis dieser Schätzwerte könnten die Anfragen an 

die Webdienste der Mobilitätsanbieter parallel ausgeführt werden. Linienbasierte Ver-

kehrsanbieter geben üblicherweise über ihre Webdienste mehrere Routenvorschläge um 

die gewählte Fahrtzeit herum an. Im Anschluss an die Abfrage aller Teilstrecken von den 

Webdiensten könnten dann diejenigen ausgewählt werden, welche auf die tatsächliche 

Ankunftszeit der vorangegangenen Teilstrecke passen. Bei Typ-0 Anbietern ist die ermit-

telte Route nicht zeitabhängig, die Diskrepanz zwischen der geschätzten und tatsächlichen 

Ankunftszeit der vorherigen Teilstrecke könnte folglich ohne Weiteres auf Abfahrts- und 

Ankunftszeit des Typ-0 Streckenabschnittes aufgerechnet werden. 

 

6.2.3 Verfügbarkeit von geteilten Fahrzeugen bei kombinierten Routen 
Ein weiteres Problem mit dem MoBee Konzept stellen geteilte Fahrzeuge, wie zum Beispiel 

Carsharingautos oder Leihfahrräder dar. Wenn eine kombinierte Route (Tiered Query oder 

Handoff Query) eine Route mit einem geteilten Fahrzeug als nicht-erstem Streckenabschnitt 

erzeugt, werden für die Routenberechnung die Standorte der Fahrzeuge zum Erstellungszeit-

punkt der Route herangezogen. Da diese Fahrzeuge jedoch zu jedem Zeitpunkt von einem 

anderen Nutzer des Verleihdienstes ausgeliehen und somit von ihrem Standort entfernt wer-

den können, ist nicht sichergestellt, dass die für die Routenberechnung genutzten Fahrzeuge 

zum Zeitpunkt des Eintreffens des Fahrgastes noch vorhanden sind. Je früher im Voraus eine 

Route geplant werden soll, desto wahrscheinlicher wird es, dass das für die Planung genutzte 

Fahrzeug nicht mehr verfügbar ist. 

Diese Problematik lässt sich nicht vollständig beheben. Es könnte jedoch dadurch abgemildert 

werden, dass an potentiellen Übergabepunkten nicht nur nach der Verfügbarkeit von Fahrzeu-

gen gesucht wird, sondern auch deren Anzahl kalkuliert wird. Unter Zuhilfenahme eines Er-

fahrungswertes über die Fluktuationsrate bei Fahrzeugen des betreffenden Anbietertyps könn-

te somit eine Wahrscheinlichkeit dafür errechnet werden, dass bei Ankunft des Fahrgastes 

noch ein Fahrzeug des Anbieters zur Verfügung steht. Diese Vorgehensweise würde das an-

gesprochene Problem allerdings nur bei zeitnahen Routenvorschlägen abmildern. Für die län-

gerfristige Routenplanung wäre eine Datenbasis über die wahrscheinlichen Aufenthaltsorte 

von Fahrzeugen zu einer bestimmten Zeit vonnöten. Dies würde allerdings das Konzept der 

Routenberechnung auf Basis von Webserviceaggregation, welches dem MoBee System zu-

grunde liegt, aushebeln. 

6.2.4 Ineffiziente Routen durch Unkenntnis der Haltestellen bei linienbasierten 
Verkehrsanbietern 

Die Unkenntnis über die tatsächlich befahrenen Haltestellen bei linienbasierten Verkehrsan-

bietern führt zu teilweise ineffizienten Routen: Es kann vorkommen, dass die vom Mobilitäts-



65 

 

anbieter angebotene Verkehrslinie eine suboptimale Strecke abfährt, um einen bestimmten 

räumlichen Punkt zu bedienen. Abbildung 6-4 zeigt eine solche ineffiziente Route. 

 

Abbildung 6-4 Ineffiziente Route mit linienbasiertem Mobilitätsanbieter 

Würde der Fahrgast an einer früheren Haltestelle vom Linienbasierten Mobilitätsanbieter auf 

einen dynamisch gerouteten Verkehrsanbieter umsteigen, könnte diese ineffiziente Teilstecke 

umgangen werden. Abbildung 6-5 zeigt eine solche Verbesserung unter Zuhilfenahme eines 

dynamisch gerouteten Verkehrsanbieters. 

