Institut fir Visualisierung und Interaktive Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3611

Entwicklung einer Architektur far
das Betriebssystem von
intelligenter Kleidung

Tobias Birmili
Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. Niels Henze
Betreuer/in: Stefan Schneegaf3 M.Sc.
Beginn am: 2. Januar 2014
Beendet am: 3. Juli 2014

CR-Nummer: D.2.6, D.2.11

Kurzfassung

Intelligente Kleidung wurde in der Vergangenheit haufig prototypisch, in niedrigen Stiickzahlen und
fiir einen bestimmten Zweck entwickelt. Diese Arbeit definiert Schnittstellen und eine Architektur um
zukiinftige Entwicklungen modularer zu machen und den Entwicklungsprozess zu unterstiitzen.

Neben der Betrachtung der kompletten Systemarchitektur liegt der Fokus auf den Schichten die
zwischen dem Computer und der Anwendung fiir Endbenutzer liegt. Zielgruppe sind dabei Entwickler
von Sensoren, Erkennungsalgorithmen und Anwendungen. Fiir diese Zielgruppen werden Werkzeuge
zur Verfiigung gestellt, die den Entwicklungsprozess verbessern sollen.

Die Architektur wurde beispielhaft implementiert. Dazu wurden durchgehend Webtechnologien wie
HTML, JavaScript und WebSockets eingesetzt. Um existierende Sensoren als Eingabe zu benutzen
wurde dieser iiber eine Briicke mit Bluetooth verbunden. In einer Benutzerstudie wurde das imple-
mentierte System evaluiert. Es wurden dadurch einige Verbesserungsvorschliage erkannt die zukiinftig
integriert werden kénnen.

Abstract

Intelligent clothes were usually produced prototypically, in low amounts and only for one specific
purpose. This work defines interfaces and an architecture to modularise future development and
support the development process.

Aside of looking at the whole system architecture, the focus lies on the layers between the computer
hardware and the end-user application. The audience are developers of sensors, recognition algorithms
and software developers. For those groups, different tools are integrated to optimise the whole
development process.

The architecture was implemented exemplary using web technologies as HTML, JavaScript and
WebSockets. Existing sensors were supported by a bluetooth bridge. The implementation was evaluated
with a practical study. Some improvement suggestions were identified which can be implemented in
the future.

Inhaltsverzeichnis

1. Einleitung

2. Grundlagen und verwandte Arbeiten
2.1. Wearable Computing e
2.2. Intelligente Kleidung
2.3. Der Entwicklungsprozess von Intelligenter Kleidung
2.4. Industrielle Herstellung von Wearables
2.5. Do-it-yourself Wearables
2.6. Prototypenin der Wissenschaft 0000
2.7. Die Architektur von intelligenter Kleidung
2.8. Betriebssysteme fiir Wearables
2.9. Sensornetzwerke, Verteilte Systeme und Datenmanagement
2.10. Produkte
2.10.1. ZephyrBioHarness3 e
2.10.2. PolarLoop
2.11. Zusammenfassung
3. Anforderungen an eine Systemarchitektur fir intelligente Kleidung
3.1. Anforderungen an die einzelnen Schichten00 L.
3.1.1. Anwendungen und Laufzeitumgebung
3.1.2. Einheitliche Schnittstelle fiir Anwendungen
3.1.3. Wearable OS
3.14. Computer-Hardware
3.1.5. Hardware-Schnittstelle L
3.2. Anforderungen aus Entwicklersicht L.
3.2.1. Sensorentwickler
3.2.2. Datenverarbeitungsexperten oL
3.23. Anwendungsentwickler L Lo oo
3.3. Weitere Anforderungen
3.4, Zusammenfassung L.
4. Architektur einer Middleware zur Entwicklungsunterstiitzung
4.1. Hardware-Schnittstelle und Computer-Hardware
4.2. Wearable OS e
4.3. Middleware (Datenspeicher, Verwaltung und Verarbeitung)
43.1. Eingabe
43.2. Persistenz

11
11
12
13
14
15
16
16
18
20
21
21
21
22

23
23
23
24
24
24
25
25
25
25
26
26
27

29
30
32
32
33
34

43.3. Verarbeitung

434. Ausgabe
435. Verwaltung
4.4. Schnittstelle zu Anwendungen und Laufzeitumgebung
4.5. Authentifizierung und Autorisierung L Lo L L
4.6. Vor- und Nachteile der Middleware
4.7. Zusammenfassung

Eingesetzte Technologien und Umsetzung

5.1. Computer-Hardware und Betriebssystem
5.2. Abhiangigkeiten L
52.1. Tornado
5.22. MongoDB
5.2.3. Andere Python Bibliotheken
5.2.4. Sensorspezifische Abhingigkeiten Abhéngigkeiten
5.2.5. Bibliotheken zur Umsetzung der Benutzungsschnittstelle
5.3. Kommunikationsschnittstellen L L.
5.4. Umsetzung der Middleware L L L L L
54.1. Eingabe
5.4.2. Persistenz
5.43. Verarbeitung
5.5. Maschinenlesbare Ausgabe /API. oL L.
5.6. Analysewerkzeuge
5.7. Implementierte Filter und Erkennungen
5.8. Implementierte Beispielanwendungen L.
5.9. Weitere Software-Artefakte L Lo
5.10. Herausforderungen und Einschrankungen
5.11. Zusammenfassung e e
. Nutzerstudie
6.1. Aufbau und Ablaufder Studie
6.2. AusSwWertung e
6.2.1. Personliche Daten und Kenntnisse
6.2.2. Unterstiitzung durch das Systems
6.23. Weitere Merkmale
6.2.4. Herausforderungen und Verbesserungsmoglichkeiten
6.2.5. Zusammenfassung

7. Zusammenfassung und Ausblick
A. Préasentation der Nutzerstudie
B. Fragebogen zur Auswertung der Nutzerstudie

Literaturverzeichnis

37
37
38
38
40
40
40
41
41
42
43
45
46
47
48
49
52
52
55
55

57
57
58
58
59
61
61
64

65

67

75

79

Abbildungsverzeichnis

2.1.

4.1.
4.2.

4.3.
4.4.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

6.1.
6.2.
6.3.
6.4.

Die grobe Architektur von intelligenter Kleidung nach [CLHT13] 17
Ubersicht iiber das Zusammenspiel der einzelnen Komponenten 29
Ubersicht tiber die Architektur mit Fokus auf die verschiedenen Schnittstellen zwi-

schen Gerdtegrenzen 30
Mogliche Ausgestaltungen der Hardwareschnittstelle 31
Middleware mit umliegenden Schichten 33
Bei der Implementierung eingesetzte Technologien 38
Beispiel eines Filters mit ein- und ausgehendenDaten 46
Beispiel einer Filterkette 47
Screenshot der Detailansicht Lo o L 50
Screenshot der Graphenansicht 51
Screenshot der Analyseansicht L L. 51
Screenshots von Anwendungen auf einem Smartphone. 53
Bilder wahrend der Durchfithrung der Nutzerstudie. 58
Ergebnisse des Fragebogens fiir die Unterstiitzung durch das System 60
Auswertung der restlichen Fragen o oL, 61
Verteilung der Problemtypen und Problembereiche 63

Tabellenverzeichnis

4.1.

6.1.
6.2.

Beispieleingabe von schemalosenDaten 34
Personliche Daten und Kenntnisse der Teilnehmer 59
Auswertung der Karteikarten der Nutzerstudie 63

Verzeichnis der Listings

5.1.
5.2.
5.3.
5.4.
5.5.

Die Definition der Ruckrufaktion, die Daten des BH3 zum SEDM-Server sendet. . . . 43
Beispiel des Sendens von Beschleunigungsdaten tiber JavaScript 44
Minimales Beispiel um Daten mit Python an die Middleware zu senden. 45
Beispiel der API-Nutzung in JavaScript. oo 49

Beispiel zur Benutzung des entwickelten Frameworks zur Kommunikation mit dem
BioHarness.

1. Einleitung

In Zukunft kénnte es Computer
geben, die weniger als 12 Tonnen
wiegen.

(Popular Mechanics, 1949)

Schon seit einigen Jahren werden Computer zunehmend mobiler. ENIAC, der erste elektronische
Universalrechner, beanspruchte circa 167m? an Stellfliche und wog 27 Tonnen. Zur Programmierung
wurde die Verkabelung von einzelnen Komponenten und Drehschalter benutzt. Nach und nach wurden
die Computer immer personlicher, kleiner und hielten Einzug in private Haushalte, zunéchst auf
dem Schreibtisch, dann auch auf dem Schof3. Heutzutage sind sie aus unseren Hosentaschen nicht
mehr wegzudenken und fangen langsam an sich auf tragbare Gegenstiande wie Uhren und Brillen
auszubreiten. Google Glass, ein Rechner der sich in die Brille integriert, wiegt nur noch 50 Gramm
und nimmt durch die Kombination mit einem Alltagsgegenstand kaum mehr Platz ein.

Jede grofle Veranderung des Formfaktors brachte bisher auch neue Paradigmen zur Benutzungs-
schnittstelle und Programmierschnittstelle mit sich. Heutzutage ist es viel mehr Menschen méglich,
Software zu schreiben und benutzen. Diese Arbeit schaut in die Zukunft und versucht eine Archi-
tektur zu definieren, die vor allem Anwendungsentwicklung fiir mobile Einsatzzwecke abdeckt und
dabei auch intelligente Kleidung integriert; Kleidung die als Datenquelle oder Interaktionsraum von
Anwendungen dient.

Es gab und gibt viele Forschungsprojekte, die sich mit der Erforschung neuer Sensoren und Anwen-
dungsfillen von intelligenter Kleidung beschéftigen. Einige Beispiele dafiir sind Aktivitdtserkennung
tiber verschiedene Sensoren an Hosen [VC00], Erkennung der Kérperhaltung anhand Falten in der
Kleidung [HAT10] oder in flexible in Kleidung gewebte Sensoren [PLTP06].

SimpleSkin' ist ein EU-Projekt, welches das Ziel hat, intelligente Kleidung zu entwickeln um mit ihr
Interaktion, die Uberwachung von physiologischen Daten und Aktivititserkennung, zu realisieren. Die
Sensoren sollen dabei direkt im Stoff der Kleidung integriert sein. Ziel ist es, den kompletten Prozess
selbst zu realisieren, von der Herstellung des Stoffes bis zur Softwareanwendung. Im interdisziplindren
SimpleSkin-Projekt kooperieren sieben Organisationen aus verschiedenen Forschungsrichtungen, um
dies zu erméglichen.

Diese Arbeit definiert Schnittstellen und Zustandigkeitsbereiche, die den Entwicklungsprozess von
intelligenter Kleidung verbessern sollen. Der Fokus liegt dabei auf den Schnittstellen die zwischen
den Anwendungen fiir Endbenutzern und den Sensoren liegen. Zielgruppe sind daher Entwickler,
die in den Schichten zwischen Sensorik und Anwendung arbeiten, Sensorentwickler, Entwickler von

"http://simpleskin.org/, zuletzt besucht am 30. Juni 2014

http://simpleskin.org/

1. Einleitung

Erkennungsalgorithmen und Softwareentwickler. Ein wichtiger Bestandteil ist zudem die Entwicklung
von Werkzeugen, die als Teil der Architektur den Entwicklungsprozess optimieren.

Neben der Definition der Architektur wird diese auch exemplarisch implementiert und in einer
Nutzerstudie auf ihre Benutzbarkeit und den Grad der Entwicklerunterstiitzung untersucht. Zum
Testen des Systems wurden auf dem Markt verfiigbare Sensoren herangezogen.

Gliederung

Diese Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen und verwandte Arbeiten betrachtet verwandte Arbeiten und Grundla-
gen dieser Arbeit.

Kapitel 3 — Anforderungen an eine Systemarchitektur fiir intelligente Kleidung zihlt kon-
krete Anforderungen an eine mégliche Architektur auf.

Kapitel 4 — Architektur einer Middleware zur Entwicklungsunterstiitzung beschreibt eine Ar-
chitektur, welche die erfassten Anforderungen befriedigt.

Kapitel 5 — Eingesetzte Technologien und Umsetzung beschiftigt sich mit einer exemplari-
schen Umsetzung der Architektur. Um die Machbarkeit zu demonstrieren und evaluieren
wird die Architektur soweit moglich implementiert.

Kapitel 6 — Nutzerstudie Die Implementierung der Architektur wird im Praxiseinsatz evaluiert.

Kapitel 7 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und stellt
Ankniipfungspunkte vor.

10

2. Grundlagen und verwandte Arbeiten

It's a little bit like that wonderful
invention called the Segway. It's
such a fantastic piece of technology
but you just look like a complete
dick when you drive around on it.

(Marc Newson ber Google Glass)

In diesem Kapitel werden fiir das Thema wichtige Begriffe naher beschrieben. Zudem werden Arbeiten
genannt, die sich mit dhnlichen und angrenzenden Themenbereichen beschaftigen. Es werden die
Begriffe des Wearable Computing und Intelligenter Kleidung erlautert und der Entwicklungspro-
zess der selbigen beschrieben. Zudem wird ein Uberblick tiber die Ansitze von Architekturen und
Betriebssystemen, die sich bisher auf dem Markt befinden oder von Hobbyisten genutzt werden,

gegeben.

2.1. Wearable Computing

Je nach Definition von wearable und computing konnten schon der erste Rechenschieber am Halsband
oder die erste Armbanduhr dieser Kategorie von Gegenstinden angehoéren. Setzt man allerdings
voraus, dass ein Computer nicht alleinig dazu da ist, die Zeit anzuzeigen oder einfache Zahlen zu
berechnen, sondern auch von Benutzern programmierbar sein soll, dann wurde der erste wearable
Computer in den spiten 1970er-Jahren von Steve Mann entwickelt [Man98b]. Was als rucksackgrofies
Gerit begann, ist heute in vielen Produkten gemiindet, die einen wachsenden Markt bedienen.

Steve Mann beschreibt einen Wearable Computer in einer Keynote, die er 1998 auf der International
Conference on Wearable Computing hielt, wie folgt [Man98a]: Der Computer ist immer an, immer
verfiigbar und immer im persénlichen Bereich des Benutzers. Im Besonderen kann der Benutzer immer
damit interagieren, das heif3t beispielsweise wiahrend er lauft oder andere Tatigkeiten vollbringt. Genau
wie auch nicht tragbare Computer sollte der Aspekt der Allgemeingiiltigkeit und Konfigurierbarkeit
beibehalten werden. Ein tragbarer Computer hat die volle Funktionalitét eines Computersystems, aber
ist zusatzlich mit dem Benutzer untrennbar verbunden. Dies setzt ihn von Armbanduhren, normalen
Brillen und tragbaren Radios ab.

Heutige sich auf dem Markt befindliche Wearables entsprechen nicht unbedingt vollstindig dieser
Definition, da sie eher fiir spezifische Einsatzzwecke entworfen sind. Zusammen mit einem Smart-
phone werden die Anwendungen allerdings generischer. Verbindet man das System noch mit einem
Heads-Up-Display in einer Brille und Sprachsteuerung kommt es der obigen Definition eines wearable

11

2. Grundlagen und verwandte Arbeiten

computers sehr nahe. Google Glass! ist ein Beispiel fiir ein solches Gerit: Es vereint Sprachsteuerung,
Display in der Brille und programmierbare Anwendungen, sogenannte Glassware.

Die heute verfugbaren Wearable Computing Produkte sind vielfaltig. Fiir nahezu jeden Korperbereich
gibt es entsprechende Gerite, die dem Benutzer Unterhaltung oder Unterstiitzung bieten sollen.
Von oben nach unten begonnen gibt es Brillen und Halsbénder, Brustgurte oder Shirts, Armbander,
Handschuhe, Accessoires fiir die Beine, Schuhe und Einlagen fiir diese. Einige Beispiele sind in
Abschnitt 2.4 beispielhaft aufgefiihrt.

2.2. Intelligente Kleidung

Unter intelligenter Kleidung, im Englischen Smart Clothes, versteht man heute hauptséchlich Kleidung
die digitale Komponenten enthélt. Der Begriff des intelligenten Stoffs wurde das erste Mal 1989 in
Japan gepragt. In diesem Fall war es ein Seidenstoff mit Formgedéachtnis. Durch anhaltende Abnahme
der Textilindustrie in der westlichen Welt ist auch das Interesse an intelligenten Textilien gestiegen
um einen neuen lukrativen Markt zu schaffen [VH04].

Nach Van Langenhove und Hertleer erfiillen die heutigen Produkte im Bereich von intelligenter
Kleidung alle Kriterien, die einen Wandel hin zum Hightech-Produkten erlauben:

« Statt ressourcenbasiert sind sie wissensbasiert
« Qualitat statt Quantitat

« Nach Nachfrage produzierte, mehrmals benutzbare und ausbaufihige Dienste anstelle von
massengefertigten Waren zur einmaligen Verwendung

+ Mehrmals benutzbar
« Integrierte Dienstleistungen und nicht greifbare Mehrwerte anstatt materieller Werte

Intelligente Materialien (das heifft nicht nur Textilien) kénnen nach [Tao01] in drei Kategorien
eingeteilt werden:

Passive intelligente Materialien konnen nur die Umgebung oder Reize erfassen. Sie sind einfache
Sensoren.

Aktive intelligente Materialien konnen die Umgebung oder Reize erfassen und darauf reagieren.
Im Unterschied zu passiven Materialien missen diese auch Aktoren enthalten die je nach
Sensorwerten entsprechende Aktionen ausfithren.

Sehr intelligente Materialien kénnen Umgebung oder Reize erfassen, darauf reagieren und sich
entsprechend selbst anpassen. Dazu ist neben den Sensor und Aktor noch ein dritter Teil
notwendig, der fiir eine intelligente Steuerung des Aktors zustandig ist. Solche Stoffe werden

'http://www.google.com/glass/

12

http://www.google.com/glass/

2.3. Der Entwicklungsprozess von Intelligenter Kleidung

durch die Kombination von traditioneller Kleidungs- und Textiltechnolgoie mit Materialwissen-
schaften, Sensortechnologie, Datenverarbeitungs- und Kommunikationstechnik, Kiinstlicher
Intelligenz, Biologie.

Es wurden schon seit langem versucht, die Natur zu kopieren um unsere Kleidungsmaterialien zu
verbessern. Ein Beispiel dafiir sind Mikrofasern, die mit der Untersuchung von Seide begonnen
haben. Bis jetzt sind die meisten Stoffe allerdings nicht intelligent sondern ohne Leben. Einen Stoft zu
entwickeln, der so intelligent wie unsere menschliche Haut ist, ist ein sehr herausforderndes Ziel. Die
Entwicklung von intelligenten Materialien, auch Funktionswerkstoffe genannt, ist allerdings in vollem
Gange. Es gibt viele verschiedene Materialien die zu den Funktionswerkstoffen zihlen. Beispielsweise
Stoffe mit piezoelektrischem Effekt, welche Spannung produzieren wenn sie verformt werden, oder
sich beim anlegen von Spannung verformen. Ein weiteres Beispiel sind thermoresponsive Polymere
welche ihre physikalischen Eigenschaften unter Einfluss von Temperatur verandern [Wik14].

Zum aktuellen Zeitpunkt ist die Marktdurchdringung von intelligenter Kleidung noch gering, al-
lerdings wird dieser Markt als stark wachsend angesehen [DS14]. Dabei sind viele verschiedene
Interessensvertreter und Produktsegmente in diesem Markt engagiert: Personliche Schutzausriistung
und Militar, Raumfahrt, Telemedizin, Gesundheitsprodukte, Kleidermode, Licht abstrahlende Kleidung
und Audio-Unterhaltung. Die Markttreiber sind dabei vor allem professionelle Sportanwendungen
und der Trend zur Telemedizin um die Kosten fiir das Gesundheitswesen zu senken. Forschung und
Entwicklung durch die Européische Union, die Européische Weltraumorganisation und NASA, tragen
allerdings auch stetig zur Marktvergroflerung bei.

Viel grofler als der Markt fiir intelligente Textilien ist im Moment der Markt fiir tragbare intelligente
Gerate, Wearable Technology. Diese Gerite sind klein genug, um direkt am Korper getragen zu werden.
Sie erfiillen haufig einen bestimmen sensorischen Zweck und eine bestimmte Anwendung. Laut
Vandrico Inc. [Van14] sind im Mai 2014 220 Geréte auf dem Markt. Im Rahmen dieser Arbeit werden
aufgrund der besseren Verfligbarkeit tragbare Gerite als Datenquelle betrachtet, allerdings immer
mit dem Hintergrund, dass die Ergebnisse auch auf Kleidung anwendbar sein sollen.

2.3. Der Entwicklungsprozess von Intelligenter Kleidung

Suh, Carrol und Cassill [SCC10] identifizieren im Entwicklungsprozess von intelligenter Kleidung
folgende fiinf Phasen, von denen Entwurf, Entwicklung und Evaluation relevant fiir diese Arbeit
sind.

1. Ideenfindung

2. Entwurf

3. Entwicklung eines Prototypen

4. Evaluation und Verfeinerung des Designs

5. Produktionsplanung

13

2. Grundlagen und verwandte Arbeiten

Die beteiligten Disziplinen im Entwicklungsprozess sind in die drei grof3en Teilbereiche Textile
Technologien, Physiologie und Design Research: Verschiedene Technologien im Textilbereich, die
Physiologie des Tragers und die Kommunikation des Systems mit der Umwelt.

