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0 Uber diese Arbeit

Kaum ein Maschinenmodell ist von so grofler Bedeutung wie das der endlichen Automa-
ten. Es findet nicht nur Anwendung in der technischen, theoretischen und praktischen
Informatik, sondern auch in vielen anderen Wissenschaften und Wissenschaftsbereichen.
Von daher mag es kaum verwundern, dass nicht nur die mit den endlichen Automa-
ten untrennbar verbundenen reguldren Sprachen, sondern auch viele darin enthaltene
Sprachklassen von grolem akademischen und praktischen Interesse sind. Neben der au-
tomatentheoretischen Untersuchung der reguldren Sprachen gibt es daher noch andere
Herangehensweisen: beispielsweise durch Logiken oder durch algebraische Strukturen.
Dass es sich bei endlichen Automaten um recht einfache Maschinen handelt, ibertragt
sich auch auf die algebraischen Strukturen. So werden regulére Sprachen durch endliche
Monoide erkannt, einer algebraischen Struktur, die nur wenigen Axiomen gerecht werden
muss.

Ein Sprachklasse unterhalb der reguldren Sprachen erhélt man beispielsweise, indem
man sich auf Sprachen beschrénkt, die durch Satze der Pradikatenlogik erster Stufe oder
first-order logic FO definierbar sind. Durch Beschrankung der Anzahl der in einem sol-
chen Satz erlaubten Variablen lasst sich diese Sprachklasse weiter spezialisieren. Es ist
bekannt, dass die Verwendung von nur drei Variablen keine Einschrankung darstellt.
Die Untersuchung jener Sprachen, die sich mit Pradikatenlogik erster Stufe unter Ver-
wendung von nur zwei Variablen, also durch die Zweivariablenlogik FO?[<] definieren
lassen, ergibt sich daher auf natiirliche Weise.

Auf algebraischer Seite korrespondiert diese Klasse von Sprachen mit der Menge end-
licher Monoide, genauer der Varietdt endlicher Monoide DA. Jene Varietdt DA erhélt
man auch durch Vereinigung der abzéhlbar unendlich hohen, sogenannten Trotter-Weil-
Hierarchie. Diese besteht aus Ecken, V-Ebenen und N-Ebenen und ist zentraler Gegen-
stand der Betrachtungen dieser Arbeit.

Diese Betrachtungen befassen sich mit dem Wortproblem fiir w-Terme von Varietéten
in der Trotter-Weil-Hierarchie. Bei w-Termen oder, wie sie hier genannt werden, w-Termen
handelt es sich um Terme von Variablen, die mit einer zusétzlichen ™-Potenz versehen
werden kénnen. Anschlielend koénnen fiir die Variablen Elemente eines Monoids einge-
setzt werden, die "-Potenzen erhalten dann einen Wert, der als unendlich oft interpretiert
werden kann. Anschaulich lédsst sich ein 7-Term daher mit dem Verhalten eines endli-
chen Automaten, dessen Ausfiihrung nicht durch eine bestimmte Anzahl an Schritten
beschrankt ist, verkniipfen. Zwei m-Terme u und v lassen sich zu einer Gleichung u = v
verkniipfen. Es ist dann moglich zu fragen, ob ein Monoid M diese Gleichung erfiillt.
Dies ist dann der Fall, wenn sich links und rechts stets das selbe Monoidelement ergibt,
sobald man fiir die Variablen beliebige Elemente einsetzt. Diese Fragestellung lasst sich
erweitern: Erfiillt jedes Monoid in einer Varietdt die Gleichung? Dabei handelt es sich
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um die Frage des Wortproblems fiir w-Terme der Varietét.

Diese Arbeit wird zeigen, dass sich das Wortproblem fiir 7-Terme der Ecken und V-
Ebenen der Trotter-Weil-Hierarchie durch eine logarithmisch platzbeschréankte nichtde-
terministische Turingmaschine entscheiden ldsst, dass es also zur Komplexitétsklasse NL
gehort. Obwohl es sich bei NL um eine nichtdeterministische Platzklasse handelt, ist
dieses Ergebnis interessant, da sich die Probleme aus NL effizient parallel entscheiden
lassen. Eine Eigenschaft, die nicht zuletzt seit dem Aufkommen von Mehrkernprozesso-
ren, eine immer groflere Rolle spielt. Gleichzeitig liefert ein NL-Algorithmus auch einen
deterministischen Polynomialzeitalgorithmus.

Der NL-Algorithmus fiir die Entscheidung des Wortproblems fiir 7-Terme der Ecken
und V-Ebenen der Trotter-Weil-Hierarchie ldsst sich leicht abwandeln, um die Zugeho-
rigkeit des Wortproblems fiir m-Terme von DA zu NL zu zeigen. Im Sinne der Komplexi-
tatsklassen verbessert dies ein Ergebnis von A. Moura [10], das einen deterministischen
Polynomialzeitalgorithmus zur Entscheidung dieses Problems liefert und damit Erkennt-
nisse von Almeida und Zeitoun erweitert, die in [2, 1] zeigten, dass sich das Wortproblem
fiir m-Terme der Varietdt der endlichen R-trivialen Halbgruppen in Linearzeit entschei-
den lasst. Die Varietdt der endlichen R-trivialen Monoide tritt auch als Ecke in der
Trotter-Weil-Hierarchie auf.

Das Vorgehen in dieser Arbeit unterscheidet sich von dem Vorgehen in den genannten
anderen Arbeiten. Das zentrale Konzept ist dabei das Einsetzen linearer Ordnungstypen
fir die "-Potenzen der w-Terme, dhnlich wie in [5]. Auf die dabei entstehenden, im Allge-
meinen unendlichen, verallgemeinerten Worter werden dann einige Instrumente, die bei
der Untersuchung der Trotter-Weil-Hierarchie sonst in einer endlichen Form vorkommen,
iibertragen. Neben der formellen Einfiithrung und Wiederholung einiger grundlegender
Begrifflichkeiten bildet dies den Inhalt des ersten Kapitels.

Das zweite Kapitel vertieft zunéchst die Ergebnisse des ersten und fithrt anschlieend
eine bestimmte Normalisierung ein, die es erlaubt vom Unendlichen wieder ins Endliche
iiberzugehen. Dies erlaubt dann die Skizzierung eines Algorithmus zur Entscheidung der
besprochenen Wortprobleme fir m-Terme am Ende des Kapitels.

Das dritte Kapitel schliefSlich zeigt durch Angabe entsprechender Algorithmen die
Zugehorigkeit der Probleme zu NL. Dabei steht — wenig iiberraschend — die Speicherung
benotigter Informationen in logarithmischem Platz im Mittelpunkt.

Im letzten Kapitel findet sich dann ein Ausblick auf angrenzende und weiterfiithrende
Fragestellungen rund um die Trotter-Weil-Hierarchie und das Wortproblem fiir m-Terme
und schliellich eine Zusammenfassung der Ergebnisse.



1 Einfiihrung

Am Anfang dieses Kapitels sollen einige Grundlagen vorgestellt und Konventionen ein-
gefiihrt werden. Danach werden w-Terme und damit verbundene Begriffe eingefithrt und
untersucht und schliellich folgt ein Abschnitt iiber sogenannte Ranker und die Trotter-
Weil-Hierarchie.

1.1 Grundlagen

Viele — wenn auch nicht unbedingt alle — der folgenden Begriffe sind dem Leser wahr-
scheinlich wohlbekannt. Dennoch lohnt es sich einige von ihnen genauer einzufiihren,
denn dies erlaubt es einige Vereinbarungen zu ihrem Gebrauch und zur Notation zu tref-
fen. AuBerdem finden sich in den folgenden Unterabschnitten auch einige Betrachtungen,
die zunéchst vertraut wirkende Begriffe aus einem anderen Blickwinkel présentieren.

1.1.1 Funktionen und Notationen

Dieser Abschnitt wird die wichtigsten Konventionen zum Umgang mit Funktionen ein-
fiihren, die in dieser Arbeit Verwendung finden.

Sei f: A —, B eine partielle Funktion. Es ist also moglich, dass f(a) fir ein a € A
nicht definiert ist. Da die Ausdrucksweise ,,ist nicht definiert* recht umstéandlich ist, wird
f erweitert zur (nicht partiellen) Funktion

f:A+{Ll} - B+{Ll}
1= 1

ac A { f(a) falls f(a) definiert ist
1 sonst,

wobei A+ B die disjunkte Vereinigung zweier Mengen A und B bezeichnet. Dies erlaubt
es nun f(a) = L statt ,,f(a) ist nicht definiert* zu schreiben. Diese Erweiterung wird
im Folgenden stets implizit fiir alle auftretenden partiellen Funktionen verwendet. Dazu
sollte man insbesondere beachten, dass fiir zwei partielle Funktionen f : A —, B und
g : B —, C die Aussage g(f(n)) = L bedeuten kann, dass f an der Stelle n nicht
definiert ist oder dass f(n) zwar definiert ist, g an der entsprechenden Stelle aber nicht.

In vielen Féllen ist es {iblich — z. B. bei algebraischen Strukturen — fiir eine Funktion der
Form - : Ax B — C die Schreibweise a-b statt -(a, b) zu verwenden. Eine solche Funktion
wird ab jetzt als Verkniipfung bezeichnet. Ist aus dem Zusammenhang zu erkennen,
welche Verkniipfung - gemeint ist, wird auch ab statt a-b geschrieben, dies ist insbesondere
fiir Verkniipfungen mit Bezeichnungen, die an Produkte erinnern, wie - oder * der Fall. In
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Unterabschnitt 1.1.5 wird eine &hnliche Notation fiir bindre Relationen vereinbart. Aus
dem Kontext ist aber stets klar, ob es sich um eine Funktion oder eine binédre Relation
handelt.

Auch andere im Umgang mit Funktionen tibliche Schreibweisen finden in dieser Arbeit
Anwendung. Ein Beispiel hierflir ist das folgende: Ist f : A — B eine Funktion und
A C A’ eine Teilmenge von A, dann bezeichnet f(A’) = {f(a) : a € A’} das Bild von
A’ unter f. Ebenso bezeichnet f~!(B’) = {a : f(a) € B’} die Menge der Urbilder einer
Teilmenge B’ C B von B.

1.1.2 Halbgruppen und Varietaten

Betrachtet man die Menge ihrer Axiome, gehoren Halbgruppen zu den einfachsten alge-
braischen Strukturen. Da sie bei vielen Problemen jedoch als natiirliche Objekte auftre-
ten, ist ihre genauere Untersuchung in vielen Bereichen von Interesse.

Bekanntermaflen handelt es sich bei einer Halbgruppe um eine Menge S mit einer
assoziativen Verkniipfung - : S — S. Gibt es ferner ein neutrales Element in einer
Halbgruppe, so heifit sie Monoid.

Konvention: Fiir eine Halbgruppe (5,-) wird im Folgenden oft einfach S geschrieben.
Die Verkniipfung ergibt sich dann aus dem Kontext.

Andere wichtige Begriffe in diesem Zusammenhang werden als weitgehend bekannt vor-
ausgesetzt. Darunter der der Unterhalbgruppe und des Untermonoids, insbesondere aber
auch der des Halbgruppenhomomorphismus und des Monoidhomomorphismus.

Konvention: Wird aus dem Zusammenhang klar, ob ein Halbgruppen- oder ein Mono-
idhomomorphismus gemeint ist, so wird nur von einem Homomorphismus gesprochen.

Ein wichtiges Monoid ist das Monoid ¥* der endlichen Wérter iiber einem Alphabet 3.
Ein Alphabet ist hierbei eine beliebige endliche Menge von Buchstaben. Eine Teilmenge
L C ¥* wird — wie iblich — als Sprache endlicher Worter iiber 3 bezeichnet. Eine
solche Sprache L wird durch ein Monoid M erkannt, wenn es einen Homomorphismus
©: %% — M mit L =9 ! (p(L)) gibt.

Aufgrund dieses Zusammenhangs zwischen Sprachen endlicher Wérter und Monoiden
verwundert es nicht, dass sich bestimmte Abschlusseigenschaften von Mengen von Spra-
chen auf die zugehorige Menge der Monoide, die eine dieser Sprachen erkennen, {iber-
tragen. Dies fithrt auf den Begriff der Varietdt, der vielleicht weniger bekannt ist als der
Begriff des Monoids selbst, aber im Folgenden noch wichtig sein wird.

Definition (Varietdten endlicher Monoide): Eine Menge V' von endlichen Monoiden
heifit Varietit endlicher Monoide, falls folgende Abschlusseigenschaften erfiillt sind:

e Ist M € V und M’ ein Untermonoid von M, so ist M’ € V.

e Ist M € V und ¢ : M — M’ ein Monoidhomomorphismus, so ist p(M) € V.

o Jedes endliche direkte Produkt von Monoiden aus V ist in V.

Mehr zu Varietéten, z. B. wie sich diese Abschlusseigenschaften auf die Menge der von
Monoiden in V' erkannten Sprachen endlicher Woérter auswirken, findet sich in [12].

foftmals auch Pseudovarietit genannt



1.1 Grundlagen

Sind V und W zwei Varietéiten, so bezeichnet V'V W die kleinste Varietét, die alle
Monoide aus V' und alle Monoide aus W enthélt. Auflerdem ist der Schnitt zweier
Varietdten wieder eine Varietat, wie man leicht tiberlegt.

Ihrer Definition nach kénnen Halbgruppen und Monoide sowohl endlich als auch un-
endlich grof sein. Im Folgenden werden die meisten von ihnen jedoch endlich sein, daher
ist es sinnvoll diese Art von Halbgruppen genauer zu betrachten. Dabei ist vor allem das
folgende Resultat von zentraler Bedeutung;:

Lemma 1: Sei S eine endlich Halbgruppe. Fiir jedes Element s € S gibt es eine natiir-
liche Zahl m, > 0, sodass s™s idempotent ist, also dass s2™s = s™s gilt. Auferdem gibt
es eine natiirliche Zahl m > 0, so dass s™ fiir alle Elemente s € S idempotent ist.

Beweis. Fiir den ersten Teil der Aussage siehe z. B. [4, S. 12]. Der zweite Teil ergibt sich
durch Bilden des kleinsten gemeinsamen Vielfachen aller Potenzen mg aus dem ersten
Teil. O

Konvention: Fiir eine endliche Halbgruppe S bezeichnet S! die kleineste natiirliche Zahl
> 0, sodass s fiir alle Elemente s € S idempotent ist. Es muss dabei nicht unbedingt
S =|S|! gelten.

1.1.3 Graphen und Baume

Obwohl viele Begriffe im Umfeld von Graphen und B&umen eine weitgehend intuitive
Bedeutung haben, gibt es dennoch oft Auspridgungen dieser Begriffe mit subtilen Unter-
schieden. Ziel diese Unterabschnitts ist es daher zu klaren, was genau gemeint ist, wenn
im weiteren Verlauf dieser Arbeit ein solcher Begriff auftaucht. Ein Graph G ist ein Paar
(V, E) aus Knotenmenge V und Kantenmenge E C V x V. Ist also von einem Graphen
die Rede, so ist genaugenommen ein gerichteter Graph gemeint. Bei einem beschrifte-
ten Graph wird das Paar zu einem Tripel (V, E,\) ergénzt. Dabei ist A : V' — ¥ die
Beschriftung der Knoten des Graphen mit Buchstaben aus dem Alphabet Y. Ist G ein
Graph, so meint v € GG, dass v ein Knoten in G ist.
Zur Vereinfachung soll als Néchstes die folgende Konvention vereinbart werden:

Konvention: Ist aus dem Kontext klar, welcher Graph G = (V, E') gemeint ist, wird im
Folgenden fiir (v,v") € E einfach v — v’ geschrieben.

Bei einem Pfad im Graphen G mit n Knoten handelt es sich nun um eine endliche
Sequenz p = (v1,v2,...,v,) von Knoten, sodass v; — v;41 fiir alle 1 < i < n gilt. Man
beachte, dass auch ein einzelner Knoten als Pfad betrachtet werden kann! Der erste
Knoten auf einem Pfad p wird als Anfang, der letzte als Ende und mogliche Knoten
dazwischen als innere Knoten bezeichnet.

Ebenso wie ein Graph, ldsst sich auch ein Pfad um eine Beschriftung ergénzen: Eine
endliche Sequenz p = ((vi,a1), (v2,a2),..., (vn,ayn)) von Elementen aus V x ¥ fiir ein
beliebiges Alphabet X heifit beschrifteter Pfad in G = (V, E') mit n Knoten. Ebenso wie
bei beschrifteten Graphen bezieht sich die Beschriftung also auf die Knoten und nicht
die Kanten. a; heifit dabei Beschriftung von v; (fiir 1 <i < n). Anfang, Ende und innere
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Knoten eines beschrifteten Pfades entsprechen denen des zugehorigen (unbeschrifteten)
Pfades (v1,v2,...,0p).

Konvention: Fiir einen Pfad p = (v1,vs,. .., v,) wird im Folgenden auch p = v; — vy —
-+« — vy, geschrieben und fiir einen beschrifteten Pfad p = ((v1, a1), (v2, a2),. .., (U, an))
auch p = vi/a; — v2/ay — -+ — vn/a,. AuBlerdem bezeichnet (p); := v; den i-ten Knoten
von p fiir 1 < i < n. Bei einem beschrifteten Pfad bezeichnet zudem p(v;) := a; die
Beschriftung a; von v;, sofern dies wohldefiniert ist.

Bei einem Baum T = (V, E,vg) mit Wurzel vg werden im Folgenden die Kanten stets
von der Wurzel weg gerichtet, es handelt sich also um Out-Trees. Wie tiblich wird ein
Knoten mit Ausgangsgrad 0 als Blatt bezeichnet. Aulerdem lassen sich auch die Knoten
eines Baumes beschriften, das Ergebnis ist dann ein beschrifteter Baum T = (V, E, vy, \),
wobei A : V' — ¥ wieder die Beschriftung der Knoten mit Buchstaben aus einem Alpha-
bet ¥ darstellt.

Mit dieser Betrachtungsweise gibt es in einem Baum fiir jeden Knoten v genau einen
Pfad mit Anfang vy und Ende v. Daraus ergibt sich die Moglichkeit jeden Knoten im
Baum mit dem (eindeutigen) Pfad von der Wurzel zu diesem Knoten zu identifizieren.
Es gibt allerdings noch eine andere Moglichkeit der Betrachtung von Pfaden im Baum,
dabei spielt folgende Aussage eine wichtige Rolle:

Lemma: Zwei Knoten in einem Baum sind iiber hochstens einen Pfad miteinander ver-
bunden.

Beweis. Angenommen der Knoten v ist iiber zwei unterschiedliche Pfade p; und ps mit
einem (moglicherweise anderen) Knoten v verbunden. Sei p,, der (eindeutige) Pfad, der
an der Wurzel anfingt und in v endet. Das Verkniipfen von p, mit p; und mit py liefert
zweil unterschiedliche Pfade, die an der Wurzel anfangen und an v enden. Dies ist ein
Widerspruch. 0

Dieses Lemma rechtfertigt also eine alternative Betrachtungsweise fiir Pfade in Badumen.
Ein Pfad p =v; = vg = -+ — v, im Baum T = (V, E, vy) lasst sich auch als partielle
Funktion iber den Knoten betrachten. Diese partielle Funktion ist genau auf den Knoten
definiert, iiber die der Pfad verlauft. Da es keinen anderen Pfad mit vy als Anfang und
vy, als Ende in G geben kann, beschreibt eine solche partielle Funktion also auch genau
den Pfad p. Formal ausgedriickt wird p also mit der partiellen Funktion

p:V—=,{T}
vb—>{ T fallsv=w; fireinie {1,2,...,n}

identifiziert. Auch ein beschrifteter Pfade p = vi/a; — v2/ay — -+ — vn/a, liber dem
Alphabet ¥ lasst sich so interpretieren. p wird dann als partielle Funktion

p:V =, X
v+ { a; fallsv=v; fiireinie{1,2,...,n}

aufgefasst. Man beachte, dass dies konsistent mit der oben eingefithrten Schreibweise
p(v) fir die Beschriftung eines Knotens v ist. Tatséchlich macht diese Betrachtung keinen



1.1 Grundlagen

Unterschied zwischen einem Pfad und einem beschrifteten Pfad iber dem einelementigen
Alphabet {T}. Es ist daher sinnvoll, diese Unterscheidung insgesamt fallen zu lassen.

1.1.4 Turing-Maschinen und Komplexitatsklassen

Der Begriff der Turing-Maschine ist in der Informatik von so zentraler Bedeutung, dass er
an dieser Stelle wohl nicht wiederholt werden muss. Bekanntermaflen unterscheidet man
zwischen deterministischen und nichtdeterministischen Turing-Maschinen. Erstere ha-
ben fir jede Eingabe nur einen moglichen Berechnungspfad, der diese Eingabe entweder
akzeptiert oder eben nicht akzeptiert, und letztere akzeptieren ihre Eingabe, wenn min-
destens einer ihrer Berechnungspfade sie akzeptiert. Um auch Turing-Maschinen mit sub-
linearem Platzverbrauch untersuchen zu kénnen, wird im Folgenden von einem Turing-
Maschinen-Modell mit speziellem Eingabe-Band ausgegangen. Die Turing-Maschine be-
sitzt fir dieses Band lediglich einen in beide Richtungen bewegbaren Lesekopf, sie kann
den Inhalt des Bandes aber nicht modifizieren.

