

Institut für Softwaretechnologie
Abteilung Software Engineering

Universität Stuttgart
Universitätsstraße 38

Diplomarbeit Nr. 3651

Inkonsistente Klone und Fehler
in Software

Kamer Kaya

Studiengang: Informatik
Prüfer: Prof. Dr. rer. nat. Stefan Wagner
Betreuer: M. Sc. Asim Abdulkhaleq
begonnen am: 01. April 2014
beendet am: 01. Oktober 2014

CR-Klassifikation: D.2.5, D.2.7, D.2.9, D.2.12, H.2.1, H.2.4

 iii

Inhaltsverzeichnis
Danksagung .. vi	

Abbildungsverzeichnis .. vii	

Tabellenverzeichnis .. viii	

Abkürzungsverzeichnis .. ix	

Begriffsverzeichnis .. x	

Kurzfassung ... 12	

1	
 Einleitung ... 13	

1.1	
 Überblick ... 13	

1.2	
 Motivation ... 14	

1.3	
 Zielstellung .. 14	

1.4	
 Aufbau der Diplomarbeit .. 15	

2	
 Grundlagen Softwareklone .. 16	

2.1	
 Definition Klone ... 16	

2.1.1	
 Allgemeine Definition .. 16	

2.1.2	
 Definition Exakte Klone ... 17	

2.1.3	
 Definition Inkonsistente Klone ... 17	

2.1.4	
 Definition Falsch-Positive Klone .. 17	

2.2	
 Klonaufbau .. 17	

2.2.1	
 Codefragmente .. 18	

2.2.2	
 Klonpaar .. 18	

2.2.3	
 Klonklasse ... 18	

2.3	
 Klontypen .. 19	

2.3.1	
 Typ-1-Klone .. 19	

2.3.2	
 Typ-2-Klone .. 20	

2.3.3	
 Typ-3-Klone .. 21	

2.3.4	
 Typ-4-Klone .. 22	

2.3.5	
 Zusammenhang der Klontypen ... 23	

 iv

2.4	
 Klonerkennungsprozess inkonsistenter Klone .. 24	

2.4.1	
 Vorverarbeitung .. 25	

2.4.2	
 Erkennungsalgorithmus .. 26	

2.4.3	
 Nachverarbeitung und Filterung ... 26	

2.5	
 Ansätze zur Klonerkennung .. 27	

2.5.1	
 Granularität ... 27	

2.5.2	
 Abstraktionsebene ... 28	

2.5.3	
 Textbasierte Klonerkennung ... 28	

2.5.4	
 Tokenbasierte Klonerkennung .. 29	

2.5.5	
 Abstrakter Syntaxbaum ... 32	

2.5.6	
 Graphbasierte Klonerkennung .. 33	

2.5.7	
 Metrikbasierte Klonerkennung ... 33	

3	
 Forschungsstand .. 35	

3.1	
 Gründe des Klonens .. 35	

3.2	
 Folgen des Klonens ... 36	

3.3	
 Inkonsistente Klone und Fehler .. 37	

4	
 Werkzeugunterstützung und Software Systeme .. 38	

4.1	
 ConQat .. 38	

4.1.1	
 Überblick zu ConQat .. 38	

4.1.2	
 Design und Architektur ... 38	

4.1.3	
 Klonerkennung mit ConQat .. 39	

4.2	
 Mercurial ... 42	

4.2.1	
 Versionskontrolle .. 43	

4.2.2	
 Funktionen Mercurial ... 43	

4.2.3	
 TortoiseHg .. 46	

4.3	
 FogBugz .. 47	

4.4	
 Kiln .. 48	

5	
 Studiendesign ... 51	

5.1	
 Studienobjekte ... 51	

5.2	
 Forschungsfragen .. 52	

 v

5.3	
 Datensammlung und Konfigurationssysteme ... 54	

5.3.1	
 Klondaten aus ConQat .. 54	

5.3.2	
 Daten aus Mercurial .. 56	

5.3.3	
 Daten aus FogBugz und Kiln .. 58	

5.4	
 Studiendatenauswertung ... 59	

5.4.1	
 Studiendatenvorbereitung und ERM-Diagramme .. 60	

5.4.2	
 SQL-Abfragen .. 61	

5.5	
 Datenanalyse ... 65	

6	
 Ergebnisse .. 73	

7	
 Gefahren für die Gültigkeit .. 77	

7.1	
 Konstruktvalidität .. 77	

7.2	
 Interne Gültigkeit .. 77	

7.3	
 Externe Gültigkeit ... 78	

8	
 Zusammenfassung und Ausblick ... 79	

8.1	
 Ausblick .. 80	

9	
 Literatur ... 81	

Erklärung ... 86	

 vi

Danksagung

Ich möchte mich an dieser Stelle bei allen bedanken, die mich während meiner Arbeit
und während des Studiums unterstützt haben.

An erster Stelle geht ein besonderer Dank an meine Familie, die mich während meines
Studiums mit Sorgsamkeit und hohem Motivationsaufwand unterstützt haben.

Besonders meinem Betreuer Asim Abdulkhaleq gilt ein Dank, der sich immer Zeit für
meine Arbeit genommen hat und mich über die sechs Monate mit viel Motivation und
guten Ideen betreut hat.

Ebenfalls möchte ich mich bei meinem Referenten Herrn Prof. Dr. Stefan Wagner
bedanken, der mir die Arbeit ermöglicht hat und stets für kritische Situationen der
Diplomarbeit immer ansprechbar war.

Ein besonderer Dank gilt an meinem Betreuer Alexander Paar bei der TWT GmbH, der
mir eine große Unterstützung in der Einarbeitungsphase und der Analysephase war.
Weiterhin möchte ich mich beim Herrn Thorsten Scheibler bedanken, der in
Zusammenarbeit mit der Universität Stuttgart die Diplomarbeit ermöglichte. An die
Mitarbeiter der TWT GmbH die für Fragen immer offen waren bedanke ich mich
ebenfalls.

Zu guter Letzt möchte ich mich bei meinen Freundinnen Zeynep Öztürk, Duygu
Söylemez und Hatice Aydeniz bedanken, die während dem Studium geduldig mit mir
waren und immer ein offenes Ohr für mich hatten.

 vii

Abbildungsverzeichnis

Abbildung 2.1: Exakte Klongruppe .. 18
Abbildung 2.2: Inkonsistente Klongruppen .. 19
Abbildung 2.3: Typ-1 Klonpaar .. 20
Abbildung 2.4: Typ-2 Klonpaare mit konsistenter und inkonsistenter Umbenennung ... 21
Abbildung 2.5: Typ-3 Klonpaar .. 22
Abbildung 2.6: Typ-4 Klonpaar .. 22
Abbildung 2.7: Mengenbeziehung der Klontypen ... 23
Abbildung 2.8: Klonerkennungsprozess [6] ... 24
Abbildung 2.9: Normalisierungsbeispiel [20] ... 26
Abbildung 2.10: Zeilenweiser Vergleich über Dot-Plots [24] ... 29
Abbildung 2.11: P-Suffix-Baum zum Suffix S .. 31
Abbildung 2.12: Abstrakter Syntaxbaum [24] .. 32
Abbildung 4.1: ConQat Architektur .. 39
Abbildung 4.2: Klonerkennung- Konfiguration für exakte Klone 40
Abbildung 4.3: Klonerkennung- Konfiguration für inkonsistente Klone 41
Abbildung 4.4: Übersicht zu den Klonerkennungsergebnissen 41
Abbildung 4.5: Klonerkennungsperspektiven .. 42
Abbildung 4.6: Die Funktionen von Mercurial ... 46
Abbildung 4.7: Bugeintrag in FogBugz [33] ... 48
Abbildung 4.8: Verteilte Versionskontrolle in Kiln [36] ... 49
Abbildung 5.1: Skript für die Ausgabe der Revisionshistorie der Klondateien 57
Abbildung 5.2: Skript in Python durch Mercurial-Export ausführen 58
Abbildung 5.3: ERM-Diagramm für die Datenauswertung .. 61
Abbildung 5.4: SQL-Abfrage für inkonsistente Klonklassen .. 62
Abbildung 5.5: Abfrageresultat zu Inkonsistenten Klonklassen 62
Abbildung 5.6: Abfrage Revisionshistorie einer Datei ... 63
Abbildung 5.7: Abfrageresultat zur Revisionshistorie zu Klonklassen 63
Abbildung 5.8: Abfrage für fehlerhafte Klonklassen .. 64
Abbildung 5.9: Abfrage fehlerhafte inkonsistente Klonklassen 64
Abbildung 5.10: Menge der gesamten und inkonsistenten Klongruppen 66
Abbildung 5.11: Prozess zur Verfolgung eines inkonsistenten Klons über die
Revisionshistorie ... 68
Abbildung 5.12: Menge der erkannten Fehler in Inkonsistenzen im Issue-Tracking-
System .. 69
Abbildung 5.13: Menge der inkonsistenten Klongruppen, bei denen an jedem Klon
einer Klongruppe der Fehler behoben wurde .. 70
Abbildung 5.14: Typ-1-Klone die einen Fehler enthalten werden zu Typ-3-Klone ohne
Fehler .. 72
Abbildung 8.1: Tool zur Automatisierung .. 80

 viii

Tabellenverzeichnis

Tabelle 4.1: Funktionen in Mercurial ______________________________________ 45
Tabelle 5.1: Informationen zu den analysierten Systemen _____________________ 52
Tabelle 5.2: Klonerkennung mit liberalem Ansatz ____________________________ 55
Tabelle 5.3: Klonerkennung mit konservativem Ansatz _______________________ 56
Tabelle 6.1: Zusammenfassung der Studienergebnisse _______________________ 73
	

	

	

	

 ix

Abkürzungsverzeichnis

CF

AST

PDG

Codefragment

Abstrakter Syntaxbaum

Program Dependence Graph

ConQat

ERM

SQL

C

IC

BIC

KF

MIS

ZMIS

FK

Continuous Quality Assessment Toolkit

Entity-Relantionship-Modell

Structured Query Language

Alle Klongruppen

Inkonsistente Klongruppen

Fehlerhafte Inkonsistente Klongruppen

Fehlerbehobene inkonsistente Klongruppen

Modifizierte inkonsistente Klonstellen

Zeitgleich modifizierte inkonsistente Klonstellen

Fehlerhafte Klonklassen

 x

Begriffsverzeichnis

ConQat ConQat ist ein Werkzeug zur kontinuierlichen Software-
Qualitätskontrollanalyse. ConQat wird in dieser Arbeit als
Klonerkennungswerkzeug eingesetzt.

Klone Klone sind redundante Quelltextabschnitte in einem Code,
die an mehreren Stellen eines Softwaresystems
vorkommen.

Inkonsistente Klone Redundante Quelltextabschnitte, die mit Modifikationen
versehen sind.

Gap Ungleiche Abschnitte in den Inkonsistenten Klonen werden
Gap genannt.

Versionskontrolle Unter Versionskontrolle hingegen versteht man den Prozess
der Verwaltung mehrerer Versionen einer Information

Versionskontrollsystem Tools die das Automatisieren der Versionskontrolle
ermöglichen, werden Versionskontrollsysteme genannt.

Mercurial Mercurial ist ein plattformunabhängiges, verteiltes
Versionskontrollsystem.

Issue-/Bug-Tracking
System

Ein Issue-/Bug-Tracking-System ist ein Werkzeug, mit dem
diverse Aufgaben in einem Projekt bearbeitet werden.

FogBugz Das webbasierte System FogBugz ist ein
Projektmanagement-system sowie ein Issue-/Bug-Tracking-
System, welche umfangreiche Funktionalitäten für
Entwicklerteams anbietet.

Kiln Kiln ist ein webbasiertes System für das Quellcodehosting
von Mercurial.

TortoiseHg Das Tool TortoiseHg ist ein einfach zu bedienendes
Frontend und steht mit ihrer graphischen Oberfläche zur
Verfügung, um die Benutzung von Mercurial ohne
Kommandozeilenbefehle durchzuführen.

Bug Ein Bug ist ein fehlverhalten in einem Softwaresystem.

 11

 12

Kurzfassung

Softwareklone in einem System erfordern eine hohe Vorsicht im Entwicklungszyklus
eines Softwareprojekts. Viele Forscher sind der Ansicht, dass Klone vor allem
inkonsistente Klone die Ursache diverser Fehler in Softwaresystemen sind, die sich
unbemerkt einschleichen und nicht nachverfolgt werden können. Vor allem die
Auswirkungen der inkonsistenten Klone liegen im Interesse vieler Forschungsarbeiten.
Jedoch liegen die Forschungsergebnisse der Studien weit auseinander. Im Rahmen
dieser Diplomarbeit werden die Auswirkungen der inkonsistenten Klone in einem
Softwaresystem analysiert. Des Weiteren analysiert diese Arbeit auf empirischer Basis
im Rahmen eines Studiendesigns den Zusammenhang der Inkonsistenten und Fehlern
in Softwaresystemen. Die Studie wurde auf drei Industriesystemen durchgeführt und
ergab als Resultat, dass Entwickler über fast alle Klonstellen einer Klonklasse
informiert sind und diese bei Bedarf zu 58%-92% zeitgleich modifizieren. Es sind
lediglich 3%-33% der inkonsistenten Klonklassen fehlerbehaftet und stellen somit eine
geringe Gefahr für die Softwareentwicklung. Die umfangreiche Analyse gab den
Beschluss, dass die Inkonsistenzen im Vergleich zu exakten Klonen mindestens
weniger als die Hälfte einen Fehler verursachen. Weiterhin wiederlegt die Studie, dass
durch das Klonen aus Bibliotheken, Klone eine erheblich geringe Anzahl an Fehler
darstellen und nach bis zu vier Jahren Klonzeit keinen einzigen Fehler in der gesamten
Revisionshistorie verursacht haben. Die Ergebnisse dieser Arbeit beweisen, dass
Entwickler bewusst Klonen und dass es durch das bewusste Klonen keinen erhöhten
Zusammenhang zwischen inkonsistente Klone und Fehler gibt.

 13

1 Einleitung

Dieses Kapitel verschafft einen Überblick über das Thema der Diplomarbeit. Zunächst
schafft der erste Teil einen Überblick über das Umfeld und darauf wird die Motivation
der Arbeit dargestellt. Anschließend wird das Ziel der Arbeit beschrieben. Der letzte
Abschnitt veranschaulicht den Aufbau der Diplomarbeit, um einen Gesamtüberblick
über das Forschungsthema zu verschaffen.

1.1 Überblick
Ein wichtiger Bestandteil der Softwareentwicklung ist die Wartung. Fälschlicherweise
werden der Aufwand und die Kosten für die Wartung im Gegensatz zur
Implementierung unterschätzt. Empirische Studien haben wiederlegt, dass die Kosten
für die Wartung und Entwicklung ein wichtiger Aspekt sind und bis zu 80% der
Gesamtkosten und des Aufwandes betragen [1]. Die Ursache für die hohen Kosten ist,
dass mit zunehmendem Alter durch die fehlende Planung für die Weiterentwicklung
sowie hohem Zeitdruck und mangelnde Möglichkeiten für die langfristige Planung, der
Softwareumfang steigt. Forscher haben lange versucht diese Wartungskosten zu
minimieren. Für die Verbesserung der Entwicklung gab es einige Arbeiten, welche die
Prozessmodelle sowie die Werkzeug- und Sprachunterstützung verbessert haben, um
den schlechten Eigenschaften des Codes entgegenzuwirken, die sich negativ auf die
Wartungskosten auswirken. Daraus resultierend können die Wartungskosten reduziert
werden. Schlechte Wartbarkeit eines Softwaresystems kann oft zu einem schlechten
Code führen, der schwer fehleranfällig, verstehbar und veränderbar ist [2], [3]. Ein
wichtiger Faktor für einen schlechten Code können Code-Duplizierungen oder Klone
sein. Klone sind kopierte Quelltexte, die vor allem durch Copy&Paste entstehen, die
über die Implementierungsdetails im gesamten System verteilt werden. Fowler [4]
betrachtet das Klonen als „bad smells“ und als den wichtigsten Indikator für die
schlechte Wartbarkeit. Durch das Klonen besteht die Gefahr, dass Fehler in den
kopierten Codeabschnitten stillschweigend repliziert werden, ohne dass es der
klonende Entwickler bemerkt. Speziell inkonsistente Klone lassen vermuten, dass
Fehler eingeführt und nicht behoben werden. Das Klonen hat also den Nachteil, dass
sich die Fehleranfälligkeit des Systems erhöht und dass sich der Codeumfang
vergrößert, welches das Verständnisproblem des Systems erschwert. Welchen Einfluss
Klone auf die Wartbarkeit und Zuverlässigkeit haben, untersuchen Monden u.a. [5] in
einer umfangreichen Studie. Des Weiteren gab es eine empirische Arbeit zur Analyse
der Anzahl der Fehler für inkonsistente Klone, die durch das Ändern des geklonten
Codeabschnitts entstehen [6]. Es wurden ebenfalls viele Forschungsarbeiten für das
automatische Finden bzw. auch für das automatische Ändern von Klonen gewidmet,
um der Fehleranfälligkeit des geklonten Codes entgegenzuwirken [7, 8, 9]. Gleichzeitig

 14

präsentiert eine andere Forschungsgruppe Beweise dafür, dass es keinen erhöhten
Zusammenhang zwischen Klonen und Fehler gibt [10].

1.2 Motivation
Es gibt diverse Ansätze und Ergebnisse zu Fehlern in Klone, die sich zum Teil
widersprechen. Prinzipiell besteht die Annahme, dass allein durch den Größenzuwachs
unnötige Aufwände entstehen, aber speziell die inkonsistenten Klone lassen vermuten,
dass auch Fehler eingeführt oder nicht behoben werden.

Beispielsweise analysiert die empirische Studie, an der Forschungsgruppen aus
Industrie und Open Source beteiligt sind, dass bei unbewussten inkonsistenten Klonen,
jeder zweiter Klon einen Fehler enthält [6]. Eine andere Studie von Rahman, Bird und
Dvanbu [10] konnte aber keinen erhöhten Zusammenhang zwischen Klonen und
Fehlern finden. Es gibt also verschiedene Ansätze und verschiedene Ergebnisse zu
Fehlern in Klone.

Aus diesem Anlass entstand die Diplomarbeit in Kooperation mit der
Entwicklungsabteilung der TWT GmbH in Stuttgart Vaihingen. Bei der TWT GmbH
existieren Softwaresysteme, die über Jahre hinweg entwickelt werden und aus langen
Revisionshistorien bestehen. Die Architektur der Systeme wurde kontinuierlich an neue
Anforderungen wie sich ändernde Kundenwünsche und neue Technologien angepasst.

Es wurden von der TWT GmbH drei Softwaresysteme, welche Kundenprojekte für
größere Firmen sind, für die Analyse zur Verfügung gestellt. Die Systeme bestehen aus
einer hohen Anzahl von Revisionen, die als Basis für die Arbeit dienen.

1.3 Zielstellung
Das Ziel der Arbeit ist es, Hinweise dafür zu finden, ob inkonsistente Klone Fehler
verursachen. Im Zusammenhang dazu, soll ermittelt werden, unter welchen Umständen
Fehler durch Inkonsistente entstehen. Hierzu soll die empirische Basis für den
Zusammenhang zwischen inkonsistenten Klonen und Fehlern erhöht werden, um eine
genauere Aussage machen zu können. Dabei sollen die vorhandenen Studien auf
Systemen der TWT GmbH repliziert werden. Die Analyse der Studie soll in einem
Studiendesign erfasst werden.

 15

1.4 Aufbau der Diplomarbeit
Die Diplomarbeit beginnt mit der Einleitung, die einen Überblick über das gesamte
Thema verschafft. Anschließend werden der Hintergrund der Diplomarbeit, die
Motivation und das Ziel beschrieben. Die Grundlagen erfolgen in Kapitel 2 und
umfassen eine Einführung in die Termini und Definitionen sowie in die
unterschiedlichen Klonerkennungsverfahren im Detail. Das darauf folgende Kapitel 3
befasst sich mit dem bisherigen Forschungsstand bzw. den Forschungsarbeiten.
Hierbei werden die Gründe und Folgen des Klonens geschildert und verschiedene
Arbeiten zur Erkennung inkonsistenter Klone und Bugs dargestellt. Die relevanten
Werkzeuge und Softwaresysteme für die Arbeit, wie ConQat, Mercurial und FogBugz
werden im vierten Kapitel beschrieben. In Kapitel 5 beginnt der eigentliche Teil der
Diplomarbeit, das Studiendesign. Das Studiendesign mit dem Repository Mining wird
erklärt und die Forschungsarbeit durchgeführt sowie die Forschungsergebnisse
beschrieben, um die Ergebnisse in Kapitel 6 auszuwerten und zu beurteilen. In einem
abschließenden Fazit im siebten Kapitel werden die Ergebnisse zusammengefasst und
beurteilt. Zudem werden weitere potenzielle Weiterentwicklungsbereiche dargestellt
und auf zusätzliche offene Forschungsfragen angedeutet sowie Ideen für deren
Lösungen geliefert.

