
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3611

Entwicklung einer Architektur für
das Betriebssystem von

intelligenter Kleidung

Tobias Birmili

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Niels Henze

Betreuer/in: Stefan Schneegaß M.Sc.

Beginn am: 2. Januar 2014

Beendet am: 3. Juli 2014

CR-Nummer: D.2.6, D.2.11

Kurzfassung

Intelligente Kleidung wurde in der Vergangenheit häufig prototypisch, in niedrigen Stückzahlen und
für einen bestimmten Zweck entwickelt. Diese Arbeit definiert Schnittstellen und eine Architektur um
zukünftige Entwicklungen modularer zu machen und den Entwicklungsprozess zu unterstützen.

Neben der Betrachtung der kompletten Systemarchitektur liegt der Fokus auf den Schichten die
zwischen dem Computer und der Anwendung für Endbenutzer liegt. Zielgruppe sind dabei Entwickler
von Sensoren, Erkennungsalgorithmen und Anwendungen. Für diese Zielgruppen werden Werkzeuge
zur Verfügung gestellt, die den Entwicklungsprozess verbessern sollen.

Die Architektur wurde beispielhaft implementiert. Dazu wurden durchgehend Webtechnologien wie
HTML, JavaScript und WebSockets eingesetzt. Um existierende Sensoren als Eingabe zu benutzen
wurde dieser über eine Brücke mit Bluetooth verbunden. In einer Benutzerstudie wurde das imple-
mentierte System evaluiert. Es wurden dadurch einige Verbesserungsvorschläge erkannt die zukünftig
integriert werden können.

Abstract

Intelligent clothes were usually produced prototypically, in low amounts and only for one specific
purpose. This work defines interfaces and an architecture to modularise future development and
support the development process.

Aside of looking at the whole system architecture, the focus lies on the layers between the computer
hardware and the end-user application. The audience are developers of sensors, recognition algorithms
and software developers. For those groups, different tools are integrated to optimise the whole
development process.

The architecture was implemented exemplary using web technologies as HTML, JavaScript and
WebSockets. Existing sensorswere supported by a bluetooth bridge. The implementationwas evaluated
with a practical study. Some improvement suggestions were identified which can be implemented in
the future.

3

Inhaltsverzeichnis

1. Einleitung 9

2. Grundlagen und verwandte Arbeiten 11
2.1. Wearable Computing . 11
2.2. Intelligente Kleidung . 12
2.3. Der Entwicklungsprozess von Intelligenter Kleidung 13
2.4. Industrielle Herstellung von Wearables . 14
2.5. Do-it-yourself Wearables . 15
2.6. Prototypen in der Wissenschaft . 16
2.7. Die Architektur von intelligenter Kleidung . 16
2.8. Betriebssysteme für Wearables . 18
2.9. Sensornetzwerke, Verteilte Systeme und Datenmanagement 20
2.10. Produkte . 21

2.10.1. Zephyr BioHarness 3 . 21
2.10.2. Polar Loop . 21

2.11. Zusammenfassung . 22

3. Anforderungen an eine Systemarchitektur für intelligente Kleidung 23
3.1. Anforderungen an die einzelnen Schichten . 23

3.1.1. Anwendungen und Laufzeitumgebung . 23
3.1.2. Einheitliche Schnittstelle für Anwendungen 24
3.1.3. Wearable OS . 24
3.1.4. Computer-Hardware . 24
3.1.5. Hardware-Schnittstelle . 25

3.2. Anforderungen aus Entwicklersicht . 25
3.2.1. Sensorentwickler . 25
3.2.2. Datenverarbeitungsexperten . 25
3.2.3. Anwendungsentwickler . 26

3.3. Weitere Anforderungen . 26
3.4. Zusammenfassung . 27

4. Architektur einer Middleware zur Entwicklungsunterstützung 29
4.1. Hardware-Schnittstelle und Computer-Hardware . 30
4.2. Wearable OS . 32
4.3. Middleware (Datenspeicher, Verwaltung und Verarbeitung) 32

4.3.1. Eingabe . 33
4.3.2. Persistenz . 34

5

4.3.3. Verarbeitung . 34
4.3.4. Ausgabe . 34
4.3.5. Verwaltung . 35

4.4. Schnittstelle zu Anwendungen und Laufzeitumgebung 35
4.5. Authentifizierung und Autorisierung . 35
4.6. Vor- und Nachteile der Middleware . 36
4.7. Zusammenfassung . 36

5. Eingesetzte Technologien und Umsetzung 37
5.1. Computer-Hardware und Betriebssystem . 37
5.2. Abhängigkeiten . 38

5.2.1. Tornado . 38
5.2.2. MongoDB . 40
5.2.3. Andere Python Bibliotheken . 40
5.2.4. Sensorspezifische Abhängigkeiten Abhängigkeiten 40
5.2.5. Bibliotheken zur Umsetzung der Benutzungsschnittstelle 41

5.3. Kommunikationsschnittstellen . 41
5.4. Umsetzung der Middleware . 42

5.4.1. Eingabe . 43
5.4.2. Persistenz . 45
5.4.3. Verarbeitung . 46

5.5. Maschinenlesbare Ausgabe / API . 47
5.6. Analysewerkzeuge . 48
5.7. Implementierte Filter und Erkennungen . 49
5.8. Implementierte Beispielanwendungen . 52
5.9. Weitere Software-Artefakte . 52
5.10. Herausforderungen und Einschränkungen . 55
5.11. Zusammenfassung . 55

6. Nutzerstudie 57
6.1. Aufbau und Ablauf der Studie . 57
6.2. Auswertung . 58

6.2.1. Persönliche Daten und Kenntnisse . 58
6.2.2. Unterstützung durch das Systems . 59
6.2.3. Weitere Merkmale . 61
6.2.4. Herausforderungen und Verbesserungsmöglichkeiten 61
6.2.5. Zusammenfassung . 64

7. Zusammenfassung und Ausblick 65

A. Präsentation der Nutzerstudie 67

B. Fragebogen zur Auswertung der Nutzerstudie 75

Literaturverzeichnis 79

6

Abbildungsverzeichnis

2.1. Die grobe Architektur von intelligenter Kleidung nach [CLH+13] 17

4.1. Übersicht über das Zusammenspiel der einzelnen Komponenten 29
4.2. Übersicht über die Architektur mit Fokus auf die verschiedenen Schnittstellen zwi-

schen Gerätegrenzen . 30
4.3. Mögliche Ausgestaltungen der Hardwareschnittstelle 31
4.4. Middleware mit umliegenden Schichten . 33

5.1. Bei der Implementierung eingesetzte Technologien 38
5.2. Beispiel eines Filters mit ein- und ausgehenden Daten 46
5.3. Beispiel einer Filterkette . 47
5.4. Screenshot der Detailansicht . 50
5.5. Screenshot der Graphenansicht . 51
5.6. Screenshot der Analyseansicht . 51
5.7. Screenshots von Anwendungen auf einem Smartphone. 53

6.1. Bilder während der Durchführung der Nutzerstudie. 58
6.2. Ergebnisse des Fragebogens für die Unterstützung durch das System 60
6.3. Auswertung der restlichen Fragen . 61
6.4. Verteilung der Problemtypen und Problembereiche 63

Tabellenverzeichnis

4.1. Beispieleingabe von schemalosen Daten . 34

6.1. Persönliche Daten und Kenntnisse der Teilnehmer . 59
6.2. Auswertung der Karteikarten der Nutzerstudie . 63

7

Verzeichnis der Listings

5.1. Die Definition der Rückrufaktion, die Daten des BH3 zum SEDM-Server sendet. . . . 43
5.2. Beispiel des Sendens von Beschleunigungsdaten über JavaScript 44
5.3. Minimales Beispiel um Daten mit Python an die Middleware zu senden. 45
5.4. Beispiel der API-Nutzung in JavaScript. 49
5.5. Beispiel zur Benutzung des entwickelten Frameworks zur Kommunikation mit dem

BioHarness. 54

8

1. Einleitung

In Zukunft könnte es Computer
geben, die weniger als 1½ Tonnen
wiegen.

(Popular Mechanics, 1949)

Schon seit einigen Jahren werden Computer zunehmend mobiler. ENIAC, der erste elektronische
Universalrechner, beanspruchte circa 167m2 an Stellfläche und wog 27 Tonnen. Zur Programmierung
wurde die Verkabelung von einzelnen Komponenten und Drehschalter benutzt. Nach und nach wurden
die Computer immer persönlicher, kleiner und hielten Einzug in private Haushalte, zunächst auf
dem Schreibtisch, dann auch auf dem Schoß. Heutzutage sind sie aus unseren Hosentaschen nicht
mehr wegzudenken und fangen langsam an sich auf tragbare Gegenstände wie Uhren und Brillen
auszubreiten. Google Glass, ein Rechner der sich in die Brille integriert, wiegt nur noch 50 Gramm
und nimmt durch die Kombination mit einem Alltagsgegenstand kaum mehr Platz ein.

Jede große Veränderung des Formfaktors brachte bisher auch neue Paradigmen zur Benutzungs-
schnittstelle und Programmierschnittstelle mit sich. Heutzutage ist es viel mehr Menschen möglich,
Software zu schreiben und benutzen. Diese Arbeit schaut in die Zukunft und versucht eine Archi-
tektur zu definieren, die vor allem Anwendungsentwicklung für mobile Einsatzzwecke abdeckt und
dabei auch intelligente Kleidung integriert; Kleidung die als Datenquelle oder Interaktionsraum von
Anwendungen dient.

Es gab und gibt viele Forschungsprojekte, die sich mit der Erforschung neuer Sensoren und Anwen-
dungsfällen von intelligenter Kleidung beschäftigen. Einige Beispiele dafür sind Aktivitätserkennung
über verschiedene Sensoren an Hosen [VC00], Erkennung der Körperhaltung anhand Falten in der
Kleidung [HAT10] oder in flexible in Kleidung gewebte Sensoren [PLTP06].

SimpleSkin1 ist ein EU-Projekt, welches das Ziel hat, intelligente Kleidung zu entwickeln um mit ihr
Interaktion, die Überwachung von physiologischen Daten und Aktivitätserkennung, zu realisieren. Die
Sensoren sollen dabei direkt im Stoff der Kleidung integriert sein. Ziel ist es, den kompletten Prozess
selbst zu realisieren, von der Herstellung des Stoffes bis zur Softwareanwendung. Im interdisziplinären
SimpleSkin-Projekt kooperieren sieben Organisationen aus verschiedenen Forschungsrichtungen, um
dies zu ermöglichen.

Diese Arbeit definiert Schnittstellen und Zuständigkeitsbereiche, die den Entwicklungsprozess von
intelligenter Kleidung verbessern sollen. Der Fokus liegt dabei auf den Schnittstellen die zwischen
den Anwendungen für Endbenutzern und den Sensoren liegen. Zielgruppe sind daher Entwickler,
die in den Schichten zwischen Sensorik und Anwendung arbeiten, Sensorentwickler, Entwickler von

1http://simpleskin.org/, zuletzt besucht am 30. Juni 2014

9

http://simpleskin.org/

1. Einleitung

Erkennungsalgorithmen und Softwareentwickler. Ein wichtiger Bestandteil ist zudem die Entwicklung
von Werkzeugen, die als Teil der Architektur den Entwicklungsprozess optimieren.

Neben der Definition der Architektur wird diese auch exemplarisch implementiert und in einer
Nutzerstudie auf ihre Benutzbarkeit und den Grad der Entwicklerunterstützung untersucht. Zum
Testen des Systems wurden auf dem Markt verfügbare Sensoren herangezogen.

Gliederung

Diese Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen und verwandte Arbeiten betrachtet verwandte Arbeiten und Grundla-
gen dieser Arbeit.

Kapitel 3 – Anforderungen an eine Systemarchitektur für intelligente Kleidung zählt kon-
krete Anforderungen an eine mögliche Architektur auf.

Kapitel 4 – Architektur einer Middleware zur Entwicklungsunterstützung beschreibt eine Ar-
chitektur, welche die erfassten Anforderungen befriedigt.

Kapitel 5 – Eingesetzte Technologien und Umsetzung beschäftigt sich mit einer exemplari-
schen Umsetzung der Architektur. Um die Machbarkeit zu demonstrieren und evaluieren
wird die Architektur soweit möglich implementiert.

Kapitel 6 – Nutzerstudie Die Implementierung der Architektur wird im Praxiseinsatz evaluiert.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und stellt
Anknüpfungspunkte vor.

10

2. Grundlagen und verwandte Arbeiten

It’s a little bit like that wonderful
invention called the Segway. It’s
such a fantastic piece of technology
but you just look like a complete
dick when you drive around on it.

(Marc Newson über Google Glass)

In diesem Kapitel werden für das Thema wichtige Begriffe näher beschrieben. Zudemwerden Arbeiten
genannt, die sich mit ähnlichen und angrenzenden Themenbereichen beschäftigen. Es werden die
Begriffe des Wearable Computing und Intelligenter Kleidung erläutert und der Entwicklungspro-
zess der selbigen beschrieben. Zudem wird ein Überblick über die Ansätze von Architekturen und
Betriebssystemen, die sich bisher auf dem Markt befinden oder von Hobbyisten genutzt werden,
gegeben.

2.1. Wearable Computing

Je nach Definition von wearable und computing könnten schon der erste Rechenschieber am Halsband
oder die erste Armbanduhr dieser Kategorie von Gegenständen angehören. Setzt man allerdings
voraus, dass ein Computer nicht alleinig dazu da ist, die Zeit anzuzeigen oder einfache Zahlen zu
berechnen, sondern auch von Benutzern programmierbar sein soll, dann wurde der erste wearable
Computer in den späten 1970er-Jahren von Steve Mann entwickelt [Man98b]. Was als rucksackgroßes
Gerät begann, ist heute in vielen Produkten gemündet, die einen wachsenden Markt bedienen.

Steve Mann beschreibt einen Wearable Computer in einer Keynote, die er 1998 auf der International
Conference on Wearable Computing hielt, wie folgt [Man98a]: Der Computer ist immer an, immer
verfügbar und immer im persönlichen Bereich des Benutzers. Im Besonderen kann der Benutzer immer
damit interagieren, das heißt beispielsweise während er läuft oder andere Tätigkeiten vollbringt. Genau
wie auch nicht tragbare Computer sollte der Aspekt der Allgemeingültigkeit und Konfigurierbarkeit
beibehalten werden. Ein tragbarer Computer hat die volle Funktionalität eines Computersystems, aber
ist zusätzlich mit dem Benutzer untrennbar verbunden. Dies setzt ihn von Armbanduhren, normalen
Brillen und tragbaren Radios ab.

Heutige sich auf dem Markt befindliche Wearables entsprechen nicht unbedingt vollständig dieser
Definition, da sie eher für spezifische Einsatzzwecke entworfen sind. Zusammen mit einem Smart-
phone werden die Anwendungen allerdings generischer. Verbindet man das System noch mit einem
Heads-Up-Display in einer Brille und Sprachsteuerung kommt es der obigen Definition eines wearable

11

2. Grundlagen und verwandte Arbeiten

computers sehr nahe. Google Glass1 ist ein Beispiel für ein solches Gerät: Es vereint Sprachsteuerung,
Display in der Brille und programmierbare Anwendungen, sogenannte Glassware.

Die heute verfügbaren Wearable Computing Produkte sind vielfältig. Für nahezu jeden Körperbereich
gibt es entsprechende Geräte, die dem Benutzer Unterhaltung oder Unterstützung bieten sollen.
Von oben nach unten begonnen gibt es Brillen und Halsbänder, Brustgurte oder Shirts, Armbänder,
Handschuhe, Accessoires für die Beine, Schuhe und Einlagen für diese. Einige Beispiele sind in
Abschnitt 2.4 beispielhaft aufgeführt.

2.2. Intelligente Kleidung

Unter intelligenter Kleidung, im Englischen Smart Clothes, versteht man heute hauptsächlich Kleidung
die digitale Komponenten enthält. Der Begriff des intelligenten Stoffs wurde das erste Mal 1989 in
Japan geprägt. In diesem Fall war es ein Seidenstoff mit Formgedächtnis. Durch anhaltende Abnahme
der Textilindustrie in der westlichen Welt ist auch das Interesse an intelligenten Textilien gestiegen
um einen neuen lukrativen Markt zu schaffen [VH04].

Nach Van Langenhove und Hertleer erfüllen die heutigen Produkte im Bereich von intelligenter
Kleidung alle Kriterien, die einen Wandel hin zum Hightech-Produkten erlauben:

• Statt ressourcenbasiert sind sie wissensbasiert

• Qualität statt Quantität

• Nach Nachfrage produzierte, mehrmals benutzbare und ausbaufähige Dienste anstelle von
massengefertigten Waren zur einmaligen Verwendung

• Mehrmals benutzbar

• Integrierte Dienstleistungen und nicht greifbare Mehrwerte anstatt materieller Werte

Intelligente Materialien (das heißt nicht nur Textilien) können nach [Tao01] in drei Kategorien
eingeteilt werden:

Passive intelligente Materialien können nur die Umgebung oder Reize erfassen. Sie sind einfache
Sensoren.

Aktive intelligente Materialien können die Umgebung oder Reize erfassen und darauf reagieren.
Im Unterschied zu passiven Materialien müssen diese auch Aktoren enthalten die je nach
Sensorwerten entsprechende Aktionen ausführen.

Sehr intelligente Materialien können Umgebung oder Reize erfassen, darauf reagieren und sich
entsprechend selbst anpassen. Dazu ist neben den Sensor und Aktor noch ein dritter Teil
notwendig, der für eine intelligente Steuerung des Aktors zuständig ist. Solche Stoffe werden

1http://www.google.com/glass/

12

http://www.google.com/glass/

2.3. Der Entwicklungsprozess von Intelligenter Kleidung

durch die Kombination von traditioneller Kleidungs- und Textiltechnolgoie mit Materialwissen-
schaften, Sensortechnologie, Datenverarbeitungs- und Kommunikationstechnik, Künstlicher
Intelligenz, Biologie.

Es wurden schon seit langem versucht, die Natur zu kopieren um unsere Kleidungsmaterialien zu
verbessern. Ein Beispiel dafür sind Mikrofasern, die mit der Untersuchung von Seide begonnen
haben. Bis jetzt sind die meisten Stoffe allerdings nicht intelligent sondern ohne Leben. Einen Stoff zu
entwickeln, der so intelligent wie unsere menschliche Haut ist, ist ein sehr herausforderndes Ziel. Die
Entwicklung von intelligenten Materialien, auch Funktionswerkstoffe genannt, ist allerdings in vollem
Gange. Es gibt viele verschiedene Materialien die zu den Funktionswerkstoffen zählen. Beispielsweise
Stoffe mit piezoelektrischem Effekt, welche Spannung produzieren wenn sie verformt werden, oder
sich beim anlegen von Spannung verformen. Ein weiteres Beispiel sind thermoresponsive Polymere
welche ihre physikalischen Eigenschaften unter Einfluss von Temperatur verändern [Wik14].

Zum aktuellen Zeitpunkt ist die Marktdurchdringung von intelligenter Kleidung noch gering, al-
lerdings wird dieser Markt als stark wachsend angesehen [DS14]. Dabei sind viele verschiedene
Interessensvertreter und Produktsegmente in diesem Markt engagiert: Persönliche Schutzausrüstung
und Militär, Raumfahrt, Telemedizin, Gesundheitsprodukte, Kleidermode, Licht abstrahlende Kleidung
und Audio-Unterhaltung. Die Markttreiber sind dabei vor allem professionelle Sportanwendungen
und der Trend zur Telemedizin um die Kosten für das Gesundheitswesen zu senken. Forschung und
Entwicklung durch die Europäische Union, die Europäische Weltraumorganisation und NASA, tragen
allerdings auch stetig zur Marktvergrößerung bei.

Viel größer als der Markt für intelligente Textilien ist im Moment der Markt für tragbare intelligente
Geräte,Wearable Technology. Diese Geräte sind klein genug, um direkt am Körper getragen zu werden.
Sie erfüllen häufig einen bestimmen sensorischen Zweck und eine bestimmte Anwendung. Laut
Vandrico Inc. [Van14] sind im Mai 2014 220 Geräte auf dem Markt. Im Rahmen dieser Arbeit werden
aufgrund der besseren Verfügbarkeit tragbare Geräte als Datenquelle betrachtet, allerdings immer
mit dem Hintergrund, dass die Ergebnisse auch auf Kleidung anwendbar sein sollen.

2.3. Der Entwicklungsprozess von Intelligenter Kleidung

Suh, Carrol und Cassill [SCC10] identifizieren im Entwicklungsprozess von intelligenter Kleidung
folgende fünf Phasen, von denen Entwurf, Entwicklung und Evaluation relevant für diese Arbeit
sind.

1. Ideenfindung

2. Entwurf

3. Entwicklung eines Prototypen

4. Evaluation und Verfeinerung des Designs

5. Produktionsplanung

13

2. Grundlagen und verwandte Arbeiten

Die beteiligten Disziplinen im Entwicklungsprozess sind in die drei großen Teilbereiche Textile
Technologien, Physiologie und Design Research: Verschiedene Technologien im Textilbereich, die
Physiologie des Trägers und die Kommunikation des Systems mit der Umwelt.

