
Institut für Formale Methoden der Informatik
Abteilung Theoretische Informatik

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3610

Das Wortproblem für
Omega-Terme über
Zweivariablenlogik

Jan Philipp Wächter

Studiengang: Informatik

Prüfer: Prof. V. Diekert

Betreuer: Dr. M. Kufleitner

begonnen am: 16. Januar 2014

beendet am: 18. Juli 2014

CR-Klassifikation: F.2.2, F.4.1, F.4.3

Inhaltsverzeichnis

0 Über diese Arbeit 1

1 Einführung 3
1.1 Grundlagen . 3

1.1.1 Funktionen und Notationen . 3
1.1.2 Halbgruppen und Varietäten . 4
1.1.3 Graphen und Bäume . 5
1.1.4 Turing-Maschinen und Komplexitätsklassen 7
1.1.5 Ordnungen und Ordnungstypen . 7
1.1.6 Wörter . 12

1.2 π-Terme und Gleichungen . 13
1.2.1 π-Terme . 13
1.2.2 Gleichungen . 18

1.3 Ranker und die Trotter-Weil-Hierarchie 19
1.3.1 Ranker . 19
1.3.2 Die Trotter-Weil-Hierarchie . 23

2 Entscheidbarkeit 27
2.1 Ranker und π-Terme . 27

2.1.1 Technische Hilfsmittel . 27
2.1.2 Ranker und Gleichungen . 30

2.2 Normalisierung . 32
2.2.1 Definition . 32
2.2.2 Eigenschaften . 33
2.2.3 Anwendung . 36

3 Parallelisierbarkeit 43
3.1 Zielsetzung und Grundgerüst . 43

3.1.1 Zielsetzung . 43
3.1.2 Grundgerüst . 43

3.2 Effiziente Speicherung . 44
3.2.1 Grundlegende Ideen . 44
3.2.2 Ein letztes Lemma . 45
3.2.3 Die Konfiguration im Detail . 47

3.3 Zusammensetzen der Bausteine . 50

i

Inhaltsverzeichnis

4 Ausblick und Zusammenfassung 53
4.1 Ausblick . 53
4.2 Zusammenfassung . 54

ii

0 Über diese Arbeit

Kaum ein Maschinenmodell ist von so großer Bedeutung wie das der endlichen Automa-
ten. Es findet nicht nur Anwendung in der technischen, theoretischen und praktischen
Informatik, sondern auch in vielen anderen Wissenschaften und Wissenschaftsbereichen.
Von daher mag es kaum verwundern, dass nicht nur die mit den endlichen Automa-
ten untrennbar verbundenen regulären Sprachen, sondern auch viele darin enthaltene
Sprachklassen von großem akademischen und praktischen Interesse sind. Neben der au-
tomatentheoretischen Untersuchung der regulären Sprachen gibt es daher noch andere
Herangehensweisen: beispielsweise durch Logiken oder durch algebraische Strukturen.
Dass es sich bei endlichen Automaten um recht einfache Maschinen handelt, überträgt
sich auch auf die algebraischen Strukturen. So werden reguläre Sprachen durch endliche
Monoide erkannt, einer algebraischen Struktur, die nur wenigen Axiomen gerecht werden
muss.

Ein Sprachklasse unterhalb der regulären Sprachen erhält man beispielsweise, indem
man sich auf Sprachen beschränkt, die durch Sätze der Prädikatenlogik erster Stufe oder
first-order logic FO definierbar sind. Durch Beschränkung der Anzahl der in einem sol-
chen Satz erlaubten Variablen lässt sich diese Sprachklasse weiter spezialisieren. Es ist
bekannt, dass die Verwendung von nur drei Variablen keine Einschränkung darstellt.
Die Untersuchung jener Sprachen, die sich mit Prädikatenlogik erster Stufe unter Ver-
wendung von nur zwei Variablen, also durch die Zweivariablenlogik FO2[<] definieren
lassen, ergibt sich daher auf natürliche Weise.

Auf algebraischer Seite korrespondiert diese Klasse von Sprachen mit der Menge end-
licher Monoide, genauer der Varietät endlicher Monoide DA. Jene Varietät DA erhält
man auch durch Vereinigung der abzählbar unendlich hohen, sogenannten Trotter-Weil-
Hierarchie. Diese besteht aus Ecken, ∨-Ebenen und ∩-Ebenen und ist zentraler Gegen-
stand der Betrachtungen dieser Arbeit.

Diese Betrachtungen befassen sich mit dem Wortproblem für ω-Terme von Varietäten
in der Trotter-Weil-Hierarchie. Bei ω-Termen oder, wie sie hier genannt werden, π-Termen
handelt es sich um Terme von Variablen, die mit einer zusätzlichen π-Potenz versehen
werden können. Anschließend können für die Variablen Elemente eines Monoids einge-
setzt werden, die π-Potenzen erhalten dann einen Wert, der als unendlich oft interpretiert
werden kann. Anschaulich lässt sich ein π-Term daher mit dem Verhalten eines endli-
chen Automaten, dessen Ausführung nicht durch eine bestimmte Anzahl an Schritten
beschränkt ist, verknüpfen. Zwei π-Terme u und v lassen sich zu einer Gleichung u = v
verknüpfen. Es ist dann möglich zu fragen, ob ein Monoid M diese Gleichung erfüllt.
Dies ist dann der Fall, wenn sich links und rechts stets das selbe Monoidelement ergibt,
sobald man für die Variablen beliebige Elemente einsetzt. Diese Fragestellung lässt sich
erweitern: Erfüllt jedes Monoid in einer Varietät die Gleichung? Dabei handelt es sich

1

0 Über diese Arbeit

um die Frage des Wortproblems für π-Terme der Varietät.
Diese Arbeit wird zeigen, dass sich das Wortproblem für π-Terme der Ecken und ∨-

Ebenen der Trotter-Weil-Hierarchie durch eine logarithmisch platzbeschränkte nichtde-
terministische Turingmaschine entscheiden lässt, dass es also zur Komplexitätsklasse NL
gehört. Obwohl es sich bei NL um eine nichtdeterministische Platzklasse handelt, ist
dieses Ergebnis interessant, da sich die Probleme aus NL effizient parallel entscheiden
lassen. Eine Eigenschaft, die nicht zuletzt seit dem Aufkommen von Mehrkernprozesso-
ren, eine immer größere Rolle spielt. Gleichzeitig liefert ein NL-Algorithmus auch einen
deterministischen Polynomialzeitalgorithmus.

Der NL-Algorithmus für die Entscheidung des Wortproblems für π-Terme der Ecken
und ∨-Ebenen der Trotter-Weil-Hierarchie lässt sich leicht abwandeln, um die Zugehö-
rigkeit des Wortproblems für π-Terme von DA zu NL zu zeigen. Im Sinne der Komplexi-
tätsklassen verbessert dies ein Ergebnis von A. Moura [10], das einen deterministischen
Polynomialzeitalgorithmus zur Entscheidung dieses Problems liefert und damit Erkennt-
nisse von Almeida und Zeitoun erweitert, die in [2, 1] zeigten, dass sich das Wortproblem
für π-Terme der Varietät der endlichen R-trivialen Halbgruppen in Linearzeit entschei-
den lässt. Die Varietät der endlichen R-trivialen Monoide tritt auch als Ecke in der
Trotter-Weil-Hierarchie auf.

Das Vorgehen in dieser Arbeit unterscheidet sich von dem Vorgehen in den genannten
anderen Arbeiten. Das zentrale Konzept ist dabei das Einsetzen linearer Ordnungstypen
für die π-Potenzen der π-Terme, ähnlich wie in [5]. Auf die dabei entstehenden, im Allge-
meinen unendlichen, verallgemeinerten Wörter werden dann einige Instrumente, die bei
der Untersuchung der Trotter-Weil-Hierarchie sonst in einer endlichen Form vorkommen,
übertragen. Neben der formellen Einführung und Wiederholung einiger grundlegender
Begrifflichkeiten bildet dies den Inhalt des ersten Kapitels.

Das zweite Kapitel vertieft zunächst die Ergebnisse des ersten und führt anschließend
eine bestimmte Normalisierung ein, die es erlaubt vom Unendlichen wieder ins Endliche
überzugehen. Dies erlaubt dann die Skizzierung eines Algorithmus zur Entscheidung der
besprochenen Wortprobleme für π-Terme am Ende des Kapitels.

Das dritte Kapitel schließlich zeigt durch Angabe entsprechender Algorithmen die
Zugehörigkeit der Probleme zu NL. Dabei steht – wenig überraschend – die Speicherung
benötigter Informationen in logarithmischem Platz im Mittelpunkt.

Im letzten Kapitel findet sich dann ein Ausblick auf angrenzende und weiterführende
Fragestellungen rund um die Trotter-Weil-Hierarchie und das Wortproblem für π-Terme
und schließlich eine Zusammenfassung der Ergebnisse.

2

1 Einführung

Am Anfang dieses Kapitels sollen einige Grundlagen vorgestellt und Konventionen ein-
geführt werden. Danach werden π-Terme und damit verbundene Begriffe eingeführt und
untersucht und schließlich folgt ein Abschnitt über sogenannte Ranker und die Trotter-
Weil-Hierarchie.

1.1 Grundlagen
Viele – wenn auch nicht unbedingt alle – der folgenden Begriffe sind dem Leser wahr-
scheinlich wohlbekannt. Dennoch lohnt es sich einige von ihnen genauer einzuführen,
denn dies erlaubt es einige Vereinbarungen zu ihrem Gebrauch und zur Notation zu tref-
fen. Außerdem finden sich in den folgenden Unterabschnitten auch einige Betrachtungen,
die zunächst vertraut wirkende Begriffe aus einem anderen Blickwinkel präsentieren.

1.1.1 Funktionen und Notationen
Dieser Abschnitt wird die wichtigsten Konventionen zum Umgang mit Funktionen ein-
führen, die in dieser Arbeit Verwendung finden.

Sei f : A →p B eine partielle Funktion. Es ist also möglich, dass f(a) für ein a ∈ A
nicht definiert ist. Da die Ausdrucksweise „ist nicht definiert“ recht umständlich ist, wird
f erweitert zur (nicht partiellen) Funktion

f : A+ {⊥} → B + {⊥}
⊥ 7→ ⊥

a ∈ A 7→
{

f(a) falls f(a) definiert ist
⊥ sonst,

wobei A+B die disjunkte Vereinigung zweier Mengen A und B bezeichnet. Dies erlaubt
es nun f(a) = ⊥ statt „f(a) ist nicht definiert“ zu schreiben. Diese Erweiterung wird
im Folgenden stets implizit für alle auftretenden partiellen Funktionen verwendet. Dazu
sollte man insbesondere beachten, dass für zwei partielle Funktionen f : A →p B und
g : B →p C die Aussage g(f(n)) = ⊥ bedeuten kann, dass f an der Stelle n nicht
definiert ist oder dass f(n) zwar definiert ist, g an der entsprechenden Stelle aber nicht.

In vielen Fällen ist es üblich – z. B. bei algebraischen Strukturen – für eine Funktion der
Form · : A×B → C die Schreibweise a ·b statt ·(a, b) zu verwenden. Eine solche Funktion
wird ab jetzt als Verknüpfung bezeichnet. Ist aus dem Zusammenhang zu erkennen,
welche Verknüpfung · gemeint ist, wird auch ab statt a·b geschrieben, dies ist insbesondere
für Verknüpfungen mit Bezeichnungen, die an Produkte erinnern, wie · oder ∗ der Fall. In

3

1 Einführung

Unterabschnitt 1.1.5 wird eine ähnliche Notation für binäre Relationen vereinbart. Aus
dem Kontext ist aber stets klar, ob es sich um eine Funktion oder eine binäre Relation
handelt.

Auch andere im Umgang mit Funktionen übliche Schreibweisen finden in dieser Arbeit
Anwendung. Ein Beispiel hierfür ist das folgende: Ist f : A → B eine Funktion und
A ⊆ A′ eine Teilmenge von A, dann bezeichnet f(A′) = {f(a) : a ∈ A′} das Bild von
A′ unter f . Ebenso bezeichnet f−1(B′) = {a : f(a) ∈ B′} die Menge der Urbilder einer
Teilmenge B′ ⊆ B von B.

1.1.2 Halbgruppen und Varietäten
Betrachtet man die Menge ihrer Axiome, gehören Halbgruppen zu den einfachsten alge-
braischen Strukturen. Da sie bei vielen Problemen jedoch als natürliche Objekte auftre-
ten, ist ihre genauere Untersuchung in vielen Bereichen von Interesse.

Bekanntermaßen handelt es sich bei einer Halbgruppe um eine Menge S mit einer
assoziativen Verknüpfung · : S → S. Gibt es ferner ein neutrales Element in einer
Halbgruppe, so heißt sie Monoid.
Konvention: Für eine Halbgruppe (S, ·) wird im Folgenden oft einfach S geschrieben.
Die Verknüpfung ergibt sich dann aus dem Kontext.
Andere wichtige Begriffe in diesem Zusammenhang werden als weitgehend bekannt vor-
ausgesetzt. Darunter der der Unterhalbgruppe und des Untermonoids, insbesondere aber
auch der des Halbgruppenhomomorphismus und des Monoidhomomorphismus.
Konvention: Wird aus dem Zusammenhang klar, ob ein Halbgruppen- oder ein Mono-
idhomomorphismus gemeint ist, so wird nur von einem Homomorphismus gesprochen.

Ein wichtiges Monoid ist das Monoid Σ∗ der endlichen Wörter über einem Alphabet Σ.
Ein Alphabet ist hierbei eine beliebige endliche Menge von Buchstaben. Eine Teilmenge
L ⊆ Σ∗ wird – wie üblich – als Sprache endlicher Wörter über Σ bezeichnet. Eine
solche Sprache L wird durch ein Monoid M erkannt, wenn es einen Homomorphismus
φ : Σ∗ →M mit L = φ−1 (φ(L)) gibt.

Aufgrund dieses Zusammenhangs zwischen Sprachen endlicher Wörter und Monoiden
verwundert es nicht, dass sich bestimmte Abschlusseigenschaften von Mengen von Spra-
chen auf die zugehörige Menge der Monoide, die eine dieser Sprachen erkennen, über-
tragen. Dies führt auf den Begriff der Varietät, der vielleicht weniger bekannt ist als der
Begriff des Monoids selbst, aber im Folgenden noch wichtig sein wird.
Definition (Varietäten endlicher Monoide): Eine Menge V von endlichen Monoiden
heißt Varietät endlicher Monoide†, falls folgende Abschlusseigenschaften erfüllt sind:

• Ist M ∈ V und M ′ ein Untermonoid von M , so ist M ′ ∈ V .
• Ist M ∈ V und φ : M →M ′ ein Monoidhomomorphismus, so ist φ(M) ∈ V .
• Jedes endliche direkte Produkt von Monoiden aus V ist in V .

Mehr zu Varietäten, z. B. wie sich diese Abschlusseigenschaften auf die Menge der von
Monoiden in V erkannten Sprachen endlicher Wörter auswirken, findet sich in [12].

†oftmals auch Pseudovarietät genannt

4

1.1 Grundlagen

Sind V und W zwei Varietäten, so bezeichnet V ∨W die kleinste Varietät, die alle
Monoide aus V und alle Monoide aus W enthält. Außerdem ist der Schnitt zweier
Varietäten wieder eine Varietät, wie man leicht überlegt.

Ihrer Definition nach können Halbgruppen und Monoide sowohl endlich als auch un-
endlich groß sein. Im Folgenden werden die meisten von ihnen jedoch endlich sein, daher
ist es sinnvoll diese Art von Halbgruppen genauer zu betrachten. Dabei ist vor allem das
folgende Resultat von zentraler Bedeutung:
Lemma 1: Sei S eine endlich Halbgruppe. Für jedes Element s ∈ S gibt es eine natür-
liche Zahl ms > 0, sodass sms idempotent ist, also dass s2ms = sms gilt. Außerdem gibt
es eine natürliche Zahl m > 0, so dass sm für alle Elemente s ∈ S idempotent ist.

Beweis. Für den ersten Teil der Aussage siehe z. B. [4, S. 12]. Der zweite Teil ergibt sich
durch Bilden des kleinsten gemeinsamen Vielfachen aller Potenzen ms aus dem ersten
Teil.

Konvention: Für eine endliche Halbgruppe S bezeichnet S! die kleineste natürliche Zahl
> 0, sodass sS! für alle Elemente s ∈ S idempotent ist. Es muss dabei nicht unbedingt
S! = |S|! gelten.

1.1.3 Graphen und Bäume

Obwohl viele Begriffe im Umfeld von Graphen und Bäumen eine weitgehend intuitive
Bedeutung haben, gibt es dennoch oft Ausprägungen dieser Begriffe mit subtilen Unter-
schieden. Ziel diese Unterabschnitts ist es daher zu klären, was genau gemeint ist, wenn
im weiteren Verlauf dieser Arbeit ein solcher Begriff auftaucht. Ein Graph G ist ein Paar
(V,E) aus Knotenmenge V und Kantenmenge E ⊆ V × V . Ist also von einem Graphen
die Rede, so ist genaugenommen ein gerichteter Graph gemeint. Bei einem beschrifte-
ten Graph wird das Paar zu einem Tripel (V,E, λ) ergänzt. Dabei ist λ : V → Σ die
Beschriftung der Knoten des Graphen mit Buchstaben aus dem Alphabet Σ. Ist G ein
Graph, so meint v ∈ G, dass v ein Knoten in G ist.

Zur Vereinfachung soll als Nächstes die folgende Konvention vereinbart werden:
Konvention: Ist aus dem Kontext klar, welcher Graph G = (V,E) gemeint ist, wird im
Folgenden für (v, v′) ∈ E einfach v → v′ geschrieben.
Bei einem Pfad im Graphen G mit n Knoten handelt es sich nun um eine endliche
Sequenz p = (v1, v2, . . . , vn) von Knoten, sodass vi → vi+1 für alle 1 ≤ i < n gilt. Man
beachte, dass auch ein einzelner Knoten als Pfad betrachtet werden kann! Der erste
Knoten auf einem Pfad p wird als Anfang, der letzte als Ende und mögliche Knoten
dazwischen als innere Knoten bezeichnet.

Ebenso wie ein Graph, lässt sich auch ein Pfad um eine Beschriftung ergänzen: Eine
endliche Sequenz p = ((v1, a1), (v2, a2), . . . , (vn, an)) von Elementen aus V × Σ für ein
beliebiges Alphabet Σ heißt beschrifteter Pfad in G = (V,E) mit n Knoten. Ebenso wie
bei beschrifteten Graphen bezieht sich die Beschriftung also auf die Knoten und nicht
die Kanten. ai heißt dabei Beschriftung von vi (für 1 ≤ i ≤ n). Anfang, Ende und innere

5

1 Einführung

Knoten eines beschrifteten Pfades entsprechen denen des zugehörigen (unbeschrifteten)
Pfades (v1, v2, . . . , vn).
Konvention: Für einen Pfad p = (v1, v2, . . . , vn) wird im Folgenden auch p = v1 → v2 →
· · · → vn geschrieben und für einen beschrifteten Pfad p = ((v1, a1), (v2, a2), . . . , (vn, an))
auch p = v1/a1 → v2/a2 → · · · → vn/an. Außerdem bezeichnet (p)i := vi den i-ten Knoten
von p für 1 ≤ i ≤ n. Bei einem beschrifteten Pfad bezeichnet zudem p(vi) := ai die
Beschriftung ai von vi, sofern dies wohldefiniert ist.

Bei einem Baum T = (V,E, v0) mit Wurzel v0 werden im Folgenden die Kanten stets
von der Wurzel weg gerichtet, es handelt sich also um Out-Trees. Wie üblich wird ein
Knoten mit Ausgangsgrad 0 als Blatt bezeichnet. Außerdem lassen sich auch die Knoten
eines Baumes beschriften, das Ergebnis ist dann ein beschrifteter Baum T = (V,E, v0, λ),
wobei λ : V → Σ wieder die Beschriftung der Knoten mit Buchstaben aus einem Alpha-
bet Σ darstellt.

Mit dieser Betrachtungsweise gibt es in einem Baum für jeden Knoten v genau einen
Pfad mit Anfang v0 und Ende v. Daraus ergibt sich die Möglichkeit jeden Knoten im
Baum mit dem (eindeutigen) Pfad von der Wurzel zu diesem Knoten zu identifizieren.
Es gibt allerdings noch eine andere Möglichkeit der Betrachtung von Pfaden im Baum,
dabei spielt folgende Aussage eine wichtige Rolle:
Lemma: Zwei Knoten in einem Baum sind über höchstens einen Pfad miteinander ver-
bunden.

Beweis. Angenommen der Knoten u ist über zwei unterschiedliche Pfade p1 und p2 mit
einem (möglicherweise anderen) Knoten v verbunden. Sei pu der (eindeutige) Pfad, der
an der Wurzel anfängt und in u endet. Das Verknüpfen von pu mit p1 und mit p2 liefert
zwei unterschiedliche Pfade, die an der Wurzel anfangen und an v enden. Dies ist ein
Widerspruch.

Dieses Lemma rechtfertigt also eine alternative Betrachtungsweise für Pfade in Bäumen.
Ein Pfad p = v1 → v2 → · · · → vn im Baum T = (V,E, v0) lässt sich auch als partielle
Funktion über den Knoten betrachten. Diese partielle Funktion ist genau auf den Knoten
definiert, über die der Pfad verläuft. Da es keinen anderen Pfad mit v1 als Anfang und
vn als Ende in G geben kann, beschreibt eine solche partielle Funktion also auch genau
den Pfad p. Formal ausgedrückt wird p also mit der partiellen Funktion

p : V →p {⊤}
v 7→

{
⊤ falls v = vi für ein i ∈ {1, 2, . . . , n}

identifiziert. Auch ein beschrifteter Pfade p = v1/a1 → v2/a2 → · · · → vn/an über dem
Alphabet Σ lässt sich so interpretieren. p wird dann als partielle Funktion

p : V →p Σ

v 7→
{

ai falls v = vi für ein i ∈ {1, 2, . . . , n}

aufgefasst. Man beachte, dass dies konsistent mit der oben eingeführten Schreibweise
p(v) für die Beschriftung eines Knotens v ist. Tatsächlich macht diese Betrachtung keinen

6

1.1 Grundlagen

Unterschied zwischen einem Pfad und einem beschrifteten Pfad über dem einelementigen
Alphabet {⊤}. Es ist daher sinnvoll, diese Unterscheidung insgesamt fallen zu lassen.

1.1.4 Turing-Maschinen und Komplexitätsklassen
Der Begriff der Turing-Maschine ist in der Informatik von so zentraler Bedeutung, dass er
an dieser Stelle wohl nicht wiederholt werden muss. Bekanntermaßen unterscheidet man
zwischen deterministischen und nichtdeterministischen Turing-Maschinen. Erstere ha-
ben für jede Eingabe nur einen möglichen Berechnungspfad, der diese Eingabe entweder
akzeptiert oder eben nicht akzeptiert, und letztere akzeptieren ihre Eingabe, wenn min-
destens einer ihrer Berechnungspfade sie akzeptiert. Um auch Turing-Maschinen mit sub-
linearem Platzverbrauch untersuchen zu können, wird im Folgenden von einem Turing-
Maschinen-Modell mit speziellem Eingabe-Band ausgegangen. Die Turing-Maschine be-
sitzt für dieses Band lediglich einen in beide Richtungen bewegbaren Lesekopf, sie kann
den Inhalt des Bandes aber nicht modifizieren.