 16

2 Grundlagen Softwareklone

Bei der Betrachtung diverser Studien wird schnell festgestellt, dass verschiedene
Definitionen zum Begriff Klon existieren. Genauso sind unterschiedliche Ansichten zu
den Subbegriffen des Klons vorhanden. Daher gibt dieses Kapitel eine detaillierte
Einführung in die zugrundeliegende Materie, die eine Voraussetzung für das
Verständnis der Arbeit ist. Das Kapitel beschreibt die verschiedenen Klonarten und
Klontypen sowie den Aufbau der Klone, deren Forschungsgebiet sehr breit gefächert
ist. Dementsprechend spiegelt sich das auch in den unterschiedlichen
Klonerkennungsansätzen wieder. Nach einer ausführlichen Beschreibung des
allgemeinen Klonerkennungsprozesses für inkonsistente Klone werden die wichtigsten
und bekanntesten Klonerkennungsverfahren im Detail beschrieben.

2.1 Definition Klone
Die Definition des Klonens lässt sich in der Softwareentwicklung nicht präzise und ohne
weiteres festlegen. Daher umfasst das Kapitel zum besseren Verständnis der Klone,
beginnend mit einer allgemeinen Definition, detaillierte Definitionen zu verschiedenen
Klonarten.

2.1.1 Allgemeine Definition
Die allgemeine Definition von Ira Baxter dient als Grundlage für das Verständnis der
Klone.

“Clones are segments of code that are similar according to some definition of
similarity” [11].

Laut dieser Definition kann es verschiedene Begriffe der Ähnlichkeit geben. Diese
könnten auf Text, der lexikalischen und syntaktischen Struktur oder auf der Semantik
basieren. Sie gelten ebenfalls als ähnlich, wenn sie dasselbe Muster haben [12].

Eine weitere wichtige Definition ist die von E. Juergens u.a. [6], welche die Klone in
exakte und inkonsistente Klone gliedert. Zunächst ist es wichtig zu wissen, dass sie ein
Code als eine Sequenz von Units bezeichnet, die zum Beispiel Bezeichner,
normalisierte Statements oder Zeilen sein können.

Der Grund für die Normalisierung ist, dass beim Vergleich von Codeabschnitten die
Kommentare und die Benennung der Literale durch die Normalisierung nicht betrachtet
werden, sondern lediglich die Codezeilen verglichen werden können.

 17

2.1.2 Definition Exakte Klone

Ein exakter Klon ist ein fortlaufender Substring eines Codes, der mindestens zweimal in
dem (normalisierten) Code erscheint [6]. Dies spiegelt das Copy&Paste Verfahren
wieder und ist somit die syntaktische Definition des Klons.

2.1.3 Definition Inkonsistente Klone

Juergens u.a. [6] macht eine detaillierte Definition zu inkonsistenten Klonen. Demnach
ist ein Substring s vom Code ein inkonsistenter Klon, wenn es einen anderen Teilstring
t des Codes derart gibt, dass ihre Bearbeitungsdistanz unter einem gegebenem
Schwellenwert ist und dass t keine signifikante Überlappung mit s hat.

2.1.4 Definition Falsch-Positive Klone
Falsch-Positive Klone sind Codefragmente, welche von einem Klonerkennungstool als
ein Klon erkannt wurden, die jedoch keinen Klon darstellen [17]. Durch das
Festlegegen eines Schwellenwerts für die Mindestklonlänge kann die Anzahl der
Falsch-Positive reduziert werden. Da diese Art der Klone sich lediglich durch eine
manuelle Analyse der Klonergebnisse erkennen und beseitigen lassen, ist die optimale
Wahl des Schwellenwerts wichtig. Der Grund für die Ausgabe von Falsch-Positiven
kann bspw. ähnliche, sich wiederholende Strukturen in der Syntax eines
Codeabschnitts sein. Viele Klonerkennungswerkzeuge erkennen bereits Falsch-
Positive wie bspw. Array-Listen, die sich in den Literalen-Token und Komma-Token mit
unterschiedlichen Werten wiederholen [17]. Weitere Beispiele aus einer Vielzahl von
Falsch-Positiven sind Case-Anweisungen, import- und „#include“-Anweisungen, sowie
Setter- und Getter-Methoden. Die Codefragmente eines Klonpaars mit ähnlicher
Struktur, die sich jedoch in den Bezeichnern stark unterscheiden, werden ebenfalls als
Falsch-Positive betrachtet.

2.2 Klonaufbau
Bisher wurden Klone lediglich als kopierte bzw. redundante Codeabschnitte
bezeichnet. Für das Verständnis der empirischen Arbeit wird im Folgenden der Aufbau
eines Klons definiert. Zunächst wird die Definition des Begriffs „Codefragment“
festgelegt, da dieser Begriff immer in Verbindung mit dem Begriff Klon genannt wird.
Anschließend erfolgen weitere Begriffsdefinitionen, die für den Aufbau eines Klons
relevant sind. Darüber hinaus wird die Beziehung zwischen den Klonen geschildert.

 18

2.2.1 Codefragmente

Bei der Analyse von Klonen werden Codefragmente miteinander verglichen. Ein
Codefragment ist ein Quelltextabschnitt, die zum einen den Namen der Klondatei und
zum anderen sowohl die Anfangszeile als auch die Endzeile des geklonten
Quelltextabschnitts enthält. Mittels dieser Daten lässt sich ein geklonter
Quelltextbereich eindeutig identifizieren. Des Weiteren dienen diese Informationen als
Grundlage für die Klonanalyse um bspw. zu prüfen, ob zwei Codefragmente tatsächlich
Klone voneinander sind.

2.2.2 Klonpaar

Ein Paar von syntaktisch und strukturell ähnlichen Codefragmenten werden nach
Kapser et al. [16] als ein Klonpaar bezeichnet. Einer dieser Codefragmente ist die
Kopie des anderen. Das Klonpaar ist der kleinste gemeinsame Nenner für die
Beschreibung eines Duplikats.

2.2.3 Klonklasse

Eine Klonklasse enthält mindestens zwei Codefragmente, welche dieselbe bzw.
ähnliche Funktionalität beschreiben und an unterschiedlichen Stellen im Quelltext
erscheinen. Klonklassen werden ebenfalls als Klongruppen bezeichnet. Jürgens et al.
[6] stellen Klongruppen als einen zusammenhängenden Graphen dar. Dabei wird ein
Codefragment durch einen Knoten verdeutlicht. Kanten zwischen den Knoten
existieren erst dann, wenn eine Klonbeziehung zwischen den Codefragmenten besteht.
Wenn alle Klone einer Klongruppe exakte Klone sind, wird von einer exakten
Klongruppe gesprochen. Eine Klongruppe welche mindestens ein inkonsistentes
Klonpaar enthält, wird als inkonsistente Klongruppe bezeichnet. Die Abbildungen 2.1
und 2.2 stellen eine exakte und inkonsistente Klonkasse bzw. Klongruppe als einen
Graphen dar, wobei CF als Abkürzung für Codefragment steht.

Abbildung 2.1: Exakte Klongruppe

 19

Abbildung 2.2: Inkonsistente Klongruppen

2.3 Klontypen
Kopierte Codeabschnitte werden als Klone bezeichnet. Die Klontypen werden je nach
der Ähnlichkeit der Codeabschnitte in vier Klontypen unterschieden. Die Klontypen
werden wiederum in textuelle Ähnlichkeit, d.h. ähnlicher Quellcode und funktionale
Ähnlichkeit, d.h. lediglich ähnliche Funktionalität ohne textuelle Ähnlichkeit,
unterschieden. Die vier Klontypen werden wie folgt definiert:

• Typ-1-Klone: Identische Codeabschnitte bis auf Kommentare und Whitespaces.

• Type-2-Klone: Syntaktisch identische Codeabschnitte, die sich in den
Kommentaren, Literalen, Bezeichnern und im Layout unterscheiden.

• Type-3-Klone: Kopierte Codeabschnitte mit weiteren Modifikationen wie
Anpassen, Hinzufügen oder Löschen von Codezeilen, Bezeichnern,
Kommentaren und Layout.

• Type-4-Klone: Codeabschnitte die semantisch ähnlich sind, sich jedoch
syntaktisch unterschieden.

Die ersten drei Klontypen lassen sich zur textuellen Ähnlichkeit kategorisieren. Die
semantisch ähnlichen Klone gehören zur Kategorie der funktionalen Ähnlichkeit.

2.3.1 Typ-1-Klone

Der Typ-1-Klon ist die exakte Kopie eines Codeabschnitts ohne weitere Modifikationen.
In der Kopie handelt es sich um identische Quelltextabschnitte, die sich lediglich in den
abstrahierten Kommentaren und Whitespaces (neue Zeilen, Blanks, etc.)
unterscheiden (siehe Abbiildung 2.3). Diese Art der Klone kann bspw. durch Inlining
von Hand entstehen.

 20

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Abbildung 2.3: Typ-1 Klonpaar

2.3.2 Typ-2-Klone

Bei Typ-2-Klonen handelt es sich um syntaktisch identische Kopien der
Codefragmente. Die Typ-2-Klone umfassen Typ-1-Klone. Bei dieser Art des Klonens
werden neben dem Abstrahieren der Whitespaces und Kommentare auch die
Bezeichner bzw. Literale umbenannt. Typ-2-Klone entstehen in der Regel durch die
Wiederverwendung einer Funktion, bei der die Bezeichner konsistent auf den Quelltext
angepasst werden. Dies ist bspw. bei generischen Funktionen der Fall, bei dem die
Anpassung von Hand durchgeführt wird.

Baker, S. [12] macht eine weitere Gliederung der Klone in sog. parametrisierte Klone,
die eine Untermenge der Typ-2-Klone sind. Formal bedeutet dies, dass es eine
bijektive Abbildung zwischen den zwei Codefragmenten gibt, die jedem Bezeichner
eines Codefragments einen Bezeichner des anderen Codefragments zuordnet und
umgekehrt.

Werden die Bezeichner im kopierten Quelltext für alle Bezeichner konsistent
umbenannt, so spricht man von einem konsistent umbenannten Typ-2-Klon, welches
vor allem bedeutet, dass die Codefragmente sich in der Semantik nicht unterscheiden.
Wird die Umbenennung im Gegensatz hierzu nicht konsistent durchgeführt, so spricht
man von Typ-2-Klonen mit inkonsistenter Umbenennung. Der Grund hierfür können
Fehler beim Umbenennungsvorgang sein. In diesem Fall besteht die Gefahr, dass sich
die Klone unbeabsichtigt in der Semantik unterscheiden. In Abbildung 2.4 sind Klone
mit konsistenter und inkonsistenter Umbenennung dargestellt.

int a = 2;
int b = 2 * a;
String name = “Anna”;

int	
 a	
 =	
 2;	
 //	
 Kommentar	

int	
 b	
 =	
 2	
 *	
 a	
 ;	
 //	
 Kommentar	

String name = “Anna”;

 21

 Ursprünglicher Quellcode:

	
 	

 Konsistente Umbenennung:	
 	
 Inkonsistente Umbenennung:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Abbildung 2.4: Typ-2 Klonpaare mit konsistenter und inkonsistenter Umbenennung

2.3.3 Typ-3-Klone

Die Typ-3-Klone, auch inkonsistente Klone genannt, umfassen Typ-1 und Typ-2-Klone.
Hierbei handelt es sich um einen der beiden Klone, der z.B. durch Anpassen,
Hinzufügen oder Löschen von Codezeilen modifiziert wurde. Typ-3-Klone werden auch
inkonsistente Klone, bzw. Gaps [13], ungleiche Abschnitte, genannt. Dieser Typ des
Klons entsteht, wenn eine bestehende Funktionalität im Softwarelebenszyklus weitere
Funktionalitäten in der Kopie benötigt und dementsprechend angepasst wird [13], [14].
Daraus kristallisiert sich, dass der Typ-3-Klon sich von den vorherigen beiden
Klontypen unterscheidet.

Der Typ-3-Klon ist also ursprünglich ein Typ-1 oder Typ-2-Klon, welche durch die
Modifizierung unterbrochen wird und daher sich von dem ursprünglichen Codefragment
nicht nur in den Bezeichnern, Literalen und Kommentaren unterscheidet, sondern auch
unähnliche Anweisungsteile enthält, wie in Abbildung 2.5 ersichtlich wird.

Wichtig für den Typ-3-Klon ist die minimale Klonlänge, also der Schwellenwert für die
Ähnlichkeit der Klonabschnitte sowie das Gap Ratio, welches bestimmt um wie viele
Codezeilen sich ein Klonpaar unterscheiden darf [15]. Lediglich ein optimales
Verhältnis der festgelegten Werte liefert ein optimales Ergebnis der erkannten Typ-3-
Klone. Andernfalls erfolgt eine ungünstige Verteilung von Klonabschnitten, welche sich
über mehrere Klonklassen verteilen oder es werden die Klone nicht erkannt,sondern
nur Teilabschnitte [15]. Ein weiterer Nachteil der ungünstig ausgewählten
Schwellenwerte spiegelt sich in der Anzahl der Falsch-Positiven, welche sich erheblich
erhöhen. Dies führt bei der Klonerkennung zu einer relativ schlechten Genauigkeit der
Klonergebnisse.

int a, b;
for (a=0, b=50;
 a <= b;
 a=a+3; b=b-4)
{….}

int c, d;
for (c=0, d=50;
 c <= d;
 c=c+x; d=d-4)
{….}

int c, d;
for (c=0, d=50;
 c <= c;
 c=d+3; d=d-4)
{….}

 22

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Abbildung 2.5: Typ-3 Klonpaar

2.3.4 Typ-4-Klone

Bei den Typ-4-Klonen handelt es sich um semantisch ähnliche Klone, die zwar dieselbe
Funktionalität darstellen, jedoch syntaktisch unterschiedlich sind und somit nicht ohne
weiteres als Klon erkannt werden. Beispielsweise sind die for-Schleifen, welche
ebenfalls als while-Schleifen dargestellt werden können, ein Klon des Typs 4. Das
Inkrement Operator „++“ in einigen Programmiersprachen kann durch die
ausgeschriebene Schreibweise ersetzt werden und ist ebenfalls ein Beispiel für ein
Typ-4-Klon. Die Bestimmung der semantischen Ähnlichkeit bei syntaktischer
Verschiedenheit ist fast unmöglich. Daher wird dieser Klontyp in der Literatur eher
selten erwähnt und hat wenig praktischen Nutzen. Die Abbildung 2.6 stellt zwei
syntaktisch verschiedene jedoch semantisch gleiche Codefragmente dar.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Abbildung 2.6: Typ-4 Klonpaar

int a, b;
for (a=0, b=50;
 a <= b;
 a=a+3; b=b-4)
{….}

int a, b;
for (a=0, b=50;
 a = a+1;
 a <= b;
 a=a+3; b=b-4)
{….}

int a (int betrag, int niedrig) {
if (niedrig {
 return (betrag *120)/100;
} else {
 return (betrag *150)/100;
}

}

int b (int betrag, int niedrig) {
 int prozent;

 if (niedrig) {
 prozent = 20;
 } else {
 prozent = 50;
}
return betrag +
 (prozent * betrag) /100;
}

 23

2.3.5 Zusammenhang der Klontypen

Die verschiedenen Klontypen stehen in der Mengenbeziehung im Zusammenhang.
Das Mengenverhältnis zwischen den Klontypen lässt sich formal wie in Abbildung 2.7
dargestellt folgendermaßen erfassen:

Typ1⊂ Typ2 ⊂ Typ3 ⊂ Typ4

Abbildung 2.7: Mengenbeziehung der Klontypen

Mit steigendem Klontyp wächst die Anzahl der möglichen Codeklone. Der Grund hierfür
ist, dass je höher der Klontyp ist, desto mehr Freiraum ist für die Abweichungen
zwischen den geklonten Codeabschnitten vorhanden.

In Abbildung 2.7 sind die Mengen der Klontypen dargestellt. Die Menge der Typ-2-
Klone umfasst die Menge der Typ-1-Klone, welche die Identitätsabbildung eines
geklonten Codeabschnitts ist. Bei den Typ-2-Klonen existieren im Vergleich zu Typ-1-
Klonen Bezeichner, die konsistent bzw. inkonsistent umbenannt wurden.

Die Identitätsabbildung wird durch den Typ-3-Klon erweitert, in dem die Unterschiede
bspw. nicht nur in den Bezeichnern und im Layout vorkommen, sondern sich komplette
Bereiche unterscheiden. Bei den Typ-4-Klonen kann, auf Grund fehlender
syntaktischer Ähnlichkeit, keine Zuordnung von geklonten Codeabschnitten
vorgenommen werden.

 24

2.4 Klonerkennungsprozess inkonsistenter Klone
Es gibt verschiedene Ansätze zur Klonerkennung die auf unterschiedlichen
Klonerkennungswerkzeugen basieren. Gemeinsames Ziel der
Klonerkennungswerkzeuge ist es, die Codefragmente miteinander zu vergleichen und
mit möglichst wenig Aufwand möglichst viele Klone zu erkennen. Um den Aufwand für
die Klonsuche zu reduzieren, existieren Klonerkennungsprozesse, welche in
Unterstützung der Klonwerkzeuge umgesetzt werden.

Roy u.a. [18] schaffen einen Gesamtüberblick über die wichtigsten Schritte in einem
Klonerkennungsprozess. Sie stellen einen generischen Klonerkennungsprozess vor,
die eine Menge von Schritten enthält, welche in der Regel von einem
Klonerkennungstool bearbeitet werden. Hierbei befassen sie sich über die Token-
Ebene hinaus mit weiteren möglichen Klonerkennungsansätzen und vergleichen diese
miteinander. Der vorgestellte generische Klonerkennungsprozess ermöglicht das
Vergleichen und Bewerten von Klonerkennungswerkzeugen in Anlehnung auf ihren
zugrundeliegenden Mechanismus für die einzelnen Klonerkennungsschritte und ihrer
Höhe der Unterstützung für diese Schritte.

Der Fokus dieser Diplomarbeit liegt auf inkonsistente Klone. Daher befasst sich dieses
Kapitel mit einem Klonerkennungsprozess, welcher speziell für die Erkennung von
inkonsistenten Klonen entworfen wurde, der auf Token-Ebene arbeitet und im
Allgemeinen ausreichend für die Suche nach Copy&Paste Codefragmenten ist und
zugleich effizient ist [6]. Für diesen Klonerkennungsprozess entworfene Algorithmen
und Filter wurden als Teil von CloneDetective [19] implementiert, die auf ConQat
basieren (hierzu mehr in Kapitel 4.1) und in der Lage sind inkonsistente Klone zu
erkennen.

Die Basisschritte für die Erkennung von inkonsistenten Klonen des vorgestellten
Verfahrens beruhen ebenfalls auf den Schritten des allgemeinen
Klonerkennungsprozesses [18]. Der Unterschied liegt darin, dass das
Klonerkennungstool als eine Pipeline organisiert ist. Die Abbildung 2.8 schildert die
einzelnen Schritte für die Klonerkennung.

Abbildung 2.8: Klonerkennungsprozess [6]

 25

2.4.1 Vorverarbeitung
Vor der Vorverarbeitung werden zunächst der zu analysierende Code, bzw. die Daten
durch den Loader (also aus dem Speicher) ausgelesen. Anschließend muss der
Quellcode unterteilt und die Quelle und die Vergleichseinheiten bestimmt werden [18].
Im Klonerkennungsprozess, welcher für inkonsistente Klone entworfen wurde, basiert
die Vergleichseinheit auf Tokens. Daher werden die Daten nach dem Auslesen mit
Hilfe des Scanners in Tokens aufgeteilt [6].

Der nächste Schritt ist das Entfernen von uninteressanten Teilen des Quellcodes.
Diese setzten sich aus generiertem Code, die Falsch-Positive verursachen können,
Kommentaren und eingebettetem Code aus anderen Programmiersprachen
zusammen. Letztlich setzt sich der Code aus aufgeteilten Tokens zusammen, welche
durch die Tokenisierung erfolgt.

2.4.1.1 Normalisierung

Die Normalisierung ist ein wichtiger Bestandteil der Vorverarbeitungsphase. Die
Normalisierung stellt aus den Tokens, die aus einmaligen Schlüsselwörtern,
Bezeichnern und Operatoren bestehen, wieder Statements zusammen. Dieser Schritt
ermöglicht eine bessere Anpassung der Normalisierung und hilft Klone zu vermeiden,
die innerhalb von Statements beginnen und enden.

Die Normalisierung beseitigt die Unterschiede in der Benennung der Bezeichner,
konstanten Werten und Literalen, so dass sie beim Vergleich von Statements nicht
relevant sind. In Abbildung 2.9 ist ein Beispiel für die Normalisierung eines
Codeabschnitts. In dem nicht normalisierten Codeabschnitt erfolgt das Umändern einer
UTF-8-Datei in eine UTF-16-Datei. Es ist zu erkennen, dass die Bezeichner zu „id“ und
die Literale zu „lit“ normalisiert wurden, so dass der Klonerkennungsalgorithmus diese
als einen Klon erkennen kann.

