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Kurzfassung

Im Zusammenhang mit der Quantifizierung von Unsicherheiten entstehen, bspw. bei der Berechnung

des Erwartungswerts, potentiell hochdimensionale Quadraturprobleme. Eine Möglichkeit, um den

Fluch der Dimensionalität zumindest teilweise zu überwinden und gleichzeitig mit einer möglichst

niedrigen Zahl von Auswertungen eine gute Approximation zu erhalten, stellen dünne Gitter dar.

Bei nicht-intrusiven Verfahren zur Quantifizierung von Unsicherheiten wird das Verhalten eines

Systems durch mehrere Simulationsauswertungen mit unterschiedlichen Parameterkombinationen

aus dem definierten Wertebereich untersucht, wobei schon ein einzelner Simulationsaufruf einige

Rechenzeit in Anspruch nehmen kann. Daher soll die für eine gute Approximation notwendige Zahl

der zu berechnenden Parameterkombinationen weiter reduziert werden. Neben der Verwendung von

dünnen Gittern wurden im Rahmen dieser Arbeit zusätzlich stückweise polynomielle Basisfunktionen

angesetzt, um die Konvergenzordnung der Dünngitterapproximation zu erhöhen. Zusätzlich soll die

Zahl der nötigen Auswertungen durch räumlich-adaptive Gitterverfeinerung minimiert werden.
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1. Einleitung

Beschreibungen von Systemen sind Unsicherheiten unterworfen, die aus den verschiedensten Grün-

den auftreten. Dies können ungenaue Messungen sein, bspw. durch Rauschen oder schlecht kalibrierte

Messwerkzeuge. Denkbar sind auch Ergebnisse aus vereinfachten Modellierungen - etwa die Ver-

nachlässigung von Fertigungstoleranzen, die Reduktion eines dreidimensionalen Modells auf zwei

Dimensionen oder die Vernachlässigung von ausgewählten Einflüssen beim Entwurf des Modells.

Auch komplexe Prozesse, die nicht oder nur sehr schwer deterministisch zu modellieren sind, wie

bspw. die Landung eines Flugzeugs, können Unsicherheit in eine Simulation einbringen.

Man möchte trotz dieser und weiterer unsicherer Einflüsse auf das untersuchte System aber nicht

auf die Vorteile des Einsatzes von Simulationen verzichten. Das bedeutet, dass man bspw. trotz nicht

vollständiger Systemkenntnis Aussagen über das Verhalten des Systems an einem oder mehreren

kritischen Punkt(-en) treffen können möchte oder darüber, wie wahrscheinlich ein System innerhalb

eines bestimmten Betriebszustands bleibt. Dazu ist es nötig, Unsicherheiten und ihre Auswirkungen

auf das Verhalten des Gesamtsystems zunächst zu beschreiben und anschließend zu quantifizieren.

Kapitel 2 – Uncertainty Quantification definiert zunächst verschiedene Facetten von Unsicher-

heit. Anschließend werden der grundlegende Aufbau einer modellbasierten Uncertainty

Quantification-Simulationsumgebung (UQ) sowie einige klassische Motivationen für das Quan-

tifizieren von Unsicherheiten skizziert. Daraus wird die Problemstellung formal spezifiziert

sowie gängige Verfahren zur Quantifizierung von Unsicherheiten vorgestellt.

Kapitel 3 – Dünne Gitter führt das Konzept der dünnen Gitter mithilfe eines Interpolationsbei-

spiels ein, stellt verschiedene Arten von dünnen Gittern vor und erläutert die grundlegenden

Operationen.

Kapitel 4 – Implementierung stellt zunächst das verwendete Dünngitter-Framework SG++ unter

besonderer Berücksichtigung der im Rahmen der Arbeit erstellten Basis mit stückweise po-

lynomiellen Basisfunktionen vor. Anschließend wird die für die numerischen Experimente

verwendete Bibliothek für UQ eingeführt.

Kapitel 5 – Experimente illustriert mithilfe numerischer Experimente die Wirksamkeit der imple-

mentierten Methoden.

Kapitel 6 – Zusammenfassung und Ausblick fasst die erhaltenen Ergebnisse zusammen und

schlägt weitere Ansätze vor.
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2. Uncertainty Quantification

2.1. Arten von Unsicherheiten

Nach [WHR
+
05, S. 8] hat eine Unsicherheit Eigenschaften auf drei verschiedenen Ebenen:

1. Den Ort, d. h. an welcher Stelle im System sich die Unsicherheit zeigt.

2. Das Maß, d. h. wo die Unsicherheit auf einer Skala von “deterministisches Wissen” bis hin zu

“völliger Ahnungslosigkeit” einzuordnen ist.

3. Schließlich das Naturell, d. h. entsteht die Unsicherheit durch fehlendes Wissen oder durch

einen inhärent variablen Prozess.

Das bedeutet, jede einzelne Unsicherheit hat einen Ort, ein Maß und ein Naturell.

Der Ort (1.) der Unsicherheit im System lässt sich nach [WHR
+
05, S. 9ff] weiter unterscheiden in

• Kontextunsicherheit
Kontextunsicherheit beschreibt die Frage, wo die Systemgrenze genau verläuft, d. h. welche

Teile der realen Welt sich innerhalb bzw. außerhalb des Systems befinden sowie die Frage der

Vollständigkeit der Darstellung.

• Modellfehler
Der Modellfehler teilt sich in zwei Teile; einerseits eine strukturelle Unsicherheit über die

Form des Modells an sich und andererseits eine technische Unsicherheit, die sich aus der

Implementierung des Modells im Rechner ergibt.

• Eingabefehler
Die Unsicherheit der Eingabe betrifft zum einen Unsicherheiten über äußere Antriebe, die das

Verhalten des Systems beeinflussen und zum anderen Unsicherheiten über technische Daten

des Systems. Zweitere dienen zur Beurteilung der Fähigkeiten eines Referenzsystems. Die

Unsicherheit entsteht dabei typischerweise aus einem Wissensdefizit.

• Parameterunsicherheit
Zwischen der Parameterunsicherheit und der strukturellen Unsicherheit des Modells besteht ein

Zusammenhang. Es existiert eine Abbildung, die als Funktion der verfügbaren Kalibrierungsda-

ten und der im Kalibrierungsdatensatz enthaltenen Information auf die optimale Kombination

von Modellunsicherheit und Parameterzahl abbildet. Das bedeutet, dass durch Erhöhung der

Modellkomplexität und/oder der Parameterzahl zusätzliche Unsicherheit entstehen kann.
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2. Uncertainty Quantification

• Unsicherheit der Modellvorhersage
Die Unsicherheit der Modellvorhersage beschreibt die Differenz zwischen dem vom Modell

vorhergesagten und dem tatsächlichen Wert. Damit ist sie die akkumulierte Unsicherheit, die

sich aus den übrigen Unsicherheiten zusammensetzt, die durch das Modell hindurch propagiert

wurden.

Das Naturell (3.) der Unsicherheiten unterscheidet zwei Extreme [WHR
+
05, S. 13]:

• epistemische Fehler

Diese beschreiben systematische Unsicherheiten. Es existiert eine genaue Lösung, diese ist

aufgrund von fehlendem Wissen respektive fehlenden Daten allerdings nicht messbar.

• aleatorische Fehler

Diese beschreiben stochastische Unsicherheiten. Es existiert aufgrund von intrinsischen Schwan-

kungen beim modellierten (Teil-)Prozess keine genaue Lösung für das Problem.

Diese Unterscheidung ist deshalb nützlich, weil der epistemische Teil durch nicht-physikalische

Zufallsvariablen substituiert werden kann. Diese bilden Informationen ab, die durch das Sammeln

zusätzlicher Daten oder durch bessere Messmethoden entstehen können und definieren dadurch

Korrelationen zwischen verschiedenen Komponenten eines Problems mit gemeinsamen Unsicher-

heiten. Die Unterscheidung, ob eine Unsicherheit epistemisch oder aleatorisch ist, hängt also nicht

nur vom aktuellen Stand der Technik und den verfügbaren Daten ab, sondern auch und v. a. von

der praktischen Anforderung an die Simulation, die Modellkomplexität auf ein sinnvolles Maß zu

beschränken [KD09, S. 106].

Le Maître und Knio definieren Unsicherheiten ähnlich aber deutlich gröber. Sie orientieren sich

dabei insbesondere in der Terminologie deutlich stärker an dem konkreten Einsatzzweck einer

modellbasierten numerischen Simulation und kategorisieren Unsicherheiten nur bezüglich des Orts

[MK10, S. 1f].

Im Rahmen dieser Arbeit soll v. a. der Einfluss von Eingabeunsicherheiten von beliebigem Maß und

Naturell untersucht werden.

2.2. Simulationsumgebung

Eine idealisierte Simulationsumgebung ohne Unsicherheiten lässt sich in drei Schritten zusammenset-

zen [MK10, S. 3f]:

1. Fallspezifikation
In diesem Schritt werden die Eingabeparameter definiert. Dazu sind alle inneren und äußeren

Einflüsse in Form der Geometrie zu spezifizieren, insbesondere auch das Rechengebiet. Rand-

und/oder Anfangsbedingungen sowie äußere Antriebe werden definiert. Schließlich werden die

Systemeigenschaften ebenso durch physikalische Konstanten beschrieben wie Kalibrierungs-

oder Modellierungsdaten, um nicht explizit im Modell aufgelöste Phänomene darzustellen.
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2.2. Simulationsumgebung

2. Simulation
Die Simulation benötigt zunächst einen ersten Diskretisierungsansatz, meist in Form einer

Gitterspezifikation und entsprechenden Parametrisierung. Soweit nötig, werden zusätzliche Pa-

rameter für die Integration nach der Zeit eingeführt. Daran anschließend wird ein numerisches

Lösungsverfahren definiert. Für dieses Lösungsverfahren soll gelten, dass

a) das ursprüngliche mathematische Modell eine eindeutige Lösung hat,

b) die Diskretisierung, gesetzt den Fall, sie ist korrekt spezifiziert, ebenfalls eine eindeutige

Lösung hat, die gleichzeitig gegen die echte Lösung konvergiert und

c) dabei hinreichend kleine Diskretisierungsfehler erreichbar sind.

3. Analyse
Im letzten Schritt müssen die aus der Simulation erhaltenen Daten zur Analyse aufbereitet

werden.

In Abb. 2.1 ist der beschriebene dreistufige Prozess in Form eines Flussdiagramms visualisiert.

Abbildung 2.1.: Flussdiagramm zum Aufbau einer numerischen Simulation ohne Unsicherheiten

nach [MK10, S. 4]

Da in der Praxis häufig Unsicherheiten in den Eingangsdaten vorhanden sind oder sich das modellierte

System wegen intrinsischer Schwankungen nicht immer gleich verhält, muss das bestehende Modell

erweitert werden, um den Einfluss unsicherer Daten auf das Simulationsergebnis zu untersuchen.

Damit wird die Unsicherheit aus den Eingangsdaten mit dem Simulationsergebnis verknüpft, so dass
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2. Uncertainty Quantification

sich deren Einfluss auf das Ergebnis sowohl charakterisieren als auch quantifizieren lässt [MK10, S.

4f]. Ein Beispiel für eine solche Erweiterung zeigt Abb. 2.2.

Abbildung 2.2.: Flussdiagramm zum Aufbau einer numerischen Simulation mit Unsicherheiten nach

[MK10, S. 5]

2.3. Ziele des Quantifizierens von Unsicherheiten

Eine solche Erweiterung ist nützlich, weil sie u. a. folgende Ergebnisse liefern kann [MK10, S. 5f]:

• Verifikation der Simulation
Durch den Vergleich der Simulationsergebnisse mit realen Versuchsergebnissen kann die

Gültigkeit der Simulation überprüft und validiert werden. Dabei ist zu beachten, dass auch

die Versuchsergebnisse Unsicherheiten unterliegen, bspw. durch nicht-optimale Systeme oder

Messungenauigkeiten. Bei der Validierung muss daher sowohl die rechnerische als auch die

experimentelle Ungenauigkeit berücksichtigt werden.

• Varianzanalyse
Der Ausschlag der Systemreaktion um Mittel- oder Sollwert liefert wichtige Informationen zu

Entwurf und Optimierung und gleichzeitig Unterstützung bei Entscheidungen. Auf diesemWeg

lassen sich die Robustheit der Vorhersage und die Kontrollierbarkeit des Systems beschreiben

sowie ein Maß für die Verlässlichkeit der Vorhersagen ableiten.

• Risikoanalyse
Auf Basis der Wahrscheinlichkeitsdichten der Eingangsdaten soll die Wahrscheinlichkeit be-
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stimmt werden, dass ein System bestimmte Betriebszustände verlässt oder Schwellwerte an

kritischen Punkten überschritten werden. Gleichzeitig können diese Wahrscheinlichkeiten zur

Abschätzung von Risiken oder zur Bewertung der Zuverlässigkeit verwendet werden.

• Sensitivitätsanalyse
Wann immer ein System mehreren Unsicherheiten verschiedenen Ursprungs unterliegt, ist

ihr jeweiliger Einfluss auf das Verhalten des Gesamtsystems eine entscheidende Frage, um

dominante Unsicherheiten überwachen oder eindämmen zu können.

2.4. Allgemeine Problemstellung

Innerhalb des definierten Framework kann die Propagierung der Unsicherheit aus den Eingabepara-

metern auf das Simulationsergebnis als Bestimmung der funktionalen Abhängigkeit der Lösung von

den Zufallsvariablen, die die Eingangsdaten parametrisieren, betrachtet werden [MK10, S. 7]. Formal

lässt sich die Problemstellung der Vorwärtspropagation von Unsicherheiten wie folgt formulieren

[FDPS14, S. 4]:

Es existiere ein System, das vom Modell M gesteuert wird. Dieses Modell basiert auf einer endlichen

Zahl zufälliger Parameter ξ = {ξ1, ξ2, . . . , ξk} ∈ Γ mit gegebener Wahrscheinlichkeitsdichtefunktion

pξ(ξ) und gegebener kumulativer Verteilungsfunktion Fξ(ξ) sowie einer unbekannten Lösung:

(2.1) u : Γ 7→ R

Gesucht ist also eine Funktion u(ξ) unter dem Modell M, um das probabilistische Verhalten, das

durch die unsicheren Parameter ξ in das System eingebracht wird, zu beschreiben. Dabei führt die

Kenntnis der Wahrscheinlichkeitsdichte von ξ auf die Wahrscheinlichkeitsdichte von u.

2.5. Verfügbare Methoden

Zur Lösung des zuvor skizzierten Problems existiert eine Reihe von Verfahren. Diese lassen sich in

zwei große Gruppen unterteilen, die intrusiven und die nicht-intrusiven Verfahren.

2.5.1. Intrusive Verfahren

Intrusive Verfahren benötigen die Aufstellung und Lösung einer stochastischen Formulierung der

ursprünglichen Modellgleichungen.

Ein klassischer Ansatz dafür ist die stochastische Galerkin Expansion, wo die Lösung als Spektral-

summe der unsicheren Variablen dargestellt wird [Iac11, S. 6]:

u(x, t, ξ) =
∞∑

i=0
ui(x, t)︸ ︷︷ ︸

deterministisch

stochastisch︷ ︸︸ ︷
ψi(ξ)
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2. Uncertainty Quantification

Die ψi(ξ) sind bspw. hermite’sche Polynome und bilden eine vollständige Menge orthogonaler

Basisfunktionen. Anstelle hermite’scher Polynome können u. a. auch Wavelets verwendet werden.

Ist u(x, t, ξ) lösbar, lassen sich Erwartungswert und Varianz direkt berechnen. Eine Möglichkeit zur

Berechnung findet sich in [Iac11, S. 10ff].

Die Verwendung einer solchen Expansion verwandelt das ursprüngliche stochastische Problem in ein

deterministisches Problem. Dadurch können sich bei der Lösung in der Konvergenzordnung immense

Gewinne ergeben.

Im Gegenzug muss dafür ein hoher Preis gezahlt werden. Durch die Erweiterung des Modells er-

höht sich die Komplexität des Problems. Außerdem muss eine möglicherweise bereits bestehende

Implementierung des ursprünglichen Modells geändert werden, weil sich die Modellgleichungen

ändern.

2.5.2. Nicht-intrusive Verfahren

Im Gegensatz zu intrusiven Verfahren basieren nicht-intrusive Verfahren auf einer (möglicherweise

großen) Zahl einzelner Realisierungen der Zufallsvariablen, um die Reaktion des stochastischen

Modells auf die unsicheren Eingangsdaten zu modellieren. D. h. das Problem wird nicht verändert,

sondern in unterschiedlichen Realisierungen der Menge der unsicheren Parameter ξ untersucht.

