
Diplomarbeit Nr. 3640

Erweiterte autonome Exploration in

unbekannten Umgebungen

Michael Eberspächer

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

Informatik

Prof. Dr. rer. nat. habil. Paul Levi

Dr. rer. nat. Oliver Zweigle

01.10.2013

02.04.2014

I.1.2, I.2.8, I.2.9, I.4.3

Institut für Parallele und Verteilte Systeme

Universität Stuttgart

Universitätsstraße 38

D - 70569 Stuttgart

Abteilung Bildverstehen

Abstract

Navigation ist ein Begriff, der heutzutage in verschiedenen Bereichen der Robotik und der
autonomen Fahrzeuge weit verbreitet ist und ständig an Bedeutung gewinnt. Logistik auf der
ganzen Welt ist von einer fehlerfreien und effektiven Navigation abhängig, um Kosten –
monetär und zeitlich – so gering wie möglich zu halten. Fasst man den Begriff der
Navigation nun aber weiter und nimmt zusätzlich die Aspekte Selbstlokalisierung und
Exploration hinzu, so entsteht ein breites Spektrum an Möglichkeiten, welche über die bloße
Navigation weit hinausreichen und einen Agenten in vielerlei Hinsicht unabhängig vom
Eingreifen des Menschen autonom die Welt entdecken lässt. Zwar gibt es auf diesem Gebiet
schon diverse Ansätze, dennoch soll mit vorliegender Arbeit ein robustes Framework
entstehen, welches in die Thematik der frontiers einführt. Ergänzend zu vielen anderen
Arbeiten auf diesem Gebiet kommt ein Filtermechanismus zum Einsatz. Außerdem werden
die extrahierten frontiers qualitativ bewertet und eine nutzenbasierte Zielsuche vollzogen.

 Inhaltsverzeichnis

 Seite 2 von 69

Inhaltsverzeichnis

Abstract .. 1

Inhaltsverzeichnis ... 2

1. Einleitung ... 4

1.1. Aufgabenbeschreibung .. 6

1.2. Aufbau und Struktur .. 6

2. Grundlagen ... 7

2.1. State of the Art ... 7

2.2. Terminologie ... 11

2.3. Rahmenbedinungen ... 11

3. Verfahren zur frontier Detektion .. 12

3.1. Definitionen ... 12

3.2. Konvertierung von linear-Space nach cartesian-Space und vice versa 13

3.3. Finden von frontierCells mit Hilfe von occupancy grids .. 14

3.4. 3x3 Nachbarschaftsrelationen .. 14

3.5. Extraktion relevanter frontierRegions ... 16

3.6. Datenmodelle ... 16

3.7. Erste Laufzeitbetrachtung .. 17

3.8. Sonnenstrahleffekt ... 19

3.9. Vorfiltern von Kartenausschnitten ... 21

3.9.1. Betrachtung der zu glättenden Fälle ... 21

3.9.2. Beschreibung des Verfahrens ... 24

3.9.3. Korrektheit und Terminierung .. 26

3.9.4. Laufzeitbetrachtung .. 27

4. Zielsuche und Exploration ... 32

4.1. Qualitätskriterien ... 32

4.2. Bestimmung eines Ziels ... 33

4.3. Ablauf .. 37

4.4. Fallback Strategien .. 37

5. Experimentelle Ergebnisse ... 41

6. Zusammenfassung .. 55

7. Ausblick ... 56

7.1. Algorithmische Erweiterungen .. 56

7.1.1. Adaptive Auflösung in Suchbereich ... 56

7.1.2. Verbessertes iteratives Suchen nach frontierRegions ... 56

7.1.3. Situationsbezogene Anpassung der Explorationsstrategie 57

7.1.4. Zufallskomponente ... 57

 Inhaltsverzeichnis

 Seite 3 von 69

7.2. Erweiterte Sensorik .. 57

7.3. Semantische Erweiterungen .. 58

7.4. Einsatzmöglichkeiten ... 58

7.4.1. Autonomes Fahren .. 58

7.4.2. Industrie und Militär ... 59

Stichwortverzeichnis .. 61

Abbildungsverzeichnis ... 63

Formelverzeichnis .. 65

Sonstige Verzeichnisse ... 66

Literaturverzeichnis .. 67

1. Einleitung

 Seite 4 von 69

1. Einleitung

Exploration unbekannter Gebiete stellt eines der grundlegenden Probleme in der mobilen
Robotik dar. Weit verbreitetet und viel diskutiert auf diesem Gebiet ist der grenzzellenbasierte
Ansatz von Yamauchi [YAM97, YAM98]. Yamauchi gilt als Vorreiter der autonomen
Exploration und sein Konzept spiegelt sich in vielen Arbeiten wieder. Basierend auf seiner
Idee entstand in den letzten Jahren eine Vielzahl an Lösungen für konkretisierte Probleme.
Stochastische [FO05], auf Leistung optimierte [KK12] oder topologiebasierte Erweiterungen
[KLS+05] seien eine Auswahl davon.
Anhand von Abb 1.1 lässt sich die Komplexität dieses Problems und die Verknüpfung der
verschiedenen Teilaspekte erkennen.
Während der Schwerpunkt der Navigation in einer effizienten Pfadplanung zu suchen ist, so
findet sich der Schwerpunkt der Exploration in der Berechnung eines nächsten Zieles,
welches bezogen auf die Aufgabenstellung den Informationsgewinn maximiert. So macht es
zum Beispiel einen Unterschied im Sinne einer möglichst weiträumig aufgedeckten Karte zu
explorieren oder das Finden und Markieren radioaktiver Gebiete als Aufgabenstellung
vorzugeben. Hierbei wird im ersten Fall zum Beispiel ein Lasersensor benötig und das Fahren
Richtung u-Space gewinnbringend sein, wohingegen im zweiten Fall erweiterte Sensorik von
Nöten ist und Gebiete erhöhter Strahlung angefahren werden. Leider gilt es festzustellen, dass
ein optimaler Pfad mit maximal gewinnbringenden Zielen ähnlich dem NP-harten Traveling
Salesman Problem ist. Einige viel versprechende Ansätze nehmen daher Abstand von einem
einzelnen Roboter und ersetzen diesen durch eine Vielzahl von Robotern. Grundlegende
Vorteile hierbei sind unter anderem eine erhöhte Ausfalltoleranz einzelner Systeme, die
Möglichkeit entfernte Kartenabschnitte gleichzeitig erkunden zu können und eine dadurch
verbundene erhöhte Explorationsgeschwindigkeit. Nachteilig sind jedoch der Bedarf einer
Koordinationsstrategie, komplexe Kommunikation und das Verwalten einer verteilt erstellten
Karte. Beispielhaft sei hier der Bedarf nach einer Strategie erwähnt, welche gewährleistet,
dass die verwendeten Roboter unterschiedliche Zielpunkte erkunden [BMF+00].

Abb 1.1: Teilaspekte der mobilen Robotik [JOH07]

1. Einleitung

 Seite 5 von 69

Anlass zu weiteren Untersuchungen liefert die Frage nach einer geeigneten Repräsentation der
zu erstellenden Karte. Viele Ansätze verwenden eine zellbasierte Darstellung und speichern
relevante Informationen direkt in der betroffenen Zelle ab.

Neben einigen anderen Varianten bietet das ROS-Framework eine ideale Arbeitsstütze, um
die Aspekte der Navigation und der damit verbundenen Sensorik ohne großen Aufwand in die
eigenen Projekte einbinden zu können. Ausgehend von diesem Framework besteht nun die
Möglichkeit bereits existierende Stacks weiter zu optimieren, oder eigene Stacks darauf
aufbauend zu entwerfen, um spezifische Aufgaben zu lösen. Sowohl die Lokalisierung, die
Pfadplanung als auch die Aggregation verschiedener Sensordaten bereits zur Verfügung
stellend, fehlt dem ROS-Framework bis dato aber eine Abstraktionsschicht, welche sich den
vorhandenen Funktionalitäten bedient, und einen Stack bildet, welcher es dem Agenten
ermöglicht, in unbekannten Gebieten selbständig und möglichst effizient eben diese zu
erkunden.
Basierend auf den Stacks slam, gmapping und sb_navigation werden frontiers eingeführt, um
über diese möglichst interessante und informative Punkte auf der bereits explorierten Karte zu
finden. Neben der Erläuterung theoretischer Hintergründe und einer Reihe von Abwägungen
unterschiedlicher Ansätze liegt das Hauptaugenmerk auf dem Finden von frontiers und deren
qualitativen Bewertung.
Da der Anspruch in Echtzeit zu arbeiten besteht, werden sämtliche Komponenten auf deren
Laufzeitverhalten untersucht und gegebenenfalls so lange optimiert, bis ein nachweislich
zufriedenstellendes Ergebnis zu Tage tritt.

Von den theoretischen Grundlagen über eine simulationsgestützte Entwicklung bis hin zu
Tests in realer Umgebung deckt diese Arbeit den vollständigen Entwicklungszyklus ab und
stellt zu guter letzt den Stack frontier_navigation zur Verfügung.

Für dieses Projekt wurde die Distribution ROS FUERTE TURTLE [ROS] unter anderem mit
den Paketen gmapping und sb_navigation verwendet. Für die Simulation kamen die Pakete
stageros, rxgraph und rviz zum Einsatz.

1. Einleitung

 Seite 6 von 69

1.1. Aufgabenbeschreibung

Die Aufgabe dieser Diplomarbeit besteht aus dem Entwurf und der Implementierung eines
Algorithmus zur autonomen Exploration eines autonomen Roboters in unbekannten
Umgebungen. Bestehende Ansätze in diesem Bereich sind meist in Bezug auf Wegplanung
und Laufzeit nicht optimal. Ziel dieser Arbeit soll es sein unabhängig vom eingesetzten
Lokalisierungssystem und dem Hardwareaufbau des Roboters ein allgemeines Framework zur
autonomen Exploration zu entwerfen. Dabei ist besonders eine Optimierung notwendig, die
doppelte Wege sowie sogenannte „Stuck“ Situationen ausschließt und gleichzeitig die
Zykluszeiten eines typischen Robotersystems (30ms) einhält.
Dazu sind in dieser Arbeit zunächst vorhandene Ansätze zu untersuchen. Daraufhin soll
basierend auf ROS eine Komponente entwickelt werden, die sich dynamisch in das
Framework einfügt und den Roboter selbständig optimiert nach bestimmten Vorgaben
explorieren lässt.

1.2. Aufbau und Struktur

Kapitel 2 stellt bereits geleistete Arbeiten auf dem Gebiet der autonomen Exploration vor
und gibt in Kürze einen Einblick in die für die Arbeit relevante Terminologie. In Kapitel 3
wird anhand von [YAM97, FO05, KK12] thematisch in frontiers und frontierRegions
eingeführt. Es wird gezeigt wie diese berechnet werden und wie anhand eines
Filtermechanismus die zu erwartenden Ergebnisse verbessert werden können. Kapitel 4 setzt
sich basierend auf den extrahierten frontierRegions mit der für die Exploration wichtigen
Zielsuche auseinander, legt den vollständigen Explorationszyklus dar und stellt fallback
Strategien vor. Eine Ausarbeitung der experimentellen Ergebnisse findet in Kapitel 5 statt.
Kapitel 6 fasst die Arbeit zusammen und Kapitel 7 bietet einen Ausblick in mögliche
Anpassungen sowie Erweiterungen. Desweiteren wird anhand aktueller Diskussionen und
Umsetzungen zum Thema der autonomen Exploration die Verwendbarkeit veranschaulicht.

Der Autor zeigt nach und nach wiederholt die Gedanken und theoretischen Grundlagen eines
Ansatzes auf, versucht diesen zu validieren, erörtert die Vor- und Nachteile und entwickelt
daraus entweder einen besseren Ansatz oder fährt mit einer weiteren Problematik fort.

2. Grundlagen

 Seite 7 von 69

2. Grundlagen

Im Folgenden wird ein ausführlicher Exkurs über die aktuell verfügbaren Technologien
stattfinden und diese anhand von ausgewählten Veröffentlichungen in Kürze beschrieben.
Desweiteren wird die für das Verständnis dieser Arbeit wichtige Terminologie erörtert und
bestehende Einschränkungen und Rahmenbedingungen skizziert.

2.1. State of the Art

Das Reportoire bereits vorhandener Lektüre und Technik zu dieser Thematik ist bereits
sehr erschöpfend. Einige für diese Arbeit grundlegenden Artikel werden im Verlauf dieses
Kapitels vorgestellt. Es wird versucht die Unterschiede zur vorliegenden Arbeit an
ausgewählten Stellen herauszuarbeiten, um den Beitrag dieser Arbeit abschätzen zu können.

Yamauchi [YAM97] führt die Begrifflichket der frontiers beziehungsweise frontierRegions
ein und definiert diese auf einem zellbasiertem Gitter. Die einzelnen Zellen werden hierfür in
die drei Gruppen frei – belegt – unbekannt unterteilt. Die Einteilung in die jeweilige Gruppe
ist Abhängig von der Belegungswahrscheinlichkeit der jeweiligen Zelle und entsprechend
definierten Grenzwerten. Viele der im Weiteren vorgestellten Techniken verwenden diesen
Ansatz in mehr oder weniger abgeänderter Form. Yamauchi extrahiert hierfür im ersten
Schritt frontiers (explorierte Zellen, die an unbekanntes Gebiet grenzen) und fasst
zusammenhängende frontiers mittels Kantendetektion zu frontierRegions zusammen. Die am
nächsten gelegene frontierRegion wird als nächstes Ziel definiert und unterstützt durch ein
kollisionsvermeidendes Verfahren angefahren. Beim Erreichen wird ein 360° Scan vollzogen,
die frontierRegion als erledigt markiert und die nächste Iteration eingeleitet. Unter anderem in
einem Flur mit angrenzendem Büro wurde dieses Verfahren bereits erfolgreich getestet.
Aufbauend darauf stellt Yamauchi in einer weiteren Publikation [YAM98] ein Verfahren vor,
welches es in den Grundzügen ermöglicht mit mehreren Robotern gleichzeitig zu explorieren.
Er erweitert seinen ersten Ansatz soweit, dass jeder Roboter ein localGrid erstellt, sobald eine
frontierRegion erreicht ist. Dieses localGrid wird in das robotereigene globalGrid integriert
und an die anderen Teilnehmer versendet. Da das Hauptaugenmerk auf der Erprobung einer
dezentralisierten Strategie mit minimalen Kommunikationskosten lag, gibt es hier keine
weiteren Absprachen unter den teilnehmenden Robotern. So kann es zu dem Fall kommen,
dass sie sich gegenseitig behindern oder die gleiche frontierRegion als Ziel auswählen.
Unter anderem in einer Innenanwendung konnte dieses Verfahren bereits bestätigt werden.
In [BMF+00] wird diese Thematik weiter erörtert und ein Verfahren vorgestellt, mit Hilfe
dessen die Exploration effektiv auf die Anzahl der verwendeten Roboter verteilt werden kann.
Hierfür wird eine Kostenfunktion definiert, welche proportional abhängig zum Belegungswert
einer Zelle deren Traversierungskosten ermittelt. Ein Pfadplaner kann nun ausgehend von den
einzelnen Traversierungskosten einen optimalen Pfad von A nach B finden. ��,�� beschreibt

hierbei die Kosten für Roboter i um nach <x,y> zu gelangen. In einem weiteren Schritt wird
versucht die Sichtweite der Roboter an den zuvor bereits berechneten frontiers grob
abzuschätzen. ��,� beschreibt den daraus entstehenden Nutzen jeder frontier <x,y>. ��,�� und

��,� werden nun gegeneinander abgewogen und die optimale Kombination Roboter – frontier

2. Grundlagen

 Seite 8 von 69

gesucht. Der Nutzen jeder Zelle im Sichtbereich der gewählten frontier wird reduziert und ein
Ziel für den nächsten Roboter gesucht. Durch die Reduktion des Nutzens wird gewährleistet,
dass zwei Roboter jeweils unterschiedliche Ziele anfahren. Jedoch wird außer dem
Sichtbereich keine weitere qualitative Auswertung von frontiers vorgenommen.
Experimente zeigen, dass mehrere koordinierte Roboter einen Vorteil gegenüber einem
einzelnen Roboter bezogen auf die Explorationsgeschwindigkeit haben.
[MSW01] stellt die Frage, in welchem Kontext welche Informationsquellen von Bedeutung
sind. Zum Beispiel benötigt ein explorierender Roboter, welcher nach Wasser in Eisform
sucht, unter anderem Temperaturinformationen, um im Sinne seiner Aufgabe explorieren zu
können. Die Autoren beschäftigen sich im Weiteren mit der konkreten Aufgabe
Traversionskarten zu erstellen, die im späteren Verlauf unter anderem von verschiedenen
Robotern verwendet werden können. Hauptaugenmerk liegt hierbei auf einer sicheren,
zuverlässigen und effizienten Navigation durch das erfasste Gebiet. Um solch eine
Traversionskarte zu erstellen schlagen die Autoren vor, jeder Zelle einen Attributvektor A(ar,
ah, at, ach, act)