 26

Abbildung 2.9: Normalisierungsbeispiel [20]

2.4.2 Erkennungsalgorithmus

Als nächstes wird die aus den Statements gebildete Sequenz an den
Klonerkennungsalgorithmus übergeben. Der speziell für diesen
Klonerkennungsprozess entwickelte Algorithmus konstruiert aus dem Quelltext ein
Suffix-Baum und führt anschließend, basierend auf einer Bearbeitungsdistanz, für jedes
mögliche Suffix eine Klonsuche durch [6]. Anders ausgedrückt sollen für die Klonsuche
gemeinsame Teilstrings in der Sequenz gefunden werden, die von allen Datenströmen
gebildet wurden, in denen die Teilstrings nicht exakt identisch sein müssen, aber eine
durch einen Schwellenwert begrenzte Bearbeitungsdistanz erfüllen.

Als Ergebnis liefert der Erkennungsalgorithmus Klongruppen, welche aus Klonen
bestehen, die aus den Sequenzen (normalisierten Tokens) ermittelt wurden.

2.4.3 Nachverarbeitung und Filterung

Zuletzt müssen die Klongruppen überarbeitet bzw. gefiltert werden. Um Speicherplatz
zu sparen erfolgt die Filterung relativ früh. Das Ziel ist es, den Speicher nicht für nicht
relevante Klongruppen zu verwenden. Das Eliminieren von Klongruppen, deren Klone
sich nicht überlappen und Gruppen, deren Klone in anderen Klongruppen enthalten
sind, ist ein wesentlicher Bestandteil des Filterns.

Des Weiteren bietet das Filtern neben einer absoluten Grenze für die Anzahl der
Inkonsistenten auch eine relative Grenze an. Das ermöglicht das Ausfiltern von Klonen,

 27

in denen die Anzahl der inkonsistenten Klone im Verhältnis zur Länge des Klons einen
bestimmten Betrag übersteigt [6].

Der Nachverarbeitungsschritt bietet die Gelegenheit, Falsch-Positive durch eine
manuelle Analyse oder automatisierte Heuristiken auszufiltern [18]. Die Ergebnisse des
vorgestellten inkonsistenten Klonerkennungsvorgangs werden ebenfalls über eine
HTML-Seite visuell in einem Tree Map (mehr dazu in Kapitel 4.1) dargestellt, so dass
das manuelle Filtern von Falsch-Positiven beschleunigt werden kann.

2.5 Ansätze zur Klonerkennung
Nach dem in die Begrifflichkeiten und Definitionen der Klone eingeführt wurden, stellt
dieses Kapitel Techniken und Verfahren zur Erkennung von Klonen in Codefragmenten
vor. Die Ansätze zur Klonerkennung unterscheiden sich zunächst in der Granularität
des berücksichtigten Wissens und der Abstraktionsebene der Analyse [21]. Nach deren
Erklärungen werden die unterschiedlichen Klonerkennungsverfahren vorgestellt.

2.5.1 Granularität

Unter Granularität versteht man die „Größe“ der Einheiten, die bei der Klonerkennung
verglichen werden müssen. Die Granularität bestimmt die Anzahl der potentiell
notwendigen Vergleiche im Klonerkennungsvorgang.

Zur Klonerkennung werden üblicherweise folgende Granularitätsstufen verwendet [21]:

- Zeichen
- Zeilen
- Anweisungssequenzen
- Funktionen
- Module

Für ein exaktes Verfahren wird die Granularität verfeinert, in dem kleinere
Codefragmente gebildet werden und somit die Anzahl der zu vergleichenden Einheiten
steigt. Jeder dieser Einheiten der Granularitätsstufe wird mit jeder anderen Einheit
verglichen. Somit steigt also die Zahl der potentiellen Vergleiche und damit verbunden
auch der Aufwand. Die steigende Granularität eines Verfahrens führt zu einem
quadratischen Aufwand der Vergleiche.

Werden zwei fünfstellige Codefragmente durch ein zeilenorientiertes Verfahren
miteinander verglichen, so sind 25 Vergleiche durchzuführen, da jede Zeile des einen
Codefragments mit jeder Zeile des anderen Codefragments verglichen wird. Im
Vergleich dazu würden tokenorientierte oder zeichenorientierte Verfahren mit feinerer
Granularität in der Regel deutlich höhere Vergleiche durchführen.

 28

2.5.2 Abstraktionsebene

Unter Abstraktionsebene versteht man die „Art“ der Einheiten, die zu vergleichen sind.
Demzufolge gibt die Abstraktionsebene die Datenbasis an, auf der die Klonerkennung
stattfindet.

Zur Klonerkennung werden üblicherweise folgende Abstraktionsebenen unterschieden
[21]:

- Text
- Token
- Syntax
- Semantik
- Metriken

Damit ein Codefragment als Klon erkannt werden kann, muss sie zunächst auf die
geeignete Art, bspw. durch Normalisierung, abstrahiert werden. Mit zunehmender
Abstrahierung können präzisere Aussagen getroffen werden, da die
Programmiersprachenunabhängigkeit sinkt. Gleichzeitig steigt jedoch mit zunehmender
Abstraktionsebene die Laufzeit.

Damit beispielsweise ein Verfahren Typ-2-Klone erkennen kann, setzt ein
Klonerkennungsverfahren mindestens auf der Tokenebene an, da auf dieser Ebene die
Bezeichner in einem Quelltext von dem Rest des Quelltextes erkannt bzw.
unterschieden werden können.

2.5.3 Textbasierte Klonerkennung

Die textbasierte Klonerkennung ist die bisher einfachste Methode zur Klonerkennung.
Textbasierte Ansätze beruhen auf dem Vergleichen von Zeilen bzw.
Anweisungssequenzen. Wenn mehrere gleiche aufeinanderfolgende Zeilen als ähnlich
erkannt werden, gibt das Klonerkennungstool Klonpaare mit ihrer maximal möglichen
Länge zurück. Der zu vergleichende Quelltext wird üblicherweise nicht aufbereitet bzw.
nur gering aufbereitet. Beispielsweise werden Whitespaces und Kommentare entfernt.
Dieses Verfahren hat den Nachteil, dass sie nicht robust zu Veränderungen, zum
Beispiel zu strukturellen Änderungen an den Anfangs- und Endzeilen eines
Codefragments, führt. Der Vorteil hingegen besteht darin, dass auf Grund fehlender
Aufbereitung, bzw. Transformation oder Normalisierung, keine sprachspezifischen
Eigenschaften verwendet werden und das Verfahren infolgedessen sprachunabhängig
ist.

Es gibt Studien mit verschiedenen Ansätzen für die Umsetzung des textbasierten
Verfahrens, die sich lediglich im Algorithmus zum Vergleich der Codezeilen

 29

unterscheiden. Johnson, J.H. [22] macht bspw. einen Zeichenkettenvergleich mittels
Hashwerten. Ducasse S. u.a. [23] führen dagegen einen zeilenweisen Vergleich über
Dot-Plots durch. Die Abbildung 2.10 zeigt ein Beispiel für einen Vergleich über Dot-
Pots.

Ein bekanntes Klonerkennungstool für das textbasierte Verfahren ist GNU diff, dessen
Ziel das Ermitteln von Unterschieden zwischen zwei Dateien ist. Dieses Verfahren
ermittelt lediglich die Unterschiede bzw. die Gleichheit zweier Dateien.

Abbildung 2.10: Zeilenweiser Vergleich über Dot-Plots [24]

2.5.4 Tokenbasierte Klonerkennung
Im Gegensatz zur textbasierten Klonerkennung ist das tokenbasierte Verfahren
fortgeschrittener und komplexer. Der Grund hierfür sind die in der ersten Phase der
Klonerkennung verwendeten komplizierten Transformationsalgorithmen, um eine
Zeichenfolge (auch tokenstream genannt) aus dem Quelltext zu konstruieren. Dies
erfolgt durch die Anwendung einer lexikalischen Analyse (auch tokenization genannt)
auf den Quelltext. Dieser Vorgang hat zur Folge, dass die tokenbasierten Techniken
sprachabhängig werden. Der wichtige Vorteil dieser Technik ist, dass sowohl exakte als
auch ähnliche Klone gefunden werden können, da eben durch die Transformation
ähnliche Konstrukte angeglichen werden.

Auch für dieses Verfahren gibt es einige Studien mit verschiedenen Ansätzen, die sich
ebenfalls in der zweiten Phase des Klonerkennungsprozesses, nämlich im Algorithmus
der Klonerkennung durch Auswertung der Zeichenfolgen unterscheiden.

Das bekannteste Verfahren der tokenbasierten Klonerkennung ist die von Baker, B.
[14,12]. Es handelt sich um ein zeilenorientiertes Verfahren, das Klone auf der
Zeichenfolge (tokenstrom) erkennt. Dieses Verfahren kommt in ihrem Tool dup zum
Einsatz, welches ein tokenbasiertes Pattern-Matching verwendet.

 30

Bei diesem Verfahren wird zunächst für jede Codezeile, durch ein Lexem für die zu
analysierende Sprache ein Parameter-String erzeugt (auch P-String genannt).

Ein Parameter String besteht aus Nichtparametersymbolen und Parametersymbolen.
Während ein eindeutiges Nichtparametersymbol (sog. Funktor) die Struktur einer Zeile
enthält, besteht dagegen ein Parametersymbol aus den Variablen, die in der jeweiligen
Codezeile verwendet wurden. Der Funktor repräsentiert die Struktur einer Codezeile
eindeutig, so dass Codezeilen mit identischer Struktur auf den gleichen Funktor
abgebildet werden. Das folgende Beispiel von Koschke [24] bildet eine Codezeile auf
ein Parameter-String ab.

Die

Codezeile: x = x + y

wird abgebildet auf den

Parameter- String: (P = P + P; x,x,y)

der dargestellt wird mit dem

Funktor: αxxy

Die Codezeile wurde in den dazugehörigen Funktor α und dessen Parameterliste
umgewandelt. Demnach würden alle Zeilen, welche die Form P = P + P haben, auf den
Funktor α abgebildet werden. Die erzeugten und konkatenierten P-Strings aller
Codezeilen, die den Programmcode repräsentieren, werden anschließend in einen P-
Suffix-Baum übertragen. Der quadratische Aufwand für die Vergleiche wird durch die
Verwendung des P-Suffix-Baums vermieden. Aus dem P-Suffix-Baum können sowohl
die Position als auch die Länge und Anzahl der Klone direkt ermittelt werden.

Vor dem Aufbau des Suffix-Baums wird für jeden P-String die prev-Funktion codiert, um
von den Bezeichnern zu abstrahieren. Hierbei werden den Bezeichnern je nach ihrem
Vorkommen Werte in der Parameterliste vergeben. Wenn ein Bezeichner das erste Mal
in der Parameterliste vorkommt, erhält sie die Zahl 0. Für jedes weitere Vorkommen
erhält sie die Zahl des relativen Abstands zum vorherigen Vorkommen.

Der P-Suffix-Baum wird durch den P-String und der prev-Funktion zu den Suffixen
erstellt. Der P-String eines Suffixes sowie die prev-Werte zu den Suffixen werden auf
eine Kante eines Suffix-Baumes eingetragen, welche mit der Eingabeendzeichen $
enden.

Zunächst wird der P-String des Suffixes auf eine Kante in ein Suffixbaum übertragen,
welches mit dem Eingabeendzeichen $ endet (siehe Abbildung 2.11). Die komplette
Suffixeingabe wird abgearbeitet, indem der Funktor, beginnend mit dem ersten, und die
dazugehörige Parameterliste des P-Strings entfernt werden. Das Ergebnis wird
anschließend erneut in den P-Suffixbaum eingetragen, bis die Eingabe abgearbeitet ist.
Nun können alle Klone ausgehend von der Wurzel über die Kanten gefunden werden.

 31

Das folgende Beispiel von Koschke und Simon [21] schildert eine übersichtliche
Darstellung, die zu einem Suffix S den P-Suffix-Baum mit allen prev(Si) graphisch
darstellt, wobei Si = sisi+1...sn$ das i´te Suffix von S ist.

Suffix S = αyβyαxαx

è prev(S1) = α0β2α0α2$
è prev(S2) = 0β2α0α2$
è prev(S3) = β0α0α2$
è prev(S4) = 0α0α2$
è prev(S5) = α0α2$
è prev(S6) = 0α2$
è prev(S7) = α0$
è prev(S8) = 0$
è prev(S9) = $

Abbildung 2.11: P-Suffix-Baum zum Suffix S

Für eine schnelle Klonerkennung eignet sich dieses Verfahren ausgesprochen gut und
liefert ansprechende Ergebnisse [25]. Das Verfahren ermöglicht das Finden von
konsistent umbenannten Typ-1 und Typ-2-Klonen. Typ-3-Klone werden durch einen
separaten Schritt am Ende erkannt [26]. Hierzu werden mehrere gleiche Typ-1 und
Typ-2-Klone die hintereinander vorkommen zu einem Typ-3-Klon zusammengefasst.
Dieses Verfahren hat den Vorteil, dass es durch die niedrige Abstraktionsebene
programmiersprachenunabhängig ist. Der Nachteil hingegen ist, dass durch die
Bearbeitung auf Zeilenbasis, kleine Umformatierungen zu falschen Ergebnissen führen.

 32

2.5.5 Abstrakter Syntaxbaum

Dieser Ansatz der Klonerkennung basiert auf abstrakten Syntaxbäumen (AST). Ein
bekanntes Tool für diesen Ansatz der Klonerkennung ist das von Ira D. Baxter [27]
entwickelte Programm CloneDRTM.

Bei diesem Verfahren wird zunächst zu jedem Quellcode ein AST erstellt. Alle
Teilbäume werden gegeneinander abgeglichen und auf Gleichheit und Ähnlichkeit
geprüft (siehe Abbildung 2.12). Mit der Absicht den quadratischen Aufwand zu
vermeiden, werden die zu vergleichenden Bäume partitioniert. Die Partitionierung der
Bäume erfolgt durch Hash-Funktionen [27]. Nun werden lediglich Teilbäume innerhalb
einer gemeinsamen Partition verglichen. Teilbäume, die denselben Hashwert haben,
deuten möglicherweise auf einen Klon [24]. Das Prüfen der Teilbäume auf Gleichheit
und Ähnlichkeit findet mit Hilfe einer Ähnlichkeitsfunktion statt. Die Partitionierung und
der Vergleich der AST ignoriert Bezeichner, sodass die Erkennung der Typ-2-Klone
realisierbar ist. Um die maximale Anzahl der Klone zu finden, werden in einem
Nachbearbeitungsschritt Klone, die aus mehreren Anweisungen bestehen gesucht und
zusammengefasst. Resultierend aus diesem separaten Schritt am Ende können Typ-3-
Klone erkannt werden.

Die Berücksichtigung der kommutativen Operatoren gehört zu den wichtigsten
positiven Merkmalen dieses Verfahrens. Ein weiterer Vorteil ist, dass ganze
Anweisungen also syntaktische Einheiten verglichen werden können. Das Verfahren
liefert als Ergebnis syntaktisch vollständige Klone. Der Nachteil hingegen ist, dass das
Verfahren auf Grund des syntaxbasierten AST-Matchings relativ aufwändig ist. Für das
Erstellen der AST wird ein Parser für jede Programmiersprache benötigt, der dazu
führt, dass dieses Verfahren der Klonerkennung weniger
programmiersprachenunabhängig ist.

Abbildung 2.12: Abstrakter Syntaxbaum [24]

 33

2.5.6 Graphbasierte Klonerkennung
Das graphbasierte Klonerkennungsverfahren auch Programm Dependence Graph
(PDG) genannt, kann als eine Erweiterung der baumbasierten Technik betrachtet
werden. Der Unterschied dieses Verfahrens liegt darin, dass durch den PDG die
syntaktische Struktur des Quellcodes und der Datenfluss dargestellt werden können,
die wiederum bei der Klonerkennung verwendet werden.

Krinke, J. [28] hat für diesen Ansatz der Klonerkennung einen Tool namens duplix
entwickelt, der mit Hilfe eines PDGs sowohl Informationen aus dem AST als auch über
die Abhängigkeiten des Programms berücksichtigt. Die Klonerkennung erfolgt nun
durch die Suche nach ähnlichen Teilgraphen, welche die Klone darstellen.

Eine besondere Eigenschaft dieser Technik ist, dass sie, durch die Verwendung des
PDGs, ein gutes Ergebnis für die Erkennung der falschen Codeduplikate liefert. Ein
weiterer positiver Aspekt besteht darin, dass in der Anzahl der nicht identifizierten
Codeduplikate ein guter Wert erzielt werden kann.

Der Nachteil hingegen liegt im zeitintensiven Aufwand für das Erzielen der
Analysegrundlage. Die Suche nach Klonen ist ebenfalls aufwändiger im Vergleich zu
anderen Verfahren. Des Weiteren besteht der Nachteil darin, dass das Verfahren nicht
programmiersprachenunabhängig ist. Dies wird bei der Analyse der zu erzeugenden
ASTs und Ermittlung der Programmabhängigkeiten erkannt. Die mangelnde
Programmiersprachenunabhängigkeit erschwert die Klonerkennung für verschiedene
Programmiersprachen.

2.5.7 Metrikbasierte Klonerkennung

Die Umsetzung des metrikbasierten Klonerkennungsverfahrens findet sich in der
Technik von Mayrand u.a. [29] wieder. Die bisher vorgestellten Verfahren leiten die
Informationen aus dem Quellcode oder Strukturen ab, welche sowohl die Syntax als
auch die Semantik des Quellcodes enthalten. Das Verfahren von Mayrand geht von
bereits abstrahierten Informationen aus. In diesem Verfahren werden verschiedene
Metriken für verschiedene Codefragmente erhoben. Anschließend wird aus den
Metriken berechnet, ob zwei Codefragmente gleich oder ähnlich sind. Hierzu gibt eine
Vergleichsfunktion eine Vorgabe, für welche Ausprägungen der gewählten Merkmale
die zu vergleichenden Codefragmente als gleich oder ähnlich zu bewerten sind. In
diesem Fall lassen sich gleiche Codefragmente in Typ-1-Klone und ähnliche
Codefragmente in Typ-2-Klone kategorisieren.

Die Granularität von Mayrand [29], also die erkannten Klontypen, kategorisieren sich in
gleich, ähnlich, verschieden und sind von den jeweils gewählten Vergleichsfunktionen
abhängig. Die Abstraktionsebene wird ebenfalls durch die, von der Vergleichsfunktion
verwendeten Metrik bestimmt.

Mayrand gliedert in folgende Vergleichsmetriken:

 34

- Name
- Layout
- Anweisungen
- Kontrollfluss

Diese Vergleichsmetriken werden zum einen über den Quelltext, zum anderen über
den AST als auch über den Kontrollflussgraphen erhoben.

Da dieser Ansatz auf der Annahme beruht, dass sowohl bei einem gleichen Quellcode
eine Metrik ebenfalls den gleichen Wert liefert, als auch bei ähnlichem Quellcode eine
Metrik einen ähnlichen Wert liefert, kann diese Annahme ohne weiteres akzeptiert
werden. Der Nachteil liegt jedoch darin, dass bei der Klonerkennung nicht erkannt
werden kann, ob zwei Quellcodes gleich oder ähnlich sind. Daraus resultiert die
Unklarheit in der Beurteilung, ob gleiche oder ähnliche Kennzahlen auch
dementsprechend auf gleiche oder ähnliche Quellcodes hindeuten.

 35

3 Forschungsstand

Redundante Codestellen bzw. Code-Klone werden in einem Softwaresystem nicht
ausgeschlossen. Klone in Systemen sind jedoch unterschiedlichen Gründen
zurückzuführen. In einigen Klonfällen ist das Klonen sogar berechtigt. Klone in
Softwaresystemen sind jedoch mit positiven sowie negativen Auswirkungen und
Problemen verbunden. Es wurden zahlreiche Studien der Erkennung von Klonen
speziell für inkonsistente Klone gewidmet, um der Ursache der Klone auf die Spur zu
kommen. Für einen besseren Rückschluss der Auswirkungen der Klone, wurden
ebenfalls zahlreiche Studien entwickelt, um die Fehler in Klonen zu analysieren und
den Zusammenhang derer mit den Klonen zu ermitteln. Dieses Kapitel befasst sich mit
allen diesen Themen im Detail und schafft einen Gesamtüberblick über
Wissenschaftlichen Arbeiten, die dieses Thema behandeln.

3.1 Gründe des Klonens
Das Copy&Paste-Verfahren eines Entwicklers erzeugt bereits Klone. Es gibt
verschiedene Gründe für das Entstehen eines Softwareklons. Diese werden nach
Koschke [39] wie folgt kategorisiert:

Entwicklungsstrategie

Durch das Copy-Paste-Verfahren werden bestehende Funktionalitäten in den
Codefragmenten für eine neue Funktionalität dupliziert. Das bedeutet also, wenn eine
bereits bestehende Funktionalität in gleicher oder ähnlicher Form im Software-Projekt
an einer anderen Stelle erforderlich ist, wird diese an die entsprechende Stelle kopiert
und wenn nötig verändert und modifiziert. Der Klon fungiert also als Template für neue
Funktionalitäten.

