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Kurzfassung

Im Zusammenhang mit der Quantifizierung von Unsicherheiten entstehen, bspw. bei der Berechnung
des Erwartungswerts, potentiell hochdimensionale Quadraturprobleme. Eine Mdoglichkeit, um den
Fluch der Dimensionalitit zumindest teilweise zu iberwinden und gleichzeitig mit einer méglichst
niedrigen Zahl von Auswertungen eine gute Approximation zu erhalten, stellen diinne Gitter dar.

Bei nicht-intrusiven Verfahren zur Quantifizierung von Unsicherheiten wird das Verhalten eines
Systems durch mehrere Simulationsauswertungen mit unterschiedlichen Parameterkombinationen
aus dem definierten Wertebereich untersucht, wobei schon ein einzelner Simulationsaufruf einige
Rechenzeit in Anspruch nehmen kann. Daher soll die fiir eine gute Approximation notwendige Zahl
der zu berechnenden Parameterkombinationen weiter reduziert werden. Neben der Verwendung von
diinnen Gittern wurden im Rahmen dieser Arbeit zusatzlich stiickweise polynomielle Basisfunktionen
angesetzt, um die Konvergenzordnung der Diinngitterapproximation zu erhdhen. Zusétzlich soll die
Zahl der nétigen Auswertungen durch raumlich-adaptive Gitterverfeinerung minimiert werden.
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1. Einleitung

Beschreibungen von Systemen sind Unsicherheiten unterworfen, die aus den verschiedensten Griin-
den auftreten. Dies konnen ungenaue Messungen sein, bspw. durch Rauschen oder schlecht kalibrierte
Messwerkzeuge. Denkbar sind auch Ergebnisse aus vereinfachten Modellierungen - etwa die Ver-
nachlassigung von Fertigungstoleranzen, die Reduktion eines dreidimensionalen Modells auf zwei
Dimensionen oder die Vernachldssigung von ausgewahlten Einfliissen beim Entwurf des Modells.
Auch komplexe Prozesse, die nicht oder nur sehr schwer deterministisch zu modellieren sind, wie
bspw. die Landung eines Flugzeugs, konnen Unsicherheit in eine Simulation einbringen.

Man mochte trotz dieser und weiterer unsicherer Einfliisse auf das untersuchte System aber nicht
auf die Vorteile des Einsatzes von Simulationen verzichten. Das bedeutet, dass man bspw. trotz nicht
vollstandiger Systemkenntnis Aussagen iiber das Verhalten des Systems an einem oder mehreren
kritischen Punkt(-en) treffen konnen méchte oder dariiber, wie wahrscheinlich ein System innerhalb
eines bestimmten Betriebszustands bleibt. Dazu ist es nétig, Unsicherheiten und ihre Auswirkungen
auf das Verhalten des Gesamtsystems zunéchst zu beschreiben und anschlieflend zu quantifizieren.

Kapitel 2 — Uncertainty Quantification definiert zunichst verschiedene Facetten von Unsicher-
heit. Anschliefend werden der grundlegende Aufbau einer modellbasierten Uncertainty
Quantification-Simulationsumgebung (UQ) sowie einige klassische Motivationen fiir das Quan-
tifizieren von Unsicherheiten skizziert. Daraus wird die Problemstellung formal spezifiziert
sowie gangige Verfahren zur Quantifizierung von Unsicherheiten vorgestellt.

Kapitel 3 — Diinne Gitter fithrt das Konzept der diinnen Gitter mithilfe eines Interpolationsbei-
spiels ein, stellt verschiedene Arten von diinnen Gittern vor und erldutert die grundlegenden
Operationen.

Kapitel 4 — Implementierung stellt zunéchst das verwendete Diinngitter-Framework SG++ unter
besonderer Beriicksichtigung der im Rahmen der Arbeit erstellten Basis mit stiickweise po-
lynomiellen Basisfunktionen vor. AnschliefSend wird die fiir die numerischen Experimente
verwendete Bibliothek fiir UQ eingefiihrt.

Kapitel 5 — Experimente illustriert mithilfe numerischer Experimente die Wirksamkeit der imple-
mentierten Methoden.

Kapitel 6 — Zusammenfassung und Ausblick fasst die erhaltenen Ergebnisse zusammen und
schlagt weitere Anséitze vor.
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2. Uncertainty Quantification

2.1. Arten von Unsicherheiten

Nach [WHR™05, S. 8] hat eine Unsicherheit Eigenschaften auf drei verschiedenen Ebenen:
1. Den Ort, d.h. an welcher Stelle im System sich die Unsicherheit zeigt.

2. Das Mafs, d. h. wo die Unsicherheit auf einer Skala von “deterministisches Wissen” bis hin zu
“volliger Ahnungslosigkeit” einzuordnen ist.

3. Schlief}lich das Naturell, d. h. entsteht die Unsicherheit durch fehlendes Wissen oder durch
einen inhirent variablen Prozess.

Das bedeutet, jede einzelne Unsicherheit hat einen Ort, ein Maf} und ein Naturell.
Der Ort (1.) der Unsicherheit im System lasst sich nach [WHR ™05, S. 9ff] weiter unterscheiden in

« Kontextunsicherheit
Kontextunsicherheit beschreibt die Frage, wo die Systemgrenze genau verlauft, d. h. welche
Teile der realen Welt sich innerhalb bzw. aufferhalb des Systems befinden sowie die Frage der
Vollstandigkeit der Darstellung.

« Modellfehler
Der Modellfehler teilt sich in zwei Teile; einerseits eine strukturelle Unsicherheit uber die
Form des Modells an sich und andererseits eine technische Unsicherheit, die sich aus der
Implementierung des Modells im Rechner ergibt.

« Eingabefehler
Die Unsicherheit der Eingabe betrifft zum einen Unsicherheiten {iber dulere Antriebe, die das
Verhalten des Systems beeinflussen und zum anderen Unsicherheiten iiber technische Daten
des Systems. Zweitere dienen zur Beurteilung der Fahigkeiten eines Referenzsystems. Die
Unsicherheit entsteht dabei typischerweise aus einem Wissensdefizit.

o Parameterunsicherheit
Zwischen der Parameterunsicherheit und der strukturellen Unsicherheit des Modells besteht ein
Zusammenhang. Es existiert eine Abbildung, die als Funktion der verfiigbaren Kalibrierungsda-
ten und der im Kalibrierungsdatensatz enthaltenen Information auf die optimale Kombination
von Modellunsicherheit und Parameterzahl abbildet. Das bedeutet, dass durch Erh6hung der
Modellkomplexitat und/oder der Parameterzahl zusatzliche Unsicherheit entstehen kann.

13



2. Uncertainty Quantification

« Unsicherheit der Modellvorhersage
Die Unsicherheit der Modellvorhersage beschreibt die Differenz zwischen dem vom Modell
vorhergesagten und dem tatsachlichen Wert. Damit ist sie die akkumulierte Unsicherheit, die
sich aus den tibrigen Unsicherheiten zusammensetzt, die durch das Modell hindurch propagiert
wurden.

Das Naturell (3.) der Unsicherheiten unterscheidet zwei Extreme [WHRT05, S. 13]:

« epistemische Fehler
Diese beschreiben systematische Unsicherheiten. Es existiert eine genaue Losung, diese ist
aufgrund von fehlendem Wissen respektive fehlenden Daten allerdings nicht messbar.

« aleatorische Fehler
Diese beschreiben stochastische Unsicherheiten. Es existiert aufgrund von intrinsischen Schwan-
kungen beim modellierten (Teil-)Prozess keine genaue Losung fiir das Problem.

Diese Unterscheidung ist deshalb niitzlich, weil der epistemische Teil durch nicht-physikalische
Zufallsvariablen substituiert werden kann. Diese bilden Informationen ab, die durch das Sammeln
zusatzlicher Daten oder durch bessere Messmethoden entstehen kénnen und definieren dadurch
Korrelationen zwischen verschiedenen Komponenten eines Problems mit gemeinsamen Unsicher-
heiten. Die Unterscheidung, ob eine Unsicherheit epistemisch oder aleatorisch ist, hdngt also nicht
nur vom aktuellen Stand der Technik und den verfiigbaren Daten ab, sondern auch und v. a. von
der praktischen Anforderung an die Simulation, die Modellkomplexitat auf ein sinnvolles Maf} zu
beschrinken [KDO09, S. 106].

Le Maitre und Knio definieren Unsicherheiten dhnlich aber deutlich gréber. Sie orientieren sich
dabei insbesondere in der Terminologie deutlich stirker an dem konkreten Einsatzzweck einer
modellbasierten numerischen Simulation und kategorisieren Unsicherheiten nur beziiglich des Orts
[MK10, S. 1f].

Im Rahmen dieser Arbeit soll v. a. der Einfluss von Eingabeunsicherheiten von beliebigem Maf; und
Naturell untersucht werden.

2.2. Simulationsumgebung

Eine idealisierte Simulationsumgebung ohne Unsicherheiten lasst sich in drei Schritten zusammenset-
zen [MK10, S. 3f]:

1. Fallspezifikation
In diesem Schritt werden die Eingabeparameter definiert. Dazu sind alle inneren und dufieren
Einfliisse in Form der Geometrie zu spezifizieren, insbesondere auch das Rechengebiet. Rand-
und/oder Anfangsbedingungen sowie duf3ere Antriebe werden definiert. Schlief§lich werden die
Systemeigenschaften ebenso durch physikalische Konstanten beschrieben wie Kalibrierungs-
oder Modellierungsdaten, um nicht explizit im Modell aufgeléste Phanomene darzustellen.

14



2.2. Simulationsumgebung

2. Simulation
Die Simulation benétigt zunachst einen ersten Diskretisierungsansatz, meist in Form einer
Gitterspezifikation und entsprechenden Parametrisierung. Soweit nétig, werden zusatzliche Pa-
rameter fiir die Integration nach der Zeit eingefiihrt. Daran anschlieSend wird ein numerisches
Losungsverfahren definiert. Fir dieses Losungsverfahren soll gelten, dass

a) das urspriingliche mathematische Modell eine eindeutige Losung hat,

b) die Diskretisierung, gesetzt den Fall, sie ist korrekt spezifiziert, ebenfalls eine eindeutige
Losung hat, die gleichzeitig gegen die echte Losung konvergiert und

c¢) dabei hinreichend kleine Diskretisierungsfehler erreichbar sind.

3. Analyse
Im letzten Schritt miissen die aus der Simulation erhaltenen Daten zur Analyse aufbereitet
werden.

In Abb. 2.1 ist der beschriebene dreistufige Prozess in Form eines Flussdiagramms visualisiert.

1. Schritt: Fallspezifikation

Rand- Anfangs- AuRere Physikalische Modell-
bedingungen bedingungen Antriebe Konstanten konstanten

Geometrie

Y
2. Schritt: Simulation

Numerische Diskretisierung
Parameter Auflosung

Y
3. Schritt: Analyse

Visualisierung
Aufbereitung

Losung

Abbildung 2.1.: Flussdiagramm zum Aufbau einer numerischen Simulation ohne Unsicherheiten
nach [MK10, S. 4]

Da in der Praxis haufig Unsicherheiten in den Eingangsdaten vorhanden sind oder sich das modellierte
System wegen intrinsischer Schwankungen nicht immer gleich verhalt, muss das bestehende Modell
erweitert werden, um den Einfluss unsicherer Daten auf das Simulationsergebnis zu untersuchen.
Damit wird die Unsicherheit aus den Eingangsdaten mit dem Simulationsergebnis verkniipft, so dass
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2. Uncertainty Quantification

sich deren Einfluss auf das Ergebnis sowohl charakterisieren als auch quantifizieren lasst [MK10, S.
4f]. Ein Beispiel fiir eine solche Erweiterung zeigt Abb. 2.2.

Schritt 1: Fallspezifikation

unsichere
Daten

determinis-
tische Daten

Schritt 2: Simulation

numerische « | Diskretisierung
Parameter “71 Auflésung

Schritt 3: Analyse

Lésung 3 Ggfarbeitung

Abbildung 2.2.: Flussdiagramm zum Aufbau einer numerischen Simulation mit Unsicherheiten nach

[MK10, S. 5]

2.3. Ziele des Quantifizierens von Unsicherheiten

Eine solche Erweiterung ist niitzlich, weil sie u. a. folgende Ergebnisse liefern kann [MK10, S. 5f]:
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« Verifikation der Simulation

Durch den Vergleich der Simulationsergebnisse mit realen Versuchsergebnissen kann die
Giiltigkeit der Simulation Uberpriift und validiert werden. Dabei ist zu beachten, dass auch
die Versuchsergebnisse Unsicherheiten unterliegen, bspw. durch nicht-optimale Systeme oder
Messungenauigkeiten. Bei der Validierung muss daher sowohl die rechnerische als auch die
experimentelle Ungenauigkeit berticksichtigt werden.

Varianzanalyse

Der Ausschlag der Systemreaktion um Mittel- oder Sollwert liefert wichtige Informationen zu
Entwurf und Optimierung und gleichzeitig Unterstiitzung bei Entscheidungen. Auf diesem Weg
lassen sich die Robustheit der Vorhersage und die Kontrollierbarkeit des Systems beschreiben
sowie ein Maf fiir die Verlésslichkeit der Vorhersagen ableiten.

Risikoanalyse
Auf Basis der Wahrscheinlichkeitsdichten der Eingangsdaten soll die Wahrscheinlichkeit be-



2.4. Aligemeine Problemstellung

stimmt werden, dass ein System bestimmte Betriebszustinde verlasst oder Schwellwerte an
kritischen Punkten tiberschritten werden. Gleichzeitig konnen diese Wahrscheinlichkeiten zur
Abschitzung von Risiken oder zur Bewertung der Zuverlissigkeit verwendet werden.

o Sensitivitdtsanalyse
Wann immer ein System mehreren Unsicherheiten verschiedenen Ursprungs unterliegt, ist
ihr jeweiliger Einfluss auf das Verhalten des Gesamtsystems eine entscheidende Frage, um
dominante Unsicherheiten iberwachen oder einddmmen zu kénnen.

2.4. Alilgemeine Problemstellung

Innerhalb des definierten Framework kann die Propagierung der Unsicherheit aus den Eingabepara-
metern auf das Simulationsergebnis als Bestimmung der funktionalen Abhangigkeit der Losung von
den Zufallsvariablen, die die Eingangsdaten parametrisieren, betrachtet werden [MK10, S. 7]. Formal
lasst sich die Problemstellung der Vorwértspropagation von Unsicherheiten wie folgt formulieren
[FDPS14, S. 4]:

Es existiere ein System, das vom Modell M gesteuert wird. Dieses Modell basiert auf einer endlichen
Zahl zufalliger Parameter £ = {£1, o, ..., &} € I mit gegebener Wahrscheinlichkeitsdichtefunktion
pe(€) und gegebener kumulativer Verteilungsfunktion F¢ () sowie einer unbekannten Lésung:

21) u:T—R

Gesucht ist also eine Funktion u(¢) unter dem Modell M, um das probabilistische Verhalten, das
durch die unsicheren Parameter £ in das System eingebracht wird, zu beschreiben. Dabei fiihrt die
Kenntnis der Wahrscheinlichkeitsdichte von £ auf die Wahrscheinlichkeitsdichte von .

2.5. Verfugbare Methoden

Zur Lésung des zuvor skizzierten Problems existiert eine Reihe von Verfahren. Diese lassen sich in
zwei grofle Gruppen unterteilen, die intrusiven und die nicht-intrusiven Verfahren.

2.5.1. Intrusive Verfahren
Intrusive Verfahren benétigen die Aufstellung und Losung einer stochastischen Formulierung der
urspriinglichen Modellgleichungen.

Ein klassischer Ansatz dafiir ist die stochastische Galerkin Expansion, wo die Losung als Spektral-
summe der unsicheren Variablen dargestellt wird [lac11, S. 6]:

stochastisch

[e9)
u(z,t,&) = Z ui(x,t)  Pi(§)
=0 N
deterministisch
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2. Uncertainty Quantification

Die (&) sind bspw. hermite’sche Polynome und bilden eine vollstindige Menge orthogonaler
Basisfunktionen. Anstelle hermite’scher Polynome kénnen u. a. auch Wavelets verwendet werden.
Ist u(x,t, &) losbar, lassen sich Erwartungswert und Varianz direkt berechnen. Eine Méglichkeit zur
Berechnung findet sich in [Iac11, S. 10ff].

Die Verwendung einer solchen Expansion verwandelt das urspriingliche stochastische Problem in ein
deterministisches Problem. Dadurch konnen sich bei der Lésung in der Konvergenzordnung immense
Gewinne ergeben.