T und einen Nutzenvektor G(gf, gc, gr)
T zuzuordnen. Der Attributvektor A

beinhaltet somit Informationen über die Erreichbarkeit, Höhe und Traversierbarkeit, sowie
über die Zuverlässigkeit der Höhe und Traversierbarkeit. Durch den Nutzenvektor G lässt sich
eine Aussage über frontiers und die Anpassung von act und ar machen. In simulierter binärer
(traversierbar/nicht traversierbar) Umgebung konnten erfolgreich Traversionskarten erstellt
werden.
[KLS+05] untersucht im Gegenzug zu [MSW01] keine Traversions-, sondern
topologiebasierte Karten. Das dafür verwendete Verfahren läuft in sechs Schritten ab: Scan –
Glättung der Rohdaten – Extraktion von Kanten – Bestimmung von vier Raumwänden –
Festlegung eines Raumes um den Roboter – Bestimmung von Öffnungen und Verdeckungen.
Ein großer Vorteil dieses Verfahrens liegt darin, dass aufgrund der verwendeten
Kartenrepräsentation Türen und Durchgänge denkbar einfach erfasst werden können.
Nachteilig ist jedoch, dass die Repräsentation ausschließlich anhand von rechtwinkligen
Räumen erfolgt. In einer simulierten Umgebung ohne Odometriefehler konnte dieses
Verfahren durch manuelles Navigieren bereits erfolgreich angewendet werden.
Eine weitere Technik zur autonomen Exploration wird in [GKC03] vorgestellt. Im Gegenzug
zu den meisten anderen Verfahren besteht die Aufgabe der Exploration hierbei nicht
ausschließlich darin das Vorkommen von u-Space zu verringern, sondern zu großen Teilen
darin, die Informationssicherheit entdeckter Hindernisse zu erhöhen. Begründet wird dies
durch den Umstand, dass Fehler in der Odometrie zum Beispiel durch Objekterkennung
entfernt werden können. Sind diese Objekte aber ungenau lokalisiert, so wird ein Fehler durch
einen anderen ersetzt. Darauf aufbauend versuchen die Autoren einen nächsten Zielpunkt so
zu wählen, dass zum einen u-Space aufgedeckt, zum anderen aber explizit die Qualität im
Umkreis von Hindernissen erhöht wird. Um dies zu erreichen wird das inverse sensor model
beschrieben und angewandt.
Ein zufallsbasierter Ansatz der Exploration wird in [FO05] vorgestellt. Hierfür wird die
Datenstruktur sensor-based random tree (srt) vorgestellt. Jeder Knoten dieses Baumes enthält
eine kollisionsfreie Konfiguration q und eine dazugehörige Beschreibung der local save
region S(q), wie sie durch die Sensorik erfasst wurde. Die Erweiterung des Baumes erfolgt
durch eine zufällig ausgewählte Explorations-Richtung, so dass unter anderem ��	�
 ∈
	
(�����). Es werden die Varianten SRT-Ball und SRT-Star definiert. SRT unterscheidet in

2. Grundlagen

 Seite 9 von 69

den Grundzügen nicht zwischen f-/o-/u-Space und kann laut den Autoren in großen
Umgebungen zu einer ineffektiven Exploration führen. Um diesem entgegenzutreten werden
zusätzlich die auf frontiers basierenden Version FB_SRT-Ball und FB_SRT-Star vorgestellt,
um die Exploration in Richtung unerschlossener Bereiche zu lenken. Diese werden im
Hauptteil genauer betrachtet. Experimente zeigen, dass beide FB_ Varianten gegenüber den
rein zufälligen bei gleicher Anzahl Iterationen eine deutlich höhere Explorationsquote
aufweisen.
[KK12] stellt zwei Varianten vor, die im Gegenzug zu vielen anderen Ansätzen die Suche
nach frontiers nicht global, sondern in einer lokalen Umgebung um den Roboter herum
durchführen. Ziel ist es die Rechenzeit deutlich zu reduzieren. Wavefront Frontier Detection
sucht hierbei alle frontierCells auf der Karte, verwirft aber alle bereits besuchten Zellen und
nutzt nur diejenigen, welche in in f-Space liegen. Fast Frontier Detection jedoch ist eine
Variante, die von der globalen Karte völlig entkapselt funktioniert. Der grundlegende
Gedanke besteht darin, die Suche nach frontiers nur in den neu erzeugten Sensordaten zu
vollziehen. Es ist leicht einzusehen, dass dies deutlich schneller geschieht, als andere
Varianten, die auf der ganzen Karte nach frontiers suchen. Hierfür werden die gelieferten
Sensordaten zuerst nach deren Winkel sortiert um anschließend die äußersten Punkte pro
Scanlinie miteinander zu verbinden. Entlang dieser entstandenen Contour werden nun
frontiers extrahiert. Im Weiteren wird ein Verfahren vorgestellt, welches es ermöglicht
frontiers für spätere Zwecke zu speichern und bereits besuchte frontiers in folgenden
Iterationen zu ignorieren. Experimente zeigen, dass FFD deutlich schneller als WFD und
WFD wiederum deutlich schneller als bis dato aktuelle andere frontier extrahierende
Algorithmen arbeitet.
Weitere Strategien zur Exploration von Gebäuden werden in [GL02] vorgestellt. Diese Arbeit
liefert einen Einblick in die Thematik und beschreibt unter anderem detailliert, wie extrahierte
Kartenmodelle aggregiert werden. Für die Exploration werden desweiteren beispielsweise
free-curves verwendet und es wird die Möglichkeit diskutiert den nächsten Zielpunkt zufällig
auszuwählen.
[LMB+02] trägt das Explorationsproblem vom Inneren eines Gebäudes in die Außenwelt und
entwickelt im Gegenzug zu den weiter oben beschriebenen Techniken eine Lösung, die auf
visueller Erfassung der Umgebung basiert. Es wird anhand von Bildern eine digitale
Höhenkarte erstellt und diese für Traversierungszwecke verwendet. Außerdem wird die
Selbstlokalisierung anhand von markanten Punkten in der Landschaft, sowie anhand von
Panoramabildern erörtert. Der erhöhten Anforderung in der Außenanwendung zum Trotz
konnte experimentell die Verwendbarkeit der vorgestellten Techniken überprüft und bestätigt
werden. Unter anderem gelang es dem verwendeten Roboter LAMA einen zwei Meter hohen
Hügel zu erklimmen.
Ein bereits praktisch umgesetztes und erfolgreich erprobtes Verfahren findet sich in
[TTW+04]. Kernaspekt dieser Arbeit ist es, einen Roboter zu entwickeln, welcher die
Fähigkiet besitzt unter Tage gelegene Minen autonom zu erkunden. Der verwendete Roboter
Groundhog ist symmetrisch aufgebaut und kann somit in beide Richtungen explorieren ohne
wenden zu müssen. Das vorgestellte Verfahren verwendet wie viele anderen eine
Kombination aus Laserscans uns SLAM, um eine Umgebungskarte zu erstellen. Nächste
Zielpunkte werden hierbei aber nicht durch das Auswerten von frontierCells bestimmt.
Vielmehr wird in einer Enfernung von fünf Metern vor dem Roboter eine goalArea definiert

2. Grundlagen

 Seite 10 von 69

und diese solange iterativ vergrößert, bis ein A* einen Pfad dorthin planen kann. Es wird im
Gegenzug zu den meisten anderen Techniken zusätzlich eine Strategie entwickelt, welche es
dem Roboter ermöglicht zu explorieren, selbst wenn aktuell keine geeigneten Ziele
gefunden werden. Experimente in unterschiedlichen Minen lieferten positive Ergebnise,
zeigten aber auch physikalische Grenzen auf. So sind zum Beispiel viele verlassene Minen
überflutet und somit für Groundhog nicht explorierbar.
Eine weitere Dimension der autonomen Exploration liefert [SCJ+05]. Bereits vorgestellte und
bekannte Verfahren werden in dieser Arbeit erweitert, um selbst einen fliegenden Roboter
autonom navigieren zu lassen. Hierbei wird initial ein Pfad von der aktuellen Position bis hin
zum Ziel berechnet. Ähnlich wie in weiter oben beschriebenen Verfahren kommt spezifische
Sensorik zum Einsatz, welche ein lokales Modell der Karte erstellt. Basierend darauf passt ein
model predictive control Algorithmus den Pfad mit jeder Iteration an und gewährleistet einen
kollisionsfreien Flug. Schwerpunkt liegt hierbei auf der Passierbarkeit von Hindernissen.
Kann sich ein bodenbetriebener Roboter eine Kollision mit einem Hinderniss leisten, so
resultiert eine Kollision in der Luft in der Regel in einem Absturz. Desweiteren wird ein
Verfahren vorgestellt, welches es ermöglicht Hindernisse zu ignorieren, welche für das
Flugobjekt keine Gefahr bedeuten. Fallende Blätter seien ein Beispiel hierfür. In einem
ungefähr 50m auf 50m großen mit Hindernissen bestückten Gebiet wurde dieses Verfahren
bereits mit einem 3,5m langem Fluggerät erfolgreich getestet.

Zusammenfassend wurden bereits viele Verfahren entwickelt und getestet. Doch ist jedes
dieser Verfahren einzig für die definierte Aufgabe zu gebrauchen. Ein Erkundungsroboter für
das Innere von Gebäuden wird aufgrund der unterschiedlichen Gegebenheiten im offenen
Gelände voraussichtlich wenig zufriedenstellende Ergebnisse liefern. Selbiges gilt vice versa.
Desweiteren fanden bis dato keine großflächigen Tests statt.

Im Gegenzug zu den meisten vorgestellten Veröffentlichungen wird in dieser Arbeit detailliert
die zugrunde liegende Algorithmik beschrieben und evaluiert, sowie ein effektiver
Filtermechanismus entwickelt, um qualitativ hochwertigere frontierRegions extrahieren zu
können. Desweiteren werden Ziele weder zufällig, noch nach dem in [YAM97] vorgestellten
Prinzip gesucht, sondern in optimierter Form.

2. Grundlagen

 Seite 11 von 69

2.2. Terminologie

In den meisten Veröffentlichungen wird der Begriff frontier für den Grenzbereich
zwischen u-Space und f-Space verwendet. Um während dieser Ausarbeitung besser
unterscheiden zu können wird eine etwas detailliertere Begrifflichkeit verwendet. Mit
frontierCell wird eine einzelne dieser Grenzzellen in indizierter Version beschrieben.
frontierPoint beschreibt analog dazu einen Grenzpunkt in kartesischen Koordinaten. Ein
Verbund zusammenhängender frontierCells (frontierPoints) bildet eine frontierRegion. Die
Bezeichnung frontier wird in dieser Arbeit als Oberbegriff für vorangehende Bezeichnungen
verwendet.
Desweiteren wird auf eine deutsche Übersetzung von Fachbegriffen, Algorithmen-
bezeichnungen, Variablen und an andereren Stellen verzichtet.

2.3. Rahmenbedinungen

Die in dieser Arbeit beschriebenen Mechanismen beruhen stets auf der Annahme, dass
sich der Roboter auf einer Ebene befindet und dass die verwendete Sensorik ein ausreichend
genaues Abbild der Umgebung erfassen kann.

Desweiteren haben die auf den Abbildungen zu sehenden Zellgitter eine Zellgröße von 1m x
1m.

3. Verfahren zur frontier Detektion

 Seite 12 von 69

3. Verfahren zur frontier Detektion

Grenzzellen sind für eine autonome Exploration von großem Interesse, da sich dahinter
potentiell interessantes Gebiet verbirgt. Der erste Schritt in Richtung autonomer Exploration
ist nun also das Finden von einfachen frontierCells. Darauf aufbauend werden in weiteren
Schritten die Nachbarschaftsbeziehungen berechnet, um daraus wiederum Aussagen über
Verbünde von frontierCells treffen zu können. Der Autor geht hierbei davon aus, dass ein
Verbund von zusammenhängenden frontierCells einen höheren Informationsgehalt
gewährleistet, als eine einzelne frontierCell.
In diesem Kapitel werden Verfahren vorgestellt, die es ermöglichen frontierCells aus einer
zellbasierten Karte zu extrahieren. Weiterführend wird gezeigt, wie anhand der zuvor
gefundenen frontierCells letztendlich frontierRegions berechnet werden können. Im weiteren
Verlauf wird auf das Problem ungenauer Sensordaten eingegangen und versucht dieses
anhand eines angepassten Filtermechanismus zu lösen. Jeder vorgestellte Ansatz wird auf
seine Verwendbarkeit in einem Echtzeitsystem hin untersucht.

3.1. Definitionen

frontierCell:
Zelle, die in f-Space liegt und an u-Space angrenzt.

 ∀� ∈ ���	|	���(�) = �_
���� ∧ ∃" ∈ #$�%ℎ'()*+(�)	|	���(") = �_
����
⇒ � ∈ -*(#.�$*�$//+

eq i

oder

 ∀� ∈ ���	|	���(�) = �_
���� ∧ ∃" ∈ #$�%ℎ'()*+(�)	|	���(") = �_
����
⇒ � ∈ -*(#.�$*�$//+

eq ii

frontierRegion:
Verbund von frontierCells, die eine Zusammenhangskomponente anhand ihrer
Nachbarschaftsrelationen bilden.

 0 ⊆ -*(#.�$*�$//+ = -*(#.�$*2$%�(#3 ⇔ ∀�∃":	" ∈ #$�%ℎ'()*+(�)	|	�, " ∈ 0 eq iii

3. Verfahren zur frontier Detektion

 Seite 13 von 69

3.2. Konvertierung von linear-Space nach cartesian-Space und vice versa

Die Konvertierung von indizierten Punkten zu kartesischen Koordinaten ist aufgrund der
Flexibilität der Karte nicht trivial und soll im Folgenden in wenigen Sätzen vorab erörtert
werden.

cellToPoint:
Herfür werden zuerst die entsprechende Reihe und Spalte im Gitter berechnet, danach die
Auflösung und Verschiebung mit einbezogen und letztendlich der Mittelpunkt der Zelle
berechnet.

 6(/ = 	 �#7$8	�(7	9�.ℎ eq iv

 *(9 = 	 �#7$89�7.ℎ eq v

 8 = 6(/ ∙ *$+ + 0,5 ∙ *$+ + 8_(*% = *$+ ∙ (6(/ + 0,5) + 8_(*% eq vi

 > = *(9 ∙ *$+ + 0,5 ∙ *$+ + >_(*% = *$+ ∙ (*(9 + 0,5) + >_(*% eq vii

pointToCell:
Um willkürliche Punkte verarbeiten zu können, muss zuerst das Zentrum der aktuellen
Zelle berechnet werden. Dies geschieht, indem entlang beider Achsen minimiert und dann
zentriert wird.

 8_6$#.$* = *$+ ∙ (-/((* ?�(�#.. 8*$+ A + 0,5) eq viii

 >_6$#.$* = *$+ ∙ (-/((* ?�(�#.. >*$+ A + 0,5) eq ix

Ausgehend vom Zellzentrum findet sich die indizierte Version des Punktes, indem eq iv in
eq vi und eq v in eq vii eingesetzt und schließlich eq vi und eq vii nach index umgeformt
und addiert werden.

 �#7$8 = ?>_6$#.$* − >_(*%
$+ − 0,5A ∙ 9�7.ℎ + 8_6$#.$ − 8_(*%

*$+ − 0,5 eq x

3. Verfahren zur frontier Detektion

 Seite 14 von 69

3.3. Finden von frontierCells mit Hilfe von occupancy grids

Ein erster trivialer Ansatz besteht darin, über den gewünschten Suchbereich zu iterieren
und für jede gefundene f-Space Zelle alle ihrer u-Space Nachbarn zu frontierCells
hinzuzufügen. Nun gilt es aber festzustellen, dass hierbei duplizierte Einträge entstehen. Hat
zum Beispiel die f-Space Zelle i den u-Space Nachbarn i+w, so hat auch die f-Space Zelle i+1
den u-Space Nachbarn i+w, wodurch die Zelle i+w zweimal zu frontierCells hinzugefügt
wird. Dies ist wenig praktikabel, da entweder ein aufwendiges Entfernen von Duplikaten (eq
xix) durchgeführt werden müsste, oder aber eine höhere Laufzeit in weiteren
Verarbeitungsschritten in Kauf genommen wird.
Darauf aufbauend umgehen die Definitionen eq i und eq ii dieses Problem, da nur die aktuell
betrachtete Zelle zu frontierCells hinzugefügt werden kann. Ein weiterer positiver
Nebeneffekt entsteht durch die Feststellung, dass im Gegenzug zur ersten Variante nicht
zwingend alle acht Nachbarn betrachtet werden müssen, sondern nur so viele, bis eine u-
Space Zelle gefunden wird. In den meisten Fällen wird diese Verbesserung nicht von Belang
sein, da die meisten f-Space Zellen von f-Space umgeben sein werden. Dennoch kann selbst
eine Optimierung in kleinem Maßstab bezogen auf sehr viele Iterationen durchaus auf einen
deutlichen Laufzeit Gewinn hinauslaufen. Letztendlich steht nun ein mit frontierCells
gefüllter Vektor – folgend mit frontierIdxs bezeichnet – zur Verfügung. Aus diesem können
nun wahllos Zellen für die Exploration herangezogen werden, doch haben diese einzelnen
Zellen alle den gleichen Informationsgehalt (frontierCell) und tragen zu einer effektiven
Exploration in ihrer Rohform nur beschränkt bei. Um den Informationsgehalt zu erhöhen ist
unter anderem die gegenseitige Lage der frontierCells interessant. Hat eine frontierCell zum
Beispiel keine Nachbarn ist sie deutlich uninteressanter, als eine frontierCell mit mehreren
Nachbaren, da der zu erkundende u-Space dadurch größer und potentiell interessanter wird.

