IPVS

Universitat Stuttgart

Institute of Parallel and Distributed Systems

University of Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Diploma Thesis No. 3594

Solving the Content Routing
Problem with Coupled Constraint
Oriented Programs

Patrick Bosch
Course of Study: Informatik
Examiner: Prof. Dr. Kurt Rothermel
Supervisor: Dr. Boris Koldehofe
Commenced: 6. November 2013
Completed: 8. May 2014

CR-Classification: C21,C24,G.1.6

Abstract

Publish/Subscribe and especially content-based publish/subscribe are widely used for com-
munication between distributed components. They offer efficient bandwidth usage through
forwarding events only to subscribers which are interested in the content of the event. For-
warding is done by filters which identify the content of the event.

Previous implementations of such systems relied on a distributed set of brokers to match and
forward the events accordingly. However, the advent of software-defined networking gave
us the possibility to implement the system directly on the network layer. The overhead of
the application layer can be prevented and the filtering process can be implemented more
efficiently. Previously, the costs for filtering were a major disadvantage for content-based
publish/subscribe systems. Such a new filtering approach with implementation on the network
layer was presented in initial work and it was shown that line-rate performance could be
achieved. For this approach the power of software-defined networking could be fully harnessed
by implementing forwarding flows that handle the filtering as well as the forwarding. Although,
this approach offers a possibility for a brokerless publish/subscribe system, the task to compute
and optimise routes that connect publishers and subscribers is not solved adequately.

To understand the problem of route optimisation in such a system and the problems that are
incorporated in it, this work divides the overall problem into multiple smaller problems and
offers solutions for these smaller problems. A framework is presented and discussed with
regard to achieving a complete solution which incorporates optimisation problems as well as
transformations and mechanisms that ensure that each part is independent from the other
parts. The performance as well as the results the framework produces are discussed after its
presentation.

iii

Acknowledgements

I would like to thank and acknowledge those that contributed to the completion of this thesis.
Many thanks to Prof. Dr. Kurt Rothermel for giving me the opportunity to work on this thesis
in the Department of Distributed Systems in a field that is very interesting.

I am grateful to my supervisor Dr. Boris Koldehofe for his support and patience throughout the
time for this thesis. His help and guidance were an invaluable asset for the completion of this
work. The meetings and discussions with him have contributed to developing the ideas for this
thesis.

I express my gratitude to Franz Fabian who provided me with the necessary setup for the
evaluation of this thesis. I also want to thank the department for the provided help.

Special thanks go to my friends Sukanya Bhowmik, Darshana Das, Naresh Nayak, Hua Ma and
Siliang Xia for their support and motivation as well as help in solving problems and correcting
my language.

At last I want to thank my family, especially my mother, for their continuous support throughout
my studies as well as this thesis.

iv

Contents

—

Introduction

2 Background and Problem Formulation
2.1 Background e e e
2.1.1 Publish/Subscribe
2.1.2 Software-Defined Networking
2.1.3 Constraint Oriented Programming
2.2 Problem Formulation

3 Related Work
3.1 LIPSIN e e e e e e e e e e e
3.2 SIENA . . . e e e e e e
3.3 Hermes e e e e e e e e e e e
3.4 Meghdoot e

4 Modelling the elements in a publish/subscribe system
4.1 Path e e e e
4.1.1 PathbyVertices e
4.1.2 PathbyEdges
4.1.3 Hybrid. e
4.2 SubGraphs
4.3 Filters o e e e e e e
44 COSE . v v e e e e e e e e e e e e e e e e e

5 Sub Solution Formulation
5.1 Optimisation solutions i
5.1.1 Shortest Path Tree Solution
5.1.2 Minimum Spanning Tree Solution.
5.1.3 Balanced Trees @ i i i i e e e
5.1.4 SteinerTree e e e e e e e
5.1.5 Centreswitches e e
5.1.6 Clustering o o i i it e e e e e
5.1.7 Summary e e e e e e e e e
5.2 Transformations v i v i i e e e e e e e e e e e e e
5.2.1 Filter Embedding
5.3 Mechanisms e e e

5.3.1 Virtual Publishers/Subscribers
5.3.2 CycleDetection v v i i it e e e e e e
5.3.3 Fragmentation e e e
5.34 Re-balancing
5.3.5 Summary e e e e e e e

6 Framework

6.1 Shortest path tree (SPT) computation.
6.2 Filterembedding
6.3 Clusteringof filters
6.4 Optimisation of sub graphs
6.5 Re-balancing of the weights
6.6 Fragmentation
6.7 Summary

7 Analysis And Results

7.1 Setting
72 Results.
7.2.1 10Switches
7.2.2 25Switches

7.2.3 10 Switches with smaller fragments
8 Summary and Outlook

Bibliography

vi

List of Figures

2.1 Organisation of a Pub/Subsystem 6
2.2 Organisation of SDN e 7
2.3 Sample space given through constraints, 8
4.1 Overview and classification of the topics of the chapter 15
5.1 Computation with centre switches 35
5.2 Computation with virtual publishers and subscribers 44
5.3 Cycle after the computation 45
5.4 Fragmentation of a graph intotwosubgraphs 47
6.1 The flow diagram of the framework, 51
6.2 Computation shortest pathtrees. 53
6.3 Embedding of filters through iteration 54
6.4 Selection of vertices for thesubgraph 56
6.5 Optimisation of the previous SPT 58
6.6 Change of weights through re-balancing 59
7.1 Time consumption for 10 switches and 5 publishers 62
7.2 Time distribution for 10 switches and 5 publishers 63
7.3 Time consumption for 10 switches and 10 publishers 64
7.4 Time distribution for 10 switches and 10 publishers 64
7.5 Time consumption for 10 switches and 20 publishers 65
7.6 Time distribution for 10 switches and 20 publishers 65
7.7 Flow reduction for 10 switches 66
7.8 Data rate reduction for 10 switcheso oL 66
7.9 Time consumption for 25 switches and 10 publishers 67
7.10 Time distribution for 25 switches and 10 publishers 68
7.11 Time consumption for 25 switches and 25 publishers 69
7.12 Time distribution for 25 switches and 25 publishers 69
7.13 Time consumption for 25 switches and 50 publishers 70
7.14 Time distribution for 25 switches and 50 publishers 70
7.15 Flow reduction for 25 switches 71
7.16 Data rate reduction for 25 switches oo 00000000 72

vii

7.17 Time consumption for 10 switches and 5 publishers with smaller fragments
7.18 Time distribution for 10 switches and 5 publishers with smaller fragments

7.19 Time consumption for 10 switches and 10 publishers with smaller fragments . .
7.20 Time distribution for 10 switches and 10 publishers with smaller fragments
7.21 Time consumption for 10 switches and 20 publishers with smaller fragments . .
7.22 Time distribution for 10 switches and 20 publishers with smaller fragments
7.23 Flow reduction for 10 switches with smaller fragments
7.24 Data rate reduction for 10 switches with smaller fragments

viii

List of Tables

4.1 Comparison between the formulations 16
4.2 Comparison between the formulations 18
5.1 Summary of advantages and disadvantages of the optimisation solutions 41
5.2 Summary of advantages and disadvantages of the mechanisms 49

ix

Chapter 1

Introduction

Communication and information exchange is more important than ever. The amount of data
that is transferred increased drastically over the years. A lot of our systems that we daily
use are distributed in their nature. To handle the delivery in such a system, which is mostly
asynchronous and does not have a lot of dependencies, we use event notification systems like
publish/subscribe. In such systems bandwidth optimisation is an important part to make them
efficient.

The optimisation of bandwidth usage in publish/subscribe systems is an important topic in
computer science. When we reduce the bandwidth, we can reduce the costs of the system,
because we will need less hardware to achieve the same result or we can support more
participants with the same amount of hardware. We can also use the topology more efficiently
and deploy more applications. All this is possible with optimising the bandwidth usage, which
means in our case reducing the number of events that are sent in the system. Along with the
load on the switch, the individual delay from publisher to subscriber is an important aspect.
Both should be optimised as well to achieve the best result.

With the rise of software-defined networking, we have many more possibilities to influence
the routes, which messages use in a network. Therefore we do not need to rely on distributed
path finding algorithms and can define routes in a centralised way so that content matters and
the route is optimal for our use case. The controller as the central point has a global view of
the entire network and can use this knowledge in the computation. The centralised controller
and the global knowledge is very convenient if we have a way to encode information about
the content of the message so that we can compare this information easily and use it together
with the knowledge about the network to compute optimal paths that consider individual
constraints.

One such possibility and the corresponding publish/subscribe system is presented in [34].
This system shall be used as the basis of our work. Filters are used to encode and identify
the content of the message and to compare it with other messages. Another feature of this
system is the implementation of the broker logic into the network itself and therefore no
more brokers are needed. This reduces the overhead since brokers are normally located on
the application layer. Software-defined networking is used to implement routes in a network
topology. These switches present the broker logic and ensure the correct delivery of the

1 Introduction

messages to the subscribers. The controller computes these routes and the result should be
optimal in consideration of bandwidth, delay, and load-balancing

The computation of these routes is not an easy task and can be quite time consuming, like route
computation in general. A heuristic approach that solves this problem is presented in [41].
This approach focuses on dynamic adaption of the system to newly joined participants. The
time of the integration of these participants into the active system is a major aspect. However,
this approach has the drawback that the solutions are not optimal. We will not consider
heuristics in our approach and will instead focus on the quality of the solution and not the
dynamics of the system, which means we will take more time for the computation. Of course,
we will keep the dynamic in mind and will consider it in the tests afterwards and look for
parameters that allow a trade-off between time of the computation and quality of the solution.
Nevertheless, our focus stays on the quality of the solution, which should be optimal in respect
to the mentioned aspects.

To achieve our aim of optimising the routes, we will employ methods for constraint oriented
programming. For this purpose, we will identify several optimisation problems that can
be formulated as constraint oriented programs. Furthermore, we will identify mechanisms
and transformations, which are necessary, for completing our goal to optimise the routes.
All these components will be organised in a framework which we will present and analyse.
The framework will be assembled out of components, which are exchangeable, and will be
therefore highly dynamic. Further, the framework consists of a surrounding program in which
the components are embedded. This makes it easy to use the system for different optimisation
goals. We only need to change a few components and we are ready to compute a completely
different optimisation. We will present one or more solutions for each problem, mechanism
or transformation and also their combinations. The framework will consist of one of these
solutions which fits our purpose the most.

Structure

The structure of the remaining thesis is organised as follows:

Chapter 2 on page 4 presents the background to understand publish/subscribe systems, SDN
and constraint oriented programming. The fundamental parts and behaviours are explained to
give a further understanding of the topic.

In chapter 3 on page 11 we will take a look at the related work and the approaches they took
in realising optimisation in a publish/subscribe system. We will also regard fractional solutions
that solve a part of the problem we want to solve.

Chapter 4 on page 15 is used to identify different optimisation problems, the mechanisms
needed, and the transformations that are required. Each problem will be formally described so
that we can find solutions for it easily.

1 Introduction

In chapter 5 on page 24 several solutions and mechanisms are presented which solve the
problems that were presented in the chapter before. The solutions will be analysed and their
compatibility with our goals shall be tested.

Chapter 6 on page 50 introduces the framework and explains the collaboration between the
different components.

In chapter 7 on page 61 the results of the framework will be presented. The tests will vary in
several parameters and we will check if there is a good setting where the trade-off between
time consumption and quality is passable.

Chapter 8 on page 77 will sum the thesis up and gives an outlook won the possible future work
in context of this thesis.

Chapter 2

Background and Problem Formulation

2.1 Background

There are three important areas to present before we can go further into details. These three
areas are publish/subscribe systems, the topic of software-defined networking and constrained
oriented programming. Publish/subscribe systems, as well as constraint oriented programming,
especially linear programming, are two well-established topics and there exists a lot of literature
and research which covers these topics. SDN on the other side is relatively new and a lot of
research is going on in this area currently because it gives many possibilities, which we will be
covered in this chapter.

2.1.1 Publish/Subscribe

Publish/Subscribe systems are widely established systems where the participants are loosely
coupled. They are in contrast to remote procedure calls where there is a lot of dependency
between the two participants. Loose coupling as opposed to strong coupling means that both
participants have no knowledge about each other and no dependencies. In publish/subscribe
systems this is normally realised through the broker system. Publishers as well as subscribers
only communicate with the broker system to advertise their events or to subscribe to events.
The broker system then forwards the events to the correct subscribers. There is no direct
communication between the publisher and the subscriber. The function of the broker system is
explained in detail later on. Loosely coupled systems have the advantage that the participants
do not need to have knowledge about each other. This is useful when the components of
the system often change or if they should be independent by design. If one of the endpoints,
publisher or subscriber, changes than there is no need to change the other endpoint. In strongly
coupled systems, it would be different. If one endpoint changes the other one needs to be
changed too because the dependencies are higher and the communication is generally directly
between both participants.

In publish/subscribe systems there exist two kinds of participants with distinct roles. Both
types have their roles. Additionally there exists a facilitator whose role is very important.

2.1 Background

Publisher The first type of participant is the message source, which produces events, the
publisher. It advertises what kind of events it produces to the broker system. It can also
unadvertise events if it does not produce them anymore. After the advertisement, the publisher
starts to produce messages and sends them to the broker system, which forwards them,
further.

Subscriber The second type is the subscriber, the event consumer. The subscriber subscribes
to certain events that it wants to receive. Of course, if it does not want to receive these events
anymore it can also unsubscribe from them. When an event, that fulfils the condition of the
subscription, arrives at the broker system, the broker system notifies the subscriber and delivers
the event. The subscriber then consumes the event.

Broker System In addition to these two participants, there is also a so-called broker system.
This system ensures the delivery of the messages and manages the advertisements and sub-
scriptions. All messages from the publishers are delivered to the broker system and there the
messages are examined and forwarded to the correct subscribers. How this is done depends
on the kind of publish/subscribe system but one way is to do this via a list of subscribers and
their subscriptions. The new events are compared with the list and all matching events will be
delivered to the appropriate subscribers.

The broker system is the heart of a publish/subscribe system. All the logic of the system is
embedded in the broker system. For this reason there are several approaches to increase the
performance and scalability of the broker system because the load can be very high [24, 10,
45, 42, 56, 57].

Furthermore there are two main categories of publish/subscribe systems. These are topic-
based and content-based systems. The difference between these two is the way in which they
categorise the messages.

Topic-based In the topic-based approach, several topics are exposed to which the subscribers
can subscribe. These topics are static, predefined and it is possible that subscribers get
messages, which they do not want but the topic provides. Topics can be seen as logical
channels. Publishers are the ones who decide to which topic their events are published. To
avoid getting unwanted messages, there exist so-called sub-topics. The sub-topics divide topics
into further, smaller parts. This is helpful insofar that subscribers get fewer messages in which
they are not interested but cannot prevent it completely because the topics and sub-topics are
still static. The advantage of this way is that we do not need much computational power for
the broker system. They can simply forward it to all subscribers which have registered for the
topic. The disadvantage is of course the overhead of messages and the false messages that the
subscribers get.

2.1 Background

Broker System

Publish s Notifx 5

(Un)advertise (Un)subscribe
_— > _—

Figure 2.1: Organisation of a Pub/Sub system

Content-based The content-based approach on the other hand filters according to the content
or attributes of the messages. A subscriber can specify which content he wants to receive
and only gets this content. Every combination of publication and subscription can be seen as
an individual logical channel, which means that the filtering is done in a much more precise
way. On the other hand, the broker system needs to compare the content of each event with
every subscription and if there is a match it is forwarded. It depends on the algorithm for the
filtering if this method is time consuming or not but the granularity is of course much higher
than in topic-based approaches and the number of false positives is drastically reduced if not
eliminated. The granularity of the solution also depends on the algorithm used and the time
for the computation. To get good results many optimised filtering techniques were introduced
to lower the time of the filtering and make these systems more scalable, like the one in [24].
The advantage in this approach is the granularity and the possibility for highly customised
subscriptions but this comes at the expense of time.

2.1.2 Software-Defined Networking

The advent of Software-defined networking dates back a few years. It brought new ideas to
distributed environments and gives more control over the network. Control over the network
means that we can control how switches behave and how they forward messages.