Bei der Diskussion des Zeit- oder Platzbedarfs von Turing-Maschinen ist in der Regel
nur das asymptotische Verhalten interessant. Wichtigstes Hilfsmittel dabei sind jene
Symbole, fiir die Edmund Landau namensgebend war. Fiir diese Arbeit ist nur O iiber
den nicht-negativen Zahlen von Bedeutung: Seien f,¢g : {0,1,...} — {0,1,...} zwei
Funktionen. Dann liegt f in O(g), falls es eine reelle Konstante ¢ > 0 und eine nicht-
negative Zahl ng € {0,1,...} gibt, sodass f(n) < c¢- g(n) fir alle n > ng gilt.

Der Platzbedarf einer Turing-Maschine wird durch eine Funktion s : {0,1,...} —
{0,1,...} beschrénkt, wenn alle Berechnungspfade auf jeder Eingabe der Lange n hochs-
tens s(n) Arbeitsfelder belegen. Der Platzbedarf einer Turing-Maschine ist logarithmisch
beschriankt, wenn ihr Platzbedarf durch eine Funktion s mit s € O(logn) beschrankt
wird. Die Menge NL ist die Menge aller Entscheidungsprobleme, die durch eine im
Platzbedarf logarithmisch beschrankte nichtdeterministische Turing-Maschine entschie-
den werden konnen. Als nichtdeterministische Platzklasse ist NL bekanntermafien unter
Komplement abgeschlossen [6, 15]. Um die Zugehorigkeit eines Entscheidungsproblems
zu NL zu zeigen ist es also ausreichend einen nichtdeterministischen Algorithmus an-
zugeben, der zu einer logarithmisch platzbeschrankten nichtdeterministischen Turing-
Maschine fihrt, bei der genau dann mindestens ein Berechnungspfad ,nein“ ausgibt,
wenn dies auch die Antwort auf das Entscheidungsproblem unter der selben Eingabe ist.
Dieses Vorgehen findet in Kapitel 3 Anwendung.

1.1.5 Ordnungen und Ordnungstypen

Es gibt eine Vielzahl an verschiedenen Ausprigungen einer mathematischen Ordnung.
Oft kommt es auch vor, dass fiir die selbe Auspragung unterschiedliche Namen tiblich
sind. Dieser Unterabschnitt soll eine einheitliche Sprechweise fiir den Rest der Arbeit
festlegen. Dabei treten viele bekannte, aber auch einige weniger bekannte Konzepte im
Umfeld von Ordnungen auf. Am Anfang stehen zunéchst einige einfache Definitionen.

Definition (Bindre Relation): Sei P eine Menge. Eine Teilmenge R C P x P heifit
bindre Relation tiber P.
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Konvention: Wie allgemein iiblich wird im Folgenden bei einer bindren Relation R
fir (p,p’) € R auch p R p/ und fir (p,p’) € R auch p R p’ geschrieben. Wie eingangs
erwahnt, erinnert dies auch an die Schreibweise a-b fiir Verkniipfungen. Bei Unklarheiten
ergibt sich jedoch aus dem Kontext, ob eine Relation oder eine Verkniipfung gemeint ist.

Definition (transitiv, reflexiv, antisymmetrisch, total): Eine binére Relation R tiber P
heif3t

e transitiv, falls Vp,q,r € P:p R qund ¢ Rr = p R r gilt,

o reflexiv, falls Vp € P : p R p gilt,

o irreflexiv, falls Vp € P : p R p gilt,

o symmetrisch, falls Vp,q € P : p R ¢ = q R p gilt,

o antisymmetrisch, falls Vp,q € P: p R qund g Rp = p = q gilt und

e total, falls Vp,qg € P : p R q oder ¢ R p gilt.

Definition (partielle, lineare, strenge Ordnung, geordnete Menge): Eine transitive, re-
flexive und antisymmetrische binédre Relation heifit partielle Ordnung oder Halbordnung.
Eine totale partielle Ordnung heifit lineare Ordnung oder Totalordnung.

Eine transitive, irreflexive und antisymmetrische bindre Relation heif3t strenge Ordnung
oder Striktordnung.

Ist R eine partielle Ordnung iiber P, so heifit (P, R) partiell geordnete Menge. Ist R eine
lineare Ordnung iiber P, so heifit (P, R) linear geordnete Menge.

Beispiel: < ist eine lineare Ordnung {iber den natiirlichen Zahlen.

Aus jeder partiellen Ordnung erhélt man durch Entfernen der reflexiven Elemente eine
strenge Ordnung (wie man sich leicht tiberlegt).

Konvention: Fiir partielle (und damit auch lineare) Ordnungen wird oft < geschrieben.
Dabei muss es sich nicht unbedingt um die natiirliche <-Relation auf den reellen Zahlen
oder einer ihrer Teilmengen handeln. Die zugehérige strenge Ordnung ist dann <. Im
Zweifel ergibt sich aus dem Zusammenhang, welche Ordnung gemeint ist — die auf den
reellen Zahlen oder eine andere.

Im {iblichen Sinne wird im Folgenden auch > und > geschrieben.

Als néchste soll eine Konstruktion auf geordneten Mengen eingefiihrt werden, die sich
im weiteren Verlauf als niitzlich herausstellen wird. Eine partiell oder linear geordnete
Menge wird dabei um ein kleinstes oder ein grofites Element ergénzt.

Definition (Ergénzung um ein kleinstes oder ein grofites Element): Sei (P, <) eine par-
tiell oder linear geordnete Menge. Definiere!

P_ =P+ {—o0} P oo X P oo 2<_:=<U{-00} X P_
Pt = P+ {400} Pt x Pt D <t = <y P™° x {+o0}
Pt¥ =P+ {—00,+00} P x P D<= <U{-o0} x PTZUPTY x {+o0}

Man beachte, dass <_,, <7 und gig jeweils wieder lineare Ordnungen sind, falls <
eine lineare Ordnung war.

TTatséchlich handelt es sich hier um Summen von Ordnungstypen, die weiter unten eingefiihrt werden.



1.1 Grundlagen

Mit dem Begriff der Ordnung sind zwei weitere Begriffe eng verbunden: das Minimum
und das Mazximum.

Definition (Minimum, Maximum): Sei (P, <p) eine partiell geordnete Menge und sei
@ C P eine beliebige Teilmenge von P.

Gibt es ein Element ¢ € @, sodass ¢ <p ¢ fur alle Element ¢ € @ gilt, so heif}t
g Minimum von @ beziiglich <p, geschrieben als min<, @) = ¢. Gibt es kein solches
Element ist min<, ) undefiniert.

Gibt es ein Element ¢ € @, sodass ¢ <p ¢ fiir alle Elemente ¢’ € Q gilt, so heifit
g Mazimum von @ beziiglich <p, geschrieben als max<, Q = ¢. Gibt es kein solches
Element ist max<, undefiniert.

Aufgrund der Antisymmetrie partieller Ordnungen sind Minimum und Maximum ein-
deutig, falls sie existieren. Aulerdem hat jede endliche linear geordnete Menge stets ein
Minimum und ein Maximum.

Konvention: Ist die verwendete partielle Ordnung aus dem Zusammenhang klar, wird
die Schreibweise zu min ) bzw max () vereinfacht. Ist min () oder max () undefiniert, so
wird dhnlich wie bei partiellen Funktionen max () = L bzwmin ) = L geschrieben.

Neben den verschiedenen Ordnungen haben auch andere besondere Relationen einen
speziellen Namen. Der vielleicht bekannteste Fall einer solchen ist die Aquivalenzrelation.

Definition (Aquivalenzrelation): Eine transitive, reflexive und symmetrische binére Re-
lation heiBt Aquivalenzrelation.

Seien (P1,<;) und (P2, <9) zwei partiell geordnete Mengen. Sie haben den selben
Ordnungstyp, wenn es eine ordnungserhaltende Bijektion zwischen ihnen gibt, d. h. wenn
es eine Bijektion ¢ : P| — P, mit p <1 p/ < 1(p) <2 «(p') fiir alle p,p’ € Py gibt.
Der Ordnungstyp einer geordneten Menge (P, <) bildet (wie man leicht nachrechnet)
eine Klasse einer Aquivalenzrelation, bezeichnet als ord (P, <). Einige Ordnungstypen
besitzen besondere Bezeichnungen:

Definition: w bezeichnet den Ordnungstyp von (N, <), w* den von (—N, <), Natiirliche
Zahlen n € N bezeichnen den Ordnungstyp von ({1,2,...,n}, <).

Der Ordnungstyp einer linear geordneten Menge heifit linearer Ordnungstyp. Man
iiberlegt sich leicht, dass diese Definition unabhéingig vom gewéhlten Reprisentanten
und damit wohldefiniert ist.

Konvention: Fir einen Ordnungstypen p bezeichnet <, im Folgenden die zugehorige
Ordnung. Wird diese Notation verwendet, ist die Aussage von der Wahl des Représen-
tanten von g unabhéngig oder der gewéhlte Reprasentant ergibt sich aus dem Kontext.
Bei den oben genannten Ordnungstypen mit besonderen Bezeichnungen handelt es sich
in der Regel dann um den Repréasentanten, iiber den sie dort definiert wurden.

Es folgen einige Konstruktionen mit partiell geordneten Mengen und ihren Ordnungs-
typen. Die erste dieser Konstruktionen wird auf eine einzelne partiell geordnete Menge
angewendet.

"Esist N={1,2,...} und =N = {—1,—2,...}; die natiirlichen Zahlen ab 1 zu definieren, wird sich
im Folgenden als niitzlich erweisen.



1 Einfiihrung

Definition (Duale Ordnung, dualer Ordnungstyp): Sei (P, <p) eine partiell geordnete
Menge. Definiere —P := {—p : p € P} als disjunkte Kopie von P. Definiere die duale
partielle Ordnung <%:= {(—p1, —p2) : p2 <p p1}. Sei p = ord (P, <p) der Ordnungstyp
der partiell geordneten Menge, dann bezeichnet p* := ord (—P, <}) den dualen Ord-
nungstyp zu u.

Wieder gilt: Der duale Ordnungstyp ist vom gewédhlten Reprisentanten unabhéngig.
Dies zeigt eine einfache Rechnung. Ebenso durch einfache Rechnung zeigt sich, dass das
Bilden des dualen Ordnungstyps eine Involution ist, also dass (u*)* = p gilt.

Beispiel: w* ist der duale Ordnungstyp zu w.

Lemma 2: Sei n € N eine beliebige natiirliche Zahl. Betrachtet man n als Ordnungstyp,
so gilt: n* = n.

Beweis. Definiere die offensichtlich bijektive Abbildung:

v:{1,2,...,n} = {-1,-2,...,—n}
t—t—n-—1

Ist < die gebréauchliche ,kleiner gleich“-Relation auf den natiirlichen Zahlen, so entspricht
<* der Restriktion der gebrduchlichen ,kleiner gleich“-Relation auf den negativen Teil
der ganzen Zahlen. Es ist also i < j <= (i) < 1(j) zu zeigen, dies gilt aber trivialerweise.

O

Die néachsten beiden Konstruktionen kombinieren zwei partiell geordnete Menge zu
einer neuen.

Definition (Summe, Produkt partieller Ordnungen): Seien (Pr,<;) und (P, <) zwei
partiell geordnete Mengen. Betrachte die beiden Mengen P; und P als disjunkt und
definiere <;45C (P1 + PQ) X (Pl + P2) und <i4,9C (Pl X PQ) X (P1 X PQ) als

<142 =<1 U< U (P x P») und
<ws2 = {(p1,p2, P}, P5) : p2 <2 Po} U {(p1,p2, 11, 1%) : p2 = p und py <1 pi}.

(P14 Py, <i42) ist die Summe von (P1,<1) und (Ps, <9) und (P X P3, <j.2) das Produkt.

In der Summe sind die Elemente von P; also alle kleiner als die von P, wobei P; und
Ps selbst entsprechend der jeweiligen partiellen Ordnung geordnet sind. Beim Produkt
wird zuerst entsprechend <s verglichen und bei Gleichheit entsprechend <;. Die Summe
und das Produkt linear geordneter Mengen sind selbst wieder linear geordnete Mengen;
dies ergibt sich direkt aus der Definition.

Die Verkniipfung zweier partiell geordneter Mengen zu einer Summe oder einem Pro-
dukt iibertréagt sich auf die entsprechenden Ordnungstypen, da das Ergebnis unabhéngig
vom gewahlten Reprasentanten ist. Das fasst das folgende Lemma zusammen, dessen Be-
weis hier nur skizziert werden soll:f

"Mehr Details finden sich zum Beispiel in [13].
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1.1 Grundlagen

Lemma: Seien (Pi,<p,) und (Q1,<g,) sowie (P, <p,) und (Q2,<q,) je zwei partiell
geordnete Mengen vom selben Ordnungstyp. Seien ferner (P + P, <pj42) die Summe
von (P, <p,) und (P2, <p,) und (Q1 + Q2,<Q,14+2) die von (Q1,<g,) und (Q2, <Q,).
Die analogen Produkte seien (P; X Pa, <pj42) und (Q1 X Q2, <Q,1+2)

Dann gilt:

ord (P; 4+ P5, <p142) = ord (Q1 + Q2, <g,142) und
ord (P1 x P, <p142) = ord (Q1 X Q2, <Q,142) -

Beweisskizze. Sei 11 : P — @1 eine der ordnungserhaltenden Bijektionen zwischen P;
und @1, sei tg : Po — Q2 entsprechend eine der ordnungserhaltenden Bijektionen zwi-
schen P> und ()s. Definiere die ordnungserhaltende Bijektion

g2t P+ P — Q1+ Q2

. ti(s) fallspe Py
1a(s) falls p € Ps.

Dass es sich bei ¢149 tatséchlich um die gewiinschte ordnungserhaltende Bijketion han-
delt, sieht man leicht durch Rechnung ein.
Fiir die Aussage tiber Produkte definiere

L1*2251XSQ—>T1><TQ

(81, 82) — (Ll(sl), LQ(SQ)) .

Auch hier zeigt sich durch eine Rechnung, dass es sich um eine ordnungserhaltende
Bijketion handelt. O

Mit diesen Erkenntnissen lasst sich die Schreibweise vereinfachen. Fir zwei Ordnungs-
typen p = ord (P,<p) und v = ord(Q,<g) ist 4 + v der von den Reprisentan-
ten unabhéngige Ordnungstyp ord (P + @, <piqg). Analog ist p - v der Ordnungstyp
ord (P x @, <p«). Um auch komplexere Ausdriicke aus Summen und Produkten von
Ordnungstypen schreiben zu kénnen, wird — wie {iblich — vereinbart, dass Produkte ho-
here Prézedenz haben als Summen. Auflerdem kénnen Klammer weggelassen werden, da
die Operationen assoziativ sind, wie man durch einfache Rechnung leicht einsieht.f

Neben der Assoziativitdt von Summe und Produkt gelten auch einige Rechenregeln,
insbesondere wenn man natiirliche Zahlen als Ordnungstypen betrachtet.

Lemma 3: Seien n und m natiirliche Zahlen. Dann gilt:

ord ({1,2,...,n},<)4ord ({1,2,...,m}, <) =ord ({1,2,...,n+ m}, <)
ord ({1,2,...,n},<)-ord ({1,2,...,m}, <) =ord ({1,2,...,n-m}, <)

Beweis. Die Aussagen sind eine direkte Folge aus der Eindeutigkeit endlicher linearer
Ordnungen (vgl. dazu [13, S. 17]). O

TMehr zur Assoziativitit von Summe und Produkt findet sich wieder z. B. in [13]
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1 Einfiihrung

1.1.6 Worter

Sei X ein beliebiges Alphabet. Wie bereits erwdhnt bezeichnet >* die Menge aller end-
lichen Worter iiber X. Mit X7 soll die Menge aller nicht-leeren Worter auf X* be-
zeichnet werden. Ein Wort w € Y7 ist damit eine endliche Sequenz aus Buchstaben
w=aiasz...a, mit a; € ¥ fiir i = 1,2, ..., n. w ldsst sich allerdings auch als Abbildung
w: {1,2,...,n} — X von Positionen im Wort in das Alphabet betrachten. Fiir endli-
che Worter ist die Menge der Positionen ebenfalls endlich. Tatséchlich ist diese Menge
zusammen mit der <-Ordnung auf den natiirlichen Zahlen eine linear geordnete Menge
vom Ordnungstyp n, wobei n = |w| € N die Lange des Wortes w ist.

Mit dieser Betrachtungsweise ist es moglich den Begriff des Wortes auf eine unendliche
linear geordnete Menge zu erweitern:

Definition (Verallgemeinertes Wort): Sei (P, <) eine linear geordnete Menge. Eine Ab-
bildung w : P — X heifit (verallgemeinertes) Wort iiber ¥ vom Ordnungstyp ord (P, <).
Das Bild von w heifit auch effektives Alphabet von w, geschrieben als a(w) := w(P). Die
Menge aller verallgemeinerten Worter iiber 3 wird mit ©C bezeichnet.

Konvention: Im Folgenden wird bei Wortern nicht mehr zwischen linear geordneten
Mengen vom selben Ordnungstyp unterschieden, d.h. fiir zwei linear geordnete Mengen
(P, <p) und (@, <q), fiir die es eine ordnungserhaltende Bijektion ¢ : P — @ gibt, wird
ein Wort w : Q — X als gleich zum Wort w’ : P — ¥ mit p — w(¢(p)) betrachtet.

Beispiel:

w: N — {a,b}

{ a falls i gerade
'_)
b sonst

w ist ein verallgemeinertes Wort vom Ordnungstyp w. Anschaulich besteht w aus einer
nach rechts unendlich langen Abfolge von ab.

Wie endliche Worter lassen sich auch verallgemeinerte Worter verkniipfen.

Definition (Konkatenation verallgemeinerter Worter): Sei u ein Wort tiber ¥ vom Ord-
nungstyp ord (P, <p) und v eines vom Ordnungstyp ord (Q, <g). Dann ist uv ein Wort
iiber ¥ vom Ordnungstyp ord (P, <p)+ord (Q, <) und definiert iiber

w: P+Q — X%

N u(i) fallsieP
! v(i) fallsie@

Die Assoziativitdt der Summe von Ordnungstypen iibertragt sich direkt auf die Konka-
tenation verallgemeinerter Worter, d. h. es gilt (ww)w = u(vw). AuBerdem stimmt die
Konkatenation zweier endlicher Worter betrachtet als verallgemeinerte Worter mit der
herkémmlichen Konkatenation iiberein, wie das folgende Lemma festhélt. Auf einen for-
mellen Beweis der Aussage soll hier allerdings verzichtet werden, da er sich sehr leicht
ergibt.

12



1.2 w-Terme und Gleichungen

Lemma 4: Seien w1 = ajas...a, und wy = b1by...b,, zwei endliche Worter iiber dem
Alphabet Y. Sei w’ = aqas . ..apb1bs ... by, die herkommliche Konkatenation von w; und
wy. Dann gilt:

wilwg = w'

Verkniipft man zwei verallgemeinerte Worter wy und ws, so ist das effektive Alphabet

dieses Wortes die Vereinigung der effektiven Alphabete der beiden Ursprungsworter.
FEine weitere Form der Verkniipfung verallgemeinerter Worter liefert die folgende De-

finition:

Definition (Potenz verallgemeinerter Worter): Sei w ein Wort iiber ¥ vom Ordnungstyp

ord (P,<p) und sei p = ord (Q, <) ein linearer Ordnungstyp. Dann ist w* ein Wort

iiber ¥ vom Ordnungstyp ord (P, <p)-u und definiert tiber

wh:PxQ—%
(2, q) = w(i)

Analog wie bei der Konkatenation iibertrdgt sich bei der Potenz die Assoziativitit des
Produkts von Ordnungstypen, d.h. es gilt (w*)” = w#¥). Das effektive Alphabet eines
Wortes éndert sich nach dieser Definition durch Potenzierung nicht.

Zwischen Konkatenation und Potenz verallgemeinerter Worter besteht ein Zusammen-
hang dhnlich dem bei endlichen Wortern:

Lemma 5: Sei w ein (verallgemeinertes) Wort tiber dem Alphabet ¥ und n eine natiir-
liche Zahl. Es ist

w'=ww...w.

——

n mal
Insbesondere ist w” ein endliches Wort, falls w endlich ist.

Auch der Beweis dieses Lemmas ergibt sich sehr leicht und soll daher hier nicht explizit
aufgefiihrt werden.

1.2 7-Terme und Gleichungen

Bisher wurden zumeist nur weitgehend bekannte Begriffe und Konzepte behandelt. Auch
in diesem Abschnitt wird sich viel Vertrautes finden lassen. Allerdings befinden sich
darunter auch Definition und erste Erkenntnisse, die fir das Weitere von so zentraler
Bedeutung sind, dass sie einen eigenen Abschnitt verdienen.

1.2.1 7-Terme

Beim Untersuchen von Halbgruppen spielen w-Terme oft eine wichtige Rolle, da sie Ele-
mente einer Halbgruppe und die zugehorigen Idempotenten gut beschreiben kénnen. In
der Regel werden sie dabei allerdings nicht m-Terme, sondern w-Terme genannt. Diese
Terminologie wird zwar auch im Titel dieser Arbeit verwendet, hat aber einen Nachteil:
Der Buchstabe w wird nicht nur bei w-Termen, sondern auch zur Beschreibung des Ord-
nungstyps der natiirlichen Zahlen verwendet. Auflerdem bezeichnet w oft auch noch die
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1 Einfiihrung

Potenz aus Lemma 1. Aufgrund dieser Doppeldeutigkeit ist hier von nun an konsequent
von m-Termen die Redef.

