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Begriffsverzeichnis 

ConQat ConQat ist ein Werkzeug zur kontinuierlichen Software- 
Qualitätskontrollanalyse. ConQat wird in dieser Arbeit als 
Klonerkennungswerkzeug eingesetzt. 

Klone Klone sind redundante Quelltextabschnitte in einem Code, 
die an mehreren Stellen eines Softwaresystems 
vorkommen. 

Inkonsistente Klone Redundante Quelltextabschnitte, die mit Modifikationen 
versehen sind. 

Gap Ungleiche Abschnitte in den Inkonsistenten Klonen werden 
Gap genannt. 

Versionskontrolle Unter Versionskontrolle hingegen versteht man den Prozess 
der Verwaltung mehrerer Versionen einer Information 

Versionskontrollsystem Tools die das Automatisieren der Versionskontrolle 
ermöglichen, werden Versionskontrollsysteme genannt. 

Mercurial Mercurial ist ein plattformunabhängiges, verteiltes 
Versionskontrollsystem. 

Issue-/Bug-Tracking 
System 

Ein Issue-/Bug-Tracking-System ist ein Werkzeug, mit dem 
diverse Aufgaben in einem Projekt bearbeitet werden. 

FogBugz Das webbasierte System FogBugz ist ein 
Projektmanagement-system sowie ein Issue-/Bug-Tracking-
System, welche umfangreiche Funktionalitäten für 
Entwicklerteams anbietet. 

Kiln Kiln ist ein webbasiertes System für das Quellcodehosting 
von Mercurial. 

TortoiseHg Das Tool TortoiseHg ist ein einfach zu bedienendes 
Frontend und steht mit ihrer graphischen Oberfläche zur 
Verfügung, um die Benutzung von Mercurial ohne 
Kommandozeilenbefehle durchzuführen. 

Bug Ein Bug ist ein fehlverhalten in einem Softwaresystem. 
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Kurzfassung 

Softwareklone in einem System erfordern eine hohe Vorsicht im Entwicklungszyklus 
eines Softwareprojekts. Viele Forscher sind der Ansicht, dass Klone vor allem 
inkonsistente Klone die Ursache diverser Fehler in Softwaresystemen sind, die sich 
unbemerkt einschleichen und nicht nachverfolgt werden können. Vor allem die 
Auswirkungen der inkonsistenten Klone liegen im Interesse vieler Forschungsarbeiten. 
Jedoch liegen die Forschungsergebnisse der Studien weit auseinander. Im Rahmen 
dieser Diplomarbeit werden die Auswirkungen der inkonsistenten Klone in einem 
Softwaresystem analysiert. Des Weiteren analysiert diese Arbeit auf empirischer Basis 
im Rahmen eines Studiendesigns den Zusammenhang der Inkonsistenten und Fehlern 
in Softwaresystemen. Die Studie wurde auf drei Industriesystemen durchgeführt und 
ergab als Resultat, dass Entwickler über fast alle Klonstellen einer Klonklasse 
informiert sind und diese bei Bedarf zu 58%-92% zeitgleich modifizieren. Es sind 
lediglich 3%-33% der inkonsistenten Klonklassen fehlerbehaftet und stellen somit eine 
geringe Gefahr für die Softwareentwicklung. Die umfangreiche Analyse gab den 
Beschluss, dass die Inkonsistenzen im Vergleich zu exakten Klonen mindestens 
weniger als die Hälfte einen Fehler verursachen. Weiterhin wiederlegt die Studie, dass 
durch das Klonen aus Bibliotheken, Klone eine erheblich geringe Anzahl an Fehler 
darstellen und nach bis zu vier Jahren Klonzeit keinen einzigen Fehler in der gesamten 
Revisionshistorie verursacht haben. Die Ergebnisse dieser Arbeit beweisen, dass 
Entwickler bewusst Klonen und dass es durch das bewusste Klonen keinen erhöhten 
Zusammenhang zwischen inkonsistente Klone und Fehler gibt.  
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1 Einleitung 

Dieses Kapitel verschafft einen Überblick über das Thema der Diplomarbeit. Zunächst 
schafft der erste Teil einen Überblick über das Umfeld und darauf wird die Motivation 
der Arbeit dargestellt. Anschließend wird das Ziel der Arbeit beschrieben. Der letzte 
Abschnitt veranschaulicht den Aufbau der Diplomarbeit, um einen Gesamtüberblick 
über das Forschungsthema zu verschaffen.  

 

1.1 Überblick 
Ein wichtiger Bestandteil der Softwareentwicklung ist die Wartung. Fälschlicherweise 
werden der Aufwand und die Kosten für die Wartung im Gegensatz zur 
Implementierung unterschätzt. Empirische Studien haben wiederlegt, dass die Kosten 
für die Wartung und Entwicklung ein wichtiger Aspekt sind und bis zu 80% der 
Gesamtkosten und des Aufwandes betragen [1]. Die Ursache für die hohen Kosten ist, 
dass mit zunehmendem Alter durch die fehlende Planung für die Weiterentwicklung 
sowie hohem Zeitdruck und mangelnde Möglichkeiten für die langfristige Planung, der 
Softwareumfang steigt. Forscher haben lange versucht diese Wartungskosten zu 
minimieren. Für die Verbesserung der Entwicklung gab es einige Arbeiten, welche die 
Prozessmodelle sowie die Werkzeug- und Sprachunterstützung verbessert haben, um 
den schlechten Eigenschaften des Codes entgegenzuwirken, die sich negativ auf die 
Wartungskosten auswirken. Daraus resultierend können die Wartungskosten reduziert 
werden. Schlechte Wartbarkeit eines Softwaresystems kann oft zu einem schlechten 
Code führen, der schwer fehleranfällig, verstehbar und veränderbar ist [2], [3]. Ein 
wichtiger Faktor für einen schlechten Code können Code-Duplizierungen oder Klone 
sein. Klone sind kopierte Quelltexte, die vor allem durch Copy&Paste entstehen, die 
über die Implementierungsdetails im gesamten System verteilt werden. Fowler [4] 
betrachtet das Klonen als „bad smells“ und als den wichtigsten Indikator für die 
schlechte Wartbarkeit. Durch das Klonen besteht die Gefahr, dass Fehler in den 
kopierten Codeabschnitten stillschweigend repliziert werden, ohne dass es der 
klonende Entwickler bemerkt. Speziell inkonsistente Klone lassen vermuten, dass 
Fehler eingeführt und nicht behoben werden.  Das Klonen hat also den Nachteil, dass 
sich die Fehleranfälligkeit des Systems erhöht und dass sich der Codeumfang 
vergrößert, welches das Verständnisproblem des Systems erschwert. Welchen Einfluss 
Klone auf die Wartbarkeit und Zuverlässigkeit haben, untersuchen Monden u.a. [5] in 
einer umfangreichen Studie. Des Weiteren gab es eine empirische Arbeit zur Analyse 
der Anzahl der Fehler für inkonsistente Klone, die durch das Ändern des geklonten 
Codeabschnitts entstehen [6]. Es wurden ebenfalls viele Forschungsarbeiten für das 
automatische Finden bzw. auch für das automatische Ändern von Klonen gewidmet, 
um der Fehleranfälligkeit des geklonten Codes entgegenzuwirken [7, 8, 9]. Gleichzeitig 
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präsentiert eine andere Forschungsgruppe Beweise dafür, dass es keinen erhöhten 
Zusammenhang zwischen Klonen und Fehler gibt [10]. 

 

1.2 Motivation 
Es gibt diverse Ansätze und Ergebnisse zu Fehlern in Klone, die sich zum Teil 
widersprechen. Prinzipiell besteht die Annahme, dass allein durch den Größenzuwachs 
unnötige Aufwände entstehen, aber speziell die inkonsistenten Klone lassen vermuten, 
dass auch Fehler eingeführt oder nicht behoben werden. 

Beispielsweise analysiert die empirische Studie, an der Forschungsgruppen aus 
Industrie und Open Source beteiligt sind, dass bei unbewussten inkonsistenten Klonen, 
jeder zweiter Klon einen Fehler enthält [6]. Eine andere Studie von Rahman, Bird und 
Dvanbu [10] konnte aber keinen erhöhten Zusammenhang zwischen Klonen und 
Fehlern finden. Es gibt also verschiedene Ansätze und verschiedene Ergebnisse zu 
Fehlern in Klone.  

Aus diesem Anlass entstand die Diplomarbeit in Kooperation mit der 
Entwicklungsabteilung der TWT GmbH in Stuttgart Vaihingen. Bei der TWT GmbH 
existieren Softwaresysteme, die über Jahre hinweg entwickelt werden und aus langen 
Revisionshistorien bestehen. Die Architektur der Systeme wurde kontinuierlich an neue 
Anforderungen wie sich ändernde Kundenwünsche und neue Technologien angepasst.  

Es wurden von der TWT GmbH drei Softwaresysteme, welche Kundenprojekte für 
größere Firmen sind, für die Analyse zur Verfügung gestellt. Die Systeme bestehen aus 
einer hohen Anzahl von Revisionen, die als Basis für die Arbeit dienen. 

 

1.3 Zielstellung 
Das Ziel der Arbeit ist es, Hinweise dafür zu finden, ob inkonsistente Klone Fehler 
verursachen. Im Zusammenhang dazu, soll ermittelt werden, unter welchen Umständen 
Fehler durch Inkonsistente entstehen. Hierzu soll die empirische Basis für den 
Zusammenhang zwischen inkonsistenten Klonen und Fehlern erhöht werden, um eine 
genauere Aussage machen zu können. Dabei sollen die vorhandenen Studien auf 
Systemen der TWT GmbH repliziert werden. Die Analyse der Studie soll in einem 
Studiendesign erfasst werden. 
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1.4 Aufbau der Diplomarbeit 
Die Diplomarbeit beginnt mit der Einleitung, die einen Überblick über das gesamte 
Thema verschafft. Anschließend werden der Hintergrund der Diplomarbeit, die 
Motivation und das Ziel beschrieben. Die Grundlagen erfolgen in Kapitel 2 und 
umfassen eine Einführung in die Termini und Definitionen sowie in die 
unterschiedlichen Klonerkennungsverfahren im Detail. Das darauf folgende Kapitel 3 
befasst sich mit dem bisherigen Forschungsstand bzw. den Forschungsarbeiten. 
Hierbei werden die Gründe und Folgen des Klonens geschildert und verschiedene 
Arbeiten zur Erkennung inkonsistenter Klone und Bugs dargestellt. Die relevanten 
Werkzeuge und Softwaresysteme für die Arbeit, wie ConQat, Mercurial und FogBugz 
werden im vierten Kapitel beschrieben. In Kapitel 5 beginnt der eigentliche Teil der 
Diplomarbeit, das Studiendesign. Das Studiendesign mit dem Repository Mining wird 
erklärt und die Forschungsarbeit durchgeführt sowie die Forschungsergebnisse 
beschrieben, um die Ergebnisse in Kapitel 6 auszuwerten und zu beurteilen. In einem 
abschließenden Fazit im siebten Kapitel werden die Ergebnisse zusammengefasst und 
beurteilt. Zudem werden weitere potenzielle Weiterentwicklungsbereiche dargestellt 
und auf zusätzliche offene Forschungsfragen angedeutet sowie Ideen für deren 
Lösungen geliefert. 
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2 Grundlagen Softwareklone 

Bei der Betrachtung diverser Studien wird schnell festgestellt, dass verschiedene 
Definitionen zum Begriff Klon existieren. Genauso sind unterschiedliche Ansichten zu 
den Subbegriffen des Klons vorhanden. Daher gibt dieses Kapitel eine detaillierte 
Einführung in die zugrundeliegende Materie, die eine Voraussetzung für das 
Verständnis der Arbeit ist. Das Kapitel beschreibt die verschiedenen Klonarten und 
Klontypen sowie den Aufbau der Klone, deren Forschungsgebiet sehr breit gefächert 
ist. Dementsprechend spiegelt sich das auch in den unterschiedlichen 
Klonerkennungsansätzen wieder. Nach einer ausführlichen Beschreibung des 
allgemeinen Klonerkennungsprozesses für inkonsistente Klone werden die wichtigsten 
und bekanntesten Klonerkennungsverfahren im Detail beschrieben. 

 

2.1 Definition Klone 
Die Definition des Klonens lässt sich in der Softwareentwicklung nicht präzise und ohne 
weiteres festlegen. Daher umfasst das Kapitel zum besseren Verständnis der Klone, 
beginnend mit einer allgemeinen Definition, detaillierte Definitionen zu verschiedenen 
Klonarten. 

 

2.1.1 Allgemeine Definition 
Die allgemeine Definition von Ira Baxter dient als Grundlage für das Verständnis der 
Klone.  

“Clones are segments of code that are similar according to some definition of 
similarity” [11]. 

Laut dieser Definition kann es verschiedene Begriffe der Ähnlichkeit geben. Diese 
könnten auf Text, der lexikalischen und syntaktischen Struktur oder auf der Semantik 
basieren. Sie gelten ebenfalls als ähnlich, wenn sie dasselbe Muster haben [12]. 

Eine weitere wichtige Definition ist die von E. Juergens u.a. [6], welche die Klone in 
exakte und inkonsistente Klone gliedert. Zunächst ist es wichtig zu wissen, dass sie ein 
Code als eine Sequenz von Units bezeichnet, die zum Beispiel Bezeichner, 
normalisierte Statements oder Zeilen sein können. 

Der Grund für die Normalisierung ist, dass beim Vergleich von Codeabschnitten die 
Kommentare und die Benennung der Literale durch die Normalisierung nicht betrachtet 
werden, sondern lediglich die Codezeilen verglichen werden können. 
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2.1.2 Definition Exakte Klone 

Ein exakter Klon ist ein fortlaufender Substring eines Codes, der mindestens zweimal in 
dem (normalisierten) Code erscheint [6]. Dies spiegelt das Copy&Paste Verfahren 
wieder und ist somit die syntaktische Definition des Klons. 

 

2.1.3 Definition Inkonsistente Klone 

Juergens u.a. [6] macht eine detaillierte Definition zu inkonsistenten Klonen. Demnach 
ist ein Substring s vom Code ein inkonsistenter Klon, wenn es einen anderen Teilstring 
t des Codes derart gibt, dass ihre Bearbeitungsdistanz unter einem gegebenem 
Schwellenwert ist und dass t keine signifikante Überlappung mit s hat. 

 

2.1.4 Definition Falsch-Positive Klone 
Falsch-Positive Klone sind Codefragmente, welche von einem Klonerkennungstool als 
ein Klon erkannt wurden, die jedoch keinen Klon darstellen [17]. Durch das 
Festlegegen eines Schwellenwerts für die Mindestklonlänge kann die Anzahl der 
Falsch-Positive reduziert werden. Da diese Art der Klone sich lediglich durch eine 
manuelle Analyse der Klonergebnisse erkennen und beseitigen lassen, ist die optimale 
Wahl des Schwellenwerts wichtig. Der Grund für die Ausgabe von Falsch-Positiven 
kann bspw. ähnliche, sich wiederholende Strukturen in der Syntax eines 
Codeabschnitts sein. Viele Klonerkennungswerkzeuge erkennen bereits Falsch-
Positive wie bspw. Array-Listen, die sich in den Literalen-Token und Komma-Token mit 
unterschiedlichen Werten wiederholen [17]. Weitere Beispiele aus einer Vielzahl von 
Falsch-Positiven sind Case-Anweisungen, import- und „#include“-Anweisungen, sowie 
Setter- und Getter-Methoden. Die Codefragmente eines Klonpaars mit ähnlicher 
Struktur, die sich jedoch in den Bezeichnern stark unterscheiden, werden ebenfalls als 
Falsch-Positive betrachtet. 

 

2.2 Klonaufbau 
Bisher wurden Klone lediglich als kopierte bzw. redundante Codeabschnitte 
bezeichnet. Für das Verständnis der empirischen Arbeit wird im Folgenden der Aufbau 
eines Klons definiert. Zunächst wird die Definition des Begriffs „Codefragment“ 
festgelegt, da dieser Begriff immer in Verbindung mit dem Begriff Klon genannt wird. 
Anschließend erfolgen weitere Begriffsdefinitionen, die für den Aufbau eines Klons 
relevant sind. Darüber hinaus wird die Beziehung zwischen den Klonen geschildert. 
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2.2.1 Codefragmente 

Bei der Analyse von Klonen werden Codefragmente miteinander verglichen. Ein 
Codefragment ist ein Quelltextabschnitt, die zum einen den Namen der Klondatei und 
zum anderen sowohl die Anfangszeile als auch die Endzeile des geklonten 
Quelltextabschnitts enthält. Mittels dieser Daten lässt sich ein geklonter 
Quelltextbereich eindeutig identifizieren. Des Weiteren dienen diese Informationen als 
Grundlage für die Klonanalyse um bspw. zu prüfen, ob zwei Codefragmente tatsächlich 
Klone voneinander sind. 

 

2.2.2 Klonpaar 

Ein Paar von syntaktisch und strukturell ähnlichen Codefragmenten werden nach 
Kapser et al. [16] als ein Klonpaar bezeichnet. Einer dieser Codefragmente ist die 
Kopie des anderen. Das Klonpaar ist der kleinste gemeinsame Nenner für die 
Beschreibung eines Duplikats. 

 

2.2.3 Klonklasse 

Eine Klonklasse enthält mindestens zwei Codefragmente, welche dieselbe bzw. 
ähnliche Funktionalität beschreiben und an unterschiedlichen Stellen im Quelltext 
erscheinen. Klonklassen werden ebenfalls als Klongruppen bezeichnet. Jürgens et al. 
[6] stellen Klongruppen als einen zusammenhängenden Graphen dar. Dabei wird ein 
Codefragment  durch einen Knoten verdeutlicht. Kanten zwischen den Knoten 
existieren erst dann, wenn eine Klonbeziehung zwischen den Codefragmenten besteht. 
Wenn alle Klone einer Klongruppe exakte Klone sind, wird von einer exakten 
Klongruppe gesprochen. Eine Klongruppe welche mindestens ein inkonsistentes 
Klonpaar enthält, wird als inkonsistente Klongruppe bezeichnet. Die Abbildungen 2.1 
und 2.2 stellen eine exakte und inkonsistente Klonkasse bzw. Klongruppe als einen 
Graphen dar, wobei CF als Abkürzung für Codefragment  steht. 

 

 

Abbildung 2.1: Exakte Klongruppe 
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Abbildung 2.2: Inkonsistente Klongruppen 

 

2.3 Klontypen 
Kopierte Codeabschnitte werden als Klone bezeichnet. Die Klontypen werden je nach 
der Ähnlichkeit der Codeabschnitte in vier Klontypen unterschieden. Die Klontypen 
werden wiederum in textuelle Ähnlichkeit, d.h. ähnlicher Quellcode und funktionale 
Ähnlichkeit, d.h. lediglich ähnliche Funktionalität ohne textuelle Ähnlichkeit, 
unterschieden. Die vier Klontypen werden wie folgt definiert: 

• Typ-1-Klone: Identische Codeabschnitte bis auf Kommentare und Whitespaces. 
 

