
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3665

Plattform- und
sprachunabhängige Serialisierung

mit SKilL

Fabian Harth

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Erhard Plödereder

Betreuer/in: Dipl.Inf. Timm Felden

Beginn am: 5. Mai 2014

Beendet am: 4. November 2014

CR-Nummer: D1.5,D.3.3,D.3.4,E.2

Kurzfassung

Die Diplomarbeit beschreibt die Entwicklung einer Sprachanbindung an die Programmiersprache
C für die Serialisierungssprache SKilL, um nachzuweisen, dass die Anbindung an eine nicht ob-
jektorientierte Sprache möglich ist. Im Besonderen wird die Darstellung von Daten behandelt, die
in einer Vererbungshierarchie organisiert sind. Wir beschreiben die Gestaltung einer intuitiv zu
bedienenden Benutzungsschnittstelle, die Möglichkeiten einer objektorientierten Sprache nachstellt,
und veranschaulichen die Verwendung anhand von Beispielen.

3

Inhaltsverzeichnis

1 Einführung 9
1.1 Gliederung . 9
1.2 Bisherige Anbindungen . 9
1.3 Die Seriaisierungssprache SKilL . 10

1.3.1 Beschreibungssprache . 10
1.3.2 Serialisierungsformat . 11

1.4 Aufgabenstellung . 13
1.5 Begriffe . 13

2 Generator 15
2.1 Bedienung . 15
2.2 Funktionsweise . 15

3 Benutzungsschnittstelle 17
3.1 Systemanforderungen . 17
3.2 SkillState . 17
3.3 Benutzertypen . 18
3.4 Vererbung . 19
3.5 SKilL Datentypen . 22

3.5.1 Zahlentypen und Boolean . 22
3.5.2 Annotation . 22

3.6 Zusammengesetzte Typen . 23
3.6.1 Array . 23
3.6.2 List . 23
3.6.3 Set und Map . 24

4 Implementierung 27
4.1 Architektur . 27

4.1.1 Skill_State . 27
4.1.2 String_Access . 28
4.1.3 Skill_Type . 29
4.1.4 Type_Declaration . 29
4.1.5 Field_Information . 30
4.1.6 Type_Information . 30
4.1.7 Storage_Pool . 30

4.2 Darstellung von Benutzertypen . 30
4.2.1 Instanceof Abfragen . 35

5

4.3 Konventionen . 35
4.4 Lesen . 36

4.4.1 Stringblöcke lesen . 37
4.4.2 Typinformation überprüfen . 37
4.4.3 Instanzen erzeugen . 38
4.4.4 Felddaten lesen . 38

4.5 Schreiben . 43
4.5.1 Gelöschte Instanzen . 43
4.5.2 Instanzen umsortieren . 43
4.5.3 Local Base Pool Start Index . 44
4.5.4 Storage Pool Ids . 45
4.5.5 Strings schreiben . 45
4.5.6 Typinformation schreiben . 46
4.5.7 Felddaten schreiben . 48
4.5.8 Append . 48

4.6 Fehlerbehandlung . 49
4.7 Speicherfreigabe . 50
4.8 Tests . 50

5 Zusammenfassung und Ausblick 53

Literaturverzeichnis 55

6

Abbildungsverzeichnis

4.1 Klassen zum Lesen und Schreiben im Binding . 28
4.2 Klassendiagramm der Modellklassen im Binding . 29
4.3 Vererbungshierarchie der Benutzertypen Person und Parent 31
4.4 Eine Parent Instanz im Speicher . 32
4.5 Typkonvertierung von Parent zu Person . 32
4.6 Typkonvertierung von Parent zu SkillType . 33
4.7 Storage Pools und Instanzen im Speicher . 34

Tabellenverzeichnis

3.1 Darstellung der SKilL Datentypen in C . 22

Verzeichnis der Listings

1.1 Aufbau des Serialisierungsformates XML . 12
1.2 Aufbau des Serialisierungsformates SKilL . 12

2.1 Hilfetext für die Benutzung des Generators . 15

3.1 Benutzungsschnittstelle - SkillState . 18
3.2 Benutzungsschnittstelle - write und append . 18
3.3 Spezifikation des Benutzertyp Person . 18
3.4 Benutzungsschnittstelle - Benutzertypen . 18
3.5 Benutzungsschnittstelle - Getter und Setter . 19
3.6 Benutzungsschnittstelle - Listen . 19
3.7 Iterieren über alle Instanzen eines Typs . 19

7

3.8 Benutzertypen mit Vererbung - Spezifikation . 19
3.9 Benutzertypen mit Vererbung - Typdefinitionen . 20
3.10 Benutzertypen mit Vererbung - Getter . 20
3.11 Benutzertypen mit Vererbung - Getter für Felder von Obertypen 20
3.12 Benutzertypen mit Vererbung - Listen und Instanceof-Funktionen 21
3.13 Benutzertypen mit Vererbung - Konstruktoren und Destruktoren 21
3.14 Benutzertypen mit Vererbung - Verwendung des Bindings 21
3.15 Zusammengesetzte Typen - Spezifikation . 23
3.16 Zusammengesetzte Typen - Arrays . 23
3.17 Zusammengesetzte Typen - Listen . 24
3.18 Verwendung der GHashTable . 25
3.19 Iterieren über die Wertemenge einer Map . 25
3.20 Verwendung von Maps mit mehr als zwei Basistypen 26

4.1 Methoden der Klasse String_Access . 28
4.2 Der abstrakte Typ Skill_Type . 30
4.3 Interne Darstellung der Benutzertypen . 31
4.4 Spezifikation der Benutzertypen Person, Parent und Other 33
4.5 Instanceof-Funktionen . 35
4.6 Vereinfachte Darstellung von for-Schleifen . 36
4.7 Lesen eines Stringblocks . 37
4.8 Instanzen erzeugen . 38
4.9 Deklaration der read-Funktion . 39
4.10 Funktionsweise der read-Funktionen . 39
4.11 Spezifikation mit Annotation und Zeiger auf Benutzertyp 39
4.12 Lesen von Annotations . 40
4.13 Lesen von Referenzen auf Benutzertypen . 40
4.14 Lesen von zusammengesetzten Typen . 41
4.15 Lesen von Maps . 42
4.16 Felddaten lesen . 43
4.17 Umsortieren von Instanzen innerhalb von Pools . 44
4.18 Bestimmen des Local Base Pool Start Index . 45
4.19 Pool Ids zuweisen . 45
4.20 Sammeln von Strings zum Serialisieren . 46
4.21 Typinformation für Konstanten schreiben . 47
4.22 Referenzen auf Benutzertypen . 47
4.23 Typinformation für zusammengesetzte Typen . 47
4.24 Deklaration der write-Funktion . 48
4.25 Felddaten schreiben . 48
4.26 Pool Ids zuweisen bei Append . 49
4.27 Definition der Cleanup-Funktion . 50

8

1 Einführung

1.1 Gliederung

Dieses Kapitel stellt bisherige Arbeiten zu SKilL vor und gibt eine Einführung in die Sprache. Außerdem
geben wir die Aufgabenstellung für diese Diplomarbeit an und besprechen Begriffe, die in der Arbeit
verwendet werden.

Programmcode zum Lesen und Schreiben von Daten wird für verschiedene SKilL Spezifikationen
jeweils neu erzeugt. Das zweite Kapitel beschreibt den Aufbau und die Bedienung des Codegenera-
tors.

Das dritte Kapitel behandelt die Benutzungsschnittstelle des Bindings und veranschaulicht die Ver-
wendung anhand von Beispielen. Wir führen im Detail aus, wie die Aspekte der Objektorientierung
der zu serialisierenden Daten abgebildet wurden.

Im vierten Kapitel beschreiben wir die Implementierung der Schnittstelle. Wir zeigen die Architektur
des generierten Codes, erklären, wie die zu serialisierenden Daten im Speicher organisiert sind, und
behandeln das Lesen und Schreiben von Binärdateien.

Das letzte Kapitel fasst die Ergebnisse der Arbeit zusammen und stellt Möglichkeiten zur Erweiterung
der Implementierung vor.

1.2 Bisherige Anbindungen

Die Spezifikation von Skill ist in [Fel13] gegeben, teilweise mit Anleitungen oder Empfehlungen zur
Implementierung. Der folgende Abschnitt gibt eine Einführung in die Sprache.

Im Rahmen der Diplomarbeit [Ung14] ist die Anbindung an Java entstanden. Die Arbeit untersucht
auch die generelle Tauglichkeit der Sprache undwie die Bedienungsschnittstelle gestaltet werden kann.
Die Bachelorarbeit [Prz14] untersucht Performance anhand der Implementierung der Anbindung an
Ada. Es existiert außerdem eine Anbindung an Scala [ski].

9

1 Einführung

1.3 Die Seriaisierungssprache SKilL

Die Arbeit [Fel13] definiert erstens eine Beschreibungssprache und zweitens das Format für die
Serialisierung. In der Beschreibungssprache wird die Struktur der zu speichernden Daten definiert.
Der Anwender muss eine Spezifikationsdatei in der Beschreibungssprache erstellen, um ein Binding
generieren zu können. Das Format für die Serialisierung beschreibt den Aufbau der Binärdateien, die
serialisierte Daten speichern. Die Sprachanbindungen müssen dieses Format lesen und schreiben
können. Der Anwender programmiert dann gegen die generierte Schnittstelle, kommt mit den Daten
in serialisierter Form also nicht in Berührung.

Im Folgenden werden Beschreibungssprache und Serialisierungsformat kurz vorgestellt. Die Beschrei-
bungen sind nicht vollständig, sondern sollen nur jeweils die wichtigsten Konzepte und Besonderheiten
erklären.

1.3.1 Beschreibungssprache

Mit der Beschreibungssprache [Fel13, §2 ff]wird die Struktur der zu serialisierendenDaten beschrieben.
So genannte Benutzertypen bilden die Einheiten, deren Instanzen später von den Sprachanbindungen
geschrieben und gelesen werden können. Ein Benutzertyp hat eine Menge von Feldern, die über
ihren Namen identifiziert werden. Die möglichen Typen für diese Felder werden in den nächsten
Unterpunkten behandelt.