Doch worum genau handelt es sich bei einem 7-Term nun? Am Anfang der Antwort
auf diese Frage steht die syntaktischen Definition eines w-Terms:

Definition (7-Term tber X): Sei ¥ ein beliebiges Alphabet. Ein 7-Term tiber (dem
Alphabet) ¥ ist folgendermaflen definiert:

1. Jeder Buchstabe a € ¥ ist ein 7-Term tiber (dem Alphabet) X.

2. Sei w ein w-Term iiber ¥. Dann ist (w)™ ein w-Term tiber X.

3. Seien uw und v w-Terme iiber . Dann ist (uv) ein 7-Term iiber ¥

Konvention: Ist lediglich von einem w-Term statt von einem w-Term iiber ¥ die Rede,
ergibt sich das Alphabet aus dem Kontext.

Konvention: Unnotige Klammern werden in m-Termen weggelassen, gemeint ist dann
die Rechtsfaktorisierung des Terms. Dabei hat eine m-Potenz hoéhere Préazedenz als die
Konkatenation.

Beispiel: xy"z = z((y)™)z) ist ein w-Term iiber {z,y, z}.
Man beachte, dass nach der Definition eines w-Terms insbesondere jedes endliche, nicht-
leere Wort w € X7 ein 7 Term ist! Tatsdchlich handelt es sich bei m-Termen im Wesentli-

chen um Worter mit der zusétzlichen Moglichkeit von m-Exponenten. Als solche besteht
fiir sie die Moglichkeit sie graphisch iiber Syntax-Baume darzustellen:

Definition (Syntax-Baum eines m-Terms): Der Syntaz-Baum G(w) eines m-Terms w tiber
3 ist ein beschrifteter Baum, dessen Knoten linear geordnet sind. Er ist rekursiv definiert:
1. Ist der w-Term von der Form w = a € X, also ein w-Term, der nur aus ei-
nem einzelnen Buchstaben besteht, so ist der Syntax-Baum definiert als G(w) :=
({vo}, 0,v9,\) mit A : {vg} — X + {m, -} und A(v) := a. Die zugehorige Ordnung
der Knoten ist < := {(vg,vg)}.
2. Fir einen m-Term von der Form w = (z)™ mit G(z) =: (Va, By, Vo4, A) ist der
Syntax-Baum durch G(w) := (V, E; U {(vow, v0z)}, Vow, A) definiert, wobei V' :=
Ve + {vo,w} und A die Beschriftung A\, um A(vg,) := 7 erweitert. Sei <, die
Ordnung der Knoten von G(x). Die Ordnung der Knoten von G(w) ist dann < :=
<z U {U()’w} x V.
Graphisch:

™

|

75N

3. Fiir einen 7-Term von der Form w = zy mit G(z) := (Vy, B, v0 2, A\z) und G(y) =
(Vy, Ey,v0,y, Ay) ist der Syntax-Baum durch G(w) := (Vu + Vy + {vow}, Ex +
Ey + {(v0,w, v0,2), (V0,ws V0,y) }, V0,w, A) definiert. X vereinigt dabei die Beschriftun-
gen A; und A, und beschriftet vy, mit -. Die zugehorige Ordnung < der Kno-

"Dies folgt der Notation in [11].
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1.2 w-Terme und Gleichungen

ten bildet die Summe der Ordnungen von G(x) und G(y) vereinigt mit {vg.,} x
(Ve +Vy + {vo.u})-
Graphisch:

Die Knoten mit Beschriftung 7 heilen w-Knoten, die mit Beschriftung - Konkatenati-
onsknoten.

Man beachte, dass nach dieser Definition jeder Knoten aus dem Syntax-Baum eines
m-Terms die Wurzel des Symtax-Baumes einen anderen w-Terms bildet; dieser kommt
im urspriinglichen 7w-Term vor. AuBlerdem verifiziere man durch Nachrechnen, dass die
Ordnung der Knoten eines 7w-Terms tatséchlich eine lineare Ordnung ist.

Beispiel: xy”z hat folgenden Syntax-Baum:

Bisher sind w-Terme rein syntaktisch definiert. Tatséchlich konnen die 7m-Exponenten
als Platzhalter betrachten werden, deren eigentliche Bedeutung durch einen beliebigen
Ordnungstyp interpretiert wird. Als Ergebnis dieses Vorgehens ergibt sich ein verallge-
meinertes Wort.

Definition (Interpretation eines m-Terms): Sei w ein m-Term iiber ¥ und p ein linearer
Ordnungstyp. Das zugehorige verallgemeinerte Wort [w],, ist folgendermafen definiert:
e Istw=acX, soist [w], =a.
o Ist w von der Form u™, dann ist [w], = ([u],)".
o Ist w von der Form wv, dann ist [w], := [u][v],.

Ist w ein endliches Wort iiber X, so ist w nach Definition auch ein w-Term iiber X.
Fiir jeden linearen Ordnungstyp p ist nach dieser Definition dann [w], = w. Tatséchlich
ersetzt der Ordnungstyp im m-Term genau die m-Exponenten. Aulerdem ist zu erwdhnen,
dass nach Lemma 5 und Lemma 4 [w],, fir einen m-Term w iiber dem Alphabet 3 und
flir jede natiirliche Zahl n ein endliches Wort {iber 3 ist.

Die Ergidnzung eines m-Terms um einen Ordnungstyp ldsst sich in dhnlicher Weise
auf den Syntax-Baum iibertragen. Sei dazu p = ord (@, <) ein linearer Ordnungstyp.
Betrachte einen Pfad p im Syntax-Baum G(w) = (V, E, vg, A) eines m-Terms w iiber X, der
an der Wurzel anfdngt und an einem Blatt endet. p wird nun zu einem beschrifteten Pfad
in G(w) ergénzt. Dabei erhalten die m-Knoten eine Beschriftung aus () und alle anderen
Knoten die feste Beschriftung T. Zur Vereinfachung wird ein solcher beschrifteter Pfad
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1 Einfiihrung

als u-Pfad bezeichnet, dazu wird auch die Unterscheidung von einzelnen Reprisentanten
des Ordnungstyps fallen gelassen. Alle y-Pfade in G(w) bilden die Menge P, (w).

Die p-Pfade im Syntax-Baum eines m-Terms lassen sich linear ordnen, dazu ist die
folgende Definition niitzlich:

Definition: Sei w ein 7Term und g ein linearer Ordnungstyp, seien aulerdem p und p’
zwei p-Pfade in G(w). Dann bezeichne §,(p) den ersten Knoten auf p, an dem sich p
von p’ unterscheidet.

Man beachte, dass d,(p’) stets definiert ist.
Die eigentlich lineare Ordnung der p-Pfade lautet dann wie folgt:
Definition: Seien p; und py zwei py-Pfade im Syntax-Baum G(w) = (V, E, vp, \) eines
m-Terms w tiber ¥, wobei p = ord (Q, <) sei. Es ist p1 <, p2 genau dann, wenn eine
der folgenden Bedingungen eintritt:
e Esist pP1 = p2-
o Fiir py # p2 sei v = 0, (p2) und vz = &, (p1).
— Es ist v1 = vp und pq(v1) <@ p2(v2).
— Es ist v1 < vy (entsprechend der linearen Knotenordnung im Syntax-Baum).
Man beachte, dass pu-Pfade an Knoten, die keine m-Knoten sind, stets mit T beschriftet
sind und sich so an diesen Knoten durch die Beschriftung nicht von anderen u-Pfaden
unterscheiden koénnen. Gilt also v1 = v9, so muss dieser Knoten ein m-Knoten sein und
damit sind p; (v1) und pa(v2) aus Q. Andererseits haben m-Knoten nach Konstruktion nur
ein Kind, damit kénnen v; und vy, wenn sie unterschiedlich sind, nur Kinder eines Kon-
katenationsknotens sein. Schlieflich zeigt einfaches Nachrechnen, dass <, ,, tatséchlich
eine lineare Ordnung ist.
Diese zunéchst recht sperrig wirkende Definition der Ordnung der pu-Pfade ist in Wirk-
lichkeit eng verwandt mit dem Wort [w],:

Lemma 6: Sei w ein 7-Term iiber ¥ und p = ord (S, <g) ein linearer Ordnungstyp. Der
Ordnungstyp von [w], stimmt mit dem der p-Pfade in G(w) tiberein.

Beweis. Sei v = ord (T, <7) der Ordnungstyp von [w],. Der Beweis der Aussage erfolgt
per Induktion iiber den Aufbau von w.

Ist w = a € ¥ ein einzelner Buchstabe, so ist ¥ = 1. In G(w) gibt es dann genau einen
Pfad, bestehend nur aus der Wurzel. Dieser bildet auch den einzigen p-Pfad. Damit ist
ord (Py(w), <pw) =1=v.

Ist w = zy, so sei v = ord (T}, <r,) der Ordnungstyp von [z], und v, = ord (T, <r,)
der von [y],. Nach Definition ist [w], = [z].[y], und damit v = v, + v, baw. T =
T, + T, und nach Induktion gibt es ordnungserhaltende Bijektionen o, : P,(x) — T
und oy : P,(y) = T}, Diese lassen sich zu einer ordnungserhaltenden Bijektion

o:P,(w)—=>T

. / o.(p') falls (p')1 Knoten in G(z) ist
p=rT o { oy(p') falls (p’); Knoten in G(y) ist

erweitern. Da jeder pu-Pfad p in G(w) an der Wurzel r anfangt und diese hier ein Kon-
katenationsknoten ist, ist p(r) = T. Der zweite Knoten kann nach Konstruktion des
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1.2 w-Terme und Gleichungen

Syntax-Baumes dann nur entweder aus G(z) oder aus G(y) sein. Dies zeigt, dass o
wohldefiniert und total ist. AuBerdem ergibt sich die Umkehrfunktion ¢~ durch An-
wenden von o, ! fiir Elemente aus T, bzw. o, ! fiir Elemente aus T, und Erweitern des
entstandenen Pfades p um p(r) := T, wobei r die Wurzel von G(w) sei. Um einzusehen,
dass o ordnungserhaltend ist, seien pi,ps € P,(w) mit p1 <, ., pa2. Dafiir gibt es drei
Moglichkeiten: Ist py = pa, so ist o(p1) <r o(p2) offensichtlich erfiillt, da < reflexiv
ist. Ist p1 # p2, so sei v1 = 0p, (p2) und v = dp,(p1). v1 und ve kénnen nicht mit der
Wurzel von G(w) tibereinstimmen, da beide Pfade dort gleich beschriftet sind. Liegen
v1 und vy beide in G(x) oder beide in G(y), so iibertriagt sich die Ordnungserhaltung
von o, bzw. oy auf 0. Liegt einer in G(x) und einer in G(y), so kann es sich jeweils nur
um die Wurzel des entsprechenden Syntax-Baumes handeln, da sonst vorher bereits eine
Unterscheidung aufgetreten wére. Aufgrund der Knotenordnung ist dann vy die Wurzel
von G(z) und vy die von G(y) (es muss vy < vy gelten, weil p1 <, p2 und vy # vo
gilt). Damit wird p; auf einen Wert aus T, und py auf einen Wert aus 7, abgebildet.
Nach Definition der Summe von Ordnungstypen gilt dann o(p;) <7 o(p2). Umgekehrt
gelte nun o(p1) <7 o(p2) fiir zwei Pfade p1,p2 € P,(w). Sind o(p1) und o(p2) beide aus
T, oder beide aus T}, so iibertrdgt sich auch in dieser Richtung die Ordnungserhaltung
von o, bzw. o,. Ist eines aus T, und eines aus T}, muss nach Definition der Summe
von Ordnungstypen o(p1) € T und o(p2) € T}, gelten. Dann muss aber (p1)2 aus G(x)
und (p2)2 aus G(y) sein, genauer gesagt muss es sich um die jeweiligen Wurzeln der
Syntax-Béume handeln. Nach Definition ist dann (p1)2 < (p2)2 und damit p; <, . p2.

Ist w = ()7, so sei v, = ord (T3, <7,) der Ordnungstyp von [z],. Nach Definition
ist [w], = ([«])" und v = vy - p bzw. T = T, x S und nach Induktion gibt es eine
ordnungserhaltende Bijektion oy, : P,(x) — T;. Definiere:

o:Py(w) =Ty xS
p=r/s = p = (0:(0),5)

Man beachte, dass ein p-Pfad in G(w) an der Wurzel r beginnt und dort mit einem
Element s aus S beschriftet ist. Daher ist die Definition von ¢ wohldefiniert und total.
Zur Umkehrung lisst sich o, ! auf das erste Element des Tupels anwenden und der
entstehende Pfad um die Wurzel r mit dem zweiten Element als Beschriftung ergédnzen.
o ist also tatséchlich eine Bijektion. Auflerdem ist o ordnungserhaltend: Seien p; :=
r/s1 — pi und py := 7/s; — ph zwei beliebige p-Pfade in G(w) mit p1 <, p2. Es gilt
zwei Fille zu unterscheiden: Gilt s; = s2, so muss auch p} <, ., ph gelten. Aufgrund
der Ordnungserhaltung von o, und der Definition des Produkts von Ordnungstypen
gilt dann o(p1) = (0z(p}), 51) <7 (02(p), s1) = o(p2). Gilt andererseits s; <g s2, so ist
o(p1) <t o(p2) entsprechend der Definition von v = v, -u bzw. <7. Fiir die Riickrichtung
seien p; := /sy — p} und py := /s, — ph, wieder zwei beliebige p-Pfade in G(w), aber
diesmal mit (o,(p}),s1) = o(p1) <1 o(p2) = (02(ph), s2). Nach Definition von <p ist
s1 = sp und o.(p)) <7, 0.(p5) oder s <g sp. Im ersten Fall gilt p| <,, ph und
wegen s1 = s somit p1 <, ., p2. Im zweiten Fall unterscheiden sich die beiden Pfade p;
und py bereits durch die Beschriftung an der Wurzel von G(w) und nach Definition gilt
P1 <Zpw D2 O]
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1 Einfiihrung

Dies Positionen eines Wortes [w],, lassen sich also mit pu-Pfaden in G(w) identifizieren.
Diese Anschauung wird sich im Folgenden als niitzlich erweisen.

1.2.2 Gleichungen

Gleichungen erlauben es Aussagen in kompakter Form auszudriicken. Dieser Unterab-
schnitt wird eine besondere Art von Gleichungen einfithren, ndmlich Gleichungen iiber
Halbgruppen oder iiber Mengen von Halbgruppen. Tatséchlich ist es moglich diese auch
iiber unendlichen Halbgruppen zu betrachten, der Einfachheit halber sollen hier aber
nur solche iiber endlichen Halbgruppen betrachtet werden.

Zunéchst soll formal definiert werden, was unter eine Gleichung iiber Halbgruppen zu
verstehen ist:

Definition (Gleichung iiber einer Halbgruppe, Belegung): Seien wy und wy zwei m-Terme
iiber dem selben Alphabet ¥ = {z1, z2,...,2,}. Dann heifit wy = wy Gleichung und die
Buchstaben aus Y. auch Variablen. Aulerdem heifit eine Abbildung ¢ : 3 — S von X in
die Halbgruppe S Belequng der Variablen.

Konvention: Eine Belegung o : ¥ — S ldsst sich zur Abbildung

o:xt 58

Ty Tiy « . Ti,, > 0(xiy)o(Tiy) ... o(T4,,)

erweitern. Im Folgenden wird eine Belegung o : ¥ — S daher stets auch als Abbildung
o : %17 — S oder bei Monoiden als o : ¥* — M betrachtet.

Die Verwendung von Gleichungen wird erst sinnvoll, wenn ihnen ein Wahrheitswert zu-
geordnet werden kann. Fir endliche Halbgruppen erfolgt dies in der nédchsten Definition
und fiir Mengen endlicher Halbgruppen in der darauf folgenden.

Definition (Wahrheitswert einer Gleichung 1): Sei w; = wo eine Gleichung mit Varia-
blen aus ¥ und sei ¢ : ¥ — S eine Belegung dieser Variablen mit Werten aus einer
endlichen Halbgruppe S.

Die Gleichung w; = wa gilt in S unter der Belegung o, falls o(Jwi]s1) = o(Jwz]s1) ist.
Die Gleichung wy = we gilt in .S, falls sie unter jeder Belegung o : ¥ — S gilt. Ansonsten
gilt die Gleichung in S nicht.

Definition (Wahrheitswert einer Gleichung 2): Sei N eine Menge von endlichen Halb-
gruppen. Eine Gleichung w; = wy gilt in N, falls sie in jeder Halbgruppe aus N gilt.

Um die Giiltigkeit einer Gleichung zu beweisen kann das folgende Lemma sehr niitzlich
sein:

Lemma 7: Sie w ein w-Term iiber dem Alphabet ¥ von Variablen und sei o : ¥ — S
eine Belegung dieser Variablen mit Werten aus einer endlichen Halbgruppe S. Sei ¢ € N
eine beliebige natiirliche Zahl.

Dann gilt:

o([w]s) = o([wle.(sy)
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1.3 Ranker und die Trotter-Weil-Hierarchie

Beweis. Der Beweis erfolgt durch Induktion iiber den Aufbau von w. Ist w = x € X
ein einzelner Buchstabe, gilt die Aussage direkt. Ist w = wjws, so ist nach Induk-
tion o([wi]s1) = o([wi]e(sy) fir i € {1,2} und damit o([w]s) = o([wrwsz]s) =
o([wi]sifwz]s) = o([wils)o([wals)) = o([wi]e(sn)o([we]e(sn) = o([w]e(sn). Ist
schliefllich w = (w’)™, so ist nach Induktion o([w']s1) = o([w']c.(s1)). Also ist:

o([w]s) = & (([[w/]]gg)S!) (Definition)
=0 ([w']e S!))S! (Lemma 5, Homomorphismus)
=0 ([[w,]]o(S!))C‘(S!) (Wahl von S!)
=0 (([[w’]]c,(g!))c'(S!)) (Lemma 5, Homomorphismus)
= U([[w]]c-(S!))

O]

Die Definition der Wahrheitswerte von Gleichungen erlaubt es nun das Wortproblem
fir mTerme, das zentrale Element der Betrachtungen dieser Arbeit zu definieren.

Definition (Das Wortproblem fiir 7-Terme): Das Wortproblem fiir 7-Terme einer Menge
N von endlichen Halbgruppen ist das folgende Entscheidungsproblem:

EINGABE: Zwei m-Terme wy und wy iiber dem selben Alphabet.

FrAGE: Gilt die Gleichung w; = w9 in N7

1.3 Ranker und die Trotter-Weil-Hierarchie

1.3.1 Ranker

In [14] fithren Schwentick, Thérien, und Vollmer sogenannte turtle programs als techni-
sches Hilfsmittel ein, weisen aber auch darauf hin, dass sich diese als niitzliches Werkzeug
in einem weiteren Umfeld erweisen konnten. Tatsédchlich griffen Weis und Immerman in
[19] das Konzept unter dem Namen ranker auf. Ebendort finden sich Ansétze zu conden-
sed rankers, wie sie in [8] genannt werden. Kondensierte Ranker haben auch Verbindun-
gen zur eindeutigen Intervall-Temporallogik von Lodaya, Pandya und Shah [9]. Durch
diese Verbindungen sind Ranker niitzliche bei der Untersuchung von zwei Variablenlo-
gik, wie im néchsten Unterabschnitt ausgefiihrt ist. Dieser Unterabschnitt fiihrt Ranker
zunéchst im Zusammenhang mit den in Unterabschnitt 1.1.6 besprochenen verallgemei-
nerten Wortern ein.

Definition (Ranker): Sei ¥ ein beliebiges Alphabet. Definiere Xy := {X, : a € X},
Yy = {Y, : a € £} und Zy = Xy UYy. Ein nicht-leeres endliches Wort aus Z; heif3t
Ranker iiber 3.

Sei w ein (verallgemeinertes) Wort vom Ordnungstyp ord (P, <) iiber X. Definiere fiir
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1 Einfiihrung

a € ¥ die partiellen Abbildungen:

WX, Pl =y P
prmine _{p' i w(p)=aund p<_o p'}

“Y,: Pt® 5, P

p — maxcioo{p : w(p’) = a und p’ <t p}

Zur Vereinfachung sei “ X, (£00) := “ X,(—00) und Y (+o0) := Y, (400).
Fir einen Ranker der Lange > 2 definiere rekursiv fiir alle a € >:

YrXg:{too}+P —, P
p = Xa("r(p))

und

“rY, : {£oo} + P —, P
p = "Ya(“r(p))

Definiere:
rEw <= “r(too) # L

Ein Ranker besteht also aus Instruktionen der Form , gehe zum néchsten a“ oder , gehe
zum letzten a“, die sich auf ein verallgemeinertes Wort anwenden lassen. Der Ranker
ist dabei entweder undefiniert — z. B. ist ® X, (f00) undefiniert — oder er beschreibt eine
Position im Wort. Dazu beachte man insbesondere, dass der Ranker nicht auf einen der
Werte —oo, +00 oder £o0o abbilden kann, was auch fiir die vorherige Definition eine
Rolle spielt. Er wird stets von links nach rechts ausgewertet. Es ist unmittelbar klar,
dass, falls “r(p) fir ein p € {00} + P definiert ist, “'7’(p) auch fiir jedes Préfix r’ von
r definiert ist.