Ähnlich zu Entwicklungsprozessen wie beispielsweise in Softwareprojekten steigen die Kosten einer
Neugestaltung gegen Projektende bzw. Produktionsstart an, während sie in den Entwicklungsphase
noch gering sind [JL07, SCC10]. Daher ist es von hohem wirtschaftlichen Interesse, mögliche Fehler
oder Anforderungen, die größere Änderungen am Ende des Projekt erforderlich machen würden,
schon früh zu finden und beheben. Tom de Schutter [Sch13] beschreibt, welche Vorteile eine parallele
Entwicklung von Hardware und Software im Bereich eingebetteter System haben. In dem Artikel wird
beschrieben, wie virtuelle Prototypen der Hardware als Basis für die Softwareentwicklung dienen
können, um die Entwicklungen nebenläufig beginnen zu lassen.

2.4. Industrielle Herstellung von Wearables

Der Marktüberblick des Unternehmens Vandrico [Van14] gibt eine gute Übersicht über die am Markt
verfügbaren Geräte. Im Jahr 2014 sollen 48 neue Geräte auf den Markt kommen, das sind 27% der
Gesamtmenge. Dabei enthalten Geräte für die Kategorien Unterhaltung, Lifestyle und Fitness die
meisten Komponenten, durchschnittlich zwischen vier und fünf. Im medizinischen und industriellen
Einsatz sind weniger Komponenten im Einsatz, dafür sind diese allerdings wesentlich teurer und
präziser.

Als Zielplattformen, um mit den Geräten zu kommunizieren, wählen die meisten Hersteller im
Moment iOS und Android. Die Kompatibilität mit mobilen Betriebssystemen hat Priorität über
Desktopbetriebssystemen wie Windows und Mac OS X. Andere Plattformen wie Windows Mobile,
Blackberry und Linux werden kaum unterstützt.

Die meisten Geräte benutzen Bluetooth als Schnittstelle zur Kommunikation (147 von 225, Stand: 27.
Mai 2014). Bluetooth ist Industriestandard für die Datenübertragung über kurze Distanzen. Die erste
Version von Bluetooth wurde in den 1990er-Jahren entwickelt. Seit Dezember 2009 liegt Bluetooth in
Version 4.0 vor. Die ersten kompatible Geräte wurden im Juni 2011 auf den Markt gebracht.

Im Bluetooth 4.0 Standard ist auch Bluetooth Smart enthalten. Dies ist eine vom klassischen Bluetooth
abweichende Funktechnik, die einen deutlich geringeren Stromverbrauch verspricht. Geräte, die
Bluetooth Smart unterstützen, müssen nicht zwangsläufig kompatibel mit klassischen Bluetooth-
Geräten sein. Bluetooth Smart bietet eine ähnliche Reichweite wie klassische Bluetooth-Technologie,
ist allerdings auf eine Datenübertragungsrate von 1 MBit/s beschränkt. Die verfügbare effektive
Datenrate für Anwendungen liegt allerdings bei nur 0,27 MBit/s.

Der Bluetoothstandard definiert selbst Schnittstellen für die Kommunikation in Bluetooth-
Umgebungen. Diese Spezifikationen werden Bluetooth-Profile genannt. Um ein Profil zu nutzen oder
anzubieten, muss es damit kompatibel sein. Dabei können die Profile sich gegenseitig erweitern oder
benötigen. Beispielsweise gibt es ein generischesHealth Device Profile, von dem zwei Spezialisierungen
Health Thermometer Profile und Heart Rate Profile existieren.

14

2.5. Do-it-yourself Wearables

Die am 2. Juni 2014 von Apple angekündigte neue Betriebssystemversion iOS 8 soll eine Anwendung
namens Healthbook enthalten. Diese soll auf dem Smartphone anstelle der einzelnen spezifischen
Anwendungen alle Gesundheitsdaten aggregieren. Dazu setzt die Anwendung auf Bluetooth und
von Standard definierte Bluetooth-Profile für Messgeräte für Puls, Blutzucker, Blutsauerstoff und
mehr. Wie genau die Schnittstellen für die Anwendung aussehen werden ist allerdings noch nicht
bekannt.

2.5. Do-it-yourself Wearables

Neben der industriellen Herstellung von Wearables gibt es auch eine Community, die sich damit
beschäftigt, ihre eigenen tragbaren Geräte und Anwendungen zu bauen. Dabei ist auch die Verknüp-
fung von elektronischen Bauteilen mit Kleidung ein wichtiger Teil. Entwickelte Projekte sind dabei
vielfältig und reichen von reinen modischen Accessoires wie LED bestückten programmierbaren
Halsbändern2 bis zu neuartigen Eingabegeräten wie Drucksensitiven Handschuhen3.

Häufig wird dabei Hardware, die auf der Arduino-Plattform basiert, zum Einsatz gebracht. Das
Buch Open Softwear: Fashionable prototyping and wearable computing using the Arduino [OGOW08]
beschreibt Grundlagen der Hardware und Programmierung eines Arduinos und gibt Anwendungsbei-
spiele und Anleitung die speziell auf Kleidung ausgelegt sind.

Die Arduino-Plattform zählt in den Bereich des Physical Computing, das heißt durch die Kombination
von Hardware und Software sollen physische Systeme erstellt werden, die auf Ereignisse in der realen,
analogen Welt reagieren oder auf diese einwirken. Die Arduino-Plattform besteht aus einem pro-
grammierbaren Mikrocontroller und digitalen und/oder analogen Schnittstellen die damit angesteuert
werden könne. Die Programmierung erfolgt dabei in C oder C++. Dabei haben die Arduino-Boards
normalerweise eine USB-Schnittstelle, mit der sie mit dem Computer verbunden werden können und
über diese der Programmcode aktualisiert werden kann.

Es gibt zwischenzeitlich verschiedene Hardware, die der Spezifikation dieser Plattform entspricht und
damit kompatibel ist. Insbesondere gibt es für Wearables spezialisierte Formfaktoren, die zum Beispiel
unter dem Namen LilyPad4 bekannt sind. Diese sind darauf ausgelegt, mit Kleidung vernäht zu werden.
Die Geräte sind klein und haben die Form einer Scheibe. Die elektrischen Kontakte sind durch Löcher
realisiert, so dass die Kommunikationsinfrastruktur mit elektrisch leitfähigen Fäden realisiert werden
kann. Neben LilyPad gibt es auch ähnliche Produkte wie beispielsweise die FLORA5-Plattform, welche
auch kompatibel zu Arduino ist.

2https://learn.adafruit.com/neopixel-punk-collar, zuletzt abgerufen am 30. Juni 2014
3https://learn.adafruit.com/midi-drum-glove, zuletzt abgerufen am 30. Juni 2014
4http://lilypadarduino.org/, zuletzt abgerufen am 30. Juni 2014
5http://www.adafruit.com/categories/92, zuletzt abgerufen am 10. Juni 2014

15

https://learn.adafruit.com/neopixel-punk-collar
https://learn.adafruit.com/midi-drum-glove
http://lilypadarduino.org/
http://www.adafruit.com/categories/92

2. Grundlagen und verwandte Arbeiten

2.6. Prototypen in der Wissenschaft

In der Arbeit What Shall We Teach Our Pants? [VC00], wird ein System zur Aktivitätserkennung des
Benutzers anhand von Beschleunigungssensoren an Hosen entwickelt und evaluiert. Neben den Be-
schleunigungsdaten wurden allerdings auch noch passive Infrarot-Sensoren, ein Kohlenstoffmonoxid-
Sensor, Mikrofone, Drucksensoren, Temperatursensoren und Helligkeitssensoren benutzt.

Die rohen Sensordaten wurden dann in einem ersten Schritt in sogenannte Anhaltspunkte vorver-
arbeitet. Diese Anhaltspunkte werden dann benutzt um durch maschinelles Lernen ein Modell zu
entwickeln, das die aktuelle Aktivität des Benutzers beschreibt. Für den Prototypen waren einfa-
che Algorithmen wie Summe, Maximum, Minimum und Durchschnitt für die meisten Sensordaten
ausreichend, um sinnvolle Anhaltspunkte zu generieren.

Diese Anhaltspunkte wurden später in Echtzeit verarbeitet und auch für Reproduzierbarkeit und
spätere Analysen gespeichert. Im Experiment mussten die Probanden dann ihre Tätigkeiten wäh-
rend der Durchführung angeben um den Prozess des maschinellen Lernens zu unterstützen. Das
Ergebnis dieser Arbeit ist, dass Aktivitätserkennung oder das Bewusstsein des Benutzerkontexts ohne
anpassungsfähige Analysen sehr beschränkt ist.

In der Arbeit Electronic Textiles: A Platform for Pervasive Computing [MMZ+03] werden unter ande-
rem Module beschrieben, aus denen sich ein Gesamtsystem zusammensetzen könnte und wie die
Hardwareverbindungen zwischen den Komponenten realisiert werden könnten. Auf Softwareseite
werden Vorschläge zur Organisation und Kommunikation mit einer möglichen Hardwareschnittstelle
und der weiteren Signalverarbeitung gegeben.

Wear Ur World - A Wearable Gestural Interface [MMC09] ist ein System, das aus einem kleinen Beamer
und einer auf dem Kopf bzw. Hut angebrachten Kamera besteht. Das System sieht was der Benutzer
sieht und reichert seine Umgebung durch Projektionen auf Oberfläche an. Die Interaktion erfolgt
mittels Handgesten, Armbewegungen oder Interaktion mit dem Objekt. Als Software kommt bei dem
Projekt WPF, C# und OpenCV zum Einsatz.

Pinstripe [KWL+11] ist ein Projekt der RWTH Aachen, in dem das zusammendrücken und rollen von
Stoff mit den Fingern als Eingabe des Benutzers interpretiert wird. In dieser Arbeit wurden die im
Stoff verbauten leitfähigen Fäden mit einem LilyPad Mikrocontroller verbunden. Dieser ist mit einem
Kabel an einen Computer angebunden, der die Signalverarbeitung durchführt.

2.7. Die Architektur von intelligenter Kleidung

Um intelligente Kleidung günstiger und in großen Mengen zu produzieren, muss der Produktions-
prozess besser modularisiert werden. Dabei ist dies ein Henne-Ei-Problem: Erst bei erschwinglichen
Preisen verbreiten sich die Produkte stark, und erst bei großer Verbreitung ist eine günstige Massen-
produktion erstrebenswert.

Ein weiteres Problem ist zudem, dass es noch keine killer application gibt, die für viele verschiedene
intelligente Kleidungen funktioniert. Als Killeranwendung wird eine konkrete Anwendung bezeichnet,

16

2.7. Die Architektur von intelligenter Kleidung

Sensorischer Stoff

Hardware-Schnittstelle

D/A Signalverarbeitung

Computer-Hardware

Laufzeitumgebung

Wearable OS

Sensor API

App 1 App 3App 2

Abbildung 2.1.: Die grobe Architektur von intelligenter Kleidung nach [CLH+13]

die einer existierenden Technik zum Durchbruch verhilft. Statt einer generell einsetzbaren Anwen-
dung für intelligente Kleidung gibt es nur einzelne Lösungen mit ihren jeweils eigenen spezifischen
sensorischen Anforderungen.

Die verschiedenen Disziplinen, die am Entwicklungsprozess beteiligt sind, sollten unabhängiger
voneinander arbeiten können um vielfältige aber miteinander kompatible Produkte erzeugen zu
können. Ein Weg um die Kopplung von Zuständigkeiten zu verringern und dabei die Kohäsion zu
steigern, ist die Schichtenarchitektur. Beteiligte Schichten dürfen nur mit den über und unter ihnen
gelagerten Schichten kommunizieren und Aufrufe sollten wenn möglich nur auf untere Schichten
gemacht werden.

In Abbildung 2.1 sind mögliche Schichten dargestellt, an denen einzelne Komponenten voneinander
getrennt werden könnten. Die einzelnen Schichten werden, von unten nach oben, in den folgenden
Abschnitten näher erläutert.

Sensorischer Stoff

Hiermit ist das Textilprodukt gemeint, welches neben der Funktion als Kleidung zu dienen, zusätzli-
che Daten seiner Umwelt aufnehmen kann. Im Projekt SimpleSkin wird an leitfähigen Materialien
gearbeitet, die in einem zweidimensionalen Gitter in oder auf dem Stoff angebracht sind. Zwei dieser
Gitter, mit einer zwischengelagerten Isolationsschicht, könnten beispielsweise dazu dienen, den Druck
durch Messung des elektrischen Widerstands zu messen.

Die Verarbeitung des Stoffes sollte im besten Fall auch nicht stark von traditionellen Bearbeitungsme-
thoden abweichen. Es muss allerdings beachtet werden, dass ein auf dem Stoff befindliches Netzwerk
von Sensorik mit der Kommunikations- und Engergieinfrastruktur verbunden sein muss.

17

2. Grundlagen und verwandte Arbeiten

Hardware-Schnittstelle, Signalverarbeitung, Computer-Hardware

An diese Stelle erfolgt die erste große Trennung der Komponenten. Die auf dem Stoff aufgebrauchte
Sensor-Infrastruktur sollte durch ein steckbares Gerät benutzbar gemacht werden. So kann der Stoff
ohne die elektronischen Bestandteile gewaschen werden. Über die Hardware-Schnittstelle sollen alle
notwendigen Informationen die im Stoff anfallen übertragen werden, so dass die digitale und analoge
Signalverarbeitung dort mithilfe der Computer-Hardware betrieben werden kann.

Wearable OS

Das Betriebssystem soll auf der Computer-Hardware laufen. Es kümmert sich darum, die Daten
aus der Hardware auszulesen und den über ihm liegenden Komponenten zur Verfügung zu stellen.
Es sollte mit verschiedenen Sensoren, die über die Hardware-Schnittstelle angeschlossen werden,
kommunizieren können.

Laufzeitumgebung, Sensor API, Apps

Anwendungen, sogenannte Apps, die demEndbenutzer Zugriff auf und Interaktionmit seiner Kleidung
bieten sollen benötigen eine Laufzeitumgebung. Diese Laufzeitumgebung soll über eine einheitliche
API die Sensordaten zur Verfügung stellen.

2.8. Betriebssysteme für Wearables

Es gibt auf dem Markt verschiedene Ansätze für Betriebssysteme die auf Wearables zugeschnitten
sind. Folgende Produkte sind dabei verbreitet oder in Entwicklung.

Android Wear

Android Wear6 wurde am 18. März 2014 von Google vorgestellt. Es basiert auf dem mobilen Be-
triebssystem Android und ist für Geräte ausgelegt die in der Größenordnung von Armbanduhren
liegen.

In der im Moment verfügbaren Vorschau für Entwickler wird eine Übersicht über die Elemente und
Entwurfsmuster der Benutzungsschnittstelle gegeben. Die Hauptaufgabe von tragbaren Geräten
besteht darin, mit Benachrichtigungen zu interagieren. Vor allem sollen Informationen immer passend
zum Kontext geliefert werden, ohne dass der Benutzer diese explizit nachfragen muss.

Zur Kommunikation mit externer Hardware oder Sensoren ist in der Vorschau für Entwickler noch
nichts geschrieben. Der Plan für die Zukünftige Erweiterung enthält allerdings folgende Punkte die
Android Wear unterstützen wird:

6http://www.android.com/wear/, zuletzt abgerufen am 30. Juni 2014

18

http://www.android.com/wear/

2.8. Betriebssysteme für Wearables

• Eigene Benutzungsoberflächen erstellen

• Daten zwischen Smartphones und tragbaren Computern austauschen

• Sensordaten in Echtzeit sammeln und darstellen

• Sprachinteraktion mit Anwendungen

Tizen

Tizen7 ist ein auf Linux basierendes Betriebssystem. Es ist darauf ausgelegt auf Geräten wie Smartpho-
nes, Tablets, Smart TVs, Fotoapparaten, Autounterhaltungssystemen aber auch Geräten im Bereich
Wearable-Computing eingesetzt zu werden. Die erste Version von Tizen wurde im Januar 2012 veröf-
fentlicht. Das Projekt ist in stetiger Weiterentwicklung und hat viele große Partner in der Industrie
wie zum Beispiel Fujitsu, Huawei und die Intel Corporation.

Tizen setzt stark auf mobile standardisierte Webtechnologien zur Anwendungsentwicklung wie
JavaScript, XML, Ajax und alle weiteren unter dem Sammelbegriff HTML5 bekannte Technologien. Die
Begründung liegt darin, dass HTML5 die Barriere zum Entwickeln von betriebssystemunabhängigen
Anwendungen heruntersetzt und damit mehr Entwickler anzieht. Neben HTML5-Anwendungen
unterstützt Tizen aber auch native Projekte in den Programmiersprachen C oder C++ [Tiz13].

Die von Samsung entwickelten Geräte der Marke Gear 2 basieren auf dem Tizen-Betriebssystem,
welches die frühere auf Android basierende Plattform ablöst. Ältere Geräte wie die Smartwatch Galaxy
Gear können von Android aus auf die neue Tizen-Plattform aktualisiert werden.

Wearable OS

Wearable OS8 ist ein Projekt, welches über die Crowdfunding-Plattform Kickstarter finanziert werden
will. Es hat zum Ziel ein Betriebssystem und eine Entwicklungsumgebung für tragbare Computer zu
entwickeln. Zum aktuellen Stand (29. Juni 2014) gibt es allerdings noch keine weiteren Informatio-
nen.

Auf der Webseite ist beschrieben, dass eine Entwicklungsumgebung geschaffen werden soll, die
erlaubt Anwendungen aus vorgefertigten Blöcken zusammenzustellen und aus diesen Programmen
dann den Code für verschiedenen Plattformen zu generieren. Dabei soll Wert auf interaktives und
iteratives Entwickeln gelegt werden und das Feedback von Änderungen schnellstmöglich sichtbar
werden. Von Anwendungen gesammelte Daten werden über einen Cloud-Dienst synchronisiert um
analysiert zu werden.

7https://www.tizen.org/
8http://wearable-os.com/, zuletzt abgerufen am 10. Juni 2014

19

https://www.tizen.org/
http://wearable-os.com/

2. Grundlagen und verwandte Arbeiten

2.9. Sensornetzwerke, Verteilte Systeme und Datenmanagement

Unter dem Begriff Sensornetzwerk versteht man ein Netz von Sensorknoten, die ein einem Netzwerk
zusammenarbeiten. Das Sensornetzwerk soll dadurch eine intelligente Umgebung aufspannen [Lew04].
Das Ergebnis dieser Arbeit ist ähnlich zu einem Sensornetzwerk, indem die an dem Körper der Person
getragenen Sensoren zusammenarbeiten um nützliche Daten zu liefern. Dabei ist es allerdings nicht
notwendig, dass die Sensoren selbst ihre Kommunikationsinfrastruktur organisieren.

Lehikoinen und Holopainen entwarfen in MEX: a distributed soft- ware architecture for wearable
computers eine Architektur für ein verteiltes System von Wearable Computern [LHSA99]. Die Ziele
dieser Architektur sind:

1. Kommunikation zwischen Anwendungen, die auf einem Wearable Computer laufen

2. Kommunikation der Anwendung mit dem ubiquitären Umfeld

3. Kommunikation von Anwendungen zwischen verschiedenen Wearable Computern

Die Arbeit geht dabei wenig auf die Kommunikation mit Sensoren ein, sondern konzentriert sich auf
die Kommunikation zwischen verschiedenen Anwendungen.

Auch Kortuem, Bauer und Segall beschreiben mit NETMAN [KBS99] ein System, in dem die Eingabe,
Verarbeitung und Ausgabe von Daten die von Wearable Computer erfasst werden, auf verschiedene
Komponenten verteilt. Dadurch soll das Zusammenarbeiten von Personen verbessert werden. Im
dort beschriebenen Szenario wird ein Monteur mit einer Kamera und Headset zu seinem Einsatzort
geschickt und bekommt von einem Technikexperten der stationär ist Anweisungen oder Lösungen
die zu seiner aktuellen Problemstellung passen.

WikiSensing9 ist ein Projekt, dass es über Webschnittstellen erlaubt, Sensordaten im Internet zu
veröffentlichen und abzurufen [SGG12]. Die Sensordaten können dabei über HTTP in den Formaten
XML oder JSON angelegt und abgefragt werden.

Das Produkt Human API10 hat sich auf die Aggregation von Gesundheitsdaten spezialisiert. Es
unterstützt sowohl tragbare Geräte wie Armbänder, als auch stationäre Geräte wie Waagen oder
Messgeräte für den Blutzuckerspiegel. Es greift auf die Webschnittstellen der einzelnen Produkte
zu und führt all diese Gesundheitsdaten zusammen. Anwendungsentwickler können somit auf die
durch Human API aggregierten Daten in einer einheitlichen Weise zugreifen, unabhängig von der
benutzten Quelle.