Bei der Diskussion des Zeit- oder Platzbedarfs von Turing-Maschinen ist in der Regel
nur das asymptotische Verhalten interessant. Wichtigstes Hilfsmittel dabei sind jene
Symbole, für die Edmund Landau namensgebend war. Für diese Arbeit ist nur O über
den nicht-negativen Zahlen von Bedeutung: Seien f, g : {0, 1, . . . } → {0, 1, . . . } zwei
Funktionen. Dann liegt f in O(g), falls es eine reelle Konstante c > 0 und eine nicht-
negative Zahl n0 ∈ {0, 1, . . . } gibt, sodass f(n) ≤ c · g(n) für alle n > n0 gilt.

Der Platzbedarf einer Turing-Maschine wird durch eine Funktion s : {0, 1, . . . } →
{0, 1, . . . } beschränkt, wenn alle Berechnungspfade auf jeder Eingabe der Länge n höchs-
tens s(n) Arbeitsfelder belegen. Der Platzbedarf einer Turing-Maschine ist logarithmisch
beschränkt, wenn ihr Platzbedarf durch eine Funktion s mit s ∈ O(logn) beschränkt
wird. Die Menge NL ist die Menge aller Entscheidungsprobleme, die durch eine im
Platzbedarf logarithmisch beschränkte nichtdeterministische Turing-Maschine entschie-
den werden können. Als nichtdeterministische Platzklasse ist NL bekanntermaßen unter
Komplement abgeschlossen [6, 15]. Um die Zugehörigkeit eines Entscheidungsproblems
zu NL zu zeigen ist es also ausreichend einen nichtdeterministischen Algorithmus an-
zugeben, der zu einer logarithmisch platzbeschränkten nichtdeterministischen Turing-
Maschine führt, bei der genau dann mindestens ein Berechnungspfad „nein“ ausgibt,
wenn dies auch die Antwort auf das Entscheidungsproblem unter der selben Eingabe ist.
Dieses Vorgehen findet in Kapitel 3 Anwendung.

1.1.5 Ordnungen und Ordnungstypen
Es gibt eine Vielzahl an verschiedenen Ausprägungen einer mathematischen Ordnung.
Oft kommt es auch vor, dass für die selbe Ausprägung unterschiedliche Namen üblich
sind. Dieser Unterabschnitt soll eine einheitliche Sprechweise für den Rest der Arbeit
festlegen. Dabei treten viele bekannte, aber auch einige weniger bekannte Konzepte im
Umfeld von Ordnungen auf. Am Anfang stehen zunächst einige einfache Definitionen.
Definition (Binäre Relation): Sei P eine Menge. Eine Teilmenge R ⊆ P × P heißt
binäre Relation über P .

7

1 Einführung

Konvention: Wie allgemein üblich wird im Folgenden bei einer binären Relation R
für (p, p′) ∈ R auch p R p′ und für (p, p′) ̸∈ R auch p ̸R p′ geschrieben. Wie eingangs
erwähnt, erinnert dies auch an die Schreibweise a·b für Verknüpfungen. Bei Unklarheiten
ergibt sich jedoch aus dem Kontext, ob eine Relation oder eine Verknüpfung gemeint ist.
Definition (transitiv, reflexiv, antisymmetrisch, total): Eine binäre Relation R über P
heißt

• transitiv, falls ∀p, q, r ∈ P : p R q und q R r =⇒ p R r gilt,
• reflexiv, falls ∀p ∈ P : p R p gilt,
• irreflexiv, falls ∀p ∈ P : p ̸R p gilt,
• symmetrisch, falls ∀p, q ∈ P : p R q =⇒ q R p gilt,
• antisymmetrisch, falls ∀p, q ∈ P : p R q und q R p =⇒ p = q gilt und
• total, falls ∀p, q ∈ P : p R q oder q R p gilt.

Definition (partielle, lineare, strenge Ordnung, geordnete Menge): Eine transitive, re-
flexive und antisymmetrische binäre Relation heißt partielle Ordnung oder Halbordnung.
Eine totale partielle Ordnung heißt lineare Ordnung oder Totalordnung.
Eine transitive, irreflexive und antisymmetrische binäre Relation heißt strenge Ordnung
oder Striktordnung.
Ist R eine partielle Ordnung über P , so heißt (P,R) partiell geordnete Menge. Ist R eine
lineare Ordnung über P , so heißt (P,R) linear geordnete Menge.
Beispiel: ≤ ist eine lineare Ordnung über den natürlichen Zahlen.

Aus jeder partiellen Ordnung erhält man durch Entfernen der reflexiven Elemente eine
strenge Ordnung (wie man sich leicht überlegt).
Konvention: Für partielle (und damit auch lineare) Ordnungen wird oft ≤ geschrieben.
Dabei muss es sich nicht unbedingt um die natürliche ≤-Relation auf den reellen Zahlen
oder einer ihrer Teilmengen handeln. Die zugehörige strenge Ordnung ist dann <. Im
Zweifel ergibt sich aus dem Zusammenhang, welche Ordnung gemeint ist – die auf den
reellen Zahlen oder eine andere.
Im üblichen Sinne wird im Folgenden auch ≥ und > geschrieben.

Als nächste soll eine Konstruktion auf geordneten Mengen eingeführt werden, die sich
im weiteren Verlauf als nützlich herausstellen wird. Eine partiell oder linear geordnete
Menge wird dabei um ein kleinstes oder ein größtes Element ergänzt.
Definition (Ergänzung um ein kleinstes oder ein größtes Element): Sei (P,≤) eine par-
tiell oder linear geordnete Menge. Definiere†

P−∞ := P + {−∞} P−∞ × P−∞ ⊇ ≤−∞ := ≤ ∪ {−∞} × P−∞

P+∞ := P + {+∞} P+∞ × P+∞ ⊇ ≤+∞ := ≤ ∪ P+∞ × {+∞}
P+∞
−∞ := P + {−∞,+∞} P+∞

−∞ × P+∞
−∞ ⊇ ≤+∞

−∞ := ≤ ∪ {−∞} × P+∞
−∞ ∪ P+∞

−∞ × {+∞}

Man beachte, dass ≤−∞, ≤+∞ und ≤+∞
−∞ jeweils wieder lineare Ordnungen sind, falls ≤

eine lineare Ordnung war.
†Tatsächlich handelt es sich hier um Summen von Ordnungstypen, die weiter unten eingeführt werden.

8

1.1 Grundlagen

Mit dem Begriff der Ordnung sind zwei weitere Begriffe eng verbunden: das Minimum
und das Maximum.
Definition (Minimum, Maximum): Sei (P,≤P) eine partiell geordnete Menge und sei
Q ⊆ P eine beliebige Teilmenge von P .
Gibt es ein Element q̌ ∈ Q, sodass q̌ ≤P q′ für alle Element q′ ∈ Q gilt, so heißt
q̌ Minimum von Q bezüglich ≤P , geschrieben als min≤P Q = q̌. Gibt es kein solches
Element ist min≤P Q undefiniert.
Gibt es ein Element q̂ ∈ Q, sodass q′ ≤P q̂ für alle Elemente q′ ∈ Q gilt, so heißt
q̂ Maximum von Q bezüglich ≤P , geschrieben als max≤P Q = q̂. Gibt es kein solches
Element ist max≤Q undefiniert.
Aufgrund der Antisymmetrie partieller Ordnungen sind Minimum und Maximum ein-
deutig, falls sie existieren. Außerdem hat jede endliche linear geordnete Menge stets ein
Minimum und ein Maximum.
Konvention: Ist die verwendete partielle Ordnung aus dem Zusammenhang klar, wird
die Schreibweise zu minQ bzw maxQ vereinfacht. Ist minQ oder maxQ undefiniert, so
wird ähnlich wie bei partiellen Funktionen maxQ = ⊥ bzw minQ = ⊥ geschrieben.

Neben den verschiedenen Ordnungen haben auch andere besondere Relationen einen
speziellen Namen. Der vielleicht bekannteste Fall einer solchen ist die Äquivalenzrelation.
Definition (Äquivalenzrelation): Eine transitive, reflexive und symmetrische binäre Re-
lation heißt Äquivalenzrelation.

Seien (P1,≤1) und (P2,≤2) zwei partiell geordnete Mengen. Sie haben den selben
Ordnungstyp, wenn es eine ordnungserhaltende Bijektion zwischen ihnen gibt, d. h. wenn
es eine Bijektion ι : P1 → P2 mit p ≤1 p′ ⇐⇒ ι(p) ≤2 ι(p′) für alle p, p′ ∈ P1 gibt.
Der Ordnungstyp einer geordneten Menge (P,≤) bildet (wie man leicht nachrechnet)
eine Klasse einer Äquivalenzrelation, bezeichnet als ord (P,≤). Einige Ordnungstypen
besitzen besondere Bezeichnungen:
Definition: ω bezeichnet den Ordnungstyp von (N,≤), ω∗ den von (−N,≤)†. Natürliche
Zahlen n ∈ N bezeichnen den Ordnungstyp von ({1, 2, . . . , n},≤).

Der Ordnungstyp einer linear geordneten Menge heißt linearer Ordnungstyp. Man
überlegt sich leicht, dass diese Definition unabhängig vom gewählten Repräsentanten
und damit wohldefiniert ist.
Konvention: Für einen Ordnungstypen µ bezeichnet ≤µ im Folgenden die zugehörige
Ordnung. Wird diese Notation verwendet, ist die Aussage von der Wahl des Repräsen-
tanten von µ unabhängig oder der gewählte Repräsentant ergibt sich aus dem Kontext.
Bei den oben genannten Ordnungstypen mit besonderen Bezeichnungen handelt es sich
in der Regel dann um den Repräsentanten, über den sie dort definiert wurden.

Es folgen einige Konstruktionen mit partiell geordneten Mengen und ihren Ordnungs-
typen. Die erste dieser Konstruktionen wird auf eine einzelne partiell geordnete Menge
angewendet.

†Es ist N = {1, 2, . . . } und −N = {−1,−2, . . . }; die natürlichen Zahlen ab 1 zu definieren, wird sich
im Folgenden als nützlich erweisen.

9

1 Einführung

Definition (Duale Ordnung, dualer Ordnungstyp): Sei (P,≤P) eine partiell geordnete
Menge. Definiere −P := {−p : p ∈ P} als disjunkte Kopie von P . Definiere die duale
partielle Ordnung ≤∗

P := {(−p1,−p2) : p2 ≤P p1}. Sei µ = ord (P,≤P) der Ordnungstyp
der partiell geordneten Menge, dann bezeichnet µ∗ := ord (−P,≤∗

P) den dualen Ord-
nungstyp zu µ.
Wieder gilt: Der duale Ordnungstyp ist vom gewählten Repräsentanten unabhängig.
Dies zeigt eine einfache Rechnung. Ebenso durch einfache Rechnung zeigt sich, dass das
Bilden des dualen Ordnungstyps eine Involution ist, also dass (µ∗)∗ = µ gilt.
Beispiel: ω∗ ist der duale Ordnungstyp zu ω.
Lemma 2: Sei n ∈ N eine beliebige natürliche Zahl. Betrachtet man n als Ordnungstyp,
so gilt: n∗ = n.

Beweis. Definiere die offensichtlich bijektive Abbildung:

ι : {1, 2, . . . , n} → {−1,−2, . . . ,−n}
i 7→ i− n− 1

Ist≤ die gebräuchliche „kleiner gleich“-Relation auf den natürlichen Zahlen, so entspricht
≤∗ der Restriktion der gebräuchlichen „kleiner gleich“-Relation auf den negativen Teil
der ganzen Zahlen. Es ist also i ≤ j ⇐⇒ ι(i) ≤ ι(j) zu zeigen, dies gilt aber trivialerweise.

Die nächsten beiden Konstruktionen kombinieren zwei partiell geordnete Menge zu
einer neuen.
Definition (Summe, Produkt partieller Ordnungen): Seien (P1,≤1) und (P2,≤2) zwei
partiell geordnete Mengen. Betrachte die beiden Mengen P1 und P2 als disjunkt und
definiere ≤1+2⊆ (P1 + P2)× (P1 + P2) und ≤1∗2⊆ (P1 × P2)× (P1 × P2) als

≤1+2 := ≤1 ∪ ≤2 ∪ (P1 × P2) und
≤1∗2 := {(p1, p2, p′1, p′2) : p2 <2 p

′
2} ∪ {(p1, p2, p′1, p′2) : p2 = p′2 und p1 ≤1 p

′
1}.

(P1+P2,≤1+2) ist die Summe von (P1,≤1) und (P2,≤2) und (P1×P2,≤1∗2) das Produkt.
In der Summe sind die Elemente von P1 also alle kleiner als die von P2, wobei P1 und
P2 selbst entsprechend der jeweiligen partiellen Ordnung geordnet sind. Beim Produkt
wird zuerst entsprechend ≤2 verglichen und bei Gleichheit entsprechend ≤1. Die Summe
und das Produkt linear geordneter Mengen sind selbst wieder linear geordnete Mengen;
dies ergibt sich direkt aus der Definition.

Die Verknüpfung zweier partiell geordneter Mengen zu einer Summe oder einem Pro-
dukt überträgt sich auf die entsprechenden Ordnungstypen, da das Ergebnis unabhängig
vom gewählten Repräsentanten ist. Das fasst das folgende Lemma zusammen, dessen Be-
weis hier nur skizziert werden soll:†

†Mehr Details finden sich zum Beispiel in [13].

10

1.1 Grundlagen

Lemma: Seien (P1,≤P1) und (Q1,≤Q1) sowie (P2,≤P2) und (Q2,≤Q2) je zwei partiell
geordnete Mengen vom selben Ordnungstyp. Seien ferner (P1 + P2,≤P,1+2) die Summe
von (P1,≤P1) und (P2,≤P2) und (Q1 + Q2,≤Q,1+2) die von (Q1,≤Q1) und (Q2,≤Q2).
Die analogen Produkte seien (P1 × P2,≤P,1∗2) und (Q1 ×Q2,≤Q,1∗2)
Dann gilt:

ord (P1 + P2,≤P,1+2) = ord (Q1 +Q2,≤Q,1+2) und
ord (P1 × P2,≤P,1∗2) = ord (Q1 ×Q2,≤Q,1∗2) .

Beweisskizze. Sei ι1 : P1 → Q1 eine der ordnungserhaltenden Bijektionen zwischen P1

und Q1, sei ι2 : P2 → Q2 entsprechend eine der ordnungserhaltenden Bijektionen zwi-
schen P2 und Q2. Definiere die ordnungserhaltende Bijektion

ι1+2 : P1 + P2 → Q1 +Q2

s 7→
{

ι1(s) falls p ∈ P1

ι2(s) falls p ∈ P2.

Dass es sich bei ι1+2 tatsächlich um die gewünschte ordnungserhaltende Bijketion han-
delt, sieht man leicht durch Rechnung ein.

Für die Aussage über Produkte definiere

ι1∗2 : S1 × S2 → T1 × T2

(s1, s2) 7→ (ι1(s1), ι2(s2)) .

Auch hier zeigt sich durch eine Rechnung, dass es sich um eine ordnungserhaltende
Bijketion handelt.

Mit diesen Erkenntnissen lässt sich die Schreibweise vereinfachen. Für zwei Ordnungs-
typen µ = ord (P,≤P) und ν = ord (Q,≤Q) ist µ + ν der von den Repräsentan-
ten unabhängige Ordnungstyp ord (P +Q,≤P+Q). Analog ist µ · ν der Ordnungstyp
ord (P ×Q,≤P∗Q). Um auch komplexere Ausdrücke aus Summen und Produkten von
Ordnungstypen schreiben zu können, wird – wie üblich – vereinbart, dass Produkte hö-
here Präzedenz haben als Summen. Außerdem können Klammer weggelassen werden, da
die Operationen assoziativ sind, wie man durch einfache Rechnung leicht einsieht.†

Neben der Assoziativität von Summe und Produkt gelten auch einige Rechenregeln,
insbesondere wenn man natürliche Zahlen als Ordnungstypen betrachtet.
Lemma 3: Seien n und m natürliche Zahlen. Dann gilt:

ord ({1, 2, . . . , n},≤)+ ord ({1, 2, . . . ,m},≤) = ord ({1, 2, . . . , n+m},≤)
ord ({1, 2, . . . , n},≤) · ord ({1, 2, . . . ,m},≤) = ord ({1, 2, . . . , n ·m},≤)

Beweis. Die Aussagen sind eine direkte Folge aus der Eindeutigkeit endlicher linearer
Ordnungen (vgl. dazu [13, S. 17]).

†Mehr zur Assoziativität von Summe und Produkt findet sich wieder z. B. in [13]

11

1 Einführung

1.1.6 Wörter

Sei Σ ein beliebiges Alphabet. Wie bereits erwähnt bezeichnet Σ∗ die Menge aller end-
lichen Wörter über Σ. Mit Σ+ soll die Menge aller nicht-leeren Wörter auf Σ∗ be-
zeichnet werden. Ein Wort w ∈ Σ+ ist damit eine endliche Sequenz aus Buchstaben
w = a1a2 . . . an mit ai ∈ Σ für i = 1, 2, . . . , n. w lässt sich allerdings auch als Abbildung
w : {1, 2, . . . , n} → Σ von Positionen im Wort in das Alphabet betrachten. Für endli-
che Wörter ist die Menge der Positionen ebenfalls endlich. Tatsächlich ist diese Menge
zusammen mit der ≤-Ordnung auf den natürlichen Zahlen eine linear geordnete Menge
vom Ordnungstyp n, wobei n = |w| ∈ N die Länge des Wortes w ist.

Mit dieser Betrachtungsweise ist es möglich den Begriff des Wortes auf eine unendliche
linear geordnete Menge zu erweitern:
Definition (Verallgemeinertes Wort): Sei (P,≤) eine linear geordnete Menge. Eine Ab-
bildung w : P → Σ heißt (verallgemeinertes) Wort über Σ vom Ordnungstyp ord (P,≤).
Das Bild von w heißt auch effektives Alphabet von w, geschrieben als α(w) := w(P). Die
Menge aller verallgemeinerten Wörter über Σ wird mit ΣLO bezeichnet.
Konvention: Im Folgenden wird bei Wörtern nicht mehr zwischen linear geordneten
Mengen vom selben Ordnungstyp unterschieden, d. h. für zwei linear geordnete Mengen
(P,≤P) und (Q,≤Q), für die es eine ordnungserhaltende Bijektion ι : P → Q gibt, wird
ein Wort w : Q→ Σ als gleich zum Wort w′ : P → Σ mit p 7→ w(ι(p)) betrachtet.
Beispiel:

w : N→ {a, b}

i 7→
{

a falls i gerade
b sonst

w ist ein verallgemeinertes Wort vom Ordnungstyp ω. Anschaulich besteht w aus einer
nach rechts unendlich langen Abfolge von ab.

Wie endliche Wörter lassen sich auch verallgemeinerte Wörter verknüpfen.
Definition (Konkatenation verallgemeinerter Wörter): Sei u ein Wort über Σ vom Ord-
nungstyp ord (P,≤P) und v eines vom Ordnungstyp ord (Q,≤Q). Dann ist uv ein Wort
über Σ vom Ordnungstyp ord (P,≤P)+ ord (Q,≤Q) und definiert über

uv : P +Q→ Σ

i 7→
{

u(i) falls i ∈ P
v(i) falls i ∈ Q

Die Assoziativität der Summe von Ordnungstypen überträgt sich direkt auf die Konka-
tenation verallgemeinerter Wörter, d. h. es gilt (uv)w = u(vw). Außerdem stimmt die
Konkatenation zweier endlicher Wörter betrachtet als verallgemeinerte Wörter mit der
herkömmlichen Konkatenation überein, wie das folgende Lemma festhält. Auf einen for-
mellen Beweis der Aussage soll hier allerdings verzichtet werden, da er sich sehr leicht
ergibt.

12

1.2 π-Terme und Gleichungen

Lemma 4: Seien w1 = a1a2 . . . an und w2 = b1b2 . . . bm zwei endliche Wörter über dem
Alphabet Σ. Sei w′ = a1a2 . . . anb1b2 . . . bm die herkömmliche Konkatenation von w1 und
w2. Dann gilt:

w1w2 = w′

Verknüpft man zwei verallgemeinerte Wörter w1 und w2, so ist das effektive Alphabet
dieses Wortes die Vereinigung der effektiven Alphabete der beiden Ursprungswörter.

Eine weitere Form der Verknüpfung verallgemeinerter Wörter liefert die folgende De-
finition:
Definition (Potenz verallgemeinerter Wörter): Sei w ein Wort über Σ vom Ordnungstyp
ord (P,≤P) und sei µ = ord (Q,≤Q) ein linearer Ordnungstyp. Dann ist wµ ein Wort
über Σ vom Ordnungstyp ord (P,≤P) ·µ und definiert über

wµ : P ×Q→ Σ

(i, q) 7→ w(i)

Analog wie bei der Konkatenation überträgt sich bei der Potenz die Assoziativität des
Produkts von Ordnungstypen, d. h. es gilt (wµ)ν = w(µ·ν). Das effektive Alphabet eines
Wortes ändert sich nach dieser Definition durch Potenzierung nicht.

Zwischen Konkatenation und Potenz verallgemeinerter Wörter besteht ein Zusammen-
hang ähnlich dem bei endlichen Wörtern:
Lemma 5: Sei w ein (verallgemeinertes) Wort über dem Alphabet Σ und n eine natür-
liche Zahl. Es ist

wn = ww . . . w︸ ︷︷ ︸
n mal

.

Insbesondere ist wn ein endliches Wort, falls w endlich ist.
Auch der Beweis dieses Lemmas ergibt sich sehr leicht und soll daher hier nicht explizit
aufgeführt werden.

1.2 π-Terme und Gleichungen
Bisher wurden zumeist nur weitgehend bekannte Begriffe und Konzepte behandelt. Auch
in diesem Abschnitt wird sich viel Vertrautes finden lassen. Allerdings befinden sich
darunter auch Definition und erste Erkenntnisse, die für das Weitere von so zentraler
Bedeutung sind, dass sie einen eigenen Abschnitt verdienen.

1.2.1 π-Terme
Beim Untersuchen von Halbgruppen spielen π-Terme oft eine wichtige Rolle, da sie Ele-
mente einer Halbgruppe und die zugehörigen Idempotenten gut beschreiben können. In
der Regel werden sie dabei allerdings nicht π-Terme, sondern ω-Terme genannt. Diese
Terminologie wird zwar auch im Titel dieser Arbeit verwendet, hat aber einen Nachteil:
Der Buchstabe ω wird nicht nur bei ω-Termen, sondern auch zur Beschreibung des Ord-
nungstyps der natürlichen Zahlen verwendet. Außerdem bezeichnet ω oft auch noch die

13

1 Einführung

Potenz aus Lemma 1. Aufgrund dieser Doppeldeutigkeit ist hier von nun an konsequent
von π-Termen die Rede†.

Doch worum genau handelt es sich bei einem π-Term nun? Am Anfang der Antwort
auf diese Frage steht die syntaktischen Definition eines π-Terms:
Definition (π-Term über Σ): Sei Σ ein beliebiges Alphabet. Ein π-Term über (dem
Alphabet) Σ ist folgendermaßen definiert:

1. Jeder Buchstabe a ∈ Σ ist ein π-Term über (dem Alphabet) Σ.
2. Sei w ein π-Term über Σ. Dann ist (w)π ein π-Term über Σ.
3. Seien u und v π-Terme über Σ. Dann ist (uv) ein π-Term über Σ

Konvention: Ist lediglich von einem π-Term statt von einem π-Term über Σ die Rede,
ergibt sich das Alphabet aus dem Kontext.
Konvention: Unnötige Klammern werden in π-Termen weggelassen, gemeint ist dann
die Rechtsfaktorisierung des Terms. Dabei hat eine π-Potenz höhere Präzedenz als die
Konkatenation.
Beispiel: xyπz = x((y)π)z) ist ein π-Term über {x, y, z}.