Ahnlich zu Entwicklungsprozessen wie beispielsweise in Softwareprojekten steigen die Kosten einer
Neugestaltung gegen Projektende bzw. Produktionsstart an, wahrend sie in den Entwicklungsphase
noch gering sind [JL07, SCC10]. Daher ist es von hohem wirtschaftlichen Interesse, mogliche Fehler
oder Anforderungen, die groflere Anderungen am Ende des Projekt erforderlich machen wiirden,
schon frith zu finden und beheben. Tom de Schutter [Sch13] beschreibt, welche Vorteile eine parallele
Entwicklung von Hardware und Software im Bereich eingebetteter System haben. In dem Artikel wird
beschrieben, wie virtuelle Prototypen der Hardware als Basis fiir die Softwareentwicklung dienen
konnen, um die Entwicklungen nebenlaufig beginnen zu lassen.

2.4. Industrielle Herstellung von Wearables

Der Marktiiberblick des Unternehmens Vandrico [Van14] gibt eine gute Ubersicht iiber die am Markt
verfiigbaren Gerite. Im Jahr 2014 sollen 48 neue Gerite auf den Markt kommen, das sind 27% der
Gesamtmenge. Dabei enthalten Geréte fir die Kategorien Unterhaltung, Lifestyle und Fitness die
meisten Komponenten, durchschnittlich zwischen vier und fiinf. Im medizinischen und industriellen
Einsatz sind weniger Komponenten im Einsatz, dafiir sind diese allerdings wesentlich teurer und
préziser.

Als Zielplattformen, um mit den Geriten zu kommunizieren, wéhlen die meisten Hersteller im
Moment iOS und Android. Die Kompatibilitit mit mobilen Betriebssystemen hat Prioritat tiber
Desktopbetriebssystemen wie Windows und Mac OS X. Andere Plattformen wie Windows Mobile,
Blackberry und Linux werden kaum unterstiitzt.

Die meisten Gerite benutzen Bluetooth als Schnittstelle zur Kommunikation (147 von 225, Stand: 27.
Mai 2014). Bluetooth ist Industriestandard fiir die Datentibertragung tiber kurze Distanzen. Die erste
Version von Bluetooth wurde in den 1990er-Jahren entwickelt. Seit Dezember 2009 liegt Bluetooth in
Version 4.0 vor. Die ersten kompatible Gerdte wurden im Juni 2011 auf den Markt gebracht.

Im Bluetooth 4.0 Standard ist auch Bluetooth Smart enthalten. Dies ist eine vom klassischen Bluetooth
abweichende Funktechnik, die einen deutlich geringeren Stromverbrauch verspricht. Gerite, die
Bluetooth Smart unterstiitzen, miissen nicht zwangslaufig kompatibel mit klassischen Bluetooth-
Geriten sein. Bluetooth Smart bietet eine dhnliche Reichweite wie klassische Bluetooth-Technologie,
ist allerdings auf eine Datentibertragungsrate von 1 MBit/s beschrankt. Die verfiigbare effektive
Datenrate fiir Anwendungen liegt allerdings bei nur 0,27 MBit/s.

Der Bluetoothstandard definiert selbst Schnittstellen fiir die Kommunikation in Bluetooth-
Umgebungen. Diese Spezifikationen werden Bluetooth-Profile genannt. Um ein Profil zu nutzen oder
anzubieten, muss es damit kompatibel sein. Dabei kénnen die Profile sich gegenseitig erweitern oder
benétigen. Beispielsweise gibt es ein generisches Health Device Profile, von dem zwei Spezialisierungen
Health Thermometer Profile und Heart Rate Profile existieren.

14

2.5. Do-it-yourself Wearables

Die am 2. Juni 2014 von Apple angekiindigte neue Betriebssystemversion iOS 8 soll eine Anwendung
namens Healthbook enthalten. Diese soll auf dem Smartphone anstelle der einzelnen spezifischen
Anwendungen alle Gesundheitsdaten aggregieren. Dazu setzt die Anwendung auf Bluetooth und
von Standard definierte Bluetooth-Profile fiir Messgerite fir Puls, Blutzucker, Blutsauerstoff und
mehr. Wie genau die Schnittstellen fiir die Anwendung aussehen werden ist allerdings noch nicht
bekannt.

2.5. Do-it-yourself Wearables

Neben der industriellen Herstellung von Wearables gibt es auch eine Community, die sich damit
beschaftigt, ihre eigenen tragbaren Geréte und Anwendungen zu bauen. Dabei ist auch die Verkniip-
fung von elektronischen Bauteilen mit Kleidung ein wichtiger Teil. Entwickelte Projekte sind dabei
vielfiltig und reichen von reinen modischen Accessoires wie LED bestiickten programmierbaren
Halsbindern? bis zu neuartigen Eingabegeriten wie Drucksensitiven Handschuhen?.

Héaufig wird dabei Hardware, die auf der Arduino-Plattform basiert, zum Einsatz gebracht. Das
Buch Open Softwear: Fashionable prototyping and wearable computing using the Arduino [OGOW08]
beschreibt Grundlagen der Hardware und Programmierung eines Arduinos und gibt Anwendungsbei-
spiele und Anleitung die speziell auf Kleidung ausgelegt sind.

Die Arduino-Plattform zahlt in den Bereich des Physical Computing, das heif}t durch die Kombination
von Hardware und Software sollen physische Systeme erstellt werden, die auf Ereignisse in der realen,
analogen Welt reagieren oder auf diese einwirken. Die Arduino-Plattform besteht aus einem pro-
grammierbaren Mikrocontroller und digitalen und/oder analogen Schnittstellen die damit angesteuert
werden konne. Die Programmierung erfolgt dabei in C oder C++. Dabei haben die Arduino-Boards
normalerweise eine USB-Schnittstelle, mit der sie mit dem Computer verbunden werden kénnen und
uber diese der Programmcode aktualisiert werden kann.

Es gibt zwischenzeitlich verschiedene Hardware, die der Spezifikation dieser Plattform entspricht und
damit kompatibel ist. Insbesondere gibt es fiir Wearables spezialisierte Formfaktoren, die zum Beispiel
unter dem Namen LilyPad* bekannt sind. Diese sind darauf ausgelegt, mit Kleidung verniht zu werden.
Die Gerite sind klein und haben die Form einer Scheibe. Die elektrischen Kontakte sind durch Locher
realisiert, so dass die Kommunikationsinfrastruktur mit elektrisch leitfahigen Fiden realisiert werden
kann. Neben LilyPad gibt es auch #hnliche Produkte wie beispielsweise die FLORA®-Plattform, welche
auch kompatibel zu Arduino ist.

’https://learn.adafruit.com/neopixel-punk- collar, zuletzt abgerufen am 30. Juni 2014
*https://learn.adafruit.com/midi-drum-glove, zuletzt abgerufen am 30. Juni 2014
*http://lilypadarduino.org/, zuletzt abgerufen am 30. Juni 2014

5h‘c‘cp ://www.adafruit.com/categories/92, zuletzt abgerufen am 10. Juni 2014

15

https://learn.adafruit.com/neopixel-punk-collar
https://learn.adafruit.com/midi-drum-glove
http://lilypadarduino.org/
http://www.adafruit.com/categories/92

2. Grundlagen und verwandte Arbeiten

2.6. Prototypen in der Wissenschaft

In der Arbeit What Shall We Teach Our Pants? [VCO00], wird ein System zur Aktivititserkennung des
Benutzers anhand von Beschleunigungssensoren an Hosen entwickelt und evaluiert. Neben den Be-
schleunigungsdaten wurden allerdings auch noch passive Infrarot-Sensoren, ein Kohlenstoffmonoxid-
Sensor, Mikrofone, Drucksensoren, Temperatursensoren und Helligkeitssensoren benutzt.

Die rohen Sensordaten wurden dann in einem ersten Schritt in sogenannte Anhaltspunkte vorver-
arbeitet. Diese Anhaltspunkte werden dann benutzt um durch maschinelles Lernen ein Modell zu
entwickeln, das die aktuelle Aktivitit des Benutzers beschreibt. Fiir den Prototypen waren einfa-
che Algorithmen wie Summe, Maximum, Minimum und Durchschnitt fiir die meisten Sensordaten
ausreichend, um sinnvolle Anhaltspunkte zu generieren.

Diese Anhaltspunkte wurden spéter in Echtzeit verarbeitet und auch fiir Reproduzierbarkeit und
spatere Analysen gespeichert. Im Experiment mussten die Probanden dann ihre Tatigkeiten wah-
rend der Durchfithrung angeben um den Prozess des maschinellen Lernens zu unterstiitzen. Das
Ergebnis dieser Arbeit ist, dass Aktivitatserkennung oder das Bewusstsein des Benutzerkontexts ohne
anpassungsfahige Analysen sehr beschriankt ist.

In der Arbeit Electronic Textiles: A Platform for Pervasive Computing [MMZ™" 03] werden unter ande-
rem Module beschrieben, aus denen sich ein Gesamtsystem zusammensetzen konnte und wie die
Hardwareverbindungen zwischen den Komponenten realisiert werden kénnten. Auf Softwareseite
werden Vorschldge zur Organisation und Kommunikation mit einer méglichen Hardwareschnittstelle
und der weiteren Signalverarbeitung gegeben.

Wear Ur World - A Wearable Gestural Interface [MMCO09] ist ein System, das aus einem kleinen Beamer
und einer auf dem Kopf bzw. Hut angebrachten Kamera besteht. Das System sieht was der Benutzer
sieht und reichert seine Umgebung durch Projektionen auf Oberfliche an. Die Interaktion erfolgt
mittels Handgesten, Armbewegungen oder Interaktion mit dem Objekt. Als Software kommt bei dem
Projekt WPF, C# und OpenCV zum Einsatz.

Pinstripe [KWL™11] ist ein Projekt der RWTH Aachen, in dem das zusammendriicken und rollen von
Stoff mit den Fingern als Eingabe des Benutzers interpretiert wird. In dieser Arbeit wurden die im
Stoff verbauten leitfahigen Fdden mit einem LilyPad Mikrocontroller verbunden. Dieser ist mit einem
Kabel an einen Computer angebunden, der die Signalverarbeitung durchfiihrt.

2.7. Die Architektur von intelligenter Kleidung

Um intelligente Kleidung giinstiger und in groflen Mengen zu produzieren, muss der Produktions-
prozess besser modularisiert werden. Dabei ist dies ein Henne-Ei-Problem: Erst bei erschwinglichen
Preisen verbreiten sich die Produkte stark, und erst bei grofler Verbreitung ist eine giinstige Massen-
produktion erstrebenswert.

Ein weiteres Problem ist zudem, dass es noch keine killer application gibt, die fir viele verschiedene
intelligente Kleidungen funktioniert. Als Killeranwendung wird eine konkrete Anwendung bezeichnet,

16

2.7. Die Architektur von intelligenter Kleidung

App 1 App 2 App 3
Sensor API

Laufzeitumgebung

Wearable OS

Computer-Hardware

D/A Signalverarbeitung

Hardware-Schnittstelle

Sensorischer Stoff

Abbildung 2.1.: Die grobe Architektur von intelligenter Kleidung nach [CLH'13]

die einer existierenden Technik zum Durchbruch verhilft. Statt einer generell einsetzbaren Anwen-
dung fiir intelligente Kleidung gibt es nur einzelne Lésungen mit ihren jeweils eigenen spezifischen
sensorischen Anforderungen.

Die verschiedenen Disziplinen, die am Entwicklungsprozess beteiligt sind, sollten unabhéngiger
voneinander arbeiten konnen um vielfiltige aber miteinander kompatible Produkte erzeugen zu
konnen. Ein Weg um die Kopplung von Zusténdigkeiten zu verringern und dabei die Kohision zu
steigern, ist die Schichtenarchitektur. Beteiligte Schichten diirfen nur mit den iber und unter ihnen
gelagerten Schichten kommunizieren und Aufrufe sollten wenn moglich nur auf untere Schichten
gemacht werden.

In Abbildung 2.1 sind mégliche Schichten dargestellt, an denen einzelne Komponenten voneinander
getrennt werden konnten. Die einzelnen Schichten werden, von unten nach oben, in den folgenden
Abschnitten niher erlautert.

Sensorischer Stoff

Hiermit ist das Textilprodukt gemeint, welches neben der Funktion als Kleidung zu dienen, zusatzli-
che Daten seiner Umwelt aufnehmen kann. Im Projekt SimpleSkin wird an leitfdhigen Materialien
gearbeitet, die in einem zweidimensionalen Gitter in oder auf dem Stoff angebracht sind. Zwei dieser
Gitter, mit einer zwischengelagerten Isolationsschicht, kénnten beispielsweise dazu dienen, den Druck
durch Messung des elektrischen Widerstands zu messen.

Die Verarbeitung des Stoffes sollte im besten Fall auch nicht stark von traditionellen Bearbeitungsme-
thoden abweichen. Es muss allerdings beachtet werden, dass ein auf dem Stoff befindliches Netzwerk
von Sensorik mit der Kommunikations- und Engergieinfrastruktur verbunden sein muss.

17

2. Grundlagen und verwandte Arbeiten

Hardware-Schnittstelle, Signalverarbeitung, Computer-Hardware

An diese Stelle erfolgt die erste grole Trennung der Komponenten. Die auf dem Stoff aufgebrauchte
Sensor-Infrastruktur sollte durch ein steckbares Gerat benutzbar gemacht werden. So kann der Stoff
ohne die elektronischen Bestandteile gewaschen werden. Uber die Hardware-Schnittstelle sollen alle
notwendigen Informationen die im Stoff anfallen iibertragen werden, so dass die digitale und analoge
Signalverarbeitung dort mithilfe der Computer-Hardware betrieben werden kann.

Wearable OS

Das Betriebssystem soll auf der Computer-Hardware laufen. Es kiimmert sich darum, die Daten
aus der Hardware auszulesen und den iiber ihm liegenden Komponenten zur Verfiigung zu stellen.
Es sollte mit verschiedenen Sensoren, die iiber die Hardware-Schnittstelle angeschlossen werden,
kommunizieren kénnen.

Laufzeitumgebung, Sensor API, Apps

Anwendungen, sogenannte Apps, die dem Endbenutzer Zugriff auf und Interaktion mit seiner Kleidung
bieten sollen benétigen eine Laufzeitumgebung. Diese Laufzeitumgebung soll tiber eine einheitliche
API die Sensordaten zur Verfigung stellen.

2.8. Betriebssysteme flr Wearables

Es gibt auf dem Markt verschiedene Ansétze fiir Betriebssysteme die auf Wearables zugeschnitten
sind. Folgende Produkte sind dabei verbreitet oder in Entwicklung.

Android Wear

Android Wear® wurde am 18. Mirz 2014 von Google vorgestellt. Es basiert auf dem mobilen Be-
triebssystem Android und ist fiir Gerite ausgelegt die in der Gréflenordnung von Armbanduhren
liegen.

In der im Moment verfiigbaren Vorschau fir Entwickler wird eine Ubersicht tiber die Elemente und
Entwurfsmuster der Benutzungsschnittstelle gegeben. Die Hauptaufgabe von tragbaren Geriten
besteht darin, mit Benachrichtigungen zu interagieren. Vor allem sollen Informationen immer passend
zum Kontext geliefert werden, ohne dass der Benutzer diese explizit nachfragen muss.

Zur Kommunikation mit externer Hardware oder Sensoren ist in der Vorschau fiir Entwickler noch
nichts geschrieben. Der Plan fiir die Zukiinftige Erweiterung enthélt allerdings folgende Punkte die
Android Wear unterstiitzen wird:

(’http ://www.android.com/wear/, zuletzt abgerufen am 30. Juni 2014

18

http://www.android.com/wear/

2.8. Betriebssysteme fir Wearables

Eigene Benutzungsoberflichen erstellen
« Daten zwischen Smartphones und tragbaren Computern austauschen

Sensordaten in Echtzeit sammeln und darstellen

« Sprachinteraktion mit Anwendungen

Tizen

Tizen’ ist ein auf Linux basierendes Betriebssystem. Es ist darauf ausgelegt auf Geriiten wie Smartpho-
nes, Tablets, Smart TVs, Fotoapparaten, Autounterhaltungssystemen aber auch Geréten im Bereich
Wearable-Computing eingesetzt zu werden. Die erste Version von Tizen wurde im Januar 2012 ver6f-
fentlicht. Das Projekt ist in stetiger Weiterentwicklung und hat viele grof3e Partner in der Industrie
wie zum Beispiel Fujitsu, Huawei und die Intel Corporation.

Tizen setzt stark auf mobile standardisierte Webtechnologien zur Anwendungsentwicklung wie
JavaScript, XML, Ajax und alle weiteren unter dem Sammelbegriff HTML5 bekannte Technologien. Die
Begriindung liegt darin, dass HTML5 die Barriere zum Entwickeln von betriebssystemunabhéngigen
Anwendungen heruntersetzt und damit mehr Entwickler anzieht. Neben HTML5-Anwendungen
unterstiitzt Tizen aber auch native Projekte in den Programmiersprachen C oder C++ [Tiz13].

Die von Samsung entwickelten Gerite der Marke Gear 2 basieren auf dem Tizen-Betriebssystem,
welches die frithere auf Android basierende Plattform ablost. Altere Gerite wie die Smartwatch Galaxy
Gear konnen von Android aus auf die neue Tizen-Plattform aktualisiert werden.

Wearable OS

Wearable OS? ist ein Projekt, welches iiber die Crowdfunding-Plattform Kickstarter finanziert werden
will. Es hat zum Ziel ein Betriebssystem und eine Entwicklungsumgebung fiir tragbare Computer zu
entwickeln. Zum aktuellen Stand (29. Juni 2014) gibt es allerdings noch keine weiteren Informatio-
nen.

Auf der Webseite ist beschrieben, dass eine Entwicklungsumgebung geschaffen werden soll, die
erlaubt Anwendungen aus vorgefertigten Blocken zusammenzustellen und aus diesen Programmen
dann den Code fiir verschiedenen Plattformen zu generieren. Dabei soll Wert auf interaktives und
iteratives Entwickeln gelegt werden und das Feedback von Anderungen schnellstméglich sichtbar
werden. Von Anwendungen gesammelte Daten werden iiber einen Cloud-Dienst synchronisiert um
analysiert zu werden.

"https://www.tizen.org/
8http://wearable-os.com/, zuletzt abgerufen am 10. Juni 2014

19

https://www.tizen.org/
http://wearable-os.com/

2. Grundlagen und verwandte Arbeiten

2.9. Sensornetzwerke, Verteilte Systeme und Datenmanagement

Unter dem Begriff Sensornetzwerk versteht man ein Netz von Sensorknoten, die ein einem Netzwerk
zusammenarbeiten. Das Sensornetzwerk soll dadurch eine intelligente Umgebung aufspannen [Lew04].
Das Ergebnis dieser Arbeit ist dhnlich zu einem Sensornetzwerk, indem die an dem Korper der Person
getragenen Sensoren zusammenarbeiten um niitzliche Daten zu liefern. Dabei ist es allerdings nicht
notwendig, dass die Sensoren selbst ihre Kommunikationsinfrastruktur organisieren.

Lehikoinen und Holopainen entwarfen in MEX: a distributed soft- ware architecture for wearable
computers eine Architektur fiir ein verteiltes System von Wearable Computern [LHSA99]. Die Ziele
dieser Architektur sind:

1. Kommunikation zwischen Anwendungen, die auf einem Wearable Computer laufen
2. Kommunikation der Anwendung mit dem ubiquitdren Umfeld
3. Kommunikation von Anwendungen zwischen verschiedenen Wearable Computern

Die Arbeit geht dabei wenig auf die Kommunikation mit Sensoren ein, sondern konzentriert sich auf
die Kommunikation zwischen verschiedenen Anwendungen.

Auch Kortuem, Bauer und Segall beschreiben mit NETMAN [KBS99] ein System, in dem die Eingabe,
Verarbeitung und Ausgabe von Daten die von Wearable Computer erfasst werden, auf verschiedene
Komponenten verteilt. Dadurch soll das Zusammenarbeiten von Personen verbessert werden. Im
dort beschriebenen Szenario wird ein Monteur mit einer Kamera und Headset zu seinem Einsatzort
geschickt und bekommt von einem Technikexperten der stationir ist Anweisungen oder Losungen
die zu seiner aktuellen Problemstellung passen.

WikiSensing9 ist ein Projekt, dass es iiber Webschnittstellen erlaubt, Sensordaten im Internet zu
veroffentlichen und abzurufen [SGG12]. Die Sensordaten konnen dabei iber HTTP in den Formaten
XML oder JSON angelegt und abgefragt werden.

Das Produkt Human API' hat sich auf die Aggregation von Gesundheitsdaten spezialisiert. Es
unterstitzt sowohl tragbare Gerite wie Armbénder, als auch stationire Gerédte wie Waagen oder
Messgerite fiir den Blutzuckerspiegel. Es greift auf die Webschnittstellen der einzelnen Produkte
zu und fiihrt all diese Gesundheitsdaten zusammen. Anwendungsentwickler konnen somit auf die
durch Human API aggregierten Daten in einer einheitlichen Weise zugreifen, unabhéngig von der
benutzten Quelle.

Xively!! (frither bekannt unter dem Namen COSM und Pachube) ist ein Service der online Sensordaten
aggregiert und diese auch tiber eine API zur Verfiigung stellt. Xively bietet fertige Bibliotheken fiir
eine Vielzahl von Plattformen an. Der Quellcode dieser Bibliotheken ist 6ffentlich verfiigbar. Die
Plattform selbst ist allerdings proprietar und kann nicht auf eigenen Server ausgebracht werden. Die
Zielsetzung von Xively ist, die Plattform fiir das Internet der Dinge zu werden.

*http://wikisensing.org/, zuletzt abgerufen am 30. Juni 2014
"http://humanapi.co/, zuletzt abgerufen am 30. Juni 2014
"https://xively.com/, zuletzt abgerufen am 30. Juni 2014

20

http://wikisensing.org/
http://humanapi.co/
https://xively.com/

2.10. Produkte

2.10. Produkte

Es gibt schon Produkte, die sich dhnlich zu zukiinftiger intelligenter Kleidung verhalten, aber eben
eigenstandige Gerite sind, die nicht in der Kleidung integriert sind. Sie besitzen ausreichende Batte-
riekapazitat und Speicherplatz um den ganzen Tag getragen zu werden und alle anfallenden Daten
aufzuzeichnen.

