Institut fiir Parallele und Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3644

Umsetzung eines sicheren
Systems zur Verwaltung und
Bereitstellung von
Gesundheitsdaten

Frank Steimle

Studiengang: Informatik

Prufer: Prof. Dr.-Ing. habil. Bernhard Mitschang
Betreuer: Dr. rer. nat. Matthias Wieland

Beginn am: 1. April 2014

Beendet am: 22. Oktober 2014

CR-Nummer: C.24,H28,H4.1,J.3

Kurzfassung

Im Rahmen dieser Arbeit wurden Teile des Backends fiir das deutsch-griechische Forschungsprojekt
ECHO (Enhancing Chronic patients’ Health Online) entwickelt. Das Ziel des Projekts ist es mit Hilfe
von Cloud-Computing-Technologien, Data Mining und Smartphones die Situation von Patienten mit
chronischen Lungenkrankheiten zu verbessern. Unter anderem soll es fiir den Patienten méoglich sein,
jeden Tag Fragen via Smartphone zu beantworten. Diese Antworten sollen bei der Fritherkennung
von dauerhaften Verschlimmerungen der Krankheit, auch Exazerbationen genannt, helfen. Vor dem
Start des ECHO Projekts wurden die Patientendaten und Untersuchungsergebnisse mit Hilfe einer
Microsoft Access Datenbank verwaltet. Um die tagliche Dateneingabe zu erméglichen, musste die
Access Datenbank in eine relationale Datenbank iiberfiihrt werden. Um die Daten vor unautorisiertem
Zugriff zu schiitzen, wurde fiir jeden Benutzer des Backends ein Datenbankbenutzer erstellt, der nur
Zugriff auf die Views und Stored Procedures hat, die er im Rahmen seiner Rolle (Arzt, Patient oder
Administrator) benétigt. Zum Zugriff auf die Datenbank wurde eine REST API implementiert, die
mittels OAuth 2.0 und TLS/SSL gesichert wurde. Auflerdem wurden mogliche Analysen vorgestellt,
die auf den erhobenen Daten durchgefithrt werden kénnen.

Inhaltsverzeichnis

1 Einleitung
1.1 Aufgabenstellung
1.2 Hintergrund
1.3 Motivation e e
1.4 Gliederung
2 Verwandte Arbeiten und Grundlagen
2.1 Verwandte Arbeiten
2.2 Datenbanksicherheit
23 RESTundROA e
2.4 REST Authentifizierung
3 Konzept
3.1 Architektur.
3.2 Gesundheitsdaten
3.21 Datenmodell
3.22 Sicherheit
3.3 RESTful API e
3.3.1 Ressourcendesign
3.3.2 Funktionen der Ressource Account
3.3.3 Funktionen der Ressource Patient
3.3.4 Funktionen der Ressource Benachrichtigungen
3.3.5 Funktionen der Ressource Fragen
3.3.6 Command Ressourcen
3.3.7 Sicherheit L
34 Analysen
3.41 Tagliche Berichte
3.42 Schweregrad der Krankheit,
4 Implementierung
41 Gesundheitsdaten
411 MySQLWorkbench
41.2 AccessControlin MySQL
4.13 Datenmodell
4.1.4 Implementierte Views L
4.1.5 Implementierte Stored Procedures
4.1.6 Rechtevergabe

10
10

13
13
16
18
21

25
25
25
25
29
29
30
31
32
33
33
34
34
35
35
36

39
39
39
40
41
43
45
46

4.1.7 Schemaexport aus Microsoft Access 47

42 RESTRul APL e 47
4.2.1 Tokenbasierte Authentifizierung 48

4.2.2 Implementierung der API Funktionen 49

423 Repréasentation oL oo 51

424 SWaGEETo e e 51

5 Zusammenfassung und Ausblick 55
Literaturverzeichnis 57

Abbildungsverzeichnis

1.1

2.1

3.1
3.2
3.3
34
3.5

4.1
4.2
4.3
4.4
4.5

Datenmanagement in der ECHO Plattform 10
OAuth 2.0 Control Flow 23
Architektur der ECHO Plattform 26
Grobes ER-Diagramm der Gesundheitsdaten 27
COPD Schweregrade: Berechnung und Bedeutung 28
Ressourcen als UML-Diagramm 30
Resource Owner Password Credentials Flow 34
Screenshot MySQL Workbench 40
ER-Diagramm der Gesundheitsdaten 42
ER-Diagramm der Berechtigungstabellen 46
Middlewarestack des REST Services 50
Screenshot der Swagger-Ul-Darstellung der ECHOAPI 53

Tabellenverzeichnis

2.1

3.1
3.2

4.1

HTTP Statuscodes 20
Berechnung des COPD Krankheitsstatdiums nach GOLD 36
Berechnung des COPD Schweregrads 37
Benachrichtigungsarten 41

Verzeichnis der Listings

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6

Beispiel SQL Injection Teil 1 L 17
Beispiel SQL Injection Teil 2 L 17
Stored Function: getRole() 44
View: Accounts 44
View: CATs o 44
Node.js mit Express: Hello World 49
Links in JSON mit Hypertext Application Language 51
Node.js mit Express: Swagger Integration 54

1 Einleitung

Das Ziel dieser Arbeit ist die Erstellung eines Backends zur sicheren Speicherung von Gesundheitsda-
ten. Die Arbeit wird im Rahmen des deutsch-griechischen Forschungsprojekts Enhancing Chronic
patients’ Health Online (ECHO) durchgefiihrt, das vom Bundesministerium fiir Forschung und Bildung
(BMBF) gefordert wird. Ziel des Projekts ist die Verbesserung der Gesundheit von Patienten mit
chronischen Atemwegserkrankungen durch Onlinedienste. Im folgenden wird die Aufgabenstellung
dieser Arbeit erlautert. Danach wird ein Einblick in den Hintergrund gegeben und die Motivation
beschrieben.

1.1 Aufgabenstellung

Ziel dieser Diplomarbeit ist es ein System prototypisch zu realisieren, welches es ermoglicht Gesund-
heitsdaten sicher abzuspeichern. Dazu muss einerseits ein Grunddatenmodell fiir Patientendaten
erstellt werden. Hierfiir existiert bereits eine Access Datenbank, welche von Arzten bei der Unter-
suchung verwendet wird. Diese muss in ein standardisiertes Datenmodell umgewandelt werden
(SQL) und in einem Datenbanksystem sicher bereitgestellt werden. Es miissen zudem geeignete
Sicherheitskonzepte erstellt werden, um die Daten gegen unbefugten Zugriff abzusichern, (z. B. gegen
Angriffe durch SQL-Injection oder durch Verschliisselung).

Zum Zweiten sollen in Zukunft Gesundheitsdaten taglich durch die Patienten selbst mit Hilfe von Apps
(Anwendungen auf mobilen Endgeriten) erfasst werden. Dafiir muss das existierende Datenmodell
erweitert werden, um diese Daten aufzunehmen. Des Weiteren soll eine Schnittstelle (API) fir die
mobilen Endgeréte angeboten werden und Sicherheitskonzepte fiir den Datenaustausch zwischen
Datenbank und Apps erstellt werden. Eine weitere API zum Zugriff auf die Gesundheitsdaten sollte
fiir eine zeitgleich zu bearbeitende Diplomarbeit erstellt werden. Da diese sich die Bearbeitung dieser
Diplomarbeit jedoch verzogerte, wurde diese API nicht implementiert.

1.2 Hintergrund

Chronisch obstruktive Lungenerkrankung (englisch: chronic obstructive pulmonary disease, Abkiir-
zung: COPD) bezeichnet eine Gruppe von Krankheiten der Lunge, bei der die Atemwege verengt oder
eingeengt sind. Diese Schiadigung der Lunge ist oft die Folge von jahrelangem Rauchen oder anderen
langer andauernden Reizungen der Lunge durch Schadstoffe in der Luft. Typische Symptome sind die
sogenannten AHA-Symptome: Atemnot bei korperlicher Belastung, tiglicher Husten iiber langere
Zeit und Auswurf (beim Husten hervorgebrachter Schleim aus den Atemwegen).

1 Einleitung

PN 0 Datenmanagement in der
j ECHO-Plattform
Y
S S
) Eingabe der Grunddaten
Tagliche Dateneingabe $ Speicherung <: durch den Arzt bei der
durch den Patienten: Untersuchung:
* Antworten auf Fragen T e * Patientendaten
* Messwerte * Untersuchungsergebnisse
* Verschreibungen
Analyse
Benachrichtigung Benachrichtigung |

Abbildung 1.1: Datenmanagement in der ECHO Plattform [BKK ™ 14]

Wenn sich die Symptome einer COPD bei einem Patienten in kurzer Zeit drastisch verschlimmern,
spricht man von einer Exazerbation. Schwere Exazerbationen kénnen sogar Krankenhausaufenthalte
erforderlich machen. Da sich mit jeder Exazerbation der Zustand des Patienten nachhaltig verschlech-
tert und das Risiko fiir weitere Exazerbationen erh6ht wird, ist es wichtig, mogliche Exazerbationen
frithzeitig zu erkennen und zu vermeiden. [copa]

1.3 Motivation

Im Projekt ECHO soll ein System entwickelt werden, das Cloud-Computing-Technologien, Data
Mining und Smartphones einsetzt, das Arzten hilft, ihre Patienten besser zu iiberwachen und zu be-
treuen. Damit soll das Risiko fiir Exazerbationen gesenkt werden. Uber die Smartphones beantworten
die Patienten jeden Tag Fragen zu ihrem Zustand und geben nach Méglichkeit noch Messwerte wie
Blutdruck oder Sauerstoffsattigung an, wie in Abbildung 1.1 dargestellt. Die Daten werden zur ECHO-
Plattform iibertragen und kénnen dann vom Arzt eingesehen werden, der dadurch den Zustand seiner
Patienten besser iiberwachen kann. Identifiziert die ECHO-Plattform durch die Analyse der Daten
bestimmte medizinische Situationen, konnen sowohl der Arzt als auch der Patient benachrichtigt
werden, um frithzeitig eine Verschlechterung des Zustandes des Patienten zu verhindern. Der Arzt
kann tiber die ECHO-Plattform nicht nur den Zustand seiner Patienten iiberwachen, sondern auch
die Patientendaten, Untersuchungsergebnisse oder Verschreibungen speichern.

1.4 Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 2 beschreibt verwandte Arbeiten und Grundlagen der Arbeit. Kapitel 3 stellt das in der
Arbeit erstellte Konzept zur Verwaltung, zum Zugriff und zur Analyse der Gesundheitsdaten vor. In

10

1.4 Gliederung

Kapitel 4 wird die Umsetzung des Konzepts beschrieben. Kapitel 5 fasst die Ergebnisse der Arbeit
zusammen und stellt Ankniipfungspunkte vor.

11

2 Verwandte Arbeiten und Grundlagen

In diesem Kapitel werden zuerst verwandte Arbeiten vorgestellt. Es werden Methoden vorgestellt um
Daten in Datenbanken abzusichern. Abschliefend wird auf den Architekturstil Representational State
Transfer (REST) und HTTP Authentifizierungsmechanismen, die mit REST genutzt werden konnen,
eingegangen.

2.1 Verwandte Arbeiten

Bei der elektronischen Verarbeitung von Patientendaten spielt Sicherheit eine grof3e Rolle. Ragib Hasan
et al. befassen sich in [HWS07] mit Anforderungen an einen sicheren Speicher fiir Gesundheitsdaten.
Dafiir untersuchten sie den Health Insurance Portability and Accountability Act (HIPAA [hip]).
Der HIPAA besteht aus zwei Teilen. Der erste Teil regelt den Krankenversicherungsschutz, und der
zweite Teil behandelt die elektronische Patientenakte und ihre Sicherheit. Auflerdem untersuchten
sie noch die Occupational Safety and Health Administration Regulation [Occ], die den Umgang mit
Gesundheitsdaten von Arbeitnehmern in den USA regelt, und die européische Datenschutzrichtlinie
(EU-Direktive 95/46/EG, [Eur]), die die Sicherheit im Umgang mit personlichen Daten regelt. Aus
diesen Gesetzen konnten dann die folgenden Anforderungen abgeleitet werden:

Vertraulichkeit und Zugangskontrolle: Da Gesundheitsdaten sensible Informationen darstellen,
muss der Speicher ihre Vertraulichkeit garantieren, insbesondere diirfen nur autorisierte Per-
sonen Zugang erhalten. Um die Vertraulichkeit der Daten sicherzustellen sollten sie sowohl
im Speicher selbst als auch wihrend des Transports verschliisselt werden. Falls das Speicher-
medium gewechselt wird, muss sichergestellt werden, dass die Daten auf dem alten Medium
vertraulich bleiben.

Integritédt: Das System muss die Integritit der Daten sicherstellen, das heif3t es muss sie vor unauto-
risierten Anderungen schiitzen. Insbesondere vor solchen, die durch einen Nutzer des Systems
erfolgen, der nicht autorisiert ist, die Daten zu d4ndern. Durch die Sicherheitsmaf3nahmen soll
es auch moglich sein, geAnderte Daten zu erkennen.

Verfligbarkeit und Performance: Die Gesundheitsdaten sollen immer in einer angemessenen Zeit
zur Verfiigung stehen. Falls zur Erfillung dieser Anforderung ein Index notwendig ist, muss
dieser auch vertraulich sein, damit es nicht moglich ist iiber den Index Riickschliisse auf die
Gesundheitsdaten zu ziehen.

Logging: Jeder Zugriff auf das System sollte zuverlassig geloggt werden. Insbesondere sollte jeder
Zugriff und jede Modifikation auf die Gesundheitsdaten geloggt werden. Durch die Logs sollte
es moglich sein, jede Anderung nachzuvollziehen und ihren Verursacher zu ermitteln.

13

2 Verwandte Arbeiten und Grundlagen

Vorhaltezeit und Migration: Da die Gesetzte teilweise lange Vorhaltezeiten fiir bestimmte Daten
vorschreiben, sollte das System lange Vorhaltezeiten garantieren zu kénnen. Dabei sollte auch
auf zuverlassige und nachvollziehbare Migrationsstrategien geachtet werden, fiir den Fall, dass
Hardware ausfallt oder ersetzt werden muss, welil sie zu alt ist.

Backup: Es sollten Backup- und Restoreoperationen zur Verfiigung stehen. Dabei sollte darauf geach-
tet werden, dass die Backups nicht am selben Ort aufbewahrt werden wie die Gesundheitsdaten.
Sonst wiren die Daten im Fall eines Brandes oder anderer Naturkatastrophen verloren.

Kosten: Das System sollte kostengiinstig sein, da das Einhalten von Bestimmungen wie HIPAA
einen nicht zu unterschitzenden Mehraufwand bedeutet. Das kann durch den Einsatz von
Standardhardware und billigem Massenspeicher erreicht werden.

In der ISO 27001 (Specification for Information Security Management [iso]) werden Verantwortlichkeit
und Nachvollziehbarkeit als Bestandteile, Vertraulichkeit, Integritit und Verfiigbarkeit der Daten
sogar als wesentliche Bestandteile der Informationssicherheit genannt. Verantwortlichkeit bedeutet,
dass es einen personlich Verantwortlichen fiir jedes zu schiitzende Gut gibt. Nachvollziehbarkeit
steht zum einen dafiir, dass es nachvollziehbar sein muss, wie das System in den aktuellen Zustand
gekommen ist und zum anderen, dass durch fortlaufende Prozesse sichergestellt wird, dass das System
noch den Anforderungen entspricht.

Mit Cloud Computing werden die Eigenschaften Skalierbarkeit, Verfiigbarkeit, Ausfallsicherheit
und eine Reduktion der Kosten verbunden. Mittels Cloud Computing lasst sich unter anderem
das Problem lgsen, dass die Daten eines Patienten bei verschiedenen Arzten liegen und diese erst
zusammengefithrt werden miissen, um eine vollstandige Sicht auf den Patienten zu haben. Deshalb
schlagen Dalia Sobhy et al. in [SESAE12] mit MedCloud ein HIPAA konformes System zur Verwaltung
von elektronischen Patientenakten in der Cloud vor. Mittels eines von den Autoren gestellten SDKs
koénnen sogenannte Services fiir MedCloud geschrieben werden. Services sind sind Programme, die auf
den Patientendaten arbeiten, wie zum Beispiel UpdatePatientByld. Das System besteht aus drei Teilen:
dem Data Storage Layer, dem Server Management Layer und dem Application Layer. Im Data Storage
Layer werden die Patientendaten in einem verteilten Dateisystem gespeichert. Das Dateisystem wird
durch eine Data Warehouse Erweiterung ergénzt, die den schnellen Zugriff auf die Daten ermdglicht.
Das Data Warehouse wird mittels einer spaltenorientierten NoSQL Datenbank umgesetzt. Durch
die Schemalosigkeit der NoSQL Datenbank ist es moglich, dass verschiedene Krankenhauser das
System nutzen, obwohl sie unterschiedliche Informationen tiber den Patienten speichern. Auflerdem
ist das System dadurch einfach zu erweitern, da Services beliebige Daten speichern kénnen. Der
Server Management Layer besteht aus einer Master-Slave-Archtitektur. Der Master nimmt dabei die
Anfragen aus dem Application Layer entgegen und verwaltet das verteilte Dateisystem. Auflerdem
ist er dafir zustdndig, die eingehenden Requests auf die Slaves zu verteilen. Die Slaves bestehen aus
zwei Komponenten: dem Data Storage Manager, der die Daten auf diesem Knoten verwaltet, und
dem Task Manager, der die Tasks verwaltet und ausfiihrt, die der Knoten vom Master zugewiesen
bekommt. Der Application Layer stellt die Schnittstelle zum Client dar, der iiber ein RESTful HTTP
Interface mit der MedCloud kommunizieren kann. Der Application Layer stellt zusétzlich noch einige
Funktionen des Systems zur Verfiigung, wie zum Beispiel den Authenticator, der dafiir zustandig ist
Benutzer einzuloggen, die Service Registry, die alle an der MedCloud angemeldeten Services verwaltet,
oder den Authorizer, der anhand von HIPAA konformen Regeln entscheidet, ob der Benutzer den
angeforderten Service verwenden darf.