Der klassische nicht-intrusive Ansatz ist dasMonte Carlo Sampling (MC). Dabei wird für jedes Element

ξi aus der Menge der unsicheren Eingangsdaten ξ nach der Wahrscheinlichkeitsdichtefunktion

pξ(ξ) eine einzelne Realisation gewählt. Der MC Ansatz ist unabhängig von der Dimension des

stochastischen Raums und einfach zu implementieren. Zusätzlich konvergiert die Lösung des MC

Ansatzes garantiert gegen die echte Lösung [FDPS14, S. 2].

Der Hauptnachteil dieses Ansatzes ist die niedrige Konvergenzordnung von O
(

1√
n

)
, wobei n für die

Anzahl der gezogenen Samples steht. Die Konvergenzordnung zeigt die Dimensionsunabhängigkeit

des Ansatzes, da die Konvergenzrate lediglich von der Zahl der Realisationen abhängt.

Die Konvergenzordnung kann durch den Einsatz spezieller nicht-zufälliger Sequenzen verbessert wer-

den, sog. Quasi Monte Carlo Verfahren (QMC). Dabei werden korrelierte Punkt-Sequenzen verwendet,

die eine höhere Gleichmäßigkeit mitbringen.

Das bedeutet, dass das Gebiet Ω, in dem die Samples generiert werden, durch QMC Verfahren deutlich

harmonischer abgedeckt wird als durch das Verwenden von echtem MC. Bei der Verwendung von MC

Sampling ist jedes einzelne Sample unabhängig von allen übrigen. Dadurch entsteht an einigen Stellen

eine Anhäufung vieler Samples, an anderen Stellen entsteht eine entsprechend geringe Abdeckung.

Im Gegensatz dazu sind bei QMC Verfahren die Samples voneinander abhängig, so dass dieser Effekt

vermiedenwird. Dies zeigt sich bspw. in [Caf98, S. 24]. Dadurch konvergieren diese Verfahren ungefähr

mit O
(

(log(n))k

n

)
, k = konst [Caf98, S. 2f]. Im Rahmen dieser Arbeit werden zur Generierung von

QMC Samples Sobol-Sequenzen verwendet. Eine Einführung zu Sobol-Sequenzen findet sich in

[Sob67].
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Im Zusammenhang mit Simulationen kann allerdings bereits ein einziger Simulationsaufruf viel

Rechenzeit in Anspruch nehmen. Um Aufrufe einzusparen, bietet es sich daher für glatte Abbildungen

u(ξ) an, nicht nur die Menge der einzelnen Auswertungspunkte {f(ξj)}, j = {1, . . . , n} zur Appro-

ximation der Lösung zu verwenden, sondern zusätzlich zwischen den einzelnen Auswertungspunkten

zu approximieren.

Eine Möglichkeit dazu liefert die nicht-intrusive verallgemeinerte polynomielle Chaosentwicklung

(gPC), vorgestellt in [XK02] und [XK03]. Dabei werden Parameter-Verteilungen mithilfe des Askey

Schemas optimierten orthogonalen Basen zugeordnet. Die Parameter werden bspw. durch Ortho-

gonalprojektion berechnet, so dass ein potentiell hochdimensionales Quadraturproblem entsteht,

das numerisch gelöst werden muss, bspw. durch Sampling oder Ansätze mit dünnen Gittern. Dabei

ist zu beachten, dass die verwendeten Basisfunktionen global definiert sind, so dass bei scharfen

Übergängen, d. h. bei Sprungstellen in der Zielfunktion, das Gibbs’sche Phänomen zu beobachten ist.

Das bedeutet, dass in der Nähe dieser Sprünge in der Approximation Überschwingungen auftreten,

die sich auch durch das Hinzunehmen endlich vieler weiterer Stützstellen nicht eliminieren lassen.

Die Methode lässt sich erweitern, um die beschriebenen Effekte zu mildern, überblicksweise werden

entsprechende Konzepte z. B. in [MZ09, S. 3085f] vorgestellt.

Im Rahmen dieser Arbeit soll die stochastische Kollokation mithilfe von dünnen Gittern erfolgen,

der sog. “Conventional Sparse Grid Collocation” (CSGC) und der “Adaptive Sparse Grid Collocation”

(ASGC). Dünne Gitter sind konstruktionsbedingt geeignet, den “Fluch der Dimensionalität” zumindest

teilweise zu überwinden und leiden wegen der Verwendung lokaler Basisfunktionen nicht unter

dem Gibbs’schen Phänomen. In einer Reihe von Benchmark-Versuchen mit bekannten analytischen

Lösungen hat ein solcher Ansatz vergleichbare oder bessere Ergebnisse gezeigt als gPC - Ansätze

[EB09].

Im Folgenden sollen zunächst dünne Gitter eingeführt und anschließend das verwendete Dünngitter-

Framework SG++ vorgestellt werden.
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3. Dünne Gitter

3.1. Hintergrund und Einführung

3.1.1. Grundlegendes

Die vorgeschlagene Methode zur Quantifizierung von Unsicherheiten führt zu einem hochdimensio-

nalen (Quadratur-)Problem, weil jeder zusätzliche unsichere Parameter die Dimension des Problems

um eins erhöht. Dieser sog. “Fluch der Dimensionalität”, d. h. der exponentielle Zusammenhang

zwischen nötigem Rechenaufwand und der Dimension des Problems, kann mithilfe von dünnen

Gittern teilweise überwunden werden.

Bei einem Vollgitter mit Dimension d = 1 und m Gitterpunkten bedeutet die Hinzunahme von d
weiteren Dimensionen unter Beibehaltung der Maschenweite h, dass md

Gitterpunkte entstehen.

Bei einem dünnen Gitter werden dagegen solche Gitterpunkte eines Vollgitters ausgelassen, die

zur Gesamtlösung nur einen geringen Beitrag leisten, so dass die Approximation nur um einen

logarithmischen Faktor schlechter ist als die Vollgitterlösung [Pfl10, S. 5].

Im Rahmen dieser Arbeit werden Gitter auf dem sog. Unit Hypercube definiert, d. h. es wird o. B. d. A.

das Gebiet Ω = [0, 1]d mit dem vorgestellten Dünngitter-Ansatz diskretisiert.

Die hier gegebene Einführung beschränkt sich auf die wichtigsten Grundlagen und orientiert sich

dabei an [Pfl10, Kap. 2]. Für eine detailliertere Einführung wird an die vorgenannte Stelle sowie

[Feu10, Kap. 2] verwiesen.

Im 1D unterscheiden sich dünne Gitter nicht von vollen Gittern. Der Rahmen dieser Arbeit beschränkt

sich auf dyadische Gittertypen, d. h. für die Vollgitter-Maschenweite gilt für Level l ≥ 0 : hl := 2−l

[Feu10, S. 5].

Als einführendes Beispiel wird die Interpolation im 1D für Gebiete Ω = [0, 1] gewählt. Für die Gebiete
gilt zunächst, dass die Funktion, die interpoliert werden soll, an den Randpunkten den Wert 0 hat,

d. h. ∂Ω = 0.

Für dünne Gitter im 1D ergibt sich eine hierarchische Struktur:

Beginnend bei Level 1 und einem Gitterpunkt bei 0.5 führt die Erhöhung des Levels l um 1 zu 2l

zusätzlichen Gitterpunkten, die, weil dyadische Gitter verwendet werden, jeweils genau in der Mitte

der Maschen von Level l angeordnet sind.

Um die Knoten zu identifizieren, wird ein (Level, Index)-Tupel verwendet. Dabei wird der Index von

1 beginnend auf jedem Level hochgezählt. Da alle Knoten des Levels l − 1 auch Knoten von Level
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3. Dünne Gitter

l sind, ist die Namensgebung noch nicht eindeutig. Um dies zu beheben, wird das (Level, Index)-

Tupel verwendet, das den minimalen Level hat. Das bedeutet, dass alle Indizes ungerade sind. Das

Namensschema ist in folgender Abb. 3.1 anschaulich dargestellt.

1, 1

2, 1 2, 3

3, 1 3, 3 3, 5 3, 7

4, 1 4, 3 4, 5 4, 7 4, 9 4, 11 4, 13 4, 15

0 1

Ω

Abbildung 3.1.: Level-Index-Baum für ein randloses dünnes Gitter mit Level 4. Jedes Kreuz markiert

die Position eines Gitterpunkts

Dieses Schema führt zur Indexmenge Il

(3.1) Il := i ∈ N; 1 ≤ i ≤ 2l − 1, i = 1 mod 2.

Für das Interpolationsbeispiel wurden somit Stützstellen definiert, an denen die Funktion ausgewertet

wird. Nun fehlen noch geeignete Basisfunktionen, die die Funktion zwischen den Schnittstellen

interpolieren sollen. Zur Einführung wird die hierarchische Hut-Funktion angesetzt:

(3.2)

φ(x) = max(1 − |x| , 0)
φl,i(x) := φ(2lx− i)

Daraus ergeben sich hierarchische UnterräumeWl auf jedem Level l mit nicht-überlappenden Basis-

funktionen, wenn man nur die Indizes i ∈ Il berücksichtigt.

(3.3) Wl := span{φl,i(x)} mit i ∈ Il

Der Raum der stückweise linearen Basisfunktionen VN ergibt sich aus der direkten Summe über alle

UnterräumeWl mit 1 ≤ l ≤ N .

Um eine Interpolation fN (x) in VN durchzuführen, muss die zu einer Stützstelle gehörende Basis-

funktion mit dem hierarchischen Überschuss vl,i zwischen dem realen Funktionswert u(xl,i) und
dem Wert der bisherigen Dünngitterapproximation fN−1(xl,i) skaliert werden.

(3.4)

vl,i = u(xl,i) − fN−1(xl,i)
⇝ fN (x) =

∑
l≤n,i∈Il

vl,i · φl,i(x)

Das bisherige Ergebnis der Einführung nach [Pfl10, Kap. 2] zeigt Abb. 3.2 auf der nächsten Seite.
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Abbildung 3.2.: Interpolationsbeispiel 1D, entnommen aus [Pfl10, S. 9]. Links sieht man in rot das

Resultat fN (x) aus Gleichung (3.4). Rechts sind die hierarchisch angeordneten

und skalierten Hut-Funktionen vl,i · φl,i einzeln dargestellt. Die hierarchischen

Überschüsse vl,i sind in Form der gepunkteten Linien visualisiert.

3.1.2. Übergang zu höheren Dimensionen

Der Übergang aus dem Eindimensionalen in die Mehrdimensionalität gelingt mithilfe eines Tensor-

produktansatzes:

(3.5) φ
l⃗,⃗i

:=
d∏

j=1
φlj ,ij

(xj)

Auf die erneute Herleitung vonW
l⃗
, VN und fN (x⃗) wird an dieser Stelle verzichtet und stattdessen

auf [Pfl10, S. 10] verwiesen.

Dieser Ansatz alleine genügt allerdings nicht, um mehrdimensionale dünne Gitter zu erhalten: Im 1D

unterscheiden sich dünne und volle Gitter nicht, so dass der in Gleichung (3.5) beschriebene Ansatz

mehrdimensionale Vollgitter liefert. Für die so erzeugten Vollgitter gilt, dass die Vollgitterapproxima-

tion gN (x) ∈ VN für eine hinreichend glatte zu interpolierende Funktion u(x) eine asymptotische

Fehlerschranke aufweist:

(3.6) ∥u(x⃗) − gN (x⃗)∥L2
∈ O(h2

N )

Dazu sind O(h−d
N ) = O(2Nd) Funktionsauswertungen nötig [Pfl10, S. 10].
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Der Übergang vom vollen zum dünnen Gitter gelingt nun durch das Auslassen derjenigen Unterräume,

deren Beitrag zur Vollgitter-Lösung am geringsten ist [BG04]:

(3.7)

V
(1)

N :=
⊕

|⃗l|≤N+d−1
W

l⃗

⇝ fN (x⃗) =
∑

|⃗l|≤N+d−1, i⃗∈I⃗
l

v
l⃗,⃗i
φ

l⃗,⃗i
(x⃗)

Die Bedingung

∣∣∣⃗l∣∣∣ ≤ N + d− 1 wird mit der Hamming-Distanz vermessen. Daraus ergibt sich für

2D und Level l = 3 das in Abb. 3.3 dargestellte Teilraumschema. Die Teilräume sind das jeweilige

Ergebnis des kartesischen Kreuzprodukts der am äußeren Rand dargestellten Basisfunktionen.

Abbildung 3.3.: Teilraumschema dünnes Gitter: Dimension d = 2, Level l = 3, kein Rand
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Dadurch reduziert sich die asymptotische Genauigkeit von O(h2
N ) auf

(3.8) O(h2
N (log(h−1

N ))d−1),

gleichzeitig reduziert sich die Anzahl der benötigten Gitterpunkte von O(h−d
N ) auf

(3.9) O(h−1
N (log(h−1

N ))d−1).

Das bedeutet, dass die Zahl der benötigten Gitterpunkte deutlich abfällt ohne signifikanten Verlust

der Approximationsgenauigkeit.

3.1.3. Randpunkte

Um den bisherigen Ansatz auf Funktionen zu erweitern, auf deren Rand gilt, dass ∂Ω ̸= 0, wird ein

zusätzlicher Level l = 0 mit zwei überlappenden Basisfunktionen φ0,0 und φ0,1 eingeführt. Dadurch

erweitert sich das Teilraumschema wie in Abb. 3.4 dargestellt.

Abbildung 3.4.: Teilraumschema dünnes Gitter: Dimension d = 2, Level l = 4, regulärer Rand
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Dabei entsteht das Problem, dass nicht nur einige Punkte auf dem Rand liegen, sondern fast alle. Im

2D liegen bereits doppelt so viele Punkte auf dem Rand wie auf den Hauptachsen des Gitters. In

höheren Dimensionen vergrößert sich diese Problematik, weil Randpunkte eines dünnen Gitters der

Dimension d nichts anderes sind als ein dünnes Gitter der Dimension d− 1 [Feu10, S. 10].

Um dieses Problem zu lindern, erzwingt man am Rand die gleiche Diskretisierung wie auf den

Hauptachsen. Diese sog. Trapezrand-Gitter kann man bspw. dadurch konstruieren, dass man die

Basisfunktionen des vormaligen Level 0 nicht als 0ten Level hinzufügt, sondern mit der Basis aus Level

1 überlagert. Für Trapezrand-Gitter ergibt sich damit das in Abb. 3.5 dargestellte Teilraumschema.

Abbildung 3.5.: Teilraumschema dünnes Gitter: Dimension d = 2, Level l = 3, Trapezrand

3.1.4. Polynomielle Basisfunktionen

Gibt man den Approximationsfehler ε nicht in Abhängigkeit der Maschenweite, sondern in Abhän-

gigkeit der Zahl der Gitterpunktem an, liegt er nach [Bun98, S. 43] bei

(3.10) εL2(m) = O(m−2 · |log2(m)|3(d−1)).
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Für hinreichend glatte Funktionen lässt sich die Konvergenzgeschwindigkeit erhöhen, indem man

statt stückweise linearen Basisfunktionen Basisfunktionen mit mehr Stützstellen zulässt und bspw.

stückweise polynomielle Basisfunktionen ansetzt. Dazu wird eine Lagrange-Basis über k Stützstellen

verwendet, mit

(3.11) k = min{gewünschter Polynomgrad: p+1, max mögliche Stützstellen aus Gitterlevel: l+2}.

Die zweite Einschränkung erklärt sich wegen des hierarchischen Ansatzes. Der maximale Polynom-

grad p ist auf Level l durch p ≤ l+ 1 beschränkt, weil nur der Knoten selbst und seine hierarchischen

Vorgänger als Stützstellen in Frage kommen. Dies veranschaulicht Abb. 3.6 beispielhaft für den Knoten

(4, 11).

0, 0 0, 1

1, 1

2, 1 2, 3

3, 1 3, 3 3, 5 3, 7

4, 1 4, 3 4, 5 4, 7 4, 9 4, 11 4, 13 4, 15

Abbildung 3.6.:Menge potentieller Stützstellen für Knoten (4, 11)

Als Stützstellen für den Ansatz der Lagrange-Basis existieren damit zwei Gitterpunkte auf Level l = 0
und für jedes weitere Level bis l = lmax genau ein Gitterpunkt. Die Funktionswerte der Stützstellen

werden wie folgt angesetzt:

(3.12) f(xl,i) =

1 wenn l = lmax

0 wenn l < lmax

Dabei ist zu beachten, dass es keine Rolle spielt, ob das Gitter einen Rand hat oder nicht, weil auf Level

0 keine polynomielle Basisfunktion von höherem Polynomgrad als 1 möglich ist, was der stückweise

linearen Basis entspricht. Somit ist an den Stützstellen am Rand für alle Level l > 0 grundsätzlich 0

anzusetzen, was sich mit randlosen Gittern verträgt, weil dort per definitionem gilt, dass ∂Ω = 0.

