Institut fiir Softwaretechnologie
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3665

Plattform- und
sprachunabhéangige Serialisierung
mit SKilL

Fabian Harth

Studiengang: Softwaretechnik

Prifer/in: Prof. Dr. Erhard Plodereder
Betreuer/in: Dipl.Inf. Timm Felden
Beginn am: 5. Mai 2014

Beendet am: 4. November 2014

CR-Nummer: D1.5,D.3.3,D.3.4,E.2

Kurzfassung

Die Diplomarbeit beschreibt die Entwicklung einer Sprachanbindung an die Programmiersprache
C fir die Serialisierungssprache SKilL, um nachzuweisen, dass die Anbindung an eine nicht ob-
jektorientierte Sprache moglich ist. Im Besonderen wird die Darstellung von Daten behandelt, die
in einer Vererbungshierarchie organisiert sind. Wir beschreiben die Gestaltung einer intuitiv zu
bedienenden Benutzungsschnittstelle, die Moglichkeiten einer objektorientierten Sprache nachstellt,
und veranschaulichen die Verwendung anhand von Beispielen.

Inhaltsverzeichnis

1 Einfiihrung
1.1 Gliederung
1.2 Bisherige Anbindungen L
1.3 Die Seriaisierungssprache SKilL. o o oL
1.3.1 Beschreibungssprache oL,
1.3.2 Serialisierungsformat L Lo
1.4 Aufgabenstellung
1.5 Begriffe
2 Generator
2.1 Bedienung
2.2 Funktionsweise
3 Benutzungsschnittstelle
3.1 Systemanforderungen
3.2 SkillState
3.3 Benutzertypen e
3.4 Vererbung
3.5 SKilL Datentypen
3.5.1 Zahlentypenund Boolean 0 L.
3.5.2 Annotation
3.6 Zusammengesetzte Typen L
3.6.1 AITAY e
3.6.2 List. . . e
3.63 SetundMap
4 Implementierung
4.1 Architektur.
4.1.1 Skill State
4.1.2 String_ACCESS e e
413 Skill Type
414 Type_Declaration
4.15 Field Information
41.6 Type_Information
4.1.7 Storage Pool
4.2 Darstellung von Benutzertypen L
4.2.1 Instanceof Abfragen

10
10
11
13
13

15
15
15

17
17
17
18
19
22
22
22
23
23
23
24

27
27
27
28
29
29
30
30
30
30
35

43 Konventionen e 35

4.4 Lesen e e 36
441 Stringblockelesen 37

44.2 Typinformation iiberpriifen oL 37

443 Instanzenerzeugeno 38

444 Felddatenlesen 38

4.5 Schreiben e 43
45.1 GeloschteInstanzen 43

4.5.2 Instanzen umsortieren e 43

453 Local Base Pool StartIndex 44

454 StoragePoollds. 45

455 Stringsschreiben o Lo 45

4.5.6 Typinformation schreiben oL, 46

457 Felddaten schreiben 48

458 Append 48

4.6 Fehlerbehandlung L 49

4.7 Speicherfreigabe 50

4.8 Tests .. .o e e e 50

5 Zusammenfassung und Ausblick 53
Literaturverzeichnis 55

Abbildungsverzeichnis

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Klassen zum Lesen und Schreiben im Binding 28
Klassendiagramm der Modellklassen im Binding 29
Vererbungshierarchie der Benutzertypen Person und Parent 31
Eine Parent Instanz im Speicher Lo o oL 32
Typkonvertierung von Parent zu Person L. 32
Typkonvertierung von Parent zu SkillType 33
Storage Pools und Instanzen im Speicher 34

Tabellenverzeichnis

3.1

Darstellung der SKilL Datentypenin C 22

Verzeichnis der Listings

1.1
1.2

2.1

3.1
3.2
3.3
34
3.5
3.6
3.7

Aufbau des Serialisierungsformates XML oL 12
Aufbau des Serialisierungsformates SKilL. L. 12
Hilfetext fiir die Benutzung des Generators 15
Benutzungsschnittstelle - SkillState o 0 0oL 18
Benutzungsschnittstelle - write und appendo oo 18
Spezifikation des Benutzertyp Person Lo Lo L 18
Benutzungsschnittstelle - Benutzertypen oL 18
Benutzungsschnittstelle - Getter und Setter 19
Benutzungsschnittstelle - Listen Lo o oo 19
Iterieren iiber alle Instanzen eines Typs 19

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27

Benutzertypen mit Vererbung - Spezifikation o 0oL 19

Benutzertypen mit Vererbung - Typdefinitionen 20
Benutzertypen mit Vererbung - Getter 20
Benutzertypen mit Vererbung - Getter fiir Felder von Obertypen 20
Benutzertypen mit Vererbung - Listen und Instanceof-Funktionen 21
Benutzertypen mit Vererbung - Konstruktoren und Destruktoren 21
Benutzertypen mit Vererbung - Verwendung des Bindings 21
Zusammengesetzte Typen - Spezifikation 0oL 23
Zusammengesetzte Typen - Arrays 000 23
Zusammengesetzte Typen-Listen oo 0oL 24
Verwendung der GHashTable 25
Iterieren iiber die Wertemenge einer Map L. 25
Verwendung von Maps mit mehr als zwei Basistypen 26
Methoden der Klasse String_ Accesso oo 28
Der abstrakte Typ Skill Type 30
Interne Darstellung der Benutzertypen 31
Spezifikation der Benutzertypen Person, Parent und Other 33
Instanceof-Funktionen L 35
Vereinfachte Darstellung von for-Schleifen 36
Lesen eines Stringblocks L o 37
Instanzen erzeugen L L 38
Deklaration der read-Funktion L Lo L 39
Funktionsweise der read-Funktionen 39
Spezifikation mit Annotation und Zeiger auf Benutzertyp 39
Lesen von Annotationso oo oL 40
Lesen von Referenzen auf Benutzertypen 40
Lesen von zusammengesetzten Typen L. 41
LesenvonMaps 42
Felddatenlesen e 43
Umsortieren von Instanzen innerhalb vonPools 44
Bestimmen des Local Base Pool Start Index 45
Poollds zuweisen e 45
Sammeln von Strings zum Serialisieren L oo 46
Typinformation fiir Konstanten schreiben, 47
Referenzen auf Benutzertypen 47
Typinformation fiir zusammengesetzte Typen 47
Deklaration der write-Funktion 48
Felddaten schreiben 48
Pool Ids zuweisen bei Append oL L Lo 49

Definition der Cleanup-Funktion 50

1 Einfuihrung

1.1 Gliederung

Dieses Kapitel stellt bisherige Arbeiten zu SKilL vor und gibt eine Einfithrung in die Sprache. Aulerdem
geben wir die Aufgabenstellung fiir diese Diplomarbeit an und besprechen Begriffe, die in der Arbeit
verwendet werden.

Programmcode zum Lesen und Schreiben von Daten wird fiir verschiedene SKilL Spezifikationen
jeweils neu erzeugt. Das zweite Kapitel beschreibt den Aufbau und die Bedienung des Codegenera-
tors.

Das dritte Kapitel behandelt die Benutzungsschnittstelle des Bindings und veranschaulicht die Ver-
wendung anhand von Beispielen. Wir fithren im Detail aus, wie die Aspekte der Objektorientierung
der zu serialisierenden Daten abgebildet wurden.

Im vierten Kapitel beschreiben wir die Implementierung der Schnittstelle. Wir zeigen die Architektur
des generierten Codes, erkldren, wie die zu serialisierenden Daten im Speicher organisiert sind, und
behandeln das Lesen und Schreiben von Binardateien.

Das letzte Kapitel fasst die Ergebnisse der Arbeit zusammen und stellt Méglichkeiten zur Erweiterung
der Implementierung vor.

1.2 Bisherige Anbindungen

Die Spezifikation von Skill ist in [Fel13] gegeben, teilweise mit Anleitungen oder Empfehlungen zur
Implementierung. Der folgende Abschnitt gibt eine Einfithrung in die Sprache.

Im Rahmen der Diplomarbeit [Ung14] ist die Anbindung an Java entstanden. Die Arbeit untersucht
auch die generelle Tauglichkeit der Sprache und wie die Bedienungsschnittstelle gestaltet werden kann.
Die Bachelorarbeit [Prz14] untersucht Performance anhand der Implementierung der Anbindung an
Ada. Es existiert aulerdem eine Anbindung an Scala [ski].

1 Einfihrung

1.3 Die Seriaisierungssprache SKilL

Die Arbeit [Fel13] definiert erstens eine Beschreibungssprache und zweitens das Format fiir die
Serialisierung. In der Beschreibungssprache wird die Struktur der zu speichernden Daten definiert.
Der Anwender muss eine Spezifikationsdatei in der Beschreibungssprache erstellen, um ein Binding
generieren zu konnen. Das Format fiir die Serialisierung beschreibt den Aufbau der Bindrdateien, die
serialisierte Daten speichern. Die Sprachanbindungen miissen dieses Format lesen und schreiben
konnen. Der Anwender programmiert dann gegen die generierte Schnittstelle, kommt mit den Daten
in serialisierter Form also nicht in Berithrung.

Im Folgenden werden Beschreibungssprache und Serialisierungsformat kurz vorgestellt. Die Beschrei-
bungen sind nicht vollstindig, sondern sollen nur jeweils die wichtigsten Konzepte und Besonderheiten
erklaren.

1.3.1 Beschreibungssprache

Mit der Beschreibungssprache [Fel13, §2 ff] wird die Struktur der zu serialisierenden Daten beschrieben.
So genannte Benutzertypen bilden die Einheiten, deren Instanzen spéter von den Sprachanbindungen
geschrieben und gelesen werden kénnen. Ein Benutzertyp hat eine Menge von Feldern, die tiber
ihren Namen identifiziert werden. Die moglichen Typen fiir diese Felder werden in den nachsten
Unterpunkten behandelt.

Eingebaute Typen

Eingebaute Typen (Built-In Types[Fel13, §4.1]) beinhalten
« Typen fiir ganze Zahlen mit verschiedenen Wertebereichen
+ Typen fir Kommazahlen mit verschiedener Genauigkeit
« Strings
» Booleans

+ Annotations, also Zeiger auf beliebige Benutzertypen

Zusammengesetzte Typen
Zusammengesetzte Typen werden verwendet, um Daten gleichen Typs zu gruppieren. Die Spezifikation
verbietet, dass die enthaltenen Typen wiederum zusammengesetzte Typen sind. Sie definiert:

+ Arrays fester Lange

« Arrays variabler Lange

« Listen

10

1.3 Die Seriaisierungssprache SKilL

« Mengen
« Maps

Fir Arrays fester Lange ist die Anzahl ihrer Elemente in der Typdefinition gegeben. Fiir Arrays
variabler Linge, Listen, und Mengen kann die Anzahl der Elemente In jeder Instanz unterschiedlich
sein. Mengen diirfen jedes Element nur ein mal beinhalten. Maps diirfen beliebig tief verschachtelt
werden.

Vererbung

Die Beschreibungssprache, erlaubt es, zwischen Benutzertypen eine einfache Vererbungshierarchie
zu definieren. Der Untertyp enthalt alle Felder des Obertyps, definiert aber ggf. weitere.