Eingebaute Typen

Eingebaute Typen (Built-In Types[Fel13, §4.1]) beinhalten

• Typen für ganze Zahlen mit verschiedenen Wertebereichen

• Typen für Kommazahlen mit verschiedener Genauigkeit

• Strings

• Booleans

• Annotations, also Zeiger auf beliebige Benutzertypen

Zusammengesetzte Typen

Zusammengesetzte Typenwerden verwendet, um Daten gleichen Typs zu gruppieren. Die Spezifikation
verbietet, dass die enthaltenen Typen wiederum zusammengesetzte Typen sind. Sie definiert:

• Arrays fester Länge

• Arrays variabler Länge

• Listen

10

1.3 Die Seriaisierungssprache SKilL

• Mengen

• Maps

Für Arrays fester Länge ist die Anzahl ihrer Elemente in der Typdefinition gegeben. Für Arrays
variabler Länge, Listen, und Mengen kann die Anzahl der Elemente In jeder Instanz unterschiedlich
sein. Mengen dürfen jedes Element nur ein mal beinhalten. Maps dürfen beliebig tief verschachtelt
werden.

Vererbung

Die Beschreibungssprache, erlaubt es, zwischen Benutzertypen eine einfache Vererbungshierarchie
zu definieren. Der Untertyp enthält alle Felder des Obertyps, definiert aber ggf. weitere.

Zeiger auf Benutzertypen

Die Beschreibungssprache erlaubt es, Zeiger auf Benutzertypen zu definieren. Ein Benutzertyp kann
Zeiger auf andere Benutzertypen als eines seiner Felder enthalten. Jeder Untertyp des angegebenen
Typen ist dann als Ziel der Referenz ebenfalls erlaubt.

1.3.2 Serialisierungsformat

Das Serialisierungsformat beschreibt, wie Instanzen von Benutzertypen serialisiert werden müssen,
also den Aufbau der Binärdateien [Fel13, §6 f]. Wir gehen in diesem Abschnitt auf die wichtigsten
Eigenschaften des Formates ein.

Typinformationen

Das Format speichert Typinformationen zusammen mit den Daten selbst [Fel13, §6.2]. Um den
Speicherverbrauch der Binärdateien gering zu halten, werden Typinformationen aber nicht für jede
Instanz, sondern nur ein mal pro Benutzertyp gespeichert.

11

1 Einführung

Listing 1.1: Aufbau des Serialisierungsformates XML

[..] // Schemadefinition hier weggelassen

<Buch>

<Titel>Am Anfang</Titel>

<Autor>Amanda Abele</Autor>

<Preis>9.90</Preis>

</Buch>

<Buch>

<Titel>Mittig</Titel>

<Autor>Doran Daumen</Autor>

<Preis>19.90</Preis>

</Buch>

<Buch>

<Titel>Schlussendlich</Titel>

<Autor>Emil Ende</Autor>

<Preis>29.90</Preis>

</Buch>

Listing 1.2: Aufbau des Serialisierungsformates SKilL

// Metadaten

Buch {

Felder {

string Titel;

string Autor;

f32 Preis;

}

Anzahl: 3

}

// Daten der Felder

1 -> "Am Anfang" // Strings sind über IDs referenziert

2 -> "Mittig"

3 -> "Schlussendlich"

4 -> "Amanda Abele"

5 -> "Doran Daumen"

6 -> "Emil Ende"

9.90

19.90

29.90

Listing 1.1 und Listing 1.2 zeigt die Darstellung der gleichen Daten in XML und SKilL. Es sind für drei
Buch-Instanzen jeweils Titel, Autor, und Preis hinterlegt. In XML gibt jede Instanz die Namen ihrer
Felder mit an. In SKilL sind diese Metainformation nur einmal gespeichert. Für eine große Menge
gleichartiger Daten wird die Größe der Metadaten vernachlässigbar, und das Format verbraucht
insgesamt weniger Speicher. Die Darstellung ist vereinfacht und soll hier nur das Prinzip erklären.

12

1.4 Aufgabenstellung

Das Format ist Aufwärtskompatibel [Fel13, §1]. Das bedeutet, dass Unbekannte Typen (unknown types
[Fel13, Glossary]), also Benutzertypen, die das Binding nicht kennt, genau so wie unbekannte Felder,
beim Lesen übersprungen werden können.

Um den Speicherbedarf weiter zu senken, werden Identifikationsnummern für Benutzertypen, Instan-
zen, und Strings in der Binärdatei nicht explizit angegeben, sondern implizit über die Reihenfolge
dieser Elemente bestimmt [Fel13, §6.3 f].

Write und Append

Das Format ist dafür ausgelegt, neue Instanzen an bestehende Dateien anzuhängen (append), ohne die
Datei komplett neu schreiben zu müssen. Es ist sogar möglich, an bestehende Instanzen neue Felder
anzuhängen. Die Operation write schreibt alle erzeugten Instanzen in eine Binärdatei, die Operation
append schreibt nur die Instanzen, die seit dem letzten Schreiben oder Lesen hinzugekommen sind.

1.4 Aufgabenstellung

Aufgabenstellung dieser Arbeit war

• Entwickeln einer Sprachanbindung an die Programmiersprache C

• Enwickeln von Tests um die Kompatibilität zu bisherigen Sprachanbindungen nachzuweisen

Es wurde eine formale Spezifikation der Beschreibungssprache und des Serialisierungsformates
zur Verfügung gestellt, außerdem die Implementierung der Anbindung an die Programmiersprache
Scala inklusive Tests. Es existierte bereits ein Codegenerator, der Beschreibungssprache in eine
Zwischendarstellung in Form von Javaklassen übersetzt. Dieser Generator durfte ebenfalls verwendet
werden.

Eine weitere, optionale Aufgabenstelung war die Entwicklung einer Sprachanbindung an eine nicht
statisch typisierte Sprache. Diese Aufgabe wurde nicht bearbeitet.

1.5 Begriffe

Beschreibungssprache, Spezifikationsdatei Die Beschreibungssprache ist in [Fel13, §2 f] defi-
niert und wurde bereits in 1.3.1 eingeführt. Wir bezeichnen eine in der Beschreibungssprache verfasste
Datei als Spezifikationsdatei oder kurz Spezifikation.

Serialisierungsformat, Binärdatei Das Serialisierungsformat bezeichnet die Form der serialisier-
ten Daten, die in [Fel13, §6] ausgeführt ist. In dieser Arbeit bezeichnen wir eine Datei, die Daten
dieser Form enthält als Binärdatei.

13

1 Einführung

Generator, Sprachanbindung Als Generator bezeichnen wir ein Programm, das bei Eingabe
einer Spezifikationsdatei Programmcode erzeugt, der die spezifizierten Daten lesen, bearbeiten und
schreiben kann. Eine Sprachanbindung, oder kurz Anbindung, an eine Programmiersprache ist der
Generator, der Programmcode in dieser Sprache erzeugt. Ist die Programmiersprache nicht angegeben,
meinen wir in dieser Arbeit die Anbindung an die Programmiersprache C.

Binding Als Binding bezeichnen wir ein Programm, das durch eine Ausführung des Generators
erzeugt wurde. Das Binding ist aus einer Spezifikation erzeugt, und kennt deren Benutzertypen.

Benutzertyp, Instanz Ein user type ??Glossary]Fel13 ist in einer Spezifikation durch eine type
declaration beschrieben. Wir übernehmen dafür den deutschen Begriff Benutzertyp [Ung14, §1.3.1],
oder nur Typ und verwenden ihn im Kontext der Spezifikation, der Ausführung des Generators, des
Bindings, und der Binärdatei.

Eine Instanz bezeichnet die Instanz eines Benutzertyps im Kontext einer Binärdatei oder der Ausfüh-
rung eines Bindings.

Feld Ein Feld bezeichnet sowohl eine Einheit eines Benutzertypes im Sinne von [Fel13, §3.4], als auch
die entsprechenden Daten von Instanzen im Kontext einer Binärdatei oder Binding-Ausführung.

Storage Pool Wir übernehmen den Begriff storage pool [Fel13, §6.3], oder kurz pool als Konstrukt
im Binding zum Speichern von Instanzen. Wir speichern hier außerdem Informationen über die
Organisation dieser Instanzen in der Binärdatei, wie die Reihenfolge der Felder.

Obertyp, Untertyp, Basistyp Um Vererbungshierarchien zwischen Benutzertypen zu beschreiben,
verwenden wir die Begriffe Obertyp für den vererbenden Typen, Untertyp für den erbenden Typen,
und Basistyp für den Typ an oberster Stelle in der Vererbungshierarchie [Fel13, vgl. Glossary]. SKilL
erlaubt nur einfache Vererbung, deswegen hat jeder Typ einen eindeutigen Basistypen.

Bekannte und unbekannte Typen Wir nennen einen Benutzertypen dem Binding bekannt, falls
er in der Spezifikation vorkommt, aus der das Binding generiert wurde. Der Typ heißt der Binärdatei
bekannt, falls er in der Binärdatei definiert ist. Ist ein Typ nicht bekannt, heißt er unbekannt (vgl.
unknown type [Fel13, Glossary]).

Analog nennen wir ein Feld bekannt, falls sein Typ in der Spezifikation, bzw. in der Binärdatei dieses
Feld enthält. Andernfalls heißt es unbekannt.

Typblock, Stringblock Daten in Binärdateien sind in type blocks und string blocks organisiert
[Fel13, §6.2]. Wir verwenden dafür die Begriffe Typblock , bzw. Stringblock, oder kurz Block.

14

2 Generator

Der Generator erzeugt aus einer Spezifikationsdatei ein Binding, welches die in der Spezifikation
definierte Benutzertypen lesen, erzeugen, bearbeiten, und schreiben kann. Dieses Kapitel behandelt
die Benutzungsschnittstelle und die Funktionsweise des Generators.

2.1 Bedienung

Die Benutzungsschnittstelle des Generators für die Programmiersprache C orientiert sich stark an
den Benutzungsschnittstellen für bereits existierende Generatoren für Scala und Ada.

Listing 2.1: Hilfetext für die Benutzung des Generators

usage:

[options] skillPath outPath

Opitions:

-p prefix Set a prefix for emitted code.

This is used for identifier names

in the generated code.

--unsafe If this option is set, the generated binding

will not execute any type checks when modifying instances.

This improves performance.

Listing 2.1 zeigt die Benutzung des Generators. Als Parameter skillPath muss der Dateipfad zu einer
Spezifikationsdatei übergeben weren, und als outPath der Pfad zum Verzeichnis, in dem das Binding
erzeugt werden soll. Falls der Parameter prefix gesetzt wird, so wird dieser Wert jedem Bezeichner im
generierten Code vorangestellt, sodass ein Programm kompiliert werden kann, das mehrere Bindings
enthält. Mit dem Parameter unsafe werden Typüberprüfungen im Binding ausgeschaltet. Diese
Überprüfungen sind in Abschnitt 4.2.1 ausgeführt. Diese Einstellung verbessert die Performance.

Die Anbindung unterstüzt für die Namen von Typen und Feldern nur ASCII Zeichen, weil die Namen
im Binding als Bezeichner verwendet werden.