Man beachte, dass nach der Definition eines π-Terms insbesondere jedes endliche, nicht-
leere Wort w ∈ Σ+ ein π-Term ist! Tatsächlich handelt es sich bei π-Termen im Wesentli-
chen um Wörter mit der zusätzlichen Möglichkeit von π-Exponenten. Als solche besteht
für sie die Möglichkeit sie graphisch über Syntax-Bäume darzustellen:
Definition (Syntax-Baum eines π-Terms): Der Syntax-Baum G(w) eines π-Terms w über
Σ ist ein beschrifteter Baum, dessen Knoten linear geordnet sind. Er ist rekursiv definiert:

1. Ist der π-Term von der Form w = a ∈ Σ, also ein π-Term, der nur aus ei-
nem einzelnen Buchstaben besteht, so ist der Syntax-Baum definiert als G(w) :=
({v0}, ∅, v0, λ) mit λ : {v0} → Σ + {π, ·} und λ(v) := a. Die zugehörige Ordnung
der Knoten ist ≤ := {(v0, v0)}.

2. Für einen π-Term von der Form w = (x)π mit G(x) =: (Vx, Ex, v0,x, λx) ist der
Syntax-Baum durch G(w) := (V,Ex ∪ {(v0,w, v0,x)}, v0,w, λ) definiert, wobei V :=
Vx + {v0,w} und λ die Beschriftung λx um λ(v0,w) := π erweitert. Sei ≤x die
Ordnung der Knoten von G(x). Die Ordnung der Knoten von G(w) ist dann ≤ :=
≤x ∪ {v0,w} × V .
Graphisch:

π

G(x)

3. Für einen π-Term von der Form w = xy mit G(x) := (Vx, Ex, v0,x, λx) und G(y) :=
(Vy, Ey, v0,y, λy) ist der Syntax-Baum durch G(w) := (Vx + Vy + {v0,w}, Ex +
Ey + {(v0,w, v0,x), (v0,w, v0,y)}, v0,w, λ) definiert. λ vereinigt dabei die Beschriftun-
gen λx und λy und beschriftet v0,w mit ·. Die zugehörige Ordnung ≤ der Kno-

†Dies folgt der Notation in [11].

14

1.2 π-Terme und Gleichungen

ten bildet die Summe der Ordnungen von G(x) und G(y) vereinigt mit {v0,w} ×
(Vx + Vy + {v0,w}).
Graphisch:

π

G(x) G(y)

Die Knoten mit Beschriftung π heißen π-Knoten, die mit Beschriftung · Konkatenati-
onsknoten.
Man beachte, dass nach dieser Definition jeder Knoten aus dem Syntax-Baum eines
π-Terms die Wurzel des Symtax-Baumes einen anderen π-Terms bildet; dieser kommt
im ursprünglichen π-Term vor. Außerdem verifiziere man durch Nachrechnen, dass die
Ordnung der Knoten eines π-Terms tatsächlich eine lineare Ordnung ist.
Beispiel: xyπz hat folgenden Syntax-Baum:

·

x ·

π

y

z

Bisher sind π-Terme rein syntaktisch definiert. Tatsächlich können die π-Exponenten
als Platzhalter betrachten werden, deren eigentliche Bedeutung durch einen beliebigen
Ordnungstyp interpretiert wird. Als Ergebnis dieses Vorgehens ergibt sich ein verallge-
meinertes Wort.
Definition (Interpretation eines π-Terms): Sei w ein π-Term über Σ und µ ein linearer
Ordnungstyp. Das zugehörige verallgemeinerte Wort JwKµ ist folgendermaßen definiert:

• Ist w = a ∈ Σ, so ist JwKµ = a.
• Ist w von der Form uπ, dann ist JwKµ := (JuKµ)µ.
• Ist w von der Form uv, dann ist JwKµ := JuKµJvKµ.

Ist w ein endliches Wort über Σ, so ist w nach Definition auch ein π-Term über Σ.
Für jeden linearen Ordnungstyp µ ist nach dieser Definition dann JwKµ = w. Tatsächlich
ersetzt der Ordnungstyp im π-Term genau die π-Exponenten. Außerdem ist zu erwähnen,
dass nach Lemma 5 und Lemma 4 JwKn für einen π-Term w über dem Alphabet Σ und
für jede natürliche Zahl n ein endliches Wort über Σ ist.

Die Ergänzung eines π-Terms um einen Ordnungstyp lässt sich in ähnlicher Weise
auf den Syntax-Baum übertragen. Sei dazu µ = ord (Q,≤Q) ein linearer Ordnungstyp.
Betrachte einen Pfad p im Syntax-Baum G(w) = (V,E, v0, λ) eines π-Terms w über Σ, der
an der Wurzel anfängt und an einem Blatt endet. p wird nun zu einem beschrifteten Pfad
in G(w) ergänzt. Dabei erhalten die π-Knoten eine Beschriftung aus Q und alle anderen
Knoten die feste Beschriftung ⊤. Zur Vereinfachung wird ein solcher beschrifteter Pfad

15

1 Einführung

als µ-Pfad bezeichnet, dazu wird auch die Unterscheidung von einzelnen Repräsentanten
des Ordnungstyps fallen gelassen. Alle µ-Pfade in G(w) bilden die Menge Pµ(w).

Die µ-Pfade im Syntax-Baum eines π-Terms lassen sich linear ordnen, dazu ist die
folgende Definition nützlich:
Definition: Sei w ein π-Term und µ ein linearer Ordnungstyp, seien außerdem p und p′

zwei µ-Pfade in G(w). Dann bezeichne δp(p
′) den ersten Knoten auf p, an dem sich p

von p′ unterscheidet.
Man beachte, dass δp(p

′) stets definiert ist.
Die eigentlich lineare Ordnung der µ-Pfade lautet dann wie folgt:

Definition: Seien p1 und p2 zwei µ-Pfade im Syntax-Baum G(w) = (V,E, v0, λ) eines
π-Terms w über Σ, wobei µ = ord (Q,≤Q) sei. Es ist p1 ≤µ,w p2 genau dann, wenn eine
der folgenden Bedingungen eintritt:

• Es ist p1 = p2.
• Für p1 ̸= p2 sei v1 = δp1(p2) und v2 = δp2(p1).

– Es ist v1 = v2 und p1(v1) ≤Q p2(v2).
– Es ist v1 < v2 (entsprechend der linearen Knotenordnung im Syntax-Baum).

Man beachte, dass µ-Pfade an Knoten, die keine π-Knoten sind, stets mit ⊤ beschriftet
sind und sich so an diesen Knoten durch die Beschriftung nicht von anderen µ-Pfaden
unterscheiden können. Gilt also v1 = v2, so muss dieser Knoten ein π-Knoten sein und
damit sind p1(v1) und p2(v2) aus Q. Andererseits haben π-Knoten nach Konstruktion nur
ein Kind, damit können v1 und v2, wenn sie unterschiedlich sind, nur Kinder eines Kon-
katenationsknotens sein. Schließlich zeigt einfaches Nachrechnen, dass ≤µ,w tatsächlich
eine lineare Ordnung ist.

Diese zunächst recht sperrig wirkende Definition der Ordnung der µ-Pfade ist in Wirk-
lichkeit eng verwandt mit dem Wort JwKµ:
Lemma 6: Sei w ein π-Term über Σ und µ = ord (S,≤S) ein linearer Ordnungstyp. Der
Ordnungstyp von JwKµ stimmt mit dem der µ-Pfade in G(w) überein.

Beweis. Sei ν = ord (T,≤T) der Ordnungstyp von JwKµ. Der Beweis der Aussage erfolgt
per Induktion über den Aufbau von w.

Ist w = a ∈ Σ ein einzelner Buchstabe, so ist ν = 1. In G(w) gibt es dann genau einen
Pfad, bestehend nur aus der Wurzel. Dieser bildet auch den einzigen µ-Pfad. Damit ist
ord (Pµ(w),≤µ,w) = 1 = ν.

Ist w = xy, so sei νx = ord (Tx,≤Tx) der Ordnungstyp von JxKµ und νy = ord (Ty,≤Ty)
der von JyKµ. Nach Definition ist JwKµ = JxKµJyKµ und damit ν = νx + νy bzw. T =
Tx + Ty und nach Induktion gibt es ordnungserhaltende Bijektionen σx : Pµ(x) → Tx

und σy : Pµ(y)→ Ty. Diese lassen sich zu einer ordnungserhaltenden Bijektion

σ : Pµ(w)→ T

p = r/⊤→ p′ 7→
{

σx(p
′) falls (p′)1 Knoten in G(x) ist

σy(p
′) falls (p′)1 Knoten in G(y) ist

erweitern. Da jeder µ-Pfad p in G(w) an der Wurzel r anfängt und diese hier ein Kon-
katenationsknoten ist, ist p(r) = ⊤. Der zweite Knoten kann nach Konstruktion des

16

1.2 π-Terme und Gleichungen

Syntax-Baumes dann nur entweder aus G(x) oder aus G(y) sein. Dies zeigt, dass σ
wohldefiniert und total ist. Außerdem ergibt sich die Umkehrfunktion σ−1 durch An-
wenden von σ−1

x für Elemente aus Tx bzw. σ−1
y für Elemente aus Ty und Erweitern des

entstandenen Pfades p um p(r) := ⊤, wobei r die Wurzel von G(w) sei. Um einzusehen,
dass σ ordnungserhaltend ist, seien p1, p2 ∈ Pµ(w) mit p1 ≤µ,w p2. Dafür gibt es drei
Möglichkeiten: Ist p1 = p2, so ist σ(p1) ≤T σ(p2) offensichtlich erfüllt, da ≤T reflexiv
ist. Ist p1 ̸= p2, so sei v1 = δp1(p2) und v2 = δp2(p1). v1 und v2 können nicht mit der
Wurzel von G(w) übereinstimmen, da beide Pfade dort gleich beschriftet sind. Liegen
v1 und v2 beide in G(x) oder beide in G(y), so überträgt sich die Ordnungserhaltung
von σx bzw. σy auf σ. Liegt einer in G(x) und einer in G(y), so kann es sich jeweils nur
um die Wurzel des entsprechenden Syntax-Baumes handeln, da sonst vorher bereits eine
Unterscheidung aufgetreten wäre. Aufgrund der Knotenordnung ist dann v1 die Wurzel
von G(x) und v2 die von G(y) (es muss v1 < v2 gelten, weil p1 ≤µ,w p2 und v1 ̸= v2
gilt). Damit wird p1 auf einen Wert aus Tx und p2 auf einen Wert aus Ty abgebildet.
Nach Definition der Summe von Ordnungstypen gilt dann σ(p1) ≤T σ(p2). Umgekehrt
gelte nun σ(p1) ≤T σ(p2) für zwei Pfade p1, p2 ∈ Pµ(w). Sind σ(p1) und σ(p2) beide aus
Tx oder beide aus Ty, so überträgt sich auch in dieser Richtung die Ordnungserhaltung
von σx bzw. σy. Ist eines aus Tx und eines aus Ty, muss nach Definition der Summe
von Ordnungstypen σ(p1) ∈ Tx und σ(p2) ∈ Ty gelten. Dann muss aber (p1)2 aus G(x)
und (p2)2 aus G(y) sein, genauer gesagt muss es sich um die jeweiligen Wurzeln der
Syntax-Bäume handeln. Nach Definition ist dann (p1)2 < (p2)2 und damit p1 ≤µ,w p2.

Ist w = (x)π, so sei νx = ord (Tx,≤Tx) der Ordnungstyp von JxKµ. Nach Definition
ist JwKµ = (JxKµ)µ und ν = νx · µ bzw. T = Tx × S und nach Induktion gibt es eine
ordnungserhaltende Bijektion σx : Pµ(x)→ Tx. Definiere:

σ : Pµ(w)→ Tx × S

p = r/s→ p′ 7→ (σx(p
′), s)

Man beachte, dass ein µ-Pfad in G(w) an der Wurzel r beginnt und dort mit einem
Element s aus S beschriftet ist. Daher ist die Definition von σ wohldefiniert und total.
Zur Umkehrung lässt sich σ−1

x auf das erste Element des Tupels anwenden und der
entstehende Pfad um die Wurzel r mit dem zweiten Element als Beschriftung ergänzen.
σ ist also tatsächlich eine Bijektion. Außerdem ist σ ordnungserhaltend: Seien p1 :=
r/s1 → p′1 und p2 := r/s2 → p′2 zwei beliebige µ-Pfade in G(w) mit p1 ≤µ,w p2. Es gilt
zwei Fälle zu unterscheiden: Gilt s1 = s2, so muss auch p′1 ≤µ,x p′2 gelten. Aufgrund
der Ordnungserhaltung von σx und der Definition des Produkts von Ordnungstypen
gilt dann σ(p1) = (σx(p

′
1), s1) ≤T (σx(p

′
2), s1) = σ(p2). Gilt andererseits s1 <S s2, so ist

σ(p1) ≤T σ(p2) entsprechend der Definition von ν = νx ·µ bzw. ≤T . Für die Rückrichtung
seien p1 := r/s1 → p′1 und p2 := r/s2 → p′2 wieder zwei beliebige µ-Pfade in G(w), aber
diesmal mit (σx(p

′
1), s1) = σ(p1) ≤T σ(p2) = (σx(p

′
2), s2). Nach Definition von ≤T ist

s1 = s2 und σx(p
′
1) ≤Tx σx(p

′
2) oder s1 <S s2. Im ersten Fall gilt p′1 ≤µ,x p′2 und

wegen s1 = s2 somit p1 ≤µ,w p2. Im zweiten Fall unterscheiden sich die beiden Pfade p1
und p2 bereits durch die Beschriftung an der Wurzel von G(w) und nach Definition gilt
p1 ≤µ,w p2.

17

1 Einführung

Dies Positionen eines Wortes JwKµ lassen sich also mit µ-Pfaden in G(w) identifizieren.
Diese Anschauung wird sich im Folgenden als nützlich erweisen.

1.2.2 Gleichungen

Gleichungen erlauben es Aussagen in kompakter Form auszudrücken. Dieser Unterab-
schnitt wird eine besondere Art von Gleichungen einführen, nämlich Gleichungen über
Halbgruppen oder über Mengen von Halbgruppen. Tatsächlich ist es möglich diese auch
über unendlichen Halbgruppen zu betrachten, der Einfachheit halber sollen hier aber
nur solche über endlichen Halbgruppen betrachtet werden.

Zunächst soll formal definiert werden, was unter eine Gleichung über Halbgruppen zu
verstehen ist:
Definition (Gleichung über einer Halbgruppe, Belegung): Seien w1 und w2 zwei π-Terme
über dem selben Alphabet Σ = {x1, x2, . . . , xn}. Dann heißt w1 = w2 Gleichung und die
Buchstaben aus Σ auch Variablen. Außerdem heißt eine Abbildung σ : Σ→ S von Σ in
die Halbgruppe S Belegung der Variablen.
Konvention: Eine Belegung σ : Σ→ S lässt sich zur Abbildung

σ′ : Σ+ → S

xi1xi2 . . . xim 7→ σ(xi1)σ(xi2) . . . σ(xim)

erweitern. Im Folgenden wird eine Belegung σ : Σ → S daher stets auch als Abbildung
σ : Σ+ → S oder bei Monoiden als σ : Σ∗ →M betrachtet.

Die Verwendung von Gleichungen wird erst sinnvoll, wenn ihnen ein Wahrheitswert zu-
geordnet werden kann. Für endliche Halbgruppen erfolgt dies in der nächsten Definition
und für Mengen endlicher Halbgruppen in der darauf folgenden.
Definition (Wahrheitswert einer Gleichung 1): Sei w1 = w2 eine Gleichung mit Varia-
blen aus Σ und sei σ : Σ → S eine Belegung dieser Variablen mit Werten aus einer
endlichen Halbgruppe S.
Die Gleichung w1 = w2 gilt in S unter der Belegung σ, falls σ(Jw1KS!) = σ(Jw2KS!) ist.
Die Gleichung w1 = w2 gilt in S, falls sie unter jeder Belegung σ : Σ→ S gilt. Ansonsten
gilt die Gleichung in S nicht.
Definition (Wahrheitswert einer Gleichung 2): Sei N eine Menge von endlichen Halb-
gruppen. Eine Gleichung w1 = w2 gilt in N , falls sie in jeder Halbgruppe aus N gilt.

Um die Gültigkeit einer Gleichung zu beweisen kann das folgende Lemma sehr nützlich
sein:
Lemma 7: Sie w ein π-Term über dem Alphabet Σ von Variablen und sei σ : Σ → S
eine Belegung dieser Variablen mit Werten aus einer endlichen Halbgruppe S. Sei c ∈ N
eine beliebige natürliche Zahl.
Dann gilt:

σ(JwKS!) = σ(JwKc·(S!))
18

1.3 Ranker und die Trotter-Weil-Hierarchie

Beweis. Der Beweis erfolgt durch Induktion über den Aufbau von w. Ist w = x ∈ Σ
ein einzelner Buchstabe, gilt die Aussage direkt. Ist w = w1w2, so ist nach Induk-
tion σ(JwiKS!) = σ(JwiKc·(S!)) für i ∈ {1, 2} und damit σ(JwKS!) = σ(Jw1w2KS!) =
σ(Jw1KS!Jw2KS!) = σ(Jw1KS!)σ(Jw2KS!) = σ(Jw1Kc·(S!))σ(Jw2Kc·(S!)) = σ(JwKc·(S!)). Ist
schließlich w = (w′)π, so ist nach Induktion σ(Jw′KS!) = σ(Jw′Kc·(S!)). Also ist:

σ(JwKS!) = σ
(
(Jw′KS!)S!) (Definition)

= σ
(Jw′Kc·(S!))S! (Lemma 5, Homomorphismus)

= σ
(Jw′Kc·(S!))c·(S!) (Wahl von S!)

= σ
(
(Jw′Kc·(S!))c·(S!)) (Lemma 5, Homomorphismus)

= σ(JwKc·(S!))

Die Definition der Wahrheitswerte von Gleichungen erlaubt es nun das Wortproblem
für π-Terme, das zentrale Element der Betrachtungen dieser Arbeit zu definieren.
Definition (Das Wortproblem für π-Terme): Das Wortproblem für π-Terme einer Menge
N von endlichen Halbgruppen ist das folgende Entscheidungsproblem:

Eingabe: Zwei π-Terme w1 und w2 über dem selben Alphabet.
Frage: Gilt die Gleichung w1 = w2 in N?

1.3 Ranker und die Trotter-Weil-Hierarchie

1.3.1 Ranker

In [14] führen Schwentick, Thérien, und Vollmer sogenannte turtle programs als techni-
sches Hilfsmittel ein, weisen aber auch darauf hin, dass sich diese als nützliches Werkzeug
in einem weiteren Umfeld erweisen könnten. Tatsächlich griffen Weis und Immerman in
[19] das Konzept unter dem Namen ranker auf. Ebendort finden sich Ansätze zu conden-
sed rankers, wie sie in [8] genannt werden. Kondensierte Ranker haben auch Verbindun-
gen zur eindeutigen Intervall-Temporallogik von Lodaya, Pandya und Shah [9]. Durch
diese Verbindungen sind Ranker nützliche bei der Untersuchung von zwei Variablenlo-
gik, wie im nächsten Unterabschnitt ausgeführt ist. Dieser Unterabschnitt führt Ranker
zunächst im Zusammenhang mit den in Unterabschnitt 1.1.6 besprochenen verallgemei-
nerten Wörtern ein.
Definition (Ranker): Sei Σ ein beliebiges Alphabet. Definiere XΣ := {Xa : a ∈ Σ},
YΣ = {Ya : a ∈ Σ} und ZΣ = XΣ ∪ YΣ. Ein nicht-leeres endliches Wort aus Z+

Σ heißt
Ranker über Σ.
Sei w ein (verallgemeinertes) Wort vom Ordnungstyp ord (P,≤) über Σ. Definiere für

19

1 Einführung

a ∈ Σ die partiellen Abbildungen:

wXa : P−∞ →p P

p 7→ min≤−∞{p′ : w(p′) = a und p <−∞ p′}

wYa : P+∞ →p P

p 7→ max≤+∞{p′ : w(p′) = a und p′ <+∞ p}

Zur Vereinfachung sei wXa(±∞) := wXa(−∞) und wYa(±∞) := wYa(+∞).
Für einen Ranker der Länge ≥ 2 definiere rekursiv für alle a ∈ Σ:

wrXa : {±∞}+ P →p P

p 7→ wXa(
wr(p))

und

wrYa : {±∞}+ P →p P

p 7→ wYa(
wr(p))

Definiere:
r |= w :⇐⇒ wr(±∞) ̸= ⊥

Ein Ranker besteht also aus Instruktionen der Form „gehe zum nächsten a“ oder „gehe
zum letzten a“, die sich auf ein verallgemeinertes Wort anwenden lassen. Der Ranker
ist dabei entweder undefiniert – z. B. ist bXa(±∞) undefiniert – oder er beschreibt eine
Position im Wort. Dazu beachte man insbesondere, dass der Ranker nicht auf einen der
Werte −∞, +∞ oder ±∞ abbilden kann, was auch für die vorherige Definition eine
Rolle spielt. Er wird stets von links nach rechts ausgewertet. Es ist unmittelbar klar,
dass, falls wr(p) für ein p ∈ {±∞}+ P definiert ist, wr′(p) auch für jedes Präfix r′ von
r definiert ist.

Eine weitere Beobachtung ist im Umgang mit Rankern noch wichtig: Ein Ranker aus
Z+
Σ lässt sich nicht nur auf Wörter deren effektives Alphabet Σ entspricht anwenden!

Der Ranker Xa oder Ya ist nach Definition einfach undefiniert, sollte der Buchstabe a
im Wort nicht vorkommen.

Neben der allgemeinen Form von Rankern, wie sie gerade definiert wurde, gibt es eine
andere Ranker-Art, die im weiteren Verlauf eine größere Rolle spielen wird.
Definition (Kondensierte Ranker): Sei r ein Ranker über einem beliebigen Alphabet
Σ und sei w ein (verallgemeinertes) Wort vom Ordnungstyp ord (P,≤). Ein Element
(l, p, r) ∈ P−∞ × P × P+∞ heißt zulässig, falls l <−∞ p <+∞ r gilt. Definiere die Menge
der zulässigen Elemente als:

P c := {(l, p, r) ∈ P−∞ × P × P+∞ : (l, p, r) zulässig}.

20

1.3 Ranker und die Trotter-Weil-Hierarchie

Definiere zudem für a ∈ Σ die Abbildungen

wXa
c : {±∞}+ P c →p P

c

±∞ 7→ (−∞,wXa(−∞),+∞), falls wXa(−∞) ̸= ⊥
(l, p, r) 7→ (p, p′, r) mit p′ := wXa(p),

falls p′ ̸= ⊥ und (p, p′, r) zulässig

und

wYa
c : {±∞}+ P c →p P

c

±∞ 7→ (−∞,wY a(+∞),+∞), falls wY a(+∞) ̸= ⊥
(l, p, r) 7→ (l, p′, p) mit p′ := wYa(p),

falls p′ ̸= ⊥ und (l, p′, p) zulässig

Für einen Ranker der Länge ≥ 2 definiere rekursiv für alle a ∈ Σ

wrXa
c : {±∞}+ P c →p P

c

pc 7→ wXa
c (wrc(pc))

und

wrYa
c : {±∞}+ P c →p P

c

pc 7→ wYa
c (wrc(pc))

Definiere:
r |=c w :⇐⇒ wrc(±∞) ̸= ⊥

Konvention: Ist das Wort, auf das ein (kondensierter oder nicht-kondensierter) Ranker
angewendet wird, aus dem Kontext ersichtlich, entfällt es als Index in der linken oberen
Ecke.
Wie bei (normalen) Rankern ist für einen kondensierten Ranker r auch wr′c für jedes
Präfix r′ von r an allen Stellen definiert, an denen wrc definiert ist. Es sei an dieser
Stelle außerdem hervorgehoben, dass sich aus der letzten Definition folgendes ergibt: Ist
wrc(±∞) = (l, p, r) ̸= ⊥ definiert, so ist p = wr(±∞) und damit insbesondere definiert.
Genauso gilt: Ist wrc(l, p, r) = (l′, p′, r′) ̸= ⊥ definiert, so ist p′ = wr(p) und damit
insbesondere definiert. Die umgekehrte Richtung gilt allerdings im Allgemeinen nicht,
da nicht alle vom Ranker erreichten Werte zu zulässigen Tupeln (l, p, r) führen müssen.

