
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3644

Umsetzung eines sicheren
Systems zur Verwaltung und

Bereitstellung von
Gesundheitsdaten

Frank Steimle

Studiengang: Informatik

Prüfer: Prof. Dr.-Ing. habil. Bernhard Mitschang

Betreuer: Dr. rer. nat. Matthias Wieland

Beginn am: 1. April 2014

Beendet am: 22. Oktober 2014

CR-Nummer: C.2.4, H.2.8, H.4.1, J.3

Kurzfassung

Im Rahmen dieser Arbeit wurden Teile des Backends für das deutsch-griechische Forschungsprojekt
ECHO (Enhancing Chronic patients’ Health Online) entwickelt. Das Ziel des Projekts ist es mit Hilfe
von Cloud-Computing-Technologien, Data Mining und Smartphones die Situation von Patienten mit
chronischen Lungenkrankheiten zu verbessern. Unter anderem soll es für den Patienten möglich sein,
jeden Tag Fragen via Smartphone zu beantworten. Diese Antworten sollen bei der Früherkennung
von dauerhaften Verschlimmerungen der Krankheit, auch Exazerbationen genannt, helfen. Vor dem
Start des ECHO Projekts wurden die Patientendaten und Untersuchungsergebnisse mit Hilfe einer
Microsoft Access Datenbank verwaltet. Um die tägliche Dateneingabe zu ermöglichen, musste die
Access Datenbank in eine relationale Datenbank überführt werden. Um die Daten vor unautorisiertem
Zugri� zu schützen, wurde für jeden Benutzer des Backends ein Datenbankbenutzer erstellt, der nur
Zugri� auf die Views und Stored Procedures hat, die er im Rahmen seiner Rolle (Arzt, Patient oder
Administrator) benötigt. Zum Zugri� auf die Datenbank wurde eine REST API implementiert, die
mittels OAuth 2.0 und TLS/SSL gesichert wurde. Außerdem wurden mögliche Analysen vorgestellt,
die auf den erhobenen Daten durchgeführt werden können.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Aufgabenstellung . 9
1.2 Hintergrund . 9
1.3 Motivation . 10
1.4 Gliederung . 10

2 Verwandte Arbeiten und Grundlagen 13
2.1 Verwandte Arbeiten . 13
2.2 Datenbanksicherheit . 16
2.3 REST und ROA . 18
2.4 REST Authenti�zierung . 21

3 Konzept 25
3.1 Architektur . 25
3.2 Gesundheitsdaten . 25

3.2.1 Datenmodell . 25
3.2.2 Sicherheit . 29

3.3 RESTful API . 29
3.3.1 Ressourcendesign . 30
3.3.2 Funktionen der Ressource Account . 31
3.3.3 Funktionen der Ressource Patient . 32
3.3.4 Funktionen der Ressource Benachrichtigungen 33
3.3.5 Funktionen der Ressource Fragen . 33
3.3.6 Command Ressourcen . 34
3.3.7 Sicherheit . 34

3.4 Analysen . 35
3.4.1 Tägliche Berichte . 35
3.4.2 Schweregrad der Krankheit . 36

4 Implementierung 39
4.1 Gesundheitsdaten . 39

4.1.1 MySQL Workbench . 39
4.1.2 Access Control in MySQL . 40
4.1.3 Datenmodell . 41
4.1.4 Implementierte Views . 43
4.1.5 Implementierte Stored Procedures . 45
4.1.6 Rechtevergabe . 46

5

4.1.7 Schemaexport aus Microsoft Access . 47
4.2 RESTful API . 47

4.2.1 Tokenbasierte Authenti�zierung . 48
4.2.2 Implementierung der API Funktionen . 49
4.2.3 Repräsentation . 51
4.2.4 Swagger . 51

5 Zusammenfassung und Ausblick 55

Literaturverzeichnis 57

6

Abbildungsverzeichnis

1.1 Datenmanagement in der ECHO Plattform . 10

2.1 OAuth 2.0 Control Flow . 23

3.1 Architektur der ECHO Plattform . 26
3.2 Grobes ER-Diagramm der Gesundheitsdaten . 27
3.3 COPD Schweregrade: Berechnung und Bedeutung . 28
3.4 Ressourcen als UML-Diagramm . 30
3.5 Resource Owner Password Credentials Flow . 34

4.1 Screenshot MySQL Workbench . 40
4.2 ER-Diagramm der Gesundheitsdaten . 42
4.3 ER-Diagramm der Berechtigungstabellen . 46
4.4 Middlewarestack des REST Services . 50
4.5 Screenshot der Swagger-UI-Darstellung der ECHO API 53

Tabellenverzeichnis

2.1 HTTP Statuscodes . 20

3.1 Berechnung des COPD Krankheitsstatdiums nach GOLD 36
3.2 Berechnung des COPD Schweregrads . 37

4.1 Benachrichtigungsarten . 41

7

Verzeichnis der Listings

2.1 Beispiel SQL Injection Teil 1 . 17
2.2 Beispiel SQL Injection Teil 2 . 17

4.1 Stored Function: getRole() . 44
4.2 View: Accounts . 44
4.3 View: CATs . 44
4.4 Node.js mit Express: Hello World . 49
4.5 Links in JSON mit Hypertext Application Language 51
4.6 Node.js mit Express: Swagger Integration . 54

8

1 Einleitung

Das Ziel dieser Arbeit ist die Erstellung eines Backends zur sicheren Speicherung von Gesundheitsda-
ten. Die Arbeit wird im Rahmen des deutsch-griechischen Forschungsprojekts Enhancing Chronic
patients’ Health Online (ECHO) durchgeführt, das vom Bundesministerium für Forschung und Bildung
(BMBF) gefördert wird. Ziel des Projekts ist die Verbesserung der Gesundheit von Patienten mit
chronischen Atemwegserkrankungen durch Onlinedienste. Im folgenden wird die Aufgabenstellung
dieser Arbeit erläutert. Danach wird ein Einblick in den Hintergrund gegeben und die Motivation
beschrieben.

1.1 Aufgabenstellung

Ziel dieser Diplomarbeit ist es ein System prototypisch zu realisieren, welches es ermöglicht Gesund-
heitsdaten sicher abzuspeichern. Dazu muss einerseits ein Grunddatenmodell für Patientendaten
erstellt werden. Hierfür existiert bereits eine Access Datenbank, welche von Ärzten bei der Unter-
suchung verwendet wird. Diese muss in ein standardisiertes Datenmodell umgewandelt werden
(SQL) und in einem Datenbanksystem sicher bereitgestellt werden. Es müssen zudem geeignete
Sicherheitskonzepte erstellt werden, um die Daten gegen unbefugten Zugri� abzusichern, (z. B. gegen
Angri�e durch SQL-Injection oder durch Verschlüsselung).

ZumZweiten sollen in Zukunft Gesundheitsdaten täglich durch die Patienten selbst mit Hilfe von Apps
(Anwendungen auf mobilen Endgeräten) erfasst werden. Dafür muss das existierende Datenmodell
erweitert werden, um diese Daten aufzunehmen. Des Weiteren soll eine Schnittstelle (API) für die
mobilen Endgeräte angeboten werden und Sicherheitskonzepte für den Datenaustausch zwischen
Datenbank und Apps erstellt werden. Eine weitere API zum Zugri� auf die Gesundheitsdaten sollte
für eine zeitgleich zu bearbeitende Diplomarbeit erstellt werden. Da diese sich die Bearbeitung dieser
Diplomarbeit jedoch verzögerte, wurde diese API nicht implementiert.

1.2 Hintergrund

Chronisch obstruktive Lungenerkrankung (englisch: chronic obstructive pulmonary disease, Abkür-
zung: COPD) bezeichnet eine Gruppe von Krankheiten der Lunge, bei der die Atemwege verengt oder
eingeengt sind. Diese Schädigung der Lunge ist oft die Folge von jahrelangem Rauchen oder anderen
länger andauernden Reizungen der Lunge durch Schadsto�e in der Luft. Typische Symptome sind die
sogenannten AHA-Symptome: Atemnot bei körperlicher Belastung, täglicher Husten über längere
Zeit und Auswurf (beim Husten hervorgebrachter Schleim aus den Atemwegen).

9

1 Einleitung

Tägliche)Dateneingabe)
durch)den)Pa3enten:)
•  Antworten)auf)Fragen)
•  Messwerte)

Eingabe)der)Grunddaten)
durch)den)Arzt)bei)der)
Untersuchung:)
•  Pa3entendaten)
•  Untersuchungsergebnisse)
•  Verschreibungen)

Datenmanagement)in)der))
ECHOEPlaForm)

Speicherung)

Analyse)

Benachrich3gung) Benachrich3gung)

Abbildung 1.1: Datenmanagement in der ECHO Plattform [BKK+14]

Wenn sich die Symptome einer COPD bei einem Patienten in kurzer Zeit drastisch verschlimmern,
spricht man von einer Exazerbation. Schwere Exazerbationen können sogar Krankenhausaufenthalte
erforderlich machen. Da sich mit jeder Exazerbation der Zustand des Patienten nachhaltig verschlech-
tert und das Risiko für weitere Exazerbationen erhöht wird, ist es wichtig, mögliche Exazerbationen
frühzeitig zu erkennen und zu vermeiden. [copa]

1.3 Motivation

Im Projekt ECHO soll ein System entwickelt werden, das Cloud-Computing-Technologien, Data
Mining und Smartphones einsetzt, das Ärzten hilft, ihre Patienten besser zu überwachen und zu be-
treuen. Damit soll das Risiko für Exazerbationen gesenkt werden. Über die Smartphones beantworten
die Patienten jeden Tag Fragen zu ihrem Zustand und geben nach Möglichkeit noch Messwerte wie
Blutdruck oder Sauersto�sättigung an, wie in Abbildung 1.1 dargestellt. Die Daten werden zur ECHO-
Plattform übertragen und können dann vom Arzt eingesehen werden, der dadurch den Zustand seiner
Patienten besser überwachen kann. Identi�ziert die ECHO-Plattform durch die Analyse der Daten
bestimmte medizinische Situationen, können sowohl der Arzt als auch der Patient benachrichtigt
werden, um frühzeitig eine Verschlechterung des Zustandes des Patienten zu verhindern. Der Arzt
kann über die ECHO-Plattform nicht nur den Zustand seiner Patienten überwachen, sondern auch
die Patientendaten, Untersuchungsergebnisse oder Verschreibungen speichern.

1.4 Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 2 beschreibt verwandte Arbeiten und Grundlagen der Arbeit. Kapitel 3 stellt das in der
Arbeit erstellte Konzept zur Verwaltung, zum Zugri� und zur Analyse der Gesundheitsdaten vor. In

10

1.4 Gliederung

Kapitel 4 wird die Umsetzung des Konzepts beschrieben. Kapitel 5 fasst die Ergebnisse der Arbeit
zusammen und stellt Anknüpfungspunkte vor.

11

2 Verwandte Arbeiten und Grundlagen

In diesem Kapitel werden zuerst verwandte Arbeiten vorgestellt. Es werden Methoden vorgestellt um
Daten in Datenbanken abzusichern. Abschließend wird auf den Architekturstil Representational State
Transfer (REST) und HTTP Authenti�zierungsmechanismen, die mit REST genutzt werden können,
eingegangen.

2.1 Verwandte Arbeiten

Bei der elektronischen Verarbeitung von Patientendaten spielt Sicherheit eine große Rolle. Ragib Hasan
et al. befassen sich in [HWS07] mit Anforderungen an einen sicheren Speicher für Gesundheitsdaten.
Dafür untersuchten sie den Health Insurance Portability and Accountability Act (HIPAA [hip]).
Der HIPAA besteht aus zwei Teilen. Der erste Teil regelt den Krankenversicherungsschutz, und der
zweite Teil behandelt die elektronische Patientenakte und ihre Sicherheit. Außerdem untersuchten
sie noch die Occupational Safety and Health Administration Regulation [Occ], die den Umgang mit
Gesundheitsdaten von Arbeitnehmern in den USA regelt, und die europäische Datenschutzrichtlinie
(EU-Direktive 95/46/EG, [Eur]), die die Sicherheit im Umgang mit persönlichen Daten regelt. Aus
diesen Gesetzen konnten dann die folgenden Anforderungen abgeleitet werden:

Vertraulichkeit und Zugangskontrolle: Da Gesundheitsdaten sensible Informationen darstellen,
muss der Speicher ihre Vertraulichkeit garantieren, insbesondere dürfen nur autorisierte Per-
sonen Zugang erhalten. Um die Vertraulichkeit der Daten sicherzustellen sollten sie sowohl
im Speicher selbst als auch während des Transports verschlüsselt werden. Falls das Speicher-
medium gewechselt wird, muss sichergestellt werden, dass die Daten auf dem alten Medium
vertraulich bleiben.

Integrität: Das System muss die Integrität der Daten sicherstellen, das heißt es muss sie vor unauto-
risierten Änderungen schützen. Insbesondere vor solchen, die durch einen Nutzer des Systems
erfolgen, der nicht autorisiert ist, die Daten zu ändern. Durch die Sicherheitsmaßnahmen soll
es auch möglich sein, geänderte Daten zu erkennen.

Verfügbarkeit und Performance: Die Gesundheitsdaten sollen immer in einer angemessenen Zeit
zur Verfügung stehen. Falls zur Erfüllung dieser Anforderung ein Index notwendig ist, muss
dieser auch vertraulich sein, damit es nicht möglich ist über den Index Rückschlüsse auf die
Gesundheitsdaten zu ziehen.

Logging: Jeder Zugri� auf das System sollte zuverlässig geloggt werden. Insbesondere sollte jeder
Zugri� und jede Modi�kation auf die Gesundheitsdaten geloggt werden. Durch die Logs sollte
es möglich sein, jede Änderung nachzuvollziehen und ihren Verursacher zu ermitteln.

13

2 Verwandte Arbeiten und Grundlagen

Vorhaltezeit und Migration: Da die Gesetzte teilweise lange Vorhaltezeiten für bestimmte Daten
vorschreiben, sollte das System lange Vorhaltezeiten garantieren zu können. Dabei sollte auch
auf zuverlässige und nachvollziehbare Migrationsstrategien geachtet werden, für den Fall, dass
Hardware ausfällt oder ersetzt werden muss, weil sie zu alt ist.

Backup: Es sollten Backup- und Restoreoperationen zur Verfügung stehen. Dabei sollte darauf geach-
tet werden, dass die Backups nicht am selben Ort aufbewahrt werden wie die Gesundheitsdaten.
Sonst wären die Daten im Fall eines Brandes oder anderer Naturkatastrophen verloren.

Kosten: Das System sollte kostengünstig sein, da das Einhalten von Bestimmungen wie HIPAA
einen nicht zu unterschätzenden Mehraufwand bedeutet. Das kann durch den Einsatz von
Standardhardware und billigem Massenspeicher erreicht werden.

In der ISO 27001 (Speci�cation for Information Security Management [iso]) werden Verantwortlichkeit
und Nachvollziehbarkeit als Bestandteile, Vertraulichkeit, Integrität und Verfügbarkeit der Daten
sogar als wesentliche Bestandteile der Informationssicherheit genannt. Verantwortlichkeit bedeutet,
dass es einen persönlich Verantwortlichen für jedes zu schützende Gut gibt. Nachvollziehbarkeit
steht zum einen dafür, dass es nachvollziehbar sein muss, wie das System in den aktuellen Zustand
gekommen ist und zum anderen, dass durch fortlaufende Prozesse sichergestellt wird, dass das System
noch den Anforderungen entspricht.