14

2.1 Verwandte Arbeiten

Die MedCloud ist durch die Schemalosigkeit der NoSQL Datenbank und die selbstgeschriebenen
Services eine sehr felxible Losung. Die Funktionalitat des ECHO Projekts konnte wahrscheinlich auf
Services abgebildet werden, aber ob die Daten wirklich sicher waren bleibt offen. Abgesehen vom
Authorizer, der anhand von HIPAA konformen Regeln Zugang zu Services gibt, gibt es aber keine
Details dazu, mit welchen Mitteln die Daten HIPAA konform und sicher abgespeichert werden.

Ein anderes Cloud-System aus dem Trustworthy Clouds (TClouds) Projekt schlagen Deng et al.
in [DPNB11] vor. Sie erstellten eine Cloud Anwendung, um alle Aspekte der Behandlung von De-
pressionspatienten zu unterstiitzen. Sie implementieren dafiir drei Komponenten: Medikamenten
Management, Schlaf- und Lichtmanagement und Management der sportlichen Aktivitaten. Dabei
sollen allerdings nicht nur Arzte und Patienten auf die Daten zugreifen konnen, sondern auch Fa-
milienmitglieder des Patienten, Apotheker, sportliche Einrichtungen und 6ffentliche Stellen. Die
sportlichen Einrichtungen sollen auf diesem Weg beispielsweise Trainingsplane festlegen oder iiber-
prifen konnen, ob der Patient regelmiflig Sport treibt. Die 6ffentlichen Stellen sollen iiber ihren
Zugang Statistiken einsehen und priifen kénnen, ob Richtlinien eingehalten werden.

Die Architektur ist in vier Schichten aufgeteilt: Das Data Store Layer, Back-End Layer, Middle-Tier
Layer und Front-End Layer, in dem die Anwendungen fiir die verschiedenen Beteiligten laufen. Es
gibt vier Data Stores, die gleichzeitig das System in vier Application Domains einteilen. Im Pres-
cription Repository sind beispielsweise alle Daten iiber Medikamentenverschreibungen gespeichert.
Auflerdem gibt es noch die Repositories fiir elektronische Patientenakten (EHR), fiir die personli-
chen Gesundheitsdaten (PHR) und fiir die sportlichen Aktivititen. Im Middle-Tier befinden sich
Anwendungen, die die Daten aus den Repositories bearbeiten und mit Anwendungen aus anderen
Application Domains kommunizieren. Beispielsweise teilt die Anwendung fiir Verschreibungen aus
der Application Domain des Arztes (EHR Domain) der Verschreibungsmanagement Anwendung aus
der Prescription Domain mit, wenn ein neues Rezept ausgestellt wird. Wenn der Patient nun in eine an
das System angeschlossene Apotheke geht, kann der Apotheker das verschriebene Medikament und
die Dosierung aus seiner Anwendung ablesen. Anschlieflend zeigen Deng et al. wie diese Architektur
mit Hilfe von Openstack umgesetzt werden kann.

Nach einer Analyse der Sicherheitsanforderungen fiir die Data Stores und die Dateniibertragung
zwischen den Schichten kommen Deng et al. zu dem Ergebnis, dass fiir die Daten und deren Uber-
tragung die Vertraulichkeit, Integritit und Verfugbarkeit der Daten notwendig ist. Als zusétzliche
Sicherheitsmafinahme schlagen sie vor, alle Daten vor dem Upload vom Patienten verschliisseln
zu lassen. Fiir die Verschliisselung betrachten sie attribut-basierte Verschliisselung und Lizenzen,
allerdings kommen sie zu dem Schluss, dass beide nicht ausreichenden Schutz bieten.

Das hier vorgestellte System ist sehr umfangreich durch die vielen beteiligten Parteien. Um die in
ECHO geforderte Funktionalitdt umzusetzen, ist keine Architektur notwendig, in der mehrere Data
Stores existieren.

15

2 Verwandte Arbeiten und Grundlagen

2.2 Datenbanksicherheit

In diesem Abschnitt werden Aspekte der Datenbanksicherheit vorgestellt. Zum einen wird auf die
Moglichkeit eingegangen, mit Hilfe von Views die Zugriffskontrolle zu ergénzen. Zum anderen
werden Moglichkeiten vorgestellt, mit denen sich SQL Injections verhindern lassen.

Zugriffskontrolle mit Views

Bei vielen Datenbanksystemen kann man Zugriffsrechte bis zur Tabellenebene vergeben. In manchen
Fillen ist dies jedoch nicht ausreichend, beispielsweise ist es nicht ausreichend, wenn die Noten
aller Studenten in einer Tabelle gespeichert sind. Um zu verhindern, dass ein Student die Noten der
anderen einsehen kann, kénnen Views zum Schutz der Daten eingesetzt werden. Dadurch muss
man nicht mehr darauf vertrauen, dass die Anwendung das Pradikat in der Where Klausel richtig
einsetzt, da die Verantwortung durch die Views an die Datenbank tibergeht. Pro Student kann ein
View angelegt werden, oder es konnen dynamische Views angelegt werden, die Daten in Abhéngigkeit
des aktuellen Benutzers anzeigen. Da die meisten Webanwendungen aber nur tiber eine Verbindung
zur Datenbank verfiigen, die immer denselben Benutzer verwendet, ist es nicht méglich dynamische
Views nach diesem Muster zu verwenden. Roichman und Gudes schlagen deswegen in [RG07] vor
parametrisierte Views zu verwenden. Parametrisierte Views nehmen beim Aufruf einen Parameter
entgegen, zum Beispiel eine User ID, und zeigen basierend darauf Daten an. Solche Views konnen
mit Stored Procedureds implementiert werden. Roichman und Gude erweitern parametrisierte Views
dahingehend, dass nicht mehr die (erratbare) Benutzer ID als Parameter verwendet wird, sondern
ein zufilliger Key. Der zufillige Key wird bei jedem Login erzeugt, dann in der Benutzertabelle in
der Datenbank abgelegt und dem Benutzer mitgeteilt, der ihn bei jeder Anfrage mitschicken muss.
Dadurch, dass der zufillige Key auf dem Server hinterlegt werden muss, ist diese Lésung nicht im
REST Umfeld einsetzbar. Da es Node.js ermdglicht, den Datenbankbenutzer einer aktiven Verbindung
zu wechseln, werden in dieser Arbeit Views verwendet, die Daten in Abhangigkeit des aktuellen
Benutzers zur Verfiigung stellen.

Angriffe durch SQL Injections vermeiden

Als SQL Injection bezeichnet man das Injizieren von SQL Code in die Anwendung und die anschlie-
Bende Ausfithrung des durch den SQL Code verdnderten SQL Statements durch die Datenbank. Dies
funktioniert, wenn es in der Anwendung SQL Statements gibt in die vor dem Ausfithren Benutzerein-
gaben ungepriift oder mangelhaft gepriift eingefiigt werden. Das Open Web Application Security
Project (OWASP) gab 2013 eine Liste der zehn grofiten Risiken fiir Webanwendungen heraus, auf der
die Injection den ersten Platz belegt [OWA13].

In Listing 2.1 ist eine Anfrage dargestellt, mit deren Hilfe eine Anwendung dem Angestellten 123
sein Gehalt fiir einen bestimmten Monat ausgeben kann. Die SQL Anfrage wird zusammengesetzt
aus einem vorgefertigten Teil und einer Eingabe des Benutzers. Wenn der Benutzer mehr als einen
bestimmten Monat eingibt, zum Beispiel 01.2007 or 1 = 1, erhilt man allerdings eine Anfrage wie in

16

2.2 Datenbanksicherheit

Listing 2.1 Beispiel SQL Injection Teil 1 aus [RG07]

strSQL = "SELECT Salary
FROM Salary_Table
WHERE Employee_No = 123
AND Salary_Date = " + dateParam

Listing 2.2 Beispiel SQL Injection Teil 2 aus [RG07]

strSQL = "SELECT Salary
FROM Salary_Table
WHERE Employee_No = 123
AND Salary_Date = 01.2007 or 1 = 1"

Listing 2.2 dargestellt. Wenn diese Anfrage von der Anwendung verarbeitet wird, ist das Ergebnis
eine Auflistung aller Gehilter aller Angestellten, da das Pradikat 1=1 immer wahr ist.

Um mogliche SQL Injections zu vermeiden, schliagt die OWASP drei Optionen vor:

1. Prepared Statements: Die Anfrage wird mit Platzhaltern an die Datenbank geschicken. Dadurch
kann die Datenbank zwischen der Anfrage und den Daten, mit denen die Anfrage vervollstindigt
wird, unterscheiden. Damit wird es einem Angreifer unméglich gemacht, den Sinn der Anfrage
zu verandern.

2. Stored Procedures: Anstatt eine Query zu verwenden, konnen Anfragen iiber Stored Procedures
gemacht werden. Das sind Routinen, die vorher in der Datenbank hinterlegt wurden. Sie haben
damit denselben Effekt wie Prepared Statements, da die Daten ebenfalls getrennt von der
Anfrage iibermittelt werden. Bei der Implementierung von Stored Procedures ist allerdings
darauf zu achten, dass kein SQL Statement mit ungepriiften Parametern erstellt wird, wie in
Listing 2.2.

3. Escapen samtlicher Benutzereingaben: Jede Datenbank kennt bestimmte Zeichen um Benut-
zereingaben vom Rest der Anfrage zu unterscheiden. Werden diese Zeichen verwendet um
Benutzereingabe zu markieren, kann die Datenbank sie von der eigentlichen Anfrage unter-
scheiden. Wenn der Angreifer jedoch weify, welche Datenbank verwendet wird, kann er, wie
im Beispiel dargestellt, diesen Schutz umgehen.

Zusatzlich werden noch das Least-Privilege-Prinzip und White List Input Validierung empfohlen.
Das Least-Privilege-Prinzip besagt, dass den Benutzern nur die Rechte gewahrt werden, die sie zur
Erfilllung ihrer Aufgaben benétigen. Dadurch entsteht im Fall eines Angriffs auch ein kleinerer
Schaden, als wenn der Benutzer alle Rechte der Anwendung hétte. Bei der White List Validierung
wird jede Benutzereingabe, die einem bestimmten Muster folgt, auf ihre Giltigkeit gepriift. Das kann
zum Beispiel durch regulare Ausdriicke erfolgen.

Kindy and Pathan fassten in [KP11] Malnahmen gegen SQL Injections zusammen. Allerdings sind
alle bis auf Roichmans und Gudes Lésung [RG07] nur mit zusétzlicher Software umsetzbar. In dieser
Arbeit wird die Empfehlung der OWASP zum Schutz vor SQL Injections umgesetzt.

17

2 Verwandte Arbeiten und Grundlagen

2.3 REST und ROA

Representational State Transfer (REST) ist ein Architekturstil fiir verteilte Anwendungen. Der Begriff
REST wurde zuerst von Roy Fielding in seiner Dissertation im Jahr 2000 beschrieben. Architekturen,
die sich an REST orientieren, werden teilweise auch Resource-oriented Architecture (ROA) genannt.
Durch den Einsatz von REST ergeben sich im Gegensatz zu anderen Architekturstilen laut Stefan
Tilkov [Til11] die folgenden Vorteile:

« Der Grad der Kopplung der zu verbindenden Systeme wird minimiert, da durch die uniforme
Schnittstelle alle Operationen und wie sie aufzurufen sind im voraus bekannt sind.

« Dadurch, dass die meisten REST Implementierungen Webstandards wie HTTP, URIs und
XML einsetzen, wird die Interoperabilitit dieser Systeme erhoht, da die Gegenseite nur diese
Standards kennen muss, um mit der REST Implementierung zu kommunizieren.

+ Da es bei REST nur eine Schnittstelle gibt und nicht immer wieder eine neue definiert werden
muss, ist die Wiederverwendbarkeit hoher.

« Performance und Skalierbarkeit konnen erh6ht werden, wenn das System auf der Basis von
HTTP und den REST Regeln entworfen wird. Dann ist es ndmlich méglich, Anfragen mit Hilfe
von Caches zu beantworten oder aufeinander folgende Anfragen nicht mit demselben Server
zu beantworten,

Die wesentlichen Grundkonzepte um diese Vorteile zu erreichen sind laut Tilkov [Til11]:

Eindeutige Identifikation von Ressourcen: Ein wesentlicher Bestandteil von REST sind Ressour-
cen. Die Ressource ist ein abstraktes Konzept und bezeichnet alle Objekte, die durch die Anwen-
dung nach aufien hin sichtbar gemacht werden sollen oder Listen dieser Objekte. Ressourcen
sollten dabei aber nicht nur einfach Datenbankeintrige nach auflen sichtbar machen. Sie sind
kein Konzept der Persistenzschicht, sondern ein nach auflen sichtbares Konzept der Anwen-
dungsschicht. Jede Ressource wird durch zwei wichtige Eigenschaften definiert: eine eindeutige
ID und eine oder mehrere Reprasentationen. Zur eindeutigen Identifikation einer Ressource
konnen zum Beispiel Uniform Resource Identifiers (URIs) verwendet werden. URIs bestehen
aus funf Bestandteilen: Scheme, Authority (bestehend aus Host und Port), Path, Query und
Fragment. Dabei sind Authority, Query und Fragment optional.

scheme://authority/path?query#fragement

Verschiedene Repréasentationen: Der zweite wesentliche Bestandteil einer Ressource sind ihre
Reprisentationen. Uber die Reprisentationen werden die Ressourcen dem Rest der Welt zu
Verfiigung gestellt und iiber diese kénnen sie bearbeitet werden. Uber Content Negotiation
kann ein Client die Ressource in einem Format anfordern, das er verarbeiten kann. Gangige
Reprisentationen sind zum Beispiel XML, HTML, CSV oder JSON.

Verlinkungen: Mit Hypermedia As The Engine Of Application State (HATEOAS) wird das Konzept
von Verlinkungen beschrieben. Antworten des Servers sollten zum einen Links zu anderen
Ressourcen enthalten, mit denen die empfangene Ressource in Relation steht. Zum anderen
sollte die Antwort Links auf die Aktionen enthalten, die dem Client als nichstes zur Verfiigung

18

2.3 REST und ROA

stehen. Wenn der Server REST korrekt umsetzt, kann ein Client allein anhand der Links durch
den Server navigieren.

Standardmethoden: Hinter diesem Punkt verbirgt sich das Konzept der uniformen Schnittstelle:
jede Ressource soll denselben Satz von Operationen unterstiitzen. Fiir REST Anwendungen im
HTTP Umfeld sind dies die acht Operationen von HTTP: GET, POST, PUT, DELETE, HEAD,
OPTIONS, TRACE und CONNECT. Im folgenden werden GET, POST, PUT und DELETE néiher
erldutert.

« Die wichtigste Operation ist GET. Sie dient dazu, eine Ressource, die durch eine URI
identifiziert wird, in ein einer bestimmten Représentation abzuholen. GET wird als safe und
idempotent spezifiziert. Safe bedeutet dabei nicht, dass die Operation keine Seiteneffekte
auf dem Server auslosen darf, wie zum Beispiel das Erzeugen eines Logeintrags, sondern
nur, dass durch GET keine Anderung der Ressource erfolgen darf. Idempotent bedeutet,
dass das mehrmalige Aufrufen der Operation dasselbe Ergebnis erzeugt wie ein einmaliger
Aufruf.

« POST kann in zwei Szenarien eingesetzt werden. Das erste Szenario ist das Erstellen einer
neuen Ressource. Das andere ist, wenn eine Funktionalitdt aufgerufen werden soll, die
iiber keine andere HTTP-Operation abgebildet werden kann, oder wenn die andere HTTP-
Operationen nicht verfiigbar sind. Strikt oder falsch konfigurierte Firewalls konnten zum
Beispiel nur GET und POST zulassen. In diesem Fall lasst sich ein PUT beispielsweise
durch einen selbstdefinierten Header emulieren (Beispiel: X-HTTP-Method-Override :
PUT).

« PUT kann dazu benutzt werden, eine Ressource zu aktualisieren oder um eine neue
anzulegen. Um die Operation aufzurufen, benétigt man auf jeden Fall die URI der Ressource.
Wenn also eine Ressource mit einer vordefinierten URI erstellt werden soll, sollte PUT
anstatt POST verwendet werden. PUT ist auflerdem ebenfalls idempotent.

« Um eine Ressource zu 1oschen, kann DELETE verwendet werden. Dabei miissen die Daten,
die durch die Ressource dargestellt werden nicht immer geldscht werden. Es ist auch
iiblich, nur ein Flag zu setzen (deleted = true) und die Daten dann nicht mehr als Ressource
auszuliefern. DELETE ist ebenfalls idempotent.

Statuslose Kommunikation: Jede Nachticht soll alle Informationen enthalten, damit sie von Client
und Server verstanden werden kann. Dadurch wird die Skalierbarkeit von REST Anwendungen
erhoht, da aufeinander folgende Anfragen nicht vom selben Server beantwortet werden miissen
oder Caches verwendet werden konnen, um Anfragen zu beantworten.

Fiir die Implementierung einer REST Anwendung im HTTP Umfeld spielen die HTTP Statuscodes eine
wichtige Rolle. Es gibt iiber 70 HTTP Statuscodes in fiinf Statusklassen. Tabelle 2.1 gibt eine Ubersicht
iiber die Statusklassen und tiber haufig genutzte HTTP Statuscodes und erklirt ihre Bedeutung.