The main idea is to separate the logic, calculating the forwarding tables, from the forwarding
of the messages. We can also call it the separation between the control plane and the data
plane. For this, we have a controller that is connected to every switch via the control plane.
Through this connection, the controller can manipulate the forwarding rules of the switches.
The switches do not compute their own rules anymore, but it is possible to have a hybrid
switch where there are forwarding rules, flows, set by the controller and classic ones, which
are calculated in a distributed way. The communication over the control plane is done via a

2.1 Background

Control Plane

Data Plane

Figure 2.2: Organisation of SDN

protocol, in most cases OpenFlow. This protocol allows us to manipulate nearly anything on
the switch and is an abstraction for the manipulation process.

The data plane also has some modifications with regard to "normal" switches. The switch can
modify all the meta data and the matching of a packet is not limited to the IP address or the
MAC address anymore. Additionally, some OpenFlow specific mechanisms give the user further
possibilities like setting the destination of a routing entry to another routing entry and have
multiple steps before the packet leaves the switch.

The benefit of this setting is the control over all the forwarding tables. We can install specific
routes with specific filters so that a participant receives a specific message. In our particular
case that means we can forward the messages from a publisher to a subscriber and filter out
those messages which the subscriber does not want on the way. The filtering of the messages is
done at the same time as the forwarding but it needs a special representation of the content of
the messages to which we will come later. The result of this constellation is a higher effective
data rate because we have lower number of false positives and can transmit more data that is
relevant. In addition, we do not need a broker system anymore, we only need to calculate the
routes once, and the filtering is done passively not actively like with the broker system.

2.1.3 Constraint Oriented Programming

Constraint oriented programming includes a wide area of optimisation domains. One such is
linear programming, which is a well-established area. But constraint oriented programming is
not limited to linear programming. A great variety of problems can be formulated and solved

2.1 Background

Figure 2.3: Sample space given through constraints

through constraint oriented programming. They are divided into domains; the non-linear
domain and finite domain are two examples.

The goal in optimisation is to minimise or maximise a certain objective function. Usually
this function is restricted by constraints, which limit the possible sample space. In linear
programming, these constraints are linear equality and inequality equations. A sample example
would be:

Min Cx (2.1)
Subjectto Bz <a (2.2)
x>0 (2.3)

In this case we try to minimise the objective function C' subject to 2 and under the constraints
that x is greater than zero and Bz is lesser than a. That means we are trying to find a value
for x that holds those constraints and is minimal for the function C'. The two constraints have
the task to limit the sample space and form the constraint set. This constraint set spans a sub
space in the sample space where possible solutions can occur as shown in figure 2.3.

Although there are an infinite number of feasible solutions in this sample space, the turning
points can only occur on the vertices or corners of our constraint set. That means we only need
to check those points to get a feasible and optimal solution. The challenge lies therefore to
find the global optimum for the objective function. However, there is a method that solves
this problem; it is the so-called simplex method. The Simplex Method is a method to find the
optimal solution in a rapid manner and makes this kind of programming very efficient. To this
point in time there are more methods than the Simplex Method, that are even more optimised
and are not limited to only linear programming.

If the variables can only assume integer values than the discipline is called integer linear
programming or only integer programming. This makes it more difficult to find the optimal

2.2 Problem Formulation

solution because the solution needs to be an integer value and the optimal one could be a real
number. One cannot simply take the nearest integer value and take this as the optimal solution
but needs different methods.

There also exist other methods to solve non-linear programs or simply only constraint oriented
programs. It is similar for other domains than the linear one. We formulate constraints via
equations and logical expressions and have an objective function, which we want to minimise.
Their exist methods, based on satisfiability modulo theories, to solve these programs. For all
domains exist solvers, which can solve the domain efficiently. But not all domains can be
solved similar efficient. It is desirable to formulate problems as linear programs, but that is not
always possible. Some problems cannot be formulated as one such program. Although, we will
try to formulate the problems as linear programs, we may not succeed every time and need to
formulate it in another domain or as a mixed constraint oriented program, which means that
we use several domains.

2.2 Problem Formulation

Our output network topology is a directed multi graph G(V, E') where V' represents the switches
and E the edges between these switches. All the edges have a weight w and an identifier f, a
filter. The weight can change over time and so can the filters and hence the edges. Between
two vertices v; and vy there exist as many edges as there are filters. The amount of filters that
are needed is dependent on the computation of the routes. A filter represents information
about the content of events, advertisements, and subscriptions.

This topology is the basis of a content-based publish/subscribe system in which we want to
optimise routes. The system, which is the basis of this work, is presented in [34]. Information
about the content is coded in filters and these filters are mapped to IP addresses, which can
be used to forward the events. The logic of distributing the events, which was previously
incorporated into the brokers, is now implemented in the topology itself. The filters and routes
define the logic and forward the events to the subscribers accordingly. The controller takes
over the role of the broker system by computing the routes, which means creating the routing
logic.

Obviously, we do not have only one publisher and one subscriber in such a system but multiple
publishers and multiple subscribers. The subscription of a subscriber can include events of
many publishers, not always the complete advertisement, but a part of it. The subscriptions
of subscribers and the advertisements of publishers can and will overlap. The overlap of
subscriptions and advertisements can be used to reduce messages in the network if they use
the same edges. This is not always possible, for example, when two subscribers are far away
from each other. However, there are many cases of spatial distance, where it is possible to
reduce messages.

2.2 Problem Formulation

In this given system, we want to compute routes so that subscribers are connected to the
publishers from whom they want to receive messages. This in turn means that there needs to
be a path between each publisher and subscriber where there is a subscription. The overall
bandwidth usage of these paths should be optimal in respect to individual and average delay;
and load balancing on switches. This implies that the weight w on an edge cannot exceed a
certain threshold and the overall weight for the system should be minimal. This means we
are minimising the weight of the topology under the constraints that there is a maximum
individual delay and no switch is over loaded. The bandwidth usage of an edge is represented
by the weight. To achieve this, as a first step, we need to make sure that no more than the
requested content arrives at the subscribers. This can be done through well-set filters so that
they filter out unnecessary messages and reduce false positives. Nevertheless, it is not enough
to ensure the correct delivery of messages; our original goal is the reduction of the load of
the system. Therefore, we encourage the sharing of paths between similar filters. This is
also done through minimising the weight, because a shared path has usually lesser weight.
Furthermore, we will limit the length of the individual paths so that we can limit the individual
delay. Additionally, the load should be distributed so that no switch is overloaded. This can be
done by restricting the number of flows on the switches and the weights on the edges, which
can be manipulated to reflect the situation on the switches.

The goal of this work is the optimisation of the topology and associated problems. We need to
reduce messages, load on switches and delay of connections on the complete network while
maintaining the connectivity between publishers and subscribers. To achieve this we will
introduce a framework with different components. Every component can solve a sub problem
of the whole task and thus presenting us with a solution for the whole optimisation.

10

Chapter 3

Related Work

Optimisation and specifically the domain of linear programming are fields that have existed
for a long time already. Algorithms like calculating the shortest path between two nodes in a
graph are used in examples for linear programming like in [20] or [54], where the path is a set
of several connected edges where the first one is the source and the last one is the sink. These
examples are widely spread and often used. But mostly only the path between two nodes is
considered. Our goal is to calculate a spanning tree from one publisher to multiple subscribers
and merge these trees according to the filters so that we have one big route in the network
where individual routes are identified by filters. One such approach is presented in [41]. This
approach has its focus on dynamism and has therefore a greedy heuristic to cope with the
changes that can happen in the network and which the algorithm needs to take care of. It
also needs to ensure that subscribers and publishers are connected. As soon as a publisher
joins, a tree for this publisher will be computed, if there is none with the specified filter, and all
subscribers are added to this tree. This algorithm can deal with dynamism pretty well, but over
time the trees can degenerate. A tree is calculated only at the beginning. If another participant
joins that fits a tree it will be inserted into that tree. That entails the problem that the tree
can differ from a good solution over time in aspect of the length of the individual paths and a
new tree would be more beneficial. This heuristic approach may produce more than necessary
false positives in this case because the optimal routes are not used. It seems a better idea to
compute the tree again occasionally and adapt the filters to the new routes.

There are also multiple other solutions which construct trees and all have some advantages but
also some disadvantages that make them unsuitable for our purpose. Minimum spanning trees,
used in the heuristic approach, and Steiner trees are two well-known approaches. Minimum
spanning tree algorithms are presented in [36] and in [46]. These are the mostly known basic
algorithms. But there also exist new algorithms that are optimised like the one in [18].

A minimum spanning tree is a tree, which connects all vertices in a graph G(V, E) with the
minimum overall weight. For this every edge has a weight and the optimal solution according
to the weight is chosen. The number of edges to connect every vertex is |V — 1| and therefore
the number of edges in a minimum spanning tree is the same. The disadvantage in this solution
is the possibility of a very long individual delay. There is no upper bound on the maximum

11

3.1 LIPSIN

delay between two vertices because in the worst case there are all |V — 1| edges between two
vertices. This is the case if the minimum spanning tree is a chain of vertices.

Something similar is the case for Steiner tree algorithms. As with minimum spanning trees,
there are multiple algorithms, even some for integer and linear programming [3, 4, 50, 51].
Again, the length of a path between two vertices is not limited by any bound. We can get the
same problem as with the minimum spanning tree, where some paths are considerably longer
than the others. This should be avoided. The individual path length of every path should be
around the same value and therefore limited. With this, we can be sure that the events will get
delivered around the same point in time.

The approach in [32] tackles the problem of the path length. It uses a minimum spanning tree
and a shortest path tree to choose the best path for every vertex and can guarantee a certain
length and a certain weight of the overall tree. But the drawback is the formulation for only
one root. Normally, this is sufficient and a tree only has one root, but in our case we would
need more than one root, because we have more than one publisher. Although this approach is
interesting, it would not be sufficient. We would need to extend it so that we can have more
than one root and we also need to formulate it as a constraint oriented program, which can be
problematic as this algorithm uses iterations to achieve its goal.

There exist implemented publish/subscribe systems, some of them use one of the techniques
described before, some have their own concept. A good overview of such systems is given
in [39] and [5]. We will take a look at some of them but we must mention that none of these
systems is designed to work together with SDN. We will concentrate on systems deploying
content-based routing. Some of the systems have a broker-based system architecture and some
rely on a peer-to-peer architecture. We do not have a broker based system anymore. The logic
of the brokers was transferred to the network itself. The flows on each switch implement the
logic of the forwarding of the messages to the correct subscriber and the controller prepares
the logic by computing the routes. Even so, we can use some of the knowledge of these systems
to build our own framework.

3.1 LIPSIN

Our first candidate is LIPSIN. Although it is a topic-based approach it has quite a few similarities
with our approach in terms of the layer on which it operates. The idea, the same as in SDN,
is to utilise the network layer directly and manipulate the forwarding tables so that we can
prevent the overhead of the application layer. Similar to it, it also contains a control plane and
a data plane where the control plane has the functionality to maintain connectivity between
participants and establish this connectivity. The data plane takes care of the forwarding of
the messages as well as transport functions. But different to SDN, this approach is completely
based on the publish/subscribe paradigm which means that we would need a completely
different architecture to deploy it. We have two phases in this system. The first is the so called

12

3.2 SIENA

recursive bootstrapping where the control plane on the switch discovers the underlying topology
and communicates with other entities to get a global view of the network. The second one is
the forwarding where link IDs and Bloom Filters, to encode those IDs, are used to realise the
forwarding. A message is forwarded by a forwarding tree where the message has information
about the links it needs to pass in the header. The Bloom Filters are used to create the headers
by encoding the link IDs. The matching itself is then a simple AND operation at the switch.

Although this approach can achieve good performance it has the disadvantage of expressiveness
by using a topic-based approach. Additionally, the Bloom Filters can produce false positives
which can lead to unneeded traffic consumption. But this approach also shows what is possible
by using the network layer with respect to performance.

3.2 SIENA

Our second candidate is SIENA [13]. Basically it is an approach to the same topic as Gryphon,
a broker and content based publish/subscribe system. The difference is the matching algorithm
for the subscriptions. The approach to the event distribution is similar to the one from Gryphon.
The goal is to reduce overhead, that means not all events are forwarded, no flooding takes
place. Events are only forwarded to areas where subscribers are present. The brokers forward
the event to its neighbours, when they have a subscription. This is determined by filter
matching. A subscription is forwarded from subscribers to publishers but only when the broker
does not have a subscription that already includes the new subscription. The matching is
done with so called binary decision diagrams [12]. These diagrams are the representation of
a Boolean function from the subscription and the filters emanate from them. Subscriptions
can share sub-expressions and these sub-expressions make the whole system efficient. These
sub-expressions are only compared once. But the binary decision diagrams are also limited in
their expressiveness and you cannot have too many attributes.

3.3 Hermes

The third candidate, Hermes, is more than a simple publish/subscribe system [44, 45]. It
is a middleware that also includes security and type checking. But the logic is, like with
the other two systems, on the application layer. A broker network is used to forward the
events accordingly. At first, a rendezvous vertex is negotiated to which the advertisements
and subscriptions are routed. The publications will be routed on the reverse path from
this rendezvous vertex to the subscribers, but it is not necessary to route all the publications
through the rendezvous vertex. The vertex is only necessary for the exchange of advertisements
and subscriptions. By this the routes are computed in a distributed way and do not need a
global view. Also publications without new information are not forwarded. Additionally the
subscriptions can have a filter for filtering out the messages the subscribers do not want from

13

3.4 Meghdoot

the publication. The forwarding is done in the same manner as without filters. The whole
approach is on the application layer with multiple layers itself which add to the overhead
but bring additional benefits like security and failure tolerance. The subscription language is
designed to work well with programming language objects. One can map objects directly to
the language.

3.4 Meghdoot

The fourth candidate is Meghdoot, a system which is brokerless and operates on a peer-to-peer
basis [27]. Obviously, this system has a completely different approach to forward the messages,
because we have no brokers anymore. The approach they use is from a different work named
CAN [48, 61], the so called distributed hash tables. The subscription space is divided into a
logical 2n space where each n is an attribute. The peers maintain information about their zone
and neighbouring zones with the appropriate IP address. One peer in each zone is responsible
for the zone. The information about the zones is used for the routing. For every event an event
point is computed and the event is forwarded to the peer responsible for the zone in which the
event point relates to. This makes a broker system unnecessary and ensures the delivery in a
distributed way. The peers do not need any global knowledge but without that it is not sure if
the optimal solution is reached.

If we want to achieve efficient use of bandwidth, a low average delay and individual delay and
load balancing with an optimal solution, we cannot use any of the presented systems. They
cannot guarantee all of our goals, so we need to formulate a new solution. This solution is the
topic of this work and shall be presented in the following chapters.

14

Chapter 4

Modelling the elements in a publish/sub-
scribe system

In this chapter, we want to identify and formulate several optimisation problems. They
can be extracted from the overall optimisation task and can be regarded as autonomous
problems. It is important for our framework later that these problems can also be solved
autonomously. Additionally we will also transformations that are necessary to complete the
overall optimisation. A short overview of topics handled in this chapter along with their
classification is given in figure 4.1.

As the basic topology we have a directed multi-graph G(V, E') with vertices V' and edges
E. This represents the topology of the switches and the connections between them. For
further reference and more detail we will introduce the switches denoted by R = {ry,...,7,}
which is equal to the vertices in the graph but expresses more precisely our intentions in our
models. Additionally we have a set of publishers P = {p;,...,p,} and a set of subscribers
S ={s1,...,8,}. Forp € P and s € S, we write s°"0 C p”“ if events of p match subscriptions
s. The event rate which is streamed from p to s is determined by the rate at which p produces
events, say \, and the overlap between s5% and p”"*, say s540 N pPub.

Optimisation Transformations
Formulations

‘ Multiple paths

Cost

Figure 4.1: Overview and classification of the topics of the chapter

15

4.1 Path

Path Multiple Paths Filters Cost

Connectivity between Connectivity between Distinction of mes- Cost of the system
two vertices multiple vertices sages

Table 4.1: Comparison between the formulations

4.1 Path

In a publish/subscribe system there exists at least one publisher and one subscriber. If the
subscriber is interested in the advertisement of the publisher, then there must exist a connection
between those two for ensuring the delivery. A path can also constrain the delay between
two participants as it can constrain the number of hops between two participants. Therefore,
the first formulation is that of a path between two participants of the system. We will define
a path in three granularities, one by vertices, one by edges, and a hybrid of both. These
three notations are necessary because a path can be used in different scenarios, which require
different formulations. If there are multiple paths, then there also exists a shortest path, which
we aim for later, but first we will model the path because a shortest path means also a low
delay.