2.2 Funktionsweise

Der generierte Code muss sich je nach Spezifikation unterscheiden, weil wir die Benutzertypen aus
der Spezifikation in Datentypen abbilden wollen. Teile des Codes werden sich also abhängig vom
Aufbau der Benutzertypen unterscheiden. Aus diesem Grund ist die Verwendung von Freemarker [fre]

15

2 Generator

sinnvoll. Wir verwenden pro Datei, die generiert werden soll ein so genanntes Template, also eine
Vorlage, in der Teile bei der Ausführung von Freemarker aus einem Datenmodell geladen werden. Die
Arbeit zur Java Anbindung führt die Funktionsweise von Freemarker im Detail aus [Ung14, §4.2].

16

3 Benutzungsschnittstelle

Dieser Abschnitt behandelt die Benutzungsschnittstelle des Bindings. Die Schnittstelle wurde strikt
von ihrer Implementierung getrennt. In diesemAbschnitt werden nur Typdefinitionen und Funktionen
beschrieben, die für den Benutzer sichtbar sind.

3.1 Systemanforderungen

• Der Compiler, mit dem das Binding übersetzt wird, muss den C-Standard [c9903] einhalten. Wir
verwenden daraus Zusicherungen über die Darstellung von structs im Speicher in Abschnitt
4.2.

• Wir verlangen, dass die Darstellung von float und double dem IEEE Standard entspricht [iee08]
für das Lesen und Schreiben dieser Datentypen.

• Die glib Bibliothek [gli14] muss vorhanden sein.

3.2 SkillState

Das Binding muss folgende Funktionalität anbieten:

• Instanzen erzeugen

• Instanzen bearbeiten

• Instanzen aus einer Binärdatei lesen

• Instanzen in eine Binärdatei schreiben oder anhängen (append)

Es soll grundsätzlich möglich sein, mit mehreren Binärdateien parallel zu arbeiten, bzw. Instanzen
verschiedenen Kontexten zuzuordnen. Deswegen definiert die Schnittstelle einen SkillState, dem
Instanzen zugeordnet sind. Ein SkillState kann entweder leer oder aus einer Binärdatei erzeugt
werden. Ein SkillState, der aus einer Datei erzeugt wurde, enthält alle Instanzen bekannter Typen aus
der Datei.

17

3 Benutzungsschnittstelle

Listing 3.1: Benutzungsschnittstelle - SkillState

typedef struct skill_state_struct *skill_state;

skill_state empty_skill_state ();

void delete_skill_state (skill_state state);

skill_state skill_state_from_file (char *file_path);

Nachdem ein SkillState in eine Binärdatei geschrieben wurde, wird die Datei Typdefinitionen zu
allen bekannten Typen und Feldern enthalten, außerdem alle Instanzen aus dem SkillState. Ist ein
SkillState aus einer Binärdatei erzeugt oder bereits in eine Binärdatei geschrieben, bleibt der Zustand
dieser Datei im SkillState gespeichert. Nur in diesem Fall ist die Operation append möglich, um neue
Instanzen hinzuzufügen, oder bestehenden Instanzen neue Felder hinzuzufügen.

Listing 3.2: Benutzungsschnittstelle - write und append

void write_to_file (skill_state state, char *file_path);

// Benötigt keinen Dateipfad, weil aus Datei erzeugt oder schon in Datei geschrieben

void append_to_file (skill_state state);

3.3 Benutzertypen

Für jeden Benutzertypen in einer Spezifikationwird das daraus erzeugte Binding einen entsprechenden
Typen mit gleichem Namen anbieten. Um Instanzen erzeugen zu können, dient ein Konstruktor, der
für jeden Typen generiert wird.

Listing 3.3: Spezifikation des Benutzertyp Person

Person {

string name;

}

Listing 3.4 zeigt die Typdefinition und den Konstruktor für die Spezifikation aus Listing 3.3.

Listing 3.4: Benutzungsschnittstelle - Benutzertypen

typedef struct person_struct *person;

// Die Instanz wird dem übergebenen skill_state zugeordnet

person create_person (skill_state this, char *name);

Wir verstecken die Felder der Benutzertypen und bieten für den Zugriff getter und setter für jedes
Feld aus der Spezifikation. Weil es nicht möglich ist, die Methoden per Punktschreibweise direkt auf
Instanzen aufzurufen (person.get_name()), übergeben wir die Instanz als Parameter.

18

3.4 Vererbung

Listing 3.5: Benutzungsschnittstelle - Getter und Setter

char *person_get_name (person instance);

void person_set_name (person instance, char *name);

Um alle Instanzen eines Typs zurückzugeben, verwenden wir die GList aus der Bibliothek glib als
Implementierung einer Liste.

Listing 3.6: Benutzungsschnittstelle - Listen

// enthält ’person’-Instanzen

GList *get_person_instances (skill_state this);

Listing 3.7 zeigt, wie mithilfe einer for-Schleife über alle in einer Liste enthaltenen Elemente iteriert
werden kann.

Listing 3.7: Iterieren über alle Instanzen eines Typs

GList *persons = get_person_instances (state);

GList *iterator;

for (iterator = persons; iterator; iterator = iterator->next) {

person_get_name ((person) iterator->data);

}

3.4 Vererbung

SKilL kann einen Benutzertypen als Untertypen eines anderen definieren. Der Untertyp ist eine
Spezialisierung seines Obertyps und erbt dessen Felder, kann aber weitere hinzufügen.

Listing 3.8: Benutzertypen mit Vererbung - Spezifikation

Person {

string name;

Parent mother;

Parent father;

}

Parent : Person {

list<Person> children;

}

Wir erklären die Funktionsweise der Schnittstelle für Benutzertypen mit Vererbung anhand des
Beispiels aus Listing 3.8, das den Typ Parent als Untertyp von Person einführt. Wir verwenden den
abstrakten Typ skill_type in der Schnittstelle als Basistyp für alle Benutzertypen.

19

3 Benutzungsschnittstelle

Listing 3.9: Benutzertypen mit Vererbung - Typdefinitionen

typedef struct skill_type_struct *skill_type;

// Erbt von ’skill_type’

typedef struct person_struct *person;

// Erbt von ’person’

typedef struct parent_struct *parent;

Listing 3.10 zeigt die Getter für Benutzertypen mit Vererbung. Als person Instanz kann jeweils auch
eine parent Instanz übergeben werden. Die Setter sind nach dem gleichen Muster aufgebaut.

Listing 3.10: Benutzertypen mit Vererbung - Getter

// Kann auf jedem Untertypen von ’person’ aufgerufen werden.

char *person_get_name (person instance);

parent person_get_father (person instance);

parent person_get_mother (person instance);

// Kann nur auf ’parent’ Instanzen aufgerufen werden.

GList *parent_get_children (parent instance);

Um dem Benutzer Typkonvertierungen zu ersparen, erhält jeder Typ auch getter und setter für alle
geerbten Felder, wie in Listing 3.11 angegeben.

Listing 3.11: Benutzertypen mit Vererbung - Getter für Felder von Obertypen

// Duplizierte Getter für Felder vom Obertyp ’person’.

char *parent_get_name (parent instance);

parent parent_get_father (parent instance);

parent parent_get_mother (parent instance);

Wir bieten eine Liste der Instanzen aller bekannten Typen im skill_state über die funktion
get_all_instances. Unbekannte Typen werden nicht unterstützt. Die zurückgegebene Liste von person
Instanzen enthält auch alle Instanzen vom Untertyp parent. Um den Typ abfragen zu können, bietet
die Schnittstelle für jeden Benutzertypen eine instanceof Funktion. Die Funktion gibt true zurück,
falls die übergebene Instanz vom gefragten Typen oder einem seiner Untertypen ist.

20

3.4 Vererbung

Listing 3.12: Benutzertypen mit Vererbung - Listen und Instanceof-Funktionen

// Enthält alle Instanzen bekannter Typen.

GList *get_all_instances (skill_state this);

// Enthält auch ’parent’-Instanzen

GList *get_person_instances (skill_state this);

GList *get_parent_instances (skill_state this);

bool instanceof_parent (skill_type instance);

// ’true’ auch für alle Untertypen von ’person’

bool instanceof_person (skill_type instance);

Das Binding enthält nur einen Destruktor, dem Instanzen jeden Typs zu übergeben werden können.
Konstruktoren sind für jeden Typen vorhanden, weil Untertypen ggf. neue Felder hinzufügen und
damit andere Parameter benötigen.

Listing 3.13: Benutzertypen mit Vererbung - Konstruktoren und Destruktoren

person create_person (skill_state this, char *name, parent father, parent mother);

parent create_parent (skill_state this, GList *children, char *name, parent father, parent

mother);

// Hier kann jeder Benutzertyp übergeben werden.

void delete_skill_type (skill_type instance);

Wir zeigen in Listing 3.14, wie die instanceof -Funktionen verwendet werden können. Für den Zugriff
auf das Feld name kann jeder Untertyp von person übergeben werden. Falls die Instanz vom Typ
parent ist, gibt instanceof_parent true zurück, und wir können nach Typ parent konvertieren, um auf
das Feld children zuzugreifen.

Listing 3.14: Benutzertypen mit Vererbung - Verwendung des Bindings

// Aus Skillstate laden

person p = [..]

// Jeder Untertyp von ’person’ erlaubt

char *name = person_get_name (p);

// Iterieren über die Kinder, nur falls vom Typ ’parent’

if (instanceof_parent (p)) {

GList *children = parent_get_children ((parent) p);

GList *iter;

for (iter = children; iter; iter=iter->next) {

person child = (person) iter->data;

}

}

21

3 Benutzungsschnittstelle

Skill Typ In C
i8 int8_t
i16 int16_t
i32 int32_t
i64 int64_t
v64 int64_t
f32 float
f64 double
bool bool
string char*

Annotation skill_type
array (feste Länge) GArray*

array (variable Länge) GArray*
list GList*
set GHashTable*
map GHashTable*

Tabelle 3.1: Darstellung der SKilL Datentypen in C

3.5 SKilL Datentypen

In [Fel13, §4] wird das Typsystem für Spezifikationsdateien erklärt. Diese Typen sind für Felder von
Benutzertypen verwendet. Tabelle 3.1 gibt jeweils den verwendeten Datentyp im Binding an.

3.5.1 Zahlentypen und Boolean

Für die Datentypen für ganze Zahlen i8 bis i64 und v64 verwenden wir int8_t bis int64_t[c9903, §7.18],
die genau die geforderten Wertebereiche haben. Der Standard liefert auch einen Datentyp bool [c9903,
§7.16].