Im Gegenzug muss dafiir ein hoher Preis gezahlt werden. Durch die Erweiterung des Modells er-
hoht sich die Komplexitédt des Problems. Auflerdem muss eine moglicherweise bereits bestehende
Implementierung des urspriinglichen Modells gedndert werden, weil sich die Modellgleichungen
andern.

2.5.2. Nicht-intrusive Verfahren

Im Gegensatz zu intrusiven Verfahren basieren nicht-intrusive Verfahren auf einer (méglicherweise
groflen) Zahl einzelner Realisierungen der Zufallsvariablen, um die Reaktion des stochastischen
Modells auf die unsicheren Eingangsdaten zu modellieren. D. h. das Problem wird nicht veréndert,
sondern in unterschiedlichen Realisierungen der Menge der unsicheren Parameter £ untersucht.

Der klassische nicht-intrusive Ansatz ist das Monte Carlo Sampling (MC). Dabei wird fiir jedes Element
&; aus der Menge der unsicheren Eingangsdaten £ nach der Wahrscheinlichkeitsdichtefunktion
pe(&) eine einzelne Realisation gewahlt. Der MC Ansatz ist unabhangig von der Dimension des
stochastischen Raums und einfach zu implementieren. Zusatzlich konvergiert die Lésung des MC
Ansatzes garantiert gegen die echte Losung [FDPS14, S. 2].

Der Hauptnachteil dieses Ansatzes ist die niedrige Konvergenzordnung von O (ﬁ), wobei n fiir die
Anzahl der gezogenen Samples steht. Die Konvergenzordnung zeigt die Dimensionsunabhangigkeit
des Ansatzes, da die Konvergenzrate lediglich von der Zahl der Realisationen abhangt.

Die Konvergenzordnung kann durch den Einsatz spezieller nicht-zufalliger Sequenzen verbessert wer-
den, sog. Quasi Monte Carlo Verfahren (QMC). Dabei werden korrelierte Punkt-Sequenzen verwendet,
die eine hohere Gleichméfligkeit mitbringen.

Das bedeutet, dass das Gebiet €2, in dem die Samples generiert werden, durch QMC Verfahren deutlich
harmonischer abgedeckt wird als durch das Verwenden von echtem MC. Bei der Verwendung von MC
Sampling ist jedes einzelne Sample unabhingig von allen iibrigen. Dadurch entsteht an einigen Stellen
eine Anhdufung vieler Samples, an anderen Stellen entsteht eine entsprechend geringe Abdeckung.
Im Gegensatz dazu sind bei QMC Verfahren die Samples voneinander abhingig, so dass dieser Effekt
vermieden wird. Dies zeigt sich bspw. in [Caf98, S. 24]. Dadurch konvergieren diese Verfahren ungefahr
mit O ( Gos(m)*

- ) ,k = konst [Caf98, S. 2f]. Im Rahmen dieser Arbeit werden zur Generierung von

QMC Samples Sobol-Sequenzen verwendet. Eine Einfithrung zu Sobol-Sequenzen findet sich in
[Sob67].
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2.5. Verfugbare Methoden

Im Zusammenhang mit Simulationen kann allerdings bereits ein einziger Simulationsaufruf viel
Rechenzeit in Anspruch nehmen. Um Aufrufe einzusparen, bietet es sich daher fiir glatte Abbildungen
u(&) an, nicht nur die Menge der einzelnen Auswertungspunkte { f(&;)}, j = {1,...,n} zur Appro-
ximation der Losung zu verwenden, sondern zusétzlich zwischen den einzelnen Auswertungspunkten
Zu approximieren.

Eine Moglichkeit dazu liefert die nicht-intrusive verallgemeinerte polynomielle Chaosentwicklung
(gPC), vorgestellt in [XK02] und [XK03]. Dabei werden Parameter-Verteilungen mithilfe des Askey
Schemas optimierten orthogonalen Basen zugeordnet. Die Parameter werden bspw. durch Ortho-
gonalprojektion berechnet, so dass ein potentiell hochdimensionales Quadraturproblem entsteht,
das numerisch gel6st werden muss, bspw. durch Sampling oder Ansétze mit diinnen Gittern. Dabei
ist zu beachten, dass die verwendeten Basisfunktionen global definiert sind, so dass bei scharfen
Ubergéngen, d. h. bei Sprungstellen in der Zielfunktion, das Gibbs’sche Phinomen zu beobachten ist.
Das bedeutet, dass in der Nihe dieser Spriinge in der Approximation Uberschwingungen auftreten,
die sich auch durch das Hinzunehmen endlich vieler weiterer Stiitzstellen nicht eliminieren lassen.
Die Methode lasst sich erweitern, um die beschriebenen Effekte zu mildern, iiberblicksweise werden
entsprechende Konzepte z.B. in [MZ09, S. 3085f] vorgestellt.

Im Rahmen dieser Arbeit soll die stochastische Kollokation mithilfe von diinnen Gittern erfolgen,
der sog. “Conventional Sparse Grid Collocation” (CSGC) und der “Adaptive Sparse Grid Collocation”
(ASGC). Diinne Gitter sind konstruktionsbedingt geeignet, den “Fluch der Dimensionalitit” zumindest
teilweise zu iiberwinden und leiden wegen der Verwendung lokaler Basisfunktionen nicht unter
dem Gibbs’schen Phinomen. In einer Reihe von Benchmark-Versuchen mit bekannten analytischen
Losungen hat ein solcher Ansatz vergleichbare oder bessere Ergebnisse gezeigt als gPC - Ansétze
[EB09].

Im Folgenden sollen zunichst diinne Gitter eingefithrt und anschliefend das verwendete Diinngitter-
Framework SG++ vorgestellt werden.
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3. Diinne Gitter

3.1. Hintergrund und Einfihrung

3.1.1. Grundlegendes

Die vorgeschlagene Methode zur Quantifizierung von Unsicherheiten fithrt zu einem hochdimensio-
nalen (Quadratur-)Problem, weil jeder zusétzliche unsichere Parameter die Dimension des Problems
um eins erhoht. Dieser sog. “Fluch der Dimensionalitat”, d. h. der exponentielle Zusammenhang
zwischen nétigem Rechenaufwand und der Dimension des Problems, kann mithilfe von diinnen
Gittern teilweise iiberwunden werden.

Bei einem Vollgitter mit Dimension d = 1 und m Gitterpunkten bedeutet die Hinzunahme von d
weiteren Dimensionen unter Beibehaltung der Maschenweite h, dass m? Gitterpunkte entstehen.
Bei einem diinnen Gitter werden dagegen solche Gitterpunkte eines Vollgitters ausgelassen, die
zur Gesamtlosung nur einen geringen Beitrag leisten, so dass die Approximation nur um einen
logarithmischen Faktor schlechter ist als die Vollgitterlosung [Pfl10, S. 5].

Im Rahmen dieser Arbeit werden Gitter auf dem sog. Unit Hypercube definiert, d. h. es wird o. B. d. A.
das Gebiet = [0, 1]¢ mit dem vorgestellten Diinngitter-Ansatz diskretisiert.

Die hier gegebene Einfithrung beschrankt sich auf die wichtigsten Grundlagen und orientiert sich
dabei an [Pfl10, Kap. 2]. Fiir eine detailliertere Einfithrung wird an die vorgenannte Stelle sowie
[Feul0, Kap. 2] verwiesen.

Im 1D unterscheiden sich dinne Gitter nicht von vollen Gittern. Der Rahmen dieser Arbeit beschrankt
sich auf dyadische Gittertypen, d. h. fiir die Vollgitter-Maschenweite gilt fiir Level [ > 0 : hy := 27!
[Feul0, S. 5].

Als einfithrendes Beispiel wird die Interpolation im 1D fiir Gebiete 2 = [0, 1] gewahlt. Fir die Gebiete
gilt zunichst, dass die Funktion, die interpoliert werden soll, an den Randpunkten den Wert 0 hat,
d.h. 902 = 0.

Fiir diinne Gitter im 1D ergibt sich eine hierarchische Struktur:

Beginnend bei Level 1 und einem Gitterpunkt bei 0.5 fithrt die Erhéhung des Levels  um 1 zu 2!
zusétzlichen Gitterpunkten, die, weil dyadische Gitter verwendet werden, jeweils genau in der Mitte
der Maschen von Level | angeordnet sind.

Um die Knoten zu identifizieren, wird ein (Level, Index)-Tupel verwendet. Dabei wird der Index von
1 beginnend auf jedem Level hochgezahlt. Da alle Knoten des Levels [ — 1 auch Knoten von Level
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3. Dinne Gitter

[ sind, ist die Namensgebung noch nicht eindeutig. Um dies zu beheben, wird das (Level, Index)-
Tupel verwendet, das den minimalen Level hat. Das bedeutet, dass alle Indizes ungerade sind. Das
Namensschema ist in folgender Abb. 3.1 anschaulich dargestellt.

Abbildung 3.1.: Level-Index-Baum fiir ein randloses diinnes Gitter mit Level 4. Jedes Kreuz markiert
die Position eines Gitterpunkts

Dieses Schema fithrt zur Indexmenge I;

1) [[:=ieN;1<i<2 —1,i=1 mod 2.

Fiir das Interpolationsbeispiel wurden somit Stiitzstellen definiert, an denen die Funktion ausgewertet
wird. Nun fehlen noch geeignete Basisfunktionen, die die Funktion zwischen den Schnittstellen
interpolieren sollen. Zur Einfithrung wird die hierarchische Hut-Funktion angesetzt:

¢(z) = max(l—|z[,0)
(3:2) ori(z) = p(2lz —1)

Daraus ergeben sich hierarchische Unterraume W; auf jedem Level | mit nicht-iiberlappenden Basis-
funktionen, wenn man nur die Indizes ¢ € I; beriicksichtigt.

(3.3) W; :=span{y;;(x)} miti € I;

Der Raum der stiickweise linearen Basisfunktionen Vyy ergibt sich aus der direkten Summe iiber alle
Unterrdume Wy mit 1 <[ < N.

Um eine Interpolation fy(z) in V durchzufithren, muss die zu einer Stitzstelle gehérende Basis-
funktion mit dem hierarchischen Uberschuss v; ; zwischen dem realen Funktionswert u(z; ;) und
dem Wert der bisherigen Diinngitterapproximation fx_1(x;;) skaliert werden.

v = u(w;) — fv—1(2)
B o fy() = KZE] i+ i)

Das bisherige Ergebnis der Einfithrung nach [Pfl10, Kap. 2] zeigt Abb. 3.2 auf der nachsten Seite.
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3.1. Hintergrund und Einfihrung

A

h3:2_3

Abbildung 3.2.: Interpolationsbeispiel 1D, entnommen aus [Pfl10, S. 9]. Links sieht man in rot das
Resultat fy(x) aus Gleichung (3.4). Rechts sind die hierarchisch angeordneten
und skalierten Hut-Funktionen v;; - ¢;; einzeln dargestellt. Die hierarchischen
Uberschiisse v;; sind in Form der gepunkteten Linien visualisiert.

3.1.2. Ubergang zu héheren Dimensionen

Der Ubergang aus dem Eindimensionalen in die Mehrdimensionalitit gelingt mithilfe eines Tensor-
produktansatzes:

d
(3.5) or7:= 1 e1,.; ()
j=1

Auf die erneute Herleitung von W3, Viy und fy(Z) wird an dieser Stelle verzichtet und stattdessen
auf [Pfl10, S. 10] verwiesen.

Dieser Ansatz alleine geniigt allerdings nicht, um mehrdimensionale diinne Gitter zu erhalten: Im 1D
unterscheiden sich diinne und volle Gitter nicht, so dass der in Gleichung (3.5) beschriebene Ansatz
mehrdimensionale Vollgitter liefert. Fiir die so erzeugten Vollgitter gilt, dass die Vollgitterapproxima-
tion gy (x) € Vi fir eine hinreichend glatte zu interpolierende Funktion u(x) eine asymptotische
Fehlerschranke aufweist:

(3.6) [u(&) = gn(@)ll;, € O(hY)

Dazu sind O(hy?) = O(2N?) Funktionsauswertungen nétig [Pfl10, S. 10].
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3. Dinne Gitter

Der Ubergang vom vollen zum diinnen Gitter gelingt nun durch das Auslassen derjenigen Unterraume,
deren Beitrag zur Vollgitter-Losung am geringsten ist [BG04]:

o= 2,
3.7 [|<N+4d—1
R X (@

|| <N+d-1,i€l;

Die Bedingung |l| < N + d — 1 wird mit der Hamming-Distanz vermessen. Daraus ergibt sich fiir
2D und Level | = 3 das in Abb. 3.3 dargestellte Teilraumschema. Die Teilrdume sind das jeweilige
Ergebnis des kartesischen Kreuzprodukts der am dufieren Rand dargestellten Basisfunktionen.
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\ / \
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/ \ f:f \ / \\
f \ /
// \\ / \ / \ /
/ \ f/ \ / \\ \ /
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.\\\
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\\
\\.
~.
:‘_/:f - ® ® ®
e i=1
,’,:'/ ® ® °

Abbildung 3.3.: Teilraumschema diinnes Gitter: Dimension d = 2, Level | = 3, kein Rand
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3.1. Hintergrund und Einfihrung

Dadurch reduziert sich die asymptotische Genauigkeit von O(h3%;) auf

(3:8) O(h} (log(hy'))*™),

gleichzeitig reduziert sich die Anzahl der benétigten Gitterpunkte von O(hj_vd) auf

(3.9) O(hy' (log(hy'))*").

Das bedeutet, dass die Zahl der benétigten Gitterpunkte deutlich abfallt ohne signifikanten Verlust

der Approximationsgenauigkeit.

3.1.3. Randpunkte

Um den bisherigen Ansatz auf Funktionen zu erweitern, auf deren Rand gilt, dass 92 # 0, wird ein
zusétzlicher Level [ = 0 mit zwei tiberlappenden Basisfunktionen ¢ ¢ und g 1 eingefiihrt. Dadurch
erweitert sich das Teilraumschema wie in Abb. 3.4 dargestellt.

1=0 =1 =2 =3 =4
=0
=1 ° ° ® ° e o °
° ° ]
=2
- ® ® ]
=T °
- ®
= e

Abbildung 3.4.: Teilraumschema diinnes Gitter: Dimension d = 2, Level [ = 4, regularer Rand
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3. Dinne Gitter

Dabei entsteht das Problem, dass nicht nur einige Punkte auf dem Rand liegen, sondern fast alle. Im
2D liegen bereits doppelt so viele Punkte auf dem Rand wie auf den Hauptachsen des Gitters. In
hoéheren Dimensionen vergrofiert sich diese Problematik, weil Randpunkte eines diinnen Gitters der
Dimension d nichts anderes sind als ein diinnes Gitter der Dimension d — 1 [Feu10, S. 10].

Um dieses Problem zu lindern, erzwingt man am Rand die gleiche Diskretisierung wie auf den
Hauptachsen. Diese sog. Trapezrand-Gitter kann man bspw. dadurch konstruieren, dass man die
Basisfunktionen des vormaligen Level 0 nicht als Oten Level hinzufiigt, sondern mit der Basis aus Level
1 iiberlagert. Fiir Trapezrand-Gitter ergibt sich damit das in Abb. 3.5 dargestellte Teilraumschema.

/ N \/
1=0 =1 1=2
7
\\ S
NS
< > 1=0 ° L] L] L] L] L] L]
\
N
/ \
/ O\
N\
.\77 ° . .
T =
/\/ ° ° °

Abbildung 3.5.: Teilraumschema diinnes Gitter: Dimension d = 2, Level [ = 3, Trapezrand

3.1.4. Polynomielle Basisfunktionen

Gibt man den Approximationsfehler € nicht in Abhéngigkeit der Maschenweite, sondern in Abhan-
gigkeit der Zahl der Gitterpunkte m an, liegt er nach [Bun98, S. 43] bei

(3.10) er,(m) = O(m =2 - [logy(m) >4~ ).
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3.1. Hintergrund und Einfihrung

Fiir hinreichend glatte Funktionen lasst sich die Konvergenzgeschwindigkeit erhéhen, indem man
statt stiickweise linearen Basisfunktionen Basisfunktionen mit mehr Stiitzstellen zuldsst und bspw.
stiickweise polynomielle Basisfunktionen ansetzt. Dazu wird eine Lagrange-Basis iiber k Stiitzstellen
verwendet, mit

(3.11) k = min{gewiinschter Polynomgrad: p+1, max mogliche Stiitzstellen aus Gitterlevel: [+2}.

Die zweite Einschrankung erklért sich wegen des hierarchischen Ansatzes. Der maximale Polynom-
grad p ist auf Level [ durch p < [+ 1 beschrankt, weil nur der Knoten selbst und seine hierarchischen
Vorgénger als Stiitzstellen in Frage kommen. Dies veranschaulicht Abb. 3.6 beispielhaft fiir den Knoten
(4, 11).