Zeiger auf Benutzertypen
Die Beschreibungssprache erlaubt es, Zeiger auf Benutzertypen zu definieren. Ein Benutzertyp kann

Zeiger auf andere Benutzertypen als eines seiner Felder enthalten. Jeder Untertyp des angegebenen
Typen ist dann als Ziel der Referenz ebenfalls erlaubt.

1.3.2 Serialisierungsformat
Das Serialisierungsformat beschreibt, wie Instanzen von Benutzertypen serialisiert werden miissen,

also den Aufbau der Binirdateien [Fel13, §6 f]. Wir gehen in diesem Abschnitt auf die wichtigsten
Eigenschaften des Formates ein.

Typinformationen
Das Format speichert Typinformationen zusammen mit den Daten selbst [Fel13, §6.2]. Um den

Speicherverbrauch der Binirdateien gering zu halten, werden Typinformationen aber nicht fiir jede
Instanz, sondern nur ein mal pro Benutzertyp gespeichert.

11

1 Einfihrung

Listing 1.1: Aufbau des Serialisierungsformates XML

[..]1 // Schemadefinition hier weggelassen

<Buch>
<Titel>Am Anfang</Titel>
<Autor>Amanda Abele</Autor>
<Preis>9.90</Preis>

</Buch>

<Buch>
<Titel>Mittig</Titel>
<Autor>Doran Daumen</Autor>
<Preis>19.90</Preis>

</Buch>

<Buch>
<Titel>Schlussendlich</Titel>
<Autor>Emil Ende</Autor>
<Preis>29.90</Preis>

</Buch>

Listing 1.2: Aufbau des Serialisierungsformates SKilL

// Metadaten
Buch {
Felder {
string Titel;
string Autor;
32 Preis;
}
Anzahl: 3

// Daten der Felder

1 -> "Am Anfang" // Strings sind lber IDs referenziert
2 -> "Mittig"

3 -> "Schlussendlich"

4 -> "Amanda Abele"

5 -> "Doran Daumen"

6 -> "Emil Ende"

9

Listing 1.1 und Listing 1.2 zeigt die Darstellung der gleichen Daten in XML und SKilL. Es sind fiir drei
Buch-Instanzen jeweils Titel, Autor, und Preis hinterlegt. In XML gibt jede Instanz die Namen ihrer
Felder mit an. In SKilL sind diese Metainformation nur einmal gespeichert. Fiir eine grofie Menge
gleichartiger Daten wird die Grofle der Metadaten vernachléssigbar, und das Format verbraucht
insgesamt weniger Speicher. Die Darstellung ist vereinfacht und soll hier nur das Prinzip erklaren.

12

1.4 Aufgabenstellung

Das Format ist Aufwdirtskompatibel [Fel13, §1]. Das bedeutet, dass Unbekannte Typen (unknown types
[Fel13, Glossary]), also Benutzertypen, die das Binding nicht kennt, genau so wie unbekannte Felder,
beim Lesen iibersprungen werden konnen.

Um den Speicherbedarf weiter zu senken, werden Identifikationsnummern fiir Benutzertypen, Instan-
zen, und Strings in der Bindrdatei nicht explizit angegeben, sondern implizit Giber die Reihenfolge
dieser Elemente bestimmt [Fel13, §6.3 f].

Write und Append

Das Format ist dafiir ausgelegt, neue Instanzen an bestehende Dateien anzuhangen (append), ohne die
Datei komplett neu schreiben zu miissen. Es ist sogar moglich, an bestehende Instanzen neue Felder
anzuhingen. Die Operation write schreibt alle erzeugten Instanzen in eine Bin4rdatei, die Operation
append schreibt nur die Instanzen, die seit dem letzten Schreiben oder Lesen hinzugekommen sind.

1.4 Aufgabenstellung

Aufgabenstellung dieser Arbeit war
» Entwickeln einer Sprachanbindung an die Programmiersprache C
« Enwickeln von Tests um die Kompatibilitat zu bisherigen Sprachanbindungen nachzuweisen

Es wurde eine formale Spezifikation der Beschreibungssprache und des Serialisierungsformates
zur Verfiigung gestellt, aufierdem die Implementierung der Anbindung an die Programmiersprache
Scala inklusive Tests. Es existierte bereits ein Codegenerator, der Beschreibungssprache in eine
Zwischendarstellung in Form von Javaklassen iibersetzt. Dieser Generator durfte ebenfalls verwendet
werden.

Eine weitere, optionale Aufgabenstelung war die Entwicklung einer Sprachanbindung an eine nicht
statisch typisierte Sprache. Diese Aufgabe wurde nicht bearbeitet.

1.5 Begriffe

Beschreibungssprache, Spezifikationsdatei Die Beschreibungssprache ist in [Fel13, §2 f] defi-
niert und wurde bereits in 1.3.1 eingefiihrt. Wir bezeichnen eine in der Beschreibungssprache verfasste
Datei als Spezifikationsdatei oder kurz Spezifikation.

Serialisierungsformat, Bindrdatei Das Serialisierungsformat bezeichnet die Form der serialisier-
ten Daten, die in [Fel13, §6] ausgefiihrt ist. In dieser Arbeit bezeichnen wir eine Datei, die Daten
dieser Form enthalt als Bindrdatei.

13

1 Einfihrung

Generator, Sprachanbindung Als Generator bezeichnen wir ein Programm, das bei Eingabe
einer Spezifikationsdatei Programmcode erzeugt, der die spezifizierten Daten lesen, bearbeiten und
schreiben kann. Eine Sprachanbindung, oder kurz Anbindung, an eine Programmiersprache ist der
Generator, der Programmcode in dieser Sprache erzeugt. Ist die Programmiersprache nicht angegeben,
meinen wir in dieser Arbeit die Anbindung an die Programmiersprache C.

Binding Als Binding bezeichnen wir ein Programm, das durch eine Ausfithrung des Generators
erzeugt wurde. Das Binding ist aus einer Spezifikation erzeugt, und kennt deren Benutzertypen.

Benutzertyp, Instanz Ein user type ??Glossary]Fel13 ist in einer Spezifikation durch eine type
declaration beschrieben. Wir iibernehmen dafiir den deutschen Begriff Benutzertyp [Ungl4, §1.3.1],
oder nur Typ und verwenden ihn im Kontext der Spezifikation, der Ausfithrung des Generators, des
Bindings, und der Binérdatei.

Eine Instanz bezeichnet die Instanz eines Benutzertyps im Kontext einer Binirdatei oder der Ausfiih-
rung eines Bindings.

Feld Ein Feld bezeichnet sowohl eine Einheit eines Benutzertypes im Sinne von [Fel13, §3.4], als auch
die entsprechenden Daten von Instanzen im Kontext einer Bindrdatei oder Binding-Ausfithrung.

Storage Pool Wir iibernehmen den Begriff storage pool [Fel13, §6.3], oder kurz pool als Konstrukt
im Binding zum Speichern von Instanzen. Wir speichern hier auflerdem Informationen tiber die
Organisation dieser Instanzen in der Binirdatei, wie die Reihenfolge der Felder.

Obertyp, Untertyp, Basistyp Um Vererbungshierarchien zwischen Benutzertypen zu beschreiben,
verwenden wir die Begriffe Obertyp fiir den vererbenden Typen, Untertyp fiir den erbenden Typen,
und Basistyp fiir den Typ an oberster Stelle in der Vererbungshierarchie [Fel13, vgl. Glossary]. SKilL
erlaubt nur einfache Vererbung, deswegen hat jeder Typ einen eindeutigen Basistypen.

Bekannte und unbekannte Typen Wir nennen einen Benutzertypen dem Binding bekannt, falls
er in der Spezifikation vorkommt, aus der das Binding generiert wurde. Der Typ heif3t der Bindrdatei
bekannt, falls er in der Binardatei definiert ist. Ist ein Typ nicht bekannt, heifit er unbekannt (vgl.
unknown type [Fel13, Glossary]).

Analog nennen wir ein Feld bekannt, falls sein Typ in der Spezifikation, bzw. in der Bindrdatei dieses
Feld enthalt. Andernfalls heifSt es unbekannt.

Typblock, Stringblock Daten in Binédrdateien sind in type blocks und string blocks organisiert
[Fel13, §6.2]. Wir verwenden dafiir die Begriffe Typblock , bzw. Stringblock, oder kurz Block.

14

2 Generator

Der Generator erzeugt aus einer Spezifikationsdatei ein Binding, welches die in der Spezifikation
definierte Benutzertypen lesen, erzeugen, bearbeiten, und schreiben kann. Dieses Kapitel behandelt
die Benutzungsschnittstelle und die Funktionsweise des Generators.

2.1 Bedienung

Die Benutzungsschnittstelle des Generators fiir die Programmiersprache C orientiert sich stark an
den Benutzungsschnittstellen fiir bereits existierende Generatoren fiir Scala und Ada.

Listing 2.1: Hilfetext fiir die Benutzung des Generators

usage:
[options] skillPath outPath

Opitions:

-p prefix Set a prefix for emitted code.

This is used for identifier names
in the generated code.
--unsafe If this option is set, the generated binding
will not execute any type checks when modifying instances.
This improves performance.

Listing 2.1 zeigt die Benutzung des Generators. Als Parameter skillPath muss der Dateipfad zu einer
Spezifikationsdatei tibergeben weren, und als outPath der Pfad zum Verzeichnis, in dem das Binding
erzeugt werden soll. Falls der Parameter prefix gesetzt wird, so wird dieser Wert jedem Bezeichner im
generierten Code vorangestellt, sodass ein Programm kompiliert werden kann, das mehrere Bindings
enthalt. Mit dem Parameter unsafe werden Typliberpriifungen im Binding ausgeschaltet. Diese
Uberpriifungen sind in Abschnitt 4.2.1 ausgefiihrt. Diese Einstellung verbessert die Performance.

Die Anbindung unterstiizt fiir die Namen von Typen und Feldern nur ASCII Zeichen, weil die Namen
im Binding als Bezeichner verwendet werden.

2.2 Funktionsweise

Der generierte Code muss sich je nach Spezifikation unterscheiden, weil wir die Benutzertypen aus
der Spezifikation in Datentypen abbilden wollen. Teile des Codes werden sich also abhédngig vom
Aufbau der Benutzertypen unterscheiden. Aus diesem Grund ist die Verwendung von Freemarker [fre]

15

2 Generator

sinnvoll. Wir verwenden pro Datei, die generiert werden soll ein so genanntes Template, also eine
Vorlage, in der Teile bei der Ausfithrung von Freemarker aus einem Datenmodell geladen werden. Die
Arbeit zur Java Anbindung fithrt die Funktionsweise von Freemarker im Detail aus [Ung14, §4.2].

16

3 Benutzungsschnittstelle

Dieser Abschnitt behandelt die Benutzungsschnittstelle des Bindings. Die Schnittstelle wurde strikt
von ihrer Implementierung getrennt. In diesem Abschnitt werden nur Typdefinitionen und Funktionen
beschrieben, die fiir den Benutzer sichtbar sind.