3.5.2 Annotation

Eine Annotation ist ein Zeiger auf einen beliebigen Benutzertyp. Im Binding verwenden wir dafür den
abstrakten Obertyp skill_type. Mithilfe der instanceof -Funktionen kann der genaue Typ bestimmt
werden. Es ist nicht möglich, Referenzen auf unbekannte Typen darzustellen.

22

3.6 Zusammengesetzte Typen

3.6 Zusammengesetzte Typen

Zusammengesetzte Typen sind array, list, set undmap. Wir verwenden für die Darstellung Datentypen
aus der glib [gli14]. Das Binding gibt den Speicher für diese Datentypen beim Löschen des skill_state
frei, wenn sie in seinen Instanzen verwendet sind.

Listing 3.15: Zusammengesetzte Typen - Spezifikation

// v64 als Elemente dieser zusammengesetzten Typen

Int_Container {

v64[3] const_arr; // Array mit fester Länge.

v64[] var_arr; // Array mit variabler Länge.

// Zugriff auf Array-Elemente in konstanter Zeit.

list<v64> list; // Liste, Elemente sind geordnet

set<v64> set; // Set, enthält keine Elemente doppelt

map<v64, v64, v64> map; // Map mit drei Basistypen

}

3.6.1 Array

Listing 3.16: Zusammengesetzte Typen - Arrays

// Parameter zum Erzeuge des Arrays:

// -Null-Element am Ende?

// -Elemente 0-initialisiert?

// -Grö ß e der Elemente in Bytes

GArray *new_array = g_array_new (false, true, sizeof (int64_t));

// Vergrö ß ert ggf. das Array

g_array_append_val (new_array, 1);

g_array_append_val (new_array, -1);

// Wert an beliebiger Position überschreiben:

// Zugriff über Array-Name, Datentyp, Index

// Erstes Element hat den Index 0

g_array_nth (new_array, int64_t, 0) = 2;

Der Datentyp GArray [gli14, Arrays] bietet konstante Zugriffszeiten auf beliebige Elemente und passt
seine Größe flexibel an. Beim Erzeugen muss die Größe der Elemente in Bytes übergeben werden.
Wird der Datentyp für ein Feld mit konstanter Länge verwendet, muss die Anzahl der Elemente
übereinstimmen.

3.6.2 List

Für Listen (GList, [gli14, Doubly-Linked Lists]) müssen deren Elemente als Zeiger übergeben werden.
Die Funktion g_list_nth_data erlaubt zwar Zugriff auf beliebige Elemente, ihre Laufzeit ist aber linear

23

3 Benutzungsschnittstelle

in der Anzahl der Listenelemente. Eine Besonderheit des Datentyps ist, dass eine leere Liste als null
Zeiger dargestellt wird.

Listing 3.17: Zusammengesetzte Typen - Listen

// Verwendet ’0’ als leere Liste

GList *list = 0;

int64_t value1 = 1;

int64_t value2 = -1;

// Elemente per Zeiger übergeben, Rückgabewert wieder zuweisen

list = g_list_append (list, &value1); // hinten anhängen

list = g_list_prepend (list, &value2); // vor dem ersten Element einfügen

3.6.3 Set und Map

Die GHashTable dient als Datentyp sowohl für set als auch für map. Der Datentyp speichert eine
Schlüssel-Wert Zuordnung, kann aber auch als Menge verwendet werden, indem für Schlüssel und
Wert immer die gleiche Variable übergeben wird [gli14, Hash Tables,Description]. Auf Schlüssel wird
über eine Hashfunktion zugegriffen, die beim Erzeugen des Datentyps definiert werden muss. Wir
verwenden die von der Bibliothek angebotenen Funktionen

• g_int64_hash und g_int64_equal für die SKilL Datentypen i8 bis i64, v64 und bool

• g_str_hash und g_str_equal für Strings

• g_direct_hash und g_direct_equal für Benutzertypen und Annotation

Wie bei Listen müssen Schlüssel und Werte als Zeiger übergeben werden.

24

3.6 Zusammengesetzte Typen

Listing 3.18: Verwendung der GHashTable

// Verwendet als Menge

GHashTable *set = g_hash_table_new (g_int64_hash, g_int64_equal);

int64_t value1 = 1;

int64_t value2 = -1;

// Elemente per Zeiger übergeben mit Schlüssel = Wert

g_hash_table_insert (set, &value1, &value1);

g_hash_table_insert (set, &value2, &value2);

// Kein Effekt, weil schon vorhanden

g_hash_table_insert (set, &value1, &value1);

// Verwendet als Map

GHashTable *map = g_hash_table_new (g_int64_hash, g_int64_equal);

int64_t value1 = 1;

int64_t value2 = -1;

// Dem Schlüssel ’1’ den Wert ’-1’ zuordnen

g_hash_table_insert (set, &value1, &value2);

Der Datentyp kann Schlüsselmenge und Wertemenge als GList zurückgeben um über alle Elemente
zu iterieren.

Listing 3.19: Iterieren über die Wertemenge einer Map

int_container container = [..] // Aus Skillstate laden

GHashTable *set = int_container_get_set (container);

// Zurückgeben der Wertemenge als GList

GList *value_list = g_hash_table_get_values (set);

GList *iter;

for (iter = value_list; iter; iter = iter->next) {

int64_t *current_value = (int64_t*) iter->data;

}

g_list_free (value_list);

Der Datentyp map muss im Binding nach einem induktiven Prinzip aufgebaut werden, falls er mit
mehr als zwei Basistypen verwendet wird. Eine map mit genau zwei Basistypen map < typ1, typ2 >
wird dargestellt als GHashTable, die typ1 Variablen typ2 Variablen zuordnet (Schlüssel-Wert Paare).
Eine map mit den Basistypen typ1, . . . , typn+1 wird zur GHashTable, die typ1 Variablen eine Map
mit den Basistypen typ2, . . . , typn+1 zuordnet. Die Datentypen müssen denen aus der Spezifikation
entsprechen.

25

3 Benutzungsschnittstelle

Listing 3.20: Verwendung von Maps mit mehr als zwei Basistypen

// drei Basistypen: map<v64,v64,v64>

GHashTable *map = g_hash_table_new (g_int64_hash, g_int64_equal);

GHashTable *nested_map = g_hash_table_new (g_int64_hash, g_int64_equal);

int64_t one = 1;

int64_t two = 2;

int64_t three = 3;

// Geschachtelte Map als Wert für den Schlüssel ’1’

g_hash_table_insert (map, &one, nested_map);

// Schlüssel ’2’ -> Wert ’3’

g_hash_table_insert (nested_map, &two, &three);

26

4 Implementierung

4.1 Architektur

Der Programmcode des Bindings gliedert sich in Einheiten mit Attributen und Methoden, die wir
im Sinne der Objektorientierung als Klassen bezeichnen. Die Programmiersprache C unterstützt die
Objektorientierung nicht, deswegen verwenden wir folgende Konventionen:

• Jede Klasse wird im Binding repräsentiert in Form einer header-Datei (Dateiendung .h) und
einer source-Datei (Dateiendung .c). Die header-Datei enthält ein struct mit den öffentlichen
Attributen, das wie die Klasse benannt ist, und Funktionsdeklarationen für die öffentlichen
Methoden. Die source-Datei enthält die Implementierung dieser Funktionen. Sie darf in anderen
Klassen nicht eingebunden werden.

• Öffentliche Methoden einer Klasse sind Funktionen mit dem Namensschema <Klassenna-
me>_<Methodenname>. Die Instanz wird immer als erster Parameter übergeben. Wir haben
bewusst darauf verzichtet, einfache Datenzugriffe in getter und setter zu kapseln, um die
Lesbarkeit des Codes zu verbessern. Wir schreiben z.B. pool->declaration->super_type statt
type_declaration_get_super_type (storage_pool_get_declaration (pool))

• Jede Klasse hat einen Konstruktor und einen Destruktor <Klassenname>_new und <Klassenna-
me>_destroy. Der Konstruktor allokiert Speicher auf dem Heap und initialisiert alle Felder des
struct. Der Destruktor gibt den Speicher der übergebenen Instanz frei.

Abbildung 4.1 zeigt die Klassen zum Lesen und Schreiben von Binärdateien. Die Klassen binary_reader
und binary_writer lesen und schreiben auf unterster Ebene, also einfache Datentypen wie Integer,
Floats und Strings. Die Klassen reader und writer lesen, bzw. schreiben ganze Binärdateien, also
Stringblöcke, Typinformationen und Felddaten. Die Abschnitte 4.4 und 4.5 behandeln Details zum
Lesen und Schreiben.

Abbildung 4.2 enthält die Modellklassen im Binding in UML-Darstellung. Bekannte Benutzertypen
sind im Binding als Klassen vorhanden, die von skill_type erben, sind aber im Diagramm nicht
dargestellt.

4.1.1 Skill_State

Die Klasse skill_state dient als Container für Typinformationen, Instanzen und ggf. Informationen zur
Binärdatei. Falls der skill_state aus einer Binärdatei erzeugt wurde oder bereits geschrieben wurde,
enthält das Attribut filename den Namen dieser Datei. Der skill_state hält außerdem eine Referenz
auf den string_access und einen storage_pool für jeden bekannten Benutzertypen.

27

4 Implementierung

Abbildung 4.1: Klassen zum Lesen und Schreiben im Binding

4.1.2 String_Access

Strings sind in Binärdateien in Form von Stringblöcken organisiert [Fel13, §6.2]. Sie sind über eine Id
identifiziert. Deswegen brauchen wir beim Schreiben der Datei eine Zuordnung String → Id, da
wir an dieser Stelle nicht den String selbst einfügen, und beim Lesen eine Zurdnung Id → String.
Die Klasse string_access hält deswegen zwei maps, id_by_string und string_by_id als Attribute. Wir
kapseln den Zugriff auf die maps in Methoden, wie in Listing 4.1 gezeigt.

Listing 4.1:Methoden der Klasse String_Access

int64_t get_id_by_string (string_access this, char *string);

char *get_string_by_id (string_access this, int64_t id);

GList *get_all_strings (string_access this);

void add_string (string_access this, char *string);

Somit stellen wir sicher, dass beidemaps zueinander passen, also die Schlüsselmenge der einen immer
gleich der Wertemenge der anderen ist. Die Methode add_string fügt den String nur dann hinzu, falls
er nicht schon vorhanden ist.

28

4.1 Architektur

Abbildung 4.2: Klassendiagramm der Modellklassen im Binding

4.1.3 Skill_Type

Die Klasse skill_type dient als Basisklasse für alle Benutzertypen. Jede Instanz hält eine Referenz auf
den skill_state, dem sie zugeordnet ist und ggf. die Id, die sie in der Binärdatei hat. Außerdem ist die
type_declaration referenziert, die den Benutzertyp beschreibt.