4.1.1 Path by Vertices

A path that is described by its vertices is a chain of vertices where each pair is connected and
the first and the last vertex are fixed. Formally, we are looking to find a path for each possible
pair of publishers and subscribers (p, s) € P x S where s C p’** and n defines the maximal
length of a path

1
Xps = (xns, ...,:Eg’s). 4.1)
Over each path events are streamed at rate

Aps =Ny - 8790 plub, (4.2)

Each variable x, | is assigned by the solver of the program to be a value in R U {0}. Paths need
only to be deployed if they are needed:

Vi ZL';S =0 if 5 nplub =g, (4.3)

Otherwise a path should always start in p and end in s.

x, , =1p € Rs.t. pis connected to r, if s5*0 N p"™ £ § (4.4)
ap =75 € Rs.t. s is connected to r, if s°** Np™® £ @ (4.5)
x;,s:TiERifsﬂp#@ (4.6)

16

4.1 Path

To establish a valid path X, we need to enforce meaningful transitions in consecutive variables
of X by defining constraints for the cost function. The cost function will be explained in more
detail later on, we only need it here to show the connectivity of the path. Since paths can be of
different length, we allow a path to consecutively utilise the same switch, i.e.,

i o -
cay, o aptl) = 0if af = a)f 4.7)
Furthermore, we have to ensure that the path for z _, ..., z!! | is connected. Therefore we assign

cost of oo to all pairs of switches which do not share a physical link in the network topology.
That means given a physical topology L : R x R = 0,1 with

L(r;,r;) = 1if r; and r; are connected (4.8)
L(r;,rj) = 0 otherwise (4.9
then
oy, 5, 7yl) = 00 if L(z;, o, 2 Kl) = 0 (4.10)
oy, 5, wpl) = wif Ly, o, 2yl = 1 (4.11)

where w is the weight of the edge.

With this, we have defined a single path over vertices, which are guaranteed connected.

4.1.2 Path by Edges

There also exists an alternative formulation to the problem. In the alternative, the path is
defined by the edges between the switches instead of the switches which lie on the path. The
path is not specifically stated like in the previous formulation, in particular, the order of the
edges is not defined, but rather through the enabling of the use of the edge in a matrix of all
the edges. Therefore, the assumption in this case is the existence of a matrix

yi,j where i,j € RUSUP 4.12)
yij; = 10,1} (4.13)

that represents all the edges with the properties

y;,; = 1 if the edge is used and 4.19)
y;,; = 0 if the edge is not used. (4.15)

We must include the publishers and subscribers into the set of endpoints for edges because we
need to define the starting edge and the ending edge. These edges can only be the one from
the publisher to the switch and from the switch to the subscriber. The other edges need to be
flexible in their deployment.

17

4.1 Path

Path by vertices Path by edges Hybrid

Set of vertices Set of edges (including edges Both sets (not including edges
to publishers/subscribers) to publishers/subscribers)

Connectivity by cost Connectivity by sum of edges Connectivity by cost

List of vertices Matrix of edges Both

Table 4.2: Comparison between the formulations

A path for a publisher p € P and a subscriber s € S has therefore the following constraints:

Ypr, = 1 for r, € R s.t p is connected to 7, if s°** N p?™? £) (4.16)
Yr,s = 1 for rs € R s.t v is connected to s if gSub ﬂpP“b #) 4.17)

S vii = Uik (4.18)

The last constraint is necessary to ensure connectivity. Contrary to the previous formulation,
we do not enforce connectivity through the costs but through the number of outgoing and
incoming edges. They need to have the same amount respectively their sum is zero.

4.1.3 Hybrid

We will introduce a third formulation that merges the two preceding formulations. It may
seem unnecessary at first but we will see in the next section why this formulation is indeed
necessary and convenient. We will not take all the parts of each formulation but enough to
have a formulation that is satisfying enough for our intention.

We will take the path formulation from the path by vertices from equation (4.1) on page 16
and ensure connectivity through the cost between each pair of vertices. Additionally, we will
take the matrix of the formulation by edges from equation (4.13) on the preceding page, but
we can reduce the size of the matrix because we will not need the edges from publishers to
switches and switches to subscribers. We will not adopt the constraints of the path by vertex
formulation because they are not necessary if we have the other formulation. In table 4.2 a
comparison between the formulations is given.

Additionally we need a mapping of the list of vertices to the matrix, which represents the edges.
This mapping is done for every pair of consecutive vertices in the path. That is to say, every
edge ¥, 0;,, is set to one. Of course, this is overhead and it does not seem obvious why we
should need it at this point, but the next chapter will give us more information about this.

18

4.2 Sub Graphs

4.2 Sub Graphs

In a publish/subscribe system we have more than one path. To model this we take the hybrid
formulation because it is easy to extend it to multiple paths. That is also the reason for the
hybrid formulation, to have a possibility to extend the path formulation to multiple paths and
merge them into one formulation. This representation of multiple paths is also very convenient
in respect to our goal, optimising.

Basically we have two kinds of sub graphs. The first we can call shortest path trees where there
is one publisher with all its subscribers The second is the general sub graph where multiple
publishers and subscribers can occur. In both cases, we can do pretty much the same as in the
hybrid formulation, but with more than one path. For every start and end point pair a path
X, s will be formulated and the constraints for the connectivity are enforced. Additionally one
matrix with all edges is needed. Therefore, what we have is a set of paths and a matrix

1 S
(X) X5} (4.19)
vij =10,1}:4,j € R (4.20)

The mapping is the same as in the hybrid formulation but will be done for every path. The
only difference is the fact that if the edge is already set then no change will occur. The edge
will be set to one, only if it is not set.

We will see the advantage of this formulation when we address the cost function later on.
However, one thing in advance, it is easier to use a matrix for this. Also positive is the fact
that we still have each individual path, which we can use later on in the section that addresses
filters. Nevertheless, it also introduces a disadvantage that we will cover later on.

4.3 Filters

We mentioned filters before and used them as a tool to tell different subscriptions and adver-
tisements apart. Now we look at them in more detail for providing a detailed explanation.

The task of filters in our scenario is to encode information about a subscription or advertisement.
This is done by using binary strings, called a dz expression, as presented in [34], as filters.
This binary string can encode the content of an event, subscriptions, or advertisement. A dz
expression is defined as follows:

dz = {dz',... d2"} : dz' € {0,1} (4.21)

Every digit represents a dimension in the space of possible attributes. The dz expressions can
have a different length or number of dimensions, but they all have a maximum number of
dimensions n. The dimensions are computed according to the content that is available, and

19

4.3 Filters

can represent this content. The structure of a dz expression perfectly matches an IP address
and so we only need to reserve an IP address space and can use these IP addresses as our
filters. With this, we can use OpenFlow flows and set the matching to the IP address, which we
previously computed. Without much effort we have a way to deploy the expressions directly
and have a basic publish/subscribe system, although there can still be some complications.

With the definition of a dz expression we can formulate what the expression must be capable
of. Let Dz(r;,r;) denote one of the dz established between r; and ;. Obviously, we require

Dz(r;,rj) = 0 if L(rs,rj) = 0. (4.22)
Otherwise
Dz(ri,75) D dz(s Np) ifﬂ(:ﬁ%s,wf;?s) € Xps. (4.23)
To simplify the expression above we define
Dz(ri,rj,p,s) := Lif L(rs,75) =0 (4.24)
and otherwise
Dz(ry,rj,p,s) :=dz(sNp) if El(x;w, x{,js) € Xp s (4.25)

From this, we can estimate the number of flows and overlaps. For instance,

flows(r;) := Z (Dz(r4,75,p,8) # 1) (4.26)

D,s,Tj

gives the number of flows on a switch. If we constrain this number, we can prevent overloading
of a switch if we include the data rate of the flows.

Furthermore we have some additional properties of the dz expression, that are needed. We
will describe these properties in accordance with the formulation by vertices. In general, the
filter needs to forward only those messages that are really needed later on and needs to cut
off the messages that are not needed anymore. However, it is possible that filters on a path
will get longer or shorter from time to time. This is due to our goal to optimise, which means,
share paths. Because of this we cannot set exact constraints for the dz expressions. The only
condition, that counts at any time, is that the filter must be the super set of the dz of the
publisher and subscriber. Therefore

Dz(xz;,s) D dz(pF™ N s5uby if s5ub pPub, (4.27)

The dz expressions can vary from switch to switch if one expression is shared by different
paths. The expression can get longer or shorter which depends on the paths that are merged.
Generally, there are two basic possibilities. The first is that previously shared filters split and

20

4.3 Filters

the individual filters get longer or stay the same, which means they are more specialised and
are therefore a sub set of the previous filter.

V(xi,xj) i < j = Dz(x},) C Dz(;,,) (4.28)

The second possibility is that multiple filters come together on one edge and are merged into
one less specialised filter, which is shorter and a super set of all the previous filters.

V(g zk) i < k= DZ@];,SZ)2 ZDZ(.%;}’SZ) (4.29)
l l

The expression on the last switch, on which the subscriber is connected, should be exactly the
dz expression of the subscriber.

Dz(zy, 5) C dz(s) if §oub pfub (4.30)
The dz expression on the first switch is dependent from the following filters like all other filters

except the one that delivers messages to a subscriber.

Of course we also need a minimum and maximum length of the dz expression. Whereupon the
maximum length depends on the IP space, we get and is therefore already set. Therefore we
define [(Dz) =i :4i € Ni = {1,...,n} where n is the maximum length, set by the IP space.
With this, we can define that all the dz expressions must be equal or greater than one:

Vi : l(Dz(z%) > 1 (4.31)
Also

Vi: l(Dz(z')) < n (4.32)
must apply.
At last, we have the possibility to compare filters. Not only to compare if they are the same
but also to check if they share a common prefix and are therefore similar. We have two dz
expressions, dz; and dz;. What we want to know is how similar they are, that is to say, how
long the prefix is that they share. The use for this will be later explained in the section about
clustering. The comparison can be done by simple pattern matching. We generate a third string,

which is the shared dz expression, dz, with not previously known length. This represents the
prefix of the two other expressions.

dzl = 1ifdz} =dzb =1 (4.33)
dzt =0ifdzt = dzb =0 (4.34)
If dzi # dz% then this means that the prefix has ended.
We also introduce the function
DzS(dz;, dz;) = dz if dz;, dz; have a shared prefix (4.35)
DzS(dz;, dz;) = 0 if dz;, dz; have no shared prefix (4.36)

which results in a dz, if the two dz expressions have a common prefix and an empty string if
they do not have a common prefix.

21

4.4 Cost

4.4 Cost

Before we can define the cost function and its purpose we need to define what a weight and
what its purpose is. The weights in our graph have the assignment to control the load in the
system. We can manipulate these weights, they are not fixed. A lot of the optimisation will
be done through the manipulation of the weights of the edges. First, we need to define what
exactly the weights are and what characteristics apply.

The value of a weight w; j, i, j € R, itself is element of N and has an upper bound B,, and a
lower bound B;.

w;j € {Bl, - ,Bu} eN (4.37)

At the beginning, each edge in the graph has the same upper and lower boundaries but these
boundaries can change from graph to graph. With the size of the interval, the granularity can
be chosen. For some optimisation scenarios it can be necessary to have a very fine granularity,
for others it is sufficient to have a coarse granularity. The bounds of the weight can be changed
during an optimisation to converge the bound to an absolute value at the end.

With the weights and its properties defined, we can attend to the cost function. On the one
hand, the cost function ensures the connectivity for our path formulation by vertices and on
the other hand, the cost function obviously calculates and represents the costs of our choice of
edges. Luckily, we can define a very easy cost function due to our definition of the weights.
The weights of the edges as well as the boundaries of the weight can be changed. This allows
us to outsource the weight computation and to concentrate on the cost function by assuming a
weight matrix for every weight. The cost for taking an edge is therefore the weight of the edge
itself.

C(i,j) =W;; € {Bl, ceey Bu} eN (4.38)

Now we only need to multiply the weight matrix with the matrix of used edges, y; ;, and we
have the actual weight for the optimisation process. Afterwards the weights need to be updated
with the new load on the edges.

The load on the edges can be expressed in form of the streaming rate over this edge. Every
path that uses this edge and has not exactly the same messages as another path needs to be
added. However, we will not only add the value of the streaming rate because we want that
our two bounds convert to one absolute value and the graph has the optimal weight for the
optimal routes. This is also convenient later in the clustering and fragmentation part. We can
express the influence of other paths and even the influence of other applications this way. The
overall streaming rate of a switch is

Arp =Y (Aps) 1 VXp s where r; € X, (4.39)
Xp,s

22

4.4 Cost

However, we can subtract the messages that are duplicates. Those will be forwarded only once.
Of course, there needs to be a constraint that limits the stream rate for a switch like

A, < a. (4.40)

where a is a certain value that cannot be exceeded.

The cost function has also the task to assure sharing of paths and optimising the bandwidth us-
age. The bandwidth usage is conveniently represented by the streaming rate, which influences
the weight and automatically has an influence on the cost function. The sharing of the paths is
done through the optimisation process where the result has the lowest weight. To achieve this,
the paths need to be shared.

Through the definition of the cost function for unconnected switches, the cost function also
ensures the connectivity of a path without any more effort. Additional constraints for the
number of flows on a switch and the streaming rate of a switch balance out the load of a switch.
For the length of a path, we do not need additional constraints, the path formulation takes
care of that.

Now we can fully concentrate on finding the best balance between overall bandwidth usage,
individual bandwidth usage on each switch, average delay and individual delay and of course
load balancing.

23

Chapter 5

Sub Solution Formulation

In the previous chapter we presented several models that we need in our system. Now we will
formulate the problem and the solution thereof. Some problems have multiple solutions each
with its advantages and disadvantages. The idea is to select one solution for each problem and
put them together into a framework which we will present in the next chapter. The problems
and therefore the solutions are dependent on each other in this framework. So we will also
present the input and output of each solution to give an overview how they can interact. We
will also present solutions to the transformation problems and mechanisms which we presented
in the previous chapter. Solutions in the framework can be exchanged for other solutions that
solve the same part of the overall problem. For slightly different problems it can be sensible to
choose another solution.

Some of the problems can be merged and solved in one solution. This can have its advantages
but also its disadvantages. An advantage is certainly the knowledge that is combined in
one program. We do not need mechanisms to communicate between the components or
to transform the output. But combining multiple problems will most likely increase the
complexity and also the time to execute the program. Although the communication can be
an overhead the structure of the framework with multiple components increases its flexibility.
The simple exchangeability of each part with a different one is very convenient and would be
destroyed if we merge too many parts together. With the concept of exchangeability of parts
we can easily optimise in different directions if we change a few components. We can choose
the optimisation goal or the impact of parameters which can be the weight, the delay, load
balancing or something completely different.

5.1 Optimisation solutions

At first we will present the optimisation solutions. These will be solving the optimisation
models we presented in chapter 4 on page 15.

24

5.1 Optimisation solutions

5.1.1 Shortest Path Tree Solution

The first solution that is presented addresses the problem of finding a path between two
participants. Later in this subsection a solution for the problem of one publisher and multiple
subscribers is presented. These solutions are straightforward and easy to implement. They also
fit well in a multi-component framework.

Compute Shortest Path
The formulation for a program to search for the shortest path between two vertices is easy and
this program solves the problem optimally.

The input to this computation is the topology with its weights w; ;, i, j € R, on the one hand
and the publisher/subscriber pair on the other. That is to say both ends of the path are defined.
The topology is a graph G = (V, F) but only the edges are of interest to us. The input of the
program is the set of edgese; € E'in G

ISP :{617"'7671} (51)

where two edges are already set. The two edges, that are set, are the one from the publisher to
its switch and from the subscriber to its switch.

The output is therefore a set of shortest path

Ogp CIsp=SP. (5.2)
The program itself is the following:
Min Z CijYi j i,j €ER (53)
Subjectto Y w1 ;=1 (5.4)
Z ye,N =1 (5.5)
D ovii= > Yk (5.6)
vij = {0,1} (5.7)

y;,; are the edges and c; ; the cost of the edges which was explained in section 4.1.2 on
page 17.