3.1 Systemanforderungen

« Der Compiler, mit dem das Binding iibersetzt wird, muss den C-Standard [c9903] einhalten. Wir
verwenden daraus Zusicherungen iiber die Darstellung von structs im Speicher in Abschnitt
4.2.

« Wir verlangen, dass die Darstellung von float und double dem IEEE Standard entspricht [iee08]
fiir das Lesen und Schreiben dieser Datentypen.

« Die glib Bibliothek [gli14] muss vorhanden sein.

3.2 SkillState

Das Binding muss folgende Funktionalitat anbieten:
« Instanzen erzeugen
« Instanzen bearbeiten
« Instanzen aus einer Bindrdatei lesen
+ Instanzen in eine Bindrdatei schreiben oder anhéngen (append)

Es soll grundsétzlich moglich sein, mit mehreren Bindrdateien parallel zu arbeiten, bzw. Instanzen
verschiedenen Kontexten zuzuordnen. Deswegen definiert die Schnittstelle einen SkillState, dem
Instanzen zugeordnet sind. Ein SkillState kann entweder leer oder aus einer Binirdatei erzeugt
werden. Ein SkillState, der aus einer Datei erzeugt wurde, enthélt alle Instanzen bekannter Typen aus
der Datei.

17

3 Benutzungsschnittstelle

Listing 3.1: Benutzungsschnittstelle - SkillState

typedef struct skill_state_struct xskill_state;

skill_state empty_skill_state ();
void delete_skill state (skill_state state);
skill_state skill_state_from_file (char xfile_path);

Nachdem ein SkillState in eine Binardatei geschrieben wurde, wird die Datei Typdefinitionen zu
allen bekannten Typen und Feldern enthalten, aulerdem alle Instanzen aus dem SkillState. Ist ein
SkillState aus einer Binérdatei erzeugt oder bereits in eine Bin4rdatei geschrieben, bleibt der Zustand
dieser Datei im SkillState gespeichert. Nur in diesem Fall ist die Operation append moglich, um neue
Instanzen hinzuzufiigen, oder bestehenden Instanzen neue Felder hinzuzufiigen.

Listing 3.2: Benutzungsschnittstelle - write und append

void write to_file (skill_state state, char xfile_path);

// Bendtigt keinen Dateipfad, weil aus Datei erzeugt oder schon in Datei geschrieben
void append_to_file (skill_state state);

3.3 Benutzertypen

Fiir jeden Benutzertypen in einer Spezifikation wird das daraus erzeugte Binding einen entsprechenden
Typen mit gleichem Namen anbieten. Um Instanzen erzeugen zu kénnen, dient ein Konstruktor, der
fiir jeden Typen generiert wird.

Listing 3.3: Spezifikation des Benutzertyp Person

Person {
string name;

}

Listing 3.4 zeigt die Typdefinition und den Konstruktor fiir die Spezifikation aus Listing 3.3.

Listing 3.4: Benutzungsschnittstelle - Benutzertypen

typedef struct person_struct xperson;

// Die Instanz wird dem (ibergebenen skill_state zugeordnet
person create_person (skill_state this, char *name);

Wir verstecken die Felder der Benutzertypen und bieten fiir den Zugriff getter und setter fiir jedes
Feld aus der Spezifikation. Weil es nicht méglich ist, die Methoden per Punktschreibweise direkt auf
Instanzen aufzurufen (person.get_name()), ibergeben wir die Instanz als Parameter.

18

3.4 Vererbung

Listing 3.5: Benutzungsschnittstelle - Getter und Setter

char *person_get_name (person instance);
void person_set_name (person instance, char xname);

Um alle Instanzen eines Typs zuriickzugeben, verwenden wir die GList aus der Bibliothek glib als
Implementierung einer Liste.

Listing 3.6: Benutzungsschnittstelle - Listen

// enthdlt ’'person’-Instanzen
GList xget_person_instances (skill_state this);

Listing 3.7 zeigt, wie mithilfe einer for-Schleife iiber alle in einer Liste enthaltenen Elemente iteriert
werden kann.

Listing 3.7: Iterieren iiber alle Instanzen eines Typs

GList *persons = get_person_instances (state);

GList xiterator;

for (iterator = persons; iterator; iterator = iterator->next) {
person_get_name ((person) iterator->data);

}

3.4 Vererbung

SKilL kann einen Benutzertypen als Untertypen eines anderen definieren. Der Untertyp ist eine
Spezialisierung seines Obertyps und erbt dessen Felder, kann aber weitere hinzufiigen.

Listing 3.8: Benutzertypen mit Vererbung - Spezifikation

Person {
string name;
Parent mother;
Parent father;

}

Parent : Person {
list<Person> children;

}

Wir erkldaren die Funktionsweise der Schnittstelle fiir Benutzertypen mit Vererbung anhand des
Beispiels aus Listing 3.8, das den Typ Parent als Untertyp von Person einfithrt. Wir verwenden den
abstrakten Typ skill_type in der Schnittstelle als Basistyp fiir alle Benutzertypen.

19

3 Benutzungsschnittstelle

Listing 3.9: Benutzertypen mit Vererbung - Typdefinitionen

typedef struct skill_type_struct *skill_type;

// Erbt von ’'skill_type’
typedef struct person_struct *person;

// Erbt von ’person’
typedef struct parent_struct xparent;

Listing 3.10 zeigt die Getter fiir Benutzertypen mit Vererbung. Als person Instanz kann jeweils auch
eine parent Instanz tibergeben werden. Die Setter sind nach dem gleichen Muster aufgebaut.

Listing 3.10: Benutzertypen mit Vererbung - Getter

// Kann auf jedem Untertypen von ’‘person’ aufgerufen werden.
char xperson_get_name (person instance);

parent person_get_father (person instance);

parent person_get_mother (person instance);

// Kann nur auf ’‘parent’ Instanzen aufgerufen werden.
GList xparent_get_children (parent instance);

Um dem Benutzer Typkonvertierungen zu ersparen, erhalt jeder Typ auch getter und setter fiir alle
geerbten Felder, wie in Listing 3.11 angegeben.

Listing 3.11: Benutzertypen mit Vererbung - Getter fiir Felder von Obertypen

// Duplizierte Getter fiir Felder vom Obertyp ’person’.
char *xparent_get_name (parent instance);

parent parent_get_father (parent instance);

parent parent_get_mother (parent instance);

Wir bieten eine Liste der Instanzen aller bekannten Typen im skill state Uiber die funktion
get_all_instances. Unbekannte Typen werden nicht unterstiitzt. Die zuriickgegebene Liste von person
Instanzen enthilt auch alle Instanzen vom Untertyp parent. Um den Typ abfragen zu kdnnen, bietet
die Schnittstelle fiir jeden Benutzertypen eine instanceof Funktion. Die Funktion gibt true zurtick,
falls die iibergebene Instanz vom gefragten Typen oder einem seiner Untertypen ist.

20

3.4 Vererbung

Listing 3.12: Benutzertypen mit Vererbung - Listen und Instanceof-Funktionen

// Enthdlt alle Instanzen bekannter Typen.
GList xget_all_instances (skill_state this);

// Enthdlt auch ’'parent’-Instanzen
GList xget_person_instances (skill_state this);
GList xget_parent_instances (skill_state this);

bool instanceof_parent (skill_type instance);
// ‘true’ auch fir alle Untertypen von ’person’
bool instanceof_person (skill_type instance);

Das Binding enthilt nur einen Destruktor, dem Instanzen jeden Typs zu iibergeben werden konnen.
Konstruktoren sind fiir jeden Typen vorhanden, weil Untertypen ggf. neue Felder hinzufiigen und
damit andere Parameter benétigen.

Listing 3.13: Benutzertypen mit Vererbung - Konstruktoren und Destruktoren

person create_person (skill_state this, char xname, parent father, parent mother);
parent create_parent (skill_state this, GList *children, char xname, parent father, parent
mother);

// Hier kann jeder Benutzertyp libergeben werden.
void delete_skill_type (skill_type instance);

Wir zeigen in Listing 3.14, wie die instanceof -Funktionen verwendet werden konnen. Fiir den Zugriff
auf das Feld name kann jeder Untertyp von person iibergeben werden. Falls die Instanz vom Typ
parent ist, gibt instanceof parent true zuriick, und wir kénnen nach Typ parent konvertieren, um auf
das Feld children zuzugreifen.

Listing 3.14: Benutzertypen mit Vererbung - Verwendung des Bindings

// Aus Skillstate laden
person p = [..]

// Jeder Untertyp von ’person’ erlaubt
char xname = person_get_name (p);

// Iterieren (ber die Kinder, nur falls vom Typ ’parent’
if (instanceof_parent (p)) {
GList xchildren = parent_get_children ((parent) p);
GList xiter;
for (iter = children; iter; iter=iter->next) {
person child = (person) iter->data;

21

3 Benutzungsschnittstelle

Skill Typ InC
i8 int8 t
i16 intl6_t
132 int32_t
i64 int64 _t
v64 int64 t
32 float
fo4 double
bool bool
string char*
Annotation skill_type
array (feste Lange) GArray*
array (variable Lange) GArray*
list GList”
set GHashTable"
map GHashTable*

Tabelle 3.1: Darstellung der SKilL Datentypen in C

3.5 SKilL Datentypen

In [Fel13, §4] wird das Typsystem fiir Spezifikationsdateien erklart. Diese Typen sind fiir Felder von
Benutzertypen verwendet. Tabelle 3.1 gibt jeweils den verwendeten Datentyp im Binding an.

3.5.1 Zahlentypen und Boolean
Fiir die Datentypen fiir ganze Zahlen i8 bis i64 und v64 verwenden wir int8_t bis int64_t[c9903, §7.18],

die genau die geforderten Wertebereiche haben. Der Standard liefert auch einen Datentyp bool [c9903,
§7.16].

3.5.2 Annotation

Eine Annotation ist ein Zeiger auf einen beliebigen Benutzertyp. Im Binding verwenden wir dafiir den
abstrakten Obertyp skill_type. Mithilfe der instanceof -Funktionen kann der genaue Typ bestimmt
werden. Es ist nicht moéglich, Referenzen auf unbekannte Typen darzustellen.

22

3.6 Zusammengesetzte Typen

3.6 Zusammengesetzte Typen

Zusammengesetzte Typen sind array, list, set und map. Wir verwenden fiir die Darstellung Datentypen
aus der glib [gli14]. Das Binding gibt den Speicher fiir diese Datentypen beim Loschen des skill_state
frei, wenn sie in seinen Instanzen verwendet sind.

Listing 3.15: Zusammengesetzte Typen - Spezifikation

// v64 als Elemente dieser zusammengesetzten Typen
Int_Container {

v64[3] const_arr; // Array mit fester Ldnge.
v64[] var_arr; // Array mit variabler Lange.
// Zugriff auf Array-Elemente in konstanter Zeit.
list<v64> list; // Liste, Elemente sind geordnet
set<vb4> set; // Set, enthdlt keine Elemente doppelt

map<v64, v64, v64> map; // Map mit drei Basistypen

3.6.1 Array

Listing 3.16: Zusammengesetzte Typen - Arrays

// Parameter zum Erzeuge des Arrays:

// -Null-Element am Ende?

// -Elemente 0O-initialisiert?