3.4. 3x3 Nachbarschaftsrelationen

Nachbarschaftsrelationen lassen sich bekanntermaßen auf einfache Art und Weise durch
Adjazenzmatritzen ausdrücken. Eine herkömmliche Adjazenzmatrix hat hierbei n x n
Einträge, wobei n die Anzahl der verwendeten Knoten (hier frontierCells) ist. Beachtet man
aber den Umstand, dass eine Zelle nur acht Nachbarn haben kann und eine herkömmliche
Adjazenzmatrix somit im Großen aus Nullen bestehen würde, bedarf es eines etwas anderen
Datenformates um die Nachbarschaftsrelationen effizient speichern zu können. Ein
geschachtelter Vektor bietet hierfür das optimale Werkzeug: C$6.(* < C$6.(* < .>�$ >	>.
Es wird über frontierIdxs iteriert und im Selbigen nach Nachbarzellen gesucht. Dadurch
entsteht der geschachtelte Vektor adjacencyMatrixOfFrontiers, dessen Größe nun nicht mehr
durch F(#G) , sondern durch F(8#) abgeschätzt werden kann, und somit linear in
Abhängigkeit von |-*(#.�$*I78+| ist. Die Laufzeit des Vorgangs an sich ist durch F(8#G)
beschränkt, kann durch eine einfache Annahme aber deutlich verbessert werden.

3. Verfahren zur frontier Detektion

 Seite 15 von 69

+.�*.I#7$8 = 6$#.$* − *� − 9 × *�
for i = 0 to 2ry do

for j = 0 to 2rx do
�#7$8 = +.�*.I#7$8 + " + � × 9
…

Code 3.1: Finden von frontierCells in Rechteck

Annahme: frontierIdxs ist sortiert

Beweis: Erfolgt die Suche nach frontierCells in einem Strikt einzuhaltendem

rechteckigen Muster, so ergibt sich Code 3.1:

�#7$8� = +.�*.I#7$8 + "V + �V × 9

�#7$8�WX = +.�*.I#7$8 + �"V + 1� + �V × 9

∨

�#7$8� = +.�*.I#7$8 + "V + �V × 9 | "V = 2*�

�#7$8�WX = +.�*.I#7$8 + 0 + ��V + 1� × 9

Zu zeigen ist: �#7$8� < �#7$8�WX

= 0

+.�*.I#7$8 < +.�*.I#7$8 + 1

+.�*.I#7$8 + "V + �V × 9 < +.�*.I#7$8 + �"V + 1� + �V × 9

"V < "V + 1

+.�*.I#7$8 + "V + �V × 9 < startIndex + 0 + ��V + 1� × w | 9 = 2*� + 1

2*� + �V × �2*� + 1� < ��V + 1� × �2*� + 1�
2*� + 2*��V+ �V < 2*��V + �V + 2*� + 1

0 < 1
�. $. 7.

Folgende Eigenschaften lassen sich daraus ableiten:

∃� | -*(#.�$*I78+a�b = -*(#.�$*I78+a� + 1b − 1

⇒ *�%ℎ.�-*(#.�$*I78+a�b� = -*(#.�$*I78+a� + 1b

∃� | -*(#.�$*I78+a�b = -*(#.�$*I78+a� − 1b + 1

⇒ /$-.�-*(#.�$*I78+a�b� = -*(#.�$*I78+a� − 1b

∀" > �: -*(#.�$*I78+a"b ≠ {'(..(����; /$-.f(..(����; *�%ℎ.f(..(����}

∀" < �: -*(#.�$*I78+a"b ≠ {.(����; /$-.h(����; *�%ℎ.h(����}

Daraus ergibt sich eine durch F�#�# − 1� × 3 + 2#� = F�3#G − #� beschränkte
Laufzeit.

3. Verfahren zur frontier Detektion

 Seite 16 von 69

3.5. Extraktion relevanter frontierRegions

Der durch adjacencyMatrixOfFrontiers vorliegende Datensatz hat bereits einen deutlich
erhöhten Informationsgehalt als die bloßen frontierCells an sich, da über deren
Nachbarschaftsbeziehungen Aussagen getroffen werden können. Noch mehr Information
steckt aber hinter einer größeren Menge zusammenhängenden frontierCells. Ziel dieses
Abschnitts ist es die gefundenen frontierCells in frontierRegions zu gruppieren und im
optimalen Fall scharfe Kanten zwischen f-Space und u-Space zu extrahieren.
Mit Hilfe der Graphentheorie [RUO13] und einem auf dieses Problem zugeschnittenem weiter
entwickeltem Algorithmus zur Detektion von Zusammenhangskomponenten steht nach einer
rekursiven Suche ein geschachtelter Vektor fronterRegions zur Verfügung, welcher alle im
Suchbereich entdeckten frontierRegions enthält.
Wie in Abb 3.2 zu sehen steht in der ersten Spalte von adjacencyMatrixOfFrontiers jeweils
der Startknoten und in den folgenden Spalten die dazugehörigen Nachbarknoten. Nun wird
nacheinander jeder Knoten ni besucht. Ist nx der aktuelle Knoten, so werden alle seine
Nachbarknoten nj und wiederum deren Nachbarknoten nk besucht. Bereits besuchte Knoten
werden markiert, wodurch ein Abbruchkriterium für die Rekursion entsteht. Mit jeder
abgebrochenen Rekursion wird eine frontierRegion berechnet.

3.6. Datenmodelle

Abb 3.1 zeigt einen Ausschnitt aus einer Karte und deren Legende. Basierend auf der
Karte wurde in den vorangehenden Kapiteln gezeigt, welche Datensätze auf welche Art zu
extrahieren sind.

 o-Space

 u-Space

 frontierCells mit Index

 f-Space

x robotPos

72 78 79 80

63 64 68 69 70

 60

 x

36 37

 24

 12 13 15 16

 4 7 8

 Abb 3.1: Schematische Darstellung eines occupancy grid

3. Verfahren zur frontier Detektion

 Seite 17 von 69

Abb 3.2 liefert einen Überblick über die verwendeten Datenstrukturen und zeigt zudem das
Resultat der vorangehenden Algorithmen. Die dick gedruckten Ziffern dienen der
Nummerierung innerhalt der Rekursion.

3.7. Erste Laufzeitbetrachtung

Im Verlauf dieses Unterkapitels werden die einzelnen Schritte der frontier Detektion
hinsichtlich Laufzeit und Speicherverbrauch untersucht. Das diskutierte Ergebnis wird als
Vergleichsbasis für folgende Kapitel und Ansätze dienen.

Finden von frontierCells
Jede f-Space Zelle x innerhalb eines Radius r wird bezogen auf die Gleichgungen eq i

oder eq ii untersucht. Daraus ergibt sich eine von r abhängige quadratische Laufzeit. Jedoch
spielt die Häufigkeitsverteilung zwischen u-/f-/o-Space eine Rolle. So steigt die Laufzeit mit
erhöhter Wahrscheinlichkeit von f-Space, da ausgehend von x bis zu acht Nachbarn besucht
werden müssen.

 F��1 − �� ∙ 7G + � ∙ 8 ∙ 7G�	|	7 = 2* ∧ p = P(f_Space) eq xi

Nachbarschaftsrelationen
Wie weiter oben schon beschrieben lässt sich der Speicherverbrauch für die entstehende

Adjazenzmatrix unter der Bedingung, dass eine Zelle maximal acht Nachbarn haben kann,
durch eq xii abschätzen. Desweiteren ist die Laufzeit durch eq xiii beschränkt.

 F(8#), # = |-*(#.�$*�$//+| eq xii

 F�3#G − #�, # = |-*(#.�$*�$//+|	 eq xiii

Extraktion von frontierRegions
Während der Rekursion wird jeder Knoten genau einmal besucht. Gewährleistet wird dies

durch ein entsprechend gesetztes Flag. Jeder Knoten besucht dessen Nachbarknoten, welche
wiederum ihre Nachbarknoten besuchen, usw. Dadurch entsteht der Bedarf effizient in der
Adjazenzmatrix A (nx8) nach Knoten suchen zu können. Finden sich die Knotennummern in
der ersten Spalte, so kann im einfachsten Fall in F(#) Schritten die gesuchte Knotennummer
gefunden werden. Von maximal acht Nachbarknoten pro Knoten ausgehend ergibt sich somit
eq xiv.

vector <unsigned int> frontierIdxs

vector <vector <unsigned int>> adjacencyMatrixOfFrontiers

vector <vector <unsigned int>> frontierRegions

frontierIdxs = {4, 7, 8, 12, 13, 15, 16, 24, 36, 37, 60, 63, 64, 68, 69, 70, 72, 78, 79, 80}

adjacencyMatrixOfFrontiers = {{4, 12, 13}, {7, 8, 15, 16}, {8, 7, 16}, {…}, {80, 70, 79}}

frontierRegions = {{1, 4, 12, 13}, {2, 7, 8, 15, 16, 24}, {3, 36, 37}, {4, 60, 68, 69, 70, 78, 79, 80}, {5, 63, 64, 72}}

Abb 3.2: Anfallende Datenstrukturen und Datensätze bei der Suche nach frontierRegions

3. Verfahren zur frontier Detektion

 Seite 18 von 69

ry

rx

robotPos

height

width

map

search area

Abb 3.3: Schematische Darstellung einer Karte mit
Suchgebiet

 F�8#G�, # = |-*(#.�$*�$//+| eq xiv

Es ist offensichtlich, dass das Suchen nach Knoten in A auf diese Weise wenig effizient ist.
Besser ist es die Knoten zusätzlich in einer Hashmap zu speichern, um dadurch in F(1)
suchen zu können. Der zusätzliche Speicherverbrauch ist hierbei vernachlässigbar. Eq xv gibt
die verbesserte Laufzeit an.

 F(8#), # = |-*(#.�$*�$//+| eq xv

Die Gleichungen eq xi, eq xiii und eq xv betrachtend entsteht für die Detektion von
frontierRegions eine durch eq xvi beschränkte Laufzeit.

 87G + 37n − 7G + 87G eq xvi

Bedingt durch den Umstand, dass für einen direkten Vergleich # = 7G gesetzt wurde, gilt
diese Laufzeit als sehr grob und nie erreichbar. Das Tatsächliche Verhältnis zwischen 7G und
n lässt sich durch Tabelle 3.1 erschließen. Demzufolge lässt sich der quartische Teilterm
ignorieren und eine quadratisch beschränkte Laufzeit folgern.

3. Verfahren zur frontier Detektion

 Seite 19 von 69

3.8. Sonnenstrahleffekt

Ein Nebeneffekt der Sensorik besteht darin, dass nicht mit beliebig genauer Auflösung
abgetastet werden kann. In Abb 3.5 zu erkennen, wurde die Karte um den Roboter herum
detailliert erfasst. Entfernt man sich aber vom Roboter, so stellt man fest, dass sich Rauschen
entwickelt, welches bildlich ausgedrückt in Strahlen vom Zentrum wegläuft und immer
dichter wird. Als Resultat daraus entsteht durch weiter oben beschriebenes Verfahren jeweils
die obere Bildfolge von Abb 3.6 und Abb 3.7. Es ist leicht einzusehen, dass ein Großteil der
hierbei entdeckten frontierRegions keine sinnvollen Navigationsziele produzieren kann, da es
sich um verrauschte Daten handelt. Desweiteren ist die Anzahl der frontierCells in
verrauschten Bereichen deutlich höher als in rauschfreien Bereichen, wodurch die Laufzeit
dort zunimmt. [FO05] schlägt als Lösung hierfür vor einen kollisionsfreien Bereich in Form
eines Balls oder eines Sterns um den Roboter herum zu finden. [KK12] wählt für dieses
Problem einen anderen Ansatz und arbeitet direkt auf den neu erzeugten Sensordaten. Im
Zuge dieser Arbeit soll ein Verfahren entstehen, welches die erfasste Karte innerhalb eines
bestimmten Radius vorverarbeitet um Rauschen zu entfernen, beziehungsweise zu
minimieren. Abb 3.4 zeigt ein mögliches Ergebnis dieser Vorverarbeitung. Abb 3.6 und Abb
3.7 zeigen in jeweils der unteren Bildfolge bessere extrahierte frontierRegions.

Abb 3.5: Ungefilterte Karte

 ungefiltert gefiltert
 r=3 (14400 Zellen) r=6 (57600 Zellen) r=3 r=6

frontierCells 2790 14722 194 701
frontierRegions 18 13 14 7

Tabelle 3.1: Vergleich ungefiltert/gefiltert

Tabelle 3.1 stellt Abb 3.6 und Abb 3.7 in Zahlen dar.

Abb 3.4: Gefilterte Karte

3. Verfahren zur frontier Detektion

 Seite 20 von 69

 (a) (b) (c)

Abb 3.6: Suche nach frontierRegions ohne und mit Filter (r=3)
(a) (un)gefilterte Karte; (b) frontierRegions in gelb mit Suchradius; (c) zusätzlich qualitativ beste frontierRegion
in blau.

 (a) (b) (c)

Abb 3.7: Suche nach frontierRegions ohne und mit Filter (r=6)
(a) (un)gefilterte Karte; (b) frontierRegions in gelb mit Suchradius; (c) zusätzlich qualitativ beste frontierRegion
in blau.

In beiden Abbildungen werden zuerst die ungefilterte und danach die gefilterte Version gezeigt.

3. Verfahren zur frontier Detektion

 Seite 21 von 69

3.9. Vorfiltern von Kartenausschnitten

Resultierend aus dem Sonnenstrahleffekt und den damit verbundenen schlechten
Ergebnissen bei der Suche nach frontierRegions sowie der Problematik beim Navigieren, ist
es empfehlenswert die Karte im verwendeten Suchradius durch einen Filter zu glätten.
Hierunter ist unter zuvor definierten Umständen das Ersetzen von u-Space Zellen durch f-
Space Zellen zu verstehen. Im folgenden Verlauf werden Fälle herausgearbeitet, bei denen ein
Glätten sinnvoll ist. Anhand dieser Fälle wird eine Metrik definiert, die es algorithmisch
möglich macht, diese Fälle zu bearbeiten. Darauf aufbauend wird ein Ansatz schrittweise an
diese Problematik angepasst, verbessert und mit den Schritten zuvor verglichen. Letztendlich
erfolgen eine ganzheitliche Betrachtung der Laufzeit und eine ausgewählte Sammlung von
Simulations- und realen Daten.

3.9.1. Betrachtung der zu glättenden Fälle

Folgende Betrachtungen gehen nur von dem Fall aus, dass u-Space direkt an f-Space
grenzt. Es wird also keine Aussage über das Einwirken von o-Space gemacht. Daraus ergeben
sich für eine u-Space Zelle neun Möglichkeiten der Anordnung mit f-Space. Dies drückt sich
durch die aufsummierten Nachbarschaftswerte aus und wird im weiteren Verlauf als Metrik
zur Bestimmung von zu glättenden Zellen verwendet.

Nachbarschaftssume =

• 0:
Im einfachsten Fall ist eine einzelne u-Space Zelle von f-Space umgeben und stellt ein
Analogon zum Rauschen in der Bildverarbeitung dar. Zu sehen in Abb 3.8.

• -1 und -2:
Desweiteren äußert sich die zellbasierte Struktur eines Sonnenstrahls in den einfacheren
Fällen wie in Abb 3.9 zu sehen.

• -3 und -4:
Praxistest haben durchweg positive Resultate ergeben, solange die zu glättenden Zellen
Nachbarschaftssummen im Intervall I = a−3; 0b aufweisen. Erweitert man das Intervall
auf I = a−4; 0b , so ist festzustellen, dass in vielen Fällen fälschlicherweise zu weit in den
u-Space hinein gefiltert wird, wodurch an manchen Stellen blasenartige Auswüchse
entstehen. Eine Veranschaulichung beider Intervallgrößen ist in Abb 3.12 zu sehen.

• -5; -6; -7; -8:
Fast vollständig von u-Space eingeschlossene u-Space Zellen befinden sich ohne
Einschränkung in u-Space. Siehe Abb 3.11.

3. Verfahren zur frontier Detektion

 Seite 22 von 69

 (a) (b) (c)

Abb 3.12: Gefilterte Karte mit verschiedenen NSIs
(a) ungefilterte Karte; (b) gefilterte Karte mit NSI = [-3;0]; (c) gefilterte Karte mit NSI = [-4;0]

 0

Abb 3.8: Nachbarschaftssumme = 0

 -1 -1

 -2 -2

 -1 -1

Abb 3.9: Nachbarschaftssumme = {-1; -2}

 -2 -2 -3 -3

 -2 -3 -3

Abb 3.10: Nachbarschaftssume = {-2; -3}

 -3 -3 -2 -2

 -5 -5 -4

 -3 -3 -2 -2

Abb 3.11: Nachbarschaftssumme = {-2; -3; -4; -5}

3. Verfahren zur frontier Detektion

 Seite 23 von 69

 (a) (b) (c)

 (d) (e)

Abb 3.13: Karte mit Filterkandidaten anhand verschiedener NSIs

(a) ungefilterte Karte; (b) u-Space Zellen, deren Nachbarn alle in f-Space liegen; (c) zuzüglich alle u-Space
Zellen, deren Nachbarschaftssumme = -1 ist; (d) hinzukommen alle u-Space Zellen, deren Nachbarschafts-
summe = -2 ist; (e) für Verfahren als am besten eingestuftes NSI = [-3; 0].