We minimise the amount of edges in the solution and have the connectivity as a constraint. This
is formulated over the incoming and outgoing edges; their sum has to be zero except at the start
and end point. It is possible to compute multiple shortest paths for one publisher/subscriber
pair by excluding the previous solutions through constraints. This can be used in the next
step, presented in the next sub subsection. It is also possible to get the optimal and some

25

5.1 Optimisation solutions

sub-optimal solutions with the same computation. Sub-optimal solutions can be used in the
same way as optimal solutions in the next steps to give more variety for further processing.

If we run the computation several times we will have more than one shortest path in the set
of shortest paths. Sub-optimal values for one path can also be put into the set if we have a
further step that can make use of these solutions. It is also possible to incorporate a more
sophisticated mechanism to prepare the results for further computation but that could also be
too much insofar that we would solve the next step in this step already.

Either way we will take the formulation of a path by edges for a single shortest path where the
path is a matrix where the used edges are marked.

0, if edge is not used
Yij = . 8 . (.8)
1, if edge is used

This format will later be transformed into the hybrid formulation when we have more than one
path to describe. This transformation can be easily done because we already have the matrix
formulations of all paths. We only need to set the edges in the new matrix.

Advantages
1. Fast computation through implementation in linear programming.

2. Ensured connectivity for a pair of vertices on a path through the formulation by the
edges.

Disadvantages

1. Very heavy tree with lots of filters and lots of messages because only individual paths are
considered.

Build Shortest Path Trees

With the given set of paths, a tree for each publisher and its subscribers can be computed. We
have two options in this case. The first is just adding all the paths to one matrix when we
have only computed one path for each pair of publisher and subscriber. The second option
is choosing the best path for every pair of publisher and subscriber out of a set of paths for
those two. The choice of the option depends on the choice in the previous step. When we have
chosen to compute only one path for every pair we can only do the first choice. The second
option would not differ from the first one because we cannot choose between several paths. If
we have several paths for every pair we need to take the second option and choose the best
path.

26

5.1 Optimisation solutions

When we have only one path for each pair and even if we have several paths but not all for
each pair, we cannot guarantee that we will find the overall optimal solution for the tree this
way. Even if only one path that would be needed for the optimal solution is missing, then
we would have a loss of quality in the solution, which means we cannot reach the optimal
solution but only a sub-optimal one. This is the case for every path that we choose but is not
the optimal one for the tree.

The input Ispr of the problem is a set of a set of shortest paths and a shortest path is a set of
edges that is the subset of the topology.

ISPT:{SP17"'7SPH} (59)

For each set of shortest paths a shortest path tree for a publisher will be computed. The output
is therefore a set of shortest path trees

Ospr = {SPT,,,...,SPT,.} (5.10)

The approach to the optimisation is straightforward. We need to select one path out of each set
for a pair of endpoints for all pairs and the overall solution should be optimal in respect to the
cost. The minimisation of the costs can be done through sharing of paths. Sharing effectively
reduces the costs by helping to send a lesser amount of messages. But we cannot randomly
share some paths because the connectivity of publisher and subscriber must remain.

The formulation of the program is as follows

Min Z Ci,jYi,j (511)
Subjectto Y Bpm =1 (5.12)
if (Yn,m,’i,j =1A Bn,m = 1) then Yij = 1 (5.13)

Yomig = {01} (5.14)

Bpm = {0,1} (5.15)

where y; ; are the edges and ¢; ; the cost of the edges.

Yom,i; € {0,1} represents the set of edges where the possible paths are represented as a two
dimensional matrix n x m, n the number of pairs and m the number of paths for each pair and
i and j to identify affiliation. We need to choose one path for each pair that has the maximum
amount of shared edges with the other paths and thus the minimal costs.

There can only be one path from each set for a pair because we do not need more than
one connection between two end points. More than one connection could even be bad
because the subscriber would get duplicated messages. To express this behaviour we introduce
exclusivity which means that only one path for a set of paths for a pair can be chosen.
Through equation (5.12) we can reach exclusivity for each n.

27

5.1 Optimisation solutions

An edge y; ; is enabled, if a path uses this edge. If another path uses this edge as well, the costs
will stay the same. For each chosen path the corresponding matrix y; ; will be merged with
the existing matrix y; ; which represents the tree. As we want to reflect the sharing with the
cost of an edge, we set the value of y; ; instead of adding. Equation (5.13) on the previous
page ensured this. It is not important what the value of y; ; was before this execution, the
only thing of importance is the value after execution. If the edge was enabled already, nothing
changes. But if the edge was not enabled, it is now enabled.

Advantages
1. Groundwork can be done easily.

2. Dynamical with respect to number of paths for each pair.

Disadvantages

1. May not be optimal if all paths were not computed.

Combination Solution

Both of the computations above can be merged into one computation. But we must keep in
mind that if we do more of the problem in one step, the step itself will get more complicated
and will take more time. On the other hand, the quality of the solution could be better if we
combine the steps. If we separate the steps, we would need to compute all possible solution
sets to compute the optimal solution in the next step. We would need to do something similar
in the combination solution, but it is nonetheless more efficient as we do not need to compute
all solutions for the shortest paths. The basic approach is to break away from the idea of
shortest path and consider all participants at once. Then we can find an overall solution more
efficient. But of course we ensure the connectivity of publish subscriber pairs.

The input of this combination solution would be the same as in the shortest path solution with
addition of the publishers and subscribers

]CS - ISP = {617 ey €ny Py -y Py ST, - - 7871} (516)

but the output will differ a bit from the previous solution. We will again have a set of edges
that differs from the input

Ocs ={e1,...,en} (5.17)

The formulation of such a program can be realised as follows. We define a path for each
publisher/subscriber pair. This path is defined through a series of vertices. The first vertex

28

5.1 Optimisation solutions

is the switch to which the publisher is connected and the last one is the switch to which the
subscriber is connected.

Min Z CijYi,j (518)
2'7j
Subjectto X, Vaj,,€ Xips €R (5.19)
T ps=Tp ER (5.20)
:16va5 =r; € R (5.21)
> B(l,r,n)=1 (5.22)
reR
S rxB(lrn) =X, (5.23)
reR
Yo g1 =1 Vap, € Xips (5.24)

So we have a set of paths in equation (5.19) following the formulation in section 4.1.1 on
page 16 for a path. The index [gives us the number of paths and n in equation (5.21) the
length of the path. A further variable B, ,, is needed so that only one » € R is chosen for
every position in X ,, ;. This is done through equation (5.22) and the switch for this position is
constrained to be in R through equation (5.23).

The connectivity is already ensured over the costs of each edge. If there is no connection
between two switches, then this edge will have an infinite weight. Now we just define all the
paths from the publisher to its subscribers and minimise the costs over it. The sharing of the
paths is done automatically through the cost function. The mapping is done in equation (5.24)
which maps the enabled edges of a path to the overall edges represented in y; ;.

This solution is very variable and can be used for several publishers and their subscribers at
once. We only need to take care that the included participants share a common prefix for their
filters. As a drawback this solution can only be implemented as a mixed constraint oriented
program because ensuring connectivity through the costs has its price.

Advantages
1. Optimisation in one step.
2. Multiple publishers are supported.

3. Weights can be used to express load.

29

5.1 Optimisation solutions

Disadvantages
1. Consumes more time if the network is big.

2. Only implementation as mixed constraint oriented program.

5.1.2 Minimum Spanning Tree Solution

There is another solution to compute paths or rather a solution to compute a tree for a publisher,
a minimum spanning tree. A minimum spanning tree is a tree with minimum weight that
connects all the vertices. One could first compute a minimum spanning tree for each publisher
and its subscribers. The paths will then be embedded in this spanning tree. After that multiple
spanning trees can be merged by filters.

The input of this problem is the same as in the shortest path solution, the set of edges
IMST = {617"'7671} (525)

and the output is a minimum spanning tree for the participating vertices, which is again a set
of edges

OMST = {61, .. .,em} =MST (526)

We can use a sub graph instead of the whole graph if we do not need all the vertices. But
it is not a good idea to compute a spanning tree for all publishers and subscribers at once,
except when the tree is balanced. But even then it is not a good idea and it would be better to
group them together according to their filters. On the one hand, we want to have the least
possible amount of messages, which means the least amount of edges, on the other hand, we
do not want to overload some of the switches. We want to distribute the load of the switches
evenly. We could do this by computing spanning trees for publishers and merging them when
necessary. But we would need a fast way to compute spanning trees. Luckily, this is possible, at
least with normal programming. There are polynomial algorithms for the minimal spanning
tree problem. A linear programming solution is presented in [21].

Min) s (5.27)
Subjectto s(y(U)) <|U|—-1 VYU0AUCV (5.28)
s(E) = |V| -1 (5.29)

5 <0 VeeFE (5.30)

We have the cost function in equation (5.27) where T is the edge set of a spanning tree
and we minimise the cost function. Thereby c is the cost vector with the costs of each edge.
Furthermore we have a set of vertices U C V and ~(U) which marks the edges which have

30

5.1 Optimisation solutions

both endpoints in U. The shortcut ¢(B) is used to indicate > (¢; : j € B) for any set A and
B C A and vector ¢ € R4,

We see that it is indeed possible but it brings its problems if we formulate it in a linear program.
One such problem is the huge amount of constraints that we would need. But minimum
spanning trees also have the drawback that some paths can get really long. The worst case
scenario is a chain of vertices. That is an undesired effect that we want to avoid. Although
spanning trees have their advantages we need to look at a different approach to ensure a
maximal path length.

Advantages
1. Known and fast algorithms.

2. Minimal weight.

Disadvantage
1. Linear programming formulation is inefficient.

2. Individual maximum path length cannot be guaranteed.

5.1.3 Balanced Trees

An approach that eliminates the problem of the path length and that can guarantee that the
weight of the tree is not higher than a certain factor of the minimum spanning tree is presented
in [32]. The ideas of a shortest path tree and a minimal spanning are combined. The goal is to
get a good balance between minimising the total number of edges used and also minimising
the delay between the participants through the length of the individual paths. Therefore the
minimum spanning tree and the shortest path tree will be computed. An iteration, started from
the root of the minimum spanning, begins and checks for each vertex if the length condition is
fulfilled. If it is violated the shortest path for this edge is inserted and the iteration continues.

The input of this problem would be the minimum spanning tree and the shortest path tree
Igr = (MST, SPT) (5.31)
and the output would be a balanced graph with a maximum path length

Opr = BT (5.32)

If we try to formulate this as a linear or constraint oriented program we will soon see that
it is very similar to the combination solution of the shortest path tree. We will start with

31

5.1 Optimisation solutions

a graph that consists of the minimum spanning tree and the shortest path tree. Edges that
were not used in one of them are not available in the graph. To ensure the length of every
individual path we need to keep track of the length of each path. The easiest way to do this
is to have a path variable with a certain length. The vertices that are used for this path are
saved in this variable. Then we try to minimise the edges. In other words it would be the
same as in the combination solution. The reasons for this are the adjustments that need to be
made to transform the solution in a constraint oriented programming one. We cannot simulate
iterations very well in constraint oriented programs.

The original formulation will get complicated with multiple roots, also known as publishers.
The formulation only considers one root and the length for a path is from this one root towards
the vertex. Although this solution is good for one publisher it is not suited for multiple ones.
The adjustments for the constraint oriented programming solution have the advantage that we
can formulate it with multiple roots, although we need cycle detection and we could just take
the combination solution.

Advantages

1. Not the minimal length and minimal weight but balanced results.

Disadvantage
1. Problematic with multiple publishers.

2. Constraint oriented programming formulation is the same as in the combination solution.

5.1.4 Steiner Tree

An often used approach in route optimisation is the Steiner tree algorithm. The Steiner tree
algorithm is a combinatorial optimisation algorithm which tries to reduce the number of edges
in a graph while it maintains the connectivity for a set of vertices. [30] The computation is
done by adding additional vertices to the graph. There exist formulations of the algorithm like
in [51] and also linear programming formulations [4] and its optimisations [3]. There also
exist approximation algorithms that solve the problem almost optimally and in polynomial
time. [50]

The input would be our vertices that we want to connect

Isp =V\W (5.33)
VwEWCV:w#PST/\w#SST (5.34)

where Pgp are the publishers for the Steiner tree and respectively Ssp the subscribers.

32

5.1 Optimisation solutions

We borrow the linear formulation from [4]. The vertex set V is divided into U, the normal
vertices, and O, the Steiner points, V = U U O. Steiner points are vertices that are used to
decrease the length between the vertices that need to be connected. In our case the Steiner
points are the points we do not use. Additionally a tree T'(V', E’) is defined. This tree is a
spanning tree where U C V' C V and £’ C E. The goal is to find a tree 7*(V*, E*), which is
optimal with respect to the weight of the tree. This tree would then be the Steiner tree. Since
this is a set covering formulation we need additional auxiliary means. First we need to partition
V into two disjoint sets, V= DUD, DND =0. UND #Pand UND #). O = (D, D) is the
cut set of edges between D and D, there are multiple ones. The program is the following:

m
Min) ¢y, (5.35)
j=1
m
Subject to Z Q; §Yj >1 (5.36)
j=1
1, if edge e; € cut set O;
a; = 8¢ € ‘ (5.37)
0, otherwise
The variable i = 1,. .., o defines the Steiner points where the maximum amount of points is o
and the variable j = 1,...,m the edges in £ where the maximum amount is m. The weight
for an edge e € E' is ¢;. We try to minimise this weight.
Now we define the set
Y =1 Ym) (5.39)
which represents the optimal solution for the program and the set
T" ={ejly; = 1} (5.40)

which represents the optimal solution for the Steiner problem.

Although this is an established algorithm and is used quite often we are confronted with the
same problem as in the subsection with the minimum spanning tree. Individual paths can get
too long and the tree is not balanced. We cannot ensure the length of a path and that can
be a problem if some delays become too high. We want to achieve an overall balanced route
where no delay is significantly higher than any other. Besides, we can get a lot of cycles if we
compute a tree with multiple publishers and want to use generalised rules for the filters. Also
the initialisation of the first graph and the adding of new subscribers and publishers may not
be as fast as needed.

33

5.1 Optimisation solutions

Advantages
1. Well researched algorithms.

2. Approximation algorithms in linear time.

Disadvantages
1. Not balanced.

2. Individual paths can be very long.

5.1.5 Centre switches

This approach is similar to the one in section 5.3.1 on page 43. It is the attempt of constructing
of a spanning tree with selected switches as centres of the paths. At first, there is only one
switch as the centre. Every path from publisher to subscriber is via this switch. The input is
therefore the multiple shortest paths and the first and only centre switch C'S;

Ics = (SPy,...,SP,,CSy) (5.41)

Through this we ensure that there are no cycles, because we control all the paths. But of course
if the network has a certain size there would be too many paths via this switch. Therefore we
search for more switches that can serve as centre switches. The paths are distributed between
them according to the path lengths and the filters. We can reduce the load of the switches and
manipulate the length of the paths accordingly. This results in the output of new paths and
new centre switches

Ocs = (SPy,...,SP,,CSy,...,CS,) (5.42)

In figure 5.1 on the following page we start with one centre switch and end up with three of
them.

But the placement of the switches presents a problem. We only have knowledge about the
shortest paths between each publisher and subscriber pair beforehand. We need to compute
the quality of the placements of the switches and set them in the right spots. This is the same
problem as in the previous solution but maybe we can use mechanisms similar to clustering
mechanisms to do that.

It is important to distribute the paths according to the filters or else we would not have any
benefit out of it. We then need to compute the shortest paths between the publishers and the
centre switches and the centre switches and the publishers. This computation can be done in a
very effective way so there is no problem in doing this multiple times. There also exist some
paths between centre switches to distribute messages that arrive at one centre switch but the
subscriber is connected to another one.

34

5.1 Optimisation solutions

s, s,

(a) Initial situation (b) Situation after computation

Figure 5.1: Computation with centre switches

For a linear or even constraint oriented program we need to outsource the filter matching.
Although it can be done in a linear program it is not efficient, which is shown later. Also, we
need to divide the program further to formulate it. The process if iterating through several
problems in one program is not working well, especially if some of the problems have sub
problems themselves. The sub steps we need to do are the following:

1. Clustering of the filters.
2. Calculation of suited switches.
3. Computation of the shortest paths.

We have already shown the solution for the last point and the solution for the first point will
follow later. The second point was already presented in the previous chapter. But if we do it
with sub steps it is possible to get some cycles, only the complete step would prevent them,
because only then we have complete control. On the other side, the complete step would be
cumbersome to implement as a constraint oriented program.