Abbildung 3.6.: Menge potentieller Stiitzstellen fiir Knoten (4, 11)

Als Stutzstellen firr den Ansatz der Lagrange-Basis existieren damit zwei Gitterpunkte auf Level [ = 0
und fiir jedes weitere Level bis [ = l,ax genau ein Gitterpunkt. Die Funktionswerte der Stiitzstellen
werden wie folgt angesetzt:

(3.12) f(z14) =

0 wennl! < lax

{1 wenn [ = lpax

Dabei ist zu beachten, dass es keine Rolle spielt, ob das Gitter einen Rand hat oder nicht, weil auf Level
0 keine polynomielle Basisfunktion von héherem Polynomgrad als 1 méglich ist, was der stiickweise
linearen Basis entspricht. Somit ist an den Stiitzstellen am Rand fiir alle Level [ > 0 grundsétzlich 0
anzusetzen, was sich mit randlosen Gittern vertragt, weil dort per definitionem gilt, dass 92 = 0.

Wihlt man einen Polynomgrad, der nicht dem maximal moéglichen entspricht, sind nicht die p
hierarchischen Vorgéinger des Knotens nach Level geordnet als Stiitzstellen zu verwenden, sondern
die p raumlich nachstgelegenen Gitterpunkte, um moglichst lokal zu approximieren. Nicht maximal
moglicher Polynomgrad bedeutet anschaulich, dass in dem in Abb. 3.6 dargestellten Fall nicht alle
roten Knoten als Stiitzstelle verwendet werden.

Dadurch kann der Approximationsfehler fiir hinreichend glatte Funktionen weiter reduziert werden,
nach [Bun98, S. 78] auf:

(3.13) E(LPZ) (m) = O(m™P*t. ’10g2(m)’(p+2)(d—1))
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3. Dinne Gitter

3.2. Operationen

3.2.1. Hierarchisierung

Die hierarchischen Uberschiisse, die zum Skalieren der Basisfunktionen verwendet werden, werden
bei der Hierarchisierung aus den Funktionswerten errechnet.

Das diinne Gitter wird nach dem unidirektionalen Prinzip hierarchisiert, d. h., die Tensorprodukt-
Struktur des diinnen Gitters wird ausgenutzt, indem ein linearer Operator fiir d Dimensionen auf
mehrere eindimensionale lineare Operatoren heruntergebrochen wird. Der eindimensionale Operator
wird nacheinander fiir alle Dimensionen angewandt und rechnet dabei in jedem Schritt mit den
aktualisierten Werten aus den vorherigen Schritten [Pfl10, S. 28].

Zur Durchfithrung der Hierarchisierungsoperation werden im Folgenden zwei Verfahren vorge-
schlagen. Stiickweise polynomielle Basisfunktionen ab Polynomgrad p = 2 kénnen auf beide Arten
hierarchisiert werden, wahrend stiickweise lineare Basisfunktionen wegen fehlender Vorgianger-
Polynomgrade nicht nach Variante 2 hierarchisierbar sind.

Variante 1: Direkte Hierarchisierung als Differenz zwischen bisherigem Diunngitter-Interpolant
fn—1(x1;) und dem Funktionswert u(z; ;) am Knoten.

(3.14) v () = u(zy,) — 1(511(951,1')

Variante 2: Rekursive Hierarchisierung aus den Uberschiissen des vorherigen Polynomgrads p — 1
des hierarchischen Vorgingerknotens v(~1)(z,,) und des aktuellen Knotens v®~1 (z,,) sowie
einem zusatzlichen Faktor a(xo, . .., Zp+1), der von den relativen Positionen der Vorganger-
knoten des aktuellen Knotens x,, = x;; abhédngt, vgl. [Bun98, S. 58].

(3.15) U(P) (xl,i) — U(pfl) (xm) _ Oé(l‘(), L 7«Tp+1) . U(pfl)(xn)

Dabei stehen die Knoten o, . ..,z fiir die p + 1 hierarchischen Vorgénger inklusive des
Knotens selbst, geordnet nach ihrer Position entlang der Zahlengerade, so dass

(3.16) wp < w1 < ... < Tpy1.

Der aktuelle Knoten wird mit x,, bezeichnet und sein hierarchischer Vorganger mit x,,. Die
a-Faktoren berechnen sich damit wie folgt:

Tp — X Ty — Tk

(317) oy = a(xo, ..., Tpy1) == Bt LU H LU

Tp+l = Tn o9 Tn — Tk
k#m, k#n

Fiir stiickweise polynomielle Basisfunktionen ist zu beachten, dass das Gitter fiir jeden Polynomgrad
pvon p = 1 bis hin zu p = ppax erneut hierarchisiert werden muss. Dabei entfallen in jedem
Schritt jeweils die (p — 1) ersten Level, weil diese zu wenig Stiitzstellen fiir Basisfunktionen von
Polynomgrad p bieten. Der erste Hierarchisierungsschritt einer Hierarchisierung fir stiickweise
polynomielle Basisfunktionen ist eine Hierarchisierung fiir stiickweise lineare Basisfunktionen.
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3.2. Operationen

Alternativ zu dem in [Bun98, S. 58f] vorgeschlagenen Beweis lassen sich die «; ; auch als dividierte
Differenzen und damit als Newton-Basis interpretieren. Das ist niitzlich, weil nach dem bisher
vorgeschlagenen Beweis zwar die Korrektheit der ; ; bewiesen ist, aber nur wenige Eigenschaften
bekannt sind, wihrend fiir eine Newton-Basis sehr viele Eigenschaften bekannt sind.

BEWEIs «;; sind eine Newton-Basis
Es sei p;_y,... ; das Interpolationspolynom in den Stiitzstellen x;_, ¥j_g+1,...,2; und ®;_; _; das
zugehorige Newton’sche Basispolynom mit

i
(318) @i k..i= ][] (z— ).

=ik
Dann gilt
(319) Pi—iyi = Piekyim1 + [Ticky o T Pig i1
und

(3:20) Pi—k,...i = Piktl,i T [Ticks- o T3] Pi gy, i

Die bisherige Interpolation f ](\1,0 ) () (d. h. der Wert der Interpolation von Grad p an der Stelle x,,,)
ohne den Knoten x,,, selbst lautet in der Schreibweise von Gleichung (3.19):

3.21) fP () = Pm—p1....m-1(Tm)
Der Uberschuss am Punkt x,,, fiir Grad p berechnet sich nach Gleichung (3.14) auf Seite 28 wie folgt:

VO (2m) = w(@m) — F (@m)

(3'22) = pmfpfl,mfp,...,m(wm) - pmfpfl,...,mfl(-rm)
Somit folgt nach Gleichung (3.19)
(3.23) U(p) (:Em) = [:L'mfpfly cee xm]q)mfpfl,...,mfl(xm)

Damit konnen alle nétigen Parameter fiir die Rekursionsformel der dividierten Differenzen hergeleitet
und entsprechend eingesetzt werden.

I @n) = Prmptimepnt (Tm)
(3.20)
= pm—p,...,m—l(xm) + [xm—p—la . 7xm—1] (I)m—p,...,m—l(wm)
(p—1) - v(P=1) (g, 1)
N (x ) <I>'mfpfl .4.,m72(195m71)
.21)
(3.24) 03 o B py 1 (@

(I)m—p—l,...,m—Q(-Tm—l)

=Qm,p

= P (@) + 0P D (@ 1) - Ay
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3. Dinne Gitter

BEMERKUNG Der vorgestellte Beweis orientiert sich sehr deutlich an [Bun98, Lemma 4.3]. Da die oy ;-
Koeflizienten eine Newton-Basis sind, kann die Gleichheit alternativ auch direkt aus der rekursiven
Formel der dividierten Differenzen gezeigt werden.

Die rekursive Formel fiir dividierte Differenzen lautet

(3.25) [z 1 | = [xm_p’ T ’xm] — [:Bm—P—b ceey wm—2]
: m—p—L,....&m - .

Zusitzlich werden folgende Abkiirzungen eingefiihrt:

() ._
(3.26) d?;) = [Tmop-1,m]
m = @m,p717.”7m71(xm)

Beim Ubertragen Schreibweise von Gleichung (3.26) auf Gleichung (3.23) zur Berechnung der hierar-
chischen Uberschiisse, ergibt sich

(3.27) v (2,,) = d® . @),

m

(»)

Nun werden fir dy,” die rekursive Formel der dividierten Differenzen aus Gleichung (3.25) angesetzt,

fiir die Ergebnisse die umgeformte Gleichung (3.23) eingesetzt sowie der Nenner @g’;_l) zugeordnet.

v (z,,) = d®) . p®)
Y
—_—
q)(p)
(325) (d(P—l) _ d(P—l)) m
" m=1 ITm — Tm—p-1
(3.28) B B
(3.23) (vy(f; Y . Uﬁs%)) (I)(p—l)
- —1 -1 m
W0 3l

3.2.2. Evaluation

Zur Evaluation der Diinngitterapproximation fiir einen beliebigen Punkt Z innerhalb des Unit-
Hypercube [0, 1]¢ miissen in jeder Dimension d die beitragenden Basisfunktionen gefunden und an
der Stelle &y ausgewertet werden. Die Ergebnisse der Auswertung werden mit dem zur Basisfunktion
gehoérenden hierarchischen Uberschuss skaliert und summiert.

Das Finden der beitragenden Basisfunktionen kann aufgrund der levelweise nicht-tiberlappenden
Basisfunktionen iiber einfache Indexberechnungen erfolgen. Die Basisfunktionen der Level [ = 0, 1
sind grundsatzlich beteiligt, weil sie das gesamte Gebiet €2 tiberspannen. Fiir alle weiteren Level gilt,
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3.2. Operationen

dass die Komponente entweder grofier, kleiner oder gleich dem Mittelpunkt des vorherigen Levels ist.
Dann ist die néchste beitragende Basisfunktion:

linker Kindknoten wenn Zq < 0.5 - 27
(3.29) nichste beitragende Basisfunktion = < rechter Kindknoten wenn Zg > 0.5- 27
beide leisten keinen Beitrag wenn Zy = 0.5 - x;;

Falls Fall 3 eintritt, liegt die Komponente auf einem Gitterpunkt, an dem genau interpoliert wird.
Damit ist definitionsgemaf3 in allen Leveln [ mit | > [ der Wert der jeweiligen Basisfunktion

i = 0.

Fiir ein zweidimensionales Gitter mit Level [ = 3 ist das Finden der beitragenden Basisfunktionen in
Abb. 3.7 dargestellt.

i VAYAVAVAN

X A A
l2=1
l2=2
l2=3
l2  J

Abbildung 3.7.: Das Finden beitragender Basisfunktionen fiir ein randloses Gitter von Dimension
d = 2 und Level [ = 3, entnommen aus [Pfl14, S. 123]. Das rote Kreuz stellt den
Punkt dar, fiir den die beitragenden Basisfunktionen gesucht werden sollen, die
Pfeile die in Frage kommenden Basisfunktionen der Kindknoten.
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3. Dinne Gitter

3.2.3. Quadratur

Zur Quadratur wird der folgende Ansatz herangezogen:

|4 |D|
(3.30) /fN(x)d:n = Z (vj- (H /@l/(j,k),i/(j,k)(x)dﬂﬂ))
k=1

Jj=1

mit /', 7" als Funktionen, die zu Knoten j in Dimension k das zugehérige Level bzw. den zugehérigen
Index berechnen. Fiir stiickweise lineare Basisfunktionen, d. h. Hut-Funktionen, berechnet sich das
Integral sehr leicht, weil hier lediglich Dreiecksflichen zu berechnen sind.

(3.31) /gom'(x)dx — olltlly 12 9

Fiir stiickweise polynomielle Basisfunktionen gibt es zwei Moglichkeiten. Die erste ist der klassische
Ansatz, die vorhandenen Basispolynome zu integrieren. Dies ist problemlos direkt moglich, da

Gn

(3.32) /an cxdr = ——

2" e
n—+1

Zusatzlich sind die Integralgrenzen bekannt, so dass sich das Integral leicht aufstellen und berechnen
lasst. Alternativ lasst sich die Dreiecksflache einer Hut-Basisfunktion auf eine stiickweise polynomielle
Basisfunktion skalieren, wie in [R611, S. 22f] beschrieben. Das bietet den Vorteil, dass keine Stamm-
funktionen berechnet werden miissen. Stattdessen miissen die Skalierungskoeffizienten berechnet
und gespeichert werden.

Die berechneten Integrale jeder Dimension werden anschlieffend, wie in Formel (3.30) dargestellt,
miteinander multipliziert, mit dem hierarchischen Uberschuss am Knoten skaliert und schlief3lich
summiert.

3.3. Adaptivitat

Oftmals ist eine Funktion lokal nicht hinreichend glatt oder zeigt lokal unterschiedliche Verhaltens-
weisen, bspw. in Form von Sprung- oder Knickstellen oder lokalen Oszillationen. In solchen Fillen
bietet es sich an, auf die Erh6hung des Gitterlevels zu verzichten. Damit wiirde man global mehr
Gitterpunkte investieren und so in den bereits gut aufgelsten Bereichen entweder nur geringe oder
gar keine zusétzlichen Gewinne bei der Interpolationsqualitat erzielen. Im Gegenzug erhéhen sich die
Kosten durch zusétzlich benétigte Funktionsauswertungen und zusétzlich benétigten Speicherbedarf
moglicherweise deutlich. Stattdessen ist es wesentlich geschickter, die Auflosung des Gitters nur
lokal zu erh6hen und das Gitter damit adaptiv zu verfeinern. Ein Beispiel fiir raumlich-adaptive
Verfeinerung zeigt Abb. 3.8 auf der nachsten Seite.

Zu beachten ist, dass konstruktionsbedingt nicht alle Gitterpunkte beliebig verfeinert werden kénnen.
Vielmehr muss bei der Verfeinerung die Diinngitter-Struktur erhalten bleiben und anschlieffend, so
weit notig, rekursiv durch das Hinzufiigen weiterer Punkte wiederhergestellt werden, weil viele Algo-
rithmen implizit annehmen, dass alle hierarchischen Vorganger eines Knotens existieren. Ein Beispiel
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3.3. Adaptivitat

Abbildung 3.8.: Beispiel fiir die adaptive Verfeinerung eines diinnen Gitters, entnommen aus [Pfl10,
S. 21]. Dabei wird der rote Knoten jeweils verfeinert und in jeder Dimension werden
beide Kindknoten erzeugt. Da viele Gitteralgorithmen implizit annehmen oder sogar
darauf beruhen, dass alle hierarchischen Vorgéinger eines Knotens existieren (wie
bspw. der in Abschnitt 3.2.1 vorgestellte rekursive Hierarchisierungsalgorithmus),
missen diese rekursiv erzeugt werden.

fiir einen solchen Algorithmus stellt der in Abschnitt 3.2.1 vorgestellte rekursive Hierarchisierungsal-
gorithmus dar. Daher kénnen in jedem Verfeinerungsschritt nur aus der Menge verfeinerungsfahiger
Knoten die geeignetsten Knoten ausgewahlt werden. Die Kandidatenmenge besteht aus allen Knoten,
die im Diinngitter-Baum in einer beliebigen Dimension Blattknoten sind und ist damit eine Teilmenge
der Menge der Gitterknoten. Im Verfeinerungsschritt werden dann in jeder Dimension alle noch nicht
vorhandenen Kindknoten erzeugt, ebenso wie deren noch nicht vorhandene hierarchische Vorgénger.
Die Erzeugung dieser hierarchischen Vorgéangerknoten erfolgt rekursiv.

Zur Auswahl der bestmoglichen Punkte aus der Kandidatenmenge bieten sich verschiedene Kriterien
an, die alle darauf basieren, den Beitrag der potentiellen Kindknoten zur Approximationsgenauigkeit
zu qualifizieren. Damit erhalt man ein Ranking, das die geeignetsten Punkte fiir eine Verfeinerung
zeigt. Das sind genau die Punkte, deren lokaler Beitrag nach der gegebenen Metrik maximal ist. Um
das Ranking zu erstellen, wire es offensichtlich optimal, alle potentiellen Kandidaten auszuwerten
und deren jeweils gelieferten Beitrag festzustellen. Diese naive Herangehensweise ist insbesondere im
Zusammenhang mit UQ nicht umsetzbar, wenn eine einzelne Simulation mehrere Minuten oder ggf.
sogar mehr Zeit in Anspruch nehmen kann. Daher werden die Knoten, die besonders vielversprechend
erscheinen, verfeinert [FDPS14, S. 7].

