Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
70569 Stuttgart
Deutschland

Diplomarbeit Nr. 3588

Analyse, Konzept und Realisierung
eines multimodalen B2B-
Verkehrsplanungsdienstes auf Basis
von Webserviceaggregation

Stanislaus Biesinger

Studiengang: Softwaretechnik

Prufer: Jun.-Prof. Dr. Dimka Karastoyanova
Betreuer: M.Sc. Wirt.-Inf. Andreas Weil3
Betreuer Industrie: Dipl.-Ing. Volker W. Fricke
begonnen am: 01.11.2013

beendet am: 02.05.2014

CR-Klassifikation: H.3.5, H.5.3

Kurzfassung

Die vorliegende Arbeit befasst sich mit der Konzeption und Entwicklung eines multimodalen
B2B-Verkehrsplanungsdienstes auf der Basis von Webserviceaggregation. Es wird ein kurzer
Uberblick tber das Thema ,,multimodale Verkehrsplanung“ und die bisher entstandenen Ar-
beiten auf Basis von gewichteten Graphen geboten. Die Nachteile bestehender Lésungen
werden diskutiert und ein neuer Ansatz vorgestellt. Im Folgenden wird eine Beispielimple-
mentierung dieses Ansatzes mithilfe von WS-BPEL beschrieben. Daraufhin werden die Er-
gebnisse, welche von dieser Beispielimplementierung geliefert werden, mit den Ergebnissen
bestehender Planungsdienste verglichen. Schlussendlich werden Vor- und Nachteile des neu-
en webservicebasierten Ansatzes erortert und denkbare Erweiterungsmoglichkeiten bespro-
chen.

Abstract

This thesis deals with the conception and development of a multimodal B2B journey planner,
based on web service aggregation. For this purpose, a short summary of the topic of multi-
modal journey planning is given. Prior work in this field based on shortest path algorithms is
also discussed. It discusses the various shortcomings of existing solutions and present a novel
approach based on the aggregation of existing web services. This is followed by the descrip-
tion of an implementation of this approach using WS-BPEL. The output of this implementa-
tion is then compared to the output of existing solutions. Finally, the various advantages and
shortcomings of the concept are discussed, followed by possible solutions for these problems
and possible expansions of the concept in general.

Inhaltsverzeichnis

KUPZEASSUND ..ttt bbbttt b bbb I
INNAITSVEIZEICANIS ...t i
ADDHAUNGSVEIZEICNNIS ...t e et e e sreenennes v
R =1 o1 1= | (1o PSSRSO 1
1.1 Motivation UNd ZIEISEIZUNGcceiieiieie e nre s 1
1.2 Struktur des DOKUMENTES.cviiiiieiieieeie e nre s 2

P €1 11 | F=o T o OSSR PSUSRS 3
2.1 Multimodale Verkehrsplanungccccoceeiieieiieieiie et 3
2.2 WebServiCeaggregatiONcocoieruiiiiieieeieie ettt sttt b ettt 4
2.3 B2B WEDSEIVICEcuviiieiieiieie ettt sttt sb bbbt 5
2.4 WS-BPEL ..ottt bbbttt bbb bt 5
2.5 WWSDLL oottt ettt r e be e ettt 6
2.6 WWGSBA ... bbbt bbbttt es 6

3 Verwandte AFDEITENoiiiiiieieiee et 8
3.1 Pathingalgorithmen..........c.oiiiiii s 8
3.1.1 DijKstra AlGOrthmMUS.......ccuciieiieiciic e 8
3.1.2 AF AIQOIITNMUS....c.eiieieiice et are s 10

3.2 Theoretische ROULINGANSALZEcoviiiiieieieie e 12
3.2.1 Routing von dynamisch gerouteten Mobilitatsanbieternccccocoovveiienenn, 12
3.2.2 Routing von linienbasierten Mobilitatsanbieternccccccvvveveiieiiein e, 13
3.2.3 Multimodales ROULINGccviiiiiiiieieie e 13

3.3 Bereits veroffentlichte Dienste zur multimodalen Verkehrsplanung 13
331 IMOOVEL .. ettt e e 14
3.3.2 ANACNB ... e 14

3.4 Gegenlberstellung ZU IMOBEEocoiiieiiee et 15
3.4.1 Nachteile bisheriger Ansétze und LOSUNGENceeiieiiiiiiieiieecie e 15
3.4.2 ANSAZ VON IMOBEE ...t 16

4 IMPIEMENTIEIUNG c..veeiiieciee ettt e e et e e b e e sae e s beeateeereesaeeanes 18
4.1 Verwendete MIdUIBWAIE.........ccoiiiiiiiiiiesee e e 18
4.1.1 IBM WebSphere Application Server/Process SErver.........ccoieieiieniesieennens 18
4.1.2 IBM DB2 Server/DB2 Spatial EXteNderccoeviieviiiii e 18

4.2 Routingalgorithmus (TIGER)......ccciiiie e 19
421 TermMINOIOGIE ..ot 19
4.2.2 ADIAUT ..o s 20

4.2.3 ADIAUTDEISPIEH ... 22

4.3 Architekturtibersicht und SysStemKONIEXLcceivveiieiieiieiiece e 24
A4 PrOZESSIOPIKoeiiiiiiiiieeee e 25
441 GetSIMPIEROULES QUETYcoiiiiiiiiieiiieiesieesie ettt sre e sae e nneas 27
4.4.2 TIEredTriP QUEIY......cii e iieie ettt e te e s te e re et e e e saeesteenaesneesaeeneesneas 28
4.4.3 HaNAOTT QUEIY ...ttt nae e nneas 29
444 LINETIIP QUEIY ceuiiiiieiieie ettt sttt sttt sbe st e sreesbeeneesneenbeeneenneas 31
445 CarsharingTrip QUETY ..o..ciuieiecie ettt saeeneesnees 31
4.4.6 FOOUTIIP QUEIY ...oiiiiiiiiiieie ettt 31
AA47 CaDTHIP QUEIY ..ottt sttt esreesbeeneesneenaeeneenreas 31
4.4.8 TripQUErY MAaINPIOCESSccveveiiieiieeieiteeiteetesaesteeeesteesteseesreeseeesaesseesaeeneesnes 31
4.4.9 TripQUETY WWIAPPET ...oueiiiiiitiiti ettt 32
4.5 Geospatial SUDSYSIEMciiiiiieir e 32
A.5.1 UDEISICNE ..ottt ettt 32
4.5.2 Queries und Spatial FUNCEIONS..........cceiiiiiiiiiei e 33
4.6 WWED SEIVICE WIADPPETciiiiiiiitete sttt bbb 36
4.7 SOMING SEIVICE ..viiveeiieeie ettt ettt ettt e te et e st e et e s seesteessesreesbeenteaneenres 37
A=) oS T=T AV ot o o £ 38
51 TripQuery Wrapper (Hauptschnittstelle) ..., 38
5.1.1 OPEIALIONEN ...ttt ettt et s b e e beere e sbeenreensesaeenteennenres 38
5.1.2 DABNLYPEN ..ottt 38
5.2 Database Connector (GSS KommuniKation)..........ccccoviririeiieiinc e, 42
5.2.1 OPEIALIONEN ..ottt ettt et s b e et e e re e sreenneenaesreenbeennenres 42
5.2.2 DABNLYPEN ..ottt 42
5.3 EXterne WeDSEIVICE POITS.......ccooiiiiieiie et 47
5.3.1 Generic LINETIIP POIt ..ottt 47
5.3.2 Generic_Carsharing POccoi i 52
5.3.3 NAVROULE POIottt ettt s snee s 54
5.4 SuggestionSorter Port (SOrtiNg SEIVICE)......cccvcieiieieiieiiecie e, 56
ST R O o 1= - 0] =T o SRS RPPRRPRPPRS 57
5.4.2 DABNLYPEN ..ottt 57
EVAIUIBIUNG ..o et be e et e e st e e teenneeennes 58
6.1 Starken des MOBEe KONZEPLESccviiiiiiiieiiie sttt sae e 58
6.1.1 Auflistung von Alternativen fir sSimple ROULENccooeiiiiiiiiiiicce 58
6.1.2 TIEred QUETIESeveieietie ettt ettt ettt e e e e st e e sabe e e sat e e e eabeeeebeeeeaeeean 59
6.1.3 Leichte ErweiterDarkeitcccooiiioiiiiiie e 61
6.1.4 Verzicht auf proprietare FUNKEIONalitatcooevviieiiiii e 62
6.2 Schwéchen des Konzeptes und LOSUNGSVOISChIAQEcccovveiieiiieiie e 62

6.2.1 Ubergabepunktberechnung bei Handoff QUENIEs...........cccvovvvevevevreeeeeneeeeeeees 62
6.2.2 Lange Laufzeit von Routenberechnungen.............cccoceveeiiieie s 63
6.2.3 Verflgbarkeit von geteilten Fahrzeugen bei kombinierten Routen 64
6.2.4 Ineffiziente Routen durch Unkenntnis der Haltestellen bei linienbasierten
VErKENISANDIBIEIN L. .ottt 64
6.2.5 Unrealistische Routingvorschlége durch Unkenntnis tber die
VEIKENISSITUATION. .. ©o.viiiiiictieieie bbbt 66
7 Ausblick und ZusammenTaSSUNGcc.eoeiiriiiiieieiese e 68
7.1 Direkte Buchung von vorgeschlagenen ROULENcccoceiviieninneniie e, 68
7.2 Aufnahme von Leihfahrradern in die Routenplanung...........ccccooeveiieiievn e e, 68
7.3 Ausgabe von Grafiken fur die StreckenvisualiSIerungccccoeeveninineniniennennn, 70
T4 ZUSAMIMENTASSUNG ...eevieiieiiete ettt bbbttt 73
LItErAtUNVEIZEICHNIS ...ttt bbbt b bbbt enr e s et e 74

Abbildungsverzeichnis

Abbildung 2-1 WS-Choreography vs. WS-Orchestration...........ccccceveivevveiesiieseene e 5
Abbildung 3-1 Wahl des nachsten Knotens beim Dijkstra Algorithmus.............c.ccoovviieiennn 9
Abbildung 3-2 Dijkstra-Graph nach Auffinden der kiirzesten Route zu H...........ccccovevvinenen. 10
Abbildung 3-3 Ausgangspunkt unterschiedlicher VVorgehensweise von Dijkstra und A*....... 11
Abbildung 3-4 Unterschiedliche Vorgehensweise von Dijkstra und A*cccccccevvvevviiennnn. 12
Abbildung 3-5 Ausgabemaske vOn MOOVEL ..o 14
Abbildung 3-6 Park-and-Ride Ausgabemaske von AnachB...........c.cccceeviiiiieiciiccecce e, 15
Abbildung 4-1 Ablauf von TiGeR als Flussdiagrammccooveiiiirnininsienneee e 20
Abbildung 4-2 Routenvektor Innsbruck - Stuttgart mit geschnittenen A2ccccovevveenen. 22
Abbildung 4-3 MoBee System Context DIagramcccooereririnienieiene e 24
Abbildung 4-4 MoBee SystemarChiteKtUr............cvviieiiiiie i 25
Abbildung 4-5 Assemblydiagramm MOBEEccoeiiiiiiii e 26
Abbildung 4-6 Aufruf der entsprechenden Subprozesse im GetSimpleRoutes Prozess.......... 27
Abbildung 4-7 Ausschnitt TieredQUEry SUDPIOZESS..........cccoviiiiiiiiiieieec e 28
Abbildung 4-8 Bildung einer TIiered ROULE...........cccceviiieiiee e 29
Abbildung 4-9 Handoff Query mit zwei Typ-0 AnNDIEIEIrNccoooiviiiiiiiee e 30
Abbildung 4-10 DatenbanksStruKtur GSScccoiiiiiiicie e 32
Abbildung 4-11 ArchiteKtur der WSWooiiiiiiiiieese e 37
Abbildung 5-1 TripQuery Wrapper POc.ccovoiioiieesiece e 38
Abbildung 5-2 Database CONNECION POtccuiiiiiieieeesesese s 42
Abbildung 5-3 Generic LINETIIP POIt.......ccviiiieie et 47
Abbildung 5-4 Generic_Carsharing POI..........c.coiiiiiiiiieniese s 52
ADbDBIlduNg 5-5 NAVROULE POI........ccuiiiiiiciece et 54
Abbildung 6-1 Vergleich Routingergebnisse MoBee und MoOVEl............cccccvevviiiiiieniiinnnnn, 59
Abbildung 6-2 MoBee Routenvorschlag Innsbruck Hilton nach Krefelder Stralle 21, Stuttgart
.. 60
Abbildung 6-3 Tiered Trip Stuttgart — TUDINGENcccooiiiiiiiieecce e 61
Abbildung 6-4 Ineffiziente Route mit linienbasiertem Mobilitatsanbieterc...ccccveeenn. 65
Abbildung 6-5 Theoretisch mdgliche bessere Route mit dynamisch geroutetem

V0] o1 T U= o T oSSR 65
Abbildung 7-1 Mdgliche Schnittstelle fur einen Leihfahrrad-Subprozess............cccccceevevenen. 69
Abbildung 7-2 Generische Schnittstelle flir Fahrradverleihanbieter.............ccooovevviieiiviinnn. 69
Abbildung 7-3 Mdgliche Erweiterung des Generic_LineTrip_Port...........ccccoeveiveiieicieennn, 70
Abbildung 7-4 Designvorschlag fur den TraversedNOdes QUEIYc.cccveeervereeieesieeneaienenns 71
Abbildung 7-5 Schnittstelle und Datentypen fiir den Bildbearbeitungsservice 72

1 Einleitung

1.1 Motivation und Zielsetzung

In der ,.Einflhrung in die Verkehrswirtschaft“ [KumO06] wird multimodaler Verkehr als
,mehrgliedrige Transportkette [...], bei der die Beférderung von Personen oder der Transport
eines Gutes mit zwei oder mehr unterschiedlichen Verkehrstragern vollzogen wird*“ definiert.
Die multimodale Verkehrsplanung beschéftigt sich mit der Kreation dieser Transportketten.
Es gibt bereits zahlreiche Arbeiten zu diesem Thema (siehe 3.2), auch gibt es bereits marktrei-
fe Implementierungen von computergestutzten multimodalen Verkehrsplanungsdiensten. Je-
doch besitzen diese Implementierungen durchweg zwei Limitierungen: Zum einen bedienen
sie zumeist nur die Transportmittel eines einzelnen Mobilitatsanbieters, beispielsweise die
Komponenten eines Verkehrsverbundes. Bei den wenigen Sonderféllen, in denen mehrere
Mobilitatsanbieter berucksichtigt werden (moovel.com [Dail4]), handelt es sich mehr um
eine Auflistung von alternativen Transportmitteln als eine wahre multimodale Transportpla-
nung. Zum anderen arbeiten diese Systeme auf einem einzigen vereinheitlichten Datensatz.
Dies hat zur Folge, dass neue Transportmittel/Mobilitatsanbieter, welche am multimodalen
Verkehrsplanungssystem teilnehmen wollen, ihre Daten komplett offen legen und in das vom
bereits bestehenden System verwendete Format konvertieren missen. Zwar gibt es bereits
Versuche, gerade fir linienbasierte Mobilitatsanbieter einen einheitlichen Standard zu etablie-
ren [Gool2], jedoch bleibt bei vielen Unternehmen der Widerwille [Lor12], ihre Daten Drit-
ten zuganglich zu machen. Zusétzlich dazu haben sich in der Praxis bereits kommerzielle
Verkehrsplanungssysteme etabliert [HAF14], deren Hersteller vermutlich wenig Interesse an
einer Anderung des Status Quo besitzen. Dies ist vermutlich auch einer der Griinde, warum
wahre multimodale Verkehrsplanung bisher nur innerhalb von Verbiinden existiert.

Ziel dieser Diplomarbeit ist es, einen multimodalen Verkehrsplanungsdienst zu entwickeln,
welcher die beiden oben genannten Limitationen umgeht. Es soll eine Integrationsplattform
entstehen, in welcher bereits bestehende Planungsdienste von Mobilitatsanbietern in Form
von Webservices aggregiert werden. Folgende Formen der Mobilitat sollen in die multimoda-
le Planung aufgenommen werden:

e Linienbasierter Verkehr (Bus, Bahn etc.)
e Carsharing

e Taxi

e FulRweg

Als Namen fiur den zu implementierenden Dienst wurde MoBee (Multimodal Mobility) ge-
wahlt.

Dieser Dienst soll im Rahmen der Green eMotion B2B Integrationsplattform als B2B Webs-
ervice (siehe 2.3) bereitgestellt werden. Das Green eMotion Projekt ist ein Teil der European
Green Cars Initiative [Siel4]. Es besteht aus einem Konsortium aus 43 Partnern, sowohl aus

1

der Industrie als auch aus dem Universitéats- und Forschungsbereich. Ziel von Green eMotion
ist die Entwicklung europaweiter Standards und Infrastruktur fir Elektromobilitdt im Zuge
der EU-Klimaziele einer CO2-Reduzierung von 60 Prozent bis zum Jahre 2050. Eine zentrale
Komponente dieser Infrastruktur ist der Green eMotion E-Mobility B2B-Marketplace. Her-
steller und Anbieter von Dienstleistungen rund um Elektromobilitat kdnnen dort in einer auf
offenen Standards basierenden Cloud Computing-Umgebung ihre Angebote integrieren und
miteinander verknipfen.

1.2 Struktur des Dokumentes

Diese Diplomarbeit gliedert sich in 7 Kapitel. In Kapitel 2 - Grundlagen werden Grundlagen
besprochen, welche fir das Verstandnis der Arbeit vonnéten sind. Kapitel 3 - Verwandte Ar-
beiten behandelt verwandte Arbeiten zum Thema multimodale Verkehrsplanung und Pathing.
Diese werden kurz beschrieben. Aus den ihnen inh&renten Nachteilen werden Anforderungen
an das MoBee Konzept abgeleitet und dessen darauf basierende Designprinzipien erlautert.
Kapitel 4 - Implementierung beschreibt die Implementierung des MoBee Konzeptes im Rah-
men dieser Arbeit. Es behandelt die verwendete Middleware, den dem Konzept zugrunde lie-
genden Algorithmus, die Systemarchitektur und die Implementierung der zuvor beschriebe-
nen Komponenten. In Kapitel 5 - Webservice Ports werden diejenigen Webservice Ports, wel-
che zur Kommunikation zwischen den einzelnen Subsystemen und zur Kommunikation mit
externen Webservices bendtigt werden, beschrieben. Kapitel 6 - Evaluierung bietet einen
Uberblick tiber die nach Fertigstellung der Implementierung erkannten Starken und Schwa-
chen des MoBee Konzeptes. Zusétzlich werden fiir die weitere Arbeit am Thema Ldsungsan-
sétze fur die erkannten Probleme des Konzeptes vorgeschlagen. In Kapitel 7 - Ausblick wer-
den schlieBlich mogliche Erweiterungen fiir das MoBee Konzept vorgestellt.

2 Grundlagen

Im folgenden Kapitel werden einige grundlegenden Konzepte und Technologien aus dem
Umfeld von Routenplanung und Webservices vorgestellt, welche innerhalb dieser Arbeit ver-
wendet werden. Der Abschnitt multimodale Verkehrsplanung beschreibt die Softwaredoméne
der Arbeit. Webserviceaggregation definiert die Technologie Webservices als ganzes und
beschreibt das Konzept der Webserviceaggregation. Der Abschnitt WS-BPEL stellt die in der
Arbeit verwendete Ausfuhrungssprache vor. WSDL beschreibt die Web Service Description
Language welche verwendet wird, um die internen und externen Schnittstelle des MoBee Sys-
tems zu definieren. Der Abschnitt WGS84 beschreibt schlie3lich das in dieser Arbeit verwen-
dete raumliche Bezugssystem.

2.1 Multimodale Verkehrsplanung

Die Vorteile offentlich verfugbarer Transportmdéglichkeiten sind hinreichend bekannt: Nicht
nur sind sie umweltfreundlicher als private Automobile, sie stellen auch einen Zugewinn an
Mobilitat fur diejenigen Personen dar, welche sich kein eigenes Automobil leisten kénnen
oder fihren durfen und tragen dadurch zu deren personlicher Freiheit bei. Trotz dieser be-
kannten Vorteile ist der Anteil 6ffentlich verfugbarer Transportmdglichkeiten an der Ge-
samtmobilitat der Bevolkerung vergleichsweise niedrig [New]. Obwohl die Griinde fiir die
relative Inakzeptanz 6ffentlich verfligbarer Transportmdoglichkeiten sicherlich vielféltig sind,
stechen doch zwei Griinde besonders hervor [Kry04]: Zum einen ware hier das Problem der
Fragmentierung zu erwahnen. Offentlich verfiigbare Transportmdglichkeiten beschréinken
sich meist auf einen spezifischen Raum (Regionales Verkehrsnetz, Riickgabestationen von
Carsharingdiensten). Zusatzlich dazu ist es oft umsténdlich und zeitraubend, einen Startpunkt
fiir die Transportmdglichkeit (Haltestelle) zu erreichen. Zum anderen besteht, gerade bei li-
niengebundenen Transportmitteln, das Problem der Ineffizienz, welches zum Teil aus der zu-
vor erwédhnten Fragmentierung entsteht: Nur ein relativ geringer Teil des Zeitaufwandes, wel-
cher fur die Benutzung liniengebundener Transportmittel bendtigt wird, wird tatsachlich da-
rauf aufgewendet, sich dem Ziel physisch zu nahern. Einen weitaus groReren Teil des Zeit-
aufwandes stellen das Warten auf das Eintreffen des gewéhlten Verkehrsmittels und das An-
fahren von Verkehrsknoten (zum Beispiel Umstieg am Hauptbahnhof) dar.

