

 Institut für Softwaretechnologie
Abteilung Software Engineering

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3693

Präsentation von
Software Repository Mining

in Eclipse

Mehmet Fatih Cicek

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat. Stefan Wagner

Betreuer: M. Sc. Jasmin Ramadani

Begonnen am: 10. Oktober 2014

Beendet am: 10. April 2015

CR-Klassifikation: D.2.3, D.2.6

 I

Inhaltsverzeichnis

Danksagung	
 ...	
 V	

Abbildungsverzeichnis	
 ...	
 VII	

Tabellenverzeichnis	
 ...	
 VIII	

Verzeichnis	
 der	
 Listings	
 ...	
 IX	

Abkürzungsverzeichnis	
 ...	
 X	

1	
 Einleitung	
 ...	
 1	

	
 	
 	
 1.1	
 	
 	
 	
 Motivation	
 ..	
 1	

	
 	
 	
 1.2	
 	
 	
 	
 Zielsetzung	
 ...	
 1	

	
 	
 	
 1.3	
 	
 	
 	
 Gliederung	
 ..	
 2	

2	
 Grundlagen	
 ..	
 3	

	
 	
 	
 2.1	
 	
 	
 	
 Software	
 Repository	
 Mining	
 ..	
 3	

	
 	
 	
 2.2	
 	
 	
 	
 Change	
 Coupling	
 ...	
 3	

	
 	
 	
 2.3	
 	
 	
 	
 Data	
 Mining	
 ..	
 4	

	
 	
 	
 2.4	
 	
 	
 	
 Data	
 Mining	
 Techniken	
 ..	
 8	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2.4.1	
 	
 	
 Überblick	
 über	
 die	
 Data	
 Mining	
 Techniken	
 ..	
 8	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2.4.2	
 	
 	
 Ermittlung	
 von	
 Frequent	
 Itemsets	
 in	
 der	
 Assoziationsanalyse	
 	
 11	

	
 	
 	
 2.5	
 	
 	
 	
 Eclipse	
 Plattform	
 ...	
 17	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2.5.1	
 	
 	
 Was	
 ist	
 Eclipse?	
 ..	
 18	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2.5.2	
 	
 	
 Eclipse	
 Plattform	
 Übersicht	
 ..	
 18	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2.5.3	
 	
 	
 Eclipse	
 Plug-­‐In	
 Mechanismus	
 ...	
 19	

3	
 Verwandte	
 Projekte	
 ..	
 21	

4	
 Tools	
 und	
 Algorithmen	
 ..	
 25	

	
 	
 	
 4.1	
 	
 	
 	
 Sequential	
 Pattern	
 Mining	
 Framework	
 (SPMF)	
 ...	
 25	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4.1.1	
 	
 	
 Aufbau	
 und	
 Funktionsweise	
 des	
 SPMF	
 ..	
 25	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4.1.2	
 	
 	
 SPMF	
 Data	
 Mining	
 Algorithmen	
 ..	
 26	

	
 	
 	
 4.2	
 	
 	
 	
 Windowbuilder	
 ...	
 27	

5	
 Anforderungen	
 und	
 Konzept	
 ...	
 29	

	
 	
 	
 5.1	
 	
 	
 	
 Anforderungen	
 ..	
 29	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.1.1	
 	
 	
 Überarbeitung	
 von	
 SPMF	
 Data	
 Mining	
 Algorithmus	
 ..	
 29	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.1.2	
 	
 	
 Integration	
 von	
 Data	
 Mining	
 ins	
 Eclipse	
 Tool	
 ...	
 30	

	
 	
 	
 5.2	
 	
 	
 	
 Architektur	
 SRM	
 Plug-­‐In	
 ..	
 30	

	
 	
 	
 5.3	
 	
 	
 	
 Struktur	
 und	
 Workflow	
 des	
 SRM	
 Plug-­‐Ins	
 ...	
 32	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.3.1	
 	
 	
 Struktur	
 SRM	
 Plug-­‐In	
 ...	
 32	

 II

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.3.2	
 	
 	
 Workflow	
 SRM	
 Plug-­‐In	
 ...	
 33	

	
 	
 	
 5.4	
 	
 	
 	
 Korrelation	
 der	
 einzelnen	
 SRM	
 Plug-­‐In	
 Komponenten	
 ...	
 34	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.4.1	
 	
 	
 Execution	
 View	
 ...	
 34	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.4.2	
 	
 	
 FPGA.jar	
 File	
 ..	
 35	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.4.3	
 	
 	
 Project	
 Explorer	
 und	
 Editor	
 ...	
 37	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.4.4	
 	
 	
 Coupled	
 Changes	
 ...	
 39	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.4.5	
 	
 	
 Commit	
 View	
 ...	
 40	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5.4.6	
 	
 	
 Commit	
 Message	
 View	
 ..	
 41	

6	
 Implementierung	
 ...	
 42	

	
 	
 	
 6.1	
 	
 	
 	
 Entwicklungsumgebung	
 ...	
 42	

	
 	
 	
 6.2	
 	
 	
 	
 Registrierung	
 des	
 SRM	
 Plug-­‐Ins	
 ...	
 42	

	
 	
 	
 6.3	
 	
 	
 	
 Auflistung	
 der	
 einzelnen	
 Klassen	
 ..	
 45	

	
 	
 	
 6.4	
 	
 	
 	
 Implementierung	
 der	
 einzelnen	
 Komponenten	
 ...	
 47	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.1	
 	
 	
 ExecutionView.java	
 ..	
 47	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.2	
 	
 	
 Maincontrol.java	
 ..	
 47	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.3	
 	
 	
 DBConnection.java	
 ..	
 51	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.4	
 	
 	
 FPGA.jar	
 ...	
 56	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.5	
 	
 	
 CoupledChanges.java	
 ...	
 58	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.6	
 	
 	
 CommitView.java	
 ..	
 70	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.7	
 	
 	
 CommitMessageView.java	
 ...	
 72	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.8	
 	
 	
 Search.java	
 ...	
 73	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6.4.9	
 	
 	
 Process.java	
 ...	
 73	

7	
 Vergleich	
 von	
 Sequential	
 Pattern	
 Mining	
 und	
 Frequent	
 Itemset	
 Mining	
 	
 76	

	
 	
 	
 7.1	
 	
 	
 	
 Einleitung	
 ..	
 76	

	
 	
 	
 7.2	
 	
 	
 	
 Aufbau	
 und	
 Funktionsweise	
 der	
 beiden	
 Algorithmen	
 ...	
 76	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7.2.1	
 	
 	
 Aufbau	
 und	
 Funktionsweise	
 von	
 Frequent	
 Itemset	
 Mining	
 	
 77	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7.2.2	
 	
 	
 Aufbau	
 und	
 Funktionsweise	
 von	
 Sequential	
 Pattern	
 Mining	
 	
 78	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7.2.3	
 	
 	
 Tabellarische	
 Gegenüberstellung	
 der	
 beiden	
 Algorithmen	
 ..	
 79	

	
 	
 	
 7.3	
 	
 	
 	
 Konzept	
 zur	
 Integration	
 von	
 Sequential	
 Pattern	
 Mining	
 ins	
 SRM	
 Plug-­‐In	
 	
 80	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7.3.1	
 	
 	
 Lese-­‐	
 und	
 Schreibeoperationen	
 auf	
 Datenbanktabellen	
 ..	
 80	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7.3.2	
 	
 	
 Architektur	
 SRM	
 Plug-­‐Ins	
 unter	
 Anwendung	
 von	
 Sequential	
 Pattern	
 Mining	
 ...	
 81	

	
 	
 	
 7.4	
 	
 	
 	
 Fazit	
 des	
 Vergleiches	
 ...	
 83	

8	
 Evaluation	
 ...	
 84	

	
 	
 	
 8.1	
 	
 	
 	
 Überblick	
 über	
 den	
 Evaluationsprozess	
 ...	
 84	

	
 	
 	
 8.2	
 	
 	
 	
 Vorbereitungsphase	
 ..	
 84	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 8.2.1	
 	
 	
 Erstellung	
 von	
 Testdaten	
 ...	
 84	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 8.2.2	
 	
 	
 Festlegung	
 des	
 Testfallszenarios	
 ..	
 85	

 III

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 8.2.3	
 	
 	
 Erstellung	
 von	
 dem	
 Fragebogen	
 ...	
 86	

	
 	
 	
 8.3	
 	
 	
 	
 Testphase	
 ..	
 87	

	
 	
 	
 8.4	
 	
 	
 	
 Auswertungsphase	
 der	
 Evaluationsergebnisse	
 ...	
 87	

9	
 Zusammenfassung	
 und	
 Ausblick	
 ..	
 89	

	
 	
 	
 9.1	
 	
 	
 	
 Ausblick	
 ..	
 91	

Literaturverzeichnis	
 ..	
 93	

Erklärung	
 ...	
 97	

 IV

 V

Danksagung

Zunächst möchte ich mich an dieser Stelle bei all denjenigen bedanken, dich mich während
meines Studiums und meiner Diplomarbeit unterstützt und motiviert haben.

Mein besonderer Dank gilt meiner Familie, die mich nicht nur finanziell, sondern auch
moralisch immer unterstützt und mir den Rücken gestärkt haben.

Großer Dank gebührt auch meiner Verlobten, die mich immer wieder ermutigte und stets
ein offenes Ohr für mich hatte.

Weiterhin bedanke ich mich bei meinem Betreuer M. Sc. Jasmin Ramadani für die
hervorragende Betreuung und freundliche Unterstützung während der gesamten
Diplomarbeit.

Ebenfalls bedanken möchte ich mich bei meinem Referenten Herrn Prof. Dr. Stefan Wagner,
der mir diese Arbeit ermöglicht hat.

Schließlich danke ich auch meinen Freunden und Kommilitonen für die schöne Zeit an der
Universität Stuttgart.

 VI

 VII

Abbildungsverzeichnis

Abbildung 1: Data Mining: Suche nach Wissen in den Daten [6] .. 4	

Abbildung 2: Der Data-Mining-Prozess [7] .. 5	

Abbildung 3: Architektur eines Data Mining Systems [6] .. 6	

Abbildung 4: Klassifikationsanalyse: Entscheidungsbaum für Kreditwürdigkeit [8] 9	

Abbildung 5: Regressionsanalyse [9] ... 9	

Abbildung 6: Beispiel Clusteranalyse [11] .. 10	

Abbildung 7: Assoziationsanalyse [9] .. 11	

Abbildung 8: FP-Tree ... 14	

Abbildung 9: Präfixpfad mit der Endung Melone ... 15	

Abbildung 10: Conditional FP-Tree für das Item Melone .. 17	

Abbildung 11: Eclipse Plattform Übersicht [23] ... 19	

Abbildung 12: Beziehung zwischen Erweiterungspunkt (Extension Point)
und Erweiterungen (Extensions) in Eclipse Plug-In [26] .. 20	

Abbildung 13: Gekoppelte Dateiänderungen zwischen zwei Files [28].. 21
Abbildung 14: ROSE Plug-In [27] ... 22	

Abbildung 15: Datenfluss in dem ROSE Tool [28] .. 23	

Abbildung 16: Die drei Phasen des Ansatzes von Ying et al [29] .. 24	

Abbildung 17: SPMF GUI [30] ... 25	

Abbildung 18: SPMF CLI [30] ... 25	

Abbildung 19: Input.txt File von FPGrowth_Itemsets_with_Strings [32] 26	

Abbildung 20: Output.txt File von FPGrowth_Itemsets_with_Strings [32] 27	

Abbildung 21: Benutzeroberfläche des Windowbuilder Plug-Ins [33] 28	

Abbildung 22: Bi-direktionale Codegenerierung in Windowbuilder [34] 28	

Abbildung 23: Architektur SRM Plug-In.. ... 31
Abbildung 24: Struktur SRM Plug-In ... 32	

Abbildung 25: Workflow SRM Plug-In.. ... 33
Abbildung 26: Execution View mit Beispielwerten ... 35	

Abbildung 27: Übersicht über den Eclipse Workbench [35] ... 38	

Abbildung 28: Project Explorer mit einem Beispielprojekt .. 39	

Abbildung 29: Coupled Changes mit Beispielwerten .. 39	

Abbildung 30: Fehlermeldung im Coupled Changes .. 40	

Abbildung 31: Auflistung der CommitIDs im Commit View mit Beispielwerten 40	

Abbildung 32: Commit Message View mit Beispielwerten .. 41	

Abbildung 33: Hinzufügen der Views in das SRM Plug-In ... 42	

Abbildung 34: Integration von MYSQL Treiber und FPGA.jar File in das SRM Plug-In 43	

Abbildung 35: Hinzufügen der Abhängigkeiten (Dependencies) in das SRM-Plug-In 43	

Abbildung 36: Relation zwischen Package Explorer und Properties in Eclipse [36] 59	

Abbildung 37: Selection Service [36] .. 60	

 VIII

Abbildung 38: Relation zwischen Project Explorer und Coupled Changes 60	

Abbildung 39: Selektion eines Files in dem Project Explorer ... 61	

Abbildung 40: Überblick über alle Selektionsarten im Project Explorer [36] 62	

Abbildung 41: Lese- und Schreibeoperation vom FP-Growth Algorithmus [32].. 77
Abbildung 42: Lese- und Schreibeoperation vom PrefixSpan Algorithmus [40].. 79
Abbildung 43: Lese- und Schreibeoperation vom PrefixSpan Algorithmus
auf Datenbanktabellen... ... 81
Abbildung 44: Architektur SRM Plug-In mit PrefixSpan Algorithmus.. 82
Abbildung 45: Phasen des Evaluationsprozesses ... 84	

Abbildung 46: Testfallszenario .. 85	

Abbildung 47: Fragebogen zum SRM Plug-In...86
Abbildung 48: Überblick über die Evaluationsergebnisse .. 88	

Tabellenverzeichnis

Tabelle 1: Transaktionsdatenbank D [18] .. 13	

Tabelle 2: Zwischenergebnisstabelle [18] ... 14	

Tabelle 3: Tabelle der Frequent Itemsets .. 17	

Tabelle 4: Beispielinputtabelle für das FPGA.jar File ... 35	

Tabelle 5: Beispieloutputtabelle des FPGA.jar Files ... 36	

Tabelle 6: Commit Message Tabelle ... 41	

Tabelle 7: Überblick über die Klassen des SRM Plug-Ins und deren Funktionen 45	

Tabelle 8: Tabellarische Gegenüberstellung von FP-Growth und PrefixSpan Algorithmen ... 79	

 IX

Verzeichnis der Listings

Listing 1: Quellcode plugin.xml vom SRM Plug-In ... 45	

Listing 2: Quellcode ExecutionView.java .. 47	

Listing 3: Quellcode Maincontrol.java ... 48	

Listing 4: Herstellung der Verbindung mit der Datenbank in DBConnection.java 52	

Listing 5: Leseoperation auf die Inputtabelle in DBConnection.java .. 53	

Listing 6: Leseoperation auf die Commit Message Tabelle in DBConnection.java 54	

Listing 7: Erzeugen der Outputtabelle in DBConnection.java ... 55	

Listing 8: Leseoperation des FPGrowthAlgorithmus.java .. 57	

Listing 9: Schreibeoperation des FPGrowthAlgorithmus.java ... 58	

Listing 10: Registrierung des Selection Listeners in CoupledChanges.java 61	

Listing 11: Pfadermittlung des selektierten Files in CoupledChanges.java 64	

Listing 12: Pfadtransformation in CoupledChanges.java ... 65	

Listing 13: Filepfadübergabe und Methodenaufruf in CoupledChanges.java 65	

Listing 14: Initialisierung Coupled Changes und Commit View in CoupledChanges.java 66	

Listing 15: Senden von Fehlerinformationen in CoupledChanges.java 67	

Listing 16: Erzeugung und Rückgabe der Fehlermeldung in ShowPlugin.java 68	

Listing 17: Senden von gekoppelten Dateiänderungen in CoupledChanges.java 68	

Listing 18: Übermittlung und Rückgabe der gekoppelten Dateiänderungen
in ShowPlugin.java ... 68	

Listing 19: Empfangen und Anzeigen von Informationen in CoupledChanges.java 69	

Listing 20: Senden von CommitIDs in CoupledChanges.java ... 69	

Listing 21: Übermittlung und Rückgabe der CommitIDs in ShowPlugin.java 70	

Listing 22: Empfangen und Anzeigen von CommitIDs in CommitView.java 70	

Listing 23: Selektion von CommitIDs und Vergleich mit der Commit Message Tabelle
in CommitView.java ... 71	

Listing 24: Senden von Einträgen in CommitView.java .. 72	

Listing 25: Übermittlung und Rückgabe von den Einträgen in ShowPlugin.java 72	

Listing 26: Empfangen und Anzeigen von den Einträgen in CommitMessageView.java 72	

Listing 27: Suche nach dem selektierten File in der Outputtabelle in Search.java 73	

Listing 28: Entkopplung der gekoppelten Dateiänderungen von den CommitIDs
in Process.java .. 74	

Listing 29: Separierung und Transformation der CommitIDs in Process.java 75	

Listing 30: Entfernen von redundanten CommitIDs in Process.java .. 75	

 X

Abkürzungsverzeichnis

SWT Standard Widget Toolkit

GUI Graphical User Interface

SQL Structured Query Language

CLI Command Line Interface

SRM Software Repository Mining

PDE Plug-In Development Environment

SPMF Sequential Pattern Mining Framework

IDE Integrated Development Environment

GPL General Public License

EPL Eclipse Public License

 1

1 Einleitung

Software-Repositories spielen im Software Engeneering eine sehr wichtige Rolle, da sie
sämtliche Informationen über die Entwicklung eines Softwaresystems beinhalten und somit
eine Informationsquelle für die Softwareentwicklungsanalysen zur Verfügung stellen [1].

Die Ziele dieser Softwareentwicklungsanalysen sind vielfältig. Eines der Ziele ist die Analyse
der gekoppelten Dateiänderungen mit Hilfe der Data Mining Technik namens “Frequent
Itemset Mining“ auf Basis der Software-Historie. Die Ergebnisse dieser Analyse sollen den
Entwicklern hinsichtlich ihrer Modifikations- und Bugfixingsaufgaben eine Unterstützung
anbieten.

1.1 Motivation

Modifikations- und Bugfixingsaufgaben bilden einen elementaren Bestandteil der Aufgaben
eines Entwicklers, mit denen er öfters konfrontiert wird. Ändert beispielweise der
Entwickler einen bestimmten Bereich eines Quellcodes oder ein File von einem
Softwaresystem, so sind in der Regel weitere Änderungen mit dieser Änderung auch
verbunden. Der Entwickler muss in diesem Zusammenhang auch wissen, welche weiteren
Bereiche noch zu ändern sind. Vor allem für Entwickler, die neu sind und sich mit dem
Softwaresystem nicht gut auskennen, ist es schwer die gekoppelten Dateiänderungen zu
entdecken. Es existieren zwar Tools, die die Entwickler in dieser Hinsicht unterstützen
sollen. Jedoch sind diese aber nur in der Lage einige interessante Codeänderungen oder Files
anzuzeigen und nicht alle relevanten Codes bzw. Files, die geändert werden müssen.

Betrachtet man zum Beispiel gekoppelte Files, die in unterschiedlichen
Programmiersprachen implementiert sind, so ist es mit einfachen Tools nicht möglich alle
relevanten Files zu erhalten und führt in den meisten Fällen dazu, dass der Entwickler nach
den entsprechen gekoppelten Files selber suchen muss oder dass er es vergisst diese File zu
ändern. Dies ist eine sehr zeitaufwändige Arbeit für den Entwickler und natürlich auch sehr
kostspielig für den Arbeitgeber [2].

1.2 Zielsetzung

Diese Diplomarbeit gliedert sich in zwei Bereiche, einen praktischen Bereich gefolgt von
einem theoretischen Bereich.

Das Ziel des praktischen Bereiches ist die Entwicklung eines Eclipse Plug-Ins für die
Unterstützung der Entwickler hinsichtlich ihrer Modifikations- und Bugfixingsaufgaben.

 2

Das Plug-In soll die Durchführung der folgenden Punkte ermöglichen:

1. Ausführen der Frequent-Itemset-Analyse.
2. Anzeigen der gekoppelten Dateienänderungen und weiteren Informationen an dem

Benutzer.

Der theoretische Teil dieser Diplomarbeit hingegen umfasst die nachfolgenden zwei Punkte:

1. Vergleich von Sequential Pattern Mining und Frequent Itemset Mining.
2. Fertigstellung der Ausarbeitung.

1.3 Gliederung

Kapitel 1 – Einleitung: Einführung in das Themengebiet gefolgt von der Motivation und
Zielsetzung.

Kapitel 2 – Grundlagen: Darstellung der grundlegenden Themen, die für das bessere
Verstehen der Diplomarbeit von entscheidender Bedeutung sind.

Kapitel 3 – Verwandte Projekte: Vorstellung der verwandten Projekte.

Kapitel 4 – Tools und Algorithmen: Repräsentation und Erläuterung der Tools und
Algorithmen, die bei der Entwicklung des Eclipse Plug-Ins eingesetzt wurden.

Kapitel 5 – Anforderungen und Konzept: Festlegung der Anforderungen an das Eclipse
Plug-In und Darstellung des Konzeptes.

Kapitel 6 – Implementierung: Implementierung des in Kapitel 5 dargestellten Konzeptes.

Kapitel 7 – Vergleich von Sequential Pattern Mining und Frequent Itemset Mining:
Vergleich von diesen beiden Algorithmen auf theoretischer Ebene.

Kapitel 8 – Evaluation: Testen und Bewerten des im Rahmen dieser Diplomarbeit
entwickelten Software Repository Mining (SRM) Plug-Ins.

Kapitel 9 – Zusammenfassung und Ausblick: Zusammenfassung der Resultate dieser
Diplomarbeit und Vorstellung der Erweiterungspunkte.

 3

2 Grundlagen

In diesem Kapitel findet eine Einführung in die grundlegenden Themen dieser Arbeit statt.

2.1 Software Repository Mining

Unter Software Repository Mining versteht man die Untersuchungen von Software-
Repositories. Darin befinden sich sämtliche Daten, die während der Softwareentwicklung
erzeugt und archiviert werden und geben somit einen eindeutigen Aspekt über die Art und
Weise der Realisierung des Softwaresystems. Diese Daten, deren Existenz sich auf die
Gesamtlaufzeit des Projektes beläuft, enthalten Informationen über Änderungen in der
Projektentwicklung.

Die Extraktion relevanter Informationen und die Entdeckung der Zusammenhänge zwischen
diesen extrahieren Informationen im Rahmen der Softwareentwicklung beruhen auf eine
große Palette an Verfahren, die durch die Softwareentwickler entwickelt und experimentiert
wurden. Da diese Verfahren sehr viele Parallelen zu Data Mining und Wissensentdeckung
(Knowledge Discovery) aufweisen, wird Software Repository Mining gleichgestellt zu Data
Mining und Wissensentdeckung (Knowledge Discovery). An dieser Stelle ist aber Aufschluss
darüber zu geben, dass Software Repository Mining natürlich nicht auf Data Mining und
Wissensentdeckung (Knowledge Discovery) begrenzt ist.

Somit bezweckt die Software Repository Mining die Aufbringung neuer Erkenntnisse in den
Prozess der Softwareentwicklung und die Hervorhebung der im Laufe der Zeit
aufgetretenen Änderungen. Dies wird durch die Aufdeckung von relevanten Informationen
und Relationen zwischen diesen Informationen über einen bestimmten Bereich des
Softwaresystems gewährleistet. Forschungsuntersuchungen, die sich mit Mining Techniken
auf Software beziehen sind vielfältig [3].

2.2 Change Coupling

Die Forschung der Softwareentwicklung wird dadurch verwirklicht, indem man durch die
Anwendung von Software-Historien die aktuellen Probleme des Softwaresystems analysiert,
um die Ursachen dieses Problems zu verstehen und die zukünftige Entwicklung des
Softwaresystems vorherzusagen [1].