Xively11 (früher bekannt unter dem Namen COSM und Pachube) ist ein Service der online Sensordaten
aggregiert und diese auch über eine API zur Verfügung stellt. Xively bietet fertige Bibliotheken für
eine Vielzahl von Plattformen an. Der Quellcode dieser Bibliotheken ist öffentlich verfügbar. Die
Plattform selbst ist allerdings proprietär und kann nicht auf eigenen Server ausgebracht werden. Die
Zielsetzung von Xively ist, die Plattform für das Internet der Dinge zu werden.

9http://wikisensing.org/, zuletzt abgerufen am 30. Juni 2014
10http://humanapi.co/, zuletzt abgerufen am 30. Juni 2014
11https://xively.com/, zuletzt abgerufen am 30. Juni 2014

20

http://wikisensing.org/
http://humanapi.co/
https://xively.com/

2.10. Produkte

2.10. Produkte

Es gibt schon Produkte, die sich ähnlich zu zukünftiger intelligenter Kleidung verhalten, aber eben
eigenständige Geräte sind, die nicht in der Kleidung integriert sind. Sie besitzen ausreichende Batte-
riekapazität und Speicherplatz um den ganzen Tag getragen zu werden und alle anfallenden Daten
aufzuzeichnen.

2.10.1. Zephyr BioHarness 3

Das BioHarness 3 ist ein Gerät der Firma Zephyr12. Es besteht aus einem Brustgurt, in den das
Hardware-Modul eingesetzt werden kann. Dieses hat einen Akku, der über den USB-Anschluss
geladen werden kann und einen integrierten Speicher um aufgezeichnete Daten zu speichern. Alle
hier aufgeführten Spezifikationen sind dem Handbuch entnommen [Zep11a].

Mit anderen Geräten kommunizieren kann der BioHarness (BH3) über den Universal Serial Bus (USB),
Bluetooth und ein proprietäres Protokoll (802.15.4 ECHO). Dieses Protokoll namens ECHO ist auf eine
Reichweite von 275 Metern ausgelegt und wird hauptsächlich mit anderen, von Zephyr vertriebenen
Hardwarekomponenten zur Datenanalyse benutzt. Über USB und Bluetooth wird ein proprietäres
serielles Protokoll gesprochen. Details zu diesem Protokoll befinden sich in Abschnitt 5.4.1 und 5.9.

Der BH3 unterstützt die folgenden grundlegenden physiologischen Daten:

• Puls

• Atemfrequenz

• EKG Daten (Elektrokardiogramm)

• Daten der Beschleunigungssensoren

Der BH3 liefert zudem schon vorverarbeitete Daten wie das Minimum und Maximum der einzelnen
Beschleunigungswerte pro Achse und Werte die das Vertrauen in die Richtigkeit von gelieferten
Daten wie Puls, Atemfrequenz oder auch das Gesamtsystem beschreiben.

2.10.2. Polar Loop

Der Polar Loop13 wird als Armband getragen und ist dafür vorgesehen die Aktivitäten des Trägers
dauerhaft zu erfassen. Es ist wasserdicht und kann Daten für 12 Tage aufzeichnen. Bei Dauernutzung
hält die Batterie laut Hersteller bis zu fünf Tage.

Zu den erfassten Daten zählen das Aktivitätslevel (in den Stufen niedrig, mittel und hoch), die Anzahl
der gelaufenen Schritte, die zurückgelegte Distanz und Schlafqualität. Diese Daten werden vom
Rechner aus in ein Webportal geladen, in dem diese analysiert werden. Mit einem Webbrowser kann

12http://zephyranywhere.com/, zuletzt abgerufen am 30. Juni 2014
13http://www.polarloop.com/, zuletzt abgerufen am 22. Juni 2014

21

http://zephyranywhere.com/
http://www.polarloop.com/

2. Grundlagen und verwandte Arbeiten

die Auswertung und Visualisierungen seiner Daten betrachtet werden. Über das Portal können die
Daten auch mit anderen Benutzer geteilt werden.

2.11. Zusammenfassung

Produkte im Bereich Wearable Computing kommen mehr und mehr im Massenmarkt an. Momentan
sind dies allerdings hauptsächlich externe Geräte, die temporär zu bestimmten Zwecken getragen
werden. Intelligente Kleidung könnte der nächste Schritt sein, umWearable-Computing Anwendungen
eine konstante und dauerhafte Datenquelle zu liefern und den Computer noch näher an den Menschen
zu bringen.

Der Entwicklungsprozess von intelligenter Kleidung ist vergleichbar zum Vorgehen von anderen
High-Tech Produkten, allerdings stark interdisziplinär, da neben der reinen Technologie auch das
Produktdesign und die Physiologie des Menschen eine wichtige Rolle spielen.

Industriell gefertigte Produkte aus dem Bereich Wearables sind meist abgeschlossene Systeme, welche
die von ihnen Erfassten Daten über eine definierte Schnittstelle, meist über Bluetooth, zur Verfü-
gung stellen. Im Hobbyistenbereich hat sich vor allem die Arduino-Plattform zur Entwicklung von
intelligenter Kleidung und Accessoires durchgesetzt.

Wissenschaftliche Prototypen für intelligente Kleidung sind wenig standardisiert und spezifisch auf
den Anwendungsfall ausgelegt. Da es sich meist um Prototypen handelt die nicht für die Massenferti-
gung vorgesehen sind, ist dies verständlich. Um zukünftige Produktentwicklungen massentauglich
zu machen, müssen Schnittstellen zwischen den Beteiligten Parteien und Zuständigkeiten im Ent-
wicklungsprozess entwickelt und umgesetzt werden. Existierende Betriebssysteme wie Android oder
Tizen sind im Moment auch dabei, sich auf Wearable Computing auszurichten und dafür spezielle
Funktionen und Entwicklungsunterstützung anzubieten.

22

3. Anforderungen an eine Systemarchitektur
für intelligente Kleidung

Der schwierigste Teil einer
Anforderungsanalyse ist nicht,
aufzuzeichnen was der Benutzer
will, es ist die explorative
Entwicklungstätigkeit des
Unterstützen der Benutzer,
herauszufinden sie wollen.

(Steve McConnell)

In diesem Kapitel werden die Anforderungen, welche an eine Architektur für intelligente Kleidung
gestellt werden, genauer beschrieben. Dabei wird als Grundlage die in Abschnitt 2.7 von Cheng
vorgeschlagene Schichtenarchitektur benutzt. Bei der Auflistung der Anforderungen werden alle
Schichten betrachtet, allerdings liegt der Fokus im Rest der Arbeit auf den Schichten, die über
der Computer-Hardware liegen (siehe auch Abbildung 2.1), dass heißt dem Betriebssystem, der
Laufzeitumgebung und der Sensor API.

Aufgrund dieses Fokuses sind die Zielgruppen der Architektur Entwickler, welche mit den genannten
Schichten interagieren. Das sind Entwickler von Sensoren, Entwickler der Datenverarbeitung und
schließlich Entwickler welche die Daten in Anwendungen für Endbenutzer einsetzen.

Die Anforderungen wurden zum einen aus Arbeiten im Bereich des Wearable Computings abgeleitet.
Es wurde aber auch mit Entwicklern die beispielsweise im SimpleSkin-Projekt tätig sind über ihre
Erfahrungen gesprochen. Vor allem die noch nicht vorhandenen technischen Grundlagen haben dazu
beigetragen, die Architektur auf die Unterstützung des Entwicklungsprozess zu optimieren und zu
helfen, diesen zu parallelisieren.

3.1. Anforderungen an die einzelnen Schichten

Im folgenden werden funktionale und nichtfunktionale Anforderungen an die einzelnen Schichten
der Architektur definiert. Dabei wird in den Schichten aus Abbildung 2.1 von oben nach unten
vorgegangen.

3.1.1. Anwendungen und Laufzeitumgebung

Die Anwendungen sind dazu da, dem Benutzer eine Interaktion mit den Daten anzubieten. Diese
Anwendungen sollen in einer Laufzeitumgebung ausgeführt werden. Die Laufzeitumgebung ist

23

3. Anforderungen an eine Systemarchitektur für intelligente Kleidung

beispielsweise ein mobiles Betriebssystem wie iOS oder Android. Es soll aber auch möglich sein
Anwendungen in beliebigen andere Technologien und Laufzeitumgebungen schreiben zu können.
Die Architektur sollte also kein beschränkender Faktor für Anwendungen oder Laufzeitumgebungen
darstellen und so portabel wie möglich sein.

Um Anwendungslogik zwischen verschiedenen Anwendungen oder Laufzeitumgebungen wiederver-
wenden zu können, sollen diese über eine einheitliche API auf Sensordaten zugreifen und Datenver-
arbeitung abstrahieren.

3.1.2. Einheitliche Schnittstelle für Anwendungen

Die API ist der einheitliche Zugriffspunkt auf alle in unteren Schichten anfallenden Werte. Mehrere
Anwendungen sollen auch gleichzeitig auf mehrere Sensorwerte zugreifen können und sich dabei
gegenseitig nicht blockieren.

Die Schnittstelle, mit der Anwendungen auf die Daten zugreifen, soll von den unterschiedliche Geräten,
welche die Daten liefern, abstrahiert sein. Daten der selben Kategorie sollen über verschiedene Quellen
hinweg in einem einheitliches Format angeboten werden.

Das ausgegebene Format soll maschinenlesbar sein aber dennoch auch ohne komplexeWerkzeuge von
Entwicklern verstanden werden. Dadurch soll die Einfachheit der Entwicklung verbessert werden.

Über die Schnittstelle soll sowohl Zugriff auf historische Daten, die als Aufzeichnung vorliegen, als
auch auf Echtzeitdaten die in Echtzeit von einem Sensor geliefert werden, geben. Dabei soll der
Wechsel zwischen den zwei Arten von Datenquellen ohne große Anpassungen im aufrufenden Code
zu bewerkstelligen sein.

3.1.3. Wearable OS

DasWearable OS ist dafür zuständig, mit der Computer-Hardware zu kommunizieren. Es soll die Daten
von angeschlossenen Sensoren aufzeichnen und diese der oberen Schicht, der Laufzeitumgebung,
bereitstellen. Es soll möglichst portabel sein und auf Geräten, die den Anforderungen an die Computer-
Hardware genügen, lauffähig sein.

3.1.4. Computer-Hardware

Die Aufgabe der Computer-Hardware ist es, Host für das Wearable OS zu sein und die an der
Hardware-Schnittstelle anliegenden Daten auszuwerten. Da diese Hardware am Körper getragen
wird, sollte sie klein, leicht und robust sein. Die digitale und analoge Signalverarbeitung soll auch auf
der Computer-Hardware ausgeführt werden können.

Es gibt andere Arbeiten, die sich mit Formfaktoren und technischer Machbarkeit näher beschäftigen.
Beispiele dafür sind Design of the QBIC wearable computing platform [ALO+04] und AWearable Sensor
and Notification Platform [MRSS06]. Genaue technische Details und Anforderungen der Computer-
Hardware sind nicht Teil dieser Arbeit.

24

3.2. Anforderungen aus Entwicklersicht

3.1.5. Hardware-Schnittstelle

Die hier betrachteten Anforderungen sollten die Hardware-Schnittstelle nicht einschränken. Die
genaue technische Spezifikation der Hardware-Schnittstelle ist nicht Teil dieser Arbeit, allerdings
werden verschiedene grobe Ausgestaltungen dieser betrachtet.

Da der Markt für intelligente Textilien erst im Wachsen ist, bietet es sich an, in der Übergangsphase
auch andere imMoment auf demMarkt befindliche Geräte als Eingabe zu unterstützen. Die Architektur
soll daher beliebige zusätzliche Quellen als Eingabe nutzen können.

3.2. Anforderungen aus Entwicklersicht

Der Fokus dieser Arbeit liegt in der Entwicklung von Anwendungen für intelligente Kleidung und
somit im speziellen auf den folgenden drei Benutzergruppen. Ein Ziel ist es, neben der Gesamtfunktio-
nalität der Architektur auch den Entwicklungsprozess an sich zu optimieren in dem etwaige Lücken
zwischen den Benutzergruppen geschlossen werden.

3.2.1. Sensorentwickler

Die Personengruppe der Sensorentwickler ist mit der Entwicklung und der Verbesserung der Sensoren
beschäftigt. Die Art der Sensoren ist dabei zweitrangig. Als Sensor sollen alle Geräte betrachtet werden,
die bestimmte Werte liefern welches sich zeitlich verändern.

Während der Entwicklung eines neuen Sensors können die Prototypen noch Eigenschaften haben, die
es nicht erlauben ihn mobil und am Körper zu betreiben. Dennoch sollen diese Sensordaten während
der Entwicklung schon erfasst werden können. Diese Aufzeichnungen können dann anderen im
Entwicklungsprozess beteiligten Gruppen zur Verfügung gestellt zu werden. Die Schnittstelle zum
Erfassen der Daten soll so einfach wie möglich gestaltet sein, um die Kosten für eine Parallelisierung
des Entwicklungsprozesses zu minimieren.

Als Vorteil des frühzeitigen Einpflegens der Sensordaten soll den Entwicklern eine Visualisierung
ihrer Daten geboten werden. Damit sollen Tests in frühen Phasen ohne große zusätzlichen Entwick-
lungskosten für spezifische Analysesoftware gemacht werden können.

3.2.2. Datenverarbeitungsexperten

Die Gruppe der Datenverarbeitungsexperten beschäftigt sich damit, die von den Sensoren gelieferten
Daten genauer auszuwerten. Aus den rohen Sensordaten sollen Ableitungen gemacht werden, welche
die Realität des Benutzers auf einem höheren Level beschreiben.

Um frühzeitig mit dem Entwerfen von Algorithmen zur Datenverarbeitung beginnen zu können,
sollen aufgezeichnete Daten gleichwertig wie Echtzeitdaten benutzt werden können. Dabei sollen auf
die von den Sensorentwicklern erzeugten und eingepflegten Daten zugegriffen werden können.

25

3. Anforderungen an eine Systemarchitektur für intelligente Kleidung

Um das Erstellen von neuen Algorithmen zu erleichtern, sollen graphische Hilfsmittel zur Visua-
lisierung der Daten und Datenverarbeitungen angeboten werden. Zudem soll es eine Bibliothek
mit vordefinierten Grundbausteinen geben, um schnell einfache Algorithmen erstellen zu können.
Maschinelles Lernen sollte auch eine Option sein und durch das System unterstützt werden. Dazu
sollten Eingaben vom Benutzer explizit kategorisiert werden können und damit zum überwachten
Lernen benutzt werden können.

3.2.3. Anwendungsentwickler

Anwendungsentwickler sind dafür zuständig, die anfallenden Daten dem Endbenutzer in einer für
ihn sinnvollen Ausgabe darzustellen und ihm Interaktionsmöglichkeiten zu bieten.

Um früh im Entwicklungsprozess des Gesamtproduktes mit Prototypen der Anwendung zu beginnen,
soll auf alle von Sensorentwicklern und Datenverarbeitungsexperten erstellten Zwischenprodukte
zugegriffen werden können. Es sollen also beispielsweise Aufzeichnungen oder Echtzeitdaten der
Sensoren verwendet werden. Auch die Ergebnisse der entwickelten Algorithmen zur Analyse dieser
Daten sollen von denAnwendungsentwicklern eingesetzt werden können. Um zwischenAufzeichnung
und realem Sensor zu wechseln sollen keine großen Änderungen am Programmcode notwendig sein.

Der Zugriff auf diese Daten soll über eine einheitliche API möglich sein. Diese soll auf möglichst
vielen Plattformen verfügbar sein, um Anwendungsentwicklungen nicht unnötig zu beschränken.
Zudem sollen die eingesetzten Technologien mit existierenden Entwicklungswerkzeugen ausreichend
gut unterstützt werden. Dadurch soll ein erneutes Henne-Ei-Problem verhindert werden, bei dem
sich die neue Plattform nicht durchsetzt, da sie nicht ausreichend viele Verbesserungen bietet und
nur gleichauf mit älteren aber weiterentwickelten Insellösungen liegt.

3.3. Weitere Anforderungen

Aufzeichnungen als Eingabe

Die Aufzeichnungen der Daten sollen die in den Benutzergruppen beschriebenen Anwendungsfälle
abdecken, das heißt Echtzeitdaten und Aufzeichnungen gleichgestellt sein. Dies soll an jeder Stelle in
der Architektur möglich sein. Ein wichtiges Element in der Entwicklung von Software ist aber auch
Reproduzierbarkeit. Um Testfälle mit bekannten Erwartungswerten schreiben zu können, muss man
auch konstante Eingaben haben. Das System soll es ermöglichen, aufgezeichnete Datensätze in der
selben Art anzubieten, wie real verbundene Sensoren. Dadurch kann unter anderem reproduzierbar
die Funktionalität der entwickelten Anwendungen getestet werden.

Arten der Datenübertragung

Es fallen Daten an, die in zwei Kategorien eingeteilt werden können. Zum einen entstehen Da-
ten, die nicht zwingend in Echtzeit übertragen werden müssen. Beispiele dafür wären Langzeit-
Durchschnittswerte des Pulses oder die Körpertemperatur. Für andere Daten ist es notwendig, dass

26

3.4. Zusammenfassung

diese so schnell wie möglich übertragen werden. Darunter fallen je nach Anwendungsfall beispiels-
weise Daten von Beschleunigungssensoren. Die Architektur soll ermöglichen beide Arten von Daten-
übertragungen zu unterstützen.

Rückkanal

Um den Schritt von passiven intelligenten Materialien zu aktiven oder sehr intelligenten Materialien
zu machen, ist es notwendig Daten an diese zurückzuliefern und sie gegebenenfalls zu steuern. Die
Architektur soll diesen Anwendungsfall unterstützen. Kleidung könnte auch nicht nur als Sensor
dienen sondern auch als Elemente beinhalten, die als Ausgabe fungieren, wie zum Beispiel in Electro-
luminescent based Flexible Screen [ACCL14] beschrieben. Für Anwendungsfälle ähnlich zu diesem,
soll mit dem Sensor beziehungsweise der Kleidung kommuniziert werden können, falls diese es
unterstützt oder erfordert.

Sicherheitsanforderungen

Die gesamte Architektur sollte die persönlichen Daten der Endbenutzer soweit möglich vor unberech-
tigten Dritten schützen. Unter persönliche Daten fallen sowohl die von Sensoren erfassten Daten als
auch die verarbeitete Ausgabe. Nur der Benutzer, beziehungsweise von ihm zur Datenverarbeitung
beauftragte Parteien sollen Zugriff auf diese Daten haben.

Aufgezeichneten Daten, wie zum Beispiel Puls und EKG, lassen unter Umständen Rückschlüsse auf
den Gesundheitszustand des Trägers zu. §203, Verletzung von Privatgeheimnissen im Strafgesetzbuch1
schützt patientenbezogene Gesundheitsdaten, unter welche die Aufzeichnung von physiologischen
Werten durch beispielsweise Kleidung oder andere Wearable Computing Geräte auch fallen können.

3.4. Zusammenfassung

Eine Architektur für intelligente Kleidung soll vor allem die im Entwicklungsprozess beteiligten
Gruppen unterstützen. Dabei sollte sie aber auch ermöglichen, verschiedene Komponenten von
unbeteiligten Parteien erstellen zu lassen. Eine Schichtenarchitektur bietet sich an, um die Kopplung
zwischen den Komponenten zu verringern. Die in dieser Arbeit betrachteten Benutzer der Architektur
sind in drei Gruppen einzuteilen. Für jede dieser Gruppe sollte die Architektur Vorteile bieten.
Neben dem Nutzen für die Gruppen sind auch Grundlegende Funktionalitäten wie bidirektionale
Kommunikation und Sicherheitsanforderungen zur Umsetzung des Datenschutzes zu beachten.

1http://dejure.org/gesetze/StGB/203.html, zuletzt abgerufen am 30. Juni 2014

27

http://dejure.org/gesetze/StGB/203.html

4. Architektur einer Middleware zur
Entwicklungsunterstützung

In diesem Kapitel wird eine Architektur beschrieben, welche die in Kapitel 3 beschriebenen Anforde-
rungen erfüllt. In Abbildung 4.1 sind die groben Komponenten davon visualisiert. Grundlage dieser
Architektur sind die in Abschnitt 2.7 beschriebenen Überlegungen. Der bedeutende Unterschied
zur dort vorgestellten Architektur ist eine zusätzlich eingeführte Schicht, die für die Speicherung,
Verwaltung und Verarbeitung der Daten zuständig ist.

Abbildung 4.2 zeigt die selben Komponenten, allerdings mit Fokus auf die Kommunikationsgrenzen
und Zuständigkeiten. Im folgenden werden die einzelnen Teile der Architektur näher beschrieben
und ihre Ausgestaltung begründet.

fühlender
Sto�

Middleware

Computer-Hardware

Hardware-Schnittstelle

Konventionelle Schnittstelle

D/A

Anwendungen

Laufzeitumgebung
OS

Datenspeicher
Datenverwaltung
Datenverarbeitung

API
andere
Sensoren

Abbildung 4.1.: Übersicht über das Zusammenspiel der einzelnen Komponenten

29

4. Architektur einer Middleware zur Entwicklungsunterstützung

S1

S3

S2

S4

Drittanbieter

Computer-HardwareSensoren/Datenquellen Middleware Endgerät

Hardware-
Schnittstelle

Anwendung

Laufzeit-
umgebung

Abbildung 4.2.: Übersicht über die Architektur mit Fokus auf die verschiedenen Schnittstellen zwi-
schen Gerätegrenzen

4.1. Hardware-Schnittstelle und Computer-Hardware

Die spezifische Schnittstelle für die Verbindung der Computer-Hardware mit intelligenter Kleidung
ist hier nicht genauer spezifiziert. Im Kapitel 5 werden allerdings Vorschläge zu möglichen Implemen-
tierungen gegeben.