Weitere Zusammenhänge zwischen r und rc ergeben sich durch die nächsten Lemmata:

Lemma 8: Sei r = Z1Z2 . . . Zn ein Ranker über Σ und sei w ein Wort vom Ordnungs-
typ ord (P,≤), sodass wrc(pc) für pc ∈ {±∞} + P c definiert ist. Es sei (li, pi, ri) :=
wZ1Z2 . . . Zi

c(pc) für 1 ≤ i ≤ n.
Dann gilt l1 ≤−∞ l2 ≤−∞ · · · ≤−∞ ln <−∞ pn <+∞ rn ≤+∞ rn−1 ≤+∞ · · · ≤+∞ r1.
Außerdem gilt li <−∞ li+1 oder ri+1 <

+∞ ri für 1 ≤ i ≤ n− 1.

21

1 Einführung

Beweis. Der Beweis erfolgt per Induktion über n. Für n = 1 gilt l1 = ln <−∞ pn =
p1 <+∞ rn = r1, da (l1, p1, r1) zulässig sein muss. Sei n > 1 und die Aussage für
Z1Z2 . . . Zn−1 gezeigt. Ist Zn = Xa für ein a ∈ Σ, so ist (ln, pn, rn) = Xc

a(ln−1, pn−1, rn−1)
und damit ln = pn−1 und rn = rn−1. Es gilt l1 ≤−∞ l2 ≤−∞ · · · ≤−∞ ln−1 nach
Induktion, ln−1 <−∞ pn−1 = ln <−∞ pn <+∞ rn = rn−1 nach Zulässigkeit aller (li, pi, ri)
und rn−1 ≤+∞ rn−2 ≤+∞ · · · ≤+∞ r1 ebenfalls nach Induktion. Ist Zn = Ya für ein
a ∈ Σ, so ist (ln, pn, rn) = Y c

a (ln−1, pn−1, rn−1) und damit ln = ln−1 und rn = pn−1. Es
gilt wieder l1 ≤−∞ l2 ≤−∞ · · · ≤−∞ ln−1 nach Induktion, ln−1 = ln <−∞ pn <+∞ rn =
pn−1 <+∞ rn−1 nach Zulässigkeit aller (li, pi, ri) und rn−1 ≤+∞ rn−2 ≤+∞ · · · ≤+∞ r1
ebenfalls nach Induktion.

Lemma: Sei r = Z1Z2 . . . Zn ein Ranker über Σ und sei w ein Wort vom Ordnungstyp
ord (P,≤), sodass wrc(±∞) definiert ist. Es sei (li, pi, ri) := wZ1Z2 . . . Zi

c(±∞) für 1 ≤
i ≤ n.
Dann ist wr(±∞) definiert und es gilt für jedes 1 ≤ i ≤ n entweder ∀n ≥ j > i : pi < pj
oder ∀n ≥ j > i : pj < pi.

Beweis. Wie bereits bemerkt, gilt: wZ1Z2 . . . Zi(±∞) = pi für alle 1 ≤ i ≤ n, damit ist
insbesondere wr(±∞) definiert.

Für i = n ist nichts zu zeigen. Sei also 1 ≤ i < n. Ist Zi+1 = Xa für ein a ∈ Σ, dann
ist li+1 = pi. Außerdem gilt nach Lemma 8 pi = li+1 ≤ li+2 ≤ · · · ≤ ln. Dazu beachte
man, dass li+1 ̸= −∞ und damit auch alle nachfolgenden lj ̸= −∞ sind und somit ≤
statt ≤−∞ geschrieben werden kann. Aufgrund der Zulässigkeit aller (lj , pj , rj) gilt dann
pi < pj für alle n ≥ j ≥ i+1. Ist Zi+1 = Ya für ein a ∈ Σ, dann ist ri+1 = pi. Wiederum
nach Lemma 8 gilt rn ≥ rn−1 ≥ · · · ≥ ri+1 = pi und damit pj > pi für alle n ≥ j ≥ i+ 1
nach der selben Argumentation.

Lemma: Sei r = Z1Z2 . . . Zn ein Ranker über Σ. Sei w ein Wort vom Ordnungstyp
ord (P,≤) und wr(±∞) definiert. Sei pi := wZ1Z2 . . . Zi(±∞) für 1 ≤ i ≤ n.
Gilt für alle 1 ≤ i ≤ n entweder pi < pj oder pj < pi für alle n ≥ j > i, so ist wrc(±∞)
definiert.

Beweis. Der Beweis erfolgt per Induktion über den Aufbau von r. Für Z1 gilt: Z1
c(±∞)

ist definiert, falls Z1(±∞) definiert ist.
Sei Z1Z2 . . . Zi

c(±∞) für alle i < k mit k > 1 definiert. Für 1 ≤ i < k setze
(li, pi, ri) := Z1Z2 . . . Zi

c(±∞). Man beachte, dass dies kein Widerspruch zur Defini-
tion der pi oben darstellt. Ist Zk = Xa für ein a ∈ Σ, so ist Z1Z2 . . . Zk−1Xa

c(±∞) =
Xa

c(lk−1, pk−1, rk−1). Dies ist definiert, da zum einen Xa(pk−1) = pk definiert ist und
zum anderen (pk−1, pk, rk−1) zulässig ist: Nach Definition von wXa ist pk−1 < pk, au-
ßerdem muss nach Definition der kondensierten Ranker rk−1 = +∞ oder rk−1 = pi0 für
ein i0 < k − 1 sein. Im ersten Fall gilt pk <+∞ rk−1, im zweiten ist pk−1 < rk−1 = pi0
wegen der Zulässigkeit von (lk−1, pk−1, rk−1) und damit nach Voraussetzung des Lemmas
pk < pi0 = rk−1.

Ist Zk = Ya für ein a ∈ Σ, so erfolgt die Argumentation weitgehend analog: Es ist
dann Z1Z2 . . . Zk−1Ya

c(±∞) = Ya
c(lk−1, pk−1, rk−1). Dies ist definiert, da zum einen

22

1.3 Ranker und die Trotter-Weil-Hierarchie

Ya(pk−1) = pk definiert ist und zum anderen (lk−1, pk, pk−1) zulässig ist: Nach Definition
von wYa ist pk < pk−1, außerdem muss nach Definition der kondensierten Ranker lk−1 =
−∞ oder lk−1 = pi0 für ein i0 < k − 1 sein. Im ersten Fall gilt lk−1 <−∞ pk, im zweiten
ist lk−1 = pi0 < pk−1 wegen der Zulässigkeit von (lk−1, pk−1, rk−1) und damit nach
Voraussetzung des Lemmas lk−1 = pi0 < pk.

Tatsächlich ist damit die Äquivalenz der hier gegebenen Definition kondensierter Ranker
mit der aus [7] gegeben (vgl. dazu auch [8]), falls man diese sinngemäß auf verallge-
meinerte Wörter erweitert. Insbesondere sind die Definitionen aber auch auf endlichen
Wörtern gleich.

Im Umfeld der Ranker sind noch weitere Begriffe wichtig.
Definition (Block, Unterscheidbarkeit unter Rankern): Sei r ein Ranker über Σ. Ein
maximaler Faktor von r aus X+

Σ ∪Y
+
Σ heißt Block von r. Rm,n ist die Menge aller Ranker

der Länge ≤ n mit maximal m Blöcken über beliebigem Alphabet. Rm ist die Menge aller
Ranker beliebiger Länge mit maximal m Blöcken über beliebigem Alphabet. Definiere:

RX
m,n := (Rm,n ∩XΣZ

∗
Σ) ∪Rm−1,n

RY
m,n := (Rm,n ∩ YΣZ

∗
Σ) ∪Rm−1,n

RX
m := (Rm ∩XΣZ

∗
Σ) ∪Rm−1

RY
m := (Rm ∩ YΣZ

∗
Σ) ∪Rm−1

Definiere außerdem die folgenden Relationen über verallgemeinerten Wörtern:

u ≡m,n v :⇐⇒ (∀r ∈ Rm,n : r |=c u⇐⇒ r |=c v)

u ≡X
m,n v :⇐⇒

(
∀r ∈ RX

m,n : r |=c u⇐⇒ r |=c v
)

u ≡Y
m,n v :⇐⇒

(
∀r ∈ RY

m,n : r |=c u⇐⇒ r |=c v
)

u ≡m v :⇐⇒ (∀r ∈ Rm : r |=c u⇐⇒ r |=c v)

u ≡X
m v :⇐⇒

(
∀r ∈ RX

m : r |=c u⇐⇒ r |=c v
)

u ≡Y
m v :⇐⇒

(
∀r ∈ RY

m : r |=c u⇐⇒ r |=c v
)

Die Relationen ≡m,n, ≡X
m,n und ≡Y

m,n sind über verallgemeinerten Wörtern definiert.
Damit sind sie aber insbesondere auch Relationen über den endlichen Wörtern aus Σ∗ für
ein Alphabet Σ. Tatsächlich sind sie dort sogar Kongruenzen von endlichem Index (vgl.
[7, Proposition 5.7]). Die Mengen Σ∗/≡m,n, Σ∗/≡X

m,n und Σ∗/≡Y
m,n der Kongruenzklassen

bilden daher jeweils ein endliches Monoid.†

1.3.2 Die Trotter-Weil-Hierarchie
Diese Arbeit beschäftigt sich mit dem Wortproblem für ω-Terme über Zweivariablenlogik.
Es wurde bereits angeführt, dass ω-Terme hier tatsächlich als π-Terme bezeichnet werden.
Es überrascht daher vielleicht weniger, dass auch die Zweivariablenlogik nur am Rande

†Für Details zu Kongruenzen und Monoiden aus Kongruenzklassen siehe z. B. [4, S. 22ff.]

23

1 Einführung

auftaucht, obwohl sie eine zentrale Rolle spielt. Um dies zu verstehen ist es zunächst
notwendig sich mit Prädikatenlogik erster Stufe FO[<] zu beschäftigen. Diese kann
auf endliche Wörter angewendet werden: Dabei beziehen sich die Werte von Variablen
auf Positionen im Wort und das spezielles Prädikat λ(x) = a erlaubt es zu fordern,
dass die durch x bestimmte Position mit a beschriftet ist. Weitere Prädikate der Form
x < y erlauben zusätzlich den Vergleich von Positionen. Es ist bekannt, dass es zu jedem
Satz, also jeder Formel, die keine freien Variablen enthält, aus FO[<] bereits einen
äquivalenten Satz gibt, der nur drei Variablen verwendet. Schränkt man die Anzahl der
Variablen auf zwei ein, erhält man jene Logik FO2[<], die im Titel mit Zweivariablenlogik
bezeichnet wird. Ein Satz aus einer der Logiken definiert nun eine Sprache endlicher
Wörter; diese besteht genau aus jenen Wörtern, die den Satz erfüllen. Wird eine Sprache
endlicher Wörter durch einen Satz aus einer Logik definiert, so heißt sie in dieser Logik
definierbar.

Es ist nun möglich Zusammenhänge zwischen in bestimmten Logiken definierbaren
Sprachen und algebraischen Eigenschaften jener Monoide, die diese Sprachen erkennen,
herzustellen. Der für diese Arbeit wichtigste Zusammenhang ist dabei der folgende: Eine
Sprache ist in FO2[<] definierbar genau dann, wenn sie durch ein Monoid in der Varietät
DA erkannt wird [16, 3]. Mehr zu den hier beschrieben Logiken, einschließlich einer
formalen Definition, findet sich z. B. in [3].

Bei der Trotter-Weil-Hierarchie handelt es sich nun um eine Hierarchie aus Varietäten,
die Teilmengen von DA sind. Namensgebend ist hier die erste Untersuchung dieser
Hierarchie durch Trotter und Weil [17]. Die Hierarchie besteht aus den Ecken Rm und
Lm, den ∩-Ebenen Rm ∩ Lm und den ∨-Ebenen Rm ∨Lm, alle jeweils für alle m ∈ N.
Die bekannten Varietäten derR-trivialen und der L-trivialen Monoide treten als Ecken in
der Trotter-Weil-Hierarchie auf, die der J -trivialen Monoide als ∩-Ebene. Im Folgenden
wird das Wortproblem für π-Terme der Ecken und der ∨-Ebene genauer untersucht.
Dabei soll auf eine genaue Definition der genannten Varietäten verzichtet werden, da
sie zum einen viele Konzepte aus der Halbgruppentheorie benötigt und zum anderen
für die weiteren Ergebnisse nicht notwendig ist.† Stattdessen werden die für das Weitere
entscheidenden Eigenschaften hier in der Form von Sätzen vorgestellt, die sich auch als
alternative, aber äquivalente, Definition betrachten lassen. Hierbei spielen Logiken und
algebraische Eigenschaften nur implizit eine Rolle, wichtig sind dagegen die im letzten
Unterabschnitt definierten Ranker.
Theorem 1: Sei Σ ein beliebiges Alphabet und M ein endliches Monoid. Sei ferner
φ : Σ∗ →M ein surjektiver Monoidhomomorphismus und m ≥ 1.
Dann gilt:

• M ∈ Rm ⇐⇒
(
∀u, v ∈ Σ∗ : u ≡X

m,(m+1)|M |−m v =⇒ φ(u) = φ(v)
)

.

• M ∈ Lm ⇐⇒
(
∀u, v ∈ Σ∗ : u ≡Y

m,(m+1)|M |−m v =⇒ φ(u) = φ(v)
)

.
• M ∈ Rm ∨Lm ⇐⇒ (∃n ≥ 1∀u, v ∈ Σ∗ : u ≡m,n v =⇒ φ(u) = φ(v)).

Außerdem gilt:
• ∀n ∈ N : Σ∗/≡X

m,n ∈ Rm

†Eine solche formale Definition findet sich dabei in [7]

24

1.3 Ranker und die Trotter-Weil-Hierarchie

• ∀n ∈ N : Σ∗/≡Y
m,n ∈ Lm

• ∀n ∈ N : Σ∗/≡m,n ∈ Rm ∨Lm

Beweis. Der erste Teil entspricht Theorem 5.10 aus [7]; im Beweis dafür werden auch
die ersten beiden Punkte des zweiten Teils gezeigt. Der dritte Punkt des zweiten Teils
schließlich ist eine direkte Folge aus dem ersten Teil.

Beim ersten Teil der Aussage wird später die Richtung von links nach rechts entscheidend
sein. Deshalb sei hier darauf hingewiesen, dass diese Implikation für alle Homomorphis-
men (also nicht nur surjektive) gilt: Ist ein Homomorphismus φ nicht surjektiv erweitere
ihn und das Alphabet Σ so, dass er es ist. Dies ist stets möglich (wie man sich leicht
überlegt). Da die Aussage für alle endlichen Wörter über dem erweiterten Alphabet gilt,
gilt sie natürlich auch für alle Wörter aus dem ursprünglichen Alphabet. Dort stimmt
der Homomorphismus aber bereits mit seiner Erweiterung überein.

Schließlich soll noch eine weitere Eigenschaft der Trotter-Weil-Hierachie in einem Satz
festgehalten werden. Dank dieser Eigenschaft lassen sich die meisten Ergebnisse zur
Trotter-Weil-Hierarchie auf DA übertragen.
Theorem 2: Es ist:

DA =
∪
m∈N

Rm ∨Lm

Beweis. Die Aussage ergibt sich aus Theorem 4.1 in [7].

25

2 Entscheidbarkeit

Nachdem nun alle benötigten Begriffe eingeführt sind, wird sich dieses Kapitel mit dem
ersten zentralen Ergebnis dieser Arbeit beschäftigen: Die Entscheidbarkeit des Wortpro-
blems für π-Terme der Ecken und ∨-Ebenen der Trotter-Weil-Hierarchie sowie von DA.
Dazu werden zunächst Ranker im Kontext von π-Termen erneut diskutiert, anschließend
wird eine Form der Normalisierung von (ω+ω∗)-Pfaden im Syntax-Baum eines π-Terms
eingeführt, die dann die Entscheidbarkeit der Probleme zeigt.

2.1 Ranker und π-Terme

2.1.1 Technische Hilfsmittel

Lemma 6 hat gezeigt, dass sich die Positionen in einem Wort JwKµ als µ-Pfade im Syntax-
Baum G(w) eines π-Terms w betrachten lassen. Diese Betrachtung ermöglicht viele Aus-
sagen über das Verhalten von Rankern auf Wörtern der entsprechenden Form. Einige
solcher Aussagen fassen die Lemmata in diesem Unterabschnitt zusammen. Zunächst ist
es jedoch sinnvoll folgenden Konvention zu vereinbaren:
Konvention: Ist w ein π-Term und µ ein Ordnungstyp, dann bezeichnet wµ das WortJwKµ+µ∗ . Sofern aus dem Kontext zu erkennen ist, welcher π-Term gemeint ist, wird
außerdem µr statt wµr für einen Ranker r und µrc statt wµrc für einen kondensierten
Ranker rc geschrieben.
Es sei hervorgehoben, dass wµ gleich JwKµ+µ∗ ist und nicht etwa gleich JwKµ. Dies mag
zunächst verwirrend wirken, im Folgenden ist aber stets diese Form von Bedeutung. Die
Schreibweise lässt sich daher auf diese Weise deutlich verkürzen.

Nun aber zu den Aussagen über Ranker und π-Terme:
Lemma 9: Sei w ein π-Term und sei µ ∈ N ∪ {ω} ein Ordnungstyp.
Es gilt für alle a aus einem Alphabet Σ:

µXa(±∞) = p ̸= ⊥ =⇒ Für alle π-Knoten v, an denen p definiert ist, gilt:
p(v) = 1.

µYa(±∞) = p ̸= ⊥ =⇒ Für alle π-Knoten v, an denen p definiert ist, gilt:
p(v) = −1.

Sei p ̸= ±∞ ein (µ + µ∗)-Pfad in G(w) und sei m̂ := max{p(v) : p(v) ∈ N} und
m̌ := min{p(v) : p(v) ∈ −N}.

27

2 Entscheidbarkeit

Ist µ = ω oder N ∋ µ > m̂, so gilt:

µXa(p) = p′ ̸= ⊥ =⇒ Für alle π-Knoten v, an denen p definiert ist, gilt:
p′(v) = 1, p′(v) = p(v) oder p′(v) = p(v) + 1.

Ist µ = ω oder N ∋ µ > −m̌, so gilt:

µYa(p) = p′ ̸= ⊥ =⇒ Für alle π-Knoten v, an denen p definiert ist, gilt:
p′(v) = −1, p′(v) = p(v) oder p′(v) = p(v)− 1.

Beweis. Sei zuerst µXa(±∞) = p ̸= ⊥. Sei v ein π-Knoten in G(w), sodass p(v) ̸= ⊥.
Angenommen es wäre p(v) ̸= 1, also p(v) > 1 oder p(v) ∈ −N. Sei p̃ gleich zu p, aber mit
p̃(v) := 1. Dann ist p̃ <µ+µ∗,w p, was einen Widerspruch zur Definition von µXa über
das Minimum darstellt.

Sei nun µ = ω oder µ > m̂ und sei µXa(p) = p′ ̸= ⊥. Sei vp der erste Knoten auf p, an
dem p und p′ nicht mehr übereinstimmen, und sei vp′ der entsprechende Knoten auf p′.
Für alle π-Knoten v davor, gilt dann p(v) = p′(v). Gilt vp = vp′ , so ist vp′ ein π-Knoten.
Man beachte, dass für alle π-Knoten v, über die p verläuft, p(v) + 1 ∈ S + −S für µ =
ord (S,≤S) mit S ⊆ N ist. Angenommen es ist p′(vp) ̸= p(vp)+1. Da nach Definition der
Ranker p′ >µ+µ∗,w p gelten muss, ist dann p′(vp) > p(vp)+1 oder p′(vp) ∈ −N. Definiert
man den Pfad p̃′ gleich zu p′ aber mit p̃′(vp) := p(vp)+ 1, so ist p <µ+µ∗,w p̃′ <µ+µ∗,w p′.
Dies stellt einen Widerspruch zur Definition von µXa über das Minimum dar. Ist v ein
π-Knoten auf p′ nach vp′ oder gilt vp ̸= vp′ und vp′ = v, so ist p′(v) = 1, da sonst p̃′ mit
p̃′(v) := 1 aber sonst gleich zu p′ wieder einen Pfad größer als p, aber kleiner als p′ und
damit einen Widerspruch liefert.

Die Aussagen zu Ya folgen mit den entsprechenden links-rechts-dualen Beweisen.

Man beachte, dass er letzte Beweis tatsächlich eine genauere Aussage liefert als das
Lemma sie formuliert: Ob p′(v) = 1, p′(v) = p(v) oder p′(v) = p(v) + 1 gilt, hängt
nämlich von der Position von v auf dem Pfad im Verhältnis zu vp′ ab. Dies gilt natürlich
auch für die entsprechende Aussage zu µYa.

Die erste Aussage führt direkt auf die zweite, die einen Zusammenhang zwischen Ran-
kerlänge und den Werten an π-Knoten eines (ω + ω∗)-Pfades herstellt:
Lemma 10: Sei w ein π-Term, µ ∈ N ∪ {ω} ein Ordnungstyp und r = Z1Z2 . . . Zn ein
Ranker der Länge n.
Ist µr(±∞) = p ̸= ⊥, so gilt für alle π-Knoten v aus G(w), über die p verläuft:

p(v) ∈ N =⇒ p(v) ≤ n und
p(v) ∈ −N =⇒ p(v) ≥ −n.

Beweis. Die Aussage ergibt sich aus Lemma 9.

Die letzte Aussage dieses Unterabschnitts beschäftigt sich nun mit dem Übergang von
ω auf eine (endliche) natürliche Zahl:

28

2.1 Ranker und π-Terme

Lemma 11: Sei w ein π-Term und Σ ein Alphabet.
Für einen Ranker r der Länge n über Σ gilt:

∀k ≥ n : ωrc(±∞) = krc(±∞),

insbesondere ist
∀k ≥ n : r |=c wω ⇐⇒ r |=c wk.

Beweis. Der Beweis erfolgt durch Induktion über die Rankerlänge n. Sei n = 1 und
r = Za mit Z ∈ {X,Y }. Es gilt dann für k ≥ 1:

Za ̸|=c wω ⇐⇒ Za ̸|= wω

⇐⇒ a ̸∈ α(wω) = α(wk)

⇐⇒ Za ̸|= wk ⇐⇒ Za ̸|=c wk

Ist ωZa
c(±∞) = (−∞, pω,∞) ̸= ⊥ definiert, so ist also auch kZa

c(±∞) = (−∞, pk,+∞)
̸= ⊥ definiert. Nach Lemma 9 gilt für einen π-Knoten v aus G(w), über den pω verläuft,
pω(v) ∈ {1,−1}. Damit ist pω nicht nur ein (ω + ω∗)-Pfad in G(w), sondern auch ein
(k + k∗)-Pfad. Angenommen es gilt pω <k+k∗,w pk oder pk <k+k∗,w pω, also pω ̸= pk, so
ist dies eine Widerspruch zur Minimalität (falls Za = Xa) bzw. zur Maximalität (falls
Za = Ya) der Pfade.