Die multimodale Verkehrsplanung, also die Streckenplanung unter Zuhilfenahme mehrerer
verschiedener Offentlicher Transportmdglichkeiten, versucht diese Probleme zu lindern und
somit die Akzeptanz der 6ffentlichen Transportmdglichkeiten zu erhéhen. Durch die Kombi-
nation mehrerer Mobilitatsanbieter konnen Fahrtstrecken tber die Verfugbarkeitsgrenzen ein-
zelner Mobilitatsanbieter hinaus effizient geplant werden. Dies behebt das Problem der Frag-
mentierung fast vollstdndig. Auch das Problem der Ineffizienz wird abgemildert, da von ein-
zelnen Mobilitatsanbietern nur unzureichend abgedeckte Gebiete durch flexiblere, in diesem
Gebiet gut vertretene Mobilitatsanbieter tberbrickt werden kénnen. Hierbei muss beachtet
werden, dass multimodale Verkehrsplanung sich nicht nur auf das Aufzeigen von Alternati-
ven fir das zuriicklegen einer bestimmten Fahrtstrecke beschrénkt. Plattformen wie Moovel
[Dail4], welche verschiedene Transportmaoglichkeiten bertcksichtigen, diese jedoch nur ein-
geschrankt kombinieren (Fulweg bis zur Haltestelle), sind zwar sicherlich nitzlich, adressie-

3

ren jedoch nicht die im vorigen Abschnitt erlauterten Einschrankungen 6ffentlich verfigbarer
Transportmittel. Echte multimodale Verkehrsplanung zeigt kombinierte Fahrtstrecken unter
Zuhilfenahme aller zur Verfligung stehenden Transportmdglichkeiten auf.

2.2 Webserviceaggregation

Das World Wide Web Consortium (W3C) definiert den Begriff ,,Webservice™ folgenderma-
Ren:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by
its description using SOAP-messages, typically conveyed using HTTP with an XML seriali-
zation in conjunction with other Web-related standards.“[W3CO04]

Ein Webservice stellt also Softwarefunktionalitat als Dienstleistung dar. Auf diese Funktiona-
litatt kann von externen Softwaresystemen Uber standardisierte Kommunikationsprotokolle
(SOAP, JSON-RPC etc.) unabhangig von der Plattform und Implementierung des Webser-
vices zugegriffen werden. Der Nutzen einzelner Webservices in Isolation, also ohne Weiter-
verarbeitung der Ein- oder Ausgabedaten durch weitere Software, ist jedoch stark begrenzt:
Um fiir eine Vielzahl von Anwendungen nitzlich und damit praktikabel zu sein, muss die
vom Webservice angebotene Funktionalitat mdglichst generisch und nicht auf einen spezifi-
schen Anwendungsbereich beschrankt sein. Eine einzelne Softwareoperation auf ein externes
System auszulagern ist jedoch fir moderne Softwaresysteme nicht besonders nitzlich, da die-
se sich nur selten mit elementaren Operationen befassen. Aus diesem Grund entstand das
Konzept der Webserviceaggregation [Kha03]. Durch ein System von lose gekoppelten Webs-
ervices, welche jeweils einen Teilbereich der Softwarefunktionalitit Gbernehmen, lasst sich
ein groRer Teil bereits bestehender Software wiederverwenden und somit der Aufwand flr
neue Software erheblich reduzieren.

Bei der Aggregation von Webservices wird zwischen zwei Herangehensweisen unterschieden:
Webservice Choreography und Webservice Orchestration. Webservice Choreography be-
zeichnet ein dezentrales Interaktionsprotokoll zwischen mehreren Webservices. Alle beteilig-
ten Webservices werden dabei gleich behandelt, es besteht, ahnlich einem Peer-to-Peer Sys-
tem, keinerlei Hierarchie innerhalb des Systems. Der Fokus der Webservice Choreography
liegt auf dem Nachrichtenaustausch. Jeder beteiligte Webservice weil3, zu welchem Zeitpunkt
welche Operation ausgeftihrt werden soll und zu welcher Zeit mit welchem Webservice inter-
agiert werden muss. Webservice Orchestration bezeichnet hingegen die Organisation des
Softwareprozessflusses aus der Sicht eines einzelnen Teilnehmers, des Controller Service.
Dieser enthalt die Prozesslogik und koordiniert somit die ihm unterstellten Webservices. Ab-
bildung 2-1 enthalt eine grafische Gegentiberstellung dieser beiden Aggregationskonzepte

Consumer Consumer

F

y

Controller Service

Web Service
Web Service ¢ Web Service Web Service Web Service Web Service
Web Service
WS5S-Choreography WS-Orchestration

Abbildung 2-1 WS-Choreography vs. WS-Orchestration

Die Webservice Orchestration ist bereits wohlverstanden [Karll] und es gibt bereits einige
hierzu einsetzbare Technologien (WS-BPEL, WebSphere MQSeries), welche produktiv ge-
nutzt werden. Webservice Choreography ist jedoch noch Gegenstand aktiver Forschung
[Suj14]. MoBee steuert die an das System angeschlossenen Webservices tiber einen zentralen
in WS-BPEL definierten Prozess, ist also ein Vertreter der Webservice Orchestration.

2.3 B2B Webservice

Die Bezeichnung Business-to-Business (B2B) beschreibt eine Anbieter-Kunde Beziehung
zwischen zwei Unternehmen. Der Begriff ,,Unternehmen®, vor allem auf der Kundenseite,
wird in der Literatur unterschiedlich definiert: Einige Quellen schlieen in den Begriff allein
agierende Handler mit ein [KuR06], andere erweitern die Definition auch auf Regierungsbe-
horden [Kot10]. Ein B2B Webservice bezeichnet somit einen Webservice, welcher nicht an
Endkunden (B2C — Business-to-Consumer), sondern an Geschéaftskunden gerichtet ist. Diese
kdnnen den Service in ihr eigenes Angebot integrieren, oder die Funktionalitat fur ihre inter-
nen Prozesse nutzen. Da MoBee als ein solcher B2B-Service konzipiert ist, wird auf Funktio-
nalitat verzichtet, welche der direkten Interaktion des Endkunden mit dem System dient. Dies
waéren zum Beispiel eine grafische Eingabemaske fir die Streckendaten oder ein Geocoding-
modul fur die direkte Eingabe von Start- und Zieladressen.

2.4 WS-BPEL

Die Web Service Business Process Execution Language (WS-BPEL) ist eine ausfiihrbare
Sprache fur die Beschreibung von Geschaftsprozessen des OASIS-Konsortiums [OASO07].
Die Aktivitaten, welche in WS-BPEL ausgefiihrt werden, sind als Webservices implementiert,
die Schnittstellen nach aufRen hin sind ebenfalls als WSDL-Ports definiert. WS-BPEL kann
folglich als Sprache fir Web Service Orchestration betrachtet werden. Der Kontrollfluss von
WS-BPEL wird durch vordefinierte Aktivitaten, wie zum Beispiel Weichen, Iterationen oder
Schleifen ausgedriickt. Fur die interne Datenhaltung werden XML-Elemente verwendet, der

5

Datenzugriff geschieht Gber XPATH. BPEL-Prozesse lassen sich in zwei Typen unterteilen:
Prozesse mit langer Laufzeit und Microflow-Prozesse.

Prozesse mit langer Laufzeit beinhalten Aufrufe von anderen Prozessen/Webservices, welche
nicht sofort eine Antwort auf den Aufruf liefern. Meist handelt es sich hierbei um Geschéfts-
prozesse, an denen menschliche Entscheidungen oder Leistungen beteiligt sind. Microflow-
Prozesse haben eine vergleichsweise kurze Laufzeit und kommunizieren nur mit anderen
Computersystemen. Da MoBee vollautomatisch ist und auRer dem Ubermitteln der Eingabe-
parameter keinerlei menschlicher Interaktion bedarf, werden im Rahmen dieser Arbeit nur
Microflow-Prozesse betrachtet.

2.5 WSDL

Die Web Service Description Language (WSDL) ist eine protokollunabhéngige Sprache fiir
die Beschreibung von Web Services [W3CO01]. Sie ist ein Standard des W3C und basiert auf
der Markupsprache XML. Ein WSDL-Dokument beschreibt den vollen Funktionsumfang
eines Webservices. Die Definition geschieht uber 6 XML-Elemente:

e types — Beschreibt die Datentypen flir den Nachrichtenaustausch

e message — Beschreibt die konkreten Nachrichten, die fir die Kommunikation mit dem
Webservice verwendet werden

e portType — Beschreibt die Operationen (Funktionen), welche der Webservice anbietet

e Dbinding — Definiert Protokoll und Datenformat flr die unter portType beschriebenen
Operationen

e port — Definiert einen Endpunkt (URI) fur ein Binding

service — Zusammenfassung aller Ports eines PortType

Im Rahmen dieser Arbeit wird WSDL genutzt, um die Schnittstellen der einzelnen Subpro-
zesse (siehe 4.4) und die notwendigen Schnittstellen kooperierender Mobilitatsanbieter (siehe
5.3) zu definieren.

2.6 WGS84

Das World Geodetic System 1984 (WGS84) ist ein rdumliches Bezugssystem fiir Positions-
angaben auf der Erde [Nat84]. Das Koordinatensystem, welches WGS84 zugrunde liegt, ist
ein kartesisches Koordinatensystem, dessen Zentrum am Schwerpunkt der Erde liegt. Auf
diesem ist ein Elipsoid definiert, welches eine Naherung an die Form der Erdkugel darstellt.
Die Langen- und Breitengrade dieses Elipsoides werden verwendet, um Positionsangaben auf
der Erdoberflache zu beschreiben.

MoBee benutzt WGS84 fir die Positionsangabe von Start- und Zielpunkten fir Routenvor-
schlage und fir die raumlichen Berechnungen auf den Verfligbarkeitsbereichen der Mobili-
tatsanbieter. Positionsangaben von kooperierenden Mobilitdtsanbietern, welche in einem an-
deren rdumlichen Bezugssystem definiert sind, werden vor der weiteren Verarbeitung umge-
rechnet.

3 Verwandte Arbeiten

Im folgenden Kapitel werden bereits bestehende Arbeiten zum Thema Verkehrsplanung und
Routing im Allgemeinen besprochen und deren Funktionsweise und -umfang von MoBee
abgegrenzt.

3.1 Pathingalgorithmen

Pathingalgorithmen im Sinne dieser Arbeit sind solche, welche das Problem des kiirzesten
Pfades auf einem gewichteten Graphen I6sen. Ein gewichteter Graph ist hierbei als G = (V, E)
definiert, wobei V die Menge der Knoten, E die Menge der Kanten bezeichnet. Die Kanten
besitzen eine Gewichtung, welche die Kosten darstellt, die Kante zu passieren. Im folgenden
Abschnitt werden zwei der bekanntesten Pathingalgorithmen kurz vorgestellt.

3.1.1 Dijkstra Algorithmus
Der nach seinem Erfinder Edsger W. Dijkstra benannte Dijkstra Algorithmus [Dij59] gehort

zur Klasse der Greedy-Algorithmen [Gil88], das heil3t es wird bei der Routenberechnung im-
mer derjenige Knoten als nachster Wegpunkt gewahlt, welcher zum Zeitpunkt das beste Er-
gebnis verspricht, also die kirzeste Route vom Startknoten aus darstellt. Die Kostenfunktion
f(x) ist also die Summe aller Kanten welche passiert werden missen, um den Knoten X vom
Startknoten aus zu erreichen. Einmal besuchte Knoten werden nicht wieder als Wegpunkt in
Betracht gezogen. Dieses Vorgehen wird wiederholt, bis entweder der Zielknoten erreicht
wird, oder die optimale Route zu jedem Knoten vom Startpunkt aus bekannt ist. Abbildung
3-1 veranschaulicht dieses Vorgehen: Vom Startknoten A aus soll der kiirzeste Pfad zum
Endknoten H ermittelt werden. Von Knoten A aus sind die Knoten B, C und D erreichbar.
Nach Prifung der Kantengewichtung wird Knoten C als néchster Wegpunkt gewahlt, da die-
ser mit den geringsten Kosten zu erreichen ist.

Abbildung 3-1 Wahl des nachsten Knotens beim Dijkstra Algorithmus

Knoten C wird nun, genauso wie zuvor Knoten A, als besucht markiert. Der Knoten A am
néchsten gelegene, nicht besuchte Knoten ist nun Knoten D. Knoten H wére zwar nun theore-
tisch auch zu erreichen, allerdings betragen die Kosten der dorthin bekannten Route 4 + 9 =
13. Die nun bekannte kurzeste Distanz zu Knoten B betrdgt hingegen 2 + 4 = 6. Es wird folg-
lich, wie zuvor mit Knoten C, mit Knoten D verfahren: Knoten D wird als besucht markiert,
wodurch die Kosten um den nun erreichbaren Punkt F zu erreichen zu 5 + 9 = 14 werden.
Dieses Verfahren wird nun wiederholt, bis der Endknoten H erreicht wird. Da in jedem Schritt
immer nach der kiirzesten Route zu einem beliebigen erreichbaren Knoten gesucht wird, kann
man nach Erreichen des Endknotens davon ausgehen, dass keine effizientere Route zum End-
knoten existiert. Abbildung 3-2 zeigt die Markierungen des Graphen nach Auffinden der kir-
zesten Route zu Knoten H.

Abbildung 3-2 Dijkstra-Graph nach Auffinden der kiirzesten Route zu H

Man kann leicht erkennen, dass es kostspieliger wére, einen der anderen erreichbaren Knoten
(Knoten E oder Knoten F) zu erreichen, als die gefundene Route zu H zu nutzen. Es ist somit
unmdglich, dass eine effizientere Route von A zu H existiert.

Obwohl der Dijkstra Algorithmus ohne Einschrankungen auf zusammenhangenden gerichte-
ten Graphen mit positiver Kantengewichtung korrekte Ergebnisse liefert, ist seine Performanz
nicht immer optimal. Dies hangt damit zusammen, dass der Dijkstra Algorithmus, so wie alle
Greedy-Algorithmen, unabhé&ngig von der bekannten Struktur des Graphen immer nur den
zurzeit am effizientesten erscheinenden Weg wahlt. Dieses Problem kann durch Erweiterun-
gen des Dijkstra-Algorithmus umgangen werden, wie zum Beispiel durch den in 3.1.2 be-
schriebenen A*-Algorithmus.

3.1.2 A* Algorithmus
Der erstmals 1968 beschriebene A* Algorithmus stellt eine Erweiterung des Dijkstra-

Algorithmus um einen heuristischen Bestandteil [Har68] dar. Die Kostenfunktion f(x) fur
einen noch nicht besuchten Knoten setzt sich beim A* Algorithmus aus zwei Unterfunktionen
zusammen:

e g(x) ist die aus dem Dijkstra Algorithmus bekannte Kostenfunktion. Die Kosten aller
Kanten, welche passiert werden missen, um den Knoten X zu erreichen.

10

e N(x) ist eine heuristische Funktion zur Abschatzung der Distanz des Knoten X vom
Zielknoten.

Der Vorteil dieser Herangehensweise wird in Abbildung 3-3 deutlich. Als Schatzfunktion h(x)
wird in diesem Beispiel die Luftlinie zwischen dem zu betrachtenden Knoten und dem Ziel-
knoten F gewahlt. An dieser Stelle muss betont werden, dass h(x) die Kosten abschéatzt, den
Zielknoten zu erreichen. Der Wert der Funktion h(x) selbst stellt keine Schatzung dar, sondern
ist genau bestimmbar. Die Schatzung besteht vielmehr darin, dass die genaue Relation zwi-
schen dem Wert von h(x) und der Entfernung zum Zielpunkt auf dem Graphen unbekannt ist.

Abbildung 3-3 Ausgangspunkt unterschiedlicher Vorgehensweise von Dijkstra und A*

Bis zu diesem Punkt in der Wegfindung ware der Ablauf des Dijkstra und A* Algorithmus
identisch. Der Dijkstra Algorithmus wirde an dieser Stelle Knoten E als ndchstes betrachten,
da die Kosten diesen zu erreichen mit 1,5 + 2 + 3 = 6,5 geringer sind als die Kosten, Knoten F
zu erreichen (2 + 3 +2 = 7). Unter Zuhilfenahme der heuristischen Funktion wéren beim A*
Algorithmus allerdings die Kosten von Knoten E groRer, da dieser sich rdumlich vom Ziel-
knoten F entfernt. Der A* Algorithmus wére in diesem Fall also effizienter, da er sich die
Betrachtung des Knotens E sparen wirde. Abbildung 3-4 zeigt eine Gegenuberstellung des
néchsten Schrittes der beiden Algorithmen.

11

gx)=2+3+2=7
h(x) = 0
fix) =7

9(x)=1,5+2+3=65
h(x) = 4
f(x) = 10,5

Dijkstra Algorithmus A* Algorithmus

Abbildung 3-4 Unterschiedliche Vorgehensweise von Dijkstra und A*

An dieser Stelle ist nochmals zu erwéhnen, dass es sich bei h(x) um eine heuristische Funkti-
on, also einen Schatzwert, handelt. Die Tatsache, dass der Wert von g(x) in diesem Beispiel
genau der Kantengewichtung zwischen den Knoten entspricht liegt daran, dass einerseits als
h(x) die Luftlinie zwischen den Knoten gewéhlt wurde und andererseits in diesem Beispiel
der letzte Schritt der Wegfindung betrachtet wird.

3.2 Theoretische Routingansitze

Im folgenden Abschnitt werden die bisher gangigen Ansétze fiir die Implementierung von
Routingalgorithmen fur Verkehrsplanung betrachtet.

3.2.1 Routing von dynamisch gerouteten Mobilititsanbietern
Routing von dynamisch gerouteten Mobilitatsanbietern, also Routing auf Stralennetzen, wird

auf einem klassischen, gewichteten Graphen durchgefuhrt. Hierbei wird das Strallennetz als
ein Graph G = (V,E) definiert, wobei die Menge der Knoten V Kreuzungen oder Abzweigun-
gen und die Menge der Kanten E die eigentlichen StralRen représentieren. Das Problem des
kirzesten Pfades ist bereits lange Gegenstand von Forschungsarbeiten, die das Problem be-
treffenden Algorithmen (A*, Dijkstra, etc.) gehdren zum Standardrepertoire der theoretischen
Informatik (siehe 3.1). Aktuelle Forschungsarbeiten zu diesem Thema befassen sich haupt-
sachlich mit der Steigerung der Effizienz bereits bekannter Algorithmen, zum Beispiel Land-
mark A* [Gol05] oder SHARC [Bau09]. Bestehende Mobilitatsplanungsdienste, welche dy-
namisch geroutete Mobilitatsoptionen anbieten, beschréanken sich entweder auf Vermittlung
von Fahrzeugen (MyTaxi, car2go) und bieten nicht die Routenplanung selbst, oder haben die
interne Funktionsweise ihres Dienstes nicht offengelegt (AnachB, Moovel). Es ist jedoch da-
von auszugehen, dass auch diese Dienste eine Variante des gewichteten Graphen verwenden,
da bisher kein alternativer Ansatz verdffentlicht wurde.

12

3.2.2 Routing von linienbasierten Mobilitatsanbietern
Das Routing auf linienbasierten Mobilitatsanbietern erfolgt ebenfalls auf gewichteten Gra-

phen. Samtliche verfligbare Forschungsarbeiten zu diesem Thema basieren auf diesem Kon-
zept. Es haben sich jedoch zwei unterschiedliche Ansatze zu der Fragestellung herauskristalli-
siert, woraus der Graph gebildet werden soll:

Der Time-Expanded-Ansatz [Fra00] nutzt einen Graphen, dessen Knotenmenge aus Paaren
zwischen einem Zeitereignis (Ankunft/Abfahrt) und einem Ort (Haltestelle) besteht. Die Kan-
ten reprasentieren in diesem Graphen entweder Bewegung in Raum und Zeit (Fahrt zu einer
anderen Haltestelle) oder nur in der Zeit (Verweilen an einer Haltestelle).

Der Time-Dependent-Ansatz [Bro04] erzeugt einen Graphen, in welchem jeder Knoten eine
Haltestelle des betreffenden Liniennetzes abbildet. Die Kanten reprasentieren jeweils eine
elementare Verbindung (Fahrt ohne Zwischenstopp) zwischen den Haltestellen. Die Gewich-
tung der Kanten wird bei diesem Ansatz zur Laufzeit festgelegt und ist von den jeweils zum
fraglichen Zeitpunkt verfiigbaren Linien von diesem Knoten aus abhéngig.

Dariiber hinaus existieren einige Hybridansatze, wie zum Beispiel [Ant12], welche die beiden
Graphentypen kombinieren.

3.2.3 Multimodales Routing
Echtes multimodales Routing wurde in der Forschung bisher nur sehr selten behandelt. Der

von Horn beschriebene Journey-Planner in [Hor02] implementiert einen Time-Dependent-
Graphen linienbasierter Mobilitatsanbieter, auf dem eine Breadth-First Suche durchgefuhrt
wird. Der ebenfalls in [Hor02] beschriebene Fleet-Scheduler wird (iber einen Message Broker
mit diesem verbunden, sodass Taxifahrten als erster, beziehungsweise letzter Streckenab-
schnitt einer vorgeschlagenen Reiseroute genutzt werden kénnen. Yu und Lu beschreiben in
[YuH10] einen evolutiondren Algorithmus, welcher auf einem Time-Expanded-Graphen ar-
beitet. Der von ihnen vorgeschlagene Algorithmus ist auf linienbasierte Mobilitatsanbieter
sowie auf Taxifahrten anwendbar.

Der bisher einzig vollstandig multimodale Ansatz ist der von Hrncir und Jakob in [Hrn13]
beschriebene Generalised Time-Dependent Graph. Dieser Graph besteht aus mehreren Unter-
graphen: Einen flr das Stralennetz und einen flr jeden integrierten linienbasierten Mobili-
tatsanbieter. Verknupfungen zwischen den Graphen werden durch Mappings zwischen Kno-
ten des Strallengraphen (Adressen) und Knoten der Liniengraphen (Haltestellen) hergestellt.
Dieser Ansatz bietet fast vollstandige multimodale Verkehrsplanung. Die einzige Ausnahme
bilden hier Carsharing-Services und unter Umstdnden Mietfahrréder, da keine Mdoglichkeit
vorgesehen ist, zur Laufzeit den Standort verfligbarer Fahrzeuge in den Graphen zu integrie-
ren.

3.3 Bereits veroffentlichte Dienste zur multimodalen Verkehrsplanung

Im folgenden Abschnitt werden zwei bereits einsatzbereite multimodale
Verkehrsplanungsdienste vorgestellt. Diese sind das Moovel System der Daimler AG und der
Osterreichische Routenplaner AnachB.