Um im Moment auf dem Markt verfügbare Sensoren zu benutzen, muss zusätzliche Software geschrie-
ben werden, um die Daten von diesen Sensoren in das System zu überführen. Diese Software läuft
auf der Computer-Hardware. Dies bedeutet, dass diese mindestens über eine Bluetooth-Schnittstelle
verfügen muss. Alle anderen Merkmale sind offen, solange sie den Anforderungen in Abschnitt 2.7
genügen.

In Abbildung 4.3 sind drei Möglichkeiten zur Gestaltung der Hardware-Schnittstelle dargestellt, die
vor allem interessant sind, wenn mehrere intelligente Kleidungsstücke gleichzeitig getragen werden.
Die Varianten werden in folgenden Abschnitten erläutert.

30

4.1. Hardware-Schnittstelle und Computer-Hardware

Computer-
Hardware

Computer-
Hardware

Computer-Hardware

Abbildung 4.3.:Mögliche Ausgestaltungen der Hardwareschnittstelle

Verdrahtung zwischen Kleidungsstücken

In diesem Szenario ist die Computer-Hardware mit mit einer Steckverbindung nur an einem Klei-
dungsstück angebracht. Andere Kleidungsstücke können über flexible waschbare Verbindungen mit
diesem Kleidungsstück verbunden werden und müssen keinen eigenen Sockel für die Hardware bereit-
stellen. In diesem Fall würde es ein Hauptkleidungsstück geben. Nachteilig sind die kabelgebundenen
Verbindungen, welche je nach Kleidungsstück und Anwendungsfall störend sein könnten.

Master/Slave Kleidungsstücke

Wie im ersten Szenario gibt es ein Kleidungsstück, welches für die hauptsächliche Kommunikation zu-
ständig ist. In dieses Kleidungsstück kann die Computer-Hardware eingesetzt werden. Die Verbindung
zu weiteren intelligenten Kleidungsstücken ist dabei allerdings nicht kabelgebunden, sondern wird
über eine drahtlose Verbindung wie zum Beispiel Bluetooth realisiert. Für die drahtlos verbundenen
Kleidungsstücke könnte Hardware ähnlich zum Blidget1 zum Einsatz kommen: Kleine (25x25x6mm)
programmierbare Chips, die drahtlos über Bluetooth Smart kommunizieren können. In diesem Zuge
erhöht sich allerdings die Komplexität des Systems, da aus der reinen Hardware-Schnittstelle ein
neues System von zwei miteinander kommunizierenden Komponenten wird.

1http://blidget.hcilab.org/, zuletzt abgerufen am 30. Juni 2014

31

http://blidget.hcilab.org/

4. Architektur einer Middleware zur Entwicklungsunterstützung

Vollständig drahtlose Kommunikation

Als konsequenter Schritt zwischen der Mischform in Szenario 2, wäre auch denkbar die Computer-
Hardware komplett von der Kleidung zu trennen und mit dieser nur kabellos zu kommunizieren. Falls
es möglich ist, robuste Chips, die klein genug sind um dauerhaft, auch während dem Waschvorgang,
in der Kleidung zu verbleiben, wäre dies eine komfortable Option. Die Aufgaben der Computer-
Hardware könnte dabei beispielsweise ein Smartphone übernehmen. Diese Art der Verbindung ist im
Moment fürWearable Computing Geräte ammeisten verbreitet, da sie keine Anforderungen an andere
Geräte stellt und direkt mit einer kompatiblen Gegenstelle kommuniziert. Die Herausforderung ist,
die Hardware auf den Kleidungsstücken selbst, die die drahtlose Kommunikation regelt, so robust zu
machen, dass man nicht pro Kleidungsstück jeweils zusätzliche Module zum Aufladen oder Waschen
abnehmen muss und diese später wieder anbringen.

4.2. Wearable OS

Durch die Einführung der Zwischenschicht, sind die Anforderungen an das Betriebssystem, das auf der
Computer-Hardware läuft, recht gering. Es muss Code ausführen können, um über die spezifizierten
Kommunikationskanäle mit dem zentralen Datenspeicher, der Middleware, kommunizieren. Es ist
zuständig der Middleware, die an der Hardware-Schnittstelle anliegenden Werte zu senden.

4.3. Middleware (Datenspeicher, Verwaltung und Verarbeitung)

Im folgenden wird diese Schicht auch auch Middleware genannt. Diese zusätzliche Schicht dient
der weiteren Abstraktion zwischen Sensoren und Endgerät und erlaubt einfachere zukünftige Er-
weiterungen und Unterstützung während des Entwicklungsprozesses. Als Eingabe bekommt sie die
Sensordaten von der Computer-Hardware oder Sensoren selbst geliefert. Die Middleware dient auch
als API für Anwendungen des Endbenutzers. Als zukünftige Erweiterung könnten auch Daten von
Drittanbietern, die im Internet über Schnittstellen von Drittanbietern zur Verfügung stehen, von der
Middleware importiert werden oder direkt dort angeliefert werden.

Die Middleware könnte auch neben dem Wearable OS auch auf der Computer-Hardware ausgeführt
werden. Zu frühen Testzwecken im Entwicklungszyklus kann dies ein gangbarer Weg sein. Lang-
fristig ist es allerdings realistischer, diese Middleware auszulagern um die Anforderungen an die
Computer-Hardware möglichst niedrig zu halten. Die Speicherung, Verwaltung und Verarbeitung
von Sensordaten wird dann auf einem anderen eigenständigen Rechner ausgeführt, der weder direkt
für das Sammeln der Sensordaten zuständig ist, noch die letztendlichen Anwendungen des Benutzers
ausführt.

Es ist theoretisch auch möglich, die Middleware nur während den frühen Entwicklungsphasen
zu und später aus den dort angefallenen eingepflegten Daten automatisch oder halbautomatisch
Schnittstellen für verschiedene Plattformen zu generieren. Diese Variante ist allerdings in dieser
Arbeit nicht vorgesehen, könnte allerdings eine zukünftige Erweiterung darstellen. Langfristig geht
der Trend zum Auslagern von Datenverarbeitung. Ein Beispiel dafür ist beispielsweise die mobile

32

4.3. Middleware (Datenspeicher, Verwaltung und Verarbeitung)

Eingabe

Wearable OS / Computer-Hardware

Ausgabe

Anwendungen / Laufzeitumgebung

Vereinheitlichung

Persistenz

Verarbeitung
M

id
dl

ew
ar

e

Abbildung 4.4.:Middleware mit umliegenden Schichten

Anwendung Moves2, welche nur die Bewegungsdaten auf dem mobilen Endgerät sammelt und die
Auswertung bei sich vornimmt und diese Ergebnisse dann zurücksendet.

Die einzelnen Schichten der Middleware (siehe Abbildung4.4) sind für folgende Aufgaben zuständig:

4.3.1. Eingabe

Die Eingabe ist zuständig um einkommende Daten zu empfangen. Sie stellt Endpunkte zur Verfügung
mit denen sich Sensoren verbinden können um Daten anzuliefern. Zu Testzwecken, vor allem in
frühen Phasen der Prototypen, die noch nicht in Echtzeit kommunizieren können, ist es von Vorteil
auch Daten aus Dateien importieren zu können.

Als Eingabewerte können beliebige Daten benutzt werden, die zeitabhängig sind. Eine Datenquelle
muss dabei keinem strikten Schema unterliegen, das heißt, nicht jeder Eintrag eines Sensors muss
unbedingt alle Felder ausfüllen. Die einzige harte Anforderung an einen Eintrag ist der Zeitstempel.
Beispielhafte Daten eines Sensors, die den Anforderungen genügen, sind in Tabelle 4.1 aufgeführt.
Daten können dabei vom Datentyp Integer, Float oder String sein.

Aufgrund der möglichen Diversität von Daten soll es auch möglich sein, diese Felder hierarchisch zu
organisieren, anstatt ähnliche Felder nurmit gleichem Präfix zu versehen. Ein Beispieldokument würde
in JSON-Notation folgendermaßen aussehen: {accel: {x: 1, y: 0, z: 0.5}, heart_rate: 67}.
Mit derartigen Datenstrukturen könnten ähnliche Daten, die aber beispielsweise von Verschiedenen
Körperregionen gleichzeitig kommen, sinnvoll organisiert werden.

2http://moves-app.com/, zuletzt abgerufen am 30. Juni 2014

33

http://moves-app.com/

4. Architektur einer Middleware zur Entwicklungsunterstützung

Zeitstempel Daten
timestamp accel_x accel_y accel_z heart_rate

2014-05-05T11:52:57.699Z -0.6761 -0.1925 0.6749
2014-05-05T11:52:57.901Z 67
2014-05-05T11:52:58.000Z -0.6774 -0.1927 0.6701 71

Tabelle 4.1.: Beispieleingabe von schemalosen Daten

4.3.2. Persistenz

Aufgezeichnete Daten sollen im System gespeichert werden können. Dabei soll sowohl das Abspei-
chern als auch der Zugriff auf die Aufzeichnungen schnell genug erfolgen können, um sie ich Echtzeit
wieder abspielen zu können. Allerdings sollten eingehende Daten keinen strikten Schema entspre-
chen müssen. Es sollen beliebige Schlüssel-Wert-Paare abgelegt werden können. Die einzige strikte
Anforderung ist ein Zeitstempel, der jedem Paar zugeordnet ist.

4.3.3. Verarbeitung

Die Verarbeitung ist zuständig, die rohen Sensordaten nach ihrer Vereinheitlichung weiter zu verar-
beiten. Dabei wird der eingehende Datenstrom durch eine Kombination von Filtern transformiert
und dann an die Ausgabe weitergeleitet. Um die Entwicklung neuer Filter zu vereinfachen, soll das
System den Entwicklern vorgefertigte Bausteine bereitstellen.

Der Großteil der Datenverarbeitung soll dabei auf der Middleware stattfinden, um den einzelnen
Anwendungen, beziehungsweise Geräten auf denen diese Anwendungen ausgeführt werden, Last zu
ersparen. Auch können die Algorithmen, die zur Verarbeitung der Daten auf Serverseite eingesetzt
werden, aktualisiert und gegebenenfalls verbessert werden, ohne die Anwendung selbst aktualisieren
zu müssen.

4.3.4. Ausgabe

Die Ausgabe ist zuständig um die im System angefallen Daten in einem maschinenlesbaren Format an
andere Anwendungen weiterzuleiten. Dabei wird zwischen zwei Arten der Ausgabe unterschieden:

Als Datenstrom werden Daten angesehen, die so schnell wie möglich von der Quelle zur Anwendung
gelangen sollen. Dabei soll die Verbindung bidirektional möglich sein, um einen eventuellen Rückkanal
zum Sensor zu bieten.

Neben dem kontinuierlichen Datenstrom gibt es auch die Möglichkeit, nur einen einzelnen Wert
abzufragen. Dies könnte beispielsweise der aktuelle Wert eines Sensors sein. Dieser Wert wird nach
einem Frage-Antwort-Schema übermittelt. Dieser Wert kann auch Ergebnis einer Datenverarbeitung

34

4.4. Schnittstelle zu Anwendungen und Laufzeitumgebung

sein. In diesem Fall hat die Antwort eventuell eine Verzögerungszeit, je nachdem wie groß der Puffer
der Verarbeitung sein muss und auf wie vielen Daten er aufbaut.

Um nicht dauerhaft nach Änderungen zu fragen, können auch Rückrufaktionen registriert werden. Da-
bei kann ein Sensor, eine Bedingung und eine Rückrufadresse angegeben werden. Falls die Bedingung
für den Sensor zutrifft, wird die Aktion an der spezifizierten Adresse aufgerufen.

Ein Bestandteil der Ausgabe ist optional auch die Entkopplung des spezifischen Sensors vom Kon-
sument der Daten. Der Konsument kann eine Anfrage nach bestimmten Daten stellen, und die
Middleware sucht daraufhin eine auf die Anforderung passende Quelle heraus. Die Anfrageparameter
könnten dabei beispielsweise Anforderungen an bestimmte Felder (z.B. Puls, Atemfrequenz) sein. Die
Middleware stellt aus den Anforderungen einen Datensatz zusammen und liefert diesen zurück.

4.3.5. Verwaltung

Dieses Modul ist hauptsächlich während der Entwicklung relevant. Es erlaubt die im System existenten
Datensätze einzusehen. Für jeden Datensatz können die verfügbaren Felder eingesehen werden und
die Daten auch visualisiert werden.

Neben einfachen Visualisierungen für einzelne Datensätze ist ein erweiterter Analysemodus an-
gedacht, in dem mehrere Datensätze und das Ergebnis ihrer Verarbeitung (siehe Abschnitt 4.3.3)
visualisiert werden können.

4.4. Schnittstelle zu Anwendungen und Laufzeitumgebung

Anwendungen können auf beliebige in der Middleware vorhandenen Sensordaten und Metadaten
zugreifen. Der Zugriff auf einen bestimmten Sensoren ist von mehreren Anwendungen gleichzeitig
möglich ohne diesen zu blockieren. Die Kommunikation sollte möglichst einfach auf verschiedenen
Plattformen einsetzbar sein.

4.5. Authentifizierung und Autorisierung

Um unautorisiertes Abfragen von Sensordaten zu verhindern, müssen Verbindungen die im Zugriffs-
bereich von anderen Parteien liegen abgesichert werden. Dazu sollten Sensor und Empfänger gepaart
werden und nur mit den bekannten Gegenstellen kommunizieren.

35

4. Architektur einer Middleware zur Entwicklungsunterstützung

4.6. Vor- und Nachteile der Middleware

Die Einführung einer zusätzlichen Schicht bringt sowohl Vorteile als auch Nachteile mit sich. Mehr
Schichten bedeutet mehr Indirektion und erhöhter Ressourcenverbrauch. Auf der Seite der Vorteile
stehen allerdings Entkopplung, Flexibilität und die Funktionen zur Entwicklerunterstützung.

Es sind verschiedene Möglichkeiten denkbar, um in der Entwicklungsphase die Vorteile auszunutzen
aber später im Endprodukt auf die Einbußen durch die Middleware zu verzichten, beziehungsweise
diese zu verringern. Eine Möglichkeit wäre, Code für verschiedene Plattformen zu generieren, die an
den Endpunkten die Arbeit übernimmt und damit die Middleware komplett ersetzt. Es wäre auch
denkbar, einen Mischbetrieb zu erlauben und Daten die eine sehr geringe Latenz benötigen nicht
durch die Middleware zu transportieren. Dabei könnten Endpunkte in einen speziellen direkten
Modus gesetzt werden, der über die Middleware verhandelt wird, aber bei dem die Quelle und der
Konsument direkt miteinander Daten austauschen.

4.7. Zusammenfassung

Eine Schichtenarchitektur ist eine gute Grundlage für die Gesamtarchitektur. Da jede Schicht eigene
Zuständigkeiten hat, sind die darüber und darunter liegenden Komponenten flexibel und können je
nach Bedarf auch unterschiedlich gestaltet sein.

Es wurde eine neue Schicht eingeführt, die zwischen den Anwendungen und der Computer-Hardware,
die zuständig für die Kommunikation mit den Sensoren selbst ist, liegt. Diese Schicht übernimmt die
Verarbeitung und Bereitstellung der Daten. Während dem Entwicklungsprozess bietet sie Unterstüt-
zung in den einzelnen Schritten der Datenerfassung, Analyse und Verarbeitung.

36

5. Eingesetzte Technologien und Umsetzung

Nichts behebt Designprobleme wie
eine Implementierung.

(J. D. Horton)

Dieses Kapitel beschreibt eine mögliche Implementierung der Architektur. Die eingesetzten Tech-
nologien sind in Abbildung 5.1 veranschaulicht. Die dort grau dargestellten Teile konnten nicht
implementiert werden, da die Komponenten nicht verfügbar waren. Anstatt der Kleidung wurde unter
anderem der BioHarness 3 als Datenquelle implementiert und die Computer-Hardware mit Wearable
OS entspricht gängiger Computer-Hardware und Betriebssystemen. In den folgenden Abschnitten
werden die einzelnen Komponenten und Technologien näher erläutert.

Es sind nicht alle in der Architektur genannten Funktionen vollständig implementiert, sondern
hauptsächlich Funktionen die für die Grundfunktionalität von Bedeutung sind und in der Evalua-
tion eine Rolle spielen. Ein nicht implementierter Teile ist beispielsweise der gesamte Bereich der
Authentifizierung und Autorisierung von Benutzern des Systems.

5.1. Computer-Hardware und Betriebssystem

Es wurde Wert auf plattformunabhängige Komponenten gelegt und somit sollte die umgesetzte Archi-
tektur auf allen gängigen Betriebssystemen (Windows, Linux/Unix) funktionieren. Die am stärksten
plattformspezifische Komponente ist der Wrapper, der für die Kommunikation über Bluetooth mit
dem BioHarness 3 zuständig ist.

Als Sprache wurde Python1 gewählt. Python ist eine stark und dynamisch typisierte Programmier-
sprache, die Programmlesbarkeit in den Vordergrund stellt. Python ist auf Windows, Linux/Unix, Mac
OS X und anderen Betriebssystemen verfügbar.

Python wurde dabei in der Version 3.x eingesetzt. Diese ist nicht vollständig rückwärtskompatibel
mit Quellcode der für Python 2.x geschrieben wurde. Alle im Zuge dieser Arbeit angefertigten
Softwareartefakte sind auf Kompatibilität mit Python 3 ausgerichtet.

Als mögliche Computer-Hardware, vor allem während der Prototypenerstellung, könnten beispiels-
weise Plattformen wie der Raspberry-Pi oder ein Beagleboard zum Einsatz kommen. Alle eingesetzten
Technologien werden auf diesen Plattformen unterstützt.

1https://www.python.org/

37

https://www.python.org/

5. Eingesetzte Technologien und Umsetzung

Eingabe

Vereinheitlichung

Persistenz Datenbank

Verarbeitung

Ausgabe

Wearable OS / Computer-Hardware Wrapper

BH3Kleidung mit Hardware-Schnittstelle

Anwendungen
Laufzeitumgebung

HTML, CSS, JavaScript

Webbrowser

HTTP, Websockets

MongoDB

Tornado Server

Tornado Server

HTTP, Websockets

Bluetooth (Serial Pro�le)

Abbildung 5.1.: Bei der Implementierung eingesetzte Technologien

5.2. Abhängigkeiten

Die folgenden Anwendungen und Bibliotheken sind notwendig, um die entwickelte Software auszu-
führen.

5.2.1. Tornado

Tornado2 ist eine in Python geschriebene Bibliothek um Netzwerkanwendungen zu entwickeln. Sie
wurde für das soziale Netzwerk FriendFeed3 entwickelt. Die Funktionalität von FriendFeed liegt
darin, in Echtzeit Neuigkeiten von Freunden zu aggregieren und anderen Nutzern einheitlich zu
präsentieren.

2http://www.tornadoweb.org
3http://friendfeed.com/

38

http://www.tornadoweb.org
http://friendfeed.com/

5.2. Abhängigkeiten

Tornado setzt auf asynchrone Kommunikation. Konventionelle Serverimplementierungen wie zum
Beispiel Django4, benutzen ein synchrones Verarbeitungsmodel. Das bedeutet, dass eine neue Anfrage
erst beantwortet wird, wenn die im Moment schon laufende Anfrage abgearbeitet wurde.

1. Der Server empfängt eine Anfrage und leitet sie an den entsprechenden Handler weiter

2. Der Handler führt eine komplexe Datenbankabfrage durch

3. Wenn die Behandlung abgeschlossen ist wird die Antwort gesendet

4. Es kann eine neue Anfrage angenommen werden

Während der Handler ausgeführt wird, blockiert der Server und es können keine neuen Anfragen
angenommen werden. Beim asynchronen Modell hingegen wird dieses Blockieren aufgehoben. Dazu
werden sogenannte Rückrufaktionen (Callbacks) benutzt. Dabei wird der länger laufenden Aufgabe
eine Aktionmitgegeben die nach ihremAbschluss aufgerufenwird. UmmoderneWebtechnologienwie
zum Beispiel WebSockets umzusetzen, ist es notwendig, die Anfragen asynchron zu beantworten.

1. Der Server empfängt eine Anfrage und leitet sie an den zuständigen Handler weiter

2. Der Handler setzt die Datenbankabfrage mit einer Rückrufaktion ab. Die Rückrufaktion enthält
die Informationen um die Antwort zu erstellen.