Mit Cloud Computing werden die Eigenschaften Skalierbarkeit, Verfügbarkeit, Ausfallsicherheit
und eine Reduktion der Kosten verbunden. Mittels Cloud Computing lässt sich unter anderem
das Problem lösen, dass die Daten eines Patienten bei verschiedenen Ärzten liegen und diese erst
zusammengeführt werden müssen, um eine vollständige Sicht auf den Patienten zu haben. Deshalb
schlagen Dalia Sobhy et al. in [SESAE12] mit MedCloud ein HIPAA konformes System zur Verwaltung
von elektronischen Patientenakten in der Cloud vor. Mittels eines von den Autoren gestellten SDKs
können sogenannte Services für MedCloud geschrieben werden. Services sind sind Programme, die auf
den Patientendaten arbeiten, wie zum Beispiel UpdatePatientById. Das System besteht aus drei Teilen:
dem Data Storage Layer, dem Server Management Layer und dem Application Layer. Im Data Storage
Layer werden die Patientendaten in einem verteilten Dateisystem gespeichert. Das Dateisystem wird
durch eine Data Warehouse Erweiterung ergänzt, die den schnellen Zugri� auf die Daten ermöglicht.
Das Data Warehouse wird mittels einer spaltenorientierten NoSQL Datenbank umgesetzt. Durch
die Schemalosigkeit der NoSQL Datenbank ist es möglich, dass verschiedene Krankenhäuser das
System nutzen, obwohl sie unterschiedliche Informationen über den Patienten speichern. Außerdem
ist das System dadurch einfach zu erweitern, da Services beliebige Daten speichern können. Der
Server Management Layer besteht aus einer Master-Slave-Archtitektur. Der Master nimmt dabei die
Anfragen aus dem Application Layer entgegen und verwaltet das verteilte Dateisystem. Außerdem
ist er dafür zuständig, die eingehenden Requests auf die Slaves zu verteilen. Die Slaves bestehen aus
zwei Komponenten: dem Data Storage Manager, der die Daten auf diesem Knoten verwaltet, und
dem Task Manager, der die Tasks verwaltet und ausführt, die der Knoten vom Master zugewiesen
bekommt. Der Application Layer stellt die Schnittstelle zum Client dar, der über ein RESTful HTTP
Interface mit der MedCloud kommunizieren kann. Der Application Layer stellt zusätzlich noch einige
Funktionen des Systems zur Verfügung, wie zum Beispiel den Authenticator, der dafür zuständig ist
Benutzer einzuloggen, die Service Registry, die alle an der MedCloud angemeldeten Services verwaltet,
oder den Authorizer, der anhand von HIPAA konformen Regeln entscheidet, ob der Benutzer den
angeforderten Service verwenden darf.

14

2.1 Verwandte Arbeiten

Die MedCloud ist durch die Schemalosigkeit der NoSQL Datenbank und die selbstgeschriebenen
Services eine sehr felxible Lösung. Die Funktionalität des ECHO Projekts könnte wahrscheinlich auf
Services abgebildet werden, aber ob die Daten wirklich sicher wären bleibt o�en. Abgesehen vom
Authorizer, der anhand von HIPAA konformen Regeln Zugang zu Services gibt, gibt es aber keine
Details dazu, mit welchen Mitteln die Daten HIPAA konform und sicher abgespeichert werden.

Ein anderes Cloud-System aus dem Trustworthy Clouds (TClouds) Projekt schlagen Deng et al.
in [DPNB11] vor. Sie erstellten eine Cloud Anwendung, um alle Aspekte der Behandlung von De-
pressionspatienten zu unterstützen. Sie implementieren dafür drei Komponenten: Medikamenten
Management, Schlaf- und Lichtmanagement und Management der sportlichen Aktivitäten. Dabei
sollen allerdings nicht nur Ärzte und Patienten auf die Daten zugreifen können, sondern auch Fa-
milienmitglieder des Patienten, Apotheker, sportliche Einrichtungen und ö�entliche Stellen. Die
sportlichen Einrichtungen sollen auf diesem Weg beispielsweise Trainingspläne festlegen oder über-
prüfen können, ob der Patient regelmäßig Sport treibt. Die ö�entlichen Stellen sollen über ihren
Zugang Statistiken einsehen und prüfen können, ob Richtlinien eingehalten werden.

Die Architektur ist in vier Schichten aufgeteilt: Das Data Store Layer, Back-End Layer, Middle-Tier
Layer und Front-End Layer, in dem die Anwendungen für die verschiedenen Beteiligten laufen. Es
gibt vier Data Stores, die gleichzeitig das System in vier Application Domains einteilen. Im Pres-
cription Repository sind beispielsweise alle Daten über Medikamentenverschreibungen gespeichert.
Außerdem gibt es noch die Repositories für elektronische Patientenakten (EHR), für die persönli-
chen Gesundheitsdaten (PHR) und für die sportlichen Aktivitäten. Im Middle-Tier be�nden sich
Anwendungen, die die Daten aus den Repositories bearbeiten und mit Anwendungen aus anderen
Application Domains kommunizieren. Beispielsweise teilt die Anwendung für Verschreibungen aus
der Application Domain des Arztes (EHR Domain) der Verschreibungsmanagement Anwendung aus
der Prescription Domain mit, wenn ein neues Rezept ausgestellt wird. Wenn der Patient nun in eine an
das System angeschlossene Apotheke geht, kann der Apotheker das verschriebene Medikament und
die Dosierung aus seiner Anwendung ablesen. Anschließend zeigen Deng et al. wie diese Architektur
mit Hilfe von Openstack umgesetzt werden kann.

Nach einer Analyse der Sicherheitsanforderungen für die Data Stores und die Datenübertragung
zwischen den Schichten kommen Deng et al. zu dem Ergebnis, dass für die Daten und deren Über-
tragung die Vertraulichkeit, Integrität und Verfügbarkeit der Daten notwendig ist. Als zusätzliche
Sicherheitsmaßnahme schlagen sie vor, alle Daten vor dem Upload vom Patienten verschlüsseln
zu lassen. Für die Verschlüsselung betrachten sie attribut-basierte Verschlüsselung und Lizenzen,
allerdings kommen sie zu dem Schluss, dass beide nicht ausreichenden Schutz bieten.

Das hier vorgestellte System ist sehr umfangreich durch die vielen beteiligten Parteien. Um die in
ECHO geforderte Funktionalität umzusetzen, ist keine Architektur notwendig, in der mehrere Data
Stores existieren.

15

2 Verwandte Arbeiten und Grundlagen

2.2 Datenbanksicherheit

In diesem Abschnitt werden Aspekte der Datenbanksicherheit vorgestellt. Zum einen wird auf die
Möglichkeit eingegangen, mit Hilfe von Views die Zugri�skontrolle zu ergänzen. Zum anderen
werden Möglichkeiten vorgestellt, mit denen sich SQL Injections verhindern lassen.

Zugriffskontrolle mit Views

Bei vielen Datenbanksystemen kann man Zugri�srechte bis zur Tabellenebene vergeben. In manchen
Fällen ist dies jedoch nicht ausreichend, beispielsweise ist es nicht ausreichend, wenn die Noten
aller Studenten in einer Tabelle gespeichert sind. Um zu verhindern, dass ein Student die Noten der
anderen einsehen kann, können Views zum Schutz der Daten eingesetzt werden. Dadurch muss
man nicht mehr darauf vertrauen, dass die Anwendung das Prädikat in der Where Klausel richtig
einsetzt, da die Verantwortung durch die Views an die Datenbank übergeht. Pro Student kann ein
View angelegt werden, oder es können dynamische Views angelegt werden, die Daten in Abhängigkeit
des aktuellen Benutzers anzeigen. Da die meisten Webanwendungen aber nur über eine Verbindung
zur Datenbank verfügen, die immer denselben Benutzer verwendet, ist es nicht möglich dynamische
Views nach diesem Muster zu verwenden. Roichman und Gudes schlagen deswegen in [RG07] vor
parametrisierte Views zu verwenden. Parametrisierte Views nehmen beim Aufruf einen Parameter
entgegen, zum Beispiel eine User ID, und zeigen basierend darauf Daten an. Solche Views können
mit Stored Procedureds implementiert werden. Roichman und Gude erweitern parametrisierte Views
dahingehend, dass nicht mehr die (erratbare) Benutzer ID als Parameter verwendet wird, sondern
ein zufälliger Key. Der zufällige Key wird bei jedem Login erzeugt, dann in der Benutzertabelle in
der Datenbank abgelegt und dem Benutzer mitgeteilt, der ihn bei jeder Anfrage mitschicken muss.
Dadurch, dass der zufällige Key auf dem Server hinterlegt werden muss, ist diese Lösung nicht im
REST Umfeld einsetzbar. Da es Node.js ermöglicht, den Datenbankbenutzer einer aktiven Verbindung
zu wechseln, werden in dieser Arbeit Views verwendet, die Daten in Abhängigkeit des aktuellen
Benutzers zur Verfügung stellen.

Angriffe durch SQL Injections vermeiden

Als SQL Injection bezeichnet man das Injizieren von SQL Code in die Anwendung und die anschlie-
ßende Ausführung des durch den SQL Code veränderten SQL Statements durch die Datenbank. Dies
funktioniert, wenn es in der Anwendung SQL Statements gibt in die vor dem Ausführen Benutzerein-
gaben ungeprüft oder mangelhaft geprüft eingefügt werden. Das Open Web Application Security
Project (OWASP) gab 2013 eine Liste der zehn größten Risiken für Webanwendungen heraus, auf der
die Injection den ersten Platz belegt [OWA13].

In Listing 2.1 ist eine Anfrage dargestellt, mit deren Hilfe eine Anwendung dem Angestellten 123
sein Gehalt für einen bestimmten Monat ausgeben kann. Die SQL Anfrage wird zusammengesetzt
aus einem vorgefertigten Teil und einer Eingabe des Benutzers. Wenn der Benutzer mehr als einen
bestimmten Monat eingibt, zum Beispiel 01.2007 or 1 = 1, erhält man allerdings eine Anfrage wie in

16

2.2 Datenbanksicherheit

Listing 2.1 Beispiel SQL Injection Teil 1 aus [RG07]
strSQL = "SELECT Salary

FROM Salary_Table
WHERE Employee_No = 123
AND Salary_Date = " + dateParam

Listing 2.2 Beispiel SQL Injection Teil 2 aus [RG07]
strSQL = "SELECT Salary

FROM Salary_Table
WHERE Employee_No = 123
AND Salary_Date = 01.2007 or 1 = 1"

Listing 2.2 dargestellt. Wenn diese Anfrage von der Anwendung verarbeitet wird, ist das Ergebnis
eine Au�istung aller Gehälter aller Angestellten, da das Prädikat 1=1 immer wahr ist.

Um mögliche SQL Injections zu vermeiden, schlägt die OWASP drei Optionen vor:

1. Prepared Statements: Die Anfrage wird mit Platzhaltern an die Datenbank geschicken. Dadurch
kann die Datenbank zwischen der Anfrage und denDaten, mit denen die Anfrage vervollständigt
wird, unterscheiden. Damit wird es einem Angreifer unmöglich gemacht, den Sinn der Anfrage
zu verändern.

2. Stored Procedures: Anstatt eine Query zu verwenden, können Anfragen über Stored Procedures
gemacht werden. Das sind Routinen, die vorher in der Datenbank hinterlegt wurden. Sie haben
damit denselben E�ekt wie Prepared Statements, da die Daten ebenfalls getrennt von der
Anfrage übermittelt werden. Bei der Implementierung von Stored Procedures ist allerdings
darauf zu achten, dass kein SQL Statement mit ungeprüften Parametern erstellt wird, wie in
Listing 2.2.

3. Escapen sämtlicher Benutzereingaben: Jede Datenbank kennt bestimmte Zeichen um Benut-
zereingaben vom Rest der Anfrage zu unterscheiden. Werden diese Zeichen verwendet um
Benutzereingabe zu markieren, kann die Datenbank sie von der eigentlichen Anfrage unter-
scheiden. Wenn der Angreifer jedoch weiß, welche Datenbank verwendet wird, kann er, wie
im Beispiel dargestellt, diesen Schutz umgehen.

Zusätzlich werden noch das Least-Privilege-Prinzip und White List Input Validierung empfohlen.
Das Least-Privilege-Prinzip besagt, dass den Benutzern nur die Rechte gewährt werden, die sie zur
Erfüllung ihrer Aufgaben benötigen. Dadurch entsteht im Fall eines Angri�s auch ein kleinerer
Schaden, als wenn der Benutzer alle Rechte der Anwendung hätte. Bei der White List Validierung
wird jede Benutzereingabe, die einem bestimmten Muster folgt, auf ihre Gültigkeit geprüft. Das kann
zum Beispiel durch reguläre Ausdrücke erfolgen.

Kindy and Pathan fassten in [KP11] Maßnahmen gegen SQL Injections zusammen. Allerdings sind
alle bis auf Roichmans und Gudes Lösung [RG07] nur mit zusätzlicher Software umsetzbar. In dieser
Arbeit wird die Empfehlung der OWASP zum Schutz vor SQL Injections umgesetzt.

17

2 Verwandte Arbeiten und Grundlagen

2.3 REST und ROA

Representational State Transfer (REST) ist ein Architekturstil für verteilte Anwendungen. Der Begri�
REST wurde zuerst von Roy Fielding in seiner Dissertation im Jahr 2000 beschrieben. Architekturen,
die sich an REST orientieren, werden teilweise auch Resource-oriented Architecture (ROA) genannt.
Durch den Einsatz von REST ergeben sich im Gegensatz zu anderen Architekturstilen laut Stefan
Tilkov [Til11] die folgenden Vorteile:

• Der Grad der Kopplung der zu verbindenden Systeme wird minimiert, da durch die uniforme
Schnittstelle alle Operationen und wie sie aufzurufen sind im voraus bekannt sind.

• Dadurch, dass die meisten REST Implementierungen Webstandards wie HTTP, URIs und
XML einsetzen, wird die Interoperabilität dieser Systeme erhöht, da die Gegenseite nur diese
Standards kennen muss, um mit der REST Implementierung zu kommunizieren.

• Da es bei REST nur eine Schnittstelle gibt und nicht immer wieder eine neue de�niert werden
muss, ist die Wiederverwendbarkeit höher.

• Performance und Skalierbarkeit können erhöht werden, wenn das System auf der Basis von
HTTP und den REST Regeln entworfen wird. Dann ist es nämlich möglich, Anfragen mit Hilfe
von Caches zu beantworten oder aufeinander folgende Anfragen nicht mit demselben Server
zu beantworten,

Die wesentlichen Grundkonzepte um diese Vorteile zu erreichen sind laut Tilkov [Til11]:

Eindeutige Identifikation von Ressourcen: Ein wesentlicher Bestandteil von REST sind Ressour-
cen. Die Ressource ist ein abstraktes Konzept und bezeichnet alle Objekte, die durch die Anwen-
dung nach außen hin sichtbar gemacht werden sollen oder Listen dieser Objekte. Ressourcen
sollten dabei aber nicht nur einfach Datenbankeinträge nach außen sichtbar machen. Sie sind
kein Konzept der Persistenzschicht, sondern ein nach außen sichtbares Konzept der Anwen-
dungsschicht. Jede Ressource wird durch zwei wichtige Eigenschaften de�niert: eine eindeutige
ID und eine oder mehrere Repräsentationen. Zur eindeutigen Identi�kation einer Ressource
können zum Beispiel Uniform Resource Identi�ers (URIs) verwendet werden. URIs bestehen
aus fünf Bestandteilen: Scheme, Authority (bestehend aus Host und Port), Path, Query und
Fragment. Dabei sind Authority, Query und Fragment optional.

scheme://authority/path?query#fragement

Verschiedene Repräsentationen: Der zweite wesentliche Bestandteil einer Ressource sind ihre
Repräsentationen. Über die Repräsentationen werden die Ressourcen dem Rest der Welt zu
Verfügung gestellt und über diese können sie bearbeitet werden. Über Content Negotiation
kann ein Client die Ressource in einem Format anfordern, das er verarbeiten kann. Gängige
Repräsentationen sind zum Beispiel XML, HTML, CSV oder JSON.

Verlinkungen: Mit Hypermedia As The Engine Of Application State (HATEOAS) wird das Konzept
von Verlinkungen beschrieben. Antworten des Servers sollten zum einen Links zu anderen
Ressourcen enthalten, mit denen die empfangene Ressource in Relation steht. Zum anderen
sollte die Antwort Links auf die Aktionen enthalten, die dem Client als nächstes zur Verfügung

18

2.3 REST und ROA

stehen. Wenn der Server REST korrekt umsetzt, kann ein Client allein anhand der Links durch
den Server navigieren.