// -GroBe der Elemente in Bytes

GArray *new_array = g_array_new (false, true, sizeof (int64_t));

// Vergré Bert ggf. das Array
g_array_append_val (new_array, 1);
g_array_append_val (new_array, -1);

// Wert an beliebiger Position lberschreiben:
// Zugriff lber Array-Name, Datentyp, Index
// Erstes Element hat den Index 0O
g-array_nth (new_array, int64_t, 0) = 2;

Der Datentyp GArray [glil4, Arrays] bietet konstante Zugriffszeiten auf beliebige Elemente und passt
seine Grofle flexibel an. Beim Erzeugen muss die Grof3e der Elemente in Bytes tibergeben werden.
Wird der Datentyp fiir ein Feld mit konstanter Lange verwendet, muss die Anzahl der Elemente
iibereinstimmen.

3.6.2 List

Fir Listen (GList, [glil4, Doubly-Linked Lists]) miissen deren Elemente als Zeiger iibergeben werden.
Die Funktion g_list_nth_data erlaubt zwar Zugriff auf beliebige Elemente, ihre Laufzeit ist aber linear

23

3 Benutzungsschnittstelle

in der Anzahl der Listenelemente. Eine Besonderheit des Datentyps ist, dass eine leere Liste als null
Zeiger dargestellt wird.

Listing 3.17: Zusammengesetzte Typen - Listen

// Verwendet ‘0’ als leere Liste
GList *list = 0;

int64_t valuel = 1;

int64_t value2 = -1;

// Elemente per Zeiger libergeben, Riickgabewert wieder zuweisen
list = g_list_append (list, &valuel); // hinten anhdngen
list = g_list_prepend (list, &value2); // vor dem ersten Element einfligen

3.6.3 Set und Map

Die GHashTable dient als Datentyp sowohl fiir set als auch fiir map. Der Datentyp speichert eine
Schliissel-Wert Zuordnung, kann aber auch als Menge verwendet werden, indem fiir Schliissel und
Wert immer die gleiche Variable iibergeben wird [gli14, Hash Tables,Description]. Auf Schliissel wird
tiber eine Hashfunktion zugegriffen, die beim Erzeugen des Datentyps definiert werden muss. Wir
verwenden die von der Bibliothek angebotenen Funktionen

o g int64 hashund g _int64 equal fur die SKilL Datentypen i8 bis i64, v64 und bool
o g str_hashund g_str_equal fur Strings

« g direct_hashund g_direct_equal fiir Benutzertypen und Annotation

Wie bei Listen miissen Schliissel und Werte als Zeiger itbergeben werden.

24

3.6 Zusammengesetzte Typen

Listing 3.18: Verwendung der GHashTable

// Verwendet als Menge

GHashTable *set = g_hash_table_new (g_int64_hash, g_int64_equal);

int64_t valuel = 1;
int64_t value2 = -1;

// Elemente per Zeiger libergeben mit Schliissel = Wert

g-_hash_table_insert (set, &valuel, &valuel);
g_hash_table_insert (set, &value2, &value2);

// Kein Effekt, weil schon vorhanden
g_hash_table_insert (set, &valuel, &valuel);

// Verwendet als Map

GHashTable *map = g_hash_table_new (g_int64_hash, g_int64_equal);

int64_t valuel = 1;
int64_t value2 = -1;

// Dem Schliissel '1’ den Wert ’-1’ zuordnen
g-hash_table_insert (set, &valuel, &value2);

Der Datentyp kann Schliisselmenge und Wertemenge als GList zuriickgeben um tiber alle Elemente

zu iterieren.

Listing 3.19: Iterieren iiber die Wertemenge einer Map

int_container container = [..] // Aus Skillstate laden
GHashTable *set = int_container_get_set (container);

// Zuriickgeben der Wertemenge als GList

GList xvalue_list = g_hash_table_get_values (set);

GList *iter;

for (iter = value_list; iter; iter = iter->next) {
int64_t *xcurrent_value = (int64_tx*) iter->data;

}

g-list_free (value_list);

Der Datentyp map muss im Binding nach einem induktiven Prinzip aufgebaut werden, falls er mit
mehr als zwei Basistypen verwendet wird. Eine map mit genau zwei Basistypen map < typi, typs >
wird dargestellt als GHashTable, die typ; Variablen typ, Variablen zuordnet (Schliissel-Wert Paare).
Eine map mit den Basistypen typ1, . .., typp+1 wird zur GHashTable, die typ; Variablen eine Map
mit den Basistypen typs, . . ., typn+1 zuordnet. Die Datentypen miissen denen aus der Spezifikation

entsprechen.

25

3 Benutzungsschnittstelle

Listing 3.20: Verwendung von Maps mit mehr als zwei Basistypen

// drei Basistypen: map<v64,v64,v64>

GHashTable *map = g_hash_table_new (g_int64_hash, g_int64_equal);
GHashTable *nested_map = g_hash_table_new (g_int64_hash, g_int64_equal);

int64_t one 1;
int64_t two 2;
int64_t three = 3;

// Geschachtelte Map als Wert fiir den Schliissel "1’
g_hash_table_insert (map, &one, nested_map);

// Schlissel ‘2’ -> Wert '3’
g_hash_table_insert (nested_map, &two, &three);

26

4 Implementierung

4.1 Architektur

Der Programmcode des Bindings gliedert sich in Einheiten mit Attributen und Methoden, die wir
im Sinne der Objektorientierung als Klassen bezeichnen. Die Programmiersprache C unterstiitzt die
Objektorientierung nicht, deswegen verwenden wir folgende Konventionen:

« Jede Klasse wird im Binding reprisentiert in Form einer header-Datei (Dateiendung .h) und
einer source-Datei (Dateiendung .c). Die header-Datei enthilt ein struct mit den 6ffentlichen
Attributen, das wie die Klasse benannt ist, und Funktionsdeklarationen fur die offentlichen
Methoden. Die source-Datei enthalt die Implementierung dieser Funktionen. Sie darf in anderen
Klassen nicht eingebunden werden.

« Offentliche Methoden einer Klasse sind Funktionen mit dem Namensschema <Klassenna-
me>_<Methodenname>. Die Instanz wird immer als erster Parameter tibergeben. Wir haben
bewusst darauf verzichtet, einfache Datenzugriffe in getter und setter zu kapseln, um die
Lesbarkeit des Codes zu verbessern. Wir schreiben z.B. pool->declaration->super_type statt
type_declaration_get_super_type (storage_pool_get_declaration (pool))

« Jede Klasse hat einen Konstruktor und einen Destruktor <Klassenname>_new und <Klassenna-
me>_destroy. Der Konstruktor allokiert Speicher auf dem Heap und initialisiert alle Felder des
struct. Der Destruktor gibt den Speicher der iibergebenen Instanz frei.

Abbildung 4.1 zeigt die Klassen zum Lesen und Schreiben von Bindrdateien. Die Klassen binary_reader
und binary_writer lesen und schreiben auf unterster Ebene, also einfache Datentypen wie Integer,
Floats und Strings. Die Klassen reader und writer lesen, bzw. schreiben ganze Bindrdateien, also
Stringblocke, Typinformationen und Felddaten. Die Abschnitte 4.4 und 4.5 behandeln Details zum
Lesen und Schreiben.

Abbildung 4.2 enthélt die Modellklassen im Binding in UML-Darstellung. Bekannte Benutzertypen
sind im Binding als Klassen vorhanden, die von skill_type erben, sind aber im Diagramm nicht
dargestellt.

4.1.1 Skill_State

Die Klasse skill_state dient als Container fiir Typinformationen, Instanzen und ggf. Informationen zur
Binérdatei. Falls der skill_state aus einer Binardatei erzeugt wurde oder bereits geschrieben wurde,
enthilt das Attribut filename den Namen dieser Datei. Der skill_state halt aulerdem eine Referenz
auf den string_access und einen storage_pool fiir jeden bekannten Benutzertypen.

27

4 Implementierung

reader

api

writer

+ read_file(filename):skill_state

binary_reader

+ read_bool() : bool

+ read_i8() : int8_t

+ read_i16() : int16_t
+read_i32() : int32_t
+ read_i64() : int64_t
+ read_v64() : int64_t
+ read_f32() : float

+ read_f64() : double
+ read_string() : char*

+ empty_skill_state() : skill_state

+ delete_skill_state(skill_state)

+ skill_state_from_file(string) : skill_state

+ write_to_file(string)

+ append_to_file(string)

+ get_all_instances() : list<skill_type>

+ delete_skill_type(skill_type)

--------- pro Benutzertyp -----------

+ get_<type>_instances()

+ create_<type> ([..])

+ instanceof_<type> (skill_type): bool
pro Feld

+ <type>_set_<field> (skill_type, [..])

+ <type>_get_<field> (skill_type) : [..]

+ write(filename)
+ append()

binary_writer

Abbildung 4.1: Klassen zum Lesen und Schreiben im Binding

4.1.2 String_Access

Strings sind in Bindrdateien in Form von Stringblocken organisiert [Fel13, §6.2]. Sie sind iiber eine Id
identifiziert. Deswegen brauchen wir beim Schreiben der Datei eine Zuordnung String — Id, da
wir an dieser Stelle nicht den String selbst einfiigen, und beim Lesen eine Zurdnung Id — String.
Die Klasse string_access hilt deswegen zwei maps, id_by_string und string by id als Attribute. Wir

+ write_bool(bool)

+ write_i8(int8_t)

+ write_i16(int16_t)

+ write_i32(int32_t)

+ write_i64(int64_t)

+ write_v64(int64_t)
+ write_f32(float)

+ write_f64(double)

+ write_string(char*)

kapseln den Zugriff auf die maps in Methoden, wie in Listing 4.1 gezeigt.

Listing 4.1: Methoden der Klasse String_Access

int64_t get_id_by_string (string_access this, char *string);

char xget_string_by_id (string_access this, int64_t id);
GList xget_all_strings (string_access this);
void add_string (string_access this, char x*string);

Somit stellen wir sicher, dass beide maps zueinander passen, also die Schliisselmenge der einen immer
gleich der Wertemenge der anderen ist. Die Methode add_string fiigt den String nur dann hinzu, falls

er nicht schon vorhanden ist.

28

4.1 Architektur

string_access

- strings_by_id : GHashTable*
- ids_by_string : GHashTable*

skill_state

+ add_string(char*)

+ string_by_id(int64_t) : string
+id_by_string(char*) : int64_t
+ get_size() : int64_t

+ get_all_strings() : GList*

Tstrings*

+ file_name : char*

base_types element_type

[o] ol |

type_information

[
state
|

skill_type

skill_id : int64_t
0.*

type : enum_type

name : char*
constant_value : int64_t
array_length : int64_t

T
declaration
1

pools

instances,

new_instances

type_declaration

super_type

1

type_info

0.1

name : char*
size : int64_t
remove_null_references : void(skill_type)

1
declaration-

super_pool base_pool sub_pools

I_lo..l l_ll l_lo..*

storage_pool

+id @ int64_t
+ |bpsi : int64_t

+ get_instance_by_id(int64_t) : skill_type
+ get_instances() : GList*

+ get_new_instances() : GList*

+ add_instance(skill_type)

+ remove_null_references()

+ prepare_for_writing()

+ prepare_for_appending()

+ get_sub_pools() : GList*

+ mark_instances_as_appended()

fields

0.*

field_information

«| name : char*
read : read_function
write : write_function

| 0..
fields:

Abbildung 4.2: Klassendiagramm der Modellklassen im Binding

4.1.3 Skill_Type

Die Klasse skill_type dient als Basisklasse fiir alle Benutzertypen. Jede Instanz hélt eine Referenz auf
den skill_state, dem sie zugeordnet ist und ggf. die Id, die sie in der Bin4rdatei hat. Aulerdem ist die
type_declaration referenziert, die den Benutzertyp beschreibt.