Eine weitere Beobachtung ist im Umgang mit Rankern noch wichtig: Ein Ranker aus
Zg lasst sich nicht nur auf Worter deren effektives Alphabet 3 entspricht anwenden!
Der Ranker X, oder Y, ist nach Definition einfach undefiniert, sollte der Buchstabe a
im Wort nicht vorkommen.

Neben der allgemeinen Form von Rankern, wie sie gerade definiert wurde, gibt es eine
andere Ranker-Art, die im weiteren Verlauf eine grofiere Rolle spielen wird.

Definition (Kondensierte Ranker): Sei r ein Ranker iiber einem beliebigen Alphabet
Y und sei w ein (verallgemeinertes) Wort vom Ordnungstyp ord (P, <). Ein Element
(I, p,1) € P_oo x P x PT° heift zuldssig, falls | <_o, p <t r gilt. Definiere die Menge
der zuldssigen Elemente als:

P :={(l,p,r) € P_oo x P x P (I, p,7) zulissig}.
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1.3 Ranker und die Trotter-Weil-Hierarchie

Definiere zudem fiir a € ¥ die Abbildungen

©X,C: {£o00} + P 5, P°
+00 = (—00, Y X 4(—00), +00), falls “X,(—00) # L
<l,p,T) = (p7p,7 7’) mlt p/ = an(p)7
falls p’ # L und (p,p’,r) zulissig

und

wY,© : {00} + P, P
+00 = (—00, Y 4 (+00), +00), falls “Y q(400) # L
(lapv T) = (laplap) mit p/ = wYa<p)7
falls p’ # L und (I, p’, p) zulissig

Fiir einen Ranker der Linge > 2 definiere rekursiv fiir alle a € X

YrX,© : {£oo} + P¢ —, P°
Pe = X" (“1(pe))

und

“rY,© : {xoo} + P¢ —, P°
pe = Y (Y1 (pe))

Definiere:
rECw <= “r°(foo) # L

Konvention: Ist das Wort, auf das ein (kondensierter oder nicht-kondensierter) Ranker
angewendet wird, aus dem Kontext ersichtlich, entfillt es als Index in der linken oberen
Ecke.

Wie bei (normalen) Rankern ist fiir einen kondensierten Ranker 7 auch “r/® fiir jedes
Prafix 7/ von r an allen Stellen definiert, an denen “r¢ definiert ist. Es sei an dieser
Stelle auflerdem hervorgehoben, dass sich aus der letzten Definition folgendes ergibt: Ist
Yr¢(+oo) = (I,p,r) # L definiert, so ist p = “r(+o00) und damit insbesondere definiert.
Genauso gilt: Ist “r¢(l,p,r) = (I',p',r") # L definiert, so ist p’ = “r(p) und damit
insbesondere definiert. Die umgekehrte Richtung gilt allerdings im Allgemeinen nicht,
da nicht alle vom Ranker erreichten Werte zu zulédssigen Tupeln (I, p,r) fithren miissen.

Weitere Zusammenhénge zwischen r und r¢ ergeben sich durch die nachsten Lemmata:

Lemma 8: Sei r = Z175 ... Z, ein Ranker iiber % und sei w ein Wort vom Ordnungs-
typ ord (P, <), sodass “r°(p.) fir p. € {£oo} + P¢ definiert ist. Es sei (I;,pi,7i) =
w21Z2 ce Zic(pc) fir 1 < ) <n.

Dann gilt I} <_oo lp <o+ <o ln <coo Pn <T 1y ST g KT <F0 g,
Aulerdem gilt [; <_ oo lj11 oder 7,11 <7 r; fiir 1 <i<n-—1.
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1 Einfiihrung

Beweis. Der Beweis erfolgt per Induktion iiber n. Firn = 1 gilt [y = [, <_s pn =
p1 <t r, = ry, da (I, p1,71) zuldssig sein muss. Sei n > 1 und die Aussage fiir
1 Zs ... Zp—q gezeigt. Ist Z, = X, firein a € 3, so ist (In, pn,™n) = XE(ln—1,Pn—1,Tn—1)
und damit [, = p,—1 und 7, = rp_1. Es gilt [; <_ ls <_ -+ <_« [p—1 nach
Induktion, I, 1 <_ oo Pn-1 = ln <_o0 Pn <"°° 1, = 11 nach Zuléssigkeit aller (I;, p;, r;)
und 71 <T® 1,9 <T® ... <+ 1 ebenfalls nach Induktion. Ist Z, = Y, fiir ein
a € X, s0ist (I, pn, ) = Y(ln—1,Pn-1,mn—1) und damit l,, = l,,_; und r, = pp_1. Es
gilt wieder 17 <_oo lo <_oo -+ <_oo lp—1 nach Induktion, l,,_1 = 1l,, <_oo pn <7 7, =
Pn_1 <1t r,_1 nach Zulissigkeit aller (I;,p;,r;) und 7,1 <7 r,_o <TO ... <F0 4y
ebenfalls nach Induktion. O

Lemma: Sei r = Z1 725 ... Zy, ein Ranker iiber ¥ und sei w ein Wort vom Ordnungstyp
ord (P, <), sodass “r°(£o0) definiert ist. Es sei (I;,p;,75) 1= Y2125 ... Z;(+o0) fir 1 <
1 < n.

Dann ist “r(4o00) definiert und es gilt fiir jedes 1 <4 < n entweder Vn > j > i:p; < p;
oder Vn > j >1i:p; < p;.

Beweis. Wie bereits bemerkt, gilt: “Z1Z5 ... Z;(+00) = p; fir alle 1 < i < n, damit ist
insbesondere “r(+00) definiert.

Fiir 7 = n ist nichts zu zeigen. Sei also 1 < i < n. Ist Z;11 = X, fiir ein a € X, dann
ist l;41 = p;. AuBlerdem gilt nach Lemma 8 p; = ;11 < 49 < -+ < [,. Dazu beachte
man, dass ;11 # —oo und damit auch alle nachfolgenden I/; # —oo sind und somit <
statt <_o, geschrieben werden kann. Aufgrund der Zulassigkeit aller (I, pj,7;) gilt dann
pi <pjfirallen >j>i4+1.Ist Z;11 =Y, fiir ein a € 3, dann ist r; 1 = p;. Wiederum
nach Lemma 8 gilt 7, > r,_1 > -+ > 141 = p; und damit p; > p; fiirallen > j >i+1
nach der selben Argumentation. O

Lemma: Sei r = Z1Z5...7Z, ein Ranker iiber 3. Sei w ein Wort vom Ordnungstyp
ord (P, <) und “r(£o0) definiert. Sei p; :="“Z1Z5 ... Zj(£o0) fir 1 <i <n.

Gilt fir alle 1 < i < n entweder p; < p; oder p; < p; fur alle n > j > i, so ist “r°(+o0)
definiert.

Beweis. Der Beweis erfolgt per Induktion iiber den Aufbau von r. Fiir Z; gilt: Z;°(+00)
ist definiert, falls Z;(+o0) definiert ist.

Sei Z1Zsy...Z;°(£o0) fir alle i < k mit k& > 1 definiert. Fir 1 < i < k setze
(liypiyri) = Z1Zy...Z;¢(£o0). Man beachte, dass dies kein Widerspruch zur Defini-
tion der p; oben darstellt. Ist Z; = X, fiir ein a € X, so ist 2125 ... Zx_1X (o0) =
Xo(lg—1, Pk—1,7k—1). Dies ist definiert, da zum einen X,(px—1) = py definiert ist und
zum anderen (pg_1, Pk, Tk—1) zuldssig ist: Nach Definition von “X, ist py_1 < pg, au-
Berdem muss nach Definition der kondensierten Ranker r,_; = +00 oder ry_; = p;, fir
ein ig < k — 1 sein. Im ersten Fall gilt p, <7 r;,_1, im zweiten ist pp_1 < 7h_1 = Dig
wegen der Zuldssigkeit von (Ix_1, px—1, 7k—1) und damit nach Voraussetzung des Lemmas
Dr < Piy = Tk—1-

Ist Zx = Y, fiir ein a € %, so erfolgt die Argumentation weitgehend analog: Es ist
dann Z1Zs...Z; 1Y, (+o0) = Y, “(lk—1,pk—1,7k—1). Dies ist definiert, da zum einen
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1.3 Ranker und die Trotter-Weil-Hierarchie

Ya(pr—1) = pi definiert ist und zum anderen (Ix_1, pr, px—1) zuléssig ist: Nach Definition
von VY, ist pr < pr_1, auBBerdem muss nach Definition der kondensierten Ranker {_; =
—oo oder [ = p;, fiir ein 79 < k — 1 sein. Im ersten Fall gilt [;_; <_o pg, im zweiten
ist lx—1 = piy < pr—1 wegen der Zuldssigkeit von (Ix_1,pr—1,7%k—1) und damit nach
Voraussetzung des Lemmas l_1 = p;, < Pg. ]

Tatséchlich ist damit die Aquivalenz der hier gegebenen Definition kondensierter Ranker
mit der aus [7] gegeben (vgl. dazu auch [8]), falls man diese sinngeméf auf verallge-
meinerte Worter erweitert. Insbesondere sind die Definitionen aber auch auf endlichen
Woértern gleich.
Im Umfeld der Ranker sind noch weitere Begriffe wichtig.

Definition (Block, Unterscheidbarkeit unter Rankern): Sei r ein Ranker iiber 3. Ein
maximaler Faktor von r aus X. ; UYZ+ heifit Block von r. R, ,, ist die Menge aller Ranker
der Linge < n mit maximal m Blocken iiber beliebigem Alphabet. R,, ist die Menge aller
Ranker beliebiger Lidnge mit maximal m Blécken iiber beliebigem Alphabet. Definiere:

= (RmpnNXsZ5)URp_1n
RY = (Rmn NYsZE)URm_11
RX (R N X5 Z3) U Ryt
RY = (R NYsZ&) U Ry

Definiere aulerdem die folgenden Relationen iiber verallgemeinerten Wortern:

USpp V<= (Vre€ Ry, :rE us=1rE"v)

)

uziinv:(:)(VreRnX%n:r)zcu(:)rlsz)
uEfan:<:>(VTERWY%TZ:T):C’LL<:>T’:CU)
u=Epvi<= (VreRy:r = us=rkEv)

uanlv:<:>(Vr€RnXl:r|:Cu<:>r):CU)
uz}%v:<:>(VreR%:T|:Cu<:>r|:Cv)

Die Relationen =, ,, EnX%n und :m », sind tber verallgemeinerten Wortern definiert.
Damit sind sie aber insbesondere auch Relationen iiber den endlichen Wortern aus X* fiir
ein Alphabet X. Tatséchlich sind sie dort sogar Kongruenzen Von endlichem Index (vgl.
[7, Proposition 5.7]). Die Mengen ¥* /=, ,,, ¥* /=X . und ¥* /=Y  der Kongruenzklassen
bilden daher jeweils ein endliches Monoid.

1.3.2 Die Trotter-Weil-Hierarchie

Diese Arbeit beschéftigt sich mit dem Wortproblem fiir w-Terme iiber Zweivariablenlogik.
Es wurde bereits angefiihrt, dass w-Terme hier tatsachlich als w-Terme bezeichnet werden.
Es iiberrascht daher vielleicht weniger, dass auch die Zweivariablenlogik nur am Rande

TFiir Details zu Kongruenzen und Monoiden aus Kongruenzklassen siehe z. B. [4, S. 22ff.]
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1 Einfiihrung

auftaucht, obwohl sie eine zentrale Rolle spielt. Um dies zu verstehen ist es zunéchst
notwendig sich mit Prédikatenlogik erster Stufe FO[<] zu beschéftigen. Diese kann
auf endliche Worter angewendet werden: Dabei beziehen sich die Werte von Variablen
auf Positionen im Wort und das spezielles Pradikat A\(x) = a erlaubt es zu fordern,
dass die durch x bestimmte Position mit a beschriftet ist. Weitere Pradikate der Form
x < y erlauben zuséatzlich den Vergleich von Positionen. Es ist bekannt, dass es zu jedem
Satz, also jeder Formel, die keine freien Variablen enthilt, aus FO[<] bereits einen
aquivalenten Satz gibt, der nur drei Variablen verwendet. Schrankt man die Anzahl der
Variablen auf zwei ein, erhilt man jene Logik FO? [<], die im Titel mit Zweivariablenlogik
bezeichnet wird. Ein Satz aus einer der Logiken definiert nun eine Sprache endlicher
Worter; diese besteht genau aus jenen Wortern, die den Satz erfiillen. Wird eine Sprache
endlicher Worter durch einen Satz aus einer Logik definiert, so heifit sie in dieser Logik
definierbar.

Es ist nun moglich Zusammenhénge zwischen in bestimmten Logiken definierbaren
Sprachen und algebraischen Eigenschaften jener Monoide, die diese Sprachen erkennen,
herzustellen. Der fir diese Arbeit wichtigste Zusammenhang ist dabei der folgende: Eine
Sprache ist in FO?[<] definierbar genau dann, wenn sie durch ein Monoid in der Varietét
DA erkannt wird [16, 3]. Mehr zu den hier beschrieben Logiken, einschlielich einer
formalen Definition, findet sich z. B. in [3].

Bei der Trotter-Weil-Hierarchie handelt es sich nun um eine Hierarchie aus Varietéten,
die Teilmengen von DA sind. Namensgebend ist hier die erste Untersuchung dieser
Hierarchie durch Trotter und Weil [17]. Die Hierarchie besteht aus den Ecken R, und
Ly, den N-Ebenen R,,, N Ly, und den V-Ebenen R, V L.,, alle jeweils fiir alle m € N.
Die bekannten Varietaten der R-trivialen und der £-trivialen Monoide treten als Ecken in
der Trotter-Weil-Hierarchie auf, die der J-trivialen Monoide als N-Ebene. Im Folgenden
wird das Wortproblem fiir m-Terme der Ecken und der V-Ebene genauer untersucht.
Dabei soll auf eine genaue Definition der genannten Varietdten verzichtet werden, da
sie zum einen viele Konzepte aus der Halbgruppentheorie benétigt und zum anderen
fiir die weiteren Ergebnisse nicht notwendig ist.” Stattdessen werden die fiir das Weitere
entscheidenden Eigenschaften hier in der Form von Sétzen vorgestellt, die sich auch als
alternative, aber dquivalente, Definition betrachten lassen. Hierbei spielen Logiken und
algebraische Eigenschaften nur implizit eine Rolle, wichtig sind dagegen die im letzten
Unterabschnitt definierten Ranker.

Theorem 1: Sei X ein beliebiges Alphabet und M ein endliches Monoid. Sei ferner
p 3% = M ein surjektiver Monoidhomomorphismus und m > 1.
Dann gilt:

e M e R, <= (Vu,v eX*:u Ei7(m+1)‘M‘_m v = p(u) = go(v)).
o (v)).
(v

=

e McL,, — (Vu,v cX*:u E%,(m+1)|M|—m v = ¢(u)

e MeRy VI (In>1VuveX*tu=,,v = ¢(u
Auflerdem gilt:

e VneN: E*/Efmn €ER,

~—

))-

"Eine solche formale Definition findet sich dabei in [7]
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1.3 Ranker und die Trotter-Weil-Hierarchie

e VneN: E*/E}Z’n €L,
e VneN:¥*/=,,,€ Ry V Ly,

Beweis. Der erste Teil entspricht Theorem 5.10 aus [7]; im Beweis dafiir werden auch
die ersten beiden Punkte des zweiten Teils gezeigt. Der dritte Punkt des zweiten Teils
schliellich ist eine direkte Folge aus dem ersten Teil. O

Beim ersten Teil der Aussage wird spéter die Richtung von links nach rechts entscheidend
sein. Deshalb sei hier darauf hingewiesen, dass diese Implikation fiir alle Homomorphis-
men (also nicht nur surjektive) gilt: Ist ein Homomorphismus ¢ nicht surjektiv erweitere
ihn und das Alphabet ¥ so, dass er es ist. Dies ist stets moglich (wie man sich leicht
iiberlegt). Da die Aussage fiir alle endlichen Worter iiber dem erweiterten Alphabet gilt,
gilt sie natiirlich auch fiir alle Worter aus dem urspriinglichen Alphabet. Dort stimmt
der Homomorphismus aber bereits mit seiner Erweiterung iiberein.

Schlieflich soll noch eine weitere Eigenschaft der Trotter-Weil-Hierachie in einem Satz
festgehalten werden. Dank dieser Eigenschaft lassen sich die meisten Ergebnisse zur
Trotter-Weil-Hierarchie auf DA iibertragen.

Theorem 2: Es ist:
DA=|J RnVLn
meN

Beweis. Die Aussage ergibt sich aus Theorem 4.1 in [7]. O
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2 Entscheidbarkeit

Nachdem nun alle benétigten Begriffe eingefithrt sind, wird sich dieses Kapitel mit dem
ersten zentralen Ergebnis dieser Arbeit beschéftigen: Die Entscheidbarkeit des Wortpro-
blems fiir m-Terme der Ecken und V-Ebenen der Trotter-Weil-Hierarchie sowie von DA.
Dazu werden zunéchst Ranker im Kontext von m-Termen erneut diskutiert, anschliefend
wird eine Form der Normalisierung von (w+ w*)-Pfaden im Syntax-Baum eines m-Terms
eingefiihrt, die dann die Entscheidbarkeit der Probleme zeigt.

2.1 Ranker und 7-Terme

2.1.1 Technische Hilfsmittel

Lemma 6 hat gezeigt, dass sich die Positionen in einem Wort [w],, als u-Pfade im Syntax-
Baum G(w) eines m-Terms w betrachten lassen. Diese Betrachtung ermoglicht viele Aus-
sagen iiber das Verhalten von Rankern auf Woértern der entsprechenden Form. Einige
solcher Aussagen fassen die Lemmata in diesem Unterabschnitt zusammen. Zunéchst ist
es jedoch sinnvoll folgenden Konvention zu vereinbaren:

Konvention: Ist w ein 7-Term und p ein Ordnungstyp, dann bezeichnet w, das Wort
[w] ysp=. Sofern aus dem Kontext zu erkennen ist, welcher m-Term gemeint ist, wird
auflerdem #r statt “rr fiir einen Ranker r und #r°¢ statt “»r® fiir einen kondensierten
Ranker ¢ geschrieben.

Es sei hervorgehoben, dass w,, gleich [w], 4, ist und nicht etwa gleich [w],. Dies mag
zunéchst verwirrend wirken, im Folgenden ist aber stets diese Form von Bedeutung. Die
Schreibweise l&sst sich daher auf diese Weise deutlich verkiirzen.

Nun aber zu den Aussagen iiber Ranker und m-Terme:
Lemma 9: Sei w ein w-Term und sei p € NU {w} ein Ordnungstyp.
Es gilt fiir alle a aus einem Alphabet X:

FXa(o0) =p# L = Fiir alle m-Knoten v, an denen p definiert ist, gilt:

p(v) = 1.
"Y,(£o0) = p # L = Fiir alle 7-Knoten v, an denen p definiert ist, gilt:
p(v) = -1

Sei p # +oo ein (p + p*)-Pfad in G(w) und sei m := max{p(v) : p(v) € N} und
m = min{p(v) : p(v) € —N}.
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2 Entscheidbarkeit

Ist 4 = w oder N 3 > m, so gilt:

FX,(p) =p' # L = Fiir alle 7-Knoten v, an denen p definiert ist, gilt:
p'(v) =1, p'(v) = p(v) oder p'(v) = p(v) + 1.

Ist 4 = w oder N 3 o > —m, so gilt:

kY, (p) =p # L = Fiir alle m-Knoten v, an denen p definiert ist, gilt:
p'(v) = =1, p'(v) = p(v) oder p'(v) = p(v) — 1.

Beweis. Sei zuerst #X,(+o00) = p # L. Sei v ein m-Knoten in G(w), sodass p(v) # L.
Angenommen es wire p(v) # 1, also p(v) > 1 oder p(v) € —N. Sei p gleich zu p, aber mit
p(v) := 1. Dann ist p <,4u*w p, was einen Widerspruch zur Definition von #X, iiber
das Minimum darstellt.

Sei nun p = w oder p > 7 und sei X, (p) = p’ # L. Sei v, der erste Knoten auf p, an
dem p und p’ nicht mehr {ibereinstimmen, und sei v,y der entsprechende Knoten auf p'.
Fir alle m-Knoten v davor, gilt dann p(v) = p(v). Gilt v, = vy, so ist v,y ein T-Knoten.
Man beachte, dass fir alle 7-Knoten v, tiber die p verlauft, p(v) +1 € S+ =S fiir p =
ord (S, <g) mit S C N ist. Angenommen es ist p(v,) # p(vp) + 1. Da nach Definition der
Ranker p’ >4 = p gelten muss, ist dann p’(v,) > p(vp) +1 oder p'(vp,) € —N. Definiert
man den Pfad p’ gleich zu p" aber mit p'(vp) := p(vp) + 1, 80 ist p <pgprw P <pgprw -
Dies stellt einen Widerspruch zur Definition von # X, iiber das Minimum dar. Ist v ein
m-Knoten auf p’ nach vy oder gilt v, # vy und vy = v, so ist p/(v) = 1, da sonst p’ mit
P’ (v) := 1 aber sonst gleich zu p’ wieder einen Pfad grofer als p, aber kleiner als p’ und
damit einen Widerspruch liefert.