2.10.1. Zephyr BioHarness 3

Das BioHarness 3 ist ein Gerit der Firma Zephyr!?. Es besteht aus einem Brustgurt, in den das
Hardware-Modul eingesetzt werden kann. Dieses hat einen Akku, der iiber den USB-Anschluss
geladen werden kann und einen integrierten Speicher um aufgezeichnete Daten zu speichern. Alle
hier aufgefiihrten Spezifikationen sind dem Handbuch entnommen [Zep11a].

Mit anderen Geriten kommunizieren kann der BioHarness (BH3) iiber den Universal Serial Bus (USB),
Bluetooth und ein proprietéres Protokoll (802.15.4 ECHO). Dieses Protokoll namens ECHO ist auf eine
Reichweite von 275 Metern ausgelegt und wird hauptsachlich mit anderen, von Zephyr vertriebenen
Hardwarekomponenten zur Datenanalyse benutzt. Uber USB und Bluetooth wird ein proprietéires
serielles Protokoll gesprochen. Details zu diesem Protokoll befinden sich in Abschnitt 5.4.1 und 5.9.

Der BH3 unterstiitzt die folgenden grundlegenden physiologischen Daten:
« Puls
« Atemfrequenz
« EKG Daten (Elektrokardiogramm)
« Daten der Beschleunigungssensoren

Der BH3 liefert zudem schon vorverarbeitete Daten wie das Minimum und Maximum der einzelnen
Beschleunigungswerte pro Achse und Werte die das Vertrauen in die Richtigkeit von gelieferten
Daten wie Puls, Atemfrequenz oder auch das Gesamtsystem beschreiben.

2.10.2. Polar Loop

Der Polar Loop!® wird als Armband getragen und ist dafiir vorgesehen die Aktivitidten des Trigers
dauerhaft zu erfassen. Es ist wasserdicht und kann Daten fiir 12 Tage aufzeichnen. Bei Dauernutzung
halt die Batterie laut Hersteller bis zu fiinf Tage.

Zu den erfassten Daten zéhlen das Aktivititslevel (in den Stufen niedrig, mittel und hoch), die Anzahl
der gelaufenen Schritte, die zuriickgelegte Distanz und Schlafqualitiat. Diese Daten werden vom
Rechner aus in ein Webportal geladen, in dem diese analysiert werden. Mit einem Webbrowser kann

“http://zephyranywhere.com/, zuletzt abgerufen am 30. Juni 2014
Bhttp://www.polarloop.com/, zuletzt abgerufen am 22. Juni 2014

21

http://zephyranywhere.com/
http://www.polarloop.com/

2. Grundlagen und verwandte Arbeiten

die Auswertung und Visualisierungen seiner Daten betrachtet werden. Uber das Portal kénnen die
Daten auch mit anderen Benutzer geteilt werden.

2.11. Zusammenfassung

Produkte im Bereich Wearable Computing kommen mehr und mehr im Massenmarkt an. Momentan
sind dies allerdings hauptséachlich externe Gerite, die temporéar zu bestimmten Zwecken getragen
werden. Intelligente Kleidung kénnte der nachste Schritt sein, um Wearable-Computing Anwendungen
eine konstante und dauerhafte Datenquelle zu liefern und den Computer noch naher an den Menschen
zu bringen.

Der Entwicklungsprozess von intelligenter Kleidung ist vergleichbar zum Vorgehen von anderen
High-Tech Produkten, allerdings stark interdisziplinir, da neben der reinen Technologie auch das
Produktdesign und die Physiologie des Menschen eine wichtige Rolle spielen.

Industriell gefertigte Produkte aus dem Bereich Wearables sind meist abgeschlossene Systeme, welche
die von ihnen Erfassten Daten tiber eine definierte Schnittstelle, meist iiber Bluetooth, zur Verfii-
gung stellen. Im Hobbyistenbereich hat sich vor allem die Arduino-Plattform zur Entwicklung von
intelligenter Kleidung und Accessoires durchgesetzt.

Wissenschaftliche Prototypen fiir intelligente Kleidung sind wenig standardisiert und spezifisch auf
den Anwendungsfall ausgelegt. Da es sich meist um Prototypen handelt die nicht fiir die Massenferti-
gung vorgesehen sind, ist dies verstandlich. Um zukiinftige Produktentwicklungen massentauglich
zu machen, miissen Schnittstellen zwischen den Beteiligten Parteien und Zustandigkeiten im Ent-
wicklungsprozess entwickelt und umgesetzt werden. Existierende Betriebssysteme wie Android oder
Tizen sind im Moment auch dabei, sich auf Wearable Computing auszurichten und dafiir spezielle
Funktionen und Entwicklungsunterstiitzung anzubieten.

22

3. Anforderungen an eine Systemarchitektur
far intelligente Kleidung

Der schwierigste Teil einer
Anforderungsanalyse ist nicht,
aufzuzeichnen was der Benutzer
will, es ist die explorative
Entwicklungstatigkeit des
Unterstlitzen der Benutzer,
herauszufinden sie wollen.

(Steve McConnell)

In diesem Kapitel werden die Anforderungen, welche an eine Architektur fiir intelligente Kleidung
gestellt werden, genauer beschrieben. Dabei wird als Grundlage die in Abschnitt 2.7 von Cheng
vorgeschlagene Schichtenarchitektur benutzt. Bei der Auflistung der Anforderungen werden alle
Schichten betrachtet, allerdings liegt der Fokus im Rest der Arbeit auf den Schichten, die tiber
der Computer-Hardware liegen (siehe auch Abbildung 2.1), dass heifit dem Betriebssystem, der
Laufzeitumgebung und der Sensor APL

Aufgrund dieses Fokuses sind die Zielgruppen der Architektur Entwickler, welche mit den genannten
Schichten interagieren. Das sind Entwickler von Sensoren, Entwickler der Datenverarbeitung und
schlieBlich Entwickler welche die Daten in Anwendungen fiir Endbenutzer einsetzen.

Die Anforderungen wurden zum einen aus Arbeiten im Bereich des Wearable Computings abgeleitet.
Es wurde aber auch mit Entwicklern die beispielsweise im SimpleSkin-Projekt tatig sind iiber ihre
Erfahrungen gesprochen. Vor allem die noch nicht vorhandenen technischen Grundlagen haben dazu
beigetragen, die Architektur auf die Unterstiitzung des Entwicklungsprozess zu optimieren und zu
helfen, diesen zu parallelisieren.

3.1. Anforderungen an die einzelnen Schichten

Im folgenden werden funktionale und nichtfunktionale Anforderungen an die einzelnen Schichten
der Architektur definiert. Dabei wird in den Schichten aus Abbildung 2.1 von oben nach unten
vorgegangen.

3.1.1. Anwendungen und Laufzeitumgebung

Die Anwendungen sind dazu da, dem Benutzer eine Interaktion mit den Daten anzubieten. Diese
Anwendungen sollen in einer Laufzeitumgebung ausgefithrt werden. Die Laufzeitumgebung ist

23

3. Anforderungen an eine Systemarchitektur flr intelligente Kleidung

beispielsweise ein mobiles Betriebssystem wie iOS oder Android. Es soll aber auch moglich sein
Anwendungen in beliebigen andere Technologien und Laufzeitumgebungen schreiben zu kénnen.
Die Architektur sollte also kein beschrankender Faktor fiir Anwendungen oder Laufzeitumgebungen
darstellen und so portabel wie méglich sein.

Um Anwendungslogik zwischen verschiedenen Anwendungen oder Laufzeitumgebungen wiederver-
wenden zu konnen, sollen diese iiber eine einheitliche API auf Sensordaten zugreifen und Datenver-
arbeitung abstrahieren.

3.1.2. Einheitliche Schnittstelle fir Anwendungen

Die APl ist der einheitliche Zugriffspunkt auf alle in unteren Schichten anfallenden Werte. Mehrere
Anwendungen sollen auch gleichzeitig auf mehrere Sensorwerte zugreifen kénnen und sich dabei
gegenseitig nicht blockieren.

Die Schnittstelle, mit der Anwendungen auf die Daten zugreifen, soll von den unterschiedliche Geraten,
welche die Daten liefern, abstrahiert sein. Daten der selben Kategorie sollen iiber verschiedene Quellen
hinweg in einem einheitliches Format angeboten werden.

Das ausgegebene Format soll maschinenlesbar sein aber dennoch auch ohne komplexe Werkzeuge von
Entwicklern verstanden werden. Dadurch soll die Einfachheit der Entwicklung verbessert werden.

Uber die Schnittstelle soll sowohl Zugriff auf historische Daten, die als Aufzeichnung vorliegen, als
auch auf Echtzeitdaten die in Echtzeit von einem Sensor geliefert werden, geben. Dabei soll der
Wechsel zwischen den zwei Arten von Datenquellen ohne grofie Anpassungen im aufrufenden Code
zu bewerkstelligen sein.

3.1.3. Wearable OS

Das Wearable OS ist dafiir zustindig, mit der Computer-Hardware zu kommunizieren. Es soll die Daten
von angeschlossenen Sensoren aufzeichnen und diese der oberen Schicht, der Laufzeitumgebung,
bereitstellen. Es soll moglichst portabel sein und auf Geraten, die den Anforderungen an die Computer-
Hardware gentigen, lauffahig sein.

3.1.4. Computer-Hardware

Die Aufgabe der Computer-Hardware ist es, Host fiir das Wearable OS zu sein und die an der
Hardware-Schnittstelle anliegenden Daten auszuwerten. Da diese Hardware am Korper getragen
wird, sollte sie klein, leicht und robust sein. Die digitale und analoge Signalverarbeitung soll auch auf
der Computer-Hardware ausgefithrt werden kénnen.

Es gibt andere Arbeiten, die sich mit Formfaktoren und technischer Machbarkeit naher beschéftigen.
Beispiele dafiir sind Design of the QBIC wearable computing platform [ALO"04] und A Wearable Sensor
and Notification Platform [MRSS06]. Genaue technische Details und Anforderungen der Computer-
Hardware sind nicht Teil dieser Arbeit.

24

3.2. Anforderungen aus Entwicklersicht

3.1.5. Hardware-Schnittstelle

Die hier betrachteten Anforderungen sollten die Hardware-Schnittstelle nicht einschranken. Die
genaue technische Spezifikation der Hardware-Schnittstelle ist nicht Teil dieser Arbeit, allerdings
werden verschiedene grobe Ausgestaltungen dieser betrachtet.

Da der Markt fiir intelligente Textilien erst im Wachsen ist, bietet es sich an, in der Ubergangsphase
auch andere im Moment auf dem Markt befindliche Gerate als Eingabe zu unterstiitzen. Die Architektur
soll daher beliebige zuséatzliche Quellen als Eingabe nutzen kénnen.

3.2. Anforderungen aus Entwicklersicht

Der Fokus dieser Arbeit liegt in der Entwicklung von Anwendungen fiir intelligente Kleidung und
somit im speziellen auf den folgenden drei Benutzergruppen. Ein Ziel ist es, neben der Gesamtfunktio-
nalitdt der Architektur auch den Entwicklungsprozess an sich zu optimieren in dem etwaige Liicken
zwischen den Benutzergruppen geschlossen werden.

3.2.1. Sensorentwickler

Die Personengruppe der Sensorentwickler ist mit der Entwicklung und der Verbesserung der Sensoren
beschéftigt. Die Art der Sensoren ist dabei zweitrangig. Als Sensor sollen alle Gerate betrachtet werden,
die bestimmte Werte liefern welches sich zeitlich verandern.

Wihrend der Entwicklung eines neuen Sensors konnen die Prototypen noch Eigenschaften haben, die
es nicht erlauben ihn mobil und am Kérper zu betreiben. Dennoch sollen diese Sensordaten wihrend
der Entwicklung schon erfasst werden kénnen. Diese Aufzeichnungen kénnen dann anderen im
Entwicklungsprozess beteiligten Gruppen zur Verfiigung gestellt zu werden. Die Schnittstelle zum
Erfassen der Daten soll so einfach wie moglich gestaltet sein, um die Kosten fiir eine Parallelisierung
des Entwicklungsprozesses zu minimieren.

Als Vorteil des frithzeitigen Einpflegens der Sensordaten soll den Entwicklern eine Visualisierung
ihrer Daten geboten werden. Damit sollen Tests in frithen Phasen ohne grofie zusatzlichen Entwick-
lungskosten fiir spezifische Analysesoftware gemacht werden kénnen.

3.2.2. Datenverarbeitungsexperten

Die Gruppe der Datenverarbeitungsexperten beschiftigt sich damit, die von den Sensoren gelieferten
Daten genauer auszuwerten. Aus den rohen Sensordaten sollen Ableitungen gemacht werden, welche
die Realitidt des Benutzers auf einem hoheren Level beschreiben.

Um frithzeitig mit dem Entwerfen von Algorithmen zur Datenverarbeitung beginnen zu kénnen,
sollen aufgezeichnete Daten gleichwertig wie Echtzeitdaten benutzt werden kénnen. Dabei sollen auf
die von den Sensorentwicklern erzeugten und eingepflegten Daten zugegriffen werden kénnen.

25

3. Anforderungen an eine Systemarchitektur flr intelligente Kleidung

Um das Erstellen von neuen Algorithmen zu erleichtern, sollen graphische Hilfsmittel zur Visua-
lisierung der Daten und Datenverarbeitungen angeboten werden. Zudem soll es eine Bibliothek
mit vordefinierten Grundbausteinen geben, um schnell einfache Algorithmen erstellen zu kénnen.
Maschinelles Lernen sollte auch eine Option sein und durch das System unterstiitzt werden. Dazu
sollten Eingaben vom Benutzer explizit kategorisiert werden kénnen und damit zum iiberwachten
Lernen benutzt werden kénnen.

3.2.3. Anwendungsentwickler

Anwendungsentwickler sind dafiir zustdndig, die anfallenden Daten dem Endbenutzer in einer fir
ihn sinnvollen Ausgabe darzustellen und ihm Interaktionsmoglichkeiten zu bieten.

Um frith im Entwicklungsprozess des Gesamtproduktes mit Prototypen der Anwendung zu beginnen,
soll auf alle von Sensorentwicklern und Datenverarbeitungsexperten erstellten Zwischenprodukte
zugegriffen werden kénnen. Es sollen also beispielsweise Aufzeichnungen oder Echtzeitdaten der
Sensoren verwendet werden. Auch die Ergebnisse der entwickelten Algorithmen zur Analyse dieser
Daten sollen von den Anwendungsentwicklern eingesetzt werden kénnen. Um zwischen Aufzeichnung
und realem Sensor zu wechseln sollen keine groflen Anderungen am Programmcode notwendig sein.

Der Zugriff auf diese Daten soll iiber eine einheitliche API méglich sein. Diese soll auf moglichst
vielen Plattformen verfiigbar sein, um Anwendungsentwicklungen nicht unnétig zu beschréanken.
Zudem sollen die eingesetzten Technologien mit existierenden Entwicklungswerkzeugen ausreichend
gut unterstiitzt werden. Dadurch soll ein erneutes Henne-Ei-Problem verhindert werden, bei dem
sich die neue Plattform nicht durchsetzt, da sie nicht ausreichend viele Verbesserungen bietet und
nur gleichauf mit alteren aber weiterentwickelten Inselldsungen liegt.

3.3. Weitere Anforderungen

Aufzeichnungen als Eingabe

Die Aufzeichnungen der Daten sollen die in den Benutzergruppen beschriebenen Anwendungsfille
abdecken, das heifit Echtzeitdaten und Aufzeichnungen gleichgestellt sein. Dies soll an jeder Stelle in
der Architektur moglich sein. Ein wichtiges Element in der Entwicklung von Software ist aber auch
Reproduzierbarkeit. Um Testfille mit bekannten Erwartungswerten schreiben zu konnen, muss man
auch konstante Eingaben haben. Das System soll es erméglichen, aufgezeichnete Datensitze in der
selben Art anzubieten, wie real verbundene Sensoren. Dadurch kann unter anderem reproduzierbar
die Funktionalitat der entwickelten Anwendungen getestet werden.

Arten der Datenubertragung
Es fallen Daten an, die in zwei Kategorien eingeteilt werden konnen. Zum einen entstehen Da-

ten, die nicht zwingend in Echtzeit iibertragen werden miissen. Beispiele dafiir wiren Langzeit-
Durchschnittswerte des Pulses oder die Kérpertemperatur. Fiir andere Daten ist es notwendig, dass

26

3.4. Zusammenfassung

diese so schnell wie moglich tibertragen werden. Darunter fallen je nach Anwendungsfall beispiels-
weise Daten von Beschleunigungssensoren. Die Architektur soll ermdglichen beide Arten von Daten-
ibertragungen zu unterstiitzen.

Rickkanal

Um den Schritt von passiven intelligenten Materialien zu aktiven oder sehr intelligenten Materialien
zu machen, ist es notwendig Daten an diese zuriickzuliefern und sie gegebenenfalls zu steuern. Die
Architektur soll diesen Anwendungsfall unterstiitzen. Kleidung kénnte auch nicht nur als Sensor
dienen sondern auch als Elemente beinhalten, die als Ausgabe fungieren, wie zum Beispiel in Electro-
luminescent based Flexible Screen [ACCL14] beschrieben. Fiir Anwendungsfille dhnlich zu diesem,
soll mit dem Sensor beziehungsweise der Kleidung kommuniziert werden konnen, falls diese es
unterstiitzt oder erfordert.

Sicherheitsanforderungen

Die gesamte Architektur sollte die personlichen Daten der Endbenutzer soweit méglich vor unberech-
tigten Dritten schiitzen. Unter persénliche Daten fallen sowohl die von Sensoren erfassten Daten als
auch die verarbeitete Ausgabe. Nur der Benutzer, beziehungsweise von ihm zur Datenverarbeitung
beauftragte Parteien sollen Zugriff auf diese Daten haben.

Aufgezeichneten Daten, wie zum Beispiel Puls und EKG, lassen unter Umstédnden Riickschliisse auf
den Gesundheitszustand des Trigers zu. §203, Verletzung von Privatgeheimnissen im Strafgesetzbuch!
schiitzt patientenbezogene Gesundheitsdaten, unter welche die Aufzeichnung von physiologischen
Werten durch beispielsweise Kleidung oder andere Wearable Computing Gerite auch fallen kénnen.

3.4. Zusammenfassung

Eine Architektur fiir intelligente Kleidung soll vor allem die im Entwicklungsprozess beteiligten
Gruppen unterstiitzen. Dabei sollte sie aber auch erméglichen, verschiedene Komponenten von
unbeteiligten Parteien erstellen zu lassen. Eine Schichtenarchitektur bietet sich an, um die Kopplung
zwischen den Komponenten zu verringern. Die in dieser Arbeit betrachteten Benutzer der Architektur
sind in drei Gruppen einzuteilen. Fir jede dieser Gruppe sollte die Architektur Vorteile bieten.
Neben dem Nutzen fiir die Gruppen sind auch Grundlegende Funktionalititen wie bidirektionale
Kommunikation und Sicherheitsanforderungen zur Umsetzung des Datenschutzes zu beachten.

'http://dejure.org/gesetze/StGB/203. html, zuletzt abgerufen am 30. Juni 2014

27

http://dejure.org/gesetze/StGB/203.html

4. Architektur einer Middleware zur
Entwicklungsunterstutzung

In diesem Kapitel wird eine Architektur beschrieben, welche die in Kapitel 3 beschriebenen Anforde-
rungen erfillt. In Abbildung 4.1 sind die groben Komponenten davon visualisiert. Grundlage dieser
Architektur sind die in Abschnitt 2.7 beschriebenen Uberlegungen. Der bedeutende Unterschied
zur dort vorgestellten Architektur ist eine zusitzlich eingefiihrte Schicht, die fiir die Speicherung,
Verwaltung und Verarbeitung der Daten zustandig ist.

Abbildung 4.2 zeigt die selben Komponenten, allerdings mit Fokus auf die Kommunikationsgrenzen
und Zustandigkeiten. Im folgenden werden die einzelnen Teile der Architektur naher beschrieben
und ihre Ausgestaltung begriindet.

fiihlender Anwendungen
Stoff Computer-Hardware ®
e Laufzeitumgebung
D/A || OS ([)
® Il 9 o
Hardware-Schnittstelle

Middleware

Konventionelle Schnittstelle

L Datenspeicher [

. Datenverwaltung A
andere CX Datenverarbeitung
Sensoren

Abbildung 4.1.: Ubersicht iiber das Zusammenspiel der einzelnen Komponenten

o
- @

29

4. Architektur einer Middleware zur Entwicklungsunterstiitzung

[[[
Sensoren/Datenquellen 1 Computer-Hardware Middleware 1 Endgerat
[[[
[[[
[[[
[1 1
[[[
! ! ! Anwendung
Hardware- ! ! !
Schnittstelle : : :
I [[Laufzeit-
1 1 1 umgebung
[® o [® ® [
— L : O @ t L
1 2 1 1
[[[
[1 1
' [[
[[
[[
[[
[[
Drittanbieter ' 1 1
[[
O : :
1 1
S S

Abbildung 4.2.: Ubersicht iiber die Architektur mit Fokus auf die verschiedenen Schnittstellen zwi-
schen Geritegrenzen

4.1. Hardware-Schnittstelle und Computer-Hardware

Die spezifische Schnittstelle fiir die Verbindung der Computer-Hardware mit intelligenter Kleidung
ist hier nicht genauer spezifiziert. Im Kapitel 5 werden allerdings Vorschlage zu méglichen Implemen-
tierungen gegeben.