4.1.4 Type_Declaration

Die Klasse type_declarationbeschreibt die Struktur eines Benutzertypen. Name und Obertyp sind direkt
aus der Spezifikation entnommen. Auflerdem speichert die Klasse die Anzahl Bytes, die eine Instanz

des Typs im Speicher belegt. Die Felder des Benutzertypen sind als field_information referenziert.

29

4 Implementierung

4.1.5 Field_Information

Die Klasse field_information beschreibt ein Feld eines Benutzertypen. Sie hélt den Namen und ggf.
zusatzliche Informationen in Form einer type_information. Auflerdem Funktionen um Felddaten fiir
dieses Feld zu lesen und zu schreiben.

4.1.6 Type_Information

Die Klasse type_information beschreibt den Datentyp eines Feldes. Sie hat die Attribute:

« Name des Benutzertyps, falls das Feld einen Zeiger auf einen Benutzertypen enthélt
« Den konstanten Wert, falls das Feld eine Konstante ist.

+ Den Datentyp der Elemente fiir array, set oder list

« Die Lange des Arrays, falls das Feld ein array fester Lange enthilt

« Eine Liste von Basistypen, falls das Feld eine map enthilt

Nicht zutreffende Attribute werden jeweils auf null gesetzt.

4.1.7 Storage_Pool

Fiir jeden bekannten Benutzertypen im Binding hélt der skill_state eine storage_pool Instanz. Hier
sind alle Instanzen dieses Typs referenziert, auflerdem die type_declaration fiir diesen Typ.

4.2 Darstellung von Benutzertypen

Wir erklaren in diesem Abschnitt den Aufbau der structs fir Benutzertypen, zeigen, wie der Zugriff
auf deren Daten funktioniert (getter und setter), und begriinden, warum Typkonvertierungen moglich
sind. Die Klasse skill_type ist der abstrakte Obertyp fiir alle Benutzertypen. Sie definiert eine Id und
Referenzen auf skill_state und type_declaration.

Listing 4.2: Der abstrakte Typ Skill_Type

typedef struct skill_type_struct {
int64_t skill_id;
type_declaration declaration;
skill_state state;

} skill_type_struct;

Wir erklaren den Aufbau der structs fiir Benutzertypen anhand der Spezifikation aus Listing 3.8. Die
Vererbungshierarchie ihrer Benutzertypen ist in Abbildung 4.3 verdeutlicht.

30

4.2 Darstellung von Benutzertypen

SkillType

skill_id : int64_t
declaration : type_declaration
state : skill_state

T

Person

name : string
father : Parent
mother : Parent

T

Parent

children : list<Person>

Abbildung 4.3: Vererbungshierarchie der Benutzertypen Person und Parent

Wir stellen Untertypen als structs dar mit dem Obertypen als ersten Eintrag. Dabei ist entscheidend,
dass kein Zeiger auf den Obertyp verwendet wird, sondern das entsprechende struct. Listing 4.3 zeigt
den Aufbau der Typen im Binding nach diesem Prinzip.

Listing 4.3: Interne Darstellung der Benutzertypen

// Benutzertyp ’‘person’ mit Obertyp ’'skill_type’
typedef struct person_struct {
skill_type_struct _super_type; // Struct des Obertyp
char *_name;
parent _father;
parent _mother;
} person_struct;

// Benutzertyp ’‘parent’ mit Obertyp ’'person’
typedef struct parent_struct {
person_struct _super_type; // Struct des Obertyp
GList x_children;
} parent_struct;

31

4 Implementierung

Parent

Person

children

Abbildung 4.4: Eine Parent Instanz im Speicher

Person

Skill_Type

name

father

mother

Abbildung 4.5: Typkonvertierung von Parent zu Person

Der Standard garantiert, dass ein Zeiger auf ein struct nach passender Konvertierung immer zu einem
Zeiger auf den ersten Eintrag des struct wird[c9903, §6.7.2.1.13]. Nach unserer Konstruktion ist der
erste Eintrag immer die Darstellung des Obertyps.

Abbildung 4.4 veranschaulicht die Darstellung einer Parent Instanz im Speicher. Nach einer Typkon-
vertierung zu Person bleibt die Adresse gleich, nur die Sicht auf die Daten (Offsets der Felder) ist
angepasst. Das Person Feld hat die gleiche Adresse wie die Parent-Instanz, deswegen sind die Zugriffe
auf die Felder auch nach der Typkonvertierung nach Person korrekt (Abbildung 4.5). Die Sicht nach
der Typkonvertierung nach skill type ist schliefSlich in Abbildung 4.6 verdeutlicht.

32

4.2 Darstellung von Benutzertypen

skill_type

skill_id

declaration

state

Abbildung 4.6: Typkonvertierung von Parent zu SkillType

Wir halten wihrend der Ausfithrung des Bindings storage pools fiir alle Benutzertypen im Speicher.
Jeder Pool referenziert den Pool seines Obertyps und eine Liste von Pools fiir Untertypen. Referenzen
auf Instanzen sind in der Bindrdatei iiber die Id der Instanz angegeben, deswegen benétigen wir
beim Lesen von Binédrdateien eine effiziente Zuordnung von der Id zur Instanz. Ids sind eindeutig
innerhalb eines Basistyps [Fell3, vgl.§6.3], deswegen speichern wir alle Instanzen des Basistyps,
inklusive Instanzen erbender Typen in einem Array im Pool des Basistyps. Wir kénnen dann eine Id
als Index im Array interpretieren, um die zugehorige Instanz zu finden.

Andererseits benétigen wir eine schnelle Moglichkeit, alle Instanzen eines Untertypen zu finden.
Deswegen halt jeder Untertyp ein Array, das nur Instanzen dieses Typs enthélt. Abbildung 4.7 zeigt
die Organisation von Pools und Instanzen im Speicher anhand der Spezifikation aus Listing 4.4

Listing 4.4: Spezifikation der Benutzertypen Person, Parent und Other

Person {
string name;
Parent mother;
Parent father;

}

Parent : Person {
list<Person> children;

}

// Weiterer Typ ’'Other’ ohne Felder
Other {
}

Im Beispiel wurden Instanzen in folgender Reihenfolge erzeugt:

33

4 Implementierung

« Person
« Parent
« Other
« Parent
o Other

Instanzen von Untertypen werden immer von mehreren Pools referenziert, auch von allen Pools von
Obertypen. Die Darstellung erlaubt das effiziente Iterieren iiber Instanzen eines Typs und Zugriff auf
eine Instanz iiber ihre Id.

storage_pool - parent storage_pool - person storage_pool - other

instances instances instances

QI Fann| jan

parent person other parent other

skill_id skill_id skill_id skill_id skill_id
declaration declaration declaration declaration declaration

state state state state state

name name name

father father father

mother mother mother

children children

Abbildung 4.7: Storage Pools und Instanzen im Speicher

4.3 Konventionen

4.2.1 Instanceof Abfragen

Jede Instanz halt eine Referenz auf die declaration, die ihren Typ bestimmt. Die Implementierung der
instanceof Funktionen kann deswegen diese declaration mit dem gefragten Typen abgleichen. Die
Funktion muss auch true zuriickgeben, falls irgendeiner der Obertypen tibereinstimmt. Listing 4.5
zeigt die Implementierung anhand der Spezifikation aus Listing 3.8.

Listing 4.5: Instanceof-Funktionen

bool instanceof_person (skill_type instance) {
type_declaration declaration = instance->state->person->declaration;

// Jeder Obertyp der (ibergebenen Instanz muss lberprift werden
type_declaration super_declaration = instance->declaration;
while (super_declaration) { // Abbruch, wenn der supertyp ’null’ ist
if (super_declaration == declaration) {
return true;
}
super_declaration = super_declaration->super_type;
}

return false;

4.3 Konventionen

Im verbleibenden Teil dieses Kapitels verwenden wir abkiirzende Schreibweisen um Programmcode
lesbarer und kompakter zu gestalten:

« Wir verwenden eine Punktnotation fir den Aufruf von Methoden und den Zugriff auf Attribute,
wie sie manche hohere Programmiersprachen anbieten (instanz.attribut oder instanz.methode()).

« Wir verwenden eine vereinfachte Darstellung, um iiber Listen zu iterieren (GList aus der glib
[glil4, Doubly-Linked Lists]). Die Darstellung orientiert sich an erweiterten for-Schleifen, wie
sie Java und C# anbieten. Listing 4.6 zeigt die Verwendung fiir eine Liste pools mit Elementen
vom Typ storage_pool.

35

4 Implementierung

Listing 4.6: Vereinfachte Darstellung von for-Schleifen

// Vereinfachte Schreibweise:
for (storage_pool pool in pools) {
[..]1 // Verwenden der Laufvariablen ’pool’

}

// Tatsdchliche Syntax im Code:

GList xiterator;

storage_pool pool;

for (iterator = pools; iterator; iterator = iterator->next) {
pool = (storage_pool) iterator->data;
[..]1 // Verwenden der Laufvariablen ’pool’

« Fiir Arrays verwendet das Binding den Datentyp GArray. Wir schreiben kurz array[i] fir den
Zugriff auf das i-te Element statt g_array_index (array, type, i).

« Fiir den Datentyp GHashTable schreiben wir verkiirzt map.get_values() und map.get_keys() fir
die Funktionen g_hash_table_get valuesund g_hash_table_get_keys, die eine Liste der Schliissel,
bzw. Werte zuriickgeben. Die Funktion, um den hinterlegten Wert fiir einen Schliissel abzurufen,
ist g_hash_table_lookup. Wir schreiben dafiir verkiirzt map[key].

« Typkonvertierungen sind in vielen Fallen nicht angegeben

« Funktionsparameter werden manchmal weggelassen, wenn sie fiir das Verstdndnis nicht relevant
sind.

« Das Priifen von Werten auf null ist manchmal weggelassen.

4.4 Lesen

Das grundlegende Vorgehen beim Lesen von Bindrdateien ist in [Fel13, §7] beschrieben. Das Binding
unterstitzt kein lazy loading [Fel13, vgl.§6.2.2], Es werden also alle Strings und Instanzen bekannter
Typen im Speicher erzeugt. Das Lesen besteht aus den Schritten:

« Stringblock lesen
+ Typinformation lesen
« Instanzen allokieren

« Felddaten lesen und den Instanzen zuweisen

Diese Schritte werden wiederholt bis das Ende der Datei erreicht wird.