19

2 Verwandte Arbeiten und Grundlagen

Statuscode / -klasse ‘ Beschreibung
1xx Klasse ‘ Informationen. Anfrage erhalten, ist aber noch in Bearbeitung.
2xx Klasse ‘ Erfolgreiche Anfrage. Anfrage erhalten und erfolgreich verarbeitet.

200 - Accepted

Die Anfrage wurde erfolgreich bearbeitet, und das Ergebnis wird mit
dieser Antwort Gibertragen.

201 - Created

Die Anfrage wurde erfolgreich bearbeitet und eine neue Ressource
wurde erstellt. Die Adresse der neuen Ressource ist im Location Header
zu finden.

204 - No Content

Die Anfrage wurde erfolgreich bearbeitet, und die Antwort des Servers
enthalt keinen Inhalt.

3xx Klasse

Umleitung. Es sind weitere Schritte seitens des Clients erforderlich.

301 - Moved Permanently

Die angeforderte Ressource befindet sich nun in der im Location Header
angegebenen Adresse. Die Adresse sollte bei allen zukiinftigen Anfragen
verwendet werden.

4xx Klasse

Client Fehler. Diese Codes werden zuriickgegeben, wenn es wahrschein-
lich ist, dass der Fehler beim Client liegt.

400 - Bad Request

Die Anfrage konnte vom Server nicht verarbeitet werden, da sie falsch
aufgebaut ist. Der Client sollte die Anfrage nicht ohne Anderungen
wiederholen.

401 - Unauthorized

Die Anfrage konnte nicht verarbeitet werden, weil keine oder ungiilti-
ge Authentifizierungsinformationen vorhanden sind. Die Antwort des
Servers wird iiber den WWW-Authenticate Header mitteilen, wie die
Authentifizierung durchzufiihren ist.

403 - Forbidden

Die Anfrage wurde aufgrund mangelnder Berechtigung nicht durchge-
fihrt. Anders als beim Code 401 wird erneutes Authentifizieren nichts
andern.

404 - Not Found

Die Ressource wurde nicht gefunden.

5xx Klasse

Informationen. Anfrage erhalten, ist aber noch in Bearbeitung.

500 - Internal Server Error

Es trat ein unerwarteter Fehler auf, der den Server daran hinderte, die
Anfrage zu bearbeiten.

503 - Service Unavailable

Der Service steht nicht zur Verfiigung. Mogliche Griinde sind zum
Beispiel Wartungsarbeiten oder Uberlastung.

Tabelle 2.1: Auszug aus den HTTP Statuscodes

20

2.4 REST Authentifizierung

2.4 REST Authentifizierung

In diesem Abschnitt werden Mechanismen vorgestellt, die verwendet werden konnen um Benutzer
iiber HTTP zu authentifizieren. Da der HTTP Authentifizierungsmechanismus leicht zu erweitern
ist, gibt es viele selbstgeschriebene Losungen. Im folgenden wird nur auf standardisierte Verfahren
eingegangen, da es sicherer ist bereits implementierte Verfahren zu benutzen, anstatt neue Verfahren
zu implementieren, wobei Fehler, und damit eventuell Sicherheitsliicken, nicht ausgeschlossen werden
konnen. Zuerst wird auf die in HTTP umgesetzten Authentifizierungsmoglichkeiten eingegangen,
wie sie in [Til11] beschrieben sind. Anschlieflend wird OAuth 2.0 vorgestellt.

HTTP Authentifizierung

Wenn ein Client auf eine geschiitzte Ressource zugreifen will, ohne dass er Authentifizierungsinfor-
mationen mitschickt, antwortet der Server mit dem HTTP Statuscode 401. In dieser Antwort teilt der
Server dem Client mit Hilfe des WWW-Authenticate Headers, mit wie er sich zu authentifizieren
hat.

WWW-Authenticate: Basic realm=,Protected®

Mit dieser Antwort teilt beispielsweise der Server dem Client mit, dass er sich iiber das Basic Schema
authentifizieren muss. Auflerdem wird dem Client mit Hilfe des Parameters realm mitgeteilt, fiir
welchen Bereich er sich authentifizieren soll. Diese Antwort wird auch Authentication Challenge
gennant.

Die standardisierten Authentifizierungsschemata fiir HTTP sind Basic und Digest. Beim Basic Schema
werden Benutzername und Passwort mit einem Doppelpunkt als Trennzeichen konkateniert und dann
mit Base64 kodiert. Wenn zum Beispiel die Kombination username und password kodiert werden soll,
sieht das so aus:

base64(,username”+,,:“+,password”) = dXNlem5hbWU6cGFzc3dvemQ=

Der so entstandene String wird im Authorization Header unter Angabe des Schemas an den Server
Ubertragen.

Authorization: Basic dXNlecm5hbWU6cGFzc3dvemQ=

Anschlieflend kann der Server die Base64 Kodierung riickgangig machen und den Benutzername und
das Passwort iiberpriifen. Falls die Informationen nicht giiltig sind, wird wieder die Authentication
Challenge gesendet, andernfalls wird die Anfrage verarbeitet.

Das Basic Schema hat einige Schwichen:

« Das Passwort wird praktisch im Klartext iibertragen, da Base64 keine Verschliisselung ist.

21

2 Verwandte Arbeiten und Grundlagen

« Die Identitit des Servers wird nicht sichergestellt. Der Client schickt also unter Umstanden
seinen Benutzernamen und sein Passwort dem Angreifer.

« Die Nachricht kann auf dem Weg vom Client zum Server verandert werden.

+ Wenn ein Angreifer die Nachricht abhéren kann, kann er sie ganz oder teilweise noch einmal
senden.

Die genannten Schwiachen konnen aber tiber die Kombination mit SSL ausgeglichen werden. Bei der
Kommunikation via SSL beweist der Server mit einem Zertifikat dem Client gegeniiber seine Echtheit.
Auflerdem ist ein Abhoren der Verbindung nicht mehr moglich, da sie verschliisselt ist.

Das Digest Schema hat sich zum Ziel gesetzt, die Schwichen von Basic umgehen. Die grofite Anderung
gegeniiber dem Basic Schema ist, dass das Passwort nie im Klartext ibertragen wird. Stattdessen wird
ein Hashwert iibertragen, der auch Digest genannt wird. Dieser Hashwert wird berechnet indem
unter anderem eine nonce benutzt wird, die der Server dem Client in der Authentication Challenge
mitteilt. Eine nonce ist eine beliebige Zeichenkette, die vom Server allerdings nur einmal erzeugt wird.
Im einfachsten Fall wird der Digest nach folgender Formel berechnet, wobei h() eine Hashfunktion
wie zum Beispiel SHA bezeichnet:

h(h(Benutzername + ,,:“ + Realm +,:“ + Passwort) + ,,:“ + nonce + ,;: + h(HTTP-Methode + ,:“ + URI))

Der Server erhilt nun den Digest, die nonce und den Benutzernamen und kann dauraus auch wie-
der den Digest berechnen. Wenn die beiden Digests tibereinstimmen, kann der Server den Client
authentifizieren. Digest hat damit gegeniiber Basic wesentliche Vorteile:

« Das Passwort wird nie im Klartext iibertragen und kann damit nicht mitgelesen werden.

« Durch die nonce (auch in Kombination mit einem Zeitstempel) kénnen Replay-Attacken ver-
hindert werden.

HTTP Digest wird trotz der Verbesserungen nicht oft genutzt. Das liegt unter anderem daran, dass die
Nachrichten immer noch nicht verschliisselt sind, Man-in-the-Middle Attacken immer noch méglich
sind und unterschiedliche Digest Implementierungen in Browsern und Webservern nicht kompatibel
waren.

OAuth 2.0

OAuth ist ein offenes Protokoll fiir die sichere Autorisierung. Mit OAuth 1.0 und OAuth 2.0 kann
man einer Anwendung A das Recht einrdumen, auf die Daten einer Anwendung B im Namen eines
bestimmten Benutzers zuzugreifen, ohne dass dieser seine Zugangsdaten der Anwendung A zur
Verfiigung stellen muss. OAuth 1.0 erschien 2007 und nutzte kryptografische Signaturen um die
Anfrage abzusichern. Die Tatsache, dass manche Entwickler die Signaturen falsch berechneten und
damit die Sicherheit nicht mehr gewiahrleistet war, und die Tatsache, dass das Protokoll sich nicht
leicht an andere Anwendungsfalle anpassen lief3, fithrten zur Entwicklung von OAuth 2.0. OAuth 2.0
kommt ohne kryptografische Signaturen aus, setzt aber TLS vorraus. Aulerdem wurden in OAuth
2.0 mehrere Ablaufe fiir verschiedene Anwendungsfille definiert. Auflerdem wird die Moglichkeit

22

2.4 REST Authentifizierung

(1) Authorization Request \ _ _ _ _
(2) Authorization Grant Resource Owner

(3) Authorization Grant
(4) Access Token

(5) Access Token
(6) Protected Resource Resource Server

Abbildung 2.1: OAuth 2.0 Control Flow

geboten, das Protokoll um eigene Abldufe zu erweitern. Um den prinzipiellen OAuth 2.0 Ablauf zu
verstehen, muss man folgende Rollen kennen:

Resource Owner: Eigentiimer der Daten auf die zugegriffen werden soll.

Resource Server: Server, auf dem diese Daten liegen.

Client: Die Anwendung, die im Auftrag des Resource Owners auf besagte Daten zugreifen mochte.

Authorization Server: Server, der nach Zustimmung des Resource Owners Access Token fiir den

Zugriff auf die geschiitzten Ressourcen ausstellt.

Der allgemeine Ablauf von OAuth 2.0 ist in Abbildung 2.1 dargestellt und besteht aus den folgenden
Schritten [Har12]:

1.

2.

Der Client beantragt den Zugriff auf die geschiitzten Daten beim Resource Owner.

Als Antwort erhilt der Client einen Authorization Grant, der zum einen aus einem Code besteht,
der die Zustimmung des Resource Owners reprasentiert und zum anderen aus dem Grant Type
(siehe unten)

. Der Client sendet diesen Grant zum Authorization Server um ein Access Token zu bekommen.

Falls der Grant giiltig ist, sendet der Authorization Server ein Access Token an den Client
zuriick.

. Der Client beantragt beim Resource Server unter Verwendung des Access Token Zugriff auf

die Resourcen des Resource Owner.

Falls das Access Token giiltig ist, gewéhrt der Resource Server den Zugriff auf die Resourcen.

23

2 Verwandte Arbeiten und Grundlagen

Authorization Flows

Im folgenden werden alle vier Auspragungen des oben beschriebenen Ablaufs vorgestellt und fiir
welche Szenarien sie sich laut [Boy12] eignen.

Der Authorization Code Grant Flow wird empfohlen fiir Webanwendungen bei denen der OAuth-Client
serverseitig lauft und der Resource Owner nur tiber ein Webinterface mit dem Client interagiert. Mit
diesem Flow ldsst sich ein langfristiger Zugriff auf die geschiitzten Daten realisieren.

Im Gegensatz zum Authorization Code Grant Flow ist der Implicit Grant Flow fir OAuth Clients aus-
gelegt, die im Browser laufen (JavaScript-Clients, Flash-Anwendungen oder Browser-Erweiterungen).
Dieser Flow wird empfohlen, wenn der Zugriff nur temporar gestattet werden soll und es nicht
bedenklich ist, wenn der Nutzer Zugriff auf das Access Token hat.

Der Resource Owner Password Credentials Flow unterscheidet sich sehr von den zwei bisher vorgestell-
ten Flows, da er es erlaubt, die Zugangsdaten des Resource Owners direkt in ein Access Token zu
tauschen, ohne den Grant-Zwischenschritt. Dieser Flow sollte deshalb auch nur von Applikationen
verwendet werden, denen ein hohes Maf3 an Vertrauen entgegen gebracht wird, wie zum Beispiel
selbst entwickelten mobilen Anwendungen. Es ist zu beachten, dass die Clientanwendung bei diesem
Flow Zugriff auf die Zugangsdaten des Resource Owner bekommt.

Der Client Credentials Flow funktioniert ahnlich wie der Resource Owner Password Credentials Flow,
allerdings ist der Client selbst der Eigentiimer.

Im Rahmen dieser Arbeit wird OAuth 2.0 implementiert, da die tokenbasierte Authentifizierung
verschiedene Vorteile gegeniiber den anderen Verfahren bietet:

« Das Passwort muss nicht jedes Mal im Klartext {ibertragen werden, wie bei Basic.

« Das Passwort muss nicht unverschliisselt gespeichert werden, damit es zur Verschliisselung der
Nachricht genutzt werden kann, wie bei Digest.

+ Ein Token kann mit einer limitierten Giiltigkeit ausgestellt werden. Damit geht von entwendeten
Token ein kleineres Risiko aus, als von einer abgehdrten Nachricht mit Basic Authentifizierung.

« Esist moglich in dem Token Anmeldeinformationen zu speichern. Damit ist es moglich einen
Benutzer zu authentifizieren, ohne immer auf die Datenbank zugreifen zu miissen.

24

3 Konzept

In diesem Kapitel wird zuerst die Architektur der ECHO Plattform beschrieben. AnschlieBend wird
auf die Komponenten eingegangen, die im Rahmen dieser Arbeit entwickelt wurden. Aufierdem
werden Analysen vorgestellt, die mit Hilfe der erfassten Daten durchgefiihrt werden kénnen.

3.1 Architektur

Die Anwendungsebene besteht, wie in Abbildung 3.1 dargestellt, aus den Smartphone-Anwendungen
fiir Patienten und Arzte und den jeweiligen Web-Portalen. Uber Anwendungsebene kénnen die
Patienten die tigliche Dateneingabe durchfithren und die Arzte Patienten, Untersuchungsergebnisse
und Verschreibungen erfassen (siehe Abbildung 1.1). Die Schnittstelle zwischen Infrastrukturebene
und Anwendungsebene stellt eine RESTful API dar. Falls Analysen der Daten zeigen, dass Gesund-
heitsrisiken fir den Patienten bestehen, kann der Patient per SMS oder E-Mail benachrichtigt werden.
Arzte werden per SMS oder E-Mail benachrichtigt, wenn ein Patient beispielsweise mehrere Tage
keine Daten eingegeben hat.

Im Rahmen dieser Arbeit wurden die RESTful APL die Datenbank fiir die Gesundheitsdaten und die
Analysekomponente neu entworfen und entwickelt. Da die Analysekomponente nicht implementiert
wurde, ist sie, im Gegensatz zu den anderen beiden Komponenten, in Abbildung 3.1 rot gestrichelt
umrahmt.

3.2 Gesundheitsdaten

Im folgenden wird das Datenmodell der Datenbank zur Speicherung der Gesundheitsdaten erlautert.
Im darauf folgenden Abschnitt wird beschrieben, wie man unbefugten Zugriff auf diese Daten
verhindern kann.

3.2.1 Datenmodell

Das in Abbildung 3.2 dargestellte Diagramm stellt das Datenmodell fiir die Gesundheitsdaten dar und
beinhaltet zusatzlich die Benutzerverwaltung fiir das System. Um sicherzustellen, dass jeder Benutzer
des Systems nur auf die Daten zugreifen kann, die fiir ihn bestimmt sind, wird jedem Benutzer eine
der folgenden Rollen zugewiesen:

+ admin: fiir die Accountverwaltung und administrative Aufgaben.

25

3 Konzept

—
(6 \

Smartphone Smartphone Browser

. Anwendungs-
Patienten- Doktoren- Patienten- | | Doktoren- Ebene
Anwendung Anwendung Portal Portal
A A |
A /
Gesundheits- Benachrich-
Gesund- risiken tigungen
heits- (& SMS) (& sMs) Empfehlungen
Status
Anfragen Anfragen
r// \\\
’ RESTful API \
{ I
Gesund l |
Orchestrierung heits- || Analysen Gesundheits- .
Dienste I | Baran Infrt;sbtruktur
i | ene

-—————

Management & Provisionierung

\\\\\ Gesetzeskonforme & Sichere Cloud-Umgebung / /,/

Abbildung 3.1: Architektur der ECHO Plattform. Die rot umrandeten Komponenten wurden fiir diese
Arbeit entwickelt. Die rot gestrichelten Analysen werden als Konzept vorgestellt.
[BKK*14]

« doctor: wird Arzten zugewiesen, damit sie die ihnen zugewiesen Patienten iiberwachen kénnen.

« patient: fir Patienten, die Daten in das System eingeben.

In den Accounts sollen zusatzlich zur Rolle des Benutzers die Zugangsdaten fiir das System und die
Einstellungen zu den Benachrichtigungen gespeichert werden. Die Einstellungen sollen beinhalten, ob
der Benutzer benachrichtigt werden will, wie dies erfolgen soll und gegebenenfalls die Kontaktdaten
zu den Benachrichtigungsmodi (SMS, Push, E-Mail).

Der Arzt soll in der Lage sein, bei jedem Besuch des Patienten Untersuchungsergebnisse und Messwerte
zu speichern. Zusatzlich zu den Ergebnissen sollen auch noch die verschriebenen Medikamente und
ihre Dosierung gespeichert werden. Falls der Patient durch die COPD stirbt, sollen auch die Umstande
seines Todes gespeichert werden konnen, beispielsweise fiir eine spétere Analyse.