Wartungsvorteile

Ein weiterer Vorteil besteht darin, dass bei der Wiederverwendung von bestehenden
Funktionalitäten die Wartung erleichtert wird, da es ich bei dem geklontem
Codefragment um einen bewährten Quellcode handelt. Des Weiteren reduziert sich
durch das Kopieren eines bewährten Quellcodes die Fehlerwahrscheinlichkeit im
Quelltext. Ein besonders wichtiger Punkt für die Entwicklung ist die Unabhängigkeit
zwischen den Projektdateien bzw. Komponenten, die durch das Kopieren erzielt
werden kann. Die unabhängige Wartung der Komponenten ist daraus resultierend
möglich.

 36

Überwindung von Einschränkungen

Eine weitere Ursache für das Entstehen von Klonen liegt in den eingeschränkten und
verschiedenen Abstraktionsmechanismen einiger Programmiersprachen. Kim et al. [48]
hat bspw. in einer Studie Programmierer während der Entwicklung beobachtet. Die
Entwickler mussten in vielen Fällen klonen, weil die verwendete Programmiersprache
nicht aussagekräftig war. Wenn also für ein bestimmtes Problem keine angemessene
Möglichkeit zur Abstraktion besteht, wird dieses durch die Verwendung von Klonen
behoben. Weitere Einschränkungen im Entwicklungszyklus, die das Klonen von
Entwicklern begründen, sind mangelnde Entwicklungswerkzeuge, unzureichende
Kenntnisse und damit verbunden auch fehlendes Problembewusstsein des Entwicklers
sowie Zeitdruck.

Die Verwendung von firmeninternen sowie programmiersprachenabhängigen
Bibliotheken ist eine unvermeidbare Ursache für Klone, die nicht notwendigerweise
einen negativen Einfluss haben, da lediglich ein erforderliches Protokoll implementiert
wird.

3.2 Folgen des Klonens
Laut Studien enthalten 5-25% der Softwaresysteme redundante Codestellen [21, 40,
41], welche sich negativ im Entwicklungszyklus des Software-Projekts auswirken.
Durch das Klonen vergrößert sich nämlich der Codeumfang, sodass der Aufwand zum
Verstehen des Quelltextes erheblich steigt [17] und damit verbunden nimmt der
Testaufwand für das Software-Projekt zu, welcher wiederum für höhere Kosten sorgt
[39]. Des Weiteren dauert die Kompilierungszeit der Datei länger. Der größere
Codeumfang führt auch zu einem erhöhten Wartungsaufwand eines Systems und
somit zu höheren Wartungskosten [2, 11, 5]. Die höheren Wartungskosten werden
verursacht durch den erhöhten Aufwand für das Ändern eines geklonten
Codefragments. Der Grund hierfür ist, dass Änderungen an einem geklonten
Codefragment an allen Klonstellen einer Klongruppe modifiziert bzw. angepasst
werden müssen. Die Gefahr besteht darin, dass bei unbewusstem Klonen die
Änderungen nicht an allen Klonstellen angepasst werden und die Entwicklung der
geklonten Codefragmente unabhängig voneinander erfolgt [6]. Eine unabhängige
Weiterentwicklung kann durch das fehlende Verständnis des Entwicklers über das
Systems entstehen.

Im Gegensatz dazu gibt es jedoch Studien, die gegenteilige Ergebnisse liefern, wie
bspw. dass Klone bewusst erstellt werden, um die Produktivität der Entwickler zu
erhöhen [46]. Eine weitere Studie hat bewiesen, dass Entwickler bewusst Klonen, da
sie sich an die verschiedenen Klonstellen erinnern und bei einer Änderung diese an
allen Klonstellen durchführen [47].

 37

3.3 Inkonsistente Klone und Fehler
Laut Studien enthalten 5-25% der Softwaresysteme redundante Codestellen [21, 40,
41], welche sich negativ im Entwicklungszyklus des Software-Projekts auswirken.
Durch das Klonen vergrößert sich nämlich der Codeumfang, sodass der Aufwand zum
Verstehen des Quelltextes erheblich steigt [17] und damit verbunden nimmt der
Testaufwand für das Software-Projekt zu, welcher wiederum für höhere Kosten sorgt
[39]. Des Weiteren dauert die Kompilierungszeit der Datei länger. Der größere
Codeumfang führt auch zu einem erhöhten Wartungsaufwand eines Systems und
somit zu höheren Wartungskosten [2, 11, 5]. Die höheren Wartungskosten werden
verursacht durch den erhöhten Aufwand für das Ändern eines geklonten
Codefragments. Der Grund hierfür ist, dass Änderungen an einem geklonten
Codefragment an allen Klonstellen einer Klongruppe modifiziert bzw. angepasst
werden müssen. Die Gefahr besteht darin, dass bei unbewusstem Klonen die
Änderungen nicht an allen Klonstellen angepasst werden und die Entwicklung der
geklonten Codefragmente unabhängig voneinander erfolgt [6]. Eine unabhängige
Weiterentwicklung kann durch das fehlende Verständnis des Entwicklers über das
Systems entstehen.

Im Gegensatz dazu gibt es jedoch Studien, die gegenteilige Ergebnisse liefern, wie
bspw. dass Klone bewusst erstellt werden, um die Produktivität der Entwickler zu
erhöhen [46]. Eine weitere Studie hat bewiesen, dass Entwickler bewusst Klonen, da
sie sich an die verschiedenen Klonstellen erinnern und bei einer Änderung diese an
allen Klonstellen durchführen [47].

Des Weiteren befassen sich Juergens et. al. [6] mit der Erkennung und den
Auswirkungen der inkonsistenten Klone und Fehlern und stellen fest, dass beim
unbewussten inkonsistenten Klonen, jeder zweite Klon einen Fehler verursacht.

Es gibt auch zahlreiche wissenschaftliche Beiträge, die positive Rückschlüsse zu
inkonsistenten Klonen liefern. Beispielsweise hat Krinke [45] in seiner Studie bewiesen,
dass bei einer konsistenten sowie inkonsistenten Änderung von Klonen nur 50% der
Klongruppen einer konsistenten Änderung unterzogen wurde. Außerdem wurde
festgestellt, falls eine Klongruppe bereits inkonsistent gewesen ist, diese auch
inkonsistent bleibt, da nur ein minimaler Anteil der inkonsistenten Klone durch spätere
Änderungen im Laufe der Entwicklung konsistent wird.

Die Studie von Rahman [10] analysiert die Beziehung zwischen Klonen und
Fehleranfälligkeit. Zum einen haben sie erkannt, dass die große Mehrheit der Fehler
nicht signifikant mit Klonen verbunden sind und zum anderen, dass geklonte
Codefragmente weniger fehleranfällig als nicht-geklonte Codefragmente sind [10].

 38

4 Werkzeugunterstützung und Software Systeme

4.1 ConQat
Das folgende Kapitel befasst sich mit dem Tool ConQat, welches in dieser Arbeit zur
Klonerkennung verwendet wird. Nach einem kurzen Überblick in die ConQat- Details
erfolgt die Beschreibung des Designs und der Architektur. Zuletzt wird die
Klonerkennung mittels ConQat im Detail beschrieben.

4.1.1 Überblick zu ConQat

Das Tool Continuous Quality Assessment Toolkit, genannt ConQat, ist ein Werkzeug
zur kontinuierlichen Software- Qualitätskontrollanalyse. Die Softwarequalität, welche
einen bemerkenswerten Einfluss auf die Wartung und Weiterentwicklung hat, wird in
der Entwicklung oft vernachlässigt. Die automatisierte Überwachung diverser
Qualitätskriterien ist für die Durchführung von kosteneffizienten und kontinuierlichen
Qualitätssicherungsmaßnahmen erforderlich. Ausgehend von diesem Problem wurde
ConQat an der Technischen Universität München im Jahre 2007 für den effizienten
Aufbau von Qualitätskontroll-Dashboards gegründet. Diese Qualitätsdashboards
werden für das Planen und Steuern von IT-Projekten eingesetzt und schaffen einen
Überblick über qualitätsrelevante Kriterien in einem Projekt. Hierunter sind ebenfalls
Qualitätsdashboards für Klone, bzw. für die Klonerkennung, zu finden, die einen
bemerkenswerten Einfluss auf die Qualität einer Software haben können.

Das besondere an ConQat ist, dass es in Zusammenarbeit mit der TU München und
der CQSE GmbH kontinuierlich weiterentwickelt und als Open-Source-Software
kostenlos angeboten wird.

4.1.2 Design und Architektur
Um den verschiedenen und umfangreichen Qualitätsanforderungen gerecht zu werden,
fokussiert sich das Design von ConQat auf die Erweiterbarkeit und Flexibilität. Deshalb
wurde ConQat [49] als ein Plug-In Architektur entworfen, welche das Hinzufügen oder
Entfernen von Analysemodulen zur Ladezeit ermöglicht. Das ConQat beruht auf einem
Pipes&Filter orientiertem Konzept, welches durch ein Netzwerk verschiedener
Prozessoren strukturiert ist [49]. Diese Prozessoren sind das zentrale Element von
ConQat und wurden in Java implementiert, welche jeweils für eine gewidmete Analyse
verantwortlich sind. Die Prozessoren implementieren sehr unterschiedliche Funktionen
und arbeiten, indem sie mehrere Inputs akzeptieren und lediglich einen einzigen Output
produzieren [50]. Das Output von ConQat, also die Ergebnisse, werden als XML-
Dateien und HTML-Seiten ausgegeben. Das besondere an ConQat ist, dass die

 39

Ergebnisse ebenfalls als Graphiken, bspw. Treemap, oder Trends dargestellt werden
können. Die ConQat Architektur verfügt über eine Driver Komponente, welche für die
Konfiguration des Prozessornetzwerkes und der Weitergabe von Informationen
zwischen Prozessoren verantwortlich ist.

Wie auch aus der Abbildung 4.1 zu entnehmen ist, können Prozessoren auf externe
Daten, wie das Dateisystem oder auf Datenbanken, entweder direkt oder über einen
der mitgelieferten Bibliotheken und Caches zugreifen.

Abbildung 4.1: ConQat Architektur

Die Architektur von ConQat stellt einen leistungsfähigen Konfigurationsmechanismus
dar, da die Prozessoren auf vielfältiger Weise miteinander verbunden werden können.
Auf Grund der uneingeschränkten Funktionalität der Prozessoren kann ConQat eine
Vielfalt von Faktoren, welche die Wartbarkeit oder andere Qualitätsaspekte
beeinflussen, bewältigen.

4.1.3 Klonerkennung mit ConQat

In Kapitel 2.5 wurden verschiedene Ansätze zur Klonerkennung beschrieben. ConQat
führt die Klonerkennung Token-basiert mittels Syntaxbäumen durch. Die Analyse der
TWT-Systeme nach konsistenten und inkonsistenten Klonen erfolgt in dieser Arbeit mit
ConQat. ConQat hat durch die kontinuierliche Weiterentwicklung der Funktionalitäten
einen hohen Bekanntheitsgrad erreicht [19, 52, 53] und wird in vielen Studien bzw.
Forschungsgruppen ebenfalls als Basistechnologie zur Klonerkennung eingesetzt [6,
51].

 40

Da die in dieser Arbeit zu analysierenden Systeme ausschließlich Java Projekte sind,
wird lediglich die Klonerkennung für Java Projekte beschrieben. ConQat unterstützt die
Klonerkennung für Textdokumente, welche in [51] ihre Anwendung erhalten hat sowie
für graphenbasierte Modelle und für Quelltexte. Da ConQat ein plattformunabhängiges
Tool ist, unterstützt es die Sprachen ABAP, Java, C#, C/C++, ADA, Visual Basic, PL1
und PL/SQL.

Für die Erkennung exakter Klone wird das ConQat Konfigurationsblock „clonedetection-
example.junit.cqr“ ausgewählt, um die Klonerkennung für den Quelltext zu
konfigurieren. Im Konfigurationsfenster wird die minimale Klonlänge gewählt. Hier hat
sich laut Studien eine minimale Klonlänge von 10 als optimal erwiesen. Anschließend
wird unter „input“ der Ordner gewählt, welche den zu analysierenden Quelltext enthält.
Im letzten Schritt wird unter „output“ der Ordner festgelegt, in dem die Klonergebnisse
zu speichern sind. Nach diesen Angaben wird durch „Launch ConQat analysis“ die
Klonanalyse durchgeführt, siehe hierzu Abbildung 4.2.

Abbildung 4.2: Klonerkennung- Konfiguration für exakte Klone

Für die Analyse von inkonsistenten Klonen, in ConQat „gapped Clones“ genannt,
erfolgt die Klonanalyse ähnlich wie in Abbildung 4.2 zu entnehmen ist. Hierzu wird das
Konfigurationsblock „JavaGappedCloneAnalysis.cqr“ gewählt. Diese feinere Form der
Klonanalyse erfordert die Angabe einer „gap ratio“ und einer maximalen Fehleranzahl.
Das „gap ratio“ gibt an, um wie viele Codezeilen sich ein Klonpaar unterscheiden darf.
Es hat sich laut Studien ein gap ratio von 0.25 bewährt, d.h. bei einem 8 Zeilen Code
im Klonpaar dürfen sich lediglich 2 Codezeilen unterscheiden. Des Weiteren hat sich
eine Fehleranzahl von 10 etabliert. Die Abbildung 4.3 zeigt das Konfigurationsfenster
für inkonsistente Klone.

 41

Abbildung 4.3: Klonerkennung- Konfiguration für inkonsistente Klone

In beiden Verfahren wird im Ausgabeordner ein HTML Dokument mit „index.html“
konfiguriert, welches die graphische Darstellung der Klonerkennungsergebnisse, wie in
Abbildung 4.4 dargestellt, enthält.

Abbildung 4.4: Übersicht zu den Klonerkennungsergebnissen

Das besondere an ConQat ist die Kloninspektionssicht, welche im festgelegten
Ausgabeordner durch die Klonanalyse auf effizienter Art und Weise erstellt wird. Diese
Sicht ist die Voraussetzung für die Überprüfung für Falschpositive und für die

 42

Bewertung der Ergebnisse. Sie ermöglicht verschiedene Einsichten zu einem geklonten
Code. Es werden explizit die Klonklassen, Klondateien, Klonlängen etc. angegeben,
wie aus Abbildung 4.5 zu entnehmen ist.

Abbildung 4.5: Klonerkennungsperspektiven

4.2 Mercurial
Mercurial ist ein plattformunabhängiges, verteiltes Versionskontrollsystem. Es verwaltet
kleine sowie größere Projekte und stellt einfache und intuitive Schnittstellen zur
Verfügung. Bevor ein Versionskontrollsystem überhaupt zum Einsatz kommt, sollte
man wissen, was eine Versionskontrolle ist und was für Vorteile ihre Verwendung mit
sich bringt. Daher behandelt dieses Kapitel zunächst die Versionskontrolle.
Anschließend werden die Struktur sowie die Funktionen von Mercurial detailliert und
graphisch beschrieben. Zuletzt befasst sich das Kapitel mit dem für Mercurial
zugeschnittenen Frontend – TortoiseHg.

 43

4.2.1 Versionskontrolle

Eine Version ist ein Stand einer Software-Einheit, die durch das Ändern bzw. das
Verbessern der Einheit entsteht [31]. Unter Versionskontrolle hingegen versteht man
den Prozess der Verwaltung mehrerer Versionen einer Information [30]. Das ist der
manuelle Vorgang, wenn eine Änderung an einer Datei auf einer Versionsnummer
vorgenommen wird und diese unter einem neuen Namen gespeichert wird und eine
Nummer enthält, welche höher als die Versionsnummer ist, auf der die Änderung
durchgeführt wurde. Durch die Versionskontrolle können praktisch jede Art von Dateien
nachverfolgt werden. Die manuelle Verwaltung von zahlreichen Versionen kann Fehler
verursachen. Der Grund hierfür ist, dass mehrere Entwickler an einem Projekt beteiligt
sind und zum Teil zeitgleich Änderungen vornehmen. Das kann zu Konflikten in den
Versionen führen. Daher ist eine automatisierte Versionskontrolle erforderlich, welche
im nächsten Kapitel beschrieben wird.

4.2.2 Funktionen Mercurial

Tools die das Automatisieren der Versionskontrolle ermöglichen, werden
Versionskontrollsysteme genannt. Es gibt viele Versionskontrollsysteme, die keine
Probleme in der Handhabung von großen Projekten haben. Diese bewältigen
problemlos Projekte, an dem Tausende von Entwickler gleichzeitig arbeiten, welche
aus einer großen Anazhl von Dateien bestehen [30]. Versionskontrollsysteme
ermöglichen das Protokollieren jeglicher Art von Änderungen an einer Datei über die
Zeit hinweg. Somit kann zu jedem Zeitpunkt auf verschiedene Versionen sowie
Änderungen zugegriffen werden.

Wie bereits genannt ist Mercurial ein plattformunabhängiges, schnelles,
leichtgewichtiges und verteiltes Versionskontrollsystem, die für eine einfache und
effiziente Verwaltung von großen verteilten Projekten entwickelt wurde. Mercurial wird
größtenteils in Python geschrieben. Die Anwendung von Mercurial erfolgt größtenteils
über die Kommandozeile, beginnend mit „hg“. Dieses Kapitel gibt eine kurze
Einführung über die Funktion des verteilten Versionskontrollsystems sowie in die
effektive Nutzung von Mercurial durch die grundlegenden Funktionen.

Verteilte Versionsverwaltung

Bei der verteilten Versionsverwaltung hat jeder Entwickler, im Gegensatz zur zentralen
Versionsverwaltung, ein eigenes Repository. Das Repository aus dem Server wird lokal
auf den eigenen Arbeitsspeicher kopiert, d.h. geklont. Dies hat den Vorteil, dass falls
ein Server beschädigt wird, das Repository von einem beliebigen Entwickler
ausgewählt und wieder hergestellt werden kann [32]. Da lokal auf dem eigenen
Repository weiterentwickelt wird, ist die Versionsgeschichte dementsprechend verteilt.
Ein weiterer Vorteil hierbei ist, dass die Änderungen lokal verfolgt werden können ohne

 44

sich zum Hauptserver zu verbinden. Des Weiteren ermöglicht die verteilte
Versionsverwaltung das simultane Arbeiten mehrerer Entwickler an derselben Version,
ohne dass Konflikte überhaupt entstehen können.

Sich widersprechende Versionen werden durch mehrere Zweige in der
Versionsgeschichte dargestellt, die durch Weiterentwicklung zu einer gemeinsamen
Version zusammengefasst werden.

Weshalb unter zahlreichen verteilten Versionskontrollsystemen ausgerechnet Mercurial
genutzt werden sollte, begründet B. O’Sullivan [30] wie folgt:

- Mercurial ist leicht zu lernen und einfach zu bedienen.
- Mercurial ist leichtgewichtig.
- Mercurial ermöglicht eine hohe Skalierbarkeit.
- Mercurial ist einfach anzupassen.

Die Abbildung 4.6 stellt die verschiedenen Funktionen in Mercurial dar. In einem
verteilten Versionskontrollsystem sowie Mercurial werden folgende Begriffe verwendet:

Repository:

è Ein Repository ist ein zentrales Archiv. Diese umfasst in einer Baumstruktur alle
Versionen von verschiedenen Dateien sowie ihre Logdateien.

Master Repository:
è Das Haupt-Repository ein einem Unternehmen, das den aktuellsten Stand eines

Softwaresystems enthält.

Working Directory:
è Das lokale Arbeitsverzeichnis eines Entwicklers wird als Working Directory

bezeichnet.

Des Weiteren werden verschiedene Funktionen in Mercurial verwendet. Die Tabelle 4.1
schafft einen kurzen Einblick auf die wichtigsten Funktionen in Mercurial und beschreibt
sie explizit.

 45

Tabelle 4.1: Funktionen in Mercurial

Funktion Beschreibung

Clone Durch die Clone-Funktion wird der
ausgewählte Stand des Master
Repositorys 1:1 auf das Working Directory
kopiert.

Commit Die Commit-Funktion aktualisiert das

lokale Arbeitsverzeichnis mit den
Änderungen aus dem Working Directory.
Durch Commit legt Mercurial eine neue
Revision an.

Update Durch die Update-Funktion wird der
aktuelle Stand des Master Repositorys in
das Working Directory übertragen. Das
heißt neu hinzugekommene Revisionen
werden in das Working Directory
hinzugefügt, so dass sich dieser auf dem
Zustand des Master Repositorys befindet.

Merge Durch die Merge-Funktion werden
simultane Entwicklungszweige
zusammengeführt.

Pull Die Pull-Funktion zieht die Daten aus
fremden Repositorys in das eigene
Working Directory.

Push Durch die Push-Funktion werden die
Änderungen bzw. Dateien aus dem
eigenen Working Directory in ein fremdes
Repository übertragen.

