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Abstract 
 

Navigation ist ein Begriff, der heutzutage in verschiedenen Bereichen der Robotik und der 
autonomen Fahrzeuge weit verbreitet ist und ständig an Bedeutung gewinnt. Logistik auf der 
ganzen Welt ist von einer fehlerfreien und effektiven Navigation abhängig, um Kosten – 
monetär und zeitlich –  so gering wie möglich zu halten. Fasst man den Begriff der 
Navigation nun aber weiter und nimmt zusätzlich die Aspekte Selbstlokalisierung und 
Exploration hinzu, so entsteht ein breites Spektrum an Möglichkeiten, welche über die bloße 
Navigation weit hinausreichen und einen Agenten in vielerlei Hinsicht unabhängig vom 
Eingreifen des Menschen autonom die Welt entdecken lässt. Zwar gibt es auf diesem Gebiet 
schon diverse Ansätze, dennoch soll mit vorliegender Arbeit ein robustes Framework 
entstehen, welches in die Thematik der frontiers einführt. Ergänzend zu vielen anderen 
Arbeiten auf diesem Gebiet kommt ein Filtermechanismus zum Einsatz. Außerdem werden 
die extrahierten frontiers qualitativ bewertet und eine nutzenbasierte Zielsuche vollzogen. 
  



 Inhaltsverzeichnis 

          Seite 2 von 69 

Inhaltsverzeichnis 

 
Abstract ...................................................................................................................................... 1 

Inhaltsverzeichnis ....................................................................................................................... 2 

1. Einleitung ............................................................................................................................... 4 

1.1. Aufgabenbeschreibung .................................................................................................... 6 

1.2. Aufbau und Struktur ........................................................................................................ 6 

2. Grundlagen ............................................................................................................................. 7 

2.1. State of the Art ................................................................................................................. 7 

2.2. Terminologie ................................................................................................................. 11 

2.3. Rahmenbedinungen ....................................................................................................... 11 

3. Verfahren zur frontier Detektion .......................................................................................... 12 

3.1. Definitionen ................................................................................................................... 12 

3.2. Konvertierung von linear-Space nach cartesian-Space und vice versa ......................... 13 

3.3. Finden von frontierCells mit Hilfe von occupancy grids .............................................. 14 

3.4. 3x3 Nachbarschaftsrelationen ........................................................................................ 14 

3.5. Extraktion relevanter frontierRegions ........................................................................... 16 

3.6. Datenmodelle ................................................................................................................. 16 

3.7. Erste Laufzeitbetrachtung .............................................................................................. 17 

3.8. Sonnenstrahleffekt ......................................................................................................... 19 

3.9. Vorfiltern von Kartenausschnitten ................................................................................. 21 

3.9.1. Betrachtung der zu glättenden Fälle ..................................................................... 21 

3.9.2. Beschreibung des Verfahrens ............................................................................... 24 

3.9.3. Korrektheit und Terminierung .............................................................................. 26 

3.9.4. Laufzeitbetrachtung .............................................................................................. 27 

4. Zielsuche und Exploration ................................................................................................... 32 

4.1. Qualitätskriterien ........................................................................................................... 32 

4.2. Bestimmung eines Ziels ................................................................................................. 33 

4.3. Ablauf ............................................................................................................................ 37 

4.4. Fallback Strategien ........................................................................................................ 37 

5. Experimentelle Ergebnisse ................................................................................................... 41 

6. Zusammenfassung ................................................................................................................ 55 

7. Ausblick ............................................................................................................................... 56 

7.1. Algorithmische Erweiterungen ...................................................................................... 56 

7.1.1. Adaptive Auflösung in Suchbereich ..................................................................... 56 

7.1.2. Verbessertes iteratives Suchen nach frontierRegions ........................................... 56 

7.1.3. Situationsbezogene Anpassung der Explorationsstrategie ................................... 57 

7.1.4. Zufallskomponente ............................................................................................... 57 



 Inhaltsverzeichnis 

          Seite 3 von 69 

7.2. Erweiterte Sensorik ........................................................................................................ 57 

7.3. Semantische Erweiterungen .......................................................................................... 58 

7.4. Einsatzmöglichkeiten ..................................................................................................... 58 

7.4.1. Autonomes Fahren ................................................................................................ 58 

7.4.2. Industrie und Militär ............................................................................................. 59 

Stichwortverzeichnis ................................................................................................................ 61 

Abbildungsverzeichnis ............................................................................................................. 63 

Formelverzeichnis .................................................................................................................... 65 

Sonstige Verzeichnisse ............................................................................................................. 66 

Literaturverzeichnis .................................................................................................................. 67 

 

 



1. Einleitung 

  Seite 4 von 69 

1. Einleitung 
 

Exploration unbekannter Gebiete stellt eines der grundlegenden Probleme in der mobilen 
Robotik dar. Weit verbreitetet und viel diskutiert auf diesem Gebiet ist der grenzzellenbasierte 
Ansatz von Yamauchi [YAM97, YAM98]. Yamauchi gilt als Vorreiter der autonomen 
Exploration und sein Konzept spiegelt sich in vielen Arbeiten wieder. Basierend auf seiner 
Idee entstand in den letzten Jahren eine Vielzahl an Lösungen für konkretisierte Probleme. 
Stochastische [FO05], auf Leistung optimierte [KK12] oder topologiebasierte Erweiterungen 
[KLS+05] seien eine Auswahl davon.  
Anhand von Abb 1.1 lässt sich die Komplexität dieses Problems und die Verknüpfung der 
verschiedenen Teilaspekte erkennen.  
Während der Schwerpunkt der Navigation in einer effizienten Pfadplanung zu suchen ist, so 
findet sich der Schwerpunkt der Exploration in der Berechnung eines nächsten Zieles, 
welches bezogen auf die Aufgabenstellung den Informationsgewinn maximiert. So macht es 
zum Beispiel einen Unterschied im Sinne einer möglichst weiträumig aufgedeckten Karte zu 
explorieren oder das Finden und Markieren radioaktiver Gebiete als Aufgabenstellung 
vorzugeben. Hierbei wird im ersten Fall zum Beispiel ein Lasersensor benötig und das Fahren 
Richtung u-Space gewinnbringend sein, wohingegen im zweiten Fall erweiterte Sensorik von 
Nöten ist und Gebiete erhöhter Strahlung angefahren werden. Leider gilt es festzustellen, dass 
ein optimaler Pfad mit maximal gewinnbringenden Zielen ähnlich dem NP-harten Traveling 
Salesman Problem ist. Einige viel versprechende Ansätze nehmen daher Abstand von einem 
einzelnen Roboter und ersetzen diesen durch eine Vielzahl von Robotern. Grundlegende 
Vorteile hierbei sind unter anderem eine erhöhte Ausfalltoleranz einzelner Systeme, die 
Möglichkeit entfernte Kartenabschnitte gleichzeitig erkunden zu können und eine dadurch 
verbundene erhöhte Explorationsgeschwindigkeit. Nachteilig sind jedoch der Bedarf einer 
Koordinationsstrategie,  komplexe Kommunikation und das Verwalten einer verteilt erstellten 
Karte. Beispielhaft sei hier der Bedarf nach einer Strategie erwähnt, welche gewährleistet, 
dass die verwendeten Roboter unterschiedliche Zielpunkte erkunden [BMF+00]. 

 
Abb 1.1: Teilaspekte der mobilen Robotik [JOH07] 
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Anlass zu weiteren Untersuchungen liefert die Frage nach einer geeigneten Repräsentation der 
zu erstellenden Karte. Viele Ansätze verwenden eine zellbasierte Darstellung und speichern 
relevante Informationen direkt in der betroffenen Zelle ab. 

 
Neben einigen anderen Varianten bietet das ROS-Framework eine ideale Arbeitsstütze, um 
die Aspekte der Navigation und der damit verbundenen Sensorik ohne großen Aufwand in die 
eigenen Projekte einbinden zu können. Ausgehend von diesem Framework besteht nun die 
Möglichkeit bereits existierende Stacks weiter zu optimieren, oder eigene Stacks darauf 
aufbauend zu entwerfen, um spezifische Aufgaben zu lösen. Sowohl die Lokalisierung, die 
Pfadplanung als auch die Aggregation verschiedener Sensordaten bereits zur Verfügung 
stellend, fehlt dem ROS-Framework bis dato aber eine Abstraktionsschicht, welche sich den 
vorhandenen Funktionalitäten bedient, und einen Stack bildet, welcher es dem Agenten 
ermöglicht, in unbekannten Gebieten selbständig und möglichst effizient eben diese zu 
erkunden. 
Basierend auf den Stacks slam, gmapping und sb_navigation werden frontiers eingeführt, um 
über diese möglichst interessante und informative Punkte auf der bereits explorierten Karte zu 
finden. Neben der Erläuterung theoretischer Hintergründe und einer Reihe von Abwägungen 
unterschiedlicher Ansätze liegt das Hauptaugenmerk auf dem Finden von frontiers und deren 
qualitativen Bewertung. 
Da der Anspruch in Echtzeit zu arbeiten besteht, werden sämtliche Komponenten auf deren 
Laufzeitverhalten untersucht und gegebenenfalls so lange optimiert, bis ein nachweislich 
zufriedenstellendes Ergebnis zu Tage tritt. 
 
Von den theoretischen Grundlagen über eine simulationsgestützte Entwicklung bis hin zu 
Tests in realer Umgebung deckt diese Arbeit den vollständigen Entwicklungszyklus ab und 
stellt zu guter letzt den Stack frontier_navigation zur Verfügung. 
 
Für dieses Projekt wurde die Distribution ROS FUERTE TURTLE [ROS] unter anderem mit 
den Paketen gmapping und sb_navigation verwendet. Für die Simulation kamen die Pakete 
stageros, rxgraph und rviz zum Einsatz. 
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1.1. Aufgabenbeschreibung 

Die Aufgabe dieser Diplomarbeit besteht aus dem Entwurf und der Implementierung eines 
Algorithmus zur autonomen Exploration eines autonomen Roboters in unbekannten 
Umgebungen. Bestehende Ansätze in diesem Bereich sind meist in Bezug auf Wegplanung 
und Laufzeit nicht optimal. Ziel dieser Arbeit soll es sein unabhängig vom eingesetzten 
Lokalisierungssystem und dem Hardwareaufbau des Roboters ein allgemeines Framework zur 
autonomen Exploration zu entwerfen. Dabei ist besonders eine Optimierung notwendig, die 
doppelte Wege sowie sogenannte „Stuck“ Situationen ausschließt und gleichzeitig die 
Zykluszeiten eines typischen Robotersystems (30ms) einhält. 
Dazu sind in dieser Arbeit zunächst vorhandene Ansätze zu untersuchen. Daraufhin soll 
basierend auf ROS eine Komponente entwickelt werden, die sich dynamisch in das 
Framework einfügt und den Roboter selbständig optimiert nach bestimmten Vorgaben 
explorieren lässt.  

 

1.2. Aufbau und Struktur 

Kapitel 2 stellt bereits geleistete Arbeiten auf dem Gebiet der autonomen Exploration vor 
und gibt in Kürze einen Einblick in die für die Arbeit relevante Terminologie. In Kapitel 3 
wird anhand von [YAM97, FO05, KK12] thematisch in frontiers und frontierRegions 
eingeführt. Es wird gezeigt wie diese berechnet werden und wie anhand eines 
Filtermechanismus die zu erwartenden Ergebnisse verbessert werden können. Kapitel 4 setzt 
sich basierend auf den extrahierten frontierRegions mit der für die Exploration wichtigen 
Zielsuche auseinander, legt den vollständigen Explorationszyklus dar und stellt fallback 
Strategien vor. Eine Ausarbeitung der experimentellen Ergebnisse findet in Kapitel 5 statt. 
Kapitel 6 fasst die Arbeit zusammen und Kapitel 7 bietet einen Ausblick in mögliche 
Anpassungen sowie Erweiterungen. Desweiteren wird anhand aktueller Diskussionen und 
Umsetzungen zum Thema der autonomen Exploration die Verwendbarkeit veranschaulicht. 
 
Der Autor zeigt nach und nach wiederholt die Gedanken und theoretischen Grundlagen eines 
Ansatzes auf, versucht diesen zu validieren, erörtert die Vor- und Nachteile und entwickelt 
daraus entweder einen besseren Ansatz oder fährt mit einer weiteren Problematik fort. 
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2. Grundlagen 
 

Im Folgenden wird ein ausführlicher Exkurs über die aktuell verfügbaren Technologien 
stattfinden und diese anhand von ausgewählten Veröffentlichungen in Kürze beschrieben. 
Desweiteren wird die für das Verständnis dieser Arbeit wichtige Terminologie erörtert und 
bestehende Einschränkungen und Rahmenbedingungen skizziert. 
 

2.1. State of the Art 

Das Reportoire bereits vorhandener Lektüre und Technik zu dieser Thematik ist bereits 
sehr erschöpfend. Einige für diese Arbeit grundlegenden Artikel werden im Verlauf dieses 
Kapitels vorgestellt. Es wird versucht die Unterschiede zur vorliegenden Arbeit an 
ausgewählten Stellen herauszuarbeiten, um den Beitrag dieser Arbeit abschätzen zu können. 
 
Yamauchi [YAM97] führt die Begrifflichket der frontiers beziehungsweise frontierRegions 
ein und definiert diese auf einem zellbasiertem Gitter. Die einzelnen Zellen werden hierfür in 
die drei Gruppen frei – belegt – unbekannt unterteilt. Die Einteilung in die jeweilige Gruppe 
ist Abhängig von der Belegungswahrscheinlichkeit der jeweiligen Zelle und entsprechend 
definierten Grenzwerten. Viele der im Weiteren vorgestellten Techniken verwenden diesen 
Ansatz in mehr oder weniger abgeänderter Form. Yamauchi extrahiert hierfür im ersten 
Schritt frontiers (explorierte Zellen, die an unbekanntes Gebiet grenzen) und fasst 
zusammenhängende frontiers mittels Kantendetektion zu frontierRegions zusammen. Die am 
nächsten gelegene frontierRegion wird als nächstes Ziel definiert und unterstützt durch ein 
kollisionsvermeidendes Verfahren angefahren. Beim Erreichen wird ein 360° Scan vollzogen, 
die frontierRegion als erledigt markiert und die nächste Iteration eingeleitet. Unter anderem in 
einem Flur mit angrenzendem Büro wurde dieses Verfahren bereits erfolgreich getestet. 
Aufbauend darauf stellt Yamauchi in einer weiteren Publikation [YAM98] ein Verfahren vor, 
welches es in den Grundzügen ermöglicht mit mehreren Robotern gleichzeitig zu explorieren. 
Er erweitert seinen ersten Ansatz soweit, dass jeder Roboter ein localGrid erstellt, sobald eine 
frontierRegion erreicht ist. Dieses localGrid wird in das robotereigene globalGrid integriert 
und an die anderen Teilnehmer versendet. Da das Hauptaugenmerk auf der Erprobung einer 
dezentralisierten Strategie mit minimalen Kommunikationskosten lag, gibt es hier keine 
weiteren Absprachen unter den teilnehmenden Robotern. So kann es zu dem Fall kommen, 
dass sie sich gegenseitig behindern oder die gleiche frontierRegion als Ziel auswählen. 
Unter anderem in einer Innenanwendung konnte dieses Verfahren bereits bestätigt werden. 
In [BMF+00] wird diese Thematik weiter erörtert und ein Verfahren vorgestellt, mit Hilfe 
dessen die Exploration effektiv auf die Anzahl der verwendeten Roboter verteilt werden kann. 
Hierfür wird eine Kostenfunktion definiert, welche proportional abhängig zum Belegungswert 
einer Zelle deren Traversierungskosten ermittelt. Ein Pfadplaner kann nun ausgehend von den 
einzelnen Traversierungskosten einen optimalen Pfad von A nach B finden. ��,��  beschreibt 

hierbei die Kosten für Roboter i um nach <x,y> zu gelangen. In einem weiteren Schritt wird 
versucht die Sichtweite der Roboter an den zuvor bereits berechneten frontiers grob 
abzuschätzen. ��,� beschreibt den daraus entstehenden Nutzen jeder frontier <x,y>.  ��,��  und 