3. Verfahren zur frontier Detektion

3.9.2. Beschreibung des Verfahrens

Angelehnt an das Prinzip eines 3x3 Tiefpassfilters wird im Folgenden ein
modifizierter Filter vorgestellt. Grundlegend
einen angegebenen Bereich iteriert, zu jeder Zelle deren Nachbarschaftswerte (gewichtet) zu
einer Nachbarschaftssumme addiert, dies
entsprechend des Ergebnisses angleicht. Im vorliegenden Fall sind aber nur diejenigen Zellen
von Bedeutung, welche in u-Space liegen und somit potentiell verrauscht sein könnten. Ein
für dieses Problem angepasster Filter überspringt somit alle o
wertet ausschließlich u-Space Zellen aus.
Nachschlageoperationen, sieben Additionen, eine Auswertung der berechneten Summe und
ein Schreibvorgang eingespart.
Wie in Zeile L3 zu sehen ist wird genau dies angewen
genauer betrachtet, die zum einen in u
Nachbarschaftssumme innerhalb des

Anfänglich ist davon auszugehen, dass alle Zellen innerhalb des Suchradius potentielle
Kandidaten für eine Glättung sind.
wird nun über alle gesammelten Zellen iteriert. Wie in
verrauschten Zellen geglättet, indem sie in den f
diesen Vorgang ändern sich die Nachbarschaftssummen aller benachbarten Zellen. Dadurch
entstehen wiederum weitere potentielle
Glättungskandidaten, die durch di
des Filters aber übergangen werden. Genau diese
werden nun für die nächste Iteration vorgesehen (
– L2) und bis dahin zwischengespeichert (
Wie in Abb 3.14 zu sehen führt dies nun aber
unweigerlich zu duplizierten Einträgen. Diese müssen
vor der nächsten Iteration entfernt oder während der
aktuellen Iteration ignoriert werden, um das

Entfernen duplizierter Einträge nach Iteration
Hierfür lässt sich wenig performant ein
Indizes anwenden. Deutlich besser ist es jedoch die Indizes zuerst zu sortieren um danach
die Liste linear nach Duplikaten

Ignorieren duplizierter Einträge während Iteration
Um bereits vorgemerkte Indizes nicht mehrfach in
zusätzlichen Zwischenspeichers. Dies kann zum Beispiel in Form eines booleschen Arrays
arr erreicht werden, dessen Felder den Indizes der Karte entsprechen. Wird Index
temp aufgenommen folgt darauf
zurückgesetzt werden.

Beide Varianten sind schematisch in

Verfahren zur frontier Detektion

 Seite

Beschreibung des Verfahrens

Angelehnt an das Prinzip eines 3x3 Tiefpassfilters wird im Folgenden ein
ilter vorgestellt. Grundlegend hierbei ist, dass ein primitiver Tiefpassfilter über

einen angegebenen Bereich iteriert, zu jeder Zelle deren Nachbarschaftswerte (gewichtet) zu
einer Nachbarschaftssumme addiert, diese normiert und schließlich die Zelle im Zentrum

isses angleicht. Im vorliegenden Fall sind aber nur diejenigen Zellen
Space liegen und somit potentiell verrauscht sein könnten. Ein

für dieses Problem angepasster Filter überspringt somit alle o-Space und f
Space Zellen aus. [KK12] Pro ignorierter Zelle werden dadurch acht

Nachschlageoperationen, sieben Additionen, eine Auswertung der berechneten Summe und
ein Schreibvorgang eingespart.

zu sehen ist wird genau dies angewendet, indem nur diejenigen Zellen
genauer betrachtet, die zum einen in u-Space liegen und zum anderen zusätzlich eine
Nachbarschaftssumme innerhalb des Intervalls I = a−3; 0b aufweisen

Anfänglich ist davon auszugehen, dass alle Zellen innerhalb des Suchradius potentielle
Kandidaten für eine Glättung sind. (L1) Die while-Schleife vorerst einmal außen vor lassend
wird nun über alle gesammelten Zellen iteriert. Wie in Zeile L4 zu sehen, wer
verrauschten Zellen geglättet, indem sie in den f-Space integriert werden. Bedingt durch
diesen Vorgang ändern sich die Nachbarschaftssummen aller benachbarten Zellen. Dadurch
entstehen wiederum weitere potentielle
Glättungskandidaten, die durch die aktuelle Iteration
des Filters aber übergangen werden. Genau diese
werden nun für die nächste Iteration vorgesehen (while

) und bis dahin zwischengespeichert (temp – L5).
zu sehen führt dies nun aber

unweigerlich zu duplizierten Einträgen. Diese müssen
vor der nächsten Iteration entfernt oder während der
aktuellen Iteration ignoriert werden, um das Terminieren des Algorithmus zu gewährleisten.

Entfernen duplizierter Einträge nach Iteration
Hierfür lässt sich wenig performant ein handshake Algorithmus direkt auf der Liste der
Indizes anwenden. Deutlich besser ist es jedoch die Indizes zuerst zu sortieren um danach
die Liste linear nach Duplikaten untersuchen zu können.

Ignorieren duplizierter Einträge während Iteration
Um bereits vorgemerkte Indizes nicht mehrfach in temp zu speichern, bedarf es eines
zusätzlichen Zwischenspeichers. Dies kann zum Beispiel in Form eines booleschen Arrays

erreicht werden, dessen Felder den Indizes der Karte entsprechen. Wird Index
aufgenommen folgt darauf arr[j] = true . Am Ende jeder Iteration muss

Beide Varianten sind schematisch in Abb 3.14 dargestellt.

Diagramm 3.1: Handshake vs .sort.unique

Seite 24 von 69

Angelehnt an das Prinzip eines 3x3 Tiefpassfilters wird im Folgenden ein
hierbei ist, dass ein primitiver Tiefpassfilter über

einen angegebenen Bereich iteriert, zu jeder Zelle deren Nachbarschaftswerte (gewichtet) zu
normiert und schließlich die Zelle im Zentrum

isses angleicht. Im vorliegenden Fall sind aber nur diejenigen Zellen
Space liegen und somit potentiell verrauscht sein könnten. Ein

Space und f-Space Zellen und
Zelle werden dadurch acht

Nachschlageoperationen, sieben Additionen, eine Auswertung der berechneten Summe und

det, indem nur diejenigen Zellen
Space liegen und zum anderen zusätzlich eine

Anfänglich ist davon auszugehen, dass alle Zellen innerhalb des Suchradius potentielle
Schleife vorerst einmal außen vor lassend

zu sehen, werden die
Space integriert werden. Bedingt durch

diesen Vorgang ändern sich die Nachbarschaftssummen aller benachbarten Zellen. Dadurch

Terminieren des Algorithmus zu gewährleisten.

andshake Algorithmus direkt auf der Liste der
Indizes anwenden. Deutlich besser ist es jedoch die Indizes zuerst zu sortieren um danach

zu speichern, bedarf es eines
zusätzlichen Zwischenspeichers. Dies kann zum Beispiel in Form eines booleschen Arrays

erreicht werden, dessen Felder den Indizes der Karte entsprechen. Wird Index j in
. Am Ende jeder Iteration muss arr somit

: Handshake vs .sort.unique

3. Verfahren zur frontier Detektion

 Seite 25 von 69

*$6.�#%/$ = p�	q	�r + 9 ⋅ *�t ≤ � ≤ �r + 2*� + 9 ⋅ *�t 	q	*�t = 0 … 2*� 	∧ 	�vw��	 ∧ 	 �r = *('(.�(+ − *� −9*�x

// F��2*�G�	
L1	 vec_single	importantIdxs	=	rectangle	
2	 vec_single	temp	
L2	 while	importantIdxs	!empty	do	
4	 				foreach	idx	in	importantIdxs	do	
L3	 								if	map[idxb	=	U_SPACE	∧ 	��#$�%ℎ'()*��/)$+��78�� ∈ [−3; 0b	then	
L4	 												map[idxb	=	F_SPACE	
L5	 												temp.push	�{�	|	� ∈ #$�%ℎ'()*+��78� ∧ ���[�b = U_SPACE	 ∧ 	 � ∈ 2$6.�#%/$}	�	
8	 								fi	
9	 				end	
10	 				//	F�# × /(%�#� + n�	|	# = temp. size	
L6	 				importantIdxs	=	temp.sort.unique	
12	 				temp.clear		
13	 end	 Code 3.3: Entfernen duplizierter Einträge nach Iteration

-2 -4 -3

-2 -4 -3

-2 -3 -2

 -2 -2

 -1

 -4 -3 -4 -3 -3 -2 -1 0

 0

0 false false false false

1 false true true true

2 false false false false

3 false false false false

4 false true true true

5 false true true true

0 1 2 3 4 5 1 4 5 1 5 1 4 1

1 4 5

∅

∅

importantIdxs

importantIdxs

importantIdxs

temp

temp

.sort.unique

0 1 2 3 4 5 1 4 5 ∅ ∅ ∅

1 4 5

∅

∅

foreach idx in importantIdxs

while importantIdx !empty do

Abb 3.14: Ablauf der Filterung

L1	 vec_single	importantIdxs	=	rectangle	
2	 vec_single	temp	
3	 bool	�lags[9 × ℎb = {.*)$, .*)$, … , .*)$}	
L2	 while	importantIdxs	!empty	do	
5	 				foreach	idx	in	importantIdxs	do	
L3	 								if	map[idxb	=	U_SPACE	∧ 	��#$�%ℎ'()*��/)$+��78�� ∈ [−3; 0b	then	
L4	 												map[idxb	=	F_SPACE	
8	 												push = {�	|� ∈ #$�%ℎ'()*+��78� ∧ ���[�b = U_SPACE ∧	 � ∈ *$6.�#%/$ ∧ �lags[ib = false}	
L5	 												temp.push	�push�	
10	 												flags[pushb	=	true	
11	 								fi	
12	 				end	
L6	 				flags[tempb	=	false	
14	 				temp.clear		
15	 end	 Code 3.2: Ignorieren duplizierter Einträge während Iteration

3. Verfahren zur frontier Detektion

 Seite 26 von 69

3.9.3. Korrektheit und Terminierung

Die Betrachtung der Korrektheit und der Terminierung beruht auf folgenden
Annahmen:

(1) U_SPACE = -1
(2) F_SPACE = 0
(3) O_SPACE = 100

Um die Beweisführung einfacher zu gestalten werden wie im Folgenden aufgelistet vier Fälle
betrachtet.

Fall 1: Alle Zellen befinden sich in u-Space

∀� ∈ ���(*.�#.I78+ ∶ ∑�#$�%ℎ'()*��/)$+���� = −8
⇒ ∀� ∈ ���(*.�#.I78+ ∶ �3 = false
⇒ .$�� = {∅}
⊢ Terminierung von Fall 1

Fall 2: Alle Zellen befinden sich in f-Space

∄� ∈ ���(*.�#.I78+ | ������ = U_SPACE
⇒ ∀� ∈ ���(*.�#.I78+ ∶ �3 = false
⇒ .$�� = {∅}
⊢ Terminierung von Fall 2

Fall 3: Alle Zellen befinden sich in o-Space

Siehe Fall 2

Fall 4: Gemischte Zellen

∀�� ∈ ���(*.�#.I78+ | ������ = �_
���� ∧ #$�%ℎ'()*��/)$+��� ∈ a−3; 0b ∶ L3 = .*)$

 ⇒ |-_
��6$�	�| > |-_
��6$��
|
⇒ |)_
��6$�	�| < |)_
��6$��
|
⇒ |���(*.�#.I78+�	�| ≤ |)_
��6$�	�|
⇒ |���(*.�#.I78+�	�| < |)_
��6$��
|
⇒ Algorithmus terminiert spätestens, wenn |)_
��6$�	�| = 0,

oder wenn:

∄�� ∈ ���(*.�#.I78+ | ������ = �_
���� ∧ #$�%ℎ'()*��/)$+��� ∈ a−3; 0b

⇒ ∀� ∈ ���(*.�#.I78+ ∶ L3 = false

⇒ .$�� = {∅}

⊢ Terminierung von Fall 4

3. Verfahren zur frontier Detektion

 Seite 27 von 69

3.9.4. Laufzeitbetrachtung

Im Folgenden werden die verschiedenen Ansätze bezogen auf Laufzeit und
Speicherverbrauch analysiert und letztendlich gegeneinander abgewogen. Desweiteren findet
eine ganzheitliche Abschätzung der Laufzeit der Glättung statt und es wird versucht eine
tatsächliche Laufzeit anhand von Praxistests anzugeben.

Einfacher 3x3 Tiefpassfilter
Ein herkömmlicher Filter iteriert über einen gegebenen Ausschnitt und bildet für jede

besuchte Zelle eine Nachbarschaftssumme aus deren direkten acht Nachbarn und der Zelle
selbst. Die einzelnen Summanden sind je nach Anwendungsfall gewichtet. Um eine
Normierung zu erreichen wird die Nachbarschaftssumme durch die Summe der Gewichte
geteilt. Es entsteht somit eine von r abhängige quadratische Laufzeit pro Iteration.

 F�+ ∙ 7G�, 7 = 2* eq xvii

Modifizierter 3x3 Tiefpassfilter
Wie weiter oben bereits erwähnt ist für das vorliegende Problem kein Auswerten aller

Zellen notwendig. Vielmehr gilt es hier festzustellen, dass durch das überspringen irrelevanter
Zellen Laufzeit eingespart werden kann. Abhängig von der Häufigkeitsverteilung von u-Space
Zellen entsteht folgende Laufzeit pro Iteration.

 F��1 − �� ∙ 7G + � ∙ + ∙ 7G�	|	7 = 2* ∧ p = P�u_Space� eq xviii

Diagramm 3.3: Laufzeiten der Glättung

Diagramm 3.2: Laufzeiten der Glättung mit modifiziertem Filter

3. Verfahren zur frontier Detektion

 Seite 28 von 69

Entfernen duplizierter Einträge nach Iteration (Variante a)
temp muss im ersten Schritt sortiert werden um im zweiten Schritt effizient Duplikate

entfernen zu können. Es gilt zu beachten, dass die Laufzeit nicht mehr direkt von r abhängig
gemacht werden kann, da temp ausschließlich für die nächste Iteration relevante Indizes
enthält. Es gilt ohne Einschränkung, dass|.$��| < 7G.

 F(# ∙ log(#) + # − 1), # = |.$��| eq xix

Ignorieren duplizierter Einträge während Iteration (Variante b)
Das Vorhalten eines Speichers, um bereits verwendete Indizes behandeln zu können,

generiert bei sehr großen Karten einen Speicherverbrauch, welcher quadratisch mit dem
Radius wächst. Besteht die Karte zum Beispiel aus 4000x4000 Zellen, so müssen 16.000.000
boolesche Werte gespeichert werden. Dies resultiert in einer Speicherbelegung von ca. 8MB.

Davon ausgehend, dass maximal |.$��| Zellen für die nächste Iteration vorgesehen werden,
lässt sich schließen, dass 6 < |.$��| duplizierte Einträge während der aktuellen Iteration
verworfen werden. Setzt man für das Verwerfen x Operationen an, so entsteht eq xx. Diese
Laufzeitbeschränkung ist wenig aussagekräftig und wird in den folgenden Abbildungen und
Diagrammen anhand von Testläufen verdeutlicht.

 F(8 ∙ 6), 6 < |.$��| eq xx

Es ist leicht zu erkennen, dass der modifizierte Filter einen deutlichen Vorteil gegenüber dem
einfachen Filter bietet. Abhängig von der
Häufigkeitsverteilung der Zellen kann eine Laufzeit
Optimierung von bis zu 90% erreicht werden (siehe
Diagramm 3.4). Auch die sukzessive Einschränkung
des Suchbereichs auf relevante Zellen ist leicht
einzusehen. Hierbei gilt es aber den Gewinn durch
weniger zu betrachtende Zellen mit der zusätzlichen
Last durch die Handhabung der Duplikate
gegeneinander abzuwägen. Versuche in echter

Umgebung zeigen, dass die Anzahl der zu betrachtenden Zellen in den ersten Filteriterationen
stets drastisch abnimmt (Abb 3.15). Daraus lässt sich schließen, dass der hinzugefügte
Mehraufwand aufgrund einer geringen Anzahl an Zellen nicht ins Gewicht fällt, wohingegen
aber das primitive Iterieren über den vollständigen Suchbereich eine wenig optimale Lösung
darstellt.

Im Folgenden werden anhand von in Versuchen mitgeschriebenen Daten die Varianten a und
b gegeneinander abgewogen, um das passendere – beziehungsweise stabilere - Verfahren für
die Exploration zu verwenden.

Diagramm 3.4: Optimierungspotential

3. Verfahren zur frontier Detektion

 Seite 29 von 69

 (a) r=3; 14.400 Zellen (e) r=3; 14.400 Zellen

 (b) r=6; 57.600 Zellen (f) r=6; 57.600 Zellen

 (c) r=15; 360.000 Zellen (g) r=15; 360.000 Zellen

 (d) r=80; 10.240.000 Zellen (h) r=80; 10.240.000 Zellen

Abb 3.15: Zellenreduktion bei der Filterung
Die blaue/rote Fläche symbolisiert die verworfenen Zellen nach der ersten/zweiten Filteriteration. Grün stellt die
verbliebenen Zellen vor der dritten Filteriteration dar. (a-d) Variante a; (e-h) Variante b.

