Institut fur Softwaretechnologie
Abteilung Software Engineering
Universitat Stuttgart
Universitatsstralie 38

Diplomarbeit Nr. 3651

Inkonsistente Klone und Fehler

in Software

Kamer Kaya
Studiengang: Informatik
Prufer: Prof. Dr. rer. nat. Stefan Wagner
Betreuer: M. Sc. Asim Abdulkhaleq
begonnen am: 01. April 2014
beendet am: 01. Oktober 2014

CR-Klassifikation: D.2.5,D.2.7,D.2.9,D.2.12, H.2.1,H.2.4

il

Inhaltsverzeichnis
DANKSAGUNG «.cceeienriininriinsnicssnnicsssnissssnissssnessssnssssssssssssosssssossssssssssssssssesssssesssssesssssssssssesssssessssssssnss vi
AbDIldUNGSVErZeIChIIS «..cuuviievriiiiriiisnieniiicsinnicssnnicsssnissssnessssressssnessssessssrossssssssssssssssssssssssssssssns vii
TabelleNVerZeiChIiS.....ccuiieveriririisiriessricssninsssnessssncssssncsssnsssssnsssssssssssesssssssssssessssssssssssssssssssnss viii
ADKUIZUNZSVETrZEICHIIS . c.uuviiiiriiiiiiinsnicnsnicssricssaricssnrissssnisssssessssnsssssesssssosssssssssssssssssosssssossssssses ix
BegriffSVErZeIChIIS ..u.ueicueiienceriiinrininiiniinensnicnsnncnsnincsssnisssssissssnessssnssssssessssnosssssossssssssssssssssssssses X
KUFZEASSUNG coceerinenrrinnriininricssnnicssniissssnessssnesssnssssssossssssssssesssssssssssssssssssssssssssssossssssssssssssssssssssssssns 12
1 EIDICITUNG cccnueeiniiiiiiiiniiintinniecnensnicssensnscssessnssssesssnssssesssassssesssassssssssassssessssssssssssassssesssases 13
Ll UBEIDIICK ...ttt en e senans 13
1.2 IMIOTIVALION ...ttt ettt ettt ettt et e ettt e et e et e saaeesbeesabeesseassbeenseesnseanseessseenseennseans 14
1.3 ZACISEEIIUNG. ...covvieiiieiie ettt ettt et e sttt e st e et esabeebeeenaeens 14
1.4 Aufbau der Diplomarbeitccoevviiiiiiiiiiiiiieeeeee e 15
2 Grundlagen SOftWAreKIOMNEccceveeeisvercisnicssnicssanicsssnesssssessssnessssosssssosssssssssssssssssssssssssans 16
2.1 Definition KIONEccoiiiiiiiiiiiiiieeiee ettt ens 16
2.1.1 Allgemeine Definitioncceeviieiiiiriiieiiieiie ettt 16
2.1.2 Definition Exakte KIONe.........cccoouiiiiiiiiiiiiiiiiieiieeeetece et 17
2.1.3 Definition Inkonsistente KIONe...........ccceevuieriiiiiiniiieiieiieciecie e 17
2.1.4 Definition Falsch-Positive KIone..........ccccceeviiiiiiiiiieiiiiiiciecieeeeeeeee e 17
2.2 KIONAUTDAU. ...cocuiiiiieiii ettt et ettt ettt e e naeetaeenbaens 17
2.2.1 Codefragmente.cccueiiiieiieeiieriieeiieeseeeiteeee et e eeeeeteeseaeebeesaaeebeeseseeseesnseens 18
2.2.2 KIONPAAT.......iiiiiiieiieiie ettt ettt et e et e et esaeeebeestae e bt essaesseessseenseesssesseesnseans 18
2.2.3 KIONKIASSE. ... eeeuiiieiiieiie ettt ettt ettt ettt e e et e abe et e b e eseesnteens 18
2.3 KIONEYPOI ..ttt ettt et ettt ettt e st eesbee et e e bt e esaeebeeenbeeaeeenbeesaeenbaens 19
231 TYP-1-KIONE....cuuiieiiiiieiieecieetee ettt ettt et e e e e e sane e 19
2.3.2 TYP-2-KIOMNEC...ccuuiieiieiieiieeiieeteee ettt ettt ettt e saae e b e ssbeeseesnneens 20
2.3.3 TYP-3-KIOMNEC....cuiieiieiieiieeiieettee ettt ettt ettt ateebeesnbeesaesaneens 21
2.3.4 TYP-4-KIONE....cuiiiiieiieiiieciieeieeee ettt ettt e e e beesaaeebeesnbeesaesnseens 22
2.3.5 Zusammenhang der KIontypen.........ccoocueeiiiriiiiiiiniieiiecieeeeee e 23

Y

2.4 Klonerkennungsprozess inkonsistenter KIone...........c.coccueeeiienieiiiienieniiienieeieeseeeens 24
2.4.1 VOIVETarDEITUNGeeuieiiieiieeiieiieeieeeiteeteeeite e bt esiaeesteeseaeeseesnseenseesssesseesnseans 25

2.4.2 Erkennungsal@Orithmusc.ccccoiiiiiiiiiiiiiiiniieiieee e 26

2.4.3 Nachverarbeitung und Filterungccceccveviieiiiiniieiieiie e 26

2.5 Ansitze zur KIOnerkennung............ccooooiiiiiiiiiiiiiiiiieeieee ettt 27

2.5. 1 Granularithl.........cccvieiieiiiieiieeieeeee ettt ettt et see et e st e et esaeebeesnbeeseesnreens 27

2.5.2 ADSHraktioNSEDENE.cociieiiieiieiie ettt 28

2.5.3 Textbasierte Klonerkennung.............ccoocueeviiiiiiiiiieniiieiiecieeiece e 28

2.5.4 Tokenbasierte Klonerkennung.............ccoeeveviiieiiiiniiieiiiniieiecie e 29

2.5.5 Abstrakter Syntaxbaum...........cceccvieiiiiriiiiiiieiie et 32

2.5.6 Graphbasierte KIonerkennungccceevueeriieiiienieeniieeie e 33

2.5.7 Metrikbasierte Klonerkennungccceceeviieiiiiniieiieiiieiecie e 33

3 ForschungsStand..........cceeienviicisnicnsnncnssnncsssncssssicssssssssssssssssessens 35
3.1 Grinde des KIONENScc.eeuiiiiiiiiiiiiieriieiereeee ettt 35

3.2 Folgen des KIONENS.........cccuiiiiiiiiiiieeiieee et ettt ettt e e e esaesaaaens 36

3.3 Inkonsistente Klone und FEhlerc.coooiiiiiiiiiiiiiiiiecee e 37

4 Werkzeugunterstiitzung und SOftware SYStEMmEecccceeevvericssnrisssnncssnrcssnicssssecssssessssessens 38
4.1 CONQAL ...t e e e e e et e e e e tb e e e e et aeeeeabbaeeeeataaeeeaaaaeeeanraaeeeannnees 38
4.1.1 Uberblick Z CONQALc.oviueeeeieeeeeeeeeeeeeeeeeeee e eeeeeens 38

4.1.2 Design und ArchiteKUT.........cociiiiiiiiiiiiieiieeee et 38

4.1.3 Klonerkennung mit ConQat............ccceerireriieniieriienieeiteeie et eieeiee e iee e e 39

4.2 METCUITIAL....eiiieiiicieette ettt ettt et st sb ettt be et 42
4.2.1 VersionsKontrolle...........ccoeviiiiiiiiiiiiieieeeee e 43

4.2.2 Funktionen Mercurialcccceeriiiiiienieeiieiie ettt et 43

4.2.3 TOTtOISEHE ...eveenieeieee ettt ettt et ae e e s e e beesnneens 46

4.3 FOGBUZZ ..ot ettt et e et bee e sbee e e 47

A4 KNttt b e bt h e n e st et et et eteenen 48

5 StUudieNdeSi@N....uuecicceiiiieiissricssnicsssricsssnessssnessssnessssssssssssssssssssssssssssssssssosssssssssssessssssssssssssssss 51
5.1 Studi@NODJEKLE. ...c..eieiiieiiieiieie ettt ettt ettt et e e etaeeabaens 51

5.2 FOrSCRUNGSTTAZEN ...ocuviiiiiiiieiie et ettt st e e etaesasaens 52

v

5.3 Datensammlung und KonfigurationSSyStemecccecceerieeiiienieeniienieeieesieesieeenens 54
5.3.1 Klondaten aus ConQat..........cccueieiuirieiieeeiiieeeiie ettt et e e e e eraeeereeeereeeeens 54

5.3.2 Daten aus Mercurial............coccuieiiiiiienieiiieieee et e 56

5.3.3 Daten aus FogBugz und Kiln..........cccocoiiiiiiiiniiiiiicee e 58

5.4 StudiendateNaUSWETTUINZccveeiuieriieeiieiieeiteesteeteesteeteesiteeteeseeeebeesseeesseessneensaesssaens 59
5.4.1 Studiendatenvorbereitung und ERM-Diagrammecccccoeeeeviiienienirenenne. 60

54.2 SQL-ADITAZEN oottt ettt et 61

5.5 DateNanalySecceeeeuieiiiiiieiieeiteeie ettt ettt ettt ae et e abeebeesnaeebaeeabaens 65

60 EIEDIUSSE ccuueriennriiiiiissnicnsnnicssnticsssnessssnessssnssssssossssssssssssssssesssssssssssssssssosssssosssssossssssssssssssssss 73
7 Gefahren fiir die GUItIGKEIt.......cccvvrierveriirininsseiesssnncssnncssnicsssnissssnessssnessssnossssncsssssosssssssssses 77
7.1 KonStruKtVAIIAITAL.......eeiuiiiiieiiiciieiie et ettt e e esaesaeeens 77

7.2 Interne GUILIGKEILcoouiiiiiiiieeiiee ettt et e saaeens 77

7.3 EXterne GUILIGKEIt.......cceiiiiiiiiieiieie ettt et ens 78

8 Zusammenfassung und AUSDIICKccouiievveiiivniiiviiiisencssnicssnnicssnnisssnncssnnessssncsssssssssssssssses 79
8.1 AUSDLICK ..t et 80

O LT aALUT cecvuueeieeesueecrnensnnecsnensencsseessnssssesssnesssnessssessesssassssessssssssassssssssassssssssassssssssassssessansssassns 81

EXKIATUNG . ccccoeiiinntiincnricscnnicsssnissssnesssssesssstesssssosssssossssssssssesssssesssssesssssesssssesssssosssssssssssssssssssssssssens 86

vi

Danksagung

Ich mochte mich an dieser Stelle bei allen bedanken, die mich wahrend meiner Arbeit
und wahrend des Studiums unterstutzt haben.

An erster Stelle geht ein besonderer Dank an meine Familie, die mich wahrend meines
Studiums mit Sorgsamkeit und hohem Motivationsaufwand unterstutzt haben.

Besonders meinem Betreuer Asim Abdulkhaleq gilt ein Dank, der sich immer Zeit fur
meine Arbeit genommen hat und mich Uber die sechs Monate mit viel Motivation und
guten lIdeen betreut hat.

Ebenfalls mochte ich mich bei meinem Referenten Herrn Prof. Dr. Stefan Wagner
bedanken, der mir die Arbeit ermdglicht hat und stets fur kritische Situationen der
Diplomarbeit immer ansprechbar war.

Ein besonderer Dank gilt an meinem Betreuer Alexander Paar bei der TWT GmbH, der
mir eine groRe Unterstltzung in der Einarbeitungsphase und der Analysephase war.
Weiterhin mochte ich mich beim Herrn Thorsten Scheibler bedanken, der in
Zusammenarbeit mit der Universitat Stuttgart die Diplomarbeit ermdglichte. An die
Mitarbeiter der TWT GmbH die fur Fragen immer offen waren bedanke ich mich
ebenfalls.

Zu guter Letzt mdchte ich mich bei meinen Freundinnen Zeynep Oztiirk, Duygu
Soylemez und Hatice Aydeniz bedanken, die wahrend dem Studium geduldig mit mir
waren und immer ein offenes Ohr fur mich hatten.

vii

Abbildungsverzeichnis

Abbildung 2.1: EXakte KIONGIUPPEuueiiieiiiiiiiiieeeeee et 18
Abbildung 2.2: Inkonsistente KIONGrUPPeN..........coooiiiiiiiiiiiiiie e 19
Abbildung 2.3: Typ-1 KIONP@EATuuuiiiiiiiiiiiiiii e e e 20
Abbildung 2.4: Typ-2 Klonpaare mit konsistenter und inkonsistenter Umbenennung... 21
Abbildung 2.5: Typ-3 KIONP@EATuueiiiiiiiiiiiiiia e e e 22
Abbildung 2.6: Typ-4 KIONPAAI....... .o es 22
Abbildung 2.7: Mengenbeziehung der KIoNtypen ... 23
Abbildung 2.8: KlonerkennungSprozess [6].......cceveeuuuuumiiiarieeee e 24
Abbildung 2.9: Normalisierungsbeispiel [20]coeeumiimiiiiiiieee e 26
Abbildung 2.10: Zeilenweiser Vergleich Uber Dot-Plots [24]coooiiiiiiiiiie 29
Abbildung 2.11: P-Suffix-Baum zum SUffiX S........oooiie e 31
Abbildung 2.12: Abstrakter Syntaxbaum [24] ... 32
Abbildung 4.1: ConQat ArChiteKIUr............ooiiiiiiii e 39
Abbildung 4.2: Klonerkennung- Konfiguration fur exakte Klone.............cccccccocoenn. 40
Abbildung 4.3: Klonerkennung- Konfiguration fur inkonsistente Klone 41
Abbildung 4.4: Ubersicht zu den Klonerkennungsergebnissen...............cccccccvcveuenne.... 41
Abbildung 4.5: Klonerkennungsperspektivenuueeoiiiiioie e 42
Abbildung 4.6: Die Funktionen von Mercurial ...t 46
Abbildung 4.7: Bugeintrag in FOgBUQGZ [33].....ccouiiiiiiiiiiiiiii e 48
Abbildung 4.8: Verteilte Versionskontrolle in Kiln [36]..........ccooeiiiiiiiiiiiieeeee e 49
Abbildung 5.1: Skript fur die Ausgabe der Revisionshistorie der Klondateien 57
Abbildung 5.2: Skript in Python durch Mercurial-Export ausfuhren............................... 58
Abbildung 5.3: ERM-Diagramm fur die Datenauswertungooooooiiiiiiiiiienneeeen. 61
Abbildung 5.4: SQL-Abfrage fur inkonsistente Klonklassen.............cccccviiiiiiiennne. 62
Abbildung 5.5: Abfrageresultat zu Inkonsistenten Klonklassencccccccceeiiieennnnn. 62
Abbildung 5.6: Abfrage Revisionshistorie einer Datei..............cooovviiiiiiiiiiciciiieee e 63
Abbildung 5.7: Abfrageresultat zur Revisionshistorie zu Klonklassen 63
Abbildung 5.8: Abfrage fur fehlerhafte Klonklassenccccoiiiiiis 64
Abbildung 5.9: Abfrage fehlerhafte inkonsistente Klonklassenccccccceieiiiien. 64
Abbildung 5.10: Menge der gesamten und inkonsistenten Klongruppen...................... 66
Abbildung 5.11: Prozess zur Verfolgung eines inkonsistenten Klons Uber die
ReVISIONSNISIONIE ... e e e e e e 68
Abbildung 5.12: Menge der erkannten Fehler in Inkonsistenzen im Issue-Tracking-
RS2 (= 0 S PUPPRS 69
Abbildung 5.13: Menge der inkonsistenten Klongruppen, bei denen an jedem Klon
einer Klongruppe der Fehler behoben wurde...............oooiiii s 70
Abbildung 5.14: Typ-1-Klone die einen Fehler enthalten werden zu Typ-3-Klone ohne
=]] S 72

Abbildung 8.1: Tool zur AUOMALISIEIUNGcovvviiiiiiiiii e 80

viii

Tabellenverzeichnis

Tabelle 4.1: Funktionen in Mercurial

Tabelle 5.1: Informationen zu den analysierten Systemen
Tabelle 5.2: Klonerkennung mit liberalem Ansatz

Tabelle 5.3: Klonerkennung mit konservativem Ansatz

Tabelle 6.1: Zusammenfassung der Studienergebnisse

45
52
95
56
73

X

Abkurzungsverzeichnis

CF
AST
PDG
ConQat
ERM
SQL
C

IC
BIC
KF
MIS
ZMIS
FK

Codefragment

Abstrakter Syntaxbaum

Program Dependence Graph

Continuous Quality Assessment Toolkit
Entity-Relantionship-Modell

Structured Query Language

Alle Klongruppen

Inkonsistente Klongruppen

Fehlerhafte Inkonsistente Klongruppen
Fehlerbehobene inkonsistente Klongruppen
Modifizierte inkonsistente Klonstellen
Zeitgleich modifizierte inkonsistente Klonstellen

Fehlerhafte Klonklassen

Begriffsverzeichnis

ConQat

Klone

Inkonsistente Klone

Gap

Versionskontrolle

Versionskontrollsystem

Mercurial

Issue-/Bug-Tracking

System

FogBugz

Kiln

TortoiseHg

Bug

ConQat ist ein Werkzeug zur kontinuierlichen Software-
Qualitatskontrollanalyse. ConQat wird in dieser Arbeit als
Klonerkennungswerkzeug eingesetzt.

Klone sind redundante Quelltextabschnitte in einem Code,
die an mehreren Stellen eines Softwaresystems
vorkommen.

Redundante Quelltextabschnitte, die mit Modifikationen
versehen sind.

Ungleiche Abschnitte in den Inkonsistenten Klonen werden
Gap genannt.

Unter Versionskontrolle hingegen versteht man den Prozess
der Verwaltung mehrerer Versionen einer Information

Tools die das Automatisieren der Versionskontrolle
ermoglichen, werden Versionskontrollsysteme genannt.

Mercurial ist ein plattformunabhangiges, verteiltes
Versionskontrollsystem.

Ein Issue-/Bug-Tracking-System ist ein Werkzeug, mit dem
diverse Aufgaben in einem Projekt bearbeitet werden.

Das webbasierte System FogBugz ist ein
Projektmanagement-system sowie ein Issue-/Bug-Tracking-
System, welche umfangreiche Funktionalitaten fur
Entwicklerteams anbietet.

Kiln ist ein webbasiertes System fur das Quellcodehosting
von Mercurial.

Das Tool TortoiseHg ist ein einfach zu bedienendes
Frontend und steht mit ihrer graphischen Oberflache zur
Verfugung, um die Benutzung von Mercurial ohne
Kommandozeilenbefehle durchzufuhren.

Ein Bug ist ein fehlverhalten in einem Softwaresystem.

11

12

Kurzfassung

Softwareklone in einem System erfordern eine hohe Vorsicht im Entwicklungszyklus
eines Softwareprojekts. Viele Forscher sind der Ansicht, dass Klone vor allem
inkonsistente Klone die Ursache diverser Fehler in Softwaresystemen sind, die sich
unbemerkt einschleichen und nicht nachverfolgt werden konnen. Vor allem die
Auswirkungen der inkonsistenten Klone liegen im Interesse vieler Forschungsarbeiten.
Jedoch liegen die Forschungsergebnisse der Studien weit auseinander. Im Rahmen
dieser Diplomarbeit werden die Auswirkungen der inkonsistenten Klone in einem
Softwaresystem analysiert. Des Weiteren analysiert diese Arbeit auf empirischer Basis
im Rahmen eines Studiendesigns den Zusammenhang der Inkonsistenten und Fehlern
in Softwaresystemen. Die Studie wurde auf drei Industriesystemen durchgefuhrt und
ergab als Resultat, dass Entwickler Uber fast alle Klonstellen einer Klonklasse
informiert sind und diese bei Bedarf zu 58%-92% zeitgleich modifizieren. Es sind
lediglich 3%-33% der inkonsistenten Klonklassen fehlerbehaftet und stellen somit eine
geringe Gefahr fur die Softwareentwicklung. Die umfangreiche Analyse gab den
Beschluss, dass die Inkonsistenzen im Vergleich zu exakten Klonen mindestens
weniger als die Halfte einen Fehler verursachen. Weiterhin wiederlegt die Studie, dass
durch das Klonen aus Bibliotheken, Klone eine erheblich geringe Anzahl an Fehler
darstellen und nach bis zu vier Jahren Klonzeit keinen einzigen Fehler in der gesamten
Revisionshistorie verursacht haben. Die Ergebnisse dieser Arbeit beweisen, dass
Entwickler bewusst Klonen und dass es durch das bewusste Klonen keinen erhohten
Zusammenhang zwischen inkonsistente Klone und Fehler gibt.

13

1 Einleitung

Dieses Kapitel verschafft einen Uberblick tber das Thema der Diplomarbeit. Zunachst
schafft der erste Teil einen Uberblick (iber das Umfeld und darauf wird die Motivation
der Arbeit dargestellt. AnschlieBend wird das Ziel der Arbeit beschrieben. Der letzte
Abschnitt veranschaulicht den Aufbau der Diplomarbeit, um einen Gesamtuberblick
Uber das Forschungsthema zu verschaffen.

1.1 Uberblick

Ein wichtiger Bestandteil der Softwareentwicklung ist die Wartung. Falschlicherweise
werden der Aufwand und die Kosten fur die Wartung im Gegensatz zur
Implementierung unterschatzt. Empirische Studien haben wiederlegt, dass die Kosten
fur die Wartung und Entwicklung ein wichtiger Aspekt sind und bis zu 80% der
Gesamtkosten und des Aufwandes betragen [1]. Die Ursache fur die hohen Kosten ist,
dass mit zunehmendem Alter durch die fehlende Planung fur die Weiterentwicklung
sowie hohem Zeitdruck und mangelnde Mdoglichkeiten fur die langfristige Planung, der
Softwareumfang steigt. Forscher haben lange versucht diese Wartungskosten zu
minimieren. Fur die Verbesserung der Entwicklung gab es einige Arbeiten, welche die
Prozessmodelle sowie die Werkzeug- und Sprachunterstiutzung verbessert haben, um
den schlechten Eigenschaften des Codes entgegenzuwirken, die sich negativ auf die
Wartungskosten auswirken. Daraus resultierend konnen die Wartungskosten reduziert
werden. Schlechte Wartbarkeit eines Softwaresystems kann oft zu einem schlechten
Code fuhren, der schwer fehleranfallig, verstehbar und veranderbar ist [2], [3]. Ein
wichtiger Faktor fur einen schlechten Code konnen Code-Duplizierungen oder Klone
sein. Klone sind kopierte Quelltexte, die vor allem durch Copy&Paste entstehen, die
Uber die Implementierungsdetails im gesamten System verteilt werden. Fowler [4]
betrachtet das Klonen als ,bad smells® und als den wichtigsten Indikator fur die
schlechte Wartbarkeit. Durch das Klonen besteht die Gefahr, dass Fehler in den
kopierten Codeabschnitten stillschweigend repliziert werden, ohne dass es der
klonende Entwickler bemerkt. Speziell inkonsistente Klone lassen vermuten, dass
Fehler eingefuhrt und nicht behoben werden. Das Klonen hat also den Nachteil, dass
sich die Fehleranfalligkeit des Systems erhoht und dass sich der Codeumfang
vergrof3ert, welches das Verstandnisproblem des Systems erschwert. Welchen Einfluss
Klone auf die Wartbarkeit und Zuverlassigkeit haben, untersuchen Monden u.a. [5] in
einer umfangreichen Studie. Des Weiteren gab es eine empirische Arbeit zur Analyse
der Anzahl der Fehler fur inkonsistente Klone, die durch das Andern des geklonten
Codeabschnitts entstehen [6]. Es wurden ebenfalls viele Forschungsarbeiten fur das
automatische Finden bzw. auch fir das automatische Andern von Klonen gewidmet,
um der Fehleranfalligkeit des geklonten Codes entgegenzuwirken [7, 8, 9]. Gleichzeitig

14

prasentiert eine andere Forschungsgruppe Beweise dafur, dass es keinen erhohten
Zusammenhang zwischen Klonen und Fehler gibt [10].

