Studiengang:

Priifer:

Betreuer:

Begonnen am:

Beendet am:

CR-Klassifikation:

Institut fiir Softwaretechnologie
Abteilung Software Engineering
Universitat Stuttgart
Universitétsstrafse 38
D-70569 Stuttgart

Diplomarbeit Nr. 3693

Prisentation von
Software Repository Mining

in Eclipse

Mehmet Fatih Cicek

Informatik

Prof. Dr. rer. nat. Stefan Wagner
M. Sc. Jasmin Ramadani

10. Oktober 2014

10. April 2015

D.2.3,D.2.6

Inhaltsverzeichnis

LD E) 1L ¥ 1D \Y
AbbildungsverzeiChnis ... ————————————————— VII
TabelleNVerZeiChis ... VIII
Verzeichnis der LiStiNGS ... ssssssens IX
ADKUIZUNGSVEIZEIChNIS. ...t X
I 030 11 =5 01D 1
0 0 10) 1

I A T T o/ 1 1 1

I T 03 =0 () o1 1 D o 2

I € 11 0 T | B ¥) 3
2.1 Software Repository MiNINg ... 3

2.2 Change COUPLING.....ccimimmsinisssssss s s 3

S T D F- U B0 0100 4

2.4 Data Mining TechniKenN.......ccommsss s 8
2.4.1 Uberblick iiber die Data Mining TEChNIKENuuuuuussssssssssseessesessssssssssssssssssssssssssssssssssses 8

2.4.2 Ermittlung von Frequent Itemsets in der Assoziationsanalysecccoueeeereenes 11

2.5 Eclipse Plattform.. s s sss s ssas 17
2.5.1 WaAS ISt ECHIPSE7 .ot ssssesssess s sessssssss s sesssssssassases 18

2.5.2 Eclipse Plattform UDEISICHEuuuusmmssssssssmssmmsssnns 18

2.5.3 Eclipse Plug-In MeChaniSmMUS......ccouieerereeserereessesesssesssssssessssssesssssssssssessssssssssssessaees 19

3 Verwandte Projekte ... 21
4 Tools und AlGOTithMEeN ... ————————————————————— 25
4.1 Sequential Pattern Mining Framework (SPMF) ... 25
4.1.1 Aufbau und Funktionsweise des SPMFcoresessesesesssessssessessees 25

4.1.2 SPMF Data Mining AlgOrithmencccrneeceeeesseeseseesessesessessssssesesssessssssesssees 26

4.2 WINAdOWDUIIAET ... sssasssnens 27

5 Anforderungen und KONZEPL ... 29
LT LY 0§ (0] 0 1) ot 1D 7= o 29
5.1.1 Uberarbeitung von SPMF Data Mining AlgOrithImuscccocoueessessssssssssssssssssssssesess 29

5.1.2 Integration von Data Mining ins Eclipse TOOlccoeneecneeneeneeneeseesesseesseseeenne 30

5.2 ArchiteKtur SRM PIUug-IN ... sssssssssssssssssssssssssssas 30

5.3 Struktur und Workflow des SRM Plug-Ins ... 32
5.3.1 Struktur SRM PIUZ-IN ..o sessessss s sessesssesssss s sasesses 32

6

7

8

5.3.2 WOrKflOW SRM PIUZ-IN .ot sesesssesssesssesssssssssssesssssssesssssans 33

5.4 Korrelation der einzelnen SRM Plug-In Komponentenc.coummmmessmssssssssssssssessns 34
54,1 EXECULION VIBW ..ottt sesss st s s s s ssssssssssssassssssssssssssssaneens 34
542 FPGAJAT FIlE coetrreeeeereeeseeeeeeseerssetsses s ssesssss s ssssssss s sssses st ssss s sssesssssssssssssessssssssssssenes 35
5.4.3 Project EXplorer UNd EditOr ... sesssssssesssessssssessssenns 37
5.4.4 CoUPLEd CRANGES ...veueeererereeerererserser st sess s s as s 39
5.4.5 COMMIL VIBW oottt sssss st s sss st ssssssssessssssssssssnesns 40
5.4.6 COMMIt MESSAZE VIBW ..orverererersereerseessees s sesssesse s sssssesssesssssssessssssssssssssssssesasssans 41
IMPIEMENTIETUNG .ot AR e R 42
6.1 EntwicklungSumgebUNgcccuvmimimsmmmmmsmmmssssssssssssss s 42
6.2 Registrierung des SRM Plug-InS.......ccommmmmmmnmmsmmssssssssssssssssssssssssassss 42
6.3 Auflistung der einzelnen Klassen........uimmmnmnsnmsmsssssssssssssssss 45
6.4 Implementierung der einzelnen Komponenten........c.mmmmmmmmmssn. 47
6.4.1 EXeCUtIONVIEW.JAVA it sesssssnes 47
6.4.2 MaINCONTIOLJAVA .euirerieierererereerserseer s es s sess s sennaes 47
6.4.3 DBCONNECHONJAVA i s s s 51
6.4.4 FPGA JAT couteeieeeeemeeeeeessesss s sessse s s s es e s R RS R e 56
6.4.5 CoUPlEdCRANGES.JAVA ..o ierererrereereer e ss s seenees 58
6.4.6 COMMItVIEW.JAVA wiiricrirniiss st s 70
6.4.7 CommitMessageVieW.Java 72
6.4.8 SEATCN.JAVA crrereercerees e se s s ses e s s R 73
6.4.9 PrOCESS.JAVA it 73
Vergleich von Sequential Pattern Mining und Frequent Itemset Mining..........ouousiuinsnns 76
7% S 038 11 =5 111D o 76
7.2 Aufbau und Funktionsweise der beiden Algorithmenc.ournmsmsmsmssssnssssssnninnnns 76
7.2.1 Aufbau und Funktionsweise von Frequent Itemset Miningccouomeeereereererseeenne 77
7.2.2 Aufbau und Funktionsweise von Sequential Pattern Mining.........couoreereesrerneeenn. 78
7.2.3 Tabellarische Gegeniiberstellung der beiden Algorithmen........ccomeereereesrerneennne 79
7.3 Konzept zur Integration von Sequential Pattern Mining ins SRM Plug-In 80
7.3.1 Lese-und Schreibeoperationen auf Datenbanktabellen........ouueeeninnenreererseennenn. 80
7.3.2 Architektur SRM Plug-Ins unter Anwendung von Sequential Pattern Mining... 81
7.4 Fazit des VergleiChes ... 83
D8£ T L1 U () 84
8.1 Uberblick iiber den EValuatiOnSPrOZESScmmmsmesesesssssssssssssssssssssssssssssssssssssesns 84
8.2 Vorbereitungsphase ... ——————————————— 84
8.2.1 Erstellung vOn TeStAaten ... eereereeseesressseesessessssseesssssesssssssesssssssesssssssssssessssssssaees 84
8.2.2 Festlegung des TestfallSZENarios.......coueerereennernserseerseesees s sesssssssessessssssessessssssees 85

II

8.2.3 Erstellung von dem Fragebogen ... sessssessssssssssssesssssesssssssessees 86

8.3 TeStPRASE .o —————————————————— 87
8.4 Auswertungsphase der Evaluationsergebnisse ... 87
Zusammenfassung und AUSDLCK ... —————————— 89
15 20 - N E] 3 91
LI TS 2 10D a2 g Ul 1D 1) 93
D0 14 = 1 0D 97

I

v

Danksagung

Zuniéchst mochte ich mich an dieser Stelle bei all denjenigen bedanken, dich mich wihrend

meines Studiums und meiner Diplomarbeit unterstiitzt und motiviert haben.

Mein besonderer Dank gilt meiner Familie, die mich nicht nur finanziell, sondern auch

moralisch immer unterstiitzt und mir den Riicken gestarkt haben.

Grofler Dank gebiihrt auch meiner Verlobten, die mich immer wieder ermutigte und stets

ein offenes Ohr fiir mich hatte.

Weiterhin bedanke ich mich bei meinem Betreuer M. Sc. Jasmin Ramadani fiir die
hervorragende Betreuung wund freundliche Unterstiitzung wiahrend der gesamten

Diplomarbeit.

Ebenfalls bedanken mochte ich mich bei meinem Referenten Herrn Prof. Dr. Stefan Wagner,

der mir diese Arbeit ermdglicht hat.

Schlie8lich danke ich auch meinen Freunden und Kommilitonen fiir die schéne Zeit an der

Universitdt Stuttgart.

VI

Abbildungsverzeichnis

Abbildung 1: Data Mining: Suche nach Wissen in den Daten [6]..........cccccevvniririninininininencnnnce. 4
Abbildung 2: Der Data-Mining-Prozess [7]cccccovvvvvrnniniriniriisricnisirieeee e 5
Abbildung 3: Architektur eines Data Mining Systems [6]cccocovvivnininninnininninicne. 6
Abbildung 4: Klassifikationsanalyse: Entscheidungsbaum fiir Kreditwiirdigkeit [8].............. 9
Abbildung 5: Regressionsanalyse [9] ..o 9
Abbildung 6: Beispiel Clusteranalyse [11]cccccoovivvirininnininininirirircer e 10
Abbildung 7: Assoziationsanalyse [9].........cccovvvviririniiiiinininiinice e 11
Abbildung 8: FP-TTeccccoviiiiiiiiiiiiicii e 14
Abbildung 9: Prifixpfad mit der Endung Melone.............ccccocoviiiiiiiiiiiiiiiccccs 15
Abbildung 10: Conditional FP-Tree fiir das Item Meloneccccccovviiiiiiiniiniiiiiiiiii, 17
Abbildung 11: Eclipse Plattform Ubersicht [23]cccovviuriuniiniiniiniireineineineineireseseisesesesese e 19
Abbildung 12: Beziehung zwischen Erweiterungspunkt (Extension Point)

und Erweiterungen (Extensions) in Eclipse Plug-In [26]cccccovuvivvinnnnnnnnncece, 20
Abbildung 13: Gekoppelte Dateidnderungen zwischen zwei Files [28]...........ccccccoviiiiiinnnnnnn. 21
Abbildung 14: ROSE PIug-In [27]cccooiiiiiiiiiiiiiciceieieesn e 22
Abbildung 15: Datenfluss in dem ROSE T0OI [28]cccouviririniriniriniiriririirirreie e 23
Abbildung 16: Die drei Phasen des Ansatzes von Ying et al [29].......ccccoovieevnniccnnnccecnnnn. 24
Abbildung 17: SPMF GUI [30].....cccueuriiiiiriiriiiiiiiiiciieieenss et 25
Abbildung 18: SPMF CLI [30] ...ccoveveiiieiriiieieiriiiirieisiiiieerssese ettt 25
Abbildung 19: Input.txt File von FPGrowth_Itemsets_with_Strings [32]c.cccovvvivevevvininininenne. 26
Abbildung 20: Output.txt File von FPGrowth_Itemsets_with_Strings [32]......cccccvvvvevivennnennce. 27
Abbildung 21: Benutzeroberfldche des Windowbuilder Plug-Ins [33]........ccccovvirivininininininnee. 28
Abbildung 22: Bi-direktionale Codegenerierung in Windowbuilder [34]ccccccevvinnnnnne. 28
Abbildung 23: Architektur SRM PIUG-In....c.ccoviueiririiicieiiiccieieieticieeeceeie e 31
Abbildung 24: Struktur SRM Plug-In.........cccccooiviiiiiiiiiiiics 32
Abbildung 25: Workflow SRM Plug-In..ccccoceiviiiiiiiiiiiiiiicccccea 33
Abbildung 26: Execution View mit Beispielwerten ..., 35
Abbildung 27: Ubersicht iiber den Eclipse Workbench [35].........ccvuuviuriuiiniiiineeeineieieeeeeieene. 38
Abbildung 28: Project Explorer mit einem Beispielprojektccccccoviiiiiiniiiiiiiiiiiin, 39
Abbildung 29: Coupled Changes mit BeiSpielWertenccccceuvveieueunininicernininicereneeceennn. 39
Abbildung 30: Fehlermeldung im Coupled Changes............cccceuviviicueinininiccrnnincceeeceennn. 40
Abbildung 31: Auflistung der CommitIDs im Commit View mit Beispielwerten.................... 40
Abbildung 32: Commit Message View mit Beispielwerten...........cccccooiviiiniiniiiininnnnn, 41
Abbildung 33: Hinzuftigen der Views in das SRM Plug-Incccccooeiiiiniiiiiiniii, 42
Abbildung 34: Integration von MYSQL Treiber und FPGA jar File in das SRM Plug-In 43
Abbildung 35: Hinzufiigen der Abhéngigkeiten (Dependencies) in das SRM-Plug-In............ 43
Abbildung 36: Relation zwischen Package Explorer und Properties in Eclipse [36]................ 59
Abbildung 37: Selection Service [36]cccovviririririririniiiiriririeee e 60

VII

Abbildung 38: Relation zwischen Project Explorer und Coupled Changes...........ccccccvueuucce. 60

Abbildung 39: Selektion eines Files in dem Project Explorer ... 61
Abbildung 40: Uberblick iiber alle Selektionsarten im Project Explorer [36].......ccccoevevurreeence 62
Abbildung 41: Lese- und Schreibeoperation vom FP-Growth Algorithmus [32]...................... 77
Abbildung 42: Lese- und Schreibeoperation vom PrefixSpan Algorithmus [40].. 79
Abbildung 43: Lese- und Schreibeoperation vom PrefixSpan Algorithmus

auf Datenbanktabellen..............cccooiii e 81
Abbildung 44: Architektur SRM Plug-In mit PrefixSpan Algorithmus..........cccccccviiiviiininnnne. 82
Abbildung 45: Phasen des EvaluationSprozesses.............cciiiiiiiiiieiieeeeeeeesneeeeens 84
Abbildung 46: TestfallsZenario..........ccccccuviiiiiiiiiiiiiii s 85
Abbildung 47: Fragebogen zum SRM Plug-In..........ccccooviiiniiiiiiniiiiiicccccne 86
Abbildung 48: Uberblick iiber die EvaluationSergebniSseoceueveereeeierseeseiseiseeseesenseesenanes 88

Tabellenverzeichnis

Tabelle 1: Transaktionsdatenbank D [18]ccoooiiiiiiiiiiieieieeeeeeeeeeeeeee ettt e eresneeens 13
Tabelle 2: Zwischenergebnisstabelle [18].........cccvuriieueiriniicieiniriiceerieceee e 14
Tabelle 3: Tabelle der Frequent Itemsets............cccccoiviiiiiiiiniiiiiiic 17
Tabelle 4: Beispielinputtabelle fiir das FPGA jar File.........ccccccoeiiiiiniiiiiiiiice, 35
Tabelle 5: Beispieloutputtabelle des FPGA jar Files...........cccccooiiiiiiiiiiiiiiic, 36
Tabelle 6: Commit Message Tabelleccoccooviiiiiiiiiiiiiii 41
Tabelle 7: Uberblick iiber die Klassen des SRM Plug-Ins und deren Funktionen.................... 45

Tabelle 8: Tabellarische Gegentiiberstellung von FP-Growth und PrefixSpan Algorithmen...79

VIII

Verzeichnis der Listings

Listing 1: Quellcode plugin.xml vom SRM Plug-In.........cccocccvviiiiiniiiiiiiccccins 45
Listing 2: Quellcode ExecutionView java.........ccccciieiiiiiiiiiiiiciiccec s 47
Listing 3: Quellcode Maincontroljava ..o 48
Listing 4: Herstellung der Verbindung mit der Datenbank in DBConnection java................ 52
Listing 5: Leseoperation auf die Inputtabelle in DBConnection.java..........cccococoeeciiieiennncnene. 53
Listing 6: Leseoperation auf die Commit Message Tabelle in DBConnection java................. 54
Listing 7: Erzeugen der Outputtabelle in DBConnection.javaccccocooeeiiininiicccinicinecnnn. 55
Listing 8: Leseoperation des FPGrowthAlgorithmus.java........ccccccveiiviiinicniiiniinicann, 57
Listing 9: Schreibeoperation des FPGrowthAlgorithmus.java........c.ccccceeieviciniiiinicnicnnnnnn. 58
Listing 10: Registrierung des Selection Listeners in CoupledChanges.java..........cccccccvuuuucce. 61
Listing 11: Pfadermittlung des selektierten Files in CoupledChanges.java........c.cccccvuvureucueneee. 64
Listing 12: Pfadtransformation in CoupledChanges.javacccocevuvivivirnninnininininciesne. 65
Listing 13: Filepfadiibergabe und Methodenaufruf in CoupledChangesjava..........cccccco....... 65
Listing 14: Initialisierung Coupled Changes und Commit View in CoupledChanges.java.... 66
Listing 15: Senden von Fehlerinformationen in CoupledChanges.java.........c.cccoeueuvievririninenence. 67
Listing 16: Erzeugung und Riickgabe der Fehlermeldung in ShowPlugin java...........c.cc........ 68
Listing 17: Senden von gekoppelten Dateidnderungen in CoupledChanges.java.................... 68
Listing 18: Ubermittlung und Riickgabe der gekoppelten Dateiénderungen

IN SHOWPIUGINJAVA ..ot 68
Listing 19: Empfangen und Anzeigen von Informationen in CoupledChanges.java............... 69
Listing 20: Senden von CommitIDs in CoupledChanges.javac.cccocevvirirrinininininicinininiene. 69
Listing 21: Ubermittlung und Riickgabe der CommitIDs in ShowPlugin.javac..cceceveveucen. 70
Listing 22: Empfangen und Anzeigen von CommitIDs in CommitView javacccccccocoueeee. 70

Listing 23: Selektion von CommitIDs und Vergleich mit der Commit Message Tabelle

IN COMMItVIEW JAVA c.cuviviiiiiiiiici s 71
Listing 24: Senden von Eintrdgen in CommitView java........ccccocooviiiiiiiiiiniiniiiiccens 72
Listing 25: Ubermittlung und Riickgabe von den Eintridgen in ShowPluginjavac.c....... 72
Listing 26: Empfangen und Anzeigen von den Eintrdgen in CommitMessageView java....... 72
Listing 27: Suche nach dem selektierten File in der Outputtabelle in Search.java.................... 73
Listing 28: Entkopplung der gekoppelten Dateidnderungen von den CommitIDs

TN PTOCESSJAVA...cuiiuiiiiiiiiicicec e 74
Listing 29: Separierung und Transformation der CommitIDs in Process.java.........cccccccoueueee. 75
Listing 30: Entfernen von redundanten CommitIDs in Process.javacccccceeeeeeinreienecnnne. 75

IX

Abkiirzungsverzeichnis

SWT

GUI

SQL

CLI

SRM

PDE

SPMF

IDE

GPL

EPL

Standard Widget Toolkit

Graphical User Interface

Structured Query Language
Command Line Interface

Software Repository Mining

Plug-In Development Environment
Sequential Pattern Mining Framework
Integrated Development Environment
General Public License

Eclipse Public License

1 Einleitung

Software-Repositories spielen im Software Engeneering eine sehr wichtige Rolle, da sie
samtliche Informationen tiber die Entwicklung eines Softwaresystems beinhalten und somit

eine Informationsquelle fiir die Softwareentwicklungsanalysen zur Verfiigung stellen [1].

Die Ziele dieser Softwareentwicklungsanalysen sind vielféltig. Eines der Ziele ist die Analyse
der gekoppelten Dateidnderungen mit Hilfe der Data Mining Technik namens “Frequent
Itemset Mining” auf Basis der Software-Historie. Die Ergebnisse dieser Analyse sollen den
Entwicklern hinsichtlich ihrer Modifikations- und Bugfixingsaufgaben eine Unterstiitzung

anbieten.

1.1 Motivation

Modifikations- und Bugfixingsaufgaben bilden einen elementaren Bestandteil der Aufgaben
eines Entwicklers, mit denen er ofters konfrontiert wird. Andert beispielweise der
Entwickler einen bestimmten Bereich eines Quellcodes oder ein File von einem
Softwaresystem, so sind in der Regel weitere Anderungen mit dieser Anderung auch
verbunden. Der Entwickler muss in diesem Zusammenhang auch wissen, welche weiteren
Bereiche noch zu dndern sind. Vor allem fiir Entwickler, die neu sind und sich mit dem
Softwaresystem nicht gut auskennen, ist es schwer die gekoppelten Dateidnderungen zu
entdecken. Es existieren zwar Tools, die die Entwickler in dieser Hinsicht unterstiitzen
sollen. Jedoch sind diese aber nur in der Lage einige interessante Codednderungen oder Files

anzuzeigen und nicht alle relevanten Codes bzw. Files, die gedndert werden miissen.

Betrachtet man zum Beispiel gekoppelte Files, die in unterschiedlichen
Programmiersprachen implementiert sind, so ist es mit einfachen Tools nicht moglich alle
relevanten Files zu erhalten und fiihrt in den meisten Fillen dazu, dass der Entwickler nach
den entsprechen gekoppelten Files selber suchen muss oder dass er es vergisst diese File zu
andern. Dies ist eine sehr zeitaufwéndige Arbeit fiir den Entwickler und natiirlich auch sehr

kostspielig fiir den Arbeitgeber [2].

1.2 Zielsetzung

Diese Diplomarbeit gliedert sich in zwei Bereiche, einen praktischen Bereich gefolgt von

einem theoretischen Bereich.

Das Ziel des praktischen Bereiches ist die Entwicklung eines Eclipse Plug-Ins fiir die

Unterstiitzung der Entwickler hinsichtlich ihrer Modifikations- und Bugfixingsaufgaben.

Das Plug-In soll die Durchfiihrung der folgenden Punkte ermdglichen:
1. Ausfiihren der Frequent-Itemset-Analyse.
2. Anzeigen der gekoppelten Dateiendnderungen und weiteren Informationen an dem
Benutzer.

Der theoretische Teil dieser Diplomarbeit hingegen umfasst die nachfolgenden zwei Punkte:

1. Vergleich von Sequential Pattern Mining und Frequent Itemset Mining.

2. Fertigstellung der Ausarbeitung.

1.3 Gliederung

Kapitel 1 — Einleitung: Einfithrung in das Themengebiet gefolgt von der Motivation und

Zielsetzung.

Kapitel 2 — Grundlagen: Darstellung der grundlegenden Themen, die fiir das bessere

Verstehen der Diplomarbeit von entscheidender Bedeutung sind.
Kapitel 3 — Verwandte Projekte: Vorstellung der verwandten Projekte.

Kapitel 4 — Tools und Algorithmen: Reprdsentation und Erlduterung der Tools und

Algorithmen, die bei der Entwicklung des Eclipse Plug-Ins eingesetzt wurden.

Kapitel 5 — Anforderungen und Konzept: Festlegung der Anforderungen an das Eclipse
Plug-In und Darstellung des Konzeptes.

Kapitel 6 — Implementierung: Implementierung des in Kapitel 5 dargestellten Konzeptes.

Kapitel 7 — Vergleich von Sequential Pattern Mining und Frequent Itemset Mining:

Vergleich von diesen beiden Algorithmen auf theoretischer Ebene.

Kapitel 8 - Evaluation: Testen und Bewerten des im Rahmen dieser Diplomarbeit

entwickelten Software Repository Mining (SRM) Plug-Ins.

Kapitel 9 — Zusammenfassung und Ausblick: Zusammenfassung der Resultate dieser

Diplomarbeit und Vorstellung der Erweiterungspunkte.

2 Grundlagen

In diesem Kapitel findet eine Einfithrung in die grundlegenden Themen dieser Arbeit statt.

2.1 Software Repository Mining

Unter Software Repository Mining versteht man die Untersuchungen von Software-
Repositories. Darin befinden sich samtliche Daten, die wéhrend der Softwareentwicklung
erzeugt und archiviert werden und geben somit einen eindeutigen Aspekt tiber die Art und
Weise der Realisierung des Softwaresystems. Diese Daten, deren Existenz sich auf die
Gesamtlaufzeit des Projektes belduft, enthalten Informationen iiber Anderungen in der

Projektentwicklung.

Die Extraktion relevanter Informationen und die Entdeckung der Zusammenhinge zwischen
diesen extrahieren Informationen im Rahmen der Softwareentwicklung beruhen auf eine
grof3e Palette an Verfahren, die durch die Softwareentwickler entwickelt und experimentiert
wurden. Da diese Verfahren sehr viele Parallelen zu Data Mining und Wissensentdeckung
(Knowledge Discovery) aufweisen, wird Software Repository Mining gleichgestellt zu Data
Mining und Wissensentdeckung (Knowledge Discovery). An dieser Stelle ist aber Aufschluss
dariiber zu geben, dass Software Repository Mining natiirlich nicht auf Data Mining und

Wissensentdeckung (Knowledge Discovery) begrenzt ist.

Somit bezweckt die Software Repository Mining die Aufbringung neuer Erkenntnisse in den
Prozess der Softwareentwicklung und die Hervorhebung der im Laufe der Zeit
aufgetretenen Anderungen. Dies wird durch die Aufdeckung von relevanten Informationen
und Relationen zwischen diesen Informationen tiber einen bestimmten Bereich des
Softwaresystems gewihrleistet. Forschungsuntersuchungen, die sich mit Mining Techniken

auf Software beziehen sind vielfaltig [3].

2.2 Change Coupling

Die Forschung der Softwareentwicklung wird dadurch verwirklicht, indem man durch die
Anwendung von Software-Historien die aktuellen Probleme des Softwaresystems analysiert,
um die Ursachen dieses Problems zu verstehen und die zukiinftige Entwicklung des

Softwaresystems vorherzusagen [1].

Es existieren neben vielen Informationen auch Informationen iiber Change Coupling in den
Software-Historien eines Softwaresystems. Unter Change Coupling versteht man die

gemeinsame Anderung von zwei oder mehreren Software-Artefakten wihrend der

Entwicklung eines Softwaresystems. D.h., Change Coupling zeigt die gekoppelten Dateien,
die zusammen gedndert wurden, und besagt, dass die in der Software-Historie zusammen
gednderten Dateien auch zukiinftig zusammen gedndert werden miissen. Durch diese
Informationen von den Change Coupling kénnen die Entwickler ihre Bugfixings- und
Modifikationsaufgaben viel besser und effizienter bewerkstelligen. In der vorliegenden
Arbeit wird anstelle des Begriffes ,Change Coupling” 6fters auch die deutsche Ubersetzung
~gekoppelte Dateidnderungen” benutzt [4].