36

4.4 Lesen

4.4.1 Stringblécke lesen
Der Aufbau eines Stringblocks ist in [Fel13, Abb.2] veranschaulicht. Um Strings zu lesen, muss das
Binding die Anzahl der Strings im Block lesen, anschlieend entsprechend viele Offsetwerte und

schlieBllich die Strings selbst, deren Langen anhand der Offsets bestimmt werden:

Listing 4.7: Lesen eines Stringblocks

int number_of_strings = read_v64 ();

int offsets[number_of_strings];

for (int 1 = 0; 1 < number_of_strings; i++) {
offsets[i] = read_i32 ();

}

// Lénge des Strings ist jeweils Offset minus vorherigem Offset.

int previous_offset = 0;

for (int i = 0; i < number_of_strings; i++) {
char *new_string = read_string (offsets[i] - previous_offset);
strings.add_string(new_string);
previous_offset = offsets[i];

An dieser Stelle erzeugt das Binding eine string_access Instanz, die im skill_state referenziert wird.
Fiir folgende Typblocke wird der string_access Strings per Id zuriickgeben kénnen.

4.4.2 Typinformation tberpriifen

Ein Typblock beginnt jeweils mit Typinformation zu jedem instanziierten Benutzertypen im Block.
Die Benutzertypen werden tiber ihren Namen identifiziert. Typinformationen sind in zwei Kategorien
einzuteilen.

« Erstens den Namen des Obertyps und Namen und Datentypen von Feldern. Diese Informationen
sind bereits in der Spezifikation festgelegt, also zur Zeit der Erstellung des Bindings bekannt
und werden beim Lesen lediglich mit den Daten aus der Binirdatei abgeglichen. Werden hier
Unterschiede festgestellt, werden sie auf der Konsole ausgegeben und die Programmausfithrung
wird abgebrochen.

Unbekannte Benutzertypen werden tibersprungen, genau so wie unbekannte Felder bekannter
Benutzertypen.

« Zweitens Informationen spezifisch fiir diese Binardatei:
— Anzahl der Instanzen
— Reihenfolge der Felder
— ggf. der local base pool start index [Fel13, vgl.§6.2.2]

37

4 Implementierung

Wir verwenden eine einfache Datenstruktur um diese Informationen zwischenzuspeichern,
da sie fiirs Lesen der Felddaten gebraucht werden. Die Reihenfolge, in der die Felder in der
Spezifikationsdatei aufgelistet sind, ist nicht bindend, kann zwischen Binirdateien variieren
und von der Reihenfolge aus der Spezifikation abweichen.

4.4.3 Instanzen erzeugen

Um neue Instanzen zu allokieren, muss fir jede Instanz der exakte Typ bestimmt werden, damit
die Grofle einer Instanz in Bytes bekannt ist. Die instance-Arrays der Pools enthalten ggf. bereits
Instanzen aus zuvor gelesenen Typblocken. In diesem Fall werden sie vergrofiert. Listing ?? zeigt die
Implementierung im Binding. Wir sortieren Instanzen von Untertypen hinter Instanzen des exakten
Typs ein.

Listing 4.8: Instanzen erzeugen

int count = read_information.count; // Information aus der Bindrdatei
int sub_instance_count = 0; // Bestimme Anzahl Instanzen von Subtypen
for (storage_pool sub_pool in pool.sub_pools) {

sub_instance_count += sub_pool.number_of_instances;

int old_count = pool.instances.size;
pool.instances.size += count; // Array des Pools vergré Bern
for (int i = old_count; i < old_count + count - sub_instance_count; i++) {
// Speicher fiir neue Instanzen einzeln allokieren,
// sodass Instanzen einzeln geléscht werden kénnen.
pool.instances[i] = malloc (pool.declaration.size);

// Verwende fiir Pools von Untertypen die Reihenfolge, in der sie
// In der Bindrdatei vorkommen
for (storage_pool sub_pool in read_info.subtype_order) {
// Rekursiver Aufruf fiir Untertypen
create_sub_pool_instances (state, pool.instances);

4.4.4 Felddaten lesen

Beim Erzeugen des Bindings ist der Datentyp fiir jedes Feld bereits bekannt. Das Binding stellt fiir
jedes Feld eine Funktion bereit, die Felddaten dieses Feldes liest, und den gelesenen Wert in einer
Instanz setzt. Diese read-Funktion hat die Parameter

o Der skill_state, dem die erzeugt Instanz zugeordnet wird, um Zeiger auf Benutzertypen auflgsen
zu kénnen

» Den string_access, um Strings tiber ihre Id zu bekommen

« Die Instanz selbst, in der der gelesene Wert gesetzt werden soll

38

4.4 Lesen

Listing 4.9: Deklaration der read-Funktion

typedef void read_function (skill_state, string_access, skill_type);

Diese Funktionen werden als Attribute der Klasse field_information gespeichert.

Die Implementierung der read-Funktion muss den zum Feld passenden Datentypen lesen und der iiber-
gebenen Instanz zuweisen. Listing 4.10 veranschaulicht die Funktionsweise anhand der Spezifikation
von Person aus Listing 3.3.

Listing 4.10: Funktionsweise der read-Funktionen

void person_read_name (skill_state state, string_access strings, skill_type instance) {
// Strings sind lber ihre Id angegeben
int64_t string_id = binary_reader.read_v64 ();
((person) instance)->name = strings.string_by_id (string_id);

Fir Felder, die Zahlen oder boolean enthalten, wird die passende Funktion aus dem binary_reader
aufgerufen:

« read i8 bis read_i64
o read_v64
« read_f32 und read_f64

« read_bool

Listing 4.11: Spezifikation mit Annotation und Zeiger auf Benutzertyp

Test {
annotation f; // Kann jeden bekannten Benutzertypen referenzieren
person p; // Benutzertyp bekannt bei der Erstellung des Bindings
}

Fiir Annotations muss zuerst der Typ der referenzierten Instanz bestimmt werden, um die Instanz
iber ihre Id zu bestimmen. Listing 4.12 zeigt die Implementierung am Beispiel der Spezifikation aus
Listing 4.11.

39

4 Implementierung

Listing 4.12: Lesen von Annotations

void test_read_f (skill_state state, string_access strings, skill_type instance) {
// Zieltyp ist als String angegeben
int64_t type_name = strings.string_by_id (binary_reader.read_v64 ());
storage_pool target_pool = state.pools[type_name];

// Ziel-Instanz liber ihre Id bestimmen
int64_t target_id = binary_reader.read_v64 ();
instance.f = target_pool.get_instance_by id (target_id);

Fir Zeiger auf Benutzertypen ist der Typ des Ziels beim Erstellen des Bindings bereits bekannt und
sein Pool ist in der Funktion schon angegeben. Listing 4.13 zeigt die Implementierung.

Listing 4.13: Lesen von Referenzen auf Benutzertypen

void test_read_p (skill_state state, string_access strings, skill_type instance) {
storage_pool target_pool = state.person;

// Ziel-Instanz liber ihre Id bestimmen
int64_t target_id = binary_reader.read_v64 ();
instance.p = target_pool.get_instance_by_id (target_id);

Wir beschreiben das Lesen von zusammengesetzten Typen anhand der Spezifikation aus Listing 3.15.
Elemente der zusammengesetzten Typen sind Zahlen, boolean, Strings, annotation oder Zeiger auf
Benutzertypen. Sie werden wie oben beschrieben gelesen.

40

4.4 Lesen

Listing 4.14: Lesen von zusammengesetzten Typen

// Fir Arrays mit variabler Lénge: zuerst Ldnge bestimmen
int64_t length = binary_reader.read_v64 ();

GArray *var_array = g_array_new (length);

[..1 // Einzelne Elemente lesen

// Fir Arrays konstanter Lédnge ist diese hart in die read-Funktion kodiert.
GArray *var_array = g-array_new (3);
[..]1 // Einzelne Elemente lesen

// Lesen von Listen
int64_t length = binary_reader.read_v64 ();
GList xlist = 0; // Leere Liste entspricht null-Zeiger
for (int 1 = 0; 1 < length; i++) {
list = g_list_append (list, binary_reader.read_v64 ());

// Lesen von Mengen
int64_t size = binary_reader.read_v64 ();
GHashTable *set = g_hash_table_new (g_int64_hash, g_int64_equal);
for (int i = 0; i < size; i++) {
current_value = malloc (sizeof (int64_t));
xcurrent_value = read_i64 (buffer);
g_hash_table_insert (set, current_value, current_value);

Ganzzahlen, Kommazahlen, und Boolean Werte miissen fiir list, set und map auf dem Heap allokiert
werden, da die dafiir vorgesehenen Typen GList und GHashTable Zeiger speichern. Der zusammen-
gesetzte Typ map muss gesondert behandelt werden, da er mehr als zwei Basistypen haben kann.
Hat die map genau zwei Basistypen, konnen Schliissel-Wert Paare nacheinander gelesen werden. Fiir
maps mit drei und mehr Basistypen muss ggf. zu einem Schliissel eine neue map erzeugt werden. Der
Generator erzeugt eine Funktion fiir jeden Basistypen der map, aufler dem letzten.

41

4 Implementierung

Listing 4.15: Lesen von Maps

// Liest Map mit einfachen Schliissel-Wert Paaren (v64->v64)
GHashTable container_read_map_nested_1 ([..]) {
GHashTable *xresult = g_hash_table_new ([..]);
int64_t length = read_v64 ();
int64_t xkey;
int64_t =xvalue;
for (int 1 = 0; i < length; i++) {
xkey = binary_reader.read_v64 ();
xvalue = binary_reader.read_v64 ();
result.insert (key, value);
}
return result;

}

// Liest Map mit geschachtelten Maps als Werten
GHashTable container_read_map_nested_0 ([..]) {
GHashTable *result = g_hash_table_new ([..]);
int64_t length = read_v64 ();
int64_t xkey;
for (int i = 0; i < length; i++) {
xkey = binary_reader.read_v64 ();
// Eigener Funktionsaufruf, um geschachtelte Map zu lesen
result.insert (key, container_read_map_nested_1 ([..]));
}

return result;

Bevor Felddaten gelesen werden, sind bereits alle Instanzen allokiert wie in Abschnitt 4.4.3 beschrie-
ben.

Ein Typblock kann Felder definieren, die bereits in fritheren Typblocken vorkamen. Diese Felder sind
in einer Liste im storage pool dieses Typs gespeichert. Es ist moglich, dass ein Typblock keine neuen
Instanzen, sondern nur neue Felder fiir bestehende Instanzen hinzufiigt. Gibt es neue Instanzen, so
muss der Block mindestens alle Felder aus fritheren Blocken angeben, kann aber weitere hinzufiigen.
Bereits zuvor definierte Felder miissen in der Bindrdatei vor neuen Feldern stehen, und miissen die
zuvor verwendete Reihenfolge einhalten, was wir beim Lesen iiberpriifen.

Falls der Typblock sowohl neue Felder, als auch neue Instanzen hinzufiigt, stehen die Daten von
bereits frither definierten Feldern neuer Instanzen vor den Daten von neuen Feldern [Fel13, vgl.§6.2.2
Effects of Appending]. Daten neuer Felder miissen ggf. auch Instanzen aus fritheren Typblocken
abdecken. Das Vorgehen, um Felddaten zu lesen, ist:

« Lesen der Felddaten fiir alle bereits friuher definierten Felder, nur fiir neue Instanzen

« Lesen der Felddaten fiir alle neuen Felder fiir alle Instanzen (aus fritheren Blécken und aus
diesem Block)

Listing 4.16 zeigt, wie die read-Funktionen aufgerufen werden, um Felddaten zu lesen und den
Instanzen zuzuordnen.