Um im Moment auf dem Markt verfiigbare Sensoren zu benutzen, muss zusitzliche Software geschrie-
ben werden, um die Daten von diesen Sensoren in das System zu tiberfithren. Diese Software lauft
auf der Computer-Hardware. Dies bedeutet, dass diese mindestens iiber eine Bluetooth-Schnittstelle
verfiigen muss. Alle anderen Merkmale sind offen, solange sie den Anforderungen in Abschnitt 2.7
geniigen.

In Abbildung 4.3 sind drei Méglichkeiten zur Gestaltung der Hardware-Schnittstelle dargestellt, die
vor allem interessant sind, wenn mehrere intelligente Kleidungsstiicke gleichzeitig getragen werden.
Die Varianten werden in folgenden Abschnitten erlautert.

30

4.1. Hardware-Schnittstelle und Computer-Hardware

Computer-
Hardware

Computer-
Hardware

Computer-Hardware

Abbildung 4.3.: Mogliche Ausgestaltungen der Hardwareschnittstelle

Verdrahtung zwischen Kleidungsstiicken

In diesem Szenario ist die Computer-Hardware mit mit einer Steckverbindung nur an einem Klei-
dungsstiick angebracht. Andere Kleidungsstiicke konnen tiber flexible waschbare Verbindungen mit
diesem Kleidungsstiick verbunden werden und miissen keinen eigenen Sockel fiir die Hardware bereit-
stellen. In diesem Fall wiirde es ein Hauptkleidungsstiick geben. Nachteilig sind die kabelgebundenen
Verbindungen, welche je nach Kleidungsstiick und Anwendungsfall storend sein konnten.

Master/Slave Kleidungsstiicke

Wie im ersten Szenario gibt es ein Kleidungsstiick, welches fiir die hauptsiachliche Kommunikation zu-
standig ist. In dieses Kleidungsstiick kann die Computer-Hardware eingesetzt werden. Die Verbindung
zu weiteren intelligenten Kleidungsstiicken ist dabei allerdings nicht kabelgebunden, sondern wird
iiber eine drahtlose Verbindung wie zum Beispiel Bluetooth realisiert. Fiir die drahtlos verbundenen
Kleidungsstiicke konnte Hardware dhnlich zum Blidget' zum Einsatz kommen: Kleine (25x25x6mm)
programmierbare Chips, die drahtlos iiber Bluetooth Smart kommunizieren kénnen. In diesem Zuge
erhoht sich allerdings die Komplexitit des Systems, da aus der reinen Hardware-Schnittstelle ein
neues System von zwei miteinander kommunizierenden Komponenten wird.

"http://blidget.hcilab.org/, zuletzt abgerufen am 30. Juni 2014

31

http://blidget.hcilab.org/

4. Architektur einer Middleware zur Entwicklungsunterstiitzung

Vollsténdig drahtlose Kommunikation

Als konsequenter Schritt zwischen der Mischform in Szenario 2, wire auch denkbar die Computer-
Hardware komplett von der Kleidung zu trennen und mit dieser nur kabellos zu kommunizieren. Falls
es moglich ist, robuste Chips, die klein genug sind um dauerhaft, auch wihrend dem Waschvorgang,
in der Kleidung zu verbleiben, wire dies eine komfortable Option. Die Aufgaben der Computer-
Hardware konnte dabei beispielsweise ein Smartphone iibernehmen. Diese Art der Verbindung ist im
Moment fiir Wearable Computing Gerate am meisten verbreitet, da sie keine Anforderungen an andere
Gerite stellt und direkt mit einer kompatiblen Gegenstelle kommuniziert. Die Herausforderung ist,
die Hardware auf den Kleidungsstiicken selbst, die die drahtlose Kommunikation regelt, so robust zu
machen, dass man nicht pro Kleidungsstiick jeweils zusatzliche Module zum Aufladen oder Waschen
abnehmen muss und diese spéter wieder anbringen.

4.2. Wearable OS

Durch die Einfithrung der Zwischenschicht, sind die Anforderungen an das Betriebssystem, das auf der
Computer-Hardware lauft, recht gering. Es muss Code ausfithren kénnen, um iiber die spezifizierten
Kommunikationskanile mit dem zentralen Datenspeicher, der Middleware, kommunizieren. Es ist
zusténdig der Middleware, die an der Hardware-Schnittstelle anliegenden Werte zu senden.

4.3. Middleware (Datenspeicher, Verwaltung und Verarbeitung)

Im folgenden wird diese Schicht auch auch Middleware genannt. Diese zuséatzliche Schicht dient
der weiteren Abstraktion zwischen Sensoren und Endgerit und erlaubt einfachere zukiinftige Er-
weiterungen und Unterstiitzung wihrend des Entwicklungsprozesses. Als Eingabe bekommt sie die
Sensordaten von der Computer-Hardware oder Sensoren selbst geliefert. Die Middleware dient auch
als API fiir Anwendungen des Endbenutzers. Als zukiinftige Erweiterung kénnten auch Daten von
Drittanbietern, die im Internet iiber Schnittstellen von Drittanbietern zur Verfiigung stehen, von der
Middleware importiert werden oder direkt dort angeliefert werden.

Die Middleware konnte auch neben dem Wearable OS auch auf der Computer-Hardware ausgefiithrt
werden. Zu frithen Testzwecken im Entwicklungszyklus kann dies ein gangbarer Weg sein. Lang-
fristig ist es allerdings realistischer, diese Middleware auszulagern um die Anforderungen an die
Computer-Hardware méglichst niedrig zu halten. Die Speicherung, Verwaltung und Verarbeitung
von Sensordaten wird dann auf einem anderen eigenstindigen Rechner ausgefiithrt, der weder direkt
fiir das Sammeln der Sensordaten zustandig ist, noch die letztendlichen Anwendungen des Benutzers
ausfiihrt.

Es ist theoretisch auch moglich, die Middleware nur wihrend den frithen Entwicklungsphasen
zu und spéter aus den dort angefallenen eingepflegten Daten automatisch oder halbautomatisch
Schnittstellen fiir verschiedene Plattformen zu generieren. Diese Variante ist allerdings in dieser
Arbeit nicht vorgesehen, konnte allerdings eine zukiinftige Erweiterung darstellen. Langfristig geht
der Trend zum Auslagern von Datenverarbeitung. Ein Beispiel dafiir ist beispielsweise die mobile

32

4.3. Middleware (Datenspeicher, Verwaltung und Verarbeitung)

Anwendungen / Laufzeitumgebung

Ausgabe

Verarbeitung

Persistenz

Vereinheitlichung

Eingabe

Middleware

Wearable OS / Computer-Hardware

Abbildung 4.4.: Middleware mit umliegenden Schichten

Anwendung Moves?, welche nur die Bewegungsdaten auf dem mobilen Endgerit sammelt und die
Auswertung bei sich vornimmt und diese Ergebnisse dann zuriicksendet.

Die einzelnen Schichten der Middleware (siehe Abbildung4.4) sind fiir folgende Aufgaben zusténdig:

4.3.1. Eingabe

Die Eingabe ist zustdndig um einkommende Daten zu empfangen. Sie stellt Endpunkte zur Verfiigung
mit denen sich Sensoren verbinden konnen um Daten anzuliefern. Zu Testzwecken, vor allem in
frithen Phasen der Prototypen, die noch nicht in Echtzeit kommunizieren kénnen, ist es von Vorteil
auch Daten aus Dateien importieren zu kénnen.

Als Eingabewerte konnen beliebige Daten benutzt werden, die zeitabhéngig sind. Eine Datenquelle
muss dabei keinem strikten Schema unterliegen, das heif3t, nicht jeder Eintrag eines Sensors muss
unbedingt alle Felder ausfiillen. Die einzige harte Anforderung an einen Eintrag ist der Zeitstempel.
Beispielhafte Daten eines Sensors, die den Anforderungen geniigen, sind in Tabelle 4.1 aufgefiihrt.
Daten konnen dabei vom Datentyp Integer, Float oder String sein.

Aufgrund der moglichen Diversitit von Daten soll es auch moglich sein, diese Felder hierarchisch zu
organisieren, anstatt ahnliche Felder nur mit gleichem Préfix zu versehen. Ein Beispieldokument wiirde
in JSON-Notation folgendermaflen aussehen: {accel: {x: 1, y: 0, z: 0.5}, heart_rate: 67}.
Mit derartigen Datenstrukturen kénnten dhnliche Daten, die aber beispielsweise von Verschiedenen
Korperregionen gleichzeitig kommen, sinnvoll organisiert werden.

http://moves-app.com/, zuletzt abgerufen am 30. Juni 2014

33

http://moves-app.com/

4. Architektur einer Middleware zur Entwicklungsunterstiitzung

Zeitstempel Daten
timestamp accel_x accel y accel z heart_rate

2014-05-05T11:52:57.699Z | -0.6761 -0.1925 0.6749
2014-05-05T11:52:57.901Z 67
2014-05-05T11:52:58.000Z | -0.6774 -0.1927 0.6701 71

Tabelle 4.1.: Beispieleingabe von schemalosen Daten

4.3.2. Persistenz

Aufgezeichnete Daten sollen im System gespeichert werden konnen. Dabei soll sowohl das Abspei-
chern als auch der Zugriff auf die Aufzeichnungen schnell genug erfolgen kénnen, um sie ich Echtzeit
wieder abspielen zu konnen. Allerdings sollten eingehende Daten keinen strikten Schema entspre-
chen miissen. Es sollen beliebige Schliissel-Wert-Paare abgelegt werden konnen. Die einzige strikte
Anforderung ist ein Zeitstempel, der jedem Paar zugeordnet ist.

4.3.3. Verarbeitung

Die Verarbeitung ist zustindig, die rohen Sensordaten nach ihrer Vereinheitlichung weiter zu verar-
beiten. Dabei wird der eingehende Datenstrom durch eine Kombination von Filtern transformiert
und dann an die Ausgabe weitergeleitet. Um die Entwicklung neuer Filter zu vereinfachen, soll das
System den Entwicklern vorgefertigte Bausteine bereitstellen.

Der Grof3teil der Datenverarbeitung soll dabei auf der Middleware stattfinden, um den einzelnen
Anwendungen, beziehungsweise Geriten auf denen diese Anwendungen ausgefithrt werden, Last zu
ersparen. Auch konnen die Algorithmen, die zur Verarbeitung der Daten auf Serverseite eingesetzt
werden, aktualisiert und gegebenenfalls verbessert werden, ohne die Anwendung selbst aktualisieren
zu missen.

4.3.4. Ausgabe

Die Ausgabe ist zustindig um die im System angefallen Daten in einem maschinenlesbaren Format an
andere Anwendungen weiterzuleiten. Dabei wird zwischen zwei Arten der Ausgabe unterschieden:

Als Datenstrom werden Daten angesehen, die so schnell wie moglich von der Quelle zur Anwendung
gelangen sollen. Dabei soll die Verbindung bidirektional méglich sein, um einen eventuellen Riickkanal
zum Sensor zu bieten.

Neben dem kontinuierlichen Datenstrom gibt es auch die Moglichkeit, nur einen einzelnen Wert
abzufragen. Dies konnte beispielsweise der aktuelle Wert eines Sensors sein. Dieser Wert wird nach
einem Frage-Antwort-Schema ibermittelt. Dieser Wert kann auch Ergebnis einer Datenverarbeitung

34

4.4. Schnittstelle zu Anwendungen und Laufzeitumgebung

sein. In diesem Fall hat die Antwort eventuell eine Verzogerungszeit, je nachdem wie grof3 der Puffer
der Verarbeitung sein muss und auf wie vielen Daten er aufbaut.

Um nicht dauerhaft nach Anderungen zu fragen, kénnen auch Riickrufaktionen registriert werden. Da-
bei kann ein Sensor, eine Bedingung und eine Riickrufadresse angegeben werden. Falls die Bedingung
fir den Sensor zutrifft, wird die Aktion an der spezifizierten Adresse aufgerufen.

Ein Bestandteil der Ausgabe ist optional auch die Entkopplung des spezifischen Sensors vom Kon-
sument der Daten. Der Konsument kann eine Anfrage nach bestimmten Daten stellen, und die
Middleware sucht daraufhin eine auf die Anforderung passende Quelle heraus. Die Anfrageparameter
konnten dabei beispielsweise Anforderungen an bestimmte Felder (z.B. Puls, Atemfrequenz) sein. Die
Middleware stellt aus den Anforderungen einen Datensatz zusammen und liefert diesen zuriick.

4.3.5. Verwaltung

Dieses Modul ist hauptsachlich wihrend der Entwicklung relevant. Es erlaubt die im System existenten
Datensitze einzusehen. Fiir jeden Datensatz konnen die verfiigbaren Felder eingesehen werden und
die Daten auch visualisiert werden.

Neben einfachen Visualisierungen fiir einzelne Datensétze ist ein erweiterter Analysemodus an-
gedacht, in dem mehrere Datensitze und das Ergebnis ihrer Verarbeitung (siehe Abschnitt 4.3.3)
visualisiert werden kénnen.

4.4. Schnittstelle zu Anwendungen und Laufzeitumgebung

Anwendungen konnen auf beliebige in der Middleware vorhandenen Sensordaten und Metadaten
zugreifen. Der Zugriff auf einen bestimmten Sensoren ist von mehreren Anwendungen gleichzeitig
moglich ohne diesen zu blockieren. Die Kommunikation sollte méglichst einfach auf verschiedenen
Plattformen einsetzbar sein.

4.5. Authentifizierung und Autorisierung

Um unautorisiertes Abfragen von Sensordaten zu verhindern, miissen Verbindungen die im Zugriffs-
bereich von anderen Parteien liegen abgesichert werden. Dazu sollten Sensor und Empfénger gepaart
werden und nur mit den bekannten Gegenstellen kommunizieren.

35

4. Architektur einer Middleware zur Entwicklungsunterstiitzung

4.6. Vor- und Nachteile der Middleware

Die Einfithrung einer zusétzlichen Schicht bringt sowohl Vorteile als auch Nachteile mit sich. Mehr
Schichten bedeutet mehr Indirektion und erhéhter Ressourcenverbrauch. Auf der Seite der Vorteile
stehen allerdings Entkopplung, Flexibilitat und die Funktionen zur Entwicklerunterstiitzung.

Es sind verschiedene Mdglichkeiten denkbar, um in der Entwicklungsphase die Vorteile auszunutzen
aber spéter im Endprodukt auf die Einbuflen durch die Middleware zu verzichten, beziehungsweise
diese zu verringern. Eine Moglichkeit wire, Code fiir verschiedene Plattformen zu generieren, die an
den Endpunkten die Arbeit ibernimmt und damit die Middleware komplett ersetzt. Es ware auch
denkbar, einen Mischbetrieb zu erlauben und Daten die eine sehr geringe Latenz bendtigen nicht
durch die Middleware zu transportieren. Dabei konnten Endpunkte in einen speziellen direkten
Modus gesetzt werden, der iiber die Middleware verhandelt wird, aber bei dem die Quelle und der
Konsument direkt miteinander Daten austauschen.

4.7. Zusammenfassung

Eine Schichtenarchitektur ist eine gute Grundlage fiir die Gesamtarchitektur. Da jede Schicht eigene
Zustandigkeiten hat, sind die dariiber und darunter liegenden Komponenten flexibel und kénnen je
nach Bedarf auch unterschiedlich gestaltet sein.

Es wurde eine neue Schicht eingefiihrt, die zwischen den Anwendungen und der Computer-Hardware,
die zusténdig fiir die Kommunikation mit den Sensoren selbst ist, liegt. Diese Schicht ibernimmt die
Verarbeitung und Bereitstellung der Daten. Wahrend dem Entwicklungsprozess bietet sie Unterstiit-
zung in den einzelnen Schritten der Datenerfassung, Analyse und Verarbeitung.

36

5. Eingesetzte Technologien und Umsetzung

Nichts behebt Designprobleme wie
eine Implementierung.

(J. D. Horton)

Dieses Kapitel beschreibt eine mogliche Implementierung der Architektur. Die eingesetzten Tech-
nologien sind in Abbildung 5.1 veranschaulicht. Die dort grau dargestellten Teile konnten nicht
implementiert werden, da die Komponenten nicht verfiigbar waren. Anstatt der Kleidung wurde unter
anderem der BioHarness 3 als Datenquelle implementiert und die Computer-Hardware mit Wearable
OS entspricht géngiger Computer-Hardware und Betriebssystemen. In den folgenden Abschnitten
werden die einzelnen Komponenten und Technologien niher erldutert.

Es sind nicht alle in der Architektur genannten Funktionen vollstindig implementiert, sondern
hauptsichlich Funktionen die fiir die Grundfunktionalitit von Bedeutung sind und in der Evalua-
tion eine Rolle spielen. Ein nicht implementierter Teile ist beispielsweise der gesamte Bereich der
Authentifizierung und Autorisierung von Benutzern des Systems.

5.1. Computer-Hardware und Betriebssystem

Es wurde Wert auf plattformunabhiangige Komponenten gelegt und somit sollte die umgesetzte Archi-
tektur auf allen gangigen Betriebssystemen (Windows, Linux/Unix) funktionieren. Die am stirksten
plattformspezifische Komponente ist der Wrapper, der fiir die Kommunikation tiber Bluetooth mit
dem BioHarness 3 zustindig ist.

Als Sprache wurde Python! gewihlt. Python ist eine stark und dynamisch typisierte Programmier-
sprache, die Programmlesbarkeit in den Vordergrund stellt. Python ist auf Windows, Linux/Unix, Mac
OS X und anderen Betriebssystemen verfiigbar.

Python wurde dabei in der Version 3.x eingesetzt. Diese ist nicht vollstandig riickwértskompatibel
mit Quellcode der fiir Python 2.x geschrieben wurde. Alle im Zuge dieser Arbeit angefertigten
Softwareartefakte sind auf Kompatibilitat mit Python 3 ausgerichtet.

Als mogliche Computer-Hardware, vor allem wéhrend der Prototypenerstellung, konnten beispiels-
weise Plattformen wie der Raspberry-Pi oder ein Beagleboard zum Einsatz kommen. Alle eingesetzten
Technologien werden auf diesen Plattformen unterstiitzt.

"https://www.python.org/

37

https://www.python.org/

5. Eingesetzte Technologien und Umsetzung

Anwendungen —— HTML, CSS, JavaScript
Laufzeitumgebung ® |— Webbrowser
HTTP, Websockets
Ausgabe ® | — Tornado Server
Verarbeitung
Persistenz Datenbank
—— MongoDB
Vereinheitlichung
Eingabe — Tornado Server
®
HTTP, Websockets
[J
Wearable OS / Computer-Hardware Wrapper
®
Bluetooth (Serial Profile)
[J
Kleidung mit Hardware-Schnittstelle BH3

Abbildung 5.1.: Bei der Implementierung eingesetzte Technologien

5.2. Abhangigkeiten

Die folgenden Anwendungen und Bibliotheken sind notwendig, um die entwickelte Software auszu-
fithren.

5.2.1. Tornado

Tornado? ist eine in Python geschriebene Bibliothek um Netzwerkanwendungen zu entwickeln. Sie
wurde fiir das soziale Netzwerk FriendFeed® entwickelt. Die Funktionalitidt von FriendFeed liegt
darin, in Echtzeit Neuigkeiten von Freunden zu aggregieren und anderen Nutzern einheitlich zu
prasentieren.

“http://www.tornadoweb.org
*http://friendfeed.com/

38

http://www.tornadoweb.org
http://friendfeed.com/

5.2. Abhangigkeiten

Tornado setzt auf asynchrone Kommunikation. Konventionelle Serverimplementierungen wie zum
Beispiel Django*, benutzen ein synchrones Verarbeitungsmodel. Das bedeutet, dass eine neue Anfrage
erst beantwortet wird, wenn die im Moment schon laufende Anfrage abgearbeitet wurde.

1. Der Server empfangt eine Anfrage und leitet sie an den entsprechenden Handler weiter
2. Der Handler fiithrt eine komplexe Datenbankabfrage durch
3. Wenn die Behandlung abgeschlossen ist wird die Antwort gesendet

4. Es kann eine neue Anfrage angenommen werden

Wihrend der Handler ausgefithrt wird, blockiert der Server und es kénnen keine neuen Anfragen
angenommen werden. Beim asynchronen Modell hingegen wird dieses Blockieren aufgehoben. Dazu
werden sogenannte Riickrufaktionen (Callbacks) benutzt. Dabei wird der ldnger laufenden Aufgabe
eine Aktion mitgegeben die nach ihrem Abschluss aufgerufen wird. Um moderne Webtechnologien wie
zum Beispiel WebSockets umzusetzen, ist es notwendig, die Anfragen asynchron zu beantworten.

1. Der Server empfangt eine Anfrage und leitet sie an den zustidndigen Handler weiter

2. Der Handler setzt die Datenbankabfrage mit einer Riickrufaktion ab. Die Riickrufaktion enthélt
die Informationen um die Antwort zu erstellen.

3. Wihrend die Datenbank arbeitet, kann der Server nun neue Anfragen bearbeiten.

4. In der Zeit in der keine neuen Anfragen ankommen, konnen beispielsweise die Riickrufaktionen
ausgefihrt werden

Die Koordination wird mittels einer Ereignisschleife umgesetzt. Diese lauft in einem Thread ab. Da
der Entwickler nicht selbst mit Threads arbeiten muss, um asynchrones Verhalten zu erhalten, wird
diese Klasse von Fehlern begrenzt. Um eine Tornado-Anwendung zu skalieren, kénnen automatisch
mehrere Prozesse gestartet werden, die jeweils eine eigene Ereignisschleife besitzen. Der eingehende
Netzwerkverkehr wird auf die Schleifen aufgeteilt. Im Produktivbetrieb ist es géngig, eine Schleife
pro CPU zu starten.