Es existieren neben vielen Informationen auch Informationen über Change Coupling in den
Software-Historien eines Softwaresystems. Unter Change Coupling versteht man die
gemeinsame Änderung von zwei oder mehreren Software-Artefakten während der

 4

Entwicklung eines Softwaresystems. D.h., Change Coupling zeigt die gekoppelten Dateien,
die zusammen geändert wurden, und besagt, dass die in der Software-Historie zusammen
geänderten Dateien auch zukünftig zusammen geändert werden müssen. Durch diese
Informationen von den Change Coupling können die Entwickler ihre Bugfixings- und
Modifikationsaufgaben viel besser und effizienter bewerkstelligen. In der vorliegenden
Arbeit wird anstelle des Begriffes „Change Coupling“ öfters auch die deutsche Übersetzung
„gekoppelte Dateiänderungen“ benutzt [4].

2.3 Data Mining

Viele Unternehmen haben durch den technischen Forstschritt die Möglichkeit bekommen
jede Art von Information, die mit Ihren Unternehmensaktivitäten in Verbindung stehen zu
sehr vernünftigen Preisen zu speichern. Dieser Fortschritt bringt aber auch den Nachteil mit
sich, dass die Lücke zwischen der Datenerstellung und dem Datenverständnis immer
grösser wird, weshalb die Verarbeitung und Interpretation dieser gespeicherten Daten einen
sehr hohen Stellenwert in einem Unternehmen bekommt. Die Verarbeitung und
Interpretation der Daten sollen es dem Unternehmen ermöglichen, zu neuen Informationen
zu gelangen, um einen wirtschaftlichen Vorteil für das Unternehmen zu schaffen [5]. Diesen
Prozess der Datenverarbeitung und Interpretation bezeichnet man als Data Mining. Im
Allgemeinen geht es beim Data Mining darum Wissen aus großen Datenmengen zu
extrahieren.

Abbildung 1: Data Mining: Suche nach Wissen in den Daten [6]

 5

Definition Data Mining:
“Data mining is the process of discovering hidden, previously unknown and usable
information from a large amount of data. The data is analyzed without any expectation on the
result. Data mining delivers knowledge that can be used for a better understanding of the
data.“ [9]

Diese Definition macht es deutlich, dass es sich hierbei um einen Prozess handelt, dessen
Ziel es ist Wissen zu liefern, um die Daten besser zu verstehen. Diese Wissensgewinnung
wird dadurch realisiert, indem bekannte und nützliche Informationen aus großen
Datenmengen extrahiert, entdeckt und anschließend durch gewisse Verfahren analysiert
werden.

Abbildung 2: Der Data-Mining-Prozess [7]

In der Abbildung 2 wird noch einmal gut veranschaulicht, dass das Data Mining die
Extraktion des Wissens, also von interessanten Mustern, aus Datenmengen zu Ziel hat. Bei
interessanten Mustern hingegen handelt es sich um Mustern, welche sich durch die
Eigenschaften Nichttrivialität, Nützlichkeit, Verständlichkeit und allgemeine Gültigkeit
beschreiben lassen. Die Abbildung 2 stellt somit einen Überblick über die einzelnen Phasen,
die beim Data-Mining-Prozess nicht zwingend sequentiell durchlaufen werden. Der Prozess
besteht aus den Phasen Vorbereitung, Vorverarbeitung, Analyse und Nachbereitung.
Ausgangspunkt sind die Rohdaten. Das bedeutet, bevor der Data-Mining-Prozess beginnt,
liegen im Regelfall die Rohdaten ungeordnet vor. Zudem sind diese Rohdaten dadurch
ausgezeichnet, dass sie unvollständig, teilweise redundant, unwichtig und fehlerhaft sind.
Deshalb ist die Notwendigkeit der Vorbereitung und Vorverarbeitung dieser Rohdaten
erforderlich, um die Analyse durchzuführen.

 6

In der Vorbereitungsphase ereignet sich somit in erster Linie die Planung und
Datensammlung. Da im Regelfall beim Projektanfang erst einmal überhaupt keine Daten
vorhanden sind, erfolgen im Vorfeld die Planung und Durchführung der Datensammlung.
Im Anschluss daran findet noch in der Vorbereitungsphase die Merkmalsegmentierung und
die Datenauswahl statt, bevor diese Rohdaten an die Vorverarbeitungsphase zur
Normalisierung, Säuberung, Ergänzung, Korrektur, Filterung und Transformation
weitergeleitet werden. Nachdem die Vorverarbeitungsphase auch sein Ende erreicht hat,
stehen dann die Daten bereit für die Analyse. Anschließend werden in der Analysephase die
vorverarbeiteten Daten mit Hilfe von verschiedenen Methoden analysiert. Welche Methoden
angewendet werden sollen, sind davon abhängig, was für ein Wissen man aus diesen Daten
herausziehen möchte. Diese verschiedenen Verfahren werden in dem Kapitel 2.4. näher in
Betracht gezogen. Aus dieser Analysephase erhält man einige Ergebnisse, die wiederum
durch die Nachbereitungsphase herangezogen werden, um das Wissen aus diesen
Ergebnissen zu extrahieren. Nach dieser letzten Phase steht das Wissen schließlich für die
Verwendung zur Verfügung [7]. Anhand von diesem Blickwinkel kann man dann dem Data
Mining System die in der nachfolgenden Abbildung 3 dargestellten Komponenten zuordnen.

Abbildung 3: Architektur eines Data Mining Systems [6]

 7

So wie in der Abbildung 3 auch zusehen, besteht ein Data Mining Systems aus insgesamt
fünf Komponenten, die im Folgenden näher erläutert werden:

1. Datenbank, World Wide Web, andere Info Repositories, Dara Warehouse:
Diese Komponente stellt eine Menge an Datenbanken dar, deren Inhalt später im
Data-Mining-Prozess zur Bearbeitung herangezogen wird. D.h., dass die
Datenquellen sich in dieser Komponente befinden.

2. Datenbank oder Data Warehouse Server:
Für die Aufnahme der durch den Benutzer abgefragten, relevanten und
vorverarbeiteten Daten ist der Datenbank Server oder der Data Warehouse Server
verantwortlich.

3. Data Mining Engine:
Diese Komponente bildet sozusagen das Herz eines Data Mining Systems. Hier
finden die verschiedenen Verfahren der Data Mining Techniken Anwendung. Die
Entscheidung, welche Methode bei welcher Aufgabe anzuwenden ist, ist von den
durch die Anwender definierten Aufgabenstellungen abhängig.

4. Wissensdatenbank (Knowledge Base):
Bei dieser Komponente handelt es sich um eine Wissensdatenbank, die eine
Orientierung bei der Suche oder der Auswertung nach resultierenden Mustern dient.
Darüberhinaus ist eine Wissensdatenbank auch dadurch ausgezeichnet, dass das
Wissen in dieser Datenbank in schriftlicher Form vorliegt.

5. Musterauswertung (Pattern Evaluation):
Die Hauptaufgabe von dieser Komponente ist es, mit den Data Mining Modulen zu
interagieren und somit den Fokus der Musterauswertung auf interessante Muster zu
richten. Die Muster haben große Bedeutung im Data Mining. Das bedeutet, dass die
uninteressanten Muster durch einen bestimmten Wert ausgefiltert werden können.

6. Benutzerschnittstelle (User Interface):
Zu guter Letzt existiert auch die User Interface Komponente, welche die Schnittstelle
zwischen dem Benutzer und dem Data Mining System darstellt. Durch diese
Schnittstelle hat dann der Benutzer die Möglichkeit Anfragen an das Data Mining
Systems zu senden, um die relevanten Informationen zu selektieren und sich am
Ende auch die Ergebnisse anzuschauen. Allgemein formuliert ermöglicht der User
Interface die Interaktion des Benutzers mit dem Data Mining System [6].

 8

2.4 Data Mining Techniken

Dieser Abschnitt beschäftigt sich mit der detaillierten Erläuterung der Data Mining
Techniken, wobei das Hauptaugenmerk auf die Assoziationsanalyse und in diesem
Zusammenhang auf den FP-Growth Algorithmus gerichtet ist.

2.4.1 Überblick über die Data Mining Techniken

Es existieren vier Data Mining Techniken, die generell akzeptiert werden. Diese sind
Assoziationsanalyse, Clusteranalyse, Klassifikationsanalyse und Regressionsanalyse. Bei
diesen Techniken handelt es sich wiederum entweder um deskriptive oder prädiktive
Techniken. Clusteranalyse und Assoziationsanalyse gehören zu den deskriptiven Techniken,
während Klassifikationsanalyse und Regressionsanalyse zu den prädiktiven Techniken
zugeordnet werden.

Prädiktive Techniken:

1. Klassifikationsanalyse:
Das Ziel dieses Verfahrens ist die Ermittlung von bestimmten Mustern, die es
ermöglichen sollen, mit Hilfe von bereits vorhandenen Informationen, Aussagen über
Objekte machen zu können.

Nach der Festlegung der Kriterien, werden die einzelnen Objekte entsprechend
dieser Kriterien klassifiziert. Daraus wird ein Klassifikationsmodell aus diesen
Objekten generiert.

Dieses Verfahren wird in diversen Bereichen eingesetzt. Eines der
Anwendungsgebiete von diesem Verfahren ist die Beurteilung der Kreditwürdigkeit
der Kunden [8]. In Abbildung 4 ist der Entscheidungsbaum dargestellt, der die
Kreditwürdigkeit der Kunden einer Bank repräsentiert. Von diesem
Entscheidungsbaum kann man entnehmen, dass wenn ein Kunde nicht berufstätig
ist, kein Vermögen hat, Student ist und keine Bürgschaft der Eltern besitzt, folglich
auch keinen Anspruch auf Kredit bekommt [8].

 9

Abbildung 4: Klassifikationsanalyse: Entscheidungsbaum für Kreditwürdigkeit [8]

2. Regressionsanalyse:

Regressionsanalyse weist sehr viele Ähnlichkeiten zu Klassifikationsanalyse auf, mit
dem Unterschied des Zielfeldes. Während das Ziel der Klassifikationsanalyse die
Vorhersage von Klassenlabels ist, geht es bei der Regressionsanalyse um die
Vorhersage von numerischen Werten, weshalb dieser Wert keine Gleichheit mit
anderen Werten in dem Modell aufzeigt [9]. Abbildung 5 repräsentiert die
Regressionsanalyse.

Abbildung 5: Regressionsanalyse [9]

Deskriptive Techniken:

1. Clusteranalyse:
Unter Clusteranalyse versteht man die Unterteilung von einer gewissen Anzahl an
Objekten in Gruppen mit Hilfe von gewissen Variablen. Die Gruppen hingegen sind

 10

so aufgegliedert, dass alle Objekte innerhalb der gleichen Gruppe homogene und alle
in unterschiedlichen Gruppen heterogene Charaktermerkmale aufweisen.
Anwendung findet dieses Verfahren vor allem im Marketing und speziell im Bereich
der Marktforschung. Dieser Vorgang der Marktunterteilung wird auch als
Marktsegmentierung bezeichnet [10].

Abbildung 6 zeigt wie die Clusteranalyse abläuft. Dieses Beispiel beschreibt wie die
Bankkunden anhand von ihren Einkommen und ihren Schulden in unterschiedliche
Clustern untergliedert werden. Cluster 1 repräsentiert Bankkunden mit geringen
Einkommen und hohen Schulden. Cluster 2 zeigt die Bankkunden mit wenig
Einkommen und wenig Schulden. Zuletzt befinden sich in Cluster 3 diejenigen
Bankkunden, deren Einkommen über ihre Schulden sind.

Abbildung 6: Beispiel Clusteranalyse [11]

2. Assoziationsanalyse:

Die Basis der Assoziationsanalyse bildet eine Transaktionsdatenbank. Diese
Datenbank besteht aus mehreren Transaktionen. Eine Transaktion hingegen besteht
aus einer Menge von Items.

Das Ziel der Assoziationsanalyse ist es, die Zusammenhänge und die Beziehungen
zwischen den Items zu bestimmen und in den Vordergrund zu bringen. Das Ergebnis
der Assoziationsanalyse sind Assoziationsregeln. Assoziationsregeln sind Regeln der
Form wie beispielweise: Kunden die das Produkt A gekauft haben, haben auch zu
80% das Produkt B und zu 50% das Produkt C gekauft. Dieses Verfahren ermöglicht
es den Unternehmen das Kaufverhalten ihrer Kunden zu analysieren und ihr
Sortiment diesem Verhalten entsprechend anzupassen [12].

 11

Auf Transaktionsebene betrachtet sind die Assoziationsregeln folgendermaßen zu
formulieren: Eine Transaktion, welche das Item A besitzt, enthält auch zu 80% das
Item B und zu 50% das Item C. Folglich ist die Hauptaufgabe der
Assoziationsanalyse die Entdeckung von Assoziationsregeln in den
Transaktionsdatenbanken.

Die Bestimmung von Assoziationsregeln erfolgt in zwei Schritten. Im ersten Schritt
findet die Generierung von Frequent Itemsets mit Hilfe eines Data Mining
Algorithmus statt. Das bedeutet, es werden die häufig auftretenden Itemmengen
ermittelt. Der zweite Schritt erzeugt im Anschluss daran die Assoziationsregeln aus
den ermittelten Frequent Itemsets [9]. Die Abbildung 7 zeigt ein Beispiel der
Assoziationsanalyse.

Abbildung 7: Assoziationsanalyse [9]

2.4.2 Ermittlung von Frequent Itemsets in der Assoziationsanalyse

Wie in dem vorherigen Abschnitt auch erläutert, besteht die Assoziationsanalyse aus zwei
Schritten. Der erste Schritt ist die Ermittlung von den Frequent Itemsets mit Hilfe eines Data
Mining Algorithmus. Der zweite Schritt ist die Erzeugung der Assoziationsregeln aus diesen
Frequent Itemsets.

Da diese Diplomarbeit aber nur den ersten Schritt der Assoziationsanalyse umfasst, wird
hier nur auf diesen einen Teil eingegangen. Für die Ermittlung von den Assoziationsregeln
aus den Frequent Itemsets ist das Vorlesungsskript vom PD Dr. rer. nat. habil. Holger
Schwarz zu empfehlen [9].

 12

1. Formale Beschreibung:

Transaktionsdatenbank:
Eine Transaktionsdatenbank D setzt sich zusammen aus einer bestimmten
Transaktionsaktionsmenge 𝐷 = 𝑇!,𝑇!,𝑇!,… . ,𝑇! , wobei jede Transaktion durch ein
eindeutiges TID (Transaktionsidentifikation) gekennzeichnet ist. Zudem existieren Items
gegeben durch die Menge 𝐼 = {𝐼!, 𝐼!, 𝐼!,… . 𝐼!}. Weiterhin gilt für jede Transaktion, dass sie
eine Menge von Items beinhaltet und dass sie Teilmenge von der Transaktionsdatenbank D
ist, also 𝑇 ⊆ 𝐷 gilt. Es ist zusätzlich auch noch eine Menge A definiert, welche daraufhin
überprüft wird, ob sie Teilmenge von T ist, also 𝐴 ⊆ 𝑇 gilt [13].

Support:
Support oder auch Unterstützungsgrad genannt, gibt einen Wert über die Anzahl der
Transaktionen in der Menge A an. Die Formel für die Berechnung von dem Supportwert für
die Menge A lautet folgendermaßen [14]:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴 =
|{𝑇 ∈ 𝐷|𝐴 ⊆ 𝑇)|

|𝐷|

Es existiert weiterhin ein Minimumsupportwert 𝑠!"#, wobei 0 ≤ 𝑠!"# ≤ 1 gilt. Einen Itemset
A nennt man Frequent Itemset, wenn 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴 ≥ 𝑠!"# gilt. Unter Frequent Itemset
versteht man häufig auftretende Itemmengen. Die Assoziationsregeln hingegen zeichnen
sich dadurch aus, dass sie Implikationen aufweisen. Betrachtet man die folgende
Assoziationsregel: 𝐴 → 𝐵. Diese Regel besagt somit: Wenn A ein Teil der Transaktion T ist,
dann ist auch B ein Teil der Transaktion T [9]. Die Formel zum Support zu der
Assoziationsregeln sieht somit wie folgt aus [13]:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴 → 𝐵 = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴 ∪ 𝐵 =
𝑇 ∈ 𝐷 𝐴 ∪ 𝐵 ⊆ 𝑇 |

|𝐷|

Konfidenz
Die Konfidenz gibt die relative Häufigkeit der Beispiele an, für die die Assoziationsregel
richtig ist. Die Formel für die Berechnung des Konfidenzwertes für die Regel 𝐴 → 𝐵 sieht wie
folgt aus:

𝑐𝑜𝑛𝑓! 𝐴 → 𝐵 =
| 𝑇 ∈ 𝐷 𝐴 ∪ 𝐵 ⊆ 𝑇 |

𝑇 ∈ 𝐷 𝐴 ⊆ 𝑇 |

Es existiert weiterhin auch ein Minimumkonfidenzwert 𝑐!"#. Eine Assoziationsregel wird als
streng bezeichnet, wenn deren Supportwert und Konfidenzwert größer oder gleich dem
Minimumsupportwert und Minimumkonfidenzwert ist [15].

 13

2. Ermittlung von Frequent Itemsets am Beispiel des FP-Growth Algorithmus:

Der FP-Growth Algorithmus ist eine baumbasierte Verarbeitung der Daten von einer
Transaktionsdatenbank. Der Unterschied von diesem Algorithmus im Vergleich zum Apriori
Algorithmus ist dies, dass er ohne Kandidatengenerierung die Frequent Itemsets bestimmt.
[16].

Beim FP-Growth Algorithmus findet die Ermittlung der Frequent Itemsets in zwei Schritten
statt. Im ersten Schritt wird der FP-Tree erzeugt. Beim FP-Tree handelt es sich um einen
Baum, der eine kompakte Datenstruktur der Transaktionsdatenbank repräsentiert. Um den
FP-Tree zu erzeugen, muss die Transaktionsdatenbank zweimal gescannt bzw. durchlaufen
werden. Beim ersten Durchlauf werden die Supportwerte der einzelnen Items von der
Transaktionsdatenbank ermittelt. D.h., es wird berechnet, in vielen Transaktionen die
einzelnen Items vorkommen [17]. Die Tabelle 1 stellt eine Transaktionsaktionsdatenbank D
dar, die für die Erzeugung vom FP-Tree zweimal durchlaufen bzw. gescannt wird.

Tabelle 1: Transaktionsdatenbank D [18]

TID

Itemsets

101

{Apfel, Mandarine, Melone}

102

{Apfel, Mandarine, Zitrone}

103

{Apfel, Birne}

104

{Mandarine, Melone, Apfel}

105

{Apfel, Mandarine, Melone, Zitrone}

106

{Birne}

Nachdem die Tabelle 1 einmal gescannt wurde, werden die Ergebnisse, also die
Supportwerte von jedem Item, in eine Zwischenergebnisstabelle gespeichert. Die Tabelle 2
repräsentiert die Zwischenergebnisstabelle für die Items. Beispielweise besagt die erste Zeile
der Tabelle 2, dass das Item {Apfel} einen Supportwert von 5 hat. D.h., dass das Item {Apfel}
in 5 Transaktionen vorkommt. Dies sind in diesem Fall die Transaktionen mit den TIDs {101,
102, 103, 104, 105} [18].

 14

Tabelle 2: Zwischenergebnisstabelle [18]

Item

Support

Apfel

5

Mandarine

4

Melone

3

Zitrone

2

Birne

2

Ist der erste Durchlauf der Transaktionsdatenbank D der Tabelle 1 vollendet, folgt der zweite
Durchlauf, um den FP-Tree zu konstruieren. Dazu werden die Transaktionen der Tabelle 1
noch einmal durchlaufen und überprüft, ob die Supportwerte der einzelnen Items größer
oder gleich dem Minimumsupportwert sind. Falls 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼𝑡𝑒𝑚) ≥ 𝑠!"# gilt, wird das Item
bei der FP-Tree Konstruktion berücksichtigt, andernfalls nicht [19].

Abbildung 8: FP-Tree

null	

Apfel:4	

Mandarine:3	

Melone:2	

Mandarine:1	

Melone:1	

Apfel:1	

 15

Die Abbildung 8 stellt den FP-Tree dar, der nach dem zweiten Durchlauf der
Transaktionsdatenbank D aus der Tabelle 1 und unter Anwendung von einem
Minimumsupportwert von 50% (𝑠!"# = 50% = 3) entstanden ist. Man kann von der
Abbildung 8 entnehmen, dass die Items {Zitrone} und {Birne} nicht bei der FP-Tree
Konstruktion beachtet wurden, da deren Supportwerte kleiner als dem
Minimumsupportwert sind. Somit wird der erste Schritt abgeschlossen [19].

Im zweiten Schritt wird der FP-Tree von den Blättern bis zu dem Wurzel nach dem Bottom-
up Prinzip bearbeitet, um somit die Frequent Itemsets zu ermitteln [19]. Der Vorgang erfolgt
nach dem Divide and Conquer Verfahren. Zunächst werden die Präfixpfade aus dem FP-
Tree erzeugt. Präfixpfade sind Unterbäume (eng. sub-trees), die mit einem Item oder Itemset
enden. Die Erzeugung der Präfixpfade werden anhand der Links (Pfeile, die in der
Abbildung 8 ersichtlich sind) verwirklicht. Die Abbildung 9 zeigt als Beispiel den Präfixpfad
mit dem Item {Melone} als Endung. Es werden zwei weitere Präfixpfade erstellt. Einer von
denen endet mit dem Item {Mandarine} und der andere mit dem Item {Apfel}. Nachdem die
einzelnen Präfixpfade von dem FP-Tree extrahiert sind, beginnt die Ermittlung der Frequent
Itemsets von diesen Präfixpfaden [17]. Es wird hier aber nur die Verarbeitung von dem
Präfixpfad, der mit dem Item {Melone} endet näher beschrieben. Die Bearbeitung von den
anderen Präfixpfaden erfolgt aber nach dem gleichen Prinzip.

Abbildung 9: Präfixpfad mit der Endung Melone

null	

Apfel:4	

Mandarine:3	

Melone:2	

Mandarine:1	

Melone:1	

 16

Die Ermittlung von den Frequent Itemsets erfolgt mit Hilfe der Links, indem alle
Supportwerte von einem Item entlang eines Pfades (der Pfad wird durch die Links
angegeben) addiert und anschließend mit dem gegebenen Minimumsupportwert verglichen
werden. Ist der Supportwert von dem Item oder Itemset größer oder gleich dem
Minimumsupportwert, dann handelt es sich bei dem Item(set) um einen Frequent Item(set),
andernfalls nicht.

In diesem Beispiel wird von einem Minimumsupportwert von 3 (𝑠!"# = 50% =

3) ausgegangen. Bei der Ermittlung von den Frequent Itemsets wird anfänglich das letzte
Item betrachtet und dessen Supportwert ermittelt. In diesem Fall gilt 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑀𝑒𝑙𝑜𝑛𝑒) = 3 ≥

𝑠!"# = 3. Dies besagt, dass das Item {Melone} ein Frequent Itemset ist [19].

Nachdem das Item {Melone} als Frequent Itemset ermittelt wurde, wird weiterhin überprüft,
ob es sich bei den Itemsets, welche mit dem Item {Melone} enden, ebenfalls um Frequent
Itemsets handelt. Folglich wird überprüft, ob die Itemsets {Mandarine, Melone}, {Apfel,
Melone}, {Apfel, Mandarine, Melone} auch Frequent Itemsets sind. Um diese Überprüfung
durchzuführen wird aus dem Präfixpfad der Conditional FP-Tree ermittelt. Conditional FP-
Tree zeichnet sich dadurch aus, dass es das letzte Item nicht beinhaltet und die Supportwerte
von den restlichen Items aktualisiert sind.

Der Vorgang zur Ermittlung des Conditional FP-Trees sieht folgendermaßen aus:

1. Die Transaktionsdatenbank D wird noch einmal durchgegangen, und nur diejenigen
Transaktionen werden in Betracht gezogen, welche das Item {Melone} am Ende
beinhalten.

2. Infolgedessen werden die Supportwerte von den Items in dem entsprechenden
Präfixpfad aktualisiert.

3. Zum Schluss wird dann das letzte Item von dem Präfixpfad entfernt. Somit liegt das

Conditional FP-Tree bereit.

Diese beschriebenen drei Schritte werden solange wiederholt bis kein Item mehr zu
entfernen ist. Das heißt, bis alle möglichen Frequent Itemsets aus dem entsprechenden
Präfixpfad ermittelt sind. Abbildung 10 zeigt das entstandene Conditional FP-Tree für das
Item {Melone} [17].