��,� werden nun gegeneinander abgewogen und die optimale Kombination Roboter – frontier 
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gesucht. Der Nutzen jeder Zelle im Sichtbereich der gewählten frontier wird reduziert und ein 
Ziel für den nächsten Roboter gesucht. Durch die Reduktion des Nutzens wird gewährleistet, 
dass zwei Roboter jeweils unterschiedliche Ziele anfahren. Jedoch wird außer dem 
Sichtbereich keine weitere qualitative Auswertung von frontiers vorgenommen. 
Experimente zeigen, dass mehrere koordinierte Roboter einen Vorteil gegenüber einem 
einzelnen Roboter bezogen auf die Explorationsgeschwindigkeit haben. 
[MSW01] stellt die Frage, in welchem Kontext welche Informationsquellen von Bedeutung 
sind. Zum Beispiel benötigt ein explorierender Roboter, welcher nach Wasser in Eisform 
sucht, unter anderem Temperaturinformationen, um im Sinne seiner Aufgabe explorieren zu 
können. Die Autoren beschäftigen sich im Weiteren mit der konkreten Aufgabe 
Traversionskarten zu erstellen, die im späteren Verlauf unter anderem von verschiedenen 
Robotern verwendet werden können. Hauptaugenmerk liegt hierbei auf einer sicheren, 
zuverlässigen und effizienten Navigation durch das erfasste Gebiet. Um solch eine 
Traversionskarte zu erstellen schlagen die Autoren vor, jeder Zelle einen Attributvektor A(ar, 
ah, at, ach, act)

T und einen Nutzenvektor G(gf, gc, gr)
T zuzuordnen. Der Attributvektor A 

beinhaltet somit Informationen über die Erreichbarkeit, Höhe und Traversierbarkeit, sowie 
über die Zuverlässigkeit der Höhe und Traversierbarkeit. Durch den Nutzenvektor G lässt sich 
eine Aussage über frontiers und die Anpassung von act und ar machen. In simulierter binärer 
(traversierbar/nicht traversierbar) Umgebung konnten erfolgreich Traversionskarten erstellt 
werden. 
[KLS+05] untersucht im Gegenzug zu [MSW01] keine Traversions-, sondern 
topologiebasierte Karten. Das dafür verwendete Verfahren läuft in sechs Schritten ab: Scan – 
Glättung der Rohdaten – Extraktion von Kanten – Bestimmung von vier Raumwänden – 
Festlegung eines Raumes um den Roboter – Bestimmung von Öffnungen und Verdeckungen. 
Ein großer Vorteil dieses Verfahrens liegt darin, dass aufgrund der verwendeten 
Kartenrepräsentation Türen und Durchgänge denkbar einfach erfasst werden können. 
Nachteilig ist jedoch, dass die Repräsentation ausschließlich anhand von rechtwinkligen 
Räumen erfolgt. In einer simulierten Umgebung ohne Odometriefehler konnte dieses 
Verfahren durch manuelles Navigieren bereits erfolgreich angewendet werden. 
Eine weitere Technik zur autonomen Exploration wird in [GKC03] vorgestellt.  Im Gegenzug 
zu den meisten anderen Verfahren besteht die Aufgabe der Exploration hierbei nicht 
ausschließlich darin das Vorkommen von u-Space zu verringern, sondern zu großen Teilen 
darin, die Informationssicherheit entdeckter Hindernisse zu erhöhen. Begründet wird dies 
durch den Umstand, dass Fehler in der Odometrie zum Beispiel durch Objekterkennung 
entfernt werden können. Sind diese Objekte aber ungenau lokalisiert, so wird ein Fehler durch 
einen anderen ersetzt. Darauf aufbauend versuchen die Autoren einen nächsten Zielpunkt so 
zu wählen, dass zum einen u-Space aufgedeckt, zum anderen aber explizit die Qualität im 
Umkreis von Hindernissen erhöht wird. Um dies zu erreichen wird das inverse sensor model 
beschrieben und angewandt. 
Ein zufallsbasierter Ansatz der Exploration wird in [FO05] vorgestellt. Hierfür wird die 
Datenstruktur sensor-based random tree (srt) vorgestellt. Jeder Knoten dieses Baumes enthält 
eine kollisionsfreie Konfiguration q und eine dazugehörige Beschreibung der local save 
region S(q), wie sie durch die Sensorik erfasst wurde. Die Erweiterung des Baumes erfolgt 
durch eine zufällig ausgewählte Explorations-Richtung, so dass unter anderem ��	�
 ∈
	
(�����). Es werden die Varianten SRT-Ball und SRT-Star definiert. SRT unterscheidet in 
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den Grundzügen nicht zwischen f-/o-/u-Space und kann laut den Autoren in großen 
Umgebungen zu einer ineffektiven Exploration führen. Um diesem entgegenzutreten werden 
zusätzlich die auf frontiers basierenden Version FB_SRT-Ball und FB_SRT-Star vorgestellt, 
um die Exploration in Richtung unerschlossener Bereiche zu lenken. Diese werden im 
Hauptteil genauer betrachtet. Experimente zeigen, dass beide FB_ Varianten gegenüber den 
rein zufälligen bei gleicher Anzahl Iterationen eine deutlich höhere Explorationsquote 
aufweisen. 
[KK12] stellt zwei Varianten vor, die im Gegenzug zu vielen anderen Ansätzen die Suche 
nach frontiers nicht global, sondern in einer lokalen Umgebung um den Roboter herum 
durchführen. Ziel ist es die Rechenzeit deutlich zu reduzieren. Wavefront Frontier Detection 
sucht hierbei alle frontierCells auf der Karte, verwirft aber alle bereits besuchten Zellen und 
nutzt nur diejenigen, welche in in f-Space liegen. Fast Frontier Detection jedoch ist eine 
Variante, die von der globalen Karte völlig entkapselt funktioniert. Der grundlegende 
Gedanke besteht darin, die Suche nach frontiers nur in den neu erzeugten Sensordaten zu 
vollziehen. Es ist leicht einzusehen, dass dies deutlich schneller geschieht, als andere 
Varianten, die auf der ganzen Karte nach frontiers suchen. Hierfür werden die gelieferten 
Sensordaten zuerst nach deren Winkel sortiert um anschließend die äußersten Punkte pro 
Scanlinie miteinander zu verbinden. Entlang dieser entstandenen Contour werden nun 
frontiers extrahiert. Im Weiteren wird ein Verfahren vorgestellt, welches es ermöglicht 
frontiers für spätere Zwecke zu speichern und bereits besuchte frontiers in folgenden 
Iterationen zu ignorieren. Experimente zeigen, dass FFD deutlich schneller als WFD und 
WFD wiederum deutlich schneller als bis dato aktuelle andere frontier extrahierende 
Algorithmen arbeitet. 
Weitere Strategien zur Exploration von Gebäuden werden in [GL02] vorgestellt. Diese Arbeit 
liefert einen Einblick in die Thematik und beschreibt unter anderem detailliert, wie extrahierte 
Kartenmodelle aggregiert werden. Für die Exploration werden desweiteren beispielsweise 
free-curves verwendet und es wird die Möglichkeit diskutiert den nächsten Zielpunkt zufällig 
auszuwählen. 
[LMB+02] trägt das Explorationsproblem vom Inneren eines Gebäudes in die Außenwelt und 
entwickelt im Gegenzug zu den weiter oben beschriebenen Techniken eine Lösung, die auf 
visueller Erfassung der Umgebung basiert. Es wird anhand von Bildern eine digitale 
Höhenkarte erstellt und diese für Traversierungszwecke verwendet. Außerdem wird die 
Selbstlokalisierung anhand von markanten Punkten in der Landschaft, sowie anhand von 
Panoramabildern erörtert. Der erhöhten Anforderung in der Außenanwendung zum Trotz 
konnte experimentell die Verwendbarkeit der vorgestellten Techniken überprüft und bestätigt 
werden. Unter anderem gelang es dem verwendeten Roboter LAMA einen zwei Meter hohen 
Hügel zu erklimmen. 
Ein bereits praktisch umgesetztes und erfolgreich erprobtes Verfahren findet sich in 
[TTW+04]. Kernaspekt dieser Arbeit ist es, einen Roboter zu entwickeln, welcher die 
Fähigkiet besitzt unter Tage gelegene Minen autonom zu erkunden. Der verwendete Roboter 
Groundhog ist symmetrisch aufgebaut und kann somit in beide Richtungen explorieren ohne 
wenden zu müssen. Das vorgestellte Verfahren verwendet wie viele anderen eine 
Kombination aus Laserscans uns SLAM, um eine Umgebungskarte zu erstellen. Nächste 
Zielpunkte werden hierbei aber nicht durch das Auswerten von frontierCells bestimmt. 
Vielmehr wird in einer Enfernung von fünf Metern vor dem Roboter eine goalArea definiert 
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und diese solange iterativ vergrößert, bis ein A* einen Pfad dorthin planen kann. Es wird im 
Gegenzug zu den meisten anderen Techniken zusätzlich eine Strategie entwickelt, welche es 
dem Roboter ermöglicht zu explorieren, selbst wenn aktuell keine geeigneten Ziele 
gefunden werden. Experimente in unterschiedlichen Minen lieferten positive Ergebnise, 
zeigten aber auch physikalische Grenzen auf. So sind zum Beispiel viele verlassene Minen 
überflutet und somit für Groundhog nicht explorierbar. 
Eine weitere Dimension der autonomen Exploration liefert [SCJ+05]. Bereits vorgestellte und 
bekannte Verfahren werden in dieser Arbeit erweitert, um selbst einen fliegenden Roboter 
autonom navigieren zu lassen. Hierbei wird initial ein Pfad von der aktuellen Position bis hin 
zum Ziel berechnet. Ähnlich wie in weiter oben beschriebenen Verfahren kommt spezifische 
Sensorik zum Einsatz, welche ein lokales Modell der Karte erstellt. Basierend darauf passt ein 
model predictive control  Algorithmus den Pfad mit jeder Iteration an und gewährleistet einen 
kollisionsfreien Flug. Schwerpunkt liegt hierbei auf der Passierbarkeit von Hindernissen. 
Kann sich ein bodenbetriebener Roboter eine Kollision mit einem Hinderniss leisten, so 
resultiert eine Kollision in der Luft in der Regel in einem Absturz. Desweiteren wird ein 
Verfahren vorgestellt, welches es ermöglicht Hindernisse zu ignorieren, welche für das 
Flugobjekt keine Gefahr bedeuten. Fallende Blätter seien ein Beispiel hierfür. In einem 
ungefähr 50m auf 50m großen mit Hindernissen bestückten Gebiet wurde dieses Verfahren 
bereits mit einem 3,5m langem Fluggerät erfolgreich getestet. 
 
Zusammenfassend wurden bereits viele Verfahren entwickelt und getestet. Doch ist jedes 
dieser Verfahren einzig für die definierte Aufgabe zu gebrauchen. Ein Erkundungsroboter für 
das Innere von Gebäuden wird aufgrund der unterschiedlichen Gegebenheiten im offenen 
Gelände voraussichtlich wenig zufriedenstellende Ergebnisse liefern. Selbiges gilt vice versa. 
Desweiteren fanden bis dato keine großflächigen Tests statt. 
 
Im Gegenzug zu den meisten vorgestellten Veröffentlichungen wird in dieser Arbeit detailliert 
die zugrunde liegende Algorithmik beschrieben und evaluiert, sowie ein effektiver 
Filtermechanismus entwickelt, um qualitativ hochwertigere frontierRegions extrahieren zu 
können. Desweiteren werden Ziele weder zufällig, noch nach dem in [YAM97] vorgestellten 
Prinzip gesucht, sondern in optimierter Form. 
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2.2. Terminologie 

In den meisten Veröffentlichungen wird der Begriff frontier für den Grenzbereich 
zwischen u-Space und f-Space verwendet. Um während dieser Ausarbeitung besser 
unterscheiden zu können wird eine etwas detailliertere Begrifflichkeit verwendet. Mit 
frontierCell wird eine einzelne dieser Grenzzellen in indizierter Version beschrieben. 
frontierPoint beschreibt analog dazu einen Grenzpunkt in kartesischen Koordinaten. Ein 
Verbund zusammenhängender frontierCells (frontierPoints) bildet eine frontierRegion. Die 
Bezeichnung frontier wird in dieser Arbeit als Oberbegriff für vorangehende Bezeichnungen 
verwendet. 
Desweiteren wird auf eine deutsche Übersetzung von Fachbegriffen, Algorithmen-
bezeichnungen, Variablen und an andereren Stellen verzichtet. 
 

2.3. Rahmenbedinungen 

Die in dieser Arbeit beschriebenen Mechanismen beruhen stets auf der Annahme, dass 
sich der Roboter auf einer Ebene befindet und dass die verwendete Sensorik ein ausreichend 
genaues Abbild der Umgebung erfassen kann. 

 
Desweiteren haben die auf den Abbildungen zu sehenden Zellgitter eine Zellgröße von 1m x 
1m. 
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3. Verfahren zur frontier Detektion 
 

Grenzzellen sind für eine autonome Exploration von großem Interesse, da sich dahinter 
potentiell interessantes Gebiet verbirgt. Der erste Schritt in Richtung autonomer Exploration 
ist nun also das Finden von einfachen frontierCells. Darauf aufbauend werden in weiteren 
Schritten die Nachbarschaftsbeziehungen berechnet, um daraus wiederum Aussagen über 
Verbünde von frontierCells treffen zu können. Der Autor geht hierbei davon aus, dass ein 
Verbund von zusammenhängenden frontierCells einen höheren Informationsgehalt 
gewährleistet, als eine einzelne frontierCell. 
In diesem Kapitel werden Verfahren vorgestellt, die es ermöglichen frontierCells aus einer 
zellbasierten Karte zu extrahieren. Weiterführend wird gezeigt, wie anhand der zuvor 
gefundenen frontierCells letztendlich frontierRegions berechnet werden können. Im weiteren 
Verlauf wird auf das Problem ungenauer Sensordaten eingegangen und versucht dieses 
anhand eines angepassten Filtermechanismus zu lösen. Jeder vorgestellte Ansatz wird auf 
seine Verwendbarkeit in einem Echtzeitsystem hin untersucht. 
 

3.1. Definitionen 

 
frontierCell: 
Zelle, die in f-Space liegt und an u-Space angrenzt. 
 

 

 ∀� ∈ ���	|	���(�) = �_
���� ∧ ∃" ∈ #$�%ℎ'()*+(�)	|	���(") = �_
����
⇒ � ∈ -*(#.�$*�$//+ 

eq i 

 

oder 

 

 ∀� ∈ ���	|	���(�) = �_
���� ∧ ∃" ∈ #$�%ℎ'()*+(�)	|	���(") = �_
����
⇒ � ∈ -*(#.�$*�$//+ 

eq ii 

 

 

frontierRegion: 
Verbund von frontierCells, die eine Zusammenhangskomponente anhand ihrer 
Nachbarschaftsrelationen bilden. 
 

 

 0 ⊆ -*(#.�$*�$//+ = -*(#.�$*2$%�(#3 ⇔ ∀�∃":	" ∈ #$�%ℎ'()*+(�)	|	�, " ∈ 0 eq iii 
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3.2. Konvertierung von linear-Space nach cartesian-Space und vice versa 

Die Konvertierung von indizierten Punkten zu kartesischen Koordinaten ist aufgrund der 
Flexibilität der Karte nicht trivial und soll im Folgenden in wenigen Sätzen vorab erörtert 
werden. 

 
cellToPoint: 
Herfür werden zuerst die entsprechende Reihe und Spalte im Gitter berechnet, danach die 
Auflösung und Verschiebung mit einbezogen und letztendlich der Mittelpunkt der Zelle 
berechnet. 
 