Neben der asynchronen Ein- und Ausgabe bringt Tornado noch Werkzeuge zum schreiben von Servern
und Webanwendungen mit. Die Werkzeuge fiir asynchrone Netzwerkkommunikation enthalten
die Ereignisschleife, einen asynchronen HTTP-Client und TCP-Server. Um Webanwendungen zu
schreiben, wird ein asynchroner HTTP-Server und eine Templatesprache mitgeliefert. Zur Integration
mit Drittdiensten werden beispielsweise OpenID- und OAuth-Logins unterstiitzt.

4h'c‘cps ://www.djangoproject.com/

39

https://www.djangoproject.com/

5. Eingesetzte Technologien und Umsetzung

5.2.2. MongoDB

MongoDB ist eine Datenbank die dokumentenorientiert arbeitet. Im Gegensatz zu relationalen Da-
tenbank wie MySQL ist sie schemafrei. In einem MongoDB-Server konnen mehrere Datenbanken
nebeneinander existieren. Eine Datenbank enthilt Dokumentensammlungen (Collections), in denen
Dokumente abgelegt werden kénnen. Ein Dokument ist ein nach dem BSON-Format serialisiertes
Objekt.

JSON® ist ein Datenformat um Schliissel-Wert-Paare in einem menschenlesbaren Format zu iibertragen.
Im Vergleich zu XML (Extensible Markup Language) ist die Syntax einfacher gestaltet und enthalt in
der Regel weniger Verwaltungsdaten, definiert dafiir allerdings nur weniger Datentypen.

BSON ist eine Erweiterung von JSON und steht fir Binary JSON. Es erweitert JSON in zwei Bereichen.
Es speichert zum serialisierten Objekt jeweils noch den Datentyp und die Lénge des Eintrags ab.
Durch die gespeicherte Lange des Eintrags kann die Geschwindigkeit beim parsen des Eintrags erhoht
werden.

5.2.3. Andere Python Bibliotheken

Hier folgt eine kurze Beschreibung von anderen eingesetzten Python-Bibliotheken.

motor ist zustindig fiir die Kommunikation zwischen Tornado und MongoDB. Der Datenbanktreiber
ist asynchron fiir den Einsatz mit Tornado entworfen worden.

toro stellt Primitive zur Verfiigung, um asynchrone Ablaufe zu synchronisieren.

werkzeug ist eine Bibliothek fiir Webanwendungen. Sie enthalt einen Debugger fiir Webanwendun-
gen, der in der Middleware integriert wurde.

pyserial bietet Unterstiitzung fiir serielle Verbindungen nach dem RS-232 Standard. Die serielle
Bluetoothverbindung wird tiber pyserial benutzt.

5.2.4. Sensorspezifische Abhangigkeiten Abhangigkeiten

Um mit dem BioHarness 3 in Echtzeit zu kommunizieren, wurde eine existierende Bibliothek angepasst
und integriert. Die Bibliothek namens zephyr-bt® wurde entwickelt, um durch iibermittelte Biowerte
des Tragers in Echtzeit Musik zu erzeugen. Im Zuge dieser Arbeit mussten Anpassungen an der
Bibliothek vorgenommen werden, um sie kompatibel mit Python 3 zu machen.

Shttp://json.org/, zuletzt abgerufen am 30. Juni 2014
*https://github.com/jpaalasm/zephyr-bt, zuletzt abgerufen am 30. Juni 2014

40

http://json.org/
https://github.com/jpaalasm/zephyr-bt

5.3. Kommunikationsschnittstellen

5.2.5. Bibliotheken zur Umsetzung der Benutzungsschnittstelle

Die Benutzungsoberfliche wurde mit Webtechnologien umgesetzt. Die Webseiten werden von der
Middleware generiert. Als Grundlage fiir die Gestaltung wurde das CSS-Framework Bootstrap’ einge-
setzt. Logik die auf Klientenseite ablauft ist in JavaScript geschrieben. Fiir eine einfachere Benutzung
des DOMs im Webbrowser wird jQuery® eingesetzt. Um Graphen zu zeichnen wurde zunichst der Ein-
satz D3.js’ getestet. Fiir einfache Graphen ist die notwendige Einarbeitung und Komplexitt allerdings
zu hoch. Daher sind die Graphen jetzt mithilfe von Google Charts'® umgesetzt.

5.3. Kommunikationsschnittstellen

Im folgenden wird die Umsetzung der Schnittstellen zwischen den verschiedenen Komponenten naher
beschrieben. Dabei wird mit den Verbindungsbezeichnungen auf Abbildung 4.2, die Ubersicht der
Schnittstellen zwischen Gerdtegrenzen, Bezug genommen.

Hardware-Schnittstelle

Diese Verbindung (.S1) ist zustandig um die Daten beispielsweise eines drucksensitiven Gitters auf dem
T-Shirt mit der Computer-Hardware zu verkniipfen. Da es dafiir noch keine benutzbaren Prototypen
gab, wurde diese Schnittstelle nicht implementiert, sondern durch eine Schnittstelle mit anderen
Geriten ersetzt.

Verbindung mit Altgeraten

Im Moment auf dem Markt befindliche Wearables kommunizieren hauptsachlich iiber Bluetooth.
Daher bietet es sich an, diese iiber Bluetooth mit der Computer-Hardware koppeln zu kénnen (.S). Die
Software auf der Computer-Hardware kiilmmert sich dann darum, diese Daten iiber die Schnittstelle
S3 an die Middleware zu senden. Exemplarisch wurde dies fiir den Zepyhr BioHarness 3 implementiert
(siehe auch Abschnitt 5.4.1).

Kommunikation mit der Middleware

Die Middleware als zentraler Punkt, in dem Daten ein- und ausgegeben werden, ist iber ein Netzwerk-
protokoll erreichbar. Im Rahmen dieser Arbeit wurde fiir die Kommunikation zwischen Computer-
Hardware und Middleware (S3) und zwischen Middleware und Endgerat (S4) das gleiche Protokoll

"http://getbootstrap.com/
8h‘c‘cp://jquery.com/

’http://d3js.org/
Yhttps://developers.google.com/chart/

41

http://getbootstrap.com/
http://jquery.com/
http://d3js.org/
https://developers.google.com/chart/

5. Eingesetzte Technologien und Umsetzung

benutzt. Es ist allerdings moglich dieses je nach Anforderungen, die vor allem von Seiten der noch
nicht spezifizierten Computer-Hardware kommen konnen, zu ersetzen.

Als Protokoll um mit der Middleware zu kommunizieren, wird HTTP (Hypertext Transfer Protokoll)
und WebSocket eingesetzt. HTTP wird tiberall da eingesetzt, wo der Nachrichtenaustausch dem
Request-Response-Muster folgt: das heif3t auf eine Anfrage des Clients folgt eine Antwort des Servers.

Um eine dauerhaft Verbindung zwischen zwei Endpunkten aufzubauen, wird das WebSocket-Protokoll
benutzt. Das Protokoll wurde 2011 standardisiert [Int11]. Es ist darauf ausgelegt, fiir die Kommunika-
tion zwischen Webbrowsern und Webservern benutzt zu werden, aber nicht darauf beschrankt. Es
bietet eine Vollduplex-Verbindung zwischen beiden Parteien an. Das heifit Client und Server kénnen
gleichzeitig Nachrichten austauschen. Es ist damit im Gegensatz zum Request-Response-Muster besser
geeignet um Daten in Echtzeit auszutauschen. Die Nutzdaten der iiber WebSockets iibertragenen
Nachrichten sind dabei im JSON-Format kodiert.

Der Einsatz der Webtechnologien HTTP und WebSockets erlaubt es, Anwendungen mithilfe von
HTML, CSS und JavaScript zu erstellen. ,Webtechnologien setzen sich vor allem in Bereichen durch in
denen verschiedene Plattformen mit wenig Aufwand unterstiitzt werden wollen®, meint Herr Dipl.Inf
Fellger, Softwareentwickler in einem Unternehmen, das sich auf die Entwicklung von Softwarelo-
sungen fiir Unternehmen spezialisiert hat. Nach Charland und Leroux ist es glinstiger, webbasierte
Anwendungen zu entwickeln, wenn man dabei in Kauf nimmt, dass die Benutzungsschnittstelle je nach
Anwendungsfall nicht die Leistungsfahigkeit einer nativen Anwendung erreichen wird [CL11].

Die Benutzung von WebSockets und HTTP-Schnittstellen ist allerdings auf allen gangigen mobilen
Plattformen (iOS, Android, Windows Phone) auch mit nativen Programmcode méglich und so kénnen
auch native Anwendungen geschrieben werden, die auf die selben Daten zugreifen und eine optimierte
plattformspezifische Benutzungsoberfliche anbieten.

5.4. Umsetzung der Middleware

Die Middleware wurde mit Hilfe der in Abschnitt 5.2 erwahnten Abhangigen umgesetzt. Die Midd-
leware wird im folgenden als SEDM bezeichnet. Dieses Akronym steht fiir Sensor DataManagement.
SEDM besteht aus 4 Modulen die jeweils einen Bereich der Funktionalitét realisieren. Die im folgenden
aufgezihlten Module werden in jeweils eigenen Abschnitten detaillierter beschrieben.

sedm.sources Dieses Modul beinhaltet Code um mit spezifischen Sensoren zu sprechen und deren
Daten zu importieren.

sedm.processing kiimmert sich um die Verarbeitung der Sensordaten.
sedm.storage ist fiir die Persistenz der Daten zustdndig.

sedm.server ist das Bindeglied zwischen den anderen Modulen und ist fiir die Gesamtkoordination
und Kommunikation zustandig.

42

5.4. Umsetzung der Middleware

Listing 5.1 Die Definition der Riickrufaktion, die Daten des BH3 zum SEDM-Server sendet. Die
Verbindung zum Websocket ws_connection wurde bei Programmstart initialisiert.

def callback(value_name, value):

if value_name == 'ecg’': # ignore ECG values
return
elif value_name == ’'acceleration’: # flatten accelerometer data

message = {
"timestamp’: dt.now(),
"accel_x': value[0],
"accel_y’: value[l],
"accel_z’': value[2],

}

else:

message = {
"timestamp’: dt.now(),
value_name: value,

}

ws_connection.write_message(json_dumps(message))

5.4.1. Eingabe

Um den Prototypen zu implementieren wurde auf dem Markt verfiigbare Hardware eingesetzt. Im
folgenden wird die benutzte Hardware und ihre Benutzung als Quelle néher beschrieben.

BioHarness 3

Die grundlegenden Funktionen des BioHarness 3 (BH3) sind in Abschnitt 2.10.1 niher erlautert. Er
wurde als eines der moéglichen Datenquellen implementiert und liefert Beschleunigungsdaten, Puls und
Atemfrequenz des Tréagers. Der BH3 spricht ein serielles Protokoll, das iber USB und Bluetooth gleich
aufgebaut ist. Die genaue Spezifikation der Nachrichten, die iiber das serielle Protokoll gesprochen
werden, sind in einem Dokument des SDKs naher spezifiziert [Zep11b].

Um uber Bluetooth mit dem BH3 zu kommunizieren, wurde die in 5.2.4 beschriebene Bibliothek
zepyhr-bt eingesetzt. Diese liefert in Echtzeit einen Strom von physiologischen Werten. Es wurde ein
kleines Wrapper-Programm geschrieben, dass diese Bibliothek benutzt und die Daten im richtigen
Format an den SEDM-Server sendet. Listing 5.1 zeigt, wie Werte vor dem Senden noch bearbeitet werden.
Beispielsweise werden die von zephyr-bt als Tripel gelieferten Daten des Beschleunigungssensors
in eine flache Struktur verpackt. Die EKG-Werte werden nicht gesendet, sondern ignoriert. Die
letztendliche Nachricht wird dann ins JSON-Format iiberfithrt und tiber eine WebSocket-Verbindung
gesendet.

Um die auf dem BH3 gespeicherten Logdaten auszulesen, gibt es nur eine fiir Windows verfiigbare
Software die von Zephyr bereitgestellt wird. Um aufgezeichnete Daten des Gerits auf auf anderen
Betriebssystemen auszulesen, wurde das in Abschnitt 5.9 beschriebene Artefakt entwickelt.

Bei ersten Testlaufen ist die Verbindung zum BH3 reproduzierbar nach 10 Minuten abgebrochen. Das
Problem lag in der zephyr-bt Bibliothek, welche eine Nachricht zur Aufrechterhaltung der Bluetooth-

43

5. Eingesetzte Technologien und Umsetzung

Listing 5.2 Beispiel des Sendens von Beschleunigungsdaten tiber JavaScript.

var samplesPerSecond = 30;
var sampleDelay = 1000 / samplesPerSecond;

$("#start’).click(function(evt){
$('#start’).hide();
$('#stop’).show();
var ax, ay, az;
window.ondevicemotion = function(event) {
ax = event.accelerationIncludingGravity.x;
ay = event.accelerationIncludingGravity.y;
az = event.accelerationIncludingGravity.z;
}
intervalld = setInterval(function() {
ws.send(JSON.stringify({
"accel_x': ax,
"accel_y': ay,
'accel_z': az
)
}, sampleDelay);
3

Verbindung nicht sendet. Ein moglicher Weg dieses Problem zu l6sen ist, die Zeit bis zum Abschalten
auf 0 zu konfigurieren. Um einfache Konfigurationsnachrichten an das BH3 zu senden, wurde ein in
5.9 genauer beschriebenes Werkzeug entwickelt.

Bewegungssensoren eines Smartphones

Auf einigen mobilen Geréten ist es moglich, die Beschleunigungssensoren im Webbrowser abzufragen.
Dazu muss die Hardware und der Webbrowser dies unterstiitzen. Sofern unterstiitzt, wird bei der
Anderung der Geriteorientierung ein DeviceMotionEvent!! geworfen. Dieses Ereignis enthilt die
Beschleunigung des Geréts in kartesischen Koordinaten, jeweils mit oder ohne Beriicksichtigung der
Gravitation.

Es wurde eine Beispielanwendung implementiert, die im Webbrowser eines Smartphones ausgefiihrt
werden kann. Diese Anwendung sendet die Beschleunigungsdaten iiber einen WebSocket an die
Middleware. Die Daten werden nicht bei jeder Anderung gesendet sondern es wird immer nach Ablauf
einer bestimmten Zeitspanne der aktuelle Wert tibertragen. Im Beispiel, siehe Listing 5.2, werden 30
Werte pro Sekunde gesendet. Abbildung 5.7b zeigt die Anwendung auf einem Smartphone.

Um die korrekte Ubertragung und Leistungsfihigkeit zu testen wurde eine Anwendung erstellt,
die diese Werte live oder aus einer Aufzeichnung visualisiert. Die Beschleunigung wird in eine die
Rotationsbewegung eines dreidimensionalen Wiirfels umgesetzt.

"http://w3c.github.io/deviceorientation/spec-source-orientation.html#devicemotion, zuletzt abgerufen
am 29. Mai 2014

44

http://w3c.github.io/deviceorientation/spec-source-orientation.html#devicemotion

5.4. Umsetzung der Middleware

Listing 5.3 Minimales Beispiel um Daten mit Python an die Middleware zu senden.

import json
from tornado.ioloop import IOLoop
from tornado import websocket

def create_connection(server, sid):
return websocket.websocket_connect(’ws://{}/input/live/{}.ws’.format(server, sid),
connect_timeout=5)

def collect_input(connection_future):
connection = connection_future.result()
while True:
message = input(’'>>")
connection.write_message(json.dumps({’'message’: message}))

create_connection(’10.0.0.46:8888', 'test-python-source-1’).add done_callback(collect input)
IOLoop.instance().start()

Erstellen von Markierungen

Um Datensétze mit Annotationen zu versehen, wurde eine Anwendung entwickelt. Diese Anwendung
wurde auch als Webanwendung umgesetzt. Beim 6ffnen der Anwendung wird ein neuer Websocket
geofinet und tiber den Druck von verschieden beschrifteten Schaltflichen wird der Wert mit dem
aktuellen Zeitpunkt an SEDM tibertragen. Die mit dieser Anwendung erstellten Annotationen kénnen
in der Analyseansicht eingeblendet werden und helfen, verschiedene Aktionen unterscheiden zu
koénnen, um dafiir Erkennungsalgorithmen zu entwerfen.

Beispiel fiir beliebige Quellen

Zu Testzwecken gibt es auch eine minimale Python-Anwendung um Daten an SEDM zu senden.
Der dafiir zustandige Quellcode ist vollstandig in Listing 5.3 dargestellt. Dabei wird die Websocket-
Implementierung aus der Tornado-Bibliothek benutzt, um die Verbindung zum Server herzustellen.
Das Programm sendet daraufhin Benutzereingaben von der Konsole an die Middleware.

5.4.2. Persistenz

Um Eingehende Daten zu speichern, wird die Datenbank MongoDB eingesetzt. Die Implementierung
benutzt allerdings keine Funktionen die spezifisch diese Datenbank als Backend erfordern. Prinzipi-
ell ist jeder Datenspeicher einsetzbar, der effizient Schliissel-Wert-Paare abspeichern und auslesen
kann und dabei kein festes Schema der Daten benétigt. MongoDB unterstiitzt auch geschachtelte
Dokumente, um gréf3ere Dokumente besser strukturieren zu kénnen.

Um die MongoDB-spezifische Implementierung zu abstrahieren, existieren Basisklassen welche die
Schnittstelle zu kompatiblen Datenspeichern definieren. Diese sind in sedm.storage.base definiert.

45

5. Eingesetzte Technologien und Umsetzung

{
accel_x: 1.3,
accel_y: 0.4, AverageInWindowFilter
accel_z: 0.0,
} - field=accel x def process(doc):
window=20 doc.update (...)
return doc
{
accel_x: 1.3,
accei_y: 8'3’ collections.deque
accel_z: 0.0,
avg_x20: 0.75, maxlen=20
}

Abbildung 5.2.: Beispiel eines Filters mit ein- und ausgehenden Daten

Von den Basisklassen erbt jeweils eine spezifisch auf MongoDB ausgelegte Klasse, die in der ge-
samten Middleware benutzt wird. Um andere Backends zu unterstiitzen, miissten nur diese Klassen
ausgetauscht werden.

Die Grundfunktionalitat, existierende Datensitze wieder mit dem richtigen Zeitverhalten abzuspielen
ist auch in dem Datensatz selbst implementiert, da dazu die Werte bei Bedarf aus der Datebank
gelesen werden missen. Es ist nicht praktikabel den kompletten Datensatz in den Arbeitsspeicher zu
laden bevor er dann abgespielt wird. In der jetzigen Implementierung wird erst nach erfolgreichem
ausfithren der Riickrufaktion das nachste Dokument aus der Datenbank geladen.

5.4.3. Verarbeitung

Die Verarbeitung ist dafiir zustindig, aus den Eingaben abhéngige Werte zu berechnen. Filter sind fiir
einzelne Aufgaben zustandig und kénnen miteinander kombiniert werden. Die dafiir zustandigen
Klassen sind in sedm.processing enthalten. Das Modul selbst besteht aus zwei Teilen, den atomaren
Filtern und Filterketten, welche diese Filter kombinieren.

Ein Filter besteht mindestens aus einer Methode, die ein eingehendes Dokument, das heif3t eine
Sammlung von Schliissel-Wert-Paaren verarbeitet und eventuell modifiziert zuriickgibt. Das modi-
fizierte Dokument wird dann eventuell von weiteren Filtern verarbeitet. Dies ist in Abbildung 5.2
exemplarisch dargestellt. Beim Erzeugen des Filters wird der zu verarbeitende Feldname und die
Fenstergrofie initialisiert. Der Datenspeicher fiir die Werte innerhalb des Fensters ist hierbei mit einer
Deque realisiert. Dies ist eine Datenstruktur dhnlich zu Stapelspeichern oder Warteschlangen, in
der Daten an beiden Enden eingefiigt und entfernt werden kénnen. Hier ist Lange auf die Fenster
beschrankt und alte Elemente werden automatisch beim Einfiigen von neuen Elementen geldscht.

46

5.5. Maschinenlesbare Ausgabe / API

FilterChain _ e ececmececcemee—aaa-
1
. Filter
1
1
, Difference |nRange
' 20 10 20
; =Y .2
)
1
accel_y ! is_jumping
:
1
accel_z 1 is_running
1
1
1
1
Average Max InRange |/
|i| 73 sec. 5 10 :
I I 1
:
1

Abbildung 5.3.: Beispiel einer Filterkette. Die rohen Werte der Quelle werden durch verschiedene
Filter verarbeitet. Ausgaben eines Filters kénnen die Eingabe fiir einen anderen
Filter sein. Die Filter sind im Code durch eine Filterkette gruppiert. Das Ergebnis
sind hier zwei neue Felder, die beispielsweise in einer Anwendung anstatt den rohen
Beschleunigungsdaten benutzt werden kénnen.

Eine Filterkette definiert eine bestimmte Konfiguration von hintereinandergeschaltenen Filtern und
kann diese auch einheitlich bei der Initialisierung der Kette konfigurieren. Die Filterkette kapselt damit
eine bestimmte Funktionalitat. Abbildung 5.3 zeigt eine Beispielhafte Filterkette die aus einzelnen
Filtern besteht. Sie erwartet zwei Eingabewerte und berechnet aus diesen zwei Ausgabewerten. Der
dargestellte Filter ist Abschnitt 5.7 ndher beschrieben.

5.5. Maschinenlesbare Ausgabe / API

Uber die API konnen Anwendungen auf die im System vorliegenden Daten zugreifen. Der Zugriff
selbst erfolgt dabei iiber WebSockets, wie in Abschnitt 5.3 genauer beschrieben. Dabei wird jeweils
mit einem Endpunkt kommuniziert, der von der Middleware bereitgestellt wird. Es kann entweder
auf historische Daten oder Live-Daten zugegriffen werden.