13

3.3.1 Moovel
Moovel ist das multimodale Reiseplanungssystem der Daimler AG [Dail4]. Es bietet linien-

basierte Mobilitatsanbieter, Carsharing Uber car2go und Taxifahrten als Transportméglichkei-
ten an. Der Dienst ist an Endkunden gerichtet, der Zugriff erfolgt entweder (ber die Website
des Systems oder Uber eine Smartphone-App. Obwohl sich der Dienst selbst als multimodal
bezeichnet, beschrankt er sich auf die Aufzédhlung mehrerer alternativer Verbindungsmog-
lichkeiten zwischen Start- und Zielpunkt. Er erflllt somit nicht die in 2.1 aufgestellte Defini-
tion eines multimodalen Verkehrsplanungsdienstes. Da es sich bei Moovel um ein kommerzi-
elles System handelt wurde der Quellcode, beziehungsweise der zu Grunde liegende Algo-
rithmus, nicht offengelegt. Aufgrund der Tatsache, dass die verschiedenen Reiseoptionen un-
terschiedlich viel Zeit benétigen, um ein Ergebnis zu liefern, ist es jedoch wahrscheinlich,
dass es sich bei Moovel um ein Beispiel von Webserviceaggregation handelt. Zumindest lasst
es sich dadurch vermuten, dass externe Daten fir die Routenvorschlage genutzt werden.

CAR
j={cin]

17-30 5-602385

17:40

Abbildung 3-5 Ausgabemaske von Moovel

3.3.2 AnachB
AnachB ist ein multimodaler Verkehrsplanungsdienst fiir die Region Niederdsterreich. Er

bietet multimodale Verkehrsplanung mit 6ffentlichen Verkehrsmitteln, dem Fahrrad und pri-
vaten PKW (ber eine Park-and-Ride Funktion. Der Dienst richtet sich an Endkunden und ist
uber seine Website bedienbar. Hervorzuheben ist, dass AnachB stets mit aktuellen Informati-
onen von Verkehrssensoren, Baustellen-, Stérungs-, Unfall- und Fahrplandatenbanken ver-
sorgt wird, welche in die Routenberechnung mit aufgenommen werden. Der Quellcode von
AnachB wurde nicht offengelegt, somit lassen sich keine Aussagen uber die zu Grunde lie-
gende Funktionsweise des Systems treffen.

14

Fahrteniibersicht L UTECIN | 01
WY Y U L.
—_— = = @
Dauer 1 Std 4 Min P i R A
ab 19:49 an 20:53 1x umsteigen
- A7TRAU
Dauer 1 Std 1 Min P i R A
ab 19:59 an 21:00 1x umsteigen
3. Fahrt = i m i g | 4
Dauer 1 Std 4 Min P i R R
ab 20:04 an 21:08 1x umsteigen

Da:.efalhrsttd 3 Min E F v

ab 20:15 an 21:18 1x umsteigen
Andern Rickfahrt Weiterfahrt

Friher Spater Erste Fahrt Letzte Fahrt

Abbildung 3-6 Park-and-Ride Ausgabemaske von AnachB

3.4 Gegeniiberstellung zu MoBee

In diesem Abschnitt werden die Limitierungen der in den vorangegangenen Abschnitten vor-
gestellten Ansétze und Systeme zur Routenplanung erdrtert. AnschlieBend werden aus diesen
die Eckpunkte fiir den Ansatz des MoBee Systems abgeleitet.

3.4.1 Nachteile bisheriger Ansitze und Losungen
Alle hier beschriebenen theoretischen Ansétze zur Routenplanung, ob multimodal oder nicht,

besitzen einen gemeinsamen Nachteil: Sie alle arbeiten mit einer bekannten Datenmenge.
Dies fuhrt zu dem Umstand, dass diejenigen linienbasierten Mobilitatsanbieter, welche in die
Routenplanung mit aufgenommen werden sollen, Informationen Uber ihr Liniennetz offenle-
gen und aktuell halten missten. Wie die Erfahrung gezeigt hat, sind gerade die groReren An-
bieter (zum Beispiel die Deutsche Bahn, welche auch im Rahmen dieser Arbeit kontaktiert
wurde und nicht zur Kooperation bereit war) nicht gewillt, dies zu tun. Auch muss bedacht
werden, dass die Daten aller Mobilitatsanbieter normalisiert und zusammengefthrt werden
mussten. Dies mag einen einmaligen Aufwand darstellen, er ist jedoch in Anbetracht der vie-
len offenen und proprietédren Formate nicht unerheblich.

Darlber hinaus ist es schwierig, dynamisch geroutete Mobilitatsanbieter in diese Ansétze mit
aufzunehmen: Der Ansatz in [Hor02] kann nur deshalb Taxifahrten mit einbeziehen, weil in
diesem Modell die Flottenverwaltung des Taxiunternehmens vom systemeigenen Fleet-
Scheduler Gbernommen wird. Er bietet keine Schnittstelle fur externen Dateninput. Auch der
bisher einer echten multimodalen Verkehrsplanung am ndchsten kommende theoretische An-
satz von Hrncir und Jakob [Hrn13], kdnnte nur dann Taxis und Carsharinganbieter sinnvoll in

15

die Routenplanung mit aufnehmen, wenn der von ihnen vorgeschlagene Generalised Time-
Dependent Graph (vgl. 3.2.3) laufend mit aktuellen Daten versorgt werden wirde.

Die bisher verfuigbaren Implementierungen multimodaler Verkehrsplanungssysteme besitzen
auch einige nicht zu Ubersehende Nachteile: Moovel bietet keine echte Multimodalitét, son-
dern nur eine Auflistung von Alternativen, AnachB ist nur fur einen relativ kleinen Teilbe-
reich Osterreichs verfiigbar. Beiden gemein ist die Eigenschaft, dass sie sich nur an Endkun-
den richten. Eine weitere Benutzung durch Geschéftskunden ist mit den zur Verfligung ste-
henden grafischen Schnittstellen nicht moglich.

Auffallig bei beiden vorhandenen Diensten ist auch die geringe Anzahl von kooperierenden
Unternehmen. Dies mag damit zusammenhéngen, dass der Typische Anwendungsfall (Use-
Case) fir einen multimodalen Verkehrsplanungsdienst einen relativ kleinen Raum umfasst. Es
gibt jedoch auch Use-Cases, in denen Regionen ubergreifend geroutet werden muss (siehe
4.2.3). Hierfir sind die bisherigen Systeme jedoch denkbar ungeeignet.

3.4.2 Ansatz von MoBee
Im vorherigen Abschnitt wurden folgende Limitationen bisheriger Ansétze identifiziert:

e Notwendigkeit eines vollstandigen, normalisierten Datensatzes mit Daten aller koope-
rierender Mobilitatsanbieter

e Meist keine Mdglichkeit, aktuelle Daten in die Routenberechnung mit aufzunehmen
e Keine echte Multimodalitét bei aggregierenden Planungsdiensten
e Geringe Reichweite aufgrund von geringer Anzahl beteiligter Mobilitatsanbieter.

MoBee umgeht diese Probleme durch das Routing mithilfe bereits bestehender Dienste der
kooperierenden Mobilitatsanbieter:

Da auf die bereits vorhandenen Routingsysteme der einzelnen Mobilitatsanbieter zurlickge-
griffen wird, ist kein vereinheitlichter Datensatz notwendig. Das Einzige, was normalisiert
werden muss, sind die externen Schnittstellen der bereits vorhandenen Routingsysteme (siehe
5.3). Dies ist jedoch nicht zwingend notwendig, da mit verhaltnismaRig geringem Aufwand
Adapter fur die bestehenden Schnittstellen implementiert werden kénnen (siehe 4.6).

Die Aktualitat von Informationen ist durch die Verwendung von Daten direkt vom Mobilitats-
anbieter ebenfalls gewahrleistet, da davon ausgegangen werden kann, dass die Mobilitatsan-
bieter ihre eigenen Dienste mit den aktuellsten, ihnen zur Verfligung stehenden Daten versor-
gen.

Auch das Miteinbeziehen von Carsharinganbietern und Taxidiensten ist kein Problem, da die
Verfugbarkeitsdaten ihrer Fahrzeugflotten ebenfalls zur Laufzeit in die Streckenberechnung
mit aufgenommen werden kénnen.

16

MoBee bietet echtes multimodales Routing. Die Routingdaten der verschiedenen Mobilitats-
anbieter werden zu Routenvorschldgen kombiniert, nicht nur als Alternativen aufgezeigt.
Dariiber hinaus konnen beliebig viele Mobilitatsanbieter mit geringem Aufwand an das Sys-
tem angeschlossen werden. MoBee ist somit nicht auf eine bestimmte Region beschréankt.
Durch die rekursive Natur des in 4.2 beschriebenen TiGeR-Algorithmus ist es theoretisch
maoglich, transnationale Mobilitatsanbieter mit einzubeziehen und somit weltweites Routing
anzubieten.

17

4 Implementierung

Im folgenden Kapitel wird die Beispielimplementierung des MoBee Konzeptes im Rahmen
dieser Arbeit vorgestellt. Behandelt werden die verwendete Middleware, der dem MoBee
Konzept zugrunde liegende Algorithmus TiGeR mitsamt einem Ablaufbeispiel und die Soft-
warearchitektur der Implementierung.

4.1 Verwendete Middleware

Im folgenden Abschnitt wird die in der Implementierung von MoBee verwendete Middleware
aufgelistet und kurz beschrieben.

4.1.1 IBM WebSphere Application Server/Process Server
Der WebSphere Application Server (WAS) ist, wie der Name schon sagt, ein Applikations-

server fur Webanwendungen und das Flaggschiff der IBM WebSphere Suite [IBM14]. Der
WAS basiert auf offenen Standards, wie zum Beispiel JavaEE, XML und Webservices. Die
Hauptfunktion des WAS besteht darin, eine Laufzeitumgebung fur JavaEE-Anwendungen
anzubieten. Diese werden in Form einer Enterprise Archive Datei (EAR) auf dem Server in-
stalliert (deployed). Eine EAR enthélt typischerweise Java-Klassen als Bytecode, Java Server
Pages fir die Nutzeroberflache und Konfigurationsdaten in XML-Form, sogenannte Deploy-
ment-Deskriptoren. Im Rahmen des MoBee Systems wird der Websphere Application Server
als Laufzeitumgebung fur die Web Service Wrapper (siehe 4.6) genutzt.

WebSphere Process Server wird von IBM als eigenstandiges Produkt vermarktet, ist jedoch
im Kern eine Spezialkonfiguration des WebSphere Application Server. Durch eine Anzahl an
vorinstallierten JavaEE-Anwendungen wird es dem Process Server moglich, Anwendungen
mit serviceorientierter Architektur (SOA) als Laufzeitumgebung zu dienen. Insbesondere die
durch die Umristung gewonnene Fahigkeit, WS-BPEL Prozesse auszufiihren, pradestiniert
den WebSphere Process Server als Middleware flr das MoBee Projekt.

4.1.2 IBM DB2 Server/DB2 Spatial Extender
DB2 ist das relationale Datenbanksmanagementsystem (RDBMS) der Firma IBM [IBM141].

Als Abfragesprache wird die Structured Query Language (SQL) genutzt. Der von DB2 ver-
wendete SQL-Dialekt entspricht weitgehend ANSI-SQL und es stehen fur viele Programmier-
sprachen DB2-Datenbanktreiber zur Verfiigung. Es ist daher moglich, Datenbankabfragen aus
Programmen heraus mit Embedded SQL zu realisieren.

Beim DB2 Spatial Extender handelt es sich um eine Erweiterung fiir DB2, welche die Arbeit
mit rdumlichen Datentypen ermdglicht [IBM142]. Rdumliche Datentypen sind hierbei geo-
metrische Formen, wie zum Beispiel Punkte, Linien oder Polygone, welche in Bezug zu ei-
nem raumlichen Bezugssystem stehen. Es stehen out-of-the-box eine Vielzahl vordefinierter
raumlicher Bezugssysteme (unter anderem das vom Global Positioning System verwendete
WGS84) bereit, es ist jedoch auch moglich, eigene Bezugssysteme zu definieren. Das raumli-
che Bezugssystem ist fur jedes raumliche Datenobjekt frei wahlbar. Bei geometrischen Opera-

18

tionen (Finden des Schnittpunktes, Priifung auf Identitat, etc.) sind Objekte mit unterschiedli-
chen rdumlichen Bezugssystemen kompatibel, die Objekte werden automatisch in das rauml-
che Bezugssystem des Ergebnisobjektes konvertiert. Da in MoBee die Datenbank der Spei-
cherung der Availability Areas (siehe 4.2.1.2) von Mobilitatsanbietern dient, ist eine Erweite-
rung der Datenbankfunktionalitdt um rdumliche Datentypen unabdingbar. Die im Spatial Ex-
tender bereits vorhandenen Datenbankfunktionen fiir geometrische Operationen erlauben es
dariiber hinaus, sdémtliche rdumlichen Berechnungen auf den Datenbankserver auszulagern
(siehe 4.5).

4.2 Routingalgorithmus (TiGeR)

Aus den in 3.4.1 aufgezeigten Problematiken mit konventionellen Routingalgorithmen geht
hervor, dass ein neuer Routingalgorithmus fiir das MoBee-System notwendig ist.

Ein Algorithmus, welcher zusammengesetzte Routen aus mehreren diskreten Routingdiensten
erstellen soll, muss folgende Anforderungen erfillen:

e Auswahl der fur die geplante Route in Frage kommenden Mobilitatsanbieter
e Auswahl geeigneter Teilstrecken der Gesamtroute
e Verknupfung der gewahlten Teilstrecken

Im folgenden Kapitel wird ein Routingalgorithmus beschrieben, welcher multimodale Rou-
tenplanung durch Aggregation bereits bestehender Webservices ermdglicht: Tiered Geospatial
Routing (TiGeR). Es wird dartber hinaus gezeigt, in welcher Weise die oben genannten An-
forderungen von TiGeR erfullt werden.

4.2.1 Terminologie
Im folgenden Abschnitt werden einige TiGeR-spezifische Begriffe kurz erlautert.

4.2.1.1 Mobilitdtsanbieter
Mobilitdtsanbieter im Sinne von TiGeR sind alle externen Dienstleister, welche Routenvor-

schlage fir die von ihnen angebotenen Transportmittel ber eine Webservice-Schnittstelle
anbieten. Es wird ferner unterschieden zwischen linienbasierten (Bus, Bahn) und dynamisch
gerouteten Mobilitatsanbietern (Carsharing, Taxi etc).

4.2.1.2 Availability Area
TiGeR arbeitet mit dem Konzept der Availability Areas (A2). Dies sind diejenigen raumli-

chen Bereiche, in welchem ein Mobilitatsanbieter seine Dienste anbietet. Die A2 werden in
TiGeR lokal vorgehalten, brechen also mit dem Konzept der reinen Aggregation bereits ex-
tern vorhandener Daten. Zum Zeitpunkt der Erstellung dieser Arbeit stellt kein Mobilitatsan-
bieter diese Daten als Service bereit. Es kann auch als unwahrscheinlich betrachtet werden,
dass dies jemals der Fall sein wird (Ausrichtung der Services auf Endkunden). Aus diesem
Grunde ist diese Instanz von lokaler Datenhaltung unvermeidbar.

19

4.2.1.3 Routenvektor

Als Routenvektor wird in TiGeR eine gerade Linie zwischen zwei geografischen Punkten
(Ziel- und Endpunkt einer zu berechnenden Route oder Ziel- und Endpunkt einer zu berech-
nenden Teilstrecke einer Route) bezeichnet. Die Richtung des Vektors ist vom Start- zum
Zielpunkt.

4.2.1.4 Anbietertypen (Tiers)
Mobilitatsanbieter werden in zwei verschiedene Typen unterteilt. Typ-0 Anbieter sind dyna-

misch geroutete Mobilitdtsanbieter, wie zum Beispiel Taxi- oder Carsharingunternehmen.
Typ-1 Anbieter sind linienbasierte Mobilitatsanbieter, welche eine lokal eng begrenzte A2
besitzen, zum Beispiel Stadtbahnen oder Buslinien. Typ-2 Anbieter sind solche, welche Regi-
onen (bergreifende A2 besitzen, zum Beispiel die Deutsche Bahn oder die Osterreichische
Bundesbahn.

4.2.2 Ablauf
Abbildung 4-1 zeigt den Ablauf von TiGeR als Fluldiagramm.

1. Bildung des Vektors

v

2. Auswahl der geschnittenen A2

Route von einer A2 abgedeckt Route von 2 benachbarten AZ abgedeckt

Routenabdeckung nur durch
mehr als 2 A2 maglich

3.1 Abfrage einer Route
vom Mobilitatsanbieter

3.Sortieren der Schnittvektoren
nach Lange

:

'

3.2 Suche von gemeinsamen
Knoten/benachbarten Knoten

'

3.1.2Ausgabe als
Routenvorschlag

4. Auswahl des langsten
Schnittvektors

3.2.1 Ausgabe kombinierter Route

:

5. Auswahl der den Schnittpunkten
mit der A2 nachstgelegenen Knoten

.

6. Rekursive Aufrufe

Rekursiver Aufruf mit
Schnittpunkt als Ursprung

Rekursiver Aufruf mit
Schnittpunkt als Ziel

!

7. Ausgabe kombinierter Route

Abbildung 4-1 Ablauf von TiGeR als Flussdiagramm

Die Schritte im Diagramm werden im Folgenden einzeln erldutert.

1. Bildung des Vektors
In diesem Schritt wird aus den Eingabekoordinaten ein Routenvektor erzeugt. Er dient
der Auswahl der in Frage kommenden A2.

2. Auswahl der geschnittenen A2
Aus der lokalen Datenbank werden diejenigen A2 ausgewahlt, welche vom
Routenvektor geschnitten werden. Die Datenbank gibt hierbei die den A2 zugehdrigen
Mobilitatsanbieter, die Schnittpunkte der A2 mit dem Routenvektor sowie die L&nge
des Schnittvektors zurtck.

3. Routenberechnung je nach Abdeckungsfall
An diesem Punkt wird zwischen drei unterschiedlichen Féllen unterschieden:
Abdeckung des Vektors durch einen Typ-0/1 Mobilitatsanbieter, Abdeckung durch
zwei benachbarte Tier-1 Mobilitatsanbieter und Abdeckung durch 3 oder mehr
Teilstrecken. Dabei ist zu beachten, dass diese Félle sich nicht gegenseitig
ausschlief3en.

Im Falle einer Abdeckung durch einen einzelnen Typ-0/1 Anbieter (Schritt 3.1) wird
eine Route von dem zur A2 zugehdrigen Mobilitatsanbieter abgerufen. Diese wird
dann als Routenvorschlag ausgegeben.

Im Falle einer Abdeckung des Routenvektors durch zwei benachbarte A2 von Typ-0/1
Anbietern wird ein gemeinsamer Knoten der beiden Mobilitatsanbieter,
beziehungsweise werden zwei nahe beieinanderliegende Knoten gesucht. Die beiden
Teilrouten werden anschlieBend von den jeweiligen Mobilitatsanbietern abgerufen und
zusammen als Routenvorschlag ausgegeben.

Im Falle einer Abdeckung unter Zuhilfenahme eines Typ-2 Mobilitatsanbieters oder
mindestens 3 Teilstrecken werden die geschnittenen A2 nach der Lénge des
Schnittvektors sortiert und der Algorithmus fahrt mit Schritt 4 fort.

4. Auswahl des langsten Schnittvektors
Der Mobilitatsanbieter mit dem grofiten Schnittvektor auf der A2 wird ausgewéhit.

5. Auswahl der den Schnittpunkten mit der A2 nachstgelegenen Knoten
Die den Schnittpunkten mit dem Routenvektor nachstgelegenen Knoten des
Mobilitatsanbieters werden gesucht und eine Route zwischen diesen beiden Punkten
abgefragt.

6. Rekursive Aufrufe
Der Algorithmus ruft sich selbst auf, mit den Schnittpunkten mit der A2 des
Mobilitatsanbieters aus 5. als Ursprungs- beziehungsweise Zielpunkt.

7. Ausgabe kombinierter Route

Die kombinierte Route, zusammengesetzt aus den Teilrouten aus 5. und 6. wird als
Routenvorschlag ausgegeben.

21

4.2.3 Ablaufbeispiel
Im folgenden Abschnitt wird, nachdem im vorherigen Abschnitt der Ablauf des TiGeR-

Algorithmus in der Theorie erklart wurde, eben jener Algorithmus anhand eines realen Bei-
spiels nochmals veranschaulicht. Dieses Beispiel befasst sich mit folgendem Szenario: Ein
Geschaftsmann mochte vom Hilton Innsbruck zuriick nach Hause in die Krefelder StraRe
nach Stuttgart. Um seine Heimreise zu planen, nutzt er MoBee, von dessen Pilotphase er von
einem Freund bei IBM gehort hat. Er Gbergibt Start- und Zieladresse, sowie seine gewiinschte
Ankunftszeit, an die Green eMotion B2B Plattform. Diese greift auf einen ebenfalls auf der
Plattform verfligbaren Geocoding-Service zu und ubermittelt die so erhaltenen Start- und
Zielkoordinaten zusammen mit der Ankunftszeit an das MoBee System. Das MoBee System
verfahrt nun wie folgt:

Zuerst wird der Routenvektor gebildet. Dieser verlauft in diesem Fall von (47.261957,
11.395971) nach (48.810369, 9.212706). Der Routenvektor wird nun an die Datenbank tber-
mittelt und von ihm geschnittene Availability Areas geprift. Die den geschnittenen Availabi-
lity Areas zugehorigen Mobilitatsanbieter werden nun der Prozesslogik tibergeben. Abbildung
4-2 zeigt den erstellten Routenvektor zusammen mit den geschnittenen A2 der Verkehrsver-
blnde Tirol und Stuttgart, sowie dem Verfligbarkeitsbereich des Stuttgarter car2go Dienstes.