Wählt man einen Polynomgrad, der nicht dem maximal möglichen entspricht, sind nicht die p
hierarchischen Vorgänger des Knotens nach Level geordnet als Stützstellen zu verwenden, sondern

die p räumlich nächstgelegenen Gitterpunkte, um möglichst lokal zu approximieren. Nicht maximal

möglicher Polynomgrad bedeutet anschaulich, dass in dem in Abb. 3.6 dargestellten Fall nicht alle

roten Knoten als Stützstelle verwendet werden.

Dadurch kann der Approximationsfehler für hinreichend glatte Funktionen weiter reduziert werden,

nach [Bun98, S. 78] auf:

(3.13) ε
(p)
L2

(m) = O(m−p+1 · |log2(m)|(p+2)(d−1))
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3. Dünne Gitter

3.2. Operationen

3.2.1. Hierarchisierung

Die hierarchischen Überschüsse, die zum Skalieren der Basisfunktionen verwendet werden, werden

bei der Hierarchisierung aus den Funktionswerten errechnet.

Das dünne Gitter wird nach dem unidirektionalen Prinzip hierarchisiert, d. h., die Tensorprodukt-

Struktur des dünnen Gitters wird ausgenutzt, indem ein linearer Operator für d Dimensionen auf

mehrere eindimensionale lineare Operatoren heruntergebrochen wird. Der eindimensionale Operator

wird nacheinander für alle Dimensionen angewandt und rechnet dabei in jedem Schritt mit den

aktualisierten Werten aus den vorherigen Schritten [Pfl10, S. 28].

Zur Durchführung der Hierarchisierungsoperation werden im Folgenden zwei Verfahren vorge-

schlagen. Stückweise polynomielle Basisfunktionen ab Polynomgrad p = 2 können auf beide Arten

hierarchisiert werden, während stückweise lineare Basisfunktionen wegen fehlender Vorgänger-

Polynomgrade nicht nach Variante 2 hierarchisierbar sind.

Variante 1: Direkte Hierarchisierung als Differenz zwischen bisherigem Dünngitter-Interpolant

fN−1(xl,i) und dem Funktionswert u(xl,i) am Knoten.

(3.14) v(p)(xl,i) = u(xl,i) − f
(p)
N−1(xl,i)

Variante 2: Rekursive Hierarchisierung aus den Überschüssen des vorherigen Polynomgrads p − 1
des hierarchischen Vorgängerknotens v(p−1)(xm) und des aktuellen Knotens v(p−1)(xn) sowie
einem zusätzlichen Faktor α(x0, . . . , xp+1), der von den relativen Positionen der Vorgänger-

knoten des aktuellen Knotens xn = xl,i abhängt, vgl. [Bun98, S. 58].

(3.15) v(p)(xl,i) = v(p−1)(xm) − α(x0, . . . , xp+1) · v(p−1)(xn)

Dabei stehen die Knoten x0, . . . , xp+1 für die p + 1 hierarchischen Vorgänger inklusive des

Knotens selbst, geordnet nach ihrer Position entlang der Zahlengerade, so dass

(3.16) x0 < x1 < . . . < xp+1.

Der aktuelle Knoten wird mit xn bezeichnet und sein hierarchischer Vorgänger mit xm. Die

α-Faktoren berechnen sich damit wie folgt:

(3.17) αl,i = α(x0, . . . , xp+1) := xn − xm

xp+1 − xn

p∏
k=0

k ̸=m, k ̸=n

xm − xk

xn − xk

Für stückweise polynomielle Basisfunktionen ist zu beachten, dass das Gitter für jeden Polynomgrad

p von p = 1 bis hin zu p = pmax erneut hierarchisiert werden muss. Dabei entfallen in jedem

Schritt jeweils die (p − 1) ersten Level, weil diese zu wenig Stützstellen für Basisfunktionen von

Polynomgrad p bieten. Der erste Hierarchisierungsschritt einer Hierarchisierung für stückweise

polynomielle Basisfunktionen ist eine Hierarchisierung für stückweise lineare Basisfunktionen.
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3.2. Operationen

Alternativ zu dem in [Bun98, S. 58f] vorgeschlagenen Beweis lassen sich die αl,i auch als dividierte

Differenzen und damit als Newton-Basis interpretieren. Das ist nützlich, weil nach dem bisher

vorgeschlagenen Beweis zwar die Korrektheit der αl,i bewiesen ist, aber nur wenige Eigenschaften

bekannt sind, während für eine Newton-Basis sehr viele Eigenschaften bekannt sind.

Beweis αl,i sind eine Newton-Basis

Es sei pi−k,...,i das Interpolationspolynom in den Stützstellen xi−k, xi−k+1, . . . , xi und Φi−k,...,i das

zugehörige Newton’sche Basispolynom mit

(3.18) Φi−k,...,i =
i∏

j=i−k

(x− xj).

Dann gilt

(3.19) pi−k,...,i := pi−k,...,i−1 + [xi−k, . . . , xi]Φi−k,...,i−1

und

(3.20) pi−k,...,i = pi−k+1,...,i + [xi−k, . . . , xi]Φi−k+1,...,i.

Die bisherige Interpolation f
(p)
N (xm) (d. h. der Wert der Interpolation von Grad p an der Stelle xm)

ohne den Knoten xm selbst lautet in der Schreibweise von Gleichung (3.19):

(3.21) f
(p)
N (xm) = pm−p−1,...,m−1(xm)

Der Überschuss am Punkt xm für Grad p berechnet sich nach Gleichung (3.14) auf Seite 28 wie folgt:

(3.22)

v(p)(xm) = u(xm) − f
(p)
N (xm)

= pm−p−1,m−p,...,m(xm) − pm−p−1,...,m−1(xm)

Somit folgt nach Gleichung (3.19)

(3.23) v(p)(xm) = [xm−p−1, . . . , xm]Φm−p−1,...,m−1(xm)

Damit können alle nötigen Parameter für die Rekursionsformel der dividierten Differenzen hergeleitet

und entsprechend eingesetzt werden.

(3.24)

f
(p)
N (xm) = pm−p−1,m−p,...,m−1(xm)

(3.20)= pm−p,...,m−1(xm)︸ ︷︷ ︸
f

(p−1)
N (xm)

+ [xm−p−1, . . . , xm−1]︸ ︷︷ ︸
v(p−1)(xm−1)

Φm−p−1,...,m−2(xm−1)

Φm−p,...,m−1(xm)

(3.21)

(3.23)= f
(p−1)
N (xm) + v(p−1)(xm−1) Φm−p,...,m−1(xm)

Φm−p−1,...,m−2(xm−1)︸ ︷︷ ︸
:=αm,p

= f
(p−1)
N (xm) + v(p−1)(xm−1) · αm,p

q. e. d.
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3. Dünne Gitter

Bemerkung Der vorgestellte Beweis orientiert sich sehr deutlich an [Bun98, Lemma 4.3]. Da die αl,i-

Koeffizienten eine Newton-Basis sind, kann die Gleichheit alternativ auch direkt aus der rekursiven

Formel der dividierten Differenzen gezeigt werden.

Die rekursive Formel für dividierte Differenzen lautet

(3.25) [xm−p−1,...,xm ] = [xm−p, . . . , xm] − [xm−p−1, . . . , xm−2]
xm − xm−p−1

.

Zusätzlich werden folgende Abkürzungen eingeführt:

(3.26)

d
(p)
m := [xm−p−1,...,xm ]

Φ(p)
m := Φm−p−1,...,m−1(xm)

Beim Übertragen Schreibweise von Gleichung (3.26) auf Gleichung (3.23) zur Berechnung der hierar-

chischen Überschüsse, ergibt sich

(3.27) v(p)(xm) = d(p)
m · Φ(p)

m .

Nun werden für d
(p)
m die rekursive Formel der dividierten Differenzen aus Gleichung (3.25) angesetzt,

für die Ergebnisse die umgeformte Gleichung (3.23) eingesetzt sowie der Nenner Φ(p−1)
m zugeordnet.

(3.28)

v(p)(xm) = d
(p)
m · Φ(p)

m

(3.25)=
(
d

(p−1)
m − d

(p−1)
m−1

) Φ(p−1)
m︷ ︸︸ ︷
Φ(p)

m

xm − xm−p−1

(3.23)=

 v
(p−1)
m

Φ(p−1)
m

−
v

(p−1)
m−1

Φ(p−1)
m−1

Φ(p−1)
m

= v
(p−1)
m − v

(p−1)
m−1 · Φ(p−1)

m

Φ(p−1)
m−1

3.2.2. Evaluation

Zur Evaluation der Dünngitterapproximation für einen beliebigen Punkt x⃗ innerhalb des Unit-

Hypercube [0, 1]d müssen in jeder Dimension d die beitragenden Basisfunktionen gefunden und an

der Stelle x⃗d ausgewertet werden. Die Ergebnisse der Auswertung werden mit dem zur Basisfunktion

gehörenden hierarchischen Überschuss skaliert und summiert.

Das Finden der beitragenden Basisfunktionen kann aufgrund der levelweise nicht-überlappenden

Basisfunktionen über einfache Indexberechnungen erfolgen. Die Basisfunktionen der Level l = 0, 1
sind grundsätzlich beteiligt, weil sie das gesamte Gebiet Ω überspannen. Für alle weiteren Level gilt,
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3.2. Operationen

dass die Komponente entweder größer, kleiner oder gleich dem Mittelpunkt des vorherigen Levels ist.

Dann ist die nächste beitragende Basisfunktion:

(3.29) nächste beitragende Basisfunktion =


linker Kindknoten wenn x⃗d < 0.5 · xl,i

rechter Kindknoten wenn x⃗d > 0.5 · xl,i

beide leisten keinen Beitrag wenn x⃗d = 0.5 · xl,i

Falls Fall 3 eintritt, liegt die Komponente auf einem Gitterpunkt, an dem genau interpoliert wird.

Damit ist definitionsgemäß in allen Leveln l mit l > laktuell der Wert der jeweiligen Basisfunktion

φl,i = 0.

Für ein zweidimensionales Gitter mit Level l = 3 ist das Finden der beitragenden Basisfunktionen in

Abb. 3.7 dargestellt.

Abbildung 3.7.: Das Finden beitragender Basisfunktionen für ein randloses Gitter von Dimension

d = 2 und Level l = 3, entnommen aus [Pfl14, S. 123]. Das rote Kreuz stellt den

Punkt dar, für den die beitragenden Basisfunktionen gesucht werden sollen, die

Pfeile die in Frage kommenden Basisfunktionen der Kindknoten.
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3. Dünne Gitter

3.2.3. Quadratur

Zur Quadratur wird der folgende Ansatz herangezogen:

(3.30)

∫
fN (x)dx =

|V |∑
j=1

vj ·

 |D|∏
k=1

∫
φl′(j,k),i′(j,k)(x)dx


mit l′, i′ als Funktionen, die zu Knoten j in Dimension k das zugehörige Level bzw. den zugehörigen

Index berechnen. Für stückweise lineare Basisfunktionen, d. h. Hut-Funktionen, berechnet sich das

Integral sehr leicht, weil hier lediglich Dreiecksflächen zu berechnen sind.

(3.31)

∫
φi,j(x)dx = 2∥l∥1

1D= 2−l

Für stückweise polynomielle Basisfunktionen gibt es zwei Möglichkeiten. Die erste ist der klassische

Ansatz, die vorhandenen Basispolynome zu integrieren. Dies ist problemlos direkt möglich, da

(3.32)

∫
an · xndx = an

n+ 1 · xn+1 + c.

Zusätzlich sind die Integralgrenzen bekannt, so dass sich das Integral leicht aufstellen und berechnen

lässt. Alternativ lässt sich die Dreiecksfläche einer Hut-Basisfunktion auf eine stückweise polynomielle

Basisfunktion skalieren, wie in [Rö11, S. 22f] beschrieben. Das bietet den Vorteil, dass keine Stamm-

funktionen berechnet werden müssen. Stattdessen müssen die Skalierungskoeffizienten berechnet

und gespeichert werden.

Die berechneten Integrale jeder Dimension werden anschließend, wie in Formel (3.30) dargestellt,

miteinander multipliziert, mit dem hierarchischen Überschuss am Knoten skaliert und schließlich

summiert.

3.3. Adaptivität

Oftmals ist eine Funktion lokal nicht hinreichend glatt oder zeigt lokal unterschiedliche Verhaltens-

weisen, bspw. in Form von Sprung- oder Knickstellen oder lokalen Oszillationen. In solchen Fällen

bietet es sich an, auf die Erhöhung des Gitterlevels zu verzichten. Damit würde man global mehr

Gitterpunkte investieren und so in den bereits gut aufgelösten Bereichen entweder nur geringe oder

gar keine zusätzlichen Gewinne bei der Interpolationsqualität erzielen. Im Gegenzug erhöhen sich die

Kosten durch zusätzlich benötigte Funktionsauswertungen und zusätzlich benötigten Speicherbedarf

möglicherweise deutlich. Stattdessen ist es wesentlich geschickter, die Auflösung des Gitters nur

lokal zu erhöhen und das Gitter damit adaptiv zu verfeinern. Ein Beispiel für räumlich-adaptive

Verfeinerung zeigt Abb. 3.8 auf der nächsten Seite.

Zu beachten ist, dass konstruktionsbedingt nicht alle Gitterpunkte beliebig verfeinert werden können.

Vielmehr muss bei der Verfeinerung die Dünngitter-Struktur erhalten bleiben und anschließend, so

weit nötig, rekursiv durch das Hinzufügen weiterer Punkte wiederhergestellt werden, weil viele Algo-

rithmen implizit annehmen, dass alle hierarchischen Vorgänger eines Knotens existieren. Ein Beispiel
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3.3. Adaptivität

Abbildung 3.8.: Beispiel für die adaptive Verfeinerung eines dünnen Gitters, entnommen aus [Pfl10,

S. 21]. Dabei wird der rote Knoten jeweils verfeinert und in jeder Dimension werden

beide Kindknoten erzeugt. Da viele Gitteralgorithmen implizit annehmen oder sogar

darauf beruhen, dass alle hierarchischen Vorgänger eines Knotens existieren (wie

bspw. der in Abschnitt 3.2.1 vorgestellte rekursive Hierarchisierungsalgorithmus),

müssen diese rekursiv erzeugt werden.

für einen solchen Algorithmus stellt der in Abschnitt 3.2.1 vorgestellte rekursive Hierarchisierungsal-

gorithmus dar. Daher können in jedem Verfeinerungsschritt nur aus der Menge verfeinerungsfähiger

Knoten die geeignetsten Knoten ausgewählt werden. Die Kandidatenmenge besteht aus allen Knoten,

die im Dünngitter-Baum in einer beliebigen Dimension Blattknoten sind und ist damit eine Teilmenge

der Menge der Gitterknoten. Im Verfeinerungsschritt werden dann in jeder Dimension alle noch nicht

vorhandenen Kindknoten erzeugt, ebenso wie deren noch nicht vorhandene hierarchische Vorgänger.

Die Erzeugung dieser hierarchischen Vorgängerknoten erfolgt rekursiv.

Zur Auswahl der bestmöglichen Punkte aus der Kandidatenmenge bieten sich verschiedene Kriterien

an, die alle darauf basieren, den Beitrag der potentiellen Kindknoten zur Approximationsgenauigkeit

zu qualifizieren. Damit erhält man ein Ranking, das die geeignetsten Punkte für eine Verfeinerung

zeigt. Das sind genau die Punkte, deren lokaler Beitrag nach der gegebenen Metrik maximal ist. Um

das Ranking zu erstellen, wäre es offensichtlich optimal, alle potentiellen Kandidaten auszuwerten

und deren jeweils gelieferten Beitrag festzustellen. Diese naive Herangehensweise ist insbesondere im

Zusammenhang mit UQ nicht umsetzbar, wenn eine einzelne Simulation mehrere Minuten oder ggf.

sogar mehr Zeit in Anspruch nehmen kann. Daher werden die Knoten, die besonders vielversprechend

erscheinen, verfeinert [FDPS14, S. 7].