Vor dem Induktionsschritt soll zunächst eine Aussage als Hilfsmittel bewiesen werden:
Sind q̌ und q̂ zwei (k + k∗)-Pfade in G(w) mit k ∈ N, sind sie natürlich auch (ω + ω∗)-
Pfade in G(w). Es soll gezeigt werden, dass sich auch die Anordnung überträgt, d. h.
dass

q̌ <k+k∗,w q̂ =⇒ q̌ <ω+ω∗,w q̂

gilt. Sei dazu v̌ der erste Knoten auf q̌, an dem sich q̌ und q̂ unterscheiden; sei v̂ der
entsprechende Knoten auf q̂. Ist v̌ ̸= v̂, dann ist v̌ < v̂ entsprechend der Knotenordnung
in G(w), falls q̌ <k+k∗,w q̂ ist. Dann gilt aber auch q̌ <ω+ω∗,w q̂. Ist v̌ = v̂, so handelt
es sich um einen π-Knoten. Sei k + k∗ = ord ({−k,−k + 1, . . . ,−1, 1, 2, . . . , k},≤k+k∗)
und ω + ω∗ = ord (N+−N,≤ω+ω∗). Es ist klar, dass i ≤k+k∗ j =⇒ i ≤ω+ω∗ j gilt.
Ist also q̌ <k+k∗,w q̂, so ist q̌(v̌) ≤k+k∗ q̂(v̌) und damit q̌(v̌) ≤ω+ω∗ q̂(v̌) und schließlich
q̌ <ω+ω∗ q̂.

Sei die Aussage also nun für alle Ranker der Länge < n gezeigt. Sei r = r′Za für
Z ∈ {X,Y } und damit ωr′c(±∞) = kr′c(±∞) = p⊥ für k ≥ n. Ist p⊥ = ⊥, so gilt auch
ωrc(±∞) = krc(±∞) = ⊥. Ist p⊥ = (l, p, r) ̸= ⊥, betrachte krc(±∞) = kZa

c(l, p, r) =
pk,⊥ und ωrc(±∞) = ωZa

c(l, p, r) = pω,⊥. Ist pk,⊥ = pω,⊥ = ⊥, so ist nichts mehr zu
zeigen. Ist pk,⊥ = (lk, pk, rk) ̸= ⊥, so gilt es die möglichen Fälle für Za zu unterscheiden.
Ist Za = Xa, so ist lk = p und rk = r. Beides sind (ω + ω∗)-Pfade in G(w) (tatsächlich
kann auch r = +∞ gelten). Außerdem ist offensichtlich pk ebenfalls ein (ω+ω∗)-Pfad in
G(w). Damit ist ωXa(p) = min≤ω+ω∗,w{q ∈ Pω+ω∗(w) : wω(q) = a und p <ω+ω∗,w q} =:
p′ ̸= ⊥ definiert, da sich lk = p <k+k∗,w pk nach der Aussage oben zu lk = p <ω+ω∗,w pk
überträgt und damit pk ∈ {p′ ∈ Pω+ω∗(w) : wω(p

′) = a und p <ω+ω∗,w p′} ̸= ∅ ist.
Ebenso überträgt sich die Zulässigkeit, es gilt: lk = p <ω+ω∗,w p′ ≤ω+ω∗,w pk <+∞

ω+ω∗,w

29

2 Entscheidbarkeit

rk = r. Für Za = Ya gilt der duale Beweis. Ist also pk,⊥ = (lk, pk, rk) ̸= ⊥, so ist
pω,⊥ = (lω, pω, rω) ̸= ⊥. Nach Ranker-Definition gilt lk = p = lω und rk = r = rω.
Außerdem ist pω ein (k + k∗)-Pfad in G(w) nach Lemma 10. Nimmt man nun an, dass
pk ̸= pω gilt, so ist einer der beiden Pfade bezüglich ≤ω+ω∗,w echt kleiner, was einen
Widerspruch zur Minimalität bzw. zur Maximalität darstellt. Es verbleibt noch die letzte
Möglichkeit pω,⊥ = (lω, pω, rω) ̸= ⊥, aber pk,⊥ = ⊥. Hier lässt sich aber die selbe
Argumentation anwenden: pω ist wieder nach Lemma 10 ein (k + k∗)-Pfad und die
Anordnungen übertragen sich, also muss pk,⊥ ̸= ⊥ sein und die Werte bereits gleich.

2.1.2 Ranker und Gleichungen
Dieser Unterabschnitt wird nun zeigen, dass sich die Fragestellung des Wortproblems für
π-Terme der Ecken und ∨-Ebenen der Trotter-Weil-Hierarchie sowie von DA durch die
Frage nach der Unterscheidbarkeit zweier π-Terme durch bestimmte kondensierte Ranker
entscheiden lässt.
Lemma: Seien u und v zwei π-Terme über dem selben Alphabet Σ. Es gilt für m ≥ 1:JuKω+ω∗ ≡X

m JvKω+ω∗ =⇒ u = v gilt in RmJuKω+ω∗ ≡Y
m JvKω+ω∗ =⇒ u = v gilt in LmJuKω+ω∗ ≡m JvKω+ω∗ =⇒ u = v gilt in Rm ∨Lm

Beweis. Der Beweis ist strukturell für alle drei Aussagen äquivalent, er wird daher hier
nur für Rm ausgeführt.

Es gelte JuKω+ω∗ ≡X
m JvKω+ω∗ für ein m ≥ 1. Sei M ∈ Rm ein endliches Monoid. Es

ist zu zeigen, dass u = v in M gilt, d. h. dass σ(JuKM !) = σ(JvKM !) für jede Belegung
σ : Σ → M gilt. Nach Theorem 1 gibt es eine natürliche Zahl n (in Abhängigkeit von
M), sodass für alle endlichen Wörter w,w′ ∈ Σ∗ gilt: w ≡X

m,n w′ =⇒ σ(w) = σ(w′).
(Für Rm gilt n := (m + 1)|M | −m.) Wähle nun c ∈ N so, dass c(M !) ≥ n gilt. Nach
Lemma 2 ist (c(M !))∗ = c(M !) und zusammen mit Lemma 3 gilt dann (cM !)+(cM !)∗ =
2c(M !), was insbesondere endlich ist. Sei r ∈ RX

m,n ⊆ RX
m ein beliebiger Ranker, dann

gilt r |=c JuKω+ω∗ ⇐⇒ r |=c JvKω+ω∗ und außerdem:

r |=c JuKcM !+(cM !)∗ ⇐⇒ r |=c JuKω+ω∗ (Lemma 11)
⇐⇒ r |=c JvKω+ω∗

⇐⇒ r |=c JvKcM !+(cM !)∗ (Lemma 11)

Es gilt also für die beiden (endlichen) Wörter:JuK2cM ! = JuKcM !+(cM !)∗ ≡X
m,n JvKcM !+(cM !)∗ = JvK2cM ! ∈ Σ∗

Also gilt:

σ(JuKM !) = σ(JuK2cM !) (Lemma 7)
= σ(JvK2cM !) (Theorem 1)
= σ(JvKM !) (Lemma 7)

30

2.1 Ranker und π-Terme

Lemma: Seien u und v zwei π-Terme über dem selben Alphabet Σ. Es gilt für m ≥ 1:

JuKω+ω∗ ̸≡X
m JvKω+ω∗ =⇒ u = v gilt in Rm nichtJuKω+ω∗ ̸≡Y
m JvKω+ω∗ =⇒ u = v gilt in Lm nichtJuKω+ω∗ ̸≡m JvKω+ω∗ =⇒ u = v gilt in Rm ∨Lm nicht

Beweis. Wieder wird der Beweis nur exemplarisch für Rm geführt.
Es gelte JuKω+ω∗ ̸≡X

m JvKω+ω∗ , dann gibt es einen Ranker r ∈ RX
m mit (ohne Ein-

schränkung) r |=c JuKω+ω∗ , aber r ̸|=c JvKω+ω∗ . Sei n die Länge dieses Rankers, damit
ist r ∈ RX

m,n. Nach Lemma 11 gilt dann

∀k ≥ n : r |=c JuKk+k∗ und r ̸|=c JvKk+k∗

und somit
∀k ≥ n : JuKk+k∗ ̸≡X

m,n JvKk+k∗ .

Definiere M := Σ∗/≡X
m,n. Nach Theorem 1 ist M ∈ Rm. Angenommen es gilt nun u = v

in Rm, dann gilt u = v insbesondere in M . Dann gilt also σ(JuKM !) = σ(JvKM !) für jede
Belegung σ : Σ→M . Wähle c ∈ N so, dass cM ! ≥ n ist. Es gilt dann:

σ(JuKcM !+(cM !)∗) = σ(JuK2cM !) = σ(JuKM !) (Lemma 2, Lemma 3), (Lemma 7)
= σ(JvKM !) = σ(JvK2cM !) (Lemma 7)
= σ(JvKcM !+(cM !)∗) (Lemma 2, Lemma 3)

Wähle σ als die natürliche Projektion von Σ nach M , womit mit der Aussage von eben

JuKcM !+(cM !)∗ ≡X
m,n JvKcM !+(cM !)∗

gilt. Dies ist ein Widerspruch, da cM ! ≥ n ist!

Die beiden letzten Lemmata liefern zusammen also die gesuchte Aussage: Um zu ent-
scheiden, ob eine Gleichung u = v über Rm, Lm oder Rm ∨ Lm gilt, reicht es zu
entscheiden, ob sich JuKω+ω∗ und JvKω+ω∗ durch gewisse kondensierte Ranker unterschei-
den lassen. Zusammen mit einer kleinen Erweiterung ist dies der Inhalt des folgenden
Theorems:
Theorem 3: Seien u und v zwei π-Terme über dem selben Alphabet Σ. Es gilt für m ≥ 1:

JuKω+ω∗ ≡X
m JvKω+ω∗ ⇐⇒ u = v gilt in RmJuKω+ω∗ ≡Y
m JvKω+ω∗ ⇐⇒ u = v gilt in LmJuKω+ω∗ ≡m JvKω+ω∗ ⇐⇒ u = v gilt in Rm ∨Lm

Außerdem gilt:

(∀m ∈ N : JuKω+ω∗ ≡m JvKω+ω∗)⇐⇒ u = v gilt in DA

Beweis. Der erste Teil entspricht den Aussagen der beiden Lemmata. Der zweite Teil
ergibt sich zusammen mit Theorem 2 aus dem ersten.

31

2 Entscheidbarkeit

2.2 Normalisierung

Das Wort JwKω+ω∗ zu einem π-Term w ist im Allgemeinen nicht endlich. Dass sich die
Frage nach der Gültigkeit einer Gleichung u = v in den Ecken und ∨-Ebenen der Trotter-
Weil-Hierarchie auf die Unterscheidbarkeit durch gewisse kondensierte Ranker zurück-
führen lässt, scheint daher zunächst keine Verbesserung darzustellen. Tatsächlich ist
aber nur eine Betrachtung endlicher Wörter nötig. Diese Einsicht basiert im Wesentli-
chen darauf, dass sich ein Tripel (l, p, r) von (ω + ω∗)-Pfaden in einem gewissen Sinne
normalisieren lässt. Mit dieser Normalisierung beschäftigt sich nun dieser Abschnitt.

2.2.1 Definition

Die Normalisierung eines Tripels (l, p, r) von (ω+ω∗)-Pfaden wird den Verlauf der Pfade
nicht ändern, wohl aber die Werte an den π-Knoten. Ziel ist es dabei die Abstände
zwischen den drei Pfaden an jedem Knoten zu erhalten. Wie genau dies vonstattengeht,
klärt dieser Unterabschnitt.

Tatsächlich lassen sich nicht alle zulässigen Tripel aus (ω + ω∗)-Pfaden in der Form,
wie sie hier besprochen wird, normalisieren. Um jene, die sich normalisieren lassen, be-
schreiben zu können ist die folgende Definition notwendig:
Definition 1: Sei w ein π-Term über einem Alphabet Σ. Definiere P̄ω+ω∗(w) als die
Menge aller zulässigen (l, p, r) ∈ (Pω+ω∗(w) + {−∞})×Pω+ω∗(w)×(Pω+ω∗(w) + {+∞}),
die die folgenden beiden Eigenschaften erfüllen:

I. p(v) ∈ N, p(v) > 1 =⇒ l(v) ∈ N†, 0 ≤ p(v)− l(v) ≤ 1

und vor v stimmen p und l überein
p(v) ∈ −N, p(v) < −1 =⇒ r(v) ∈ −N, 0 ≤ r(v)− p(v) ≤ 1

und vor v stimmen p und r überein
II. r(v) ∈ N, r(v) > 1 =⇒ l(v), p(v) ∈ N, 0 ≤ r(v)− l(v) ≤ 1

und vor v stimmt r mit l und p überein
l(v) ∈ −N, l(v) < −1 =⇒ p(v), r(v) ∈ −N, 0 ≤ r(v)− l(v) ≤ 1

und vor v stimmt l mit p und r überein
Dabei soll −∞(v) und +∞(v) für alle v ∈ G(w) undefiniert sein.
Ferner sei P̄ω+ω∗ die Vereinigung der Mengen P̄ω+ω∗(w) für alle π-Terme w über belie-
bigem Alphabet.
An die Elemente (l, p, r) in P̄ω+ω∗ wird also im Wesentlichen die Forderung gestellt,
dass die Pfade – sofern gewisse lokale Voraussetzungen erfüllt sind – über die selben
π-Knoten verlaufen und sich die Werte dort höchstens um 1 unterscheiden. Es wird sich
später herausstellen, dass jene Tripel, die durch Anwendung eines kondensierten Rankers
entstehen, die geforderten Eigenschaften erfüllen.

Mit der Definition von P̄ω+ω∗ lässt sich nun auch die Normalisierung definieren:

†Insbesondere ist l(v) ̸= ⊥ und l verläuft über v.

32

2.2 Normalisierung

Definition (Normalisierung): Sei (l, p, r) ∈ P̄ω+ω∗(w) für einen π-Term w über dem
Alphabet Σ. Definiere (l, p, r) = (l̄, p̄, r̄) folgendermaßen: Ist l = −∞, so ist auch l̄ :=
−∞. Ist r = +∞, so ist auch r̄ := +∞. Ansonsten definiere:

l̄ : G(w)→p N+ (−N) + {⊤}

v 7→


⊤ falls l(v) = ⊤
1 falls l(v) ∈ N
−1 falls l(v) = −1

l(v)− r(v)− 1 falls l(v) ∈ −N und l(v) < −1

r̄ : G(w)→p N+ (−N) + {⊤}

v 7→


⊤ falls r(v) = ⊤
−1 falls r(v) ∈ −N
1 falls r(v) = 1

r(v)− l(v) + 1 falls r(v) ∈ N und r(v) > 1

p̄ : G(w)→p N+ (−N) + {⊤}

v 7→


⊤ falls p(v) = ⊤
1 falls p(v) = 1
−1 falls p(v) = −1

p(v)− l(v) + 1 falls p(v) ∈ N und p(v) > 1
p(v)− r(v)− 1 falls p(v) ∈ −N und p(v) < −1

Die normalisierten Pfade verlaufen also stets über die selben Knoten wie ihre nicht
normalisieren Gegenstücke. Lediglich die Werte der Pfade an den π-Knoten werden ver-
ändert. Dazu beachte man, dass die zugeordneten Werte nach Definition 1 stets definiert
und aus {1, 2,−2,−1} sind.

2.2.2 Eigenschaften
Einige interessante Eigenschaften der Normalisierung ergeben sich direkt aus der Defini-
tion. Das folgende Lemma, das solche Eigenschaften zusammenfasst, erfolgt daher ohne
Beweis:
Lemma: Sei (l, p, r) ∈ P̄ω+ω∗(w) für einen π-Term w über dem Alphabet Σ, sei (l, p, r) =
(l̄, p̄, r̄) und sei v ein Knoten in G(w).
Es gilt:
• l und l̄, p und p̄ sowie r und r̄ verlaufen jeweils über die selben Knoten.
• l(v) ∈ N⇐⇒ l̄(v) ∈ N p(v) ∈ N⇐⇒ p̄(v) ∈ N r(v) ∈ N⇐⇒ r̄(v) ∈ N

l(v) ∈ −N⇐⇒ l̄(v) ∈ −N p(v) ∈ −N⇐⇒ p̄(v) ∈ −N r(v) ∈ −N⇐⇒ r̄(v) ∈ −N
• l = −∞⇐⇒ l̄ = −∞ und r = +∞⇐⇒ r̄ = +∞
• l̄, p̄, r̄ sind (2 + 2∗)-Pfade in G(w). (l̄ = −∞ und r̄ = +∞ sind hierbei natürlich

ausgenommen.)

33

2 Entscheidbarkeit

Während sich diese Eigenschaften direkt ergeben, bedürfen andere einer genaueren
Betrachtung. Eine dieser Eigenschaften beschreibt das folgende Lemma:
Lemma 12: Sei (l, p, r) ∈ P̄ω+ω∗ und (l, p, r) = (l̄, p̄, r̄). Es unterscheiden sich l und p
sowie p und r jeweils am selben Knoten wie l̄ und p̄ bzw. p̄ und r̄ zum ersten Mal, sofern
l ̸= −∞ bzw. r ̸= +∞. Außerdem überträgt sich die Zulässigkeit von (l, p, r) auf (l̄, p̄, r̄).

Beweis. Zunächst zu l und p: Sei vl der erste Knoten auf l, an dem sich l und p unter-
scheiden. Sei vp der entsprechende Knoten auf p. Sei v ein π-Knoten oberhalb von vl
bzw. vp. Gilt dort p(v) = l(v) ∈ N, so ist nach Definition l̄(v) = 1. Ist p(v) = 1, so ist
außerdem p̄(v) = 1. Ist p(v) > 1, so ist p̄(v) = p(v)− l(v) + 1 = 1. In beiden Fällen gilt
also p̄(v) = l̄(v). Gilt an v stattdessen p(v) = l(v) ∈ −N, so muss unterschieden werden:
Ist p(v) = l(v) = −1, dann ist nach Definition l̄(v) = −1 = p̄(v). Ist p(v) = l(v) < −1,
so ist l̄(v) = l(v)− r(v)− 1 = p(v)− r(v)− 1 = p̄(v). l und p stimmen also oberhalb von
vl bzw. vp überein.

Ist nun vl ̸= vp, so ist nichts mehr zu zeigen. Ist vl = vp ein π-Knoten, so muss
aufgrund der Zulässigkeit von (l, p, r) gelten: l(vl) <ω+ω∗ p(vp). Dafür gibt es folgende
Möglichkeiten:

• l(vl), p(vp) ∈ N: Dann ist l̄(vl) = 1 und p̄(vp) = p(vp) − l(vl) + 1 > 1, da p(vp) >
l(vl) ≥ 1 sein muss.

• l(vl) ∈ N, p(vp) ∈ −N: Nach Definition ist l̄(vl) = 1 und p̄(vp) ∈ −N.
• l(vl), p(vp) ∈ −N: Es muss l(vl) ̸= −1 bzw. l(vl) < −1 gelten. Ist p(vp) = −1, so

ist p̄(vp) = −1 und nach Definition 1 r(v) = −1. Also ist l̄(vl) = l(v)− r(v)− 1 =
l(v) < −1. Ist p(vp) < −1, so ist p̄(vp) = p(vp)−r(vp)−1 > l(vl)−r(vl)−1 = l̄(vl).

In allen Fällen unterscheiden sich l̄ und p̄ in ihren Werten an vl = vp, es gilt jeweils
sogar l̄(vl) <ω+ω∗ p̄(vp). Damit ist vl auch der erste Knoten auf l̄, an dem sich l̄ und p̄
unterscheiden. Entsprechendes gilt auch für vp. Schließlich gilt also l̄ <2+2∗,w p̄.

Die Aussage für p und r verhält sich dual. Zusammen ergibt sich damit die Zulässigkeit
von (l̄, p̄, r̄).

Als nächstes soll die Menge P̄ω+ω∗ genauer untersucht werden. Eine der wichtigsten
Aussagen dabei liefert das folgende Lemma:
Lemma: Sei w ein π-Term über dem Alphabet Σ und sei Z ein Ranker der Länge 1.
Ist ωZc(±∞) = (l, p, r) ̸= ⊥, so ist (l, p, r) ∈ P̄ω+ω∗ . Außerdem ist für alle (l, p, r) ∈
P̄ω+ω∗(w) auch ωZc(l, p, r) in P̄ω+ω∗ , sofern dies definiert ist.

Beweis. Zunächst zum ersten Teil der Aussage. Ist Z = Xa mit a ∈ Σ, so ist aufgrund
der Definition über das Minimum p(v) = 1, falls p(v) für einen π-Knoten v ∈ G(w)
definiert ist. Für Z = Ya mit a ∈ Σ ist entsprechend p(v) = −1, falls p(v) definiert ist.
In beiden Fällen ist I. erfüllt. Außerdem ist für einen kondensierten Ranker der Länge 1
l = −∞ und r = +∞ und damit auch II. erfüllt.

Sei nun (l, p, r) ∈ P̄ω+ω∗(w). Der Beweis für Z ∈ YΣ ist dual zu dem für Z ∈ XΣ, sei
daher Z = Xa für ein a ∈ Σ. Sei zudem ωXa

c(l, p, r) = (l′, p′, r′) ̸= ⊥. Nach Definition
der kondensierten Ranker ist l′ = p und r′ = r. Sei vp der erste Knoten auf p, an dem p
und p′ nicht mehr übereinstimmen. Sei vp′ der entsprechende Knoten auf p′. Sei v ∈ G(w)

34

2.2 Normalisierung

ein beliebiger π-Knoten aus dem gemeinsamen Anfang von p und p′. Nach Wahl von v
stimmen p′ und l′ = p also vor v überein. Ist p′(v) ∈ N und p′(v) > 1, so gilt: Zunächst
ist l′(v) = p(v) = p′(v) ∈ N, insgesamt gilt:

0 ≤ p′(v)− l′(v) = p′(v)− p(v) = 0 ≤ 1.

Ist p′(v) ∈ −N und p′(v) < −1, so gilt weil (l, p, r) ∈ P̄ω+ω∗(w)

0 ≤ r′(v)− p′(v) = r(v)− p(v) ≤ 1.

Damit ist I. für alle Knoten auf dem gemeinsamen Anfang von p und p′ gezeigt. Sei v
nun ein π-Knoten auf p′ (echt) unterhalb von vp′ . Dort gilt p′(v) = 1, da sich sonst aus p′
ein bezüglich ≤ω+ω∗,w echt kleinerer Pfad p̃ über p̃(v) := 1 konstruieren ließe, was einen
Widerspruch zur Minimalität von p′ darstellt.

Für I. verbleibt nun nur noch zu zeigen, dass die Aussage auch an vp′ gilt. Nach Wahl
von vp′ stimmen p′ und l′ = p vor vp′ überein. Gilt vp ̸= vp′ und ist vp′ somit Kind eines
Konkatenationsknotens, so ist auch hier p′(vp′) = 1, falls es sich um einen π-Knoten
handelt, und somit nichts zu zeigen. Ist vp = vp′ und damit sicher ein π-Knoten, gilt es
die folgenden Fälle zu unterscheiden:

1. p(vp) ∈ N: Aufgrund der Minimalität von p′ ist p′(vp) = p(vp) + 1 ∈ N. Es gilt
l′(vp) = p(vp) ∈ N und 0 ≤ p′(vp)− l′(vp) = p(vp) + 1− p(vp) = 1 ≤ 1.

2. p(vp) ∈ −N: Da p′(vp) > p(vp) gelten muss, ist p(vp) < −1. Außerdem ist wieder
p′(vp) = p(vp) + 1. Ist p′(vp) = −1, so ist nichts zu zeigen. Ist p′(vp) < −1, so gilt
r′(vp) = r(vp) ∈ −N und 0 ≤ r′(vp) − p′(vp) = r(vp) − p(vp) − 1 ≤ 1 − 1 = 0 ≤ 1,
wegen (l, p, r) ∈ P̄ω+ω∗(w).