• Type-2-Klone: Syntaktisch identische Codeabschnitte, die sich in den 
Kommentaren, Literalen, Bezeichnern und im Layout unterscheiden. 
 

• Type-3-Klone: Kopierte Codeabschnitte mit weiteren Modifikationen wie 
Anpassen, Hinzufügen oder Löschen von Codezeilen, Bezeichnern, 
Kommentaren und Layout. 
 

• Type-4-Klone: Codeabschnitte die semantisch ähnlich sind, sich jedoch 
syntaktisch unterschieden.   
 

Die ersten drei Klontypen lassen sich zur textuellen Ähnlichkeit kategorisieren. Die 
semantisch ähnlichen Klone gehören zur Kategorie der funktionalen Ähnlichkeit.  

 

2.3.1 Typ-1-Klone 

Der Typ-1-Klon ist die exakte Kopie eines Codeabschnitts ohne weitere Modifikationen. 
In der Kopie handelt es sich um identische Quelltextabschnitte, die sich lediglich in den 
abstrahierten Kommentaren und Whitespaces (neue Zeilen, Blanks, etc.) 
unterscheiden (siehe Abbiildung 2.3). Diese Art der Klone kann bspw. durch Inlining 
von Hand entstehen. 
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Abbildung 2.3: Typ-1 Klonpaar 

 

2.3.2 Typ-2-Klone 

Bei Typ-2-Klonen handelt es sich um syntaktisch identische Kopien der 
Codefragmente. Die Typ-2-Klone umfassen Typ-1-Klone. Bei dieser Art des Klonens 
werden neben dem Abstrahieren der Whitespaces und Kommentare auch die 
Bezeichner bzw. Literale umbenannt. Typ-2-Klone entstehen in der Regel durch die 
Wiederverwendung einer Funktion, bei der die Bezeichner konsistent auf den Quelltext 
angepasst werden. Dies ist bspw. bei generischen Funktionen der Fall, bei dem die 
Anpassung von Hand durchgeführt wird.  

Baker, S. [12] macht eine weitere Gliederung der Klone in sog. parametrisierte Klone, 
die eine Untermenge der Typ-2-Klone sind. Formal bedeutet dies, dass es eine 
bijektive Abbildung zwischen den zwei Codefragmenten gibt, die jedem Bezeichner 
eines Codefragments einen Bezeichner des anderen Codefragments zuordnet und 
umgekehrt. 

Werden die Bezeichner im kopierten Quelltext für alle Bezeichner konsistent 
umbenannt, so spricht man von einem konsistent umbenannten Typ-2-Klon, welches 
vor allem bedeutet, dass die Codefragmente sich in der Semantik nicht unterscheiden. 
Wird die Umbenennung im Gegensatz hierzu nicht konsistent durchgeführt, so spricht 
man von Typ-2-Klonen mit inkonsistenter Umbenennung. Der Grund hierfür können 
Fehler beim Umbenennungsvorgang sein. In diesem Fall besteht die Gefahr, dass sich 
die Klone unbeabsichtigt in der Semantik unterscheiden. In Abbildung 2.4 sind Klone 
mit konsistenter und inkonsistenter Umbenennung dargestellt. 

 

 

 

 

 

 

 

int a = 2; 
int b = 2 * a;  
String name = “Anna”; 

int	
  a	
  =	
  2;	
  //	
  Kommentar	
  
int	
  b	
  =	
  2	
  *	
  a	
  ;	
  //	
  Kommentar	
  
String name = “Anna”; 
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      Ursprünglicher Quellcode: 

	
   	
  

     Konsistente Umbenennung:	
   	
   Inkonsistente Umbenennung:	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

Abbildung 2.4: Typ-2 Klonpaare mit konsistenter und inkonsistenter Umbenennung 

 

2.3.3 Typ-3-Klone 

Die Typ-3-Klone, auch inkonsistente Klone genannt, umfassen Typ-1 und Typ-2-Klone. 
Hierbei handelt es sich um einen der beiden Klone, der z.B. durch Anpassen, 
Hinzufügen oder Löschen von Codezeilen modifiziert wurde. Typ-3-Klone werden auch 
inkonsistente Klone, bzw. Gaps [13], ungleiche Abschnitte, genannt. Dieser Typ des 
Klons entsteht, wenn eine bestehende Funktionalität im Softwarelebenszyklus weitere 
Funktionalitäten in der Kopie benötigt und dementsprechend angepasst wird [13], [14]. 
Daraus kristallisiert sich, dass der Typ-3-Klon sich von den vorherigen beiden 
Klontypen unterscheidet. 

Der Typ-3-Klon ist also ursprünglich ein Typ-1 oder Typ-2-Klon, welche durch die 
Modifizierung unterbrochen wird und daher sich von dem ursprünglichen Codefragment 
nicht nur in den Bezeichnern, Literalen und Kommentaren unterscheidet, sondern auch 
unähnliche Anweisungsteile enthält, wie in Abbildung 2.5 ersichtlich wird.  

Wichtig für den Typ-3-Klon ist die minimale Klonlänge, also der Schwellenwert für die 
Ähnlichkeit der Klonabschnitte sowie das Gap Ratio, welches bestimmt um wie viele 
Codezeilen sich ein Klonpaar unterscheiden darf [15]. Lediglich ein optimales 
Verhältnis der festgelegten Werte liefert ein optimales Ergebnis der erkannten Typ-3-
Klone. Andernfalls erfolgt eine ungünstige Verteilung von Klonabschnitten, welche sich 
über mehrere Klonklassen verteilen oder es werden die Klone nicht erkannt,sondern 
nur Teilabschnitte [15]. Ein weiterer Nachteil der ungünstig ausgewählten 
Schwellenwerte spiegelt sich in der Anzahl der Falsch-Positiven, welche sich erheblich 
erhöhen. Dies führt bei der Klonerkennung zu einer relativ schlechten Genauigkeit der 
Klonergebnisse. 

int a, b; 
for (a=0, b=50; 
       a <= b; 
      a=a+3; b=b-4)     
{….} 

int c, d; 
for (c=0, d=50; 
       c <= d; 
      c=c+x; d=d-4)     
{….} 

int c, d; 
for (c=0, d=50; 
       c <= c; 
      c=d+3; d=d-4)     
{….} 
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Abbildung 2.5: Typ-3 Klonpaar 

 

2.3.4 Typ-4-Klone 

Bei den Typ-4-Klonen handelt es sich um semantisch ähnliche Klone, die zwar dieselbe 
Funktionalität darstellen, jedoch syntaktisch unterschiedlich sind und somit nicht ohne 
weiteres als Klon erkannt werden. Beispielsweise sind die for-Schleifen, welche 
ebenfalls als while-Schleifen dargestellt werden können, ein Klon des Typs 4. Das 
Inkrement Operator „++“ in einigen Programmiersprachen kann durch die 
ausgeschriebene Schreibweise ersetzt werden und ist ebenfalls ein Beispiel für ein 
Typ-4-Klon. Die Bestimmung der semantischen Ähnlichkeit bei syntaktischer 
Verschiedenheit ist fast unmöglich. Daher wird dieser Klontyp in der Literatur eher 
selten erwähnt und hat wenig praktischen Nutzen. Die Abbildung 2.6 stellt zwei 
syntaktisch verschiedene jedoch semantisch gleiche Codefragmente dar. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
    

Abbildung 2.6: Typ-4 Klonpaar 

 

int a, b; 
for (a=0, b=50; 
       a <= b; 
      a=a+3; b=b-4)     
{….} 
 

int a, b; 
for (a=0, b=50; 
       a = a+1; 
       a <= b; 
      a=a+3; b=b-4)     
{….} 

int a (int betrag, int niedrig) { 
if (niedrig { 
 return (betrag *120)/100; 
} else { 
 return (betrag *150)/100; 
} 

} 
 
 
 
 
 
 

int b (int betrag, int niedrig) { 
 int prozent; 
  
 if (niedrig) { 
     prozent = 20; 
 } else { 
     prozent = 50; 
} 
return betrag + 
 (prozent * betrag) /100; 
} 
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2.3.5 Zusammenhang der Klontypen 

Die verschiedenen Klontypen stehen in der Mengenbeziehung im Zusammenhang. 
Das Mengenverhältnis zwischen den Klontypen lässt sich formal wie in Abbildung 2.7  
dargestellt folgendermaßen erfassen: 

 

Typ1⊂ Typ2 ⊂ Typ3 ⊂ Typ4 

 

 

Abbildung 2.7: Mengenbeziehung der Klontypen 

Mit steigendem Klontyp wächst die Anzahl der möglichen Codeklone. Der Grund hierfür 
ist, dass je höher der Klontyp ist, desto mehr Freiraum ist für die Abweichungen 
zwischen den geklonten Codeabschnitten vorhanden. 

In Abbildung 2.7 sind die Mengen der Klontypen dargestellt. Die Menge der Typ-2-
Klone umfasst die Menge der Typ-1-Klone, welche die Identitätsabbildung eines 
geklonten Codeabschnitts ist. Bei den Typ-2-Klonen existieren im Vergleich zu Typ-1-
Klonen Bezeichner, die konsistent bzw. inkonsistent umbenannt wurden.  

Die Identitätsabbildung wird durch den Typ-3-Klon erweitert, in dem die Unterschiede 
bspw. nicht nur in den Bezeichnern und im Layout vorkommen, sondern sich komplette 
Bereiche unterscheiden. Bei den Typ-4-Klonen kann, auf Grund fehlender 
syntaktischer Ähnlichkeit, keine Zuordnung von geklonten Codeabschnitten 
vorgenommen werden. 
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2.4 Klonerkennungsprozess inkonsistenter Klone 
Es gibt verschiedene Ansätze zur Klonerkennung die auf unterschiedlichen 
Klonerkennungswerkzeugen basieren. Gemeinsames Ziel der 
Klonerkennungswerkzeuge ist es, die Codefragmente miteinander zu vergleichen und 
mit möglichst wenig Aufwand möglichst viele Klone zu erkennen. Um den Aufwand für 
die Klonsuche zu reduzieren, existieren Klonerkennungsprozesse, welche in 
Unterstützung der Klonwerkzeuge umgesetzt werden.  

Roy u.a. [18] schaffen einen Gesamtüberblick über die wichtigsten Schritte in einem 
Klonerkennungsprozess. Sie stellen einen generischen Klonerkennungsprozess vor, 
die eine Menge von Schritten enthält, welche in der Regel von einem 
Klonerkennungstool bearbeitet werden. Hierbei befassen sie sich über die Token-
Ebene hinaus mit weiteren möglichen Klonerkennungsansätzen und vergleichen diese 
miteinander. Der vorgestellte generische Klonerkennungsprozess ermöglicht das 
Vergleichen und Bewerten von Klonerkennungswerkzeugen in Anlehnung auf ihren 
zugrundeliegenden Mechanismus für die einzelnen Klonerkennungsschritte und ihrer 
Höhe der Unterstützung für diese Schritte.  

Der Fokus dieser Diplomarbeit liegt auf inkonsistente Klone. Daher befasst sich dieses 
Kapitel mit einem Klonerkennungsprozess, welcher speziell für die Erkennung von 
inkonsistenten Klonen entworfen wurde, der auf Token-Ebene arbeitet und im 
Allgemeinen ausreichend für die Suche nach Copy&Paste Codefragmenten ist und 
zugleich effizient ist [6]. Für diesen Klonerkennungsprozess entworfene Algorithmen 
und Filter wurden als Teil von CloneDetective [19] implementiert, die auf ConQat 
basieren (hierzu mehr in Kapitel 4.1) und in der Lage sind inkonsistente Klone zu 
erkennen. 

Die Basisschritte für die Erkennung von inkonsistenten Klonen des vorgestellten 
Verfahrens beruhen ebenfalls auf den Schritten des allgemeinen 
Klonerkennungsprozesses [18]. Der Unterschied liegt darin, dass das 
Klonerkennungstool als eine Pipeline organisiert ist. Die Abbildung 2.8 schildert die 
einzelnen Schritte für die Klonerkennung. 

 

Abbildung 2.8: Klonerkennungsprozess [6] 
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2.4.1 Vorverarbeitung 
Vor der Vorverarbeitung werden zunächst der zu analysierende Code, bzw. die Daten 
durch den Loader (also aus dem Speicher) ausgelesen. Anschließend muss der 
Quellcode unterteilt und die Quelle und die Vergleichseinheiten bestimmt werden [18]. 
Im Klonerkennungsprozess, welcher für inkonsistente Klone entworfen wurde, basiert 
die Vergleichseinheit auf Tokens. Daher werden die Daten nach dem Auslesen mit 
Hilfe des Scanners in Tokens aufgeteilt [6]. 

Der nächste Schritt ist das Entfernen von uninteressanten Teilen des Quellcodes. 
Diese setzten sich aus generiertem Code, die Falsch-Positive verursachen können, 
Kommentaren und eingebettetem Code aus anderen Programmiersprachen 
zusammen. Letztlich setzt sich der Code aus aufgeteilten Tokens zusammen, welche 
durch die Tokenisierung erfolgt. 

 

2.4.1.1 Normalisierung 

Die Normalisierung ist ein wichtiger Bestandteil der Vorverarbeitungsphase. Die 
Normalisierung stellt aus den Tokens, die aus einmaligen Schlüsselwörtern, 
Bezeichnern und Operatoren bestehen, wieder Statements zusammen. Dieser Schritt 
ermöglicht eine bessere Anpassung der Normalisierung und hilft Klone zu vermeiden, 
die innerhalb von Statements beginnen und enden.  

Die Normalisierung beseitigt die Unterschiede in der Benennung der Bezeichner, 
konstanten Werten und Literalen, so dass sie beim Vergleich von Statements nicht 
relevant sind. In Abbildung 2.9 ist ein Beispiel für  die Normalisierung eines 
Codeabschnitts. In dem nicht normalisierten Codeabschnitt erfolgt das Umändern einer 
UTF-8-Datei in eine UTF-16-Datei. Es ist zu erkennen, dass die Bezeichner zu „id“ und 
die Literale zu „lit“ normalisiert wurden, so dass der Klonerkennungsalgorithmus diese 
als einen Klon erkennen kann. 
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Abbildung 2.9: Normalisierungsbeispiel [20] 

 

2.4.2 Erkennungsalgorithmus 

Als nächstes wird die aus den Statements gebildete Sequenz an den 
Klonerkennungsalgorithmus übergeben. Der speziell für diesen 
Klonerkennungsprozess entwickelte Algorithmus konstruiert aus dem Quelltext ein 
Suffix-Baum und führt anschließend, basierend auf einer Bearbeitungsdistanz, für jedes 
mögliche Suffix eine Klonsuche durch [6]. Anders ausgedrückt sollen für die Klonsuche 
gemeinsame Teilstrings in der Sequenz gefunden werden, die von allen Datenströmen 
gebildet wurden, in denen die Teilstrings nicht exakt identisch sein müssen, aber eine 
durch einen Schwellenwert begrenzte Bearbeitungsdistanz erfüllen.  

Als Ergebnis liefert der Erkennungsalgorithmus Klongruppen, welche aus Klonen 
bestehen, die aus den Sequenzen (normalisierten Tokens) ermittelt wurden. 

 

2.4.3 Nachverarbeitung und Filterung 

Zuletzt müssen die Klongruppen überarbeitet bzw. gefiltert werden. Um Speicherplatz 
zu sparen erfolgt die Filterung relativ früh. Das Ziel ist es, den Speicher nicht für nicht 
relevante Klongruppen zu verwenden. Das Eliminieren von Klongruppen, deren Klone 
sich nicht überlappen und Gruppen, deren Klone in anderen Klongruppen enthalten 
sind, ist ein wesentlicher Bestandteil des Filterns.  

Des Weiteren bietet das Filtern neben einer absoluten Grenze für die Anzahl der 
Inkonsistenten auch eine relative Grenze an. Das ermöglicht das Ausfiltern von Klonen, 
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in denen die Anzahl der inkonsistenten Klone im Verhältnis zur Länge des Klons einen 
bestimmten Betrag übersteigt [6].  

Der Nachverarbeitungsschritt bietet die Gelegenheit, Falsch-Positive durch eine 
manuelle Analyse oder automatisierte Heuristiken auszufiltern [18]. Die Ergebnisse des 
vorgestellten inkonsistenten Klonerkennungsvorgangs werden ebenfalls über eine 
HTML-Seite visuell in einem Tree Map (mehr dazu in Kapitel 4.1) dargestellt, so dass 
das manuelle Filtern von Falsch-Positiven beschleunigt werden kann. 

 

2.5 Ansätze zur Klonerkennung 
Nach dem in die Begrifflichkeiten und Definitionen der Klone eingeführt wurden, stellt 
dieses Kapitel Techniken und Verfahren zur Erkennung von Klonen in Codefragmenten 
vor. Die Ansätze zur Klonerkennung unterscheiden sich zunächst in der Granularität 
des berücksichtigten Wissens und der Abstraktionsebene der Analyse [21]. Nach deren 
Erklärungen werden die unterschiedlichen Klonerkennungsverfahren vorgestellt. 

 

2.5.1 Granularität 

Unter Granularität versteht man die „Größe“ der Einheiten, die bei der Klonerkennung 
verglichen werden müssen. Die Granularität bestimmt die Anzahl der potentiell 
notwendigen Vergleiche im Klonerkennungsvorgang. 

Zur Klonerkennung werden üblicherweise folgende Granularitätsstufen verwendet [21]: 

- Zeichen 
- Zeilen 
- Anweisungssequenzen 
- Funktionen 
- Module 

 
Für ein exaktes Verfahren wird die Granularität verfeinert, in dem kleinere 
Codefragmente gebildet werden und somit die Anzahl der zu vergleichenden Einheiten 
steigt. Jeder dieser Einheiten der Granularitätsstufe wird mit jeder anderen Einheit 
verglichen. Somit steigt also die Zahl der potentiellen Vergleiche und damit verbunden 
auch der Aufwand. Die steigende Granularität eines Verfahrens führt zu einem 
quadratischen Aufwand der Vergleiche.  

Werden zwei fünfstellige Codefragmente durch ein zeilenorientiertes Verfahren 
miteinander verglichen, so sind 25 Vergleiche durchzuführen, da jede Zeile des einen 
Codefragments mit jeder Zeile des anderen Codefragments verglichen wird. Im 
Vergleich dazu würden tokenorientierte oder zeichenorientierte Verfahren mit feinerer 
Granularität in der Regel deutlich höhere Vergleiche durchführen. 
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2.5.2 Abstraktionsebene 

Unter Abstraktionsebene versteht man die „Art“ der Einheiten, die zu vergleichen sind. 
Demzufolge gibt die Abstraktionsebene die Datenbasis an, auf der die Klonerkennung 
stattfindet. 

Zur Klonerkennung werden üblicherweise folgende Abstraktionsebenen unterschieden 
[21]: 

- Text 
- Token 
- Syntax 
- Semantik 
- Metriken 

 
Damit ein Codefragment als Klon erkannt werden kann, muss sie zunächst auf die 
geeignete Art, bspw. durch Normalisierung, abstrahiert werden. Mit zunehmender 
Abstrahierung können präzisere Aussagen getroffen werden, da die 
Programmiersprachenunabhängigkeit sinkt. Gleichzeitig steigt jedoch mit zunehmender 
Abstraktionsebene die Laufzeit. 
 