1.2 Motivation

Es gibt diverse Ansatze und Ergebnisse zu Fehlern in Klone, die sich zum Teil
widersprechen. Prinzipiell besteht die Annahme, dass allein durch den Grollenzuwachs
unnotige Aufwande entstehen, aber speziell die inkonsistenten Klone lassen vermuten,
dass auch Fehler eingefuhrt oder nicht behoben werden.

Beispielsweise analysiert die empirische Studie, an der Forschungsgruppen aus
Industrie und Open Source beteiligt sind, dass bei unbewussten inkonsistenten Klonen,
jeder zweiter Klon einen Fehler enthalt [6]. Eine andere Studie von Rahman, Bird und
Dvanbu [10] konnte aber keinen erhohten Zusammenhang zwischen Klonen und
Fehlern finden. Es gibt also verschiedene Ansatze und verschiedene Ergebnisse zu
Fehlern in Klone.

Aus diesem Anlass entstand die Diplomarbeit in Kooperation mit der
Entwicklungsabteilung der TWT GmbH in Stuttgart Vaihingen. Bei der TWT GmbH
existieren Softwaresysteme, die Uber Jahre hinweg entwickelt werden und aus langen
Revisionshistorien bestehen. Die Architektur der Systeme wurde kontinuierlich an neue
Anforderungen wie sich andernde Kundenwuinsche und neue Technologien angepasst.

Es wurden von der TWT GmbH drei Softwaresysteme, welche Kundenprojekte fur
grolRere Firmen sind, fur die Analyse zur Verfiugung gestellt. Die Systeme bestehen aus
einer hohen Anzahl von Revisionen, die als Basis fur die Arbeit dienen.

1.3 Zielstellung

Das Ziel der Arbeit ist es, Hinweise dafur zu finden, ob inkonsistente Klone Fehler
verursachen. Im Zusammenhang dazu, soll ermittelt werden, unter welchen Umstanden
Fehler durch Inkonsistente entstehen. Hierzu soll die empirische Basis fur den
Zusammenhang zwischen inkonsistenten Klonen und Fehlern erhéht werden, um eine
genauere Aussage machen zu kdnnen. Dabei sollen die vorhandenen Studien auf
Systemen der TWT GmbH repliziert werden. Die Analyse der Studie soll in einem
Studiendesign erfasst werden.

15

1.4 Aufbau der Diplomarbeit

Die Diplomarbeit beginnt mit der Einleitung, die einen Uberblick iber das gesamte
Thema verschafft. AnschlieRend werden der Hintergrund der Diplomarbeit, die
Motivation und das Ziel beschrieben. Die Grundlagen erfolgen in Kapitel 2 und
umfassen eine Einfuhrung in die Termini und Definitionen sowie in die
unterschiedlichen Klonerkennungsverfahren im Detail. Das darauf folgende Kapitel 3
befasst sich mit dem bisherigen Forschungsstand bzw. den Forschungsarbeiten.
Hierbei werden die Grunde und Folgen des Klonens geschildert und verschiedene
Arbeiten zur Erkennung inkonsistenter Klone und Bugs dargestellt. Die relevanten
Werkzeuge und Softwaresysteme fur die Arbeit, wie ConQat, Mercurial und FogBugz
werden im vierten Kapitel beschrieben. In Kapitel 5 beginnt der eigentliche Teil der
Diplomarbeit, das Studiendesign. Das Studiendesign mit dem Repository Mining wird
erklart und die Forschungsarbeit durchgefuhrt sowie die Forschungsergebnisse
beschrieben, um die Ergebnisse in Kapitel 6 auszuwerten und zu beurteilen. In einem
abschliefenden Fazit im siebten Kapitel werden die Ergebnisse zusammengefasst und
beurteilt. Zudem werden weitere potenzielle Weiterentwicklungsbereiche dargestellt
und auf zusatzliche offene Forschungsfragen angedeutet sowie Ideen fur deren
Losungen geliefert.

16

2 Grundlagen Softwareklone

Bei der Betrachtung diverser Studien wird schnell festgestellt, dass verschiedene
Definitionen zum Begriff Klon existieren. Genauso sind unterschiedliche Ansichten zu
den Subbegriffen des Klons vorhanden. Daher gibt dieses Kapitel eine detaillierte
EinfGhrung in die zugrundeliegende Materie, die eine Voraussetzung fur das
Verstandnis der Arbeit ist. Das Kapitel beschreibt die verschiedenen Klonarten und
Klontypen sowie den Aufbau der Klone, deren Forschungsgebiet sehr breit gefachert
ist. Dementsprechend spiegelt sich das auch in den unterschiedlichen
Klonerkennungsansatzen wieder. Nach einer ausfuhrlichen Beschreibung des
allgemeinen Klonerkennungsprozesses fur inkonsistente Klone werden die wichtigsten
und bekanntesten Klonerkennungsverfahren im Detail beschrieben.

2.1 Definition Klone

Die Definition des Klonens lasst sich in der Softwareentwicklung nicht prazise und ohne
weiteres festlegen. Daher umfasst das Kapitel zum besseren Verstandnis der Klone,
beginnend mit einer allgemeinen Definition, detaillierte Definitionen zu verschiedenen
Klonarten.

2.1.1 Aligemeine Definition

Die allgemeine Definition von Ira Baxter dient als Grundlage fur das Verstandnis der
Klone.

“Clones are segments of code that are similar according to some definition of
similarity” [11].

Laut dieser Definition kann es verschiedene Begriffe der Ahnlichkeit geben. Diese
konnten auf Text, der lexikalischen und syntaktischen Struktur oder auf der Semantik
basieren. Sie gelten ebenfalls als ahnlich, wenn sie dasselbe Muster haben [12].

Eine weitere wichtige Definition ist die von E. Juergens u.a. [6], welche die Klone in
exakte und inkonsistente Klone gliedert. Zunachst ist es wichtig zu wissen, dass sie ein
Code als eine Sequenz von Units bezeichnet, die zum Beispiel Bezeichner,
normalisierte Statements oder Zeilen sein kdnnen.

Der Grund fur die Normalisierung ist, dass beim Vergleich von Codeabschnitten die
Kommentare und die Benennung der Literale durch die Normalisierung nicht betrachtet
werden, sondern lediglich die Codezeilen verglichen werden konnen.

17

2.1.2 Definition Exakte Klone

Ein exakter Klon ist ein fortlaufender Substring eines Codes, der mindestens zweimal in
dem (normalisierten) Code erscheint [6]. Dies spiegelt das Copy&Paste Verfahren
wieder und ist somit die syntaktische Definition des Klons.

2.1.3 Definition Inkonsistente Klone

Juergens u.a. [6] macht eine detaillierte Definition zu inkonsistenten Klonen. Demnach
ist ein Substring s vom Code ein inkonsistenter Klon, wenn es einen anderen Teilstring
t des Codes derart gibt, dass ihre Bearbeitungsdistanz unter einem gegebenem
Schwellenwert ist und dass t keine signifikante Uberlappung mit s hat.

2.1.4 Definition Falsch-Positive Klone

Falsch-Positive Klone sind Codefragmente, welche von einem Klonerkennungstool als
ein Klon erkannt wurden, die jedoch keinen Klon darstellen [17]. Durch das
Festlegegen eines Schwellenwerts fur die Mindestklonlange kann die Anzahl der
Falsch-Positive reduziert werden. Da diese Art der Klone sich lediglich durch eine
manuelle Analyse der Klonergebnisse erkennen und beseitigen lassen, ist die optimale
Wahl des Schwellenwerts wichtig. Der Grund fur die Ausgabe von Falsch-Positiven
kann bspw. ahnliche, sich wiederholende Strukturen in der Syntax eines
Codeabschnitts sein. Viele Klonerkennungswerkzeuge erkennen bereits Falsch-
Positive wie bspw. Array-Listen, die sich in den Literalen-Token und Komma-Token mit
unterschiedlichen Werten wiederholen [17]. Weitere Beispiele aus einer Vielzahl von
Falsch-Positiven sind Case-Anweisungen, import- und ,#include“-Anweisungen, sowie
Setter- und Getter-Methoden. Die Codefragmente eines Klonpaars mit ahnlicher
Struktur, die sich jedoch in den Bezeichnern stark unterscheiden, werden ebenfalls als
Falsch-Positive betrachtet.

2.2 Klonaufbau

Bisher wurden Klone lediglich als kopierte bzw. redundante Codeabschnitte
bezeichnet. Fur das Verstandnis der empirischen Arbeit wird im Folgenden der Aufbau
eines Klons definiert. Zunachst wird die Definition des Begriffs ,Codefragment®
festgelegt, da dieser Begriff immer in Verbindung mit dem Begriff Klon genannt wird.
Anschlielend erfolgen weitere Begriffsdefinitionen, die fur den Aufbau eines Klons
relevant sind. Daruber hinaus wird die Beziehung zwischen den Klonen geschildert.

18

2.2.1 Codefragmente

Bei der Analyse von Klonen werden Codefragmente miteinander verglichen. Ein
Codefragment ist ein Quelltextabschnitt, die zum einen den Namen der Klondatei und
zum anderen sowohl die Anfangszeile als auch die Endzeile des geklonten
Quelltextabschnitts enthalt. Mittels dieser Daten Ilasst sich ein geklonter
Quelltextbereich eindeutig identifizieren. Des Weiteren dienen diese Informationen als
Grundlage fur die Klonanalyse um bspw. zu prufen, ob zwei Codefragmente tatsachlich
Klone voneinander sind.

2.2.2 Klonpaar

Ein Paar von syntaktisch und strukturell ahnlichen Codefragmenten werden nach
Kapser et al. [16] als ein Klonpaar bezeichnet. Einer dieser Codefragmente ist die
Kopie des anderen. Das Klonpaar ist der kleinste gemeinsame Nenner fur die
Beschreibung eines Duplikats.

2.2.3 Klonklasse

Eine Klonklasse enthalt mindestens zwei Codefragmente, welche dieselbe bzw.
ahnliche Funktionalitat beschreiben und an unterschiedlichen Stellen im Quelltext
erscheinen. Klonklassen werden ebenfalls als Klongruppen bezeichnet. Jurgens et al.
[6] stellen Klongruppen als einen zusammenhangenden Graphen dar. Dabei wird ein
Codefragment durch einen Knoten verdeutlicht. Kanten zwischen den Knoten
existieren erst dann, wenn eine Klonbeziehung zwischen den Codefragmenten besteht.
Wenn alle Klone einer Klongruppe exakte Klone sind, wird von einer exakten
Klongruppe gesprochen. Eine Klongruppe welche mindestens ein inkonsistentes
Klonpaar enthalt, wird als inkonsistente Klongruppe bezeichnet. Die Abbildungen 2.1
und 2.2 stellen eine exakte und inkonsistente Klonkasse bzw. Klongruppe als einen
Graphen dar, wobei CF als Abkurzung fur Codefragment steht.

CF1 CF2 - CF3

exakter Klon exakter Klon exakter Klon

Abbildung 2.1: Exakte Klongruppe

19

| cF1 | wGize CF3

N— w —
exakter Klon inkonsistenter Klon exakter Klon

Abbildung 2.2: Inkonsistente Klongruppen

2.3 Klontypen

Kopierte Codeabschnitte werden als Klone bezeichnet. Die Klontypen werden je nach
der Ahnlichkeit der Codeabschnitte in vier Klontypen unterschieden. Die Klontypen
werden wiederum in textuelle Ahnlichkeit, d.h. &hnlicher Quellcode und funktionale
Ahnlichkeit, d.h. lediglich ahnliche Funktionalitdt ohne textuelle Ahnlichkeit,
unterschieden. Die vier Klontypen werden wie folgt definiert:

* Typ-1-Klone: Identische Codeabschnitte bis auf Kommentare und Whitespaces.

* Type-2-Klone: Syntaktisch identische Codeabschnitte, die sich in den
Kommentaren, Literalen, Bezeichnern und im Layout unterscheiden.

* Type-3-Klone: Kopierte Codeabschnitte mit weiteren Modifikationen wie
Anpassen, Hinzufigen oder Léschen von Codezeilen, Bezeichnern,
Kommentaren und Layout.

* Type-4-Klone: Codeabschnitte die semantisch ahnlich sind, sich jedoch
syntaktisch unterschieden.

Die ersten drei Klontypen lassen sich zur textuellen Ahnlichkeit kategorisieren. Die
semantisch dhnlichen Klone gehdren zur Kategorie der funktionalen Ahnlichkeit.

2.3.1 Typ-1-Klone

Der Typ-1-Klon ist die exakte Kopie eines Codeabschnitts ohne weitere Modifikationen.
In der Kopie handelt es sich um identische Quelltextabschnitte, die sich lediglich in den
abstrahierten Kommentaren und Whitespaces (neue Zeilen, Blanks, etc.)
unterscheiden (siehe Abbiildung 2.3). Diese Art der Klone kann bspw. durch Inlining
von Hand entstehen.

20

inta=2; inta = 2; // Kommentar

intb=2*a; intb =2 *a;// Kommentar
- String name = “Anna’; - String name = “Anna’;

Abbildung 2.3: Typ-1 Klonpaar

2.3.2 Typ-2-Klone

Bei Typ-2-Klonen handelt es sich um syntaktisch identische Kopien der
Codefragmente. Die Typ-2-Klone umfassen Typ-1-Klone. Bei dieser Art des Klonens
werden neben dem Abstrahieren der Whitespaces und Kommentare auch die
Bezeichner bzw. Literale umbenannt. Typ-2-Klone entstehen in der Regel durch die
Wiederverwendung einer Funktion, bei der die Bezeichner konsistent auf den Quelltext
angepasst werden. Dies ist bspw. bei generischen Funktionen der Fall, bei dem die
Anpassung von Hand durchgefuhrt wird.

Baker, S. [12] macht eine weitere Gliederung der Klone in sog. parametrisierte Klone,
die eine Untermenge der Typ-2-Klone sind. Formal bedeutet dies, dass es eine
bijektive Abbildung zwischen den zwei Codefragmenten gibt, die jedem Bezeichner
eines Codefragments einen Bezeichner des anderen Codefragments zuordnet und
umgekehrt.

Werden die Bezeichner im kopierten Quelltext fur alle Bezeichner konsistent
umbenannt, so spricht man von einem konsistent umbenannten Typ-2-Klon, welches
vor allem bedeutet, dass die Codefragmente sich in der Semantik nicht unterscheiden.
Wird die Umbenennung im Gegensatz hierzu nicht konsistent durchgefuhrt, so spricht
man von Typ-2-Klonen mit inkonsistenter Umbenennung. Der Grund hierfur konnen
Fehler beim Umbenennungsvorgang sein. In diesem Fall besteht die Gefahr, dass sich
die Klone unbeabsichtigt in der Semantik unterscheiden. In Abbildung 2.4 sind Klone
mit konsistenter und inkonsistenter Umbenennung dargestellit.

21

Ursprunglicher Quellcode:

int a, b;
- for (a=0, b=50;
a<=b;
a=a+3; b=b-4)
{0}
Konsistente Umbenennung: Inkonsistente Umbenennung:
intc, d; intc, d;
- for (c=0, d=50; - for (c=0, d=50;
c<=d; ‘ c<=c¢;
c=c+x; d=d-4) c=d+3; d=d-4)
A})

Abbildung 2.4: Typ-2 Klonpaare mit konsistenter und inkonsistenter Umbenennung

2.3.3 Typ-3-Klone

Die Typ-3-Klone, auch inkonsistente Klone genannt, umfassen Typ-1 und Typ-2-Klone.
Hierbei handelt es sich um einen der beiden Klone, der z.B. durch Anpassen,
Hinzufugen oder Loschen von Codezeilen modifiziert wurde. Typ-3-Klone werden auch
inkonsistente Klone, bzw. Gaps [13], ungleiche Abschnitte, genannt. Dieser Typ des
Klons entsteht, wenn eine bestehende Funktionalitat im Softwarelebenszyklus weitere
Funktionalitaten in der Kopie bendtigt und dementsprechend angepasst wird [13], [14].
Daraus kristallisiert sich, dass der Typ-3-Klon sich von den vorherigen beiden
Klontypen unterscheidet.

Der Typ-3-Klon ist also ursprunglich ein Typ-1 oder Typ-2-Klon, welche durch die
Modifizierung unterbrochen wird und daher sich von dem urspriunglichen Codefragment
nicht nur in den Bezeichnern, Literalen und Kommentaren unterscheidet, sondern auch
unahnliche Anweisungsteile enthalt, wie in Abbildung 2.5 ersichtlich wird.

Wichtig fur den Typ-3-Klon ist die minimale Klonlange, also der Schwellenwert fur die
Ahnlichkeit der Klonabschnitte sowie das Gap Ratio, welches bestimmt um wie viele
Codezeilen sich ein Klonpaar unterscheiden darf [15]. Lediglich ein optimales
Verhaltnis der festgelegten Werte liefert ein optimales Ergebnis der erkannten Typ-3-
Klone. Andernfalls erfolgt eine ungunstige Verteilung von Klonabschnitten, welche sich
uber mehrere Klonklassen verteilen oder es werden die Klone nicht erkannt,sondern
nur Teilabschnitte [15]. Ein weiterer Nachteil der ungunstig ausgewahlten
Schwellenwerte spiegelt sich in der Anzahl der Falsch-Positiven, welche sich erheblich
erhohen. Dies fuhrt bei der Klonerkennung zu einer relativ schlechten Genauigkeit der
Klonergebnisse.

22

inta, b; inta, b;

- for (a=0, b=50; - for (a=0, b=50;

‘ a<=b; j a=ati;

i a=a+3; b=b-4) i a<=b;
A 3 a=a+3; b=b-4)
! {0}

Abbildung 2.5: Typ-3 Klonpaar

2.3.4 Typ-4-Klone

Bei den Typ-4-Klonen handelt es sich um semantisch ahnliche Klone, die zwar dieselbe
Funktionalitat darstellen, jedoch syntaktisch unterschiedlich sind und somit nicht ohne
weiteres als Klon erkannt werden. Beispielsweise sind die for-Schleifen, welche
ebenfalls als while-Schleifen dargestellt werden konnen, ein Klon des Typs 4. Das
Inkrement Operator ,++“ in einigen Programmiersprachen kann durch die
ausgeschriebene Schreibweise ersetzt werden und ist ebenfalls ein Beispiel fur ein
Typ-4-Klon. Die Bestimmung der semantischen Ahnlichkeit bei syntaktischer
Verschiedenheit ist fast unmaoglich. Daher wird dieser Klontyp in der Literatur eher
selten erwahnt und hat wenig praktischen Nutzen. Die Abbildung 2.6 stellt zwei
syntaktisch verschiedene jedoch semantisch gleiche Codefragmente dar.

int a (int betrag, int niedrig) { - int b (int betrag, int niedrig) {

if (niedrig { ! int prozent;
return (betrag *120)/100; j
}else { i if (niedrig) {
return (betrag *150)/100; 3 prozent = 20;
) ! } else {
-} j prozent = 50;
-}

return betrag +
(prozent * betrag) /100;
}

Abbildung 2.6: Typ-4 Klonpaar

23

2.3.5 Zusammenhang der Klontypen

Die verschiedenen Klontypen stehen in der Mengenbeziehung im Zusammenhang.
Das Mengenverhaltnis zwischen den Klontypen lasst sich formal wie in Abbildung 2.7
dargestellt folgendermalien erfassen:

Typ1C Typ2 C Typ3 C Typ4

Abbildung 2.7: Mengenbeziehung der Klontypen

Mit steigendem Klontyp wachst die Anzahl der moglichen Codeklone. Der Grund hierfur
ist, dass je hoher der Klontyp ist, desto mehr Freiraum ist fur die Abweichungen
zwischen den geklonten Codeabschnitten vorhanden.

In Abbildung 2.7 sind die Mengen der Klontypen dargestellt. Die Menge der Typ-2-
Klone umfasst die Menge der Typ-1-Klone, welche die Identitatsabbildung eines
geklonten Codeabschnitts ist. Bei den Typ-2-Klonen existieren im Vergleich zu Typ-1-
Klonen Bezeichner, die konsistent bzw. inkonsistent umbenannt wurden.

Die Identitatsabbildung wird durch den Typ-3-Klon erweitert, in dem die Unterschiede
bspw. nicht nur in den Bezeichnern und im Layout vorkommen, sondern sich komplette
Bereiche unterscheiden. Bei den Typ-4-Klonen kann, auf Grund fehlender
syntaktischer Ahnlichkeit, keine Zuordnung von geklonten Codeabschnitten
vorgenommen werden.

24

2.4 Klonerkennungsprozess inkonsistenter Klone

Es gibt verschiedene Ansatze zur Klonerkennung die auf unterschiedlichen
Klonerkennungswerkzeugen basieren. Gemeinsames Ziel der
Klonerkennungswerkzeuge ist es, die Codefragmente miteinander zu vergleichen und
mit moglichst wenig Aufwand moglichst viele Klone zu erkennen. Um den Aufwand fur
die Klonsuche =zu reduzieren, existieren Klonerkennungsprozesse, welche in
Unterstitzung der Klonwerkzeuge umgesetzt werden.

Roy u.a. [18] schaffen einen Gesamtuberblick Uber die wichtigsten Schritte in einem
Klonerkennungsprozess. Sie stellen einen generischen Klonerkennungsprozess vor,
die eine Menge von Schritten enthalt, welche in der Regel von einem
Klonerkennungstool bearbeitet werden. Hierbei befassen sie sich Uber die Token-
Ebene hinaus mit weiteren moglichen Klonerkennungsansatzen und vergleichen diese
miteinander. Der vorgestellte generische Klonerkennungsprozess ermoglicht das
Vergleichen und Bewerten von Klonerkennungswerkzeugen in Anlehnung auf ihren
zugrundeliegenden Mechanismus flur die einzelnen Klonerkennungsschritte und ihrer
Hohe der Unterstutzung fur diese Schritte.

Der Fokus dieser Diplomarbeit liegt auf inkonsistente Klone. Daher befasst sich dieses
Kapitel mit einem Klonerkennungsprozess, welcher speziell fur die Erkennung von
inkonsistenten Klonen entworfen wurde, der auf Token-Ebene arbeitet und im
Allgemeinen ausreichend fur die Suche nach Copy&Paste Codefragmenten ist und
zugleich effizient ist [6]. Fur diesen Klonerkennungsprozess entworfene Algorithmen
und Filter wurden als Teil von CloneDetective [19] implementiert, die auf ConQat
basieren (hierzu mehr in Kapitel 4.1) und in der Lage sind inkonsistente Klone zu
erkennen.

Die Basisschritte fur die Erkennung von inkonsistenten Klonen des vorgestellten
Verfahrens beruhen ebenfalls auf den Schritten des allgemeinen
Klonerkennungsprozesses [18]. Der Unterschied liegt darin, dass das
Klonerkennungstool als eine Pipeline organisiert ist. Die Abbildung 2.8 schildert die
einzelnen Schritte fur die Klonerkennung.