 17

Abbildung 10: Conditional FP-Tree für das Item Melone

Somit werden alle Frequent Itemsets ermittelt. Die Tabelle 3 präsentiert die ganzen Frequent
Itemsets, die nach dem FP-Growth Algorithmus ermittelt wurden.

Tabelle 3: Tabelle der Frequent Itemsets

Suffix

Frequent Itemsets

Melone

{Melone}, {Apfel, Melone}, {Mandarine, Melone},
{Apfel, Mandarine, Melone}

Mandarine

{Mandarine}, {Apfel, Mandarine}

Apfel

{Apfel}

2.5 Eclipse Plattform

Wie bereits im Kapitel 1 erwähnt, ist das Ziel dieser Diplomarbeit die Entwicklung eines
Eclipse Plug-Ins. Aus diesem Grund werden im Folgenden auf die Grundlagen des Eclipse
Plattforms eingegangen.

null	

Apfel:3	

Mandarine:3	

Mandarine:1	

 18

2.5.1 Was ist Eclipse?

Die Eclipse Entwicklungsumgebung ist ein Programmierwerkzeug, der sich dadurch
auszeichnet, dass es java-basiert, erweiterbar und quelloffen ist [20]. Eclipse wurde vom IBM
im Jahre 1998 entwickelt mit dem Ziel jede Art der Softwareentwicklung zu unterstützen.
Ursprünglich wurde Eclipse für die Sprache Java entwickelt, wobei aber im Laufe der Zeit
die Eclipse Entwicklungsumgebung auch für die anderen Sprachen erweitert wurde.
Darüberhinaus ist die Eclipse Architektur auch so konstruiert, dass es auch den
Drittanbietern die Möglichkeit gibt, die Eclipse Entwicklungsumgebung zu erweitern, um
die Integration von externen Tools ins Eclipse Plattform zu gewährleisten [21]. Die
Erweiterung der Eclipse Entwicklungsumgebung wird durch die Plug-In Entwicklung
realisiert, wofür in Eclipse die Plug-In Development Environment (PDE) vorgesehen ist [20].

2.5.2 Eclipse Plattform Übersicht

Die Eclipse Architektur basiert hauptsächlich auf die Einbettung von verschiedenen Plug-Ins
in die Laufzeitumgebung. Die Abbildung 11 zeigt den Überblick über den Eclipse Plattform.
In diesem sind außer der Laufzeitumgebung (Runtime Environment) alle anderen
Komponenten Plug-Ins. Die Laufzeitumgebung ist dafür verantwortlich, alle notwendigen
Plug-Ins beim Start von Eclipse zu laden [22].

Wie es auch in der Abbildung 11 ersichtlich ist, besteht die Eclipse Plattform aus den Plug-
Ins Workspace Plug-In, Workbench UI Plug-In, Help Plug-In und dem Team Plug-In. Im
Folgenden werden nur die ersten zwei Plug-Ins kurz oberflächlich dargelegt, da sie die
Hauptkomponenten des Eclipse Plattforms bilden.

• Workspace:
Dieses Plug-In ist für Verwaltung von Ressourcen verantwortlich, weshalb man es
auch als Ressource Management Plug-In bezeichnet. Um die Verwaltung von
Ressourcen zu verwirklichen, definiert es ein Ressourcenmodell.

• Workbench UI:
Dieses Worbench UI ist für die Darstellung der Workbench Benutzerschnittstelle
verantwortlich. Um die Workbench Benutzerschnittstelle so darzustellen, werden
mehrere Workbench UI Plug-Ins implementiert. Darüberhinaus ist die
Benutzerschnittstelle so konzipiert, dass es individuell durch Drittpersonen auch
erweiterbar ist [22]. Ein Workbench UI kann sich aus mehreren Perspektiven
zusammensetzen, wobei jede Perspektive wiederum aus Views, Editors, usw. besteht
[23].

 19

Abbildung 11: Eclipse Plattform Übersicht [23]

2.5.3 Eclipse Plug-In Mechanismus

Bei Plug-Ins handelt es sich um Komponenten, die bei der Erweiterung eines Programmes
ihren Einsatz finden [24]. Ein Plug-In setzt sich zusammen aus den Dateien plugin.xml und
MANIFEST.MF. Die Datei MANINFEST.MF enthält Informationen über das Plug-In. Das
sind Informationen wie zum Beispiel der Name des Plug-Ins, Version, Classpath usw. Die
plugin.xml Datei dagegen enthält die Erweiterungen (Extensions) und Erweiterungspunkte
(Extension Points) [21].

Die Abbildung 12 repräsentiert die Beziehung zwischen Erweiterungspunkten (Extension
Points) und Erweiterungen (Extensions). Wenn beispielweise ein Plug-In, seine eigenen
Funktionalitäten erweitern lassen möchte, definiert er in der Regel in seiner plugin.xml Datei
einen Erweiterungspunkt, der dann den anderen Plug-Ins erlaubt, diesen Plug-In zu
erweitern. Der Erweiterungspunkt ist eine Art Kontrakt. Die anderen Plug-Ins, die das Plug-
In erweitern möchten, definieren Erweiterungen. Diese Erweiterungen müssen mit dem
Erweiterungspunkt des Plug-Ins übereinstimmen, damit man das Plug-In überhaupt
erweitern kann. Es existiert weiterhin auch noch eine Activator Klasse, die für das Starten
und Beenden des Plug-Ins zuständig ist [25].

 20

Abbildung 12: Beziehung zwischen Erweiterungspunkt (Extension Point) und
Erweiterungen (Extensions) in Eclipse Plug-In [26]

 21

3 Verwandte Projekte

Im Folgenden werden zwei Projekte vorgestellt, die sehr viele Parallelen zu dem im Rahmen
dieser Diplomarbeit entwickelten Tools aufweisen.

1. Ansatz von Zimmermann et al: Das ROSE Tool:

Viele die in Amazon.de eine Bestellung gemacht haben, wissen, dass in einem unteren Feld
eine Meldung mit der Nachricht erscheint: “Kunden, die dieses Artikel ... gekauft haben, kauften
auch das Artikel ..“. Solche Arten von Informationen werden durch Data Mining erhalten.
Wenn jemand beispielweise ein Artikel bestellt, dann überprüft Amazon.de mit Hilfe von
Data Mining Techniken, welche anderen Artikeln zusammen mit diesem Artikel bestellt
wurden, und schlägt dem Kunden diese Artikel vor.

Ähnlich dem Prinzip von Amazon.de arbeitet auch das ROSE Tool. Hierbei wird Data
Mining aber auf Version-Historien angewendet. Wenn der Programmierer eine Änderung
vornimmt, dann erscheint ihm eine Meldung “Programmer who changed ..., also changed ...“
(Programmierer, die ... geändert haben, haben auch ... geändert) [27]. Die Abbildung 13 zeigt die
zwei Files ComparePreferencePage.java und plugin.properties und die Anzahl darüber, wie oft
die zwei Files zusammen (gekoppelt) geändert wurden. Aus dieser Abbildung 13 ist
ersichtlich, dass die Funktion fKeys[] mit der Funktion initDefaults() 11 mal und mit dem File
plugin.properties 10 mal zusammen geändert wurde [28]. Ändert der Programmierer jetzt
einen bestimmten File, erscheinen die Vorschläge des ROSE Tools über die anderen Files, die
noch geändert werden müssen, in einem anderen Fenster. Abbildung 14 zeigt den Aufbau
und die Funktionsweise des ROSE Plug-Ins. Wenn der Programmierer also beispielweise
eine Änderung an der Funktion fKeys[] in dem Quellcode vornimmt, so schlägt das ROSE
Plug-In in dem unteren Fenster alle weiteren Funktionen und Files vor, die gemeinsam mit
dieser Funktion fKeys[] geändert wurden [27].

Abbildung 13: Gekoppelte Dateiänderungen zwischen zwei Files [28]

 22

Abbildung 14:ROSE Plug-In [27]

Nachdem die Funktionsweise des ROSE Tools erläutert wurde, wird schließlich auch noch
auf die Struktur des Datenflusses in dem ROSE Tool eingegangen. Die Abbildung 15 zeigt
den Datenfluss in dem ROSE Tool. Der Datenfluss beginnt mit dem ROSE Server. Der Rose
Server liest zu Beginn die Files aus dem Version Archive und gruppiert die Änderungen in
Transaktionen. Daraufhin werden auf diese ermittelten Transaktionen Data Mining
Verfahren angewendet, um daraus gewisse Menge an Regeln zu generieren. Die Regeln
haben bezogen auf das Beispiel in der Abbildung 13 die Form wie: “Wenn das File
ComparePreferencePage.java geändert wird, dann wird das File plugin.properties auch geändert“.
Diese ganzen Regeln werden dann in die Rule Set Datenbank gespeichert.

Die Rose Eclipse Client bildet die Schnittstelle zu dem Benutzer (eng. User). Wenn der
Benutzer eine Änderung vornimmt, stellt die Rule Application eine Anfrage an den Rule Set,
und verlangt alle Regeln, die mit der Anfrage übereinstimmen. Nach dem die Rule
Application von dem Rule Set alle übereinstimmenden Regeln erhalten hat, schlägt sie diese
Regeln dem Benutzer vor. Wenn der Benutzer also bezogen auf das Beispiel von vorhin das

 23

File ComparePreferencePage.java geändert hat, dann schlägt die Rule Application nach der
Interaktion mit dem Rule Set dem Benutzer das File plugin.properties vor [27].

Abbildung 15: Datenfluss in dem ROSE Tool [28]

2. Ansatz von Ying et al.

Dieser Ansatz bezweckt auch die Unterstützung der Entwickler hinsichtlich in ihren
Modifikations- und Bugfixingsaufgaben, indem es dem Entwickler alle relevante Quellcodes
oder Files zur Änderung vorschlägt.

Dabei liegt der Schwerpunkt dieses Ansatzes in der Ermittlung von Änderungsmustern
(Change Patterns) durch die Anwendung von Assoziationsanalysen. Unter
Änderungsmustern versteht man jene Files, welche in der Entwicklungshistorie eines
Softwaresystems oft zusammen geändert wurden. Aufbauend auf diesen
Änderungsmustern (Change Patterns) erfolgen dann die Vorschläge über die relevanten
Files. Ändert der Entwickler einen File 𝑓!, so wird durch diesen Ansatz dem Entwickler alle
möglichen Files 𝑓! vorgeschlagen, die mit dem File 𝑓! häufig geändert wurden [2].

Dieser Ansatz setzt sich zusammen aus drei Phasen, die in der Abbildung 16 dargestellt
sind. In der ersten Phase findet die Extraktion der Daten aus einem
Softwarekonfigurationssystem (SCM) statt. Im Anschluss daran erfolgt die Vorverarbeitung
dieser extrahierten Daten, um diese dann dem Data Mining Algorithmus als Eingabe zur
Verfügung zu stellen.

Die Ermittlung von Änderungsmustern tritt in der zweiten Phase auf. Hierbei wird der
Algorithmus der Assoziationsanalyse auf die extrahierten Daten angewendet.

 24

In der letzten Phase werden dem Entwickler alle relevanten Quellcodes vorgeschlagen,
indem eine Abfrage auf die Änderungsmustern gemacht wird [29].

Abbildung 16: Die drei Phasen des Ansatzes von Ying et al [29]

 25

4 Tools und Algorithmen

4.1 Sequential Pattern Mining Framework (SPMF)

Dieser Abschnitt umfasst die Erläuterung des SPMF Data Mining Frameworks und seiner
Algorithmen.

4.1.1 Aufbau und Funktionsweise des SPMF

Sequential Pattern Mining Framework oder auch kurz SPMF ist ein Data Mining
Framework, dessen Schwerpunkt im Bereich der Frequent Pattern Mining liegt. Es existieren
zudem eine große Breite an Data Mining Algorithmen, die sowohl bei den
Transaktionsdatenbanken als auch bei den Sequenzdatenbanken zur Ermittlung von
Mustern eingesetzt werden. Darüberhinaus ist das SPMF ein java–basiertes und quelloffenes
Data Mining Framework. Das SPMF besitzt sowohl einen GUI (siehe Abbildung 17) als auch
einen CLI (siehe Abbildung 18) als Schnittstelle mit dem Benutzer [30].

Abbildung 17: SPMF GUI [30]

Abbildung 18: SPMF CLI [30]

Die Abbildungen 17 zeigt das Beispiel, wie das Ausführen des Apriori Algorithmus im
SPMF GUI aussieht. Der Benutzer selektiert den Apriori Algorithmus in dem Combobox.

 26

Je nachdem, welcher Data Mining Algorithmus selektiert wird, erscheinen oder
verschwinden einige Eingabefelder. Die Inputs und Outputs des Sequential Pattern Mining
Frameworks sind Text Files. Die Transaktionsdatenbanken und die Sequenzdatenbanken
werden den Data Mining Algorithmen als Text Files zur Verfügung gestellt. Der Benutzer
selektiert jetzt als Input den Input.txt File und setzt den Namen des Output.txt Files als
Output. Weiterhin gibt der Benutzer einen Minimumsupportwert ein und betätigt den „Run
algorithm“ Button. Dieser gesamte Ablauf kann auch durch den SPMF CLI (Command Line
Interface) ausgeführt werden, wie es in der Abbildung 18 auch zu sehen ist. Somit liest der
Apriori Algorithmus die Daten aus dem Input.txt File, bearbeitet diese und schreibt
anschließend die Ergebnisse in den Output.txt File [30]. Sämtliche weitere Informationen
über das SPMF kann man von der offiziellen Webseite des Sequential Pattern Mining
Frameworks erhalten [31].

4.1.2 SPMF Data Mining Algorithmen

In diesem Kapitel wird anhand eines Beispiels die Funktionsweise des Algorithmus
FPGrowth_Itemsets_with_Strings näher unter die Lupe genommen. Die Erläuterung von
diesem Algorithmus hat in Rahmen dieser Diplomarbeit eine sehr wichtige Bedeutung,
zumal die Integration des Sequential Pattern Mining Frameworks in die Eclipse
Entwicklungsumgebung mit Hilfe von diesem Algorithmus realisiert ist.

FPGrowth_Itemsets_with_strings:
Der FP-Growth Algorithmus wurde bereits in dem Kapitel 2.4 sehr detailliert erläutert. Aus
diesem Grund wird hier auf die detaillierte Funktionsweise des FP-Growth Algorithmus
verzichtet. Es wird lediglich auf die Vorgehensweise des FPGrowth_Itemsets_with_Strings in
dem SPMF eingegangen.

Um die Funktionsweise und das Ergebnis von diesem Algorithmus zu verstehen, wird der
Inhalt der Transaktionsdatenbank D aus der Tabelle 1 dem FPGrowth_Itemsets_with_Strings
als Input.txt File zur Verfügung gestellt.

Abbildung 19: Input.txt File von FPGrowth_Itemsets_with_Strings [32]

 27

Die Abbildung 19 repräsentiert den Input.txt File für den Algorithmus. Jede Transaktion ist
hier durch eine Zeile dargestellt und besteht aus einer Menge von Items, welche durch ein
Leerzeichen voneinander getrennt sind. Das Ende einer Zeile verweist dementsprechend auf
das Ende einer Transaktion. Der Input.txt File enthält somit insgesamt 6 Transaktionen (T1,
T2, T3, T4, T5, T6) und 5 Items (Apfel, Melone, Mandarine, Zitrone, Birne). Beispielweise
repräsentiert die fünfte Zeile in dem Input.txt File die Transaktion T5 und enthält die Items
{Apfel, Mandarine, Melone, Zitrone} [32]. Geht man zudem von einem
Minimumsupportwert von 0,5 (𝑠!"# = 0,5 = 50%) aus, dann produziert dieser Algorithmus
das in Abbildung 20 dargestellte Ergebnis in dem Output.txt File [32]. Jede Zeile in dem
Output.txt File steht für einen Frequent Itemset. In jeder Zeile werden als Erstes die Frequent
Itemsets aufgelistet, die durch Leerzeichen voneinander getrennt sind. Danach steht das
Zeichen “:“ und es folgt darauf ein Integerwert, der den Supportwert von dem Frequent
Itemset angibt. Die dritte Zeile in dem Output.txt File drückt aus, dass das Frequent Itemset
aus den Items {Apfel, Mandarine, Melone} besteht und einen Support von 3 Transaktionen
besitzt [32].

Abbildung 20: Output.txt File von FPGrwoth_Itemsets_with_Strings [32]

4.2 Windowbuilder

Beim Windowbuilder handelt es sich um einen GUI Builder, der dem Entwickler ermöglicht,
Benutzeroberflächen sehr leicht zu erstellen ohne dabei unnötige Zeit mit dem Schreiben von
Quellcodes zu verbringen. Die Steuerelemente können dabei einfach durch Drag and Drop
Methode in das GUI eingefügt werden [33]. Die Abbildung 21 zeigt die Oberfläche des
Windowbuilder Plug-Ins, welches aus den Hauptkomponenten Source View, Design View,
Component Tree, Property Pane, Palette, Wizards, Toolbars & Context Menus besteht. Eine
sehr wichtige Eigenschaft von dem Windowbuilder ist die bi-direktionale Codegenerierung.
Fügt der Entwickler ein Steuerelement in der Design Sicht (View), wird in der Source Sicht
(View) der entsprechende Quellcode automatisch generiert und umgekehrt. Die Abbildung
22 stellt die Eigenschaft bi-direktionale Codegenerierung von Windowbuilder graphisch dar
[34].

 28

Abbildung 21: Benutzeroberfläche des Windowbuilder Plug-Ins [33]

Abbildung 22: Bi-direktionale Codegenerierung in Windowbuilder [34]

 29

5 Anforderungen und Konzept

In diesem Kapitel wird das Software Repository Mining Plug-In (SRM Plug-In) eingeführt
und näher erläutert. Zunächst werden die Anforderungen an das Plug-In kurz vorgestellt.
Hinterher wird das Konzept gefolgt durch die Struktur und Workflow präsentiert. Zuletzt
findet dann eine detaillierte Erläuterung der Korrelation der einzelnen Komponenten des
Plug-Ins anhand eines Beispiels statt.

5.1 Anforderungen

Hier werden die Anforderungen an das SRM Plug-Ins festgelegt. In erster Linie erfolgt die
Erläuterung über die Überarbeitung des SPMF Data Mining Algorithmus, der innerhalb des
SRM Plug-Ins für die Durchführung der Frequent-Itemset-Analyse angewendet wird. Im
Anschluss daran wird die Integration der Data Mining Analyse ins SRM Plug-In
beschrieben.

5.1.1 Überarbeitung von SPMF Data Mining Algorithmus

Da das SRM Plug-In für die Durchführung der Frequent-Itemset-Analyse den Algorithmus
FPGrowth_Itemsets_with_Strings von dem SPMF Data Mining Framework benutzt, ist in
erster Linie die Überarbeitung und Anpassung von diesem Algorithmus erforderlich. Wie im
Abschnitt 4.1.2 bereits geschildert ist, kann der Algorithmus FPGrowth_Itemsets_with_Strings
Daten nur von Text Files lesen und die Ergebnisse in Text Files schreiben.

Die erste Anforderung an das SRM Plug-In bezüglich der Durchführung der Frequent-
Itemset-Analyse ist dies, dass der Algorithmus, welcher die Frequent-Itemset-Analyse
durchführen soll, Daten von einer Datenbanktabelle liest, und die Ergebnisse in eine andere
Datenbanktabelle speichert.

Eine weitere Anforderung an das SRM Plug-Ins bezieht sich auf die Ergebnisse, die durch
den Algorithmus FPGrowth_Itemsets_with_Strings erzeugt werden. Betrachtet man
beispielweise die zweite Zeile des Output.txt Files aus der Abbildung 20, so kann man die
Ausgabe (Apfel Mandarine: 4) erkennen. Diese Ausgabe besagt, dass das Frequent Itemset
{Apfel Mandarine} einen Support von 4 hat und somit in vier Transaktionen auftritt. Das
SRM Plug-In aber benötigt für die weitere Verarbeitung der aus der Frequent-Itemset-
Analyse resultierten Daten bzw. Frequent Itemsets, Informationen darüber, in welchen
Transaktionen diese Frequent Itemsets überhaupt auftreten. Bezogen auf das Beispiel von
vorhin, muss in der Outputdatenbanktabelle der Frequent-Itemset-Analyse des SRM Plug-
Ins eine Spalte existieren, die diese vier Transaktionen des Frequent Itemsets {Apfel
Mandarine} beinhaltet.

 30

5.1.2 Integration von Data Mining ins Eclipse Tool

Die Durchführung der Frequent-Itemset-Analyse bildet den einen Teil des SRM Plug-Ins. Ein
weiterer und somit auch der wichtigste Teil der Anforderungen an das Plug-In ist die
Integration von Data Mining Analysen in das SRM Plug-In.

Nachdem die Frequent-Itemset-Analyse durchgeführt wurde und die Ergebnisse sich in der
Outputdatenbanktabelle befinden, erfolgt dann die Bereitstellung dieser Ergebnisse an den
Entwickler in dem SRM Plug-In. Aus diesem Grund geht es hier darum zu bestimmen,
welche Informationen aus der Outputdatenbanktabelle dem Entwickler bereitgestellt
werden sollen.

Die Anforderungen an dem SRM Plug-In sind dann wie folgt:

1. Der Entwickler soll die Frequent-Itemset-Analyse von dem SRM Plug-In aus starten
können.

2. Nachdem Selektieren bzw. Ändern eines Files durch den Entwickler, sollen die
gekoppelten Dateiänderungen (Coupled Changes) und die Transaktionen jeweils
separat dem Entwickler vorgeschlagen werden.

3. Weiterhin soll der Entwickler auch die Möglichkeit haben, eine Transaktion

auszuwählen, um sich die entsprechenden Einträge zu der selektierten Transaktion
separat anzeigen zulassen.

5.2 Architektur SRM Plug-In

Hier erfolgt die Darstellung der Architektur des SRM Plug-Ins. Die Abbildung 23 stellt diese
Architektur dar. Eigentlich befinden sich alle dargestellten Komponenten in dem Plug-In.
Für ein besseres Verständnis wurden diese Komponenten hier getrennt dargestellt.

Zusätzlich ist noch zu erwähnen, dass es sich bei dem FPGA.jar File um den
FPGrowth_Itemsets_with_Strings Algorithmus handelt. Das SPMF ist eine unter der GPL
(General Public License) lizenzierte Software und somit auch deren Algorithmen. Das SRM
Plug-In ist unter der EPL (Eclipse Public License). Da diese beiden Lizenzen inkompatibel
sind, darf der Quellcode vom FPGrowth_Itemsets_with_Strings Algorithmus nicht Teil vom
SRM Plug-In sein, sondern darf nur als externer Jar File in das Plug-In integriert werden [41].

 31

Input Output
FPGA.jar

(Algorithmus)
3. Schreibt die
Ergebnisse

2.Liest die
Daten

Software Repository Mining (SRM) Plug-In

Benutzer

1.Benutzer startet den
Algorithmus über das
SRM Plug-In

File

4.Benutzer selektiert
einen File im SRM
Plug-In

5.Abfrage nach
dem selektierten
File (Querying)

6.Zu der Abfrage
passenden Ergebnisse
werden dem SRM
Plug-In übermittelt
(Matching)

7.Die Ergebnisse
werden in dem SRM
Plug-In dem Benutzer
vorgeschlagen
(Suggestions)

Abbildung 23: Architektur SRM Plug-In

 32

5.3 Struktur und Workflow des SRM Plug-Ins

Dieser Abschnitt umfasst die Struktur und den Workflow des SRM Plug-Ins.

5.3.1 Struktur SRM Plug-In

Das Plug-In besteht insgesamt aus fünf Views und einem Editor. Neben den
Standardkomponenten der Eclipse IDE wurden im Rahmen dieser Diplomarbeit vier weitere
Views hinzugefügt. Die Abbildung 24 zeigt die Struktur des SRM Plug-Ins. Installiert der
Benutzer den SRM Plug-In, erscheint ihm diese Startseite. Die einzelnen Komponenten des
SRM Plug-Ins werden im Folgenden aufgelistet und beschrieben:

1. Execution View: Durch diesen View startet der Benutzer die Frequent-Itemset-Analyse.

2. Project Explorer: Der Benutzer selektiert einen File in seinem Project Explorer.

3. Coupled Changes: Die gekoppelten Dateiänderungen werden dem Benutzer in diesem

View vorgeschlagen.