 6(/ = 	 �#7$8	�(7	9�.ℎ eq iv 

 *(9 = 	 �#7$89�7.ℎ eq v 

 

 8 = 6(/ ∙ *$+ + 0,5 ∙ *$+ + 8_(*% = *$+ ∙ (6(/ + 0,5) + 8_(*% eq vi 

 > = *(9 ∙ *$+ + 0,5 ∙ *$+ + >_(*% = *$+ ∙ (*(9 + 0,5) + >_(*% eq vii 

 

 

pointToCell: 
Um willkürliche Punkte verarbeiten zu können, muss zuerst das Zentrum der aktuellen 
Zelle berechnet werden. Dies geschieht, indem entlang beider Achsen minimiert und dann 
zentriert wird. 
 

 8_6$#.$* = *$+ ∙ (-/((* ?�(�#.. 8*$+ A + 0,5) eq viii 

 

 >_6$#.$* = *$+ ∙ (-/((* ?�(�#.. >*$+ A + 0,5) eq ix 

 

Ausgehend vom Zellzentrum findet sich die indizierte Version des Punktes, indem eq iv in 
eq vi und eq v in eq vii eingesetzt und schließlich eq vi und  eq vii nach index umgeformt 
und addiert werden. 

 

 �#7$8 = ?>_6$#.$* − >_(*%
*$+ − 0,5A ∙ 9�7.ℎ + 8_6$#.$* − 8_(*%

*$+ − 0,5 eq x 
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3.3. Finden von frontierCells mit Hilfe von occupancy grids 

Ein erster trivialer Ansatz besteht darin, über den gewünschten Suchbereich zu iterieren 
und für jede gefundene f-Space Zelle alle ihrer u-Space Nachbarn zu frontierCells 
hinzuzufügen. Nun gilt es aber festzustellen, dass hierbei duplizierte Einträge entstehen. Hat 
zum Beispiel die f-Space Zelle i den u-Space Nachbarn i+w, so hat auch die f-Space Zelle i+1 
den u-Space Nachbarn i+w, wodurch die Zelle i+w zweimal zu frontierCells hinzugefügt 
wird. Dies ist wenig praktikabel, da entweder ein aufwendiges Entfernen von Duplikaten (eq 
xix) durchgeführt werden müsste, oder aber eine höhere Laufzeit in weiteren 
Verarbeitungsschritten in Kauf genommen wird. 
Darauf aufbauend umgehen die Definitionen eq i und eq ii dieses Problem, da nur die aktuell 
betrachtete Zelle zu frontierCells hinzugefügt werden kann. Ein weiterer positiver 
Nebeneffekt entsteht durch die Feststellung, dass im Gegenzug zur ersten Variante nicht 
zwingend alle acht Nachbarn betrachtet werden müssen, sondern nur so viele, bis eine u-
Space Zelle gefunden wird. In den meisten Fällen wird diese Verbesserung nicht von Belang 
sein, da die meisten f-Space Zellen von f-Space umgeben sein werden. Dennoch kann selbst 
eine Optimierung in kleinem Maßstab bezogen auf sehr viele Iterationen durchaus auf einen 
deutlichen Laufzeit Gewinn hinauslaufen. Letztendlich steht nun ein mit frontierCells 
gefüllter Vektor – folgend mit frontierIdxs bezeichnet – zur Verfügung. Aus diesem können 
nun wahllos Zellen für die Exploration herangezogen werden, doch haben diese einzelnen 
Zellen alle den gleichen Informationsgehalt (frontierCell) und tragen zu einer effektiven 
Exploration in ihrer Rohform nur beschränkt bei. Um den Informationsgehalt zu erhöhen ist 
unter anderem die gegenseitige Lage der frontierCells interessant. Hat eine frontierCell zum 
Beispiel keine Nachbarn ist sie deutlich uninteressanter, als eine frontierCell mit mehreren 
Nachbaren, da der zu erkundende u-Space dadurch größer und potentiell interessanter wird. 
 

3.4. 3x3 Nachbarschaftsrelationen 

Nachbarschaftsrelationen lassen sich bekanntermaßen auf einfache Art und Weise durch 
Adjazenzmatritzen ausdrücken. Eine herkömmliche Adjazenzmatrix hat hierbei n x n 
Einträge, wobei n die Anzahl der verwendeten Knoten (hier frontierCells) ist. Beachtet man 
aber den Umstand, dass eine Zelle nur acht Nachbarn haben kann und eine herkömmliche 
Adjazenzmatrix somit im Großen aus Nullen bestehen würde, bedarf es eines etwas anderen 
Datenformates um die Nachbarschaftsrelationen effizient speichern zu können. Ein 
geschachtelter Vektor bietet hierfür das optimale Werkzeug: C$6.(* < C$6.(* < .>�$ >	>. 
Es wird über frontierIdxs iteriert und im Selbigen nach Nachbarzellen gesucht. Dadurch 
entsteht der geschachtelte Vektor adjacencyMatrixOfFrontiers, dessen Größe nun nicht mehr 
durch F(#G) , sondern durch F(8#)  abgeschätzt werden kann, und somit linear in 
Abhängigkeit von |-*(#.�$*I78+| ist. Die Laufzeit des Vorgangs an sich ist durch F(8#G) 
beschränkt, kann durch eine einfache Annahme aber deutlich verbessert werden. 
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+.�*.I#7$8 = 6$#.$* − *� − 9 × *�  
for i = 0 to 2ry  do 

for j = 0 to 2rx do 
�#7$8 = +.�*.I#7$8 + " + � × 9  
… 

Code 3.1: Finden von frontierCells in Rechteck 

Annahme:  frontierIdxs ist sortiert 
 
Beweis: Erfolgt die Suche nach frontierCells in einem Strikt einzuhaltendem 

rechteckigen Muster, so ergibt sich Code 3.1: 
 

 

 

 

 

 

 

 

 

 

�#7$8� = +.�*.I#7$8 + "V + �V × 9 

�#7$8�WX = +.�*.I#7$8 + �"V + 1� + �V × 9 

∨ 

�#7$8� = +.�*.I#7$8 + "V + �V × 9 | "V = 2*� 

�#7$8�WX =  +.�*.I#7$8 + 0 + ��V + 1� × 9 

 

Zu zeigen ist: �#7$8� < �#7$8�WX 

 

# = 0 

+.�*.I#7$8 < +.�*.I#7$8 + 1 

 

+.�*.I#7$8 + "V + �V × 9 <  +.�*.I#7$8 + �"V + 1� + �V × 9 

"V < "V + 1 

 

+.�*.I#7$8 + "V + �V × 9 < startIndex + 0 + ��V + 1� × w | 9 = 2*� + 1 

2*� + �V × �2*� + 1� < ��V + 1� × �2*� + 1�  
2*� + 2*��V+ �V <  2*��V + �V + 2*� + 1 

0 < 1 
�. $. 7. 

 

 

Folgende Eigenschaften lassen sich daraus ableiten: 
 

∃� | -*(#.�$*I78+a�b = -*(#.�$*I78+a� + 1b − 1 

⇒ *�%ℎ.�-*(#.�$*I78+a�b� = -*(#.�$*I78+a� + 1b 

 

∃� | -*(#.�$*I78+a�b = -*(#.�$*I78+a� − 1b + 1 

⇒ /$-.�-*(#.�$*I78+a�b� = -*(#.�$*I78+a� − 1b 

 

∀" > �: -*(#.�$*I78+a"b ≠ {'(..(����;  /$-.f(..(����;  *�%ℎ.f(..(����} 

∀" < �: -*(#.�$*I78+a"b ≠ {.(����;  /$-.h(����;  *�%ℎ.h(����} 

 

Daraus ergibt sich eine durch F�#�# − 1� × 3 + 2#�  =  F�3#G − #� beschränkte 
Laufzeit. 
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3.5. Extraktion relevanter frontierRegions 

Der durch adjacencyMatrixOfFrontiers vorliegende Datensatz hat bereits einen deutlich 
erhöhten Informationsgehalt als die bloßen frontierCells an sich, da über deren 
Nachbarschaftsbeziehungen Aussagen getroffen werden können. Noch mehr Information 
steckt aber hinter einer größeren Menge zusammenhängenden frontierCells. Ziel dieses 
Abschnitts ist es die gefundenen frontierCells in frontierRegions zu gruppieren und im 
optimalen Fall scharfe Kanten zwischen f-Space und u-Space zu extrahieren. 
Mit Hilfe der Graphentheorie [RUO13] und einem auf dieses Problem zugeschnittenem weiter 
entwickeltem Algorithmus zur Detektion  von Zusammenhangskomponenten steht nach einer 
rekursiven Suche ein geschachtelter Vektor fronterRegions zur Verfügung, welcher alle im 
Suchbereich entdeckten frontierRegions enthält. 
Wie in Abb 3.2 zu sehen steht in der ersten Spalte von adjacencyMatrixOfFrontiers jeweils 
der Startknoten und in den folgenden Spalten die dazugehörigen Nachbarknoten. Nun wird 
nacheinander jeder Knoten ni besucht. Ist nx der aktuelle Knoten, so werden alle seine 
Nachbarknoten nj und wiederum deren Nachbarknoten nk besucht. Bereits besuchte Knoten 
werden markiert, wodurch ein Abbruchkriterium für die Rekursion entsteht. Mit jeder 
abgebrochenen Rekursion wird eine frontierRegion berechnet.  

 

3.6. Datenmodelle 

Abb 3.1 zeigt einen Ausschnitt aus einer Karte und deren Legende. Basierend auf der 
Karte wurde in den vorangehenden Kapiteln gezeigt, welche Datensätze auf welche Art zu 
extrahieren sind. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 o-Space 

 u-Space 

 frontierCells mit Index 

 f-Space 

x robotPos 

72      78 79 80 

63 64    68 69 70  

      60   
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      24   

   12 13  15 16  
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 Abb 3.1: Schematische Darstellung eines occupancy grid 
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Abb 3.2 liefert einen Überblick über die verwendeten Datenstrukturen und zeigt zudem das 
Resultat der vorangehenden Algorithmen. Die dick gedruckten Ziffern dienen der 
Nummerierung innerhalt der Rekursion. 

 

 

3.7. Erste Laufzeitbetrachtung 

Im Verlauf dieses Unterkapitels werden die einzelnen Schritte der frontier Detektion 
hinsichtlich Laufzeit und Speicherverbrauch untersucht. Das diskutierte Ergebnis wird als 
Vergleichsbasis für folgende Kapitel und Ansätze dienen. 

 
Finden von frontierCells 
Jede f-Space Zelle x innerhalb eines Radius r wird bezogen auf die Gleichgungen eq i 

oder eq ii untersucht. Daraus ergibt sich eine von r abhängige quadratische Laufzeit. Jedoch 
spielt die Häufigkeitsverteilung zwischen u-/f-/o-Space eine Rolle. So steigt die Laufzeit mit 
erhöhter Wahrscheinlichkeit von f-Space, da ausgehend von x bis zu acht Nachbarn besucht 
werden müssen. 

 

 F��1 − �� ∙ 7G + � ∙ 8 ∙ 7G�	|	7 = 2* ∧ p = P(f_Space) eq xi 

 

Nachbarschaftsrelationen 
Wie weiter oben schon beschrieben lässt sich der Speicherverbrauch für die entstehende 

Adjazenzmatrix unter der Bedingung, dass eine Zelle maximal acht Nachbarn haben kann, 
durch eq xii abschätzen. Desweiteren ist die Laufzeit durch eq xiii beschränkt. 

 

 F(8#), # = |-*(#.�$*�$//+| eq xii 

 

 F�3#G − #�, # = |-*(#.�$*�$//+|	 eq xiii 

 

Extraktion von frontierRegions 
Während  der Rekursion wird jeder Knoten genau einmal besucht. Gewährleistet wird dies 

durch ein entsprechend gesetztes Flag. Jeder Knoten besucht dessen Nachbarknoten, welche 
wiederum ihre Nachbarknoten besuchen, usw. Dadurch entsteht der Bedarf effizient in der 
Adjazenzmatrix A (nx8) nach Knoten suchen zu können. Finden sich die Knotennummern in 
der ersten Spalte, so kann im einfachsten Fall in F(#) Schritten die gesuchte Knotennummer 
gefunden werden. Von maximal acht Nachbarknoten pro Knoten ausgehend ergibt sich somit 
eq xiv. 

 

vector <unsigned int> frontierIdxs 

vector <vector <unsigned int>> adjacencyMatrixOfFrontiers 

vector <vector <unsigned int>> frontierRegions 

frontierIdxs = {4, 7, 8, 12, 13, 15, 16, 24, 36, 37, 60, 63, 64, 68, 69, 70, 72, 78, 79, 80} 

adjacencyMatrixOfFrontiers = {{4, 12, 13}, {7, 8, 15, 16}, {8, 7, 16}, {…}, {80, 70, 79}} 

frontierRegions = {{1, 4, 12, 13}, {2, 7, 8, 15, 16, 24}, {3, 36, 37}, {4, 60, 68, 69, 70, 78, 79, 80}, {5, 63, 64, 72}} 

Abb 3.2: Anfallende Datenstrukturen und Datensätze bei der Suche nach frontierRegions 
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ry 
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robotPos 
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map 

search area 

Abb 3.3: Schematische Darstellung einer Karte mit 
Suchgebiet 

 F�8#G�, # = |-*(#.�$*�$//+| eq xiv 

 

Es ist offensichtlich, dass das Suchen nach Knoten in A auf diese Weise wenig effizient ist. 
Besser ist es die Knoten zusätzlich in einer Hashmap zu speichern, um dadurch in F(1) 
suchen zu können. Der zusätzliche Speicherverbrauch ist hierbei vernachlässigbar. Eq xv gibt 
die verbesserte Laufzeit an. 
 

 F(8#), # = |-*(#.�$*�$//+| eq xv 

 

Die Gleichungen eq xi, eq xiii und eq xv betrachtend entsteht für die Detektion von 
frontierRegions eine durch eq xvi beschränkte Laufzeit.  
 

 87G + 37n − 7G + 87G eq xvi 

 

 

Bedingt durch den Umstand, dass für einen direkten Vergleich # = 7G  gesetzt wurde, gilt 
diese Laufzeit als sehr grob und nie erreichbar. Das Tatsächliche Verhältnis zwischen 7G und 
n lässt sich durch Tabelle 3.1 erschließen. Demzufolge lässt sich der quartische Teilterm 
ignorieren und eine quadratisch beschränkte Laufzeit folgern. 
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3.8. Sonnenstrahleffekt 

Ein Nebeneffekt der Sensorik besteht darin, dass nicht mit beliebig genauer Auflösung 
abgetastet werden kann. In Abb 3.5 zu erkennen, wurde die Karte um den Roboter herum 
detailliert erfasst. Entfernt man sich aber vom Roboter, so stellt man fest, dass sich Rauschen 
entwickelt, welches bildlich ausgedrückt in Strahlen vom Zentrum wegläuft und immer 
dichter wird. Als Resultat daraus entsteht durch weiter oben beschriebenes Verfahren jeweils 
die obere Bildfolge von Abb 3.6 und Abb 3.7. Es ist leicht einzusehen, dass ein Großteil der 
hierbei entdeckten frontierRegions keine sinnvollen Navigationsziele produzieren kann, da es 
sich um verrauschte Daten handelt. Desweiteren ist die Anzahl der frontierCells in 
verrauschten Bereichen deutlich höher als in rauschfreien Bereichen, wodurch die Laufzeit 
dort zunimmt. [FO05] schlägt als Lösung hierfür vor einen kollisionsfreien Bereich in Form 
eines Balls oder eines Sterns um den Roboter herum zu finden. [KK12] wählt für dieses 
Problem einen anderen Ansatz und arbeitet direkt auf den neu erzeugten Sensordaten. Im 
Zuge dieser Arbeit soll ein Verfahren entstehen, welches die erfasste Karte innerhalb eines 
bestimmten Radius vorverarbeitet um Rauschen zu entfernen, beziehungsweise zu 
minimieren. Abb 3.4 zeigt ein mögliches Ergebnis dieser Vorverarbeitung. Abb 3.6 und Abb 
3.7 zeigen in jeweils der unteren Bildfolge bessere extrahierte frontierRegions. 