Die Aussagen zu Y, folgen mit den entsprechenden links-rechts-dualen Beweisen. [

Man beachte, dass er letzte Beweis tatsichlich eine genauere Aussage liefert als das
Lemma sie formuliert: Ob p/(v) = 1, p/(v) = p(v) oder p'(v) = p(v) + 1 gilt, hdngt
nédmlich von der Position von v auf dem Pfad im Verhéltnis zu v,y ab. Dies gilt natiirlich
auch fiir die entsprechende Aussage zu *Y,.

Die erste Aussage fiihrt direkt auf die zweite, die einen Zusammenhang zwischen Ran-
kerlange und den Werten an m-Knoten eines (w + w*)-Pfades herstellt:

Lemma 10: Sei w ein m-Term, p € NU {w} ein Ordnungstyp und r = Z1Z5... Z, ein
Ranker der Lange n.
Ist #r(£oo) = p # L, so gilt fiir alle 7-Knoten v aus G(w), iiber die p verlauft:

p(v) € N = p(v) < n und
p(v) € =N = p(v) > —n

Beweis. Die Aussage ergibt sich aus Lemma 9. O

Die letzte Aussage dieses Unterabschnitts beschéftigt sich nun mit dem Ubergang von
w auf eine (endliche) natiirliche Zahl:

28



2.1 Ranker und w-Terme

Lemma 11: Sei w ein m-Term und X ein Alphabet.
Fiir einen Ranker r der Léange n {iber X gilt:

VEk >n: “rc(+oo0) = Fré(do0),

insbesondere ist
VE>n:rEw, <= r E° wg.

Beweis. Der Beweis erfolgt durch Induktion iiber die Rankerldnge n. Sei n = 1 und
r = Z, mit Z € {X,Y}. Es gilt dann fiir £ > 1:

Zo S wy, <= Zy = wy,
<— a ¢ a(w,) = a(wg)
= Z, W wy = Zy E wy

Ist “ Z,¢(£00) = (—00, Py, 00) # L definiert, so ist also auch ¥ Z,°(+o0) = (—o0, pi, +00)
# | definiert. Nach Lemma 9 gilt fiir einen m-Knoten v aus G(w), tber den p,, verlauft,
pw(v) € {1,—1}. Damit ist p,, nicht nur ein (w + w*)-Pfad in G(w), sondern auch ein
(k + k*)-Pfad. Angenommen es gilt po, <tk w Pk 0der pr <tk w Pw, alsO pu, 7# Pk, SO
ist dies eine Widerspruch zur Minimalitat (falls Z, = X,) bzw. zur Maximalitét (falls
Z, =Y,) der Pfade.

Vor dem Induktionsschritt soll zunéchst eine Aussage als Hilfsmittel bewiesen werden:
Sind ¢ und ¢ zwei (k + k*)-Pfade in G(w) mit k € N, sind sie natiirlich auch (w + w*)-
Pfade in G(w). Es soll gezeigt werden, dass sich auch die Anordnung iibertragt, d.h.
dass

q <k+k*w qg = q <wtw*,w q

gilt. Sei dazu ¥ der erste Knoten auf ¢, an dem sich ¢ und § unterscheiden; sei v der
entsprechende Knoten auf ¢. Ist © # 0, dann ist ¥ < ¥ entsprechend der Knotenordnung
in G(w), falls ¢ <pyr=w G ist. Dann gilt aber auch § <u4w*w ¢. Ist © = 0, so handelt
es sich um einen m-Knoten. Sei k + k* = ord ({—k,—k+1,...,—-1,1,2,..., k}, <pig+)
und w + w* = ord (N + =N, <, 4+). Es ist klar, dass ¢ <gpip+ j = 1 <ptw J gilt.
Ist also § <p+k+w G, 80 ist G(0) <pyr+ ¢(0) und damit §(9) <,4w+ ¢(0) und schlieBlich
q <wtw* (j

Sei die Aussage also nun fiir alle Ranker der Lange < n gezeigt. Sei r = 1'Z, fir
Z € {X,Y} und damit “7'¢(d00) = *r/¢(+o0) = p, fiir k > n. Ist p; = L, so gilt auch
Wre(4o0) = Fré(4o0) = L. Ist p; = (I,p,r) # L, betrachte *¥r¢(£o0) = ¥*Z,°(I,p,r) =
Pk, L und “r(xoo) = “Z,°(l,p,7) = Puw,1- Ist pr.1 = pw, 1 = L, so ist nichts mehr zu
zeigen. Ist py | = (I, pr, %) # L, so gilt es die moglichen Fille fiir Z, zu unterscheiden.
Ist Z, = X, so ist I = p und 7, = r. Beides sind (w + w*)-Pfade in G(w) (tatséchlich
kann auch r = 400 gelten). Auflerdem ist offensichtlich py ebenfalls ein (w+ w*)-Pfad in
G(w). Damit ist “X,(p) = mine_ .  {q € Potw(w) 1 wu(q) = a und p <giorw ¢} =:
p' # L definiert, da sich Iy = p <pi*w Pr Dach der Aussage oben zu I, = p <wiw*w Dk
tibertragt und damit py € {p' € Poywr(w) @ we(p') = aund p <wiwrw p'} # 0 ist.
Ebenso iibertrigt sich die Zulédssigkeit, es gilt: I = p <wtw w P <wtw*w Dk <too

w4Hw*,w

29



2 Entscheidbarkeit

ry, = r. Fir Z, = Y, gilt der duale Beweis. Ist also py | = (lx,pk,7%) # L, so ist
Pw.t = (lu,Pw,7w) # L. Nach Ranker-Definition gilt I = p = I, und rp, = r = 7.
AuBerdem ist p,, ein (k + k*)-Pfad in G(w) nach Lemma 10. Nimmt man nun an, dass
Pk 7 Dw gilt, so ist einer der beiden Pfade beziiglich <. .=, echt kleiner, was einen
Widerspruch zur Minimalitét bzw. zur Maximalitdt darstellt. Es verbleibt noch die letzte
Méglichkeit p, | = (ly,Pw,7w) # L, aber py; = L. Hier ldsst sich aber die selbe
Argumentation anwenden: p,, ist wieder nach Lemma 10 ein (k + k*)-Pfad und die
Anordnungen iibertragen sich, also muss pi, | # L sein und die Werte bereits gleich. [

2.1.2 Ranker und Gleichungen

Dieser Unterabschnitt wird nun zeigen, dass sich die Fragestellung des Wortproblems fiir
m-Terme der Ecken und V-Ebenen der Trotter-Weil-Hierarchie sowie von DA durch die
Frage nach der Unterscheidbarkeit zweier m-Terme durch bestimmte kondensierte Ranker
entscheiden lasst.

Lemma: Seien v und v zwei w-Terme iiber dem selben Alphabet . Es gilt fir m > 1:
[u]wiws =% [0]wiws = uw=w gilt in Ry,
[]wiws = [V]wser = w=wv gilt in L,
[u])wtws =m [V]wtwr = u =0 gilt in Ry, V Ly,

Beweis. Der Beweis ist strukturell fiir alle drei Aussagen dquivalent, er wird daher hier
nur fir R, ausgefiihrt.

Es gelte [u]wiws =X [v]wsw- fiir ein m > 1. Sei M € R, ein endliches Monoid. Es
ist zu zeigen, dass u = v in M gilt, d.h. dass o([u]an) = o([v]an) fir jede Belegung
o : % — M gilt. Nach Theorem 1 gibt es eine natiirliche Zahl n (in Abhéngigkeit von
M), sodass fiir alle endlichen Wérter w,w’ € £* gilt: w =,y , v/ = o(w) = o(w’).
(Fiir Ry, gilt n:= (m + 1)|M| — m.) Wéhle nun ¢ € N so, dass ¢(M!) > n gilt. Nach
Lemma 2 ist (¢(M!))* = ¢(M!) und zusammen mit Lemma 3 gilt dann (cM!) + (cM!)* =
2¢(M!), was insbesondere endlich ist. Sei 7 € R;y, , € R, ein beliebiger Ranker, dann

gilt 7 = [u]wtwr <= 1 E° [V]wt+w und auBerdem:

= [[UHCMH-(CM!)* = 1 E° [u]wtw (Lemma 11)
= r =° [v]wtwr
=1 E° [olemigean)- (Lemma 11)

Es gilt also fiir die beiden (endlichen) Worter:

[ulsenn = [W]erriserrys Zmn [Wlerriperrys = [Vl2ean € E*

Also gilt:
o([uar) = o([u]2err) (Lemma 7)
= o([v]2can) (Theorem 1)
= o([v]an) (Lemma 7)
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2.1 Ranker und w-Terme

Lemma: Seien u und v zwei w-Terme iiber dem selben Alphabet . Es gilt fiir m > 1:

[] e ;‘éf,i [v]wtws = u =0 gilt in R,, nicht
[u] w-te %% [v]wtws = u=v gilt in Ly, nicht
[u)wtws Zm [V]wtws = uw =0 gilt in Ry, V Ly, nicht

Beweis. Wieder wird der Beweis nur exemplarisch fiir R, gefiihrt.

Es gelte [u]uoiws ZX [v]wiw, dann gibt es einen Ranker » € RX mit (ohne Ein-
schrankung) r = [u]w+w=, aber r = [v]w4w+. Sei n die Lénge dieses Rankers, damit
ist r e Rﬁn. Nach Lemma 11 gilt dann

Vk >n:r EC [u]gsre und r FE© [o] ke
und somit
VE > n: [ulksre Zomn [V]ksre-

Definiere M := ¥*/ E;)gm. Nach Theorem 1 ist M € R,,. Angenommen es gilt nun u = v
in R,,, dann gilt u = v insbesondere in M. Dann gilt also o([u]an) = o([v]an) fiir jede
Belegung o : ¥ — M. Wahle ¢ € N so, dass ¢M! > n ist. Es gilt dann:

o([ulearsenmy=) = o([ulaear) = o([u]an)  (Lemma 2, Lemma 3), (Lemma 7)
= o([v]an) = o([v]2ean)  (Lemma 7)
= o([v]earr(ermn+) (Lemma 2, Lemma 3)

Wihle o als die natiirliche Projektion von ¥ nach M, womit mit der Aussage von eben

[[u]]cM!—i—(cM!)* Eﬁm, [[UHCM!+(CM!)*
gilt. Dies ist ein Widerspruch, da cM! > n ist! O

Die beiden letzten Lemmata liefern zusammen also die gesuchte Aussage: Um zu ent-
scheiden, ob eine Gleichung v = v iber R,,, Ly, oder R,, V L., gilt, reicht es zu
entscheiden, ob sich [u], 4w+ und [v]w4e+ durch gewisse kondensierte Ranker unterschei-
den lassen. Zusammen mit einer kleinen Erweiterung ist dies der Inhalt des folgenden
Theorems:

Theorem 3: Seien u und v zwei m-Terme {iber dem selben Alphabet 3. Es gilt fiir m > 1:

[u] w-tewr Eﬁ [V]wtws <= u = gilt in R,
] w-re EWYI [v]wtws <= u =wv gilt in Ly,
[u]wtw =m [V]wtws <= u =0 gilt in Ry, V Ly,

Auflerdem gilt:
(Vm € N: [u]wtw* =m [V]wtw*) <= v =0 gilt in DA

Beweis. Der erste Teil entspricht den Aussagen der beiden Lemmata. Der zweite Teil
ergibt sich zusammen mit Theorem 2 aus dem ersten. O
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2 Entscheidbarkeit

2.2 Normalisierung

Das Wort [w]w4w* zu einem 7-Term w ist im Allgemeinen nicht endlich. Dass sich die
Frage nach der Giiltigkeit einer Gleichung v = v in den Ecken und V-Ebenen der Trotter-
Weil-Hierarchie auf die Unterscheidbarkeit durch gewisse kondensierte Ranker zuriick-
fithren lasst, scheint daher zunéchst keine Verbesserung darzustellen. Tatséchlich ist
aber nur eine Betrachtung endlicher Worter notig. Diese Einsicht basiert im Wesentli-
chen darauf, dass sich ein Tripel (I,p,r) von (w + w*)-Pfaden in einem gewissen Sinne
normalisieren ldsst. Mit dieser Normalisierung beschéftigt sich nun dieser Abschnitt.

2.2.1 Definition

Die Normalisierung eines Tripels (, p, ) von (w+w*)-Pfaden wird den Verlauf der Pfade
nicht dndern, wohl aber die Werte an den m-Knoten. Ziel ist es dabei die Abstédnde
zwischen den drei Pfaden an jedem Knoten zu erhalten. Wie genau dies vonstattengeht,
klart dieser Unterabschnitt.

Tatséchlich lassen sich nicht alle zuldssigen Tripel aus (w 4+ w*)-Pfaden in der Form,
wie sie hier besprochen wird, normalisieren. Um jene, die sich normalisieren lassen, be-
schreiben zu koénnen ist die folgende Definition notwendig;:

Definition 1: Sei w ein 7-Term iiber einem Alphabet Y. Definiere P, (w) als die
Menge aller zuléssigen (I, p, 1) € (Pyqur(w) + {—00}) X Pyt (W) X (Poge (w) + {+00}),
die die folgenden beiden Eigenschaften erfiillen:
I pv) €N, pl)>1 =I(v)eN,0<pl)—I1) <1
und vor v stimmen p und [ iiberein
p(v) € =N, p(v) < -1 = r(v) € =N, 0 < r(v) — p(v) <1
und vor v stimmen p und r iiberein
II. r(v) €N, r(v)>1 =Iv),p(v) eN,0<r(w)—1v)<1
und vor v stimmt 7 mit [ und p iiberein
l(v) € =N, I(v) < =1 = p(v),r(v) € =N, 0 < r(v) — l(v) <1
und vor v stimmt [ mit p und r {iberein
Dabei soll —oo(v) und +oo(v) fiir alle v € G(w) undefiniert sein.

Ferner sei P, die Vereinigung der Mengen P, ,«(w) fiir alle 7-Terme w iiber belie-
bigem Alphabet.

An die Elemente (I,p,7) in P,y.+ wird also im Wesentlichen die Forderung gestellt,
dass die Pfade — sofern gewisse lokale Voraussetzungen erfiillt sind — {iber die selben
m-Knoten verlaufen und sich die Werte dort héchstens um 1 unterscheiden. Es wird sich
spéter herausstellen, dass jene Tripel, die durch Anwendung eines kondensierten Rankers
entstehen, die geforderten Eigenschaften erfiillen.

Mit der Definition von ]5w+w* lésst sich nun auch die Normalisierung definieren:

TInsbesondere ist I(v) # L und [ verlauft iiber v.
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2.2 Normalisierung

Definition (Normalisierung): Sei (I,p,r) € P,y (w) fiir einen 7 Term w iiber dem
Alphabet X. Definiere (I,p,7) = (I,p,7) folgendermaflen: Ist | = —o0o, so ist auch [ :=
—o00. Ist 7 = 400, so ist auch 7 := +o00. Ansonsten definiere:

l:Gw) —p N+ (-N)+{T}

T falls I(v) =
1 falls [(v) € N
v 1 falls I(v) =
l(v) =r(v) —1 fallsi(v) € N und [(v) < —1
7:Gw) =p N+ (=N) +{T}
T falls r(v) =T
N -1 falls r(v) € =N
1 falls r(v) =1
r(v) —I(v) +1 falls r(v) € Nund r(v) > 1
p:Gw) =p N+ (=N) + {T}
T falls p(v) =T
1 falls p(v) =1
v -1 falls p(v) = —1
p(v) —l(v)+1 falls p(v) € Nund p(v) > 1
p(v) —r(v) —1 falls p(v) € =N und p(v) < —1

Die normalisierten Pfade verlaufen also stets iiber die selben Knoten wie ihre nicht
normalisieren Gegenstiicke. Lediglich die Werte der Pfade an den 7m-Knoten werden ver-
dndert. Dazu beachte man, dass die zugeordneten Werte nach Definition 1 stets definiert
und aus {1,2, -2, —1} sind.

2.2.2 Eigenschaften

Einige interessante Eigenschaften der Normalisierung ergeben sich direkt aus der Defini-
tion. Das folgende Lemma, das solche Eigenschaften zusammenfasst, erfolgt daher ohne
Beweis:
Lemma: Sei (I,p,7) € Py (w) fiir einen 7Term w iiber dem Alphabet 3, sei (I,p,7) =
(I, p,7) und sei v ein Knoten in G(w).
Es gilt:

e [ und [, p und p sowie  und 7 verlaufen jeweils iiber die selben Knoten.

. l(v)eN@Z(v)eN p(v) €N <= p(v) €N r(v) €N < 7(v) €N

, P, 7 sind (2 + 2%)-Pfade in G(w). (I = —oo und 7 = +oo sind hierbei natiirlich
ausgenommen.)
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2 Entscheidbarkeit

Wiéhrend sich diese Eigenschaften direkt ergeben, bediirfen andere einer genaueren
Betrachtung. Eine dieser Eigenschaften beschreibt das folgende Lemma:

Lemma 12: Sei (I,p,7) € P,yu+ und (Lip,r) = (I, p, 7). Es unterscheiden sich [ und p
sowie p und r jeweils am selben Knoten wie [ und p bzw. p und 7 zum ersten Mal, sofern
l # —o0 bzw. r # +o00. Auflerdem iibertragt sich die Zuléssigkeit von (I, p,r) auf (I, p, 7).

Beweis. Zunichst zu [ und p: Sei v; der erste Knoten auf [, an dem sich [ und p unter-
scheiden. Sei v, der entsprechende Knoten auf p. Sei v ein m-Knoten oberhalb von v
bzw. vp. Gilt dort p(v) = I(v) € N, so ist nach Definition I(v) = 1. Ist p(v) = 1, so ist
auBerdem p(v) = 1. Ist p(v) > 1, so ist p(v) = p(v) — l(v) + 1 = 1. In beiden Fillen gilt

also p(v) = l(v). Gilt an v stattdessen p(v) = [(v) € —N, so muss unterschieden werden:

Ist p(v) = l(v) = —1, dann ist nach Definition {(v) = —1 = p(v). Ist p(v) = I(v) < —1,
soist [(v) = I(v) —r(v) =1 = p(v) —7(v) — 1 = p(v). | und p stimmen also oberhalb von
v; bzw. v, iiberein.

Ist nun v; # vy, so ist nichts mehr zu zeigen. Ist v; = v, ein m-Knoten, so muss
aufgrund der Zuldssigkeit von (I, p,r) gelten: I[(v;) <w 4w+ p(vp). Dafiir gibt es folgende
Moglichkeiten:

e l(v1),p(vy) € N: Dann ist {(v;) = 1 und p(v,) = p(vp) — l(v) +1 > 1, da p(v,) >
[(v;) > 1 sein muss.

o I(v)) € N, p(vp) € —N: Nach Definition ist I(v;) = 1 und p(v,) € —N.

e l(v1),p(vp) € —N: Es muss I(v;) # —1 bzw. [(v;) < —1 gelten. Ist p(v,) = —1, so

ist p(vp) = —1 und nach Definition 1 r(v) = —1. Also ist I(v;) = l(v) —r(v) — 1 =

I(v) < —1.Ist p(vy) < —1, s0 ist p(v,) = p(vy) —7(vy) —1 > L(v)) —r(v) — 1 = L(vy).

In allen Fiéllen unterscheiden sich [ und p in ihren Werten an v, = vp, es gilt jeweils

sogar [(v)) <wtw+ P(vp). Damit ist v; auch der erste Knoten auf [, an dem sich [ und p
unterscheiden. Entsprechendes gilt auch fiir v,. Schlieflich gilt also ! <9242+ P-

Die Aussage fiir p und r verhélt sich dual. Zusammen ergibt sich damit die Zulassigkeit

von (1,7, 7). O

Als néchstes soll die Menge P, 4.+ genauer untersucht werden. Eine der wichtigsten
Aussagen dabei liefert das folgende Lemma:

Lemma: Sei w ein 7-Term iiber dem Alphabet ¥ und sei Z ein Ranker der Léange 1.
Ist “Z¢(+o0) = (I,p,7) # L, s0 ist (I,p,7) € Pyip+. AuBerdem ist fiir alle (I,p,7) €
Pt (w) auch “Z¢(1, p,r) in P4, sofern dies definiert ist.

Beweis. Zunichst zum ersten Teil der Aussage. Ist Z = X, mit a € 3, so ist aufgrund
der Definition tiber das Minimum p(v) = 1, falls p(v) fir einen m-Knoten v € G(w)
definiert ist. Fiir Z = Y, mit a € ¥ ist entsprechend p(v) = —1, falls p(v) definiert ist.
In beiden Féllen ist 1. erftllt. Aulerdem ist fiir einen kondensierten Ranker der Lange 1
I = —o0 und r = 400 und damit auch II. erfiillt.

Sei nun (I,p,7) € Pytw(w). Der Beweis fiir Z € Yy, ist dual zu dem fiir Z € Xy, sei
daher Z = X, fiir ein a € 3. Sei zudem “X,°(l,p,r) = (I',p',r") # L. Nach Definition
der kondensierten Ranker ist I’ = p und 7’ = r. Sei v, der erste Knoten auf p, an dem p
und p’ nicht mehr iibereinstimmen. Sei v,y der entsprechende Knoten auf p’. Sei v € G(w)

34



2.2 Normalisierung

ein beliebiger m-Knoten aus dem gemeinsamen Anfang von p und p’. Nach Wahl von v
stimmen p’ und I’ = p also vor v {iberein. Ist p/(v) € N und p’(v) > 1, so gilt: Zunéchst
ist I'(v) = p(v) = p'(v) € N, insgesamt gilt:

0<p'(v)=1U'(v)=p'(v) —pv)=0<1.
Ist p'(v) € =N und p/(v) < —1, so gilt weil (I,p,7) € Pyiw(w)
0<7'(v) —p'(v) =r(v) —p(v) < 1.