Um II. zu zeigen, sei nun v ∈ G(w) ein beliebiger π-Knoten. Gilt r′(v) = r(v) ∈ N
und r′(v) = r(v) > 1, so stimmt r = r′ vor v mit l und p = l′ überein; dies gilt wegen
(l, p, r) ∈ P̄ω+ω∗(w). Aufgrund der Zulässigkeit von (l′, p′, r′) muss r′ dort auch mit p′

übereinstimmen. Außerdem ist l(v) ∈ N, l′(v) = p(v) ∈ N und r(v)− l(v) ≤ 1. Damit ist

0 ≤ r′(v)− l′(v) = r(v)− p(v)︸︷︷︸
≥l(v)

≤ r(v)− l(v) ≤ 1

und somit direkt p′(v) ∈ N aufgrund der Zulässigkeit von (l′, p′, r′). Gilt l′(v) ∈ −N und
l′(v) < −1, so ist wegen l′(v) = p(v) und I. r′(v) = r(v) ∈ −N und 0 ≤ r′(v) − l′(v) =
r(v)−p(v) ≤ 1. Außerdem stimmt p = l′ vor v mit r = r′ überein. Die Übereinstimmung
vor v von l′ mit p′ und p′(v) ∈ −N folgt wieder aus der Zulässigkeit von (l′, p′, r′).

Man beachte, dass sich die Aussage des Lemmas folgendermaßen auffassen lässt: Ist r
ein Ranker beliebiger Länge und ωrc(±∞) = (l, p, r) definiert, so ist (l, p, r) ∈ Pω+ω∗

und damit (l, p, r) definiert.
Zusammen mit dem folgenden Lemma ergibt sich noch eine weitere Aussage darüber,

für welche Pfade die Normalisierung definiert ist.
Lemma: Sei (l, p, r) ∈ P̄ω+ω∗ . Dann ist auch (l, p, r) = (l̄, p̄, r̄) ∈ P̄ω+ω∗ .

35

2 Entscheidbarkeit

Beweis. Nach Lemma 12 ist (l̄, p̄, r̄) zulässig. Es ist also nur noch zu zeigen, dass (l̄, p̄, r̄)
die Eigenschaften I. und II. erfüllt. Ist p̄(v) ∈ N und p̄(v) > 1 an einem Knoten v, so
kann dies nach Definition der Normalisierung nur eintreten, wenn p(v)− l(v)+1 > 1 und
p(v) ∈ N \ {1} ist. Dann ist auch l(v) ∈ N und damit l̄(v) = 1 ∈ N. Also ist 0 ≤ p̄(v)−
l̄(v) = p(v)−l(v)+1−1 = p(v)−l(v) ≤ 1. Da p vor v mit l übereinstimmt und sich p̄ und
l̄ nach Lemma 12 am selben Knoten wie p und l zum ersten Mal unterscheiden, stimmt
auch p̄ vor v mit l̄ überein. Die gleiche Argumentation lässt sich auch für p̄(v) ∈ −N und
p̄(v) < −1 mit für l und r vertauschten Rollen anwenden. Damit ist die Gültigkeit von
I. gezeigt.

Gilt an einem Knoten v nun r̄(v) ∈ N und r̄(v) > 1, so ist dies nur über den Fall
r̄ = r(v)− l(v) + 1 bzw. r(v) ∈ N \ {1} möglich. Dann ist l(v) ∈ N und damit l̄(v) = 1.
Außerdem stimmt r vor v mit l und p überein. Nach Lemma 12 stimmen dort damit auch
l̄, p̄ und r̄ überein. Aufgrund der Zulässigkeit von (l̄, p̄, r̄) muss dann zudem p̄(v) ∈ N
gelten. Schließlich gilt auch 0 ≤ r̄(v)− l̄(v) = r(v)−l(v)+1−1 ≤ 1. Für l̄(v) ∈ −N\{−1}
gilt wieder der duale Beweis. Damit ist auch II. erfüllt.

Die Normalisierung ist also eine Abbildung von P̄ω+ω∗ nach P̄ω+ω∗ und außerdem wird
die Menge P̄ω+ω∗ durch Anwenden eines Rankers (egal ob von der Länge 1 oder länger)
nicht verlassen. Es ist also immer möglich das Ergebnis einer Ranker-Anwendung zu
normalisieren, sofern die Normalisierung bereits vor Anwendung des Ranker möglich
war.

2.2.3 Anwendung
Um die Normalisierung nutzbringend anwenden zu können sind zunächst noch einige
weitere Eigenschaften notwendig. Diese dienen dazu von unendlichen Wörtern der FormJwKω+ω∗ zu einem π-Term w auf endliche Wörter überzugehen.
Lemma: Sei (l, p, r) ∈ P̄ω+ω∗(w) für einen π-Term w über dem Alphabet Σ und sei
(l, p, r) = (l̄, p̄, r̄). Sei außerdem a ∈ Σ.
Es gilt:

JwKω+ω∗Xa
c(l, p, r) = (l′, p′, r′) ̸= ⊥ =⇒ JwK3+3∗Xa

c(l̄, p̄, r̄) = (l̄′, p̄′, r̄′) ̸= ⊥JwKω+ω∗Ya
c(l, p, r) = (l′, p′, r′) ̸= ⊥ =⇒ JwK3+3∗Ya

c(l̄, p̄, r̄) = (l̄′, p̄′, r̄′) ̸= ⊥

Beweis. Der Beweis der Aussage zu Ya erfolgt dual zu dem für die Aussage zu Xa.
Daher wird hier nur die Aussage zu Xa bewiesen. Dabei ist zunächst zu zeigen, dassJwK3+3∗Xa(p̄) definiert ist.

Betrachte dazu die nicht normalisierten Pfade p und p′. Sei vp der erste Knoten auf
p an dem sich diese Pfade unterscheiden und vp′ der entsprechende Knoten auf p′. Ist
vp = vp′ und damit ein π-Knoten, so muss p′(vp) = p(vp) + 1 gelten. Nach Definition
der Normalisierung kann p̄(vp) = −1 nicht auftreten: Dazu müsste entweder p(vp) = −1
oder p(vp) = r(vp) sein. In beiden Fällen könnte p′ bei vp nicht den Wert p(vp) + 1
annehmen. Definiere nun den Pfad p̃, der über die selben Knoten wie p′ verläuft. Vor
vp′ seien die Werte an den π-Knoten wie bei p̄, an vp′ = vp gelte p̃(vp) := p̄(vp) + 1

36

2.2 Normalisierung

und für einen π-Knoten v echt nach vp′ sei p̃(v) := 1. Da p̄(vp) ∈ {1, 2,−2} gilt, ist
p̃(vp) ∈ {2, 3,−1}. Damit ist p̃ ein (3 + 3∗)-Pfad in G(w) und nach Konstruktion gilt
p̃ >3+3∗,w p̄. Ist vp ̸= vp′ , so lässt sich ein ähnlicher Pfade definieren: p̃ verläuft dann
wieder über die selben Knoten wie p′; vor vp′ haben die π-Knoten die selben Werte wie
bei p̄ und für einen π-Knoten v nach vp′ gilt wieder p̃(v) := 1. Auch dann gilt p̃ >3+3∗,w p̄.
In beiden Fällen ist also die Menge {q : JwK3+3∗(q) = a und p̄ <3+3∗,w q} nicht leer und
damit JwK3+3∗Xa(p̄) definiert.

Sei also p̄′ := JwK3+3∗Xa(p̄) ̸= ⊥. Nach Definition ist p̄′ >3+3∗,w p̄. Für die Zulässigkeit
von (p̄, p̄′, r̄) bleibt nur noch zu zeigen, dass p̄′ ≤3+3∗,w p̃ <+∞

3+3∗,w r̄ gilt, was für r̄ = +∞
trivialerweise erfüllt ist. Sei also r ̸= +∞ und sei up der erste Knoten auf p an dem
sich p und r unterscheiden; der entsprechende Knoten auf r sei ur. Nach Lemma 12 ist
up auch der erste Knoten auf p̄, an dem sich p̄ und r̄ unterscheiden und ur auch der
entsprechende Knoten auf r̄. Liegt up (echt) vor vp auf p̄, so verhält sich dort p̃ nach
Konstruktion gleich wie p̄. Damit gilt aber schon p̃ <3+3∗,w r̄. Außerdem kann up nicht
(echt) nach vp auf p liegen, da sonst p′ <ω+ω∗,w r nicht erfüllt sein könnte. Es verbleibt
also nur noch den Fall up = vp zu betrachten.
a) Ist vp ̸= vp′ , so handelt sich dabei um das linke und das rechte Kind eines Konka-

tenationsknotens. Nach Wahl von up = vp muss p an diesem Konkatenationsknoten
noch mit r übereinstimmen, d. h. ur = vp′ muss gelten, da es keine andere Möglich-
keit für den weiteren Verlauf von r gibt. Sie nun w′ der π-Term, der sich durch den
Teilbaum von G(w) mit vp′ als Wurzel ergibt. Sei p′w′ der Teil von p′ der sich durch
Einschränkung auf Knoten aus G(w′) ergibt; der entsprechende Teil von r sei rw′ , der
von r̄ sei r̄w′ und der von p̃ sei schließlich p̃w′ . Nach Konstruktion von p̃, ist p̃w′ = p′w′ .
Aufgrund der Minimalität von p′ muss p′w′ = min≤ω+ω∗,w′{q ∈ Pω+ω∗(w′) : w′(p) = a}
gelten, da sich sonst auch ein bezüglich ≤ω+ω∗,w kleinerer Pfad konstruieren ließe.
Da p′ und r mindestens bis zu vp′ übereinstimmen, überträgt sich p′ <ω+ω∗,w r
– was aus der Zulässigkeit von (p, p′, r) folgt – auf den Teilbaum G(w′). Also gilt
p̃w′ = p′w′ <ω+ω∗,w′ rw′ . Betrachtet man nun die Definition der Normalisierung, so
gilt an einem beliebigen π-Knoten v in G(w): r(v) ∈ −N =⇒ r̄(v) = −1 ≥ r(v) und
r(v) = 1 =⇒ r̄(v) = 1 ≥ r(v). Der Fall r(v) ∈ N \ {1} kann für einen π-Knoten in
G(w′) nicht auftreten, da sonst nach Definition 1 r und p bis zu v übereinstimmen
müssten, was nach Wahl von ur = vp′ als Wurzel von G(w′) nicht möglich ist. Also
gilt rw′ ≤ω+ω∗,w′ r̄w′ . Insgesamt ist damit p̃w′ = p′w′ <ω+ω∗,w′ rw′ ≤ω+ω∗,w′ r̄w′ . Da
die Werte von p̃w′ und r̄w′ nicht kleiner als −3 oder größer als 3 sein können, gilt also
p̃w′ <3+3∗,w′ r̄w′ . Da p̃ und r̄ bis zu ur = vp′ gleich sind, überträgt sich die Aussage
vom Teilbaum auf ganz G(w), es gilt also p̃ <3+3∗,w r̄.

b) Ist vp = vp′ und damit ein π-Knoten, so kann zunächst die Situation auftreten, dass
up = vp = vp′ das linke und ur das rechte Kind eines Konkatenationsknotens darstellt.
Dann ist aber p̃ <3+3∗,w r̄ bereits erfüllt. Ansonsten muss ur = up = vp = vp′ gelten
und r verläuft über diesen Knoten. Nach Konstruktion ist p̃(vp) = p̄(vp) + 1 ≤3+3∗

r̄(vp). Falls sogar p̃(vp) <3+3∗ r̄(vp) gilt, ist nichts mehr zu zeigen. Ansonsten lässt
sich die selbe Argumentation wie eben über den Teilbaum von G(w) mit dem Kind
von vp als Wurzel anwenden.

37

2 Entscheidbarkeit

Lemma: Sei (l, p, r) ∈ P̄ω+ω∗(w) für einen π-Term w über dem Alphabet Σ und sei
(l, p, r) = (l̄, p̄, r̄). Sei außerdem a ∈ Σ.
Es gilt:

JwKω+ω∗Xa
c(l, p, r) = (l′, p′, r′) ̸= ⊥ ⇐= JwK3+3∗Xa

c(l̄, p̄, r̄) = (l̄′, p̄′, r̄′) ̸= ⊥JwKω+ω∗Ya
c(l, p, r) = (l′, p′, r′) ̸= ⊥ ⇐= JwK3+3∗Ya

c(l̄, p̄, r̄) = (l̄′, p̄′, r̄′) ̸= ⊥

Beweis. Wieder ist die Aussage für Ya dual zu der für Xa, weshalb auch hier auf einen
expliziten Beweis für Ya verzichtet werden soll.

Damit JwKω+ω∗Xa
c(l, p, r) definiert ist, muss zunächst JwKω+ω∗Xa(p) definiert sein. De-

finiere dazu den (ω + ω∗)-Pfad p̃ wie folgt: Er verläuft über die selben Knoten wie p̄′.
Sei vp̄ der erste Knoten auf p̄, an dem sich p̄ und p̄′ unterscheiden; sei vp̄′ der entspre-
chende Knoten auf p̄′. Für einen π-Knoten v auf p̃ (echt) vor vp̄′ sei p̃(v) := p(v). Ist
vp̄ = vp̄′ und damit ein π-Knoten, so definiert p̃(vp̄′) := p(vp̄′) + 1. An einen π-Knoten
echt nach vp̄′ oder an vp̄′ selbst, falls vp̄′ ̸= vp̄ ist, soll p̃ den Wert 1 haben. Nach Defini-
tion ist p̃ >ω+ω∗,w p und w(p̃) = a. Damit ist JwKω+ω∗Xa(p) = p′ definiert und außerdem
p <ω+ω∗,w p′.

Noch zu zeigen ist: p̃ <+∞
ω+ω∗,w r. Da nach Definition über das Minimum p′ ≤ω+ω∗,w p̃

gilt, wäre damit die Zulässigkeit von (p, p′, r) = (l′, p′, r′) gezeigt. Für r = +∞ ist nichts
mehr zu zeigen, sei also r ̸= +∞ und sei up der erste Knoten auf p, an dem sich p und
r unterscheiden; sei ur der entsprechende Knoten auf r. Nach Lemma 12 ist up auch
der erste Knoten auf p̄, an dem sich p̄ und r̄ unterscheiden; Entsprechendes gilt für ur.
Befindet sich up echt vor vp̄ auf p, so gilt p̃ <ω+ω∗,w r, weil sich p̃ dort wie p verhält und
p <ω+ω∗,w r aufgrund der Zulässigkeit von (l, p, r) gilt. Andererseits kann up nicht echt
nach vp̄ auf p̄ liegen, da sonst p̄′ >3+3∗,w r̄ wäre. Es ist nur noch der Fall up = vp̄ zu
betrachten.
a) Gilt vp̄ = vp̄′ und es handelt sich damit um einen π-Knoten, so muss erneut un-

terschieden werden: Ist vp̄ = up das linke Kind und ur das rechte Kind des selben
Konkatenationsknotens, so ist p̃ <ω+ω∗,w r erfüllt. Ist vp̄ = vp̄′ = up = ur, so ist
p̃(vp̄′) = p(vp̄) + 1 ≤ω+ω∗ r(ur), weil p(up) <ω+ω∗ r(ur) nach Wahl von up bzw.
ur gelten muss. Gilt bereits p̃(vp̄′) <ω+ω∗ r(ur), so ist nicht mehr zu zeigen. Ist
p̃(vp̄′) = r(ur), so sei w′ der π-Term, sodass G(w′) dem Unterbaum von G(w) mit
dem (einzigen) Kind von vp̄ als Wurzel entspricht. Schränkt man p̄′ auf Knoten aus
G(w′) zu p̄′w′ ein, so ist p̄′w′ wegen der Minimalität gleich der Einschränkung von p̃ auf
Knoten aus G(w′) zu p̃w′ . Für einen π-Knoten v auf dem gemeinsamen Anfang von p̄′

und r̄ in G(w′) gilt daher: r̄(v) = p̄′(v) = p̃(v) = 1. Damit r̄(v) = 1 für einen Knoten
v gilt, muss nach Definition der Normalisierung r(v) = 1 oder r(v) = l(v) ∈ N \ {1}
gelten. Der zweite Fall kann aber in G(w′) nicht auftreten, da nach Definition 1 sonst
r vor v mit p übereinstimmen müsste. Also gilt an solchen Knoten p̃(v) = 1 = r(v).
Ist p̄′ nun aufgrund einer Unterscheidung nach einem Konkatenationsknoten kleiner
als r̄, so gilt dies auch für p̃ und r und es ist nichts mehr zu zeigen. Unterscheiden sie
sich an einem π-Knoten v0, so gilt dort p̃(v0) = 1 = p̄′(v0) <3+3∗ r̄(v0). Damit muss
r(v0) ∈ −N sein, da sonst nach Definition der Normalisierung r(v0) ∈ N \ {1} gelten
müsste, was aber nicht möglich ist, wie oben ausgeführt ist. Also ist p̃(v0) <ω+ω∗ r(v0)

38

2.2 Normalisierung

und damit p̃ <ω+ω∗,w′ r und auch p̃ <ω+ω∗,w r.
b) Gilt vp̄ ̸= vp̄′ , so handelt es sich dabei um das linke und das rechte Kind des selben

Konkatenationsknotens. Da up = vp̄ gilt, bleibt für r̄ bzw. r keine andere Möglichkeit,
als dass ur = vp̄′ gilt. Nun lässt sich für den Unterbaum von G(w), dessen Wurzel ur
ist, die Argumentation von oben anwenden. Damit ist p̃ <ω+ω∗,w r.

Lemma 13: Sei (l, p, r) ∈ P̄ω+ω∗(w) für einen π-Term w über dem Alphabet Σ und sei
a ∈ Σ.
Es gilt:

JwKω+ω∗Xa
c(l, p, r) = JwK3+3∗Xa

c(l, p, r)

JwKω+ω∗Yac(l, p, r) = JwK3+3∗Yac(l, p, r)

Beweis. Nach den beiden vorangegangen Lemmata ist es unmöglich, dass eine der beiden
Seiten der Gleichungen definiert, die andere aber undefiniert ist. Interessant ist hier nur
der Fall, dass beide von ihnen definiert sind. Wieder wird hier aufgrund der Dualität nur
der Fall für Xa betrachtet.

Um einen besseren Überblick behalten zu können sollen die folgenden Bezeichnungen
gelten:

(l, p, r) = (l̄, p̄, r̄) JwK3+3∗Xa
c(l̄, p̄, r̄) = (l̄′, p̄′, r̄′)

(l̄′, p̄′, r̄′) = (¯̄l, ¯̄p, ¯̄r) JwKω+ω∗Xa
c(l, p, r) = (l′, p′, r′)

(l′, p′, r′) = (l̃, p̃, r̃)

Man beachte, dass nach Definition der kondensierten Ranker l′ = p, r′ = r, l̄′ = p̄ und
r̄′ = r̄ gilt. Es ist nun zu zeigen, dass ¯̄l = l̃, ¯̄p = p̃ und ¯̄r = r̃ gilt. Dabei kann angenommen
werden, dass ¯̄r ̸= +∞ und r̃ ̸= +∞ gilt. Ansonsten müsste r = +∞ und r̄ = +∞ gelten,
woraus die entsprechende Aussage sofort folgen würde.

Um dies zu zeigen ist jedoch zunächst eine andere Aussage hilfreich. Sei u0 der erste
Knoten auf p, an dem sich p und p′ unterscheiden; sei v0 der entsprechende Knoten
auf p′. Sei ū0 der erste Knoten auf p̄, an dem sich p̄ und p̄′ unterscheiden; sei v̄0 der
entsprechende Knoten auf p̄′. Nun gilt: p′ und p̄′ verlaufen über die selben Knoten und
es ist v0 = v̄0. Um dies einzusehen ist eine Fallunterscheidung notwendig. Liegt u0 vor ū0
auf p bzw. p̄, so lässt sich ein Pfad q konstruieren. Dieser verläuft über die selben Knoten
wie p̄′ und hat vor v̄0 die selben Werte wie p. Ist v̄0 = ū0 und damit ein π-Knoten, hat
q dort den Wert p(v̄0) + 1. Dies ist möglich, da p(v̄0) ̸= −1 sein muss. Andernfalls hätte
dort auch p̄ den Wert −1 und p̄′ könnte keinen größeren Wert haben. An den anderen
π-Knoten hat q den Wert 1. Damit ist p <ω+ω∗,w q <ω+ω∗ p′ und q endet in einem mit a
beschrifteten Knoten. Dies ist ein Widerspruch zu Minimalität von p′. Liegt ū0 vor v0,
lässt sich ein ähnlicher Pfade konstruieren, der im Widerspruch zur Minimalität von p̄′

steht. Dabei ist einzig zu beachten, dass für den Fall v0 = u0 nicht p̄(v0) = −1 gelten
kann. Sonst wäre dort p(v0) = −1 oder es würde p(v0) = r(v0) gelten, beides ist nicht
möglich, da sonst p′ keinen größeren Wert haben könnte. Also muss u0 = ū0 gelten. Der

39

2 Entscheidbarkeit

einzige Fall, in dem trotzdem v0 ̸= v̄0 gelten kann, ist der folgende: u0 = ū0 ist ein π-
Knoten und das linke Kind eines Konkatenationsknotens, dabei ist v0 oder v̄0 das andere
Kind und der verbleibende Knoten ist gleich zu u0. Man verifiziere, dass sich in diesem
Fall allerdings analog zu oben ein Pfad q im Widerspruch zur Minimalität von p′ oder p̄′
konstruieren lässt – die Konstruktion ist dabei sogar gleich. Es bleibt festzuhalten, dass
also v0 = v̄0 gelten muss. Da nach diesem Knoten beide Pfade, p′ und p̄′, an π-Knoten
nur noch den Wert 1 annehmen können, würde aus einem unterschiedlichen weiteren
Verlauf wieder ein Widerspruch zur Minimalität entstehen.

Damit verlaufen p′ und p̄′ über die selben Knoten, womit auch p̃ und ¯̄p über die selben
Knoten verlaufen. Leicht überlegt man sich, dass l̃ und ¯̄l sowie r̃ und ¯̄r ebenfalls jeweils
über die selben Knoten verlaufen. Es ist also nur noch zu zeigen, dass die Pfade in den
Werten übereinstimmen. Sei also v ein π-Knoten aus dem gemeinsamen Anfang von p
und p′. Wie bereits gezeigt ist v damit auch aus dem gemeinsamen Anfang von p̄ und p̄′.
Die Gleichheit ergibt sich durch Rechnungen in den einzelnen Fällen, dabei gilt jedoch
immer p(v) = p′(v) = l′(v) und p̄(v) = p̄′(v):
• p(v) = 1 bzw. = −1: Direkt aus der Definition ergibt sich p̃(v) = p̄(v) = ¯̄p(v) = l̃(v) =

¯̄l(v) = 1 bzw. = −1.
• p(v) ∈ N, p(v) > 1: Es ist p̃(v) = p′(v)−l′(v)+1 = p(v)−p(v)+1 = 1. Nach Definition

ist außerdem l̃(v) = ¯̄l(v) = 1. Schließlich ist p̄(v) = p(v) − l(v) + 1 ∈ N und es muss
unterschieden werden:

– p̄(v) = 1: ¯̄p(v) = 1.
– p̄(v) > 1: ¯̄p(v) = p̄′(v)− l̄′(v) + 1 = p̄(v)− p̄(v) + 1 = 1.

• p(v) ∈ −N, p(v) < −1: Es ist p̃(v) = p′(v) − r′(v) − 1 = p(v) − r(v) − 1 = p̄(v).
Unterscheide daher:

– p(v)− r(v)− 1 = −1: ¯̄p(v) = −1, l̃(v) = l′(v)− r′(v)− 1 = p(v)− r(v)− 1 = −1
und ¯̄l(v) = l̄′(v)− r̄′(v)− 1 = p̄(v)− r̄(v)− 1 = −1− (−1)− 1 = −1.