Um Patienten dem richtigen Schweregrad (A, B, C oder D, siehe Abbildung 3.3) zuzuordnen und damit
die richtigen Medikamente verschreiben zu konnen, wird Anzahl der Exazerbationen im letzten Jahr
und das Ergebnis des COPD Assessment Tests (CAT) benoétigt. Der CAT besteht aus acht Fragen, die
Aufschluss dariiber geben sollen, wie stark der Patient durch die COPD in seinem taglichen Leben

26

3.2 Gesundheitsdaten

CAT

cca

Charlson

Abbildung 3.2: Grobes ER-Diagramm der Gesundheitsdaten

<

beantwortet
beantwortet

beantwortet

Account

Patient

tdgl. Berichte

n

o
@

Benachtichtigung

Behandlung

Untersuchung

Tod

27

3 Konzept

4
Wenige Symptome, Vermehrte >=2
Hohes Symptome,
3 Exazerbationsrisiko Hohes

Exazerbationsrisiko

d709 Yoeu WnIpeISSHaYY ULy
Anzahl Exazerbationen im letzten Jahr

2 1
Wenige Symptome, Vermehrte
Niedriges Symptome,
1 Exazerbationsrisiko Niedriges 0
Exazerbationsrisiko
mMRC 0-1 mMRC >=2
CAT <10 CAT >=10

Abbildung 3.3: COPD Schweregrade: Berechnung und Bedeutung

beeinflusst wird. Bei der ersten Frage soll der Patient beispielsweise auf einer Skala von null bis fiinf
angeben, wie haufig er husten muss. Null bedeutet ,ich huste nie®, wahrend fiinf bedeutet ,ich huste
standig®. Die anderen sieben Fragen miissen ebenfalls auf einer Skala von null bis fiinf beantwortet
werden. Das Ergebnis des CAT ist die Summe der Ergebnisse der acht Fragen [cat].

Ein anderer Fragebogen fiir COPD Patienten ist der Clinical COPD Questionnaire (CCQ), welcher
verwendet wird, um den klinischen Gesundheitszustand zu erfassen. Die zehn Fragen des Fragebogens
haben eine feste Reihenfolge und miissen auf einer Skala von null bis sechs beantwortet werden. Sie
lassen sich in drei Kategorien (Symptome, mentaler Zustand und funktionaler Zustand) einteilen.
Symptome, die mit dem CCQ beobachtet werden konnen sind Atemnot, Husten und Auswurf. Mit den
Fragen zum mentalen Zustand sollen Informationen zum Gemiitszustand des Patienten gewonnen
werden. Die Fragen zum funktionalen Zustand sollen die COPD-bedingten Einschrankungen beschrei-
ben, mit denen der Patient im t4glichen Leben umgehen muss. Das Ergebnis des CCQ besteht aus
vier Teilen: einem Gesamtergebnis und je einem Ergebnis pro Kategorie [SJM'12]. Die Teilergebnisse
werden wie folgt berechnet:

SymtomScore = (q1 + q2 + g5 + ¢6)/4

MentalScore = (¢34 q4)/2

SymtomScore = (¢7 + ¢8 + ¢9 + q10) /4

TotalScore = (ql + q2 + g3 + g4 + ¢5 + ¢6 + q7 + ¢8 + ¢9 + q10)/10

Der Charlson Index gehort ebenfalls zu den Skalen, die auf COPD-Patienten angewendet werden. Er
beschreibt die 10-Jahres-Uberlebenschance des Patienten, falls der Patient an einer anderen schweren

28

3.3 RESTful API

Krankheit aufler COPD leidet. Im Charlson Index wird 22 Krankheiten eine Punktzahl zugeordnet,
und die Summe der Punkte ist der Charlson Index des Patienten. Im folgenden ist aufgelistet, welche
Krankheit zu welcher Punktzahl gehort:

1 Punkt: Herzinfarkt, Herzinsuffizienz, periphere arterielle Verschlusskrankheit, cerebrovaskulére
Erkrankungen, Demenz, Chronische Lungenerkrankung, Kollagenose, Ulkuskrankheit, Leichte
Lebererkrankung, Diabetes mellitus (ohne Endorganschéden)

2 Punkte: Hemiplegie, Maf3ig schwere und schwere Nierenerkrankung, Diabetes mellitus mit End-
organschiaden, Tumorerkrankung, Leukdmie, Lymphom

3 Punkte: Mafig schwere und schwere Lebererkrankung

6 Punkte: Metastasierter solider Tumor, AIDS

In den taglichen Berichten sollen die Ergebnisse der taglichen Dateneingabe durch den Patienten
gespeichert werden.

3.2.2 Sicherheit

Um die Sicherheit der Daten schon auf Datenbankebene zu schiitzen, sollen die folgenden Mafinahmen
ergriffen werden. Es soll fiir jeden Benutzer des ECHO-Backends ein Benutzer in der Datenbank
angelegt werden, der iiber das Datenbankrechtesystem nur die Rechte auf den Tabellen bekommt,
die mit seiner Rolle verkniipft sind. Da MySQL keine rollenbasierte Zugangskontrolle unterstiitzt,
miissen die Rechte einzeln vergeben werden. Fir die Benutzer sollen Views erstellt werden, die nur
die Daten enthalten, die ihn betreffen. Auf die unterliegenden Basistabellen soll der Benutzer dann
keinen Zugriff mehr haben. Da Prepared Statements nicht im verwendeten MySQL Modul fiir Node.js
verfiigbar sind, sollen auch Mafinahmen gegen mégliche SQL Injections auf Datenbankebene ergriffen
werden. Deswegen sollen alle Moglichkeiten, Daten zu dndern in Stored Procedures, die prepared
Statements verwenden, gekapselt werden.

3.3 RESTful API

Die RESTful HTTP-API des Backends stellt die Schnittstelle zwischen Anwendungsebene und Infra-
strukturebene dar und bietet Methoden zum Zugriff auf die Gesundheitsdaten. Da die API samtliche
Datenbankzugriffe kapselt und die einzige Moglichkeit darstellt, auf die Daten zuzugreifen, wird
durch die API auch die Sicherheit der Gesundheitsdaten erh6ht. Durch die uniforme und portable
Schnittstelle konnen alle bendtigten Arten von Klienten leicht mit dem Backend interagieren. Die API
kann neben der Kommunikation mit den Klienten auch zur Orchestrierung verwendet werden, indem
man die in diesem Kapitel beschriebenen, einfachen Dienste zu komplexeren Diensten kombiniert. Ein

weiterer Vorteil einer RESTful HTTP-API ist die statuslose Kommunikation und die damit verbundene
Skalierbarkeit.

29

3 Konzept

Fragen Accounts Patienten

I | I |
1 0..1
Frage Account Patient

1 1
1

Benachrichtigungen

i 4

| 1 | 1 ’1 ’ 1 | 1 ‘ 1 ‘ 1
Berichte ‘ CATs ‘ CCQs ‘ Charlsons ‘ Behandlungen‘ Untersuchungen‘ Tod ‘

A e

Bericht CAT ccQ ‘ Charlson ‘ Behandlung ‘ Untersuchung ‘

Abbildung 3.4: Ressourcen als UML-Diagramm

3.3.1 Ressourcendesign

Beim Ressourcendesign stellte sich heraus, dass die Ressource fiir die Patientendaten grofien Einfluss
auf die restlichen Ressourcen hat. Es gab die folgenden Méglichkeiten:

1. Eine ,grofle Patientenressource®, die alle persénlichen Daten des Patienten enthélt und die
Ergebnisse arztlicher Untersuchungen in Arrays mitfiihrt.

2. Eine ,kleine Patientenressource®, die alle personlichen Daten des Patienten enthélt, wiahrend
alle arztlichen Untersuchungen als eigenstidndige Ressourcen dargestellt werden.

3. Eine ,kleine Patientenressource mit Subressourcen®, wobei die arztlichen Untersuchungen als
Subressourcen modelliert werden. Subressourcen stellen Daten in Abhéngigkeit einer anderen
Ressource zur Verfiigung. Beispielsweise wiirde die Ressource /patients/1/examA nur Daten
beinhalten, die mit der Ressource /patients/1 in Verbindung stehen.

Die ,grofle Patientenressource“ hat den Nachteil, dass sie, durch den REST Architekturstil bedingt,
jedes Mal komplett an den Server iibertragen werden muss, wenn beispielsweise ein neuer CAT
(COPD Assessment Test) ausgefiillt wurde. Das bedeutet auch, dass sie mit der Zeit immer gréler
wird.

Jede Ressource, die abgerufen werden kann, soll aber auch ein Dokument darstellen, das fiir den
Anwender einen Nutzen hat. Im Fall der ,kleinen Patientenressource®, hitte aber beispielsweise eine
Auflistung aller CAT-Ergebnisse der Patienten keinerlei Nutzen fiir den Arzt.

Subressourcen sind zwar nicht bei allen Anhéngern des REST Architekturstils als RESTful anerkannt,
aber bei der Variante ,kleine Patientenressource mit Subressourcen” fallen beide Nachteile der anderen
Varianten weg. Es ist moglich, neue érztliche Untersuchungsdaten hinzuzufiigen, ohne die komplette

30

3.3 RESTful API

Patientenressource tibertragen zu miissen. Auflerdem wiirde ein Aufruf der CAT-Subressource nur
die Ergebnisse eines Patienten auflisten, anhand derer der Arzt beispielsweise den Krankheitsverlauf
nachvollziehen konnte, anstatt aller.

In Abbildung 3.4 werden alle identifizierten Ressourcen und ihre Beziehungen untereinander in
einem UML Klassendiagramm dargestellt. Die Ressource Patienten stellt die Listenressource fiir die
Ressource Patient dar. Wenn die Listenressource abgerufen wird, stellt sie eine Liste aller verfiigbaren
Ressourcen des Typs Patient zur Verfiigung. Eine spezifische Ressource Patient enthélt den Namen,
Kontaktdaten, demografische Angaben und Angaben zum zugehérigen Account.

Die Ressourcen Berichte, CATs, CCQs, Charlsons, Behandlungen, Untersuchungen und Tod sind Subres-
sourcen der Ressource Patient und stellen, bis auf die Ressource Tod, Listenressourcen dar. Die
Ressource Tod enthdlt Angaben zu den Todesumstinden, wenn der zugehérige Patient bereits ver-
storben ist und ist nur einmal pro Patient vorhanden, da der Patient nur einmal sterben kann. Eine
spezifische Ressource Bericht stellt das Ergebnis einer Dateneingabe an einem Tag durch den Patienten
dar. Eine einzelne Ressource CAT ist die Reprisentation eines durchgefithrten COPD Assessment
Tests, CCQ die eines beantworteten Clinical COPD Questionnaires und Charlson die eines ausgefiillten
Charlson Tests. Eine bestimmte Ressource Untersuchung stellt eine Untersuchung durch den Arzt dar,
wihrend eine bestimmte Ressource Behandlung eine Auflistung der verschriebenen Medikamente,
die der Patient zu einem Zeitpunkt bekommt, darstellt.

Zu jeder einzelnen Ressource Patient gehort eine bestimmte Ressource Account, die die Zugangsdaten
und die Einstellungen beziiglich der Benachrichtigungen enthilt. Die Ressourcen des Typs Account, zu
denen keine Ressource des Typs Patient gehort, sind Accounts der Rollen doctor und admin. Accounts
ist die Listenressource zu den einzelnen Ressourcen Account. Zu jeder Ressource Account gehoren
Benachrichtigungen, die an diesen einen Account gingen. Diese Benachrichtigungen kénnen tiber die
Ressource Benachrichtigungen abgerufen werden.

Im Rahmen dieser Arbeit wurde anfangs ein Prototyp implementiert, der die Funktionsweise der API
demonstrieren sollte. Fiir diesen Prototyp wurde eine Ressource angelegt, mit deren Hilfe die Fragen
zu den arztlichen Untersuchungen verwaltet werden konnten. Aulerdem konnte der Prototyp mit
Hilfe dieser Ressource Dialoge generieren, mit denen man die Fragen beantworten konnte. Da diese
Funktion immer noch niitzlich sein kann fiir das Browser-Frontend, ist in Abbildung 3.4 auch die
Listenressource Fragen mit der zugehorigen Ressource Frage dargestellt.

Im folgenden werden alle Funktionen erklart, die auf den Ressourcen benotigt werden. Dabei wird
auch jeweils erwihnt, welche Rolle die Funktion aufrufen darf. Diese Rollen sind dieselben wie die
der Accounts in den Gesundheitsdaten.

3.3.2 Funktionen der Ressource Account

Fiir die Listenressource Accounts werden folgende Funktionen benétigt:

1. eine Funktion die per HTTP GET eine Liste alle Ressourcen des Typs Account zuriickgibt. Dabei
muss Paginierung sowie das Filtern nach den Rollen admin, doctor und patient unterstiitzt
werden.

31

3 Konzept

2. mittels HTTP POST soll es moglich sein, eine neue Ressource des Typs Account zu erstellen.
Auf einer Ressource Account soll moglich sein:

1. mittels eines HTTP GET Requests soll eine bestimmter Ressource zuriickgegeben werden.

2. per HTTP PUT Request soll eine bestimmte Ressource aktualisierbar sein.

3. tber einen HTTP DELETE Request soll eine bestimmter Ressource deaktivierbar sein.

Alle Funktionen auf der Listenressource setzen vorraus, dass der Aufrufende zur Benutzergruppe
admin gehort. Die restlichen Funktionen sollen ebenfalls nur von Benutzern der Gruppe admin
aufrufbar sein, es sei denn die Ressource repriasentiert den eigenen Account des Aufrufenden.

3.3.3 Funktionen der Ressource Patient

Fur die Listenressource Patienten werden folgende Funktionen benétigt:

1. eine Funktion, die per HTTP GET alle Ressourcen des Typs Patient zuriickgibt. Dabei muss
Paginierung sowie das Sortieren nach E-Mail Adresse oder Aktenzeichen unterstiitzt werden.

2. mittels HTTP POST soll es moglich sein, eine neue Ressource des Typs Patient zu erstellen.
Auf einer Ressource Patient soll moglich sein:

1. mittels eines HTTP GET Requests soll eine bestimmter Ressource zuriickgegeben werden.

2. per HTTP PUT Request soll eine bestimmte Ressource aktualisierbar sein.

3. tber einen HTTP DELETE Request soll eine bestimmte Ressource geloscht werden kénnen.

Alle hier aufgefiihrten Funktionen setzen voraus, dass der Aufrufende zur Benutzergruppe doctor
gehort.

Funktionen der Subressourcen Berichte, CAT, CCQ, Charlson, Behandlung,
Untersuchung und Tod

Fiir jede Listenressource der Subressourcen Berichte, CATs, CCQs, Charlsons, Behandlung und Untersu-
chungen sollen folgende Funktionen bereit gestellt werden:

1. eine Funktion die per HTTP GET alle Ressourcen der Subressource zuriickgibt, die zu dem
Patienten gehoren

2. mittels HTTP POST soll es moglich sein, eine neue Ressource zu erstellen.

Auf den Ressource Bericht, CAT, CCQ, Charlson, Behandlung und Untersuchungen soll moglich sein:
1. mittels eines HTTP GET Requests soll eine bestimmte Ressource zuriickgegeben werden.
2. per HTTP PUT Request soll eine bestimmte Ressource aktualisierbar sein.

3. tber einen HTTP DELETE Request soll eine bestimmte Ressource geldscht werden konnen.

32

3.3 RESTful API

Fiir die Ressource Tod sollen folgende Funktionen implementiert werden:
1. per HTTP POST Request soll die Ressource angelegt werden kénnen.

2. mittels eines HTTP GET Requests soll die Ressource zuriickgegeben werden, falls sie zuvor
angelegt wurde.

3. per HTTP PUT Request soll die Ressource aktualisierbar sein.
4. Uber einen HTTP DELETE Request soll der Inhalt der Ressource geloscht werden konnen.

Alle hier erwiahnten Funktionen sollen nur verwendbar sein, wenn der Benutzer als Benutzer mit
der Rolle doctor authentifiziert wurde. Fur die Ressource Berichte gilt jedoch, dass sie auch von
Benutzern der Rolle patient verwendet werden kénnen soll, da sonst die tagliche Dateneingabe durch
den Patienten nicht méglich wire.

3.3.4 Funktionen der Ressource Benachrichtigungen

Auf der Ressource Benachrichtigungen wird eine Funktion benétigt, die nach einem HTTP GET
Request alle Benachrichtigungen zur Verfiigung stellt, die das Backend fiir den aktuell eingeloggten
Benutzer generiert hat. Da die Analysen aktuell noch nicht implementiert sind, wird zusatzlich eine
Funktion implementiert, die per HTTP POST eine neue Benachrichtigung erstellt. Die Funktion kann
spater auch dazu benutzt werden, reguldre Benachrichtigungen zu erstellen, falls Benachrichtigungs-
typen eingefithrt werden, die nicht durch Analysen generiert werden sollen.

3.3.5 Funktionen der Ressource Fragen

Auf der Listenressource Fragen werden folgende Funktionen benétigt:
1. eine itber HTTP GET ansprechbare Funktion um alle aktiven Fragen einer Kategorie abzurufen.
2. eine Funktion iiber die sich per HTTP POST eine neue Frage mit Antworten anlegen lasst.
Auf einer bestimmten Ressource Frage sollen folgende Operationen moglich sein:

1. Uber HTTP GET soll die einzelne Ressource Frage mit ihren Antworten zuriickgegeben werden
konnen.

2. iber HTTP PUT soll die Ressource inklusive der zugehorigen Antworten dnderbar sein, insbe-
sondere soll der Status von aktiv auf inaktiv geandert werden kénnen.

3. per HTTP DELETE soll die Ressource inklusiv ihrer Antworten geloscht werden konnen.

Alle Funktionen der Ressourcen des Typs Frage und die der POST Funktion der Listenressource
sollen nur von Benutzern des Typs admin verwendet werden konnen. Fir die GET Funktion der
Listenressource gentigt es, ein authentifizierter Benutzer zu sein.

33

3 Konzept

(1) RO Credentials

(2) RO Credentials

(3) Access Token

Abbildung 3.5: Resource Owner Password Credentials Flow

3.3.6 Command Ressourcen

Um mehrere Ressourcen auf einmal zu andern oder nur teilweise zu andern, werden Command
Ressourcen eingefiithrt. Die folgenden Funktionen sind zusétzlich notwendig:

« Um einen neuen Patienten inklusive Account anzulegen, soll es Arzten méglich sein mit einem
POST Aufruf eine Account Ressource und eine Patienten Ressource anzulegen.