Standardmethoden: Hinter diesem Punkt verbirgt sich das Konzept der uniformen Schnittstelle:
jede Ressource soll denselben Satz von Operationen unterstützen. Für REST Anwendungen im
HTTP Umfeld sind dies die acht Operationen von HTTP: GET, POST, PUT, DELETE, HEAD,
OPTIONS, TRACE und CONNECT. Im folgenden werden GET, POST, PUT und DELETE näher
erläutert.

• Die wichtigste Operation ist GET. Sie dient dazu, eine Ressource, die durch eine URI
identi�ziert wird, in ein einer bestimmten Repräsentation abzuholen. GETwird als safe und
idempotent spezi�ziert. Safe bedeutet dabei nicht, dass die Operation keine Seitene�ekte
auf dem Server auslösen darf, wie zum Beispiel das Erzeugen eines Logeintrags, sondern
nur, dass durch GET keine Änderung der Ressource erfolgen darf. Idempotent bedeutet,
dass das mehrmalige Aufrufen der Operation dasselbe Ergebnis erzeugt wie ein einmaliger
Aufruf.

• POST kann in zwei Szenarien eingesetzt werden. Das erste Szenario ist das Erstellen einer
neuen Ressource. Das andere ist, wenn eine Funktionalität aufgerufen werden soll, die
über keine andere HTTP-Operation abgebildet werden kann, oder wenn die andere HTTP-
Operationen nicht verfügbar sind. Strikt oder falsch kon�gurierte Firewalls könnten zum
Beispiel nur GET und POST zulassen. In diesem Fall lässt sich ein PUT beispielsweise
durch einen selbstde�nierten Header emulieren (Beispiel: X-HTTP-Method-Override :
PUT).

• PUT kann dazu benutzt werden, eine Ressource zu aktualisieren oder um eine neue
anzulegen. Um die Operation aufzurufen, benötigt man auf jeden Fall die URI der Ressource.
Wenn also eine Ressource mit einer vorde�nierten URI erstellt werden soll, sollte PUT
anstatt POST verwendet werden. PUT ist außerdem ebenfalls idempotent.

• Um eine Ressource zu löschen, kann DELETE verwendet werden. Dabei müssen die Daten,
die durch die Ressource dargestellt werden nicht immer gelöscht werden. Es ist auch
üblich, nur ein Flag zu setzen (deleted = true) und die Daten dann nicht mehr als Ressource
auszuliefern. DELETE ist ebenfalls idempotent.

Statuslose Kommunikation: Jede Nachticht soll alle Informationen enthalten, damit sie von Client
und Server verstanden werden kann. Dadurch wird die Skalierbarkeit von REST Anwendungen
erhöht, da aufeinander folgende Anfragen nicht vom selben Server beantwortet werden müssen
oder Caches verwendet werden können, um Anfragen zu beantworten.

Für die Implementierung einer REST Anwendung im HTTP Umfeld spielen die HTTP Statuscodes eine
wichtige Rolle. Es gibt über 70 HTTP Statuscodes in fünf Statusklassen. Tabelle 2.1 gibt eine Übersicht
über die Statusklassen und über häu�g genutzte HTTP Statuscodes und erklärt ihre Bedeutung.

19

2 Verwandte Arbeiten und Grundlagen

Statuscode / -klasse Beschreibung

1xx Klasse Informationen. Anfrage erhalten, ist aber noch in Bearbeitung.

2xx Klasse Erfolgreiche Anfrage. Anfrage erhalten und erfolgreich verarbeitet.

200 - Accepted Die Anfrage wurde erfolgreich bearbeitet, und das Ergebnis wird mit
dieser Antwort übertragen.

201 - Created Die Anfrage wurde erfolgreich bearbeitet und eine neue Ressource
wurde erstellt. Die Adresse der neuen Ressource ist im Location Header
zu �nden.

204 - No Content Die Anfrage wurde erfolgreich bearbeitet, und die Antwort des Servers
enthält keinen Inhalt.

3xx Klasse Umleitung. Es sind weitere Schritte seitens des Clients erforderlich.

301 - Moved Permanently Die angeforderte Ressource be�ndet sich nun in der im Location Header
angegebenen Adresse. Die Adresse sollte bei allen zukünftigen Anfragen
verwendet werden.

4xx Klasse Client Fehler. Diese Codes werden zurückgegeben, wenn es wahrschein-
lich ist, dass der Fehler beim Client liegt.

400 - Bad Request Die Anfrage konnte vom Server nicht verarbeitet werden, da sie falsch
aufgebaut ist. Der Client sollte die Anfrage nicht ohne Änderungen
wiederholen.

401 - Unauthorized Die Anfrage konnte nicht verarbeitet werden, weil keine oder ungülti-
ge Authenti�zierungsinformationen vorhanden sind. Die Antwort des
Servers wird über den WWW-Authenticate Header mitteilen, wie die
Authenti�zierung durchzuführen ist.

403 - Forbidden Die Anfrage wurde aufgrund mangelnder Berechtigung nicht durchge-
führt. Anders als beim Code 401 wird erneutes Authenti�zieren nichts
ändern.

404 - Not Found Die Ressource wurde nicht gefunden.

5xx Klasse Informationen. Anfrage erhalten, ist aber noch in Bearbeitung.

500 - Internal Server Error Es trat ein unerwarteter Fehler auf, der den Server daran hinderte, die
Anfrage zu bearbeiten.

503 - Service Unavailable Der Service steht nicht zur Verfügung. Mögliche Gründe sind zum
Beispiel Wartungsarbeiten oder Überlastung.

Tabelle 2.1: Auszug aus den HTTP Statuscodes

20

2.4 REST Authentifizierung

2.4 REST Authentifizierung

In diesem Abschnitt werden Mechanismen vorgestellt, die verwendet werden können um Benutzer
über HTTP zu authenti�zieren. Da der HTTP Authenti�zierungsmechanismus leicht zu erweitern
ist, gibt es viele selbstgeschriebene Lösungen. Im folgenden wird nur auf standardisierte Verfahren
eingegangen, da es sicherer ist bereits implementierte Verfahren zu benutzen, anstatt neue Verfahren
zu implementieren, wobei Fehler, und damit eventuell Sicherheitslücken, nicht ausgeschlossen werden
können. Zuerst wird auf die in HTTP umgesetzten Authenti�zierungsmöglichkeiten eingegangen,
wie sie in [Til11] beschrieben sind. Anschließend wird OAuth 2.0 vorgestellt.

HTTP Authentifizierung

Wenn ein Client auf eine geschützte Ressource zugreifen will, ohne dass er Authenti�zierungsinfor-
mationen mitschickt, antwortet der Server mit dem HTTP Statuscode 401. In dieser Antwort teilt der
Server dem Client mit Hilfe des WWW-Authenticate Headers, mit wie er sich zu authenti�zieren
hat.

WWW-Authenticate: Basic realm=„Protected“

Mit dieser Antwort teilt beispielsweise der Server dem Client mit, dass er sich über das Basic Schema
authenti�zieren muss. Außerdem wird dem Client mit Hilfe des Parameters realm mitgeteilt, für
welchen Bereich er sich authenti�zieren soll. Diese Antwort wird auch Authentication Challenge
gennant.

Die standardisierten Authenti�zierungsschemata für HTTP sind Basic und Digest. Beim Basic Schema
werden Benutzername und Passwort mit einem Doppelpunkt als Trennzeichen konkateniert und dann
mit Base64 kodiert. Wenn zum Beispiel die Kombination username und password kodiert werden soll,
sieht das so aus:

base64(„username“+„:“+„password“) = dXNlcm5hbWU6cGFzc3dvcmQ=

Der so entstandene String wird im Authorization Header unter Angabe des Schemas an den Server
übertragen.

Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Anschließend kann der Server die Base64 Kodierung rückgängig machen und den Benutzername und
das Passwort überprüfen. Falls die Informationen nicht gültig sind, wird wieder die Authentication
Challenge gesendet, andernfalls wird die Anfrage verarbeitet.

Das Basic Schema hat einige Schwächen:

• Das Passwort wird praktisch im Klartext übertragen, da Base64 keine Verschlüsselung ist.

21

2 Verwandte Arbeiten und Grundlagen

• Die Identität des Servers wird nicht sichergestellt. Der Client schickt also unter Umständen
seinen Benutzernamen und sein Passwort dem Angreifer.

• Die Nachricht kann auf dem Weg vom Client zum Server verändert werden.

• Wenn ein Angreifer die Nachricht abhören kann, kann er sie ganz oder teilweise noch einmal
senden.

Die genannten Schwächen können aber über die Kombination mit SSL ausgeglichen werden. Bei der
Kommunikation via SSL beweist der Server mit einem Zerti�kat dem Client gegenüber seine Echtheit.
Außerdem ist ein Abhören der Verbindung nicht mehr möglich, da sie verschlüsselt ist.

Das Digest Schema hat sich zum Ziel gesetzt, die Schwächen von Basic umgehen. Die größte Änderung
gegenüber dem Basic Schema ist, dass das Passwort nie im Klartext übertragen wird. Stattdessen wird
ein Hashwert übertragen, der auch Digest genannt wird. Dieser Hashwert wird berechnet indem
unter anderem eine nonce benutzt wird, die der Server dem Client in der Authentication Challenge
mitteilt. Eine nonce ist eine beliebige Zeichenkette, die vom Server allerdings nur einmal erzeugt wird.
Im einfachsten Fall wird der Digest nach folgender Formel berechnet, wobei h() eine Hashfunktion
wie zum Beispiel SHA bezeichnet:

h(h(Benutzername + „:“ + Realm +„:“ + Passwort) + „:“ + nonce + „:“ + h(HTTP-Methode + „:“ + URI))

Der Server erhält nun den Digest, die nonce und den Benutzernamen und kann dauraus auch wie-
der den Digest berechnen. Wenn die beiden Digests übereinstimmen, kann der Server den Client
authenti�zieren. Digest hat damit gegenüber Basic wesentliche Vorteile:

• Das Passwort wird nie im Klartext übertragen und kann damit nicht mitgelesen werden.

• Durch die nonce (auch in Kombination mit einem Zeitstempel) können Replay-Attacken ver-
hindert werden.

HTTP Digest wird trotz der Verbesserungen nicht oft genutzt. Das liegt unter anderem daran, dass die
Nachrichten immer noch nicht verschlüsselt sind, Man-in-the-Middle Attacken immer noch möglich
sind und unterschiedliche Digest Implementierungen in Browsern und Webservern nicht kompatibel
waren.

OAuth 2.0

OAuth ist ein o�enes Protokoll für die sichere Autorisierung. Mit OAuth 1.0 und OAuth 2.0 kann
man einer Anwendung A das Recht einräumen, auf die Daten einer Anwendung B im Namen eines
bestimmten Benutzers zuzugreifen, ohne dass dieser seine Zugangsdaten der Anwendung A zur
Verfügung stellen muss. OAuth 1.0 erschien 2007 und nutzte kryptogra�sche Signaturen um die
Anfrage abzusichern. Die Tatsache, dass manche Entwickler die Signaturen falsch berechneten und
damit die Sicherheit nicht mehr gewährleistet war, und die Tatsache, dass das Protokoll sich nicht
leicht an andere Anwendungsfälle anpassen ließ, führten zur Entwicklung von OAuth 2.0. OAuth 2.0
kommt ohne kryptogra�sche Signaturen aus, setzt aber TLS vorraus. Außerdem wurden in OAuth
2.0 mehrere Abläufe für verschiedene Anwendungsfälle de�niert. Außerdem wird die Möglichkeit

22

2.4 REST Authentifizierung

Abbildung 2.1: OAuth 2.0 Control Flow

geboten, das Protokoll um eigene Abläufe zu erweitern. Um den prinzipiellen OAuth 2.0 Ablauf zu
verstehen, muss man folgende Rollen kennen:

Resource Owner: Eigentümer der Daten auf die zugegri�en werden soll.

Resource Server: Server, auf dem diese Daten liegen.

Client: Die Anwendung, die im Auftrag des Resource Owners auf besagte Daten zugreifen möchte.

Authorization Server: Server, der nach Zustimmung des Resource Owners Access Token für den
Zugri� auf die geschützten Ressourcen ausstellt.

Der allgemeine Ablauf von OAuth 2.0 ist in Abbildung 2.1 dargestellt und besteht aus den folgenden
Schritten [Har12]:

1. Der Client beantragt den Zugri� auf die geschützten Daten beim Resource Owner.

2. Als Antwort erhält der Client einen Authorization Grant, der zum einen aus einem Code besteht,
der die Zustimmung des Resource Owners repräsentiert und zum anderen aus dem Grant Type
(siehe unten)

3. Der Client sendet diesen Grant zum Authorization Server um ein Access Token zu bekommen.

4. Falls der Grant gültig ist, sendet der Authorization Server ein Access Token an den Client
zurück.

5. Der Client beantragt beim Resource Server unter Verwendung des Access Token Zugri� auf
die Resourcen des Resource Owner.

6. Falls das Access Token gültig ist, gewährt der Resource Server den Zugri� auf die Resourcen.

23

2 Verwandte Arbeiten und Grundlagen

Authorization Flows

Im folgenden werden alle vier Ausprägungen des oben beschriebenen Ablaufs vorgestellt und für
welche Szenarien sie sich laut [Boy12] eignen.

Der Authorization Code Grant Flow wird empfohlen für Webanwendungen bei denen der OAuth-Client
serverseitig läuft und der Resource Owner nur über ein Webinterface mit dem Client interagiert. Mit
diesem Flow lässt sich ein langfristiger Zugri� auf die geschützten Daten realisieren.

Im Gegensatz zum Authorization Code Grant Flow ist der Implicit Grant Flow für OAuth Clients aus-
gelegt, die im Browser laufen (JavaScript-Clients, Flash-Anwendungen oder Browser-Erweiterungen).
Dieser Flow wird empfohlen, wenn der Zugri� nur temporär gestattet werden soll und es nicht
bedenklich ist, wenn der Nutzer Zugri� auf das Access Token hat.

Der Resource Owner Password Credentials Flow unterscheidet sich sehr von den zwei bisher vorgestell-
ten Flows, da er es erlaubt, die Zugangsdaten des Resource Owners direkt in ein Access Token zu
tauschen, ohne den Grant-Zwischenschritt. Dieser Flow sollte deshalb auch nur von Applikationen
verwendet werden, denen ein hohes Maß an Vertrauen entgegen gebracht wird, wie zum Beispiel
selbst entwickelten mobilen Anwendungen. Es ist zu beachten, dass die Clientanwendung bei diesem
Flow Zugri� auf die Zugangsdaten des Resource Owner bekommt.

Der Client Credentials Flow funktioniert ähnlich wie der Resource Owner Password Credentials Flow,
allerdings ist der Client selbst der Eigentümer.

Im Rahmen dieser Arbeit wird OAuth 2.0 implementiert, da die tokenbasierte Authenti�zierung
verschiedene Vorteile gegenüber den anderen Verfahren bietet:

• Das Passwort muss nicht jedes Mal im Klartext übertragen werden, wie bei Basic.

• Das Passwort muss nicht unverschlüsselt gespeichert werden, damit es zur Verschlüsselung der
Nachricht genutzt werden kann, wie bei Digest.

• Ein Token kannmit einer limitierten Gültigkeit ausgestellt werden. Damit geht von entwendeten
Token ein kleineres Risiko aus, als von einer abgehörten Nachricht mit Basic Authenti�zierung.

• Es ist möglich in dem Token Anmeldeinformationen zu speichern. Damit ist es möglich einen
Benutzer zu authenti�zieren, ohne immer auf die Datenbank zugreifen zu müssen.

24

3 Konzept

In diesem Kapitel wird zuerst die Architektur der ECHO Plattform beschrieben. Anschließend wird
auf die Komponenten eingegangen, die im Rahmen dieser Arbeit entwickelt wurden. Außerdem
werden Analysen vorgestellt, die mit Hilfe der erfassten Daten durchgeführt werden können.