Serve Die Serve-Funktion startet das Master
Repository-Server, um anderen die Pull-,
Push- und Clone-Funktion zu ermöglichen

 46

Abbildung 4.6: Die Funktionen von Mercurial

4.2.3 TortoiseHg

Das Tool TortoiseHg ist ein einfach zu bedienendes Frontend und steht mit ihrer
graphischen Oberfläche für Microsoft Windows zur Verfügung, um die Benutzung von
Mercurial ohne Kommandozeilenbefehle durchzuführen. Die Revisionshistorien der
einzelnen Projekte und Dateien können über das Arbeitsverzeichnis in einer
graphischen Oberfläche übersichtlich dargestellt werden. Des Weiteren können mit
Hilfe von TortoiseHg alle Funktionen von Mercurial ausgeführt werden und die
Revisionshistorie wird in Form einer Baumstruktur sehr übersichtlich dargestellt.

 47

4.3 FogBugz
Das webbasierte System FogBugz ist ein Projektmanagementsystem sowie ein Issue-
/Bug-Tracking-System, welche umfangreiche Funktionalitäten für Entwicklerteams
anbietet.

Ein Issue-/ Bug-Tracking-System ist ein Werkzeug, mit dem diverse Aufgaben in einem
Projekt, wie das Bearbeiten von Kundenanfragen und Entwicklervorschlägen, welche in
Tickets bzw. Fällen (Cases) angelegt und einzelnen Personen zugewiesen sind,
verwaltet werden. Diese Fälle können Bugs, Features, Scheduled Items sein und
werden mit Prioritätslevel belegt. FogBugz verfolgt alle Fälle und Tickets an einem
zentralen Ort, damit in der Entwicklungshistorie nichts vergessen wird [34].

Des Weiteren können Fehler sehr leicht und schnell in FogBugz über das FogBugz
Screenshot- Tool, per E-Mail oder über den Browser erfasst werden. Dadurch kann
auch jeder Fall in kürzester Zeit bearbeitet und im Falle eines Fehlers behoben bzw.
gefixt werden. Der Bearbeiter eines Cases aktualisiert anschließend den Status seines
Fortschritts. Dadurch werden fertige Features wieder an den Projektleiter
zurückgesendet.

Eine besondere Eigenschaft von FogBugz ist die facettenreiche Suchoption. Es können
die gesamte Fallliste aber auch Wiki- und Kundenbeiträge gesucht werden.

Das Projektmanagementsystem von FogBugz bietet diverse Funktionalitäten für die
Entwickler eines Projektes an. Folgende Managementaufgaben sind mit dem Einsatz
von FogBugz möglich [33]:

• Das Erfassen der Aufgaben mit Fällen und Unterfällen (bzw. Cases und
Subcases)

à In FogBugz wird jede Aufgabe (also Issue) und jeder Fehler (also Bug) mit
einem Fall (also Case bzw. Subcase) verbunden. Diese werden von dem
verantwortlichen bzw. zum Fall eingetragenen Entwickler bearbeitet.

à Ein Fehlereintrag in FogBugz kann in der Case-Liste, wie in Abbildung 4.7,
durch den roten Käfer erkannt werden.

 48

Abbildung 4.7: Bugeintrag in FogBugz [33]

• Das Erstellen von Meilensteinen

à Üblicherweise wird für einen Projekt ein Projektplan erstellt, welcher auf
Meilensteinen basiert. FogBugz ermöglicht das Hervorheben von wichtigen
Terminen in den Meilensteinen sowie das Erstellen von Meilensteinen.

• Visualisierung von Falldaten
à FogBugz bietet eine große Vielfalt an graphischer Darstellung bzw.
Auswertung von Falldaten.

• Kontrolle der Änderungen über die Entwicklungszeit
à FogBugz speichert Snapshots über die Revisionshistorie eines Falls,
einschließlich der Details zum Fall.

• Zusammenarbeit mit Teamkollegen
• Treffen von Fristen
• Kontrolle über Ihre Projekte
• Integration mit Versionskontrolle

4.4 Kiln
Kiln ist ein webbasiertes System für das Quellcodehosting von Git und Mercurial. Git ist
ebenfalls wie Mercurial ein Versionskontrollsystem. Des Weiteren bietet Kilnden
Entwicklern durch die Leistungen von Git und Mercurial eine Einfachheit bei der
Entwicklung von Softwareprojekten und zudem eine ausgezeichnete Gelegenheit
Softwarecodes zu verwalten und den größten Nutzen daraus zu ziehen.

Bei der Nutzung von Mercurial bzw. Git stellt der Kiln-Server den zentralen Punkt des
Versionskontrollsystems dar. Dabei werden die Daten zentral abgelegt. Mit anderen
Worten hat also Kiln eine zweifache Funktion. Zum einen dient er als Datenspeicher

 49

und zum anderen als Verteilknoten für den Quelltext sowie für weitere projektrelevante
Dateien. Dies ermöglicht eine verteilte Softwareentwicklung in Teams.

Es sprechen viele aussagekräftige Argumente für die Nutzung von Kiln. Einige dieser
lauten wie folgt [36]:

1) Kiln ermöglicht die synchrone Entwicklung der Entwickler und unterstützt die
Entwickler bei der gemeinsamen Entwicklung.

è Kiln enthält jeden Stand des Softwareprojektes. Des Weiteren können Entwickler
eines Teams gegenseitig in die Änderungen des Quelltexts einsehen.

2) Kiln bietet eine verteilte Versionskontrolle eines Softwareprojekts an.

è Es können mehrere Entwickler an einem Code arbeiten, so dass
unterschiedliche Quelltexte (also Branches) entstehen, und diese dann durch
Kiln zusammengeführt werden (Merge) (siehe Abbildung 4.8).

Abbildung 4.8: Verteilte Versionskontrolle in Kiln [36]

3) Kiln ermöglicht die Integration von FogBugz

è Die Integration von FogBugz geschieht über denselben Login wie Kiln. Mit

anderen Worten, Kiln und FogBugz teilen sich ein Login. Durch einen
gemeinsamen Login ist ein reibungsloser und gemeinsamer Arbeitsablauf
verfügbar. Der Vorteil hierbei ist, dass Entwickler beim Entwickeln nicht
zwischen zwei Systemen wechseln müssen.

è Mit Kiln und FogBugz können Fehler gemeldet und behoben werden, in dem der
Code weiterentwickelt wird. Bei der Fehlerbehebung besteht die Möglichkeit alle
Codestellen eines Bereichs zu aktualisieren, in dem der Fehler vorhanden ist.

 50

4) Kiln ermöglicht eine übersichtliche Organisierung von Projekten und Repositorys
è In Kiln werden die Repository Management Seiten sowie die

Projekteinstellungsseiten auf einer einzigen Seite dargestellt, so dass die
Navigation einfach durchzuführen ist und die Seiten leicht zu lesen sind.

5) Kiln bietet eine äußerst leistungsfähige Codesuche.
è Über das integrierte Suchfeld besteht die Möglichkeit sehr schnell auf

„Changesets“ (über die „ChangesetID“), Dateien und Codes zuzugreifen. Die
Suchoption in Kiln ist sehr effektiv bei der Suche nach Problemcodes, die
behoben werden müssen, sowie bei der Suche nach guten und nützlichen
Codestellen, die wiederverwendet werden können [37].

 51

5 Studiendesign

In diesem Kapitel wird das Herzstück der Arbeit präsentiert. Um einen besseren
Eindruck auf die mögliche Fehlerträchtigkeit der inkonsistenten Klone zu erhalten
wurde ein Studiendesign entwickelt. Dieses Kapitel umfasst das Studiendesign zur
Analyse der TWT-Systeme. Zunächst werden die Studienobjekte mit faktischen Daten
beschrieben. Das darauf folgende Unterkapitel beschreibt die Forschungsfragen.
Anschließend wird geschildert, wie die notwendigen Daten für die Analyse aufbereitet
werden. Mit diesen Daten erfolgt die Durchführung der Studie mittels einer
Datenbankanwendung. Das letzte Unterkapitel beschreibt für jede Forschungsfrage die
Vorgehensweise der Datenanalyse.

5.1 Studienobjekte
Die Studie wird auf den Systemen der TWT GmbH durchgeführt. Als Quellen für die
Softwaresysteme wurden drei Projekte gewählt, die in Entwicklung sind und über eine
lange Entwicklungshistorie verfügen. Alle Systeme werden ausschließlich in Java durch
verschiedene Teams und mit verschiedenen Funktionalitäten entwickelt. Die Anzahl der
Systeme und die Beteiligung mehrerer Entwickler an einem Projekt führen zu besseren
Analyseergebnissen der Studie. Des Weiteren sind die Systeme bereits im Einsatz und
werden kontinuierlich weiterentwickelt und angepasst. Aus Datenschutzgründen
werden die Namen der Systeme nicht genannt und erhalten eine Bezeichnung von A
bis C. Detaillierte Informationen zu den Systemen, wie Alter und Codezeilen, sind in
Tabelle 5.1 erfasst.

TWT steht für Technisch-Wissenschaftlicher Transfer und stellt die rasche Umsetzung
wissenschaftlicher Expertise in technologisch anspruchsvolle Produkte und
Dienstleistungen in den Geschäftsfeldern Information & Engineering Technologies dar.
Das Portfolio umfasst die Software-, Produkt-, und Prozessentwicklung sowie die
technische Beratung und Industrieforschung. An den Standorten Stuttgart, München,
Friedrichshafen und Ingolstadt entwickelt die TWT GmbH seit 1986 als
Technologiepartner der Branchen Automotive, Aerospace, Healthcare und Energy, für
ein breites Spektrum an Kunden, eine ganzheitliche und maßgeschneiderte Lösung.

Die in dieser Studie untersuchten Systeme A bis C wurden für verschiedene
Unternehmen aus der Automobilindustrie entwickelt und stellen wesentlich
verschiedene Funktionalitäten dar. Die Systeme werden seit vier bis fünf Jahren von
insgesamt 25 bis 30 Entwicklern entwickelt und gewartet. Des Weiteren nutzen alle
Systeme dieselbe firmeninterne Bibliothek.

 52

Tabelle 5.1: Informationen zu den analysierten Systemen

System Organisation Sprache Größe
(kLOC)

Revision Alter Entwickler

A

Automobil-
industrie

Java

253 2740 4 Jahre

10

B

Automobil-
industrie

Java

332

1622

5 Jahre

5

C

Automobil-
industrie

Java

454

2181

4 Jahre

10

5.2 Forschungsfragen
Das zugrundeliegende Problem, das wir analysieren, ist der Zusammenhang zwischen
inkonsistenten Klonen und ihren Fehlern. Dieses Problem wirft einige Fragen auf,
welche sich durch detaillierte Analysen beantworten lassen und ein besseres
Verständnis schaffen. Die Studie beruht auf drei Hauptfragen die sich zum Teil durch
die Untergliederung in weiteren Fragen beantworten lassen.

Forschungsfrage 1: Enthalten Systeme inkonsistente Klone?

An erster Stelle muss geklärt werden, ob die zur Analyse stehenden Systeme
inkonsistente Klone enthalten. Hier steht jedoch der Anteil der inkonsistenten Klone im
Vordergrund. Es wird also ermittelt, ob die inkonsistenten Klone signifikant höher sind
als die restlichen Klone des Systems. Das Verhältnis der inkonsistenten Klone zu
exakten Klonen ist also eine Analyse, welche die Analyseergebnisse unterstützen soll.

Forschungsfrage 2: Können inkonsistente Klone Indikatoren für Fehler sein?

Nachdem die inkonsistenten Klone in den realen Systemen ermittelt wurden, wird
festgestellt, ob sie eine Verantwortung für Fehler tragen. Hierzu wird die
Revisionshistorie der Datei in Betracht gezogen, ob sich im Laufe der Zeit in den
inkonsistenten Klonen Fehler bilden. Für ein umfangreicheres Verständnis lässt sich
diese Frage durch das Beantworten weiterer Fragen rückschließen. Jede Unterfrage
dient als Antwortbaustein zur Hauptfrage. Wichtig ist hierbei, den Zusammenhang der
inkonsistenten Klone mit einem Issue-Tracking-System zu analysieren sowie die
inkonsistenten Klone zu analysieren, die keinen Bezug zu einem Issue-Tracking-
System haben. Daraus lassen sich informative faktische Daten ermitteln. In diesem
Zusammenhang ist es von Bedeutung die Inkonsistenten auf Fehlerkorrektur zu
analysieren sowie die Gründe für Fehler durch Entwicklerbefragung zu ermitteln.

 53

Die Hauptfrage lässt sich durch folgende Unterfragen beantworten:

2.1) Ist die große Mehrheit der inkonsistenten Klone als Fehler erfasst?

Die Frage die hier beantwortet werden soll ist, ob die erkannten inkonsistenten Klone
überhaupt in dem verwendeten Issue-Tracking-System als ein Fehler erfasst sind. Hier
ist der Anteil der gekennzeichneten Inkonsistenzen wichtig. Daraus lässt sich nämlich
ermitteln, wie viele der gesamten inkonsistenten Klone überhaupt Fehler enthalten, die
erkannt und zum Beheben im Issue-Tracking-System erfasst sind.

2.2) Werden Fehler an einem geklontem Code konsistent an allen geklonten
Codes einer Klongruppe behoben?

Nachdem die Fehler in den inkonsistenten Klonen ermittelt wurden, soll analysiert
werden, ob Fehler, die in dem verwendeten Issue-Tracking-System erfasst sind, in
allen Codes einer Klongruppe behoben wurden. Daraus werden Ergebnisse erzielt, die
besagen, ob Fehler, trotz dessen dass sie in einem Issue-Tracking-System zur
Behebung erfasst sind, weiterhin noch eine Gefahr darstellen oder falls ein Fehler in
einem Klon einmal erkannt wurde, keine Gefahr mehr für das System darstellt und sich
von der Kategorie der gefährlichen Klone ablöst.

2.3) Spielt die Größe der inkonsistenten Klone eine Rolle für die Häufigkeit der
Fehler?

Nach dem der Zusammenhang der Fehler und Inkonsistenzen ermittelt wurde, ist es
wichtig festzustellen, unter welchen Kontextbedingungen Fehler gegeben sind. Mit der
Annahme, dass der Code doppelt so lang ist, die Wahrscheinlichkeit, dass ein Fehler
doppelt so häufig eintreten kann, ist es interessant festzustellen, dass ein
inkonsistenter Klon mit größerem Codeumfang, mehr Fehler einbringen kann.

2.4) Was ist der Zusammenhang zwischen Inkonsistenten und Fehlern?

Diese Frage unterscheidet sich von den vorherigen Fragen. Nachdem die Fehler in den
Inkonsistenzen ermittelt wurden, wird festgestellt, welche Vorgehensweisen beim
Klonen einen Fehler verursachen. Hierzu wird das Klonverhalten des Entwicklers
analysiert und unter welchen Umständen ein Klon zu einem Fehler führt. Des Weiteren
werden die inkonsistenten Klone analysiert, die über die gesamte Revisionshistorie
keine Fehler enthalten.

Forschungsfrage 3: Wie viele Type-1-Klone mit einem Fehler werden durch das
Modifizieren für die Fehlerbehebung zu einem Typ-3-Klon ohne Fehler?

 54

Nachdem analysiert wurde, ob Klone tatsächlich Indikatoren für Fehler sind, ist es
interessant festzustellen, ob Typ-1-Klone, die mit einem Issue-Tracking-System
verbunden sind und entwickelt werden, um den Fehler zu beheben, zu einem Typ-3-
Klon werden und somit keinen Fehler mehr enthalten. Durch diesen Vorgang wird
ermittelt, ob bewusst entwickelte inkonsistente Klone einen Beitrag zur Fehlerbehebung
leisten.

5.3 Datensammlung und Konfigurationssysteme
Die Analyse der Projekte auf Klone und Fehler erfordert viele Schritte und das
Beachten vieler Details, die bewusst durchzuführen sind. Das Kapitel beschreibt die
Konfigurationsschritte der Analyse, die erforderlich waren, um zuverlässige Ergebnisse
erzielen zu können.

Gemein haben alle Schritte die Datenbasis. Das Überprüfen auf Klone auf jeder
Version jeder Datei ist nicht machbar. Stattdessen wurde das Projekt in der
Revisionshistorie zu einem bestimmten Zeitpunkt im Entwicklungszyklus und auf einer
bestimmten Version mit der Update-Funktion gespeichert, das Snapshot genannt wird.
Nach dem Update stehen lediglich die Daten bis zum festgelegten Zeitpunkt im
Verzeichnis für die Analyse zur Verfügung. Bei allen Projekten wurde ungefähr ein zwei
bis drei Jahre früherer Entwicklungsstand als Datenbasis ausgewählt. Der Grund
hierfür ist, dass nach der Klonermittlung eine größere Datenbasis in der
Revisionshistorie zur Verfügung steht, um die inkonsistenten Klone in der gesamten
Revisionshistorie bis zum Zeitpunkt der Analyse auf Fehler zu untersuchen bzw. auf
Weiterentwicklung und Fehlerbehebung zu prüfen.

5.3.1 Klondaten aus ConQat
Die Klonerkennung wird mit dem bereits in Kapitel 4 vorgestellten
Klonanalysewerkzeug ConQat auf dem ausgewählten Snapshot durchgeführt. Alle
Projekte wurden in Java geschrieben. Infolgedessen wurde der ConQat-Block
„JavaGappedCloneAnalysis.cqr“ zur Erkennung inkonsistenter Klone auf den drei
Objekten durchgeführt. Der Algorithmus für inkonsistente Klone, bzw. gapped Clones,
wurde von Juergens et. al. entwickelt [6].

Der inkonsistente Klonerkennungsansatz wurde mit konservativen und liberalen
Klonerkennungsparametern durchgeführt. Dies sollte die Ausrichtung der Studie auf
eine bestimmte Klonerkennungsparametereinstellung reduzieren, um das
Systemverhalten zu verstehen und wie die Klone mit größerem Freiraum, also
kleinerem Parameter für die minimale Klonlänge, unähnlich geworden sind.

Für den liberalen Klonerkennungsansatz wurde für die minimale Klonlänge (Minlength)
10 Statements festgelegt, d.h. die Klone müssen mindestens 10 Zeilen lang sein. Für

 55

das „gap ratio“, d.h. das maximale inkonsistente Klonverhältnis, wurde ein Parameter
von 0,25 und für die maximale Fehleranzahl ein Parameter von 10 festgelegt. Ein „gap
ratio“ gibt an, um wie viele Codezeilen sich ein Klonpaar unterscheiden darf.
Beispielsweise dürfen sie bei einem gap ratio von 0,25 und acht Zeilen Code in einem
Klonpaar maximal zwei Codezeilen unterscheiden. Die Klonerkennung für den liberalen
Ansatz (genannt Runtime) betrug zwischen 62 Sekunden bis 294s. Die Tabelle 5.2
enthält wichtige Informationen zum Klonerkennungsergebnis. Die Definitionen zu den
restlichen Begriffen auf Tabelle 5.2 lauten wie folgt:

kLOC: Anzahl der Codezeilen (in Tausend)

Clone LOC: Anzahl der geklonten Codezeilen

Clone Count: Anzahl der Klone

Tabelle 5.2: Klonerkennung mit liberalem Ansatz

Project Minlength Error Gap Ratio Runtime kLOC Clone LOC Clone Count

A 10 10 0,25 58s 253 25.443 981

B 10 10 0,25 58s 332 49.200 1.545

C 10 10 0,25 112s 454 47.800 2.244

Des Weiteren wurde eine Klonerkennung mit denselben Parametern durchgeführt. Die
minimale Klonlänge wurde auf 15 erhöht. Dies führt zu erheblich niedrigeren
Klonergebnissen.

Für diese Studie fiel die Entscheidung auf eine konservative Klonanalyse. Daher wurde
die minimale Klonlänge erneut erhöht und auf 20 festgesetzt.

Die Tabelle 5.3 zeigt die Klonergebnisse für den konservativen Ansatz. Im Vergleich
zum liberalen Ansatz und der manuellen Analyse der Klone ist deutlich zu erkennen,
dass der konservative Ansatz erheblich bessere Klonergebnisse liefert.

 56

Tabelle 5.3: Klonerkennung mit konservativem Ansatz

Project Minlength Error Gap Ratio Runtime kLOC Clone LOC Clone Count

A 20 10 0,25 52s 253 7.600 143

B 20 10 0,25 42s 332 17.700 352

C 20 10 0,25 97s 454 15.600 382

Die erfassten Klonkandidaten wurden dann manuell gelesen, um Falsch-Positive zu
entfernen. Es wurden also Codefragmente, welche von ConQat als Klon erkannt
wurden, jedoch keine semantische Beziehung hatten, aussortiert. Für die weitere
Analyse wurden die restlichen Klonkandidaten als Basis genommen. Diese
Klonkandidaten werden in ConQat mit weiteren Informationen in Klonklassen gegliedert
ausgegeben.