 

 
Abb 3.5: Ungefilterte Karte 

 

 

 ungefiltert gefiltert 
 r=3 (14400 Zellen) r=6 (57600 Zellen) r=3 r=6 

frontierCells 2790 14722 194 701 
frontierRegions 18 13 14 7 

Tabelle 3.1: Vergleich ungefiltert/gefiltert 
 

Tabelle 3.1 stellt Abb 3.6 und Abb 3.7 in Zahlen dar.  

Abb 3.4: Gefilterte Karte 
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 (a) (b) (c) 

 
Abb 3.6: Suche nach frontierRegions ohne und mit Filter (r=3) 
(a) (un)gefilterte Karte; (b) frontierRegions in gelb mit Suchradius; (c) zusätzlich qualitativ beste frontierRegion 
in blau. 

 

 
 (a) (b) (c) 

 
Abb 3.7: Suche nach frontierRegions ohne und mit Filter (r=6) 
(a) (un)gefilterte Karte; (b) frontierRegions in gelb mit Suchradius; (c) zusätzlich qualitativ beste frontierRegion 
in blau. 
  
In beiden Abbildungen werden zuerst die ungefilterte und danach die gefilterte Version gezeigt. 
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3.9. Vorfiltern von Kartenausschnitten 

Resultierend aus dem Sonnenstrahleffekt und den damit verbundenen schlechten 
Ergebnissen bei der Suche nach frontierRegions sowie der Problematik beim Navigieren, ist 
es empfehlenswert die Karte im verwendeten Suchradius durch einen Filter zu glätten. 
Hierunter ist unter zuvor definierten Umständen das Ersetzen von u-Space Zellen durch f-
Space Zellen zu verstehen. Im folgenden Verlauf werden Fälle herausgearbeitet, bei denen ein 
Glätten sinnvoll ist. Anhand dieser Fälle wird eine Metrik definiert, die es algorithmisch 
möglich macht, diese Fälle zu bearbeiten. Darauf aufbauend wird ein Ansatz schrittweise an 
diese Problematik angepasst, verbessert und mit den Schritten zuvor verglichen. Letztendlich 
erfolgen eine ganzheitliche Betrachtung der Laufzeit und eine ausgewählte Sammlung von 
Simulations- und realen Daten. 

3.9.1. Betrachtung der zu glättenden Fälle 

Folgende Betrachtungen gehen nur von dem Fall aus, dass u-Space direkt an f-Space 
grenzt. Es wird also keine Aussage über das Einwirken von o-Space gemacht. Daraus ergeben 
sich für eine u-Space Zelle neun Möglichkeiten der Anordnung mit f-Space. Dies drückt sich 
durch die aufsummierten Nachbarschaftswerte aus und wird im weiteren Verlauf als Metrik 
zur Bestimmung von zu glättenden Zellen verwendet. 

 
Nachbarschaftssume =  
 
• 0: 
Im einfachsten Fall ist eine einzelne u-Space Zelle von f-Space umgeben und stellt ein 
Analogon zum Rauschen in der Bildverarbeitung dar. Zu sehen in Abb 3.8. 
 
• -1 und -2: 
Desweiteren äußert sich die zellbasierte Struktur eines Sonnenstrahls in den einfacheren 
Fällen wie in Abb 3.9 zu sehen. 
 

• -3 und -4: 
Praxistest haben durchweg positive Resultate ergeben, solange die zu glättenden Zellen 
Nachbarschaftssummen im Intervall  I = a−3; 0b aufweisen. Erweitert man das Intervall 
auf I = a−4; 0b , so ist festzustellen, dass in vielen Fällen fälschlicherweise zu weit in den 
u-Space hinein gefiltert wird, wodurch an manchen Stellen blasenartige Auswüchse 
entstehen. Eine Veranschaulichung beider Intervallgrößen ist in Abb 3.12 zu sehen. 

 

• -5; -6; -7; -8: 
Fast vollständig von u-Space eingeschlossene u-Space Zellen befinden sich ohne 
Einschränkung in u-Space. Siehe Abb 3.11. 
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 (a) (b) (c) 

Abb 3.12: Gefilterte Karte mit verschiedenen NSIs 
(a) ungefilterte Karte; (b) gefilterte Karte mit NSI = [-3;0]; (c) gefilterte Karte mit NSI = [-4;0] 

  

   

 0  

   

Abb 3.8: Nachbarschaftssumme = 0 

       

 -1    -1  

 -2   -2   

 -1  -1    

       

Abb 3.9: Nachbarschaftssumme = {-1; -2} 

       

 -2 -2  -3 -3  

 -2   -3 -3  

       

Abb 3.10: Nachbarschaftssume = {-2; -3} 

        

 -3 -3   -2 -2  

 -5 -5   -4   

 -3 -3  -2 -2   

        

Abb 3.11: Nachbarschaftssumme = {-2; -3; -4; -5} 
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 (a) (b) (c) 
 

 
 (d) (e) 
 
Abb 3.13: Karte mit Filterkandidaten anhand verschiedener NSIs 
 
(a) ungefilterte Karte; (b) u-Space Zellen, deren Nachbarn alle in f-Space liegen; (c) zuzüglich alle u-Space 
Zellen, deren Nachbarschaftssumme = -1 ist; (d) hinzukommen alle u-Space Zellen, deren Nachbarschafts- 
summe = -2 ist; (e) für Verfahren als am besten eingestuftes NSI = [-3; 0]. 
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3.9.2. Beschreibung des Verfahrens

Angelehnt an das Prinzip eines 3x3 Tiefpassfilters wird im Folgenden ein 
modifizierter Filter vorgestellt. Grundlegend
einen angegebenen Bereich iteriert, zu jeder Zelle deren Nachbarschaftswerte (gewichtet) zu 
einer Nachbarschaftssumme addiert, dies
entsprechend des Ergebnisses angleicht. Im vorliegenden Fall sind aber nur diejenigen Zellen 
von Bedeutung, welche in u-Space liegen und somit potentiell verrauscht sein könnten. Ein 
für dieses Problem angepasster Filter überspringt somit alle o
wertet ausschließlich u-Space Zellen aus.
Nachschlageoperationen, sieben Additionen, eine Auswertung der berechneten Summe und 
ein Schreibvorgang eingespart. 
Wie in Zeile L3 zu sehen ist wird genau dies angewen
genauer betrachtet, die zum einen in u
Nachbarschaftssumme innerhalb des 

 

Anfänglich ist davon auszugehen, dass alle Zellen innerhalb des Suchradius potentielle 
Kandidaten für eine Glättung sind. 
wird nun über alle gesammelten Zellen iteriert. Wie in 
verrauschten Zellen geglättet, indem sie in den f
diesen Vorgang ändern sich die Nachbarschaftssummen aller benachbarten Zellen. Dadurch 
entstehen wiederum weitere potentielle 
Glättungskandidaten, die durch di
des Filters aber übergangen werden. Genau diese 
werden nun für die nächste Iteration vorgesehen (
– L2) und bis dahin zwischengespeichert (
Wie in Abb 3.14 zu sehen führt dies nun aber 
unweigerlich zu duplizierten Einträgen. Diese müssen 
vor der nächsten Iteration entfernt oder während der 
aktuellen Iteration ignoriert werden, um das 

 

Entfernen duplizierter Einträge nach Iteration
Hierfür lässt sich wenig performant ein 
Indizes anwenden. Deutlich besser ist es jedoch die Indizes zuerst zu sortieren um danach 
die Liste linear nach Duplikaten 
 
Ignorieren duplizierter Einträge während Iteration
Um bereits vorgemerkte Indizes nicht mehrfach in 
zusätzlichen Zwischenspeichers. Dies kann zum Beispiel in Form eines booleschen Arrays 
arr erreicht werden, dessen Felder den Indizes der Karte entsprechen. Wird Index 
temp aufgenommen folgt darauf 
zurückgesetzt werden.  
 
Beide Varianten sind schematisch in 
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Beschreibung des Verfahrens 

Angelehnt an das Prinzip eines 3x3 Tiefpassfilters wird im Folgenden ein 
ilter vorgestellt. Grundlegend hierbei ist, dass ein primitiver Tiefpassfilter über 

einen angegebenen Bereich iteriert, zu jeder Zelle deren Nachbarschaftswerte (gewichtet) zu 
einer Nachbarschaftssumme addiert, diese normiert und schließlich die Zelle im Zentrum 

isses angleicht. Im vorliegenden Fall sind aber nur diejenigen Zellen 
Space liegen und somit potentiell verrauscht sein könnten. Ein 

für dieses Problem angepasster Filter überspringt somit alle o-Space und f
Space Zellen aus. [KK12] Pro ignorierter Zelle werden dadurch acht 

Nachschlageoperationen, sieben Additionen, eine Auswertung der berechneten Summe und 
ein Schreibvorgang eingespart.  

zu sehen ist wird genau dies angewendet, indem nur diejenigen Zellen 
genauer betrachtet, die zum einen in u-Space liegen und zum anderen zusätzlich eine 
Nachbarschaftssumme innerhalb des Intervalls I = a−3; 0b aufweisen 

Anfänglich ist davon auszugehen, dass alle Zellen innerhalb des Suchradius potentielle 
Kandidaten für eine Glättung sind. (L1) Die while-Schleife vorerst einmal außen vor lassend 
wird nun über alle gesammelten Zellen iteriert. Wie in Zeile L4 zu sehen, wer
verrauschten Zellen geglättet, indem sie in den f-Space integriert werden. Bedingt durch 
diesen Vorgang ändern sich die Nachbarschaftssummen aller benachbarten Zellen. Dadurch 
entstehen wiederum weitere potentielle 
Glättungskandidaten, die durch die aktuelle Iteration 
des Filters aber übergangen werden. Genau diese 
werden nun für die nächste Iteration vorgesehen (while 

) und bis dahin zwischengespeichert (temp – L5). 
zu sehen führt dies nun aber 

unweigerlich zu duplizierten Einträgen. Diese müssen 
vor der nächsten Iteration entfernt oder während der 
aktuellen Iteration ignoriert werden, um das Terminieren des Algorithmus zu gewährleisten.

Entfernen duplizierter Einträge nach Iteration 
Hierfür lässt sich wenig performant ein handshake Algorithmus direkt auf der Liste der 
Indizes anwenden. Deutlich besser ist es jedoch die Indizes zuerst zu sortieren um danach 
die Liste linear nach Duplikaten untersuchen  zu können. 

Ignorieren duplizierter Einträge während Iteration 
Um bereits vorgemerkte Indizes nicht mehrfach in temp zu speichern, bedarf es eines 
zusätzlichen Zwischenspeichers. Dies kann zum Beispiel in Form eines booleschen Arrays 

erreicht werden, dessen Felder den Indizes der Karte entsprechen. Wird Index 
aufgenommen folgt darauf arr[j] = true . Am Ende jeder Iteration muss 

Beide Varianten sind schematisch in Abb 3.14 dargestellt. 
 

Diagramm 3.1: Handshake vs .sort.unique
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Angelehnt an das Prinzip eines 3x3 Tiefpassfilters wird im Folgenden ein 
hierbei ist, dass ein primitiver Tiefpassfilter über 

einen angegebenen Bereich iteriert, zu jeder Zelle deren Nachbarschaftswerte (gewichtet) zu 
normiert und schließlich die Zelle im Zentrum 

isses angleicht. Im vorliegenden Fall sind aber nur diejenigen Zellen 
Space liegen und somit potentiell verrauscht sein könnten. Ein 

Space und f-Space Zellen und 
Zelle werden dadurch acht 

Nachschlageoperationen, sieben Additionen, eine Auswertung der berechneten Summe und 

det, indem nur diejenigen Zellen 
Space liegen und zum anderen zusätzlich eine 

Anfänglich ist davon auszugehen, dass alle Zellen innerhalb des Suchradius potentielle 
Schleife vorerst einmal außen vor lassend 

zu sehen, werden die 
Space integriert werden. Bedingt durch 

diesen Vorgang ändern sich die Nachbarschaftssummen aller benachbarten Zellen. Dadurch 

Terminieren des Algorithmus zu gewährleisten. 

andshake Algorithmus direkt auf der Liste der 
Indizes anwenden. Deutlich besser ist es jedoch die Indizes zuerst zu sortieren um danach 

zu speichern, bedarf es eines 
zusätzlichen Zwischenspeichers. Dies kann zum Beispiel in Form eines booleschen Arrays 

erreicht werden, dessen Felder den Indizes der Karte entsprechen. Wird Index j in 
. Am Ende jeder Iteration muss arr somit 

: Handshake vs .sort.unique 
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*$6.�#%/$ = p�	q	�r + 9 ⋅ *�t ≤ � ≤ �r + 2*� + 9 ⋅ *�t 	q	*�t = 0 … 2*� 	∧ 	�vw��	 ∧ 	 �r = *('(.�(+ − *� −9*�x 
  

// F��2*�G�	
L1	 vec_single	importantIdxs	=	rectangle	
2	 vec_single	temp	
L2	 while	importantIdxs	!empty	do	
4	 				foreach	idx	in	importantIdxs	do	
L3	 								if	map[idxb	=	U_SPACE	∧ 	��#$�%ℎ'()*��/)$+��78�� ∈ [−3; 0b	then	
L4	 												map[idxb	=	F_SPACE	
L5	 												temp.push	�{�	|	� ∈ #$�%ℎ'()*+��78� ∧ ���[�b = U_SPACE	 ∧ 	 � ∈ 2$6.�#%/$}	�	
8	 								fi	
9	 				end	
10	 				//	F�# × /(%�#� + n�	|	# = temp. size	
L6	 				importantIdxs	=	temp.sort.unique	
12	 				temp.clear		
13	 end	 Code 3.3: Entfernen duplizierter Einträge nach Iteration 
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foreach idx in importantIdxs 

while importantIdx !empty do 

Abb 3.14: Ablauf der Filterung 

L1	 vec_single	importantIdxs	=	rectangle	
2	 vec_single	temp	
3	 bool	�lags[9 × ℎb = {.*)$, .*)$, … , .*)$}	
L2	 while	importantIdxs	!empty	do	
5	 				foreach	idx	in	importantIdxs	do	
L3	 								if	map[idxb	=	U_SPACE	∧ 	��#$�%ℎ'()*��/)$+��78�� ∈ [−3; 0b	then	
L4	 												map[idxb	=	F_SPACE	
8	 												push = {�	|� ∈ #$�%ℎ'()*+��78� ∧ ���[�b = U_SPACE ∧	 � ∈ *$6.�#%/$ ∧ �lags[ib = false}	
L5	 												temp.push	�push�	
10	 												flags[pushb	=	true	
11	 								fi	
12	 				end	
L6	 				flags[tempb	=	false	
14	 				temp.clear		
15	 end	 Code 3.2: Ignorieren duplizierter Einträge während Iteration 
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3.9.3. Korrektheit und Terminierung 

Die Betrachtung der Korrektheit und der Terminierung beruht auf folgenden 
Annahmen: 
 
(1) U_SPACE = -1 
(2) F_SPACE = 0 
(3) O_SPACE = 100 

 
Um die Beweisführung einfacher zu gestalten werden wie im Folgenden aufgelistet vier Fälle 
betrachtet. 