[E50 ! o - = reucmwangen smwruny -
Schwébi_sch Hall J Gunzenhausen Regenstal

alz Bruchsal o
Heilbronn Dinkelsbihl

Weienburg in Bayern il

Ellwangep (Jagst) lis:}

Treuch:thngen
Aalen Nordlingen

Isruhe Regensbut
o 0

) : =
Pforzheim Ludwigsburg Kelheim
g 75 L2
Neustadt
iden B Neresheim °
: Donauwdrth . Neuburg
Neckar °

gKirchheim unter Teck - Rain
Dillingen

Mainburg

HerrenbergSt @/

Tubingen Pfaﬂenhofen
o o

g
Aichach landsh
= Augsoburg Fm'os_mg v

Fr:ecfberg
Bobingenc

- Langenau

0
ttenburg am Neckar Reutlingen Ul B2

m -
o

Minsingen _Sénden
Balingen K.\ “Neufahrn Dorfer
fGarching

Miinchen
O-&
Trudering-Riem

E3 Starnberg
L

Dachau
o
9% Rottweil Albstadt
o
Sigmaringen = Biberach an der R

. v
' Schwabminchen Germerings e}
in-Schwenningen Mindelheim :) y
Bad Saulgau : . Graf ng
a I

Tuttllxjngen Memmind

Pfullendorf Bad Waldsee
Stockach :

vnaues:chlngen aufbeuren Wolfratshausen
3 Bad'Aiblinge oRo¢

cLeutkirch im Allgd Weilheim in Oberbayern Micshagh

Ravensbur
le/geri(thentwml) x g Kempten (Allgau)

Konstanz Meckenbeuren
2 o

A
lNengen OB 3 sy
o Friedrichshafen e3se WaF\",
.) ussen
e Sonthofen .
S o

7 ‘Winterthur. Bregenz
n o

Penzberg Rottach

Kochel Kufste:]
<
artenkirche) J’\Kd\;ér'gl

e £2 >
~Ziirich©!linau-Effretikon S8 Goallen D°”gb"“ Oberstdorf paittenwald
0N Altstattens 2 Mm“el?er- Schwaz
tisnachte y Hdhenems ey <
! ster : bruck Bramber
Horgens ; ﬁ Imst | E60 | T
Bao'arRapperswd—Jona Liechtenstein Landek Igls Mayrhofen
Einsiedel A, o f v
g N - PO 7ElSS oSt. Leonhard im Pitztal]
Glarus Siid - iol
s | [E47 | o Landquart Salden " ;t”n\o
Linthal £) Stp e
n o
Altdorf erzing
Gemésg iy C?)U’ Brunico
2 Davos Bruneck
A g E3 2
Mustér yaa AT Merano \.Bressanone

Abbildung 4-2 Routenvektor Innsbruck - Stuttgart mit geschnittenen A2
22

Die ebenfalls geschnittenen A2 der Osterreichischen Bundesbahn und der Deutschen Bahn
sind in dieser Grafik nicht markiert, da sie beide die komplette Flache der Grafik abdecken
wirden. Des Weiteren ist zu erwahnen, dass die hier gezeigten Availability Areas nicht de-
tailgetreu die echten A2 der Mobilitatsanbieter abbilden. Sie stellen nur eine Naherung dar
und dienen dem erleichterten Verstandnis dieses Beispiels.

MoBee prift nun, ob der gesamte Routenvektor von einer Availability Area eines Typ-0 oder
Typ-1 Anbieters beinhaltet wird. Aus Abbildung 4-2 ist ersichtlich, dass dies nicht der Fall ist.
Auch die Priifung auf Abdeckung durch zwei sich tberlappende Typ-0 oder Typ-1 Mobili-
tatsanbieter verlauft negativ. Da beide Mdglichkeiten flr eine nichtrekursive Routenerzeu-
gung nun ausgeschlossen sind, wird mit der Bildung einer Tiered Route begonnen.

Zuerst werden die einzelnen Schnittvektoren der von der Datenbankabfrage zuriickgegebenen
Availablity Areas der Lange nach sortiert. Hierbei wird ersichtlich, dass die A2 der Osterrei-
chischen Bundesbahn und der Deutschen Bahn die langsten Schnittvektoren besitzen. MoBee
stellt nun eine Anfrage nach den Endpunkten des Routenvektors naheliegenden Knoten an
den Webservice der Osterreichischen Bundesbahn. Der Webservice gibt die Haltestellen In-
nsbruck Hauptbahnhof und Bad Cannstatt Bahnhof zuriick. Diese beiden Haltestellen werden
nun als Ziel- beziehungsweise Startpunkt flr zwei neue Instanzen des MoBee-Prozesses ge-
nutzt.

Die Teilstrecke Hilton - Innsbruck Hauptbahnhof wird zuerst auf Abdeckung durch einen
einzelnen Typ-0 oder Typ-1 Anbieter tberprift. Hier wird von der Datenbank der Mobilitats-
anbieter VVT gefunden. Da die Strecke relativ kurz (< 1km) ist, werden zusétzlich FulRweg
und Taxifahrt gewahlt. Die Teilstrecke Bad Cannstatt Bahnhof — Krefelder Stral3e wird von
den A2 von VVS und car2go abgedeckt. Auch hier werden aufgrund des kurzen Routenvek-
tors Taxifahrten und Fuweg mitaufgenommen.

Nun wird mit der Routenbildung begonnen. Fir die Strecke Bad Cannstatt Bahnhof - Krefel-
der Stralle wird eine direkte Fahrt mit dem VVS verworfen, da der VVS-Webservice keine
geeignete Strecke mit seinen Fahrzeugen zur gewahlten Uhrzeit liefert. Es wird allerdings
eine Alternativstrecke tber den Stuttgarter Hauptbahnhof gefunden. Es wird ebenso am Cann-
statter Bahnhof ein car2go Fahrzeug gefunden. Eine Fahrtstrecke mit Diesem und der FuBweg
werden jeweils so berechnet, dass der Fahrgast zur gewiinschten Zeit in der Krefelder Strale
ankommt. Danach wird nach jeweils einer Fahrt mit der OBB gesucht, welche zum ermittel-
ten Abfahrtszeitpunkt am Bahnhof Bad Cannstatt ankommt. Die so ermittelten Abfahrtszeit-
punkte der OBB-Strecken werden nun als Ankunftszeitpunkte fiir die Teilstrecke Hilton —
Innsbruck Hauptbahnhof genutzt. Die hieraus entstandenen Vorschlége fur die jeweiligen
Teilrouten werden nun kombiniert und jeweils als Routenvorschlag von MoBee ausgegeben.
Die Green eMotion Plattform gibt diese nun an den Geschéaftskunden weiter, welcher sie an
den Endkunden weiterleitet.

23

4.3 Architekturiibersicht und Systemkontext

MoBee ist mit der Zielsetzung konzipiert, auf der Green eMotion B2B-Integrationsplattform
ausgefiihrt zu werden. Einen Uberblick tiber das Zusammenspiel zwischen dem MoBee Sys-
tem und den umliegenden Softwarekomponenten bietet Abbildung 4-3. Routenanfragen wer-
den von dem Endkunden Uber den Geschéftskunden, welcher bei Green eMotion registriert
ist, an die Green eMotion Plattform weitergeleitet. Diese Ubergibt die Anfrage anschlie3end
an das MoBee System. MoBee ist iber Webservice Schnittstellen mit den kooperierenden
Mobilitatsanbietern und einem Karten/Routendienst verbunden. VVon diesen werden Informa-
tionen Uber die bendtigten (Teil-)Routen abgefragt und von MoBee zu einem oder mehreren
Routenvorschlagen kombiniert. Die kombinierten Routenvorschlage werden wiederum tber
die Green eMotion Plattform zuerst an den Geschaftskunden, dann an den Endnutzer weiter-
geleitet. Alternativ kann die Funktionalitdt des MoBee Systems auch als Teil eines aggregier-
ten Dienstes der Green eMotion Plattform aufgerufen werden. Hierbei wirde ein Dienst ange-
boten werden, welcher als eine seiner Komponenten eine multimodale Reiseplanung beinhal-
tet. Dieser wirde dann die Ausgabedaten von MoBee beinhalten, ohne dass der Kunde den
Dienst explizit aufruft.

Map/Routing Service Transport Froviders

MNon-wab service transport data
{integrated through web service wrapper)

Routing data for dynamically navigated
transport modes (cab, car-sharning etc.}

Transport routing web serices

3 r 3

Multimodal Transport B2B Service
(MoBee)

a

Call from within aggregated serace

Transport optiens (virtual) , Forwarding of customer requests & responses

Trip request (virtual)

v H Y

Trip request

E2B Custamer Green eMotion Integration Platferm

Transport aptions

r 3
Transpart aptions Tnp request

End User (Customer)

Abbildung 4-3 MoBee System Context Diagram

MoBee besteht aus drei Subsystemen, welche jeweils einen Teil der Funktionalitit des Sys-
tems implementieren. Diese Subsysteme sind: WS-Wrapper, Prozesslogik und Geospatial

24

Subsystem. Die Subsysteme bilden eine 2-Schichten-Architektur (siehe Abbildung 4-4). Die
Kommunikation zwischen den einzelnen Subsystemen geschieht tber das Simple Object Ac-
cess Protocol (SOAP).

Process Logic / Public Interface

BPEL/XPath
WebSphere Process Server

I SOAP SOAP

Geospatial Subsystem | | Web Service Wrappers

5QL/GIS Java .
DB2/webSphere Application Server WebSphere Application Server

Abbildung 4-4 MoBee Systemarchitektur

Die Prozesslogik behandelt das eigentliche Routing (siehe Abschnitt 4.2) und beinhaltet die
offentliche Schnittstelle des Systems. Das Geospatial Subsystem (GSS) implementiert die
rdumlichen Berechnungen, welche zur Auswahl der fiir das Routing in Frage kommenden A2
benotigt werden. Zudem liefert es die fur die jeweils in der Prozesslogik laufenden Prozesse
erforderlichen raumlichen Daten (Routenvektoren, Schnittmengen von A2 etc). Die Web Ser-
vice Wrapper dienen der Kommunikation mit Mobilitatsanbietern, welche keinen Webservice
nach 5.3 anbieten. Zum Zeitpunkt der Diplomarbeit sind dies natiirlich alle angebundenen
Webservices (da die Schnittstellen aus 5.3 noch nicht veréffentlicht sind), somit sind die
Wrapper derzeit ein groRer Teil der Implementierung. Sie sind allerdings kein Teil des
MoBee Systems als solchem. Im Folgenden wird die Implementierung der einzelnen Sub-
komponenten im Detail beschrieben.

4.4 Prozesslogik

Die Prozesslogik von MoBee ist, wie bereits erwéhnt, als BPEL-Microflow implementiert.
Der Prozess gliedert sich hierbei in eine Anzahl von Subprozessen, welche jeweils einen spe-
zifischen Aufgabenbereich abdecken. Auf oberster Ebene befindet sich der Hauptprozess,
welcher mit der Datenbank kommuniziert und die Routenvorschldge der typspezifischen Rou-
tingprozesse aggregiert. Ihm untergeordnet sind die drei typspezifischen Subprozesse: Ge-
tSimpleRoutes, HandoffTrip und TieredTrip, welche jeweils einen Typ von Route erzeugen
und an den Hauptprozess tibergeben. An unterster Stelle finden sich die Prozesse, welche die
generischen Queries fir die jeweiligen Typen von Mobilitatsanbietern anbieten: Linienbasier-

25

te Anbieter, Carsharinganbieter und Taxis. Diese Prozesse greifen tber die in 5.3 beschriebe-
nen Webservice Ports auf die Informationssysteme der Mobilitatsanbieter zu. Abbildung 4-5
zeigt die Struktur der Subprozesse, deren Verknlpfung miteinander und die Verknupfungen
mit den genutzten externen Webservice Schnittstellen. Rauten stellen in diesem Diagramm
BPEL-Prozesse dar, Pfeile Verweise auf Webservices. Die folgenden Abschnitte betrachten
die einzelnen Subprozesse im Detail.

= % o7
4 £ 2 3
o o =~
2 g fE
(=) bS] g g 8
c S T
¥] g B o
e 2 ® g X
— - ©
= 3 m ©
< E a 2
2 g
2 =)
£ 3
> 5
S =R
a 2
&
Lod B | d ': Lpd B |d ;2
,,,,, =
3
o
o
o
58
n
o
3
3
("=}
w
5
2
"
© © ©
) e <
=
5 z Y
o 3 174}
8 & 3
- o
3 3 5
P el g
& © S =)
3 3 B ®
B = 2 Fe g
) &
[N :’_‘1
E~/’ ;ﬁ
o
c
m
3
¥
& |
) o |8
(@)
2 : 5
5 3 =
B e £
el |2
3 e
m
5 3
% -
s ®
m (i
3 Ve
H -~
4 O Z
1 s o
3 o g
3 & g
3 H i
1, -3]
s o £l
B 0
e]
¥
]
5
("=}
1
o
o
]

Abbildung 4-5 Assemblydiagramm MoBee
26

4.4.1 GetSimpleRoutes Query
Der GetSimpleRoutes Query behandelt den einfachsten Fall: Der an den Hauptprozess uber-

gebene Routenvektor wird von einem einzelnen Mobilitatsanbieter komplett abgedeckt. Der
Prozess empféangt von einer Instanz des Hauptprozesses das Ergebnis einer Datenbankabfrage
nach 4.5.2.2, welche alle vom Routenvektor geschnittenen Mobilitatsanbieter beinhaltet. Der
GetSimpleRoutes Prozess iteriert nun tber die Menge von Mobilitatsanbietern. Fur jeden An-
bieter, dessen Availability Area den Routenvektor komplett abdeckt, wird der dem Anbieter-
typ zugehorige Subprozess fir die Routengenerierung aufgerufen und dessen Resultat der
Liste von Routenvorschldgen hinzugefligt. Diese Liste wird letztendlich dem aufrufenden
Prozess Ubergeben. Abbildung 4-6 veranschaulicht den Aufruf der entsprechenden Subpro-
zesse.

4 Check if provider contains complete path
< if contains complete path
= set provider endpoint
= Increment trip nurmber counter

4 Switch provider types

> if type = 0 (carsharing) s iftype = 1 (ling)
.¢F> Carsharing_Call | e.“:} Line_Trip_Call
= Add simple carsharing trip to result = Add simple line trip to result

Abbildung 4-6 Aufruf der entsprechenden Subprozesse im GetSimpleRoutes Prozess

Taxirouten werden hier gesondert behandelt. Es sind in der Datenbank von Mobilitatsanbie-
tern keine Taxiunternehmen enthalten, da sich zum Erstellungszeitpunkt der Arbeit keine am
Taxiunternehmen fanden, welche im Rahmen dieser Arbeit kooperieren wollten. Da davon
ausgegangen wird, dass Taxis Uberall verfugbar sind, wird der CabOnly Subprozess ohne
Uberpriifung einer Availability Area aufgerufen. Diese Funktionalitat ist jedoch kein Platzhal-
ter: Auch in einem fertigen System mit Anbindung an reale Taxiunternehmen kann es vor-
kommen, dass keines dieser Unternehmen die benétigte Teilstrecke bedient. In diesem Fall
wird ein Schéatzwert flr ein generisches Taxiunternehmen geliefert. Da in dieser Version des

27

MoBee Konzeptes die Buchung der Teilstrecken manuell vorgenommen werden muss, ist die
fehlende Kopplung an ein bestimmtes Taxiunternehmen noch unproblematisch. Sollte in spé-
teren Versionen ein Buchungssystem integriert werden (siehe 7.1), muss dieser Fall gesondert
behandelt werden.

4.4.2 TieredTrip Query
Der TieredTrip Query ist das Herzstlick des beschriebenen TiGeR Algorithmus. Er empfangt

vom Hauptprozess eine Liste der von dem vorgegebenen Routenvektor geschnittenen Mobili-
tatsanbietern, zusammen mit deren Serviceendpunkten und Schnittvektoren. Diese Liste wird
zuerst nach dem langsten Schnittvektor durchsucht. Der diesem Vektor zugehdrige Mobili-
tatsanbieter (Backbone) wird in einer lokalen BPEL-Variable gespeichert. Dies wird in Ab-
bildung 4-7 veranschaulicht.

I |
L

5% Receive

Z0% Tterate over Providers for longest intersect

4 Switch intersection length

< Case intersection lenger than current longest

= Set new longest provider

Abbildung 4-7 Ausschnitt TieredQuery Subprozess

Danach wird der Endpoint der Referenz auf den generischen Webservice Port im BPEL-
Prozess zugewiesen. Diese Servicereferenz wird nun aufgerufen und dazu genutzt, die den
Start- und Endpunkten des Schnittvektors am ndchsten gelegenen Knoten des Backbones ab-
zurufen. Der Hauptprozess wird nun rekursiv aufgerufen, um eine Streckenberechnung fir die
Teilstrecke zwischen globalem Startpunkt und dem Startpunkt des Backbones zu erzeugen.
Die Ankunftszeiten der sich hieraus ergebenden Mdglichkeiten werden nun als Abfahrtszeiten
fiir Fahrten mit dem Backbone genutzt, welcher anschlieRend fir jede mdgliche Route fir die
erste Teilstrecke aufgerufen wird. Fir die Teilstrecke hinter dem Verfiigbarkeitsbereich des
Backbones wird nun noch einmal rekursiv der Hauptprozess aufgerufen. Nach jedem dieser
Aufrufe werden nun die Routenketten zu einem Routenvorschlag zusammengefligt. Schluss-

28

endlich wird die Liste der Routenvorschldge an die aufrufende Instanz des Hauptprozesses
ubergeben. Abbildung 4-8 veranschaulicht dieses VVorgehen.

& Call TripQuery for departure SubTrip

Z5% Tterate over possible departure SubTrips

= Extract departure subtrip arrival tire & make backbone request
L L]

e.“:} Get backbone trip
= Make destination Subtrip req
e.‘z’ Call TripQuery for destination SubTrip

£2% Tterate over destination subtrips

= Add to result object

b Answer

Abbildung 4-8 Bildung einer Tiered Route

Im Falle der Angabe einer gewiinschten Ankunftszeit, anstatt einer gewiinschten Abfahrtszeit,
wird umgekehrt verfahren: Der ,hintere* Teil des ermittelten Routenvektors wird zuerst re-
kursiv an den TripQuery Subprozess Ubergeben und dessen Abfahrtszeit als gewiinschte An-
kunftszeit fir die Teilstrecke auf dem Backbone genutzt.

4.4.3 Handoff Query
Der Handoff Query behandelt den Sonderfall, dass ein Routenvektor von zwei sich berlhren-

den oder sich (berlappenden Availability Areas abgedeckt wird. Der Query selbst kimmert
sich nicht um das Auffinden dieser A2 und den ihnen zugehérigen Mobilitatsanbietern, dies
wird, wie in 4.5.2.3 beschrieben, vom GSS libernommen. Der Handoff Query empfangt vom
Hauptprozess eine Liste von Paaren aus Mobilitatsanbietern, welche den Routenvektor zu-

29

sammen abdecken. Nun wird gepruft, um welche Anbietertypen es sich dabei handelt: Im
Falle von zwei Typ-1 Anbietern wird eine einfache Routenabfrage (siehe 4.4.4) uber die
komplette Wegstrecke an den auf dem Routenvektor ,,vorderen* Anbieter gestellt. Dies hat
den Hintergrund, dass alle Typ-1 Anbieter, welche zum Erstellungszeitpunkt dieser Arbeit in
MoBee integriert sind, zumindest die groReren Knoten ihrer Nachbarnetze beinhalten und
auch dort Routenvorschldge liefern kénnen. Dies hat deutlich effizientere Routenvorschlage
zum Ergebnis, als eine Verknipfung zweier diskreter Routenanfragen uber einen gemeinsa-
men Knoten, da der zur Berechnung genutzte Routenvektor nicht notwendigerweise tiber dem
realen Liniennetz liegt

Im Falle von zwei Typ-0 Anbietern wird zuerst gepriift, ob sich in der Néhe des Ubergabe-
punktes ein verfligbares Fahrzeug desjenigen Anbieters befindet, dessen Availability Area den
,hinteren” Teil des Routenvektors abbildet. Wurde ein Fahrzeug gefunden, wird dessen Posi-
tion als Zielpunkt fur eine Routenanfrage an den ersten Anbieter, und als Startpunkt fur eine
Anfrage an den zweiten genutzt. Die beiden Teilrouten werden nun verknipft und ausgege-
ben. Abbildung 4-9 bietet eine grafische Darstellung dieses VVorgangs.

= 5et endpoint
e.“:} Get provider 2 vehicle locations
4 Check if vehicles found
< Case vehicles found
= Get vehicle coordinates & service endpoints

|=| Get subtrips

@"1’} Gettrip 1 @"1’} Get trip 2

= Add to result

Abbildung 4-9 Handoff Query mit zwei Typ-0 Anbietern

Im Falle einer Mischung aus Typ-0 und Typ-1 Anbietern wird &hnlich vorgegangen, mit dem
Unterschied, dass im Falle eines Typ-1 Anbieters als ,,erstem Anbieter auf eine Verifikation
von vorhandenen Fahrzeugen verzichtet werden kann.

30

4.4.4 LineTrip Query
Der LineTrip Query Subprozess behandelt das Abfragen méglicher Routen von einem Typ-1

Mobilitatsanbieter. Er empfangt Start- und Zielpunkt, als auch den Serviceendpoint eines
Typ-1 Anbieters. Der Serviceendpoint wird der Referenz auf den generischen Webservice
Port (siehe 5.3.1) zugewiesen. Danach werden zuerst Knoten in der Nahe von Start- und Ziel-
punkt, dann moégliche Routen zwischen diesen Knoten abgefragt. Die Ergebnismenge wird
dann dem aufrufenden Prozess ibergeben.

4.4.5 CarsharingTrip Query
Dieser Subprozess liefert mogliche Reiserouten mit Typ-0 Anbietern welche Carsharing an-

bieten. Wie der LineTrip Subprozess empfangt auch er Start-, Zielpunkt und Serviceendpoint
eines Mobilitatsanbieters. Nachdem tber den generischen Typ-0 Port (siehe 5.3.2) dem Start-
punkt nahegelegene verfugbare Fahrzeuge des Mobilitatsanbieters gefunden wurden, wird
uber den angebundenen Routingservice (siehe 5.3.3) eine Autoroute bezogen. Diese wird
dann, zusammen mit dem Standort des verfligbaren Fahrzeugs, an den aufrufenden Prozess
Ubergeben.

4.4.6 FootTrip Query
Dieser Subprozess dient der Ermittlung von FuBrouten. Er beinhaltet einen Aufruf des exter-

nen Routingdienstes. Diesem werden Start- und Zielpunkt ibergeben. Das Resultat des Rou-
tenvorschlages wird dann in das MoBee-interne Format FootTripType konvertiert (siehe
5.1.2).