Im Zusammenhang mit UQ werden nach [FDPS14, S. 8] drei Metriken vorgeschlagen:

1. Verfeinerung nach dem Betrag der hierarchischen Uberschiisse
Dies ist der klassische Ansatz fiir Interpolation mit diinnen Gittern, da der hierarchische
Uberschuss auf Level [ den Interpolationsfehler am Knoten auf Level [ — 1 angibt. Verfeinert
wird der Knoten, dessen hierarchischer Uberschuss den grofiten Betrag hat.

2. Verfeinerung nach dem Erwartungswert
Es wird mithilfe der Diinngitter-Approximation der Erwartungswert fiir eine bestimmte unsi-
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3. Dinne Gitter

chere Zielgrée (Quantity of Interest (Qol)) bestimmt. AnschliefSend wird festgestellt, welcher
Knoten den grofiten Beitrag leistet, indem jeder Knoten je einmal nicht beriicksichtigt wird.

[E(fn (@) = B @) = vl - S eri(@) - pla)de
(3.33) (nur fiir Gleichverteilung) = |Juy,| - p(@1;) - [ pri(x)da
(nur fiir Gleichverteilung und Hut-Basis) = ||| - p(zy;) - 21

Verfeinert wird derjenige Knoten, dessen Beitrag zum Erwartungswert maximal ist.

. Verfeinerung nach der Varianz

Nach dem in [MZ09] und [FDPS14] vorgeschlagenen Ansatz fiir ein Verfeinerungskriterium
nach der Varianz, wird die lokale Varianz an einem Knoten durch die hierarchischen Uberschiis-
se des Quadrats der Diinngitter-Funktion abgeschatzt. D. h. die Funktionswerte der Stiitzstellen
werden quadriert und die dadurch entstehende Funktion anschlieend mit einem diinnen Gitter
interpoliert. Auf die dabei entstehenden hierarchischen Uberschiisse vl’ﬂ. wird das Uberschuss-
kriterium angewandt, d. h. verfeinert wird der Knoten, dessen hierarchischer Uberschuss vl’ ;
maximal ist. 7

Geeignete Methoden zur Berechnung des Erwartungswerts und der Varianz mithilfe von diinnen
Gittern finden sich in [Leil3, S. 40ff].

Im folgenden Kapitel sollen die beiden zur Quantifizierung von Unsicherheiten benutzten Frameworks
und deren Erweiterung im Rahmen dieser Arbeit vorgestellt werden.
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4.1. SG++

4.1.1. Allgemeines

SG++! ist ein grofitenteils in der Programmiersprache C++ geschriebenes freies und offenes Fra-
mework fiir Berechnungen mit diinnen Gittern. Neben einer Bibliothek fiir C++ werden durch das
Java Native Interface (JNI)? eine Version der Bibliothek fiir Java und durch den Simplified Wrapper
and Interface Generator (SWIG)? eine fiir Python bereitgestellt. Zusitzlich ist eine Integration in
MATLAB* méglich.

Bei der Konzeption und Entwicklung wurden zwei grofle Ziele verfolgt:
1. Flexibilitat
2. Effizienz

Im Zielkonflikt zwischen Flexibilitit und Effizienz hat Flexibilitat Vorrang vor Effizienz. Das Entwick-
lungsziel bestand und besteht in der Bereitstellung eines effizienten allgemeinen Frameworks fiir
diinne Gitter im Gegensatz zu der Bereitstellung einer hochsteffizienten “Single Purpose” - Anwen-
dung, die zu jeder Problemstellung entsprechend umfangreich modifiziert werden miisste. Dies wird
durch die Trennung von grundlegenden und massiv optimierten Basis-Algorithmen fiir diinne Gitter
auf der einen Seite von anwendungsspezifischem Uberbau auf der anderen Seite realisiert. Zusitzlich
wurde darauf geachtet, Datenstrukturen und Algorithmen zu trennen [Pfl10, S. 41f].

Im Rahmen dieser Arbeit wurde SG++ auf Seite der Basis-Algorithmen um zwei Klassen mit stiickweise
polynomiellen Basisfunktionen erweitert. Die Klassen basieren auf der bereits bestehenden Klasse
“PolyBasis”, basierend auf der Arbeit von [R611], und erweitern diese um einige Features, wie bspw. die
in Abschnitt 3.2.1 vorgestellte rekursive Hierarchisierung nach [Bun98], Quadratur fiir Polynome mit
Polynomgrad p > 3 und die Méglichkeit, Gitter mit Randpunkten zu verwenden. Dazu wurden zwei
Klassen, “UltraPolyBasis” und “UltraPolyBoundaryBasis”, mitsamt zugehdoriger Gittertypen analog
der bereits vorhandenen Schemata fiir stiickweise lineare Basen (analog den Klassen “LinearBasis”
und “LinearBoundaryBasis”) aus der bestehenden Klasse “PolyBasis” erzeugt, um eine méglichst
gute Kompatibilitat mit dem bestehenden Framework zu erzielen und die Integration so einfach wie
moglich zu gestalten.

"http://www5.in.tum.de/SGpp/releases/index.html
*http://docs.oracle.com/javase/7/docs/technotes/guides/jni/index.html
*http://www.swig.org/

*http://www.mathworks.de/products/matlab/
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Das ist aus Entwicklersicht ebenso wiinschenswert wie aus Anwendersicht:

Entwicklerseitig profitiert man davon, dass durch das Hinzufiigen der implementierten, dhnlich
strukturierten Klassen die modulare Struktur erhalten bleibt und zu grof3en Teilen wiederverwendet
werden kann. Zusatzlich wird die Einarbeitungszeit klein gehalten und die Wartbarkeit des Programm-
codes erleichtert, indem auf die Einfithrung zusatzlicher Strukturen aufierhalb der bestehenden so
weit wie moglich verzichtet wird.

Anwender profitieren davon, dass die durch die stiickweise polynomiellen Basisfunktionen eingefiihr-
te zusitzliche Komplexitit, verglichen mit stiickweise linearen Basisfunktionen, fiir sie weitgehend
transparent, d. h. nicht oder nur in geringem Umfang wahrnehmbar ist, weil sich die Bedienung kaum
andert.

Dank des Tensorprodukt-Ansatzes und der Verwendung des unidirektionalen Prinzips geniigt es, die
Funktionen im 1D zu implementieren. Die konkrete Umsetzung des unidirektionalen Prinzips ist in
SG++ bereits generisch vorhanden und kann aufgrund der Ubernahme der Aufbau-Schemata der
stiickweise linearen Basen ohne weitere Anpassung verwendet werden.

4.1.2. Neue “UltraPoly”-Klassen

Der Programmablauf der bisherigen Klasse “PolyBasis” ist in Abb. 4.1 auf Seite 37 in Form eines
Flussdiagramms dargestellt.

Bei ndherer Betrachtung fillt auf, dass viele Teile in dhnlicher Form erhalten werden konnen, einiges
jedoch aufgrund konzeptueller Entscheidungen weniger oder nicht geeignet ist. In der “PolyBasis”
Klasse wird grundsatzlich eine Lagrange-Basis erstellt. Bei direkter Hierarchisierung ist das ein sinn-
voller Ansatz, da bei diesem Verfahren in jedem Hierarchisierungsschritt Lagrange-Basisfunktionen
ausgewertet werden miissen. Fiir die “UltraPoly”-Klassen ist dies dagegen kein sinnvoller Ansatz,
da hier rekursive Hierarchisierung verwendet werden soll, fur die keine Auswertungsoperation,
stattdessen aber eine Newton’sche Basis in Form der a-Koeffizienten benétigt wird.

Ahnlich verhilt es sich bei der Quadratur-Operation. Fiir die Implementierung der “UltraPoly”-
Klassen wurde das in Gleichung (3.32) skizzierte Verfahren gew4hlt, die stiickweise polynomiellen
Basisfunktionen direkt zu integrieren. Diese Berechnungen kénnen entfallen, wenn keine Quadratur-
Operation durchgefiihrt werden soll.

Deshalb wurden zwei Flags eingefiihrt, die beim Erstellen der Klasseninstanz signalisieren, welche
Operation durchgefiithrt werden soll.

Dadurch entsteht in den “UltraPoly”-Klassen der in Abb. 4.2 auf Seite 38 in Form eines Flussdiagramms
visualisierte Programmablauf.

Im Folgenden werden einzelne Komponenten der neu implementierten Klassen naher betrachtet.
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Abbildung 4.1.: Aktueller Programmablauf in “PolyBasis”-Klasse
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38

Skalierung mit Hilfe
der hierarchischen
Uberschiisse

|

Durchlaufe
alle Knoten

|

Integriere Lagrange
Basis

|

Berechne Lagrange
Basis

|

Erstelle Basis

|

Quadratur

|

Operation




4.1. SG++

Lagrange-Basis

Die Basis wird in Tiefensuche nach dem klassischen Lagrange-Ansatz mit (p + 1) Stiitzstellen (x;, y;)
fir die Evaluation- und Quadratur-Operation erstellt.

ptl
L(z) = .Zlyi'li("”)
4.1 = — T
“1) mit [;(x) = I1 T Im
0<m<p+1 Li — Tm

Durch den Tiefensuche-Ansatz sind konstruktionsbedingt alle Stiitzstellen in Form der hierarchischen
Vorgéanger eines Knotens bei jedem Funktionsaufruf bereits vorhanden, so dass diese nicht mehr
explizit gesucht werden miissen. Wie in Gleichung (3.12) definiert, sind die y-Komponenten aller
Stiitzstellen {(z;, y;)} auBer der Stitzstelle an der aktuellen Knotenposition (x,, ¥, ) null, so dass
{yili # n} = 0 und y,, = 1. Damit vereinfacht sich der allgemeine Lagrange-Ansatz aus Gleichung
(4.1) dramatisch zu

r—Xx
42 L) = ] Lot
0<m<p+1 In = Tm
m¥#n

Der naive Ansatz wire nun, die Basisfunktionen nach gegebenem Polynomgrad ppax und gegebenem
maximalem Level [ nach dem gegebenem Schema zu berechnen. Das kann allerdings insbesondere in
adaptiven Fallen dazu fithren, dass zu viele Basisfunktionen berechnet werden. Es geniigt stattdessen,
alle Basisfunktionen bis zu py,ax zu berechnen und die erhaltenen Basisfunktionen anschlieffend zu
skalieren. Um die zu skalierende Basisfunktion zu finden, wird das (Level, Index)-Tupel in Abhéngigkeit
des maximalen Polynomgrads umgerechnet. Diese Umrechnung wird im Anschluss an die Vorstellung
der oy ; Koeffizienten vorgestellt.

Aus dem vorgestellten Lagrange Ansatz ergibt sich an jedem Knoten mit Level I < p — 1 eine
polynomielle Basisfunktion der Form

43) pri(z) = apr? + ap_12?t 4.+ arx + ag.

Die Koeffizienten ay, . . ., a, werden in einem Array gespeichert. Dabei wird die Koeffizientenmenge
fiir einen Knoten wie in Tabelle 4.1 dargestellt abgelegt

Tabelle 4.1.: Lagrange-Basis: Speicherschema der Koeffizienten der polynomiellen Basisfunktionen

T ‘ inty;(x) ‘ ao ... ap

Koeffizienten zu Stiitzstelle ; ;
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Dabei gilt

% fiir Quadratur-Operation, Level [ = 0
0 fiir Evaluation-Operation.
Der Wert des Integrals wird also nur berechnet, wenn er benétigt wird. Das gilt auch fir die beiden

Level [ = 0 Eintréage, die nur dann gespeichert werden, wenn ein Gitter mit Randpunkten verwendet
wird.

Diese Gruppe von Feldern wird fiir alle Knoten nach der in Abb. 4.3 dargestellten Reihenfolge
konkateniert.

Abbildung 4.3.: Array-Index der zum Knoten gehdrenden Basisfunktionskoeffizienten nach Tabel-
le 4.1. Schwarz fur ein Gitter mit Rand, blau fiir ein randloses Gitter

Newton-Basis

Die zur rekursiven Hierarchisierung bendtigte Newton-Basis wird genau wie die im vorigen Abschnitt
beschriebene Lagrange-Basis durch Tiefensuche erstellt. Ebenso analog wird die Erstellung weiterer
Koeffizienten gestoppt, wenn gilt, dass Level [ = pax.

Die Koeffizienten werden nach der in Abschnitt 3.2.1 vorgestellten Berechnungsvorschrift berechnet.

04070 =
040’1 =
(4.5) a1 =
Ty — Ty P Tm — Tk
Qg = D
Tp+1 — Tn kik:()# Tn — Tk
m, n

Dabei liegen die Stiitzstellen z; als im Sinne ihrer Position in R geordnete Liste vor. Der aktuelle
Knoten wird mit x,, und sein hierarchischer Vorgénger mit x,, bezeichnet.
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Fur den Knoten (2, 1) ergibt sich damit folgende Beispielrechnung fiir oz ;:

Tn
~ =~
Hierarchische Vorgénger von (2,1) : [(0,0), (0,1),(1,1)] ~» [0,0.25, 0.5, 1]

Tm

Ty — T, p Tm — Tk
o1 = ——————— - —
Tp+l — Tn k=0,k#m,n Tn — Tk
05—-0.25 0.25—-0

1-05 05-0

B <025)2
— \05

= 0.25

Eine Ubersicht weiterer Werte liefern die Bilder in [Bun98, S. 60].

Aus Symmetriegriinden geniigt es, sich bei Berechnung und Speicherung der «; ;-Koeffizienten auf den
linken Teilbaum ab Knotenlevel 2 zu beschranken. Die berechneten oy ;-Koeffizienten werden analog
den Koeffizienten der Basispolynome der Lagrange-Basis in einem Array abgelegt. Das verwendete
Schema zur Bestimmung der Speicherposition der einzelnen «; ;-Koeffizienten zeigt Abb. 4.4.

Abbildung 4.4.: Speicherposition der oy ; im Array. Die Werte fiir Knoten, die ein X enthalten ergeben
sich entweder aus der Symmetrie (Level [ > 2) oder sie werden nicht benétigt (Level
[=0,1).

Berechnung der Indizes

Durch den gewahlten Ansatz, die Basen nicht durch das maximale Gitterlevel /;,5x sondern durch den
maximalen Polynomgrad ppax zu beschranken, kann es vorkommen, dass fiir hohere Level zunéchst
keine entsprechenden Eintrage vorhanden sind und entsprechend Eintrage niedrigerer Level skaliert
werden miissen. Der Code in Listing 4.1 auf Seite 42 zeigt am Beispiel der oy ;-Koeffizienten, wie das
Mapping von maximalem Polynomgrad ppax, Level [ und Index 4 auf den entsprechenden Index im
Array umgesetzt ist.

Fiir die Indizes der Lagrange-Basen funktioniert das Mapping dhnlich, da es aufgrund der Bindrbaum-
struktur geniigt, den Anfang um einen Level nach oben zu verschieben.

41



4. Implementierung

// Funktion, die in Abhaengigkeit von Polynomgrad p_degree_ui32 fuer Knoten
// (p-level_ui32, p_index_ui32) den zugehoerigen alpha-Koeffizienten sucht und
// zurueck gibt
double getAlpha
(unsigned int p_degree_ui32,
unsigned int p_level_ui32,
unsigned int p_index_ui32)
{
// falls Level > Polynomgrad muss skaliert werden
if (p_level_ui32 > p_degree_ui32)
{
p_level_ui32 = p_degree_ui32;
p_index_ui32 p_index_ui32 % (1 << p_degree_ui32)

}

// falls Knoten in rechtem Teilbaum liegt:
// Abbildung auf symmetrischen Knoten im linken Teilbaum
if (p_index_ui32 > (unsigned int) (1 << (p_level_ui32 - 1)))
{

p_index_ui32 = (1 << p_level_ui32) - p_index_ui32;
}
// nun sind Level und Index ‘‘normiert’’, d. h. es existiert fuer das
// gegebene (Level, Index)-Tupel ein Eintrag im alpha-Vektor
//
// Nun Mapping: (2, 1) =>0, (3, 1) == 1, (3, 3) == 2, (4, 1) => 3 usw.
unsigned int 1_deg_ui32;
if (p_degree_ui32 - 1 < p_level_ui32)

{

1l_deg_ui32 = p_degree_ui32 - 1;
}
else
{

l_deg_ui32 = p_level_ui32 - 1;
}

unsigned int 1_idMask_ui32 = (1 << l_deg_ui32) - 1;
unsigned int 1_provID_ui32 =
(((p_index_ui32 & 1_idMask ui32) >> 1) | (1 << (l.deg_ui32 - 1))) - 1;
return m_alphas_f64[1_provID_ui32];
}
Listing 4.1: Mapping des Tupels (pmax, [, ) auf die zugehorige Arrayposition als C++ - Code am

Beispiel der a; ;-Koeffizienten

Hierarchisierung und Dehierarchisierung

Wie bereits erwihnt, soll das diinne Gitter in den “UltraPoly”-Klassen rekursiv hierarchisiert werden.
Stickweise polynomielle Basisfunktionen miissen von p = 1 bis p = ppax fiir jeden Polynomgrad
separat hierarchisiert werden. Begonnen wird mit der linearen Hierarchisierung. Dann werden
fur jeden Polynomgrad nacheinander die hierarchischen Uberschiisse nach der in Gleichung (3.15)
gegebenen Formel errechnet.
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4.1. SG++

Mit dieser Formel ist die Dehierarchisierung analog zu implementieren:
4.6) vP V() = v® (1) + a(xo, ..., Tpy1) - P (z,)

Zu beachten ist, dass die Reihenfolge der Dehierarchisierungsschritte genau umgekehrt zu den
Hierarchisierungsschritten ist. Wahrend bei der Hierarchisierung aufsteigend von p = 1 bis p = pax
hierarchisiert wird, lauft die Dehierarchisierung entsprechend dem Polynomgrad nach absteigend

ab.