 
Fall 1: Alle Zellen befinden sich in u-Space 
 

∀�  ∈ ���(*.�#.I78+ ∶  ∑�#$�%ℎ'()*��/)$+���� = −8 
⇒  ∀� ∈ ���(*.�#.I78+ ∶ �3 =  false 
⇒ .$�� = {∅} 
⊢ Terminierung von Fall 1 

 
Fall 2: Alle Zellen befinden sich in f-Space 

 

∄� ∈ ���(*.�#.I78+ | ������ =  U_SPACE 
⇒  ∀� ∈ ���(*.�#.I78+ ∶  �3 =  false  
⇒ .$�� = {∅}  
⊢ Terminierung von Fall 2 

 
Fall 3: Alle Zellen befinden sich in o-Space 
 

Siehe Fall 2 
 

Fall 4: Gemischte Zellen 
 

∀��  ∈ ���(*.�#.I78+ | ������ = �_
���� ∧  #$�%ℎ'()*��/)$+���  ∈ a−3; 0b ∶ L3 = .*)$ 

 ⇒ |-_
��6$�	�|  > |-_
��6$��
| 
⇒ |)_
��6$�	�| <  |)_
��6$��
| 
⇒ |���(*.�#.I78+�	�| ≤  |)_
��6$�	�| 
⇒ |���(*.�#.I78+�	�| <  |)_
��6$��
| 
⇒ Algorithmus terminiert spätestens, wenn |)_
��6$�	�| = 0, 

 

oder wenn: 
 

∄��  ∈ ���(*.�#.I78+ | ������ = �_
���� ∧  #$�%ℎ'()*��/)$+���  ∈ a−3; 0b 

⇒  ∀� ∈ ���(*.�#.I78+ ∶  L3 =  false 

⇒  .$�� = {∅} 

 

⊢ Terminierung von Fall 4 
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3.9.4. Laufzeitbetrachtung 

Im Folgenden werden die verschiedenen Ansätze bezogen auf Laufzeit und 
Speicherverbrauch analysiert und letztendlich gegeneinander abgewogen. Desweiteren findet 
eine ganzheitliche Abschätzung der Laufzeit der Glättung statt und es wird versucht eine 
tatsächliche Laufzeit anhand von Praxistests anzugeben. 

 
Einfacher 3x3 Tiefpassfilter 
Ein herkömmlicher Filter iteriert über einen gegebenen Ausschnitt und bildet für jede 

besuchte Zelle eine Nachbarschaftssumme aus deren direkten acht Nachbarn und der Zelle 
selbst. Die einzelnen Summanden sind je nach Anwendungsfall gewichtet. Um eine 
Normierung zu erreichen wird die Nachbarschaftssumme durch die Summe der Gewichte 
geteilt. Es entsteht somit eine von r abhängige quadratische Laufzeit pro Iteration. 

 

 F�+ ∙ 7G�, 7 = 2* eq xvii 

 

Modifizierter 3x3 Tiefpassfilter 
Wie weiter oben bereits erwähnt ist für das vorliegende Problem kein Auswerten aller 

Zellen notwendig. Vielmehr gilt es hier festzustellen, dass durch das überspringen irrelevanter 
Zellen Laufzeit eingespart werden kann. Abhängig von der Häufigkeitsverteilung von u-Space 
Zellen entsteht folgende Laufzeit pro Iteration. 

 

 F��1 − �� ∙ 7G + � ∙ + ∙ 7G�	|	7 = 2* ∧ p = P�u_Space� eq xviii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Diagramm 3.3: Laufzeiten der Glättung 

Diagramm 3.2: Laufzeiten der Glättung mit modifiziertem Filter 
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Entfernen duplizierter Einträge nach Iteration (Variante a) 
temp muss im ersten Schritt sortiert werden um im zweiten Schritt effizient Duplikate 

entfernen zu können. Es gilt zu beachten, dass die Laufzeit nicht mehr direkt von r abhängig 
gemacht werden kann, da temp ausschließlich für die nächste Iteration relevante Indizes 
enthält. Es gilt ohne Einschränkung, dass|.$��| < 7G.  

 

 F(# ∙ log(#) + # − 1), # = |.$��| eq xix 

  

Ignorieren duplizierter Einträge während Iteration (Variante b) 
Das Vorhalten eines Speichers, um bereits verwendete Indizes behandeln zu können, 

generiert bei sehr großen Karten einen Speicherverbrauch, welcher quadratisch mit dem 
Radius wächst. Besteht die Karte zum Beispiel aus 4000x4000 Zellen, so müssen 16.000.000 
boolesche Werte gespeichert werden. Dies resultiert in einer Speicherbelegung von ca. 8MB. 

 
Davon ausgehend, dass maximal |.$��| Zellen für die nächste Iteration vorgesehen werden, 
lässt sich schließen, dass 6 < |.$��|  duplizierte Einträge während der aktuellen Iteration 
verworfen werden. Setzt man für das Verwerfen x Operationen an, so entsteht eq xx. Diese 
Laufzeitbeschränkung ist wenig aussagekräftig und wird in den folgenden Abbildungen und 
Diagrammen anhand von Testläufen verdeutlicht. 
 
 F(8 ∙ 6), 6 < |.$��| eq xx 

 
 

Es ist leicht zu erkennen, dass der modifizierte Filter einen deutlichen Vorteil gegenüber dem 
einfachen Filter bietet. Abhängig von der 
Häufigkeitsverteilung der Zellen kann eine Laufzeit 
Optimierung von bis zu 90% erreicht werden (siehe 
Diagramm 3.4). Auch die sukzessive Einschränkung 
des Suchbereichs auf relevante Zellen ist leicht 
einzusehen. Hierbei gilt es aber den Gewinn durch 
weniger zu betrachtende Zellen mit der zusätzlichen 
Last durch die Handhabung der Duplikate 
gegeneinander abzuwägen. Versuche in echter 

Umgebung zeigen, dass die Anzahl der zu betrachtenden Zellen in den ersten Filteriterationen 
stets drastisch abnimmt (Abb 3.15). Daraus lässt sich schließen, dass der hinzugefügte 
Mehraufwand aufgrund einer geringen Anzahl an Zellen nicht ins Gewicht fällt, wohingegen 
aber das primitive Iterieren über den vollständigen Suchbereich eine wenig optimale Lösung 
darstellt. 
 

Im Folgenden werden anhand von in Versuchen mitgeschriebenen Daten die Varianten a und 
b gegeneinander abgewogen, um das passendere – beziehungsweise stabilere - Verfahren für 
die Exploration zu verwenden. 
  

Diagramm 3.4: Optimierungspotential 
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 (a) r=3; 14.400 Zellen (e) r=3; 14.400 Zellen 

 
 

 
 (b) r=6; 57.600 Zellen (f) r=6; 57.600 Zellen 
 
 

 
 (c) r=15; 360.000 Zellen (g) r=15; 360.000 Zellen 
 
 

 
 (d) r=80; 10.240.000 Zellen (h) r=80; 10.240.000 Zellen 

 
Abb 3.15: Zellenreduktion bei der Filterung 
Die blaue/rote Fläche symbolisiert die verworfenen Zellen nach der ersten/zweiten Filteriteration. Grün stellt die 
verbliebenen Zellen vor der dritten Filteriteration dar. (a-d) Variante a; (e-h) Variante b.  
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 (a) (b) 

 
 

 
 (c) (d) 

 
Abb 3.16: Zellenreduktion bei der Filterung 
Zeigt den prozentualen Anteil der verbliebenen Zellen vor der dritten Filteriteration. Variante a ist rot, Variante 
b entsprechend blau. Die Linke Skale beschreibt den relativen Anteil in % und die rechte Seite die absolute 
Menge. Die waagrechte Skala steht für den Explorationszyklus. (a) r = 3; (b) r = 6; (c) r = 15; (d) r = 80. 

 

 

Filteriteration importantIdxs Gefilterte Zellen potentials 
Duplikat 

Operationen 
 Variante a b a b a b a b 

1 57600 57600 10742 10742 16998 10793 255871 118162 
2 10793 10793 344 357 721 510 7565 3927 
3 511 510 285 298 613 443 6288 3278 
4 440 443 265 273 573 273 5822 3003 

Tabelle 3.2: Vergleich der Filtermechanismen mit r = 6 
 

Filteriteration importantIdxs Gefilterte Zellen potentials 
Duplikat 

Operationen 
 Variante a b a b a b a b 

1 360000 360000 30071 30071 38162 26669 618980 330781 
2 26669 26669 1326 1389 2650 1905 32784 15279 
3 1865 1905 936 984 2119 1457 25531 10824 
4 1418 1457 778 817 1765 1228 20800 8987 

Tabelle 3.3: Vergleich der Filtermechanismen mit r = 15 
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Anhand von Abb 3.15 und Abb 3.16 lässt sich schließen, dass ein Großteil der initial als 
importantIdxs eingestuften Zellen bereits nach der ersten Filteriteration f1 (zu sehen als blaue 
Fläche) verworfen ist. In der zweiten Filteriteration f2 werden rot dargestellt zusätzlich 
weitere Zellen entfernt. Es ist zu erkennen, dass in den ersten beiden Filteriterationen jeweils 
ungleichmäßig viele Zellen entfernt werden. Nach f2 jedoch ist die Anzahl der verbleibenden 
Zellen stets ähnlich (zu sehen als grüne Fläche). Dieses Verhalten lässt sich in weiteren Tests 
nachweisen. 
Es ist somit klar, dass beide Filtervarianten den Bereich der relevanten Zellen bereits 
innerhalb der ersten beiden Filteriterationen deutlich einschränken. Tabelle 3.2 und Tabelle 
3.3 zeigen jedoch, dass Filtervariante a aufgrund der Notwendigkeit des Sortierens nach jeder 
Filteriteration bereits hier doppelt so viele Ressourcen benötigt. Betrachtet man weitere 
Filteriterationen, so stellt man fest, dass sich die benötigten Operationen pro Filteriteration bei 
geringer werdender Zellenzahl annähern. Es zeichnet sich somit ab, dass Variante b mit 
zunehmendem Radius einen klaren Vorteil gegenüber Variante b bietet. Zusätzlich 
aufzuführen ist Tabelle 3.4. Hier ist zu erkennen, dass bei größer werdendem Radius die 
Anzahl der im Durchschnitt benötigten Filteriterationen ebenfalls für Variante b sprechen. 
 

 Durchschnittliche Filteriterationen 
Radius 

[m] 
Variante a Variante b 

3 20,5 20,5 
6 65,8 67,64 
15 108,7 95,6 
80 98,72 79,62 

Tabelle 3.4: Durchschnittliche Filteriterationen 
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4. Zielsuche und Exploration 
 

Nachdem in den vorangehenden Kapiteln die technischen und algorithmischen Hintergründe 
diskutiert wurden, um eine Basis für weitere Schritte zu schaffen, wird in diesem Kapitel 
detailliert auf die Zielsuche und Exploration eingegangen. Im Gegenzug zu verschiedensten 
Ansätzen ([YAM97, YAM98, GL02]) wird hierfür weder die am nächsten gelegene 
frontierCell, noch ein zufälliges Ziel gewählt. Die im weiteren Verlauf vorgestellte Zielsuche 
stützt sich im wesentlichen auf zwei Komponenten. Die Komponente Qualität ([BMF+00]) 
gewährleistet, dass möglichst Interessante Ziele im Sinne einer Kartenaufdeckung berechnet 
werden. Die Komponente Sicherheit schließt im Gegenzug dazu bereits im Voraus potentiell 
gefährliche Ziele aus, um eine sichere Navigation des Roboters zu gewährleisten. 
Im Verlauf dieses Kapitels wird gezeigt anhand welcher Kriterien frontierRegions für die 
qualitative Beurteilung eines Ziels herangezogen werden können. Darauf aufbauend werden 
ein Verfahren zur Berechnung möglichst gewinnbringender Ziele vorgestellt und relevante 
Sicherheitskriterien erörtert. Letztendlich wird der vollständige Explorationsablauf 
schematisch dargelegt und erläutert. Desweiteren werden mögliche Probleme identifiziert und 
deren Lösung anhand von fallback Strategien motiviert. 
 

4.1. Qualitätskriterien 

Die für diesen Ansatz verwendeten Kriterien dienen einer möglichst objektiven 
qualitativen Einschätzung der extrahierten frontierRegions bezogen auf die Position und 
Orientierung des Roboters. Um eine einheitliche Betrachtung zu gewährleisten, werden alle 
Qualitäten normalisiert. Umgesetzt wird dies durch lineare Interpolation. Der Autor geht von 
folgenden vier relevanten Kriterien aus 
 

Connectivity (i): 
Die connectivity einer frontierRegion f definiert sich durch die Anzahl der 
Nachbarschaftsrelationen innerhalb ihrer selbst. Im Idealfall besitzen alle frontierCells ∈ - 
maximal zwei Nachbarn und bilden somit eine Linie (Abb 3.9). 

 

 ∀� ∈ -*(#.�$*2$%�(# ∶ |#$�%ℎ'()*+(�)| ≤ 2 ⇔ ��#�$ eq xxi 

 

Finden sich mehr als zwei Nachbarn pro frontierCell, so ist in den meisten Fällen davon 
ausgehen, dass ein Szenario ähnlich wie in Abb 3.10 vorzufinden ist. Eine Bewertung 
dieses Kriteriums findet statt, indem die tatsächlich vorhandenen Nachbarschaftsrelationen 
zur minimal möglichen Anzahl an Nachbarschaftsrelationen ins Verhältnis gesetzt werden. 
 

 6(##$6.�C�.> = |$7%$+|
|-| ∙ 2 − 2 eq xxii 
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Größe (ii): 
Je größer eine frontierRegion, desto mehr Information verbirgt sich dahinter. Es gilt hierbei 
aber zu beobachten, dass eine Relation zu connectivity hergestellt werden sollte. Eine 
geradlinige frontierRegion verbirgt bei gleicher Größe mehr Information als ein 
willkürlicher Punktehaufen, der durch Ungenauigkeiten in der Sensorik entstehen kann. 
 

Distanz (iii): 
Eine geringe Distanz zum nächsten Ziel ist bei der Exploration einer Karte wünschenswert. 
Begründet wird dies zum einen durch den Umstand, dass dadurch ein Zurückfahren 
vermieden wird und zum anderen dadurch, dass eine systematische Exploration des 
näheren Umfeldes gewährleistet wird. Zwei einfache Metriken ergeben sich durch eq xxiii 
und eq xxiv. 
 

 7�+.� = {min, max}�7�+.��, *('(.�(+�� 	 |	� ∈ -*(#.�$*2$%�(#� eq xxiii 

 

oder 

 

 7�+.� =
1

q-*(#.�$*2$%�(#�q
×�7�+.��, *('(.�(+�	|	� ∈ -*(#.�$*2$%�(#� eq xxiv 

 

 

Richtung (iv): 
Ist eine möglichst geradlinige Exploration gewünscht, so kann dies durch eine 
entsprechende Gewichtung dieses Kriteriums erreicht werden. Die Richtung berechnet sich 
aus dem Winkel zwischen der Orientierung des Roboters und der Richtung, in der 
frontierRegionj zu finden ist. 

 
Alle berechneten Qualitäten werden normiert und anhand ihrer Gewichte addiert. 
Heuristisch und durch Tests in simulierter als auch in realer Umgebung lassen sich die 
Gewichte der einzelnen Kriterien abwägen. Dabei gilt es zu bedenken, dass unterschiedliche 
räumliche Gegebenheiten eine angepasste Gewichtung benötigen. So führt zum Beispiel ein 
hohes Gewicht für das Kriterium Richtung in einem Flur schnell zu Ergebnissen, wohingegen 
bei der Exploration kleiner Räume das Kriterium Distanz von Bedeutung sein wird. 
 