4.4.7 CabTrip Query
Der CabTrip Query Subprozess ist in dieser Implementierung von MoBee ein Platzhalter, da

sich kein Online Taxiservice dazu bereit erklérte, eine Schnittstelle zu den benétigten Daten
in ihrem System zur Verfligung zu stellen. Der Prozess ruft eine Autoroute vom Routingser-
vice ab und errechnet aus deren Parametern (Dauer, Wegstrecke) Schéatzwerte fir Dauer und
Kosten einer Taxifahrt. Diese werden an den aufrufenden Prozess Ubergeben. Wie bereits
erwéhnt, konnte diese Funktionalitidt nach Integration von Taxiunternehmen weiterverwendet
werden, um auch Routenvorschldge mit dem Taxi fir solche Gebiete anbieten zu kdnnen,
welche nicht innerhalb der Availability Area eines solchen integrierten Taxiunternehmens
liegen.

4.4.8 TripQuery_MainProcess
Der Hauptprozess nimmt vom Wrapper oder einem TieredTrip Query Start- und Endpunkte

der gewiinschten Route an und leitet diese je nach Bedarf an die entsprechenden Subprozesse
weiter. Dazu wird zuerst die Datenbank nach 4.5.2.2 abgefragt, um diejenigen Mobilitatsan-
bieter zu erhalten, deren Availability Areas vom Routenvektor geschnitten werden oder die-
sen komplett enthalten. Danach wird der GetSimpleRoutes Query (siehe 4.4.1) aufgerufen,
um eventuell vorhandene einfache Routen zu erhalten. Sollten keine einfachen Routen gefun-
den werden, werden die kombinierten Routenqueries aufgerufen. Deren Ergebnisse werden
zusammengefasst und an den aufrufenden Subprozess ibergeben.

31

4.4.9 TripQuery_Wrapper
Dieser Subprozess dient dazu, die Sortierfunktion wvon rekursiven Aufrufen des

TripQuery_MainProcess Subprozesses abzukapseln. Er nimmt als Eingabeparameter Start-
und Zielpunkt der gewinschten Route, zusammen mit Sortier- und Begrenzungsparameter
(siehe 4.7) entgegen. Nachdem eine Instanz von TripQuery_MainProcess eine Liste von Rou-
tenvorschldagen zuriickgibt, gibt er diese Liste zusammen mit dem Sortierparameter an den
Sorting Service weiter. Die von Diesem sortierte Liste stellt die Ausgabe des
TripQuery_Wrapper Prozesses dar.

4.5 Geospatial Subsystem

Der folgende Abschnitt behandelt das Geospatial Subsystem (GSS) der MoBee Implementie-
rung. Das GSS ermdglicht es, Informationen Uber vorhandene Mobilitatsanbieter via Embed-
ded SQL aus einer Datenbank abzurufen. Der Aufbau und die genaue Funktionsweise des
GSS werden im Folgenden beleuchtet.

4.5.1 Ubersicht
Das GSS hat die Aufgabe anhand eines Routenvektors die in Frage kommenden Mobilitats-

anbieter fur eine zu erstellende Reiseroute zu liefern. Zu diesem Zwecke enthalt es eine Da-
tenbank mit einer Tabelle aller angeschlossenen Mobilitatsanbieter. Abbildung 4-10 zeigt die
Struktur der Tabelle.

MNarme Data Type Length

CARRIERNAME WARCHAR 64
AREA DE2GSE.ST_MULTIPOLYGON
TYPE INTEGER

Abbildung 4-10 Datenbankstruktur GSS

Das Feld ENDPOINT beinhaltet die Endpunktreferenz des dem Mobilitatsanbieter zugehori-
gen Webservice.

CARRIERNAME beinhaltet die Textbezeichnung des Mobilitatsanbieters.

Das Feld AREA enthalt die Availability Area des Mobilitatsanbieters als ST_Multipolygon.
Hierbei handelt es sich um einen rdumlichen Datentyp des DB2 Spatial Extenders, welcher
ein in sich abgeschlossenes Polygon aus Koordinaten eines rdumlichen Bezugssystems (im
Falle von MoBee WGS84) beinhaltet.

Das Feld TYPE enthalt die Typisierung des Moblitatsanbieters nach 4.2.1.4.

32

Das GSS bietet Uber eine Webservice Schnittstelle drei Funktionen fir raumliche Berechnun-
gen an:

e Suche nach allen Mobilitatsanbietern, deren Availability Areas eine bestimmte
WGS84-Koordinate beinhalten.

e Suche nach allen Mobilitatsanbietern, deren A2 von einem Routenvektor geschnitten
werden. Rickgabe der Mobilitatsanbieter und der jeweiligen Schnittvektoren.

e Suche nach Paaren von Mobilitatsanbietern, welche zusammen einen Routenvektor
abdecken.

Der Webservice Port, seine Operationen und die ihnen zu Grunde liegenden Datentypen wer-
den in 5.2 im Detail beschrieben.

4.5.2 Queries und Spatial Functions
Die Abfrage von Daten vom DB2 Server erfolgt Uber vorgefertigte SQL-Queries (Embedded

SQL) innerhalb einer JavaEE Anwendung, welche rdumliche Berechnungsfunktionen (Spatial
Functions) des DB2 Spatial Extenders verwenden. Diese werden im Folgenden genauer be-
trachtet.

4.5.2.1 Abfrage von beinhaltenden Availability Areas

1 SELECT ENDPOINT, TYPE, CARRIERNAME FROM mobee.availareas
2 WHERE

3 db2gse.ST_WITHIN(db2gse.ST_POINT(X, Y,1003), AREA

4)

5 =1

In diesem Query werden Endpoint, Typ und Name aller Mobilitatsanbieter abgerufen, deren
Availability Areas den Punkt (X,Y) beinhalten. Die Spatial Function ST_WITHIN ubergibt 1,
falls der Punkt (X,Y) in AREA liegt, 0 falls nicht. Die Funktion ST_POINT ist die Kon-
struktorfunktion fur den Raumlichen Typ selben Namens. Die Zahl 1003 ist hierbei die Kenn-
zahl des zu verwendenden raumlichen Bezugssystems, in diesem Fall WGS84.

33

4.5.2.2 Abfrage von geschnittenen Availability Areas

WITH IntersectionsTable AS (
SELECT ENDPOINT, TYPE, CARRIERNAME,

1

2

3

4 db2gse.ST_TOLINESTRING(

5 db2gse.ST _INTERSECTION(

6 db2gse.ST_LINESTRING('linestring(XY1l XY2',1003),
7 AREA)

8) AS IntersectionlLine

9

10 FROM mobee.availareas)

12 SELECT ENDPOINT, TYPE, CARRIERNAME,

13 db2gse.ST_LENGTH(IntersectionLine) AS IntersectionLength,

14 db2gse.ST_STARTPOINT(IntersectionlLine) AS StartPoint,

15 db2gse.ST_ENDPOINT(IntersectionLine) AS INTERSECTIONENDPOINT

17 FROM IntersectionsTable

19 WHERE db2gse.ST_ISEMPTY(INTERSECTIONLINE) != 1

Der hier beschriebene Query ist zweiteilig. Im ersten Teil wird eine virtuelle Tabelle erzeugt,
welche eine zuséatzliche Spalte mit dem Schnittvektor der jeweiligen Availability Area enthalt.
Der zweite Teil extrahiert die Start- und Endpunkte des Schnittvektors. Die Zweiteilung er-
folgt aus Performancegrunden: Durch das Zwischenspeichern des Schnittvektors werden die
leistungsintensiven Spatial Functions ST_INTERSECTION und ST_LINESTRING pro Mo-
bilitdtsanbieter nur einmal aufgerufen.

34

4.5.2.3 Abfrage von benachbarten Mobilitdtsanbietern

1 WITH ContainingAreas AS(

2 SELECT ENDPOINT, TYPE, CARRIERNAME, AREA

3 FROM mobee.availareas WHERE

4

5 db2gse.ST _WITHIN(db2gse.ST_POINT(X1l, Y1,1003),AREA) != 0
6 OR db2gse.ST_WITHIN(db2gse.ST_POINT(X1, Y1,1003),AREA) != @
7),

8

9 RawIntersects AS (

10 SELECT ENDPOINT AS SERVICEENDPOINT, TYPE AS CARRIERTYPE,
11 CARRIERNAME,

12

13 db2gse.ST_TOLINESTRING(

14 db2gse.ST_INTERSECTION(

15 db2gse.ST_LineString(

16 "linestring(XY1l, XY2)',1003),

17 AREA)

18)

19 AS IntersectionLine FROM ContainingAreas

20),

21

22 IntersectionTable AS (
23 SELECT SERVICEENDPOINT, CARRIERTYPE,

24 CARRIERNAME, IntersectionLine,
25 db2gse.ST_STARTPOINT(IntersectionLine) AS StartPoint,
26 db2gse.ST_ENDPOINT(IntersectionLine) AS EndPoint

27 FROM RawIntersects
28 WHERE db2gse.ST_LENGTH(InterSectionLine) != 0
29)

31 SELECT

32 IT1.CARRIERNAME AS CARRIERNAME1,
33 IT1.SERVICEENDPOINT AS ENDPOINT1,
34 TIT1.CARRIERTYPE AS TYPE1,

35 IT2.CARRIERNAME AS CARRIERNAME2,
36 IT2.SERVICEENDPOINT AS ENDPOINT2,
37 IT2.CARRIERTYPE AS TYPEZ2,

38 IT1.ENDPOINT AS HANDOVER

40 FROM IntersectionTable IT1, IntersectionTable IT2
41 WHERE

43 (db2gse.ST_TOUCHES(IT1l.Endpoint,IT2.IntersectionLine) =1
44 OR db2gse.ST_WITHIN(IT1.ENDPOINT,IT2.IntersectionLine) = 1)
45 AND db2gse.ST_EQUALS(IT1.ENDPOINT, IT2.ENDPOINT) != 1

46 AND db2gse.ST_EQUALS(IT1.STARTPOINT, IT2.STARTPOINT) !=1

Die Zeilen 1 bis 25 sind funktionsgleich mit dem Query aus 4.5.2.2. Deren Resultat wird wie-
derum in einer virtuellen Tabelle gespeichert. Danach wird nach Anbieterpaaren gesucht, de-
ren Schnittvektoren sich Uberlappen oder berlihren. Im weiteren Verlauf werden diese dann
zusammen mit einem, beiden Schnittvektoren gemeinsamen, Punkt ausgegeben.

4.6 Web Service Wrapper

Wie bereits erwéhnt miissen Mobilitatsanbieter, je nach Typ, einen Webservice Port aus 5.3
implementieren. Da dies vor einer kommerziellen Implementierung und der anschlieRenden
Vermarktung des MoBee Systems jedoch nicht geschehen wird, ist eine Kapselung der real
existierenden Webschnittstellen notwendig. Diese Funktion tbernehmen die Web Service
Wrapper (WSW). Die WSW gliedern sich in finf Komponenten:

e WS-Port
Java Implementierung des jeweiligen Porttyps. Entweder Generic LineTrip Port,
Generic Carsharing Port oder NavRoute Port. Die Komponente beinhaltet auch Java-
Reprasentationen der XML-Datentypen, welche im jeweiligen Porttyp Verwendung
finden.

e HTTP-Accessor
Behandelt die Kommunikation mit dem jeweiligen Anbieter. HTTP-Request entweder
als POST oder GET. Beinhaltet teilweise auch einen Trust Manager fur SSL-
Verbindungen.

e JavaEE Core
Steuermodul flr die restlichen Komponenten, instanziiert diese auch.

e SAX-Parser
Wandelt den vom Partner tbermittelten XML-Stream in das vom Porttyp definierte
Datenformat um.

e Partnerspezifische Dienstmodule
Einige Partner Gbermitteln ihre Daten in einer Weise, welche nicht nur strukturell,
sondern auch beziiglich des Datenformates von der MoBee-Spezifikation abweicht
(Positionsdaten in GaulR-Kruger anstatt WGS84, Haltestellenliste unsortiert etc.). Die
WSW dieser Partner erfordern folglich zusétzliche Dienstmodule, welche die
gelieferten Daten in das korrekte Format umformatieren.

Abbildung 4-11 stellt die Komponenten eines WSW dar und zeigt den Datenfluss eines
Querys an den Mobilitatsanbieter. Die Pfeile mit durchgezogener Linie stellen hierbei den
Datenfluss vom MoBee System zum Partnerservice dar, gepunktete Pfeile den Datenfluss in
die entgegengesetzte Richtung.

36

MoBee Mobility Provider
A A
v WS-Wrapper '
Ws-Port HTTP-Accesor
T &
A4
JavaEE Core
4 A
: \ 4 i v
Partner Specific Helpers SAX-Parser

Abbildung 4-11 Architektur der WSW

4.7 Sorting Service

Der Sorting Service stellt einen Sonderfall der WSW dar. Anstatt die Datenausgabe des
Webdienstes eines Mobilitatsanbieters zu kapseln, formatiert dieser Wrapper die Ausgabe der
Prozesslogik. Zu diesem Zwecke beinhaltet die externe Schnittstelle des MoBee Systems
(siehe 5.1) die Parameter SortBy und SecondaryCap. SortBy gibt an, nach welcher Metrik die
gelieferten Routenvorschlage sortiert werden sollen. Mdgliche Werte sind hierbei die Werte
DURATION (Fahrtdauer) und FARE (Fahrtkosten). SecondaryCap dient dazu, jene Routen-
vorschldge herauszufiltern, welche in der sekundéren Metrik stark vom Durchschnittswert
aller berechneten Routenvorschléage abweichen. Hierfur wird als Parameter SecondaryCap ein
Integer Ubergeben, der einen Prozentsatz des Durchschnittes angibt, welchen die sekundare

Metrik nicht Uberschreiten darf.

37

5 Webservice Ports

Im folgenden Kapitel werden die diversen Webserviceschnittstellen beschrieben, welche
MoBee fur die interne Kommunikation mit seinen Subkomponenten und die Kommunikation
mit externen Anbietern verwendet.

5.1 TripQuery Wrapper (Hauptschnittstelle)

Der TripQuery Wrapper Port stellt die Hauptschnittstelle des MoBee Systems dar. Uber
diesen werden Routenanfragen an das System gestellt und Routenvorschlage zurtickgegeben.

& TripQuery_Wrapper
GetTrip
[+ input parameters | [8] GetTrip
1 output parameters | [8] GetTripResponse

Abbildung 5-1 TripQuery Wrapper Port

5.1.1 Operationen

o GetTrip
Liefert Routenvorschlége abhangig von Start- und Zielkoordinaten und
Sortierparametern

5.1.2 Datentypen

GetTripType

(GetTripType)

[2] StartPoint WGE584_Point 4|
[e] DestPoint WGESE4 _Point [
] ArrivalTime dateTime

[e] DepartureTime dateTirme
[2] SortBy string

[e] SecondaryCap int

38

Funktion:
Containerelement fiir die Eingabedaten der Operation GetTrip
Felder:

e StartPoint (WGS84_Point)
Koordinaten des Startpunktes fir die zu ermittelnden Routenvorschlége

e DestPoint (WGS84_Point)
Koordinaten des Zielpunktes fiir die zu ermittelnden Routenvorschlége

e ArrivalTime (dateTime)
Zielankunftszeit flr die zu ermittelnden Routenvorschlége

e DepartureTime (dateTime)
Zielabfahrtszeit fur die zu ermittelnden Routenvorschlage

e SortBy(string)
ENUM, welcher die Metrik angibt, nach welcher sortiert werden soll

e SecondaryCap(int)
Obergrenze flr sekundare Metriken

GetTripResponseType

(GetTripResponseType)
[e] TripSuggestions [1.1] TripSuggestlist *

Funktion:
Containerelement fur die Ausgabedaten der Operation GetTrip
Felder:

e TripSuggestions (TripSuggestL.ist)
Liste von TripSuggestion

39

TripSuggestion

(] TripSuggestion

:~=:{> <Hier klicken zum Filtern von...»
le| Fare float
(8] Dwuration int
[e] SuggesticnPart SuggestionPart []
[e] ArrivalTime dateTime

(2] DepartureTime dateTime

Funktion:

Enthélt die Eckdaten (Fahrtzeit, Kosten) eines Routenvorschlages, sowie eine Liste von Teil-
trecken, welche zusammen die vorgeschlagene Route ergeben.

Felder:

e Fare (float)
Fahrtkosten des Routenvorschlags in Euro

e Duration (int)
Gesamte Fahrtdauer des Routenvorschlages in Minuten

e SuggestionPart (SuggestionPart[])
Array von Elementen des Typs SuggestionPart. Teilstrecken ergeben zusammen den
Routenvorschlag

e ArrivalTime (dateTime)
Ankunftszeit des Routenvorschlags

e DepartureTime (dateTime)
Abfahrtszeit des Routenvorschlags

SuggestionPart

[C] SuggestionPart
o <Hier klicken zum Filtern von...»

[e] CabRoute CabRouteType

[&] RailTrip TripType

[g]| CarsharingTrip Carsharing_TripType

[e] FootTrip FootTripType
Funktion:

Enthélt eine Teilstrecke des gesamten Routenvorschlages. Jedes Element vom Typ
SuggestionPart enthélt genau ein Element, welches entweder vom Typ CabRouteType,

40

TripType oder Carsharing_TripType ist. Die Datentypen der Sorten von Teilstrecken, welche
die Dienste von Mobilitatsanbietern nutzen, sind in 5.3 beschrieben.

Felder:

e CabRoute (CabRouteType)
Teilstrecke, welche mit dem Taxi zurlickgelegt wird

e RailTrip (TripType)
Teilstrecke, welche mit linienbasierten Verkehrsanbietern zurtickgelegt wird

e CarsharingTrip (Carsharing_TripType)
Teilstrecke, welche mit einem Carsharingauto zurtickgelegt wird

e FootTrip (FootTripType)
Teilstrecke, welche zu Ful3 zurlickgelegt wird

FootTripType

(] FootTripType

o <Hier klicken zum Filtern von...»
[2] Route MavRouteType
(] ArrrvalTime dateTime

[e] DepartureTime dateTime

Funktion:
Enthalt eine Teilstrecke, welche zu Full zuriickgelegt wird
Felder:

e Route (NavRouteType)
Route, welche gelaufen werden muss (siehe 5.3.3)

e ArrivalTime (dateTime)
Ankunftszeit der Laufstrecke

e DepartureTime (dateTime)
Startzeit der Laufstrecke

41

5.2 Database Connector (GSS Kommunikation)

Der Database Connector Port regelt die Kommunikation des MoBee-Hauptprozesses mit dem
DB2-Server. Er stellt Operationen zur Verfugung, welche Informationen (ber
Mobilitatsanbieter und ihre Availability Areas in Bezug auf geodéatische Punkte liefern.

¢4 Database Connector
&5 GetContainingdrea

L+ input parameters [e] GetContainingArea

411 output parameters [e] GetContainingAreaResponse
i Getlntersectingfreas

L+l input parameters | 8] Getlntersectingfreas

1 output parameters | 8] GetlntersectingfreasResponse
i GetAdjacentfreas

L+ input parameters [e] GetAdjacentlreas

411 output parameters [e] GetAdjacentAreasResponse

Abbildung 5-2 Database Connector Port

5.2.1 Operationen

e GetContainingArea
Liefert alle Availability Areas, welche einen (ibergebenen Punkt einschliessen

e GetlintersectionAreas
Liefert alle Availability Areas, welche von einem (bergebenen Routenvektor
geschnitten werden, zusammen mit den Schnittvektoren und ihren Start- und
Endpunkten

e GetAdjacentAreas
Liefert eine List von Anbieterpaaren, welche jeweils einen Routenvektor zusammen
abdecken

5.2.2 Datentypen

GetContainingArea

[[e] GetContainingArea
:{—‘:5 <Hier klicken zum Filtern van...>

[8] Coords WG584_Point

42

Funktion:
Containerelement fur die Eingabedaten der Operation GetContainingArea
Felder:

e Coords (WGS84 Point)
Diejenigen Coordinaten, auf die die Availability Areas gepruft werden sollen

GetContainingAreasResponse

[[g] GetContainingAreaResponse
5o <Hier klicken zum Filtern von...»

[8] Provider ProviderType []

Funktion:
Containerelement fur die Ausgabedaten der Operation GetContainingArea
Felder:

e Provider (ProviderType[])
Array von Providern, dessen Availability Areas den Eingabepunkt enthalten

GetIntersectingAreasResponse

[[€] GetIntersectingAreasResponse
:{—-:D <Hier klicken zum Filtern von...»

[e] Provider MobilityProviderType []

Funktion:
Containerelement fiir die Ausgabeoparameter der Operation GetlntersectingAreas
Felder:

e Provider (MobilityProviderType[])
Array von Mobilitatsanbietern inklusive ihrer Schnittvektoren

43

GetlIntersectingAreas

[[€] GetIntersectingAreas

:~=:{> <Hier klicken zum Filtern von...»
[e] DepartureCoords WG584_Point
[e] DestinationCoords WG5E4_Point

Funktion:
Containerelement fur die Eingabedaten der Operation GetintersectingAreas
Felder:

e DepartureCoords (WGS84_Point)
Startpunkt fiir den Routenvektor

e DestinationCoords (WGS84 Point)
Endpunkt fir den Routenvektor

GetAdjacentAreas

[[€] GetAdjacentAreas
:{—-:D <Hier klicken zum Filtern von...»

[g] DepartureCoords WG584_Point
[e] DestinationCoords WG5E4_Point

Funktion:
Containerelement fur die Eingabedaten der Operation GetAdjacentAreas
Felder:

e DepartureCoords (WGS84_Point)
Startpunkt des abzudeckenden Routenvektors

e DestinationCoords (WGS84_Point)
Endpunkt des abzudeckenden Routenvektors

GetAdjacentAreasResponse

[[g] GetAdjacentAreasResponse
:~=:D <Hier klicken zum Filtern von...»

[2] ProviderPair ProviderPairType []

Funktion:
Containerelement fur die Ausgabedaten der Operation GetAdjacentAreas
Felder:

e Providerpair (ProviderPairType[])
Array von Paaren von Mobilitatsanbietern inklusive der ihnen zugehoérigen
Schnittvektoren.

ProviderType

(] ProviderType

=& <Hier klicken zum Filtern ven...>
[e] ProviderReference ServiceRefType
(8] ProviderMame string

[e] ProviderType int

Funktion:

Datenelement fiir das Kapseln einer Servicereferenz zusammen mit dem Klartextnamen des
Mobilitatsanbieters und dessen Typ.