Im Zusammenhang mit UQ werden nach [FDPS14, S. 8] drei Metriken vorgeschlagen:

1. Verfeinerung nach dem Betrag der hierarchischen Überschüsse
Dies ist der klassische Ansatz für Interpolation mit dünnen Gittern, da der hierarchische

Überschuss auf Level l den Interpolationsfehler am Knoten auf Level l − 1 angibt. Verfeinert

wird der Knoten, dessen hierarchischer Überschuss den größten Betrag hat.

2. Verfeinerung nach dem Erwartungswert
Es wird mithilfe der Dünngitter-Approximation der Erwartungswert für eine bestimmte unsi-
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3. Dünne Gitter

chere Zielgröße (Quantity of Interest (QoI)) bestimmt. Anschließend wird festgestellt, welcher

Knoten den größten Beitrag leistet, indem jeder Knoten je einmal nicht berücksichtigt wird.

(3.33)

∥∥∥E(fN (x)) − E(fN\{(l,i)}(x))
∥∥∥

∞
= ∥vl,i∥ ·

∫
φl,i(x) · p(x)dx

(nur für Gleichverteilung) = ∥vl,i∥ · p(xl,i) ·
∫
φl,i(x)dx

(nur für Gleichverteilung und Hut-Basis) = ∥vl,i∥ · p(xl,i) · 2∥l∥1

Verfeinert wird derjenige Knoten, dessen Beitrag zum Erwartungswert maximal ist.

3. Verfeinerung nach der Varianz
Nach dem in [MZ09] und [FDPS14] vorgeschlagenen Ansatz für ein Verfeinerungskriterium

nach der Varianz, wird die lokale Varianz an einem Knoten durch die hierarchischen Überschüs-

se des Quadrats der Dünngitter-Funktion abgeschätzt. D. h. die Funktionswerte der Stützstellen

werden quadriert und die dadurch entstehende Funktion anschließend mit einem dünnen Gitter

interpoliert. Auf die dabei entstehenden hierarchischen Überschüsse v′
l,i wird das Überschuss-

kriterium angewandt, d. h. verfeinert wird der Knoten, dessen hierarchischer Überschuss v′
l,i

maximal ist.

Geeignete Methoden zur Berechnung des Erwartungswerts und der Varianz mithilfe von dünnen

Gittern finden sich in [Lei13, S. 40ff].

Im folgenden Kapitel sollen die beiden zur Quantifizierung von Unsicherheiten benutzten Frameworks

und deren Erweiterung im Rahmen dieser Arbeit vorgestellt werden.

34



4. Implementierung

4.1. SG++

4.1.1. Allgemeines

SG++
1
ist ein größtenteils in der Programmiersprache C++ geschriebenes freies und offenes Fra-

mework für Berechnungen mit dünnen Gittern. Neben einer Bibliothek für C++ werden durch das

Java Native Interface (JNI)
2
eine Version der Bibliothek für Java und durch den Simplified Wrapper

and Interface Generator (SWIG)
3
eine für Python bereitgestellt. Zusätzlich ist eine Integration in

MATLAB
4
möglich.

Bei der Konzeption und Entwicklung wurden zwei große Ziele verfolgt:

1. Flexibilität

2. Effizienz

Im Zielkonflikt zwischen Flexibilität und Effizienz hat Flexibilität Vorrang vor Effizienz. Das Entwick-

lungsziel bestand und besteht in der Bereitstellung eines effizienten allgemeinen Frameworks für

dünne Gitter im Gegensatz zu der Bereitstellung einer höchsteffizienten “Single Purpose” - Anwen-

dung, die zu jeder Problemstellung entsprechend umfangreich modifiziert werden müsste. Dies wird

durch die Trennung von grundlegenden und massiv optimierten Basis-Algorithmen für dünne Gitter

auf der einen Seite von anwendungsspezifischem Überbau auf der anderen Seite realisiert. Zusätzlich

wurde darauf geachtet, Datenstrukturen und Algorithmen zu trennen [Pfl10, S. 41f].

Im Rahmen dieser Arbeit wurde SG++ auf Seite der Basis-Algorithmen um zwei Klassenmit stückweise

polynomiellen Basisfunktionen erweitert. Die Klassen basieren auf der bereits bestehenden Klasse

“PolyBasis”, basierend auf der Arbeit von [Rö11], und erweitern diese um einige Features, wie bspw. die

in Abschnitt 3.2.1 vorgestellte rekursive Hierarchisierung nach [Bun98], Quadratur für Polynome mit

Polynomgrad p > 3 und die Möglichkeit, Gitter mit Randpunkten zu verwenden. Dazu wurden zwei

Klassen, “UltraPolyBasis” und “UltraPolyBoundaryBasis”, mitsamt zugehöriger Gittertypen analog

der bereits vorhandenen Schemata für stückweise lineare Basen (analog den Klassen “LinearBasis”

und “LinearBoundaryBasis”) aus der bestehenden Klasse “PolyBasis” erzeugt, um eine möglichst

gute Kompatibilität mit dem bestehenden Framework zu erzielen und die Integration so einfach wie

möglich zu gestalten.

1

http://www5.in.tum.de/SGpp/releases/index.html

2

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/index.html

3

http://www.swig.org/

4

http://www.mathworks.de/products/matlab/
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Das ist aus Entwicklersicht ebenso wünschenswert wie aus Anwendersicht:

Entwicklerseitig profitiert man davon, dass durch das Hinzufügen der implementierten, ähnlich

strukturierten Klassen die modulare Struktur erhalten bleibt und zu großen Teilen wiederverwendet

werden kann. Zusätzlich wird die Einarbeitungszeit klein gehalten und die Wartbarkeit des Programm-

codes erleichtert, indem auf die Einführung zusätzlicher Strukturen außerhalb der bestehenden so

weit wie möglich verzichtet wird.

Anwender profitieren davon, dass die durch die stückweise polynomiellen Basisfunktionen eingeführ-

te zusätzliche Komplexität, verglichen mit stückweise linearen Basisfunktionen, für sie weitgehend

transparent, d. h. nicht oder nur in geringem Umfang wahrnehmbar ist, weil sich die Bedienung kaum

ändert.

Dank des Tensorprodukt-Ansatzes und der Verwendung des unidirektionalen Prinzips genügt es, die

Funktionen im 1D zu implementieren. Die konkrete Umsetzung des unidirektionalen Prinzips ist in

SG++ bereits generisch vorhanden und kann aufgrund der Übernahme der Aufbau-Schemata der

stückweise linearen Basen ohne weitere Anpassung verwendet werden.

4.1.2. Neue “UltraPoly”-Klassen

Der Programmablauf der bisherigen Klasse “PolyBasis” ist in Abb. 4.1 auf Seite 37 in Form eines

Flussdiagramms dargestellt.

Bei näherer Betrachtung fällt auf, dass viele Teile in ähnlicher Form erhalten werden können, einiges

jedoch aufgrund konzeptueller Entscheidungen weniger oder nicht geeignet ist. In der “PolyBasis”

Klasse wird grundsätzlich eine Lagrange-Basis erstellt. Bei direkter Hierarchisierung ist das ein sinn-

voller Ansatz, da bei diesem Verfahren in jedem Hierarchisierungsschritt Lagrange-Basisfunktionen

ausgewertet werden müssen. Für die “UltraPoly”-Klassen ist dies dagegen kein sinnvoller Ansatz,

da hier rekursive Hierarchisierung verwendet werden soll, für die keine Auswertungsoperation,

stattdessen aber eine Newton’sche Basis in Form der α-Koeffizienten benötigt wird.

Ähnlich verhält es sich bei der Quadratur-Operation. Für die Implementierung der “UltraPoly”-

Klassen wurde das in Gleichung (3.32) skizzierte Verfahren gewählt, die stückweise polynomiellen

Basisfunktionen direkt zu integrieren. Diese Berechnungen können entfallen, wenn keine Quadratur-

Operation durchgeführt werden soll.

Deshalb wurden zwei Flags eingeführt, die beim Erstellen der Klasseninstanz signalisieren, welche

Operation durchgeführt werden soll.

Dadurch entsteht in den “UltraPoly”-Klassen der in Abb. 4.2 auf Seite 38 in Form eines Flussdiagramms

visualisierte Programmablauf.

Im Folgenden werden einzelne Komponenten der neu implementierten Klassen näher betrachtet.
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Abbildung 4.1.: Aktueller Programmablauf in “PolyBasis”-Klasse
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Abbildung 4.2.: Aktueller Programmablauf in “UltraPoly”-Klassen
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Lagrange-Basis

Die Basis wird in Tiefensuche nach dem klassischen Lagrange-Ansatz mit (p+ 1) Stützstellen (xi, yi)
für die Evaluation- und Quadratur-Operation erstellt.

(4.1)

L(x) :=
p+1∑
i=1

yi · li(x)

mit li(x) :=
∏

0≤m≤p+1
m̸=i

x− xm

xi − xm

Durch den Tiefensuche-Ansatz sind konstruktionsbedingt alle Stützstellen in Form der hierarchischen

Vorgänger eines Knotens bei jedem Funktionsaufruf bereits vorhanden, so dass diese nicht mehr

explizit gesucht werden müssen. Wie in Gleichung (3.12) definiert, sind die y-Komponenten aller

Stützstellen {(xi, yi)} außer der Stützstelle an der aktuellen Knotenposition (xn, yn) null, so dass

{yi|i ̸= n} = 0 und yn = 1. Damit vereinfacht sich der allgemeine Lagrange-Ansatz aus Gleichung

(4.1) dramatisch zu

(4.2) Ll,i(x) =
∏

0≤m≤p+1
m ̸=n

x− xm

xn − xm
.

Der naive Ansatz wäre nun, die Basisfunktionen nach gegebenem Polynomgrad pmax und gegebenem

maximalem Level l nach dem gegebenem Schema zu berechnen. Das kann allerdings insbesondere in

adaptiven Fällen dazu führen, dass zu viele Basisfunktionen berechnet werden. Es genügt stattdessen,

alle Basisfunktionen bis zu pmax zu berechnen und die erhaltenen Basisfunktionen anschließend zu

skalieren. Um die zu skalierende Basisfunktion zu finden, wird das (Level, Index)-Tupel in Abhängigkeit

des maximalen Polynomgrads umgerechnet. Diese Umrechnung wird im Anschluss an die Vorstellung

der αl,i Koeffizienten vorgestellt.

Aus dem vorgestellten Lagrange Ansatz ergibt sich an jedem Knoten mit Level l ≤ p − 1 eine

polynomielle Basisfunktion der Form

(4.3) φl,i(x) = apx
p + ap−1x

p−1 + . . .+ a1x+ a0.

Die Koeffizienten a0, . . . , ap werden in einem Array gespeichert. Dabei wird die Koeffizientenmenge

für einen Knoten wie in Tabelle 4.1 dargestellt abgelegt

Tabelle 4.1.: Lagrange-Basis: Speicherschema der Koeffizienten der polynomiellen Basisfunktionen

. . . xl,i intl,i(x) a0 . . . ap . . .︸ ︷︷ ︸
Koeffizienten zu Stützstelle xl,i
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4. Implementierung

Dabei gilt

(4.4) intl,i(x) :=



xl,i+2−l∫
xl,i−2−l

φl,i(x) dx für Quadratur-Operation, Level l ̸= 0

1
2 für Quadratur-Operation, Level l = 0
0 für Evaluation-Operation.

Der Wert des Integrals wird also nur berechnet, wenn er benötigt wird. Das gilt auch für die beiden

Level l = 0 Einträge, die nur dann gespeichert werden, wenn ein Gitter mit Randpunkten verwendet

wird.

Diese Gruppe von Feldern wird für alle Knoten nach der in Abb. 4.3 dargestellten Reihenfolge

konkateniert.

0, X 1, X

2, 0

3, 1 4, 2

5, 3 6, 4 7, 5 8, 6

9, 7 10,8 11,9 12,10 13,11 14,12 15,13 16,14

Abbildung 4.3.: Array-Index der zum Knoten gehörenden Basisfunktionskoeffizienten nach Tabel-

le 4.1. Schwarz für ein Gitter mit Rand, blau für ein randloses Gitter

Newton-Basis

Die zur rekursiven Hierarchisierung benötigte Newton-Basis wird genau wie die im vorigen Abschnitt

beschriebene Lagrange-Basis durch Tiefensuche erstellt. Ebenso analog wird die Erstellung weiterer

Koeffizienten gestoppt, wenn gilt, dass Level l = pmax.

Die Koeffizienten werden nach der in Abschnitt 3.2.1 vorgestellten Berechnungsvorschrift berechnet.

(4.5)

α0,0 := 1
α0,1 := 1
α1,1 := 1

αl,i := xn − xm

xp+1 − xn
·

p∏
k=0

k ̸=m,k ̸=n

xm − xk

xn − xk

Dabei liegen die Stützstellen xi als im Sinne ihrer Position in R geordnete Liste vor. Der aktuelle

Knoten wird mit xm und sein hierarchischer Vorgänger mit xn bezeichnet.
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4.1. SG++

Für den Knoten (2, 1) ergibt sich damit folgende Beispielrechnung für α2,1:

Hierarchische Vorgänger von (2, 1) : [(0, 0), (0, 1), (1, 1)]⇝ [0, 0.25︸︷︷︸
xm

,

xn︷︸︸︷
0.5 , 1]

α2,1 = xn − xm

xp+1 − xn
·

p∏
k=0,k ̸=m, n

xm − xk

xn − xk

= 0.5 − 0.25
1 − 0.5 · 0.25 − 0

0.5 − 0

=
(0.25

0.5

)2

= 0.25

Eine Übersicht weiterer Werte liefern die Bilder in [Bun98, S. 60].

Aus Symmetriegründen genügt es, sich bei Berechnung und Speicherung derαl,i-Koeffizienten auf den

linken Teilbaum ab Knotenlevel 2 zu beschränken. Die berechneten αl,i-Koeffizienten werden analog

den Koeffizienten der Basispolynome der Lagrange-Basis in einem Array abgelegt. Das verwendete

Schema zur Bestimmung der Speicherposition der einzelnen αl,i-Koeffizienten zeigt Abb. 4.4.

X X

X

0 X

1 2 X X

3 4 5 6 X X X X

Abbildung 4.4.: Speicherposition derαl,i im Array. DieWerte für Knoten, die ein X enthalten ergeben

sich entweder aus der Symmetrie (Level l ≥ 2) oder sie werden nicht benötigt (Level

l = 0, 1).

Berechnung der Indizes

Durch den gewählten Ansatz, die Basen nicht durch das maximale Gitterlevel lmax sondern durch den

maximalen Polynomgrad pmax zu beschränken, kann es vorkommen, dass für höhere Level zunächst

keine entsprechenden Einträge vorhanden sind und entsprechend Einträge niedrigerer Level skaliert

werden müssen. Der Code in Listing 4.1 auf Seite 42 zeigt am Beispiel der αl,i-Koeffizienten, wie das

Mapping von maximalem Polynomgrad pmax, Level l und Index i auf den entsprechenden Index im

Array umgesetzt ist.

Für die Indizes der Lagrange-Basen funktioniert das Mapping ähnlich, da es aufgrund der Binärbaum-

struktur genügt, den Anfang um einen Level nach oben zu verschieben.
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4. Implementierung

// Funktion, die in Abhaengigkeit von Polynomgrad p_degree_ui32 fuer Knoten

// (p_level_ui32, p_index_ui32) den zugehoerigen alpha-Koeffizienten sucht und

// zurueck gibt

double getAlpha

(unsigned int p_degree_ui32,

unsigned int p_level_ui32,

unsigned int p_index_ui32)

{

// falls Level > Polynomgrad muss skaliert werden

if (p_level_ui32 > p_degree_ui32)

{

p_level_ui32 = p_degree_ui32;

p_index_ui32 = p_index_ui32 % (1 << p_degree_ui32)

}

// falls Knoten in rechtem Teilbaum liegt:

// Abbildung auf symmetrischen Knoten im linken Teilbaum

if (p_index_ui32 > (unsigned int)(1 << (p_level_ui32 - 1)))

{

p_index_ui32 = (1 << p_level_ui32) - p_index_ui32;

}

// nun sind Level und Index ‘‘normiert’’, d. h. es existiert fuer das

// gegebene (Level, Index)-Tupel ein Eintrag im alpha-Vektor

//

// Nun Mapping: (2, 1) => 0, (3, 1) => 1, (3, 3) => 2, (4, 1) => 3 usw.

unsigned int l_deg_ui32;

if (p_degree_ui32 - 1 < p_level_ui32)

{

l_deg_ui32 = p_degree_ui32 - 1;

}

else

{

l_deg_ui32 = p_level_ui32 - 1;

}

unsigned int l_idMask_ui32 = (1 << l_deg_ui32) - 1;

unsigned int l_provID_ui32 =

(((p_index_ui32 & l_idMask_ui32) >> 1) | (1 << (l_deg_ui32 - 1))) - 1;

return m_alphas_f64[l_provID_ui32];

}

Listing 4.1:Mapping des Tupels (pmax, l, i) auf die zugehörige Arrayposition als C++ - Code am

Beispiel der αl,i-Koeffizienten

Hierarchisierung und Dehierarchisierung

Wie bereits erwähnt, soll das dünne Gitter in den “UltraPoly”-Klassen rekursiv hierarchisiert werden.