4. Commit View: Die Transaktionen, welche das selektierte File und seine gekoppelten

Dateiänderungen beinhalten, werden in diesem View angezeigt.

5. Commit Message View: Die Einträge zu dem in der Commit View durch den Benutzer

selektierte Transaktion wird in diesem View dargestellt.

Abbildung 24: Struktur SRM Plug-In

 33

5.3.2 Workflow SRM Plug-In

Dieses Kapitel stellt den Workflow des SRM Plug-Ins dar. Dabei versteht man unter
Workflow den Datenfluss in dem Plug-In.

Input
Commit-
Message

Output
FPGA.jar

(Algorithmus)
2 3

1

4.1

4.2

5.2

5.1

6

7

Abbildung 25: Workflow SRM Plug-In

 34

Im Folgenden werden die einzelnen Schritte des Workflows beschrieben:

1. Der Benutzer gibt im Execution View einen Minimumsupportwert ein und betätigt den

„Start Execution“ Button. Somit wird der FPGA.jar File aufgerufen und ihm der
Minimumsupportwert übergeben.

2. Der FPGA.jar File liest die Daten aus der Inputdatenbanktabelle und führt die Frequent-

Itemset-Analyse durch.

3. Danach schreibt der FPGA.jar File die Ergebnisse der Frequent-Itemset-Analyse in die

Outputdatenbanktabelle.

4.1. Der Benutzer selektiert einen File in dem Project Explorer.

4.2. Das selektierte File wird mit dem Inhalt der Outputdatenbanktabelle verglichen.

5.1. Die gekoppelten Dateiänderungen werden im Coupled Changes angezeigt.

5.2. Die CommitIDs werden in dem Commit View angezeigt.

6. Der Benutzer selektiert einen CommitID und es wird in der Commit Message Tabelle

nach Einträgen zu dem selektierten CommitID gesucht.

7. Die Einträge zu dem im Punkt 6 selektierten CommitID werden dann in dem Commit
Message View angezeigt.

5.4 Korrelation der einzelnen SRM Plug-In Komponenten

Die Relation der einzelnen SRM Plug-In Komponenten zueinander werden in diesem
Textabschnitt anhand von Beispielwerten beschrieben.

5.4.1 Execution View

Execution View ist der Bereich des Plug-Ins, womit die Frequent-Itemset-Analyse gestartet
wird. Es hat einen Textfeld und einen Button. In das „Choose minsupp“ Textfeld kann der
Benutzer einen Wert in dem Intervall [0.1, 1.0] eingeben. Betätigt der Benutzer danach den
„Start Execution“ Button, dann startet die Frequent-Itemset-Analyse. Die Abbildung 26 zeigt
den Execution View mit Beispielwerten.

 35

Abbildung 26: Execution View mit Beispielwerten

5.4.2 FPGA.jar File

Das FPGA.jar File ist für die Durchführung der Frequent-Itemset-Analyse verantwortlich. Es
liest die Daten aus einer Inputdatenbanktabelle, führt die Frequent-Itemset-Analyse durch
und schreibt die Ergebnisse in eine Outputdatenbanktabelle. Die Tabelle 4 repräsentiert die
Beispielinputtabelle des FPGA.jar Files.

Tabelle 4:Beispielinputtabelle für das FPGA.jar File

CommitID

(PK)

Item1

Item2

Item3

123

Project/src/example/
Test1.java

Project/src/example/
Test2.java

Project/src/example/
Test3.java

124

Project/src/example/
Test3.java

Project/src/example/
Test4.java

Project/src/example/
Test5.java

125

Project/src/example/
Test3.java

Project/src/example/
Test5.java

Project/src/example/
Test6.java

126

Project/src/example/
Test1.java

Project/src/example/
Test2.java

Project/src/example/
Test3.java

 36

Die Beispielinputtabelle besitzt vier Spalten. Die erste Spalte ist die CommitID Spalte. Diese
Spalte beinhaltet die CommitIDs von den Transaktionen. In dieser Beispielinputtabelle
existieren insgesamt vier Transkationen (123, 124, 125, 126). Jede Zeile stellt eine Transaktion
dar, die aus einer Menge von Items besteht. Die Items sind als Pfade dargestellt. In einer
Transaktion darf ein Item nur einmal vorkommen. Diese Daten der Beispielinputtabelle
werden von dem FPGA.jar File Transaktion für Transaktion gelesen, analysiert und die
Ergebnisse in die Outputtabelle geschrieben.

Tabelle 5: Beispieloutputtabelle des FPGA.jar Files

O_ID (PK)

CommitIDs

Support

Item1

Item2

Item3

1

124:125

2

Project/src
/example/
Test5.java

Project/src
/example/
Test3.java

NULL

2

123:126

2

Project/src
/example/
Test2.java

Project/src
/example/
Test3.java

NULL

3

123:126

2

Project/src
/example/
Test2.java

Project/src
/example/
Test3.java

Project/src
/example/
Test1.java

4

123:126

2

Project/src
/example/
Test2.java

Project/src
/example/
Test1.java

NULL

5

123:126

2

Project/src
/example/
Test1.java

Project/src
/example/
Test3.java

NULL

Die Tabelle 5 zeigt die Beispieloutputtabelle, die nach der Frequent-Itemset-Analyse
entstanden ist. Da der Minimumsupportwert = 0.4 = 2 Transaktionen ist, werden bei der
Frequent-Itemset-Analyse nur jene Itemsets in die Beispieloutputtabelle geschrieben, welche
in mindestens zwei Transaktionen vorkommen.

 37

Beispielsweise besagt die dritte Zeile aus der Tabelle 5, dass die Files
{Project/src/example/Test2.java;Project/src/example/Test3.java;Project/src/example/Test1.java} einen
Supportwert von 2 haben und in den Transaktionen mit den CommitIDs {123 und 126}
auftreten.

5.4.3 Project Explorer und Editor

An dieser Stelle kommen die Standardkomponenten des Eclipse IDE zum Einsatz. Die
Entwicklung eines Plug-Ins zeichnet sich wie im Kapitel 2.5 auch dargelegt, durch die
Erweiterung der bereits existierenden Komponenten des Eclipse IDE aus. Im Rahmen dieser
Diplomarbeit wurden diese Eclipse IDE Komponenten durch die Views (Execution View,
Coupled Changes, Commit View und Commit Message View) erweitert. Die Abbildung 27
repräsentiert die Übersicht von den Standardkomponenten der Eclipse Workbench und
untergliedert diese in vier Bereiche, die im Folgenden detaillierter erläutert werden.

Komponenten der Eclipse Workbench:

1. Project Explorer View:
Dieses View ist für das Verwalten von Projekten zuständig. Importieren und
Erstellen von Projekten, Klassen usw. sind durch dieses Project Explorer View
möglich.

2. Editor:
Dieser Beriech ermöglicht das Schreiben und Anzeigen von Quellcodes des in dem
Project Explorer View erstellten bzw. selektierten Files.

3. Outline View:
In diesem Bereich werden wichtige Informationen über die Klassen des Project
Explorer Views angezeigt. Diese Informationen sind beispielsweise die Methoden
und Attribute zu den entsprechenden Files aus dem Project Explorer View. Dieser
View erleichtert die Arbeit des Entwicklers, da es viele verschiedene Möglichkeiten
anbietet, um einen besseren Überblick über die Methoden und Attribute der
implementierten Klassen zu bekommen. Einer der Vorteile, welcher diese Outline
View mit sich bringt, ist die Tatsache, dass es den Entwicklern die Möglichkeit gibt,
durch einen Klick auf eine Methode auf den entsprechenden Quellcodeabschnitt, wo
die Methode implementiert ist, zu gelangen. Dadurch wird die aufwendige Suche
nach den Methoden in Klassen mit großem Umfang vermieden.

 38

4. Diese View stellt die Konsolenausgaben dar. Hier werden unter anderem
Informationen ausgegeben, welche die Fehler beim Kompilieren eines laufenden
Programmes anzeigen [35].

Abbildung 27: Übersicht über den Eclipse Workbench [35]

Abbildung 28 zeigt den Project Explorer mit einem Beispielprojekt. Der Benutzer importiert
ein Eclipse Projekt namens „Project“, das einige Klassen beinhaltet. Klickt der Benutzer auf
den File Test1.java, dann wird der Inhalt bzw. Quellcode von diesem File in dem Editor
nebenan dargestellt.

Weiterhin wird durch den Klick auf das File der Pfad von diesem selektierten File ermittelt,
transformiert und mit dem in der Tabelle 5 dargestellten Beispieloutputtabelle verglichen.
Bei dem Vergleich wird in der Outputtabelle nach dem selektierten File gesucht und die
entsprechenden Bereiche, die das selektierte File beinhalten mit samt seinen CommitIDs und
seinen gekoppelten Dateiänderungen aus der Outputtabelle selektiert und anschließend für
die Weiterverarbeitung an die anderen Klassen übergeben. Diese Klassen verarbeiten dann
diese selektierten Bereiche so, indem sie die gekoppelten Dateiänderungen von ihren
CommitIDs trennen, um diese dann an die entsprechenden Views weiterzuleiten. Dabei

 39

werden die gekoppelten Dateiänderungen an das View Coupled Changes und die
CommitIDs dem Commit View übergeben.

Abbildung 28: Project Explorer mit einem Beispielprojekt

5.4.4 Coupled Changes

Dieses View listet die gekoppelten Dateiänderungen nach absteigenden Supportwerten auf.
Selektiert der Benutzer in dem Project Explorer einen File, wird überprüft, ob das selektierte
File in der Outputtabelle vorhanden ist. Wenn es der Fall ist, dann werden die gekoppelten
Dateiänderungen des selektierten Files in dem View Coupled Changes dargestellt. Die
Abbildung 29 repräsentiert die gekoppelten Dateiänderungen des Files Test5.java mit dem
Pfad: Project/src/example/Test5.java.

Abbildung 29: Coupled Changes mit Beispielwerten

Klickt der Benutzer hingegen auf einen File, welcher nicht in der Outputtabelle vorhanden
ist, dann erscheint die folgenden Meldung im Coupled Changes: „The selected File does not
exist in the Outputtable“ („Das selektierte File existiert nicht in der Outputtabelle“). Die
Abbildung 30 zeigt diese Fehlermeldung.

 40

Abbildung 30: Fehlermeldung im Coupled Changes

5.4.5 Commit View

In diesem View werden die CommitIDs, welche das selektierte File und seine gekoppelten
Dateiänderungen besitzen in einem Combobox aufgelistet.

Abbildung 31: Auflistung der CommitIDs im Commit View mit Beispielwerten

In Abbildung 31 wird das Commit View mit Beispielwerten angezeigt. Diese Werte besagen,
dass die gekoppelten Dateiänderungen aus der Abbildung 29 in den Transaktionen {124 und
125} der Outputtabelle (Tabelle 5) auftreten.

Der Benutzer hat die Möglichkeit eines von den CommitIDs in diesem Commit View
auszuwählen, um sich die entsprechenden Einträge aus der Commit Message Tabelle in dem
Commit Message View anzeigen zu lassen. Die Tabelle 6 repräsentiert die Commit Message
Tabelle.

 41

Tabelle 6: Commit Message Tabelle

Commit MessageID (PK)

Commit_ID

Commit Message

1

123

Die Arbeit ist erledigt

2

124

auch während der Eingabe

3

125

während die anderen Klassen

4

126

 nicht vorhanden ist

5.4.6 Commit Message View

Nachdem der Benutzer in dem vorherigen Schritt einen CommitID ausgewählt hat,
erscheinen die Einträge zu dem selektierten CommitID in dem Commit Message View des
SRM Plug-Ins. Selektiert beispielweise der Benutzer die CommitID 125, dann erscheint in
dem Commit Message View der Eintrag „während die anderen Klassen“, wie es auch in der
Abbildung 32 zu sehen ist.

Abbildung 32: Commit Message View mit Beispielwerten

 42

6 Implementierung

Zielrichtung dieses Kapitels ist die Umsetzung des SRM Plug-In Konzeptes.

6.1 Entwicklungsumgebung

Das SRM Plug-In wurde mit Hilfe der Entwicklungsumgebung Eclipse Mars als eine reine
Java Anwendung realisiert. Das Plug-In wurde dabei neben dem Eclipse SDK auch noch mit
dem Einsatz des PDE (Plug-In Development Environment) entwickelt. Zuletzt wurden die
GUIs durch die Nutzung des Windowbuilder Tools mit Hilfe der Graphikbibliothek SWT
erstellt.

6.2 Registrierung des SRM Plug-Ins

In erster Linie wird ein Plug-In Projekt mit dem Namen de.uni_stuttgart.srmplugin erstellt. Im
Anschluss daran wird das bereits vorhandene Eclipse IDE um die benötigten Views
(Execution View, Coupled Changes, Commit View und Commit Message View) erweitert.
Abbildung 33 zeigt, wie die Views dem SRM Plug-In hinzugefügt werden.

Abbildung 33: Hinzufügen der Views in das SRM Plug-In

 43

Weiterhin werden die Jar Files: FPGA.jar und der MYSQL Treiber: mysql-connector-java-
5.1.34-bin.jar in den Classpath des Runtime Tabs hinzugefügt. Abbildung 34 zeigt wie diese
Jar Files in das SRM Plug-In integriert wurden.

Abbildung 34: Integration von MYSQL Treiber und FPGA.jar File in das SRM Plug-In

Zum Schluss werden die Abhängigkeiten (Dependencies) in den Dependencies Tab
eingefügt. Abbildung 35 zeigt alle Abhängigkeiten, die für die Entwicklung des SRM Plug-
Ins erforderlich sind.

Abbildung 35: Hinzufügen der Abhängigkeiten (Dependencies) in das SRM-Plug-In

 44

Nachdem das Plug-In erstellt und die entsprechenden Views und die Abhängigkeiten
(Dependencies) hinzugefügt wurden, werden alle Informationen über das Plug-In in dem
File plugin.xml angezeigt. Listing 1 zeigt den Quellcode von plugin.xml des SRM Plug-Ins.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>

 <extension
 point="org.eclipse.datatools.connectivity.connectionProfile">
 <newWizard
 name="%wizard.name"
 icon="icons/new_db_element.gif"
 profile="my.connection.profile"
 class="org.mycompany.myconnectionprofile.MyConnectionProfileWizard"
 id="my.connection.profile.newWizard">
 </newWizard>
 <connectionProfile
 pingFactory="org.eclipse.datatools.connectivity.db.generic.JDBCConnectionFactory"
 name="%connection.profile.name"
 icon="icons/jdbc_16.gif"
 category="org.eclipse.datatools.connectivity.db.category"
 id="my.connection.profile">
 </connectionProfile>
 </extension>
 <extension
 point="org.eclipse.ui.propertyPages">
 <page
 name="%connection.profile.proppage.name"
 class="org.mycompany.myconnectionprofile.MyConnectionProfilePropertyPage"
 id="my.connection.profile.propertyPage">
 <filter
 name="org.eclipse.datatools.profile.property.id"
 value="my.connection.profile">
 </filter>
 <enabledWhen>
 <instanceof
 value="org.eclipse.datatools.connectivity.IConnectionProfile">
 </instanceof>
 </enabledWhen>
 </page>
 </extension>
 <extension
 point="org.eclipse.ui.views">
 <view
 category="de.uni_stuttgart.SRMPlugIn.category"
 class="de.uni_stuttgart.srmplugin.views.ExecutionView"
 id="de.uni_stuttgart.SRMPlugIn.executionview"
 name="Execution View"
 restorable="true">
 </view>
 <view
 category="de.uni_stuttgart.SRMPlugIn.category"
 class="de.uni_stuttgart.srmplugin.views.CoupledChanges"
 id="de.uni_stuttgart.SRMPlugIn.coupledchanges"

 45

 name="Coupled Changes"
 restorable="true">
 </view>
 <view
 category="de.uni_stuttgart.SRMPlugIn.category"
 class="de.uni_stuttgart.srmplugin.views.CommitView"
 id="de.uni_stuttgart.SRMPlugIn.commitview"
 name="Commit View"
 restorable="true">
 </view>
 <view
 category="de.uni_stuttgart.SRMPlugIn.category"
 class="de.uni_stuttgart.srmplugin.views.CommitMessageView"
 id="de.uni_stuttgart.SRMPlugIn.commitmessageview"
 name="Commit Message View"
 restorable="true">
 </view>
 <category
 id="de.uni_stuttgart.SRMPlugIn.category"
 name="SRM Plugin">
 </category>
 </extension>

</plugin>

Listing 1: Quellcode plugin.xml vom SRM-Plug-In

6.3 Auflistung der einzelnen Klassen

Hier werden alle Klassen des SRM Plug-Ins und deren Funktionen in der Tabelle 7
aufgelistet und beschrieben.

Tabelle 7: Überblick über die Klassen des SRM Plug-Ins und deren Funktionen

Klassen

Funktionen

Activator.java

Diese Klasse ist für das Starten und Beenden des SRM Plug-
Ins zuständig.

ExecutionView.java

(View)

Diese View ist für das Starten der Frequent-Itemset-Analyse
verantwortlich. Der Benutzer gibt einen
Minimumsupportwert ein und startet dann die Frequent-
Itemset-Analyse.

Maincontrol.java

Die Datenübertragung bzw. Kommunikation zwischen den
einzelnen Klassen wird durch diese Klasse verwirklicht.

 46

DBConnection.java

Herstellung der Verbindung mit der Datenbank, Lesen der
Daten aus der Datenbanktabelle und Speichern der
Ergebnisse in eine andere Datenbanktabelle erfolgt in dieser
Klasse.

FPGA.jar

Bei diesem Jar File handelt es sich um den
FPGrowth_Itemsets_with_Strings Algorithmus, welcher die
Frequent-Itemset-Analyse durchführt.

Search.java

Diese Klasse ist für das Suchen und Selektieren der
gekoppelten Dateiänderungen und den CommitIDs
verantwortlich.

Process.java

Hier werden die gekoppelten Dateiänderungen und die
CommitIDs voneinander getrennt, um sie an die
unterschiedlichen Views zuzuschicken.

CustomComparator.java

Diese Klasse sortiert die gekoppelten Dateiänderungen
entsprechend ihren Supportwerten in absteigender
Reihenfolge, so dass dann später in dem Coupled Changes
die gekoppelten Dateiänderungen mit den größeren
Supportwerten an den ersten Stellen stehen und somit eine
höhere Priorität besitzen.

ShowPlugin.java

Diese Klasse ist für die Übermittlung und Rückgabe der
Informationen zwischen den Views verantwortlich.

CoupledChanges.java

(View)

In diesem View werden die gekoppelten Dateiänderungen
angezeigt.

CommitView.java

(View)

Diese View listet die CommitIDs auf, welche die
gekoppelten Dateiänderungen beinhalten.

CommitMessageView.java

(View)

In diesem View werden die Einträge zu dem selektierten
CommitID aus dem Commit View angezeigt.

 47

6.4 Implementierung der einzelnen Komponenten

In diesem Abschnitt wird die Implementierung der einzelnen Komponenten des SRM Plug-
Ins vorgestellt.

6.4.1 ExecutionView.java

Diese Klasse stellt die Schnittstelle zwischen dem Benutzer und dem SRM Plug-In dar.
Mittels einer Benutzeroberfläche kann der Benutzer einen Minimumsupportwert eingeben
und durch das Betätigen des „Start Execution“ Buttons die Frequent-Itemset-Analyse starten.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public class ExecutionView extends ViewPart {
 private Text minimumsupport;
 public ExecutionView() {}
 public void createPartControl(Composite parent) {
 parent.setLayout(null);
 Label lblMinsupport = new Label(parent, SWT.NONE);
 lblMinsupport.setBounds(35, 136, 118, 15);
 lblMinsupport.setText("Choose minsupp:");
 minimumsupport = new Text(parent, SWT.BORDER);
 minimumsupport.setBounds(207, 136, 76, 21);
 Button btnRun = new Button(parent, SWT.NONE);
 btnRun.addSelectionListener(new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {
 Maincontrol.minsupp=Double.parseDouble(minimumsupport.getText());
 Maincontrol.invokeDB();}
 });
 btnRun.setBounds(123, 202, 158, 25);
 btnRun.setText("Start Execution");
 }
 public void setFocus() {
 }}

Listing 2: Quellcode ExecutionView.java

Gibt der Benutzer einen Wert in das „Choose minsupp“ Textfeld ein und drückt auf den
„Start Execution“ Button, wird dieser Wert (das minimumsupport Attribut aus der Zeile 2 in
Listing 2) an das minsupp Attribut der Klasse Maincontrol.java übergeben (Zeile 14 in Listing
2) und im nachhinein dann die invokeDB() Methode der Maincontrol.java Klasse aufgerufen
(Zeile 15 in Listing 2).

6.4.2 Maincontrol.java

Wie in der Tabelle 7 aufgelistet, ermöglicht diese Klasse den Datenfluss zwischen den
Klassen des SRM Plug-Ins.

 48

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public class Maincontrol {
public static double minsupp;
public static String outputtablename = "Outputtable";
public static String SelectedFile;
public static List<List<String>> SelectedFileFieldsOfTheOutputtable;
public static List<List<String>> coupledchangesfiles;
public static List<String> CommitIDs;
public static List<List<String>> commitMessageValue = new ArrayList<>();
 public static void main(String[] args) {
}
 public Maincontrol(){
 }
 public static void invokeDB()
 {
 DBConnection.ReadInputTable();
 SendMinsuppToTheAlgortithm();
 }
 public static void SendMinsuppToTheAlgortithm() {
 double MinimumSupport= minsupp;
 FPGrowthAlgorithmus.runAlgorithm(MinimumSupport);
 DBConnection.CreateOutputTable();
 DBConnection.WriteIntoOutputTable();
 }
 public static void invokeThePreparationOfTheCoupledChanges()
 {
Search.searchForTheSelectedFile(SelectedFile, FPGrowthAlgorithmus.output);
Collections.sort(SelectedFileFieldsOfTheOutputtable, new CustomComparator());
Process.processingTheSelectedFileFields(SelectedFileFieldsOfTheOutputtable);
Process.removeRedundanciesOfTheCommidIDs(Maincontrol.CommitIDs);
 }}

Listing 3: Quellcode Maincontrol.java

Das Listing 3 repräsentiert den Quellcode der Maincontrol.java Klasse. Im Folgenden
werden die Attribute und Methoden detaillierter erläutert:

Attribute der Maincontrol.java Klasse:

1. minsupp (Zeile 2 in Listing 3):
Dieses Attribut beinhaltet den durch den Benutzer eingegebenen
Minimumsupportwert. Dieser Wert wird von der ExecutionView.java Klasse
übergeben (Zeile 14 in Listing 2).

2. outputtablename (Zeile 3 in Listing 3):
Der Name der Outputtabelle, welche die Ergebnisse der Frequent-Itemset-Analyse
beinhalten soll, wird in diesem Attribut festgelegt. Hier ist der Name als
„Outputtable“ definiert.

 49

3. SelectedFile (Zeile 4 in Listing 3):
Der Pfad des durch den Benutzer selektierten Files befindet sich in diesem Attribut.
Dieser Wert wird diesem Attribut von der CoupledChanges.java Klasse übergeben
(Zeile 1 in Listing 13).

4. SelectedFileFieldsOfTheOutputtable (Zeile 5 in Listing 3):
Dieses Attribut beinhaltet jene Zeilen der Outputtabelle, welche das Attribut
SelectedFile enthalten. Das bedeutet, aus der Outputtabelle werden die Zeilen, die das
selektierte File beinhalten ausgewählt und diesem Attribut übergeben. Dieser Wert
wird von der Klasse Search.java hinzugefügt (Zeile 15 in Listing 27).

5. coupledchangesfiles (Zeile 6 in Listing 3):

Bei diesem Attribut handelt es sich um eine Teilmenge des Attributs
SelectedFileFieldsOfTheOutputtable (Zeile 5 in Listing 3). Hier befinden sich nur
diejenigen Bereiche des Attributes SelectedFileFieldsOfTheOutputtable, welche die
gekoppelten Dateiänderungen beinhalten. Dieser Wert wird diesem Attribut von der
Klasse Process.java hinzugefügt (Zeile 13 in Listing 28).