« Auflerdem soll es einem Benutzer mit der Rolle admin erméoglicht werden, den Arzt eines
Patienten zu dndern.

3.3.7 Sicherheit

Zur Authentifizierung soll OAuth 2.0 mit dem Profil Resource Owner Password Credentials verwendet
werden. Der Ablauf ist in Abbildung 3.5 dargestellt. Der Resource Owner, der Besitzer der Daten, gibt
seine Zugangsdaten auf dem Client ein und dieser sendet sie an den Resource Server. Der wiederum
stellt ein Access Token aus, mit dem man die API verwenden kann. Das Token kann verwendet
werden um Informationen tiber den Benutzer zu transportieren, sodass beispielsweise nicht bei jedem
Request an die API mit Hilfe der Datenbank tiberprift werden muss, ob der Benutzer berechtigt ist,
die Operation auszufithren. Im Token kann auch eine Ablaufzeit gespeichert werden, nach der das
Token mit Hilfe eines Refresh Tokens erneuert werden muss. Ein Refresh Token wird gleichzeitig
mit dem Access Token ausgestellt und ist nur einmal einsetzbar. Mit einer begrenzten Giiltigkeit
eines Access Tokens lasst sich das Risiko eines Tokens, das von einen Angreifer entwendet wurde,
verkleinern. Das Token und das Refresh Token miissen allerdings mit derselben Sorgfalt behandelt
werden wie ein normales Passwort. Um die Ubertragung der Daten zu schiitzen, und weil OAuth 2.0
es voraussetzt, soll SSL verwendet werden.

34

3.4 Analysen

3.4 Analysen

In diesem Abschnitt werden einfache Analysen vorgestellt, die durch Gespréache mit Arzten entstanden
sind und im Backend implementiert werden konnen. Es gibt zwei Arten von Analysen: die eine wertet
die tdglichen Patienteneingaben anhand von Wenn-Dann-Regeln aus und die andere bestimmt die
Schwere der Erkrankung anhand von Untersuchungsergebnissen und der Anzahl der Exazerbationen
im letzten Jahr.

3.4.1 Tégliche Berichte

Die tagliche Dateneingabe durch Patienten wird anhand von Wenn-Dann-Regeln analysiert, um
frithzeitig Exazerbationen zu erkennen und zu verhindern. Die tégliche Dateneingabe besteht aus den
folgenden Fragen:

1. Hat sich Ihre Kurzatmigkeit verstarkt?
a) Konnen Sie Thre tdgliche Arbeit verrichten?
b) Konnen Sie sich selbst versorgen?
¢) Konnen Sie laufen?
2. Miissen Sie mehr husten?
3. Hat sich Thr Auswurf veréandert?
a) Ist Ihr Auswurf gelb?
b) Ist Ihr Auswurf griin?
c) Ist Thr Auswurf blutig?
4. Haben Sie Brustschmerzen?
5. Haben Sie die Dosierung der Medikamente erhoht?

Die Fragen 1a, 1b und 1c sollen nur beantwortet werden, wenn Frage 1 mit ja beantwortet wurde.
Entsprechendes gilt fiir Frage 3. Auflerdem kann der Patient, wenn er iiber die entsprechenden Gerate
verfiigt, die folgenden Messwerte eintragen:

« Sauerstoffsittigung

+ Puls

» Kopertemperatur

+ maximale Ausatmungsgeschwindigkeit

Anhand der folgenden Regeln kénnen die Daten analysiert werden:

+ An zwei Tagen in Folge Frage 1 mit ja beantwortet -> Arzt anrufen.

« An einem Tag Fragen 1, 2 und 3 mit ja beantwortet -> Arzt anrufen.

35

3 Konzept

Stadium FEV1 (Sollwert = 100%) FEV1/FVC

1 >=80% <70%
2 50-80% <70%
3 30-50% <70%
4 <30% <70%

Tabelle 3.1: Berechnung des COPD Krankheitsstatdiums nach GOLD nach [copb]

+ An einem Tag Frage 3a oder 3b mit ja beantwortet -> Arzt anrufen.

An einem Tag Frage 3c mit ja beantwortet -> Ins Krankenhaus gehen.
+ An zwei Tagen in Folge Frage 5 mit ja beantwortet -> Arzt anrufen.

« Fragen x Tage nicht beantwortet -> Erinnerung.

Wenn eine der Regeln zutrifft, soll der Patient und der Arzt des Patienten benachrichtigt werden.
Benachrichtigungen werden, je nach gew#hltem Modus, per SMS, E-Mail oder Push-Benachrichtigung
verschickt und in der Datenbank hinterlegt.

3.4.2 Schweregrad der Krankheit

Die zweite Analyse, die anhand der vorhandenen Daten implementiert werden kann, ist die Berech-
nung des Schweregrads nach Kriterien der Global Initiative for Chronic Obstructive Lung Disease
(GOLD) (siehe Abbildung 3.3). Der Schweregrad der COPD richtet sich nach

« der Lungenfunktion (ausgedriickt durch das Krankheitsstadium nach GOLD, siehe 3.1)
« der Anzahl der Exazerbationen im letzten Jahr

« dem Ergebnis des COPD Assessment Tests, wenn kein Ergebnis vorliegt, kann auch das Ergebnis
des Modified British Medical Research Council (mMRC) Fragebogens verwendet werden.

Um das Krankheitsstadium nach GOLD zu berechnen (siehe Tabelle 3.1) bendtigt man die folgenden
zwei Werte:

« die groftmogliche Menge an Luft, die Sie innerhalb von einer Sekunde ausatmen kénnen (FEV1,
Forced Expiratory Volume in 1 second)

+ die Luftmenge, die Sie nach tiefem Einatmen mit maximaler Geschwindigkeit insgesamt wieder
ausatmen konnen (FVC, forced vital capacity)

Mit dem Stadium, der Anzahl der Exazerbationen im letzten Jahr und dem Ergebnis des CAT (ersatz-
weise der mMRC-Wert) lasst sich die Schwere anhand der Tabelle 3.2 berechnen. Dabei gilt allerdings,
dass zuerst das Stadium und die Anzahl der Exazerbationen betrachtet werden und auf den héheren
Schweregrad der CAT-Wert (oder der mMRC-Wert) angewendet wird.

36

3.4 Analysen

Schweregrad Stadium Exazerbationen CAT oder mMRC

A loder 2 weniger als zwei im letzten Jahr CAT < 10 oder mMRC 0-1

B loder2 weniger als zwei im letzten Jahr CAT >= 10 oder mMRC >= 2
C 3o0oder4 mind. zwei im letzten Jahr CAT < 10 oder mMRC 0-1

D 3o0der4 mind. zwei im letzten Jahr CAT >= 10 oder mMRC >=2

Tabelle 3.2: Berechnung des COPD Schweregrads nach [copb]

37

4 Implementierung

Bisher wurden die Patienten in einer Microsoft Access Datenbank verwaltet. Diese Datenbank war
aber nur von einem Arzt und nur lokal verwendbar. Da das ECHO-Backend von vielen Benutzern
gleichzeitig benutzbar sein soll, ergeben sich folgende Anforderungen an die Implementierung: Mehr-
benutzerfahigkeit, Skalierbarkeit, Remote Access und Sicherheit der Patientendaten. Darum wurde ein
Relationales Datenbanksystem und eine geeignete skalierbare und performante Programmiersprache
fir Netzwerkanwendungen verwendet.

4.1 Gesundheitsdaten

Als Datenbanksystem wurde MySQL vorgegeben. MySQL ist ein Open-Source-Datenbank und kann
dadurch auch als insofern sicher angesehen werden, als dass es keine eingebauten Hintertiiren hat.
Auflerdem existiert fiir MySQL ein vordefinierter TOSCA Nodetype. Mit Hilfe von TOSCA kénnte
eine MySQL Datenbank beispielsweise in einer sicheren und gesetzeskonformen Cloud deployed
werden.

4.1.1 MySQL Workbench

Die MySQL Workbench ist ein visuelles Werkzeug fiir Datenbankarchitekten und Entwickler. Mit Hilfe
der Workbench wurden das Schema fiir die Gesundheitsdaten umgesetzt und die Stored Procedures
implementiert.

Durch Nutzung der Workbench wihrend des Modellierens miissen keine langen SQL Skripte ge-
schrieben werden. Anstatt dessen kann in einer GUI einfach eine neue Tabelle angelegt und mit
Spalten versehen werden. Pro Spalte kann man den Datentyp festlegen und ob die Spalte Teils des
Primérschlissels ist, NULL Werte erlaubt, nur eindeutige Werte erlaubt oder was der Standardwert
sein soll. Pro Tabelle lassen sich Indizes, Fremdschliissel und Trigger definieren. Bei der Definition von
Triggern wird man unterstiitzt, indem man nur den Auslésezeitpunkt auswahlen muss, und die Work-
bench stellt dann bereits das Codegrundgeriist zur Verfiigung. Abbildung 4.1 zeigt die Bearbeitung
der Accountstabelle des ECHO Schemas.

Wurde die Datenbank modelliert kann, man auch ER-Diagramme erstellen lassen. Die ER-Diagramme
kénnen per Drag und Drop verdndert werden und die Datenbank auch nur teilweise darstellen.
AuBlerdem kann der Editor zum Modellieren und Andern des Schemas verwendet werden.

Uber die MySQL Workbench kann man sich zu einem beliebigen MySQL Server verbinden und dort
das erstellte Schema anlegen lassen. Es ist auch moéglich, nur Teile des Schemas anlegen zu lassen

39

4 Implementierung

® 06 L scheme_echo.mwb - MySQL Workbench "
#& local © | MySQLModel | Healthdata « Permissions » QuestionsResource * rrr «
Pl e 03333 Q
| Description | v EER Diagrams
accounts: MysQL Table + | el o= =
@
Add Diagram Healthdata Permi tionsR.
¥ Physical Schemas +
] echo
(=] wysaL schema
Tables
| Add Table T accounts T answers T cats T ccas T charlsons T dailyReports T deaths T notifications
[patients [l perm_roles proce... [l perm_roles_views [l questions [reaings [treatments
Views
o Add View = accounts_view 3 cats_view) ccas_view = charisons_view = dailyreports_view =] deaths_view 3 notifications_view [patients_view
[readings_view = treatments_view

Routines -

& Add Routine B3] accountsList [accountsListO =) catUpdat B ccqCreace
B3] ccaUpdate 3] createDbUser 3 deathCreate =] = 3] deathUpdat 3] deleteExamRecord

| UserTypes | History - “R"‘ =) patientsCrent = = = "Dr . B cead

Type Definition i getkole — — == . = -

EN TINYINTG F3) reportCreate 3 reportiistone T3 reportupdate F3) treatmentCreate [treatmentUpdate

%, BOOLEAN TINYINTCY Routine Groups

& FXED DECMALY| g Group

5, FLOAT4 FLOAT

o, FLOATS DOUBLE | b Schema Privileges

5 N1 TINVINT4) 5. sqL Scripts

& INT2 SMALUINTY . podel Notes

% NT3 MEDIUMIN

T Wty | # accounts - Table @

5, T8 BGINTQRO) —

- I Name: [accounts Schema: echo

BN wTap | L

(I, LONG YARE... MEDIUME) [Dasatype ZF A Default Column detal Lt

Us
Z
<
Z

3 LONG VARC... MEDIUMTY | 5accound INT T® & 000
S s £ Collation: | Table Default
b s usemame VARCHARRSS) & ()
S MDDLENT MEOWMIN| | passwors VARCHAR@SS) + () @ Comments:
& NUMERIC DECIMALLL |, role VARCHARRZO) 3 (] &
5, DEC DAL | & email VARCHAR(LODY ¢ () &
2 CHARACTER CHAR(D) | [enabled BOOLEAN Sl 1
5 reminderTime TIME 0o
» notficationE... BOOLEAN 0@ C 1
© notification... VARCHAR(10) & [C ‘email
> mobile VARCHARGS) ¢ 0 O O O O O O
Columns Indexes Foreign Keys. Triggers. Partitioning Options Inserts Privileges

SQL Editor closed

Abbildung 4.1: Screenshot MySQL Workbench

oder vor dem Anlegen das generierte SQL Skript anzupassen. Sollte ein der Workbench erstelltes
Schema auf einem Server erstellt und dann nachtraglich dort geAndert worden sein, gibt es auch die
Moglichkeit, diese Anderungen von der Workbench in das lokale Schema tibernehmen zu lassen.
Dabei kann man auch auswihlen ob man alle Anderungen tibernehmen will.

4.1.2 Access Control in MySQL

Die Rechtevergabe in MySQL erfolgt iiber GRANT und REVOKE Statements. Mit einem Statement
lassen sich Rechte an einen bestimmten Benutzer vergeben. Der Benutzer wird dabei in der Form
user@host angegeben. Dadurch kénnen einem Benutzer unterschiedliche Rechte zugewiesen werden,
je nach dem von welchem Host er sich mit der Datenbank verbindet.

Bei Stored Procedures und Views kann tiber das DEFINER Attribut der Ersteller des Objekts ange-
geben werden. Falls keiner angegeben wird, wird der Benutzer, der das Objekt erstellt als DEFINER
eingetragen. Zusatzlich kann tiber das SQL SECURITY Attribut festgelegt werden, in welchem Kontext
die Routine oder der View ausgefiihrt werden soll. Die moglichen Werte hierbei sind: DEFINER und
DEFINER. Falls DEFINER angegeben wird, wird die Routine oder der View im Kontext des Erstellers
ausgefiihrt. Der ausfithrende Benutzer muss dabei lediglich das Recht haben, die Routine auszufithren
oder den View auszulesen. Wihrend des Ausfithrens der Routine oder des Views werden aber die
Rechte des Erstellers verwendet. Je mehr Rechte der Ersteller hat, desto méchtigere Operationen kon-
nen von dem Objekt verwendet werden, unabhingig davon welche Rechte der Aufrufende hat. Wenn

40

4.1 Gesundheitsdaten

Typ Bedeutung

Sie miissen ihren téglichen Bericht ausfiillen!

Rufen Sie Ihren Arzt an!

Gehen Sie ins Krankenhaus!

Ihr Patient %name% soll Sie anrufen!

Ihr Patient %name% sollte ins Krankenhaus!

Thr Patient %name% hat seit 2 Tagen keinen Bericht ausgefillt!

NG W N =R O

Thr Patient %name% hat seit 10 Tagen keinen Bericht ausgefiillt!

Tabelle 4.1: Benachrichtigungsarten

SQL SECURITY INVOKER angegeben wurde, kénnen damit nur Operationen ausgefithrt werden fiir
die der Aufrufende Rechte besitzt.

4.1.3 Datenmodell

In Abbildung 4.2 wird das vollstindige Datenmodell der Gesundheitsdaten dargestellt. In der Tabelle
accounts hat jeder Benutzer des Systems einen Eintrag. Dort werden E-Mail Adresse und Passwort,
die als Zugangsdaten zum System dienen, gespeichert. Falls das Flag enabled auf false steht, bedeutet
dies, dass der Account inaktiv ist und der Benutzer sich nicht anmelden kann. Auflerdem wird die
Rolle des Benutzers (entweder admin, doctor oder patient) festgelegt. Zusitzlich zu diesen Daten
werden die Einstellungen zu den Benachrichtigungen, die das System versenden kann, erfasst. Es
wird gespeichert ob und wie Benachrichtigungen verschickt werden sollen. Mogliche Benachrich-
tigungsmodi sind SMS, Push-Notification oder E-Mail, dargestellt durch die Werte sms, push und
email. Um die Benachrichtigung per SMS zu unterstiitzen muss auch noch die Mobiltelefonnummer
gespeichert werden. Via Trigger wird vor Einfiigen und Aktualiseren der Daten gepriift, ob die Rolle
und der Benachrichtigungsmodus einen giiltigen Wert haben.

Die Benachrichtigungen, die jeder Benutzer des Systems erhalten kann, werden in der Tabelle notifi-
cations gespeichert. Neben dem Zeitpunkt der Erstellung wird bei jeder Benachrichtigung der Typ
der Benachrichtigung gespeichert (siehe Tabelle 4.1). Die Benachrichtigungen der Typen 0, 1 und 2
sind fur Patienten vorgesehen, der Rest fiir Arzte. Der Platzhalter %name% kann aus der patientld
abgeleitet werden.

In der Tabelle patients sind Details zu jedem Patient hinterlegt. Der dazugehorige Account wird in
accountld hinterlegt und der Account des Arztes in doctorld. Bei diesen Feldern wird auch iiberprift,
ob die Rolle des angegebenen Accounts patient bzw. doctor ist. Zu jedem Patient gehort eine eindeutige
Versicherungsnummer und eine Akten-ID. Aulerdem werden allgemeine Daten tiber den Patient
gespeichert, wie sein voller Name, Geschlecht, Geburtsdatum und Adresse. Der zweite Name des
Patienten sowie seine Festnetznummer sind optional.