3.1 Architektur

Die Anwendungsebene besteht, wie in Abbildung 3.1 dargestellt, aus den Smartphone-Anwendungen
für Patienten und Ärzte und den jeweiligen Web-Portalen. Über Anwendungsebene können die
Patienten die tägliche Dateneingabe durchführen und die Ärzte Patienten, Untersuchungsergebnisse
und Verschreibungen erfassen (siehe Abbildung 1.1). Die Schnittstelle zwischen Infrastrukturebene
und Anwendungsebene stellt eine RESTful API dar. Falls Analysen der Daten zeigen, dass Gesund-
heitsrisiken für den Patienten bestehen, kann der Patient per SMS oder E-Mail benachrichtigt werden.
Ärzte werden per SMS oder E-Mail benachrichtigt, wenn ein Patient beispielsweise mehrere Tage
keine Daten eingegeben hat.

Im Rahmen dieser Arbeit wurden die RESTful API, die Datenbank für die Gesundheitsdaten und die
Analysekomponente neu entworfen und entwickelt. Da die Analysekomponente nicht implementiert
wurde, ist sie, im Gegensatz zu den anderen beiden Komponenten, in Abbildung 3.1 rot gestrichelt
umrahmt.

3.2 Gesundheitsdaten

Im folgenden wird das Datenmodell der Datenbank zur Speicherung der Gesundheitsdaten erläutert.
Im darauf folgenden Abschnitt wird beschrieben, wie man unbefugten Zugri� auf diese Daten
verhindern kann.

3.2.1 Datenmodell

Das in Abbildung 3.2 dargestellte Diagramm stellt das Datenmodell für die Gesundheitsdaten dar und
beinhaltet zusätzlich die Benutzerverwaltung für das System. Um sicherzustellen, dass jeder Benutzer
des Systems nur auf die Daten zugreifen kann, die für ihn bestimmt sind, wird jedem Benutzer eine
der folgenden Rollen zugewiesen:

• admin: für die Accountverwaltung und administrative Aufgaben.

25

3 Konzept

Browser'

Pa*enten-'
Portal'

Doktoren-'
Portal'

Smartphone'Smartphone'

Gesetzeskonforme'&'Sichere'Cloud-Umgebung'

Anwendungs)*
Ebene*

Infrastruktur)*
Ebene*

Orchestrierung'

RESTful'API'

Management'&'Provisionierung'

Gesundheits-
Daten'

Analy*cs'Analy*cs'Analysen'

Pa*enten-'
Anwendung'

Doktoren-'
Anwendung'

Gesund-'
heits-'
Status'

Anfragen'

Gesundheits-
risiken'
(&'SMS)'

Anfragen'

Benachrich-
*gungen'
(&'SMS)' Empfehlungen'

Gesundh
eits-'

Dienste'

Gesundh
eits-'

Dienste'

Gesund-
heits-'
Dienste'

Abbildung 3.1: Architektur der ECHO Plattform. Die rot umrandeten Komponenten wurden für diese
Arbeit entwickelt. Die rot gestrichelten Analysen werden als Konzept vorgestellt.
[BKK+14]

• doctor: wird Ärzten zugewiesen, damit sie die ihnen zugewiesen Patienten überwachen können.

• patient: für Patienten, die Daten in das System eingeben.

In den Accounts sollen zusätzlich zur Rolle des Benutzers die Zugangsdaten für das System und die
Einstellungen zu den Benachrichtigungen gespeichert werden. Die Einstellungen sollen beinhalten, ob
der Benutzer benachrichtigt werden will, wie dies erfolgen soll und gegebenenfalls die Kontaktdaten
zu den Benachrichtigungsmodi (SMS, Push, E-Mail).

Der Arzt soll in der Lage sein, bei jedemBesuch des Patienten Untersuchungsergebnisse undMesswerte
zu speichern. Zusätzlich zu den Ergebnissen sollen auch noch die verschriebenen Medikamente und
ihre Dosierung gespeichert werden. Falls der Patient durch die COPD stirbt, sollen auch die Umstände
seines Todes gespeichert werden können, beispielsweise für eine spätere Analyse.

Um Patienten dem richtigen Schweregrad (A, B, C oder D, siehe Abbildung 3.3) zuzuordnen und damit
die richtigen Medikamente verschreiben zu können, wird Anzahl der Exazerbationen im letzten Jahr
und das Ergebnis des COPD Assessment Tests (CAT) benötigt. Der CAT besteht aus acht Fragen, die
Aufschluss darüber geben sollen, wie stark der Patient durch die COPD in seinem täglichen Leben

26

3.2 Gesundheitsdaten

Abbildung 3.2: Grobes ER-Diagramm der Gesundheitsdaten

27

3 Konzept

Abbildung 3.3: COPD Schweregrade: Berechnung und Bedeutung

beein�usst wird. Bei der ersten Frage soll der Patient beispielsweise auf einer Skala von null bis fünf
angeben, wie häu�g er husten muss. Null bedeutet „ich huste nie“, während fünf bedeutet „ich huste
ständig“. Die anderen sieben Fragen müssen ebenfalls auf einer Skala von null bis fünf beantwortet
werden. Das Ergebnis des CAT ist die Summe der Ergebnisse der acht Fragen [cat].

Ein anderer Fragebogen für COPD Patienten ist der Clinical COPD Questionnaire (CCQ), welcher
verwendet wird, um den klinischen Gesundheitszustand zu erfassen. Die zehn Fragen des Fragebogens
haben eine feste Reihenfolge und müssen auf einer Skala von null bis sechs beantwortet werden. Sie
lassen sich in drei Kategorien (Symptome, mentaler Zustand und funktionaler Zustand) einteilen.
Symptome, die mit dem CCQ beobachtet werden können sind Atemnot, Husten und Auswurf. Mit den
Fragen zum mentalen Zustand sollen Informationen zum Gemütszustand des Patienten gewonnen
werden. Die Fragen zum funktionalen Zustand sollen die COPD-bedingten Einschränkungen beschrei-
ben, mit denen der Patient im täglichen Leben umgehen muss. Das Ergebnis des CCQ besteht aus
vier Teilen: einem Gesamtergebnis und je einem Ergebnis pro Kategorie [SJM+12]. Die Teilergebnisse
werden wie folgt berechnet:

SymtomScore = (q1 + q2 + q5 + q6)/4
MentalScore = (q3 + q4)/2
SymtomScore = (q7 + q8 + q9 + q10)/4
TotalScore = (q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10)/10

Der Charlson Index gehört ebenfalls zu den Skalen, die auf COPD-Patienten angewendet werden. Er
beschreibt die 10-Jahres-Überlebenschance des Patienten, falls der Patient an einer anderen schweren

28

3.3 RESTful API

Krankheit außer COPD leidet. Im Charlson Index wird 22 Krankheiten eine Punktzahl zugeordnet,
und die Summe der Punkte ist der Charlson Index des Patienten. Im folgenden ist aufgelistet, welche
Krankheit zu welcher Punktzahl gehört:

1 Punkt: Herzinfarkt, Herzinsu�zienz, periphere arterielle Verschlusskrankheit, cerebrovaskuläre
Erkrankungen, Demenz, Chronische Lungenerkrankung, Kollagenose, Ulkuskrankheit, Leichte
Lebererkrankung, Diabetes mellitus (ohne Endorganschäden)

2 Punkte: Hemiplegie, Mäßig schwere und schwere Nierenerkrankung, Diabetes mellitus mit End-
organschäden, Tumorerkrankung, Leukämie, Lymphom

3 Punkte: Mäßig schwere und schwere Lebererkrankung

6 Punkte: Metastasierter solider Tumor, AIDS

In den täglichen Berichten sollen die Ergebnisse der täglichen Dateneingabe durch den Patienten
gespeichert werden.

3.2.2 Sicherheit

Um die Sicherheit der Daten schon auf Datenbankebene zu schützen, sollen die folgendenMaßnahmen
ergri�en werden. Es soll für jeden Benutzer des ECHO-Backends ein Benutzer in der Datenbank
angelegt werden, der über das Datenbankrechtesystem nur die Rechte auf den Tabellen bekommt,
die mit seiner Rolle verknüpft sind. Da MySQL keine rollenbasierte Zugangskontrolle unterstützt,
müssen die Rechte einzeln vergeben werden. Für die Benutzer sollen Views erstellt werden, die nur
die Daten enthalten, die ihn betre�en. Auf die unterliegenden Basistabellen soll der Benutzer dann
keinen Zugri� mehr haben. Da Prepared Statements nicht im verwendeten MySQL Modul für Node.js
verfügbar sind, sollen auch Maßnahmen gegen mögliche SQL Injections auf Datenbankebene ergri�en
werden. Deswegen sollen alle Möglichkeiten, Daten zu ändern in Stored Procedures, die prepared
Statements verwenden, gekapselt werden.

3.3 RESTful API

Die RESTful HTTP-API des Backends stellt die Schnittstelle zwischen Anwendungsebene und Infra-
strukturebene dar und bietet Methoden zum Zugri� auf die Gesundheitsdaten. Da die API sämtliche
Datenbankzugri�e kapselt und die einzige Möglichkeit darstellt, auf die Daten zuzugreifen, wird
durch die API auch die Sicherheit der Gesundheitsdaten erhöht. Durch die uniforme und portable
Schnittstelle können alle benötigten Arten von Klienten leicht mit dem Backend interagieren. Die API
kann neben der Kommunikation mit den Klienten auch zur Orchestrierung verwendet werden, indem
man die in diesem Kapitel beschriebenen, einfachen Dienste zu komplexeren Diensten kombiniert. Ein
weiterer Vorteil einer RESTful HTTP-API ist die statuslose Kommunikation und die damit verbundene
Skalierbarkeit.

29

3 Konzept

Abbildung 3.4: Ressourcen als UML-Diagramm

3.3.1 Ressourcendesign

Beim Ressourcendesign stellte sich heraus, dass die Ressource für die Patientendaten großen Ein�uss
auf die restlichen Ressourcen hat. Es gab die folgenden Möglichkeiten:

1. Eine „große Patientenressource“, die alle persönlichen Daten des Patienten enthält und die
Ergebnisse ärztlicher Untersuchungen in Arrays mitführt.

2. Eine „kleine Patientenressource“, die alle persönlichen Daten des Patienten enthält, während
alle ärztlichen Untersuchungen als eigenständige Ressourcen dargestellt werden.

3. Eine „kleine Patientenressource mit Subressourcen“, wobei die ärztlichen Untersuchungen als
Subressourcen modelliert werden. Subressourcen stellen Daten in Abhängigkeit einer anderen
Ressource zur Verfügung. Beispielsweise würde die Ressource /patients/1/examA nur Daten
beinhalten, die mit der Ressource /patients/1 in Verbindung stehen.

Die „große Patientenressource“ hat den Nachteil, dass sie, durch den REST Architekturstil bedingt,
jedes Mal komplett an den Server übertragen werden muss, wenn beispielsweise ein neuer CAT
(COPD Assessment Test) ausgefüllt wurde. Das bedeutet auch, dass sie mit der Zeit immer größer
wird.

Jede Ressource, die abgerufen werden kann, soll aber auch ein Dokument darstellen, das für den
Anwender einen Nutzen hat. Im Fall der „kleinen Patientenressource“, hätte aber beispielsweise eine
Au�istung aller CAT-Ergebnisse der Patienten keinerlei Nutzen für den Arzt.

Subressourcen sind zwar nicht bei allen Anhängern des REST Architekturstils als RESTful anerkannt,
aber bei der Variante „kleine Patientenressource mit Subressourcen“ fallen beide Nachteile der anderen
Varianten weg. Es ist möglich, neue ärztliche Untersuchungsdaten hinzuzufügen, ohne die komplette

30

3.3 RESTful API

Patientenressource übertragen zu müssen. Außerdem würde ein Aufruf der CAT-Subressource nur
die Ergebnisse eines Patienten au�isten, anhand derer der Arzt beispielsweise den Krankheitsverlauf
nachvollziehen könnte, anstatt aller.

In Abbildung 3.4 werden alle identi�zierten Ressourcen und ihre Beziehungen untereinander in
einem UML Klassendiagramm dargestellt. Die Ressource Patienten stellt die Listenressource für die
Ressource Patient dar. Wenn die Listenressource abgerufen wird, stellt sie eine Liste aller verfügbaren
Ressourcen des Typs Patient zur Verfügung. Eine spezi�sche Ressource Patient enthält den Namen,
Kontaktdaten, demogra�sche Angaben und Angaben zum zugehörigen Account.

Die Ressourcen Berichte, CATs, CCQs, Charlsons, Behandlungen, Untersuchungen und Tod sind Subres-
sourcen der Ressource Patient und stellen, bis auf die Ressource Tod, Listenressourcen dar. Die
Ressource Tod enthält Angaben zu den Todesumständen, wenn der zugehörige Patient bereits ver-
storben ist und ist nur einmal pro Patient vorhanden, da der Patient nur einmal sterben kann. Eine
spezi�sche Ressource Bericht stellt das Ergebnis einer Dateneingabe an einem Tag durch den Patienten
dar. Eine einzelne Ressource CAT ist die Repräsentation eines durchgeführten COPD Assessment
Tests, CCQ die eines beantworteten Clinical COPD Questionnaires und Charlson die eines ausgefüllten
Charlson Tests. Eine bestimmte Ressource Untersuchung stellt eine Untersuchung durch den Arzt dar,
während eine bestimmte Ressource Behandlung eine Au�istung der verschriebenen Medikamente,
die der Patient zu einem Zeitpunkt bekommt, darstellt.

Zu jeder einzelnen Ressource Patient gehört eine bestimmte Ressource Account, die die Zugangsdaten
und die Einstellungen bezüglich der Benachrichtigungen enthält. Die Ressourcen des Typs Account, zu
denen keine Ressource des Typs Patient gehört, sind Accounts der Rollen doctor und admin. Accounts
ist die Listenressource zu den einzelnen Ressourcen Account. Zu jeder Ressource Account gehören
Benachrichtigungen, die an diesen einen Account gingen. Diese Benachrichtigungen können über die
Ressource Benachrichtigungen abgerufen werden.

Im Rahmen dieser Arbeit wurde anfangs ein Prototyp implementiert, der die Funktionsweise der API
demonstrieren sollte. Für diesen Prototyp wurde eine Ressource angelegt, mit deren Hilfe die Fragen
zu den ärztlichen Untersuchungen verwaltet werden konnten. Außerdem konnte der Prototyp mit
Hilfe dieser Ressource Dialoge generieren, mit denen man die Fragen beantworten konnte. Da diese
Funktion immer noch nützlich sein kann für das Browser-Frontend, ist in Abbildung 3.4 auch die
Listenressource Fragen mit der zugehörigen Ressource Frage dargestellt.

Im folgenden werden alle Funktionen erklärt, die auf den Ressourcen benötigt werden. Dabei wird
auch jeweils erwähnt, welche Rolle die Funktion aufrufen darf. Diese Rollen sind dieselben wie die
der Accounts in den Gesundheitsdaten.

3.3.2 Funktionen der Ressource Account

Für die Listenressource Accounts werden folgende Funktionen benötigt:

1. eine Funktion die per HTTP GET eine Liste alle Ressourcen des Typs Account zurückgibt. Dabei
muss Paginierung sowie das Filtern nach den Rollen admin, doctor und patient unterstützt
werden.

31

3 Konzept

2. mittels HTTP POST soll es möglich sein, eine neue Ressource des Typs Account zu erstellen.

Auf einer Ressource Account soll möglich sein:

1. mittels eines HTTP GET Requests soll eine bestimmter Ressource zurückgegeben werden.

2. per HTTP PUT Request soll eine bestimmte Ressource aktualisierbar sein.

3. über einen HTTP DELETE Request soll eine bestimmter Ressource deaktivierbar sein.

Alle Funktionen auf der Listenressource setzen vorraus, dass der Aufrufende zur Benutzergruppe
admin gehört. Die restlichen Funktionen sollen ebenfalls nur von Benutzern der Gruppe admin
aufrufbar sein, es sei denn die Ressource repräsentiert den eigenen Account des Aufrufenden.

3.3.3 Funktionen der Ressource Patient

Für die Listenressource Patienten werden folgende Funktionen benötigt:

1. eine Funktion, die per HTTP GET alle Ressourcen des Typs Patient zurückgibt. Dabei muss
Paginierung sowie das Sortieren nach E-Mail Adresse oder Aktenzeichen unterstützt werden.