35

5.1 Optimisation solutions

Advantages
1. No cycles through the means of construction, if done in one step.
2. Centre switches can be chosen, but...
3. Partitioning according to the flows is possible.

4. Minimal amount of edges between centre switches.

Disadvantage
1. Computation can be very time consuming.
2. ... computation of the location is time consuming.

3. Not balanced in matters of path length.

5.1.6 Clustering

To get better results in computation time we can partition the graph into several sub graphs.
The overall time will reduce, but it also has an effect on the quality of the solution. When
we do not consider all vertices and edges in one computation we need to have some fixed
vertices and edges to ensure connectivity between the partitions. These cannot be changed in
the optimisation and can therefore reduce the quality. Clustering and fragmentation can both
reduce the size of the graph and partition the graph into sub graphs. We will see clustering
as a means to group similar participants together according to the content they produce or
consume. That means that clustering will be done for the filters and reduces the edges in a sub
graph. Fragmentation will be seen as a means to partition those sub graphs even further and
reduce the number of vertices that are considered.

Prefix Matching

Prefix matching is one way to compare two filters. It is easy to implement it and it is sufficient
for a prototype implementation. There are several algorithms for pattern and prefix matching.

If we want to use the topology in the best possible way and produce the minimum amount of
messages and also false positives, we need to merge some paths that do not have the exact
same dz expression but a matching prefix. Prefix matching can be done in an easy way with
normal programming methods. The naive way would be to compare both dz expressions step
by step, one bit at a time. Then one can save the length of the common prefix and the prefix
itself. Incidentally the dz expressions are bit strings and can be easily compared. We could also
compare intervals of dz expressions which reduces the time but also the accuracy of the prefix.

36

5.1 Optimisation solutions

Before we try to reduce the time in this way;, it is a better idea to use more advanced methods
and accept more complexity in the implementation.

The input are the two dz expressions that we want to compare, dz; and dz;
IPM = (dzl, dZQ) (543)
and the output is a prefix, that is also a dz expression, dzs, that can be empty

Opnr = dzs. (5.44)

There are optimised ways to do this like in [33] and [62]. But right now the important question
is if this problem can be solved as a linear program. Currently there are no attempts to solve
pattern matching as a linear program. One of the reasons is that it is not really an optimisation
problem. We only compare two strings and give the longest prefix back. The other reason is
the amount of constraints we get if we want to compare the expressions bit by bit. We would
need to formulate a constraint for each comparison and the longer the expressions are the
more constraints we would need. For a linear program it is therefore advisable to divide the
expression in some parts and only compare the parts. This gives us lower granularity but lesser
constraints and therefore lesser execution time. Additionally we face the problem that we
need to formulate a linear program every time we compare two dz expressions and this is will
happen very often.

Nonetheless we can formulate the linear program as follows. Again, we have two dz expressions
dz and dzo. These are the expressions that we want to compare, both have a certain length.
Additionally we need a variable dz3 where we save the result of the comparisons. Then we
need as many constraints as the length of the expressions are.

Min/Max [(dz3) (5.45)
Subject to dzi = 1if dz} = dzb =1 (5.46)
dzs = 0if dzt = dzh = 0 (5.47)

What we set as our objective function is not important, we just use the length of dz3 which we
can minimise or maximise. The constraints ensure that there is only one value and this value is
the length of the prefix.

Although we can formulate a linear program, the better way to do this is with normal program-
ming because even when the linear program is faster in solving the problem we still need to
initialise it every time.

Advantages

1. Easy to implement in normal programming languages.

37

5.1 Optimisation solutions

Disadvantages

1. No reasonable linear programming implementation.

Distributed Spectral Cluster Management And Alternatives

Of course there exist several cluster mechanisms like the one in [52], this one is even a linear
program, and the one in [58]. For the creation of the filters, [58] is used so the algorithm
presented there is a suitable candidate for an optimised version of the framework. For our
current goal, it is sufficient to take an easier one so that we do not spend too much effort on
this part. Nevertheless, for future implementations of the framework this algorithm can be
used.

The input of the problem is a set of dz expressions
Isc = (dz,...,dzy) (5.48)

and the output is a clustering of the dz expressions, which means k clusters cl of dz expres-
sions

Osc = (cli, ..., cly). (5.49)

Right now we will formulate the program according to [52], but first we will look at a problem
that arises with clustering. In clustering algorithms there exists a distance, which can be
Euclidean, rectilinear or other distances. This distance is used as a way to decide which
entities are clustered together. In many cases it is simply the spatial distance between two
of the entities. But we need a different kind of distance in our case, one that represents the
difference between content and that means between two filters. On easy way to do this is the
difference that is represented through the overlapping prefix of the filters which means we
need a mechanism to compare them, which is prefix matching. If we can compute something
like a checksum and compare them it would be excellent, but such an approach does not
exist currently. This makes it problematic to formulate the entire problem as a constrained
oriented problem, because pattern matching is not the most efficient solution in constrained
oriented programming. Nevertheless we can formulate the program as follows. What we want

38

5.1 Optimisation solutions

to minimise is the maximum diameter among the clusters we generate. The program looks like
the following:

Min D,z (5.50)
Subjectto Dy > d; jx;px k1 Vi, k:i=1,...,n,5=1,...,n,k=1,... | K (5.51)
ixikzlw:i:l,...,n (5.52)

k=1
Doz > DipVEk :k=1,... K (5.53)
zin € {0,1} (5.54)
Dy >0k :k=1,....K (5.55)

K is the total number of clusters, Dy, is the diameter of cluster k and D, is the maximum
diameter of all clusters.

For the time being we will be using a simple clustering algorithm which utilises pattern
matching and we will do this as a normal, not constrained oriented program. When there is an
efficient way to compare the filters, we can easily implement a constrained oriented or even
linear program and insert it into the framework.

Advantages

1. Clustering allows us smaller sub graphs where we need to be concerned about similar
filters only.

2. Sub graphs allow us faster execution time.

Disadvantages
1. Can have great influence on the quality of the solution.
5.1.7 Summary

At the end we want to present the summary of the advantages and disadvantages of the
presented optimisation problems in table 5.1 on page 41.

Advantages Disadvantages

Shortest Path Tree Shortest Path e Fast computation, e Heavy tree.
LP implementation.
e Ensured connectiv-

ity.

39

5.1 Optimisation solutions

Advantages

Disadvantages

Build Shortest Tree

e Groundwork can
be done easily.
Dynamical.

e May not be opti-
mal.

Combination Solu-
tion

e Optimisation in
one step.

e Multiple publishers
are supported.

e Weights can be
used to express
load.

e Can consume much
time.

e Mixed constraint
oriented program.

Minimum Spanning
Tree

e Known and fast al-
gorithms.
e Minimal weight.

e LP formulation is
inefficient.

e Maximum path
length not guaran-
teed.

Balanced Tree

e Not minimal, but
balanced.

e Problematic with
multiple publisher.

e COP formula-
tion the same as
in combination
solution.

Steiner Tree

e Well researched al-
gorithms.

e Approximation al-
gorithms in linear
time.

e Not balanced.
e Paths can be very
long.

40

5.2 Transformations

Advantages

Disadvantages

Centre Switches

No cycles, if done

e Can be very time

in one step. consuming.

e Centre switches . computation of
can be chosen, the location is time
but... consuming.

Partitioning possi-
ble.

Minimal amount of
edges between cen-
tre switches.

Not balanced path
length.

Clustering Prefix Matching e Easy to implement. No reasonable LP
implementation.
Clustering e Smaller sub graphs Can have great in-

with similar filters.
Sub graphs allow

fluence on the qual-
ity of the solution.

faster execution
time.

Table 5.1: Summary of advantages and disadvantages of the optimisation solutions

5.2 Transformations

Here we will present a transformation that is necessary to complete the forwarding of the
messages in the network.

5.2.1 Filter Embedding

Independent from the solution we choose to compute the paths we still need a solution to
embed filters in these paths to reduce the number of overall messages and false positives.
Although we did something similar by minimising the edges, we did not prevent false positives
in every occasion. Through reasonable applying of filters we can reduce the number of
messages that need to be sent. But it is important to maintain the correct delivery of positive
messages. It never should be the case that a message does not arrive at its destination although
it should have. Thus the filters should be as specific as possible to decrease false positives

41

5.2 Transformations

but sufficient unspecified to forward all messages that need to be delivered. It will not be
possible to have no false positives at all but it would be desirable to have no false positives at
the subscribers and only a minimum amount of false positives in the network.

The input will be a sub graph of G, G, the advertisement of the start point A; and the
subscription of the end point B,

Irg = (GSaASaBs)- (556)

The output will be G with added filters which we will call G/
Osr = Ggy (5.57)
Gy itself is a sub graph of Gy which is G embedded with filters.

We need a mechanism to check if there are similarities between two filters. This can be done
either through pattern matching or some clustering techniques. However, the formulation as a
constrained oriented program brings the problem that we need to compare filters, which is a
problem, because something like pattern matching is cumbersome. It is reasonable if we do
not use constrained oriented programming in this case and instead use normal programming
for this path. Nevertheless we can formulate a constrained oriented program but we would
need one for each comparison because the length cannot be changed dynamically. This would
not be very efficient.

Our basis is the graph
Gs(Vs, Es) (5.58)
with the paths

The program would look like the following:

Min > Nu(vs) (5.59)
Subjectto Nu(vs) <A v € Vs (5.60)
Dz(x]', 5, 8) = dz(s) (5.61)

Dz(xj, 2 tL) D dz(s) (5.62)

leP,S vx%,p,s € Xl,p,s ER (5.63)

Nu defines the number of flows on a switch in equation (5.60). In equation (5.61) and
in equation (5.62) we set the constraints for the dz expressions. The first defines the last
expression to the subscriber and the second the other ones between publisher and subscriber.

Although this is a transformation, we can formulate it as a constrained oriented program.
But that does not mean, that we can implement it easily. That is not the case. It would
get inefficient quite fast as it would need a lot of constraints for the dz expressions and the
limit of flows on the switches. This will be computed faster if we use a normal programming
language.

42

5.3 Mechanisms

Advantages

1. Helps in minimising the number of false positives.

Disadvantage

1. Too many constraints in constrained oriented programming formulation.

5.3 Mechanisms

In this section we present mechanisms that help us solving the optimisation problems. Some of
the mechanisms are essential like the cycle detection, some are obligatory.

5.3.1 Virtual Publishers/Subscribers

It could also be a good idea to introduce overlapping constraints for the computation of the
shortest paths. This can be advantageous for the choice of shortest path in a scenario where we
compute more than one shortest path for each pair of publisher and subscriber. To realise this
constraint we can introduce a set of virtual publishers V' P and a set of virtual subscribers V' .S
to serve as merge points for paths. These publishers and subscribers will be placed in such a
way that two or more previously not joined paths will necessarily have some edges they share.
The input is the old shortest paths and the virtual publishers and virtual subscribers

Ivps = (SPi,...,8P,, VP, VS) (5.64)
and the output will be a set of new paths P,
OVp,s = Ppew. (5.65)

But they can also be used in a different way for the fragmentation. How exactly they can be
used will be explained later.

The new paths, that are the result of the constraint, may not be the shortest for individual
publish/subscribe pairs but may be minimal in the overall view. For example in case of figure 5.2
on the next page there are less edges than before.

The idea behind this is to place virtual publishers and subscribers on vertices so that we can
force paths to use this vertex. We would compute two shortest paths and can use the linear
program that was presented earlier. The virtual subscriber consumes the messages that are sent
from the real publisher and the virtual publisher republishes these messages to the original
subscriber. The drawback of the solution is the additional time that is needed to compute the
location of the virtual publishers and subscribers. This search itself is no easy task to solve and

43

5.3 Mechanisms

(a) Initial situation (b) Situation after computation

Figure 5.2: Computation with virtual publishers and subscribers

it is uncertain if it is worth the gain. We would need to solve something similar to the facility
location problem. There exist several linear programming formulations [6, 35, 49] and we will
present one of them. We will take the multi facility location problem out of [49] which is the
following.

We have a number of new facilities f and old facilities g and a weight for the edges w; ; which
describes the weight between a new facility ¢ and an old one j. We also have a weight v; j,
between two new facilities. Additionally we have two distance matrices d(F}, G;) for the
distances between a new and an old facility and d(F}, F;,) between two new ones. At last
there are the location coordinates for the already existing facilities G; : (a;, b;). The output is
F; : (a4, b;) for the coordinates of the new facilities. The standard cost function is as follows

f g
Min > v xd(Fy, Fr) + DY wji = d(Fj, Gy). (5.66)
1<j<k<f j=1i=1

This solution only ensures that a new facility is connected with any of the old ones. But we
need specific connections between the publishers and virtual subscribers and between the
virtual publishers and the subscribers. We can achieve this the same way as in the combination
solution with a path where we define the start and end point. Of course, we would need the
mapping again which adds to the complexity and the time that will be consumed.

44

5.3 Mechanisms

|
é

Figure 5.3: Cycle after the computation

Advantages

1. The sharing of paths can be actively influenced.

Disadvantages

1. The locations of the virtual publishers and subscribers need to be calculated.

5.3.2 Cycle Detection

Although, we will try to prevent cycles we cannot prevent them in any case. Therefore we
need a mechanism that does cycle detection which analyses the graph and warns us if there
are cycles. A depth-first-search plus an additional storage for already visited vertices like in
Tarjan’s algorithm for strongly connected components is quite sufficient. [60] It is possible to
not only detect cycles but also save which vertices are included in the cycle. This is insofar
important that we can add some constraints to our constrained oriented program which ensure
that this cycle cannot occur in the next computation.

The input of this problem is a sub graph SG which can also be the complete graph
Icp=SG CG (5.67)

The output is a set of strongly connected components SCC and these sets should have only
one element so that no cycle exists

Ocp =S5CC (5.68)

A cycle, like the one in figure 5.3, is quite a problem. The only option in this case would be to
take a completely different route if we have more switches connected. If this is not the case we
need to solve this cycle with filters only.

Advantages

1. Cycle can be detected.

45

5.3 Mechanisms

Disadvantages

1. Cycles need to be resolved with additional computation.

5.3.3 Fragmentation

Sometimes it can be necessary to further divide the clustered sub graphs because their size
is too big. The fragmentation of the previously clustered sub graphs can be done via virtual
publishers and subscribers. Intermediate points will be chosen and they are fixed for the
computation. Those points ensure that the fragments are connected and that the direction of
the connection is correct. We take the whole sub graph and divide according to some criteria
like the size or we can even try to approximate the best intermediate points in terms of the
quality of the solution. The input is therefore the sub graph SG

Ir =SG (5.69)
and the output is a set disjoint sub graphs SSG of the sub graph

Or = (SSG) (5.70)
VSSG; € SSG 1 SSG; N SSG \ SSG; (5.71)

Approximating the intermediate points could be quite hard and we should not waste too much
effort for it. The influence on the solution can be balanced by choosing different fragments
in the following computation. We can also use more than one intermediate point if it is
reasonable, for example if we have more than one connection between two fragments. The
intermediate point will then be seen as a publisher/subscriber pair and will be treated as such
in the computation. This means we can ensure the connectivity over multiple fragments while
we optimise these fragments. An example is given in figure 5.4 on the next page.

It may also be possible to do this without fixed intermediate points but in this case we would
need synchronisation through multiple computations. There needs to be some agreement
which points will be taken while the computation is in progress. Right now it is not intended
to have communication between different optimisations directly. It will also be challenging to
implement this communication into a constrained oriented program. It may be impossible at
all.

Advantages
1. Allows us to shorten the computation time.

2. Allows parallelisation.

46

5.3 Mechanisms

Figure 5.4: Fragmentation of a graph into two sub graphs

Disadvantages
1. Intermediate points need to be found.

2. Can reduce the quality of the solution.

5.3.4 Re-balancing

Weights describe the traffic, delay or other properties of an edge or a physical connection,
depending on what we want to optimise. We then try to minimise the overall value of the
weights. It is therefore important to represent the weights reasonably. We want them to
represent the load on that edge. We already have some way to control the delay to a certain
degree, the length of the path. But we do not have any way to control the load. We will use
the weights to represent the current load on the edges. This can be done in two ways.