Dateien
Loader I'——) Scanner linkans Normalizer

Statements

| Filter Klongruppen Klonerkennungstool I

Abbildung 2.8: Klonerkennungsprozess [6]

25

2.4.1 Vorverarbeitung

Vor der Vorverarbeitung werden zunachst der zu analysierende Code, bzw. die Daten
durch den Loader (also aus dem Speicher) ausgelesen. AnschlieRend muss der
Quellcode unterteilt und die Quelle und die Vergleichseinheiten bestimmt werden [18].
Im Klonerkennungsprozess, welcher fur inkonsistente Klone entworfen wurde, basiert
die Vergleichseinheit auf Tokens. Daher werden die Daten nach dem Auslesen mit
Hilfe des Scanners in Tokens aufgeteilt [6].

Der nachste Schritt ist das Entfernen von uninteressanten Teilen des Quellcodes.
Diese setzten sich aus generiertem Code, die Falsch-Positive verursachen konnen,
Kommentaren und eingebettetem Code aus anderen Programmiersprachen
zusammen. Letztlich setzt sich der Code aus aufgeteilten Tokens zusammen, welche
durch die Tokenisierung erfolgt.

2.4.1.1 Normalisierung

Die Normalisierung ist ein wichtiger Bestandteil der Vorverarbeitungsphase. Die
Normalisierung stellt aus den Tokens, die aus einmaligen Schlusselwortern,
Bezeichnern und Operatoren bestehen, wieder Statements zusammen. Dieser Schritt
ermoglicht eine bessere Anpassung der Normalisierung und hilft Klone zu vermeiden,
die innerhalb von Statements beginnen und enden.

Die Normalisierung beseitigt die Unterschiede in der Benennung der Bezeichner,
konstanten Werten und Literalen, so dass sie beim Vergleich von Statements nicht
relevant sind. In Abbildung 2.9 ist ein Beispiel fur die Normalisierung eines
Codeabschnitts. In dem nicht normalisierten Codeabschnitt erfolgt das Umandern einer
UTF-8-Datei in eine UTF-16-Datei. Es ist zu erkennen, dass die Bezeichner zu ,id“ und
die Literale zu ,lit* normalisiert wurden, so dass der Klonerkennungsalgorithmus diese
als einen Klon erkennen kann.

26

|]
| String eadFileUtf8(Fjle file) { 2 id3) {
FilelnputStream in = new FilelnputStream(file); id0 id2 = new id0(id4);

idO[] idl = new idO[id2.id3()];
id0.id | (id2); id0.id3();
return new id0(id |, lit0);

byte[] buffer = new byte[file.length()];
in.read(buffer); in.close();

return new String(buffer,,, UTF-8"); }

id0 id1 (id2 id3) {
id0 id2 = new id0(id4);
String readFileUtf16(File file) { id0[] idl = new idO[id2.id3()];
id0.id | (id2); id0.id3();
return new id0(id |, lit0);

FilelnputStream in = new FilelnputStream(file);
byte[] buffer = new byte[file.length()];
in.read(buffer); in.close();

return new String(buffer,, UTF-16);

Abbildung 2.9: Normalisierungsbeispiel [20]

2.4.2 Erkennungsalgorithmus

Als nachstes wird die aus den Statements gebildete Sequenz an den
Klonerkennungsalgorithmus ubergeben. Der speziell far diesen
Klonerkennungsprozess entwickelte Algorithmus konstruiert aus dem Quelltext ein
Suffix-Baum und fuhrt anschlie®end, basierend auf einer Bearbeitungsdistanz, fur jedes
mogliche Suffix eine Klonsuche durch [6]. Anders ausgedruckt sollen fur die Klonsuche
gemeinsame Teilstrings in der Sequenz gefunden werden, die von allen Datenstromen
gebildet wurden, in denen die Teilstrings nicht exakt identisch sein miussen, aber eine
durch einen Schwellenwert begrenzte Bearbeitungsdistanz erflllen.

Als Ergebnis liefert der Erkennungsalgorithmus Klongruppen, welche aus Klonen
bestehen, die aus den Sequenzen (normalisierten Tokens) ermittelt wurden.

2.4.3 Nachverarbeitung und Filterung

Zuletzt mussen die Klongruppen Uberarbeitet bzw. gefiltert werden. Um Speicherplatz
zu sparen erfolgt die Filterung relativ frih. Das Ziel ist es, den Speicher nicht fur nicht
relevante Klongruppen zu verwenden. Das Eliminieren von Klongruppen, deren Klone
sich nicht Uberlappen und Gruppen, deren Klone in anderen Klongruppen enthalten
sind, ist ein wesentlicher Bestandteil des Filterns.

Des Weiteren bietet das Filtern neben einer absoluten Grenze fur die Anzahl der
Inkonsistenten auch eine relative Grenze an. Das ermoglicht das Ausfiltern von Klonen,

27

in denen die Anzahl der inkonsistenten Klone im Verhaltnis zur Lange des Klons einen
bestimmten Betrag ubersteigt [6].

Der Nachverarbeitungsschritt bietet die Gelegenheit, Falsch-Positive durch eine
manuelle Analyse oder automatisierte Heuristiken auszufiltern [18]. Die Ergebnisse des
vorgestellten inkonsistenten Klonerkennungsvorgangs werden ebenfalls Uber eine
HTML-Seite visuell in einem Tree Map (mehr dazu in Kapitel 4.1) dargestellt, so dass
das manuelle Filtern von Falsch-Positiven beschleunigt werden kann.

2.5 Ansatze zur Klonerkennung

Nach dem in die Begrifflichkeiten und Definitionen der Klone eingefuhrt wurden, stellt
dieses Kapitel Techniken und Verfahren zur Erkennung von Klonen in Codefragmenten
vor. Die Ansatze zur Klonerkennung unterscheiden sich zunachst in der Granularitat
des berucksichtigten Wissens und der Abstraktionsebene der Analyse [21]. Nach deren
Erklarungen werden die unterschiedlichen Klonerkennungsverfahren vorgestellt.

2.5.1 Granularitat

Unter Granularitat versteht man die ,Grof3e” der Einheiten, die bei der Klonerkennung
verglichen werden mussen. Die Granularitat bestimmt die Anzahl der potentiell
notwendigen Vergleiche im Klonerkennungsvorgang.

Zur Klonerkennung werden Ublicherweise folgende Granularitatsstufen verwendet [21]:

- Zeichen

- Zeilen

- Anweisungssequenzen
- Funktionen

- Module

Fir ein exaktes Verfahren wird die Granularitat verfeinert, in dem kleinere
Codefragmente gebildet werden und somit die Anzahl der zu vergleichenden Einheiten
steigt. Jeder dieser Einheiten der Granularitatsstufe wird mit jeder anderen Einheit
verglichen. Somit steigt also die Zahl der potentiellen Vergleiche und damit verbunden
auch der Aufwand. Die steigende Granularitat eines Verfahrens fuhrt zu einem
quadratischen Aufwand der Vergleiche.

Werden zwei funfstellige Codefragmente durch ein zeilenorientiertes Verfahren
miteinander verglichen, so sind 25 Vergleiche durchzufuhren, da jede Zeile des einen
Codefragments mit jeder Zeile des anderen Codefragments verglichen wird. Im
Vergleich dazu wuirden tokenorientierte oder zeichenorientierte Verfahren mit feinerer
Granularitat in der Regel deutlich hohere Vergleiche durchfuhren.

28

2.5.2 Abstraktionsebene

Unter Abstraktionsebene versteht man die ,Art“ der Einheiten, die zu vergleichen sind.
Demzufolge gibt die Abstraktionsebene die Datenbasis an, auf der die Klonerkennung
stattfindet.

Zur Klonerkennung werden ublicherweise folgende Abstraktionsebenen unterschieden
[21]:

- Text

- Token

- Syntax

- Semantik
- Metriken

Damit ein Codefragment als Klon erkannt werden kann, muss sie zunachst auf die
geeignete Art, bspw. durch Normalisierung, abstrahiert werden. Mit zunehmender
Abstrahierung konnen prazisere Aussagen getroffen werden, da die
Programmiersprachenunabhangigkeit sinkt. Gleichzeitig steigt jedoch mit zunehmender
Abstraktionsebene die Laufzeit.

Damit beispielsweise ein Verfahren Typ-2-Klone erkennen kann, setzt ein
Klonerkennungsverfahren mindestens auf der Tokenebene an, da auf dieser Ebene die
Bezeichner in einem Quelltext von dem Rest des Quelltextes erkannt bzw.
unterschieden werden konnen.

2.5.3 Textbasierte Klonerkennung

Die textbasierte Klonerkennung ist die bisher einfachste Methode zur Klonerkennung.
Textbasierte Ansatze beruhen auf dem Vergleichen von Zeilen bzw.
Anweisungssequenzen. Wenn mehrere gleiche aufeinanderfolgende Zeilen als ahnlich
erkannt werden, gibt das Klonerkennungstool Klonpaare mit ihrer maximal moglichen
Lange zurlck. Der zu vergleichende Quelltext wird Ublicherweise nicht aufbereitet bzw.
nur gering aufbereitet. Beispielsweise werden Whitespaces und Kommentare entfernt.
Dieses Verfahren hat den Nachteil, dass sie nicht robust zu Veranderungen, zum
Beispiel zu strukturellen Anderungen an den Anfangs- und Endzeilen eines
Codefragments, fuhrt. Der Vorteil hingegen besteht darin, dass auf Grund fehlender
Aufbereitung, bzw. Transformation oder Normalisierung, keine sprachspezifischen
Eigenschaften verwendet werden und das Verfahren infolgedessen sprachunabhangig
ist.

Es gibt Studien mit verschiedenen Ansatzen fur die Umsetzung des textbasierten
Verfahrens, die sich lediglich im Algorithmus zum Vergleich der Codezeilen

29

unterscheiden. Johnson, J.H. [22] macht bspw. einen Zeichenkettenvergleich mittels
Hashwerten. Ducasse S. u.a. [23] fuhren dagegen einen zeilenweisen Vergleich Uber
Dot-Plots durch. Die Abbildung 2.10 zeigt ein Beispiel fur einen Vergleich Uber Dot-
Pots.

Ein bekanntes Klonerkennungstool fur das textbasierte Verfahren ist GNU diff, dessen
Ziel das Ermitteln von Unterschieden zwischen zwei Dateien ist. Dieses Verfahren
ermittelt lediglich die Unterschiede bzw. die Gleichheit zweier Dateien.

nez.c
4 5678

filel.c
123 45678 9101112 1 2 3
o e

1
2,
3
4
o5
c6
=7
... 8|
9

67
124
27
———42

a ab x vy aab z

Abbildung 2.10: Zeilenweiser Vergleich Uber Dot-Plots [24]

2.5.4 Tokenbasierte Klonerkennung

Im Gegensatz zur textbasierten Klonerkennung ist das tokenbasierte Verfahren
fortgeschrittener und komplexer. Der Grund hierfur sind die in der ersten Phase der
Klonerkennung verwendeten komplizierten Transformationsalgorithmen, um eine
Zeichenfolge (auch tokenstream genannt) aus dem Quelltext zu konstruieren. Dies
erfolgt durch die Anwendung einer lexikalischen Analyse (auch tokenization genannt)
auf den Quelltext. Dieser Vorgang hat zur Folge, dass die tokenbasierten Techniken
sprachabhangig werden. Der wichtige Vorteil dieser Technik ist, dass sowohl exakte als
auch ahnliche Klone gefunden werden konnen, da eben durch die Transformation
ahnliche Konstrukte angeglichen werden.

Auch fur dieses Verfahren gibt es einige Studien mit verschiedenen Ansatzen, die sich
ebenfalls in der zweiten Phase des Klonerkennungsprozesses, namlich im Algorithmus
der Klonerkennung durch Auswertung der Zeichenfolgen unterscheiden.

Das bekannteste Verfahren der tokenbasierten Klonerkennung ist die von Baker, B.
[14,12]. Es handelt sich um ein zeilenorientiertes Verfahren, das Klone auf der
Zeichenfolge (tokenstrom) erkennt. Dieses Verfahren kommt in ihrem Tool dup zum
Einsatz, welches ein tokenbasiertes Pattern-Matching verwendet.

30

Bei diesem Verfahren wird zunachst fur jede Codezeile, durch ein Lexem flur die zu
analysierende Sprache ein Parameter-String erzeugt (auch P-String genannt).

Ein Parameter String besteht aus Nichtparametersymbolen und Parametersymbolen.
Wahrend ein eindeutiges Nichtparametersymbol (sog. Funktor) die Struktur einer Zeile
enthalt, besteht dagegen ein Parametersymbol aus den Variablen, die in der jeweiligen
Codezeile verwendet wurden. Der Funktor reprasentiert die Struktur einer Codezeile
eindeutig, so dass Codezeilen mit identischer Struktur auf den gleichen Funktor
abgebildet werden. Das folgende Beispiel von Koschke [24] bildet eine Codezeile auf
ein Parameter-String ab.

Die
Codezeile: x=x+y
wird abgebildet auf den
Parameter- String: (P =P + P; x,x,y)
der dargestellt wird mit dem
Funktor: OXXY

Die Codezeile wurde in den dazugehodrigen Funktor o und dessen Parameterliste
umgewandelt. Demnach wurden alle Zeilen, welche die Form P = P + P haben, auf den
Funktor o abgebildet werden. Die erzeugten und konkatenierten P-Strings aller
Codezeilen, die den Programmcode reprasentieren, werden anschliel3end in einen P-
Suffix-Baum Ubertragen. Der quadratische Aufwand fur die Vergleiche wird durch die
Verwendung des P-Suffix-Baums vermieden. Aus dem P-Suffix-Baum kénnen sowohl
die Position als auch die Lange und Anzahl der Klone direkt ermittelt werden.

Vor dem Aufbau des Suffix-Baums wird fur jeden P-String die prev-Funktion codiert, um
von den Bezeichnern zu abstrahieren. Hierbei werden den Bezeichnern je nach ihrem
Vorkommen Werte in der Parameterliste vergeben. Wenn ein Bezeichner das erste Mal
in der Parameterliste vorkommt, erhalt sie die Zahl 0. Fir jedes weitere Vorkommen
erhalt sie die Zahl des relativen Abstands zum vorherigen Vorkommen.

Der P-Suffix-Baum wird durch den P-String und der prev-Funktion zu den Suffixen
erstellt. Der P-String eines Suffixes sowie die prev-Werte zu den Suffixen werden auf
eine Kante eines Suffix-Baumes eingetragen, welche mit der Eingabeendzeichen $
enden.

Zunachst wird der P-String des Suffixes auf eine Kante in ein Suffixbaum Ubertragen,
welches mit dem Eingabeendzeichen $ endet (siehe Abbildung 2.11). Die komplette
Suffixeingabe wird abgearbeitet, indem der Funktor, beginnend mit dem ersten, und die
dazugehorige Parameterliste des P-Strings entfernt werden. Das Ergebnis wird
anschliefend erneut in den P-Suffixbaum eingetragen, bis die Eingabe abgearbeitet ist.
Nun konnen alle Klone ausgehend von der Wurzel Uber die Kanten gefunden werden.

31

Das folgende Beispiel von Koschke und Simon [21] schildert eine Ubersichtliche
Darstellung, die zu einem Suffix S den P-Suffix-Baum mit allen prev(S;) graphisch
darstellt, wobei S; = s;si+1...sp$ das i'te Suffix von S ist.

Suffix S = aypyoxax

> prev(Sy) = 00p20:00:2$
> prev(Sz) = 0B20:00:2%
= prev(S;) = f0a0a.2$
= prev(S,) = 00.00:2$
= prev(Ss) = a00.2$
= prev(Ss) = 00.2%
= prev(S7) = a0$
= prev(Ss) = 0%
= prev(Sg) = $

Abbildung 2.11: P-Suffix-Baum zum Suffix S

Fur eine schnelle Klonerkennung eignet sich dieses Verfahren ausgesprochen gut und
liefert ansprechende Ergebnisse [25]. Das Verfahren ermdglicht das Finden von
konsistent umbenannten Typ-1 und Typ-2-Klonen. Typ-3-Klone werden durch einen
separaten Schritt am Ende erkannt [26]. Hierzu werden mehrere gleiche Typ-1 und
Typ-2-Klone die hintereinander vorkommen zu einem Typ-3-Klon zusammengefasst.
Dieses Verfahren hat den Vorteil, dass es durch die niedrige Abstraktionsebene
programmiersprachenunabhangig ist. Der Nachteil hingegen ist, dass durch die
Bearbeitung auf Zeilenbasis, kleine Umformatierungen zu falschen Ergebnissen fuhren.

32

2.5.5 Abstrakter Syntaxbaum

Dieser Ansatz der Klonerkennung basiert auf abstrakten Syntaxbaumen (AST). Ein
bekanntes Tool fur diesen Ansatz der Klonerkennung ist das von lIra D. Baxter [27]
entwickelte Programm CloneDR™.

Bei diesem Verfahren wird zunachst zu jedem Quellcode ein AST erstellt. Alle
Teilbdume werden gegeneinander abgeglichen und auf Gleichheit und Ahnlichkeit
gepruft (siehe Abbildung 2.12). Mit der Absicht den quadratischen Aufwand zu
vermeiden, werden die zu vergleichenden Baume partitioniert. Die Partitionierung der
Baume erfolgt durch Hash-Funktionen [27]. Nun werden lediglich Teilbaume innerhalb
einer gemeinsamen Partition verglichen. Teilbaume, die denselben Hashwert haben,
deuten moglicherweise auf einen Klon [24]. Das Prufen der Teilbdume auf Gleichheit
und Ahnlichkeit findet mit Hilfe einer Ahnlichkeitsfunktion statt. Die Partitionierung und
der Vergleich der AST ignoriert Bezeichner, sodass die Erkennung der Typ-2-Klone
realisierbar ist. Um die maximale Anzahl der Klone zu finden, werden in einem
Nachbearbeitungsschritt Klone, die aus mehreren Anweisungen bestehen gesucht und
zusammengefasst. Resultierend aus diesem separaten Schritt am Ende konnen Typ-3-
Klone erkannt werden.

Die Berucksichtigung der kommutativen Operatoren gehdrt zu den wichtigsten
positiven Merkmalen dieses Verfahrens. Ein weiterer Vorteil ist, dass ganze
Anweisungen also syntaktische Einheiten verglichen werden konnen. Das Verfahren
liefert als Ergebnis syntaktisch vollstandige Klone. Der Nachteil hingegen ist, dass das
Verfahren auf Grund des syntaxbasierten AST-Matchings relativ aufwandig ist. Fur das
Erstellen der AST wird ein Parser fur jede Programmiersprache bendtigt, der dazu
fuhrt, dass dieses Verfahren der Klonerkennung weniger
programmiersprachenunabhangig ist.

if if
cond then else cond then else
= call = = call =
left right lhs rhs left right lhs rhs
a b X y z q t S

Abbildung 2.12: Abstrakter Syntaxbaum [24]

33

2.5.6 Graphbasierte Klonerkennung

Das graphbasierte Klonerkennungsverfahren auch Programm Dependence Graph
(PDG) genannt, kann als eine Erweiterung der baumbasierten Technik betrachtet
werden. Der Unterschied dieses Verfahrens liegt darin, dass durch den PDG die
syntaktische Struktur des Quellcodes und der Datenfluss dargestellt werden konnen,
die wiederum bei der Klonerkennung verwendet werden.

Krinke, J. [28] hat fur diesen Ansatz der Klonerkennung einen Tool namens duplix
entwickelt, der mit Hilfe eines PDGs sowohl Informationen aus dem AST als auch uber
die Abhangigkeiten des Programms berucksichtigt. Die Klonerkennung erfolgt nun
durch die Suche nach ahnlichen Teilgraphen, welche die Klone darstellen.

Eine besondere Eigenschaft dieser Technik ist, dass sie, durch die Verwendung des
PDGs, ein gutes Ergebnis fur die Erkennung der falschen Codeduplikate liefert. Ein
weiterer positiver Aspekt besteht darin, dass in der Anzahl der nicht identifizierten
Codeduplikate ein guter Wert erzielt werden kann.

Der Nachteil hingegen liegt im zeitintensiven Aufwand fur das Erzielen der
Analysegrundlage. Die Suche nach Klonen ist ebenfalls aufwandiger im Vergleich zu
anderen Verfahren. Des Weiteren besteht der Nachteil darin, dass das Verfahren nicht
programmiersprachenunabhangig ist. Dies wird bei der Analyse der zu erzeugenden
ASTs und Ermittlung der Programmabhangigkeiten erkannt. Die mangelnde
Programmiersprachenunabhangigkeit erschwert die Klonerkennung flr verschiedene
Programmiersprachen.

2.5.7 Metrikbasierte Klonerkennung

Die Umsetzung des metrikbasierten Klonerkennungsverfahrens findet sich in der
Technik von Mayrand u.a. [29] wieder. Die bisher vorgestellten Verfahren leiten die
Informationen aus dem Quellcode oder Strukturen ab, welche sowohl die Syntax als
auch die Semantik des Quellcodes enthalten. Das Verfahren von Mayrand geht von
bereits abstrahierten Informationen aus. In diesem Verfahren werden verschiedene
Metriken fur verschiedene Codefragmente erhoben. AnschlieBend wird aus den
Metriken berechnet, ob zwei Codefragmente gleich oder ahnlich sind. Hierzu gibt eine
Vergleichsfunktion eine Vorgabe, fur welche Auspragungen der gewahlten Merkmale
die zu vergleichenden Codefragmente als gleich oder ahnlich zu bewerten sind. In
diesem Fall lassen sich gleiche Codefragmente in Typ-1-Klone und &hnliche
Codefragmente in Typ-2-Klone kategorisieren.

Die Granularitat von Mayrand [29], also die erkannten Klontypen, kategorisieren sich in
gleich, ahnlich, verschieden und sind von den jeweils gewahlten Vergleichsfunktionen
abhangig. Die Abstraktionsebene wird ebenfalls durch die, von der Vergleichsfunktion
verwendeten Metrik bestimmit.

Mayrand gliedert in folgende Vergleichsmetriken:

34

- Name

- Layout

- Anweisungen
- Kontrollfluss

Diese Vergleichsmetriken werden zum einen Uber den Quelltext, zum anderen Uber
den AST als auch uber den Kontrollflussgraphen erhoben.

Da dieser Ansatz auf der Annahme beruht, dass sowohl bei einem gleichen Quellcode
eine Metrik ebenfalls den gleichen Wert liefert, als auch bei ahnlichem Quellcode eine
Metrik einen ahnlichen Wert liefert, kann diese Annahme ohne weiteres akzeptiert
werden. Der Nachteil liegt jedoch darin, dass bei der Klonerkennung nicht erkannt
werden kann, ob zwei Quellcodes gleich oder ahnlich sind. Daraus resultiert die
Unklarheit in der Beurteilung, ob gleiche oder ahnliche Kennzahlen auch
dementsprechend auf gleiche oder ahnliche Quellcodes hindeuten.

35

3 Forschungsstand

Redundante Codestellen bzw. Code-Klone werden in einem Softwaresystem nicht
ausgeschlossen. Klone in Systemen sind jedoch unterschiedlichen Griunden
zurlckzufuhren. In einigen Klonfallen ist das Klonen sogar berechtigt. Klone in
Softwaresystemen sind jedoch mit positiven sowie negativen Auswirkungen und
Problemen verbunden. Es wurden zahlreiche Studien der Erkennung von Klonen
speziell fur inkonsistente Klone gewidmet, um der Ursache der Klone auf die Spur zu
kommen. Fir einen besseren Ruckschluss der Auswirkungen der Klone, wurden
ebenfalls zahlreiche Studien entwickelt, um die Fehler in Klonen zu analysieren und
den Zusammenhang derer mit den Klonen zu ermitteln. Dieses Kapitel befasst sich mit
allen diesen Themen im Detail und schafft einen Gesamtluberblick uber
Wissenschaftlichen Arbeiten, die dieses Thema behandeln.