2. mittels HTTP POST soll es möglich sein, eine neue Ressource des Typs Patient zu erstellen.

Auf einer Ressource Patient soll möglich sein:

1. mittels eines HTTP GET Requests soll eine bestimmter Ressource zurückgegeben werden.

2. per HTTP PUT Request soll eine bestimmte Ressource aktualisierbar sein.

3. über einen HTTP DELETE Request soll eine bestimmte Ressource gelöscht werden können.

Alle hier aufgeführten Funktionen setzen voraus, dass der Aufrufende zur Benutzergruppe doctor
gehört.

Funktionen der Subressourcen Berichte, CAT, CCQ, Charlson, Behandlung,
Untersuchung und Tod

Für jede Listenressource der Subressourcen Berichte, CATs, CCQs, Charlsons, Behandlung und Untersu-
chungen sollen folgende Funktionen bereit gestellt werden:

1. eine Funktion die per HTTP GET alle Ressourcen der Subressource zurückgibt, die zu dem
Patienten gehören

2. mittels HTTP POST soll es möglich sein, eine neue Ressource zu erstellen.

Auf den Ressource Bericht, CAT, CCQ, Charlson, Behandlung und Untersuchungen soll möglich sein:

1. mittels eines HTTP GET Requests soll eine bestimmte Ressource zurückgegeben werden.

2. per HTTP PUT Request soll eine bestimmte Ressource aktualisierbar sein.

3. über einen HTTP DELETE Request soll eine bestimmte Ressource gelöscht werden können.

32

3.3 RESTful API

Für die Ressource Tod sollen folgende Funktionen implementiert werden:

1. per HTTP POST Request soll die Ressource angelegt werden können.

2. mittels eines HTTP GET Requests soll die Ressource zurückgegeben werden, falls sie zuvor
angelegt wurde.

3. per HTTP PUT Request soll die Ressource aktualisierbar sein.

4. über einen HTTP DELETE Request soll der Inhalt der Ressource gelöscht werden können.

Alle hier erwähnten Funktionen sollen nur verwendbar sein, wenn der Benutzer als Benutzer mit
der Rolle doctor authenti�ziert wurde. Für die Ressource Berichte gilt jedoch, dass sie auch von
Benutzern der Rolle patient verwendet werden können soll, da sonst die tägliche Dateneingabe durch
den Patienten nicht möglich wäre.

3.3.4 Funktionen der Ressource Benachrichtigungen

Auf der Ressource Benachrichtigungen wird eine Funktion benötigt, die nach einem HTTP GET
Request alle Benachrichtigungen zur Verfügung stellt, die das Backend für den aktuell eingeloggten
Benutzer generiert hat. Da die Analysen aktuell noch nicht implementiert sind, wird zusätzlich eine
Funktion implementiert, die per HTTP POST eine neue Benachrichtigung erstellt. Die Funktion kann
später auch dazu benutzt werden, reguläre Benachrichtigungen zu erstellen, falls Benachrichtigungs-
typen eingeführt werden, die nicht durch Analysen generiert werden sollen.

3.3.5 Funktionen der Ressource Fragen

Auf der Listenressource Fragen werden folgende Funktionen benötigt:

1. eine über HTTP GET ansprechbare Funktion um alle aktiven Fragen einer Kategorie abzurufen.

2. eine Funktion über die sich per HTTP POST eine neue Frage mit Antworten anlegen lässt.

Auf einer bestimmten Ressource Frage sollen folgende Operationen möglich sein:

1. über HTTP GET soll die einzelne Ressource Frage mit ihren Antworten zurückgegeben werden
können.

2. über HTTP PUT soll die Ressource inklusive der zugehörigen Antworten änderbar sein, insbe-
sondere soll der Status von aktiv auf inaktiv geändert werden können.

3. per HTTP DELETE soll die Ressource inklusiv ihrer Antworten gelöscht werden können.

Alle Funktionen der Ressourcen des Typs Frage und die der POST Funktion der Listenressource
sollen nur von Benutzern des Typs admin verwendet werden können. Für die GET Funktion der
Listenressource genügt es, ein authenti�zierter Benutzer zu sein.

33

3 Konzept

Abbildung 3.5: Resource Owner Password Credentials Flow

3.3.6 Command Ressourcen

Um mehrere Ressourcen auf einmal zu ändern oder nur teilweise zu ändern, werden Command
Ressourcen eingeführt. Die folgenden Funktionen sind zusätzlich notwendig:

• Um einen neuen Patienten inklusive Account anzulegen, soll es Ärzten möglich sein mit einem
POST Aufruf eine Account Ressource und eine Patienten Ressource anzulegen.

• Außerdem soll es einem Benutzer mit der Rolle admin ermöglicht werden, den Arzt eines
Patienten zu ändern.

3.3.7 Sicherheit

Zur Authenti�zierung soll OAuth 2.0 mit dem Pro�l Resource Owner Password Credentials verwendet
werden. Der Ablauf ist in Abbildung 3.5 dargestellt. Der Resource Owner, der Besitzer der Daten, gibt
seine Zugangsdaten auf dem Client ein und dieser sendet sie an den Resource Server. Der wiederum
stellt ein Access Token aus, mit dem man die API verwenden kann. Das Token kann verwendet
werden um Informationen über den Benutzer zu transportieren, sodass beispielsweise nicht bei jedem
Request an die API mit Hilfe der Datenbank überprüft werden muss, ob der Benutzer berechtigt ist,
die Operation auszuführen. Im Token kann auch eine Ablaufzeit gespeichert werden, nach der das
Token mit Hilfe eines Refresh Tokens erneuert werden muss. Ein Refresh Token wird gleichzeitig
mit dem Access Token ausgestellt und ist nur einmal einsetzbar. Mit einer begrenzten Gültigkeit
eines Access Tokens lässt sich das Risiko eines Tokens, das von einen Angreifer entwendet wurde,
verkleinern. Das Token und das Refresh Token müssen allerdings mit derselben Sorgfalt behandelt
werden wie ein normales Passwort. Um die Übertragung der Daten zu schützen, und weil OAuth 2.0
es voraussetzt, soll SSL verwendet werden.

34

3.4 Analysen

3.4 Analysen

In diesemAbschnitt werden einfache Analysen vorgestellt, die durch Gespräche mit Ärzten entstanden
sind und im Backend implementiert werden können. Es gibt zwei Arten von Analysen: die eine wertet
die täglichen Patienteneingaben anhand von Wenn-Dann-Regeln aus und die andere bestimmt die
Schwere der Erkrankung anhand von Untersuchungsergebnissen und der Anzahl der Exazerbationen
im letzten Jahr.

3.4.1 Tägliche Berichte

Die tägliche Dateneingabe durch Patienten wird anhand von Wenn-Dann-Regeln analysiert, um
frühzeitig Exazerbationen zu erkennen und zu verhindern. Die tägliche Dateneingabe besteht aus den
folgenden Fragen:

1. Hat sich Ihre Kurzatmigkeit verstärkt?

a) Können Sie Ihre tägliche Arbeit verrichten?

b) Können Sie sich selbst versorgen?

c) Können Sie laufen?

2. Müssen Sie mehr husten?

3. Hat sich Ihr Auswurf verändert?

a) Ist Ihr Auswurf gelb?

b) Ist Ihr Auswurf grün?

c) Ist Ihr Auswurf blutig?

4. Haben Sie Brustschmerzen?

5. Haben Sie die Dosierung der Medikamente erhöht?

Die Fragen 1a, 1b und 1c sollen nur beantwortet werden, wenn Frage 1 mit ja beantwortet wurde.
Entsprechendes gilt für Frage 3. Außerdem kann der Patient, wenn er über die entsprechenden Geräte
verfügt, die folgenden Messwerte eintragen:

• Sauersto�sättigung

• Puls

• Köpertemperatur

• maximale Ausatmungsgeschwindigkeit

Anhand der folgenden Regeln können die Daten analysiert werden:

• An zwei Tagen in Folge Frage 1 mit ja beantwortet -> Arzt anrufen.

• An einem Tag Fragen 1, 2 und 3 mit ja beantwortet -> Arzt anrufen.

35

3 Konzept

Stadium FEV1 (Sollwert = 100%) FEV1/FVC

1 >= 80% <70%
2 50-80% <70%
3 30-50% <70%
4 < 30% <70%

Tabelle 3.1: Berechnung des COPD Krankheitsstatdiums nach GOLD nach [copb]

• An einem Tag Frage 3a oder 3b mit ja beantwortet -> Arzt anrufen.

• An einem Tag Frage 3c mit ja beantwortet -> Ins Krankenhaus gehen.

• An zwei Tagen in Folge Frage 5 mit ja beantwortet -> Arzt anrufen.

• Fragen x Tage nicht beantwortet -> Erinnerung.

Wenn eine der Regeln zutri�t, soll der Patient und der Arzt des Patienten benachrichtigt werden.
Benachrichtigungen werden, je nach gewähltemModus, per SMS, E-Mail oder Push-Benachrichtigung
verschickt und in der Datenbank hinterlegt.

3.4.2 Schweregrad der Krankheit

Die zweite Analyse, die anhand der vorhandenen Daten implementiert werden kann, ist die Berech-
nung des Schweregrads nach Kriterien der Global Initiative for Chronic Obstructive Lung Disease
(GOLD) (siehe Abbildung 3.3). Der Schweregrad der COPD richtet sich nach

• der Lungenfunktion (ausgedrückt durch das Krankheitsstadium nach GOLD, siehe 3.1)

• der Anzahl der Exazerbationen im letzten Jahr

• dem Ergebnis des COPDAssessment Tests, wenn kein Ergebnis vorliegt, kann auch das Ergebnis
des Modi�ed British Medical Research Council (mMRC) Fragebogens verwendet werden.

Um das Krankheitsstadium nach GOLD zu berechnen (siehe Tabelle 3.1) benötigt man die folgenden
zwei Werte:

• die größtmögliche Menge an Luft, die Sie innerhalb von einer Sekunde ausatmen können (FEV1,
Forced Expiratory Volume in 1 second)

• die Luftmenge, die Sie nach tiefem Einatmen mit maximaler Geschwindigkeit insgesamt wieder
ausatmen können (FVC, forced vital capacity)

Mit dem Stadium, der Anzahl der Exazerbationen im letzten Jahr und dem Ergebnis des CAT (ersatz-
weise der mMRC-Wert) lässt sich die Schwere anhand der Tabelle 3.2 berechnen. Dabei gilt allerdings,
dass zuerst das Stadium und die Anzahl der Exazerbationen betrachtet werden und auf den höheren
Schweregrad der CAT-Wert (oder der mMRC-Wert) angewendet wird.

36

3.4 Analysen

Schweregrad Stadium Exazerbationen CAT oder mMRC

A 1 oder 2 weniger als zwei im letzten Jahr CAT < 10 oder mMRC 0-1
B 1 oder 2 weniger als zwei im letzten Jahr CAT >= 10 oder mMRC >= 2
C 3 oder 4 mind. zwei im letzten Jahr CAT < 10 oder mMRC 0-1
D 3 oder 4 mind. zwei im letzten Jahr CAT >= 10 oder mMRC >=2

Tabelle 3.2: Berechnung des COPD Schweregrads nach [copb]

37

4 Implementierung

Bisher wurden die Patienten in einer Microsoft Access Datenbank verwaltet. Diese Datenbank war
aber nur von einem Arzt und nur lokal verwendbar. Da das ECHO-Backend von vielen Benutzern
gleichzeitig benutzbar sein soll, ergeben sich folgende Anforderungen an die Implementierung: Mehr-
benutzerfähigkeit, Skalierbarkeit, Remote Access und Sicherheit der Patientendaten. Darum wurde ein
Relationales Datenbanksystem und eine geeignete skalierbare und performante Programmiersprache
für Netzwerkanwendungen verwendet.

4.1 Gesundheitsdaten

Als Datenbanksystem wurde MySQL vorgegeben. MySQL ist ein Open-Source-Datenbank und kann
dadurch auch als insofern sicher angesehen werden, als dass es keine eingebauten Hintertüren hat.
Außerdem existiert für MySQL ein vorde�nierter TOSCA Nodetype. Mit Hilfe von TOSCA könnte
eine MySQL Datenbank beispielsweise in einer sicheren und gesetzeskonformen Cloud deployed
werden.

4.1.1 MySQL Workbench

Die MySQLWorkbench ist ein visuellesWerkzeug für Datenbankarchitekten und Entwickler. Mit Hilfe
der Workbench wurden das Schema für die Gesundheitsdaten umgesetzt und die Stored Procedures
implementiert.

Durch Nutzung der Workbench während des Modellierens müssen keine langen SQL Skripte ge-
schrieben werden. Anstatt dessen kann in einer GUI einfach eine neue Tabelle angelegt und mit
Spalten versehen werden. Pro Spalte kann man den Datentyp festlegen und ob die Spalte Teils des
Primärschlüssels ist, NULL Werte erlaubt, nur eindeutige Werte erlaubt oder was der Standardwert
sein soll. Pro Tabelle lassen sich Indizes, Fremdschlüssel und Trigger de�nieren. Bei der De�nition von
Triggern wird man unterstützt, indem man nur den Auslösezeitpunkt auswählen muss, und die Work-
bench stellt dann bereits das Codegrundgerüst zur Verfügung. Abbildung 4.1 zeigt die Bearbeitung
der Accountstabelle des ECHO Schemas.

Wurde die Datenbank modelliert kann, man auch ER-Diagramme erstellen lassen. Die ER-Diagramme
können per Drag und Drop verändert werden und die Datenbank auch nur teilweise darstellen.
Außerdem kann der Editor zum Modellieren und Ändern des Schemas verwendet werden.

Über die MySQL Workbench kann man sich zu einem beliebigen MySQL Server verbinden und dort
das erstellte Schema anlegen lassen. Es ist auch möglich, nur Teile des Schemas anlegen zu lassen

39

4 Implementierung

Abbildung 4.1: Screenshot MySQL Workbench

oder vor dem Anlegen das generierte SQL Skript anzupassen. Sollte ein der Workbench erstelltes
Schema auf einem Server erstellt und dann nachträglich dort geändert worden sein, gibt es auch die
Möglichkeit, diese Änderungen von der Workbench in das lokale Schema übernehmen zu lassen.
Dabei kann man auch auswählen ob man alle Änderungen übernehmen will.

4.1.2 Access Control in MySQL

Die Rechtevergabe in MySQL erfolgt über GRANT und REVOKE Statements. Mit einem Statement
lassen sich Rechte an einen bestimmten Benutzer vergeben. Der Benutzer wird dabei in der Form
user@host angegeben. Dadurch können einem Benutzer unterschiedliche Rechte zugewiesen werden,
je nach dem von welchem Host er sich mit der Datenbank verbindet.

Bei Stored Procedures und Views kann über das DEFINER Attribut der Ersteller des Objekts ange-
geben werden. Falls keiner angegeben wird, wird der Benutzer, der das Objekt erstellt als DEFINER
eingetragen. Zusätzlich kann über das SQL SECURITY Attribut festgelegt werden, in welchem Kontext
die Routine oder der View ausgeführt werden soll. Die möglichen Werte hierbei sind: DEFINER und
DEFINER. Falls DEFINER angegeben wird, wird die Routine oder der View im Kontext des Erstellers
ausgeführt. Der ausführende Benutzer muss dabei lediglich das Recht haben, die Routine auszuführen
oder den View auszulesen. Während des Ausführens der Routine oder des Views werden aber die
Rechte des Erstellers verwendet. Je mehr Rechte der Ersteller hat, desto mächtigere Operationen kön-
nen von dem Objekt verwendet werden, unabhängig davon welche Rechte der Aufrufende hat. Wenn

40

4.1 Gesundheitsdaten

Typ Bedeutung

0 Sie müssen ihren täglichen Bericht ausfüllen!
1 Rufen Sie Ihren Arzt an!
2 Gehen Sie ins Krankenhaus!
3 Ihr Patient %name% soll Sie anrufen!
4 Ihr Patient %name% sollte ins Krankenhaus!
5 Ihr Patient %name% hat seit 2 Tagen keinen Bericht ausgefüllt!
6 Ihr Patient %name% hat seit 10 Tagen keinen Bericht ausgefüllt!