In beiden Fillen wird der hierarchische Uberschuss des Vorgingerknotens in dem Polynomgrad
des vorherigen (De-)Hierarchisierungsschritts benétigt. Dieser wurde wegen der Traversierung des
Diinngitterbaums in Tiefensuche bereits tiberschrieben, so dass der Uberschussvektor kopiert werden
muss.

Evaluation

Zur effizienten Auswertung der Polynombasis wird das Hornerschema verwendet.
47) (...(apr+ap_1)x+...)x+ap

Dadurch werden im Vergleich zur klassischen Darstellung ag + a1z + ... + a,2? Multiplikationen
oder Potenz-Operationen eingespart, je nach dem wie die x'-Ausdriicke algorithmisch aufgelost
werden.

Die Vorgehensweise zum Finden der beitragenden Basisfunktionen zu einer bestimmten Evaluations-
stelle unterscheidet sich fiir stiickweise polynomielle Basisfunktionen nicht von der fiir stiickweise
lineare Basisfunktionen. Somit kann die grundsétzliche algorithmische Struktur fiir die Auswer-
tung der Diinngitter-Funktion fx(z) beibehalten werden. Ersetzt wird einzig die Auswertung der
beitragenden Basisfunktionen ¢ ; ().

Die Skalierung der Basisfunktionen wurde aus der bereits bestehenden Klasse “PolyBasis” itbernom-
men.

Quadratur

Zur Berechnung der Quadratur einer einzelnen Basisfunktion ¢; ; (x) wurde, wie bereits erwihnt,
das in Gleichung (3.32) skizzierte Verfahren zur Berechnung der Stammfunktion der Lagrange-
Basispolynome umgesetzt. Zur Auswertung von deren Wert an den Integralgrenzen wurde analog
zur Evaluations-Operation das Hornerschema angewandt.

Zur Berechnung des Integrals Giber die Diinngitter-Approximation fy(z) wurde der Ansatz aus
Gleichung (3.30) direkt implementiert. Dabei ist zu beriicksichtigen, dass auch der Wert des Integrals
skaliert werden muss, wenn der Level [ des aktuellen Gitterknotens x;; gleich oder gréfler als
Polynomgrad p ist, so dass keine Lagrange-Basisfunktion mehr vorhanden ist. Der Skalierungsfaktor
betragt

1
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4. Implementierung

D.h. nichts anderes, als dass sich der Wert des Integrals einer Stammfunktion ¢; ;() mit jedem
Skalierungsschritt halbiert:

Ju(z)dr =~ [ fy(x)dx
I I
(4.9) m |D|
= jZ::l (Uj : (H T v G.r () d$>>

k=1

Daraus ergibt sich:

zy4+27 Jei(z) dx wenn! < p
.
(4.10) / vri(z) de = . wy g +27!
o1 g ) wr(x)dr sonst
o xl’,i’72_l/
mit!’ =p—1
wl/’i/JrQ—l’ x(p—l),i’+27<p71)
~ / o ir(x) de = / P (@) d
xl/?i/—Qfl’ x(p*l),i/_Qi(p71>
Adaptivitat

Auch bei der adaptiven Verfeinerung konnte das bereits bestehende Konzept tibernommen werden.

Zu betonen ist aber, dass bei der Verwendung adaptiver Gitterverfeinerung das Gitter in jedem
adaptiven Verfeinerungsschritt komplett neu hierarchisiert werden muss. Wegen der geltenden Be-
rechnungsformel fiir den Uberschuss an einem Knoten v; ; miissten die Uberschiisse aller potentiellen
Vaterknoten in allen Dimensionen und Polynomgraden bekannt sein. Diese Hinterlegung ist weder in
der Programmstruktur von SG++ vorgesehen noch besonders speichereffizient, weil es insbesondere
im Hochdimensionalen ab einer entsprechenden Gittergrée deutlich mehr Blattknoten geben wird,
die nicht verfeinert werden, als umgekehrt.

4.2. UQLib

Die UQLib ist eine Python-Bibliothek, die ein breites Funktions-Spektrum zur Berechnung von
UQ-Problemen mithilfe nicht-intrusiver Methoden abdeckt. Neben der im Rahmen dieser Arbeit
untersuchten Sparse Grid Collocation Method (SGCM), d. h. ASGC und CSGC, kénnen auch MC und
QMC Verfahren verwendet werden.
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4.2. UQLib

4.2.1. UQ-Setting

Zunéchst muss die UQ-Umgebung definiert werden. Zu definieren sind u. a. die folgenden Parameter:

« Die unsichere Parametermenge sowie deren Wahrscheinlichkeitsdichte. Dabei werden fir jeden
unsicheren Parameter Name, Wertebereich und Verteilung festgelegt.

+ Regeln fiir die Diskretisierung der Zeit. Neben Start- und Endzeit konnen auch die Schrittweite
sowie Regeln zur Verfeinerung der Schrittweite definiert werden.

« Die Transformation um die Samples, die im Unit-Hypercube generiert werden, auf die Wertebe-
reiche der Elemente der unsicheren Parameter zu transformieren. Im Rahmen der vorliegenden
Arbeit wird ausschliefllich die lineare Transformation verwendet. Eine Alternative, die inverse
Rosenblatt Transformation, wird in [Leil3, S. 24] vorgestellt.

« Parameter fiir einzelne Simulationsaufrufe. Diese Parameter beinhalten v. a. die Definition der
Steuerfunktionen fiir den bibliotheksgesteuerten Simulationsaufruf.

« Die zu interpolierende Qol. In diesem Schritt wird definiert, welche Zielgrofe fiir die Interpolation,
d. h. insbesondere fiir die adaptive Verfeinerung, mafigeblich ist.

« Die statistischen Auswertungen, die aus den Simulationsergebnissen gewonnen werden sollen.
D. h. abhéngig von der gewiinschten Untersuchung, die durchgefithrt werden soll (Varianzana-
lyse, Sensitivitatsanalyse, ...), werden die Ergebnisse weiter analysiert und aufbereitet.

Zusatzlich sind methodenspezifische Parameter festzulegen. Fiur MC und QMC Verfahren bedeutet
das, die Zahl der zu generierenden Samples festzulegen. Fiir QMC Verfahren kann auflerdem der
Sequenzgenerator ausgewahlt werden. Fir SGCM Verfahren bestehen umfangreichere Konfigurations-
moglichkeiten. Es kdnnen u. a. folgende Parameter angepasst werden:

« das initiale Gitter, d. h. der Gittertyp (Art des Rands, initiales Gitterlevel, Art der Basisfunktio-
nen),

- die Adaptivitit, d. h. Verfeinerungskriterien, Abbruchbedingungen, verschiedene Arten der
Bildung der Kandidatenmenge,

« verschiedene Verfahren zur Berechnung von Erwartungswert und Varianz u. a. m..

4.2.2. Steuerung des Simulationsaufrufs

Ein Simulationsaufruf wird als fiinfschrittiger Prozess modelliert.

1. Generierung eines Samples
Im Unit-Hypercube wird ein Sample &,y generiert. Das bedeutet im Fall von

- MC eine randomisierte Generierung nach der gegebenen Verteilung,
- QMC die Erzeugung eines Samples nach der gegebenen deterministischen Sequenz und
- SGCM die Bestimmung der Samples durch die Knoten des diinnen Gitters.
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4. Implementierung

46

2. Transformation

Die generierten Samples werden geméafl der spezifizierten Transformation in den Raum der
unsicheren Parameter transformiert.

trans : [0,1]2+— T
/

(4.11) p = trans(Eunit)

. Preprocessing

Um eine Simulation durchzufiithren, miissen eventuell weitere Parameter festgelegt werden, die
von den stochastischen Gréflen abhéngen. So kann bspw. in Abhangigkeit eines unsicheren
Parameters oder mehrerer unsicherer Parameter eine feinere Diskretisierung der Zeit notwendig
sein.

Zusatzlich besteht durch diesen Schritt die Moglichkeit, die Parameter der Simulation von den
unsicheren Parameter zu entkoppeln. Damit kann bspw. ein Werkstoff oder ein duflerer Antrieb
fir den Anwender durch andere Kennzahlen definiert werden, als dies in der Simulation der
Fall ist. Als triviales Beispiel fiir eine solche “Ubersetzung” kann bspw. ein Moment dienen, das
alternativ durch Kraft und Hebelarm definiert werden kann. Auch unterschiedliche Skalen sind
denkbar, wie bspw. eine Umrechnung zwischen britischen und Standard-Einheiten.

(4.12) p' = g(p)

. Simulation

In diesem Schritt wird die Simulation mit den in den vorherigen Schritten ermittelten Parametern
gestartet. Die Parameteriibergabe kann dabei etwa tiber eine Steuerdatei oder Kommandozeilen-
Parameter erfolgen. Die Ergebnisse der Simulation werden im Anschluss an den nichsten
Schritt tibergeben.

(4.13) S(p') > {Res}

. Postprocessing

Im Normalfall stimmen die Ergebnisse der Simulation nicht mit den Zielgréfien iiberein, die als
Qol definiert sind. Daher miissen die Ergebnisse entsprechend aufbereitet werden, um sie im
Folgenden weiterverarbeiten zu konnen.

to — t,
{Res} — {Qoly: [ ... ]
(4.19) Qolr: [ ... ]

Qoli: | ... I}

Die so definierte Menge Res erfiillt noch nicht die Vorgabe von Gleichung (2.1). Stattdessen
ist die Menge Res aus R((tn—t0)t)x[{Q0I} Daher muss fiir jedes Element der Menge {Qol }
zu jedem diskretisierten Zeitschritt eine Abbildung uq.r +(x) nach Gleichung (2.1) definiert
werden.



4.2. UQLib

Die gewonnenen Ergebnisse aus einem Simulationsaufruf stellen je einen Punkt der in Gleichung (2.1)
definierten Abbildung uq,r () dar. Zur Berechnung der Quadratur von ug,r () kann dann entwe-
der mit MC oder QMC approximiert werden oder aber man approximiert zunachst die Zielfunktion
selbst, um anschlieend die Quadratur der Approximation zu bestimmen (gPC, SGCM).
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5. Experimente

In diesem Kapitel soll mithilfe von numerischen Experimenten die Wirksamkeit der implementierten
Mafinahmen untersucht werden. Zum Vergleich der Approximationsqualitat wird die im Rahmen
dieser Arbeit entstandene Implementierung der stiickweise polynomiellen Basisfunktionen mit MC
und stiickweise lineare Basisfunktionen verglichen.

Begonnen wird mit zwei analytischen, nicht-polynomiellen Funktionen mit bekanntem Verhalten aus

R? » R:
1. Der in [MZ09, S. 3096] definierten Betragsfunktion und
2. einer zweidimensionalen Projektion des Kosinus Hyperbolicus von [—1,1]2 auf [0, 1]2.

Anschlieflend werden direkte und rekursive Hierarchisierung fiir die in Abschnitt 5.1.1 definierte
Betragsfunktion miteinander verglichen und schlief8lich analog [Lei13] die Kairman’sche Wirbelstrafie
untersucht.

5.1. Experimente analog [MZ09, Kapitel 4.1]

In diesem Abschnitt wird das in [MZ09, S. 3096f] beschriebene Approximationsexperiment nachgestellt
und zusétzlich um dinne Gitter mit stiickweise polynomiellen Ansatzfunktionen von Grad p = 2
und p = 6 erweitert. Diese Werte begriinden sich damit, dass p = 2 die erste und damit einfachste
polynomielle Ansatzfunktion darstellt und dass p = 6 der maximale Polynomgrad des initialen
Gitterlevels [ = 5 ist.

Dabei werden als Referenz n = 1000 gleichverteilte Samples aus [0, 1] gezogen, an denen die
Funktion ausgewertet wird. Diese Ergebnisse werden mit denen der SGCM verglichen.

Fiir den Vergleich der SGCM werden, ausgehend vom initialen Gitterlevel [ = 5 mit Trapezrand, fiir
jeden Polynomgrad CSGC und ASGC gegeniiber gestellt. Dazu wurde im Fall von CSGC der Gitterlevel
I Schritt fiir Schritt erhoht bis zu [ = 13. Im Fall von ASGC wurden verschiedene Schwellwerte ¢
als Abbruchbedingung fiir das Verfeinerungskriterium des Betrags der Uberschiisse definiert. Dabei
werden in jedem Schritt aus der Menge der verfeinerbaren Gitterknoten all die Knoten verfeinert,
deren hierarchischer Uberschuss betragsmifig oberhalb des definierten Schwellwertes ¢ liegt.

Die folgenden Messungen wurden fiir jede Methode und jeden Polynomgrad durchgefiihrt, wobei die
Ergebnisse jeweils mit den generierten MC Referenzwerten verglichen wurden:

+ Messung des maximalen Approximationsfehlers iiber die verschiedenen Schwellwerte

+ Messung des maximalen Approximationsfehlers iiber die Knotenzahl fiir CSGC und fiir ASGC
mit unterschiedlichen Schwellwerten € nach jedem Verfeinerungsschritt
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5. Experimente

5.1.1. Betragsfunktion

Approximiert wird die Funktion

1
G- wlry) = 53—y
dargestellt in Abb. 5.1, mit x,y als jeweils in [0, 1] gleichverteilten unsicheren Parametern. Die
Funktion hat eine lokale Unstetigkeit in Form einer Knickstelle entlang eines Viertelkreises mit Radius
0.3 um den Koordinatenursprung in Punkt (0, 0) herum. Diese Unstetigkeit fithrt dazu, dass globale
Polynomanséitze wie gPC am in Abschnitt 2.5.2 beschriebenen Gibbs’schen Phédnomen leiden und
damit nicht geeignet sind.

Als Abbruchkriterium fiir die Verfeinerung werden die Schwellwerte ¢ = [1,0.1,0.01, 0.001] verwen-
det.

0.8

1.0 0.0

Abbildung 5.1.: Funktionsplot der Betragsfunktion nach [MZ09, S. 3096]

Zunichst wird jeweils der maximale Interpolationsfehler gemessen, d. h.
(5.2) max(|fn(zi) — ui1(zi)|, z; € {Referenzsamples}).

Dabei konnten die Ergebnisse aus [MZ09, S. 3097] nachgestellt werden, so dass dieses Experiment
auch als Test fiir die Korrektheit des Codes betrachtet werden kann.

Abb. 5.2 zeigt den maximalen Fehler am Ende der adaptiven Verfeinerung fiir die jeweiligen Schwell-
werte. Man erkennt, dass die stiickweise polynomiellen Basisfunktionen einen gréfleren maximalen
Fehler haben, als der entsprechende Ansatz mit stiickweise linearen Basisfunktionen. Aufgrund
der Unstetigkeit in Form des Viertelkreises kommt dieses Ergebnis nicht unerwartet, da bei der
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5.1. Experimente analog [MZ09, Kapitel 4.1]

Einfithrung der polynomiellen Basisfunktionen die Bedingung, eine hinreichend glatte Funktion zu
approximieren, explizit gestellt wurde.