3.1 Grunde des Klonens

Das Copy&Paste-Verfahren eines Entwicklers erzeugt bereits Klone. Es gibt
verschiedene Grunde fur das Entstehen eines Softwareklons. Diese werden nach
Koschke [39] wie folgt kategorisiert:

Entwicklungsstrategie

Durch das Copy-Paste-Verfahren werden bestehende Funktionalitdten in den
Codefragmenten fur eine neue Funktionalitat dupliziert. Das bedeutet also, wenn eine
bereits bestehende Funktionalitat in gleicher oder ahnlicher Form im Software-Projekt
an einer anderen Stelle erforderlich ist, wird diese an die entsprechende Stelle kopiert
und wenn notig verandert und modifiziert. Der Klon fungiert also als Template fur neue
Funktionalitaten.

Wartungsvorteile

Ein weiterer Vorteil besteht darin, dass bei der Wiederverwendung von bestehenden
Funktionalitaten die Wartung erleichtert wird, da es ich bei dem geklontem
Codefragment um einen bewahrten Quellcode handelt. Des Weiteren reduziert sich
durch das Kopieren eines bewahrten Quellcodes die Fehlerwahrscheinlichkeit im
Quelltext. Ein besonders wichtiger Punkt fur die Entwicklung ist die Unabhangigkeit
zwischen den Projektdateien bzw. Komponenten, die durch das Kopieren erzielt
werden kann. Die unabhangige Wartung der Komponenten ist daraus resultierend
moglich.

36

Uberwindung von Einschrinkungen

Eine weitere Ursache fur das Entstehen von Klonen liegt in den eingeschrankten und
verschiedenen Abstraktionsmechanismen einiger Programmiersprachen. Kim et al. [48]
hat bspw. in einer Studie Programmierer wahrend der Entwicklung beobachtet. Die
Entwickler mussten in vielen Fallen klonen, weil die verwendete Programmiersprache
nicht aussagekraftig war. Wenn also fur ein bestimmtes Problem keine angemessene
Moglichkeit zur Abstraktion besteht, wird dieses durch die Verwendung von Klonen
behoben. Weitere Einschrankungen im Entwicklungszyklus, die das Klonen von
Entwicklern begrinden, sind mangelnde Entwicklungswerkzeuge, unzureichende
Kenntnisse und damit verbunden auch fehlendes Problembewusstsein des Entwicklers
sowie Zeitdruck.

Die Verwendung von firmeninternen sowie programmiersprachenabhangigen
Bibliotheken ist eine unvermeidbare Ursache fur Klone, die nicht notwendigerweise
einen negativen Einfluss haben, da lediglich ein erforderliches Protokoll implementiert
wird.

3.2 Folgen des Klonens

Laut Studien enthalten 5-25% der Softwaresysteme redundante Codestellen [21, 40,
41], welche sich negativ im Entwicklungszyklus des Software-Projekts auswirken.
Durch das Klonen vergrof3ert sich namlich der Codeumfang, sodass der Aufwand zum
Verstehen des Quelltextes erheblich steigt [17] und damit verbunden nimmt der
Testaufwand fur das Software-Projekt zu, welcher wiederum fur hohere Kosten sorgt
[39]. Des Weiteren dauert die Kompilierungszeit der Datei langer. Der grolere
Codeumfang fuhrt auch zu einem erhohten Wartungsaufwand eines Systems und
somit zu hoheren Wartungskosten [2, 11, 5]. Die hoheren Wartungskosten werden
verursacht durch den erhdhten Aufwand fir das Andern eines geklonten
Codefragments. Der Grund hierfiir ist, dass Anderungen an einem geklonten
Codefragment an allen Klonstellen einer Klongruppe modifiziert bzw. angepasst
werden mussen. Die Gefahr besteht darin, dass bei unbewusstem Klonen die
Anderungen nicht an allen Klonstellen angepasst werden und die Entwicklung der
geklonten Codefragmente unabhangig voneinander erfolgt [6]. Eine unabhangige
Weiterentwicklung kann durch das fehlende Verstandnis des Entwicklers uber das
Systems entstehen.

Im Gegensatz dazu gibt es jedoch Studien, die gegenteilige Ergebnisse liefern, wie
bspw. dass Klone bewusst erstellt werden, um die Produktivitat der Entwickler zu
erhohen [46]. Eine weitere Studie hat bewiesen, dass Entwickler bewusst Klonen, da
sie sich an die verschiedenen Klonstellen erinnern und bei einer Anderung diese an
allen Klonstellen durchfuhren [47].

37

3.3 Inkonsistente Klone und Fehler

Laut Studien enthalten 5-25% der Softwaresysteme redundante Codestellen [21, 40,
41], welche sich negativ im Entwicklungszyklus des Software-Projekts auswirken.
Durch das Klonen vergrof3ert sich namlich der Codeumfang, sodass der Aufwand zum
Verstehen des Quelltextes erheblich steigt [17] und damit verbunden nimmt der
Testaufwand fur das Software-Projekt zu, welcher wiederum fur hohere Kosten sorgt
[39]. Des Weiteren dauert die Kompilierungszeit der Datei langer. Der grolere
Codeumfang fuhrt auch zu einem erhohten Wartungsaufwand eines Systems und
somit zu hoheren Wartungskosten [2, 11, 5]. Die hoheren Wartungskosten werden
verursacht durch den erhdhten Aufwand fir das Andern eines geklonten
Codefragments. Der Grund hierfiir ist, dass Anderungen an einem geklonten
Codefragment an allen Klonstellen einer Klongruppe modifiziert bzw. angepasst
werden mussen. Die Gefahr besteht darin, dass bei unbewusstem Klonen die
Anderungen nicht an allen Klonstellen angepasst werden und die Entwicklung der
geklonten Codefragmente unabhangig voneinander erfolgt [6]. Eine unabhangige
Weiterentwicklung kann durch das fehlende Verstandnis des Entwicklers uber das
Systems entstehen.

Im Gegensatz dazu gibt es jedoch Studien, die gegenteilige Ergebnisse liefern, wie
bspw. dass Klone bewusst erstellt werden, um die Produktivitat der Entwickler zu
erhohen [46]. Eine weitere Studie hat bewiesen, dass Entwickler bewusst Klonen, da
sie sich an die verschiedenen Klonstellen erinnern und bei einer Anderung diese an
allen Klonstellen durchfuhren [47].

Des Weiteren befassen sich Juergens et. al. [6] mit der Erkennung und den
Auswirkungen der inkonsistenten Klone und Fehlern und stellen fest, dass beim
unbewussten inkonsistenten Klonen, jeder zweite Klon einen Fehler verursacht.

Es gibt auch zahlreiche wissenschaftliche Beitrage, die positive Ruckschlisse zu
inkonsistenten Klonen liefern. Beispielsweise hat Krinke [45] in seiner Studie bewiesen,
dass bei einer konsistenten sowie inkonsistenten Anderung von Klonen nur 50% der
Klongruppen einer konsistenten Anderung unterzogen wurde. Auferdem wurde
festgestellt, falls eine Klongruppe bereits inkonsistent gewesen ist, diese auch
inkonsistent bleibt, da nur ein minimaler Anteil der inkonsistenten Klone durch spatere
Anderungen im Laufe der Entwicklung konsistent wird.

Die Studie von Rahman [10] analysiert die Beziehung zwischen Klonen und
Fehleranfalligkeit. Zum einen haben sie erkannt, dass die gro3e Mehrheit der Fehler
nicht signifikant mit Klonen verbunden sind und zum anderen, dass geklonte
Codefragmente weniger fehleranfallig als nicht-geklonte Codefragmente sind [10].

38

4 Werkzeugunterstutzung und Software Systeme

4.1 ConQat

Das folgende Kapitel befasst sich mit dem Tool ConQat, welches in dieser Arbeit zur
Klonerkennung verwendet wird. Nach einem kurzen Uberblick in die ConQat- Details
erfolgt die Beschreibung des Designs und der Architektur. Zuletzt wird die
Klonerkennung mittels ConQat im Detail beschrieben.

4.1.1 Uberblick zu ConQat

Das Tool Continuous Quality Assessment Toolkit, genannt ConQat, ist ein Werkzeug
zur kontinuierlichen Software- Qualitatskontrollanalyse. Die Softwarequalitat, welche
einen bemerkenswerten Einfluss auf die Wartung und Weiterentwicklung hat, wird in
der Entwicklung oft vernachlassigt. Die automatisierte Uberwachung diverser
Qualitatskriterien ist fur die Durchfuhrung von kosteneffizienten und kontinuierlichen
Qualitatssicherungsmalinahmen erforderlich. Ausgehend von diesem Problem wurde
ConQat an der Technischen Universitat Minchen im Jahre 2007 fur den effizienten
Aufbau von Qualitatskontroll-Dashboards gegrindet. Diese Qualitatsdashboards
werden fur das Planen und Steuern von IT-Projekten eingesetzt und schaffen einen
Uberblick Uber qualitatsrelevante Kriterien in einem Projekt. Hierunter sind ebenfalls
Qualitatsdashboards fur Klone, bzw. fur die Klonerkennung, zu finden, die einen
bemerkenswerten Einfluss auf die Qualitat einer Software haben konnen.

Das besondere an ConQat ist, dass es in Zusammenarbeit mit der TU Minchen und
der CQSE GmbH kontinuierlich weiterentwickelt und als Open-Source-Software
kostenlos angeboten wird.

4.1.2 Design und Architektur

Um den verschiedenen und umfangreichen Qualitatsanforderungen gerecht zu werden,
fokussiert sich das Design von ConQat auf die Erweiterbarkeit und Flexibilitat. Deshalb
wurde ConQat [49] als ein Plug-In Architektur entworfen, welche das Hinzuflgen oder
Entfernen von Analysemodulen zur Ladezeit ermoglicht. Das ConQat beruht auf einem
Pipes&Filter orientiertem Konzept, welches durch ein Netzwerk verschiedener
Prozessoren strukturiert ist [49]. Diese Prozessoren sind das zentrale Element von
ConQat und wurden in Java implementiert, welche jeweils fur eine gewidmete Analyse
verantwortlich sind. Die Prozessoren implementieren sehr unterschiedliche Funktionen
und arbeiten, indem sie mehrere Inputs akzeptieren und lediglich einen einzigen Output
produzieren [50]. Das Output von ConQat, also die Ergebnisse, werden als XML-
Dateien und HTML-Seiten ausgegeben. Das besondere an ConQat ist, dass die

39

Ergebnisse ebenfalls als Graphiken, bspw. Treemap, oder Trends dargestellt werden
konnen. Die ConQat Architektur verfugt uber eine Driver Komponente, welche fur die
Konfiguration des Prozessornetzwerkes und der Weitergabe von Informationen
zwischen Prozessoren verantwortlich ist.

Wie auch aus der Abbildung 4.1 zu entnehmen ist, konnen Prozessoren auf externe
Daten, wie das Dateisystem oder auf Datenbanken, entweder direkt oder Uber einen
der mitgelieferten Bibliotheken und Caches zugreifen.

Driver

Abbildung 4.1: ConQat Architektur

Die Architektur von ConQat stellt einen leistungsfahigen Konfigurationsmechanismus
dar, da die Prozessoren auf vielfaltiger Weise miteinander verbunden werden kdnnen.
Auf Grund der uneingeschrankten Funktionalitat der Prozessoren kann ConQat eine
Vielfalt von Faktoren, welche die Wartbarkeit oder andere Qualitatsaspekte
beeinflussen, bewaltigen.

4.1.3 Klonerkennung mit ConQat

In Kapitel 2.5 wurden verschiedene Ansatze zur Klonerkennung beschrieben. ConQat
fuhrt die Klonerkennung Token-basiert mittels Syntaxbaumen durch. Die Analyse der
TWT-Systeme nach konsistenten und inkonsistenten Klonen erfolgt in dieser Arbeit mit
ConQat. ConQat hat durch die kontinuierliche Weiterentwicklung der Funktionalitaten
einen hohen Bekanntheitsgrad erreicht [19, 52, 53] und wird in vielen Studien bzw.

Forschungsgruppen ebenfalls als Basistechnologie zur Klonerkennung eingesetzt [6,
51].

40

Da die in dieser Arbeit zu analysierenden Systeme ausschliel3lich Java Projekte sind,
wird lediglich die Klonerkennung fur Java Projekte beschrieben. ConQat unterstutzt die
Klonerkennung fur Textdokumente, welche in [51] ihre Anwendung erhalten hat sowie
fur graphenbasierte Modelle und fur Quelltexte. Da ConQat ein plattformunabhangiges
Tool ist, unterstutzt es die Sprachen ABAP, Java, C#, C/C++, ADA, Visual Basic, PL1
und PL/SQL.

Far die Erkennung exakter Klone wird das ConQat Konfigurationsblock ,clonedetection-
example.junit.cqr® ausgewahlt, um die Klonerkennung fur den Quelltext zu
konfigurieren. Im Konfigurationsfenster wird die minimale Klonlange gewahlt. Hier hat
sich laut Studien eine minimale Klonlange von 10 als optimal erwiesen. AnschlieRend
wird unter ,input” der Ordner gewahlt, welche den zu analysierenden Quelltext enthalt.
Im letzten Schritt wird unter ,output” der Ordner festgelegt, in dem die Klonergebnisse
zu speichern sind. Nach diesen Angaben wird durch ,Launch ConQat analysis® die
Klonanalyse durchgefuhrt, siehe hierzu Abbildung 4.2.

| congat.clonedetection-example.junit.cqr o2 =8
B Run Config congat.clonedetection-example.junit.cqr O ¥
+» ConQAT Block ¥ Run Block
Choose ConQAT block assaciated with this configuration Run or debug the block
~ o
congat.clonedetection-example. junit (9 Launch ConQAT analysis
ﬁ; Launch ConQAT analysis in Debug mode
v Parameters
Parameter clone Parameter Attribute value
<no documentation> = @ clone
® minlength: <no @ minlength 10
documentation > = © input
p
@ dir workspacefconqat-examples/projects/junit-4 .4/
= L output
@ dir workspacefcongat-examples/output jclonedetection)junit
@ reportname clone_report, xml

Abbildung 4.2: Klonerkennung- Konfiguration fur exakte Klone

Fur die Analyse von inkonsistenten Klonen, in ConQat ,gapped Clones® genannt,
erfolgt die Klonanalyse ahnlich wie in Abbildung 4.2 zu entnehmen ist. Hierzu wird das
Konfigurationsblock ,JavaGappedCloneAnalysis.cqr® gewahlt. Diese feinere Form der
Klonanalyse erfordert die Angabe einer ,gap ratio” und einer maximalen Fehleranzahl.
Das ,gap ratio® gibt an, um wie viele Codezeilen sich ein Klonpaar unterscheiden darf.
Es hat sich laut Studien ein gap ratio von 0.25 bewahrt, d.h. bei einem 8 Zeilen Code
im Klonpaar durfen sich lediglich 2 Codezeilen unterscheiden. Des Weiteren hat sich
eine Fehleranzahl von 10 etabliert. Die Abbildung 4.3 zeigt das Konfigurationsfenster
fur inkonsistente Klone.

41

[@ Run Config DISCAT JavaGappedCloneAnalysis.cqr (YIS
v ConQAT Block ¥ Run Block
Choose ConQAT block associated with this configuration Run or debug the block
org.conqat.engine.code_clones.languages.java.JavaGappedCloneAnalysis Change... O Launch ConQAT analysis
AT is i
Abstract Run Config % Launch ConQAT analysis in Debug mode

v Parameters

{@connDoc} [type filter text New
® ratio:{@connDoc} Parameter Attribute value Comment
4 [clone
@ minlength 10
4 [input
@ project DISCAT
@ dir D:\Mercurial\Projects\ProjektA
4 [errors
@ max 10
4 [output
@ dir D:\Mercurial\Projects\ProjektA\OQUTPUT
a4 [gap
| @ ratio 0.25

Abbildung 4.3: Klonerkennung- Konfiguration fir inkonsistente Klone

In beiden Verfahren wird im Ausgabeordner ein HTML Dokument mit ,index.html*
konfiguriert, welches die graphische Darstellung der Klonerkennungsergebnisse, wie in
Abbildung 4.4 dargestellt, enthalt.

“ConQAT

CloneDetective ® Tue Jul 31 12:03:55 CEST 2007

+ = | Clone Coverage (Clone Detection)

T Overview age of the LoC d in at least one clone

Clone Detect

E1 Clone List A

i Clone Coverage
=X

¥ Log Messages

& Config Graph

F8 Execution Time

® Config

[Joo
Jos

[0.s166666666656666

- 0

o) 7,320 %26 0.072 Cc
Junit v 2,017 228 0.097
framevork v 1,414 229 0.15%
Assertjova v 206 89 0.311 m: S :};m‘ unecsm ool s\projacts\y
ComparisonCompadtorjava v} 72 66 Length: 66, Uine: 4 [vith: D1\
Comparisonfalure java v 82 43

Abbildung 4.4: Ubersicht zu den Klonerkennungsergebnissen

Das besondere an ConQat ist die Kloninspektionssicht, welche im festgelegten
Ausgabeordner durch die Klonanalyse auf effizienter Art und Weise erstellt wird. Diese
Sicht ist die Voraussetzung fur die Uberpriifung fir Falschpositive und fiir die

42

Bewertung der Ergebnisse. Sie ermdglicht verschiedene Einsichten zu einem geklonten
Code. Es werden explizit die Klonklassen, Klondateien, Klonlangen etc. angegeben,
wie aus Abbildung 4.5 zu entnehmen ist.

& Clone - Clone (AnnotationTest. java - AnnotationTest. java) - Eclipse Platform B@@
File Edit Navigate Search Project JProbe Run Clone Detection ConQAT Inspection Window Help
r. e S A QO (@~ [y &0 Team Synchr... | [{El Clone |
£5- Navigator W & = T O EP clone (AnnotationTest.java - AnnotationTest.java) 52 =0
type filter text Clone Compare
L] WasRun.java A || AnnotationTest. java AnnotationTest, java
+ [textui 345 } 376 ~
= (J org 4 public void testShadowing() throws Exception {
& it A 347 public void testOrderingOfInheritance() throws Exception { log="";
) uni 34 g ") JUnitCore corew new JUnitCore();
L] After.java 349 JunitCore core= new JUnitCore(); core.run(SubShadowing.class);
[AfterClass,java 350 core.run{Sublnheritance. class); assertEquals("Before sub Test After sub ", log);

[) Assert.java assertEquals("Before class super Before class sub Before sups

LJ Assume.java v static public class SuperTest {
R 354 static public class SuperShadowing { @Test public void one() {
< 2 5 @Before public void before() { log+= "Super";
e Tlacees View ™ log+= "Before super "; E

@After public void after() { @Test public void two() {

Accept Unrated Rejected

log+= "After super “; log+="Two";
#. #. id | max#gaps] |l
T P o ! ' [
2 2 % 0 363 static public class SubShadowing extends SuperShadowing static public class SubTest extends SuperTest {
272 72 |0 4 @Override @Override
21 2z 0 0 @Before public void before() { @Test public void one() {
16 g 39 0 B log+= "Before sub *; log+="Sub";
16 s1 0 T
15 2 7% 0 (368 @Override
12 2 3 0 69 @After public void after() { »
1 2 48 0 ~
35| Clone View ;v Filter Stack
file

D:\svncesmicongat-examplesiprojectsijunit-4, 41junit\frameworkiComparisonCompactor . java
D:\svnccsmicongat-examplesiprojectsijunit-4,4\orgljunitComparisonFailure. java

Abbildung 4.5: Klonerkennungsperspektiven

4.2 Mercurial

Mercurial ist ein plattformunabhangiges, verteiltes Versionskontrollsystem. Es verwaltet
kleine sowie groRRere Projekte und stellt einfache und intuitive Schnittstellen zur
Verfugung. Bevor ein Versionskontrollsystem uberhaupt zum Einsatz kommt, sollte
man wissen, was eine Versionskontrolle ist und was fur Vorteile ihre Verwendung mit
sich bringt. Daher behandelt dieses Kapitel zunachst die Versionskontrolle.
AnschlieRend werden die Struktur sowie die Funktionen von Mercurial detailliert und
graphisch beschrieben. Zuletzt befasst sich das Kapitel mit dem fur Mercurial
zugeschnittenen Frontend — TortoiseHg.

43

4.2.1 Versionskontrolle

Eine Version ist ein Stand einer Software-Einheit, die durch das Andern bzw. das
Verbessern der Einheit entsteht [31]. Unter Versionskontrolle hingegen versteht man
den Prozess der Verwaltung mehrerer Versionen einer Information [30]. Das ist der
manuelle Vorgang, wenn eine Anderung an einer Datei auf einer Versionsnummer
vorgenommen wird und diese unter einem neuen Namen gespeichert wird und eine
Nummer enthalt, welche hoher als die Versionsnummer ist, auf der die Anderung
durchgefuhrt wurde. Durch die Versionskontrolle konnen praktisch jede Art von Dateien
nachverfolgt werden. Die manuelle Verwaltung von zahlreichen Versionen kann Fehler
verursachen. Der Grund hierfur ist, dass mehrere Entwickler an einem Projekt beteiligt
sind und zum Teil zeitgleich Anderungen vornehmen. Das kann zu Konflikten in den
Versionen fuhren. Daher ist eine automatisierte Versionskontrolle erforderlich, welche
im nachsten Kapitel beschrieben wird.

4.2.2 Funktionen Mercurial

Tools die das Automatisieren der Versionskontrolle ermdoglichen, werden
Versionskontrollsysteme genannt. Es gibt viele Versionskontrollsysteme, die keine
Probleme in der Handhabung von groRRen Projekten haben. Diese bewaltigen
problemlos Projekte, an dem Tausende von Entwickler gleichzeitig arbeiten, welche
aus einer groflen Anazhl von Dateien bestehen [30]. Versionskontrollsysteme
ermdglichen das Protokollieren jeglicher Art von Anderungen an einer Datei Uber die
Zeit hinweg. Somit kann zu jedem Zeitpunkt auf verschiedene Versionen sowie
Anderungen zugegriffen werden.

Wie Dbereits genannt ist Mercurial ein plattformunabhangiges, schnelles,
leichtgewichtiges und verteiltes Versionskontrollsystem, die fur eine einfache und
effiziente Verwaltung von grofen verteilten Projekten entwickelt wurde. Mercurial wird
grotenteils in Python geschrieben. Die Anwendung von Mercurial erfolgt groRtenteils
uber die Kommandozeile, beginnend mit ,hg“. Dieses Kapitel gibt eine kurze
EinfGhrung Uber die Funktion des verteilten Versionskontrollsystems sowie in die
effektive Nutzung von Mercurial durch die grundlegenden Funktionen.

Verteilte Versionsverwaltung

Bei der verteilten Versionsverwaltung hat jeder Entwickler, im Gegensatz zur zentralen
Versionsverwaltung, ein eigenes Repository. Das Repository aus dem Server wird lokal
auf den eigenen Arbeitsspeicher kopiert, d.h. geklont. Dies hat den Vorteil, dass falls
ein Server beschadigt wird, das Repository von einem beliebigen Entwickler
ausgewahlt und wieder hergestellt werden kann [32]. Da lokal auf dem eigenen
Repository weiterentwickelt wird, ist die Versionsgeschichte dementsprechend verteilt.
Ein weiterer Vorteil hierbei ist, dass die Anderungen lokal verfolgt werden kénnen ohne

44

sich zum Hauptserver zu verbinden. Des Weiteren ermoglicht die verteilte
Versionsverwaltung das simultane Arbeiten mehrerer Entwickler an derselben Version,
ohne dass Konflikte Uberhaupt entstehen konnen.