47

5. Eingesetzte Technologien und Umsetzung

Alle Aufzeichnungen von einzelnen Sensoren sind unter jeweils einem Endpunkt erreichbar. Dabei
wird der entsprechende Datensatz aus der Datenbank gelesen und im richtigen Zeitverhalten gesendet.
Dafiir ist sedm.server.handlers.historic.HistoricDataSocket zusténdig. Die zu benutzende
Filterkette kann dabei zur Laufzeit bei der Initialisierung des Sockets angegeben werden.

Der Zugriff auf Sensoren die in Echtzeit kommunizieren ist auf der Seite des Servers mittels dem
Beobachter-Muster umgesetzt. Es ist moglich, dass mehrere Anwendungen gleichzeitig die Eingaben
eines Sensors abrufen wollen, dazu registrieren sie sich bei diesem Sensor. Bei neuen Werten beliefert
dieser dann alle interessierten Klienten unter Beriicksichtigung der gewiinschten Filter mit diesen
Daten. Jeder einzelne Klient kann dabei spezifizieren, ob und welche Filterkette benutzt werden soll.

Listing 5.4 zeigt eine beispielhafte Benutzung der API. Die URL des Websockets gibt an, welche Daten
genutzt werden sollen. In diesem Fall werden Echtzeitdaten des Sensors des Namens accel-demo-1
benutzt. Dabei werden die Werte durch die Filterkette jump_and_run verarbeitet. Diese Filterkette
reichert eingehende Beschleunigungsdaten mit den zusitzlichen Feldern is_jumpingund is_running
an. In einer Anwendung koénnen diese Werte dann benutzt werden, um dem Benutzer Visualisierungen
zu bieten. Im Beispiel werden verschiedene Bereiche auf der Webseite ein- oder ausgeblendet.

Die URLs um direkt mit Sensoren beziehungsweise Aufzeichnungen zu kommunizieren sind wie folgt
aufgebaut:

Senden von neuen Daten: ws://host:port/input/live/<sensor_id>.ws
Zugriff auf Aufzeichnung: ws://host:port/output/historic/<sensor_id>.ws
Zugriff auf aktuelle Daten: ws://host:port/output/live/<sensor_id>.ws

Um die Kommunikation vor Man-in-the-Middle-Angriffen und unerlaubter Ausspahung der Daten
zu schiitzen kann auch eine sichere Verbindung mittels TLS (Transport Layer Security, auch Trans-
portschichtsicherheit) aufgebaut werden. Dazu ist der Bezeichner fiir das Protokoll zu wss zu dndern.
Um allerdings TLS benutzen zu kénnen, muss die Anwendung korrekt mit privatem Schliissel und
Zertifikat initialisiert werden.

5.6. Analysewerkzeuge

Ein wichtiger Teil der Middleware sind Werkzeuge, die bei der Entwicklung von neuen Sensoren und
Erkennungsmethoden Unterstiitzung bieten. Implementiert sind dabei Detailansichten von einzelnen
Aufzeichnungen und eine Analyseansicht, um den Effekt von Filtern zu betrachten.

Details und Graphen von Aufzeichnungen

In der Detailansicht (siehe Abb. 5.4), werden hauptsachlich die Metadaten zu einer Aufzeichnung
angezeigt. Die Metadaten sind beliebige Schliissel-Wert-Paare von denen created und last_modified
automatisch angelegt werden. Im Abschnitt Data wird die Gréfie des Datensatzes und alle in diesem
Datensatz vorkommenden Felder angezeigt. Aus der Gesamtheit aller enthaltenen Dokumente werden

48

5.7. Implementierte Filter und Erkennungen

Listing 5.4 Beispiel der API-Nutzung in JavaScript.

$('#jump, #run').hide();
socket = new WebSocket(’'ws://sedm.dev:8888/output/live/accel-demo-1.ws?chain=jump_and_run’);

socket.onmessage = function(message){
data = JSON.parse(message.data);
if(data.error){
alert(data.error);

} else if (data.info) {
console.log(data.info);

} else if(data.is_jumping) {
$("#jump’).show();
$('#run’).hide();

} else if(data.is_running){
$("#run’).show();
$('#jump”).hide();

} else {
$("#jump, #run’).hide()

}

beispielhaft die ersten fiinf in der Tabelle dargestellt. Auch wird auf weitere Ansichten auf die Daten
verlinkt, beispielsweise zu den Graphen.

In dieser in Abbildung 5.5 gezeigten Ansicht kénnen beliebige numerische Felder als Liniendiagramm
visualisiert werden. Dabei konnen beliebig viele Felder ausgew#hlt werden. Da diese allerdings auf
einer Achse dargestellt werden, bietet sich fiir weitergehende Analysen die dafiir vorgesehene Ansicht
an.

Analyseansicht

In der in in Abbildung 5.6 gezeigten Ansicht konnen Eingabewerte und das Ergebnis von eingesetzten
Filtern visualisiert werden. Als Quelle konnen dabei Felder aus verschiedenen Datensitzen benutzt
werden und einzelne Felder auch beliebig auf eine der zwei Y-Achsen gelegt werden. Neben den
numerischen Feldern wird auch ein Datensatz unterstiitzt, der Markierungen enthélt. Diese Markie-
rungen werden neben den Daten in der Eingabe und Ausgabe angezeigt, um fiir den Anwendungsfall
relevante Merkmale besser identifizieren zu kénnen. Die Ausgabe wird durch Anwendung eines
Filters oder einer Filterkette auf die Eingabedaten erzeugt und zeigt die diese errechneten Werten
an.

5.7. Implementierte Filter und Erkennungen

Folgende grundlegenden Bausteine sind im System vorhanden um eigene Filterketten zusammenzu-
stellen:

49

5. Eingesetzte Technologien und Umsetzung

Base | SDEM

\ita

&

Special Views

(cELEAe ELEN | Acceleration Cube

Data (5 of 13421)

localhost:8888/output/historic/historic./ive-bh3-2014-05-05-11-52-52 finfo.html|

Configuration: {'name': 'Default Configuration', 'save': True}
Metadata

last_modified 2014-06-05 11:13:27.445000

created 2014-06-05 11:13:27.445000

_id 53675174D192a19202152331
collection historic.live-bh3-2014-05-05-11-52-52

BH3 Heartrate

accel_x accely accel_z activity breathing counter heart rate heartbeat interval

clwB ¥ M A E-O

Details for historic. live-bh3-2014-05-05-11-52-52

Input socket: ws://10.0.0.46:8888/input/live/historic. live-bh3-2014-05-85-11-52-52.ws

respiration_rate rr

0 1.0030000000000001
1 1.0030000000000001
2 1.0030000000000001
3 1.0030000000000001
4 1.0030000000000001
Replay
ws://10.0.0.46:8888/output/historic/historic. live-bh3-2814-85-85-11-52-52.ws? chain=jump_and_run Replay

All fields: accel_x accel_y accel_z activity breathing counter heart_rate heartbeat_interval respiration_rate rr timestamp

timestamp

2014-05-05 11:52:57.276000
2014-05-05 11:52:57.278000
2014-05-05 11:52:57.331000
2014-05-05 11:52:57.388000

2014-05-05 11:52:57.442000

Abbildung 5.4.: Screenshot der Detailansicht

AverageFilter berechnet den Durchschnittswerte zweier Eingaben.

AveragelnWindowfFilter berechnet den Durchschnittswert einer Eingabe tiber ein spezifiziertes

Fenster hinweg.

MaxFilter gibt den maximalen Wert des Felds zuriick. Optional kann der Werte nach einer bestimmten

verstrichenen Zeit zuriickgesetzt werden.

DifferenceFilter gibt die Differenz zweier Eingabewerte zuriick.

DifferencelnWindow gibt die maximale Differenz von Werten in einem Fenster zuriick.

ProductFilter berechnet das Produkt zweier Eingabewerte.

InRangeFilter gibt 100 zuriick, wenn die Eingabe in einem definierten Bereich liegt.

AndFilter gibt 100 zuriick wenn beide Eingabewerte der Wert 100 haben.

50

5.7. Implementierte Filter und Erkennungen

——————————— =
8 00 Base | SDEM \+ L
A E'\(-/‘:w @ localhost:8888,/output/historic/historic.live-bh3-2014-05-05-11-52-52 /charts.htmifield=respiration_rate&field=heart_rate c B 3B A E-e | =

Graphs for historic.live-bh3-2014-05-05-11-52-52

accel x accely accel_z = activity | breathing | counter |[WICCUECEM heartbeat interval | UGN SN o timestamp
T e, M heart_rate
70 T POPT T T Rt L s . C M respirati...
50

30

Abbildung 5.5.: Screenshot der Graphenansicht

Analysis (using accel-rtbk with ['accel_x', 'accel_y', 'accel_z'))

Input

M accel x M accel_y accel_z [l _labels
20 15
il
15 Pl \'Mlm,hv-nr;“m‘kh#‘pzm,w.#n}».w_ﬁwfh‘h ‘A,q. M,‘!"l}h\ﬂ L._...nm___,_u.‘.,,_,(,:J.v,_.g'__‘.,s;l,..r botevro—i 0
" ﬂ*ﬂ%vmm%wwmwwwﬁﬁﬁmuwwm%wﬂim] 1 M‘JT =
5 r -30
0 -45
timestamp

Output (using filter chain jump_and_run)

100 M is_jumping
75 M is_running
50 _labels
25

0 I

Abbildung 5.6.: Screenshot der Analyseansicht

51

5. Eingesetzte Technologien und Umsetzung

Hipfen und Rennen

Als einfaches Beispiel wurde eine Filterkette definiert, die den Unterschied zwischen einer rennenden
und hiipfenden Person feststellen soll. Als Eingabewerte erhilt sie Beschleunigungsvektoren in
hochwirts (Y-Achse) und vorwarts (Z-Achse). Als Merkmal um Hiipfen zu erkennen kann die Differenz
des Y-Vektors tiber ein Fenster von 50 Werten benutzt werden. Liegt diese in einem hohen Bereich ist
ein Hipfen sehr wahrscheinlich.

Um Rennen zu erkennen kann der Maximalwert tiber die Z-Achse untersucht werden. Um kurze Aus-
reifler vorwarts zu dampfen ist ein Durchschnittswert dariiber notwendig. Um nicht dauerhaft Rennen
zu erkennen, ist es auch notwendig den Maximalwert nach einer bestimmten Zeit zuriickzusetzen.

5.8. Implementierte Beispielanwendungen

Als Beispiel um anliegende Daten zu visualisieren, wurden zwei Beispielanwendungen entwickelt.
Beide dieser Anwendungen basieren auf HTML und JavaScript. Eine der Anwendungen baut auf
der Filterkette fiir Hiipfen und Rennen auf und zeigt den aktuellen Zustand des Benutzers (Rennen,
Hiipfen, Stillstand) und einen Zahler fiir die getanen Spriinge an. In Abbildung 5.7a ist die Anwendung
dargestellt.

Die andere Anwendung nutzt WebGL um in einem Webbrowser einen dreidimensionalen Wiirfel anzu-
zeigen. Dieser Wiirfel dreht sich aufgrund von anliegenden Beschleunigungswerten. Die Anwendung
ist gut geeignet, um die Leistungsfahigkeit der Quellen und des Netzwerks zu testen.

5.9. Weitere Software-Artefakte

Im Zuge der Arbeit sind folgende Artefakte entstanden, um mit dem BioHarness 3 besser arbeiten zu
koénnen:

Programm zum Auslesen der Aufzeichnungen

Der BH3 erméglicht es Daten nicht nur drahtlos zur Verfiigung zu stellen, sondern diese auch im
internen Speicher aufzuzeichnen. Leider stellt der Hersteller keine Software zur Verfiigung, um diese
Daten auf Systemen ungleich Windows auszulesen.

Basierend auf der im SDK enthaltenen Beispielanwendung die in C# geschrieben ist wurde eine
Anwendung entwickelt, die es ermdglicht auch mit anderen Betriebssystemen die gespeicherten
Daten auszulesen. Unterstiitzt werden alle Betriebssysteme, die Mono'? als Laufzeitumgebung unter-
stutzten.

2http://mono-project.com

52

http://mono-project.com

5.9. Weitere Software-Artefakte

eeeee Telckom.de & 15:17 709 % 40% W) eeeee Toleckom.de = 15:16 7@} 40% W)
10.0.0.27 ¢ 10.0.0.27 ¢

History accel-rfkl

Configuration

You jumped 3 times!

Your Status

Are you resting? Get up!

{'name': 'Default Configuratio
n', 'save': True}

Socket opened.
{"info": "Successfully registered you as a
source."}

< M @] < h O

(a) Darstellung der Beispielanwendung fiir Hipfen (b) Anwendung zum Aufzeichnen der Beschleuni-
und Rennen auf einem mobilen Endgerét. gungsdaten nach erfolgreichem Registrieren am
Server

Abbildung 5.7.: Screenshots von Anwendungen auf einem Smartphone.

Auf dem Gerit sind die Daten im RIFF-Format abgespeichert. Ein Parser fiir dieses Format und ein
Konvertierer, der die Eintrdge ins CSV-Format konvertiert war im SDK enthalten. Es wurde allerdings
die graphische Benutzungsschnittstelle und das initiieren des Kommunikationskanals neu in C# und
ohne Abhingigkeiten zu windowsspezifischen Bibliotheken implementiert.

Konfiguration des BioHarness 3

Um Betriebsparameter des BH3 zum konfigurieren stellt Zepyhr eine nur mit Windows kompatible
Software zur Verfigung. Um das Gerit auch von anderen Plattformen steuern zu kénnen wurde ein

53

5. Eingesetzte Technologien und Umsetzung

Listing 5.5 Beispiel zur Benutzung des entwickelten Frameworks zur Kommunikation mit dem

BioHarness.
class TimeMessage(BaseMessage):
name = 'Time’
class Request(BaseMessage.Request):
ID = 0x08
DLC = 0
class Response(BaseMessage.Response):
padding = 3
payload_format
payload_fields

'<bbHbbb’
"day month year hours minutes seconds’

class MACMessage(BaseMessage):

name = 'MAC’

class Request(BaseMessage.Request):
ID = 0x12
DLC = 0

class Response(BaseMessage.Response):
padding = 3
payload_format '17s’
payload_fields = "MAC’

class SetBTLinkConfgMessage(BaseMessage):
name ='SetBTLinkConfig’
class Request(BaseMessage.Request):
ID = OxA4
DLC = 4
payload_format = ’"HH’
LINK _TIMEOUT = 10000
LIFESIGN_PERIOD = 3000
@classmethod
def get_payload(cls):
return cls.LINK TIMEOUT, cls.LIFESIGN_PERIOD

port = Port(’/dev/tty.usbmodemfd121’)
port.open()

print(send_messgage(port, TimeMessage))
print(send_messgage(port, MACMessage))
send_messgage(port, SetBTLinkConfgMessage, {’'LINK_TIMEOUT’: @, 'LIFESIGN_PERIOD': 5000})

kleines Framework geschrieben mit dem einzelne Kommandos iiber die serielle Schnittstelle (USB
oder Bluetooth) an das Gerat gesendet werden kénnen.

Das Framework ist in Python 3 implementiert und erméglicht es die in der Spezifikation [Zep11b]
genannten Kommandos einfach im Quellcode zu spezifizieren und zu benutzen. Dazu miissen Nachrich-
ten von der Basisklasse BaseMessage erben und die in der Spezifikation definierten Nachrichten-Ids
und Langen der Gbertragenen Nutzdaten angeben.

Im Beispiel in Listing 5.5 sind drei Nachrichten spezifiziert. Die oberen zwei lesen die Uhrzeit und
MAC-Adresse des Gerits aus. Die dritte Nachricht konfiguriert die maximale Zeitiiberschreitung und
Periode fiir Lebenszeichen der Bluetoothverbindung.

54

5.10. Herausforderungen und Einschrankungen

5.10. Herausforderungen und Einschrankungen

Im laufe der Implementierung sind folgende Herausforderungen aufgefallen: Das Implementieren
eines bindren seriellen Protokolls nach einer Spezifikation ist aufwendig. Tests miissen immer am
echten Geréat durchgefithrt werden. Da dieses sich wie eine Blackbox verhailt, ist der genaue Fehler-
grund oft schwer einzugrenzen. Anstatt zu versuchen, selbst die Kommunikation zu realisieren,
ist es wahrscheinlich haufig effizienter, schon existierende Projekte gegebenenfalls fiir die eigenen
Anwendungsfille zu modifizieren.

Auch das Umdenken zwischen traditionellen mehrprozessgestiitzten und einzelprozessgestiitzten
Anwendungen mit einer Ereignisschleife kann ein Hindernis darstellen. Das Konzept von Futures
und die Implementierung im spezifischen Framework und der Sprache muss zunichst verstanden
werden.

Nicht zuletzt ist es ohne existierende Gerdte schwer, auf die spezifischen Anforderungen dieser zu
kommen. Die hier implementierten Funktionen sind alle nahe an den benutzen Eingabegeréten orien-
tiert. Dies kann natiirlich zur Folge haben, dass sie einige wichtige Anforderungen von zukiinftigen
Quellen nicht befriedigen konnen. Durch eine sehr flexible und wenig strikte Architektur wurde dies
allerdings zu verhindern versucht.

Die Implementierung beinhaltet nicht alle in der Architektur beschriebenen Bestandteile, sondern
vor allem die fiir die Benutzerstudie relevanten Teile. Authentifizierung und Autorisierung sind
beispielsweise nicht vorhanden. Dennoch ist es in Zukunft moglich diese Funktionen hinzuzufiigen.
Auch

5.11. Zusammenfassung

Bei der Implementierung wurden Technologien benutzt die plattformunabhangig sind und damit auf
verschiedener Hardware benutzt werden konnen. Als Grundlage wurde die asynchrone Bibliothek
Tornado eingesetzt und fiir die Persistenz von Daten MongoDB. Die Middleware wurde in der
Programmiersprache Python in Version 3+ implementiert.

Die Kommunikation mit der Middleware erfolgt iiber HTTP und das WebSocket-Protokoll. Fiir
Sensoren die mit Bluetooth ausgeriistet sind, ist ein Wrapper zu erstellen. Fiir den BioHarness 3 wurde
dies exemplarisch gemacht.

Um Anwendungen zu erstellen kann prinzipiell jede Technologie zum Einsatz kommen, die iber
WebSockets und HTTP kommunizieren kann. Insbesondere eignen sich allerdings Webbrowser gut als
Laufzeitumgebung, da diese mit HTML, CSS und JavaScript alle dafiir notwendigen Anforderungen
erfiillen. Webanwendungen kénnen vor allem als Prototypen sowohl fiir Ausgabe als auch fiir die
Dateneingabe benutzt werden. Als Nachrichtenformat wurde JSON gew#hlt, da dieses weit verbreitet
ist und schnell kodiert und dekodiert werden kann. Die Struktur der Nachrichten ist sehr flexibel und
gut auf zukiinftige Anwendungsfille anzupassen.

55

5. Eingesetzte Technologien und Umsetzung

Neben der reinen Infrastruktur fiir Sensoren und Anwendungen enthélt die entwickelte Middleware
auch die Funktionalititen der Entwicklerunterstiitzung. Diese sind iiber einen Webbrowser erreichbar
und erlauben das Aufzeichnen, Verwalten und Analysieren von Daten.

Zur Verarbeitung von Daten wird eine Kette von Transformationen benutzt, die aus den Eingaben eine
Ausgabe erzeugen. Es gibt einige vorgefertigte generische Filter im System um Arbeit zu ersparen.
Filter konnen selbst im Hintergrund beliebigen Code ausfiithren und beschranken die Méachtigkeit der
Datenanalyse nicht.

56

6. Nutzerstudie

Wenn du dir die Anwender deiner
Programme als Idioten vorstellst,
werden auch nur Idioten deine
Programme verwenden.

(Linus Torvalds)

Um die Funktionalitit des entwickelten Systems zu testen und daraus Anforderungen an zukinftige
Weiterentwicklungen abzuleiten, wurde eine Nutzerstudie durchgefiihrt. Im folgenden wird der Ablauf
beschrieben und die daraus gewonnen Ergebnisse ausgewertet.

6.1. Aufbau und Ablauf der Studie

Die Benutzerstudie wurde mit einer Gruppe von Entwicklern durchgefiihrt. Alle Entwickler befanden
sich im selben Raum, der auch mit einem Beamer ausgestattet war. Jeder Teilnehmer hatte seinen
eigenen Computer zur Verfiigung. Zunichst stellten sich die Teilnehmer vor und fiillten den ersten
Teil des Fragebogens aus. Dieser fragte das Alter, die berufliche Tatigkeit und verschiedene Kenntnisse
iiber Technologien ab.

Danach wurde das Thema der Diplomarbeit und eine Einfithrung in das System gegeben. Es wurden die
einzelnen Schritte der Eingabe, Verarbeitung und Ausgabe der Daten kurz im Uberblick beschrieben
und an welchen Stellen im Quellcode die jeweiligen Funktionalitdten zu finden sind. Die Folien der
Présentation sind in Anhang A aufgefiihrt.

Nach dem Uberblick wurde die Aufgabenstellung gegeben und zu dieser nochmals eine kurze Liste von
logisch aufeinander folgenden Schritten mit kleinen Ausschnitten von Beispielcode. Die Entwickler
bearbeiteten daraufhin die gestellte Aufgabe an ihren Laptops. Dazu wurde ihnen der Quellcode
des Programms gegeben. Die notwendigen Abhéingigkeiten wurden vor Beginn der Studie auf den
einzelnen Laptops der Teilnehmer installiert und konfiguriert.

Nach Ende der praktischen Phase wurde jeweils der zweite Teil des Fragebogens ausgeteilt. Dieser
Teil erfasste mithilfe einer Likert-Skala die Unterstiitzung der Entwickler durch das System und eine
grobe Einschitzung, inwiefern es zukiinftig erweiterbar ist und ob die eingesetzten Technologien als
hilfreich fir Plattformunabhéngigkeit und der Erstellung von Prototypen angesehen werden.