2.3 Data Mining

Viele Unternehmen haben durch den technischen Forstschritt die Moglichkeit bekommen
jede Art von Information, die mit Thren Unternehmensaktivitdten in Verbindung stehen zu
sehr verniinftigen Preisen zu speichern. Dieser Fortschritt bringt aber auch den Nachteil mit
sich, dass die Liicke zwischen der Datenerstellung und dem Datenverstindnis immer
grosser wird, weshalb die Verarbeitung und Interpretation dieser gespeicherten Daten einen
sehr hohen Stellenwert in einem Unternehmen bekommt. Die Verarbeitung und
Interpretation der Daten sollen es dem Unternehmen erméglichen, zu neuen Informationen
zu gelangen, um einen wirtschaftlichen Vorteil fiir das Unternehmen zu schaffen [5]. Diesen
Prozess der Datenverarbeitung und Interpretation bezeichnet man als Data Mining. Im
Allgemeinen geht es beim Data Mining darum Wissen aus grofien Datenmengen zu

extrahieren.

Abbildung 1: Data Mining: Suche nach Wissen in den Daten [6]

Definition Data Mining:
“Data mining is the process of discovering hidden, previously unknown and usable
information from a large amount of data. The data is analyzed without any expectation on the
result. Data mining delivers knowledge that can be used for a better understanding of the
data.” [9]

Diese Definition macht es deutlich, dass es sich hierbei um einen Prozess handelt, dessen
Ziel es ist Wissen zu liefern, um die Daten besser zu verstehen. Diese Wissensgewinnung
wird dadurch realisiert, indem bekannte und niitzliche Informationen aus grofen

Datenmengen extrahiert, entdeckt und anschlieBend durch gewisse Verfahren analysiert

werden.
Vorbereitung Vorverarbeitung Analyse Nachbereitung
Planung normalisieren Visualisierung Interpretation

Datensammlung

Merkmalsgenerierung

Datenauswahl

saubern
filtern
erganzen
korrigieren

transformieren

Korrelation
Regression
Prognose

Klassifikation

Clusteranalyse

Dokumentation

Auswertung

Abbildung 2: Der Data-Mining-Prozess [7]

In der Abbildung 2 wird noch einmal gut veranschaulicht, dass das Data Mining die
Extraktion des Wissens, also von interessanten Mustern, aus Datenmengen zu Ziel hat. Bei
interessanten Mustern hingegen handelt es sich um Mustern, welche sich durch die
Eigenschaften Nichttrivialitit, Niitzlichkeit, Verstandlichkeit und allgemeine Giiltigkeit
beschreiben lassen. Die Abbildung 2 stellt somit einen Uberblick iiber die einzelnen Phasen,
die beim Data-Mining-Prozess nicht zwingend sequentiell durchlaufen werden. Der Prozess
besteht aus den Phasen Vorbereitung, Vorverarbeitung, Analyse und Nachbereitung.
Ausgangspunkt sind die Rohdaten. Das bedeutet, bevor der Data-Mining-Prozess beginnt,
liegen im Regelfall die Rohdaten ungeordnet vor. Zudem sind diese Rohdaten dadurch
ausgezeichnet, dass sie unvollstindig, teilweise redundant, unwichtig und fehlerhaft sind.
Deshalb ist die Notwendigkeit der Vorbereitung und Vorverarbeitung dieser Rohdaten

erforderlich, um die Analyse durchzufiihren.

In der Vorbereitungsphase ereignet sich somit in erster Linie die Planung und
Datensammlung. Da im Regelfall beim Projektanfang erst einmal tiberhaupt keine Daten
vorhanden sind, erfolgen im Vorfeld die Planung und Durchfijhrung der Datensammlung.
Im Anschluss daran findet noch in der Vorbereitungsphase die Merkmalsegmentierung und
die Datenauswahl statt, bevor diese Rohdaten an die Vorverarbeitungsphase zur
Normalisierung, Sduberung, Ergdnzung, Korrektur, Filterung und Transformation
weitergeleitet werden. Nachdem die Vorverarbeitungsphase auch sein Ende erreicht hat,
stehen dann die Daten bereit fiir die Analyse. AnschlieBend werden in der Analysephase die
vorverarbeiteten Daten mit Hilfe von verschiedenen Methoden analysiert. Welche Methoden
angewendet werden sollen, sind davon abhdngig, was fiir ein Wissen man aus diesen Daten
herausziehen mochte. Diese verschiedenen Verfahren werden in dem Kapitel 2.4. niher in
Betracht gezogen. Aus dieser Analysephase erhdlt man einige Ergebnisse, die wiederum
durch die Nachbereitungsphase herangezogen werden, um das Wissen aus diesen
Ergebnissen zu extrahieren. Nach dieser letzten Phase steht das Wissen schliefilich fiir die
Verwendung zur Verfiigung [7]. Anhand von diesem Blickwinkel kann man dann dem Data

Mining System die in der nachfolgenden Abbildung 3 dargestellten Komponenten zuordnen.

v

User Interface

v

Pattern Evaluation

v

Data Mining Engine

v 1

Database or
Data Warehouse Server

NN

| data cleaning, integration and selection |

e —
World Wide
Web
-

Abbildung 3: Architektur eines Data Mining Systems [6]

So wie in der Abbildung 3 auch zusehen, besteht ein Data Mining Systems aus insgesamt

fiinf Komponenten, die im Folgenden niher erldutert werden:

1. Datenbank, World Wide Web, andere Info Repositories, Dara Warehouse:
Diese Komponente stellt eine Menge an Datenbanken dar, deren Inhalt spéter im
Data-Mining-Prozess zur Bearbeitung herangezogen wird. D.h.,, dass die

Datenquellen sich in dieser Komponente befinden.

2. Datenbank oder Data Warehouse Server:
Fir die Aufnahme der durch den Benutzer abgefragten, relevanten und
vorverarbeiteten Daten ist der Datenbank Server oder der Data Warehouse Server

verantwortlich.

3. Data Mining Engine:
Diese Komponente bildet sozusagen das Herz eines Data Mining Systems. Hier
finden die verschiedenen Verfahren der Data Mining Techniken Anwendung. Die
Entscheidung, welche Methode bei welcher Aufgabe anzuwenden ist, ist von den

durch die Anwender definierten Aufgabenstellungen abhéngig.

4. Wissensdatenbank (Knowledge Base):
Bei dieser Komponente handelt es sich um eine Wissensdatenbank, die eine
Orientierung bei der Suche oder der Auswertung nach resultierenden Mustern dient.
Dariiberhinaus ist eine Wissensdatenbank auch dadurch ausgezeichnet, dass das

Wissen in dieser Datenbank in schriftlicher Form vorliegt.

5. Musterauswertung (Pattern Evaluation):
Die Hauptaufgabe von dieser Komponente ist es, mit den Data Mining Modulen zu
interagieren und somit den Fokus der Musterauswertung auf interessante Muster zu
richten. Die Muster haben grole Bedeutung im Data Mining. Das bedeutet, dass die

uninteressanten Muster durch einen bestimmten Wert ausgefiltert werden konnen.

6. Benutzerschnittstelle (User Interface):
Zu guter Letzt existiert auch die User Interface Komponente, welche die Schnittstelle
zwischen dem Benutzer und dem Data Mining System darstellt. Durch diese
Schnittstelle hat dann der Benutzer die Moglichkeit Anfragen an das Data Mining
Systems zu senden, um die relevanten Informationen zu selektieren und sich am
Ende auch die Ergebnisse anzuschauen. Allgemein formuliert erméglicht der User

Interface die Interaktion des Benutzers mit dem Data Mining System [6].

2.4 Data Mining Techniken

Dieser Abschnitt beschiftigt sich mit der detaillierten Erlduterung der Data Mining
Techniken, wobei das Hauptaugenmerk auf die Assoziationsanalyse und in diesem

Zusammenhang auf den FP-Growth Algorithmus gerichtet ist.

2.4.1 Uberblick iiber die Data Mining Techniken

Es existieren vier Data Mining Techniken, die generell akzeptiert werden. Diese sind
Assoziationsanalyse, Clusteranalyse, Klassifikationsanalyse und Regressionsanalyse. Bei
diesen Techniken handelt es sich wiederum entweder um deskriptive oder pradiktive
Techniken. Clusteranalyse und Assoziationsanalyse gehoren zu den deskriptiven Techniken,
wiahrend Klassifikationsanalyse und Regressionsanalyse zu den pradiktiven Techniken

zugeordnet werden.

Pradiktive Techniken:

1. Klassifikationsanalyse:
Das Ziel dieses Verfahrens ist die Ermittlung von bestimmten Mustern, die es
ermdglichen sollen, mit Hilfe von bereits vorhandenen Informationen, Aussagen tiber

Objekte machen zu kénnen.

Nach der Festlegung der Kriterien, werden die einzelnen Objekte entsprechend
dieser Kriterien klassifiziert. Daraus wird ein Klassifikationsmodell aus diesen

Objekten generiert.

Dieses Verfahren wird in diversen Bereichen eingesetzt. Eines der
Anwendungsgebiete von diesem Verfahren ist die Beurteilung der Kreditwiirdigkeit
der Kunden [8]. In Abbildung 4 ist der Entscheidungsbaum dargestellt, der die
Kreditwiirdigkeit der Kunden einer Bank reprédsentiert. Von diesem
Entscheidungsbaum kann man entnehmen, dass wenn ein Kunde nicht berufstatig
ist, kein Vermdgen hat, Student ist und keine Biirgschaft der Eltern besitzt, folglich
auch keinen Anspruch auf Kredit bekommt [8].

Berufstatig?

S

30 < Alter < 50? Vermogen?
V \Win y Nein
Einkommen < 100.000? e o Student?
LN 7
Schulden > 250.000? vee Biirgschaft der Eltern ? e
VRS L X
Klasse 0 e Klasse 1 Klasse 0

Abbildung 4: Klassifikationsanalyse: Entscheidungsbaum fiir Kreditwiirdigkeit [8]

2. Regressionsanalyse:
Regressionsanalyse weist sehr viele Ahnlichkeiten zu Klassifikationsanalyse auf, mit
dem Unterschied des Zielfeldes. Wihrend das Ziel der Klassifikationsanalyse die
Vorhersage von Klassenlabels ist, geht es bei der Regressionsanalyse um die
Vorhersage von numerischen Werten, weshalb dieser Wert keine Gleichheit mit
anderen Werten in dem Modell aufzeigt [9]. Abbildung 5 représentiert die

Regressionsanalyse.

revenue

> age

Abbildung 5: Regressionsanalyse [9]

Deskriptive Techniken:

1. Clusteranalyse:
Unter Clusteranalyse versteht man die Unterteilung von einer gewissen Anzahl an

Objekten in Gruppen mit Hilfe von gewissen Variablen. Die Gruppen hingegen sind

so aufgegliedert, dass alle Objekte innerhalb der gleichen Gruppe homogene und alle
in unterschiedlichen Gruppen heterogene Charaktermerkmale aufweisen.
Anwendung findet dieses Verfahren vor allem im Marketing und speziell im Bereich
der Marktforschung. Dieser Vorgang der Marktunterteilung wird auch als

Marktsegmentierung bezeichnet [10].

Abbildung 6 zeigt wie die Clusteranalyse ablduft. Dieses Beispiel beschreibt wie die
Bankkunden anhand von ihren Einkommen und ihren Schulden in unterschiedliche
Clustern untergliedert werden. Cluster 1 reprdsentiert Bankkunden mit geringen
Einkommen und hohen Schulden. Cluster 2 zeigt die Bankkunden mit wenig
Einkommen und wenig Schulden. Zuletzt befinden sich in Cluster 3 diejenigen

Bankkunden, deren Einkommen tiber ihre Schulden sind.

debt

Cluster !

Cluster 3

income

Abbildung 6: Beispiel Clusteranalyse [11]

2. Assoziationsanalyse:
Die Basis der Assoziationsanalyse bildet eine Transaktionsdatenbank. Diese
Datenbank besteht aus mehreren Transaktionen. Eine Transaktion hingegen besteht

aus einer Menge von Items.

Das Ziel der Assoziationsanalyse ist es, die Zusammenhénge und die Beziehungen
zwischen den Items zu bestimmen und in den Vordergrund zu bringen. Das Ergebnis
der Assoziationsanalyse sind Assoziationsregeln. Assoziationsregeln sind Regeln der
Form wie beispielweise: Kunden die das Produkt A gekauft haben, haben auch zu
80% das Produkt B und zu 50% das Produkt C gekauft. Dieses Verfahren erméglicht
es den Unternehmen das Kaufverhalten ihrer Kunden zu analysieren und ihr

Sortiment diesem Verhalten entsprechend anzupassen [12].

10

Auf Transaktionsebene betrachtet sind die Assoziationsregeln folgendermafien zu
formulieren: Eine Transaktion, welche das Item A besitzt, enthilt auch zu 80% das
Item B und zu 50% das Item C. Folglich ist die Hauptaufgabe der
Assoziationsanalyse die Entdeckung von Assoziationsregeln in den

Transaktionsdatenbanken.

Die Bestimmung von Assoziationsregeln erfolgt in zwei Schritten. Im ersten Schritt
findet die Generierung von Frequent Itemsets mit Hilfe eines Data Mining
Algorithmus statt. Das bedeutet, es werden die hiufig auftretenden Itemmengen
ermittelt. Der zweite Schritt erzeugt im Anschluss daran die Assoziationsregeln aus

den ermittelten Frequent Itemsets [9]. Die Abbildung 7 zeigt ein Beispiel der

Assoziationsanalyse.
Database D
tid item
101 | beer Smin = 0-2 A - ,
C.. =05 An example association rule:
101 | cheese min ~ *

{beer} > {milk, tomatoes}

102 | beer - support = s({beer, milk, tomatoes})
102 milk =1/3=33%

confidence = 1/2 = 50%

102 | tomatoes
103 cheese

Abbildung 7: Assoziationsanalyse [9]

2.4.2 Ermittlung von Frequent Itemsets in der Assoziationsanalyse

Wie in dem vorherigen Abschnitt auch erldutert, besteht die Assoziationsanalyse aus zwei
Schritten. Der erste Schritt ist die Ermittlung von den Frequent Itemsets mit Hilfe eines Data
Mining Algorithmus. Der zweite Schritt ist die Erzeugung der Assoziationsregeln aus diesen

Frequent Itemsets.

Da diese Diplomarbeit aber nur den ersten Schritt der Assoziationsanalyse umfasst, wird
hier nur auf diesen einen Teil eingegangen. Fiir die Ermittlung von den Assoziationsregeln
aus den Frequent Itemsets ist das Vorlesungsskript vom PD Dr. rer. nat. habil. Holger

Schwarz zu empfehlen [9].

11

1. Formale Beschreibung;:

Transaktionsdatenbank:

Eine Transaktionsdatenbank D setzt sich zusammen aus einer bestimmten
Transaktionsaktionsmenge D = {Ty,T5,T3,...., Ty}, wobei jede Transaktion durch ein
eindeutiges TID (Transaktionsidentifikation) gekennzeichnet ist. Zudem existieren Items
gegeben durch die Menge I = {I, 1, I3, I,}. Weiterhin gilt fiir jede Transaktion, dass sie
eine Menge von Items beinhaltet und dass sie Teilmenge von der Transaktionsdatenbank D
ist, also T < D gilt. Es ist zusétzlich auch noch eine Menge A definiert, welche daraufhin

tiberpriift wird, ob sie Teilmenge von T ist, also A S T gilt [13].

Support:
Support oder auch Unterstiitzungsgrad genannt, gibt einen Wert tiber die Anzahl der
Transaktionen in der Menge A an. Die Formel fiir die Berechnung von dem Supportwert fiir

die Menge A lautet folgendermafien [14]:

{T € D|A < T)|
|D|

support(A) =

Es existiert weiterhin ein Minimumsupportwert s,,;,, wobei 0 < sp,;, < 1 gilt. Einen Itemset
A nennt man Frequent Itemset, wenn support(A4) = Sy, gilt. Unter Frequent Itemset
versteht man héufig auftretende Itemmengen. Die Assoziationsregeln hingegen zeichnen
sich dadurch aus, dass sie Implikationen aufweisen. Betrachtet man die folgende
Assoziationsregel: A — B. Diese Regel besagt somit: Wenn A ein Teil der Transaktion T ist,
dann ist auch B ein Teil der Transaktion T [9]. Die Formel zum Support zu der

Assoziationsregeln sieht somit wie folgt aus [13]:

{T e DJAUB < T}
[D|

support(A - B) = support(AUB) =

Konfidenz
Die Konfidenz gibt die relative Haufigkeit der Beispiele an, fiir die die Assoziationsregel
richtig ist. Die Formel fiir die Berechnung des Konfidenzwertes fiir die Regel A — B sieht wie

folgt aus:

{T e DIAUB < T}
I{T € D|A = T}

confp(A - B) =

Es existiert weiterhin auch ein Minimumkonfidenzwert c¢;,;,. Eine Assoziationsregel wird als
streng bezeichnet, wenn deren Supportwert und Konfidenzwert gréfer oder gleich dem

Minimumsupportwert und Minimumkonfidenzwert ist [15].

12

2. Ermittlung von Frequent Itemsets am Beispiel des FP-Growth Algorithmus:

Der FP-Growth Algorithmus ist eine baumbasierte Verarbeitung der Daten von einer
Transaktionsdatenbank. Der Unterschied von diesem Algorithmus im Vergleich zum Apriori
Algorithmus ist dies, dass er ohne Kandidatengenerierung die Frequent Itemsets bestimmt.
[16].

Beim FP-Growth Algorithmus findet die Ermittlung der Frequent Itemsets in zwei Schritten
statt. Im ersten Schritt wird der FP-Tree erzeugt. Beim FP-Tree handelt es sich um einen
Baum, der eine kompakte Datenstruktur der Transaktionsdatenbank représentiert. Um den
FP-Tree zu erzeugen, muss die Transaktionsdatenbank zweimal gescannt bzw. durchlaufen
werden. Beim ersten Durchlauf werden die Supportwerte der einzelnen Items von der
Transaktionsdatenbank ermittelt. D.h., es wird berechnet, in vielen Transaktionen die
einzelnen Items vorkommen [17]. Die Tabelle 1 stellt eine Transaktionsaktionsdatenbank D

dar, die fiir die Erzeugung vom FP-Tree zweimal durchlaufen bzw. gescannt wird.

Tabelle 1: Transaktionsdatenbank D [18]

TID Itemsets

101 {Apfel, Mandarine, Melone}

102 {Apfel, Mandarine, Zitrone}

103 {Apfel, Birne}

104 {Mandarine, Melone, Apfel}

105 {Apfel, Mandarine, Melone, Zitrone}
106 {Birne}

Nachdem die Tabelle 1 einmal gescannt wurde, werden die Ergebnisse, also die
Supportwerte von jedem Item, in eine Zwischenergebnisstabelle gespeichert. Die Tabelle 2
reprasentiert die Zwischenergebnisstabelle fiir die Items. Beispielweise besagt die erste Zeile
der Tabelle 2, dass das Item {Apfel} einen Supportwert von 5 hat. D.h., dass das Item {Apfel}
in 5 Transaktionen vorkommt. Dies sind in diesem Fall die Transaktionen mit den TIDs {101,
102, 103, 104, 105} [18].

13

Tabelle 2: Zwischenergebnisstabelle [18]

Apfel 5
Mandarine 4
Melone 3
Zitrone 2
Birne 2

Ist der erste Durchlauf der Transaktionsdatenbank D der Tabelle 1 vollendet, folgt der zweite
Durchlauf, um den FP-Tree zu konstruieren. Dazu werden die Transaktionen der Tabelle 1
noch einmal durchlaufen und tiberpriift, ob die Supportwerte der einzelnen Items grofier
oder gleich dem Minimumsupportwert sind. Falls support(Item) = sp;,, gilt, wird das Item
bei der FP-Tree Konstruktion berticksichtigt, andernfalls nicht [19].

Mandarine:1

Melone:1

Melone:2 Apfel:1

Abbildung 8: FP-Tree

14

Die Abbildung 8 stellt den FP-Tree dar, der nach dem zweiten Durchlauf der
Transaktionsdatenbank D aus der Tabelle 1 und unter Anwendung von einem
Minimumsupportwert von 50% (Spin = 50% = 3) entstanden ist. Man kann von der
Abbildung 8 entnehmen, dass die Items {Zitrone} und {Birne} nicht bei der FP-Tree
Konstruktion beachtet wurden, da deren Supportwerte kleiner als dem

Minimumsupportwert sind. Somit wird der erste Schritt abgeschlossen [19].

Im zweiten Schritt wird der FP-Tree von den Bléttern bis zu dem Wurzel nach dem Bottom-
up Prinzip bearbeitet, um somit die Frequent Itemsets zu ermitteln [19]. Der Vorgang erfolgt
nach dem Divide and Conquer Verfahren. Zunichst werden die Prifixpfade aus dem FP-
Tree erzeugt. Prafixpfade sind Unterbdume (eng. sub-trees), die mit einem Item oder Itemset
enden. Die Erzeugung der Prifixpfade werden anhand der Links (Pfeile, die in der
Abbildung 8 ersichtlich sind) verwirklicht. Die Abbildung 9 zeigt als Beispiel den Prifixpfad
mit dem Item {Melone} als Endung. Es werden zwei weitere Préfixpfade erstellt. Einer von
denen endet mit dem Item {Mandarine} und der andere mit dem Item {Apfel}. Nachdem die
einzelnen Prafixpfade von dem FP-Tree extrahiert sind, beginnt die Ermittlung der Frequent
Itemsets von diesen Préfixpfaden [17]. Es wird hier aber nur die Verarbeitung von dem
Prafixpfad, der mit dem Item {Melone} endet nidher beschrieben. Die Bearbeitung von den

anderen Prifixpfaden erfolgt aber nach dem gleichen Prinzip.

Mandarine:1

andarine:3 Melone:1

Abbildung 9: Préfixpfad mit der Endung Melone

15

Die Ermittlung von den Frequent Itemsets erfolgt mit Hilfe der Links, indem alle
Supportwerte von einem Item entlang eines Pfades (der Pfad wird durch die Links
angegeben) addiert und anschliefend mit dem gegebenen Minimumsupportwert verglichen
werden. Ist der Supportwert von dem Item oder Itemset grofer oder gleich dem
Minimumsupportwert, dann handelt es sich bei dem Item(set) um einen Frequent Item(set),

andernfalls nicht.

In diesem Beispiel wird von einem Minimumsupportwert von 3 (Sy, = 50% =
3) ausgegangen. Bei der Ermittlung von den Frequent Itemsets wird anfianglich das letzte
Item betrachtet und dessen Supportwert ermittelt. In diesem Fall gilt support(Melone) = 3 >

Smin = 3. Dies besagt, dass das Item {Melone} ein Frequent Itemset ist [19].

Nachdem das Item {Melone} als Frequent Itemset ermittelt wurde, wird weiterhin tiberpriift,
ob es sich bei den Itemsets, welche mit dem Item {Melone} enden, ebenfalls um Frequent
Itemsets handelt. Folglich wird tberpriift, ob die Itemsets {Mandarine, Melone}, {Apfel,
Melone}, {Apfel, Mandarine, Melone} auch Frequent Itemsets sind. Um diese ﬂberpriifung
durchzufiihren wird aus dem Préfixpfad der Conditional FP-Tree ermittelt. Conditional FP-
Tree zeichnet sich dadurch aus, dass es das letzte Item nicht beinhaltet und die Supportwerte

von den restlichen Items aktualisiert sind.
Der Vorgang zur Ermittlung des Conditional FP-Trees sieht folgendermafSen aus:

1. Die Transaktionsdatenbank D wird noch einmal durchgegangen, und nur diejenigen
Transaktionen werden in Betracht gezogen, welche das Item {Melone} am Ende

beinhalten.

2. Infolgedessen werden die Supportwerte von den Items in dem entsprechenden

Préfixpfad aktualisiert.

3. Zum Schluss wird dann das letzte Item von dem Préfixpfad entfernt. Somit liegt das
Conditional FP-Tree bereit.

Diese beschriebenen drei Schritte werden solange wiederholt bis kein Item mehr zu
entfernen ist. Das heif8t, bis alle moglichen Frequent Itemsets aus dem entsprechenden
Préfixpfad ermittelt sind. Abbildung 10 zeigt das entstandene Conditional FP-Tree fiir das
Item {Melone} [17].

16

null

Apfel:3 Mandarine:1

Mandarine:3

Abbildung 10: Conditional FP-Tree fiir das Item Melone

Somit werden alle Frequent Itemsets ermittelt. Die Tabelle 3 prdsentiert die ganzen Frequent

Itemsets, die nach dem FP-Growth Algorithmus ermittelt wurden.

Tabelle 3: Tabelle der Frequent Itemsets

Melone {Melone}, {Apfel, Melone}, {Mandarine, Melone},
{Apfel, Mandarine, Melone}

Mandarine {Mandarine}, {Apfel, Mandarine}

Apfel {Apfel}

2.5 Eclipse Plattform

Wie bereits im Kapitel 1 erwidhnt, ist das Ziel dieser Diplomarbeit die Entwicklung eines
Eclipse Plug-Ins. Aus diesem Grund werden im Folgenden auf die Grundlagen des Eclipse

Plattforms eingegangen.

17

2.5.1 Was ist Eclipse?

Die Eclipse Entwicklungsumgebung ist ein Programmierwerkzeug, der sich dadurch
auszeichnet, dass es java-basiert, erweiterbar und quelloffen ist [20]. Eclipse wurde vom IBM
im Jahre 1998 entwickelt mit dem Ziel jede Art der Softwareentwicklung zu unterstiitzen.
Urspriinglich wurde Eclipse fiir die Sprache Java entwickelt, wobei aber im Laufe der Zeit
die Eclipse Entwicklungsumgebung auch fiir die anderen Sprachen erweitert wurde.
Dariiberhinaus ist die Eclipse Architektur auch so konstruiert, dass es auch den
Drittanbietern die Mdoglichkeit gibt, die Eclipse Entwicklungsumgebung zu erweitern, um
die Integration von externen Tools ins Eclipse Plattform zu gewihrleisten [21]. Die
Erweiterung der Eclipse Entwicklungsumgebung wird durch die Plug-In Entwicklung

realisiert, wofiir in Eclipse die Plug-In Development Environment (PDE) vorgesehen ist [20].

2.5.2 Eclipse Plattform Ubersicht

Die Eclipse Architektur basiert hauptsédchlich auf die Einbettung von verschiedenen Plug-Ins
in die Laufzeitumgebung. Die Abbildung 11 zeigt den Uberblick {iber den Eclipse Plattform.
In diesem sind aufler der Laufzeitumgebung (Runtime Environment) alle anderen
Komponenten Plug-Ins. Die Laufzeitumgebung ist dafiir verantwortlich, alle notwendigen

Plug-Ins beim Start von Eclipse zu laden [22].