Sich widersprechende Versionen werden durch mehrere Zweige in der
Versionsgeschichte dargestellt, die durch Weiterentwicklung zu einer gemeinsamen
Version zusammengefasst werden.

Weshalb unter zahlreichen verteilten Versionskontrollsystemen ausgerechnet Mercurial
genutzt werden sollte, begrindet B. O’Sullivan [30] wie folgt:

- Mercurial ist leicht zu lernen und einfach zu bedienen.
- Mercurial ist leichtgewichtig.

- Mercurial ermdglicht eine hohe Skalierbarkeit.

- Mercurial ist einfach anzupassen.

Die Abbildung 4.6 stellt die verschiedenen Funktionen in Mercurial dar. In einem
verteilten Versionskontrollsystem sowie Mercurial werden folgende Begriffe verwendet:

Repository:
=> Ein Repository ist ein zentrales Archiv. Diese umfasst in einer Baumstruktur alle
Versionen von verschiedenen Dateien sowie ihre Logdateien.

Master Repository:
=> Das Haupt-Repository ein einem Unternehmen, das den aktuellsten Stand eines
Softwaresystems enthalt.

Working Directory:
=> Das lokale Arbeitsverzeichnis eines Entwicklers wird als Working Directory
bezeichnet.

Des Weiteren werden verschiedene Funktionen in Mercurial verwendet. Die Tabelle 4.1
schafft einen kurzen Einblick auf die wichtigsten Funktionen in Mercurial und beschreibt
sie explizit.

Tabelle 4.1: Funktionen in Mercurial

45

Funktion

Beschreibung

Clone

Durch die Clone-Funktion wird der
ausgewahlte Stand des Master
Repositorys 1:1 auf das Working Directory
kopiert.

Commit

Die Commit-Funktion aktualisiert das
lokale Arbeitsverzeichnis mit den
Anderungen aus dem Working Directory.
Durch Commit legt Mercurial eine neue
Revision an.

Update

Durch die Update-Funktion wird der
aktuelle Stand des Master Repositorys in
das Working Directory ubertragen. Das
heil3t neu hinzugekommene Revisionen
werden in das Working Directory
hinzugefugt, so dass sich dieser auf dem
Zustand des Master Repositorys befindet.

Merge

Durch die Merge-Funktion werden
simultane Entwicklungszweige
zusammengefuhrt.

Pull

Die Pull-Funktion zieht die Daten aus
fremden Repositorys in das eigene
Working Directory.

Push

Durch die Push-Funktion werden die
Anderungen bzw. Dateien aus dem
eigenen Working Directory in ein fremdes
Repository Ubertragen.

Serve

Die Serve-Funktion startet das Master
Repository-Server, um anderen die Pull-,
Push- und Clone-Funktion zu ermoglichen

46

/ Remote Computer Server \

Besitzer des
Remote Serve
Repositorys > Master Repository
\ .
k AN /
Pull
Clone
Push

e b Y

Lokales Repository

A
Update

Merge

Commit

Working Directory

K Lokaler Computer Server /

Abbildung 4.6: Die Funktionen von Mercurial

4.2.3 TortoiseHg

Das Tool TortoiseHg ist ein einfach zu bedienendes Frontend und steht mit ihrer
graphischen Oberflache fur Microsoft Windows zur Verfigung, um die Benutzung von
Mercurial ohne Kommandozeilenbefehle durchzufuhren. Die Revisionshistorien der
einzelnen Projekte und Dateien konnen uber das Arbeitsverzeichnis in einer
graphischen Oberflache Ubersichtlich dargestellt werden. Des Weiteren kdénnen mit
Hilfe von TortoiseHg alle Funktionen von Mercurial ausgeflihrt werden und die
Revisionshistorie wird in Form einer Baumstruktur sehr tGbersichtlich dargestellt.

47

4.3 FogBugz

Das webbasierte System FogBugz ist ein Projektmanagementsystem sowie ein Issue-
/Bug-Tracking-System, welche umfangreiche Funktionalitadten fur Entwicklerteams
anbietet.

Ein Issue-/ Bug-Tracking-System ist ein Werkzeug, mit dem diverse Aufgaben in einem
Projekt, wie das Bearbeiten von Kundenanfragen und Entwicklervorschlagen, welche in
Tickets bzw. Fallen (Cases) angelegt und einzelnen Personen zugewiesen sind,
verwaltet werden. Diese Falle konnen Bugs, Features, Scheduled Items sein und
werden mit Prioritatslevel belegt. FogBugz verfolgt alle Falle und Tickets an einem
zentralen Ort, damit in der Entwicklungshistorie nichts vergessen wird [34].

Des Weiteren konnen Fehler sehr leicht und schnell in FogBugz uber das FogBugz
Screenshot- Tool, per E-Mail oder Uber den Browser erfasst werden. Dadurch kann
auch jeder Fall in kurzester Zeit bearbeitet und im Falle eines Fehlers behoben bzw.
gefixt werden. Der Bearbeiter eines Cases aktualisiert anschlielfend den Status seines
Fortschritts. Dadurch werden fertige Features wieder an den Projektleiter
zuruckgesendet.

Eine besondere Eigenschaft von FogBugz ist die facettenreiche Suchoption. Es kdnnen
die gesamte Fallliste aber auch Wiki- und Kundenbeitrage gesucht werden.

Das Projektmanagementsystem von FogBugz bietet diverse Funktionalitaten fur die
Entwickler eines Projektes an. Folgende Managementaufgaben sind mit dem Einsatz
von FogBugz moglich [33]:

* Das Erfassen der Aufgaben mit Fallen und Unterfallen (bzw. Cases und
Subcases)

- In FogBugz wird jede Aufgabe (also Issue) und jeder Fehler (also Bug) mit
einem Fall (also Case bzw. Subcase) verbunden. Diese werden von dem
verantwortlichen bzw. zum Fall eingetragenen Entwickler bearbeitet.

- Ein Fehlereintrag in FogBugz kann in der Case-Liste, wie in Abbildung 4.7,
durch den roten Kafer erkannt werden.

48

pA-Z

.o ’

i % v | Cases ~ New Case Emalil Schedules v Discuss v Wiki v o = 2 k;k N
>\ 2]

Kanban Working On v Y Starred

FILTER

=r All open cases assigned to Brandon Lasseter) Refine Further

=l CASES IN FROGGER: THE LEGEND CONTINUES

Case Title Status Opened By Remaining T... Priority
7 6 frame gap in 'gator animation? Active Jacqueline Rivest 1 hours 1 - Must Fix
"7 59 'Gator Wireframing Active Brandon Lasseter 6 hours 1 - Must Fix
7 61 'Gator Texturing Active Brandon Lasseter 1 hours 1 - Must Fix
“ 62 Fanboat Wireframing Active Brandon Lasseter 3 hours 1 - Must Fix
"7 63 Fanboat Texturing Active Brandon Lasseter 1 hours 1 - Must Fix

7 66 bayou textures Active Brandon Lasseter 15 hours 1 - Must Fix

QO OO OO @

"7 64 Redo cave textures Resolved (Im.. Brandon Lasseter 0 hours 2 - Must Fix

. ¥ Make them more cave-y Vl 0

Abbildung 4.7: Bugeintrag in FogBugz [33]
e Das Erstellen von Meilensteinen

- Ublicherweise wird fir einen Projekt ein Projektplan erstellt, welcher auf
Meilensteinen basiert. FogBugz ermdglicht das Hervorheben von wichtigen
Terminen in den Meilensteinen sowie das Erstellen von Meilensteinen.

* Visualisierung von Falldaten
- FogBugz bietet eine grolle Vielfalt an graphischer Darstellung bzw.
Auswertung von Falldaten.

 Kontrolle der Anderungen Uber die Entwicklungszeit
- FogBugz speichert Snapshots Uber die Revisionshistorie eines Falls,
einschliellich der Details zum Fall.

* Zusammenarbeit mit Teamkollegen
* Treffen von Fristen

* Kontrolle Uber lhre Projekte

* Integration mit Versionskontrolle

4.4 Kiln

Kiln ist ein webbasiertes System fur das Quellcodehosting von Git und Mercurial. Git ist
ebenfalls wie Mercurial ein Versionskontrollsystem. Des Weiteren bietet Kilnden
Entwicklern durch die Leistungen von Git und Mercurial eine Einfachheit bei der
Entwicklung von Softwareprojekten und zudem eine ausgezeichnete Gelegenheit
Softwarecodes zu verwalten und den grof3ten Nutzen daraus zu ziehen.

Bei der Nutzung von Mercurial bzw. Git stellt der Kiln-Server den zentralen Punkt des
Versionskontrollsystems dar. Dabei werden die Daten zentral abgelegt. Mit anderen
Worten hat also Kiln eine zweifache Funktion. Zum einen dient er als Datenspeicher

49

und zum anderen als Verteilknoten fur den Quelltext sowie fur weitere projektrelevante
Dateien. Dies ermoglicht eine verteilte Softwareentwicklung in Teams.

Es sprechen viele aussagekraftige Argumente fur die Nutzung von Kiln. Einige dieser
lauten wie folgt [36]:

1)

2)

Kiln ermoglicht die synchrone Entwicklung der Entwickler und unterstutzt die
Entwickler bei der gemeinsamen Entwicklung.

Kiln enthalt jeden Stand des Softwareprojektes. Des Weiteren konnen Entwickler
eines Teams gegenseitig in die Anderungen des Quelltexts einsehen.

Kiln bietet eine verteilte Versionskontrolle eines Softwareprojekts an.
Es konnen mehrere Entwickler an einem Code arbeiten, so dass

unterschiedliche Quelltexte (also Branches) entstehen, und diese dann durch
Kiln zusammengefuhrt werden (Merge) (siehe Abbildung 4.8).

4

. e
L - . FogBugz | XZE
m:) Klln Activity Browse Repositories v Reviews v oo v

P

Mercurial ~ Read More 77 | @ Mercurial v [-] Subscribe

Kiln Harmony allows you to access any of your

History Files Related Settings repositories using both Git and Mercurial. _com/Code/Repositori|[3
| | AllHeads v | ¢ AlRevisions | ¥ You can view commits in this repository with Git
or Mercurial metadata:

Jan 02 at 1:03 AM Matt Mackall stable | master | tip) merg | 4» Show Git **) Show Mercurial

.\ Jan 02 at 1:02 AM Matt Mackall stable | merge i18n heads
Dec 3112 at 10:50 PM Augie Fackler stable | test-command-template. t: fixtest so it all year
Dec29 12 at9:49 PM Pierre-Yves David stable | amend: prevent loss of bookmark on failed amend
Dec2912at12:00 PM Pierre-Yves David stable | amend: invalidate dirstate in case of failure (issue3670)

[] Nov 23 12 at 4:40 PM Nikolaj Sjujskij stable | i18n-ru: delete loose letter

@ Dec2712at2:32AM Alexander Sauta stsble |i18n-ru: synchonized with 777084ac8416

Dec2012at5:36 PM Matt Mackall stable | paper: sanity-check page feed links
Dec3012at1:19 PM Benoit Boissinot stable |zeroconf: use port from server instead of picking port from config (issue3746)

3)

Abbildung 4.8: Verteilte Versionskontrolle in Kiln [36]

Kiln ermdoglicht die Integration von FogBugz

=>» Die Integration von FogBugz geschieht uUber denselben Login wie Kiln. Mit

anderen Worten, Kiln und FogBugz teilen sich ein Login. Durch einen
gemeinsamen Login ist ein reibungsloser und gemeinsamer Arbeitsablauf
verfugbar. Der Vorteil hierbei ist, dass Entwickler beim Entwickeln nicht
zwischen zwei Systemen wechseln mussen.

=> Mit Kiln und FogBugz kdnnen Fehler gemeldet und behoben werden, in dem der

Code weiterentwickelt wird. Bei der Fehlerbehebung besteht die Mdoglichkeit alle
Codestellen eines Bereichs zu aktualisieren, in dem der Fehler vorhanden ist.

50

4) Kiln ermoglicht eine ubersichtliche Organisierung von Projekten und Repositorys

= In Kiln werden die Repository Management Seiten sowie die
Projekteinstellungsseiten auf einer einzigen Seite dargestellt, so dass die
Navigation einfach durchzufuhren ist und die Seiten leicht zu lesen sind.

5) Kiln bietet eine aullerst leistungsfahige Codesuche.

= Uber das integrierte Suchfeld besteht die Moglichkeit sehr schnell auf
,Changesets“ (uber die ,ChangesetlD“), Dateien und Codes zuzugreifen. Die
Suchoption in Kiln ist sehr effektiv bei der Suche nach Problemcodes, die
behoben werden muissen, sowie bei der Suche nach guten und nutzlichen
Codestellen, die wiederverwendet werden konnen [37].

51

5 Studiendesign

In diesem Kapitel wird das Herzstick der Arbeit prasentiert. Um einen besseren
Eindruck auf die mogliche Fehlertrachtigkeit der inkonsistenten Klone zu erhalten
wurde ein Studiendesign entwickelt. Dieses Kapitel umfasst das Studiendesign zur
Analyse der TWT-Systeme. Zunachst werden die Studienobjekte mit faktischen Daten
beschrieben. Das darauf folgende Unterkapitel beschreibt die Forschungsfragen.
AnschlieRend wird geschildert, wie die notwendigen Daten fur die Analyse aufbereitet
werden. Mit diesen Daten erfolgt die Durchfuhrung der Studie mittels einer
Datenbankanwendung. Das letzte Unterkapitel beschreibt fur jede Forschungsfrage die
Vorgehensweise der Datenanalyse.

5.1 Studienobjekte

Die Studie wird auf den Systemen der TWT GmbH durchgefuhrt. Als Quellen fur die
Softwaresysteme wurden drei Projekte gewahlt, die in Entwicklung sind und Uber eine
lange Entwicklungshistorie verfigen. Alle Systeme werden ausschlielich in Java durch
verschiedene Teams und mit verschiedenen Funktionalitaten entwickelt. Die Anzahl der
Systeme und die Beteiligung mehrerer Entwickler an einem Projekt fuhren zu besseren
Analyseergebnissen der Studie. Des Weiteren sind die Systeme bereits im Einsatz und
werden kontinuierlich weiterentwickelt und angepasst. Aus Datenschutzgrinden
werden die Namen der Systeme nicht genannt und erhalten eine Bezeichnung von A
bis C. Detaillierte Informationen zu den Systemen, wie Alter und Codezeilen, sind in
Tabelle 5.1 erfasst.

TWT steht fur Technisch-Wissenschaftlicher Transfer und stellt die rasche Umsetzung
wissenschaftlicher Expertise in technologisch anspruchsvolle Produkte und
Dienstleistungen in den Geschéaftsfeldern Information & Engineering Technologies dar.
Das Portfolio umfasst die Software-, Produkt-, und Prozessentwicklung sowie die
technische Beratung und Industrieforschung. An den Standorten Stuttgart, Minchen,
Friedrichshafen und Ingolstadt entwickelt die TWT GmbH seit 1986 als
Technologiepartner der Branchen Automotive, Aerospace, Healthcare und Energy, fur
ein breites Spektrum an Kunden, eine ganzheitliche und mafl3geschneiderte Losung.

Die in dieser Studie untersuchten Systeme A bis C wurden fur verschiedene
Unternehmen aus der Automobilindustrie entwickelt und stellen wesentlich
verschiedene Funktionalitaten dar. Die Systeme werden seit vier bis funf Jahren von
insgesamt 25 bis 30 Entwicklern entwickelt und gewartet. Des Weiteren nutzen alle
Systeme dieselbe firmeninterne Bibliothek.

52

Tabelle 5.1: Informationen zu den analysierten Systemen

System | Organisation | Sprache GroBe | Revision Alter | Entwickler
(kLOC)

Automobil-

A industrie Java 053 2740 4 Jahre 10
Automobil-

B industrie Java 332 1622 5 Jahre 5
Automobil-

C industrie Java 454 2181 4 Jahre 10

5.2 Forschungsfragen

Das zugrundeliegende Problem, das wir analysieren, ist der Zusammenhang zwischen
inkonsistenten Klonen und ihren Fehlern. Dieses Problem wirft einige Fragen auf,
welche sich durch detaillierte Analysen beantworten lassen und ein besseres
Verstandnis schaffen. Die Studie beruht auf drei Hauptfragen die sich zum Teil durch
die Untergliederung in weiteren Fragen beantworten lassen.

Forschungsfrage 1: Enthalten Systeme inkonsistente Klone?

An erster Stelle muss geklart werden, ob die zur Analyse stehenden Systeme
inkonsistente Klone enthalten. Hier steht jedoch der Anteil der inkonsistenten Klone im
Vordergrund. Es wird also ermittelt, ob die inkonsistenten Klone signifikant hoher sind
als die restlichen Klone des Systems. Das Verhaltnis der inkonsistenten Klone zu
exakten Klonen ist also eine Analyse, welche die Analyseergebnisse unterstutzen soll.

Forschungsfrage 2: Konnen inkonsistente Klone Indikatoren fur Fehler sein?

Nachdem die inkonsistenten Klone in den realen Systemen ermittelt wurden, wird
festgestellt, ob sie eine Verantwortung fur Fehler tragen. Hierzu wird die
Revisionshistorie der Datei in Betracht gezogen, ob sich im Laufe der Zeit in den
inkonsistenten Klonen Fehler bilden. Fir ein umfangreicheres Verstandnis lasst sich
diese Frage durch das Beantworten weiterer Fragen ruckschlie3en. Jede Unterfrage
dient als Antwortbaustein zur Hauptfrage. Wichtig ist hierbei, den Zusammenhang der
inkonsistenten Klone mit einem Issue-Tracking-System zu analysieren sowie die
inkonsistenten Klone zu analysieren, die keinen Bezug zu einem Issue-Tracking-
System haben. Daraus lassen sich informative faktische Daten ermitteln. In diesem
Zusammenhang ist es von Bedeutung die Inkonsistenten auf Fehlerkorrektur zu
analysieren sowie die Grunde fur Fehler durch Entwicklerbefragung zu ermitteln.

53

Die Hauptfrage lasst sich durch folgende Unterfragen beantworten:
2.1) Ist die groRe Mehrheit der inkonsistenten Klone als Fehler erfasst?

Die Frage die hier beantwortet werden soll ist, ob die erkannten inkonsistenten Klone
uberhaupt in dem verwendeten Issue-Tracking-System als ein Fehler erfasst sind. Hier
ist der Anteil der gekennzeichneten Inkonsistenzen wichtig. Daraus lasst sich namlich
ermitteln, wie viele der gesamten inkonsistenten Klone uberhaupt Fehler enthalten, die
erkannt und zum Beheben im Issue-Tracking-System erfasst sind.

2.2) Werden Fehler an einem geklontem Code konsistent an allen geklonten
Codes einer Klongruppe behoben?

Nachdem die Fehler in den inkonsistenten Klonen ermittelt wurden, soll analysiert
werden, ob Fehler, die in dem verwendeten Issue-Tracking-System erfasst sind, in
allen Codes einer Klongruppe behoben wurden. Daraus werden Ergebnisse erzielt, die
besagen, ob Fehler, trotz dessen dass sie in einem Issue-Tracking-System zur
Behebung erfasst sind, weiterhin noch eine Gefahr darstellen oder falls ein Fehler in
einem Klon einmal erkannt wurde, keine Gefahr mehr fur das System darstellt und sich
von der Kategorie der gefahrlichen Klone abldst.

2.3) Spielt die GroBe der inkonsistenten Klone eine Rolle fur die Haufigkeit der
Fehler?

Nach dem der Zusammenhang der Fehler und Inkonsistenzen ermittelt wurde, ist es
wichtig festzustellen, unter welchen Kontextbedingungen Fehler gegeben sind. Mit der
Annahme, dass der Code doppelt so lang ist, die Wahrscheinlichkeit, dass ein Fehler
doppelt so haufig eintreten kann, ist es interessant festzustellen, dass ein
inkonsistenter Klon mit grofierem Codeumfang, mehr Fehler einbringen kann.

2.4) Was ist der Zusammenhang zwischen Inkonsistenten und Fehlern?

Diese Frage unterscheidet sich von den vorherigen Fragen. Nachdem die Fehler in den
Inkonsistenzen ermittelt wurden, wird festgestellt, welche Vorgehensweisen beim
Klonen einen Fehler verursachen. Hierzu wird das Klonverhalten des Entwicklers
analysiert und unter welchen Umstanden ein Klon zu einem Fehler fuhrt. Des Weiteren
werden die inkonsistenten Klone analysiert, die Uber die gesamte Revisionshistorie
keine Fehler enthalten.

Forschungsfrage 3: Wie viele Type-1-Klone mit einem Fehler werden durch das
Modifizieren fur die Fehlerbehebung zu einem Typ-3-Klon ohne Fehler?

54

Nachdem analysiert wurde, ob Klone tatsachlich Indikatoren fur Fehler sind, ist es
interessant festzustellen, ob Typ-1-Klone, die mit einem Issue-Tracking-System
verbunden sind und entwickelt werden, um den Fehler zu beheben, zu einem Typ-3-
Klon werden und somit keinen Fehler mehr enthalten. Durch diesen Vorgang wird
ermittelt, ob bewusst entwickelte inkonsistente Klone einen Beitrag zur Fehlerbehebung
leisten.

5.3 Datensammlung und Konfigurationssysteme

Die Analyse der Projekte auf Klone und Fehler erfordert viele Schritte und das
Beachten vieler Details, die bewusst durchzufihren sind. Das Kapitel beschreibt die
Konfigurationsschritte der Analyse, die erforderlich waren, um zuverlassige Ergebnisse
erzielen zu kdnnen.

Gemein haben alle Schritte die Datenbasis. Das Uberpriifen auf Klone auf jeder
Version jeder Datei ist nicht machbar. Stattdessen wurde das Projekt in der
Revisionshistorie zu einem bestimmten Zeitpunkt im Entwicklungszyklus und auf einer
bestimmten Version mit der Update-Funktion gespeichert, das Snapshot genannt wird.
Nach dem Update stehen lediglich die Daten bis zum festgelegten Zeitpunkt im
Verzeichnis fur die Analyse zur Verfugung. Bei allen Projekten wurde ungefahr ein zwei
bis drei Jahre fruherer Entwicklungsstand als Datenbasis ausgewahlt. Der Grund
hierfir ist, dass nach der Klonermittlung eine grollere Datenbasis in der
Revisionshistorie zur Verfugung steht, um die inkonsistenten Klone in der gesamten
Revisionshistorie bis zum Zeitpunkt der Analyse auf Fehler zu untersuchen bzw. auf
Weiterentwicklung und Fehlerbehebung zu prufen.

5.3.1 Klondaten aus ConQat

Die Klonerkennung wird mit dem Dbereits in Kapitel 4 vorgestellten
Klonanalysewerkzeug ConQat auf dem ausgewahlten Snapshot durchgefuhrt. Alle
Projekte wurden in Java geschrieben. Infolgedessen wurde der ConQat-Block
~JavaGappedCloneAnalysis.cqr® zur Erkennung inkonsistenter Klone auf den drei
Objekten durchgefuhrt. Der Algorithmus fur inkonsistente Klone, bzw. gapped Clones,
wurde von Juergens et. al. entwickelt [6].

Der inkonsistente Klonerkennungsansatz wurde mit konservativen und liberalen
Klonerkennungsparametern durchgefuhrt. Dies sollte die Ausrichtung der Studie auf
eine bestimmte Klonerkennungsparametereinstellung reduzieren, um das
Systemverhalten zu verstehen und wie die Klone mit groRerem Freiraum, also
kleinerem Parameter fur die minimale Klonlange, unahnlich geworden sind.