3. Während die Datenbank arbeitet, kann der Server nun neue Anfragen bearbeiten.

4. In der Zeit in der keine neuen Anfragen ankommen, können beispielsweise die Rückrufaktionen
ausgeführt werden

Die Koordination wird mittels einer Ereignisschleife umgesetzt. Diese läuft in einem Thread ab. Da
der Entwickler nicht selbst mit Threads arbeiten muss, um asynchrones Verhalten zu erhalten, wird
diese Klasse von Fehlern begrenzt. Um eine Tornado-Anwendung zu skalieren, können automatisch
mehrere Prozesse gestartet werden, die jeweils eine eigene Ereignisschleife besitzen. Der eingehende
Netzwerkverkehr wird auf die Schleifen aufgeteilt. Im Produktivbetrieb ist es gängig, eine Schleife
pro CPU zu starten.

Neben der asynchronen Ein- und Ausgabe bringt Tornado nochWerkzeuge zum schreiben von Servern
und Webanwendungen mit. Die Werkzeuge für asynchrone Netzwerkkommunikation enthalten
die Ereignisschleife, einen asynchronen HTTP-Client und TCP-Server. Um Webanwendungen zu
schreiben, wird ein asynchroner HTTP-Server und eine Templatesprache mitgeliefert. Zur Integration
mit Drittdiensten werden beispielsweise OpenID- und OAuth-Logins unterstützt.

4https://www.djangoproject.com/

39

https://www.djangoproject.com/

5. Eingesetzte Technologien und Umsetzung

5.2.2. MongoDB

MongoDB ist eine Datenbank die dokumentenorientiert arbeitet. Im Gegensatz zu relationalen Da-
tenbank wie MySQL ist sie schemafrei. In einem MongoDB-Server können mehrere Datenbanken
nebeneinander existieren. Eine Datenbank enthält Dokumentensammlungen (Collections), in denen
Dokumente abgelegt werden können. Ein Dokument ist ein nach dem BSON-Format serialisiertes
Objekt.

JSON5 ist ein Datenformat um Schlüssel-Wert-Paare in einemmenschenlesbaren Format zu übertragen.
Im Vergleich zu XML (Extensible Markup Language) ist die Syntax einfacher gestaltet und enthält in
der Regel weniger Verwaltungsdaten, definiert dafür allerdings nur weniger Datentypen.

BSON ist eine Erweiterung von JSON und steht für Binary JSON. Es erweitert JSON in zwei Bereichen.
Es speichert zum serialisierten Objekt jeweils noch den Datentyp und die Länge des Eintrags ab.
Durch die gespeicherte Länge des Eintrags kann die Geschwindigkeit beim parsen des Eintrags erhöht
werden.

5.2.3. Andere Python Bibliotheken

Hier folgt eine kurze Beschreibung von anderen eingesetzten Python-Bibliotheken.

motor ist zuständig für die Kommunikation zwischen Tornado und MongoDB. Der Datenbanktreiber
ist asynchron für den Einsatz mit Tornado entworfen worden.

toro stellt Primitive zur Verfügung, um asynchrone Abläufe zu synchronisieren.

werkzeug ist eine Bibliothek für Webanwendungen. Sie enthält einen Debugger für Webanwendun-
gen, der in der Middleware integriert wurde.

pyserial bietet Unterstützung für serielle Verbindungen nach dem RS-232 Standard. Die serielle
Bluetoothverbindung wird über pyserial benutzt.

5.2.4. Sensorspezifische Abhängigkeiten Abhängigkeiten

Ummit dem BioHarness 3 in Echtzeit zu kommunizieren, wurde eine existierende Bibliothek angepasst
und integriert. Die Bibliothek namens zephyr-bt6 wurde entwickelt, um durch übermittelte Biowerte
des Trägers in Echtzeit Musik zu erzeugen. Im Zuge dieser Arbeit mussten Anpassungen an der
Bibliothek vorgenommen werden, um sie kompatibel mit Python 3 zu machen.

5http://json.org/, zuletzt abgerufen am 30. Juni 2014
6https://github.com/jpaalasm/zephyr-bt, zuletzt abgerufen am 30. Juni 2014

40

http://json.org/
https://github.com/jpaalasm/zephyr-bt

5.3. Kommunikationsschnittstellen

5.2.5. Bibliotheken zur Umsetzung der Benutzungsschnittstelle

Die Benutzungsoberfläche wurde mit Webtechnologien umgesetzt. Die Webseiten werden von der
Middleware generiert. Als Grundlage für die Gestaltung wurde das CSS-Framework Bootstrap7 einge-
setzt. Logik die auf Klientenseite abläuft ist in JavaScript geschrieben. Für eine einfachere Benutzung
des DOMs imWebbrowser wird jQuery8 eingesetzt. Um Graphen zu zeichnen wurde zunächst der Ein-
satz D3.js9 getestet. Für einfache Graphen ist die notwendige Einarbeitung und Komplexität allerdings
zu hoch. Daher sind die Graphen jetzt mithilfe von Google Charts10 umgesetzt.

5.3. Kommunikationsschnittstellen

Im folgenden wird die Umsetzung der Schnittstellen zwischen den verschiedenen Komponenten näher
beschrieben. Dabei wird mit den Verbindungsbezeichnungen auf Abbildung 4.2, die Übersicht der
Schnittstellen zwischen Gerätegrenzen, Bezug genommen.

Hardware-Schnittstelle

Diese Verbindung (S1) ist zuständig um die Daten beispielsweise eines drucksensitiven Gitters auf dem
T-Shirt mit der Computer-Hardware zu verknüpfen. Da es dafür noch keine benutzbaren Prototypen
gab, wurde diese Schnittstelle nicht implementiert, sondern durch eine Schnittstelle mit anderen
Geräten ersetzt.

Verbindung mit Altgeräten

Im Moment auf dem Markt befindliche Wearables kommunizieren hauptsächlich über Bluetooth.
Daher bietet es sich an, diese über Bluetooth mit der Computer-Hardware koppeln zu können (S2). Die
Software auf der Computer-Hardware kümmert sich dann darum, diese Daten über die Schnittstelle
S3 an die Middleware zu senden. Exemplarisch wurde dies für den Zepyhr BioHarness 3 implementiert
(siehe auch Abschnitt 5.4.1).

Kommunikation mit der Middleware

Die Middleware als zentraler Punkt, in dem Daten ein- und ausgegeben werden, ist über ein Netzwerk-
protokoll erreichbar. Im Rahmen dieser Arbeit wurde für die Kommunikation zwischen Computer-
Hardware und Middleware (S3) und zwischen Middleware und Endgerät (S4) das gleiche Protokoll

7http://getbootstrap.com/
8http://jquery.com/
9http://d3js.org/
10https://developers.google.com/chart/

41

http://getbootstrap.com/
http://jquery.com/
http://d3js.org/
https://developers.google.com/chart/

5. Eingesetzte Technologien und Umsetzung

benutzt. Es ist allerdings möglich dieses je nach Anforderungen, die vor allem von Seiten der noch
nicht spezifizierten Computer-Hardware kommen können, zu ersetzen.

Als Protokoll um mit der Middleware zu kommunizieren, wird HTTP (Hypertext Transfer Protokoll)
und WebSocket eingesetzt. HTTP wird überall da eingesetzt, wo der Nachrichtenaustausch dem
Request-Response-Muster folgt: das heißt auf eineAnfrage des Clients folgt eineAntwort des Servers.

Um eine dauerhaft Verbindung zwischen zwei Endpunkten aufzubauen, wird dasWebSocket-Protokoll
benutzt. Das Protokoll wurde 2011 standardisiert [Int11]. Es ist darauf ausgelegt, für die Kommunika-
tion zwischen Webbrowsern und Webservern benutzt zu werden, aber nicht darauf beschränkt. Es
bietet eine Vollduplex-Verbindung zwischen beiden Parteien an. Das heißt Client und Server können
gleichzeitig Nachrichten austauschen. Es ist damit im Gegensatz zum Request-Response-Muster besser
geeignet um Daten in Echtzeit auszutauschen. Die Nutzdaten der über WebSockets übertragenen
Nachrichten sind dabei im JSON-Format kodiert.

Der Einsatz der Webtechnologien HTTP und WebSockets erlaubt es, Anwendungen mithilfe von
HTML, CSS und JavaScript zu erstellen. „Webtechnologien setzen sich vor allem in Bereichen durch in
denen verschiedene Plattformen mit wenig Aufwand unterstützt werden wollen“, meint Herr Dipl.Inf
Fellger, Softwareentwickler in einem Unternehmen, das sich auf die Entwicklung von Softwarelö-
sungen für Unternehmen spezialisiert hat. Nach Charland und Leroux ist es günstiger, webbasierte
Anwendungen zu entwickeln, wennman dabei in Kauf nimmt, dass die Benutzungsschnittstelle je nach
Anwendungsfall nicht die Leistungsfähigkeit einer nativen Anwendung erreichen wird [CL11].

Die Benutzung von WebSockets und HTTP-Schnittstellen ist allerdings auf allen gängigen mobilen
Plattformen (iOS, Android, Windows Phone) auch mit nativen Programmcode möglich und so können
auch native Anwendungen geschrieben werden, die auf die selben Daten zugreifen und eine optimierte
plattformspezifische Benutzungsoberfläche anbieten.

5.4. Umsetzung der Middleware

Die Middleware wurde mit Hilfe der in Abschnitt 5.2 erwähnten Abhängigen umgesetzt. Die Midd-
leware wird im folgenden als SEDM bezeichnet. Dieses Akronym steht für SensorDataManagement.
SEDM besteht aus 4 Modulen die jeweils einen Bereich der Funktionalität realisieren. Die im folgenden
aufgezählten Module werden in jeweils eigenen Abschnitten detaillierter beschrieben.

sedm.sources Dieses Modul beinhaltet Code um mit spezifischen Sensoren zu sprechen und deren
Daten zu importieren.

sedm.processing kümmert sich um die Verarbeitung der Sensordaten.

sedm.storage ist für die Persistenz der Daten zuständig.

sedm.server ist das Bindeglied zwischen den anderen Modulen und ist für die Gesamtkoordination
und Kommunikation zuständig.

42

5.4. Umsetzung der Middleware

Listing 5.1 Die Definition der Rückrufaktion, die Daten des BH3 zum SEDM-Server sendet. Die
Verbindung zum Websocket ws_connection wurde bei Programmstart initialisiert.
def callback(value_name, value):

if value_name == ’ecg’: # ignore ECG values

return

elif value_name == ’acceleration’: # flatten accelerometer data

message = {

’timestamp’: dt.now(),

’accel_x’: value[0],

’accel_y’: value[1],

’accel_z’: value[2],

}

else:

message = {

’timestamp’: dt.now(),

value_name: value,

}

ws_connection.write_message(json_dumps(message))

5.4.1. Eingabe

Um den Prototypen zu implementieren wurde auf dem Markt verfügbare Hardware eingesetzt. Im
folgenden wird die benutzte Hardware und ihre Benutzung als Quelle näher beschrieben.

BioHarness 3

Die grundlegenden Funktionen des BioHarness 3 (BH3) sind in Abschnitt 2.10.1 näher erläutert. Er
wurde als eines der möglichen Datenquellen implementiert und liefert Beschleunigungsdaten, Puls und
Atemfrequenz des Trägers. Der BH3 spricht ein serielles Protokoll, das über USB und Bluetooth gleich
aufgebaut ist. Die genaue Spezifikation der Nachrichten, die über das serielle Protokoll gesprochen
werden, sind in einem Dokument des SDKs näher spezifiziert [Zep11b].

Um über Bluetooth mit dem BH3 zu kommunizieren, wurde die in 5.2.4 beschriebene Bibliothek
zepyhr-bt eingesetzt. Diese liefert in Echtzeit einen Strom von physiologischen Werten. Es wurde ein
kleines Wrapper-Programm geschrieben, dass diese Bibliothek benutzt und die Daten im richtigen
Format an den SEDM-Server sendet. Listing 5.1 zeigt, wieWerte vor dem Senden noch bearbeitet werden.
Beispielsweise werden die von zephyr-bt als Tripel gelieferten Daten des Beschleunigungssensors
in eine flache Struktur verpackt. Die EKG-Werte werden nicht gesendet, sondern ignoriert. Die
letztendliche Nachricht wird dann ins JSON-Format überführt und über eine WebSocket-Verbindung
gesendet.

Um die auf dem BH3 gespeicherten Logdaten auszulesen, gibt es nur eine für Windows verfügbare
Software die von Zephyr bereitgestellt wird. Um aufgezeichnete Daten des Geräts auf auf anderen
Betriebssystemen auszulesen, wurde das in Abschnitt 5.9 beschriebene Artefakt entwickelt.

Bei ersten Testläufen ist die Verbindung zum BH3 reproduzierbar nach 10 Minuten abgebrochen. Das
Problem lag in der zephyr-bt Bibliothek, welche eine Nachricht zur Aufrechterhaltung der Bluetooth-

43

5. Eingesetzte Technologien und Umsetzung

Listing 5.2 Beispiel des Sendens von Beschleunigungsdaten über JavaScript.
var samplesPerSecond = 30;

var sampleDelay = 1000 / samplesPerSecond;

$(’#start’).click(function(evt){

$(’#start’).hide();

$(’#stop’).show();

var ax, ay, az;

window.ondevicemotion = function(event) {

ax = event.accelerationIncludingGravity.x;

ay = event.accelerationIncludingGravity.y;

az = event.accelerationIncludingGravity.z;

};

intervalId = setInterval(function() {

ws.send(JSON.stringify({

’accel_x’: ax,

’accel_y’: ay,

’accel_z’: az

}));

}, sampleDelay);

});

Verbindung nicht sendet. Ein möglicher Weg dieses Problem zu lösen ist, die Zeit bis zum Abschalten
auf 0 zu konfigurieren. Um einfache Konfigurationsnachrichten an das BH3 zu senden, wurde ein in
5.9 genauer beschriebenes Werkzeug entwickelt.

Bewegungssensoren eines Smartphones

Auf einigen mobilen Geräten ist es möglich, die Beschleunigungssensoren imWebbrowser abzufragen.
Dazu muss die Hardware und der Webbrowser dies unterstützen. Sofern unterstützt, wird bei der
Änderung der Geräteorientierung ein DeviceMotionEvent11 geworfen. Dieses Ereignis enthält die
Beschleunigung des Geräts in kartesischen Koordinaten, jeweils mit oder ohne Berücksichtigung der
Gravitation.

Es wurde eine Beispielanwendung implementiert, die im Webbrowser eines Smartphones ausgeführt
werden kann. Diese Anwendung sendet die Beschleunigungsdaten über einen WebSocket an die
Middleware. Die Daten werden nicht bei jeder Änderung gesendet sondern es wird immer nach Ablauf
einer bestimmten Zeitspanne der aktuelle Wert übertragen. Im Beispiel, siehe Listing 5.2, werden 30
Werte pro Sekunde gesendet. Abbildung 5.7b zeigt die Anwendung auf einem Smartphone.

Um die korrekte Übertragung und Leistungsfähigkeit zu testen wurde eine Anwendung erstellt,
die diese Werte live oder aus einer Aufzeichnung visualisiert. Die Beschleunigung wird in eine die
Rotationsbewegung eines dreidimensionalen Würfels umgesetzt.

11http://w3c.github.io/deviceorientation/spec-source-orientation.html#devicemotion, zuletzt abgerufen
am 29. Mai 2014

44

http://w3c.github.io/deviceorientation/spec-source-orientation.html#devicemotion

5.4. Umsetzung der Middleware

Listing 5.3Minimales Beispiel um Daten mit Python an die Middleware zu senden.
import json

from tornado.ioloop import IOLoop

from tornado import websocket

def create_connection(server, sid):

return websocket.websocket_connect(’ws://{}/input/live/{}.ws’.format(server, sid),

connect_timeout=5)

def collect_input(connection_future):

connection = connection_future.result()

while True:

message = input(’>>’)

connection.write_message(json.dumps({’message’: message}))

create_connection(’10.0.0.46:8888’, ’test-python-source-1’).add_done_callback(collect_input)

IOLoop.instance().start()

Erstellen von Markierungen

Um Datensätze mit Annotationen zu versehen, wurde eine Anwendung entwickelt. Diese Anwendung
wurde auch als Webanwendung umgesetzt. Beim öffnen der Anwendung wird ein neuer Websocket
geöffnet und über den Druck von verschieden beschrifteten Schaltflächen wird der Wert mit dem
aktuellen Zeitpunkt an SEDM übertragen. Die mit dieser Anwendung erstellten Annotationen können
in der Analyseansicht eingeblendet werden und helfen, verschiedene Aktionen unterscheiden zu
können, um dafür Erkennungsalgorithmen zu entwerfen.

Beispiel für beliebige Quellen

Zu Testzwecken gibt es auch eine minimale Python-Anwendung um Daten an SEDM zu senden.
Der dafür zuständige Quellcode ist vollständig in Listing 5.3 dargestellt. Dabei wird die Websocket-
Implementierung aus der Tornado-Bibliothek benutzt, um die Verbindung zum Server herzustellen.
Das Programm sendet daraufhin Benutzereingaben von der Konsole an die Middleware.

5.4.2. Persistenz

Um Eingehende Daten zu speichern, wird die Datenbank MongoDB eingesetzt. Die Implementierung
benutzt allerdings keine Funktionen die spezifisch diese Datenbank als Backend erfordern. Prinzipi-
ell ist jeder Datenspeicher einsetzbar, der effizient Schlüssel-Wert-Paare abspeichern und auslesen
kann und dabei kein festes Schema der Daten benötigt. MongoDB unterstützt auch geschachtelte
Dokumente, um größere Dokumente besser strukturieren zu können.

Um die MongoDB-spezifische Implementierung zu abstrahieren, existieren Basisklassen welche die
Schnittstelle zu kompatiblen Datenspeichern definieren. Diese sind in sedm.storage.base definiert.

45

5. Eingesetzte Technologien und Umsetzung

{
 accel_x: 1.3,
 accel_y: 0.4,
 accel_z: 0.0,
}

{
 accel_x: 1.3,
 accel_y: 0.4,
 accel_z: 0.0,
 avg_x20: 0.75,
}

collections.deque

maxlen=20

AverageInWindowFilter

def process(doc):
 doc.update(…)
 return doc

field=accel_x
window=20

Abbildung 5.2.: Beispiel eines Filters mit ein- und ausgehenden Daten

Von den Basisklassen erbt jeweils eine spezifisch auf MongoDB ausgelegte Klasse, die in der ge-
samten Middleware benutzt wird. Um andere Backends zu unterstützen, müssten nur diese Klassen
ausgetauscht werden.

Die Grundfunktionalität, existierende Datensätze wieder mit dem richtigen Zeitverhalten abzuspielen
ist auch in dem Datensatz selbst implementiert, da dazu die Werte bei Bedarf aus der Datebank
gelesen werden müssen. Es ist nicht praktikabel den kompletten Datensatz in den Arbeitsspeicher zu
laden bevor er dann abgespielt wird. In der jetzigen Implementierung wird erst nach erfolgreichem
ausführen der Rückrufaktion das nächste Dokument aus der Datenbank geladen.

5.4.3. Verarbeitung

Die Verarbeitung ist dafür zuständig, aus den Eingaben abhängige Werte zu berechnen. Filter sind für
einzelne Aufgaben zuständig und können miteinander kombiniert werden. Die dafür zuständigen
Klassen sind in sedm.processing enthalten. Das Modul selbst besteht aus zwei Teilen, den atomaren
Filtern und Filterketten, welche diese Filter kombinieren.

Ein Filter besteht mindestens aus einer Methode, die ein eingehendes Dokument, das heißt eine
Sammlung von Schlüssel-Wert-Paaren verarbeitet und eventuell modifiziert zurückgibt. Das modi-
fizierte Dokument wird dann eventuell von weiteren Filtern verarbeitet. Dies ist in Abbildung 5.2
exemplarisch dargestellt. Beim Erzeugen des Filters wird der zu verarbeitende Feldname und die
Fenstergröße initialisiert. Der Datenspeicher für die Werte innerhalb des Fensters ist hierbei mit einer
Deque realisiert. Dies ist eine Datenstruktur ähnlich zu Stapelspeichern oder Warteschlangen, in
der Daten an beiden Enden eingefügt und entfernt werden können. Hier ist Länge auf die Fenster
beschränkt und alte Elemente werden automatisch beim Einfügen von neuen Elementen gelöscht.

46

5.5. Maschinenlesbare Ausgabe / API

Filter

FilterChain

Di�erence
50

InRange
10 20

InRange
5 10

Average
50

Max
3 sec.

accel_y is_jumping

is_runningaccel_z

Abbildung 5.3.: Beispiel einer Filterkette. Die rohen Werte der Quelle werden durch verschiedene
Filter verarbeitet. Ausgaben eines Filters können die Eingabe für einen anderen
Filter sein. Die Filter sind im Code durch eine Filterkette gruppiert. Das Ergebnis
sind hier zwei neue Felder, die beispielsweise in einer Anwendung anstatt den rohen
Beschleunigungsdaten benutzt werden können.