Felder:

e Provider Reference(ServiceRefType)
Referenz auf den dem Mobilitatsanbieter zugehorigen Webservice

e ProviderName(string)
Anzeigename des Mobilitatsanbieters

e ProviderType(int)
MoBee-interne Klassifizierung des Anbietertyps

45

MobilityProviderType

(] MaobilityProviderType

-+ - - -
v < Hier klicken zum Filtern von..>

[e] Provider ProviderType

[8] IntersectionLength double

[e] StartPoint WG584_Point

(8] EndPuoint WG584 _Point
Funktion:

Datenelement flir die Kapselung eines Mobilitatsanbieters mit dessen Schnittvektor und
dessen Start- und Endpunkt.

Felder:

e Provider (ProviderType)
Enhalt die Servicereferenz, den Klartextnamen und den Typ des Mobilititsanbieters

e IntersectionLength (double)
Lange des Schnittvektors

e StartPoint (WGS84 _Point)
Startpunkt des Schnittvektors

e EndPoint (WGS84 _Point)
Endpunkt des Schnittvektors

ProviderPair

(] ProviderPairType

o <Hier klicken zum Filtern von...>
[8] Providerl ProviderType
[8] Provider2 ProviderType
8] HandoffPoint WG584_Point

Funktion:

Datenelement, welches zwei Mobilitatsanbie'g_er beinhaltet, die einen Routenvektor
gemeinsam abdecken, zusammen mit einem Ubergabepunkt.

Felder:

e Providerl (ProviderType)
Mobilitatsanbieter, welcher den ersten Teil des Routenvektors abdeckt

e Provider2 (ProviderType)
Mobilitatsanbieter, welcher den zweiten Teil des Routenvektors abdeckt

e HandoffPoint (WGS84_Point)
Ubergabepunkt zwischen den Verfligbarkeitsbereichen der Mobilitatsanbieter

5.3 Externe Webservice Ports

Um mit dem MoBee-System zu kommunizieren, miissen Webservices, je nach ihrer Funktio-
nalitat, einen von drei Webservice Ports implementieren. Diese werden im Folgenden, zu-
sammen mit den ihnen zu Grunde liegenden Datentypen, beschrieben.

5.3.1 Generic LineTrip Port
Der Generic LineTrip Port ist der Porttyp fur linienbasierte Mobilitatsanbieter. Er bietet Funk-

tionalitdt fur das Auffinden von Knoten (Haltestellen) in Abhédngigkeit von WGS84-
Koordinaten und dem Abruf von Strecken zwischen zwei aufgefundenen Knoten.

&% Generic_Lin elrip_Port
i GetMearModesByloc
Ll input pararmeters [e] GetMearModesBylLoc
11 output pararmeters [e] GetMearModesBylocResponse
i GetTrip
L+l input parameters | [e] GetTrip
<1 output parameters |2| GetTripResponse

Abbildung 5-3 Generic LineTrip Port

5.3.1.1 Operationen:

e GetNearNodesByLoc
Gibt einer WGS84-Koordinate naheliegende Knoten des Mobilitatsanbieters zurtick

e GetTrip
Gibt Routenvorschldage zwischen zwei Knoten des Mobilitatsanbieters zurlick

47

5.3.1.2 Datentypen:

GetNearNodesByL.oc

(] GetMearMNodesBylLoc
=2 <Hier klicken zum Filtern von,..>

[8] Coordinates WG584_Point

Funktion:
Containerelement fur die Eingabedaten der Operation GetNearNodesByLoc
Felder:

e Coordinates (WGS84 Point)
Diejenigen Koordinaten, in dessen Nahe Knoten gefunden werden sollen

GetNearNodesByLocResponse

[_] GetMearModesBylLocResponse
5o <Hier klicken zum Filtern von...>

(8] Mode RailMode []

Funktion:
Containerelement fur die Ausgabedaten der Operation GetNearNodesByLoc
Felder:

e Node (RailNode[])
Array von Knoten, welche den tGbergebenen Koordinaten nahe liegen

48

GetTrip

(] GetTrip

o <Hier klicken zum Filtern von...»
[8] DepartureModelll string
[e] DestinationModelD string
(2] DepartureTime dateTime

] ArrrvalTirme dateTime

Funktion:
Containerelement fiir die Eingabedaten der Operation GetTrip
Felder:

e DepartureNodelD (string)
Serviceinterner Identifikationsstring fiir den Abfahrtknoten

e DestinationNodelD (string)
Serviceinterner Identifikationsstring flir den Zielknoten

e DepartureTime(dateTime)
Zielabfahrtszeit

e ArrivalTime(DateTime)
Zielankunftszeit

GetTripResponse

[_] GetTripResponse

—+| = = -
s <Hier klicken zum Filtern von...»

[8] Trip TripType[]

Funktion:
Containerelement fiir die Ausgabedaten der Operation GetTrip

Felder:

e Trip (TripType[])
Dient der Riickgabe von vorgeschlagenen Routen zwischen den tbergebenen
Haltestellen

TripType

] TripType

:~=:D <Hier klicken zum Filtern von...>
(] TripTime int
[2] Fare float
[e] SubTrip SubTripType[]

Funktion:

Enthélt Fahrtzeit und Fahrtkosten, sowie die einzelnen Teilstrecken einer vorgeschlagenen

Reiseroute
Felder:

e TripTime (int)
Komplette Fahrtzeit der vorgeschlagenen Route in Minuten

e Fare (float)
Kosten der Fahrt in Euro

e SubTrip (SubTripType[])
Teilrouten der Fahrtstrecke

SubTripType

] SubTripType

o <Hier klicken zum Filtern von...»
[e] LineMarne string
[e] DepartureModeMame string
(€] DestinationModeMame string

[e] DepartureTime dateTirmne
8] ArrivalTime dateTime
Funktion:

Enthalt die Parameter einer Teilroute

50

Felder:

LineName (string)
Name der Linie der Teilroute (z.B. U14)

DepartureNodeName (string)
Anzeigename der Abfahrtshaltestelle

DestinationNodeName (string)
Anzeigename der Zielhaltestelle

DepartureTime (dateTime)
Abfahrtszeit der Teilroute

ArrivalTime (dateTime)
Ankunftszeit der Teilroute

RailNode

] RailMode

—+*l - . -
s <Hier klicken zum Filtern von...»

[e] DispMame string
8] Coordinates WG584_Point

[e] Internalll string

Funktion:

Enthalt die relevanten Daten eines Knotens, sowohl fur die MoBee-interne Verarbeitung, als
auch fir die Rickgabe an den externen Webservice.

Felder:

DispName (string)
Anzeigename des Knotens

Coordinates (WGS84_Point)
WGS84-Koordinaten des Knotens fur die MoBee-interne Verarbeitung

Internal ID (string)
Interner Identifikationsstring des Knotens

o1

5.3.2 Generic_Carsharing Port
Der Generic Carsharing Port ist der Porttyp fur die Kommunikation mit Carsharinganbietern.
Er bietet Funktionalitat fir das Auffinden von verfligbaren Fahrzeugen.

(1) Generic_Carsharing_Port
3 getVehicles
L+l input parameters | [g] getVehicles
1 output parameters | [g] getVehiclesResponse

Abbildung 5-4 Generic_Carsharing Port

5.3.2.1 Operationen

e getVehicles
Gibt eine Liste von verfligbaren Fahrzeugen zuriick, sortiert nach N&he zu den
Zielkoordinaten.

5.3.2.2 Datentypen

getVehicles

[[] getVehicles
=2 <Hier klicken zum Filtern von,..>

[8] coordinates WG584_Point

Funktion:
Containerelement fiir die Eingabedaten der Operation getVehicles
Felder:

e Coordinates (WGS84_Point)
Koordinaten, in deren N&he nach verfligbaren Fahrzeugen gesucht werden soll

52

getVehiclesResponse

[E| getVehiclesResponse
:~=:D <Hier klicken zum Filtern van...>

(€] vehicleList vehicleType []

Funktion:
Containerelement fur die Ausgabedaten der Operation getVehicles
Felder:

e VehicleList (vehicleType)
Array, welches die gefundenen Farhzeuge enthalt

vehicleType

(] vehicleType

:~=:D <Hier klicken zum Filtern von...>
8] coordinates WiE584 Point
[8] identifier string
[8] fuelPercentage int

Funktion:
Enthalt die zur Weiterverarbeitung notwendigen Daten eines gefundenen Fahrzeugs
Felder:

e Coordinates (WGS84 Point)
WGS84-Koordinaten des Fahrzeugs

e Identifier (string)
Serviceinterner Identifikationsstring des Fahrzeugs

e FuelPercentage (int)
Prozentualer Treibstofffullstand des Fahrzeugs

53

5.3.3 NavRoute Port

Der Navigations- und Routingport (NavRoute) behandelt die Kommunikation mit einem
Routingservice fir stralengebundene Verkehrsmittel. Er bietet Funktionalitat fur den Abruf
von Streckeninformationen.

¥ MavRoute
i GetMavRoute
L+ input parameters | [e] GetMavRoute
41 output parameters | [e] GetMavRouteResponse

Abbildung 5-5 NavRoute Port

5.3.3.1 Operationen

e GetNavRoute
Gibt eine StraRenroute zwischen zwei WGS84-Koordinaten zuriick.

5.3.3.2 Datentypen

GetNavRoute
(GetMavRouteType]
[e] DepartureCoord [1.1] WG584_Point +
|| DestinationCoord [1.1] WG584_Point +
le] Mode [0.1] string
[2] TimeConstraints TirmeContraintsType H
Funktion:

Containerelement fur die Eingabedaten der Operation GetNavRoute
Felder:

e DepartureCoord (WGS84_Point)
Abfahrtskoordinaten fur die gelieferte Route

e DestinationCoord (WGS84_Point)
Ankunftskoordinaten flr die gelieferte Route

e Mode (string)
Serviceinterner Identifikationsstring fir den Navigationsmodus (fahren, laufen)

e TimeConstraints (TimeConstraintsType)
Zeitbeschrankungen (Ankunft, Abfahrt) fir die gelieferte Route

54

GetNavRouteResponse

(GetMavRouteResponseType)

[e] MavRoute [1.1] MavRouteType [+
ses 8] DepartureTime [1.1] dateTime
[8] ArrivalTime [1.1] dateTime

Funktion:
Containerelement fur die Ausgabedaten der Operation GetNavRoute
Felder:

e NavRoute (NavRouteType)
Containerelement fur die vorgeschlagene Route

e DepartureTime (dateTime)
Abfahrtszeit

e ArrivalTime (dateTime)
Ankunftszeit

NavRoute

(] NavRouteType

:~=:{> <Hier klicken zum Filtern von...»
(8] Instruction MavinstructionType[]
[e] TotalDuration int
[8] TotalDistance int

Funktion:
Containerelement fiir die vorgeschlagene Route.
Felder:

e Instruction (NavlinstructionType[])
Array von Teilstrecken/Fahranweisungen

e TotalDuration (int)
Gesamtfahrtzeit in Minuten

e TotalDistance (int)
Gesamtfahrtstrecke in Metern

55

NavlnstructionType

(] NavnstructionType
:{—-:D <Hier klicken zum Filtern von,..>
[e] Instruction string
[8] Duration int
[8] Length int
[e] StartCoord WG5E4_Point
[e] EndCoord WG584 _Point

Funktion:
Containerelement fiir Teilstrecken/Fahrtanweisungen
Felder:

e Instruction (string)
Fahrtanweisung in naturlicher Sprache

e Duration (int)
Dauer der Teilstrecke in Sekunden

e Length (int)
Streckenlange in Metern

e StartCoord (WGS84_Point)
Abfahrtskoordinate der Teilstrecke

e EndCoord (WGS84_Point)
Zielkoordinate der Teilstrecke

5.4 SuggestionSorter Port (Sorting Service)

Der SuggesionSorter Port dient der Kommunikation der BPEL-Prozesse der Prozesslogik mit
dem in 4.7 beschriebenen Sorting Service.

€9 SuggestionSorter

8 SortSuggestions

Ll input parameters [e] SortSuggestions

1l cutput parameters [e] SortSuggestionsResponse

56

5.4.1 Operationen
e SortSuggestions
Sortiert eine Liste von Routenvorschlédgen nach den tbergebenen Parametern

5.4.2 Datentypen

SortSuggestionsType

(SortSuggestionsType)

[e] Comparator string
=ss| 8] SuggestionList TripSuggestList (4

[e] SecondaryCap int

Funktion:
Containerelement fur die Eingabeparameter der Operation SortSuggestions
Felder:

e Comparator (string)
Metrik, anhand derer die Gbergebenen Routenvorschlage sortiert werden sollen

e SuggestionList (TripSuggestL.ist)
Liste von Routenvorschlégen, welche sortiert werden soll (siehe 5.1.2)

e SecondaryCap (int)
Wert ab welchem die sekundaren Metriken als Ausschlusskriterium dienen (siehe 4.7)

SortSuggestionsResponseType

(SortSuggestionsResponseType)

waa || SortedSuggestions TripSuggestList 1

Funktion:
Containerelement fiir die Ausgabedaten der Operation SortSuggestions
Felder:

e SortedSuggestions (TripSuggestL.ist)
Sortierte Liste von Routenvorschlagen

S7

6 Evaluierung

Im folgenden Kapitel werden die Erfahrungen aus dem Test des MoBee Systems, die dabei zu
Tage getretenen Starken und Schwéchen des Konzeptes, sowie mogliche Erweiterungen des
Konzeptes betrachtet.

Ziel der Arbeit war, wie in 1.1 beschrieben, einen multimodalen Planungsdienst zu Entwi-
ckeln, welcher:

e Echte Mulitmodalitét anbietet

e Eine grol’e Anzahl von Moblitatsanbietern aufnehmen kann

e Fir Bahn, OPNV, Carsharing, Taxis und FuBweg einsetzbar ist

e Diese Ziele durch die Aggregation bereits bestehender Webservices erreicht

Diese Kriterien kénnen als erflllt betrachtet werden. Dennoch sind einige besondere Eigen-
schaften, positiv wie negativ, zu Tage getreten. Diese sollen im folgenden Kapitel erortert
werden.

6.1 Stirken des MoBee Konzeptes

Im folgenden Abschnitt werden die Starken des MoBee Konzeptes sowie dessen Implemen-
tierung im Rahmen dieser Arbeit betrachtet.

6.1.1 Auflistung von Alternativen fiir simple Routen
Besonders positiv sind die Ergebnisse des MoBee Konzeptes im Bereich der Verkehrsplanung

innerhalb des Verfugbarkeitsbereiches einzelner Mobilitatsanbieter. Dies ist auch nicht weiter
verwunderlich, da im Grunde genommen nur die Routenvorschldge der bestehenden Dienste
normalisiert und als alternative Routenvorschlége ausgegeben werden. Im Falle von Taxi- und
Carsharingunternehmen werden die zur Verfligung gestellten Daten noch um Streckendaten
des Routingdienstes erweitert. Dies stellt jedoch auch nur eine Zusammenfiihrung zweier dis-
kreter Datensatze dar und ist deshalb wenig fehleranfallig. Abbildung 6-1 zeigt eine Gegen-
uberstellung der vorgeschlagenen Routen von MoBee und Moovel fiir die Strecke zwischen
Krefelder StralRe 21, Stuttgart und Jasminweg 10, Stuttgart. Zu beachten ist hierbei, dass fir
die Fahrt mit dem Verkehrsverbund Stuttgart von beiden Systemen dieselbe Route geliefert
wurde. Zusatzlich dazu wurde von MoBee direkt in der Krefelder Stral3e ein car2go Fahrzeug
gefunden. Eine Fahrt mit Diesem wiirde etwas mehr als 20 Minuten friiher das Ziel erreichen,
als eine Fahrt mit dem von Moovel vorgeschlagenen Taxi.

58

O HE http://blueenergy.megacenter.de.ibm.com:9080/MoBee_MainWeb/sca/TripQuery 14:20

<TripSuggestionss>
<TripSuggestion>
<hrrivallime>2014-05-10T13:10:58.4232</Arrivallime>
<Departurelime>Z014-05-10T12:24:58.413Z</DepartureTims>
<SuggesticnParts 14:30
<RailTrip>

<TripTime>46</TripTime>
“Fare>Z . 70</Fare>

</BuggestionPart> 14:40
</TripSuggestion>
<TripSuggestion>
<RArrivalTime>Z2014-04-10T13:-04-15_398Z</ArrivalTime>
<DepartureTime>2014-04-10T12:24:59_398Z</DepartureTime>
<SuggesticnPart> 14:50
<CarsharingTrip>
<WVehicleLocation>
<u»3_Z1693</u>
<yr48.81235</y>
</ VehicleLocation> 15-00
<Routex

</Boute>

< /CarsharingTrip>

</58uggestionPart>

</TripSuggestion>
1Iiiiiiiiiiiiiiiiiﬁiiiiiiiiiiiiiiiiiiiiiiiiiiiiﬁiiiiiiiiiiiiiiiii

Abbildung 6-1 Vergleich Routingergebnisse MoBee und Moovel

15:10

6.1.2 Tiered Queries
Eine weitere hervorzuhebende Starke von MoBee sind die Tiered Queries des TiGeR-

Algorithmus. Die hierdurch gelieferten Routenvorschlage gehen weit ber das hinaus, was
bisher erhéltliche Mobilitatsplanungsdienste ermdglichen: Carsharing- und Taxianbieter, 6f-
fentliche Verkehrsmittel auf regionaler und Uberregionaler Ebene werden zusammengefiihrt
und fiir kombinierte Routenvorschlage verwendet. Uberdies sind die errechneten Routenvor-
schlage fir den Alltagsgebrauch praktikabel.

Da bisher kein anderer verfligbarer Planungsdienst diese Funktionalitat anbietet, kann hier
leider kein direkter Vergleich zu herkémmlichen Ldsungen gezogen werden. Es soll aller-
dings an dieser Stelle noch einmal das Beispiel aus 4.2.3 herangezogen werden Futtert man
die MoBee Implementierung mit den im aufgefuhrten Beispiel verwendeten Start- und Ziel-
koordinaten, (47.261957, 11.395971) und (48.810369, 9.212706), entspricht das Ergebnis fast
genau dem héndisch in 4.2.3 Erhaltenen. Abbildung 6-2 zeigt einen von MoBee gelieferten
kombinierten Routenvorschlag fiir die genannte Strecke.

59

it B |http://blueenergy.megacenter.deibm.com:9080/MoBee_MainWeb/sca/TripQuery

] <TripSuggesticons>
] <TripSuggestion>
] <TripSuggestion>

<Fare»50_0</Fare>

<Duration>303</Duration>

] <SuggesticnPart>
] <FootTrip>
] <Houter

<EArrivalTlime>Z014-0Z-Z7T10:-40:50_Z255Z</ArrivalTime>
<DepartureTime>2014-02-27T10:30:30_255Z</DepartureTims>
</ FootTrip>
</8uggestiocnPart>
] <SuggesticnPart>
] “RailTrip>
<TripTimer»Z283<,/TripTime>
“Fare>43 0</Fare>
] <SubTrip>
</RailTrip>

</8uggestiocnPart>

| <SuggestionPart>
] <CarsharingTrip>
] <VehicleLocaticon>

<H*9_Z191&6</ x>
<y>48 . B01E</ v
</WVehicleLocation>

] <Bouter

<Fare>Z</Farer
<RArrivalTime>Z014-02-27T15:34:-08_255Z«</ArrivalTime>
<DepartureTime>2014-02-27T15:23:50_255Z</DepartureTime>

</CarsharingTrip>
</ SuggesticnPart>
4 iiiiiiiiiiiiiiiﬁii

Abbildung 6-2 MoBee Routenvorschlag Innsbruck Hilton nach Krefelder Strale 21,
Stuttgart

Als Backbone-Haltestellen werden wie im Beispiel der Innsbrucker Hauptbahnhof und der
Bahnhof Bad Cannstatt in Stuttgart verwendet. Es werden folgende kombinierte Routen vor-
geschlagen:

e FuBweg— OBB — FuRweg

FuRweg — OBB — Carsharing

e FuRweg— OBB — Taxi
e Taxi— OBB — FuRweg
e Taxi— OBB — Carsharing

e Taxi—OBB - Taxi
60

Das Fehlen von kombinierten Routenvorschlédgen unter Zuhilfenahme von Typ-1 Mobilitats-
anbietern ist auf zweierlei Grunde zurtickzufuhren: Einerseits wurde, wie im Beispiel vorher-
gesagt, keine effiziente Route mit dem Verkehrsverbund Stuttgart zwischen dem Cannstatter
Bahnhof und der Krefelder Stralle gefunden. Zum anderen ist der Verkehrsverbund Tirol nicht
an die dieser Arbeit zugrunde liegende Implementierung angeschlossen. Wie in Abbildung
6-3 ersichtlich ist, werden Typ-1 Mobilitatsanbieter auch in die Routenvorschlage mit aufge-
nommen, so fern eine entsprechende Teilroute gefunden wurde.

<TripSuggestion>
“<Fare>3 . Z</Fare>
<«Duration>7Z</Duration>
<SuggestionParc>
<R2ilTrip>
<TripTimer*15</TripTime>
<Farex»Z Z0</Farex
<SubTrip>
<LineMame>Uld< /LineName>
<DepartureNodeName>Erwin-Schoettle-Platz</DepartureNodeNames
<DestinationNodeNamerHauptbf (A.-Elett-Pl.)</DestinationNod

<Departurelime xsi:type="xsd:daeteTime">Z014-04-27T14:25:15.
<BrrivalTime xsi:type="xsd:detelime">Z014-04-2Z7T14:36:15.35
</5ubTripr

</RailTrip>
</8uggesticnPart>
<SuggestionPart>
<RailTrip»
<TripTime>37</TripTime>
<Fare>7.0</Fare>
<5ubTrip>
<LineName>0EBE mockup line</LineName:>
<DepartureNodeName>Stuttgart Hbf</DeparturelodelName:
<DestinatiocnNodelName>Tibingen Hbf</DestinaticnNodelName:s
<DepartureTime xsi:type="xsd:dateTime">»2014-04-27T14:30:2
<hrrivalTime xsi:tcype="xsd:dateTime">Z014-04-27T15:07:2Z.
</ SubTrip>
</RailTrip>

</SuogoesticnParts

Abbildung 6-3 Tiered Trip Stuttgart — TUbingen

Wie bereits erwahnt, existiert zurzeit kein multimodales Verkehrsplanungssystem, welches
die in diesem Beispiel verwendete Route komplett planen kann. Um auf die hier gezeigte
Route zu kommen, misste der Fahrgast mindestens drei verschiedene Fahrplansysteme bezie-
hungsweise Lokalisierungsdienste benutzen. Dariiber hinaus wére nicht direkt ersichtlich,
welche Kombination von Mobilitatsanbietern die jeweils schnellste oder gunstigste Variante
darstellt. Um diese Information zu erhalten, wirde die Anzahl der zu benutzenden Webdiens-
te nochmals steigen. Zusatzlich mussten diese Dienste alle mehrfach, also einmal pro Anbie-
terkombination, aufgerufen werden. SchlieRlich misste der Endnutzer die Auswahl der opti-
malen Routenkombination selbst treffen, was erneut mit Mehraufwand verbunden waére.