1. Represent the total load on the edge, for example in percent.

2. Represent a suggestion to choose or not choose the path.

47

5.3 Mechanisms

The first possibility is more static and is not guaranteed to converge to one value. It is possible
that in a future iteration a filter set will not use the edge anymore and we need to subtract the
whole weight that this filter set produced. This can lead to multiple extra computations, but it
can be prevented if we use a more dynamic approach.

The second one is the dynamic approach. It will converge to one value if there is no change in
publishers, subscribers and subscriptions. The weight will only increase slightly to indicate
that the load has increased and that other edges may be more attractive. Furthermore we will
change the boundaries of the edge each time so that the boundaries converge to one absolute
value which represents the final weight. Of course, additionally there is a hard constraint to
ensure that the switch and the edge will not get overloaded. We will call this approach the
re-balancing of weights.

Advantages

1. Allows us to converge the computation.

Disadvantages
1. Additional computation time.
5.3.5 Summary

At the end we want to present the summary of the advantages and disadvantages of the
presented mechanisms in table 5.2 on the following page.

Advantages Disadvantages

Virtual Pulishers / Subscribers e Sharing of paths can be ac- e Locations of VP and VS

tively influenced. need to be calculated.
Cycle Detection e Cycle can be detected. e Cycles need to be resolved
with additional computa-
tion.
Fragmentation e Allows us to shorten the e Intermediate points need to
computation time. be found.
e Allows parallelisation. e Can reduce quality of the
solution.

48

5.3 Mechanisms

Advantages Disadvantages
Re-balancing e Allows to converge the com- e Additional computation
putation. time.

Table 5.2: Summary of advantages and disadvantages of the mechanisms

49

Chapter 6

Framework

While we identified isolated problems in building a publish/subscribe system in chapter 5
on page 24, we now aim to build a framework that couples selected problems into a holistic
solution to minimise the bandwidth usage in a publish/subscribe system. In this framework
the isolated solutions for the problems are components and are coupled together. The idea
hereby is to use those isolated problems in a sequential order and let the component only solve
a single problem. Between the components transformation of the data needs to be done, so
that the next isolated problem can be solved. The components do not depend on each other
and can be exchanged for another component.

The idea for the framework was inspired by the algorithm presented in [32]. Two trees are
generated, a minimum spanning tree and a shortest path tree. While the shortest path tree is
very heavy but ensures short individual path length, the minimum spanning tree is light but
cannot ensure the individual path length. By using the shortest path for a vertex, when the
individual path in the minimum spanning tree is too long, one can ensure the individual path
length and also realise a weight of the tree that is optimal under these circumstances. The
usage of a basis of two trees to compute another one is appealing for a publish/subscribe system
with the constraints we have. In our case we start from the reverse direction, the shortest paths,
because the solution in [32] cannot be easily transformed for multiple publishers. Although
we will concentrate on a static system with one controller and no parallelisation, our approach
can easily be adapted to a distributed environment of controllers with parallel computing
abilities.

The framework gives us the flexibility to choose the effort we use for each problem. The
effort is mainly the time that is consumed for the problem. With more time, in the worst case
indefinitely long, we can achieve an optimal result. The most time consuming part will be
the optimisation of the sub graphs, which is also the part which has the most impact on the
solution. The time for this part can be influenced in many ways, which is shown later.

The basic idea of the framework is presented in figure 6.1 on the following page, where we
can see two phases. The first phase is the initialisation phase where we consider the individual
paths for each pair and build a shortest path tree out of them for each publisher. This correlates
with the problem presented in the previous chapter in section 5.1.1 on page 25, especially the
problems in section 5.1.1 on page 25 and in section 5.1.1 on page 26. Into shortest path tree

50

6 Framework

Initialisation

Shortest
path (tree)
computation

Embedding
of filters

Clustering

Re-balancing
of weights

Cycle
elimination

Iteration
Fragment-

ation

Sub graph
optimisation

Embedding
of filters

Figure 6.1: The flow diagram of the framework

filters are embedded, where the associated problem was presented in section 5.2.1 on page 41.
In the second phase, the iteration phase, we consider the whole graph with all its participants
and filters. The first phase serves as preparation for the second phase to get an overview over
the connections of the participants. In the iteration phase we have multiple components which
are all important for the optimisation. First, the clustering decides which filters we can group
together, that means, which filters are similar enough to be grouped together. This corresponds
with the problem presented in section 5.1.6 on page 36. Following clustering is one of the
components which influence the solution. The fragmentation can be used to partition the
graph further so that we do not need too much time. It can also be ignored when we want to
have the optimal solution for the cluster, but then the computation time will be higher. The
problem of fragmentation was presented in section 5.3.3 on page 46. Next is the sub graph
optimisation where the problem was presented in section 5.1.1 on page 28. Here we compute
the optimal solution for the graph this component gets. If the graph is not fragmented then it
will be the optimal solution for this cluster. But if the cluster is fragmented, then it will be only
the optimal solution for this fragment. The size of the graph, as well as the number of paths
that need to be considered, influence the computation greatly. Clustering and fragmentation
are a way to influence both parameters and determine the time the computation needs. After
the computation we have again the embedding of filters and then the cycle detection. The sub
graph optimisation can produce cycles and need therefore be checked as show in section 5.3.2
on page 45. The sub graph computation will be repeated to ensure an optimal solution for the

51

6.1 Shortest path tree (SPT) computation

graph. Constraints to eliminate the cycle are set in this computation. The only thing left is to
rebalance the weights so that we have a representation of the actual situation. The problem of
the weights and connected with it, the cost function, was presented in section 5.3.4 on page 47.
The overall cycle in the iteration phase is not important right now. This one is used when we
have a dynamic and not a static system. But for the sake of completeness we added it to the
figure.

These components will be embedded in an encapsulation program. This program will take
care of the administrative tasks and organise the components. Some of the components will be
implemented as a linear program, some as constrained oriented programs and some will be
implemented as normal algorithms. But each component will be exchangeable with another
solution for the problem it solves. In the following we will present each component that we
have chosen in detail.

6.1 Shortest path tree (SPT) computation

The SPTs serve as a starting point for further computations thus the shortest paths will be
computed via a linear program as shown in section 5.1.1 on page 25. For this program we
need the graph with its weights and the end points of each path, in this case the edges between
publisher and switch and subscriber and switch. For each publisher/subscriber pair, a shortest
path will be computed through this program. These paths are optimal with respect to weight
for each individual pair but not optimal in a global view. These paths are saved and for each
publisher a tree will be constructed from all the multiple shortest paths, where the publisher is
one of the endpoints. The tree will be constructed by adding all the paths into one graph.

These trees represent the flow of the messages from the publisher to its subscribers, thus these
trees are directed. If we embed all these trees in our given network topology of physical links
we get a directed graph where one edge can be used multiple times. With the embedding of
the trees into the network topology, we need to add the filters to distinguish the multiple paths
on the edges. The complete process of computing the shortest paths, shortest path trees and
filter embedding is presented in figure 6.2 on the next page.

There are two functions for the shortest path computations. First is the approximate overview
which edges and vertices are used for a publisher and its subscribers. The second, and most
important, function is to ensure that the publisher is connected to its subscribers and the
subscribers can receive the messages.

The performance is dependent on the number of vertices and edges we have included but these
parameters do not matter much. When we have a lot of publishers and subscribers and hence
a lot of paths, the overall computation time can cause a small delay. But in later computations
the time for this algorithm is negligible.

52

6.1 Shortest path tree (SPT) computation

ST
E

(a) Path from P to S; (b) Path from P to S,
11
([] ® L4 /‘B [
111
110
[] []
111
i 110
¢ ° 110
(c) The shortest path tree (d) Adding filters to the tree

Figure 6.2: Computation shortest path trees

53

6.2 Filter embedding

- . 0 . K

111 110
111 110 111 110
3
(a) Filters for Subscribers (b) First iteration (¢) Second iteration

Figure 6.3: Embedding of filters through iteration

6.2 Filter embedding

The embedding of the filters is done in the surrounding program. If there exists a more efficient
way to do pattern matching in linear or constrained oriented programs than the one presented
in section 5.1.6 on page 36, one can think about transforming the problem into one of those.
As it is now, the easiest way to do the embedding is in the surrounding program where we can
do pattern matching in an efficient way. It would be desirable to formulate this as a linear
or constrained oriented program because it is normally more efficient, the solvers are highly
optimised. It can also be seen as an optimisation problem and it is therefore preferable to solve
it as a linear or constrained oriented program. But we need pattern matching to determine the
difference between two filters and get the common prefix, so we cannot avoid it.

The input for the program is either a shortest path tree or an optimised sub graph. Both can be
seen as graphs, more accurate, as sub graphs of our original graph. The computation is in both
cases the same. Furthermore we have the position of the publisher and subscribers and the
subscriptions of the subscribers and the publications of the publishers.

The setting of the filters should be in such a way that the number of messages will be further
reduced. It is a valid scenario to assume that not all subscribers will have the same subscriptions.
This means that not all the subscribers want all the messages from a publisher. We need to
ensure that no unnecessary messages will be delivered and this can be done if we specialise
the filters accordingly. This specialisation should be done as soon as possible to reduce the
messages in the network. If a message is not needed at a vertex, that means no filter exists for
this message, then it is not necessary to forward this message to this particular vertex. The
filter on the predecessor can be more specialised to cut this message of or only forward it to
vertices that are interested in this message and have an appropriate filter.

A first idea to realise this, if we assume we have some kind of pattern matching in linear or
constrained oriented programming, is to formulate the constraints in such a way, that the
filters at the subscribers are fixed and all the other ones can be changed. The constraint

54

6.3 Clustering of filters

that needs to be fulfilled is that the predecessor of the filter needs to deliver all messages
that the successor will deliver. The decision will be made according to pattern matching
or similar mechanisms because the filters are coded as a bit string. This bit string defines
which dimensions a subscription or filter has. If we take a filter that is shorter than another
one, but has exactly the same prefix as the other filter, than the shorter filter delivers more
messages than the other one because it has less dimensions than the other filter which means
it is less specialised and filters out lesser messages. A filter needs to be short enough to let
enough messages through but specialised enough to filter the unnecessary messages out. The
optimisation goal would then be to reduce the number of filters on each switch, which means
to reduce the length of the filters. We have reached the optimal solution when we reach the
minimal amount of filters on the switches under consideration of the constraints.

We do not have a linear or constrained oriented program so the previous solution does not
work. We will compute the solution with a normal program but similar to the presented
solution. We will start the same way as before, we will set the filters to the subscribers. But
then we will use the directions of the directed graph and follow them in the inverse direction.
With this we make sure that we filter in the right direction, the one that is more specialised,
the direction from publisher to subscriber. Now we set the filters in such a way, that the
filters forward the same amount of messages as its successor or more, in some cases less when
multiple flows join together on the successor. This will be done in an iterative way until all
the publisher and subscriber pairs are connected with filters so that the subscribers get their
messages. We need to wait at forks until every path after the fork has a filter, until then we
cannot continue.

With this approach, we only filter the absolute necessary messages and not more than that.
Every filter is optimal in regard to its successor and predecessor.

6.3 Clustering of filters

What we now have is a graph where publishers and subscribers are connected and the filters
are embedded so that every subscriber gets its messages. We mentioned before that this
solution is only optimal regarding the weight for each path individually. Clustering is serving
as a preparation for the sub graph optimisation to cluster similar filters together so that the
sub graph optimisation does not need to consider filters in its optimisation.

The clustering of sub graphs can be done in a great variety of possibilities. There exist a lot of
clustering techniques, some more suitable, some less, but none that could be used out of the
box. The time and effort spend for the clustering affects its quality which in turn affects the
quality of the overall solution. This is due to the coupling of the clustering and the sub graph
optimisation. The sub graph optimisation does not consider filters because the comparison
of filters would again create problems for the constrained oriented program. Therefore we
need to prepare the sub graphs in a suitable way with clustering. For now it is sufficient if

55

6.3 Clustering of filters

Figure 6.4: Selection of vertices for the sub graph

we use a simple algorithm that gives us appropriate results. This will not lead to an optimal
solution in the results but a clustering algorithm for this scenario would be a thesis in itself.
There exist algorithms like the one we mentioned in the previous chapter and is presented
in [58] that are related to our scenario. But adapting this algorithm for our scenario would
still take some time. Adapting this algorithm could be one possibility for future work. We will
focus on the framework and thus take a simple algorithm, like going through the graph with a
depth-first-search and pattern matching, to get some clusters.

When we have a cluster composed of vertices and edges we need to add other vertices and
edges to raise the possibility of finding the best path between two participants. We will do
this in an easy and highly scalable way. We will take the neighbours of the vertices already
included and its edges into the cluster. In case of the example presented in figure 6.4 the green
ones are the vertices that are included because one path uses them and the red ones are the
neighbours of these. This can be done again with the neighbours of the neighbours and so on.
Each step adds some vertices and edges to the sub graph and makes it bigger. If we take all
the edges and vertices we can be sure to get the overall optimal solution because no possible
edge is left out. To manage the time consumption of the sub graph optimisation the size is
an important factor which can be influenced through clustering with the presented method.
Another option, if we want to save time, is the partitioning of sub graphs inside a cluster if
these sub graphs are not connected.

56

6.4 Optimisation of sub graphs

6.4 Optimisation of sub graphs

After we clustered the graph into sub graphs according to the similarity of the filters we want
to optimise each of the sub graphs without regard to the respective filters. The filters are added
again after the optimisation.

The optimisation of the sub graphs is a major key point in our optimisation strategy. It
influences the quality of the solution in a great deal. The quality of the optimisation is itself
influenced mainly by the size of the sub graphs and the quality of the clustering. Although
we want to have a solution that can handle clusters as big as possible we will have to rely on
clustering and fragmentation to reduce the size for reasonable usage where the solution can
be sub optimal. The constraints for the program are rising very fast for additional paths and
vertices. This is due to the guarantee of connectivity between the participants that we need to
ensure.

The goal is to minimise the amount of edges we use and to minimise the overall weight of the
sub graph. The idea is that if two or more subscribers have overlapping subscriptions, it would
be cheaper to have a long common path and a fork should only appear at the end of the shared
paths to that the weight of edges is minimal. We therefore share some paths, even if it means
additional messages on this path. But these additional messages have a very similar content
and it is likely that the subscribers which are interested in the content of one of the publishers
will also be interested in the content of the other publishers for which this path is shared.

Another point is the length of the paths. No path should be too long so that the delay on each
path is acceptable. Here we will use a hard constraint that limits the length of the path. The
value of this constraint can be determined in the surrounding program according to the sub
graph. This can vary from sub graph to sub graph dependent on the size of the sub graph.
In the following, the course of action will be presented where the problem was presented
in section 5.1.1 on page 28 and a result of such an approach is given in figure 6.5 on the next

page.

First, we need to make sure that the publishers and subscribers are connected. We will define a
path over vertices with the publisher in the first position and the subscriber in the last position
that makes sure that this happens. The cost between disconnected vertices is theoretically
infinitely high, actually, for the implementation, it is simply a very high value that is far out
of the range of the normal weights, so that by minimising the cost we only have connected
vertices in the path. We now have multiple paths, each representing one publisher and one
subscriber. The edges these paths use will be mapped onto a matrix so that we know which
edges are used altogether. The cost of these edges is represented in another matrix. Now we
minimise the cost accordingly and get an optimal minimal graph for the given problem. We
only need to add the filters so that we can use this graph. Here we use the filter embedding
again.

57

6.5 Re-balancing of the weights

(a) Shortest spanning tree with (b) Optimised sub graph with-(c¢) Optimised sub graph with
filters out filters filters

Figure 6.5: Optimisation of the previous SPT

The optimisation itself can be very time consuming if the sub graph has a certain size and
a certain number of paths. We cannot avoid that at some point the time for computation
would be too high for reasonable usage. This is especially the case for dynamical systems. In
a dynamical system we only have a certain amount of time and until then we need to have
a solution. Although the focus lies with a static system we nonetheless will introduce the
fragmentation later on so that we can compensate the time consumption through smaller sub
graphs.

6.5 Re-balancing of the weights

After we have calculated the sub graphs and embedded filters into it we still do not have a
representation of the actual load in the overall graph. To get the representation we need to
reconfigure the weights on the edges. But we will not be contend with only a representation,
we will use this step for our optimisation as well by changing and converting the boundaries of
the weight on the edges as well.