Es wurden aus dem ConQat Output die Klonklassen mit dem Dateinamen (wobei es
sich hier um die Dateipfade handelt), die Anfangszeile, die Endzeile und die maximal
möglichen Gaps extrahiert und in Excel exportiert. In der Excel-Liste sind unter jeder
Klonklasse die Klondateien mit den extrahierten Dateien erfasst. Diese wir mit Excel-
Verweisen und Funktionen so umgestaltet, dass zu jeder Klondatei die Klonklasse
angegeben wird, in der sie enthalten ist, sowie die oben genannten Daten wie
Anfangszeile, etc. Der Grund hierfür ist, dass die Dateien in dem
Versionsverwaltungssystem auf Klone analysiert werden und diese als Datenbasis
dienen. Des Weiteren finden diese Daten später in einer Datenbank Anwendung.
Daher ist dieses Format der Datenliste relevant.

Eine wichtige Information ist, dass in diesem Schritt noch keine Trennung in der
Handhabung zwischen inkonsistenten und konsistenten Klongruppen gemacht wird.
Diese werden während der Auswertung in der Datenbank beachtet.

5.3.2 Daten aus Mercurial

In dieser Studie wird die gesamte Revisionshistorie des Projektes zur Analyse
betrachtet. Daher muss für jede Datei in der sich ein Klon befindet, sei es ein
konsistenter oder inkonsistenter Klon, die gesamte Revisionshistorie aus Mercurial
ermittelt werden. Infolgedessen dienen die aufbereiteten Ergebnisse der Klondaten aus
ConQat in diesem Schritt als Datenbasis. Aus dieser Liste werden nämlich lediglich die
Dateipfade eines Projekts, in der Klone enthalten sind, in eine Textdatei gespeichert.

 57

Es wurde in Python ein Skript geschrieben (siehe Abbildung 5.1), das für jede in der
Textdatei enthaltene Datei, die gesamte Revisionshistorie aus Mercurial ermittelt und in
eine Textdatei speichert. Die Revisionshistorie besteht aus „Changesets“, welche durch
Committs entstanden sind. Zu jedem Changeset wird die lokale und eindeutige
„ChangesetID“ angeben. Des Weiteren sind zu jedem „Changeset“ der Benutzer, der
das Committ ausgelöst hat, der Zeitpunkt des „Committs“, sowie die „Branch“ und der
Parent des Committs und eine Beschreibung des Committs erfasst. Für die Analyse
sind jedoch die ChangesetID, der Benutzer, der Zeitpunkt sowie die Beschreibung des
Changesets relevant. Das Skript wird in einer Python-Kommandozeile, für jedes
einzelne Projekt, wie in Abbildung 5.2 dargestellt ausgeführt.

Die Ausgabe des Skripts wird in eine Excel-Datei exportiert und mit Excel-Verweisen
und Funktionen umgeschrieben. Die Ausgabe listet nämlich zu jeder Datei, die in der
vorherigen Textdatei erfasst war, die „Changesets“ mit den genannten Informationen
untereinander auf. Als Datenbasis benötigen wir jedoch eine Liste, die jede
ChangesetID in eine Zeile erfasst und die dazugehörigen restlichen Informationen wie
Benutzer, Dateiname, Beschreibung etc. in den Spalten derselben Zeile erfasst. Diese
Struktur ist für die Datenbankanwendung erforderlich.

Abbildung 5.1: Skript für die Ausgabe der Revisionshistorie der Klondateien

Starten mit
import hg
hg.run("src.txt", "log.txt")

import os, subprocess

def run(listFilePath, logFilePath):
 log = ""
 f = file(listFilePath)
 for line in f.readlines():
 log += hglog(line.strip(), logFilePath)

 f.close()
 f = file(logFilePath, "w")
 f.write(log)
 f.close()

def hglog(srcFilePath, logFilePath):
 log = ""
 log += "%s:\n\n" % srcFilePath
 log += subprocess.check_output(["hg", "log", srcFilePath])
 log += "\n\n\n"
 return log;

 58

Abbildung 5.2: Skript in Python durch Mercurial-Export ausführen

5.3.3 Daten aus FogBugz und Kiln

Nachdem die gesamte Revisionshistorie zu den Klondaten ermittelt wurde, müssen
noch die Fehler in den Klondaten ermittelt werden. Als Anmerkung – die
Revisionshistorie der Klondaten besteht aus ChangesetIDs mit zusätzlichen
Informationen wie in Kapitel 5.3.2 erläutert. Bei der Fehlersuche hat zunächst die Art
der Klonklassen, ob inkonsistent oder konsistent, keine Bedeutung. Es müssen nämlich
die Fehler für alle geklonten Codefragmente ermittelt werden.

In Kapitel 4.3 und 4.4 wurden die webbasierten Issue- bzw. Bug- Tracking-Systeme
ausführlich beschrieben. Codestellen die bearbeitet werden müssen und bearbeitet
wurden bzw. einen Fehler enthalten oder deren Fehler behoben wurden, werden in
FogBugz mittels Cases (Fällen) festgehalten. Jeder Case hat eine eindeutige Case-
Nummer. Wird ein Quelltext ausgehend von einem Case modifiziert, wird bei der
Commit-Message eine Case-Nummer als Referenz angegeben. Dadurch enthält jedes
Changeset, bei dem ein Case bearbeitet wurde, einen Case-Eintrag. Dieser Case
kann, entsprechend des Cases, ein Feature oder Bug-Eintrag sein, welcher in Kiln über
die ChangesetID gefunden werden kann. Zusammengefasst bedeutet dies, dass
ChangesetIDs in Kiln geprüft werden, um Fehler (also Bug- Einträge) zu ermitteln.

Für diese Studie wurde jede ChangesetID der Revisionshistorie einer Klondatei in Kiln
gesucht. Anschließend wurde geprüft, ob zu dieser ChangesetID ein Case-Eintrag
besteht. Die Liste mit den Revisionshistorien wurde mit den referenzierten Case-
Nummern, wie Feature-Nummer oder Bug-Nummer erweitert. Durch diesen
Analysevorgang wurden alle Klondateien ermittelt, die modifiziert wurden, um einen
Fehler zu beheben. Ob jedoch die modifizierten Zeilen mit den Klonzeilen
übereinstimmen wird in der Studiendatenauswertung in Kapitel 5.4 analysiert.

 59

Es besteht die Möglichkeit den Prozess zur Analyse von Case- Einträgen mit einer Kiln-
API zu automatisieren. Die API gibt aus der Repository eines Projekts, beginnend vom
letzten Changeset des Repositorys, 100 Changesets sowie die Case-Einträge in den
Changesets zurück. Die API lautet wie folgt [38]:

Api/{version}/Repo/{ixRepo}/History (GET)

also:

https://XXXXXXX.de/fogbugz/kiln/Api/1.0/Repo/100538/History?revOldest=ae5d2dcb44
a7&nChangesetLimit=100&token=h6jejas66etdc177ulq7m3l9hpisc

Hierbei ist 100538 die Repository-Nummer des Projekts und ae5d2dcb44a7 die letzte
ChangesetID im Repository des Projekts, ChangesetLimit=100 ist die höchste Anzahl
der Changesets, die zurückgegeben wird.

Für diese Studie benötigen jedoch die Case-Daten für alle Changesets. Das bedeutet,
dass die API erweitert werden müsste, um die Informationen für die gesamte
Revisionshistorie zu erhalten. Der Prozess für die Erweiterung der Kiln-API ist jedoch
nicht im Rahmen dieser Diplomarbeit und wurde aus diesem Grund nicht durchgeführt.

5.4 Studiendatenauswertung
Bisher erfolgte lediglich das Zusammenstellen der Datenbasis für den eigentlichen
Analyseschritt. Ein wichtiger Punkt ist an dieser Stelle anzumerken. Der inkonsistente
Klonanalyseansatz wurde auf zwei verschiedenen, zu einem relativ aktuellen und bis
zu zwei Jahre früheren, Entwicklungsständen durchgeführt. Nach dem ersten
Analyseschritt konnte für den aktuellen Entwicklungsstand eine höhere Anzahl von
Fehlereinträgen ermittelt werden. Jedoch lag das Problem darin, dass die
Weiterentwicklung der Klondateien nach der Klonanalyse so gering war, dass sehr
wenige Daten in der Revisionshistorie für die Analyse auf Weiterentwicklung und
Fehlerbehebung zur Verfügung standen. Aus diesem Grund wurde für alle Projekte ein
zwei bis drei Jahre alter Entwicklungsstand zur Klonerkennung verwendet und die
darauf folgende Analyse auf einer höheren Datenbasis durchgeführt.

Dieses Kapitel beschreibt die Auswertung der Studiendaten, die mittels einer
Datenbankanwendung erfolgt. Zunächst wird der Aufbau der Datenbank beschrieben.
Anschließend erfolgt die Darstellung der ERM-Diagramme. Abschließend werden die
SQL-Abfragen für das Beantworten der Forschungsfragen beschrieben.

 60

5.4.1 Studiendatenvorbereitung und ERM-Diagramme

Die Datenbasis für die Analyse erfolgt in Unterstützung einer Datenbank. Hierzu wurde
die Software MS ACCESS 2013 verwendet. Es wurde zunächst eine neue Datenbank
erstellt. Folgende Daten wurden anschließend als Tabellen in die Datenbank importiert:

1. Klonklassen aus ConQat (eindeutig, ohne Duplikate)
Die Klonklassen werden aus den Ergebnissen des inkonsistenten
Klonerkennungsansatzes aus ConQat ermittelt. Die Klonklassen aus Kapitel
5.3.1 werden in eine separate Tabelle gespeichert. Anschließend werden
Duplikate entfernt. Daraus resultiert eine eindeutige Liste der Klonklassen.

2. Klondateien aus ConQat (eindeutig, ohne Duplikate)
Die Klondateien werden wie die Klonklassen aus den ConQat-Ergebnissen
ermittelt.

3. Basis_SQL
Diese Daten sind die in Kapitel 5.3.3 ermittelten Daten aus FogBugz und Kiln.
Diese enthält zu allen Klondateien die gesamte Revisionshistorie bis zum
Zeitpunkt der durchgeführten Klonanalyse. Die Revisionshistorie besteht
wiederum zum einen aus den Changesets mit den Informationen wie Benutzer,
Datum, Summary und KlondateiID und zum anderen aus den Cases die Bugs
und Features enthalten.

4. Beziehungstabelle
Es wird eine Beziehungstabelle für die Datenauswertung erstellt. Der Grund
hierfür ist, dass zwischen den Daten aus ConQat und den Daten aus FogBugz
eine n:m-Beziehung besteht. Die Beziehungstabelle wird als Zwischentabelle
verwendet, um die n:m-Beziehung zu beheben. Genau aus diesem Grund
wurden auch die Klondateien und Klonklassen in separate Tabellen gespeichert
und mit der Beziehungstabelle verknüpft. In Abbildung xxx ist die Beziehung der
Tabellen durch ein ERM-Diagramm graphisch dargestellt.

 61

Abbildung 5.3: ERM-Diagramm für die Datenauswertung

5.4.2 SQL-Abfragen

Die Auswertung der Daten erfolgte durch die Ausführung von SQL-Abfragen. Die SQL-
Abfragen, welche für das Beantworten der Forschungsfragen erforderlich waren, lauten
wie folgt:

1. Als erstes wurden die inkonsistenten Klonklassen mit folgender SQL-Abfrage
ermittelt:

 62

Abbildung 5.4: SQL-Abfrage für inkonsistente Klonklassen

Hierbei steht „GAP“ für die Anzahl der Inkonsistenten in einer Klondatei. Mit GAP>0
werden lediglich die inkonsistenten Klonklassen aufgerufen. Die Abfrage liefert somit
alle inkonsistenten Klonklassen mit der Anzahl der Klonstellen des Klons, die in dieser
Klonklasse enthalten sind. Die Anzahl der inkonsistenten Klonklassen wird dann von
MS ACCESS an der unteren Leiste ausgegeben. Das Ergebnis wird wie in Abbildung
5.5 ausgegeben.

Abbildung 5.5: Abfrageresultat zu Inkonsistenten Klonklassen

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS ANZAHLKLONDATEI

FROM BEZIEHUNGSTABELLE

WHERE ([BEZIEHUNGSTABELLE].GAPS>0

GROUP BY [BEZIEHUNGSTABELLE].KLONKLASSEID;

 63

2. Abfrage um die gesamte Revisionshistorie der Dateien aufzulisten:

Abbildung 5.6: Abfrage Revisionshistorie einer Datei

Hierbei wird mit Hilfe der Beziehungstabelle, zu allen Klondateien einer Klonklasse die
gesamte Revisionshistorie mit den Daten aus der Basis_SQL ausgegeben. Das
Ergebnis der Abfrage sieht wie in Abbildung 5.7 aus.

Abbildung 5.7: Abfrageresultat zur Revisionshistorie zu Klonklassen

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,
BEZIEHUNGSTABELLE.KLONDATEIID, BEZIEHUNGSTABELLE.GAPS,
BEZIEHUNGSTABELLE.LINE, BEZIEHUNGSTABELLE.LENGTH,
BASIS_SQL.[CASE ANZAHL], BASIS_SQL.[CASE BUG],
BASIS_SQL.CHANGESETID

FROM ((KLONDATEI INNER JOIN BEZIEHUNGSTABELLE ON
KLONDATEI.KLONDATEIID = BEZIEHUNGSTABELLE.KLONDATEIID)
INNER JOIN KLONKLASSEN ON BEZIEHUNGSTABELLE.KLONKLASSEID =
KLONKLASSEN.KLONKLASSEID) INNER JOIN BASIS_SQL ON
BEZIEHUNGSTABELLE.KLONDATEIID = BASIS_SQL.KLONDATEIID;

 64

3. Abfrage, um Klonklassen zu ermitteln die einen Case-Bug-Eintrag haben:

Abbildung 5.8: Abfrage für fehlerhafte Klonklassen

Durch diese Abfrage werden alle Klonklassen ermittelt, sowohl konsistente als auch
inkonsistente, in denen ein Fehler behoben wurde. Diese Abfrage ist erforderlich für die
Analyse der inkonsistenten Klone auf Fehler.

4. Für die Forschungsfrage 3 wird eine SQL-Abfrage für Case-Bug- Einträge in
konsistenten Klonklassen erzeugt, da analysiert wird, ob fehlerhafte Typ-1-Klone im
Laufe der Entwicklung zu fehlerfreien inkonsistenten Klonklassen werden. Die Abfrage
lautet wie folgt:

Abbildung 5.9: Abfrage fehlerhafte inkonsistente Klonklassen

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS
ANZAHLKLONKLASSEID

FROM (KLONKLASSEN INNER JOIN (KLONDATEI INNER JOIN
BEZIEHUNGSTABELLE ON KLONDATEI.KLONDATEIID =
[BEZIEHUNGSTABELLE].KLONDATEIID) ON KLONKLASSEN.KLONKLASSEID
= [BEZIEHUNGSTABELLE].KLONKLASSEID) INNER JOIN BASIS_SQL ON
[BEZIEHUNGSTABELLE].KLONDATEIID=BASIS_SQL.KLONDATEIID

WHERE (BASIS_SQL.[CASE BUG])>0
GROUP BY [BEZIEHUNGSTABELLE].KLONKLASSEID;

SELECT [BEZIEHUNGSTABELLE].KLONKLASSEID,
COUNT ([BEZIEHUNGSTABELLE].KLONKLASSEID) AS
ANZAHLKLONKLASSEID

FROM (KLONKLASSEN INNER JOIN (KLONDATEI INNER JOIN
BEZIEHUNGSTABELLE ON KLONDATEI.KLONDATEIID =
[BEZIEHUNGSTABELLE].KLONDATEIID) ON KLONKLASSEN.KLONKLASSEID
= [BEZIEHUNGSTABELLE].KLONKLASSEID) INNER JOIN BASIS_SQL ON
[BEZIEHUNGSTABELLE].KLONDATEIID=BASIS_SQL.KLONDATEIID

WHERE (((BEZIEHUNGSTABELLE.GAPS)=0) AND ((BASIS_SQL.[CASE
BUG])>0))

GROUP BY [BEZIEHUNGSTABELLE].KLONKLASSEID;

 65

Nun stehen alle Daten zur weiteren Analyse bereit. Um nun den fehlerhaften Code in
einer Version festzustellen, wird die Version r für eine Datei in der ein Fehler gefunden
wurde festgehalten. Da das Repository eines Projektes sich auf einem älteren Stand
befindet, werden der Revisionshistorie mit der Pull- Funktion in Mercurial neue
Änderungen hinzugefügt, die jeweils durch eine Commit-Message in die
Revisionshistorie aufgenommen werden und somit eine ChangesetID erhalten. In
Tortoise besteht die Möglichkeit für jede Datei die Revisionshistorie einzusehen. Somit
kann für jede Datei der inkonsistenten Klonklasse die gesamte Revisionshistorie
betrachtet und die Entwicklung überprüft werden. Des Weiteren kann festgestellt
werden, ob während der Entwicklung in den inkonsistenten Klondateien ein Fehler
behoben wurde. Somit können Rückschlüsse über die Fehlerhaftigkeit der
inkonsistenten Klonklassen gemacht werden.

Wie die Datenanalyse mit den aufbereiteten Daten durchgeführt wird, ist in Kapitel 5.5
detailliert beschrieben.

5.5 Datenanalyse
Zur Beantwortung der Forschungsfragen wurde in Anlehnung auf die Studien von
Juergens et al. [6] und Rahman et al [10] ein Ansatz zur Datenanalyse entwickelt.
Dieses Kapitel stellt die Datenanalyse für das Beantworten der verschiedenen
Forschungsfragen vor.

In der Datenanalyse werden unterschiedliche Mengen von Klongruppen untersucht, um
die Forschungsfragen zu beantworten. Die Unterschiede in den Definitionen der
Klongruppenmengen basieren auf der Vielfältigkeit der Fragen. Die Hauptmenge
enthält alle Klongruppen C, die zweite grundlegende Menge sind die inkonsistenten
Klongruppen IC. Des Weiteren existieren die Mengen der erkannten Fehler in
inkonsistenten Klonen mit BIC. Die unabhängigen Variablen in der Studie sind das
Entwicklungsteam, die Programmiersprache, die funktionelle Domäne, das Alter und
die Größe der Systeme.

Datenanalyse zur Forschungsfrage 1:

Die Forschungsfrage 1 untersucht die Existenz der inkonsistenten Klone auf den
produktiven TWT Systemen, welche bereits im Einsatz sind. Die Analyse dieser Frage
erfolgt wie in der Studie von Jürgens u.a. [6]. Zunächst wird auf den jeweiligen
Systemen der Klonanalyseansatz für inkonsistente Klone mit ConQat durchgeführt. Die
Ergebnisse werden manuell geprüft, um die Falschpositiven zu eliminieren.
Anschließend wird das Verhältnis der inkonsistenten Klone zu den gesamten Klonen
aus den Resultaten der SQL- Abfragen mit │IC│/ │C│ berechnet. Abbildung 1 stellt die
Mengen der beiden Klongruppen dar.

 66

Abbildung 5.10: Menge der gesamten und inkonsistenten Klongruppen

Datenanalyse zur Forschungsfrage 2:

Für die Frage, ob inkonsistente Klone Indikatoren für Fehler sind, wird die
Revisionshistorie, ähnlich wie in [10] zur Analyse des inkonsistent geklonten Codes mit
einbezogen. Ein Versionsverwaltungssystem, in dieser Studie Mercurial, bietet in der
Regel eine sehr umfangreiche Revisionshistorie an. Das Versionsverwaltungssystem
enthält demnach die Versionsgeschichte einer Datei, bspw. Informationen über neu
hinzugefügte, gelöschte und veränderte Dateien. Des Weiteren gibt sie Informationen
über Entwickler, die Änderungen an einer Datei vorgenommen haben. Eine neue
Version für eine Datei entsteht durch eine Commit-Message eines Entwicklers, der
möglicherweise Änderungen an der Datei vorgenommen hat. Die Version erhält durch
einen Commit an einer Datei, eine lokale Versionsnummer, die innerhalb des eigenen
Repository gültig ist, sowie eine eindeutige Identifikationsnummer, die ChangesetID
genannt wird und Gültigkeit im gesamten Repository hat. Des Weiteren wird neben
dem Entwickler ebenfalls der Zeitpunkt des Committ-Eintrags einer Version
angegeben.

Diese Studie untersucht die Auswirkungen des Klonens im gesamten Projekt-
Lebenszyklus. Daher müssen alle Klone auf allen Versionen gefunden werden, die im
Versionsverwaltungssystem committet wurden.

Der Grund, weshalb die Revisionshistorie eines Klons bei der Analyse betrachtet wird,
ist die bestehende Möglichkeit, dass ein inkonsistent geklonter Code, zunächst nach
dem Klonen keinen Fehler verursacht. Jedoch kann das geklonte Codefragment im
Laufe der Entwicklung zu einem fehlerhaften Code werden. Die Abbildung 5.11 zeigt,
wie ein Fehlereintrag in einem Issue-Tracking-System für einen inkonsistenten Klon
verfolgt und ermittelt wird.