4.2. Bestimmung eines Ziels 

Mit der Wahl einer frontierRegionj lässt sich im nächsten Schritt ein dazugehöriges Ziel 
für die weitere Exploration finden. Hierbei gilt es festzustellen, dass sich ein unbekanntes 
Gebiet genau dann möglichst umfassend erfassen lässt, wenn die verwendete Sensorik direkt 
darauf gerichtet ist. Desweiteren ist zu beachten, dass auch alle potentiellen Ziele 
verschiedenen Qualitätskriterien unterliegen sollten. 
 

Abstand zu o-Space (i): 
Um Kollisionen zu vermeiden und Fehler in der Pfadplanung auszuschließen empfiehlt es 
sich Ziele, welche zu nahe an o-Space liegen, zu verwerfen. 
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Abstand zu u-Space (ii): 
Da die Beschaffenheit des Gebietes hinter einer frontierRegion nicht vorhergesagt werden 
kann, ist es im Zuge der Sicherheit ratsam auch hier einen Sicherheitsabstand einzuhalten. 

 
Abstand zu Roboter (iii): 
Ein zu nahe am Roboter gewähltes Ziel resultiert zum einen in einer verlangsamten 
Exploration, da der Roboter schneller das Ziel erreicht und somit öfter ein neues gesucht 
werden muss. Zum anderen wird dadurch sicher gestellt, dass der Roboter in die goalArea 
einfährt und somit das Ereignis goalAreaEntered ausgelöst wird. Der Sicherheitsbereich 
um den Roboter muss demzufolge größer als der Auslöseradius um das letztendliche Ziel 
herum sein. 

 
Ausgehend von einer bereits ausgewählten frontierRegionj F bedarf es eines Verfahrens, um 
ein darauf bezogenes Ziel zu finden. Einfach wäre es eine zufällige oder die nächst gelegene 
Zelle zu nehmen. Jedoch besteht die Absicht dieser Arbeit darin ein Verfahren zu entwerfen, 
welches eine möglichst effektive Zielwahl ermöglicht. Um dies zu gewährleisten, wird im 
Folgenden ein Ansatz vorgestellt, welcher entlang von F bildlich gesprochen ein Band von 
Zielen berechnet. Dieser sogenannten potentialGoalArea wird letztendlich ein Ziel 
entnommen, welches den Kirterien i, ii und iii stand hält. 
Wie in Code 4.1 zu sehen wird hierfür Schrittweise zwischen je zwei nachfolgenden Zellen in 

F ein Vektor C→ aufgespannt. Orthogonal zu diesem wird ein Vektor )→ berechnet. Die Länge a 

von )→ berücksichtigt hierbei ii. Potentielle Explorationsziele entstehen nun zu beiden Seiten 
von F, wobei aber nur solche übernommen werden, die weder in o-Space, noch in u-Space 
liegen. Zusätzlich werden alle potentiellen Ziele aufgebläht, um bei der letztendlichen 
Auswahl eines Zieles noch flexibler zu sein. Somit entsteht ein Band aus überlappenden 
Kreisen entlang von F, welches die potentialGoalArea bildet. Abb 4.1 und Abb 4.2 zeigen das 
Ergebnis anhand einer Skizze und anhand von einer Visualisierung mit rviz. 
In einem weiteren Schritt werden solange die einzelnen Zellen aus potentialGoalArea den 
Kriterien i, ii und iii unterworfen, bis eine qualitativ passende Zelle gefunden wird. Diese 
Zelle dient als nächster Explorationspunkt und gewährleistet bei guter Parametrisierung ein 
hochwertiges Ziel. Eine detaillierte Beschreibung des vollständigen Ablaufes inklusive 
Fehlerbetrachtung findet sich in 4.3 und 4.4, soll an dieser Stelle aber nicht relevant sein. 
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frontierRegion 

potentialGoals 

Abb 4.1: potentialGoalArea skizziert 

iii 

ii 

i 

Abb 4.2: potentielGoalArea in rviz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 

(orange) potentialGoalArea; (blau) beste frontierRegion; (gelb) frontierRegions 

1 vector<point> potentialGoals 
2 F = frontierRegion 
3 for int i = 0; i < F.size��; i+=2 do 
4     C→ =  ����WX

→
 

5     )→: )→ ⊥ C→ ∧  )→  = � 
6     %(�/X = �� + )→ 

7     �(.$#.��/0(�/�*$�X = { �� | 7(�, %(�/X) < ' } if %(�/X ∉ �)_
��6$ ∪ (_
��6$� 
8     %(�/G = �� − )→ 

9     �(.$#.��/0(�/�*$�G = { �� | 7(�, %(�/G) < 'g if  %(�/G ∉ �)_
��6$ ∪ (_
��6$� 

10     potentialGoals.pushBack�potentialGoalAreai� 

11 end 

Code 4.1: Berechnug der potentialGoalArea 
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Basierend auf einem ausgewählten Explorationsziel muss eine weitere Betrachtung der Art 
und Weise zu teil werden, wie sich der Roboter F nähert. Es werden hierfür zwei Varianten 
vorgestellt. Beide Varianten gehen im optimalen Fall von einer geradlinigen Repräsentation 
von F aus. Gilt diese Annahme nicht, so funktionieren beide Varianten dennoch, liefern aber 
ungenau Anfahrtsrichtungen. Desweiteren wird zum besseren Verständnis mit Richtungen in 
Form von Vektoren argumentiert. ROS verwendet hierfür einen Winkel. Die Umrechnung ist 
für die Erklärung beider Ansätze nicht relevant und wird somit übergangen. 
 

Variante 1.1: 

Ausgehend von einer geradlinigen frontierRegion F wird F in Form eines Vektors F¥¦ 
dargestellt. Es  werden zwei Punkte a und b berechnet, wobei beide innerhalb von F 
liegen, a die minimale Distanz und b die maximale Distanz zum Roboter aufweist. Es 

ergibt sich somit �¦ = �'¥¥¥¥¦. Im Weiteren wird ein Vektor 7¦ berechnet, welcher orthogonal 

auf F¥¦ steht und die gewünschte Ausrichtung des Roboters am Zielpunkt angibt. Abhängig 
von der berechneten Trajektorie kann die Ist-Ausrichtung des Roboters am Zielpunkt von 
der Soll-Ausrichtung abweichen. In Abb 4.3 wird dies durch den Winkel α 
veranschaulicht. 
Es gilt festzustellen, dass die relative Position des Roboters zu F keinen Einfluss auf die 

Richtung von F¥¦   hat, da je zwei ungleiche Punkte auf einer Geraden stets linear 

voneinander abhängige Vektoren produzieren. a ≠ b wird durch die Umstände 
minimale/maximale Distanz gewährleistet, sobald |�| > 1. 

 
Variante 1.2: 

Selbige Vorgehensweise wie in Variante 1.1 mit dem Unterschied, dass α = 7¦	∡	�¦ ≠ 90. 
 
Variante 2: 

Analog zu Variante 1.1 wird b berechnet. Ausgehend vom Zielpunkt g wird 7¦ = '%¥¥¥¥¦ 
berechnet. Der Roboter ist somit entlang von F in Richtung des entfernten Punktes b 
ausgerichtet. Abb 4.4 skizziert diesen Ansatz. 
 
 

 

u-Space f-Space 

frontierRegion F 

Abb 4.5: Ungültiges Anfahren von F 

u-Space 

f-Space 

Abb 4.4: Anfahren von F mit 
Blick auf entfernte Ecke 

α 

u-Space f-Space 

frontierRegion F 

Abb 4.3: Anfahren von F in 
nahezu rechtem Winkel 
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4.3. Ablauf 

Ausgelöst wird jeder Explorationsschritt durch das Empfangen einer aktualisierten Karte 
über den Knoten gmapping. Ausgehend von der aktuellen Position des Roboters wird nun 
innerhalb eines initialen Radius zuerst die Karte gefiltert, um danach innerhalb des gefilterten 
Bereichs nach frontierRegions zu suchen. Wird keine frontierRegion gefunden, so wird der 
Radius erhöht und der Prozess von vorne gestartet. Andernfalls werden im nächsten Schritt 
alle frontierRegions hinsichtlich ihrer Qualität für die Exploration beurteilt und absteigend 
sortiert. Jede so gefundene und qualifizierte frontierRegion wird im folgenden anhand 
verschiedener Grenzwerte für eine Zielsuche zugelassen oder verworfen. Jede zugelassene 
frontierRegion wird in eine whitelist aufgenommen, um zu späteren Zeitpunkten darauf 
zurückgreifen zu können. Die erste zugelassene und somit die am qualitativsten wertvollste 
frontierRegion wird in diesem Explorationsschritt für die Zielsuche herangezogen. Anhand 
dieser frontierRegion werden nun potentielle Ziele gemäß 4.2. berechnet. Im letzten Schritt 
wird nun über alle potentiellen Ziele iteriert, um diese Qualitätskriterien zu unterwerfen. Das 
erste positive Ziel wird als nächstes Navigationsziel verwendet. Besteht kein potentielles Ziel 
diese Qualitätschecks wird mit der nächsten frontierRegion fortgefahren. In Abb 4.6 wird der 
Ablauf schematisch dargestellt. 

 

4.4. Fallback Strategien 

Es ist unumgänglich, dass es bei vorliegendem Prozess zu grenzwertigen Situationen 
kommen kann, die die Exploration erheblich verlangsamen oder sogar unterbrechen können. 
Um diesen Fällen entgegenzutreten wurden im Zuge der Arbeit fallback Strategien definiert. 
Im Folgenden werden diese Strategien vorgestellt und deren Existenz anhand von Beispielen 
begründet. 

 
Strategien: 
 
a) Suchen nach frontierRegions in whitelist 

Stellt die Möglichkeit zur Verfügung qualitativ wichtige, aber nicht erschlossene 
frontierRegions zwischen zu speichern und in bestimmten Situation eine für die 
aktuelle Situation passende heraus zu nehmen. 
 

b) Suchen nach frontierRegions auf gesammter Karte 
Als ultimative Strategie konzipiert um bis dato unbekannte frontierRegions auf der 
gesammten Karte suchen zu können. Produziert deutlich erhöhte Laufzeitkosten, da 
sämtliche Operationen quadratisch mit dem veranschlagten Suchradius wachsen. 
 

c) Aktuelles Ziel in blacklist aufnehmen und Erkundunsschritt neu starten 
Wird das aktuelle Ziel in eine blacklist aufgenommen, so wird dieses im nächsten 
Explorationsschritt ignoriert und ein dadurch möglicherweise verbundenes Problem 
beseitigt. 
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d) Annähern an Explorationsziel bevor neue Iteration gestartet wird 
Strategie, welche abhängig von Vorgaben und Fehlerstatus angewandt werden kann. 
Algorithmisch umgesetzt wird dies durch die Pfadlänge d zwischen Startpunkt und 
Zielpunkt und durch die noch zu fahrende Strecke d'. Gesteuert durch einen 

Schwellenwert 0 ≤ + ≤ 1 wird eine erneute Iteration zugelassen, sobald  
¨′
¨ ≤ +. 

 
Probleme: 
 
• Maximal zulässiger Radius erreicht 

Werden wiederholt innerhalb erhöhter Radien keine oder qualitativ unzureichende 
frontierRegions beziehungsweise Ziele gefunden, so kann dies unter anderem an 
folgenden Konstellationen liegen: 
 

i. Roboter befindet sich in bereits großflächig erkundetem Gebiet 
ii.  Kriterien sind zu hart eingestellt 
iii.  Karte ist vollständig erkundet (basierend auf der Annahme, dass eine maximale 

Kartengröße voreingestellt ist) 
iv. Roboter befindet sich in Gebiet mit sehr vielen kleinen Hindernissen 

 
In allen vorliegenden Fällen wird zunächst Strategie a) angewendet. Findet sich hierdurch 
keine passende frontierRegion, wird Strategie b) gestartet. Liefert dieser Schritt immer 
noch keine frontierRegions, so bedarf es einer erweiterten Situationsanalyse und einer 
tiefer gehenden Fehlerbehandlung. Denkbar wäre eine an [TTW+04] angepasste Strategie. 

 
• Roboter bewegt sich nicht 

Bewegt sich der Roboter nicht werden keine neuen Sensordaten produziert und somit 
durch das Ausbleiben einer aktualisierten Karte kein neuer Explorationszyklus 
gestartet. Wird als Lösung hierfür ein neuer Zyklus durch einen timeout ausgelöst und 
der Roboter bewegt sich immer noch nicht, läuft man Gefahr wiederholt in die gleiche 
Situation zu geraten, da auf einer unveränderten Karte mit hoher Wahrscheinlichkeit 
das selbe Ziel wiederholt berechnet wird und somit kein Fortschritt gewährleistet ist. 
Um nun zu verstehen, wie in dieser Situation vorzugehen ist, gilt es sich die Umstände 
dieses Falles klar zu machen. 
 

i. Roboter erreicht Zielgebiet bevor Karte aktualisiert wurde 
ii.  Roboter fährt sich fest 
iii.  Pfad enthält ungültige Wegpunkte 

 
Lösung: 
Das erste Problem lässt sich lösen, indem regelmäßig der Zustand des Pfadplaners 
ausgewertet wird. Wird innerhalb eines definierten Zeitfensters keine Karte 
empfangen und der Roboter befindet sich innerhalb der goalRegion, so darf in diesem 
Fall einmalig ein neuer Zyklus ausgelöst werden. Erst nachdem sich der Roboter 
bewegt hat, darf ein weiterer Zyklus zeitlich bedingt ausgelöst werden. Andernfalls 
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könnte wiederholt das gleiche Ziel berechnet werden. Löst dieses Vorgehen das 
Problem nicht, wird Strategie c) angewendet und ein neuer Zyklus gestartet. 
Fährt sich der Roboter fest, so muss in der Regel manuell eingegriffen werden. 
Der letzte Fall wird im übernächsten Punkt behandelt. 
 

• Ziel wird von Pfadplaner verworfen 
Befindet sich ein berechnetes Ziel zu nahe an einem Hinderniss, so kann dieses vom 
Pfadplaner verworfen werden. Eine weitere Ursache besteht darin, dass der Pfadplaner 
eine Trajektorie berechnet, welche durch u-Space verläuft, und somit verworfen wird. 
 
Lösung: 
Tritt dieses Problem auf, kann durch Strategie c) schnell ein alternatives Ziel gefunden 
werden. 
 

• Pfadplaner berechnet schlechten Pfad 
In seltenen, nicht nachstellbaren Fällen, konnte beobachtet werden, wie der Pfadplaner 
weder Querbeschleunigung noch Winkelbeschleunigung an die generierten 
Nachrichten anhängt. In weiterern seltenen Fällen konnte außerdem festgestellt 
werden, dass der Pfadplaner nur eine Winkelbeschleunigung berechnet, wodurch der 
Roboter sich im Kreis dreht. Dargestellt wird dies in eq xxv und eq xxvi. 
 

 ∀� ∈ ��.ℎ ∶ �. /�#$�*. 9 = 0 ∧ �. �#%)/�*. 9 = 0, 9 ∈ {8, >, ©} eq xxv 

 

 ∀� ∈ ��.ℎ ∶ �. /�#$�*. 9 = 0 ∧ �. �#%)/�*. 9 ≠ 0, 9 ∈ {8, >, ©} eq xxvi 

 

Lösung: 
Da das Problem ursprünglich in einem von frontier_navigation unabhängigen Stack 
auftritt ist die Lösung dafür primär direkt dort zu suchen. Um jedoch die Exploration 
durch diesen Fall nicht abbrechen zu müssen, wird bei wiederholten nacheinander 
auftreten in beiden Fällen Strategie c) angewendet. 
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Abb 4.6: Schematischer Ablauf der Exploration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In rot dargestellt sind Fehlerfälle, die unter Umständen eine fallback Strategie benötigen. Grün gibt im Gegenzug den 
Standardfall an. In orange zu sehen sind die Auswahlzyklen für die beste frontierRegion und das beste Ziel. In den 
Kästen zu sehen sind die jeweiligen Datensätze nach der entsprechenden Operation. 
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5. Experimentelle Ergebnisse 
 

In diesem Kapitel werden die gesammelten Ergebnisse und Erfahrungen anhand von Grafiken 
und Tabellen anschaulich dargestellt. Desweiteren wird ein Vergleich der angewandten 
Einstellungen gezogen. 
 