Wie es auch in der Abbildung 11 ersichtlich ist, besteht die Eclipse Plattform aus den Plug-
Ins Workspace Plug-In, Workbench UI Plug-In, Help Plug-In und dem Team Plug-In. Im
Folgenden werden nur die ersten zwei Plug-Ins kurz oberfldchlich dargelegt, da sie die

Hauptkomponenten des Eclipse Plattforms bilden.

* Workspace:
Dieses Plug-In ist fiir Verwaltung von Ressourcen verantwortlich, weshalb man es

auch als Ressource Management Plug-In bezeichnet. Um die Verwaltung von

Ressourcen zu verwirklichen, definiert es ein Ressourcenmodell.

* Workbench UI:
Dieses Worbench UI ist fiir die Darstellung der Workbench Benutzerschnittstelle

verantwortlich. Um die Workbench Benutzerschnittstelle so darzustellen, werden
mehrere Workbench UI Plug-Ins implementiert. Dartiberhinaus ist die
Benutzerschnittstelle so konzipiert, dass es individuell durch Drittpersonen auch
erweiterbar ist [22]. Ein Workbench Ul kann sich aus mehreren Perspektiven
zusammensetzen, wobei jede Perspektive wiederum aus Views, Editors, usw. besteht
[23].

18

" Eclipse Platform

“Workbench h /" Help ‘New Tool A
" JIFace h
“SWT \
‘New Tool ™
/ Team
“Workspace A
‘New Tool -
\
AN \,

Abbildung 11: Eclipse Plattform Ubersicht [23]

2.5.3 Eclipse Plug-In Mechanismus

Bei Plug-Ins handelt es sich um Komponenten, die bei der Erweiterung eines Programmes
ihren Einsatz finden [24]. Ein Plug-In setzt sich zusammen aus den Dateien plugin.xml und
MANIFEST.MF. Die Datei MANINFEST.MF enthilt Informationen tiber das Plug-In. Das
sind Informationen wie zum Beispiel der Name des Plug-Ins, Version, Classpath usw. Die
plugin.xml Datei dagegen enthilt die Erweiterungen (Extensions) und Erweiterungspunkte
(Extension Points) [21].

Die Abbildung 12 reprasentiert die Beziehung zwischen Erweiterungspunkten (Extension
Points) und Erweiterungen (Extensions). Wenn beispielweise ein Plug-In, seine eigenen
Funktionalitdten erweitern lassen mochte, definiert er in der Regel in seiner plugin.xml Datei
einen Erweiterungspunkt, der dann den anderen Plug-Ins erlaubt, diesen Plug-In zu
erweitern. Der Erweiterungspunkt ist eine Art Kontrakt. Die anderen Plug-Ins, die das Plug-
In erweitern mochten, definieren Erweiterungen. Diese Erweiterungen miissen mit dem
Erweiterungspunkt des Plug-Ins tiibereinstimmen, damit man das Plug-In tiberhaupt
erweitern kann. Es existiert weiterhin auch noch eine Activator Klasse, die fiir das Starten

und Beenden des Plug-Ins zustdndig ist [25].

19

/(Extension 1)

(EXte”Sion pomt)\(Extension 2)

(Extension 3)

Plug-in which Other Plug-ins
defines the which contributes
extension point an extension

Abbildung 12: Beziehung zwischen Erweiterungspunkt (Extension Point) und
Erweiterungen (Extensions) in Eclipse Plug-In [26]

20

3 Verwandte Projekte

Im Folgenden werden zwei Projekte vorgestellt, die sehr viele Parallelen zu dem im Rahmen

dieser Diplomarbeit entwickelten Tools aufweisen.

1. Ansatz von Zimmermann et al: Das ROSE Tool:

Viele die in Amazon.de eine Bestellung gemacht haben, wissen, dass in einem unteren Feld
eine Meldung mit der Nachricht erscheint: “Kunden, die dieses Artikel ... gekauft haben, kauften
auch das Artikel ..”. Solche Arten von Informationen werden durch Data Mining erhalten.
Wenn jemand beispielweise ein Artikel bestellt, dann iiberpriift Amazon.de mit Hilfe von
Data Mining Techniken, welche anderen Artikeln zusammen mit diesem Artikel bestellt

wurden, und schldgt dem Kunden diese Artikel vor.

Ahnlich dem Prinzip von Amazon.de arbeitet auch das ROSE Tool. Hierbei wird Data
Mining aber auf Version-Historien angewendet. Wenn der Programmierer eine Anderung
vornimmt, dann erscheint ihm eine Meldung “Programmer who changed ..., also changed ...”
(Programmierer, die ... geindert haben, haben auch ... gedndert) [27]. Die Abbildung 13 zeigt die
zwei Files ComparePreferencePage.java und plugin.properties und die Anzahl dariiber, wie oft
die zwei Files zusammen (gekoppelt) gedndert wurden. Aus dieser Abbildung 13 ist
ersichtlich, dass die Funktion fKeys[] mit der Funktion initDefaults() 11 mal und mit dem File
plugin.properties 10 mal zusammen gedndert wurde [28]. Andert der Programmierer jetzt
einen bestimmten File, erscheinen die Vorschldge des ROSE Tools tiber die anderen Files, die
noch gedndert werden miissen, in einem anderen Fenster. Abbildung 14 zeigt den Aufbau
und die Funktionsweise des ROSE Plug-Ins. Wenn der Programmierer also beispielweise
eine Anderung an der Funktion fKeys[] in dem Quellcode vornimmt, so schldgt das ROSE
Plug-In in dem unteren Fenster alle weiteren Funktionen und Files vor, die gemeinsam mit

dieser Funktion fKeys[] geandert wurden [27].

(40 | (69 |

ComparePreferencePage.java @ plugin.properties

S TR W -

11 P -

fKeys[] -

15 |

initDefaults()

Abbildung 13: Gekoppelte Dateidnderungen zwischen zwei Files [28]

21

£ Java - Eclipse Platform
File Edt Source Refactor Mavigate Search Project Run ‘Window Help

B-HEG |- |0 ||| ¢||%-|w||e-%-|B ¥ &

iz Ta, Patkage Exphrer v X *ComparePrefere X
[% G o | K %puhlic final OverlayPreferenceStore.OverlayKey[] new OverlayPreferenceStore.Overlayk®
: nev (verlayPreferenceStore.Overlayley{OvarlayPr=r=MfceStore BOOLEAN, OPEN_STRUCTURE_COM

+-[J] CompareEditorContributer jav &
|- Comparetvessaes.ava i
® | [J) CompareNavigator. java

E‘.’ =) [I] ComparePrefersncePage. jave

nev OverlayPreferenceStore.OverlayKey(OverlayPreferenceStore BOOLEAN, SYNCHROKIZE_SCROLL
nev OverlayPreferenceStors.Overlayley(OverlayPreferenceStors. BOOLEAN, SHOW_PSEUDO_CONFLI
nev OverlayPreferenceStore.Overlayiey(OverlayPreferenceStore BOOLEAN, INITIALLY SHOW_ANC
nev OverlayPreferenceStore.Overlayley({OvsrlayPreferenceStore BOOLEAN, SHOW_MORE_INFQ),

nev OverlayPreferenceStore.OverlayKey(OverlayPreferenceStore BOOLEAN, IGNORE_WHITESPACE)
nevw OverlayPreferenceStore. Overlayley{OverlayPreferenceStore. BOOLEAN, PREF_SAVE_ALL _EDIT

&

A) The user inserts a
new preference into

nev OverlayPreferenceStore. OverlayKey({OverlayPreferenceStore. BOOLEAN, NEW_FREFERENCE),

the fleld fKeyS[] §§ nev OverlayPreferenceStore. OverlayKey{OverlayPreferenceStore STRING, AbstroctTextEditor.
: R] nev OverlayPreferenceStore.OverlayKey(OverlayFreferenceStore BOOLEAN, AbstractTextEditor
3 %ﬁ ssnew OverlayPrefsrenceStore . OverlayKey (OverlayPr=ferenceStore. BOOLEAN, USE_SPLINES),
OPEN_STRUCTURE_C = |* nev OverlayPreferenceStore.(Overlay{ey(OverlayPreferenceStore BOOLEAN, USE_SINGLE_LINE).
¥ PREF_SAYE_ALL_EDI §§ ssnew OverlayPreferenceStore . OverlayKey(OverlayPreferenceStore . BOOLEAN, USE_RESOLVE_UI)
¥F prerix ok

¥ SHOW_MORE_INFO

¥ srow PSEWDO_CON. || public static void(initDefaults(lPreforencebtore store)){
¥ store setDefault

store setDefaul t (SYNCHRONIZE_SCROLLING, true);
B) ROSE suggests store. setDetaul t (SHOY_FSEUDO_CONFLICTS, false;
locations for further store. setDefault EIgéal%%_?ggg_mfmﬁsro)R_PME, false):
store setDefault (SHOW_|) . false):
changes, e.g. the store setDetault (IGNORE_WETTESPACE, false);
function initDefaults() store setDefault(PREF_SAVE ALL EDITORS, falsel:
———— //store.setDefault (USE_SPLINES, false)
o fehecNLtener store setDefault (USE_SINGIE IINE, true): b/
<
o fCompareCNgguratic 2
fReys @ Related Changes B3O @D v x
o fOverlzyStore 3 7
o FPreferenceChangeli Synibol | File | Support | Confidence |
o fPreviewViewer] initDef aults{IPr=ferencestore store! ComparsPreferercePege. java § 1.0
& CemparePreferenceP: org.eclipse.comparefplugin. properties plugin.properties 7 0.875
1§ addCheckBox(Compos 9 org.eclipse. compare/buildnates_cornpare. html buidnotes_compare. himl 6 0.75
& createContents(Comp E] TextMergeViewer{Composite parent, int styls, CompareConfiguration corfiguratior) TestMergeViswer. jave (] 0.75
o createGeneralPage{Cc E]propertychange(PropertyChangeEventevent) TextMergeVizwer.java [0.75
w createPreviewer(Com E]treateGereraIFage(Composite parent) ComparzPreferercePage. java) 0,625
@ createTextComparePe 9] createTexConparePage(Conposite parent) ComparsPreferercePage. java 5 0,625
0 dispose() 4 handizDispose(DisposeEvent evert) TextMergeViswer.java 4 05
& initTorkhencht
< | Tasks | Consdle | Related Changes
Yiritable Insert 8.5

Abbildung 14:ROSE Plug-In [27]

Nachdem die Funktionsweise des ROSE Tools erldautert wurde, wird schliefilich auch noch
auf die Struktur des Datenflusses in dem ROSE Tool eingegangen. Die Abbildung 15 zeigt
den Datenfluss in dem ROSE Tool. Der Datenfluss beginnt mit dem ROSE Server. Der Rose
Server liest zu Beginn die Files aus dem Version Archive und gruppiert die Anderungen in
Transaktionen. Daraufthin werden auf diese ermittelten Transaktionen Data Mining
Verfahren angewendet, um daraus gewisse Menge an Regeln zu generieren. Die Regeln
haben bezogen auf das Beispiel in der Abbildung 13 die Form wie: “Wenn das File
ComparePreferencePage.java gedndert wird, dann wird das File plugin.properties auch gedndert”.

Diese ganzen Regeln werden dann in die Rule Set Datenbank gespeichert.

Die Rose Eclipse Client bildet die Schnittstelle zu dem Benutzer (eng. User). Wenn der
Benutzer eine Anderung vornimmt, stellt die Rule Application eine Anfrage an den Rule Set,
und verlangt alle Regeln, die mit der Anfrage tibereinstimmen. Nach dem die Rule
Application von dem Rule Set alle iibereinstimmenden Regeln erhalten hat, schligt sie diese

Regeln dem Benutzer vor. Wenn der Benutzer also bezogen auf das Beispiel von vorhin das

22

File ComparePreferencePage.java gedndert hat, dann schldgt die Rule Application nach der

Interaktion mit dem Rule Set dem Benutzer das File plugin.properties vor [27].

Rose Server Rose Eclipse Client
) o Querying '
Crouping Mining L ~~ |- Rule
—> — Matching > | Application| =
Version Transactions Rule Set T Suggestions
Archive i

v
User

Abbildung 15: Datenfluss in dem ROSE Tool [28]

Change(s)

2. Ansatz von Ying et al.

Dieser Ansatz bezweckt auch die Unterstiitzung der Entwickler hinsichtlich in ihren
Modifikations- und Bugfixingsaufgaben, indem es dem Entwickler alle relevante Quellcodes

oder Files zur Anderung vorschlagt.

Dabei liegt der Schwerpunkt dieses Ansatzes in der Ermittlung von Anderungsmustern
(Change Patterns) durch die Anwendung von Assoziationsanalysen. Unter
Anderungsmustern versteht man jene Files, welche in der Entwicklungshistorie eines
Softwaresystems oft zusammen gedndert wurden. Aufbauend auf diesen
Anderungsmustern (Change Patterns) erfolgen dann die Vorschldge iiber die relevanten
Files. Andert der Entwickler einen File f, so wird durch diesen Ansatz dem Entwickler alle

moglichen Files f; vorgeschlagen, die mit dem File fs hdufig gedndert wurden [2].

Dieser Ansatz setzt sich zusammen aus drei Phasen, die in der Abbildung 16 dargestellt
sind. In der ersten Phase findet die Extraktion der Daten aus einem
Softwarekonfigurationssystem (SCM) statt. Im Anschluss daran erfolgt die Vorverarbeitung
dieser extrahierten Daten, um diese dann dem Data Mining Algorithmus als Eingabe zur

Verfiigung zu stellen.

Die Ermittlung von Anderungsmustern tritt in der zweiten Phase auf. Hierbei wird der

Algorithmus der Assoziationsanalyse auf die extrahierten Daten angewendet.

23

In der letzten Phase werden dem Entwickler alle relevanten Quellcodes vorgeschlagen,

indem eine Abfrage auf die Anderungsmustern gemacht wird [29].

data
mining

query for

preplza::t:ssin recommendatio/ny\

recommended
files

Abbildung 16: Die drei Phasen des Ansatzes von Ying et al [29]

24

4 Tools und Algorithmen

4.1 Sequential Pattern Mining Framework (SPMF)

Dieser Abschnitt umfasst die Erlduterung des SPMF Data Mining Frameworks und seiner

Algorithmen.

41.1 Aufbau und Funktionsweise des SPMF

Sequential Pattern Mining Framework oder auch kurz SPMF ist ein Data Mining
Framework, dessen Schwerpunkt im Bereich der Frequent Pattern Mining liegt. Es existieren
zudem eine grofe Breite an Data Mining Algorithmen, die sowohl bei den
Transaktionsdatenbanken als auch bei den Sequenzdatenbanken zur Ermittlung von
Mustern eingesetzt werden. Dariiberhinaus ist das SPMF ein java—basiertes und quelloffenes
Data Mining Framework. Das SPMF besitzt sowohl einen GUI (siehe Abbildung 17) als auch
einen CLI (siehe Abbildung 18) als Schnittstelle mit dem Benutzer [30].

@ semrvoos =10 x|

S01E

Choose an algorithm: |Apniori | = ?
Choose input file input 1t l_

Set output file output td [—

Choose minsup (%): 04 (e.9. 0.4 or 40%)

] Open output file when the algonthm terminates

Run algonthm
==z======zz=== AFPRIORI-STATS =======z======
Candidates count: 10
The algorithm stopped al Size 3, because there is no candidate

Fraquent itemsests count: §

Abbildung 17: SPMF GUI [30]

java —jar spmf.jar run Apriori input.txt output.txt 0.4

Abbildung 18: SPMF CLI [30]

Die Abbildungen 17 zeigt das Beispiel, wie das Ausfithren des Apriori Algorithmus im
SPMF GUI aussieht. Der Benutzer selektiert den Apriori Algorithmus in dem Combobox.

25

Je nachdem, welcher Data Mining Algorithmus selektiert wird, erscheinen oder
verschwinden einige Eingabefelder. Die Inputs und Outputs des Sequential Pattern Mining
Frameworks sind Text Files. Die Transaktionsdatenbanken und die Sequenzdatenbanken
werden den Data Mining Algorithmen als Text Files zur Verfiigung gestellt. Der Benutzer
selektiert jetzt als Input den Input.txt File und setzt den Namen des Output.txt Files als
Output. Weiterhin gibt der Benutzer einen Minimumsupportwert ein und betdtigt den ,Run
algorithm” Button. Dieser gesamte Ablauf kann auch durch den SPMF CLI (Command Line
Interface) ausgefiihrt werden, wie es in der Abbildung 18 auch zu sehen ist. Somit liest der
Apriori Algorithmus die Daten aus dem Input.txt File, bearbeitet diese und schreibt
anschlieBend die Ergebnisse in den Output.txt File [30]. Simtliche weitere Informationen
iiber das SPMF kann man von der offiziellen Webseite des Sequential Pattern Mining

Frameworks erhalten [31].

4.1.2 SPMF Data Mining Algorithmen

In diesem Kapitel wird anhand eines Beispiels die Funktionsweise des Algorithmus
FPGrowth_Itemsets_with_Strings ndher unter die Lupe genommen. Die Erlduterung von
diesem Algorithmus hat in Rahmen dieser Diplomarbeit eine sehr wichtige Bedeutung,
zumal die Integration des Sequential Pattern Mining Frameworks in die Eclipse

Entwicklungsumgebung mit Hilfe von diesem Algorithmus realisiert ist.

FPGrowth_Itemsets with_strings:

Der FP-Growth Algorithmus wurde bereits in dem Kapitel 2.4 sehr detailliert erlautert. Aus
diesem Grund wird hier auf die detaillierte Funktionsweise des FP-Growth Algorithmus
verzichtet. Es wird lediglich auf die Vorgehensweise des FPGrowth_Itemsets_with_Strings in

dem SPMF eingegangen.

Um die Funktionsweise und das Ergebnis von diesem Algorithmus zu verstehen, wird der
Inhalt der Transaktionsdatenbank D aus der Tabelle 1 dem FPGrowth_Itemsets_with_Strings
als Input.txt File zur Verfiigung gestellt.

Apfel Mandarine Melone

Apfel Mandarine Zitrone

Apfel Birne

Mandarine Melone Apfel

Apfel Mandarine Melone Zitrone
Birne

Abbildung 19: Input.txt File von FPGrowth_Itemsets_with_Strings [32]

26

Die Abbildung 19 représentiert den Input.txt File fiir den Algorithmus. Jede Transaktion ist
hier durch eine Zeile dargestellt und besteht aus einer Menge von Items, welche durch ein
Leerzeichen voneinander getrennt sind. Das Ende einer Zeile verweist dementsprechend auf
das Ende einer Transaktion. Der Input.txt File enthalt somit insgesamt 6 Transaktionen (T1,
T2, T3, T4, T5, T6) und 5 Items (Apfel, Melone, Mandarine, Zitrone, Birne). Beispielweise
reprasentiert die fiinfte Zeile in dem Input.txt File die Transaktion T5 und enthélt die Items
{Apfel, Mandarine, Melone, Zitrone} [32]. Geht man zudem von einem
Minimumsupportwert von 0,5 (sp;, = 0,5 = 50%) aus, dann produziert dieser Algorithmus
das in Abbildung 20 dargestellte Ergebnis in dem Output.txt File [32]. Jede Zeile in dem
Output.txt File steht fiir einen Frequent Itemset. In jeder Zeile werden als Erstes die Frequent
Itemsets aufgelistet, die durch Leerzeichen voneinander getrennt sind. Danach steht das

"o

Zeichen und es folgt darauf ein Integerwert, der den Supportwert von dem Frequent
Itemset angibt. Die dritte Zeile in dem Output.txt File driickt aus, dass das Frequent Itemset
aus den Items {Apfel, Mandarine, Melone} besteht und einen Support von 3 Transaktionen

besitzt [32].

Apfel:5

Apfel Mandarine:4

Apfel Mandarine Melone:3
Apfel Melone:3
Mandarine:4

Mandarine Melone:3
Melone:3

Abbildung 20: Output.txt File von FPGrwoth_Itemsets_with_Strings [32]

4.2 Windowbuilder

Beim Windowbuilder handelt es sich um einen GUI Builder, der dem Entwickler erméglicht,
Benutzeroberfldchen sehr leicht zu erstellen ohne dabei unnétige Zeit mit dem Schreiben von
Quellcodes zu verbringen. Die Steuerelemente konnen dabei einfach durch Drag and Drop
Methode in das GUI eingefiigt werden [33]. Die Abbildung 21 zeigt die Oberfliche des
Windowbuilder Plug-Ins, welches aus den Hauptkomponenten Source View, Design View,
Component Tree, Property Pane, Palette, Wizards, Toolbars & Context Menus besteht. Eine
sehr wichtige Eigenschaft von dem Windowbuilder ist die bi-direktionale Codegenerierung.
Fugt der Entwickler ein Steuerelement in der Design Sicht (View), wird in der Source Sicht
(View) der entsprechende Quellcode automatisch generiert und umgekehrt. Die Abbildung
22 stellt die Eigenschaft bi-direktionale Codegenerierung von Windowbuilder graphisch dar
[34].

27

=l =]

1?J|GEII -t"ax[L (defaum)
®el 1

| EEEE mmm.|®.

4 [shell - “Apphication” .ew | %] :d-‘) DIERID 0
=] Address B enus
+ E) Phone 83 Choose co... 3.7 Tab Order =
o -
&2 home - "Home™ &> Comp | -
17 homePh - T Composite [#| Canvas Last Name |
2 office - "Office’ 5 Table 4] Tree [
Lm.pn i (5 List8 & st :snl
=] emadComposite euyous | (e | 2o [
X Absolute la... £ FillLayout 1 T i
Dl Propeties %o | 3 Lo | I B #W T Formtayout — — 1 :{ !
Variable home = | & RowLsyout [2] | [Rckad) 1
#* Comstructor (Constructor proper... le ¢ | “l
T 1'5,*, £3Push Button &1 Check Box
| separator [false @ Radic Button iglabel
wrap E:M [iTet {5 Combo
e TICAL i =
shadow | SHADOW_OUT (St —L
* LayoutData (eegechpse.swtisyo... 5 Table 0 TableColu...
Class .%“‘""""‘"*. + Tablekem %3] Tree
background | [J200200200 (] | L= Treekem
enabled Fltrue & Menu |
font MSSheliDigd (=] FIMenuBar Ll Popup Menu
o g 8 & Coscade M... & Menulem
text Home = | S RadioMen_ Zj CheckMen..
toolTipText (=] ~ | & Separator
| Source

Abbildung 21: Benutzeroberfliche des Windowbuilder Plug-Ins [33]

9| 8@ AEAX DS DE=F=Mih| =
User Name
=]
¥ Souece TN

B

package test.client;

com.gocgle.gwt.
com.google.gwt,
com.google.gut.
com,google.gwt.
com.google .gwt.

user.client.ui.Composite;
user.client.ui.AbsclutePanel;
user.client.ui.label;
«ui.TextBox;
.ui.Button;

= import
imuport
mport
import
lmport

user.client
user.client

public class MyComposite extends Composite {

public MyComposite() {

AbsolutePanel absolutePanel = new AbsolutePanel(); 2
aitWidget (absolutePanel)

erNameLabel = now Label (“User Name:®);

tSize ("118px”, “24px"):

Button findButton = new ht:on("): by
absolutePanel.add(findButton, 305, 40):
findButton, setSize ("135px”®, *35px”): .

7 Decian|

Abbildung 22: Bi-direktionale Codegenerierung in Windowbuilder [34]

28

5 Anforderungen und Konzept

In diesem Kapitel wird das Software Repository Mining Plug-In (SRM Plug-In) eingefiihrt
und ndher erldutert. Zunichst werden die Anforderungen an das Plug-In kurz vorgestellt.
Hinterher wird das Konzept gefolgt durch die Struktur und Workflow prasentiert. Zuletzt
findet dann eine detaillierte Erlduterung der Korrelation der einzelnen Komponenten des

Plug-Ins anhand eines Beispiels statt.

5.1 Anforderungen

Hier werden die Anforderungen an das SRM Plug-Ins festgelegt. In erster Linie erfolgt die
Erlduterung iiber die Uberarbeitung des SPMF Data Mining Algorithmus, der innerhalb des
SRM Plug-Ins fiir die Durchfithrung der Frequent-Itemset-Analyse angewendet wird. Im
Anschluss daran wird die Integration der Data Mining Analyse ins SRM Plug-In

beschrieben.

5.1.1 Uberarbeitung von SPMF Data Mining Algorithmus

Da das SRM Plug-In fiir die Durchfiihrung der Frequent-Itemset-Analyse den Algorithmus
FPGrowth_Itemsets_with_Strings von dem SPMF Data Mining Framework benutzt, ist in
erster Linie die Uberarbeitung und Anpassung von diesem Algorithmus erforderlich. Wie im
Abschnitt 4.1.2 bereits geschildert ist, kann der Algorithmus FPGrowth_Itemsets_with_Strings

Daten nur von Text Files lesen und die Ergebnisse in Text Files schreiben.

Die erste Anforderung an das SRM Plug-In beziiglich der Durchfithrung der Frequent-
Itemset-Analyse ist dies, dass der Algorithmus, welcher die Frequent-Itemset-Analyse
durchfiihren soll, Daten von einer Datenbanktabelle liest, und die Ergebnisse in eine andere

Datenbanktabelle speichert.

Eine weitere Anforderung an das SRM Plug-Ins bezieht sich auf die Ergebnisse, die durch
den Algorithmus FPGrowth_Itemsets_with_Strings erzeugt werden. Betrachtet man
beispielweise die zweite Zeile des Output.txt Files aus der Abbildung 20, so kann man die
Ausgabe (Apfel Mandarine: 4) erkennen. Diese Ausgabe besagt, dass das Frequent Itemset
{Apfel Mandarine} einen Support von 4 hat und somit in vier Transaktionen auftritt. Das
SRM Plug-In aber benétigt fiir die weitere Verarbeitung der aus der Frequent-Itemset-
Analyse resultierten Daten bzw. Frequent Itemsets, Informationen dariiber, in welchen
Transaktionen diese Frequent Itemsets tiberhaupt auftreten. Bezogen auf das Beispiel von
vorhin, muss in der Outputdatenbanktabelle der Frequent-Itemset-Analyse des SRM Plug-
Ins eine Spalte existieren, die diese vier Transaktionen des Frequent Itemsets {Apfel
Mandarine} beinhaltet.

29

5.1.2 Integration von Data Mining ins Eclipse Tool

Die Durchfithrung der Frequent-Itemset-Analyse bildet den einen Teil des SRM Plug-Ins. Ein
weiterer und somit auch der wichtigste Teil der Anforderungen an das Plug-In ist die

Integration von Data Mining Analysen in das SRM Plug-In.