4.1.4 Type_Declaration

Die Klasse type_declaration beschreibt die Struktur eines Benutzertypen. Name undObertyp sind direkt
aus der Spezifikation entnommen. Außerdem speichert die Klasse die Anzahl Bytes, die eine Instanz
des Typs im Speicher belegt. Die Felder des Benutzertypen sind als field_information referenziert.

29

4 Implementierung

4.1.5 Field_Information

Die Klasse field_information beschreibt ein Feld eines Benutzertypen. Sie hält den Namen und ggf.
zusätzliche Informationen in Form einer type_information. Außerdem Funktionen um Felddaten für
dieses Feld zu lesen und zu schreiben.

4.1.6 Type_Information

Die Klasse type_information beschreibt den Datentyp eines Feldes. Sie hat die Attribute:

• Name des Benutzertyps, falls das Feld einen Zeiger auf einen Benutzertypen enthält

• Den konstanten Wert, falls das Feld eine Konstante ist.

• Den Datentyp der Elemente für array, set oder list

• Die Länge des Arrays, falls das Feld ein array fester Länge enthält

• Eine Liste von Basistypen, falls das Feld eine map enthält

Nicht zutreffende Attribute werden jeweils auf null gesetzt.

4.1.7 Storage_Pool

Für jeden bekannten Benutzertypen im Binding hält der skill_state eine storage_pool Instanz. Hier
sind alle Instanzen dieses Typs referenziert, außerdem die type_declaration für diesen Typ.

4.2 Darstellung von Benutzertypen

Wir erklären in diesem Abschnitt den Aufbau der structs für Benutzertypen, zeigen, wie der Zugriff
auf deren Daten funktioniert (getter und setter), und begründen, warum Typkonvertierungen möglich
sind. Die Klasse skill_type ist der abstrakte Obertyp für alle Benutzertypen. Sie definiert eine Id und
Referenzen auf skill_state und type_declaration.

Listing 4.2: Der abstrakte Typ Skill_Type

typedef struct skill_type_struct {

int64_t skill_id;

type_declaration declaration;

skill_state state;

} skill_type_struct;

Wir erklären den Aufbau der structs für Benutzertypen anhand der Spezifikation aus Listing 3.8. Die
Vererbungshierarchie ihrer Benutzertypen ist in Abbildung 4.3 verdeutlicht.

30

4.2 Darstellung von Benutzertypen

Abbildung 4.3: Vererbungshierarchie der Benutzertypen Person und Parent

Wir stellen Untertypen als structs dar mit dem Obertypen als ersten Eintrag. Dabei ist entscheidend,
dass kein Zeiger auf den Obertyp verwendet wird, sondern das entsprechende struct. Listing 4.3 zeigt
den Aufbau der Typen im Binding nach diesem Prinzip.

Listing 4.3: Interne Darstellung der Benutzertypen

// Benutzertyp ’person’ mit Obertyp ’skill_type’

typedef struct person_struct {

skill_type_struct _super_type; // Struct des Obertyp

char *_name;

parent _father;

parent _mother;

} person_struct;

// Benutzertyp ’parent’ mit Obertyp ’person’

typedef struct parent_struct {

person_struct _super_type; // Struct des Obertyp

GList *_children;

} parent_struct;

31

4 Implementierung

Abbildung 4.4: Eine Parent Instanz im Speicher

Abbildung 4.5: Typkonvertierung von Parent zu Person

Der Standard garantiert, dass ein Zeiger auf ein struct nach passender Konvertierung immer zu einem
Zeiger auf den ersten Eintrag des struct wird[c9903, §6.7.2.1.13]. Nach unserer Konstruktion ist der
erste Eintrag immer die Darstellung des Obertyps.

Abbildung 4.4 veranschaulicht die Darstellung einer Parent Instanz im Speicher. Nach einer Typkon-
vertierung zu Person bleibt die Adresse gleich, nur die Sicht auf die Daten (Offsets der Felder) ist
angepasst. Das Person Feld hat die gleiche Adresse wie die Parent-Instanz, deswegen sind die Zugriffe
auf die Felder auch nach der Typkonvertierung nach Person korrekt (Abbildung 4.5). Die Sicht nach
der Typkonvertierung nach skill_type ist schließlich in Abbildung 4.6 verdeutlicht.

32

4.2 Darstellung von Benutzertypen

Abbildung 4.6: Typkonvertierung von Parent zu SkillType

Wir halten während der Ausführung des Bindings storage pools für alle Benutzertypen im Speicher.
Jeder Pool referenziert den Pool seines Obertyps und eine Liste von Pools für Untertypen. Referenzen
auf Instanzen sind in der Binärdatei über die Id der Instanz angegeben, deswegen benötigen wir
beim Lesen von Binärdateien eine effiziente Zuordnung von der Id zur Instanz. Ids sind eindeutig
innerhalb eines Basistyps [Fel13, vgl.§6.3], deswegen speichern wir alle Instanzen des Basistyps,
inklusive Instanzen erbender Typen in einem Array im Pool des Basistyps. Wir können dann eine Id
als Index im Array interpretieren, um die zugehörige Instanz zu finden.

Andererseits benötigen wir eine schnelle Möglichkeit, alle Instanzen eines Untertypen zu finden.
Deswegen hält jeder Untertyp ein Array, das nur Instanzen dieses Typs enthält. Abbildung 4.7 zeigt
die Organisation von Pools und Instanzen im Speicher anhand der Spezifikation aus Listing 4.4

Listing 4.4: Spezifikation der Benutzertypen Person, Parent und Other

Person {

string name;

Parent mother;

Parent father;

}

Parent : Person {

list<Person> children;

}

// Weiterer Typ ’Other’ ohne Felder

Other {

}

Im Beispiel wurden Instanzen in folgender Reihenfolge erzeugt:

33

4 Implementierung

• Person

• Parent

• Other

• Parent

• Other

Instanzen von Untertypen werden immer von mehreren Pools referenziert, auch von allen Pools von
Obertypen. Die Darstellung erlaubt das effiziente Iterieren über Instanzen eines Typs und Zugriff auf
eine Instanz über ihre Id.

Abbildung 4.7: Storage Pools und Instanzen im Speicher

34

4.3 Konventionen

4.2.1 Instanceof Abfragen

Jede Instanz hält eine Referenz auf die declaration, die ihren Typ bestimmt. Die Implementierung der
instanceof Funktionen kann deswegen diese declaration mit dem gefragten Typen abgleichen. Die
Funktion muss auch true zurückgeben, falls irgendeiner der Obertypen übereinstimmt. Listing 4.5
zeigt die Implementierung anhand der Spezifikation aus Listing 3.8.

Listing 4.5: Instanceof-Funktionen

bool instanceof_person (skill_type instance) {

type_declaration declaration = instance->state->person->declaration;

// Jeder Obertyp der übergebenen Instanz muss überprüft werden

type_declaration super_declaration = instance->declaration;

while (super_declaration) { // Abbruch, wenn der supertyp ’null’ ist

if (super_declaration == declaration) {

return true;

}

super_declaration = super_declaration->super_type;

}

return false;

}

4.3 Konventionen

Im verbleibenden Teil dieses Kapitels verwenden wir abkürzende Schreibweisen um Programmcode
lesbarer und kompakter zu gestalten:

• Wir verwenden eine Punktnotation für den Aufruf von Methoden und den Zugriff auf Attribute,
wie sie manche höhere Programmiersprachen anbieten (instanz.attribut oder instanz.methode()).

• Wir verwenden eine vereinfachte Darstellung, um über Listen zu iterieren (GList aus der glib
[gli14, Doubly-Linked Lists]). Die Darstellung orientiert sich an erweiterten for-Schleifen, wie
sie Java und C# anbieten. Listing 4.6 zeigt die Verwendung für eine Liste pools mit Elementen
vom Typ storage_pool.

35

4 Implementierung

Listing 4.6: Vereinfachte Darstellung von for-Schleifen

// Vereinfachte Schreibweise:

for (storage_pool pool in pools) {

[..] // Verwenden der Laufvariablen ’pool’

}

// Tatsächliche Syntax im Code:

GList *iterator;

storage_pool pool;

for (iterator = pools; iterator; iterator = iterator->next) {

pool = (storage_pool) iterator->data;

[..] // Verwenden der Laufvariablen ’pool’

}

• Für Arrays verwendet das Binding den Datentyp GArray. Wir schreiben kurz array[i] für den
Zugriff auf das i-te Element statt g_array_index (array, type, i).

• Für den Datentyp GHashTable schreiben wir verkürzt map.get_values() und map.get_keys() für
die Funktionen g_hash_table_get_values und g_hash_table_get_keys, die eine Liste der Schlüssel,
bzw. Werte zurückgeben. Die Funktion, um den hinterlegtenWert für einen Schlüssel abzurufen,
ist g_hash_table_lookup. Wir schreiben dafür verkürzt map[key].

• Typkonvertierungen sind in vielen Fällen nicht angegeben

• Funktionsparameter werdenmanchmalweggelassen, wenn sie für das Verständnis nicht relevant
sind.

• Das Prüfen von Werten auf null ist manchmal weggelassen.

4.4 Lesen

Das grundlegende Vorgehen beim Lesen von Binärdateien ist in [Fel13, §7] beschrieben. Das Binding
unterstützt kein lazy loading [Fel13, vgl.§6.2.2], Es werden also alle Strings und Instanzen bekannter
Typen im Speicher erzeugt. Das Lesen besteht aus den Schritten:

• Stringblock lesen

• Typinformation lesen

• Instanzen allokieren

• Felddaten lesen und den Instanzen zuweisen

Diese Schritte werden wiederholt bis das Ende der Datei erreicht wird.

36

4.4 Lesen

4.4.1 Stringblöcke lesen

Der Aufbau eines Stringblocks ist in [Fel13, Abb.2] veranschaulicht. Um Strings zu lesen, muss das
Binding die Anzahl der Strings im Block lesen, anschließend entsprechend viele Offsetwerte und
schließlich die Strings selbst, deren Längen anhand der Offsets bestimmt werden:

Listing 4.7: Lesen eines Stringblocks

int number_of_strings = read_v64 ();

int offsets[number_of_strings];

for (int i = 0; i < number_of_strings; i++) {

offsets[i] = read_i32 ();

}

// Länge des Strings ist jeweils Offset minus vorherigem Offset.

int previous_offset = 0;

for (int i = 0; i < number_of_strings; i++) {

char *new_string = read_string (offsets[i] - previous_offset);

strings.add_string(new_string);

previous_offset = offsets[i];

}

An dieser Stelle erzeugt das Binding eine string_access Instanz, die im skill_state referenziert wird.
Für folgende Typblöcke wird der string_access Strings per Id zurückgeben können.