Die Tabelle cats speichert alle COPD Assessment Tests und die Tabelle cqqs alle COPD Clinical
Quetionnaires. Die Ergebnisse der Fragebogen werden aus den einzelnen Antworten von einem

41

4 Implementierung

"] ecqs v] deaths v | dailyReports ¥ "~ readings v
recordld INT 1 patientld INT recordld INT recordld INT
& patientld INT -, date DATETIME & patientld INT & patientld INT
> diagnoseDate DATE “» cardigvascular BOOLEAN > date DATE (s diagnoseDate DATE
gl INT 2 respiratory BOOLEAN & q1 BOOLEAN & status VARCHAR{ 15)
S a2 INT % infectious_disease BOOLEAN g2 BOOLEAN (> weight INT
23 INT * malignancy BOOLEAN g3 BOOLEAN & height INT
2 q4INT o other VARCHAR(255) g4 BOOLEAN & puy INT
> gs INT g5 BOOLEAN Commre INT
0B INT 0.1 2>gla BOOLEAN > smaoker INT
2 g7 INT T R . _| > q1b BOOLEAN % notes TEXT
5 g8 INT | > glc BOOLEAN o fov1 FLOAT
| I
INT % q3a BOOLEAN fev1_pro FLOAT
ik recordld INT | | a3 < fev1_pro
10 INT > q3b BOOLEAN fuc FLOAT
. & patientld INT I I b S
totalCCQScore FLOAT © q3c BOOLEAN fu FLOAT
e %> diagnoseDate DATE | | i \»e_pro
2 symptom Score FLOAT S al INT | | > sat02 FLOAT O fevl_fuc FLOAT
<> mentalStateScore FLOAT S a2 INT I | < walkingDist FLOAT Zorv FLOAT
2 functionalStateScore FLOAT S a3 INT 0.+ | I temperature FLOAT Crv_pro FLOAT
tatus VARGHAR(15] = —I—-4) O pefr FLOAT tic FLOAT
- " e ' | I :nﬁt FLOAT e
& heartRate l FLOAT
05 INT Ly | Sk
g8 INT I I I & r_tle FLOAT
2> sat02_pro FLOAT
| treatments ¥ | |“a7INT | | |
| | > dlco_pro FLOAT
recordid INT © a8 INT P
| | “> pac2 FLOAT
& patientld INT O totalCatscale INT | | |
i % status VARGHAR(15) | | | i Opano2 FLOAT
d Date DATE
_» diagnoseDate ll ll . 1| | “heod FLOAT
tatus VARGHAR(15]
o stals (19) Lo ' I % pH FLOAT
hortActingB2 BOOLEAN
e _] patients v | > fve_pre FLOAT
% longhctingB2 BOOLEAN
e ¥ patientld INT(11) {» fvc_pre_pro FLOAT
2 ultraLongB2 BOOLEAN
i & doctorld INT C>fev1_pre FLOAT
< stervids Inhaled BOOLEAN
» firstName VARCHAR(50) | (»few1_pre_pro FLOAT
_> steridsOral BOOLEAN
& lastName VARCHAR(50) I <> fev1_fvc_pre FLOAT
> sama BOOLEAN
1 » secondName VARCHAR(50) 0 | (»faf25_75_pre_pro FLOAT
2> lama BOOLEAN 0.7*
_____g,,,, % socialld WARCHAR(20) | < pel_pre_pro FLOAT
{ pdef4Inhalator BOOLEAN
i » sex BOOLEAN »tlc_pre FLOAT
2 theophyline BOOLEAN
ke *» dateQfBith DATE] charlsons v 0 tic_pre_pro FLOAT
<> mycolytocis BOOLEAN -
“» firstDiagno seDate DATE recordld INT »fre_pre FLOAT
<> antibiotics BOOLEAN
& fulldddress VARCHAR(255) R, 0 frc_pre_pro FLOAT
<> antiflu BOOLEAN landine VARCHAR(S0) bl 0 rv_pre FLOAT
*J e
R ——— fileld VARCHAR(45] - cagnesebate DATE rv_pre_pro FLOAT
B o ndl (45) > myocardiallnfarction BOOLEAN Qrv_pre_p
. totStartDate DATE N I > congestive HeartFailure BOOLEAN > koo_pra FLOAT
0.%10.1 1] . . > hematocrit FLOAT
2 totDevice VARCHAR(50) | | < peripheralVascularDisease BOOLEAN - e
> niv BOOLEAN | | > cerebrovascularDisease BOOLEAN (@ Tve_pos!
| | S CXLIEA C del_fvc_pro FLOAT
& ventilationStart DATE | | Sl LD
| hronicPul Di BOOLEAN »few1_post FLOAT
< ventilation Device VARGHAR(50) | LAl C e L R L S L A T
| I > connective TissueDisease BOOLEAN © dal_fev1_post
9 | .. | ©uoorDiease BOOLEAN & del_faf25_75_pro FLOAT
<} _ 2 _| % liverDiseaseMild BOOLEAN © dal_pat_pro FLOAT

> diabetes BOOLEAN

|
|
_| notifications ¥ |
| > hemiplegia BOOLEAN
|
|
|

notificationid INT
5 accountld INT 0.* <> renalDiseaseMod erateOrSevere BOOLEAN
e - 1 . 1 %> diabetasWith EndOrganDamage BOOLEAN Legende
S type INT l | accounts v e Priméarschlissel
< subjectsAccount INT ¢ accountld INT e — & NOT NULL (NN}
. | | o » usemame VARCHAR(255) = :tnalz?anthm;zoso;EMMLmN ¥ Schlissel aus anderer Tabelle
0.7 L _ | password vARCHAR(255) - Inerblseasalfoperalebrsavere & Wert aus anderer Tablle (NN)
I role VARCHAR(20) > metastaticSolid Malignancy BOOLEAN
| email VARCHAR(100) Ll 8o)
| i 2> noCenditionAvailable BOOLEAN 1:1 Beziehung
é_ _ 0a e % totalCharlson INT(11)
% notification Enabled BOOLEAN !
2 notificationMode VARCHAR(10) ¢ 1:N Beziehung
2> mobile VARCHAR|45) !

Abbildung 4.2: ER-Diagramm der Gesundheitsdaten

42

4.1 Gesundheitsdaten

Trigger berechnet. Der Trigger priift zusatzlich noch ob der Status mit baseline oder exacerbation
angegeben wurde und setzt das diagnoseDate auf das aktuelle Datum, falls keines angegeben wurde.

Mit welchen Mitteln durchgefiihrt wird, wird in treatments gespeichert. Ein Trigger priift die Werte
fiir status (baseline oder exacerbation), ItotDevice (cpap oder bipap) und ventilationDevice (concetrator,
cylinder, liquid) und setzt das Datum auf das aktuelle Datum falls kein Datum angegeben wird.

In der Tabelle charlsons werden einzelne Charlson Tests gespeichert. Das Ergebnis (totalCharlson)
wird durch einen Trigger berechnet, der ebenfalls iiberpriift ob mindestens eine Bedingung zutrifft
(entweder eine Krankheit oder noConditionAvailable) und das Datum auf das aktuelle Datum setzt,
falls keines angegeben wurde.

Die Tabelle readings erfasst alle Werte, die bei einer Untersuchung erfasst werden konnen. Ein
Trigger priift den Wert fiir status (baseline oder exacerbation) und setzt das Datum.

Die tagliche Dateneingabe des Patienten wird in dailyReport gespeichert. Neben den Antworten auf
die ja/nein Fragen werden noch die Sauerstoffsittigung im Blut, die am Tag zuriickgelegte Wegstrecke,
die Korpertemperatur, die maximale Ausatmungsgeschwindigkeit und der Puls gespeichert.

Falls ein Patient verstirbt, wird seine Todesursache in deaths festgehalten. Falls die vorgesehenen
Ursachen nicht zutreffen, kann im Feld other ein Freitext gespeichert werden. Diese Tabelle ist die
einzige, bei der es pro Patient maximal einen Eintrag geben kann.

4.1.4 Implementierte Views

Um sicherzustellen, dass die Benutzer des Systems nur die Daten angezeigt bekommen, die sie sehen
diirfen, wurden Views implementiert. Die Views werden in diesem Abschnitt vorgestellt.

Anstatt fiir jeden Benutzer eine Reihe von Views zu erstellen, kann pro Tabelle auch nur ein View
erstellt werden, der die Rechte des aktuell angemeldeten Benutzers auswertet. Dazu werden drei
Hilfsfunktionen benétigt: user(), die Bestandteil von MySQL ist, und die selbstgeschriebene Funktion
getRole(). Beim Aufruf gibt user() den Benutzer mit dem man sich am Datenbanksystem angemeldet
hat zuriick. Diese Funktion ist nicht zu verwechseln mit current_user(), die den Benutzer zuriickgibt,
mit dem sich der Client authenfiziert hat. Ein Beispiel verdeutlicht den Unterschied: Sei userA der
Benutzer, mit dem man am Datenbanksystem angemeldet ist und der EXECUTE Rechte auf der Stored
Procedure f() hat. f() wurde von userB erstellt und verwendet die SQL SECURITY DEFINER Klausel.
Wenn user() in () aufgerufen wird, wird userA zuriickgegeben, wihrend ein Aufruf von current_user()
userB zurtckgibt.

Die Funktion getRole() (siehe Listing 4.1) gibt die ECHO-Rolle des aktuell angemeldeten Datenbankbe-
nutzers zuriick. Dies funktioniert, da dem Datenbankbenutzer die Account-ID aus der Account-Tabelle
als Benutzername zugewiesen wurde (siehe Abschnitt Benutzerverwaltung).

In Listing 4.2 ist dargestellt, wie die Funktionen genutzt werden kénnen um nur die Datensétze anzu-
zeigen, fur die der aktuelle Benutzer berechtigt ist. Der View accounts_view stellt sicher, dass nur
Benutzer mit der Rolle admin auf alle Accounts Zugriff haben und andernfalls nur der eigene Account
angezeigt wird. Wenn getRole() die Rolle admin zuriickgibt, werden keine Einschrankungen gemacht.
Andernfalls zeigt der View nur den Datensatz an, der zum aktuell angemeldeten Datenbankbenutzer

43

4 Implementierung

Listing 4.1 Stored Function: getRole()

CREATE DEFINER="echo_db_usr '@ localhost™ FUNCTION “getRole’ () RETURNS char(10)

BEGIN
SELECT role into @ret from accounts where accountId = substring_index(user(), '@', 1);
RETURN @ret;

END

Listing 4.2 Auf der Tabelle Accounts definierter View
CREATE VIEW “accounts_view™ AS

SELECT x*
FROM “accounts”
WHERE
(CASE
WHEN (getRole() = 'admin') THEN (1 = 1)
ELSE (“accounts’. accountId’ = substring_index(user(), '@', 1))
END)

gehort. Der View patients_view ist dhnlich aufgebaut, nur dass nicht tiber accountld eingeschrankt
wird, sondern iiber doctorld. Allerdings wird fiir diesen View die Patiententabelle mit der Accountta-
belle gejoint, um die zusitzlichen Informationen (Mobiltelefonnummer und E-Mail-Adresse) fiir die
Ressource Patient bereitzustellen.

Neben den bereits vorgestellten Views wurden noch die folgenden erstellt: cats_view, ccq_view,
charlson_view, deaths_view, readings_view, dailyreports_view und treatments_view. Diese
Views sollen nur Benutzern der Rolle admin oder doctor zur Verfiigung stehen. Sie sind alle gleich
aufgebaut und sollen nur die Datensitze anzeigen, die zu Patienten des aktuellen Benutzers gehéren
oder alle falls der Benutzer die Rolle admin hat. In Listing 4.3 ist einer davon beispielhaft dargestellt. In
diesem View wird in der WHERE Klausel ebenfalls die Rolle tiberpriift. Wenn die Rolle des Benutzers
admin ist, wird nicht eingeschrénkt. Andernfalls werden nur die patientlds angezeigt, die dem
aktuellen Benutzer zugeordnet sind.

Der View notifications_view zeigt die Berechtigungen des aktuellen Benutzers an. Zusétzlich wird
aus dem Typ der Benachrichtigung (siehe Tabelle 4.1) und der ID des Benutzers, iiber den berichtet
wird, ein String gebildet, der die Benachrichtigung lesbar macht.

Listing 4.3 Auf der Tabelle CATs definierter View

CREATE VIEW “cats_view™ AS
SELECT x*
FROM “cats®
WHERE
(CASE
WHEN (getRole() = 'admin') THEN (1 = 1)
ELSE “cats’ . patientId’ in (
SELECT “patients’. patientId"
FROM “patients’
WHERE (" patients’. doctorId® = substring_index(user(), '@', 1)))

END)

44

4.1 Gesundheitsdaten

4.1.5 Implementierte Stored Procedures

In diesem Abschnitt werden die Stored Procedures beschrieben, die im Rahmen dieser Arbeit geschrie-
ben wurden. Die Stored Procedures dienen primér dazu den schreibenden Zugriff fiir den REST-Service
zu kapseln. Alle im folgenden vorgestellten Stored Procedures haben dafiir den Benutzer echo_db_adm
als Definer zugewiesen bekommen und werden mit dessen Rechten ausgefiihrt. Das bedeutet, dass der
Benutzer echo_db_adm auf allen benutzten Views und Tabellen Lese- und Schreibrechte benétigt, aber
dadurch allen anderen Datenbankbenutzern fiir den Zugriff auf die Daten, die Rechte zum Ausfithren
der Stored Procedures gentigen.

Die Methode accountsCreate() dient dazu einen neuen Account anzulegen. Falls ein Benutzer der
Rolle doctor einen Account anlegen will, wird tberpriift ob der neue Account die Rolle patient
hat. Wenn nicht wird ein Fehler ausgegeben, da Benutzer der Rolle doctor nur Accounts der Rolle
patient anlegen diirfen und keine der Rollen admin oder doctor. AnschlieBend wird der Account
iiber ein prepared Insert Statement erstellt. AuBerdem wird ein Datenbankbenutzer angelegt, wobei
die ID des angelegten Backendnutzers als Benutzername verwendet wird. Als Passwort wird eine
Konkatenation aus der ID des neues Benutzers und des Parameters pwdPrefix verwendet. Dieses
Prafix sollte fiir alle Benutzer gleich sein. Durch ihn soll es zum einen fiir Nutzer, die Zugriff auf das
System haben, schwerer werden das Passwort des Benutzers zu erraten. Zum anderen kann dadurch
das Passwort in der REST API ,errechnet” werden, wenn es notig ist, sich mit einem anderen Benutzer
zur Datenbank zu verbinden. Um dem neu angelegten Datenbankbenutzer alle erforderlichen Rechte
zuzuteilen, muss zusitzlich die Funktion grantRolePermissions() aufgerufen werden (siehe Abschnitt
Benutzerverwaltung).

Mit der Methode accountsUpdate() lasst sich ein Account bearbeiten. Die Rolle des Patienten und
das enabled-Flag lassen sich durch diese Methode nicht d&ndern. Um zu tiberpriifen, ob der Benutzer
den angegebenen Account dndern darf, wird Gberpriift, ob der zu 4ndernde Account in accounts_view
enthalten ist. Falls er das nicht ist, wird mit einem Fehler abgebrochen. Wenn kein Fehler geworfen
wird, wird der angegebene Account aktualisiert. Dabei wird noch unterschieden, ob das Passwort
als leerer String tibergeben wurde. Falls ein leerer String iibergeben wurde, wird das Passwort nicht
gedndert. AbschlieBend wird der Account iiber ein prepared Statement aktualisiert und die Anzahl
der betroffenen Datensatze zuriickgegeben. Da es nicht vorgesehen ist, dass ein Account zu lschen,
sondern nur zu deaktivieren, dndert die Methode accountsDisable() das enabled Flag, nachdem
tberpriift wurde, ob der Benutzer die Rolle admin hat.

Um einen neuen Patient anzulegen kann die Methode patientsCreate() verwendet werden, die ein
prepared Statement verwendet, um die Daten einzufiigen. Uber die Methode patientsRessourceUp-
date() sollen alle Daten bearbeitet werden kénnen, die durch die Ressource Patient des REST Services
dargestellt werden. Das sind zum einen alle Daten der Patiententabelle und die E-Mail Adresse und
die Mobiltelefonnummer, die in der Accounttabelle gespeichert werden. Zuerst wird iiber den pa-
tients_view uberpriift, ob der aktuelle Benutzer berechtigt ist, den Patienten zu bearbeiten. Dann
werden in einer Transaktion beide Tabellen aktualisiert. Wenn ein Patient geldscht werden soll, kann
dies per patientsDelete() getan werden.

Fiir die restlichen Tabellen wurden folgende Stored Procedures erstellt, um Daten zu erstellen: cat-
Create(), ccqCreate(), charlsonCreate(), deathCreate(), reportCreate(), readingsCreate() und

45

4 Implementierung

| perm_roles_views ¥ | perm_roles_procedures ¥
role VARGHAR(45) role VARCHAR(45)
view_obj VARCGHAR(45) procedure_cbj VARCHAR(45)

Abbildung 4.3: ER-Diagramm der Berechtigungstabellen

treatmentCreate(). Alle diese Methoden priifen mit Hilfe der patients_view, ob der aktuelle Benutzer
Zugriff auf den betreffenden Patient hat. Wenn der Benutzer die Rechte hat, werden die Daten iiber
ein prepared Statement eingefiigt. Die Methoden catUpdate(), ccqUpdate(), charlsonUpdate(),
deathUpdate(), reportUpdate(), readingsUpdate() und treatmentUpdate() funktionieren dhn-
lich und dienen dazu einen Datensatz zu bearbeiten. Mit der Methode deleteExamRecord() lasst
sich ein Datensatz aus den Tabellen cats, ccqs, charlsons, reports, readings und treatments 16schen.
Dazu muss der Name der Tabelle iibergeben werden und der Aufrufende muss die Rolle admin haben
oder die Rolle doctor und der Arzt des betreffenden Patienten sein.

Fiir den lesenden Zugriff auf die Tabellen der drztlichen Untersuchungen wurden Stored Procedures
implementiert, damit unterschieden werden kann, ob der Arzt keinen Zugriff auf die Daten des
angeforderten Patienten hat, oder noch keine Daten zu diesem Patienten existieren. listExam() und
listSingleExam() dienen dem Zugriff auf die Tabellen cats, ccqs, charlsons, readings und treatments,
wobei man die gewiinschte Tabelle als Parameter iibergibt. Aulerdem nehmen sie auch Parameter
entgegen, die Pagnierung unterstiitzen. Da fiir die Tabelle death Paginierung keinen Sinn macht,
wurde die Methode deathGet() implementiert. Diese Stored Procedures diirfen nur von Benutzern der
Rolle doctor aufgerufen werden. Da Patienten und Arzte lesenden Zugriff auf die taglichen Berichte
benotigen, wurden die Methode reportList() implementiert, die ebenfalls Paginierung unterstiitzt.
Fiir den Zugriff auf ein einzelnen Bericht wurde reportListOne() erstellt.