Nachdem die Frequent-Itemset-Analyse durchgefiihrt wurde und die Ergebnisse sich in der
Outputdatenbanktabelle befinden, erfolgt dann die Bereitstellung dieser Ergebnisse an den
Entwickler in dem SRM Plug-In. Aus diesem Grund geht es hier darum zu bestimmen,
welche Informationen aus der Outputdatenbanktabelle dem Entwickler bereitgestellt

werden sollen.
Die Anforderungen an dem SRM Plug-In sind dann wie folgt:

1. Der Entwickler soll die Frequent-Itemset-Analyse von dem SRM Plug-In aus starten

konnen.

2. Nachdem Selektieren bzw. Andern eines Files durch den Entwickler, sollen die
gekoppelten Dateidnderungen (Coupled Changes) und die Transaktionen jeweils

separat dem Entwickler vorgeschlagen werden.

3. Weiterhin soll der Entwickler auch die Moglichkeit haben, eine Transaktion
auszuwihlen, um sich die entsprechenden Eintrdge zu der selektierten Transaktion

separat anzeigen zulassen.

5.2 Architektur SRM Plug-In

Hier erfolgt die Darstellung der Architektur des SRM Plug-Ins. Die Abbildung 23 stellt diese
Architektur dar. Eigentlich befinden sich alle dargestellten Komponenten in dem Plug-In.

Fiir ein besseres Verstindnis wurden diese Komponenten hier getrennt dargestellt.

Zusitzlich ist noch zu erwidhnen, dass es sich bei dem FPGA.jar File um den
FPGrowth_Itemsets_with_Strings Algorithmus handelt. Das SPMF ist eine unter der GPL
(General Public License) lizenzierte Software und somit auch deren Algorithmen. Das SRM
Plug-In ist unter der EPL (Eclipse Public License). Da diese beiden Lizenzen inkompatibel
sind, darf der Quellcode vom FPGrowth_Itemsets_with_Strings Algorithmus nicht Teil vom

SRM Plug-In sein, sondern darf nur als externer Jar File in das Plug-In integriert werden [41].

30

2.Liest die FPGA jar 3. Schreibt die
Input —> . .
Daten (Algorithmus) Ergebnisse
6.Zu der Abfrage
- passenden Ergebnisse
Z.Abfralgi r.1ac werden dem SRM
.em sele t1.erten Plug-In tibermittelt
File (Querying) (Matching)

v

Software Repository Mining (SRM) Plug-In

File
7.Die Ergebnisse
1.Benutzer startet den .
werden in dem SRM
Algorithmus tiber das
4 Benutzer selektiert Plug-In dem Benutzer
SRM Plug-In
einen File im SRM vorgeschlagen
Plug-In (Suggestions)
Benutzer

Abbildung 23: Architektur SRM Plug-In

31

5.3 Struktur und Workflow des SRM Plug-Ins

Dieser Abschnitt umfasst die Struktur und den Workflow des SRM Plug-Ins.

5.3.1 Struktur SRM Plug-In

Das Plug-In besteht insgesamt aus fiinf Views und einem Editor. Neben den

Standardkomponenten der Eclipse IDE wurden im Rahmen dieser Diplomarbeit vier weitere
Views hinzugefiigt. Die Abbildung 24 zeigt die Struktur des SRM Plug-Ins. Installiert der

Benutzer den SRM Plug-In, erscheint ihm diese Startseite. Die einzelnen Komponenten des

SRM Plug-Ins werden im Folgenden aufgelistet und beschrieben:

1.

Execution View: Durch diesen View startet der Benutzer die Frequent-Itemset-Analyse.
Project Explorer: Der Benutzer selektiert einen File in seinem Project Explorer.

Coupled Changes: Die gekoppelten Dateidnderungen werden dem Benutzer in diesem

View vorgeschlagen.

Commit View: Die Transaktionen, welche das selektierte File und seine gekoppelten

Dateidnderungen beinhalten, werden in diesem View angezeigt.

Commit Message View: Die Eintrdge zu dem in der Commit View durch den Benutzer

selektierte Transaktion wird in diesem View dargestellt.

e OO Resource - Eclipse Platform
v T Qoo
[projectex 88 = B = 8 [Execution View &3 = 8 [] Commit Message View &3
=2 & v Commit Messages
[~ Commit View 23 = B [coupled Changes &3
Files

Abbildung 24: Struktur SRM Plug-In

32

5.3.2 Workflow SRM Plug-In

Dieses Kapitel stellt den Workflow des SRM Plug-Ins dar. Dabei versteht man unter

Workflow den Datenfluss in dem Plug-In.

%ProjectExSﬁ = B8
% -

m

4.1

= B [execution View 2

[~ Commit View &3

5.2

4.2
0

Abbildung 25: Workflow SRM Plug-In

33

= B] commit Message View &2

Commit Messages

A

[Coupled Changes 23

Files

5.1

Im Folgenden werden die einzelnen Schritte des Workflows beschrieben:

1. Der Benutzer gibt im Execution View einen Minimumsupportwert ein und betéitigt den
,Start Execution” Button. Somit wird der FPGA.jar File aufgerufen und ihm der

Minimumsupportwert tibergeben.

2. Der FPGA jar File liest die Daten aus der Inputdatenbanktabelle und fiihrt die Frequent-

Itemset-Analyse durch.

3. Danach schreibt der FPGA jar File die Ergebnisse der Frequent-Itemset-Analyse in die
Outputdatenbanktabelle.

4.1. Der Benutzer selektiert einen File in dem Project Explorer.

4.2. Das selektierte File wird mit dem Inhalt der Outputdatenbanktabelle verglichen.
5.1. Die gekoppelten Dateidnderungen werden im Coupled Changes angezeigt.

5.2. Die CommitIDs werden in dem Commit View angezeigt.

6. Der Benutzer selektiert einen CommitID und es wird in der Commit Message Tabelle

nach Eintrdgen zu dem selektierten CommitID gesucht.

7. Die Eintrdge zu dem im Punkt 6 selektierten CommitID werden dann in dem Commit

Message View angezeigt.

5.4 Korrelation der einzelnen SRM Plug-In Komponenten

Die Relation der einzelnen SRM Plug-In Komponenten zueinander werden in diesem

Textabschnitt anhand von Beispielwerten beschrieben.

5.4.1 Execution View

Execution View ist der Bereich des Plug-Ins, womit die Frequent-Itemset-Analyse gestartet
wird. Es hat einen Textfeld und einen Button. In das , Choose minsupp” Textfeld kann der
Benutzer einen Wert in dem Intervall [0.1, 1.0] eingeben. Betatigt der Benutzer danach den
,Start Execution” Button, dann startet die Frequent-Itemset-Analyse. Die Abbildung 26 zeigt

den Execution View mit Beispielwerten.

34

[Execution View &3

Choose minsupp:

[0.4

Start Execution

Abbildung 26: Execution View mit Beispielwerten

5.4.2 FPGA.jar File

Das FPGA jar File ist fiir die Durchfiihrung der Frequent-Itemset-Analyse verantwortlich. Es

liest die Daten aus einer Inputdatenbanktabelle, fithrt die Frequent-Itemset-Analyse durch

und schreibt die Ergebnisse in eine Outputdatenbanktabelle. Die Tabelle 4 reprisentiert die
Beispielinputtabelle des FPGA jar Files.

Tabelle 4:Beispielinputtabelle fiir das FPGA jar File

123 Project/src/example/ | Project/src/example/ | Project/src/example/
Testl.java Test2.java Test3.java

124 Project/src/example/ | Project/src/example/ | Project/src/example/
Test3.java Test4.java Test5.java

125 Project/src/example/ | Project/src/example/ | Project/src/example/
Test3.java Test5.java Test6.java

126 Project/src/example/ | Project/src/example/ | Project/src/example/
Testl.java Test2.java Test3.java

35

Die Beispielinputtabelle besitzt vier Spalten. Die erste Spalte ist die CommitID Spalte. Diese
Spalte beinhaltet die CommitIDs von den Transaktionen. In dieser Beispielinputtabelle
existieren insgesamt vier Transkationen (123, 124, 125, 126). Jede Zeile stellt eine Transaktion
dar, die aus einer Menge von Items besteht. Die Items sind als Pfade dargestellt. In einer
Transaktion darf ein Item nur einmal vorkommen. Diese Daten der Beispielinputtabelle
werden von dem FPGA jar File Transaktion fiir Transaktion gelesen, analysiert und die

Ergebnisse in die Outputtabelle geschrieben.

Tabelle 5: Beispieloutputtabelle des FPGA jar Files

O_ID (PK) | CommitIDs Support | Iteml Item2 Item3
1 124:125 2 Project/src | Project/src | NULL
/example/ | /example/
Test5java | Test3.java
2 123:126 2 Project/src | Project/src | NULL
/example/ | /example/
Test2java | Test3.java
3 123:126 2 Project/src | Project/src | Project/src
/example/ | /example/ | /example/
Test2java | Test3.java Testl.java
4 123:126 2 Project/src | Project/src | NULL
/example/ | /example/
Test2java | Testl.java
5 123:126 2 Project/src | Project/src | NULL
/example/ | /example/
Testljava | Test3.java

Die Tabelle 5 zeigt die Beispieloutputtabelle, die nach der Frequent-Itemset-Analyse
entstanden ist. Da der Minimumsupportwert = 0.4 = 2 Transaktionen ist, werden bei der
Frequent-Itemset-Analyse nur jene Itemsets in die Beispieloutputtabelle geschrieben, welche

in mindestens zwei Transaktionen vorkommen.

36

Beispielsweise besagt die dritte Zeile aus der Tabelle 5, dass die Files
{Project/srclexample/Test2.java; Project/src/example/Test3.java; Project/src/example/Test1.java} einen
Supportwert von 2 haben und in den Transaktionen mit den CommitIDs {123 und 126}

auftreten.

5.4.3 Project Explorer und Editor

An dieser Stelle kommen die Standardkomponenten des Eclipse IDE zum Einsatz. Die
Entwicklung eines Plug-Ins zeichnet sich wie im Kapitel 2.5 auch dargelegt, durch die
Erweiterung der bereits existierenden Komponenten des Eclipse IDE aus. Im Rahmen dieser
Diplomarbeit wurden diese Eclipse IDE Komponenten durch die Views (Execution View,
Coupled Changes, Commit View und Commit Message View) erweitert. Die Abbildung 27
reprasentiert die Ubersicht von den Standardkomponenten der Eclipse Workbench und

untergliedert diese in vier Bereiche, die im Folgenden detaillierter erldutert werden.

Komponenten der Eclipse Workbench:

1. Project Explorer View:
Dieses View ist fiir das Verwalten von Projekten zustdndig. Importieren und
Erstellen von Projekten, Klassen usw. sind durch dieses Project Explorer View

moglich.

2. Editor:
Dieser Beriech ermdéglicht das Schreiben und Anzeigen von Quellcodes des in dem

Project Explorer View erstellten bzw. selektierten Files.

3. Outline View:
In diesem Bereich werden wichtige Informationen tiber die Klassen des Project
Explorer Views angezeigt. Diese Informationen sind beispielsweise die Methoden
und Attribute zu den entsprechenden Files aus dem Project Explorer View. Dieser
View erleichtert die Arbeit des Entwicklers, da es viele verschiedene Mdglichkeiten
anbietet, um einen besseren Uberblick iiber die Methoden und Attribute der
implementierten Klassen zu bekommen. Einer der Vorteile, welcher diese Outline
View mit sich bringt, ist die Tatsache, dass es den Entwicklern die Moglichkeit gibt,
durch einen Klick auf eine Methode auf den entsprechenden Quellcodeabschnitt, wo
die Methode implementiert ist, zu gelangen. Dadurch wird die aufwendige Suche

nach den Methoden in Klassen mit grofem Umfang vermieden.

37

4. Diese View stellt die Konsolenausgaben dar. Hier werden unter anderem

Informationen ausgegeben, welche die Fehler beim Kompilieren eines laufenden

Programmes anzeigen [35].

File Edt Scurce Refacter Navgste Semch Project Rus Wiedow Help
2 L& $-0-Q- #CG- s+~ PP ET d-H-BEro -

\£77

| pathkage main;

public class Melloworld (
E nollk void saymello() (

)
}

Writable Senaet lrert 5:9

Abbildung 27: Ubersicht iiber den Eclipse Workbench [35]

Abbildung 28 zeigt den Project Explorer mit einem Beispielprojekt. Der Benutzer importiert

ein Eclipse Projekt namens , Project”, das einige Klassen beinhaltet. Klickt der Benutzer auf

den File Testl.java, dann wird der Inhalt bzw. Quellcode von diesem File in dem Editor

nebenan dargestellt.

Weiterhin wird durch den Klick auf das File der Pfad von diesem selektierten File ermittelt,

transformiert und mit dem in der Tabelle 5 dargestellten Beispieloutputtabelle verglichen.

Bei dem Vergleich wird in der Outputtabelle nach dem selektierten File gesucht und die

entsprechenden Bereiche, die das selektierte File beinhalten mit samt seinen CommitIDs und

seinen gekoppelten Dateidnderungen aus der Outputtabelle selektiert und anschlieend fiir

die Weiterverarbeitung an die anderen Klassen tibergeben. Diese Klassen verarbeiten dann

diese selektierten Bereiche so, indem sie die gekoppelten Dateidnderungen von ihren

CommitIDs trennen, um diese dann an die entsprechenden Views weiterzuleiten. Dabei

38

werden die gekoppelten Dateidnderungen an das View Coupled Changes und die

CommitIDs dem Commit View iibergeben.

(05 Project Explorer 82 =% ¥ T B [J] Testljava 2
Vté‘)Project [:ackage example;
¥ &#src
v 3 example public class Testl {

> [J] Testl.java
> [J] Test2.java
> [J] Test3 java
> [J] Test4 java
» [J) Tests java
> [J] Test6.java
P =, JRE System Library [JavaSE-1.8]

}

Abbildung 28: Project Explorer mit einem Beispielprojekt

5.4.4 Coupled Changes

Dieses View listet die gekoppelten Dateidnderungen nach absteigenden Supportwerten auf.
Selektiert der Benutzer in dem Project Explorer einen File, wird tiberpriift, ob das selektierte
File in der Outputtabelle vorhanden ist. Wenn es der Fall ist, dann werden die gekoppelten
Dateidnderungen des selektierten Files in dem View Coupled Changes dargestellt. Die
Abbildung 29 représentiert die gekoppelten Dateidnderungen des Files Test5.java mit dem
Pfad: Project/src/example/Test5.java.

™ Coupled Changes 23

Files
[Project/src/example/TestS5.java, Project/src/example/Test3.java)

Abbildung 29: Coupled Changes mit Beispielwerten

Klickt der Benutzer hingegen auf einen File, welcher nicht in der Outputtabelle vorhanden
ist, dann erscheint die folgenden Meldung im Coupled Changes: , The selected File does not
exist in the Outputtable” (,Das selektierte File existiert nicht in der Outputtabelle”). Die
Abbildung 30 zeigt diese Fehlermeldung.

39

™ Coupled Changes 23

Files
The selected File does not exist in the Qutputtable

Abbildung 30: Fehlermeldung im Coupled Changes

5.4.5 Commit View

In diesem View werden die CommitIDs, welche das selektierte File und seine gekoppelten

Dateidnderungen besitzen in einem Combobox aufgelistet.

™ Commit View 23

Choose a CommitID: | v |
124

125

Abbildung 31: Auflistung der CommitIDs im Commit View mit Beispielwerten

In Abbildung 31 wird das Commit View mit Beispielwerten angezeigt. Diese Werte besagen,
dass die gekoppelten Dateidnderungen aus der Abbildung 29 in den Transaktionen {124 und
125} der Outputtabelle (Tabelle 5) auftreten.

Der Benutzer hat die Moglichkeit eines von den CommitIDs in diesem Commit View
auszuwihlen, um sich die entsprechenden Eintrdge aus der Commit Message Tabelle in dem

Commit Message View anzeigen zu lassen. Die Tabelle 6 reprasentiert die Commit Message
Tabelle.

40

Tabelle 6: Commit Message Tabelle

1 123 Die Arbeit ist erledigt

2 124 auch wéhrend der Eingabe

3 125 wéhrend die anderen Klassen
4 126 nicht vorhanden ist

5.4.6 Commit Message View

Nachdem der Benutzer in dem vorherigen Schritt einen CommitID ausgewdhlt hat,
erscheinen die Eintrdge zu dem selektierten CommitID in dem Commit Message View des
SRM Plug-Ins. Selektiert beispielweise der Benutzer die CommitID 125, dann erscheint in
dem Commit Message View der Eintrag , wdihrend die anderen Klassen”, wie es auch in der
Abbildung 32 zu sehen ist.

™ Commit Message View &3

wihrend die andere Klassen

Abbildung 32: Commit Message View mit Beispielwerten

41

6 Implementierung

Zielrichtung dieses Kapitels ist die Umsetzung des SRM Plug-In Konzeptes.

6.1 Entwicklungsumgebung

Das SRM Plug-In wurde mit Hilfe der Entwicklungsumgebung Eclipse Mars als eine reine
Java Anwendung realisiert. Das Plug-In wurde dabei neben dem Eclipse SDK auch noch mit
dem Einsatz des PDE (Plug-In Development Environment) entwickelt. Zuletzt wurden die
GUIs durch die Nutzung des Windowbuilder Tools mit Hilfe der Graphikbibliothek SWT

erstellt.

6.2 Registrierung des SRM Plug-Ins

In erster Linie wird ein Plug-In Projekt mit dem Namen de.uni_stuttgart.srmplugin erstellt. Im
Anschluss daran wird das bereits vorhandene Eclipse IDE um die benétigten Views
(Execution View, Coupled Changes, Commit View und Commit Message View) erweitert.

Abbildung 33 zeigt, wie die Views dem SRM Plug-In hinzugefiigt werden.

L= . —
== Extensions O L®
All Extensions la 26 = Extension Details
z Bas =
Define extensions for this plug-in in the following section. Set the properties of the selected extension. Required fields
are denoted by "*".
type filter text
1D
b = org.eclipse.datatools.connectivity.cc Add
b = org.eclipse.ui.propertyPages Name:
WV i=org.eclipse.ui.views Remove
[X] Execution View (view)
[X] Coupled Changes (view) 2)) o
o o . =
[X] Commit View (view) Up : Show extension point description
[X] Commit Message View (view) r : +l| Open extension point schema
Down <4

%y’ Find declaring extension point

Overview Dependencies | Runtime Extensions Extension Points | Build MANIFEST.MF plugin.xml build.properties

Abbildung 33: Hinzufligen der Views in das SRM Plug-In

42

Weiterhin werden die Jar Files: FPGA jar und der MYSQL Treiber: mysql-connector-java-
5.1.34-bin jar in den Classpath des Runtime Tabs hinzugefiigt. Abbildung 34 zeigt wie diese
Jar Files in das SRM Plug-In integriert wurden.

=\ Runtime OFHLE®

Exported Packages

Package Visibility (Eclipse 3.1 or later)
Enumerate all the packages that this plug-in exposes to clients.

When the runtime is in strict mode, the selected

All other packages will be hidden from clients at all times. package is:
Add... visible to downstream plug-ins
Remove hidden from all plug-ins except
Properties... Add...
Calculate Uses Remove
Classpath

Specify the libraries and folders that constitute the
plug-in classpath. If unspecified, the classes and
resources are assumed to be at the root of the plug-

in.

=), src/lib/FPGA . jar New...
=), src/lib/mysqgl-connector-java-5.1

=i Add...

D

Overview Dependencies | Runtime ‘ Extensions Extension Points

Build ‘ MANIFEST.MF | plugin.xml | build.properties

Abbildung 34: Integration von MYSQL Treiber und FPGA jar File in das SRM Plug-In

Zum Schluss werden die Abhingigkeiten (Dependencies) in den Dependencies Tab

eingeftigt. Abbildung 35 zeigt alle Abhdngigkeiten, die fiir die Entwicklung des SRM Plug-
Ins erforderlich sind.

=) - — =
% Dependencies OFL®
Required Plug-ins laz Imported Packages
Specify the list of plug-ins required for the operation of this Specify packages on which this plug-in depends without
plug-in. explicitly identifying their originating plug-in.
%= org.eclipse.ui | Add.. | Add...
3';[::org.eclipse‘core‘runtime
¥ org.eclipse.datatools.connectivity [1.0.1 Remove Remove
Z_;[::org.eclipse‘datatools.connec!ivity.ui [1.(Up Properties...
<J= org.eclipse.datatools.connectivity.db.ge
?;;z org.eclipse.datatools.connectivity.db.ge Down
3‘;1;’: org.eclipse.core.resources (3.9.100))
-) K A Properties...
=)= org.eclipse.osgi.services (3.5.0)
3'3:‘ org.eclipse.jface.text (3.10.0)
Total: 9
ot Total: 0
, .
Automated Management of Dependencies laz R Dependancy AnaIals

Overview Dependencies

Abbildung 35: Hinzufiigen der Abhédngigkeiten (Dependencies) in das SRM-Plug-In

ion Points Build | MANIFEST.MF plugin.xml | build.properties

43

Nachdem das Plug-In erstellt und die entsprechenden Views und die Abhingigkeiten
(Dependencies) hinzugefiigt wurden, werden alle Informationen tiber das Plug-In in dem

File plugin.xml angezeigt. Listing 1 zeigt den Quellcode von plugin.xml des SRM Plug-Ins.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"7>
<plugin>

<extension
point="org.eclipse.datatools.connectivity.connectionProfile">
<newWizard
name="%wizard.name"
icon="icons/new_db_element.gif"
profile="my.connection.profile"
class="org.mycompany.myconnectionprofile. MyConnectionProfileWizard"
id="my.connection.profilenewWizard">
</newWizard>
<connectionProfile
pingFactory="org.eclipse.datatools.connectivity.db.generic.J DBCConnectionFactory"
name="%connection.profile.name"
icon="icons/jdbc_16.gif"
category="org.eclipse.datatools.connectivity.db.category"
id="my.connection.profile">
</ connectionProfile>
</extension>
<extension
point="org.eclipse.ui.propertyPages">
<page
name="%connection.profile.proppage.name"
class="org.mycompany.myconnectionprofile. MyConnectionProfilePropertyPage"
id="my.connection.profile.propertyPage">
<filter
name="org.eclipse.datatools.profile.property.id"
value="my.connection.profile">
</filter>
<enabledWhen>
<instanceof
value="org.eclipse.datatools.connectivity.IConnectionProfile">
</instanceof>
</enabledWhen>
</page>
</extension>
<extension
point="org.eclipse.ui.views">
<view
category="de.uni_stuttgart. SRMPlugIn.category"
class="de.uni_stuttgart.srmplugin.views.ExecutionView"
id="de.uni_stuttgart. SRMPlugIn.executionview"
name="Execution View"
restorable="true">
</view>
<view
category="de.uni_stuttgart. SRMPlugln.category"
class="de.uni_stuttgart.srmplugin.views.CoupledChanges"
id="de.uni_stuttgart.SRMPlugIn.coupledchanges"

44

restorable="true">
</view>
<view

restorable="true">
</view>
<view

restorable="true">
</view>
<category

</ category>
< /extension>

</plugin>

name="Coupled Changes"

category="de.uni_stuttgart. SRMPlugln.category"
class="de.uni_stuttgart.srmplugin.views.CommitView"
id="de.uni_stuttgart. SRMPlugIn.commitview"
name="Commit View"

category="de.uni_stuttgart. SRMPlugln.category"
class="de.uni_stuttgart.srmplugin.views.CommitMessageView"
id="de.uni_stuttgart. SRMPlugln.commitmessageview"
name="Commit Message View"

id="de.uni_stuttgart. SRMPlugIn.category"
name="SRM Plugin">

Listing 1: Quellcode plugin.xml vom SRM-Plug-In

6.3 Auflistung der einzelnen Klassen

Hier werden alle Klassen des SRM Plug-Ins und deren Funktionen in der Tabelle 7

aufgelistet und beschrieben.

Tabelle 7: Uberblick tiber die Klassen des SRM Plug-Ins und deren Funktionen

Activator.java

Diese Klasse ist fiir das Starten und Beenden des SRM Plug-

Ins zustdndig.

ExecutionView.java
(View)

Diese View ist fiir das Starten der Frequent-Itemset-Analyse
verantwortlich. Der Benutzer gibt einen
Minimumsupportwert ein und startet dann die Frequent-

Itemset-Analyse.

Maincontrol.java

Die Dateniibertragung bzw. Kommunikation zwischen den

einzelnen Klassen wird durch diese Klasse verwirklicht.

45

DBConnection.java

Herstellung der Verbindung mit der Datenbank, Lesen der
Daten aus der Datenbanktabelle und Speichern der
Ergebnisse in eine andere Datenbanktabelle erfolgt in dieser

Klasse.

FPGA. jar

Bei diesem Jar File handelt es sich um den
FPGrowth_Itemsets_with_Strings Algorithmus, welcher die
Frequent-Itemset-Analyse durchfiihrt.

Search.java

Diese Klasse ist fiir das Suchen und Selektieren der
gekoppelten Dateidnderungen und den CommitIDs

verantwortlich.

Process.java

Hier werden die gekoppelten Dateidnderungen und die
CommitIDs voneinander getrennt, um sie an die

unterschiedlichen Views zuzuschicken.

CustomComparator.java

Diese Klasse sortiert die gekoppelten Dateidnderungen
entsprechend ihren Supportwerten in absteigender
Reihenfolge, so dass dann spéter in dem Coupled Changes
die gekoppelten Dateidnderungen mit den grofieren
Supportwerten an den ersten Stellen stehen und somit eine

hohere Prioritit besitzen.

ShowPlugin.java

Diese Klasse ist fiir die Ubermittlung und Riickgabe der

Informationen zwischen den Views verantwortlich.

CoupledChanges.java
(View)

In diesem View werden die gekoppelten Dateidnderungen

angezeigt.

CommitView.java
(View)

Diese View listet die CommitIDs auf, welche die

gekoppelten Dateidnderungen beinhalten.

CommitMessageView.java
(View)

In diesem View werden die Eintrdge zu dem selektierten

CommitID aus dem Commit View angezeigt.

46

6.4 Implementierung der einzelnen Komponenten

In diesem Abschnitt wird die Implementierung der einzelnen Komponenten des SRM Plug-

Ins vorgestellt.

6.4.1 ExecutionView.java

Diese Klasse stellt die Schnittstelle zwischen dem Benutzer und dem SRM Plug-In dar.
Mittels einer Benutzeroberfliche kann der Benutzer einen Minimumsupportwert eingeben

und durch das Betidtigen des ,Start Execution” Buttons die Frequent-Itemset-Analyse starten.