4.4.2 Typinformation überprüfen

Ein Typblock beginnt jeweils mit Typinformation zu jedem instanziierten Benutzertypen im Block.
Die Benutzertypen werden über ihren Namen identifiziert. Typinformationen sind in zwei Kategorien
einzuteilen.

• Erstens den Namen des Obertyps und Namen und Datentypen von Feldern. Diese Informationen
sind bereits in der Spezifikation festgelegt, also zur Zeit der Erstellung des Bindings bekannt
und werden beim Lesen lediglich mit den Daten aus der Binärdatei abgeglichen. Werden hier
Unterschiede festgestellt, werden sie auf der Konsole ausgegeben und die Programmausführung
wird abgebrochen.

Unbekannte Benutzertypen werden übersprungen, genau so wie unbekannte Felder bekannter
Benutzertypen.

• Zweitens Informationen spezifisch für diese Binärdatei:

– Anzahl der Instanzen

– Reihenfolge der Felder

– ggf. der local base pool start index [Fel13, vgl.§6.2.2]

37

4 Implementierung

Wir verwenden eine einfache Datenstruktur um diese Informationen zwischenzuspeichern,
da sie fürs Lesen der Felddaten gebraucht werden. Die Reihenfolge, in der die Felder in der
Spezifikationsdatei aufgelistet sind, ist nicht bindend, kann zwischen Binärdateien variieren
und von der Reihenfolge aus der Spezifikation abweichen.

4.4.3 Instanzen erzeugen

Um neue Instanzen zu allokieren, muss für jede Instanz der exakte Typ bestimmt werden, damit
die Größe einer Instanz in Bytes bekannt ist. Die instance-Arrays der Pools enthalten ggf. bereits
Instanzen aus zuvor gelesenen Typblöcken. In diesem Fall werden sie vergrößert. Listing ?? zeigt die
Implementierung im Binding. Wir sortieren Instanzen von Untertypen hinter Instanzen des exakten
Typs ein.

Listing 4.8: Instanzen erzeugen

int count = read_information.count; // Information aus der Binärdatei

int sub_instance_count = 0; // Bestimme Anzahl Instanzen von Subtypen

for (storage_pool sub_pool in pool.sub_pools) {

sub_instance_count += sub_pool.number_of_instances;

}

int old_count = pool.instances.size;

pool.instances.size += count; // Array des Pools vergrö ß ern

for (int i = old_count; i < old_count + count - sub_instance_count; i++) {

// Speicher für neue Instanzen einzeln allokieren,

// sodass Instanzen einzeln gelöscht werden können.

pool.instances[i] = malloc (pool.declaration.size);

}

// Verwende für Pools von Untertypen die Reihenfolge, in der sie

// In der Binärdatei vorkommen

for (storage_pool sub_pool in read_info.subtype_order) {

// Rekursiver Aufruf für Untertypen

create_sub_pool_instances (state, pool.instances);

}

4.4.4 Felddaten lesen

Beim Erzeugen des Bindings ist der Datentyp für jedes Feld bereits bekannt. Das Binding stellt für
jedes Feld eine Funktion bereit, die Felddaten dieses Feldes liest, und den gelesenen Wert in einer
Instanz setzt. Diese read-Funktion hat die Parameter

• Der skill_state, dem die erzeugt Instanz zugeordnet wird, um Zeiger auf Benutzertypen auflösen
zu können

• Den string_access, um Strings über ihre Id zu bekommen

• Die Instanz selbst, in der der gelesene Wert gesetzt werden soll

38

4.4 Lesen

Listing 4.9: Deklaration der read-Funktion

typedef void read_function (skill_state, string_access, skill_type);

Diese Funktionen werden als Attribute der Klasse field_information gespeichert.

Die Implementierung der read-Funktion muss den zum Feld passenden Datentypen lesen und der über-
gebenen Instanz zuweisen. Listing 4.10 veranschaulicht die Funktionsweise anhand der Spezifikation
von Person aus Listing 3.3.

Listing 4.10: Funktionsweise der read-Funktionen

void person_read_name (skill_state state, string_access strings, skill_type instance) {

// Strings sind über ihre Id angegeben

int64_t string_id = binary_reader.read_v64 ();

((person) instance)->name = strings.string_by_id (string_id);

}

Für Felder, die Zahlen oder boolean enthalten, wird die passende Funktion aus dem binary_reader
aufgerufen:

• read_i8 bis read_i64

• read_v64

• read_f32 und read_f64

• read_bool

Listing 4.11: Spezifikation mit Annotation und Zeiger auf Benutzertyp

Test {

annotation f; // Kann jeden bekannten Benutzertypen referenzieren

person p; // Benutzertyp bekannt bei der Erstellung des Bindings

}

Für Annotations muss zuerst der Typ der referenzierten Instanz bestimmt werden, um die Instanz
über ihre Id zu bestimmen. Listing 4.12 zeigt die Implementierung am Beispiel der Spezifikation aus
Listing 4.11.

39

4 Implementierung

Listing 4.12: Lesen von Annotations

void test_read_f (skill_state state, string_access strings, skill_type instance) {

// Zieltyp ist als String angegeben

int64_t type_name = strings.string_by_id (binary_reader.read_v64 ());

storage_pool target_pool = state.pools[type_name];

// Ziel-Instanz über ihre Id bestimmen

int64_t target_id = binary_reader.read_v64 ();

instance.f = target_pool.get_instance_by_id (target_id);

}

Für Zeiger auf Benutzertypen ist der Typ des Ziels beim Erstellen des Bindings bereits bekannt und
sein Pool ist in der Funktion schon angegeben. Listing 4.13 zeigt die Implementierung.

Listing 4.13: Lesen von Referenzen auf Benutzertypen

void test_read_p (skill_state state, string_access strings, skill_type instance) {

storage_pool target_pool = state.person;

// Ziel-Instanz über ihre Id bestimmen

int64_t target_id = binary_reader.read_v64 ();

instance.p = target_pool.get_instance_by_id (target_id);

}

Wir beschreiben das Lesen von zusammengesetzten Typen anhand der Spezifikation aus Listing 3.15.
Elemente der zusammengesetzten Typen sind Zahlen, boolean, Strings, annotation oder Zeiger auf
Benutzertypen. Sie werden wie oben beschrieben gelesen.

40

4.4 Lesen

Listing 4.14: Lesen von zusammengesetzten Typen

// Für Arrays mit variabler Länge: zuerst Länge bestimmen

int64_t length = binary_reader.read_v64 ();

GArray *var_array = g_array_new (length);

[..] // Einzelne Elemente lesen

// Für Arrays konstanter Länge ist diese hart in die read-Funktion kodiert.

GArray *var_array = g_array_new (3);

[..] // Einzelne Elemente lesen

// Lesen von Listen

int64_t length = binary_reader.read_v64 ();

GList *list = 0; // Leere Liste entspricht null-Zeiger

for (int i = 0; i < length; i++) {

list = g_list_append (list, binary_reader.read_v64 ());

}

// Lesen von Mengen

int64_t size = binary_reader.read_v64 ();

GHashTable *set = g_hash_table_new (g_int64_hash, g_int64_equal);

for (int i = 0; i < size; i++) {

current_value = malloc (sizeof (int64_t));

*current_value = read_i64 (buffer);

g_hash_table_insert (set, current_value, current_value);

}

}

Ganzzahlen, Kommazahlen, und Boolean Werte müssen für list, set und map auf dem Heap allokiert
werden, da die dafür vorgesehenen Typen GList und GHashTable Zeiger speichern. Der zusammen-
gesetzte Typ map muss gesondert behandelt werden, da er mehr als zwei Basistypen haben kann.
Hat die map genau zwei Basistypen, können Schlüssel-Wert Paare nacheinander gelesen werden. Für
maps mit drei und mehr Basistypen muss ggf. zu einem Schlüssel eine neue map erzeugt werden. Der
Generator erzeugt eine Funktion für jeden Basistypen der map, außer dem letzten.

41

4 Implementierung

Listing 4.15: Lesen von Maps

// Liest Map mit einfachen Schlüssel-Wert Paaren (v64->v64)

GHashTable container_read_map_nested_1 ([..]) {

GHashTable *result = g_hash_table_new ([..]);

int64_t length = read_v64 ();

int64_t *key;

int64_t *value;

for (int i = 0; i < length; i++) {

*key = binary_reader.read_v64 ();

*value = binary_reader.read_v64 ();

result.insert (key, value);

}

return result;

}

// Liest Map mit geschachtelten Maps als Werten

GHashTable container_read_map_nested_0 ([..]) {

GHashTable *result = g_hash_table_new ([..]);

int64_t length = read_v64 ();

int64_t *key;

for (int i = 0; i < length; i++) {

*key = binary_reader.read_v64 ();

// Eigener Funktionsaufruf, um geschachtelte Map zu lesen

result.insert (key, container_read_map_nested_1 ([..]));

}

return result;

}

Bevor Felddaten gelesen werden, sind bereits alle Instanzen allokiert wie in Abschnitt 4.4.3 beschrie-
ben.

Ein Typblock kann Felder definieren, die bereits in früheren Typblöcken vorkamen. Diese Felder sind
in einer Liste im storage pool dieses Typs gespeichert. Es ist möglich, dass ein Typblock keine neuen
Instanzen, sondern nur neue Felder für bestehende Instanzen hinzufügt. Gibt es neue Instanzen, so
muss der Block mindestens alle Felder aus früheren Blöcken angeben, kann aber weitere hinzufügen.
Bereits zuvor definierte Felder müssen in der Binärdatei vor neuen Feldern stehen, und müssen die
zuvor verwendete Reihenfolge einhalten, was wir beim Lesen überprüfen.

Falls der Typblock sowohl neue Felder, als auch neue Instanzen hinzufügt, stehen die Daten von
bereits früher definierten Feldern neuer Instanzen vor den Daten von neuen Feldern [Fel13, vgl.§6.2.2
Effects of Appending]. Daten neuer Felder müssen ggf. auch Instanzen aus früheren Typblöcken
abdecken. Das Vorgehen, um Felddaten zu lesen, ist:

• Lesen der Felddaten für alle bereits früher definierten Felder, nur für neue Instanzen

• Lesen der Felddaten für alle neuen Felder für alle Instanzen (aus früheren Blöcken und aus
diesem Block)

Listing 4.16 zeigt, wie die read-Funktionen aufgerufen werden, um Felddaten zu lesen und den
Instanzen zuzuordnen.

42

4.5 Schreiben

Listing 4.16: Felddaten lesen

// 1. Lese Daten von früher definierten Feldern

// Die Liste ’pool.fields’ enthält nur Felder aus früheren Blöcken

for (field_information field_info in pool.fields) {

// Index der ersten neuen Instanz.