 

Abbildung 6-5 Theoretisch mögliche bessere Route mit dynamisch geroutetem 

Mobilitätsanbieter 

 

Da MoBee allerdings keine Kenntnis über die tatsächlich befahrenen Haltestellen besitzt, gibt 

es keine Möglichkeit, diese möglichen Umstiegspunkte zu finden. Somit wird diese theore-

tisch durch Multimodalität ermöglichte Möglichkeit der Effizienzsteigerung verschenkt. 



66 

 

Um dieses Problem zu beheben, müsste zuerst einmal MoBee Kenntnis über die befahrenen 

Knoten einer Strecke erlangen. Die optimale Lösung wäre hierfür eine Erweiterung des Gene-

ric LineTrip Ports um eine Auflistung aller befahrenen Haltestellen einer vorgeschlagenen 

Route. Dies wäre technisch leicht umzusetzen, jedoch setzt es eine tatsächliche Implementie-

rung des Porttyps seitens der Partnerunternehmen voraus. Beschränkt man sich auf die tat-

sächliche Funktionalität der vorhandenen Webdienste der Mobilitätsanbieter, so kommt nur 

eine Ermittlung vonseiten des MoBee Systems selbst in Betracht. Ein möglicher Weg, dies zu 

bewerkstelligen, wäre folgender Algorithmus: 

1. Finde alle Knoten, welche entlang der Fahrtstrecke liegen (hierfür wäre eine Kombi-

nation aus dem bereits erstellten Routenvektor und der bereits vorhandenen Operation 

GetNearNodesByLoc aus 5.3.1 eine Option). 

2. Prüfe, ob diese von der vom GetSimpleTrip Subprozess vorgeschlagenen Linie ange-

fahren werden (hierfür wäre eine Erweiterung des Generic LineTrip Port um eine Ope-

ration notwendig, welche alle verfügbaren Linien an einer Haltestelle zurückgibt). 

3. Erzeuge mithilfe des Routenvektors und den angefahrenen Haltestellen eine geordnete 

Liste von Haltestellen, welche die Fahrtstrecke abbilden. 

Nachdem nun eine geordnete Liste der angefahrenen Haltestellen vorliegt, muss diese auf 

ineffiziente Streckensegmente untersucht werden. Die simpelste Variante wäre, ausgehend 

vom Zielpunkt alle Haltestellen als Startpunkte für neue Teilstrecken mit dynamisch geroute-

ten Mobilitätsanbietern zu verwenden und die sich daraus ergebenen kombinierten Routen mit 

der Originalroute, welche nur den linienbasierten Mobilitätsanbieter verwendet, zu verglei-

chen. Dieser Ansatz würde zwar unweigerlich die effizienteste mögliche Route hervorbrin-

gen, jedoch würde er auch eine große Zahl zusätzlicher Aufrufe des Routingdienstes nach sich 

ziehen. In Anbetracht der in 6.2.2 angesprochenen Problematik und der Tatsache, das bei ei-

ner kommerziellen Implementierung des MoBee Konzepts sicherlich Gebühren für die Nut-

zung des dynamischen Routingdienstes anfallen würden, ist dieser Ansatz jedoch problema-

tisch. Ein eleganterer Ansatz wäre, die angefahrenen Haltestellen darauf zu untersuchen, in-

wieweit sich der Transfer von einer Haltestelle zur Nächsten darauf auswirkt, dem Ziel näher 

zu kommen. Wird so eine Menge von Haltestellen identifiziert, deren Durchfahren den Fahr-

gast weiter vom Ziel entfernt oder das Ziel überschießt, so wird die vorhergegangene Halte-

stelle als Startpunkt für eine neue Teilstrecke mit einem dynamisch gerouteten Mobilitätsan-

bieter genutzt. 

6.2.5 Unrealistische Routingvorschläge durch Unkenntnis über die 
Verkehrssituation 

Dynamisch geroutete Mobilitätstypen sind, bezüglich der veranschlagten Reisedauer, von der 

aktuellen Verkehrslage im zu durchfahrenen Straßenabschnitt abhängig. Gerade in Kombina-

tion mit linienbasierten Mobilitätstypen stellt dies ein Problem dar, da schon eine Abwei-

chung der Reisedauer von wenigen Minuten vom errechneten Wert zu einem Verpassen der 

Abfahrtszeit des linienbasierten Mobilitätsanbieters führen kann. 