Fir den liberalen Klonerkennungsansatz wurde fur die minimale Klonlange (Minlength)
10 Statements festgelegt, d.h. die Klone missen mindestens 10 Zeilen lang sein. Fur

55

das ,gap ratio“, d.h. das maximale inkonsistente Klonverhaltnis, wurde ein Parameter
von 0,25 und fur die maximale Fehleranzahl ein Parameter von 10 festgelegt. Ein ,gap
ratio® gibt an, um wie viele Codezeilen sich ein Klonpaar unterscheiden darf.
Beispielsweise durfen sie bei einem gap ratio von 0,25 und acht Zeilen Code in einem
Klonpaar maximal zwei Codezeilen unterscheiden. Die Klonerkennung fur den liberalen
Ansatz (genannt Runtime) betrug zwischen 62 Sekunden bis 294s. Die Tabelle 5.2
enthalt wichtige Informationen zum Klonerkennungsergebnis. Die Definitionen zu den
restlichen Begriffen auf Tabelle 5.2 lauten wie folgt:

kLOC: Anzahl der Codezeilen (in Tausend)
Clone LOC: Anzahl der geklonten Codezeilen

Clone Count: Anzahl der Klone

Tabelle 5.2: Klonerkennung mit liberalem Ansatz

Project | Minlength | Error | Gap Ratio | Runtime | kLOC | Clone LOC | Clone Count
A 10 10 0,25 58s 253 25.443 981
B 10 10 0,25 58s 332 49.200 1.545
C 10 10 0,25 112s 454 47.800 2.244

Des Weiteren wurde eine Klonerkennung mit denselben Parametern durchgefuhrt. Die
minimale Klonlange wurde auf 15 erhoht. Dies fuhrt zu erheblich niedrigeren
Klonergebnissen.

Fir diese Studie fiel die Entscheidung auf eine konservative Klonanalyse. Daher wurde
die minimale Klonlange erneut erhoht und auf 20 festgesetzt.

Die Tabelle 5.3 zeigt die Klonergebnisse fur den konservativen Ansatz. Im Vergleich
zum liberalen Ansatz und der manuellen Analyse der Klone ist deutlich zu erkennen,
dass der konservative Ansatz erheblich bessere Klonergebnisse liefert.

56

Tabelle 5.3: Klonerkennung mit konservativem Ansatz

Project | Minlength | Error | Gap Ratio | Runtime | kLOC | Clone LOC | Clone Count

A 20 10 0,25 52s 253 7.600 143
B 20 10 0,25 42s 332 17.700 352
Cc 20 10 0,25 97s 454 15.600 382

Die erfassten Klonkandidaten wurden dann manuell gelesen, um Falsch-Positive zu
entfernen. Es wurden also Codefragmente, welche von ConQat als Klon erkannt
wurden, jedoch keine semantische Beziehung hatten, aussortiert. Fur die weitere
Analyse wurden die restlichen Klonkandidaten als Basis genommen. Diese
Klonkandidaten werden in ConQat mit weiteren Informationen in Klonklassen gegliedert
ausgegeben.

Es wurden aus dem ConQat Output die Klonklassen mit dem Dateinamen (wobei es
sich hier um die Dateipfade handelt), die Anfangszeile, die Endzeile und die maximal
moglichen Gaps extrahiert und in Excel exportiert. In der Excel-Liste sind unter jeder
Klonklasse die Klondateien mit den extrahierten Dateien erfasst. Diese wir mit Excel-
Verweisen und Funktionen so umgestaltet, dass zu jeder Klondatei die Klonklasse
angegeben wird, in der sie enthalten ist, sowie die oben genannten Daten wie
Anfangszeile, etc. Der Grund hierfur ist, dass die Dateien in dem
Versionsverwaltungssystem auf Klone analysiert werden und diese als Datenbasis
dienen. Des Weiteren finden diese Daten spater in einer Datenbank Anwendung.
Daher ist dieses Format der Datenliste relevant.

Eine wichtige Information ist, dass in diesem Schritt noch keine Trennung in der
Handhabung zwischen inkonsistenten und konsistenten Klongruppen gemacht wird.
Diese werden wahrend der Auswertung in der Datenbank beachtet.

5.3.2 Daten aus Mercurial

In dieser Studie wird die gesamte Revisionshistorie des Projektes zur Analyse
betrachtet. Daher muss fur jede Datei in der sich ein Klon befindet, sei es ein
konsistenter oder inkonsistenter Klon, die gesamte Revisionshistorie aus Mercurial
ermittelt werden. Infolgedessen dienen die aufbereiteten Ergebnisse der Klondaten aus
ConQat in diesem Schritt als Datenbasis. Aus dieser Liste werden namlich lediglich die
Dateipfade eines Projekts, in der Klone enthalten sind, in eine Textdatei gespeichert.

57

Es wurde in Python ein Skript geschrieben (siehe Abbildung 5.1), das fur jede in der
Textdatei enthaltene Datei, die gesamte Revisionshistorie aus Mercurial ermittelt und in
eine Textdatei speichert. Die Revisionshistorie besteht aus ,Changesets®, welche durch
Committs entstanden sind. Zu jedem Changeset wird die lokale und eindeutige
,ChangesetID“ angeben. Des Weiteren sind zu jedem ,Changeset® der Benutzer, der
das Committ ausgelOst hat, der Zeitpunkt des ,Committs®, sowie die ,Branch® und der
Parent des Committs und eine Beschreibung des Committs erfasst. Fur die Analyse
sind jedoch die ChangesetID, der Benutzer, der Zeitpunkt sowie die Beschreibung des
Changesets relevant. Das Skript wird in einer Python-Kommandozeile, fur jedes
einzelne Projekt, wie in Abbildung 5.2 dargestellt ausgefuhrt.

Die Ausgabe des Skripts wird in eine Excel-Datei exportiert und mit Excel-Verweisen
und Funktionen umgeschrieben. Die Ausgabe listet namlich zu jeder Datei, die in der
vorherigen Textdatei erfasst war, die ,Changesets® mit den genannten Informationen
untereinander auf. Als Datenbasis bendtigen wir jedoch eine Liste, die jede
ChangesetID in eine Zeile erfasst und die dazugehorigen restlichen Informationen wie
Benutzer, Dateiname, Beschreibung etc. in den Spalten derselben Zeile erfasst. Diese
Struktur ist fur die Datenbankanwendung erforderlich.

Starten mit
import hg
hg.run("src.txt", "log.txt")

import 0s, subprocess

def run(listFilePath, logFilePath):
|Og = LLLL
f = file(listFilePath)
for line in f.readlines():
log += hglog(line.strip(), logFilePath)

f.close()

f = file(logFilePath, "w")
f.write(log)

f.close()

def hglog(srcFilePath, logFilePath):
|Og = LLLL
log += "%s:\n\n" % srcFilePath
log += subprocess.check_output(['hg", "log", srcFilePath])
log += "\n\n\n"
return log;

Abbildung 5.1: Skript flr die Ausgabe der Revisionshistorie der Klondateien

58

C:\Windows\System32\cmd.exe - python o[- B3]

Microsoft Windows [Uersion 6.1.76011] -
Copyright (c)> 2089 Microsoft Corporation. Alle Rechte vorhehalten.

D:\HePcurial\Projects\c:::j\Deue1opment\E:::::::j\{:::::::::::]>python
Python 2.7.8 (default, Jun 30 2014, 16:88:48)> [MSC v.1508 64 hit (
2

AMD64>1 on win
Y, Ycopyright", "“credits" or "license" for more information.

>>> hg.run{("Klonanalyse.txt","log.txt"')
>>>

Abbildung 5.2: Skript in Python durch Mercurial-Export ausfuhren

5.3.3 Daten aus FogBugz und Kiln

Nachdem die gesamte Revisionshistorie zu den Klondaten ermittelt wurde, mussen
noch die Fehler in den Klondaten ermittelt werden. Als Anmerkung - die
Revisionshistorie der Klondaten bestent aus ChangesetlDs mit zusatzlichen
Informationen wie in Kapitel 5.3.2 erlautert. Bei der Fehlersuche hat zunachst die Art
der Klonklassen, ob inkonsistent oder konsistent, keine Bedeutung. Es mussen namlich
die Fehler fur alle geklonten Codefragmente ermittelt werden.

In Kapitel 4.3 und 4.4 wurden die webbasierten Issue- bzw. Bug- Tracking-Systeme
ausfuhrlich beschrieben. Codestellen die bearbeitet werden mussen und bearbeitet
wurden bzw. einen Fehler enthalten oder deren Fehler behoben wurden, werden in
FogBugz mittels Cases (Fallen) festgehalten. Jeder Case hat eine eindeutige Case-
Nummer. Wird ein Quelltext ausgehend von einem Case modifiziert, wird bei der
Commit-Message eine Case-Nummer als Referenz angegeben. Dadurch enthalt jedes
Changeset, bei dem ein Case bearbeitet wurde, einen Case-Eintrag. Dieser Case
kann, entsprechend des Cases, ein Feature oder Bug-Eintrag sein, welcher in Kiln Gber
die ChangesetlD gefunden werden kann. Zusammengefasst bedeutet dies, dass
ChangesetIDs in Kiln gepruft werden, um Fehler (also Bug- Eintrage) zu ermitteln.

Fur diese Studie wurde jede ChangesetID der Revisionshistorie einer Klondatei in Kiln
gesucht. AnschlieRend wurde gepruft, ob zu dieser ChangesetlD ein Case-Eintrag
besteht. Die Liste mit den Revisionshistorien wurde mit den referenzierten Case-
Nummern, wie Feature-Nummer oder Bug-Nummer erweitert. Durch diesen
Analysevorgang wurden alle Klondateien ermittelt, die modifiziert wurden, um einen
Fehler zu beheben. Ob jedoch die modifizierten Zeilen mit den Klonzeilen
ubereinstimmen wird in der Studiendatenauswertung in Kapitel 5.4 analysiert.

59

Es besteht die Moglichkeit den Prozess zur Analyse von Case- Eintragen mit einer Kiln-
API zu automatisieren. Die API gibt aus der Repository eines Projekts, beginnend vom
letzten Changeset des Repositorys, 100 Changesets sowie die Case-Eintrage in den
Changesets zurlck. Die API lautet wie folgt [38]:

Apir{version}/Repo/{ixRepo}/History (GET)
also:

https://XXXXXXX.de/fogbugz/kiln/Api/1.0/Repo/100538/History?revOldest=ae5d2dcb44
a7&nChangesetLimit=100&token=h6jejas66etdc177ulq7m3I9hpisc

Hierbei ist 100538 die Repository-Nummer des Projekts und ae5d2dcb44a7 die letzte
ChangesetID im Repository des Projekts, ChangesetLimit=100 ist die hdchste Anzahl
der Changesets, die zurickgegeben wird.

Fur diese Studie bendtigen jedoch die Case-Daten fur alle Changesets. Das bedeutet,
dass die API erweitert werden musste, um die Informationen fur die gesamte
Revisionshistorie zu erhalten. Der Prozess fur die Erweiterung der Kiln-API ist jedoch
nicht im Rahmen dieser Diplomarbeit und wurde aus diesem Grund nicht durchgefuhrt.

5.4 Studiendatenauswertung

Bisher erfolgte lediglich das Zusammenstellen der Datenbasis fur den eigentlichen
Analyseschritt. Ein wichtiger Punkt ist an dieser Stelle anzumerken. Der inkonsistente
Klonanalyseansatz wurde auf zwei verschiedenen, zu einem relativ aktuellen und bis
zu zwei Jahre fruheren, Entwicklungsstanden durchgefuhrt. Nach dem ersten
Analyseschritt konnte fur den aktuellen Entwicklungsstand eine hohere Anzahl von
Fehlereintragen ermittelt werden. Jedoch lag das Problem darin, dass die
Weiterentwicklung der Klondateien nach der Klonanalyse so gering war, dass sehr
wenige Daten in der Revisionshistorie fur die Analyse auf Weiterentwicklung und
Fehlerbehebung zur Verfugung standen. Aus diesem Grund wurde fur alle Projekte ein
zwei bis drei Jahre alter Entwicklungsstand zur Klonerkennung verwendet und die
darauf folgende Analyse auf einer hoheren Datenbasis durchgefuhrt.

Dieses Kapitel beschreibt die Auswertung der Studiendaten, die mittels einer
Datenbankanwendung erfolgt. Zunachst wird der Aufbau der Datenbank beschrieben.
Anschliel3end erfolgt die Darstellung der ERM-Diagramme. Abschliel3end werden die
SQL-Abfragen fur das Beantworten der Forschungsfragen beschrieben.

60

5.4.1 Studiendatenvorbereitung und ERM-Diagramme

Die Datenbasis fur die Analyse erfolgt in Unterstutzung einer Datenbank. Hierzu wurde
die Software MS ACCESS 2013 verwendet. Es wurde zunachst eine neue Datenbank
erstellt. Folgende Daten wurden anschliel3end als Tabellen in die Datenbank importiert:

1.

Klonklassen aus ConQat (eindeutig, ohne Duplikate)

Die Klonklassen werden aus den Ergebnissen des inkonsistenten
Klonerkennungsansatzes aus ConQat ermittelt. Die Klonklassen aus Kapitel
5.3.1 werden in eine separate Tabelle gespeichert. Anschliel}end werden
Duplikate entfernt. Daraus resultiert eine eindeutige Liste der Klonklassen.

. Klondateien aus ConQat (eindeutig, ohne Duplikate)

Die Klondateien werden wie die Klonklassen aus den ConQat-Ergebnissen
ermittelt.

Basis SQL

Diese Daten sind die in Kapitel 5.3.3 ermittelten Daten aus FogBugz und Kiln.
Diese enthalt zu allen Klondateien die gesamte Revisionshistorie bis zum
Zeitpunkt der durchgefuhrten Klonanalyse. Die Revisionshistorie besteht
wiederum zum einen aus den Changesets mit den Informationen wie Benutzer,
Datum, Summary und KlondateilD und zum anderen aus den Cases die Bugs
und Features enthalten.

Beziehungstabelle

Es wird eine Beziehungstabelle fur die Datenauswertung erstellt. Der Grund
hierfur ist, dass zwischen den Daten aus ConQat und den Daten aus FogBugz
eine n:m-Beziehung besteht. Die Beziehungstabelle wird als Zwischentabelle
verwendet, um die n:m-Beziehung zu beheben. Genau aus diesem Grund
wurden auch die Klondateien und Klonklassen in separate Tabellen gespeichert
und mit der Beziehungstabelle verknupft. In Abbildung xxx ist die Beziehung der
Tabellen durch ein ERM-Diagramm graphisch dargestellt.

61

=5 Beziehungen \

Klonklassen Klondatei

KlonklasselD — ’—‘ KlondateilD

Beziehungstabelle

KombinationID
— KlonklasselD
— KlondateilD —‘
Line
Length
Gaps
Basis_SQL Laenge
Changesetld
Case Anzahl
Case Bug
Case Feature
Benutzer
Datum
Summary
KlondateilD —

Abbildung 5.3: ERM-Diagramm fur die Datenauswertung

5.4.2 SQL-Abfragen

Die Auswertung der Daten erfolgte durch die Ausfihrung von SQL-Abfragen. Die SQL-
Abfragen, welche fur das Beantworten der Forschungsfragen erforderlich waren, lauten
wie folgt:

1. Als erstes wurden die inkonsistenten Klonklassen mit folgender SQL-Abfrage
ermittelt:

62

SELECT [BEZIEHUNGSTABELLE]. KLONKLASSEID,
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS ANZAHLKLONDATEI

FROM BEZIEHUNGSTABELLE
WHERE ([BEZIEHUNGSTABELLE].GAPS>0

GROUP BY [BEZIEHUNGSTABELLE] KLONKLASSEID;

Abbildung 5.4: SQL-Abfrage fur inkonsistente Klonklassen

Hierbei steht ,GAP* flr die Anzahl der Inkonsistenten in einer Klondatei. Mit GAP>0
werden lediglich die inkonsistenten Klonklassen aufgerufen. Die Abfrage liefert somit
alle inkonsistenten Klonklassen mit der Anzahl der Klonstellen des Klons, die in dieser
Klonklasse enthalten sind. Die Anzahl der inkonsistenten Klonklassen wird dann von
MS ACCESS an der unteren Leiste ausgegeben. Das Ergebnis wird wie in Abbildung
5.5 ausgegeben.

’ @ Inkons_Klonklassen_Abfrage

KlonklasselD ~ AnzahlKlondatei
390
588
698
705
860
1381
1593
1657
6543
13099
13299
13899
14211
14373
14376
14442
16513
16664
17111
22023

4

N o= NN NN WNNRM R WNNNNMNNMNNNNNNNN

Datensatz: M lvon2l | » M
I

Abbildung 5.5: Abfrageresultat zu Inkonsistenten Klonklassen

63

2. Abfrage um die gesamte Revisionshistorie der Dateien aufzulisten:

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,
BEZIEHUNGSTABELLE.KLONDATEIID, BEZIEHUNGSTABELLE.GAPS,
BEZIEHUNGSTABELLE.LINE, BEZIEHUNGSTABELLE.LENGTH,
BASIS_SQL.[CASE ANZAHL], BASIS_SQL.[CASE BUG],
BASIS_SQL.CHANGESETID

FROM ((KLONDATEI INNER JOIN BEZIEHUNGSTABELLE ON
KLONDATEI.KLONDATEIID = BEZIEHUNGSTABELLE.KLONDATEIID)
INNER JOIN KLONKLASSEN ON BEZIEHUNGSTABELLE.KLONKLASSEID =
KLONKLASSEN.KLONKLASSEID) INNER JOIN BASIS_SQL ON
BEZIEHUNGSTABELLE.KLONDATEIID = BASIS SQL.KLONDATEIID;

Abbildung 5.6: Abfrage Revisionshistorie einer Datei

Hierbei wird mit Hilfe der Beziehungstabelle, zu allen Klondateien einer Klonklasse die
gesamte Revisionshistorie mit den Daten aus der Basis_SQL ausgegeben. Das
Ergebnis der Abfrage sieht wie in Abbildung 5.7 aus.

‘ =3 RevHistorieZuKlonklassen

KlonklasselD ~ KlondateilD ~ Gaps =~ Line ~ Length - CaseAnzahl - CaseBug -| Changesetld -~
1705 D:\Mercurial\Projects\Discat X\Development\Apg 0 938 321 0 0 54a74b9a88ea
1705 D:\Mercurial\Projects\Discat X\Development\Apg 0 98 321 0 0 4b172dcafg84

705 D:\Mercurial\Projects\Discat X\Development\Apg 5 631 870 0 0 16ee333f2bds
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 631 870 0 0 c9e96d79c286
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 16ee333f2bds
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 34410a06652e
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 c8aec68fb8bf
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 f2ba777a9f90
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 09179567d0el
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 8c5b8207c5b4
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 904d2d3cc8e2
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 19097302ef5f
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 501471aab2b1l
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 fe7e23da0fce
705 D:\Mercurial\Projects\Discat X\Development\Apg 5 902 1086 0 0 d9bb4e252ddc
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 2 2886 3834eb31fc88
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 0 0 d3clcbdlee07
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 0 0 7c19e9093f3f
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 0 0 94d72d2cae22
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 0 0 48b2b42a0687
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 0 0 1469a6a16445
6457 D:\Mercurial\Projects\Discat X\Development\Apg 0 569 695 0 0 aOcf2afadfef

Datensatz: M lvon1174 | » ¥ Suchen

Abbildung 5.7: Abfrageresultat zur Revisionshistorie zu Klonklassen

64

3. Abfrage, um Klonklassen zu ermitteln die einen Case-Bug-Eintrag haben:

SELECT [BEZIEHUNGSTABELLE]. KLONKLASSEID,
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS
ANZAHLKLONKLASSEID

FROM (KLONKLASSEN INNER JOIN (KLONDATEI INNER JOIN
BEZIEHUNGSTABELLE ON KLONDATEI.KLONDATEIID =
[BEZIEHUNGSTABELLE].KLONDATEIID) ON KLONKLASSEN.KLONKLASSEID
= [BEZIEHUNGSTABELLE]. KLONKLASSEID) INNER JOIN BASIS_SQL ON
[BEZIEHUNGSTABELLE].KLONDATEIID=BASIS_SQL.KLONDATEIID

WHERE (BASIS_SQL.[CASE BUG])>0
GROUP BY [BEZIEHUNGSTABELLE] KLONKLASSEID;

Abbildung 5.8: Abfrage fur fehlerhafte Klonklassen

Durch diese Abfrage werden alle Klonklassen ermittelt, sowohl konsistente als auch
inkonsistente, in denen ein Fehler behoben wurde. Diese Abfrage ist erforderlich fur die
Analyse der inkonsistenten Klone auf Fehler.

4. Fur die Forschungsfrage 3 wird eine SQL-Abfrage fur Case-Bug- Eintrage in
konsistenten Klonklassen erzeugt, da analysiert wird, ob fehlerhafte Typ-1-Klone im
Laufe der Entwicklung zu fehlerfreien inkonsistenten Klonklassen werden. Die Abfrage
lautet wie folgt:

SELECT [BEZIEHUNGSTABELLE]. KLONKLASSEID,
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS
ANZAHLKLONKLASSEID

FROM (KLONKLASSEN INNER JOIN (KLONDATEI INNER JOIN
BEZIEHUNGSTABELLE ON KLONDATEI.KLONDATEIID =
[BEZIEHUNGSTABELLE].KLONDATEIID) ON KLONKLASSEN.KLONKLASSEID
= [BEZIEHUNGSTABELLE]. KLONKLASSEID) INNER JOIN BASIS_SQL ON
[BEZIEHUNGSTABELLE].KLONDATEIID=BASIS_SQL.KLONDATEIID

WHERE ((BEZIEHUNGSTABELLE.GAPS)=0) AND ((BASIS_SQL.[CASE
BUGJ)>0))

GROUP BY [BEZIEHUNGSTABELLE] KLONKLASSEID;

Abbildung 5.9: Abfrage fehlerhafte inkonsistente Klonklassen

65

Nun stehen alle Daten zur weiteren Analyse bereit. Um nun den fehlerhaften Code in
einer Version festzustellen, wird die Version r fur eine Datei in der ein Fehler gefunden
wurde festgehalten. Da das Repository eines Projektes sich auf einem alteren Stand
befindet, werden der Revisionshistorie mit der Pull- Funktion in Mercurial neue
Anderungen hinzugefligt, die jeweils durch eine Commit-Message in die
Revisionshistorie aufgenommen werden und somit eine ChangesetID erhalten. In
Tortoise besteht die Moglichkeit fur jede Datei die Revisionshistorie einzusehen. Somit
kann fur jede Datei der inkonsistenten Klonklasse die gesamte Revisionshistorie
betrachtet und die Entwicklung uberpruft werden. Des Weiteren kann festgestellt
werden, ob wahrend der Entwicklung in den inkonsistenten Klondateien ein Fehler
behoben wurde. Somit konnen Ruckschlusse Uber die Fehlerhaftigkeit der
inkonsistenten Klonklassen gemacht werden.

Wie die Datenanalyse mit den aufbereiteten Daten durchgefuhrt wird, ist in Kapitel 5.5
detailliert beschrieben.

5.5 Datenanalyse

Zur Beantwortung der Forschungsfragen wurde in Anlehnung auf die Studien von
Juergens et al. [6] und Rahman et al [10] ein Ansatz zur Datenanalyse entwickelt.
Dieses Kapitel stellt die Datenanalyse fur das Beantworten der verschiedenen
Forschungsfragen vor.