Damit ist I. fiir alle Knoten auf dem gemeinsamen Anfang von p und p’ gezeigt. Sei v
nun ein m-Knoten auf p’ (echt) unterhalb von v,. Dort gilt p/(v) = 1, da sich sonst aus p’
ein beziiglich <, 1~ echt kleinerer Pfad p iiber p(v) := 1 konstruieren liefle, was einen
Widerspruch zur Minimalitat von p’ darstellt.

Fiir I. verbleibt nun nur noch zu zeigen, dass die Aussage auch an v, gilt. Nach Wahl
von v, stimmen p’ und !’ = p vor v, tiberein. Gilt v, # v, und ist vy somit Kind eines
Konkatenationsknotens, so ist auch hier p'(vy) = 1, falls es sich um einen 7-Knoten
handelt, und somit nichts zu zeigen. Ist v, = v,y und damit sicher ein m-Knoten, gilt es
die folgenden Félle zu unterscheiden:

1. p(vp) € N: Aufgrund der Minimalitét von p’ ist p'(v,) = p(vp) + 1 € N. Es gilt
I'(vp) = p(vp) € Nund 0 < p/(vp) = I'(vp) = p(vp) +1 = p(vp) =1 < L.

2. p(vp) € —=N: Da p'(vp) > p(vp) gelten muss, ist p(vy) < —1. AuBerdem ist wieder
P'(vp) = p(vp) + 1. Ist p/(vp) = —1, so ist nichts zu zeigen. Ist p'(v,) < —1, so gilt
' (vp) = r(vp) € =N und 0 < '(vp) — p'(vp) = r(vp) —p(vp) —1<1-1=0<1,
wegen (1,p,7) € Pyror (w).

Um II. zu zeigen, sei nun v € G(w) ein beliebiger m-Knoten. Gilt r'(v) = r(v) € N
und 7’ (v) = r(v) > 1, so stimmt 7 = ' vor v mit [ und p = I’ {iberein; dies gilt wegen
(I, p,7) € Poyw+(w). Aufgrund der Zulissigkeit von (I’,p’,7') muss r’ dort auch mit p’
tibereinstimmen. Auflerdem ist I(v) € N, I'(v) = p(v) € N und r(v) —I(v) < 1. Damit ist

0<7(v)=1'(v) =r)— g\(v/) <r(w)—Iwv) <1
>I(v)

und somit direkt p’(v) € N aufgrund der Zuléssigkeit von (I, p’,r"). Gilt I'(v) € —N und
I'(v) < —1, so ist wegen I'(v) = p(v) und L. 7' (v) = r(v) € =N und 0 < r'(v) — I'(v) =
r(v) —p(v) < 1. AuBerdem stimmt p = I’ vor v mit r = 7’/ {iberein. Die Ubereinstimmung
vor v von !’ mit p’ und p'(v) € —N folgt wieder aus der Zulassigkeit von (I',p/,7’). O

Man beachte, dass sich die Aussage des Lemmas folgendermaflen auffassen léasst: Ist r
ein Ranker beliebiger Lange und “r°(+o0) = (I, p,r) definiert, so ist (I,p,7) € Putw+
und damit (I, p,r) definiert.

Zusammen mit dem folgenden Lemma ergibt sich noch eine weitere Aussage dariiber,
fiir welche Pfade die Normalisierung definiert ist.

Lemma: Sei (I,p,7) € P,1o+. Dann ist auch (I,p,7) = (I,9,7) € Poyiw+.
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Beweis. Nach Lemma 12 ist (I, p, 7) zuldissig. Es ist also nur noch zu zeigen, dass (I, p, 7)
die Eigenschaften I. und II. erfiillt. Ist p(v) € N und p(v) > 1 an einem Knoten v, so
kann dies nach Definition der Normalisierung nur eintreten, wenn p(v) —I(v)+1 > 1 und
p(v) € N\ {1} ist. Dann ist auch /(v) € N und damit /(v) = 1 € N. Also ist 0 < p(v) —
I(v) = p(v)—1(v)+1—1 = p(v) —I(v) < 1. Da p vor v mit [ iibereinstimmt und sich p und
[ nach Lemma 12 am selben Knoten wie p und ! zum ersten Mal unterscheiden, stimmt
auch p vor v mit [ iiberein. Die gleiche Argumentation lisst sich auch fiir p(v) € —N und
p(v) < —1 mit fiir [ und r vertauschten Rollen anwenden. Damit ist die Giltigkeit von
1. gezeigt.

Gilt an einem Knoten v nun 7(v) € N und 7(v) > 1, so ist dies nur iber den Fall
7 =7r(v) —I(v) + 1 bzw. 7(v) € N\ {1} méglich. Dann ist /(v) € N und damit I(v) = 1.
Auflerdem stimmt r vor v mit [ und p iiberein. Nach Lemma 12 stimmen dort damit auch
[, p und 7 iiberein. Aufgrund der Zulissigkeit von (I,p,7) muss dann zudem p(v) € N
gelten. SchlieBlich gilt auch 0 < 7#(v) —I(v) = r(v)—I(v)+1—1 < 1. Fiir [(v) € =N\ {~1}
gilt wieder der duale Beweis. Damit ist auch II. erfiillt. O

Die Normalisierung ist also eine Abbildung von ]5w+w* nach Pw+w* und auflerdem wird
die Menge P, durch Anwenden eines Rankers (egal ob von der Linge 1 oder linger)
nicht verlassen. Es ist also immer mdoglich das Ergebnis einer Ranker-Anwendung zu
normalisieren, sofern die Normalisierung bereits vor Anwendung des Ranker moglich
war.

2.2.3 Anwendung

Um die Normalisierung nutzbringend anwenden zu koénnen sind zunéchst noch einige
weitere Figenschaften notwendig. Diese dienen dazu von unendlichen Wértern der Form
[w]w4w* zu einem 7 Term w auf endliche Worter iiberzugehen.

Lemma: Sei (I,p,7) € Pt (w) fiir einen mTerm w iiber dem Alphabet ¥ und sei
(I,p,7) = (I,p, 7). Sei auBerdem a € X.
Es gilt:

foloror X 01 p, ) = (1,0, r') # L = Wl x o p7) = (1,0, 7) # L
[lovory (1, p,r) = (U, p),1") # L = Wy, o1 5 7) = (T, 7, 7) # L

Beweis. Der Beweis der Aussage zu Y, erfolgt dual zu dem fiir die Aussage zu X,.
Daher wird hier nur die Aussage zu X, bewiesen. Dabei ist zundchst zu zeigen, dass
[wls+s+ X, (p) definiert ist.

Betrachte dazu die nicht normalisierten Pfade p und p’. Sei v, der erste Knoten auf
p an dem sich diese Pfade unterscheiden und v, der entsprechende Knoten auf p'. Ist
vp = vy und damit ein m-Knoten, so muss p'(v,) = p(vp) + 1 gelten. Nach Definition
der Normalisierung kann p(v,) = —1 nicht auftreten: Dazu miisste entweder p(v,) = —1
oder p(vp) = r(vp) sein. In beiden Féllen konnte p’ bei v, nicht den Wert p(v,) + 1
annehmen. Definiere nun den Pfad p, der iiber die selben Knoten wie p’ verlauft. Vor
vy seien die Werte an den 7-Knoten wie bei p, an vy = v, gelte p(vp) = p(vp) + 1
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und fiir einen m-Knoten v echt nach vy sei p(v) := 1. Da p(v,) € {1,2, -2} gilt, ist

p(vp) € {2,3,—1}. Damit ist p ein (3 4+ 3*)-Pfad in G(w) und nach Konstruktion gilt

D >343+w D- Ist v, # vy, so ldsst sich ein dhnlicher Pfade definieren: p verlauft dann

wieder iiber die selben Knoten wie p’; vor v,y haben die m-Knoten die selben Werte wie

bei p und fiir einen 7-Knoten v nach v,y gilt wieder p(v) := 1. Auch dann gilt p >33+ 4, P.

In beiden Féllen ist also die Menge {q : [w]343+(q¢) = @ und p <343+ ¢} nicht leer und

damit [*ls+s* X, (p) definiert.

Sei also p = [Wls+s* X, (p) # L. Nach Definition ist p’ >33+, p. Fiir die Zuléssigkeit
von (p,p’, 7) bleibt nur noch zu zeigen, dass p’ <gi3+ . D <§rf§*’w 7 gilt, was fur 7 = +o0
trivialerweise erfiillt ist. Sei also r # +o00 und sei w, der erste Knoten auf p an dem
sich p und r unterscheiden; der entsprechende Knoten auf r sei u,. Nach Lemma 12 ist
up, auch der erste Knoten auf p, an dem sich p und 7 unterscheiden und u, auch der
entsprechende Knoten auf 7. Liegt w, (echt) vor v, auf p, so verhélt sich dort p nach
Konstruktion gleich wie p. Damit gilt aber schon p <343+, 7. Aulerdem kann u, nicht
(echt) nach v, auf p liegen, da sonst p’ <. ju* 4 7 nicht erfiillt sein konnte. Es verbleibt
also nur noch den Fall u, = v, zu betrachten.

a) Ist v, # v,, so handelt sich dabei um das linke und das rechte Kind eines Konka-
tenationsknotens. Nach Wahl von u, = v, muss p an diesem Konkatenationsknoten
noch mit r tibereinstimmen, d.h. w, = v,y muss gelten, da es keine andere Moglich-
keit fiir den weiteren Verlauf von r gibt. Sie nun w’ der 7wTerm, der sich durch den
Teilbaum von G(w) mit v, als Wurzel ergibt. Sei p!, der Teil von p’ der sich durch
Einschriankung auf Knoten aus G(w') ergibt; der entsprechende Teil von r sei 7, der
von 7 sei 7,y und der von p sei schliefllich p,s. Nach Konstruktion von p, ist p,s = pl,,.
Aufgrund der Minimalitdt von p’ muss p,, = min<_, . {q € Potwr (0') 1 w'(p) = a}
gelten, da sich sonst auch ein beziiglich <, ;. kleinerer Pfad konstruieren liefe.
Da p’ und r mindestens bis zu v, iibereinstimmen, tbertragt sich p’ <wyw=w 7
— was aus der Zulassigkeit von (p,p’,r) folgt — auf den Teilbaum G(w’). Also gilt
Puw = Py <wtw+w Tw. Betrachtet man nun die Definition der Normalisierung, so
gilt an einem beliebigen m-Knoten v in G(w): r(v) € =N = 7(v) = =1 > r(v) und
r(v) =1 = 7(v) =1 > r(v). Der Fall r(v) € N\ {1} kann fiir einen 7-Knoten in
G(w') nicht auftreten, da sonst nach Definition 1 r und p bis zu v iibereinstimmen
miissten, was nach Wahl von u, = v,y als Wurzel von G(w’) nicht moglich ist. Also
gilt 7y <etwrw Tur. Insgesamt ist damit Py = Pl <wtw*w' Tw <wtw*w Tw. Da
die Werte von p, und 7, nicht kleiner als —3 oder gréfler als 3 sein kénnen, gilt also
DPw' <343+ Ty Da p und 7 bis zu u, = v,y gleich sind, tibertrigt sich die Aussage
vom Teilbaum auf ganz G(w), es gilt also p <zyg«. 7

b) Ist v, = vy und damit ein m-Knoten, so kann zunéchst die Situation auftreten, dass
up = vp = vy das linke und u, das rechte Kind eines Konkatenationsknotens darstellt.
Dann ist aber p <313+, 7 bereits erfiillt. Ansonsten muss u, = u, = v, = vy gelten
und r verlduft iiber diesen Knoten. Nach Konstruktion ist p(v,) = p(vp) + 1 <343+
7(vp). Falls sogar p(v,) <s43+ 7(vp) gilt, ist nichts mehr zu zeigen. Ansonsten lasst
sich die selbe Argumentation wie eben iiber den Teilbaum von G(w) mit dem Kind
von v, als Wurzel anwenden.

O
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Lemma: Sei (I,p,7) € P, .+(w) fiir einen 7Term w {iber dem Alphabet ¥ und sei
(I,p,r) = (I,p, 7). Sei auBerdem a € X.
Es gilt:

[ollosar X, o(1, ) = (U9l 7') # L = Db X o(0, ) = (U, 7) # L
s Y (1, p, 1) = (U, 1) # L= Pl Y o(0, ) = (0,7, 7) # L

Beweis. Wieder ist die Aussage fiir Y, dual zu der fiir X,, weshalb auch hier auf einen

expliziten Beweis fiir Y, verzichtet werden soll.

Damit [l X, ¢(1, p,r) definiert ist, muss zunéchst [“le+o* X, (p) definiert sein. De-
finiere dazu den (w + w*)-Pfad p wie folgt: Er verlauft tiber die selben Knoten wie p'.
Sei vp der erste Knoten auf p, an dem sich p und p’ unterscheiden; sei vy der entspre-
chende Knoten auf p'. Fiir einen m-Knoten v auf p (echt) vor vy sei p(v) := p(v). Ist
vp = vy und damit ein 7-Knoten, so definiert p(vy) := p(vp) + 1. An einen 7-Knoten
echt nach vy oder an vy selbst, falls vy # vj ist, soll p den Wert 1 haben. Nach Defini-
tion ist p >y 4w w p und w(p) = a. Damit ist [wloro X, (p) = p’ definiert und auBerdem
P <wtw*w p.

Noch zu zeigen ist: p <I$°w*,w r. Da nach Definition tiber das Minimum p’ <g 4+ D
gilt, wire damit die Zuldssigkeit von (p,p’,r) = (I',p’, ') gezeigt. Fiir r = 400 ist nichts
mehr zu zeigen, sei also r # 400 und sei u, der erste Knoten auf p, an dem sich p und
r unterscheiden; sei u, der entsprechende Knoten auf r. Nach Lemma 12 ist wu, auch
der erste Knoten auf p, an dem sich p und 7 unterscheiden; Entsprechendes gilt fiir w,.
Befindet sich u, echt vor v; auf p, so gilt p < 4w+ w 7, Weil sich p dort wie p verhalt und
P <wtw+w T aufgrund der Zuléssigkeit von (I, p,r) gilt. Andererseits kann wu, nicht echt
nach vp auf p liegen, da sonst p' >343«,, 7 wire. Es ist nur noch der Fall u, = vp zu
betrachten.

a) Gilt v = vy und es handelt sich damit um einen m-Knoten, so muss erneut un-
terschieden werden: Ist vz = u, das linke Kind und u, das rechte Kind des selben
Konkatenationsknotens, so ist p <uyu*q 7 erfiillt. Ist v = vy = u, = u,, so ist
pvy) = p(vp) + 1 <pqwr r(ur), weil p(up) <yqw+ r(u,) nach Wahl von u, bzw.
u, gelten muss. Gilt bereits p(vy) <wiws 7(ur), so ist nicht mehr zu zeigen. Ist
p(vy) = r(uy), so sei w' der 7-Term, sodass G(w') dem Unterbaum von G(w) mit
dem (einzigen) Kind von v; als Wurzel entspricht. Schrankt man p’ auf Knoten aus
G(w') zu p.,, ein, so ist P, wegen der Minimalitét gleich der Einschrankung von p auf
Knoten aus G(w') zu p,. Fiir einen 7-Knoten v auf dem gemeinsamen Anfang von p’
und 7 in G(w') gilt daher: 7(v) = p'(v) = p(v) = 1. Damit 7(v) = 1 fiir einen Knoten
v gilt, muss nach Definition der Normalisierung r(v) = 1 oder r(v) = l(v) € N\ {1}
gelten. Der zweite Fall kann aber in G(w’) nicht auftreten, da nach Definition 1 sonst
r vor v mit p libereinstimmen miisste. Also gilt an solchen Knoten p(v) = 1 = r(v).
Ist ' nun aufgrund einer Unterscheidung nach einem Konkatenationsknoten kleiner
als 7, so gilt dies auch fiir p und r und es ist nichts mehr zu zeigen. Unterscheiden sie
sich an einem 7-Knoten vy, so gilt dort p(vg) = 1 = p/(vg) <343+ 7(vg). Damit muss
r(vp) € —N sein, da sonst nach Definition der Normalisierung r(vg) € N\ {1} gelten
miisste, was aber nicht moglich ist, wie oben ausgefiihrt ist. Also ist p(vg) <w-w* (Vo)
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und damit p <g x4 7 und auch p <gqexw 7.

b) Gilt vs # vy, so handelt es sich dabei um das linke und das rechte Kind des selben
Konkatenationsknotens. Da wu, = v gilt, bleibt fiir ¥ bzw. r keine andere Moglichkeit,
als dass u, = vy gilt. Nun lésst sich fiir den Unterbaum von G(w), dessen Wurzel u,
ist, die Argumentation von oben anwenden. Damit ist p <, 4w*w 7

O

Lemma 13: Sei (I, p,r) € Py, (w) fiir einen 7Term w iiber dem Alphabet ¥ und sei
acX.
Es gilt:

[wles4ux Xac(la b, 7“) = [wlssa- Xac(l7p7 T)

[okoro yyo(l, p,r) = [lsvsr Yoo (1 p,r)

Beweis. Nach den beiden vorangegangen Lemmata ist es unmoglich, dass eine der beiden
Seiten der Gleichungen definiert, die andere aber undefiniert ist. Interessant ist hier nur
der Fall, dass beide von ihnen definiert sind. Wieder wird hier aufgrund der Dualitdt nur
der Fall fur X, betrachtet.

Um einen besseren Uberblick behalten zu kénnen sollen die folgenden Bezeichnungen
gelten:

(I,p,r) = (I,p,7) Wlsvss X1, p,7) = (I', §, 7)
@, 9,7 = (1,p,7) foloter X1, p, ) = (U, 9,7
o) = (I,p,7)

Man beachte, dass nach Definition der kondensierten Ranker I’ = p, 7/ = r, I’ = p und
7 = 7 gilt. Es ist nun zu zeigen, dass [ = [, p = p und 7 = 7 gilt. Dabei kann angenommen
werden, dass 7 # +o0o0 und 7 # 400 gilt. Ansonsten miisste r = +o0o und 7 = 400 gelten,
woraus die entsprechende Aussage sofort folgen wiirde.

Um dies zu zeigen ist jedoch zunéchst eine andere Aussage hilfreich. Sei uy der erste
Knoten auf p, an dem sich p und p’ unterscheiden; sei vy der entsprechende Knoten
auf p’. Sei g der erste Knoten auf p, an dem sich p und p’ unterscheiden; sei vy der
entsprechende Knoten auf . Nun gilt: p’ und p’ verlaufen iiber die selben Knoten und
es ist vg = v9. Um dies einzusehen ist eine Fallunterscheidung notwendig. Liegt ug vor ug
auf p bzw. p, so lasst sich ein Pfad ¢ konstruieren. Dieser verlauft tiber die selben Knoten
wie p’ und hat vor 7y die selben Werte wie p. Ist ¥y = g und damit ein 7m-Knoten, hat
g dort den Wert p(vp) + 1. Dies ist moglich, da p(vg) # —1 sein muss. Andernfalls hétte
dort auch p den Wert —1 und p’ kénnte keinen grofleren Wert haben. An den anderen
m-Knoten hat ¢ den Wert 1. Damit ist p <y qw*w ¢ <w+w+ P’ und ¢ endet in einem mit a
beschrifteten Knoten. Dies ist ein Widerspruch zu Minimalitat von p’. Liegt @y vor v,
lasst sich ein dhnlicher Pfade konstruieren, der im Widerspruch zur Minimalitat von p’
steht. Dabei ist einzig zu beachten, dass fiir den Fall vy = ug nicht p(vg) = —1 gelten
kann. Sonst wére dort p(vg) = —1 oder es wiirde p(vg) = 7(vo) gelten, beides ist nicht
moglich, da sonst p’ keinen grofieren Wert haben konnte. Also muss ug = g gelten. Der
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einzige Fall, in dem trotzdem vy # ¥y gelten kann, ist der folgende: ug = g ist ein 7-
Knoten und das linke Kind eines Konkatenationsknotens, dabei ist vy oder vg das andere
Kind und der verbleibende Knoten ist gleich zu ug. Man verifiziere, dass sich in diesem
Fall allerdings analog zu oben ein Pfad ¢ im Widerspruch zur Minimalitit von p’ oder p
konstruieren ldsst — die Konstruktion ist dabei sogar gleich. Es bleibt festzuhalten, dass
also vy = 7y gelten muss. Da nach diesem Knoten beide Pfade, p’ und p’, an m-Knoten
nur noch den Wert 1 annehmen koénnen, wiirde aus einem unterschiedlichen weiteren

Verlauf wieder ein Widerspruch zur Minimalitit entstehen.