94%

96%

98%

100%

1 3 5 7 9 11 13 15 17 19 21 23

Entfernte Zellen nach
erster Filteriteration

94%

96%

98%

100%

1 3 5 7 9 11 13 15 17 19 21 23

80%

84%

88%

92%

96%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25

80%

84%

88%

92%

96%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25

92%

94%

96%

98%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

92%

94%

96%

98%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

99,7%

99,8%

99,9%

100,0%

1 3 5 7 9 11 13 15 17 19 21 23 25

99,7%

99,8%

99,9%

100,0%

1 3 5 7 9 11 13 15 17 19 21 23 25

3. Verfahren zur frontier Detektion

 Seite 30 von 69

 (a) (b)

 (c) (d)

Abb 3.16: Zellenreduktion bei der Filterung
Zeigt den prozentualen Anteil der verbliebenen Zellen vor der dritten Filteriteration. Variante a ist rot, Variante
b entsprechend blau. Die Linke Skale beschreibt den relativen Anteil in % und die rechte Seite die absolute
Menge. Die waagrechte Skala steht für den Explorationszyklus. (a) r = 3; (b) r = 6; (c) r = 15; (d) r = 80.

Filteriteration importantIdxs Gefilterte Zellen potentials
Duplikat

Operationen
 Variante a b a b a b a b

1 57600 57600 10742 10742 16998 10793 255871 118162
2 10793 10793 344 357 721 510 7565 3927
3 511 510 285 298 613 443 6288 3278
4 440 443 265 273 573 273 5822 3003

Tabelle 3.2: Vergleich der Filtermechanismen mit r = 6

Filteriteration importantIdxs Gefilterte Zellen potentials
Duplikat

Operationen
 Variante a b a b a b a b

1 360000 360000 30071 30071 38162 26669 618980 330781
2 26669 26669 1326 1389 2650 1905 32784 15279
3 1865 1905 936 984 2119 1457 25531 10824
4 1418 1457 778 817 1765 1228 20800 8987

Tabelle 3.3: Vergleich der Filtermechanismen mit r = 15

0

20

40

60

80

100

120

0

0,2

0,4

0,6

0,8

1 3 5 7 9 11 13 15 17 19 21 23

r = 3

0

100

200

300

400

500

600

0

0,2

0,4

0,6

0,8

1

1 3 5 7 9 11 13 15 17 19 21 23 25

r = 6

0

500

1000

1500

2000

2500

0

0,1

0,2

0,3

0,4

0,5

0,6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

r = 15

0

200

400

600

800

1000

1200

1400

1600

1800

0

0,004

0,008

0,012

0,016

0,02

1 3 5 7 9 11 13 15 17 19 21 23 25

r = 80

3. Verfahren zur frontier Detektion

 Seite 31 von 69

Anhand von Abb 3.15 und Abb 3.16 lässt sich schließen, dass ein Großteil der initial als
importantIdxs eingestuften Zellen bereits nach der ersten Filteriteration f1 (zu sehen als blaue
Fläche) verworfen ist. In der zweiten Filteriteration f2 werden rot dargestellt zusätzlich
weitere Zellen entfernt. Es ist zu erkennen, dass in den ersten beiden Filteriterationen jeweils
ungleichmäßig viele Zellen entfernt werden. Nach f2 jedoch ist die Anzahl der verbleibenden
Zellen stets ähnlich (zu sehen als grüne Fläche). Dieses Verhalten lässt sich in weiteren Tests
nachweisen.
Es ist somit klar, dass beide Filtervarianten den Bereich der relevanten Zellen bereits
innerhalb der ersten beiden Filteriterationen deutlich einschränken. Tabelle 3.2 und Tabelle
3.3 zeigen jedoch, dass Filtervariante a aufgrund der Notwendigkeit des Sortierens nach jeder
Filteriteration bereits hier doppelt so viele Ressourcen benötigt. Betrachtet man weitere
Filteriterationen, so stellt man fest, dass sich die benötigten Operationen pro Filteriteration bei
geringer werdender Zellenzahl annähern. Es zeichnet sich somit ab, dass Variante b mit
zunehmendem Radius einen klaren Vorteil gegenüber Variante b bietet. Zusätzlich
aufzuführen ist Tabelle 3.4. Hier ist zu erkennen, dass bei größer werdendem Radius die
Anzahl der im Durchschnitt benötigten Filteriterationen ebenfalls für Variante b sprechen.

 Durchschnittliche Filteriterationen
Radius

[m]
Variante a Variante b

3 20,5 20,5
6 65,8 67,64
15 108,7 95,6
80 98,72 79,62

Tabelle 3.4: Durchschnittliche Filteriterationen

4. Zielsuche und Exploration

 Seite 32 von 69

4. Zielsuche und Exploration

Nachdem in den vorangehenden Kapiteln die technischen und algorithmischen Hintergründe
diskutiert wurden, um eine Basis für weitere Schritte zu schaffen, wird in diesem Kapitel
detailliert auf die Zielsuche und Exploration eingegangen. Im Gegenzug zu verschiedensten
Ansätzen ([YAM97, YAM98, GL02]) wird hierfür weder die am nächsten gelegene
frontierCell, noch ein zufälliges Ziel gewählt. Die im weiteren Verlauf vorgestellte Zielsuche
stützt sich im wesentlichen auf zwei Komponenten. Die Komponente Qualität ([BMF+00])
gewährleistet, dass möglichst Interessante Ziele im Sinne einer Kartenaufdeckung berechnet
werden. Die Komponente Sicherheit schließt im Gegenzug dazu bereits im Voraus potentiell
gefährliche Ziele aus, um eine sichere Navigation des Roboters zu gewährleisten.
Im Verlauf dieses Kapitels wird gezeigt anhand welcher Kriterien frontierRegions für die
qualitative Beurteilung eines Ziels herangezogen werden können. Darauf aufbauend werden
ein Verfahren zur Berechnung möglichst gewinnbringender Ziele vorgestellt und relevante
Sicherheitskriterien erörtert. Letztendlich wird der vollständige Explorationsablauf
schematisch dargelegt und erläutert. Desweiteren werden mögliche Probleme identifiziert und
deren Lösung anhand von fallback Strategien motiviert.

4.1. Qualitätskriterien

Die für diesen Ansatz verwendeten Kriterien dienen einer möglichst objektiven
qualitativen Einschätzung der extrahierten frontierRegions bezogen auf die Position und
Orientierung des Roboters. Um eine einheitliche Betrachtung zu gewährleisten, werden alle
Qualitäten normalisiert. Umgesetzt wird dies durch lineare Interpolation. Der Autor geht von
folgenden vier relevanten Kriterien aus

Connectivity (i):
Die connectivity einer frontierRegion f definiert sich durch die Anzahl der
Nachbarschaftsrelationen innerhalb ihrer selbst. Im Idealfall besitzen alle frontierCells ∈ -
maximal zwei Nachbarn und bilden somit eine Linie (Abb 3.9).

 ∀� ∈ -*(#.�$*2$%�(# ∶ |#$�%ℎ'()*+(�)| ≤ 2 ⇔ ��#�$ eq xxi

Finden sich mehr als zwei Nachbarn pro frontierCell, so ist in den meisten Fällen davon
ausgehen, dass ein Szenario ähnlich wie in Abb 3.10 vorzufinden ist. Eine Bewertung
dieses Kriteriums findet statt, indem die tatsächlich vorhandenen Nachbarschaftsrelationen
zur minimal möglichen Anzahl an Nachbarschaftsrelationen ins Verhältnis gesetzt werden.

 6(##$6.�C�.> = |$7%$+|
|-| ∙ 2 − 2 eq xxii

4. Zielsuche und Exploration

 Seite 33 von 69

Größe (ii):
Je größer eine frontierRegion, desto mehr Information verbirgt sich dahinter. Es gilt hierbei
aber zu beobachten, dass eine Relation zu connectivity hergestellt werden sollte. Eine
geradlinige frontierRegion verbirgt bei gleicher Größe mehr Information als ein
willkürlicher Punktehaufen, der durch Ungenauigkeiten in der Sensorik entstehen kann.

Distanz (iii):
Eine geringe Distanz zum nächsten Ziel ist bei der Exploration einer Karte wünschenswert.
Begründet wird dies zum einen durch den Umstand, dass dadurch ein Zurückfahren
vermieden wird und zum anderen dadurch, dass eine systematische Exploration des
näheren Umfeldes gewährleistet wird. Zwei einfache Metriken ergeben sich durch eq xxiii
und eq xxiv.

 7�+.� = {min, max}�7�+.��, *('(.�(+�� 	 |	� ∈ -*(#.�$*2$%�(#� eq xxiii

oder

 7�+.� =
1

q-*(#.�$*2$%�(#�q
×�7�+.��, *('(.�(+�	|	� ∈ -*(#.�$*2$%�(#� eq xxiv

Richtung (iv):
Ist eine möglichst geradlinige Exploration gewünscht, so kann dies durch eine
entsprechende Gewichtung dieses Kriteriums erreicht werden. Die Richtung berechnet sich
aus dem Winkel zwischen der Orientierung des Roboters und der Richtung, in der
frontierRegionj zu finden ist.

Alle berechneten Qualitäten werden normiert und anhand ihrer Gewichte addiert.
Heuristisch und durch Tests in simulierter als auch in realer Umgebung lassen sich die
Gewichte der einzelnen Kriterien abwägen. Dabei gilt es zu bedenken, dass unterschiedliche
räumliche Gegebenheiten eine angepasste Gewichtung benötigen. So führt zum Beispiel ein
hohes Gewicht für das Kriterium Richtung in einem Flur schnell zu Ergebnissen, wohingegen
bei der Exploration kleiner Räume das Kriterium Distanz von Bedeutung sein wird.

4.2. Bestimmung eines Ziels

Mit der Wahl einer frontierRegionj lässt sich im nächsten Schritt ein dazugehöriges Ziel
für die weitere Exploration finden. Hierbei gilt es festzustellen, dass sich ein unbekanntes
Gebiet genau dann möglichst umfassend erfassen lässt, wenn die verwendete Sensorik direkt
darauf gerichtet ist. Desweiteren ist zu beachten, dass auch alle potentiellen Ziele
verschiedenen Qualitätskriterien unterliegen sollten.

Abstand zu o-Space (i):
Um Kollisionen zu vermeiden und Fehler in der Pfadplanung auszuschließen empfiehlt es
sich Ziele, welche zu nahe an o-Space liegen, zu verwerfen.

4. Zielsuche und Exploration

 Seite 34 von 69

Abstand zu u-Space (ii):
Da die Beschaffenheit des Gebietes hinter einer frontierRegion nicht vorhergesagt werden
kann, ist es im Zuge der Sicherheit ratsam auch hier einen Sicherheitsabstand einzuhalten.

Abstand zu Roboter (iii):
Ein zu nahe am Roboter gewähltes Ziel resultiert zum einen in einer verlangsamten
Exploration, da der Roboter schneller das Ziel erreicht und somit öfter ein neues gesucht
werden muss. Zum anderen wird dadurch sicher gestellt, dass der Roboter in die goalArea
einfährt und somit das Ereignis goalAreaEntered ausgelöst wird. Der Sicherheitsbereich
um den Roboter muss demzufolge größer als der Auslöseradius um das letztendliche Ziel
herum sein.

Ausgehend von einer bereits ausgewählten frontierRegionj F bedarf es eines Verfahrens, um
ein darauf bezogenes Ziel zu finden. Einfach wäre es eine zufällige oder die nächst gelegene
Zelle zu nehmen. Jedoch besteht die Absicht dieser Arbeit darin ein Verfahren zu entwerfen,
welches eine möglichst effektive Zielwahl ermöglicht. Um dies zu gewährleisten, wird im
Folgenden ein Ansatz vorgestellt, welcher entlang von F bildlich gesprochen ein Band von
Zielen berechnet. Dieser sogenannten potentialGoalArea wird letztendlich ein Ziel
entnommen, welches den Kirterien i, ii und iii stand hält.
Wie in Code 4.1 zu sehen wird hierfür Schrittweise zwischen je zwei nachfolgenden Zellen in

F ein Vektor C→ aufgespannt. Orthogonal zu diesem wird ein Vektor)→ berechnet. Die Länge a

von)→ berücksichtigt hierbei ii. Potentielle Explorationsziele entstehen nun zu beiden Seiten
von F, wobei aber nur solche übernommen werden, die weder in o-Space, noch in u-Space
liegen. Zusätzlich werden alle potentiellen Ziele aufgebläht, um bei der letztendlichen
Auswahl eines Zieles noch flexibler zu sein. Somit entsteht ein Band aus überlappenden
Kreisen entlang von F, welches die potentialGoalArea bildet. Abb 4.1 und Abb 4.2 zeigen das
Ergebnis anhand einer Skizze und anhand von einer Visualisierung mit rviz.
In einem weiteren Schritt werden solange die einzelnen Zellen aus potentialGoalArea den
Kriterien i, ii und iii unterworfen, bis eine qualitativ passende Zelle gefunden wird. Diese
Zelle dient als nächster Explorationspunkt und gewährleistet bei guter Parametrisierung ein
hochwertiges Ziel. Eine detaillierte Beschreibung des vollständigen Ablaufes inklusive
Fehlerbetrachtung findet sich in 4.3 und 4.4, soll an dieser Stelle aber nicht relevant sein.

4. Zielsuche und Exploration

 Seite 35 von 69

frontierRegion

potentialGoals

Abb 4.1: potentialGoalArea skizziert

iii

ii

i

Abb 4.2: potentielGoalArea in rviz

(orange) potentialGoalArea; (blau) beste frontierRegion; (gelb) frontierRegions

1 vector<point> potentialGoals
2 F = frontierRegion
3 for int i = 0; i < F.size��; i+=2 do
4 C→ = ����WX

→

5)→:)→ ⊥ C→ ∧)→ = �
6 %(�/X = �� +)→

7 �(.$#.��/0(�/�*$�X = { �� | 7(�, %(�/X) < ' } if %(�/X ∉ �)_
��6$ ∪ (_
��6$�
8 %(�/G = �� −)→

9 �(.$#.��/0(�/�*$�G = { �� | 7(�, %(�/G) < 'g if %(�/G ∉ �)_
��6$ ∪ (_
��6$�

10 potentialGoals.pushBack�potentialGoalAreai�

11 end

Code 4.1: Berechnug der potentialGoalArea

4. Zielsuche und Exploration

 Seite 36 von 69

Basierend auf einem ausgewählten Explorationsziel muss eine weitere Betrachtung der Art
und Weise zu teil werden, wie sich der Roboter F nähert. Es werden hierfür zwei Varianten
vorgestellt. Beide Varianten gehen im optimalen Fall von einer geradlinigen Repräsentation
von F aus. Gilt diese Annahme nicht, so funktionieren beide Varianten dennoch, liefern aber
ungenau Anfahrtsrichtungen. Desweiteren wird zum besseren Verständnis mit Richtungen in
Form von Vektoren argumentiert. ROS verwendet hierfür einen Winkel. Die Umrechnung ist
für die Erklärung beider Ansätze nicht relevant und wird somit übergangen.

Variante 1.1:

Ausgehend von einer geradlinigen frontierRegion F wird F in Form eines Vektors F¥¦
dargestellt. Es werden zwei Punkte a und b berechnet, wobei beide innerhalb von F
liegen, a die minimale Distanz und b die maximale Distanz zum Roboter aufweist. Es

ergibt sich somit �¦ = �'¥¥¥¥¦. Im Weiteren wird ein Vektor 7¦ berechnet, welcher orthogonal

auf F¥¦ steht und die gewünschte Ausrichtung des Roboters am Zielpunkt angibt. Abhängig
von der berechneten Trajektorie kann die Ist-Ausrichtung des Roboters am Zielpunkt von
der Soll-Ausrichtung abweichen. In Abb 4.3 wird dies durch den Winkel α
veranschaulicht.
Es gilt festzustellen, dass die relative Position des Roboters zu F keinen Einfluss auf die

Richtung von F¥¦ hat, da je zwei ungleiche Punkte auf einer Geraden stets linear

voneinander abhängige Vektoren produzieren. a ≠ b wird durch die Umstände
minimale/maximale Distanz gewährleistet, sobald |�| > 1.

Variante 1.2:

Selbige Vorgehensweise wie in Variante 1.1 mit dem Unterschied, dass α = 7¦	∡	�¦ ≠ 90.

Variante 2:

Analog zu Variante 1.1 wird b berechnet. Ausgehend vom Zielpunkt g wird 7¦ = '%¥¥¥¥¦
berechnet. Der Roboter ist somit entlang von F in Richtung des entfernten Punktes b
ausgerichtet. Abb 4.4 skizziert diesen Ansatz.

u-Space f-Space

frontierRegion F

Abb 4.5: Ungültiges Anfahren von F

u-Space

f-Space

Abb 4.4: Anfahren von F mit
Blick auf entfernte Ecke

α

u-Space f-Space

frontierRegion F

Abb 4.3: Anfahren von F in
nahezu rechtem Winkel

4. Zielsuche und Exploration

 Seite 37 von 69

4.3. Ablauf

Ausgelöst wird jeder Explorationsschritt durch das Empfangen einer aktualisierten Karte
über den Knoten gmapping. Ausgehend von der aktuellen Position des Roboters wird nun
innerhalb eines initialen Radius zuerst die Karte gefiltert, um danach innerhalb des gefilterten
Bereichs nach frontierRegions zu suchen. Wird keine frontierRegion gefunden, so wird der
Radius erhöht und der Prozess von vorne gestartet. Andernfalls werden im nächsten Schritt
alle frontierRegions hinsichtlich ihrer Qualität für die Exploration beurteilt und absteigend
sortiert. Jede so gefundene und qualifizierte frontierRegion wird im folgenden anhand
verschiedener Grenzwerte für eine Zielsuche zugelassen oder verworfen. Jede zugelassene
frontierRegion wird in eine whitelist aufgenommen, um zu späteren Zeitpunkten darauf
zurückgreifen zu können. Die erste zugelassene und somit die am qualitativsten wertvollste
frontierRegion wird in diesem Explorationsschritt für die Zielsuche herangezogen. Anhand
dieser frontierRegion werden nun potentielle Ziele gemäß 4.2. berechnet. Im letzten Schritt
wird nun über alle potentiellen Ziele iteriert, um diese Qualitätskriterien zu unterwerfen. Das
erste positive Ziel wird als nächstes Navigationsziel verwendet. Besteht kein potentielles Ziel
diese Qualitätschecks wird mit der nächsten frontierRegion fortgefahren. In Abb 4.6 wird der
Ablauf schematisch dargestellt.