Fiir den OAuth Funktion, die die Token erstellt, wurde eine Funktion login() geschrieben, die Benut-
zername und Passwort entgegen nimmt. Diese Funktion prift iiber ein prepared Statement, ob die
Informationen giltig sind und gibt, wenn sie giiltig sind, den entsprechenden Datensatz des Benutzers
zuriick aus dem dann das Token erstellt werden kann.

4.1.6 Rechtevergabe

Um das Rechtemanagementsystem der Datenbank zu nutzen, wird pro Benutzer im ECHO-System
ein Datenbankbenutzer erstellt. Dem Datenbankbenutzer werden dann anhand der ECHO-Rolle
Rechte auf den Tabellen und den gespeicherten Prozeduren zugewiesen, die er im Rahmen seiner
Rolle benotigt. Sobald tiber die REST API ein Benutzer angelegt wird, erstellt die zustdndige Stored
Procedure einen Datenbankbenutzer, wobei die accountld als Benutzername verwendet wird. Um die
Sicherheit zu erhohen wird, der Datenbankaccount auf localhost beschrankt.

Im Anschluss kann mit der Routine grantRolePermissions() der Datenbankbenutzer mit den benétigten
Rechten ausgestattet werden. Da MySQL keine Rollen unterstiitzt, miissen die Rechte mittels mehrerer
GRANT Statements vergeben werden. Die Routine verwendet die Tabellen perm_roles_views und
perm_roles_procedures, um die Statements zu erzeugen. In den Tabellen ist hinterlegt, welche Rolle

46

4.2 RESTful API

Zugriff auf welche Views bzw. Stored Procedures hat (sieche Abbildung 4.3). Die zusitzliche Routine
grantRolePermissions() ist notwendig, da es nicht erlaubt ist, in einer Funktion A mittels GRANT
Statements Rechte fiir die Funktion A zu vergeben.

Damit sichergestellt ist, dass Benutzer neue Benutzer erstellen konnen, wird nachdem ein Datenbank-
benutzer mit der Rolle admin oder doctor erstellt wurde, dem Account ebenfalls erlaubt, die Funktion
grantRolePermissions() auszufiihren.

4.1.7 Schemaexport aus Microsoft Access

Vor dem Start des ECHO Projekts wurden die Patientendaten in einer Accessdatenbank verwaltet. Die
Access Datenbank war mit einer grafischen Oberflache versehen iiber die Daten eingegeben werden
konnten. Die grafische Oberflaiche konnte mit Hilfe von Visual Basic programmiert werden. Durch
Visual Basic wurde beispielsweise gesteuert, wann die Daten in der Oberflache gespeichert werden,
oder wann Berechnungen durchgefithrt werden. Der Nachteil dieser Lsung war, dass es nur lokal
verwendbar war und nicht mehrbenutzerfahig. Auflerdem wire die Integration in ein System, iiber
das die Patienten zuverldssig selbst Daten eintragen koénnen, nicht méglich gewesen. Um im ECHO
Backend dieselben Daten verwalten zu konnen und die selbe Funktionalitit zu haben, wurde mit
Hilfe der Accessdatenbank ein Datenbankschema fiir eine MySQL Datenbank erstellt.

Die Tabellen und Spalten wurden dabei von Hand extrahiert und mit MySQL Workbench wurde
daraus ein Schema erstellt. Nach Riicksprache mit den am Projekt beteiligten Arzten wurden die
Tabellen Basic (Patientendaten), CCQWeek, Charlson, Catscale und Medication, mit Anderungen,
ibernommen.

4.2 RESTful API

Fir die Implementierung der RESTful HTTP-API wurde Node.js gewahlt Node.js ist ein JavaScript-
Framework zur Entwicklung von skalierbaren serverseitigen Webanwendungen. Anders als klassische
Webserver, die pro eingehendem Request einen Thread starten, nutzt node.js nur einen einzigen
Thread zur Bearbeitung der Anfragen. Damit dieser Thread nicht blockiert, muss er seine Arbeit
wenn moglich delegieren. Dabei profitiert node.js davon, dass bei den meisten Anfragen externe
Ressourcen wie Datenbanken oder Dateisysteme involviert sind. Wiahrend die Threads klassischer
Webserver viel Zeit mit Warten verbringen, wenn externe Ressourcen involviert sind, nimmt der
node.js Thread die Anfrage entgegen, bearbeitet sie bis zu dem Punkt an dem mit der externen
Ressource interagiert werden soll, startet die Interaktion und legt die Anfrage beiseite, bis eine
Antwort der Ressource vorliegt. Dann kiilmmert er sich um die néchste Anfrage bis zu deren erster
Interaktion mit einer Ressource. Wenn eine Antwort einer Ressource vorliegt, wird der Serverthread
tiber eine Callbackfunktion informiert und die Anfrage wird weiterbearbeitet. [Rod12]

Da sich JSON aufgrund der JavaScript-Basis von node.js nativ verarbeiten lasst und node.js die
Entwicklung von HTTP-basierten Webdiensten einfach macht, empfiehlt sich node.js als Basis fiir
JSON-basierte REST-Dienste. [Rod14]

47

4 Implementierung

Zur Dokumentation der RESTful API wurde Swagger eingesetzt. Swagger ist eine Spezifikation und ein
Framework zum Beschreiben, Erstellen, Konsumieren und Visualisieren von RESTful Webservices.

4.2.1 Tokenbasierte Authentifizierung

Um die API zu verwenden, muss man sich authentifizieren. Dafiir wird ein Token benétigt, das mit
dem Authorization Header wie folgt tibergeben wird:

Authorization: Bearer <access_token>

Bearer bezeichnet dabei den Typ des verwendeten Tokens und das Authentifikationschema. Wenn
der Typ als Bearer angegeben wird, ist das Token fiir den Anwender einfach nur ein String, der keine
fir den Client erkennbare Information enthilt. Ist das Token nicht vorhanden oder fehlerhaft, wird
der Request mit dem HTTP Statuscode 401 abgewiesen.

Um ein Access Token zu erhalten, muss ein Request per HTTP POST an den Token-Endpoint geschickt
werden. In der Prototypimplementierung ist der Token Endpoint /login. Dieser Endpoint implementiert
das OAuth 2.0 Protokoll mit dem Grantflow Ressource Owner Password Credentials. Dieser Flow
tauscht die korrekte Kombination aus Benutzername und Passwort aus gegen ein Access Token (siehe
Abbildung 3.5). Das OAuth 2.0 Protokoll schreibt vor, dass der Request Body wie folgt aussehen muss,
wenn ein Token ausgestellt werden soll:

grant_type=password&username=<Benutzername>&password=<Passwort>

Der Parameter grant_type gibt dabei den Grantflow an, damit der OAuth 2.0 Server erkennen kann,
nach welchem Flow verfahren werden soll. Der Wert des Parameters (,password®) steht hier fiir den
Ressource Owner Password Credentials Flow.

Fir die Implementierung des OAuth 2.0 Servers wurde das Node.js Modul oauth2orize verwendet.
Wenn der OAuth 2.0 Server einen Request erhilt, der wie oben beschrieben aufgebaut ist, werden
Benutzername und Passwort mit Hilfe der Datenbank validiert. Wenn die Kombination aus Benut-
zername und Passwort stimmt, wird ein Token ausgestellt. In diesem Token werden die Account ID,
die Rolle des Benutzers, der Timestamp, an dem das Token erstellt wurde und der Timestamp, an
dem das Token abliuft, kodiert. Um das Token zu erstellen, wird das Node.js Modul jsonwebtoken
verwendet. Ein mit diesem Modul erstelltes Token ist ein JSON Web Token (JWT). Ein JSON Web
Token erméglicht es, JSON Objekte signiert auszutauschen. Es besteht aus drei Teilen: einem Header,
den Informationen, die es beinhaltet und der Signatur, mit der man sicherstellen kann, dass die
Informationen nicht gedandert wurden.

Die HTTP Endpoints der REST API werden mit dem Modul passport.js geschiitzt. Jedes Mal wenn
ein Request ein Token enthélt, wird dieses Token anhand seiner Signatur gepriift. Wenn das Token
gedndert wurde oder abgelaufen ist, wird die weitere Verarbeitung des Requests abgebrochen.

Bei jedem Login wird neben einem Access Token ein Refresh Token ausgestellt. Wenn ein Access
Token abgelaufen ist, kann das Refresh Token verwendet werden, um ein neues Access Token zu

48

4.2 RESTful API

Listing 4.4 Node.js mit Express: Hello World

var express = require('express');
var app = express();

app.use(function(req, res, next){
console.log('Time: %d', Date.now());
next();

1)

app.get('/', function(req, res, next){
res.send('Hello World');
1)

app.listen(3000);

bekommen ohne Benutzername und Passwort erneut eingeben zu miissen. Das Refresh Token wird
nach der Erstellung in einer HashMap gespeichert und nach dem Einsatz des Tokens wieder aus der
HashMap geldscht. Jedes Refresh Token ist damit nur einmal einsetzbar. Falls ein Refresh Token in
ein Access Token getauscht werden soll, muss eine HTTP Nachricht mit folgendem Body iibermittelt
werden:

grant_type=refresh_token&refresh_token=<Refresh Token>

4.2.2 Implementierung der API Funktionen

Zur Implementierung des REST Service wurde das Express-Framework verwendet, das die Ent-
wicklung von Webanwendungen vereinfachen soll. Eine mit dem Express-Framework geschriebene
Anwendung ist im Grunde genommen ein Stack von nacheinander aufgerufenen Funktionen, soge-
nannter Middleware. Diese Middleware-Funktionen bekommen als Parameter den HTTP Request
(req), die HTTP Response (res) und einen Verweis auf die ndchste Funktion im Middlewarestack (next)
tibergeben. In jeder Middleware-Funktion kann beliebiger Code ausgefiihrt werden.

In Listing 4.4 ist ein Beispiel fiir eine einfache Express-Anwendung dargestellt. In diesem Fall besteht
der Stack aus zwei Middlewarefunktionen. Eine Middlewarefunktion kann entweder iiber die Funktion
app.use() oder app.VERB() eingebunden werden, wobei VERB hier fiir die HTTP Methoden steht. Mit
use() kann dabei eine beliebige Funktion in den Stack eingebunden werden, und mit einem HTTP
Verb kann ein HTTP Endpunkt erzeugt werden. Dabei kann eine Middleware auch nur fiir einen
bestimmten Pfad aktiv sein. Die erste Middleware gibt auf der Konsole die aktuelle Zeit aus und
ruft dann mittels next() die nachste Funktion des Stacks auf. Da fiir diese Funktion kein expliziter
Pfad angegeben wurde, wiirde sie auch aufgerufen werden, wenn eine Funktion fiir einen beliebigen
anderen Pfad definiert wiirde. Die nichste Funktion im Stack sendet dann ,,Hello World“ an den
Client. Mit res.send() kann nicht nur am Ende des Stacks eine Antwort gesendet werden, sondern
auch an einer beliebigen Stelle im Stack die Bearbeitung abgebrochen werden. Ein Beispiel wire eine
Middleware zur Uberpriifung der Zugangsberechtigung. Ist der Client berechtigt kann mittels next()
die ndchste Funktion im Stack aufgerufen werden. Ist er nicht berechtigt, kann per res.send() die
Verarbeitung des Requests abgebrochen und ein Fehler zuriickgegeben werden.

49

4 Implementierung

-

M

Abbildung 4.4: Middlewarestack des REST Services

Der Middlewarestack, der fiir den REST Service implementiert wurde, besteht aus drei Funktionen
(siehe Abbildung 4.4). Der Body-Parser ist die erste Funktion von der ein Request verarbeitet wird.
Da ein JSON Objekt nur als String vom Client zum Server tibertragen werden kann, muss der String
wieder in ein JSON Objekt umgewandelt werden. Falls der Body die Stringreprésentation eines validen
JSON Objekts enthalt, wird ein JSON Objekt erstellt. Dieses Objekt kann dann tiber die Variable
req.body angesprochen werden. In der nachsten Middlewarefunktion werden die Authentifizierungs-
informationen im Authorization Header iberpriift. Enthalt er ein valides Token, wird die Funktion,
die den HTTP Request schliefllich verarbeiten soll, aufgerufen. Wenn das Token nicht valide ist oder
der Authorization Header leer ist, wird der HT TP Statuscode 401 zuriickgegeben. Die Informationen
aus dem Token werden in der Variable req.user gespeichert. Eigentlich sollte die Autorisierung auch
eine Funktion im Stack sein. Da es aber kein Node.js Autorisierungsmodul gibt, das mit Subressourcen
umgehen kann, wurde diese Funktionalitit in die verarbeitende Funktion ausgelagert.

Die Verarbeitende Funktion im Middlewarestack stellt immer einen HTTP Endpoint dar. Diese
Funktionen sind immer nach dem folgenden Muster aufgebaut:

1. Anhand der Rolle wird iberpriift, ob der Benutzer berechtigt ist diese Funktion auszufiihren.
2. Eine Verbindung zur Datenbank wird aufgebaut.

3. Aus der Variable req.user wird der aktuelle Benutzer ausgelesen. Die Datenbank wird angewie-
sen, diesen Benutzer fiir die Verbindung zu nutzen. Das Passwort fir den Datenbankbenutzer
kann aus dem fiir alle Nutzer giiltigen Prafix und der ID des Benutzers berechnet werden.

4. Die SQL Anweisung wird aus dem Body des HTTP Requests (req.body), den Query-Parametern
(req.query) und den Platzhaltern in der URI (req.params) erzeugt und abgeschickt.

5. Das Ergebnis der SQL Anweisung wird als JSON Objekt zuriickgegeben. AnschlieBend wird
das JSON Objekt verarbeitet und dem Client eine Antwort geschickt.

Der Ubergang zwischen den Schritten stellt immer einen asynchronen Aufruf dar, wie er in Node.js
haufig verwendet wird.

50

4.2 RESTful API

Listing 4.5 Links in JSON mit Hypertext Application Language

"_links": {
"self": { "href": "<Link zur Ressource>"}
"first": { "href": "<Link zur ersten Seite der Listenressource>"}
"prev": { "href": "<Link zur vorherigen Seite der Listenressource>"}
"next": { "href": "<Link zur naechsten Seite der Listenressource>"}

}

4.2.3 Reprasentation

Der Body des HTTP Requests beinhaltet die Informationen, die an den Server gesendet wird und der
Body der HTTP Response die Informationen, die an den Client zuriickgegeben werden. Der Internet
Media Type der bei Request und Response genutzt werden wird, ist ,application/hal+json®. Der Body
wird jeweils die JSON Daten enthalten und zusétzliche Links die mit Hypertext Application Language
beschrieben werden. Die Zeichenkodierung wird UTF-8 sein. Es ist moglich, das System in Zukunft
um weitere Repréisentationen zu ergédnzen. Beispielsweise konnte eine Unterstiitzung fiir XML oder
PDF hinzugefiigt werden.

Um das REST-Konzept Hypermedia as the engine of application state umzusetzen, werden die Ressour-
cen mit Links verkniipft. Um die Links in JSON darzustellen, wird Hypertext Application Language
genutzt. In Listing 4.5 ist ein Beispiel dargestellt. Das Beispiel stellt die Links eines Ausschnitts
einer Listenressource dar. Dabei wird durch die Links ein Link auf die Ressource selbst beschrieben,
ein Link auf die erste Seite der Listenressource und Links fiir die nachste und vorherige Seite der
Listenressource.

4.2.4 Swagger

Zu Beginn der Arbeit wurde parallel zur Entwicklung des REST Services ein Browser-Prototyp
entwickelt. Dieser Prototyp sollte dazu dienen, die Moglichkeiten des REST Services darzustellen.
Es war allerdings sehr aufwéndig ,den Prototyp um neue Funktionen des Services zu erweitern und
ebenso aufwindig, den Prototyp an Anderungen der API anzupassen. Deswegen wurde nach einer
Moglichkeit gesucht, die Funktionen des REST Service zu testen, ohne nach einer Anderung der
Funktionen eine Anwendung anpassen zu miissen. Swagger Ul bietet die Moglichkeit, alle Funktionen
eines REST Services mit Beschreibungen versehen darzustellen und zu testen.

Swagger Ul ist Teil des Swagger Projekts. Das Ziel des Swagger Projekts ist es einen Standard fiir ein
sprachunabhingiges Interface fiir REST APIs zu definieren. Dieses Interface soll es Menschen und
Computern erméglichen alle Funktionen einer REST API zu finden und zu verstehen, ohne dass sie
Zugriff auf eine Dokumentation oder den Source Code haben. Eine AP, die die Swagger-Spezifikation
implementiert, stellt Daten im JSON Format zur Verfiigung, die die Struktur der REST API beschreiben.
Diese konnen entweder manuell erzeugt und durch den Server bereitgestellt werden, oder aus dem
Source Code heraus erzeugt werden. Swagger Ul verwendet diese Daten um die Funktionen der API
anzuzeigen und sie anzusprechen. Neben Informationen iiber die Struktur des Services lassen sich
auch Models definieren, die beschreiben, wie die Daten aussehen, die von einer bestimmten Funktion
verarbeitet oder generiert werden. Durch ein Model lasst sich beispielsweise beschreiben, welche

51

4 Implementierung

Datentypen die Felder haben oder welche Einschrankungen zusétzlich gelten. Ein Model kann auch
zur verbalen Beschreibung der Felder verwendet werden.