1 public class ExecutionView extends ViewPart {

2 private Text minimumsupport;

3 public ExecutionView() {}

4 public void createPartControl(Composite parent) {

5 parent.setLayout(null);

6 Label IbIMinsupport = new Label(parent, SWT.NONE);
7 IbIMinsupport.setBounds(35, 136, 118, 15);

8 IbIMinsupport.setText("Choose minsupp:");

9 minimumsupport = new Text(parent, SWT.BORDER);
10 minimumsupport.setBounds(207, 136, 76, 21);

11 Button btnRun = new Button(parent, SWT.NONE);

12 btnRun.addSelectionListener(new SelectionAdapter() {
13 public void widgetSelected(SelectionEvent e) {
14 Maincontrol.minsupp=Double.parseDouble(minimumsupport.getText());
15 Maincontrol.invokeDB();}

16 b

17 btnRun.setBounds(123, 202, 158, 25);

18 btnRun.setText("Start Execution");

19

20 public void setFocus() {

21 i)

Listing 2: Quellcode ExecutionView java

Gibt der Benutzer einen Wert in das ,Choose minsupp” Textfeld ein und driickt auf den
,Start Execution” Button, wird dieser Wert (das minimumsupport Attribut aus der Zeile 2 in
Listing 2) an das minsupp Attribut der Klasse Maincontrol.java tibergeben (Zeile 14 in Listing
2) und im nachhinein dann die invokeDB() Methode der Maincontrol.java Klasse aufgerufen
(Zeile 15 in Listing 2).

6.4.2 Maincontrol.java

Wie in der Tabelle 7 aufgelistet, ermoglicht diese Klasse den Datenfluss zwischen den
Klassen des SRM Plug-Ins.

47

O OIRNUI R WN =

public class Maincontrol {

public static double minsupp;

public static String outputtablename = "Outputtable”;

public static String SelectedFile;

public static List<List<String>> SelectedFileFieldsOfTheOutputtable;

public static List<List<String>> coupledchangesfiles;

public static List<String> CommitIDs;

public static List<List<String>> commitMessageValue = new ArrayList<>();

}

public static void main(String[] args) {

public Maincontrol(){

}
public static void invokeDB()

{
DBConnection.ReadInputTable();
SendMinsuppToTheAlgortithm();

public static void SendMinsuppToTheAlgortithm() {
double MinimumSupport= minsupp;
FPGrowthAlgorithmus.runAlgorithm(MinimumSupport);
DBConnection.CreateOutputTable();
DBConnection.WriteIntoOutputTable();

}
public static void invokeThePreparationOfTheCoupledChanges()

{

Search.searchForTheSelectedFile(SelectedFile, FPGrowthAlgorithmus.output);
Collections.sort(SelectedFileFieldsOfTheOutputtable, new CustomComparator());
Process.processingTheSelectedFileFields(SelectedFileFieldsOfTheOutputtable);
Process.removeRedundanciesOfTheCommidIDs(Maincontrol.CommitIDs);

i

Listing 3: Quellcode Maincontrol.java

Das Listing 3 reprdsentiert den Quellcode der Maincontroljava Klasse. Im Folgenden

werden die Attribute und Methoden detaillierter erldutert:

Attribute der Maincontrol.java Klasse:

1. minsupp (Zeile 2 in Listing 3):

Dieses Attribut beinhaltet den durch den Benutzer eingegebenen
Minimumsupportwert. Dieser Wert wird von der ExecutionView.java Klasse

tibergeben (Zeile 14 in Listing 2).

outputtablename (Zeile 3 in Listing 3):

Der Name der Outputtabelle, welche die Ergebnisse der Frequent-Itemset-Analyse
beinhalten soll, wird in diesem Attribut festgelegt. Hier ist der Name als
,Outputtable” definiert.

48

3. SelectedFile (Zeile 4 in Listing 3):
Der Pfad des durch den Benutzer selektierten Files befindet sich in diesem Attribut.
Dieser Wert wird diesem Attribut von der CoupledChanges.java Klasse tibergeben
(Zeile 1 in Listing 13).

4. SelectedFileFieldsOfTheOutputtable (Zeile 5 in Listing 3):
Dieses Attribut beinhaltet jene Zeilen der Outputtabelle, welche das Attribut
SelectedFile enthalten. Das bedeutet, aus der Outputtabelle werden die Zeilen, die das
selektierte File beinhalten ausgewidhlt und diesem Attribut tibergeben. Dieser Wert

wird von der Klasse Search.java hinzugefiigt (Zeile 15 in Listing 27).

5. coupledchangesfiles (Zeile 6 in Listing 3):
Bei diesem Attribut handelt es sich um eine Teilmenge des Attributs
SelectedFileFieldsOfTheOutputtable (Zeile 5 in Listing 3). Hier befinden sich nur
diejenigen Bereiche des Attributes SelectedFileFieldsOfTheOutputtable, welche die
gekoppelten Dateidnderungen beinhalten. Dieser Wert wird diesem Attribut von der

Klasse Process.java hinzugefiigt (Zeile 13 in Listing 28).

6. CommitlDs (Zeile 7 in Listing 3):
Dieses Attribut ist ebenfalls eine Teilmenge des Attributs
SelectedFileFieldsOfTheOutputtable (Zeile 5 in Listing 3). Hier befinden sich nur
diejenigen Bereiche des Attributes SelectedFileFieldsOfTheOutputtable, welche die
CommitIDs beinhalten. Der Wert wird diesem Attribut von der Klasse Process.java

hinzugefiigt (Zeile 12 in Listing 29).

7. commitMessageValue (Zeile 8 in Listing 3):
Dieses Attribut beinhaltet die Eintrdge zu einem selektierten CommitID. Das
bedeutet, selektiert der Benutzer die CommitID: 125 (sieche Abbildung 31), dann
beinhaltet dieses Attribut den Eintrag ,wihrend die anderen Klassen”(siche Abbildung
32). Dieses Attribut empfangt diesen Wert von der DBConnection.java Klasse (Zeile
25 in Listing 6).

Methoden der Maincontrol.java Klasse:

Diese Klasse beinhaltet insgesamt drei Methoden. Die ersten zwei Methoden sind fiir die
Durchfithrung der Frequent-Itemset-Analyse und fiir das Lesen und Schreiben in
Datenbanktabellen verantwortlich, wahrend die dritte Methode fiir die Ermittlung der

gekoppelten Dateidnderungen bestimmt ist.

49

invokeDB() (Zeile 13 in Listing 3):

* DBConnection.ReadInputTable() (Zeile 15 in Listing 3):
Hier wird die Methode ReadInputTable() der DBConnectionjava Klasse
aufgerufen, um die Daten aus der Inputtabelle zu lesen und sie fiir die

Weiterverarbeitung in einem Array zu speichern.

» SendMinsuppToTheAlgortithm() (Zeile 16 in Listing 3):
Die Methode SendMinsuppToTheAlgortithm() aus der Zeile 18 des Listing 3 wird

hier aufgerufen.

SendMinsuppToTheAlgortithm() (Zeile 18 in Listing 3):

* Double MinimumSupport=minsupp (Zeile 19 in Listing 3):
Der Wert von dem Attribut minsupp wird dem MinimumSupport Attribut

zugewiesen.

* FPGrowthAlgorithmus.runAlgorithm(MinimumSupport) (Zeile 20 in Listing 3):
Hier wird die runAlgorithm() Methode des FPGrowthAlgorithmus mit dem

MinimumSupport als Inputparameter aufgerufen.

* DBConnection.CreateOutputTable() (Zeile 21 in Listing 3):
Die Methode CreateOutputtable() der DBConnection,java Klasse wird aufgerufen,

um die Outputtabelle zu erzeugen.

* DBConnection.WriteIntoOutputTable() (Zeile 22 in Listing 3):
Diese Methode wird aufgerufen, um die Ergebnisse, welche nach der Frequent-

Itemset-Analyse entstehen, in die Outputtabelle zu schreiben.

invokeThePreparationOfTheCoupledChanges() (Zeile 24 in Listing 3):

* Search.searchForTheSelectedFile(SelectedFile,FPGrowthAlgorithmus.
output) (Zeile 26 in Listing 3):
Der Aufruf dieser Methode tiberpriift, ob das durch den Benutzer selektierte File
in der Outputtabelle vorhanden ist. Wenn ja, dann werden die entsprechenden
Bereiche, welche das selektierte File beinhalten aus der Outputtabelle fiir die

Weiterverarbeitung ausgewdhlt.

50

* Collections.sort(SelectedFileFieldsOfTheOutputtable newCustomComparator()) (Zeile
27 in Listing 3):
Durch den Aufruf dieser Methode werden die aus der Outputtabelle selektierten

Bereiche nach Thren Supportwerten in absteigender Reihenfolge sortiert.

* Process.processingTheSelectedFileFields(SelectedFileFieldsOfTheOutputtable) (Zeile 28
in Listing 3):
Hier werden die aus der Outputtabelle selektierten Bereiche bearbeitet und in
zwei Bereiche unterteilt. Ein Bereich beinhaltet nur die gekoppelten
Dateidnderungen, wihrend der andere Bereich die entsprechenden CommitIDs
zum Inhalt hat.

* Process.removeRedundanciesOfTheCommidlDs(Maincontrol. CommitIDs) (Zeile 29 in
Listing 3):
Hier werden die Redundanzen in dem Attribut CommitIDs entfernt.

6.4.3 DBConnection.java

Diese Klasse ist fiir alle Datenbankangelegenheiten verantwortlich. Im Folgenden werden

diese Aufgaben mit entsprechenden Quellcodeabschnitten dargelegt:

1. Verbindung mit der Datenbank herstellen:

Wird der Konstruktor der DBConnection.java Klasse aufgerufen, wird eine Verbindung mit
der Datenbank hergestellt. Dazu wird in erster Linie der MYSQL Treiber (mysql-connector-
java-5.1.35-bin.jar) in das SRM Plug-In hinzufiigt. Danach wird dann die Verbindung mit der
Datenbank definiert und ausgefiihrt. Wie es auch in der Zeile 1 in Listing 4 auch zu sehen ist,
wird innerhalb der DBConnection.java Klasse die Bibliothek java.sql.* importiert, um alle

notwendigen Werkzeuge zu benutzen.

Weiterhin wurde im Rahmen dieser Diplomarbeit auch der FPGrowthAlgorithmus des
FPGA jar Files in diese Klasse importiert (Zeile 2 in Listing 4), um Daten an den
FPGrowthAlgorithmus als Input zu senden und dann auch die Ergebnisse des
FPGrowthAlgorithmus zu empfangen. Zwischen den Zeilen 4-10 in Listing 4 werden die fiir

den Verbindungsaufbau benétigten Variablen deklariert und initialisiert.

Nachdem all diese Punkte erledigt sind, werden die Datenbankabfragen in den try/catch-
Block (Zeilen 13-29 in Listing 4) eigebettet. In der Zeile 15 in Listing 4 wird als Erstes der
MYSQL Treiber geladen. Im Anschluss daran wird in den Zeilen zwischen 16-20 in Listing 4
die Verbindung mit der Datenbank hergestellt. Falls in dem try-Block irgendwelche Fehler

51

auftreten, dann werden diese durch die entsprechenden catch-Anweisungen abgefangen
und dem Benutzer mitgeteilt, um was fiir einen Fehler es sich dabei handelt. Tritt
beispielweise ein Problem beim Laden von dem MYSQL Treiber auf, oder ist der MYSQL
Treiber tiberhaupt nicht vorhanden, dann wird dieses Problem durch die catch-Anweisung
in der Zeile 21 in Listing 4 abgefangen und dem Benutzer mitgeteilt, dass der Treiber nicht
gefunden werden konnte. Entsprechend zu dem Beispiel von vorhin, kann auch ein Problem
mit der Datenbankverbindung auftreten. In so einem Fall wird dann die catch-Anweisung in
der Zeile 25 in Listing 4 ausgefiihrt und dem Benutzer die Nachricht tibermittelt, dass die
Verbindung mit der Datenbank nicht méglich ist.

1 | importjava.sql.”;

2 | import FPGA.FPGrowthAlgorithmus;

3 public class DBConnection {

4 private static Connection conn = null;

5 private static String dbHost = "127.0.0.1";

6 private static String dbPort = "8889";

7 private static String database = "Datenbank_local";

8 private static String dbUser = "root";

9 private static String dbPassword = "root";

10 private static Statement statement;

11 private DBConnection()

12 {

13 try

14 {

15 Class.forName("com.mysql.jdbc.Driver");
16 conn = DriverManager.getConnection("jdbc:mysql:/ /" + dbHost +
17 | ™"

18 +dbPort +"/" + database + "?" + "user="+ dbUser + "&"
19 + "password="+ dbPassword);

20 }

21 catch (ClassNotFoundException e)

22

23 System.out.println("Treiber nicht gefunden");
24 }

25 catch (SQLException e)

26

27 System.out.println("Connect nicht moeglich");
28 }

29 }

30 private static Connection getInstance()

31 {

32 if(conn == null)

33 new DBConnection();

34 return conn;

35 }

Listing 4: Herstellung der Verbindung mit der Datenbank in DBConnection.java

52

2. Lesen der Daten aus der Inputtabelle:

Nach dem in dem vorherigen Schritt die Datenbankverbindung hergestellt wurde, findet das
Lesen der Daten aus der Inputtabelle statt, welche die fiir die Frequent-Itemset-Analyse
benstigten Informationen beinhaltet. Das Listing 5 zeigt den Quellcodeabschnitt der
DBConnection.java Klasse, die die Daten aus der Inputtabelle liest und diese an den
FPGrowthAlgorithmus tibergibt.

1 | public static void ReadInputTable() {

2 | List<List<String>> res = new ArrayList<>();

3 conn = getInstance();

4 if(conn = null){

5 Statement query = null;

6 String sql;

7 ResultSet result = null;

8 try {

9 query = conn.createStatement();

10 sql = "SELECT * FROM Inputtable";
11 result = query.executeQuery(sql);
12 } catch (SQLException el) {

13 el.printStackTrace();}

14 try {

15 ResultSetMetaData data = result.getMetaData();
16 int numcols = data.getColumnCount();

17 while(result.next()){

18 List<String> row = new ArrayList<>(numcols);
19 inti=1;

20 while (i <= numcols) {

21 if(Iresult.getString(i).equals("")){

22 row.add(result.getString(i));
23 Yi++;

24 res.add(row);}

25 }

26 catch (SQLException e)

27 {

28 e.printStackTrace();

29 }

30 FPGrowthAlgorithmus.input=res;}}

Listing 5: Leseoperation auf die Inputtabelle in DBConnection.java

Der Ablauf der Leseoperation wird folgendermafien durchgefiihrt:
1. Als Erstes wird eine ArrayList namens res erzeugt (Zeile 2 in Listing 5).
2. Danach wird in den Zeilen 9-11 in Listing 5 die SQL-Abfrage definiert und

ausgefithrt. Der ganze Inhalt der Inputtabelle befindet sich dann in der result
Variable.

53

3. Anschlielend findet dann die Ausfiihrung des zweiten try Blockes statt (Zeilen 14-25
in Listing 5). Bei dieser Ausfithrung wird die result Variable Zeile fiir Zeile gelesen,

und die Daten in die ArrayList res hinzugefiigt.

4. Nachdem all die vorherigen Schritte durchlaufen sind, wird dann das Attribut res
dem input Attribut des FPGrowthAlgorithmus tibergeben (Zeile 30 in Listing 5).

3. Lesen der Daten aus der Commit Message Tabelle:

Diese Methode der DBConnection.java Klasse ist dafiir verantwortlich, die Eintrdge zu dem
durch den Benutzer selektierten CommitID aus der Commit Message Tabelle auszuwéhlen.
Selektiert der Benutzer einen CommitlD in dem Commit View, wird diese Methode
aufgerufen. Bei diesem Aufruf wird dieser Methode dann das selektierte CommitID als
Inputparameter iibergeben (Zeile 3 in Listing 23). Nachdem diese Methode den CommitID
bekommen hat, fiihrt sie eine Abfrage bei der Commit Message Tabelle aus (Zeilen 8-11 in
Listing 6). Bei dieser Abfrage werden aus der Commit Message Tabelle die zutreffenden
Eintrdge des selektierten CommitIDs ausgewdhlt. Zuletzt werden diese Eintrdge dem

Attribut commitMessaegValue der Maincontrol.java Klasse tibergeben (Zeile 25 in Listing 6).

1 | public static void ReadCommitMessageTable(String searched CommitID)

2 {

3 List<List<String>> resCommidld = new ArrayList<>();
4 conn = getInstance();

5 if(conn = null){

6 Statement query;

7 try {

8 query = conn.createStatement();

9 String sql = "SELECT CommitMessage FROM CommitMessageTable "
10 + "WHERE Commitld=""+searchedCommitID+"";
11 ResultSet result = query.executeQuery(sql);

12 ResultSetMetaData data = result.getMetaData();

13 int numcols = data.getColumnCount();

14 while(result.next()){

15 List<String> row = new ArrayList<>(numcols);

16 inti=1;

17 while (i <= numcols) {

18 row.add(result.getString(i++));}

19 resCommidId.add(row); }

20 }

21 catch (SQLException e)

22 {

23 e.printStackTrace();

24 }

25 Maincontrol.commitMessageValue=resCommidld;}}

Listing 6: Leseoperation auf die Commit Message Tabelle in DBConnection.java

54

4. Erzeugen der Outputtabelle:

Nachdem die Frequent-Itemset-Analyse durch den FPGrowthAlgorithmus ausgefiihrt
wurde, wird zuerst die Outputtabelle erzeugt. Die Zeilen 5-18 in Listing 7 zeigen, wie die

Outputtabelle erzeugt wird.

Bevor die Outputtabelle erzeugt wird, wird als Erster tiberpriift, ob die Outputtabelle mit
dem Namen , Outputtable” in der Datenbank vorhanden ist. Ist es der Fall, dann wird diese
Outputtabelle aus der Datenbank entfernt (Zeilen 6-9 in Listing 7). Durch diesen Vorgang
wird gewdhrleistet, dass in der Outputtabelle immer die aktuellen Ergebnisse der Analyse

sich befinden.

Da die ersten zwei Spalten der Outputtabelle immer gleich bleiben, werden sie gleich als
erstes erzeugt (Zeilen 10-13 in Listing 7). Die restlichen Spalten der Outputtabelle sind
immer abhidngig von dem ldngsten Frequent Itemset, welcher von der Ausgabe des
FPGrowthAlgorithmuses bestimmt wird. Die Zeilen 14-15 in Listing 7 zeigen eine for
Schleife, die solange durchlaufen wird, bis das Ende des ldngsten Frequent Itemsets erreicht
ist. Bei jedem Durchlauf der for Schleife wird dann der Outputtabelle eine Spalte
hinzugefiigt. Ist beispielsweise die Lidnge des ldngsten Frequent Itemsets aus dem
FPGrowthAlgorithmus gleich 5, dann werden bei der Outputtabellenerzeugung zu den
ersten zwei Spalten, noch weitere fiinf Spalten hinzugefiigt. Somit hitte dann die

Outputtabelle insgesamt sieben Spalten.

1 public static void CreateOutputTable() {

2 conn = getInstance();

3 if(conn !'= null)

4 {

5 try {

6 String myTableName;

7 | myTableName = "DROP TABLE IF EXISTS " + Maincontrol.outputtablename;
8 statement = conn.createStatement();

9 statement.executeUpdate(myTableName);
10 | myTableName ="CREATE TABLE " + Maincontrol.outputtablename +
11 "(id INTEGER NOT NULL AUTO_INCREMENT, ";

12 myTableName+="Commidld VARCHAR(250),";

13 myTableName+="Support VARCHAR(250),";

14 for(int i=1;i<=FPGrowthAlgorithmus.maxSpalte Anzahl;i++)

15 myTableName+= "Item" +i+" VARCHAR(250), ";

16 myTableName+="PRIMARY KEY (id))";

17 statement = conn.createStatement();

18 statement.executeUpdate(myTableName); }
19 catch (SQLException e) {

20 e.printStackTrace();} }}

Listing 7: Erzeugen der Outputtabelle in DBConnection.java

55

5. Speichern der Ergebnisse in die Outputtabelle:

Sind die ganzen vorherigen Schritte erfolgreich durchgefiihrt, erfolgt zum Schluss das
Speichern bzw. Schreiben der Ergebnisse des FPGrowthAlgorithmuses in die erzeugte
Outputtabelle. Der FPGrowthAlgorithmus schreibt jedes Frequent Itemset in einen Array. Ist
der Algorithmus mit der Frequent-Itemset-Analyse fertig, befinden sich alle Frequent
Itemets in einem Array in dem FPGrowthAlgorithmus. An dieser Stelle der
DBConnection.java Klasse, wird der Array aus dem FPGrowthAlgorithmus herangezogen,

um dessen Inhalt in die Outputtabelle hinzuzuftigen.

6.44 FPGA jar

Bei diesem FPGA jar File handelt es sich um den FPGrowthAlgorithmus, welcher die
Frequent-Itemset-Analyse durchfiihrt. Allgemein formuliert setzt sich dieser Jar File aus den
folgenden drei Klassen: FPGrowthAlgorithmus.java, FPTree_Strings.java ~ und
FPNode_Strings.java. Diese drei Klasse wurden urspriinglich aus dem SPMF Data Mining
Framework genommen, entsprechend den Anforderungen dieser Diplomarbeit verdndert
und anschliefend in das SRM Plug-In als externer Jar File importiert. Die Verdnderungen
bezogen sich hauptsédchlich nur auf zwei Bereiche der FPGrowthAlgorithmus.java Klasse.
Diese zwei Bereiche waren jene Bereiche des Algorithmus, welche fiir das Lesen der
Inputdaten und fiir das Schreiben der Ergebnisse zustindig waren. Der urspriingliche
Algorithmus liest die Daten von einem Text File, fithrt eine Frequent-Itemset-Analyse durch
und schreibt dann die Ergebnisse in einen anderen Text File. Dies wurde im Rahmen dieser
Diplomarbeit so verandert, dass der Algorithmus Daten aus einer Datenbanktabelle lesen,

diese Daten analysieren und die Ergebnisse in eine andere Datenbanktabelle schreiben kann.

Das in Listing 5 dargestellter Teilquellcode der DBConnection.java Klasse liest die Daten aus
der Datenbanktabelle schreibt sie in einen Array und tibergibt diesen Array an das input
Attribut der FPGrowthAlgorithmus.java Klasse (Zeile 30 in Listing 5). Nach diesem Vorgang
stehen dann die Daten der Datenbanktabelle als ein Array in dem Attribut input der
FPGrowthAlgorithmus.java Klasse (Zeile 2 in Listing 8) und kénnen dann fiir die Analyse

benutzt werden.

Der FPGrowthAlgorithmus.java benétigt fiir die Durchfithrung der Frequent-Itemset-
Analyse aber auch noch den MinimumSupport, welcher von dem Benutzer in dem GUI der
ExecutionView .java manuell eingegeben und dem minsupp Attribut der Maincontrol.java
Klasse tibergeben wurde (Zeile 14 in Listing 2). Von dieser Maincontrol.java Klasse aus wird
dann die runAlgorithm() Methode des FPGrowthAlgorithmus.java mit dem MinimumSupport
als Inputparameter aufgerufen (Zeile 20 in Listing 3). Dadurch startet der

FPGrowthAlgorithmus.java mit dem MinimumSupport Parameter (Zeile 9 in Listing 8).

56

Auf diese Art und Weise wird das Lesen der Daten aus der Datenbanktabelle realisiert und
fiir die Durchfithrung der Frequent-Itemset-Analyse an die weiteren Methoden und Klassen
des FPGA jar Files iibergeben.

1 | public class FPGrowthAlgorithmus {

2 public static List<List<String>> input;

3 public static List<List<String>> output=new ArrayList<>();
4 public static int maxSpalteAnzahl = 0;

5 public static int transactionCount = 0;

6 public static int itemsetCount;

7 public static int relativeMinsupp;

8 public FPGrowthAlgorithmus(){}

9 public static void runAlgorithm (double MinimumSupport)
10 {

11 output=new ArrayList<>();

12 transactionCount = 0;

13 maxSpalteAnzahl = 0;

14 startTimestamp = System.currentTimeMillis();
15 itemsetCount =0;

16 | final Map<String, Integer> mapSupport = new HashMap<String, Integer>();
17 | scanDatabaseToDetermineFrequencyOfSingleltems(input,mapSupport);

Listing 8: Leseoperation des FPGrowthAlgorithmus.java

Nach der Durchfithrung der Frequent-Itemset-Analyse entstehen Ergebnisse, die in eine
andere Datenbanktabelle geschrieben werden miissen. Des Weiteren sollen in die
Outputtabelle mehr Informationen gespeichert werden, als die urspriingliche Version des
FPGrowthAlgorithmus vorsieht.

Sobald ein Frequent Itemset gefunden wird, wird das Frequent Itemset und sein
Supportwert der writeltemsetToOutput() Methode der FPGrowthAlgorithmus.java Klasse
tibergeben (Zeile 1 in Listing 9).

Dieses Frequent Itemset wird direkt in einen buffer gespeichert und dann mit dem input
Array der FPGrowthAlgorithmus.java verglichen. Bei diesem Vergleich geht es darum zu
tiberpriifen, in welchen Transaktionen das entsprechende Frequent Itemset sich befindet, um
dann diese ermittelten Transaktionen zusammen mit dem Frequent Itemset in das
Outputarray zu tbertragen. Die Zeilen 3-35 in Listing 9 zeigen den Quellcodeabschnitt,

welche das Vergleichen und Speichern der Daten in das Outputarray beschreiben.

Nachdem alle Frequent Itemsets sich in dem Outputarray befinden, werden diese Daten
dann in die Outputtabelle geschrieben. Dariiberhinaus wird auch noch die Linge des
langsten Frequent Itemsets errechnet, um mit Hilfe von diesem Wert die Spaltenanzahl der

Outputtabelle zu bestimmen (Zeilen 36-38 in Listing 9).