– p(v)− r(v)− 1 < −1: ¯̄p(v) = p̄′(v)− r̄′(v)− 1 = p(v)− r(v)− 1− r̄(v)− 1 = −1,
da nach Definition r̄(v) = −1, l̃(v) = −1 und ¯̄l(v) = −1.

Damit stimmen p̃ und ¯̄p, sowie l̃ und ¯̄l vor v0 überein. Nach v0 haben p̃ und ¯̄p ohnehin
überall den Wert 1. Ist v0 ̸= u0 ist damit für p̃ und ¯̄p nichts mehr zu zeigen. Ist v0 = u0
und damit ein π-Knoten, so gilt p′(v0) = p(v0) + 1 und p̄′(v0) = p̄(v0) + 1. Wieder ist
eine Rechnung in den einzelnen Fällen nötig:
• p(v0) ∈ N: Dann ist p′(v0), p̄

′(v0) > 1 und p̃(v0) = p′(v0) − l′(v0) + 1 = p(v0) + 1 −
p(v0) + 1 = 2, sowie ¯̄p(v0) = p̄′(v0)− l̄′(v0) + 1 = p̄(v0) + 1− p̄(v0) + 1 = 2. Ferner ist
l̃(v0) = 1 und ¯̄l(v0) = 1.

• p(v0) = −1: Dieser Fall tritt nicht auf.
• p(v0) = −2: Dann ist p′(v0) = −1 und auch p̃(v0) = −1. Man beachte, dass r(v0) > −2

und damit r(v0) = −1 gelten muss, also auch r̄(v0) = −1. Es ist p̄(v0) = p(v0)−r(v0)−
1 = −2 und somit p̄′(v0) = −1 und ¯̄p(v0) = −1. Schließlich ist l̃(v0) = l′(v0)−r′(v0)−
1 = p(v0)− r(v0)− 1 = −2 und ¯̄l(v0) = l̄′(v0)− r̄′(v0)− 1 = p̄(v0)− r̄(v0)− 1 = −2.

• p(v0) ∈ −N, p(v0) < −2: Es ist p′(v0) < −1 und r(v0) = p(v0) + 1, da sonst p′(v0)
größer als r(v0) wäre. Somit ist p̃(v0) = p′(v0) − r′(v0) − 1 = p(v0) + 1 − r(v0) −
1 = −1, p̄(v0) = p(v0) − r(v0) − 1 = −2 und p̄′(v0) = −1 = ¯̄p(v0). Schließlich gilt
l̃(v0) = l′(v0)− r′(v0)− 1 = p(v0)− r(v0)− 1 = −2 und ¯̄l(v0) = l̄′(v0)− r̄′(v0)− 1 =

40

2.2 Normalisierung

p̄(v0)− r̄(v0)− 1 = −2 + 1− 1 = −2.
Dies zeigt die Gleichheit von p̃ und ¯̄p. Für die Gleichheit von l̃ und ¯̄l fehlt nur noch
der Bereich nach u0 und an u0, falls u0 ̸= v0 aber trotzdem ein π-Knoten ist. Sei v aus
diesem Bereich auf l̃ bzw. ¯̄l bzw. p. Wieder sind einige Rechnungen notwendig.
• p(v) = 1 bzw. = −1: l̃(v) = p̄(v) = ¯̄l(v) = 1 bzw. = −1.
• p(v) ∈ N, p(v) > 1: Es ist l̃(v) = 1 und p̄(v) ∈ N. Nach Definition ist ¯̄l(v) = 1.
• p(v) ∈ −N, p(v) < −1: Es ist l̃(v) = l′(v) − r′(v) − 1 = p(v) − r(v) − 1 = p̄(v).

Unterscheide weiter:
– p̄(v) = −1: ¯̄l(v) = −1.
– p̄(v) < −1: Nach Definition 1 bleibt als einziger Wert p̄(v) = −2. Weil r(v) ∈ −N

ist, ist r̄(v) = −1. Also: ¯̄l(v) = l̄′(v)− r̄′(v)− 1 = p̄(v)− r̄(v)− 1 = −2.
Zum Abschluss des Beweises bleibt nur noch zu zeigen, dass die Werte von r̃ und ¯̄r

an den π-Knoten übereinstimmen. Sei dazu v ein π-Knoten aus r bzw. r̄. Ist r(v) = 1,
so ist r̄(v) = 1 = r̄′(v) = ¯̄r(v) = r′(v) = r̃(v). Ist r(v) ∈ −N, so ist r̄(v) = −1 =
r̄′(v) = ¯̄r(v) = r̃(v). Dies folgt jeweils direkt aus der Definition der Normalisierung. Ist
r(v) ∈ N und r(v) > 1, so bedarf es einer letzten Fallunterscheidung. Sets gilt jedoch
r̃(v) = r′(v) − l′(v) + 1 = r(v) − p(v) + 1 und r̄(v) = r(v) − l(v) + 1. Außerdem ist zu
beachten, dass l, p, und r vor v nach Definition 1 übereinstimmen müssen. Es ist also
l(v) ≤ p(v) ≤ r(v) und ohnehin r(v)− l(v) ∈ {0, 1}.
• r(v) = l(v): Dann ist sogar l(v) = p(v) = r(v), weil die Pfade vor v übereinstimmen

müssen. Damit ist r̃(v) = 1, r̄(v) = 1 und schließlich ¯̄r(v) = 1.
• r(v) = p(v) = l(v) + 1: Dann ist r̃(v) = 1, r̄(v) = 2 und p̄(v) = p(v) − l(v) + 1 = 2.

Also ist ¯̄r(v) = r̄′(v)− l̄′(v) + 1 = r̄(v)− p̄(v) = 1.
• r(v) = p(v) + 1 = l(v) + 1: Dann ist r̃(v) = 2 und (in beiden möglichen Fällen)

p̄(v) = 1. Also ist ¯̄p(v) = r̄(v)− p̄(v) = 2.

Nach diesen recht umfangreichen Vorarbeiten, ist es nun möglich das folgende Theorem
zu beweisen.
Theorem 4: Sei w eine π-Term über dem Alphabet Σ und sei r = Z1Z2 . . . Zn ein
fester Ranker mit Zi ∈ ZΣ für i = 1, 2, . . . , n. Es sei (l1, p1, r1) = 3Z1

c(±∞) und
(li+1, pi+1, ri+1) = 3Zi+1

c(li, pi, ri) für i = 1, 2 . . . , n − 1, falls die rechten Seiten defi-
niert sind. Ansonsten seien die Werte gleich ⊥.

Dann gilt:
ωrc(±∞) ̸= ⊥ ⇐⇒ (ln, pn, rn) ̸= ⊥

Beweis. Tatsächlich gilt sogar die folgende Aussage, die per Induktion gezeigt werden
soll:

ωrc(±∞) = (ln, pn, rn)

Man beachte, dass dies das Gewünschte zeigt.
Zunächst ist 3Z1

c(±∞) = ωZ1
c(±∞). Damit ist auch (l1, p1, r1) = 3Z1

c(±∞) =
ωZ1

c(±∞), was den Induktionsanfang bildet.

41

2 Entscheidbarkeit

Sei nun 1 ≤ i < n und ωZ1Z2 . . . Zi
c(±∞) = (li, pi, ri). Es ist mit Lemma 13:

ωZ1Z2 . . . ZiZi+1
c(±∞) = ωZi+1

c(ωZ1Z2 . . . Zi
c(±∞))

= 3Zi+1
c
(
ωZ1Z2 . . . Zi

c(±∞)
)

= 3Zi+1
c(li, pi, ri)

= (li+1, pi+1, ri+1)

Besonderes Augenmerk sollt auch darauf gerichtet werden, dass dies auch gilt, wenn eine
der beiden Seiten undefiniert bzw. = ⊥ ist.

Korollar: Sei m ≥ 1.
Das Wortproblem für π-Terme von Rm, das von Lm und das von Rm ∨ Lm ist ent-
scheidbar. Außerdem ist das Wortproblem für π-Terme von DA entscheidbar.

Beweis. Nach Theorem 3 reicht es zum Lösen des Wortproblems für π-Terme der Varie-
täten aus die beiden Eingabeterme auf Unterscheidbarkeit durch gewisse kondensierte
Ranker zu testen. Bezüglich der Definiertheit macht es nach Theorem 4 keinen Unter-
schied, ob Xc

a direkt angewendet wird oder ob erst normalisiert, dann Xc
a angewendet

und schließlich erneut normalisiert wird. Selbiges gilt natürlich auch für Y c
a . Nach der

Normalisierung sind die auftretenden Pfade stets (2 + 2∗)-Pfade, wovon es allerdings in
beiden Wörtern nur endlich viele gibt. Es lässt sich damit für jedes Wort ein (endlicher)
Graph konstruieren, dessen Knoten die möglichen Werte nach iterierter Anwendung ei-
nes kondensierten Rankers der Länge 1 und anschließender Normalisierung darstellen.
Die Kanten lassen sich mit dem jeweiligen Ranker beschriften. Anschließend muss nur
noch überprüft werden, ob es eine Abfolge von Rankern aus der zur Varietät gehören-
den Ranker-Menge gibt, so dass im einen Graphen ⊥, im anderen Graphen jedoch ein
definierter Wert erreicht wird.

42

3 Parallelisierbarkeit

Die Wortprobleme für π-Terme der Ecken und ∨-Ebenen der Trotter-Weil-Hierarchie,
sowie das von DA sind also entscheidbar. Doch wie effizient lassen sich diese Proble-
me lösen? Da sich weder Zeit- noch Platzkomplexität des am Ende des letzten Kapitels
skizzierten Algorithmus einfach bestimmen lassen, widmet sich dieses Kapitel der Ent-
wicklung eines Algorithmus für diese Probleme, der sich effizient parallel ausführen lässt.

Was dies genau bedeutet, klärt der erste Abschnitt dieses Kapitels. Gleichzeitig wird
das grobe Vorgehen erläutert. Der nächste Abschnitt geht anschließend genauer auf den
wichtigsten Punkt dieses Vorgehens ein und im letzten Abschnitt wird alles zu einem
Ganzen zusammengesetzt.

3.1 Zielsetzung und Grundgerüst
3.1.1 Zielsetzung
Oft wird „Nick’s Class“ NC als die Klasse der parallel effizient entscheidbaren Probleme
angesehen. Die Probleme in NC lassen sich durch einen Schaltkreis polynomieller Grö-
ße und mit polylogarithmischer Tiefe entscheiden.† Statt die Zugehörigkeit der Wort-
probleme für π-Terme der hier besprochenen Varietäten direkt – beispielsweise durch
Konstruktion der entsprechenden Schaltkreise – zu zeigen, soll hier ein anderer Weg ein-
geschlagen werden: Es sollen Algorithmen angegeben werden, die zur Zugehörigkeit der
Probleme zu NL führen. Da NL Teilmenge von NC ist (vgl. z. B. [18]), zeigt dies das
Gewünschte. Durch Determinierung der Algorithmen ergeben sich außerdem determi-
nistische Polynomialzeit-Algorithmen zur Lösung der Probleme.

3.1.2 Grundgerüst
Der NL-Algorithmus zur Entscheidung des Wortproblems für π-Terme einer Varietät V ∈
{DA,Rm,Lm,Rm ∨Lm : m ∈ N} geht folgendermaßen vor: Es sei Σ das gemeinsame
endliche Alphabet der beiden Eingabe-π-Terme u und v. Nach Theorem 3 gibt es eine
Menge von kondensierten Rankern, sodass u = v in V genau dann nicht gilt, wenn
ein kondensierter Ranker aus der Menge auf JuKω+ω∗ oder JvKω+ω∗ definiert, auf dem
jeweils anderen aber undefiniert ist. Um diese Unterscheidbarkeit zu prüfen wird zu
jedem der beiden π-Terme eine Konfiguration‡ gespeichert. Im Wesentlichen handelt es
sich dabei um ein normalisiertes Tripel von (3 + 3∗)-Pfaden in G(u) bzw. G(v). Am
Anfang ist dies für beide Terme ±∞. Nun wird schrittweise nichtdeterministisch ein

†Eine genaue Definition von NC findet sich z. B. in [18].
‡Diese Konfiguration ist nicht zu verwechseln mit der Konfiguration der Maschine selbst!

43

3 Parallelisierbarkeit

Element Z aus ZΣ geraten, sodass die Abfolge der auf diesem Berechnungspfad geratenen
Ranker ein Element aus der oben erwähnten Menge kondensierter Ranker ist. Nach
dem Raten wird JuK3+3∗Zc auf das durch die Konfiguration in u codierte Element aus
P̄ω+ω∗(u) angewendet. Das Ergebnis wird dabei direkt normalisiert und codiert. Das
Gleiche geschieht in jedem Schritt anschließend auch für v. Die Konfiguration codiert also
die Werte der (li, pi, ri) aus Theorem 4. Lässt sich nun aus den beiden Konfigurationen
schließen, dass die Anwendung des kondensierten Rankers bei u oder v definiert, beim
jeweils anderen aber undefiniert war, so bedeutet dies, dass sich JuKω+ω∗ und JvKω+ω∗

durch einen kondensierten Ranker aus der zu V gehörenden Menge unterscheiden lassen.
Der Ranker ergibt sich dabei aus dem Berechnungspfad der Maschine. In diesem Fall,
akzeptiert die Maschine. Kann kein weiterer Ranker geraten werden, bricht die Maschine
ohne Akzeptanz ab.

Die Maschine akzeptiert also genau dann, wenn u = v in V nicht gilt. Ziel ist es
nun zu zeigen, dass die Maschine nur logarithmisch viel Platz in der Eingabelänge be-
nötigt. Gelingt dies, so lässt sich nach Abschluss nichtdeterministischer Platzklassen
unter Komplement in NL entscheiden, ob u = v in V gilt. Zum Raten von Z wird ein
einzelnes Bit benötigt; betrachtet man Σ als Eingabe muss auch ein einzelner Buch-
stabe gespeichert werden, dies ist aber in logarithmischem Platz in der Größe von Σ
möglich. Für V ∈ {Rm,Lm,Rm ∨ Lm : m ∈ N} muss zudem die Anzahl der noch
möglichen Wechsel zwischen XΣ und YΣ gespeichert werden, dabei handelt es sich um
eine Zahl zwischen 0 und m. Sofern m nicht als Eingabe betrachtet wird, ist dafür nur
konstant viel Platz notwendig. Schließlich muss noch eine Möglichkeit gefunden werden
die Konfigurationen für u und v zu speichern. Dabei ist darauf zu achten, dass dies in
logarithmischen Platz erfolgt und dass sich die Nachfolgekonfiguration – also die Anwen-
dung eines kondensierten Rankers mit anschließender Normalisierung – ausrechnen lässt
ohne den logarithmisch beschränkten Platz zu verlassen. Tatsächlich bedarf dies jedoch
einer genaueren Betrachtung, die im nächsten Abschnitt erfolgt.

3.2 Effiziente Speicherung
3.2.1 Grundlegende Ideen
Die Speicherung der Konfigurationen für die beiden Eingabe-π-Terme kann unabhängig
von der jeweils anderen erfolgen ohne die Platzbedingung zu verletzten. Daher soll für
diesen Abschnitt ein π-Term w über dem Alphabet Σ fixiert werden. Die Ergebnisse zur
Speicherung der Konfiguration von w lassen sich dann später jeweils auf beide Terme
einzeln anwenden.

Bevor weitere Aussagen zur Speicherung der Konfiguration von w gemacht werden
können, muss zunächst geklärt werden, welche Information in ihr codiert werden muss:
Anfangs muss der Wert ±∞ gespeichert werden. Nach Anwendung eines Rankers und
Normalisierung ergibt sich dann ein normalisierter Wert aus P̄ω+ω∗(w) oder direkt ⊥. Da
weitere Möglichkeiten nicht auftreten, kann die Information, in welchem der drei Fälle
sich die Konfiguration befindet, in konstantem Platz gespeichert werden. Von weiterem
Interesse ist dann nur noch die Speicherung eines normalisierten Elements aus P̄ω+ω∗(w).

44

3.2 Effiziente Speicherung

Hierbei handelt es sich um ein Tripel (l, p, r), wobei l = −∞ und r = +∞ sein kann,
es sich ansonsten aber um (3 + 3∗)-Pfade in G(w) handelt. Problematisch ist dabei nur
die Speicherung der Werte an den π-Knoten im Syntax-Baum, da sich der Verlauf eines
Pfades durch ein Blatt speichern lässt. Bei den Blättern handelt es sich um Positionen
im π-Term w, die nur logarithmisch viel Platz in der Länge von w benötigen. Zunächst
wäre es nun denkbar, beispielsweise mithilfe eines zusätzlichen Bandes, unter jedem π

den Wert von l, p und r zu speichern. Obwohl die Werte nur aus {1, 2,−2,−1} stammen
können, würde dies jedoch bereits linear viel Speicher in der Länge von w benötigen, ist
also für die Zwecke hier ungeeignet.

Eine erste Idee zur Reduktion dieses Platzbedarfs liefert die folgende Beobachtung:
Verlaufen l, p und r am Anfang gemeinsam, so kann die Anwendung eines Rankers den
Wert von p an den π-Knoten auf diesem gemeinsamen Anfang nicht mehr verändern.
Ansonsten wäre die Zulässigkeit von (l, p, r) verletzt! Statt also die Werte an diesen π-
Knoten zu speichern, ist es ausreichend eine einzige Position in w zu speichern. Die mit π

beschrifteten Positionen rechts dieser Position können dann nicht mehr erreicht werden,
weil sich r links von ihnen befindet oder die Werte aller drei Pfade dort übereinstim-
men. Dies führt nun zwar zu einer Verringerung des Platzbedarfs, allerdings ist dieser
im schlechtesten Fall immer noch linear in der Länge von w; beispielsweise wenn kein
gemeinsamer Anfang existiert. Um auch eine asymptotische Verbesserung zu erzielen ist
also mehr notwendig.

3.2.2 Ein letztes Lemma
Um die Menge an Information, die gespeichert werden muss, zu reduzieren ist es hilf-
reich mehr Erkenntnisse über das Tripel (l, p, r) zu gewinnen. Dazu dient dieser Unter-
abschnitt, der zunächst mit einer Definition beginnt:
Definition: Sei (l, p, r) ∈ P̄ω+ω∗ und q ∈ {l, p, r}. Dann bezeichne δq(l, p, r) den ersten
Knoten auf q, an dem sich q von einem der beiden anderen Pfade unterscheidet.
Ferner heißt q in X-Form, falls für alle π-Knoten v auf q gilt: Liegt v nach δq(l, p, r)
und gilt q(v) ∈ N, so gilt q(u) ∈ N auch für alle π-Knoten u, die nach v auf q liegen.
Schließlich heißt q in Y -Form, falls für alle π-Knoten v auf q gilt: Liegt v nach δq(l, p, r)
und gilt q(v) ∈ −N, so gilt q(u) ∈ −N auch für alle π-Knoten u, die nach v auf q liegen.
Anschaulich ist ein Pfad also in X-Form, wenn nach dem ersten Knoten hinter dem
gemeinsamen Anfang der drei Pfade nach dem ersten Auftreten eines Wertes aus N alle
weiteren Werte ebenfalls aus N sind. Die Y -Form ist dazu symmetrisch: Nach dem ersten
Wert aus −N sind auch alle weiteren Werte aus −N. Man beachte, dass nach Lemma 12
X- und Y -Form durch eine mögliche Normalisierung erhalten bleiben!
Lemma 14: Sei w ein beliebiger π-Term über Σ und r = Z1Z2 . . . Zn ein Ranker. De-
finiere (l1, p1, r1) := JwK3+3∗Z1

c(±∞) und (li+1, pi+1, ri+1) := JwK3+3∗Zi+1
c(li, pi, ri) für

i = 1, 2, . . . , n− 1. Für alle i ∈ {1, 2, . . . , n} mit (li, pi, ri) ̸= ⊥ gilt:
• li = −∞ oder li ist in X- oder in Y -Form,
• ri = +∞ oder ri ist in X- oder in Y -Form und
• pi ist in X-Form und alle π-Knoten auf pi nach δpi(li) haben Werte aus N oder pi

ist in Y -Form und alle π-Knoten auf pi nach δpi(ri) haben Werte aus −N.

45

3 Parallelisierbarkeit

Beweis. Ohne Einschränkung sei (li, pi, ri) ̸= ⊥ für alle i = 1, 2, . . . , n. Für (l1, p1, r1)
gilt die Aussage direkt, da l1 = −∞, r1 = +∞ und p1 an den π-Knoten überall den
Wert 1 oder überall den Wert −1 hat.

Sei die Aussage nun für (li, pi, ri) gezeigt. Definiere die Bezeichnungen:

(l, p, r) = (li, pi, ri) (l′, p′, r′) = JwK3+3∗Zi+1
c(l, p, r)

Außerdem sei vp = δp(p
′) und vp′ = δp′(p). Der Fall Zi+1 ∈ YΣ verhält sich wieder dual

zum hier besprochenen Fall Zi+1 ∈ XΣ, in dem r′ = r gilt und damit für r′ nichts mehr
zu zeigen ist. Zunächst sei dabei p in X-Form und es gelte p(v) ∈ N für alle π-Knoten v
auf p nach δp(l). Für vp ̸= vp′ hat p′ an π-Knoten ab vp′ den Wert 1. Damit ist p′ in X-
Form und auch die Zusatzbedingung ist erfüllt. Zudem ist l′ = p nach Voraussetzung in
X-Form. Ist vp = vp′ , so handelt es sich um einen π-Knoten und es gilt p′(vp) = p(vp)+1.
Nach vp hat p′ an allen π-Knoten den Wert 1. Es verbleibt damit nur noch zu zeigen,
dass p′ in X-Form ist. Für p(vp) ∈ N und damit auch p′(vp) ∈ N ist demnach nichts
mehr zu zeigen. Sei also p(vp) ∈ −N. Da p′(vp) = p(vp) + 1 gilt, muss p(vp) < −1 sein.
Nach Definition 1 ist dann vp = δp(r). Vor vp stimmen p, p′ und r also überein, womit
δp′(l

′, p′, r′) = vp ist. Da p′ an π-Knoten nach vp überall den Wert 1 hat, ist p′ somit in
X-Form.

Nun sei p in Y -Form und es gelte p(v) ∈ −N für alle π-Knoten v auf p nach δp(r) =: vr.
Läge vp echt vor vr, so wäre p′ >ω+ω∗,w r = r′. Da dies nicht möglich ist, kann vp
nur nach vr auf p liegen oder es gilt vp = vr. Liegt vp echt vor vr, so kann der Fall
vp = vp′ nicht mehr auftreten: Es müsste dann p(vp) ∈ −N sein und außerdem wegen
p′(vp) = p(vp) + 1 auch p(vp) < −1 gelten. Nach Definition 1 wäre dann aber vp = vr.
Also hat p′ zunächst die selben Werte wie p, aber ab vp′ tritt an π-Knoten nur noch der
Wert 1 auf. Also ist p′ in X-Form und auch die Zusatzbedingung ist erfüllt. Gilt vp = vr,
so ist δp′(l′, p′, r′) = vp′ . Da nach vp′ nur noch 1 als Wert an π-Knoten auf p′ auftritt, ist
p′ in X-Form und auch die Zusatzbedingung ist erfüllt. Schließlich ist l′ = p in Y -Form.

Die gewünschten Eigenschaften gelten also für l′, p′ und r′. Da sie durch die Normali-
sierung erhalten bleiben, gelten sie damit auch für li+1, pi+1 und ri+1.