Damit beispielsweise ein Verfahren Typ-2-Klone erkennen kann, setzt ein 
Klonerkennungsverfahren mindestens auf der Tokenebene an, da auf dieser Ebene die 
Bezeichner in einem Quelltext von dem Rest des Quelltextes erkannt bzw. 
unterschieden werden können. 
 
 

2.5.3 Textbasierte Klonerkennung 

Die textbasierte Klonerkennung ist die bisher einfachste Methode zur Klonerkennung. 
Textbasierte Ansätze beruhen auf dem Vergleichen von Zeilen bzw. 
Anweisungssequenzen. Wenn mehrere gleiche aufeinanderfolgende Zeilen als ähnlich 
erkannt werden, gibt das Klonerkennungstool Klonpaare mit ihrer maximal möglichen 
Länge zurück.  Der zu vergleichende Quelltext wird üblicherweise nicht aufbereitet bzw. 
nur gering aufbereitet. Beispielsweise werden Whitespaces und Kommentare entfernt. 
Dieses Verfahren hat den Nachteil, dass sie nicht robust zu Veränderungen, zum 
Beispiel zu strukturellen Änderungen an den Anfangs- und Endzeilen eines 
Codefragments, führt. Der Vorteil hingegen besteht darin, dass auf Grund fehlender 
Aufbereitung, bzw. Transformation oder Normalisierung, keine sprachspezifischen 
Eigenschaften verwendet werden und das Verfahren infolgedessen sprachunabhängig 
ist. 

Es gibt Studien mit verschiedenen Ansätzen für die Umsetzung des textbasierten 
Verfahrens, die sich lediglich im Algorithmus zum Vergleich der Codezeilen 
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unterscheiden. Johnson, J.H. [22] macht bspw. einen Zeichenkettenvergleich mittels 
Hashwerten. Ducasse S. u.a. [23] führen dagegen einen zeilenweisen Vergleich über 
Dot-Plots durch. Die Abbildung 2.10 zeigt ein Beispiel für einen Vergleich über Dot-
Pots. 

Ein bekanntes Klonerkennungstool für das textbasierte Verfahren ist GNU diff, dessen 
Ziel das Ermitteln von Unterschieden zwischen zwei Dateien ist. Dieses Verfahren 
ermittelt lediglich die Unterschiede bzw. die Gleichheit zweier Dateien. 

 

Abbildung 2.10: Zeilenweiser Vergleich über Dot-Plots [24] 

2.5.4 Tokenbasierte Klonerkennung 
Im Gegensatz zur textbasierten Klonerkennung ist das tokenbasierte Verfahren 
fortgeschrittener und komplexer. Der Grund hierfür sind die in der ersten Phase der 
Klonerkennung verwendeten komplizierten Transformationsalgorithmen, um eine 
Zeichenfolge (auch tokenstream genannt) aus dem Quelltext zu konstruieren. Dies 
erfolgt durch die Anwendung einer lexikalischen Analyse (auch tokenization genannt) 
auf den Quelltext. Dieser Vorgang hat zur Folge, dass die tokenbasierten Techniken 
sprachabhängig werden. Der wichtige Vorteil dieser Technik ist, dass sowohl exakte als 
auch ähnliche Klone gefunden werden können, da eben durch die Transformation 
ähnliche Konstrukte angeglichen werden.  

Auch für dieses Verfahren gibt es einige Studien mit verschiedenen Ansätzen, die sich 
ebenfalls in der zweiten Phase des Klonerkennungsprozesses, nämlich im Algorithmus 
der Klonerkennung durch Auswertung der Zeichenfolgen unterscheiden.  

Das bekannteste Verfahren der tokenbasierten Klonerkennung ist die von Baker, B. 
[14,12]. Es handelt sich um ein zeilenorientiertes Verfahren, das Klone auf der 
Zeichenfolge (tokenstrom) erkennt. Dieses Verfahren kommt in ihrem Tool dup zum 
Einsatz, welches ein tokenbasiertes Pattern-Matching verwendet.  
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Bei diesem Verfahren wird zunächst für jede Codezeile, durch ein Lexem für die zu 
analysierende Sprache ein Parameter-String erzeugt (auch P-String genannt). 

Ein Parameter String besteht aus Nichtparametersymbolen und Parametersymbolen. 
Während ein eindeutiges Nichtparametersymbol (sog. Funktor) die Struktur einer Zeile 
enthält, besteht dagegen ein Parametersymbol aus den Variablen, die in der jeweiligen 
Codezeile verwendet wurden. Der Funktor repräsentiert die Struktur einer Codezeile 
eindeutig, so dass Codezeilen mit identischer Struktur auf den gleichen Funktor 
abgebildet werden. Das folgende Beispiel von Koschke [24] bildet eine Codezeile auf 
ein Parameter-String ab. 

Die 

Codezeile: x = x + y 

wird abgebildet auf den  

Parameter- String: (P = P + P; x,x,y)  

der dargestellt wird mit dem 

Funktor: αxxy 

Die Codezeile wurde in den dazugehörigen Funktor α und dessen Parameterliste 
umgewandelt. Demnach würden alle Zeilen, welche die Form P = P + P haben, auf den 
Funktor α abgebildet werden. Die erzeugten und konkatenierten P-Strings aller 
Codezeilen, die den Programmcode repräsentieren, werden anschließend in einen P-
Suffix-Baum übertragen. Der quadratische Aufwand für die Vergleiche wird durch die 
Verwendung des P-Suffix-Baums vermieden. Aus dem P-Suffix-Baum können sowohl 
die Position als auch die Länge und Anzahl der Klone direkt ermittelt werden.  

Vor dem Aufbau des Suffix-Baums wird für jeden P-String die prev-Funktion codiert, um 
von den Bezeichnern zu abstrahieren. Hierbei werden den Bezeichnern je nach ihrem 
Vorkommen Werte in der Parameterliste vergeben. Wenn ein Bezeichner das erste Mal 
in der Parameterliste vorkommt, erhält sie die Zahl 0. Für jedes weitere Vorkommen 
erhält sie die Zahl des relativen Abstands zum vorherigen Vorkommen.  

Der P-Suffix-Baum wird durch den P-String und der prev-Funktion zu den Suffixen 
erstellt. Der P-String eines Suffixes sowie die prev-Werte zu den Suffixen werden auf 
eine Kante eines Suffix-Baumes eingetragen, welche mit der Eingabeendzeichen $ 
enden.  

Zunächst wird der P-String des Suffixes auf eine Kante in ein Suffixbaum übertragen, 
welches mit dem Eingabeendzeichen $ endet (siehe Abbildung 2.11). Die komplette 
Suffixeingabe wird abgearbeitet, indem der Funktor, beginnend mit dem ersten, und die 
dazugehörige Parameterliste des P-Strings entfernt werden. Das Ergebnis wird 
anschließend erneut in den P-Suffixbaum eingetragen, bis die Eingabe abgearbeitet ist. 
Nun können alle Klone ausgehend von der Wurzel über die Kanten gefunden werden.  
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Das folgende Beispiel von Koschke und Simon [21] schildert eine übersichtliche 
Darstellung, die zu einem Suffix S den P-Suffix-Baum mit allen prev(Si) graphisch 
darstellt, wobei Si = sisi+1...sn$ das i´te Suffix von S ist. 

Suffix S = αyβyαxαx 

è prev(S1) = α0β2α0α2$ 
è prev(S2) = 0β2α0α2$ 
è prev(S3) = β0α0α2$ 
è prev(S4) = 0α0α2$ 
è prev(S5) = α0α2$ 
è prev(S6) = 0α2$ 
è prev(S7) = α0$ 
è prev(S8) = 0$ 
è prev(S9)  = $ 

 

 

Abbildung 2.11: P-Suffix-Baum zum Suffix S 

Für eine schnelle Klonerkennung eignet sich dieses Verfahren ausgesprochen gut und 
liefert ansprechende Ergebnisse [25]. Das Verfahren ermöglicht das Finden von 
konsistent umbenannten Typ-1 und Typ-2-Klonen. Typ-3-Klone werden durch einen 
separaten Schritt am Ende erkannt [26]. Hierzu werden mehrere gleiche Typ-1 und 
Typ-2-Klone die hintereinander vorkommen zu einem Typ-3-Klon zusammengefasst. 
Dieses Verfahren hat den Vorteil, dass es durch die niedrige Abstraktionsebene 
programmiersprachenunabhängig ist. Der Nachteil hingegen ist, dass durch die 
Bearbeitung auf Zeilenbasis, kleine Umformatierungen zu falschen Ergebnissen führen. 
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2.5.5 Abstrakter Syntaxbaum 

Dieser Ansatz der Klonerkennung basiert auf abstrakten Syntaxbäumen (AST). Ein 
bekanntes Tool für diesen Ansatz der Klonerkennung ist das von Ira D. Baxter [27] 
entwickelte Programm CloneDRTM.  

Bei diesem Verfahren wird zunächst zu jedem Quellcode ein AST erstellt. Alle 
Teilbäume werden gegeneinander abgeglichen und auf Gleichheit und Ähnlichkeit 
geprüft (siehe Abbildung 2.12). Mit der Absicht den quadratischen Aufwand zu 
vermeiden, werden die zu vergleichenden Bäume partitioniert. Die Partitionierung der 
Bäume erfolgt durch Hash-Funktionen [27]. Nun werden lediglich Teilbäume innerhalb 
einer gemeinsamen Partition verglichen. Teilbäume, die denselben Hashwert haben, 
deuten möglicherweise auf einen Klon [24]. Das Prüfen der Teilbäume auf Gleichheit 
und Ähnlichkeit findet mit Hilfe einer Ähnlichkeitsfunktion statt. Die Partitionierung und 
der Vergleich der AST ignoriert Bezeichner, sodass die Erkennung der Typ-2-Klone 
realisierbar ist. Um die maximale Anzahl der Klone zu finden, werden in einem 
Nachbearbeitungsschritt Klone, die aus mehreren Anweisungen bestehen gesucht und 
zusammengefasst. Resultierend aus diesem separaten Schritt am Ende können Typ-3-
Klone erkannt werden. 

Die Berücksichtigung der kommutativen Operatoren gehört zu den wichtigsten 
positiven Merkmalen dieses Verfahrens. Ein weiterer Vorteil ist, dass ganze 
Anweisungen also syntaktische Einheiten verglichen werden können. Das Verfahren 
liefert als Ergebnis syntaktisch vollständige Klone. Der Nachteil hingegen ist, dass das 
Verfahren auf Grund des syntaxbasierten AST-Matchings relativ aufwändig ist. Für das 
Erstellen der AST wird ein Parser für jede Programmiersprache benötigt, der dazu 
führt, dass dieses Verfahren der Klonerkennung weniger 
programmiersprachenunabhängig ist. 

 

Abbildung 2.12: Abstrakter Syntaxbaum [24] 
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2.5.6 Graphbasierte Klonerkennung 
Das graphbasierte Klonerkennungsverfahren auch Programm Dependence Graph 
(PDG) genannt, kann als eine Erweiterung der baumbasierten Technik betrachtet 
werden. Der Unterschied dieses Verfahrens liegt darin, dass durch den PDG die 
syntaktische Struktur des Quellcodes und der Datenfluss dargestellt werden können, 
die wiederum bei der Klonerkennung verwendet werden.  

Krinke, J. [28] hat für diesen Ansatz der Klonerkennung einen Tool namens duplix 
entwickelt, der mit Hilfe eines PDGs sowohl Informationen aus dem AST als auch über 
die Abhängigkeiten des Programms berücksichtigt. Die Klonerkennung erfolgt nun 
durch die Suche nach ähnlichen Teilgraphen, welche die Klone darstellen.  

Eine besondere Eigenschaft dieser Technik ist, dass sie, durch die Verwendung des 
PDGs, ein gutes Ergebnis für die Erkennung der falschen Codeduplikate liefert. Ein 
weiterer positiver Aspekt besteht darin, dass in der Anzahl der nicht identifizierten 
Codeduplikate ein guter Wert erzielt werden kann.  

Der Nachteil hingegen liegt im zeitintensiven Aufwand für das Erzielen der 
Analysegrundlage. Die Suche nach Klonen ist ebenfalls aufwändiger im Vergleich zu 
anderen Verfahren. Des Weiteren besteht der Nachteil darin, dass das Verfahren nicht 
programmiersprachenunabhängig ist. Dies wird bei der Analyse der zu erzeugenden 
ASTs und Ermittlung der Programmabhängigkeiten erkannt. Die mangelnde 
Programmiersprachenunabhängigkeit erschwert die Klonerkennung für verschiedene 
Programmiersprachen.  

 

2.5.7 Metrikbasierte Klonerkennung 

Die Umsetzung des metrikbasierten Klonerkennungsverfahrens findet sich in der 
Technik von Mayrand u.a. [29] wieder. Die bisher vorgestellten Verfahren leiten die 
Informationen aus dem Quellcode oder Strukturen ab, welche sowohl die Syntax als 
auch die Semantik des Quellcodes enthalten. Das Verfahren von Mayrand geht von 
bereits abstrahierten Informationen aus. In diesem Verfahren werden verschiedene 
Metriken für verschiedene Codefragmente erhoben. Anschließend wird aus den 
Metriken berechnet, ob zwei Codefragmente gleich oder ähnlich sind. Hierzu gibt eine 
Vergleichsfunktion eine Vorgabe, für welche Ausprägungen der gewählten Merkmale 
die zu vergleichenden Codefragmente als gleich oder ähnlich zu bewerten sind. In 
diesem Fall lassen sich gleiche Codefragmente in Typ-1-Klone und ähnliche 
Codefragmente in Typ-2-Klone kategorisieren. 

Die Granularität von Mayrand [29], also die erkannten Klontypen, kategorisieren sich in 
gleich, ähnlich, verschieden und sind von den jeweils gewählten Vergleichsfunktionen 
abhängig. Die Abstraktionsebene wird ebenfalls durch die, von der Vergleichsfunktion 
verwendeten Metrik bestimmt. 

Mayrand gliedert in folgende Vergleichsmetriken: 
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- Name 
- Layout 
- Anweisungen 
- Kontrollfluss 

 

Diese Vergleichsmetriken werden zum einen über den Quelltext, zum anderen über 
den AST als auch über den Kontrollflussgraphen erhoben.  

Da dieser Ansatz auf der Annahme beruht, dass sowohl bei einem gleichen Quellcode 
eine Metrik ebenfalls den gleichen Wert liefert, als auch bei ähnlichem Quellcode eine 
Metrik einen ähnlichen Wert liefert, kann diese Annahme ohne weiteres akzeptiert 
werden. Der Nachteil liegt jedoch darin, dass bei der Klonerkennung nicht erkannt 
werden kann, ob zwei Quellcodes gleich oder ähnlich sind. Daraus resultiert die 
Unklarheit in der Beurteilung, ob gleiche oder ähnliche Kennzahlen auch 
dementsprechend auf gleiche oder ähnliche Quellcodes hindeuten. 
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3 Forschungsstand 

Redundante Codestellen bzw. Code-Klone werden in einem Softwaresystem nicht 
ausgeschlossen. Klone in Systemen sind jedoch unterschiedlichen Gründen 
zurückzuführen. In einigen Klonfällen ist das Klonen sogar berechtigt. Klone in 
Softwaresystemen sind jedoch mit positiven sowie negativen Auswirkungen und 
Problemen verbunden. Es wurden zahlreiche Studien der Erkennung von Klonen 
speziell für inkonsistente Klone gewidmet, um der Ursache der Klone auf die Spur zu 
kommen. Für einen besseren Rückschluss der Auswirkungen der Klone, wurden 
ebenfalls zahlreiche Studien entwickelt, um die Fehler in Klonen zu analysieren und 
den Zusammenhang derer mit den Klonen zu ermitteln. Dieses Kapitel befasst sich mit 
allen diesen Themen im Detail und schafft einen Gesamtüberblick über 
Wissenschaftlichen Arbeiten, die dieses Thema behandeln. 

 

3.1 Gründe des Klonens 
Das Copy&Paste-Verfahren eines Entwicklers erzeugt bereits Klone. Es gibt 
verschiedene Gründe für das Entstehen eines Softwareklons. Diese werden nach 
Koschke [39] wie folgt kategorisiert: 

Entwicklungsstrategie 

Durch das Copy-Paste-Verfahren werden bestehende Funktionalitäten in den 
Codefragmenten für eine neue Funktionalität dupliziert. Das bedeutet also, wenn eine 
bereits bestehende Funktionalität in gleicher oder ähnlicher Form im Software-Projekt 
an einer anderen Stelle erforderlich ist, wird diese an die entsprechende Stelle kopiert 
und wenn nötig verändert und modifiziert. Der Klon fungiert also als Template für neue 
Funktionalitäten. 

 

Wartungsvorteile 

Ein weiterer Vorteil besteht darin, dass bei der Wiederverwendung von bestehenden 
Funktionalitäten die Wartung erleichtert wird, da es ich bei dem geklontem 
Codefragment um einen bewährten Quellcode handelt. Des Weiteren reduziert sich 
durch das Kopieren eines bewährten Quellcodes die Fehlerwahrscheinlichkeit im 
Quelltext. Ein besonders wichtiger Punkt für die Entwicklung ist die Unabhängigkeit 
zwischen den Projektdateien bzw. Komponenten, die durch das Kopieren erzielt 
werden kann. Die unabhängige Wartung der Komponenten ist daraus resultierend 
möglich. 
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Überwindung von Einschränkungen 

Eine weitere Ursache für das Entstehen von Klonen liegt in den eingeschränkten und 
verschiedenen Abstraktionsmechanismen einiger Programmiersprachen. Kim et al. [48] 
hat bspw. in einer Studie Programmierer während der Entwicklung beobachtet. Die 
Entwickler mussten in vielen Fällen klonen, weil die verwendete Programmiersprache 
nicht aussagekräftig war. Wenn also für ein bestimmtes Problem keine angemessene 
Möglichkeit zur Abstraktion besteht, wird dieses durch die Verwendung von Klonen 
behoben. Weitere Einschränkungen im Entwicklungszyklus, die das Klonen von 
Entwicklern begründen, sind mangelnde Entwicklungswerkzeuge, unzureichende 
Kenntnisse und damit verbunden auch fehlendes Problembewusstsein des Entwicklers 
sowie Zeitdruck.   

Die Verwendung von firmeninternen sowie programmiersprachenabhängigen 
Bibliotheken ist eine unvermeidbare Ursache für Klone, die nicht notwendigerweise 
einen negativen Einfluss haben, da lediglich ein erforderliches Protokoll implementiert 
wird. 