6. CommitIDs (Zeile 7 in Listing 3):
Dieses Attribut ist ebenfalls eine Teilmenge des Attributs
SelectedFileFieldsOfTheOutputtable (Zeile 5 in Listing 3). Hier befinden sich nur
diejenigen Bereiche des Attributes SelectedFileFieldsOfTheOutputtable, welche die
CommitIDs beinhalten. Der Wert wird diesem Attribut von der Klasse Process.java
hinzugefügt (Zeile 12 in Listing 29).

7. commitMessageValue (Zeile 8 in Listing 3):
Dieses Attribut beinhaltet die Einträge zu einem selektierten CommitID. Das
bedeutet, selektiert der Benutzer die CommitID: 125 (siehe Abbildung 31), dann
beinhaltet dieses Attribut den Eintrag „während die anderen Klassen“(siehe Abbildung
32). Dieses Attribut empfängt diesen Wert von der DBConnection.java Klasse (Zeile
25 in Listing 6).

Methoden der Maincontrol.java Klasse:

Diese Klasse beinhaltet insgesamt drei Methoden. Die ersten zwei Methoden sind für die
Durchführung der Frequent-Itemset-Analyse und für das Lesen und Schreiben in
Datenbanktabellen verantwortlich, während die dritte Methode für die Ermittlung der
gekoppelten Dateiänderungen bestimmt ist.

 50

1. invokeDB() (Zeile 13 in Listing 3):

• DBConnection.ReadInputTable() (Zeile 15 in Listing 3):
Hier wird die Methode ReadInputTable() der DBConnection.java Klasse
aufgerufen, um die Daten aus der Inputtabelle zu lesen und sie für die
Weiterverarbeitung in einem Array zu speichern.

• SendMinsuppToTheAlgortithm() (Zeile 16 in Listing 3):
Die Methode SendMinsuppToTheAlgortithm() aus der Zeile 18 des Listing 3 wird
hier aufgerufen.

2. SendMinsuppToTheAlgortithm() (Zeile 18 in Listing 3):

• Double MinimumSupport=minsupp (Zeile 19 in Listing 3):
Der Wert von dem Attribut minsupp wird dem MinimumSupport Attribut
zugewiesen.

• FPGrowthAlgorithmus.runAlgorithm(MinimumSupport) (Zeile 20 in Listing 3):
Hier wird die runAlgorithm() Methode des FPGrowthAlgorithmus mit dem
MinimumSupport als Inputparameter aufgerufen.

• DBConnection.CreateOutputTable() (Zeile 21 in Listing 3):
Die Methode CreateOutputtable() der DBConnection,java Klasse wird aufgerufen,
um die Outputtabelle zu erzeugen.

• DBConnection.WriteIntoOutputTable() (Zeile 22 in Listing 3):
Diese Methode wird aufgerufen, um die Ergebnisse, welche nach der Frequent-
Itemset-Analyse entstehen, in die Outputtabelle zu schreiben.

3. invokeThePreparationOfTheCoupledChanges() (Zeile 24 in Listing 3):

• Search.searchForTheSelectedFile(SelectedFile,FPGrowthAlgorithmus.
output) (Zeile 26 in Listing 3):
Der Aufruf dieser Methode überprüft, ob das durch den Benutzer selektierte File
in der Outputtabelle vorhanden ist. Wenn ja, dann werden die entsprechenden
Bereiche, welche das selektierte File beinhalten aus der Outputtabelle für die
Weiterverarbeitung ausgewählt.

 51

• Collections.sort(SelectedFileFieldsOfTheOutputtable,newCustomComparator()) (Zeile
27 in Listing 3):
Durch den Aufruf dieser Methode werden die aus der Outputtabelle selektierten
Bereiche nach Ihren Supportwerten in absteigender Reihenfolge sortiert.

• Process.processingTheSelectedFileFields(SelectedFileFieldsOfTheOutputtable) (Zeile 28
in Listing 3):
Hier werden die aus der Outputtabelle selektierten Bereiche bearbeitet und in
zwei Bereiche unterteilt. Ein Bereich beinhaltet nur die gekoppelten
Dateiänderungen, während der andere Bereich die entsprechenden CommitIDs
zum Inhalt hat.

• Process.removeRedundanciesOfTheCommidIDs(Maincontrol.CommitIDs) (Zeile 29 in
Listing 3):
Hier werden die Redundanzen in dem Attribut CommitIDs entfernt.

6.4.3 DBConnection.java

Diese Klasse ist für alle Datenbankangelegenheiten verantwortlich. Im Folgenden werden
diese Aufgaben mit entsprechenden Quellcodeabschnitten dargelegt:

1. Verbindung mit der Datenbank herstellen:

Wird der Konstruktor der DBConnection.java Klasse aufgerufen, wird eine Verbindung mit
der Datenbank hergestellt. Dazu wird in erster Linie der MYSQL Treiber (mysql-connector-
java-5.1.35-bin.jar) in das SRM Plug-In hinzufügt. Danach wird dann die Verbindung mit der
Datenbank definiert und ausgeführt. Wie es auch in der Zeile 1 in Listing 4 auch zu sehen ist,
wird innerhalb der DBConnection.java Klasse die Bibliothek java.sql.* importiert, um alle
notwendigen Werkzeuge zu benutzen.

Weiterhin wurde im Rahmen dieser Diplomarbeit auch der FPGrowthAlgorithmus des
FPGA.jar Files in diese Klasse importiert (Zeile 2 in Listing 4), um Daten an den
FPGrowthAlgorithmus als Input zu senden und dann auch die Ergebnisse des
FPGrowthAlgorithmus zu empfangen. Zwischen den Zeilen 4–10 in Listing 4 werden die für
den Verbindungsaufbau benötigten Variablen deklariert und initialisiert.

Nachdem all diese Punkte erledigt sind, werden die Datenbankabfragen in den try/catch-
Block (Zeilen 13–29 in Listing 4) eigebettet. In der Zeile 15 in Listing 4 wird als Erstes der
MYSQL Treiber geladen. Im Anschluss daran wird in den Zeilen zwischen 16-20 in Listing 4
die Verbindung mit der Datenbank hergestellt. Falls in dem try-Block irgendwelche Fehler

 52

auftreten, dann werden diese durch die entsprechenden catch-Anweisungen abgefangen
und dem Benutzer mitgeteilt, um was für einen Fehler es sich dabei handelt. Tritt
beispielweise ein Problem beim Laden von dem MYSQL Treiber auf, oder ist der MYSQL
Treiber überhaupt nicht vorhanden, dann wird dieses Problem durch die catch-Anweisung
in der Zeile 21 in Listing 4 abgefangen und dem Benutzer mitgeteilt, dass der Treiber nicht
gefunden werden konnte. Entsprechend zu dem Beispiel von vorhin, kann auch ein Problem
mit der Datenbankverbindung auftreten. In so einem Fall wird dann die catch-Anweisung in
der Zeile 25 in Listing 4 ausgeführt und dem Benutzer die Nachricht übermittelt, dass die
Verbindung mit der Datenbank nicht möglich ist.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

import java.sql.*;
import FPGA.FPGrowthAlgorithmus;
public class DBConnection {
 private static Connection conn = null;
 private static String dbHost = "127.0.0.1";
 private static String dbPort = "8889";
 private static String database = "Datenbank_local";
 private static String dbUser = "root";
 private static String dbPassword = "root";
 private static Statement statement;
 private DBConnection()
 {
 try
 {
 Class.forName("com.mysql.jdbc.Driver");
 conn = DriverManager.getConnection("jdbc:mysql://" + dbHost +
":"
 + dbPort + "/" + database + "?" + "user=" + dbUser + "&"
 + "password=" + dbPassword);
 }
 catch (ClassNotFoundException e)
 {
 System.out.println("Treiber nicht gefunden");
 }
 catch (SQLException e)
 {
 System.out.println("Connect nicht moeglich");
 }
 }
 private static Connection getInstance()
 {
 if(conn == null)
 new DBConnection();
 return conn;
 }
Listing 4: Herstellung der Verbindung mit der Datenbank in DBConnection.java

 53

2. Lesen der Daten aus der Inputtabelle:

Nach dem in dem vorherigen Schritt die Datenbankverbindung hergestellt wurde, findet das
Lesen der Daten aus der Inputtabelle statt, welche die für die Frequent-Itemset-Analyse
benötigten Informationen beinhaltet. Das Listing 5 zeigt den Quellcodeabschnitt der
DBConnection.java Klasse, die die Daten aus der Inputtabelle liest und diese an den
FPGrowthAlgorithmus übergibt.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public static void ReadInputTable() {
List<List<String>> res = new ArrayList<>();
 conn = getInstance();
 if(conn != null){
 Statement query = null;
 String sql;
 ResultSet result = null;
 try {
 query = conn.createStatement();
 sql = "SELECT * FROM Inputtable";
 result = query.executeQuery(sql);
 } catch (SQLException e1) {
 e1.printStackTrace();}
 try {
 ResultSetMetaData data = result.getMetaData();
 int numcols = data.getColumnCount();
 while(result.next()){
 List<String> row = new ArrayList<>(numcols);
 int i = 1;
 while (i <= numcols) {
 if(!result.getString(i).equals("")){
 row.add(result.getString(i));
 }i++; }
 res.add(row);}
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 FPGrowthAlgorithmus.input=res;}}

Listing 5: Leseoperation auf die Inputtabelle in DBConnection.java

Der Ablauf der Leseoperation wird folgendermaßen durchgeführt:

1. Als Erstes wird eine ArrayList namens res erzeugt (Zeile 2 in Listing 5).

2. Danach wird in den Zeilen 9-11 in Listing 5 die SQL-Abfrage definiert und
ausgeführt. Der ganze Inhalt der Inputtabelle befindet sich dann in der result
Variable.

 54

3. Anschließend findet dann die Ausführung des zweiten try Blockes statt (Zeilen 14-25
in Listing 5). Bei dieser Ausführung wird die result Variable Zeile für Zeile gelesen,
und die Daten in die ArrayList res hinzugefügt.

4. Nachdem all die vorherigen Schritte durchlaufen sind, wird dann das Attribut res

dem input Attribut des FPGrowthAlgorithmus übergeben (Zeile 30 in Listing 5).

3. Lesen der Daten aus der Commit Message Tabelle:

Diese Methode der DBConnection.java Klasse ist dafür verantwortlich, die Einträge zu dem
durch den Benutzer selektierten CommitID aus der Commit Message Tabelle auszuwählen.
Selektiert der Benutzer einen CommitID in dem Commit View, wird diese Methode
aufgerufen. Bei diesem Aufruf wird dieser Methode dann das selektierte CommitID als
Inputparameter übergeben (Zeile 3 in Listing 23). Nachdem diese Methode den CommitID
bekommen hat, führt sie eine Abfrage bei der Commit Message Tabelle aus (Zeilen 8-11 in
Listing 6). Bei dieser Abfrage werden aus der Commit Message Tabelle die zutreffenden
Einträge des selektierten CommitIDs ausgewählt. Zuletzt werden diese Einträge dem
Attribut commitMessaegValue der Maincontrol.java Klasse übergeben (Zeile 25 in Listing 6).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

public static void ReadCommitMessageTable(String searchedCommitID)
 {
 List<List<String>> resCommidId = new ArrayList<>();
 conn = getInstance();
 if(conn != null){
 Statement query;
 try {
 query = conn.createStatement();
 String sql = "SELECT CommitMessage FROM CommitMessageTable "
 + "WHERE CommitId='"+searchedCommitID+"'";
 ResultSet result = query.executeQuery(sql);
 ResultSetMetaData data = result.getMetaData();
 int numcols = data.getColumnCount();
 while(result.next()){
 List<String> row = new ArrayList<>(numcols);
 int i = 1;
 while (i <= numcols) {
 row.add(result.getString(i++));}
 resCommidId.add(row); }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 Maincontrol.commitMessageValue=resCommidId;}}

Listing 6: Leseoperation auf die Commit Message Tabelle in DBConnection.java

 55

4. Erzeugen der Outputtabelle:

Nachdem die Frequent-Itemset-Analyse durch den FPGrowthAlgorithmus ausgeführt
wurde, wird zuerst die Outputtabelle erzeugt. Die Zeilen 5-18 in Listing 7 zeigen, wie die
Outputtabelle erzeugt wird.

Bevor die Outputtabelle erzeugt wird, wird als Erster überprüft, ob die Outputtabelle mit
dem Namen „Outputtable“ in der Datenbank vorhanden ist. Ist es der Fall, dann wird diese
Outputtabelle aus der Datenbank entfernt (Zeilen 6-9 in Listing 7). Durch diesen Vorgang
wird gewährleistet, dass in der Outputtabelle immer die aktuellen Ergebnisse der Analyse
sich befinden.

Da die ersten zwei Spalten der Outputtabelle immer gleich bleiben, werden sie gleich als
erstes erzeugt (Zeilen 10-13 in Listing 7). Die restlichen Spalten der Outputtabelle sind
immer abhängig von dem längsten Frequent Itemset, welcher von der Ausgabe des
FPGrowthAlgorithmuses bestimmt wird. Die Zeilen 14-15 in Listing 7 zeigen eine for
Schleife, die solange durchlaufen wird, bis das Ende des längsten Frequent Itemsets erreicht
ist. Bei jedem Durchlauf der for Schleife wird dann der Outputtabelle eine Spalte
hinzugefügt. Ist beispielsweise die Länge des längsten Frequent Itemsets aus dem
FPGrowthAlgorithmus gleich 5, dann werden bei der Outputtabellenerzeugung zu den
ersten zwei Spalten, noch weitere fünf Spalten hinzugefügt. Somit hätte dann die
Outputtabelle insgesamt sieben Spalten.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

public static void CreateOutputTable() {
 conn = getInstance();
 if(conn != null)
 {
 try {
 String myTableName;
myTableName = "DROP TABLE IF EXISTS " + Maincontrol.outputtablename;
 statement = conn.createStatement();
 statement.executeUpdate(myTableName);
myTableName ="CREATE TABLE " + Maincontrol.outputtablename +
 "(id INTEGER NOT NULL AUTO_INCREMENT, ";
 myTableName+="CommidId VARCHAR(250),";
 myTableName+="Support VARCHAR(250),";
 for(int i=1;i<=FPGrowthAlgorithmus.maxSpalteAnzahl;i++)
 myTableName+= " Item" +i+" VARCHAR(250), ";
 myTableName+= " PRIMARY KEY (id))";
 statement = conn.createStatement();
 statement.executeUpdate(myTableName); }
 catch (SQLException e) {
 e.printStackTrace();} }}

Listing 7: Erzeugen der Outputtabelle in DBConnection.java

 56

5. Speichern der Ergebnisse in die Outputtabelle:

Sind die ganzen vorherigen Schritte erfolgreich durchgeführt, erfolgt zum Schluss das
Speichern bzw. Schreiben der Ergebnisse des FPGrowthAlgorithmuses in die erzeugte
Outputtabelle. Der FPGrowthAlgorithmus schreibt jedes Frequent Itemset in einen Array. Ist
der Algorithmus mit der Frequent-Itemset-Analyse fertig, befinden sich alle Frequent
Itemets in einem Array in dem FPGrowthAlgorithmus. An dieser Stelle der
DBConnection.java Klasse, wird der Array aus dem FPGrowthAlgorithmus herangezogen,
um dessen Inhalt in die Outputtabelle hinzuzufügen.

6.4.4 FPGA.jar

Bei diesem FPGA.jar File handelt es sich um den FPGrowthAlgorithmus, welcher die
Frequent-Itemset-Analyse durchführt. Allgemein formuliert setzt sich dieser Jar File aus den
folgenden drei Klassen: FPGrowthAlgorithmus.java, FPTree_Strings.java und
FPNode_Strings.java. Diese drei Klasse wurden ursprünglich aus dem SPMF Data Mining
Framework genommen, entsprechend den Anforderungen dieser Diplomarbeit verändert
und anschließend in das SRM Plug-In als externer Jar File importiert. Die Veränderungen
bezogen sich hauptsächlich nur auf zwei Bereiche der FPGrowthAlgorithmus.java Klasse.
Diese zwei Bereiche waren jene Bereiche des Algorithmus, welche für das Lesen der
Inputdaten und für das Schreiben der Ergebnisse zuständig waren. Der ursprüngliche
Algorithmus liest die Daten von einem Text File, führt eine Frequent-Itemset-Analyse durch
und schreibt dann die Ergebnisse in einen anderen Text File. Dies wurde im Rahmen dieser
Diplomarbeit so verändert, dass der Algorithmus Daten aus einer Datenbanktabelle lesen,
diese Daten analysieren und die Ergebnisse in eine andere Datenbanktabelle schreiben kann.

Das in Listing 5 dargestellter Teilquellcode der DBConnection.java Klasse liest die Daten aus
der Datenbanktabelle schreibt sie in einen Array und übergibt diesen Array an das input
Attribut der FPGrowthAlgorithmus.java Klasse (Zeile 30 in Listing 5). Nach diesem Vorgang
stehen dann die Daten der Datenbanktabelle als ein Array in dem Attribut input der
FPGrowthAlgorithmus.java Klasse (Zeile 2 in Listing 8) und können dann für die Analyse
benutzt werden.

Der FPGrowthAlgorithmus.java benötigt für die Durchführung der Frequent-Itemset-
Analyse aber auch noch den MinimumSupport, welcher von dem Benutzer in dem GUI der
ExecutionView.java manuell eingegeben und dem minsupp Attribut der Maincontrol.java
Klasse übergeben wurde (Zeile 14 in Listing 2). Von dieser Maincontrol.java Klasse aus wird
dann die runAlgorithm() Methode des FPGrowthAlgorithmus.java mit dem MinimumSupport
als Inputparameter aufgerufen (Zeile 20 in Listing 3). Dadurch startet der
FPGrowthAlgorithmus.java mit dem MinimumSupport Parameter (Zeile 9 in Listing 8).

 57

Auf diese Art und Weise wird das Lesen der Daten aus der Datenbanktabelle realisiert und
für die Durchführung der Frequent-Itemset-Analyse an die weiteren Methoden und Klassen
des FPGA.jar Files übergeben.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

public class FPGrowthAlgorithmus {
 public static List<List<String>> input;
 public static List<List<String>> output=new ArrayList<>();
 public static int maxSpalteAnzahl = 0;
 public static int transactionCount = 0;
 public static int itemsetCount;
 public static int relativeMinsupp;
 public FPGrowthAlgorithmus(){}
 public static void runAlgorithm (double MinimumSupport)
 {
 output=new ArrayList<>();
 transactionCount = 0;
 maxSpalteAnzahl = 0;
 startTimestamp = System.currentTimeMillis();
 itemsetCount =0;
final Map<String, Integer> mapSupport = new HashMap<String, Integer>();
scanDatabaseToDetermineFrequencyOfSingleItems(input,mapSupport);

Listing 8: Leseoperation des FPGrowthAlgorithmus.java

Nach der Durchführung der Frequent-Itemset-Analyse entstehen Ergebnisse, die in eine
andere Datenbanktabelle geschrieben werden müssen. Des Weiteren sollen in die
Outputtabelle mehr Informationen gespeichert werden, als die ursprüngliche Version des
FPGrowthAlgorithmus vorsieht.

Sobald ein Frequent Itemset gefunden wird, wird das Frequent Itemset und sein
Supportwert der writeItemsetToOutput() Methode der FPGrowthAlgorithmus.java Klasse
übergeben (Zeile 1 in Listing 9).

Dieses Frequent Itemset wird direkt in einen buffer gespeichert und dann mit dem input
Array der FPGrowthAlgorithmus.java verglichen. Bei diesem Vergleich geht es darum zu
überprüfen, in welchen Transaktionen das entsprechende Frequent Itemset sich befindet, um
dann diese ermittelten Transaktionen zusammen mit dem Frequent Itemset in das
Outputarray zu übertragen. Die Zeilen 3-35 in Listing 9 zeigen den Quellcodeabschnitt,
welche das Vergleichen und Speichern der Daten in das Outputarray beschreiben.

Nachdem alle Frequent Itemsets sich in dem Outputarray befinden, werden diese Daten
dann in die Outputtabelle geschrieben. Darüberhinaus wird auch noch die Länge des
längsten Frequent Itemsets errechnet, um mit Hilfe von diesem Wert die Spaltenanzahl der
Outputtabelle zu bestimmen (Zeilen 36-38 in Listing 9).

 58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

private static void writeItemsetToOutput(String [] itemset, int support)
 {
 if(itemset.length>1){
 itemsetCount++;
 StringBuffer buffer = new StringBuffer();
 for(int i=0; i< itemset.length; i++){
 buffer.append(itemset[i]);
 if(i != itemset.length-1){
 buffer.append(' ');}}
 buffer.append(' ');
 buffer.append(support);
 String [] strTemp =buffer.toString().split(" ");
 int i,k,j,m,n=0;
 StringBuffer bufferWrieter = new StringBuffer();
 List<String> wrtStrTemp =new ArrayList<>();
 for(i=0;i<input.size();i++)
 { m=0; j=0;
 for(k=0;k<strTemp.length-1;k++){
 for(j=0;j<input.get(i).size();j++){
 if(input.get(i).get(j).contains(strTemp[k]))
 { break;}}
 if(j!=input.get(i).size())
 { m++;}}
 if(j==input.get(i).size()&& k==strTemp.length-1)
 { }else if(j!=input.get(i).size()&& m==strTemp.length-1)
 { bufferWrieter.append(input.get(i).get(0));
 n++;
 if(n<support)
 {bufferWrieter.append(':');}
 } else if(j!=input.get(i).size()&& m!=strTemp.length-1){}}
 wrtStrTemp.add(bufferWrieter.toString());
 wrtStrTemp.add(strTemp[strTemp.length-1]);
 for(int l=0;l<strTemp.length-1;l++) {
 wrtStrTemp.add(strTemp[l]); }
 output.add(wrtStrTemp);
 if (itemset.length>= maxSpalteAnzahl)
 {maxSpalteAnzahl =itemset.length;}}
 else{}}

Listing 9: Schreibeoperation des FPGrowthAlgorithmus.java

6.4.5 CoupledChanges.java

Diese Klasse hat die Aufgabe die gekoppelten Dateiänderungen des in dem Project Explorer
selektierten Files anzuzeigen. Gleichzeitig ist aber auch die CommitView.java Klasse von
dieser Klasse abhängig. Diese Klasse ist in diesem Zusammenhang der Sender und die
CommitView.java Klasse der Empfänger.

 59

Der Gesamtablauf dieser Klasse wird im Folgenden Schritt für Schritt erläutert:

1. Reaktion auf Selektionsänderungen in dem Project Explorer:

Um die gekoppelten Dateiänderungen eines in dem Project Explorer selektierten Files auch
anzuzeigen, ist die sofortige Reaktion auf die Selektionsänderungen in dem Project Explorer
von entscheidender Bedeutung. Das bedeutet, klickt der Benutzer in dem Project Explorer
auf einen File, so muss diese Klasse auf diese Ereignisse reagieren können, um dann
entsprechend die richtigen Ergebnisse bezogen auf das selektierte File auch anzeigen zu
können.

Der beste Weg, um auf die Selektionsänderungen in dem Project Explorer zu reagieren, ist
die Anwendung von Selection Service. Selection Service ermöglichen es den einzelnen
Sichten (Views) des Eclipse, auf Selektionsänderungen in dem Workbench-Fenster zu
reagieren, ohne dabei direkt mit dem Workbench-Fenster kommunizieren zu müssen. Die
Kommunikation erfolgt über Selection Service.

Betrachtet man zum Beispiel in Eclipse den Package Explorer View und die Properties View.
Die Abbildung 36 repräsentiert wie die beiden Views miteinander kommunizieren. Klickt
der Benutzer auf einen File in dem Package Explorer View, so werden dann die
Eigenschaften dieses selektierten Files in dem Properties View angezeigt. Klickt der Benutzer
danach auf einen anderen File, also findet eine Selektionsänderung in dem Package Explorer
statt, so muss die Properties View sofort auf diese Selektionsänderung reagieren und seinen
Inhalt aktualisieren.

Abbildung 36: Relation zwischen Package Explorer und Properties in Eclipse [36]

Die Abbildung 37 veranschaulicht die Gesamtübersicht über die Anwendung von Selection
Service. Der Package Explorer, wo der Benutzer bestimmte Files selektiert, agiert als
Selection Provider. D.h., immer wenn der Benutzer einen File in dem Package Explorer

 60

selektiert, wird die aktuelle Selektion dem Selection Service mitgeteilt. Dieses Selection
Service beinhaltet diese aktuelle Selektion solange, bis der Benutzer einen anderen File
selektiert. Eine andere View auf der rechten Seite des Selection Service, beispielweise die
Properties View agiert als Selection Listener. Das bedeutet, er liest die aktuellen Selektionen
des Package Explorers aus dem Selection Service.