Was bedeutet dies nun für die Speicherung von (li, pi, ri)? Wie bereits gesehen, müssen
die Werte eines Pfades q ∈ {li, pi, ri} an den π-Knoten vor δq(li, pi, ri) nicht gespeichert
werden. Nach δq(li, pi, ri) kann jedoch nur ein einziger Wechsel von Werten aus N zu
Werten aus −N oder umgekehrt erfolgen. Kombiniert man dies mit den Forderungen aus
Definition 1 und der Definition der Normalisierung, so ergibt sich Folgendes: li kann an
π-Knoten nur Werte aus {1,−1,−2} annehmen und ri nur welche aus {1, 2,−1}. Zudem
Kann der Wert −2 für li nur bei δli(li, pi, ri) auftreten und der Wert 2 für ri nur bei
δri(li, pi, ri). Ebenso ist der Wert 2 auf pi dem Knoten δpi(li) und der Wert −2 dem
Knoten δpi(ri) vorbehalten. Dies bedeutet jedoch beispielsweise nicht, dass pi(δpi(li)) ̸=
−2 sein muss! Dies liegt daran, dass δpi(li) = δpi(ri) sein kann. Die Werte an den anderen
Knoten sind 1 oder −1. Somit reicht es für diese Knoten aus die Form des Pfades zu
speichern. Für den Rest muss nur eine konstante Anzahl an Knoten mit den zugehörigen
Werten gespeichert werden.

46

3.2 Effiziente Speicherung

3.2.3 Die Konfiguration im Detail
Der letzte Unterabschnitt hat gezeigt, dass sich ein normalisiertes Element (l, p, r) aus
P̄ω+ω∗(w) in logarithmischem Platz speichern lässt. Dieser Unterabschnitt führt dies
genauer aus und geht auch darauf ein, wie sich aus den gespeicherten Werten die Nach-
folgekonfiguration errechnen lässt. Die folgende Tabelle fasst die Variablen zusammen,
die dazu verwendet werden (l, p, r) zu speichern. Man beachte, dass diese tatsächlich im
verfügbaren Platz gespeichert werden können.

Name Verwendung Werte Größe
start Ende des gemeinsamen An-

fangs von l, p und r;
für π-Positionen links die-
ses Werts können die Werte
aller drei Pfade berechnet
werden; codiert im Wesent-
lichen δl(l, p, r), δp(l, p, r)
und δr(l, p, r)

Positionen in w und ⊥ O(log |w|)

l_form Form von l nach δl(l, p, r) X,Y,−∞ O(1)
p_form Form von p nach δp(l, p, r) X,Y O(1)
r_form Form von r nach δr(l, p, r) X,Y,+∞ O(1)
l_leaf Ende von l Positionen in w und ⊥ O(log |w|)
p_leaf Ende von p Positionen in w O(log |w|)
r_leaf Ende von r Positionen in w und ⊥ O(log |w|)
delta_l Position von δl(l, p, r), falls

dies ein π-Knoten ist
π-Position in w oder ⊥ O(log |w|)

delta_l_value Wert von l an δl(l, p, r) 1,−1,−2 O(1)
delta_pl Position von δp(l), falls dies

ein π-Knoten ist
π-Position in w oder ⊥ O(log |w|)

delta_pl_value Wert von p an δp(l) 1, 2,−1,−2 O(1)
delta_pr Position von δp(r), falls dies

ein π-Knoten ist
π-Position in w oder ⊥ O(log |w|)

delta_pr_value Wert von p an δp(r) 1, 2,−1,−2 O(1)
delta_r Position von δr(l, p, r), falls

dies ein π-Knoten ist
π-Position in w oder ⊥ O(log |w|)

delta_r_value Wert von r an δr(l, p, r) 1, 2,−1 O(1)
l_switch Position auf l, an der ein

Wechseln von Werten aus N
zu Werten aus −N oder um-
gekehrt stattfindet

π-Position in w oder ⊥ O(log |w|)

47

3 Parallelisierbarkeit

Name Verwendung Werte Größe
p_switch Position auf p, an der ein

Wechseln von Werten aus N
zu Werten aus −N oder um-
gekehrt stattfindet

π-Position in w oder ⊥ O(log |w|)

r_switch Position auf r, an der ein
Wechseln von Werten aus N
zu Werten aus −N oder um-
gekehrt stattfindet

π-Position in w oder ⊥ O(log |w|)

Als Nächstes ist zu klären, ob aus diesen Werten die Werte der drei Pfade an den
π-Knoten rekonstruiert werden können. Zunächst ist dabei festzuhalten, dass in loga-
rithmischem Platz entschieden werden kann, ob ein Pfad, der nur über eine Position
in w gegeben ist, über einen bestimmten π-Knoten verläuft. Es ist hierbei nämlich nur
notwendig zu überprüfen, ob sich die Blattposition in w zwischen den zum π-Knoten
gehörenden Klammern befindet. Dies ist möglich, indem die Zahl der öffnenden und
schließenden Klammer gezählt wird. Es muss also nur eine durch |w| beschränkte Zahl
gespeichert werden, was durch Binärkodierung in logarithmischem Platz möglich ist.
Um nun beispielsweise den Wert von p an einem π-Knoten, der durch die zugehörige
π-Position in w gegeben ist, zu berechnen muss zunächst überprüft werden, ob p über
den Knoten verläuft. Ist dies nicht der Fall, kann direkt ⊥ zurück gegeben werden. Ist
dies der Fall, aber der Knoten liegt auf dem gemeinsamen Anfang von (l, p, r), also nicht
links von start, so ist eine Bestimmung des Wertes nicht möglich. Wie oben aufgeführt
ist dies allerdings auch nicht notwendig, es kann also sichergestellt werden, dass die Rou-
tine zur Bestimmung des Wertes von p nie für einen solchen Knoten aufgerufen wird.
Für Knoten zu π-Positionen links von start wird zunächst verglichen, ob es sich um den
in delta_pl oder delta_pr gespeicherten Knoten handelt. Ist dies der Fall, kann der
gespeicherte Wert gelesen werden. Ist dies nicht der Fall, muss unterschieden werden:
Hat p_form den Wert „X“ und p_switch liegt nach dem fraglichen Knoten auf p oder
ist undefiniert, so ist nach Lemma 14 der gesuchte Wert −1. Nach oder an p_switch
ist der Wert 1 und für p_form = Y sind die Werte vertauscht. Die Algorithmen zur
Bestimmung der Werte von l und r verlaufen analog. Hierbei sind nur die speziellen
Werte −∞ und +∞ zu beachten, es kann allerdings wieder an anderer Stelle verhindert
werden, dass die Routinen für diese Spezialfälle aufgerufen werden.

Um den Gesamtalgorithmus zu vervollständigen bleibt nur noch zu erörtern, dass sich
die Nachfolgekonfiguration in der oben angegebenen Form in logarithmischem Platz
ausrechnen lässt. Die Nachfolgekonfiguration muss dabei ein normalisiertes Element
(l′, p′, r′) aus P̄ω+ω∗(w) codieren, dass durch Anwendung eines Rankers Xa oder Ya
und anschließender Normalisierung aus der aktuellen Konfiguration hervorgeht. Für den
Spezialfall, dass die aktuelle Konfiguration den Wert ±∞ codiert, ist dies recht einfach,
schließlich muss nur das erste bzw. letzte a in w gesucht werden. Gibt es kein a in w,
kann ⊥ zurückgegeben werden. Ansonsten kann l′ = −∞ und r′ = +∞ direkt in der für
die Form der beiden Pfade vorgesehenen Variablen gespeichert werden. Da p′ entweder

48

3.2 Effiziente Speicherung

an allen π-Knoten den Wert 1 oder an allen den Wert −1 hat, kann auch dies einfach
in p_form gespeichert werden. Codiert die aktuelle Konfiguration hingegen das normali-
sierte Element (l, p, r) aus P̄ω+ω∗(w) bedeutet dies größeren Aufwand. Da das Vorgehen
für Ya ähnlich zu dem für Xa ist, wird hier nur letzteres genauer besprochen. Zunächst
werden die folgenden Hilfsvariablen benötigt:

Name Verwendung Werte Größe
cur_leaf Blatt, an dem der aktuell betrach-

tete Pfad endet
Positionen in w O(log |w|)

branching π-Position, an der sich der aktu-
elle Pfad zum ersten Mal von p
unterscheidet

π-Position in w oder ⊥ O(log |w|)

Es ist anzumerken, dass diese Variablen alle wieder in logarithmischem Platz gespeichert
werden können.

Der Algorithmus soll nun zunächst durch Pseudocode skizziert werden:
cur_leaf ← p_leaf
branching ← ⊥
while true do

cur_leaf ← cur_leaf + 1
if cur_leaf > |w| or cur_leaf ≥ start or pathNotSmallerThanR then

return ⊥
end if
if w(cur_leaf) = ”)” and w(cur_leaf + 1) = ”π” then

if branching = cur_leaf then ◃ Klammer zum zweiten Mal erreicht?
branching← ⊥

else if cur_leaf ≥ start then ◃ π-Position im gemeinsamen Anfang?
return ⊥

else if branching = ⊥ and isOnP(cur_leaf) and p(cur_leaf) ̸= −1 then
◃ Klammer von vorne testen?

branching← cur_leaf
cur_leaf← matchingLeft(cur_leaf)

end if
else if w(cur_leaf) = a then

break
end if

end while
Berechne und speichere neue Konfiguration ◃ Hier ist stets w(cur_leaf) = a

Verbal beschrieben ist das Vorgehen das folgende: Beginne beim Ende von p und gehe
schrittweise in w jeweils einen Buchstaben nach rechts. Diese Position wird in cur_leaf
gespeichert und definiert den Verlauf des aktuellen Pfades. Wird ein a gefunden, so ist
dies das nächste und damit das Ende von p′. Wird die Buchstaben-Kombination)π ge-
funden, so muss – falls p an dieser Stelle nicht den Wert −1 hat – an der zugehörigen

49

3 Parallelisierbarkeit

linken Klammer weiter gesucht werden. Hier kommt die Variable branching ins Spiel:
Sie speichert die Position dieser Abzweigung. Dies geschieht zum einen um eine Endlos-
schleife zu verhindern und zum anderen um die Werte des aktuellen Pfades an einem
π-Knoten v, über den der aktuelle Pfad verläuft, zu bestimmen. Verläuft p nicht über v
ist dies stets der Wert 1. Ist v der Knoten zu der in branching gespeicherten π-Position,
so ist der Wert p(v)+1. Liegt v auf p oberhalb vom zu branching gehörenden π-Knoten
oder ist branching = ⊥, ist der Wert gleich p(v); unterhalb ist es wiederum 1. Aus den
beiden Hilfsvariablen lässt sich also ohne Verlassen des logarithmischen Platzes der Wert
des aktuellen Pfades an allen Knoten zu den π-Positionen links von start bestimmten.
Dies ist insbesondere nötig um die Routine pathNotSmallerThanR zu implementie-
ren. Diese soll sicherstellen, dass der aktuelle Pfad immer kleiner als r ist. Dazu muss
von rechts nach links beginnend bei start für alle π-Positionen überprüft werden, dass,
sofern r und der aktuelle Pfade beide über den zugehörigen π-Knoten verlaufen, die
Werte des aktuellen Pfades nicht größer als die von r sind. Sind sie stets gleich, so muss
zudem überprüft werden, ob cur_leaf links von r_leaf liegt. All dies ist jedoch in
logarithmischem Platz möglich.

Einen letzten Punkt beschreibt der Pseudocode nur unzureichend, nämlich wie die
Nachfolgekonfiguration tatsächlich ausgerechnet wird. Hierzu kann zunächst der neue
Wert für start ausgerechnet werden: Ähnlich wie in pathNotSmallerThanR wird
von rechts nach links an allen π-Positionen überprüft, ob es einen Unterschied in den
Werten von l′, p′ und r′ gibt. Anschließend kann start auf die π-Positionen zum letz-
ten übereinstimmenden π-Knoten gesetzt werden. Ähnlich können auch die Werte für
delta_l, delta_pl, delta_pr und delta_r, sowie für die zugehörigen delta_∗_value-
Variablen ermittelt werden. Wichtig ist hierbei einzig, dass der normalisierte Wert ge-
speichert wird, dieser lässt sich allerdings direkt ausrechnen. Die Form der Pfade und die
Position eines eventuellen Wechsels der Werte zwischen N und −N kann ebenfalls durch
einfaches Ablaufen der Pfade bestimmt werden, womit alle Variablen der Konfiguration
abgehandelt sind.

Zum Ende des Unterabschnitts zur Berechnung der Nachfolgekonfigurationen sei noch
Folgendes explizit hervorgehoben: Die Berechnung der Nachfolgekonfiguration benötigt
den Nichtdeterminismus nicht; sie erfolgt also deterministisch in logarithmischem Platz!

3.3 Zusammensetzen der Bausteine
Der deterministische Algorithmus zur Berechnung der Nachfolgekonfigurationen lässt
sich nun in das beschriebene nichtdeterministische Grundgerüst einsetzen und liefert so
einen NL-Algorithmus zur Entscheidung, ob u = v in V mit V ∈ {DA,Rm,Lm,Rm ∨
Lm : m ∈ N} gilt. Da es sich hierbei um das zentrale Ergebnis dieser Arbeit handelt,
soll es abschließend durch ein Theorem gewürdigt werden:
Theorem: Für alle m ∈ N lässt sich das Wortproblem für π-Terme von Rm, von Lm

und von Rm ∨Lm durch einen nichtdeterministischen Algorithmus entscheiden, dessen
Platzbedarf in

O (log |u|+ log |v|+ log |Σ|+ logm)

50

3.3 Zusammensetzen der Bausteine

liegt, wobei u und v die beiden Eingabe-π-Terme über dem gemeinsamen Alphabet Σ
sind.
Das Wortproblem für π-Terme von DA lässt sich ebenso durch einen nichtdeterministi-
schen Algorithmus mit Platzbedarf in

O (log |u|+ log |v|+ log |Σ|)

entscheiden. Auch hier bezeichnen u und v die beiden Eingabe-π-Terme.

51

4 Ausblick und Zusammenfassung

4.1 Ausblick

Bisher wurden nur die Wortprobleme für π-Terme der Ecken und ∨-Ebenen der Trotter-
Weil-Hierarchie untersucht. Dies war zwar ausreichend um auch eine Aussage über das
Wortproblem für π-Terme von DA zu machen, es drängt sich aber die Frage nach der
Entscheidbarkeit und ggf. der Komplexität der Wortprobleme für π-Terme der ∩-Ebenen
auf. Das Hauptproblem hierbei ist, dass sich diese nicht durch kondensierte Ranker
beschreiben lassen, sondern eine andere Form von Rankern benötigen†. Daher lassen
sich die Ergebnisse nicht direkt übertragen und die Idee der Normalisierung müsste
entsprechend adaptiert werden.

Eine andere Frage ist die, ob sich die besprochenen Wortprobleme für π-Terme so-
gar in einer noch kleineren Komplexitätsklasse befinden oder ob sie auf der anderen
Seite möglicherweise NL-vollständig sind. In diesem Zusammenhang ist auch die folgen-
de Überlegung interessant: Es ist möglich die Nachfolgekonfiguration deterministisch in
logarithmischem Platz auszurechnen. Möglicherweise ist es auf ähnliche Weise auch mög-
lich den Graphen, wie er im skizzierten Algorithmus am Ende von Kapitel 2 angedeutet
ist, deterministisch in logarithmischem Platz auszurechnen. Dies käme einer Redukti-
on der Probleme auf das Problem der Äquivalenz endlicher deterministischer Automa-
ten sehr nahe, was weitere Einblicke in die Vollständigkeit des Problems für bestimmte
Komplexitätsklassen erlauben würde. Hier würde sich auch die Frage anschließen, welche
Komplexität die Konstruktion des Graphen genau besitzt.

Außerdem wäre es auch wünschenswert die vorgestellten Beweise zu vereinfachen. Hier
scheint Potential zu bestehen, da sich insbesondere bei den vor allem auf Rechnungen
basierenden Beweisen viele argumentative Überlappungen feststellen lassen.

Eine weitere Verbesserungsmöglichkeit findet sich beim Algorithmus aus Kapitel 3.
Wäre es hier möglich die auftretenden Konstanten zu verkleinern, so würde dies direkt zu
einem effizienteren deterministischen Polynomialzeitalgorithmus führen. Möglicherweise
wäre es so sogar möglich einen effizienteren Algorithmus als den in [10] beschriebenen
zu finden und das dortige Ergebnis weitestgehend zu subsumieren. Betrachtet man die
Tabellen über die zur Speicherung einer Konfiguration nötigen Variablen, wird schnell
deutlich, dass hier einige Optimierungen möglich sind.

†Diese Form der Ranker heißt in [7] Weis-Immerman-Ranker

53

4 Ausblick und Zusammenfassung

4.2 Zusammenfassung
Nach der Einführung wichtiger Grundbegriffe im ersten Kapitel ist es gelungen das Kon-
zept der Interpretation von π-Potenzen in π-Termen durch lineare Ordnungstypen mit
dem Konzept der Ranker und kondensierten Ranker zu vereinbaren. Dies führte darauf,
dass sich die Gültigkeit einer Gleichung in den Ecken und ∨-Ebenen der Trotter-Weil-
Hierarchie auf die Unterscheidbarkeit der involvierten π-Terme durch gewisse kondensier-
te Ranker zurückführen lässt. Im Wesentlichen bedeutet dieses Ergebnis die Übertragung
des Zusammenhangs zwischen Rankern und den Varietäten der Trotter-Weil-Hierarchie
auf π-Terme und damit ins Unendliche. Daraus ergab sich direkt eine entsprechende
Aussage für die Varietät DA.

Der nächste Schritt auf dem Weg zur Entscheidbarkeit des Wortproblems für π-Terme
der besprochenen Varietäten war die Definition einer Normalisierung eines Tripels auf
(ω + ω∗)-Pfaden, die nach Ergebnissen aus dem ersten Kapitel den Positionen in dem
verallgemeinerten Wort entsprechen, das durch Einsetzen des linearen Ordnungstyps
ω + ω∗ für die π-Potenzen eines π-Terms entsteht. Dies erlaubte die Beschränkung auf
eine begrenzte Menge möglicher Werte und damit den Schritt zurück ins Endliche, was
letztlich zum Beweis der Entscheidbarkeit und der Skizzierung eines entsprechenden
Algorithmus führte.

Anschließend wurden logarithmisch im Platz beschränkte nichtdeterministische Algo-
rithmen zur Entscheidung der Wortprobleme für π-Terme der Ecken und ∨-Ebenen der
Trotter-Weil-Hierarchie sowie von DA präsentiert. Entscheidend dabei war die effizi-
ente Speicherung eines normalisierten Tripels von (ω + ω∗)-Pfaden, die gleichzeitig das
Ausrechnen einer Nachfolgekonfiguration in logarithmischem Platz erlaubt. Dies zeigte
die Zugehörigkeit der Probleme zu NL und verbesserte damit hinsichtlich der Kom-
plexitätsklasse ein aus [10] bereits bekanntes Ergebnis über die Entscheidbarkeit des
Wortproblems für π-Terme von DA durch einen deterministischen Polynomialzeitalgo-
rithmus.

54

Literatur
[1] Jorge Almeida und Marc Zeitoun. „An automata-theoretic approach to the word

problem for ω-terms over R“. In: Theoretical Computer Science 370.1 (2007),
S. 131–169.

[2] Jorge Almeida und Marc Zeitoun. „The equational theory of ω-terms for finite R-
trivial semigroups“. In: Proceedings of the Workshop Semigroups and Languages.
World Scientific, 2004.

[3] Volker Diekert, Paul Gastin und Manfred Kufleitner. „A survey on small fragments
of first-order logic over finite words“. In: International Journal of Foundations of
Computer Science 19.03 (2008), S. 513–548.

[4] John M. Howie. Fundamentals of Semigroup Theory. Oxford: Clarendon Press,
1995, X, 351 S. isbn: 0-19-851194-9.

[5] Martin Huschenbett und Manfred Kufleitner. „Ehrenfeucht-Fraissé games on ome-
ga-terms“. In: 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014). Hrsg. von Ernst W. Mayr und Natacha Portier. Bd. 25.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, S. 374–385. isbn: 978-3-
939897-65-1.

[6] Neil Immerman. „Nondeterministic space is closed under complementation“. In:
SIAM Journal on computing 17.5 (1988), S. 935–938.

[7] Manfred Kufleitner. „The Trotter-Weil Hierarchy“. Habilitation. Univeristät Stutt-
gart, 2013.

[8] Manfred Kufleitner und Pascal Weil. „On logical hierarchies within FO2-definable
languages“. In: Logical Methods in Computer Science 8.3:11 (2012), S. 1–30.

[9] Kamal Lodaya, Paritosh K. Pandya und Simoni S. Shah. „Marking the chops: An
unambiguous temporal logic“. In: Fifth IFIP International Conference On Theore-
tical Computer Science – TCS 2008. Hrsg. von Giorgio Ausiello u. a. Bd. 273. IFIP
International Federation for Information Processing. Springer US, 2008, S. 461–
476. isbn: 978-0-387-09679-7.

[10] Ana Moura. „The word problem for ω-terms over DA“. In: Theoretical Computer
Science 412.46 (2011), S. 6556–6569.

[11] Dominique Perrin und Jean-Éric Pin. Infinite Words. Automata, Semigroups, Logic
and Games. Bd. 141. Pure and Applied Mathematics. Academic Press, 2004. isbn:
978-0-12-532111-2.

55

Literatur

[12] Jean-Éric Pin. Varieties of Formal Languages. Aus dem Französischen übers. von
A. Howie. North Oxford Academic Publishers Ltd, 1986. isbn: 0-946536-12-0.

[13] Joseph G. Rosenstein. Linear Orderings. Bd. 98. Academic press, 1982.
[14] Thomas Schwentick, Denis Thérien und Heribert Vollmer. „Partially-ordered two-

way automata: A new characterization of DA“. In: Developments in Language
Theory. Springer. 2002, S. 239–250.

[15] Róbert Szelepcsényi. „The method of forced enumeration for nondeterministic au-
tomata“. In: Acta Informatica 26.3 (1988), S. 279–284.

[16] Denis Thérien und Thomas Wilke. „Over words, two variables are as powerful as
one quantifier alternation“. In: Proceedings of the Thirtieth Annual ACM Sympo-
sium on Theory of Computing. ACM. 1998, S. 234–240.

[17] Peter Trotter und Pascal Weil. „The lattice of pseudovarieties of idempotent semi-
groups and a non-regular analogue“. In: Algebra Universalis 37.4 (1997), S. 491–
526.

[18] Heribert Vollmer. Introduction to Circuit Complexity. A Uniform Approach. Sprin-
ger, 1999. isbn: 3-540-64310-9.

[19] Philipp Weis und Neil Immerman. „Structure theorem and strict alternation hier-
archy for FO2 on words“. In: Logical Methods in Computer Science 5 (2009), S. 1–
23.

56

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen
Werken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

(Jan Philipp Wächter)

	Über diese Arbeit
	Einführung
	Grundlagen
	Funktionen und Notationen
	Halbgruppen und Varietäten
	Graphen und Bäume
	Turing-Maschinen und Komplexitätsklassen
	Ordnungen und Ordnungstypen
	Wörter

	Pi-Terme und Gleichungen
	Pi-Terme
	Gleichungen

	Ranker und die Trotter-Weil-Hierarchie
	Ranker
	Die Trotter-Weil-Hierarchie

	Entscheidbarkeit
	Ranker und Pi-Terme
	Technische Hilfsmittel
	Ranker und Gleichungen

	Normalisierung
	Definition
	Eigenschaften
	Anwendung

	Parallelisierbarkeit
	Zielsetzung und Grundgerüst
	Zielsetzung
	Grundgerüst

	Effiziente Speicherung
	Grundlegende Ideen
	Ein letztes Lemma
	Die Konfiguration im Detail

	Zusammensetzen der Bausteine

	Ausblick und Zusammenfassung
	Ausblick
	Zusammenfassung