67 

 

Um dieses Problem abzumildern müssten Daten über die aktuelle Verkehrslage in die Rou-

tenberechnung mit einfließen. Dies wäre zum Beispiel über eine Anbindung an regionale 

Verkehrsleitzentralen möglich. Allerdings wäre es nicht ohne weiteres zu bewerkstelligen, 

anhand von Daten über Verkehrsstaus akkurate Schätzungen über die Zeitverzögerung auf der 

vorgeschlagenen Route zu liefern. Auch ein Umfahren der als von Staus betroffenen gemelde-

ten Straßen wäre schwierig, da Routingdienste bisher nicht die Möglichkeit anbieten, be-

stimmte Straßenabschnitte zu umfahren. Die einzige Möglichkeit auf dieses Problem einzuge-

hen wäre dementsprechend, den Routenvorschlag mit einer Warnmeldung zu versehen, dass 

es auf der angegebenen Fahrtstrecke zu Verzögerungen kommen kann. 



68 

 

7 Ausblick und Zusammenfassung 

Im folgenden Kapitel werden Erweiterungsvorschläge besprochen, welche das MoBee Kon-

zept in Zukunft bereichern könnten und Designvorschläge für diese Erweiterungen kurz ange-

rissen. Anschließend wird eine kurze Zusammenfassung der in dieser Arbeit gewonnenen 

Kenntnisse geboten. 

 

7.1 Direkte Buchung von vorgeschlagenen Routen 

Die Möglichkeit, von MoBee vorgeschlagene Reiserouten direkt aus dem System heraus zu 

buchen, würde einen erheblichen Mehrwert für das Konzept bedeuten. Gerade bei TieredTrips 

könnte es sich für den Endnutzer als mühsam herausstellen, bei drei oder mehr verschiedenen 

Mobilitätsanbietern eine Teilstrecke zu buchen. Hierfür könnte ein zentrales Buchungssystem 

konzipiert werden, welches die Buchungen bei allen an einer Route beteiligten Mobilitätsan-

bietern vornimmt. Der Endkunde müsste sich mit seinen Kontodaten bei MoBee oder einem 

den Dienst von MoBee nutzenden Drittanbieter registrieren. Dann könnten die Daten von 

MoBee an alle beteiligten Mobilitätsanbieter weitergeleitet werden, welche im Anschluss die 

Abbuchung vornehmen. Um dies umzusetzen, sind die bestehenden Webdienste der Mobili-

tätsanbieter jedoch ungeeignet. Diejenigen, welche eine Onlinebuchung annehmen, benötigen 

immer eine Registrierung des Fahrgastes beim Mobilitätsanbieter selbst. Es ist somit nicht 

möglich, die Buchung vorzunehmen, ohne das MoBee System mit einem eigenen Konto und 

der dazugehörigen Verwaltungssoftware auszustatten. Ein konkreter Designvorschlag für ein 

System dieses Umfanges, welches sich zudem mit einer anderen Softwaredomäne (Finanzen, 

Transactions, Sicherheit) befasst, würde den Rahmen dieses Kapitels, ja dieser Arbeit spren-

gen. Deshalb wird an dieser Stelle auf einen konkreten Designvorschlag verzichtet. 

 

7.2 Aufnahme von Leihfahrrädern in die Routenplanung 

Leihfahrräder (wie zum Beispiel Call-a-Bike) sind zurzeit nicht in der Routenplanung von 

MoBee integriert. Dies liegt daran, dass kein Anbieter gewillt war, im Zuge einer Diplomar-

beit seine Webschnittstelle offen zu legen. Es wäre jedoch algorithmisch ohne Weiteres mög-

lich Leihfahrräder in die Routenplanung mit aufzunehmen: Es müssten in der Datenbank le-

diglich Anbieter als Typ-0 Mobilitätsanbieter gespeichert werden. Das einzige Hindernis stellt 

das Routing der Radstrecken dar. Zurzeit bietet der NavRoute Service nur Streckenführung 

für PKW und Fußgänger. Es wäre jedoch ohne großen Aufwand möglich, den NavRoute Ser-

vice um diese Funktionalität zu erweitern. Zu diesem Zwecke müssten nicht einmal mehr die 

vorhandene Schnittstelle für dynamische Routingdienste erweitert werden, da diese bereits 

einen Paramater für die Auswahl des Routentyps besitzt (siehe 5.3.3).  