Es werden ausschließlich folgende Rahmenparameter verwendet: 
 

weightOfConnectivity: 3.0 
weightOfSize:   2.0 
weightOfDistance:  1.0 
weightOfDirection:  4.0 
 
Sensorreichweite:  20m 
Samples:   250 
Winkelabdeckung:  270° 
 
Strategie 0:   Berechne neues Ziel während Fahrt zu aktuellem Ziel. 
Strategie 1: Berechne neues Ziel erst bei Erreichen des aktuellen 

Zielgebiets. 
 
Die Rechenarbeit wurde von einem Intel(R) Core(TM) i7 CPU Q740 @1,73GHz mit 4GB 
Arbeitsspeicher übernommen. 
 
Die Anpassung der Radien und die verwendete Suchstrategie werden durch die Bezeichnung 
a_b_c_d beschrieben, wobei a für den Startradius, b für die inkrementelle Erhöhung des 
Radius, c für die Anzahl der Versuche und d für die verwendete Strategie steht. 
Im Verlauf des Testens stellte sich heraus, dass das Erreichen eines Zielbereichs vor einer 
erneuten Zielberechnung einen Vorteil bezogen auf die Explorationsgeschwindigkeit 
gegenüber regelmäßiger Zielsuche während der Fahrt zum aktuellen Ziel bietet. Desweiteren 
lieferten Varianten mit kleineren Schrittgrößen bessere Ergebnisse als Varianten mit großer 
Schrittgröße. Genaueres hierzu lässt sich den folgenden Abbildungen und Tabellen 
entnehmen. 
 
Wie in Abb 5.1 (a) dargestellt, können auch bei ansonsten effizienter Kalibrierung Situationen 
entstehen, die ein Problem für die Exploration darstellen. So ist in diesem Fall zu sehen, dass 
frontierRegions innerhalb eines eingeschlossenen Bereiches gefunden wurden. Der Roboter 
pendelt somit zwischen zwei Zielpunkten, um aus verschiedenen Richtungen einen Blick auf 
die frontierRegion werfen zu können. Durch pendeln entstehende duplizierte Ziele werden 
zwar in die dafür vorgesehene blacklist aufgenommen, wodurch sich dieses Problem nach 
einer gewissen Zeit selbstständig löst, doch benötigt dieser Vorgang im Vergleich zu einer 
fehlerfreien Exploration  viel Zeit. 
 
 



5. Experimentelle Ergebnisse

     

Desweitern stellte sich während des Testens her
zwar in den meisten Fällen das gewünschte Lösungsverhalten bereit stellen. Es konnte aber 
auch festgestellt werden, dass in seltenen Fällen eine Kombination unterschiedlicher 
Probleme eine ausgereiftere Fehlerb
ROBOT_NOT_MOVING_TIMER
kann jede Ursache gekapselt behandelt werden. Treten aber die Ursachen 
und GOAL_AREA_ENTERED 
Fallunterscheidungen notwendig
 
In einigen weiteren Fällen konnte festgestellt werden, 
verlassen werden, um diese später wieder zu besuchen
effizienten Exploration wäre eine vollständige Exploration des aktuellen
bevorzugen. Dies würde aber ein topologisches Verständnis
voraussetzen. 
 
Im Verlauf verschiedener Simulationen
aufgedeckter Karte Wege mehrfach gefahren werden. 
der explorierten Areale im Verhältnis zur zurückgelegten Strecke ab. 
5.17. In weiteren Ausbaustufen
Indiz für eine ausreichend vollständig
 
 

 (a) 
 

Abb 5.1: Fehlerfälle 
(a) Pendeln zwischen zwei Zielen und eingeschlossene 
Raum zu explorieren. Resultiert in einer erneuten Exploration des ersten Raumes.

  

Experimentelle Ergebnisse 

      Seite 

Desweitern stellte sich während des Testens heraus, dass die verwendeten fallback Strategien 
zwar in den meisten Fällen das gewünschte Lösungsverhalten bereit stellen. Es konnte aber 
auch festgestellt werden, dass in seltenen Fällen eine Kombination unterschiedlicher 
Probleme eine ausgereiftere Fehlerbehandlung voraussetzt. So kann ein 
ROBOT_NOT_MOVING_TIMER verschiedene Ursachen haben. Treten diese einzeln auf, 
kann jede Ursache gekapselt behandelt werden. Treten aber die Ursachen GOAL_REJECTED 

GOAL_AREA_ENTERED zur gleichen Zeit auf, so sind
notwendig. 

In einigen weiteren Fällen konnte festgestellt werden, dass Explorationsgebiete zuerst 
erlassen werden, um diese später wieder zu besuchen (siehe Abb 5.1 (b))

wäre eine vollständige Exploration des aktuellen
bevorzugen. Dies würde aber ein topologisches Verständnis der Umgebung

Simulationen konnte beobachtet werden, dass mit zunehmend 
aufgedeckter Karte Wege mehrfach gefahren werden. Anders ausgedrückt nimmt der Anteil 
der explorierten Areale im Verhältnis zur zurückgelegten Strecke ab. Zu sehen ist dies in 

In weiteren Ausbaustufen des Projektes könnte eine Entdeckung dieses Verhaltens ein 
vollständig explorierte Karte sein. 

(b) 

wischen zwei Zielen und eingeschlossene frontierRegions; (b) Raum wird verlassen um nächsten 
Raum zu explorieren. Resultiert in einer erneuten Exploration des ersten Raumes. 
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aus, dass die verwendeten fallback Strategien 
zwar in den meisten Fällen das gewünschte Lösungsverhalten bereit stellen. Es konnte aber 
auch festgestellt werden, dass in seltenen Fällen eine Kombination unterschiedlicher 

. So kann ein 
verschiedene Ursachen haben. Treten diese einzeln auf, 

GOAL_REJECTED 
sind detailliertere 

dass Explorationsgebiete zuerst 
(b)).  Im Sinne einer 

wäre eine vollständige Exploration des aktuellen Raumes zu 
der Umgebung gemäß [KLS+05] 

konnte beobachtet werden, dass mit zunehmend 
Anders ausgedrückt nimmt der Anteil 

Zu sehen ist dies in Abb 
könnte eine Entdeckung dieses Verhaltens ein 

 

; (b) Raum wird verlassen um nächsten 



5. Experimentelle Ergebnisse

     

 

 

 

 (a) 

 (c) 
 

Abb 5.3: Explorationsergebnis 3_3_5
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min; (d) nach 40 min.
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Abb 5.2: Simulierte Umgebung 1 

(b) 
 

(d) 

: Explorationsergebnis 3_3_5_0 
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min; (d) nach 40 min. 
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 (a) (b) (c) 

Abb 5.4: Explorationsergebnis 6_3_4_0 
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min. 
 
 

 
 (a) (b) (c) 

Abb 5.5: Explorationsergebnis 15_5_2_0 
(a) nach 10 min; (b) nach 20 min; (c) nach 30 min. 

 

 

 
 (a) (b) (c) 

Abb 5.6: Explorationsergebnis 3_3_5_1 
(a) Nach 10 min; (b) nach 20 min; (c) nach 25 min. 

 

 

 
 (a) (b) (c) 

Abb 5.7: Explorationsergebnis 6_3_4_1 

(a) nach 10 min; (b) nach 20 min; (c) nach 30 min. 
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Abb 5.8: Explorationsergebnis 3_3_5_0 nach 30 min - zweiter Lauf 
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Abb 5.9: Explorationsergebnis 3_3_5_0 nach 30 min - dritter Lauf 
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Abb 5.10: Explorationsergebnis 6_3_4_0 nach 30 min - zweiter Lauf 

 
 
 
Abb 5.3 bis Abb 5.10 zeigen Ergebnisse in simulierter Umgebung basierend auf Abb 5.2. (rot) zurückgelgter Weg; 
(orange) portentialGoalArea; (blau) beste frontierRegion; (gelb) frontierRegions; (grün) Suchbereich; (cyan) whitelist; 
(grüner Kreis) Startpunkt;  Verwendet wurde ein 270° Scanner mit 250 Samples und einer Reichweite von 20m. Das 
zu sehende Gitter hat eine Ausdehnung von 10m x 10m.  
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Konfiguration 
Zeit 

[min] 
Zyklen 

Distanz 
[m] 

Radienverteilung 
Exploriert [%] 

3 6 9 12 15 
radius [m] 3 10 37 43,42 31 13 1 1 - 27,1 

stepping [m] 3 20 68 98,12 40 20 10 9 1 36,47 
attempts 5 30 97 149,4 59 29 14 14 4 52,23 

driveToGoal 0 40 131 208,24 86 30 21 19 6 68,83 
 

Konfiguration 
Zeit 

[min] 
Zyklen 

Distanz 
[m] 

Radienverteilung 
Exploriert [%] 

6 9 12 15 
radius [m] 6 10 44 59,06 40 4 2 - 30,12 

stepping [m] 3 20 78 121,9 67 8 9 2 37,68 
attempts 4 30 115 185,4 108 13 10 2 55,98 

driveToGoal 0         
 

Konfiguration 
Zeit 

[min] 
Zyklen 

Distanz 
[m] 

Radienverteilung 
Exploriert [%] 

15 
radius [m] 15 10 46 75,4 46 33,76 

stepping [m] 5 20 96 136,7 96 42,57 
attempts 2 30 144 221 144 64,98 

driveToGoal 0      
 

Konfiguration 
Zeit 

[min] 
Verarbeitete 

Zyklen 
Gesamt 
Zyklen 

Distanz 
[m] 

Radienverteilung Exploriert 
[%] 3 6 9 12 15 

radius [m] 3 10 39 48 69,7 45 7 - 1 - 35,44 
stepping [m] 3 20 72 94 165,5 91 8 1 1 1 63,79 

attempts 5 25 73 101 184,07 91 9 1 2 1  
driveToGoal 1           

 

Konfiguration 
Zeit 

[min] 
Verarbeitete 

Zyklen 
Gesamt 
Zyklen 

Distanz 
[m] 

Radienverteilung Exploriert 
[%] 6 9 12 15 

radius [m] 6 10 24 62 88,6 29 - 2 1 29,19 
stepping [m] 3 20 42 137 279,9 49 3 2 1 62,23 

attempts 4 30 62 210 375,9 68 4 4 1 71,41 
driveToGoal 1          

Tabelle 5.1: Verschiedene Explorationsszenarien 

 
Auflistung der untersuchten Explorationsszenarien und –strategien. Gemessen wurde in zehn Minuten Intervallen. 

Wichtig an dieser Stelle sind die zurückgelegte Strecke und der explorierte Anteil der Karte.  
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Diagramm 5.1: Explorierter Anteil der Karte 

 

 
Diagramm 5.2: Zurückgelegte Strecke 

 

 
Diagramm 5.3: Ratio Exploriert zu zurückgelegter Strecke 

 
Diagramm 5.1, Diagramm 5.2 und Diagramm 5.3 stellen die zuvor aufgeführten Ergebnisse grafisch aufgearbeitet 
dar. 
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Abb 5.11: Simulierte Umgebung 2 

Abb 5.12: Explorationsergebnis 3_3_5_1 nach 10 min 
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Abb 5.13: Explorationsergebnis 3_3_5_1 nach 20 min 

 

 
Abb 5.14: Explorationsergebnis 3_3_5_1 nach 30 min  
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Abb 5.15: Simulierte Umgebung 3 

Abb 5.16: Explorationsergebnis 3_3_5_1 nach 10 min 
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Abb 5.17: Explorationsergebnis 3_3_5_1 100% 

 

 

 
(rot) zurückgelgter Weg; (orange) portentialGoalArea; (blau) beste frontierRegion; (gelb) frontierRegions; (grün) 
Suchbereich; (cyan) whitelist; (grüner Kreis) Startpunkt; Verwendet wurde ein 270° Scanner mit 250 Samples und 
einer Reichweite von 20m. Das zu sehende Gitter hat eine Ausdehnung von 10m x 10m. In Abb 5.17 ist zu erkennen, 
dass die berechneten Wege bei Explorationsbeginn noch effizient sind, bei zunehmender Aufdeckung aber an 
Effizienz verlieren, da Wege doppelt gefahren werden. 
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Abb 5.18: Explorationsergebnis in echter Umgebung 

 
 
 
Versuch einen Flur im 2.Stock von Gebäude 38 zu explorieren. Auf der rechten Seite sind Türen zu 
angrenzenden Büroräumen zu erkennen. Auf der linken Seite sind Fenster zu sehen, die bis auf den Boden 
reichen. 
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6. Zusammenfassung 
 

Das Problem der autonomen Exploration ist aktuell viel diskutiert und besteht aus mehreren 
Teilgebieten (siehe Abb 1.1). Für jedes dieser Teilgebiete bedarf es einer effizienten sowie 
effektiven algorithmischen Umsetzung und einer Zusammenführung der einzelnen Lösungen. 
Die von Yamauchi eingeführten frontiers [YAM97, YAM98]  liefern hierbei einen 
Lösungsansatz für das Teilproblem der Exploration. Bis heute entstehen aus davon 
abgeleiteten Variationen situationsbezogene Verfahren und Beiträge zur autonomen 
Exploration. 
Im Gegenzug zu zufälliger Exploration oder dem Folgen von Wänden bietet diese Technik 
selbst in Umgebungen mit zufällig verteilten Hindernissen und Wänden eine stabile 
Möglichkeit um autonom zu explorieren. 
Auch in dieser Ausarbeitung wird ein Ansatz vorgestellt, welcher frontiers zugrundelegend 
autonome Exploration ermöglicht. Hierfür wird eine genauere Unterteilung zwischen 
frontierCells und frontierRegions vorgenommen. frontierCells sind f-Space Zellen, die an u-
Space angrenzen. frontierRegions werden durch eine miteinander verbundene Menge von 
frontierCells gebildet. Es wird desweiteren ein Filtermechanismus entwickelt, um unabhängig 
von sensorischen Ungenauigkeiten frontiers berechnen zu können. Kernpunkte sind hierbei 
das eingeführte Nachbarschaftssummenintervall [NSI], welches als Filterkriterium dient und 
ein iterativ ausgeführter Filtermechanismus, welcher sich einer Liste mit potentiellen 
Filterkandidaten bedient und diese in jedem Iterationsschritt aktualisiert. Desweiteren wird im 
Gegensatz zu vielen anderen Vorschlägen nicht auf der vollständigen Karte nach frontiers 
gesucht, sondern in iterativ erhöhten Radien um den Roboter herum. Das Finden möglichst 
gewinnbringender Ziele im Sinne einer effizienten Exploration stellt einen weiteren Aspekt 
dieser Arbeit dar. Um dies zu gewährleisten werden Kriterien herausgearbeitet, die eine 
qualitative Einschätzung von frontiers zulassen. Diese Kriterien werden gewichtet addiert, um 
dadurch qualitativ hochwertige Ziele finden zu können. Es wird außerdem eine Technik 
vorgestellt, welche die Verwaltung von Zielen ermöglicht. So ist es zum Beispiel möglich 
Ziele für spätere Explorationszwecke zu speichern oder Ziele zu sperren. Eine ausführliche 
Abhandlung der Leistungsfähigkeit wird sowohl theoretisch anhand von Laufzeitanalysen 
vollzogen als auch in Experimenten dargelegt. 
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7. Ausblick 
 

Bei der Erörterung und Umsetzung der vorliegenden Aufgabenstellung wurden viele 
Lösungswege bedacht, Verfahren gegeneinder abgewogen und nützliche Komponenten 
entwickelt. Darauf aufbauend ist es stets möglich die Leistung zu erhöhen oder weitere 
Features umzusetzen. Im Folgenden werden in Kürze Optimierugnsszenarien durchgespielt, 
mögliche zusätzliche Features vorgestellt und ein Ausblick in die Verwendbarkeit der 
vorgestellten Lösung anhand anderer Projekte versucht. 
 