 

3.2 Folgen des Klonens 
Laut Studien enthalten 5-25% der Softwaresysteme redundante Codestellen [21, 40, 
41], welche sich negativ im Entwicklungszyklus des Software-Projekts auswirken. 
Durch das Klonen vergrößert sich nämlich der Codeumfang, sodass der Aufwand zum 
Verstehen des Quelltextes erheblich steigt [17] und damit verbunden nimmt der 
Testaufwand für das Software-Projekt zu, welcher wiederum für höhere Kosten sorgt 
[39]. Des Weiteren dauert die Kompilierungszeit der Datei länger. Der größere 
Codeumfang führt auch zu einem erhöhten Wartungsaufwand eines Systems und 
somit zu höheren Wartungskosten [2, 11, 5]. Die höheren Wartungskosten werden 
verursacht durch den erhöhten Aufwand für das Ändern eines geklonten 
Codefragments. Der Grund hierfür ist, dass Änderungen an einem geklonten 
Codefragment an allen Klonstellen einer Klongruppe modifiziert bzw. angepasst 
werden müssen. Die Gefahr besteht darin, dass bei unbewusstem Klonen die 
Änderungen nicht an allen Klonstellen angepasst werden und die Entwicklung der 
geklonten Codefragmente unabhängig voneinander erfolgt [6]. Eine unabhängige 
Weiterentwicklung kann durch das fehlende Verständnis des Entwicklers über das 
Systems entstehen. 

Im Gegensatz dazu gibt es jedoch Studien, die gegenteilige Ergebnisse liefern, wie 
bspw. dass Klone bewusst erstellt werden, um die Produktivität der Entwickler zu 
erhöhen [46]. Eine weitere Studie hat bewiesen, dass Entwickler bewusst Klonen, da 
sie sich an die verschiedenen Klonstellen erinnern und bei einer Änderung diese an 
allen Klonstellen durchführen [47].   
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3.3 Inkonsistente Klone und Fehler 
Laut Studien enthalten 5-25% der Softwaresysteme redundante Codestellen [21, 40, 
41], welche sich negativ im Entwicklungszyklus des Software-Projekts auswirken. 
Durch das Klonen vergrößert sich nämlich der Codeumfang, sodass der Aufwand zum 
Verstehen des Quelltextes erheblich steigt [17] und damit verbunden nimmt der 
Testaufwand für das Software-Projekt zu, welcher wiederum für höhere Kosten sorgt 
[39]. Des Weiteren dauert die Kompilierungszeit der Datei länger. Der größere 
Codeumfang führt auch zu einem erhöhten Wartungsaufwand eines Systems und 
somit zu höheren Wartungskosten [2, 11, 5]. Die höheren Wartungskosten werden 
verursacht durch den erhöhten Aufwand für das Ändern eines geklonten 
Codefragments. Der Grund hierfür ist, dass Änderungen an einem geklonten 
Codefragment an allen Klonstellen einer Klongruppe modifiziert bzw. angepasst 
werden müssen. Die Gefahr besteht darin, dass bei unbewusstem Klonen die 
Änderungen nicht an allen Klonstellen angepasst werden und die Entwicklung der 
geklonten Codefragmente unabhängig voneinander erfolgt [6]. Eine unabhängige 
Weiterentwicklung kann durch das fehlende Verständnis des Entwicklers über das 
Systems entstehen. 

Im Gegensatz dazu gibt es jedoch Studien, die gegenteilige Ergebnisse liefern, wie 
bspw. dass Klone bewusst erstellt werden, um die Produktivität der Entwickler zu 
erhöhen [46]. Eine weitere Studie hat bewiesen, dass Entwickler bewusst Klonen, da 
sie sich an die verschiedenen Klonstellen erinnern und bei einer Änderung diese an 
allen Klonstellen durchführen [47].   

Des Weiteren befassen sich Juergens et. al. [6] mit der Erkennung und den 
Auswirkungen der inkonsistenten Klone und Fehlern und stellen fest, dass beim 
unbewussten inkonsistenten Klonen, jeder zweite Klon einen Fehler verursacht. 

Es gibt auch zahlreiche wissenschaftliche Beiträge, die positive Rückschlüsse zu 
inkonsistenten Klonen liefern. Beispielsweise hat Krinke [45] in seiner Studie bewiesen, 
dass bei einer konsistenten sowie inkonsistenten Änderung von Klonen nur 50% der 
Klongruppen einer konsistenten Änderung unterzogen wurde. Außerdem wurde 
festgestellt, falls eine Klongruppe bereits inkonsistent gewesen ist, diese auch 
inkonsistent bleibt, da nur ein minimaler Anteil der inkonsistenten Klone durch spätere 
Änderungen im Laufe der Entwicklung konsistent wird. 

Die Studie von Rahman [10] analysiert die Beziehung zwischen Klonen und 
Fehleranfälligkeit. Zum einen haben sie erkannt, dass die große Mehrheit der Fehler 
nicht signifikant mit Klonen verbunden sind und zum anderen, dass geklonte 
Codefragmente weniger fehleranfällig als nicht-geklonte Codefragmente sind [10].  
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4 Werkzeugunterstützung und Software Systeme 

4.1 ConQat 
Das folgende Kapitel befasst sich mit dem Tool ConQat, welches in dieser Arbeit zur 
Klonerkennung verwendet wird. Nach einem kurzen Überblick in die ConQat- Details 
erfolgt die Beschreibung des Designs und der Architektur. Zuletzt wird die 
Klonerkennung mittels ConQat im Detail beschrieben. 

 

4.1.1 Überblick zu ConQat 

Das Tool Continuous Quality Assessment Toolkit, genannt ConQat, ist ein Werkzeug 
zur kontinuierlichen Software- Qualitätskontrollanalyse. Die Softwarequalität, welche 
einen bemerkenswerten Einfluss auf die Wartung und Weiterentwicklung hat, wird in 
der Entwicklung oft vernachlässigt. Die automatisierte Überwachung diverser 
Qualitätskriterien ist für die Durchführung von kosteneffizienten und kontinuierlichen 
Qualitätssicherungsmaßnahmen erforderlich. Ausgehend von diesem Problem wurde 
ConQat an der Technischen Universität München im Jahre 2007 für den effizienten 
Aufbau von Qualitätskontroll-Dashboards gegründet. Diese Qualitätsdashboards 
werden für das Planen und Steuern von IT-Projekten eingesetzt und schaffen einen 
Überblick über qualitätsrelevante Kriterien in einem Projekt. Hierunter sind ebenfalls 
Qualitätsdashboards für Klone, bzw. für die Klonerkennung, zu finden, die einen 
bemerkenswerten Einfluss auf die Qualität einer Software haben können. 

Das besondere an ConQat ist, dass es in Zusammenarbeit mit der TU München und 
der CQSE GmbH kontinuierlich weiterentwickelt und als Open-Source-Software 
kostenlos angeboten wird. 

 

4.1.2 Design und Architektur 
Um den verschiedenen und umfangreichen Qualitätsanforderungen gerecht zu werden, 
fokussiert sich das Design von ConQat auf die Erweiterbarkeit und Flexibilität. Deshalb 
wurde ConQat [49] als ein Plug-In Architektur entworfen, welche das Hinzufügen oder 
Entfernen von Analysemodulen zur Ladezeit ermöglicht. Das ConQat beruht auf einem 
Pipes&Filter orientiertem Konzept, welches durch ein Netzwerk verschiedener 
Prozessoren strukturiert ist [49]. Diese Prozessoren sind das zentrale Element von 
ConQat und wurden in Java implementiert, welche jeweils für eine gewidmete Analyse 
verantwortlich sind. Die Prozessoren implementieren sehr unterschiedliche Funktionen 
und arbeiten, indem sie mehrere Inputs akzeptieren und lediglich einen einzigen Output 
produzieren [50]. Das Output von ConQat, also die Ergebnisse, werden als XML-
Dateien und HTML-Seiten ausgegeben. Das besondere an ConQat ist, dass die 
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Ergebnisse ebenfalls als Graphiken, bspw. Treemap, oder Trends dargestellt werden 
können. Die ConQat Architektur verfügt über eine Driver Komponente, welche für die 
Konfiguration des Prozessornetzwerkes und der Weitergabe von Informationen 
zwischen Prozessoren verantwortlich ist.  

Wie auch aus der Abbildung 4.1 zu entnehmen ist, können Prozessoren auf externe 
Daten, wie das Dateisystem oder auf Datenbanken, entweder direkt oder über einen 
der mitgelieferten Bibliotheken und Caches zugreifen.  

 

Abbildung 4.1: ConQat Architektur 

Die Architektur von ConQat stellt einen leistungsfähigen Konfigurationsmechanismus 
dar, da die Prozessoren auf vielfältiger Weise miteinander verbunden werden können. 
Auf Grund der uneingeschränkten Funktionalität der Prozessoren kann ConQat eine 
Vielfalt von Faktoren, welche die Wartbarkeit oder andere Qualitätsaspekte 
beeinflussen, bewältigen.  

 

4.1.3 Klonerkennung mit ConQat 

In Kapitel 2.5 wurden verschiedene Ansätze zur Klonerkennung beschrieben. ConQat 
führt die Klonerkennung Token-basiert mittels Syntaxbäumen durch. Die Analyse der 
TWT-Systeme nach konsistenten und inkonsistenten Klonen erfolgt in dieser Arbeit mit 
ConQat. ConQat hat durch die kontinuierliche Weiterentwicklung der Funktionalitäten 
einen hohen Bekanntheitsgrad erreicht [19, 52, 53] und wird in vielen Studien bzw. 
Forschungsgruppen ebenfalls als Basistechnologie zur Klonerkennung eingesetzt [6, 
51]. 
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Da die in dieser Arbeit zu analysierenden Systeme ausschließlich Java Projekte sind, 
wird lediglich die Klonerkennung für Java Projekte beschrieben. ConQat unterstützt die 
Klonerkennung für Textdokumente, welche in [51] ihre Anwendung erhalten hat sowie 
für graphenbasierte Modelle und für Quelltexte. Da ConQat ein plattformunabhängiges 
Tool ist, unterstützt es die Sprachen ABAP, Java, C#, C/C++, ADA, Visual Basic, PL1 
und PL/SQL.  

Für die Erkennung exakter Klone wird das ConQat Konfigurationsblock „clonedetection-
example.junit.cqr“ ausgewählt, um die Klonerkennung für den Quelltext zu 
konfigurieren. Im Konfigurationsfenster wird die minimale Klonlänge gewählt. Hier hat 
sich laut Studien eine minimale Klonlänge von 10 als optimal erwiesen. Anschließend 
wird unter „input“ der Ordner gewählt, welche den zu analysierenden Quelltext enthält. 
Im letzten Schritt wird unter „output“ der Ordner festgelegt, in dem die Klonergebnisse 
zu speichern sind. Nach diesen Angaben wird durch „Launch ConQat analysis“ die 
Klonanalyse durchgeführt, siehe hierzu Abbildung 4.2.  

 

 

Abbildung 4.2: Klonerkennung- Konfiguration für exakte Klone 

Für die Analyse von inkonsistenten Klonen, in ConQat „gapped Clones“ genannt, 
erfolgt die Klonanalyse ähnlich wie in Abbildung 4.2 zu entnehmen ist. Hierzu wird das 
Konfigurationsblock „JavaGappedCloneAnalysis.cqr“ gewählt. Diese feinere Form der 
Klonanalyse erfordert die Angabe einer „gap ratio“ und einer maximalen Fehleranzahl. 
Das „gap ratio“ gibt an, um wie viele Codezeilen sich ein Klonpaar unterscheiden darf. 
Es hat sich laut Studien ein gap ratio von 0.25 bewährt, d.h. bei einem 8 Zeilen Code 
im Klonpaar dürfen sich lediglich 2 Codezeilen unterscheiden. Des Weiteren hat sich 
eine Fehleranzahl von 10 etabliert. Die Abbildung 4.3 zeigt das Konfigurationsfenster 
für inkonsistente Klone.  
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Abbildung 4.3: Klonerkennung- Konfiguration für inkonsistente Klone 

In beiden Verfahren wird im Ausgabeordner ein HTML Dokument mit „index.html“ 
konfiguriert, welches die graphische Darstellung der Klonerkennungsergebnisse, wie in 
Abbildung 4.4 dargestellt, enthält.  

 

 

Abbildung 4.4: Übersicht zu den Klonerkennungsergebnissen 

Das besondere an ConQat ist die Kloninspektionssicht, welche im festgelegten 
Ausgabeordner durch die Klonanalyse auf effizienter Art und Weise erstellt wird. Diese 
Sicht ist die Voraussetzung für die Überprüfung für Falschpositive und für die 
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Bewertung der Ergebnisse. Sie ermöglicht verschiedene Einsichten zu einem geklonten 
Code. Es werden explizit die Klonklassen, Klondateien, Klonlängen etc. angegeben, 
wie aus Abbildung 4.5 zu entnehmen ist.  

 

 

Abbildung 4.5: Klonerkennungsperspektiven 

 

4.2 Mercurial 
Mercurial ist ein plattformunabhängiges, verteiltes Versionskontrollsystem. Es verwaltet 
kleine sowie größere Projekte und stellt einfache und intuitive Schnittstellen zur 
Verfügung. Bevor ein Versionskontrollsystem überhaupt zum Einsatz kommt, sollte 
man wissen, was eine Versionskontrolle ist und was für Vorteile ihre Verwendung mit 
sich bringt. Daher behandelt dieses Kapitel zunächst die Versionskontrolle. 
Anschließend werden die Struktur sowie die Funktionen von Mercurial detailliert und 
graphisch beschrieben. Zuletzt befasst sich das Kapitel mit dem für Mercurial 
zugeschnittenen Frontend – TortoiseHg. 
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4.2.1 Versionskontrolle 

Eine Version ist ein Stand einer Software-Einheit, die durch das Ändern bzw. das 
Verbessern der Einheit entsteht [31]. Unter Versionskontrolle hingegen versteht man 
den Prozess der Verwaltung mehrerer Versionen einer Information [30]. Das ist der 
manuelle Vorgang, wenn eine Änderung an einer Datei auf einer Versionsnummer 
vorgenommen wird und diese unter einem neuen Namen gespeichert wird und eine 
Nummer enthält, welche höher als die Versionsnummer ist, auf der die Änderung 
durchgeführt wurde. Durch die Versionskontrolle können praktisch jede Art von Dateien 
nachverfolgt werden. Die manuelle Verwaltung von zahlreichen Versionen kann Fehler 
verursachen. Der Grund hierfür ist, dass mehrere Entwickler an einem Projekt beteiligt 
sind und zum Teil zeitgleich Änderungen vornehmen. Das kann zu Konflikten in den 
Versionen führen. Daher ist eine automatisierte Versionskontrolle erforderlich, welche 
im nächsten Kapitel beschrieben wird. 

 

4.2.2 Funktionen Mercurial 

Tools die das Automatisieren der Versionskontrolle ermöglichen, werden 
Versionskontrollsysteme genannt. Es gibt viele Versionskontrollsysteme, die keine 
Probleme in der Handhabung von großen Projekten haben. Diese bewältigen 
problemlos Projekte, an dem Tausende von Entwickler gleichzeitig arbeiten, welche 
aus einer großen Anazhl von Dateien bestehen [30]. Versionskontrollsysteme 
ermöglichen das Protokollieren jeglicher Art von Änderungen an einer Datei über die 
Zeit hinweg. Somit kann zu jedem Zeitpunkt auf verschiedene Versionen sowie 
Änderungen zugegriffen werden. 

Wie bereits genannt ist Mercurial ein plattformunabhängiges, schnelles, 
leichtgewichtiges und verteiltes Versionskontrollsystem, die für eine einfache und 
effiziente Verwaltung von großen verteilten Projekten entwickelt wurde. Mercurial wird 
größtenteils in Python geschrieben. Die Anwendung von Mercurial erfolgt größtenteils 
über die Kommandozeile, beginnend mit „hg“. Dieses Kapitel gibt eine kurze 
Einführung über die Funktion des verteilten Versionskontrollsystems sowie in die 
effektive Nutzung von Mercurial durch die grundlegenden Funktionen. 

 

Verteilte Versionsverwaltung 

Bei der verteilten Versionsverwaltung hat jeder Entwickler, im Gegensatz zur zentralen 
Versionsverwaltung, ein eigenes Repository. Das Repository aus dem Server wird lokal 
auf den eigenen Arbeitsspeicher kopiert, d.h. geklont. Dies hat den Vorteil, dass falls 
ein Server beschädigt wird, das Repository von einem beliebigen Entwickler 
ausgewählt und wieder hergestellt werden kann [32]. Da lokal auf dem eigenen 
Repository weiterentwickelt wird, ist die Versionsgeschichte dementsprechend verteilt. 
Ein weiterer Vorteil hierbei ist, dass die Änderungen lokal verfolgt werden können ohne 
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sich zum Hauptserver zu verbinden. Des Weiteren ermöglicht die verteilte 
Versionsverwaltung das simultane Arbeiten mehrerer Entwickler an derselben Version, 
ohne dass Konflikte überhaupt entstehen können.  

Sich widersprechende Versionen werden durch mehrere Zweige in der 
Versionsgeschichte dargestellt, die durch Weiterentwicklung zu einer gemeinsamen 
Version zusammengefasst werden. 

Weshalb unter zahlreichen verteilten Versionskontrollsystemen ausgerechnet Mercurial 
genutzt werden sollte, begründet B. O’Sullivan [30] wie folgt: 

- Mercurial ist leicht zu lernen und einfach zu bedienen. 
- Mercurial ist leichtgewichtig. 
- Mercurial ermöglicht eine hohe Skalierbarkeit. 
- Mercurial ist einfach anzupassen. 

 

Die Abbildung  4.6 stellt die verschiedenen Funktionen in Mercurial dar. In einem 
verteilten Versionskontrollsystem sowie Mercurial werden folgende Begriffe verwendet: 
 
Repository:  

è Ein Repository ist ein zentrales Archiv. Diese umfasst in einer Baumstruktur alle 
Versionen von verschiedenen Dateien sowie ihre Logdateien. 
 

Master Repository: 
è Das Haupt-Repository ein einem Unternehmen, das den aktuellsten Stand eines 

Softwaresystems enthält. 
 

Working Directory: 
è Das lokale Arbeitsverzeichnis eines Entwicklers wird als Working Directory 

bezeichnet.  
 

Des Weiteren werden verschiedene Funktionen in Mercurial verwendet. Die Tabelle 4.1 
schafft einen kurzen Einblick auf die wichtigsten Funktionen in Mercurial und beschreibt 
sie explizit. 
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Tabelle 4.1: Funktionen in Mercurial 

Funktion Beschreibung 

Clone Durch die Clone-Funktion wird der 
ausgewählte Stand des Master 
Repositorys 1:1 auf das Working Directory 
kopiert. 

 
Commit Die Commit-Funktion aktualisiert das 

lokale Arbeitsverzeichnis mit den 
Änderungen aus dem Working Directory. 
Durch Commit legt Mercurial eine neue 
Revision an. 
 

Update Durch die Update-Funktion wird der 
aktuelle Stand des Master Repositorys in 
das Working Directory übertragen. Das 
heißt neu hinzugekommene Revisionen 
werden in das Working Directory 
hinzugefügt, so dass sich dieser auf dem 
Zustand des Master Repositorys befindet. 
 

Merge Durch die Merge-Funktion werden 
simultane Entwicklungszweige 
zusammengeführt.  
 

Pull Die Pull-Funktion zieht die Daten aus 
fremden Repositorys in das eigene 
Working Directory. 
 