Tabelle 4.1: Benachrichtigungsarten

SQL SECURITY INVOKER angegeben wurde, können damit nur Operationen ausgeführt werden für
die der Aufrufende Rechte besitzt.

4.1.3 Datenmodell

In Abbildung 4.2 wird das vollständige Datenmodell der Gesundheitsdaten dargestellt. In der Tabelle
accounts hat jeder Benutzer des Systems einen Eintrag. Dort werden E-Mail Adresse und Passwort,
die als Zugangsdaten zum System dienen, gespeichert. Falls das Flag enabled auf false steht, bedeutet
dies, dass der Account inaktiv ist und der Benutzer sich nicht anmelden kann. Außerdem wird die
Rolle des Benutzers (entweder admin, doctor oder patient) festgelegt. Zusätzlich zu diesen Daten
werden die Einstellungen zu den Benachrichtigungen, die das System versenden kann, erfasst. Es
wird gespeichert ob und wie Benachrichtigungen verschickt werden sollen. Mögliche Benachrich-
tigungsmodi sind SMS, Push-Noti�cation oder E-Mail, dargestellt durch die Werte sms, push und
email. Um die Benachrichtigung per SMS zu unterstützen muss auch noch die Mobiltelefonnummer
gespeichert werden. Via Trigger wird vor Einfügen und Aktualiseren der Daten geprüft, ob die Rolle
und der Benachrichtigungsmodus einen gültigen Wert haben.

Die Benachrichtigungen, die jeder Benutzer des Systems erhalten kann, werden in der Tabelle noti�-
cations gespeichert. Neben dem Zeitpunkt der Erstellung wird bei jeder Benachrichtigung der Typ
der Benachrichtigung gespeichert (siehe Tabelle 4.1). Die Benachrichtigungen der Typen 0, 1 und 2
sind für Patienten vorgesehen, der Rest für Ärzte. Der Platzhalter %name% kann aus der patientId
abgeleitet werden.

In der Tabelle patients sind Details zu jedem Patient hinterlegt. Der dazugehörige Account wird in
accountId hinterlegt und der Account des Arztes in doctorId. Bei diesen Feldern wird auch überprüft,
ob die Rolle des angegebenen Accounts patient bzw. doctor ist. Zu jedem Patient gehört eine eindeutige
Versicherungsnummer und eine Akten-ID. Außerdem werden allgemeine Daten über den Patient
gespeichert, wie sein voller Name, Geschlecht, Geburtsdatum und Adresse. Der zweite Name des
Patienten sowie seine Festnetznummer sind optional.

Die Tabelle cats speichert alle COPD Assessment Tests und die Tabelle cqqs alle COPD Clinical
Quetionnaires. Die Ergebnisse der Fragebögen werden aus den einzelnen Antworten von einem

41

4 Implementierung

Abbildung 4.2: ER-Diagramm der Gesundheitsdaten

42

4.1 Gesundheitsdaten

Trigger berechnet. Der Trigger prüft zusätzlich noch ob der Status mit baseline oder exacerbation
angegeben wurde und setzt das diagnoseDate auf das aktuelle Datum, falls keines angegeben wurde.

Mit welchen Mitteln durchgeführt wird, wird in treatments gespeichert. Ein Trigger prüft die Werte
für status (baseline oder exacerbation), ltotDevice (cpap oder bipap) und ventilationDevice (concetrator,
cylinder, liquid) und setzt das Datum auf das aktuelle Datum falls kein Datum angegeben wird.

In der Tabelle charlsons werden einzelne Charlson Tests gespeichert. Das Ergebnis (totalCharlson)
wird durch einen Trigger berechnet, der ebenfalls überprüft ob mindestens eine Bedingung zutri�t
(entweder eine Krankheit oder noConditionAvailable) und das Datum auf das aktuelle Datum setzt,
falls keines angegeben wurde.

Die Tabelle readings erfasst alle Werte, die bei einer Untersuchung erfasst werden können. Ein
Trigger prüft den Wert für status (baseline oder exacerbation) und setzt das Datum.

Die tägliche Dateneingabe des Patienten wird in dailyReport gespeichert. Neben den Antworten auf
die ja/nein Fragen werden noch die Sauersto�sättigung im Blut, die am Tag zurückgelegte Wegstrecke,
die Körpertemperatur, die maximale Ausatmungsgeschwindigkeit und der Puls gespeichert.

Falls ein Patient verstirbt, wird seine Todesursache in deaths festgehalten. Falls die vorgesehenen
Ursachen nicht zutre�en, kann im Feld other ein Freitext gespeichert werden. Diese Tabelle ist die
einzige, bei der es pro Patient maximal einen Eintrag geben kann.

4.1.4 Implementierte Views

Um sicherzustellen, dass die Benutzer des Systems nur die Daten angezeigt bekommen, die sie sehen
dürfen, wurden Views implementiert. Die Views werden in diesem Abschnitt vorgestellt.

Anstatt für jeden Benutzer eine Reihe von Views zu erstellen, kann pro Tabelle auch nur ein View
erstellt werden, der die Rechte des aktuell angemeldeten Benutzers auswertet. Dazu werden drei
Hilfsfunktionen benötigt: user(), die Bestandteil von MySQL ist, und die selbstgeschriebene Funktion
getRole(). Beim Aufruf gibt user() den Benutzer mit dem man sich am Datenbanksystem angemeldet
hat zurück. Diese Funktion ist nicht zu verwechseln mit current_user(), die den Benutzer zurückgibt,
mit dem sich der Client authen�ziert hat. Ein Beispiel verdeutlicht den Unterschied: Sei userA der
Benutzer, mit dem man am Datenbanksystem angemeldet ist und der EXECUTE Rechte auf der Stored
Procedure f() hat. f() wurde von userB erstellt und verwendet die SQL SECURITY DEFINER Klausel.
Wenn user() in f() aufgerufen wird, wird userA zurückgegeben, während ein Aufruf von current_user()
userB zurückgibt.

Die Funktion getRole() (siehe Listing 4.1) gibt die ECHO-Rolle des aktuell angemeldeten Datenbankbe-
nutzers zurück. Dies funktioniert, da dem Datenbankbenutzer die Account-ID aus der Account-Tabelle
als Benutzername zugewiesen wurde (siehe Abschnitt Benutzerverwaltung).

In Listing 4.2 ist dargestellt, wie die Funktionen genutzt werden können um nur die Datensätze anzu-
zeigen, für die der aktuelle Benutzer berechtigt ist. Der View accounts_view stellt sicher, dass nur
Benutzer mit der Rolle admin auf alle Accounts Zugri� haben und andernfalls nur der eigene Account
angezeigt wird. Wenn getRole() die Rolle admin zurückgibt, werden keine Einschränkungen gemacht.
Andernfalls zeigt der View nur den Datensatz an, der zum aktuell angemeldeten Datenbankbenutzer

43

4 Implementierung

Listing 4.1 Stored Function: getRole()
CREATE DEFINER=`echo_db_usr`@`localhost` FUNCTION `getRole`() RETURNS char(10)
BEGIN

SELECT role into @ret from accounts where accountId = substring_index(user(), '@', 1);
RETURN @ret;

END

Listing 4.2 Auf der Tabelle Accounts de�nierter View
CREATE VIEW `accounts_view` AS

SELECT *
FROM `accounts`
WHERE

(CASE
WHEN (getRole() = 'admin') THEN (1 = 1)
ELSE (`accounts`.`accountId` = substring_index(user(), '@', 1))

END)

gehört. Der View patients_view ist ähnlich aufgebaut, nur dass nicht über accountId eingeschränkt
wird, sondern über doctorId. Allerdings wird für diesen View die Patiententabelle mit der Accountta-
belle gejoint, um die zusätzlichen Informationen (Mobiltelefonnummer und E-Mail-Adresse) für die
Ressource Patient bereitzustellen.

Neben den bereits vorgestellten Views wurden noch die folgenden erstellt: cats_view, ccq_view,
charlson_view, deaths_view, readings_view, dailyreports_view und treatments_view. Diese
Views sollen nur Benutzern der Rolle admin oder doctor zur Verfügung stehen. Sie sind alle gleich
aufgebaut und sollen nur die Datensätze anzeigen, die zu Patienten des aktuellen Benutzers gehören
oder alle falls der Benutzer die Rolle admin hat. In Listing 4.3 ist einer davon beispielhaft dargestellt. In
diesem View wird in der WHERE Klausel ebenfalls die Rolle überprüft. Wenn die Rolle des Benutzers
admin ist, wird nicht eingeschränkt. Andernfalls werden nur die patientIds angezeigt, die dem
aktuellen Benutzer zugeordnet sind.

Der View noti�cations_view zeigt die Berechtigungen des aktuellen Benutzers an. Zusätzlich wird
aus dem Typ der Benachrichtigung (siehe Tabelle 4.1) und der ID des Benutzers, über den berichtet
wird, ein String gebildet, der die Benachrichtigung lesbar macht.

Listing 4.3 Auf der Tabelle CATs de�nierter View
CREATE VIEW `cats_view` AS

SELECT *
FROM `cats`
WHERE

(CASE
WHEN (getRole() = 'admin') THEN (1 = 1)
ELSE `cats`.`patientId` in (

SELECT `patients`.`patientId`
FROM `patients`
WHERE (`patients`.`doctorId` = substring_index(user(), '@', 1)))

END)

44

4.1 Gesundheitsdaten

4.1.5 Implementierte Stored Procedures

In diesem Abschnitt werden die Stored Procedures beschrieben, die im Rahmen dieser Arbeit geschrie-
ben wurden. Die Stored Procedures dienen primär dazu den schreibenden Zugri� für den REST-Service
zu kapseln. Alle im folgenden vorgestellten Stored Procedures haben dafür den Benutzer echo_db_adm
als De�ner zugewiesen bekommen und werden mit dessen Rechten ausgeführt. Das bedeutet, dass der
Benutzer echo_db_adm auf allen benutzten Views und Tabellen Lese- und Schreibrechte benötigt, aber
dadurch allen anderen Datenbankbenutzern für den Zugri� auf die Daten, die Rechte zum Ausführen
der Stored Procedures genügen.

Die Methode accountsCreate() dient dazu einen neuen Account anzulegen. Falls ein Benutzer der
Rolle doctor einen Account anlegen will, wird überprüft ob der neue Account die Rolle patient
hat. Wenn nicht wird ein Fehler ausgegeben, da Benutzer der Rolle doctor nur Accounts der Rolle
patient anlegen dürfen und keine der Rollen admin oder doctor. Anschließend wird der Account
über ein prepared Insert Statement erstellt. Außerdem wird ein Datenbankbenutzer angelegt, wobei
die ID des angelegten Backendnutzers als Benutzername verwendet wird. Als Passwort wird eine
Konkatenation aus der ID des neues Benutzers und des Parameters pwdPre�x verwendet. Dieses
Prä�x sollte für alle Benutzer gleich sein. Durch ihn soll es zum einen für Nutzer, die Zugri� auf das
System haben, schwerer werden das Passwort des Benutzers zu erraten. Zum anderen kann dadurch
das Passwort in der REST API „errechnet“ werden, wenn es nötig ist, sich mit einem anderen Benutzer
zur Datenbank zu verbinden. Um dem neu angelegten Datenbankbenutzer alle erforderlichen Rechte
zuzuteilen, muss zusätzlich die Funktion grantRolePermissions() aufgerufen werden (siehe Abschnitt
Benutzerverwaltung).

Mit der Methode accountsUpdate() lässt sich ein Account bearbeiten. Die Rolle des Patienten und
das enabled-Flag lassen sich durch diese Methode nicht ändern. Um zu überprüfen, ob der Benutzer
den angegebenen Account ändern darf, wird überprüft, ob der zu ändernde Account in accounts_view
enthalten ist. Falls er das nicht ist, wird mit einem Fehler abgebrochen. Wenn kein Fehler geworfen
wird, wird der angegebene Account aktualisiert. Dabei wird noch unterschieden, ob das Passwort
als leerer String übergeben wurde. Falls ein leerer String übergeben wurde, wird das Passwort nicht
geändert. Abschließend wird der Account über ein prepared Statement aktualisiert und die Anzahl
der betro�enen Datensätze zurückgegeben. Da es nicht vorgesehen ist, dass ein Account zu löschen,
sondern nur zu deaktivieren, ändert die Methode accountsDisable() das enabled Flag, nachdem
überprüft wurde, ob der Benutzer die Rolle admin hat.

Um einen neuen Patient anzulegen kann die Methode patientsCreate() verwendet werden, die ein
prepared Statement verwendet, um die Daten einzufügen. Über die Methode patientsRessourceUp-
date() sollen alle Daten bearbeitet werden können, die durch die Ressource Patient des REST Services
dargestellt werden. Das sind zum einen alle Daten der Patiententabelle und die E-Mail Adresse und
die Mobiltelefonnummer, die in der Accounttabelle gespeichert werden. Zuerst wird über den pa-
tients_view überprüft, ob der aktuelle Benutzer berechtigt ist, den Patienten zu bearbeiten. Dann
werden in einer Transaktion beide Tabellen aktualisiert. Wenn ein Patient gelöscht werden soll, kann
dies per patientsDelete() getan werden.

Für die restlichen Tabellen wurden folgende Stored Procedures erstellt, um Daten zu erstellen: cat-
Create(), ccqCreate(), charlsonCreate(), deathCreate(), reportCreate(), readingsCreate() und

45

4 Implementierung

Abbildung 4.3: ER-Diagramm der Berechtigungstabellen

treatmentCreate(). Alle diese Methoden prüfen mit Hilfe der patients_view, ob der aktuelle Benutzer
Zugri� auf den betre�enden Patient hat. Wenn der Benutzer die Rechte hat, werden die Daten über
ein prepared Statement eingefügt. Die Methoden catUpdate(), ccqUpdate(), charlsonUpdate(),
deathUpdate(), reportUpdate(), readingsUpdate() und treatmentUpdate() funktionieren ähn-
lich und dienen dazu einen Datensatz zu bearbeiten. Mit der Methode deleteExamRecord() lässt
sich ein Datensatz aus den Tabellen cats, ccqs, charlsons, reports, readings und treatments löschen.
Dazu muss der Name der Tabelle übergeben werden und der Aufrufende muss die Rolle admin haben
oder die Rolle doctor und der Arzt des betre�enden Patienten sein.

Für den lesenden Zugri� auf die Tabellen der ärztlichen Untersuchungen wurden Stored Procedures
implementiert, damit unterschieden werden kann, ob der Arzt keinen Zugri� auf die Daten des
angeforderten Patienten hat, oder noch keine Daten zu diesem Patienten existieren. listExam() und
listSingleExam() dienen dem Zugri� auf die Tabellen cats, ccqs, charlsons, readings und treatments,
wobei man die gewünschte Tabelle als Parameter übergibt. Außerdem nehmen sie auch Parameter
entgegen, die Pagnierung unterstützen. Da für die Tabelle death Paginierung keinen Sinn macht,
wurde die Methode deathGet() implementiert. Diese Stored Procedures dürfen nur von Benutzern der
Rolle doctor aufgerufen werden. Da Patienten und Ärzte lesenden Zugri� auf die täglichen Berichte
benötigen, wurden die Methode reportList() implementiert, die ebenfalls Paginierung unterstützt.
Für den Zugri� auf ein einzelnen Bericht wurde reportListOne() erstellt.

Für den OAuth Funktion, die die Token erstellt, wurde eine Funktion login() geschrieben, die Benut-
zername und Passwort entgegen nimmt. Diese Funktion prüft über ein prepared Statement, ob die
Informationen gültig sind und gibt, wenn sie gültig sind, den entsprechenden Datensatz des Benutzers
zurück aus dem dann das Token erstellt werden kann.

4.1.6 Rechtevergabe

Um das Rechtemanagementsystem der Datenbank zu nutzen, wird pro Benutzer im ECHO-System
ein Datenbankbenutzer erstellt. Dem Datenbankbenutzer werden dann anhand der ECHO-Rolle
Rechte auf den Tabellen und den gespeicherten Prozeduren zugewiesen, die er im Rahmen seiner
Rolle benötigt. Sobald über die REST API ein Benutzer angelegt wird, erstellt die zuständige Stored
Procedure einen Datenbankbenutzer, wobei die accountId als Benutzername verwendet wird. Um die
Sicherheit zu erhöhen wird, der Datenbankaccount auf localhost beschränkt.