In der Datenanalyse werden unterschiedliche Mengen von Klongruppen untersucht, um
die Forschungsfragen zu beantworten. Die Unterschiede in den Definitionen der
Klongruppenmengen basieren auf der Vielfaltigkeit der Fragen. Die Hauptmenge
enthalt alle Klongruppen C, die zweite grundlegende Menge sind die inkonsistenten
Klongruppen IC. Des Weiteren existieren die Mengen der erkannten Fehler in
inkonsistenten Klonen mit BIC. Die unabhangigen Variablen in der Studie sind das
Entwicklungsteam, die Programmiersprache, die funktionelle Domane, das Alter und
die Grolke der Systeme.

Datenanalyse zur Forschungsfrage 1:

Die Forschungsfrage 1 untersucht die Existenz der inkonsistenten Klone auf den
produktiven TWT Systemen, welche bereits im Einsatz sind. Die Analyse dieser Frage
erfolgt wie in der Studie von Jirgens u.a. [6]. Zunachst wird auf den jeweiligen
Systemen der Klonanalyseansatz fur inkonsistente Klone mit ConQat durchgefihrt. Die
Ergebnisse werden manuell geprift, um die Falschpositiven zu eliminieren.
Anschliellend wird das Verhaltnis der inkonsistenten Klone zu den gesamten Klonen
aus den Resultaten der SQL- Abfragen mit |IC|/ | C| berechnet. Abbildung 1 stellt die
Mengen der beiden Klongruppen dar.

66

Clone C

IC

Abbildung 5.10: Menge der gesamten und inkonsistenten Klongruppen

Datenanalyse zur Forschungsfrage 2:

Fur die Frage, ob inkonsistente Klone Indikatoren fur Fehler sind, wird die
Revisionshistorie, ahnlich wie in [10] zur Analyse des inkonsistent geklonten Codes mit
einbezogen. Ein Versionsverwaltungssystem, in dieser Studie Mercurial, bietet in der
Regel eine sehr umfangreiche Revisionshistorie an. Das Versionsverwaltungssystem
enthalt demnach die Versionsgeschichte einer Datei, bspw. Informationen uber neu
hinzugefugte, geloschte und veranderte Dateien. Des Weiteren gibt sie Informationen
Uber Entwickler, die Anderungen an einer Datei vorgenommen haben. Eine neue
Version fur eine Datei entsteht durch eine Commit-Message eines Entwicklers, der
moglicherweise Anderungen an der Datei vorgenommen hat. Die Version erhalt durch
einen Commit an einer Datei, eine lokale Versionsnummer, die innerhalb des eigenen
Repository gultig ist, sowie eine eindeutige |dentifikationsnummer, die Changeset|D
genannt wird und Gultigkeit im gesamten Repository hat. Des Weiteren wird neben
dem Entwickler ebenfalls der Zeitpunkt des Committ-Eintrags einer Version
angegeben.

Diese Studie untersucht die Auswirkungen des Klonens im gesamten Projekt-
Lebenszyklus. Daher mussen alle Klone auf allen Versionen gefunden werden, die im
Versionsverwaltungssystem committet wurden.

Der Grund, weshalb die Revisionshistorie eines Klons bei der Analyse betrachtet wird,
ist die bestehende Moglichkeit, dass ein inkonsistent geklonter Code, zunachst nach
dem Klonen keinen Fehler verursacht. Jedoch kann das geklonte Codefragment im
Laufe der Entwicklung zu einem fehlerhaften Code werden. Die Abbildung 5.11 zeigt,
wie ein Fehlereintrag in einem Issue-Tracking-System fur einen inkonsistenten Klon
verfolgt und ermittelt wird.

Beispielsweise soll in der Version 1 der Case 1: Impelement_xxx implementiert werden.
Dieser wird entwickelt und anschlielend committed. In der Version 2 wird festgestellt,
dass dieses Codefragment in den Dateien a und b, in den Zeilen 10-20 (Datei a) und
30-50 (Datei b) inkonsistent geklont wurden, die noch keinen Fehler enthalten. Diese
inkonsistenten Klone werden ebenfalls weiterentwickelt. In spateren Versionen wird in
dem inkonsistenten Klon a in den Zeilen 10-15 ein Fehler erkannt, der in dem Issue-
Tracking-System behoben werden muss. Uber die Case-Nummer, welche eindeutig fiir
die gesamte Entwicklung ist, kann der Fehler im Issue-Tracking-System gefunden und

67

gefixt werden. Somit wurde festgelegt, welcher inkonsistenter Code im Laufe der
Entwicklungshistorie zu einem inkonsistenten Code wird, der einen Fehler enthalt.

Im Allgemeinen kann also ermittelt werden, welcher inkonsistenter Klon, der einen
Bezug zu einem Issue-Tracking-System hat, einen Zusammenhang mit einem Fehler
hat. Hierzu werden die Ergebnisse der SQL-Abfragen zu allen inkonsistenten
Klonklassen als Datenbasis genommen. Fur jede Klondatei in einer inkonsistenten
Klonklasse wird der beschriebene Fehleranalyseansatz durchgefuhrt. Aus dieser
Vorgehensweise kann ermittelt werden, ob und wann Klone verandert wurden bzw.
Fehler im Laufe der Entwicklung verursacht haben.

Wahrend diesem Analyseprozess konnen viele weitere wichtige Fragen wie die
Forschungsfragen 2.1 — 2.4 analysiert werden. Vor allem die Forschungsfrage 2.2, ob
Fehler in inkonsistenten Klonen an allen Codefragmenten einer Klongruppe behoben
werden, lasst sich anhand dieser Analyse sehr gut beschreiben und beantworten. Da
die gesamte Revisionshistorie der Klondateien einer Klonklasse betrachtet wird, kann
sehr gut beobachtet werden, ob Fehler in einer Klonklasse an allen Klonstellen
behoben werden und ob die Fehlerbehebung zeitgleich durchgefuhrt wird oder sogar
Uberhaupt nicht betrachtet wird.

Mit dem dargestellten Analyseverfahren kann die zeitliche Spanne zwischen den
Klonen ermittelt werden. Wenn eine grof3e zeitliche Spanne zwischen den Klonen liegt,
die keinen Fehler enthalten, kann der Klon als ein robuster Klon eingestuft werden.
Klone die zeitgleich modifiziert werden, sei es eine Fehlerbehebung oder andere
Anderungen, werden als bewusstes Klonen kategorisiert. Im Gegensatz dazu
definieren sich Klone, fur welche die Fehlerbehebung nicht in allen Klondateien einer
Klonklasse durchgefuhrt wird, als fehlerhafte Klonklassen und demnach als
unbewusstes Klonen.

68

Bugfixing
Zeilen 30 bis 35 in der Datei b des
inkonsistenten Klons enthalten ein
Fehler und muss behoben werden.
Uber die Case-Nr. kann der Fehler in
dem Issue-Tracking-System gefunden
und gefixt werden.

Bugfixing
—>l IC (10,15,a) '_)
Version 8 [Case 23]

Zeilen 10 bis 15 in der Datei a des
inkonsistenten Klons enthalten ein
Fehler und muss behoben werden.
Uber die Case-Nr. kann der Fehler in
dem Issue-Tracking-System gefunden
und gefixt werden.

IC (10,20,a) = IC (30,40,b)

Inkonsistenter Klon in den Dateien a
(in den Zeilen 10 bis 20) und b (in den
Zeilen 30 bis 40). Diese enthalten
noch keinen Fehler.

Case 1: Implement_xxx

Issue-Tracking-System:

23: Bug

Abbildung 5.11: Prozess zur Verfolgung eines inkonsistenten Klons (ber die
Revisionshistorie

42: Bug ——

69

Datenanalyse zur Forschungsfrage 2.1

Die Frage, ob die grof3e Mehrheit der inkonsistenten Klone als Fehler erfasst sind, kann
im Grunde wie in der Datenanalyse zur Forschungsfrage 2 ermittelt werden. Fir diese
Frage werden zunachst die erkannten inkonsistenten Klone in dem Issue-Tracking-
System FogBugz und Kiln auf einen Bug-Eintrag gepruft. Dadurch entsteht die Menge
der inkonsistenten Klone, die einen Fehler enthalten und auch erkannt wurden.

Zunachst muss aber eine Definition fur einen fehlerhaften Code festgelegt werden. Im
Grunde kann eine Reihe von Codezeilen, die einen Fehler verursacht haben, als
fehlerhafter Code bezeichnet werden. Jedoch ist es schwierig, das tatsachlich
schuldhafte Codefragment zu finden. Diese Studie nutzt die Definition eines
fehlerhaften Codes aus der Studie von Rahman et al. [10], die besagt, dass ein buggy
code eine Reihe von Codezeilen ist, die geandert wurden, um einen Fehler zu
beheben.

Nachdem der buggy Code gefunden wurde, wird gepruft ob die Codezeilen in denen
Anderungen vorgenommen wurden, mit den Codezeilen, in denen vom
Klonerkennungstool ConQat ein inkonsistenter Klon gefunden wurde, ubereinstimmen.
Wenn dies der Fall ist, kann davon ausgegangen werden, dass der inkonsistente Klon
im Entwicklungszyklus Fehler verursacht hat.

Das Verhaltnis der erkannten Fehler in inkonsistenten Klonen (BIC) wird mit
| BIC|/|IC| berechnet.

Clone

Abbildung 5.12: Menge der erkannten Fehler in Inkonsistenzen im Issue-Tracking-
System

Datenanalyse zur Forschungsfrage 2.2

Auf die vorherige Frage aufbauend lasst sich die Frage, ob Fehler an einem
Codefragment konsistent an allen inkonsistent geklonten Codes einer Klongruppe
behoben wird, durch eine weitere Analyse beantworten. Das Resultat dieser Frage
dient als Grundlage bei der Argumentation der Auswirkungen der inkonsistenten Klone.

Die Ergebnisse des Klonerkennungstool ConQat bestehen typischerweise aus einer
Reihe von Klongruppen. Jede der Klongruppen enthalt Codefragmente, die aneinander
ahnlich sind und sich in derselben oder auch in verschiedenen Dateien befinden

70

konnen. Demnach enthalten die Klongruppen Informationen Uber die Dateien in denen
sich das geklonte Codefragment befindet, Informationen zu Anfangszeilen und
Endzeilen des Klons, die Lange des Klons sowie die maximal mogliche Gap-Anzahl.

Nach der Festlegung der Menge der erkannten Fehler in den Inkonsistenzen (BIC),
wird gepruft, ob der Fehler in allen Codefragmenten einer Klongruppe, die diesen
Fehlereintrag haben, behoben wurde. Fehler werden in einem Issue-Tracking-System
entdeckt und aufgezeichnet und im Laufe der Entwicklung von den Entwicklern
behoben. Ein behobener Fehler wird auf eine bestimmte Version im
Versionsverwaltungssystem verbunden. Daher wird der Korrekturvorgang fur die
gesamte Revisionshistorie einer Datei gepruft. Wenn ein Fehler in allen geklonten
Codes einer Klongruppe behoben wurde, stellt der Fehler kein Risiko dar. Andernfalls
wird das inkonsistente Klonen als risikobehaftet eingestuft.

Wichtig: Wahrend der Analyse wird untersucht, ob die Korrektur der erkannten Fehler
zeitgleich oder mit Zeitverzug oder uUberhaupt nicht erfolgt. Aus diesem Ergebnis wird
erkannt, ob Entwickler bewusst klonen.

Ermittelt wird die Menge der inkonsistenten Klone, die an allen Codefragmenten einer
Klongruppe keinen Fehler mehr enthalten (KF). Das Verhaltnis der Menge der
inkonsistenten Klone, welche keinen Fehler mehr enthalten (KF) lasst sich mit
|KF|/|BIC| berechnen.

_— CIone

N
-

Abbildung 5.13: Menge der inkonsistenten Klongruppen, bei denen an jedem Klon
einer Klongruppe der Fehler behoben wurde

Hypothese:

Die Antwort auf diese Frage ist das Hauptergebnis der Studie, weil es die
Auswirkungen eines inkonsistenten Klons begrundet. Daher wird hieraus eine
Hypothese abgeleitet:

Das Verhéltnis der Fehler in den Inkonsistenten ist hbher als die Fehler in den
restlichen Klonen im System.

71

Datenanalyse zur Forschungsfrage 2.3

Es wichtig die Fehler zu kategorisieren, um ein besseres Verstandnis fur den Grund der
Fehler zu ermitteln, bzw. festzustellen unter welchen Kontextbedingungen ein Fehler
gegeben ist. Hierzu wird die gesamte Revisionshistorie eines Inkonsistenten Klons
analysiert und festgestellt, ob ein Klon im Entwicklungszyklus modifiziert wurde und ob
sich Fehler durch die fehlenden Klonkenntnisse der Entwickler einschleichen. Es ist
ebenfalls interessant festzustellen, weshalb inkonsistente Klonklassen trotz langer
Entwicklungshistorie keinen Fehler im gesamten Entwicklungszyklus verursachen und
erhalt aus diesem Grund eine Untersuchung.

Datenanalyse zur Forschungsfrage 2.4

Es wichtig die Fehler zu kategorisieren um ein besseres Verstandnis fur den Grund der
Fehler zu ermitteln, bzw. festzustellen unter welchen Kontextbedingungen ein Fehler
gegeben ist. Hierzu wird die gesamte Revisionshistorie eines Inkonsistenten Klons
analysiert und festgestellt, ob ein Klon im Entwicklungszyklus modifiziert wurde und ob
sich Fehler durch die fehlenden Klonkenntnisse der Entwickler einschleichen. Es ist
ebenfalls interessant festzustellen, weshalb inkonsistente Klonklassen trotz langer
Entwicklungshistorie keinen Fehler im gesamten Entwicklungszyklus versuchen und
erhalt aus diesem Grund eine Untersuchung.

Datenanalyse zur Forschungsfrage 3:

Letztlich werden die Auswirkungen der inkonsistenten Klone nicht in negativer sondern
in positiver Hinsicht betrachtet. Bisher wurde analysiert, ob die inkonsistenten Klone
Fehler verursachen bzw. ob die Fehler in den inkonsistenten an allen Klonstellen
behoben wurden. Nun soll hingegen analysiert werden, ob Typ-1-Klone mit einem
Fehler durch das Modifizieren fur die Fehlerbehebung zu einem Typ-3-Klon ohne
Fehler wurden.

Hierzu erfolgt zunachst die Fehleranalyse wie in der Datenanalyse 2.1 fur Typ-1-Klone.
Als Datenbasis dient das Ergebnis der SQL-Abfrage fur exakte Klonklassen die einen
Fehlereintrag haben. Klone mit einem Fehlereintrag im Issue-Tracking-System, werden
weiterhin zur Analyse unterzogen. Im zweiten Analyseschritt erfolgt das Prufen des
fehlerhaften Typ-1-Klon Codefragments. Es wird gepruft, ob dieser weiterentwickelt
wurde und in der Revisionshistorie durch einen ,bug-fixing-Eintrag® behoben wurde.
Des Weiteren wird in der Revisionshistorie gepruft, ob es sich nun beim fehlerfreien
Codefragment um einen inkonsistenten Klon handelt. Dieser kann in den Ergebnissen
des Klonanalysewerkzeugs ConQat gepruft werden. Um sicherzustellen, dass der
inkonsistente Klon tatsachlich nur einen positiven Beitrag im Entwicklungszyklus
geleistet hat, erfolgt als letzter Schritt das Prufen des inkonsistenten Klons auf Fehler.
Wenn namlich der inkonsistente Klon keinen Fehler enthalt, bzw. keinen weiteren

72

Fehler in der Revisionshistorie verursacht hat, handelt es sich um einen positiven
inkonsistenten Klon.

Typ-1-Klone Typ-3-Klone

Bug kein Bug

Abbildung 5.14: Typ-1-Klone die einen Fehler enthalten werden zu Typ-3-Klone ohne
Fehler

73

6 Ergebnisse

Die Ergebnisse des Studiendesigns sind fuir das Beantworten der jeweiligen
Forschungsfragen prazise in Tabelle 2 erfasst. Die Tabelle 5.1 in Kapitel 5.1 enthalt
Informationen zu den Studienobjekten. Unter anderem listet sie die Grolde der Projekte
in Codezeilen auf. In naherer Betrachtung der GroRe der Codezeilen und der Anzahl
der Klonergebnissen aus ConQat wird ersichtlich, dass je groRer ein Projekt ist, desto
hoher die Anzahl der Klone sind. Projekt C ist ungefahr doppelt so grof® wie Projekt A.
Dies spiegelt sich ebenfalls in den Klonergebnissen der Projekte wieder, da Projekt C
im Vergleich zu Projekt A doppelt so viele Klonklassen enthalt.

Tabelle 6.1: Zusammenfassung der Studienergebnisse

Projekt DISCAT | FCAD co2mMo
Klonklassen | C| 37 88 82
Inkonsistente Klonklassen | IC| 21 21 65
Exakte Klonklassen 16 67 17
Inkonsistente Klonstellen |IS| 46 43 146
Modifizierte inkonsistente Klonstellen | MIS | 24 19 67
Verhaltnis der modifizierten Klonstellen (in %) 0,52 0,44 0,45
|MmiIS|/|1S]

Zeitgleich modifizierte inkonsistente Klonstellen (in | 14 17 62
%) | ZMmIS |

Verhaltnis zeitgleich modifizierte inkonsistente 0,58 0,89 0,92
Klonstellen (in %) | ZMIS|/|MIS|

Fehlerhafte Klonklassen | FK| 16 5 37
Fehlerhafte Inkonsistente Klonklassen | BIC| 7 1 2
Verhaltnis fehlerhafter inkonsistenter Klonklassen 0,33 0,05 0,03

(in %)|BIC|/ |IC|

Fehlerbehobene Inkonsistente Klonklassen |KF| |4 1 0

FF 1 [IC/[C[(in %) 0,56 0,23 0,79

74

FF 2.1 |BIC|/[IC] (in %) 0,33 0,05 0,03
FF 2.2 |KF| / |BIC| (in %) 0,57 1,0 0
Durchschnittliche Inkonsistente Klonlange 60 62 78
Durchschnittliche Fehlerhafte Inkonsistente 50 39 83
Klonlange

Hypothese |BIC|/ | FK]| (in %) 0,43 0,2 0,05

Aus den Ergebnissen lasst sich schlielien, dass die Klonklassen der Projekte, bis auf
Projekt B, Uber die Halfte etwa 56% - 79% inkonsistent sind. Der Grund weshalb das
Projekt B im Verhaltnis zu den beiden anderen Projekten weniger inkonsistente
Klonklassen enthalt ist, dass Codefragmente aus den firmeninternen Bibliotheken exakt
geklont wurden, um bestimmte Funktionalitaten wiederzuverwenden. Schlussfolgernd
kann die Forschungsfrage 1, ob die Systeme grofdtenteils inkonsistente Klone
enthalten, positiv beantwortet werden.

Aus diesen inkonsistenten Klonen wurde ungefahr die Halfte 44%-55%
weiterentwickelt. Es wurden Codezeilen entfernt, hinzugefugt oder bestehende
Klonzeilen, sei es in den Literalen oder Bezeichnern, modifiziert. Daraus resultiert, dass
bestehende Klone eine Unterstutzung fur die Entwickler im Entwicklungszyklus der
Programmierer sind. Um zu untersuchen, ob Entwickler Uberhaupt bewusst Klonen
wurde analysiert, ob die Modifizierung an allen Klonstellen einer Klonklasse zeitgleich
durchgefuhrt wurde. Aus den Ergebnissen lasst sich schlie3en, dass in allen Projekten
die Entwickler Uber fast alle Klonstellen, 58%-92%, informiert sind und diese zeitgleich
bei Bedarf modifizieren. Das spiegelt sich auch in den Fehlerergebnissen der
inkonsistenten Klone wieder. Infolge des bewussten Klonens sind lediglich 3%-33% der
inkonsistenten Klonklassen fehlerbehaftet. Daraus resultierend kann die
Forschungsfrage 2, ob inkonsistente Klone Indikatoren fur Fehler sein kbnnen negativ
beantwortet werden, da die Inkonsistenten beim bewussten Klonen verhaltnismalig
eine geringe Gefahr fur ein Softwaresystem darstellen. Folgernd beweisen die
Ergebnisse dieser Studie die Analysewerte der Studie von Rahman u.a. [10], die
besagen, dass die aus den Versionskontrollsystemen gewonnen Daten, die auch
erfasste Fehler in einem System kennzeichnen, keinen bemerkenswerten
Zusammenhang zwischen Klonen und Fehler darstellen.

Da sehr wenige inkonsistente Klonklassen einen Bezug zu einem Fehler haben, lautet
die Antwort fur die Forschungsfrage 2.1, dass sich lediglich ein sehr geringer Anteil der
inkonsistenten Klonklassen, mit 3-33%, als fehlerbehaftet kategorisieren lasst.

Fur die Forschungsfrage 2.2 wurde basierend auf den fehlerbehafteten inkonsistenten
Klonklassen gepruft, ob die Fehler in einer Klonklasse an allen Klonstellen behoben
wurden. Aus den Ergebnissen Iasst sich schlielfen, dass bis auf das Projekt C die
zeitgleich modifizierten inkonsistenten Klonstellen und fehlerbehobenen Klonstellen

75

einen Zusammenhang haben. Bei bewussterem Klonen, also zeitgleich modifizierte
Klone, steigt der prozentuale Anteil der an allen Stellen behobenen Fehler in einer
Klonklasse mit dem zeitgleich modifizierten Inkonsistenten. In Anbetracht, dass das
Projekt C ein AusreilRer ist, kann diese Frage mit 57%-100% der fehlerbehobenen
Klonstellen, positiv beantwortet werden.

Die Hypothese der Studie lautet zur Erinnerung wie folgt: ,Das Verhaltnis der Fehler in
den Inkonsistenten ist hoher als die Fehler in den restlichen Klonen im System®. Im
Durchschnitt enthalten die inkonsistenten Klonklassen, mit 5%-43%, weniger
fehlerhafte Klonstellen als die restlichen Klonstellen im System. Daraus kristallisiert
sich, dass die Inkonsistenten im Vergleich zu exakten Klonen mindestens weniger als
die Halfte einen Fehler verursachen.

Um die Kontextbedingungen der Fehler in den Inkonsistenten zu bestimmen, wird die
Forschungsfrage 2.3 analysiert und um Resultate Uber den Zusammenhang der
Klonlange der Inkonsistenten und der Fehlerhaufigkeit zu finden. Fur diese Analyse ist
Projekt C erneut ein Ausreiler. Die Klonlange der fehlerhaften Inkonsistenten
Klonklassen ist kleiner als die durchschnittliche Klonlange. Die vergleichsweise relativ
groReren Klone, bis zu bspw. 206 Zeilen, enthalten dagegen keine Fehler. Daraus
resultiert das Ergebnis, dass sich Fehler in kleineren Inkonsistenten Klonen befinden.
Fur Projekt C gilt das ebenfalls fur die eine fehlerbehaftete Klonstelle. Daher kann
dieser Beschluss gezogen werden. Folgernd kann die Annahme, dass je grof3er ein
inkonsistenter Klon ist, desto grof3er die Fehlerwahrscheinlichkeit ist, nicht wiederlegt
werden.

Um die Forschungsfrage 2.4 zu beurteilen, und zwar unter welchen
Kontextbedingungen Fehler in Inkonsistenten gegeben sind und Hinweise fur die
Fehlertrachtigkeit von Klonen zu finden, erfolgten zwei wesentliche Kategorisierungen
wahrend der Analyse der Inkonsistenten. Die Klone wurden in bewusste und robuste
Klone gegliedert. Das bewusste Klonen bezeichnet das sorgfaltige Klonverhaltnis eines
Entwicklers. Hierunter fallen wie obig genannt Klone, die zeitgleich modifiziert werden
und auch nach dem Modifizieren keinen Fehler verursachen.