4.4. Fallback Strategien

Es ist unumgänglich, dass es bei vorliegendem Prozess zu grenzwertigen Situationen
kommen kann, die die Exploration erheblich verlangsamen oder sogar unterbrechen können.
Um diesen Fällen entgegenzutreten wurden im Zuge der Arbeit fallback Strategien definiert.
Im Folgenden werden diese Strategien vorgestellt und deren Existenz anhand von Beispielen
begründet.

Strategien:

a) Suchen nach frontierRegions in whitelist

Stellt die Möglichkeit zur Verfügung qualitativ wichtige, aber nicht erschlossene
frontierRegions zwischen zu speichern und in bestimmten Situation eine für die
aktuelle Situation passende heraus zu nehmen.

b) Suchen nach frontierRegions auf gesammter Karte
Als ultimative Strategie konzipiert um bis dato unbekannte frontierRegions auf der
gesammten Karte suchen zu können. Produziert deutlich erhöhte Laufzeitkosten, da
sämtliche Operationen quadratisch mit dem veranschlagten Suchradius wachsen.

c) Aktuelles Ziel in blacklist aufnehmen und Erkundunsschritt neu starten
Wird das aktuelle Ziel in eine blacklist aufgenommen, so wird dieses im nächsten
Explorationsschritt ignoriert und ein dadurch möglicherweise verbundenes Problem
beseitigt.

4. Zielsuche und Exploration

 Seite 38 von 69

d) Annähern an Explorationsziel bevor neue Iteration gestartet wird
Strategie, welche abhängig von Vorgaben und Fehlerstatus angewandt werden kann.
Algorithmisch umgesetzt wird dies durch die Pfadlänge d zwischen Startpunkt und
Zielpunkt und durch die noch zu fahrende Strecke d'. Gesteuert durch einen

Schwellenwert 0 ≤ + ≤ 1 wird eine erneute Iteration zugelassen, sobald
¨′
¨ ≤ +.

Probleme:

• Maximal zulässiger Radius erreicht

Werden wiederholt innerhalb erhöhter Radien keine oder qualitativ unzureichende
frontierRegions beziehungsweise Ziele gefunden, so kann dies unter anderem an
folgenden Konstellationen liegen:

i. Roboter befindet sich in bereits großflächig erkundetem Gebiet
ii. Kriterien sind zu hart eingestellt
iii. Karte ist vollständig erkundet (basierend auf der Annahme, dass eine maximale

Kartengröße voreingestellt ist)
iv. Roboter befindet sich in Gebiet mit sehr vielen kleinen Hindernissen

In allen vorliegenden Fällen wird zunächst Strategie a) angewendet. Findet sich hierdurch
keine passende frontierRegion, wird Strategie b) gestartet. Liefert dieser Schritt immer
noch keine frontierRegions, so bedarf es einer erweiterten Situationsanalyse und einer
tiefer gehenden Fehlerbehandlung. Denkbar wäre eine an [TTW+04] angepasste Strategie.

• Roboter bewegt sich nicht

Bewegt sich der Roboter nicht werden keine neuen Sensordaten produziert und somit
durch das Ausbleiben einer aktualisierten Karte kein neuer Explorationszyklus
gestartet. Wird als Lösung hierfür ein neuer Zyklus durch einen timeout ausgelöst und
der Roboter bewegt sich immer noch nicht, läuft man Gefahr wiederholt in die gleiche
Situation zu geraten, da auf einer unveränderten Karte mit hoher Wahrscheinlichkeit
das selbe Ziel wiederholt berechnet wird und somit kein Fortschritt gewährleistet ist.
Um nun zu verstehen, wie in dieser Situation vorzugehen ist, gilt es sich die Umstände
dieses Falles klar zu machen.

i. Roboter erreicht Zielgebiet bevor Karte aktualisiert wurde
ii. Roboter fährt sich fest
iii. Pfad enthält ungültige Wegpunkte

Lösung:
Das erste Problem lässt sich lösen, indem regelmäßig der Zustand des Pfadplaners
ausgewertet wird. Wird innerhalb eines definierten Zeitfensters keine Karte
empfangen und der Roboter befindet sich innerhalb der goalRegion, so darf in diesem
Fall einmalig ein neuer Zyklus ausgelöst werden. Erst nachdem sich der Roboter
bewegt hat, darf ein weiterer Zyklus zeitlich bedingt ausgelöst werden. Andernfalls

4. Zielsuche und Exploration

 Seite 39 von 69

könnte wiederholt das gleiche Ziel berechnet werden. Löst dieses Vorgehen das
Problem nicht, wird Strategie c) angewendet und ein neuer Zyklus gestartet.
Fährt sich der Roboter fest, so muss in der Regel manuell eingegriffen werden.
Der letzte Fall wird im übernächsten Punkt behandelt.

• Ziel wird von Pfadplaner verworfen
Befindet sich ein berechnetes Ziel zu nahe an einem Hinderniss, so kann dieses vom
Pfadplaner verworfen werden. Eine weitere Ursache besteht darin, dass der Pfadplaner
eine Trajektorie berechnet, welche durch u-Space verläuft, und somit verworfen wird.

Lösung:
Tritt dieses Problem auf, kann durch Strategie c) schnell ein alternatives Ziel gefunden
werden.

• Pfadplaner berechnet schlechten Pfad
In seltenen, nicht nachstellbaren Fällen, konnte beobachtet werden, wie der Pfadplaner
weder Querbeschleunigung noch Winkelbeschleunigung an die generierten
Nachrichten anhängt. In weiterern seltenen Fällen konnte außerdem festgestellt
werden, dass der Pfadplaner nur eine Winkelbeschleunigung berechnet, wodurch der
Roboter sich im Kreis dreht. Dargestellt wird dies in eq xxv und eq xxvi.

 ∀� ∈ ��.ℎ ∶ �. /�#$�*. 9 = 0 ∧ �. �#%)/�*. 9 = 0, 9 ∈ {8, >, ©} eq xxv

 ∀� ∈ ��.ℎ ∶ �. /�#$�*. 9 = 0 ∧ �. �#%)/�*. 9 ≠ 0, 9 ∈ {8, >, ©} eq xxvi

Lösung:
Da das Problem ursprünglich in einem von frontier_navigation unabhängigen Stack
auftritt ist die Lösung dafür primär direkt dort zu suchen. Um jedoch die Exploration
durch diesen Fall nicht abbrechen zu müssen, wird bei wiederholten nacheinander
auftreten in beiden Fällen Strategie c) angewendet.

4. Zielsuche und Exploration

 Seite 40 von 69

no suitable

fontierRegion

constraints NOT passed

constraints NOT passed

constraints passed

calc potentialGoalArea

constraints passed

constraints passed and first one found

potentialGoalArea

whitelist

goal

no suitable

goal

increase radius increase radius

no fontierRegions

detected

quality measure

frontierRegionIDs

find frontierRegions

frontierRegions

adjacencyMAtrixOfFrontierCells

filter

map update

filtered map

Abb 4.6: Schematischer Ablauf der Exploration

In rot dargestellt sind Fehlerfälle, die unter Umständen eine fallback Strategie benötigen. Grün gibt im Gegenzug den
Standardfall an. In orange zu sehen sind die Auswahlzyklen für die beste frontierRegion und das beste Ziel. In den
Kästen zu sehen sind die jeweiligen Datensätze nach der entsprechenden Operation.

5. Experimentelle Ergebnisse

 Seite 41 von 69

5. Experimentelle Ergebnisse

In diesem Kapitel werden die gesammelten Ergebnisse und Erfahrungen anhand von Grafiken
und Tabellen anschaulich dargestellt. Desweiteren wird ein Vergleich der angewandten
Einstellungen gezogen.

Es werden ausschließlich folgende Rahmenparameter verwendet:

weightOfConnectivity: 3.0
weightOfSize: 2.0
weightOfDistance: 1.0
weightOfDirection: 4.0

Sensorreichweite: 20m
Samples: 250
Winkelabdeckung: 270°

Strategie 0: Berechne neues Ziel während Fahrt zu aktuellem Ziel.
Strategie 1: Berechne neues Ziel erst bei Erreichen des aktuellen

Zielgebiets.

Die Rechenarbeit wurde von einem Intel(R) Core(TM) i7 CPU Q740 @1,73GHz mit 4GB
Arbeitsspeicher übernommen.

Die Anpassung der Radien und die verwendete Suchstrategie werden durch die Bezeichnung
a_b_c_d beschrieben, wobei a für den Startradius, b für die inkrementelle Erhöhung des
Radius, c für die Anzahl der Versuche und d für die verwendete Strategie steht.
Im Verlauf des Testens stellte sich heraus, dass das Erreichen eines Zielbereichs vor einer
erneuten Zielberechnung einen Vorteil bezogen auf die Explorationsgeschwindigkeit
gegenüber regelmäßiger Zielsuche während der Fahrt zum aktuellen Ziel bietet. Desweiteren
lieferten Varianten mit kleineren Schrittgrößen bessere Ergebnisse als Varianten mit großer
Schrittgröße. Genaueres hierzu lässt sich den folgenden Abbildungen und Tabellen
entnehmen.

Wie in Abb 5.1 (a) dargestellt, können auch bei ansonsten effizienter Kalibrierung Situationen
entstehen, die ein Problem für die Exploration darstellen. So ist in diesem Fall zu sehen, dass
frontierRegions innerhalb eines eingeschlossenen Bereiches gefunden wurden. Der Roboter
pendelt somit zwischen zwei Zielpunkten, um aus verschiedenen Richtungen einen Blick auf
die frontierRegion werfen zu können. Durch pendeln entstehende duplizierte Ziele werden
zwar in die dafür vorgesehene blacklist aufgenommen, wodurch sich dieses Problem nach
einer gewissen Zeit selbstständig löst, doch benötigt dieser Vorgang im Vergleich zu einer
fehlerfreien Exploration viel Zeit.

5. Experimentelle Ergebnisse

Desweitern stellte sich während des Testens her
zwar in den meisten Fällen das gewünschte Lösungsverhalten bereit stellen. Es konnte aber
auch festgestellt werden, dass in seltenen Fällen eine Kombination unterschiedlicher
Probleme eine ausgereiftere Fehlerb
ROBOT_NOT_MOVING_TIMER
kann jede Ursache gekapselt behandelt werden. Treten aber die Ursachen
und GOAL_AREA_ENTERED
Fallunterscheidungen notwendig

In einigen weiteren Fällen konnte festgestellt werden,
verlassen werden, um diese später wieder zu besuchen
effizienten Exploration wäre eine vollständige Exploration des aktuellen
bevorzugen. Dies würde aber ein topologisches Verständnis
voraussetzen.

Im Verlauf verschiedener Simulationen
aufgedeckter Karte Wege mehrfach gefahren werden.
der explorierten Areale im Verhältnis zur zurückgelegten Strecke ab.
5.17. In weiteren Ausbaustufen
Indiz für eine ausreichend vollständig

 (a)

Abb 5.1: Fehlerfälle
(a) Pendeln zwischen zwei Zielen und eingeschlossene
Raum zu explorieren. Resultiert in einer erneuten Exploration des ersten Raumes.

Experimentelle Ergebnisse

 Seite

Desweitern stellte sich während des Testens heraus, dass die verwendeten fallback Strategien
zwar in den meisten Fällen das gewünschte Lösungsverhalten bereit stellen. Es konnte aber
auch festgestellt werden, dass in seltenen Fällen eine Kombination unterschiedlicher
Probleme eine ausgereiftere Fehlerbehandlung voraussetzt. So kann ein
ROBOT_NOT_MOVING_TIMER verschiedene Ursachen haben. Treten diese einzeln auf,
kann jede Ursache gekapselt behandelt werden. Treten aber die Ursachen GOAL_REJECTED

GOAL_AREA_ENTERED zur gleichen Zeit auf, so sind
notwendig.

In einigen weiteren Fällen konnte festgestellt werden, dass Explorationsgebiete zuerst
erlassen werden, um diese später wieder zu besuchen (siehe Abb 5.1 (b))

wäre eine vollständige Exploration des aktuellen
bevorzugen. Dies würde aber ein topologisches Verständnis der Umgebung

Simulationen konnte beobachtet werden, dass mit zunehmend
aufgedeckter Karte Wege mehrfach gefahren werden. Anders ausgedrückt nimmt der Anteil
der explorierten Areale im Verhältnis zur zurückgelegten Strecke ab. Zu sehen ist dies in

In weiteren Ausbaustufen des Projektes könnte eine Entdeckung dieses Verhaltens ein
vollständig explorierte Karte sein.

(b)

wischen zwei Zielen und eingeschlossene frontierRegions; (b) Raum wird verlassen um nächsten
Raum zu explorieren. Resultiert in einer erneuten Exploration des ersten Raumes.

Seite 42 von 69

aus, dass die verwendeten fallback Strategien
zwar in den meisten Fällen das gewünschte Lösungsverhalten bereit stellen. Es konnte aber
auch festgestellt werden, dass in seltenen Fällen eine Kombination unterschiedlicher

. So kann ein
verschiedene Ursachen haben. Treten diese einzeln auf,

GOAL_REJECTED
sind detailliertere

dass Explorationsgebiete zuerst
(b)). Im Sinne einer

wäre eine vollständige Exploration des aktuellen Raumes zu
der Umgebung gemäß [KLS+05]

konnte beobachtet werden, dass mit zunehmend
Anders ausgedrückt nimmt der Anteil

Zu sehen ist dies in Abb
könnte eine Entdeckung dieses Verhaltens ein

; (b) Raum wird verlassen um nächsten

5. Experimentelle Ergebnisse

 (a)

 (c)

Abb 5.3: Explorationsergebnis 3_3_5
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min; (d) nach 40 min.

Experimentelle Ergebnisse

 Seite

Abb 5.2: Simulierte Umgebung 1

(b)

(d)

: Explorationsergebnis 3_3_5_0
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min; (d) nach 40 min.

Seite 43 von 69

5. Experimentelle Ergebnisse

 Seite 44 von 69

 (a) (b) (c)

Abb 5.4: Explorationsergebnis 6_3_4_0
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min.

 (a) (b) (c)

Abb 5.5: Explorationsergebnis 15_5_2_0
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min.

 (a) (b) (c)

Abb 5.6: Explorationsergebnis 3_3_5_1
(a) Nach 10 min; (b) nach 20 min; (c) nach 25 min.

 (a) (b) (c)

Abb 5.7: Explorationsergebnis 6_3_4_1

(a) nach 10 min; (b) nach 20 min; (c) nach 30 min.

5. Experimentelle Ergebnisse

 Seite 45 von 69

Abb 5.8: Explorationsergebnis 3_3_5_0 nach 30 min - zweiter Lauf

5. Experimentelle Ergebnisse

 Seite 46 von 69

Abb 5.9: Explorationsergebnis 3_3_5_0 nach 30 min - dritter Lauf

5. Experimentelle Ergebnisse

 Seite 47 von 69

Abb 5.10: Explorationsergebnis 6_3_4_0 nach 30 min - zweiter Lauf

Abb 5.3 bis Abb 5.10 zeigen Ergebnisse in simulierter Umgebung basierend auf Abb 5.2. (rot) zurückgelgter Weg;
(orange) portentialGoalArea; (blau) beste frontierRegion; (gelb) frontierRegions; (grün) Suchbereich; (cyan) whitelist;
(grüner Kreis) Startpunkt; Verwendet wurde ein 270° Scanner mit 250 Samples und einer Reichweite von 20m. Das
zu sehende Gitter hat eine Ausdehnung von 10m x 10m.

5. Experimentelle Ergebnisse

 Seite 48 von 69

Konfiguration
Zeit

[min]
Zyklen

Distanz
[m]

Radienverteilung
Exploriert [%]

3 6 9 12 15
radius [m] 3 10 37 43,42 31 13 1 1 - 27,1

stepping [m] 3 20 68 98,12 40 20 10 9 1 36,47
attempts 5 30 97 149,4 59 29 14 14 4 52,23

driveToGoal 0 40 131 208,24 86 30 21 19 6 68,83

Konfiguration
Zeit

[min]
Zyklen

Distanz
[m]

Radienverteilung
Exploriert [%]

6 9 12 15
radius [m] 6 10 44 59,06 40 4 2 - 30,12

stepping [m] 3 20 78 121,9 67 8 9 2 37,68
attempts 4 30 115 185,4 108 13 10 2 55,98

driveToGoal 0

Konfiguration
Zeit

[min]
Zyklen

Distanz
[m]

Radienverteilung
Exploriert [%]

15
radius [m] 15 10 46 75,4 46 33,76

stepping [m] 5 20 96 136,7 96 42,57
attempts 2 30 144 221 144 64,98

driveToGoal 0

Konfiguration
Zeit

[min]
Verarbeitete

Zyklen
Gesamt
Zyklen

Distanz
[m]

Radienverteilung Exploriert
[%] 3 6 9 12 15

radius [m] 3 10 39 48 69,7 45 7 - 1 - 35,44
stepping [m] 3 20 72 94 165,5 91 8 1 1 1 63,79

attempts 5 25 73 101 184,07 91 9 1 2 1
driveToGoal 1

Konfiguration
Zeit

[min]
Verarbeitete

Zyklen
Gesamt
Zyklen

Distanz
[m]

Radienverteilung Exploriert
[%] 6 9 12 15

radius [m] 6 10 24 62 88,6 29 - 2 1 29,19
stepping [m] 3 20 42 137 279,9 49 3 2 1 62,23

attempts 4 30 62 210 375,9 68 4 4 1 71,41
driveToGoal 1

Tabelle 5.1: Verschiedene Explorationsszenarien

Auflistung der untersuchten Explorationsszenarien und –strategien. Gemessen wurde in zehn Minuten Intervallen.