69 

 

 

Abbildung 7-1 Mögliche Schnittstelle für einen Leihfahrrad-Subprozess 

 

Abbildung 7-1 zeigt eine mögliche Schnittstelle für einen BikeTrip_Query-Subprozess. Dieser 

wäre analog zum Carsharing_Trip Query implementiert. Eingabeparameter wären Start- und 

Zielkoordinaten, die Zeitbegrenzungen (Abfahrts- und Ankunftszeit) sowie ein Verweis auf 

den Webservice des Mobilitätsanbieters. Die Ausgabe würde neben der Fahrradroute als Na-

vRoute Element (siehe 5.3.3.2) Abfahrts- und Ankunftszeit sowie die Koordinaten der Ver-

leihstelle der Leihfahrräder beinhalten. Der Zugriff auf die Funktionalität des Mobilitätsanbie-

ters könnte über die in Abbildung 7-2 gezeigte generische Schnittstelle erfolgen. 

 

 

Abbildung 7-2 Generische Schnittstelle für Fahrradverleihanbieter 

 

Darüber hinaus wäre es eventuell sinnvoll zu evaluieren, ob für den Fahrradverleih ein neuer 

Typ von Mobilitätsanbieter definiert werden sollte. Im Rahmen von örtlich begrenzter Rou-

tenplanung könnte der Fahrradverleih wie bereits erwähnt problemlos als Typ-0 Anbieter in-

tegriert werden. Bei Regionen übergreifender Routenplanung, vor allem bei Handoff Queries, 

müsste allerdings gegebenenfalls zwischen motorisierten und nichtmotorisierten Mobilitäts-

anbietern unterschieden werden. Es ist wenig sinnvoll und vor allem für einige Nutzer des 

Systems nicht möglich, eine derart lange Strecke mit dem Fahrrad zurückzulegen. Dieser 

Überlegung entgegen steht die Tatsache, dass die Verfügbarkeitsbereiche von Fahrradverlei-

hern meist räumlich eng eingegrenzt sind und es deswegen als eher unwahrscheinlich betrach-

tet werden kann, dass sich die A2 eines Fahrradverleihers mit der eines benachbarten Mobili-

tätsanbieters überlappt. 



70 

 

7.3 Ausgabe von Grafiken für die Streckenvisualisierung 

Im Datenmodell von MoBee sind die Positionsdaten aller Haltestellen und Wegpunkte für die 

dynamische Streckenführung enthalten. Es wäre also durchaus möglich, die Streckenführung 

grafisch darzustellen (besonders wenn, wie in 6.2.4 vorgeschlagen, die Standorte aller durch-

fahrenen Haltestellen ermittelt werden). Hierfür müsste von einem Drittanbieter (Open 

Streetmap oder Google Maps) über einen Webservice Kartenmaterial bezogen werden. Auf 

diesem könnten dann mit einem offen Grafikpaket (zum Beispiel ImageJ [Nat14]) die Halte-

stellen/Wegpunkte sowie der Streckenverlauf gezeichnet werden. Die so erstellten Grafiken 

könnten einem Geschäftskunden dann optional zusammen mit den Routenvorschlägen als 

Byte Array übermittelt werden. Somit könnte sich der Geschäftskunde eine eigene Implemen-

tierung einer Visualisierungsfunktion sparen, was den Mehrwert des MoBee Systems noch-

mals steigern würde. 

Um dieses Feature zu realisieren müsste zuerst einmal der Generic_LineTrip_Port (siehe 

5.3.1) um eine Operation erweitert werden, welche auf den Aushangfahrplan zugreift und 

diejenigen Linien zurückgibt, welche den gewählten Knoten durchfahren. Eine solche Opera-

tion müsste sowohl die gewählte Haltestelle eindeutig identifizieren als auch ein Format defi-

nieren, in welchem die Liste der durchfahrenen Haltestellen zurückgegeben wird. 