Abb. 5.3, Abb. 5.4 und Abb. 5.5 auf Seite 52f zeigen die Entwicklung des maximalen Fehlers nach
jedem Verfeinerungsschritt fir die betrachteten Polynomgrade p = [1, 2, 6]. Diese werden jeweils
mit dem maximalen Fehler aus der CSGC Methode fiir ein regulédres diinnes Gitter mit Trapezrand
auf den Levels [ = [5, ..., 13] fur den entsprechenden Polynomgrad verglichen. Man sieht zweierlei:
Erstens, dass sich fiir jeden Polynomgrad ein deutlicher Vorteil von ASGC gegeniiber CSGC einstellt,
d. h. Adaptivitit im betrachteten Experiment einen deutlichen Nutzen hat, und zweitens, dass auch in
diesen Darstellungen kein Hinweis darauf zu finden ist, dass sich im gegebenen Beispiel der hohere
Aufwand in Form des Einsatzes stiickweise polynomieller Basisfunktionen lohnt. Im Gegenteil, der
maximale Fehler der stiickweise polynomiellen Basisfunktionen liegt ab ca. 10000 Gitterpunkten
auch fiir Polynomgrad p = 2 héher und damit schlechter als der maximale Fehler der stiickweise
linearen Basisfunktionen. Fiir Polynomgrad p = 6 zeigt sich ein noch schlechteres Fehlerverhalten.
Dies zeigt auch der Verlauf des maximalen Interpolationsfehlers nach jedem Verfeinerungsschritt
fiir die Basisfunktionen der jeweiligen Polynomgrade fiir den Schwellwert € = 0.001 in Abb. 5.6 auf
Seite 53.

i | —eo—p=1
L 1|-m—p=2
0l || =6
= B :
] L B
ko
5 L B
=W
< 107!} E
> r ]
ol = B
g i |
10721 E
Einl Lol Lol L] N

1073 102 1071 100
Schwellwert ¢

Abbildung 5.2.: Betragsfunktion: Entwicklung des maximalen Interpolationsfehlers itber 1000 zufal-
lige Punkte aus [0, 1]? fiir verschiedene Polynomgrade p und Adaptivititsschwell-
werte € der Dinngitter-Basisfunktionen
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Abbildung 5.3.: Betragsfunktion: Entwicklung des Interpolationsfehlers iiber die Knotenzahl fiir
stiickweise lineare Basisfunktionen
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Abbildung 5.4.: Betragsfunktion: Entwicklung des Interpolationsfehlers iber die Knotenzahl fiir

104
Knotenzahl

10°

——  Ref: CSGC
-—a— ASGC:e =1
—eo— ASGC:e=0.1
—— ASGC: e = 0.01
——ASGC: ¢ = 0.001

stiickweise polynomielle Basisfunktionen mit Grad 2

52




5.1. Experimente analog [MZ09, Kapitel 4.1]
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Abbildung 5.5.: Betragsfunktion: Entwicklung des Interpolationsfehlers iiber die Knotenzahl fiir
stiickweise polynomielle Basisfunktionen mit Grad 6
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Abbildung 5.6.: Betragsfunktion: Entwicklung des maximalen Interpolationsfehlers iiber die Kno-
tenzahl fiir verschiedene Polynomgrade p und Adaptivitatsschwellwert ¢ = 0.001
der Dunngitter-Basisfunktionen

5.1.2. Kosinus Hyperbolicus

Im vorherigen Abschnitt wurde die Wirksamkeit raumlich adaptiver Verfeinerung mit ASGC bei
lokalen Unstetigkeiten gegentiiber globaler Verfeinerung mit CSGC gezeigt. Die erhoffte hohere Kon-
vergenzordnung durch den Ansatz stiickweise polynomieller Basisfunktionen konnte aufgrund dieser
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5. Experimente

Unstetigkeit allerdings nicht beobachtet werden. Stattdessen lag deren maximaler Fehler sogar tiber-
halb des Fehlers stiickweise linearer Basisfunktionen. Aufgrund der Verletzung der Glattheitsannahme
von u; kam das Ergebnis aber nicht iberraschend.

Um die Glattheitsannahme zu erfiillen, wird das bestehende Setting tibernommen und die zu approxi-
mierende Funktion durch einen Kosinus Hyperbolicus ersetzt,

(5.3) u2(x,y) = cosh(2z — 1) - cosh(2y — 1),

dargestellt in Abb. 5.7, wiederum mit x, y als jeweils gleichverteilten, unsicheren Parametern auf
[0,1].

0.6

0.8 1.0 0.0

Abbildung 5.7.: Funktionsplot der hyperbolischen Kosinusfunktion

Als Abbruchkriterium der adaptiven Verfeinerung dienen die Schwellwerte ¢ = [1,0.1,1-1073,1 -
1075,1 - 1077]. Zusitzlich wird in diesem Kontext die Genauigkeit der Berechnung des Erwartungs-
werts untersucht mithilfe der analytischen Referenzlsung von

11
1
(5.4) ug dx dy = —(cosh(2) — 1).

Wegen der Gleichverteilung von z, y ist dies ein reiner Test der Quadraturqualitat der Diinngitterap-
proximation von ug, vgl. Gleichung (3.33).

Dabei stellt sich, wie Abb. 5.8 auf Seite 55 zeigt, der aus Abschnitt 3.1.4 erwartete deutliche Gewinn
bei der Konvergenzordnung fiir stiickweise polynomielle Basisfunktionen ein. Zu beachten ist, dass
zwar nur ein geringer Unterschied zwischen stiickweise linearen Basisfunktionen und stiickweise
polynomiellen Basisfunktionen von Polynomgrad p = 2 zu liegen scheint. Die im Anhang abge-
druckten Fehlerplots nach jedem Verfeinerungsschritt je Schwellwert zeigen, dass diese vergleichbare
Genauigkeit mit deutlich weniger Gitterpunkten erreicht werden kann.
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5.1. Experimente analog [MZ09, Kapitel 4.1]

Durch die Homogenitét der verwendeten cosh-Funktion ist Adaptivitit in diesem Szenario allerdings
ohne Nutzen. Dies zeigt die Kongruenz der Kurven fiir ASGC und CSGC.

An dieser Stelle soll, wie eingangs erwahnt, zusatzlich die Berechnung des Erwartungswerts als

(5.5) E= /fN(a:)p(x) dx = /fN(x) dx (wegen Gleichverteilung)

mithilfe der in Gleichung (5.4) gegebenen analytischen Losung untersucht werden.

Dabei zeigen Abb. 5.9 bis Abb. 5.11 auf Seite 56f grundsétzlich eine gute Approximationsqualitat fiir die
Berechnung der Quadratur, bei der - analog zur Evaluationsoperation - die stiickweise polynomiellen
Basisfunktionen bessere Ergebnisse als die stiickweise linearen Basisfunktionen liefern, bei gleichzeitig
weniger benotigten Gitterpunkten.
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Abbildung 5.8.: cosh: Entwicklung des maximalen Interpolationsfehlers tiber 1000 zufillige Punk-
te aus [0, 1]? fiir verschiedene Polynomgrade und Adaptivititsschwellwerte der
Dinngitter-Basisfunktionen
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Abbildung 5.9.: cosh: Entwicklung des mittleren Quadraturfehlers tiber die Knotenzahl fiir stiick-
weise lineare Basisfunktionen
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Abbildung 5.10.: cosh: Entwicklung des mittleren Quadraturfehlers tiber die Knotenzahl fiir stiick-
weise polynomielle Basisfunktionen mit Grad 2
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5.2. Vergleich der Hierarchisierungsmethoden
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Abbildung 5.11.: cosh: Entwicklung des mittleren Quadraturfehlers tiber die Knotenzahl fiir stiick-
weise polynomielle Basisfunktionen mit Grad 6

5.1.3. Zwischenfazit

Man sieht anhand dieser Beispiele, die nicht aus dem UQ-Zusammenhang sind, dass fiir unterschiedli-
che Szenarien unterschiedliche Approximationsmethoden unterschiedlich gute Ergebnisse liefern.
Das bedeutet, dass der Nutzen der implementierten Verfahren nicht allgemein angegeben werden
kann im Sinne von “stiickweise polynomiell ist immer besser oder schlechter als stiickweise linear”
oder “Adaptivitat ist grundsatzlich nitzlich oder nicht zielfithrend”. Stattdessen muss in Abhangigkeit
der Zielfunktion u(x) situativ entschieden werden, welche Methode die geeignetste ist.

Vor dem Ubergang zu einem grofieren UQ-Problem sollen die beiden Hierarchisierungsmethoden
miteinander verglichen werden.

5.2. Vergleich der Hierarchisierungsmethoden

Um die Hierarchisierungsmethoden miteinander zu vergleichen, wurde die Betragsfunktion

1
5.6 y) =
(5:6) wi(,y) 0.3 — 22 — 42| +0.1
aus Abschnitt 5.1.1 fiir Polynomgrad p = 2 und p = 10 mit einem regulédren diinnen Gitter ohne
Randpunkte auf den Levels [ = [10,. .., 15] sowohl direkt als auch rekursiv hierarchisiert und die
jeweils benétigte Zeit gemessen.

Die Ergebnisse zeigen Tabelle 5.1 auf Seite 58 fiir Polynomgrad p = 2 und Tabelle 5.2 auf Seite 58
fiir Polynomgrad p = 10. Aulerdem sind die Resultate in Abb. 5.12 und Abb. 5.13 auf Seite 59 auf
einer zeit-logarithmischen Skala geplottet. Dabei erkennt man fiir beide Hierarchisierungsformen
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einen exponentiellen Zusammenhang zwischen Gitterlevel und zur Hierarchisierung benétigter
Zeit. Zusatzlich finden sich im Anhang Plots der benétigten Zeit fiir die Hierarchisierung tiber der
Knotenzahl auf einer doppelt-logarithmischen Skala. Dabei kann man den linearen Zusammenhang
zwischen Knotenzahl und Zeit erkennen.

Offenkundig ist die direkte Hierarchisierung deutlich effizienter als die rekursive Hierarchisierung,
unabhingig von Polynomgrad oder Level. Insbesondere zeigt die direkte Hierarchisierung das er-
wartete Verhalten, fir die doppelte Anzahl Knoten doppelt so viel Zeit fiir die Hierarchisierung zu
benotigen. Das ist bei der rekursiven Hierarchisierung nicht der Fall.

Tabelle 5.1.: Vergleich der zur Hierarchisierung benétigten Zeit fiir Polynomgrad p = 2 fiir direkte
und rekursive Hierarchisierung

Hierarchisierungsmethode | Level | benétigte Zeit
direkt 10 0.023 s
rekursiv 10 0.177 s

direkt 11 0.047 s
rekursiv 11 1.044 s

direkt 12 0.110 s
rekursiv 12 11.283 s
direkt 13 0.254 s
rekursiv 13 52.391s
direkt 14 0.535 s
rekursiv 14 3 min 41.106 s
direkt 15 1.164 s
rekursiv 15 15 min 42.843 s

Tabelle 5.2.: Vergleich der zur Hierarchisierung benétigten Zeit fiir Polynomgrad p = 10 fiir direkte
und rekursive Hierarchisierung

Hierarchisierungsmethode | Level | benétigte Zeit
direkt 10 0.039 s
rekursiv 10 0.256 s

direkt 11 0.077 s
rekursiv 11 1.348 s

direkt 12 0.143 s
rekursiv 12 12.923 s
direkt 13 0.315s
rekursiv 13 1 min 00.552 s
direkt 14 0.682's
rekursiv 14 4 min 17.515 s
direkt 15 1.490 s
rekursiv 15 18 min 16.895 s
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Abbildung 5.12.: Plot der benétigten Zeit zur Hierarchisierung von w; mit stiickweise polynomiellen
Basisfunktionen von Polynomgrad p = 2 iiber das Gitterlevel. Links die direkte
Hierarchisierung, rechts die rekursive.
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Abbildung 5.13.: Plot der benétigten Zeit zur Hierarchisierung von w; mit stiickweise polynomiellen
Basisfunktionen von Polynomgrad p = 10 tiber das Gitterlevel. Links die direkte
Hierarchisierung, rechts die rekursive.

Das schlechte Abschneiden der rekursiven Hierarchisierung liegt u. a. daran, dass in der rekursiven
Hierarchisierung der Diinngitter-Baum nicht nur einmal, sondern p-fach durchlaufen wird. Dabei
miissen die o ;-Koeffizienten des rechten Teilbaums, die aus Symmetriegriinden nur implizit gespei-
chert sind, jeweils rekonstruiert werden. Dazu sind viele if - Konstrukte nétig, deren Auswertung
Zeit kostet.

Zusitzlich muss in jedem Durchlauf der Zugriff auf die Speicherstrukutur der Gitterknoten 6fter be-
nutzt werden. Einmal fiir den Knoten selbst und einmal fiir seinen direkten hierarchischen Vorganger,
um den Index des zum Knoten gehoérenden hierarchischen Uberschusses im Uberschussvektor zu
finden. Zusatzlich muss der Uberschussvektor, wie in Abschnitt 4.1.2 beschrieben, kopiert werden.
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5.3. Karman’sche WirbelstraBe

Im Rahmen einer Vorlesung an der betreuenden Abteilung wurde von Studenten ein Strémungsldser
implementiert, der verwendet wird, um das in [Leil3, Kap. 3.2] beschriebene Experiment nachzustellen.
Dabei zeigte sich, dass die inverse Rosenblatt Transformation nicht die gewiinschten Ergebnisse liefert.
Das liegt daran, dass in [0, 1]¢ interpoliert wird, die Berechnung aber in I" erfolgt und dazwischen
eine nicht-lineare Transformation liegt, die zu Problemen fiihrt, die bei einer linearen Transformation
nicht auftreten. Daher wurde im Rahmen dieser Arbeit lediglich linear transformiert. Um zu besseren
Ergebnissen als [Leil3] zu kommen, wurden drei Mafinahmen ergriffen:

1. Die Einfithrung von rdumlicher Adaptivitat,

2. die Erh6hung des maximalen Levels fir CSGC auf /;ax = 6, d. h. bis zu m = 2561 Gitterknoten
sowie

3. der Ansatz stiickweise polynomieller Basisfunktionen.

5.3.1. Versuchsaufbau

Simuliert wird eine Karman’sche Wirbelstrafle, in die von links eine Fliissigkeit einstromt. Diese trifft
nach 0.7 Langeneinheiten auf ein in der Mitte des Stromungskanals platziertes, schrig stehendes
Hindernis. Dabei entsteht hinter dem Hindernis eine Turbulenz, die sich bis zum Ende des Stro-
mungskanals fortpflanzt. Die Lange des Stromungskanals betrdagt 10 Langeneinheiten und die Breite
2 Langeneinheiten.

In jedem Simulationsaufruf werden 500 Zeitschritte zwischen ¢ = 0 und ¢ = 50 berechnet und in
jedem Zeitschritt der Druck an der Messstelle, 6 Langeneinheiten von der Einstromungsoéffnung
entfernt, iiber die gesamte Breite des Kanals gemessen und dessen arithmetisches Mittel gebildet
(Py60). Die raumliche Diskretisierung des Kanals erfolgt iiber quadratische Gitterzellen mit Seitenlange
0.1 Langeneinheiten.

Die Geometrie ist mitsamt einigen exemplarischen Gitterzellen in Abb. 5.14 dargestellt.

Messstelle
6

0.8

L

2

10

Abbildung 5.14.: Geometrie der Karman’schen Wirbelstrale. Die Interpolationszellen sind stellver-
tretend als Hinweis auf die Grofie in der Spalte am rechten Rand der Geometrie
und der untersten Zeile angedeutet.
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Verglichen mit [Leil3] wird also eine leicht modifizierte Versuchsgeometrie mit kleinerem Hindernis
verwendet.

Als unsichere Parameter werden die beiden vektoriellen Komponenten der Einstromgeschwindigkeit u
und v, die Reynolds-Zahl sowie die Prandtl-Zahl angenommen, so dass sich ein vierdimensionales UQ-
Problem ergibt. Die Reynolds-Zahl ist eine dimensionslose Grofle, die den Zusammenhang zwischen
Tragheits- und Zahigkeitskraften in einem Fluid oder Gas beschreibt. Die Prandtl-Zahl ist ebenso
wie die Reynolds-Zahl eine dimensionslose Grofe und beschreibt das Verhaltnis von kinematischer
Viskositat zur Temperaturleitfahigkeit in Gasen oder Fluiden.

Im durchgefithrten UQ-Experiment werden die Parameter in den folgenden Intervallen normalverteilt
variiert:

- Reynolds-Zahl: (8000, 12000)

« 7 Komponente der Einstromgeschwindigkeit: (2.0, 5.0) [ Zeitschitt

Langeneinheiten :|

« i Komponente der Einstromgeschwindigkeit: (—0.5,0.5) [ Zeitschritt

Léngeneinheiten :|

« Prandtl-Zahl: (7,13)

Als Normalverteilung wird die Funktion “truncnorm” aus dem stats-Modul der Python Erweiterung
scipy! auf dem Intervall [a, b] mit Erwartungswert j1 = b — b*Ta und Standardabweichung o = IFT‘I
verwendet. Die Funktion schneidet die Bereiche aulerhalb des definierten Intervalls ab und verlegt
den dort im Vergleich zu einer Standard-Normalverteilung abgeschnittenen Flachenanteil ins Intervall,
so dass das Integral iiber die “truncnorm”-Funktion tiber das Intervall [a, b] den Wert 1 ergibt. Dies ist
notig, um zu verhindern, dass das Ergebnis der Diinngitter-Quadratur mit jeder Dimension kleiner

skaliert und damit verfilscht wird.