Wichtig an dieser Stelle sind die zurückgelegte Strecke und der explorierte Anteil der Karte.

5. Experimentelle Ergebnisse

 Seite 49 von 69

Diagramm 5.1: Explorierter Anteil der Karte

Diagramm 5.2: Zurückgelegte Strecke

Diagramm 5.3: Ratio Exploriert zu zurückgelegter Strecke

Diagramm 5.1, Diagramm 5.2 und Diagramm 5.3 stellen die zuvor aufgeführten Ergebnisse grafisch aufgearbeitet
dar.

0

10

20

30

40

50

60

70

80

0 10 20 30 40

E
x

p
lo

ri
e

rt
 [

%
]

Zeit [min]

3_3_5_0

6_3_4_0

15_5_2_0

3_3_5_1

6_3_4_1

0

50

100

150

200

250

300

350

400

0 10 20 30 40

S
tr

e
ck

e
 [

m
]

Zeit [min]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 20 30 40

E
x

p
lo

ri
e

rt
/S

tr
e

ck
e

Zeit [min]

5. Experimentelle Ergebnisse

Abb

Experimentelle Ergebnisse

 Seite

Abb 5.11: Simulierte Umgebung 2

Abb 5.12: Explorationsergebnis 3_3_5_1 nach 10 min

Seite 50 von 69

5. Experimentelle Ergebnisse

 Seite 51 von 69

Abb 5.13: Explorationsergebnis 3_3_5_1 nach 20 min

Abb 5.14: Explorationsergebnis 3_3_5_1 nach 30 min

5. Experimentelle Ergebnisse

Abb

Experimentelle Ergebnisse

 Seite

Abb 5.15: Simulierte Umgebung 3

Abb 5.16: Explorationsergebnis 3_3_5_1 nach 10 min

Seite 52 von 69

5. Experimentelle Ergebnisse

 Seite 53 von 69

Abb 5.17: Explorationsergebnis 3_3_5_1 100%

(rot) zurückgelgter Weg; (orange) portentialGoalArea; (blau) beste frontierRegion; (gelb) frontierRegions; (grün)
Suchbereich; (cyan) whitelist; (grüner Kreis) Startpunkt; Verwendet wurde ein 270° Scanner mit 250 Samples und
einer Reichweite von 20m. Das zu sehende Gitter hat eine Ausdehnung von 10m x 10m. In Abb 5.17 ist zu erkennen,
dass die berechneten Wege bei Explorationsbeginn noch effizient sind, bei zunehmender Aufdeckung aber an
Effizienz verlieren, da Wege doppelt gefahren werden.

5. Experimentelle Ergebnisse

 Seite 54 von 69

Abb 5.18: Explorationsergebnis in echter Umgebung

Versuch einen Flur im 2.Stock von Gebäude 38 zu explorieren. Auf der rechten Seite sind Türen zu
angrenzenden Büroräumen zu erkennen. Auf der linken Seite sind Fenster zu sehen, die bis auf den Boden
reichen.

6. Zusammenfassung

 Seite 55 von 69

6. Zusammenfassung

Das Problem der autonomen Exploration ist aktuell viel diskutiert und besteht aus mehreren
Teilgebieten (siehe Abb 1.1). Für jedes dieser Teilgebiete bedarf es einer effizienten sowie
effektiven algorithmischen Umsetzung und einer Zusammenführung der einzelnen Lösungen.
Die von Yamauchi eingeführten frontiers [YAM97, YAM98] liefern hierbei einen
Lösungsansatz für das Teilproblem der Exploration. Bis heute entstehen aus davon
abgeleiteten Variationen situationsbezogene Verfahren und Beiträge zur autonomen
Exploration.
Im Gegenzug zu zufälliger Exploration oder dem Folgen von Wänden bietet diese Technik
selbst in Umgebungen mit zufällig verteilten Hindernissen und Wänden eine stabile
Möglichkeit um autonom zu explorieren.
Auch in dieser Ausarbeitung wird ein Ansatz vorgestellt, welcher frontiers zugrundelegend
autonome Exploration ermöglicht. Hierfür wird eine genauere Unterteilung zwischen
frontierCells und frontierRegions vorgenommen. frontierCells sind f-Space Zellen, die an u-
Space angrenzen. frontierRegions werden durch eine miteinander verbundene Menge von
frontierCells gebildet. Es wird desweiteren ein Filtermechanismus entwickelt, um unabhängig
von sensorischen Ungenauigkeiten frontiers berechnen zu können. Kernpunkte sind hierbei
das eingeführte Nachbarschaftssummenintervall [NSI], welches als Filterkriterium dient und
ein iterativ ausgeführter Filtermechanismus, welcher sich einer Liste mit potentiellen
Filterkandidaten bedient und diese in jedem Iterationsschritt aktualisiert. Desweiteren wird im
Gegensatz zu vielen anderen Vorschlägen nicht auf der vollständigen Karte nach frontiers
gesucht, sondern in iterativ erhöhten Radien um den Roboter herum. Das Finden möglichst
gewinnbringender Ziele im Sinne einer effizienten Exploration stellt einen weiteren Aspekt
dieser Arbeit dar. Um dies zu gewährleisten werden Kriterien herausgearbeitet, die eine
qualitative Einschätzung von frontiers zulassen. Diese Kriterien werden gewichtet addiert, um
dadurch qualitativ hochwertige Ziele finden zu können. Es wird außerdem eine Technik
vorgestellt, welche die Verwaltung von Zielen ermöglicht. So ist es zum Beispiel möglich
Ziele für spätere Explorationszwecke zu speichern oder Ziele zu sperren. Eine ausführliche
Abhandlung der Leistungsfähigkeit wird sowohl theoretisch anhand von Laufzeitanalysen
vollzogen als auch in Experimenten dargelegt.

7. Ausblick

 Seite 56 von 69

7. Ausblick

Bei der Erörterung und Umsetzung der vorliegenden Aufgabenstellung wurden viele
Lösungswege bedacht, Verfahren gegeneinder abgewogen und nützliche Komponenten
entwickelt. Darauf aufbauend ist es stets möglich die Leistung zu erhöhen oder weitere
Features umzusetzen. Im Folgenden werden in Kürze Optimierugnsszenarien durchgespielt,
mögliche zusätzliche Features vorgestellt und ein Ausblick in die Verwendbarkeit der
vorgestellten Lösung anhand anderer Projekte versucht.

7.1. Algorithmische Erweiterungen

Ausgehend von großen Karten und dem Umstand, dass sich die Fragestellung in einer
Echtzeitumgebung beweget ist die Performance der einzelnen Teilsysteme ein elementarer
Bestandteil der algorithmischen Entwicklung.

7.1.1. Adaptive Auflösung in Suchbereich

Verringert man die Auflösung in einem Kartenabschnitt derart, dass die Größe einer
Zelle ungefähr den Ausmaßen des Roboters entspricht [KK12], so verringert sich die Anzahl
der Zellen quadratisch. Es gilt festzustellen, dass der Roboter einen gewissen Raum um sich
herum zum Navigieren benötigt, wodurch die lokale Anpassung der Auflösung keinen großen
Qualitätsverlust im Sinne der Navigation oder des Findens von frontierRegions mit sich
bringt. Für die Skalierung sind eine Metrik von Nöten, sowie die Betrachtung der benötigten
Laufzeit. Letztendlich lässt sich dann der Aufwand der Skalierung mit dem Gewinn einer
reduzierten Zellanzahl bei weiteren Schritten in Bezug setzen.

7.1.2. Verbessertes iteratives Suchen nach frontierRegions

Das in dieser Arbeit vorgeschlagene Verfahren erhöht solange iterativ den
Suchbereich bis frontierRegions gefunden werden, oder bis andere Bedingungen greifen und
fallback Strategien durchgeführt werden. Bisher wird in jeder Iteration der komplette
Suchbereich mit 7G Zellen gefiltert und anschließend nach frontierRegions gesucht. Eine
deutliche Optimierung wäre durch das Verwenden der bereits in der vorhergehenden Iteration
berechneten Informationen möglich. Die Anzahl der Zellen pro Iteration lässt sich somit
durch

 7G − �7 − 2+�G = 47+ − 4+G	|	7 = 2*)#7	+ =
6ℎ*�..%*öß$		 eq xxvii

berechnen und ist somit nicht mehr quadratisch, sondern linear in Abhängigkeit von d.
Speziell das Glätten des Suchbereichs als auch das Suchen nach frontierRegions ließe sich
dadurch beschleunigen.

7. Ausblick

 Seite 57 von 69

7.1.3. Situationsbezogene Anpassung der Explorationsstrategie

Tests haben gezeigt, dass veränderte Gegebenheiten auf der Karte unter Umständen zu
ungünstigen Explorationsschritten führen können. So ist in großen, offenen Gebieten ein hoch
gewichtetes Richtungskriterium für eine schnelle Exploration verantwortlich, wohingegen die
gleichen Parameter in einer engen, hindernisreichen Umgebung zu keinem Erfolg führen.
Anlehnend an 7.3. wäre die Fähigkeit Umgebungsstrukturen zu erkennen und diese in Klassen
einzuordnen ein weiterer Schritt in Richtung der autonomen Exploration. Beispielhaft wäre es
denkbar eine Menge an Klassen zu definieren, die je einem bestimmten Umgebungstyp
entsprechen. Anhand von definierten Umgebungsmerkmalen kann nun die Klasse mit der
größten Schnittmenge ausgewählt und der darin gespeicherte Parametersatz geladen werden.
Der Roboter könnte somit sein Explorationsverhalten dynamisch an die erkannte Situation
anpassen und dadurch seine Erfolge maximieren.

7.1.4. Zufallskomponente

[FO05] stellt bereits einen auf sensor-based random trees basierenden Ansatz vor.
Hierbei wird um den Roboter eine saveRegion berechnet und innerhalb derer eine zufällige
Explorationsrichtung gewählt. Eine rein zufallsbasierte Richtungswahl schien den Autoren
wenig gewinnbringend, weshalb sie die Zufälle in Richtung frontiers lenken. Solch ein
integrierter Ansatz wäre eine denkbare Erweiterung für diese Arbeit. Vorstellbar wäre es zum
Beispiel unter den besten x frontierRegions zufällig eine auszuwählen oder innerhalb der
berechneten potentialGoalArea ein Ziel zufällig zu bestimmen. Bedingt durch eine
Zufallskomponente könnten auftretende Navigationsprobleme durch wiederholen der
aktuellen Iteration eventuell gelöst werden ohne auf komplexere fallback Strategien
zurückgreifen zu müssen.

7.2. Erweiterte Sensorik

Lediglich auf horizontale Laserscans gestützt entsteht in den beschriebenen Verfahren
eine zwei dimensionale Karte, welche für die Exploration verarbeitet wird. Verschiedenste
Erweiterungen hierfür sind denkbar um einen Mehrwert für die autonome Exploration zu
generieren. So ist eine vertikale Ausdehnung der Karte ein wichtiger Schritt, um den
Ausmaßen des Roboters gerecht zu werden. Weitergehend ist die optische Erfassung der
Umgebung eine wichtige Voraussetzung für die semantische Auswertung von entdeckten
Hindernissen.
Es ist jedoch klar, dass mit jeder hinzugefügten sensorischen Einheit ein größeres
Datenvolumen entsteht, welches verarbeitet werden muss. So resultiert eine zusätzliche
Kartendimension ad hoc in einer kubischen Laufzeit.

7. Ausblick

 Seite 58 von 69

7.3. Semantische Erweiterungen

Die im Rahmen dieser Arbeit entstanden Algorithmen befassen sich zumeist direkt mit der
Aufgabenstellung. An einigen Stellen scheint eine tiefer gehende Untersuchung der
Problematik aber sinnvoll. So wird unter anderem den berechneten Daten nur oberflächlich
Bedeutung zuteil (o-Space/u-Space/f-Space).
Zum Beispiel würde aber ein tiefer gehendes Verständnis des Objektes "Türe" im Sinne der
Exploration einen deutlichen Mehrwert ergeben, da sich hinter einer Türe in der Regel neues
Gebiet befindet. Ein möglicher Ansatz wird in [KLS+05] beschrieben.
Auch eine semantische Erfassung des Objektes Flur würde das Verfahren bereichern, da
potentielle Ziele in der Mitte eines Flurs zu finden sind, und somit das Vorankommen
beschleunigt würde.

7.4. Einsatzmöglichkeiten

Angefangen bei der Industrie in Fertigungsstraßen über die Haushaltshilfe bis hin zum
Einsatz in Krisenregionen oder zur Exploration von Planeten lassen sich autonome
Erkundungsroboter in vielerlei Hinsicht einsetzen. Es erleichtert dem Menschen die Arbeit,
kann vor Gefahren schützen oder gelangt schlicht an Orte, an die ein Mensch aktuell nicht
gelangen kann.
Die Exploration außen vor lassend ist ein autonomes System eine relevante Thematik in
vielen Zweigen der Wissenschaft. Diese reichen von Fußballspielenden Robotern [RC], über
autonome Fahrzeuge bis hin zum Einsatz für das Militär [SCJ+05].

7.4.1. Autonomes Fahren

Aktuelle Artikel und Diskussionen zeigen, dass Automobilhersteller aktiv an der
Thematik autonomes Fahren arbeiten. Hierbei geht es nicht um die alleinstehende autonome
Exploration, sondern vielmehr um ein selbstständig entscheidendes Fahrzeug im Ganzen.

In [ENG14] wird diese Thematik diskutiert und man kommt zu dem Schluß, dass es in den
nächsten zehn Jahren Entwicklung noch viele Meilensteine zu bewältigen gilt.
Datensicherheit und gesetzliche Hintergründe als Beispiel dafür. Es wird aber auch eine
Prognose gewagt, die eine Verringerung der Unfallrate um circa 90% veranschlägt.

"The car that will take you home after you
have had too much to drink is a long way
off. But is that what we really want?"

Dieter Zetsche, Detroit motor show [ENG14]

[KUR14] kommt zu einem Ähnlichen Ergebnis und fügt die Frage "Wie weit und vor allem
wie kann sich ein autonom fahrendes Fahrzeug vor uns Menschen etablieren?" hinzu.

7. Ausblick

 Seite 59 von 69

Desweiteren wird auf technische Schwierigkeiten hingewiesen und eine Fusion verschiedener
technischer Ansätze als unumgänglich angesehen.

Yet if snow is in the forecast, fancy LiDAR
systems are useless – your car will be too
busy scanning snowflakes, versus road
signs and traffic signals.

Alberto Broggi, Italien [KUR14]

Basierend auf diesen zwei Artikeln und einigen anderen Quellen [AD14, BNZ14] ist die
deutliche Bemühung unterschiedlicher Automobilhersteller zu erkennen in Richtung des
autonomen Automobils zu entwickeln. Es lässt sich aber auch erkennen, dass der Weg dahin
noch viele Hürden bereithält und dass die Akzeptanz in der Gesellschaft noch nicht vorhanden
ist.
Im Gegensatz dazu sind Fahrassistenzsysteme weit verbreitet und bereits als Standard
gefordert und umgesetzt. Diese ermöglichen jetzt schon automatisiertes und unterstütztes
Fahren. Einparkhilfe, Abstandshalter und Spurassistent seien eine Auswahl davon. Diese
Techniken sind noch weit entfernt vom autonomen Fahren, doch ist der erste Schritt dahin
bereits getan.

7.4.2. Industrie und Militär

In [TTW+04] findet sich ein weiteres praxisbezogenens Beispiel. Hier wird gezeigt,
wie ein autonom arbeitender Roboter - namentlich Groundhog - verlassene Minen an Stellen
kartografiert, die für den Menschen ein zu hohes Risiko bergen. Vergleichbar mit
vorliegender Arbeit wird basierend auf SLAM und wiederholten Laserscans iterativ eine
Karte erstellt. Jedoch werden goalRegions in einer geraden Linie vor Groundhog in etwas
fünf meter Entfernung definiert. Ist ein A* nicht in der Lage, einen Pfad dorthin zu finden, so
wird die goalRegion vergrößert oder Groundhog fährt zulässig durch seine Architektur in die
andere Richtung. Groundhogs chasis und Ausrüstung sind vorne und hinten identisch.
Erfolgreiche Tests unter anderem in der Florence Mine in der Nähe von Burgettstown in
Pennsylvania und in der Mathies Mine in der Nähe von Courtney bestätigen die
Verwendbarkeit dieser Technik.