Beispielsweise soll in der Version 1 der Case 1: Impelement_xxx implementiert werden.
Dieser wird entwickelt und anschließend committed. In der Version 2 wird festgestellt,
dass dieses Codefragment in den Dateien a und b, in den Zeilen 10-20 (Datei a) und
30-50 (Datei b) inkonsistent geklont wurden, die noch keinen Fehler enthalten. Diese
inkonsistenten Klone werden ebenfalls weiterentwickelt. In späteren Versionen wird in
dem inkonsistenten Klon a in den Zeilen 10-15 ein Fehler erkannt, der in dem Issue-
Tracking-System behoben werden muss. Über die Case-Nummer, welche eindeutig für
die gesamte Entwicklung ist, kann der Fehler im Issue-Tracking-System gefunden und

 67

gefixt werden. Somit wurde festgelegt, welcher inkonsistenter Code im Laufe der
Entwicklungshistorie zu einem inkonsistenten Code wird, der einen Fehler enthält.

Im Allgemeinen kann also ermittelt werden, welcher inkonsistenter Klon, der einen
Bezug zu einem Issue-Tracking-System hat, einen Zusammenhang mit einem Fehler
hat. Hierzu werden die Ergebnisse der SQL-Abfragen zu allen inkonsistenten
Klonklassen als Datenbasis genommen. Für jede Klondatei in einer inkonsistenten
Klonklasse wird der beschriebene Fehleranalyseansatz durchgeführt. Aus dieser
Vorgehensweise kann ermittelt werden, ob und wann Klone verändert wurden bzw.
Fehler im Laufe der Entwicklung verursacht haben.

Während diesem Analyseprozess können viele weitere wichtige Fragen wie die
Forschungsfragen 2.1 – 2.4 analysiert werden. Vor allem die Forschungsfrage 2.2, ob
Fehler in inkonsistenten Klonen an allen Codefragmenten einer Klongruppe behoben
werden, lässt sich anhand dieser Analyse sehr gut beschreiben und beantworten. Da
die gesamte Revisionshistorie der Klondateien einer Klonklasse betrachtet wird, kann
sehr gut beobachtet werden, ob Fehler in einer Klonklasse an allen Klonstellen
behoben werden und ob die Fehlerbehebung zeitgleich durchgeführt wird oder sogar
überhaupt nicht betrachtet wird.

Mit dem dargestellten Analyseverfahren kann die zeitliche Spanne zwischen den
Klonen ermittelt werden. Wenn eine große zeitliche Spanne zwischen den Klonen liegt,
die keinen Fehler enthalten, kann der Klon als ein robuster Klon eingestuft werden.
Klone die zeitgleich modifiziert werden, sei es eine Fehlerbehebung oder andere
Änderungen, werden als bewusstes Klonen kategorisiert. Im Gegensatz dazu
definieren sich Klone, für welche die Fehlerbehebung nicht in allen Klondateien einer
Klonklasse durchgeführt wird, als fehlerhafte Klonklassen und demnach als
unbewusstes Klonen.

 68

Abbildung 5.11: Prozess zur Verfolgung eines inkonsistenten Klons über die
Revisionshistorie

 69

Datenanalyse zur Forschungsfrage 2.1

Die Frage, ob die große Mehrheit der inkonsistenten Klone als Fehler erfasst sind, kann
im Grunde wie in der Datenanalyse zur Forschungsfrage 2 ermittelt werden. Für diese
Frage werden zunächst die erkannten inkonsistenten Klone in dem Issue-Tracking-
System FogBugz und Kiln auf einen Bug-Eintrag geprüft. Dadurch entsteht die Menge
der inkonsistenten Klone, die einen Fehler enthalten und auch erkannt wurden.

Zunächst muss aber eine Definition für einen fehlerhaften Code festgelegt werden. Im
Grunde kann eine Reihe von Codezeilen, die einen Fehler verursacht haben, als
fehlerhafter Code bezeichnet werden. Jedoch ist es schwierig, das tatsächlich
schuldhafte Codefragment zu finden. Diese Studie nutzt die Definition eines
fehlerhaften Codes aus der Studie von Rahman et al. [10], die besagt, dass ein buggy
code eine Reihe von Codezeilen ist, die geändert wurden, um einen Fehler zu
beheben.

Nachdem der buggy Code gefunden wurde, wird geprüft ob die Codezeilen in denen
Änderungen vorgenommen wurden, mit den Codezeilen, in denen vom
Klonerkennungstool ConQat ein inkonsistenter Klon gefunden wurde, übereinstimmen.
Wenn dies der Fall ist, kann davon ausgegangen werden, dass der inkonsistente Klon
im Entwicklungszyklus Fehler verursacht hat.

Das Verhältnis der erkannten Fehler in inkonsistenten Klonen (BIC) wird mit
│BIC│/│IC│ berechnet.

Abbildung 5.12: Menge der erkannten Fehler in Inkonsistenzen im Issue-Tracking-
System

Datenanalyse zur Forschungsfrage 2.2

Auf die vorherige Frage aufbauend lässt sich die Frage, ob Fehler an einem
Codefragment konsistent an allen inkonsistent geklonten Codes einer Klongruppe
behoben wird, durch eine weitere Analyse beantworten. Das Resultat dieser Frage
dient als Grundlage bei der Argumentation der Auswirkungen der inkonsistenten Klone.

Die Ergebnisse des Klonerkennungstool ConQat bestehen typischerweise aus einer
Reihe von Klongruppen. Jede der Klongruppen enthält Codefragmente, die aneinander
ähnlich sind und sich in derselben oder auch in verschiedenen Dateien befinden

 70

können. Demnach enthalten die Klongruppen Informationen über die Dateien in denen
sich das geklonte Codefragment befindet, Informationen zu Anfangszeilen und
Endzeilen des Klons, die Länge des Klons sowie die maximal mögliche Gap-Anzahl.

Nach der Festlegung der Menge der erkannten Fehler in den Inkonsistenzen (BIC),
wird geprüft, ob der Fehler in allen Codefragmenten einer Klongruppe, die diesen
Fehlereintrag haben, behoben wurde. Fehler werden in einem Issue-Tracking-System
entdeckt und aufgezeichnet und im Laufe der Entwicklung von den Entwicklern
behoben. Ein behobener Fehler wird auf eine bestimmte Version im
Versionsverwaltungssystem verbunden. Daher wird der Korrekturvorgang für die
gesamte Revisionshistorie einer Datei geprüft. Wenn ein Fehler in allen geklonten
Codes einer Klongruppe behoben wurde, stellt der Fehler kein Risiko dar. Andernfalls
wird das inkonsistente Klonen als risikobehaftet eingestuft.

Wichtig: Während der Analyse wird untersucht, ob die Korrektur der erkannten Fehler
zeitgleich oder mit Zeitverzug oder überhaupt nicht erfolgt. Aus diesem Ergebnis wird
erkannt, ob Entwickler bewusst klonen.

Ermittelt wird die Menge der inkonsistenten Klone, die an allen Codefragmenten einer
Klongruppe keinen Fehler mehr enthalten (KF). Das Verhältnis der Menge der
inkonsistenten Klone, welche keinen Fehler mehr enthalten (KF) lässt sich mit
|KF|/|BIC| berechnen.

Abbildung 5.13: Menge der inkonsistenten Klongruppen, bei denen an jedem Klon
einer Klongruppe der Fehler behoben wurde

Hypothese:

Die Antwort auf diese Frage ist das Hauptergebnis der Studie, weil es die
Auswirkungen eines inkonsistenten Klons begründet. Daher wird hieraus eine
Hypothese abgeleitet:

Das Verhältnis der Fehler in den Inkonsistenten ist höher als die Fehler in den
restlichen Klonen im System.

 71

Datenanalyse zur Forschungsfrage 2.3

Es wichtig die Fehler zu kategorisieren, um ein besseres Verständnis für den Grund der
Fehler zu ermitteln, bzw. festzustellen unter welchen Kontextbedingungen ein Fehler
gegeben ist. Hierzu wird die gesamte Revisionshistorie eines Inkonsistenten Klons
analysiert und festgestellt, ob ein Klon im Entwicklungszyklus modifiziert wurde und ob
sich Fehler durch die fehlenden Klonkenntnisse der Entwickler einschleichen. Es ist
ebenfalls interessant festzustellen, weshalb inkonsistente Klonklassen trotz langer
Entwicklungshistorie keinen Fehler im gesamten Entwicklungszyklus verursachen und
erhält aus diesem Grund eine Untersuchung.

Datenanalyse zur Forschungsfrage 2.4

Es wichtig die Fehler zu kategorisieren um ein besseres Verständnis für den Grund der
Fehler zu ermitteln, bzw. festzustellen unter welchen Kontextbedingungen ein Fehler
gegeben ist. Hierzu wird die gesamte Revisionshistorie eines Inkonsistenten Klons
analysiert und festgestellt, ob ein Klon im Entwicklungszyklus modifiziert wurde und ob
sich Fehler durch die fehlenden Klonkenntnisse der Entwickler einschleichen. Es ist
ebenfalls interessant festzustellen, weshalb inkonsistente Klonklassen trotz langer
Entwicklungshistorie keinen Fehler im gesamten Entwicklungszyklus versuchen und
erhält aus diesem Grund eine Untersuchung.

Datenanalyse zur Forschungsfrage 3:

Letztlich werden die Auswirkungen der inkonsistenten Klone nicht in negativer sondern
in positiver Hinsicht betrachtet. Bisher wurde analysiert, ob die inkonsistenten Klone
Fehler verursachen bzw. ob die Fehler in den inkonsistenten an allen Klonstellen
behoben wurden. Nun soll hingegen analysiert werden, ob Typ-1-Klone mit einem
Fehler durch das Modifizieren für die Fehlerbehebung zu einem Typ-3-Klon ohne
Fehler wurden.

Hierzu erfolgt zunächst die Fehleranalyse wie in der Datenanalyse 2.1 für Typ-1-Klone.
Als Datenbasis dient das Ergebnis der SQL-Abfrage für exakte Klonklassen die einen
Fehlereintrag haben. Klone mit einem Fehlereintrag im Issue-Tracking-System, werden
weiterhin zur Analyse unterzogen. Im zweiten Analyseschritt erfolgt das Prüfen des
fehlerhaften Typ-1-Klon Codefragments. Es wird geprüft, ob dieser weiterentwickelt
wurde und in der Revisionshistorie durch einen „bug-fixing-Eintrag“ behoben wurde.
Des Weiteren wird in der Revisionshistorie geprüft, ob es sich nun beim fehlerfreien
Codefragment um einen inkonsistenten Klon handelt. Dieser kann in den Ergebnissen
des Klonanalysewerkzeugs ConQat geprüft werden. Um sicherzustellen, dass der
inkonsistente Klon tatsächlich nur einen positiven Beitrag im Entwicklungszyklus
geleistet hat, erfolgt als letzter Schritt das Prüfen des inkonsistenten Klons auf Fehler.
Wenn nämlich der inkonsistente Klon keinen Fehler enthält, bzw. keinen weiteren

 72

Fehler in der Revisionshistorie verursacht hat, handelt es sich um einen positiven
inkonsistenten Klon.

Abbildung 5.14: Typ-1-Klone die einen Fehler enthalten werden zu Typ-3-Klone ohne
Fehler

 73

6 Ergebnisse

Die Ergebnisse des Studiendesigns sind für das Beantworten der jeweiligen
Forschungsfragen präzise in Tabelle 2 erfasst. Die Tabelle 5.1 in Kapitel 5.1 enthält
Informationen zu den Studienobjekten. Unter anderem listet sie die Größe der Projekte
in Codezeilen auf. In näherer Betrachtung der Größe der Codezeilen und der Anzahl
der Klonergebnissen aus ConQat wird ersichtlich, dass je größer ein Projekt ist, desto
höher die Anzahl der Klone sind. Projekt C ist ungefähr doppelt so groß wie Projekt A.
Dies spiegelt sich ebenfalls in den Klonergebnissen der Projekte wieder, da Projekt C
im Vergleich zu Projekt A doppelt so viele Klonklassen enthält.

Tabelle 6.1: Zusammenfassung der Studienergebnisse

Projekt DISCAT FCAD CO2MO

Klonklassen │C│ 37 88 82

Inkonsistente Klonklassen │IC│ 21 21 65

Exakte Klonklassen 16 67 17

Inkonsistente Klonstellen │IS│ 46 43 146

Modifizierte inkonsistente Klonstellen │MIS│ 24 19 67

Verhältnis der modifizierten Klonstellen (in %)
│MIS│/│IS│

0,52 0,44 0,45

Zeitgleich modifizierte inkonsistente Klonstellen (in
%) │ZMIS│

14 17 62

Verhältnis zeitgleich modifizierte inkonsistente
Klonstellen (in %) │ZMIS│/│MIS│

0,58 0,89 0,92

Fehlerhafte Klonklassen │FK│ 16 5 37

Fehlerhafte Inkonsistente Klonklassen │BIC│ 7 1 2

Verhältnis fehlerhafter inkonsistenter Klonklassen
(in %)│BIC│/ │IC│

0,33 0,05 0,03

Fehlerbehobene Inkonsistente Klonklassen │KF│ 4 1 0

FF 1 │IC│/│C│(in %) 0,56 0,23 0,79

 74

FF 2.1 │BIC│/│IC│(in %) 0,33 0,05 0,03

FF 2.2 |KF| / |BIC| (in %) 0,57 1,0 0

Durchschnittliche Inkonsistente Klonlänge 60 62 78

Durchschnittliche Fehlerhafte Inkonsistente
Klonlänge

50 39 83

Hypothese │BIC│/ │FK│ (in %) 0,43 0,2 0,05

Aus den Ergebnissen lässt sich schließen, dass die Klonklassen der Projekte, bis auf
Projekt B, über die Hälfte etwa 56% - 79% inkonsistent sind. Der Grund weshalb das
Projekt B im Verhältnis zu den beiden anderen Projekten weniger inkonsistente
Klonklassen enthält ist, dass Codefragmente aus den firmeninternen Bibliotheken exakt
geklont wurden, um bestimmte Funktionalitäten wiederzuverwenden. Schlussfolgernd
kann die Forschungsfrage 1, ob die Systeme größtenteils inkonsistente Klone
enthalten, positiv beantwortet werden.

Aus diesen inkonsistenten Klonen wurde ungefähr die Hälfte 44%-55%
weiterentwickelt. Es wurden Codezeilen entfernt, hinzugefügt oder bestehende
Klonzeilen, sei es in den Literalen oder Bezeichnern, modifiziert. Daraus resultiert, dass
bestehende Klone eine Unterstützung für die Entwickler im Entwicklungszyklus der
Programmierer sind. Um zu untersuchen, ob Entwickler überhaupt bewusst Klonen
wurde analysiert, ob die Modifizierung an allen Klonstellen einer Klonklasse zeitgleich
durchgeführt wurde. Aus den Ergebnissen lässt sich schließen, dass in allen Projekten
die Entwickler über fast alle Klonstellen, 58%-92%, informiert sind und diese zeitgleich
bei Bedarf modifizieren. Das spiegelt sich auch in den Fehlerergebnissen der
inkonsistenten Klone wieder. Infolge des bewussten Klonens sind lediglich 3%-33% der
inkonsistenten Klonklassen fehlerbehaftet. Daraus resultierend kann die
Forschungsfrage 2, ob inkonsistente Klone Indikatoren für Fehler sein können negativ
beantwortet werden, da die Inkonsistenten beim bewussten Klonen verhältnismäßig
eine geringe Gefahr für ein Softwaresystem darstellen. Folgernd beweisen die
Ergebnisse dieser Studie die Analysewerte der Studie von Rahman u.a. [10], die
besagen, dass die aus den Versionskontrollsystemen gewonnen Daten, die auch
erfasste Fehler in einem System kennzeichnen, keinen bemerkenswerten
Zusammenhang zwischen Klonen und Fehler darstellen.

Da sehr wenige inkonsistente Klonklassen einen Bezug zu einem Fehler haben, lautet
die Antwort für die Forschungsfrage 2.1, dass sich lediglich ein sehr geringer Anteil der
inkonsistenten Klonklassen, mit 3-33%, als fehlerbehaftet kategorisieren lässt.

Für die Forschungsfrage 2.2 wurde basierend auf den fehlerbehafteten inkonsistenten
Klonklassen geprüft, ob die Fehler in einer Klonklasse an allen Klonstellen behoben
wurden. Aus den Ergebnissen lässt sich schließen, dass bis auf das Projekt C die
zeitgleich modifizierten inkonsistenten Klonstellen und fehlerbehobenen Klonstellen

 75

einen Zusammenhang haben. Bei bewussterem Klonen, also zeitgleich modifizierte
Klone, steigt der prozentuale Anteil der an allen Stellen behobenen Fehler in einer
Klonklasse mit dem zeitgleich modifizierten Inkonsistenten. In Anbetracht, dass das
Projekt C ein Ausreißer ist, kann diese Frage mit 57%-100% der fehlerbehobenen
Klonstellen, positiv beantwortet werden.

Die Hypothese der Studie lautet zur Erinnerung wie folgt: „Das Verhältnis der Fehler in
den Inkonsistenten ist höher als die Fehler in den restlichen Klonen im System“. Im
Durchschnitt enthalten die inkonsistenten Klonklassen, mit 5%-43%, weniger
fehlerhafte Klonstellen als die restlichen Klonstellen im System. Daraus kristallisiert
sich, dass die Inkonsistenten im Vergleich zu exakten Klonen mindestens weniger als
die Hälfte einen Fehler verursachen.

Um die Kontextbedingungen der Fehler in den Inkonsistenten zu bestimmen, wird die
Forschungsfrage 2.3 analysiert und um Resultate über den Zusammenhang der
Klonlänge der Inkonsistenten und der Fehlerhäufigkeit zu finden. Für diese Analyse ist
Projekt C erneut ein Ausreißer. Die Klonlänge der fehlerhaften Inkonsistenten
Klonklassen ist kleiner als die durchschnittliche Klonlänge. Die vergleichsweise relativ
größeren Klone, bis zu bspw. 206 Zeilen, enthalten dagegen keine Fehler. Daraus
resultiert das Ergebnis, dass sich Fehler in kleineren Inkonsistenten Klonen befinden.
Für Projekt C gilt das ebenfalls für die eine fehlerbehaftete Klonstelle. Daher kann
dieser Beschluss gezogen werden. Folgernd kann die Annahme, dass je größer ein
inkonsistenter Klon ist, desto größer die Fehlerwahrscheinlichkeit ist, nicht wiederlegt
werden.

Um die Forschungsfrage 2.4 zu beurteilen, und zwar unter welchen
Kontextbedingungen Fehler in Inkonsistenten gegeben sind und Hinweise für die
Fehlerträchtigkeit von Klonen zu finden, erfolgten zwei wesentliche Kategorisierungen
während der Analyse der Inkonsistenten. Die Klone wurden in bewusste und robuste
Klone gegliedert. Das bewusste Klonen bezeichnet das sorgfältige Klonverhältnis eines
Entwicklers. Hierunter fallen wie obig genannt Klone, die zeitgleich modifiziert werden
und auch nach dem Modifizieren keinen Fehler verursachen.

Die robusten Klone hingegen umfassen inkonsistente Klonklassen, die keinen
Fehlereintrag in der gesamten Revisionshistorie haben. Bei der Analyse wurde
festgestellt, dass die robusten Klone, auch bis zu 4 Jahren nach dem Klonen
weiterentwickelt werden und trotz dessen keinen Fehler erzeugen. Daher werden
Klone, die trotz langer Revisionshistorie keinen Fehler darstellen als Klone bezeichnet,
die bewusst geklont und modifiziert werden. Ein besonders wichtiger Punkt bei den
robusten Klonen ist, dass die Klone größtenteils aus einer Eclipse-Bibliothek, zu
60,74%, und firmeninternen Bibliothek, zu 70%, stammen. Daraus resultiert, dass
insgesamt 76% der inkonsistenten Klone für eine Fehlerbehebung nicht modifiziert
werden, da ihr ursprünglicher Quelltext aus einer Bibliothek stammt. Daraus kann
abgeleitet werden, dass das Klonen aus Bibliotheken eine geringere Gefahr darstellt.

 76

Zuletzt erfolgte die Untersuchung der inkonsistenten Klone auf einen positiven Einfluss
auf die Softwareentwicklung. Für die Forschungsfrage 3 wurde untersucht, ob Typ-1-
Klone die einen Fehler enthalten, im Laufe der Entwicklungshistorie modifiziert und
inkonsistent wurden, um den Fehler zu beheben. Die Analyse ergab, dass sich alle
exakten Klone die einen Fehler enthalten zu einem inkonsistenten Klon ohne Fehler
entwickelten. Des Weiteren erfolgte die Fehlerbehebung der Typ-1-Klone zeitgleich an
allen Klonstellen. Das hängt mit dem bewussten Klonverhältnis der Entwickler
zusammen.

Zusammenfassend kann also der Rückschluss gezogen werden, dass bei bewusstem
Klonen, also dem zeitgleichen Modifizieren der Klone, die Klone robust sind und somit
keine Fehler verursachen. Weiterhin beweist die Studie, dass das Klonen aus
Bibliotheken weniger Fehler verursacht. Außerdem sind wie anhand anderer Studien
angenommen inkonsistente Klone nicht die Verursacher für Fehler, sondern auch das
Mittel zur Fehlerbehebung in den exakten Klonen.