ImAnschluss kannmit der Routine grantRolePermissions() der Datenbankbenutzer mit den benötigten
Rechten ausgestattet werden. Da MySQL keine Rollen unterstützt, müssen die Rechte mittels mehrerer
GRANT Statements vergeben werden. Die Routine verwendet die Tabellen perm_roles_views und
perm_roles_procedures, um die Statements zu erzeugen. In den Tabellen ist hinterlegt, welche Rolle

46

4.2 RESTful API

Zugri� auf welche Views bzw. Stored Procedures hat (siehe Abbildung 4.3). Die zusätzliche Routine
grantRolePermissions() ist notwendig, da es nicht erlaubt ist, in einer Funktion A mittels GRANT
Statements Rechte für die Funktion A zu vergeben.

Damit sichergestellt ist, dass Benutzer neue Benutzer erstellen können, wird nachdem ein Datenbank-
benutzer mit der Rolle admin oder doctor erstellt wurde, dem Account ebenfalls erlaubt, die Funktion
grantRolePermissions() auszuführen.

4.1.7 Schemaexport aus Microsoft Access

Vor dem Start des ECHO Projekts wurden die Patientendaten in einer Accessdatenbank verwaltet. Die
Access Datenbank war mit einer gra�schen Ober�äche versehen über die Daten eingegeben werden
konnten. Die gra�sche Ober�äche konnte mit Hilfe von Visual Basic programmiert werden. Durch
Visual Basic wurde beispielsweise gesteuert, wann die Daten in der Ober�äche gespeichert werden,
oder wann Berechnungen durchgeführt werden. Der Nachteil dieser Lösung war, dass es nur lokal
verwendbar war und nicht mehrbenutzerfähig. Außerdem wäre die Integration in ein System, über
das die Patienten zuverlässig selbst Daten eintragen können, nicht möglich gewesen. Um im ECHO
Backend dieselben Daten verwalten zu können und die selbe Funktionalität zu haben, wurde mit
Hilfe der Accessdatenbank ein Datenbankschema für eine MySQL Datenbank erstellt.

Die Tabellen und Spalten wurden dabei von Hand extrahiert und mit MySQL Workbench wurde
daraus ein Schema erstellt. Nach Rücksprache mit den am Projekt beteiligten Ärzten wurden die
Tabellen Basic (Patientendaten), CCQWeek, Charlson, Catscale und Medication, mit Änderungen,
übernommen.

4.2 RESTful API

Für die Implementierung der RESTful HTTP-API wurde Node.js gewählt Node.js ist ein JavaScript-
Framework zur Entwicklung von skalierbaren serverseitigenWebanwendungen. Anders als klassische
Webserver, die pro eingehendem Request einen Thread starten, nutzt node.js nur einen einzigen
Thread zur Bearbeitung der Anfragen. Damit dieser Thread nicht blockiert, muss er seine Arbeit
wenn möglich delegieren. Dabei pro�tiert node.js davon, dass bei den meisten Anfragen externe
Ressourcen wie Datenbanken oder Dateisysteme involviert sind. Während die Threads klassischer
Webserver viel Zeit mit Warten verbringen, wenn externe Ressourcen involviert sind, nimmt der
node.js Thread die Anfrage entgegen, bearbeitet sie bis zu dem Punkt an dem mit der externen
Ressource interagiert werden soll, startet die Interaktion und legt die Anfrage beiseite, bis eine
Antwort der Ressource vorliegt. Dann kümmert er sich um die nächste Anfrage bis zu deren erster
Interaktion mit einer Ressource. Wenn eine Antwort einer Ressource vorliegt, wird der Serverthread
über eine Callbackfunktion informiert und die Anfrage wird weiterbearbeitet. [Rod12]

Da sich JSON aufgrund der JavaScript-Basis von node.js nativ verarbeiten lässt und node.js die
Entwicklung von HTTP-basierten Webdiensten einfach macht, emp�ehlt sich node.js als Basis für
JSON-basierte REST-Dienste. [Rod14]

47

4 Implementierung

Zur Dokumentation der RESTful API wurde Swagger eingesetzt. Swagger ist eine Spezi�kation und ein
Framework zum Beschreiben, Erstellen, Konsumieren und Visualisieren von RESTful Webservices.

4.2.1 Tokenbasierte Authentifizierung

Um die API zu verwenden, muss man sich authenti�zieren. Dafür wird ein Token benötigt, das mit
dem Authorization Header wie folgt übergeben wird:

Authorization: Bearer <access_token>

Bearer bezeichnet dabei den Typ des verwendeten Tokens und das Authenti�kationschema. Wenn
der Typ als Bearer angegeben wird, ist das Token für den Anwender einfach nur ein String, der keine
für den Client erkennbare Information enthält. Ist das Token nicht vorhanden oder fehlerhaft, wird
der Request mit dem HTTP Statuscode 401 abgewiesen.

Um ein Access Token zu erhalten, muss ein Request per HTTP POST an den Token-Endpoint geschickt
werden. In der Prototypimplementierung ist der Token Endpoint /login. Dieser Endpoint implementiert
das OAuth 2.0 Protokoll mit dem Grant�ow Ressource Owner Password Credentials. Dieser Flow
tauscht die korrekte Kombination aus Benutzername und Passwort aus gegen ein Access Token (siehe
Abbildung 3.5). Das OAuth 2.0 Protokoll schreibt vor, dass der Request Body wie folgt aussehen muss,
wenn ein Token ausgestellt werden soll:

grant_type=password&username=<Benutzername>&password=<Passwort>

Der Parameter grant_type gibt dabei den Grant�ow an, damit der OAuth 2.0 Server erkennen kann,
nach welchem Flow verfahren werden soll. Der Wert des Parameters („password“) steht hier für den
Ressource Owner Password Credentials Flow.

Für die Implementierung des OAuth 2.0 Servers wurde das Node.js Modul oauth2orize verwendet.
Wenn der OAuth 2.0 Server einen Request erhält, der wie oben beschrieben aufgebaut ist, werden
Benutzername und Passwort mit Hilfe der Datenbank validiert. Wenn die Kombination aus Benut-
zername und Passwort stimmt, wird ein Token ausgestellt. In diesem Token werden die Account ID,
die Rolle des Benutzers, der Timestamp, an dem das Token erstellt wurde und der Timestamp, an
dem das Token abläuft, kodiert. Um das Token zu erstellen, wird das Node.js Modul jsonwebtoken
verwendet. Ein mit diesem Modul erstelltes Token ist ein JSON Web Token (JWT). Ein JSON Web
Token ermöglicht es, JSON Objekte signiert auszutauschen. Es besteht aus drei Teilen: einem Header,
den Informationen, die es beinhaltet und der Signatur, mit der man sicherstellen kann, dass die
Informationen nicht geändert wurden.

Die HTTP Endpoints der REST API werden mit dem Modul passport.js geschützt. Jedes Mal wenn
ein Request ein Token enthält, wird dieses Token anhand seiner Signatur geprüft. Wenn das Token
geändert wurde oder abgelaufen ist, wird die weitere Verarbeitung des Requests abgebrochen.

Bei jedem Login wird neben einem Access Token ein Refresh Token ausgestellt. Wenn ein Access
Token abgelaufen ist, kann das Refresh Token verwendet werden, um ein neues Access Token zu

48

4.2 RESTful API

Listing 4.4 Node.js mit Express: Hello World
var express = require('express');
var app = express();

app.use(function(req, res, next){
console.log('Time: %d', Date.now());
next();

});

app.get('/', function(req, res, next){
res.send('Hello World');

});

app.listen(3000);

bekommen ohne Benutzername und Passwort erneut eingeben zu müssen. Das Refresh Token wird
nach der Erstellung in einer HashMap gespeichert und nach dem Einsatz des Tokens wieder aus der
HashMap gelöscht. Jedes Refresh Token ist damit nur einmal einsetzbar. Falls ein Refresh Token in
ein Access Token getauscht werden soll, muss eine HTTP Nachricht mit folgendem Body übermittelt
werden:

grant_type=refresh_token&refresh_token=<Refresh Token>

4.2.2 Implementierung der API Funktionen

Zur Implementierung des REST Service wurde das Express-Framework verwendet, das die Ent-
wicklung von Webanwendungen vereinfachen soll. Eine mit dem Express-Framework geschriebene
Anwendung ist im Grunde genommen ein Stack von nacheinander aufgerufenen Funktionen, soge-
nannter Middleware. Diese Middleware-Funktionen bekommen als Parameter den HTTP Request
(req), die HTTP Response (res) und einen Verweis auf die nächste Funktion im Middlewarestack (next)
übergeben. In jeder Middleware-Funktion kann beliebiger Code ausgeführt werden.

In Listing 4.4 ist ein Beispiel für eine einfache Express-Anwendung dargestellt. In diesem Fall besteht
der Stack aus zwei Middlewarefunktionen. Eine Middlewarefunktion kann entweder über die Funktion
app.use() oder app.VERB() eingebunden werden, wobei VERB hier für die HTTP Methoden steht. Mit
use() kann dabei eine beliebige Funktion in den Stack eingebunden werden, und mit einem HTTP
Verb kann ein HTTP Endpunkt erzeugt werden. Dabei kann eine Middleware auch nur für einen
bestimmten Pfad aktiv sein. Die erste Middleware gibt auf der Konsole die aktuelle Zeit aus und
ruft dann mittels next() die nächste Funktion des Stacks auf. Da für diese Funktion kein expliziter
Pfad angegeben wurde, würde sie auch aufgerufen werden, wenn eine Funktion für einen beliebigen
anderen Pfad de�niert würde. Die nächste Funktion im Stack sendet dann „Hello World“ an den
Client. Mit res.send() kann nicht nur am Ende des Stacks eine Antwort gesendet werden, sondern
auch an einer beliebigen Stelle im Stack die Bearbeitung abgebrochen werden. Ein Beispiel wäre eine
Middleware zur Überprüfung der Zugangsberechtigung. Ist der Client berechtigt kann mittels next()
die nächste Funktion im Stack aufgerufen werden. Ist er nicht berechtigt, kann per res.send() die
Verarbeitung des Requests abgebrochen und ein Fehler zurückgegeben werden.

49

4 Implementierung

Abbildung 4.4:Middlewarestack des REST Services

Der Middlewarestack, der für den REST Service implementiert wurde, besteht aus drei Funktionen
(siehe Abbildung 4.4). Der Body-Parser ist die erste Funktion von der ein Request verarbeitet wird.
Da ein JSON Objekt nur als String vom Client zum Server übertragen werden kann, muss der String
wieder in ein JSON Objekt umgewandelt werden. Falls der Body die Stringrepräsentation eines validen
JSON Objekts enthält, wird ein JSON Objekt erstellt. Dieses Objekt kann dann über die Variable
req.body angesprochen werden. In der nächsten Middlewarefunktion werden die Authenti�zierungs-
informationen im Authorization Header überprüft. Enthält er ein valides Token, wird die Funktion,
die den HTTP Request schließlich verarbeiten soll, aufgerufen. Wenn das Token nicht valide ist oder
der Authorization Header leer ist, wird der HTTP Statuscode 401 zurückgegeben. Die Informationen
aus dem Token werden in der Variable req.user gespeichert. Eigentlich sollte die Autorisierung auch
eine Funktion im Stack sein. Da es aber kein Node.js Autorisierungsmodul gibt, das mit Subressourcen
umgehen kann, wurde diese Funktionalität in die verarbeitende Funktion ausgelagert.

Die Verarbeitende Funktion im Middlewarestack stellt immer einen HTTP Endpoint dar. Diese
Funktionen sind immer nach dem folgenden Muster aufgebaut:

1. Anhand der Rolle wird überprüft, ob der Benutzer berechtigt ist diese Funktion auszuführen.

2. Eine Verbindung zur Datenbank wird aufgebaut.

3. Aus der Variable req.user wird der aktuelle Benutzer ausgelesen. Die Datenbank wird angewie-
sen, diesen Benutzer für die Verbindung zu nutzen. Das Passwort für den Datenbankbenutzer
kann aus dem für alle Nutzer gültigen Prä�x und der ID des Benutzers berechnet werden.

4. Die SQL Anweisung wird aus dem Body des HTTP Requests (req.body), den Query-Parametern
(req.query) und den Platzhaltern in der URI (req.params) erzeugt und abgeschickt.

5. Das Ergebnis der SQL Anweisung wird als JSON Objekt zurückgegeben. Anschließend wird
das JSON Objekt verarbeitet und dem Client eine Antwort geschickt.

Der Übergang zwischen den Schritten stellt immer einen asynchronen Aufruf dar, wie er in Node.js
häu�g verwendet wird.

50

4.2 RESTful API

Listing 4.5 Links in JSON mit Hypertext Application Language
"_links": {

"self": { "href": "<Link zur Ressource>"}
"first": { "href": "<Link zur ersten Seite der Listenressource>"}
"prev": { "href": "<Link zur vorherigen Seite der Listenressource>"}
"next": { "href": "<Link zur naechsten Seite der Listenressource>"}

}

4.2.3 Repräsentation

Der Body des HTTP Requests beinhaltet die Informationen, die an den Server gesendet wird und der
Body der HTTP Response die Informationen, die an den Client zurückgegeben werden. Der Internet
Media Type der bei Request und Response genutzt werden wird, ist „application/hal+json“. Der Body
wird jeweils die JSON Daten enthalten und zusätzliche Links die mit Hypertext Application Language
beschrieben werden. Die Zeichenkodierung wird UTF-8 sein. Es ist möglich, das System in Zukunft
um weitere Repräsentationen zu ergänzen. Beispielsweise könnte eine Unterstützung für XML oder
PDF hinzugefügt werden.

Um das REST-Konzept Hypermedia as the engine of application state umzusetzen, werden die Ressour-
cen mit Links verknüpft. Um die Links in JSON darzustellen, wird Hypertext Application Language
genutzt. In Listing 4.5 ist ein Beispiel dargestellt. Das Beispiel stellt die Links eines Ausschnitts
einer Listenressource dar. Dabei wird durch die Links ein Link auf die Ressource selbst beschrieben,
ein Link auf die erste Seite der Listenressource und Links für die nächste und vorherige Seite der
Listenressource.

4.2.4 Swagger

Zu Beginn der Arbeit wurde parallel zur Entwicklung des REST Services ein Browser-Prototyp
entwickelt. Dieser Prototyp sollte dazu dienen, die Möglichkeiten des REST Services darzustellen.
Es war allerdings sehr aufwändig ,den Prototyp um neue Funktionen des Services zu erweitern und
ebenso aufwändig, den Prototyp an Änderungen der API anzupassen. Deswegen wurde nach einer
Möglichkeit gesucht, die Funktionen des REST Service zu testen, ohne nach einer Änderung der
Funktionen eine Anwendung anpassen zu müssen. Swagger UI bietet die Möglichkeit, alle Funktionen
eines REST Services mit Beschreibungen versehen darzustellen und zu testen.

Swagger UI ist Teil des Swagger Projekts. Das Ziel des Swagger Projekts ist es einen Standard für ein
sprachunabhängiges Interface für REST APIs zu de�nieren. Dieses Interface soll es Menschen und
Computern ermöglichen alle Funktionen einer REST API zu �nden und zu verstehen, ohne dass sie
Zugri� auf eine Dokumentation oder den Source Code haben. Eine API, die die Swagger-Spezi�kation
implementiert, stellt Daten im JSON Format zur Verfügung, die die Struktur der REST API beschreiben.
Diese können entweder manuell erzeugt und durch den Server bereitgestellt werden, oder aus dem
Source Code heraus erzeugt werden. Swagger UI verwendet diese Daten um die Funktionen der API
anzuzeigen und sie anzusprechen. Neben Informationen über die Struktur des Services lassen sich
auch Models de�nieren, die beschreiben, wie die Daten aussehen, die von einer bestimmten Funktion
verarbeitet oder generiert werden. Durch ein Model lässt sich beispielsweise beschreiben, welche

51

4 Implementierung

Datentypen die Felder haben oder welche Einschränkungen zusätzlich gelten. Ein Model kann auch
zur verbalen Beschreibung der Felder verwendet werden.