Nach der Erfassung dieser strukturierten Daten mussten sich die Teilnehmer in Zweiergruppen
zusammenfinden und Probleme notieren, die ihnen wihrend der Benutzung aufgefallen sind. Jedes
Problem wurde dabei auf eine Karteikarte geschrieben. Danach wurden Zweiergruppen gebildet, in
denen die Karten mit méglichen Losungen und Verbesserungen die zu dem genannten Problem passen,

57

6. Nutzerstudie

(a) Teilnehmer beim Implementieren der Losung. (b) Teilnehmer beim Aufzeichnen von Testdaten.

Abbildung 6.1.: Bilder wihrend der Durchfithrung der Nutzerstudie.

annotiert wurden. Nach Abschluss dieser Phase présentierte jede Zweiergruppe ihre Vorschlidge und
es konnte iber diese in der gesamten Gruppe diskutiert.

6.2. Auswertung

Es wurden zum einen personliche Daten und Kenntnisse der Probanden erfasst. Nach der Benutzung
des Systems wurden mittels einer Likert-Skala verschiedene Aussagen iiber das System abgefragt. Im
letzten Teil wurden offene Probleme identifiziert und in Gruppenarbeit mogliche Verbesserungen
diskutiert.

6.2.1. Personliche Daten und Kenntnisse

Es haben sechs Teilnehmer an der Nutzerstudie teilgenommen. Die Teilnehmer waren durchschnittlich
25 Jahre alt (mit einer Standardabweichung von 0.63). Alle Teilnehmer waren mannlich. Die Teilnehmer
sind alle in ihrem Haupt- oder Nebenberuf mit Softwareentwicklung beschéftigt.

Die Personlichen Fahigkeiten und Kenntnisse wurden in einer Skala mit den Werten des Kenntnis-
standen keine, etwas, gute, sehr gute abgefragt. In Tabelle 6.1 sind die Teilnehmer mit den jeweiligen
Daten vermerkt. Dabei stehen die Spalten K1 bis K8 fiir folgenden Kenntnisse:

K1 Webentwicklung allgemein
K2 HTML

K3 CSS

K4 JavaScript

K5 WebSocket (RFC 6455)

58

6.2. Auswertung

Personliche Daten Kenntnisse

Alter Berufliche Tatigkeit K1 K2 K3 K4 K5 K6 K7 K8
25 IT-Berater 1 1 1 1 0 1 0 0
24 Softwareentwickler 2 3 2 2 1 2 0 1
25 Softwareentwickler 2 3 2 2 0 1 0 0
25 Softwareentwickler 2 2 2 1 1 2 0 1
25 Student (Softwaretechnik) | 3 3 2 2 2 2 0 1
26 Student (Softwaretechnik) | 1 1 1 1 0 0 0 0

Tabelle 6.1.: Personliche Daten und Kenntnisse der Teilnehmer. 0 entspricht keinen Kenntnissen, 3
entspricht sehr guten Kenntnissen.

K6 Python (Programmiersprache)
K7 Tornado (Netzwerkframework)
K8 Algorithmen zur Aktivitdtserkennung

Traditionelle Webtechnologien waren bei allen Teilnehmern mindestens etwas vorhanden. Im Durch-
schnitt sind Kenntnisse in HTML gut. Kenntnisse in CSS und JavaScript sind zwischen etwas und gut
einzuordnen. Kenntnisse mit der Benutzung von Websockets hingegen wurden nur von drei Personen
angegeben.

Programmiererfahrung in Python war bei fiinf der sechs Teilnehmern grundlegend vorhanden,
allerdings wies keiner der Teilnehmer Kenntnisse im benutzten Framework fiir den Server auf. Die
Halfte der Teilnehmer gab an, etwas Kenntnisse im Themengebiet Algorithmen zur Aktivititserkennung
zu besitzen.

6.2.2. Unterstitzung durch das Systems

Die Funktionalitit und Benutzbarkeit des Systems wurde anhand des praktischen Einsatzes getestet.
Die Teilnehmer hatten als Aufgabe eine Anwendung zu entwickeln, die visualisiert ob der Benutzer
still steht, rennt oder hiipft. Diese Aufgabe wurde auch als Beispiel in 5.7 umgesetzt. Die Teilnehmer
hatten aber nur Zugriff auf die einzelnen Filter und mussten die Filterkette selbst entwerfen und
implementieren. Auch die Beispieldaten mussten selbst aufgezeichnet werden. Als Hilfestellung
hatten alle Teilnehmer die zur Einfithrung genutzte Priasentation zur Hand. Zum Aufzeichnen der
Daten wurde der Beschleunigungssensor von Smartphones tiber deren Webbrowser eingesetzt. Jeder
Teilnehmer hatte Zugrift auf ein Smartphone.

Firr die Losung der Aufgabe wurden 45 Minuten Zeit gegeben. In dieser Zeit konnten drei Teilnehmer
die Aufgabe abschlieffen und eine visuelle Ausgabe zu eingehenden Daten erzeugen. Der Rest der
Teilnehmer war noch mit dem Optimieren des Erkennungsalgorithmus beschaftigt. Die Bearbeitung
der Aufgabe war auf Einzelpersonen ausgelegt und eine Kooperation war zunéchst nicht vorgesehen.

59

6. Nutzerstudie

Unterstiitzung durch das System

Al (Eingabe)
A2 (Analyse)
A3 (Verarbeitung)

A4 (Anwendung)

100 50 0 50 100
Prozent
Antwort trifft eher nicht zu teils—teils trifft eher zu trifft zu

Abbildung 6.2.: Ergebnisse des Fragebogens fiir die Unterstiitzung durch das System

Gegen Ende der Aufgabe zeigten sich allerdings Versuche der Zusammenarbeit, die vom Versuchsleiter
nicht unterbunden wurden. Eine Versuchsperson, die schon eine fortgeschrittenere Anwendung zur
Visualisierung entwickelt hatte wollte diese mit besseren Eingabedaten versorgen. Da alle Teilnehmer
im selben Netzwerk waren, konnte dies auch schnell durch ein einfaches andern der IP-Adresse
der Datenquelle realisiert werden. In einem sehr kleinen Mafistab zeigt diese selbstorganisierte
Kollaboration den Gedanken der hinter dem Gesamtsystem steht. Eine verbesserte Zusammenarbeit
zwischen den beteiligten Benutzergruppen.

Nach der abschliefflen der Aufgabe wurden den Teilnehmern auf einem Fragebogen einige Aussagen
zur Unterstiitzung durch das System gegeben. Dabei wurde eine Likert-Skala mit fiinf moglichen
Antworten eingesetzt. Die zu bewertenden Aussagen lauteten dabei wie folgt (Durchschnittliche
Bewertung von 1 bis 5 und die Standardabweichung in Klammern):

A1 Das System hat mich beim Aufzeichnen von Testdaten gut unterstiitzt. (4,2 / 0,4)
A2 Das System hat mich beim Analysieren der Testdaten gut unterstiitzt. (3,7 / 0,7)
A3 Das System hat mich beim Erstellen des Erkennungsalgorithmus gut unterstutzt. (3,3 / 0,9)

A4 Das System hat mich beim Erstellen einer Anwendung gut unterstiitzt. (3,3 / 0,5)

Abbildung 6.2 zeigt die Ergebnisse der Befragung. Vor allem das Aufzeichnen von Testdaten wurde als
einfach empfunden. Dieser Vorgang wurde von einigen Personen auch mehrmals durchgefiihrt, als
sich die aufgezeichneten Daten in der Analyse als ungeeignet erwiesen. Die Unterstiitzung des Systems
um Erkennungsalgorithmen zu entwerfen und eine Anwendung zu schreiben liegt im erwarteten
Rahmen. Die Kenntnisse der Teilnehmer im Bereich Erkennungsalgorithmen (K8) war generell nicht
vorhanden oder nur gering. Um Anwendungen zu entwickeln stellt das System aufler die Schnittstelle
keine weitergehenden Funktionalitaten wie graphische Elemente zur Anwendungsentwicklung selbst

60

6.2. Auswertung

Weitere Systemmerkmale
1

A5 (Flexibilitat)
A6 (Erneute Nutzung)
A7 (Web: Plattformunabhangig)

A8 (Web: Prototypen)

100 50 0 50 100
Prozent

Antwort teils—teils trifft eher zu trifft zu

Abbildung 6.3.: Auswertung der restlichen Fragen

bereit. Es wurde lediglich ein Grundgeriist einer Webseite mit integriertem Grunddesign (Boostrap
CSS Framework) und jQuery angeboten.

6.2.3. Weitere Merkmale

Neben der Unterstitzung durch das System wurden vier weitere Aussagen abgefragt. Die Auswertung
dafiir ist in Abbildung 6.3 dargestellt. Die Aussagen A5 bis A8 mit Durchschnitt und Standardabwei-
chung waren im Wortlaut:

A5 Ich denke, dass ich mit der Architektur vielfaltige Anwendungsfille umsetzen kann. (4,2 / 0,7)
A6 Ich wiirde das System auch fiir zukiinftige Entwicklungen in diesem Bereich einsetzen. (3,5 / 0,5)
A7 Webtechnologien sind fiir plattformiibergreifende Entwicklungen gut geeignet. (4,3 / 0,5)

A8 Webtechnologien sind gut fiir das Erstellen von Prototypen geeignet. (3,7 / 0,7)

Die Einschétzungen iiber den Einsatz von Webtechnologien fiir plattformiibergreifende Projekte oder
Prototypen decken sich mit den in Mobile application development: web vs. native [CL11] beschrieben.
Die hohe Wertung in der Flexibilitat der Architektur ist ein gutes Zeichen, auch wenn das nach einem
solch kurzen Test nicht zu stark gewichtet werden darf.

6.2.4. Herausforderungen und Verbesserungsmoglichkeiten
Nach der Befragung mit dem Fragebogen wurden den Testpersonen Karteikarten gegeben auf denen

sie jeweils ein Problem notieren sollten, das ihnen wihrend der Benutzung des Systems aufgefallen
ist. Nach dem Erfassen der einzelnen Probleme wurden dann Zweiergruppen gebildet und mogliche

61

6. Nutzerstudie

Losungsvorschlage auf den Karten notiert. Am Ende présentierte jede Zweiergruppe ihre Karten und
stellte kurz die Vorschldge vor.

Insgesamt wurden 19 Karten angelegt. Eine Kategorisierung der Karten in jeweils die Bereiche des
Systems und Problemtypen ergibt sich die in Tabelle 6.2 dargestellte Verteilung. Eine Visualisierung
dieser Daten ist in Abbildung 6.4 sichtbar.

Der Problemtyp Bug steht fiir Programmfehler die wahrend des Tests entdeckt wurden. Keiner der
gefundenen Bugs hat verhindert, dass die Aufgabe l6sbar war. Der Typ Dokumentation steht fir Pro-
bleme, die durch verbesserte Dokumentation ausgeglichen werden konnten. Es wurden unter anderem
mehrfach bessere Beschreibungen von Argumenten von Filtern gefordert. Auch dass die Kenntnisse
in eingesetzten Technologien nicht ausreichend vorhanden war, ist in diesem Typ einsortiert, da dies
durch bessere Dokumentation verhindert oder mindestens verringert werden koénnte.

Probleme des Typs Funktionalitidt beméangeln fehlende Funktionen, die nicht hauptséichlich mit einer
Umgestaltung der Benutzungsschnittstelle zu tun haben. Ein Beispiel dafiir ist, in der Detailansicht von
Aufzeichnungen, zusétzliche statistische Werte wie Durchschnitt, Minimum und Maximum einzelner
Felder anzuzeigen.

Unter dem Problemtyp UI wurden Karten sortiert, die sich mit der Benutzungsschnittstelle befassten.
Diese befassten sich haufig teilweise auf das gesamte System. Aber vor allem auch im Bereich der
Verarbeitung wurde hiufiger eine bessere graphische Unterstiitzung gewiinscht. Beispielsweise wurde
sich mehrmals eine grafische Oberfliche gewiinscht, um die einzelnen Elemente einer Filterkette
visualisiert zu sehen. Auch die Méglichkeit bestimmte Zeitraume in der Analyseansicht zu vergréfiern
und die Skalierung dynamisch anzupassen fallen in diesen Problemtyp.

Bei der Préisentation der Karten vor der Gruppe wurden vor allem Elemente der Benutzungsschnitt-
stelle diskutiert. Dort liegt laut Aussagen das grofite Verbesserungspotential. Eine Losung, welche
die Méchtigkeit des Schreiben der Filter in Python mit einer einfachen Ubersicht und Konfiguration
verbinden wiirde wire, die Filter dhnlich wie in Abbildung 5.2 zu visualisieren und dabei die Argu-
mente interaktiv modifizierbar zu machen. Mit dem grundlegenden Konzept der Filter fanden sich
alle Teilnehmer auch ohne Vorkenntnisse gut zurecht.

Folgende Zitate der Teilnehmer, die in der Diskussion und wihrend der Studie fielen, repréasentieren
den aktuellen Stand des Systems gut:

. ,Mit Hilfe des Systems konnte ich innerhalb kiirzester Zeit eine funktionierende Applikation
erstellen.”

. ,Die Komplexitat der Datenverarbeitung der Bewegungsdaten konnte durch den Einsatz der
Filterketten stark reduziert werden.*

« ,Der Prototyp bietet nicht nur einen Mehrwert fiir Entwickler, sondern hat auch das Potential
Nicht-Entwicklern einen Zugang zu der Thematik zu geben.

« ,Fir einen produktiven Einsatz ist vor allem eine Verbesserung der GUI notwendig.*
« ,Die GUI war verbesserungswirdig, der Rest ganz gut.

+ ,Nach Startschwierigkeiten war das System gut zu bedienen.”

62

6.2. Auswertung

Bereich Problemtyp Summe
Bug Dokumentation Funktionalitit UI
Allgemein 0 2 0 2 4
Analyse 0 1 3 0 4
Anwendung 3 0 0 0 3
Eingabe 1 0 0 1 2
Verarbeitung 0 3 1 2 6
Summe 4 6 4 5 19
Tabelle 6.2.: Auswertung der Karteikarten der Nutzerstudie
Typ
Bug Dokumentation Funktion ul
£
(]
=
(]
k=)
<
[¢3]
2
g
<
g
< S
o
s 0
@ 2
<
38
<
g
&
g
2
£
S
s

Abbildung 6.4.: Darstellung der Verteilung der Problemtypen und Problembereiche als Mosaikplot.

63

6. Nutzerstudie

6.2.5. Zusammenfassung

Die Benutzerstudie hat gezeigt, dass das System grundlegend funktioniert und es auch Nutzern die
zuvor nicht damit gearbeitet haben, ein komplettes kleines Projekt umsetzen kénnen. Ohne dass
explizit eine Kooperation wihrend dem Entwicklungsprozess vorgesehen war, ist dieser durch einige
Teilnehmer selbstorganisiert zustande gekommen. Die Unterstiitzung durch das System wurde in
den Bereichen des Datenerfassens und der Analyse als gut angesehen. Die Datenverarbeitung und
Anwendungsentwicklung wurde als weniger gut unterstiitzt angesehen.

Mogliche Verbesserungspotential ist vor allem im Bereich der Benutzungsschnittstelle und Funktio-
nalitét zu finden. Fiir das Erstellen von Erkennungsalgorithmen wére eine ausfiihrliche graphische
Oberflache hilfreich, in der die Filter angeordnet und konfiguriert werden kénnen. Da der Fokus
der Implementierung nicht auf dem direkten Unterstiitzung beim Entwerfen von Algorithmen lag,
sondern auf der Funktionalitit des Gesamtsystems und dem Zusammenspiel der einzelnen Bereiche,
sind die Ergebnisse positiv.

64

7. Zusammenfassung und Ausblick

Der Bereich der Wearables ist ein Zukunftsmarkt, der stark am wachsen ist. In naher Zukunft werden
wohl auch mehr Sensoren den Sprung von Geriten, die wir an uns tragen in unsere Kleidung machen.
In dieser Arbeit wurde der aktuelle Stand der Technik bei der Entwicklung von solch intelligenten
Kleidungsstiicken beschrieben. Auf dem Markt befindliche Gerate sind noch nicht mit unserer Kleidung
verbunden, sondern einzelne Gerite die eine Vielzahl von Sensoren enthalten. Hauptséchlich findet
die Kommunikation iiber Bluetooth mit genau einem anderen Gerat statt, oder die Daten werden auf
dem Gerit selbst fir langere Zeit aufgezeichnet und spater ausgewertet.

Es wurden Anforderungen an eine einheitlichere Architektur erfasst, die neben der reinen Funk-
tionalitat der Datenverarbeitung zwischen Sensor und Anwendung, auch darauf ausgelegt ist, den
Entwicklungsprozess zu verbessern und vereinheitlichen. Aus diesen Anforderungen wurde eine
Architektur entwickelt und beschrieben.

Diese Architektur wurde teilweise implementiert, um zum einen die Machbarkeit mit bestimmten Tech-
nologien zu demonstrieren und auch eine qualitative Evaluation der Funktionalitat und Benutzbarkeit
durchzufithren. Als Datenquellen wurde dabei der BioHarness 3 und Beschleunigungssensoren des
Smartphones benutzt. Die Implementierung setzt fiir die Schnittstellen und Entwicklerunterstiitzung
auf Python und Webtechnologien.

Bei der Evaluation der Implementierung im Rahmen einer Nutzerstudie zeigte sich, dass die Grund-
funktionalitat komplett verfiigbar und benutzbar ist. Eine Beispielanwendung konnte komplett von
Erstbenutzern des Systems implementiert werden. Dennoch wire eine verbesserte graphische Un-
terstiitzung in den Bereichen der Datenanalyse und Entwicklung des Erkennungsalgorithmus sehr
sinnvoll, auch wenn das System auf Entwickler ausgelegt ist.

Ausblick

Die Implementierung der Architektur ist eher konzeptuell und auf die Demonstration der Praktikabi-
litat der eingesetzten Technologien ausgelegt. Es kann noch viel Energie in die Benutzbarkeit der
Werkzeuge investiert werden. Hier sind einige Punkte aufgelistet, bei denen Raum fiir Verbesserungen
besteht:

Echtzeitdaten in der Analyseansicht Neben Aufzeichnungen kénnten auch Echtzeitdaten als Ein-
gabe akzeptiert werden und mit diesen die Graphen in parallel zu ihrer Aufzeichnung gezeichnet
werden.

65

7. Zusammenfassung und Ausblick

Visualisierung mehrdimensionale Werte Auch werden alle betrachteten Werte im Moment als
unabhingige eindimensionale Werte visualisiert. Fiir komplexere Eingaben konnen noch weitere
Visualisierungen entwickelt und implementiert werden.

Visualisierung der Filter & Filterkette Die Filterkette konnte grafisch visualisiert werden. Gege-
benenfalls konnte auch Filterargumente und Kombination der Filter iiber die Oberfliche konfi-
guriert werden.

Verbesserte Filter Die im Moment enthaltenen Filter sind ausreichend um einfach Anwendungsfille
abzudecken. Es konnten weitere Filter entwickelt werden und diese auch flexibler konfigurierbar
gemacht werden.

Integration von maschinellem Lernen Mit den aufgezeichneten Beschriftungen kénnten Aktivi-
taten durch maschinelles Lernen erkannt werden.

Vorgefertigte Visualisierungskomponenten Um Anwendungsentwicklung zu vereinfachen
konnten einfache Diagramme als Komponente angeboten werden, welche den aktuellen Wert
von bestimmten Parametern darstellen.

Diese Arbeit ging davon aus, ein immer verfiigbares Netzwerk zu Kommunikation zwischen den
Geriten zu haben, in dem sich intelligente Kleidung dhnlich eines Sensornetzes um den Benutzer
aufspannt. Diese Datenwolke um den Benutzer soll Anwendungen in seiner Umgebung mehr Méglich-
keiten bieten, auf den aktuellen Kontext des Benutzers reagieren. Auch wenn ein immer verfiigbares
Netzwerk heutzutage noch nicht die Realitat ist, ist es langfristig ein realistisches Szenario.

Die hier vorgestellte Middleware erlaubt neben dem aufspannen einer personlichen Datenwolke auch
das Teilen dieser Daten mit anderen Menschen. Denkbar wire beispielsweise, einige erfasste Daten
zu medizinischen Zwecken seinem Arzt oder einem automatisierten Frithwarnsystem zur Verfiigung
zu stellen. Neben den reinen Daten konnten auch die Algorithmen zur Datenverarbeitung geteilt
werden.

Wenn mehr Daten anfallen, wichst allerdings auch die Nachfrage nach diesen Daten. Um sich zu
einem glasernen Biirger zu machen und seine Privatsphére zu schiitzen, ist darauf zu achten, seine
Daten nicht leichtfertig Dritten zu iibergeben. Um die Datenhoheit zu bewahren, ist auch vorstellbar
die Middleware bei sich zu Hause zu betreiben. Beispielsweise konnte sie auf dem Rechner, der sowieso
schon fiir die Verwaltung des elektronischen Gedéachtnisses zustandig ist, ausgefithrt werden.

All die Aspekte der Sicherheit und Privatsphire gehen tiber diese Arbeit, die hauptsachlich ein Werk-
zeug zur Entwicklungsunterstiitzung beschreibt, weit hinaus. Dennoch sind es gerade diese Aspekte,
die den spiteren Endbenutzer eines Systems stark betreffen. Durch eine bessere Unterstiitzung der
Entwickler bleibt diesen hoffentlich genug Zeit, sich mit den wichtigen Aspekten der Software zu
beschéftigen und intelligente Kleidung auf eine solide Plattform zu stellen.

66

A. Prasentation der Nutzerstudie

Die Prisentation wurde in HTML und JavaScript mit Hilfe der Bibliothek reveal.js! umgesetzt.
Die Teilnehmer hatten in ihrem Webbrowser, wiahrend des Losens der Aufgabe, Zugriff auf diese
Préasentation.