Stückweise polynomielle Basisfunktionen müssen von p = 1 bis p = pmax für jeden Polynomgrad

separat hierarchisiert werden. Begonnen wird mit der linearen Hierarchisierung. Dann werden

für jeden Polynomgrad nacheinander die hierarchischen Überschüsse nach der in Gleichung (3.15)

gegebenen Formel errechnet.
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4.1. SG++

Mit dieser Formel ist die Dehierarchisierung analog zu implementieren:

(4.6) v(p−1)(xm) = v(p)(xl,i) + α(x0, . . . , xp+1) · v(p−1)(xn)

Zu beachten ist, dass die Reihenfolge der Dehierarchisierungsschritte genau umgekehrt zu den

Hierarchisierungsschritten ist. Während bei der Hierarchisierung aufsteigend von p = 1 bis p = pmax
hierarchisiert wird, läuft die Dehierarchisierung entsprechend dem Polynomgrad nach absteigend

ab.

In beiden Fällen wird der hierarchische Überschuss des Vorgängerknotens in dem Polynomgrad

des vorherigen (De-)Hierarchisierungsschritts benötigt. Dieser wurde wegen der Traversierung des

Dünngitterbaums in Tiefensuche bereits überschrieben, so dass der Überschussvektor kopiert werden

muss.

Evaluation

Zur effizienten Auswertung der Polynombasis wird das Hornerschema verwendet.

(4.7) (. . . (apx+ ap−1)x+ . . .)x+ a0

Dadurch werden im Vergleich zur klassischen Darstellung a0 + a1x+ . . .+ apx
p
Multiplikationen

oder Potenz-Operationen eingespart, je nach dem wie die xi
-Ausdrücke algorithmisch aufgelöst

werden.

Die Vorgehensweise zum Finden der beitragenden Basisfunktionen zu einer bestimmten Evaluations-

stelle unterscheidet sich für stückweise polynomielle Basisfunktionen nicht von der für stückweise

lineare Basisfunktionen. Somit kann die grundsätzliche algorithmische Struktur für die Auswer-

tung der Dünngitter-Funktion fN (x) beibehalten werden. Ersetzt wird einzig die Auswertung der

beitragenden Basisfunktionen φl,i(x).

Die Skalierung der Basisfunktionen wurde aus der bereits bestehenden Klasse “PolyBasis” übernom-

men.

Quadratur

Zur Berechnung der Quadratur einer einzelnen Basisfunktion φl,i(x) wurde, wie bereits erwähnt,
das in Gleichung (3.32) skizzierte Verfahren zur Berechnung der Stammfunktion der Lagrange-

Basispolynome umgesetzt. Zur Auswertung von deren Wert an den Integralgrenzen wurde analog

zur Evaluations-Operation das Hornerschema angewandt.

Zur Berechnung des Integrals über die Dünngitter-Approximation fN (x) wurde der Ansatz aus

Gleichung (3.30) direkt implementiert. Dabei ist zu berücksichtigen, dass auch der Wert des Integrals

skaliert werden muss, wenn der Level l des aktuellen Gitterknotens xl,i gleich oder größer als

Polynomgrad p ist, so dass keine Lagrange-Basisfunktion mehr vorhanden ist. Der Skalierungsfaktor

beträgt

(4.8)

1
2l−p+1 .
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D. h. nichts anderes, als dass sich der Wert des Integrals einer Stammfunktion φl,i(x) mit jedem

Skalierungsschritt halbiert:

(4.9)

∫
Γ
u(x) dx ≈

∫
Γ
fN (x) dx

=
m∑

j=1

(
vj ·

(
|D|∏
k=1

∫
φl′(j,k),i′(j,k)(x) dx

))

Daraus ergibt sich:

(4.10)

xl,i+2−l∫
xl,i−2−l

φl,i(x) dx =


∫
φl,i(x) dx wenn l < p

1
2(l−p+1)

xl′,i′ +2−l′∫
xl′,i′ −2−l′

φl′,i′(x) dx sonst

mit l′ = p− 1

⇝

xl′,i′ +2−l′∫
xl′,i′ −2−l′

φl′,i′(x) dx =
x(p−1),i′ +2−(p−1)∫

x(p−1),i′ −2−(p−1)

φ(p−1),i′(x) dx

Adaptivität

Auch bei der adaptiven Verfeinerung konnte das bereits bestehende Konzept übernommen werden.

Zu betonen ist aber, dass bei der Verwendung adaptiver Gitterverfeinerung das Gitter in jedem

adaptiven Verfeinerungsschritt komplett neu hierarchisiert werden muss. Wegen der geltenden Be-

rechnungsformel für den Überschuss an einem Knoten vl,i müssten die Überschüsse aller potentiellen

Vaterknoten in allen Dimensionen und Polynomgraden bekannt sein. Diese Hinterlegung ist weder in

der Programmstruktur von SG++ vorgesehen noch besonders speichereffizient, weil es insbesondere

im Hochdimensionalen ab einer entsprechenden Gittergröße deutlich mehr Blattknoten geben wird,

die nicht verfeinert werden, als umgekehrt.

4.2. UQLib

Die UQLib ist eine Python-Bibliothek, die ein breites Funktions-Spektrum zur Berechnung von

UQ-Problemen mithilfe nicht-intrusiver Methoden abdeckt. Neben der im Rahmen dieser Arbeit

untersuchten Sparse Grid Collocation Method (SGCM), d. h. ASGC und CSGC, können auch MC und

QMC Verfahren verwendet werden.
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4.2.1. UQ-Setting

Zunächst muss die UQ-Umgebung definiert werden. Zu definieren sind u. a. die folgenden Parameter:

• Die unsichere Parametermenge sowie derenWahrscheinlichkeitsdichte. Dabei werden für jeden

unsicheren Parameter Name, Wertebereich und Verteilung festgelegt.

• Regeln für die Diskretisierung der Zeit. Neben Start- und Endzeit können auch die Schrittweite

sowie Regeln zur Verfeinerung der Schrittweite definiert werden.

• Die Transformation um die Samples, die im Unit-Hypercube generiert werden, auf die Wertebe-

reiche der Elemente der unsicheren Parameter zu transformieren. Im Rahmen der vorliegenden

Arbeit wird ausschließlich die lineare Transformation verwendet. Eine Alternative, die inverse

Rosenblatt Transformation, wird in [Lei13, S. 24] vorgestellt.

• Parameter für einzelne Simulationsaufrufe. Diese Parameter beinhalten v. a. die Definition der

Steuerfunktionen für den bibliotheksgesteuerten Simulationsaufruf.

• Die zu interpolierende QoI. In diesem Schritt wird definiert, welche Zielgröße für die Interpolation,

d. h. insbesondere für die adaptive Verfeinerung, maßgeblich ist.

• Die statistischen Auswertungen, die aus den Simulationsergebnissen gewonnen werden sollen.

D. h. abhängig von der gewünschten Untersuchung, die durchgeführt werden soll (Varianzana-

lyse, Sensitivitätsanalyse, . . . ), werden die Ergebnisse weiter analysiert und aufbereitet.

Zusätzlich sind methodenspezifische Parameter festzulegen. Für MC und QMC Verfahren bedeutet

das, die Zahl der zu generierenden Samples festzulegen. Für QMC Verfahren kann außerdem der

Sequenzgenerator ausgewählt werden. Für SGCM Verfahren bestehen umfangreichere Konfigurations-

möglichkeiten. Es können u. a. folgende Parameter angepasst werden:

• das initiale Gitter, d. h. der Gittertyp (Art des Rands, initiales Gitterlevel, Art der Basisfunktio-

nen),

• die Adaptivität, d. h. Verfeinerungskriterien, Abbruchbedingungen, verschiedene Arten der

Bildung der Kandidatenmenge,

• verschiedene Verfahren zur Berechnung von Erwartungswert und Varianz u. a. m..

4.2.2. Steuerung des Simulationsaufrufs

Ein Simulationsaufruf wird als fünfschrittiger Prozess modelliert.

1. Generierung eines Samples
Im Unit-Hypercube wird ein Sample ξunit generiert. Das bedeutet im Fall von

- MC eine randomisierte Generierung nach der gegebenen Verteilung,

- QMC die Erzeugung eines Samples nach der gegebenen deterministischen Sequenz und

- SGCM die Bestimmung der Samples durch die Knoten des dünnen Gitters.
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2. Transformation
Die generierten Samples werden gemäß der spezifizierten Transformation in den Raum der

unsicheren Parameter transformiert.

(4.11)

trans : [0, 1]d 7→ Γ
p′ = trans(ξunit)

3. Preprocessing
Um eine Simulation durchzuführen, müssen eventuell weitere Parameter festgelegt werden, die

von den stochastischen Größen abhängen. So kann bspw. in Abhängigkeit eines unsicheren

Parameters oder mehrerer unsicherer Parameter eine feinere Diskretisierung der Zeit notwendig

sein.

Zusätzlich besteht durch diesen Schritt die Möglichkeit, die Parameter der Simulation von den

unsicheren Parameter zu entkoppeln. Damit kann bspw. ein Werkstoff oder ein äußerer Antrieb

für den Anwender durch andere Kennzahlen definiert werden, als dies in der Simulation der

Fall ist. Als triviales Beispiel für eine solche “Übersetzung” kann bspw. ein Moment dienen, das

alternativ durch Kraft und Hebelarm definiert werden kann. Auch unterschiedliche Skalen sind

denkbar, wie bspw. eine Umrechnung zwischen britischen und Standard-Einheiten.

(4.12) p′ = g(p)

4. Simulation
In diesem Schritt wird die Simulationmit den in den vorherigen Schritten ermittelten Parametern

gestartet. Die Parameterübergabe kann dabei etwa über eine Steuerdatei oder Kommandozeilen-

Parameter erfolgen. Die Ergebnisse der Simulation werden im Anschluss an den nächsten

Schritt übergeben.

(4.13) S(p′) 7→ {Res}

5. Postprocessing
Im Normalfall stimmen die Ergebnisse der Simulation nicht mit den Zielgrößen überein, die als

QoI definiert sind. Daher müssen die Ergebnisse entsprechend aufbereitet werden, um sie im

Folgenden weiterverarbeiten zu können.

(4.14)

t0 → tn
{Res} → {QoI1 : [ . . . ]

QoI2 : [ . . . ]
.
.
.

QoIk : [ . . . ]}

Die so definierte Menge Res erfüllt noch nicht die Vorgabe von Gleichung (2.1). Stattdessen

ist die Menge Res aus R((tn−t0)·ts)×|{QoI}|
. Daher muss für jedes Element der Menge {QoI}

zu jedem diskretisierten Zeitschritt eine Abbildung uQoI,t(x) nach Gleichung (2.1) definiert

werden.
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Die gewonnenen Ergebnisse aus einem Simulationsaufruf stellen je einen Punkt der in Gleichung (2.1)

definierten Abbildung uQoI,t(x) dar. Zur Berechnung der Quadratur von uQoI,t(x) kann dann entwe-

der mit MC oder QMC approximiert werden oder aber man approximiert zunächst die Zielfunktion

selbst, um anschließend die Quadratur der Approximation zu bestimmen (gPC, SGCM).
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5. Experimente

In diesem Kapitel soll mithilfe von numerischen Experimenten die Wirksamkeit der implementierten

Maßnahmen untersucht werden. Zum Vergleich der Approximationsqualität wird die im Rahmen

dieser Arbeit entstandene Implementierung der stückweise polynomiellen Basisfunktionen mit MC

und stückweise lineare Basisfunktionen verglichen.

Begonnen wird mit zwei analytischen, nicht-polynomiellen Funktionen mit bekanntem Verhalten aus

R2 → R:

1. Der in [MZ09, S. 3096] definierten Betragsfunktion und

2. einer zweidimensionalen Projektion des Kosinus Hyperbolicus von [−1, 1]2 auf [0, 1]2.

Anschließend werden direkte und rekursive Hierarchisierung für die in Abschnitt 5.1.1 definierte

Betragsfunktion miteinander verglichen und schließlich analog [Lei13] die Kármán’sche Wirbelstraße

untersucht.

5.1. Experimente analog [MZ09, Kapitel 4.1]

In diesemAbschnitt wird das in [MZ09, S. 3096f] beschriebeneApproximationsexperiment nachgestellt

und zusätzlich um dünne Gitter mit stückweise polynomiellen Ansatzfunktionen von Grad p = 2
und p = 6 erweitert. Diese Werte begründen sich damit, dass p = 2 die erste und damit einfachste

polynomielle Ansatzfunktion darstellt und dass p = 6 der maximale Polynomgrad des initialen

Gitterlevels l = 5 ist.

Dabei werden als Referenz n = 1000 gleichverteilte Samples aus [0, 1]2 gezogen, an denen die

Funktion ausgewertet wird. Diese Ergebnisse werden mit denen der SGCM verglichen.

Für den Vergleich der SGCM werden, ausgehend vom initialen Gitterlevel l = 5 mit Trapezrand, für

jeden Polynomgrad CSGC und ASGC gegenüber gestellt. Dazu wurde im Fall von CSGC der Gitterlevel

l Schritt für Schritt erhöht bis zu l = 13. Im Fall von ASGC wurden verschiedene Schwellwerte ε
als Abbruchbedingung für das Verfeinerungskriterium des Betrags der Überschüsse definiert. Dabei

werden in jedem Schritt aus der Menge der verfeinerbaren Gitterknoten all die Knoten verfeinert,

deren hierarchischer Überschuss betragsmäßig oberhalb des definierten Schwellwertes ε liegt.

Die folgenden Messungen wurden für jede Methode und jeden Polynomgrad durchgeführt, wobei die

Ergebnisse jeweils mit den generierten MC Referenzwerten verglichen wurden:

• Messung des maximalen Approximationsfehlers über die verschiedenen Schwellwerte

• Messung des maximalen Approximationsfehlers über die Knotenzahl für CSGC und für ASGC

mit unterschiedlichen Schwellwerten ε nach jedem Verfeinerungsschritt
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5.1.1. Betragsfunktion

Approximiert wird die Funktion

(5.1) u1(x, y) = 1
|0.3 − x2 − y2| + 0.1 ,

dargestellt in Abb. 5.1, mit x, y als jeweils in [0, 1] gleichverteilten unsicheren Parametern. Die

Funktion hat eine lokale Unstetigkeit in Form einer Knickstelle entlang eines Viertelkreises mit Radius

0.3 um den Koordinatenursprung in Punkt (0, 0) herum. Diese Unstetigkeit führt dazu, dass globale

Polynomansätze wie gPC am in Abschnitt 2.5.2 beschriebenen Gibbs’schen Phänomen leiden und

damit nicht geeignet sind.

Als Abbruchkriterium für die Verfeinerung werden die Schwellwerte ε = [1, 0.1, 0.01, 0.001] verwen-
det.

Abbildung 5.1.: Funktionsplot der Betragsfunktion nach [MZ09, S. 3096]

Zunächst wird jeweils der maximale Interpolationsfehler gemessen, d. h.

(5.2) max(|fN (xi) − u1(xi)| , xi ∈ {Referenzsamples}).

Dabei konnten die Ergebnisse aus [MZ09, S. 3097] nachgestellt werden, so dass dieses Experiment

auch als Test für die Korrektheit des Codes betrachtet werden kann.

Abb. 5.2 zeigt den maximalen Fehler am Ende der adaptiven Verfeinerung für die jeweiligen Schwell-

werte. Man erkennt, dass die stückweise polynomiellen Basisfunktionen einen größeren maximalen

Fehler haben, als der entsprechende Ansatz mit stückweise linearen Basisfunktionen. Aufgrund

der Unstetigkeit in Form des Viertelkreises kommt dieses Ergebnis nicht unerwartet, da bei der
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Einführung der polynomiellen Basisfunktionen die Bedingung, eine hinreichend glatte Funktion zu

approximieren, explizit gestellt wurde.