42

4.5 Schreiben

Listing 4.16: Felddaten lesen

// 1. Lese Daten von friiher definierten Feldern
// Die Liste ’pool.fields’ enthdlt nur Felder aus friheren Blécken
for (field_information field_info in pool.fields) {

// Index der ersten neuen Instanz.

// Im Array des Pools sind neue Instanzen bereits allokiert.

int64_t start_index = pool.instances.len - field_info.count;

for (int i = start; i < pool.instances.len; i++) {
field_info.read_method ([..], pool.instances[i]);

// 2. Lese Daten von neuen Feldern
// fir alte und neue Instanzen
// Die Liste ’'read_information.new_fields’ enthdlt nur neue Felder
for (field_info in read_information.new_fields) {
for (int i = 0; i < pool.instances.len; i++) {
field_info.read_method ([..], pool.instances[i]);

4.5 Schreiben

Das Vorgehen beim Schreiben von Binédrdateien wird in [Fel13, §6] erklart. Die erzeugte Binédrdatei
wird genau einen Stringblock und einen Typblock enthalten.

4.5.1 Geloschte Instanzen

Wird eine Instanz vom Benutzer geldscht, so wird ihr Speicher intern nicht direkt freigegeben, sondern
sie wird als geloscht markiert, indem ihre Id auf null gesetzt wird. Damit diese Instanzen nicht in
Bindrdateien geschrieben werden, miissen sie vor dem Schreiben aussortiert werden, und der von
ihnen belegte Speicher muss freigegeben werden. Das Vorgehen ist in Abschnitt 4.7 beschrieben.

4.5.2 Instanzen umsortieren
Das Serialisierungsformat verlangt, dass Instanzen vom gleichen Untertyp innerhalb eines Blocks

nacheinander stehen. Wir miissen also Instanzen eines Basistyps nach Untertyp sortieren. Untertypen
konnen wiederum Untertypen besitzen, deswegen verwenden wir eine rekursive Funktion.

43

4 Implementierung

Listing 4.17: Umsortieren von Instanzen innerhalb von Pools

for (storage_pool sub_pool in this.sub_pools) {
// Rekursiver Aufruf auf den Untertypen
reorder_instances (sub_pool);

// Untertypen sind jetzt bereits sortiert
GArray *new_array = g-array_new (this.instances.len);

int64_t number_of_sub_instances = 0;
for (storage_pool sub_pool in this.sub_pools) {
number_of_sub_instances += sub_pool.count;

// Einsortieren der Instanzen mit genau dem Typ des Pools

int64_t index = 0;

for (skill_type current_instance in this.instances) {
// Einsortieren nur, falls kein Untertyp

if (current_instance.declaration == this.declaration) {
new_array[index] = current_instance;
index++;

}

// Untertypen dahinter einsortieren
storage_pool sub_pool;
for (storage_pool sub_pool in this.sub_pools) {
for (skill_type current_instance in sub_pool.instances) {
new_array[index] = current_instance;
index++;

}
[..]1 // Speicher der Instanzen freigeben
this.instances = new_array;

4.5.3 Local Base Pool Start Index

Der local base pool start index(Ibpsi,[Fel13, vgl.Glossary,LBPSI]) ist der Index der ersten Instanz eines
Untertyps im Array des Basispools. Wir schreiben Untertypen in der Reihenfolge, in der sie in der
sub_pools Liste im Pool des Obertyps vorkommen. Der [bpsi fiir den ersten Untertyp ist die Anzahl
der Instanzen des Obertyps minus die Anzahl aller Instanzen von Untertypen.

44

4.5 Schreiben

Listing 4.18: Bestimmen des Local Base Pool Start Index

// lbpsi als Zeiger lbergeben, damit der Wert (berschrieben werden kann
void calculate_lbpsi (storage_pool pool, int64_t *lbpsi) {
pool.lbpsi = *lbpsi;
int sub_instance_count = 0;
for (storage_pool sub_pool: pool.sub_pools) {
sub_instance_count += sub_pool.instances.len;
}
*1lbpsi += pool.instances.len - sub_instance_count;
for (storage_pool sub_pool: pool.sub_pools) {
calculate_lbpsi (sub_pool, lbpsi);
}

Listing 4.18 veranschaulicht die Berechnung der [bpsi. Die Funktion wird fiir alle Pools von Basistypen
aufgerufen.

4.5.4 Storage Pool Ids
Pools haben innerhalb einer Bin4rdatei eine Id, die iber die Reihenfolge gegeben ist, in der sie in der
Datei auftreten. Fiir die write Operation miissen wir diese Reihenfolge festlegen, wie in Listing 4.19

gezeigt.

Listing 4.19: Pool Ids zuweisen

int64_t pool_id = 0; // Pool-Ids fangen bei 0 an
for (storage_pool pool in state.storage_pools) {
pool.id = pool_id;
pool_id++;

4.5.5 Strings schreiben
Alle Stings, die in der Binardatei vorkommen, stehen im Stringblock vor dem Typblock. Wir miissen

also Strings aus Typinformationen und aus Felddaten sammeln, um den Stringblock zu schreiben
Listing 4.20 zeigt das Vorgehen.

45

4 Implementierung

Listing 4.20: Sammeln von Strings zum Serialisieren

// Sammeln von Strings aus Typinformationen
for (storage_pool pool in all_pools) {
string_access.add_string (pool.declaration.name);
// Enthdlt alle bekannten Felder
for (field_information field in pool.declaration.fields) {
string_access.add_string (field.name);
}
}

[..]1 // Sammeln von Strings aus Felddaten
// Ggf. auch aus zusammengesetzten Typen

Die Strings in einen Stringblock zu schreiben funktioniert dann mit den Schritten:

« Schreibe die Anzahl der Strings
« Schreibe fiir jeden String das Offset (Offset des vorherigen Strings plus die Linge des Strings)

« Schreibe die Strings byteweise

4.5.6 Typinformation schreiben

Der Aufbau der Typinformation ist in [Fel13, Figure 2] dargestellt und in [Fel13, §6.4] im Detail
ausgefiithrt. Die Implementierung schreibt fiir jeden Benutzertyp die Typinformation:

« Name des Typs

« Ggf. Name des Obertyps

« Ggf. Ibpsi

« Anzahl der Instanzen

« Restrictions des Typs. Wird nicht unterstiitzt, deswegen immer 0.
+ Anzahl der Felder

« Fiir jedes Feld

Restrictions. Wird nicht unterstiitzt, deswegen immer 0.

- Typ

— Namen

Offset der Felddaten

46

4.5 Schreiben

Falls der Benutzertyp ein Basistyp ist, schreiben wir fiir den Namen des Obertyps 0 und lassen den
Ibpsi weg. Fiir konstante Felder wird der Wert direkt nach dem Typindex eingefigt.

Listing 4.21: Typinformation fiir Konstanten schreiben

if (type_info.type.is_constant ()) {
if (type_info.type == ConstantI8) {
write_i8 (type_info.constant_value);
} else if (type_info.type == ConstantIl6) {
[..] Andere Konstante Datentypen analog behandeln

}

Fiir Felder, die Zeiger auf Benutzertypen enthalten, muss die Id des Pools, der die referenzierten
Instanzen enthalt, auf den Typindex fiir Zeiger addiert werden.

Listing 4.22: Referenzen auf Benutzertypen

int8_t type_index = type_info.type.get_index ();

if (type_info.type == UserType) {
storage_pool target_pool = storage_pools[type_info.name];
type_index += target_pool.pool_index;

}

write_i8 (type_index);

Listing 4.22 zeigt, wie Referenzen auf Benutzertypen in der Typinformation dargestelt werden. die
Funktion type_info.type.get_index() ist nach [Fel13, Appendix,E] implementiert. Fiir Zusammengesetz-
te Typen wird zusétzlich der Typ der Elemente und ggf. deren Anzahl angegeben. Fiir Maps die Anzahl
der Basistypen, gefolgt von den Indizes fir jeden Basistyp. Das wird in Listing ?? ausgefiihrt.

Listing 4.23: Typinformation fiir zusammengesetzte Typen

if (type_info.type.is_container_type ())) {
if (type_info.type == MapType) {
write_v64 (type_info.base_types.length);
for (type in type_info.base_types) {
// Schreibe IDs aller Basistypen
write_i8 (type.get_index ());
}
} else {
if (type_info.type == ConstantLengthArray) {
write_v64 (type_info.array_length);
}
// Schreibe Id des Typs der Elemente
write_i8 (type_info.base_type.get_index ()));

47

4 Implementierung

4.5.7 Felddaten schreiben

Der Generator erzeugt beim Erstellen des Bindings fiir alle bekannten Felder Funktionen, um Daten
aus diesem Feld zu schreiben. Die Funktion hat den skill_state als Parameter, um fiir Zeiger auf
Benutzertypen die Id bestimmen zu kdnnen, den string_access, um fiir Strings die Id bestimmen zu
konnen, auflerdem die Instanz. Der Riickgabewert ist die Anzahl an Bytes, die geschrieben wurden.

Listing 4.24: Deklaration der write-Funktion

typedef int64_t write_function (skill_state, string_access, skill_type);

Instanzen der Klasse field_information halten eine Referenz auf eine dieser Funktionen. Die write-
Funktionen sind nach dem gleichen Muster implementiert wie die read-Funktionen in Abschnitt 4.4.4.
Listing 4.25 zeigt den Aufruf der Funktionen.

Listing 4.25: Felddaten schreiben

for (field_information current _field = pool.declaration.fields) {
for (skill_type instance in pool.get_instances()) {
current_field->write (state, strings, instance, out);

}

4.5.8 Append

Voraussetzung fiir die Funktion append ist ein skill_state, der aus einer Bindrdatei erzeugt wurde
oder der bereits zu einem fritheren Zeitpunkt in eine Bindrdatei geschrieben wurde. Daten aus
der Binardatei durfen im skill_state nicht verandert sein. Das bedeutet erstens, dass Instanzen aus
der Binardatei nicht geldscht werden diirfen und zweitens, dass Felddaten aus der Bin4rdatei nicht
verdndert werden diirfen. Es ist moglich, dass die Bindrdatei von einem Binding geschrieben wurde,
welches aus einer anderen Spezifikation erzeugt wurde. In diesem Fall kann ein Benutzertyp in der
Binérdatei andere Felder haben als im Binding [Fel13, vgl.§6.2.3]. Append ist nur moglich, falls die
Binardatei fiir jeden Benutzertypen eine Teilmenge der Felder oder genau die Felder definiert, die das
Binding kennt.

Die Implementierung von append iiberschneidet sich stark mit write (Abschnitt 4.5), und verwendet
grofitenteils die gleichen Funktionen. Wir erkldren in diesem Abschnitt nur die Unterschiede.