Eine Instanz von Swagger UI kann theoretisch mit jeder REST API interagieren, die die Swagger
Spezi�kation umsetzt. Um eine swaggerunterstützte REST API mit Swagger UI zu erkunden, muss
man auf der Swagger UI Seite die Adresse der Swagger Informationen der REST API eintragen.

In Abbildung 4.5 ist ein Teil der Swagger-UI-Darstellung der ECHO REST API dargestellt1. Zu sehen
sind die ausgeklappten Ressourcen accounts und patients und ihre Operationen mit zugehörigen
Beschreibungen. Wenn der Benutzer nun auf eine der Operationen klickt, wird diese auch ausgeklappt
und der Benutzer kann sie testen ohne einen Client implementieren zu müssen. Wenn eine Operation
aufgeklappt wird, wird auch sichtbar, welche Daten als Eingabe erwartet werden. Über Swagger UI
ist es möglich, einer REST API Eingabedaten als Bestandteil der URL (Query), als HTTP Header, als
Teil des HTTP Bodys oder als Teil des Pfads (im Screenshot beispielsweise durch {id} dargestellt)
zu übergeben. Wenn für die Eingabedaten ein Model hinterlegt ist, wird das Model auch angezeigt.
Daraus lässt sich dann ablesen, welche Datentypen oder sonstige Einschränkungen für die Felder
des Models gelten. Das Model kann auch angezeigt werden, wenn die Funktion Daten zurückliefert.
Durch ein vollständiges Model kann der Benutzer nachvollziehen, was die Daten aussagen, die die
Funktion zurückgibt.

Um mit Node.js und dem Express-Framework einen Service zu schreiben, der Swagger unterstützt,
kann swagger-node-express benutzt werden. Wie in Listing 4.6 dargestellt, müssen die Funktionen
dann nicht mehr bei Express registriert werden, sondern, mit zusätzlichen Metainformation, bei der
Swagger Implementierung. Als Beispiel wurden hier Metainformationen einer Funktion genommen,
die auch in Abbildung 4.5 zu sehen ist.

Außer für Node.js stehen Implementierungen für viele andere Programmiersprachen, wie zum Beispiel
Java, PHP oder Python, zur Verfügung. Außerdem gibt es Tools, die aus der Swagger Spezi�kation
eines Services Client- und Serverstubs in verschiedenen Progammiersprachen erstellen.

1Der Prototyp des ECHO Backends und eine passende Swagger-UI-Version sind unter http://echo.informatik.
uni-stuttgart.de erreichbar.

52

http://echo.informatik.uni-stuttgart.de
http://echo.informatik.uni-stuttgart.de

4.2 RESTful API

Abbildung 4.5: Screenshot der Swagger-UI-Darstellung der ECHO API

53

4 Implementierung

Listing 4.6 Node.js mit Express: Swagger Integration
// Load module dependencies.
var express = require("express") , swagger = require("swagger-node-express");
// Create the application.
var app = express();
// Couple the application to the Swagger module.
swagger.setAppHandler(app);

var findById = {
'spec': {

summary : "Get specific Account (Roles: all)",
path : "/accounts/{id}",
method: "GET",
type : "Account",
nickname : "accountsFindById",
parameters : [swagger.pathParam("id", "ID of the Account", "string")],
responseMessages : [swagger.errors.notFound('id')]

},
'action': findById()

};

swagger.addGet(findById);

app.listen(3000);

54

5 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden Teile des Backends für das deutsch-griechische Forschungsprojekt
ECHO (Enhancing Chronic patients’ Health Online) entwickelt. Das Ziel des Projekts ist es mit Hilfe
von Cloud-Computing-Technologien, Data Mining und Smartphones die Situation von Patienten mit
chronischen Lungenkrankheiten zu verbessern. Unter anderem soll es für den Patienten möglich sein,
jeden Tag Fragen via Smartphone zu beantworten. Diese Antworten sollen bei der Früherkennung
von dauerhaften Verschlimmerungen der Krankheit, auch Exazerbationen genannt, helfen.

Vor dem Start des ECHO Projekts wurden die Patientendaten und Untersuchungsergebnisse mit Hilfe
einer Microsoft Access Datenbank verwaltet.
Die Access Datenbank war nur lokal und nur von einem Arzt verwendbar. Außerdemwar kein Remote
Access auf die Access Datenbank möglich, der aber nötig gewesen wäre für die tägliche Dateneingabe
der Patienten. Aus diesem Grund war es nötig, die Access Datenbank in eine relationale Datenbank zu
überführen. Dazu wurde aus der Access Datenbank von Hand ein SQL-Schema erzeugt. Anschließend
wurden alle Funktionen der Access Datenbank untersucht und die relevanten Funktionen in Triggern
umgesetzt. Nach einem Gespräch mit den am Projekt beteiligten Ärzten wurde das Schema angepasst
und nur die benötigten Tabellen übernommen.

Um die Datensicherheit zu gewährleisten wurden Views verwendet und Rollen eingeführt. Die
eingeführten Rollen sind:

1. admin, für administrative Aufgaben

2. doctor, für Ärzte, die über das System ihre Patienten überwachen

3. patient, für Patienten

Für jeden Benutzer des Backends wurde zusätzlich ein Datenbankbenutzer angelegt, um das Rechte-
system der Datenbank nutzen zu können. Der Benutzername für die Datenbank wird dabei aus der
Account ID im ECHO Backend abgeleitet. Der Benutzername kann so benutzt werden um dynamische
Views zu erzeugen, die Patientendaten in Abhängigkeit davon anzeigen, welcher Arzt eingeloggt ist.
Dadurch kommt man mit einem View pro Tabelle aus.

Um die Daten gegen SQL Injections abzusichern, wurden Stored Procedures, die Prepared Statements
verwenden, für den schreibenden Zugri� auf die Gesundheitsdaten implementiert.

Die Kommunikation zwischen dem Backend und den Smartphones beziehungsweise den Browseran-
wendungen wird durch eine RESTful API ermöglicht. Die Ressourcen der API werden über URIs
adressiert und unterstützen JSON als Repräsentation. Damit das REST Konzept der Verlinkungen
umgesetzt werden kann, wurden die JSON Daten mit Hypertext Application Language erweitert, um
die Beziehungen der Ressourcen untereinander zu modellieren. Um die Sicherheit der Daten während
des Transports zu gewährleisten, wird TLS eingesetzt.

55

5 Zusammenfassung und Ausblick

Für die Authenti�zierung verwendet die RESTful API OAuth 2.0 mit dem Authorization Flow Resource
Owner Password Credentials. Dabei wird gegen eine gültige Kombination aus Benutzername und
Passwort ein Access Token zurückgegeben, mit dem die API dann verwendet werden kann. Das Token
ist ein JSON Webtoken (JWT), bei dem der Inhalt Base64 kodiert ist, aber eine Änderung unmöglich
ist, da der Inhalt signiert wurde. In dem Token sind die Rolle und die Account ID des Benutzers
gespeichert, für den das Token ausgestellt wurde. Außerdem enthält das Token den Zeitpunkt an dem
es erstellt wurde und den an dem es abläuft. Wenn es abläuft, kann es nicht mehr eingesetzt werden.
Dann kann das Refresh Token eingesetzt werden, um ein neues Access Token zu erhalten. Der Einsatz
eines dieses Tokens hat den Vorteil, dass das Passwort des Benutzers nicht gespeichert werden muss,
sondern nur das Access Token und dass die RESTful API anhand des Tokens entscheiden kann, ob
der Benutzer berechtigt ist, die Funktion zu verwenden oder nicht.

Ausblick

Im Rahmen dieser Arbeit wurde ein Konzept entwickelt, um die Daten des Backends zu schützen. Es
wurde kein Schutz auf Dateisystemebene realisiert, um die Daten zum Beispiel im Fall eines Diebstahls
der Festplatte zu schützen oder falls ein Angreifer Zugri� auf das Dateisystem erlangt. Dies könnte
man durch eine Verschlüsselung der Datenbankdateien erreichen.

Die Analysekomponente, die die in Kapitel 3.4 de�nierten Analysen durchführt, kann aufbauend
auf dieser Arbeit implementiert werden. Das sind zum einen die Analyse zur Auswertung der tägli-
chen Dateneingabe durch den Patienten, die der frühzeitigen Erkennung und Verhinderung einer
Exazerbation dient und die Analyse zur Berechnung des COPD Schweregrads, der unter anderem
Rückschlüsse auf das Exazerbationsrisiko erlaubt.

Das ECHO Backend könnte auch noch um die Fähigkeit zum Autoscaling erweitert werden. Des
Weiteren kann das Verhalten des Systems unter Last untersucht und anschließend optimiert werden.

Außerdem könnten noch Installationsskripte zum automatischen Deployment im Krankenhaus oder
in der Cloud geschrieben werden. Um das Backend in der Cloud sicher zu deployen, könnte zusätzlich
noch ein TOSCA Cloud Service Archive (CSAR) erstellt werden.

56

Literaturverzeichnis

[BKK+14] M. Bitsaki, C. Koutras, G. Koutras, F. Leymann, B. Mitschang, C. Nikolaou, N. Siafa-
kas, S. Strauch, N. Tzanakis, M. Wieland. An Integrated mHealth Solution for
Enhancing Patients’ Health Online. In Proceedings of the 6th European Confe-
rence of the International Federation for Medical and Biological Engineering (MBEC’14),
S. 1–4. International Federation for Medical and Biological Engineering (IFMBE),
2014. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=INPROC-2014-61&engl=. (Zitiert auf den Seiten 10 und 26)

[Boy12] R. Boyd. Getting Started with OAuth 2.0. O’Reilly Media, 2012. (Zitiert auf Seite 24)

[cat] COPD Assessment Test. URL http://www.catestonline.org/english/index_German.
htm. (Zitiert auf Seite 28)

[copa] Chronisch obstruktive Lungenerkrankung (COPD). URL http://www.copd-aktuell.de/.
(Zitiert auf Seite 10)

[copb] COPD: Diagnose. URL www.onmeda.de/krankheiten/copd-diagnose-3112-5.html.
(Zitiert auf den Seiten 36 und 37)

[DPNB11] M. Deng, M. Petkovic, M. Nalin, I. Baroni. A Home Healthcare System in the Cloud–
Addressing Security and Privacy Challenges. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, S. 549–556. IEEE, 2011. (Zitiert auf Seite 15)

[Eur] Europäisches Parlament. Richtlinie zum Schutz natürlicher Personen bei der Verarbeitung
personenbezogener Daten und zum freien Datenverkehr. URL http://eur-lex.europa.
eu/legal-content/DE/TXT/?uri=CELEX:31995L0046. (Zitiert auf Seite 13)

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor, Fremont, CA,
USA, 2012. URL http://www.rfc-editor.org/rfc/rfc6749.txt. (Zitiert auf Seite 23)

[hip] Health Insurance Portability and Accountability Act. URL http://www.hhs.gov/ocr/
privacy/index.html. (Zitiert auf Seite 13)

[HWS07] R. Hasan, M. Winslett, R. Sion. Requirements of Secure Storage Systems for Healthcare
Records. In W. Jonker, M. Petkovic, Herausgeber, Secure Data Management, Band 4721 von
Lecture Notes in Computer Science, S. 174–180. Springer Berlin Heidelberg, 2007. doi:10.
1007/978-3-540-75248-6_12. URL http://dx.doi.org/10.1007/978-3-540-75248-6_

12. (Zitiert auf Seite 13)

[iso] ISO 27001: An Introduction To Information, Network and Internet Security. URL http:
//security.practitioner.com/introduction/. (Zitiert auf Seite 14)

57

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-61&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-61&engl=
http://www.catestonline.org/english/index_German.htm
http://www.catestonline.org/english/index_German.htm
http://www.copd-aktuell.de/
www.onmeda.de/krankheiten/copd-diagnose-3112-5.html
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:31995L0046
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:31995L0046
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.hhs.gov/ocr/privacy/index.html
http://www.hhs.gov/ocr/privacy/index.html
http://dx.doi.org/10.1007/978-3-540-75248-6_12
http://dx.doi.org/10.1007/978-3-540-75248-6_12
http://security.practitioner.com/introduction/
http://security.practitioner.com/introduction/

Literaturverzeichnis

[KP11] D. A. Kindy, A.-S. K. Pathan. A survey on SQL injection: Vulnerabilities, attacks, and
prevention techniques. 2011. (Zitiert auf Seite 17)

[Occ] Occupational Safety & Health Administration. Access to employee exposure and me-
dical records. URL https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_

table=STANDARDS&p_id=10027. (Zitiert auf Seite 13)

[OWA13] OWASP Foundation. OWASP Top 10 - 2013. Technischer Bericht, OWASP Foundation, 2013.
URL https://www.owasp.org/index.php/Top_10_2013-Top_10. (Zitiert auf Seite 16)

[RG07] A. Roichman, E. Gudes. Fine-grained access control to web databases. In Proceedings of
the 12th ACM symposium on Access control models and technologies, S. 31–40. ACM, 2007.
(Zitiert auf den Seiten 16 und 17)

[Rod14] G. Roden. 2x Nein, 4x Ja: Szenarien für Node.js, 14. URL http://www.heise.de/
developer/artikel/2x-Nein-4x-Ja-Szenarien-fuer-Node-js-2111050.html. (Zi-
tiert auf Seite 47)

[Rod12] G. Roden. Node.js & Co. dpunkt.Verlag, 2012. (Zitiert auf Seite 47)

[SESAE12] D. Sobhy, Y. El-Sonbaty, M. Abou Elnasr. MedCloud: healthcare cloud computing system.
In Internet Technology And Secured Transactions, 2012 International Conference for, S. 161–
166. IEEE, 2012. (Zitiert auf Seite 14)

[SJM+12] J. Sundh, Janson, Montgomery, Stallberg, K. Lisspers. Clinical COPD Questionnaire score
(CCQ) and mortality. International Journal of Chronic Obstructive Pulmonary Disease, S.
833+, 2012. doi:10.2147/copd.s38119. URL http://dx.doi.org/10.2147/copd.s38119.
(Zitiert auf Seite 28)

[Til11] S. Tilkov. REST und HTTP. dpunkt.Verlag, 2011. (Zitiert auf den Seiten 18 und 21)

Alle URLs wurden zuletzt am 20. 10. 2014 geprüft.

58

https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10027
https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10027
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.heise.de/developer/artikel/2x-Nein-4x-Ja-Szenarien-fuer-Node-js-2111050.html
http://www.heise.de/developer/artikel/2x-Nein-4x-Ja-Szenarien-fuer-Node-js-2111050.html
http://dx.doi.org/10.2147/copd.s38119

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig verö�entlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Hintergrund
	1.3 Motivation
	1.4 Gliederung

	2 Verwandte Arbeiten und Grundlagen
	2.1 Verwandte Arbeiten
	2.2 Datenbanksicherheit
	2.3 REST und ROA
	2.4 REST Authentifizierung

	3 Konzept
	3.1 Architektur
	3.2 Gesundheitsdaten
	3.2.1 Datenmodell
	3.2.2 Sicherheit

	3.3 RESTful API
	3.3.1 Ressourcendesign
	3.3.2 Funktionen der Ressource Account
	3.3.3 Funktionen der Ressource Patient
	3.3.4 Funktionen der Ressource Benachrichtigungen
	3.3.5 Funktionen der Ressource Fragen
	3.3.6 Command Ressourcen
	3.3.7 Sicherheit

	3.4 Analysen
	3.4.1 Tägliche Berichte
	3.4.2 Schweregrad der Krankheit

	4 Implementierung
	4.1 Gesundheitsdaten
	4.1.1 MySQL Workbench
	4.1.2 Access Control in MySQL
	4.1.3 Datenmodell
	4.1.4 Implementierte Views
	4.1.5 Implementierte Stored Procedures
	4.1.6 Rechtevergabe
	4.1.7 Schemaexport aus Microsoft Access

	4.2 RESTful API
	4.2.1 Tokenbasierte Authentifizierung
	4.2.2 Implementierung der API Funktionen
	4.2.3 Repräsentation
	4.2.4 Swagger

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