Im folgenden sind die einzelnen Folien aufgefiihrt, die Leserichtung der Folien ist (nach Drehen der
Seite) von oben nach unten und links nach rechts.

'http://lab.hakim.se/reveal-js/

67

http://lab.hakim.se/reveal-js/

A. Prasentation der Nutzerstudie

Benutzerstudie

Entwicklung einer Architektur
fur das Betriebssystem intelligenter
Kleidung

Diplomarbeit — Tobias Birmili

Vorstellungsrunde

Ich bin Tobias und schreibe gerade meine Diplomarbeit im
Studiengang Softwaretechnik.

Uberblick

Entwicklungsunterstitzung fir Wearables

Zielgruppen
¢ Sensorentwickler

o Datenverarbeitungsexperten
¢ Anwendungsentwickler

68

Funktionen BioHarness

o Puls
o Atemfrequenz
¢ Beschleunigungssensoren

¢ Aufzeichnung von Daten
¢ Verarbeitung von Daten
¢ Schnittstelle zu Anwendungen

Eingabe Bewegungssensor
e Zephyr BioHarness 3 T =

e Bewegungssensoren
e Beschriftungen

accel-demo

Configuration

{*name’: 'Default Configuratio
ave': True}

69

A. Prasentation der Nutzerstudie

Beschriftungen erstellen

eeeco Tolekom.de = 1863 1%
10.0.0.27 4

Label Input
labels—-demo

Walk
Run

Jump

Configuration

{*name’: *Default Configuratio
n', ‘save': True}

< mh M @

Beliebige Quellen
WebSocket API

var ws = new WebSocket("ws://server.dev:8888/input/live/my-sens.ws");
// wait for successful connection
ws.send(JSON. stringify({

'my_field': 'some_value',

'other_field': 42

b

Datenséatze

Aufzeichnungen (/historic/)und Detailansichten

Metadata

Special Views

[Gorerc s [T

Replay

rin | berley

Analyse

Visualisierung von Eingabe und Filtern.

Analysis (using accel-mavy with ['accel x', 'accel_y', ‘accel_z
Input
Moo x Baccaly Maccole Wi
» I s
LA g plladds LM o i A b b
. %4;(3/.?/\}:\3(}?3:\ : < [———Hle=—",
. Mm
J—
Output (using fit jump_and_run
50 ooty
0 Wil
Wi ey
o s
P

70

Verarbeitung

Filter + Filterketten
Vorgefertigte einfache Filter

InRange

%

Average InRange

0y

Implementierung

Beispiel: InRangeFilter

def process(self, document, *args, skkwargs):
try:
val = document [self.field]
except KeyError:
return document

in_range = self.from val <= val <= self.to_val
document . update ({

self.out_name: int(in_range)*100 # int for plotting purposes
}

return document

Implementierung

Beispiel einer Filterkette
class SomeChain(BaseFilterChain):
name = 'some_chain'
def init_filters(self):

y_diff_50 = DifferenceInWindowFilter('accel y', window_size=50)
self.add_filter(y_diff_50, show_in_graph=True)

is_cool = InRangeFilter(y_diff_50.out_name, @, 35, out_name='is_cool'
self.add_filter(is_jumping, show_in_graph=True)

Ausgabe

WebSockets

var socket = new WebSocket('ws://server.dev:8888/output/historic/accel-demo.w

socket.onmessage = function(message){
data = JSON.parse(message.data);
if(data.error){
alert(data.error);
} else if (data.info) {
console. log(data. info);
} else if(data.is_cool) {
// He's cool!
} else {

}

// He is not cool!

71

A. Prasentation der Nutzerstudie

Die Aufgabe

Schreibe eine kleine Anwendung die anzeigt ob der Benutzer

hlpft oder rennt.
Smartphone als Sensor ist ausreichend.

Daten Aufzeichnen

Mit dem Smartphone ein bisschen hiipfen und rennen.

Optional: Jemanden bitten wahrenddessen Labels zu erstellen.

Analyseansicht benutzen

Den Analyse-View bearbeiten:
sedm.server.handlers.analysis.AnalysisHandler
o MAIN_DATASET = 'accel-bla’'
e FILTER_CHAIN = get_chain('my_chain')

Filterkette bearbeiten

Siehe sedm. processing.chains.MyChain.
Beispiel:

def init_filters(self):
cal tes difference of 50 values using field ‘accel y'
y_diff_50 = DifferenceInWindowFilter('accel_y', window_size=50)
self.add_filter(y_diff_50, show_in_graph=True)

72

Anwendung bauen Losung der Aufgabe
Siehe /templates/apps/my_app.html make run_dev
Erreichbar unter Llocalhost:8888/app/my oder:
jQuery ist verfligbar. Beispiel fir Datennutzung siehe hier. python server.py —--logging=debug —-debug

Tipps Fragebogen Teil 2

1. Hupfen erzeugt eine starke Differenz auf einer Achse Bitte ausftllen.
2. Rennen beansprucht eine andere Achse
3. Analyseview einrichten und damit die Filterkette debuggen.

73

A. Prasentation der Nutzerstudie

Schwierigkeiten auf Karten
notieren

Was war schwierig? Bitte eine Schwierigkeit pro Karte.

Drei Zweiergruppen bilden

Die eigenen Karten durchgehen und darauf notieren:
Was kénnte man tun um die Schwierigkeiten zu
beheben/verbessern/...

Vorstellen der Karten und
Diskussion

Ende

Vielen Dank fur die Teilnhame

74

75

B. Fragebogen zur Auswertung der Nutzerstudie

B. Fragebogen zur Auswertung der
Nutzerstudie

76

Nutzerstudie

Fragebogen

Weiter mit

Wie alt sind Sie?

Welche berufliche Tétigkeit tiben Sie in ihrem Hauptberuf aus?

Bewerten Sie ihre personlichen Fihigkeiten/Kenntntisse in den folgenden Bereichen der Softwareent-

wicklung.
keine
Kennt-
nisse
Webentwicklung allgemein O
HTML . oo a
O S . ee (|
JavaScript O
WebSocket (RFC 6455)oovviiiinn... a
Python (Programmiersprache) O
Tornado (Netzwerkframework) d
Algorithmen zu Aktivitdtserkennung O

etwas

Ooooooogoaag

gute sehr
gute

Ooo0oooogoaaog
Ooooooogoaaog

4.

Benutzen Sie selbst Geriite aus dem Bereich Wearable Computing? Wenn ja, welche?

Weiter mit

Gruppe 1 ,U
5. Sie haben nun die Software fiir eine kleine Aufgabe eingesetzt. Bewerten Sie die folgenden Aussagen
in Bezug auf das benutzte System:
trifft trifft teils- trifft trifft
nicht eher teils eher zu
zu nicht zu
zu

Das System hat mich beim Aufzeichnen O O O O O
von Testdaten gut unterstiitzt............
Das System hat mich beim Analysieren der g O O O O
Testdaten gut unterstiitzt.
Das System hat mich beim Erstellen des O O O O O
Erkennungsalgorithmus gut unterstiitzt. . .
Das System hat mich beim Erstellen einer O O O O O
Anwendung gut unterstiitzt.
Ich denke, dass ich mit der Architek- O O O O O
tur vielfiltige Anwendungsfille umsetzen
kann. ...
Ich wiirde das System auch fiir zukiinftige a O O O O
Entwicklungen in diesem Bereich einset-
ZOIL . ettt
Webtechnologien ~— sind ~ fiir platt- O O O O O
formiibergreifende Entwicklungen gut
geeignet.
Webtechnologien sind gut fiir das erstellen O O O O O
von Prototypen geeignet..................

Literaturverzeichnis

[ACCL14]

[ALOT04]

[CL11]

[CLH*13]

[DS14]

[HAT10]

[Int11]

(JLo7]

[KBS99]

O. Amiraslanov, J. Cheng, P. Chabrecek, P. Lukowicz. Electroluminescent based Flexible
Screen for Interaction with Smart Objects and Environment. Technischer Bericht, German
Research Center for artifical Intelligence, 2014. (Zitiert auf Seite 27)

O. Amft, M. Lauffer, S. Ossevoort, F. Macaluso, P. Lukowicz, G. Troster. Design of the
OBIC wearable computing platform. In Proceedings. 15th IEEE International Conference
on Application-Specific Systems, Architectures and Processors, 2004., S. 398-410. IEEE, 2004.
doi:10.1109/ASAP.2004.1342488. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1342488. (Zitiert auf Seite 24)

A. Charland, B. Leroux. Mobile application development. Communications of the ACM,
54(5):49, 2011. doi:10.1145/1941487.1941504. URL http://portal.acm.org/citation.
cfm?doid=1941487.1941504. (Zitiert auf den Seiten 42 und 61)

J. Cheng, P. Lukowicz, N. Henze, A. Schmidt, O. Amft, G. A. Salvatore, G. Troster. Smart
Textiles: From Niche to Mainstream. IEEE Pervasive Computing, 12(3):81-84, 2013. doi:10.
1109/MPRV.2013.55. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6562715. (Zitiert auf den Seiten 7 und 17)

C. Dalsgaard, R. Sterrett. Market Opportunities for Smart Textiles 2014 White paper
on smart textile garments and devices : a market overview of smart textile wearable
technologies . Technischer Bericht, Ohmatex ApS, 2014. URL http://www.ohmatex.
dk/pdfer/whitepaper_smart_textiles.pdf. (Zitiert auf Seite 13)

H. Harms, O. Amft, G. Troster. Estimating posture-recognition performance in sensing
garments using geometric wrinkle modeling. IEEE Transactions on Information Technology
in Biomedicine, 14(6):1436-1445, 2010. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5585763. (Zitiert auf Seite 9)

Internet Engineering Task Force. RFC 6455: The WebSocket Protocol, 2011. URL http:
//tools.ietf.org/html/rfc6455. (Zitiert auf Seite 42)

J. Judewig, H. Lichter. Software Engineering. dpunkt.verlag GmbH, 2007. (Zitiert auf
Seite 14)

G. Kortuem, M. Bauer, Z. Segall. NETMAN : The design of a collaborative wearable
computer system. Mobile Networks and Applications 4, 4:49-58, 1999. doi:10.1023/A:
1019122125996. (Zitiert auf Seite 20)

79

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342488
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342488
http://portal.acm.org/citation.cfm?doid=1941487.1941504
http://portal.acm.org/citation.cfm?doid=1941487.1941504
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6562715
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6562715
http://www.ohmatex.dk/pdfer/whitepaper_smart_textiles.pdf
http://www.ohmatex.dk/pdfer/whitepaper_smart_textiles.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5585763
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5585763
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

Literaturverzeichnis

[KWL*11]

[Lew04]

[LHSA99]

[Man98a]

[Man98b]

[MMC09]

[MMZ*03]

[MRSS06]

[OGOW08]

[PLTP06]

80

T. Karrer, M. Wittenhagen, L. Lichtschlag, F. Heller, J. Borchers. Pinstripe: eyes-free
continuous input on interactive clothing. In Proceedings of the 2011 annual conference
on Human factors in computing systems - CHI ’11, S. 1313. ACM Press, New York, New
York, USA, 2011. doi:10.1145/1978942.1979137. URL http://dl.acm.org/citation.
cfm?doid=1978942.1979137. (Zitiert auf Seite 16)

F. L. Lewis. Wireless Sensor Networks. Smart Environments: Technologies, Protocols, and
Applications, S. 1-18, 2004. doi:10.1007/b117506. URL http://www.springerlink.com/
index/10.1007/b117506. (Zitiert auf Seite 20)

J. Lehikoinen, J. Holopainen, M. Salmimaa, A. Aldrovandi. MEX: a distributed soft-
ware architecture for wearable computers. In Digest of Papers. Third International
Symposium on Wearable Computers, S. 52-57. IEEE Comput. Soc, 1999. do0i:10.1109/
ISWC.1999.806650. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=806650. (Zitiert auf Seite 20)

S. Mann. Definition of Wearable Computer, 1998. URL http://wearcam.org/
wearcompdef.html. (Zitiert auf Seite 11)

S. Mann. Wearable Computing as means for Personal Empowerment. In Proc. 3rd Int. Conf.
on Wearable Computing (ICWC), S. 1-8. 1998. URL http://wearcam.org/icwckeynote.
html. (Zitiert auf Seite 11)

P. Mistry, P. Maes, L. Chang. WUW - Wear Ur World: A Wearable Gestural Interface.
In CHI ’09 Extended Abstracts on Human Factors in Computing Systems, S. 4111-4116.
2009. doi:10.1145/1520340.1520626. URL http://portal.acm.org/citation.cfm?
doid=1520340.1520626. (Zitiert auf Seite 16)

D. Marculescu, R. Marculescu, N. H. Zamora, P. Stanley-Marbell, P. K. Khosla, S. Park,
S.Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, J. Grzyb, G. Troster,
M. Jones, T. Martin, Z. Nakad. Electronic Textiles : A Platform for Pervasive Computing.
Proceedings of the IEEE, 91(12):1995-2018, 2003. (Zitiert auf Seite 16)

U. Maurer, A. Rowe, A. Smailagic, D. P. Siewiorek. eWatch: A Wearable Sensor and
Notification Platform. International Workshop on Wearable and Implantable Body Sensor
Networks (BSN’06), S. 142-145, 2006. d0i:10.1109/BSN.2006.24. URL http://ieeexplore.
ieee.org/lpdocs/epicO3/wrapper.htm?arnumber=1612916. (Zitiert auf Seite 24)

T. Olsson, D. Gaetano, J. Odhner, S. Wiklund. Open Softwear: Fashionable prototyping
and wearable computing using the Arduino. Online, 2008. (Zitiert auf Seite 15)

M. Pacelli, G. Loriga, N. Taccini, R. Paradiso. Sensing Fabrics for Monitoring Physiological
and Biomechanical Variables: E-textile solutions. In 2006 3rd IEEE/EMBS International
Summer School on Medical Devices and Biosensors, S. 1-4. IEEE, 2006. d0i:10.1109/ISSMDBS.
2006.360082. URL ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4201251. (Zi-
tiert auf Seite 9)

http://dl.acm.org/citation.cfm?doid=1978942.1979137
http://dl.acm.org/citation.cfm?doid=1978942.1979137
http://www.springerlink.com/index/10.1007/b117506
http://www.springerlink.com/index/10.1007/b117506
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=806650
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=806650
http://wearcam.org/wearcompdef.html
http://wearcam.org/wearcompdef.html
http://wearcam.org/icwckeynote.html
http://wearcam.org/icwckeynote.html
http://portal.acm.org/citation.cfm?doid=1520340.1520626
http://portal.acm.org/citation.cfm?doid=1520340.1520626
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612916
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612916
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4201251

Literaturverzeichnis

[SCC10]

[Sch13]

[SGG12]

[Tao01]

[Tiz13]

[Van14]

[VC00]

[VHO4]

[Wik14]

[Zepl1a]
[Zep11b]

M. Suh, K. Carroll, N. Cassill. Critical Review on Smart Clothing Product Development.
Journal of Textile and Apparel, Technology and Management, 6(4):1-18, 2010. URL http://
ojs.cnr.ncsu.edu/index.php/JTATM/article/view/702. (Zitiert auf den Seiten 13
und 14)

T. de Schutter. The Power of Developing Hardware and Software in
Parallel, 2013. URL http://www.design-reuse.com/articles/31951/
the-power-of-developing-hardware-and-software-in-parallel.html. (Zi-

tiert auf Seite 14)

D. Silva, M. Ghanem, Y. Guo. WikiSensing: an online collaborative approach for sen-
sor data management. Sensors (Basel, Switzerland), 12(10):13295-332, 2012. doi:10.
3390/s121013295. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3545568&tool=pmcentrez&rendertype=abstract. (Zitiert auf Seite 20)

X. Tao. Smart fibres, fabrics and clothing. Woodhead Publishing Limited, 2001. doi:10.
1533/9781855737600. URL http://woodhead.metapress.com/openurl.asp?genre=
issue&id=doi:10.1533/9781855737600. (Zitiert auf Seite 12)

Tizen Association. Tizen, Public Q&A, 2013. URL https://www.tizenassociation.
org/PDF/Tizen_FAQ_02.24.13.pdf. (Zitiert auf Seite 19)

Vandrico Solutions Inc. Wearables Market Insight Q1 2014. Technischer Bericht, Vandrico
Solutions Inc., 2014. URL http://vandrico.com/database. (Zitiert auf den Seiten 13
und 14)

K. Van Laerhoven, O. Cakmakci. What shall we teach our pants? In Digest of Papers.
Fourth International Symposium on Wearable Computers, c, S. 77-83. IEEE Comput. Soc,
2000. doi:10.1109/ISWC.2000.888468. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=888468. (Zitiert auf den Seiten 9 und 16)

L. Van Langenhove, C. Hertleer. Smart clothing: a new life. International Journal of
Clothing Science and Technology, 16(1/2):63-72, 2004. d0i:10.1108/09556220410520360.
URL http://www.emeraldinsight.com/10.1108/09556220410520360. (Zitiert auf
Seite 12)

Wikipedia. Smart Material - Wikipedia, The Free Encyclopedia, 2014. URL http:
//en.wikipedia.org/wiki/Smart_material. (Zitiert auf Seite 13)

Zephyr Technology. BioHarness 3.0 User Manual, 2011. (Zitiert auf Seite 21)

Zephyr Technology. BioHarness Bluetooth Comms Link Specification, 2011. (Zitiert auf
den Seiten 43 und 54)

Alle URLs wurden zuletzt am 01.07. 2014 gepriift.

81

http://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/702
http://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/702
http://www.design-reuse.com/articles/31951/the-power-of-developing-hardware-and-software-in-parallel.html
http://www.design-reuse.com/articles/31951/the-power-of-developing-hardware-and-software-in-parallel.html
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3545568&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3545568&tool=pmcentrez&rendertype=abstract
http://woodhead.metapress.com/openurl.asp?genre=issue&id=doi:10.1533/9781855737600
http://woodhead.metapress.com/openurl.asp?genre=issue&id=doi:10.1533/9781855737600
https://www.tizenassociation.org/PDF/Tizen_FAQ_02.24.13.pdf
https://www.tizenassociation.org/PDF/Tizen_FAQ_02.24.13.pdf
http://vandrico.com/database
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888468
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888468
http://www.emeraldinsight.com/10.1108/09556220410520360
http://en.wikipedia.org/wiki/Smart_material
http://en.wikipedia.org/wiki/Smart_material

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen und verwandte Arbeiten
	2.1 Wearable Computing
	2.2 Intelligente Kleidung
	2.3 Der Entwicklungsprozess von Intelligenter Kleidung
	2.4 Industrielle Herstellung von Wearables
	2.5 Do-it-yourself Wearables
	2.6 Prototypen in der Wissenschaft
	2.7 Die Architektur von intelligenter Kleidung
	2.8 Betriebssysteme für Wearables
	2.9 Sensornetzwerke, Verteilte Systeme und Datenmanagement
	2.10 Produkte
	2.10.1 Zephyr BioHarness 3
	2.10.2 Polar Loop

	2.11 Zusammenfassung

	3 Anforderungen an eine Systemarchitektur für intelligente Kleidung
	3.1 Anforderungen an die einzelnen Schichten
	3.1.1 Anwendungen und Laufzeitumgebung
	3.1.2 Einheitliche Schnittstelle für Anwendungen
	3.1.3 Wearable OS
	3.1.4 Computer-Hardware
	3.1.5 Hardware-Schnittstelle

	3.2 Anforderungen aus Entwicklersicht
	3.2.1 Sensorentwickler
	3.2.2 Datenverarbeitungsexperten
	3.2.3 Anwendungsentwickler

	3.3 Weitere Anforderungen
	3.4 Zusammenfassung

	4 Architektur einer Middleware zur Entwicklungsunterstützung
	4.1 Hardware-Schnittstelle und Computer-Hardware
	4.2 Wearable OS
	4.3 Middleware (Datenspeicher, Verwaltung und Verarbeitung)
	4.3.1 Eingabe
	4.3.2 Persistenz
	4.3.3 Verarbeitung
	4.3.4 Ausgabe
	4.3.5 Verwaltung

	4.4 Schnittstelle zu Anwendungen und Laufzeitumgebung
	4.5 Authentifizierung und Autorisierung
	4.6 Vor- und Nachteile der Middleware
	4.7 Zusammenfassung

	5 Eingesetzte Technologien und Umsetzung
	5.1 Computer-Hardware und Betriebssystem
	5.2 Abhängigkeiten
	5.2.1 Tornado
	5.2.2 MongoDB
	5.2.3 Andere Python Bibliotheken
	5.2.4 Sensorspezifische Abhängigkeiten Abhängigkeiten
	5.2.5 Bibliotheken zur Umsetzung der Benutzungsschnittstelle

	5.3 Kommunikationsschnittstellen
	5.4 Umsetzung der Middleware
	5.4.1 Eingabe
	5.4.2 Persistenz
	5.4.3 Verarbeitung

	5.5 Maschinenlesbare Ausgabe / API
	5.6 Analysewerkzeuge
	5.7 Implementierte Filter und Erkennungen
	5.8 Implementierte Beispielanwendungen
	5.9 Weitere Software-Artefakte
	5.10 Herausforderungen und Einschränkungen
	5.11 Zusammenfassung

	6 Nutzerstudie
	6.1 Aufbau und Ablauf der Studie
	6.2 Auswertung
	6.2.1 Persönliche Daten und Kenntnisse
	6.2.2 Unterstützung durch das Systems
	6.2.3 Weitere Merkmale
	6.2.4 Herausforderungen und Verbesserungsmöglichkeiten
	6.2.5 Zusammenfassung

	7 Zusammenfassung und Ausblick
	A Präsentation der Nutzerstudie
	B Fragebogen zur Auswertung der Nutzerstudie
	Literaturverzeichnis