Das Binding initialisiert Pools mit der Id —1. Beim Lesen oder Schreiben einer Binirdatei bekommen
Pools die Id gesetzt, die ihrer Reihenfolge in der Datei entspricht. Die Id eines Pools ist also gleich -1
gdw. der Pool noch nicht in der Binérdatei vorkommt. Beim Lesen oder Schreiben einer Binérdatei
wird aulerdem fiir jeden Pool die Liste von Feldern gesetzt (storage_pool. fields), die fiir diesen
Typ in der Datei vorkommen. Bei append schreiben wir einen Pool in die Binérdatei, falls er

« Noch nicht in der Binardatei vorkommt,

48

4.6 Fehlerbehandlung

« Neue Instanzen enthalt, oder
« Neue Felder enthalt.

Das Umsortieren der Instanzen und Bestimmen der Ibpsi funktioniert wie bei write (Abschnitte 4.5.2
und 4.5.3), fir append werden aber nur neue Instanzen betrachtet. Pools, denen bereits eine Id ungleich
—1 zugewiesen ist, behalten diese Id. Pools mit Id -1 bekommen jetzt wie in Abschnitt 4.5.4 neue Ids
zugewiesen, aber startend mit dem Maximum der bisher vergebenen Ids plus eins. Listing 4.26 zeigt
das Vorgehen.

Listing 4.26: Pool Ids zuweisen bei Append

int64_t max_id = 0;
// Bisher gré B te Id finden
for (storage_pool pool in all_pools) {
if (pool.id > max_id) {
max_id = pool.id;
}
}

// Nur Pools mit id ’'-1’ sind noch nicht in der Bindrdatei definiert
int64_t pool_id = max_id + 1;
for (storage_pool pool in all_pools) {

if (pool.id == -1) {
pool.id = pool_id;
pool_id++;

}

Die string_access Instanz, die beim letzten read oder write erzeugt wurde, enthalt alle Strings, die
in der Binardatei vorkommen. Wir sortieren wie in Abschnitt 4.5.5 Strings in den string_access ein,
schreiben aber nur die Strings, deren Id grofier ist als die grofite Id in der Binérdatei. Strings, die
bereits in der Binardatei vorkommen, miissen nicht erneut geschrieben werden.

4.6 Fehlerbehandlung

Wenn fehlerhafte Bindrdateien gelesen werden [Fel13, Appendix,B], bricht das Binding die Program-
mausfithrung ab. Der Fehler wird auf der Konsole ausgegeben. Die Programmiersprache C unterstiitzt
keine intelligentere Behandlung von Fehlern, aber es ist eine Implementierung denkbar, die Ausnah-
men anhand von Riickgabewerten darstellt, und Fehlermeldungen in eine globale Variable schreibt.
Aus Zeitgriinden haben wir eine Losung dieser Art nicht implementieren kénnen.

49

4 Implementierung

4.7 Speicherfreigabe

Um den Speicher freizugeben, der fiir eine Instanz auf dem Heap allokiert ist, reicht ein Aufruf von
free. Auf diese Weise kann aber undefiniertes Verhalten des Programmes entstehen, wenn Zeiger auf
diese Instanz existieren. Deswegen verwenden wir Funktionen, um solche Zeiger auf null zu setzen:

Listing 4.27: Definition der Cleanup-Funktion

typedef void cleanup_function (skill_type instance);

Wir referenzieren eine solche Funktion in der Klasse type_declaration. Vor dem Schreiben in eine
Binardatei setzen wir mit Hilfe dieser Funktionen Referenzen auf geldschte Instanzen auf null, und
geben dann den Speicher fiir geloschte Instanzen frei.

4.8 Tests

Mithilfe von Tests soll sichergestellt werden, dass die Implementierung korrekt ist. Die Tests ori-
entieren sich an den Beispielen in [Fel13] und an den Tests aus der Anbindung fiir Scala [ski] und
verwenden die dort bereitgestellten Bindrdateien. Die Tests lesen die folgenden Bindrdateien ein und
gleichen die erzeugten Instanzen mit den erwarteten Werten ab:

« Die Bindrdatei mit zwei date-Instanzen [Fel13, §6.6]. Damit wird grundlegend das Parsen von
Binédrdateien getestet.

« Eine Binardatei mit einem Benutzertyp, der Felder aller Zahlentypen, Strings, und Boolean
enthalt.

« Eine Bindrdatei mit einem Benutzertyp, in dessen Felder alle zusammengesetzten Typen vor-
kommen.

« Bindrdateien zu den Beispielen aus [Fel13, §6.2.3]. Wir testen damit das Lesen von Instanzen, die
iiber mehrere Blocke verteilt sind, und das Lesen von Typblocken, die neue Felder hinzufiigen.
Wir testen auch die Kombination aus beidem, neue Instanzen und neue Felder in einem Block.

« Eine Binirdatei mit leeren Blocken, und eine mit Instanzen ohne Felder. Damit testen wir, dass
diese Fille nicht zu Fehlern fuhren.

« Eine Binardatei zu [Fel13, §6.3.2], die Benutzertypen mit Vererbungshierarchie enthalt, deren
Instanzen iber mehrere Blocke verteilt sind. Wir testen damit auch die instanceof -Funktionen
und gleichen die Typen der Instanzen mit den erwarteten Werten ab.

« Eine Binirdatei, die Annotations enthalt, um zu testen, dass der Zeiger richtig ausgewertet wird.

« Eine Binardatei, die konstante Felder definiert.

50

4.8 Tests

Alle Tests schreiben zusétzlich selbst Bindrdateien, lesen sie wieder ein, und gleichen die Instanzen
ab, um das Schreiben zu testen.

Auflerdem werden Bindrdateien mit unbekannten Typen gelesen, um zu testen, dass sie nicht zum
Fehler fithren.

51

5 Zusammenfassung und Ausblick

In der Diplomarbeit ist die Entwicklung einer SKilL-Sprachanbindung an die Programmiersprache C
beschrieben. Damit ist nachgewiesen, dass die Anbindung an eine Sprache ohne Objektorientierung
moglich ist. Wir haben beschrieben, wie Benutzertypen, die in einer Vererbungshierarchie organisiert
sind, in C abgebildet werden konnen. Die Implementierung erlaubt Typkonvertierungen zwischen
Benutzertypen, und bietet Typsicherheit.

Die Anbindung konnte hinsichtlich Performance weiter verbessert werden, indem lazy loading
unterstiitzt wird. Es konnte auch eine Fehlerbehandlung durch Ausnahmen wie aus hoheren Pro-
grammiersprachen nachgebildet werden. Auflerdem konnte die Anbindung erweitert werden, sodass
sie die volle SKilL Unterstiitzung bietet.

Naturgemaf ist die Verwendung der generierten Bindings syntaktisch umstandlicher als bei einem
Binding fiir eine hohere Programmiersprache. Der Benutzer muss zusétzliche Typkonvertierungen
einfiigen, weil es nicht moglich ist, Methoden zu iiberladen. Bei zusammengesetzten Typen wird der
Datentyp ihrer Elemente nicht tiberpriift. Die Anbindung bietet trotzdem den gleichen Funktionsum-
fang wie Anbindungen an héhere Programmiersprachen und ist dank intelligenter Gestaltung der
Benutzungsschnittstelle sinnvoll einsetzbar.

53

Literaturverzeichnis

[c9903]

[Fel13]

[fre]
(gli14]

[iee08]

[Prz14]

[ski]

[Ung14]

The C standard: incorporating technical corrigendum 1; BS ISO/IEC 9899:1999; [includes
the C rationale]. Wiley, Chichester [u.a.], 2003. URL http://swbplus.bsz-bw.de/
bsz107279258cov. htm. (Zitiert auf den Seiten 17, 22 und 32)

T.Felden. The SKilL Language. Technischer Bericht Informatik 2013/06, Universitét Stuttgart,
Fakultit Informatik, Elektrotechnik und Informationstechnik, 2013. (Zitiert auf den Seiten 9,
10, 11, 13, 14, 22, 28, 33, 36, 37, 42, 43, 44, 46, 47, 48, 49 und 50)

FreeMarker Java Template Engine. http://freemarker.org/. (Zitiert auf Seite 15)

GLib Reference Manual. https://developer.gnome.org/glib/2.42/, 2014. (Zitiert auf
den Seiten 17, 23, 24 und 35)

IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor Standards Com-
mittee of the IEEE Computer Society. 3 Park Avenue, New York, NY 10016-5997, USA, 2008.
(Zitiert auf Seite 17)

D. Przytarski. Performance-Evaluation einer sprach- und plattformunabhangigen Seriali-
sierungssprache. Bachelorarbeit: Universitédt Stuttgart, Institut fiir Softwaretechnologie,
Programmiersprachen und Ubersetzerbau, 2014. (Zitiert auf Seite 9)

SKilL auf Github. https://github.com/skill-lang/skill. (Zitiert auf den Seiten 9
und 50)

W. Ungur. Nutzbarkeitsevaluation einer sprach- und plattformunabhdngigen Serialisierungs-
sprache. Diplomarbeit, Universitat Stuttgart, Fakultat Informatik, Elektrotechnik und Infor-
mationstechnik, Germany, 2014. (Zitiert auf den Seiten 9, 14 und 16)

Alle URLs wurden zuletzt am 03. 11. 2014 gepriift.

55

http://swbplus.bsz-bw.de/bsz107279258cov.htm
http://swbplus.bsz-bw.de/bsz107279258cov.htm
http://freemarker.org/
https://developer.gnome.org/glib/2.42/
https://github.com/skill-lang/skill

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einführung
	1.1 Gliederung
	1.2 Bisherige Anbindungen
	1.3 Die Seriaisierungssprache SKilL
	1.3.1 Beschreibungssprache
	1.3.2 Serialisierungsformat

	1.4 Aufgabenstellung
	1.5 Begriffe

	2 Generator
	2.1 Bedienung
	2.2 Funktionsweise

	3 Benutzungsschnittstelle
	3.1 Systemanforderungen
	3.2 SkillState
	3.3 Benutzertypen
	3.4 Vererbung
	3.5 SKilL Datentypen
	3.5.1 Zahlentypen und Boolean
	3.5.2 Annotation

	3.6 Zusammengesetzte Typen
	3.6.1 Array
	3.6.2 List
	3.6.3 Set und Map

	4 Implementierung
	4.1 Architektur
	4.1.1 Skill_State
	4.1.2 String_Access
	4.1.3 Skill_Type
	4.1.4 Type_Declaration
	4.1.5 Field_Information
	4.1.6 Type_Information
	4.1.7 Storage_Pool

	4.2 Darstellung von Benutzertypen
	4.2.1 Instanceof Abfragen

	4.3 Konventionen
	4.4 Lesen
	4.4.1 Stringblöcke lesen
	4.4.2 Typinformation überprüfen
	4.4.3 Instanzen erzeugen
	4.4.4 Felddaten lesen

	4.5 Schreiben
	4.5.1 Gelöschte Instanzen
	4.5.2 Instanzen umsortieren
	4.5.3 Local Base Pool Start Index
	4.5.4 Storage Pool Ids
	4.5.5 Strings schreiben
	4.5.6 Typinformation schreiben
	4.5.7 Felddaten schreiben
	4.5.8 Append

	4.6 Fehlerbehandlung
	4.7 Speicherfreigabe
	4.8 Tests

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