6.1.3 Leichte Erweiterbarkeit
Eines der Designprinzipien von MoBee ist die leichte Erweiterbarkeit durch die Verwendung

von standardisierten Webservice Ports. Dieses Ziel wurde weitestgehend erreicht: Um dem
System einen neuen Mobilitatsanbieter hinzuzufiigen gendigt es in der Theorie, die Servicere-
ferenz und die Availability Area der Datenbank hinzuzufiigen. In der Praxis ist dies allerdings

61

noch nicht moglich, da kein bestehender Webservice die in dieser Arbeit definierten Ports
implementiert. Es stellte sich jedoch wéhrend der Implementierungsphase heraus, dass nach-
dem eine sinnvolle Architektur fur die Wrapper Applikationen gefunden wurde, sich der
Aufwand flr die Integration eines neuen Dienstes sehr in Grenzen hielt. In einer eventuellen
kommerziellen Implementierung kénnten die Wrapper durchaus ein fester Bestandteil des
Systems werden, da der mit ihnen verbundene Entwicklungsaufwand die leichte Erweiterbar-
keit des Systems nicht nennenswert beeintrachtigt.

6.1.4 Verzicht auf proprietire Funktionalitit
MoBee kommt, in der jetzigen Implementierung, vollkommen ohne proprietére Technologien

aus. Alle Komponenten der Implementierung, sowohl in der Datenhaltung, als auch in der der
Prozesslogik, basieren auf offenen Standards. Die in dieser Arbeit eingesetzte Middleware
besteht zwar aus proprietaren IBM-Produkten, das System ware jedoch auch auf einer kom-
plett auf Open Source basierender Middleware lauffahig. Die WebSphere Server kdnnten zum
Beispiel durch Apache Tomcat/ODE [Apal4l], der DB2 Server inklusive Spatial Extender
durch PostGIS [OSG14] ersetzt werden.

6.2 Schwichen des Konzeptes und Losungsvorschlage

Im folgenden Abschnitt werden erkannte Schwachstellen des MoBee Konzeptes betrachtet
und mogliche Lésungsvorschlége fur eine erweiterte Version des Systems besprochen.

6.2.1 Ubergabepunktberechnung bei Handoff Queries
Ein grolRer Schwachpunkt des MoBee-Konzeptes sind die Handoff Queries. Im Falle zweier

sich Uberlappender oder nebeneinander liegender Verfligbarkeitsbereiche von linienbasierten
Mobilitatsanbietern liefert das System noch gute Ergebnisse, da die Tatsache ausgenutzt wird,
dass alle verfligbaren Fahrplansysteme zumindest in begrenztem Umfang die Linien und Hal-
testellen ihrer Nachbardienste beinhalten. Die ermittelten Routen gleichen somit denen aus
der Berechnung einer simplen Route (vgl. 6.1.1). Sobald jedoch ein dynamisch gerouteter
Mobilitatsanbieter mitverwendet wird, sind die von MoBee gelieferten Ergebnisse subopti-
mal. Der Grund hierfiir ist die Ermittlung des Ubergabepunkts. Wie in 4.5.2.3 beschrieben,
wird hierflr der Mittelpunkt der Luftlinie zwischen Start- und Zielpunkt der zu berechnenden
Route verwendet. Da Mobilitatsanbieter mit ihrem Verfugbarkeitsbereich meist einen Bal-
lungsraum abdecken, liegt dieser Punkt meist in sparlich besiedeltem Gebiet. Diesem Punkt
nahegelegene Haltestellen sind meist nur tiber Umwege erreichbar und nur spérlich mit dem
restlichen Netz Verbunden. Auch sind hier nur selten verfligbare Fahrzeuge von Typ-0 Mobi-
litatsdienstleistern (Taxi, Carsharing) zu finden. Routen, welche von Handoff Queries errech-
net werden tendieren folglich dazu, extrem zeitaufwendig und somit unbrauchbar zu sein.

Das Problem liel3e sich beheben, wenn auf der Seite der linienbasierten Mobilitatsanbieter
bekannt ware, welche Haltestellen aus dem Netz des Mobilitatsanbieters heraus gut erreichbar
sind. In diesem Falle kdnnte im Grenzgebiet der beiden in Frage kommenden Mobilitatsanbie-
ter nach solchen Haltestellen gesucht und deren Koordinaten als Ubergabepunkt genutzt wer-
den. So ware gewahrleistet, dass kein Umweg eingeplant wird, nur um einen mehr oder weni-
ger willkirlich ausgewahlten Ubergabepunkt zu erreichen. Eine Méglichkeit, solche gut ver-
bundenen Haltestellen ausfindig zu machen wére, den Generic LineTrip Port um eine Opera-

62

tion zu erweitern, welche die Anzahl an verfligbaren Linien an einer gegebenen Haltestelle
ausgibt. Anhand der Anzahl der jeweils eine Haltestelle anfahrenden Linien und eines geeig-
netes Grenzwertes ware es so moglich zu erkennen, wie gut verknlpft und somit leicht zu
erreichen ein potentieller Ubergabepunkt ist. Da alle linienbasierten Mobilitatsanbieter in ih-
ren Webdiensten den Aushangfahrplan verfiigbar machen, ware dies ohne weiteres moglich.

In dem Falle, dass sich die Availability Areas von zwei Typ-0 Mobilitatsanbietern Gberlap-
pen, kénnte ein Vektor gebildet werden, welcher orthogobal zum Routenvektor ist und diesen
am von der Datenbank errechneten Ubergabepunkt schneidet. Entlang Diesem konnte dann
nach Orten gesucht werden, an dem Fahrzeuge des den zweiten Teil der Route bedienenden
Anbieters verflgbar sind.

6.2.2 Lange Laufzeit von Routenberechnungen
Die Laufzeit von Routenberechnungen ist mit ca. 15 bis 20 Sekunden in der jetzigen Imple-

mentierung des MoBee Systems extrem lang. Dies ist nicht etwa auf komplexe Berechnungen
oder eine ineffiziente Programmierung zuriickzufihren. Anfragen an die Datenbank werden in
etwa einer Sekunde abgearbeitet, die Subprozesse selbst enthalten keine komplexen Kalkula-
tionen. Vielmehr ist der Grund fur die lange Laufzeit im Grundkonzept von MoBee zu finden:
Der teilweise mehrfache Aufruf mehrerer externer Werbservices. Diese lassen sich, gerade bei
der zeitaufwandigen Erstellung von Tiered Queries, nur begrenzt parallelisieren, da die Aus-
gabewerte vorhergegangener Routenteile fur die Anfrage neuer Routenteile bendtigt werden.

Ein damit verwandtes Problem ist die Tatsache, dass in der jetzigen Implementierung pro
Kombination von Mobilititsanbietern (zum Beispiel OPNV-Bahn-Carsharing) nur ein Rou-
tenvorschlag erzeugt wird. Es wére algorithmisch betrachtet eine Leichtigkeit, an dieser Stelle
mehrere leicht zeitversetzte Routenvorschlédge anzubieten. Der Entwicklungsaufwand wirde
sich auf das Hinzufugen einer Iteration beschréanken, da zeitversetzte Routenvorschléage von
allen Mobilitatsanbietern angeboten werden und auch bereits im Datenmodell von MoBee
integriert sind. Das Problem ist vielmehr, dass der Zeitaufwand fir die Routenberechnung auf
mehrere Minuten anschwellen wiirde und das System damit fiir den Praxisgebrauch ungeeig-
net werden wirde.

Es gibt mehrere Mdglichkeiten, dem MoBee System einen hoheren Grad an Parallelitat und
somit eine kirzere Laufzeit zu ermdglichen.

1. Parallelisierung der Subprozesse fur simple und kombinierte Routenerzeugung.

Durch ein gleichzeitiges Ausfuhren dieser Subprozesse konnte mit der Bildung von kom-
binierten Routen begonnen werden bevor bekannt ist, ob eine simple Route zum Ziel exis-
tiert. Sollte eine solche simple Route gefunden werden, wiirden die Subprozesse fiir die
Bildung kombinierter Routen terminiert und die simple Route als Routenvorschlag ausge-
geben werden.

63

2. Heuristische Ermittlung von Teilstrecken beim TieredTrip Subprozess

Anstatt bei der Bildung eines TieredTrip jeweils die Ankunftszeit der vorangegangenen
Teilstrecke als Abfahrtszeit fur die néchste Teilstrecke zu nutzen, konnte auf Basis der
Lange des Routenvektors zu Beginn der Routenbildung ein Schétzwert flr die Fahrtzeit
der Teilstrecken gebildet werden. Auf Basis dieser Schatzwerte konnten die Anfragen an
die Webdienste der Mobilitatsanbieter parallel ausgefuhrt werden. Linienbasierte Ver-
kehrsanbieter geben Ublicherweise Uber ihre Webdienste mehrere Routenvorschldge um
die gewdhlte Fahrtzeit herum an. Im Anschluss an die Abfrage aller Teilstrecken von den
Webdiensten kénnten dann diejenigen ausgewahlt werden, welche auf die tatsachliche
Ankunftszeit der vorangegangenen Teilstrecke passen. Bei Typ-0 Anbietern ist die ermit-
telte Route nicht zeitabhangig, die Diskrepanz zwischen der geschatzten und tatsachlichen
Ankunftszeit der vorherigen Teilstrecke kdnnte folglich ohne Weiteres auf Abfahrts- und
Ankunftszeit des Typ-0 Streckenabschnittes aufgerechnet werden.

6.2.3 Verfiigbarkeit von geteilten Fahrzeugen bei kombinierten Routen
Ein weiteres Problem mit dem MoBee Konzept stellen geteilte Fahrzeuge, wie zum Beispiel

Carsharingautos oder Leihfahrrader dar. Wenn eine kombinierte Route (Tiered Query oder
Handoff Query) eine Route mit einem geteilten Fahrzeug als nicht-erstem Streckenabschnitt
erzeugt, werden fur die Routenberechnung die Standorte der Fahrzeuge zum Erstellungszeit-
punkt der Route herangezogen. Da diese Fahrzeuge jedoch zu jedem Zeitpunkt von einem
anderen Nutzer des Verleihdienstes ausgeliehen und somit von ihrem Standort entfernt wer-
den konnen, ist nicht sichergestellt, dass die fiir die Routenberechnung genutzten Fahrzeuge
zum Zeitpunkt des Eintreffens des Fahrgastes noch vorhanden sind. Je friher im Voraus eine
Route geplant werden soll, desto wahrscheinlicher wird es, dass das flr die Planung genutzte
Fahrzeug nicht mehr verfligbar ist.

Diese Problematik l&sst sich nicht vollstandig beheben. Es kdnnte jedoch dadurch abgemildert
werden, dass an potentiellen Ubergabepunkten nicht nur nach der Verfiigbarkeit von Fahrzeu-
gen gesucht wird, sondern auch deren Anzahl kalkuliert wird. Unter Zuhilfenahme eines Er-
fahrungswertes iber die Fluktuationsrate bei Fahrzeugen des betreffenden Anbietertyps konn-
te somit eine Wahrscheinlichkeit daftr errechnet werden, dass bei Ankunft des Fahrgastes
noch ein Fahrzeug des Anbieters zur Verfligung steht. Diese Vorgehensweise wiirde das an-
gesprochene Problem allerdings nur bei zeitnahen Routenvorschldgen abmildern. Fir die lan-
gerfristige Routenplanung ware eine Datenbasis uUber die wahrscheinlichen Aufenthaltsorte
von Fahrzeugen zu einer bestimmten Zeit vonnoten. Dies wirde allerdings das Konzept der
Routenberechnung auf Basis von Webserviceaggregation, welches dem MoBee System zu-
grunde liegt, aushebeln.

6.2.4 Ineffiziente Routen durch Unkenntnis der Haltestellen bei linienbasierten
Verkehrsanbietern
Die Unkenntnis Uber die tatsdchlich befahrenen Haltestellen bei linienbasierten Verkehrsan-

bietern fuhrt zu teilweise ineffizienten Routen: Es kann vorkommen, dass die vom Mobilitats-

64

anbieter angebotene Verkehrslinie eine suboptimale Strecke abféhrt, um einen bestimmten
raumlichen Punkt zu bedienen. Abbildung 6-4 zeigt eine solche ineffiziente Route.

=5 | AR
Ramtel Topkarte Luftbild
Eftingen —
.
= Renningen B, 7 .
= m TRUS
—_
- R
o[Sillenbuch
; AE B295 E Birsnau s Spnnenberg Degerioch
J
B Magstaot .
. Schiinbarg
Méhringen Ricde
Schathausen Eichhos Hoffeid
Maictingen ' Asemwald,
B2z Steckfeld
ifzingen
Diiffingen Hoham
Grafenau .- —"4* * Fasmentol Plienirger
s i
enwerer Dagersheim Musberg f‘"e en Floghalen |5
3 km Darmsheim= NAVTEQPTY AGMMap & uide Durchfahrene Haltestellen F#E'.E;%Rﬂ’fw Eet Legende | ¥

Abbildung 6-4 Ineffiziente Route mit linienbasiertem Mobilitéatsanbieter

Wirde der Fahrgast an einer friheren Haltestelle vom Linienbasierten Mobilitatsanbieter auf
einen dynamisch gerouteten Verkehrsanbieter umsteigen, kdnnte diese ineffiziente Teilstecke
umgangen werden. Abbildung 6-5 zeigt eine solche Verbesserung unter Zuhilfenahme eines
dynamisch gerouteten Verkehrsanbieters.

7 el T =
Ramie! | i
Etingen Karte Topkarte L. Luftbild i
. [E41 |
Renningen o e =]
1 E TRUEN
% 14—//
= = mmﬂﬂm
DE N
EBE‘QS €52 | Bisnau . dar54:«-1.'11-r1bwg' Degerlsch
il
B Magstadt
Valhingen Mghvingen H&fﬁ-_.rus'm Riedenbe
Schalhausen Eichholz
Maichingen El Rolr Asemwatd, b
. B27 Steckieid
90 S e SINDELFINGEN ey Hohenei
rafenau . T Fas;&emr Flieningen
L Oberaichern : r-"TH en
i Gokiber Leinfelden
T Reee : R e IR e
3 km Dannsheim /@ RAFFEQIETY AGAgapb Guie] Durchfahrene Haltestellen ECHTERDINGE:N Echte Legende ¥

Abbildung 6-5 Theoretisch mogliche bessere Route mit dynamisch geroutetem
Mobilitatsanbieter

Da MoBee allerdings keine Kenntnis tber die tatsdchlich befahrenen Haltestellen besitzt, gibt
es keine Mdoglichkeit, diese mdglichen Umstiegspunkte zu finden. Somit wird diese theore-
tisch durch Multimodalitat erméglichte Mdglichkeit der Effizienzsteigerung verschenkt.

65

Um dieses Problem zu beheben, misste zuerst einmal MoBee Kenntnis iber die befahrenen
Knoten einer Strecke erlangen. Die optimale Losung ware hierfur eine Erweiterung des Gene-
ric LineTrip Ports um eine Auflistung aller befahrenen Haltestellen einer vorgeschlagenen
Route. Dies ware technisch leicht umzusetzen, jedoch setzt es eine tatsachliche Implementie-
rung des Porttyps seitens der Partnerunternehmen voraus. Beschrankt man sich auf die tat-
séchliche Funktionalitit der vorhandenen Webdienste der Mobilitatsanbieter, so kommt nur
eine Ermittlung vonseiten des MoBee Systems selbst in Betracht. Ein méglicher Weg, dies zu
bewerkstelligen, ware folgender Algorithmus:

1. Finde alle Knoten, welche entlang der Fahrtstrecke liegen (hierfir wére eine Kombi-
nation aus dem bereits erstellten Routenvektor und der bereits vorhandenen Operation
GetNearNodesByLoc aus 5.3.1 eine Option).

2. Prufe, ob diese von der vom GetSimpleTrip Subprozess vorgeschlagenen Linie ange-
fahren werden (hierflir wére eine Erweiterung des Generic LineTrip Port um eine Ope-
ration notwendig, welche alle verfligbaren Linien an einer Haltestelle zurlickgibt).

3. Erzeuge mithilfe des Routenvektors und den angefahrenen Haltestellen eine geordnete
Liste von Haltestellen, welche die Fahrtstrecke abbilden.

Nachdem nun eine geordnete Liste der angefahrenen Haltestellen vorliegt, muss diese auf
ineffiziente Streckensegmente untersucht werden. Die simpelste Variante ware, ausgehend
vom Zielpunkt alle Haltestellen als Startpunkte fiir neue Teilstrecken mit dynamisch geroute-
ten Mobilitatsanbietern zu verwenden und die sich daraus ergebenen kombinierten Routen mit
der Originalroute, welche nur den linienbasierten Mobilitatsanbieter verwendet, zu verglei-
chen. Dieser Ansatz wirde zwar unweigerlich die effizienteste mogliche Route hervorbrin-
gen, jedoch wiirde er auch eine groRRe Zahl zusétzlicher Aufrufe des Routingdienstes nach sich
ziehen. In Anbetracht der in 6.2.2 angesprochenen Problematik und der Tatsache, das bei ei-
ner kommerziellen Implementierung des MoBee Konzepts sicherlich Gebuhren fiir die Nut-
zung des dynamischen Routingdienstes anfallen wirden, ist dieser Ansatz jedoch problema-
tisch. Ein eleganterer Ansatz wére, die angefahrenen Haltestellen darauf zu untersuchen, in-
wieweit sich der Transfer von einer Haltestelle zur N&chsten darauf auswirkt, dem Ziel naher
zu kommen. Wird so eine Menge von Haltestellen identifiziert, deren Durchfahren den Fahr-
gast weiter vom Ziel entfernt oder das Ziel tberschief3t, so wird die vorhergegangene Halte-
stelle als Startpunkt fiir eine neue Teilstrecke mit einem dynamisch gerouteten Mobilitatsan-
bieter genutzt.

6.2.5 Unrealistische Routingvorschlige durch Unkenntnis iiber die
Verkehrssituation
Dynamisch geroutete Mobilitatstypen sind, bezuglich der veranschlagten Reisedauer, von der

aktuellen Verkehrslage im zu durchfahrenen StralRenabschnitt abhangig. Gerade in Kombina-
tion mit linienbasierten Mobilitatstypen stellt dies ein Problem dar, da schon eine Abwei-
chung der Reisedauer von wenigen Minuten vom errechneten Wert zu einem Verpassen der
Abfahrtszeit des linienbasierten Mobilitatsanbieters fuhren kann.

66

Um dieses Problem abzumildern miussten Daten (ber die aktuelle Verkehrslage in die Rou-
tenberechnung mit einflieen. Dies ware zum Beispiel uber eine Anbindung an regionale
Verkehrsleitzentralen moglich. Allerdings ware es nicht ohne weiteres zu bewerkstelligen,
anhand von Daten ber Verkehrsstaus akkurate Schatzungen Gber die Zeitverzégerung auf der
vorgeschlagenen Route zu liefern. Auch ein Umfahren der als von Staus betroffenen gemelde-
ten StraBen waére schwierig, da Routingdienste bisher nicht die Mdglichkeit anbieten, be-
stimmte StraRenabschnitte zu umfahren. Die einzige Mdglichkeit auf dieses Problem einzuge-
hen ware dementsprechend, den Routenvorschlag mit einer Warnmeldung zu versehen, dass
es auf der angegebenen Fahrtstrecke zu Verzégerungen kommen kann.

67

7 Ausblick und Zusammenfassung

Im folgenden Kapitel werden Erweiterungsvorschldge besprochen, welche das MoBee Kon-
zept in Zukunft bereichern kdnnten und Designvorschldge fur diese Erweiterungen kurz ange-
rissen. Anschlieend wird eine kurze Zusammenfassung der in dieser Arbeit gewonnenen
Kenntnisse geboten.

7.1 Direkte Buchung von vorgeschlagenen Routen

Die Mdglichkeit, von MoBee vorgeschlagene Reiserouten direkt aus dem System heraus zu
buchen, wirde einen erheblichen Mehrwert fiir das Konzept bedeuten. Gerade bei TieredTrips
konnte es sich fur den Endnutzer als mithsam herausstellen, bei drei oder mehr verschiedenen
Mobilitatsanbietern eine Teilstrecke zu buchen. Hierfur konnte ein zentrales Buchungssystem
konzipiert werden, welches die Buchungen bei allen an einer Route beteiligten Mobilitatsan-
bietern vornimmt. Der Endkunde misste sich mit seinen Kontodaten bei MoBee oder einem
den Dienst von MoBee nutzenden Drittanbieter registrieren. Dann kdénnten die Daten von
MoBee an alle beteiligten Mobilitatsanbieter weitergeleitet werden, welche im Anschluss die
Abbuchung vornehmen. Um dies umzusetzen, sind die bestehenden Webdienste der Mobili-
tatsanbieter jedoch ungeeignet. Diejenigen, welche eine Onlinebuchung annehmen, benétigen
immer eine Registrierung des Fahrgastes beim Mobilitatsanbieter selbst. Es ist somit nicht
moglich, die Buchung vorzunehmen, ohne das MoBee System mit einem eigenen Konto und
der dazugehorigen Verwaltungssoftware auszustatten. Ein konkreter Designvorschlag fir ein
System dieses Umfanges, welches sich zudem mit einer anderen Softwaredoméne (Finanzen,
Transactions, Sicherheit) befasst, wiirde den Rahmen dieses Kapitels, ja dieser Arbeit spren-
gen. Deshalb wird an dieser Stelle auf einen konkreten Designvorschlag verzichtet.