57

1 | private static void writeltemsetToOutput(String [] itemset, int support)
2 {

3 if(itemset.length>1){

4 itemsetCount++;

5 StringBuffer buffer = new StringBuffer();

6 for(int i=0; i< itemset.length; i++){

7 buffer.append(itemset[i]);

8 if(i != itemset.length-1){

9 buffer.append(' ');}}

10 buffer.append('');

11 buffer.append(support);

12 String [] strTemp =buffer.toString().split(" ");

13 int ik,j,m,n=0;

14 StringBuffer bufferWrieter = new StringBuffer();
15 List<String> wrtStrTemp =new ArrayList<>();

16 for(i=0;i<input.size();i++)

17 { m=0; j=0;

18 for(k=0;k<strTemp.length-1;k++){

19 for(j=0;j<input.get(i).size();j++){

20 if(input.get(i).get(j).contains(strTemp[k]))

21 { break;}}

22 if(jl=input.get(i).size())

23 { m-++;}}

24 if(j==input.get(i).size()&& k==strTemp.length-1)
25 { Jelse if(j!=input.get(i).size()&& m==strTemp.length-1)
26 { bufferWrieter.append(input.get(i).get(0));

27 n++;

28 if(n<support)

29 {bufferWrieter.append("');}

30 } else if(j!=input.get(i).size()&& m!=strTemp.length-1){}}
31 wrtStrTemp.add(bufferWrieter.toString());

32 wrtStrTemp.add(strTemp[strTemp.length-1]);

33 for(int 1=0;l<strTemp.length-1;1++) {

34 wrtStrTemp.add(strTempll]); }

35 output.add(wrtStrTemp);

36 if (itemset.length>= maxSpalte Anzahl)

37 {maxSpalteAnzahl =itemset.length;}}

38 else{}}

Listing 9: Schreibeoperation des FPGrowthAlgorithmus.java

6.4.5 CoupledChanges.java

Diese Klasse hat die Aufgabe die gekoppelten Dateidnderungen des in dem Project Explorer
selektierten Files anzuzeigen. Gleichzeitig ist aber auch die CommitView.java Klasse von
dieser Klasse abhéngig. Diese Klasse ist in diesem Zusammenhang der Sender und die

CommitView java Klasse der Empféanger.

58

Der Gesamtablauf dieser Klasse wird im Folgenden Schritt fiir Schritt erldutert:

1. Reaktion auf Selektionsinderungen in dem Project Explorer:

Um die gekoppelten Dateidnderungen eines in dem Project Explorer selektierten Files auch
anzuzeigen, ist die sofortige Reaktion auf die Selektionsdnderungen in dem Project Explorer
von entscheidender Bedeutung. Das bedeutet, klickt der Benutzer in dem Project Explorer
auf einen File, so muss diese Klasse auf diese Ereignisse reagieren kénnen, um dann
entsprechend die richtigen Ergebnisse bezogen auf das selektierte File auch anzeigen zu

konnen.

Der beste Weg, um auf die Selektionsdnderungen in dem Project Explorer zu reagieren, ist
die Anwendung von Selection Service. Selection Service ermdoglichen es den einzelnen
Sichten (Views) des Eclipse, auf Selektionsinderungen in dem Workbench-Fenster zu
reagieren, ohne dabei direkt mit dem Workbench-Fenster kommunizieren zu miissen. Die

Kommunikation erfolgt iiber Selection Service.

Betrachtet man zum Beispiel in Eclipse den Package Explorer View und die Properties View.
Die Abbildung 36 reprdsentiert wie die beiden Views miteinander kommunizieren. Klickt
der Benutzer auf einen File in dem Package Explorer View, so werden dann die
Eigenschaften dieses selektierten Files in dem Properties View angezeigt. Klickt der Benutzer
danach auf einen anderen File, also findet eine Selektionsdnderung in dem Package Explorer
statt, so muss die Properties View sofort auf diese Selektionsdnderung reagieren und seinen

Inhalt aktualisieren.

Package Explorer 5] & ¥ = B[properties 82 _ o= =
E-125 test Property l Yalue I
=-H3 {default package) = Infao
SRIEg 1 Class. java derived false
=-(9 MyClass editable true
a hellol) last modified 10/4/05 1:19 PM
=, JRE System Library [jdk1.5.0] linked false
location C:llocaldata\eclipsews3. 1irunt. ..
name MyClass.java
path Jtest/MyClass.java
size 57

Abbildung 36: Relation zwischen Package Explorer und Properties in Eclipse [36]

Die Abbildung 37 veranschaulicht die Gesamtiibersicht tiber die Anwendung von Selection
Service. Der Package Explorer, wo der Benutzer bestimmte Files selektiert, agiert als

Selection Provider. D.h., immer wenn der Benutzer einen File in dem Package Explorer

59

selektiert, wird die aktuelle Selektion dem Selection Service mitgeteilt. Dieses Selection
Service beinhaltet diese aktuelle Selektion solange, bis der Benutzer einen anderen File
selektiert. Eine andere View auf der rechten Seite des Selection Service, beispielweise die
Properties View agiert als Selection Listener. Das bedeutet, er liest die aktuellen Selektionen

des Package Explorers aus dem Selection Service.

Jj Editor Part & .
B SomeClass.java X i Selection
Service

Selection Provider » = Properties 52

I8 Package Explorer 53 Yiew Part B » Selection Listener
Selection Provider b [2, Declaration £2

0= outline &2 View Part C) Selection Listener
Selection Provider b

Abbildung 37: Selection Service [36]

Basierend auf diesem Selection Service Prinzip findet dann im SRM Plug-In die Reaktion des
Coupled Changes auf die Selektionsdnderungen im Project Explorer statt. So wie man es aus
der Abbildung 38 entnehmen kann erfolgt die Relation zwischen dem Project Explorer und
Coupled Changes via Selection Service. Dabei agiert der Project Explorer als Selection
Provider und Coupled Changes als Selection Listener. Dadurch wird eine direkte Relation

zwischen dem Project Explorer und dem Coupled Changes vermieden.

™ Coupled Changes &3

(5 Project Explorer £3 Selection Files
Service Lo

Selection s Selection Listener

Provider

Abbildung 38: Relation zwischen Project Explorer und Coupled Changes

60

Damit der Coupled Changes auch als Selection Listener agieren kann, ist zuerst eine
Registrierung beim Selection Service notwendig. Das Listing 10 zeigt den Quellcodeabschnitt
der CoupledChanges.java Klasse, in dem der Selection Listener des Coupled Changes beim
Selection Service registriert und im Falle einer Selektion dann die Methode in der Zeile 4 in

Listing 10 mit seinen entsprechenden Parametern aufgerufen wird.

private ISelectionListener listener = new ISelectionListener() {

public void selectionChanged(IWorkbenchPart sourcepart, ISelection selection) {
if (sourcepart != CoupledChanges.this) {

determineThePathOfTheSelectedFileAndSendIt(sourcepart, selection);}}};

_WON =

Listing 10: Registrierung des Selection Listeners in CoupledChanges.java

2. Pfadbestimmung und Transformation der selektierten Files:

Nachdem durch den vorherigen Schritt gewé&hrleistet wurde, dass die Coupled Changes
iiber alle aktuellen Selektionsdnderungen im Project Explorer View informiert wird, erfolgt
in diesem Schritt die Bearbeitung des selektierten Files, um dessen Pfad zu bestimmen.
Grund dafiir ist die Datenstruktur der Files in der Outputtabelle, in der die Files als Pfade
repréasentiert sind (siehe Tabelle 5). Um jetzt die in dem Project Explorer durch den Benutzer
selektierten Files mit dieser Outputtabelle zu vergleichen und die Ergebnisse dieses
Vergleiches anzuzeigen, bedarf es der Ermittlung des Pfades des selektierten Files. D.h., dass
der Pfad des in dem Project Explorer selektierten Files mit der Inhaltsstruktur der

Outputtabelle tibereinstimmen muss, um tiberhaupt den Vergleich durchfiihren zu kénnen.

V=E

Jr

[Project Explorer 82 = =

v Project
¥ (B src
v £ example
> [J] Test2.java
> [J] Test3.java
> [J] Test4 java
» [J] TestS.java
> [J] Test6.java
> =, JRE System Library [JavaSE-1.8]

Abbildung 39: Selektion eines Files in dem Project Explorer

61

Selektiert beispielweise der Benutzer wie es in der Abbildung 39 dargestellt ist, das File
Testl.java, so muss in der CoupledChanges.java Klasse der Pfad dieses Files ermittelt
werden, um den Vergleich mit der Outputtabelle aus der Tabelle 5 durchfiithren zu kénnen.

Denn in der Tabelle 5 liegt der Pfad dieses Files in folgender Form vor:

Project/src/example/Test1.java.

Fiir die Ermittlung des Pfades von einem File ist die Anwendung der Interfaces
IStructuredSelection und ITreeSelection erforderlich. Generell existieren zwei grundlegend

verschiedene Selektionsarten:

1. Eine Liste von Objekten.
2. Ein Textsttick.

€9 ISelection

@ isEmpty()
€9 IStructuredSelection €9 ITextSelection €9 IMarkSelection
@ getFirstElement() @ getEndLinel) @ getDocument()
@ iterator() @ getlength() @ getlength()
@ size() @ getOffset() @ getOffset()
@ toArrav() @ qetStartLine()
@ tolist() © qetText()

T

€9 ITreeSelection
® qetPaths()

Abbildung 40: Uberblick tiber alle Selektionsarten im Project Explorer [36]

So wie man es aus der Abbildung 40 auch entnehmen kann, existieren drei verschiedene

Selektionsinterfaces:

1. ITextSelection:

Dieses Interface ist fiir die Reprdsentation von textuellen Selektionen zustdndig [37].

62

2. IMarkSelection:
Handelt es sich bei der Selektion um eine Markierung eines Textstiickes, so kommt
die IMarkSelection zum Einsatz [38].

3. IStructuredSelection:

Dieses Interface bezieht sich auf eine Liste von Objekten [39].

4. ITreeSelection:
Bei diesem Interface handelt es sich um eine spezielle Form der IStructuredSelection.
Dieses Interface zeichnet sich dadurch aus, dass es jedes Objekt in der Liste als einen
Pfad beschreibt. Unter einem Pfad versteht man dabei eine Liste von Objekten,
welche angefangen von der Wurzel bis hin zum selektierten File alle Files in einem

Baum représentieren [36].

Fiir die Ermittlung der Pfade der selektierten Files werden die letzten zwei Interfaces

eingesetzt. Die Ermittlung des Pfades erfolgt in zwei Schritten.

1. Bestimmung des Pfades des selektierten Files:
Zu Beginn wird mit Hilfe der Interfaces IStructuredSelection und ITreeSelection der
Pfad des selektierten Files ermittelt. Listing 11 zeigt den Teilquellcodeabschnitt der
CoupledChanges.java Klasse, der fiir die Ermittlung des Pfades des selektierten Files

verantwortlich ist.

Klickt der Benutzer auf einen File im Project Explorer, wird als Erstes in der Zeile 3
in Listing 11 {iberpriift, ob die Selektion eine Instanz von IStructuredSelection ist.
Wenn ja, dann wird die aktuellste Selektion in dem Project Explorer gelesen und in

die Variable selectionl iibertragen.

Im Anschluss daran wird im néchsten Schritt tiberpriift, ob selectionl eine Instanz
von [TreeSelection ist (Zeile 7 in Listing 11). Wenn es der Fall ist, dann werden in den
darauffolgenden Schritten, also in den Zeilen 10-23 in Listing 11 der Pfad des aktuell

selektierten Files bestimmt und der Variablen fileName iibergeben.

Somit wird bei jeder Fileselektion der entsprechende Pfad des selektierten Files

bestimmt und auf die gleiche Art und Weise der Variablen fileName iibergeben.

63

1 | public void determineThePathOfTheSelectedFileAndSendIt(IWorkbenchPart
2 | sourcepart, ISelection selection) {

3 if (selection instanceof IStructuredSelection) {

4 | window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();

5 activePage = window.getActivePage();

6 ISelection selection] = activePage.getSelection();

7 if(selectionl instanceof ITreeSelection)

8 {

9 TreeSelection treeSelection = (TreeSelection) selection1;

10 TreePath[] treePaths = treeSelection.getPaths();

11 TreePath treePath = treePaths[0];

12 Object firstSegmentObj = treePath.getFirstSegment();
13 theProject = (IProject) ((IAdaptable)

14 | firstSegmentObj).getAdapter(IProject.class);

15 Object lastSegmentObj = treePath.getLastSegment();
16 theResource = (IResource) ((IAdaptable)

17 | lastSegmentObj).getAdapter(IResource.class);

18 theFile = (TFile) ((IAdaptable)

19 | lastSegmentObj).getAdapter(IFile.class);

20 workspaceName =

21 | theResource.getWorkspace().getRoot().getLocation().toOSString();

22 projectName =theProject.getName();

23 fileName = theResource.getFullPath().toOSString();

Listing 11: Pfadermittlung des selektierten Files in CoupledChanges.java

Transformation des Pfades des selektierten Files:
In diesem Schritt wird der im vorherigen Schritt ermittelte Pfad transformiert, so

dass es mit der Datenstruktur der Outputtabelle (siehe Tabelle 5) tibereinstimmt.

An dieser Stelle wird hier noch einmal auf das Beispiel vom vorherigen Schritt
eingegangen (Abbildung 39). Der Pfad des durch den Benutzer in dem Project
Explorer selektierten Files Testl.java befindet sich momentan in der Variablen

fileName in folgender Form: / Project/src/example/Test1.java.

So wie man es aus der Outputtabelle (siche Tabelle 5) auch entnehmen kann, liegt der
Pfad des Files Testl.java als Project/src/example/Test]1.java vor. Das bedeutet, der Pfad
aus der Variable fileName muss umgewandelt und der Datenstruktur aus der

Outputtabelle angepasst werden, um den Vergleich durchzufiihren.

Das Listing 12 représentiert jenen Bereich des Quellcodes der CoupledChanges.java
Klasse, welcher fiir die Pfadtransformation der selektierten Files verantwortlich ist.
Es verdeutlich wie der Pfad der Variablen fileName transformiert und anschlieend

in die Variable buffTemp gespeichert wird.

64

Nach der Durchfithrung der Pfadtransformation befindet sich dann der aktuell
transformierte Pfad des selektierten Files Testl.java in der Variable bufflemp in

folgender Form: Project/src/example/Test1.java.

1 | StringBuffer buffTemp = new StringBuffer();

2 char[] CUT_POINTS = {'\\'};

3 char [] probe=fileName.toCharArray();
4 for(int i=1;i<probe.length;i++)

5 {

6 if(probe[i]J==CUT_POINTS[0])

7 {

8 buffTemp.append("/");

9

10 lelse

11

12 buffTemp.append(probe[i]);
13 }

Listing 12: Pfadtransformation in CoupledChanges.java

Nach diesem letzten Schritt wird der Pfad des aktuell selektierten Files an die Variable
SelectedFile der Maincontrol.java Klasse tibergeben und die Methode, welche den Vergleich
und alle weiteren Bearbeitungen durchfithren soll aufgerufen. Das Listing 13 zeigt die
Ubergabe des Pfades und den Methodenaufruf.

p—

Maincontrol.SelectedFile=buffTemp.toString();
2 Maincontrol.invokeThePreparationOfTheCoupledChanges();

Listing 13: Filepfadiibergabe und Methodenaufruf in CoupledChanges.java

3. Initialisierung der Coupled Changes und Commit View:

Die vorherigen zwei Schritte waren fiir die Reaktion auf die Selektionsdnderungen aus dem

Project Explorer und fiir die Ermittlung und Ubergabe der Filepfade verantwortlich.

Dieser Schritt ist fiir das Anzeigen der eigenen Ergebnisse in der eigenen Klasse (d.h.,
CoupledChanges.java Klasse) und die Weiterleitung der anderen Daten an die
CommitView java Klasse bestimmt. Er ist fiir Initialisierung der eigenen Klasse und der
CommitView.java Klasse verantwortlich und wird bei jedem Ausfithren der
CoupledChanges.java Klasse durchlaufen. Das Listing 14 zeigt den Quellcodeabschnitt der

CoupledChanges.java Klasse, welcher die Initialisierung erméglicht.

Selektiert beispielweise der Benutzer einen File in dem Project Explorer, so wird nach den
ganzen Bearbeitungen, dieser Teil des Quellcodes aufgerufen und die entsprechenden

Klassen initialisiert. Entscheidet sich der Benutzer danach fiir einen anderen File als dem

65

vorherigen, so wird wieder dieser Bereich ausgefithrt und die entsprechenden Klassen
wieder initialisiert. Dadurch wird sichergestellt, dass die entsprechenden Klassen, die die
Ergebnisse anzeigen sollen (in diesem Fall die CoupledChanges.java und CommitView java
Klassen), immer die richtigen Ergebnisse des entsprechenden aktuell selektierten Files

beinhalten.

D.h., die alten Werte werden immer durch die neuen Werte ersetzt. Die Zeile 1 in Listing 14
definiert eine Variable namens viewvalue und initialisiert es mit dem Wert 1. Dadurch wird
die sichere Ausfithrung der nachfolgenden if-Anweisung gewéhrleistet (Zeile 2 in Listing
14). In der if-Anweisung wird dann die Initialisierung der Coupled Changes durch die
Ausfithrung des Quellcodes in den Zeilen 4-6 in Listing 14 und die Initialisierung der
Commit View durch die Ausfithrung des Quellcodes in den Zeilen 8-10 in Listing 14

verwirklicht.

viewvalue=1;

if(viewvalue!=0)

{

properties.put("file", showPlgn.Control());

Event event = new Event("viewcommunicationfile/syncEvent", properties);
eventAdmin.sendEvent(event);

properties.put("commidid", showPIlgn.Control());
Event eventl = new Event("viewcommunicationcommidid /syncEvent", properties);
eventAdmin.sendEvent(eventl);

}

== O OISRV R WN =

- o

Listing 14: Initialisierung Coupled Changes und Commit View in CoupledChanges.java

4.Senden und Empfangen von Daten:

Nach der Durchfithrung des Vergleiches von dem selektierten File mit der Outputtabelle
werden mehrere Informationen erzeugt, die in unterschiedlichen Views angezeigt werden
miissen. Um diese Informationen in ihren Views anzuzeigen, miissen diese erst diese
Informationen von anderen Views empfangen. Das bedeutet, die Informationen werden von
einem View gesendet und von einem anderen View oder aber auch von dem gleichen View
wieder empfangen und angezeigt. Die CoupledChanges.java Klasse ist fiir das Senden von
Informationen tiber die gekoppelten Dateidnderungen und die CommitIDs, welche die

gekoppelten Dateidnderungen beinhalten, verantwortlich.

66

Senden und Empfangen von gekoppelten Dateiinderungen oder Fehlermeldung;:

Im Falle von Informationen {iber gekoppelte Dateidnderungen agiert die
CoupledChanges.java Klasse sowohl als Sender als auch Empfinger. Die gekoppelten
Dateidnderungen, die durch ihn gesendet werden, werden spéter in einer anderen Methode
der gleichen Klasse wieder empfangen und dann angezeigt. Dabei werden zwei Arten von

Informationen gesendet und spéter wieder empfangen.

Die eine Information tritt immer dann auf, wenn das selektierte File nicht in der
Outputtabelle vorhanden ist. Klickt der Benutzer auf einen File in dem Project Explorer,
welcher nicht in der Outputtabelle vorhanden ist, so wird eine Fehlermeldung gesendet, die
die folgende Nachricht beinhaltet: , The selected File does not exist in the Ouputtable” (,,das
selektierte File existiert nicht in der Outputtabelle”). Das Listing 15 zeigt jenen Bereich der

CoupledChanges.java Klasse, der fiir das Senden der Fehlermeldung zusténdig ist.

if(Maincontrol.coupledchangesfiles.size()==0)

viewvalue=0;
properties.put("file", showPlgn.showFehler("fehler"));
Event event = new Event("viewcommunicationfile/syncEvent", properties);
eventAdmin.sendEvent(event);
}

NOOU kR WN =

Listing 15: Senden von Fehlerinformationen in CoupledChanges.java

Bei der Durchfithrung des Quellcodes in Listing 15 wird als Erstes tiberpriift, ob das Attribut
coupledchangesfiles der Klasse Maincontrol.java leer ist (Zeile 1 in Listing 15). Das Array
coupledchangesfiles beinhaltet alle gekoppelten Dateidnderungen des selektierten Files. Ist
dieses Array leer, dann folgt daraus, dass das in dem Project Explorer selektierte File nicht in
der Outputtabelle vorhanden ist. In so einem Fall wird dann der properties Variablen der
CoupledChanges.java Klasse die Fehlermeldung aus der ShowPluginjava Klasse

hinzugefiigt.

Das Listing 16 zeigt jenen Teil der ShowPluginjava Klasse, welcher die Fehlermeldung
erzeugt und zuriickgibt. Beim Aufruf der Methode showFehler() aus der ShowPlugin.java
Klasse wird die Fehlermeldung , The selected File does not exist in the Outputtable” erzeugt
und der Variablen f {ibergeben (Zeile 3 in Listing 16). Anschliefend wird die Variable f
zurlickgegeben (Zeile 4 in Listing 16).

67

public String showFehler(String f)

f="The selected File does not exist in the Outputtable";
return f;

}

bk WN =

Listing 16: Erzeugung und Riickgabe der Fehlermeldung in ShowPlugin.java

Wieder zuriick in Listing 15 wird dann diese Fehlermeldung, die sich in der Variable
properties befindet in den darauffolgenden Zeilen gesendet (Zeilen zwischen 5-6 in Listing
15).

Ist das Attribut coupledchangesfiles der Maincontroljava Klasse aber nicht leer, also ist das
selektierte File in der Outputtabelle vorhanden, so wird der Inhalt dieses Attributes
gesendet. Das Listing 17 reprédsentiert den Quellcodeabschnitt der CoupledChanges.java

Klasse, der die gekoppelten Dateidnderungen sendet.

for(int s=0;s<Maincontrol.coupledchangesfiles.size();s++)
{
viewvalue=0;

properties.put("file", showPlgn.showFile("file",s));

Event event = new Event("viewcommunicationfile/syncEvent", properties);
eventAdmin.sendEvent(event);

NOTU R WN =

Listing 17: Senden von gekoppelten Dateiinderungen in CoupledChanges.java
g gexopp 2] P 8es.]

In der Zeile 1 in Listing 17 ist eine for Schleife definiert. Diese for Schleife geht alle
gekoppelten Dateidnderungen einzeln durch. Danach wird der properties Variablen die
gekoppelten Dateidnderungen von der ShowPlugin.java Klasse tibergeben (Zeile 4 in Listing
17). Die Methode showFile() der ShowPluginjava Klasse weist die gekoppelten
Dateidnderungen einer Variable zu und gibt diese Variable zuriick. Das Listing 18 zeigt den
Teilquellcode der ShowPluginjava Klasse, welcher die gekoppelten Dateidnderungen

durchliuft und sie einer Variablen zuordnet.

public String showFile(String a,int i)

a= Maincontrol.coupledchangesfiles.get(i).toString();
return a;

}

gk WN =

Listing 18: Ubermittlung und Riickgabe der gekoppelten Dateidnderungen in
ShowPlugin.java

68

Nach diesem Durchlauf werden diese gekoppelten Dateidnderungen, die sich in der
Variablen properties befinden, gesendet (Zeilen 5-6 in Listing 17). Somit wurden durch die
beschriebenen Schritte die Informationen {ber die gekoppelten Dateidnderungen

tbermittelt.

Je nachdem welche Information gesendet ist, wird dann auch die entsprechende Information
in diesem View angezeigt. Handelt sich bei der gesendeten Information um die gekoppelten
Dateidnderungen, werden dementsprechend diese Informationen auch angezeigt. Wird im
Gegensatz dazu eine Fehlermeldung erzeugt und gesendet, wird diese Fehlermeldung in
dem View reprasentiert. Das Listing 19 zeigt wie die Informationen empfangen und

angezeigt werden.

1 | public void handleEvent(final Event event)

2

3 | if(CoupledChanges.viewvalue!=0)

4 | {viewer.getTable().removeAll();}

5 | else{

6 | if(parent.getDisplay().getThread() == Thread.currentThread()) {
7 viewer.add(event.getProperty("file"));

8 } else {

9 parent.getDisplay().syncExec(new Runnable() {
10 public void run() {

11 viewer.add(event.getProperty("file"));

12 H D

Listing 19: Empfangen und Anzeigen von Informationen in CoupledChanges.java

Senden von CommitIDs:

Eine weitere Aufgabe der CoupledChanges.java Klasse ist zusitzlich noch das Senden von
den CommitIDs. Das Listing 20 zeigt den Quellcodeabschnitt der CoupledChanges.java

Klasse, der fiir das Senden von CommitIDs verantwortlich ist.

for(int s=0;s<Maincontrol.CommitIDs.size();s++)
{
viewvalue=0;

properties.put("commidid", showPlgn.showCommidID("commidid",s));

Event event = new Event("viewcommunicationcommidid /syncEvent", properties
eventAdmin.sendEvent(event);}

DU R WN =

Listing 20: Senden von CommitIDs in CoupledChanges.java

Beim Senden von den CommitIDs wird &hnlich vorgegangen wie beim Senden von
gekoppelten Dateidnderungen oder Fehlermeldung. Die in der Zeile 1 in Listing 20 definierte

for-Schleife durchlduft alle CommitIDs in der Variable CommitIDs. Entsprechend werden

69

dann die CommitIDs aus der showCommitID() Methode der ShowPlugin.java Klasse der
properties Variable {ibergeben (Zeile 4 in Listing 20). Das Listing 21 zeigt den Teilquellcode

der ShowPlugin.java Klasse, welcher die CommitIDs durchlduft und diese einer Variablen

zuordnet.

1 public String showCommidID(String a,int i)

2 {

3 a= Maincontrol.CommitIDs.get(i).toString();
4 return a;

5 }

Listing 21: Ubermittlung und Riickgabe der CommitIDs in ShowPlugin.java

Ist dieser Durchlauf abgeschlossen, dann wird die Variable properties, welche die CommitIDs
beinhaltet, gesendet (Zeilen 5-6 in Listing 20).

6.4.6 CommitView.java

Die CommitView.java Klasse agiert sowohl als eine Empfingerklasse als auch eine
Senderklasse, wobei die Reihenfolge zuerst Empfangen und dann Senden ist. Die erste
Aufgabe von dieser Klasse ist das Empfangen und Anzeigen der CommitIDs, die von der
CoupledChanges.java gesendet werden. Die CommilDs werden in einem Combobox

angezeigt (Abbildung 31). Das Listing 22 zeigt wie die CommitIDs empfangen und angezeigt

werden.

1 public void handleEvent(final Event event) {

2 if(CoupledChanges.viewvalue!=0)

3 {comboViewer.getCombo().removeAll();}

4 else{

5 if(parent.getDisplay().getThread() == Thread.currentThread()) {
6 comboViewer.add(event.getProperty("commidid"));

7 } else {

8 parent.getDisplay().syncExec(new Runnable() {

9 public void run() {

10 comboViewer.add(event.getProperty("commidid")); }});
11 }

12 }

Listing 22: Empfangen und Anzeigen von CommitIDs in CommitView java

Nachdem die CommitIDs empfangen und in dem Combobox aufgelistet sind, stehen sie dem
Benutzer als Auswahl zur Verfiigung. Somit hat der Benutzer die Mdglichkeit einen von

diesen CommitIDs auszuwihlen, um sich dann die entsprechenden Eintrige zu dem

70

selektierten CommitID aus der Commit Message Tabelle in dem Commit Message View

anzeigen zu lassen.