Abb. 5.3, Abb. 5.4 und Abb. 5.5 auf Seite 52f zeigen die Entwicklung des maximalen Fehlers nach

jedem Verfeinerungsschritt für die betrachteten Polynomgrade p = [1, 2, 6]. Diese werden jeweils

mit dem maximalen Fehler aus der CSGC Methode für ein reguläres dünnes Gitter mit Trapezrand

auf den Levels l = [5, . . . , 13] für den entsprechenden Polynomgrad verglichen. Man sieht zweierlei:

Erstens, dass sich für jeden Polynomgrad ein deutlicher Vorteil von ASGC gegenüber CSGC einstellt,

d. h. Adaptivität im betrachteten Experiment einen deutlichen Nutzen hat, und zweitens, dass auch in

diesen Darstellungen kein Hinweis darauf zu finden ist, dass sich im gegebenen Beispiel der höhere

Aufwand in Form des Einsatzes stückweise polynomieller Basisfunktionen lohnt. Im Gegenteil, der

maximale Fehler der stückweise polynomiellen Basisfunktionen liegt ab ca. 10000 Gitterpunkten

auch für Polynomgrad p = 2 höher und damit schlechter als der maximale Fehler der stückweise

linearen Basisfunktionen. Für Polynomgrad p = 6 zeigt sich ein noch schlechteres Fehlerverhalten.

Dies zeigt auch der Verlauf des maximalen Interpolationsfehlers nach jedem Verfeinerungsschritt

für die Basisfunktionen der jeweiligen Polynomgrade für den Schwellwert ε = 0.001 in Abb. 5.6 auf

Seite 53.
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Abbildung 5.2.: Betragsfunktion: Entwicklung des maximalen Interpolationsfehlers über 1000 zufäl-

lige Punkte aus [0, 1]2 für verschiedene Polynomgrade p und Adaptivitätsschwell-

werte ε der Dünngitter-Basisfunktionen
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Abbildung 5.3.: Betragsfunktion: Entwicklung des Interpolationsfehlers über die Knotenzahl für

stückweise lineare Basisfunktionen
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Abbildung 5.4.: Betragsfunktion: Entwicklung des Interpolationsfehlers über die Knotenzahl für

stückweise polynomielle Basisfunktionen mit Grad 2
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Abbildung 5.5.: Betragsfunktion: Entwicklung des Interpolationsfehlers über die Knotenzahl für

stückweise polynomielle Basisfunktionen mit Grad 6
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Abbildung 5.6.: Betragsfunktion: Entwicklung des maximalen Interpolationsfehlers über die Kno-

tenzahl für verschiedene Polynomgrade p und Adaptivitätsschwellwert ε = 0.001
der Dünngitter-Basisfunktionen

5.1.2. Kosinus Hyperbolicus

Im vorherigen Abschnitt wurde die Wirksamkeit räumlich adaptiver Verfeinerung mit ASGC bei

lokalen Unstetigkeiten gegenüber globaler Verfeinerung mit CSGC gezeigt. Die erhoffte höhere Kon-

vergenzordnung durch den Ansatz stückweise polynomieller Basisfunktionen konnte aufgrund dieser
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5. Experimente

Unstetigkeit allerdings nicht beobachtet werden. Stattdessen lag deren maximaler Fehler sogar über-

halb des Fehlers stückweise linearer Basisfunktionen. Aufgrund der Verletzung der Glattheitsannahme

von u1 kam das Ergebnis aber nicht überraschend.

Um die Glattheitsannahme zu erfüllen, wird das bestehende Setting übernommen und die zu approxi-

mierende Funktion durch einen Kosinus Hyperbolicus ersetzt,

(5.3) u2(x, y) = cosh(2x− 1) · cosh(2y − 1),

dargestellt in Abb. 5.7, wiederum mit x, y als jeweils gleichverteilten, unsicheren Parametern auf

[0, 1].

Abbildung 5.7.: Funktionsplot der hyperbolischen Kosinusfunktion

Als Abbruchkriterium der adaptiven Verfeinerung dienen die Schwellwerte ε = [1, 0.1, 1 · 10−3, 1 ·
10−5, 1 · 10−7]. Zusätzlich wird in diesem Kontext die Genauigkeit der Berechnung des Erwartungs-

werts untersucht mithilfe der analytischen Referenzlösung von

(5.4)

1∫
0

1∫
0

u2 dx dy = 1
2(cosh(2) − 1).

Wegen der Gleichverteilung von x, y ist dies ein reiner Test der Quadraturqualität der Dünngitterap-

proximation von u2, vgl. Gleichung (3.33).

Dabei stellt sich, wie Abb. 5.8 auf Seite 55 zeigt, der aus Abschnitt 3.1.4 erwartete deutliche Gewinn

bei der Konvergenzordnung für stückweise polynomielle Basisfunktionen ein. Zu beachten ist, dass

zwar nur ein geringer Unterschied zwischen stückweise linearen Basisfunktionen und stückweise

polynomiellen Basisfunktionen von Polynomgrad p = 2 zu liegen scheint. Die im Anhang abge-

druckten Fehlerplots nach jedem Verfeinerungsschritt je Schwellwert zeigen, dass diese vergleichbare

Genauigkeit mit deutlich weniger Gitterpunkten erreicht werden kann.
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5.1. Experimente analog [MZ09, Kapitel 4.1]

Durch die Homogenität der verwendeten cosh-Funktion ist Adaptivität in diesem Szenario allerdings

ohne Nutzen. Dies zeigt die Kongruenz der Kurven für ASGC und CSGC.

An dieser Stelle soll, wie eingangs erwähnt, zusätzlich die Berechnung des Erwartungswerts als

(5.5) E =
∫
fN (x)p(x) dx =

∫
fN (x) dx (wegen Gleichverteilung)

mithilfe der in Gleichung (5.4) gegebenen analytischen Lösung untersucht werden.

Dabei zeigen Abb. 5.9 bis Abb. 5.11 auf Seite 56f grundsätzlich eine gute Approximationsqualität für die

Berechnung der Quadratur, bei der - analog zur Evaluationsoperation - die stückweise polynomiellen

Basisfunktionen bessere Ergebnisse als die stückweise linearen Basisfunktionen liefern, bei gleichzeitig

weniger benötigten Gitterpunkten.
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Abbildung 5.8.: cosh: Entwicklung des maximalen Interpolationsfehlers über 1000 zufällige Punk-

te aus [0, 1]2 für verschiedene Polynomgrade und Adaptivitätsschwellwerte der

Dünngitter-Basisfunktionen
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Abbildung 5.9.: cosh: Entwicklung des mittleren Quadraturfehlers über die Knotenzahl für stück-

weise lineare Basisfunktionen
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Abbildung 5.10.: cosh: Entwicklung des mittleren Quadraturfehlers über die Knotenzahl für stück-

weise polynomielle Basisfunktionen mit Grad 2
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103 104 105
10−14

10−13

10−12

10−11

10−10

10−9

Knotenzahl

m
i
t
t
l
e
r
e
r
Q
u
a
d
r
a
t
u
r
-
F
e
h
l
e
r

Ref: CSGC

ASGC: ε = 1
ASGC: ε = 0.1

ASGC: ε = 1 · 10−3

ASGC: ε = 1 · 10−5

ASGC: ε = 1 · 10−7

Abbildung 5.11.: cosh: Entwicklung des mittleren Quadraturfehlers über die Knotenzahl für stück-

weise polynomielle Basisfunktionen mit Grad 6

5.1.3. Zwischenfazit

Man sieht anhand dieser Beispiele, die nicht aus dem UQ-Zusammenhang sind, dass für unterschiedli-

che Szenarien unterschiedliche Approximationsmethoden unterschiedlich gute Ergebnisse liefern.

Das bedeutet, dass der Nutzen der implementierten Verfahren nicht allgemein angegeben werden

kann im Sinne von “stückweise polynomiell ist immer besser oder schlechter als stückweise linear”

oder “Adaptivität ist grundsätzlich nützlich oder nicht zielführend”. Stattdessen muss in Abhängigkeit

der Zielfunktion u(x) situativ entschieden werden, welche Methode die geeignetste ist.

Vor dem Übergang zu einem größeren UQ-Problem sollen die beiden Hierarchisierungsmethoden

miteinander verglichen werden.

5.2. Vergleich der Hierarchisierungsmethoden

Um die Hierarchisierungsmethoden miteinander zu vergleichen, wurde die Betragsfunktion

(5.6) u1(x, y) = 1
|0.3 − x2 − y2| + 0.1

aus Abschnitt 5.1.1 für Polynomgrad p = 2 und p = 10 mit einem regulären dünnen Gitter ohne

Randpunkte auf den Levels l = [10, . . . , 15] sowohl direkt als auch rekursiv hierarchisiert und die

jeweils benötigte Zeit gemessen.

Die Ergebnisse zeigen Tabelle 5.1 auf Seite 58 für Polynomgrad p = 2 und Tabelle 5.2 auf Seite 58

für Polynomgrad p = 10. Außerdem sind die Resultate in Abb. 5.12 und Abb. 5.13 auf Seite 59 auf

einer zeit-logarithmischen Skala geplottet. Dabei erkennt man für beide Hierarchisierungsformen
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5. Experimente

einen exponentiellen Zusammenhang zwischen Gitterlevel und zur Hierarchisierung benötigter

Zeit. Zusätzlich finden sich im Anhang Plots der benötigten Zeit für die Hierarchisierung über der

Knotenzahl auf einer doppelt-logarithmischen Skala. Dabei kann man den linearen Zusammenhang

zwischen Knotenzahl und Zeit erkennen.

Offenkundig ist die direkte Hierarchisierung deutlich effizienter als die rekursive Hierarchisierung,

unabhängig von Polynomgrad oder Level. Insbesondere zeigt die direkte Hierarchisierung das er-

wartete Verhalten, für die doppelte Anzahl Knoten doppelt so viel Zeit für die Hierarchisierung zu

benötigen. Das ist bei der rekursiven Hierarchisierung nicht der Fall.

Tabelle 5.1.: Vergleich der zur Hierarchisierung benötigten Zeit für Polynomgrad p = 2 für direkte

und rekursive Hierarchisierung

Hierarchisierungsmethode Level benötigte Zeit

direkt 10 0.023 s

rekursiv 10 0.177 s

direkt 11 0.047 s

rekursiv 11 1.044 s

direkt 12 0.110 s

rekursiv 12 11.283 s

direkt 13 0.254 s

rekursiv 13 52.391 s

direkt 14 0.535 s

rekursiv 14 3 min 41.106 s

direkt 15 1.164 s

rekursiv 15 15 min 42.843 s

Tabelle 5.2.: Vergleich der zur Hierarchisierung benötigten Zeit für Polynomgrad p = 10 für direkte

und rekursive Hierarchisierung

Hierarchisierungsmethode Level benötigte Zeit

direkt 10 0.039 s

rekursiv 10 0.256 s

direkt 11 0.077 s

rekursiv 11 1.348 s

direkt 12 0.143 s

rekursiv 12 12.923 s

direkt 13 0.315 s

rekursiv 13 1 min 00.552 s

direkt 14 0.682 s

rekursiv 14 4 min 17.515 s

direkt 15 1.490 s

rekursiv 15 18 min 16.895 s
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5.2. Vergleich der Hierarchisierungsmethoden

Abbildung 5.12.: Plot der benötigten Zeit zur Hierarchisierung von u1 mit stückweise polynomiellen

Basisfunktionen von Polynomgrad p = 2 über das Gitterlevel. Links die direkte

Hierarchisierung, rechts die rekursive.

Abbildung 5.13.: Plot der benötigten Zeit zur Hierarchisierung von u1 mit stückweise polynomiellen

Basisfunktionen von Polynomgrad p = 10 über das Gitterlevel. Links die direkte

Hierarchisierung, rechts die rekursive.

Das schlechte Abschneiden der rekursiven Hierarchisierung liegt u. a. daran, dass in der rekursiven

Hierarchisierung der Dünngitter-Baum nicht nur einmal, sondern p-fach durchlaufen wird. Dabei

müssen die αl,i-Koeffizienten des rechten Teilbaums, die aus Symmetriegründen nur implizit gespei-

chert sind, jeweils rekonstruiert werden. Dazu sind viele if - Konstrukte nötig, deren Auswertung

Zeit kostet.

Zusätzlich muss in jedem Durchlauf der Zugriff auf die Speicherstrukutur der Gitterknoten öfter be-

nutzt werden. Einmal für den Knoten selbst und einmal für seinen direkten hierarchischen Vorgänger,

um den Index des zum Knoten gehörenden hierarchischen Überschusses im Überschussvektor zu

finden. Zusätzlich muss der Überschussvektor, wie in Abschnitt 4.1.2 beschrieben, kopiert werden.
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5. Experimente

5.3. Kármán’sche Wirbelstraße

Im Rahmen einer Vorlesung an der betreuenden Abteilung wurde von Studenten ein Strömungslöser

implementiert, der verwendet wird, um das in [Lei13, Kap. 3.2] beschriebene Experiment nachzustellen.

Dabei zeigte sich, dass die inverse Rosenblatt Transformation nicht die gewünschten Ergebnisse liefert.

Das liegt daran, dass in [0, 1]d interpoliert wird, die Berechnung aber in Γ erfolgt und dazwischen

eine nicht-lineare Transformation liegt, die zu Problemen führt, die bei einer linearen Transformation

nicht auftreten. Daher wurde im Rahmen dieser Arbeit lediglich linear transformiert. Um zu besseren

Ergebnissen als [Lei13] zu kommen, wurden drei Maßnahmen ergriffen:

1. Die Einführung von räumlicher Adaptivität,

2. die Erhöhung des maximalen Levels für CSGC auf lmax = 6, d. h. bis zum = 2561 Gitterknoten

sowie

3. der Ansatz stückweise polynomieller Basisfunktionen.

5.3.1. Versuchsaufbau

Simuliert wird eine Kármán’sche Wirbelstraße, in die von links eine Flüssigkeit einströmt. Diese trifft

nach 0.7 Längeneinheiten auf ein in der Mitte des Strömungskanals platziertes, schräg stehendes

Hindernis. Dabei entsteht hinter dem Hindernis eine Turbulenz, die sich bis zum Ende des Strö-

mungskanals fortpflanzt. Die Länge des Strömungskanals beträgt 10 Längeneinheiten und die Breite

2 Längeneinheiten.

In jedem Simulationsaufruf werden 500 Zeitschritte zwischen t = 0 und t = 50 berechnet und in

jedem Zeitschritt der Druck an der Messstelle, 6 Längeneinheiten von der Einströmungsöffnung

entfernt, über die gesamte Breite des Kanals gemessen und dessen arithmetisches Mittel gebildet

(Py60). Die räumliche Diskretisierung des Kanals erfolgt über quadratische Gitterzellen mit Seitenlänge

0.1 Längeneinheiten.

Die Geometrie ist mitsamt einigen exemplarischen Gitterzellen in Abb. 5.14 dargestellt.

Abbildung 5.14.: Geometrie der Kármán’schen Wirbelstraße. Die Interpolationszellen sind stellver-

tretend als Hinweis auf die Größe in der Spalte am rechten Rand der Geometrie

und der untersten Zeile angedeutet.
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5.3. Kármán’sche Wirbelstraße

Verglichen mit [Lei13] wird also eine leicht modifizierte Versuchsgeometrie mit kleinerem Hindernis

verwendet.

Als unsichere Parameter werden die beiden vektoriellen Komponenten der Einströmgeschwindigkeit u
und v, die Reynolds-Zahl sowie die Prandtl-Zahl angenommen, so dass sich ein vierdimensionales UQ-

Problem ergibt. Die Reynolds-Zahl ist eine dimensionslose Größe, die den Zusammenhang zwischen

Trägheits- und Zähigkeitskräften in einem Fluid oder Gas beschreibt. Die Prandtl-Zahl ist ebenso

wie die Reynolds-Zahl eine dimensionslose Größe und beschreibt das Verhältnis von kinematischer

Viskosität zur Temperaturleitfähigkeit in Gasen oder Fluiden.