Eine Filterkette definiert eine bestimmte Konfiguration von hintereinandergeschaltenen Filtern und
kann diese auch einheitlich bei der Initialisierung der Kette konfigurieren. Die Filterkette kapselt damit
eine bestimmte Funktionalität. Abbildung 5.3 zeigt eine Beispielhafte Filterkette die aus einzelnen
Filtern besteht. Sie erwartet zwei Eingabewerte und berechnet aus diesen zwei Ausgabewerten. Der
dargestellte Filter ist Abschnitt 5.7 näher beschrieben.

5.5. Maschinenlesbare Ausgabe / API

Über die API können Anwendungen auf die im System vorliegenden Daten zugreifen. Der Zugriff
selbst erfolgt dabei über WebSockets, wie in Abschnitt 5.3 genauer beschrieben. Dabei wird jeweils
mit einem Endpunkt kommuniziert, der von der Middleware bereitgestellt wird. Es kann entweder
auf historische Daten oder Live-Daten zugegriffen werden.

47

5. Eingesetzte Technologien und Umsetzung

Alle Aufzeichnungen von einzelnen Sensoren sind unter jeweils einem Endpunkt erreichbar. Dabei
wird der entsprechende Datensatz aus der Datenbank gelesen und im richtigen Zeitverhalten gesendet.
Dafür ist sedm.server.handlers.historic.HistoricDataSocket zuständig. Die zu benutzende
Filterkette kann dabei zur Laufzeit bei der Initialisierung des Sockets angegeben werden.

Der Zugriff auf Sensoren die in Echtzeit kommunizieren ist auf der Seite des Servers mittels dem
Beobachter-Muster umgesetzt. Es ist möglich, dass mehrere Anwendungen gleichzeitig die Eingaben
eines Sensors abrufen wollen, dazu registrieren sie sich bei diesem Sensor. Bei neuen Werten beliefert
dieser dann alle interessierten Klienten unter Berücksichtigung der gewünschten Filter mit diesen
Daten. Jeder einzelne Klient kann dabei spezifizieren, ob und welche Filterkette benutzt werden soll.

Listing 5.4 zeigt eine beispielhafte Benutzung der API. Die URL des Websockets gibt an, welche Daten
genutzt werden sollen. In diesem Fall werden Echtzeitdaten des Sensors des Namens accel-demo-1
benutzt. Dabei werden die Werte durch die Filterkette jump_and_run verarbeitet. Diese Filterkette
reichert eingehende Beschleunigungsdatenmit den zusätzlichen Feldern is_jumping und is_running
an. In einer Anwendung können dieseWerte dann benutzt werden, um dem Benutzer Visualisierungen
zu bieten. Im Beispiel werden verschiedene Bereiche auf der Webseite ein- oder ausgeblendet.

Die URLs um direkt mit Sensoren beziehungsweise Aufzeichnungen zu kommunizieren sind wie folgt
aufgebaut:

Senden von neuen Daten: ws://host:port/input/live/<sensor_id>.ws

Zugriff auf Aufzeichnung: ws://host:port/output/historic/<sensor_id>.ws

Zugriff auf aktuelle Daten: ws://host:port/output/live/<sensor_id>.ws

Um die Kommunikation vor Man-in-the-Middle-Angriffen und unerlaubter Ausspähung der Daten
zu schützen kann auch eine sichere Verbindung mittels TLS (Transport Layer Security, auch Trans-
portschichtsicherheit) aufgebaut werden. Dazu ist der Bezeichner für das Protokoll zu wss zu ändern.
Um allerdings TLS benutzen zu können, muss die Anwendung korrekt mit privatem Schlüssel und
Zertifikat initialisiert werden.

5.6. Analysewerkzeuge

Ein wichtiger Teil der Middleware sind Werkzeuge, die bei der Entwicklung von neuen Sensoren und
Erkennungsmethoden Unterstützung bieten. Implementiert sind dabei Detailansichten von einzelnen
Aufzeichnungen und eine Analyseansicht, um den Effekt von Filtern zu betrachten.

Details und Graphen von Aufzeichnungen

In der Detailansicht (siehe Abb. 5.4), werden hauptsächlich die Metadaten zu einer Aufzeichnung
angezeigt. DieMetadaten sind beliebige Schlüssel-Wert-Paare von denen created und last_modified
automatisch angelegt werden. Im Abschnitt Data wird die Größe des Datensatzes und alle in diesem
Datensatz vorkommenden Felder angezeigt. Aus der Gesamtheit aller enthaltenen Dokumente werden

48

5.7. Implementierte Filter und Erkennungen

Listing 5.4 Beispiel der API-Nutzung in JavaScript.
$(’#jump, #run’).hide();

socket = new WebSocket(’ws://sedm.dev:8888/output/live/accel-demo-1.ws?chain=jump_and_run’);

socket.onmessage = function(message){

data = JSON.parse(message.data);

if(data.error){

alert(data.error);

} else if (data.info) {

console.log(data.info);

} else if(data.is_jumping) {

$(’#jump’).show();

$(’#run’).hide();

} else if(data.is_running){

$(’#run’).show();

$(’#jump’).hide();

} else {

$(’#jump, #run’).hide()

}

}

beispielhaft die ersten fünf in der Tabelle dargestellt. Auch wird auf weitere Ansichten auf die Daten
verlinkt, beispielsweise zu den Graphen.

In dieser in Abbildung 5.5 gezeigten Ansicht können beliebige numerische Felder als Liniendiagramm
visualisiert werden. Dabei können beliebig viele Felder ausgewählt werden. Da diese allerdings auf
einer Achse dargestellt werden, bietet sich für weitergehende Analysen die dafür vorgesehene Ansicht
an.

Analyseansicht

In der in in Abbildung 5.6 gezeigten Ansicht können Eingabewerte und das Ergebnis von eingesetzten
Filtern visualisiert werden. Als Quelle können dabei Felder aus verschiedenen Datensätzen benutzt
werden und einzelne Felder auch beliebig auf eine der zwei Y-Achsen gelegt werden. Neben den
numerischen Feldern wird auch ein Datensatz unterstützt, der Markierungen enthält. Diese Markie-
rungen werden neben den Daten in der Eingabe und Ausgabe angezeigt, um für den Anwendungsfall
relevante Merkmale besser identifizieren zu können. Die Ausgabe wird durch Anwendung eines
Filters oder einer Filterkette auf die Eingabedaten erzeugt und zeigt die diese errechneten Werten
an.

5.7. Implementierte Filter und Erkennungen

Folgende grundlegenden Bausteine sind im System vorhanden um eigene Filterketten zusammenzu-
stellen:

49

5. Eingesetzte Technologien und Umsetzung

Abbildung 5.4.: Screenshot der Detailansicht

AverageFilter berechnet den Durchschnittswerte zweier Eingaben.

AverageInWindowFilter berechnet den Durchschnittswert einer Eingabe über ein spezifiziertes
Fenster hinweg.

MaxFilter gibt denmaximalenWert des Felds zurück. Optional kann derWerte nach einer bestimmten
verstrichenen Zeit zurückgesetzt werden.

DifferenceFilter gibt die Differenz zweier Eingabewerte zurück.

DifferenceInWindow gibt die maximale Differenz von Werten in einem Fenster zurück.

ProductFilter berechnet das Produkt zweier Eingabewerte.

InRangeFilter gibt 100 zurück, wenn die Eingabe in einem definierten Bereich liegt.

AndFilter gibt 100 zurück wenn beide Eingabewerte der Wert 100 haben.

50

5.7. Implementierte Filter und Erkennungen

Abbildung 5.5.: Screenshot der Graphenansicht

Abbildung 5.6.: Screenshot der Analyseansicht

51

5. Eingesetzte Technologien und Umsetzung

Hüpfen und Rennen

Als einfaches Beispiel wurde eine Filterkette definiert, die den Unterschied zwischen einer rennenden
und hüpfenden Person feststellen soll. Als Eingabewerte erhält sie Beschleunigungsvektoren in
hochwärts (Y-Achse) und vorwärts (Z-Achse). Als Merkmal umHüpfen zu erkennen kann die Differenz
des Y-Vektors über ein Fenster von 50 Werten benutzt werden. Liegt diese in einem hohen Bereich ist
ein Hüpfen sehr wahrscheinlich.

Um Rennen zu erkennen kann der Maximalwert über die Z-Achse untersucht werden. Um kurze Aus-
reißer vorwärts zu dämpfen ist ein Durchschnittswert darüber notwendig. Um nicht dauerhaft Rennen
zu erkennen, ist es auch notwendig den Maximalwert nach einer bestimmten Zeit zurückzusetzen.

5.8. Implementierte Beispielanwendungen

Als Beispiel um anliegende Daten zu visualisieren, wurden zwei Beispielanwendungen entwickelt.
Beide dieser Anwendungen basieren auf HTML und JavaScript. Eine der Anwendungen baut auf
der Filterkette für Hüpfen und Rennen auf und zeigt den aktuellen Zustand des Benutzers (Rennen,
Hüpfen, Stillstand) und einen Zähler für die getanen Sprünge an. In Abbildung 5.7a ist die Anwendung
dargestellt.

Die andere Anwendung nutzt WebGL um in einemWebbrowser einen dreidimensionalenWürfel anzu-
zeigen. Dieser Würfel dreht sich aufgrund von anliegenden Beschleunigungswerten. Die Anwendung
ist gut geeignet, um die Leistungsfähigkeit der Quellen und des Netzwerks zu testen.

5.9. Weitere Software-Artefakte

Im Zuge der Arbeit sind folgende Artefakte entstanden, um mit dem BioHarness 3 besser arbeiten zu
können:

Programm zum Auslesen der Aufzeichnungen

Der BH3 ermöglicht es Daten nicht nur drahtlos zur Verfügung zu stellen, sondern diese auch im
internen Speicher aufzuzeichnen. Leider stellt der Hersteller keine Software zur Verfügung, um diese
Daten auf Systemen ungleich Windows auszulesen.

Basierend auf der im SDK enthaltenen Beispielanwendung die in C# geschrieben ist wurde eine
Anwendung entwickelt, die es ermöglicht auch mit anderen Betriebssystemen die gespeicherten
Daten auszulesen. Unterstützt werden alle Betriebssysteme, die Mono12 als Laufzeitumgebung unter-
stützten.

12http://mono-project.com

52

http://mono-project.com

5.9. Weitere Software-Artefakte

(a) Darstellung der Beispielanwendung für Hüpfen
und Rennen auf einem mobilen Endgerät.

(b) Anwendung zum Aufzeichnen der Beschleuni-
gungsdaten nach erfolgreichem Registrieren am
Server

Abbildung 5.7.: Screenshots von Anwendungen auf einem Smartphone.

Auf dem Gerät sind die Daten im RIFF-Format abgespeichert. Ein Parser für dieses Format und ein
Konvertierer, der die Einträge ins CSV-Format konvertiert war im SDK enthalten. Es wurde allerdings
die graphische Benutzungsschnittstelle und das initiieren des Kommunikationskanals neu in C# und
ohne Abhängigkeiten zu windowsspezifischen Bibliotheken implementiert.

Konfiguration des BioHarness 3

Um Betriebsparameter des BH3 zum konfigurieren stellt Zepyhr eine nur mit Windows kompatible
Software zur Verfügung. Um das Gerät auch von anderen Plattformen steuern zu können wurde ein

53

5. Eingesetzte Technologien und Umsetzung

Listing 5.5 Beispiel zur Benutzung des entwickelten Frameworks zur Kommunikation mit dem
BioHarness.
class TimeMessage(BaseMessage):

name = ’Time’

class Request(BaseMessage.Request):

ID = 0x08

DLC = 0

class Response(BaseMessage.Response):

padding = 3

payload_format = ’<bbHbbb’

payload_fields = ’day month year hours minutes seconds’

class MACMessage(BaseMessage):

name = ’MAC’

class Request(BaseMessage.Request):

ID = 0x12

DLC = 0

class Response(BaseMessage.Response):

padding = 3

payload_format = ’17s’

payload_fields = ’MAC’

class SetBTLinkConfgMessage(BaseMessage):

name =’SetBTLinkConfig’

class Request(BaseMessage.Request):

ID = 0xA4

DLC = 4

payload_format = ’HH’

LINK_TIMEOUT = 10000

LIFESIGN_PERIOD = 3000

@classmethod

def get_payload(cls):

return cls.LINK_TIMEOUT, cls.LIFESIGN_PERIOD

port = Port(’/dev/tty.usbmodemfd121’)

port.open()

print(send_messgage(port, TimeMessage))

print(send_messgage(port, MACMessage))

send_messgage(port, SetBTLinkConfgMessage, {’LINK_TIMEOUT’: 0, ’LIFESIGN_PERIOD’: 5000})

kleines Framework geschrieben mit dem einzelne Kommandos über die serielle Schnittstelle (USB
oder Bluetooth) an das Gerät gesendet werden können.

Das Framework ist in Python 3 implementiert und ermöglicht es die in der Spezifikation [Zep11b]
genannten Kommandos einfach imQuellcode zu spezifizieren und zu benutzen. DazumüssenNachrich-
ten von der Basisklasse BaseMessage erben und die in der Spezifikation definierten Nachrichten-Ids
und Längen der übertragenen Nutzdaten angeben.

Im Beispiel in Listing 5.5 sind drei Nachrichten spezifiziert. Die oberen zwei lesen die Uhrzeit und
MAC-Adresse des Geräts aus. Die dritte Nachricht konfiguriert die maximale Zeitüberschreitung und
Periode für Lebenszeichen der Bluetoothverbindung.

54

5.10. Herausforderungen und Einschränkungen

5.10. Herausforderungen und Einschränkungen

Im laufe der Implementierung sind folgende Herausforderungen aufgefallen: Das Implementieren
eines binären seriellen Protokolls nach einer Spezifikation ist aufwendig. Tests müssen immer am
echten Gerät durchgeführt werden. Da dieses sich wie eine Blackbox verhält, ist der genaue Fehler-
grund oft schwer einzugrenzen. Anstatt zu versuchen, selbst die Kommunikation zu realisieren,
ist es wahrscheinlich häufig effizienter, schon existierende Projekte gegebenenfalls für die eigenen
Anwendungsfälle zu modifizieren.

Auch das Umdenken zwischen traditionellen mehrprozessgestützten und einzelprozessgestützten
Anwendungen mit einer Ereignisschleife kann ein Hindernis darstellen. Das Konzept von Futures
und die Implementierung im spezifischen Framework und der Sprache muss zunächst verstanden
werden.

Nicht zuletzt ist es ohne existierende Geräte schwer, auf die spezifischen Anforderungen dieser zu
kommen. Die hier implementierten Funktionen sind alle nahe an den benutzen Eingabegeräten orien-
tiert. Dies kann natürlich zur Folge haben, dass sie einige wichtige Anforderungen von zukünftigen
Quellen nicht befriedigen können. Durch eine sehr flexible und wenig strikte Architektur wurde dies
allerdings zu verhindern versucht.

Die Implementierung beinhaltet nicht alle in der Architektur beschriebenen Bestandteile, sondern
vor allem die für die Benutzerstudie relevanten Teile. Authentifizierung und Autorisierung sind
beispielsweise nicht vorhanden. Dennoch ist es in Zukunft möglich diese Funktionen hinzuzufügen.
Auch

5.11. Zusammenfassung

Bei der Implementierung wurden Technologien benutzt die plattformunabhängig sind und damit auf
verschiedener Hardware benutzt werden können. Als Grundlage wurde die asynchrone Bibliothek
Tornado eingesetzt und für die Persistenz von Daten MongoDB. Die Middleware wurde in der
Programmiersprache Python in Version 3+ implementiert.

Die Kommunikation mit der Middleware erfolgt über HTTP und das WebSocket-Protokoll. Für
Sensoren die mit Bluetooth ausgerüstet sind, ist ein Wrapper zu erstellen. Für den BioHarness 3 wurde
dies exemplarisch gemacht.

Um Anwendungen zu erstellen kann prinzipiell jede Technologie zum Einsatz kommen, die über
WebSockets und HTTP kommunizieren kann. Insbesondere eignen sich allerdings Webbrowser gut als
Laufzeitumgebung, da diese mit HTML, CSS und JavaScript alle dafür notwendigen Anforderungen
erfüllen. Webanwendungen können vor allem als Prototypen sowohl für Ausgabe als auch für die
Dateneingabe benutzt werden. Als Nachrichtenformat wurde JSON gewählt, da dieses weit verbreitet
ist und schnell kodiert und dekodiert werden kann. Die Struktur der Nachrichten ist sehr flexibel und
gut auf zukünftige Anwendungsfälle anzupassen.

55

5. Eingesetzte Technologien und Umsetzung

Neben der reinen Infrastruktur für Sensoren und Anwendungen enthält die entwickelte Middleware
auch die Funktionalitäten der Entwicklerunterstützung. Diese sind über einen Webbrowser erreichbar
und erlauben das Aufzeichnen, Verwalten und Analysieren von Daten.

Zur Verarbeitung von Daten wird eine Kette von Transformationen benutzt, die aus den Eingaben eine
Ausgabe erzeugen. Es gibt einige vorgefertigte generische Filter im System um Arbeit zu ersparen.
Filter können selbst im Hintergrund beliebigen Code ausführen und beschränken die Mächtigkeit der
Datenanalyse nicht.

56

6. Nutzerstudie

Wenn du dir die Anwender deiner
Programme als Idioten vorstellst,
werden auch nur Idioten deine
Programme verwenden.

(Linus Torvalds)

Um die Funktionalität des entwickelten Systems zu testen und daraus Anforderungen an zukünftige
Weiterentwicklungen abzuleiten, wurde eine Nutzerstudie durchgeführt. Im folgenden wird der Ablauf
beschrieben und die daraus gewonnen Ergebnisse ausgewertet.

6.1. Aufbau und Ablauf der Studie

Die Benutzerstudie wurde mit einer Gruppe von Entwicklern durchgeführt. Alle Entwickler befanden
sich im selben Raum, der auch mit einem Beamer ausgestattet war. Jeder Teilnehmer hatte seinen
eigenen Computer zur Verfügung. Zunächst stellten sich die Teilnehmer vor und füllten den ersten
Teil des Fragebogens aus. Dieser fragte das Alter, die berufliche Tätigkeit und verschiedene Kenntnisse
über Technologien ab.

Danachwurde das Thema der Diplomarbeit und eine Einführung in das System gegeben. Es wurden die
einzelnen Schritte der Eingabe, Verarbeitung und Ausgabe der Daten kurz im Überblick beschrieben
und an welchen Stellen im Quellcode die jeweiligen Funktionalitäten zu finden sind. Die Folien der
Präsentation sind in Anhang A aufgeführt.

Nach dem Überblick wurde die Aufgabenstellung gegeben und zu dieser nochmals eine kurze Liste von
logisch aufeinander folgenden Schritten mit kleinen Ausschnitten von Beispielcode. Die Entwickler
bearbeiteten daraufhin die gestellte Aufgabe an ihren Laptops. Dazu wurde ihnen der Quellcode
des Programms gegeben. Die notwendigen Abhängigkeiten wurden vor Beginn der Studie auf den
einzelnen Laptops der Teilnehmer installiert und konfiguriert.

Nach Ende der praktischen Phase wurde jeweils der zweite Teil des Fragebogens ausgeteilt. Dieser
Teil erfasste mithilfe einer Likert-Skala die Unterstützung der Entwickler durch das System und eine
grobe Einschätzung, inwiefern es zukünftig erweiterbar ist und ob die eingesetzten Technologien als
hilfreich für Plattformunabhängigkeit und der Erstellung von Prototypen angesehen werden.

Nach der Erfassung dieser strukturierten Daten mussten sich die Teilnehmer in Zweiergruppen
zusammenfinden und Probleme notieren, die ihnen während der Benutzung aufgefallen sind. Jedes
Problem wurde dabei auf eine Karteikarte geschrieben. Danach wurden Zweiergruppen gebildet, in
denen die Karten mit möglichen Lösungen und Verbesserungen die zu dem genannten Problem passen,

57

6. Nutzerstudie

(a) Teilnehmer beim Implementieren der Lösung. (b) Teilnehmer beim Aufzeichnen von Testdaten.

Abbildung 6.1.: Bilder während der Durchführung der Nutzerstudie.

annotiert wurden. Nach Abschluss dieser Phase präsentierte jede Zweiergruppe ihre Vorschläge und
es konnte über diese in der gesamten Gruppe diskutiert.

6.2. Auswertung

Es wurden zum einen persönliche Daten und Kenntnisse der Probanden erfasst. Nach der Benutzung
des Systems wurden mittels einer Likert-Skala verschiedene Aussagen über das System abgefragt. Im
letzten Teil wurden offene Probleme identifiziert und in Gruppenarbeit mögliche Verbesserungen
diskutiert.

6.2.1. Persönliche Daten und Kenntnisse

Es haben sechs Teilnehmer an der Nutzerstudie teilgenommen. Die Teilnehmer waren durchschnittlich
25 Jahre alt (mit einer Standardabweichung von 0.63). Alle Teilnehmerwarenmännlich. Die Teilnehmer
sind alle in ihrem Haupt- oder Nebenberuf mit Softwareentwicklung beschäftigt.