// Im Array des Pools sind neue Instanzen bereits allokiert.

int64_t start_index = pool.instances.len - field_info.count;

for (int i = start; i < pool.instances.len; i++) {

field_info.read_method ([..], pool.instances[i]);

}

}

// 2. Lese Daten von neuen Feldern

// für alte und neue Instanzen

// Die Liste ’read_information.new_fields’ enthält nur neue Felder

for (field_info in read_information.new_fields) {

for (int i = 0; i < pool.instances.len; i++) {

field_info.read_method ([..], pool.instances[i]);

}

}

4.5 Schreiben

Das Vorgehen beim Schreiben von Binärdateien wird in [Fel13, §6] erklärt. Die erzeugte Binärdatei
wird genau einen Stringblock und einen Typblock enthalten.

4.5.1 Gelöschte Instanzen

Wird eine Instanz vom Benutzer gelöscht, so wird ihr Speicher intern nicht direkt freigegeben, sondern
sie wird als gelöscht markiert, indem ihre Id auf null gesetzt wird. Damit diese Instanzen nicht in
Binärdateien geschrieben werden, müssen sie vor dem Schreiben aussortiert werden, und der von
ihnen belegte Speicher muss freigegeben werden. Das Vorgehen ist in Abschnitt 4.7 beschrieben.

4.5.2 Instanzen umsortieren

Das Serialisierungsformat verlangt, dass Instanzen vom gleichen Untertyp innerhalb eines Blocks
nacheinander stehen. Wir müssen also Instanzen eines Basistyps nach Untertyp sortieren. Untertypen
können wiederum Untertypen besitzen, deswegen verwenden wir eine rekursive Funktion.

43

4 Implementierung

Listing 4.17: Umsortieren von Instanzen innerhalb von Pools

for (storage_pool sub_pool in this.sub_pools) {

// Rekursiver Aufruf auf den Untertypen

reorder_instances (sub_pool);

}

// Untertypen sind jetzt bereits sortiert

GArray *new_array = g_array_new (this.instances.len);

int64_t number_of_sub_instances = 0;

for (storage_pool sub_pool in this.sub_pools) {

number_of_sub_instances += sub_pool.count;

}

// Einsortieren der Instanzen mit genau dem Typ des Pools

int64_t index = 0;

for (skill_type current_instance in this.instances) {

// Einsortieren nur, falls kein Untertyp

if (current_instance.declaration == this.declaration) {

new_array[index] = current_instance;

index++;

}

}

// Untertypen dahinter einsortieren

storage_pool sub_pool;

for (storage_pool sub_pool in this.sub_pools) {

for (skill_type current_instance in sub_pool.instances) {

new_array[index] = current_instance;

index++;

}

}

[..] // Speicher der Instanzen freigeben

this.instances = new_array;

4.5.3 Local Base Pool Start Index

Der local base pool start index(lbpsi,[Fel13, vgl.Glossary,LBPSI]) ist der Index der ersten Instanz eines
Untertyps im Array des Basispools. Wir schreiben Untertypen in der Reihenfolge, in der sie in der
sub_pools Liste im Pool des Obertyps vorkommen. Der lbpsi für den ersten Untertyp ist die Anzahl
der Instanzen des Obertyps minus die Anzahl aller Instanzen von Untertypen.

44

4.5 Schreiben

Listing 4.18: Bestimmen des Local Base Pool Start Index

// lbpsi als Zeiger übergeben, damit der Wert überschrieben werden kann

void calculate_lbpsi (storage_pool pool, int64_t *lbpsi) {

pool.lbpsi = *lbpsi;

int sub_instance_count = 0;

for (storage_pool sub_pool: pool.sub_pools) {

sub_instance_count += sub_pool.instances.len;

}

*lbpsi += pool.instances.len - sub_instance_count;

for (storage_pool sub_pool: pool.sub_pools) {

calculate_lbpsi (sub_pool, lbpsi);

}

}

Listing 4.18 veranschaulicht die Berechnung der lbpsi. Die Funktion wird für alle Pools von Basistypen
aufgerufen.

4.5.4 Storage Pool Ids

Pools haben innerhalb einer Binärdatei eine Id, die über die Reihenfolge gegeben ist, in der sie in der
Datei auftreten. Für die write Operation müssen wir diese Reihenfolge festlegen, wie in Listing 4.19
gezeigt.

Listing 4.19: Pool Ids zuweisen

int64_t pool_id = 0; // Pool-Ids fangen bei 0 an

for (storage_pool pool in state.storage_pools) {

pool.id = pool_id;

pool_id++;

}

4.5.5 Strings schreiben

Alle Stings, die in der Binärdatei vorkommen, stehen im Stringblock vor dem Typblock. Wir müssen
also Strings aus Typinformationen und aus Felddaten sammeln, um den Stringblock zu schreiben
Listing 4.20 zeigt das Vorgehen.

45

4 Implementierung

Listing 4.20: Sammeln von Strings zum Serialisieren

// Sammeln von Strings aus Typinformationen

for (storage_pool pool in all_pools) {

string_access.add_string (pool.declaration.name);

// Enthält alle bekannten Felder

for (field_information field in pool.declaration.fields) {

string_access.add_string (field.name);

}

}

[..] // Sammeln von Strings aus Felddaten

// Ggf. auch aus zusammengesetzten Typen

Die Strings in einen Stringblock zu schreiben funktioniert dann mit den Schritten:

• Schreibe die Anzahl der Strings

• Schreibe für jeden String das Offset (Offset des vorherigen Strings plus die Länge des Strings)

• Schreibe die Strings byteweise

4.5.6 Typinformation schreiben

Der Aufbau der Typinformation ist in [Fel13, Figure 2] dargestellt und in [Fel13, §6.4] im Detail
ausgeführt. Die Implementierung schreibt für jeden Benutzertyp die Typinformation:

• Name des Typs

• Ggf. Name des Obertyps

• Ggf. lbpsi

• Anzahl der Instanzen

• Restrictions des Typs. Wird nicht unterstützt, deswegen immer 0.

• Anzahl der Felder

• Für jedes Feld

– Restrictions. Wird nicht unterstützt, deswegen immer 0.

– Typ

– Namen

– Offset der Felddaten

46

4.5 Schreiben

Falls der Benutzertyp ein Basistyp ist, schreiben wir für den Namen des Obertyps 0 und lassen den
lbpsi weg. Für konstante Felder wird der Wert direkt nach dem Typindex eingefügt.

Listing 4.21: Typinformation für Konstanten schreiben

if (type_info.type.is_constant ()) {

if (type_info.type == ConstantI8) {

write_i8 (type_info.constant_value);

} else if (type_info.type == ConstantI16) {

[..] Andere Konstante Datentypen analog behandeln

}

}

Für Felder, die Zeiger auf Benutzertypen enthalten, muss die Id des Pools, der die referenzierten
Instanzen enthält, auf den Typindex für Zeiger addiert werden.

Listing 4.22: Referenzen auf Benutzertypen

int8_t type_index = type_info.type.get_index ();

if (type_info.type == UserType) {

storage_pool target_pool = storage_pools[type_info.name];

type_index += target_pool.pool_index;

}

write_i8 (type_index);

Listing 4.22 zeigt, wie Referenzen auf Benutzertypen in der Typinformation dargestelt werden. die
Funktion type_info.type.get_index() ist nach [Fel13, Appendix,E] implementiert. Für Zusammengesetz-
te Typen wird zusätzlich der Typ der Elemente und ggf. deren Anzahl angegeben. FürMaps die Anzahl
der Basistypen, gefolgt von den Indizes für jeden Basistyp. Das wird in Listing ?? ausgeführt.

Listing 4.23: Typinformation für zusammengesetzte Typen

if (type_info.type.is_container_type ())) {

if (type_info.type == MapType) {

write_v64 (type_info.base_types.length);

for (type in type_info.base_types) {

// Schreibe IDs aller Basistypen

write_i8 (type.get_index ());

}

} else {

if (type_info.type == ConstantLengthArray) {

write_v64 (type_info.array_length);

}

// Schreibe Id des Typs der Elemente

write_i8 (type_info.base_type.get_index ()));

}

}

47

4 Implementierung

4.5.7 Felddaten schreiben

Der Generator erzeugt beim Erstellen des Bindings für alle bekannten Felder Funktionen, um Daten
aus diesem Feld zu schreiben. Die Funktion hat den skill_state als Parameter, um für Zeiger auf
Benutzertypen die Id bestimmen zu können, den string_access, um für Strings die Id bestimmen zu
können, außerdem die Instanz. Der Rückgabewert ist die Anzahl an Bytes, die geschrieben wurden.

Listing 4.24: Deklaration der write-Funktion

typedef int64_t write_function (skill_state, string_access, skill_type);

Instanzen der Klasse field_information halten eine Referenz auf eine dieser Funktionen. Die write-
Funktionen sind nach dem gleichen Muster implementiert wie die read-Funktionen in Abschnitt 4.4.4.
Listing 4.25 zeigt den Aufruf der Funktionen.

Listing 4.25: Felddaten schreiben

for (field_information current_field = pool.declaration.fields) {

for (skill_type instance in pool.get_instances()) {

current_field->write (state, strings, instance, out);

}

}

4.5.8 Append

Voraussetzung für die Funktion append ist ein skill_state, der aus einer Binärdatei erzeugt wurde
oder der bereits zu einem früheren Zeitpunkt in eine Binärdatei geschrieben wurde. Daten aus
der Binärdatei dürfen im skill_state nicht verändert sein. Das bedeutet erstens, dass Instanzen aus
der Binärdatei nicht gelöscht werden dürfen und zweitens, dass Felddaten aus der Binärdatei nicht
verändert werden dürfen. Es ist möglich, dass die Binärdatei von einem Binding geschrieben wurde,
welches aus einer anderen Spezifikation erzeugt wurde. In diesem Fall kann ein Benutzertyp in der
Binärdatei andere Felder haben als im Binding [Fel13, vgl.§6.2.3]. Append ist nur möglich, falls die
Binärdatei für jeden Benutzertypen eine Teilmenge der Felder oder genau die Felder definiert, die das
Binding kennt.

Die Implementierung von append überschneidet sich stark mit write (Abschnitt 4.5), und verwendet
größtenteils die gleichen Funktionen. Wir erklären in diesem Abschnitt nur die Unterschiede.