 77

7 Gefahren für die Gültigkeit

In diesem Kapitel werden die Gefahren und die Gültigkeit der Studie bewertet und
ausführlich dargestellt.

7.1 Konstruktvalidität
Es wurde die Entwicklungshistorie der Systeme analysiert, um festzustellen, ob die
Inkonsistenten wirklich durch Änderungen an einem System entstanden sind. Das
Problem besteht jedoch darin, dass Codefragmente durch Kopieren und Modifizieren in
einem einzigen Commit eingefügt wurden. Daher wurde die gesamte Revisionshistorie
der Industriesysteme manuell bearbeitet, um alle Änderungen an einem Codefragment
zu prüfen.

Die Cases, die im Issue-Tracking-System einen Bugeintrag haben, wurden für jedes
Projekt als Basis für fehlerhafte Codefragmente verwendet. Ein Case erhält durch den
manuellen Vorgang eines Entwicklers einen Bugeintrag. Da das Verhalten der
Entwickler nicht immer ordnungsgemäß und vollständig sein muss, kann die in dieser
Studie verwendete Datenbasis für Fehler nicht die komplette Menge an Fehler
enthalten. Weiterhin ist es möglich, dass es sich bei Cases, die einen Feature-Eintrag
haben, um fehlerhafte Codezeilen handelt. Um dieser Gefahr entgegenzuwirken,
wurden die Codezeilen für jedes Case geprüft, ob die Änderungen in den
inkonsistenten Codezeilen vorgenommen wurden und auf deren Robustheit geprüft, da
es keine Möglichkeit auf Fehlerprüfung gab.

Das Prüfen aller inkonsistenten Klonzeilen auf Fehler ist praktisch nicht möglich
gewesen, da es eine hohe Entwicklerzeit und Bereitschaft für die Prüfung erfordern
würde. Der Nutzen des Entwicklers ist in diesem Fall zu gering, so dass das praktisch
nicht umsetzbar ist.

Es ist durchaus möglich, dass es sich bei einigen der Änderungen in der
Revisionshistorie einer Klondatei, die einen Bugeintrag haben, tatsächlich nicht um
fehlerhafte Codezeilen handelt. Um diesem Problem entgegenzuwirken, wurde ein
hoher manueller Aufwand aufgebracht, um die falschen Resultate zu eliminieren.

7.2 Interne Gültigkeit
Die aus ConQat analysierten inkonsistenten Klone wurden auf Falsch-Positive geprüft.
Die restlichen Systeme sollten ebenfalls auf inkonsistente Klone und Fehler geprüft
werden. Da jedoch die Entwicklerzeit dafür fehlte, wurden die restlichen Klone wie aus
ConQat nach dem Prüfen auf Falsch-Positive als Datenbasis genommen. Das führt

 78

dazu, dass die Menge der inkonsistenten Klone sowie die damit verbundenen Fehler,
einer kleineren Menge entsprechen, als es möglicherweise tatsächlich ist. Somit kann
es zu leichten Abweichungen in der Forschungsfrage 1 und damit verbunden auch in
den Werten in der Forschungsfrage 2 führen.

Die Konfigurationsparameter für den Klonerkennungstool ConQat wurde mit einem
liberalem und konservativem Ansatz durchgeführt. Der liberale Ansatz liefert höhere
Klonergebnisse. Trotzdessen wurde die Klonerkennung mit konservativen Parametern
ausgeführt, da bei einem liberalen Ansatz eine höhere Entwicklerbereitschaft
erforderlich ist und diese nicht zur Verfügung stand. Bei dem konservativen Ansatz
haben wir aber eine kleinere Klonbasis, welche die Studie unterstützt, um präzisere
Auswertungen zu machen.

7.3 Externe Gültigkeit
Die Softwaresysteme wurden auf ein neues Issue-Tracking-System umgesetzt. Frühere
Codezustände waren nicht ersichtlich und konnten daher nicht zur Analyse unterzogen
werden. Demnach ist die Menge der Systeme nicht vollständig repräsentativ. Die
Studie wurde lediglich auf drei relativ jungen Industriesystemen durchgeführt, die
folglich auch über kleinere Revisionshistorien verfügen. Ein älteres System mit einer
längeren Revisonshistorie würde die Resultate dieser Studie konsolidieren. Obwohl alle
Systeme in Java geschrieben sind und unterschiedliche Funktionalitäten ausführen,
sind die Ergebnisse in den verschiedenen Projekten ziemlich konsistent, nämlich dass
es keinen erhöhten Zusammenhang zwischen inkonsistenten Klonen und Fehlern gibt
und dass sogar das Klonen aus Eclipse- und firmeninternen Bibliotheken eine
Unterstützung für die Entwickler ist.

 79

8 Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde der Zusammenhang der inkonsistenten Klone
und Fehler in Softwaresystemen untersucht, um Hinweise für die Fehlerträchtigkeit der
Klone zu finden und festzustellen unter welchen Kontextbedingungen sie gegeben
sind. Dabei untersucht die Arbeit auf empirischer Basis drei Industriesysteme, in den
inkonsistenten Klonfragmenten über die gesamte Revisionshistorie auf Fehler. Um den
Zusammenhang der Fehler in den Inkonsistenten zu analysieren, wurde ein
Studiendesign entwickelt. Das Studiendesign enthält drei Hauptforschungsfragen,
welche als Grundlage für die Analyseergebnisse dienen. Die Klonerkennung erfolgt auf
dem Klonerkennungswerkzeug ConQat. Die Analyse wurde auf den, von den Falsch-
Positiven bereinigten, Klonergebnissen durchgeführt. Es konnte festgestellt werden,
dass die Hälfte der Klonklassen inkonsistent ist. Die Revisionshistorie gab
Informationen über die Fehlereinträge in einem Klonfragment. Die Auswertung der
Daten wurde mit Hilfe von Datenbanken durchgeführt. Der Einsatz einer Datenbank hat
den Vorteil, dass der manuelle Aufwand für die Suche nach den Informationen in den
Klonklassen, wie Klondateien, Anfangszeile, Endzeile, Gaps, nicht mehr besteht. Die
Datenanalyse ergab, dass die Entwickler größtenteils bewusst Klonen, da 58-92% der
Klonklassen an allen Klonstellen gleichzeitig modifiziert wurden. Demnach sind
lediglich 3%-33% der inkonsistenten Klonklassen fehlerbehaftet, welches nur einen
geringen Anteil darstellt und verdeutlicht, dass die inkonsistenten Klone keinen großen
Einfluss auf die Fehlerrate eines Systems haben. Des Weiteren beweist die Studie,
dass Klone auch nach 4 Jahren Klonzeit über die gesamte Revisionshistorie keinen
Fehler verursachen. Ungefähr drei Viertel der inkonsistenten Klone stammen aus
Eclipse- bzw. firmeninternen Bibliotheken, die trotz Modifizierungen zu 76% keinen
Zusammenhang zu Fehlern haben. Dies führt zum Beschluss, dass das Klonen aus
Bibliotheken eine geringere Gefahr darstellt. Die Studie untersuchte den Einfluss der
Länge der inkonsistenten Klone auf die Fehlerhäufigkeit. Die Ergebnisse verdeutlichen,
dass Fehler überwiegend in kleinen Inkonsistenten Codefragmenten enthalten sind.
Zusätzlich veranschaulicht die Studie, dass inkonsistente Klone nicht wie angenommen
Fehler verursachen, sondern auch durch Fehlerbehebungen entstehen. Durch das
Modifizieren der Typ-1-Klone zur Fehlerbehebung entstehen nämlich Typ-3-Klone, die
über die gesamte Revisionshistorie weiter geklont und modifiziert werden und trotz
dessen keinen Fehler verursachen. In Kapitel 7 sind die Gefahren für die Gültigkeit der
Studie erfasst, die alle Gefahren und Hürden der Arbeit darstellt, welche zu
Abweichungen in den Analysewerten führen können.

 80

8.1 Ausblick
Die Studie nutzte für die Analyse drei relativ junge Industriesysteme. Für bessere und
umfangreichere Studienergebnisse sollte eine größere Datenbasis mit mehr Projekten
vorliegen und die Studie auf diesen Projekten repliziert werden. Die Datenbasis der
Analyse setzt sich aus dem Klonerkennungstool ConQat, aus dem
Versionskontrollsystem Mercurial und dem Issue-Tracking-System FogBugz
zusammen. Die Datenbasis wurde mit einem hohen manuellen Aufwand aufbereitet.
Um die Studie auf einer umfangreicheren Datengrundlage durchzuführen, ist die
Automatisierung für die Aufbereitung der Datenbasis erforderlich, siehe Abbildung 8.1.
Die Voraussetzung für die Automatisierung ist das Entwickeln eines Tools, welches die
erforderlichen Daten zu den Klonergebnissen aus ConQat aus den unterschiedlichen
Systemen bezieht und diese als Analysegrundlage aufbereitet und anschließend listet.

Das Tool erhält die Klonergebnisse aus dem Klonerkennungswerkzeug, in unserem
Fall aus ConQat. Nach dem Prüfen auf Falsch-Positive werden die Klondateien in
Form von Identifikationsschlüssel für die Suche im Issue-Tracking-System aufbereitet.
Des Weiteren müssen die Klondateien Informationen über die Anfangszeile, Endzeile
und Gaps enthalten. Aus diesen Daten ist nun ersichtlich, ob ein Klon konsistent oder
inkonsistent ist und in welchen Zeilen sich der Klon befindet. Anschließend werden die
aufbereiteten Daten in das Tool importiert. Das Tool bezieht zum einen Informationen
aus einem Versionskontrollsystem und zum anderen aus einem Issue-Tracking-
System. Aus dem Versionskontrollsystem werden zu jeder Klondatei die Informationen
zu einem Commit, wie ChangesetID, Datum, Zeit, Benutzer, Beschreibung gelistet. Im
nächsten Schritt wird zu jeder Klondatei im Issue-Tracking-System die gesamte
Revisionshistorie geprüft. Es erfolgt die Analyse, ob die inkonsistenten Klone sich im
Laufe der Revisionshistorie verändert haben und in diesem Zusammenhang Fehler
entstanden sind. Des Weiteren soll automatisiert geprüft werden, ob die Änderungen
an allen Klonstellen einer Klonklasse zeitgleich erfolgt. Für die Aufbereitung dieses
Tools können Schnittstellen für Kiln und FogBugz verwendet werden, solang die
Systeme auf diesen Systemen gepflegt werden.

Abbildung 8.1: Tool zur Automatisierung

 81

9 Literatur

[1] G. Alkhatib: The maintenance problem of application software: An empirical
analysis, Journal of Software Maintenance: Research and Practice, 4(2), S. 83-
104, DOI: 10.1002/smr.4360040203, 1992.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring: Improving the
Design of Existing Code. 1. Auflage, Addison-Wesley Professional,
Massachusetts, 1999, ISBN 0-201-48567-2.

[3] M. V. Mäntylä, C. Lassenius: Subjective evaluation of software evolvability using
code smells: An empirical study, Empirical Software Engineering, 11(3), S. 395-
431, 2006. Siehe: http://link.springer.com/article/10.1007%2Fs10664-006-9002-
8#page-1

 [5] A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto: Software quality
analysis by code clones in industrial legacy software. In Proceedings Eighth IEE
Symposium on Software Metrics 2002. IEE, S. 87-94, 2002.

 [6] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner: Do Code Clones
Matter?, In ICSE 2009, IEE 31st International Conference on Software
Engineering 2009. Canada, IEEE, S. 485-495, 2009.

 [7] R. Komondoor, S. Horwitz: Effective, automatic procedure extraction, In
Proceedings IWPC 2003 of the 11th IEEE International Workshop on Program
Comprehension. Washington, DC, USA. IEEE Computer Society, S. 33-43,
2003.

 [8] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue: Aries: refactoring support tool for
code clone, In ACM SIGSOFT Software Engineering Notes, 30(4), New York.S.
1-4, 2005. Siehe: http://dx.doi.org/10.1145/1082983.1083306

[9] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, K. Kontogiannis: Partial
redesign of java software systems based on clone analysis, In Proceedings of
the Sixth Working Conference on Reverse Engineering. Washington, DC, USA.
IEEE Computer Society, S. 326-336, 1999.

 [10] F. Rahman, C. Bird, P. Devanbu: Clones: What is that Smell?, In 7th IEEE
Working Conference on Mining Software Repositories (MSR). Cape Town. IEEE
Computer Society, S. 72-81, 2010.

[11] R. Koschke: Survey of Research on Software Clones, In Dagstuhl Seminar
Proceedings 06301. Universität Bremen, 2007. Siehe:
http://drops.dagstuhl.de/opus/volltexte/2007/962

 82

[12] B. S. Baker: A Program for identifying Duplicated Code. Computing Science and
Statistics. In Proceedings of the 24th Symposium on the Interface. S. 24:49-57,
1992.

[13] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue: On Detection of Gapped Code
Clones using Gap Locations. In Proceedings of the Ninth Asia-Pacific Software
Engineering Conference. Washington, DC, USA. IEEE Computer Society, S.
327-336, 2002.

[14] B. S. Baker: On Finding Duplication and Near-Duplication in Large Software
Systems. In Proceedings of 2nd Working Conference on Reverse Engineering.
Los Alamitos, California. IEEE Computer Society, S. 86-95, 1995.

 [15] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo: Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software
Engineering, 33(99), S. 577–591, 2007.

[16] C. Kapser, M. Godfrey: A Taxonomy of Clones in Source Code: The reengineers
most wanted list. In Working Conference on Reverse Enginnering. IEEE
Computer Society, 2003.

[17] F. Raimer: Erkennung von Falsch-Positiven Softwareklonen mittels
Lernverfahren. Dissertation, Universität Bremen, 2014, S. 19-32. ISBN: 978-3-
8325-3651-0, Logos Verlag Berlin GmbH, Berlin, 2014.

[18] K. Ch. Roy, J. R. Cordy, R. Koschke: Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach. Science of Computer
Programming, 74(7), S. 470-495, 2009.

 [19] E. Juergens, F. Deissenboeck, B. Hummel: CloneDetective – A Workbench for
Clone Detection Research. In Proceedings of the 31st International Conference
on Software Engineering. Washington, DC, USA. IEEE Computer Sciety, S. 603-
606, 2009.

[20] S. Wagner: Vorlesung: Qualitätssicherung und Wartung (QSW), SS2014;
Universität Stuttgart

 [21] R. Koschke, S. Simon: Vorlesung Software-Reengineering, WS2004/2005,
Folien 119-124, Universität Bremen, Universität Stuttgart.

[22] J. H. Johnson: Substring matching for clone detection and change tracking. In:
Proceedings International Conference on Software Maintenance. Victoria, BC.
IEEE Computer Society, S. 120–126, 1994.

[23] S. Ducasse, M, Rieger, S. Demeyer: A Language Independent Approach for
Detecting Duplicated Code. In Proceedings of the IEEE International Conference
on Software Maintenance. Oxford. IEEE Computer Society, S. 109–118, 1999.

 83

[24] R. Koschke: Vorlesung Software-Reengineering, WS2009/2010, Folien 22-35,
Universität Bremen.

[25] S. Bellon: Vergleich von Techniken zur Erkennung duplizierten Quellcodes.
Diplomarbeit, Universität Stuttgart, 2002.

[26] B. S. Baker, R. Giancarlo: Longest Common Subsequence from Fragments via
Sparse Dynamic Programming. In Algorithms – ESA ’98. S. 79-80, Springer
Verlag Berlin Heidelberg, 1998.

[27] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier: Clone Detection Using
Abstract Syntax Trees. In International Conference on Software Maintenance.
Bethesda, MD. IEEE Computer Society, S. 368–377, 1988.

[28] J. Krinke: Identifying Similar Code with Program Dependence Graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. Stuttgart.
IEEE Computer Society, S. 301–309, 2001.

[29] J. Mayrand, C. Leblanc, E. M. Merlo: Experiment on the Automatic Detection of
Function Clones in a Software System using Metrics. In Proceedings of the
International Conference on Software Maintenance. Washington, DC; USA.
IEEE Computer Society, S. 244–254, 1996.

[30] Bryn O’Sullivan: Mercurial: The Definite Guide; O’Reilly Media, 2009. Onlinebuch
Link: http://hgbook.red-bean.com/read/

 [31] S. Wagner: Vorlesung Grundlagen Software-Engineering, SS2014, Universität
Stuttgart.

[32] Git Software, Dokumentation: 1.1 Los geht’s - Wozu Versionskontrolle?. Siehe:
http://git-scm.com/book/de/Los-geht%E2%80%99s-Wozu-Versionskontrolle%3F,
Letzter Zugriff am 28.09.2014.

[33] Fog Creek Software, Dokumentation FogBugz; Projektmanagement. Siehe:
http://www.fogcreek.com/fogbugz/features/project-management/, Letzter Zugriff
am 28.09.2014.

 [34] Fog Creek Software, Dokumentation FogBugz, Issue-Tracking-System. Siehe:
http://www.fogcreek.com/fogbugz/features/issue-tracking/, Letzter Zugriff am
28.09.2014.

[35] Fog Creek Software, Dokumentation Kiln. Siehe: https://www.fogcreek.com/kiln/,
Letzter Zugriff am 28.09.2014

[36] Fog Creek Software, Dokumentation Kiln, Team-Up. Siehe:
http://www.fogcreek.com/kiln/features/team-up/, Letzter Zugriff am 28.09.2014

[37] Fog Creek Software, Dokumentation Kiln. Siehe:

 84

http://www.fogcreek.com/kiln/features/get-organized/, Letzter Zugriff am
28.09.2014

 [38] Fog Creek Software, Kiln API: Repositories. Siehe:
https://developers.fogbugz.com/default.asp?W166, Letzter Zugriff am
28.09.2014.

[39] R. Koschke: Vorlesung Software-Reengineering, WS2009/2010, Folien 15-18,
Universität Bremen.

[40] M. Rieger, S. Ducasse, M. Lanza: Insights into system–wide code duplication. In
Proceedings of the 11th Working Conference on Reverse Engineering. IEEE
Computing Society, S. 100.109, 2004.

[41] M. Rieger: Effective Clone Detection Without Language Barrier.
Inauguraldissertation, Universität Bern, 2005.

 [42] L. Jiang, Z. Su, E. Chiue: Context-based detection of clone-related bugs. In
Proceedings of the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of the
software engineering. New York, USA. S. 55-64. ISBN 978-1-59593-811-4.

 [43] Z. Li, S. Lu, S. Myagmar, Y. Zhou: CP-Miner: Finding copy-paste and related
bugs in large-scale software code. IEE Transactions on Software Engineering,
32(3), S. 176 – 192, 2006.

[44] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas: Static Bug Detection
Through Analysis of Inconsistent Clones. In Workshopband SE Konferenz 2008.
LNI, GI, 2008.

[45] J. Krinke: A Study of Consistent and Inconsistent Changes to Code Clones. In
WCRE 2007 of the 14th Working Conference on Reverse Engineering.
Vancouver, BC. IEEE Computing Society, S. 170-178, 2007.

[46] C. Kapser, M. W. Godfrey: Cloning considered harmful. In WCRE ’06 on the 13th
Working Conference on Reverse Engineering. Benevento. IEEE Computing
Society, S. 19-28, 2006.

[47] S. Thummalapenta, L. Cerulo, L. Avensano, M. D. Penta: An empirical study on
the maintenance of source code clones. Empirical Software Engineering, 15(1),
S.1-34, 2009.

 85

[48] M. Kim, L. Bergman, T. Lau, D. Notkin: An Ethnographic Study of Copy and
Paste Programming Practices in OOPL. In Proceedings of the 2004 International
Symposium on Empirical Software Engineering. IEEE Computer Society, S. 83-
92, 2004.

[49] F. Deißenböck, T. Seifert: Kontinuierliche Qualitätsüberwachung mit CONQAT:
Paper, Institut Software & Systems Engineering, Technische Universität
München.

[50] ConQat Tool: Dokumentation ConQat User Guide 2013.10. Siehe:
https://www.cqse.eu/download/conqat/conqat-book-2013.10.pdf, Letzter Zugriff
am 28.09.2014.

[51] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner,
Ch. Domann, J. Streit: Can Clone Detection Support Quality Assessments of
Requirements Specifications?. In Proceedings of the 32nd ACM/IEE
International Conference on Software Engineering (2). New York, USA. S 79-88,
2010. ISBN: 978-1-60558-719-6.

 [52] M. Feilkas, D. Ratiu, E. Juergens: The Loss of Architectural Knowledge during
System Evolution: An Industrial Case Study. In Proceedings of the 17th IEEE
International Conference on Program Comprehension 2009. Vancouver, BC.
IEEE Computing Society, S. 188-197, 2009.

 [53] M. Metuh: Schaffung einer Basis für die kontinuierliche Qualitätsanalyse.
Diplomarbeit, Universität Stuttgart, 2012.

 86

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine
anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß
aus anderen Werken übernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit
bisher weder teilweise noch vollständig veröffentlicht. Das elektronische
Exemplar stimmt mit allen eingereichten Exemplaren überein.

Unterschrift:

Stuttgart, 01.10.2014