Abbildung 37: Selection Service [36]

Basierend auf diesem Selection Service Prinzip findet dann im SRM Plug-In die Reaktion des
Coupled Changes auf die Selektionsänderungen im Project Explorer statt. So wie man es aus
der Abbildung 38 entnehmen kann erfolgt die Relation zwischen dem Project Explorer und
Coupled Changes via Selection Service. Dabei agiert der Project Explorer als Selection
Provider und Coupled Changes als Selection Listener. Dadurch wird eine direkte Relation
zwischen dem Project Explorer und dem Coupled Changes vermieden.

Abbildung 38: Relation zwischen Project Explorer und Coupled Changes

Selection
Service

 61

Damit der Coupled Changes auch als Selection Listener agieren kann, ist zuerst eine
Registrierung beim Selection Service notwendig. Das Listing 10 zeigt den Quellcodeabschnitt
der CoupledChanges.java Klasse, in dem der Selection Listener des Coupled Changes beim
Selection Service registriert und im Falle einer Selektion dann die Methode in der Zeile 4 in
Listing 10 mit seinen entsprechenden Parametern aufgerufen wird.

1
2
3
4

private ISelectionListener listener = new ISelectionListener() {
public void selectionChanged(IWorkbenchPart sourcepart, ISelection selection) {
 if (sourcepart != CoupledChanges.this) {
determineThePathOfTheSelectedFileAndSendIt(sourcepart, selection);}}};

Listing 10: Registrierung des Selection Listeners in CoupledChanges.java

2. Pfadbestimmung und Transformation der selektierten Files:

Nachdem durch den vorherigen Schritt gewährleistet wurde, dass die Coupled Changes
über alle aktuellen Selektionsänderungen im Project Explorer View informiert wird, erfolgt
in diesem Schritt die Bearbeitung des selektierten Files, um dessen Pfad zu bestimmen.
Grund dafür ist die Datenstruktur der Files in der Outputtabelle, in der die Files als Pfade
repräsentiert sind (siehe Tabelle 5). Um jetzt die in dem Project Explorer durch den Benutzer
selektierten Files mit dieser Outputtabelle zu vergleichen und die Ergebnisse dieses
Vergleiches anzuzeigen, bedarf es der Ermittlung des Pfades des selektierten Files. D.h., dass
der Pfad des in dem Project Explorer selektierten Files mit der Inhaltsstruktur der
Outputtabelle übereinstimmen muss, um überhaupt den Vergleich durchführen zu können.

Abbildung 39: Selektion eines Files in dem Project Explorer

 62

Selektiert beispielweise der Benutzer wie es in der Abbildung 39 dargestellt ist, das File
Test1.java, so muss in der CoupledChanges.java Klasse der Pfad dieses Files ermittelt
werden, um den Vergleich mit der Outputtabelle aus der Tabelle 5 durchführen zu können.
Denn in der Tabelle 5 liegt der Pfad dieses Files in folgender Form vor:
Project/src/example/Test1.java.

Für die Ermittlung des Pfades von einem File ist die Anwendung der Interfaces
IStructuredSelection und ITreeSelection erforderlich. Generell existieren zwei grundlegend
verschiedene Selektionsarten:

1. Eine Liste von Objekten.
2. Ein Textstück.

Abbildung 40: Überblick über alle Selektionsarten im Project Explorer [36]

So wie man es aus der Abbildung 40 auch entnehmen kann, existieren drei verschiedene
Selektionsinterfaces:

1. ITextSelection:
Dieses Interface ist für die Repräsentation von textuellen Selektionen zuständig [37].

 63

2. IMarkSelection:
Handelt es sich bei der Selektion um eine Markierung eines Textstückes, so kommt
die IMarkSelection zum Einsatz [38].

3. IStructuredSelection:
Dieses Interface bezieht sich auf eine Liste von Objekten [39].

4. ITreeSelection:
Bei diesem Interface handelt es sich um eine spezielle Form der IStructuredSelection.
Dieses Interface zeichnet sich dadurch aus, dass es jedes Objekt in der Liste als einen
Pfad beschreibt. Unter einem Pfad versteht man dabei eine Liste von Objekten,
welche angefangen von der Wurzel bis hin zum selektierten File alle Files in einem
Baum repräsentieren [36].

Für die Ermittlung der Pfade der selektierten Files werden die letzten zwei Interfaces
eingesetzt. Die Ermittlung des Pfades erfolgt in zwei Schritten.

1. Bestimmung des Pfades des selektierten Files:
Zu Beginn wird mit Hilfe der Interfaces IStructuredSelection und ITreeSelection der
Pfad des selektierten Files ermittelt. Listing 11 zeigt den Teilquellcodeabschnitt der
CoupledChanges.java Klasse, der für die Ermittlung des Pfades des selektierten Files
verantwortlich ist.

Klickt der Benutzer auf einen File im Project Explorer, wird als Erstes in der Zeile 3
in Listing 11 überprüft, ob die Selektion eine Instanz von IStructuredSelection ist.
Wenn ja, dann wird die aktuellste Selektion in dem Project Explorer gelesen und in
die Variable selection1 übertragen.

Im Anschluss daran wird im nächsten Schritt überprüft, ob selection1 eine Instanz
von ITreeSelection ist (Zeile 7 in Listing 11). Wenn es der Fall ist, dann werden in den
darauffolgenden Schritten, also in den Zeilen 10-23 in Listing 11 der Pfad des aktuell
selektierten Files bestimmt und der Variablen fileName übergeben.

Somit wird bei jeder Fileselektion der entsprechende Pfad des selektierten Files
bestimmt und auf die gleiche Art und Weise der Variablen fileName übergeben.

 64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

public void determineThePathOfTheSelectedFileAndSendIt(IWorkbenchPart
sourcepart, ISelection selection) {
 if (selection instanceof IStructuredSelection) {
window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();
 activePage = window.getActivePage();
 ISelection selection1 = activePage.getSelection();
 if(selection1 instanceof ITreeSelection)
 {
 TreeSelection treeSelection = (TreeSelection) selection1;
 TreePath[] treePaths = treeSelection.getPaths();
 TreePath treePath = treePaths[0];
 Object firstSegmentObj = treePath.getFirstSegment();
 theProject = (IProject) ((IAdaptable)
firstSegmentObj).getAdapter(IProject.class);
 Object lastSegmentObj = treePath.getLastSegment();
 theResource = (IResource) ((IAdaptable)
lastSegmentObj).getAdapter(IResource.class);
 theFile = (IFile) ((IAdaptable)
lastSegmentObj).getAdapter(IFile.class);
 workspaceName =
theResource.getWorkspace().getRoot().getLocation().toOSString();
 projectName =theProject.getName();
 fileName = theResource.getFullPath().toOSString();

Listing 11: Pfadermittlung des selektierten Files in CoupledChanges.java

2. Transformation des Pfades des selektierten Files:

In diesem Schritt wird der im vorherigen Schritt ermittelte Pfad transformiert, so
dass es mit der Datenstruktur der Outputtabelle (siehe Tabelle 5) übereinstimmt.

An dieser Stelle wird hier noch einmal auf das Beispiel vom vorherigen Schritt
eingegangen (Abbildung 39). Der Pfad des durch den Benutzer in dem Project
Explorer selektierten Files Test1.java befindet sich momentan in der Variablen
fileName in folgender Form: /Project/src/example/Test1.java.

So wie man es aus der Outputtabelle (siehe Tabelle 5) auch entnehmen kann, liegt der
Pfad des Files Test1.java als Project/src/example/Test1.java vor. Das bedeutet, der Pfad
aus der Variable fileName muss umgewandelt und der Datenstruktur aus der
Outputtabelle angepasst werden, um den Vergleich durchzuführen.

Das Listing 12 repräsentiert jenen Bereich des Quellcodes der CoupledChanges.java
Klasse, welcher für die Pfadtransformation der selektierten Files verantwortlich ist.
Es verdeutlich wie der Pfad der Variablen fileName transformiert und anschließend
in die Variable buffTemp gespeichert wird.

 65

Nach der Durchführung der Pfadtransformation befindet sich dann der aktuell
transformierte Pfad des selektierten Files Test1.java in der Variable buffTemp in
folgender Form: Project/src/example/Test1.java.

1
2
3
4
5
6
7
8
9
10
11
12
13

StringBuffer buffTemp = new StringBuffer();
 char[] CUT_POINTS = {'\\'};
 char [] probe=fileName.toCharArray();
 for(int i=1;i<probe.length;i++)
 {
 if(probe[i]==CUT_POINTS[0])
 {
 buffTemp.append("/");

 }else
 {
 buffTemp.append(probe[i]);
 } }

Listing 12: Pfadtransformation in CoupledChanges.java

Nach diesem letzten Schritt wird der Pfad des aktuell selektierten Files an die Variable
SelectedFile der Maincontrol.java Klasse übergeben und die Methode, welche den Vergleich
und alle weiteren Bearbeitungen durchführen soll aufgerufen. Das Listing 13 zeigt die
Übergabe des Pfades und den Methodenaufruf.

1
2

Maincontrol.SelectedFile=buffTemp.toString();
Maincontrol.invokeThePreparationOfTheCoupledChanges();

Listing 13: Filepfadübergabe und Methodenaufruf in CoupledChanges.java

3. Initialisierung der Coupled Changes und Commit View:

Die vorherigen zwei Schritte waren für die Reaktion auf die Selektionsänderungen aus dem
Project Explorer und für die Ermittlung und Übergabe der Filepfade verantwortlich.

Dieser Schritt ist für das Anzeigen der eigenen Ergebnisse in der eigenen Klasse (d.h.,
CoupledChanges.java Klasse) und die Weiterleitung der anderen Daten an die
CommitView.java Klasse bestimmt. Er ist für Initialisierung der eigenen Klasse und der
CommitView.java Klasse verantwortlich und wird bei jedem Ausführen der
CoupledChanges.java Klasse durchlaufen. Das Listing 14 zeigt den Quellcodeabschnitt der
CoupledChanges.java Klasse, welcher die Initialisierung ermöglicht.

Selektiert beispielweise der Benutzer einen File in dem Project Explorer, so wird nach den
ganzen Bearbeitungen, dieser Teil des Quellcodes aufgerufen und die entsprechenden
Klassen initialisiert. Entscheidet sich der Benutzer danach für einen anderen File als dem

 66

vorherigen, so wird wieder dieser Bereich ausgeführt und die entsprechenden Klassen
wieder initialisiert. Dadurch wird sichergestellt, dass die entsprechenden Klassen, die die
Ergebnisse anzeigen sollen (in diesem Fall die CoupledChanges.java und CommitView.java
Klassen), immer die richtigen Ergebnisse des entsprechenden aktuell selektierten Files
beinhalten.

D.h., die alten Werte werden immer durch die neuen Werte ersetzt. Die Zeile 1 in Listing 14
definiert eine Variable namens viewvalue und initialisiert es mit dem Wert 1. Dadurch wird
die sichere Ausführung der nachfolgenden if-Anweisung gewährleistet (Zeile 2 in Listing
14). In der if-Anweisung wird dann die Initialisierung der Coupled Changes durch die
Ausführung des Quellcodes in den Zeilen 4-6 in Listing 14 und die Initialisierung der
Commit View durch die Ausführung des Quellcodes in den Zeilen 8-10 in Listing 14
verwirklicht.

1
2
3
4
5
6
7
8
9
10
11

viewvalue=1;
if(viewvalue!=0)
 {
properties.put("file", showPlgn.Control());
Event event = new Event("viewcommunicationfile/syncEvent", properties);
eventAdmin.sendEvent(event);

properties.put("commidid", showPlgn.Control());
Event event1 = new Event("viewcommunicationcommidid/syncEvent", properties);
eventAdmin.sendEvent(event1);
 }

Listing 14: Initialisierung Coupled Changes und Commit View in CoupledChanges.java

4.Senden und Empfangen von Daten:

Nach der Durchführung des Vergleiches von dem selektierten File mit der Outputtabelle
werden mehrere Informationen erzeugt, die in unterschiedlichen Views angezeigt werden
müssen. Um diese Informationen in ihren Views anzuzeigen, müssen diese erst diese
Informationen von anderen Views empfangen. Das bedeutet, die Informationen werden von
einem View gesendet und von einem anderen View oder aber auch von dem gleichen View
wieder empfangen und angezeigt. Die CoupledChanges.java Klasse ist für das Senden von
Informationen über die gekoppelten Dateiänderungen und die CommitIDs, welche die
gekoppelten Dateiänderungen beinhalten, verantwortlich.

 67

Senden und Empfangen von gekoppelten Dateiänderungen oder Fehlermeldung:

Im Falle von Informationen über gekoppelte Dateiänderungen agiert die
CoupledChanges.java Klasse sowohl als Sender als auch Empfänger. Die gekoppelten
Dateiänderungen, die durch ihn gesendet werden, werden später in einer anderen Methode
der gleichen Klasse wieder empfangen und dann angezeigt. Dabei werden zwei Arten von
Informationen gesendet und später wieder empfangen.

Die eine Information tritt immer dann auf, wenn das selektierte File nicht in der
Outputtabelle vorhanden ist. Klickt der Benutzer auf einen File in dem Project Explorer,
welcher nicht in der Outputtabelle vorhanden ist, so wird eine Fehlermeldung gesendet, die
die folgende Nachricht beinhaltet: „The selected File does not exist in the Ouputtable“ („das
selektierte File existiert nicht in der Outputtabelle“). Das Listing 15 zeigt jenen Bereich der
CoupledChanges.java Klasse, der für das Senden der Fehlermeldung zuständig ist.

1
2
3
4
5
6
7

if(Maincontrol.coupledchangesfiles.size()==0)
 {
viewvalue=0;
properties.put("file", showPlgn.showFehler("fehler"));
Event event = new Event("viewcommunicationfile/syncEvent", properties);
eventAdmin.sendEvent(event);
 }

Listing 15: Senden von Fehlerinformationen in CoupledChanges.java

Bei der Durchführung des Quellcodes in Listing 15 wird als Erstes überprüft, ob das Attribut
coupledchangesfiles der Klasse Maincontrol.java leer ist (Zeile 1 in Listing 15). Das Array
coupledchangesfiles beinhaltet alle gekoppelten Dateiänderungen des selektierten Files. Ist
dieses Array leer, dann folgt daraus, dass das in dem Project Explorer selektierte File nicht in
der Outputtabelle vorhanden ist. In so einem Fall wird dann der properties Variablen der
CoupledChanges.java Klasse die Fehlermeldung aus der ShowPlugin.java Klasse
hinzugefügt.

Das Listing 16 zeigt jenen Teil der ShowPlugin.java Klasse, welcher die Fehlermeldung
erzeugt und zurückgibt. Beim Aufruf der Methode showFehler() aus der ShowPlugin.java
Klasse wird die Fehlermeldung „The selected File does not exist in the Outputtable“ erzeugt
und der Variablen f übergeben (Zeile 3 in Listing 16). Anschließend wird die Variable f
zurückgegeben (Zeile 4 in Listing 16).

 68

1
2
3
4
5

public String showFehler(String f)
 {
f="The selected File does not exist in the Outputtable";
return f;
 }

Listing 16: Erzeugung und Rückgabe der Fehlermeldung in ShowPlugin.java

Wieder zurück in Listing 15 wird dann diese Fehlermeldung, die sich in der Variable
properties befindet in den darauffolgenden Zeilen gesendet (Zeilen zwischen 5-6 in Listing
15).

Ist das Attribut coupledchangesfiles der Maincontrol.java Klasse aber nicht leer, also ist das
selektierte File in der Outputtabelle vorhanden, so wird der Inhalt dieses Attributes
gesendet. Das Listing 17 repräsentiert den Quellcodeabschnitt der CoupledChanges.java
Klasse, der die gekoppelten Dateiänderungen sendet.

1
2
3
4
5
6
7

for(int s=0;s<Maincontrol.coupledchangesfiles.size();s++)
{
viewvalue=0;
properties.put("file", showPlgn.showFile("file",s));
Event event = new Event("viewcommunicationfile/syncEvent", properties);
eventAdmin.sendEvent(event);
 }

Listing 17: Senden von gekoppelten Dateiänderungen in CoupledChanges.java

In der Zeile 1 in Listing 17 ist eine for Schleife definiert. Diese for Schleife geht alle
gekoppelten Dateiänderungen einzeln durch. Danach wird der properties Variablen die
gekoppelten Dateiänderungen von der ShowPlugin.java Klasse übergeben (Zeile 4 in Listing
17). Die Methode showFile() der ShowPlugin.java Klasse weist die gekoppelten
Dateiänderungen einer Variable zu und gibt diese Variable zurück. Das Listing 18 zeigt den
Teilquellcode der ShowPlugin.java Klasse, welcher die gekoppelten Dateiänderungen
durchläuft und sie einer Variablen zuordnet.

1
2
3
4
5

public String showFile(String a,int i)
 {
a= Maincontrol.coupledchangesfiles.get(i).toString();
return a;
 }

Listing 18: Übermittlung und Rückgabe der gekoppelten Dateiänderungen in
ShowPlugin.java

 69

Nach diesem Durchlauf werden diese gekoppelten Dateiänderungen, die sich in der
Variablen properties befinden, gesendet (Zeilen 5-6 in Listing 17). Somit wurden durch die
beschriebenen Schritte die Informationen über die gekoppelten Dateiänderungen
übermittelt.

Je nachdem welche Information gesendet ist, wird dann auch die entsprechende Information
in diesem View angezeigt. Handelt sich bei der gesendeten Information um die gekoppelten
Dateiänderungen, werden dementsprechend diese Informationen auch angezeigt. Wird im
Gegensatz dazu eine Fehlermeldung erzeugt und gesendet, wird diese Fehlermeldung in
dem View repräsentiert. Das Listing 19 zeigt wie die Informationen empfangen und
angezeigt werden.

1
2
3
4
5
6
7
8
9
10
11
12

public void handleEvent(final Event event)
{
if(CoupledChanges.viewvalue!=0)
{viewer.getTable().removeAll();}
else{
if(parent.getDisplay().getThread() == Thread.currentThread()) {
 viewer.add(event.getProperty("file"));
 } else {
 parent.getDisplay().syncExec(new Runnable() {
 public void run() {
 viewer.add(event.getProperty("file"));
 } }); }}}

Listing 19: Empfangen und Anzeigen von Informationen in CoupledChanges.java

Senden von CommitIDs:

Eine weitere Aufgabe der CoupledChanges.java Klasse ist zusätzlich noch das Senden von
den CommitIDs. Das Listing 20 zeigt den Quellcodeabschnitt der CoupledChanges.java
Klasse, der für das Senden von CommitIDs verantwortlich ist.

1
2
3
4
5
6

for(int s=0;s<Maincontrol.CommitIDs.size();s++)
{
viewvalue=0;
properties.put("commidid", showPlgn.showCommidID("commidid",s));
Event event = new Event("viewcommunicationcommidid/syncEvent", properties
eventAdmin.sendEvent(event);}

Listing 20: Senden von CommitIDs in CoupledChanges.java

Beim Senden von den CommitIDs wird ähnlich vorgegangen wie beim Senden von
gekoppelten Dateiänderungen oder Fehlermeldung. Die in der Zeile 1 in Listing 20 definierte
for-Schleife durchläuft alle CommitIDs in der Variable CommitIDs. Entsprechend werden

 70

dann die CommitIDs aus der showCommitID() Methode der ShowPlugin.java Klasse der
properties Variable übergeben (Zeile 4 in Listing 20). Das Listing 21 zeigt den Teilquellcode
der ShowPlugin.java Klasse, welcher die CommitIDs durchläuft und diese einer Variablen
zuordnet.

1
2
3
4
5

public String showCommidID(String a,int i)
 {
 a= Maincontrol.CommitIDs.get(i).toString();
 return a;
 }

Listing 21: Übermittlung und Rückgabe der CommitIDs in ShowPlugin.java

Ist dieser Durchlauf abgeschlossen, dann wird die Variable properties, welche die CommitIDs
beinhaltet, gesendet (Zeilen 5-6 in Listing 20).

6.4.6 CommitView.java

Die CommitView.java Klasse agiert sowohl als eine Empfängerklasse als auch eine
Senderklasse, wobei die Reihenfolge zuerst Empfangen und dann Senden ist. Die erste
Aufgabe von dieser Klasse ist das Empfangen und Anzeigen der CommitIDs, die von der
CoupledChanges.java gesendet werden. Die CommiIDs werden in einem Combobox
angezeigt (Abbildung 31). Das Listing 22 zeigt wie die CommitIDs empfangen und angezeigt
werden.

1
2
3
4
5
6
7
8
9
10
11
12

public void handleEvent(final Event event) {
 if(CoupledChanges.viewvalue!=0)
 {comboViewer.getCombo().removeAll();}
 else{
 if(parent.getDisplay().getThread() == Thread.currentThread()) {
 comboViewer.add(event.getProperty("commidid"));
 } else {
 parent.getDisplay().syncExec(new Runnable() {
 public void run() {
 comboViewer.add(event.getProperty("commidid")); }});
 }
 }

Listing 22: Empfangen und Anzeigen von CommitIDs in CommitView.java

Nachdem die CommitIDs empfangen und in dem Combobox aufgelistet sind, stehen sie dem
Benutzer als Auswahl zur Verfügung. Somit hat der Benutzer die Möglichkeit einen von
diesen CommitIDs auszuwählen, um sich dann die entsprechenden Einträge zu dem

 71

selektierten CommitID aus der Commit Message Tabelle in dem Commit Message View
anzeigen zu lassen.

Wählt beispielweise der Benutzer die CommitID: 125 in dem Commit View (siehe Abbildung
31), wird dieses selektierte CommitID mit den Einträgen in der Commit Message Tabelle
(siehe Tabelle 6) verglichen und anschließend der entsprechende Eintrag: „während die
anderen Klassen“ in dem Commit Message View dem Benutzer vorgestellt.

Dieser Vorgang angefangen von der Selektion der CommitIDs in dem Combobox, bis hin
zum Senden der Einträge werden in den folgenden zwei Schritten anhand von Quellcodes
näher in Betracht genommen.

1. Selektion von CommitIDs und Vergleich mit der Commit Message Tabelle:
Aus dem Listing 23 sind die Selektion und der Vergleich der CommitIDs mit der
Commit Message Tabelle zu entnehmen.

1
2
3

combo.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent e) {
 DBConnection.ReadCommitMessageTable(combo.getText());

Listing 23: Selektion von CommitIDs und Vergleich mit der Commit Message Tabelle in
CommitView.java

Nachdem in dem Quellcode von Listing 22 dem Combobox die CommitIDs
hinzugefügt wurden, wird in diesem Quellcodeabschnitt der CommitView.java
Klasse dem Combobox ein SelelectionListener hinzugefügt, um auf die Selektion der
CommitIDs durch die Benutzer zu reagieren (Zeile 1 in Listing 23).

Entscheidet der Benutzer sich für ein CommitID und selektiert dieses, dann erfolgt
der Methodenaufruf in der Zeile 3 in Listing 23. In dieser Methode wird die
ReadCommitMessageTable() Methode der DBConnection.java Klasse mit dem
selektierten CommitID als Inputparameter aufgerufen. Dort erfolgt dann der
Vergleich des selektierten CommitIDs mit der Commit Message Tabelle.

2. Senden von den Einträgen:
Nachdem der Vergleich mit der Commit Message Tabelle stattgefunden hat, erfolgt
das Senden dieser Einträge an die Commit Message View. Das Listing 24 zeigt, wie
die entsprechenden Einträge des selektierten CommitIDs gesendet werden.

 72

1
2
3
4
5
6

commitViewValue=0;
properties.put("commididmesssage",
showPlgn.showCommiIdMessage("commididmessage"));
Event event = new Event("viewcommunicationcommididmessage/syncEvent",
properties);
eventAdmin.sendEvent(event);

Listing 24: Senden von Einträgen in CommitView.java

Beim Durchlauf von diesem Quellcodeabschnitt der CommitView.java Klasse wird in
erster Linie dem properties Variablen die Einträge aus der showCommitIDMessage()
Methode der ShowPlugin.java Klasse hinzugefügt (Zeilen 2-3 in Listing 24). Das
Listing 25 zeigt den Quellcodeabschnitt der ShowPlugin.java Klasse, welcher die
Einträge einem Variablen zuordnet.