Push Durch die Push-Funktion werden die 
Änderungen bzw. Dateien aus dem 
eigenen Working Directory in ein fremdes 
Repository übertragen. 
 

Serve Die Serve-Funktion startet das Master 
Repository-Server, um anderen die Pull-, 
Push- und Clone-Funktion zu ermöglichen 
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Abbildung 4.6: Die Funktionen von Mercurial 

 

4.2.3 TortoiseHg 

Das Tool TortoiseHg ist ein einfach zu bedienendes Frontend und steht mit ihrer 
graphischen Oberfläche für Microsoft Windows zur Verfügung, um die Benutzung von 
Mercurial ohne Kommandozeilenbefehle durchzuführen. Die Revisionshistorien der 
einzelnen Projekte und Dateien können über das Arbeitsverzeichnis in einer 
graphischen Oberfläche übersichtlich dargestellt werden. Des Weiteren können mit 
Hilfe von TortoiseHg alle Funktionen von Mercurial ausgeführt werden und die 
Revisionshistorie wird in Form einer Baumstruktur sehr übersichtlich dargestellt. 
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4.3 FogBugz 
Das webbasierte System FogBugz ist ein Projektmanagementsystem sowie ein Issue-
/Bug-Tracking-System, welche umfangreiche Funktionalitäten für Entwicklerteams 
anbietet.  

Ein Issue-/ Bug-Tracking-System ist ein Werkzeug, mit dem diverse Aufgaben in einem 
Projekt, wie das Bearbeiten von Kundenanfragen und Entwicklervorschlägen, welche in 
Tickets bzw. Fällen (Cases) angelegt und einzelnen Personen zugewiesen sind, 
verwaltet werden. Diese Fälle können Bugs, Features, Scheduled Items sein und 
werden mit Prioritätslevel belegt. FogBugz verfolgt alle Fälle und Tickets an einem 
zentralen Ort, damit in der Entwicklungshistorie nichts vergessen wird [34].  

Des Weiteren können Fehler sehr leicht und schnell in FogBugz über das FogBugz 
Screenshot- Tool, per E-Mail oder über den Browser erfasst werden. Dadurch kann 
auch jeder Fall in kürzester Zeit bearbeitet und im Falle eines Fehlers behoben bzw. 
gefixt werden. Der Bearbeiter eines Cases aktualisiert anschließend den Status seines 
Fortschritts. Dadurch werden fertige Features wieder an den Projektleiter 
zurückgesendet. 

Eine besondere Eigenschaft von FogBugz ist die facettenreiche Suchoption. Es können 
die gesamte Fallliste aber auch Wiki- und Kundenbeiträge gesucht werden. 

Das Projektmanagementsystem von FogBugz bietet diverse Funktionalitäten für die 
Entwickler eines Projektes an. Folgende Managementaufgaben sind mit dem Einsatz 
von FogBugz möglich [33]: 

• Das Erfassen der Aufgaben mit Fällen und Unterfällen (bzw. Cases und 
Subcases) 
 
à In FogBugz wird jede Aufgabe (also Issue) und jeder Fehler (also Bug) mit 
einem Fall (also Case bzw. Subcase) verbunden. Diese werden von dem 
verantwortlichen bzw. zum Fall eingetragenen Entwickler bearbeitet. 
 
à Ein Fehlereintrag in FogBugz kann in der Case-Liste, wie in Abbildung 4.7, 
durch den roten Käfer erkannt werden. 
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Abbildung 4.7: Bugeintrag in FogBugz [33] 

• Das Erstellen von Meilensteinen 
 
à Üblicherweise wird für einen Projekt ein Projektplan erstellt, welcher auf 
Meilensteinen basiert. FogBugz ermöglicht das Hervorheben von wichtigen 
Terminen in den Meilensteinen sowie das Erstellen von Meilensteinen. 

• Visualisierung von Falldaten 
à FogBugz bietet eine große Vielfalt an graphischer Darstellung bzw. 
Auswertung von Falldaten. 
 

• Kontrolle der Änderungen über die Entwicklungszeit 
à FogBugz speichert Snapshots über die Revisionshistorie eines Falls, 
einschließlich der Details zum Fall. 
 

• Zusammenarbeit mit Teamkollegen  
• Treffen von Fristen  
• Kontrolle über Ihre Projekte  
• Integration mit Versionskontrolle  

 

4.4 Kiln 
Kiln ist ein webbasiertes System für das Quellcodehosting von Git und Mercurial. Git ist 
ebenfalls wie Mercurial ein Versionskontrollsystem. Des Weiteren bietet Kilnden  
Entwicklern durch die Leistungen von Git und Mercurial eine Einfachheit bei der 
Entwicklung von Softwareprojekten und zudem eine ausgezeichnete Gelegenheit 
Softwarecodes zu verwalten und den größten Nutzen daraus zu ziehen. 

Bei der Nutzung von Mercurial bzw. Git stellt der Kiln-Server den zentralen Punkt des 
Versionskontrollsystems dar. Dabei werden die Daten zentral abgelegt. Mit anderen 
Worten hat also Kiln eine zweifache Funktion. Zum einen dient er als Datenspeicher 
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und zum anderen als Verteilknoten für den Quelltext sowie für weitere projektrelevante 
Dateien. Dies ermöglicht eine verteilte Softwareentwicklung in Teams. 

Es sprechen viele aussagekräftige Argumente für die Nutzung von Kiln. Einige dieser 
lauten wie folgt [36]: 

1) Kiln ermöglicht die synchrone Entwicklung der Entwickler und unterstützt die 
Entwickler bei der gemeinsamen Entwicklung. 
 

è Kiln enthält jeden Stand des Softwareprojektes. Des Weiteren können Entwickler 
eines Teams gegenseitig in die Änderungen des Quelltexts einsehen.  
 

2) Kiln bietet eine verteilte Versionskontrolle eines Softwareprojekts an. 
 

è Es können mehrere Entwickler an einem Code arbeiten, so dass 
unterschiedliche Quelltexte (also Branches) entstehen, und diese dann durch 
Kiln zusammengeführt werden (Merge) (siehe Abbildung 4.8). 

 

 

Abbildung 4.8: Verteilte Versionskontrolle in Kiln [36] 

 
3) Kiln ermöglicht die Integration von FogBugz 

 
è Die Integration von FogBugz geschieht über denselben Login wie Kiln. Mit 

anderen Worten, Kiln und FogBugz teilen sich ein Login. Durch einen 
gemeinsamen Login ist ein reibungsloser und gemeinsamer Arbeitsablauf 
verfügbar. Der Vorteil hierbei ist, dass Entwickler beim Entwickeln nicht 
zwischen zwei Systemen wechseln müssen. 
 

è Mit Kiln und FogBugz können Fehler gemeldet und behoben werden, in dem der 
Code weiterentwickelt wird. Bei der Fehlerbehebung besteht die Möglichkeit alle 
Codestellen eines Bereichs zu aktualisieren, in dem der Fehler vorhanden ist.  
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4) Kiln ermöglicht eine übersichtliche Organisierung von Projekten und Repositorys 
è In Kiln werden die Repository Management Seiten sowie die 

Projekteinstellungsseiten auf einer einzigen Seite dargestellt, so dass die 
Navigation einfach durchzuführen ist und die Seiten leicht zu lesen sind. 

 

5) Kiln bietet eine äußerst leistungsfähige Codesuche. 
è Über das integrierte Suchfeld besteht die Möglichkeit sehr schnell auf 

„Changesets“ (über die „ChangesetID“), Dateien und Codes zuzugreifen. Die 
Suchoption in Kiln ist sehr effektiv bei der Suche nach Problemcodes, die 
behoben werden müssen, sowie bei der Suche nach guten und nützlichen 
Codestellen, die wiederverwendet werden können [37].  
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5 Studiendesign 

In diesem Kapitel wird das Herzstück der Arbeit präsentiert. Um einen besseren 
Eindruck auf die mögliche Fehlerträchtigkeit der inkonsistenten Klone zu erhalten 
wurde ein Studiendesign entwickelt. Dieses Kapitel umfasst das Studiendesign zur 
Analyse der TWT-Systeme. Zunächst werden die Studienobjekte mit faktischen Daten 
beschrieben. Das darauf folgende Unterkapitel beschreibt die Forschungsfragen. 
Anschließend wird geschildert, wie die notwendigen Daten für die Analyse aufbereitet 
werden. Mit diesen Daten erfolgt die Durchführung der Studie mittels einer 
Datenbankanwendung. Das letzte Unterkapitel beschreibt für jede Forschungsfrage die 
Vorgehensweise der Datenanalyse. 

 

5.1 Studienobjekte 
Die Studie wird auf den Systemen der TWT GmbH durchgeführt. Als Quellen für die 
Softwaresysteme wurden drei Projekte gewählt, die in Entwicklung sind und über eine 
lange Entwicklungshistorie verfügen. Alle Systeme werden ausschließlich in Java durch 
verschiedene Teams und mit verschiedenen Funktionalitäten entwickelt. Die Anzahl der 
Systeme und die Beteiligung mehrerer Entwickler an einem Projekt führen zu besseren 
Analyseergebnissen der Studie. Des Weiteren sind die Systeme bereits im Einsatz und 
werden kontinuierlich weiterentwickelt und angepasst. Aus Datenschutzgründen 
werden die Namen der Systeme nicht genannt und erhalten eine Bezeichnung von A 
bis C. Detaillierte Informationen zu den Systemen, wie Alter und Codezeilen, sind in 
Tabelle 5.1 erfasst.  

TWT steht für Technisch-Wissenschaftlicher Transfer und stellt die rasche Umsetzung 
wissenschaftlicher Expertise in technologisch anspruchsvolle Produkte und 
Dienstleistungen in den Geschäftsfeldern Information & Engineering Technologies dar. 
Das Portfolio umfasst die Software-, Produkt-, und Prozessentwicklung sowie die 
technische Beratung und Industrieforschung. An den Standorten Stuttgart, München, 
Friedrichshafen und Ingolstadt entwickelt die TWT GmbH seit 1986 als 
Technologiepartner der Branchen Automotive, Aerospace, Healthcare und Energy, für 
ein breites Spektrum an Kunden, eine ganzheitliche und maßgeschneiderte Lösung.  

Die in dieser Studie untersuchten Systeme A bis C wurden für verschiedene 
Unternehmen aus der Automobilindustrie entwickelt und stellen wesentlich 
verschiedene Funktionalitäten dar. Die Systeme werden seit vier bis fünf Jahren von 
insgesamt 25 bis 30 Entwicklern entwickelt und gewartet. Des Weiteren nutzen alle 
Systeme dieselbe firmeninterne Bibliothek. 
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Tabelle 5.1: Informationen zu den analysierten Systemen 

System Organisation Sprache Größe 
(kLOC) 

Revision Alter Entwickler 

 
A 

Automobil- 
industrie 

 
Java 

 
253 2740 4 Jahre 

 
10 

 
B 

Automobil- 
industrie 

 
Java 

 
332 

 
1622 

 
5 Jahre 

 
5 

 
C 

Automobil- 
industrie 

 
Java 

 
454 

 
2181 

 
4 Jahre 

 
10 

 

 

5.2 Forschungsfragen 
Das zugrundeliegende Problem, das wir analysieren, ist der Zusammenhang zwischen 
inkonsistenten Klonen und ihren Fehlern. Dieses Problem wirft einige Fragen auf, 
welche sich durch detaillierte Analysen beantworten lassen und ein besseres 
Verständnis schaffen. Die Studie beruht auf drei Hauptfragen die sich zum Teil durch 
die Untergliederung in weiteren Fragen beantworten lassen. 

 

Forschungsfrage 1: Enthalten Systeme inkonsistente Klone? 

An erster Stelle muss geklärt werden, ob die zur Analyse stehenden Systeme 
inkonsistente Klone enthalten. Hier steht jedoch der Anteil der inkonsistenten Klone im 
Vordergrund. Es wird also ermittelt, ob die inkonsistenten Klone signifikant höher sind 
als die restlichen Klone des Systems. Das Verhältnis der inkonsistenten Klone zu 
exakten Klonen ist also eine Analyse, welche die Analyseergebnisse unterstützen soll. 

 

Forschungsfrage 2: Können inkonsistente Klone Indikatoren für Fehler sein? 

Nachdem die inkonsistenten Klone in den realen Systemen ermittelt wurden, wird 
festgestellt, ob sie eine Verantwortung für Fehler tragen. Hierzu wird die 
Revisionshistorie der Datei in Betracht gezogen, ob sich im Laufe der Zeit in den 
inkonsistenten Klonen Fehler bilden. Für ein umfangreicheres Verständnis lässt sich 
diese Frage durch das Beantworten weiterer Fragen rückschließen. Jede Unterfrage 
dient als Antwortbaustein zur Hauptfrage. Wichtig ist hierbei, den Zusammenhang der 
inkonsistenten Klone mit einem Issue-Tracking-System zu analysieren sowie die 
inkonsistenten Klone zu analysieren, die keinen Bezug zu einem Issue-Tracking-
System haben. Daraus lassen sich informative faktische Daten ermitteln. In diesem 
Zusammenhang ist es von Bedeutung die Inkonsistenten auf Fehlerkorrektur zu 
analysieren sowie die Gründe für Fehler durch Entwicklerbefragung zu ermitteln.  
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Die Hauptfrage lässt sich durch folgende Unterfragen beantworten: 

2.1) Ist die große Mehrheit der inkonsistenten Klone als Fehler erfasst? 

Die Frage die hier beantwortet werden soll ist, ob die erkannten inkonsistenten Klone 
überhaupt in dem verwendeten Issue-Tracking-System als ein Fehler erfasst sind. Hier 
ist der Anteil der gekennzeichneten Inkonsistenzen wichtig. Daraus lässt sich nämlich 
ermitteln, wie viele der gesamten inkonsistenten Klone überhaupt Fehler enthalten, die 
erkannt und zum Beheben im Issue-Tracking-System erfasst sind. 

 

2.2) Werden Fehler an einem geklontem Code konsistent an allen geklonten 
Codes einer Klongruppe behoben? 

Nachdem die Fehler in den inkonsistenten Klonen ermittelt wurden, soll analysiert 
werden, ob Fehler, die in dem verwendeten Issue-Tracking-System erfasst sind, in 
allen Codes einer Klongruppe behoben wurden. Daraus werden Ergebnisse erzielt, die 
besagen, ob Fehler, trotz dessen dass sie in einem Issue-Tracking-System zur 
Behebung erfasst sind, weiterhin noch eine Gefahr darstellen oder falls ein Fehler in 
einem Klon einmal erkannt wurde, keine Gefahr mehr für das System darstellt und sich 
von der Kategorie der gefährlichen Klone ablöst. 

 

2.3) Spielt die Größe der inkonsistenten Klone eine Rolle für die Häufigkeit der 
Fehler? 

Nach dem der Zusammenhang der Fehler und Inkonsistenzen ermittelt wurde, ist es 
wichtig festzustellen, unter welchen Kontextbedingungen Fehler gegeben sind. Mit der 
Annahme, dass der Code doppelt so lang ist, die Wahrscheinlichkeit, dass ein Fehler 
doppelt so häufig eintreten kann, ist es interessant festzustellen, dass ein 
inkonsistenter Klon mit größerem Codeumfang, mehr Fehler einbringen kann. 

 

2.4) Was ist der Zusammenhang zwischen Inkonsistenten und Fehlern?  

Diese Frage unterscheidet sich von den vorherigen Fragen. Nachdem die Fehler in den 
Inkonsistenzen ermittelt wurden, wird festgestellt, welche Vorgehensweisen beim 
Klonen einen Fehler verursachen. Hierzu wird das Klonverhalten des Entwicklers 
analysiert und unter welchen Umständen ein Klon zu einem Fehler führt. Des Weiteren 
werden die inkonsistenten Klone analysiert, die über die gesamte Revisionshistorie 
keine Fehler enthalten. 

 

Forschungsfrage 3: Wie viele Type-1-Klone mit einem Fehler werden durch das 
Modifizieren für die Fehlerbehebung zu einem Typ-3-Klon ohne Fehler? 
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Nachdem analysiert wurde, ob Klone tatsächlich Indikatoren für Fehler sind, ist es 
interessant festzustellen, ob Typ-1-Klone, die mit einem Issue-Tracking-System 
verbunden sind und entwickelt werden, um den Fehler zu beheben, zu einem Typ-3-
Klon werden und somit keinen Fehler mehr enthalten. Durch diesen Vorgang wird 
ermittelt, ob bewusst entwickelte inkonsistente Klone einen Beitrag zur Fehlerbehebung 
leisten. 

 

5.3 Datensammlung und Konfigurationssysteme 
Die Analyse der Projekte auf Klone und Fehler erfordert viele Schritte und das 
Beachten vieler Details, die bewusst durchzuführen sind. Das Kapitel beschreibt die 
Konfigurationsschritte der Analyse, die erforderlich waren, um zuverlässige Ergebnisse 
erzielen zu können.  

Gemein haben alle Schritte die Datenbasis. Das Überprüfen auf Klone auf jeder 
Version jeder Datei ist nicht machbar. Stattdessen wurde das Projekt in der 
Revisionshistorie zu einem bestimmten Zeitpunkt im Entwicklungszyklus und auf einer 
bestimmten Version mit der Update-Funktion gespeichert, das Snapshot genannt wird. 
Nach dem Update stehen lediglich die Daten bis zum festgelegten Zeitpunkt im 
Verzeichnis für die Analyse zur Verfügung. Bei allen Projekten wurde ungefähr ein zwei 
bis drei Jahre früherer Entwicklungsstand als Datenbasis ausgewählt. Der Grund 
hierfür ist, dass nach der Klonermittlung eine größere Datenbasis in der 
Revisionshistorie zur Verfügung steht, um die inkonsistenten Klone in der gesamten 
Revisionshistorie bis zum Zeitpunkt der Analyse auf Fehler zu untersuchen bzw. auf 
Weiterentwicklung und Fehlerbehebung zu prüfen. 

 

5.3.1 Klondaten aus ConQat 
Die Klonerkennung wird mit dem bereits in Kapitel 4 vorgestellten 
Klonanalysewerkzeug ConQat auf dem ausgewählten Snapshot durchgeführt. Alle 
Projekte wurden in Java geschrieben. Infolgedessen wurde der ConQat-Block 
„JavaGappedCloneAnalysis.cqr“ zur Erkennung inkonsistenter Klone auf den drei 
Objekten durchgeführt. Der Algorithmus für inkonsistente Klone, bzw. gapped Clones, 
wurde von Juergens et. al. entwickelt [6].  

Der inkonsistente Klonerkennungsansatz wurde mit konservativen und liberalen 
Klonerkennungsparametern durchgeführt. Dies sollte die Ausrichtung der Studie auf 
eine bestimmte Klonerkennungsparametereinstellung reduzieren, um das 
Systemverhalten zu verstehen und wie die Klone mit größerem Freiraum, also 
kleinerem Parameter für die minimale Klonlänge, unähnlich geworden sind. 