Die Transformationen aus dem Wertebereich der Parameter auf [0, 1] und umgekehrt erfolgen linear.
Als Richtgrofien fiir verschiedene SGCM-Verfahren wurden 5000 MC Samples und 2500 QMC Samples
nach der Sobol - Sequenz generiert.

Diese werden mit CSGC fiir stiickweise polynomielle sowie CSGC fiir stiickweise lineare Basisfunk-
tionen von Gitterlevel [ = 4 bis [ = 6 ohne Randpunkte verglichen. Dabei wurden die stiickweise
polynomiellen Basisfunktionen unter Ausnutzung des maximal méglichen Polynomgrads angesetzt,
d.h.p =1+ 1. AuBerdem werden Gitter mit Level [ = 1 ohne Randpunkte fiir ASGC angesetzt. Diese
Gitter werden jeweils mit einer der drei in Abschnitt 3.3 vorgeschlagenen Verfeinerungskriterien
einmal fiir stiickweise lineare und einmal fiir stiickweise polynomielle Basisfunktionen von Polynom-
grad p = 10 verfeinert. Dabei wird so lange verfeinert, bis fiir die Zahl der Diinngitter-Knoten m vor
dem néchsten Verfeinerungsschritt gilt m > 1000.

"http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.stats.truncnorm.html
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5.3.2. Ergebnisse

Zur Bewertung der Ergebnisse werden die Simulationsergebnisse nach den einzelnen Verfahren sowie
den angesetzten Basisfunktionen gruppiert. D. h. es werden fiinf Gruppen gebildet

« QOMC,
+ CSGC mit stiickweise linearen und stiickweise polynomiellen Basisfunktionen sowie
« ASGC mit stiickweise linearen und stiickweise polynomiellen Basisfunktionen.

Die Ergebnisse der einzelnen Gruppen fiir Erwartungswert und Varianz werden jeweils zusammen
mit dem Ergebnis der MC Losung geplottet. Fiir die geeigneten Approximationen der Gruppe wird
anschliefend die Differenz zwischen dem Ergebnis eines Elements aus der Gruppe und dem Ergebnis
der MC Methode gezeichnet, um die Ergebnisse genauer zu analysieren. AbschlieSend werden die
geeignetsten Ergebnisse aus allen Gruppen miteinander verglichen.

Der Erwartungswert der Diinngitter-Approximation wird berechnet als
(5.7) E(z) = / (@) - p(e) da.
r

Wegen der Verwendung einer Normalverteilung kann eine Zielfunktion entstehen, die einer Gauss-
Kurve dhnelt. Nach [Pfl10, Kap. 4.2] konnen bei der Approximation von Gauss-Kurven mit diinnen
Gittern Uberschwingungen auftreten, die dazu fithren, dass das Ergebnis der Quadraturberechnung
bis hin zu negativen Werten verfalscht werden kann. Dieses Phanomen kann insbesondere bei der
Verwendung stiickweise polynomieller Basisfunktionen auftreten. Daher wurden die Ergebnisse
fiir Erwartungswert und Varianz fiir die beiden Diinngitter-Verfahren CSGC und ASGC auf zwei
verschiedene Arten berechnet:

1. Analytisch durch die direkte Berechnung der Quadratur der Diinngitterapproximation fy ()
der Zielfunktion u(x) nach Gleichung (5.7) und

2. ndherungsweise mithilfe der MC Quadratur
1 n
68 E@) = [ fu(a) - pla) da~ =3 fula) - play)
r J=1

Dazu wurden n = 40000 Samples aus I" gezogen und in die Dinngitterapproximation fy(x)
eingesetzt.

Referenz

Vor Betrachtung der Ergebnisse aus SGCM werden zunichst die beiden Vergleichsverfahren verglichen,
MC und QMC. In Abb. 5.15 auf Seite 63 sieht man, dass QMC fiir den Erwartungswert den gleichen
Referenzwert liefert wie MC. Abb. 5.16 auf Seite 63 zeigt das noch deutlicher: Der Betrag der Differenz
liegt konstant unter 30 und die relative Abweichung damit unter 2%.

62



5.3. Karman’sche Wirbelstrai3e

— Ewmc(Pyso)
1,500 4 | Eomc(Pyeo)
., 1,000 @ :
Q
=
a
500 2
0 |
| | | | |
10 20 30 40 50
Zeit
Abbildung 5.15.: Wirbelstra}e: Erwartungswert: MC, QMC
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Abbildung 5.16.: Wirbelstrale: Erwartungswertdifferenz: QMC zu MC

Betrachtet man dagegen die Varianz, s. Abb. 5.17 auf Seite 64, ergibt sich zunichst kein klares Bild,
weil QMC und MC ein qualitativ gleiches Verhalten auf quantitativ unterschiedlichen Niveaus zeigen.
Da die im Folgenden vorgestellten Werte von SGCM gegen den Wert der MC Quadratur streben, wird
im Weiteren die MC Quadratur als Referenzlosung betrachtet. Der Wert der Varianz liegt damit fiir
OMC konstant tiber 1 - 10° oberhalb der MC Referenzlosung, was einem relativen Fehler von iiber

0.5 entspricht.

Im Folgenden werden die Ergebnisse der SGCM présentiert. Diese sind so geordnet, dass zunéchst
die Ergebnisse fiir reguldre diinne Gitter, d. h. der CSGC Methode, gezeigt werden und anschlie-
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Abbildung 5.17.: Wirbelstrafle: Varianz: MC, QMC

Bend die von ASGC. Dabei wird jeweils mit linearen Basisfunktionen und analytischer Quadratur
des Dunngitter-Interpolanten begonnen, bevor die Ergebnisse der MC Quadratur gezeigt werden.
Anschlieflend werden in der gleichen Reihenfolge die Ergebnisse der stiickweise polynomiellen
Basisfunktionen vorgestellt.

CSGC

CSGC liefert, wie Abb. 5.18 auf Seite 65 zeigt, bei analytischer Quadratur und linearen Basisfunktionen
eine gute Approximation fiir den Erwartungswert.

Nach Abb. 5.19 auf Seite 65 liegt die Abweichung zwischen -40 und 5, d. h. der relative Fehler liegt unter
5%. Dass die Abweichung fir Level [ = 5 geringer ist als fiir Level | = 6, entsteht wahrscheinlich
durch giinstige Ausléschung von Fehlern auf Level | = 5.

Fiir die Varianz ergibt sich ein dhnliches Bild wie fiir den Erwartungswert. Nach Abb. 5.20 auf Seite 66
zeigt das CSGC Verfahren fiir Level [ = 6 und damit m = 2561 Gitterknoten keine grofle Abweichung
mehr von der MC Referenzlosung.

Mithilfe von Abb. 5.21 auf Seite 66 ldsst sich die Abweichung genauer quantifizieren, auf eine relative
Abweichung von der MC Referenzl6sung von ca. 0.02.

Verwendet man anstelle der analytischen Quadratur eine MC Quadratur, sollte sich am Niveau der Er-
gebnisse nichts substanziell d&ndern, es sei denn, es wird eine Zielfunktion u(x) mit Gauss’scher Form
approximiert. In diesen Fallen sollte sich eine Besserung gegeniiber der analytischen Quadratur ein-
stellen, weil die MC Quadratur von den zu Beginn des Abschnitts beschriebenen Uberschwingungen
nicht betroffen ist. Verfahrensbedingt oszillieren die Ergebnisse durch die niedrige Konvergenzge-
schwindigkeit der MC Quadratur jedoch deutlich stérker als mit analytischer Quadratur.
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Abbildung 5.18.: Wirbelstrafle: Erwartungswert: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiick-
weise lineare Basisfunktionen, analytische Quadratur
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Abbildung 5.19.: Wirbelstraie: Erwartungswertdifferenz: CSGC Level [ = [4, 5, 6], keine Randpunk-
te, stiickweise lineare Basisfunktionen, analytische Quadratur zu MC

Abb. 5.22 auf Seite 67 zeigt fiir die Berechnung des Erwartungswerts mit MC Quadratur ein sehr
ahnliches Bild wie die Verwendung analytischer Quadratur.

Nach Abb. 5.23 auf Seite 67 und Abb. 5.19 trifft das Ergebnis der analytischen Losung das Ergebnis
der MC Referenzlosung besser als die MC Quadratur.

Wie Abb. 5.24 auf Seite 68 und Abb. 5.25 auf Seite 68 zeigen, lassen sich auf Grundlage des vorhan-
denen Datenmaterials keine sinnvollen Aussagen iber die Varianzapproximation machen, weil das
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Abbildung 5.20.: Wirbelstrale: Varianz: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiickweise
lineare Basisfunktionen, analytische Quadratur
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Abbildung 5.21.: Wirbelstrafle: Varianzdifferenz: CSGC Level [ = 6, keine Randpunkte, stiickweise
lineare Basisfunktionen, analytische Quadratur zu MC

Rauschen der Daten zu stark ist. Da sich dieses Phanomen fiir alle weiteren gezeigten Verfahren
in der Varianzbeschreibung einstellt, finden sich die Plots der Varianzberechnung mithilfe von MC
Quadratur fiir alle iibrigen Verfahren im Anhang.

66



5.3. Karman’sche Wirbelstrai3e

Emc(Pyso)
1,500 | | |=——Ecsce, 1 = 4,1in(Pys0)
— Ecsae, 1 = 5, 1in(Py60)
— Ecsae, 1 = 6, 1in(Py60)
. 1,000] |
Q
=
A
500 | .
0 [ |
| | | | | |

0 10 20 30 40 50
Zeit

Abbildung 5.22.: Wirbelstrafle: Erwartungswert: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiick-
weise lineare Basisfunktionen, MC Quadratur
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Abbildung 5.23.: Wirbelstrafie: Erwartungswertdifferenz: CSGC Level [ = [4, 5, 6], keine Randpunk-
te, stiickweise lineare Basisfunktionen, MC Quadratur zu MC

Setzt man anstelle der stiickweise linearen Basisfunktionen stiickweise polynomielle Basisfunktionen
an, ergibt sich nach Abb. 5.26 auf Seite 69 fiir die Level [ = [4, 5] ein schlechteres Ergebnis. Auf Level
| = 6 ergibt sich hingegen ein dhnliches Fehlerbild wie im stiickweise linearen Fall.

Untersucht man den Fehler genauer, zeigt sich nach Abb. 5.27 auf Seite 69 fiir Level | = 5 ein eindeutig
schlechteres Verhalten als im stiickweise linearen Fall, fiir [ = 6 liegen die stiickweise polynomiellen
Basisfunktionen dagegen ungefihr gleichauf.
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Abbildung 5.24.: Wirbelstrale: Varianz: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiickweise
lineare Basisfunktionen, MC Quadratur
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Abbildung 5.25.: Wirbelstrafle: Varianzdifferenz: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiick-
weise lineare Basisfunktionen, MC Quadratur zu MC

Nach Abb. 5.28 auf Seite 70 zeigt die Approximation auf Level [ = 5 eine negative Varianz. Moglicher-
weise zeigt sich hier das eingangs angesprochene Problem fiir die Interpolation von Gauss-Funktionen,
so dass sich an dieser Stelle bei Verwendung der direkten Quadraturberechnung von fx(z) die nega-
tive Varianz ergibt. Andere Ursachen sind allerdings ebenfalls denkbar, wie bspw. Oszillationen in der
Zielfunktion, so dass auf Level 5 korrigierende negative Uberschiisse entstehen o. .. Zudem ist zu
erkennen, dass die Approximation auf Level [ = 6 die Referenzlésung sehr gut triftt.
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Abbildung 5.26.: Wirbelstrale: Erwartungswert CSGC Level [ = [4, 5, 6], keine Randpunkte, stiick-
weise polynomielle Basisfunktionen, analytische Quadratur
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Abbildung 5.27.: Wirbelstrafe: Erwartungswertdifferenz: CSGC Level | = [5, 6], keine Randpunkte,
stiickweise polynomielle Basisfunktionen, analytische Quadratur zu MC

In Abb. 5.29 auf Seite 70 zeigt sich jedoch, dass der stiickweise polynomielle Ansatz bei der Approxima-
tion der Varianz keinen Gewinn gegeniiber stiickweise linearen Basisfunktionen bringt, im Gegenteil.
Der relative Fehler fiir die Varianz-Approximation liegt zwischen 5 und 10%.

Nach Abb. 5.30 auf Seite 71 bringt der Einsatz der MC Quadratur Methode verglichen mit der ana-
lytischen Quadratur fiir stiickweise polynomielle Basisfunktionen fiir die Level | = [4, 5] bei der
Berechnung des Erwartungswerts deutliche Gewinne bei der Approximationsgenauigkeit.
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Abbildung 5.28.: Wirbelstrale: Varianz: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiickweise
polynomielle Basisfunktionen, analytische Quadratur
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Abbildung 5.29.: Wirbelstrafle: Varianzdifferenz: CSGC Level [ = 6, keine Randpunkte, stiickweise
polynomielle Basisfunktionen, analytische Quadratur zu MC

Diese liegen, wie auch Abb. 5.31 auf Seite 71 zeigt, im Gegensatz zur analytischen Quadratur auf
gleichem Niveau wie Level [ = 6, der wiederum eine gute Approximation fiir die Referenzlosung des
Erwartungswerts darstellt.

Auflerdem tritt bei Verwendung der MC Quadratur auf Level [ = 5 keine negative Varianz mehr auf,
vgl. Abb. A.8 im Anhang.
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Abbildung 5.30.: Wirbelstrafle: Erwartungswert: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiick-
weise polynomielle Basisfunktionen, MC Quadratur
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Abbildung 5.31.: Wirbelstrafie: Erwartungswertdifferenz: CSGC Level [ = [4, 5, 6], keine Randpunk-
te, stiickweise polynomielle Basisfunktionen, MC Quadratur zu MC

ASGC

Beim Einsatz von adaptiver Verfeinerung ergibt sich mit stiickweise linearen Basisfunktionen und ana-
lytischer Quadratur nach Abb. 5.32 auf Seite 72 fiir den Erwartungswert eine sehr gute Approximation.
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Abbildung 5.32.: Wirbelstrafle: Erwartungswert: ASGC, keine Randpunkte, stiickweise lineare Ba-
sisfunktionen, analytische Quadratur

Dies illustriert auch Abb. 5.33. Der Fehler bei der Approximation des Erwartungswerts liegt bei ca.
0.01 bis 0.02.
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-30
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Abbildung 5.33.: Wirbelstrafie: Erwartungswertdifferenz: ASGC, lineare Basisfunktionen, analyti-
sche Quadratur zu MC

Beziiglich der Varianz ist die Approximation akzeptabel, wie Abb. 5.34 auf Seite 73 und Abb. 5.35 auf
Seite 73 zeigen. Der relative Fehler liegt bei ca. 25%.
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Abbildung 5.34.: Wirbelstraf3e: Varianz: ASGC, keine Randpunkte, stiickweise lineare Basisfunktio-
nen, analytische Quadratur
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Abbildung 5.35.: Wirbelstrafle: Varianzdifferenz: ASGC, keine Randpunkte, lineare Basisfunktionen,
analytische Quadratur zu MC

Abb. 5.36 auf Seite 74 und Abb. 5.37 auf Seite 74 zeigen bei der Berechnung des Erwartungswerts
mit MC Quadratur fiirr das Verfeinerungskriterium nach dem Erwartungswert eine gute Konvergenz.
Fiir das Verfeinerungskriterum nach der Varianz und nach dem Betrag der Uberschiisse liegt man
dagegen um 3 bis 5% tiber der MC Referenzlosung.
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Abbildung 5.36.: Wirbelstrafle: Erwartungswert: ASGC, keine Randpunkte, stiickweise lineare Ba-
sisfunktionen, MC Quadratur
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Abbildung 5.37.: Wirbelstrafle: Erwartungswertdifferenz: ASGC, lineare Basisfunktionen, MC Qua-
dratur zu MC

Beim Ubergang zu stiickweise polynomiellen Basisfunktionen zeigt sich bei der Approximation
des Erwartungswerts mit analytischer Quadratur nach Abb. 5.38 auf Seite 75 und 5.39 auf Seite 75
eine Verschlechterung gegeniiber stiickweise linearen Basisfunktionen. Der relative Fehler liegt bei
Verwendung des Verfeinerungskriteriums des Betrags der hierarchischen Uberschiisse bei ca. 10%
und im Falle der beiden Kriterien mit statistischem Hintergrund mit 3 — 5% deutlich niedriger.
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Abbildung 5.38.: Wirbelstrafie: Erwartungswert: ASGC, keine Randpunkte, stiickweise polynomielle
Basisfunktionen, analytische Quadratur
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Abbildung 5.39.: Wirbelstrafle: Erwartungswertdifferenz: ASGC, polynomielle Basisfunktionen, ana-
lytische Quadratur zu MC