Wahlt beispielweise der Benutzer die CommitID: 125 in dem Commit View (siehe Abbildung
31), wird dieses selektierte CommitID mit den Eintrdgen in der Commit Message Tabelle
(siehe Tabelle 6) verglichen und anschliefend der entsprechende Eintrag: ,wdihrend die

anderen Klassen” in dem Commit Message View dem Benutzer vorgestellt.

Dieser Vorgang angefangen von der Selektion der CommitIDs in dem Combobox, bis hin
zum Senden der Eintrdge werden in den folgenden zwei Schritten anhand von Quellcodes

ndher in Betracht genommen.

1. Selektion von CommitIDs und Vergleich mit der Commit Message Tabelle:
Aus dem Listing 23 sind die Selektion und der Vergleich der CommitIDs mit der

Commit Message Tabelle zu entnehmen.

1 combo.addSelectionListener(new SelectionListener() {
2 public void widgetSelected(SelectionEvent e) {
3 DBConnection.ReadCommitMessageTable(combo.getText());

Listing 23: Selektion von CommitIDs und Vergleich mit der Commit Message Tabelle in
CommitView java

Nachdem in dem Quellcode von Listing 22 dem Combobox die CommitIDs
hinzugefiigt wurden, wird in diesem Quellcodeabschnitt der CommitView.java
Klasse dem Combobox ein SelelectionListener hinzugefiigt, um auf die Selektion der

CommitIDs durch die Benutzer zu reagieren (Zeile 1 in Listing 23).

Entscheidet der Benutzer sich fiir ein CommitID und selektiert dieses, dann erfolgt
der Methodenaufruf in der Zeile 3 in Listing 23. In dieser Methode wird die
ReadCommitMessageTable() Methode der DBConnectionjava Klasse mit dem
selektierten CommitID als Inputparameter aufgerufen. Dort erfolgt dann der

Vergleich des selektierten CommitIDs mit der Commit Message Tabelle.

2. Senden von den Eintrigen:
Nachdem der Vergleich mit der Commit Message Tabelle stattgefunden hat, erfolgt
das Senden dieser Eintrdge an die Commit Message View. Das Listing 24 zeigt, wie

die entsprechenden Eintrédge des selektierten CommitIDs gesendet werden.

71

commitViewValue=0;

properties.put("commididmesssage”,
showPlgn.showCommildMessage("'commididmessage"));

Event event = new Event("viewcommunicationcommididmessage / syncEvent",
properties);

eventAdmin.sendEvent(event);

U WN =

Listing 24: Senden von Eintrdgen in CommitView java

Beim Durchlauf von diesem Quellcodeabschnitt der CommitView.java Klasse wird in
erster Linie dem properties Variablen die Eintrdge aus der showCommitIDMessage()
Methode der ShowPlugin.java Klasse hinzugefiigt (Zeilen 2-3 in Listing 24). Das
Listing 25 zeigt den Quellcodeabschnitt der ShowPlugin.java Klasse, welcher die

Eintrdge einem Variablen zuordnet.

public String showCommildMessage(String a)

a=Maincontrol.commitMessageValue.toString();
return a;

gk WN M=

}

Listing 25: Ubermittlung und Riickgabe von den Eintrdgen in ShowPlugin.java

AbschlieBend wird die Variable properties gesendet (Zeilen 4-6 in Listing 24).

6.4.7 CommitMessageView.java

Am Ende steht die Commit Message View, die fiir das Empfangen und Repréasentieren von
den Eintrdgen zustidndig ist. Dementsprechend agiert diese Klasse nur als Empfangerklasse.

Das Listing 26 verdeutlicht, wie diese Klasse die Eintrage empfangt und prasentiert.

public void handleEvent(final Event event) {
if(CommitView.commitViewValue!=0)
{viewer.getTable().removeAll();}elsef
if(parent.getDisplay().getThread() == Thread.currentThread()) {
viewer.add(event.getProperty("commididmessage"));
} else {

parent.getDisplay().syncExec(new Runnable() {

public void run() {

viewer.add(event.getProperty("commididmessage"));}}); }} }

OO IANUT = WN =

Listing 26: Empfangen und Anzeigen von den Eintrdgen in CommitMessageView java

72

6.4.8 Search.java

So wie in der Tabelle 7 auch beschrieben, ist diese Klasse fiir das Suchen und Selektieren der

gekoppelten Dateidnderungen und den CommitIDs aus der Outputtabelle zustidndig. Diese

Klasse besteht aus einer Methode, die im Folgenden erldutert wird.

1. searchForTheSelectedFile:

6.4.9

In dieser Methode wird in der Outputtabelle nach dem selektierten File gesucht.
Existiert das selektierte File in der Outputtabelle, so werden dann die entsprechenden
Bereiche der Outputtabelle ausgewdhlt und anschlieBend der Variablen
SelectedFileFieldsOfTheOutputtable der Maincontrol.java Klasse tibergeben (Zeile 15 in
Listing 27).

1 | public static void searchForTheSelectedFile(String geSuchtstr,

2 | List<List<String>> gesuchtWriteStr) {

3 inti,j,m;

4 for(i=0;i<gesuchtWriteStr.size();i++)

5 {

6 for(j=2;j<gesuchtWriteStr.get(i).size();j++)

7

8 if(gesuchtWriteStr.get(i).get(j).equals(geSuchtstr))
9 { break;}}

10 if(j==gesuchtWriteStr.get(i).size()){ }

11 else{

12 List<String> wrtgesuchtStrTemp =new ArrayList<>();

13 for(m=0;m<gesuchtWriteStr.get(i).size();m++)

14 {wrtgesuchtStrTemp.add(gesuchtWriteStr.get(i).get(m));}
15 | Maincontrol.SelectedFileFieldsOfTheOutputtable.add(wrtgesuchtStrTemp);}
16 i

Listing 27: Suche nach dem selektierten File in der Outputtabelle in Search.java

Process.java

In dieser Klasse findet die Trennung der gekoppelten Dateidnderungen von den CommitIDs

statt, um sie dann an die entsprechenden Views zuzuschicken. Folglich werden die

gekoppelten Dateidnderungen an die Coupled Changes und die CommitIDs an die Commit

View gesendet. Die Process.java Klasse besteht aus drei Methoden:

1.

processingTheSelectedFileFields:

Die Aufgabe dieser Methode ist es die Variable SelectedFileFieldsOfTheOutputtable so
zu bearbeiten, dass die gekoppelten Dateidnderungen sich in einer Variable und die
CommitIDs sich in einer anderen Variable befinden. Das Listing 28 zeigt, wie die

Verarbeitung und Ubergabe in dem Quellcode der Process.java Klasse stattfindet.

73

2,

Als Erstes wird die Variable SelectedFileFieldsOfTheOutputtable als pluglnWriteStr
Variable der processingTheSelectedFileFields() Methode als Inputparameter iibergeben
(Zeile 1-2 in Listing 28).

Danach wird der Inhalt der pluglnWriteStr Variable in der for-Schleife einzelnen
durchlaufen (Zeile 5 in Listing 28). Bei jedem Durchlauf werden dann die von der
plugInWriteStr ~ Variable getrennten gekoppelten Dateidnderungen der
coupledchangesfiles Variable der Maincontroljava Klasse hinzugefiigt (Zeile 13 in
Listing 28). Die entkoppelten CommitIDs hingegen werden der splitCommitIDs()
Methode der Process.java Klasse zur Weiterverarbeitung als Parameter iibergeben
(Zeile 15 in Listung 28).

1 | public static void processingTheSelectedFileFields(List<List<String>>
2 | plugInWriteStr)

3 {

4 int ij;

5 for(i=0;i<plugInWriteStr.size();i++)

6

7 List<String> plugInwrtStrTempFile =new ArrayList<>();

8 List<String> plugInwrtStrTempCommidiD =new ArrayList<>();
9 for(j=2;j<plugInWriteStr.get(i).size();j++)

10 {

11 plugInwrtStrTempFile.add(plugInWriteStr.get(i).get(j));

12)

13 Maincontrol.coupledchangesfiles.add(plugInwrtStrTempFile);

14 pluglnwrtStrTempCommidiD.add(plugInWriteStr.get(i).get(0));
15 splitCommiDs(plugInwrtStrTempCommidiD);}

16 !

Listing 28: Entkopplung der gekoppelten Dateidnderungen von den CommitIDs in

Process.java

splitCommitIDs:

In der CommitIDs Spalte der Tabelle 5 ist zu erkennen, dass die CommitIDs durch
das Zeichen ,:” voneinander getrennt sind. Nach der Durchfithrung der
processingTheSelectedFileFields() Methode der Process.java Klasse, befinden sich die
CommitIDs genau in derselben Form wie sie in der Tabelle 5 zu sehen sind. Damit
aber diese CommitIDs in der gewiinschten Form in dem Commit View anzuzeigen
(siehe Abbildung 31), bedarf es einer weiteren Verarbeitung von diesen CommitIDs.
Aus diesem Grund erfolgt in dieser Methode die Separierung und Transformation
der CommitIDs, welche in dem Listing 29 sehr anschaulich dargestellt sind. Die
CommitIDs werden dann zum Schluss der Variable CommitIDs der Maincontrol.java

Klasse hinzugefiigt (Zeile 12 in Listing 29).

74

1 public static void splitCommiDs(List<String> CommidiD)

2

3 StringBuffer buffer = new StringBuffer();

4 for(int i=0; i< CommidiD.size(); i++){

5 buffer.append(CommidiD.get(i));

6 if(i = CommidiD.size()-1){

7 buffer.append(');}}

8 buffer.append(:');

9 String [] pluglnstrTempCommidld =buffer.toString().split(":");
10 for(int j=0;j<pluglnstrTempCommidId.length;j++)

11 {

12 Maincontrol.CommitIDs.add(plugInstrTempCommidId][j]);
13 N

Listing 29: Separierung und Transformation der CommitIDs in Process.java

removeRedundanciesOfTheCommidIDs:

Diese Methode wird in der Maincontrol.java Klasse aufgerufen (Zeile 29 in Listing 3).

Der Zweck dieser Methode ist es redundante CommitIDs aus der Variable CommitIDs

zu entfernen. Nachdem durch die Methode splitCommitIDs die CommitIDs separiert

und transformiert wurden, stehen sie zwar in gewtinschter Form, weisen aber

Redundanzen auf. Dies fiihrt dazu, dass die identischen CommitIDs mehrmals in

dem Commit View auftreten. Um das Problem zu beheben und somit die CommitIDs

in exakt der gewiinschten Form, wie sie in der Abbildung 31 aufgelistet sind

darstellen zu konnen, ist die Entfernung von redundanten CommitIDs aus dem

Variablen CommitIDs der Maincontrol.java Klasse zwingend erforderlich. Das Listing

30 veranschaulicht das Entfernen der redundanten CommitIDs.

public static void removeRedundanciesOfTheCommidIDs(List<String>
sortCommidID)
{
Collections.sort(sortCommidID);
intj,i;
for (i=0;i<sortCommidID.size();i++)
{

for(j=i;j<sortCommidID.size();j++)

O ONNANUI R WN =

10 | if((sortCommidID.get(i).contains(sortCommidID.get(j))&&i!=j))

12 sortCommidID.remove(j);
13 i 1)
14 }

Listing 30: Entfernen von redundanten CommitIDs in Process.java

75

7 Vergleich von Sequential Pattern Mining und Frequent

Itemset Mining

In diesem Kapitel findet der Vergleich zwischen den Algorithmen Sequential Pattern Mining
und Frequent Itemset Mining statt. Zuerst erfolgt eine Einleitung in dieses Themengebiet. Im
Anschluss daran werden der Aufbau und die Funktionsweise dieser Algorithmen dargestellt
und eine tabellarische Gegeniiberstellung reprisentiert. Zum Schluss wird dann dieses

Kapitel mit dem Fazit des Vergleiches abgeschlossen.

7.1 Einleitung

So wie es in Kapitel 2 auch sehr ausfiihrlich erldutert wurde, ist das Ziel von Data Mining die
Wissensextraktion und die Entdeckung von interessanten Mustern und Charakteristiken,

welche in den Datenbanken nicht explizit reprasentiert werden.

Fur die Durchfithrung von Data Mining existieren mehrere Techniken. Eine dieser
Techniken ist die Frequent Itemset Mining, die im Rahmen dieser Diplomarbeit fiir die
Analyse der Datenbanken angewendet wurde. In dieser Technik geht es hauptsédchlich
darum, héufige Itemmengen (Frequent Itemsets) aus Datenbanken zu entdecken, wobei es
sich bei den Datenbanken um Transaktionsdatenbanken handelt, die aus einer Menge von

Transaktionen bestehen. Jede Transaktion enthélt wiederum eine Menge an Items.

In vielen Applikationen liegen die Daten auch in sequenzieller Form vor, was
dementsprechend den Einsatz der Data Mining Technik Sequential Pattern Mining fiir die
Verarbeitung dieser sequenziellen Daten erforderlich macht. Das Ziel von Sequential Pattern
Mining ist die Entdeckung von hiufig auftretenden sequenziellen Mustern (Frequent
Sequential Patterns) aus den Sequenzdatenbanken, die sich aus einer Menge von Sequenzen

zusammensetzen. Jede Sequenz hingegen besteht aus einer Liste von Itemmengen (Itemsets).

7.2 Aufbau und Funktionsweise der beiden Algorithmen

In diesem Abschnitt wird auf den Aufbau und die Funktionsweise der beiden Algorithmen
eingegangen. Wihrend der FP-Growth Algorithmus des SPMF Data Mining Frameworks fiir
die Erlduterung des Aufbaus und der Funktionsweise von Frequent Itemset Mining
herangezogen wird [32], findet die Erlduterung des Aufbaus und der Funktionsweise von
Sequential Pattern Mining unter Einbeziehung des PrefixSpan Algorithmus vom SPMF Data
Mining Framework statt [40].

76

7.2.1 Aufbau und Funktionsweise von Frequent Itemset Mining

Die Abbildung 41 zeigt wie der FP-Growth Algorithmus die Daten aus dem Input.txt File
liest und die Ergebnisse in den Output.txt File schreibt. Die Transaktionsdatenbank wird hier
dem Algorithmus als Text File zur Verfiigung gestellt. Jede Zeile in dem Input.txt File
entspricht einer Transaktion. Die Items innerhalb einer Transaktion sind durch Leerzeichen
voneinander getrennt. Beispielweise stellt die erste Zeile in dem Input.txt File eine
Transaktion dar, die aus den Items {Filel}, {File2} und {File6} besteht. Der Algorithmus liest
diese Transaktionen Zeile fiir Zeile und erzeugt die Frequent Itemsets. Der Output.txt File
der Abbildung 41 reprasentiert die Frequent Itemsets, die nach der Durchfithrung des FP-
Growth Algorithmus mit einem Minimumsupportwert = 0.5 (3 Transaktionen) in den
Output.txt File hinzugefiigt wurden. In diesem Output.txt File entspricht jede Zeile einem
Frequent Itemset. Zum Beispiel besagt die zweite Zeile des Output.txt Files, dass das
Frequent Itemset, welches die Items {File5} und {File3} enthilt, einen Support von 3
Transaktionen hat [32].

Filel File2 File6 Input.txt
File4 File3

Filel File5 File3 File2

File2 File4 File5 File3

File2

File4 File5 File3

l

FP-Growth Algorithmus (Frequent Itemset Mining)

l

File5:3 Output.txt
File5 File3:3

File4:3

File4 File3:3

File3:4

File2:4

Abbildung 41: Lese- und Schreibeoperation von FP-Growth Algorithmus [32]

77

7.2.2 Aufbau und Funktionsweise von Sequential Pattern Mining

Hier wird der Aufbau und die Funktionsweise von Sequential Pattern Mining anhand des

PrefixSpan Algorithmus detaillierter beschrieben.

Die Aufgabe des PrefixSpan Algorithmus ist es sequenzielle Mustern (Sequential Patterns) in
Sequenzdatenbanken zu entdecken. Dieser Algorithmus bekommt als Input eine
Sequenzdatenbank und einen Minimumsupportwert in dem Intervall von [0.1, 1.0]. Nach
dem der Algorithmus die Daten aus der Sequenzdatenbank gelesen hat, fithrt er die Analyse
von diesen Inputdaten durch und erzeugt dann einige Ergebnisse. Bei diesen Ergebnissen
handelt es sich um hé&ufigen sequenziellen Mustern (Frequent Sequential Pattern), deren

Suppportwerte grofer oder gleich dem Minimumsupportwert sind.

Im Folgenden wird der Aufbau und die Funktionsweise des PrefixSpan Algorithmus des
SPMF Data Mining Frameworks reprasentiert und erldutert. Die Sequenzdatenbank, die den
Input fiir den Algorithmus bildet, wird als Text File zur Verfiigung gestellt. Das bedeutet der
PrefixSpan Algorithmus liest die Daten aus einem Text File, bearbeitet sie mit Hilfe von dem
durch den Benutzer eingegebenen Minimumsupportwert und speichert die Ergebnisse dann

in einen anderen Text File.

Die Abbildung 42 zeigt den Ablauf der Lese- und Schreibeoperation des PrefixSpan
Algorithmus. Dabei sind die Daten in den Abbildungen 41 und 42 die gleichen. Der
Unterschied liegt in der Darstellung und der Interpretation dieser Daten. Man kann hier
sehen, wie der Algorithmus die Daten aus dem Input.txt File liest und bei einem gegebenen

Minimumsupportwert von 0.5 die Ergebnisse in den Output.txt File schreibt.

Betrachtet man den Input.txt File, so kann man sehen, dass jede Zeile einer Sequenz von
einer Sequenzdatenbank entspricht. Der Wert ,-1“ indiziert das Ende eines Itemsets,
wihrend das Ende einer Sequenz durch den Wert ,-2” indiziert wird. Beispielweise
reprdsentiert die zweite Zeile des Input.txt Files eine Sequenz, die aus dem Itemset {File4},
gefolgt durch das Itemset {File3} besteht.

Ist die Analyse abgeschlossen, dann werden die Ergebnisse in den Output.txt File
geschrieben. Jede Zeile des Output.txt Files stellt einen Frequent Sequential Pattern dar. Der
Wert ,-1” indiziert auch hier das Ende von einem Itemset. In jeder Zeile werden die
Sequential Pattern zuerst angegeben. Danach erscheint das Schliisselwort ,#SUP:“ gefolgt
durch einen Integerwert, welcher den Support von dem Sequantial Pattern angibt. Die
zweite Zeile in dem Output.txt File reprisentiert den Frequent Sequential Pattern, welcher
aus dem Itemset {File5}, gefolgt durch das Itemset {File3} besteht und einen Support von 3
Sequenzen hat [40].

78

Filel -1 File2 -1 File6 -1 -2 Input.txt
File4 -1 File3 -1 -2

Filel -1 File5 -1 File3 -1 File2 -1 -2

File2 -1 File4 -1 File5 -1 File3 -1 -2

File2 -1 -2

File4 -1 File5 -1 File3 -1 -2

l

PrefixSpan Algorithmus (Sequential Pattern Mining)

l

File5 -1 #SUP:3 Output.txt
File5 -1 File3 -1 #SUP:3

File4 -1 #SUP:3

File4 -1 File3 -1 #SUP:3

File3 -1 #SUP:4

File2 -1 #SUP:4

Abbildung 42: Lese- und Schreibeoperation des PrefixSpan Algorithmus [40]

7.2.3 Tabellarische Gegeniiberstellung der beiden Algorithmen

Die Erlduterungen haben gezeigt, dass die beiden Algorithmen Unterschiede aber auch
Ahnlichkeiten aufgewiesen haben. Die nachfolgende Tabelle 8 stellt zum Schluss die

Gemeinsamkeiten und die Unterschiede noch einmal tabellarisch im Uberblick dar.

Tabelle 8: Tabellarische Gegeniiberstellung von FP-Growth und PrefixSpan Algorithmen

FP-Growth Algorithmus PrefixSpan Algorithmus
Input Minimumsupportwert und | Minimumsupportwert und
Transaktionsdatenbank Sequenzdatenbank
Output Haufige Itemmengen Haufige sequenzielle Muster
Eine Zeile in der Datenbank | Ist eine Transaktion Ist eine Sequenz

79

7.3 Konzept zur Integration von Sequential Pattern Mining ins SRM

Plug-In

Die Entwicklung des SRM Plug-Ins bildet das Ziel dieser Diplomarbeit. In diesem Plug-In
wurde, wie in den vergangenen Kapiteln sehr detailliert erldutert, die Data Mining Technik
Frequent Itemset Mining fiir das Suchen der gekoppelten Dateidnderungen angewendet.
Selbstverstandlich ist auch die Anwendung von Sequential Pattern Mining fiir die Suche der
gekoppelten Dateidnderungen moglich. Dies ist vor allem bei Sequenzdatenbanken vom
Vorteil. Weiterhin wiirde die Anwendung von Sequential Pattern Mining innerhalb des SRM
Plug-Ins den Entwicklern die Moglichkeit geben, sich nicht nur tiber die gekoppelten
Dateidnderungen sondern auch tiber deren Reihenfolge informieren zu lassen. Aus diesem
Grund wird hier auf konzeptioneller Ebene beschrieben, wie die Integration des PrefixSpan

Algorithmus von Sequential Pattern Mining in das SRM Plug-In realisiert werden kann.

7.3.1 Lese- und Schreibeoperationen auf Datenbanktabellen

Bevor der PrefixSpan Algorithmus in das SRM Plug-In integriert wird, sind einige
Anderungen am Algorithmus erforderlich. Diese Anderungen umfassen das Lesen von den
Daten und das Schreiben der Ergebnisse. Aktuell liest dieser Algorithmus die Daten aus
einem Input.txt File, bearbeitet diese Daten mit Hilfe des durch den Benutzer eingegebenen

Minimumsupportwertes und schreibt anschlieend die Ergebnisse in einen Output.txt File.
Die Abbildung 43 zeigt wie das Lesen von einer Inputdatenbanktabelle und das Schreiben
der Ergebnisse in eine Outputdatenbanktabelle realisiert werden soll. Die Lese- und
Schreibeoperation auf die Datenbanktabellen bestehen insgesamt aus 6 Punkten, die im
Folgenden erldutert werden:

1. Der Benutzer tibergibt dem PrefixSpan Algorithmus einen Minimumsupportwert.

2. Die Daten aus der Inputdatenbanktabelle werden in einem Array gespeichert.

3. Dieser Array wird dem PrefixSpan Algorithmus als Input tibergeben.

4. Die Ergebnisse der Analyse, also die Frequent Sequential Pattern werden in einem

anderen Array gespeichert.

5. AnschlieBend werden dann die Ergebnisse aus dem Array gelesen und in die

Outputdatenbanktabelle geschrieben.

80

Benutzer

S
Prefix

Abbildung 43: Lese- und Schreibeoperationen von PrefixSpan Algorithmus auf
Datenbanktabellen

7.3.2 Architektur SRM Plug-Ins unter Anwendung von Sequential Pattern
Mining

Die Abbildung 44 zeigt die Architektur des SRM Plug-Ins, die fiir die Ermittlung von
gekoppelten Dateidnderungen den PrefixSpan Algorithmus von Sequential Pattern Mining
anwendet. Man kann sehr leicht sehen, dass die Architektur des SRM Plug-Ins aus der
Abbildung 44 grofitenteils mit der Architektur des SRM Plug-Ins aus der Abbildung 23
tibereinstimmt. Der einzige Unterschied zwischen diesen beiden Abbildungen ist der fiir die
Analyse eingesetzte Algorithmus. Die Integration des PrefixSpan Algorithmus kann
aufgrund von Lizenzangelegenheiten nur als externer Jar File in das SRM Plug-In erfolgen
[41].

81

2.Liest die

Input
p Daten

PrefixSpan.jar
Algorithmus

3. Schreibt die

Ergebnisse

5.Abfrage nach
dem selektierten

File (Querying)

6.Zu der Abfrage
passenden Ergebnisse
werden dem SRM
Plug-In iibermittelt
(Matching)

v

Software Repository Mining (SRM) Plug-In

1.Benutzer startet den
Algorithmus tiber das
SRM Plug-In

File
7.Die Ergebnisse
werden in dem SRM
4 Benutzer selektiert Plug-In dem Benutzer
einen File im SRM vorgeschlagen
Plug-In (Suggestions)
Benutzer

Abbildung 44: Architektur SRM Plug-In mit PrefixSpan Algorithmus

82

7.4 Fazit des Vergleiches

Die Realisation des SRM Plug-Ins unter der Anwendung von Sequential Pattern Mining zur
Extraktion der gekoppelten Dateidnderungen aus Software-Repositories wiirde den Vorteil
mit sich bringen, dass die ermittelten gekoppelten Dateidnderungen gleichzeitig in einer
bestimmten sequenziellen Reihenfolge angezeigt werden und somit den Benutzer dariiber

informieren, in welcher Reihenfolge die gekoppelten Dateidnderungen zu dndern sind.

Des Weiteren kann man aus dem vorherigen Kapitel auch erkennen, dass der Aufwand fiir
die Integration von Sequential Pattern Mining in das SRM Plug-In minimal ist. Der Aufwand
besteht lediglich in der Transformation des PrefixSpan Algorithmus entsprechend der
Abbildung 43. D.h., der Quellcode des PrefixSpan Algorithmus muss so gedndert werden,
dass er Daten aus einer Datenbanktabelle lesen und die Ergebnisse in eine andere
Datenbanktabelle schreiben kann. AnschlieBend findet dann die Integration dieses
transformierten PrefixSpan Algorithmus in das SRM Plug-In als externer Jar File statt. Alle

anderen Bereiche des SRM Plug-Ins bleiben unverédndert.

83

8 Evaluation

In diesem Kapitel wird das entwickelte SRM Plug-In seiner Zielgruppe, also den Entwicklern

vorgestellt, um zu tiberpriifen, ob es den Anforderungen der Entwickler gerecht ist.

8.1 Uberblick iiber den Evaluationsprozess

Der Evaluationsprozess gliedert sich in drei Phasen. Vorbereitungsphase, Testphase,

Analyse- und Auswertungsphase. Die Abbildung 45 représentiert die einzelnen Phasen.

In dieser Phase werden alle notwendigen Informationen vorbereitet, die fiir
die Durchfiihrung der Evaluation notwending sind.

A 4

Testphase

In dieser Phase findet das Testing des SRM Plug-Ins mit den Entwicklern statt.

Hier erfolgt zuletzt die Analyse und Auswertung der aus der Testphase
resultierten Ergebnisse.