 Abb 7.1: Groundhog [TTW+04]

7. Ausblick

 Seite 60 von 69

[SCJ+05] präsentiert eine Technik, welche autonom die Trajektorie eines UAV in einem
Stadtgebiet plant, um von einem Startpunkt A (Position des UAV) bis zu einem Zielpunkt B
zu navigieren. Hauptaugenmerk liegt hierbei zwar mehr auf Pfadfindung als auf Exploration,
jedoch wird auch hier der Aspekt des autonomen Verhaltens eines Roboters herausgearbeitet.
Anhand eines Lasersensors wird eine local obstacle map im Umkreis des UAV erstellt.
Ausgehend von einer initialen Trajektorie berechnet ein MPC (model predicitve control)
Algorithmus eine kollisionsfreie angepasste Trajektorie. Eine Kostenfunktion bezogen auf die
entdeckten Hindernisse und ein gradient-search Algorithmus liefern hierfür die benötigten
Daten. Desweiteren wird die Frage nach einer geeigneten caching Strategie gestellt. Hierfür
werden die Szenarien dynamische und statische Umgebung gegenübergestellt. Schlußendlich
wird zusätzlich noch die Frage gestellt, unter welchen Bedingungen Hindernisse verworfen
werden können. So stellen fallende Blätter dynamische Hindernisse dar, sind für die
traversierung aber nicht relevant.

Abb 7.3: Flugweg der UAV [SCJ+05] Abb 7.2: Berkeley UAV [SCJ+05]

Verzeichnisse

 Seite 61 von 69

Stichwortverzeichnis

Um dem Leser eine möglichst verständliche Lektüre zu ermöglichen stellt der Autor im
Folgenden eine Liste der verwendeten Begrifflichkeiten zusammen.

free-Space
Gebiet, welches bereits erkundet wurde und frei von Hindernissen ist. In vorliegender Arbeit
auch mit f-Space beschrieben. F_SPACE beschreibt die Konstante 0, welche im
Zusammenhang mit occupancy grids verwendet wird.

frontierCell
Zelle, die sich in f-Space befindet und direkt an eine u-Space Zelle grenzt.

frontierRegion
Grenzbereich zwischen f-Space und u-Space. Für diese Arbeit von zentraler Bedeutung.

cartesian-Space
Gegenstück zum l-Space. Im Allgemeinen durch pt repräsentiert.

goalRegion
Definierter Bereich um das Ziel herum. Gewährleistet die Anwendung verschiedener
Techniken.

height und width
Repräsentieren die Höhe und Breite der Karte. Mit h und w abgekürzt.

linear-Space
Vom Autor eingeführte Bezeichnung, um zwischen der linearen Indizierung von Punkten und
den dazugehörigen kartesischen Punkten (vice versa) eindeutig unterscheiden zu können. Im
Allgemeinen durch i repräsentiert.

map(i)
Abgekürzt für ���. 7�.�a�b um einen angenehmeren Lesefluss zu gewährleisten.

nav_msgs::occupancy_grid map = getMap��;
return map.dataaib;

Code 0.1: map.data

Verzeichnisse

 Seite 62 von 69

neighbours(i)
Repräsentiert alle Nachbarindizes um i in einem 3x3 Gebiet.

 #$�%ℎ'()*+��� = {� ± 9 ± 1; � ± 9; � ± 1} eq xxviii

neighbourValues(i)

 #$�%ℎ'()*��/)$+��� = 	�����#$�%ℎ'()*+���� eq xxix

NSI
Vom Autor eingeführte Abkürzung für Nachbarschafts Summen Intervall. Beschreibt das
Intervall, in welchem neighbourValues(i) liegen muss, um i zu glätten.

occupancy grid
Von ROS zur Verfügung gestelltes Datenmodell, um Karten speichern und bearbeiten zu
können. Die Belegungswerte (F_SPACE, …) werden mittels eines Vektors repräsentiert.

occupied-Space
Erkundetes, aber belegtes Gebiet. Abgekürzt mit o-Space. F_
���� = 100.

ROS
Das Robot Operating System ist ein open source Framework, welches eine Vielzahl an
libraries, Geräte Treibern, Simulationswerkzeugen, Hardware Abstraktionen und vielem mehr
zur Verfügung stellt um Entwicklern bei der Erstellung von Roboter Software zu unterstützen.

SLAM
Simultaneous Localization and Mapping ist ein Verfahren, mit der ein Roboter iterativ eine
Karte erstellen und gleichzeitig seine Position innerhalt dieser abschätzen kann [GTS+07].

unknown-Space
Zellen, welche keinen definierten Belegungszustand haben. Mit u-Space abgekürzt.
�_
���� = −1

Verzeichnisse

 Seite 63 von 69

Abbildungsverzeichnis

Teilaspekte der mobilen Robotik [JOH07] .. 4

Schematische Darstellung eines occupancy grid ... 16

Anfallende Datenstrukturen und Datensätze bei der Suche nach frontierRegions 17

Schematische Darstellung einer Karte mit Suchgebiet .. 18

Ungefilterte Karte .. 19

Gefilterte Karte .. 19

Suche nach frontierRegions ohne und mit Filter (r=3) .. 20

Suche nach frontierRegions ohne und mit Filter (r=6) .. 20

Nachbarschaftssumme = 0 ... 22

Nachbarschaftssumme = {-1; -2} ... 22

Nachbarschaftssume = {-2; -3} .. 22

Nachbarschaftssumme = {-2; -3; -4; -5} ... 22

Gefilterte Karte mit verschiedenen NSIs .. 22

Karte mit Filterkandidaten anhand verschiedener NSIs .. 23

Ablauf der Filterung ... 25

Zellenreduktion bei der Filterung .. 29

Zellenreduktion bei der Filterung .. 30

potentialGoalArea skizziert .. 35

potentielGoalArea in rviz ... 35

Anfahren von F in nahezu rechtem Winkel .. 36

Anfahren von F mit Blick auf entfernte Ecke ... 36

Ungültiges Anfahren von F .. 36

Schematischer Ablauf der Exploration .. 40

Fehlerfälle .. 42

Simulierte Umgebung 1 .. 43

Explorationsergebnis 3_3_5_0 .. 43

Explorationsergebnis 6_3_4_0 .. 44

Explorationsergebnis 15_5_2_0 .. 44

Explorationsergebnis 3_3_5_1 .. 44

Explorationsergebnis 6_3_4_1 .. 44

Explorationsergebnis 3_3_5_0 nach 30 min - zweiter Lauf .. 45

Explorationsergebnis 3_3_5_0 nach 30 min - dritter Lauf .. 46

Verzeichnisse

 Seite 64 von 69

Explorationsergebnis 6_3_4_0 nach 30 min - zweiter Lauf .. 47

Simulierte Umgebung 2 .. 50

Explorationsergebnis 3_3_5_1 nach 10 min .. 50

Explorationsergebnis 3_3_5_1 nach 20 min .. 51

Explorationsergebnis 3_3_5_1 nach 30 min .. 51

Simulierte Umgebung 3 .. 52

Explorationsergebnis 3_3_5_1 nach 10 min .. 52

Explorationsergebnis 3_3_5_1 100% .. 53

Explorationsergebnis in echter Umgebung .. 54

Groundhog [TTW+04] ... 59

Berkeley UAV [SCJ+05] .. 60

Flugweg der UAV [SCJ+05] .. 60

Verzeichnisse

 Seite 65 von 69

Formelverzeichnis

eq i: Definition von frontierCell Variante 1 12

eq ii: Definition von frontierCell Variante 2 12

eq iii: Definition von frontierRegion 12

eq iv: Spaltennummer in Grid 13

eq v: Zeilennummer in Grid 13

eq vi: x-Wert von indiziertem Punkt 13

eq vii: y-Wert von indiziertem Punkt 13

eq viii: Zellmitte (x) von beliebigem Punkt 13

eq ix: Zellmitte (y) von beliebigem Punkt 13

eq x: Indizierter Wert eines geometrischen Punktes 13

eq xi: Laufzeit des Findens von frontierCells 17

eq xii: Speicherverbrauch der Nachbarschaftsrelationen 17

eq xiii: Laufzeit des Findens von Nachbarschaftsrelationen 17

eq xiv: Laufzeit der Extraktion von frontierRegions 1 18

eq xv: Laufzeit der Extraktion von frontierRegions 2 18

eq xvi: Gesamtlaufzeit der Detektion von frontierRegions 18

eq xvii: Laufzeit eines einfachen Tiefpassfilters 27

eq xviii: Laufzeit des modifizierten Tiefpassfilters 27

eq xix: Laufzeit des Entfernens duplizierter Einträge 28

eq xx: Laufzeit des Ignorierens duplizierter Einträge 28

eq xxi: Connectivity als Linie 32

eq xxii: Berechnung der Qualität "Connectivity" 32

eq xxiii: Berechnung der Qualität "Distanz" Variante 1 33

eq xxiv: Berechnung der Qualität "Distanz" Variante 2 33

eq xxv: Schlechter Pfad Fall 1 39

eq xxvi: Schlechter Pfad Fall 2 39

eq xxvii: Verbessertes iteratives Suchen nach frontierRegions 56

eq xxviii: Berechnung von neighbours(i) 62

eq xxix: Berechnung von neighbourValues(i) 62

Verzeichnisse

 Seite 66 von 69

Sonstige Verzeichnisse

Code 3.1: Finden von frontierCells in Rechteck .. 15

Code 3.2: Ignorieren duplizierter Einträge während Iteration ... 25

Code 3.3: Entfernen duplizierter Einträge nach Iteration ... 25

Code 4.1: Berechnug der potentialGoalArea .. 35

Code 0.1: map.data .. 61

Diagramm 3.1: Handshake vs .sort.unique .. 24

Diagramm 3.2: Laufzeiten der Glättung mit modifiziertem Filter ... 27

Diagramm 3.3: Laufzeiten der Glättung .. 27

Diagramm 3.4: Optimierungspotential .. 28

Diagramm 5.1: Explorierter Anteil der Karte ... 49

Diagramm 5.2: Zurückgelegte Strecke ... 49

Diagramm 5.3: Ratio Exploriert zu zurückgelegter Strecke .. 49

Tabelle 3.1: Vergleich ungefiltert/gefiltert ... 19

Tabelle 3.2: Vergleich der Filtermechanismen mit r = 6 .. 30

Tabelle 3.3: Vergleich der Filtermechanismen mit r = 15 .. 30

Tabelle 3.4: Durchschnittliche Filteriterationen ... 31

Tabelle 5.1: Verschiedene Explorationsszenarien ... 48

Verzeichnisse

 Seite 67 von 69

Literaturverzeichnis

[AD14] Autonomous Driving. 2014. Link: <http://autonomous-driving.we-conect.com/en/>.

[BMF+00] Burgard, W.; Moors, M.; Fox, D.; Simmons R. und Thrun, S.: Collaborative Multi-Robot
exploration. In: Proceedings of the IEEE Int. Conf. on Robotics and Automation.
San Francisco, CA, USA, 2000. 476-481.

[BNZ14] Mercedes-Benz. Autonomous Long-Distance Drive. 2013. Link: <http://www5.mercedes-
benz.com/en/innovation/autonomous-long-distance-drive-research-vehicle-s-500-
intelligent-drive/>.

[DUQ04] Duque-Antón, M.: Tipps zum Anfertigen einer Diplomarbeit. In: FH Kaiserslautern, 2004.
Link: <http://www.fh-kl.de/~duque/files/04ws/Anleitung.pdf>.

[ENG14] English, A.: Autonomous cars – is this the end of driving? In: The Telegraph. Link:
<http://www.telegraph.co.uk/motoring/road-safety/10570935/Autonomous-cars-is-this-
the-end-of-driving.html> 12.01.2014.

[ESP12] Esponda, M.: Analyse von Algorithmen: Die O-Notation. In: Freie Universität Berlin,
2012. Link: <http://w3.inf.fu-
berlin.de/lehre/SS12/ALP2/slides/V6_Rekursion_vs_Iteration_ALP2.pdf>.

[FO05] Freda, L. und Oriolo, G.: Frontier-based probabilistic strategies for sensor-based
exploration. In: Proceedings of the IEEE Int. Conf. on Robotics and Automation.
Barcelona, Spain, 2005. 3881-3887.

[GKC03] Grabowski, R.; Khosla, P. und Choset, H.: Autonomous Exploration via Regions of
Interest. In: Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and
Systems. Las Vegas, Nevada, USA, 2003. 1691-1696.

[GTS+07] Grisetti, G.; Tipaldi G.D.; Stachniss, C.; Burgard, W. und Nardi, D.: Fast and accurate
SLAM with Rao-Blackwellized particle filters. In: Robotics and Autonomous Systems 55.
2007. 30-38.

[GL02] Gonzalez-Banos, H. H. und Latombe, J.: Navigation Strategies for Exploring Indoor
Environments. In: The International Journal of Robotics Research. 2002. 829-848.

[IPA14] Fraunhofer IPA. Link: <http://www.ipa.fraunhofer.de/Navigation.25.0.html>.

[JOH07] Joho, Dominik: Exploration für mobile Roboter unter Verwendung dreidimensionaler
Umgebungsmodelle. In: Diplomarbeit, Albert-Ludwigs-Universität Freiburg, 2007. Link:
<http://ais.informatik.uni-freiburg.de/publications/papers/joho07diplom.pdf>.

[KK12] Keidar, M. und Kaminka G. A.: Robot Exploration with Fast Frontier Detection: Theory
and Experiments. In: Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). Valencia, Spain, 2012. 113-120.

Verzeichnisse

 Seite 68 von 69

[KLS+05] Kleinlützum, K.; Luksch, T.; Schmidt, D. und Berns, K.: Selbstständige Exploration einer
abstrakten topologiebasierten Karte für die autonome Exploration. In: Technische
Universität Kaiserslautern, 2005. Link: < https://agrosy.informatik.uni-
kl.de/fileadmin/Literatur/Kleinluetzum05a.pdf>.

[KUR14] Kurczewski, N.: Autonomous drive expert believes cars will be better drivers than
humans. In: Daily News. Link: <http://www.nydailynews.com/autos/buyers-guide/cars-
safer-drivers-self-driving-vehicles-eliminate-traffic-accidents-article-1.1595616>
29.01.2014.

[LMB+02] Lacroix, S.; Mallet, A.; Bonnafous, D.; Bauzil, G.; Fleury, S.; Herrb, M. und Chatila,
Raja: Autonomous Rover Navigation on Unknown Terrains: Functions and Integration.
In: The International Journal of Robotics Research. 2002. 917-942.

[LR02] Levi, P. und Rembold U.: Einführung in die Informatik: für Naturwissenschaftler und
Ingenieure. Carl Hanser Verlag GmbH & Co. KG. 2002.

[MH80] Marr, D. und Hildreth, E.: Theory of Edge Detection. In: Proceedings of the royal society.
1980. 187-217.

[MSW01] Moorehead, S. J.; Simmons, R. und Whittaker, W. L.: Autonomous Exploration Using
Multiple Sources of Information. In: IEEE Int. Conf. on Robotics and Automation.
Seoul, Korea, 2001.

[NÜC02] Nüchter, Andreas: Autonome Exploration und 3D-Modellierung der Umgebung eines
Roboters. In: Diplomarbeit, Rheinische Friedriche-Wilhelms-Universität Bonn, 2002.
Link: <http://plum.eecs.jacobs-university.de/download/it2002.pdf>.

[RC14] Robo Cup. Link: <http://www.robocup.org>.

[ROS14] Robot Operation System. Link: <http://wiki.ros.org/>.

[RUO13] Ruohonen, K.: Graph Theory. In: Tampere University of Technology, Finland, 2013.
Link: <http://math.tut.fi/~ruohonen/GT_English.pdf>

[SCH05] Schöning, U.: Logik für Informatiker. Heidelberg; Berlin: Spektrum Akademischer
Verlag GmbH. 2005.

[SCH13] Schiefer, B.: Algorithmische Graphentheorie: Zusammenhangskomponenten. In:
Fachhoschule Kaiserslautern, 2013 Link: <http://www.informatik.fh-
kl.de/~schiefer/lectures/download/GT_3.pdf>.

[SCJ+05] Shim, D. H.; Chung, H.; Jin Kim, H. und Sastry, S.: Autonomous Exploration in
Unknown Urban Environments for Unmanned Aerial Vehicles. In: AIAA GN&C
Conference. 2005.

[TTW+04] Thrun, S.; Thayer, S.; Whittaker, W.; Baker, C.; Burgard, W.; Ferguson, D.; Hähnel, D.;
Montemerlo, M.; Morris, A.; Omohundro, Z.; Reverte, C. und Whittaker, W.:
Autonomous Exploration and Mapping of Abandoned Mines. In: IEEE Robotics &
Automation Magazine. 2004. 79-91.

Verzeichnisse

 Seite 69 von 69

 [WAN06] Wang, Y.: Image Filtering: Noise Removal, Sharpening, Deblurring. In: Polytechnic
University Brooklyn, 2006. Link:
<http://eeweb.poly.edu/~yao/EE3414/image_filtering.pdf>.

[WOL14] Wolf, J.: C++ Das umfassende Handbuch. In: Galileo Computing. 2014.

[YAM97] Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Computational
Intelligence In Robotics and Automation. Monterey, CA, USA, 1997.

[YAM98] Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the
second international conference on Autonomous agents. Minneaolis, MS, USA, 1998.

Alle Links wurden zuletzt am 20. März 2014 überprüft.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken
übernommenen Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch
vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Stuttgart, 25.03.2014