Auch die Approximation der Varianz funktioniert weniger gut als mit stiickweise linearen Basisfunktio-
nen. Wie Abb. 5.40 auf Seite 76 zeigt, fithrt das Verfeinerungskriterium der Betrdge der hierarchischen
Uberschiisse zu vollig falschen Ergebnissen. In Abb. 5.41 auf Seite 76 sieht man auflerdem, dass
im konkreten Fall fiir stiickweise polynomielle Basisfunktionen die in Abschnitt 3.3 beschriebene
Abschatzung der lokalen Varianz nicht gut funktioniert.
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Abbildung 5.40.: Wirbelstrale: Varianz: ASGC, keine Randpunkte, stiickweise polynomielle Basis-
funktionen, analytische Quadratur

150000

VIASGC, poly exp) ——
VIASGC, var)

100000 H

50000

-50000 +

Differenz der Varianz zu MC
[s=]

-100000 |

-150000

Zeit

Abbildung 5.41.: Wirbelstrafle: Varianzdifferenz: ASGC, polynomielle Basisfunktionen, analytische
Quadratur zu MC

Abb. 5.42 auf Seite 77 und Abb. 5.43 auf Seite 77 zeigen fiir die MC Quadratur mit stiickweise
polynomiellen Basisfunktionen bei der Approximation des Erwartungswerts ein sehr dhnliches
Verhalten, wie es bei der MC Quadratur im Rahmen von ASGC mit stiickweise linearen Basisfunktionen
in Abb. 5.36 auf Seite 74 dargestellt ist.
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Abbildung 5.42.: Wirbelstrale: Erwartungswert: ASGC, keine Randpunkte, stiickweise polynomielle
Basisfunktionen, MC Quadratur
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Abbildung 5.43.: Wirbelstrafie: Erwartungswertdifferenz: ASGC, polynomielle Basisfunktionen, MC
Quadratur zu MC

Vergleich der Verfahren

Vergleicht man die geeignesten Verfahren miteinander, stellen sich nach Abb. 5.44 auf Seite 78 fiir
die Berechnung des Erwartungswerts stiickweise lineare Basisfunktionen mit adaptiver Verfeine-
rung neben QMC als am besten geeignet heraus. Der Abstand zwischen den jeweils bestgeeigneten
Approximationsverfahren, also ASGC nach dem Erwartungswertkriterium mit stiickweise linea-
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ren Basisfunktionen und ASGC nach dem Erwartungswertkriterium mit stiickweise polynomiellen
Basisfunktionen, betrigt im vorliegenden Fall Faktor 10.
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Abbildung 5.44.: Vergleich der Erwartungswertdifferenz der geeignetsten Verfahren

Fir die Varianz setzt sich das Bild, dass stiickweise lineare Basisfunktionen im vorliegenden Kontext
bessere Ergebnisse liefern als stiickweise polynomielle Basisfunktionen, fort. In diesem Fall bietet die
Adaptivitat allerdings keine Vorteile, vielmehr stellt die CSGC - Approximation auf Level [ = 6 die
geeignetste Approximation dar, wie Abb. 5.45 auf Seite 79 zeigt.

Das Zustandekommen der negativen Varianz bei CSGC auf Level [ = 5 und dem Ansatz stiickweise
polynomieller Basisfunktionen bleibt ritselhaft. Durch Anderung des Quadraturverfahren von ana-
Iytischer Quadratur zu einer MC Quadratur ist die Varianz korrekterweise positiv, wenngleich die
Ergebnisse hier massiv oszillieren und eigentlich noch deutlich mehr Samples zu ziehen wéren, um
diese zu stabilisieren. Die Unklarheit dariiber, woher die negative Varianz kommt, liegt v. a. daran,
dass in keinem anderen Verfahren negative Varianzen aufgetreten sind. Weder auf anderen Level
fiir stiickweise polynomielle Basisfunktionen bei CSGC noch fiir stiickweise lineare Basisfunktionen
bei CSGC noch bei ASGC. Um dies weiter zu untersuchen, konnen nun zwei Schritte unternommen
werden. Erstens die Analyse einer Visualisierung der Diinngitterinterpolation, bspw. mithilfe der im
Rahmen von [Sch13] entstandenen Visualisierungssoftware, ob die Zielfunktion tatsichlich die Form
einer Gauss-Kurve hat. Zweitens die Betrachtung der Entwicklung des Betrags der Uberschiisse. Fiir
glatte Funktionen wird nach Gleichung (3.8) erwartet, dass der Betrag der Uberschiisse exponentiell
abfillt. Ob dies tatsachlich passiert oder ob die Zielfunktion oszilliert oder Spriinge aufweist, so dass
die Uberschiisse wieder anwachsen, bleibt zu analysieren.
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Abbildung 5.45.: Vergleich der Varianzdifferenz der geeignetsten Verfahren

79






6. Zusammenfassung und Ausblick

6.1. Fazit

Im Rahmen dieser Arbeit wurde eine Klasse fiir stiickweise polynomielle Basisfunktionen im Rahmen
des Diinngitter-Frameworks SG++ implementiert, deren Funktionalitit anhand der im vorigen Kapitel
vorgestellten Beispiele getestet wurde.

Dabei lag der Fokus auf der Feststellung einer hoheren Konvergenzordnung gegeniiber stiickweise
linearen Basisfunktionen durch den Einsatz stiickweise polynomieller Basisfunktionen, der Wirksam-
keit von rdumlicher Adaptivitit zur Verringerung der Zahl der notigen Auswertungen fiir eine gute
Approximation sowie rekursiver Hierarchisierung.

Die rekursive Hierarchisierung hat sich als nicht zielfithrend erwiesen. Anstelle des erhofften Zeit-
gewinns hat sich, wie das Hierarchisierungsexperiment in Abschnitt 5.2 gezeigt hat, eine massive
Verschlechterung der Performance eingestellt, und zwar sowohl bei niedrigen als auch bei hohen
Polynomgraden. Zusétzlich gegen die rekursive Hierarchisierung spricht, dass sich die zur Hierarchi-
sierung bendtigte Zeit, im Gegensatz zur direkten Hierarchisierung, um deutlich mehr als Faktor 2
erhoht, wenn ein zusitzliches Level hinzugefiigt wird und damit etwa doppelt so viele Knoten zu
hierarchisieren sind.

Die erhoffte hohere Konvergenzordnung fiir stiickweise polynomielle Basisfunktionen bei hinrei-
chend glatten Funktionen hat sich dagegen, den Erwartungen entsprechend, eingestellt, wie das
Beispiel des Kosinus Hyperbolicus in Abschnitt 5.1.2 gezeigt hat. Erwartungsgemaf nicht gezeigt
werden konnte dagegen, dass sich der globale Einsatz stiickweise polynomieller Basisfunktionen
lohnt, wenn die Zielfunktion lokale Unstetigkeiten aufweist, wie in Abschnitt 5.1.1 am Beispiel einer
Betragsfunktion.

An diesem Beispiel konnte dagegen der Nutzen von rdumlicher Adaptivitit gezeigt werden. Beim
Kosinus Hyperbolicus war das nicht der Fall. Das liegt daran, dass durch die Symmetrie und Glattheit
der Kosinus Hyperbolicus Funktion ungefahr ein reguldres diinnes Gitter entsteht. D. h. beim Kosinus
Hyperbolicus ergibt sich deshalb verglichen mit globaler Verfeinerung kein Gewinn durch den
Einsatz von lokaler Verfeinerung, weil sich in diesem Beispiel lokale und globale Verfeinerung kaum
unterscheiden.

Mit diesen Erfahrungswerten wurde die Tauglichkeit von adaptiven diinnen Gittern mit stiickweise po-
lynomiellen Basisfunktionen im Zusammenhang mit UQ am Beispiel einer Karman’schen Wirbelstrafe
in Abschnitt 5.3 untersucht. Im untersuchten Wirbelstralen-Beispiel konnte der Erwartungswert mit
ca. einem Funftel der Funktionsauswertungen, verglichen mit MC und n = 5000 Samples, auf unter
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6. Zusammenfassung und Ausblick

1% Abweichung angenihert werden. Dazu wurde nach dem in Abschnitt 3.3 vorgestellten Erwar-
tungswertkriterium verfeinert und stiickweise lineare Basisfunktionen angesetzt. Fiir die Varianz
ergab sich dagegen ein schlechteres Bild. Hier stellte CSGC mit Level [ = 6 und stiickweise linearen
Basisfunktionen die beste Approximation dar, fiir alle tibrigen Verfahren ergab sich eine Abweichung
von mindestens 5%, oftmals auch deutlich dariiber.

Fiir stiickweise polynomielle Basisfunktionen konnten diese Ergebnisse qualitativ reproduziert werden,
die Genauigkeit der stiickweise linearen Basisfunktionen aber nicht erreicht werden. Das spricht
dafiir, dass das Wirbelstralen-Beispiel beziiglich der Glattheit eher dem Beispiel der Betragsfunktion
dhnelt als dem des Kosinus Hyperbolicus.

Zusatzlich ergab sich fiir CSGC auf Level [ = 5 bei der Berechnung der Varianz mit analytischer
Quadratur der Diinngitterapproximation eine negative Varianz. Dieses Problem konnte durch den
Wechsel des Quadraturverfahrens von analytischer Quadratur zu MC Quadratur behoben werden.

6.2. Ausblick

Es bietet sich an, fiir SG++ eine neue Klasse fiir stiickweise polynomielle Basisfunktionen einzufiihren,
die die Vorzige der bereits vorhandenen Klasse “PolyBasis” mit denen der im Rahmen der Arbeit
implementierten “UltraPoly”-Klassen verbindet. Dabei sollte die direkte Hierarchisierung aus der
bestehenden Klasse mit der Quadraturmethode fiir beliebige Polynomgrade und der Behandlung von
Randpunkten aus den implementierten Klassen kombiniert werden.

Dariiber hinaus ist zu tiberlegen, ob die stiickweise polynomiellen Basisfunktionen ans Gitter gebunden
werden konnen, da die Basis wie in Abb. 4.1 dargestellt, fiir jede Operation neu erstellt wird. Dieser
redundante Aufwand koénnte durch eine Bindung ans Gitter ausbleiben.

Testen lie8e sich auch die Einfihrung einer Klasse mit “variablem Polynomgrad”. Wegen der nicht-
tiberlappenden Basisfunktionen ist es auch auf demselben Level problemlos méglich, Basisfunktionen
von verschiedenem Polynomgrad zu haben.

Dabei ist jedoch zu beachten, dass es wegen der Tensorprodukt-Struktur des Diinngitter-Ansatzes
keine raumlich-adaptive Anpassung des Polynomgrads analog der Verfeinerung der Gitterknoten
geben kann, wo die Effekte der Verfeinerung hauptsachlich lokal sind, wenn man von der rekursiven
Erzeugung hierarchischer Vorgédngerknoten absieht. Stattdessen hat eine adaptive Verdnderung des
Polynomgrads fiir Dimensionen d > 1 immer globale Auswirkungen.

D.h.,, es ist bspw. nicht allgemein méglich, global ein diinnes Gitter mit stiickweise polynomiellen
Basisfunktionen zur Approximation zu verwenden, um von deren héherer Konvergenzordnung zu
profitieren, und gleichzeitig bei der Erkennung von lokalen Unstetigkeiten nur an diesen Stellen lokal
stiickweise lineare Basisfunktionen anzusetzen. Stattdessen miissen bei diesem Vorgehen Einbuf3en
in den glatten Bereichen hingenommen werden.

Das liegt daran, dass die, um in dem geschilderten Beispiel zu bleiben, an einem Knoten angesetzte
stiickweise lineare Basis durch den Tensorprodukt-Ansatz nicht nur an einem konkreten Knoten
angesetzt wird. Stattdessen ist die “adaptiv erzeugte” lineare Basisfunktion tiber alle Dimensionen fiir
alle Knoten mit entsprechendem (Level, Index)-Tupel fiir Hierarchisierung, Evaluation und Quadratur
anzusetzen.
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Zusitzlich ausprobieren ldsst sich, ob sich ein manuelles Verfalschen der Uberschiisse auszahlt, indem
dem Betrag nach sehr kleine Uberschiisse auf den Wert 0 gesetzt werden. Dies wiirde dazu fiihren,
dass man fiir einen solchen Fall den Schritt zur Polynomauswertung oder Quadraturberechnung in
der jeweiligen Funktion einsparen kann.

Im UQ-Kontext sind v. a. weitere Daten und Erfahrungen zu sammeln. Auf dieser Basis sollten dann
die Verfeinerungskriterien verbessert werden. Insbesondere ist zu priifen, ob bei der adaptiven Verfei-
nerung die Verteilung angemessen beriicksichtigt wird. Bislang ist nur beim Erwartungswertkriterium
der Fall, dass die Verteilung tiberhaupt beriicksichtigt wird. Ob die bestehende Methodik ausreicht, um
vor allem im Maximum der Normalverteilung neue Gitterpunkte zu erzeugen statt an den Réndern,
ist nach Meinung des Autors noch nicht eindeutig klar. Zusétzlich liegt auch bei der Approximation
der Varianz noch Potential, insbesondere in Form der Beriicksichtigung der Verteilung und einer
besseren lokalen Abschatzung der Varianz.
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A. Anhang

A.1. Maximaler Fehler pro Verfeinerungsschritt flir cosh
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Abbildung A.1.: cosh: Entwicklung des maximalen Interpolationsfehlers tiber die Knotenzahl fiir
stiickweise lineare Basisfunktionen
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Abbildung A.2.: cosh: Entwicklung des maximalen Interpolationsfehlers tiber die Knotenzahl fiir
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Abbildung A.3.: cosh: Entwicklung des maximalen Interpolationsfehlers iiber die Knotenzahl fiir
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A.2. Hierarchisierung - bendtigte Zeit Gber Knotenzahl
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Abbildung A.4.: Plot der benétigten Zeit zur direkten Hierarchisierung von u; mit stiickweise

polynomiellen Basisfunktionen von Polynomgrad p = 2 iiber die Knotenzahl.
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Abbildung A.5.: Plot der benétigten Zeit zur rekursiven Hierarchisierung von u; mit stiickweise
polynomiellen Basisfunktionen von Polynomgrad p = 2 tiber die Knotenzahl.
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Abbildung A.6.: Plot der benétigten Zeit zur direkten Hierarchisierung von u; mit stiickweise

polynomiellen Basisfunktionen von Polynomgrad p = 10 tiber die Knotenzahl.
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Abbildung A.7.: Plot der benétigten Zeit zur rekursiven Hierarchisierung von u; mit stiickweise
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A.3. Varianzberechnung der WirbelstraB3e nach MC Quadratur

A.3. Varianzberechnung der WirbelstraBe nach MC Quadratur

A.3.1. CSGC, stiuckweise polynomielle Basisfunktionen
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Abbildung A.8.: Wirbelstrale: Varianz: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiickweise
polynomielle Basisfunktionen, MC Quadratur

Differenz der Varianz zu MC

300000 VICSCC 1=23] ——
V(CSGC.1=5) ——
V(CSGC. | = 6)
200000 |

100000

-100000

-200000

-300000

Ml
i “'}

‘ i "| |||\' \ I ‘| “'l"'ﬂ “\l "\p | ‘1 || )

10

20 30 40
Zeit

50

Abbildung A.9.: Wirbelstrafie: Varianzdifferenz: CSGC Level [ = [4, 5, 6], keine Randpunkte, stiick-
weise polynomielle Basisfunktionen, MC Quadratur zu MC
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A. Anhang

A.3.2. ASGC, stiickweise lineare Basisfunktionen
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Abbildung A.10.: Wirbelstrafie: Varianz: ASGC, keine Randpunkte, stiickweise lineare Basisfunktio-
nen, MC Quadratur
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Abbildung A.11.: Wirbelstrafle: Varianzdifferenz: ASGC, keine Randpunkte, lineare Basisfunktionen,
MC Quadratur zu MC
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A.3. Varianzberechnung der WirbelstraB3e nach MC Quadratur

A.3.3. ASGC, stiickweise polynomielle Basisfunktionen
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Abbildung A.12.: Wirbelstrafe: Varianz: ASGC, keine Randpunkte, stiickweise polynomielle Basis-
funktionen, MC Quadratur
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Abbildung A.13.: Wirbelstrafie: Varianzdifferenz: ASGC, polynomielle Basisfunktionen, MC Qua-
dratur zu MC
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