7.1. Algorithmische Erweiterungen 

Ausgehend von großen Karten und dem Umstand, dass sich die Fragestellung in einer 
Echtzeitumgebung beweget ist die Performance der einzelnen Teilsysteme ein elementarer 
Bestandteil der algorithmischen Entwicklung.  

7.1.1. Adaptive Auflösung in Suchbereich 

Verringert man die Auflösung in einem Kartenabschnitt derart, dass die Größe einer 
Zelle ungefähr den Ausmaßen des Roboters entspricht [KK12], so verringert sich die Anzahl 
der Zellen quadratisch. Es gilt festzustellen, dass der Roboter einen gewissen Raum um sich 
herum zum Navigieren benötigt, wodurch die lokale Anpassung der Auflösung keinen großen 
Qualitätsverlust im Sinne der Navigation oder des Findens von frontierRegions mit sich 
bringt. Für die Skalierung sind eine Metrik von Nöten, sowie die Betrachtung der benötigten 
Laufzeit. Letztendlich lässt sich dann der Aufwand der Skalierung mit dem Gewinn einer 
reduzierten Zellanzahl bei weiteren Schritten in Bezug setzen. 

7.1.2. Verbessertes iteratives Suchen nach frontierRegions 

Das in dieser Arbeit vorgeschlagene Verfahren erhöht solange iterativ den 
Suchbereich bis frontierRegions gefunden werden, oder bis andere Bedingungen greifen und 
fallback Strategien durchgeführt werden. Bisher wird in jeder Iteration der komplette 
Suchbereich mit 7G  Zellen gefiltert und anschließend nach frontierRegions gesucht. Eine 
deutliche Optimierung wäre durch das Verwenden der bereits in der vorhergehenden Iteration 
berechneten Informationen möglich. Die Anzahl der Zellen pro Iteration lässt sich somit 
durch 
 

 7G − �7 − 2+�G = 47+ − 4+G	|	7 = 2*	)#7	+ = 
6ℎ*�..%*öß$		 eq xxvii 

 

berechnen und ist somit nicht mehr quadratisch, sondern linear in Abhängigkeit von d. 
Speziell das Glätten des Suchbereichs als auch das Suchen nach frontierRegions ließe sich 
dadurch beschleunigen. 
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7.1.3. Situationsbezogene Anpassung der Explorationsstrategie 

Tests haben gezeigt, dass veränderte Gegebenheiten auf der Karte unter Umständen zu 
ungünstigen Explorationsschritten führen können. So ist in großen, offenen Gebieten ein hoch 
gewichtetes Richtungskriterium für eine schnelle Exploration verantwortlich, wohingegen die 
gleichen Parameter in einer engen, hindernisreichen Umgebung zu keinem Erfolg führen. 
Anlehnend an 7.3. wäre die Fähigkeit Umgebungsstrukturen zu erkennen und diese in Klassen 
einzuordnen ein weiterer Schritt in Richtung der autonomen Exploration. Beispielhaft wäre es 
denkbar eine Menge an Klassen zu definieren, die je einem bestimmten Umgebungstyp 
entsprechen. Anhand von definierten Umgebungsmerkmalen kann nun die Klasse mit der 
größten Schnittmenge ausgewählt und der darin gespeicherte Parametersatz geladen werden.  
Der Roboter könnte somit sein Explorationsverhalten dynamisch an die erkannte Situation 
anpassen und dadurch seine Erfolge maximieren. 

7.1.4. Zufallskomponente 

[FO05] stellt bereits einen auf sensor-based random trees basierenden Ansatz vor. 
Hierbei wird um den Roboter eine saveRegion berechnet und innerhalb derer eine zufällige 
Explorationsrichtung gewählt. Eine rein zufallsbasierte Richtungswahl schien den Autoren 
wenig gewinnbringend, weshalb sie die Zufälle in Richtung frontiers lenken. Solch ein 
integrierter Ansatz wäre eine denkbare Erweiterung für diese Arbeit. Vorstellbar wäre es zum 
Beispiel unter den besten x frontierRegions zufällig eine auszuwählen oder innerhalb der 
berechneten potentialGoalArea ein Ziel zufällig zu bestimmen. Bedingt durch eine 
Zufallskomponente könnten auftretende Navigationsprobleme durch wiederholen der 
aktuellen Iteration eventuell gelöst werden ohne auf komplexere fallback Strategien 
zurückgreifen zu müssen. 

 

7.2. Erweiterte Sensorik 

Lediglich auf horizontale Laserscans gestützt entsteht in den beschriebenen Verfahren 
eine zwei dimensionale Karte, welche für die Exploration verarbeitet wird. Verschiedenste 
Erweiterungen hierfür sind denkbar um einen Mehrwert für die autonome Exploration zu 
generieren. So ist eine vertikale Ausdehnung der Karte ein wichtiger Schritt, um den 
Ausmaßen des Roboters gerecht zu werden. Weitergehend ist die optische Erfassung der 
Umgebung eine wichtige Voraussetzung für die semantische Auswertung von entdeckten 
Hindernissen. 
Es ist jedoch klar, dass mit jeder hinzugefügten sensorischen Einheit ein größeres 
Datenvolumen entsteht, welches verarbeitet werden muss. So resultiert eine zusätzliche 
Kartendimension ad hoc in einer kubischen Laufzeit. 
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7.3. Semantische Erweiterungen 

Die im Rahmen dieser Arbeit entstanden Algorithmen befassen sich zumeist direkt mit der 
Aufgabenstellung. An einigen Stellen scheint eine tiefer gehende Untersuchung der 
Problematik aber sinnvoll. So wird unter anderem den berechneten Daten nur oberflächlich 
Bedeutung zuteil (o-Space/u-Space/f-Space).  
Zum Beispiel würde aber ein tiefer gehendes Verständnis des Objektes "Türe" im Sinne der 
Exploration einen deutlichen Mehrwert ergeben, da sich hinter einer Türe in der Regel neues 
Gebiet befindet. Ein möglicher Ansatz wird in [KLS+05] beschrieben. 
Auch eine semantische Erfassung des Objektes Flur würde das Verfahren bereichern, da 
potentielle Ziele in der Mitte eines Flurs zu finden sind, und somit das Vorankommen 
beschleunigt würde. 

 

7.4. Einsatzmöglichkeiten 

Angefangen bei der Industrie in Fertigungsstraßen über die Haushaltshilfe bis hin zum 
Einsatz in Krisenregionen oder zur Exploration von Planeten lassen sich autonome 
Erkundungsroboter in vielerlei Hinsicht einsetzen. Es erleichtert dem Menschen die Arbeit, 
kann vor Gefahren schützen oder gelangt schlicht an Orte, an die ein Mensch aktuell nicht 
gelangen kann. 
Die Exploration außen vor lassend ist ein autonomes System eine relevante Thematik in 
vielen Zweigen der Wissenschaft. Diese reichen von Fußballspielenden Robotern [RC], über 
autonome Fahrzeuge bis hin zum Einsatz für das Militär [SCJ+05]. 

7.4.1. Autonomes Fahren 

Aktuelle Artikel und Diskussionen zeigen, dass Automobilhersteller aktiv an der 
Thematik autonomes Fahren arbeiten. Hierbei geht es nicht um die alleinstehende autonome 
Exploration, sondern vielmehr um ein selbstständig entscheidendes Fahrzeug im Ganzen. 

 
In [ENG14] wird diese Thematik diskutiert und man kommt zu dem Schluß, dass es in den 
nächsten zehn Jahren Entwicklung noch viele Meilensteine zu bewältigen gilt. 
Datensicherheit und gesetzliche Hintergründe als Beispiel dafür. Es wird aber auch eine 
Prognose gewagt, die eine Verringerung der Unfallrate um circa 90% veranschlägt. 

 
 

"The car that will take you home after you 
have had too much to drink is a long way 
off. But is that what we really want?"  
 
Dieter Zetsche, Detroit motor show [ENG14] 

 
 
 

[KUR14] kommt zu einem Ähnlichen Ergebnis und fügt die Frage "Wie weit und vor allem 
wie kann sich ein autonom fahrendes Fahrzeug vor uns Menschen etablieren?" hinzu. 
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Desweiteren wird auf technische Schwierigkeiten hingewiesen und eine Fusion verschiedener 
technischer Ansätze als unumgänglich angesehen. 
 
 

Yet if snow is in the forecast, fancy LiDAR 
systems are useless – your car will be too 
busy scanning snowflakes, versus road 
signs and traffic signals. 

 
Alberto Broggi, Italien [KUR14] 

 

 
Basierend auf diesen zwei Artikeln und einigen anderen Quellen [AD14, BNZ14] ist die 
deutliche Bemühung unterschiedlicher Automobilhersteller zu erkennen in Richtung des 
autonomen Automobils zu entwickeln. Es lässt sich aber auch erkennen, dass der Weg dahin 
noch viele Hürden bereithält und dass die Akzeptanz in der Gesellschaft noch nicht vorhanden 
ist. 
Im Gegensatz dazu sind Fahrassistenzsysteme weit verbreitet und bereits als Standard 
gefordert und umgesetzt. Diese ermöglichen jetzt schon automatisiertes und unterstütztes 
Fahren. Einparkhilfe, Abstandshalter und Spurassistent seien eine Auswahl davon. Diese 
Techniken sind noch weit entfernt vom autonomen Fahren, doch ist der erste Schritt dahin 
bereits getan. 

7.4.2. Industrie und Militär 

In [TTW+04] findet sich ein weiteres praxisbezogenens Beispiel. Hier wird gezeigt, 
wie ein autonom arbeitender Roboter - namentlich Groundhog - verlassene Minen an Stellen 
kartografiert, die für den Menschen ein zu hohes Risiko bergen. Vergleichbar mit 
vorliegender Arbeit wird basierend auf SLAM und wiederholten Laserscans iterativ eine 
Karte erstellt. Jedoch werden goalRegions in einer geraden Linie vor Groundhog in etwas 
fünf meter Entfernung definiert. Ist ein A* nicht in der Lage, einen Pfad dorthin zu finden, so 
wird die goalRegion vergrößert oder Groundhog fährt zulässig durch seine Architektur in die 
andere Richtung. Groundhogs chasis und Ausrüstung sind vorne und hinten identisch. 
Erfolgreiche Tests unter anderem in der Florence Mine in der Nähe von Burgettstown in 
Pennsylvania und in der Mathies Mine in der Nähe von Courtney bestätigen die 
Verwendbarkeit dieser Technik.  

 

 Abb 7.1: Groundhog [TTW+04] 
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[SCJ+05] präsentiert eine Technik, welche autonom die Trajektorie eines UAV in einem 
Stadtgebiet plant, um von einem Startpunkt A (Position des UAV) bis zu einem Zielpunkt B 
zu navigieren. Hauptaugenmerk liegt hierbei zwar mehr auf Pfadfindung als auf Exploration, 
jedoch wird auch hier der Aspekt des autonomen Verhaltens eines Roboters herausgearbeitet. 
Anhand eines Lasersensors wird eine local obstacle map im Umkreis des UAV erstellt. 
Ausgehend von einer initialen Trajektorie berechnet ein MPC (model predicitve control) 
Algorithmus eine kollisionsfreie angepasste Trajektorie. Eine Kostenfunktion bezogen auf die 
entdeckten Hindernisse und ein gradient-search Algorithmus liefern hierfür die benötigten 
Daten. Desweiteren wird die Frage nach einer geeigneten caching Strategie gestellt. Hierfür 
werden die Szenarien dynamische und statische Umgebung gegenübergestellt. Schlußendlich 
wird zusätzlich noch die Frage gestellt, unter welchen Bedingungen Hindernisse verworfen 
werden können. So stellen fallende Blätter dynamische Hindernisse dar, sind für die 
traversierung aber nicht relevant. 

 

 
 

 

Abb 7.3: Flugweg der UAV [SCJ+05] Abb 7.2: Berkeley UAV [SCJ+05] 
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Stichwortverzeichnis 
 

Um dem Leser eine möglichst verständliche Lektüre zu ermöglichen stellt der Autor im 
Folgenden eine Liste der verwendeten Begrifflichkeiten zusammen. 
 
free-Space 
Gebiet, welches bereits erkundet wurde und frei von Hindernissen ist. In vorliegender Arbeit 
auch mit f-Space beschrieben. F_SPACE beschreibt die Konstante 0, welche im 
Zusammenhang mit occupancy grids verwendet wird. 
 
frontierCell 
Zelle, die sich in f-Space befindet und direkt an eine u-Space Zelle grenzt. 
 
frontierRegion 
Grenzbereich zwischen f-Space und u-Space. Für diese Arbeit von zentraler Bedeutung. 
 
cartesian-Space 
Gegenstück zum l-Space. Im Allgemeinen durch pt repräsentiert. 
 
goalRegion 
Definierter Bereich um das Ziel herum. Gewährleistet die Anwendung verschiedener 
Techniken. 
 
height und width 
Repräsentieren die Höhe und Breite der Karte. Mit h und w abgekürzt. 
 
linear-Space 
Vom Autor eingeführte Bezeichnung, um zwischen der linearen Indizierung von Punkten und 
den dazugehörigen kartesischen Punkten (vice versa) eindeutig unterscheiden zu können. Im 
Allgemeinen durch i repräsentiert. 
 
map(i) 
Abgekürzt für ���. 7�.�a�b um einen angenehmeren Lesefluss zu gewährleisten. 
 

 
 

 

 

 

nav_msgs::occupancy_grid map = getMap��; 
return map.dataaib; 

Code 0.1: map.data 
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neighbours(i) 
Repräsentiert alle Nachbarindizes um i in einem 3x3 Gebiet. 
 
 #$�%ℎ'()*+��� = {� ± 9 ± 1; � ± 9; � ± 1} eq xxviii 

 
 
neighbourValues(i) 
 

 #$�%ℎ'()*��/)$+��� = 	�����#$�%ℎ'()*+���� eq xxix 

 

NSI 
Vom Autor eingeführte Abkürzung für Nachbarschafts Summen Intervall. Beschreibt das 
Intervall, in welchem neighbourValues(i) liegen muss, um i zu glätten. 
 
occupancy grid 
Von ROS zur Verfügung gestelltes Datenmodell, um Karten speichern und bearbeiten zu 
können. Die Belegungswerte (F_SPACE, … ) werden mittels eines Vektors repräsentiert. 
 
occupied-Space 
Erkundetes, aber belegtes Gebiet. Abgekürzt mit o-Space. F_
���� = 100. 
 
ROS 
Das Robot Operating System ist ein open source Framework, welches eine Vielzahl an 
libraries, Geräte Treibern, Simulationswerkzeugen, Hardware Abstraktionen und vielem mehr 
zur Verfügung stellt um Entwicklern bei der Erstellung von Roboter Software zu unterstützen. 
 
SLAM 
Simultaneous Localization and Mapping ist ein Verfahren, mit der ein Roboter iterativ eine 
Karte erstellen und gleichzeitig seine Position innerhalt dieser abschätzen kann [GTS+07]. 
 
unknown-Space 
Zellen, welche keinen definierten Belegungszustand haben. Mit u-Space abgekürzt. 
�_
���� = −1 
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