 

 

Abbildung 7-3 Mögliche Erweiterung des Generic_LineTrip_Port 

 

In diesem Implementierungsvorschlag wird zur Identifizierung der Haltestellen der Typ String 

gewählt, da manche der bisher kooperierenden Mobilitätsanbieter Mischungen aus Zahlen und 

Buchstaben nutzen, um die von ihnen bedienten Haltestellen systemintern zu identifizieren. 

Die eigentliche Ermittlung der Haltestellenkette findet in diesem Vorschlag über einen eige-

nen BPEL-Subprozess statt. Dieser erwartet als Eingabeparameter den Routenvektor als Ko-

ordinatenpaar, die Referenz auf den Webservice des Mobilitätsanbieters und die Bezeichnung 

derjenigen Linie, auf deren Durchfahren geprüft werden soll. 

Als erster Schritt wird in diesem neuen Subprozess, welchen wir TraversedNodes_Query 

nennen wollen, auf dem übergebenen Routenvektor Checkpoints definiert. Diese Checkpoints 

sind zueinander äquidistant und werden als Eingabeparameter für die Operation GetNearNo-

desByLoc (siehe 5.3.1.1) genutzt. Als nächstes wird für jeden Checkpoint über die Menge der 

von GetNearNodesByLoc gelieferten Haltestellen iteriert. Hierbei wird zuerst geprüft, ob die 

im Moment behandelte Haltestelle bereits geprüft wurde. Zu diesem Zwecke besitzt der Tra-

versedNodes_Query eine Liste vom Typ String, welcher die systeminternen Identifikations-

nummern aller bereits geprüften Haltestellen enthält. Wurde die Haltestelle noch nicht ge-

prüft, wird die Operation GetAvailableLines des Generic_LineTrip_Port aufgerufen, um alle 



71 

 

Linien zu erhalten, welche die Haltestelle durchfahren. Diese Linien werden nun mit der ge-

suchten Linie verglichen. Wird diese gefunden, so wird die Haltestelle als RailNode-Element 

(siehe 5.3.1.2) der Liste der durchfahrenen Haltestellen hinzugefügt. Schließlich wird die 

Identifikationsnummer der Haltestelle der Liste der bereits geprüften Haltestellen hinzuge-

fügt. Als letzter Schritt des Subprozesses wird die Liste der durchfahrenen Haltestellen als 

Antwort an den Aufrufenden Prozess übergeben. Abbildung 7-4 zeigt die Beispielimplemen-

tierung des vorgeschlagenen TraversedNodes_Query als BPEL-Flußdiagramm. 

 

 

Abbildung 7-4 Designvorschlag für den TraversedNodes_Query 



72 

 

Nachdem nun eine Liste aller durchfahrenen Knoten vorliegt, kann aus diesen eine grafische 

Repräsentation der Fahrtstrecke erzeugt werden. Zu diesem Zwecke muss zuerst eine Karte 

generiert werden, welche das Gebiet des Routenvektors abdeckt. Hierfür stehen bereits Web-

dienste wie zum Beispiel Google Maps [Goo14] oder Open Streetmap [Ope14] zur Verfü-

gung. Beide Dienste besitzen Funktionalität zum Erzeugen statischer Karten als Bilddateien.  

Ist nun eine Karte des entsprechenden Gebietes vorhanden, müssen die Haltestellen und Weg-

punkte (bei dynamisch gerouteten Mobilitätsanbietern) auf diese übertragen werden. Sind 

Länge und Breite des Kartenbildes sowie seine Eckpunkte bekannt, so lassen sich die Koordi-

naten der Haltestellen und Wegpunkte problemlos mittels eines Dreisatzes in Höhen- und 

Längenangaben in Pixeln auf dem Kartenbild umwandeln. Hierbei ist zu beachten, dass der 

genutzte Kartendienst nicht unbedingt dieselbe Projektion benutzt wie das MoBee System. 