Die Persönlichen Fähigkeiten und Kenntnisse wurden in einer Skala mit den Werten des Kenntnis-
ständen keine, etwas, gute, sehr gute abgefragt. In Tabelle 6.1 sind die Teilnehmer mit den jeweiligen
Daten vermerkt. Dabei stehen die Spalten K1 bis K8 für folgenden Kenntnisse:

K1 Webentwicklung allgemein

K2 HTML

K3 CSS

K4 JavaScript

K5 WebSocket (RFC 6455)

58

6.2. Auswertung

Persönliche Daten Kenntnisse
Alter Berufliche Tätigkeit K1 K2 K3 K4 K5 K6 K7 K8

25 IT-Berater 1 1 1 1 0 1 0 0
24 Softwareentwickler 2 3 2 2 1 2 0 1
25 Softwareentwickler 2 3 2 2 0 1 0 0
25 Softwareentwickler 2 2 2 1 1 2 0 1
25 Student (Softwaretechnik) 3 3 2 2 2 2 0 1
26 Student (Softwaretechnik) 1 1 1 1 0 0 0 0

Tabelle 6.1.: Persönliche Daten und Kenntnisse der Teilnehmer. 0 entspricht keinen Kenntnissen, 3
entspricht sehr guten Kenntnissen.

K6 Python (Programmiersprache)

K7 Tornado (Netzwerkframework)

K8 Algorithmen zur Aktivitätserkennung

Traditionelle Webtechnologien waren bei allen Teilnehmern mindestens etwas vorhanden. Im Durch-
schnitt sind Kenntnisse in HTML gut. Kenntnisse in CSS und JavaScript sind zwischen etwas und gut
einzuordnen. Kenntnisse mit der Benutzung von Websockets hingegen wurden nur von drei Personen
angegeben.

Programmiererfahrung in Python war bei fünf der sechs Teilnehmern grundlegend vorhanden,
allerdings wies keiner der Teilnehmer Kenntnisse im benutzten Framework für den Server auf. Die
Hälfte der Teilnehmer gab an, etwas Kenntnisse im ThemengebietAlgorithmen zur Aktivitätserkennung
zu besitzen.

6.2.2. Unterstützung durch das Systems

Die Funktionalität und Benutzbarkeit des Systems wurde anhand des praktischen Einsatzes getestet.
Die Teilnehmer hatten als Aufgabe eine Anwendung zu entwickeln, die visualisiert ob der Benutzer
still steht, rennt oder hüpft. Diese Aufgabe wurde auch als Beispiel in 5.7 umgesetzt. Die Teilnehmer
hatten aber nur Zugriff auf die einzelnen Filter und mussten die Filterkette selbst entwerfen und
implementieren. Auch die Beispieldaten mussten selbst aufgezeichnet werden. Als Hilfestellung
hatten alle Teilnehmer die zur Einführung genutzte Präsentation zur Hand. Zum Aufzeichnen der
Daten wurde der Beschleunigungssensor von Smartphones über deren Webbrowser eingesetzt. Jeder
Teilnehmer hatte Zugriff auf ein Smartphone.

Für die Lösung der Aufgabe wurden 45 Minuten Zeit gegeben. In dieser Zeit konnten drei Teilnehmer
die Aufgabe abschließen und eine visuelle Ausgabe zu eingehenden Daten erzeugen. Der Rest der
Teilnehmer war noch mit dem Optimieren des Erkennungsalgorithmus beschäftigt. Die Bearbeitung
der Aufgabe war auf Einzelpersonen ausgelegt und eine Kooperation war zunächst nicht vorgesehen.

59

6. Nutzerstudie

A4 (Anwendung)

A3 (Verarbeitung)

A2 (Analyse)

A1 (Eingabe)

100 50 0 50 100
Prozent

Antwort trifft eher nicht zu teils−teils trifft eher zu trifft zu

Unterstützung durch das System

Abbildung 6.2.: Ergebnisse des Fragebogens für die Unterstützung durch das System

Gegen Ende der Aufgabe zeigten sich allerdings Versuche der Zusammenarbeit, die vom Versuchsleiter
nicht unterbunden wurden. Eine Versuchsperson, die schon eine fortgeschrittenere Anwendung zur
Visualisierung entwickelt hatte wollte diese mit besseren Eingabedaten versorgen. Da alle Teilnehmer
im selben Netzwerk waren, konnte dies auch schnell durch ein einfaches ändern der IP-Adresse
der Datenquelle realisiert werden. In einem sehr kleinen Maßstab zeigt diese selbstorganisierte
Kollaboration den Gedanken der hinter dem Gesamtsystem steht. Eine verbesserte Zusammenarbeit
zwischen den beteiligten Benutzergruppen.

Nach der abschließen der Aufgabe wurden den Teilnehmern auf einem Fragebogen einige Aussagen
zur Unterstützung durch das System gegeben. Dabei wurde eine Likert-Skala mit fünf möglichen
Antworten eingesetzt. Die zu bewertenden Aussagen lauteten dabei wie folgt (Durchschnittliche
Bewertung von 1 bis 5 und die Standardabweichung in Klammern):

A1 Das System hat mich beim Aufzeichnen von Testdaten gut unterstützt. (4,2 / 0,4)

A2 Das System hat mich beim Analysieren der Testdaten gut unterstützt. (3,7 / 0,7)

A3 Das System hat mich beim Erstellen des Erkennungsalgorithmus gut unterstützt. (3,3 / 0,9)

A4 Das System hat mich beim Erstellen einer Anwendung gut unterstützt. (3,3 / 0,5)

Abbildung 6.2 zeigt die Ergebnisse der Befragung. Vor allem das Aufzeichnen von Testdaten wurde als
einfach empfunden. Dieser Vorgang wurde von einigen Personen auch mehrmals durchgeführt, als
sich die aufgezeichneten Daten in der Analyse als ungeeignet erwiesen. Die Unterstützung des Systems
um Erkennungsalgorithmen zu entwerfen und eine Anwendung zu schreiben liegt im erwarteten
Rahmen. Die Kenntnisse der Teilnehmer im Bereich Erkennungsalgorithmen (K8) war generell nicht
vorhanden oder nur gering. Um Anwendungen zu entwickeln stellt das System außer die Schnittstelle
keine weitergehenden Funktionalitäten wie graphische Elemente zur Anwendungsentwicklung selbst

60

6.2. Auswertung

A8 (Web: Prototypen)

A7 (Web: Plattformunabhängig)

A6 (Erneute Nutzung)

A5 (Flexibilität)

100 50 0 50 100
Prozent

Antwort teils−teils trifft eher zu trifft zu

Weitere Systemmerkmale

Abbildung 6.3.: Auswertung der restlichen Fragen

bereit. Es wurde lediglich ein Grundgerüst einer Webseite mit integriertem Grunddesign (Boostrap
CSS Framework) und jQuery angeboten.

6.2.3. Weitere Merkmale

Neben der Unterstützung durch das System wurden vier weitere Aussagen abgefragt. Die Auswertung
dafür ist in Abbildung 6.3 dargestellt. Die Aussagen A5 bis A8 mit Durchschnitt und Standardabwei-
chung waren im Wortlaut:

A5 Ich denke, dass ich mit der Architektur vielfältige Anwendungsfälle umsetzen kann. (4,2 / 0,7)

A6 Ich würde das System auch für zukünftige Entwicklungen in diesem Bereich einsetzen. (3,5 / 0,5)

A7 Webtechnologien sind für plattformübergreifende Entwicklungen gut geeignet. (4,3 / 0,5)

A8 Webtechnologien sind gut für das Erstellen von Prototypen geeignet. (3,7 / 0,7)

Die Einschätzungen über den Einsatz von Webtechnologien für plattformübergreifende Projekte oder
Prototypen decken sich mit den in Mobile application development: web vs. native [CL11] beschrieben.
Die hohe Wertung in der Flexibilität der Architektur ist ein gutes Zeichen, auch wenn das nach einem
solch kurzen Test nicht zu stark gewichtet werden darf.

6.2.4. Herausforderungen und Verbesserungsmöglichkeiten

Nach der Befragung mit dem Fragebogen wurden den Testpersonen Karteikarten gegeben auf denen
sie jeweils ein Problem notieren sollten, das ihnen während der Benutzung des Systems aufgefallen
ist. Nach dem Erfassen der einzelnen Probleme wurden dann Zweiergruppen gebildet und mögliche

61

6. Nutzerstudie

Lösungsvorschläge auf den Karten notiert. Am Ende präsentierte jede Zweiergruppe ihre Karten und
stellte kurz die Vorschläge vor.

Insgesamt wurden 19 Karten angelegt. Eine Kategorisierung der Karten in jeweils die Bereiche des
Systems und Problemtypen ergibt sich die in Tabelle 6.2 dargestellte Verteilung. Eine Visualisierung
dieser Daten ist in Abbildung 6.4 sichtbar.

Der Problemtyp Bug steht für Programmfehler die während des Tests entdeckt wurden. Keiner der
gefundenen Bugs hat verhindert, dass die Aufgabe lösbar war. Der Typ Dokumentation steht für Pro-
bleme, die durch verbesserte Dokumentation ausgeglichen werden könnten. Es wurden unter anderem
mehrfach bessere Beschreibungen von Argumenten von Filtern gefordert. Auch dass die Kenntnisse
in eingesetzten Technologien nicht ausreichend vorhanden war, ist in diesem Typ einsortiert, da dies
durch bessere Dokumentation verhindert oder mindestens verringert werden könnte.

Probleme des Typs Funktionalität bemängeln fehlende Funktionen, die nicht hauptsächlich mit einer
Umgestaltung der Benutzungsschnittstelle zu tun haben. Ein Beispiel dafür ist, in der Detailansicht von
Aufzeichnungen, zusätzliche statistische Werte wie Durchschnitt, Minimum und Maximum einzelner
Felder anzuzeigen.

Unter dem Problemtyp UI wurden Karten sortiert, die sich mit der Benutzungsschnittstelle befassten.
Diese befassten sich häufig teilweise auf das gesamte System. Aber vor allem auch im Bereich der
Verarbeitung wurde häufiger eine bessere graphische Unterstützung gewünscht. Beispielsweise wurde
sich mehrmals eine grafische Oberfläche gewünscht, um die einzelnen Elemente einer Filterkette
visualisiert zu sehen. Auch die Möglichkeit bestimmte Zeiträume in der Analyseansicht zu vergrößern
und die Skalierung dynamisch anzupassen fallen in diesen Problemtyp.

Bei der Präsentation der Karten vor der Gruppe wurden vor allem Elemente der Benutzungsschnitt-
stelle diskutiert. Dort liegt laut Aussagen das größte Verbesserungspotential. Eine Lösung, welche
die Mächtigkeit des Schreiben der Filter in Python mit einer einfachen Übersicht und Konfiguration
verbinden würde wäre, die Filter ähnlich wie in Abbildung 5.2 zu visualisieren und dabei die Argu-
mente interaktiv modifizierbar zu machen. Mit dem grundlegenden Konzept der Filter fanden sich
alle Teilnehmer auch ohne Vorkenntnisse gut zurecht.

Folgende Zitate der Teilnehmer, die in der Diskussion und während der Studie fielen, repräsentieren
den aktuellen Stand des Systems gut:

• „Mit Hilfe des Systems konnte ich innerhalb kürzester Zeit eine funktionierende Applikation
erstellen.“

• „Die Komplexität der Datenverarbeitung der Bewegungsdaten konnte durch den Einsatz der
Filterketten stark reduziert werden.“

• „Der Prototyp bietet nicht nur einen Mehrwert für Entwickler, sondern hat auch das Potential
Nicht-Entwicklern einen Zugang zu der Thematik zu geben.“

• „Für einen produktiven Einsatz ist vor allem eine Verbesserung der GUI notwendig.“

• „Die GUI war verbesserungswürdig, der Rest ganz gut.“

• „Nach Startschwierigkeiten war das System gut zu bedienen.“

62

6.2. Auswertung

Bereich Problemtyp Summe
Bug Dokumentation Funktionalität UI

Allgemein 0 2 0 2 4
Analyse 0 1 3 0 4
Anwendung 3 0 0 0 3
Eingabe 1 0 0 1 2
Verarbeitung 0 3 1 2 6

Summe 4 6 4 5 19

Tabelle 6.2.: Auswertung der Karteikarten der Nutzerstudie

● ●

● ●

●●●

●●

●

Typ

B
er

ei
ch

V
er

ar
be

itu
ng

E
in

ga
be

A
nw

en
du

ng
A

na
ly

se
A

llg
em

ei
n

Bug Dokumentation Funktion UI

Abbildung 6.4.: Darstellung der Verteilung der Problemtypen und Problembereiche als Mosaikplot.

63

6. Nutzerstudie

6.2.5. Zusammenfassung

Die Benutzerstudie hat gezeigt, dass das System grundlegend funktioniert und es auch Nutzern die
zuvor nicht damit gearbeitet haben, ein komplettes kleines Projekt umsetzen können. Ohne dass
explizit eine Kooperation während dem Entwicklungsprozess vorgesehen war, ist dieser durch einige
Teilnehmer selbstorganisiert zustande gekommen. Die Unterstützung durch das System wurde in
den Bereichen des Datenerfassens und der Analyse als gut angesehen. Die Datenverarbeitung und
Anwendungsentwicklung wurde als weniger gut unterstützt angesehen.

Mögliche Verbesserungspotential ist vor allem im Bereich der Benutzungsschnittstelle und Funktio-
nalität zu finden. Für das Erstellen von Erkennungsalgorithmen wäre eine ausführliche graphische
Oberfläche hilfreich, in der die Filter angeordnet und konfiguriert werden können. Da der Fokus
der Implementierung nicht auf dem direkten Unterstützung beim Entwerfen von Algorithmen lag,
sondern auf der Funktionalität des Gesamtsystems und dem Zusammenspiel der einzelnen Bereiche,
sind die Ergebnisse positiv.

64

7. Zusammenfassung und Ausblick

Der Bereich der Wearables ist ein Zukunftsmarkt, der stark am wachsen ist. In naher Zukunft werden
wohl auch mehr Sensoren den Sprung von Geräten, die wir an uns tragen in unsere Kleidung machen.
In dieser Arbeit wurde der aktuelle Stand der Technik bei der Entwicklung von solch intelligenten
Kleidungsstücken beschrieben. Auf demMarkt befindliche Geräte sind noch nichtmit unserer Kleidung
verbunden, sondern einzelne Geräte die eine Vielzahl von Sensoren enthalten. Hauptsächlich findet
die Kommunikation über Bluetooth mit genau einem anderen Gerät statt, oder die Daten werden auf
dem Gerät selbst für längere Zeit aufgezeichnet und später ausgewertet.

Es wurden Anforderungen an eine einheitlichere Architektur erfasst, die neben der reinen Funk-
tionalität der Datenverarbeitung zwischen Sensor und Anwendung, auch darauf ausgelegt ist, den
Entwicklungsprozess zu verbessern und vereinheitlichen. Aus diesen Anforderungen wurde eine
Architektur entwickelt und beschrieben.

Diese Architektur wurde teilweise implementiert, um zum einen dieMachbarkeit mit bestimmten Tech-
nologien zu demonstrieren und auch eine qualitative Evaluation der Funktionalität und Benutzbarkeit
durchzuführen. Als Datenquellen wurde dabei der BioHarness 3 und Beschleunigungssensoren des
Smartphones benutzt. Die Implementierung setzt für die Schnittstellen und Entwicklerunterstützung
auf Python und Webtechnologien.

Bei der Evaluation der Implementierung im Rahmen einer Nutzerstudie zeigte sich, dass die Grund-
funktionalität komplett verfügbar und benutzbar ist. Eine Beispielanwendung konnte komplett von
Erstbenutzern des Systems implementiert werden. Dennoch wäre eine verbesserte graphische Un-
terstützung in den Bereichen der Datenanalyse und Entwicklung des Erkennungsalgorithmus sehr
sinnvoll, auch wenn das System auf Entwickler ausgelegt ist.

Ausblick

Die Implementierung der Architektur ist eher konzeptuell und auf die Demonstration der Praktikabi-
lität der eingesetzten Technologien ausgelegt. Es kann noch viel Energie in die Benutzbarkeit der
Werkzeuge investiert werden. Hier sind einige Punkte aufgelistet, bei denen Raum für Verbesserungen
besteht:

Echtzeitdaten in der Analyseansicht Neben Aufzeichnungen könnten auch Echtzeitdaten als Ein-
gabe akzeptiert werden und mit diesen die Graphen in parallel zu ihrer Aufzeichnung gezeichnet
werden.

65

7. Zusammenfassung und Ausblick

Visualisierung mehrdimensionale Werte Auch werden alle betrachteten Werte im Moment als
unabhängige eindimensionaleWerte visualisiert. Für komplexere Eingaben können nochweitere
Visualisierungen entwickelt und implementiert werden.

Visualisierung der Filter & Filterkette Die Filterkette könnte grafisch visualisiert werden. Gege-
benenfalls könnte auch Filterargumente und Kombination der Filter über die Oberfläche konfi-
guriert werden.

Verbesserte Filter Die imMoment enthaltenen Filter sind ausreichend um einfach Anwendungsfälle
abzudecken. Es könnten weitere Filter entwickelt werden und diese auch flexibler konfigurierbar
gemacht werden.

Integration von maschinellem Lernen Mit den aufgezeichneten Beschriftungen könnten Aktivi-
täten durch maschinelles Lernen erkannt werden.

Vorgefertigte Visualisierungskomponenten Um Anwendungsentwicklung zu vereinfachen
könnten einfache Diagramme als Komponente angeboten werden, welche den aktuellen Wert
von bestimmten Parametern darstellen.

Diese Arbeit ging davon aus, ein immer verfügbares Netzwerk zu Kommunikation zwischen den
Geräten zu haben, in dem sich intelligente Kleidung ähnlich eines Sensornetzes um den Benutzer
aufspannt. Diese Datenwolke um den Benutzer soll Anwendungen in seiner Umgebung mehr Möglich-
keiten bieten, auf den aktuellen Kontext des Benutzers reagieren. Auch wenn ein immer verfügbares
Netzwerk heutzutage noch nicht die Realität ist, ist es langfristig ein realistisches Szenario.

Die hier vorgestellte Middleware erlaubt neben dem aufspannen einer persönlichen Datenwolke auch
das Teilen dieser Daten mit anderen Menschen. Denkbar wäre beispielsweise, einige erfasste Daten
zu medizinischen Zwecken seinem Arzt oder einem automatisierten Frühwarnsystem zur Verfügung
zu stellen. Neben den reinen Daten könnten auch die Algorithmen zur Datenverarbeitung geteilt
werden.

Wenn mehr Daten anfallen, wächst allerdings auch die Nachfrage nach diesen Daten. Um sich zu
einem gläsernen Bürger zu machen und seine Privatsphäre zu schützen, ist darauf zu achten, seine
Daten nicht leichtfertig Dritten zu übergeben. Um die Datenhoheit zu bewahren, ist auch vorstellbar
die Middleware bei sich zu Hause zu betreiben. Beispielsweise könnte sie auf dem Rechner, der sowieso
schon für die Verwaltung des elektronischen Gedächtnisses zuständig ist, ausgeführt werden.

All die Aspekte der Sicherheit und Privatsphäre gehen über diese Arbeit, die hauptsächlich ein Werk-
zeug zur Entwicklungsunterstützung beschreibt, weit hinaus. Dennoch sind es gerade diese Aspekte,
die den späteren Endbenutzer eines Systems stark betreffen. Durch eine bessere Unterstützung der
Entwickler bleibt diesen hoffentlich genug Zeit, sich mit den wichtigen Aspekten der Software zu
beschäftigen und intelligente Kleidung auf eine solide Plattform zu stellen.

66

A. Präsentation der Nutzerstudie

Die Präsentation wurde in HTML und JavaScript mit Hilfe der Bibliothek reveal.js1 umgesetzt.
Die Teilnehmer hatten in ihrem Webbrowser, während des Lösens der Aufgabe, Zugriff auf diese
Präsentation.

Im folgenden sind die einzelnen Folien aufgeführt, die Leserichtung der Folien ist (nach Drehen der
Seite) von oben nach unten und links nach rechts.

1http://lab.hakim.se/reveal-js/

67

http://lab.hakim.se/reveal-js/

A. Präsentation der Nutzerstudie

B
e
n
u
tz

e
rs

tu
d
ie

E
n

tw
ic

k
lu

n
g

 e
in

e
r A

rc
h

ite
k
tu

r
fü

r d
a
s
 B

e
trie

b
s
s
y
s
te

m
 in

te
llig

e
n

te
r

K
le

id
u

n
g

D
iplom

arbeit —
 T

obias B
irm

ili

V
o
rs

te
llu

n
g

s
ru

n
d

e
Ich bin Tobias und schreibe gerade m

eine D
iplom

arbeit im
Studiengang Softw

aretechnik.

Ü
b

e
rb

lic
k

E
ntw

icklungsunterstützung für W
earables

Z
ie

lg
ru

p
p

e
n

Sensorentw
ickler

D
atenverarbeitungsexperten

A
nw

endungsentw
ickler

68

F
u
n
k
tio

n
e
n

A
ufzeichnung von D

aten
V

erarbeitung von D
aten

Schnittstelle zu A
nw

endungen

E
in

g
a
b

e
Z

ephyr B
ioH

arness 3
B

ew
egungssensoren

B
eschriftungen

...