1
2
3
4
5

public String showCommiIdMessage(String a)
 {
 a=Maincontrol.commitMessageValue.toString();
 return a;
 }

Listing 25: Übermittlung und Rückgabe von den Einträgen in ShowPlugin.java

Abschließend wird die Variable properties gesendet (Zeilen 4-6 in Listing 24).

6.4.7 CommitMessageView.java

Am Ende steht die Commit Message View, die für das Empfangen und Repräsentieren von
den Einträgen zuständig ist. Dementsprechend agiert diese Klasse nur als Empfängerklasse.
Das Listing 26 verdeutlicht, wie diese Klasse die Einträge empfängt und präsentiert.

1
2
3
4
5
6
7
8
9

public void handleEvent(final Event event) {
 if(CommitView.commitViewValue!=0)
 {viewer.getTable().removeAll();}else{
 if(parent.getDisplay().getThread() == Thread.currentThread()) {
 viewer.add(event.getProperty("commididmessage"));
 } else {
 parent.getDisplay().syncExec(new Runnable() {
 public void run() {
 viewer.add(event.getProperty("commididmessage"));}}); }} }

Listing 26: Empfangen und Anzeigen von den Einträgen in CommitMessageView.java

 73

6.4.8 Search.java

So wie in der Tabelle 7 auch beschrieben, ist diese Klasse für das Suchen und Selektieren der
gekoppelten Dateiänderungen und den CommitIDs aus der Outputtabelle zuständig. Diese
Klasse besteht aus einer Methode, die im Folgenden erläutert wird.

1. searchForTheSelectedFile:

In dieser Methode wird in der Outputtabelle nach dem selektierten File gesucht.
Existiert das selektierte File in der Outputtabelle, so werden dann die entsprechenden
Bereiche der Outputtabelle ausgewählt und anschließend der Variablen
SelectedFileFieldsOfTheOutputtable der Maincontrol.java Klasse übergeben (Zeile 15 in
Listing 27).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public static void searchForTheSelectedFile(String geSuchtstr ,
List<List<String>> gesuchtWriteStr) {
 int i,j,m;
 for(i=0;i<gesuchtWriteStr.size();i++)
 {
 for(j=2;j<gesuchtWriteStr.get(i).size();j++)
 {
 if(gesuchtWriteStr.get(i).get(j).equals(geSuchtstr))
 { break;}}
 if(j==gesuchtWriteStr.get(i).size()){ }
 else{
 List<String> wrtgesuchtStrTemp =new ArrayList<>();
 for(m=0;m<gesuchtWriteStr.get(i).size();m++)
 {wrtgesuchtStrTemp.add(gesuchtWriteStr.get(i).get(m));}
Maincontrol.SelectedFileFieldsOfTheOutputtable.add(wrtgesuchtStrTemp);}
 }}

Listing 27: Suche nach dem selektierten File in der Outputtabelle in Search.java

6.4.9 Process.java

In dieser Klasse findet die Trennung der gekoppelten Dateiänderungen von den CommitIDs
statt, um sie dann an die entsprechenden Views zuzuschicken. Folglich werden die
gekoppelten Dateiänderungen an die Coupled Changes und die CommitIDs an die Commit
View gesendet. Die Process.java Klasse besteht aus drei Methoden:

1. processingTheSelectedFileFields:

Die Aufgabe dieser Methode ist es die Variable SelectedFileFieldsOfTheOutputtable so
zu bearbeiten, dass die gekoppelten Dateiänderungen sich in einer Variable und die
CommitIDs sich in einer anderen Variable befinden. Das Listing 28 zeigt, wie die
Verarbeitung und Übergabe in dem Quellcode der Process.java Klasse stattfindet.

 74

Als Erstes wird die Variable SelectedFileFieldsOfTheOutputtable als plugInWriteStr
Variable der processingTheSelectedFileFields() Methode als Inputparameter übergeben
(Zeile 1-2 in Listing 28).

Danach wird der Inhalt der plugInWriteStr Variable in der for-Schleife einzelnen
durchlaufen (Zeile 5 in Listing 28). Bei jedem Durchlauf werden dann die von der
plugInWriteStr Variable getrennten gekoppelten Dateiänderungen der
coupledchangesfiles Variable der Maincontrol.java Klasse hinzugefügt (Zeile 13 in
Listing 28). Die entkoppelten CommitIDs hingegen werden der splitCommitIDs()
Methode der Process.java Klasse zur Weiterverarbeitung als Parameter übergeben
(Zeile 15 in Listung 28).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public static void processingTheSelectedFileFields(List<List<String>>
plugInWriteStr)
 {
 int i,j;
 for(i=0;i<plugInWriteStr.size();i++)
 {
 List<String> plugInwrtStrTempFile =new ArrayList<>();
 List<String> plugInwrtStrTempCommidiD =new ArrayList<>();
 for(j=2;j<plugInWriteStr.get(i).size();j++)
 {
 plugInwrtStrTempFile.add(plugInWriteStr.get(i).get(j));
 }
 Maincontrol.coupledchangesfiles.add(plugInwrtStrTempFile);
 plugInwrtStrTempCommidiD.add(plugInWriteStr.get(i).get(0));
 splitCommiDs(plugInwrtStrTempCommidiD);}
 }

Listing 28: Entkopplung der gekoppelten Dateiänderungen von den CommitIDs in
Process.java

2. splitCommitIDs:

In der CommitIDs Spalte der Tabelle 5 ist zu erkennen, dass die CommitIDs durch
das Zeichen „:“ voneinander getrennt sind. Nach der Durchführung der
processingTheSelectedFileFields() Methode der Process.java Klasse, befinden sich die
CommitIDs genau in derselben Form wie sie in der Tabelle 5 zu sehen sind. Damit
aber diese CommitIDs in der gewünschten Form in dem Commit View anzuzeigen
(siehe Abbildung 31), bedarf es einer weiteren Verarbeitung von diesen CommitIDs.
Aus diesem Grund erfolgt in dieser Methode die Separierung und Transformation
der CommitIDs, welche in dem Listing 29 sehr anschaulich dargestellt sind. Die
CommitIDs werden dann zum Schluss der Variable CommitIDs der Maincontrol.java
Klasse hinzugefügt (Zeile 12 in Listing 29).

 75

1
2
3
4
5
6
7
8
9
10
11
12
13

public static void splitCommiDs(List<String> CommidiD)
 {
 StringBuffer buffer = new StringBuffer();
 for(int i=0; i< CommidiD.size(); i++){
 buffer.append(CommidiD.get(i));
 if(i != CommidiD.size()-1){
 buffer.append(':');}}
 buffer.append(':');
 String [] plugInstrTempCommidId =buffer.toString().split(":");
 for(int j=0;j<plugInstrTempCommidId.length;j++)
 {
 Maincontrol.CommitIDs.add(plugInstrTempCommidId[j]);
 }}

Listing 29: Separierung und Transformation der CommitIDs in Process.java

3. removeRedundanciesOfTheCommidIDs:

Diese Methode wird in der Maincontrol.java Klasse aufgerufen (Zeile 29 in Listing 3).
Der Zweck dieser Methode ist es redundante CommitIDs aus der Variable CommitIDs
zu entfernen. Nachdem durch die Methode splitCommitIDs die CommitIDs separiert
und transformiert wurden, stehen sie zwar in gewünschter Form, weisen aber
Redundanzen auf. Dies führt dazu, dass die identischen CommitIDs mehrmals in
dem Commit View auftreten. Um das Problem zu beheben und somit die CommitIDs
in exakt der gewünschten Form, wie sie in der Abbildung 31 aufgelistet sind
darstellen zu können, ist die Entfernung von redundanten CommitIDs aus dem
Variablen CommitIDs der Maincontrol.java Klasse zwingend erforderlich. Das Listing
30 veranschaulicht das Entfernen der redundanten CommitIDs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public static void removeRedundanciesOfTheCommidIDs(List<String>
sortCommidID)
 {
 Collections.sort(sortCommidID);
 int j,i;
 for (i=0;i<sortCommidID.size();i++)
 {
 for(j=i;j<sortCommidID.size();j++)
 {
if((sortCommidID.get(i).contains(sortCommidID.get(j))&&i!=j))
 {
 sortCommidID.remove(j);
 j--;} } }
 }

Listing 30: Entfernen von redundanten CommitIDs in Process.java

 76

7 Vergleich von Sequential Pattern Mining und Frequent
Itemset Mining

In diesem Kapitel findet der Vergleich zwischen den Algorithmen Sequential Pattern Mining
und Frequent Itemset Mining statt. Zuerst erfolgt eine Einleitung in dieses Themengebiet. Im
Anschluss daran werden der Aufbau und die Funktionsweise dieser Algorithmen dargestellt
und eine tabellarische Gegenüberstellung repräsentiert. Zum Schluss wird dann dieses
Kapitel mit dem Fazit des Vergleiches abgeschlossen.

7.1 Einleitung

So wie es in Kapitel 2 auch sehr ausführlich erläutert wurde, ist das Ziel von Data Mining die
Wissensextraktion und die Entdeckung von interessanten Mustern und Charakteristiken,
welche in den Datenbanken nicht explizit repräsentiert werden.

Für die Durchführung von Data Mining existieren mehrere Techniken. Eine dieser
Techniken ist die Frequent Itemset Mining, die im Rahmen dieser Diplomarbeit für die
Analyse der Datenbanken angewendet wurde. In dieser Technik geht es hauptsächlich
darum, häufige Itemmengen (Frequent Itemsets) aus Datenbanken zu entdecken, wobei es
sich bei den Datenbanken um Transaktionsdatenbanken handelt, die aus einer Menge von
Transaktionen bestehen. Jede Transaktion enthält wiederum eine Menge an Items.

In vielen Applikationen liegen die Daten auch in sequenzieller Form vor, was
dementsprechend den Einsatz der Data Mining Technik Sequential Pattern Mining für die
Verarbeitung dieser sequenziellen Daten erforderlich macht. Das Ziel von Sequential Pattern
Mining ist die Entdeckung von häufig auftretenden sequenziellen Mustern (Frequent
Sequential Patterns) aus den Sequenzdatenbanken, die sich aus einer Menge von Sequenzen
zusammensetzen. Jede Sequenz hingegen besteht aus einer Liste von Itemmengen (Itemsets).

7.2 Aufbau und Funktionsweise der beiden Algorithmen

In diesem Abschnitt wird auf den Aufbau und die Funktionsweise der beiden Algorithmen
eingegangen. Während der FP-Growth Algorithmus des SPMF Data Mining Frameworks für
die Erläuterung des Aufbaus und der Funktionsweise von Frequent Itemset Mining
herangezogen wird [32], findet die Erläuterung des Aufbaus und der Funktionsweise von
Sequential Pattern Mining unter Einbeziehung des PrefixSpan Algorithmus vom SPMF Data
Mining Framework statt [40].

 77

7.2.1 Aufbau und Funktionsweise von Frequent Itemset Mining

Die Abbildung 41 zeigt wie der FP-Growth Algorithmus die Daten aus dem Input.txt File
liest und die Ergebnisse in den Output.txt File schreibt. Die Transaktionsdatenbank wird hier
dem Algorithmus als Text File zur Verfügung gestellt. Jede Zeile in dem Input.txt File
entspricht einer Transaktion. Die Items innerhalb einer Transaktion sind durch Leerzeichen
voneinander getrennt. Beispielweise stellt die erste Zeile in dem Input.txt File eine
Transaktion dar, die aus den Items {File1}, {File2} und {File6} besteht. Der Algorithmus liest
diese Transaktionen Zeile für Zeile und erzeugt die Frequent Itemsets. Der Output.txt File
der Abbildung 41 repräsentiert die Frequent Itemsets, die nach der Durchführung des FP-
Growth Algorithmus mit einem Minimumsupportwert = 0.5 (3 Transaktionen) in den
Output.txt File hinzugefügt wurden. In diesem Output.txt File entspricht jede Zeile einem
Frequent Itemset. Zum Beispiel besagt die zweite Zeile des Output.txt Files, dass das
Frequent Itemset, welches die Items {File5} und {File3} enthält, einen Support von 3
Transaktionen hat [32].

File1 File2 File6 Input.txt
File4 File3
File1 File5 File3 File2
File2 File4 File5 File3
File2
File4 File5 File3

 FP-Growth Algorithmus (Frequent Itemset Mining)

File5:3 Output.txt
File5 File3:3
File4:3
File4 File3:3
File3:4
File2:4

Abbildung 41: Lese- und Schreibeoperation von FP-Growth Algorithmus [32]

 78

7.2.2 Aufbau und Funktionsweise von Sequential Pattern Mining

Hier wird der Aufbau und die Funktionsweise von Sequential Pattern Mining anhand des
PrefixSpan Algorithmus detaillierter beschrieben.

Die Aufgabe des PrefixSpan Algorithmus ist es sequenzielle Mustern (Sequential Patterns) in
Sequenzdatenbanken zu entdecken. Dieser Algorithmus bekommt als Input eine
Sequenzdatenbank und einen Minimumsupportwert in dem Intervall von [0.1, 1.0]. Nach
dem der Algorithmus die Daten aus der Sequenzdatenbank gelesen hat, führt er die Analyse
von diesen Inputdaten durch und erzeugt dann einige Ergebnisse. Bei diesen Ergebnissen
handelt es sich um häufigen sequenziellen Mustern (Frequent Sequential Pattern), deren
Suppportwerte größer oder gleich dem Minimumsupportwert sind.

Im Folgenden wird der Aufbau und die Funktionsweise des PrefixSpan Algorithmus des
SPMF Data Mining Frameworks repräsentiert und erläutert. Die Sequenzdatenbank, die den
Input für den Algorithmus bildet, wird als Text File zur Verfügung gestellt. Das bedeutet der
PrefixSpan Algorithmus liest die Daten aus einem Text File, bearbeitet sie mit Hilfe von dem
durch den Benutzer eingegebenen Minimumsupportwert und speichert die Ergebnisse dann
in einen anderen Text File.

Die Abbildung 42 zeigt den Ablauf der Lese- und Schreibeoperation des PrefixSpan
Algorithmus. Dabei sind die Daten in den Abbildungen 41 und 42 die gleichen. Der
Unterschied liegt in der Darstellung und der Interpretation dieser Daten. Man kann hier
sehen, wie der Algorithmus die Daten aus dem Input.txt File liest und bei einem gegebenen
Minimumsupportwert von 0.5 die Ergebnisse in den Output.txt File schreibt.

Betrachtet man den Input.txt File, so kann man sehen, dass jede Zeile einer Sequenz von
einer Sequenzdatenbank entspricht. Der Wert „-1“ indiziert das Ende eines Itemsets,
während das Ende einer Sequenz durch den Wert „-2“ indiziert wird. Beispielweise
repräsentiert die zweite Zeile des Input.txt Files eine Sequenz, die aus dem Itemset {File4},
gefolgt durch das Itemset {File3} besteht.

Ist die Analyse abgeschlossen, dann werden die Ergebnisse in den Output.txt File
geschrieben. Jede Zeile des Output.txt Files stellt einen Frequent Sequential Pattern dar. Der
Wert „-1“ indiziert auch hier das Ende von einem Itemset. In jeder Zeile werden die
Sequential Pattern zuerst angegeben. Danach erscheint das Schlüsselwort „#SUP:“ gefolgt
durch einen Integerwert, welcher den Support von dem Sequantial Pattern angibt. Die
zweite Zeile in dem Output.txt File repräsentiert den Frequent Sequential Pattern, welcher
aus dem Itemset {File5}, gefolgt durch das Itemset {File3} besteht und einen Support von 3
Sequenzen hat [40].

 79

7.2.3 Tabellarische Gegenüberstellung der beiden Algorithmen

Die Erläuterungen haben gezeigt, dass die beiden Algorithmen Unterschiede aber auch
Ähnlichkeiten aufgewiesen haben. Die nachfolgende Tabelle 8 stellt zum Schluss die
Gemeinsamkeiten und die Unterschiede noch einmal tabellarisch im Überblick dar.

Tabelle 8: Tabellarische Gegenüberstellung von FP-Growth und PrefixSpan Algorithmen

FP-Growth Algorithmus

PrefixSpan Algorithmus

Input

Minimumsupportwert und
Transaktionsdatenbank

Minimumsupportwert und
Sequenzdatenbank

Output

Häufige Itemmengen

Häufige sequenzielle Muster

Eine Zeile in der Datenbank

Ist eine Transaktion

Ist eine Sequenz

File1 -1 File2 -1 File6 -1 -2 Input.txt
File4 -1 File3 -1 -2
File1 -1 File5 -1 File3 -1 File2 -1 -2
File2 -1 File4 -1 File5 -1 File3 -1 -2
File2 -1 -2
File4 -1 File5 -1 File3 -1 -2

 PrefixSpan Algorithmus (Sequential Pattern Mining)

File5 -1 #SUP:3 Output.txt
File5 -1 File3 -1 #SUP:3
File4 -1 #SUP:3
File4 -1 File3 -1 #SUP:3
File3 -1 #SUP:4
File2 -1 #SUP:4

Abbildung 42: Lese- und Schreibeoperation des PrefixSpan Algorithmus [40]

 80

7.3 Konzept zur Integration von Sequential Pattern Mining ins SRM
Plug-In

Die Entwicklung des SRM Plug-Ins bildet das Ziel dieser Diplomarbeit. In diesem Plug-In
wurde, wie in den vergangenen Kapiteln sehr detailliert erläutert, die Data Mining Technik
Frequent Itemset Mining für das Suchen der gekoppelten Dateiänderungen angewendet.
Selbstverständlich ist auch die Anwendung von Sequential Pattern Mining für die Suche der
gekoppelten Dateiänderungen möglich. Dies ist vor allem bei Sequenzdatenbanken vom
Vorteil. Weiterhin würde die Anwendung von Sequential Pattern Mining innerhalb des SRM
Plug-Ins den Entwicklern die Möglichkeit geben, sich nicht nur über die gekoppelten
Dateiänderungen sondern auch über deren Reihenfolge informieren zu lassen. Aus diesem
Grund wird hier auf konzeptioneller Ebene beschrieben, wie die Integration des PrefixSpan
Algorithmus von Sequential Pattern Mining in das SRM Plug-In realisiert werden kann.

7.3.1 Lese- und Schreibeoperationen auf Datenbanktabellen

Bevor der PrefixSpan Algorithmus in das SRM Plug-In integriert wird, sind einige
Änderungen am Algorithmus erforderlich. Diese Änderungen umfassen das Lesen von den
Daten und das Schreiben der Ergebnisse. Aktuell liest dieser Algorithmus die Daten aus
einem Input.txt File, bearbeitet diese Daten mit Hilfe des durch den Benutzer eingegebenen
Minimumsupportwertes und schreibt anschließend die Ergebnisse in einen Output.txt File.

Die Abbildung 43 zeigt wie das Lesen von einer Inputdatenbanktabelle und das Schreiben
der Ergebnisse in eine Outputdatenbanktabelle realisiert werden soll. Die Lese- und
Schreibeoperation auf die Datenbanktabellen bestehen insgesamt aus 6 Punkten, die im
Folgenden erläutert werden:

1. Der Benutzer übergibt dem PrefixSpan Algorithmus einen Minimumsupportwert.

2. Die Daten aus der Inputdatenbanktabelle werden in einem Array gespeichert.

3. Dieser Array wird dem PrefixSpan Algorithmus als Input übergeben.

4. Die Ergebnisse der Analyse, also die Frequent Sequential Pattern werden in einem
anderen Array gespeichert.

5. Anschließend werden dann die Ergebnisse aus dem Array gelesen und in die

Outputdatenbanktabelle geschrieben.

 81

7.3.2 Architektur SRM Plug-Ins unter Anwendung von Sequential Pattern
Mining

Die Abbildung 44 zeigt die Architektur des SRM Plug-Ins, die für die Ermittlung von
gekoppelten Dateiänderungen den PrefixSpan Algorithmus von Sequential Pattern Mining
anwendet. Man kann sehr leicht sehen, dass die Architektur des SRM Plug-Ins aus der
Abbildung 44 größtenteils mit der Architektur des SRM Plug-Ins aus der Abbildung 23
übereinstimmt. Der einzige Unterschied zwischen diesen beiden Abbildungen ist der für die
Analyse eingesetzte Algorithmus. Die Integration des PrefixSpan Algorithmus kann
aufgrund von Lizenzangelegenheiten nur als externer Jar File in das SRM Plug-In erfolgen
[41].

Input Output
Prefix
Span

Array
2 3 4 5

Array

Benutzer

1

Abbildung 43: Lese- und Schreibeoperationen von PrefixSpan Algorithmus auf
Datenbanktabellen

 82

Input Output
PrefixSpan.jar
(Algorithmus)

3. Schreibt die
Ergebnisse

2.Liest die
Daten

Software Repository Mining (SRM) Plug-In

Benutzer

1.Benutzer startet den
Algorithmus über das
SRM Plug-In

File

4.Benutzer selektiert
einen File im SRM
Plug-In

5.Abfrage nach
dem selektierten
File (Querying)

6.Zu der Abfrage
passenden Ergebnisse
werden dem SRM
Plug-In übermittelt
(Matching)

7.Die Ergebnisse
werden in dem SRM
Plug-In dem Benutzer
vorgeschlagen
(Suggestions)

Abbildung 44: Architektur SRM Plug-In mit PrefixSpan Algorithmus

 83

7.4 Fazit des Vergleiches

Die Realisation des SRM Plug-Ins unter der Anwendung von Sequential Pattern Mining zur
Extraktion der gekoppelten Dateiänderungen aus Software-Repositories würde den Vorteil
mit sich bringen, dass die ermittelten gekoppelten Dateiänderungen gleichzeitig in einer
bestimmten sequenziellen Reihenfolge angezeigt werden und somit den Benutzer darüber
informieren, in welcher Reihenfolge die gekoppelten Dateiänderungen zu ändern sind.

Des Weiteren kann man aus dem vorherigen Kapitel auch erkennen, dass der Aufwand für
die Integration von Sequential Pattern Mining in das SRM Plug-In minimal ist. Der Aufwand
besteht lediglich in der Transformation des PrefixSpan Algorithmus entsprechend der
Abbildung 43. D.h., der Quellcode des PrefixSpan Algorithmus muss so geändert werden,
dass er Daten aus einer Datenbanktabelle lesen und die Ergebnisse in eine andere
Datenbanktabelle schreiben kann. Anschließend findet dann die Integration dieses
transformierten PrefixSpan Algorithmus in das SRM Plug-In als externer Jar File statt. Alle
anderen Bereiche des SRM Plug-Ins bleiben unverändert.

 84

8 Evaluation

In diesem Kapitel wird das entwickelte SRM Plug-In seiner Zielgruppe, also den Entwicklern
vorgestellt, um zu überprüfen, ob es den Anforderungen der Entwickler gerecht ist.

8.1 Überblick über den Evaluationsprozess

Der Evaluationsprozess gliedert sich in drei Phasen. Vorbereitungsphase, Testphase,
Analyse- und Auswertungsphase. Die Abbildung 45 repräsentiert die einzelnen Phasen.

Abbildung 45: Phasen des Evaluationsprozesses

8.2 Vorbereitungsphase

8.2.1 Erstellung von Testdaten

Um die Evaluation in den nächsten Schritten überhaupt durchführen zu können, benötigt
man Testdaten. Unter der Erstellung von Testdaten versteht man die Erzeugung von
Testdatenbanken, deren Inhalte mit Beispielwerten belegt werden. Es werden zwei
Datenbanktabellen erzeugt. Die eine Datenbanktabelle ist die Inputtabelle. Diese Inputtabelle
beinhaltet die Files, welche in der Testphase analysiert werden und besteht insgesamt aus 10
Transaktionen, die unterschiedliche Anzahl an Items enthalten. Die zweite Tabelle ist die

Analyse- und Auswertungsphase!
Hier erfolgt zuletzt die Analyse und Auswertung der aus der Testphase

resultierten Ergebnisse.!

Testphase!

In dieser Phase findet das Testing des SRM Plug-Ins mit den Entwicklern statt.!