7.2 Aufnahme von Leihfahrriadern in die Routenplanung

Leihfahrrader (wie zum Beispiel Call-a-Bike) sind zurzeit nicht in der Routenplanung von
MoBee integriert. Dies liegt daran, dass kein Anbieter gewillt war, im Zuge einer Diplomar-
beit seine Webschnittstelle offen zu legen. Es wére jedoch algorithmisch ohne Weiteres mdg-
lich Leihfahrrader in die Routenplanung mit aufzunehmen: Es missten in der Datenbank le-
diglich Anbieter als Typ-0 Mobilitatsanbieter gespeichert werden. Das einzige Hindernis stellt
das Routing der Radstrecken dar. Zurzeit bietet der NavRoute Service nur Streckenfiihrung
fir PKW und FulRganger. Es wére jedoch ohne grofien Aufwand moglich, den NavRoute Ser-
vice um diese Funktionalitat zu erweitern. Zu diesem Zwecke mussten nicht einmal mehr die
vorhandene Schnittstelle fir dynamische Routingdienste erweitert werden, da diese bereits
einen Paramater fir die Auswahl des Routentyps besitzt (siehe 5.3.3).

68

¥ GetBikeTrip

DepartureCoords WGE584_Point
. DestinationCoords WGE584_Point

B4 Eingaben - - -
ProviderEndpoint ServiceRefType
TimeConstraints TimeContraintsType
MavRoute MavRouteType
DepartureTime dateTime

B Ausgaben FI - -
ArrivalTime dateTime
DepotCoordinates WGE5E4_Point

Abbildung 7-1 Mdgliche Schnittstelle fur einen Leihfahrrad-Subprozess

Abbildung 7-1 zeigt eine mogliche Schnittstelle fir einen BikeTrip_Query-Subprozess. Dieser
ware analog zum Carsharing_Trip Query implementiert. Eingabeparameter wéren Start- und
Zielkoordinaten, die Zeitbegrenzungen (Abfahrts- und Ankunftszeit) sowie ein Verweis auf
den Webservice des Mobilitatsanbieters. Die Ausgabe wiirde neben der Fahrradroute als Na-
VRoute Element (siehe 5.3.3.2) Abfahrts- und Ankunftszeit sowie die Koordinaten der Ver-
leihstelle der Leihfahrrader beinhalten. Der Zugriff auf die Funktionalitat des Mobilitatsanbie-
ters kdnnte Uber die in Abbildung 7-2 gezeigte generische Schnittstelle erfolgen.

(getBikesType)
woa 8] Coordinates WG584_Point 3

(getBikesResponseType)
[e] BikeDepotCoords WGS584_Point 4
[2] NMumAvailable int

Abbildung 7-2 Generische Schnittstelle fir Fahrradverleihanbieter

Dartiber hinaus ware es eventuell sinnvoll zu evaluieren, ob fiir den Fahrradverleih ein neuer
Typ von Mobilitatsanbieter definiert werden sollte. Im Rahmen von ortlich begrenzter Rou-
tenplanung konnte der Fahrradverleih wie bereits erwahnt problemlos als Typ-0 Anbieter in-
tegriert werden. Bei Regionen ubergreifender Routenplanung, vor allem bei Handoff Queries,
musste allerdings gegebenenfalls zwischen motorisierten und nichtmotorisierten Mobilitats-
anbietern unterschieden werden. Es ist wenig sinnvoll und vor allem fir einige Nutzer des
Systems nicht maoglich, eine derart lange Strecke mit dem Fahrrad zurtickzulegen. Dieser
Uberlegung entgegen steht die Tatsache, dass die Verfuigbarkeitsbereiche von Fahrradverlei-
hern meist raumlich eng eingegrenzt sind und es deswegen als eher unwahrscheinlich betrach-
tet werden kann, dass sich die A2 eines Fahrradverleihers mit der eines benachbarten Mobili-
tatsanbieters tiberlappt.

69

7.3 Ausgabe von Grafiken fiir die Streckenvisualisierung

Im Datenmodell von MoBee sind die Positionsdaten aller Haltestellen und Wegpunkte fur die
dynamische Streckenfiihrung enthalten. Es ware also durchaus mdglich, die Streckenfiihrung
grafisch darzustellen (besonders wenn, wie in 6.2.4 vorgeschlagen, die Standorte aller durch-
fahrenen Haltestellen ermittelt werden). Hierfir musste von einem Drittanbieter (Open
Streetmap oder Google Maps) uber einen Webservice Kartenmaterial bezogen werden. Auf
diesem konnten dann mit einem offen Grafikpaket (zum Beispiel ImageJ [Nat14]) die Halte-
stellen/Wegpunkte sowie der Streckenverlauf gezeichnet werden. Die so erstellten Grafiken
konnten einem Geschaftskunden dann optional zusammen mit den Routenvorschlédgen als
Byte Array Ubermittelt werden. Somit konnte sich der Geschaftskunde eine eigene Implemen-
tierung einer Visualisierungsfunktion sparen, was den Mehrwert des MoBee Systems noch-
mals steigern wiirde.

Um dieses Feature zu realisieren misste zuerst einmal der Generic_LineTrip_Port (siehe
5.3.1) um eine Operation erweitert werden, welche auf den Aushangfahrplan zugreift und
diejenigen Linien zurlickgibt, welche den gewahlten Knoten durchfahren. Eine solche Opera-
tion musste sowohl die gewahlte Haltestelle eindeutig identifizieren als auch ein Format defi-
nieren, in welchem die Liste der durchfahrenen Haltestellen zurtickgegeben wird.

4% GetAvailableLines
B Eingaben ModelnternallD string
[E» Ausgaben HAovailablelinelist LineList

Abbildung 7-3 Mdogliche Erweiterung des Generic_LineTrip_Port

In diesem Implementierungsvorschlag wird zur Identifizierung der Haltestellen der Typ String
gewahlt, da manche der bisher kooperierenden Mobilitatsanbieter Mischungen aus Zahlen und
Buchstaben nutzen, um die von ihnen bedienten Haltestellen systemintern zu identifizieren.
Die eigentliche Ermittlung der Haltestellenkette findet in diesem Vorschlag uber einen eige-
nen BPEL-Subprozess statt. Dieser erwartet als Eingabeparameter den Routenvektor als Ko-
ordinatenpaar, die Referenz auf den Webservice des Mobilitatsanbieters und die Bezeichnung
derjenigen Linie, auf deren Durchfahren gepriift werden soll.

Als erster Schritt wird in diesem neuen Subprozess, welchen wir TraversedNodes Query
nennen wollen, auf dem tbergebenen Routenvektor Checkpoints definiert. Diese Checkpoints
sind zueinander dquidistant und werden als Eingabeparameter fiir die Operation GetNearNo-
desByLoc (siehe 5.3.1.1) genutzt. Als ndchstes wird fir jeden Checkpoint iber die Menge der
von GetNearNodesByLoc gelieferten Haltestellen iteriert. Hierbei wird zuerst gepriift, ob die
im Moment behandelte Haltestelle bereits gepriift wurde. Zu diesem Zwecke besitzt der Tra-
versedNodes_Query eine Liste vom Typ String, welcher die systeminternen Identifikations-
nummern aller bereits gepruften Haltestellen enthalt. Wurde die Haltestelle noch nicht ge-

prift, wird die Operation GetAvailableLines des Generic_LineTrip_Port aufgerufen, um alle
70

Linien zu erhalten, welche die Haltestelle durchfahren. Diese Linien werden nun mit der ge-
suchten Linie verglichen. Wird diese gefunden, so wird die Haltestelle als RailNode-Element
(siene 5.3.1.2) der Liste der durchfahrenen Haltestellen hinzugefiigt. SchlieRlich wird die
Identifikationsnummer der Haltestelle der Liste der bereits gepriften Haltestellen hinzuge-
fugt. Als letzter Schritt des Subprozesses wird die Liste der durchfahrenen Haltestellen als
Antwort an den Aufrufenden Prozess tibergeben. Abbildung 7-4 zeigt die Beispielimplemen-
tierung des vorgeschlagenen TraversedNodes_Query als BPEL-FluRdiagramm.

=
71 Raceiva
= Maka chackpoints

=& For gach chackpaint

_{5"' Calll genaric LingTrig fiaarMod2sByloc)

et

& Forzach Moda

¥ Chack if aliready chacked
-]:‘,-:;;: n fst
= Add to checked kst

-55" Call genaric LinaTrp {dwailablelina)

W Theck if trawersad by trip

= Add to traversad st

el
= Fuwaizanl

i Anzaar

Abbildung 7-4 Designvorschlag fur den TraversedNodes_Query

71

Nachdem nun eine Liste aller durchfahrenen Knoten vorliegt, kann aus diesen eine grafische
Représentation der Fahrtstrecke erzeugt werden. Zu diesem Zwecke muss zuerst eine Karte
generiert werden, welche das Gebiet des Routenvektors abdeckt. Hierfur stehen bereits Web-
dienste wie zum Beispiel Google Maps [Gool4] oder Open Streetmap [Opel4] zur Verfi-
gung. Beide Dienste besitzen Funktionalitdt zum Erzeugen statischer Karten als Bilddateien.

Ist nun eine Karte des entsprechenden Gebietes vorhanden, missen die Haltestellen und Weg-
punkte (bei dynamisch gerouteten Mobilitdtsanbietern) auf diese Ubertragen werden. Sind
Lange und Breite des Kartenbildes sowie seine Eckpunkte bekannt, so lassen sich die Koordi-
naten der Haltestellen und Wegpunkte problemlos mittels eines Dreisatzes in Hohen- und
Langenangaben in Pixeln auf dem Kartenbild umwandeln. Hierbei ist zu beachten, dass der
genutzte Kartendienst nicht unbedingt dieselbe Projektion benutzt wie das MoBee System.
Open Streetmap benutzt zwar die EPSG:4326-Projektion, welche dieselben Koordinaten be-
nutzt wie das WGS84-System. Das weitaus verbreitetere Google Maps verwendet jedoch die
Mercator-Projektion, welche in manchen Regionen stark von WGS84 abweicht. Fur das ei-
gentliche Hinzuftigen der Grafiken, welche die Haltestellen und Wegpunkte représentieren,
bietet sich ein offenes Grafikpaket wie das zuvor erwéhnte ImageJ an. Das pixelgenaue Hin-
zufiigen einer Grafik zu einer bereits bestehenden ist eine Standardfunktion und dirfte von
allen Paketen beherrscht werden. Die in diesem Absatz beschriebene Funktionalitit wird in
diesem Implementierungsvorschlag als zusétzlicher Webservice implementiert, welcher an
den TripQuery_Wrapper-Subprozess angeschlossen wird. Abbildung 7-5 zeigt die Schnittstel-
le dieser Webservice inklusive der fir sie notwendigen zusétzlichem XML-Elemente. Alter-
nativ konnte die Funktionalitat zur Bildbearbeitung auch in den bereits bestehenden Sortin-
gService integriert werden. Dieser sollte dann jedoch umbenannt werden, zum Beispiel in
UtilityService.

% AddNodelmages
B1 Eingaben Routefrea basebdBinary
Modelist ModeListType
[E» Ausgaben RouteMap basebdBinary

(] SubTripNodeList

[NodeListType 2o <Hier klicken zum Filtern von,..>

& <Hier klicken zum Filtern von...» [€] RailList RailNode

[g] SubTripMNedeList SubTripModelist [€] NavList NavInstructionType

Abbildung 7-5 Schnittstelle und Datentypen flr den Bildbearbeitungsservice

Die Schnittstelle des neuen ImagingService beinhaltet nur die Operation AddNodelmages.
Dieser wird, zusammen mit der urspriinglichen Gebietsgrafik, ein Element vom Typ Node-
ListType Ubergeben. Dieses Element enthalt eine Liste von Elementen des Typs SubTripNo-

72

deList, welche jeweils eine Teilstrecke des abzubildenden Routenvorschlages darstellen. Das
SubTripNodeList-Element beinhaltet entweder eine Liste von Elementen des Typs RailNode
oder des Typs NavinstructionType. Diese Elemente stellen im MoBee Datenschema (siehe
5.3) die einzelnen Wegpunkte/Haltestellen der Teilstrecken dar und enthalten jeweils deren
WGS84-Koordinaten auf dessen Basis sich die Wegpunkte und Haltestellem auf der Gebiets-
grafik verzeichnen lassen.

Das so erzeugte Bild muss via XML austauschbar sein, sowohl um die Ubergabe des Bildes
zwischen den einzelnen Subprozessen zu ermdglichen, als auch um es letztendlich dem Ge-
schaftskunden des MoBee Systems zusammen mit den Routenvorschlagen ausliefern zu kon-
nen. Zu diesem Zwecke wird in diesem Implementierungsvorschlag der XML-Typ
base64Binary verwendet. Hierbei handelt es sich wie der Name schon vermuten I4sst um die
Darstellung eines Bindrwertes zur Basis 64. Um das vom Grafikpaket erstellte Bild in eine
Bindarrepréasentation zur Basis 64 umzuwandeln, bietet sich das freie Framework Commons
Codec [Apald] der Apache Software Foundation an. Dieses enthélt die Java-
Konvertierungsklasse Base64, welche Binérdaten in deren Darstellung zur Basis 64 umwan-
delt.

7.4 Zusammenfassung

Das Ziel dieser Arbeit, einen echten multimodalen Verkehrsplanungsdienst zu entwickeln,
welcher diese Funktionalitat durch Webserviceaggregation umsetzt (vgl. 1.1), wurde erreicht.
Wie in 6.1 gezeigt wurde, sind das MoBee Konzept und der ihm zugrunde liegende TiGeR-
Algorithmus (vgl. 4.2) real umsetzbar und liefern die gewtinschten Ergebnisse. Die Unzuléng-
lichkeiten bestehender Losungen fir die multimodale Routenplanung, welche in 3.4 erértert
wurden, werden durch das MoBee Konzept behoben. Allerdings ist es fraglich, ob die hier
beschriebene Implementierung des Konzeptes tatséchlich praxistauglich ist: Zum einen be-
steht das Problem der Abfragedauer (siehe 6.2.2). Die Frage, ob diese Problematik durch die
im selben Kapitel vorgeschlagenen Verbesserungsmoglichkeiten abgemildert werden kann,
miusste durch weitere Arbeit zum Thema geklart werden. Zum anderen bedarf der TiGeR-
Algorithmus selbst noch einiger weiterer Arbeit: Gerade das Problem, sinnvolle Handoff
Querys zu erzeugen (siehe 6.2.1), wird gel6st werden mussen, bevor das MoBee Konzept in
der Praxis eingesetzt werden kann.

Alles in allem kann jedoch gesagt werden, dass in dieser Arbeit ein vielversprechendes, neu-
artiges Konzept fur die multimodale Routenplanung entwickelt wurde, welches bestehenden
Losungen in vielerlei Hinsicht Uberlegen ist. Bis MoBee der Sprung auf den Markt gelingt
und die Basis fir eine neue Form der Mobilitatsplanung geschaffen wird, wird allerdings erst
weitere Arbeit zum Thema notig sein.

73

Literaturverzeichnis

[Ant12] Antsfeld, Leonid und Walsh, Toby. 2012. Finding Optimal Paths in Multi-modal
Public Transportation Networks using Hub Nodes and TRANSIT algorithm. Artificial
Intelligence and Logistics. 2012, Bd. 7.

[Apal4l] Apache Software Foundation, The. About Apache ODE. ode.apache.org/.
[Online] [Zitat vom: 21. April 2014.] http://ode.apache.org/.

[Apal4d] —. Apache Commons Codec. http://commons.apache.org. [Online] [Zitat vom: 20.
April 2014.] http://commons.apache.org/proper/commons-codec/.

[Bau09] Bauer, R. und Delling., D. 2009. SHARC: Fast and robust unidirectional routing.
Journal of Experimental Algorithmics. 2009, Bd. 14.

[Bro04] Brodal, Gerth Stglting. 2004. Time-dependent Networks as Models to Achieve Fast
Exact Time-table Queries. Electronic Notes in Theoretical Computer Science. 2004, Bd. 92,
S. 3-15.

[Dail4] Daimler AG. 2014. moovel. Mein A nach B. moovel.com. [Online] 2014. [Zitat vom:
10. April 2014.] www.moovel.com.

[Dij59] Dijkstra, Edsger W. 1959. A note on two problems in connexion with graphs.
Numerische Mathematik. 1959, Bd. 1, 1, S. 269-271.

[Gil88] Gilles Brassard, Paul Bratley. 1988. Algorithmics: theory and practice. s.I. :
Prentice Hall, 1988. S. 87-92.

[Gol05] Goldberg, A. V. und Harrelson, C. 2005. Computing the shortest path: A* search
meets graph theory. Proceedings of the 16th annual ACMSIAM symposium on Discrete
algorithms. 2005, S. 156-165.

[Goo012] Google. 2012. General Transit Feed Specification Reference.
developers.google.com. [Online] 12.. Juni 2012. [Zitat vom: 10. April 2014.]
developers.google.com/transit/gtfs/reference.

[Goo14] Google Inc. Static Maps API V2 Developer Guide. developers.google.com. [Online]
[Zitat vom: 20. April 2014.] https://developers.google.com/maps/documentation/staticmaps/.

[HAF14] HAFAS - Die perfekte Verbindung zum Kunden. hacon.de. [Online] [Zitat vom:
16. April 2014.] http://www.hacon.de/hafas.

[Har68] Hart, Peter E., Nilsson, Nils J. und Raphael, Bertram. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics. 1968, Bd. 4, 2.

[Hor02] Horn, M. 2002. Multi-modal and demand-responsive passenger transport systems: a

modelling framework with embedded control systems. Transportation Research Part A:
Policy and Practice. 2002, Bd. 36, 2, S. 167-188.

74

[Hrn13] Hrncir, J und Jakob, M. 2013. Generalised time-dependent graphs for fully
multimodal journey planning. Intelligent Transportation Systems - (ITSC), 2013 16th
International IEEE Conference on. 2013.

[IBM141] IBM. DB2 Database Software. ibm.com. [Online] [Zitat vom: 16. April 2014.]
http://www-01.ibm.com/software/data/db2/.

[IBM142] —. DB2 Spatial Extender for Linux, UNIX and Windows. ibm.com. [Online] [Zitat
vom: 16. April 2014.] http://www-03.ibm.com/software/products/en/db2spaext.

[IBM14] —. IBM - Prozessautomatisierung - WebSphere Process Server. ibm.com. [Online]
[Zitat vom: 16. April 2014.] http://www-03.ibm.com/software/products/de/wps.

[Karll] Karande, Aarti, Karande, Milind und Meshram, B. B. 2011. Choreography and
Orchestration using Business Process Execution Language for SOA with Web Services.
International Journal of Computer Science Issues. 2011, Bd. 8, 2, S. 224.

[Kha03] Khalaf, Rania und Leymann, Frank. 2003. On Web Services Aggregation.
Lecture Notes in Computer Science. 2003, Bd. 2819, S. 1-13.

[Kot10] Kotler, Philip und Armstrong, Gary. 2010. Principles of Marketing. s.l. : Pearson
Education, 2010.

[Kry04] Krygsmana, Stephan, Dijst, Martin und Arentze, Theo. 2004. Multimodal public
transport: an analysis of travel time elements and the interconnectivity ratio. Transport Policy.
2004, Bd. 11, 3, S. 265-275.

[KuR06] Kumar, V., Reinartz, Werner. 2006. Customer Relationship Management. s.1. :
Springer, 2006. S. 261.

[Kum06] Kummer, Sebastian. 2006. Einfiihrung in die Verkehrswirtschaft. s.l. : UTB
Verlag, 2006.

[Lorl2] Matzat, Lorenz. 2012. Verpasste Open Data-Chance: Deutsche Bahn schenkt einzig
Google seine Fahrplandaten. Netzpolitik.org. [Online] 17. September 2012. [Zitat vom: 20.
April 2014.] https://netzpolitik.org/2012/verpasste-open-data-chance-deutsche-bahn-schenkt-
einzig-google-seine-fahrplandaten/.

[Nat84] National Imagery and Mapping Agency. 1984. Technical Report 8350.2. s.I. :
National Imagery and Mapping Agency, 1984.

[Nat14] National Institute of Mental Health. ImageJ - Image Processing and Analysis in
Java. http://imagej.nih.gov/. [Online] [Zitat vom: 16. April 2014.] http://imagej.nih.gov/ij/.

[New] Newman, Peter und Kenworthy, Jeffrey. 1999. Sustainability and Cities:
Overcoming Automobile Dependence. s.1. : Island Press, 1999.

[OASO7] OASIS. 2007. Web Services Business Process Execution Language Version 2.0.
oasis-open.org. [Online] 11. April 2007. [Zitat vom: 10. April 2014.] docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html.

[Opel4] Open StreetMap. Static map images. http://wiki.openstreetmap.org. [Online] [Zitat
vom: 20. April 2014.] http://wiki.openstreetmap.org/wiki/StaticMap.

75

[OSG14] OSGeo. About PostGIS. postgis.net. [Online] [Zitat vom: 22. April 2014.]
http://postgis.net/.

[Fra00] Schulz, Frank, Wagner, Dorothea und Weihe, Karsten. 2000. Dijkstra's algorithm
on-line: an empirical case study from public railroad transport. Journal of Experimental
Algorithmics. 2000, Bd. 5.

[Siel4] Siemens AG. Green eMotion Project. greenemotion-project.eu. [Online] [Zitat vom:
16. April 2014.] http://www.greenemotion-project.eu/.

[Suj14] Suji, K. Adlin und Sujatha, S. 2014. A Comprehensive Survey of Web Service
Choreography, Orchestration and Workflow Building. International Journal of Computer
Applications. 2014, Bd. 88, 13.

[W3C01] World Wide Web Consortium. 2001. Web Services Description Language
(WSDL) 1.1. w3.org. [Online] 15. Marz 2001. [Zitat vom: 10. April 2014.]
http://www.w3.0rg/TR/wsdl.

[W3C04] —. 2004. Web Services Glossary. w3.org. [Online] 11. Februar 2004. [Zitat vom:
10. April 2014.] www.w3.0rg/TR/2004/NOTE-ws-gloss-20040211/#webservice.

[YuH10] Yu, Haicong und Lu, Feng. 2010. A Multi-Modal Route Planning Approach With
an Improved Genetic Algorithm. Joint International Conference on Theory, Data Handling
and Modelling in GeoSpatial Information Science. Mai, 2010, S. 343-348.

76

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wortlich oder sinngeméaR aus anderen Werken Uber-
nommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile
daraus waren bisher Gegenstand eines anderen Prifungsverfahrens. Ich habe diese Arbeit
bisher weder teilweise noch vollstandig verdffentlicht. Das elektronische Exemplar stimmt
mit allen eingereichten Exemplaren tberein.

Stuttgart, den 02. Mai 2014