Damit verlaufen p’ und p’ iiber die selben Knoten, womit auch p und p iiber die selben
Knoten verlaufen. Leicht {iberlegt man sich, dass [ und [ sowie 7 und 7 ebenfalls jeweils
iiber die selben Knoten verlaufen. Es ist also nur noch zu zeigen, dass die Pfade in den
Werten iibereinstimmen. Sei also v ein m-Knoten aus dem gemeinsamen Anfang von p
und p’. Wie bereits gezeigt ist v damit auch aus dem gemeinsamen Anfang von p und p'.
Die Gleichheit ergibt sich durch Rechnungen in den einzelnen Féllen, dabei gilt jedoch
immer p(v) = p'(v) ='(v) und p(v) = p'(v):
 p(v) = 1bzw. = —1: Direkt aus der Definition ergibt sich p(v) = p(v) = p(v) = I(v) =

I(v) =1 bzw. = —1.

o p(v) € N,p(v) > 1: Esist p(v) = p/'(v)—1'(v)+1 = p(v) —p(v)+1 = 1. Nach Definition
ist auBerdem I(v) = I(v) = 1. SchlieBlich ist H(v) = p(v) — I(v) + 1 € N und es muss
unterschieden werden:

— p(v) =1: p(v) = 1. .
— B(v) > 1: (o) = F'(v) = P(v) + 1 = p(v) = p(v) +1 = 1.

e p(v) € =N, p(v) < —1: Es ist p(v) = p'(v) —r'(v) = 1 = p(v) — r(v) — 1 = p(v).
Unterscheide daher: .

= 20) = 7(0) -1 = <1 0) = 1, 0) = (o) —r'(0) = 1 = p(0) —7(0) =1 = =1
und I(v) = I(v) = 7'(v) — 1 = p(v) — 7(v) = 1 = —1 — (=1) =1 = —1,

I R P(v) = #(v) = 1 = p(v) —r(v) =1 — F(v) =1 = —1,
da nach Definition 7(v) = —1,_l( v) =—1und I(v) = —1.

Damit stimmen p und p, sowie [ und [ vor v iiberein. Nach vy haben p und p ohnehin

iberall den Wert 1. Ist vy # ug ist damit fiir p und p nichts mehr zu zeigen. Ist vy = ug

und damit ein 7-Knoten, so gilt p'(vg) = p(vg) + 1 und §'(vo) = p(vg) + 1. Wieder ist
eine Rechnung in den einzelnen Fallen noétig:

(vg) € N: Dann ist p'(vo), 9 (vo) > 1 und p(vg) = p'(vo) — '(vo) + 1 = p(vo) + 1 —
p(vo) + 1 = 2, sowie p(vg) = p'(vo) — I'(vo) + 1 = p(vo) + 1 — p(vg) + 1 = 2. Ferner ist
I(vg) = 1 und I(vg) = 1.

o p(vg) = —1: Dieser Fall tritt nicht auf.

e p(vg) = —2: Dann ist p'(vg) = —1 und auch p(vy) = —1. Man beachte, dass r(vg) > —2
und damit r(vg) = —1 gelten muss, also auch 7(vy) = —1. Es ist p(vg) = p(vo)—7r(vo)—
1 = —2 und somit 7 (vo) = —1 und p(vg) = —1. SchlieBlich ist (vo) = ’(vo) — 7' (vo) —
1= p(vo) — r(vg) — 1 = —2 und I(vg) = I'(vo) — ¥ (vo) — 1 = p(vo) — #(vg) — 1 = —2.

o p(vg) € =N, p(vg) < —2: Es ist p'(vg) < —1 und r(vg) = p(vo) + 1, da sonst p’(vg)
grofer als r(vg) wére. Somit ist p(vg) = p'(vo) — '(vo) — 1 = p(ve) + 1 — r(vg) —
1 = -1, p(vo) = p(vo) —r(vg) =1 = =2 und p'(vg) = —1 = p(vp). SchlieBlich gilt

I(vg) = U'(vo) — ' (vo) — 1 = p(vg) — r(vo) — 1 = =2 und I(vo) = I'(vg) — 7 (vg) — 1 =
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2.2 Normalisierung

]7(1)0)—77(1)0)—1:—24-1—1:—2. -

Dies zeigt die Gleichheit von p und p. Fiir die Gleichheit von [ und [ fehlt nur noch
der Bereich nach ug und an ug, falls uy # vo aber trotzdem ein m-Knoten ist. Sei v aus
diesem Bereich auf [ bzw. [ bzw. p. Wieder sind einige Rechnungen notwendig.

e p(v) =1bzw. = —1: I(v) = p(v) = I(v) = 1 bzw. = —1. -

« p(v) € N,p(v) > 1: Es ist {(v) = 1 und p(v) € N. Nach Definition ist I(v) = 1.

e p(v) € —=N,p(v) < —1: Es ist {(v) = '(v) — ' (v) =1 = pv) — r(v) — 1 = H(v).

Unterscheide weiter:

- p(v) = =1: l(v) = —1.
— p(v) < —1: Nach Definition 1 bleibt als einziger Wert p(v) = —2. Weil 7(v) € —N
ist, ist 7(v) = —1. Also: I(v) = I'(v) — 7 (v) — 1 = p(v) — 7(v) — 1 = —2.

Zum Abschluss des Beweises bleibt nur noch zu zeigen, dass die Werte von 7 und 7
an den m-Knoten tibereinstimmen. Sei dazu v ein m-Knoten aus r bzw. 7. Ist r(v) = 1,
so ist 7(v) = 1 = 7(v) = 7(v) = r'(v) = 7(v). Ist r(v) € =N, so ist 7(v) = =1 =
7(v) = 7(v) = 7(v). Dies folgt jeweils direkt aus der Definition der Normalisierung. Ist
r(v) € N und r(v) > 1, so bedarf es einer letzten Fallunterscheidung. Sets gilt jedoch
F(v) =7 (v) = U'(v) +1 =r(v) —pv) + 1 und 7(v) = r(v) — l(v) + 1. AuBerdem ist zu
beachten, dass [, p, und r vor v nach Definition 1 iibereinstimmen miissen. Es ist also
l(v) < p(v) < r(v) und ohnehin r(v) —i(v) € {0, 1}.

o 7(v) = I(v): Dann ist sogar l(v) = p(v) = r(v), weil die Pfade vor v iibereinstimmen

miissen. Damit ist 7(v) = 1, 7(v) = 1 und schliellich 7(v) = 1.

o 7(v) = p(v) =Il(v) + 1: Dann ist #(v) = 1, 7(v) = 2 und p(v) = p(v) —l(v) + 1 = 2.

Also ist 7(v) = 7 (v) = I'(v) + 1 = #(v) — p(v) = 1.

e r(v) = p(v) +1 = Il(v) + 1: Dann ist 7(v) = 2 und (in beiden moglichen Féllen)

Bv) = 1. Also ist fi(v) = 7(v) — p(v) = 2.

O

Nach diesen recht umfangreichen Vorarbeiten, ist es nun méglich das folgende Theorem
zu beweisen.

Theorem 4: Sei w eine w-Term iiber dem Alphabet ¥ und sei r = Z125...7Z, ein
fester Ranker mit Z; € Zx fir i = 1,2,...,n. Es sei (I1,p1,71) = 3Z1¢(00) und
(Lis1, piv1, Tiv1) = S Zig1¢(ls, pi, i) filr @ = 1,2...,n — 1, falls die rechten Seiten defi-
niert sind. Ansonsten seien die Werte gleich .

Dann gilt:

“rf(£oo) # L <= (ln,pn,mn) # L

Beweis. Tatséchlich gilt sogar die folgende Aussage, die per Induktion gezeigt werden
soll:

wrc(ioo) = (lmpmrn)

Man beachte, dass dies das Gewiinschte zeigt.
Zuniichst ist 3Z;%(+o00) = “Z1°(d00). Damit ist auch (I,p1,r) = 3Z,¢(+o0) =
“Z1¢(£00), was den Induktionsanfang bildet.
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2 Entscheidbarkeit

Seinun 1 <i<nund “Z125...7Z;¢(+00) = (i, pi,7i). Es ist mit Lemma 13:

“Z1Zo ... ZZ‘ZZ‘_HC(:EOO) = wZH_lC(leZQ - Zic(ioo))

—37, <w2122 o Zic(ioo))

=3Z;1%(Li, piy i)

= (lit1,Dit1,Ti41)

Besonderes Augenmerk sollt auch darauf gerichtet werden, dass dies auch gilt, wenn eine
der beiden Seiten undefiniert bzw. = L ist. O

Korollar: Sei m > 1.
Das Wortproblem fiir w-Terme von R,,, das von L,, und das von R,, V L., ist ent-
scheidbar. Aulerdem ist das Wortproblem fiir m-Terme von DA entscheidbar.

Beweis. Nach Theorem 3 reicht es zum Losen des Wortproblems fiir m-Terme der Varie-
tdten aus die beiden Eingabeterme auf Unterscheidbarkeit durch gewisse kondensierte
Ranker zu testen. Beziiglich der Definiertheit macht es nach Theorem 4 keinen Unter-
schied, ob X direkt angewendet wird oder ob erst normalisiert, dann X? angewendet
und schliellich erneut normalisiert wird. Selbiges gilt natiirlich auch fiir Y,°. Nach der
Normalisierung sind die auftretenden Pfade stets (2 + 2*)-Pfade, wovon es allerdings in
beiden Woértern nur endlich viele gibt. Es lésst sich damit fiir jedes Wort ein (endlicher)
Graph konstruieren, dessen Knoten die moglichen Werte nach iterierter Anwendung ei-
nes kondensierten Rankers der Lange 1 und anschlieBender Normalisierung darstellen.
Die Kanten lassen sich mit dem jeweiligen Ranker beschriften. AnschlieBend muss nur
noch iiberpriift werden, ob es eine Abfolge von Rankern aus der zur Varietdt gehoren-
den Ranker-Menge gibt, so dass im einen Graphen 1, im anderen Graphen jedoch ein
definierter Wert erreicht wird. O
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3 Parallelisierbarkeit

Die Wortprobleme fiir m-Terme der Ecken und V-Ebenen der Trotter-Weil-Hierarchie,
sowie das von DA sind also entscheidbar. Doch wie effizient lassen sich diese Proble-
me 16sen? Da sich weder Zeit- noch Platzkomplexitdt des am Ende des letzten Kapitels
skizzierten Algorithmus einfach bestimmen lassen, widmet sich dieses Kapitel der Ent-
wicklung eines Algorithmus fiir diese Probleme, der sich effizient parallel ausfiihren lasst.

Was dies genau bedeutet, klart der erste Abschnitt dieses Kapitels. Gleichzeitig wird
das grobe Vorgehen erlautert. Der néchste Abschnitt geht anschlieBend genauer auf den
wichtigsten Punkt dieses Vorgehens ein und im letzten Abschnitt wird alles zu einem
Ganzen zusammengesetzt.

3.1 Zielsetzung und Grundgeriist

3.1.1 Zielsetzung

Oft wird ,,Nick’s Class“ NC als die Klasse der parallel effizient entscheidbaren Probleme
angesehen. Die Probleme in NC lassen sich durch einen Schaltkreis polynomieller Gro-
e und mit polylogarithmischer Tiefe entscheiden.t Statt die Zugehorigkeit der Wort-
probleme fiir m-Terme der hier besprochenen Varietédten direkt — beispielsweise durch
Konstruktion der entsprechenden Schaltkreise — zu zeigen, soll hier ein anderer Weg ein-
geschlagen werden: Es sollen Algorithmen angegeben werden, die zur Zugehorigkeit der
Probleme zu NL fithren. Da NL Teilmenge von NC ist (vgl. z.B. [18]), zeigt dies das
Gewtinschte. Durch Determinierung der Algorithmen ergeben sich auflerdem determi-
nistische Polynomialzeit-Algorithmen zur Losung der Probleme.

3.1.2 Grundgeriist

Der NL-Algorithmus zur Entscheidung des Wortproblems fiir 7-Terme einer Varietét V' €
{DA,R,,, Ly, Ry, V L, : m € N} geht folgendermaflen vor: Es sei ¥ das gemeinsame
endliche Alphabet der beiden Eingabe-m-Terme u und v. Nach Theorem 3 gibt es eine
Menge von kondensierten Rankern, sodass u = v in V' genau dann nicht gilt, wenn
ein kondensierter Ranker aus der Menge auf [u]y4y+ oder [v]w4w+ definiert, auf dem
jeweils anderen aber undefiniert ist. Um diese Unterscheidbarkeit zu priifen wird zu
jedem der beiden m-Terme eine Konfiguration! gespeichert. Im Wesentlichen handelt es
sich dabei um ein normalisiertes Tripel von (3 + 3*)-Pfaden in G(u) bzw. G(v). Am
Anfang ist dies fir beide Terme +oo. Nun wird schrittweise nichtdeterministisch ein

"Eine genaue Definition von NC findet sich z. B. in [18].
Diese Konfiguration ist nicht zu verwechseln mit der Konfiguration der Maschine selbst!
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3 Parallelisierbarkeit

Element Z aus Zx, geraten, sodass die Abfolge der auf diesem Berechnungspfad geratenen
Ranker ein Element aus der oben erwiahnten Menge kondensierter Ranker ist. Nach
dem Raten wird [“ls+3* Z¢ auf das durch die Konfiguration in u codierte Element aus
P, (u) angewendet. Das Ergebnis wird dabei direkt normalisiert und codiert. Das
Gleiche geschieht in jedem Schritt anschlieffend auch fiir v. Die Konfiguration codiert also
die Werte der (l;, p;,r;) aus Theorem 4. Léasst sich nun aus den beiden Konfigurationen
schlieflen, dass die Anwendung des kondensierten Rankers bei u oder v definiert, beim
jeweils anderen aber undefiniert war, so bedeutet dies, dass sich [u]y 4o+ und [v]e4er
durch einen kondensierten Ranker aus der zu V' gehérenden Menge unterscheiden lassen.
Der Ranker ergibt sich dabei aus dem Berechnungspfad der Maschine. In diesem Fall,
akzeptiert die Maschine. Kann kein weiterer Ranker geraten werden, bricht die Maschine
ohne Akzeptanz ab.

Die Maschine akzeptiert also genau dann, wenn u = v in V nicht gilt. Ziel ist es
nun zu zeigen, dass die Maschine nur logarithmisch viel Platz in der Eingabeldnge be-
notigt. Gelingt dies, so ldsst sich nach Abschluss nichtdeterministischer Platzklassen
unter Komplement in NL entscheiden, ob u = v in V gilt. Zum Raten von Z wird ein
einzelnes Bit benotigt; betrachtet man X als Eingabe muss auch ein einzelner Buch-
stabe gespeichert werden, dies ist aber in logarithmischem Platz in der Gréfle von X
moglich. Fir V' € {Rp, L, Rmn V Ly, : m € N} muss zudem die Anzahl der noch
moglichen Wechsel zwischen Xy und Yy gespeichert werden, dabei handelt es sich um
eine Zahl zwischen 0 und m. Sofern m nicht als Eingabe betrachtet wird, ist dafir nur
konstant viel Platz notwendig. Schliellich muss noch eine Moglichkeit gefunden werden
die Konfigurationen fiir © und v zu speichern. Dabei ist darauf zu achten, dass dies in
logarithmischen Platz erfolgt und dass sich die Nachfolgekonfiguration — also die Anwen-
dung eines kondensierten Rankers mit anschlieBender Normalisierung — ausrechnen lésst
ohne den logarithmisch beschrinkten Platz zu verlassen. Tatséchlich bedarf dies jedoch
einer genaueren Betrachtung, die im ndchsten Abschnitt erfolgt.

3.2 Effiziente Speicherung

3.2.1 Grundlegende Ideen

Die Speicherung der Konfigurationen fiir die beiden Eingabe-m-Terme kann unabhéngig
von der jeweils anderen erfolgen ohne die Platzbedingung zu verletzten. Daher soll fiir
diesen Abschnitt ein 7-Term w iiber dem Alphabet ¥ fixiert werden. Die Ergebnisse zur
Speicherung der Konfiguration von w lassen sich dann spéter jeweils auf beide Terme
einzeln anwenden.

Bevor weitere Aussagen zur Speicherung der Konfiguration von w gemacht werden
konnen, muss zunéchst geklart werden, welche Information in ihr codiert werden muss:
Anfangs muss der Wert +oo gespeichert werden. Nach Anwendung eines Rankers und
Normalisierung ergibt sich dann ein normalisierter Wert aus P, 4+ (w) oder direkt L. Da
weitere Moglichkeiten nicht auftreten, kann die Information, in welchem der drei Félle
sich die Konfiguration befindet, in konstantem Platz gespeichert werden. Von weiterem
Interesse ist dann nur noch die Speicherung eines normalisierten Elements aus P, 4« (w).
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3.2 Effiziente Speicherung

Hierbei handelt es sich um ein Tripel (I,p,r), wobei [ = —oo und r = +o00 sein kann,
es sich ansonsten aber um (3 + 3*)-Pfade in G(w) handelt. Problematisch ist dabei nur
die Speicherung der Werte an den m-Knoten im Syntax-Baum, da sich der Verlauf eines
Pfades durch ein Blatt speichern ldsst. Bei den Blédttern handelt es sich um Positionen
im m-Term w, die nur logarithmisch viel Platz in der Lange von w benétigen. Zunéchst
wéare es nun denkbar, beispielsweise mithilfe eines zusitzlichen Bandes, unter jedem ™
den Wert von [, p und r zu speichern. Obwohl die Werte nur aus {1,2, —2, —1} stammen
koénnen, wiirde dies jedoch bereits linear viel Speicher in der Lange von w bendétigen, ist
also fiir die Zwecke hier ungeeignet.

Eine erste Idee zur Reduktion dieses Platzbedarfs liefert die folgende Beobachtung:
Verlaufen [, p und » am Anfang gemeinsam, so kann die Anwendung eines Rankers den
Wert von p an den m-Knoten auf diesem gemeinsamen Anfang nicht mehr verdndern.
Ansonsten wire die Zuléssigkeit von (I, p,r) verletzt! Statt also die Werte an diesen 7-
Knoten zu speichern, ist es ausreichend eine einzige Position in w zu speichern. Die mit ™
beschrifteten Positionen rechts dieser Position kénnen dann nicht mehr erreicht werden,
weil sich r links von ihnen befindet oder die Werte aller drei Pfade dort iibereinstim-
men. Dies fiihrt nun zwar zu einer Verringerung des Platzbedarfs, allerdings ist dieser
im schlechtesten Fall immer noch linear in der Lénge von w; beispielsweise wenn kein
gemeinsamer Anfang existiert. Um auch eine asymptotische Verbesserung zu erzielen ist
also mehr notwendig.

3.2.2 Ein letztes Lemma

Um die Menge an Information, die gespeichert werden muss, zu reduzieren ist es hilf-
reich mehr Erkenntnisse iiber das Tripel (I, p,r) zu gewinnen. Dazu dient dieser Unter-
abschnitt, der zunéchst mit einer Definition beginnt:

Definition: Sei (I,p,7) € Pyt und q € {l,p,r}. Dann bezeichne §,(I, p,7) den ersten
Knoten auf ¢, an dem sich ¢ von einem der beiden anderen Pfade unterscheidet.

Ferner heifit ¢ in X-Form, falls fiir alle 7-Knoten v auf ¢ gilt: Liegt v nach §,4(l,p,r)
und gilt ¢(v) € N, so gilt ¢(u) € N auch fiir alle 7-Knoten u, die nach v auf ¢ liegen.
SchlieBlich heifit ¢ in Y -Form, falls fiir alle 7-Knoten v auf ¢ gilt: Liegt v nach 64(Z, p, )
und gilt ¢(v) € —N, so gilt g(u) € —N auch fiir alle 7-Knoten u, die nach v auf ¢ liegen.

Anschaulich ist ein Pfad also in X-Form, wenn nach dem ersten Knoten hinter dem
gemeinsamen Anfang der drei Pfade nach dem ersten Auftreten eines Wertes aus N alle
weiteren Werte ebenfalls aus N sind. Die Y-Form ist dazu symmetrisch: Nach dem ersten
Wert aus —N sind auch alle weiteren Werte aus —N. Man beachte, dass nach Lemma 12
X- und Y-Form durch eine moégliche Normalisierung erhalten bleiben!
Lemma 14: Sei w ein beliebiger m-Term iiber ¥ und r = Z1Z, ... Z, ein Ranker. De-
finiere (I1,p1,71) = [wl3 5+ Z1¢(+o00) und (lj1, pit1,Tit1) = [wls 5+ Zi+1c(li,pi,7'i) flr
i=1,2,...,n—1. Farallei € {1,2,...,n} mit (I;,p;,r;) # L gilt:

e [; = —o00 oder [; ist in X- oder in Y-Form,

e 1;, = 400 oder r; ist in X- oder in Y-Form und

e p; ist in X-Form und alle m-Knoten auf p; nach 6y, (l;) haben Werte aus N oder p;

ist in Y-Form und alle m-Knoten auf p; nach J,,(r;) haben Werte aus —N.
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3 Parallelisierbarkeit

Beweis. Ohne Einschrankung sei (I;,p;,r;) # L fur alle ¢ = 1,2,...,n. Fir (I1,p1,71)
gilt die Aussage direkt, da I} = —o0, 71 = 400 und p; an den m-Knoten iiberall den
Wert 1 oder iiberall den Wert —1 hat.