Im durchgeführten UQ-Experiment werden die Parameter in den folgenden Intervallen normalverteilt

variiert:

• Reynolds-Zahl: (8000, 12000)

• x⃗ Komponente der Einströmgeschwindigkeit: (2.0, 5.0)
[
Längeneinheiten

Zeitschritt

]
• y⃗ Komponente der Einströmgeschwindigkeit: (−0.5, 0.5)

[
Längeneinheiten

Zeitschritt

]
• Prandtl-Zahl: (7, 13)

Als Normalverteilung wird die Funktion “truncnorm” aus dem stats-Modul der Python Erweiterung

scipy
1
auf dem Intervall [a, b] mit Erwartungswert µ = b− b−a

2 und Standardabweichung σ = b−a
6

verwendet. Die Funktion schneidet die Bereiche außerhalb des definierten Intervalls ab und verlegt

den dort im Vergleich zu einer Standard-Normalverteilung abgeschnittenen Flächenanteil ins Intervall,

so dass das Integral über die “truncnorm”-Funktion über das Intervall [a, b] den Wert 1 ergibt. Dies ist

nötig, um zu verhindern, dass das Ergebnis der Dünngitter-Quadratur mit jeder Dimension kleiner

skaliert und damit verfälscht wird.

Die Transformationen aus dem Wertebereich der Parameter auf [0, 1] und umgekehrt erfolgen linear.

Als Richtgrößen für verschiedene SGCM-Verfahren wurden 5000MC Samples und 2500QMC Samples

nach der Sobol - Sequenz generiert.

Diese werden mit CSGC für stückweise polynomielle sowie CSGC für stückweise lineare Basisfunk-

tionen von Gitterlevel l = 4 bis l = 6 ohne Randpunkte verglichen. Dabei wurden die stückweise

polynomiellen Basisfunktionen unter Ausnutzung des maximal möglichen Polynomgrads angesetzt,

d. h. p = l+ 1. Außerdem werden Gitter mit Level l = 1 ohne Randpunkte für ASGC angesetzt. Diese

Gitter werden jeweils mit einer der drei in Abschnitt 3.3 vorgeschlagenen Verfeinerungskriterien

einmal für stückweise lineare und einmal für stückweise polynomielle Basisfunktionen von Polynom-

grad p = 10 verfeinert. Dabei wird so lange verfeinert, bis für die Zahl der Dünngitter-Knotenm vor

dem nächsten Verfeinerungsschritt giltm > 1000.

1

http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.stats.truncnorm.html
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5.3.2. Ergebnisse

Zur Bewertung der Ergebnisse werden die Simulationsergebnisse nach den einzelnen Verfahren sowie

den angesetzten Basisfunktionen gruppiert. D. h. es werden fünf Gruppen gebildet

• QMC,

• CSGC mit stückweise linearen und stückweise polynomiellen Basisfunktionen sowie

• ASGC mit stückweise linearen und stückweise polynomiellen Basisfunktionen.

Die Ergebnisse der einzelnen Gruppen für Erwartungswert und Varianz werden jeweils zusammen

mit dem Ergebnis der MC Lösung geplottet. Für die geeigneten Approximationen der Gruppe wird

anschließend die Differenz zwischen dem Ergebnis eines Elements aus der Gruppe und dem Ergebnis

der MC Methode gezeichnet, um die Ergebnisse genauer zu analysieren. Abschließend werden die

geeignetsten Ergebnisse aus allen Gruppen miteinander verglichen.

Der Erwartungswert der Dünngitter-Approximation wird berechnet als

(5.7) E(x) =
∫
Γ

fN (x) · p(x) dx.

Wegen der Verwendung einer Normalverteilung kann eine Zielfunktion entstehen, die einer Gauss-

Kurve ähnelt. Nach [Pfl10, Kap. 4.2] können bei der Approximation von Gauss-Kurven mit dünnen

Gittern Überschwingungen auftreten, die dazu führen, dass das Ergebnis der Quadraturberechnung

bis hin zu negativen Werten verfälscht werden kann. Dieses Phänomen kann insbesondere bei der

Verwendung stückweise polynomieller Basisfunktionen auftreten. Daher wurden die Ergebnisse

für Erwartungswert und Varianz für die beiden Dünngitter-Verfahren CSGC und ASGC auf zwei

verschiedene Arten berechnet:

1. Analytisch durch die direkte Berechnung der Quadratur der Dünngitterapproximation fN (x)
der Zielfunktion u(x) nach Gleichung (5.7) und

2. näherungsweise mithilfe der MC Quadratur

(5.8) E(x) =
∫
Γ

fN (x) · p(x) dx ≈ 1
n

n∑
j=1

fN (xj) · p(xj).

Dazu wurden n = 40000 Samples aus Γ gezogen und in die Dünngitterapproximation fN (x)
eingesetzt.

Referenz

Vor Betrachtung der Ergebnisse aus SGCMwerden zunächst die beiden Vergleichsverfahren verglichen,

MC und QMC. In Abb. 5.15 auf Seite 63 sieht man, dass QMC für den Erwartungswert den gleichen

Referenzwert liefert wie MC. Abb. 5.16 auf Seite 63 zeigt das noch deutlicher: Der Betrag der Differenz

liegt konstant unter 30 und die relative Abweichung damit unter 2%.
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Abbildung 5.15.:Wirbelstraße: Erwartungswert: MC, QMC

Abbildung 5.16.:Wirbelstraße: Erwartungswertdifferenz: QMC zu MC

Betrachtet man dagegen die Varianz, s. Abb. 5.17 auf Seite 64, ergibt sich zunächst kein klares Bild,

weil QMC und MC ein qualitativ gleiches Verhalten auf quantitativ unterschiedlichen Niveaus zeigen.

Da die im Folgenden vorgestellten Werte von SGCM gegen den Wert der MC Quadratur streben, wird

im Weiteren die MC Quadratur als Referenzlösung betrachtet. Der Wert der Varianz liegt damit für

QMC konstant über 1 · 105
oberhalb der MC Referenzlösung, was einem relativen Fehler von über

0.5 entspricht.

Im Folgenden werden die Ergebnisse der SGCM präsentiert. Diese sind so geordnet, dass zunächst

die Ergebnisse für reguläre dünne Gitter, d. h. der CSGC Methode, gezeigt werden und anschlie-
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Abbildung 5.17.:Wirbelstraße: Varianz: MC, QMC

ßend die von ASGC. Dabei wird jeweils mit linearen Basisfunktionen und analytischer Quadratur

des Dünngitter-Interpolanten begonnen, bevor die Ergebnisse der MC Quadratur gezeigt werden.

Anschließend werden in der gleichen Reihenfolge die Ergebnisse der stückweise polynomiellen

Basisfunktionen vorgestellt.

CSGC

CSGC liefert, wie Abb. 5.18 auf Seite 65 zeigt, bei analytischer Quadratur und linearen Basisfunktionen

eine gute Approximation für den Erwartungswert.

Nach Abb. 5.19 auf Seite 65 liegt die Abweichung zwischen -40 und 5, d. h. der relative Fehler liegt unter

5%. Dass die Abweichung für Level l = 5 geringer ist als für Level l = 6, entsteht wahrscheinlich
durch günstige Auslöschung von Fehlern auf Level l = 5.

Für die Varianz ergibt sich ein ähnliches Bild wie für den Erwartungswert. Nach Abb. 5.20 auf Seite 66

zeigt das CSGC Verfahren für Level l = 6 und damitm = 2561 Gitterknoten keine große Abweichung

mehr von der MC Referenzlösung.

Mithilfe von Abb. 5.21 auf Seite 66 lässt sich die Abweichung genauer quantifizieren, auf eine relative

Abweichung von der MC Referenzlösung von ca. 0.02.

Verwendet man anstelle der analytischen Quadratur eine MC Quadratur, sollte sich am Niveau der Er-

gebnisse nichts substanziell ändern, es sei denn, es wird eine Zielfunktion u(x) mit Gauss’scher Form

approximiert. In diesen Fällen sollte sich eine Besserung gegenüber der analytischen Quadratur ein-

stellen, weil die MC Quadratur von den zu Beginn des Abschnitts beschriebenen Überschwingungen

nicht betroffen ist. Verfahrensbedingt oszillieren die Ergebnisse durch die niedrige Konvergenzge-

schwindigkeit der MC Quadratur jedoch deutlich stärker als mit analytischer Quadratur.
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Abbildung 5.18.: Wirbelstraße: Erwartungswert: CSGC Level l = [4, 5, 6], keine Randpunkte, stück-
weise lineare Basisfunktionen, analytische Quadratur

Abbildung 5.19.: Wirbelstraße: Erwartungswertdifferenz: CSGC Level l = [4, 5, 6], keine Randpunk-
te, stückweise lineare Basisfunktionen, analytische Quadratur zu MC

Abb. 5.22 auf Seite 67 zeigt für die Berechnung des Erwartungswerts mit MC Quadratur ein sehr

ähnliches Bild wie die Verwendung analytischer Quadratur.

Nach Abb. 5.23 auf Seite 67 und Abb. 5.19 trifft das Ergebnis der analytischen Lösung das Ergebnis

der MC Referenzlösung besser als die MC Quadratur.

Wie Abb. 5.24 auf Seite 68 und Abb. 5.25 auf Seite 68 zeigen, lassen sich auf Grundlage des vorhan-

denen Datenmaterials keine sinnvollen Aussagen über die Varianzapproximation machen, weil das
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Abbildung 5.20.:Wirbelstraße: Varianz: CSGC Level l = [4, 5, 6], keine Randpunkte, stückweise
lineare Basisfunktionen, analytische Quadratur

Abbildung 5.21.: Wirbelstraße: Varianzdifferenz: CSGC Level l = 6, keine Randpunkte, stückweise
lineare Basisfunktionen, analytische Quadratur zu MC

Rauschen der Daten zu stark ist. Da sich dieses Phänomen für alle weiteren gezeigten Verfahren

in der Varianzbeschreibung einstellt, finden sich die Plots der Varianzberechnung mithilfe von MC

Quadratur für alle übrigen Verfahren im Anhang.
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Abbildung 5.22.: Wirbelstraße: Erwartungswert: CSGC Level l = [4, 5, 6], keine Randpunkte, stück-
weise lineare Basisfunktionen, MC Quadratur

Abbildung 5.23.: Wirbelstraße: Erwartungswertdifferenz: CSGC Level l = [4, 5, 6], keine Randpunk-
te, stückweise lineare Basisfunktionen, MC Quadratur zu MC

Setzt man anstelle der stückweise linearen Basisfunktionen stückweise polynomielle Basisfunktionen

an, ergibt sich nach Abb. 5.26 auf Seite 69 für die Level l = [4, 5] ein schlechteres Ergebnis. Auf Level

l = 6 ergibt sich hingegen ein ähnliches Fehlerbild wie im stückweise linearen Fall.

Untersucht man den Fehler genauer, zeigt sich nach Abb. 5.27 auf Seite 69 für Level l = 5 ein eindeutig

schlechteres Verhalten als im stückweise linearen Fall, für l = 6 liegen die stückweise polynomiellen

Basisfunktionen dagegen ungefähr gleichauf.
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Abbildung 5.24.:Wirbelstraße: Varianz: CSGC Level l = [4, 5, 6], keine Randpunkte, stückweise
lineare Basisfunktionen, MC Quadratur

Abbildung 5.25.: Wirbelstraße: Varianzdifferenz: CSGC Level l = [4, 5, 6], keine Randpunkte, stück-
weise lineare Basisfunktionen, MC Quadratur zu MC

Nach Abb. 5.28 auf Seite 70 zeigt die Approximation auf Level l = 5 eine negative Varianz. Möglicher-

weise zeigt sich hier das eingangs angesprochene Problem für die Interpolation von Gauss-Funktionen,

so dass sich an dieser Stelle bei Verwendung der direkten Quadraturberechnung von fN (x) die nega-
tive Varianz ergibt. Andere Ursachen sind allerdings ebenfalls denkbar, wie bspw. Oszillationen in der

Zielfunktion, so dass auf Level 5 korrigierende negative Überschüsse entstehen o. ä.. Zudem ist zu

erkennen, dass die Approximation auf Level l = 6 die Referenzlösung sehr gut trifft.
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Abbildung 5.26.: Wirbelstraße: Erwartungswert CSGC Level l = [4, 5, 6], keine Randpunkte, stück-
weise polynomielle Basisfunktionen, analytische Quadratur

Abbildung 5.27.: Wirbelstraße: Erwartungswertdifferenz: CSGC Level l = [5, 6], keine Randpunkte,
stückweise polynomielle Basisfunktionen, analytische Quadratur zu MC

In Abb. 5.29 auf Seite 70 zeigt sich jedoch, dass der stückweise polynomielle Ansatz bei der Approxima-

tion der Varianz keinen Gewinn gegenüber stückweise linearen Basisfunktionen bringt, im Gegenteil.

Der relative Fehler für die Varianz-Approximation liegt zwischen 5 und 10%.

Nach Abb. 5.30 auf Seite 71 bringt der Einsatz der MC Quadratur Methode verglichen mit der ana-

lytischen Quadratur für stückweise polynomielle Basisfunktionen für die Level l = [4, 5] bei der
Berechnung des Erwartungswerts deutliche Gewinne bei der Approximationsgenauigkeit.
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Abbildung 5.28.:Wirbelstraße: Varianz: CSGC Level l = [4, 5, 6], keine Randpunkte, stückweise
polynomielle Basisfunktionen, analytische Quadratur

Abbildung 5.29.: Wirbelstraße: Varianzdifferenz: CSGC Level l = 6, keine Randpunkte, stückweise
polynomielle Basisfunktionen, analytische Quadratur zu MC

Diese liegen, wie auch Abb. 5.31 auf Seite 71 zeigt, im Gegensatz zur analytischen Quadratur auf

gleichem Niveau wie Level l = 6, der wiederum eine gute Approximation für die Referenzlösung des

Erwartungswerts darstellt.

Außerdem tritt bei Verwendung der MC Quadratur auf Level l = 5 keine negative Varianz mehr auf,

vgl. Abb. A.8 im Anhang.
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Abbildung 5.30.: Wirbelstraße: Erwartungswert: CSGC Level l = [4, 5, 6], keine Randpunkte, stück-
weise polynomielle Basisfunktionen, MC Quadratur

Abbildung 5.31.: Wirbelstraße: Erwartungswertdifferenz: CSGC Level l = [4, 5, 6], keine Randpunk-
te, stückweise polynomielle Basisfunktionen, MC Quadratur zu MC

ASGC

Beim Einsatz von adaptiver Verfeinerung ergibt sich mit stückweise linearen Basisfunktionen und ana-

lytischer Quadratur nach Abb. 5.32 auf Seite 72 für den Erwartungswert eine sehr gute Approximation.
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Abbildung 5.32.:Wirbelstraße: Erwartungswert: ASGC, keine Randpunkte, stückweise lineare Ba-

sisfunktionen, analytische Quadratur

Dies illustriert auch Abb. 5.33. Der Fehler bei der Approximation des Erwartungswerts liegt bei ca.

0.01 bis 0.02.

Abbildung 5.33.:Wirbelstraße: Erwartungswertdifferenz: ASGC, lineare Basisfunktionen, analyti-

sche Quadratur zu MC

Bezüglich der Varianz ist die Approximation akzeptabel, wie Abb. 5.34 auf Seite 73 und Abb. 5.35 auf

Seite 73 zeigen. Der relative Fehler liegt bei ca. 25%.
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Abbildung 5.34.: Wirbelstraße: Varianz: ASGC, keine Randpunkte, stückweise lineare Basisfunktio-

nen, analytische Quadratur

Abbildung 5.35.: Wirbelstraße: Varianzdifferenz: ASGC, keine Randpunkte, lineare Basisfunktionen,

analytische Quadratur zu MC

Abb. 5.36 auf Seite 74 und Abb. 5.37 auf Seite 74 zeigen bei der Berechnung des Erwartungswerts

mit MC Quadratur für das Verfeinerungskriterium nach dem Erwartungswert eine gute Konvergenz.

Für das Verfeinerungskriterum nach der Varianz und nach dem Betrag der Überschüsse liegt man

dagegen um 3 bis 5% über der MC Referenzlösung.
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Abbildung 5.36.:Wirbelstraße: Erwartungswert: ASGC, keine Randpunkte, stückweise lineare Ba-

sisfunktionen, MC Quadratur

Abbildung 5.37.: Wirbelstraße: Erwartungswertdifferenz: ASGC, lineare Basisfunktionen, MC Qua-

dratur zu MC

Beim Übergang zu stückweise polynomiellen Basisfunktionen zeigt sich bei der Approximation

des Erwartungswerts mit analytischer Quadratur nach Abb. 5.38 auf Seite 75 und 5.39 auf Seite 75

eine Verschlechterung gegenüber stückweise linearen Basisfunktionen. Der relative Fehler liegt bei

Verwendung des Verfeinerungskriteriums des Betrags der hierarchischen Überschüsse bei ca. 10%
und im Falle der beiden Kriterien mit statistischem Hintergrund mit 3 − 5% deutlich niedriger.