Das Binding initialisiert Pools mit der Id −1. Beim Lesen oder Schreiben einer Binärdatei bekommen
Pools die Id gesetzt, die ihrer Reihenfolge in der Datei entspricht. Die Id eines Pools ist also gleich -1
gdw. der Pool noch nicht in der Binärdatei vorkommt. Beim Lesen oder Schreiben einer Binärdatei
wird außerdem für jeden Pool die Liste von Feldern gesetzt (storage_pool.fields), die für diesen
Typ in der Datei vorkommen. Bei append schreiben wir einen Pool in die Binärdatei, falls er

• Noch nicht in der Binärdatei vorkommt,

48

4.6 Fehlerbehandlung

• Neue Instanzen enthält, oder

• Neue Felder enthält.

Das Umsortieren der Instanzen und Bestimmen der lbpsi funktioniert wie bei write (Abschnitte 4.5.2
und 4.5.3), für append werden aber nur neue Instanzen betrachtet. Pools, denen bereits eine Id ungleich
−1 zugewiesen ist, behalten diese Id. Pools mit Id -1 bekommen jetzt wie in Abschnitt 4.5.4 neue Ids
zugewiesen, aber startend mit dem Maximum der bisher vergebenen Ids plus eins. Listing 4.26 zeigt
das Vorgehen.

Listing 4.26: Pool Ids zuweisen bei Append

int64_t max_id = 0;

// Bisher grö ß te Id finden

for (storage_pool pool in all_pools) {

if (pool.id > max_id) {

max_id = pool.id;

}

}

// Nur Pools mit id ’-1’ sind noch nicht in der Binärdatei definiert

int64_t pool_id = max_id + 1;

for (storage_pool pool in all_pools) {

if (pool.id == -1) {

pool.id = pool_id;

pool_id++;

}

}

Die string_access Instanz, die beim letzten read oder write erzeugt wurde, enthält alle Strings, die
in der Binärdatei vorkommen. Wir sortieren wie in Abschnitt 4.5.5 Strings in den string_access ein,
schreiben aber nur die Strings, deren Id größer ist als die größte Id in der Binärdatei. Strings, die
bereits in der Binärdatei vorkommen, müssen nicht erneut geschrieben werden.

4.6 Fehlerbehandlung

Wenn fehlerhafte Binärdateien gelesen werden [Fel13, Appendix,B], bricht das Binding die Program-
mausführung ab. Der Fehler wird auf der Konsole ausgegeben. Die Programmiersprache C unterstützt
keine intelligentere Behandlung von Fehlern, aber es ist eine Implementierung denkbar, die Ausnah-
men anhand von Rückgabewerten darstellt, und Fehlermeldungen in eine globale Variable schreibt.
Aus Zeitgründen haben wir eine Lösung dieser Art nicht implementieren können.

49

4 Implementierung

4.7 Speicherfreigabe

Um den Speicher freizugeben, der für eine Instanz auf dem Heap allokiert ist, reicht ein Aufruf von
free. Auf diese Weise kann aber undefiniertes Verhalten des Programmes entstehen, wenn Zeiger auf
diese Instanz existieren. Deswegen verwenden wir Funktionen, um solche Zeiger auf null zu setzen:

Listing 4.27: Definition der Cleanup-Funktion

typedef void cleanup_function (skill_type instance);

Wir referenzieren eine solche Funktion in der Klasse type_declaration. Vor dem Schreiben in eine
Binärdatei setzen wir mit Hilfe dieser Funktionen Referenzen auf gelöschte Instanzen auf null, und
geben dann den Speicher für gelöschte Instanzen frei.

4.8 Tests

Mithilfe von Tests soll sichergestellt werden, dass die Implementierung korrekt ist. Die Tests ori-
entieren sich an den Beispielen in [Fel13] und an den Tests aus der Anbindung für Scala [ski] und
verwenden die dort bereitgestellten Binärdateien. Die Tests lesen die folgenden Binärdateien ein und
gleichen die erzeugten Instanzen mit den erwarteten Werten ab:

• Die Binärdatei mit zwei date-Instanzen [Fel13, §6.6]. Damit wird grundlegend das Parsen von
Binärdateien getestet.

• Eine Binärdatei mit einem Benutzertyp, der Felder aller Zahlentypen, Strings, und Boolean
enthält.

• Eine Binärdatei mit einem Benutzertyp, in dessen Felder alle zusammengesetzten Typen vor-
kommen.

• Binärdateien zu den Beispielen aus [Fel13, §6.2.3]. Wir testen damit das Lesen von Instanzen, die
über mehrere Blöcke verteilt sind, und das Lesen von Typblöcken, die neue Felder hinzufügen.
Wir testen auch die Kombination aus beidem, neue Instanzen und neue Felder in einem Block.

• Eine Binärdatei mit leeren Blöcken, und eine mit Instanzen ohne Felder. Damit testen wir, dass
diese Fälle nicht zu Fehlern führen.

• Eine Binärdatei zu [Fel13, §6.3.2], die Benutzertypen mit Vererbungshierarchie enthält, deren
Instanzen über mehrere Blöcke verteilt sind. Wir testen damit auch die instanceof -Funktionen
und gleichen die Typen der Instanzen mit den erwarteten Werten ab.

• Eine Binärdatei, die Annotations enthält, um zu testen, dass der Zeiger richtig ausgewertet wird.

• Eine Binärdatei, die konstante Felder definiert.

50

4.8 Tests

Alle Tests schreiben zusätzlich selbst Binärdateien, lesen sie wieder ein, und gleichen die Instanzen
ab, um das Schreiben zu testen.

Außerdem werden Binärdateien mit unbekannten Typen gelesen, um zu testen, dass sie nicht zum
Fehler führen.

51

5 Zusammenfassung und Ausblick

In der Diplomarbeit ist die Entwicklung einer SKilL-Sprachanbindung an die Programmiersprache C
beschrieben. Damit ist nachgewiesen, dass die Anbindung an eine Sprache ohne Objektorientierung
möglich ist. Wir haben beschrieben, wie Benutzertypen, die in einer Vererbungshierarchie organisiert
sind, in C abgebildet werden können. Die Implementierung erlaubt Typkonvertierungen zwischen
Benutzertypen, und bietet Typsicherheit.

Die Anbindung könnte hinsichtlich Performance weiter verbessert werden, indem lazy loading
unterstützt wird. Es könnte auch eine Fehlerbehandlung durch Ausnahmen wie aus höheren Pro-
grammiersprachen nachgebildet werden. Außerdem könnte die Anbindung erweitert werden, sodass
sie die volle SKilL Unterstützung bietet.

Naturgemäß ist die Verwendung der generierten Bindings syntaktisch umständlicher als bei einem
Binding für eine höhere Programmiersprache. Der Benutzer muss zusätzliche Typkonvertierungen
einfügen, weil es nicht möglich ist, Methoden zu überladen. Bei zusammengesetzten Typen wird der
Datentyp ihrer Elemente nicht überprüft. Die Anbindung bietet trotzdem den gleichen Funktionsum-
fang wie Anbindungen an höhere Programmiersprachen und ist dank intelligenter Gestaltung der
Benutzungsschnittstelle sinnvoll einsetzbar.

53

Literaturverzeichnis

[c9903] The C standard: incorporating technical corrigendum 1; BS ISO/IEC 9899:1999; [includes
the C rationale]. Wiley, Chichester [u.a.], 2003. URL http://swbplus.bsz-bw.de/

bsz107279258cov.htm. (Zitiert auf den Seiten 17, 22 und 32)

[Fel13] T. Felden. The SKilL Language. Technischer Bericht Informatik 2013/06, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, 2013. (Zitiert auf den Seiten 9,
10, 11, 13, 14, 22, 28, 33, 36, 37, 42, 43, 44, 46, 47, 48, 49 und 50)

[fre] FreeMarker Java Template Engine. http://freemarker.org/. (Zitiert auf Seite 15)

[gli14] GLib Reference Manual. https://developer.gnome.org/glib/2.42/, 2014. (Zitiert auf
den Seiten 17, 23, 24 und 35)

[iee08] IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor Standards Com-
mittee of the IEEE Computer Society. 3 Park Avenue, New York, NY 10016-5997, USA, 2008.
(Zitiert auf Seite 17)

[Prz14] D. Przytarski. Performance-Evaluation einer sprach- und plattformunabhängigen Seriali-
sierungssprache. Bachelorarbeit: Universität Stuttgart, Institut für Softwaretechnologie,
Programmiersprachen und Übersetzerbau, 2014. (Zitiert auf Seite 9)

[ski] SKilL auf Github. https://github.com/skill-lang/skill. (Zitiert auf den Seiten 9
und 50)

[Ung14] W. Ungur. Nutzbarkeitsevaluation einer sprach- und plattformunabhängigen Serialisierungs-
sprache. Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Infor-
mationstechnik, Germany, 2014. (Zitiert auf den Seiten 9, 14 und 16)

Alle URLs wurden zuletzt am 03. 11. 2014 geprüft.

55

http://swbplus.bsz-bw.de/bsz107279258cov.htm
http://swbplus.bsz-bw.de/bsz107279258cov.htm
http://freemarker.org/
https://developer.gnome.org/glib/2.42/
https://github.com/skill-lang/skill

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einführung
	1.1 Gliederung
	1.2 Bisherige Anbindungen
	1.3 Die Seriaisierungssprache SKilL
	1.3.1 Beschreibungssprache
	1.3.2 Serialisierungsformat

	1.4 Aufgabenstellung
	1.5 Begriffe

	2 Generator
	2.1 Bedienung
	2.2 Funktionsweise

	3 Benutzungsschnittstelle
	3.1 Systemanforderungen
	3.2 SkillState
	3.3 Benutzertypen
	3.4 Vererbung
	3.5 SKilL Datentypen
	3.5.1 Zahlentypen und Boolean
	3.5.2 Annotation

	3.6 Zusammengesetzte Typen
	3.6.1 Array
	3.6.2 List
	3.6.3 Set und Map

	4 Implementierung
	4.1 Architektur
	4.1.1 Skill_State
	4.1.2 String_Access
	4.1.3 Skill_Type
	4.1.4 Type_Declaration
	4.1.5 Field_Information
	4.1.6 Type_Information
	4.1.7 Storage_Pool

	4.2 Darstellung von Benutzertypen
	4.2.1 Instanceof Abfragen

	4.3 Konventionen
	4.4 Lesen
	4.4.1 Stringblöcke lesen
	4.4.2 Typinformation überprüfen
	4.4.3 Instanzen erzeugen
	4.4.4 Felddaten lesen

	4.5 Schreiben
	4.5.1 Gelöschte Instanzen
	4.5.2 Instanzen umsortieren
	4.5.3 Local Base Pool Start Index
	4.5.4 Storage Pool Ids
	4.5.5 Strings schreiben
	4.5.6 Typinformation schreiben
	4.5.7 Felddaten schreiben
	4.5.8 Append

	4.6 Fehlerbehandlung
	4.7 Speicherfreigabe
	4.8 Tests

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