Die robusten Klone hingegen umfassen inkonsistente Klonklassen, die keinen
Fehlereintrag in der gesamten Revisionshistorie haben. Bei der Analyse wurde
festgestellt, dass die robusten Klone, auch bis zu 4 Jahren nach dem Klonen
weiterentwickelt werden und trotz dessen keinen Fehler erzeugen. Daher werden
Klone, die trotz langer Revisionshistorie keinen Fehler darstellen als Klone bezeichnet,
die bewusst geklont und modifiziert werden. Ein besonders wichtiger Punkt bei den
robusten Klonen ist, dass die Klone grofdtenteils aus einer Eclipse-Bibliothek, zu
60,74%, und firmeninternen Bibliothek, zu 70%, stammen. Daraus resultiert, dass
insgesamt 76% der inkonsistenten Klone fur eine Fehlerbehebung nicht modifiziert
werden, da ihr ursprunglicher Quelltext aus einer Bibliothek stammt. Daraus kann
abgeleitet werden, dass das Klonen aus Bibliotheken eine geringere Gefahr darstellt.

76

Zuletzt erfolgte die Untersuchung der inkonsistenten Klone auf einen positiven Einfluss
auf die Softwareentwicklung. Fur die Forschungsfrage 3 wurde untersucht, ob Typ-1-
Klone die einen Fehler enthalten, im Laufe der Entwicklungshistorie modifiziert und
inkonsistent wurden, um den Fehler zu beheben. Die Analyse ergab, dass sich alle
exakten Klone die einen Fehler enthalten zu einem inkonsistenten Klon ohne Fehler
entwickelten. Des Weiteren erfolgte die Fehlerbehebung der Typ-1-Klone zeitgleich an
allen Klonstellen. Das hangt mit dem bewussten Klonverhaltnis der Entwickler
zusammen.

Zusammenfassend kann also der Rickschluss gezogen werden, dass bei bewusstem
Klonen, also dem zeitgleichen Modifizieren der Klone, die Klone robust sind und somit
keine Fehler verursachen. Weiterhin beweist die Studie, dass das Klonen aus
Bibliotheken weniger Fehler verursacht. Aulerdem sind wie anhand anderer Studien
angenommen inkonsistente Klone nicht die Verursacher fur Fehler, sondern auch das
Mittel zur Fehlerbehebung in den exakten Klonen.

77

7 Gefahren fur die Gultigkeit

In diesem Kapitel werden die Gefahren und die Gultigkeit der Studie bewertet und
ausfuhrlich dargestellt.

7.1 Konstruktvaliditat

Es wurde die Entwicklungshistorie der Systeme analysiert, um festzustellen, ob die
Inkonsistenten wirklich durch Anderungen an einem System entstanden sind. Das
Problem besteht jedoch darin, dass Codefragmente durch Kopieren und Modifizieren in
einem einzigen Commit eingefugt wurden. Daher wurde die gesamte Revisionshistorie
der Industriesysteme manuell bearbeitet, um alle Anderungen an einem Codefragment
zu prufen.

Die Cases, die im Issue-Tracking-System einen Bugeintrag haben, wurden fur jedes
Projekt als Basis fur fehlerhafte Codefragmente verwendet. Ein Case erhalt durch den
manuellen Vorgang eines Entwicklers einen Bugeintrag. Da das Verhalten der
Entwickler nicht immer ordnungsgemaf und vollstandig sein muss, kann die in dieser
Studie verwendete Datenbasis fur Fehler nicht die komplette Menge an Fehler
enthalten. Weiterhin ist es moglich, dass es sich bei Cases, die einen Feature-Eintrag
haben, um fehlerhafte Codezeilen handelt. Um dieser Gefahr entgegenzuwirken,
wurden die Codezeilen fir jedes Case gepriift, ob die Anderungen in den
inkonsistenten Codezeilen vorgenommen wurden und auf deren Robustheit gepruft, da
es keine Moglichkeit auf Fehlerprufung gab.

Das Prufen aller inkonsistenten Klonzeilen auf Fehler ist praktisch nicht moglich
gewesen, da es eine hohe Entwicklerzeit und Bereitschaft fur die Prafung erfordern
wurde. Der Nutzen des Entwicklers ist in diesem Fall zu gering, so dass das praktisch
nicht umsetzbar ist.

Es ist durchaus mdglich, dass es sich bei einigen der Anderungen in der
Revisionshistorie einer Klondatei, die einen Bugeintrag haben, tatsachlich nicht um
fehlerhafte Codezeilen handelt. Um diesem Problem entgegenzuwirken, wurde ein
hoher manueller Aufwand aufgebracht, um die falschen Resultate zu eliminieren.

7.2 Interne Giiltigkeit

Die aus ConQat analysierten inkonsistenten Klone wurden auf Falsch-Positive gepruft.
Die restlichen Systeme sollten ebenfalls auf inkonsistente Klone und Fehler gepruft
werden. Da jedoch die Entwicklerzeit dafur fehlte, wurden die restlichen Klone wie aus
ConQat nach dem Prufen auf Falsch-Positive als Datenbasis genommen. Das fuhrt

78

dazu, dass die Menge der inkonsistenten Klone sowie die damit verbundenen Fehler,
einer kleineren Menge entsprechen, als es moglicherweise tatsachlich ist. Somit kann
es zu leichten Abweichungen in der Forschungsfrage 1 und damit verbunden auch in
den Werten in der Forschungsfrage 2 fuhren.

Die Konfigurationsparameter fur den Klonerkennungstool ConQat wurde mit einem
liberalem und konservativem Ansatz durchgefuhrt. Der liberale Ansatz liefert hohere
Klonergebnisse. Trotzdessen wurde die Klonerkennung mit konservativen Parametern
ausgefuhrt, da bei einem liberalen Ansatz eine hohere Entwicklerbereitschaft
erforderlich ist und diese nicht zur Verfugung stand. Bei dem konservativen Ansatz
haben wir aber eine kleinere Klonbasis, welche die Studie unterstutzt, um prazisere
Auswertungen zu machen.

7.3 Externe Giltigkeit

Die Softwaresysteme wurden auf ein neues Issue-Tracking-System umgesetzt. Frihere
Codezustande waren nicht ersichtlich und konnten daher nicht zur Analyse unterzogen
werden. Demnach ist die Menge der Systeme nicht vollstandig reprasentativ. Die
Studie wurde lediglich auf drei relativ jungen Industriesystemen durchgefuhrt, die
folglich auch Uber kleinere Revisionshistorien verfugen. Ein alteres System mit einer
langeren Revisonshistorie wurde die Resultate dieser Studie konsolidieren. Obwohl alle
Systeme in Java geschrieben sind und unterschiedliche Funktionalitaten ausfuhren,
sind die Ergebnisse in den verschiedenen Projekten ziemlich konsistent, namlich dass
es keinen erhdhten Zusammenhang zwischen inkonsistenten Klonen und Fehlern gibt
und dass sogar das Klonen aus Eclipse- und firmeninternen Bibliotheken eine
Unterstutzung fur die Entwickler ist.

79

8 Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde der Zusammenhang der inkonsistenten Klone
und Fehler in Softwaresystemen untersucht, um Hinweise fur die Fehlertrachtigkeit der
Klone zu finden und festzustellen unter welchen Kontextbedingungen sie gegeben
sind. Dabei untersucht die Arbeit auf empirischer Basis drei Industriesysteme, in den
inkonsistenten Klonfragmenten uber die gesamte Revisionshistorie auf Fehler. Um den
Zusammenhang der Fehler in den Inkonsistenten zu analysieren, wurde ein
Studiendesign entwickelt. Das Studiendesign enthalt drei Hauptforschungsfragen,
welche als Grundlage fur die Analyseergebnisse dienen. Die Klonerkennung erfolgt auf
dem Klonerkennungswerkzeug ConQat. Die Analyse wurde auf den, von den Falsch-
Positiven bereinigten, Klonergebnissen durchgefuhrt. Es konnte festgestellt werden,
dass die Halfte der Klonklassen inkonsistent ist. Die Revisionshistorie gab
Informationen uber die Fehlereintrage in einem Klonfragment. Die Auswertung der
Daten wurde mit Hilfe von Datenbanken durchgefuhrt. Der Einsatz einer Datenbank hat
den Vorteil, dass der manuelle Aufwand fur die Suche nach den Informationen in den
Klonklassen, wie Klondateien, Anfangszeile, Endzeile, Gaps, nicht mehr besteht. Die
Datenanalyse ergab, dass die Entwickler grof3tenteils bewusst Klonen, da 58-92% der
Klonklassen an allen Klonstellen gleichzeitig modifiziert wurden. Demnach sind
lediglich 3%-33% der inkonsistenten Klonklassen fehlerbehaftet, welches nur einen
geringen Anteil darstellt und verdeutlicht, dass die inkonsistenten Klone keinen grof3en
Einfluss auf die Fehlerrate eines Systems haben. Des Weiteren beweist die Studie,
dass Klone auch nach 4 Jahren Klonzeit uber die gesamte Revisionshistorie keinen
Fehler verursachen. Ungefahr drei Viertel der inkonsistenten Klone stammen aus
Eclipse- bzw. firmeninternen Bibliotheken, die trotz Modifizierungen zu 76% keinen
Zusammenhang zu Fehlern haben. Dies fuhrt zum Beschluss, dass das Klonen aus
Bibliotheken eine geringere Gefahr darstellt. Die Studie untersuchte den Einfluss der
Lange der inkonsistenten Klone auf die Fehlerhaufigkeit. Die Ergebnisse verdeutlichen,
dass Fehler uberwiegend in kleinen Inkonsistenten Codefragmenten enthalten sind.
Zusatzlich veranschaulicht die Studie, dass inkonsistente Klone nicht wie angenommen
Fehler verursachen, sondern auch durch Fehlerbehebungen entstehen. Durch das
Modifizieren der Typ-1-Klone zur Fehlerbehebung entstehen namlich Typ-3-Klone, die
uber die gesamte Revisionshistorie weiter geklont und modifiziert werden und trotz
dessen keinen Fehler verursachen. In Kapitel 7 sind die Gefahren fur die Gultigkeit der
Studie erfasst, die alle Gefahren und Hurden der Arbeit darstellt, welche zu
Abweichungen in den Analysewerten fihren konnen.

80

8.1 Ausblick

Die Studie nutzte fur die Analyse drei relativ junge Industriesysteme. Fur bessere und
umfangreichere Studienergebnisse sollte eine grollere Datenbasis mit mehr Projekten
vorliegen und die Studie auf diesen Projekten repliziert werden. Die Datenbasis der
Analyse setzt sich aus dem Klonerkennungstool ConQat, aus dem
Versionskontrollsystem Mercurial und dem Issue-Tracking-System FogBugz
zusammen. Die Datenbasis wurde mit einem hohen manuellen Aufwand aufbereitet.
Um die Studie auf einer umfangreicheren Datengrundlage durchzufuhren, ist die
Automatisierung fur die Aufbereitung der Datenbasis erforderlich, siehe Abbildung 8.1.
Die Voraussetzung fur die Automatisierung ist das Entwickeln eines Tools, welches die
erforderlichen Daten zu den Klonergebnissen aus ConQat aus den unterschiedlichen
Systemen bezieht und diese als Analysegrundlage aufbereitet und anschlieend listet.

Das Tool erhalt die Klonergebnisse aus dem Klonerkennungswerkzeug, in unserem
Fall aus ConQat. Nach dem Priufen auf Falsch-Positive werden die Klondateien in
Form von Identifikationsschlussel fur die Suche im Issue-Tracking-System aufbereitet.
Des Weiteren mussen die Klondateien Informationen Uber die Anfangszeile, Endzeile
und Gaps enthalten. Aus diesen Daten ist nun ersichtlich, ob ein Klon konsistent oder
inkonsistent ist und in welchen Zeilen sich der Klon befindet. AnschlieRend werden die
aufbereiteten Daten in das Tool importiert. Das Tool bezieht zum einen Informationen
aus einem Versionskontrollsystem und zum anderen aus einem Issue-Tracking-
System. Aus dem Versionskontrollsystem werden zu jeder Klondatei die Informationen
zu einem Commit, wie ChangesetID, Datum, Zeit, Benutzer, Beschreibung gelistet. Im
nachsten Schritt wird zu jeder Klondatei im Issue-Tracking-System die gesamte
Revisionshistorie gepruft. Es erfolgt die Analyse, ob die inkonsistenten Klone sich im
Laufe der Revisionshistorie verandert haben und in diesem Zusammenhang Fehler
entstanden sind. Des Weiteren soll automatisiert geprift werden, ob die Anderungen
an allen Klonstellen einer Klonklasse zeitgleich erfolgt. Fur die Aufbereitung dieses
Tools konnen Schnittstellen fur Kiln und FogBugz verwendet werden, solang die
Systeme auf diesen Systemen gepflegt werden.

bezieht Daten aus Versions-

importiere ' kontrollsystem
Datenbasis in !
ConQat Tool

Issue-Tracking-
bezieht Daten aus System

Abbildung 8.1: Tool zur Automatisierung

81

9 Literatur

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

G. Alkhatib: The maintenance problem of application software: An empirical
analysis, Journal of Software Maintenance: Research and Practice, 4(2), S. 83-
104, DOI: 10.1002/smr.4360040203, 1992.

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring: Improving the
Design of Existing Code. 1. Auflage, Addison-Wesley Professional,
Massachusetts, 1999, ISBN 0-201-48567-2.

M. V. Mantyla, C. Lassenius: Subjective evaluation of software evolvability using
code smells: An empirical study, Empirical Software Engineering, 11(3), S. 395-
431, 2006. Siehe: http://link.springer.com/article/10.1007%2Fs10664-006-9002-
8#page-1

A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto: Software quality
analysis by code clones in industrial legacy software. In Proceedings Eighth IEE
Symposium on Software Metrics 2002. IEE, S. 87-94, 2002.

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner: Do Code Clones
Matter?, In ICSE 2009, IEE 31° International Conference on Software
Engineering 2009. Canada, IEEE, S. 485-495, 2009.

R. Komondoor, S. Horwitz: Effective, automatic procedure extraction, In
Proceedings IWPC 2003 of the 717th IEEE International Workshop on Program
Comprehension. Washington, DC, USA. IEEE Computer Society, S. 33-43,
2003.

Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue: Aries: refactoring support tool for
code clone, In ACM SIGSOFT Software Engineering Notes, 30(4), New York.S.
1-4, 2005. Siehe: http://dx.doi.org/10.1145/1082983.1083306

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, K. Kontogiannis: Partial
redesign of java software systems based on clone analysis, In Proceedings of
the Sixth Working Conference on Reverse Engineering. Washington, DC, USA.
IEEE Computer Society, S. 326-336, 1999.

F. Rahman, C. Bird, P. Devanbu: Clones: What is that Smell?, In 7" IEEE
Working Conference on Mining Software Repositories (MSR). Cape Town. IEEE
Computer Society, S. 72-81, 2010.

R. Koschke: Survey of Research on Software Clones, In Dagstuhl Seminar
Proceedings 06301. Universitat Bremen, 2007. Siehe:
http://drops.dagstuhl.de/opus/volltexte/2007/962

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

82

B. S. Baker: A Program for identifying Duplicated Code. Computing Science and
Statistics. In Proceedings of the 24th Symposium on the Interface. S. 24:49-57,
1992.

Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue: On Detection of Gapped Code
Clones using Gap Locations. In Proceedings of the Ninth Asia-Pacific Software
Engineering Conference. Washington, DC, USA. IEEE Computer Society, S.
327-336, 2002.

B. S. Baker: On Finding Duplication and Near-Duplication in Large Software
Systems. In Proceedings of 2™ Working Conference on Reverse Engineering.
Los Alamitos, California. IEEE Computer Society, S. 86-95, 1995.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo: Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software
Engineering, 33(99), S. 577-591, 2007.

C. Kapser, M. Godfrey: A Taxonomy of Clones in Source Code: The reengineers
most wanted list. In Working Conference on Reverse Enginnering. IEEE
Computer Society, 2003.

F. Raimer: Erkennung von Falsch-Positiven Softwareklonen mittels
Lernverfahren. Dissertation, Universitat Bremen, 2014, S. 19-32. ISBN: 978-3-
8325-3651-0, Logos Verlag Berlin GmbH, Berlin, 2014.

K. Ch. Roy, J. R. Cordy, R. Koschke: Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach. Science of Computer
Programming, 74(7), S. 470-495, 20009.

E. Juergens, F. Deissenboeck, B. Hummel: CloneDetective — A Workbench for
Clone Detection Research. In Proceedings of the 31st International Conference
on Software Engineering. Washington, DC, USA. IEEE Computer Sciety, S. 603-
606, 2009.

S. Wagner: Vorlesung: Qualitatssicherung und Wartung (QSW), SS2014;
Universitat Stuttgart

R. Koschke, S. Simon: Vorlesung Software-Reengineering, WS2004/2005,
Folien 119-124, Universitat Bremen, Universitat Stuttgart.

J. H. Johnson: Substring matching for clone detection and change tracking. In:
Proceedings International Conference on Software Maintenance. Victoria, BC.
IEEE Computer Society, S. 120-126, 1994.

S. Ducasse, M, Rieger, S. Demeyer: A Language Independent Approach for
Detecting Duplicated Code. In Proceedings of the IEEE International Conference
on Software Maintenance. Oxford. IEEE Computer Society, S. 109-118, 1999.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

83

R. Koschke: Vorlesung Software-Reengineering, WS2009/2010, Folien 22-35,
Universitat Bremen.

S. Bellon: Vergleich von Techniken zur Erkennung duplizierten Quellcodes.
Diplomarbeit, Universitat Stuttgart, 2002.

B. S. Baker, R. Giancarlo: Longest Common Subsequence from Fragments via
Sparse Dynamic Programming. In Algorithms — ESA ’98. S. 79-80, Springer
Verlag Berlin Heidelberg, 1998.

I.D. Baxter, A. Yahin, L. Moura, M. Sant’/Anna, L. Bier: Clone Detection Using
Abstract Syntax Trees. In International Conference on Software Maintenance.
Bethesda, MD. IEEE Computer Society, S. 368-377, 1988.

J. Krinke: Identifying Similar Code with Program Dependence Graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. Stuttgart.
IEEE Computer Society, S. 301-309, 2001.

J. Mayrand, C. Leblanc, E. M. Merlo: Experiment on the Automatic Detection of
Function Clones in a Software System using Metrics. In Proceedings of the
International Conference on Software Maintenance. Washington, DC; USA.
IEEE Computer Society, S. 244-254, 1996.

Bryn O’Sullivan: Mercurial: The Definite Guide; O’Reilly Media, 2009. Onlinebuch
Link: http://hgbook.red-bean.com/read/

S. Wagner: Vorlesung Grundlagen Software-Engineering, SS2014, Universitat
Stuttgart.

Git Software, Dokumentation: 1.1 Los geht’s - Wozu Versionskontrolle?. Siehe:
http://git-scm.com/book/de/Los-geht%E2%80%99s-Wozu-Versionskontrolle%3F,
Letzter Zugriff am 28.09.2014.

Fog Creek Software, Dokumentation FogBugz; Projektmanagement. Siehe:
http://www.fogcreek.com/fogbugz/features/project-management/, Letzter Zugriff
am 28.09.2014.

Fog Creek Software, Dokumentation FogBugz, Issue-Tracking-System. Siehe:
http://www.fogcreek.com/fogbugz/features/issue-tracking/, Letzter Zugriff am
28.09.2014.

Fog Creek Software, Dokumentation Kiln. Siehe: https://www.fogcreek.com/kiln/,
Letzter Zugriff am 28.09.2014

Fog Creek Software, Dokumentation Kiln, Team-Up. Siehe:
http://www.fogcreek.com/kiln/features/team-up/, Letzter Zugriff am 28.09.2014

Fog Creek Software, Dokumentation Kiln. Siehe:

84

http://www.fogcreek.com/kiln/features/get-organized/, Letzter Zugriff am
28.09.2014

[38] Fog Creek Software, Kiln API: Repositories. Siehe:
https://developers.fogbugz.com/default.asp?W166, Letzter Zugriff am
28.09.2014.

[39] R.Koschke: Vorlesung Software-Reengineering, WS2009/2010, Folien 15-18,
Universitat Bremen.

[40] M. Rieger, S. Ducasse, M. Lanza: Insights into system—wide code duplication. In
Proceedings of the 11™ Working Conference on Reverse Engineering. IEEE
Computing Society, S. 100.109, 2004.

[41] M. Rieger: Effective Clone Detection Without Language Barrier.
Inauguraldissertation, Universitat Bern, 2005.

[42] L. Jiang, Z. Su, E. Chiue: Context-based detection of clone-related bugs. In
Proceedings of the 6" joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of the
software engineering. New York, USA. S. 55-64. ISBN 978-1-59593-811-4.

[43] Z.Li, S.Lu, S. Myagmar, Y. Zhou: CP-Miner: Finding copy-paste and related
bugs in large-scale software code. IEE Transactions on Software Engineering,
32(3), S. 176 — 192, 2006.

[44] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas: Static Bug Detection
Through Analysis of Inconsistent Clones. In Workshopband SE Konferenz 2008.
LNI, Gl, 2008.

[45] J. Krinke: A Study of Consistent and Inconsistent Changes to Code Clones. In
WCRE 2007 of the 14™ Working Conference on Reverse Engineering.
Vancouver, BC. IEEE Computing Society, S. 170-178, 2007.

[46] C. Kapser, M. W. Godfrey: Cloning considered harmful. In WCRE ’06 on the 13t
Working Conference on Reverse Engineering. Benevento. IEEE Computing
Society, S. 19-28, 2006.

[47] S. Thummalapenta, L. Cerulo, L. Avensano, M. D. Penta: An empirical study on
the maintenance of source code clones. Empirical Software Engineering, 15(1),
S.1-34, 20009.

[48]

[49]

[50]

[51]

[52]

[53]

85

M. Kim, L. Bergman, T. Lau, D. Notkin: An Ethnographic Study of Copy and
Paste Programming Practices in OOPL. In Proceedings of the 2004 International
Symposium on Empirical Software Engineering. IEEE Computer Society, S. 83-
92, 2004.

F. Deillenbock, T. Seifert: Kontinuierliche Qualitatsiberwachung mit CONQAT:
Paper, Institut Software & Systems Engineering, Technische Universitat
Munchen.

ConQat Tool: Dokumentation ConQat User Guide 2013.10. Siehe:
https://www.cqse.eu/download/conqat/conqat-book-2013.10.pdf, Letzter Zugriff
am 28.09.2014.

E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner,
Ch. Domann, J. Streit: Can Clone Detection Support Quality Assessments of
Requirements Specifications?. In Proceedings of the 32nd ACM/IEE
International Conference on Software Engineering (2). New York, USA. S 79-88,
2010. ISBN: 978-1-60558-719-6.

M. Feilkas, D. Ratiu, E. Juergens: The Loss of Architectural Knowledge during
System Evolution: An Industrial Case Study. In Proceedings of the 17th IEEE
International Conference on Program Comprehension 2009. Vancouver, BC.
IEEE Computing Society, S. 188-197, 2009.

M. Metuh: Schaffung einer Basis fur die kontinuierliche Qualitatsanalyse.
Diplomarbeit, Universitat Stuttgart, 2012.

86

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben. Ich habe keine
anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngemal
aus anderen Werken Ubernommene Aussagen als solche

gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prufungsverfahrens. Ich habe diese Arbeit
bisher weder teilweise noch vollstandig veroffentlicht. Das elektronische
Exemplar stimmt mit allen eingereichten Exemplaren Uberein.

Unterschrift;

Stuttgart, 01.10.2014