74



5.3. Kármán’sche Wirbelstraße

0 10 20 30 40 50

0

500

1,000

1,500

Zeit

D
r
u
c
k

EMC(Py60)
EASGC, exp, poly(Py60)
EASGC, surp, poly(Py60)
EASGC, var, poly(Py60)

Abbildung 5.38.: Wirbelstraße: Erwartungswert: ASGC, keine Randpunkte, stückweise polynomielle

Basisfunktionen, analytische Quadratur

Abbildung 5.39.: Wirbelstraße: Erwartungswertdifferenz: ASGC, polynomielle Basisfunktionen, ana-

lytische Quadratur zu MC

Auch die Approximation der Varianz funktioniert weniger gut als mit stückweise linearen Basisfunktio-

nen. Wie Abb. 5.40 auf Seite 76 zeigt, führt das Verfeinerungskriterium der Beträge der hierarchischen

Überschüsse zu völlig falschen Ergebnissen. In Abb. 5.41 auf Seite 76 sieht man außerdem, dass

im konkreten Fall für stückweise polynomielle Basisfunktionen die in Abschnitt 3.3 beschriebene

Abschätzung der lokalen Varianz nicht gut funktioniert.
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Abbildung 5.40.:Wirbelstraße: Varianz: ASGC, keine Randpunkte, stückweise polynomielle Basis-

funktionen, analytische Quadratur

Abbildung 5.41.: Wirbelstraße: Varianzdifferenz: ASGC, polynomielle Basisfunktionen, analytische

Quadratur zu MC

Abb. 5.42 auf Seite 77 und Abb. 5.43 auf Seite 77 zeigen für die MC Quadratur mit stückweise

polynomiellen Basisfunktionen bei der Approximation des Erwartungswerts ein sehr ähnliches

Verhalten, wie es bei derMCQuadratur imRahmen vonASGCmit stückweise linearen Basisfunktionen

in Abb. 5.36 auf Seite 74 dargestellt ist.
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Abbildung 5.42.: Wirbelstraße: Erwartungswert: ASGC, keine Randpunkte, stückweise polynomielle

Basisfunktionen, MC Quadratur

Abbildung 5.43.: Wirbelstraße: Erwartungswertdifferenz: ASGC, polynomielle Basisfunktionen, MC

Quadratur zu MC

Vergleich der Verfahren

Vergleicht man die geeignesten Verfahren miteinander, stellen sich nach Abb. 5.44 auf Seite 78 für

die Berechnung des Erwartungswerts stückweise lineare Basisfunktionen mit adaptiver Verfeine-

rung neben QMC als am besten geeignet heraus. Der Abstand zwischen den jeweils bestgeeigneten

Approximationsverfahren, also ASGC nach dem Erwartungswertkriterium mit stückweise linea-
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ren Basisfunktionen und ASGC nach dem Erwartungswertkriterium mit stückweise polynomiellen

Basisfunktionen, beträgt im vorliegenden Fall Faktor 10.

Abbildung 5.44.: Vergleich der Erwartungswertdifferenz der geeignetsten Verfahren

Für die Varianz setzt sich das Bild, dass stückweise lineare Basisfunktionen im vorliegenden Kontext

bessere Ergebnisse liefern als stückweise polynomielle Basisfunktionen, fort. In diesem Fall bietet die

Adaptivität allerdings keine Vorteile, vielmehr stellt die CSGC - Approximation auf Level l = 6 die

geeignetste Approximation dar, wie Abb. 5.45 auf Seite 79 zeigt.

Das Zustandekommen der negativen Varianz bei CSGC auf Level l = 5 und dem Ansatz stückweise

polynomieller Basisfunktionen bleibt rätselhaft. Durch Änderung des Quadraturverfahren von ana-

lytischer Quadratur zu einer MC Quadratur ist die Varianz korrekterweise positiv, wenngleich die

Ergebnisse hier massiv oszillieren und eigentlich noch deutlich mehr Samples zu ziehen wären, um

diese zu stabilisieren. Die Unklarheit darüber, woher die negative Varianz kommt, liegt v. a. daran,

dass in keinem anderen Verfahren negative Varianzen aufgetreten sind. Weder auf anderen Level

für stückweise polynomielle Basisfunktionen bei CSGC noch für stückweise lineare Basisfunktionen

bei CSGC noch bei ASGC. Um dies weiter zu untersuchen, können nun zwei Schritte unternommen

werden. Erstens die Analyse einer Visualisierung der Dünngitterinterpolation, bspw. mithilfe der im

Rahmen von [Sch13] entstandenen Visualisierungssoftware, ob die Zielfunktion tatsächlich die Form

einer Gauss-Kurve hat. Zweitens die Betrachtung der Entwicklung des Betrags der Überschüsse. Für

glatte Funktionen wird nach Gleichung (3.8) erwartet, dass der Betrag der Überschüsse exponentiell

abfällt. Ob dies tatsächlich passiert oder ob die Zielfunktion oszilliert oder Sprünge aufweist, so dass

die Überschüsse wieder anwachsen, bleibt zu analysieren.
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Abbildung 5.45.: Vergleich der Varianzdifferenz der geeignetsten Verfahren
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6.1. Fazit

Im Rahmen dieser Arbeit wurde eine Klasse für stückweise polynomielle Basisfunktionen im Rahmen

des Dünngitter-Frameworks SG++ implementiert, deren Funktionalität anhand der im vorigen Kapitel

vorgestellten Beispiele getestet wurde.

Dabei lag der Fokus auf der Feststellung einer höheren Konvergenzordnung gegenüber stückweise

linearen Basisfunktionen durch den Einsatz stückweise polynomieller Basisfunktionen, der Wirksam-

keit von räumlicher Adaptivität zur Verringerung der Zahl der nötigen Auswertungen für eine gute

Approximation sowie rekursiver Hierarchisierung.

Die rekursive Hierarchisierung hat sich als nicht zielführend erwiesen. Anstelle des erhofften Zeit-

gewinns hat sich, wie das Hierarchisierungsexperiment in Abschnitt 5.2 gezeigt hat, eine massive

Verschlechterung der Performance eingestellt, und zwar sowohl bei niedrigen als auch bei hohen

Polynomgraden. Zusätzlich gegen die rekursive Hierarchisierung spricht, dass sich die zur Hierarchi-

sierung benötigte Zeit, im Gegensatz zur direkten Hierarchisierung, um deutlich mehr als Faktor 2

erhöht, wenn ein zusätzliches Level hinzugefügt wird und damit etwa doppelt so viele Knoten zu

hierarchisieren sind.

Die erhoffte höhere Konvergenzordnung für stückweise polynomielle Basisfunktionen bei hinrei-

chend glatten Funktionen hat sich dagegen, den Erwartungen entsprechend, eingestellt, wie das

Beispiel des Kosinus Hyperbolicus in Abschnitt 5.1.2 gezeigt hat. Erwartungsgemäß nicht gezeigt

werden konnte dagegen, dass sich der globale Einsatz stückweise polynomieller Basisfunktionen

lohnt, wenn die Zielfunktion lokale Unstetigkeiten aufweist, wie in Abschnitt 5.1.1 am Beispiel einer

Betragsfunktion.

An diesem Beispiel konnte dagegen der Nutzen von räumlicher Adaptivität gezeigt werden. Beim

Kosinus Hyperbolicus war das nicht der Fall. Das liegt daran, dass durch die Symmetrie und Glattheit

der Kosinus Hyperbolicus Funktion ungefähr ein reguläres dünnes Gitter entsteht. D. h. beim Kosinus

Hyperbolicus ergibt sich deshalb verglichen mit globaler Verfeinerung kein Gewinn durch den

Einsatz von lokaler Verfeinerung, weil sich in diesem Beispiel lokale und globale Verfeinerung kaum

unterscheiden.

Mit diesen Erfahrungswerten wurde die Tauglichkeit von adaptiven dünnen Gittern mit stückweise po-

lynomiellen Basisfunktionen im Zusammenhangmit UQ amBeispiel einer Kármán’schenWirbelstraße

in Abschnitt 5.3 untersucht. Im untersuchten Wirbelstraßen-Beispiel konnte der Erwartungswert mit

ca. einem Fünftel der Funktionsauswertungen, verglichen mit MC und n = 5000 Samples, auf unter
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1% Abweichung angenähert werden. Dazu wurde nach dem in Abschnitt 3.3 vorgestellten Erwar-

tungswertkriterium verfeinert und stückweise lineare Basisfunktionen angesetzt. Für die Varianz

ergab sich dagegen ein schlechteres Bild. Hier stellte CSGC mit Level l = 6 und stückweise linearen

Basisfunktionen die beste Approximation dar, für alle übrigen Verfahren ergab sich eine Abweichung

von mindestens 5%, oftmals auch deutlich darüber.

Für stückweise polynomielle Basisfunktionen konnten diese Ergebnisse qualitativ reproduziert werden,

die Genauigkeit der stückweise linearen Basisfunktionen aber nicht erreicht werden. Das spricht

dafür, dass das Wirbelstraßen-Beispiel bezüglich der Glattheit eher dem Beispiel der Betragsfunktion

ähnelt als dem des Kosinus Hyperbolicus.

Zusätzlich ergab sich für CSGC auf Level l = 5 bei der Berechnung der Varianz mit analytischer

Quadratur der Dünngitterapproximation eine negative Varianz. Dieses Problem konnte durch den

Wechsel des Quadraturverfahrens von analytischer Quadratur zu MC Quadratur behoben werden.

6.2. Ausblick

Es bietet sich an, für SG++ eine neue Klasse für stückweise polynomielle Basisfunktionen einzuführen,

die die Vorzüge der bereits vorhandenen Klasse “PolyBasis” mit denen der im Rahmen der Arbeit

implementierten “UltraPoly”-Klassen verbindet. Dabei sollte die direkte Hierarchisierung aus der

bestehenden Klasse mit der Quadraturmethode für beliebige Polynomgrade und der Behandlung von

Randpunkten aus den implementierten Klassen kombiniert werden.

Darüber hinaus ist zu überlegen, ob die stückweise polynomiellen Basisfunktionen ans Gitter gebunden

werden können, da die Basis wie in Abb. 4.1 dargestellt, für jede Operation neu erstellt wird. Dieser

redundante Aufwand könnte durch eine Bindung ans Gitter ausbleiben.

Testen ließe sich auch die Einführung einer Klasse mit “variablem Polynomgrad”. Wegen der nicht-

überlappenden Basisfunktionen ist es auch auf demselben Level problemlos möglich, Basisfunktionen

von verschiedenem Polynomgrad zu haben.

Dabei ist jedoch zu beachten, dass es wegen der Tensorprodukt-Struktur des Dünngitter-Ansatzes

keine räumlich-adaptive Anpassung des Polynomgrads analog der Verfeinerung der Gitterknoten

geben kann, wo die Effekte der Verfeinerung hauptsächlich lokal sind, wenn man von der rekursiven

Erzeugung hierarchischer Vorgängerknoten absieht. Stattdessen hat eine adaptive Veränderung des

Polynomgrads für Dimensionen d > 1 immer globale Auswirkungen.

D. h., es ist bspw. nicht allgemein möglich, global ein dünnes Gitter mit stückweise polynomiellen

Basisfunktionen zur Approximation zu verwenden, um von deren höherer Konvergenzordnung zu

profitieren, und gleichzeitig bei der Erkennung von lokalen Unstetigkeiten nur an diesen Stellen lokal

stückweise lineare Basisfunktionen anzusetzen. Stattdessen müssen bei diesem Vorgehen Einbußen

in den glatten Bereichen hingenommen werden.

Das liegt daran, dass die, um in dem geschilderten Beispiel zu bleiben, an einem Knoten angesetzte

stückweise lineare Basis durch den Tensorprodukt-Ansatz nicht nur an einem konkreten Knoten

angesetzt wird. Stattdessen ist die “adaptiv erzeugte” lineare Basisfunktion über alle Dimensionen für

alle Knoten mit entsprechendem (Level, Index)-Tupel für Hierarchisierung, Evaluation und Quadratur

anzusetzen.
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Zusätzlich ausprobieren lässt sich, ob sich ein manuelles Verfälschen der Überschüsse auszahlt, indem

dem Betrag nach sehr kleine Überschüsse auf den Wert 0 gesetzt werden. Dies würde dazu führen,

dass man für einen solchen Fall den Schritt zur Polynomauswertung oder Quadraturberechnung in

der jeweiligen Funktion einsparen kann.

Im UQ-Kontext sind v. a. weitere Daten und Erfahrungen zu sammeln. Auf dieser Basis sollten dann

die Verfeinerungskriterien verbessert werden. Insbesondere ist zu prüfen, ob bei der adaptiven Verfei-

nerung die Verteilung angemessen berücksichtigt wird. Bislang ist nur beim Erwartungswertkriterium

der Fall, dass die Verteilung überhaupt berücksichtigt wird. Ob die bestehende Methodik ausreicht, um

vor allem im Maximum der Normalverteilung neue Gitterpunkte zu erzeugen statt an den Rändern,

ist nach Meinung des Autors noch nicht eindeutig klar. Zusätzlich liegt auch bei der Approximation

der Varianz noch Potential, insbesondere in Form der Berücksichtigung der Verteilung und einer

besseren lokalen Abschätzung der Varianz.
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A. Anhang

A.1. Maximaler Fehler pro Verfeinerungsschritt für cosh
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Abbildung A.1.: cosh: Entwicklung des maximalen Interpolationsfehlers über die Knotenzahl für

stückweise lineare Basisfunktionen
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Abbildung A.2.: cosh: Entwicklung des maximalen Interpolationsfehlers über die Knotenzahl für

stückweise polynomielle Basisfunktionen mit Grad 2
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Abbildung A.3.: cosh: Entwicklung des maximalen Interpolationsfehlers über die Knotenzahl für

stückweise polynomielle Basisfunktionen mit Grad 6

A.2. Hierarchisierung - benötigte Zeit über Knotenzahl

(A.1) u1(x, y) = 1
|0.3 − x2 − y2| + 0.1
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A.2. Hierarchisierung - benötigte Zeit über Knotenzahl

Abbildung A.4.: Plot der benötigten Zeit zur direkten Hierarchisierung von u1 mit stückweise

polynomiellen Basisfunktionen von Polynomgrad p = 2 über die Knotenzahl.

Abbildung A.5.: Plot der benötigten Zeit zur rekursiven Hierarchisierung von u1 mit stückweise

polynomiellen Basisfunktionen von Polynomgrad p = 2 über die Knotenzahl.
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A. Anhang

Abbildung A.6.: Plot der benötigten Zeit zur direkten Hierarchisierung von u1 mit stückweise

polynomiellen Basisfunktionen von Polynomgrad p = 10 über die Knotenzahl.

Abbildung A.7.: Plot der benötigten Zeit zur rekursiven Hierarchisierung von u1 mit stückweise

polynomiellen Basisfunktionen von Polynomgrad p = 10 über die Knotenzahl.
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A.3. Varianzberechnung der Wirbelstraße nach MC Quadratur

A.3. Varianzberechnung der Wirbelstraße nach MC Quadratur

A.3.1. CSGC, stückweise polynomielle Basisfunktionen
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Abbildung A.8.:Wirbelstraße: Varianz: CSGC Level l = [4, 5, 6], keine Randpunkte, stückweise

polynomielle Basisfunktionen, MC Quadratur

Abbildung A.9.: Wirbelstraße: Varianzdifferenz: CSGC Level l = [4, 5, 6], keine Randpunkte, stück-
weise polynomielle Basisfunktionen, MC Quadratur zu MC
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A.3.2. ASGC, stückweise lineare Basisfunktionen
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Abbildung A.10.: Wirbelstraße: Varianz: ASGC, keine Randpunkte, stückweise lineare Basisfunktio-

nen, MC Quadratur

Abbildung A.11.: Wirbelstraße: Varianzdifferenz: ASGC, keine Randpunkte, lineare Basisfunktionen,

MC Quadratur zu MC
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A.3. Varianzberechnung der Wirbelstraße nach MC Quadratur

A.3.3. ASGC, stückweise polynomielle Basisfunktionen
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Abbildung A.12.: Wirbelstraße: Varianz: ASGC, keine Randpunkte, stückweise polynomielle Basis-

funktionen, MC Quadratur

Abbildung A.13.:Wirbelstraße: Varianzdifferenz: ASGC, polynomielle Basisfunktionen, MC Qua-

dratur zu MC
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