Open Streetmap benutzt zwar die EPSG:4326-Projektion, welche dieselben Koordinaten be-

nutzt wie das WGS84-System. Das weitaus verbreitetere Google Maps verwendet jedoch die 

Mercator-Projektion, welche in manchen Regionen stark von WGS84 abweicht. Für das ei-

gentliche Hinzufügen der Grafiken, welche die Haltestellen und Wegpunkte repräsentieren, 

bietet sich ein offenes Grafikpaket wie das zuvor erwähnte ImageJ an. Das pixelgenaue Hin-

zufügen einer Grafik zu einer bereits bestehenden ist eine Standardfunktion und dürfte von 

allen Paketen beherrscht werden. Die in diesem Absatz beschriebene Funktionalität wird in 

diesem Implementierungsvorschlag als zusätzlicher Webservice implementiert, welcher an 

den TripQuery_Wrapper-Subprozess angeschlossen wird. Abbildung 7-5 zeigt die Schnittstel-

le dieser Webservice inklusive der für sie notwendigen zusätzlichem XML-Elemente. Alter-

nativ könnte die Funktionalität zur Bildbearbeitung auch in den bereits bestehenden Sortin-

gService integriert werden. Dieser sollte dann jedoch umbenannt werden, zum Beispiel in 

UtilityService. 

 

 

Abbildung 7-5 Schnittstelle und Datentypen für den Bildbearbeitungsservice 

 

Die Schnittstelle des neuen ImagingService beinhaltet nur die Operation AddNodeImages. 

Dieser wird, zusammen mit der ursprünglichen Gebietsgrafik, ein Element vom Typ Node-

ListType übergeben. Dieses Element enthält eine Liste von Elementen des Typs SubTripNo-



73 

 

deList, welche jeweils eine Teilstrecke des abzubildenden Routenvorschlages darstellen. Das 

SubTripNodeList-Element beinhaltet entweder eine Liste von Elementen des Typs RailNode 

oder des Typs NavInstructionType. Diese Elemente stellen im MoBee Datenschema (siehe 

5.3) die einzelnen Wegpunkte/Haltestellen der Teilstrecken dar und enthalten jeweils deren 

WGS84-Koordinaten auf dessen Basis sich die Wegpunkte und Haltestellem auf der Gebiets-

grafik verzeichnen lassen. 

Das so erzeugte Bild muss via XML austauschbar sein, sowohl um die Übergabe des Bildes 

zwischen den einzelnen Subprozessen zu ermöglichen, als auch um es letztendlich dem Ge-

schäftskunden des MoBee Systems zusammen mit den Routenvorschlägen ausliefern zu kön-

nen. Zu diesem Zwecke wird in diesem Implementierungsvorschlag der XML-Typ 

base64Binary verwendet. Hierbei handelt es sich wie der Name schon vermuten lässt um die 

Darstellung eines Binärwertes zur Basis 64. Um das vom Grafikpaket erstellte Bild in eine 

Binärrepräsentation zur Basis 64 umzuwandeln, bietet sich das freie Framework Commons 

Codec [Apa14] der Apache Software Foundation an. Dieses enthält die Java-

Konvertierungsklasse Base64, welche Binärdaten in deren Darstellung zur Basis 64 umwan-

delt. 

7.4 Zusammenfassung 

Das Ziel dieser Arbeit, einen echten multimodalen Verkehrsplanungsdienst zu entwickeln, 

welcher diese Funktionalität durch Webserviceaggregation umsetzt (vgl. 1.1), wurde erreicht. 

Wie in 6.1 gezeigt wurde, sind das MoBee Konzept und der ihm zugrunde liegende TiGeR-

Algorithmus (vgl. 4.2) real umsetzbar und liefern die gewünschten Ergebnisse. Die Unzuläng-

lichkeiten bestehender Lösungen für die multimodale Routenplanung, welche in 3.4 erörtert 

wurden, werden durch das MoBee Konzept behoben. Allerdings ist es fraglich, ob die hier 

beschriebene Implementierung des Konzeptes tatsächlich praxistauglich ist: Zum einen be-

steht das Problem der Abfragedauer (siehe 6.2.2). Die Frage, ob diese Problematik durch die 

im selben Kapitel vorgeschlagenen Verbesserungsmöglichkeiten abgemildert werden kann, 

müsste durch weitere Arbeit zum Thema geklärt werden. Zum anderen bedarf der TiGeR-

Algorithmus selbst noch einiger weiterer Arbeit: Gerade das Problem, sinnvolle Handoff 

Querys zu erzeugen (siehe 6.2.1), wird gelöst werden müssen, bevor das MoBee Konzept in 

der Praxis eingesetzt werden kann. 