Not only the conjunctive filters influence the weight of the edges but also the disjoint filters
influence it. As we stated before we do not want to overload any vertex and any edge. To
achieve this, we must consider the weights from all filters and modify the weight so that it
represents the actual load on the edge. But we will not simply add the weight to the edge
because we use the weight in all our optimising processes. We want to converge the weight
of the edge to an optimal weight that represents not only the usage but also a hint if another

58

6.6 Fragmentation

3 3
3 3
2 2->3
(a) Weights before the re-balancing (b) Weights after the re-balancing

Figure 6.6: Change of weights through re-balancing

flow should use this edge or not. Every single weight is in dependence of all the other weights,
if one weight changes, some others can change too. For the process of converging on the
weights we have an upper and lower bound on each weight. The upper bound signals if there
is a transgression of the load on the edge and the lower one gives the minimum amount of
load that is actually used on this edge. With all the steps of sub graph optimisation we try to
converge on those two bounds. In the ideal case we have one absolute value for the weight
of each edge that represents the ideal weight so that all paths are optimal according to these
weights, the length and their individual weight. Of course, this is only the case if we can
assume a static graph, which we can for this assignment.

6.6 Fragmentation

Network topologies can get quite big and the optimisation would need too much time to finish
if we compute a cluster one step. Therefore, we need the possibility to fragment the cluster
into multiple parts so that we can use the sub graph optimisation on smaller fragments. We
will use a similar approach to the one mentioned in [8]. We will use the previously defined
virtual publishers and subscribers in the sub graphs to simulate the flow in this sub graph. The
routes will then be computed as if these virtual publishers and subscribers are real ones. This is
not a problem at all if we look at it in an abstract way. Every vertex that forwards messages can
be seen as a publisher from the point of view of its successors and every vertex in return can be
seen as a subscriber from the point of view of its predecessor. Vertices only know from where
they got a message and to where they need to send this message. If the edge that connects the
sub graphs is fixed then the flow of the message does not change and every real subscriber
gets the messages it has subscribed to. Although it is some additional overhead to get the
edge that is fixed, we need to search for edges that start in a fragment and end in another one,
we will save time for execution of the sub graph optimisation at the expense of quality of the
solution.

59

6.7 Summary

6.7 Summary

With the proposed framework and its components we are able to solve the entire problem
of route optimisation that we presented. Every component can solve a part of the problem
and with the transformations and mechanisms, which we presented; the components can
interact with each other. The components are not that complex anymore and can be exchanged
for other components that solve the same problem with a different approach. Through the
defined input and output this exchange does not pose any problem. Although, some additional
problems, like the need for cycle detection, arise, the trade-off between reducing complexity
and additional overhead is acceptable. The only thing that remains is the evaluation of the
framework itself.

60

Chapter 7

Analysis And Results

After we presented the framework we now want to evaluate the performance and the quality
of the solutions it can deliver. We will take a look at the development of the number of flows
and bandwidth usage during the optimisation as well as the time we need to compute the
optimisation. We will have different settings for different sizes to evaluate the performance and
the effect of the fragmentation on the solution. The main focus lies on the two optimisation
processes, the shortest path optimisation and the sub graph optimisation. But we will also
evaluate the other components even if they do not have an optimisation implementation. It is
still interesting to see which of these components needs the most time for their computation.

7.1 Setting

The evaluation was done on a virtual machine with four cores, but the solver for the linear and
constraint oriented programs did not use more than one core so there was no parallelisation in
the optimisation components. This calls for manual parallelisation of the whole optimisation
process. We did run the tests with different settings. The implementation is Java based and
for the optimisation processes AIMMS with its SDK was used. AIMMS has the advantage to
formulate the optimisation programs in an abstract way so that we are not limited to one solver
only.

For the tests mainly we changed the number of publishers and the number of switches. The
number of subscribers is coupled with the publishers. A static number multiplied with the
number of publishers equals the number of subscribers. This was done so that we have
comparable settings without too much external influence. The graphs were created randomised
with the number of switches it should have and a maximum number of edges between
the switches. The filters were also created randomly but with a minimum length. The
randomisation was done to get different settings and to show that the optimisation can deal
with all graphs. The settings were with 10 switches with 5, 10 and 25 publishers and with 25
switches with 10, 25 and 50 publishers.

61

7.2 Results

10000
" 1000
g
=
o 100
£
H) j l
! Sub
u
Short- Filt
Short- o Cycle e Frag- | Graph
est Clus- | Em- | Rebal-
est Detec- . men- | Opti- .
Path] tering | bed-)) ancing
Path tion . tation | misa-
Tree ding .
tion
M Avg. in ms |39.5238 1 1 1.27451(1.53846|1.29412|477.077 1
M Max. in ms| 172 1 1 15 15 16 1575 1
i Min. in ms 31 1 1 1 1 1 47 1

Figure 7.1: Time consumption for 10 switches and 5 publishers

We chose different sizes for the topology to demonstrate the importance of the size of the
network for the optimisation process, in time as well as in quality. The number of publishers
was adapted to the size of the topology accordingly.

The results presented for each setting will be divided into a graph for the time consumption, a
graph for the time distribution and two graphs for flow reduction and data rate reduction.

7.2 Results

Now we will take a look at the results of the tests to get a better understanding of the
performance of the framework. We divided the tests according to the number of switches.

7.2.1 10 Switches

First of all we consider the situation where we have 10 switches and 5 publishers. We did
not use fragmentation in this case because the sub graphs were not that big. But we used
clustering to distinguish sub graphs with unsimilar filters. Figure 7.1 shows us the average,
maximum and minimum time consumption of each component. Unsurprisingly, the sub graph

62

7.2 Results

M Shortest Path

M Shortest Path Tree
i Cycle Detection

M Clustering

M Filter Embedding
M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.2: Time distribution for 10 switches and 5 publishers

optimisation has the highest average and maximum value. Most of the optimisation relies on
this component. While the shortest path optimisation needs the second most time, time for
rest of the components is negligible.

In figure 7.2 we see the time distribution for the components. Nearly two third of the
computation time is used by the sub graph optimisation whereas the shortest path optimisation
needs nearly one third. The time usage of the shortest path computation results from the
number of paths we need to initialise. The quantity of sub graph optimisation is in comparison
much lower.

If we add more publishers and therefore more subscribers to the topology we logically have
an increase of paths. This increase means that we have to compute more shortest paths in
the beginning but the impact of these computations on the overall time is more and more
negligible. More paths also means more sub graphs or bigger sub graphs which increases the
time spent for sub graph optimisation. This can be seen in figure 7.3 on the following page as
well as in figure 7.5 on page 65 where the average as well as the maximum time for the sub
graph optimisations rises.

In figure 7.4 on the following page and figure 7.6 on page 65 we can see that the sub graph
optimisation takes more and more of the overall time for itself. All other parts become
negligible. This also means that we can easily spend more time for other components to have
better preparation for the sub graph optimisation. We can easily get the time back that we lose

63

7.2 Results

100000
10000
8
= 1000
Q
£ 100
=
i J J
! Sub
u
Short- Filt
Short- o Cycle er Frag- | Graph
est Clus- | Em- .| Rebal-
est Detec- . men- | Opti-)
Path] tering | bed- . ; ancing
Path tion) tation | misa-
Tree ding .
tion
M Avg. in ms |37.1944 1 1 1.13615 1 1.13615|4561.33 1
M Max. in ms| 47 1 1 16 1 16 57143 1
i Min. in ms 31 1 1 1 1 1 94 1

Figure 7.3: Time consumption for 10 switches and 10 publishers

M Shortest Path

M Shortest Path Tree

i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.4: Time distribution for 10 switches and 10 publishers

64

7.2 Results

1000000
100000
n
g 10000
k=
:qj 1000
o 100
Ml 1 1
! Sub
u
Short- Filt
Short- o Cycle er Frag- | Graph
est Clus- | Em- .| Rebal-
est Detec- . men- | Opti-)
Path] tering | bed- . ; ancing
Path tion) tation | misa-
Tree ding .
tion
M Avg. in ms |43.0826 1 1 1.09446 1 1.09446 |44835.5 1
M Max. in ms| 47 1 1 16 1 16 594064 1
i Min. in ms 31 1 1 1 1 1 109 1

Figure 7.5: Time consumption for 10 switches and 20 publishers

M Shortest Path

M Shortest Path Tree

i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.6: Time distribution for 10 switches and 20 publishers

65

7.2 Results

20 Publisher

i Before Optimisation

10 Publisher
M After Optimisation

M Average reduction of

5 Publisher flows per step

0 10 20 30 40 50 60

Number of flows

Figure 7.7: Flow reduction for 10 switches

20 Publisher

i Before Optimisation

10 Publisher
M After Optimisation

M Average reduction of data

5 Publisher rate per step

0 500 1000 1500 2000 2500 3000

Data rate

Figure 7.8: Data rate reduction for 10 switches

66

7.2 Results

1000000
100000
n
g 10000
=
g 1000
- 100 l
" I 1T 1Tl
! Sub
u
Short- Filt
Short- o Cycle e Frag- | Graph
est Clus- | Em- | Rebal-
est Detec- . men- | Opti- .
Path] tering | bed-)) ancing
Path tion . tation | misa-
Tree ding .
tion
M Avg. in ms |51.7944 1 1 1.03995(1.45455(1.03893 [55807.1(1.42424
M Max. in ms| 188 1 1 16 16 16 | 476439 16
i Min. in ms 31 1 1 1 1 1 46 1

Figure 7.9: Time consumption for 25 switches and 10 publishers

in the preparation. But we also see that the sub graph optimisation cannot handle sub graphs
that are too big. Although, it seems that the average time consumption is pushed high through
one or two sub graph optimisations that need very much time. To approach the problem of big
graphs, we have introduced fragmentation. Results for this are presented later.

Now let us take a look at the development of the amount of filters and the data rate when we
use the sub graph optimisation. In figure 7.7 on the preceding page we can see the reduction of
flows for three different numbers of publishers. The number of flows reduces with a reduction
in number of publishers. If we have more publishers, we have lower variety for the deployment
of flows, which results in lesser reduction of the flows.

In figure 7.8 on the previous page we can make the same observation for the overall data
rate in the network topology. The more publishers we have, the less we can achieve through
optimisation because we do not have enough variation in possibilities, which in turn results in
lower data rate reduction. Although flow reduction does not necessarily mean reduction of the
overall data rate, we can still achieve data rate reduction with flow reduction.

67

7.2 Results

M Shortest Path

M Shortest Path Tree
i Cycle Detection

M Clustering

M Filter Embedding
M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.10: Time distribution for 25 switches and 10 publishers

7.2.2 25 Switches

When we look at the time consumption and time distribution between different components
in the setting with 25 switches, we can see a similar picture. The overall time consumption
rises as the time consumption for the sub graph optimisation rises as we see from figure 7.9
on the preceding page to figure 7.11 on the next page and figure 7.13 on page 70. The time
distribution stays the same as in the previous setting with the sub graph optimisation as the
main consumer as we see in figure 7.10, figure 7.12 on the following page and in figure 7.14
on page 70. In general, this means that we should focus on the sub graph optimisation for
performance optimisation or on preparation for the sub graph optimisation.

In contrast to the setting with 10 switches, in the setting with 25 switches, we can better
optimise the number of flows and data rate. When we have more switches we have more
possibilities to choose from and can find better overall solutions. This is reflected in figure 7.15
on page 71 and figure 7.16 on page 72 where we can see the difference in the situation at
the start and at the end of the optimisation. But we need more time because we have more
computation steps which is a slight drawback.

It is a bit surprising that the shortest path solution is not that bad with respect to the number
of flows. Although, it is quite bad if we look at the overall data rate usage for the shortest path

68

7.2 Results

1000000
100000
n
g 10000
k=
:qj 1000
- 100
| i | a1
! Sub
u
Short- Filt
Short- o Cycle et Frag- | Graph
est Clus- | Em- .| Rebal-
est Detec- . men- | Opti-)
Path] tering | bed- . ; ancing
Path tion) tation | misa-
Tree ding .
tion
M Avg. in ms | 50.913 1 1 1.11167(1.47312(1.76845(19873.6(1.31183
M Max. in ms| 187 1 1 93 16 873 | 317179 16
i Min. in ms 31 1 1 1 1 1 172 1

Figure 7.11: Time consumption for 25 switches and 25 publishers

M Shortest Path

M Shortest Path Tree
i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Rebalancing

Figure 7.12: Time distribution for 25 switches and 25 publishers

i Sub Graph Optimisation

69

7.2 Results

10000000
1000000
é’ 100000
k= 10000
Q
§ 1000
& 100
| n
! Sub
Short Short- | Cycle Filter ¥ a " b Re-
rt- rag- T
© est De- Clus- | Em- a8 a? bal-
est] men- | Opti-
Path tec- | tering | bed- . . anc-
Path . . tation | misa- .
Tree tion ding . ing
tion
M Avg. in ms 48 1 1 1.11167 1 2.3388 | 91714 |1.37838
M Max. in ms| 172 1 1 2979 1 1357 |1300977| 15
i Min. in ms 31 1 1 1 1 1 62 1

Figure 7.13: Time consumption for 25 switches and 50 publishers

M Shortest Path

M Shortest Path Tree

i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.14: Time distribution for 25 switches and 50 publishers

70

7.2 Results

50 Publisher

i Before Optimisation

25 Publisher
M After Optimisation

M Average reduction of

10 Publisher flows per step

0 50 100 150 200 250

Number of flows

Figure 7.15: Flow reduction for 25 switches

solution. Nonetheless, this can be helpful for further consideration to change the focus of the
optimisation process to a different component.

7.2.3 10 Switches with smaller fragments

To evaluate the fragmentation we performed the test with the same settings for 10 switches
but with reduced fragment size. We would expect lower time consumption and a bit of loss in
quality which means, lower flow and data rate reduction.

While the time consumption has indeed reduced, as can be seen in figure 7.17 on the following
page, figure 7.19 on page 73 and in figure 7.21 on page 74, the time distribution does not
change much, as can be seen in figure 7.18 on page 73, figure 7.20 on page 74 and in figure 7.22
on page 75. The sub graph optimisation still needs most of the time and the other components
need the same amount of time as before. It is not surprising that the sub graph optimisation
needs most of the time, but it is good to see, that we can reduce the average and maximum
time consumption of the sub graph optimisation significantly. With fragmentation and the time
reduction that is the consequence we can take on bigger graphs with this framework.

The quality of the solution does not suffer much, as can be seen in figure 7.23 on page 75 and
in figure 7.24 on page 76. This may seem a bit surprising at first, but it is a very positive result,

71

7.2 Results

50 Publisher

i Before Optimisation

25 Publisher
H After Optimisation

M Average reduction of data

10 Publisher rate per step

0 5000 10000 15000

Data rate

Figure 7.16: Data rate reduction for 25 switches

10000
. 1000
g
=
o 100
E
> 10
. o J__I M N
Sub
Short- Filt
Short- o Cycle et Frag- | Graph
est Clus- | Em- .| Rebal-
est Detec- . men- | Opti- .
Path . tering | bed- . A ancing
Path tion) tation | misa-
Tree ding .
tion
M Avg. in ms [37.1899|1.06667 |1.06667 |1.07407|1.03333(1.01235|683.667|1.03333
M Max. in ms| 162 2 2 6 3 1357 | 2877 3
kd Min. in ms 15 1 1 1 1 1 58 1

Figure 7.17: Time consumption for 10 switches and 5 publishers with smaller fragments

72

7.2 Results

M Shortest Path

M Shortest Path Tree

i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.18: Time distribution for 10 switches and 5 publishers with smaller fragments

100000
10000
g
E 1000
Q
g 100
=
i J J
! Sub
u
Short- Filt
Short- o Cycle e Frag- | Graph
est Clus- | Em- .| Rebal-
est Detec- . men- | Opti- .
Path] tering | bed- .) ancing
Path tion) tation | misa-
Tree ding .
tion
M Avg. in ms |34.6126 1 1 1.26316 1 1.26316|4037.05 1
M Max. in ms| 63 1 1 16 1 16 73850 1
kd Min. in ms 15 1 1 1 1 1 93 1

Figure 7.19: Time consumption for 10 switches and 10 publishers with smaller fragments

73

7.2 Results

M Shortest Path

M Shortest Path Tree

i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.20: Time distribution for 10 switches and 10 publishers with smaller fragments

1000000
100000
n
g 10000
=
qé 1000
- 100
M, 1 1
! Sub
u
Short- Filt
Short- o Cycle e Frag- | Graph
est Clus- | Em- .| Rebal-
est Detec- . men- | Opti- .
Path] tering | bed- .) ancing
Path tion) tation | misa-
Tree ding .
tion
M Avg. in ms |32.4118 1 1 1.15464 1 1.07732(8187.48 1
M Max. in ms| 62 1 1 16 1 16 172146 1
i Min. in ms 15 1 1 1 1 1 78 1

Figure 7.21: Time consumption for 10 switches and 20 publishers with smaller fragments

74

7.2 Results

M Shortest Path

M Shortest Path Tree

i Cycle Detection

M Clustering

M Filter Embedding

M Fragmentation

i Sub Graph Optimisation

i Rebalancing

Figure 7.22: Time distribution for 10 switches and 20 publishers with smaller fragments

20 Publisher

10 Publisher

5 Publisher

i Before Optimisation

M After Optimisation

M Average reduction of
flows per step

Number of flows

60

Figure 7.23: Flow reduction for 10 switches with smaller fragments

75

7.2 Results

20 Publisher

i Before Optimisation

10 Publisher
H After Optimisation

M Average reduction of data

5 Publisher rate per step

I

0 500 1000 1500 2000 2500 3000

Data rate

Figure 7.24: Data rate reduction for 10 switches with smaller fragments

because it means, we can use fragmentation to reduce the size of the sub graphs and still have
good results while reducing the time consumption significantly. This is especially interesting
for bigger graphs where it is necessary to fragment the graph.