Sei die Aussage nun fir (I;, p;, ;) gezeigt. Definiere die Bezeichnungen:

(l,p77’) = (li7pi7ri) (llap/7rl) = lIw]]3+3* Z’H—lc(lupa T’)

Auflerdem sei v, = 0, (p’) und vy = 0, (p). Der Fall Z;; € Yy, verhélt sich wieder dual
zum hier besprochenen Fall Z;,; € Xy, in dem r’ = r gilt und damit fiir ' nichts mehr
zu zeigen ist. Zunéchst sei dabei p in X-Form und es gelte p(v) € N fiir alle 7-Knoten v
auf p nach 6, (1). Fir v, # vy hat p’ an 7-Knoten ab v,y den Wert 1. Damit ist p’ in X-
Form und auch die Zusatzbedingung ist erfiillt. Zudem ist I’ = p nach Voraussetzung in
X-Form. Ist v, = vy, so handelt es sich um einen m-Knoten und es gilt p’(v,) = p(vp) +1.
Nach v, hat p’ an allen 7-Knoten den Wert 1. Es verbleibt damit nur noch zu zeigen,
dass p/ in X-Form ist. Fiir p(v,) € N und damit auch p/(v,) € N ist demnach nichts
mehr zu zeigen. Sei also p(v,) € —N. Da p/(vp) = p(vp) + 1 gilt, muss p(v,) < —1 sein.
Nach Definition 1 ist dann v, = d,(r). Vor v, stimmen p, p’ und r also tiberein, womit
oy (I',p',1") = vy ist. Da p/ an m-Knoten nach v, tiberall den Wert 1 hat, ist p’ somit in
X-Form.

Nun sei p in Y-Form und es gelte p(v) € —N fiir alle 7-Knoten v auf p nach d,(r) =: v,.
Lage v, echt vor vy, so wire p’ >, 14+ r = r’. Da dies nicht moglich ist, kann v,
nur nach v, auf p liegen oder es gilt v, = v,. Liegt v, echt vor v,, so kann der Fall
vp = vy nicht mehr auftreten: Es miisste dann p(v,) € —N sein und auBerdem wegen
p'(vp) = p(vp) + 1 auch p(v,) < —1 gelten. Nach Definition 1 wére dann aber v, = v,.
Also hat p’ zunéchst die selben Werte wie p, aber ab v, tritt an 7-Knoten nur noch der
Wert 1 auf. Also ist p’ in X-Form und auch die Zusatzbedingung ist erfillt. Gilt v, = v,
so ist 0 (I',p', ") = vy. Da nach v,y nur noch 1 als Wert an m-Knoten auf p’ auftritt, ist
p’ in X-Form und auch die Zusatzbedingung ist erfiillt. SchlieBlich ist I’ = p in Y-Form.

Die gewtinschten Eigenschaften gelten also fiir I/, p’ und r’. Da sie durch die Normali-
sierung erhalten bleiben, gelten sie damit auch fir l;41, p;+1 und ri4q. O

Was bedeutet dies nun fiir die Speicherung von (I;, p;, ;)7 Wie bereits gesehen, miissen
die Werte eines Pfades ¢ € {l;, p;, i} an den m-Knoten vor d,(;, p;, r;) nicht gespeichert
werden. Nach d4(l;, p;, ;) kann jedoch nur ein einziger Wechsel von Werten aus N zu
Werten aus —N oder umgekehrt erfolgen. Kombiniert man dies mit den Forderungen aus
Definition 1 und der Definition der Normalisierung, so ergibt sich Folgendes: [; kann an
m-Knoten nur Werte aus {1, —1, —2} annehmen und r; nur welche aus {1, 2, —1}. Zudem
Kann der Wert —2 fiir I; nur bei 0y, (l;, p;, i) auftreten und der Wert 2 fiir r; nur bei
0r,(Li, pi,7i). Ebenso ist der Wert 2 auf p; dem Knoten 6y, (l;) und der Wert —2 dem
Knoten 0y, (r;) vorbehalten. Dies bedeutet jedoch beispielsweise nicht, dass p;(dp, (i) #
—2 sein muss! Dies liegt daran, dass d,,(l;) = dp, (1) sein kann. Die Werte an den anderen
Knoten sind 1 oder —1. Somit reicht es fiir diese Knoten aus die Form des Pfades zu
speichern. Fiir den Rest muss nur eine konstante Anzahl an Knoten mit den zugehérigen
Werten gespeichert werden.
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3.2.3 Die Konfiguration im Detail

3.2 Effiziente Speicherung

Der letzte Unterabschnitt hat gezeigt, dass sich ein normalisiertes Element (I, p,r) aus
Pt (w) in logarithmischem Platz speichern ldsst. Dieser Unterabschnitt fiihrt dies
genauer aus und geht auch darauf ein, wie sich aus den gespeicherten Werten die Nach-
folgekonfiguration errechnen lésst. Die folgende Tabelle fasst die Variablen zusammen,
die dazu verwendet werden (I, p,r) zu speichern. Man beachte, dass diese tatsédchlich im
verfligharen Platz gespeichert werden kénnen.

L Name L Verwendung Werte L Grofle ‘
start Ende des gemeinsamen An- | Positionen in w und L | O(log |w|)
fangs von [, p und 7
fir ™-Positionen links die-
ses Werts konnen die Werte
aller drei Pfade berechnet
werden; codiert im Wesent-
lichen 6;(l,p,7), 6p(l,p,7)
und 6, (1, p,7)
1_form Form von [ nach &;(1,p,r) XY, — O(1)
p_form Form von p nach 6,(, p,r) X, Y O(1)
r_form Form von r nach 6,(l,p,r) X,Y,+o0 o)
1_leaf Ende von [ Positionen in w und L | O(log |w|)
p_leaf Ende von p Positionen in w O(log |w|)
r_leaf Ende von r Positionen in w und L | O(log|w|)
delta_l Position von §;(I,p,r), falls | "-Position in w oder L | O(log |w|)
dies ein m-Knoten ist
delta_1_value | Wert von [ an §;(l,p,r) 1,-1,-2 O(1)
delta_pl Position von 6, (1), falls dies | ™-Position in w oder L | O(log |w|)
ein m-Knoten ist
delta_pl_value | Wert von p an d,(/) 1,2,—-1,-2 O(1)
delta_pr Position von 6, (), falls dies | ™-Position in w oder L | O(log |w|)
ein m-Knoten ist
delta_pr_value | Wert von p an 6,(r) 1,2,—1,-2 O(1)
delta_r Position von 4, (1, p,r), falls | "-Position in w oder L | O(log |w|)
dies ein m-Knoten ist
delta_r_value | Wert von r an d,(l,p,r) 1,2, -1 O(1)
1_switch Position auf I, an der ein | "-Position in w oder L | O(log |w|)

Wechseln von Werten aus N
zu Werten aus —N oder um-
gekehrt stattfindet
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3 Parallelisierbarkeit

LName LVerwendung L Werte L Grofle ‘

p_switch Position auf p, an der ein | "-Position in w oder L | O(log |w|)
Wechseln von Werten aus N
zu Werten aus —N oder um-
gekehrt stattfindet

r_switch Position auf 7, an der ein | "-Position in w oder L | O(log |w])
Wechseln von Werten aus N
zu Werten aus —N oder um-
gekehrt stattfindet

Als Néchstes ist zu kldren, ob aus diesen Werten die Werte der drei Pfade an den
m-Knoten rekonstruiert werden koénnen. Zunéchst ist dabei festzuhalten, dass in loga-
rithmischem Platz entschieden werden kann, ob ein Pfad, der nur iiber eine Position
in w gegeben ist, iiber einen bestimmten m-Knoten verlduft. Es ist hierbei ndmlich nur
notwendig zu tberpriifen, ob sich die Blattposition in w zwischen den zum 7-Knoten
gehorenden Klammern befindet. Dies ist moglich, indem die Zahl der 6ffnenden und
schliefenden Klammer gezahlt wird. Es muss also nur eine durch |w| beschrankte Zahl
gespeichert werden, was durch Bindrkodierung in logarithmischem Platz moglich ist.
Um nun beispielsweise den Wert von p an einem m-Knoten, der durch die zugehorige
T-Position in w gegeben ist, zu berechnen muss zunéchst tiberpriift werden, ob p iiber
den Knoten verlauft. Ist dies nicht der Fall, kann direkt L zuriick gegeben werden. Ist
dies der Fall, aber der Knoten liegt auf dem gemeinsamen Anfang von (I, p, r), also nicht
links von start, so ist eine Bestimmung des Wertes nicht méglich. Wie oben aufgefiihrt
ist dies allerdings auch nicht notwendig, es kann also sichergestellt werden, dass die Rou-
tine zur Bestimmung des Wertes von p nie fiir einen solchen Knoten aufgerufen wird.
Fiir Knoten zu ™-Positionen links von start wird zunichst verglichen, ob es sich um den
in delta_pl oder delta_pr gespeicherten Knoten handelt. Ist dies der Fall, kann der
gespeicherte Wert gelesen werden. Ist dies nicht der Fall, muss unterschieden werden:
Hat p_form den Wert , X“ und p_switch liegt nach dem fraglichen Knoten auf p oder
ist undefiniert, so ist nach Lemma 14 der gesuchte Wert —1. Nach oder an p_switch
ist der Wert 1 und fiir p_form = Y sind die Werte vertauscht. Die Algorithmen zur
Bestimmung der Werte von [ und r verlaufen analog. Hierbei sind nur die speziellen
Werte —oo und +o0o zu beachten, es kann allerdings wieder an anderer Stelle verhindert
werden, dass die Routinen fiir diese Spezialfélle aufgerufen werden.

Um den Gesamtalgorithmus zu vervollstdndigen bleibt nur noch zu erértern, dass sich
die Nachfolgekonfiguration in der oben angegebenen Form in logarithmischem Platz
ausrechnen ldsst. Die Nachfolgekonfiguration muss dabei ein normalisiertes Element
(I',p',7") aus P,iw(w) codieren, dass durch Anwendung eines Rankers X, oder Y,
und anschlieflender Normalisierung aus der aktuellen Konfiguration hervorgeht. Fiir den
Spezialfall, dass die aktuelle Konfiguration den Wert oo codiert, ist dies recht einfach,
schlieflich muss nur das erste bzw. letzte a in w gesucht werden. Gibt es kein a in w,
kann L zuriickgegeben werden. Ansonsten kann I’ = —oo und ' = 400 direkt in der fiir
die Form der beiden Pfade vorgesehenen Variablen gespeichert werden. Da p’ entweder

48



3.2 Effiziente Speicherung

an allen m-Knoten den Wert 1 oder an allen den Wert —1 hat, kann auch dies einfach
in p_form gespeichert werden. Codiert die aktuelle Konfiguration hingegen das normali-
sierte Element (I,p,r) aus P, .+ (w) bedeutet dies groferen Aufwand. Da das Vorgehen
fiir Y, dhnlich zu dem fir X, ist, wird hier nur letzteres genauer besprochen. Zunéchst
werden die folgenden Hilfsvariablen benotigt:

LName JVerwendung L Werte L Grofle ‘

cur_leaf | Blatt, an dem der aktuell betrach- Positionen in w O(log |w|)
tete Pfad endet
branching | "-Position, an der sich der aktu- | "-Position in w oder L | O(log|w]|)
elle Pfad zum ersten Mal von p
unterscheidet

Es ist anzumerken, dass diese Variablen alle wieder in logarithmischem Platz gespeichert
werden konnen.
Der Algorithmus soll nun zunéchst durch Pseudocode skizziert werden:

cur_leaf < p_leaf
branching + L
while true do
cur_leaf < cur_leaf +1
if cur_leaf > |w| or cur_leaf > start or PATHNOTSMALLERTHANR then

return L
end if
if w(cur_leaf) =")" and w(cur_leaf + 1) = """ then
if branching = cur_leaf then > Klammer zum zweiten Mal erreicht?
branching < L
else if cur_leaf > start then > "-Position im gemeinsamen Anfang?
return |

else if branching = | and ISONP(cur_leaf) and p(cur_leaf) # —1 then
> Klammer von vorne testen?
branching < cur_leaf
cur_leaf <~ MATCHINGLEFT(cur_leaf)
end if
else if w(cur_leaf) = a then
break
end if
end while
Berechne und speichere neue Konfiguration > Hier ist stets w(cur_leaf) =a

Verbal beschrieben ist das Vorgehen das folgende: Beginne beim Ende von p und gehe
schrittweise in w jeweils einen Buchstaben nach rechts. Diese Position wird in cur_leaf
gespeichert und definiert den Verlauf des aktuellen Pfades. Wird ein a gefunden, so ist
dies das néchste und damit das Ende von p’. Wird die Buchstaben-Kombination )™ ge-
funden, so muss — falls p an dieser Stelle nicht den Wert —1 hat — an der zugehdrigen
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3 Parallelisierbarkeit

linken Klammer weiter gesucht werden. Hier kommt die Variable branching ins Spiel:
Sie speichert die Position dieser Abzweigung. Dies geschieht zum einen um eine Endlos-
schleife zu verhindern und zum anderen um die Werte des aktuellen Pfades an einem
m-Knoten v, iiber den der aktuelle Pfad verlauft, zu bestimmen. Verlduft p nicht iiber v
ist dies stets der Wert 1. Ist v der Knoten zu der in branching gespeicherten ™-Position,
so ist der Wert p(v) 4 1. Liegt v auf p oberhalb vom zu branching gehoérenden m-Knoten
oder ist branching = 1, ist der Wert gleich p(v); unterhalb ist es wiederum 1. Aus den
beiden Hilfsvariablen lasst sich also ohne Verlassen des logarithmischen Platzes der Wert
des aktuellen Pfades an allen Knoten zu den ™-Positionen links von start bestimmten.
Dies ist insbesondere nétig um die Routine PATHNOTSMALLERTHANR zu implementie-
ren. Diese soll sicherstellen, dass der aktuelle Pfad immer kleiner als r ist. Dazu muss
von rechts nach links beginnend bei start fiir alle "-Positionen tberpriift werden, dass,
sofern 7 und der aktuelle Pfade beide iiber den zugehorigen m-Knoten verlaufen, die
Werte des aktuellen Pfades nicht grofler als die von r sind. Sind sie stets gleich, so muss
zudem iiberpriift werden, ob cur_leaf links von r_leaf liegt. All dies ist jedoch in
logarithmischem Platz moglich.

Einen letzten Punkt beschreibt der Pseudocode nur unzureichend, ndmlich wie die
Nachfolgekonfiguration tatséchlich ausgerechnet wird. Hierzu kann zunédchst der neue
Wert fiir start ausgerechnet werden: Ahnlich wie in PATHNOTSMALLERTHANR wird
von rechts nach links an allen ™-Positionen iiberpriift, ob es einen Unterschied in den
Werten von I/, p’ und 7’ gibt. AnschlieBend kann start auf die "-Positionen zum letz-
ten iibereinstimmenden 7-Knoten gesetzt werden. Ahnlich kénnen auch die Werte fiir
delta_1, delta_pl, delta_pr und delta_r, sowie fiir die zugehorigen delta_*_value-
Variablen ermittelt werden. Wichtig ist hierbei einzig, dass der normalisierte Wert ge-
speichert wird, dieser ldsst sich allerdings direkt ausrechnen. Die Form der Pfade und die
Position eines eventuellen Wechsels der Werte zwischen N und —N kann ebenfalls durch
einfaches Ablaufen der Pfade bestimmt werden, womit alle Variablen der Konfiguration
abgehandelt sind.

Zum Ende des Unterabschnitts zur Berechnung der Nachfolgekonfigurationen sei noch
Folgendes explizit hervorgehoben: Die Berechnung der Nachfolgekonfiguration bendtigt
den Nichtdeterminismus nicht; sie erfolgt also deterministisch in logarithmischem Platz!

3.3 Zusammensetzen der Bausteine

Der deterministische Algorithmus zur Berechnung der Nachfolgekonfigurationen ldsst
sich nun in das beschriebene nichtdeterministische Grundgeriist einsetzen und liefert so
einen NL-Algorithmus zur Entscheidung, ob w = v in V mit V € {DA, Ry, Ly, R, V
L,, : m € N} gilt. Da es sich hierbei um das zentrale Ergebnis dieser Arbeit handelt,
soll es abschlielend durch ein Theorem gewiirdigt werden:

Theorem: Fiir alle m € N lésst sich das Wortproblem fiir 7-Terme von R,,, von L,
und von R, V L, durch einen nichtdeterministischen Algorithmus entscheiden, dessen
Platzbedarf in

O (log|u| + log|v| + log |X| + logm)
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liegt, wobei v und v die beiden Eingabe-m-Terme iiber dem gemeinsamen Alphabet X
sind.

Das Wortproblem fiir m-Terme von DA lésst sich ebenso durch einen nichtdeterministi-
schen Algorithmus mit Platzbedarf in

O (log [u| + log |v[ + log |3])

entscheiden. Auch hier bezeichnen v und v die beiden Eingabe-m-Terme.
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4 Ausblick und Zusammenfassung

4.1 Ausblick

Bisher wurden nur die Wortprobleme fiir 7-Terme der Ecken und V-Ebenen der Trotter-
Weil-Hierarchie untersucht. Dies war zwar ausreichend um auch eine Aussage iiber das
Wortproblem fiir m-Terme von DA zu machen, es dréngt sich aber die Frage nach der
Entscheidbarkeit und ggf. der Komplexitiat der Wortprobleme fiir 7-Terme der N-Ebenen
auf. Das Hauptproblem hierbei ist, dass sich diese nicht durch kondensierte Ranker
beschreiben lassen, sondern eine andere Form von Rankern benétigen’. Daher lassen
sich die Ergebnisse nicht direkt iibertragen und die Idee der Normalisierung miisste
entsprechend adaptiert werden.

FEine andere Frage ist die, ob sich die besprochenen Wortprobleme fir 7-Terme so-
gar in einer noch kleineren Komplexitédtsklasse befinden oder ob sie auf der anderen
Seite moglicherweise NL-vollsténdig sind. In diesem Zusammenhang ist auch die folgen-
de Uberlegung interessant: Es ist moglich die Nachfolgekonfiguration deterministisch in
logarithmischem Platz auszurechnen. Moglicherweise ist es auf &hnliche Weise auch mog-
lich den Graphen, wie er im skizzierten Algorithmus am Ende von Kapitel 2 angedeutet
ist, deterministisch in logarithmischem Platz auszurechnen. Dies kdme einer Redukti-
on der Probleme auf das Problem der Aquivalenz endlicher deterministischer Automa-
ten sehr nahe, was weitere Einblicke in die Vollstdndigkeit des Problems fiir bestimmte
Komplexitétsklassen erlauben wiirde. Hier wiirde sich auch die Frage anschlieflen, welche
Komplexitéat die Konstruktion des Graphen genau besitzt.

Auflerdem wére es auch winschenswert die vorgestellten Beweise zu vereinfachen. Hier
scheint Potential zu bestehen, da sich insbesondere bei den vor allem auf Rechnungen
basierenden Beweisen viele argumentative Uberlappungen feststellen lassen.

Eine weitere Verbesserungsmoglichkeit findet sich beim Algorithmus aus Kapitel 3.
Wire es hier moglich die auftretenden Konstanten zu verkleinern, so wiirde dies direkt zu
einem effizienteren deterministischen Polynomialzeitalgorithmus fiithren. Méglicherweise
wére es so sogar moglich einen effizienteren Algorithmus als den in [10] beschriebenen
zu finden und das dortige Ergebnis weitestgehend zu subsumieren. Betrachtet man die
Tabellen iiber die zur Speicherung einer Konfiguration notigen Variablen, wird schnell
deutlich, dass hier einige Optimierungen moglich sind.

"Diese Form der Ranker heiBt in [7] Weis-Immerman-Ranker
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4 Ausblick und Zusammenfassung

4.2 Zusammenfassung

Nach der Einfithrung wichtiger Grundbegriffe im ersten Kapitel ist es gelungen das Kon-
zept der Interpretation von ™-Potenzen in m-Termen durch lineare Ordnungstypen mit
dem Konzept der Ranker und kondensierten Ranker zu vereinbaren. Dies fithrte darauf,
dass sich die Giiltigkeit einer Gleichung in den Ecken und V-Ebenen der Trotter-Weil-
Hierarchie auf die Unterscheidbarkeit der involvierten m-Terme durch gewisse kondensier-
te Ranker zuriickfithren lisst. Im Wesentlichen bedeutet dieses Ergebnis die Ubertragung
des Zusammenhangs zwischen Rankern und den Varietédten der Trotter-Weil-Hierarchie
auf m-Terme und damit ins Unendliche. Daraus ergab sich direkt eine entsprechende
Aussage fiir die Varietdt DA.

Der néchste Schritt auf dem Weg zur Entscheidbarkeit des Wortproblems fiir m-Terme
der besprochenen Varietiten war die Definition einer Normalisierung eines Tripels auf
(w + w*)-Pfaden, die nach Ergebnissen aus dem ersten Kapitel den Positionen in dem
verallgemeinerten Wort entsprechen, das durch Einsetzen des linearen Ordnungstyps
w + w* fiir die "-Potenzen eines m-Terms entsteht. Dies erlaubte die Beschrankung auf
eine begrenzte Menge moglicher Werte und damit den Schritt zuriick ins Endliche, was
letztlich zum Beweis der Entscheidbarkeit und der Skizzierung eines entsprechenden
Algorithmus fiihrte.

Anschlielend wurden logarithmisch im Platz beschriankte nichtdeterministische Algo-
rithmen zur Entscheidung der Wortprobleme fiir m-Terme der Ecken und V-Ebenen der
Trotter-Weil-Hierarchie sowie von DA préasentiert. Entscheidend dabei war die effizi-
ente Speicherung eines normalisierten Tripels von (w 4 w*)-Pfaden, die gleichzeitig das
Ausrechnen einer Nachfolgekonfiguration in logarithmischem Platz erlaubt. Dies zeigte
die Zugehorigkeit der Probleme zu NL und verbesserte damit hinsichtlich der Kom-
plexitétsklasse ein aus [10] bereits bekanntes Ergebnis tiber die Entscheidbarkeit des
Wortproblems fiir 7-Terme von DA durch einen deterministischen Polynomialzeitalgo-
rithmus.
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