Für den liberalen Klonerkennungsansatz wurde für die minimale Klonlänge (Minlength) 
10 Statements festgelegt, d.h. die Klone müssen mindestens 10 Zeilen lang sein. Für 
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das „gap ratio“, d.h. das maximale inkonsistente Klonverhältnis, wurde ein Parameter 
von 0,25 und für die maximale Fehleranzahl ein Parameter von 10 festgelegt. Ein „gap 
ratio“ gibt an, um wie viele Codezeilen sich ein Klonpaar unterscheiden darf. 
Beispielsweise dürfen sie bei einem gap ratio von 0,25 und acht Zeilen Code in einem 
Klonpaar maximal zwei Codezeilen unterscheiden. Die Klonerkennung für den liberalen 
Ansatz (genannt Runtime) betrug zwischen 62 Sekunden bis 294s. Die Tabelle 5.2 
enthält wichtige Informationen zum Klonerkennungsergebnis. Die Definitionen zu den 
restlichen Begriffen auf Tabelle 5.2 lauten wie folgt: 

kLOC: Anzahl der Codezeilen (in Tausend) 

Clone LOC: Anzahl der geklonten Codezeilen 

Clone Count: Anzahl der Klone 

 

Tabelle 5.2: Klonerkennung mit liberalem Ansatz 

Project Minlength Error Gap Ratio Runtime kLOC Clone LOC Clone Count 

A 10 10 0,25 58s 253 25.443 981 

B 10 10 0,25 58s 332 49.200 1.545 

C 10 10 0,25 112s 454 47.800 2.244 

 

Des Weiteren wurde eine Klonerkennung mit denselben Parametern durchgeführt. Die  
minimale Klonlänge wurde auf 15 erhöht. Dies führt zu erheblich niedrigeren 
Klonergebnissen.  

Für diese Studie fiel die Entscheidung auf eine konservative Klonanalyse. Daher wurde 
die minimale Klonlänge erneut erhöht und auf 20 festgesetzt. 

Die Tabelle 5.3 zeigt die Klonergebnisse für den konservativen Ansatz. Im Vergleich 
zum liberalen Ansatz und der manuellen Analyse der Klone ist deutlich zu erkennen, 
dass der konservative Ansatz erheblich bessere Klonergebnisse liefert. 
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Tabelle 5.3: Klonerkennung mit konservativem Ansatz 

Project Minlength Error Gap Ratio Runtime kLOC Clone LOC Clone Count 

A 20 10 0,25 52s 253 7.600 143 

B 20 10 0,25 42s 332 17.700 352 

C 20 10 0,25 97s 454 15.600 382 

 

Die erfassten Klonkandidaten wurden dann manuell gelesen, um Falsch-Positive zu 
entfernen. Es wurden also Codefragmente, welche von ConQat als Klon erkannt 
wurden, jedoch keine semantische Beziehung hatten, aussortiert. Für die weitere 
Analyse wurden die restlichen Klonkandidaten als Basis genommen. Diese 
Klonkandidaten werden in ConQat mit weiteren Informationen in Klonklassen gegliedert 
ausgegeben.  

Es wurden aus dem ConQat Output die Klonklassen mit dem Dateinamen (wobei es 
sich hier um die Dateipfade handelt), die Anfangszeile, die Endzeile und die maximal 
möglichen Gaps extrahiert und in Excel exportiert. In der Excel-Liste sind unter jeder 
Klonklasse die Klondateien mit den extrahierten Dateien erfasst. Diese wir mit Excel-
Verweisen und Funktionen so umgestaltet, dass zu jeder Klondatei die Klonklasse 
angegeben wird, in der sie enthalten ist, sowie die oben genannten Daten wie 
Anfangszeile, etc. Der Grund hierfür ist, dass die Dateien in dem 
Versionsverwaltungssystem auf Klone analysiert werden und diese als Datenbasis 
dienen. Des Weiteren finden diese Daten später in einer Datenbank Anwendung. 
Daher ist dieses Format der Datenliste relevant.  

Eine wichtige Information ist, dass in diesem Schritt noch keine Trennung in der 
Handhabung zwischen inkonsistenten und konsistenten Klongruppen gemacht wird. 
Diese werden während der Auswertung in der Datenbank beachtet.  

 

5.3.2 Daten aus Mercurial 

In dieser Studie wird die gesamte Revisionshistorie des Projektes zur Analyse 
betrachtet. Daher muss für jede Datei in der sich ein Klon befindet, sei es ein 
konsistenter oder inkonsistenter Klon, die gesamte Revisionshistorie aus Mercurial 
ermittelt werden. Infolgedessen dienen die aufbereiteten Ergebnisse der Klondaten aus 
ConQat in diesem Schritt als Datenbasis. Aus dieser Liste werden nämlich lediglich die 
Dateipfade eines Projekts, in der Klone enthalten sind, in eine Textdatei gespeichert.  
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Es wurde in Python ein Skript geschrieben (siehe Abbildung 5.1), das für jede in der 
Textdatei enthaltene Datei, die gesamte Revisionshistorie aus Mercurial ermittelt und in 
eine Textdatei speichert. Die Revisionshistorie besteht aus „Changesets“, welche durch 
Committs entstanden sind. Zu jedem Changeset wird die lokale und eindeutige 
„ChangesetID“ angeben. Des Weiteren sind zu jedem „Changeset“ der Benutzer, der 
das Committ ausgelöst hat, der Zeitpunkt des „Committs“, sowie die „Branch“ und der 
Parent des Committs und eine Beschreibung des Committs erfasst. Für die Analyse 
sind jedoch die ChangesetID, der Benutzer, der Zeitpunkt sowie die Beschreibung des 
Changesets relevant. Das Skript wird in einer Python-Kommandozeile, für jedes 
einzelne Projekt, wie in Abbildung 5.2 dargestellt ausgeführt. 

Die Ausgabe des Skripts wird in eine Excel-Datei exportiert und mit Excel-Verweisen 
und Funktionen umgeschrieben. Die Ausgabe listet nämlich zu jeder Datei, die in der 
vorherigen Textdatei erfasst war, die „Changesets“ mit den genannten Informationen 
untereinander auf. Als Datenbasis benötigen wir jedoch eine Liste, die jede 
ChangesetID in eine Zeile erfasst und die dazugehörigen restlichen Informationen wie 
Benutzer, Dateiname, Beschreibung etc. in den Spalten derselben Zeile erfasst. Diese 
Struktur ist für die Datenbankanwendung erforderlich. 

 

 

Abbildung 5.1: Skript für die Ausgabe der Revisionshistorie der Klondateien 

# Starten mit 
# import hg 
# hg.run("src.txt", "log.txt") 
 
import os, subprocess 
 
def run(listFilePath, logFilePath): 
  log = "" 
  f = file(listFilePath) 
  for line in f.readlines(): 
    log += hglog(line.strip(), logFilePath) 
     
  f.close() 
  f = file(logFilePath, "w") 
  f.write(log) 
  f.close()     
 
def hglog(srcFilePath, logFilePath): 
  log = "" 
  log += "%s:\n\n" % srcFilePath 
  log += subprocess.check_output(["hg", "log", srcFilePath]) 
  log += "\n\n\n" 
  return log; 
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Abbildung 5.2: Skript in Python durch Mercurial-Export ausführen 

 

5.3.3 Daten aus FogBugz und Kiln 

Nachdem die gesamte Revisionshistorie zu den Klondaten ermittelt wurde, müssen 
noch die Fehler in den Klondaten ermittelt werden. Als Anmerkung – die 
Revisionshistorie der Klondaten besteht aus ChangesetIDs mit zusätzlichen 
Informationen wie in Kapitel 5.3.2 erläutert. Bei der Fehlersuche hat zunächst die Art 
der Klonklassen, ob inkonsistent oder konsistent, keine Bedeutung. Es müssen nämlich 
die Fehler für alle geklonten Codefragmente ermittelt werden.  

In Kapitel 4.3 und 4.4 wurden die webbasierten Issue- bzw. Bug- Tracking-Systeme 
ausführlich beschrieben. Codestellen die bearbeitet werden müssen und bearbeitet 
wurden bzw. einen Fehler enthalten oder deren Fehler behoben wurden, werden in 
FogBugz mittels Cases (Fällen) festgehalten. Jeder Case hat eine eindeutige Case-
Nummer. Wird ein Quelltext ausgehend von einem Case modifiziert, wird bei der 
Commit-Message eine Case-Nummer als Referenz angegeben. Dadurch enthält jedes 
Changeset, bei dem ein Case bearbeitet wurde, einen Case-Eintrag. Dieser Case 
kann, entsprechend des Cases, ein Feature oder Bug-Eintrag sein, welcher in Kiln über 
die ChangesetID gefunden werden kann. Zusammengefasst bedeutet dies, dass 
ChangesetIDs in Kiln geprüft werden, um Fehler (also Bug- Einträge) zu ermitteln. 

Für diese Studie wurde jede ChangesetID der Revisionshistorie einer Klondatei in Kiln 
gesucht. Anschließend wurde geprüft, ob zu dieser ChangesetID ein Case-Eintrag 
besteht. Die Liste mit den Revisionshistorien wurde mit den referenzierten Case-
Nummern, wie Feature-Nummer oder Bug-Nummer erweitert. Durch diesen 
Analysevorgang wurden alle Klondateien ermittelt, die modifiziert wurden, um einen 
Fehler zu beheben. Ob jedoch die modifizierten Zeilen mit den Klonzeilen 
übereinstimmen wird in der Studiendatenauswertung in Kapitel 5.4 analysiert.  
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Es besteht die Möglichkeit den Prozess zur Analyse von Case- Einträgen mit einer Kiln-
API zu automatisieren. Die API gibt aus der Repository eines Projekts, beginnend vom 
letzten Changeset des Repositorys, 100 Changesets sowie die Case-Einträge in den 
Changesets zurück. Die API lautet wie folgt [38]: 

Api/{version}/Repo/{ixRepo}/History (GET) 

also: 

https://XXXXXXX.de/fogbugz/kiln/Api/1.0/Repo/100538/History?revOldest=ae5d2dcb44
a7&nChangesetLimit=100&token=h6jejas66etdc177ulq7m3l9hpisc 

Hierbei ist 100538 die Repository-Nummer des Projekts und ae5d2dcb44a7 die letzte 
ChangesetID im Repository des Projekts, ChangesetLimit=100 ist die höchste Anzahl 
der Changesets, die zurückgegeben wird.  

Für diese Studie benötigen jedoch die Case-Daten für alle Changesets. Das bedeutet, 
dass die API erweitert werden müsste, um die Informationen für die gesamte 
Revisionshistorie zu erhalten. Der Prozess für die Erweiterung der Kiln-API ist jedoch 
nicht im Rahmen dieser Diplomarbeit und wurde aus diesem Grund nicht durchgeführt. 

 

5.4 Studiendatenauswertung 
Bisher erfolgte lediglich das Zusammenstellen der Datenbasis für den eigentlichen 
Analyseschritt. Ein wichtiger Punkt ist an dieser Stelle anzumerken. Der inkonsistente 
Klonanalyseansatz wurde auf zwei verschiedenen, zu einem relativ aktuellen und bis 
zu zwei Jahre früheren, Entwicklungsständen durchgeführt. Nach dem ersten 
Analyseschritt konnte für den aktuellen Entwicklungsstand eine höhere Anzahl von  
Fehlereinträgen ermittelt werden. Jedoch lag das Problem darin, dass die 
Weiterentwicklung der Klondateien nach der Klonanalyse so gering war, dass sehr 
wenige Daten in der Revisionshistorie für die Analyse auf Weiterentwicklung und 
Fehlerbehebung zur Verfügung standen. Aus diesem Grund wurde für alle Projekte ein 
zwei bis drei Jahre alter Entwicklungsstand zur Klonerkennung verwendet und die 
darauf folgende Analyse auf einer höheren Datenbasis durchgeführt.  

Dieses Kapitel beschreibt die Auswertung der Studiendaten, die mittels einer 
Datenbankanwendung erfolgt. Zunächst wird der Aufbau der Datenbank beschrieben. 
Anschließend erfolgt die Darstellung der ERM-Diagramme. Abschließend werden die 
SQL-Abfragen für das Beantworten der Forschungsfragen beschrieben. 
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5.4.1 Studiendatenvorbereitung und ERM-Diagramme 

Die Datenbasis für die Analyse erfolgt in Unterstützung einer Datenbank. Hierzu wurde 
die Software MS ACCESS 2013 verwendet. Es wurde zunächst eine neue Datenbank 
erstellt. Folgende Daten wurden anschließend als Tabellen in die Datenbank importiert:  

1. Klonklassen aus ConQat (eindeutig, ohne Duplikate) 
Die Klonklassen werden aus den Ergebnissen des inkonsistenten 
Klonerkennungsansatzes aus ConQat ermittelt. Die Klonklassen aus Kapitel 
5.3.1 werden in eine separate Tabelle gespeichert. Anschließend werden 
Duplikate entfernt. Daraus resultiert eine eindeutige Liste der Klonklassen. 

2. Klondateien aus ConQat (eindeutig, ohne Duplikate) 
Die Klondateien werden wie die Klonklassen aus den ConQat-Ergebnissen 
ermittelt.  
 

3. Basis_SQL 
Diese Daten sind die in Kapitel 5.3.3 ermittelten Daten aus FogBugz und Kiln. 
Diese enthält zu allen Klondateien die gesamte Revisionshistorie bis zum 
Zeitpunkt der durchgeführten Klonanalyse. Die Revisionshistorie besteht 
wiederum zum einen aus den Changesets mit den Informationen wie Benutzer, 
Datum, Summary und KlondateiID und zum anderen aus den Cases die Bugs 
und Features enthalten.  

 

4. Beziehungstabelle 
Es wird eine Beziehungstabelle für die Datenauswertung erstellt. Der Grund 
hierfür ist, dass zwischen den Daten aus ConQat und den Daten aus FogBugz 
eine n:m-Beziehung besteht. Die Beziehungstabelle wird als Zwischentabelle 
verwendet, um die n:m-Beziehung zu beheben. Genau aus diesem Grund 
wurden auch die Klondateien und Klonklassen in separate Tabellen gespeichert 
und mit der Beziehungstabelle verknüpft. In Abbildung xxx ist die Beziehung der 
Tabellen durch ein ERM-Diagramm graphisch dargestellt.  
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Abbildung 5.3: ERM-Diagramm für die Datenauswertung 

 

5.4.2 SQL-Abfragen 

Die Auswertung der Daten erfolgte durch die Ausführung von SQL-Abfragen. Die SQL-
Abfragen, welche für das Beantworten der Forschungsfragen erforderlich waren, lauten 
wie folgt: 

1. Als erstes wurden die inkonsistenten Klonklassen mit folgender SQL-Abfrage 
ermittelt: 
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Abbildung 5.4: SQL-Abfrage für inkonsistente Klonklassen 

Hierbei steht „GAP“ für die Anzahl der Inkonsistenten in einer Klondatei. Mit GAP>0 
werden lediglich die inkonsistenten Klonklassen aufgerufen. Die Abfrage liefert somit 
alle inkonsistenten Klonklassen mit der Anzahl der Klonstellen des Klons, die in dieser 
Klonklasse enthalten sind. Die Anzahl der inkonsistenten Klonklassen wird dann von 
MS ACCESS an der unteren Leiste ausgegeben. Das Ergebnis wird wie in Abbildung 
5.5 ausgegeben. 

 

Abbildung 5.5: Abfrageresultat zu Inkonsistenten Klonklassen 

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID, 
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS ANZAHLKLONDATEI 
 
FROM BEZIEHUNGSTABELLE 
 
WHERE ([BEZIEHUNGSTABELLE].GAPS>0 
 
GROUP BY [BEZIEHUNGSTABELLE].KLONKLASSEID; 
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2. Abfrage um die gesamte Revisionshistorie der Dateien aufzulisten: 

  

Abbildung 5.6: Abfrage Revisionshistorie einer Datei 

Hierbei wird mit Hilfe der Beziehungstabelle, zu allen Klondateien einer Klonklasse die 
gesamte Revisionshistorie mit den Daten aus der Basis_SQL ausgegeben. Das 
Ergebnis der Abfrage sieht wie in Abbildung 5.7 aus. 

 

Abbildung 5.7: Abfrageresultat zur Revisionshistorie zu Klonklassen 

 

 

 

 

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,  
BEZIEHUNGSTABELLE.KLONDATEIID, BEZIEHUNGSTABELLE.GAPS, 
BEZIEHUNGSTABELLE.LINE, BEZIEHUNGSTABELLE.LENGTH, 
BASIS_SQL.[CASE ANZAHL], BASIS_SQL.[CASE BUG], 
BASIS_SQL.CHANGESETID 
 
FROM ((KLONDATEI INNER JOIN BEZIEHUNGSTABELLE ON 
KLONDATEI.KLONDATEIID = BEZIEHUNGSTABELLE.KLONDATEIID) 
INNER JOIN KLONKLASSEN ON BEZIEHUNGSTABELLE.KLONKLASSEID = 
KLONKLASSEN.KLONKLASSEID) INNER JOIN BASIS_SQL ON 
BEZIEHUNGSTABELLE.KLONDATEIID = BASIS_SQL.KLONDATEIID; 
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3. Abfrage, um Klonklassen zu ermitteln die einen Case-Bug-Eintrag haben: 

 

Abbildung 5.8: Abfrage für fehlerhafte Klonklassen 

Durch diese Abfrage werden alle Klonklassen ermittelt, sowohl konsistente als auch 
inkonsistente, in denen ein Fehler behoben wurde. Diese Abfrage ist erforderlich für die 
Analyse der inkonsistenten Klone auf Fehler. 

 

4. Für die Forschungsfrage 3 wird eine SQL-Abfrage für Case-Bug- Einträge in 
konsistenten Klonklassen erzeugt, da analysiert wird, ob fehlerhafte Typ-1-Klone im 
Laufe der Entwicklung zu fehlerfreien inkonsistenten Klonklassen werden. Die Abfrage 
lautet wie folgt: 

 

Abbildung 5.9: Abfrage fehlerhafte inkonsistente Klonklassen 

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,  
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS 
ANZAHLKLONKLASSEID 
 
FROM (KLONKLASSEN INNER JOIN (KLONDATEI INNER JOIN 
BEZIEHUNGSTABELLE ON KLONDATEI.KLONDATEIID = 
[BEZIEHUNGSTABELLE].KLONDATEIID) ON KLONKLASSEN.KLONKLASSEID 
= [BEZIEHUNGSTABELLE].KLONKLASSEID) INNER JOIN BASIS_SQL ON 
[BEZIEHUNGSTABELLE].KLONDATEIID=BASIS_SQL.KLONDATEIID 
 
WHERE (BASIS_SQL.[CASE BUG])>0 
GROUP BY [BEZIEHUNGSTABELLE].KLONKLASSEID; 
 

 

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,  
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS 
ANZAHLKLONKLASSEID 
 
FROM (KLONKLASSEN INNER JOIN (KLONDATEI INNER JOIN 
BEZIEHUNGSTABELLE ON KLONDATEI.KLONDATEIID = 
[BEZIEHUNGSTABELLE].KLONDATEIID) ON KLONKLASSEN.KLONKLASSEID 
= [BEZIEHUNGSTABELLE].KLONKLASSEID) INNER JOIN BASIS_SQL ON 
[BEZIEHUNGSTABELLE].KLONDATEIID=BASIS_SQL.KLONDATEIID 
 
WHERE (((BEZIEHUNGSTABELLE.GAPS)=0) AND ((BASIS_SQL.[CASE 
BUG])>0)) 
 
GROUP BY [BEZIEHUNGSTABELLE].KLONKLASSEID; 
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Nun stehen alle Daten zur weiteren Analyse bereit. Um nun den fehlerhaften Code in 
einer Version festzustellen, wird die Version r für eine Datei in der ein Fehler gefunden 
wurde festgehalten. Da das Repository eines Projektes sich auf einem älteren Stand 
befindet, werden der Revisionshistorie mit der Pull- Funktion in Mercurial neue 
Änderungen hinzugefügt, die jeweils durch eine Commit-Message in die 
Revisionshistorie aufgenommen werden und somit eine ChangesetID erhalten. In 
Tortoise besteht die Möglichkeit für jede Datei die Revisionshistorie einzusehen. Somit 
kann für jede Datei der inkonsistenten Klonklasse die gesamte Revisionshistorie 
betrachtet und die Entwicklung überprüft werden. Des Weiteren kann festgestellt 
werden, ob während der Entwicklung in den inkonsistenten Klondateien ein Fehler 
behoben wurde. Somit können Rückschlüsse über die Fehlerhaftigkeit der 
inkonsistenten Klonklassen gemacht werden.  