Abbildung 45: Phasen des Evaluationsprozesses

8.2 Vorbereitungsphase

8.2.1 Erstellung von Testdaten

Um die Evaluation in den néchsten Schritten tiberhaupt durchfithren zu kénnen, benétigt
man Testdaten. Unter der Erstellung von Testdaten versteht man die Erzeugung von
Testdatenbanken, deren Inhalte mit Beispielwerten belegt werden. Es werden zwei
Datenbanktabellen erzeugt. Die eine Datenbanktabelle ist die Inputtabelle. Diese Inputtabelle
beinhaltet die Files, welche in der Testphase analysiert werden und besteht insgesamt aus 10

Transaktionen, die unterschiedliche Anzahl an Items enthalten. Die zweite Tabelle ist die

Commit Message Tabelle, die ebenfalls mit Beispielwerten erzeugt wird. Diese Commit

Message Tabelle beinhaltet die Eintrdge zu den Transaktionen aus der Inputtabelle.

8.2.2

Festlegung des Testfallszenarios

Sind die Datenbanktabellen erzeugt, wird ein Testfallszenario festgelegt, anhand derer die

Entwickler das Tool testen sollen. Die Abbildung 46 zeigt den Inhalt des Testfallszenarios.

Testfallszenario

Bitte fiihren Sie die nachfolgenden Schritte aus :

L .

10.
11.

12.
13.

14.

Offnen Sie Eclipse.

Importieren Sie das ASTPA Projekt in das Project Explorer.

Im Eclipse-Menii "Window " auswéhlen — ‘Show View - “Other".

Danach den Ordner SRM Plug-In 6ffnen und die Views (Execution View, Coupled
Changes, Commit Message View und Commit View) markieren und auf "OK"
Klicken.

Gehen Sie dann auf die Execution View.

Geben Sie in das Textfeld einen Wert im Intervall [0.1, 1.0] ein, wobei 0.1= 10% und
1.0=100% ist.

Klicken Sie auf den ,Start Execution” Button.

Klicken Sie auf einen File in dem Project Explorer.

Klicken Sie auf die Coupled Changes. Die gekoppelten Dateidnderungen des
selektierten Files werden in dem Coupled Changes angezeigt.

Gehen Sie auf die Commit View.

Offnen Sie das Combobox. Die Transaktionen, welche die gekoppelten
Dateidnderungen beinhalten werden in dem Combobox angezeigt.

Selektieren Sie einen von diesen Transaktionen.

Offnen Sie die Commit Message View. Die Eintrdge zu der selektierten Transaktion
erscheinen dann in dem Commit Message View.

Schlieflen Sie Eclipse.

Abbildung 46: Testfallszenario

85

8.2.3 Erstellung von dem Fragebogen

Am Ende der Vorbereitungsphase findet dann die Erstellung des Fragebogens statt. Durch
diesen Fragebogen, bekommt man einen Feedback von den Entwicklern, anhand derer dann

die Analyse und die Auswertung der Evaluation vollzogen wird. Die Abbildung 47 zeigt

den Aufbau des Fragebogens.

Fragebogen zum SRM Plug-in

Dauer: 10 Minuten

-2 = trifft nicht zu, -1 = trifft eher nicht zu, 0 = weder noch, 1 = trifft eher zu, 2 = trifft zu

2 | -1

1 | Ich finde das SRM Plug-In sehr hilfreich, um g o
Software Repository Mining durchzufiihren

2 | Ich konnte in dem SRM Plug-In alle fiir mich m m
relevanten Informationen finden

3 Die Informationen, die in dem SRM Plug-In O o
reprasentiert wurden sind sehr niitzlich

4 | Das SRM Plug-In ist eine gute Unterstiitzung, um
Bugfixings- und Modifikationsaufgaben viel schneller | @ | O
und effizienter zu erledigen

5 | Die Benutzeroberfliche des SRM Plug-In ist sehr m -
tibersichtlich

6 | Ich konnte durch die Anwendung von SRM Plug-In O o
sehr viel Zeit sparen

7 Die Informationen, die in dem SRM Plug-In
reprasentiert werden sind tibersichtlich und leicht o m]
verstindlich

8 | Die Bedienung des SRM Plug-Ins ist einfach und o o
komfortabel

9 | Die Verfahrensweise in dem SRM Plug-In ist gut O O
strukturiert

10 | Ich wiirde das SRM Plug-In benutzen und
weiterempfehlen o | o

Abbildung 47: Fragebogen zum SRM Plug-In

86

8.3 Testphase

Die Testphase bildet den Kernpunkt der Evaluation, da hier durch die Feedbacks der
Entwickler, das SRM Plug-In analysiert werden kann. An der Testphase nahmen insgesamt

10 Entwickler teil, die folgenden T&tigkeiten nachgehen:

* Ein Doktorand der Universitat Stuttgart.

* Zwei Absolventen der Studiengang Informatik.

* Ein Absolvent der Studiengang Wirtschaftsinformatik.

* Ein SimTech Student der Universitat Stuttgart.

* Zwei Computerlinguistik-Studenten der Universitéit Stuttgart.

* Drei Informatikstudenten der Universitdt Stuttgart.

Dabei hatte jeder dieser Teilnehmer unterschiedliche Kenntnisse beim Umgang mit dem
Eclipse Tools. Jedem Teilnehmer wurden das Testfallszenarioblatt und der Fragebogen

tibergeben. Die Dauer der Testphase pro Teilnehmer betrug ca. 20-30 Minuten.

8.4 Auswertungsphase der Evaluationsergebnisse

Die letzte Phase legt die Auswertung der Evaluationsergebnisse dar. Im Folgenden werden

die Ergebnisse der Umfragen présentiert und kommentiert.

Die Abbildung 48 prasentiert die Ergebnisse, welche von den Umfragen mit den Entwicklern
entstanden sind. Obwohl der Fragebogen auch die Punkte ,trifft nicht zu” und ,trifft eher
nicht zu” als Auswahl hatte, wurden diese Punkte durch die Entwickler nicht ausgew4hlt.
Daraus kann man folgern, dass das SRM Plug-In von den meisten Entwicklern als seinen

Anforderungen gerecht empfunden wurde.

Die Fragen in dem Fragebogen gliedern sich in funktionale und nicht funktionale
Eigenschaften des SRM Plug-Ins.

Die Fragen 1, 2, 3, 4, 6 und 10 beziehen sich auf den funktionalen Teil des SRM Plug-Ins.
Man kann aus der Abbildung 48 sehr deutlich sehen, dass genau diese Punkte durch die
Teilnehmer sehr gut bewertet wurden, was besagt, dass die Entwickler die Funktionalitdten
des SRM Plug-Ins sehr niitzlich und hilfreich finden. Vor allem die Antworten der
Entwickler auf die Frage 10, ob sie das SRM Plug-In benutzen und weiterempfehlen wiirden,
wiederspiegeln die Zufriedenheit der Entwickler mit den Funktionalititen des SRM Plug-

Ins.

87

Die Fragen 5, 7, 8 und 9 hingegen représentieren jene Fragen, die das Design des SRM Plug-
Ins anbetreffen. Bei diesen Fragen haben die meisten Teilnehmer wieder sehr viele positive
Antworten gegeben, wihrend aber auch einige Teilnehmer keine Stellung zu diesen Fragen
genommen haben. Vor allem auf die Frage 5 haben 40% der Probanden (also 4 Personen)
keine Stellung genommen. Dies bedeutet, dass bei der Benutzeroberfliche des SRM Plug-Ins

noch einige Optimierungsarbeiten durchzufiihren sind.

Frage 1

Frage 2

Frage 3

Frage 4

Frage 5

Frage 6

Frage 7

Frage 8

Frage 9

Frage 10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Prozentualer Anteil des Teilnehmer

W trifft eher zu “trifftzu © weder noch

Abbildung 48: Uberblick iiber die Evaluationsergebnisse

88

9 Zusammenfassung und Ausblick

Entwickler, die sich mit einem Softwaresystem nicht gut auskennen, benétigen oft lange bei
der Durchfiihrung ihrer Aufgaben. Andert beispielweise der Entwickler einen File oder
einen Code eines Softwaresystems, so sind meistens auch Anderungen an anderen Files bzw.
Codes erforderlich. Das bedeutet, der Entwickler muss sobald er eine Anderung an einem
File bzw. Code vorgenommen hat, die mit diesem File zusammen geédnderte Files auch
andern. Diese Tatsache fiihrt oft dazu, dass der Entwickler bei groflen Softwaresystemen den
Uberblick verliert und nicht alle Files dndern kann. Aber auch die erfahrenen Entwickler
konnten von dem gleichen Problem betroffen sein. Um genau dieser Problematik entgegen
zu wirken und die Entwickler in ihren Modifikations- und Wartungsaufgaben zu
unterstiitzen wurde im Rahmen dieser Diplomarbeit ein Eclipse Plug-In namens Software
Repository Mining (SRM) Plug-In entwickelt. Dieses Plug-In erméglicht es den Entwicklern
Software Repositories zu analysieren, um sich die Ergebnisse in dem Eclipse IDE anzeigen

zu lassen.

Aktuell hat der Entwickler die Moglichkeit folgenden Aufgaben mit Hilfe des SRM Plug-Ins

zu erledigen:

1. Der Entwickler kann die Analyse der Software-Repositories iiber das Execution View
des SRM Plug-Ins durchfiihren.

2. Der Entwickler kann sich alle Informationen tiber die gekoppelten Dateidnderungen
in dem SRM Plug-In anzeigen lassen. Andert er einen File in einem Projekt, so

erscheinen ihm diese Informationen in drei separaten Views.

Die Coupled Changes listet alle gekoppelten Dateidnderungen auf. Somit kann der

Entwickler in diesem View sehen, welche anderen Files er noch dndern muss.

Die Commit View reprédsentiert alle Transaktionen, in denen die gekoppelten
Dateidnderungen sich befinden. Durch die Informationen in dem Coupled Changes
weifd der Entwickler zwar welche weiteren Files er andern muss, aber er weif$ nicht,
wo die zu dndernden Files sich befinden. Diese Informationsliicke wird dann durch
die Commit View gedeckt. In diesem Commit View wird dann der Entwickler

zusitzlich auch noch dariiber informiert, wo er diese Anderungen vorzunehmen hat.

Zuletzt existiert in dem Plug-In noch ein letztes View namens Commit Message View,

die dem Entwickler zeigt, wie er die Anderung durchzufiihren hat.

89

Der Ablauf dieser Diplomarbeit untergliederte sich in die Phasen Anforderungsphase,
Konzeptphase, Implementierungsphase und Evaluationsphase, wobei die ersten drei Phasen

die Implementierung und die letzte Phase die Evaluation des SRM Plug-Ins darstellen.

Zuerst wurden in der Anforderungsphase die Anforderungen an das SRM Plug-Ins definiert.
Dabei wurde festgelegt, dass das Plug-In fiir die Analyse die Data Mining Technik , Frequent

Itemset Mining “ anwenden soll. Weitere Anforderungen wurden dann wie folgt definiert:

* Der Entwickler soll die Frequent-Itemset-Analyse von dem SRM Plug-In aus starten

konnen.

* Die Ergebnisse der Frequent-Itemset-Analyse sollen dem Entwickler in dem SRM

Plug-In vorgestellt werden.

In der darauffolgenden Phase wurde dann ein den Anforderungen gerechtes Konzept fiir
das SRM Plug-Ins entwickelt. Dieses Konzept gibt Aufschluss dartiber wie der Aufbau und
die Funktionsweise des Datenflusses in dem SRM Plug-Ins auszusehen hat. Zu diesem

Zweck wurden die nachfolgenden Punkte in Betracht gezogen und konzeptionell abgebildet:

* Ausfiihren der Frequent-Itemset-Analyse durch die Entwickler.
* Lesen der Daten aus der Datenbanktabelle.

e Schreiben der Ergebnisse der Frequent-Itemset-Analyse in eine andere
Datenbanktabelle.

* Untersuchen dieser Ergebnisse durch die Entwickler.

* Représentation der Informationen in unterschiedlichen Views des SRM Plug-Ins.

Nachdem die Konzeptphase vollendet war, fand dann in der Implementierungsphase die
Umsetzung dieses Konzeptes statt. Dabei wurde in erster Linie der Algorithmus, welcher die
Frequent-Itemset-Analyse durchfiihren soll, transformiert. Diese Transformation umfasste
das Lesen der Daten aus der Datenbanktabelle und Schreiben der Ergebnisse in eine andere
Datenbanktabelle. AnschlieSend wurde dann das SRM Plug-In mit den notwendigen Views
(Execution View, Coupled Changes, Commit View und Commit Message View) erstellt und

der transformierte Algorithmus als externer Jar File in das SRM Plug-In integriert.

Die letzte Phase ist die Evaluationsphase. In dieser Phase wurde das SRM Plug-In durch die
Entwickler getestet, um zu tiberpriifen, ob es ihren Anforderungen entspricht oder nicht.
Diese Phase untergliedert sich wiederum in drei Phasen (siehe Abbildung 45). Die erste
Phase ist die Vorbereitungsphase. In dieser Phase wurden alle fiir die Evaluation
notwendigen Daten vorbereitet. Zu diesem Zweck wurden Testdaten generiert. Bei diesen

Testdaten handelt es sich um Datenbanktabellen, die fiir die Frequent-Itemset-Analyse

90

benotigt werden. Im Anschluss daran wurde ein Testfallszenario erstellt (siehe Abbildung
46), um den Entwicklern vorzuschreiben, wie sie das Plug-In zu testen haben. Zuletzt wurde
dann auch noch ein Fragebogen mit zehn Fragen iiber das SRM Plug-In erzeugt. In der
Testphase fand das Testing des SRM Plug-Ins mittels des Testfallszenarios durch die
Entwickler statt. Im Anschluss daran haben die Entwickler ihre Quoten zu dem SRM Plug-In
in den Fragebogen kenntlich gemacht. An dem Testing haben insgesamt 10 Entwickler
teilgenommen. Die letzte und somit auch die entscheidendste Phase der Evaluationsphase ist
die Analyse- und Auswertungsphase. In dieser letzten Phase wurden die durch die
Entwickler abgegebenen Fragebogen analysiert und ausgewertet. Die Abbildung 48
veranschaulicht die Ergebnisse der Evaluationsphase in einem Balkendiagramm graphisch.
Dabei bestand der Fragebogen (siehe Abbildung 47) aus insgesamt 10 Fragen, wobei 6
Fragen tiber die funktionalen Eigenschaften und 4 tber die nicht funktionalen (Design)
Eigenschaften gestellt waren. Fiir die Antwortmoglichkeiten wurde die Likert-Skala
angewendet. Die Ergebnisse in der Abbildung 48 veranschaulichen sehr deutlich, wie gut
das SRM Plug-In durch die Entwickler bewertet wurde. Die Fragen 1, 2, 3, 4, 6 und 10
reprasentieren die funktionalen Eigenschaften des SRM Plug-Ins. Die Antworten der
Entwickler zu diesen Fragen bekriftigen noch einmal ganz gut, dass das SRM Plug-In seinen
Anforderungen gerecht wurde. Vor allem die positive Antwort der iiberwéltigenden
Mehrheit der Teilnehmer auf die Frage 10, ob sie das SRM Plug-In benutzen und
weiterempfehlen wiirden, bestdtigen die Zufriedenheit der Teilnehmer mit den
Funktionalitdten des SRM Plug-Ins.

9.1 Ausblick

Da es sich bei diesem SRM Plug-In um einen Prototyp handelt, sind Erweiterungen in

vielerlei Hinsicht auch moglich.

Das aktuelle SRM Plug-In verwendet Frequent Itemset Mining fiir die Durchfithrung der
Analysen. Die eine Erweiterung des SRM Plug-Ins ist die Integration des Sequential Patten
Mining in das SRM Plug-In. Im Kapitel 7 wurde bereits auf konzeptioneller Ebene
beschrieben, wie die Integration von Sequential Pattern Mining in das SRM Plug-In
verwirklicht werden kann. Dies wiirde den Vorteil mit sich bringen, dass Entwickler neben
den Informationen iiber die gekoppelten Dateidnderungen zusitzlich auch noch die
Informationen dariiber bekommen wiirden, in welcher Reihenfolge diese gekoppelten

Dateidnderungen zu dndern sind.

Eine weitere Erweiterung betrifft das Design bzw. die Gebrauchstauglichkeit (eng. usability)
des SRM Plug-Ins. Da im Rahmen dieser Diplomarbeit die Anforderungen an das Plug-In
die funktionalen Eigenschaften anbetrafen, wurde hinsichtlich des Design und der

Gebrauchstauglichkeit des Plug-Ins nicht so viel Zeit investiert. Der Schwerpunkt lag

91

vielmehr in der Realisation der funktionalen Anforderungen des SRM Plug-Ins. Die Fragen
5 7,8 9 aus dem Fragebogen (siche Abbildung 47) betreffen das Design und die
Gebrauchstauglichkeit (eng. usability) des SRM Plug-Ins. Aus der Abbildung 48 ist ganz gut
ersichtlich, dass diese Fragen zwar durch die Entwickler ganz gut bewertet wurden, aber
einige Teilnehmer haben wiederum auch keine Stellung zu den Fragen genommen. Vor
allem haben 40% der beteiligten Teilnehmer auf die Frage 5, ob Sie die Benutzeroberfliche
sehr tbersichtlich finden, die Antwort ,weder noch” angekreuzt. Diese Antwort besagt
somit, dass es im Bereich der Benutzeroberfldchengestaltung und der Gebrauchstauglichkeit

des SRM Plug-Ins noch einige Erweiterungen mdoglich sind.

92

Literaturverzeichnis

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

[9]:

[10]:

[11]:

[12]:

[13]:

R. Robbes, M. Lanza: A Change-based Approach to Software Evolution, Electronic
Noted in Theoretical Computer Science, 166, S.93-109, 2007. Siehe:
http:/ /www.inf.usi.ch /faculty /lanza /Downloads/Robb2007a.pdf.

A.T.T. Ying, G.C. Murphy, R. Ng, M.C. Chu-Carroll: Predicting Source Code Changes
by Mining Revision History. In IEEE Trasnaction on Software Engeneering 30(9).
IEEE, S. 574-586, 2004.

H. Kagdi, M.L. Collard, J.I. Maletic: A survey and taxonomy of approaches for mining
software repositories in the context of software evolution, Journal of Software
Maintanance and Evolution: Research and Practice, 19(2), S.77-131, DOI:
10.1002 / smr.344, 2007.

M. D’Ambros, M. Lanza, R. Robbes: On the Relationship Between Change Coupling
and Software Defects. In WCRE ‘09. 16th Working Conference on Reverse
Engeneering, 2009. IEEE, S.135-144, 20009.

J. Gonnet: Data Mining within Eclipse. Diplomarbeit, Universitit Ziirich, 2007.
J. Han, M. Kamber: Data Mining. Concepts and Techniques, Waltham, 2005, S.5-10.

T.A. Runkler: Data Mining. Methoden und Algorithmen intelligenter Datenanalyse,
Wiesbaden, 2010, S.2-4.

H. Diirr: Anwendung des Data Mining in der Praxis. Seminararbeit, Universitat Ulm
WS 2003/2004, S.3-4.

H. Schwarz: Vorlesung Data-Warehouse-, Data-Mining- und OLAP-Technologien.
WS 2010/2011, Universitat Stuttgart.

B. Felix: SPSS 8. Professionelle Statistik unter Windows, Hamburg, 1998,5.691-700.
T. Srivastava: Getting your clustering right (Part1) (12.11.2013),

URL:http:/ /www.analyticsvidhya.com /blog /2013 /11 / getting-clustering-right/
(Letzter Zugriff am 07.04.2015).

I. Tudor: Association Rule Mining as a Data Mining Technique,
BULETINULuniversitatii Petrol-Gaze din Ploiesti, Vol.LX No1/2008, S.49-56.

P. Helge: Data Mining: Verfahren, Prozesse, Anwendungsarchitektur. Miinchen,
2005.

93

[14]:

[15]:

[16]:

[17]:

[18]:

E. Lidecke: Ermittlung von Assoziationsregeln aus groflen Datenmengen
(14.04.2010),URL:http:/ / www.fhschmalkalden.de / schmalkaldenmedia / Ermitlung v
on_Assoziationsregeln aus gro%C3%Alen Datenmengen-p-13278.pdf.

(Letzter Zugriff am 07.04.2015).

J. Miihle : Automatische Generierung von Assoziationsregeln, 2009, S.12.

M. Soldatova: Diskussion und Implementierung von Varianten des FP-Growth
Algorithmus in relationalen Datenbanksystemen. Studienarbeit, Leibniz Universitat
Hannover, 2007.

E. Verhein: Frequent Pattern Growth (FP-Growth) Algorithm. An Introduction,
Universitdt Sydney, 2008.

T. Bollinger: Assoziationsregeln — Analyse eines Data Mining Verfahrens. In
Informatik-Spektrum, 19(5), Springer-Verlag, S. 257-261, DOI: 10.1007 /002870050036,
1996, URL: http:/ / www.springerlink.com / content/ katecd6pyyuevifd /.

(Letzter Zugriff am 07.04.2015).

[19]: J. Han, Y. Pei, Y. Yin, R. Mao: Mining Frequent Patterns without Candidate

[20]:

[21]:

[22]:

[23]:

[24]:

Generation: A Frequent-Pattern Tree Approach. In Data Mining and Knowledge
Discovery, 8(1), S.53-87, DOI: 10.1023 /B, 2004.

D. Gallardo, C. Aniszczyk: Get started with the Eclipse Platform (17.07.2007),

URL:http:/ /www.ibm.com /developerworks/opensource/library / os-eclipse-

platform/.
(Letzter Zugriff am 07.04.2015).

A. Becker: Entwicklung eines JaMP-Editors fiir das Eclipse-Framework.

Studienarbeit, Friedrich-Alexander-Universitdt Erlangen-Niirnberg, 2007.
M. Witte: Portierung, Erweiterung und Integration des ObjectTeams/Java Compilers
fiir die Entwicklungsumgebung Eclipse. Diplomarbeit, Technische Universitit Berlin,

2003.

C. Wressnegger: Coco/R Eclipse Plug-In. Bachelorarbeit, Johannes Kepler Universitat
Linz, 2006.

H.-C. Frank: Implementierung eines Eclipse-Plugin zur Refaktorisierung ,Replace

Conditional with Polymorphism“. Masterarbeit, FernUniversitit in Hagen, 2012.

94

[25]:

[26]:

[27]:

[28]:

[29]:

[30]:

[31]:

[32]:

[33]:

The Eclipse Foundation. Extensions and Extension Points, URL:

http:/ /help.eclipse.org /luna/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconce

pts%2Fextension.htm.
(Letzter Zugriff am 07.04.2015).

L.Vogel: Eclipse Extension Points and Extensions-Tutorial (27.08.2013),
URL:http:/ /www.vogella.com / tutorials / EclipseExtensionPoint/ article.html
(Letzter Zugriff am 07.04.2015).

T. Zimmermann, A. Zeller, P. Weissberger, S. Diehl: Mining Version Histories to
Guide Software Changes. In Proceedings of the 26th International Conference on
Software Engineering. Washington, DC; USA. IEEE Computer Society, S. 563-572,
2004.

P. Kim, B. Tamersoy: Collaborativ Software Design & Development. Mining Software

Repositories. Universitiat Texas, 2008.

AT.T. Ying: Predicting Source Code Changes by Mining Revision History.
Masterarbeit, University of British Columbia, 2001.

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng (2014).
SPMEF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning
Research (JMLR), 15: 3389-3393.

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng: SPMF. An
Open-Source Data Mining Library. Startseite. URL: http:/ /www.philippe-fournier-

viger.com /spmf/
(Letzter Zugriff am 07.04.2015).

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng: SPMF. An
Open-Source Data Mining Library. Example 3: Mining Frequent Itemsets by Using
the FP-Growth Algorithm. URL: http:/ / www.philippe-fournier-

viger.com /spmf/index.php?link=documentation.php# growth
(Letzter Zugriff am 07.04.2015).

The Eclipse Foundation. WindowBuilder - is a powerful and easy to use bi-directional
Java GUI designer, URL: https:/ /eclipse.org/windowbuilder/.
(Letzter Zugriff am 07.04.2015).

95

[34]:

[35]:

[36]:

[37]:

[38]:

[39]:

[40]:

[41]:

E. Clayberg: Building GUIs with WondowBuilder. In EclipseCon 2012, Reston,
Virginia; USA. 5.1-24, 2012.
URL:http://eclipsecon.org/europe2012/sites/eclipsecon.org.europe2012/files/Buiding-GUIs-
with-WindowBuilder-EclipseCon-2012.pdf.

(Letzter Zugriff am 07.04.2015)

T. Schmidt: Uberblick iiber den Eclipse Workbench (2002), URL: http:/ / www.admin-
wissen.de/tutorials/ eclipse_ workshop /ueberblick workbench.html.
(Letzter Zugriff am 07.04.2015).

M.R. Hoffmann: Eclipse Workbench: Using the Selection Service (28.08.2008),
URL: https:/ / eclipse.org / articles / Article-WorkbenchSelections / article.html.
(Letzter Zugriff am 07.04.2015).

The Eclipse Foundation. Interface ITextSelection, URL:

http:/ /help.eclipse.org /luna/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fref
erence%?2Fapi%2Forg%?2Feclipse%2Fiface%2Ftext%2FI TextSelection.html.

(Letzter Zugriff am 07.04.2015).

The Eclipse Foundation. Interface IMarkSelection, URL:

http:/ /help.eclipse.org /juno /index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fref
erence%2Fapi%2Forg%2Feclipse%2Fiface%2Ftext%2FIMarkSelection.html.

(Letzter Zugriff am 07.04.2015).

The Eclipse Foundation. Interface IStructuredSelection, URL:

http:/ /help.eclipse.org /luna/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fref
erence%2Fapi%2Forg%2Feclipse%2Fiface%2Fviewers%2FIStructuredSelection.html.
(Letzter Zugriff am 07.04.2015).

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng: SPMF. An
Open-Source Data Mining Library. Example 54: Mining Frequent Sequential Patterns
Using the PrefixSpan Algorithm. URL: http://www.philippe-fournier-

viger.com / spmf/index.php?link=documentation.php#examplePrefixSpan.
(Letzter Zugriff am 07.04.2015).

The Eclipse Foundation. Eclipse Public License (EPL) Frequently Askes Questions,
URL: https:/ / eclipse.org /legal / eplfag.php.
(Letzter Zugriff am 07.04.2015).

96

Erkldrung

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wortlich oder sinngemdfi aus anderen Werken
tibernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollstindig veréffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum Unterschrift: Mehmet Fatih Cicek

97