76

Chapter 8

Summary and Outlook

We have shown that it is possible to divide the route optimisation problem in a publish/subscribe
network into multiple smaller problems which represent the whole problem respectively.
In chapter 4 on page 15 we have identified and modelled which parts are important and how
we can represent them suitably for an optimisation formulation. From the beginning, we
started to find problems as small as possible and with the potential to work together.

In chapter 5 on page 24, we presented several solutions for the identified problems and
considered their advantages and disadvantages. Not all were suitable for our endeavour,
so we choose the most suitable ones and combined them with several mechanisms and
transformations in chapter 6 on page 50 into a framework that can solve the overall problem.
The strength of the framework is the composition out of different components and the easy
exchangeability of these components.

In chapter 7 on page 61, we have evaluated the framework with different settings and have
shown its strengths and weaknesses. The evaluation has also shown where future work can
start and which parts have the most potential.

Outlook

There are at least three points where future work can start with. One is the parallelisation of
the execution of the components. Almost every component can be parallelised which allows
for better performance and usage of multiple cores. This can help greatly in the sub graph
optimisation where time is an issue. But with parallelisation comes a few problems. One
is synchronisation, but normal multi-threading techniques should be enough to solve this.
Parallelisation is also interesting because the solver itself does not support parallelisation.
We could run multiple sub graph optimisations at the same time and utilise all cores of a
machine.

Another point is what we can call continuous optimisation. This means adapting the framework
for dynamic systems. This can be done by completing the cycle in the iteration phase and adding
some mechanisms that detect where changes were made, which publishers and subscribers

77

8 Summary and Outlook

were added and so on. Then the framework can react and compute new sub graphs each time
new participants join. The question will be how big the sub graphs should be and how exactly
new participants should be handled. Should they first be added with a shortest path and then
a sub graph optimisation? And how can we change the weight on the edges accordingly?

At last an obvious future work is the optimisation of the algorithms or replacing the algorithms
with better performing ones. The clustering algorithm is a clear choice for this as there is high
potential in good clustering of the filters and the resulting sub graphs.

It is also still open how good the solution compared to a theoretically optimal one is. Although,
some components can compute an optimal solution for their input and according to the
constraints, for example the shortest path computation and sub graph computation, some
components will reduce the quality. At least with the current selection of the components.
Every component and the framework itself can be analysed and examined for this.

78

Bibliography

[1] AIMMS. URL http://business.aimms.com.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, T. D. Chandra. Matching events
in a content-based subscription system. In Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 53-61. ACM, 1999.

[3] E. Althaus, T. Polzin, S. Daneshmand. Improving linear programming approaches for the
Steiner tree problem. In Experimental and Efficient Algorithms, volume 2647 of Lecture
Notes in Computer Science, pp. 1-14. Springer Berlin Heidelberg, 2003.

[4] Y. P. Aneja. An integer linear programming approach to the Steiner problem in graphs.
Networks, 10(2):167-178, 1980.

[5] R. Baldoni, A. Virgillito. Distributed event routing in publish/subscribe communication
systems: a survey. DIS, Universita di Roma La Sapienza, Tech. Rep, 2005.

[6] M. L. Balinski. Integer programming: methods, uses, computations. Management Science,
12(3):253-313, 1965.

[7] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, D. Sturman. An efficient
multicast protocol for content-based publish-subscribe systems. In Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, pp. 262-272. 1999.

[8] S. Bhowmik. Distributed control algorithms for adapting publish/subscribe in software
defined networks. Master’s thesis, University of Stuttgart, 2013. URL http://elib.
uni-stuttgart.de/opus/volltexte/2013/8820.

[9] A. Bley. An integer programming algorithm for routing optimization in IP networks.
Algorithmica, 60(1):21-45, 2011.

[10] J. A. Briones-Garcia, B. Koldehofe, K. Rothermel. Spine: Adaptive publish/subscribe for
wireless mesh networks. Studia Informatika Universalis, 7(3):320-353, 2009.

[11] S. Cabello, E. W. Chambers, J. Erickson. Multiple-source shortest paths in embedded
graphs. SIAM Journal on Computing, 42(4):1542-1571, 2013.

[12] A. Campailla, S. Chaki, E. Clarke, S. Jha, H. Veith. Efficient Filtering in Publish-subscribe
Systems Using Binary Decision Diagrams. In Proceedings of the 23rd International Confer-
ence on Software Engineering, pp. 443-452. IEEE Computer Society, 2001.

79

http://business.aimms.com
http://elib.uni-stuttgart.de/opus/volltexte/2013/8820
http://elib.uni-stuttgart.de/opus/volltexte/2013/8820

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Carzaniga, D. S. Rosenblum, A. L. Wolf. Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems, 19(3):332-383, 2001.

A. Carzaniga, M. Rutherford, A. Wolf. A routing scheme for content-based networking.
In Proceedings of the Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pp. 918-928. 2004.

I. T. R. Centerr The Gryphon Project. URL https://www.research.ibm.com/
distributedmessaging/gryphon.html.

A. Chanda. Content delivery in software defined networks. Rutgers the State University of
New Jersey - New Brunswick, 2013.

A. Chanda, C. Westphal, D. Raychaudhuri. Content based traffic engineering in software
defined information centric networks. Computing Research Repository, 2013.

B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity.
Journal of the ACM, 47(6):1028-1047, 2000.

C. Chitra, P. Subbaraj. Multiobjective optimization solution for shortest path routing
problem. International Journal of Computer and Information Engineering, 4(2):77-85,
2010.

V. Chvatal. Linear programming. Freeman, New York, 15th edition, 1997.

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver. Combinatorial optimiza-
tion. Wiley, New York, 1998.

S. Dharmapurikar, P. Krishnamurthy, D. Taylor. Longest prefix matching using bloom
filters. IEEE/ACM Transactions on Networking, 14(2):397-409, 2006.

P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec. The many faces of publish/sub-
scribe. ACM Computing Surveys, 35(2):114-131, 2003.

F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, D. Shasha. Filtering algorithms
and implementation for very fast publish/subscribe systems. SIGMOD Rec., 30(2):115-
126, 2001.

S. Gilpin, S. Nijssen, I. Davidson. Formalizing hierarchical clustering as integer linear pro-
gramming. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence.
2013.

M. X. Goemans. Analysis of linear programming relaxations for a class of connectivity
problems. Ph.D. thesis, Massachusetts Institute of Technology, 1990.

A. Gupta, O. D. Sahin, D. Agrawal, A. E. Abbadi. Meghdoot: content-based publish/-
subscribe over P2P networks. In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, pp. 254-273. Springer-Verlag New York, Inc., 2004.

80

https://www.research.ibm.com/distributedmessaging/gryphon.html
https://www.research.ibm.com/distributedmessaging/gryphon.html

Bibliography

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

X. Han, P. Kelsen, V. Ramachandran, R. Tarjan. Computing minimal spanning subgraphs
in linear time. SIAM J. Comput., 24(6):1332-1358, 1995.

J. N. Hooker. Logic, optimization, and constraint programming. INFORMS Journal on
Computing, 14(4):295-321, 2002.

F. K. Hwang, D. S. Richards. Steiner tree problems. Networks, 22(1):55-89, 1992.

E. L. Johnson. Facets, subadditivity and duality for group and semi-group problems.
SIAM, 1980.

S. Khuller, B. Raghavachari, N. Young. Balancing minimum spanning trees and shortest-
path trees. Algorithmica, 14(4):305-321, 1995.

D. E. Knuth, J. H. Morris, Jr, V. R. Pratt. Fast pattern matching in strings. SIAM journal
on computing, 6(2):323-350, 1977.

B. Koldehofe, F. Diirr, M. A. Tariq, K. Rothermel. The power of software-defined network-
ing: line-rate content-based routing using OpenFlow. In Proceedings of the 7th Workshop
on Middleware for Next Generation Internet Computing, pp. 3:1-3:6. ACM, 2012.

J. Kratica, D. Dugosija, A. Savi¢. A new mixed integer linear programming model for
the multi level uncapacitated facility location problem. Applied Mathematical Modelling,
38(7-8):2118 — 2129, 2014.

J. Kruskal, Joseph B. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the ACM, 7(1):48-50, 1956.

G. Li, S. Hou, H.-A. Jacobsen. A unified approach to routing, covering and merging in
publish/subscribe systems based on modified binary decision diagrams. In Proceedings of
the 25th IEEE International Conference on Distributed Computing Systems, pp. 447—457.
2005.

C.-M. Lin, Y. T. Tsai, C. Y. Tang. Balancing minimum spanning trees and multiple-source
minimum routing cost spanning trees on metric graphs. Information processing letters,
99(2):64-67, 2006.

Y. Liu, B. Plale, et al. Survey of publish subscribe event systems. Computer Science Dept,
Indian University, 16, 2003.

G. Miihl. Generic constraints for content-based publish/subscribe. In Cooperative Infor-
mation Systems, volume 2172 of Lecture Notes in Computer Science, pp. 211-225. Springer
Berlin Heidelberg, 2001.

G. B. Mishra. Providing in-network content-based routing using OpenFlow. Master’s thesis,
University of Stuttgart, 2013. URL http://elib.uni-stuttgart.de/opus/volltexte/
2013/8560.

81

http://elib.uni-stuttgart.de/opus/volltexte/2013/8560
http://elib.uni-stuttgart.de/opus/volltexte/2013/8560

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

G. Miihl. Large-scale content-based publish-subscribe systems. Ph.D. thesis, TU Darmstadt,
2002.

C. Park, Y. Seo, K. youl Park, Y. Lee. The concept and realization of context-based content
delivery of NGSON. Communications Magagzine, IEEE, 50(1):74-81, 2012.

P. Pietzuch, J. Bacon. Hermes: a distributed event-based middleware architecture.
In Proceedings of the 22nd International Conference on Distributed Computing Systems
Workshops, pp. 611-618. 2002.

P. R. Pietzuch. Hermes: A scalable event-based middleware. Ph.D. thesis, University of
Cambridge, 2004.

R. C. Prim. Shortest connection networks and some generalizations. The Bell Systems
Technical Journal, 36(6):1389-1401, 1957.

D. A. G. Pritchard. Linear programming tools and approximation algorithms for combinato-
rial optimization. Ph.D. thesis, University of Waterloo, 2009.

S. Ratnasamy, M. Handley, R. M. Karp, S. Shenker. Application-Level Multicast Us-
ing Content-Addressable Networks. In Proceedings of the Third International COST264
Workshop on Networked Group Communication, pp. 14-29. Springer-Verlag, 2001.

Z. Reza, H. Masoud. Facility location: concepts, models, algorithms and case studies.
Springer-Verlag Berlin Heidelberg, 2009.

G. Robins, A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 770-779. SIAM,
2000.

G. Robins, A. Zelikovsky. Minimum steiner tree construction. The Handbook Of Algorithms
For VLSI Physical Design Automation, pp. 487-508, 2009.

B. Saglam, F. S. Salman, S. Sayin, M. Tiirkay. A mixed-integer programming approach to
the clustering problem with an application in customer segmentation. European Journal
of Operational Research, 173(3):866-879, 2006.

R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman,
M. Ward. Gryphon: an information flow based approach to message brokering. eprint
arXiv:cs/9810019, 1998.

A. Sultan. Linear programming: an introduction with applications. Academic Press, Boston,
1993.

H. A. Taha. Integer programming: theory, applications, and computations. Academic Press,
New York, 1975.

82

Bibliography

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

M. Tariq, B. Koldehofe, G. Koch, K. Rothermel. Providing probabilistic latency bounds
for dynamic publish/subscribe systems. In Kommunikation in Verteilten Systemen (KiVS),
Informatik aktuell, pp. 155-166. Springer Berlin Heidelberg, 2009.

M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, K. Rothermel. Meeting subscriber-defined
QoS constraints in publish/subscribe systems. Concurrency and Computation: Practice
and Experience, 23(17):2140-2153, 2011.

M. A. Tariq, B. Koldehofe, G. G. Koch, K. Rothermel. Distributed spectral cluster manage-
ment: a method for building dynamic publish/subscribe systems. In Proceedings of the
6th ACM International Conference on Distributed Event-Based Systems, pp. 213-224. ACM,
2012.

M. A. Tariq, B. Koldehofe, K. Rothermel. Efficient Content-based Routing with Network
Topology Inference. In Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, pp. 51-62. ACM, 2013.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146-160, 1972.

M. Waldvogel, G. Varghese, J. Turner, B. Plattner. Scalable high-speed prefix matching.
ACM Transactions on Computer Systems, 19(4):440-482, 2001.

P. Weiner. Linear pattern matching algorithms. IEEE Conference Record of 14th Annual
Symposium on Switching and Automata Theory, pp. 1-11, 1973.

G. Zhao, B. Luo, J. Ma. Matching scenarios patterns by using linear programming.
In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge
Discovery, volume 3, pp. 346-350. IEEE Computer Society, 2007.

All links were last followed on May 06, 2014.

83

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background and Problem Formulation
	2.1 Background
	2.1.1 Publish/Subscribe
	2.1.2 Software-Defined Networking
	2.1.3 Constraint Oriented Programming

	2.2 Problem Formulation

	3 Related Work
	3.1 LIPSIN
	3.2 SIENA
	3.3 Hermes
	3.4 Meghdoot

	4 Modelling the elements in a publish/subscribe system
	4.1 Path
	4.1.1 Path by Vertices
	4.1.2 Path by Edges
	4.1.3 Hybrid

	4.2 Sub Graphs
	4.3 Filters
	4.4 Cost

	5 Sub Solution Formulation
	5.1 Optimisation solutions
	5.1.1 Shortest Path Tree Solution
	5.1.2 Minimum Spanning Tree Solution
	5.1.3 Balanced Trees
	5.1.4 Steiner Tree
	5.1.5 Centre switches
	5.1.6 Clustering
	5.1.7 Summary

	5.2 Transformations
	5.2.1 Filter Embedding

	5.3 Mechanisms
	5.3.1 Virtual Publishers/Subscribers
	5.3.2 Cycle Detection
	5.3.3 Fragmentation
	5.3.4 Re-balancing
	5.3.5 Summary

	6 Framework
	6.1 Shortest path tree (SPT) computation
	6.2 Filter embedding
	6.3 Clustering of filters
	6.4 Optimisation of sub graphs
	6.5 Re-balancing of the weights
	6.6 Fragmentation
	6.7 Summary

	7 Analysis And Results
	7.1 Setting
	7.2 Results
	7.2.1 10 Switches
	7.2.2 25 Switches
	7.2.3 10 Switches with smaller fragments

	8 Summary and Outlook
	Bibliography