Alles in allem kann jedoch gesagt werden, dass in dieser Arbeit ein vielversprechendes, neu-

artiges Konzept für die multimodale Routenplanung entwickelt wurde, welches bestehenden 

Lösungen in vielerlei Hinsicht überlegen ist. Bis MoBee der Sprung auf den Markt gelingt 

und die Basis für eine neue Form der Mobilitätsplanung geschaffen wird, wird allerdings erst 

weitere Arbeit zum Thema nötig sein. 

 



74 

 

Literaturverzeichnis 

[Ant12] Antsfeld, Leonid und Walsh, Toby. 2012. Finding Optimal Paths in Multi-modal 

Public Transportation Networks using Hub Nodes and TRANSIT algorithm. Artificial 

Intelligence and Logistics. 2012, Bd. 7. 

[Apa141] Apache Software Foundation, The. About Apache ODE. ode.apache.org/. 

[Online] [Zitat vom: 21. April 2014.] http://ode.apache.org/. 

[Apa14] —. Apache Commons Codec. http://commons.apache.org. [Online] [Zitat vom: 20. 

April 2014.] http://commons.apache.org/proper/commons-codec/. 

[Bau09] Bauer, R. und Delling., D. 2009. SHARC: Fast and robust unidirectional routing. 

Journal of Experimental Algorithmics. 2009, Bd. 14. 

[Bro04] Brodal, Gerth Stølting. 2004. Time-dependent Networks as Models to Achieve Fast 

Exact Time-table Queries. Electronic Notes in Theoretical Computer Science. 2004, Bd. 92, 

S. 3–15. 

[Dai14] Daimler AG. 2014. moovel. Mein A nach B. moovel.com. [Online] 2014. [Zitat vom: 

10. April 2014.] www.moovel.com. 

[Dij59] Dijkstra, Edsger W. 1959. A note on two problems in connexion with graphs. 

Numerische Mathematik. 1959, Bd. 1, 1, S. 269-271. 

[Gil88] Gilles Brassard, Paul Bratley. 1988. Algorithmics: theory and practice. s.l. : 

Prentice Hall, 1988. S. 87-92. 

[Gol05] Goldberg, A. V. und Harrelson, C. 2005. Computing the shortest path: A* search 

meets graph theory. Proceedings of the 16th annual ACMSIAM symposium on Discrete 

algorithms. 2005, S. 156-165. 

[Goo12] Google. 2012. General Transit Feed Specification Reference. 

developers.google.com. [Online] 12.. Juni 2012. [Zitat vom: 10. April 2014.] 

developers.google.com/transit/gtfs/reference. 

[Goo14] Google Inc. Static Maps API V2 Developer Guide. developers.google.com. [Online] 

[Zitat vom: 20. April 2014.] https://developers.google.com/maps/documentation/staticmaps/. 

[HAF14] HAFAS - Die perfekte Verbindung zum Kunden. hacon.de. [Online] [Zitat vom: 

16. April 2014.] http://www.hacon.de/hafas. 

[Har68] Hart, Peter E., Nilsson, Nils J. und Raphael, Bertram. 1968. A formal basis for 

the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science 

and Cybernetics. 1968, Bd. 4, 2. 

[Hor02] Horn, M. 2002. Multi-modal and demand-responsive passenger transport systems: a 

modelling framework with embedded control systems. Transportation Research Part A: 

Policy and Practice. 2002, Bd. 36, 2, S. 167–188. 



75 

 

[Hrn13] Hrncir, J und Jakob, M. 2013. Generalised time-dependent graphs for fully 

multimodal journey planning. Intelligent Transportation Systems - (ITSC), 2013 16th 

International IEEE Conference on. 2013. 

[IBM141] IBM. DB2 Database Software. ibm.com. [Online] [Zitat vom: 16. April 2014.] 

http://www-01.ibm.com/software/data/db2/. 

[IBM142] —. DB2 Spatial Extender for Linux, UNIX and Windows. ibm.com. [Online] [Zitat 

vom: 16. April 2014.] http://www-03.ibm.com/software/products/en/db2spaext. 

[IBM14] —. IBM - Prozessautomatisierung - WebSphere Process Server. ibm.com. [Online] 

[Zitat vom: 16. April 2014.] http://www-03.ibm.com/software/products/de/wps. 