Wie die Datenanalyse mit den aufbereiteten Daten durchgeführt wird, ist in Kapitel 5.5 
detailliert beschrieben. 

 

5.5 Datenanalyse 
Zur Beantwortung der Forschungsfragen wurde in Anlehnung auf die Studien von 
Juergens et al. [6] und Rahman et al [10] ein Ansatz zur Datenanalyse entwickelt. 
Dieses Kapitel stellt die Datenanalyse für das Beantworten der verschiedenen 
Forschungsfragen vor.  

In der Datenanalyse werden unterschiedliche Mengen von Klongruppen untersucht, um 
die Forschungsfragen zu beantworten. Die Unterschiede in den Definitionen der 
Klongruppenmengen basieren auf der Vielfältigkeit der Fragen. Die Hauptmenge 
enthält alle Klongruppen C, die zweite grundlegende Menge sind die inkonsistenten 
Klongruppen IC. Des Weiteren existieren die Mengen der erkannten Fehler in 
inkonsistenten Klonen mit BIC. Die unabhängigen Variablen in der Studie sind das 
Entwicklungsteam, die Programmiersprache, die funktionelle Domäne, das Alter und 
die Größe der Systeme. 

 

Datenanalyse zur Forschungsfrage 1: 

Die Forschungsfrage 1 untersucht die Existenz der inkonsistenten Klone auf den 
produktiven TWT Systemen, welche bereits im Einsatz sind. Die Analyse dieser Frage 
erfolgt wie in der Studie von Jürgens u.a. [6]. Zunächst wird auf den jeweiligen 
Systemen der Klonanalyseansatz für inkonsistente Klone mit ConQat durchgeführt. Die 
Ergebnisse werden manuell geprüft, um die Falschpositiven zu eliminieren. 
Anschließend wird das Verhältnis der inkonsistenten Klone zu den gesamten Klonen 
aus den Resultaten der SQL- Abfragen mit │IC│/ │C│ berechnet. Abbildung 1 stellt die 
Mengen der beiden Klongruppen dar.  
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Abbildung 5.10: Menge der gesamten und inkonsistenten Klongruppen 

 

Datenanalyse zur Forschungsfrage 2: 

Für die Frage, ob inkonsistente Klone Indikatoren für Fehler sind, wird die 
Revisionshistorie, ähnlich wie in [10] zur Analyse des inkonsistent geklonten Codes mit 
einbezogen. Ein Versionsverwaltungssystem, in dieser Studie Mercurial, bietet in der 
Regel eine sehr umfangreiche Revisionshistorie an. Das Versionsverwaltungssystem 
enthält demnach die Versionsgeschichte einer Datei, bspw. Informationen über neu 
hinzugefügte, gelöschte und veränderte Dateien. Des Weiteren gibt sie Informationen 
über Entwickler, die Änderungen an einer Datei vorgenommen haben. Eine neue 
Version für eine Datei entsteht durch eine Commit-Message eines Entwicklers, der 
möglicherweise Änderungen an der Datei vorgenommen hat. Die Version erhält durch 
einen Commit an einer Datei, eine lokale Versionsnummer, die innerhalb des eigenen 
Repository gültig ist, sowie eine eindeutige Identifikationsnummer, die ChangesetID 
genannt wird und Gültigkeit im gesamten Repository hat. Des Weiteren wird  neben 
dem Entwickler ebenfalls der Zeitpunkt des Committ-Eintrags einer Version 
angegeben. 

Diese Studie untersucht die Auswirkungen des Klonens im gesamten Projekt-
Lebenszyklus. Daher müssen alle Klone auf allen Versionen gefunden werden, die im 
Versionsverwaltungssystem committet wurden.  

Der Grund, weshalb die Revisionshistorie eines Klons bei der Analyse betrachtet wird, 
ist die bestehende Möglichkeit, dass ein inkonsistent geklonter Code, zunächst nach 
dem Klonen keinen Fehler verursacht. Jedoch kann das geklonte Codefragment im 
Laufe der Entwicklung zu einem fehlerhaften Code werden. Die Abbildung 5.11 zeigt, 
wie ein Fehlereintrag in einem Issue-Tracking-System für einen inkonsistenten Klon 
verfolgt und ermittelt wird. 

Beispielsweise soll in der Version 1 der Case 1: Impelement_xxx implementiert werden. 
Dieser wird entwickelt und anschließend committed. In der Version 2 wird festgestellt, 
dass dieses Codefragment in den Dateien a und b, in den Zeilen 10-20 (Datei a) und 
30-50 (Datei b) inkonsistent geklont wurden, die noch keinen Fehler enthalten. Diese 
inkonsistenten Klone werden ebenfalls weiterentwickelt. In späteren Versionen wird in 
dem inkonsistenten Klon a in den Zeilen 10-15 ein Fehler erkannt, der in dem Issue-
Tracking-System behoben werden muss. Über die Case-Nummer, welche eindeutig für 
die gesamte Entwicklung ist, kann der Fehler im Issue-Tracking-System gefunden und 
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gefixt werden. Somit wurde festgelegt, welcher inkonsistenter Code im Laufe der 
Entwicklungshistorie zu einem inkonsistenten Code wird, der einen Fehler enthält.  

Im Allgemeinen kann also ermittelt werden, welcher inkonsistenter Klon, der einen 
Bezug zu einem Issue-Tracking-System hat, einen Zusammenhang mit einem Fehler 
hat. Hierzu werden die Ergebnisse der SQL-Abfragen zu allen inkonsistenten 
Klonklassen als Datenbasis genommen. Für jede Klondatei in einer inkonsistenten 
Klonklasse wird der beschriebene Fehleranalyseansatz durchgeführt. Aus dieser 
Vorgehensweise kann ermittelt werden, ob und wann Klone verändert wurden bzw. 
Fehler im Laufe der Entwicklung verursacht haben. 

Während diesem Analyseprozess können viele weitere wichtige Fragen wie die 
Forschungsfragen 2.1 – 2.4 analysiert werden. Vor allem die Forschungsfrage 2.2, ob 
Fehler in inkonsistenten Klonen an allen Codefragmenten einer Klongruppe behoben 
werden, lässt sich anhand dieser Analyse sehr gut beschreiben und beantworten. Da 
die gesamte Revisionshistorie der Klondateien einer Klonklasse betrachtet wird, kann 
sehr gut beobachtet werden, ob Fehler in einer Klonklasse an allen Klonstellen 
behoben werden und ob die Fehlerbehebung zeitgleich durchgeführt wird oder sogar 
überhaupt nicht betrachtet wird.  

Mit dem dargestellten Analyseverfahren kann die zeitliche Spanne zwischen den 
Klonen ermittelt werden. Wenn eine große zeitliche Spanne zwischen den Klonen liegt, 
die keinen Fehler enthalten, kann der Klon als ein robuster Klon eingestuft werden. 
Klone die zeitgleich modifiziert werden, sei es eine Fehlerbehebung oder andere 
Änderungen, werden als bewusstes Klonen kategorisiert. Im Gegensatz dazu 
definieren sich Klone, für welche die Fehlerbehebung nicht in allen Klondateien einer 
Klonklasse durchgeführt wird, als fehlerhafte Klonklassen und demnach als 
unbewusstes Klonen. 
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Abbildung 5.11: Prozess zur Verfolgung eines inkonsistenten Klons über die 
Revisionshistorie 
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Datenanalyse zur Forschungsfrage 2.1 

Die Frage, ob die große Mehrheit der inkonsistenten Klone als Fehler erfasst sind, kann 
im Grunde wie in der Datenanalyse zur Forschungsfrage 2 ermittelt werden. Für diese 
Frage werden zunächst die erkannten inkonsistenten Klone in dem Issue-Tracking-
System FogBugz und Kiln auf einen Bug-Eintrag geprüft. Dadurch entsteht die Menge 
der inkonsistenten Klone, die einen Fehler enthalten und auch erkannt wurden. 

Zunächst muss aber eine Definition für einen fehlerhaften Code festgelegt werden. Im 
Grunde kann eine Reihe von Codezeilen, die einen Fehler verursacht haben, als 
fehlerhafter Code bezeichnet werden. Jedoch ist es schwierig, das tatsächlich 
schuldhafte Codefragment zu finden. Diese Studie nutzt die Definition eines 
fehlerhaften Codes aus der Studie von Rahman et al. [10], die besagt, dass ein buggy 
code eine Reihe von Codezeilen ist, die geändert wurden, um einen Fehler zu 
beheben. 

Nachdem der buggy Code gefunden wurde, wird geprüft ob die Codezeilen in denen 
Änderungen vorgenommen wurden, mit den Codezeilen, in denen vom 
Klonerkennungstool ConQat ein inkonsistenter Klon gefunden wurde, übereinstimmen. 
Wenn dies der Fall ist, kann davon ausgegangen werden, dass der inkonsistente Klon 
im Entwicklungszyklus Fehler verursacht hat. 

Das Verhältnis der erkannten Fehler in inkonsistenten Klonen (BIC) wird mit 
│BIC│/│IC│ berechnet. 

 

Abbildung 5.12: Menge der erkannten Fehler in Inkonsistenzen im Issue-Tracking-
System 

 

Datenanalyse zur Forschungsfrage 2.2 

Auf die vorherige Frage aufbauend lässt sich die Frage, ob Fehler an einem 
Codefragment konsistent an allen inkonsistent geklonten Codes einer Klongruppe 
behoben wird, durch eine weitere Analyse beantworten. Das Resultat dieser Frage 
dient als Grundlage bei der Argumentation der Auswirkungen der inkonsistenten Klone.  

Die Ergebnisse des Klonerkennungstool ConQat bestehen typischerweise aus einer 
Reihe von Klongruppen. Jede der Klongruppen enthält Codefragmente, die aneinander 
ähnlich sind und sich in derselben oder auch in verschiedenen Dateien befinden 
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können. Demnach enthalten die Klongruppen Informationen über die Dateien in denen 
sich das geklonte Codefragment befindet, Informationen zu Anfangszeilen und 
Endzeilen des Klons, die Länge des Klons sowie die maximal mögliche Gap-Anzahl. 

Nach der Festlegung der Menge der erkannten Fehler in den Inkonsistenzen (BIC), 
wird geprüft, ob der Fehler in allen Codefragmenten einer Klongruppe, die diesen 
Fehlereintrag haben,  behoben wurde. Fehler werden in einem Issue-Tracking-System 
entdeckt und aufgezeichnet und im Laufe der Entwicklung von den Entwicklern 
behoben. Ein behobener Fehler wird auf eine bestimmte Version im 
Versionsverwaltungssystem verbunden. Daher wird der Korrekturvorgang für die 
gesamte Revisionshistorie einer Datei geprüft. Wenn ein Fehler in allen geklonten 
Codes einer Klongruppe behoben wurde, stellt der Fehler kein Risiko dar. Andernfalls 
wird das inkonsistente Klonen als risikobehaftet eingestuft. 

Wichtig: Während der Analyse wird untersucht, ob die Korrektur der erkannten Fehler 
zeitgleich oder mit Zeitverzug oder überhaupt nicht erfolgt. Aus diesem Ergebnis wird 
erkannt, ob Entwickler bewusst klonen. 

Ermittelt wird die Menge der inkonsistenten Klone, die an allen Codefragmenten einer 
Klongruppe keinen Fehler mehr enthalten (KF). Das Verhältnis der Menge der 
inkonsistenten Klone, welche keinen Fehler mehr enthalten (KF) lässt sich mit 
|KF|/|BIC| berechnen. 

 

Abbildung 5.13: Menge der inkonsistenten Klongruppen, bei denen an jedem Klon 
einer Klongruppe der Fehler behoben wurde 

 

Hypothese: 

Die Antwort auf diese Frage ist das Hauptergebnis der Studie, weil es die 
Auswirkungen eines inkonsistenten Klons begründet. Daher wird hieraus eine 
Hypothese abgeleitet:  

Das Verhältnis der Fehler in den Inkonsistenten ist höher als die Fehler in den 
restlichen Klonen im System. 
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Datenanalyse zur Forschungsfrage 2.3 

Es wichtig die Fehler zu kategorisieren, um ein besseres Verständnis für den Grund der 
Fehler zu ermitteln, bzw. festzustellen unter welchen Kontextbedingungen ein Fehler 
gegeben ist. Hierzu wird die gesamte Revisionshistorie eines Inkonsistenten Klons 
analysiert und festgestellt, ob ein Klon im Entwicklungszyklus modifiziert wurde und ob 
sich Fehler durch die fehlenden Klonkenntnisse der Entwickler einschleichen. Es ist 
ebenfalls interessant festzustellen, weshalb inkonsistente Klonklassen trotz langer 
Entwicklungshistorie keinen Fehler im gesamten Entwicklungszyklus verursachen und 
erhält aus diesem Grund eine Untersuchung. 

 

Datenanalyse zur Forschungsfrage 2.4 

Es wichtig die Fehler zu kategorisieren um ein besseres Verständnis für den Grund der 
Fehler zu ermitteln, bzw. festzustellen unter welchen Kontextbedingungen ein Fehler 
gegeben ist. Hierzu wird die gesamte Revisionshistorie eines Inkonsistenten Klons 
analysiert und festgestellt, ob ein Klon im Entwicklungszyklus modifiziert wurde und ob 
sich Fehler durch die fehlenden Klonkenntnisse der Entwickler einschleichen. Es ist 
ebenfalls interessant festzustellen, weshalb inkonsistente Klonklassen trotz langer 
Entwicklungshistorie keinen Fehler im gesamten Entwicklungszyklus versuchen und 
erhält aus diesem Grund eine Untersuchung.  

 

Datenanalyse zur Forschungsfrage 3: 

Letztlich werden die Auswirkungen der inkonsistenten Klone nicht in negativer sondern 
in positiver Hinsicht betrachtet. Bisher wurde analysiert, ob die inkonsistenten Klone 
Fehler verursachen bzw. ob die Fehler in den inkonsistenten an allen Klonstellen 
behoben wurden. Nun soll hingegen analysiert werden, ob Typ-1-Klone mit einem 
Fehler durch das Modifizieren für die Fehlerbehebung zu einem Typ-3-Klon ohne 
Fehler wurden.  

Hierzu erfolgt zunächst die Fehleranalyse wie in der Datenanalyse 2.1 für Typ-1-Klone. 
Als Datenbasis dient das Ergebnis der SQL-Abfrage für exakte Klonklassen die einen 
Fehlereintrag haben. Klone mit einem Fehlereintrag im Issue-Tracking-System, werden 
weiterhin zur Analyse unterzogen. Im zweiten Analyseschritt erfolgt das Prüfen des 
fehlerhaften Typ-1-Klon Codefragments. Es wird geprüft, ob dieser weiterentwickelt 
wurde und in der Revisionshistorie durch einen „bug-fixing-Eintrag“ behoben wurde. 
Des Weiteren wird in der Revisionshistorie geprüft, ob es sich nun beim fehlerfreien 
Codefragment um einen inkonsistenten Klon handelt. Dieser kann in den Ergebnissen 
des Klonanalysewerkzeugs ConQat geprüft werden. Um sicherzustellen, dass der 
inkonsistente Klon tatsächlich nur einen positiven Beitrag im Entwicklungszyklus 
geleistet hat, erfolgt als letzter Schritt das Prüfen des inkonsistenten Klons auf Fehler. 
Wenn nämlich der inkonsistente Klon keinen Fehler enthält, bzw. keinen weiteren 
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Fehler in der Revisionshistorie verursacht hat, handelt es sich um einen positiven 
inkonsistenten Klon.  

 

 

Abbildung 5.14: Typ-1-Klone die einen Fehler enthalten werden zu Typ-3-Klone ohne 
Fehler 
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6 Ergebnisse 

Die Ergebnisse des Studiendesigns sind für das Beantworten der jeweiligen 
Forschungsfragen präzise in Tabelle 2 erfasst. Die Tabelle 5.1 in Kapitel 5.1 enthält 
Informationen zu den Studienobjekten. Unter anderem listet sie die Größe der Projekte 
in Codezeilen auf. In näherer Betrachtung der Größe der Codezeilen und der Anzahl 
der Klonergebnissen aus ConQat wird ersichtlich, dass je größer ein Projekt ist, desto 
höher die Anzahl der Klone sind. Projekt C ist ungefähr doppelt so groß wie Projekt A. 
Dies spiegelt sich ebenfalls in den Klonergebnissen der Projekte wieder, da Projekt C 
im Vergleich zu Projekt A doppelt so viele Klonklassen enthält. 

 

Tabelle 6.1: Zusammenfassung der Studienergebnisse 

Projekt DISCAT FCAD CO2MO 

Klonklassen │C│ 37 88 82 

Inkonsistente Klonklassen │IC│ 21 21 65 

Exakte Klonklassen 16 67 17 

Inkonsistente Klonstellen  │IS│ 46 43 146 

Modifizierte inkonsistente Klonstellen │MIS│ 24 19 67 

Verhältnis der modifizierten Klonstellen (in %) 
│MIS│/│IS│ 

0,52 0,44 0,45 

Zeitgleich modifizierte inkonsistente Klonstellen (in 
%) │ZMIS│ 

14 17 62 

Verhältnis zeitgleich modifizierte inkonsistente 
Klonstellen (in %) │ZMIS│/│MIS│ 

0,58 0,89 0,92 

Fehlerhafte Klonklassen │FK│ 16 5 37 

Fehlerhafte Inkonsistente Klonklassen │BIC│ 7 1 2 

Verhältnis fehlerhafter inkonsistenter Klonklassen 
(in %)│BIC│/ │IC│ 

0,33 0,05 0,03 

Fehlerbehobene Inkonsistente Klonklassen │KF│ 4 1 0 

FF 1 │IC│/│C│(in %) 0,56 0,23 0,79 
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FF 2.1 │BIC│/│IC│(in %) 0,33 0,05 0,03 

FF 2.2 |KF| / |BIC| (in %) 0,57 1,0 0 

Durchschnittliche Inkonsistente Klonlänge 60 62 78 

Durchschnittliche Fehlerhafte Inkonsistente 
Klonlänge 

50 39 83 

Hypothese │BIC│/ │FK│ (in %) 0,43 0,2 0,05 

 

Aus den Ergebnissen lässt sich schließen, dass die Klonklassen der Projekte, bis auf 
Projekt B, über die Hälfte etwa 56% - 79% inkonsistent sind. Der Grund weshalb das 
Projekt B im Verhältnis zu den beiden anderen Projekten weniger inkonsistente 
Klonklassen enthält ist, dass Codefragmente aus den firmeninternen Bibliotheken exakt 
geklont wurden, um bestimmte Funktionalitäten wiederzuverwenden. Schlussfolgernd 
kann die Forschungsfrage 1, ob die Systeme größtenteils inkonsistente Klone 
enthalten, positiv beantwortet werden. 