Eine Instanz von Swagger Ul kann theoretisch mit jeder REST API interagieren, die die Swagger
Spezifikation umsetzt. Um eine swaggerunterstiitzte REST API mit Swagger UI zu erkunden, muss
man auf der Swagger Ul Seite die Adresse der Swagger Informationen der REST API eintragen.

In Abbildung 4.5 ist ein Teil der Swagger-Ul-Darstellung der ECHO REST API dargestellt'. Zu sehen
sind die ausgeklappten Ressourcen accounts und patients und ihre Operationen mit zugehdrigen
Beschreibungen. Wenn der Benutzer nun auf eine der Operationen klickt, wird diese auch ausgeklappt
und der Benutzer kann sie testen ohne einen Client implementieren zu miissen. Wenn eine Operation
aufgeklappt wird, wird auch sichtbar, welche Daten als Eingabe erwartet werden. Uber Swagger Ul
ist es moglich, einer REST API Eingabedaten als Bestandteil der URL (Query), als HTTP Header, als
Teil des HTTP Bodys oder als Teil des Pfads (im Screenshot beispielsweise durch {id} dargestellt)
zu iibergeben. Wenn fiir die Eingabedaten ein Model hinterlegt ist, wird das Model auch angezeigt.
Daraus lésst sich dann ablesen, welche Datentypen oder sonstige Einschrankungen fiir die Felder
des Models gelten. Das Model kann auch angezeigt werden, wenn die Funktion Daten zuriickliefert.
Durch ein vollstindiges Model kann der Benutzer nachvollziehen, was die Daten aussagen, die die
Funktion zuriickgibt.

Um mit Node.js und dem Express-Framework einen Service zu schreiben, der Swagger unterstiitzt,
kann swagger-node-express benutzt werden. Wie in Listing 4.6 dargestellt, miissen die Funktionen
dann nicht mehr bei Express registriert werden, sondern, mit zusétzlichen Metainformation, bei der
Swagger Implementierung. Als Beispiel wurden hier Metainformationen einer Funktion genommen,
die auch in Abbildung 4.5 zu sehen ist.

Aufer fiir Node.js stehen Implementierungen fiir viele andere Programmiersprachen, wie zum Beispiel
Java, PHP oder Python, zur Verfiigung. Auflerdem gibt es Tools, die aus der Swagger Spezifikation
eines Services Client- und Serverstubs in verschiedenen Progammiersprachen erstellen.

"Der Prototyp des ECHO Backends und eine passende Swagger-Ul-Version sind unter http://echo.informatik.
uni-stuttgart.de erreichbar.

52

http://echo.informatik.uni-stuttgart.de
http://echo.informatik.uni-stuttgart.de

4.2 RESTful API

| e o 0 ,' Swagger Ul x\ + " " " l'

@/) echo.informatik.uni-sturtgart.de/docs C'} @ (A~ coogle QU ¥ # B 5 G- % | =

echo api docs http:/ /echo.informatik.uni-stuttgart.de/api-docs Explore

login

accounts : Account Operations

Show/Hide | List Operations | Expand Operations = Raw

Show/Hide @ List Operations = Expand Operations Raw

/accounts List all visible Accounts (Roles: all)
/accounts Create Account (Roles: admin and doctor)
/accounts/{id} Get specific Account (Roles: all)
/accounts/{id} Update specific Account (Roles: all)

b=13i8 /accounts/{id} Delete specific Account (Roles: admin)

patients : CRUD Ops for Patients and Ops to answer Questions

Show/Hide List Operations = Expand Operations Raw

/patients List All Patients (Roles: doctor and admin)
L8 /patients Create Patient (Roles: doctor and admin)
/patients/{id} Get specific Patient (Roles: doctor and admin)
Lo /patients/{id} Update specific Patient (Roles: doctor and admin)
/patients/{id} Delete specific Patient (Roles: doctor and admin)
a8 /patients/{id}/cats Get All Catscale Records of this Patient (Roles: doctor)
Lo /patients/{id}/cats Add Catscale Records (Roles: doctor)
a8 /patients/{id}/cats/{rid} Get specific Catscale Record of this Patient (Roles: doctor)
Lo /patients/{id}/cats/{rid} Update specific Catscale Record of this Patient (Roles: doctor)

DELETE

/patients/{id}/cats/{rid}

Delete specific Catscale Record of this Patient (Roles: doctor)

Abbildung 4.5: Screenshot der Swagger-Ul-Darstellung der ECHO API

53

4 Implementierung

Listing 4.6 Node.js mit Express: Swagger Integration

// Load module dependencies.

var express = require("express") , swagger = require("swagger-node-express");
// Create the application.

var app = express();

// Couple the application to the Swagger module.

swagger.setAppHandler(app);

var findById = {

'spec': {
summary : "Get specific Account (Roles: all)",
path : "/accounts/{id}",
method: "GET",
type : "Account",
nickname : "accountsFindById",
parameters : [swagger.pathParam("id", "ID of the Account", "string")],
responseMessages : [swagger.errors.notFound('id')]
I

‘action': findById()
}

swagger.addGet (findById) ;

app.listen(3000);

54

5 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden Teile des Backends fir das deutsch-griechische Forschungsprojekt
ECHO (Enhancing Chronic patients’ Health Online) entwickelt. Das Ziel des Projekts ist es mit Hilfe
von Cloud-Computing-Technologien, Data Mining und Smartphones die Situation von Patienten mit
chronischen Lungenkrankheiten zu verbessern. Unter anderem soll es fiir den Patienten moglich sein,
jeden Tag Fragen via Smartphone zu beantworten. Diese Antworten sollen bei der Fritherkennung
von dauerhaften Verschlimmerungen der Krankheit, auch Exazerbationen genannt, helfen.

Vor dem Start des ECHO Projekts wurden die Patientendaten und Untersuchungsergebnisse mit Hilfe
einer Microsoft Access Datenbank verwaltet.

Die Access Datenbank war nur lokal und nur von einem Arzt verwendbar. Aulerdem war kein Remote
Access auf die Access Datenbank moglich, der aber nétig gewesen wire fiir die tigliche Dateneingabe
der Patienten. Aus diesem Grund war es nétig, die Access Datenbank in eine relationale Datenbank zu
iberfithren. Dazu wurde aus der Access Datenbank von Hand ein SQL-Schema erzeugt. Anschliefend
wurden alle Funktionen der Access Datenbank untersucht und die relevanten Funktionen in Triggern
umgesetzt. Nach einem Gesprich mit den am Projekt beteiligten Arzten wurde das Schema angepasst
und nur die benétigten Tabellen ibernommen.

Um die Datensicherheit zu gewéhrleisten wurden Views verwendet und Rollen eingefiihrt. Die
eingefithrten Rollen sind:

1. admin, fir administrative Aufgaben
2. doctor, fiir Arzte, die iiber das System ihre Patienten iiberwachen
3. patient, fiir Patienten

Fiir jeden Benutzer des Backends wurde zusitzlich ein Datenbankbenutzer angelegt, um das Rechte-
system der Datenbank nutzen zu kénnen. Der Benutzername fiir die Datenbank wird dabei aus der
Account ID im ECHO Backend abgeleitet. Der Benutzername kann so benutzt werden um dynamische
Views zu erzeugen, die Patientendaten in Abhéngigkeit davon anzeigen, welcher Arzt eingeloggt ist.
Dadurch kommt man mit einem View pro Tabelle aus.

Um die Daten gegen SQL Injections abzusichern, wurden Stored Procedures, die Prepared Statements
verwenden, fiir den schreibenden Zugriff auf die Gesundheitsdaten implementiert.

Die Kommunikation zwischen dem Backend und den Smartphones beziehungsweise den Browseran-
wendungen wird durch eine RESTful API ermdglicht. Die Ressourcen der API werden iiber URIs
adressiert und unterstiitzen JSON als Reprasentation. Damit das REST Konzept der Verlinkungen
umgesetzt werden kann, wurden die JSON Daten mit Hypertext Application Language erweitert, um
die Beziehungen der Ressourcen untereinander zu modellieren. Um die Sicherheit der Daten wahrend
des Transports zu gewéhrleisten, wird TLS eingesetzt.

55

5 Zusammenfassung und Ausblick

Fiir die Authentifizierung verwendet die RESTful API OAuth 2.0 mit dem Authorization Flow Resource
Owner Password Credentials. Dabei wird gegen eine giiltige Kombination aus Benutzername und
Passwort ein Access Token zuriickgegeben, mit dem die API dann verwendet werden kann. Das Token
ist ein JSON Webtoken (JWT), bei dem der Inhalt Base64 kodiert ist, aber eine Anderung unméglich
ist, da der Inhalt signiert wurde. In dem Token sind die Rolle und die Account ID des Benutzers
gespeichert, fiir den das Token ausgestellt wurde. Auflerdem enthélt das Token den Zeitpunkt an dem
es erstellt wurde und den an dem es ablauft. Wenn es ablauft, kann es nicht mehr eingesetzt werden.
Dann kann das Refresh Token eingesetzt werden, um ein neues Access Token zu erhalten. Der Einsatz
eines dieses Tokens hat den Vorteil, dass das Passwort des Benutzers nicht gespeichert werden muss,
sondern nur das Access Token und dass die RESTful API anhand des Tokens entscheiden kann, ob
der Benutzer berechtigt ist, die Funktion zu verwenden oder nicht.

Ausblick

Im Rahmen dieser Arbeit wurde ein Konzept entwickelt, um die Daten des Backends zu schiitzen. Es
wurde kein Schutz auf Dateisystemebene realisiert, um die Daten zum Beispiel im Fall eines Diebstahls
der Festplatte zu schiitzen oder falls ein Angreifer Zugriff auf das Dateisystem erlangt. Dies konnte
man durch eine Verschliisselung der Datenbankdateien erreichen.

Die Analysekomponente, die die in Kapitel 3.4 definierten Analysen durchfiihrt, kann aufbauend
auf dieser Arbeit implementiert werden. Das sind zum einen die Analyse zur Auswertung der tagli-
chen Dateneingabe durch den Patienten, die der frithzeitigen Erkennung und Verhinderung einer
Exazerbation dient und die Analyse zur Berechnung des COPD Schweregrads, der unter anderem
Riickschliisse auf das Exazerbationsrisiko erlaubt.

Das ECHO Backend koénnte auch noch um die Fahigkeit zum Autoscaling erweitert werden. Des
Weiteren kann das Verhalten des Systems unter Last untersucht und anschlieffend optimiert werden.

Auferdem konnten noch Installationsskripte zum automatischen Deployment im Krankenhaus oder
in der Cloud geschrieben werden. Um das Backend in der Cloud sicher zu deployen, konnte zusétzlich
noch ein TOSCA Cloud Service Archive (CSAR) erstellt werden.

56

Literaturverzeichnis

[BKK*14] M. Bitsaki, C. Koutras, G. Koutras, F. Leymann, B. Mitschang, C. Nikolaou, N. Siafa-

[Boy12]

[cat]

[copa]

[copb]

kas, S. Strauch, N. Tzanakis, M. Wieland. @~ An Integrated mHealth Solution for
Enhancing Patients’ Health Online. In Proceedings of the 6th European Confe-
rence of the International Federation for Medical and Biological Engineering (MBEC’14),
S. 1-4. International Federation for Medical and Biological Engineering (IFMBE),
2014. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2014-61&engl=. (Zitiert auf den Seiten 10 und 26)

R. Boyd. Getting Started with OAuth 2.0. O’Reilly Media, 2012. (Zitiert auf Seite 24)

COPD Assessment Test. URL http://www.catestonline.org/english/index_German.
htm. (Zitiert auf Seite 28)

Chronisch obstruktive Lungenerkrankung (COPD). URL http://www.copd-aktuell.de/.
(Zitiert auf Seite 10)

COPD: Diagnose. URL www.onmeda.de/krankheiten/copd-diagnose-3112-5.html.
(Zitiert auf den Seiten 36 und 37)

[DPNB11] M. Deng, M. Petkovic, M. Nalin, I. Baroni. A Home Healthcare System in the Cloud-

[Eur]

[iso]

Addressing Security and Privacy Challenges. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, S. 549-556. IEEE, 2011. (Zitiert auf Seite 15)

Européisches Parlament. Richtlinie zum Schutz natiirlicher Personen bei der Verarbeitung
personenbezogener Daten und zum freien Datenverkehr. URL http://eur-lex.europa.
eu/legal-content/DE/TXT/?uri=CELEX:31995L0046. (Zitiert auf Seite 13)

D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor, Fremont, CA,
USA, 2012. URL http://www.rfc-editor.org/rfc/rfc6749.txt. (Zitiert auf Seite 23)

Health Insurance Portability and Accountability Act. URL http://www.hhs.gov/ocr/
privacy/index.html. (Zitiert auf Seite 13)

R. Hasan, M. Winslett, R. Sion. Requirements of Secure Storage Systems for Healthcare
Records. In W. Jonker, M. Petkovic, Herausgeber, Secure Data Management, Band 4721 von
Lecture Notes in Computer Science, S. 174—180. Springer Berlin Heidelberg, 2007. doi:10.
1007/978-3-540-75248-6_12. URL http://dx.doi.org/10.1007/978-3-540-75248-6_
12. (Zitiert auf Seite 13)

ISO 27001: An Introduction To Information, Network and Internet Security. URL http:
//security.practitioner.com/introduction/. (Zitiert auf Seite 14)

57

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-61&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-61&engl=
http://www.catestonline.org/english/index_German.htm
http://www.catestonline.org/english/index_German.htm
http://www.copd-aktuell.de/
www.onmeda.de/krankheiten/copd-diagnose-3112-5.html
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:31995L0046
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:31995L0046
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.hhs.gov/ocr/privacy/index.html
http://www.hhs.gov/ocr/privacy/index.html
http://dx.doi.org/10.1007/978-3-540-75248-6_12
http://dx.doi.org/10.1007/978-3-540-75248-6_12
http://security.practitioner.com/introduction/
http://security.practitioner.com/introduction/

Literaturverzeichnis

[KP11]

[Occ]

[OWA13]

[RGO7]

[Rod14]

[Rod12]

D. A. Kindy, A.-S. K. Pathan. A survey on SQL injection: Vulnerabilities, attacks, and
prevention techniques. 2011. (Zitiert auf Seite 17)

Occupational Safety & Health Administration. Access to employee exposure and me-
dical records. URL https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_
table=STANDARDS&p_id=10027. (Zitiert auf Seite 13)

OWASP Foundation. OWASP Top 10 - 2013. Technischer Bericht, OWASP Foundation, 2013.
URL https://www.owasp.org/index.php/Top_10_2013-Top_10. (Zitiert auf Seite 16)

A. Roichman, E. Gudes. Fine-grained access control to web databases. In Proceedings of
the 12th ACM symposium on Access control models and technologies, S. 31-40. ACM, 2007.
(Zitiert auf den Seiten 16 und 17)

G. Roden. 2x Nein, 4x Ja: Szenarien fiir Node.js, 14. URL http://www.heise.de/
developer/artikel/2x-Nein-4x-Ja-Szenarien- fuer-Node-js-2111050.html. (Zi-
tiert auf Seite 47)

G. Roden. Node.js & Co. dpunkt.Verlag, 2012. (Zitiert auf Seite 47)

[SESAE12] D. Sobhy, Y. El-Sonbaty, M. Abou Elnasr. MedCloud: healthcare cloud computing system.

[SIMT12]

[Til11]

In Internet Technology And Secured Transactions, 2012 International Conference for, S. 161-
166. IEEE, 2012. (Zitiert auf Seite 14)

J. Sundh, Janson, Montgomery, Stallberg, K. Lisspers. Clinical COPD Questionnaire score
(CCQ) and mortality. International Journal of Chronic Obstructive Pulmonary Disease, S.
833+, 2012. doi:10.2147/copd.s38119. URL http://dx.doi.org/10.2147/copd.s38119.
(Zitiert auf Seite 28)

S. Tilkov. REST und HTTP. dpunkt.Verlag, 2011. (Zitiert auf den Seiten 18 und 21)

Alle URLs wurden zuletzt am 20. 10. 2014 gepriift.

58

https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10027
https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10027
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.heise.de/developer/artikel/2x-Nein-4x-Ja-Szenarien-fuer-Node-js-2111050.html
http://www.heise.de/developer/artikel/2x-Nein-4x-Ja-Szenarien-fuer-Node-js-2111050.html
http://dx.doi.org/10.2147/copd.s38119

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Hintergrund
	1.3 Motivation
	1.4 Gliederung

	2 Verwandte Arbeiten und Grundlagen
	2.1 Verwandte Arbeiten
	2.2 Datenbanksicherheit
	2.3 REST und ROA
	2.4 REST Authentifizierung

	3 Konzept
	3.1 Architektur
	3.2 Gesundheitsdaten
	3.2.1 Datenmodell
	3.2.2 Sicherheit

	3.3 RESTful API
	3.3.1 Ressourcendesign
	3.3.2 Funktionen der Ressource Account
	3.3.3 Funktionen der Ressource Patient
	3.3.4 Funktionen der Ressource Benachrichtigungen
	3.3.5 Funktionen der Ressource Fragen
	3.3.6 Command Ressourcen
	3.3.7 Sicherheit

	3.4 Analysen
	3.4.1 Tägliche Berichte
	3.4.2 Schweregrad der Krankheit

	4 Implementierung
	4.1 Gesundheitsdaten
	4.1.1 MySQL Workbench
	4.1.2 Access Control in MySQL
	4.1.3 Datenmodell
	4.1.4 Implementierte Views
	4.1.5 Implementierte Stored Procedures
	4.1.6 Rechtevergabe
	4.1.7 Schemaexport aus Microsoft Access

	4.2 RESTful API
	4.2.1 Tokenbasierte Authentifizierung
	4.2.2 Implementierung der API Funktionen
	4.2.3 Repräsentation
	4.2.4 Swagger

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