[Kar11] Karande, Aarti, Karande, Milind und Meshram, B. B. 2011. Choreography and 

Orchestration using Business Process Execution Language for SOA with Web Services. 

International Journal of Computer Science Issues. 2011, Bd. 8, 2, S. 224. 

[Kha03] Khalaf, Rania und Leymann, Frank. 2003. On Web Services Aggregation. 

Lecture Notes in Computer Science. 2003, Bd. 2819, S. 1-13. 

[Kot10] Kotler, Philip und Armstrong, Gary. 2010. Principles of Marketing. s.l. : Pearson 

Education, 2010. 

[Kry04] Krygsmana, Stephan, Dijst, Martin und Arentze, Theo. 2004. Multimodal public 

transport: an analysis of travel time elements and the interconnectivity ratio. Transport Policy. 

2004, Bd. 11, 3, S. 265–275. 

[KuR06] Kumar, V., Reinartz, Werner. 2006. Customer Relationship Management. s.l. : 

Springer, 2006. S. 261. 

[Kum06] Kummer, Sebastian. 2006. Einführung in die Verkehrswirtschaft. s.l. : UTB 

Verlag, 2006. 

[Lor12] Matzat, Lorenz. 2012. Verpasste Open Data-Chance: Deutsche Bahn schenkt einzig 

Google seine Fahrplandaten. Netzpolitik.org. [Online] 17. September 2012. [Zitat vom: 20. 

April 2014.] https://netzpolitik.org/2012/verpasste-open-data-chance-deutsche-bahn-schenkt-

einzig-google-seine-fahrplandaten/. 

[Nat84] National Imagery and Mapping Agency. 1984. Technical Report 8350.2. s.l. : 

National Imagery and Mapping Agency, 1984. 

[Nat14] National Institute of Mental Health. ImageJ - Image Processing and Analysis in 

Java. http://imagej.nih.gov/. [Online] [Zitat vom: 16. April 2014.] http://imagej.nih.gov/ij/. 

[New] Newman, Peter und Kenworthy, Jeffrey. 1999. Sustainability and Cities: 

Overcoming Automobile Dependence. s.l. : Island Press, 1999. 

[OAS07] OASIS. 2007. Web Services Business Process Execution Language Version 2.0. 

oasis-open.org. [Online] 11. April 2007. [Zitat vom: 10. April 2014.] docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 

[Ope14] Open StreetMap. Static map images. http://wiki.openstreetmap.org. [Online] [Zitat 

vom: 20. April 2014.] http://wiki.openstreetmap.org/wiki/StaticMap. 



76 

 

[OSG14] OSGeo. About PostGIS. postgis.net. [Online] [Zitat vom: 22. April 2014.] 

http://postgis.net/. 

[Fra00] Schulz, Frank, Wagner, Dorothea und Weihe, Karsten. 2000. Dijkstra's algorithm 

on-line: an empirical case study from public railroad transport. Journal of Experimental 

Algorithmics. 2000, Bd. 5. 

[Sie14] Siemens AG. Green eMotion Project. greenemotion-project.eu. [Online] [Zitat vom: 

16. April 2014.] http://www.greenemotion-project.eu/. 

[Suj14] Suji, K. Adlin und Sujatha, S. 2014. A Comprehensive Survey of Web Service 

Choreography, Orchestration and Workflow Building. International Journal of Computer 

Applications. 2014, Bd. 88, 13. 

[W3C01] World Wide Web Consortium. 2001. Web Services Description Language 

(WSDL) 1.1. w3.org. [Online] 15. März 2001. [Zitat vom: 10. April 2014.] 

http://www.w3.org/TR/wsdl. 

[W3C04] —. 2004. Web Services Glossary. w3.org. [Online] 11. Februar 2004. [Zitat vom: 

10. April 2014.] www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice. 

[YuH10] Yu, Haicong und Lu, Feng. 2010. A Multi-Modal Route Planning Approach With 

an Improved Genetic Algorithm. Joint International Conference on Theory, Data Handling 

and Modelling in GeoSpatial Information Science. Mai, 2010, S. 343-348. 

 

  



 

 

Erklärung 

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die 

angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken über-

nommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile 

daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit 

bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar stimmt 

mit allen eingereichten Exemplaren überein. 

 

Stuttgart, den 02. Mai 2014    _____________________ 

 