Aus diesen inkonsistenten Klonen wurde ungefähr die Hälfte 44%-55% 
weiterentwickelt. Es wurden Codezeilen entfernt, hinzugefügt oder bestehende 
Klonzeilen, sei es in den Literalen oder Bezeichnern, modifiziert. Daraus resultiert, dass 
bestehende Klone eine Unterstützung für die Entwickler im Entwicklungszyklus der 
Programmierer sind. Um zu untersuchen, ob Entwickler überhaupt bewusst Klonen 
wurde analysiert, ob die Modifizierung an allen Klonstellen einer Klonklasse zeitgleich 
durchgeführt wurde. Aus den Ergebnissen lässt sich schließen, dass in allen Projekten 
die Entwickler über fast alle Klonstellen, 58%-92%, informiert sind und diese zeitgleich 
bei Bedarf modifizieren. Das spiegelt sich auch in den Fehlerergebnissen der 
inkonsistenten Klone wieder. Infolge des bewussten Klonens sind lediglich 3%-33% der 
inkonsistenten Klonklassen fehlerbehaftet. Daraus resultierend kann die 
Forschungsfrage 2, ob inkonsistente Klone Indikatoren für Fehler sein können negativ 
beantwortet werden, da die Inkonsistenten beim bewussten Klonen verhältnismäßig 
eine geringe Gefahr für ein Softwaresystem darstellen. Folgernd  beweisen die 
Ergebnisse dieser Studie die Analysewerte der Studie von Rahman u.a. [10], die 
besagen, dass die aus den Versionskontrollsystemen gewonnen Daten, die auch 
erfasste Fehler in einem System kennzeichnen, keinen bemerkenswerten 
Zusammenhang zwischen Klonen und Fehler darstellen. 

Da sehr wenige inkonsistente Klonklassen einen Bezug zu einem Fehler haben, lautet 
die Antwort für die Forschungsfrage 2.1, dass sich lediglich ein sehr geringer Anteil der 
inkonsistenten Klonklassen, mit 3-33%, als fehlerbehaftet kategorisieren lässt.  

Für die Forschungsfrage 2.2 wurde basierend auf den fehlerbehafteten inkonsistenten 
Klonklassen geprüft, ob die Fehler in einer Klonklasse an allen Klonstellen behoben 
wurden. Aus den Ergebnissen lässt sich schließen, dass bis auf das Projekt C die 
zeitgleich modifizierten inkonsistenten Klonstellen und fehlerbehobenen Klonstellen 
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einen Zusammenhang haben. Bei bewussterem Klonen, also zeitgleich modifizierte 
Klone, steigt der prozentuale Anteil der an allen Stellen behobenen Fehler in einer 
Klonklasse mit dem zeitgleich modifizierten Inkonsistenten. In Anbetracht, dass das 
Projekt C ein Ausreißer ist, kann diese Frage mit 57%-100% der fehlerbehobenen 
Klonstellen, positiv beantwortet werden. 

Die Hypothese der Studie lautet zur Erinnerung wie folgt: „Das Verhältnis der Fehler in 
den Inkonsistenten ist höher als die Fehler in den restlichen Klonen im System“. Im 
Durchschnitt enthalten die inkonsistenten Klonklassen, mit 5%-43%, weniger 
fehlerhafte Klonstellen als die restlichen Klonstellen im System. Daraus kristallisiert 
sich, dass die Inkonsistenten im Vergleich zu exakten Klonen mindestens weniger als 
die Hälfte einen Fehler verursachen.   

Um die Kontextbedingungen der Fehler in den Inkonsistenten zu bestimmen, wird die 
Forschungsfrage 2.3 analysiert und um Resultate über den Zusammenhang der 
Klonlänge der Inkonsistenten und der Fehlerhäufigkeit zu finden. Für diese Analyse ist 
Projekt C erneut ein Ausreißer. Die Klonlänge der fehlerhaften Inkonsistenten 
Klonklassen ist kleiner als die durchschnittliche Klonlänge. Die vergleichsweise relativ 
größeren Klone, bis zu bspw. 206 Zeilen, enthalten dagegen keine Fehler. Daraus 
resultiert das Ergebnis, dass sich Fehler in kleineren Inkonsistenten Klonen befinden. 
Für Projekt C gilt das ebenfalls für die eine fehlerbehaftete Klonstelle. Daher kann 
dieser Beschluss gezogen werden. Folgernd kann die Annahme, dass je größer ein 
inkonsistenter Klon ist, desto größer die Fehlerwahrscheinlichkeit ist, nicht wiederlegt 
werden.  

Um die Forschungsfrage 2.4 zu beurteilen, und zwar unter welchen 
Kontextbedingungen Fehler in Inkonsistenten gegeben sind und Hinweise für die 
Fehlerträchtigkeit von Klonen zu finden, erfolgten zwei wesentliche Kategorisierungen 
während der Analyse der Inkonsistenten. Die Klone wurden in bewusste und robuste 
Klone gegliedert. Das bewusste Klonen bezeichnet das sorgfältige Klonverhältnis eines 
Entwicklers. Hierunter fallen wie obig genannt Klone, die zeitgleich modifiziert werden 
und auch nach dem Modifizieren keinen Fehler verursachen. 

Die robusten Klone hingegen umfassen inkonsistente Klonklassen, die keinen 
Fehlereintrag in der gesamten Revisionshistorie haben. Bei der Analyse wurde 
festgestellt, dass die robusten Klone, auch bis zu 4 Jahren nach dem Klonen 
weiterentwickelt werden und trotz dessen keinen Fehler erzeugen. Daher werden 
Klone, die trotz langer Revisionshistorie keinen Fehler darstellen als Klone bezeichnet, 
die bewusst geklont und modifiziert werden. Ein besonders wichtiger Punkt bei den 
robusten Klonen ist, dass die Klone größtenteils aus einer Eclipse-Bibliothek, zu 
60,74%, und firmeninternen Bibliothek, zu 70%, stammen. Daraus resultiert, dass 
insgesamt 76% der inkonsistenten Klone für eine Fehlerbehebung nicht modifiziert 
werden, da ihr ursprünglicher Quelltext aus einer Bibliothek stammt. Daraus kann 
abgeleitet werden, dass das Klonen  aus Bibliotheken eine geringere Gefahr darstellt. 
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Zuletzt erfolgte die Untersuchung der inkonsistenten Klone auf einen positiven Einfluss 
auf die Softwareentwicklung. Für die Forschungsfrage 3 wurde untersucht, ob Typ-1-
Klone die einen Fehler enthalten, im Laufe der Entwicklungshistorie modifiziert und 
inkonsistent wurden, um den Fehler zu beheben. Die Analyse ergab, dass sich alle 
exakten Klone die einen Fehler enthalten zu einem inkonsistenten Klon ohne Fehler 
entwickelten. Des Weiteren erfolgte die Fehlerbehebung der Typ-1-Klone zeitgleich an 
allen Klonstellen. Das hängt mit dem bewussten Klonverhältnis der Entwickler 
zusammen. 

Zusammenfassend kann also der Rückschluss gezogen werden, dass bei bewusstem 
Klonen, also dem zeitgleichen Modifizieren der Klone, die Klone robust sind und somit 
keine Fehler verursachen. Weiterhin beweist die Studie, dass das Klonen aus 
Bibliotheken weniger Fehler verursacht. Außerdem sind wie anhand anderer Studien 
angenommen inkonsistente Klone nicht die Verursacher für Fehler, sondern auch das 
Mittel zur Fehlerbehebung in den exakten Klonen. 
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7 Gefahren für die Gültigkeit 

In diesem Kapitel werden die Gefahren und die Gültigkeit der Studie bewertet und 
ausführlich dargestellt. 

 

7.1 Konstruktvalidität 
Es wurde die Entwicklungshistorie der Systeme analysiert, um festzustellen, ob die 
Inkonsistenten wirklich durch Änderungen an einem System entstanden sind. Das 
Problem besteht jedoch darin, dass Codefragmente durch Kopieren und Modifizieren in 
einem einzigen Commit eingefügt wurden. Daher wurde die gesamte Revisionshistorie 
der Industriesysteme manuell bearbeitet, um alle Änderungen an einem Codefragment 
zu prüfen. 

Die Cases, die im Issue-Tracking-System einen Bugeintrag haben, wurden für jedes 
Projekt als Basis für fehlerhafte Codefragmente verwendet. Ein Case erhält durch den 
manuellen Vorgang eines Entwicklers einen Bugeintrag. Da das Verhalten der 
Entwickler nicht immer ordnungsgemäß und vollständig sein muss, kann die in dieser 
Studie verwendete Datenbasis für Fehler nicht die komplette Menge an Fehler 
enthalten. Weiterhin ist es möglich, dass es sich bei Cases, die einen Feature-Eintrag 
haben, um fehlerhafte Codezeilen handelt. Um dieser Gefahr entgegenzuwirken, 
wurden die Codezeilen für jedes Case geprüft, ob die Änderungen in den 
inkonsistenten Codezeilen vorgenommen wurden und auf deren Robustheit geprüft, da 
es keine Möglichkeit auf Fehlerprüfung gab. 

Das Prüfen aller inkonsistenten Klonzeilen auf Fehler ist praktisch nicht möglich 
gewesen, da es eine hohe Entwicklerzeit und Bereitschaft für die Prüfung erfordern 
würde. Der Nutzen des Entwicklers ist in diesem Fall zu gering, so dass das praktisch 
nicht umsetzbar ist. 

Es ist durchaus möglich, dass es sich bei einigen der Änderungen in der 
Revisionshistorie einer Klondatei, die einen Bugeintrag haben, tatsächlich nicht um 
fehlerhafte Codezeilen handelt. Um diesem Problem entgegenzuwirken, wurde ein 
hoher manueller Aufwand aufgebracht, um die falschen Resultate zu eliminieren. 

 

7.2 Interne Gültigkeit 
Die aus ConQat analysierten inkonsistenten Klone wurden auf Falsch-Positive geprüft. 
Die restlichen Systeme sollten ebenfalls auf inkonsistente Klone und Fehler geprüft 
werden. Da jedoch die Entwicklerzeit dafür fehlte, wurden die restlichen Klone wie aus 
ConQat nach dem Prüfen auf Falsch-Positive als Datenbasis genommen. Das führt 
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dazu, dass die Menge der inkonsistenten Klone sowie die damit verbundenen Fehler, 
einer kleineren Menge entsprechen, als es möglicherweise tatsächlich ist. Somit kann 
es zu leichten Abweichungen in der Forschungsfrage 1 und damit verbunden auch in 
den Werten in der Forschungsfrage 2 führen. 

Die Konfigurationsparameter für den Klonerkennungstool ConQat wurde mit einem 
liberalem und konservativem Ansatz durchgeführt. Der liberale Ansatz liefert höhere 
Klonergebnisse. Trotzdessen wurde die Klonerkennung mit konservativen Parametern 
ausgeführt, da bei einem liberalen Ansatz eine höhere Entwicklerbereitschaft 
erforderlich ist und diese nicht zur Verfügung stand. Bei dem konservativen Ansatz 
haben wir aber eine kleinere Klonbasis, welche die Studie unterstützt, um präzisere 
Auswertungen zu machen. 

 

7.3 Externe Gültigkeit 
Die Softwaresysteme wurden auf ein neues Issue-Tracking-System umgesetzt. Frühere 
Codezustände waren nicht ersichtlich und konnten daher nicht zur Analyse unterzogen 
werden. Demnach ist die Menge der Systeme nicht vollständig repräsentativ. Die 
Studie wurde lediglich auf drei relativ jungen Industriesystemen durchgeführt, die 
folglich auch über kleinere Revisionshistorien verfügen. Ein älteres System mit einer 
längeren Revisonshistorie würde die Resultate dieser Studie konsolidieren. Obwohl alle 
Systeme in Java geschrieben sind und unterschiedliche Funktionalitäten ausführen, 
sind die Ergebnisse in den verschiedenen Projekten ziemlich konsistent, nämlich dass 
es keinen erhöhten Zusammenhang zwischen inkonsistenten Klonen und Fehlern gibt 
und dass sogar das Klonen aus Eclipse- und firmeninternen Bibliotheken eine 
Unterstützung für die Entwickler ist. 
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8 Zusammenfassung und Ausblick 

Im Rahmen dieser Diplomarbeit wurde der Zusammenhang der inkonsistenten Klone 
und Fehler in Softwaresystemen untersucht, um Hinweise für die Fehlerträchtigkeit der 
Klone zu finden und festzustellen unter welchen Kontextbedingungen sie gegeben 
sind. Dabei untersucht die Arbeit auf empirischer Basis drei Industriesysteme, in den 
inkonsistenten Klonfragmenten über die gesamte Revisionshistorie auf Fehler. Um den 
Zusammenhang der Fehler in den Inkonsistenten zu analysieren, wurde ein 
Studiendesign entwickelt. Das Studiendesign enthält drei Hauptforschungsfragen, 
welche als Grundlage für die Analyseergebnisse dienen. Die Klonerkennung erfolgt auf 
dem Klonerkennungswerkzeug ConQat. Die Analyse wurde auf den, von den Falsch-
Positiven bereinigten, Klonergebnissen durchgeführt. Es konnte festgestellt werden, 
dass die Hälfte der Klonklassen inkonsistent ist. Die Revisionshistorie gab 
Informationen über die Fehlereinträge in einem Klonfragment. Die Auswertung der 
Daten wurde mit Hilfe von Datenbanken durchgeführt. Der Einsatz einer Datenbank hat 
den Vorteil, dass der manuelle Aufwand für die Suche nach den Informationen in den 
Klonklassen, wie Klondateien, Anfangszeile, Endzeile, Gaps, nicht mehr besteht. Die 
Datenanalyse ergab, dass die Entwickler größtenteils bewusst Klonen, da 58-92% der 
Klonklassen an allen Klonstellen gleichzeitig modifiziert wurden. Demnach sind 
lediglich 3%-33% der inkonsistenten Klonklassen fehlerbehaftet, welches nur einen 
geringen Anteil darstellt und verdeutlicht, dass die inkonsistenten Klone keinen großen 
Einfluss auf die Fehlerrate eines Systems haben. Des Weiteren beweist die Studie, 
dass Klone auch nach 4 Jahren Klonzeit über die gesamte Revisionshistorie keinen 
Fehler verursachen. Ungefähr drei Viertel der inkonsistenten Klone stammen aus 
Eclipse- bzw. firmeninternen Bibliotheken, die trotz Modifizierungen zu 76% keinen 
Zusammenhang zu Fehlern haben. Dies führt zum Beschluss, dass das Klonen aus 
Bibliotheken eine geringere Gefahr darstellt. Die Studie untersuchte den Einfluss der 
Länge der inkonsistenten Klone auf die Fehlerhäufigkeit. Die Ergebnisse verdeutlichen, 
dass Fehler überwiegend in kleinen Inkonsistenten Codefragmenten enthalten sind. 
Zusätzlich veranschaulicht die Studie, dass inkonsistente Klone nicht wie angenommen 
Fehler verursachen, sondern auch durch Fehlerbehebungen entstehen. Durch das 
Modifizieren der Typ-1-Klone zur Fehlerbehebung entstehen nämlich Typ-3-Klone, die 
über die gesamte Revisionshistorie weiter geklont und modifiziert werden und trotz 
dessen keinen Fehler verursachen. In Kapitel 7 sind die Gefahren für die Gültigkeit der 
Studie erfasst, die alle Gefahren und Hürden der Arbeit darstellt, welche zu 
Abweichungen in den Analysewerten führen können. 
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8.1 Ausblick 
Die Studie nutzte für die Analyse drei relativ junge Industriesysteme. Für bessere und 
umfangreichere Studienergebnisse sollte eine größere Datenbasis mit mehr Projekten 
vorliegen und die Studie auf diesen Projekten repliziert werden. Die Datenbasis der 
Analyse setzt sich aus dem Klonerkennungstool ConQat, aus dem 
Versionskontrollsystem Mercurial und dem Issue-Tracking-System FogBugz 
zusammen. Die Datenbasis wurde mit einem hohen manuellen Aufwand aufbereitet. 
Um die Studie auf einer umfangreicheren Datengrundlage durchzuführen, ist die 
Automatisierung für die Aufbereitung der Datenbasis erforderlich, siehe Abbildung 8.1.  
Die Voraussetzung für die Automatisierung ist das Entwickeln eines Tools, welches die 
erforderlichen Daten zu den Klonergebnissen aus ConQat aus den unterschiedlichen 
Systemen bezieht und diese als Analysegrundlage aufbereitet und anschließend listet.  

Das Tool erhält die Klonergebnisse aus dem Klonerkennungswerkzeug, in unserem 
Fall aus ConQat. Nach dem Prüfen auf Falsch-Positive werden die Klondateien  in 
Form von Identifikationsschlüssel für die Suche im Issue-Tracking-System aufbereitet. 
Des Weiteren müssen die Klondateien Informationen über die Anfangszeile, Endzeile 
und Gaps enthalten.  Aus diesen Daten ist nun ersichtlich, ob ein Klon konsistent oder 
inkonsistent ist und in welchen Zeilen sich der Klon befindet. Anschließend werden die 
aufbereiteten Daten in das Tool importiert. Das Tool bezieht zum einen Informationen 
aus einem Versionskontrollsystem und zum anderen aus einem Issue-Tracking-
System. Aus dem Versionskontrollsystem werden zu jeder Klondatei die Informationen 
zu einem Commit, wie ChangesetID, Datum, Zeit, Benutzer, Beschreibung gelistet. Im 
nächsten Schritt wird zu jeder Klondatei im Issue-Tracking-System die gesamte 
Revisionshistorie geprüft. Es erfolgt die Analyse, ob die inkonsistenten Klone sich im 
Laufe der Revisionshistorie verändert haben und in diesem Zusammenhang Fehler 
entstanden sind. Des Weiteren soll automatisiert geprüft werden, ob die Änderungen 
an allen Klonstellen einer Klonklasse zeitgleich erfolgt. Für die Aufbereitung dieses 
Tools können Schnittstellen für Kiln und FogBugz verwendet werden, solang die 
Systeme auf diesen Systemen gepflegt werden. 

 

Abbildung 8.1: Tool zur Automatisierung 
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