B
io

H
a
rn

e
s
s

P
uls

A
tem

frequenz
B

eschleunigungssensoren

B
e
w

e
g

u
n
g

s
s
e
n
s
o
r

69

A. Präsentation der Nutzerstudie

B
e
s
c
h
riftu

n
g

e
n
 e

rs
te

lle
n

B
e
lie

b
ig

e
 Q

u
e
lle

n
W

ebSocket A
P

I
var ws = new WebSocket("ws://server.dev:8888/input/live/my-sens.ws");
// wait for successful connection
ws.send(JSON.stringify({

'my_field': 'some_value',

'other_field': 42
})

D
a
te

n
s
ä
tz

e
A

ufzeichnungen (/historic/
) und D

etailansichten

A
n
a
ly

s
e

V
isualisierung von E

ingabe und Filtern.

70

V
e
ra

rb
e
itu

n
g

Filter +
 Filterketten

V
orgefertigte einfache Filter

Im
p

le
m

e
n
tie

ru
n
g

B
eispiel: InRangeFilter

def process(self, document, *args, **kwargs):
 try:
 val = document[self.field]
 except KeyError:
 return document

 in_range = self.from_val <= val <= self.to_val
 document.update({
 self.out_name: int(in_range)*100 # int for plotting purposes
 })
 return document

Im
p

le
m

e
n
tie

ru
n
g

B
eispiel einer Filterkette

class SomeChain(BaseFilterChain):

 name = 'some_chain'

 def init_filters(self):

 y_diff_50 = DifferenceInWindowFilter('accel_y', window_size=50)
 self.add_filter(y_diff_50, show_in_graph=True)

 is_cool = InRangeFilter(y_diff_50.out_name, 0, 35, out_name='is_cool')
 self.add_filter(is_jumping, show_in_graph=True)

A
u
s
g

a
b

e
W

ebSockets
var socket = new WebSocket('ws://server.dev:8888/output/historic/accel-demo.ws?chain=jump_and_run'

socket.onmessage = function(message){
 data = JSON.parse(message.data);
 if(data.error){
 alert(data.error);
 } else if (data.info) {
 console.log(data.info);
 } else if(data.is_cool) {

// He's cool!

 } else {

// He is not cool!

 }
}

71

A. Präsentation der Nutzerstudie

D
ie

 A
u
fg

a
b

e
Schreibe eine kleine A

nw
endung die anzeigt ob der B

enutzer
hüpft oder rennt.

Sm
artphone als Sensor ist ausreichend.

D
a
te

n
 A

u
fz

e
ic

h
n
e
n

M
it dem

 Sm
artphone ein bisschen hüpfen und rennen.

O
ptional: Jem

anden bitten w
ährenddessen Labels zu erstellen.

A
n
a
ly

s
e
a
n
s
ic

h
t b

e
n
u
tz

e
n

D
en A

nalyse-V
iew

 bearbeiten:
sedm.server.handlers.analysis.AnalysisHandler

MAIN_DATASET = 'accel-bla'
FILTER_CHAIN = get_chain('my_chain')

F
ilte

rk
e
tte

 b
e
a
rb

e
ite

n
Siehe sedm.processing.chains.MyChain

.
B

eispiel:
def init_filters(self):
 # calculates difference of 50 values using field 'accel_y'
 y_diff_50 = DifferenceInWindowFilter('accel_y', window_size=50)
 self.add_filter(y_diff_50, show_in_graph=True)

72

A
n
w

e
n
d

u
n
g

 b
a
u
e
n

Siehe /templates/apps/my_app.html
.

E
rreichbar unter

jQ
uery ist verfügbar. B

eispiel für D
atennutzung siehe

.
localhost:8888/app/my

hier

T
ip

p
s

1
. H

üpfen erzeugt eine starke D
ifferenz auf einer A

chse
2

. R
ennen beansprucht eine andere A

chse
3

. A
nalyseview

 einrichten und dam
it die Filterkette debuggen.

L
ö
s
u
n
g

 d
e
r A

u
fg

a
b

e
make run_dev

oder:
python server.py --logging=debug --debug

F
ra

g
e
b

o
g

e
n
 T

e
il 2

B
itte ausfüllen.

73

A. Präsentation der Nutzerstudie

S
c
h
w

ie
rig

k
e
ite

n
 a

u
f K

a
rte

n
n
o
tie

re
n

W
as w

ar schw
ierig? B

itte eine Schw
ierigkeit pro K

arte.

D
re

i Z
w

e
ie

rg
ru

p
p

e
n
 b

ild
e
n

D
ie eigenen K

arten durchgehen und darauf notieren:
W

as könnte m
an tun um

 die Schw
ierigkeiten zu

beheben/verbessern/…

V
o
rs

te
lle

n
 d

e
r K

a
rte

n
 u

n
d

D
is

k
u
s
s
io

n

E
n
d
e

V
ie

le
n

 D
a
n

k
 fü

r d
ie

 T
e
iln

h
a
m

e

74

75

B. Fragebogen zur Auswertung der Nutzerstudie

B. Fragebogen zur Auswertung der
Nutzerstudie

Nutzerstudie
Fragebogen

Weiter mitw�

1. Wie alt sind Sie?

2. Welche berufliche Tätigkeit üben Sie in ihrem Hauptberuf aus?

3. Bewerten Sie ihre persönlichen Fähigkeiten/Kenntntisse in den folgenden Bereichen der Softwareent-
wicklung.

keine
Kennt-
nisse

etwas gute sehr
gute

Webentwicklung allgemein � � � �
HTML . � � � �
CSS. � � � �
JavaScript . � � � �
WebSocket (RFC 6455) . � � � �
Python (Programmiersprache) � � � �
Tornado (Netzwerkframework) � � � �
Algorithmen zu Aktivitätserkennung � � � �

4. Benutzen Sie selbst Geräte aus dem Bereich Wearable Computing? Wenn ja, welche?

1

76

Weiter mit

Gruppe 1
w�

5. Sie haben nun die Software für eine kleine Aufgabe eingesetzt. Bewerten Sie die folgenden Aussagen
in Bezug auf das benutzte System:

trifft
nicht

zu

trifft
eher
nicht

zu

teils-
teils

trifft
eher
zu

trifft
zu

Das System hat mich beim Aufzeichnen
von Testdaten gut unterstützt.

� � � � �

Das System hat mich beim Analysieren der
Testdaten gut unterstützt.

� � � � �

Das System hat mich beim Erstellen des
Erkennungsalgorithmus gut unterstützt. . .

� � � � �

Das System hat mich beim Erstellen einer
Anwendung gut unterstützt.

� � � � �

Ich denke, dass ich mit der Architek-
tur vielfältige Anwendungsfälle umsetzen
kann. .

� � � � �

Ich würde das System auch für zukünftige
Entwicklungen in diesem Bereich einset-
zen. .

� � � � �

Webtechnologien sind für platt-
formübergreifende Entwicklungen gut
geeignet. .

� � � � �

Webtechnologien sind gut für das erstellen
von Prototypen geeignet..

� � � � �

2

77

Literaturverzeichnis

[ACCL14] O. Amiraslanov, J. Cheng, P. Chabrecek, P. Lukowicz. Electroluminescent based Flexible
Screen for Interactionwith Smart Objects and Environment. Technischer Bericht, German
Research Center for artifical Intelligence, 2014. (Zitiert auf Seite 27)

[ALO+04] O. Amft, M. Lauffer, S. Ossevoort, F. Macaluso, P. Lukowicz, G. Troster. Design of the
QBIC wearable computing platform. In Proceedings. 15th IEEE International Conference
on Application-Specific Systems, Architectures and Processors, 2004., S. 398–410. IEEE, 2004.
doi:10.1109/ASAP.2004.1342488. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=1342488. (Zitiert auf Seite 24)

[CL11] A. Charland, B. Leroux. Mobile application development. Communications of the ACM,
54(5):49, 2011. doi:10.1145/1941487.1941504. URL http://portal.acm.org/citation.

cfm?doid=1941487.1941504. (Zitiert auf den Seiten 42 und 61)

[CLH+13] J. Cheng, P. Lukowicz, N. Henze, A. Schmidt, O. Amft, G. A. Salvatore, G. Troster. Smart
Textiles: From Niche to Mainstream. IEEE Pervasive Computing, 12(3):81–84, 2013. doi:10.
1109/MPRV.2013.55. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6562715. (Zitiert auf den Seiten 7 und 17)

[DS14] C. Dalsgaard, R. Sterrett. Market Opportunities for Smart Textiles 2014 White paper
on smart textile garments and devices : a market overview of smart textile wearable
technologies . Technischer Bericht, Ohmatex ApS, 2014. URL http://www.ohmatex.

dk/pdfer/whitepaper_smart_textiles.pdf. (Zitiert auf Seite 13)

[HAT10] H. Harms, O. Amft, G. Tröster. Estimating posture-recognition performance in sensing
garments using geometric wrinkle modeling. IEEE Transactions on Information Technology
in Biomedicine, 14(6):1436–1445, 2010. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=5585763. (Zitiert auf Seite 9)

[Int11] Internet Engineering Task Force. RFC 6455: The WebSocket Protocol, 2011. URL http:

//tools.ietf.org/html/rfc6455. (Zitiert auf Seite 42)

[JL07] J. Judewig, H. Lichter. Software Engineering. dpunkt.verlag GmbH, 2007. (Zitiert auf
Seite 14)

[KBS99] G. Kortuem, M. Bauer, Z. Segall. NETMAN : The design of a collaborative wearable
computer system. Mobile Networks and Applications 4, 4:49–58, 1999. doi:10.1023/A:
1019122125996. (Zitiert auf Seite 20)

79

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342488
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342488
http://portal.acm.org/citation.cfm?doid=1941487.1941504
http://portal.acm.org/citation.cfm?doid=1941487.1941504
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6562715
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6562715
http://www.ohmatex.dk/pdfer/whitepaper_smart_textiles.pdf
http://www.ohmatex.dk/pdfer/whitepaper_smart_textiles.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5585763
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5585763
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

Literaturverzeichnis

[KWL+11] T. Karrer, M. Wittenhagen, L. Lichtschlag, F. Heller, J. Borchers. Pinstripe: eyes-free
continuous input on interactive clothing. In Proceedings of the 2011 annual conference
on Human factors in computing systems - CHI ’11, S. 1313. ACM Press, New York, New
York, USA, 2011. doi:10.1145/1978942.1979137. URL http://dl.acm.org/citation.

cfm?doid=1978942.1979137. (Zitiert auf Seite 16)

[Lew04] F. L. Lewis. Wireless Sensor Networks. Smart Environments: Technologies, Protocols, and
Applications, S. 1–18, 2004. doi:10.1007/b117506. URL http://www.springerlink.com/

index/10.1007/b117506. (Zitiert auf Seite 20)

[LHSA99] J. Lehikoinen, J. Holopainen, M. Salmimaa, A. Aldrovandi. MEX: a distributed soft-
ware architecture for wearable computers. In Digest of Papers. Third International
Symposium on Wearable Computers, S. 52–57. IEEE Comput. Soc, 1999. doi:10.1109/
ISWC.1999.806650. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=806650. (Zitiert auf Seite 20)

[Man98a] S. Mann. Definition of Wearable Computer, 1998. URL http://wearcam.org/

wearcompdef.html. (Zitiert auf Seite 11)

[Man98b] S. Mann. Wearable Computing as means for Personal Empowerment. In Proc. 3rd Int. Conf.
on Wearable Computing (ICWC), S. 1–8. 1998. URL http://wearcam.org/icwckeynote.

html. (Zitiert auf Seite 11)

[MMC09] P. Mistry, P. Maes, L. Chang. WUW - Wear Ur World: A Wearable Gestural Interface.
In CHI ’09 Extended Abstracts on Human Factors in Computing Systems, S. 4111–4116.
2009. doi:10.1145/1520340.1520626. URL http://portal.acm.org/citation.cfm?

doid=1520340.1520626. (Zitiert auf Seite 16)

[MMZ+03] D. Marculescu, R. Marculescu, N. H. Zamora, P. Stanley-Marbell, P. K. Khosla, S. Park,
S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, J. Grzyb, G. Tröster,
M. Jones, T. Martin, Z. Nakad. Electronic Textiles : A Platform for Pervasive Computing.
Proceedings of the IEEE, 91(12):1995–2018, 2003. (Zitiert auf Seite 16)

[MRSS06] U. Maurer, A. Rowe, A. Smailagic, D. P. Siewiorek. eWatch: A Wearable Sensor and
Notification Platform. International Workshop on Wearable and Implantable Body Sensor
Networks (BSN’06), S. 142–145, 2006. doi:10.1109/BSN.2006.24. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612916. (Zitiert auf Seite 24)

[OGOW08] T. Olsson, D. Gaetano, J. Odhner, S. Wiklund. Open Softwear: Fashionable prototyping
and wearable computing using the Arduino. Online, 2008. (Zitiert auf Seite 15)

[PLTP06] M. Pacelli, G. Loriga, N. Taccini, R. Paradiso. Sensing Fabrics for Monitoring Physiological
and Biomechanical Variables: E-textile solutions. In 2006 3rd IEEE/EMBS International
Summer School onMedical Devices and Biosensors, S. 1–4. IEEE, 2006. doi:10.1109/ISSMDBS.
2006.360082. URL ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4201251. (Zi-
tiert auf Seite 9)

80

http://dl.acm.org/citation.cfm?doid=1978942.1979137
http://dl.acm.org/citation.cfm?doid=1978942.1979137
http://www.springerlink.com/index/10.1007/b117506
http://www.springerlink.com/index/10.1007/b117506
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=806650
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=806650
http://wearcam.org/wearcompdef.html
http://wearcam.org/wearcompdef.html
http://wearcam.org/icwckeynote.html
http://wearcam.org/icwckeynote.html
http://portal.acm.org/citation.cfm?doid=1520340.1520626
http://portal.acm.org/citation.cfm?doid=1520340.1520626
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612916
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612916
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4201251

Literaturverzeichnis

[SCC10] M. Suh, K. Carroll, N. Cassill. Critical Review on Smart Clothing Product Development.
Journal of Textile and Apparel, Technology and Management, 6(4):1–18, 2010. URL http://
ojs.cnr.ncsu.edu/index.php/JTATM/article/view/702. (Zitiert auf den Seiten 13
und 14)

[Sch13] T. de Schutter. The Power of Developing Hardware and Software in
Parallel, 2013. URL http://www.design-reuse.com/articles/31951/

the-power-of-developing-hardware-and-software-in-parallel.html. (Zi-
tiert auf Seite 14)

[SGG12] D. Silva, M. Ghanem, Y. Guo. WikiSensing: an online collaborative approach for sen-
sor data management. Sensors (Basel, Switzerland), 12(10):13295–332, 2012. doi:10.
3390/s121013295. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=3545568&tool=pmcentrez&rendertype=abstract. (Zitiert auf Seite 20)

[Tao01] X. Tao. Smart fibres, fabrics and clothing. Woodhead Publishing Limited, 2001. doi:10.
1533/9781855737600. URL http://woodhead.metapress.com/openurl.asp?genre=

issue&id=doi:10.1533/9781855737600. (Zitiert auf Seite 12)

[Tiz13] Tizen Association. Tizen, Public Q&A, 2013. URL https://www.tizenassociation.

org/PDF/Tizen_FAQ_02.24.13.pdf. (Zitiert auf Seite 19)

[Van14] Vandrico Solutions Inc. Wearables Market Insight Q1 2014. Technischer Bericht, Vandrico
Solutions Inc., 2014. URL http://vandrico.com/database. (Zitiert auf den Seiten 13
und 14)

[VC00] K. Van Laerhoven, O. Cakmakci. What shall we teach our pants? In Digest of Papers.
Fourth International Symposium on Wearable Computers, c, S. 77–83. IEEE Comput. Soc,
2000. doi:10.1109/ISWC.2000.888468. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=888468. (Zitiert auf den Seiten 9 und 16)

[VH04] L. Van Langenhove, C. Hertleer. Smart clothing: a new life. International Journal of
Clothing Science and Technology, 16(1/2):63–72, 2004. doi:10.1108/09556220410520360.
URL http://www.emeraldinsight.com/10.1108/09556220410520360. (Zitiert auf
Seite 12)

[Wik14] Wikipedia. Smart Material - Wikipedia, The Free Encyclopedia, 2014. URL http:

//en.wikipedia.org/wiki/Smart_material. (Zitiert auf Seite 13)

[Zep11a] Zephyr Technology. BioHarness 3.0 User Manual, 2011. (Zitiert auf Seite 21)

[Zep11b] Zephyr Technology. BioHarness Bluetooth Comms Link Specification, 2011. (Zitiert auf
den Seiten 43 und 54)

Alle URLs wurden zuletzt am 01. 07. 2014 geprüft.

81

http://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/702
http://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/702
http://www.design-reuse.com/articles/31951/the-power-of-developing-hardware-and-software-in-parallel.html
http://www.design-reuse.com/articles/31951/the-power-of-developing-hardware-and-software-in-parallel.html
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3545568&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3545568&tool=pmcentrez&rendertype=abstract
http://woodhead.metapress.com/openurl.asp?genre=issue&id=doi:10.1533/9781855737600
http://woodhead.metapress.com/openurl.asp?genre=issue&id=doi:10.1533/9781855737600
https://www.tizenassociation.org/PDF/Tizen_FAQ_02.24.13.pdf
https://www.tizenassociation.org/PDF/Tizen_FAQ_02.24.13.pdf
http://vandrico.com/database
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888468
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888468
http://www.emeraldinsight.com/10.1108/09556220410520360
http://en.wikipedia.org/wiki/Smart_material
http://en.wikipedia.org/wiki/Smart_material

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen und verwandte Arbeiten
	2.1 Wearable Computing
	2.2 Intelligente Kleidung
	2.3 Der Entwicklungsprozess von Intelligenter Kleidung
	2.4 Industrielle Herstellung von Wearables
	2.5 Do-it-yourself Wearables
	2.6 Prototypen in der Wissenschaft
	2.7 Die Architektur von intelligenter Kleidung
	2.8 Betriebssysteme für Wearables
	2.9 Sensornetzwerke, Verteilte Systeme und Datenmanagement
	2.10 Produkte
	2.10.1 Zephyr BioHarness 3
	2.10.2 Polar Loop

	2.11 Zusammenfassung

	3 Anforderungen an eine Systemarchitektur für intelligente Kleidung
	3.1 Anforderungen an die einzelnen Schichten
	3.1.1 Anwendungen und Laufzeitumgebung
	3.1.2 Einheitliche Schnittstelle für Anwendungen
	3.1.3 Wearable OS
	3.1.4 Computer-Hardware
	3.1.5 Hardware-Schnittstelle

	3.2 Anforderungen aus Entwicklersicht
	3.2.1 Sensorentwickler
	3.2.2 Datenverarbeitungsexperten
	3.2.3 Anwendungsentwickler

	3.3 Weitere Anforderungen
	3.4 Zusammenfassung

	4 Architektur einer Middleware zur Entwicklungsunterstützung
	4.1 Hardware-Schnittstelle und Computer-Hardware
	4.2 Wearable OS
	4.3 Middleware (Datenspeicher, Verwaltung und Verarbeitung)
	4.3.1 Eingabe
	4.3.2 Persistenz
	4.3.3 Verarbeitung
	4.3.4 Ausgabe
	4.3.5 Verwaltung

	4.4 Schnittstelle zu Anwendungen und Laufzeitumgebung
	4.5 Authentifizierung und Autorisierung
	4.6 Vor- und Nachteile der Middleware
	4.7 Zusammenfassung

	5 Eingesetzte Technologien und Umsetzung
	5.1 Computer-Hardware und Betriebssystem
	5.2 Abhängigkeiten
	5.2.1 Tornado
	5.2.2 MongoDB
	5.2.3 Andere Python Bibliotheken
	5.2.4 Sensorspezifische Abhängigkeiten Abhängigkeiten
	5.2.5 Bibliotheken zur Umsetzung der Benutzungsschnittstelle

	5.3 Kommunikationsschnittstellen
	5.4 Umsetzung der Middleware
	5.4.1 Eingabe
	5.4.2 Persistenz
	5.4.3 Verarbeitung

	5.5 Maschinenlesbare Ausgabe / API
	5.6 Analysewerkzeuge
	5.7 Implementierte Filter und Erkennungen
	5.8 Implementierte Beispielanwendungen
	5.9 Weitere Software-Artefakte
	5.10 Herausforderungen und Einschränkungen
	5.11 Zusammenfassung

	6 Nutzerstudie
	6.1 Aufbau und Ablauf der Studie
	6.2 Auswertung
	6.2.1 Persönliche Daten und Kenntnisse
	6.2.2 Unterstützung durch das Systems
	6.2.3 Weitere Merkmale
	6.2.4 Herausforderungen und Verbesserungsmöglichkeiten
	6.2.5 Zusammenfassung

	7 Zusammenfassung und Ausblick
	A Präsentation der Nutzerstudie
	B Fragebogen zur Auswertung der Nutzerstudie
	Literaturverzeichnis