Vorbereitungsphase!
In dieser Phase werden alle notwendigen Informationen vorbereitet, die für

die Durchführung der Evaluation notwending sind.!

 85

Commit Message Tabelle, die ebenfalls mit Beispielwerten erzeugt wird. Diese Commit
Message Tabelle beinhaltet die Einträge zu den Transaktionen aus der Inputtabelle.

8.2.2 Festlegung des Testfallszenarios

Sind die Datenbanktabellen erzeugt, wird ein Testfallszenario festgelegt, anhand derer die
Entwickler das Tool testen sollen. Die Abbildung 46 zeigt den Inhalt des Testfallszenarios.

Testfallszenario

Bitte führen Sie die nachfolgenden Schritte aus :

1. Öffnen Sie Eclipse.
2. Importieren Sie das ASTPA Projekt in das Project Explorer.
3. Im Eclipse-Menü `Window` auswählen → `Show View`→ `Other`.
4. Danach den Ordner SRM Plug-In öffnen und die Views (Execution View, Coupled

Changes, Commit Message View und Commit View) markieren und auf `OK`
Klicken.

5. Gehen Sie dann auf die Execution View.
6. Geben Sie in das Textfeld einen Wert im Intervall [0.1, 1.0] ein, wobei 0.1= 10% und

1.0= 100% ist.
7. Klicken Sie auf den „Start Execution“ Button.
8. Klicken Sie auf einen File in dem Project Explorer.
9. Klicken Sie auf die Coupled Changes. Die gekoppelten Dateiänderungen des

selektierten Files werden in dem Coupled Changes angezeigt.
10. Gehen Sie auf die Commit View.
11. Öffnen Sie das Combobox. Die Transaktionen, welche die gekoppelten

Dateiänderungen beinhalten werden in dem Combobox angezeigt.
12. Selektieren Sie einen von diesen Transaktionen.
13. Öffnen Sie die Commit Message View. Die Einträge zu der selektierten Transaktion

erscheinen dann in dem Commit Message View.
14. Schließen Sie Eclipse.

Abbildung 46: Testfallszenario

 86

8.2.3 Erstellung von dem Fragebogen

Am Ende der Vorbereitungsphase findet dann die Erstellung des Fragebogens statt. Durch
diesen Fragebogen, bekommt man einen Feedback von den Entwicklern, anhand derer dann
die Analyse und die Auswertung der Evaluation vollzogen wird. Die Abbildung 47 zeigt
den Aufbau des Fragebogens.

Abbildung 47: Fragebogen zum SRM Plug-In

 87

8.3 Testphase

Die Testphase bildet den Kernpunkt der Evaluation, da hier durch die Feedbacks der
Entwickler, das SRM Plug-In analysiert werden kann. An der Testphase nahmen insgesamt
10 Entwickler teil, die folgenden Tätigkeiten nachgehen:

• Ein Doktorand der Universität Stuttgart.

• Zwei Absolventen der Studiengang Informatik.

• Ein Absolvent der Studiengang Wirtschaftsinformatik.
• Ein SimTech Student der Universität Stuttgart.

• Zwei Computerlinguistik-Studenten der Universität Stuttgart.

• Drei Informatikstudenten der Universität Stuttgart.

Dabei hatte jeder dieser Teilnehmer unterschiedliche Kenntnisse beim Umgang mit dem
Eclipse Tools. Jedem Teilnehmer wurden das Testfallszenarioblatt und der Fragebogen
übergeben. Die Dauer der Testphase pro Teilnehmer betrug ca. 20-30 Minuten.

8.4 Auswertungsphase der Evaluationsergebnisse

Die letzte Phase legt die Auswertung der Evaluationsergebnisse dar. Im Folgenden werden
die Ergebnisse der Umfragen präsentiert und kommentiert.

Die Abbildung 48 präsentiert die Ergebnisse, welche von den Umfragen mit den Entwicklern
entstanden sind. Obwohl der Fragebogen auch die Punkte „trifft nicht zu“ und „trifft eher
nicht zu“ als Auswahl hatte, wurden diese Punkte durch die Entwickler nicht ausgewählt.
Daraus kann man folgern, dass das SRM Plug-In von den meisten Entwicklern als seinen
Anforderungen gerecht empfunden wurde.

Die Fragen in dem Fragebogen gliedern sich in funktionale und nicht funktionale
Eigenschaften des SRM Plug-Ins.

Die Fragen 1, 2, 3, 4, 6 und 10 beziehen sich auf den funktionalen Teil des SRM Plug-Ins.
Man kann aus der Abbildung 48 sehr deutlich sehen, dass genau diese Punkte durch die
Teilnehmer sehr gut bewertet wurden, was besagt, dass die Entwickler die Funktionalitäten
des SRM Plug-Ins sehr nützlich und hilfreich finden. Vor allem die Antworten der
Entwickler auf die Frage 10, ob sie das SRM Plug-In benutzen und weiterempfehlen würden,
wiederspiegeln die Zufriedenheit der Entwickler mit den Funktionalitäten des SRM Plug-
Ins.

 88

Die Fragen 5, 7, 8 und 9 hingegen repräsentieren jene Fragen, die das Design des SRM Plug-
Ins anbetreffen. Bei diesen Fragen haben die meisten Teilnehmer wieder sehr viele positive
Antworten gegeben, während aber auch einige Teilnehmer keine Stellung zu diesen Fragen
genommen haben. Vor allem auf die Frage 5 haben 40% der Probanden (also 4 Personen)
keine Stellung genommen. Dies bedeutet, dass bei der Benutzeroberfläche des SRM Plug-Ins
noch einige Optimierungsarbeiten durchzuführen sind.

Abbildung 48: Überblick über die Evaluationsergebnisse

80%	

40%	

60%	

60%	

60%	

40%	

50%	

80%	

40%	

50%	

20%	

10%	

10%	

40%	

10%	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Frage	
 10	

Frage	
 9	

Frage	
 8	

Frage	
 7	

Frage	
 6	

Frage	
 5	

Frage	
 4	

Frage	
 3	

Frage	
 2	

Frage	
 1	

Prozentualer	
 Anteil	
 des	
 Teilnehmer	

trifft	
 eher	
 zu	
 trifft	
 zu	
 weder	
 noch	

 89

9 Zusammenfassung und Ausblick

Entwickler, die sich mit einem Softwaresystem nicht gut auskennen, benötigen oft lange bei
der Durchführung ihrer Aufgaben. Ändert beispielweise der Entwickler einen File oder
einen Code eines Softwaresystems, so sind meistens auch Änderungen an anderen Files bzw.
Codes erforderlich. Das bedeutet, der Entwickler muss sobald er eine Änderung an einem
File bzw. Code vorgenommen hat, die mit diesem File zusammen geänderte Files auch
ändern. Diese Tatsache führt oft dazu, dass der Entwickler bei großen Softwaresystemen den
Überblick verliert und nicht alle Files ändern kann. Aber auch die erfahrenen Entwickler
könnten von dem gleichen Problem betroffen sein. Um genau dieser Problematik entgegen
zu wirken und die Entwickler in ihren Modifikations- und Wartungsaufgaben zu
unterstützen wurde im Rahmen dieser Diplomarbeit ein Eclipse Plug-In namens Software
Repository Mining (SRM) Plug-In entwickelt. Dieses Plug-In ermöglicht es den Entwicklern
Software Repositories zu analysieren, um sich die Ergebnisse in dem Eclipse IDE anzeigen
zu lassen.

Aktuell hat der Entwickler die Möglichkeit folgenden Aufgaben mit Hilfe des SRM Plug-Ins
zu erledigen:

1. Der Entwickler kann die Analyse der Software-Repositories über das Execution View
des SRM Plug-Ins durchführen.

2. Der Entwickler kann sich alle Informationen über die gekoppelten Dateiänderungen
in dem SRM Plug-In anzeigen lassen. Ändert er einen File in einem Projekt, so
erscheinen ihm diese Informationen in drei separaten Views.

Die Coupled Changes listet alle gekoppelten Dateiänderungen auf. Somit kann der
Entwickler in diesem View sehen, welche anderen Files er noch ändern muss.

Die Commit View repräsentiert alle Transaktionen, in denen die gekoppelten
Dateiänderungen sich befinden. Durch die Informationen in dem Coupled Changes
weiß der Entwickler zwar welche weiteren Files er ändern muss, aber er weiß nicht,
wo die zu ändernden Files sich befinden. Diese Informationslücke wird dann durch
die Commit View gedeckt. In diesem Commit View wird dann der Entwickler
zusätzlich auch noch darüber informiert, wo er diese Änderungen vorzunehmen hat.

Zuletzt existiert in dem Plug-In noch ein letztes View namens Commit Message View,
die dem Entwickler zeigt, wie er die Änderung durchzuführen hat.

 90

Der Ablauf dieser Diplomarbeit untergliederte sich in die Phasen Anforderungsphase,
Konzeptphase, Implementierungsphase und Evaluationsphase, wobei die ersten drei Phasen
die Implementierung und die letzte Phase die Evaluation des SRM Plug-Ins darstellen.

Zuerst wurden in der Anforderungsphase die Anforderungen an das SRM Plug-Ins definiert.
Dabei wurde festgelegt, dass das Plug-In für die Analyse die Data Mining Technik „Frequent
Itemset Mining “ anwenden soll. Weitere Anforderungen wurden dann wie folgt definiert:

• Der Entwickler soll die Frequent-Itemset-Analyse von dem SRM Plug-In aus starten
können.

• Die Ergebnisse der Frequent-Itemset-Analyse sollen dem Entwickler in dem SRM
Plug-In vorgestellt werden.

In der darauffolgenden Phase wurde dann ein den Anforderungen gerechtes Konzept für
das SRM Plug-Ins entwickelt. Dieses Konzept gibt Aufschluss darüber wie der Aufbau und
die Funktionsweise des Datenflusses in dem SRM Plug-Ins auszusehen hat. Zu diesem
Zweck wurden die nachfolgenden Punkte in Betracht gezogen und konzeptionell abgebildet:

• Ausführen der Frequent-Itemset-Analyse durch die Entwickler.

• Lesen der Daten aus der Datenbanktabelle.

• Schreiben der Ergebnisse der Frequent-Itemset-Analyse in eine andere
Datenbanktabelle.

• Untersuchen dieser Ergebnisse durch die Entwickler.

• Repräsentation der Informationen in unterschiedlichen Views des SRM Plug-Ins.

Nachdem die Konzeptphase vollendet war, fand dann in der Implementierungsphase die
Umsetzung dieses Konzeptes statt. Dabei wurde in erster Linie der Algorithmus, welcher die
Frequent-Itemset-Analyse durchführen soll, transformiert. Diese Transformation umfasste
das Lesen der Daten aus der Datenbanktabelle und Schreiben der Ergebnisse in eine andere
Datenbanktabelle. Anschließend wurde dann das SRM Plug-In mit den notwendigen Views
(Execution View, Coupled Changes, Commit View und Commit Message View) erstellt und
der transformierte Algorithmus als externer Jar File in das SRM Plug-In integriert.

Die letzte Phase ist die Evaluationsphase. In dieser Phase wurde das SRM Plug-In durch die
Entwickler getestet, um zu überprüfen, ob es ihren Anforderungen entspricht oder nicht.
Diese Phase untergliedert sich wiederum in drei Phasen (siehe Abbildung 45). Die erste
Phase ist die Vorbereitungsphase. In dieser Phase wurden alle für die Evaluation
notwendigen Daten vorbereitet. Zu diesem Zweck wurden Testdaten generiert. Bei diesen
Testdaten handelt es sich um Datenbanktabellen, die für die Frequent-Itemset-Analyse

 91

benötigt werden. Im Anschluss daran wurde ein Testfallszenario erstellt (siehe Abbildung
46), um den Entwicklern vorzuschreiben, wie sie das Plug-In zu testen haben. Zuletzt wurde
dann auch noch ein Fragebogen mit zehn Fragen über das SRM Plug-In erzeugt. In der
Testphase fand das Testing des SRM Plug-Ins mittels des Testfallszenarios durch die
Entwickler statt. Im Anschluss daran haben die Entwickler ihre Quoten zu dem SRM Plug-In
in den Fragebögen kenntlich gemacht. An dem Testing haben insgesamt 10 Entwickler
teilgenommen. Die letzte und somit auch die entscheidendste Phase der Evaluationsphase ist
die Analyse- und Auswertungsphase. In dieser letzten Phase wurden die durch die
Entwickler abgegebenen Fragebögen analysiert und ausgewertet. Die Abbildung 48
veranschaulicht die Ergebnisse der Evaluationsphase in einem Balkendiagramm graphisch.
Dabei bestand der Fragebogen (siehe Abbildung 47) aus insgesamt 10 Fragen, wobei 6
Fragen über die funktionalen Eigenschaften und 4 über die nicht funktionalen (Design)
Eigenschaften gestellt waren. Für die Antwortmöglichkeiten wurde die Likert-Skala
angewendet. Die Ergebnisse in der Abbildung 48 veranschaulichen sehr deutlich, wie gut
das SRM Plug-In durch die Entwickler bewertet wurde. Die Fragen 1, 2, 3, 4, 6 und 10
repräsentieren die funktionalen Eigenschaften des SRM Plug-Ins. Die Antworten der
Entwickler zu diesen Fragen bekräftigen noch einmal ganz gut, dass das SRM Plug-In seinen
Anforderungen gerecht wurde. Vor allem die positive Antwort der überwältigenden
Mehrheit der Teilnehmer auf die Frage 10, ob sie das SRM Plug-In benutzen und
weiterempfehlen würden, bestätigen die Zufriedenheit der Teilnehmer mit den
Funktionalitäten des SRM Plug-Ins.

9.1 Ausblick

Da es sich bei diesem SRM Plug-In um einen Prototyp handelt, sind Erweiterungen in
vielerlei Hinsicht auch möglich.

Das aktuelle SRM Plug-In verwendet Frequent Itemset Mining für die Durchführung der
Analysen. Die eine Erweiterung des SRM Plug-Ins ist die Integration des Sequential Patten
Mining in das SRM Plug-In. Im Kapitel 7 wurde bereits auf konzeptioneller Ebene
beschrieben, wie die Integration von Sequential Pattern Mining in das SRM Plug-In
verwirklicht werden kann. Dies würde den Vorteil mit sich bringen, dass Entwickler neben
den Informationen über die gekoppelten Dateiänderungen zusätzlich auch noch die
Informationen darüber bekommen würden, in welcher Reihenfolge diese gekoppelten
Dateiänderungen zu ändern sind.

Eine weitere Erweiterung betrifft das Design bzw. die Gebrauchstauglichkeit (eng. usability)
des SRM Plug-Ins. Da im Rahmen dieser Diplomarbeit die Anforderungen an das Plug-In
die funktionalen Eigenschaften anbetrafen, wurde hinsichtlich des Design und der
Gebrauchstauglichkeit des Plug-Ins nicht so viel Zeit investiert. Der Schwerpunkt lag

 92

vielmehr in der Realisation der funktionalen Anforderungen des SRM Plug-Ins. Die Fragen
5, 7, 8, 9 aus dem Fragebogen (siehe Abbildung 47) betreffen das Design und die
Gebrauchstauglichkeit (eng. usability) des SRM Plug-Ins. Aus der Abbildung 48 ist ganz gut
ersichtlich, dass diese Fragen zwar durch die Entwickler ganz gut bewertet wurden, aber
einige Teilnehmer haben wiederum auch keine Stellung zu den Fragen genommen. Vor
allem haben 40% der beteiligten Teilnehmer auf die Frage 5, ob Sie die Benutzeroberfläche
sehr übersichtlich finden, die Antwort „weder noch“ angekreuzt. Diese Antwort besagt
somit, dass es im Bereich der Benutzeroberflächengestaltung und der Gebrauchstauglichkeit
des SRM Plug-Ins noch einige Erweiterungen möglich sind.

 93

Literaturverzeichnis

[1]: R. Robbes, M. Lanza: A Change-based Approach to Software Evolution, Electronic

Noted in Theoretical Computer Science, 166, S.93-109, 2007. Siehe:
http://www.inf.usi.ch/faculty/lanza/Downloads/Robb2007a.pdf.

[2]: A.T.T. Ying, G.C. Murphy, R. Ng, M.C. Chu-Carroll: Predicting Source Code Changes

by Mining Revision History. In IEEE Trasnaction on Software Engeneering 30(9).
IEEE, S. 574-586, 2004.

[3]: H. Kagdi, M.L. Collard, J.I. Maletic: A survey and taxonomy of approaches for mining

software repositories in the context of software evolution, Journal of Software
Maintanance and Evolution: Research and Practice, 19(2), S.77-131, DOI:
10.1002/smr.344, 2007.

[4]: M. D’Ambros, M. Lanza, R. Robbes: On the Relationship Between Change Coupling

and Software Defects. In WCRE ’09. 16th Working Conference on Reverse
Engeneering, 2009. IEEE, S.135-144, 2009.

[5]: J. Gonnet: Data Mining within Eclipse. Diplomarbeit, Universität Zürich, 2007.

[6]: J. Han, M. Kamber: Data Mining. Concepts and Techniques, Waltham, 2005, S.5-10.

[7]: T.A. Runkler: Data Mining. Methoden und Algorithmen intelligenter Datenanalyse,

Wiesbaden, 2010, S.2-4.

[8]: H. Dürr: Anwendung des Data Mining in der Praxis. Seminararbeit, Universität Ulm

WS 2003/2004, S.3-4.

[9]: H. Schwarz: Vorlesung Data-Warehouse-, Data-Mining- und OLAP-Technologien.

WS 2010/2011, Universität Stuttgart.

[10]: B. Felix: SPSS 8. Professionelle Statistik unter Windows, Hamburg, 1998,S.691-700.

[11]: T. Srivastava: Getting your clustering right (Part1) (12.11.2013),

URL:http://www.analyticsvidhya.com/blog/2013/11/getting-clustering-right/
 (Letzter Zugriff am 07.04.2015).

[12]: I. Tudor: Association Rule Mining as a Data Mining Technique,

BULETINULuniversitatii Petrol-Gaze din Ploiesti, Vol.LX No1/2008, S.49-56.

[13]: P. Helge: Data Mining: Verfahren, Prozesse, Anwendungsarchitektur. München,

2005.

 94

[14]: E. Lüdecke: Ermittlung von Assoziationsregeln aus großen Datenmengen
(14.04.2010),URL:http://www.fhschmalkalden.de/schmalkaldenmedia/Ermitlung_v
on_Assoziationsregeln_aus_gro%C3%A1en_Datenmengen-p-13278.pdf.

 (Letzter Zugriff am 07.04.2015).

[15]: J. Mühle : Automatische Generierung von Assoziationsregeln, 2009, S.12.

[16]: M. Soldatova: Diskussion und Implementierung von Varianten des FP-Growth

Algorithmus in relationalen Datenbanksystemen. Studienarbeit, Leibniz Universität
Hannover, 2007.

[17]: F. Verhein: Frequent Pattern Growth (FP-Growth) Algorithm. An Introduction,

Universität Sydney, 2008.

[18]: T. Bollinger: Assoziationsregeln – Analyse eines Data Mining Verfahrens. In

Informatik-Spektrum, 19(5), Springer-Verlag, S. 257-261, DOI: 10.1007/s002870050036,
1996, URL: http://www.springerlink.com/content/katecd6pyyuevjfd/.

 (Letzter Zugriff am 07.04.2015).

 [19]: J. Han, Y. Pei, Y. Yin, R. Mao: Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. In Data Mining and Knowledge
Discovery, 8(1), S.53-87, DOI: 10.1023/B, 2004.

[20]: D. Gallardo, C. Aniszczyk: Get started with the Eclipse Platform (17.07.2007),

URL:http://www.ibm.com/developerworks/opensource/library/os-eclipse-
platform/.

 (Letzter Zugriff am 07.04.2015).

[21]: A. Becker: Entwicklung eines JaMP-Editors für das Eclipse-Framework.

Studienarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2007.

[22]: M. Witte: Portierung, Erweiterung und Integration des ObjectTeams/Java Compilers

für die Entwicklungsumgebung Eclipse. Diplomarbeit, Technische Universität Berlin,
2003.

[23]: C. Wressnegger: Coco/R Eclipse Plug-In. Bachelorarbeit, Johannes Kepler Universität

Linz, 2006.

[24]: H.-C. Frank: Implementierung eines Eclipse-Plugin zur Refaktorisierung „Replace

Conditional with Polymorphism“. Masterarbeit, FernUniversität in Hagen, 2012.

 95

[25]: The Eclipse Foundation. Extensions and Extension Points, URL:
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconce
pts%2Fextension.htm.

 (Letzter Zugriff am 07.04.2015).

[26]: L.Vogel: Eclipse Extension Points and Extensions-Tutorial (27.08.2013),

URL:http://www.vogella.com/tutorials/EclipseExtensionPoint/article.html
 (Letzter Zugriff am 07.04.2015).

[27]: T. Zimmermann, A. Zeller, P. Weissberger, S. Diehl: Mining Version Histories to

Guide Software Changes. In Proceedings of the 26th International Conference on
Software Engineering. Washington, DC; USA. IEEE Computer Society, S. 563-572,
2004.

[28]: P. Kim, B. Tamersoy: Collaborativ Software Design & Development. Mining Software

Repositories. Universität Texas, 2008.

[29]: A.T.T. Ying: Predicting Source Code Changes by Mining Revision History.

Masterarbeit, University of British Columbia, 2001.

[30]: P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng (2014).

SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning
Research (JMLR), 15: 3389-3393.

[31]: P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng: SPMF. An

Open-Source Data Mining Library. Startseite. URL: http://www.philippe-fournier-
viger.com/spmf/

 (Letzter Zugriff am 07.04.2015).

[32]: P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng: SPMF. An

Open-Source Data Mining Library. Example 3: Mining Frequent Itemsets by Using
the FP-Growth Algorithm. URL: http://www.philippe-fournier-
viger.com/spmf/index.php?link=documentation.php#growth

 (Letzter Zugriff am 07.04.2015).

[33]: The Eclipse Foundation. WindowBuilder - is a powerful and easy to use bi-directional

Java GUI designer, URL: https://eclipse.org/windowbuilder/.
 (Letzter Zugriff am 07.04.2015).

 96

[34]: E. Clayberg: Building GUIs with WondowBuilder. In EclipseCon 2012, Reston,
Virginia; USA. S.1-24, 2012.
URL:http://eclipsecon.org/europe2012/sites/eclipsecon.org.europe2012/files/Buiding-GUIs-

with-WindowBuilder-EclipseCon-2012.pdf.
(Letzter Zugriff am 07.04.2015)

[35]: T. Schmidt: Überblick über den Eclipse Workbench (2002), URL: http://www.admin-

wissen.de/tutorials/eclipse_workshop/ueberblick_workbench.html.
 (Letzter Zugriff am 07.04.2015).

[36]: M.R. Hoffmann: Eclipse Workbench: Using the Selection Service (28.08.2008),

URL: https://eclipse.org/articles/Article-WorkbenchSelections/article.html.
(Letzter Zugriff am 07.04.2015).

[37]: The Eclipse Foundation. Interface ITextSelection, URL:

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fref
erence%2Fapi%2Forg%2Feclipse%2Fjface%2Ftext%2FITextSelection.html.

 (Letzter Zugriff am 07.04.2015).

[38]: The Eclipse Foundation. Interface IMarkSelection, URL:

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fref
erence%2Fapi%2Forg%2Feclipse%2Fjface%2Ftext%2FIMarkSelection.html.

 (Letzter Zugriff am 07.04.2015).

[39]: The Eclipse Foundation. Interface IStructuredSelection, URL:

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fref
erence%2Fapi%2Forg%2Feclipse%2Fjface%2Fviewers%2FIStructuredSelection.html.

 (Letzter Zugriff am 07.04.2015).

[40]: P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V. S. Tseng: SPMF. An

Open-Source Data Mining Library. Example 54: Mining Frequent Sequential Patterns
Using the PrefixSpan Algorithm. URL: http://www.philippe-fournier-
viger.com/spmf/index.php?link=documentation.php#examplePrefixSpan.

 (Letzter Zugriff am 07.04.2015).

[41]: The Eclipse Foundation. Eclipse Public License (EPL) Frequently Askes Questions,

URL: https://eclipse.org/legal/eplfaq.php.
 (Letzter Zugriff am 07.04.2015).

 97

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum Unterschrift: Mehmet Fatih Cicek

